* gas/config/tc-arm.c (do_t_it): Fully initialise now_it.
[binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include "as.h"
29 #include <limits.h>
30 #include <stdarg.h>
31 #define NO_RELOC 0
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35 #include "libiberty.h"
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
48
49 /* This structure holds the unwinding state. */
50
51 static struct
52 {
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
79
80 #endif /* OBJ_ELF */
81
82 /* Results from operand parsing worker functions. */
83
84 typedef enum
85 {
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result;
90
91 enum arm_float_abi
92 {
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96 };
97
98 /* Types of processor to assemble for. */
99 #ifndef CPU_DEFAULT
100 /* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
106 #endif
107
108 #ifndef FPU_DEFAULT
109 # ifdef TE_LINUX
110 # define FPU_DEFAULT FPU_ARCH_FPA
111 # elif defined (TE_NetBSD)
112 # ifdef OBJ_ELF
113 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114 # else
115 /* Legacy a.out format. */
116 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117 # endif
118 # elif defined (TE_VXWORKS)
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
120 # else
121 /* For backwards compatibility, default to FPA. */
122 # define FPU_DEFAULT FPU_ARCH_FPA
123 # endif
124 #endif /* ifndef FPU_DEFAULT */
125
126 #define streq(a, b) (strcmp (a, b) == 0)
127
128 static arm_feature_set cpu_variant;
129 static arm_feature_set arm_arch_used;
130 static arm_feature_set thumb_arch_used;
131
132 /* Flags stored in private area of BFD structure. */
133 static int uses_apcs_26 = FALSE;
134 static int atpcs = FALSE;
135 static int support_interwork = FALSE;
136 static int uses_apcs_float = FALSE;
137 static int pic_code = FALSE;
138 static int fix_v4bx = FALSE;
139 /* Warn on using deprecated features. */
140 static int warn_on_deprecated = TRUE;
141
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static const arm_feature_set *mcpu_fpu_opt = NULL;
151 static const arm_feature_set *march_cpu_opt = NULL;
152 static const arm_feature_set *march_fpu_opt = NULL;
153 static const arm_feature_set *mfpu_opt = NULL;
154 static const arm_feature_set *object_arch = NULL;
155
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default = FPU_DEFAULT;
158 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
160 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
162 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167 #ifdef CPU_DEFAULT
168 static const arm_feature_set cpu_default = CPU_DEFAULT;
169 #endif
170
171 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179 static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
187 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
188 static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
189 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
190 static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
191 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
198 static const arm_feature_set arm_ext_v8 = ARM_FEATURE (ARM_EXT_V8, 0);
199 static const arm_feature_set arm_ext_m =
200 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
201 static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
202 static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
203 static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
204 static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
205 static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
206
207 static const arm_feature_set arm_arch_any = ARM_ANY;
208 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
209 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
210 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
211 static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
212
213 static const arm_feature_set arm_cext_iwmmxt2 =
214 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
215 static const arm_feature_set arm_cext_iwmmxt =
216 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
217 static const arm_feature_set arm_cext_xscale =
218 ARM_FEATURE (0, ARM_CEXT_XSCALE);
219 static const arm_feature_set arm_cext_maverick =
220 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
221 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
222 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
223 static const arm_feature_set fpu_vfp_ext_v1xd =
224 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
225 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
226 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
227 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
228 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
229 static const arm_feature_set fpu_vfp_ext_d32 =
230 ARM_FEATURE (0, FPU_VFP_EXT_D32);
231 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
232 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
233 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
234 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
235 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
236 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
237 static const arm_feature_set fpu_vfp_ext_armv8 =
238 ARM_FEATURE (0, FPU_VFP_EXT_ARMV8);
239 static const arm_feature_set fpu_neon_ext_armv8 =
240 ARM_FEATURE (0, FPU_NEON_EXT_ARMV8);
241 static const arm_feature_set fpu_crypto_ext_armv8 =
242 ARM_FEATURE (0, FPU_CRYPTO_EXT_ARMV8);
243
244 static int mfloat_abi_opt = -1;
245 /* Record user cpu selection for object attributes. */
246 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
247 /* Must be long enough to hold any of the names in arm_cpus. */
248 static char selected_cpu_name[16];
249
250 /* Return if no cpu was selected on command-line. */
251 static bfd_boolean
252 no_cpu_selected (void)
253 {
254 return selected_cpu.core == arm_arch_none.core
255 && selected_cpu.coproc == arm_arch_none.coproc;
256 }
257
258 #ifdef OBJ_ELF
259 # ifdef EABI_DEFAULT
260 static int meabi_flags = EABI_DEFAULT;
261 # else
262 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
263 # endif
264
265 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
266
267 bfd_boolean
268 arm_is_eabi (void)
269 {
270 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
271 }
272 #endif
273
274 #ifdef OBJ_ELF
275 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
276 symbolS * GOT_symbol;
277 #endif
278
279 /* 0: assemble for ARM,
280 1: assemble for Thumb,
281 2: assemble for Thumb even though target CPU does not support thumb
282 instructions. */
283 static int thumb_mode = 0;
284 /* A value distinct from the possible values for thumb_mode that we
285 can use to record whether thumb_mode has been copied into the
286 tc_frag_data field of a frag. */
287 #define MODE_RECORDED (1 << 4)
288
289 /* Specifies the intrinsic IT insn behavior mode. */
290 enum implicit_it_mode
291 {
292 IMPLICIT_IT_MODE_NEVER = 0x00,
293 IMPLICIT_IT_MODE_ARM = 0x01,
294 IMPLICIT_IT_MODE_THUMB = 0x02,
295 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
296 };
297 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
298
299 /* If unified_syntax is true, we are processing the new unified
300 ARM/Thumb syntax. Important differences from the old ARM mode:
301
302 - Immediate operands do not require a # prefix.
303 - Conditional affixes always appear at the end of the
304 instruction. (For backward compatibility, those instructions
305 that formerly had them in the middle, continue to accept them
306 there.)
307 - The IT instruction may appear, and if it does is validated
308 against subsequent conditional affixes. It does not generate
309 machine code.
310
311 Important differences from the old Thumb mode:
312
313 - Immediate operands do not require a # prefix.
314 - Most of the V6T2 instructions are only available in unified mode.
315 - The .N and .W suffixes are recognized and honored (it is an error
316 if they cannot be honored).
317 - All instructions set the flags if and only if they have an 's' affix.
318 - Conditional affixes may be used. They are validated against
319 preceding IT instructions. Unlike ARM mode, you cannot use a
320 conditional affix except in the scope of an IT instruction. */
321
322 static bfd_boolean unified_syntax = FALSE;
323
324 enum neon_el_type
325 {
326 NT_invtype,
327 NT_untyped,
328 NT_integer,
329 NT_float,
330 NT_poly,
331 NT_signed,
332 NT_unsigned
333 };
334
335 struct neon_type_el
336 {
337 enum neon_el_type type;
338 unsigned size;
339 };
340
341 #define NEON_MAX_TYPE_ELS 4
342
343 struct neon_type
344 {
345 struct neon_type_el el[NEON_MAX_TYPE_ELS];
346 unsigned elems;
347 };
348
349 enum it_instruction_type
350 {
351 OUTSIDE_IT_INSN,
352 INSIDE_IT_INSN,
353 INSIDE_IT_LAST_INSN,
354 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
355 if inside, should be the last one. */
356 NEUTRAL_IT_INSN, /* This could be either inside or outside,
357 i.e. BKPT and NOP. */
358 IT_INSN /* The IT insn has been parsed. */
359 };
360
361 /* The maximum number of operands we need. */
362 #define ARM_IT_MAX_OPERANDS 6
363
364 struct arm_it
365 {
366 const char * error;
367 unsigned long instruction;
368 int size;
369 int size_req;
370 int cond;
371 /* "uncond_value" is set to the value in place of the conditional field in
372 unconditional versions of the instruction, or -1 if nothing is
373 appropriate. */
374 int uncond_value;
375 struct neon_type vectype;
376 /* This does not indicate an actual NEON instruction, only that
377 the mnemonic accepts neon-style type suffixes. */
378 int is_neon;
379 /* Set to the opcode if the instruction needs relaxation.
380 Zero if the instruction is not relaxed. */
381 unsigned long relax;
382 struct
383 {
384 bfd_reloc_code_real_type type;
385 expressionS exp;
386 int pc_rel;
387 } reloc;
388
389 enum it_instruction_type it_insn_type;
390
391 struct
392 {
393 unsigned reg;
394 signed int imm;
395 struct neon_type_el vectype;
396 unsigned present : 1; /* Operand present. */
397 unsigned isreg : 1; /* Operand was a register. */
398 unsigned immisreg : 1; /* .imm field is a second register. */
399 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
400 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
401 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
402 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
403 instructions. This allows us to disambiguate ARM <-> vector insns. */
404 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
405 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
406 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
407 unsigned issingle : 1; /* Operand is VFP single-precision register. */
408 unsigned hasreloc : 1; /* Operand has relocation suffix. */
409 unsigned writeback : 1; /* Operand has trailing ! */
410 unsigned preind : 1; /* Preindexed address. */
411 unsigned postind : 1; /* Postindexed address. */
412 unsigned negative : 1; /* Index register was negated. */
413 unsigned shifted : 1; /* Shift applied to operation. */
414 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
415 } operands[ARM_IT_MAX_OPERANDS];
416 };
417
418 static struct arm_it inst;
419
420 #define NUM_FLOAT_VALS 8
421
422 const char * fp_const[] =
423 {
424 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
425 };
426
427 /* Number of littlenums required to hold an extended precision number. */
428 #define MAX_LITTLENUMS 6
429
430 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
431
432 #define FAIL (-1)
433 #define SUCCESS (0)
434
435 #define SUFF_S 1
436 #define SUFF_D 2
437 #define SUFF_E 3
438 #define SUFF_P 4
439
440 #define CP_T_X 0x00008000
441 #define CP_T_Y 0x00400000
442
443 #define CONDS_BIT 0x00100000
444 #define LOAD_BIT 0x00100000
445
446 #define DOUBLE_LOAD_FLAG 0x00000001
447
448 struct asm_cond
449 {
450 const char * template_name;
451 unsigned long value;
452 };
453
454 #define COND_ALWAYS 0xE
455
456 struct asm_psr
457 {
458 const char * template_name;
459 unsigned long field;
460 };
461
462 struct asm_barrier_opt
463 {
464 const char * template_name;
465 unsigned long value;
466 };
467
468 /* The bit that distinguishes CPSR and SPSR. */
469 #define SPSR_BIT (1 << 22)
470
471 /* The individual PSR flag bits. */
472 #define PSR_c (1 << 16)
473 #define PSR_x (1 << 17)
474 #define PSR_s (1 << 18)
475 #define PSR_f (1 << 19)
476
477 struct reloc_entry
478 {
479 char * name;
480 bfd_reloc_code_real_type reloc;
481 };
482
483 enum vfp_reg_pos
484 {
485 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
486 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
487 };
488
489 enum vfp_ldstm_type
490 {
491 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
492 };
493
494 /* Bits for DEFINED field in neon_typed_alias. */
495 #define NTA_HASTYPE 1
496 #define NTA_HASINDEX 2
497
498 struct neon_typed_alias
499 {
500 unsigned char defined;
501 unsigned char index;
502 struct neon_type_el eltype;
503 };
504
505 /* ARM register categories. This includes coprocessor numbers and various
506 architecture extensions' registers. */
507 enum arm_reg_type
508 {
509 REG_TYPE_RN,
510 REG_TYPE_CP,
511 REG_TYPE_CN,
512 REG_TYPE_FN,
513 REG_TYPE_VFS,
514 REG_TYPE_VFD,
515 REG_TYPE_NQ,
516 REG_TYPE_VFSD,
517 REG_TYPE_NDQ,
518 REG_TYPE_NSDQ,
519 REG_TYPE_VFC,
520 REG_TYPE_MVF,
521 REG_TYPE_MVD,
522 REG_TYPE_MVFX,
523 REG_TYPE_MVDX,
524 REG_TYPE_MVAX,
525 REG_TYPE_DSPSC,
526 REG_TYPE_MMXWR,
527 REG_TYPE_MMXWC,
528 REG_TYPE_MMXWCG,
529 REG_TYPE_XSCALE,
530 REG_TYPE_RNB
531 };
532
533 /* Structure for a hash table entry for a register.
534 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
535 information which states whether a vector type or index is specified (for a
536 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
537 struct reg_entry
538 {
539 const char * name;
540 unsigned int number;
541 unsigned char type;
542 unsigned char builtin;
543 struct neon_typed_alias * neon;
544 };
545
546 /* Diagnostics used when we don't get a register of the expected type. */
547 const char * const reg_expected_msgs[] =
548 {
549 N_("ARM register expected"),
550 N_("bad or missing co-processor number"),
551 N_("co-processor register expected"),
552 N_("FPA register expected"),
553 N_("VFP single precision register expected"),
554 N_("VFP/Neon double precision register expected"),
555 N_("Neon quad precision register expected"),
556 N_("VFP single or double precision register expected"),
557 N_("Neon double or quad precision register expected"),
558 N_("VFP single, double or Neon quad precision register expected"),
559 N_("VFP system register expected"),
560 N_("Maverick MVF register expected"),
561 N_("Maverick MVD register expected"),
562 N_("Maverick MVFX register expected"),
563 N_("Maverick MVDX register expected"),
564 N_("Maverick MVAX register expected"),
565 N_("Maverick DSPSC register expected"),
566 N_("iWMMXt data register expected"),
567 N_("iWMMXt control register expected"),
568 N_("iWMMXt scalar register expected"),
569 N_("XScale accumulator register expected"),
570 };
571
572 /* Some well known registers that we refer to directly elsewhere. */
573 #define REG_R12 12
574 #define REG_SP 13
575 #define REG_LR 14
576 #define REG_PC 15
577
578 /* ARM instructions take 4bytes in the object file, Thumb instructions
579 take 2: */
580 #define INSN_SIZE 4
581
582 struct asm_opcode
583 {
584 /* Basic string to match. */
585 const char * template_name;
586
587 /* Parameters to instruction. */
588 unsigned int operands[8];
589
590 /* Conditional tag - see opcode_lookup. */
591 unsigned int tag : 4;
592
593 /* Basic instruction code. */
594 unsigned int avalue : 28;
595
596 /* Thumb-format instruction code. */
597 unsigned int tvalue;
598
599 /* Which architecture variant provides this instruction. */
600 const arm_feature_set * avariant;
601 const arm_feature_set * tvariant;
602
603 /* Function to call to encode instruction in ARM format. */
604 void (* aencode) (void);
605
606 /* Function to call to encode instruction in Thumb format. */
607 void (* tencode) (void);
608 };
609
610 /* Defines for various bits that we will want to toggle. */
611 #define INST_IMMEDIATE 0x02000000
612 #define OFFSET_REG 0x02000000
613 #define HWOFFSET_IMM 0x00400000
614 #define SHIFT_BY_REG 0x00000010
615 #define PRE_INDEX 0x01000000
616 #define INDEX_UP 0x00800000
617 #define WRITE_BACK 0x00200000
618 #define LDM_TYPE_2_OR_3 0x00400000
619 #define CPSI_MMOD 0x00020000
620
621 #define LITERAL_MASK 0xf000f000
622 #define OPCODE_MASK 0xfe1fffff
623 #define V4_STR_BIT 0x00000020
624
625 #define T2_SUBS_PC_LR 0xf3de8f00
626
627 #define DATA_OP_SHIFT 21
628
629 #define T2_OPCODE_MASK 0xfe1fffff
630 #define T2_DATA_OP_SHIFT 21
631
632 #define A_COND_MASK 0xf0000000
633 #define A_PUSH_POP_OP_MASK 0x0fff0000
634
635 /* Opcodes for pushing/poping registers to/from the stack. */
636 #define A1_OPCODE_PUSH 0x092d0000
637 #define A2_OPCODE_PUSH 0x052d0004
638 #define A2_OPCODE_POP 0x049d0004
639
640 /* Codes to distinguish the arithmetic instructions. */
641 #define OPCODE_AND 0
642 #define OPCODE_EOR 1
643 #define OPCODE_SUB 2
644 #define OPCODE_RSB 3
645 #define OPCODE_ADD 4
646 #define OPCODE_ADC 5
647 #define OPCODE_SBC 6
648 #define OPCODE_RSC 7
649 #define OPCODE_TST 8
650 #define OPCODE_TEQ 9
651 #define OPCODE_CMP 10
652 #define OPCODE_CMN 11
653 #define OPCODE_ORR 12
654 #define OPCODE_MOV 13
655 #define OPCODE_BIC 14
656 #define OPCODE_MVN 15
657
658 #define T2_OPCODE_AND 0
659 #define T2_OPCODE_BIC 1
660 #define T2_OPCODE_ORR 2
661 #define T2_OPCODE_ORN 3
662 #define T2_OPCODE_EOR 4
663 #define T2_OPCODE_ADD 8
664 #define T2_OPCODE_ADC 10
665 #define T2_OPCODE_SBC 11
666 #define T2_OPCODE_SUB 13
667 #define T2_OPCODE_RSB 14
668
669 #define T_OPCODE_MUL 0x4340
670 #define T_OPCODE_TST 0x4200
671 #define T_OPCODE_CMN 0x42c0
672 #define T_OPCODE_NEG 0x4240
673 #define T_OPCODE_MVN 0x43c0
674
675 #define T_OPCODE_ADD_R3 0x1800
676 #define T_OPCODE_SUB_R3 0x1a00
677 #define T_OPCODE_ADD_HI 0x4400
678 #define T_OPCODE_ADD_ST 0xb000
679 #define T_OPCODE_SUB_ST 0xb080
680 #define T_OPCODE_ADD_SP 0xa800
681 #define T_OPCODE_ADD_PC 0xa000
682 #define T_OPCODE_ADD_I8 0x3000
683 #define T_OPCODE_SUB_I8 0x3800
684 #define T_OPCODE_ADD_I3 0x1c00
685 #define T_OPCODE_SUB_I3 0x1e00
686
687 #define T_OPCODE_ASR_R 0x4100
688 #define T_OPCODE_LSL_R 0x4080
689 #define T_OPCODE_LSR_R 0x40c0
690 #define T_OPCODE_ROR_R 0x41c0
691 #define T_OPCODE_ASR_I 0x1000
692 #define T_OPCODE_LSL_I 0x0000
693 #define T_OPCODE_LSR_I 0x0800
694
695 #define T_OPCODE_MOV_I8 0x2000
696 #define T_OPCODE_CMP_I8 0x2800
697 #define T_OPCODE_CMP_LR 0x4280
698 #define T_OPCODE_MOV_HR 0x4600
699 #define T_OPCODE_CMP_HR 0x4500
700
701 #define T_OPCODE_LDR_PC 0x4800
702 #define T_OPCODE_LDR_SP 0x9800
703 #define T_OPCODE_STR_SP 0x9000
704 #define T_OPCODE_LDR_IW 0x6800
705 #define T_OPCODE_STR_IW 0x6000
706 #define T_OPCODE_LDR_IH 0x8800
707 #define T_OPCODE_STR_IH 0x8000
708 #define T_OPCODE_LDR_IB 0x7800
709 #define T_OPCODE_STR_IB 0x7000
710 #define T_OPCODE_LDR_RW 0x5800
711 #define T_OPCODE_STR_RW 0x5000
712 #define T_OPCODE_LDR_RH 0x5a00
713 #define T_OPCODE_STR_RH 0x5200
714 #define T_OPCODE_LDR_RB 0x5c00
715 #define T_OPCODE_STR_RB 0x5400
716
717 #define T_OPCODE_PUSH 0xb400
718 #define T_OPCODE_POP 0xbc00
719
720 #define T_OPCODE_BRANCH 0xe000
721
722 #define THUMB_SIZE 2 /* Size of thumb instruction. */
723 #define THUMB_PP_PC_LR 0x0100
724 #define THUMB_LOAD_BIT 0x0800
725 #define THUMB2_LOAD_BIT 0x00100000
726
727 #define BAD_ARGS _("bad arguments to instruction")
728 #define BAD_SP _("r13 not allowed here")
729 #define BAD_PC _("r15 not allowed here")
730 #define BAD_COND _("instruction cannot be conditional")
731 #define BAD_OVERLAP _("registers may not be the same")
732 #define BAD_HIREG _("lo register required")
733 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
734 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
735 #define BAD_BRANCH _("branch must be last instruction in IT block")
736 #define BAD_NOT_IT _("instruction not allowed in IT block")
737 #define BAD_FPU _("selected FPU does not support instruction")
738 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
739 #define BAD_IT_COND _("incorrect condition in IT block")
740 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
741 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
742 #define BAD_PC_ADDRESSING \
743 _("cannot use register index with PC-relative addressing")
744 #define BAD_PC_WRITEBACK \
745 _("cannot use writeback with PC-relative addressing")
746 #define BAD_RANGE _("branch out of range")
747
748 static struct hash_control * arm_ops_hsh;
749 static struct hash_control * arm_cond_hsh;
750 static struct hash_control * arm_shift_hsh;
751 static struct hash_control * arm_psr_hsh;
752 static struct hash_control * arm_v7m_psr_hsh;
753 static struct hash_control * arm_reg_hsh;
754 static struct hash_control * arm_reloc_hsh;
755 static struct hash_control * arm_barrier_opt_hsh;
756
757 /* Stuff needed to resolve the label ambiguity
758 As:
759 ...
760 label: <insn>
761 may differ from:
762 ...
763 label:
764 <insn> */
765
766 symbolS * last_label_seen;
767 static int label_is_thumb_function_name = FALSE;
768
769 /* Literal pool structure. Held on a per-section
770 and per-sub-section basis. */
771
772 #define MAX_LITERAL_POOL_SIZE 1024
773 typedef struct literal_pool
774 {
775 expressionS literals [MAX_LITERAL_POOL_SIZE];
776 unsigned int next_free_entry;
777 unsigned int id;
778 symbolS * symbol;
779 segT section;
780 subsegT sub_section;
781 #ifdef OBJ_ELF
782 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
783 #endif
784 struct literal_pool * next;
785 } literal_pool;
786
787 /* Pointer to a linked list of literal pools. */
788 literal_pool * list_of_pools = NULL;
789
790 #ifdef OBJ_ELF
791 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
792 #else
793 static struct current_it now_it;
794 #endif
795
796 static inline int
797 now_it_compatible (int cond)
798 {
799 return (cond & ~1) == (now_it.cc & ~1);
800 }
801
802 static inline int
803 conditional_insn (void)
804 {
805 return inst.cond != COND_ALWAYS;
806 }
807
808 static int in_it_block (void);
809
810 static int handle_it_state (void);
811
812 static void force_automatic_it_block_close (void);
813
814 static void it_fsm_post_encode (void);
815
816 #define set_it_insn_type(type) \
817 do \
818 { \
819 inst.it_insn_type = type; \
820 if (handle_it_state () == FAIL) \
821 return; \
822 } \
823 while (0)
824
825 #define set_it_insn_type_nonvoid(type, failret) \
826 do \
827 { \
828 inst.it_insn_type = type; \
829 if (handle_it_state () == FAIL) \
830 return failret; \
831 } \
832 while(0)
833
834 #define set_it_insn_type_last() \
835 do \
836 { \
837 if (inst.cond == COND_ALWAYS) \
838 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
839 else \
840 set_it_insn_type (INSIDE_IT_LAST_INSN); \
841 } \
842 while (0)
843
844 /* Pure syntax. */
845
846 /* This array holds the chars that always start a comment. If the
847 pre-processor is disabled, these aren't very useful. */
848 const char comment_chars[] = "@";
849
850 /* This array holds the chars that only start a comment at the beginning of
851 a line. If the line seems to have the form '# 123 filename'
852 .line and .file directives will appear in the pre-processed output. */
853 /* Note that input_file.c hand checks for '#' at the beginning of the
854 first line of the input file. This is because the compiler outputs
855 #NO_APP at the beginning of its output. */
856 /* Also note that comments like this one will always work. */
857 const char line_comment_chars[] = "#";
858
859 const char line_separator_chars[] = ";";
860
861 /* Chars that can be used to separate mant
862 from exp in floating point numbers. */
863 const char EXP_CHARS[] = "eE";
864
865 /* Chars that mean this number is a floating point constant. */
866 /* As in 0f12.456 */
867 /* or 0d1.2345e12 */
868
869 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
870
871 /* Prefix characters that indicate the start of an immediate
872 value. */
873 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
874
875 /* Separator character handling. */
876
877 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
878
879 static inline int
880 skip_past_char (char ** str, char c)
881 {
882 if (**str == c)
883 {
884 (*str)++;
885 return SUCCESS;
886 }
887 else
888 return FAIL;
889 }
890
891 #define skip_past_comma(str) skip_past_char (str, ',')
892
893 /* Arithmetic expressions (possibly involving symbols). */
894
895 /* Return TRUE if anything in the expression is a bignum. */
896
897 static int
898 walk_no_bignums (symbolS * sp)
899 {
900 if (symbol_get_value_expression (sp)->X_op == O_big)
901 return 1;
902
903 if (symbol_get_value_expression (sp)->X_add_symbol)
904 {
905 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
906 || (symbol_get_value_expression (sp)->X_op_symbol
907 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
908 }
909
910 return 0;
911 }
912
913 static int in_my_get_expression = 0;
914
915 /* Third argument to my_get_expression. */
916 #define GE_NO_PREFIX 0
917 #define GE_IMM_PREFIX 1
918 #define GE_OPT_PREFIX 2
919 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
920 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
921 #define GE_OPT_PREFIX_BIG 3
922
923 static int
924 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
925 {
926 char * save_in;
927 segT seg;
928
929 /* In unified syntax, all prefixes are optional. */
930 if (unified_syntax)
931 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
932 : GE_OPT_PREFIX;
933
934 switch (prefix_mode)
935 {
936 case GE_NO_PREFIX: break;
937 case GE_IMM_PREFIX:
938 if (!is_immediate_prefix (**str))
939 {
940 inst.error = _("immediate expression requires a # prefix");
941 return FAIL;
942 }
943 (*str)++;
944 break;
945 case GE_OPT_PREFIX:
946 case GE_OPT_PREFIX_BIG:
947 if (is_immediate_prefix (**str))
948 (*str)++;
949 break;
950 default: abort ();
951 }
952
953 memset (ep, 0, sizeof (expressionS));
954
955 save_in = input_line_pointer;
956 input_line_pointer = *str;
957 in_my_get_expression = 1;
958 seg = expression (ep);
959 in_my_get_expression = 0;
960
961 if (ep->X_op == O_illegal || ep->X_op == O_absent)
962 {
963 /* We found a bad or missing expression in md_operand(). */
964 *str = input_line_pointer;
965 input_line_pointer = save_in;
966 if (inst.error == NULL)
967 inst.error = (ep->X_op == O_absent
968 ? _("missing expression") :_("bad expression"));
969 return 1;
970 }
971
972 #ifdef OBJ_AOUT
973 if (seg != absolute_section
974 && seg != text_section
975 && seg != data_section
976 && seg != bss_section
977 && seg != undefined_section)
978 {
979 inst.error = _("bad segment");
980 *str = input_line_pointer;
981 input_line_pointer = save_in;
982 return 1;
983 }
984 #else
985 (void) seg;
986 #endif
987
988 /* Get rid of any bignums now, so that we don't generate an error for which
989 we can't establish a line number later on. Big numbers are never valid
990 in instructions, which is where this routine is always called. */
991 if (prefix_mode != GE_OPT_PREFIX_BIG
992 && (ep->X_op == O_big
993 || (ep->X_add_symbol
994 && (walk_no_bignums (ep->X_add_symbol)
995 || (ep->X_op_symbol
996 && walk_no_bignums (ep->X_op_symbol))))))
997 {
998 inst.error = _("invalid constant");
999 *str = input_line_pointer;
1000 input_line_pointer = save_in;
1001 return 1;
1002 }
1003
1004 *str = input_line_pointer;
1005 input_line_pointer = save_in;
1006 return 0;
1007 }
1008
1009 /* Turn a string in input_line_pointer into a floating point constant
1010 of type TYPE, and store the appropriate bytes in *LITP. The number
1011 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1012 returned, or NULL on OK.
1013
1014 Note that fp constants aren't represent in the normal way on the ARM.
1015 In big endian mode, things are as expected. However, in little endian
1016 mode fp constants are big-endian word-wise, and little-endian byte-wise
1017 within the words. For example, (double) 1.1 in big endian mode is
1018 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1019 the byte sequence 99 99 f1 3f 9a 99 99 99.
1020
1021 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1022
1023 char *
1024 md_atof (int type, char * litP, int * sizeP)
1025 {
1026 int prec;
1027 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1028 char *t;
1029 int i;
1030
1031 switch (type)
1032 {
1033 case 'f':
1034 case 'F':
1035 case 's':
1036 case 'S':
1037 prec = 2;
1038 break;
1039
1040 case 'd':
1041 case 'D':
1042 case 'r':
1043 case 'R':
1044 prec = 4;
1045 break;
1046
1047 case 'x':
1048 case 'X':
1049 prec = 5;
1050 break;
1051
1052 case 'p':
1053 case 'P':
1054 prec = 5;
1055 break;
1056
1057 default:
1058 *sizeP = 0;
1059 return _("Unrecognized or unsupported floating point constant");
1060 }
1061
1062 t = atof_ieee (input_line_pointer, type, words);
1063 if (t)
1064 input_line_pointer = t;
1065 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1066
1067 if (target_big_endian)
1068 {
1069 for (i = 0; i < prec; i++)
1070 {
1071 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1072 litP += sizeof (LITTLENUM_TYPE);
1073 }
1074 }
1075 else
1076 {
1077 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1078 for (i = prec - 1; i >= 0; i--)
1079 {
1080 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1081 litP += sizeof (LITTLENUM_TYPE);
1082 }
1083 else
1084 /* For a 4 byte float the order of elements in `words' is 1 0.
1085 For an 8 byte float the order is 1 0 3 2. */
1086 for (i = 0; i < prec; i += 2)
1087 {
1088 md_number_to_chars (litP, (valueT) words[i + 1],
1089 sizeof (LITTLENUM_TYPE));
1090 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1091 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1092 litP += 2 * sizeof (LITTLENUM_TYPE);
1093 }
1094 }
1095
1096 return NULL;
1097 }
1098
1099 /* We handle all bad expressions here, so that we can report the faulty
1100 instruction in the error message. */
1101 void
1102 md_operand (expressionS * exp)
1103 {
1104 if (in_my_get_expression)
1105 exp->X_op = O_illegal;
1106 }
1107
1108 /* Immediate values. */
1109
1110 /* Generic immediate-value read function for use in directives.
1111 Accepts anything that 'expression' can fold to a constant.
1112 *val receives the number. */
1113 #ifdef OBJ_ELF
1114 static int
1115 immediate_for_directive (int *val)
1116 {
1117 expressionS exp;
1118 exp.X_op = O_illegal;
1119
1120 if (is_immediate_prefix (*input_line_pointer))
1121 {
1122 input_line_pointer++;
1123 expression (&exp);
1124 }
1125
1126 if (exp.X_op != O_constant)
1127 {
1128 as_bad (_("expected #constant"));
1129 ignore_rest_of_line ();
1130 return FAIL;
1131 }
1132 *val = exp.X_add_number;
1133 return SUCCESS;
1134 }
1135 #endif
1136
1137 /* Register parsing. */
1138
1139 /* Generic register parser. CCP points to what should be the
1140 beginning of a register name. If it is indeed a valid register
1141 name, advance CCP over it and return the reg_entry structure;
1142 otherwise return NULL. Does not issue diagnostics. */
1143
1144 static struct reg_entry *
1145 arm_reg_parse_multi (char **ccp)
1146 {
1147 char *start = *ccp;
1148 char *p;
1149 struct reg_entry *reg;
1150
1151 #ifdef REGISTER_PREFIX
1152 if (*start != REGISTER_PREFIX)
1153 return NULL;
1154 start++;
1155 #endif
1156 #ifdef OPTIONAL_REGISTER_PREFIX
1157 if (*start == OPTIONAL_REGISTER_PREFIX)
1158 start++;
1159 #endif
1160
1161 p = start;
1162 if (!ISALPHA (*p) || !is_name_beginner (*p))
1163 return NULL;
1164
1165 do
1166 p++;
1167 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1168
1169 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1170
1171 if (!reg)
1172 return NULL;
1173
1174 *ccp = p;
1175 return reg;
1176 }
1177
1178 static int
1179 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1180 enum arm_reg_type type)
1181 {
1182 /* Alternative syntaxes are accepted for a few register classes. */
1183 switch (type)
1184 {
1185 case REG_TYPE_MVF:
1186 case REG_TYPE_MVD:
1187 case REG_TYPE_MVFX:
1188 case REG_TYPE_MVDX:
1189 /* Generic coprocessor register names are allowed for these. */
1190 if (reg && reg->type == REG_TYPE_CN)
1191 return reg->number;
1192 break;
1193
1194 case REG_TYPE_CP:
1195 /* For backward compatibility, a bare number is valid here. */
1196 {
1197 unsigned long processor = strtoul (start, ccp, 10);
1198 if (*ccp != start && processor <= 15)
1199 return processor;
1200 }
1201
1202 case REG_TYPE_MMXWC:
1203 /* WC includes WCG. ??? I'm not sure this is true for all
1204 instructions that take WC registers. */
1205 if (reg && reg->type == REG_TYPE_MMXWCG)
1206 return reg->number;
1207 break;
1208
1209 default:
1210 break;
1211 }
1212
1213 return FAIL;
1214 }
1215
1216 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1217 return value is the register number or FAIL. */
1218
1219 static int
1220 arm_reg_parse (char **ccp, enum arm_reg_type type)
1221 {
1222 char *start = *ccp;
1223 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1224 int ret;
1225
1226 /* Do not allow a scalar (reg+index) to parse as a register. */
1227 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1228 return FAIL;
1229
1230 if (reg && reg->type == type)
1231 return reg->number;
1232
1233 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1234 return ret;
1235
1236 *ccp = start;
1237 return FAIL;
1238 }
1239
1240 /* Parse a Neon type specifier. *STR should point at the leading '.'
1241 character. Does no verification at this stage that the type fits the opcode
1242 properly. E.g.,
1243
1244 .i32.i32.s16
1245 .s32.f32
1246 .u16
1247
1248 Can all be legally parsed by this function.
1249
1250 Fills in neon_type struct pointer with parsed information, and updates STR
1251 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1252 type, FAIL if not. */
1253
1254 static int
1255 parse_neon_type (struct neon_type *type, char **str)
1256 {
1257 char *ptr = *str;
1258
1259 if (type)
1260 type->elems = 0;
1261
1262 while (type->elems < NEON_MAX_TYPE_ELS)
1263 {
1264 enum neon_el_type thistype = NT_untyped;
1265 unsigned thissize = -1u;
1266
1267 if (*ptr != '.')
1268 break;
1269
1270 ptr++;
1271
1272 /* Just a size without an explicit type. */
1273 if (ISDIGIT (*ptr))
1274 goto parsesize;
1275
1276 switch (TOLOWER (*ptr))
1277 {
1278 case 'i': thistype = NT_integer; break;
1279 case 'f': thistype = NT_float; break;
1280 case 'p': thistype = NT_poly; break;
1281 case 's': thistype = NT_signed; break;
1282 case 'u': thistype = NT_unsigned; break;
1283 case 'd':
1284 thistype = NT_float;
1285 thissize = 64;
1286 ptr++;
1287 goto done;
1288 default:
1289 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1290 return FAIL;
1291 }
1292
1293 ptr++;
1294
1295 /* .f is an abbreviation for .f32. */
1296 if (thistype == NT_float && !ISDIGIT (*ptr))
1297 thissize = 32;
1298 else
1299 {
1300 parsesize:
1301 thissize = strtoul (ptr, &ptr, 10);
1302
1303 if (thissize != 8 && thissize != 16 && thissize != 32
1304 && thissize != 64)
1305 {
1306 as_bad (_("bad size %d in type specifier"), thissize);
1307 return FAIL;
1308 }
1309 }
1310
1311 done:
1312 if (type)
1313 {
1314 type->el[type->elems].type = thistype;
1315 type->el[type->elems].size = thissize;
1316 type->elems++;
1317 }
1318 }
1319
1320 /* Empty/missing type is not a successful parse. */
1321 if (type->elems == 0)
1322 return FAIL;
1323
1324 *str = ptr;
1325
1326 return SUCCESS;
1327 }
1328
1329 /* Errors may be set multiple times during parsing or bit encoding
1330 (particularly in the Neon bits), but usually the earliest error which is set
1331 will be the most meaningful. Avoid overwriting it with later (cascading)
1332 errors by calling this function. */
1333
1334 static void
1335 first_error (const char *err)
1336 {
1337 if (!inst.error)
1338 inst.error = err;
1339 }
1340
1341 /* Parse a single type, e.g. ".s32", leading period included. */
1342 static int
1343 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1344 {
1345 char *str = *ccp;
1346 struct neon_type optype;
1347
1348 if (*str == '.')
1349 {
1350 if (parse_neon_type (&optype, &str) == SUCCESS)
1351 {
1352 if (optype.elems == 1)
1353 *vectype = optype.el[0];
1354 else
1355 {
1356 first_error (_("only one type should be specified for operand"));
1357 return FAIL;
1358 }
1359 }
1360 else
1361 {
1362 first_error (_("vector type expected"));
1363 return FAIL;
1364 }
1365 }
1366 else
1367 return FAIL;
1368
1369 *ccp = str;
1370
1371 return SUCCESS;
1372 }
1373
1374 /* Special meanings for indices (which have a range of 0-7), which will fit into
1375 a 4-bit integer. */
1376
1377 #define NEON_ALL_LANES 15
1378 #define NEON_INTERLEAVE_LANES 14
1379
1380 /* Parse either a register or a scalar, with an optional type. Return the
1381 register number, and optionally fill in the actual type of the register
1382 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1383 type/index information in *TYPEINFO. */
1384
1385 static int
1386 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1387 enum arm_reg_type *rtype,
1388 struct neon_typed_alias *typeinfo)
1389 {
1390 char *str = *ccp;
1391 struct reg_entry *reg = arm_reg_parse_multi (&str);
1392 struct neon_typed_alias atype;
1393 struct neon_type_el parsetype;
1394
1395 atype.defined = 0;
1396 atype.index = -1;
1397 atype.eltype.type = NT_invtype;
1398 atype.eltype.size = -1;
1399
1400 /* Try alternate syntax for some types of register. Note these are mutually
1401 exclusive with the Neon syntax extensions. */
1402 if (reg == NULL)
1403 {
1404 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1405 if (altreg != FAIL)
1406 *ccp = str;
1407 if (typeinfo)
1408 *typeinfo = atype;
1409 return altreg;
1410 }
1411
1412 /* Undo polymorphism when a set of register types may be accepted. */
1413 if ((type == REG_TYPE_NDQ
1414 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1415 || (type == REG_TYPE_VFSD
1416 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1417 || (type == REG_TYPE_NSDQ
1418 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1419 || reg->type == REG_TYPE_NQ))
1420 || (type == REG_TYPE_MMXWC
1421 && (reg->type == REG_TYPE_MMXWCG)))
1422 type = (enum arm_reg_type) reg->type;
1423
1424 if (type != reg->type)
1425 return FAIL;
1426
1427 if (reg->neon)
1428 atype = *reg->neon;
1429
1430 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1431 {
1432 if ((atype.defined & NTA_HASTYPE) != 0)
1433 {
1434 first_error (_("can't redefine type for operand"));
1435 return FAIL;
1436 }
1437 atype.defined |= NTA_HASTYPE;
1438 atype.eltype = parsetype;
1439 }
1440
1441 if (skip_past_char (&str, '[') == SUCCESS)
1442 {
1443 if (type != REG_TYPE_VFD)
1444 {
1445 first_error (_("only D registers may be indexed"));
1446 return FAIL;
1447 }
1448
1449 if ((atype.defined & NTA_HASINDEX) != 0)
1450 {
1451 first_error (_("can't change index for operand"));
1452 return FAIL;
1453 }
1454
1455 atype.defined |= NTA_HASINDEX;
1456
1457 if (skip_past_char (&str, ']') == SUCCESS)
1458 atype.index = NEON_ALL_LANES;
1459 else
1460 {
1461 expressionS exp;
1462
1463 my_get_expression (&exp, &str, GE_NO_PREFIX);
1464
1465 if (exp.X_op != O_constant)
1466 {
1467 first_error (_("constant expression required"));
1468 return FAIL;
1469 }
1470
1471 if (skip_past_char (&str, ']') == FAIL)
1472 return FAIL;
1473
1474 atype.index = exp.X_add_number;
1475 }
1476 }
1477
1478 if (typeinfo)
1479 *typeinfo = atype;
1480
1481 if (rtype)
1482 *rtype = type;
1483
1484 *ccp = str;
1485
1486 return reg->number;
1487 }
1488
1489 /* Like arm_reg_parse, but allow allow the following extra features:
1490 - If RTYPE is non-zero, return the (possibly restricted) type of the
1491 register (e.g. Neon double or quad reg when either has been requested).
1492 - If this is a Neon vector type with additional type information, fill
1493 in the struct pointed to by VECTYPE (if non-NULL).
1494 This function will fault on encountering a scalar. */
1495
1496 static int
1497 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1498 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1499 {
1500 struct neon_typed_alias atype;
1501 char *str = *ccp;
1502 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1503
1504 if (reg == FAIL)
1505 return FAIL;
1506
1507 /* Do not allow regname(... to parse as a register. */
1508 if (*str == '(')
1509 return FAIL;
1510
1511 /* Do not allow a scalar (reg+index) to parse as a register. */
1512 if ((atype.defined & NTA_HASINDEX) != 0)
1513 {
1514 first_error (_("register operand expected, but got scalar"));
1515 return FAIL;
1516 }
1517
1518 if (vectype)
1519 *vectype = atype.eltype;
1520
1521 *ccp = str;
1522
1523 return reg;
1524 }
1525
1526 #define NEON_SCALAR_REG(X) ((X) >> 4)
1527 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1528
1529 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1530 have enough information to be able to do a good job bounds-checking. So, we
1531 just do easy checks here, and do further checks later. */
1532
1533 static int
1534 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1535 {
1536 int reg;
1537 char *str = *ccp;
1538 struct neon_typed_alias atype;
1539
1540 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1541
1542 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1543 return FAIL;
1544
1545 if (atype.index == NEON_ALL_LANES)
1546 {
1547 first_error (_("scalar must have an index"));
1548 return FAIL;
1549 }
1550 else if (atype.index >= 64 / elsize)
1551 {
1552 first_error (_("scalar index out of range"));
1553 return FAIL;
1554 }
1555
1556 if (type)
1557 *type = atype.eltype;
1558
1559 *ccp = str;
1560
1561 return reg * 16 + atype.index;
1562 }
1563
1564 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1565
1566 static long
1567 parse_reg_list (char ** strp)
1568 {
1569 char * str = * strp;
1570 long range = 0;
1571 int another_range;
1572
1573 /* We come back here if we get ranges concatenated by '+' or '|'. */
1574 do
1575 {
1576 another_range = 0;
1577
1578 if (*str == '{')
1579 {
1580 int in_range = 0;
1581 int cur_reg = -1;
1582
1583 str++;
1584 do
1585 {
1586 int reg;
1587
1588 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1589 {
1590 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1591 return FAIL;
1592 }
1593
1594 if (in_range)
1595 {
1596 int i;
1597
1598 if (reg <= cur_reg)
1599 {
1600 first_error (_("bad range in register list"));
1601 return FAIL;
1602 }
1603
1604 for (i = cur_reg + 1; i < reg; i++)
1605 {
1606 if (range & (1 << i))
1607 as_tsktsk
1608 (_("Warning: duplicated register (r%d) in register list"),
1609 i);
1610 else
1611 range |= 1 << i;
1612 }
1613 in_range = 0;
1614 }
1615
1616 if (range & (1 << reg))
1617 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1618 reg);
1619 else if (reg <= cur_reg)
1620 as_tsktsk (_("Warning: register range not in ascending order"));
1621
1622 range |= 1 << reg;
1623 cur_reg = reg;
1624 }
1625 while (skip_past_comma (&str) != FAIL
1626 || (in_range = 1, *str++ == '-'));
1627 str--;
1628
1629 if (*str++ != '}')
1630 {
1631 first_error (_("missing `}'"));
1632 return FAIL;
1633 }
1634 }
1635 else
1636 {
1637 expressionS exp;
1638
1639 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1640 return FAIL;
1641
1642 if (exp.X_op == O_constant)
1643 {
1644 if (exp.X_add_number
1645 != (exp.X_add_number & 0x0000ffff))
1646 {
1647 inst.error = _("invalid register mask");
1648 return FAIL;
1649 }
1650
1651 if ((range & exp.X_add_number) != 0)
1652 {
1653 int regno = range & exp.X_add_number;
1654
1655 regno &= -regno;
1656 regno = (1 << regno) - 1;
1657 as_tsktsk
1658 (_("Warning: duplicated register (r%d) in register list"),
1659 regno);
1660 }
1661
1662 range |= exp.X_add_number;
1663 }
1664 else
1665 {
1666 if (inst.reloc.type != 0)
1667 {
1668 inst.error = _("expression too complex");
1669 return FAIL;
1670 }
1671
1672 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1673 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1674 inst.reloc.pc_rel = 0;
1675 }
1676 }
1677
1678 if (*str == '|' || *str == '+')
1679 {
1680 str++;
1681 another_range = 1;
1682 }
1683 }
1684 while (another_range);
1685
1686 *strp = str;
1687 return range;
1688 }
1689
1690 /* Types of registers in a list. */
1691
1692 enum reg_list_els
1693 {
1694 REGLIST_VFP_S,
1695 REGLIST_VFP_D,
1696 REGLIST_NEON_D
1697 };
1698
1699 /* Parse a VFP register list. If the string is invalid return FAIL.
1700 Otherwise return the number of registers, and set PBASE to the first
1701 register. Parses registers of type ETYPE.
1702 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1703 - Q registers can be used to specify pairs of D registers
1704 - { } can be omitted from around a singleton register list
1705 FIXME: This is not implemented, as it would require backtracking in
1706 some cases, e.g.:
1707 vtbl.8 d3,d4,d5
1708 This could be done (the meaning isn't really ambiguous), but doesn't
1709 fit in well with the current parsing framework.
1710 - 32 D registers may be used (also true for VFPv3).
1711 FIXME: Types are ignored in these register lists, which is probably a
1712 bug. */
1713
1714 static int
1715 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1716 {
1717 char *str = *ccp;
1718 int base_reg;
1719 int new_base;
1720 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1721 int max_regs = 0;
1722 int count = 0;
1723 int warned = 0;
1724 unsigned long mask = 0;
1725 int i;
1726
1727 if (*str != '{')
1728 {
1729 inst.error = _("expecting {");
1730 return FAIL;
1731 }
1732
1733 str++;
1734
1735 switch (etype)
1736 {
1737 case REGLIST_VFP_S:
1738 regtype = REG_TYPE_VFS;
1739 max_regs = 32;
1740 break;
1741
1742 case REGLIST_VFP_D:
1743 regtype = REG_TYPE_VFD;
1744 break;
1745
1746 case REGLIST_NEON_D:
1747 regtype = REG_TYPE_NDQ;
1748 break;
1749 }
1750
1751 if (etype != REGLIST_VFP_S)
1752 {
1753 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1754 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1755 {
1756 max_regs = 32;
1757 if (thumb_mode)
1758 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1759 fpu_vfp_ext_d32);
1760 else
1761 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1762 fpu_vfp_ext_d32);
1763 }
1764 else
1765 max_regs = 16;
1766 }
1767
1768 base_reg = max_regs;
1769
1770 do
1771 {
1772 int setmask = 1, addregs = 1;
1773
1774 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1775
1776 if (new_base == FAIL)
1777 {
1778 first_error (_(reg_expected_msgs[regtype]));
1779 return FAIL;
1780 }
1781
1782 if (new_base >= max_regs)
1783 {
1784 first_error (_("register out of range in list"));
1785 return FAIL;
1786 }
1787
1788 /* Note: a value of 2 * n is returned for the register Q<n>. */
1789 if (regtype == REG_TYPE_NQ)
1790 {
1791 setmask = 3;
1792 addregs = 2;
1793 }
1794
1795 if (new_base < base_reg)
1796 base_reg = new_base;
1797
1798 if (mask & (setmask << new_base))
1799 {
1800 first_error (_("invalid register list"));
1801 return FAIL;
1802 }
1803
1804 if ((mask >> new_base) != 0 && ! warned)
1805 {
1806 as_tsktsk (_("register list not in ascending order"));
1807 warned = 1;
1808 }
1809
1810 mask |= setmask << new_base;
1811 count += addregs;
1812
1813 if (*str == '-') /* We have the start of a range expression */
1814 {
1815 int high_range;
1816
1817 str++;
1818
1819 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1820 == FAIL)
1821 {
1822 inst.error = gettext (reg_expected_msgs[regtype]);
1823 return FAIL;
1824 }
1825
1826 if (high_range >= max_regs)
1827 {
1828 first_error (_("register out of range in list"));
1829 return FAIL;
1830 }
1831
1832 if (regtype == REG_TYPE_NQ)
1833 high_range = high_range + 1;
1834
1835 if (high_range <= new_base)
1836 {
1837 inst.error = _("register range not in ascending order");
1838 return FAIL;
1839 }
1840
1841 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1842 {
1843 if (mask & (setmask << new_base))
1844 {
1845 inst.error = _("invalid register list");
1846 return FAIL;
1847 }
1848
1849 mask |= setmask << new_base;
1850 count += addregs;
1851 }
1852 }
1853 }
1854 while (skip_past_comma (&str) != FAIL);
1855
1856 str++;
1857
1858 /* Sanity check -- should have raised a parse error above. */
1859 if (count == 0 || count > max_regs)
1860 abort ();
1861
1862 *pbase = base_reg;
1863
1864 /* Final test -- the registers must be consecutive. */
1865 mask >>= base_reg;
1866 for (i = 0; i < count; i++)
1867 {
1868 if ((mask & (1u << i)) == 0)
1869 {
1870 inst.error = _("non-contiguous register range");
1871 return FAIL;
1872 }
1873 }
1874
1875 *ccp = str;
1876
1877 return count;
1878 }
1879
1880 /* True if two alias types are the same. */
1881
1882 static bfd_boolean
1883 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1884 {
1885 if (!a && !b)
1886 return TRUE;
1887
1888 if (!a || !b)
1889 return FALSE;
1890
1891 if (a->defined != b->defined)
1892 return FALSE;
1893
1894 if ((a->defined & NTA_HASTYPE) != 0
1895 && (a->eltype.type != b->eltype.type
1896 || a->eltype.size != b->eltype.size))
1897 return FALSE;
1898
1899 if ((a->defined & NTA_HASINDEX) != 0
1900 && (a->index != b->index))
1901 return FALSE;
1902
1903 return TRUE;
1904 }
1905
1906 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1907 The base register is put in *PBASE.
1908 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1909 the return value.
1910 The register stride (minus one) is put in bit 4 of the return value.
1911 Bits [6:5] encode the list length (minus one).
1912 The type of the list elements is put in *ELTYPE, if non-NULL. */
1913
1914 #define NEON_LANE(X) ((X) & 0xf)
1915 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1916 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1917
1918 static int
1919 parse_neon_el_struct_list (char **str, unsigned *pbase,
1920 struct neon_type_el *eltype)
1921 {
1922 char *ptr = *str;
1923 int base_reg = -1;
1924 int reg_incr = -1;
1925 int count = 0;
1926 int lane = -1;
1927 int leading_brace = 0;
1928 enum arm_reg_type rtype = REG_TYPE_NDQ;
1929 const char *const incr_error = _("register stride must be 1 or 2");
1930 const char *const type_error = _("mismatched element/structure types in list");
1931 struct neon_typed_alias firsttype;
1932
1933 if (skip_past_char (&ptr, '{') == SUCCESS)
1934 leading_brace = 1;
1935
1936 do
1937 {
1938 struct neon_typed_alias atype;
1939 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1940
1941 if (getreg == FAIL)
1942 {
1943 first_error (_(reg_expected_msgs[rtype]));
1944 return FAIL;
1945 }
1946
1947 if (base_reg == -1)
1948 {
1949 base_reg = getreg;
1950 if (rtype == REG_TYPE_NQ)
1951 {
1952 reg_incr = 1;
1953 }
1954 firsttype = atype;
1955 }
1956 else if (reg_incr == -1)
1957 {
1958 reg_incr = getreg - base_reg;
1959 if (reg_incr < 1 || reg_incr > 2)
1960 {
1961 first_error (_(incr_error));
1962 return FAIL;
1963 }
1964 }
1965 else if (getreg != base_reg + reg_incr * count)
1966 {
1967 first_error (_(incr_error));
1968 return FAIL;
1969 }
1970
1971 if (! neon_alias_types_same (&atype, &firsttype))
1972 {
1973 first_error (_(type_error));
1974 return FAIL;
1975 }
1976
1977 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1978 modes. */
1979 if (ptr[0] == '-')
1980 {
1981 struct neon_typed_alias htype;
1982 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1983 if (lane == -1)
1984 lane = NEON_INTERLEAVE_LANES;
1985 else if (lane != NEON_INTERLEAVE_LANES)
1986 {
1987 first_error (_(type_error));
1988 return FAIL;
1989 }
1990 if (reg_incr == -1)
1991 reg_incr = 1;
1992 else if (reg_incr != 1)
1993 {
1994 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1995 return FAIL;
1996 }
1997 ptr++;
1998 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1999 if (hireg == FAIL)
2000 {
2001 first_error (_(reg_expected_msgs[rtype]));
2002 return FAIL;
2003 }
2004 if (! neon_alias_types_same (&htype, &firsttype))
2005 {
2006 first_error (_(type_error));
2007 return FAIL;
2008 }
2009 count += hireg + dregs - getreg;
2010 continue;
2011 }
2012
2013 /* If we're using Q registers, we can't use [] or [n] syntax. */
2014 if (rtype == REG_TYPE_NQ)
2015 {
2016 count += 2;
2017 continue;
2018 }
2019
2020 if ((atype.defined & NTA_HASINDEX) != 0)
2021 {
2022 if (lane == -1)
2023 lane = atype.index;
2024 else if (lane != atype.index)
2025 {
2026 first_error (_(type_error));
2027 return FAIL;
2028 }
2029 }
2030 else if (lane == -1)
2031 lane = NEON_INTERLEAVE_LANES;
2032 else if (lane != NEON_INTERLEAVE_LANES)
2033 {
2034 first_error (_(type_error));
2035 return FAIL;
2036 }
2037 count++;
2038 }
2039 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2040
2041 /* No lane set by [x]. We must be interleaving structures. */
2042 if (lane == -1)
2043 lane = NEON_INTERLEAVE_LANES;
2044
2045 /* Sanity check. */
2046 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2047 || (count > 1 && reg_incr == -1))
2048 {
2049 first_error (_("error parsing element/structure list"));
2050 return FAIL;
2051 }
2052
2053 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2054 {
2055 first_error (_("expected }"));
2056 return FAIL;
2057 }
2058
2059 if (reg_incr == -1)
2060 reg_incr = 1;
2061
2062 if (eltype)
2063 *eltype = firsttype.eltype;
2064
2065 *pbase = base_reg;
2066 *str = ptr;
2067
2068 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2069 }
2070
2071 /* Parse an explicit relocation suffix on an expression. This is
2072 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2073 arm_reloc_hsh contains no entries, so this function can only
2074 succeed if there is no () after the word. Returns -1 on error,
2075 BFD_RELOC_UNUSED if there wasn't any suffix. */
2076
2077 static int
2078 parse_reloc (char **str)
2079 {
2080 struct reloc_entry *r;
2081 char *p, *q;
2082
2083 if (**str != '(')
2084 return BFD_RELOC_UNUSED;
2085
2086 p = *str + 1;
2087 q = p;
2088
2089 while (*q && *q != ')' && *q != ',')
2090 q++;
2091 if (*q != ')')
2092 return -1;
2093
2094 if ((r = (struct reloc_entry *)
2095 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2096 return -1;
2097
2098 *str = q + 1;
2099 return r->reloc;
2100 }
2101
2102 /* Directives: register aliases. */
2103
2104 static struct reg_entry *
2105 insert_reg_alias (char *str, unsigned number, int type)
2106 {
2107 struct reg_entry *new_reg;
2108 const char *name;
2109
2110 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2111 {
2112 if (new_reg->builtin)
2113 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2114
2115 /* Only warn about a redefinition if it's not defined as the
2116 same register. */
2117 else if (new_reg->number != number || new_reg->type != type)
2118 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2119
2120 return NULL;
2121 }
2122
2123 name = xstrdup (str);
2124 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2125
2126 new_reg->name = name;
2127 new_reg->number = number;
2128 new_reg->type = type;
2129 new_reg->builtin = FALSE;
2130 new_reg->neon = NULL;
2131
2132 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2133 abort ();
2134
2135 return new_reg;
2136 }
2137
2138 static void
2139 insert_neon_reg_alias (char *str, int number, int type,
2140 struct neon_typed_alias *atype)
2141 {
2142 struct reg_entry *reg = insert_reg_alias (str, number, type);
2143
2144 if (!reg)
2145 {
2146 first_error (_("attempt to redefine typed alias"));
2147 return;
2148 }
2149
2150 if (atype)
2151 {
2152 reg->neon = (struct neon_typed_alias *)
2153 xmalloc (sizeof (struct neon_typed_alias));
2154 *reg->neon = *atype;
2155 }
2156 }
2157
2158 /* Look for the .req directive. This is of the form:
2159
2160 new_register_name .req existing_register_name
2161
2162 If we find one, or if it looks sufficiently like one that we want to
2163 handle any error here, return TRUE. Otherwise return FALSE. */
2164
2165 static bfd_boolean
2166 create_register_alias (char * newname, char *p)
2167 {
2168 struct reg_entry *old;
2169 char *oldname, *nbuf;
2170 size_t nlen;
2171
2172 /* The input scrubber ensures that whitespace after the mnemonic is
2173 collapsed to single spaces. */
2174 oldname = p;
2175 if (strncmp (oldname, " .req ", 6) != 0)
2176 return FALSE;
2177
2178 oldname += 6;
2179 if (*oldname == '\0')
2180 return FALSE;
2181
2182 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2183 if (!old)
2184 {
2185 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2186 return TRUE;
2187 }
2188
2189 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2190 the desired alias name, and p points to its end. If not, then
2191 the desired alias name is in the global original_case_string. */
2192 #ifdef TC_CASE_SENSITIVE
2193 nlen = p - newname;
2194 #else
2195 newname = original_case_string;
2196 nlen = strlen (newname);
2197 #endif
2198
2199 nbuf = (char *) alloca (nlen + 1);
2200 memcpy (nbuf, newname, nlen);
2201 nbuf[nlen] = '\0';
2202
2203 /* Create aliases under the new name as stated; an all-lowercase
2204 version of the new name; and an all-uppercase version of the new
2205 name. */
2206 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2207 {
2208 for (p = nbuf; *p; p++)
2209 *p = TOUPPER (*p);
2210
2211 if (strncmp (nbuf, newname, nlen))
2212 {
2213 /* If this attempt to create an additional alias fails, do not bother
2214 trying to create the all-lower case alias. We will fail and issue
2215 a second, duplicate error message. This situation arises when the
2216 programmer does something like:
2217 foo .req r0
2218 Foo .req r1
2219 The second .req creates the "Foo" alias but then fails to create
2220 the artificial FOO alias because it has already been created by the
2221 first .req. */
2222 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2223 return TRUE;
2224 }
2225
2226 for (p = nbuf; *p; p++)
2227 *p = TOLOWER (*p);
2228
2229 if (strncmp (nbuf, newname, nlen))
2230 insert_reg_alias (nbuf, old->number, old->type);
2231 }
2232
2233 return TRUE;
2234 }
2235
2236 /* Create a Neon typed/indexed register alias using directives, e.g.:
2237 X .dn d5.s32[1]
2238 Y .qn 6.s16
2239 Z .dn d7
2240 T .dn Z[0]
2241 These typed registers can be used instead of the types specified after the
2242 Neon mnemonic, so long as all operands given have types. Types can also be
2243 specified directly, e.g.:
2244 vadd d0.s32, d1.s32, d2.s32 */
2245
2246 static bfd_boolean
2247 create_neon_reg_alias (char *newname, char *p)
2248 {
2249 enum arm_reg_type basetype;
2250 struct reg_entry *basereg;
2251 struct reg_entry mybasereg;
2252 struct neon_type ntype;
2253 struct neon_typed_alias typeinfo;
2254 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2255 int namelen;
2256
2257 typeinfo.defined = 0;
2258 typeinfo.eltype.type = NT_invtype;
2259 typeinfo.eltype.size = -1;
2260 typeinfo.index = -1;
2261
2262 nameend = p;
2263
2264 if (strncmp (p, " .dn ", 5) == 0)
2265 basetype = REG_TYPE_VFD;
2266 else if (strncmp (p, " .qn ", 5) == 0)
2267 basetype = REG_TYPE_NQ;
2268 else
2269 return FALSE;
2270
2271 p += 5;
2272
2273 if (*p == '\0')
2274 return FALSE;
2275
2276 basereg = arm_reg_parse_multi (&p);
2277
2278 if (basereg && basereg->type != basetype)
2279 {
2280 as_bad (_("bad type for register"));
2281 return FALSE;
2282 }
2283
2284 if (basereg == NULL)
2285 {
2286 expressionS exp;
2287 /* Try parsing as an integer. */
2288 my_get_expression (&exp, &p, GE_NO_PREFIX);
2289 if (exp.X_op != O_constant)
2290 {
2291 as_bad (_("expression must be constant"));
2292 return FALSE;
2293 }
2294 basereg = &mybasereg;
2295 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2296 : exp.X_add_number;
2297 basereg->neon = 0;
2298 }
2299
2300 if (basereg->neon)
2301 typeinfo = *basereg->neon;
2302
2303 if (parse_neon_type (&ntype, &p) == SUCCESS)
2304 {
2305 /* We got a type. */
2306 if (typeinfo.defined & NTA_HASTYPE)
2307 {
2308 as_bad (_("can't redefine the type of a register alias"));
2309 return FALSE;
2310 }
2311
2312 typeinfo.defined |= NTA_HASTYPE;
2313 if (ntype.elems != 1)
2314 {
2315 as_bad (_("you must specify a single type only"));
2316 return FALSE;
2317 }
2318 typeinfo.eltype = ntype.el[0];
2319 }
2320
2321 if (skip_past_char (&p, '[') == SUCCESS)
2322 {
2323 expressionS exp;
2324 /* We got a scalar index. */
2325
2326 if (typeinfo.defined & NTA_HASINDEX)
2327 {
2328 as_bad (_("can't redefine the index of a scalar alias"));
2329 return FALSE;
2330 }
2331
2332 my_get_expression (&exp, &p, GE_NO_PREFIX);
2333
2334 if (exp.X_op != O_constant)
2335 {
2336 as_bad (_("scalar index must be constant"));
2337 return FALSE;
2338 }
2339
2340 typeinfo.defined |= NTA_HASINDEX;
2341 typeinfo.index = exp.X_add_number;
2342
2343 if (skip_past_char (&p, ']') == FAIL)
2344 {
2345 as_bad (_("expecting ]"));
2346 return FALSE;
2347 }
2348 }
2349
2350 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2351 the desired alias name, and p points to its end. If not, then
2352 the desired alias name is in the global original_case_string. */
2353 #ifdef TC_CASE_SENSITIVE
2354 namelen = nameend - newname;
2355 #else
2356 newname = original_case_string;
2357 namelen = strlen (newname);
2358 #endif
2359
2360 namebuf = (char *) alloca (namelen + 1);
2361 strncpy (namebuf, newname, namelen);
2362 namebuf[namelen] = '\0';
2363
2364 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2365 typeinfo.defined != 0 ? &typeinfo : NULL);
2366
2367 /* Insert name in all uppercase. */
2368 for (p = namebuf; *p; p++)
2369 *p = TOUPPER (*p);
2370
2371 if (strncmp (namebuf, newname, namelen))
2372 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2373 typeinfo.defined != 0 ? &typeinfo : NULL);
2374
2375 /* Insert name in all lowercase. */
2376 for (p = namebuf; *p; p++)
2377 *p = TOLOWER (*p);
2378
2379 if (strncmp (namebuf, newname, namelen))
2380 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2381 typeinfo.defined != 0 ? &typeinfo : NULL);
2382
2383 return TRUE;
2384 }
2385
2386 /* Should never be called, as .req goes between the alias and the
2387 register name, not at the beginning of the line. */
2388
2389 static void
2390 s_req (int a ATTRIBUTE_UNUSED)
2391 {
2392 as_bad (_("invalid syntax for .req directive"));
2393 }
2394
2395 static void
2396 s_dn (int a ATTRIBUTE_UNUSED)
2397 {
2398 as_bad (_("invalid syntax for .dn directive"));
2399 }
2400
2401 static void
2402 s_qn (int a ATTRIBUTE_UNUSED)
2403 {
2404 as_bad (_("invalid syntax for .qn directive"));
2405 }
2406
2407 /* The .unreq directive deletes an alias which was previously defined
2408 by .req. For example:
2409
2410 my_alias .req r11
2411 .unreq my_alias */
2412
2413 static void
2414 s_unreq (int a ATTRIBUTE_UNUSED)
2415 {
2416 char * name;
2417 char saved_char;
2418
2419 name = input_line_pointer;
2420
2421 while (*input_line_pointer != 0
2422 && *input_line_pointer != ' '
2423 && *input_line_pointer != '\n')
2424 ++input_line_pointer;
2425
2426 saved_char = *input_line_pointer;
2427 *input_line_pointer = 0;
2428
2429 if (!*name)
2430 as_bad (_("invalid syntax for .unreq directive"));
2431 else
2432 {
2433 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2434 name);
2435
2436 if (!reg)
2437 as_bad (_("unknown register alias '%s'"), name);
2438 else if (reg->builtin)
2439 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2440 name);
2441 else
2442 {
2443 char * p;
2444 char * nbuf;
2445
2446 hash_delete (arm_reg_hsh, name, FALSE);
2447 free ((char *) reg->name);
2448 if (reg->neon)
2449 free (reg->neon);
2450 free (reg);
2451
2452 /* Also locate the all upper case and all lower case versions.
2453 Do not complain if we cannot find one or the other as it
2454 was probably deleted above. */
2455
2456 nbuf = strdup (name);
2457 for (p = nbuf; *p; p++)
2458 *p = TOUPPER (*p);
2459 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2460 if (reg)
2461 {
2462 hash_delete (arm_reg_hsh, nbuf, FALSE);
2463 free ((char *) reg->name);
2464 if (reg->neon)
2465 free (reg->neon);
2466 free (reg);
2467 }
2468
2469 for (p = nbuf; *p; p++)
2470 *p = TOLOWER (*p);
2471 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2472 if (reg)
2473 {
2474 hash_delete (arm_reg_hsh, nbuf, FALSE);
2475 free ((char *) reg->name);
2476 if (reg->neon)
2477 free (reg->neon);
2478 free (reg);
2479 }
2480
2481 free (nbuf);
2482 }
2483 }
2484
2485 *input_line_pointer = saved_char;
2486 demand_empty_rest_of_line ();
2487 }
2488
2489 /* Directives: Instruction set selection. */
2490
2491 #ifdef OBJ_ELF
2492 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2493 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2494 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2495 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2496
2497 /* Create a new mapping symbol for the transition to STATE. */
2498
2499 static void
2500 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2501 {
2502 symbolS * symbolP;
2503 const char * symname;
2504 int type;
2505
2506 switch (state)
2507 {
2508 case MAP_DATA:
2509 symname = "$d";
2510 type = BSF_NO_FLAGS;
2511 break;
2512 case MAP_ARM:
2513 symname = "$a";
2514 type = BSF_NO_FLAGS;
2515 break;
2516 case MAP_THUMB:
2517 symname = "$t";
2518 type = BSF_NO_FLAGS;
2519 break;
2520 default:
2521 abort ();
2522 }
2523
2524 symbolP = symbol_new (symname, now_seg, value, frag);
2525 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2526
2527 switch (state)
2528 {
2529 case MAP_ARM:
2530 THUMB_SET_FUNC (symbolP, 0);
2531 ARM_SET_THUMB (symbolP, 0);
2532 ARM_SET_INTERWORK (symbolP, support_interwork);
2533 break;
2534
2535 case MAP_THUMB:
2536 THUMB_SET_FUNC (symbolP, 1);
2537 ARM_SET_THUMB (symbolP, 1);
2538 ARM_SET_INTERWORK (symbolP, support_interwork);
2539 break;
2540
2541 case MAP_DATA:
2542 default:
2543 break;
2544 }
2545
2546 /* Save the mapping symbols for future reference. Also check that
2547 we do not place two mapping symbols at the same offset within a
2548 frag. We'll handle overlap between frags in
2549 check_mapping_symbols.
2550
2551 If .fill or other data filling directive generates zero sized data,
2552 the mapping symbol for the following code will have the same value
2553 as the one generated for the data filling directive. In this case,
2554 we replace the old symbol with the new one at the same address. */
2555 if (value == 0)
2556 {
2557 if (frag->tc_frag_data.first_map != NULL)
2558 {
2559 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2560 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2561 }
2562 frag->tc_frag_data.first_map = symbolP;
2563 }
2564 if (frag->tc_frag_data.last_map != NULL)
2565 {
2566 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2567 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2568 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2569 }
2570 frag->tc_frag_data.last_map = symbolP;
2571 }
2572
2573 /* We must sometimes convert a region marked as code to data during
2574 code alignment, if an odd number of bytes have to be padded. The
2575 code mapping symbol is pushed to an aligned address. */
2576
2577 static void
2578 insert_data_mapping_symbol (enum mstate state,
2579 valueT value, fragS *frag, offsetT bytes)
2580 {
2581 /* If there was already a mapping symbol, remove it. */
2582 if (frag->tc_frag_data.last_map != NULL
2583 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2584 {
2585 symbolS *symp = frag->tc_frag_data.last_map;
2586
2587 if (value == 0)
2588 {
2589 know (frag->tc_frag_data.first_map == symp);
2590 frag->tc_frag_data.first_map = NULL;
2591 }
2592 frag->tc_frag_data.last_map = NULL;
2593 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2594 }
2595
2596 make_mapping_symbol (MAP_DATA, value, frag);
2597 make_mapping_symbol (state, value + bytes, frag);
2598 }
2599
2600 static void mapping_state_2 (enum mstate state, int max_chars);
2601
2602 /* Set the mapping state to STATE. Only call this when about to
2603 emit some STATE bytes to the file. */
2604
2605 void
2606 mapping_state (enum mstate state)
2607 {
2608 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2609
2610 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2611
2612 if (mapstate == state)
2613 /* The mapping symbol has already been emitted.
2614 There is nothing else to do. */
2615 return;
2616
2617 if (state == MAP_ARM || state == MAP_THUMB)
2618 /* PR gas/12931
2619 All ARM instructions require 4-byte alignment.
2620 (Almost) all Thumb instructions require 2-byte alignment.
2621
2622 When emitting instructions into any section, mark the section
2623 appropriately.
2624
2625 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2626 but themselves require 2-byte alignment; this applies to some
2627 PC- relative forms. However, these cases will invovle implicit
2628 literal pool generation or an explicit .align >=2, both of
2629 which will cause the section to me marked with sufficient
2630 alignment. Thus, we don't handle those cases here. */
2631 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2632
2633 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2634 /* This case will be evaluated later in the next else. */
2635 return;
2636 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2637 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2638 {
2639 /* Only add the symbol if the offset is > 0:
2640 if we're at the first frag, check it's size > 0;
2641 if we're not at the first frag, then for sure
2642 the offset is > 0. */
2643 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2644 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2645
2646 if (add_symbol)
2647 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2648 }
2649
2650 mapping_state_2 (state, 0);
2651 #undef TRANSITION
2652 }
2653
2654 /* Same as mapping_state, but MAX_CHARS bytes have already been
2655 allocated. Put the mapping symbol that far back. */
2656
2657 static void
2658 mapping_state_2 (enum mstate state, int max_chars)
2659 {
2660 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2661
2662 if (!SEG_NORMAL (now_seg))
2663 return;
2664
2665 if (mapstate == state)
2666 /* The mapping symbol has already been emitted.
2667 There is nothing else to do. */
2668 return;
2669
2670 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2671 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2672 }
2673 #else
2674 #define mapping_state(x) ((void)0)
2675 #define mapping_state_2(x, y) ((void)0)
2676 #endif
2677
2678 /* Find the real, Thumb encoded start of a Thumb function. */
2679
2680 #ifdef OBJ_COFF
2681 static symbolS *
2682 find_real_start (symbolS * symbolP)
2683 {
2684 char * real_start;
2685 const char * name = S_GET_NAME (symbolP);
2686 symbolS * new_target;
2687
2688 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2689 #define STUB_NAME ".real_start_of"
2690
2691 if (name == NULL)
2692 abort ();
2693
2694 /* The compiler may generate BL instructions to local labels because
2695 it needs to perform a branch to a far away location. These labels
2696 do not have a corresponding ".real_start_of" label. We check
2697 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2698 the ".real_start_of" convention for nonlocal branches. */
2699 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2700 return symbolP;
2701
2702 real_start = ACONCAT ((STUB_NAME, name, NULL));
2703 new_target = symbol_find (real_start);
2704
2705 if (new_target == NULL)
2706 {
2707 as_warn (_("Failed to find real start of function: %s\n"), name);
2708 new_target = symbolP;
2709 }
2710
2711 return new_target;
2712 }
2713 #endif
2714
2715 static void
2716 opcode_select (int width)
2717 {
2718 switch (width)
2719 {
2720 case 16:
2721 if (! thumb_mode)
2722 {
2723 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2724 as_bad (_("selected processor does not support THUMB opcodes"));
2725
2726 thumb_mode = 1;
2727 /* No need to force the alignment, since we will have been
2728 coming from ARM mode, which is word-aligned. */
2729 record_alignment (now_seg, 1);
2730 }
2731 break;
2732
2733 case 32:
2734 if (thumb_mode)
2735 {
2736 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2737 as_bad (_("selected processor does not support ARM opcodes"));
2738
2739 thumb_mode = 0;
2740
2741 if (!need_pass_2)
2742 frag_align (2, 0, 0);
2743
2744 record_alignment (now_seg, 1);
2745 }
2746 break;
2747
2748 default:
2749 as_bad (_("invalid instruction size selected (%d)"), width);
2750 }
2751 }
2752
2753 static void
2754 s_arm (int ignore ATTRIBUTE_UNUSED)
2755 {
2756 opcode_select (32);
2757 demand_empty_rest_of_line ();
2758 }
2759
2760 static void
2761 s_thumb (int ignore ATTRIBUTE_UNUSED)
2762 {
2763 opcode_select (16);
2764 demand_empty_rest_of_line ();
2765 }
2766
2767 static void
2768 s_code (int unused ATTRIBUTE_UNUSED)
2769 {
2770 int temp;
2771
2772 temp = get_absolute_expression ();
2773 switch (temp)
2774 {
2775 case 16:
2776 case 32:
2777 opcode_select (temp);
2778 break;
2779
2780 default:
2781 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2782 }
2783 }
2784
2785 static void
2786 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2787 {
2788 /* If we are not already in thumb mode go into it, EVEN if
2789 the target processor does not support thumb instructions.
2790 This is used by gcc/config/arm/lib1funcs.asm for example
2791 to compile interworking support functions even if the
2792 target processor should not support interworking. */
2793 if (! thumb_mode)
2794 {
2795 thumb_mode = 2;
2796 record_alignment (now_seg, 1);
2797 }
2798
2799 demand_empty_rest_of_line ();
2800 }
2801
2802 static void
2803 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2804 {
2805 s_thumb (0);
2806
2807 /* The following label is the name/address of the start of a Thumb function.
2808 We need to know this for the interworking support. */
2809 label_is_thumb_function_name = TRUE;
2810 }
2811
2812 /* Perform a .set directive, but also mark the alias as
2813 being a thumb function. */
2814
2815 static void
2816 s_thumb_set (int equiv)
2817 {
2818 /* XXX the following is a duplicate of the code for s_set() in read.c
2819 We cannot just call that code as we need to get at the symbol that
2820 is created. */
2821 char * name;
2822 char delim;
2823 char * end_name;
2824 symbolS * symbolP;
2825
2826 /* Especial apologies for the random logic:
2827 This just grew, and could be parsed much more simply!
2828 Dean - in haste. */
2829 name = input_line_pointer;
2830 delim = get_symbol_end ();
2831 end_name = input_line_pointer;
2832 *end_name = delim;
2833
2834 if (*input_line_pointer != ',')
2835 {
2836 *end_name = 0;
2837 as_bad (_("expected comma after name \"%s\""), name);
2838 *end_name = delim;
2839 ignore_rest_of_line ();
2840 return;
2841 }
2842
2843 input_line_pointer++;
2844 *end_name = 0;
2845
2846 if (name[0] == '.' && name[1] == '\0')
2847 {
2848 /* XXX - this should not happen to .thumb_set. */
2849 abort ();
2850 }
2851
2852 if ((symbolP = symbol_find (name)) == NULL
2853 && (symbolP = md_undefined_symbol (name)) == NULL)
2854 {
2855 #ifndef NO_LISTING
2856 /* When doing symbol listings, play games with dummy fragments living
2857 outside the normal fragment chain to record the file and line info
2858 for this symbol. */
2859 if (listing & LISTING_SYMBOLS)
2860 {
2861 extern struct list_info_struct * listing_tail;
2862 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2863
2864 memset (dummy_frag, 0, sizeof (fragS));
2865 dummy_frag->fr_type = rs_fill;
2866 dummy_frag->line = listing_tail;
2867 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2868 dummy_frag->fr_symbol = symbolP;
2869 }
2870 else
2871 #endif
2872 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2873
2874 #ifdef OBJ_COFF
2875 /* "set" symbols are local unless otherwise specified. */
2876 SF_SET_LOCAL (symbolP);
2877 #endif /* OBJ_COFF */
2878 } /* Make a new symbol. */
2879
2880 symbol_table_insert (symbolP);
2881
2882 * end_name = delim;
2883
2884 if (equiv
2885 && S_IS_DEFINED (symbolP)
2886 && S_GET_SEGMENT (symbolP) != reg_section)
2887 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2888
2889 pseudo_set (symbolP);
2890
2891 demand_empty_rest_of_line ();
2892
2893 /* XXX Now we come to the Thumb specific bit of code. */
2894
2895 THUMB_SET_FUNC (symbolP, 1);
2896 ARM_SET_THUMB (symbolP, 1);
2897 #if defined OBJ_ELF || defined OBJ_COFF
2898 ARM_SET_INTERWORK (symbolP, support_interwork);
2899 #endif
2900 }
2901
2902 /* Directives: Mode selection. */
2903
2904 /* .syntax [unified|divided] - choose the new unified syntax
2905 (same for Arm and Thumb encoding, modulo slight differences in what
2906 can be represented) or the old divergent syntax for each mode. */
2907 static void
2908 s_syntax (int unused ATTRIBUTE_UNUSED)
2909 {
2910 char *name, delim;
2911
2912 name = input_line_pointer;
2913 delim = get_symbol_end ();
2914
2915 if (!strcasecmp (name, "unified"))
2916 unified_syntax = TRUE;
2917 else if (!strcasecmp (name, "divided"))
2918 unified_syntax = FALSE;
2919 else
2920 {
2921 as_bad (_("unrecognized syntax mode \"%s\""), name);
2922 return;
2923 }
2924 *input_line_pointer = delim;
2925 demand_empty_rest_of_line ();
2926 }
2927
2928 /* Directives: sectioning and alignment. */
2929
2930 /* Same as s_align_ptwo but align 0 => align 2. */
2931
2932 static void
2933 s_align (int unused ATTRIBUTE_UNUSED)
2934 {
2935 int temp;
2936 bfd_boolean fill_p;
2937 long temp_fill;
2938 long max_alignment = 15;
2939
2940 temp = get_absolute_expression ();
2941 if (temp > max_alignment)
2942 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2943 else if (temp < 0)
2944 {
2945 as_bad (_("alignment negative. 0 assumed."));
2946 temp = 0;
2947 }
2948
2949 if (*input_line_pointer == ',')
2950 {
2951 input_line_pointer++;
2952 temp_fill = get_absolute_expression ();
2953 fill_p = TRUE;
2954 }
2955 else
2956 {
2957 fill_p = FALSE;
2958 temp_fill = 0;
2959 }
2960
2961 if (!temp)
2962 temp = 2;
2963
2964 /* Only make a frag if we HAVE to. */
2965 if (temp && !need_pass_2)
2966 {
2967 if (!fill_p && subseg_text_p (now_seg))
2968 frag_align_code (temp, 0);
2969 else
2970 frag_align (temp, (int) temp_fill, 0);
2971 }
2972 demand_empty_rest_of_line ();
2973
2974 record_alignment (now_seg, temp);
2975 }
2976
2977 static void
2978 s_bss (int ignore ATTRIBUTE_UNUSED)
2979 {
2980 /* We don't support putting frags in the BSS segment, we fake it by
2981 marking in_bss, then looking at s_skip for clues. */
2982 subseg_set (bss_section, 0);
2983 demand_empty_rest_of_line ();
2984
2985 #ifdef md_elf_section_change_hook
2986 md_elf_section_change_hook ();
2987 #endif
2988 }
2989
2990 static void
2991 s_even (int ignore ATTRIBUTE_UNUSED)
2992 {
2993 /* Never make frag if expect extra pass. */
2994 if (!need_pass_2)
2995 frag_align (1, 0, 0);
2996
2997 record_alignment (now_seg, 1);
2998
2999 demand_empty_rest_of_line ();
3000 }
3001
3002 /* Directives: Literal pools. */
3003
3004 static literal_pool *
3005 find_literal_pool (void)
3006 {
3007 literal_pool * pool;
3008
3009 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3010 {
3011 if (pool->section == now_seg
3012 && pool->sub_section == now_subseg)
3013 break;
3014 }
3015
3016 return pool;
3017 }
3018
3019 static literal_pool *
3020 find_or_make_literal_pool (void)
3021 {
3022 /* Next literal pool ID number. */
3023 static unsigned int latest_pool_num = 1;
3024 literal_pool * pool;
3025
3026 pool = find_literal_pool ();
3027
3028 if (pool == NULL)
3029 {
3030 /* Create a new pool. */
3031 pool = (literal_pool *) xmalloc (sizeof (* pool));
3032 if (! pool)
3033 return NULL;
3034
3035 pool->next_free_entry = 0;
3036 pool->section = now_seg;
3037 pool->sub_section = now_subseg;
3038 pool->next = list_of_pools;
3039 pool->symbol = NULL;
3040
3041 /* Add it to the list. */
3042 list_of_pools = pool;
3043 }
3044
3045 /* New pools, and emptied pools, will have a NULL symbol. */
3046 if (pool->symbol == NULL)
3047 {
3048 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3049 (valueT) 0, &zero_address_frag);
3050 pool->id = latest_pool_num ++;
3051 }
3052
3053 /* Done. */
3054 return pool;
3055 }
3056
3057 /* Add the literal in the global 'inst'
3058 structure to the relevant literal pool. */
3059
3060 static int
3061 add_to_lit_pool (void)
3062 {
3063 literal_pool * pool;
3064 unsigned int entry;
3065
3066 pool = find_or_make_literal_pool ();
3067
3068 /* Check if this literal value is already in the pool. */
3069 for (entry = 0; entry < pool->next_free_entry; entry ++)
3070 {
3071 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3072 && (inst.reloc.exp.X_op == O_constant)
3073 && (pool->literals[entry].X_add_number
3074 == inst.reloc.exp.X_add_number)
3075 && (pool->literals[entry].X_unsigned
3076 == inst.reloc.exp.X_unsigned))
3077 break;
3078
3079 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3080 && (inst.reloc.exp.X_op == O_symbol)
3081 && (pool->literals[entry].X_add_number
3082 == inst.reloc.exp.X_add_number)
3083 && (pool->literals[entry].X_add_symbol
3084 == inst.reloc.exp.X_add_symbol)
3085 && (pool->literals[entry].X_op_symbol
3086 == inst.reloc.exp.X_op_symbol))
3087 break;
3088 }
3089
3090 /* Do we need to create a new entry? */
3091 if (entry == pool->next_free_entry)
3092 {
3093 if (entry >= MAX_LITERAL_POOL_SIZE)
3094 {
3095 inst.error = _("literal pool overflow");
3096 return FAIL;
3097 }
3098
3099 pool->literals[entry] = inst.reloc.exp;
3100 #ifdef OBJ_ELF
3101 /* PR ld/12974: Record the location of the first source line to reference
3102 this entry in the literal pool. If it turns out during linking that the
3103 symbol does not exist we will be able to give an accurate line number for
3104 the (first use of the) missing reference. */
3105 if (debug_type == DEBUG_DWARF2)
3106 dwarf2_where (pool->locs + entry);
3107 #endif
3108 pool->next_free_entry += 1;
3109 }
3110
3111 inst.reloc.exp.X_op = O_symbol;
3112 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3113 inst.reloc.exp.X_add_symbol = pool->symbol;
3114
3115 return SUCCESS;
3116 }
3117
3118 /* Can't use symbol_new here, so have to create a symbol and then at
3119 a later date assign it a value. Thats what these functions do. */
3120
3121 static void
3122 symbol_locate (symbolS * symbolP,
3123 const char * name, /* It is copied, the caller can modify. */
3124 segT segment, /* Segment identifier (SEG_<something>). */
3125 valueT valu, /* Symbol value. */
3126 fragS * frag) /* Associated fragment. */
3127 {
3128 unsigned int name_length;
3129 char * preserved_copy_of_name;
3130
3131 name_length = strlen (name) + 1; /* +1 for \0. */
3132 obstack_grow (&notes, name, name_length);
3133 preserved_copy_of_name = (char *) obstack_finish (&notes);
3134
3135 #ifdef tc_canonicalize_symbol_name
3136 preserved_copy_of_name =
3137 tc_canonicalize_symbol_name (preserved_copy_of_name);
3138 #endif
3139
3140 S_SET_NAME (symbolP, preserved_copy_of_name);
3141
3142 S_SET_SEGMENT (symbolP, segment);
3143 S_SET_VALUE (symbolP, valu);
3144 symbol_clear_list_pointers (symbolP);
3145
3146 symbol_set_frag (symbolP, frag);
3147
3148 /* Link to end of symbol chain. */
3149 {
3150 extern int symbol_table_frozen;
3151
3152 if (symbol_table_frozen)
3153 abort ();
3154 }
3155
3156 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3157
3158 obj_symbol_new_hook (symbolP);
3159
3160 #ifdef tc_symbol_new_hook
3161 tc_symbol_new_hook (symbolP);
3162 #endif
3163
3164 #ifdef DEBUG_SYMS
3165 verify_symbol_chain (symbol_rootP, symbol_lastP);
3166 #endif /* DEBUG_SYMS */
3167 }
3168
3169
3170 static void
3171 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3172 {
3173 unsigned int entry;
3174 literal_pool * pool;
3175 char sym_name[20];
3176
3177 pool = find_literal_pool ();
3178 if (pool == NULL
3179 || pool->symbol == NULL
3180 || pool->next_free_entry == 0)
3181 return;
3182
3183 mapping_state (MAP_DATA);
3184
3185 /* Align pool as you have word accesses.
3186 Only make a frag if we have to. */
3187 if (!need_pass_2)
3188 frag_align (2, 0, 0);
3189
3190 record_alignment (now_seg, 2);
3191
3192 sprintf (sym_name, "$$lit_\002%x", pool->id);
3193
3194 symbol_locate (pool->symbol, sym_name, now_seg,
3195 (valueT) frag_now_fix (), frag_now);
3196 symbol_table_insert (pool->symbol);
3197
3198 ARM_SET_THUMB (pool->symbol, thumb_mode);
3199
3200 #if defined OBJ_COFF || defined OBJ_ELF
3201 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3202 #endif
3203
3204 for (entry = 0; entry < pool->next_free_entry; entry ++)
3205 {
3206 #ifdef OBJ_ELF
3207 if (debug_type == DEBUG_DWARF2)
3208 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3209 #endif
3210 /* First output the expression in the instruction to the pool. */
3211 emit_expr (&(pool->literals[entry]), 4); /* .word */
3212 }
3213
3214 /* Mark the pool as empty. */
3215 pool->next_free_entry = 0;
3216 pool->symbol = NULL;
3217 }
3218
3219 #ifdef OBJ_ELF
3220 /* Forward declarations for functions below, in the MD interface
3221 section. */
3222 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3223 static valueT create_unwind_entry (int);
3224 static void start_unwind_section (const segT, int);
3225 static void add_unwind_opcode (valueT, int);
3226 static void flush_pending_unwind (void);
3227
3228 /* Directives: Data. */
3229
3230 static void
3231 s_arm_elf_cons (int nbytes)
3232 {
3233 expressionS exp;
3234
3235 #ifdef md_flush_pending_output
3236 md_flush_pending_output ();
3237 #endif
3238
3239 if (is_it_end_of_statement ())
3240 {
3241 demand_empty_rest_of_line ();
3242 return;
3243 }
3244
3245 #ifdef md_cons_align
3246 md_cons_align (nbytes);
3247 #endif
3248
3249 mapping_state (MAP_DATA);
3250 do
3251 {
3252 int reloc;
3253 char *base = input_line_pointer;
3254
3255 expression (& exp);
3256
3257 if (exp.X_op != O_symbol)
3258 emit_expr (&exp, (unsigned int) nbytes);
3259 else
3260 {
3261 char *before_reloc = input_line_pointer;
3262 reloc = parse_reloc (&input_line_pointer);
3263 if (reloc == -1)
3264 {
3265 as_bad (_("unrecognized relocation suffix"));
3266 ignore_rest_of_line ();
3267 return;
3268 }
3269 else if (reloc == BFD_RELOC_UNUSED)
3270 emit_expr (&exp, (unsigned int) nbytes);
3271 else
3272 {
3273 reloc_howto_type *howto = (reloc_howto_type *)
3274 bfd_reloc_type_lookup (stdoutput,
3275 (bfd_reloc_code_real_type) reloc);
3276 int size = bfd_get_reloc_size (howto);
3277
3278 if (reloc == BFD_RELOC_ARM_PLT32)
3279 {
3280 as_bad (_("(plt) is only valid on branch targets"));
3281 reloc = BFD_RELOC_UNUSED;
3282 size = 0;
3283 }
3284
3285 if (size > nbytes)
3286 as_bad (_("%s relocations do not fit in %d bytes"),
3287 howto->name, nbytes);
3288 else
3289 {
3290 /* We've parsed an expression stopping at O_symbol.
3291 But there may be more expression left now that we
3292 have parsed the relocation marker. Parse it again.
3293 XXX Surely there is a cleaner way to do this. */
3294 char *p = input_line_pointer;
3295 int offset;
3296 char *save_buf = (char *) alloca (input_line_pointer - base);
3297 memcpy (save_buf, base, input_line_pointer - base);
3298 memmove (base + (input_line_pointer - before_reloc),
3299 base, before_reloc - base);
3300
3301 input_line_pointer = base + (input_line_pointer-before_reloc);
3302 expression (&exp);
3303 memcpy (base, save_buf, p - base);
3304
3305 offset = nbytes - size;
3306 p = frag_more ((int) nbytes);
3307 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3308 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3309 }
3310 }
3311 }
3312 }
3313 while (*input_line_pointer++ == ',');
3314
3315 /* Put terminator back into stream. */
3316 input_line_pointer --;
3317 demand_empty_rest_of_line ();
3318 }
3319
3320 /* Emit an expression containing a 32-bit thumb instruction.
3321 Implementation based on put_thumb32_insn. */
3322
3323 static void
3324 emit_thumb32_expr (expressionS * exp)
3325 {
3326 expressionS exp_high = *exp;
3327
3328 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3329 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3330 exp->X_add_number &= 0xffff;
3331 emit_expr (exp, (unsigned int) THUMB_SIZE);
3332 }
3333
3334 /* Guess the instruction size based on the opcode. */
3335
3336 static int
3337 thumb_insn_size (int opcode)
3338 {
3339 if ((unsigned int) opcode < 0xe800u)
3340 return 2;
3341 else if ((unsigned int) opcode >= 0xe8000000u)
3342 return 4;
3343 else
3344 return 0;
3345 }
3346
3347 static bfd_boolean
3348 emit_insn (expressionS *exp, int nbytes)
3349 {
3350 int size = 0;
3351
3352 if (exp->X_op == O_constant)
3353 {
3354 size = nbytes;
3355
3356 if (size == 0)
3357 size = thumb_insn_size (exp->X_add_number);
3358
3359 if (size != 0)
3360 {
3361 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3362 {
3363 as_bad (_(".inst.n operand too big. "\
3364 "Use .inst.w instead"));
3365 size = 0;
3366 }
3367 else
3368 {
3369 if (now_it.state == AUTOMATIC_IT_BLOCK)
3370 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3371 else
3372 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3373
3374 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3375 emit_thumb32_expr (exp);
3376 else
3377 emit_expr (exp, (unsigned int) size);
3378
3379 it_fsm_post_encode ();
3380 }
3381 }
3382 else
3383 as_bad (_("cannot determine Thumb instruction size. " \
3384 "Use .inst.n/.inst.w instead"));
3385 }
3386 else
3387 as_bad (_("constant expression required"));
3388
3389 return (size != 0);
3390 }
3391
3392 /* Like s_arm_elf_cons but do not use md_cons_align and
3393 set the mapping state to MAP_ARM/MAP_THUMB. */
3394
3395 static void
3396 s_arm_elf_inst (int nbytes)
3397 {
3398 if (is_it_end_of_statement ())
3399 {
3400 demand_empty_rest_of_line ();
3401 return;
3402 }
3403
3404 /* Calling mapping_state () here will not change ARM/THUMB,
3405 but will ensure not to be in DATA state. */
3406
3407 if (thumb_mode)
3408 mapping_state (MAP_THUMB);
3409 else
3410 {
3411 if (nbytes != 0)
3412 {
3413 as_bad (_("width suffixes are invalid in ARM mode"));
3414 ignore_rest_of_line ();
3415 return;
3416 }
3417
3418 nbytes = 4;
3419
3420 mapping_state (MAP_ARM);
3421 }
3422
3423 do
3424 {
3425 expressionS exp;
3426
3427 expression (& exp);
3428
3429 if (! emit_insn (& exp, nbytes))
3430 {
3431 ignore_rest_of_line ();
3432 return;
3433 }
3434 }
3435 while (*input_line_pointer++ == ',');
3436
3437 /* Put terminator back into stream. */
3438 input_line_pointer --;
3439 demand_empty_rest_of_line ();
3440 }
3441
3442 /* Parse a .rel31 directive. */
3443
3444 static void
3445 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3446 {
3447 expressionS exp;
3448 char *p;
3449 valueT highbit;
3450
3451 highbit = 0;
3452 if (*input_line_pointer == '1')
3453 highbit = 0x80000000;
3454 else if (*input_line_pointer != '0')
3455 as_bad (_("expected 0 or 1"));
3456
3457 input_line_pointer++;
3458 if (*input_line_pointer != ',')
3459 as_bad (_("missing comma"));
3460 input_line_pointer++;
3461
3462 #ifdef md_flush_pending_output
3463 md_flush_pending_output ();
3464 #endif
3465
3466 #ifdef md_cons_align
3467 md_cons_align (4);
3468 #endif
3469
3470 mapping_state (MAP_DATA);
3471
3472 expression (&exp);
3473
3474 p = frag_more (4);
3475 md_number_to_chars (p, highbit, 4);
3476 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3477 BFD_RELOC_ARM_PREL31);
3478
3479 demand_empty_rest_of_line ();
3480 }
3481
3482 /* Directives: AEABI stack-unwind tables. */
3483
3484 /* Parse an unwind_fnstart directive. Simply records the current location. */
3485
3486 static void
3487 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3488 {
3489 demand_empty_rest_of_line ();
3490 if (unwind.proc_start)
3491 {
3492 as_bad (_("duplicate .fnstart directive"));
3493 return;
3494 }
3495
3496 /* Mark the start of the function. */
3497 unwind.proc_start = expr_build_dot ();
3498
3499 /* Reset the rest of the unwind info. */
3500 unwind.opcode_count = 0;
3501 unwind.table_entry = NULL;
3502 unwind.personality_routine = NULL;
3503 unwind.personality_index = -1;
3504 unwind.frame_size = 0;
3505 unwind.fp_offset = 0;
3506 unwind.fp_reg = REG_SP;
3507 unwind.fp_used = 0;
3508 unwind.sp_restored = 0;
3509 }
3510
3511
3512 /* Parse a handlerdata directive. Creates the exception handling table entry
3513 for the function. */
3514
3515 static void
3516 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3517 {
3518 demand_empty_rest_of_line ();
3519 if (!unwind.proc_start)
3520 as_bad (MISSING_FNSTART);
3521
3522 if (unwind.table_entry)
3523 as_bad (_("duplicate .handlerdata directive"));
3524
3525 create_unwind_entry (1);
3526 }
3527
3528 /* Parse an unwind_fnend directive. Generates the index table entry. */
3529
3530 static void
3531 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3532 {
3533 long where;
3534 char *ptr;
3535 valueT val;
3536 unsigned int marked_pr_dependency;
3537
3538 demand_empty_rest_of_line ();
3539
3540 if (!unwind.proc_start)
3541 {
3542 as_bad (_(".fnend directive without .fnstart"));
3543 return;
3544 }
3545
3546 /* Add eh table entry. */
3547 if (unwind.table_entry == NULL)
3548 val = create_unwind_entry (0);
3549 else
3550 val = 0;
3551
3552 /* Add index table entry. This is two words. */
3553 start_unwind_section (unwind.saved_seg, 1);
3554 frag_align (2, 0, 0);
3555 record_alignment (now_seg, 2);
3556
3557 ptr = frag_more (8);
3558 memset (ptr, 0, 8);
3559 where = frag_now_fix () - 8;
3560
3561 /* Self relative offset of the function start. */
3562 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3563 BFD_RELOC_ARM_PREL31);
3564
3565 /* Indicate dependency on EHABI-defined personality routines to the
3566 linker, if it hasn't been done already. */
3567 marked_pr_dependency
3568 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3569 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3570 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3571 {
3572 static const char *const name[] =
3573 {
3574 "__aeabi_unwind_cpp_pr0",
3575 "__aeabi_unwind_cpp_pr1",
3576 "__aeabi_unwind_cpp_pr2"
3577 };
3578 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3579 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3580 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3581 |= 1 << unwind.personality_index;
3582 }
3583
3584 if (val)
3585 /* Inline exception table entry. */
3586 md_number_to_chars (ptr + 4, val, 4);
3587 else
3588 /* Self relative offset of the table entry. */
3589 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3590 BFD_RELOC_ARM_PREL31);
3591
3592 /* Restore the original section. */
3593 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3594
3595 unwind.proc_start = NULL;
3596 }
3597
3598
3599 /* Parse an unwind_cantunwind directive. */
3600
3601 static void
3602 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3603 {
3604 demand_empty_rest_of_line ();
3605 if (!unwind.proc_start)
3606 as_bad (MISSING_FNSTART);
3607
3608 if (unwind.personality_routine || unwind.personality_index != -1)
3609 as_bad (_("personality routine specified for cantunwind frame"));
3610
3611 unwind.personality_index = -2;
3612 }
3613
3614
3615 /* Parse a personalityindex directive. */
3616
3617 static void
3618 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3619 {
3620 expressionS exp;
3621
3622 if (!unwind.proc_start)
3623 as_bad (MISSING_FNSTART);
3624
3625 if (unwind.personality_routine || unwind.personality_index != -1)
3626 as_bad (_("duplicate .personalityindex directive"));
3627
3628 expression (&exp);
3629
3630 if (exp.X_op != O_constant
3631 || exp.X_add_number < 0 || exp.X_add_number > 15)
3632 {
3633 as_bad (_("bad personality routine number"));
3634 ignore_rest_of_line ();
3635 return;
3636 }
3637
3638 unwind.personality_index = exp.X_add_number;
3639
3640 demand_empty_rest_of_line ();
3641 }
3642
3643
3644 /* Parse a personality directive. */
3645
3646 static void
3647 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3648 {
3649 char *name, *p, c;
3650
3651 if (!unwind.proc_start)
3652 as_bad (MISSING_FNSTART);
3653
3654 if (unwind.personality_routine || unwind.personality_index != -1)
3655 as_bad (_("duplicate .personality directive"));
3656
3657 name = input_line_pointer;
3658 c = get_symbol_end ();
3659 p = input_line_pointer;
3660 unwind.personality_routine = symbol_find_or_make (name);
3661 *p = c;
3662 demand_empty_rest_of_line ();
3663 }
3664
3665
3666 /* Parse a directive saving core registers. */
3667
3668 static void
3669 s_arm_unwind_save_core (void)
3670 {
3671 valueT op;
3672 long range;
3673 int n;
3674
3675 range = parse_reg_list (&input_line_pointer);
3676 if (range == FAIL)
3677 {
3678 as_bad (_("expected register list"));
3679 ignore_rest_of_line ();
3680 return;
3681 }
3682
3683 demand_empty_rest_of_line ();
3684
3685 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3686 into .unwind_save {..., sp...}. We aren't bothered about the value of
3687 ip because it is clobbered by calls. */
3688 if (unwind.sp_restored && unwind.fp_reg == 12
3689 && (range & 0x3000) == 0x1000)
3690 {
3691 unwind.opcode_count--;
3692 unwind.sp_restored = 0;
3693 range = (range | 0x2000) & ~0x1000;
3694 unwind.pending_offset = 0;
3695 }
3696
3697 /* Pop r4-r15. */
3698 if (range & 0xfff0)
3699 {
3700 /* See if we can use the short opcodes. These pop a block of up to 8
3701 registers starting with r4, plus maybe r14. */
3702 for (n = 0; n < 8; n++)
3703 {
3704 /* Break at the first non-saved register. */
3705 if ((range & (1 << (n + 4))) == 0)
3706 break;
3707 }
3708 /* See if there are any other bits set. */
3709 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3710 {
3711 /* Use the long form. */
3712 op = 0x8000 | ((range >> 4) & 0xfff);
3713 add_unwind_opcode (op, 2);
3714 }
3715 else
3716 {
3717 /* Use the short form. */
3718 if (range & 0x4000)
3719 op = 0xa8; /* Pop r14. */
3720 else
3721 op = 0xa0; /* Do not pop r14. */
3722 op |= (n - 1);
3723 add_unwind_opcode (op, 1);
3724 }
3725 }
3726
3727 /* Pop r0-r3. */
3728 if (range & 0xf)
3729 {
3730 op = 0xb100 | (range & 0xf);
3731 add_unwind_opcode (op, 2);
3732 }
3733
3734 /* Record the number of bytes pushed. */
3735 for (n = 0; n < 16; n++)
3736 {
3737 if (range & (1 << n))
3738 unwind.frame_size += 4;
3739 }
3740 }
3741
3742
3743 /* Parse a directive saving FPA registers. */
3744
3745 static void
3746 s_arm_unwind_save_fpa (int reg)
3747 {
3748 expressionS exp;
3749 int num_regs;
3750 valueT op;
3751
3752 /* Get Number of registers to transfer. */
3753 if (skip_past_comma (&input_line_pointer) != FAIL)
3754 expression (&exp);
3755 else
3756 exp.X_op = O_illegal;
3757
3758 if (exp.X_op != O_constant)
3759 {
3760 as_bad (_("expected , <constant>"));
3761 ignore_rest_of_line ();
3762 return;
3763 }
3764
3765 num_regs = exp.X_add_number;
3766
3767 if (num_regs < 1 || num_regs > 4)
3768 {
3769 as_bad (_("number of registers must be in the range [1:4]"));
3770 ignore_rest_of_line ();
3771 return;
3772 }
3773
3774 demand_empty_rest_of_line ();
3775
3776 if (reg == 4)
3777 {
3778 /* Short form. */
3779 op = 0xb4 | (num_regs - 1);
3780 add_unwind_opcode (op, 1);
3781 }
3782 else
3783 {
3784 /* Long form. */
3785 op = 0xc800 | (reg << 4) | (num_regs - 1);
3786 add_unwind_opcode (op, 2);
3787 }
3788 unwind.frame_size += num_regs * 12;
3789 }
3790
3791
3792 /* Parse a directive saving VFP registers for ARMv6 and above. */
3793
3794 static void
3795 s_arm_unwind_save_vfp_armv6 (void)
3796 {
3797 int count;
3798 unsigned int start;
3799 valueT op;
3800 int num_vfpv3_regs = 0;
3801 int num_regs_below_16;
3802
3803 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3804 if (count == FAIL)
3805 {
3806 as_bad (_("expected register list"));
3807 ignore_rest_of_line ();
3808 return;
3809 }
3810
3811 demand_empty_rest_of_line ();
3812
3813 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3814 than FSTMX/FLDMX-style ones). */
3815
3816 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3817 if (start >= 16)
3818 num_vfpv3_regs = count;
3819 else if (start + count > 16)
3820 num_vfpv3_regs = start + count - 16;
3821
3822 if (num_vfpv3_regs > 0)
3823 {
3824 int start_offset = start > 16 ? start - 16 : 0;
3825 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3826 add_unwind_opcode (op, 2);
3827 }
3828
3829 /* Generate opcode for registers numbered in the range 0 .. 15. */
3830 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3831 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3832 if (num_regs_below_16 > 0)
3833 {
3834 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3835 add_unwind_opcode (op, 2);
3836 }
3837
3838 unwind.frame_size += count * 8;
3839 }
3840
3841
3842 /* Parse a directive saving VFP registers for pre-ARMv6. */
3843
3844 static void
3845 s_arm_unwind_save_vfp (void)
3846 {
3847 int count;
3848 unsigned int reg;
3849 valueT op;
3850
3851 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3852 if (count == FAIL)
3853 {
3854 as_bad (_("expected register list"));
3855 ignore_rest_of_line ();
3856 return;
3857 }
3858
3859 demand_empty_rest_of_line ();
3860
3861 if (reg == 8)
3862 {
3863 /* Short form. */
3864 op = 0xb8 | (count - 1);
3865 add_unwind_opcode (op, 1);
3866 }
3867 else
3868 {
3869 /* Long form. */
3870 op = 0xb300 | (reg << 4) | (count - 1);
3871 add_unwind_opcode (op, 2);
3872 }
3873 unwind.frame_size += count * 8 + 4;
3874 }
3875
3876
3877 /* Parse a directive saving iWMMXt data registers. */
3878
3879 static void
3880 s_arm_unwind_save_mmxwr (void)
3881 {
3882 int reg;
3883 int hi_reg;
3884 int i;
3885 unsigned mask = 0;
3886 valueT op;
3887
3888 if (*input_line_pointer == '{')
3889 input_line_pointer++;
3890
3891 do
3892 {
3893 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3894
3895 if (reg == FAIL)
3896 {
3897 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3898 goto error;
3899 }
3900
3901 if (mask >> reg)
3902 as_tsktsk (_("register list not in ascending order"));
3903 mask |= 1 << reg;
3904
3905 if (*input_line_pointer == '-')
3906 {
3907 input_line_pointer++;
3908 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3909 if (hi_reg == FAIL)
3910 {
3911 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3912 goto error;
3913 }
3914 else if (reg >= hi_reg)
3915 {
3916 as_bad (_("bad register range"));
3917 goto error;
3918 }
3919 for (; reg < hi_reg; reg++)
3920 mask |= 1 << reg;
3921 }
3922 }
3923 while (skip_past_comma (&input_line_pointer) != FAIL);
3924
3925 if (*input_line_pointer == '}')
3926 input_line_pointer++;
3927
3928 demand_empty_rest_of_line ();
3929
3930 /* Generate any deferred opcodes because we're going to be looking at
3931 the list. */
3932 flush_pending_unwind ();
3933
3934 for (i = 0; i < 16; i++)
3935 {
3936 if (mask & (1 << i))
3937 unwind.frame_size += 8;
3938 }
3939
3940 /* Attempt to combine with a previous opcode. We do this because gcc
3941 likes to output separate unwind directives for a single block of
3942 registers. */
3943 if (unwind.opcode_count > 0)
3944 {
3945 i = unwind.opcodes[unwind.opcode_count - 1];
3946 if ((i & 0xf8) == 0xc0)
3947 {
3948 i &= 7;
3949 /* Only merge if the blocks are contiguous. */
3950 if (i < 6)
3951 {
3952 if ((mask & 0xfe00) == (1 << 9))
3953 {
3954 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3955 unwind.opcode_count--;
3956 }
3957 }
3958 else if (i == 6 && unwind.opcode_count >= 2)
3959 {
3960 i = unwind.opcodes[unwind.opcode_count - 2];
3961 reg = i >> 4;
3962 i &= 0xf;
3963
3964 op = 0xffff << (reg - 1);
3965 if (reg > 0
3966 && ((mask & op) == (1u << (reg - 1))))
3967 {
3968 op = (1 << (reg + i + 1)) - 1;
3969 op &= ~((1 << reg) - 1);
3970 mask |= op;
3971 unwind.opcode_count -= 2;
3972 }
3973 }
3974 }
3975 }
3976
3977 hi_reg = 15;
3978 /* We want to generate opcodes in the order the registers have been
3979 saved, ie. descending order. */
3980 for (reg = 15; reg >= -1; reg--)
3981 {
3982 /* Save registers in blocks. */
3983 if (reg < 0
3984 || !(mask & (1 << reg)))
3985 {
3986 /* We found an unsaved reg. Generate opcodes to save the
3987 preceding block. */
3988 if (reg != hi_reg)
3989 {
3990 if (reg == 9)
3991 {
3992 /* Short form. */
3993 op = 0xc0 | (hi_reg - 10);
3994 add_unwind_opcode (op, 1);
3995 }
3996 else
3997 {
3998 /* Long form. */
3999 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4000 add_unwind_opcode (op, 2);
4001 }
4002 }
4003 hi_reg = reg - 1;
4004 }
4005 }
4006
4007 return;
4008 error:
4009 ignore_rest_of_line ();
4010 }
4011
4012 static void
4013 s_arm_unwind_save_mmxwcg (void)
4014 {
4015 int reg;
4016 int hi_reg;
4017 unsigned mask = 0;
4018 valueT op;
4019
4020 if (*input_line_pointer == '{')
4021 input_line_pointer++;
4022
4023 do
4024 {
4025 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4026
4027 if (reg == FAIL)
4028 {
4029 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4030 goto error;
4031 }
4032
4033 reg -= 8;
4034 if (mask >> reg)
4035 as_tsktsk (_("register list not in ascending order"));
4036 mask |= 1 << reg;
4037
4038 if (*input_line_pointer == '-')
4039 {
4040 input_line_pointer++;
4041 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4042 if (hi_reg == FAIL)
4043 {
4044 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4045 goto error;
4046 }
4047 else if (reg >= hi_reg)
4048 {
4049 as_bad (_("bad register range"));
4050 goto error;
4051 }
4052 for (; reg < hi_reg; reg++)
4053 mask |= 1 << reg;
4054 }
4055 }
4056 while (skip_past_comma (&input_line_pointer) != FAIL);
4057
4058 if (*input_line_pointer == '}')
4059 input_line_pointer++;
4060
4061 demand_empty_rest_of_line ();
4062
4063 /* Generate any deferred opcodes because we're going to be looking at
4064 the list. */
4065 flush_pending_unwind ();
4066
4067 for (reg = 0; reg < 16; reg++)
4068 {
4069 if (mask & (1 << reg))
4070 unwind.frame_size += 4;
4071 }
4072 op = 0xc700 | mask;
4073 add_unwind_opcode (op, 2);
4074 return;
4075 error:
4076 ignore_rest_of_line ();
4077 }
4078
4079
4080 /* Parse an unwind_save directive.
4081 If the argument is non-zero, this is a .vsave directive. */
4082
4083 static void
4084 s_arm_unwind_save (int arch_v6)
4085 {
4086 char *peek;
4087 struct reg_entry *reg;
4088 bfd_boolean had_brace = FALSE;
4089
4090 if (!unwind.proc_start)
4091 as_bad (MISSING_FNSTART);
4092
4093 /* Figure out what sort of save we have. */
4094 peek = input_line_pointer;
4095
4096 if (*peek == '{')
4097 {
4098 had_brace = TRUE;
4099 peek++;
4100 }
4101
4102 reg = arm_reg_parse_multi (&peek);
4103
4104 if (!reg)
4105 {
4106 as_bad (_("register expected"));
4107 ignore_rest_of_line ();
4108 return;
4109 }
4110
4111 switch (reg->type)
4112 {
4113 case REG_TYPE_FN:
4114 if (had_brace)
4115 {
4116 as_bad (_("FPA .unwind_save does not take a register list"));
4117 ignore_rest_of_line ();
4118 return;
4119 }
4120 input_line_pointer = peek;
4121 s_arm_unwind_save_fpa (reg->number);
4122 return;
4123
4124 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
4125 case REG_TYPE_VFD:
4126 if (arch_v6)
4127 s_arm_unwind_save_vfp_armv6 ();
4128 else
4129 s_arm_unwind_save_vfp ();
4130 return;
4131 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4132 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4133
4134 default:
4135 as_bad (_(".unwind_save does not support this kind of register"));
4136 ignore_rest_of_line ();
4137 }
4138 }
4139
4140
4141 /* Parse an unwind_movsp directive. */
4142
4143 static void
4144 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4145 {
4146 int reg;
4147 valueT op;
4148 int offset;
4149
4150 if (!unwind.proc_start)
4151 as_bad (MISSING_FNSTART);
4152
4153 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4154 if (reg == FAIL)
4155 {
4156 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4157 ignore_rest_of_line ();
4158 return;
4159 }
4160
4161 /* Optional constant. */
4162 if (skip_past_comma (&input_line_pointer) != FAIL)
4163 {
4164 if (immediate_for_directive (&offset) == FAIL)
4165 return;
4166 }
4167 else
4168 offset = 0;
4169
4170 demand_empty_rest_of_line ();
4171
4172 if (reg == REG_SP || reg == REG_PC)
4173 {
4174 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4175 return;
4176 }
4177
4178 if (unwind.fp_reg != REG_SP)
4179 as_bad (_("unexpected .unwind_movsp directive"));
4180
4181 /* Generate opcode to restore the value. */
4182 op = 0x90 | reg;
4183 add_unwind_opcode (op, 1);
4184
4185 /* Record the information for later. */
4186 unwind.fp_reg = reg;
4187 unwind.fp_offset = unwind.frame_size - offset;
4188 unwind.sp_restored = 1;
4189 }
4190
4191 /* Parse an unwind_pad directive. */
4192
4193 static void
4194 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4195 {
4196 int offset;
4197
4198 if (!unwind.proc_start)
4199 as_bad (MISSING_FNSTART);
4200
4201 if (immediate_for_directive (&offset) == FAIL)
4202 return;
4203
4204 if (offset & 3)
4205 {
4206 as_bad (_("stack increment must be multiple of 4"));
4207 ignore_rest_of_line ();
4208 return;
4209 }
4210
4211 /* Don't generate any opcodes, just record the details for later. */
4212 unwind.frame_size += offset;
4213 unwind.pending_offset += offset;
4214
4215 demand_empty_rest_of_line ();
4216 }
4217
4218 /* Parse an unwind_setfp directive. */
4219
4220 static void
4221 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4222 {
4223 int sp_reg;
4224 int fp_reg;
4225 int offset;
4226
4227 if (!unwind.proc_start)
4228 as_bad (MISSING_FNSTART);
4229
4230 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4231 if (skip_past_comma (&input_line_pointer) == FAIL)
4232 sp_reg = FAIL;
4233 else
4234 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4235
4236 if (fp_reg == FAIL || sp_reg == FAIL)
4237 {
4238 as_bad (_("expected <reg>, <reg>"));
4239 ignore_rest_of_line ();
4240 return;
4241 }
4242
4243 /* Optional constant. */
4244 if (skip_past_comma (&input_line_pointer) != FAIL)
4245 {
4246 if (immediate_for_directive (&offset) == FAIL)
4247 return;
4248 }
4249 else
4250 offset = 0;
4251
4252 demand_empty_rest_of_line ();
4253
4254 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4255 {
4256 as_bad (_("register must be either sp or set by a previous"
4257 "unwind_movsp directive"));
4258 return;
4259 }
4260
4261 /* Don't generate any opcodes, just record the information for later. */
4262 unwind.fp_reg = fp_reg;
4263 unwind.fp_used = 1;
4264 if (sp_reg == REG_SP)
4265 unwind.fp_offset = unwind.frame_size - offset;
4266 else
4267 unwind.fp_offset -= offset;
4268 }
4269
4270 /* Parse an unwind_raw directive. */
4271
4272 static void
4273 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4274 {
4275 expressionS exp;
4276 /* This is an arbitrary limit. */
4277 unsigned char op[16];
4278 int count;
4279
4280 if (!unwind.proc_start)
4281 as_bad (MISSING_FNSTART);
4282
4283 expression (&exp);
4284 if (exp.X_op == O_constant
4285 && skip_past_comma (&input_line_pointer) != FAIL)
4286 {
4287 unwind.frame_size += exp.X_add_number;
4288 expression (&exp);
4289 }
4290 else
4291 exp.X_op = O_illegal;
4292
4293 if (exp.X_op != O_constant)
4294 {
4295 as_bad (_("expected <offset>, <opcode>"));
4296 ignore_rest_of_line ();
4297 return;
4298 }
4299
4300 count = 0;
4301
4302 /* Parse the opcode. */
4303 for (;;)
4304 {
4305 if (count >= 16)
4306 {
4307 as_bad (_("unwind opcode too long"));
4308 ignore_rest_of_line ();
4309 }
4310 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4311 {
4312 as_bad (_("invalid unwind opcode"));
4313 ignore_rest_of_line ();
4314 return;
4315 }
4316 op[count++] = exp.X_add_number;
4317
4318 /* Parse the next byte. */
4319 if (skip_past_comma (&input_line_pointer) == FAIL)
4320 break;
4321
4322 expression (&exp);
4323 }
4324
4325 /* Add the opcode bytes in reverse order. */
4326 while (count--)
4327 add_unwind_opcode (op[count], 1);
4328
4329 demand_empty_rest_of_line ();
4330 }
4331
4332
4333 /* Parse a .eabi_attribute directive. */
4334
4335 static void
4336 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4337 {
4338 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4339
4340 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4341 attributes_set_explicitly[tag] = 1;
4342 }
4343
4344 /* Emit a tls fix for the symbol. */
4345
4346 static void
4347 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4348 {
4349 char *p;
4350 expressionS exp;
4351 #ifdef md_flush_pending_output
4352 md_flush_pending_output ();
4353 #endif
4354
4355 #ifdef md_cons_align
4356 md_cons_align (4);
4357 #endif
4358
4359 /* Since we're just labelling the code, there's no need to define a
4360 mapping symbol. */
4361 expression (&exp);
4362 p = obstack_next_free (&frchain_now->frch_obstack);
4363 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4364 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4365 : BFD_RELOC_ARM_TLS_DESCSEQ);
4366 }
4367 #endif /* OBJ_ELF */
4368
4369 static void s_arm_arch (int);
4370 static void s_arm_object_arch (int);
4371 static void s_arm_cpu (int);
4372 static void s_arm_fpu (int);
4373 static void s_arm_arch_extension (int);
4374
4375 #ifdef TE_PE
4376
4377 static void
4378 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4379 {
4380 expressionS exp;
4381
4382 do
4383 {
4384 expression (&exp);
4385 if (exp.X_op == O_symbol)
4386 exp.X_op = O_secrel;
4387
4388 emit_expr (&exp, 4);
4389 }
4390 while (*input_line_pointer++ == ',');
4391
4392 input_line_pointer--;
4393 demand_empty_rest_of_line ();
4394 }
4395 #endif /* TE_PE */
4396
4397 /* This table describes all the machine specific pseudo-ops the assembler
4398 has to support. The fields are:
4399 pseudo-op name without dot
4400 function to call to execute this pseudo-op
4401 Integer arg to pass to the function. */
4402
4403 const pseudo_typeS md_pseudo_table[] =
4404 {
4405 /* Never called because '.req' does not start a line. */
4406 { "req", s_req, 0 },
4407 /* Following two are likewise never called. */
4408 { "dn", s_dn, 0 },
4409 { "qn", s_qn, 0 },
4410 { "unreq", s_unreq, 0 },
4411 { "bss", s_bss, 0 },
4412 { "align", s_align, 0 },
4413 { "arm", s_arm, 0 },
4414 { "thumb", s_thumb, 0 },
4415 { "code", s_code, 0 },
4416 { "force_thumb", s_force_thumb, 0 },
4417 { "thumb_func", s_thumb_func, 0 },
4418 { "thumb_set", s_thumb_set, 0 },
4419 { "even", s_even, 0 },
4420 { "ltorg", s_ltorg, 0 },
4421 { "pool", s_ltorg, 0 },
4422 { "syntax", s_syntax, 0 },
4423 { "cpu", s_arm_cpu, 0 },
4424 { "arch", s_arm_arch, 0 },
4425 { "object_arch", s_arm_object_arch, 0 },
4426 { "fpu", s_arm_fpu, 0 },
4427 { "arch_extension", s_arm_arch_extension, 0 },
4428 #ifdef OBJ_ELF
4429 { "word", s_arm_elf_cons, 4 },
4430 { "long", s_arm_elf_cons, 4 },
4431 { "inst.n", s_arm_elf_inst, 2 },
4432 { "inst.w", s_arm_elf_inst, 4 },
4433 { "inst", s_arm_elf_inst, 0 },
4434 { "rel31", s_arm_rel31, 0 },
4435 { "fnstart", s_arm_unwind_fnstart, 0 },
4436 { "fnend", s_arm_unwind_fnend, 0 },
4437 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4438 { "personality", s_arm_unwind_personality, 0 },
4439 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4440 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4441 { "save", s_arm_unwind_save, 0 },
4442 { "vsave", s_arm_unwind_save, 1 },
4443 { "movsp", s_arm_unwind_movsp, 0 },
4444 { "pad", s_arm_unwind_pad, 0 },
4445 { "setfp", s_arm_unwind_setfp, 0 },
4446 { "unwind_raw", s_arm_unwind_raw, 0 },
4447 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4448 { "tlsdescseq", s_arm_tls_descseq, 0 },
4449 #else
4450 { "word", cons, 4},
4451
4452 /* These are used for dwarf. */
4453 {"2byte", cons, 2},
4454 {"4byte", cons, 4},
4455 {"8byte", cons, 8},
4456 /* These are used for dwarf2. */
4457 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4458 { "loc", dwarf2_directive_loc, 0 },
4459 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4460 #endif
4461 { "extend", float_cons, 'x' },
4462 { "ldouble", float_cons, 'x' },
4463 { "packed", float_cons, 'p' },
4464 #ifdef TE_PE
4465 {"secrel32", pe_directive_secrel, 0},
4466 #endif
4467 { 0, 0, 0 }
4468 };
4469 \f
4470 /* Parser functions used exclusively in instruction operands. */
4471
4472 /* Generic immediate-value read function for use in insn parsing.
4473 STR points to the beginning of the immediate (the leading #);
4474 VAL receives the value; if the value is outside [MIN, MAX]
4475 issue an error. PREFIX_OPT is true if the immediate prefix is
4476 optional. */
4477
4478 static int
4479 parse_immediate (char **str, int *val, int min, int max,
4480 bfd_boolean prefix_opt)
4481 {
4482 expressionS exp;
4483 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4484 if (exp.X_op != O_constant)
4485 {
4486 inst.error = _("constant expression required");
4487 return FAIL;
4488 }
4489
4490 if (exp.X_add_number < min || exp.X_add_number > max)
4491 {
4492 inst.error = _("immediate value out of range");
4493 return FAIL;
4494 }
4495
4496 *val = exp.X_add_number;
4497 return SUCCESS;
4498 }
4499
4500 /* Less-generic immediate-value read function with the possibility of loading a
4501 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4502 instructions. Puts the result directly in inst.operands[i]. */
4503
4504 static int
4505 parse_big_immediate (char **str, int i)
4506 {
4507 expressionS exp;
4508 char *ptr = *str;
4509
4510 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4511
4512 if (exp.X_op == O_constant)
4513 {
4514 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4515 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4516 O_constant. We have to be careful not to break compilation for
4517 32-bit X_add_number, though. */
4518 if ((exp.X_add_number & ~(offsetT)(0xffffffffU)) != 0)
4519 {
4520 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4521 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4522 inst.operands[i].regisimm = 1;
4523 }
4524 }
4525 else if (exp.X_op == O_big
4526 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
4527 {
4528 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4529
4530 /* Bignums have their least significant bits in
4531 generic_bignum[0]. Make sure we put 32 bits in imm and
4532 32 bits in reg, in a (hopefully) portable way. */
4533 gas_assert (parts != 0);
4534
4535 /* Make sure that the number is not too big.
4536 PR 11972: Bignums can now be sign-extended to the
4537 size of a .octa so check that the out of range bits
4538 are all zero or all one. */
4539 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4540 {
4541 LITTLENUM_TYPE m = -1;
4542
4543 if (generic_bignum[parts * 2] != 0
4544 && generic_bignum[parts * 2] != m)
4545 return FAIL;
4546
4547 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4548 if (generic_bignum[j] != generic_bignum[j-1])
4549 return FAIL;
4550 }
4551
4552 inst.operands[i].imm = 0;
4553 for (j = 0; j < parts; j++, idx++)
4554 inst.operands[i].imm |= generic_bignum[idx]
4555 << (LITTLENUM_NUMBER_OF_BITS * j);
4556 inst.operands[i].reg = 0;
4557 for (j = 0; j < parts; j++, idx++)
4558 inst.operands[i].reg |= generic_bignum[idx]
4559 << (LITTLENUM_NUMBER_OF_BITS * j);
4560 inst.operands[i].regisimm = 1;
4561 }
4562 else
4563 return FAIL;
4564
4565 *str = ptr;
4566
4567 return SUCCESS;
4568 }
4569
4570 /* Returns the pseudo-register number of an FPA immediate constant,
4571 or FAIL if there isn't a valid constant here. */
4572
4573 static int
4574 parse_fpa_immediate (char ** str)
4575 {
4576 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4577 char * save_in;
4578 expressionS exp;
4579 int i;
4580 int j;
4581
4582 /* First try and match exact strings, this is to guarantee
4583 that some formats will work even for cross assembly. */
4584
4585 for (i = 0; fp_const[i]; i++)
4586 {
4587 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4588 {
4589 char *start = *str;
4590
4591 *str += strlen (fp_const[i]);
4592 if (is_end_of_line[(unsigned char) **str])
4593 return i + 8;
4594 *str = start;
4595 }
4596 }
4597
4598 /* Just because we didn't get a match doesn't mean that the constant
4599 isn't valid, just that it is in a format that we don't
4600 automatically recognize. Try parsing it with the standard
4601 expression routines. */
4602
4603 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4604
4605 /* Look for a raw floating point number. */
4606 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4607 && is_end_of_line[(unsigned char) *save_in])
4608 {
4609 for (i = 0; i < NUM_FLOAT_VALS; i++)
4610 {
4611 for (j = 0; j < MAX_LITTLENUMS; j++)
4612 {
4613 if (words[j] != fp_values[i][j])
4614 break;
4615 }
4616
4617 if (j == MAX_LITTLENUMS)
4618 {
4619 *str = save_in;
4620 return i + 8;
4621 }
4622 }
4623 }
4624
4625 /* Try and parse a more complex expression, this will probably fail
4626 unless the code uses a floating point prefix (eg "0f"). */
4627 save_in = input_line_pointer;
4628 input_line_pointer = *str;
4629 if (expression (&exp) == absolute_section
4630 && exp.X_op == O_big
4631 && exp.X_add_number < 0)
4632 {
4633 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4634 Ditto for 15. */
4635 if (gen_to_words (words, 5, (long) 15) == 0)
4636 {
4637 for (i = 0; i < NUM_FLOAT_VALS; i++)
4638 {
4639 for (j = 0; j < MAX_LITTLENUMS; j++)
4640 {
4641 if (words[j] != fp_values[i][j])
4642 break;
4643 }
4644
4645 if (j == MAX_LITTLENUMS)
4646 {
4647 *str = input_line_pointer;
4648 input_line_pointer = save_in;
4649 return i + 8;
4650 }
4651 }
4652 }
4653 }
4654
4655 *str = input_line_pointer;
4656 input_line_pointer = save_in;
4657 inst.error = _("invalid FPA immediate expression");
4658 return FAIL;
4659 }
4660
4661 /* Returns 1 if a number has "quarter-precision" float format
4662 0baBbbbbbc defgh000 00000000 00000000. */
4663
4664 static int
4665 is_quarter_float (unsigned imm)
4666 {
4667 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4668 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4669 }
4670
4671 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4672 0baBbbbbbc defgh000 00000000 00000000.
4673 The zero and minus-zero cases need special handling, since they can't be
4674 encoded in the "quarter-precision" float format, but can nonetheless be
4675 loaded as integer constants. */
4676
4677 static unsigned
4678 parse_qfloat_immediate (char **ccp, int *immed)
4679 {
4680 char *str = *ccp;
4681 char *fpnum;
4682 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4683 int found_fpchar = 0;
4684
4685 skip_past_char (&str, '#');
4686
4687 /* We must not accidentally parse an integer as a floating-point number. Make
4688 sure that the value we parse is not an integer by checking for special
4689 characters '.' or 'e'.
4690 FIXME: This is a horrible hack, but doing better is tricky because type
4691 information isn't in a very usable state at parse time. */
4692 fpnum = str;
4693 skip_whitespace (fpnum);
4694
4695 if (strncmp (fpnum, "0x", 2) == 0)
4696 return FAIL;
4697 else
4698 {
4699 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4700 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4701 {
4702 found_fpchar = 1;
4703 break;
4704 }
4705
4706 if (!found_fpchar)
4707 return FAIL;
4708 }
4709
4710 if ((str = atof_ieee (str, 's', words)) != NULL)
4711 {
4712 unsigned fpword = 0;
4713 int i;
4714
4715 /* Our FP word must be 32 bits (single-precision FP). */
4716 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4717 {
4718 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4719 fpword |= words[i];
4720 }
4721
4722 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4723 *immed = fpword;
4724 else
4725 return FAIL;
4726
4727 *ccp = str;
4728
4729 return SUCCESS;
4730 }
4731
4732 return FAIL;
4733 }
4734
4735 /* Shift operands. */
4736 enum shift_kind
4737 {
4738 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4739 };
4740
4741 struct asm_shift_name
4742 {
4743 const char *name;
4744 enum shift_kind kind;
4745 };
4746
4747 /* Third argument to parse_shift. */
4748 enum parse_shift_mode
4749 {
4750 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4751 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4752 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4753 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4754 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4755 };
4756
4757 /* Parse a <shift> specifier on an ARM data processing instruction.
4758 This has three forms:
4759
4760 (LSL|LSR|ASL|ASR|ROR) Rs
4761 (LSL|LSR|ASL|ASR|ROR) #imm
4762 RRX
4763
4764 Note that ASL is assimilated to LSL in the instruction encoding, and
4765 RRX to ROR #0 (which cannot be written as such). */
4766
4767 static int
4768 parse_shift (char **str, int i, enum parse_shift_mode mode)
4769 {
4770 const struct asm_shift_name *shift_name;
4771 enum shift_kind shift;
4772 char *s = *str;
4773 char *p = s;
4774 int reg;
4775
4776 for (p = *str; ISALPHA (*p); p++)
4777 ;
4778
4779 if (p == *str)
4780 {
4781 inst.error = _("shift expression expected");
4782 return FAIL;
4783 }
4784
4785 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4786 p - *str);
4787
4788 if (shift_name == NULL)
4789 {
4790 inst.error = _("shift expression expected");
4791 return FAIL;
4792 }
4793
4794 shift = shift_name->kind;
4795
4796 switch (mode)
4797 {
4798 case NO_SHIFT_RESTRICT:
4799 case SHIFT_IMMEDIATE: break;
4800
4801 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4802 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4803 {
4804 inst.error = _("'LSL' or 'ASR' required");
4805 return FAIL;
4806 }
4807 break;
4808
4809 case SHIFT_LSL_IMMEDIATE:
4810 if (shift != SHIFT_LSL)
4811 {
4812 inst.error = _("'LSL' required");
4813 return FAIL;
4814 }
4815 break;
4816
4817 case SHIFT_ASR_IMMEDIATE:
4818 if (shift != SHIFT_ASR)
4819 {
4820 inst.error = _("'ASR' required");
4821 return FAIL;
4822 }
4823 break;
4824
4825 default: abort ();
4826 }
4827
4828 if (shift != SHIFT_RRX)
4829 {
4830 /* Whitespace can appear here if the next thing is a bare digit. */
4831 skip_whitespace (p);
4832
4833 if (mode == NO_SHIFT_RESTRICT
4834 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4835 {
4836 inst.operands[i].imm = reg;
4837 inst.operands[i].immisreg = 1;
4838 }
4839 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4840 return FAIL;
4841 }
4842 inst.operands[i].shift_kind = shift;
4843 inst.operands[i].shifted = 1;
4844 *str = p;
4845 return SUCCESS;
4846 }
4847
4848 /* Parse a <shifter_operand> for an ARM data processing instruction:
4849
4850 #<immediate>
4851 #<immediate>, <rotate>
4852 <Rm>
4853 <Rm>, <shift>
4854
4855 where <shift> is defined by parse_shift above, and <rotate> is a
4856 multiple of 2 between 0 and 30. Validation of immediate operands
4857 is deferred to md_apply_fix. */
4858
4859 static int
4860 parse_shifter_operand (char **str, int i)
4861 {
4862 int value;
4863 expressionS exp;
4864
4865 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4866 {
4867 inst.operands[i].reg = value;
4868 inst.operands[i].isreg = 1;
4869
4870 /* parse_shift will override this if appropriate */
4871 inst.reloc.exp.X_op = O_constant;
4872 inst.reloc.exp.X_add_number = 0;
4873
4874 if (skip_past_comma (str) == FAIL)
4875 return SUCCESS;
4876
4877 /* Shift operation on register. */
4878 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4879 }
4880
4881 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4882 return FAIL;
4883
4884 if (skip_past_comma (str) == SUCCESS)
4885 {
4886 /* #x, y -- ie explicit rotation by Y. */
4887 if (my_get_expression (&exp, str, GE_NO_PREFIX))
4888 return FAIL;
4889
4890 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4891 {
4892 inst.error = _("constant expression expected");
4893 return FAIL;
4894 }
4895
4896 value = exp.X_add_number;
4897 if (value < 0 || value > 30 || value % 2 != 0)
4898 {
4899 inst.error = _("invalid rotation");
4900 return FAIL;
4901 }
4902 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4903 {
4904 inst.error = _("invalid constant");
4905 return FAIL;
4906 }
4907
4908 /* Encode as specified. */
4909 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
4910 return SUCCESS;
4911 }
4912
4913 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4914 inst.reloc.pc_rel = 0;
4915 return SUCCESS;
4916 }
4917
4918 /* Group relocation information. Each entry in the table contains the
4919 textual name of the relocation as may appear in assembler source
4920 and must end with a colon.
4921 Along with this textual name are the relocation codes to be used if
4922 the corresponding instruction is an ALU instruction (ADD or SUB only),
4923 an LDR, an LDRS, or an LDC. */
4924
4925 struct group_reloc_table_entry
4926 {
4927 const char *name;
4928 int alu_code;
4929 int ldr_code;
4930 int ldrs_code;
4931 int ldc_code;
4932 };
4933
4934 typedef enum
4935 {
4936 /* Varieties of non-ALU group relocation. */
4937
4938 GROUP_LDR,
4939 GROUP_LDRS,
4940 GROUP_LDC
4941 } group_reloc_type;
4942
4943 static struct group_reloc_table_entry group_reloc_table[] =
4944 { /* Program counter relative: */
4945 { "pc_g0_nc",
4946 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4947 0, /* LDR */
4948 0, /* LDRS */
4949 0 }, /* LDC */
4950 { "pc_g0",
4951 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4952 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4953 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4954 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4955 { "pc_g1_nc",
4956 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4957 0, /* LDR */
4958 0, /* LDRS */
4959 0 }, /* LDC */
4960 { "pc_g1",
4961 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4962 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4963 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4964 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4965 { "pc_g2",
4966 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4967 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4968 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4969 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4970 /* Section base relative */
4971 { "sb_g0_nc",
4972 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4973 0, /* LDR */
4974 0, /* LDRS */
4975 0 }, /* LDC */
4976 { "sb_g0",
4977 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4978 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4979 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4980 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4981 { "sb_g1_nc",
4982 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4983 0, /* LDR */
4984 0, /* LDRS */
4985 0 }, /* LDC */
4986 { "sb_g1",
4987 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4988 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4989 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4990 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4991 { "sb_g2",
4992 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4993 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4994 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4995 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4996
4997 /* Given the address of a pointer pointing to the textual name of a group
4998 relocation as may appear in assembler source, attempt to find its details
4999 in group_reloc_table. The pointer will be updated to the character after
5000 the trailing colon. On failure, FAIL will be returned; SUCCESS
5001 otherwise. On success, *entry will be updated to point at the relevant
5002 group_reloc_table entry. */
5003
5004 static int
5005 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5006 {
5007 unsigned int i;
5008 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5009 {
5010 int length = strlen (group_reloc_table[i].name);
5011
5012 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5013 && (*str)[length] == ':')
5014 {
5015 *out = &group_reloc_table[i];
5016 *str += (length + 1);
5017 return SUCCESS;
5018 }
5019 }
5020
5021 return FAIL;
5022 }
5023
5024 /* Parse a <shifter_operand> for an ARM data processing instruction
5025 (as for parse_shifter_operand) where group relocations are allowed:
5026
5027 #<immediate>
5028 #<immediate>, <rotate>
5029 #:<group_reloc>:<expression>
5030 <Rm>
5031 <Rm>, <shift>
5032
5033 where <group_reloc> is one of the strings defined in group_reloc_table.
5034 The hashes are optional.
5035
5036 Everything else is as for parse_shifter_operand. */
5037
5038 static parse_operand_result
5039 parse_shifter_operand_group_reloc (char **str, int i)
5040 {
5041 /* Determine if we have the sequence of characters #: or just :
5042 coming next. If we do, then we check for a group relocation.
5043 If we don't, punt the whole lot to parse_shifter_operand. */
5044
5045 if (((*str)[0] == '#' && (*str)[1] == ':')
5046 || (*str)[0] == ':')
5047 {
5048 struct group_reloc_table_entry *entry;
5049
5050 if ((*str)[0] == '#')
5051 (*str) += 2;
5052 else
5053 (*str)++;
5054
5055 /* Try to parse a group relocation. Anything else is an error. */
5056 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5057 {
5058 inst.error = _("unknown group relocation");
5059 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5060 }
5061
5062 /* We now have the group relocation table entry corresponding to
5063 the name in the assembler source. Next, we parse the expression. */
5064 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5065 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5066
5067 /* Record the relocation type (always the ALU variant here). */
5068 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
5069 gas_assert (inst.reloc.type != 0);
5070
5071 return PARSE_OPERAND_SUCCESS;
5072 }
5073 else
5074 return parse_shifter_operand (str, i) == SUCCESS
5075 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5076
5077 /* Never reached. */
5078 }
5079
5080 /* Parse a Neon alignment expression. Information is written to
5081 inst.operands[i]. We assume the initial ':' has been skipped.
5082
5083 align .imm = align << 8, .immisalign=1, .preind=0 */
5084 static parse_operand_result
5085 parse_neon_alignment (char **str, int i)
5086 {
5087 char *p = *str;
5088 expressionS exp;
5089
5090 my_get_expression (&exp, &p, GE_NO_PREFIX);
5091
5092 if (exp.X_op != O_constant)
5093 {
5094 inst.error = _("alignment must be constant");
5095 return PARSE_OPERAND_FAIL;
5096 }
5097
5098 inst.operands[i].imm = exp.X_add_number << 8;
5099 inst.operands[i].immisalign = 1;
5100 /* Alignments are not pre-indexes. */
5101 inst.operands[i].preind = 0;
5102
5103 *str = p;
5104 return PARSE_OPERAND_SUCCESS;
5105 }
5106
5107 /* Parse all forms of an ARM address expression. Information is written
5108 to inst.operands[i] and/or inst.reloc.
5109
5110 Preindexed addressing (.preind=1):
5111
5112 [Rn, #offset] .reg=Rn .reloc.exp=offset
5113 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5114 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5115 .shift_kind=shift .reloc.exp=shift_imm
5116
5117 These three may have a trailing ! which causes .writeback to be set also.
5118
5119 Postindexed addressing (.postind=1, .writeback=1):
5120
5121 [Rn], #offset .reg=Rn .reloc.exp=offset
5122 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5123 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5124 .shift_kind=shift .reloc.exp=shift_imm
5125
5126 Unindexed addressing (.preind=0, .postind=0):
5127
5128 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5129
5130 Other:
5131
5132 [Rn]{!} shorthand for [Rn,#0]{!}
5133 =immediate .isreg=0 .reloc.exp=immediate
5134 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5135
5136 It is the caller's responsibility to check for addressing modes not
5137 supported by the instruction, and to set inst.reloc.type. */
5138
5139 static parse_operand_result
5140 parse_address_main (char **str, int i, int group_relocations,
5141 group_reloc_type group_type)
5142 {
5143 char *p = *str;
5144 int reg;
5145
5146 if (skip_past_char (&p, '[') == FAIL)
5147 {
5148 if (skip_past_char (&p, '=') == FAIL)
5149 {
5150 /* Bare address - translate to PC-relative offset. */
5151 inst.reloc.pc_rel = 1;
5152 inst.operands[i].reg = REG_PC;
5153 inst.operands[i].isreg = 1;
5154 inst.operands[i].preind = 1;
5155 }
5156 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
5157
5158 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5159 return PARSE_OPERAND_FAIL;
5160
5161 *str = p;
5162 return PARSE_OPERAND_SUCCESS;
5163 }
5164
5165 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5166 {
5167 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5168 return PARSE_OPERAND_FAIL;
5169 }
5170 inst.operands[i].reg = reg;
5171 inst.operands[i].isreg = 1;
5172
5173 if (skip_past_comma (&p) == SUCCESS)
5174 {
5175 inst.operands[i].preind = 1;
5176
5177 if (*p == '+') p++;
5178 else if (*p == '-') p++, inst.operands[i].negative = 1;
5179
5180 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5181 {
5182 inst.operands[i].imm = reg;
5183 inst.operands[i].immisreg = 1;
5184
5185 if (skip_past_comma (&p) == SUCCESS)
5186 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5187 return PARSE_OPERAND_FAIL;
5188 }
5189 else if (skip_past_char (&p, ':') == SUCCESS)
5190 {
5191 /* FIXME: '@' should be used here, but it's filtered out by generic
5192 code before we get to see it here. This may be subject to
5193 change. */
5194 parse_operand_result result = parse_neon_alignment (&p, i);
5195
5196 if (result != PARSE_OPERAND_SUCCESS)
5197 return result;
5198 }
5199 else
5200 {
5201 if (inst.operands[i].negative)
5202 {
5203 inst.operands[i].negative = 0;
5204 p--;
5205 }
5206
5207 if (group_relocations
5208 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5209 {
5210 struct group_reloc_table_entry *entry;
5211
5212 /* Skip over the #: or : sequence. */
5213 if (*p == '#')
5214 p += 2;
5215 else
5216 p++;
5217
5218 /* Try to parse a group relocation. Anything else is an
5219 error. */
5220 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5221 {
5222 inst.error = _("unknown group relocation");
5223 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5224 }
5225
5226 /* We now have the group relocation table entry corresponding to
5227 the name in the assembler source. Next, we parse the
5228 expression. */
5229 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5230 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5231
5232 /* Record the relocation type. */
5233 switch (group_type)
5234 {
5235 case GROUP_LDR:
5236 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5237 break;
5238
5239 case GROUP_LDRS:
5240 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5241 break;
5242
5243 case GROUP_LDC:
5244 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5245 break;
5246
5247 default:
5248 gas_assert (0);
5249 }
5250
5251 if (inst.reloc.type == 0)
5252 {
5253 inst.error = _("this group relocation is not allowed on this instruction");
5254 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5255 }
5256 }
5257 else
5258 {
5259 char *q = p;
5260 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5261 return PARSE_OPERAND_FAIL;
5262 /* If the offset is 0, find out if it's a +0 or -0. */
5263 if (inst.reloc.exp.X_op == O_constant
5264 && inst.reloc.exp.X_add_number == 0)
5265 {
5266 skip_whitespace (q);
5267 if (*q == '#')
5268 {
5269 q++;
5270 skip_whitespace (q);
5271 }
5272 if (*q == '-')
5273 inst.operands[i].negative = 1;
5274 }
5275 }
5276 }
5277 }
5278 else if (skip_past_char (&p, ':') == SUCCESS)
5279 {
5280 /* FIXME: '@' should be used here, but it's filtered out by generic code
5281 before we get to see it here. This may be subject to change. */
5282 parse_operand_result result = parse_neon_alignment (&p, i);
5283
5284 if (result != PARSE_OPERAND_SUCCESS)
5285 return result;
5286 }
5287
5288 if (skip_past_char (&p, ']') == FAIL)
5289 {
5290 inst.error = _("']' expected");
5291 return PARSE_OPERAND_FAIL;
5292 }
5293
5294 if (skip_past_char (&p, '!') == SUCCESS)
5295 inst.operands[i].writeback = 1;
5296
5297 else if (skip_past_comma (&p) == SUCCESS)
5298 {
5299 if (skip_past_char (&p, '{') == SUCCESS)
5300 {
5301 /* [Rn], {expr} - unindexed, with option */
5302 if (parse_immediate (&p, &inst.operands[i].imm,
5303 0, 255, TRUE) == FAIL)
5304 return PARSE_OPERAND_FAIL;
5305
5306 if (skip_past_char (&p, '}') == FAIL)
5307 {
5308 inst.error = _("'}' expected at end of 'option' field");
5309 return PARSE_OPERAND_FAIL;
5310 }
5311 if (inst.operands[i].preind)
5312 {
5313 inst.error = _("cannot combine index with option");
5314 return PARSE_OPERAND_FAIL;
5315 }
5316 *str = p;
5317 return PARSE_OPERAND_SUCCESS;
5318 }
5319 else
5320 {
5321 inst.operands[i].postind = 1;
5322 inst.operands[i].writeback = 1;
5323
5324 if (inst.operands[i].preind)
5325 {
5326 inst.error = _("cannot combine pre- and post-indexing");
5327 return PARSE_OPERAND_FAIL;
5328 }
5329
5330 if (*p == '+') p++;
5331 else if (*p == '-') p++, inst.operands[i].negative = 1;
5332
5333 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5334 {
5335 /* We might be using the immediate for alignment already. If we
5336 are, OR the register number into the low-order bits. */
5337 if (inst.operands[i].immisalign)
5338 inst.operands[i].imm |= reg;
5339 else
5340 inst.operands[i].imm = reg;
5341 inst.operands[i].immisreg = 1;
5342
5343 if (skip_past_comma (&p) == SUCCESS)
5344 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5345 return PARSE_OPERAND_FAIL;
5346 }
5347 else
5348 {
5349 char *q = p;
5350 if (inst.operands[i].negative)
5351 {
5352 inst.operands[i].negative = 0;
5353 p--;
5354 }
5355 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5356 return PARSE_OPERAND_FAIL;
5357 /* If the offset is 0, find out if it's a +0 or -0. */
5358 if (inst.reloc.exp.X_op == O_constant
5359 && inst.reloc.exp.X_add_number == 0)
5360 {
5361 skip_whitespace (q);
5362 if (*q == '#')
5363 {
5364 q++;
5365 skip_whitespace (q);
5366 }
5367 if (*q == '-')
5368 inst.operands[i].negative = 1;
5369 }
5370 }
5371 }
5372 }
5373
5374 /* If at this point neither .preind nor .postind is set, we have a
5375 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5376 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5377 {
5378 inst.operands[i].preind = 1;
5379 inst.reloc.exp.X_op = O_constant;
5380 inst.reloc.exp.X_add_number = 0;
5381 }
5382 *str = p;
5383 return PARSE_OPERAND_SUCCESS;
5384 }
5385
5386 static int
5387 parse_address (char **str, int i)
5388 {
5389 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5390 ? SUCCESS : FAIL;
5391 }
5392
5393 static parse_operand_result
5394 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5395 {
5396 return parse_address_main (str, i, 1, type);
5397 }
5398
5399 /* Parse an operand for a MOVW or MOVT instruction. */
5400 static int
5401 parse_half (char **str)
5402 {
5403 char * p;
5404
5405 p = *str;
5406 skip_past_char (&p, '#');
5407 if (strncasecmp (p, ":lower16:", 9) == 0)
5408 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5409 else if (strncasecmp (p, ":upper16:", 9) == 0)
5410 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5411
5412 if (inst.reloc.type != BFD_RELOC_UNUSED)
5413 {
5414 p += 9;
5415 skip_whitespace (p);
5416 }
5417
5418 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5419 return FAIL;
5420
5421 if (inst.reloc.type == BFD_RELOC_UNUSED)
5422 {
5423 if (inst.reloc.exp.X_op != O_constant)
5424 {
5425 inst.error = _("constant expression expected");
5426 return FAIL;
5427 }
5428 if (inst.reloc.exp.X_add_number < 0
5429 || inst.reloc.exp.X_add_number > 0xffff)
5430 {
5431 inst.error = _("immediate value out of range");
5432 return FAIL;
5433 }
5434 }
5435 *str = p;
5436 return SUCCESS;
5437 }
5438
5439 /* Miscellaneous. */
5440
5441 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5442 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5443 static int
5444 parse_psr (char **str, bfd_boolean lhs)
5445 {
5446 char *p;
5447 unsigned long psr_field;
5448 const struct asm_psr *psr;
5449 char *start;
5450 bfd_boolean is_apsr = FALSE;
5451 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
5452
5453 /* PR gas/12698: If the user has specified -march=all then m_profile will
5454 be TRUE, but we want to ignore it in this case as we are building for any
5455 CPU type, including non-m variants. */
5456 if (selected_cpu.core == arm_arch_any.core)
5457 m_profile = FALSE;
5458
5459 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5460 feature for ease of use and backwards compatibility. */
5461 p = *str;
5462 if (strncasecmp (p, "SPSR", 4) == 0)
5463 {
5464 if (m_profile)
5465 goto unsupported_psr;
5466
5467 psr_field = SPSR_BIT;
5468 }
5469 else if (strncasecmp (p, "CPSR", 4) == 0)
5470 {
5471 if (m_profile)
5472 goto unsupported_psr;
5473
5474 psr_field = 0;
5475 }
5476 else if (strncasecmp (p, "APSR", 4) == 0)
5477 {
5478 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5479 and ARMv7-R architecture CPUs. */
5480 is_apsr = TRUE;
5481 psr_field = 0;
5482 }
5483 else if (m_profile)
5484 {
5485 start = p;
5486 do
5487 p++;
5488 while (ISALNUM (*p) || *p == '_');
5489
5490 if (strncasecmp (start, "iapsr", 5) == 0
5491 || strncasecmp (start, "eapsr", 5) == 0
5492 || strncasecmp (start, "xpsr", 4) == 0
5493 || strncasecmp (start, "psr", 3) == 0)
5494 p = start + strcspn (start, "rR") + 1;
5495
5496 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5497 p - start);
5498
5499 if (!psr)
5500 return FAIL;
5501
5502 /* If APSR is being written, a bitfield may be specified. Note that
5503 APSR itself is handled above. */
5504 if (psr->field <= 3)
5505 {
5506 psr_field = psr->field;
5507 is_apsr = TRUE;
5508 goto check_suffix;
5509 }
5510
5511 *str = p;
5512 /* M-profile MSR instructions have the mask field set to "10", except
5513 *PSR variants which modify APSR, which may use a different mask (and
5514 have been handled already). Do that by setting the PSR_f field
5515 here. */
5516 return psr->field | (lhs ? PSR_f : 0);
5517 }
5518 else
5519 goto unsupported_psr;
5520
5521 p += 4;
5522 check_suffix:
5523 if (*p == '_')
5524 {
5525 /* A suffix follows. */
5526 p++;
5527 start = p;
5528
5529 do
5530 p++;
5531 while (ISALNUM (*p) || *p == '_');
5532
5533 if (is_apsr)
5534 {
5535 /* APSR uses a notation for bits, rather than fields. */
5536 unsigned int nzcvq_bits = 0;
5537 unsigned int g_bit = 0;
5538 char *bit;
5539
5540 for (bit = start; bit != p; bit++)
5541 {
5542 switch (TOLOWER (*bit))
5543 {
5544 case 'n':
5545 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5546 break;
5547
5548 case 'z':
5549 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5550 break;
5551
5552 case 'c':
5553 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5554 break;
5555
5556 case 'v':
5557 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5558 break;
5559
5560 case 'q':
5561 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5562 break;
5563
5564 case 'g':
5565 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5566 break;
5567
5568 default:
5569 inst.error = _("unexpected bit specified after APSR");
5570 return FAIL;
5571 }
5572 }
5573
5574 if (nzcvq_bits == 0x1f)
5575 psr_field |= PSR_f;
5576
5577 if (g_bit == 0x1)
5578 {
5579 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5580 {
5581 inst.error = _("selected processor does not "
5582 "support DSP extension");
5583 return FAIL;
5584 }
5585
5586 psr_field |= PSR_s;
5587 }
5588
5589 if ((nzcvq_bits & 0x20) != 0
5590 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5591 || (g_bit & 0x2) != 0)
5592 {
5593 inst.error = _("bad bitmask specified after APSR");
5594 return FAIL;
5595 }
5596 }
5597 else
5598 {
5599 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5600 p - start);
5601 if (!psr)
5602 goto error;
5603
5604 psr_field |= psr->field;
5605 }
5606 }
5607 else
5608 {
5609 if (ISALNUM (*p))
5610 goto error; /* Garbage after "[CS]PSR". */
5611
5612 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5613 is deprecated, but allow it anyway. */
5614 if (is_apsr && lhs)
5615 {
5616 psr_field |= PSR_f;
5617 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5618 "deprecated"));
5619 }
5620 else if (!m_profile)
5621 /* These bits are never right for M-profile devices: don't set them
5622 (only code paths which read/write APSR reach here). */
5623 psr_field |= (PSR_c | PSR_f);
5624 }
5625 *str = p;
5626 return psr_field;
5627
5628 unsupported_psr:
5629 inst.error = _("selected processor does not support requested special "
5630 "purpose register");
5631 return FAIL;
5632
5633 error:
5634 inst.error = _("flag for {c}psr instruction expected");
5635 return FAIL;
5636 }
5637
5638 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5639 value suitable for splatting into the AIF field of the instruction. */
5640
5641 static int
5642 parse_cps_flags (char **str)
5643 {
5644 int val = 0;
5645 int saw_a_flag = 0;
5646 char *s = *str;
5647
5648 for (;;)
5649 switch (*s++)
5650 {
5651 case '\0': case ',':
5652 goto done;
5653
5654 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5655 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5656 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5657
5658 default:
5659 inst.error = _("unrecognized CPS flag");
5660 return FAIL;
5661 }
5662
5663 done:
5664 if (saw_a_flag == 0)
5665 {
5666 inst.error = _("missing CPS flags");
5667 return FAIL;
5668 }
5669
5670 *str = s - 1;
5671 return val;
5672 }
5673
5674 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5675 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5676
5677 static int
5678 parse_endian_specifier (char **str)
5679 {
5680 int little_endian;
5681 char *s = *str;
5682
5683 if (strncasecmp (s, "BE", 2))
5684 little_endian = 0;
5685 else if (strncasecmp (s, "LE", 2))
5686 little_endian = 1;
5687 else
5688 {
5689 inst.error = _("valid endian specifiers are be or le");
5690 return FAIL;
5691 }
5692
5693 if (ISALNUM (s[2]) || s[2] == '_')
5694 {
5695 inst.error = _("valid endian specifiers are be or le");
5696 return FAIL;
5697 }
5698
5699 *str = s + 2;
5700 return little_endian;
5701 }
5702
5703 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5704 value suitable for poking into the rotate field of an sxt or sxta
5705 instruction, or FAIL on error. */
5706
5707 static int
5708 parse_ror (char **str)
5709 {
5710 int rot;
5711 char *s = *str;
5712
5713 if (strncasecmp (s, "ROR", 3) == 0)
5714 s += 3;
5715 else
5716 {
5717 inst.error = _("missing rotation field after comma");
5718 return FAIL;
5719 }
5720
5721 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5722 return FAIL;
5723
5724 switch (rot)
5725 {
5726 case 0: *str = s; return 0x0;
5727 case 8: *str = s; return 0x1;
5728 case 16: *str = s; return 0x2;
5729 case 24: *str = s; return 0x3;
5730
5731 default:
5732 inst.error = _("rotation can only be 0, 8, 16, or 24");
5733 return FAIL;
5734 }
5735 }
5736
5737 /* Parse a conditional code (from conds[] below). The value returned is in the
5738 range 0 .. 14, or FAIL. */
5739 static int
5740 parse_cond (char **str)
5741 {
5742 char *q;
5743 const struct asm_cond *c;
5744 int n;
5745 /* Condition codes are always 2 characters, so matching up to
5746 3 characters is sufficient. */
5747 char cond[3];
5748
5749 q = *str;
5750 n = 0;
5751 while (ISALPHA (*q) && n < 3)
5752 {
5753 cond[n] = TOLOWER (*q);
5754 q++;
5755 n++;
5756 }
5757
5758 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5759 if (!c)
5760 {
5761 inst.error = _("condition required");
5762 return FAIL;
5763 }
5764
5765 *str = q;
5766 return c->value;
5767 }
5768
5769 /* Parse an option for a barrier instruction. Returns the encoding for the
5770 option, or FAIL. */
5771 static int
5772 parse_barrier (char **str)
5773 {
5774 char *p, *q;
5775 const struct asm_barrier_opt *o;
5776
5777 p = q = *str;
5778 while (ISALPHA (*q))
5779 q++;
5780
5781 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5782 q - p);
5783 if (!o)
5784 return FAIL;
5785
5786 *str = q;
5787 return o->value;
5788 }
5789
5790 /* Parse the operands of a table branch instruction. Similar to a memory
5791 operand. */
5792 static int
5793 parse_tb (char **str)
5794 {
5795 char * p = *str;
5796 int reg;
5797
5798 if (skip_past_char (&p, '[') == FAIL)
5799 {
5800 inst.error = _("'[' expected");
5801 return FAIL;
5802 }
5803
5804 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5805 {
5806 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5807 return FAIL;
5808 }
5809 inst.operands[0].reg = reg;
5810
5811 if (skip_past_comma (&p) == FAIL)
5812 {
5813 inst.error = _("',' expected");
5814 return FAIL;
5815 }
5816
5817 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5818 {
5819 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5820 return FAIL;
5821 }
5822 inst.operands[0].imm = reg;
5823
5824 if (skip_past_comma (&p) == SUCCESS)
5825 {
5826 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5827 return FAIL;
5828 if (inst.reloc.exp.X_add_number != 1)
5829 {
5830 inst.error = _("invalid shift");
5831 return FAIL;
5832 }
5833 inst.operands[0].shifted = 1;
5834 }
5835
5836 if (skip_past_char (&p, ']') == FAIL)
5837 {
5838 inst.error = _("']' expected");
5839 return FAIL;
5840 }
5841 *str = p;
5842 return SUCCESS;
5843 }
5844
5845 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5846 information on the types the operands can take and how they are encoded.
5847 Up to four operands may be read; this function handles setting the
5848 ".present" field for each read operand itself.
5849 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5850 else returns FAIL. */
5851
5852 static int
5853 parse_neon_mov (char **str, int *which_operand)
5854 {
5855 int i = *which_operand, val;
5856 enum arm_reg_type rtype;
5857 char *ptr = *str;
5858 struct neon_type_el optype;
5859
5860 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5861 {
5862 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5863 inst.operands[i].reg = val;
5864 inst.operands[i].isscalar = 1;
5865 inst.operands[i].vectype = optype;
5866 inst.operands[i++].present = 1;
5867
5868 if (skip_past_comma (&ptr) == FAIL)
5869 goto wanted_comma;
5870
5871 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5872 goto wanted_arm;
5873
5874 inst.operands[i].reg = val;
5875 inst.operands[i].isreg = 1;
5876 inst.operands[i].present = 1;
5877 }
5878 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5879 != FAIL)
5880 {
5881 /* Cases 0, 1, 2, 3, 5 (D only). */
5882 if (skip_past_comma (&ptr) == FAIL)
5883 goto wanted_comma;
5884
5885 inst.operands[i].reg = val;
5886 inst.operands[i].isreg = 1;
5887 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5888 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5889 inst.operands[i].isvec = 1;
5890 inst.operands[i].vectype = optype;
5891 inst.operands[i++].present = 1;
5892
5893 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5894 {
5895 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5896 Case 13: VMOV <Sd>, <Rm> */
5897 inst.operands[i].reg = val;
5898 inst.operands[i].isreg = 1;
5899 inst.operands[i].present = 1;
5900
5901 if (rtype == REG_TYPE_NQ)
5902 {
5903 first_error (_("can't use Neon quad register here"));
5904 return FAIL;
5905 }
5906 else if (rtype != REG_TYPE_VFS)
5907 {
5908 i++;
5909 if (skip_past_comma (&ptr) == FAIL)
5910 goto wanted_comma;
5911 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5912 goto wanted_arm;
5913 inst.operands[i].reg = val;
5914 inst.operands[i].isreg = 1;
5915 inst.operands[i].present = 1;
5916 }
5917 }
5918 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5919 &optype)) != FAIL)
5920 {
5921 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5922 Case 1: VMOV<c><q> <Dd>, <Dm>
5923 Case 8: VMOV.F32 <Sd>, <Sm>
5924 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5925
5926 inst.operands[i].reg = val;
5927 inst.operands[i].isreg = 1;
5928 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5929 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5930 inst.operands[i].isvec = 1;
5931 inst.operands[i].vectype = optype;
5932 inst.operands[i].present = 1;
5933
5934 if (skip_past_comma (&ptr) == SUCCESS)
5935 {
5936 /* Case 15. */
5937 i++;
5938
5939 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5940 goto wanted_arm;
5941
5942 inst.operands[i].reg = val;
5943 inst.operands[i].isreg = 1;
5944 inst.operands[i++].present = 1;
5945
5946 if (skip_past_comma (&ptr) == FAIL)
5947 goto wanted_comma;
5948
5949 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5950 goto wanted_arm;
5951
5952 inst.operands[i].reg = val;
5953 inst.operands[i].isreg = 1;
5954 inst.operands[i].present = 1;
5955 }
5956 }
5957 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5958 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5959 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5960 Case 10: VMOV.F32 <Sd>, #<imm>
5961 Case 11: VMOV.F64 <Dd>, #<imm> */
5962 inst.operands[i].immisfloat = 1;
5963 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5964 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5965 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5966 ;
5967 else
5968 {
5969 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5970 return FAIL;
5971 }
5972 }
5973 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5974 {
5975 /* Cases 6, 7. */
5976 inst.operands[i].reg = val;
5977 inst.operands[i].isreg = 1;
5978 inst.operands[i++].present = 1;
5979
5980 if (skip_past_comma (&ptr) == FAIL)
5981 goto wanted_comma;
5982
5983 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5984 {
5985 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5986 inst.operands[i].reg = val;
5987 inst.operands[i].isscalar = 1;
5988 inst.operands[i].present = 1;
5989 inst.operands[i].vectype = optype;
5990 }
5991 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5992 {
5993 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5994 inst.operands[i].reg = val;
5995 inst.operands[i].isreg = 1;
5996 inst.operands[i++].present = 1;
5997
5998 if (skip_past_comma (&ptr) == FAIL)
5999 goto wanted_comma;
6000
6001 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6002 == FAIL)
6003 {
6004 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
6005 return FAIL;
6006 }
6007
6008 inst.operands[i].reg = val;
6009 inst.operands[i].isreg = 1;
6010 inst.operands[i].isvec = 1;
6011 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6012 inst.operands[i].vectype = optype;
6013 inst.operands[i].present = 1;
6014
6015 if (rtype == REG_TYPE_VFS)
6016 {
6017 /* Case 14. */
6018 i++;
6019 if (skip_past_comma (&ptr) == FAIL)
6020 goto wanted_comma;
6021 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6022 &optype)) == FAIL)
6023 {
6024 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6025 return FAIL;
6026 }
6027 inst.operands[i].reg = val;
6028 inst.operands[i].isreg = 1;
6029 inst.operands[i].isvec = 1;
6030 inst.operands[i].issingle = 1;
6031 inst.operands[i].vectype = optype;
6032 inst.operands[i].present = 1;
6033 }
6034 }
6035 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6036 != FAIL)
6037 {
6038 /* Case 13. */
6039 inst.operands[i].reg = val;
6040 inst.operands[i].isreg = 1;
6041 inst.operands[i].isvec = 1;
6042 inst.operands[i].issingle = 1;
6043 inst.operands[i].vectype = optype;
6044 inst.operands[i].present = 1;
6045 }
6046 }
6047 else
6048 {
6049 first_error (_("parse error"));
6050 return FAIL;
6051 }
6052
6053 /* Successfully parsed the operands. Update args. */
6054 *which_operand = i;
6055 *str = ptr;
6056 return SUCCESS;
6057
6058 wanted_comma:
6059 first_error (_("expected comma"));
6060 return FAIL;
6061
6062 wanted_arm:
6063 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6064 return FAIL;
6065 }
6066
6067 /* Use this macro when the operand constraints are different
6068 for ARM and THUMB (e.g. ldrd). */
6069 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6070 ((arm_operand) | ((thumb_operand) << 16))
6071
6072 /* Matcher codes for parse_operands. */
6073 enum operand_parse_code
6074 {
6075 OP_stop, /* end of line */
6076
6077 OP_RR, /* ARM register */
6078 OP_RRnpc, /* ARM register, not r15 */
6079 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6080 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6081 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6082 optional trailing ! */
6083 OP_RRw, /* ARM register, not r15, optional trailing ! */
6084 OP_RCP, /* Coprocessor number */
6085 OP_RCN, /* Coprocessor register */
6086 OP_RF, /* FPA register */
6087 OP_RVS, /* VFP single precision register */
6088 OP_RVD, /* VFP double precision register (0..15) */
6089 OP_RND, /* Neon double precision register (0..31) */
6090 OP_RNQ, /* Neon quad precision register */
6091 OP_RVSD, /* VFP single or double precision register */
6092 OP_RNDQ, /* Neon double or quad precision register */
6093 OP_RNSDQ, /* Neon single, double or quad precision register */
6094 OP_RNSC, /* Neon scalar D[X] */
6095 OP_RVC, /* VFP control register */
6096 OP_RMF, /* Maverick F register */
6097 OP_RMD, /* Maverick D register */
6098 OP_RMFX, /* Maverick FX register */
6099 OP_RMDX, /* Maverick DX register */
6100 OP_RMAX, /* Maverick AX register */
6101 OP_RMDS, /* Maverick DSPSC register */
6102 OP_RIWR, /* iWMMXt wR register */
6103 OP_RIWC, /* iWMMXt wC register */
6104 OP_RIWG, /* iWMMXt wCG register */
6105 OP_RXA, /* XScale accumulator register */
6106
6107 OP_REGLST, /* ARM register list */
6108 OP_VRSLST, /* VFP single-precision register list */
6109 OP_VRDLST, /* VFP double-precision register list */
6110 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6111 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6112 OP_NSTRLST, /* Neon element/structure list */
6113
6114 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6115 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6116 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6117 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6118 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6119 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6120 OP_VMOV, /* Neon VMOV operands. */
6121 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6122 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6123 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6124
6125 OP_I0, /* immediate zero */
6126 OP_I7, /* immediate value 0 .. 7 */
6127 OP_I15, /* 0 .. 15 */
6128 OP_I16, /* 1 .. 16 */
6129 OP_I16z, /* 0 .. 16 */
6130 OP_I31, /* 0 .. 31 */
6131 OP_I31w, /* 0 .. 31, optional trailing ! */
6132 OP_I32, /* 1 .. 32 */
6133 OP_I32z, /* 0 .. 32 */
6134 OP_I63, /* 0 .. 63 */
6135 OP_I63s, /* -64 .. 63 */
6136 OP_I64, /* 1 .. 64 */
6137 OP_I64z, /* 0 .. 64 */
6138 OP_I255, /* 0 .. 255 */
6139
6140 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6141 OP_I7b, /* 0 .. 7 */
6142 OP_I15b, /* 0 .. 15 */
6143 OP_I31b, /* 0 .. 31 */
6144
6145 OP_SH, /* shifter operand */
6146 OP_SHG, /* shifter operand with possible group relocation */
6147 OP_ADDR, /* Memory address expression (any mode) */
6148 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6149 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6150 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6151 OP_EXP, /* arbitrary expression */
6152 OP_EXPi, /* same, with optional immediate prefix */
6153 OP_EXPr, /* same, with optional relocation suffix */
6154 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6155
6156 OP_CPSF, /* CPS flags */
6157 OP_ENDI, /* Endianness specifier */
6158 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6159 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
6160 OP_COND, /* conditional code */
6161 OP_TB, /* Table branch. */
6162
6163 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6164
6165 OP_RRnpc_I0, /* ARM register or literal 0 */
6166 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6167 OP_RR_EXi, /* ARM register or expression with imm prefix */
6168 OP_RF_IF, /* FPA register or immediate */
6169 OP_RIWR_RIWC, /* iWMMXt R or C reg */
6170 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
6171
6172 /* Optional operands. */
6173 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6174 OP_oI31b, /* 0 .. 31 */
6175 OP_oI32b, /* 1 .. 32 */
6176 OP_oI32z, /* 0 .. 32 */
6177 OP_oIffffb, /* 0 .. 65535 */
6178 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6179
6180 OP_oRR, /* ARM register */
6181 OP_oRRnpc, /* ARM register, not the PC */
6182 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6183 OP_oRRw, /* ARM register, not r15, optional trailing ! */
6184 OP_oRND, /* Optional Neon double precision register */
6185 OP_oRNQ, /* Optional Neon quad precision register */
6186 OP_oRNDQ, /* Optional Neon double or quad precision register */
6187 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
6188 OP_oSHll, /* LSL immediate */
6189 OP_oSHar, /* ASR immediate */
6190 OP_oSHllar, /* LSL or ASR immediate */
6191 OP_oROR, /* ROR 0/8/16/24 */
6192 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
6193
6194 /* Some pre-defined mixed (ARM/THUMB) operands. */
6195 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6196 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6197 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6198
6199 OP_FIRST_OPTIONAL = OP_oI7b
6200 };
6201
6202 /* Generic instruction operand parser. This does no encoding and no
6203 semantic validation; it merely squirrels values away in the inst
6204 structure. Returns SUCCESS or FAIL depending on whether the
6205 specified grammar matched. */
6206 static int
6207 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
6208 {
6209 unsigned const int *upat = pattern;
6210 char *backtrack_pos = 0;
6211 const char *backtrack_error = 0;
6212 int i, val = 0, backtrack_index = 0;
6213 enum arm_reg_type rtype;
6214 parse_operand_result result;
6215 unsigned int op_parse_code;
6216
6217 #define po_char_or_fail(chr) \
6218 do \
6219 { \
6220 if (skip_past_char (&str, chr) == FAIL) \
6221 goto bad_args; \
6222 } \
6223 while (0)
6224
6225 #define po_reg_or_fail(regtype) \
6226 do \
6227 { \
6228 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6229 & inst.operands[i].vectype); \
6230 if (val == FAIL) \
6231 { \
6232 first_error (_(reg_expected_msgs[regtype])); \
6233 goto failure; \
6234 } \
6235 inst.operands[i].reg = val; \
6236 inst.operands[i].isreg = 1; \
6237 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6238 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6239 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6240 || rtype == REG_TYPE_VFD \
6241 || rtype == REG_TYPE_NQ); \
6242 } \
6243 while (0)
6244
6245 #define po_reg_or_goto(regtype, label) \
6246 do \
6247 { \
6248 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6249 & inst.operands[i].vectype); \
6250 if (val == FAIL) \
6251 goto label; \
6252 \
6253 inst.operands[i].reg = val; \
6254 inst.operands[i].isreg = 1; \
6255 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6256 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6257 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6258 || rtype == REG_TYPE_VFD \
6259 || rtype == REG_TYPE_NQ); \
6260 } \
6261 while (0)
6262
6263 #define po_imm_or_fail(min, max, popt) \
6264 do \
6265 { \
6266 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6267 goto failure; \
6268 inst.operands[i].imm = val; \
6269 } \
6270 while (0)
6271
6272 #define po_scalar_or_goto(elsz, label) \
6273 do \
6274 { \
6275 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6276 if (val == FAIL) \
6277 goto label; \
6278 inst.operands[i].reg = val; \
6279 inst.operands[i].isscalar = 1; \
6280 } \
6281 while (0)
6282
6283 #define po_misc_or_fail(expr) \
6284 do \
6285 { \
6286 if (expr) \
6287 goto failure; \
6288 } \
6289 while (0)
6290
6291 #define po_misc_or_fail_no_backtrack(expr) \
6292 do \
6293 { \
6294 result = expr; \
6295 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6296 backtrack_pos = 0; \
6297 if (result != PARSE_OPERAND_SUCCESS) \
6298 goto failure; \
6299 } \
6300 while (0)
6301
6302 #define po_barrier_or_imm(str) \
6303 do \
6304 { \
6305 val = parse_barrier (&str); \
6306 if (val == FAIL) \
6307 { \
6308 if (ISALPHA (*str)) \
6309 goto failure; \
6310 else \
6311 goto immediate; \
6312 } \
6313 else \
6314 { \
6315 if ((inst.instruction & 0xf0) == 0x60 \
6316 && val != 0xf) \
6317 { \
6318 /* ISB can only take SY as an option. */ \
6319 inst.error = _("invalid barrier type"); \
6320 goto failure; \
6321 } \
6322 } \
6323 } \
6324 while (0)
6325
6326 skip_whitespace (str);
6327
6328 for (i = 0; upat[i] != OP_stop; i++)
6329 {
6330 op_parse_code = upat[i];
6331 if (op_parse_code >= 1<<16)
6332 op_parse_code = thumb ? (op_parse_code >> 16)
6333 : (op_parse_code & ((1<<16)-1));
6334
6335 if (op_parse_code >= OP_FIRST_OPTIONAL)
6336 {
6337 /* Remember where we are in case we need to backtrack. */
6338 gas_assert (!backtrack_pos);
6339 backtrack_pos = str;
6340 backtrack_error = inst.error;
6341 backtrack_index = i;
6342 }
6343
6344 if (i > 0 && (i > 1 || inst.operands[0].present))
6345 po_char_or_fail (',');
6346
6347 switch (op_parse_code)
6348 {
6349 /* Registers */
6350 case OP_oRRnpc:
6351 case OP_oRRnpcsp:
6352 case OP_RRnpc:
6353 case OP_RRnpcsp:
6354 case OP_oRR:
6355 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6356 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6357 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6358 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6359 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6360 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6361 case OP_oRND:
6362 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6363 case OP_RVC:
6364 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6365 break;
6366 /* Also accept generic coprocessor regs for unknown registers. */
6367 coproc_reg:
6368 po_reg_or_fail (REG_TYPE_CN);
6369 break;
6370 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6371 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6372 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6373 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6374 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6375 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6376 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6377 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6378 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6379 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6380 case OP_oRNQ:
6381 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6382 case OP_oRNDQ:
6383 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6384 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6385 case OP_oRNSDQ:
6386 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6387
6388 /* Neon scalar. Using an element size of 8 means that some invalid
6389 scalars are accepted here, so deal with those in later code. */
6390 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6391
6392 case OP_RNDQ_I0:
6393 {
6394 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6395 break;
6396 try_imm0:
6397 po_imm_or_fail (0, 0, TRUE);
6398 }
6399 break;
6400
6401 case OP_RVSD_I0:
6402 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6403 break;
6404
6405 case OP_RR_RNSC:
6406 {
6407 po_scalar_or_goto (8, try_rr);
6408 break;
6409 try_rr:
6410 po_reg_or_fail (REG_TYPE_RN);
6411 }
6412 break;
6413
6414 case OP_RNSDQ_RNSC:
6415 {
6416 po_scalar_or_goto (8, try_nsdq);
6417 break;
6418 try_nsdq:
6419 po_reg_or_fail (REG_TYPE_NSDQ);
6420 }
6421 break;
6422
6423 case OP_RNDQ_RNSC:
6424 {
6425 po_scalar_or_goto (8, try_ndq);
6426 break;
6427 try_ndq:
6428 po_reg_or_fail (REG_TYPE_NDQ);
6429 }
6430 break;
6431
6432 case OP_RND_RNSC:
6433 {
6434 po_scalar_or_goto (8, try_vfd);
6435 break;
6436 try_vfd:
6437 po_reg_or_fail (REG_TYPE_VFD);
6438 }
6439 break;
6440
6441 case OP_VMOV:
6442 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6443 not careful then bad things might happen. */
6444 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6445 break;
6446
6447 case OP_RNDQ_Ibig:
6448 {
6449 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6450 break;
6451 try_immbig:
6452 /* There's a possibility of getting a 64-bit immediate here, so
6453 we need special handling. */
6454 if (parse_big_immediate (&str, i) == FAIL)
6455 {
6456 inst.error = _("immediate value is out of range");
6457 goto failure;
6458 }
6459 }
6460 break;
6461
6462 case OP_RNDQ_I63b:
6463 {
6464 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6465 break;
6466 try_shimm:
6467 po_imm_or_fail (0, 63, TRUE);
6468 }
6469 break;
6470
6471 case OP_RRnpcb:
6472 po_char_or_fail ('[');
6473 po_reg_or_fail (REG_TYPE_RN);
6474 po_char_or_fail (']');
6475 break;
6476
6477 case OP_RRnpctw:
6478 case OP_RRw:
6479 case OP_oRRw:
6480 po_reg_or_fail (REG_TYPE_RN);
6481 if (skip_past_char (&str, '!') == SUCCESS)
6482 inst.operands[i].writeback = 1;
6483 break;
6484
6485 /* Immediates */
6486 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6487 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6488 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6489 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6490 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6491 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6492 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6493 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6494 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6495 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6496 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6497 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6498
6499 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6500 case OP_oI7b:
6501 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6502 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6503 case OP_oI31b:
6504 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6505 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6506 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
6507 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6508
6509 /* Immediate variants */
6510 case OP_oI255c:
6511 po_char_or_fail ('{');
6512 po_imm_or_fail (0, 255, TRUE);
6513 po_char_or_fail ('}');
6514 break;
6515
6516 case OP_I31w:
6517 /* The expression parser chokes on a trailing !, so we have
6518 to find it first and zap it. */
6519 {
6520 char *s = str;
6521 while (*s && *s != ',')
6522 s++;
6523 if (s[-1] == '!')
6524 {
6525 s[-1] = '\0';
6526 inst.operands[i].writeback = 1;
6527 }
6528 po_imm_or_fail (0, 31, TRUE);
6529 if (str == s - 1)
6530 str = s;
6531 }
6532 break;
6533
6534 /* Expressions */
6535 case OP_EXPi: EXPi:
6536 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6537 GE_OPT_PREFIX));
6538 break;
6539
6540 case OP_EXP:
6541 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6542 GE_NO_PREFIX));
6543 break;
6544
6545 case OP_EXPr: EXPr:
6546 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6547 GE_NO_PREFIX));
6548 if (inst.reloc.exp.X_op == O_symbol)
6549 {
6550 val = parse_reloc (&str);
6551 if (val == -1)
6552 {
6553 inst.error = _("unrecognized relocation suffix");
6554 goto failure;
6555 }
6556 else if (val != BFD_RELOC_UNUSED)
6557 {
6558 inst.operands[i].imm = val;
6559 inst.operands[i].hasreloc = 1;
6560 }
6561 }
6562 break;
6563
6564 /* Operand for MOVW or MOVT. */
6565 case OP_HALF:
6566 po_misc_or_fail (parse_half (&str));
6567 break;
6568
6569 /* Register or expression. */
6570 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6571 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6572
6573 /* Register or immediate. */
6574 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6575 I0: po_imm_or_fail (0, 0, FALSE); break;
6576
6577 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6578 IF:
6579 if (!is_immediate_prefix (*str))
6580 goto bad_args;
6581 str++;
6582 val = parse_fpa_immediate (&str);
6583 if (val == FAIL)
6584 goto failure;
6585 /* FPA immediates are encoded as registers 8-15.
6586 parse_fpa_immediate has already applied the offset. */
6587 inst.operands[i].reg = val;
6588 inst.operands[i].isreg = 1;
6589 break;
6590
6591 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6592 I32z: po_imm_or_fail (0, 32, FALSE); break;
6593
6594 /* Two kinds of register. */
6595 case OP_RIWR_RIWC:
6596 {
6597 struct reg_entry *rege = arm_reg_parse_multi (&str);
6598 if (!rege
6599 || (rege->type != REG_TYPE_MMXWR
6600 && rege->type != REG_TYPE_MMXWC
6601 && rege->type != REG_TYPE_MMXWCG))
6602 {
6603 inst.error = _("iWMMXt data or control register expected");
6604 goto failure;
6605 }
6606 inst.operands[i].reg = rege->number;
6607 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6608 }
6609 break;
6610
6611 case OP_RIWC_RIWG:
6612 {
6613 struct reg_entry *rege = arm_reg_parse_multi (&str);
6614 if (!rege
6615 || (rege->type != REG_TYPE_MMXWC
6616 && rege->type != REG_TYPE_MMXWCG))
6617 {
6618 inst.error = _("iWMMXt control register expected");
6619 goto failure;
6620 }
6621 inst.operands[i].reg = rege->number;
6622 inst.operands[i].isreg = 1;
6623 }
6624 break;
6625
6626 /* Misc */
6627 case OP_CPSF: val = parse_cps_flags (&str); break;
6628 case OP_ENDI: val = parse_endian_specifier (&str); break;
6629 case OP_oROR: val = parse_ror (&str); break;
6630 case OP_COND: val = parse_cond (&str); break;
6631 case OP_oBARRIER_I15:
6632 po_barrier_or_imm (str); break;
6633 immediate:
6634 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6635 goto failure;
6636 break;
6637
6638 case OP_wPSR:
6639 case OP_rPSR:
6640 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6641 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6642 {
6643 inst.error = _("Banked registers are not available with this "
6644 "architecture.");
6645 goto failure;
6646 }
6647 break;
6648 try_psr:
6649 val = parse_psr (&str, op_parse_code == OP_wPSR);
6650 break;
6651
6652 case OP_APSR_RR:
6653 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6654 break;
6655 try_apsr:
6656 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6657 instruction). */
6658 if (strncasecmp (str, "APSR_", 5) == 0)
6659 {
6660 unsigned found = 0;
6661 str += 5;
6662 while (found < 15)
6663 switch (*str++)
6664 {
6665 case 'c': found = (found & 1) ? 16 : found | 1; break;
6666 case 'n': found = (found & 2) ? 16 : found | 2; break;
6667 case 'z': found = (found & 4) ? 16 : found | 4; break;
6668 case 'v': found = (found & 8) ? 16 : found | 8; break;
6669 default: found = 16;
6670 }
6671 if (found != 15)
6672 goto failure;
6673 inst.operands[i].isvec = 1;
6674 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6675 inst.operands[i].reg = REG_PC;
6676 }
6677 else
6678 goto failure;
6679 break;
6680
6681 case OP_TB:
6682 po_misc_or_fail (parse_tb (&str));
6683 break;
6684
6685 /* Register lists. */
6686 case OP_REGLST:
6687 val = parse_reg_list (&str);
6688 if (*str == '^')
6689 {
6690 inst.operands[1].writeback = 1;
6691 str++;
6692 }
6693 break;
6694
6695 case OP_VRSLST:
6696 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6697 break;
6698
6699 case OP_VRDLST:
6700 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6701 break;
6702
6703 case OP_VRSDLST:
6704 /* Allow Q registers too. */
6705 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6706 REGLIST_NEON_D);
6707 if (val == FAIL)
6708 {
6709 inst.error = NULL;
6710 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6711 REGLIST_VFP_S);
6712 inst.operands[i].issingle = 1;
6713 }
6714 break;
6715
6716 case OP_NRDLST:
6717 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6718 REGLIST_NEON_D);
6719 break;
6720
6721 case OP_NSTRLST:
6722 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6723 &inst.operands[i].vectype);
6724 break;
6725
6726 /* Addressing modes */
6727 case OP_ADDR:
6728 po_misc_or_fail (parse_address (&str, i));
6729 break;
6730
6731 case OP_ADDRGLDR:
6732 po_misc_or_fail_no_backtrack (
6733 parse_address_group_reloc (&str, i, GROUP_LDR));
6734 break;
6735
6736 case OP_ADDRGLDRS:
6737 po_misc_or_fail_no_backtrack (
6738 parse_address_group_reloc (&str, i, GROUP_LDRS));
6739 break;
6740
6741 case OP_ADDRGLDC:
6742 po_misc_or_fail_no_backtrack (
6743 parse_address_group_reloc (&str, i, GROUP_LDC));
6744 break;
6745
6746 case OP_SH:
6747 po_misc_or_fail (parse_shifter_operand (&str, i));
6748 break;
6749
6750 case OP_SHG:
6751 po_misc_or_fail_no_backtrack (
6752 parse_shifter_operand_group_reloc (&str, i));
6753 break;
6754
6755 case OP_oSHll:
6756 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6757 break;
6758
6759 case OP_oSHar:
6760 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6761 break;
6762
6763 case OP_oSHllar:
6764 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6765 break;
6766
6767 default:
6768 as_fatal (_("unhandled operand code %d"), op_parse_code);
6769 }
6770
6771 /* Various value-based sanity checks and shared operations. We
6772 do not signal immediate failures for the register constraints;
6773 this allows a syntax error to take precedence. */
6774 switch (op_parse_code)
6775 {
6776 case OP_oRRnpc:
6777 case OP_RRnpc:
6778 case OP_RRnpcb:
6779 case OP_RRw:
6780 case OP_oRRw:
6781 case OP_RRnpc_I0:
6782 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6783 inst.error = BAD_PC;
6784 break;
6785
6786 case OP_oRRnpcsp:
6787 case OP_RRnpcsp:
6788 if (inst.operands[i].isreg)
6789 {
6790 if (inst.operands[i].reg == REG_PC)
6791 inst.error = BAD_PC;
6792 else if (inst.operands[i].reg == REG_SP)
6793 inst.error = BAD_SP;
6794 }
6795 break;
6796
6797 case OP_RRnpctw:
6798 if (inst.operands[i].isreg
6799 && inst.operands[i].reg == REG_PC
6800 && (inst.operands[i].writeback || thumb))
6801 inst.error = BAD_PC;
6802 break;
6803
6804 case OP_CPSF:
6805 case OP_ENDI:
6806 case OP_oROR:
6807 case OP_wPSR:
6808 case OP_rPSR:
6809 case OP_COND:
6810 case OP_oBARRIER_I15:
6811 case OP_REGLST:
6812 case OP_VRSLST:
6813 case OP_VRDLST:
6814 case OP_VRSDLST:
6815 case OP_NRDLST:
6816 case OP_NSTRLST:
6817 if (val == FAIL)
6818 goto failure;
6819 inst.operands[i].imm = val;
6820 break;
6821
6822 default:
6823 break;
6824 }
6825
6826 /* If we get here, this operand was successfully parsed. */
6827 inst.operands[i].present = 1;
6828 continue;
6829
6830 bad_args:
6831 inst.error = BAD_ARGS;
6832
6833 failure:
6834 if (!backtrack_pos)
6835 {
6836 /* The parse routine should already have set inst.error, but set a
6837 default here just in case. */
6838 if (!inst.error)
6839 inst.error = _("syntax error");
6840 return FAIL;
6841 }
6842
6843 /* Do not backtrack over a trailing optional argument that
6844 absorbed some text. We will only fail again, with the
6845 'garbage following instruction' error message, which is
6846 probably less helpful than the current one. */
6847 if (backtrack_index == i && backtrack_pos != str
6848 && upat[i+1] == OP_stop)
6849 {
6850 if (!inst.error)
6851 inst.error = _("syntax error");
6852 return FAIL;
6853 }
6854
6855 /* Try again, skipping the optional argument at backtrack_pos. */
6856 str = backtrack_pos;
6857 inst.error = backtrack_error;
6858 inst.operands[backtrack_index].present = 0;
6859 i = backtrack_index;
6860 backtrack_pos = 0;
6861 }
6862
6863 /* Check that we have parsed all the arguments. */
6864 if (*str != '\0' && !inst.error)
6865 inst.error = _("garbage following instruction");
6866
6867 return inst.error ? FAIL : SUCCESS;
6868 }
6869
6870 #undef po_char_or_fail
6871 #undef po_reg_or_fail
6872 #undef po_reg_or_goto
6873 #undef po_imm_or_fail
6874 #undef po_scalar_or_fail
6875 #undef po_barrier_or_imm
6876
6877 /* Shorthand macro for instruction encoding functions issuing errors. */
6878 #define constraint(expr, err) \
6879 do \
6880 { \
6881 if (expr) \
6882 { \
6883 inst.error = err; \
6884 return; \
6885 } \
6886 } \
6887 while (0)
6888
6889 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6890 instructions are unpredictable if these registers are used. This
6891 is the BadReg predicate in ARM's Thumb-2 documentation. */
6892 #define reject_bad_reg(reg) \
6893 do \
6894 if (reg == REG_SP || reg == REG_PC) \
6895 { \
6896 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6897 return; \
6898 } \
6899 while (0)
6900
6901 /* If REG is R13 (the stack pointer), warn that its use is
6902 deprecated. */
6903 #define warn_deprecated_sp(reg) \
6904 do \
6905 if (warn_on_deprecated && reg == REG_SP) \
6906 as_warn (_("use of r13 is deprecated")); \
6907 while (0)
6908
6909 /* Functions for operand encoding. ARM, then Thumb. */
6910
6911 #define rotate_left(v, n) (v << n | v >> (32 - n))
6912
6913 /* If VAL can be encoded in the immediate field of an ARM instruction,
6914 return the encoded form. Otherwise, return FAIL. */
6915
6916 static unsigned int
6917 encode_arm_immediate (unsigned int val)
6918 {
6919 unsigned int a, i;
6920
6921 for (i = 0; i < 32; i += 2)
6922 if ((a = rotate_left (val, i)) <= 0xff)
6923 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6924
6925 return FAIL;
6926 }
6927
6928 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6929 return the encoded form. Otherwise, return FAIL. */
6930 static unsigned int
6931 encode_thumb32_immediate (unsigned int val)
6932 {
6933 unsigned int a, i;
6934
6935 if (val <= 0xff)
6936 return val;
6937
6938 for (i = 1; i <= 24; i++)
6939 {
6940 a = val >> i;
6941 if ((val & ~(0xff << i)) == 0)
6942 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6943 }
6944
6945 a = val & 0xff;
6946 if (val == ((a << 16) | a))
6947 return 0x100 | a;
6948 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6949 return 0x300 | a;
6950
6951 a = val & 0xff00;
6952 if (val == ((a << 16) | a))
6953 return 0x200 | (a >> 8);
6954
6955 return FAIL;
6956 }
6957 /* Encode a VFP SP or DP register number into inst.instruction. */
6958
6959 static void
6960 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6961 {
6962 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6963 && reg > 15)
6964 {
6965 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6966 {
6967 if (thumb_mode)
6968 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6969 fpu_vfp_ext_d32);
6970 else
6971 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6972 fpu_vfp_ext_d32);
6973 }
6974 else
6975 {
6976 first_error (_("D register out of range for selected VFP version"));
6977 return;
6978 }
6979 }
6980
6981 switch (pos)
6982 {
6983 case VFP_REG_Sd:
6984 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6985 break;
6986
6987 case VFP_REG_Sn:
6988 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6989 break;
6990
6991 case VFP_REG_Sm:
6992 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6993 break;
6994
6995 case VFP_REG_Dd:
6996 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6997 break;
6998
6999 case VFP_REG_Dn:
7000 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7001 break;
7002
7003 case VFP_REG_Dm:
7004 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7005 break;
7006
7007 default:
7008 abort ();
7009 }
7010 }
7011
7012 /* Encode a <shift> in an ARM-format instruction. The immediate,
7013 if any, is handled by md_apply_fix. */
7014 static void
7015 encode_arm_shift (int i)
7016 {
7017 if (inst.operands[i].shift_kind == SHIFT_RRX)
7018 inst.instruction |= SHIFT_ROR << 5;
7019 else
7020 {
7021 inst.instruction |= inst.operands[i].shift_kind << 5;
7022 if (inst.operands[i].immisreg)
7023 {
7024 inst.instruction |= SHIFT_BY_REG;
7025 inst.instruction |= inst.operands[i].imm << 8;
7026 }
7027 else
7028 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7029 }
7030 }
7031
7032 static void
7033 encode_arm_shifter_operand (int i)
7034 {
7035 if (inst.operands[i].isreg)
7036 {
7037 inst.instruction |= inst.operands[i].reg;
7038 encode_arm_shift (i);
7039 }
7040 else
7041 {
7042 inst.instruction |= INST_IMMEDIATE;
7043 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7044 inst.instruction |= inst.operands[i].imm;
7045 }
7046 }
7047
7048 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
7049 static void
7050 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
7051 {
7052 /* PR 14260:
7053 Generate an error if the operand is not a register. */
7054 constraint (!inst.operands[i].isreg,
7055 _("Instruction does not support =N addresses"));
7056
7057 inst.instruction |= inst.operands[i].reg << 16;
7058
7059 if (inst.operands[i].preind)
7060 {
7061 if (is_t)
7062 {
7063 inst.error = _("instruction does not accept preindexed addressing");
7064 return;
7065 }
7066 inst.instruction |= PRE_INDEX;
7067 if (inst.operands[i].writeback)
7068 inst.instruction |= WRITE_BACK;
7069
7070 }
7071 else if (inst.operands[i].postind)
7072 {
7073 gas_assert (inst.operands[i].writeback);
7074 if (is_t)
7075 inst.instruction |= WRITE_BACK;
7076 }
7077 else /* unindexed - only for coprocessor */
7078 {
7079 inst.error = _("instruction does not accept unindexed addressing");
7080 return;
7081 }
7082
7083 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7084 && (((inst.instruction & 0x000f0000) >> 16)
7085 == ((inst.instruction & 0x0000f000) >> 12)))
7086 as_warn ((inst.instruction & LOAD_BIT)
7087 ? _("destination register same as write-back base")
7088 : _("source register same as write-back base"));
7089 }
7090
7091 /* inst.operands[i] was set up by parse_address. Encode it into an
7092 ARM-format mode 2 load or store instruction. If is_t is true,
7093 reject forms that cannot be used with a T instruction (i.e. not
7094 post-indexed). */
7095 static void
7096 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
7097 {
7098 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7099
7100 encode_arm_addr_mode_common (i, is_t);
7101
7102 if (inst.operands[i].immisreg)
7103 {
7104 constraint ((inst.operands[i].imm == REG_PC
7105 || (is_pc && inst.operands[i].writeback)),
7106 BAD_PC_ADDRESSING);
7107 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7108 inst.instruction |= inst.operands[i].imm;
7109 if (!inst.operands[i].negative)
7110 inst.instruction |= INDEX_UP;
7111 if (inst.operands[i].shifted)
7112 {
7113 if (inst.operands[i].shift_kind == SHIFT_RRX)
7114 inst.instruction |= SHIFT_ROR << 5;
7115 else
7116 {
7117 inst.instruction |= inst.operands[i].shift_kind << 5;
7118 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7119 }
7120 }
7121 }
7122 else /* immediate offset in inst.reloc */
7123 {
7124 if (is_pc && !inst.reloc.pc_rel)
7125 {
7126 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
7127
7128 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7129 cannot use PC in addressing.
7130 PC cannot be used in writeback addressing, either. */
7131 constraint ((is_t || inst.operands[i].writeback),
7132 BAD_PC_ADDRESSING);
7133
7134 /* Use of PC in str is deprecated for ARMv7. */
7135 if (warn_on_deprecated
7136 && !is_load
7137 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7138 as_warn (_("use of PC in this instruction is deprecated"));
7139 }
7140
7141 if (inst.reloc.type == BFD_RELOC_UNUSED)
7142 {
7143 /* Prefer + for zero encoded value. */
7144 if (!inst.operands[i].negative)
7145 inst.instruction |= INDEX_UP;
7146 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7147 }
7148 }
7149 }
7150
7151 /* inst.operands[i] was set up by parse_address. Encode it into an
7152 ARM-format mode 3 load or store instruction. Reject forms that
7153 cannot be used with such instructions. If is_t is true, reject
7154 forms that cannot be used with a T instruction (i.e. not
7155 post-indexed). */
7156 static void
7157 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
7158 {
7159 if (inst.operands[i].immisreg && inst.operands[i].shifted)
7160 {
7161 inst.error = _("instruction does not accept scaled register index");
7162 return;
7163 }
7164
7165 encode_arm_addr_mode_common (i, is_t);
7166
7167 if (inst.operands[i].immisreg)
7168 {
7169 constraint ((inst.operands[i].imm == REG_PC
7170 || inst.operands[i].reg == REG_PC),
7171 BAD_PC_ADDRESSING);
7172 inst.instruction |= inst.operands[i].imm;
7173 if (!inst.operands[i].negative)
7174 inst.instruction |= INDEX_UP;
7175 }
7176 else /* immediate offset in inst.reloc */
7177 {
7178 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7179 && inst.operands[i].writeback),
7180 BAD_PC_WRITEBACK);
7181 inst.instruction |= HWOFFSET_IMM;
7182 if (inst.reloc.type == BFD_RELOC_UNUSED)
7183 {
7184 /* Prefer + for zero encoded value. */
7185 if (!inst.operands[i].negative)
7186 inst.instruction |= INDEX_UP;
7187
7188 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7189 }
7190 }
7191 }
7192
7193 /* inst.operands[i] was set up by parse_address. Encode it into an
7194 ARM-format instruction. Reject all forms which cannot be encoded
7195 into a coprocessor load/store instruction. If wb_ok is false,
7196 reject use of writeback; if unind_ok is false, reject use of
7197 unindexed addressing. If reloc_override is not 0, use it instead
7198 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7199 (in which case it is preserved). */
7200
7201 static int
7202 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
7203 {
7204 inst.instruction |= inst.operands[i].reg << 16;
7205
7206 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
7207
7208 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
7209 {
7210 gas_assert (!inst.operands[i].writeback);
7211 if (!unind_ok)
7212 {
7213 inst.error = _("instruction does not support unindexed addressing");
7214 return FAIL;
7215 }
7216 inst.instruction |= inst.operands[i].imm;
7217 inst.instruction |= INDEX_UP;
7218 return SUCCESS;
7219 }
7220
7221 if (inst.operands[i].preind)
7222 inst.instruction |= PRE_INDEX;
7223
7224 if (inst.operands[i].writeback)
7225 {
7226 if (inst.operands[i].reg == REG_PC)
7227 {
7228 inst.error = _("pc may not be used with write-back");
7229 return FAIL;
7230 }
7231 if (!wb_ok)
7232 {
7233 inst.error = _("instruction does not support writeback");
7234 return FAIL;
7235 }
7236 inst.instruction |= WRITE_BACK;
7237 }
7238
7239 if (reloc_override)
7240 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
7241 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7242 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7243 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7244 {
7245 if (thumb_mode)
7246 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7247 else
7248 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7249 }
7250
7251 /* Prefer + for zero encoded value. */
7252 if (!inst.operands[i].negative)
7253 inst.instruction |= INDEX_UP;
7254
7255 return SUCCESS;
7256 }
7257
7258 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7259 Determine whether it can be performed with a move instruction; if
7260 it can, convert inst.instruction to that move instruction and
7261 return TRUE; if it can't, convert inst.instruction to a literal-pool
7262 load and return FALSE. If this is not a valid thing to do in the
7263 current context, set inst.error and return TRUE.
7264
7265 inst.operands[i] describes the destination register. */
7266
7267 static bfd_boolean
7268 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7269 {
7270 unsigned long tbit;
7271
7272 if (thumb_p)
7273 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7274 else
7275 tbit = LOAD_BIT;
7276
7277 if ((inst.instruction & tbit) == 0)
7278 {
7279 inst.error = _("invalid pseudo operation");
7280 return TRUE;
7281 }
7282 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
7283 {
7284 inst.error = _("constant expression expected");
7285 return TRUE;
7286 }
7287 if (inst.reloc.exp.X_op == O_constant)
7288 {
7289 if (thumb_p)
7290 {
7291 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
7292 {
7293 /* This can be done with a mov(1) instruction. */
7294 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7295 inst.instruction |= inst.reloc.exp.X_add_number;
7296 return TRUE;
7297 }
7298 }
7299 else
7300 {
7301 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7302 if (value != FAIL)
7303 {
7304 /* This can be done with a mov instruction. */
7305 inst.instruction &= LITERAL_MASK;
7306 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7307 inst.instruction |= value & 0xfff;
7308 return TRUE;
7309 }
7310
7311 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7312 if (value != FAIL)
7313 {
7314 /* This can be done with a mvn instruction. */
7315 inst.instruction &= LITERAL_MASK;
7316 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7317 inst.instruction |= value & 0xfff;
7318 return TRUE;
7319 }
7320 }
7321 }
7322
7323 if (add_to_lit_pool () == FAIL)
7324 {
7325 inst.error = _("literal pool insertion failed");
7326 return TRUE;
7327 }
7328 inst.operands[1].reg = REG_PC;
7329 inst.operands[1].isreg = 1;
7330 inst.operands[1].preind = 1;
7331 inst.reloc.pc_rel = 1;
7332 inst.reloc.type = (thumb_p
7333 ? BFD_RELOC_ARM_THUMB_OFFSET
7334 : (mode_3
7335 ? BFD_RELOC_ARM_HWLITERAL
7336 : BFD_RELOC_ARM_LITERAL));
7337 return FALSE;
7338 }
7339
7340 /* Functions for instruction encoding, sorted by sub-architecture.
7341 First some generics; their names are taken from the conventional
7342 bit positions for register arguments in ARM format instructions. */
7343
7344 static void
7345 do_noargs (void)
7346 {
7347 }
7348
7349 static void
7350 do_rd (void)
7351 {
7352 inst.instruction |= inst.operands[0].reg << 12;
7353 }
7354
7355 static void
7356 do_rd_rm (void)
7357 {
7358 inst.instruction |= inst.operands[0].reg << 12;
7359 inst.instruction |= inst.operands[1].reg;
7360 }
7361
7362 static void
7363 do_rd_rn (void)
7364 {
7365 inst.instruction |= inst.operands[0].reg << 12;
7366 inst.instruction |= inst.operands[1].reg << 16;
7367 }
7368
7369 static void
7370 do_rn_rd (void)
7371 {
7372 inst.instruction |= inst.operands[0].reg << 16;
7373 inst.instruction |= inst.operands[1].reg << 12;
7374 }
7375
7376 static bfd_boolean
7377 check_obsolete (const arm_feature_set *feature, const char *msg)
7378 {
7379 if (ARM_CPU_IS_ANY (cpu_variant))
7380 {
7381 as_warn ("%s", msg);
7382 return TRUE;
7383 }
7384 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
7385 {
7386 as_bad ("%s", msg);
7387 return TRUE;
7388 }
7389
7390 return FALSE;
7391 }
7392
7393 static void
7394 do_rd_rm_rn (void)
7395 {
7396 unsigned Rn = inst.operands[2].reg;
7397 /* Enforce restrictions on SWP instruction. */
7398 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
7399 {
7400 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7401 _("Rn must not overlap other operands"));
7402
7403 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
7404 */
7405 if (!check_obsolete (&arm_ext_v8,
7406 _("swp{b} use is obsoleted for ARMv8 and later"))
7407 && warn_on_deprecated
7408 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
7409 as_warn (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
7410 }
7411
7412 inst.instruction |= inst.operands[0].reg << 12;
7413 inst.instruction |= inst.operands[1].reg;
7414 inst.instruction |= Rn << 16;
7415 }
7416
7417 static void
7418 do_rd_rn_rm (void)
7419 {
7420 inst.instruction |= inst.operands[0].reg << 12;
7421 inst.instruction |= inst.operands[1].reg << 16;
7422 inst.instruction |= inst.operands[2].reg;
7423 }
7424
7425 static void
7426 do_rm_rd_rn (void)
7427 {
7428 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7429 constraint (((inst.reloc.exp.X_op != O_constant
7430 && inst.reloc.exp.X_op != O_illegal)
7431 || inst.reloc.exp.X_add_number != 0),
7432 BAD_ADDR_MODE);
7433 inst.instruction |= inst.operands[0].reg;
7434 inst.instruction |= inst.operands[1].reg << 12;
7435 inst.instruction |= inst.operands[2].reg << 16;
7436 }
7437
7438 static void
7439 do_imm0 (void)
7440 {
7441 inst.instruction |= inst.operands[0].imm;
7442 }
7443
7444 static void
7445 do_rd_cpaddr (void)
7446 {
7447 inst.instruction |= inst.operands[0].reg << 12;
7448 encode_arm_cp_address (1, TRUE, TRUE, 0);
7449 }
7450
7451 /* ARM instructions, in alphabetical order by function name (except
7452 that wrapper functions appear immediately after the function they
7453 wrap). */
7454
7455 /* This is a pseudo-op of the form "adr rd, label" to be converted
7456 into a relative address of the form "add rd, pc, #label-.-8". */
7457
7458 static void
7459 do_adr (void)
7460 {
7461 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7462
7463 /* Frag hacking will turn this into a sub instruction if the offset turns
7464 out to be negative. */
7465 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7466 inst.reloc.pc_rel = 1;
7467 inst.reloc.exp.X_add_number -= 8;
7468 }
7469
7470 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7471 into a relative address of the form:
7472 add rd, pc, #low(label-.-8)"
7473 add rd, rd, #high(label-.-8)" */
7474
7475 static void
7476 do_adrl (void)
7477 {
7478 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7479
7480 /* Frag hacking will turn this into a sub instruction if the offset turns
7481 out to be negative. */
7482 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7483 inst.reloc.pc_rel = 1;
7484 inst.size = INSN_SIZE * 2;
7485 inst.reloc.exp.X_add_number -= 8;
7486 }
7487
7488 static void
7489 do_arit (void)
7490 {
7491 if (!inst.operands[1].present)
7492 inst.operands[1].reg = inst.operands[0].reg;
7493 inst.instruction |= inst.operands[0].reg << 12;
7494 inst.instruction |= inst.operands[1].reg << 16;
7495 encode_arm_shifter_operand (2);
7496 }
7497
7498 static void
7499 do_barrier (void)
7500 {
7501 if (inst.operands[0].present)
7502 {
7503 constraint ((inst.instruction & 0xf0) != 0x40
7504 && inst.operands[0].imm > 0xf
7505 && inst.operands[0].imm < 0x0,
7506 _("bad barrier type"));
7507 inst.instruction |= inst.operands[0].imm;
7508 }
7509 else
7510 inst.instruction |= 0xf;
7511 }
7512
7513 static void
7514 do_bfc (void)
7515 {
7516 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7517 constraint (msb > 32, _("bit-field extends past end of register"));
7518 /* The instruction encoding stores the LSB and MSB,
7519 not the LSB and width. */
7520 inst.instruction |= inst.operands[0].reg << 12;
7521 inst.instruction |= inst.operands[1].imm << 7;
7522 inst.instruction |= (msb - 1) << 16;
7523 }
7524
7525 static void
7526 do_bfi (void)
7527 {
7528 unsigned int msb;
7529
7530 /* #0 in second position is alternative syntax for bfc, which is
7531 the same instruction but with REG_PC in the Rm field. */
7532 if (!inst.operands[1].isreg)
7533 inst.operands[1].reg = REG_PC;
7534
7535 msb = inst.operands[2].imm + inst.operands[3].imm;
7536 constraint (msb > 32, _("bit-field extends past end of register"));
7537 /* The instruction encoding stores the LSB and MSB,
7538 not the LSB and width. */
7539 inst.instruction |= inst.operands[0].reg << 12;
7540 inst.instruction |= inst.operands[1].reg;
7541 inst.instruction |= inst.operands[2].imm << 7;
7542 inst.instruction |= (msb - 1) << 16;
7543 }
7544
7545 static void
7546 do_bfx (void)
7547 {
7548 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7549 _("bit-field extends past end of register"));
7550 inst.instruction |= inst.operands[0].reg << 12;
7551 inst.instruction |= inst.operands[1].reg;
7552 inst.instruction |= inst.operands[2].imm << 7;
7553 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7554 }
7555
7556 /* ARM V5 breakpoint instruction (argument parse)
7557 BKPT <16 bit unsigned immediate>
7558 Instruction is not conditional.
7559 The bit pattern given in insns[] has the COND_ALWAYS condition,
7560 and it is an error if the caller tried to override that. */
7561
7562 static void
7563 do_bkpt (void)
7564 {
7565 /* Top 12 of 16 bits to bits 19:8. */
7566 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7567
7568 /* Bottom 4 of 16 bits to bits 3:0. */
7569 inst.instruction |= inst.operands[0].imm & 0xf;
7570 }
7571
7572 static void
7573 encode_branch (int default_reloc)
7574 {
7575 if (inst.operands[0].hasreloc)
7576 {
7577 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7578 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7579 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7580 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7581 ? BFD_RELOC_ARM_PLT32
7582 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
7583 }
7584 else
7585 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7586 inst.reloc.pc_rel = 1;
7587 }
7588
7589 static void
7590 do_branch (void)
7591 {
7592 #ifdef OBJ_ELF
7593 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7594 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7595 else
7596 #endif
7597 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7598 }
7599
7600 static void
7601 do_bl (void)
7602 {
7603 #ifdef OBJ_ELF
7604 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7605 {
7606 if (inst.cond == COND_ALWAYS)
7607 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7608 else
7609 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7610 }
7611 else
7612 #endif
7613 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7614 }
7615
7616 /* ARM V5 branch-link-exchange instruction (argument parse)
7617 BLX <target_addr> ie BLX(1)
7618 BLX{<condition>} <Rm> ie BLX(2)
7619 Unfortunately, there are two different opcodes for this mnemonic.
7620 So, the insns[].value is not used, and the code here zaps values
7621 into inst.instruction.
7622 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7623
7624 static void
7625 do_blx (void)
7626 {
7627 if (inst.operands[0].isreg)
7628 {
7629 /* Arg is a register; the opcode provided by insns[] is correct.
7630 It is not illegal to do "blx pc", just useless. */
7631 if (inst.operands[0].reg == REG_PC)
7632 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7633
7634 inst.instruction |= inst.operands[0].reg;
7635 }
7636 else
7637 {
7638 /* Arg is an address; this instruction cannot be executed
7639 conditionally, and the opcode must be adjusted.
7640 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7641 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7642 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7643 inst.instruction = 0xfa000000;
7644 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7645 }
7646 }
7647
7648 static void
7649 do_bx (void)
7650 {
7651 bfd_boolean want_reloc;
7652
7653 if (inst.operands[0].reg == REG_PC)
7654 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7655
7656 inst.instruction |= inst.operands[0].reg;
7657 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7658 it is for ARMv4t or earlier. */
7659 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7660 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7661 want_reloc = TRUE;
7662
7663 #ifdef OBJ_ELF
7664 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7665 #endif
7666 want_reloc = FALSE;
7667
7668 if (want_reloc)
7669 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7670 }
7671
7672
7673 /* ARM v5TEJ. Jump to Jazelle code. */
7674
7675 static void
7676 do_bxj (void)
7677 {
7678 if (inst.operands[0].reg == REG_PC)
7679 as_tsktsk (_("use of r15 in bxj is not really useful"));
7680
7681 inst.instruction |= inst.operands[0].reg;
7682 }
7683
7684 /* Co-processor data operation:
7685 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7686 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7687 static void
7688 do_cdp (void)
7689 {
7690 inst.instruction |= inst.operands[0].reg << 8;
7691 inst.instruction |= inst.operands[1].imm << 20;
7692 inst.instruction |= inst.operands[2].reg << 12;
7693 inst.instruction |= inst.operands[3].reg << 16;
7694 inst.instruction |= inst.operands[4].reg;
7695 inst.instruction |= inst.operands[5].imm << 5;
7696 }
7697
7698 static void
7699 do_cmp (void)
7700 {
7701 inst.instruction |= inst.operands[0].reg << 16;
7702 encode_arm_shifter_operand (1);
7703 }
7704
7705 /* Transfer between coprocessor and ARM registers.
7706 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7707 MRC2
7708 MCR{cond}
7709 MCR2
7710
7711 No special properties. */
7712
7713 struct deprecated_coproc_regs_s
7714 {
7715 unsigned cp;
7716 int opc1;
7717 unsigned crn;
7718 unsigned crm;
7719 int opc2;
7720 arm_feature_set deprecated;
7721 arm_feature_set obsoleted;
7722 const char *dep_msg;
7723 const char *obs_msg;
7724 };
7725
7726 #define DEPR_ACCESS_V8 \
7727 N_("This coprocessor register access is deprecated in ARMv8")
7728
7729 /* Table of all deprecated coprocessor registers. */
7730 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
7731 {
7732 {15, 0, 7, 10, 5, /* CP15DMB. */
7733 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7734 DEPR_ACCESS_V8, NULL},
7735 {15, 0, 7, 10, 4, /* CP15DSB. */
7736 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7737 DEPR_ACCESS_V8, NULL},
7738 {15, 0, 7, 5, 4, /* CP15ISB. */
7739 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7740 DEPR_ACCESS_V8, NULL},
7741 {14, 6, 1, 0, 0, /* TEEHBR. */
7742 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7743 DEPR_ACCESS_V8, NULL},
7744 {14, 6, 0, 0, 0, /* TEECR. */
7745 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7746 DEPR_ACCESS_V8, NULL},
7747 };
7748
7749 #undef DEPR_ACCESS_V8
7750
7751 static const size_t deprecated_coproc_reg_count =
7752 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
7753
7754 static void
7755 do_co_reg (void)
7756 {
7757 unsigned Rd;
7758 size_t i;
7759
7760 Rd = inst.operands[2].reg;
7761 if (thumb_mode)
7762 {
7763 if (inst.instruction == 0xee000010
7764 || inst.instruction == 0xfe000010)
7765 /* MCR, MCR2 */
7766 reject_bad_reg (Rd);
7767 else
7768 /* MRC, MRC2 */
7769 constraint (Rd == REG_SP, BAD_SP);
7770 }
7771 else
7772 {
7773 /* MCR */
7774 if (inst.instruction == 0xe000010)
7775 constraint (Rd == REG_PC, BAD_PC);
7776 }
7777
7778 for (i = 0; i < deprecated_coproc_reg_count; ++i)
7779 {
7780 const struct deprecated_coproc_regs_s *r =
7781 deprecated_coproc_regs + i;
7782
7783 if (inst.operands[0].reg == r->cp
7784 && inst.operands[1].imm == r->opc1
7785 && inst.operands[3].reg == r->crn
7786 && inst.operands[4].reg == r->crm
7787 && inst.operands[5].imm == r->opc2)
7788 {
7789 if (!check_obsolete (&r->obsoleted, r->obs_msg)
7790 && warn_on_deprecated
7791 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
7792 as_warn ("%s", r->dep_msg);
7793 }
7794 }
7795
7796 inst.instruction |= inst.operands[0].reg << 8;
7797 inst.instruction |= inst.operands[1].imm << 21;
7798 inst.instruction |= Rd << 12;
7799 inst.instruction |= inst.operands[3].reg << 16;
7800 inst.instruction |= inst.operands[4].reg;
7801 inst.instruction |= inst.operands[5].imm << 5;
7802 }
7803
7804 /* Transfer between coprocessor register and pair of ARM registers.
7805 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7806 MCRR2
7807 MRRC{cond}
7808 MRRC2
7809
7810 Two XScale instructions are special cases of these:
7811
7812 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7813 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7814
7815 Result unpredictable if Rd or Rn is R15. */
7816
7817 static void
7818 do_co_reg2c (void)
7819 {
7820 unsigned Rd, Rn;
7821
7822 Rd = inst.operands[2].reg;
7823 Rn = inst.operands[3].reg;
7824
7825 if (thumb_mode)
7826 {
7827 reject_bad_reg (Rd);
7828 reject_bad_reg (Rn);
7829 }
7830 else
7831 {
7832 constraint (Rd == REG_PC, BAD_PC);
7833 constraint (Rn == REG_PC, BAD_PC);
7834 }
7835
7836 inst.instruction |= inst.operands[0].reg << 8;
7837 inst.instruction |= inst.operands[1].imm << 4;
7838 inst.instruction |= Rd << 12;
7839 inst.instruction |= Rn << 16;
7840 inst.instruction |= inst.operands[4].reg;
7841 }
7842
7843 static void
7844 do_cpsi (void)
7845 {
7846 inst.instruction |= inst.operands[0].imm << 6;
7847 if (inst.operands[1].present)
7848 {
7849 inst.instruction |= CPSI_MMOD;
7850 inst.instruction |= inst.operands[1].imm;
7851 }
7852 }
7853
7854 static void
7855 do_dbg (void)
7856 {
7857 inst.instruction |= inst.operands[0].imm;
7858 }
7859
7860 static void
7861 do_div (void)
7862 {
7863 unsigned Rd, Rn, Rm;
7864
7865 Rd = inst.operands[0].reg;
7866 Rn = (inst.operands[1].present
7867 ? inst.operands[1].reg : Rd);
7868 Rm = inst.operands[2].reg;
7869
7870 constraint ((Rd == REG_PC), BAD_PC);
7871 constraint ((Rn == REG_PC), BAD_PC);
7872 constraint ((Rm == REG_PC), BAD_PC);
7873
7874 inst.instruction |= Rd << 16;
7875 inst.instruction |= Rn << 0;
7876 inst.instruction |= Rm << 8;
7877 }
7878
7879 static void
7880 do_it (void)
7881 {
7882 /* There is no IT instruction in ARM mode. We
7883 process it to do the validation as if in
7884 thumb mode, just in case the code gets
7885 assembled for thumb using the unified syntax. */
7886
7887 inst.size = 0;
7888 if (unified_syntax)
7889 {
7890 set_it_insn_type (IT_INSN);
7891 now_it.mask = (inst.instruction & 0xf) | 0x10;
7892 now_it.cc = inst.operands[0].imm;
7893 }
7894 }
7895
7896 /* If there is only one register in the register list,
7897 then return its register number. Otherwise return -1. */
7898 static int
7899 only_one_reg_in_list (int range)
7900 {
7901 int i = ffs (range) - 1;
7902 return (i > 15 || range != (1 << i)) ? -1 : i;
7903 }
7904
7905 static void
7906 encode_ldmstm(int from_push_pop_mnem)
7907 {
7908 int base_reg = inst.operands[0].reg;
7909 int range = inst.operands[1].imm;
7910 int one_reg;
7911
7912 inst.instruction |= base_reg << 16;
7913 inst.instruction |= range;
7914
7915 if (inst.operands[1].writeback)
7916 inst.instruction |= LDM_TYPE_2_OR_3;
7917
7918 if (inst.operands[0].writeback)
7919 {
7920 inst.instruction |= WRITE_BACK;
7921 /* Check for unpredictable uses of writeback. */
7922 if (inst.instruction & LOAD_BIT)
7923 {
7924 /* Not allowed in LDM type 2. */
7925 if ((inst.instruction & LDM_TYPE_2_OR_3)
7926 && ((range & (1 << REG_PC)) == 0))
7927 as_warn (_("writeback of base register is UNPREDICTABLE"));
7928 /* Only allowed if base reg not in list for other types. */
7929 else if (range & (1 << base_reg))
7930 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7931 }
7932 else /* STM. */
7933 {
7934 /* Not allowed for type 2. */
7935 if (inst.instruction & LDM_TYPE_2_OR_3)
7936 as_warn (_("writeback of base register is UNPREDICTABLE"));
7937 /* Only allowed if base reg not in list, or first in list. */
7938 else if ((range & (1 << base_reg))
7939 && (range & ((1 << base_reg) - 1)))
7940 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7941 }
7942 }
7943
7944 /* If PUSH/POP has only one register, then use the A2 encoding. */
7945 one_reg = only_one_reg_in_list (range);
7946 if (from_push_pop_mnem && one_reg >= 0)
7947 {
7948 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
7949
7950 inst.instruction &= A_COND_MASK;
7951 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
7952 inst.instruction |= one_reg << 12;
7953 }
7954 }
7955
7956 static void
7957 do_ldmstm (void)
7958 {
7959 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
7960 }
7961
7962 /* ARMv5TE load-consecutive (argument parse)
7963 Mode is like LDRH.
7964
7965 LDRccD R, mode
7966 STRccD R, mode. */
7967
7968 static void
7969 do_ldrd (void)
7970 {
7971 constraint (inst.operands[0].reg % 2 != 0,
7972 _("first transfer register must be even"));
7973 constraint (inst.operands[1].present
7974 && inst.operands[1].reg != inst.operands[0].reg + 1,
7975 _("can only transfer two consecutive registers"));
7976 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7977 constraint (!inst.operands[2].isreg, _("'[' expected"));
7978
7979 if (!inst.operands[1].present)
7980 inst.operands[1].reg = inst.operands[0].reg + 1;
7981
7982 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7983 register and the first register written; we have to diagnose
7984 overlap between the base and the second register written here. */
7985
7986 if (inst.operands[2].reg == inst.operands[1].reg
7987 && (inst.operands[2].writeback || inst.operands[2].postind))
7988 as_warn (_("base register written back, and overlaps "
7989 "second transfer register"));
7990
7991 if (!(inst.instruction & V4_STR_BIT))
7992 {
7993 /* For an index-register load, the index register must not overlap the
7994 destination (even if not write-back). */
7995 if (inst.operands[2].immisreg
7996 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7997 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
7998 as_warn (_("index register overlaps transfer register"));
7999 }
8000 inst.instruction |= inst.operands[0].reg << 12;
8001 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
8002 }
8003
8004 static void
8005 do_ldrex (void)
8006 {
8007 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8008 || inst.operands[1].postind || inst.operands[1].writeback
8009 || inst.operands[1].immisreg || inst.operands[1].shifted
8010 || inst.operands[1].negative
8011 /* This can arise if the programmer has written
8012 strex rN, rM, foo
8013 or if they have mistakenly used a register name as the last
8014 operand, eg:
8015 strex rN, rM, rX
8016 It is very difficult to distinguish between these two cases
8017 because "rX" might actually be a label. ie the register
8018 name has been occluded by a symbol of the same name. So we
8019 just generate a general 'bad addressing mode' type error
8020 message and leave it up to the programmer to discover the
8021 true cause and fix their mistake. */
8022 || (inst.operands[1].reg == REG_PC),
8023 BAD_ADDR_MODE);
8024
8025 constraint (inst.reloc.exp.X_op != O_constant
8026 || inst.reloc.exp.X_add_number != 0,
8027 _("offset must be zero in ARM encoding"));
8028
8029 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
8030
8031 inst.instruction |= inst.operands[0].reg << 12;
8032 inst.instruction |= inst.operands[1].reg << 16;
8033 inst.reloc.type = BFD_RELOC_UNUSED;
8034 }
8035
8036 static void
8037 do_ldrexd (void)
8038 {
8039 constraint (inst.operands[0].reg % 2 != 0,
8040 _("even register required"));
8041 constraint (inst.operands[1].present
8042 && inst.operands[1].reg != inst.operands[0].reg + 1,
8043 _("can only load two consecutive registers"));
8044 /* If op 1 were present and equal to PC, this function wouldn't
8045 have been called in the first place. */
8046 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8047
8048 inst.instruction |= inst.operands[0].reg << 12;
8049 inst.instruction |= inst.operands[2].reg << 16;
8050 }
8051
8052 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
8053 which is not a multiple of four is UNPREDICTABLE. */
8054 static void
8055 check_ldr_r15_aligned (void)
8056 {
8057 constraint (!(inst.operands[1].immisreg)
8058 && (inst.operands[0].reg == REG_PC
8059 && inst.operands[1].reg == REG_PC
8060 && (inst.reloc.exp.X_add_number & 0x3)),
8061 _("ldr to register 15 must be 4-byte alligned"));
8062 }
8063
8064 static void
8065 do_ldst (void)
8066 {
8067 inst.instruction |= inst.operands[0].reg << 12;
8068 if (!inst.operands[1].isreg)
8069 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
8070 return;
8071 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
8072 check_ldr_r15_aligned ();
8073 }
8074
8075 static void
8076 do_ldstt (void)
8077 {
8078 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8079 reject [Rn,...]. */
8080 if (inst.operands[1].preind)
8081 {
8082 constraint (inst.reloc.exp.X_op != O_constant
8083 || inst.reloc.exp.X_add_number != 0,
8084 _("this instruction requires a post-indexed address"));
8085
8086 inst.operands[1].preind = 0;
8087 inst.operands[1].postind = 1;
8088 inst.operands[1].writeback = 1;
8089 }
8090 inst.instruction |= inst.operands[0].reg << 12;
8091 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
8092 }
8093
8094 /* Halfword and signed-byte load/store operations. */
8095
8096 static void
8097 do_ldstv4 (void)
8098 {
8099 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8100 inst.instruction |= inst.operands[0].reg << 12;
8101 if (!inst.operands[1].isreg)
8102 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
8103 return;
8104 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
8105 }
8106
8107 static void
8108 do_ldsttv4 (void)
8109 {
8110 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8111 reject [Rn,...]. */
8112 if (inst.operands[1].preind)
8113 {
8114 constraint (inst.reloc.exp.X_op != O_constant
8115 || inst.reloc.exp.X_add_number != 0,
8116 _("this instruction requires a post-indexed address"));
8117
8118 inst.operands[1].preind = 0;
8119 inst.operands[1].postind = 1;
8120 inst.operands[1].writeback = 1;
8121 }
8122 inst.instruction |= inst.operands[0].reg << 12;
8123 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
8124 }
8125
8126 /* Co-processor register load/store.
8127 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
8128 static void
8129 do_lstc (void)
8130 {
8131 inst.instruction |= inst.operands[0].reg << 8;
8132 inst.instruction |= inst.operands[1].reg << 12;
8133 encode_arm_cp_address (2, TRUE, TRUE, 0);
8134 }
8135
8136 static void
8137 do_mlas (void)
8138 {
8139 /* This restriction does not apply to mls (nor to mla in v6 or later). */
8140 if (inst.operands[0].reg == inst.operands[1].reg
8141 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
8142 && !(inst.instruction & 0x00400000))
8143 as_tsktsk (_("Rd and Rm should be different in mla"));
8144
8145 inst.instruction |= inst.operands[0].reg << 16;
8146 inst.instruction |= inst.operands[1].reg;
8147 inst.instruction |= inst.operands[2].reg << 8;
8148 inst.instruction |= inst.operands[3].reg << 12;
8149 }
8150
8151 static void
8152 do_mov (void)
8153 {
8154 inst.instruction |= inst.operands[0].reg << 12;
8155 encode_arm_shifter_operand (1);
8156 }
8157
8158 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
8159 static void
8160 do_mov16 (void)
8161 {
8162 bfd_vma imm;
8163 bfd_boolean top;
8164
8165 top = (inst.instruction & 0x00400000) != 0;
8166 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
8167 _(":lower16: not allowed this instruction"));
8168 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
8169 _(":upper16: not allowed instruction"));
8170 inst.instruction |= inst.operands[0].reg << 12;
8171 if (inst.reloc.type == BFD_RELOC_UNUSED)
8172 {
8173 imm = inst.reloc.exp.X_add_number;
8174 /* The value is in two pieces: 0:11, 16:19. */
8175 inst.instruction |= (imm & 0x00000fff);
8176 inst.instruction |= (imm & 0x0000f000) << 4;
8177 }
8178 }
8179
8180 static void do_vfp_nsyn_opcode (const char *);
8181
8182 static int
8183 do_vfp_nsyn_mrs (void)
8184 {
8185 if (inst.operands[0].isvec)
8186 {
8187 if (inst.operands[1].reg != 1)
8188 first_error (_("operand 1 must be FPSCR"));
8189 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8190 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8191 do_vfp_nsyn_opcode ("fmstat");
8192 }
8193 else if (inst.operands[1].isvec)
8194 do_vfp_nsyn_opcode ("fmrx");
8195 else
8196 return FAIL;
8197
8198 return SUCCESS;
8199 }
8200
8201 static int
8202 do_vfp_nsyn_msr (void)
8203 {
8204 if (inst.operands[0].isvec)
8205 do_vfp_nsyn_opcode ("fmxr");
8206 else
8207 return FAIL;
8208
8209 return SUCCESS;
8210 }
8211
8212 static void
8213 do_vmrs (void)
8214 {
8215 unsigned Rt = inst.operands[0].reg;
8216
8217 if (thumb_mode && inst.operands[0].reg == REG_SP)
8218 {
8219 inst.error = BAD_SP;
8220 return;
8221 }
8222
8223 /* APSR_ sets isvec. All other refs to PC are illegal. */
8224 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
8225 {
8226 inst.error = BAD_PC;
8227 return;
8228 }
8229
8230 switch (inst.operands[1].reg)
8231 {
8232 case 0: /* FPSID */
8233 case 1: /* FPSCR */
8234 case 6: /* MVFR1 */
8235 case 7: /* MVFR0 */
8236 case 8: /* FPEXC */
8237 inst.instruction |= (inst.operands[1].reg << 16);
8238 break;
8239 default:
8240 first_error (_("operand 1 must be a VFP extension System Register"));
8241 }
8242
8243 inst.instruction |= (Rt << 12);
8244 }
8245
8246 static void
8247 do_vmsr (void)
8248 {
8249 unsigned Rt = inst.operands[1].reg;
8250
8251 if (thumb_mode)
8252 reject_bad_reg (Rt);
8253 else if (Rt == REG_PC)
8254 {
8255 inst.error = BAD_PC;
8256 return;
8257 }
8258
8259 switch (inst.operands[0].reg)
8260 {
8261 case 0: /* FPSID */
8262 case 1: /* FPSCR */
8263 case 8: /* FPEXC */
8264 inst.instruction |= (inst.operands[0].reg << 16);
8265 break;
8266 default:
8267 first_error (_("operand 0 must be FPSID or FPSCR pr FPEXC"));
8268 }
8269
8270 inst.instruction |= (Rt << 12);
8271 }
8272
8273 static void
8274 do_mrs (void)
8275 {
8276 unsigned br;
8277
8278 if (do_vfp_nsyn_mrs () == SUCCESS)
8279 return;
8280
8281 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8282 inst.instruction |= inst.operands[0].reg << 12;
8283
8284 if (inst.operands[1].isreg)
8285 {
8286 br = inst.operands[1].reg;
8287 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8288 as_bad (_("bad register for mrs"));
8289 }
8290 else
8291 {
8292 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8293 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8294 != (PSR_c|PSR_f),
8295 _("'APSR', 'CPSR' or 'SPSR' expected"));
8296 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8297 }
8298
8299 inst.instruction |= br;
8300 }
8301
8302 /* Two possible forms:
8303 "{C|S}PSR_<field>, Rm",
8304 "{C|S}PSR_f, #expression". */
8305
8306 static void
8307 do_msr (void)
8308 {
8309 if (do_vfp_nsyn_msr () == SUCCESS)
8310 return;
8311
8312 inst.instruction |= inst.operands[0].imm;
8313 if (inst.operands[1].isreg)
8314 inst.instruction |= inst.operands[1].reg;
8315 else
8316 {
8317 inst.instruction |= INST_IMMEDIATE;
8318 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8319 inst.reloc.pc_rel = 0;
8320 }
8321 }
8322
8323 static void
8324 do_mul (void)
8325 {
8326 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8327
8328 if (!inst.operands[2].present)
8329 inst.operands[2].reg = inst.operands[0].reg;
8330 inst.instruction |= inst.operands[0].reg << 16;
8331 inst.instruction |= inst.operands[1].reg;
8332 inst.instruction |= inst.operands[2].reg << 8;
8333
8334 if (inst.operands[0].reg == inst.operands[1].reg
8335 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8336 as_tsktsk (_("Rd and Rm should be different in mul"));
8337 }
8338
8339 /* Long Multiply Parser
8340 UMULL RdLo, RdHi, Rm, Rs
8341 SMULL RdLo, RdHi, Rm, Rs
8342 UMLAL RdLo, RdHi, Rm, Rs
8343 SMLAL RdLo, RdHi, Rm, Rs. */
8344
8345 static void
8346 do_mull (void)
8347 {
8348 inst.instruction |= inst.operands[0].reg << 12;
8349 inst.instruction |= inst.operands[1].reg << 16;
8350 inst.instruction |= inst.operands[2].reg;
8351 inst.instruction |= inst.operands[3].reg << 8;
8352
8353 /* rdhi and rdlo must be different. */
8354 if (inst.operands[0].reg == inst.operands[1].reg)
8355 as_tsktsk (_("rdhi and rdlo must be different"));
8356
8357 /* rdhi, rdlo and rm must all be different before armv6. */
8358 if ((inst.operands[0].reg == inst.operands[2].reg
8359 || inst.operands[1].reg == inst.operands[2].reg)
8360 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8361 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8362 }
8363
8364 static void
8365 do_nop (void)
8366 {
8367 if (inst.operands[0].present
8368 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
8369 {
8370 /* Architectural NOP hints are CPSR sets with no bits selected. */
8371 inst.instruction &= 0xf0000000;
8372 inst.instruction |= 0x0320f000;
8373 if (inst.operands[0].present)
8374 inst.instruction |= inst.operands[0].imm;
8375 }
8376 }
8377
8378 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8379 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8380 Condition defaults to COND_ALWAYS.
8381 Error if Rd, Rn or Rm are R15. */
8382
8383 static void
8384 do_pkhbt (void)
8385 {
8386 inst.instruction |= inst.operands[0].reg << 12;
8387 inst.instruction |= inst.operands[1].reg << 16;
8388 inst.instruction |= inst.operands[2].reg;
8389 if (inst.operands[3].present)
8390 encode_arm_shift (3);
8391 }
8392
8393 /* ARM V6 PKHTB (Argument Parse). */
8394
8395 static void
8396 do_pkhtb (void)
8397 {
8398 if (!inst.operands[3].present)
8399 {
8400 /* If the shift specifier is omitted, turn the instruction
8401 into pkhbt rd, rm, rn. */
8402 inst.instruction &= 0xfff00010;
8403 inst.instruction |= inst.operands[0].reg << 12;
8404 inst.instruction |= inst.operands[1].reg;
8405 inst.instruction |= inst.operands[2].reg << 16;
8406 }
8407 else
8408 {
8409 inst.instruction |= inst.operands[0].reg << 12;
8410 inst.instruction |= inst.operands[1].reg << 16;
8411 inst.instruction |= inst.operands[2].reg;
8412 encode_arm_shift (3);
8413 }
8414 }
8415
8416 /* ARMv5TE: Preload-Cache
8417 MP Extensions: Preload for write
8418
8419 PLD(W) <addr_mode>
8420
8421 Syntactically, like LDR with B=1, W=0, L=1. */
8422
8423 static void
8424 do_pld (void)
8425 {
8426 constraint (!inst.operands[0].isreg,
8427 _("'[' expected after PLD mnemonic"));
8428 constraint (inst.operands[0].postind,
8429 _("post-indexed expression used in preload instruction"));
8430 constraint (inst.operands[0].writeback,
8431 _("writeback used in preload instruction"));
8432 constraint (!inst.operands[0].preind,
8433 _("unindexed addressing used in preload instruction"));
8434 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8435 }
8436
8437 /* ARMv7: PLI <addr_mode> */
8438 static void
8439 do_pli (void)
8440 {
8441 constraint (!inst.operands[0].isreg,
8442 _("'[' expected after PLI mnemonic"));
8443 constraint (inst.operands[0].postind,
8444 _("post-indexed expression used in preload instruction"));
8445 constraint (inst.operands[0].writeback,
8446 _("writeback used in preload instruction"));
8447 constraint (!inst.operands[0].preind,
8448 _("unindexed addressing used in preload instruction"));
8449 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8450 inst.instruction &= ~PRE_INDEX;
8451 }
8452
8453 static void
8454 do_push_pop (void)
8455 {
8456 inst.operands[1] = inst.operands[0];
8457 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8458 inst.operands[0].isreg = 1;
8459 inst.operands[0].writeback = 1;
8460 inst.operands[0].reg = REG_SP;
8461 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
8462 }
8463
8464 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8465 word at the specified address and the following word
8466 respectively.
8467 Unconditionally executed.
8468 Error if Rn is R15. */
8469
8470 static void
8471 do_rfe (void)
8472 {
8473 inst.instruction |= inst.operands[0].reg << 16;
8474 if (inst.operands[0].writeback)
8475 inst.instruction |= WRITE_BACK;
8476 }
8477
8478 /* ARM V6 ssat (argument parse). */
8479
8480 static void
8481 do_ssat (void)
8482 {
8483 inst.instruction |= inst.operands[0].reg << 12;
8484 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8485 inst.instruction |= inst.operands[2].reg;
8486
8487 if (inst.operands[3].present)
8488 encode_arm_shift (3);
8489 }
8490
8491 /* ARM V6 usat (argument parse). */
8492
8493 static void
8494 do_usat (void)
8495 {
8496 inst.instruction |= inst.operands[0].reg << 12;
8497 inst.instruction |= inst.operands[1].imm << 16;
8498 inst.instruction |= inst.operands[2].reg;
8499
8500 if (inst.operands[3].present)
8501 encode_arm_shift (3);
8502 }
8503
8504 /* ARM V6 ssat16 (argument parse). */
8505
8506 static void
8507 do_ssat16 (void)
8508 {
8509 inst.instruction |= inst.operands[0].reg << 12;
8510 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8511 inst.instruction |= inst.operands[2].reg;
8512 }
8513
8514 static void
8515 do_usat16 (void)
8516 {
8517 inst.instruction |= inst.operands[0].reg << 12;
8518 inst.instruction |= inst.operands[1].imm << 16;
8519 inst.instruction |= inst.operands[2].reg;
8520 }
8521
8522 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8523 preserving the other bits.
8524
8525 setend <endian_specifier>, where <endian_specifier> is either
8526 BE or LE. */
8527
8528 static void
8529 do_setend (void)
8530 {
8531 if (inst.operands[0].imm)
8532 inst.instruction |= 0x200;
8533 }
8534
8535 static void
8536 do_shift (void)
8537 {
8538 unsigned int Rm = (inst.operands[1].present
8539 ? inst.operands[1].reg
8540 : inst.operands[0].reg);
8541
8542 inst.instruction |= inst.operands[0].reg << 12;
8543 inst.instruction |= Rm;
8544 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
8545 {
8546 inst.instruction |= inst.operands[2].reg << 8;
8547 inst.instruction |= SHIFT_BY_REG;
8548 /* PR 12854: Error on extraneous shifts. */
8549 constraint (inst.operands[2].shifted,
8550 _("extraneous shift as part of operand to shift insn"));
8551 }
8552 else
8553 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
8554 }
8555
8556 static void
8557 do_smc (void)
8558 {
8559 inst.reloc.type = BFD_RELOC_ARM_SMC;
8560 inst.reloc.pc_rel = 0;
8561 }
8562
8563 static void
8564 do_hvc (void)
8565 {
8566 inst.reloc.type = BFD_RELOC_ARM_HVC;
8567 inst.reloc.pc_rel = 0;
8568 }
8569
8570 static void
8571 do_swi (void)
8572 {
8573 inst.reloc.type = BFD_RELOC_ARM_SWI;
8574 inst.reloc.pc_rel = 0;
8575 }
8576
8577 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8578 SMLAxy{cond} Rd,Rm,Rs,Rn
8579 SMLAWy{cond} Rd,Rm,Rs,Rn
8580 Error if any register is R15. */
8581
8582 static void
8583 do_smla (void)
8584 {
8585 inst.instruction |= inst.operands[0].reg << 16;
8586 inst.instruction |= inst.operands[1].reg;
8587 inst.instruction |= inst.operands[2].reg << 8;
8588 inst.instruction |= inst.operands[3].reg << 12;
8589 }
8590
8591 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8592 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8593 Error if any register is R15.
8594 Warning if Rdlo == Rdhi. */
8595
8596 static void
8597 do_smlal (void)
8598 {
8599 inst.instruction |= inst.operands[0].reg << 12;
8600 inst.instruction |= inst.operands[1].reg << 16;
8601 inst.instruction |= inst.operands[2].reg;
8602 inst.instruction |= inst.operands[3].reg << 8;
8603
8604 if (inst.operands[0].reg == inst.operands[1].reg)
8605 as_tsktsk (_("rdhi and rdlo must be different"));
8606 }
8607
8608 /* ARM V5E (El Segundo) signed-multiply (argument parse)
8609 SMULxy{cond} Rd,Rm,Rs
8610 Error if any register is R15. */
8611
8612 static void
8613 do_smul (void)
8614 {
8615 inst.instruction |= inst.operands[0].reg << 16;
8616 inst.instruction |= inst.operands[1].reg;
8617 inst.instruction |= inst.operands[2].reg << 8;
8618 }
8619
8620 /* ARM V6 srs (argument parse). The variable fields in the encoding are
8621 the same for both ARM and Thumb-2. */
8622
8623 static void
8624 do_srs (void)
8625 {
8626 int reg;
8627
8628 if (inst.operands[0].present)
8629 {
8630 reg = inst.operands[0].reg;
8631 constraint (reg != REG_SP, _("SRS base register must be r13"));
8632 }
8633 else
8634 reg = REG_SP;
8635
8636 inst.instruction |= reg << 16;
8637 inst.instruction |= inst.operands[1].imm;
8638 if (inst.operands[0].writeback || inst.operands[1].writeback)
8639 inst.instruction |= WRITE_BACK;
8640 }
8641
8642 /* ARM V6 strex (argument parse). */
8643
8644 static void
8645 do_strex (void)
8646 {
8647 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8648 || inst.operands[2].postind || inst.operands[2].writeback
8649 || inst.operands[2].immisreg || inst.operands[2].shifted
8650 || inst.operands[2].negative
8651 /* See comment in do_ldrex(). */
8652 || (inst.operands[2].reg == REG_PC),
8653 BAD_ADDR_MODE);
8654
8655 constraint (inst.operands[0].reg == inst.operands[1].reg
8656 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8657
8658 constraint (inst.reloc.exp.X_op != O_constant
8659 || inst.reloc.exp.X_add_number != 0,
8660 _("offset must be zero in ARM encoding"));
8661
8662 inst.instruction |= inst.operands[0].reg << 12;
8663 inst.instruction |= inst.operands[1].reg;
8664 inst.instruction |= inst.operands[2].reg << 16;
8665 inst.reloc.type = BFD_RELOC_UNUSED;
8666 }
8667
8668 static void
8669 do_t_strexbh (void)
8670 {
8671 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8672 || inst.operands[2].postind || inst.operands[2].writeback
8673 || inst.operands[2].immisreg || inst.operands[2].shifted
8674 || inst.operands[2].negative,
8675 BAD_ADDR_MODE);
8676
8677 constraint (inst.operands[0].reg == inst.operands[1].reg
8678 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8679
8680 do_rm_rd_rn ();
8681 }
8682
8683 static void
8684 do_strexd (void)
8685 {
8686 constraint (inst.operands[1].reg % 2 != 0,
8687 _("even register required"));
8688 constraint (inst.operands[2].present
8689 && inst.operands[2].reg != inst.operands[1].reg + 1,
8690 _("can only store two consecutive registers"));
8691 /* If op 2 were present and equal to PC, this function wouldn't
8692 have been called in the first place. */
8693 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
8694
8695 constraint (inst.operands[0].reg == inst.operands[1].reg
8696 || inst.operands[0].reg == inst.operands[1].reg + 1
8697 || inst.operands[0].reg == inst.operands[3].reg,
8698 BAD_OVERLAP);
8699
8700 inst.instruction |= inst.operands[0].reg << 12;
8701 inst.instruction |= inst.operands[1].reg;
8702 inst.instruction |= inst.operands[3].reg << 16;
8703 }
8704
8705 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8706 extends it to 32-bits, and adds the result to a value in another
8707 register. You can specify a rotation by 0, 8, 16, or 24 bits
8708 before extracting the 16-bit value.
8709 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8710 Condition defaults to COND_ALWAYS.
8711 Error if any register uses R15. */
8712
8713 static void
8714 do_sxtah (void)
8715 {
8716 inst.instruction |= inst.operands[0].reg << 12;
8717 inst.instruction |= inst.operands[1].reg << 16;
8718 inst.instruction |= inst.operands[2].reg;
8719 inst.instruction |= inst.operands[3].imm << 10;
8720 }
8721
8722 /* ARM V6 SXTH.
8723
8724 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8725 Condition defaults to COND_ALWAYS.
8726 Error if any register uses R15. */
8727
8728 static void
8729 do_sxth (void)
8730 {
8731 inst.instruction |= inst.operands[0].reg << 12;
8732 inst.instruction |= inst.operands[1].reg;
8733 inst.instruction |= inst.operands[2].imm << 10;
8734 }
8735 \f
8736 /* VFP instructions. In a logical order: SP variant first, monad
8737 before dyad, arithmetic then move then load/store. */
8738
8739 static void
8740 do_vfp_sp_monadic (void)
8741 {
8742 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8743 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8744 }
8745
8746 static void
8747 do_vfp_sp_dyadic (void)
8748 {
8749 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8750 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8751 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8752 }
8753
8754 static void
8755 do_vfp_sp_compare_z (void)
8756 {
8757 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8758 }
8759
8760 static void
8761 do_vfp_dp_sp_cvt (void)
8762 {
8763 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8764 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8765 }
8766
8767 static void
8768 do_vfp_sp_dp_cvt (void)
8769 {
8770 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8771 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8772 }
8773
8774 static void
8775 do_vfp_reg_from_sp (void)
8776 {
8777 inst.instruction |= inst.operands[0].reg << 12;
8778 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8779 }
8780
8781 static void
8782 do_vfp_reg2_from_sp2 (void)
8783 {
8784 constraint (inst.operands[2].imm != 2,
8785 _("only two consecutive VFP SP registers allowed here"));
8786 inst.instruction |= inst.operands[0].reg << 12;
8787 inst.instruction |= inst.operands[1].reg << 16;
8788 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8789 }
8790
8791 static void
8792 do_vfp_sp_from_reg (void)
8793 {
8794 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8795 inst.instruction |= inst.operands[1].reg << 12;
8796 }
8797
8798 static void
8799 do_vfp_sp2_from_reg2 (void)
8800 {
8801 constraint (inst.operands[0].imm != 2,
8802 _("only two consecutive VFP SP registers allowed here"));
8803 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8804 inst.instruction |= inst.operands[1].reg << 12;
8805 inst.instruction |= inst.operands[2].reg << 16;
8806 }
8807
8808 static void
8809 do_vfp_sp_ldst (void)
8810 {
8811 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8812 encode_arm_cp_address (1, FALSE, TRUE, 0);
8813 }
8814
8815 static void
8816 do_vfp_dp_ldst (void)
8817 {
8818 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8819 encode_arm_cp_address (1, FALSE, TRUE, 0);
8820 }
8821
8822
8823 static void
8824 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8825 {
8826 if (inst.operands[0].writeback)
8827 inst.instruction |= WRITE_BACK;
8828 else
8829 constraint (ldstm_type != VFP_LDSTMIA,
8830 _("this addressing mode requires base-register writeback"));
8831 inst.instruction |= inst.operands[0].reg << 16;
8832 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8833 inst.instruction |= inst.operands[1].imm;
8834 }
8835
8836 static void
8837 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8838 {
8839 int count;
8840
8841 if (inst.operands[0].writeback)
8842 inst.instruction |= WRITE_BACK;
8843 else
8844 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8845 _("this addressing mode requires base-register writeback"));
8846
8847 inst.instruction |= inst.operands[0].reg << 16;
8848 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8849
8850 count = inst.operands[1].imm << 1;
8851 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8852 count += 1;
8853
8854 inst.instruction |= count;
8855 }
8856
8857 static void
8858 do_vfp_sp_ldstmia (void)
8859 {
8860 vfp_sp_ldstm (VFP_LDSTMIA);
8861 }
8862
8863 static void
8864 do_vfp_sp_ldstmdb (void)
8865 {
8866 vfp_sp_ldstm (VFP_LDSTMDB);
8867 }
8868
8869 static void
8870 do_vfp_dp_ldstmia (void)
8871 {
8872 vfp_dp_ldstm (VFP_LDSTMIA);
8873 }
8874
8875 static void
8876 do_vfp_dp_ldstmdb (void)
8877 {
8878 vfp_dp_ldstm (VFP_LDSTMDB);
8879 }
8880
8881 static void
8882 do_vfp_xp_ldstmia (void)
8883 {
8884 vfp_dp_ldstm (VFP_LDSTMIAX);
8885 }
8886
8887 static void
8888 do_vfp_xp_ldstmdb (void)
8889 {
8890 vfp_dp_ldstm (VFP_LDSTMDBX);
8891 }
8892
8893 static void
8894 do_vfp_dp_rd_rm (void)
8895 {
8896 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8897 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8898 }
8899
8900 static void
8901 do_vfp_dp_rn_rd (void)
8902 {
8903 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8904 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8905 }
8906
8907 static void
8908 do_vfp_dp_rd_rn (void)
8909 {
8910 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8911 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8912 }
8913
8914 static void
8915 do_vfp_dp_rd_rn_rm (void)
8916 {
8917 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8918 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8919 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8920 }
8921
8922 static void
8923 do_vfp_dp_rd (void)
8924 {
8925 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8926 }
8927
8928 static void
8929 do_vfp_dp_rm_rd_rn (void)
8930 {
8931 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8932 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8933 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8934 }
8935
8936 /* VFPv3 instructions. */
8937 static void
8938 do_vfp_sp_const (void)
8939 {
8940 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8941 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8942 inst.instruction |= (inst.operands[1].imm & 0x0f);
8943 }
8944
8945 static void
8946 do_vfp_dp_const (void)
8947 {
8948 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8949 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8950 inst.instruction |= (inst.operands[1].imm & 0x0f);
8951 }
8952
8953 static void
8954 vfp_conv (int srcsize)
8955 {
8956 int immbits = srcsize - inst.operands[1].imm;
8957
8958 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
8959 {
8960 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
8961 i.e. immbits must be in range 0 - 16. */
8962 inst.error = _("immediate value out of range, expected range [0, 16]");
8963 return;
8964 }
8965 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
8966 {
8967 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
8968 i.e. immbits must be in range 0 - 31. */
8969 inst.error = _("immediate value out of range, expected range [1, 32]");
8970 return;
8971 }
8972
8973 inst.instruction |= (immbits & 1) << 5;
8974 inst.instruction |= (immbits >> 1);
8975 }
8976
8977 static void
8978 do_vfp_sp_conv_16 (void)
8979 {
8980 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8981 vfp_conv (16);
8982 }
8983
8984 static void
8985 do_vfp_dp_conv_16 (void)
8986 {
8987 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8988 vfp_conv (16);
8989 }
8990
8991 static void
8992 do_vfp_sp_conv_32 (void)
8993 {
8994 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8995 vfp_conv (32);
8996 }
8997
8998 static void
8999 do_vfp_dp_conv_32 (void)
9000 {
9001 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9002 vfp_conv (32);
9003 }
9004 \f
9005 /* FPA instructions. Also in a logical order. */
9006
9007 static void
9008 do_fpa_cmp (void)
9009 {
9010 inst.instruction |= inst.operands[0].reg << 16;
9011 inst.instruction |= inst.operands[1].reg;
9012 }
9013
9014 static void
9015 do_fpa_ldmstm (void)
9016 {
9017 inst.instruction |= inst.operands[0].reg << 12;
9018 switch (inst.operands[1].imm)
9019 {
9020 case 1: inst.instruction |= CP_T_X; break;
9021 case 2: inst.instruction |= CP_T_Y; break;
9022 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
9023 case 4: break;
9024 default: abort ();
9025 }
9026
9027 if (inst.instruction & (PRE_INDEX | INDEX_UP))
9028 {
9029 /* The instruction specified "ea" or "fd", so we can only accept
9030 [Rn]{!}. The instruction does not really support stacking or
9031 unstacking, so we have to emulate these by setting appropriate
9032 bits and offsets. */
9033 constraint (inst.reloc.exp.X_op != O_constant
9034 || inst.reloc.exp.X_add_number != 0,
9035 _("this instruction does not support indexing"));
9036
9037 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
9038 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
9039
9040 if (!(inst.instruction & INDEX_UP))
9041 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
9042
9043 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
9044 {
9045 inst.operands[2].preind = 0;
9046 inst.operands[2].postind = 1;
9047 }
9048 }
9049
9050 encode_arm_cp_address (2, TRUE, TRUE, 0);
9051 }
9052 \f
9053 /* iWMMXt instructions: strictly in alphabetical order. */
9054
9055 static void
9056 do_iwmmxt_tandorc (void)
9057 {
9058 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
9059 }
9060
9061 static void
9062 do_iwmmxt_textrc (void)
9063 {
9064 inst.instruction |= inst.operands[0].reg << 12;
9065 inst.instruction |= inst.operands[1].imm;
9066 }
9067
9068 static void
9069 do_iwmmxt_textrm (void)
9070 {
9071 inst.instruction |= inst.operands[0].reg << 12;
9072 inst.instruction |= inst.operands[1].reg << 16;
9073 inst.instruction |= inst.operands[2].imm;
9074 }
9075
9076 static void
9077 do_iwmmxt_tinsr (void)
9078 {
9079 inst.instruction |= inst.operands[0].reg << 16;
9080 inst.instruction |= inst.operands[1].reg << 12;
9081 inst.instruction |= inst.operands[2].imm;
9082 }
9083
9084 static void
9085 do_iwmmxt_tmia (void)
9086 {
9087 inst.instruction |= inst.operands[0].reg << 5;
9088 inst.instruction |= inst.operands[1].reg;
9089 inst.instruction |= inst.operands[2].reg << 12;
9090 }
9091
9092 static void
9093 do_iwmmxt_waligni (void)
9094 {
9095 inst.instruction |= inst.operands[0].reg << 12;
9096 inst.instruction |= inst.operands[1].reg << 16;
9097 inst.instruction |= inst.operands[2].reg;
9098 inst.instruction |= inst.operands[3].imm << 20;
9099 }
9100
9101 static void
9102 do_iwmmxt_wmerge (void)
9103 {
9104 inst.instruction |= inst.operands[0].reg << 12;
9105 inst.instruction |= inst.operands[1].reg << 16;
9106 inst.instruction |= inst.operands[2].reg;
9107 inst.instruction |= inst.operands[3].imm << 21;
9108 }
9109
9110 static void
9111 do_iwmmxt_wmov (void)
9112 {
9113 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
9114 inst.instruction |= inst.operands[0].reg << 12;
9115 inst.instruction |= inst.operands[1].reg << 16;
9116 inst.instruction |= inst.operands[1].reg;
9117 }
9118
9119 static void
9120 do_iwmmxt_wldstbh (void)
9121 {
9122 int reloc;
9123 inst.instruction |= inst.operands[0].reg << 12;
9124 if (thumb_mode)
9125 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
9126 else
9127 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
9128 encode_arm_cp_address (1, TRUE, FALSE, reloc);
9129 }
9130
9131 static void
9132 do_iwmmxt_wldstw (void)
9133 {
9134 /* RIWR_RIWC clears .isreg for a control register. */
9135 if (!inst.operands[0].isreg)
9136 {
9137 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9138 inst.instruction |= 0xf0000000;
9139 }
9140
9141 inst.instruction |= inst.operands[0].reg << 12;
9142 encode_arm_cp_address (1, TRUE, TRUE, 0);
9143 }
9144
9145 static void
9146 do_iwmmxt_wldstd (void)
9147 {
9148 inst.instruction |= inst.operands[0].reg << 12;
9149 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
9150 && inst.operands[1].immisreg)
9151 {
9152 inst.instruction &= ~0x1a000ff;
9153 inst.instruction |= (0xf << 28);
9154 if (inst.operands[1].preind)
9155 inst.instruction |= PRE_INDEX;
9156 if (!inst.operands[1].negative)
9157 inst.instruction |= INDEX_UP;
9158 if (inst.operands[1].writeback)
9159 inst.instruction |= WRITE_BACK;
9160 inst.instruction |= inst.operands[1].reg << 16;
9161 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9162 inst.instruction |= inst.operands[1].imm;
9163 }
9164 else
9165 encode_arm_cp_address (1, TRUE, FALSE, 0);
9166 }
9167
9168 static void
9169 do_iwmmxt_wshufh (void)
9170 {
9171 inst.instruction |= inst.operands[0].reg << 12;
9172 inst.instruction |= inst.operands[1].reg << 16;
9173 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
9174 inst.instruction |= (inst.operands[2].imm & 0x0f);
9175 }
9176
9177 static void
9178 do_iwmmxt_wzero (void)
9179 {
9180 /* WZERO reg is an alias for WANDN reg, reg, reg. */
9181 inst.instruction |= inst.operands[0].reg;
9182 inst.instruction |= inst.operands[0].reg << 12;
9183 inst.instruction |= inst.operands[0].reg << 16;
9184 }
9185
9186 static void
9187 do_iwmmxt_wrwrwr_or_imm5 (void)
9188 {
9189 if (inst.operands[2].isreg)
9190 do_rd_rn_rm ();
9191 else {
9192 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
9193 _("immediate operand requires iWMMXt2"));
9194 do_rd_rn ();
9195 if (inst.operands[2].imm == 0)
9196 {
9197 switch ((inst.instruction >> 20) & 0xf)
9198 {
9199 case 4:
9200 case 5:
9201 case 6:
9202 case 7:
9203 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
9204 inst.operands[2].imm = 16;
9205 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
9206 break;
9207 case 8:
9208 case 9:
9209 case 10:
9210 case 11:
9211 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
9212 inst.operands[2].imm = 32;
9213 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
9214 break;
9215 case 12:
9216 case 13:
9217 case 14:
9218 case 15:
9219 {
9220 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
9221 unsigned long wrn;
9222 wrn = (inst.instruction >> 16) & 0xf;
9223 inst.instruction &= 0xff0fff0f;
9224 inst.instruction |= wrn;
9225 /* Bail out here; the instruction is now assembled. */
9226 return;
9227 }
9228 }
9229 }
9230 /* Map 32 -> 0, etc. */
9231 inst.operands[2].imm &= 0x1f;
9232 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
9233 }
9234 }
9235 \f
9236 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
9237 operations first, then control, shift, and load/store. */
9238
9239 /* Insns like "foo X,Y,Z". */
9240
9241 static void
9242 do_mav_triple (void)
9243 {
9244 inst.instruction |= inst.operands[0].reg << 16;
9245 inst.instruction |= inst.operands[1].reg;
9246 inst.instruction |= inst.operands[2].reg << 12;
9247 }
9248
9249 /* Insns like "foo W,X,Y,Z".
9250 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
9251
9252 static void
9253 do_mav_quad (void)
9254 {
9255 inst.instruction |= inst.operands[0].reg << 5;
9256 inst.instruction |= inst.operands[1].reg << 12;
9257 inst.instruction |= inst.operands[2].reg << 16;
9258 inst.instruction |= inst.operands[3].reg;
9259 }
9260
9261 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9262 static void
9263 do_mav_dspsc (void)
9264 {
9265 inst.instruction |= inst.operands[1].reg << 12;
9266 }
9267
9268 /* Maverick shift immediate instructions.
9269 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9270 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
9271
9272 static void
9273 do_mav_shift (void)
9274 {
9275 int imm = inst.operands[2].imm;
9276
9277 inst.instruction |= inst.operands[0].reg << 12;
9278 inst.instruction |= inst.operands[1].reg << 16;
9279
9280 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9281 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9282 Bit 4 should be 0. */
9283 imm = (imm & 0xf) | ((imm & 0x70) << 1);
9284
9285 inst.instruction |= imm;
9286 }
9287 \f
9288 /* XScale instructions. Also sorted arithmetic before move. */
9289
9290 /* Xscale multiply-accumulate (argument parse)
9291 MIAcc acc0,Rm,Rs
9292 MIAPHcc acc0,Rm,Rs
9293 MIAxycc acc0,Rm,Rs. */
9294
9295 static void
9296 do_xsc_mia (void)
9297 {
9298 inst.instruction |= inst.operands[1].reg;
9299 inst.instruction |= inst.operands[2].reg << 12;
9300 }
9301
9302 /* Xscale move-accumulator-register (argument parse)
9303
9304 MARcc acc0,RdLo,RdHi. */
9305
9306 static void
9307 do_xsc_mar (void)
9308 {
9309 inst.instruction |= inst.operands[1].reg << 12;
9310 inst.instruction |= inst.operands[2].reg << 16;
9311 }
9312
9313 /* Xscale move-register-accumulator (argument parse)
9314
9315 MRAcc RdLo,RdHi,acc0. */
9316
9317 static void
9318 do_xsc_mra (void)
9319 {
9320 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9321 inst.instruction |= inst.operands[0].reg << 12;
9322 inst.instruction |= inst.operands[1].reg << 16;
9323 }
9324 \f
9325 /* Encoding functions relevant only to Thumb. */
9326
9327 /* inst.operands[i] is a shifted-register operand; encode
9328 it into inst.instruction in the format used by Thumb32. */
9329
9330 static void
9331 encode_thumb32_shifted_operand (int i)
9332 {
9333 unsigned int value = inst.reloc.exp.X_add_number;
9334 unsigned int shift = inst.operands[i].shift_kind;
9335
9336 constraint (inst.operands[i].immisreg,
9337 _("shift by register not allowed in thumb mode"));
9338 inst.instruction |= inst.operands[i].reg;
9339 if (shift == SHIFT_RRX)
9340 inst.instruction |= SHIFT_ROR << 4;
9341 else
9342 {
9343 constraint (inst.reloc.exp.X_op != O_constant,
9344 _("expression too complex"));
9345
9346 constraint (value > 32
9347 || (value == 32 && (shift == SHIFT_LSL
9348 || shift == SHIFT_ROR)),
9349 _("shift expression is too large"));
9350
9351 if (value == 0)
9352 shift = SHIFT_LSL;
9353 else if (value == 32)
9354 value = 0;
9355
9356 inst.instruction |= shift << 4;
9357 inst.instruction |= (value & 0x1c) << 10;
9358 inst.instruction |= (value & 0x03) << 6;
9359 }
9360 }
9361
9362
9363 /* inst.operands[i] was set up by parse_address. Encode it into a
9364 Thumb32 format load or store instruction. Reject forms that cannot
9365 be used with such instructions. If is_t is true, reject forms that
9366 cannot be used with a T instruction; if is_d is true, reject forms
9367 that cannot be used with a D instruction. If it is a store insn,
9368 reject PC in Rn. */
9369
9370 static void
9371 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9372 {
9373 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
9374
9375 constraint (!inst.operands[i].isreg,
9376 _("Instruction does not support =N addresses"));
9377
9378 inst.instruction |= inst.operands[i].reg << 16;
9379 if (inst.operands[i].immisreg)
9380 {
9381 constraint (is_pc, BAD_PC_ADDRESSING);
9382 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9383 constraint (inst.operands[i].negative,
9384 _("Thumb does not support negative register indexing"));
9385 constraint (inst.operands[i].postind,
9386 _("Thumb does not support register post-indexing"));
9387 constraint (inst.operands[i].writeback,
9388 _("Thumb does not support register indexing with writeback"));
9389 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9390 _("Thumb supports only LSL in shifted register indexing"));
9391
9392 inst.instruction |= inst.operands[i].imm;
9393 if (inst.operands[i].shifted)
9394 {
9395 constraint (inst.reloc.exp.X_op != O_constant,
9396 _("expression too complex"));
9397 constraint (inst.reloc.exp.X_add_number < 0
9398 || inst.reloc.exp.X_add_number > 3,
9399 _("shift out of range"));
9400 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9401 }
9402 inst.reloc.type = BFD_RELOC_UNUSED;
9403 }
9404 else if (inst.operands[i].preind)
9405 {
9406 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
9407 constraint (is_t && inst.operands[i].writeback,
9408 _("cannot use writeback with this instruction"));
9409 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
9410 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
9411
9412 if (is_d)
9413 {
9414 inst.instruction |= 0x01000000;
9415 if (inst.operands[i].writeback)
9416 inst.instruction |= 0x00200000;
9417 }
9418 else
9419 {
9420 inst.instruction |= 0x00000c00;
9421 if (inst.operands[i].writeback)
9422 inst.instruction |= 0x00000100;
9423 }
9424 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9425 }
9426 else if (inst.operands[i].postind)
9427 {
9428 gas_assert (inst.operands[i].writeback);
9429 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9430 constraint (is_t, _("cannot use post-indexing with this instruction"));
9431
9432 if (is_d)
9433 inst.instruction |= 0x00200000;
9434 else
9435 inst.instruction |= 0x00000900;
9436 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9437 }
9438 else /* unindexed - only for coprocessor */
9439 inst.error = _("instruction does not accept unindexed addressing");
9440 }
9441
9442 /* Table of Thumb instructions which exist in both 16- and 32-bit
9443 encodings (the latter only in post-V6T2 cores). The index is the
9444 value used in the insns table below. When there is more than one
9445 possible 16-bit encoding for the instruction, this table always
9446 holds variant (1).
9447 Also contains several pseudo-instructions used during relaxation. */
9448 #define T16_32_TAB \
9449 X(_adc, 4140, eb400000), \
9450 X(_adcs, 4140, eb500000), \
9451 X(_add, 1c00, eb000000), \
9452 X(_adds, 1c00, eb100000), \
9453 X(_addi, 0000, f1000000), \
9454 X(_addis, 0000, f1100000), \
9455 X(_add_pc,000f, f20f0000), \
9456 X(_add_sp,000d, f10d0000), \
9457 X(_adr, 000f, f20f0000), \
9458 X(_and, 4000, ea000000), \
9459 X(_ands, 4000, ea100000), \
9460 X(_asr, 1000, fa40f000), \
9461 X(_asrs, 1000, fa50f000), \
9462 X(_b, e000, f000b000), \
9463 X(_bcond, d000, f0008000), \
9464 X(_bic, 4380, ea200000), \
9465 X(_bics, 4380, ea300000), \
9466 X(_cmn, 42c0, eb100f00), \
9467 X(_cmp, 2800, ebb00f00), \
9468 X(_cpsie, b660, f3af8400), \
9469 X(_cpsid, b670, f3af8600), \
9470 X(_cpy, 4600, ea4f0000), \
9471 X(_dec_sp,80dd, f1ad0d00), \
9472 X(_eor, 4040, ea800000), \
9473 X(_eors, 4040, ea900000), \
9474 X(_inc_sp,00dd, f10d0d00), \
9475 X(_ldmia, c800, e8900000), \
9476 X(_ldr, 6800, f8500000), \
9477 X(_ldrb, 7800, f8100000), \
9478 X(_ldrh, 8800, f8300000), \
9479 X(_ldrsb, 5600, f9100000), \
9480 X(_ldrsh, 5e00, f9300000), \
9481 X(_ldr_pc,4800, f85f0000), \
9482 X(_ldr_pc2,4800, f85f0000), \
9483 X(_ldr_sp,9800, f85d0000), \
9484 X(_lsl, 0000, fa00f000), \
9485 X(_lsls, 0000, fa10f000), \
9486 X(_lsr, 0800, fa20f000), \
9487 X(_lsrs, 0800, fa30f000), \
9488 X(_mov, 2000, ea4f0000), \
9489 X(_movs, 2000, ea5f0000), \
9490 X(_mul, 4340, fb00f000), \
9491 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9492 X(_mvn, 43c0, ea6f0000), \
9493 X(_mvns, 43c0, ea7f0000), \
9494 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9495 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9496 X(_orr, 4300, ea400000), \
9497 X(_orrs, 4300, ea500000), \
9498 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9499 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9500 X(_rev, ba00, fa90f080), \
9501 X(_rev16, ba40, fa90f090), \
9502 X(_revsh, bac0, fa90f0b0), \
9503 X(_ror, 41c0, fa60f000), \
9504 X(_rors, 41c0, fa70f000), \
9505 X(_sbc, 4180, eb600000), \
9506 X(_sbcs, 4180, eb700000), \
9507 X(_stmia, c000, e8800000), \
9508 X(_str, 6000, f8400000), \
9509 X(_strb, 7000, f8000000), \
9510 X(_strh, 8000, f8200000), \
9511 X(_str_sp,9000, f84d0000), \
9512 X(_sub, 1e00, eba00000), \
9513 X(_subs, 1e00, ebb00000), \
9514 X(_subi, 8000, f1a00000), \
9515 X(_subis, 8000, f1b00000), \
9516 X(_sxtb, b240, fa4ff080), \
9517 X(_sxth, b200, fa0ff080), \
9518 X(_tst, 4200, ea100f00), \
9519 X(_uxtb, b2c0, fa5ff080), \
9520 X(_uxth, b280, fa1ff080), \
9521 X(_nop, bf00, f3af8000), \
9522 X(_yield, bf10, f3af8001), \
9523 X(_wfe, bf20, f3af8002), \
9524 X(_wfi, bf30, f3af8003), \
9525 X(_sev, bf40, f3af8004),
9526
9527 /* To catch errors in encoding functions, the codes are all offset by
9528 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9529 as 16-bit instructions. */
9530 #define X(a,b,c) T_MNEM##a
9531 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9532 #undef X
9533
9534 #define X(a,b,c) 0x##b
9535 static const unsigned short thumb_op16[] = { T16_32_TAB };
9536 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9537 #undef X
9538
9539 #define X(a,b,c) 0x##c
9540 static const unsigned int thumb_op32[] = { T16_32_TAB };
9541 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9542 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
9543 #undef X
9544 #undef T16_32_TAB
9545
9546 /* Thumb instruction encoders, in alphabetical order. */
9547
9548 /* ADDW or SUBW. */
9549
9550 static void
9551 do_t_add_sub_w (void)
9552 {
9553 int Rd, Rn;
9554
9555 Rd = inst.operands[0].reg;
9556 Rn = inst.operands[1].reg;
9557
9558 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9559 is the SP-{plus,minus}-immediate form of the instruction. */
9560 if (Rn == REG_SP)
9561 constraint (Rd == REG_PC, BAD_PC);
9562 else
9563 reject_bad_reg (Rd);
9564
9565 inst.instruction |= (Rn << 16) | (Rd << 8);
9566 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9567 }
9568
9569 /* Parse an add or subtract instruction. We get here with inst.instruction
9570 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9571
9572 static void
9573 do_t_add_sub (void)
9574 {
9575 int Rd, Rs, Rn;
9576
9577 Rd = inst.operands[0].reg;
9578 Rs = (inst.operands[1].present
9579 ? inst.operands[1].reg /* Rd, Rs, foo */
9580 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9581
9582 if (Rd == REG_PC)
9583 set_it_insn_type_last ();
9584
9585 if (unified_syntax)
9586 {
9587 bfd_boolean flags;
9588 bfd_boolean narrow;
9589 int opcode;
9590
9591 flags = (inst.instruction == T_MNEM_adds
9592 || inst.instruction == T_MNEM_subs);
9593 if (flags)
9594 narrow = !in_it_block ();
9595 else
9596 narrow = in_it_block ();
9597 if (!inst.operands[2].isreg)
9598 {
9599 int add;
9600
9601 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9602
9603 add = (inst.instruction == T_MNEM_add
9604 || inst.instruction == T_MNEM_adds);
9605 opcode = 0;
9606 if (inst.size_req != 4)
9607 {
9608 /* Attempt to use a narrow opcode, with relaxation if
9609 appropriate. */
9610 if (Rd == REG_SP && Rs == REG_SP && !flags)
9611 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9612 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9613 opcode = T_MNEM_add_sp;
9614 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9615 opcode = T_MNEM_add_pc;
9616 else if (Rd <= 7 && Rs <= 7 && narrow)
9617 {
9618 if (flags)
9619 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9620 else
9621 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9622 }
9623 if (opcode)
9624 {
9625 inst.instruction = THUMB_OP16(opcode);
9626 inst.instruction |= (Rd << 4) | Rs;
9627 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9628 if (inst.size_req != 2)
9629 inst.relax = opcode;
9630 }
9631 else
9632 constraint (inst.size_req == 2, BAD_HIREG);
9633 }
9634 if (inst.size_req == 4
9635 || (inst.size_req != 2 && !opcode))
9636 {
9637 if (Rd == REG_PC)
9638 {
9639 constraint (add, BAD_PC);
9640 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9641 _("only SUBS PC, LR, #const allowed"));
9642 constraint (inst.reloc.exp.X_op != O_constant,
9643 _("expression too complex"));
9644 constraint (inst.reloc.exp.X_add_number < 0
9645 || inst.reloc.exp.X_add_number > 0xff,
9646 _("immediate value out of range"));
9647 inst.instruction = T2_SUBS_PC_LR
9648 | inst.reloc.exp.X_add_number;
9649 inst.reloc.type = BFD_RELOC_UNUSED;
9650 return;
9651 }
9652 else if (Rs == REG_PC)
9653 {
9654 /* Always use addw/subw. */
9655 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9656 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9657 }
9658 else
9659 {
9660 inst.instruction = THUMB_OP32 (inst.instruction);
9661 inst.instruction = (inst.instruction & 0xe1ffffff)
9662 | 0x10000000;
9663 if (flags)
9664 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9665 else
9666 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9667 }
9668 inst.instruction |= Rd << 8;
9669 inst.instruction |= Rs << 16;
9670 }
9671 }
9672 else
9673 {
9674 unsigned int value = inst.reloc.exp.X_add_number;
9675 unsigned int shift = inst.operands[2].shift_kind;
9676
9677 Rn = inst.operands[2].reg;
9678 /* See if we can do this with a 16-bit instruction. */
9679 if (!inst.operands[2].shifted && inst.size_req != 4)
9680 {
9681 if (Rd > 7 || Rs > 7 || Rn > 7)
9682 narrow = FALSE;
9683
9684 if (narrow)
9685 {
9686 inst.instruction = ((inst.instruction == T_MNEM_adds
9687 || inst.instruction == T_MNEM_add)
9688 ? T_OPCODE_ADD_R3
9689 : T_OPCODE_SUB_R3);
9690 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9691 return;
9692 }
9693
9694 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
9695 {
9696 /* Thumb-1 cores (except v6-M) require at least one high
9697 register in a narrow non flag setting add. */
9698 if (Rd > 7 || Rn > 7
9699 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9700 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
9701 {
9702 if (Rd == Rn)
9703 {
9704 Rn = Rs;
9705 Rs = Rd;
9706 }
9707 inst.instruction = T_OPCODE_ADD_HI;
9708 inst.instruction |= (Rd & 8) << 4;
9709 inst.instruction |= (Rd & 7);
9710 inst.instruction |= Rn << 3;
9711 return;
9712 }
9713 }
9714 }
9715
9716 constraint (Rd == REG_PC, BAD_PC);
9717 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9718 constraint (Rs == REG_PC, BAD_PC);
9719 reject_bad_reg (Rn);
9720
9721 /* If we get here, it can't be done in 16 bits. */
9722 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9723 _("shift must be constant"));
9724 inst.instruction = THUMB_OP32 (inst.instruction);
9725 inst.instruction |= Rd << 8;
9726 inst.instruction |= Rs << 16;
9727 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
9728 _("shift value over 3 not allowed in thumb mode"));
9729 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
9730 _("only LSL shift allowed in thumb mode"));
9731 encode_thumb32_shifted_operand (2);
9732 }
9733 }
9734 else
9735 {
9736 constraint (inst.instruction == T_MNEM_adds
9737 || inst.instruction == T_MNEM_subs,
9738 BAD_THUMB32);
9739
9740 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9741 {
9742 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9743 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9744 BAD_HIREG);
9745
9746 inst.instruction = (inst.instruction == T_MNEM_add
9747 ? 0x0000 : 0x8000);
9748 inst.instruction |= (Rd << 4) | Rs;
9749 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9750 return;
9751 }
9752
9753 Rn = inst.operands[2].reg;
9754 constraint (inst.operands[2].shifted, _("unshifted register required"));
9755
9756 /* We now have Rd, Rs, and Rn set to registers. */
9757 if (Rd > 7 || Rs > 7 || Rn > 7)
9758 {
9759 /* Can't do this for SUB. */
9760 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9761 inst.instruction = T_OPCODE_ADD_HI;
9762 inst.instruction |= (Rd & 8) << 4;
9763 inst.instruction |= (Rd & 7);
9764 if (Rs == Rd)
9765 inst.instruction |= Rn << 3;
9766 else if (Rn == Rd)
9767 inst.instruction |= Rs << 3;
9768 else
9769 constraint (1, _("dest must overlap one source register"));
9770 }
9771 else
9772 {
9773 inst.instruction = (inst.instruction == T_MNEM_add
9774 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9775 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9776 }
9777 }
9778 }
9779
9780 static void
9781 do_t_adr (void)
9782 {
9783 unsigned Rd;
9784
9785 Rd = inst.operands[0].reg;
9786 reject_bad_reg (Rd);
9787
9788 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9789 {
9790 /* Defer to section relaxation. */
9791 inst.relax = inst.instruction;
9792 inst.instruction = THUMB_OP16 (inst.instruction);
9793 inst.instruction |= Rd << 4;
9794 }
9795 else if (unified_syntax && inst.size_req != 2)
9796 {
9797 /* Generate a 32-bit opcode. */
9798 inst.instruction = THUMB_OP32 (inst.instruction);
9799 inst.instruction |= Rd << 8;
9800 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9801 inst.reloc.pc_rel = 1;
9802 }
9803 else
9804 {
9805 /* Generate a 16-bit opcode. */
9806 inst.instruction = THUMB_OP16 (inst.instruction);
9807 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9808 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9809 inst.reloc.pc_rel = 1;
9810
9811 inst.instruction |= Rd << 4;
9812 }
9813 }
9814
9815 /* Arithmetic instructions for which there is just one 16-bit
9816 instruction encoding, and it allows only two low registers.
9817 For maximal compatibility with ARM syntax, we allow three register
9818 operands even when Thumb-32 instructions are not available, as long
9819 as the first two are identical. For instance, both "sbc r0,r1" and
9820 "sbc r0,r0,r1" are allowed. */
9821 static void
9822 do_t_arit3 (void)
9823 {
9824 int Rd, Rs, Rn;
9825
9826 Rd = inst.operands[0].reg;
9827 Rs = (inst.operands[1].present
9828 ? inst.operands[1].reg /* Rd, Rs, foo */
9829 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9830 Rn = inst.operands[2].reg;
9831
9832 reject_bad_reg (Rd);
9833 reject_bad_reg (Rs);
9834 if (inst.operands[2].isreg)
9835 reject_bad_reg (Rn);
9836
9837 if (unified_syntax)
9838 {
9839 if (!inst.operands[2].isreg)
9840 {
9841 /* For an immediate, we always generate a 32-bit opcode;
9842 section relaxation will shrink it later if possible. */
9843 inst.instruction = THUMB_OP32 (inst.instruction);
9844 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9845 inst.instruction |= Rd << 8;
9846 inst.instruction |= Rs << 16;
9847 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9848 }
9849 else
9850 {
9851 bfd_boolean narrow;
9852
9853 /* See if we can do this with a 16-bit instruction. */
9854 if (THUMB_SETS_FLAGS (inst.instruction))
9855 narrow = !in_it_block ();
9856 else
9857 narrow = in_it_block ();
9858
9859 if (Rd > 7 || Rn > 7 || Rs > 7)
9860 narrow = FALSE;
9861 if (inst.operands[2].shifted)
9862 narrow = FALSE;
9863 if (inst.size_req == 4)
9864 narrow = FALSE;
9865
9866 if (narrow
9867 && Rd == Rs)
9868 {
9869 inst.instruction = THUMB_OP16 (inst.instruction);
9870 inst.instruction |= Rd;
9871 inst.instruction |= Rn << 3;
9872 return;
9873 }
9874
9875 /* If we get here, it can't be done in 16 bits. */
9876 constraint (inst.operands[2].shifted
9877 && inst.operands[2].immisreg,
9878 _("shift must be constant"));
9879 inst.instruction = THUMB_OP32 (inst.instruction);
9880 inst.instruction |= Rd << 8;
9881 inst.instruction |= Rs << 16;
9882 encode_thumb32_shifted_operand (2);
9883 }
9884 }
9885 else
9886 {
9887 /* On its face this is a lie - the instruction does set the
9888 flags. However, the only supported mnemonic in this mode
9889 says it doesn't. */
9890 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9891
9892 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9893 _("unshifted register required"));
9894 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9895 constraint (Rd != Rs,
9896 _("dest and source1 must be the same register"));
9897
9898 inst.instruction = THUMB_OP16 (inst.instruction);
9899 inst.instruction |= Rd;
9900 inst.instruction |= Rn << 3;
9901 }
9902 }
9903
9904 /* Similarly, but for instructions where the arithmetic operation is
9905 commutative, so we can allow either of them to be different from
9906 the destination operand in a 16-bit instruction. For instance, all
9907 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9908 accepted. */
9909 static void
9910 do_t_arit3c (void)
9911 {
9912 int Rd, Rs, Rn;
9913
9914 Rd = inst.operands[0].reg;
9915 Rs = (inst.operands[1].present
9916 ? inst.operands[1].reg /* Rd, Rs, foo */
9917 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9918 Rn = inst.operands[2].reg;
9919
9920 reject_bad_reg (Rd);
9921 reject_bad_reg (Rs);
9922 if (inst.operands[2].isreg)
9923 reject_bad_reg (Rn);
9924
9925 if (unified_syntax)
9926 {
9927 if (!inst.operands[2].isreg)
9928 {
9929 /* For an immediate, we always generate a 32-bit opcode;
9930 section relaxation will shrink it later if possible. */
9931 inst.instruction = THUMB_OP32 (inst.instruction);
9932 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9933 inst.instruction |= Rd << 8;
9934 inst.instruction |= Rs << 16;
9935 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9936 }
9937 else
9938 {
9939 bfd_boolean narrow;
9940
9941 /* See if we can do this with a 16-bit instruction. */
9942 if (THUMB_SETS_FLAGS (inst.instruction))
9943 narrow = !in_it_block ();
9944 else
9945 narrow = in_it_block ();
9946
9947 if (Rd > 7 || Rn > 7 || Rs > 7)
9948 narrow = FALSE;
9949 if (inst.operands[2].shifted)
9950 narrow = FALSE;
9951 if (inst.size_req == 4)
9952 narrow = FALSE;
9953
9954 if (narrow)
9955 {
9956 if (Rd == Rs)
9957 {
9958 inst.instruction = THUMB_OP16 (inst.instruction);
9959 inst.instruction |= Rd;
9960 inst.instruction |= Rn << 3;
9961 return;
9962 }
9963 if (Rd == Rn)
9964 {
9965 inst.instruction = THUMB_OP16 (inst.instruction);
9966 inst.instruction |= Rd;
9967 inst.instruction |= Rs << 3;
9968 return;
9969 }
9970 }
9971
9972 /* If we get here, it can't be done in 16 bits. */
9973 constraint (inst.operands[2].shifted
9974 && inst.operands[2].immisreg,
9975 _("shift must be constant"));
9976 inst.instruction = THUMB_OP32 (inst.instruction);
9977 inst.instruction |= Rd << 8;
9978 inst.instruction |= Rs << 16;
9979 encode_thumb32_shifted_operand (2);
9980 }
9981 }
9982 else
9983 {
9984 /* On its face this is a lie - the instruction does set the
9985 flags. However, the only supported mnemonic in this mode
9986 says it doesn't. */
9987 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9988
9989 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9990 _("unshifted register required"));
9991 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9992
9993 inst.instruction = THUMB_OP16 (inst.instruction);
9994 inst.instruction |= Rd;
9995
9996 if (Rd == Rs)
9997 inst.instruction |= Rn << 3;
9998 else if (Rd == Rn)
9999 inst.instruction |= Rs << 3;
10000 else
10001 constraint (1, _("dest must overlap one source register"));
10002 }
10003 }
10004
10005 static void
10006 do_t_barrier (void)
10007 {
10008 if (inst.operands[0].present)
10009 {
10010 constraint ((inst.instruction & 0xf0) != 0x40
10011 && inst.operands[0].imm > 0xf
10012 && inst.operands[0].imm < 0x0,
10013 _("bad barrier type"));
10014 inst.instruction |= inst.operands[0].imm;
10015 }
10016 else
10017 inst.instruction |= 0xf;
10018 }
10019
10020 static void
10021 do_t_bfc (void)
10022 {
10023 unsigned Rd;
10024 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
10025 constraint (msb > 32, _("bit-field extends past end of register"));
10026 /* The instruction encoding stores the LSB and MSB,
10027 not the LSB and width. */
10028 Rd = inst.operands[0].reg;
10029 reject_bad_reg (Rd);
10030 inst.instruction |= Rd << 8;
10031 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
10032 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
10033 inst.instruction |= msb - 1;
10034 }
10035
10036 static void
10037 do_t_bfi (void)
10038 {
10039 int Rd, Rn;
10040 unsigned int msb;
10041
10042 Rd = inst.operands[0].reg;
10043 reject_bad_reg (Rd);
10044
10045 /* #0 in second position is alternative syntax for bfc, which is
10046 the same instruction but with REG_PC in the Rm field. */
10047 if (!inst.operands[1].isreg)
10048 Rn = REG_PC;
10049 else
10050 {
10051 Rn = inst.operands[1].reg;
10052 reject_bad_reg (Rn);
10053 }
10054
10055 msb = inst.operands[2].imm + inst.operands[3].imm;
10056 constraint (msb > 32, _("bit-field extends past end of register"));
10057 /* The instruction encoding stores the LSB and MSB,
10058 not the LSB and width. */
10059 inst.instruction |= Rd << 8;
10060 inst.instruction |= Rn << 16;
10061 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10062 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10063 inst.instruction |= msb - 1;
10064 }
10065
10066 static void
10067 do_t_bfx (void)
10068 {
10069 unsigned Rd, Rn;
10070
10071 Rd = inst.operands[0].reg;
10072 Rn = inst.operands[1].reg;
10073
10074 reject_bad_reg (Rd);
10075 reject_bad_reg (Rn);
10076
10077 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
10078 _("bit-field extends past end of register"));
10079 inst.instruction |= Rd << 8;
10080 inst.instruction |= Rn << 16;
10081 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10082 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10083 inst.instruction |= inst.operands[3].imm - 1;
10084 }
10085
10086 /* ARM V5 Thumb BLX (argument parse)
10087 BLX <target_addr> which is BLX(1)
10088 BLX <Rm> which is BLX(2)
10089 Unfortunately, there are two different opcodes for this mnemonic.
10090 So, the insns[].value is not used, and the code here zaps values
10091 into inst.instruction.
10092
10093 ??? How to take advantage of the additional two bits of displacement
10094 available in Thumb32 mode? Need new relocation? */
10095
10096 static void
10097 do_t_blx (void)
10098 {
10099 set_it_insn_type_last ();
10100
10101 if (inst.operands[0].isreg)
10102 {
10103 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
10104 /* We have a register, so this is BLX(2). */
10105 inst.instruction |= inst.operands[0].reg << 3;
10106 }
10107 else
10108 {
10109 /* No register. This must be BLX(1). */
10110 inst.instruction = 0xf000e800;
10111 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
10112 }
10113 }
10114
10115 static void
10116 do_t_branch (void)
10117 {
10118 int opcode;
10119 int cond;
10120 int reloc;
10121
10122 cond = inst.cond;
10123 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
10124
10125 if (in_it_block ())
10126 {
10127 /* Conditional branches inside IT blocks are encoded as unconditional
10128 branches. */
10129 cond = COND_ALWAYS;
10130 }
10131 else
10132 cond = inst.cond;
10133
10134 if (cond != COND_ALWAYS)
10135 opcode = T_MNEM_bcond;
10136 else
10137 opcode = inst.instruction;
10138
10139 if (unified_syntax
10140 && (inst.size_req == 4
10141 || (inst.size_req != 2
10142 && (inst.operands[0].hasreloc
10143 || inst.reloc.exp.X_op == O_constant))))
10144 {
10145 inst.instruction = THUMB_OP32(opcode);
10146 if (cond == COND_ALWAYS)
10147 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
10148 else
10149 {
10150 gas_assert (cond != 0xF);
10151 inst.instruction |= cond << 22;
10152 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
10153 }
10154 }
10155 else
10156 {
10157 inst.instruction = THUMB_OP16(opcode);
10158 if (cond == COND_ALWAYS)
10159 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
10160 else
10161 {
10162 inst.instruction |= cond << 8;
10163 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
10164 }
10165 /* Allow section relaxation. */
10166 if (unified_syntax && inst.size_req != 2)
10167 inst.relax = opcode;
10168 }
10169 inst.reloc.type = reloc;
10170 inst.reloc.pc_rel = 1;
10171 }
10172
10173 static void
10174 do_t_bkpt (void)
10175 {
10176 constraint (inst.cond != COND_ALWAYS,
10177 _("instruction is always unconditional"));
10178 if (inst.operands[0].present)
10179 {
10180 constraint (inst.operands[0].imm > 255,
10181 _("immediate value out of range"));
10182 inst.instruction |= inst.operands[0].imm;
10183 set_it_insn_type (NEUTRAL_IT_INSN);
10184 }
10185 }
10186
10187 static void
10188 do_t_branch23 (void)
10189 {
10190 set_it_insn_type_last ();
10191 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
10192
10193 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
10194 this file. We used to simply ignore the PLT reloc type here --
10195 the branch encoding is now needed to deal with TLSCALL relocs.
10196 So if we see a PLT reloc now, put it back to how it used to be to
10197 keep the preexisting behaviour. */
10198 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
10199 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
10200
10201 #if defined(OBJ_COFF)
10202 /* If the destination of the branch is a defined symbol which does not have
10203 the THUMB_FUNC attribute, then we must be calling a function which has
10204 the (interfacearm) attribute. We look for the Thumb entry point to that
10205 function and change the branch to refer to that function instead. */
10206 if ( inst.reloc.exp.X_op == O_symbol
10207 && inst.reloc.exp.X_add_symbol != NULL
10208 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10209 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10210 inst.reloc.exp.X_add_symbol =
10211 find_real_start (inst.reloc.exp.X_add_symbol);
10212 #endif
10213 }
10214
10215 static void
10216 do_t_bx (void)
10217 {
10218 set_it_insn_type_last ();
10219 inst.instruction |= inst.operands[0].reg << 3;
10220 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
10221 should cause the alignment to be checked once it is known. This is
10222 because BX PC only works if the instruction is word aligned. */
10223 }
10224
10225 static void
10226 do_t_bxj (void)
10227 {
10228 int Rm;
10229
10230 set_it_insn_type_last ();
10231 Rm = inst.operands[0].reg;
10232 reject_bad_reg (Rm);
10233 inst.instruction |= Rm << 16;
10234 }
10235
10236 static void
10237 do_t_clz (void)
10238 {
10239 unsigned Rd;
10240 unsigned Rm;
10241
10242 Rd = inst.operands[0].reg;
10243 Rm = inst.operands[1].reg;
10244
10245 reject_bad_reg (Rd);
10246 reject_bad_reg (Rm);
10247
10248 inst.instruction |= Rd << 8;
10249 inst.instruction |= Rm << 16;
10250 inst.instruction |= Rm;
10251 }
10252
10253 static void
10254 do_t_cps (void)
10255 {
10256 set_it_insn_type (OUTSIDE_IT_INSN);
10257 inst.instruction |= inst.operands[0].imm;
10258 }
10259
10260 static void
10261 do_t_cpsi (void)
10262 {
10263 set_it_insn_type (OUTSIDE_IT_INSN);
10264 if (unified_syntax
10265 && (inst.operands[1].present || inst.size_req == 4)
10266 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
10267 {
10268 unsigned int imod = (inst.instruction & 0x0030) >> 4;
10269 inst.instruction = 0xf3af8000;
10270 inst.instruction |= imod << 9;
10271 inst.instruction |= inst.operands[0].imm << 5;
10272 if (inst.operands[1].present)
10273 inst.instruction |= 0x100 | inst.operands[1].imm;
10274 }
10275 else
10276 {
10277 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
10278 && (inst.operands[0].imm & 4),
10279 _("selected processor does not support 'A' form "
10280 "of this instruction"));
10281 constraint (inst.operands[1].present || inst.size_req == 4,
10282 _("Thumb does not support the 2-argument "
10283 "form of this instruction"));
10284 inst.instruction |= inst.operands[0].imm;
10285 }
10286 }
10287
10288 /* THUMB CPY instruction (argument parse). */
10289
10290 static void
10291 do_t_cpy (void)
10292 {
10293 if (inst.size_req == 4)
10294 {
10295 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10296 inst.instruction |= inst.operands[0].reg << 8;
10297 inst.instruction |= inst.operands[1].reg;
10298 }
10299 else
10300 {
10301 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10302 inst.instruction |= (inst.operands[0].reg & 0x7);
10303 inst.instruction |= inst.operands[1].reg << 3;
10304 }
10305 }
10306
10307 static void
10308 do_t_cbz (void)
10309 {
10310 set_it_insn_type (OUTSIDE_IT_INSN);
10311 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10312 inst.instruction |= inst.operands[0].reg;
10313 inst.reloc.pc_rel = 1;
10314 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10315 }
10316
10317 static void
10318 do_t_dbg (void)
10319 {
10320 inst.instruction |= inst.operands[0].imm;
10321 }
10322
10323 static void
10324 do_t_div (void)
10325 {
10326 unsigned Rd, Rn, Rm;
10327
10328 Rd = inst.operands[0].reg;
10329 Rn = (inst.operands[1].present
10330 ? inst.operands[1].reg : Rd);
10331 Rm = inst.operands[2].reg;
10332
10333 reject_bad_reg (Rd);
10334 reject_bad_reg (Rn);
10335 reject_bad_reg (Rm);
10336
10337 inst.instruction |= Rd << 8;
10338 inst.instruction |= Rn << 16;
10339 inst.instruction |= Rm;
10340 }
10341
10342 static void
10343 do_t_hint (void)
10344 {
10345 if (unified_syntax && inst.size_req == 4)
10346 inst.instruction = THUMB_OP32 (inst.instruction);
10347 else
10348 inst.instruction = THUMB_OP16 (inst.instruction);
10349 }
10350
10351 static void
10352 do_t_it (void)
10353 {
10354 unsigned int cond = inst.operands[0].imm;
10355
10356 set_it_insn_type (IT_INSN);
10357 now_it.mask = (inst.instruction & 0xf) | 0x10;
10358 now_it.cc = cond;
10359 now_it.warn_deprecated = FALSE;
10360
10361 /* If the condition is a negative condition, invert the mask. */
10362 if ((cond & 0x1) == 0x0)
10363 {
10364 unsigned int mask = inst.instruction & 0x000f;
10365
10366 if ((mask & 0x7) == 0)
10367 {
10368 /* No conversion needed. */
10369 now_it.block_length = 1;
10370 }
10371 else if ((mask & 0x3) == 0)
10372 {
10373 mask ^= 0x8;
10374 now_it.block_length = 2;
10375 }
10376 else if ((mask & 0x1) == 0)
10377 {
10378 mask ^= 0xC;
10379 now_it.block_length = 3;
10380 }
10381 else
10382 {
10383 mask ^= 0xE;
10384 now_it.block_length = 4;
10385 }
10386
10387 inst.instruction &= 0xfff0;
10388 inst.instruction |= mask;
10389 }
10390
10391 inst.instruction |= cond << 4;
10392 }
10393
10394 /* Helper function used for both push/pop and ldm/stm. */
10395 static void
10396 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10397 {
10398 bfd_boolean load;
10399
10400 load = (inst.instruction & (1 << 20)) != 0;
10401
10402 if (mask & (1 << 13))
10403 inst.error = _("SP not allowed in register list");
10404
10405 if ((mask & (1 << base)) != 0
10406 && writeback)
10407 inst.error = _("having the base register in the register list when "
10408 "using write back is UNPREDICTABLE");
10409
10410 if (load)
10411 {
10412 if (mask & (1 << 15))
10413 {
10414 if (mask & (1 << 14))
10415 inst.error = _("LR and PC should not both be in register list");
10416 else
10417 set_it_insn_type_last ();
10418 }
10419 }
10420 else
10421 {
10422 if (mask & (1 << 15))
10423 inst.error = _("PC not allowed in register list");
10424 }
10425
10426 if ((mask & (mask - 1)) == 0)
10427 {
10428 /* Single register transfers implemented as str/ldr. */
10429 if (writeback)
10430 {
10431 if (inst.instruction & (1 << 23))
10432 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10433 else
10434 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10435 }
10436 else
10437 {
10438 if (inst.instruction & (1 << 23))
10439 inst.instruction = 0x00800000; /* ia -> [base] */
10440 else
10441 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10442 }
10443
10444 inst.instruction |= 0xf8400000;
10445 if (load)
10446 inst.instruction |= 0x00100000;
10447
10448 mask = ffs (mask) - 1;
10449 mask <<= 12;
10450 }
10451 else if (writeback)
10452 inst.instruction |= WRITE_BACK;
10453
10454 inst.instruction |= mask;
10455 inst.instruction |= base << 16;
10456 }
10457
10458 static void
10459 do_t_ldmstm (void)
10460 {
10461 /* This really doesn't seem worth it. */
10462 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10463 _("expression too complex"));
10464 constraint (inst.operands[1].writeback,
10465 _("Thumb load/store multiple does not support {reglist}^"));
10466
10467 if (unified_syntax)
10468 {
10469 bfd_boolean narrow;
10470 unsigned mask;
10471
10472 narrow = FALSE;
10473 /* See if we can use a 16-bit instruction. */
10474 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10475 && inst.size_req != 4
10476 && !(inst.operands[1].imm & ~0xff))
10477 {
10478 mask = 1 << inst.operands[0].reg;
10479
10480 if (inst.operands[0].reg <= 7)
10481 {
10482 if (inst.instruction == T_MNEM_stmia
10483 ? inst.operands[0].writeback
10484 : (inst.operands[0].writeback
10485 == !(inst.operands[1].imm & mask)))
10486 {
10487 if (inst.instruction == T_MNEM_stmia
10488 && (inst.operands[1].imm & mask)
10489 && (inst.operands[1].imm & (mask - 1)))
10490 as_warn (_("value stored for r%d is UNKNOWN"),
10491 inst.operands[0].reg);
10492
10493 inst.instruction = THUMB_OP16 (inst.instruction);
10494 inst.instruction |= inst.operands[0].reg << 8;
10495 inst.instruction |= inst.operands[1].imm;
10496 narrow = TRUE;
10497 }
10498 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10499 {
10500 /* This means 1 register in reg list one of 3 situations:
10501 1. Instruction is stmia, but without writeback.
10502 2. lmdia without writeback, but with Rn not in
10503 reglist.
10504 3. ldmia with writeback, but with Rn in reglist.
10505 Case 3 is UNPREDICTABLE behaviour, so we handle
10506 case 1 and 2 which can be converted into a 16-bit
10507 str or ldr. The SP cases are handled below. */
10508 unsigned long opcode;
10509 /* First, record an error for Case 3. */
10510 if (inst.operands[1].imm & mask
10511 && inst.operands[0].writeback)
10512 inst.error =
10513 _("having the base register in the register list when "
10514 "using write back is UNPREDICTABLE");
10515
10516 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10517 : T_MNEM_ldr);
10518 inst.instruction = THUMB_OP16 (opcode);
10519 inst.instruction |= inst.operands[0].reg << 3;
10520 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10521 narrow = TRUE;
10522 }
10523 }
10524 else if (inst.operands[0] .reg == REG_SP)
10525 {
10526 if (inst.operands[0].writeback)
10527 {
10528 inst.instruction =
10529 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10530 ? T_MNEM_push : T_MNEM_pop);
10531 inst.instruction |= inst.operands[1].imm;
10532 narrow = TRUE;
10533 }
10534 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10535 {
10536 inst.instruction =
10537 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10538 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10539 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10540 narrow = TRUE;
10541 }
10542 }
10543 }
10544
10545 if (!narrow)
10546 {
10547 if (inst.instruction < 0xffff)
10548 inst.instruction = THUMB_OP32 (inst.instruction);
10549
10550 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10551 inst.operands[0].writeback);
10552 }
10553 }
10554 else
10555 {
10556 constraint (inst.operands[0].reg > 7
10557 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
10558 constraint (inst.instruction != T_MNEM_ldmia
10559 && inst.instruction != T_MNEM_stmia,
10560 _("Thumb-2 instruction only valid in unified syntax"));
10561 if (inst.instruction == T_MNEM_stmia)
10562 {
10563 if (!inst.operands[0].writeback)
10564 as_warn (_("this instruction will write back the base register"));
10565 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10566 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
10567 as_warn (_("value stored for r%d is UNKNOWN"),
10568 inst.operands[0].reg);
10569 }
10570 else
10571 {
10572 if (!inst.operands[0].writeback
10573 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10574 as_warn (_("this instruction will write back the base register"));
10575 else if (inst.operands[0].writeback
10576 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10577 as_warn (_("this instruction will not write back the base register"));
10578 }
10579
10580 inst.instruction = THUMB_OP16 (inst.instruction);
10581 inst.instruction |= inst.operands[0].reg << 8;
10582 inst.instruction |= inst.operands[1].imm;
10583 }
10584 }
10585
10586 static void
10587 do_t_ldrex (void)
10588 {
10589 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10590 || inst.operands[1].postind || inst.operands[1].writeback
10591 || inst.operands[1].immisreg || inst.operands[1].shifted
10592 || inst.operands[1].negative,
10593 BAD_ADDR_MODE);
10594
10595 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10596
10597 inst.instruction |= inst.operands[0].reg << 12;
10598 inst.instruction |= inst.operands[1].reg << 16;
10599 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10600 }
10601
10602 static void
10603 do_t_ldrexd (void)
10604 {
10605 if (!inst.operands[1].present)
10606 {
10607 constraint (inst.operands[0].reg == REG_LR,
10608 _("r14 not allowed as first register "
10609 "when second register is omitted"));
10610 inst.operands[1].reg = inst.operands[0].reg + 1;
10611 }
10612 constraint (inst.operands[0].reg == inst.operands[1].reg,
10613 BAD_OVERLAP);
10614
10615 inst.instruction |= inst.operands[0].reg << 12;
10616 inst.instruction |= inst.operands[1].reg << 8;
10617 inst.instruction |= inst.operands[2].reg << 16;
10618 }
10619
10620 static void
10621 do_t_ldst (void)
10622 {
10623 unsigned long opcode;
10624 int Rn;
10625
10626 if (inst.operands[0].isreg
10627 && !inst.operands[0].preind
10628 && inst.operands[0].reg == REG_PC)
10629 set_it_insn_type_last ();
10630
10631 opcode = inst.instruction;
10632 if (unified_syntax)
10633 {
10634 if (!inst.operands[1].isreg)
10635 {
10636 if (opcode <= 0xffff)
10637 inst.instruction = THUMB_OP32 (opcode);
10638 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10639 return;
10640 }
10641 if (inst.operands[1].isreg
10642 && !inst.operands[1].writeback
10643 && !inst.operands[1].shifted && !inst.operands[1].postind
10644 && !inst.operands[1].negative && inst.operands[0].reg <= 7
10645 && opcode <= 0xffff
10646 && inst.size_req != 4)
10647 {
10648 /* Insn may have a 16-bit form. */
10649 Rn = inst.operands[1].reg;
10650 if (inst.operands[1].immisreg)
10651 {
10652 inst.instruction = THUMB_OP16 (opcode);
10653 /* [Rn, Rik] */
10654 if (Rn <= 7 && inst.operands[1].imm <= 7)
10655 goto op16;
10656 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10657 reject_bad_reg (inst.operands[1].imm);
10658 }
10659 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10660 && opcode != T_MNEM_ldrsb)
10661 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10662 || (Rn == REG_SP && opcode == T_MNEM_str))
10663 {
10664 /* [Rn, #const] */
10665 if (Rn > 7)
10666 {
10667 if (Rn == REG_PC)
10668 {
10669 if (inst.reloc.pc_rel)
10670 opcode = T_MNEM_ldr_pc2;
10671 else
10672 opcode = T_MNEM_ldr_pc;
10673 }
10674 else
10675 {
10676 if (opcode == T_MNEM_ldr)
10677 opcode = T_MNEM_ldr_sp;
10678 else
10679 opcode = T_MNEM_str_sp;
10680 }
10681 inst.instruction = inst.operands[0].reg << 8;
10682 }
10683 else
10684 {
10685 inst.instruction = inst.operands[0].reg;
10686 inst.instruction |= inst.operands[1].reg << 3;
10687 }
10688 inst.instruction |= THUMB_OP16 (opcode);
10689 if (inst.size_req == 2)
10690 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10691 else
10692 inst.relax = opcode;
10693 return;
10694 }
10695 }
10696 /* Definitely a 32-bit variant. */
10697
10698 /* Warning for Erratum 752419. */
10699 if (opcode == T_MNEM_ldr
10700 && inst.operands[0].reg == REG_SP
10701 && inst.operands[1].writeback == 1
10702 && !inst.operands[1].immisreg)
10703 {
10704 if (no_cpu_selected ()
10705 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
10706 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
10707 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
10708 as_warn (_("This instruction may be unpredictable "
10709 "if executed on M-profile cores "
10710 "with interrupts enabled."));
10711 }
10712
10713 /* Do some validations regarding addressing modes. */
10714 if (inst.operands[1].immisreg)
10715 reject_bad_reg (inst.operands[1].imm);
10716
10717 constraint (inst.operands[1].writeback == 1
10718 && inst.operands[0].reg == inst.operands[1].reg,
10719 BAD_OVERLAP);
10720
10721 inst.instruction = THUMB_OP32 (opcode);
10722 inst.instruction |= inst.operands[0].reg << 12;
10723 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
10724 check_ldr_r15_aligned ();
10725 return;
10726 }
10727
10728 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10729
10730 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
10731 {
10732 /* Only [Rn,Rm] is acceptable. */
10733 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10734 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10735 || inst.operands[1].postind || inst.operands[1].shifted
10736 || inst.operands[1].negative,
10737 _("Thumb does not support this addressing mode"));
10738 inst.instruction = THUMB_OP16 (inst.instruction);
10739 goto op16;
10740 }
10741
10742 inst.instruction = THUMB_OP16 (inst.instruction);
10743 if (!inst.operands[1].isreg)
10744 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10745 return;
10746
10747 constraint (!inst.operands[1].preind
10748 || inst.operands[1].shifted
10749 || inst.operands[1].writeback,
10750 _("Thumb does not support this addressing mode"));
10751 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
10752 {
10753 constraint (inst.instruction & 0x0600,
10754 _("byte or halfword not valid for base register"));
10755 constraint (inst.operands[1].reg == REG_PC
10756 && !(inst.instruction & THUMB_LOAD_BIT),
10757 _("r15 based store not allowed"));
10758 constraint (inst.operands[1].immisreg,
10759 _("invalid base register for register offset"));
10760
10761 if (inst.operands[1].reg == REG_PC)
10762 inst.instruction = T_OPCODE_LDR_PC;
10763 else if (inst.instruction & THUMB_LOAD_BIT)
10764 inst.instruction = T_OPCODE_LDR_SP;
10765 else
10766 inst.instruction = T_OPCODE_STR_SP;
10767
10768 inst.instruction |= inst.operands[0].reg << 8;
10769 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10770 return;
10771 }
10772
10773 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10774 if (!inst.operands[1].immisreg)
10775 {
10776 /* Immediate offset. */
10777 inst.instruction |= inst.operands[0].reg;
10778 inst.instruction |= inst.operands[1].reg << 3;
10779 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10780 return;
10781 }
10782
10783 /* Register offset. */
10784 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10785 constraint (inst.operands[1].negative,
10786 _("Thumb does not support this addressing mode"));
10787
10788 op16:
10789 switch (inst.instruction)
10790 {
10791 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10792 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10793 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10794 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10795 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10796 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10797 case 0x5600 /* ldrsb */:
10798 case 0x5e00 /* ldrsh */: break;
10799 default: abort ();
10800 }
10801
10802 inst.instruction |= inst.operands[0].reg;
10803 inst.instruction |= inst.operands[1].reg << 3;
10804 inst.instruction |= inst.operands[1].imm << 6;
10805 }
10806
10807 static void
10808 do_t_ldstd (void)
10809 {
10810 if (!inst.operands[1].present)
10811 {
10812 inst.operands[1].reg = inst.operands[0].reg + 1;
10813 constraint (inst.operands[0].reg == REG_LR,
10814 _("r14 not allowed here"));
10815 constraint (inst.operands[0].reg == REG_R12,
10816 _("r12 not allowed here"));
10817 }
10818
10819 if (inst.operands[2].writeback
10820 && (inst.operands[0].reg == inst.operands[2].reg
10821 || inst.operands[1].reg == inst.operands[2].reg))
10822 as_warn (_("base register written back, and overlaps "
10823 "one of transfer registers"));
10824
10825 inst.instruction |= inst.operands[0].reg << 12;
10826 inst.instruction |= inst.operands[1].reg << 8;
10827 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
10828 }
10829
10830 static void
10831 do_t_ldstt (void)
10832 {
10833 inst.instruction |= inst.operands[0].reg << 12;
10834 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10835 }
10836
10837 static void
10838 do_t_mla (void)
10839 {
10840 unsigned Rd, Rn, Rm, Ra;
10841
10842 Rd = inst.operands[0].reg;
10843 Rn = inst.operands[1].reg;
10844 Rm = inst.operands[2].reg;
10845 Ra = inst.operands[3].reg;
10846
10847 reject_bad_reg (Rd);
10848 reject_bad_reg (Rn);
10849 reject_bad_reg (Rm);
10850 reject_bad_reg (Ra);
10851
10852 inst.instruction |= Rd << 8;
10853 inst.instruction |= Rn << 16;
10854 inst.instruction |= Rm;
10855 inst.instruction |= Ra << 12;
10856 }
10857
10858 static void
10859 do_t_mlal (void)
10860 {
10861 unsigned RdLo, RdHi, Rn, Rm;
10862
10863 RdLo = inst.operands[0].reg;
10864 RdHi = inst.operands[1].reg;
10865 Rn = inst.operands[2].reg;
10866 Rm = inst.operands[3].reg;
10867
10868 reject_bad_reg (RdLo);
10869 reject_bad_reg (RdHi);
10870 reject_bad_reg (Rn);
10871 reject_bad_reg (Rm);
10872
10873 inst.instruction |= RdLo << 12;
10874 inst.instruction |= RdHi << 8;
10875 inst.instruction |= Rn << 16;
10876 inst.instruction |= Rm;
10877 }
10878
10879 static void
10880 do_t_mov_cmp (void)
10881 {
10882 unsigned Rn, Rm;
10883
10884 Rn = inst.operands[0].reg;
10885 Rm = inst.operands[1].reg;
10886
10887 if (Rn == REG_PC)
10888 set_it_insn_type_last ();
10889
10890 if (unified_syntax)
10891 {
10892 int r0off = (inst.instruction == T_MNEM_mov
10893 || inst.instruction == T_MNEM_movs) ? 8 : 16;
10894 unsigned long opcode;
10895 bfd_boolean narrow;
10896 bfd_boolean low_regs;
10897
10898 low_regs = (Rn <= 7 && Rm <= 7);
10899 opcode = inst.instruction;
10900 if (in_it_block ())
10901 narrow = opcode != T_MNEM_movs;
10902 else
10903 narrow = opcode != T_MNEM_movs || low_regs;
10904 if (inst.size_req == 4
10905 || inst.operands[1].shifted)
10906 narrow = FALSE;
10907
10908 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10909 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10910 && !inst.operands[1].shifted
10911 && Rn == REG_PC
10912 && Rm == REG_LR)
10913 {
10914 inst.instruction = T2_SUBS_PC_LR;
10915 return;
10916 }
10917
10918 if (opcode == T_MNEM_cmp)
10919 {
10920 constraint (Rn == REG_PC, BAD_PC);
10921 if (narrow)
10922 {
10923 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10924 but valid. */
10925 warn_deprecated_sp (Rm);
10926 /* R15 was documented as a valid choice for Rm in ARMv6,
10927 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10928 tools reject R15, so we do too. */
10929 constraint (Rm == REG_PC, BAD_PC);
10930 }
10931 else
10932 reject_bad_reg (Rm);
10933 }
10934 else if (opcode == T_MNEM_mov
10935 || opcode == T_MNEM_movs)
10936 {
10937 if (inst.operands[1].isreg)
10938 {
10939 if (opcode == T_MNEM_movs)
10940 {
10941 reject_bad_reg (Rn);
10942 reject_bad_reg (Rm);
10943 }
10944 else if (narrow)
10945 {
10946 /* This is mov.n. */
10947 if ((Rn == REG_SP || Rn == REG_PC)
10948 && (Rm == REG_SP || Rm == REG_PC))
10949 {
10950 as_warn (_("Use of r%u as a source register is "
10951 "deprecated when r%u is the destination "
10952 "register."), Rm, Rn);
10953 }
10954 }
10955 else
10956 {
10957 /* This is mov.w. */
10958 constraint (Rn == REG_PC, BAD_PC);
10959 constraint (Rm == REG_PC, BAD_PC);
10960 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
10961 }
10962 }
10963 else
10964 reject_bad_reg (Rn);
10965 }
10966
10967 if (!inst.operands[1].isreg)
10968 {
10969 /* Immediate operand. */
10970 if (!in_it_block () && opcode == T_MNEM_mov)
10971 narrow = 0;
10972 if (low_regs && narrow)
10973 {
10974 inst.instruction = THUMB_OP16 (opcode);
10975 inst.instruction |= Rn << 8;
10976 if (inst.size_req == 2)
10977 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10978 else
10979 inst.relax = opcode;
10980 }
10981 else
10982 {
10983 inst.instruction = THUMB_OP32 (inst.instruction);
10984 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10985 inst.instruction |= Rn << r0off;
10986 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10987 }
10988 }
10989 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10990 && (inst.instruction == T_MNEM_mov
10991 || inst.instruction == T_MNEM_movs))
10992 {
10993 /* Register shifts are encoded as separate shift instructions. */
10994 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10995
10996 if (in_it_block ())
10997 narrow = !flags;
10998 else
10999 narrow = flags;
11000
11001 if (inst.size_req == 4)
11002 narrow = FALSE;
11003
11004 if (!low_regs || inst.operands[1].imm > 7)
11005 narrow = FALSE;
11006
11007 if (Rn != Rm)
11008 narrow = FALSE;
11009
11010 switch (inst.operands[1].shift_kind)
11011 {
11012 case SHIFT_LSL:
11013 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
11014 break;
11015 case SHIFT_ASR:
11016 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
11017 break;
11018 case SHIFT_LSR:
11019 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
11020 break;
11021 case SHIFT_ROR:
11022 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
11023 break;
11024 default:
11025 abort ();
11026 }
11027
11028 inst.instruction = opcode;
11029 if (narrow)
11030 {
11031 inst.instruction |= Rn;
11032 inst.instruction |= inst.operands[1].imm << 3;
11033 }
11034 else
11035 {
11036 if (flags)
11037 inst.instruction |= CONDS_BIT;
11038
11039 inst.instruction |= Rn << 8;
11040 inst.instruction |= Rm << 16;
11041 inst.instruction |= inst.operands[1].imm;
11042 }
11043 }
11044 else if (!narrow)
11045 {
11046 /* Some mov with immediate shift have narrow variants.
11047 Register shifts are handled above. */
11048 if (low_regs && inst.operands[1].shifted
11049 && (inst.instruction == T_MNEM_mov
11050 || inst.instruction == T_MNEM_movs))
11051 {
11052 if (in_it_block ())
11053 narrow = (inst.instruction == T_MNEM_mov);
11054 else
11055 narrow = (inst.instruction == T_MNEM_movs);
11056 }
11057
11058 if (narrow)
11059 {
11060 switch (inst.operands[1].shift_kind)
11061 {
11062 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11063 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11064 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11065 default: narrow = FALSE; break;
11066 }
11067 }
11068
11069 if (narrow)
11070 {
11071 inst.instruction |= Rn;
11072 inst.instruction |= Rm << 3;
11073 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11074 }
11075 else
11076 {
11077 inst.instruction = THUMB_OP32 (inst.instruction);
11078 inst.instruction |= Rn << r0off;
11079 encode_thumb32_shifted_operand (1);
11080 }
11081 }
11082 else
11083 switch (inst.instruction)
11084 {
11085 case T_MNEM_mov:
11086 /* In v4t or v5t a move of two lowregs produces unpredictable
11087 results. Don't allow this. */
11088 if (low_regs)
11089 {
11090 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
11091 "MOV Rd, Rs with two low registers is not "
11092 "permitted on this architecture");
11093 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
11094 arm_ext_v6);
11095 }
11096
11097 inst.instruction = T_OPCODE_MOV_HR;
11098 inst.instruction |= (Rn & 0x8) << 4;
11099 inst.instruction |= (Rn & 0x7);
11100 inst.instruction |= Rm << 3;
11101 break;
11102
11103 case T_MNEM_movs:
11104 /* We know we have low registers at this point.
11105 Generate LSLS Rd, Rs, #0. */
11106 inst.instruction = T_OPCODE_LSL_I;
11107 inst.instruction |= Rn;
11108 inst.instruction |= Rm << 3;
11109 break;
11110
11111 case T_MNEM_cmp:
11112 if (low_regs)
11113 {
11114 inst.instruction = T_OPCODE_CMP_LR;
11115 inst.instruction |= Rn;
11116 inst.instruction |= Rm << 3;
11117 }
11118 else
11119 {
11120 inst.instruction = T_OPCODE_CMP_HR;
11121 inst.instruction |= (Rn & 0x8) << 4;
11122 inst.instruction |= (Rn & 0x7);
11123 inst.instruction |= Rm << 3;
11124 }
11125 break;
11126 }
11127 return;
11128 }
11129
11130 inst.instruction = THUMB_OP16 (inst.instruction);
11131
11132 /* PR 10443: Do not silently ignore shifted operands. */
11133 constraint (inst.operands[1].shifted,
11134 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
11135
11136 if (inst.operands[1].isreg)
11137 {
11138 if (Rn < 8 && Rm < 8)
11139 {
11140 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
11141 since a MOV instruction produces unpredictable results. */
11142 if (inst.instruction == T_OPCODE_MOV_I8)
11143 inst.instruction = T_OPCODE_ADD_I3;
11144 else
11145 inst.instruction = T_OPCODE_CMP_LR;
11146
11147 inst.instruction |= Rn;
11148 inst.instruction |= Rm << 3;
11149 }
11150 else
11151 {
11152 if (inst.instruction == T_OPCODE_MOV_I8)
11153 inst.instruction = T_OPCODE_MOV_HR;
11154 else
11155 inst.instruction = T_OPCODE_CMP_HR;
11156 do_t_cpy ();
11157 }
11158 }
11159 else
11160 {
11161 constraint (Rn > 7,
11162 _("only lo regs allowed with immediate"));
11163 inst.instruction |= Rn << 8;
11164 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11165 }
11166 }
11167
11168 static void
11169 do_t_mov16 (void)
11170 {
11171 unsigned Rd;
11172 bfd_vma imm;
11173 bfd_boolean top;
11174
11175 top = (inst.instruction & 0x00800000) != 0;
11176 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
11177 {
11178 constraint (top, _(":lower16: not allowed this instruction"));
11179 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
11180 }
11181 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
11182 {
11183 constraint (!top, _(":upper16: not allowed this instruction"));
11184 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
11185 }
11186
11187 Rd = inst.operands[0].reg;
11188 reject_bad_reg (Rd);
11189
11190 inst.instruction |= Rd << 8;
11191 if (inst.reloc.type == BFD_RELOC_UNUSED)
11192 {
11193 imm = inst.reloc.exp.X_add_number;
11194 inst.instruction |= (imm & 0xf000) << 4;
11195 inst.instruction |= (imm & 0x0800) << 15;
11196 inst.instruction |= (imm & 0x0700) << 4;
11197 inst.instruction |= (imm & 0x00ff);
11198 }
11199 }
11200
11201 static void
11202 do_t_mvn_tst (void)
11203 {
11204 unsigned Rn, Rm;
11205
11206 Rn = inst.operands[0].reg;
11207 Rm = inst.operands[1].reg;
11208
11209 if (inst.instruction == T_MNEM_cmp
11210 || inst.instruction == T_MNEM_cmn)
11211 constraint (Rn == REG_PC, BAD_PC);
11212 else
11213 reject_bad_reg (Rn);
11214 reject_bad_reg (Rm);
11215
11216 if (unified_syntax)
11217 {
11218 int r0off = (inst.instruction == T_MNEM_mvn
11219 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
11220 bfd_boolean narrow;
11221
11222 if (inst.size_req == 4
11223 || inst.instruction > 0xffff
11224 || inst.operands[1].shifted
11225 || Rn > 7 || Rm > 7)
11226 narrow = FALSE;
11227 else if (inst.instruction == T_MNEM_cmn)
11228 narrow = TRUE;
11229 else if (THUMB_SETS_FLAGS (inst.instruction))
11230 narrow = !in_it_block ();
11231 else
11232 narrow = in_it_block ();
11233
11234 if (!inst.operands[1].isreg)
11235 {
11236 /* For an immediate, we always generate a 32-bit opcode;
11237 section relaxation will shrink it later if possible. */
11238 if (inst.instruction < 0xffff)
11239 inst.instruction = THUMB_OP32 (inst.instruction);
11240 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11241 inst.instruction |= Rn << r0off;
11242 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11243 }
11244 else
11245 {
11246 /* See if we can do this with a 16-bit instruction. */
11247 if (narrow)
11248 {
11249 inst.instruction = THUMB_OP16 (inst.instruction);
11250 inst.instruction |= Rn;
11251 inst.instruction |= Rm << 3;
11252 }
11253 else
11254 {
11255 constraint (inst.operands[1].shifted
11256 && inst.operands[1].immisreg,
11257 _("shift must be constant"));
11258 if (inst.instruction < 0xffff)
11259 inst.instruction = THUMB_OP32 (inst.instruction);
11260 inst.instruction |= Rn << r0off;
11261 encode_thumb32_shifted_operand (1);
11262 }
11263 }
11264 }
11265 else
11266 {
11267 constraint (inst.instruction > 0xffff
11268 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
11269 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
11270 _("unshifted register required"));
11271 constraint (Rn > 7 || Rm > 7,
11272 BAD_HIREG);
11273
11274 inst.instruction = THUMB_OP16 (inst.instruction);
11275 inst.instruction |= Rn;
11276 inst.instruction |= Rm << 3;
11277 }
11278 }
11279
11280 static void
11281 do_t_mrs (void)
11282 {
11283 unsigned Rd;
11284
11285 if (do_vfp_nsyn_mrs () == SUCCESS)
11286 return;
11287
11288 Rd = inst.operands[0].reg;
11289 reject_bad_reg (Rd);
11290 inst.instruction |= Rd << 8;
11291
11292 if (inst.operands[1].isreg)
11293 {
11294 unsigned br = inst.operands[1].reg;
11295 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
11296 as_bad (_("bad register for mrs"));
11297
11298 inst.instruction |= br & (0xf << 16);
11299 inst.instruction |= (br & 0x300) >> 4;
11300 inst.instruction |= (br & SPSR_BIT) >> 2;
11301 }
11302 else
11303 {
11304 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11305
11306 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11307 {
11308 /* PR gas/12698: The constraint is only applied for m_profile.
11309 If the user has specified -march=all, we want to ignore it as
11310 we are building for any CPU type, including non-m variants. */
11311 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11312 constraint ((flags != 0) && m_profile, _("selected processor does "
11313 "not support requested special purpose register"));
11314 }
11315 else
11316 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11317 devices). */
11318 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
11319 _("'APSR', 'CPSR' or 'SPSR' expected"));
11320
11321 inst.instruction |= (flags & SPSR_BIT) >> 2;
11322 inst.instruction |= inst.operands[1].imm & 0xff;
11323 inst.instruction |= 0xf0000;
11324 }
11325 }
11326
11327 static void
11328 do_t_msr (void)
11329 {
11330 int flags;
11331 unsigned Rn;
11332
11333 if (do_vfp_nsyn_msr () == SUCCESS)
11334 return;
11335
11336 constraint (!inst.operands[1].isreg,
11337 _("Thumb encoding does not support an immediate here"));
11338
11339 if (inst.operands[0].isreg)
11340 flags = (int)(inst.operands[0].reg);
11341 else
11342 flags = inst.operands[0].imm;
11343
11344 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11345 {
11346 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11347
11348 /* PR gas/12698: The constraint is only applied for m_profile.
11349 If the user has specified -march=all, we want to ignore it as
11350 we are building for any CPU type, including non-m variants. */
11351 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11352 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11353 && (bits & ~(PSR_s | PSR_f)) != 0)
11354 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11355 && bits != PSR_f)) && m_profile,
11356 _("selected processor does not support requested special "
11357 "purpose register"));
11358 }
11359 else
11360 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11361 "requested special purpose register"));
11362
11363 Rn = inst.operands[1].reg;
11364 reject_bad_reg (Rn);
11365
11366 inst.instruction |= (flags & SPSR_BIT) >> 2;
11367 inst.instruction |= (flags & 0xf0000) >> 8;
11368 inst.instruction |= (flags & 0x300) >> 4;
11369 inst.instruction |= (flags & 0xff);
11370 inst.instruction |= Rn << 16;
11371 }
11372
11373 static void
11374 do_t_mul (void)
11375 {
11376 bfd_boolean narrow;
11377 unsigned Rd, Rn, Rm;
11378
11379 if (!inst.operands[2].present)
11380 inst.operands[2].reg = inst.operands[0].reg;
11381
11382 Rd = inst.operands[0].reg;
11383 Rn = inst.operands[1].reg;
11384 Rm = inst.operands[2].reg;
11385
11386 if (unified_syntax)
11387 {
11388 if (inst.size_req == 4
11389 || (Rd != Rn
11390 && Rd != Rm)
11391 || Rn > 7
11392 || Rm > 7)
11393 narrow = FALSE;
11394 else if (inst.instruction == T_MNEM_muls)
11395 narrow = !in_it_block ();
11396 else
11397 narrow = in_it_block ();
11398 }
11399 else
11400 {
11401 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
11402 constraint (Rn > 7 || Rm > 7,
11403 BAD_HIREG);
11404 narrow = TRUE;
11405 }
11406
11407 if (narrow)
11408 {
11409 /* 16-bit MULS/Conditional MUL. */
11410 inst.instruction = THUMB_OP16 (inst.instruction);
11411 inst.instruction |= Rd;
11412
11413 if (Rd == Rn)
11414 inst.instruction |= Rm << 3;
11415 else if (Rd == Rm)
11416 inst.instruction |= Rn << 3;
11417 else
11418 constraint (1, _("dest must overlap one source register"));
11419 }
11420 else
11421 {
11422 constraint (inst.instruction != T_MNEM_mul,
11423 _("Thumb-2 MUL must not set flags"));
11424 /* 32-bit MUL. */
11425 inst.instruction = THUMB_OP32 (inst.instruction);
11426 inst.instruction |= Rd << 8;
11427 inst.instruction |= Rn << 16;
11428 inst.instruction |= Rm << 0;
11429
11430 reject_bad_reg (Rd);
11431 reject_bad_reg (Rn);
11432 reject_bad_reg (Rm);
11433 }
11434 }
11435
11436 static void
11437 do_t_mull (void)
11438 {
11439 unsigned RdLo, RdHi, Rn, Rm;
11440
11441 RdLo = inst.operands[0].reg;
11442 RdHi = inst.operands[1].reg;
11443 Rn = inst.operands[2].reg;
11444 Rm = inst.operands[3].reg;
11445
11446 reject_bad_reg (RdLo);
11447 reject_bad_reg (RdHi);
11448 reject_bad_reg (Rn);
11449 reject_bad_reg (Rm);
11450
11451 inst.instruction |= RdLo << 12;
11452 inst.instruction |= RdHi << 8;
11453 inst.instruction |= Rn << 16;
11454 inst.instruction |= Rm;
11455
11456 if (RdLo == RdHi)
11457 as_tsktsk (_("rdhi and rdlo must be different"));
11458 }
11459
11460 static void
11461 do_t_nop (void)
11462 {
11463 set_it_insn_type (NEUTRAL_IT_INSN);
11464
11465 if (unified_syntax)
11466 {
11467 if (inst.size_req == 4 || inst.operands[0].imm > 15)
11468 {
11469 inst.instruction = THUMB_OP32 (inst.instruction);
11470 inst.instruction |= inst.operands[0].imm;
11471 }
11472 else
11473 {
11474 /* PR9722: Check for Thumb2 availability before
11475 generating a thumb2 nop instruction. */
11476 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
11477 {
11478 inst.instruction = THUMB_OP16 (inst.instruction);
11479 inst.instruction |= inst.operands[0].imm << 4;
11480 }
11481 else
11482 inst.instruction = 0x46c0;
11483 }
11484 }
11485 else
11486 {
11487 constraint (inst.operands[0].present,
11488 _("Thumb does not support NOP with hints"));
11489 inst.instruction = 0x46c0;
11490 }
11491 }
11492
11493 static void
11494 do_t_neg (void)
11495 {
11496 if (unified_syntax)
11497 {
11498 bfd_boolean narrow;
11499
11500 if (THUMB_SETS_FLAGS (inst.instruction))
11501 narrow = !in_it_block ();
11502 else
11503 narrow = in_it_block ();
11504 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11505 narrow = FALSE;
11506 if (inst.size_req == 4)
11507 narrow = FALSE;
11508
11509 if (!narrow)
11510 {
11511 inst.instruction = THUMB_OP32 (inst.instruction);
11512 inst.instruction |= inst.operands[0].reg << 8;
11513 inst.instruction |= inst.operands[1].reg << 16;
11514 }
11515 else
11516 {
11517 inst.instruction = THUMB_OP16 (inst.instruction);
11518 inst.instruction |= inst.operands[0].reg;
11519 inst.instruction |= inst.operands[1].reg << 3;
11520 }
11521 }
11522 else
11523 {
11524 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11525 BAD_HIREG);
11526 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11527
11528 inst.instruction = THUMB_OP16 (inst.instruction);
11529 inst.instruction |= inst.operands[0].reg;
11530 inst.instruction |= inst.operands[1].reg << 3;
11531 }
11532 }
11533
11534 static void
11535 do_t_orn (void)
11536 {
11537 unsigned Rd, Rn;
11538
11539 Rd = inst.operands[0].reg;
11540 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11541
11542 reject_bad_reg (Rd);
11543 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11544 reject_bad_reg (Rn);
11545
11546 inst.instruction |= Rd << 8;
11547 inst.instruction |= Rn << 16;
11548
11549 if (!inst.operands[2].isreg)
11550 {
11551 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11552 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11553 }
11554 else
11555 {
11556 unsigned Rm;
11557
11558 Rm = inst.operands[2].reg;
11559 reject_bad_reg (Rm);
11560
11561 constraint (inst.operands[2].shifted
11562 && inst.operands[2].immisreg,
11563 _("shift must be constant"));
11564 encode_thumb32_shifted_operand (2);
11565 }
11566 }
11567
11568 static void
11569 do_t_pkhbt (void)
11570 {
11571 unsigned Rd, Rn, Rm;
11572
11573 Rd = inst.operands[0].reg;
11574 Rn = inst.operands[1].reg;
11575 Rm = inst.operands[2].reg;
11576
11577 reject_bad_reg (Rd);
11578 reject_bad_reg (Rn);
11579 reject_bad_reg (Rm);
11580
11581 inst.instruction |= Rd << 8;
11582 inst.instruction |= Rn << 16;
11583 inst.instruction |= Rm;
11584 if (inst.operands[3].present)
11585 {
11586 unsigned int val = inst.reloc.exp.X_add_number;
11587 constraint (inst.reloc.exp.X_op != O_constant,
11588 _("expression too complex"));
11589 inst.instruction |= (val & 0x1c) << 10;
11590 inst.instruction |= (val & 0x03) << 6;
11591 }
11592 }
11593
11594 static void
11595 do_t_pkhtb (void)
11596 {
11597 if (!inst.operands[3].present)
11598 {
11599 unsigned Rtmp;
11600
11601 inst.instruction &= ~0x00000020;
11602
11603 /* PR 10168. Swap the Rm and Rn registers. */
11604 Rtmp = inst.operands[1].reg;
11605 inst.operands[1].reg = inst.operands[2].reg;
11606 inst.operands[2].reg = Rtmp;
11607 }
11608 do_t_pkhbt ();
11609 }
11610
11611 static void
11612 do_t_pld (void)
11613 {
11614 if (inst.operands[0].immisreg)
11615 reject_bad_reg (inst.operands[0].imm);
11616
11617 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11618 }
11619
11620 static void
11621 do_t_push_pop (void)
11622 {
11623 unsigned mask;
11624
11625 constraint (inst.operands[0].writeback,
11626 _("push/pop do not support {reglist}^"));
11627 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11628 _("expression too complex"));
11629
11630 mask = inst.operands[0].imm;
11631 if ((mask & ~0xff) == 0)
11632 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
11633 else if ((inst.instruction == T_MNEM_push
11634 && (mask & ~0xff) == 1 << REG_LR)
11635 || (inst.instruction == T_MNEM_pop
11636 && (mask & ~0xff) == 1 << REG_PC))
11637 {
11638 inst.instruction = THUMB_OP16 (inst.instruction);
11639 inst.instruction |= THUMB_PP_PC_LR;
11640 inst.instruction |= mask & 0xff;
11641 }
11642 else if (unified_syntax)
11643 {
11644 inst.instruction = THUMB_OP32 (inst.instruction);
11645 encode_thumb2_ldmstm (13, mask, TRUE);
11646 }
11647 else
11648 {
11649 inst.error = _("invalid register list to push/pop instruction");
11650 return;
11651 }
11652 }
11653
11654 static void
11655 do_t_rbit (void)
11656 {
11657 unsigned Rd, Rm;
11658
11659 Rd = inst.operands[0].reg;
11660 Rm = inst.operands[1].reg;
11661
11662 reject_bad_reg (Rd);
11663 reject_bad_reg (Rm);
11664
11665 inst.instruction |= Rd << 8;
11666 inst.instruction |= Rm << 16;
11667 inst.instruction |= Rm;
11668 }
11669
11670 static void
11671 do_t_rev (void)
11672 {
11673 unsigned Rd, Rm;
11674
11675 Rd = inst.operands[0].reg;
11676 Rm = inst.operands[1].reg;
11677
11678 reject_bad_reg (Rd);
11679 reject_bad_reg (Rm);
11680
11681 if (Rd <= 7 && Rm <= 7
11682 && inst.size_req != 4)
11683 {
11684 inst.instruction = THUMB_OP16 (inst.instruction);
11685 inst.instruction |= Rd;
11686 inst.instruction |= Rm << 3;
11687 }
11688 else if (unified_syntax)
11689 {
11690 inst.instruction = THUMB_OP32 (inst.instruction);
11691 inst.instruction |= Rd << 8;
11692 inst.instruction |= Rm << 16;
11693 inst.instruction |= Rm;
11694 }
11695 else
11696 inst.error = BAD_HIREG;
11697 }
11698
11699 static void
11700 do_t_rrx (void)
11701 {
11702 unsigned Rd, Rm;
11703
11704 Rd = inst.operands[0].reg;
11705 Rm = inst.operands[1].reg;
11706
11707 reject_bad_reg (Rd);
11708 reject_bad_reg (Rm);
11709
11710 inst.instruction |= Rd << 8;
11711 inst.instruction |= Rm;
11712 }
11713
11714 static void
11715 do_t_rsb (void)
11716 {
11717 unsigned Rd, Rs;
11718
11719 Rd = inst.operands[0].reg;
11720 Rs = (inst.operands[1].present
11721 ? inst.operands[1].reg /* Rd, Rs, foo */
11722 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11723
11724 reject_bad_reg (Rd);
11725 reject_bad_reg (Rs);
11726 if (inst.operands[2].isreg)
11727 reject_bad_reg (inst.operands[2].reg);
11728
11729 inst.instruction |= Rd << 8;
11730 inst.instruction |= Rs << 16;
11731 if (!inst.operands[2].isreg)
11732 {
11733 bfd_boolean narrow;
11734
11735 if ((inst.instruction & 0x00100000) != 0)
11736 narrow = !in_it_block ();
11737 else
11738 narrow = in_it_block ();
11739
11740 if (Rd > 7 || Rs > 7)
11741 narrow = FALSE;
11742
11743 if (inst.size_req == 4 || !unified_syntax)
11744 narrow = FALSE;
11745
11746 if (inst.reloc.exp.X_op != O_constant
11747 || inst.reloc.exp.X_add_number != 0)
11748 narrow = FALSE;
11749
11750 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11751 relaxation, but it doesn't seem worth the hassle. */
11752 if (narrow)
11753 {
11754 inst.reloc.type = BFD_RELOC_UNUSED;
11755 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11756 inst.instruction |= Rs << 3;
11757 inst.instruction |= Rd;
11758 }
11759 else
11760 {
11761 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11762 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11763 }
11764 }
11765 else
11766 encode_thumb32_shifted_operand (2);
11767 }
11768
11769 static void
11770 do_t_setend (void)
11771 {
11772 set_it_insn_type (OUTSIDE_IT_INSN);
11773 if (inst.operands[0].imm)
11774 inst.instruction |= 0x8;
11775 }
11776
11777 static void
11778 do_t_shift (void)
11779 {
11780 if (!inst.operands[1].present)
11781 inst.operands[1].reg = inst.operands[0].reg;
11782
11783 if (unified_syntax)
11784 {
11785 bfd_boolean narrow;
11786 int shift_kind;
11787
11788 switch (inst.instruction)
11789 {
11790 case T_MNEM_asr:
11791 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11792 case T_MNEM_lsl:
11793 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11794 case T_MNEM_lsr:
11795 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11796 case T_MNEM_ror:
11797 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11798 default: abort ();
11799 }
11800
11801 if (THUMB_SETS_FLAGS (inst.instruction))
11802 narrow = !in_it_block ();
11803 else
11804 narrow = in_it_block ();
11805 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11806 narrow = FALSE;
11807 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11808 narrow = FALSE;
11809 if (inst.operands[2].isreg
11810 && (inst.operands[1].reg != inst.operands[0].reg
11811 || inst.operands[2].reg > 7))
11812 narrow = FALSE;
11813 if (inst.size_req == 4)
11814 narrow = FALSE;
11815
11816 reject_bad_reg (inst.operands[0].reg);
11817 reject_bad_reg (inst.operands[1].reg);
11818
11819 if (!narrow)
11820 {
11821 if (inst.operands[2].isreg)
11822 {
11823 reject_bad_reg (inst.operands[2].reg);
11824 inst.instruction = THUMB_OP32 (inst.instruction);
11825 inst.instruction |= inst.operands[0].reg << 8;
11826 inst.instruction |= inst.operands[1].reg << 16;
11827 inst.instruction |= inst.operands[2].reg;
11828
11829 /* PR 12854: Error on extraneous shifts. */
11830 constraint (inst.operands[2].shifted,
11831 _("extraneous shift as part of operand to shift insn"));
11832 }
11833 else
11834 {
11835 inst.operands[1].shifted = 1;
11836 inst.operands[1].shift_kind = shift_kind;
11837 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11838 ? T_MNEM_movs : T_MNEM_mov);
11839 inst.instruction |= inst.operands[0].reg << 8;
11840 encode_thumb32_shifted_operand (1);
11841 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11842 inst.reloc.type = BFD_RELOC_UNUSED;
11843 }
11844 }
11845 else
11846 {
11847 if (inst.operands[2].isreg)
11848 {
11849 switch (shift_kind)
11850 {
11851 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11852 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11853 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11854 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
11855 default: abort ();
11856 }
11857
11858 inst.instruction |= inst.operands[0].reg;
11859 inst.instruction |= inst.operands[2].reg << 3;
11860
11861 /* PR 12854: Error on extraneous shifts. */
11862 constraint (inst.operands[2].shifted,
11863 _("extraneous shift as part of operand to shift insn"));
11864 }
11865 else
11866 {
11867 switch (shift_kind)
11868 {
11869 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11870 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11871 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11872 default: abort ();
11873 }
11874 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11875 inst.instruction |= inst.operands[0].reg;
11876 inst.instruction |= inst.operands[1].reg << 3;
11877 }
11878 }
11879 }
11880 else
11881 {
11882 constraint (inst.operands[0].reg > 7
11883 || inst.operands[1].reg > 7, BAD_HIREG);
11884 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11885
11886 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11887 {
11888 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11889 constraint (inst.operands[0].reg != inst.operands[1].reg,
11890 _("source1 and dest must be same register"));
11891
11892 switch (inst.instruction)
11893 {
11894 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11895 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11896 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11897 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11898 default: abort ();
11899 }
11900
11901 inst.instruction |= inst.operands[0].reg;
11902 inst.instruction |= inst.operands[2].reg << 3;
11903
11904 /* PR 12854: Error on extraneous shifts. */
11905 constraint (inst.operands[2].shifted,
11906 _("extraneous shift as part of operand to shift insn"));
11907 }
11908 else
11909 {
11910 switch (inst.instruction)
11911 {
11912 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11913 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11914 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11915 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11916 default: abort ();
11917 }
11918 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11919 inst.instruction |= inst.operands[0].reg;
11920 inst.instruction |= inst.operands[1].reg << 3;
11921 }
11922 }
11923 }
11924
11925 static void
11926 do_t_simd (void)
11927 {
11928 unsigned Rd, Rn, Rm;
11929
11930 Rd = inst.operands[0].reg;
11931 Rn = inst.operands[1].reg;
11932 Rm = inst.operands[2].reg;
11933
11934 reject_bad_reg (Rd);
11935 reject_bad_reg (Rn);
11936 reject_bad_reg (Rm);
11937
11938 inst.instruction |= Rd << 8;
11939 inst.instruction |= Rn << 16;
11940 inst.instruction |= Rm;
11941 }
11942
11943 static void
11944 do_t_simd2 (void)
11945 {
11946 unsigned Rd, Rn, Rm;
11947
11948 Rd = inst.operands[0].reg;
11949 Rm = inst.operands[1].reg;
11950 Rn = inst.operands[2].reg;
11951
11952 reject_bad_reg (Rd);
11953 reject_bad_reg (Rn);
11954 reject_bad_reg (Rm);
11955
11956 inst.instruction |= Rd << 8;
11957 inst.instruction |= Rn << 16;
11958 inst.instruction |= Rm;
11959 }
11960
11961 static void
11962 do_t_smc (void)
11963 {
11964 unsigned int value = inst.reloc.exp.X_add_number;
11965 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
11966 _("SMC is not permitted on this architecture"));
11967 constraint (inst.reloc.exp.X_op != O_constant,
11968 _("expression too complex"));
11969 inst.reloc.type = BFD_RELOC_UNUSED;
11970 inst.instruction |= (value & 0xf000) >> 12;
11971 inst.instruction |= (value & 0x0ff0);
11972 inst.instruction |= (value & 0x000f) << 16;
11973 }
11974
11975 static void
11976 do_t_hvc (void)
11977 {
11978 unsigned int value = inst.reloc.exp.X_add_number;
11979
11980 inst.reloc.type = BFD_RELOC_UNUSED;
11981 inst.instruction |= (value & 0x0fff);
11982 inst.instruction |= (value & 0xf000) << 4;
11983 }
11984
11985 static void
11986 do_t_ssat_usat (int bias)
11987 {
11988 unsigned Rd, Rn;
11989
11990 Rd = inst.operands[0].reg;
11991 Rn = inst.operands[2].reg;
11992
11993 reject_bad_reg (Rd);
11994 reject_bad_reg (Rn);
11995
11996 inst.instruction |= Rd << 8;
11997 inst.instruction |= inst.operands[1].imm - bias;
11998 inst.instruction |= Rn << 16;
11999
12000 if (inst.operands[3].present)
12001 {
12002 offsetT shift_amount = inst.reloc.exp.X_add_number;
12003
12004 inst.reloc.type = BFD_RELOC_UNUSED;
12005
12006 constraint (inst.reloc.exp.X_op != O_constant,
12007 _("expression too complex"));
12008
12009 if (shift_amount != 0)
12010 {
12011 constraint (shift_amount > 31,
12012 _("shift expression is too large"));
12013
12014 if (inst.operands[3].shift_kind == SHIFT_ASR)
12015 inst.instruction |= 0x00200000; /* sh bit. */
12016
12017 inst.instruction |= (shift_amount & 0x1c) << 10;
12018 inst.instruction |= (shift_amount & 0x03) << 6;
12019 }
12020 }
12021 }
12022
12023 static void
12024 do_t_ssat (void)
12025 {
12026 do_t_ssat_usat (1);
12027 }
12028
12029 static void
12030 do_t_ssat16 (void)
12031 {
12032 unsigned Rd, Rn;
12033
12034 Rd = inst.operands[0].reg;
12035 Rn = inst.operands[2].reg;
12036
12037 reject_bad_reg (Rd);
12038 reject_bad_reg (Rn);
12039
12040 inst.instruction |= Rd << 8;
12041 inst.instruction |= inst.operands[1].imm - 1;
12042 inst.instruction |= Rn << 16;
12043 }
12044
12045 static void
12046 do_t_strex (void)
12047 {
12048 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
12049 || inst.operands[2].postind || inst.operands[2].writeback
12050 || inst.operands[2].immisreg || inst.operands[2].shifted
12051 || inst.operands[2].negative,
12052 BAD_ADDR_MODE);
12053
12054 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
12055
12056 inst.instruction |= inst.operands[0].reg << 8;
12057 inst.instruction |= inst.operands[1].reg << 12;
12058 inst.instruction |= inst.operands[2].reg << 16;
12059 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
12060 }
12061
12062 static void
12063 do_t_strexd (void)
12064 {
12065 if (!inst.operands[2].present)
12066 inst.operands[2].reg = inst.operands[1].reg + 1;
12067
12068 constraint (inst.operands[0].reg == inst.operands[1].reg
12069 || inst.operands[0].reg == inst.operands[2].reg
12070 || inst.operands[0].reg == inst.operands[3].reg,
12071 BAD_OVERLAP);
12072
12073 inst.instruction |= inst.operands[0].reg;
12074 inst.instruction |= inst.operands[1].reg << 12;
12075 inst.instruction |= inst.operands[2].reg << 8;
12076 inst.instruction |= inst.operands[3].reg << 16;
12077 }
12078
12079 static void
12080 do_t_sxtah (void)
12081 {
12082 unsigned Rd, Rn, Rm;
12083
12084 Rd = inst.operands[0].reg;
12085 Rn = inst.operands[1].reg;
12086 Rm = inst.operands[2].reg;
12087
12088 reject_bad_reg (Rd);
12089 reject_bad_reg (Rn);
12090 reject_bad_reg (Rm);
12091
12092 inst.instruction |= Rd << 8;
12093 inst.instruction |= Rn << 16;
12094 inst.instruction |= Rm;
12095 inst.instruction |= inst.operands[3].imm << 4;
12096 }
12097
12098 static void
12099 do_t_sxth (void)
12100 {
12101 unsigned Rd, Rm;
12102
12103 Rd = inst.operands[0].reg;
12104 Rm = inst.operands[1].reg;
12105
12106 reject_bad_reg (Rd);
12107 reject_bad_reg (Rm);
12108
12109 if (inst.instruction <= 0xffff
12110 && inst.size_req != 4
12111 && Rd <= 7 && Rm <= 7
12112 && (!inst.operands[2].present || inst.operands[2].imm == 0))
12113 {
12114 inst.instruction = THUMB_OP16 (inst.instruction);
12115 inst.instruction |= Rd;
12116 inst.instruction |= Rm << 3;
12117 }
12118 else if (unified_syntax)
12119 {
12120 if (inst.instruction <= 0xffff)
12121 inst.instruction = THUMB_OP32 (inst.instruction);
12122 inst.instruction |= Rd << 8;
12123 inst.instruction |= Rm;
12124 inst.instruction |= inst.operands[2].imm << 4;
12125 }
12126 else
12127 {
12128 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
12129 _("Thumb encoding does not support rotation"));
12130 constraint (1, BAD_HIREG);
12131 }
12132 }
12133
12134 static void
12135 do_t_swi (void)
12136 {
12137 /* We have to do the following check manually as ARM_EXT_OS only applies
12138 to ARM_EXT_V6M. */
12139 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
12140 {
12141 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
12142 /* This only applies to the v6m howver, not later architectures. */
12143 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
12144 as_bad (_("SVC is not permitted on this architecture"));
12145 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
12146 }
12147
12148 inst.reloc.type = BFD_RELOC_ARM_SWI;
12149 }
12150
12151 static void
12152 do_t_tb (void)
12153 {
12154 unsigned Rn, Rm;
12155 int half;
12156
12157 half = (inst.instruction & 0x10) != 0;
12158 set_it_insn_type_last ();
12159 constraint (inst.operands[0].immisreg,
12160 _("instruction requires register index"));
12161
12162 Rn = inst.operands[0].reg;
12163 Rm = inst.operands[0].imm;
12164
12165 constraint (Rn == REG_SP, BAD_SP);
12166 reject_bad_reg (Rm);
12167
12168 constraint (!half && inst.operands[0].shifted,
12169 _("instruction does not allow shifted index"));
12170 inst.instruction |= (Rn << 16) | Rm;
12171 }
12172
12173 static void
12174 do_t_usat (void)
12175 {
12176 do_t_ssat_usat (0);
12177 }
12178
12179 static void
12180 do_t_usat16 (void)
12181 {
12182 unsigned Rd, Rn;
12183
12184 Rd = inst.operands[0].reg;
12185 Rn = inst.operands[2].reg;
12186
12187 reject_bad_reg (Rd);
12188 reject_bad_reg (Rn);
12189
12190 inst.instruction |= Rd << 8;
12191 inst.instruction |= inst.operands[1].imm;
12192 inst.instruction |= Rn << 16;
12193 }
12194
12195 /* Neon instruction encoder helpers. */
12196
12197 /* Encodings for the different types for various Neon opcodes. */
12198
12199 /* An "invalid" code for the following tables. */
12200 #define N_INV -1u
12201
12202 struct neon_tab_entry
12203 {
12204 unsigned integer;
12205 unsigned float_or_poly;
12206 unsigned scalar_or_imm;
12207 };
12208
12209 /* Map overloaded Neon opcodes to their respective encodings. */
12210 #define NEON_ENC_TAB \
12211 X(vabd, 0x0000700, 0x1200d00, N_INV), \
12212 X(vmax, 0x0000600, 0x0000f00, N_INV), \
12213 X(vmin, 0x0000610, 0x0200f00, N_INV), \
12214 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
12215 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
12216 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
12217 X(vadd, 0x0000800, 0x0000d00, N_INV), \
12218 X(vsub, 0x1000800, 0x0200d00, N_INV), \
12219 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
12220 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
12221 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
12222 /* Register variants of the following two instructions are encoded as
12223 vcge / vcgt with the operands reversed. */ \
12224 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
12225 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
12226 X(vfma, N_INV, 0x0000c10, N_INV), \
12227 X(vfms, N_INV, 0x0200c10, N_INV), \
12228 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
12229 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
12230 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
12231 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
12232 X(vmlal, 0x0800800, N_INV, 0x0800240), \
12233 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
12234 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
12235 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
12236 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
12237 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
12238 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
12239 X(vshl, 0x0000400, N_INV, 0x0800510), \
12240 X(vqshl, 0x0000410, N_INV, 0x0800710), \
12241 X(vand, 0x0000110, N_INV, 0x0800030), \
12242 X(vbic, 0x0100110, N_INV, 0x0800030), \
12243 X(veor, 0x1000110, N_INV, N_INV), \
12244 X(vorn, 0x0300110, N_INV, 0x0800010), \
12245 X(vorr, 0x0200110, N_INV, 0x0800010), \
12246 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
12247 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
12248 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
12249 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
12250 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
12251 X(vst1, 0x0000000, 0x0800000, N_INV), \
12252 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
12253 X(vst2, 0x0000100, 0x0800100, N_INV), \
12254 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
12255 X(vst3, 0x0000200, 0x0800200, N_INV), \
12256 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
12257 X(vst4, 0x0000300, 0x0800300, N_INV), \
12258 X(vmovn, 0x1b20200, N_INV, N_INV), \
12259 X(vtrn, 0x1b20080, N_INV, N_INV), \
12260 X(vqmovn, 0x1b20200, N_INV, N_INV), \
12261 X(vqmovun, 0x1b20240, N_INV, N_INV), \
12262 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
12263 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
12264 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
12265 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
12266 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
12267 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
12268 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
12269 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
12270 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
12271
12272 enum neon_opc
12273 {
12274 #define X(OPC,I,F,S) N_MNEM_##OPC
12275 NEON_ENC_TAB
12276 #undef X
12277 };
12278
12279 static const struct neon_tab_entry neon_enc_tab[] =
12280 {
12281 #define X(OPC,I,F,S) { (I), (F), (S) }
12282 NEON_ENC_TAB
12283 #undef X
12284 };
12285
12286 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
12287 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12288 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12289 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12290 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12291 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12292 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12293 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12294 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12295 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12296 #define NEON_ENC_SINGLE_(X) \
12297 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
12298 #define NEON_ENC_DOUBLE_(X) \
12299 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
12300
12301 #define NEON_ENCODE(type, inst) \
12302 do \
12303 { \
12304 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
12305 inst.is_neon = 1; \
12306 } \
12307 while (0)
12308
12309 #define check_neon_suffixes \
12310 do \
12311 { \
12312 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12313 { \
12314 as_bad (_("invalid neon suffix for non neon instruction")); \
12315 return; \
12316 } \
12317 } \
12318 while (0)
12319
12320 /* Define shapes for instruction operands. The following mnemonic characters
12321 are used in this table:
12322
12323 F - VFP S<n> register
12324 D - Neon D<n> register
12325 Q - Neon Q<n> register
12326 I - Immediate
12327 S - Scalar
12328 R - ARM register
12329 L - D<n> register list
12330
12331 This table is used to generate various data:
12332 - enumerations of the form NS_DDR to be used as arguments to
12333 neon_select_shape.
12334 - a table classifying shapes into single, double, quad, mixed.
12335 - a table used to drive neon_select_shape. */
12336
12337 #define NEON_SHAPE_DEF \
12338 X(3, (D, D, D), DOUBLE), \
12339 X(3, (Q, Q, Q), QUAD), \
12340 X(3, (D, D, I), DOUBLE), \
12341 X(3, (Q, Q, I), QUAD), \
12342 X(3, (D, D, S), DOUBLE), \
12343 X(3, (Q, Q, S), QUAD), \
12344 X(2, (D, D), DOUBLE), \
12345 X(2, (Q, Q), QUAD), \
12346 X(2, (D, S), DOUBLE), \
12347 X(2, (Q, S), QUAD), \
12348 X(2, (D, R), DOUBLE), \
12349 X(2, (Q, R), QUAD), \
12350 X(2, (D, I), DOUBLE), \
12351 X(2, (Q, I), QUAD), \
12352 X(3, (D, L, D), DOUBLE), \
12353 X(2, (D, Q), MIXED), \
12354 X(2, (Q, D), MIXED), \
12355 X(3, (D, Q, I), MIXED), \
12356 X(3, (Q, D, I), MIXED), \
12357 X(3, (Q, D, D), MIXED), \
12358 X(3, (D, Q, Q), MIXED), \
12359 X(3, (Q, Q, D), MIXED), \
12360 X(3, (Q, D, S), MIXED), \
12361 X(3, (D, Q, S), MIXED), \
12362 X(4, (D, D, D, I), DOUBLE), \
12363 X(4, (Q, Q, Q, I), QUAD), \
12364 X(2, (F, F), SINGLE), \
12365 X(3, (F, F, F), SINGLE), \
12366 X(2, (F, I), SINGLE), \
12367 X(2, (F, D), MIXED), \
12368 X(2, (D, F), MIXED), \
12369 X(3, (F, F, I), MIXED), \
12370 X(4, (R, R, F, F), SINGLE), \
12371 X(4, (F, F, R, R), SINGLE), \
12372 X(3, (D, R, R), DOUBLE), \
12373 X(3, (R, R, D), DOUBLE), \
12374 X(2, (S, R), SINGLE), \
12375 X(2, (R, S), SINGLE), \
12376 X(2, (F, R), SINGLE), \
12377 X(2, (R, F), SINGLE)
12378
12379 #define S2(A,B) NS_##A##B
12380 #define S3(A,B,C) NS_##A##B##C
12381 #define S4(A,B,C,D) NS_##A##B##C##D
12382
12383 #define X(N, L, C) S##N L
12384
12385 enum neon_shape
12386 {
12387 NEON_SHAPE_DEF,
12388 NS_NULL
12389 };
12390
12391 #undef X
12392 #undef S2
12393 #undef S3
12394 #undef S4
12395
12396 enum neon_shape_class
12397 {
12398 SC_SINGLE,
12399 SC_DOUBLE,
12400 SC_QUAD,
12401 SC_MIXED
12402 };
12403
12404 #define X(N, L, C) SC_##C
12405
12406 static enum neon_shape_class neon_shape_class[] =
12407 {
12408 NEON_SHAPE_DEF
12409 };
12410
12411 #undef X
12412
12413 enum neon_shape_el
12414 {
12415 SE_F,
12416 SE_D,
12417 SE_Q,
12418 SE_I,
12419 SE_S,
12420 SE_R,
12421 SE_L
12422 };
12423
12424 /* Register widths of above. */
12425 static unsigned neon_shape_el_size[] =
12426 {
12427 32,
12428 64,
12429 128,
12430 0,
12431 32,
12432 32,
12433 0
12434 };
12435
12436 struct neon_shape_info
12437 {
12438 unsigned els;
12439 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12440 };
12441
12442 #define S2(A,B) { SE_##A, SE_##B }
12443 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12444 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12445
12446 #define X(N, L, C) { N, S##N L }
12447
12448 static struct neon_shape_info neon_shape_tab[] =
12449 {
12450 NEON_SHAPE_DEF
12451 };
12452
12453 #undef X
12454 #undef S2
12455 #undef S3
12456 #undef S4
12457
12458 /* Bit masks used in type checking given instructions.
12459 'N_EQK' means the type must be the same as (or based on in some way) the key
12460 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12461 set, various other bits can be set as well in order to modify the meaning of
12462 the type constraint. */
12463
12464 enum neon_type_mask
12465 {
12466 N_S8 = 0x0000001,
12467 N_S16 = 0x0000002,
12468 N_S32 = 0x0000004,
12469 N_S64 = 0x0000008,
12470 N_U8 = 0x0000010,
12471 N_U16 = 0x0000020,
12472 N_U32 = 0x0000040,
12473 N_U64 = 0x0000080,
12474 N_I8 = 0x0000100,
12475 N_I16 = 0x0000200,
12476 N_I32 = 0x0000400,
12477 N_I64 = 0x0000800,
12478 N_8 = 0x0001000,
12479 N_16 = 0x0002000,
12480 N_32 = 0x0004000,
12481 N_64 = 0x0008000,
12482 N_P8 = 0x0010000,
12483 N_P16 = 0x0020000,
12484 N_F16 = 0x0040000,
12485 N_F32 = 0x0080000,
12486 N_F64 = 0x0100000,
12487 N_KEY = 0x1000000, /* Key element (main type specifier). */
12488 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
12489 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
12490 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12491 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12492 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12493 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12494 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12495 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12496 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
12497 N_UTYP = 0,
12498 N_MAX_NONSPECIAL = N_F64
12499 };
12500
12501 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12502
12503 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12504 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12505 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12506 #define N_SUF_32 (N_SU_32 | N_F32)
12507 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12508 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12509
12510 /* Pass this as the first type argument to neon_check_type to ignore types
12511 altogether. */
12512 #define N_IGNORE_TYPE (N_KEY | N_EQK)
12513
12514 /* Select a "shape" for the current instruction (describing register types or
12515 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12516 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12517 function of operand parsing, so this function doesn't need to be called.
12518 Shapes should be listed in order of decreasing length. */
12519
12520 static enum neon_shape
12521 neon_select_shape (enum neon_shape shape, ...)
12522 {
12523 va_list ap;
12524 enum neon_shape first_shape = shape;
12525
12526 /* Fix missing optional operands. FIXME: we don't know at this point how
12527 many arguments we should have, so this makes the assumption that we have
12528 > 1. This is true of all current Neon opcodes, I think, but may not be
12529 true in the future. */
12530 if (!inst.operands[1].present)
12531 inst.operands[1] = inst.operands[0];
12532
12533 va_start (ap, shape);
12534
12535 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
12536 {
12537 unsigned j;
12538 int matches = 1;
12539
12540 for (j = 0; j < neon_shape_tab[shape].els; j++)
12541 {
12542 if (!inst.operands[j].present)
12543 {
12544 matches = 0;
12545 break;
12546 }
12547
12548 switch (neon_shape_tab[shape].el[j])
12549 {
12550 case SE_F:
12551 if (!(inst.operands[j].isreg
12552 && inst.operands[j].isvec
12553 && inst.operands[j].issingle
12554 && !inst.operands[j].isquad))
12555 matches = 0;
12556 break;
12557
12558 case SE_D:
12559 if (!(inst.operands[j].isreg
12560 && inst.operands[j].isvec
12561 && !inst.operands[j].isquad
12562 && !inst.operands[j].issingle))
12563 matches = 0;
12564 break;
12565
12566 case SE_R:
12567 if (!(inst.operands[j].isreg
12568 && !inst.operands[j].isvec))
12569 matches = 0;
12570 break;
12571
12572 case SE_Q:
12573 if (!(inst.operands[j].isreg
12574 && inst.operands[j].isvec
12575 && inst.operands[j].isquad
12576 && !inst.operands[j].issingle))
12577 matches = 0;
12578 break;
12579
12580 case SE_I:
12581 if (!(!inst.operands[j].isreg
12582 && !inst.operands[j].isscalar))
12583 matches = 0;
12584 break;
12585
12586 case SE_S:
12587 if (!(!inst.operands[j].isreg
12588 && inst.operands[j].isscalar))
12589 matches = 0;
12590 break;
12591
12592 case SE_L:
12593 break;
12594 }
12595 if (!matches)
12596 break;
12597 }
12598 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
12599 /* We've matched all the entries in the shape table, and we don't
12600 have any left over operands which have not been matched. */
12601 break;
12602 }
12603
12604 va_end (ap);
12605
12606 if (shape == NS_NULL && first_shape != NS_NULL)
12607 first_error (_("invalid instruction shape"));
12608
12609 return shape;
12610 }
12611
12612 /* True if SHAPE is predominantly a quadword operation (most of the time, this
12613 means the Q bit should be set). */
12614
12615 static int
12616 neon_quad (enum neon_shape shape)
12617 {
12618 return neon_shape_class[shape] == SC_QUAD;
12619 }
12620
12621 static void
12622 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12623 unsigned *g_size)
12624 {
12625 /* Allow modification to be made to types which are constrained to be
12626 based on the key element, based on bits set alongside N_EQK. */
12627 if ((typebits & N_EQK) != 0)
12628 {
12629 if ((typebits & N_HLF) != 0)
12630 *g_size /= 2;
12631 else if ((typebits & N_DBL) != 0)
12632 *g_size *= 2;
12633 if ((typebits & N_SGN) != 0)
12634 *g_type = NT_signed;
12635 else if ((typebits & N_UNS) != 0)
12636 *g_type = NT_unsigned;
12637 else if ((typebits & N_INT) != 0)
12638 *g_type = NT_integer;
12639 else if ((typebits & N_FLT) != 0)
12640 *g_type = NT_float;
12641 else if ((typebits & N_SIZ) != 0)
12642 *g_type = NT_untyped;
12643 }
12644 }
12645
12646 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12647 operand type, i.e. the single type specified in a Neon instruction when it
12648 is the only one given. */
12649
12650 static struct neon_type_el
12651 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12652 {
12653 struct neon_type_el dest = *key;
12654
12655 gas_assert ((thisarg & N_EQK) != 0);
12656
12657 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12658
12659 return dest;
12660 }
12661
12662 /* Convert Neon type and size into compact bitmask representation. */
12663
12664 static enum neon_type_mask
12665 type_chk_of_el_type (enum neon_el_type type, unsigned size)
12666 {
12667 switch (type)
12668 {
12669 case NT_untyped:
12670 switch (size)
12671 {
12672 case 8: return N_8;
12673 case 16: return N_16;
12674 case 32: return N_32;
12675 case 64: return N_64;
12676 default: ;
12677 }
12678 break;
12679
12680 case NT_integer:
12681 switch (size)
12682 {
12683 case 8: return N_I8;
12684 case 16: return N_I16;
12685 case 32: return N_I32;
12686 case 64: return N_I64;
12687 default: ;
12688 }
12689 break;
12690
12691 case NT_float:
12692 switch (size)
12693 {
12694 case 16: return N_F16;
12695 case 32: return N_F32;
12696 case 64: return N_F64;
12697 default: ;
12698 }
12699 break;
12700
12701 case NT_poly:
12702 switch (size)
12703 {
12704 case 8: return N_P8;
12705 case 16: return N_P16;
12706 default: ;
12707 }
12708 break;
12709
12710 case NT_signed:
12711 switch (size)
12712 {
12713 case 8: return N_S8;
12714 case 16: return N_S16;
12715 case 32: return N_S32;
12716 case 64: return N_S64;
12717 default: ;
12718 }
12719 break;
12720
12721 case NT_unsigned:
12722 switch (size)
12723 {
12724 case 8: return N_U8;
12725 case 16: return N_U16;
12726 case 32: return N_U32;
12727 case 64: return N_U64;
12728 default: ;
12729 }
12730 break;
12731
12732 default: ;
12733 }
12734
12735 return N_UTYP;
12736 }
12737
12738 /* Convert compact Neon bitmask type representation to a type and size. Only
12739 handles the case where a single bit is set in the mask. */
12740
12741 static int
12742 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12743 enum neon_type_mask mask)
12744 {
12745 if ((mask & N_EQK) != 0)
12746 return FAIL;
12747
12748 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12749 *size = 8;
12750 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
12751 *size = 16;
12752 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
12753 *size = 32;
12754 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
12755 *size = 64;
12756 else
12757 return FAIL;
12758
12759 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12760 *type = NT_signed;
12761 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
12762 *type = NT_unsigned;
12763 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
12764 *type = NT_integer;
12765 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
12766 *type = NT_untyped;
12767 else if ((mask & (N_P8 | N_P16)) != 0)
12768 *type = NT_poly;
12769 else if ((mask & (N_F32 | N_F64)) != 0)
12770 *type = NT_float;
12771 else
12772 return FAIL;
12773
12774 return SUCCESS;
12775 }
12776
12777 /* Modify a bitmask of allowed types. This is only needed for type
12778 relaxation. */
12779
12780 static unsigned
12781 modify_types_allowed (unsigned allowed, unsigned mods)
12782 {
12783 unsigned size;
12784 enum neon_el_type type;
12785 unsigned destmask;
12786 int i;
12787
12788 destmask = 0;
12789
12790 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12791 {
12792 if (el_type_of_type_chk (&type, &size,
12793 (enum neon_type_mask) (allowed & i)) == SUCCESS)
12794 {
12795 neon_modify_type_size (mods, &type, &size);
12796 destmask |= type_chk_of_el_type (type, size);
12797 }
12798 }
12799
12800 return destmask;
12801 }
12802
12803 /* Check type and return type classification.
12804 The manual states (paraphrase): If one datatype is given, it indicates the
12805 type given in:
12806 - the second operand, if there is one
12807 - the operand, if there is no second operand
12808 - the result, if there are no operands.
12809 This isn't quite good enough though, so we use a concept of a "key" datatype
12810 which is set on a per-instruction basis, which is the one which matters when
12811 only one data type is written.
12812 Note: this function has side-effects (e.g. filling in missing operands). All
12813 Neon instructions should call it before performing bit encoding. */
12814
12815 static struct neon_type_el
12816 neon_check_type (unsigned els, enum neon_shape ns, ...)
12817 {
12818 va_list ap;
12819 unsigned i, pass, key_el = 0;
12820 unsigned types[NEON_MAX_TYPE_ELS];
12821 enum neon_el_type k_type = NT_invtype;
12822 unsigned k_size = -1u;
12823 struct neon_type_el badtype = {NT_invtype, -1};
12824 unsigned key_allowed = 0;
12825
12826 /* Optional registers in Neon instructions are always (not) in operand 1.
12827 Fill in the missing operand here, if it was omitted. */
12828 if (els > 1 && !inst.operands[1].present)
12829 inst.operands[1] = inst.operands[0];
12830
12831 /* Suck up all the varargs. */
12832 va_start (ap, ns);
12833 for (i = 0; i < els; i++)
12834 {
12835 unsigned thisarg = va_arg (ap, unsigned);
12836 if (thisarg == N_IGNORE_TYPE)
12837 {
12838 va_end (ap);
12839 return badtype;
12840 }
12841 types[i] = thisarg;
12842 if ((thisarg & N_KEY) != 0)
12843 key_el = i;
12844 }
12845 va_end (ap);
12846
12847 if (inst.vectype.elems > 0)
12848 for (i = 0; i < els; i++)
12849 if (inst.operands[i].vectype.type != NT_invtype)
12850 {
12851 first_error (_("types specified in both the mnemonic and operands"));
12852 return badtype;
12853 }
12854
12855 /* Duplicate inst.vectype elements here as necessary.
12856 FIXME: No idea if this is exactly the same as the ARM assembler,
12857 particularly when an insn takes one register and one non-register
12858 operand. */
12859 if (inst.vectype.elems == 1 && els > 1)
12860 {
12861 unsigned j;
12862 inst.vectype.elems = els;
12863 inst.vectype.el[key_el] = inst.vectype.el[0];
12864 for (j = 0; j < els; j++)
12865 if (j != key_el)
12866 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12867 types[j]);
12868 }
12869 else if (inst.vectype.elems == 0 && els > 0)
12870 {
12871 unsigned j;
12872 /* No types were given after the mnemonic, so look for types specified
12873 after each operand. We allow some flexibility here; as long as the
12874 "key" operand has a type, we can infer the others. */
12875 for (j = 0; j < els; j++)
12876 if (inst.operands[j].vectype.type != NT_invtype)
12877 inst.vectype.el[j] = inst.operands[j].vectype;
12878
12879 if (inst.operands[key_el].vectype.type != NT_invtype)
12880 {
12881 for (j = 0; j < els; j++)
12882 if (inst.operands[j].vectype.type == NT_invtype)
12883 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12884 types[j]);
12885 }
12886 else
12887 {
12888 first_error (_("operand types can't be inferred"));
12889 return badtype;
12890 }
12891 }
12892 else if (inst.vectype.elems != els)
12893 {
12894 first_error (_("type specifier has the wrong number of parts"));
12895 return badtype;
12896 }
12897
12898 for (pass = 0; pass < 2; pass++)
12899 {
12900 for (i = 0; i < els; i++)
12901 {
12902 unsigned thisarg = types[i];
12903 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12904 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12905 enum neon_el_type g_type = inst.vectype.el[i].type;
12906 unsigned g_size = inst.vectype.el[i].size;
12907
12908 /* Decay more-specific signed & unsigned types to sign-insensitive
12909 integer types if sign-specific variants are unavailable. */
12910 if ((g_type == NT_signed || g_type == NT_unsigned)
12911 && (types_allowed & N_SU_ALL) == 0)
12912 g_type = NT_integer;
12913
12914 /* If only untyped args are allowed, decay any more specific types to
12915 them. Some instructions only care about signs for some element
12916 sizes, so handle that properly. */
12917 if ((g_size == 8 && (types_allowed & N_8) != 0)
12918 || (g_size == 16 && (types_allowed & N_16) != 0)
12919 || (g_size == 32 && (types_allowed & N_32) != 0)
12920 || (g_size == 64 && (types_allowed & N_64) != 0))
12921 g_type = NT_untyped;
12922
12923 if (pass == 0)
12924 {
12925 if ((thisarg & N_KEY) != 0)
12926 {
12927 k_type = g_type;
12928 k_size = g_size;
12929 key_allowed = thisarg & ~N_KEY;
12930 }
12931 }
12932 else
12933 {
12934 if ((thisarg & N_VFP) != 0)
12935 {
12936 enum neon_shape_el regshape;
12937 unsigned regwidth, match;
12938
12939 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12940 if (ns == NS_NULL)
12941 {
12942 first_error (_("invalid instruction shape"));
12943 return badtype;
12944 }
12945 regshape = neon_shape_tab[ns].el[i];
12946 regwidth = neon_shape_el_size[regshape];
12947
12948 /* In VFP mode, operands must match register widths. If we
12949 have a key operand, use its width, else use the width of
12950 the current operand. */
12951 if (k_size != -1u)
12952 match = k_size;
12953 else
12954 match = g_size;
12955
12956 if (regwidth != match)
12957 {
12958 first_error (_("operand size must match register width"));
12959 return badtype;
12960 }
12961 }
12962
12963 if ((thisarg & N_EQK) == 0)
12964 {
12965 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12966
12967 if ((given_type & types_allowed) == 0)
12968 {
12969 first_error (_("bad type in Neon instruction"));
12970 return badtype;
12971 }
12972 }
12973 else
12974 {
12975 enum neon_el_type mod_k_type = k_type;
12976 unsigned mod_k_size = k_size;
12977 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12978 if (g_type != mod_k_type || g_size != mod_k_size)
12979 {
12980 first_error (_("inconsistent types in Neon instruction"));
12981 return badtype;
12982 }
12983 }
12984 }
12985 }
12986 }
12987
12988 return inst.vectype.el[key_el];
12989 }
12990
12991 /* Neon-style VFP instruction forwarding. */
12992
12993 /* Thumb VFP instructions have 0xE in the condition field. */
12994
12995 static void
12996 do_vfp_cond_or_thumb (void)
12997 {
12998 inst.is_neon = 1;
12999
13000 if (thumb_mode)
13001 inst.instruction |= 0xe0000000;
13002 else
13003 inst.instruction |= inst.cond << 28;
13004 }
13005
13006 /* Look up and encode a simple mnemonic, for use as a helper function for the
13007 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
13008 etc. It is assumed that operand parsing has already been done, and that the
13009 operands are in the form expected by the given opcode (this isn't necessarily
13010 the same as the form in which they were parsed, hence some massaging must
13011 take place before this function is called).
13012 Checks current arch version against that in the looked-up opcode. */
13013
13014 static void
13015 do_vfp_nsyn_opcode (const char *opname)
13016 {
13017 const struct asm_opcode *opcode;
13018
13019 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
13020
13021 if (!opcode)
13022 abort ();
13023
13024 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
13025 thumb_mode ? *opcode->tvariant : *opcode->avariant),
13026 _(BAD_FPU));
13027
13028 inst.is_neon = 1;
13029
13030 if (thumb_mode)
13031 {
13032 inst.instruction = opcode->tvalue;
13033 opcode->tencode ();
13034 }
13035 else
13036 {
13037 inst.instruction = (inst.cond << 28) | opcode->avalue;
13038 opcode->aencode ();
13039 }
13040 }
13041
13042 static void
13043 do_vfp_nsyn_add_sub (enum neon_shape rs)
13044 {
13045 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
13046
13047 if (rs == NS_FFF)
13048 {
13049 if (is_add)
13050 do_vfp_nsyn_opcode ("fadds");
13051 else
13052 do_vfp_nsyn_opcode ("fsubs");
13053 }
13054 else
13055 {
13056 if (is_add)
13057 do_vfp_nsyn_opcode ("faddd");
13058 else
13059 do_vfp_nsyn_opcode ("fsubd");
13060 }
13061 }
13062
13063 /* Check operand types to see if this is a VFP instruction, and if so call
13064 PFN (). */
13065
13066 static int
13067 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
13068 {
13069 enum neon_shape rs;
13070 struct neon_type_el et;
13071
13072 switch (args)
13073 {
13074 case 2:
13075 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13076 et = neon_check_type (2, rs,
13077 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13078 break;
13079
13080 case 3:
13081 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13082 et = neon_check_type (3, rs,
13083 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13084 break;
13085
13086 default:
13087 abort ();
13088 }
13089
13090 if (et.type != NT_invtype)
13091 {
13092 pfn (rs);
13093 return SUCCESS;
13094 }
13095
13096 inst.error = NULL;
13097 return FAIL;
13098 }
13099
13100 static void
13101 do_vfp_nsyn_mla_mls (enum neon_shape rs)
13102 {
13103 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
13104
13105 if (rs == NS_FFF)
13106 {
13107 if (is_mla)
13108 do_vfp_nsyn_opcode ("fmacs");
13109 else
13110 do_vfp_nsyn_opcode ("fnmacs");
13111 }
13112 else
13113 {
13114 if (is_mla)
13115 do_vfp_nsyn_opcode ("fmacd");
13116 else
13117 do_vfp_nsyn_opcode ("fnmacd");
13118 }
13119 }
13120
13121 static void
13122 do_vfp_nsyn_fma_fms (enum neon_shape rs)
13123 {
13124 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
13125
13126 if (rs == NS_FFF)
13127 {
13128 if (is_fma)
13129 do_vfp_nsyn_opcode ("ffmas");
13130 else
13131 do_vfp_nsyn_opcode ("ffnmas");
13132 }
13133 else
13134 {
13135 if (is_fma)
13136 do_vfp_nsyn_opcode ("ffmad");
13137 else
13138 do_vfp_nsyn_opcode ("ffnmad");
13139 }
13140 }
13141
13142 static void
13143 do_vfp_nsyn_mul (enum neon_shape rs)
13144 {
13145 if (rs == NS_FFF)
13146 do_vfp_nsyn_opcode ("fmuls");
13147 else
13148 do_vfp_nsyn_opcode ("fmuld");
13149 }
13150
13151 static void
13152 do_vfp_nsyn_abs_neg (enum neon_shape rs)
13153 {
13154 int is_neg = (inst.instruction & 0x80) != 0;
13155 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
13156
13157 if (rs == NS_FF)
13158 {
13159 if (is_neg)
13160 do_vfp_nsyn_opcode ("fnegs");
13161 else
13162 do_vfp_nsyn_opcode ("fabss");
13163 }
13164 else
13165 {
13166 if (is_neg)
13167 do_vfp_nsyn_opcode ("fnegd");
13168 else
13169 do_vfp_nsyn_opcode ("fabsd");
13170 }
13171 }
13172
13173 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
13174 insns belong to Neon, and are handled elsewhere. */
13175
13176 static void
13177 do_vfp_nsyn_ldm_stm (int is_dbmode)
13178 {
13179 int is_ldm = (inst.instruction & (1 << 20)) != 0;
13180 if (is_ldm)
13181 {
13182 if (is_dbmode)
13183 do_vfp_nsyn_opcode ("fldmdbs");
13184 else
13185 do_vfp_nsyn_opcode ("fldmias");
13186 }
13187 else
13188 {
13189 if (is_dbmode)
13190 do_vfp_nsyn_opcode ("fstmdbs");
13191 else
13192 do_vfp_nsyn_opcode ("fstmias");
13193 }
13194 }
13195
13196 static void
13197 do_vfp_nsyn_sqrt (void)
13198 {
13199 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13200 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13201
13202 if (rs == NS_FF)
13203 do_vfp_nsyn_opcode ("fsqrts");
13204 else
13205 do_vfp_nsyn_opcode ("fsqrtd");
13206 }
13207
13208 static void
13209 do_vfp_nsyn_div (void)
13210 {
13211 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13212 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13213 N_F32 | N_F64 | N_KEY | N_VFP);
13214
13215 if (rs == NS_FFF)
13216 do_vfp_nsyn_opcode ("fdivs");
13217 else
13218 do_vfp_nsyn_opcode ("fdivd");
13219 }
13220
13221 static void
13222 do_vfp_nsyn_nmul (void)
13223 {
13224 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13225 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13226 N_F32 | N_F64 | N_KEY | N_VFP);
13227
13228 if (rs == NS_FFF)
13229 {
13230 NEON_ENCODE (SINGLE, inst);
13231 do_vfp_sp_dyadic ();
13232 }
13233 else
13234 {
13235 NEON_ENCODE (DOUBLE, inst);
13236 do_vfp_dp_rd_rn_rm ();
13237 }
13238 do_vfp_cond_or_thumb ();
13239 }
13240
13241 static void
13242 do_vfp_nsyn_cmp (void)
13243 {
13244 if (inst.operands[1].isreg)
13245 {
13246 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13247 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13248
13249 if (rs == NS_FF)
13250 {
13251 NEON_ENCODE (SINGLE, inst);
13252 do_vfp_sp_monadic ();
13253 }
13254 else
13255 {
13256 NEON_ENCODE (DOUBLE, inst);
13257 do_vfp_dp_rd_rm ();
13258 }
13259 }
13260 else
13261 {
13262 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
13263 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
13264
13265 switch (inst.instruction & 0x0fffffff)
13266 {
13267 case N_MNEM_vcmp:
13268 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
13269 break;
13270 case N_MNEM_vcmpe:
13271 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
13272 break;
13273 default:
13274 abort ();
13275 }
13276
13277 if (rs == NS_FI)
13278 {
13279 NEON_ENCODE (SINGLE, inst);
13280 do_vfp_sp_compare_z ();
13281 }
13282 else
13283 {
13284 NEON_ENCODE (DOUBLE, inst);
13285 do_vfp_dp_rd ();
13286 }
13287 }
13288 do_vfp_cond_or_thumb ();
13289 }
13290
13291 static void
13292 nsyn_insert_sp (void)
13293 {
13294 inst.operands[1] = inst.operands[0];
13295 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
13296 inst.operands[0].reg = REG_SP;
13297 inst.operands[0].isreg = 1;
13298 inst.operands[0].writeback = 1;
13299 inst.operands[0].present = 1;
13300 }
13301
13302 static void
13303 do_vfp_nsyn_push (void)
13304 {
13305 nsyn_insert_sp ();
13306 if (inst.operands[1].issingle)
13307 do_vfp_nsyn_opcode ("fstmdbs");
13308 else
13309 do_vfp_nsyn_opcode ("fstmdbd");
13310 }
13311
13312 static void
13313 do_vfp_nsyn_pop (void)
13314 {
13315 nsyn_insert_sp ();
13316 if (inst.operands[1].issingle)
13317 do_vfp_nsyn_opcode ("fldmias");
13318 else
13319 do_vfp_nsyn_opcode ("fldmiad");
13320 }
13321
13322 /* Fix up Neon data-processing instructions, ORing in the correct bits for
13323 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13324
13325 static void
13326 neon_dp_fixup (struct arm_it* insn)
13327 {
13328 unsigned int i = insn->instruction;
13329 insn->is_neon = 1;
13330
13331 if (thumb_mode)
13332 {
13333 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13334 if (i & (1 << 24))
13335 i |= 1 << 28;
13336
13337 i &= ~(1 << 24);
13338
13339 i |= 0xef000000;
13340 }
13341 else
13342 i |= 0xf2000000;
13343
13344 insn->instruction = i;
13345 }
13346
13347 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
13348 (0, 1, 2, 3). */
13349
13350 static unsigned
13351 neon_logbits (unsigned x)
13352 {
13353 return ffs (x) - 4;
13354 }
13355
13356 #define LOW4(R) ((R) & 0xf)
13357 #define HI1(R) (((R) >> 4) & 1)
13358
13359 /* Encode insns with bit pattern:
13360
13361 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13362 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
13363
13364 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13365 different meaning for some instruction. */
13366
13367 static void
13368 neon_three_same (int isquad, int ubit, int size)
13369 {
13370 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13371 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13372 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13373 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13374 inst.instruction |= LOW4 (inst.operands[2].reg);
13375 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13376 inst.instruction |= (isquad != 0) << 6;
13377 inst.instruction |= (ubit != 0) << 24;
13378 if (size != -1)
13379 inst.instruction |= neon_logbits (size) << 20;
13380
13381 neon_dp_fixup (&inst);
13382 }
13383
13384 /* Encode instructions of the form:
13385
13386 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13387 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
13388
13389 Don't write size if SIZE == -1. */
13390
13391 static void
13392 neon_two_same (int qbit, int ubit, int size)
13393 {
13394 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13395 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13396 inst.instruction |= LOW4 (inst.operands[1].reg);
13397 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13398 inst.instruction |= (qbit != 0) << 6;
13399 inst.instruction |= (ubit != 0) << 24;
13400
13401 if (size != -1)
13402 inst.instruction |= neon_logbits (size) << 18;
13403
13404 neon_dp_fixup (&inst);
13405 }
13406
13407 /* Neon instruction encoders, in approximate order of appearance. */
13408
13409 static void
13410 do_neon_dyadic_i_su (void)
13411 {
13412 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13413 struct neon_type_el et = neon_check_type (3, rs,
13414 N_EQK, N_EQK, N_SU_32 | N_KEY);
13415 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13416 }
13417
13418 static void
13419 do_neon_dyadic_i64_su (void)
13420 {
13421 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13422 struct neon_type_el et = neon_check_type (3, rs,
13423 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13424 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13425 }
13426
13427 static void
13428 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13429 unsigned immbits)
13430 {
13431 unsigned size = et.size >> 3;
13432 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13433 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13434 inst.instruction |= LOW4 (inst.operands[1].reg);
13435 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13436 inst.instruction |= (isquad != 0) << 6;
13437 inst.instruction |= immbits << 16;
13438 inst.instruction |= (size >> 3) << 7;
13439 inst.instruction |= (size & 0x7) << 19;
13440 if (write_ubit)
13441 inst.instruction |= (uval != 0) << 24;
13442
13443 neon_dp_fixup (&inst);
13444 }
13445
13446 static void
13447 do_neon_shl_imm (void)
13448 {
13449 if (!inst.operands[2].isreg)
13450 {
13451 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13452 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
13453 NEON_ENCODE (IMMED, inst);
13454 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
13455 }
13456 else
13457 {
13458 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13459 struct neon_type_el et = neon_check_type (3, rs,
13460 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13461 unsigned int tmp;
13462
13463 /* VSHL/VQSHL 3-register variants have syntax such as:
13464 vshl.xx Dd, Dm, Dn
13465 whereas other 3-register operations encoded by neon_three_same have
13466 syntax like:
13467 vadd.xx Dd, Dn, Dm
13468 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13469 here. */
13470 tmp = inst.operands[2].reg;
13471 inst.operands[2].reg = inst.operands[1].reg;
13472 inst.operands[1].reg = tmp;
13473 NEON_ENCODE (INTEGER, inst);
13474 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13475 }
13476 }
13477
13478 static void
13479 do_neon_qshl_imm (void)
13480 {
13481 if (!inst.operands[2].isreg)
13482 {
13483 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13484 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13485
13486 NEON_ENCODE (IMMED, inst);
13487 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
13488 inst.operands[2].imm);
13489 }
13490 else
13491 {
13492 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13493 struct neon_type_el et = neon_check_type (3, rs,
13494 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13495 unsigned int tmp;
13496
13497 /* See note in do_neon_shl_imm. */
13498 tmp = inst.operands[2].reg;
13499 inst.operands[2].reg = inst.operands[1].reg;
13500 inst.operands[1].reg = tmp;
13501 NEON_ENCODE (INTEGER, inst);
13502 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13503 }
13504 }
13505
13506 static void
13507 do_neon_rshl (void)
13508 {
13509 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13510 struct neon_type_el et = neon_check_type (3, rs,
13511 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13512 unsigned int tmp;
13513
13514 tmp = inst.operands[2].reg;
13515 inst.operands[2].reg = inst.operands[1].reg;
13516 inst.operands[1].reg = tmp;
13517 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13518 }
13519
13520 static int
13521 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13522 {
13523 /* Handle .I8 pseudo-instructions. */
13524 if (size == 8)
13525 {
13526 /* Unfortunately, this will make everything apart from zero out-of-range.
13527 FIXME is this the intended semantics? There doesn't seem much point in
13528 accepting .I8 if so. */
13529 immediate |= immediate << 8;
13530 size = 16;
13531 }
13532
13533 if (size >= 32)
13534 {
13535 if (immediate == (immediate & 0x000000ff))
13536 {
13537 *immbits = immediate;
13538 return 0x1;
13539 }
13540 else if (immediate == (immediate & 0x0000ff00))
13541 {
13542 *immbits = immediate >> 8;
13543 return 0x3;
13544 }
13545 else if (immediate == (immediate & 0x00ff0000))
13546 {
13547 *immbits = immediate >> 16;
13548 return 0x5;
13549 }
13550 else if (immediate == (immediate & 0xff000000))
13551 {
13552 *immbits = immediate >> 24;
13553 return 0x7;
13554 }
13555 if ((immediate & 0xffff) != (immediate >> 16))
13556 goto bad_immediate;
13557 immediate &= 0xffff;
13558 }
13559
13560 if (immediate == (immediate & 0x000000ff))
13561 {
13562 *immbits = immediate;
13563 return 0x9;
13564 }
13565 else if (immediate == (immediate & 0x0000ff00))
13566 {
13567 *immbits = immediate >> 8;
13568 return 0xb;
13569 }
13570
13571 bad_immediate:
13572 first_error (_("immediate value out of range"));
13573 return FAIL;
13574 }
13575
13576 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13577 A, B, C, D. */
13578
13579 static int
13580 neon_bits_same_in_bytes (unsigned imm)
13581 {
13582 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13583 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13584 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13585 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13586 }
13587
13588 /* For immediate of above form, return 0bABCD. */
13589
13590 static unsigned
13591 neon_squash_bits (unsigned imm)
13592 {
13593 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13594 | ((imm & 0x01000000) >> 21);
13595 }
13596
13597 /* Compress quarter-float representation to 0b...000 abcdefgh. */
13598
13599 static unsigned
13600 neon_qfloat_bits (unsigned imm)
13601 {
13602 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
13603 }
13604
13605 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13606 the instruction. *OP is passed as the initial value of the op field, and
13607 may be set to a different value depending on the constant (i.e.
13608 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
13609 MVN). If the immediate looks like a repeated pattern then also
13610 try smaller element sizes. */
13611
13612 static int
13613 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13614 unsigned *immbits, int *op, int size,
13615 enum neon_el_type type)
13616 {
13617 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13618 float. */
13619 if (type == NT_float && !float_p)
13620 return FAIL;
13621
13622 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13623 {
13624 if (size != 32 || *op == 1)
13625 return FAIL;
13626 *immbits = neon_qfloat_bits (immlo);
13627 return 0xf;
13628 }
13629
13630 if (size == 64)
13631 {
13632 if (neon_bits_same_in_bytes (immhi)
13633 && neon_bits_same_in_bytes (immlo))
13634 {
13635 if (*op == 1)
13636 return FAIL;
13637 *immbits = (neon_squash_bits (immhi) << 4)
13638 | neon_squash_bits (immlo);
13639 *op = 1;
13640 return 0xe;
13641 }
13642
13643 if (immhi != immlo)
13644 return FAIL;
13645 }
13646
13647 if (size >= 32)
13648 {
13649 if (immlo == (immlo & 0x000000ff))
13650 {
13651 *immbits = immlo;
13652 return 0x0;
13653 }
13654 else if (immlo == (immlo & 0x0000ff00))
13655 {
13656 *immbits = immlo >> 8;
13657 return 0x2;
13658 }
13659 else if (immlo == (immlo & 0x00ff0000))
13660 {
13661 *immbits = immlo >> 16;
13662 return 0x4;
13663 }
13664 else if (immlo == (immlo & 0xff000000))
13665 {
13666 *immbits = immlo >> 24;
13667 return 0x6;
13668 }
13669 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13670 {
13671 *immbits = (immlo >> 8) & 0xff;
13672 return 0xc;
13673 }
13674 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13675 {
13676 *immbits = (immlo >> 16) & 0xff;
13677 return 0xd;
13678 }
13679
13680 if ((immlo & 0xffff) != (immlo >> 16))
13681 return FAIL;
13682 immlo &= 0xffff;
13683 }
13684
13685 if (size >= 16)
13686 {
13687 if (immlo == (immlo & 0x000000ff))
13688 {
13689 *immbits = immlo;
13690 return 0x8;
13691 }
13692 else if (immlo == (immlo & 0x0000ff00))
13693 {
13694 *immbits = immlo >> 8;
13695 return 0xa;
13696 }
13697
13698 if ((immlo & 0xff) != (immlo >> 8))
13699 return FAIL;
13700 immlo &= 0xff;
13701 }
13702
13703 if (immlo == (immlo & 0x000000ff))
13704 {
13705 /* Don't allow MVN with 8-bit immediate. */
13706 if (*op == 1)
13707 return FAIL;
13708 *immbits = immlo;
13709 return 0xe;
13710 }
13711
13712 return FAIL;
13713 }
13714
13715 /* Write immediate bits [7:0] to the following locations:
13716
13717 |28/24|23 19|18 16|15 4|3 0|
13718 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13719
13720 This function is used by VMOV/VMVN/VORR/VBIC. */
13721
13722 static void
13723 neon_write_immbits (unsigned immbits)
13724 {
13725 inst.instruction |= immbits & 0xf;
13726 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13727 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13728 }
13729
13730 /* Invert low-order SIZE bits of XHI:XLO. */
13731
13732 static void
13733 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13734 {
13735 unsigned immlo = xlo ? *xlo : 0;
13736 unsigned immhi = xhi ? *xhi : 0;
13737
13738 switch (size)
13739 {
13740 case 8:
13741 immlo = (~immlo) & 0xff;
13742 break;
13743
13744 case 16:
13745 immlo = (~immlo) & 0xffff;
13746 break;
13747
13748 case 64:
13749 immhi = (~immhi) & 0xffffffff;
13750 /* fall through. */
13751
13752 case 32:
13753 immlo = (~immlo) & 0xffffffff;
13754 break;
13755
13756 default:
13757 abort ();
13758 }
13759
13760 if (xlo)
13761 *xlo = immlo;
13762
13763 if (xhi)
13764 *xhi = immhi;
13765 }
13766
13767 static void
13768 do_neon_logic (void)
13769 {
13770 if (inst.operands[2].present && inst.operands[2].isreg)
13771 {
13772 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13773 neon_check_type (3, rs, N_IGNORE_TYPE);
13774 /* U bit and size field were set as part of the bitmask. */
13775 NEON_ENCODE (INTEGER, inst);
13776 neon_three_same (neon_quad (rs), 0, -1);
13777 }
13778 else
13779 {
13780 const int three_ops_form = (inst.operands[2].present
13781 && !inst.operands[2].isreg);
13782 const int immoperand = (three_ops_form ? 2 : 1);
13783 enum neon_shape rs = (three_ops_form
13784 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13785 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
13786 struct neon_type_el et = neon_check_type (2, rs,
13787 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13788 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
13789 unsigned immbits;
13790 int cmode;
13791
13792 if (et.type == NT_invtype)
13793 return;
13794
13795 if (three_ops_form)
13796 constraint (inst.operands[0].reg != inst.operands[1].reg,
13797 _("first and second operands shall be the same register"));
13798
13799 NEON_ENCODE (IMMED, inst);
13800
13801 immbits = inst.operands[immoperand].imm;
13802 if (et.size == 64)
13803 {
13804 /* .i64 is a pseudo-op, so the immediate must be a repeating
13805 pattern. */
13806 if (immbits != (inst.operands[immoperand].regisimm ?
13807 inst.operands[immoperand].reg : 0))
13808 {
13809 /* Set immbits to an invalid constant. */
13810 immbits = 0xdeadbeef;
13811 }
13812 }
13813
13814 switch (opcode)
13815 {
13816 case N_MNEM_vbic:
13817 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13818 break;
13819
13820 case N_MNEM_vorr:
13821 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13822 break;
13823
13824 case N_MNEM_vand:
13825 /* Pseudo-instruction for VBIC. */
13826 neon_invert_size (&immbits, 0, et.size);
13827 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13828 break;
13829
13830 case N_MNEM_vorn:
13831 /* Pseudo-instruction for VORR. */
13832 neon_invert_size (&immbits, 0, et.size);
13833 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13834 break;
13835
13836 default:
13837 abort ();
13838 }
13839
13840 if (cmode == FAIL)
13841 return;
13842
13843 inst.instruction |= neon_quad (rs) << 6;
13844 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13845 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13846 inst.instruction |= cmode << 8;
13847 neon_write_immbits (immbits);
13848
13849 neon_dp_fixup (&inst);
13850 }
13851 }
13852
13853 static void
13854 do_neon_bitfield (void)
13855 {
13856 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13857 neon_check_type (3, rs, N_IGNORE_TYPE);
13858 neon_three_same (neon_quad (rs), 0, -1);
13859 }
13860
13861 static void
13862 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13863 unsigned destbits)
13864 {
13865 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13866 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13867 types | N_KEY);
13868 if (et.type == NT_float)
13869 {
13870 NEON_ENCODE (FLOAT, inst);
13871 neon_three_same (neon_quad (rs), 0, -1);
13872 }
13873 else
13874 {
13875 NEON_ENCODE (INTEGER, inst);
13876 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
13877 }
13878 }
13879
13880 static void
13881 do_neon_dyadic_if_su (void)
13882 {
13883 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13884 }
13885
13886 static void
13887 do_neon_dyadic_if_su_d (void)
13888 {
13889 /* This version only allow D registers, but that constraint is enforced during
13890 operand parsing so we don't need to do anything extra here. */
13891 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13892 }
13893
13894 static void
13895 do_neon_dyadic_if_i_d (void)
13896 {
13897 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13898 affected if we specify unsigned args. */
13899 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13900 }
13901
13902 enum vfp_or_neon_is_neon_bits
13903 {
13904 NEON_CHECK_CC = 1,
13905 NEON_CHECK_ARCH = 2
13906 };
13907
13908 /* Call this function if an instruction which may have belonged to the VFP or
13909 Neon instruction sets, but turned out to be a Neon instruction (due to the
13910 operand types involved, etc.). We have to check and/or fix-up a couple of
13911 things:
13912
13913 - Make sure the user hasn't attempted to make a Neon instruction
13914 conditional.
13915 - Alter the value in the condition code field if necessary.
13916 - Make sure that the arch supports Neon instructions.
13917
13918 Which of these operations take place depends on bits from enum
13919 vfp_or_neon_is_neon_bits.
13920
13921 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13922 current instruction's condition is COND_ALWAYS, the condition field is
13923 changed to inst.uncond_value. This is necessary because instructions shared
13924 between VFP and Neon may be conditional for the VFP variants only, and the
13925 unconditional Neon version must have, e.g., 0xF in the condition field. */
13926
13927 static int
13928 vfp_or_neon_is_neon (unsigned check)
13929 {
13930 /* Conditions are always legal in Thumb mode (IT blocks). */
13931 if (!thumb_mode && (check & NEON_CHECK_CC))
13932 {
13933 if (inst.cond != COND_ALWAYS)
13934 {
13935 first_error (_(BAD_COND));
13936 return FAIL;
13937 }
13938 if (inst.uncond_value != -1)
13939 inst.instruction |= inst.uncond_value << 28;
13940 }
13941
13942 if ((check & NEON_CHECK_ARCH)
13943 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13944 {
13945 first_error (_(BAD_FPU));
13946 return FAIL;
13947 }
13948
13949 return SUCCESS;
13950 }
13951
13952 static void
13953 do_neon_addsub_if_i (void)
13954 {
13955 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13956 return;
13957
13958 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13959 return;
13960
13961 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13962 affected if we specify unsigned args. */
13963 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
13964 }
13965
13966 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13967 result to be:
13968 V<op> A,B (A is operand 0, B is operand 2)
13969 to mean:
13970 V<op> A,B,A
13971 not:
13972 V<op> A,B,B
13973 so handle that case specially. */
13974
13975 static void
13976 neon_exchange_operands (void)
13977 {
13978 void *scratch = alloca (sizeof (inst.operands[0]));
13979 if (inst.operands[1].present)
13980 {
13981 /* Swap operands[1] and operands[2]. */
13982 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13983 inst.operands[1] = inst.operands[2];
13984 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13985 }
13986 else
13987 {
13988 inst.operands[1] = inst.operands[2];
13989 inst.operands[2] = inst.operands[0];
13990 }
13991 }
13992
13993 static void
13994 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13995 {
13996 if (inst.operands[2].isreg)
13997 {
13998 if (invert)
13999 neon_exchange_operands ();
14000 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
14001 }
14002 else
14003 {
14004 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14005 struct neon_type_el et = neon_check_type (2, rs,
14006 N_EQK | N_SIZ, immtypes | N_KEY);
14007
14008 NEON_ENCODE (IMMED, inst);
14009 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14010 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14011 inst.instruction |= LOW4 (inst.operands[1].reg);
14012 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14013 inst.instruction |= neon_quad (rs) << 6;
14014 inst.instruction |= (et.type == NT_float) << 10;
14015 inst.instruction |= neon_logbits (et.size) << 18;
14016
14017 neon_dp_fixup (&inst);
14018 }
14019 }
14020
14021 static void
14022 do_neon_cmp (void)
14023 {
14024 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
14025 }
14026
14027 static void
14028 do_neon_cmp_inv (void)
14029 {
14030 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
14031 }
14032
14033 static void
14034 do_neon_ceq (void)
14035 {
14036 neon_compare (N_IF_32, N_IF_32, FALSE);
14037 }
14038
14039 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
14040 scalars, which are encoded in 5 bits, M : Rm.
14041 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
14042 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
14043 index in M. */
14044
14045 static unsigned
14046 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
14047 {
14048 unsigned regno = NEON_SCALAR_REG (scalar);
14049 unsigned elno = NEON_SCALAR_INDEX (scalar);
14050
14051 switch (elsize)
14052 {
14053 case 16:
14054 if (regno > 7 || elno > 3)
14055 goto bad_scalar;
14056 return regno | (elno << 3);
14057
14058 case 32:
14059 if (regno > 15 || elno > 1)
14060 goto bad_scalar;
14061 return regno | (elno << 4);
14062
14063 default:
14064 bad_scalar:
14065 first_error (_("scalar out of range for multiply instruction"));
14066 }
14067
14068 return 0;
14069 }
14070
14071 /* Encode multiply / multiply-accumulate scalar instructions. */
14072
14073 static void
14074 neon_mul_mac (struct neon_type_el et, int ubit)
14075 {
14076 unsigned scalar;
14077
14078 /* Give a more helpful error message if we have an invalid type. */
14079 if (et.type == NT_invtype)
14080 return;
14081
14082 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
14083 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14084 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14085 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14086 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14087 inst.instruction |= LOW4 (scalar);
14088 inst.instruction |= HI1 (scalar) << 5;
14089 inst.instruction |= (et.type == NT_float) << 8;
14090 inst.instruction |= neon_logbits (et.size) << 20;
14091 inst.instruction |= (ubit != 0) << 24;
14092
14093 neon_dp_fixup (&inst);
14094 }
14095
14096 static void
14097 do_neon_mac_maybe_scalar (void)
14098 {
14099 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
14100 return;
14101
14102 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14103 return;
14104
14105 if (inst.operands[2].isscalar)
14106 {
14107 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14108 struct neon_type_el et = neon_check_type (3, rs,
14109 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
14110 NEON_ENCODE (SCALAR, inst);
14111 neon_mul_mac (et, neon_quad (rs));
14112 }
14113 else
14114 {
14115 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14116 affected if we specify unsigned args. */
14117 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14118 }
14119 }
14120
14121 static void
14122 do_neon_fmac (void)
14123 {
14124 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
14125 return;
14126
14127 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14128 return;
14129
14130 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14131 }
14132
14133 static void
14134 do_neon_tst (void)
14135 {
14136 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14137 struct neon_type_el et = neon_check_type (3, rs,
14138 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
14139 neon_three_same (neon_quad (rs), 0, et.size);
14140 }
14141
14142 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
14143 same types as the MAC equivalents. The polynomial type for this instruction
14144 is encoded the same as the integer type. */
14145
14146 static void
14147 do_neon_mul (void)
14148 {
14149 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
14150 return;
14151
14152 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14153 return;
14154
14155 if (inst.operands[2].isscalar)
14156 do_neon_mac_maybe_scalar ();
14157 else
14158 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
14159 }
14160
14161 static void
14162 do_neon_qdmulh (void)
14163 {
14164 if (inst.operands[2].isscalar)
14165 {
14166 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14167 struct neon_type_el et = neon_check_type (3, rs,
14168 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14169 NEON_ENCODE (SCALAR, inst);
14170 neon_mul_mac (et, neon_quad (rs));
14171 }
14172 else
14173 {
14174 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14175 struct neon_type_el et = neon_check_type (3, rs,
14176 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14177 NEON_ENCODE (INTEGER, inst);
14178 /* The U bit (rounding) comes from bit mask. */
14179 neon_three_same (neon_quad (rs), 0, et.size);
14180 }
14181 }
14182
14183 static void
14184 do_neon_fcmp_absolute (void)
14185 {
14186 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14187 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14188 /* Size field comes from bit mask. */
14189 neon_three_same (neon_quad (rs), 1, -1);
14190 }
14191
14192 static void
14193 do_neon_fcmp_absolute_inv (void)
14194 {
14195 neon_exchange_operands ();
14196 do_neon_fcmp_absolute ();
14197 }
14198
14199 static void
14200 do_neon_step (void)
14201 {
14202 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14203 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14204 neon_three_same (neon_quad (rs), 0, -1);
14205 }
14206
14207 static void
14208 do_neon_abs_neg (void)
14209 {
14210 enum neon_shape rs;
14211 struct neon_type_el et;
14212
14213 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
14214 return;
14215
14216 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14217 return;
14218
14219 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14220 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
14221
14222 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14223 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14224 inst.instruction |= LOW4 (inst.operands[1].reg);
14225 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14226 inst.instruction |= neon_quad (rs) << 6;
14227 inst.instruction |= (et.type == NT_float) << 10;
14228 inst.instruction |= neon_logbits (et.size) << 18;
14229
14230 neon_dp_fixup (&inst);
14231 }
14232
14233 static void
14234 do_neon_sli (void)
14235 {
14236 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14237 struct neon_type_el et = neon_check_type (2, rs,
14238 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14239 int imm = inst.operands[2].imm;
14240 constraint (imm < 0 || (unsigned)imm >= et.size,
14241 _("immediate out of range for insert"));
14242 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14243 }
14244
14245 static void
14246 do_neon_sri (void)
14247 {
14248 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14249 struct neon_type_el et = neon_check_type (2, rs,
14250 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14251 int imm = inst.operands[2].imm;
14252 constraint (imm < 1 || (unsigned)imm > et.size,
14253 _("immediate out of range for insert"));
14254 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
14255 }
14256
14257 static void
14258 do_neon_qshlu_imm (void)
14259 {
14260 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14261 struct neon_type_el et = neon_check_type (2, rs,
14262 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
14263 int imm = inst.operands[2].imm;
14264 constraint (imm < 0 || (unsigned)imm >= et.size,
14265 _("immediate out of range for shift"));
14266 /* Only encodes the 'U present' variant of the instruction.
14267 In this case, signed types have OP (bit 8) set to 0.
14268 Unsigned types have OP set to 1. */
14269 inst.instruction |= (et.type == NT_unsigned) << 8;
14270 /* The rest of the bits are the same as other immediate shifts. */
14271 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14272 }
14273
14274 static void
14275 do_neon_qmovn (void)
14276 {
14277 struct neon_type_el et = neon_check_type (2, NS_DQ,
14278 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14279 /* Saturating move where operands can be signed or unsigned, and the
14280 destination has the same signedness. */
14281 NEON_ENCODE (INTEGER, inst);
14282 if (et.type == NT_unsigned)
14283 inst.instruction |= 0xc0;
14284 else
14285 inst.instruction |= 0x80;
14286 neon_two_same (0, 1, et.size / 2);
14287 }
14288
14289 static void
14290 do_neon_qmovun (void)
14291 {
14292 struct neon_type_el et = neon_check_type (2, NS_DQ,
14293 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14294 /* Saturating move with unsigned results. Operands must be signed. */
14295 NEON_ENCODE (INTEGER, inst);
14296 neon_two_same (0, 1, et.size / 2);
14297 }
14298
14299 static void
14300 do_neon_rshift_sat_narrow (void)
14301 {
14302 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14303 or unsigned. If operands are unsigned, results must also be unsigned. */
14304 struct neon_type_el et = neon_check_type (2, NS_DQI,
14305 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14306 int imm = inst.operands[2].imm;
14307 /* This gets the bounds check, size encoding and immediate bits calculation
14308 right. */
14309 et.size /= 2;
14310
14311 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14312 VQMOVN.I<size> <Dd>, <Qm>. */
14313 if (imm == 0)
14314 {
14315 inst.operands[2].present = 0;
14316 inst.instruction = N_MNEM_vqmovn;
14317 do_neon_qmovn ();
14318 return;
14319 }
14320
14321 constraint (imm < 1 || (unsigned)imm > et.size,
14322 _("immediate out of range"));
14323 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
14324 }
14325
14326 static void
14327 do_neon_rshift_sat_narrow_u (void)
14328 {
14329 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14330 or unsigned. If operands are unsigned, results must also be unsigned. */
14331 struct neon_type_el et = neon_check_type (2, NS_DQI,
14332 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14333 int imm = inst.operands[2].imm;
14334 /* This gets the bounds check, size encoding and immediate bits calculation
14335 right. */
14336 et.size /= 2;
14337
14338 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14339 VQMOVUN.I<size> <Dd>, <Qm>. */
14340 if (imm == 0)
14341 {
14342 inst.operands[2].present = 0;
14343 inst.instruction = N_MNEM_vqmovun;
14344 do_neon_qmovun ();
14345 return;
14346 }
14347
14348 constraint (imm < 1 || (unsigned)imm > et.size,
14349 _("immediate out of range"));
14350 /* FIXME: The manual is kind of unclear about what value U should have in
14351 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14352 must be 1. */
14353 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
14354 }
14355
14356 static void
14357 do_neon_movn (void)
14358 {
14359 struct neon_type_el et = neon_check_type (2, NS_DQ,
14360 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14361 NEON_ENCODE (INTEGER, inst);
14362 neon_two_same (0, 1, et.size / 2);
14363 }
14364
14365 static void
14366 do_neon_rshift_narrow (void)
14367 {
14368 struct neon_type_el et = neon_check_type (2, NS_DQI,
14369 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14370 int imm = inst.operands[2].imm;
14371 /* This gets the bounds check, size encoding and immediate bits calculation
14372 right. */
14373 et.size /= 2;
14374
14375 /* If immediate is zero then we are a pseudo-instruction for
14376 VMOVN.I<size> <Dd>, <Qm> */
14377 if (imm == 0)
14378 {
14379 inst.operands[2].present = 0;
14380 inst.instruction = N_MNEM_vmovn;
14381 do_neon_movn ();
14382 return;
14383 }
14384
14385 constraint (imm < 1 || (unsigned)imm > et.size,
14386 _("immediate out of range for narrowing operation"));
14387 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14388 }
14389
14390 static void
14391 do_neon_shll (void)
14392 {
14393 /* FIXME: Type checking when lengthening. */
14394 struct neon_type_el et = neon_check_type (2, NS_QDI,
14395 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14396 unsigned imm = inst.operands[2].imm;
14397
14398 if (imm == et.size)
14399 {
14400 /* Maximum shift variant. */
14401 NEON_ENCODE (INTEGER, inst);
14402 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14403 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14404 inst.instruction |= LOW4 (inst.operands[1].reg);
14405 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14406 inst.instruction |= neon_logbits (et.size) << 18;
14407
14408 neon_dp_fixup (&inst);
14409 }
14410 else
14411 {
14412 /* A more-specific type check for non-max versions. */
14413 et = neon_check_type (2, NS_QDI,
14414 N_EQK | N_DBL, N_SU_32 | N_KEY);
14415 NEON_ENCODE (IMMED, inst);
14416 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14417 }
14418 }
14419
14420 /* Check the various types for the VCVT instruction, and return which version
14421 the current instruction is. */
14422
14423 static int
14424 neon_cvt_flavour (enum neon_shape rs)
14425 {
14426 #define CVT_VAR(C,X,Y) \
14427 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
14428 if (et.type != NT_invtype) \
14429 { \
14430 inst.error = NULL; \
14431 return (C); \
14432 }
14433 struct neon_type_el et;
14434 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14435 || rs == NS_FF) ? N_VFP : 0;
14436 /* The instruction versions which take an immediate take one register
14437 argument, which is extended to the width of the full register. Thus the
14438 "source" and "destination" registers must have the same width. Hack that
14439 here by making the size equal to the key (wider, in this case) operand. */
14440 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
14441
14442 CVT_VAR (0, N_S32, N_F32);
14443 CVT_VAR (1, N_U32, N_F32);
14444 CVT_VAR (2, N_F32, N_S32);
14445 CVT_VAR (3, N_F32, N_U32);
14446 /* Half-precision conversions. */
14447 CVT_VAR (4, N_F32, N_F16);
14448 CVT_VAR (5, N_F16, N_F32);
14449
14450 whole_reg = N_VFP;
14451
14452 /* VFP instructions. */
14453 CVT_VAR (6, N_F32, N_F64);
14454 CVT_VAR (7, N_F64, N_F32);
14455 CVT_VAR (8, N_S32, N_F64 | key);
14456 CVT_VAR (9, N_U32, N_F64 | key);
14457 CVT_VAR (10, N_F64 | key, N_S32);
14458 CVT_VAR (11, N_F64 | key, N_U32);
14459 /* VFP instructions with bitshift. */
14460 CVT_VAR (12, N_F32 | key, N_S16);
14461 CVT_VAR (13, N_F32 | key, N_U16);
14462 CVT_VAR (14, N_F64 | key, N_S16);
14463 CVT_VAR (15, N_F64 | key, N_U16);
14464 CVT_VAR (16, N_S16, N_F32 | key);
14465 CVT_VAR (17, N_U16, N_F32 | key);
14466 CVT_VAR (18, N_S16, N_F64 | key);
14467 CVT_VAR (19, N_U16, N_F64 | key);
14468
14469 return -1;
14470 #undef CVT_VAR
14471 }
14472
14473 /* Neon-syntax VFP conversions. */
14474
14475 static void
14476 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
14477 {
14478 const char *opname = 0;
14479
14480 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
14481 {
14482 /* Conversions with immediate bitshift. */
14483 const char *enc[] =
14484 {
14485 "ftosls",
14486 "ftouls",
14487 "fsltos",
14488 "fultos",
14489 NULL,
14490 NULL,
14491 NULL,
14492 NULL,
14493 "ftosld",
14494 "ftould",
14495 "fsltod",
14496 "fultod",
14497 "fshtos",
14498 "fuhtos",
14499 "fshtod",
14500 "fuhtod",
14501 "ftoshs",
14502 "ftouhs",
14503 "ftoshd",
14504 "ftouhd"
14505 };
14506
14507 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14508 {
14509 opname = enc[flavour];
14510 constraint (inst.operands[0].reg != inst.operands[1].reg,
14511 _("operands 0 and 1 must be the same register"));
14512 inst.operands[1] = inst.operands[2];
14513 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14514 }
14515 }
14516 else
14517 {
14518 /* Conversions without bitshift. */
14519 const char *enc[] =
14520 {
14521 "ftosis",
14522 "ftouis",
14523 "fsitos",
14524 "fuitos",
14525 "NULL",
14526 "NULL",
14527 "fcvtsd",
14528 "fcvtds",
14529 "ftosid",
14530 "ftouid",
14531 "fsitod",
14532 "fuitod"
14533 };
14534
14535 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14536 opname = enc[flavour];
14537 }
14538
14539 if (opname)
14540 do_vfp_nsyn_opcode (opname);
14541 }
14542
14543 static void
14544 do_vfp_nsyn_cvtz (void)
14545 {
14546 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14547 int flavour = neon_cvt_flavour (rs);
14548 const char *enc[] =
14549 {
14550 "ftosizs",
14551 "ftouizs",
14552 NULL,
14553 NULL,
14554 NULL,
14555 NULL,
14556 NULL,
14557 NULL,
14558 "ftosizd",
14559 "ftouizd"
14560 };
14561
14562 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14563 do_vfp_nsyn_opcode (enc[flavour]);
14564 }
14565
14566 static void
14567 do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
14568 {
14569 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
14570 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
14571 int flavour = neon_cvt_flavour (rs);
14572
14573 /* PR11109: Handle round-to-zero for VCVT conversions. */
14574 if (round_to_zero
14575 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14576 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
14577 && (rs == NS_FD || rs == NS_FF))
14578 {
14579 do_vfp_nsyn_cvtz ();
14580 return;
14581 }
14582
14583 /* VFP rather than Neon conversions. */
14584 if (flavour >= 6)
14585 {
14586 do_vfp_nsyn_cvt (rs, flavour);
14587 return;
14588 }
14589
14590 switch (rs)
14591 {
14592 case NS_DDI:
14593 case NS_QQI:
14594 {
14595 unsigned immbits;
14596 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14597
14598 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14599 return;
14600
14601 /* Fixed-point conversion with #0 immediate is encoded as an
14602 integer conversion. */
14603 if (inst.operands[2].present && inst.operands[2].imm == 0)
14604 goto int_encode;
14605 immbits = 32 - inst.operands[2].imm;
14606 NEON_ENCODE (IMMED, inst);
14607 if (flavour != -1)
14608 inst.instruction |= enctab[flavour];
14609 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14610 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14611 inst.instruction |= LOW4 (inst.operands[1].reg);
14612 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14613 inst.instruction |= neon_quad (rs) << 6;
14614 inst.instruction |= 1 << 21;
14615 inst.instruction |= immbits << 16;
14616
14617 neon_dp_fixup (&inst);
14618 }
14619 break;
14620
14621 case NS_DD:
14622 case NS_QQ:
14623 int_encode:
14624 {
14625 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14626
14627 NEON_ENCODE (INTEGER, inst);
14628
14629 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14630 return;
14631
14632 if (flavour != -1)
14633 inst.instruction |= enctab[flavour];
14634
14635 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14636 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14637 inst.instruction |= LOW4 (inst.operands[1].reg);
14638 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14639 inst.instruction |= neon_quad (rs) << 6;
14640 inst.instruction |= 2 << 18;
14641
14642 neon_dp_fixup (&inst);
14643 }
14644 break;
14645
14646 /* Half-precision conversions for Advanced SIMD -- neon. */
14647 case NS_QD:
14648 case NS_DQ:
14649
14650 if ((rs == NS_DQ)
14651 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14652 {
14653 as_bad (_("operand size must match register width"));
14654 break;
14655 }
14656
14657 if ((rs == NS_QD)
14658 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14659 {
14660 as_bad (_("operand size must match register width"));
14661 break;
14662 }
14663
14664 if (rs == NS_DQ)
14665 inst.instruction = 0x3b60600;
14666 else
14667 inst.instruction = 0x3b60700;
14668
14669 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14670 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14671 inst.instruction |= LOW4 (inst.operands[1].reg);
14672 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14673 neon_dp_fixup (&inst);
14674 break;
14675
14676 default:
14677 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14678 do_vfp_nsyn_cvt (rs, flavour);
14679 }
14680 }
14681
14682 static void
14683 do_neon_cvtr (void)
14684 {
14685 do_neon_cvt_1 (FALSE);
14686 }
14687
14688 static void
14689 do_neon_cvt (void)
14690 {
14691 do_neon_cvt_1 (TRUE);
14692 }
14693
14694 static void
14695 do_neon_cvtb (void)
14696 {
14697 inst.instruction = 0xeb20a40;
14698
14699 /* The sizes are attached to the mnemonic. */
14700 if (inst.vectype.el[0].type != NT_invtype
14701 && inst.vectype.el[0].size == 16)
14702 inst.instruction |= 0x00010000;
14703
14704 /* Programmer's syntax: the sizes are attached to the operands. */
14705 else if (inst.operands[0].vectype.type != NT_invtype
14706 && inst.operands[0].vectype.size == 16)
14707 inst.instruction |= 0x00010000;
14708
14709 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14710 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14711 do_vfp_cond_or_thumb ();
14712 }
14713
14714
14715 static void
14716 do_neon_cvtt (void)
14717 {
14718 do_neon_cvtb ();
14719 inst.instruction |= 0x80;
14720 }
14721
14722 static void
14723 neon_move_immediate (void)
14724 {
14725 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14726 struct neon_type_el et = neon_check_type (2, rs,
14727 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14728 unsigned immlo, immhi = 0, immbits;
14729 int op, cmode, float_p;
14730
14731 constraint (et.type == NT_invtype,
14732 _("operand size must be specified for immediate VMOV"));
14733
14734 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14735 op = (inst.instruction & (1 << 5)) != 0;
14736
14737 immlo = inst.operands[1].imm;
14738 if (inst.operands[1].regisimm)
14739 immhi = inst.operands[1].reg;
14740
14741 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14742 _("immediate has bits set outside the operand size"));
14743
14744 float_p = inst.operands[1].immisfloat;
14745
14746 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
14747 et.size, et.type)) == FAIL)
14748 {
14749 /* Invert relevant bits only. */
14750 neon_invert_size (&immlo, &immhi, et.size);
14751 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14752 with one or the other; those cases are caught by
14753 neon_cmode_for_move_imm. */
14754 op = !op;
14755 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14756 &op, et.size, et.type)) == FAIL)
14757 {
14758 first_error (_("immediate out of range"));
14759 return;
14760 }
14761 }
14762
14763 inst.instruction &= ~(1 << 5);
14764 inst.instruction |= op << 5;
14765
14766 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14767 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14768 inst.instruction |= neon_quad (rs) << 6;
14769 inst.instruction |= cmode << 8;
14770
14771 neon_write_immbits (immbits);
14772 }
14773
14774 static void
14775 do_neon_mvn (void)
14776 {
14777 if (inst.operands[1].isreg)
14778 {
14779 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14780
14781 NEON_ENCODE (INTEGER, inst);
14782 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14783 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14784 inst.instruction |= LOW4 (inst.operands[1].reg);
14785 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14786 inst.instruction |= neon_quad (rs) << 6;
14787 }
14788 else
14789 {
14790 NEON_ENCODE (IMMED, inst);
14791 neon_move_immediate ();
14792 }
14793
14794 neon_dp_fixup (&inst);
14795 }
14796
14797 /* Encode instructions of form:
14798
14799 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14800 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
14801
14802 static void
14803 neon_mixed_length (struct neon_type_el et, unsigned size)
14804 {
14805 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14806 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14807 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14808 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14809 inst.instruction |= LOW4 (inst.operands[2].reg);
14810 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14811 inst.instruction |= (et.type == NT_unsigned) << 24;
14812 inst.instruction |= neon_logbits (size) << 20;
14813
14814 neon_dp_fixup (&inst);
14815 }
14816
14817 static void
14818 do_neon_dyadic_long (void)
14819 {
14820 /* FIXME: Type checking for lengthening op. */
14821 struct neon_type_el et = neon_check_type (3, NS_QDD,
14822 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14823 neon_mixed_length (et, et.size);
14824 }
14825
14826 static void
14827 do_neon_abal (void)
14828 {
14829 struct neon_type_el et = neon_check_type (3, NS_QDD,
14830 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14831 neon_mixed_length (et, et.size);
14832 }
14833
14834 static void
14835 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14836 {
14837 if (inst.operands[2].isscalar)
14838 {
14839 struct neon_type_el et = neon_check_type (3, NS_QDS,
14840 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
14841 NEON_ENCODE (SCALAR, inst);
14842 neon_mul_mac (et, et.type == NT_unsigned);
14843 }
14844 else
14845 {
14846 struct neon_type_el et = neon_check_type (3, NS_QDD,
14847 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
14848 NEON_ENCODE (INTEGER, inst);
14849 neon_mixed_length (et, et.size);
14850 }
14851 }
14852
14853 static void
14854 do_neon_mac_maybe_scalar_long (void)
14855 {
14856 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14857 }
14858
14859 static void
14860 do_neon_dyadic_wide (void)
14861 {
14862 struct neon_type_el et = neon_check_type (3, NS_QQD,
14863 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14864 neon_mixed_length (et, et.size);
14865 }
14866
14867 static void
14868 do_neon_dyadic_narrow (void)
14869 {
14870 struct neon_type_el et = neon_check_type (3, NS_QDD,
14871 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
14872 /* Operand sign is unimportant, and the U bit is part of the opcode,
14873 so force the operand type to integer. */
14874 et.type = NT_integer;
14875 neon_mixed_length (et, et.size / 2);
14876 }
14877
14878 static void
14879 do_neon_mul_sat_scalar_long (void)
14880 {
14881 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14882 }
14883
14884 static void
14885 do_neon_vmull (void)
14886 {
14887 if (inst.operands[2].isscalar)
14888 do_neon_mac_maybe_scalar_long ();
14889 else
14890 {
14891 struct neon_type_el et = neon_check_type (3, NS_QDD,
14892 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14893 if (et.type == NT_poly)
14894 NEON_ENCODE (POLY, inst);
14895 else
14896 NEON_ENCODE (INTEGER, inst);
14897 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14898 zero. Should be OK as-is. */
14899 neon_mixed_length (et, et.size);
14900 }
14901 }
14902
14903 static void
14904 do_neon_ext (void)
14905 {
14906 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
14907 struct neon_type_el et = neon_check_type (3, rs,
14908 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14909 unsigned imm = (inst.operands[3].imm * et.size) / 8;
14910
14911 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14912 _("shift out of range"));
14913 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14914 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14915 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14916 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14917 inst.instruction |= LOW4 (inst.operands[2].reg);
14918 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14919 inst.instruction |= neon_quad (rs) << 6;
14920 inst.instruction |= imm << 8;
14921
14922 neon_dp_fixup (&inst);
14923 }
14924
14925 static void
14926 do_neon_rev (void)
14927 {
14928 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14929 struct neon_type_el et = neon_check_type (2, rs,
14930 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14931 unsigned op = (inst.instruction >> 7) & 3;
14932 /* N (width of reversed regions) is encoded as part of the bitmask. We
14933 extract it here to check the elements to be reversed are smaller.
14934 Otherwise we'd get a reserved instruction. */
14935 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
14936 gas_assert (elsize != 0);
14937 constraint (et.size >= elsize,
14938 _("elements must be smaller than reversal region"));
14939 neon_two_same (neon_quad (rs), 1, et.size);
14940 }
14941
14942 static void
14943 do_neon_dup (void)
14944 {
14945 if (inst.operands[1].isscalar)
14946 {
14947 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
14948 struct neon_type_el et = neon_check_type (2, rs,
14949 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14950 unsigned sizebits = et.size >> 3;
14951 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
14952 int logsize = neon_logbits (et.size);
14953 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
14954
14955 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14956 return;
14957
14958 NEON_ENCODE (SCALAR, inst);
14959 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14960 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14961 inst.instruction |= LOW4 (dm);
14962 inst.instruction |= HI1 (dm) << 5;
14963 inst.instruction |= neon_quad (rs) << 6;
14964 inst.instruction |= x << 17;
14965 inst.instruction |= sizebits << 16;
14966
14967 neon_dp_fixup (&inst);
14968 }
14969 else
14970 {
14971 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14972 struct neon_type_el et = neon_check_type (2, rs,
14973 N_8 | N_16 | N_32 | N_KEY, N_EQK);
14974 /* Duplicate ARM register to lanes of vector. */
14975 NEON_ENCODE (ARMREG, inst);
14976 switch (et.size)
14977 {
14978 case 8: inst.instruction |= 0x400000; break;
14979 case 16: inst.instruction |= 0x000020; break;
14980 case 32: inst.instruction |= 0x000000; break;
14981 default: break;
14982 }
14983 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14984 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14985 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
14986 inst.instruction |= neon_quad (rs) << 21;
14987 /* The encoding for this instruction is identical for the ARM and Thumb
14988 variants, except for the condition field. */
14989 do_vfp_cond_or_thumb ();
14990 }
14991 }
14992
14993 /* VMOV has particularly many variations. It can be one of:
14994 0. VMOV<c><q> <Qd>, <Qm>
14995 1. VMOV<c><q> <Dd>, <Dm>
14996 (Register operations, which are VORR with Rm = Rn.)
14997 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14998 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14999 (Immediate loads.)
15000 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
15001 (ARM register to scalar.)
15002 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
15003 (Two ARM registers to vector.)
15004 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
15005 (Scalar to ARM register.)
15006 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
15007 (Vector to two ARM registers.)
15008 8. VMOV.F32 <Sd>, <Sm>
15009 9. VMOV.F64 <Dd>, <Dm>
15010 (VFP register moves.)
15011 10. VMOV.F32 <Sd>, #imm
15012 11. VMOV.F64 <Dd>, #imm
15013 (VFP float immediate load.)
15014 12. VMOV <Rd>, <Sm>
15015 (VFP single to ARM reg.)
15016 13. VMOV <Sd>, <Rm>
15017 (ARM reg to VFP single.)
15018 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
15019 (Two ARM regs to two VFP singles.)
15020 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
15021 (Two VFP singles to two ARM regs.)
15022
15023 These cases can be disambiguated using neon_select_shape, except cases 1/9
15024 and 3/11 which depend on the operand type too.
15025
15026 All the encoded bits are hardcoded by this function.
15027
15028 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
15029 Cases 5, 7 may be used with VFPv2 and above.
15030
15031 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
15032 can specify a type where it doesn't make sense to, and is ignored). */
15033
15034 static void
15035 do_neon_mov (void)
15036 {
15037 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
15038 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
15039 NS_NULL);
15040 struct neon_type_el et;
15041 const char *ldconst = 0;
15042
15043 switch (rs)
15044 {
15045 case NS_DD: /* case 1/9. */
15046 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15047 /* It is not an error here if no type is given. */
15048 inst.error = NULL;
15049 if (et.type == NT_float && et.size == 64)
15050 {
15051 do_vfp_nsyn_opcode ("fcpyd");
15052 break;
15053 }
15054 /* fall through. */
15055
15056 case NS_QQ: /* case 0/1. */
15057 {
15058 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15059 return;
15060 /* The architecture manual I have doesn't explicitly state which
15061 value the U bit should have for register->register moves, but
15062 the equivalent VORR instruction has U = 0, so do that. */
15063 inst.instruction = 0x0200110;
15064 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15065 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15066 inst.instruction |= LOW4 (inst.operands[1].reg);
15067 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15068 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15069 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15070 inst.instruction |= neon_quad (rs) << 6;
15071
15072 neon_dp_fixup (&inst);
15073 }
15074 break;
15075
15076 case NS_DI: /* case 3/11. */
15077 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15078 inst.error = NULL;
15079 if (et.type == NT_float && et.size == 64)
15080 {
15081 /* case 11 (fconstd). */
15082 ldconst = "fconstd";
15083 goto encode_fconstd;
15084 }
15085 /* fall through. */
15086
15087 case NS_QI: /* case 2/3. */
15088 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15089 return;
15090 inst.instruction = 0x0800010;
15091 neon_move_immediate ();
15092 neon_dp_fixup (&inst);
15093 break;
15094
15095 case NS_SR: /* case 4. */
15096 {
15097 unsigned bcdebits = 0;
15098 int logsize;
15099 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
15100 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
15101
15102 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
15103 logsize = neon_logbits (et.size);
15104
15105 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15106 _(BAD_FPU));
15107 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15108 && et.size != 32, _(BAD_FPU));
15109 constraint (et.type == NT_invtype, _("bad type for scalar"));
15110 constraint (x >= 64 / et.size, _("scalar index out of range"));
15111
15112 switch (et.size)
15113 {
15114 case 8: bcdebits = 0x8; break;
15115 case 16: bcdebits = 0x1; break;
15116 case 32: bcdebits = 0x0; break;
15117 default: ;
15118 }
15119
15120 bcdebits |= x << logsize;
15121
15122 inst.instruction = 0xe000b10;
15123 do_vfp_cond_or_thumb ();
15124 inst.instruction |= LOW4 (dn) << 16;
15125 inst.instruction |= HI1 (dn) << 7;
15126 inst.instruction |= inst.operands[1].reg << 12;
15127 inst.instruction |= (bcdebits & 3) << 5;
15128 inst.instruction |= (bcdebits >> 2) << 21;
15129 }
15130 break;
15131
15132 case NS_DRR: /* case 5 (fmdrr). */
15133 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15134 _(BAD_FPU));
15135
15136 inst.instruction = 0xc400b10;
15137 do_vfp_cond_or_thumb ();
15138 inst.instruction |= LOW4 (inst.operands[0].reg);
15139 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
15140 inst.instruction |= inst.operands[1].reg << 12;
15141 inst.instruction |= inst.operands[2].reg << 16;
15142 break;
15143
15144 case NS_RS: /* case 6. */
15145 {
15146 unsigned logsize;
15147 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
15148 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
15149 unsigned abcdebits = 0;
15150
15151 et = neon_check_type (2, NS_NULL,
15152 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
15153 logsize = neon_logbits (et.size);
15154
15155 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15156 _(BAD_FPU));
15157 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15158 && et.size != 32, _(BAD_FPU));
15159 constraint (et.type == NT_invtype, _("bad type for scalar"));
15160 constraint (x >= 64 / et.size, _("scalar index out of range"));
15161
15162 switch (et.size)
15163 {
15164 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
15165 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
15166 case 32: abcdebits = 0x00; break;
15167 default: ;
15168 }
15169
15170 abcdebits |= x << logsize;
15171 inst.instruction = 0xe100b10;
15172 do_vfp_cond_or_thumb ();
15173 inst.instruction |= LOW4 (dn) << 16;
15174 inst.instruction |= HI1 (dn) << 7;
15175 inst.instruction |= inst.operands[0].reg << 12;
15176 inst.instruction |= (abcdebits & 3) << 5;
15177 inst.instruction |= (abcdebits >> 2) << 21;
15178 }
15179 break;
15180
15181 case NS_RRD: /* case 7 (fmrrd). */
15182 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15183 _(BAD_FPU));
15184
15185 inst.instruction = 0xc500b10;
15186 do_vfp_cond_or_thumb ();
15187 inst.instruction |= inst.operands[0].reg << 12;
15188 inst.instruction |= inst.operands[1].reg << 16;
15189 inst.instruction |= LOW4 (inst.operands[2].reg);
15190 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15191 break;
15192
15193 case NS_FF: /* case 8 (fcpys). */
15194 do_vfp_nsyn_opcode ("fcpys");
15195 break;
15196
15197 case NS_FI: /* case 10 (fconsts). */
15198 ldconst = "fconsts";
15199 encode_fconstd:
15200 if (is_quarter_float (inst.operands[1].imm))
15201 {
15202 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
15203 do_vfp_nsyn_opcode (ldconst);
15204 }
15205 else
15206 first_error (_("immediate out of range"));
15207 break;
15208
15209 case NS_RF: /* case 12 (fmrs). */
15210 do_vfp_nsyn_opcode ("fmrs");
15211 break;
15212
15213 case NS_FR: /* case 13 (fmsr). */
15214 do_vfp_nsyn_opcode ("fmsr");
15215 break;
15216
15217 /* The encoders for the fmrrs and fmsrr instructions expect three operands
15218 (one of which is a list), but we have parsed four. Do some fiddling to
15219 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
15220 expect. */
15221 case NS_RRFF: /* case 14 (fmrrs). */
15222 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
15223 _("VFP registers must be adjacent"));
15224 inst.operands[2].imm = 2;
15225 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15226 do_vfp_nsyn_opcode ("fmrrs");
15227 break;
15228
15229 case NS_FFRR: /* case 15 (fmsrr). */
15230 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
15231 _("VFP registers must be adjacent"));
15232 inst.operands[1] = inst.operands[2];
15233 inst.operands[2] = inst.operands[3];
15234 inst.operands[0].imm = 2;
15235 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15236 do_vfp_nsyn_opcode ("fmsrr");
15237 break;
15238
15239 default:
15240 abort ();
15241 }
15242 }
15243
15244 static void
15245 do_neon_rshift_round_imm (void)
15246 {
15247 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15248 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
15249 int imm = inst.operands[2].imm;
15250
15251 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
15252 if (imm == 0)
15253 {
15254 inst.operands[2].present = 0;
15255 do_neon_mov ();
15256 return;
15257 }
15258
15259 constraint (imm < 1 || (unsigned)imm > et.size,
15260 _("immediate out of range for shift"));
15261 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
15262 et.size - imm);
15263 }
15264
15265 static void
15266 do_neon_movl (void)
15267 {
15268 struct neon_type_el et = neon_check_type (2, NS_QD,
15269 N_EQK | N_DBL, N_SU_32 | N_KEY);
15270 unsigned sizebits = et.size >> 3;
15271 inst.instruction |= sizebits << 19;
15272 neon_two_same (0, et.type == NT_unsigned, -1);
15273 }
15274
15275 static void
15276 do_neon_trn (void)
15277 {
15278 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15279 struct neon_type_el et = neon_check_type (2, rs,
15280 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15281 NEON_ENCODE (INTEGER, inst);
15282 neon_two_same (neon_quad (rs), 1, et.size);
15283 }
15284
15285 static void
15286 do_neon_zip_uzp (void)
15287 {
15288 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15289 struct neon_type_el et = neon_check_type (2, rs,
15290 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15291 if (rs == NS_DD && et.size == 32)
15292 {
15293 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
15294 inst.instruction = N_MNEM_vtrn;
15295 do_neon_trn ();
15296 return;
15297 }
15298 neon_two_same (neon_quad (rs), 1, et.size);
15299 }
15300
15301 static void
15302 do_neon_sat_abs_neg (void)
15303 {
15304 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15305 struct neon_type_el et = neon_check_type (2, rs,
15306 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15307 neon_two_same (neon_quad (rs), 1, et.size);
15308 }
15309
15310 static void
15311 do_neon_pair_long (void)
15312 {
15313 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15314 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
15315 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15316 inst.instruction |= (et.type == NT_unsigned) << 7;
15317 neon_two_same (neon_quad (rs), 1, et.size);
15318 }
15319
15320 static void
15321 do_neon_recip_est (void)
15322 {
15323 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15324 struct neon_type_el et = neon_check_type (2, rs,
15325 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
15326 inst.instruction |= (et.type == NT_float) << 8;
15327 neon_two_same (neon_quad (rs), 1, et.size);
15328 }
15329
15330 static void
15331 do_neon_cls (void)
15332 {
15333 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15334 struct neon_type_el et = neon_check_type (2, rs,
15335 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15336 neon_two_same (neon_quad (rs), 1, et.size);
15337 }
15338
15339 static void
15340 do_neon_clz (void)
15341 {
15342 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15343 struct neon_type_el et = neon_check_type (2, rs,
15344 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
15345 neon_two_same (neon_quad (rs), 1, et.size);
15346 }
15347
15348 static void
15349 do_neon_cnt (void)
15350 {
15351 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15352 struct neon_type_el et = neon_check_type (2, rs,
15353 N_EQK | N_INT, N_8 | N_KEY);
15354 neon_two_same (neon_quad (rs), 1, et.size);
15355 }
15356
15357 static void
15358 do_neon_swp (void)
15359 {
15360 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15361 neon_two_same (neon_quad (rs), 1, -1);
15362 }
15363
15364 static void
15365 do_neon_tbl_tbx (void)
15366 {
15367 unsigned listlenbits;
15368 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
15369
15370 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
15371 {
15372 first_error (_("bad list length for table lookup"));
15373 return;
15374 }
15375
15376 listlenbits = inst.operands[1].imm - 1;
15377 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15378 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15379 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15380 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15381 inst.instruction |= LOW4 (inst.operands[2].reg);
15382 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15383 inst.instruction |= listlenbits << 8;
15384
15385 neon_dp_fixup (&inst);
15386 }
15387
15388 static void
15389 do_neon_ldm_stm (void)
15390 {
15391 /* P, U and L bits are part of bitmask. */
15392 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15393 unsigned offsetbits = inst.operands[1].imm * 2;
15394
15395 if (inst.operands[1].issingle)
15396 {
15397 do_vfp_nsyn_ldm_stm (is_dbmode);
15398 return;
15399 }
15400
15401 constraint (is_dbmode && !inst.operands[0].writeback,
15402 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15403
15404 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15405 _("register list must contain at least 1 and at most 16 "
15406 "registers"));
15407
15408 inst.instruction |= inst.operands[0].reg << 16;
15409 inst.instruction |= inst.operands[0].writeback << 21;
15410 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15411 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15412
15413 inst.instruction |= offsetbits;
15414
15415 do_vfp_cond_or_thumb ();
15416 }
15417
15418 static void
15419 do_neon_ldr_str (void)
15420 {
15421 int is_ldr = (inst.instruction & (1 << 20)) != 0;
15422
15423 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15424 And is UNPREDICTABLE in thumb mode. */
15425 if (!is_ldr
15426 && inst.operands[1].reg == REG_PC
15427 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
15428 {
15429 if (!thumb_mode && warn_on_deprecated)
15430 as_warn (_("Use of PC here is deprecated"));
15431 else
15432 inst.error = _("Use of PC here is UNPREDICTABLE");
15433 }
15434
15435 if (inst.operands[0].issingle)
15436 {
15437 if (is_ldr)
15438 do_vfp_nsyn_opcode ("flds");
15439 else
15440 do_vfp_nsyn_opcode ("fsts");
15441 }
15442 else
15443 {
15444 if (is_ldr)
15445 do_vfp_nsyn_opcode ("fldd");
15446 else
15447 do_vfp_nsyn_opcode ("fstd");
15448 }
15449 }
15450
15451 /* "interleave" version also handles non-interleaving register VLD1/VST1
15452 instructions. */
15453
15454 static void
15455 do_neon_ld_st_interleave (void)
15456 {
15457 struct neon_type_el et = neon_check_type (1, NS_NULL,
15458 N_8 | N_16 | N_32 | N_64);
15459 unsigned alignbits = 0;
15460 unsigned idx;
15461 /* The bits in this table go:
15462 0: register stride of one (0) or two (1)
15463 1,2: register list length, minus one (1, 2, 3, 4).
15464 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15465 We use -1 for invalid entries. */
15466 const int typetable[] =
15467 {
15468 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15469 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15470 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15471 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15472 };
15473 int typebits;
15474
15475 if (et.type == NT_invtype)
15476 return;
15477
15478 if (inst.operands[1].immisalign)
15479 switch (inst.operands[1].imm >> 8)
15480 {
15481 case 64: alignbits = 1; break;
15482 case 128:
15483 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15484 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15485 goto bad_alignment;
15486 alignbits = 2;
15487 break;
15488 case 256:
15489 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15490 goto bad_alignment;
15491 alignbits = 3;
15492 break;
15493 default:
15494 bad_alignment:
15495 first_error (_("bad alignment"));
15496 return;
15497 }
15498
15499 inst.instruction |= alignbits << 4;
15500 inst.instruction |= neon_logbits (et.size) << 6;
15501
15502 /* Bits [4:6] of the immediate in a list specifier encode register stride
15503 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15504 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15505 up the right value for "type" in a table based on this value and the given
15506 list style, then stick it back. */
15507 idx = ((inst.operands[0].imm >> 4) & 7)
15508 | (((inst.instruction >> 8) & 3) << 3);
15509
15510 typebits = typetable[idx];
15511
15512 constraint (typebits == -1, _("bad list type for instruction"));
15513
15514 inst.instruction &= ~0xf00;
15515 inst.instruction |= typebits << 8;
15516 }
15517
15518 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15519 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15520 otherwise. The variable arguments are a list of pairs of legal (size, align)
15521 values, terminated with -1. */
15522
15523 static int
15524 neon_alignment_bit (int size, int align, int *do_align, ...)
15525 {
15526 va_list ap;
15527 int result = FAIL, thissize, thisalign;
15528
15529 if (!inst.operands[1].immisalign)
15530 {
15531 *do_align = 0;
15532 return SUCCESS;
15533 }
15534
15535 va_start (ap, do_align);
15536
15537 do
15538 {
15539 thissize = va_arg (ap, int);
15540 if (thissize == -1)
15541 break;
15542 thisalign = va_arg (ap, int);
15543
15544 if (size == thissize && align == thisalign)
15545 result = SUCCESS;
15546 }
15547 while (result != SUCCESS);
15548
15549 va_end (ap);
15550
15551 if (result == SUCCESS)
15552 *do_align = 1;
15553 else
15554 first_error (_("unsupported alignment for instruction"));
15555
15556 return result;
15557 }
15558
15559 static void
15560 do_neon_ld_st_lane (void)
15561 {
15562 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15563 int align_good, do_align = 0;
15564 int logsize = neon_logbits (et.size);
15565 int align = inst.operands[1].imm >> 8;
15566 int n = (inst.instruction >> 8) & 3;
15567 int max_el = 64 / et.size;
15568
15569 if (et.type == NT_invtype)
15570 return;
15571
15572 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15573 _("bad list length"));
15574 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15575 _("scalar index out of range"));
15576 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15577 && et.size == 8,
15578 _("stride of 2 unavailable when element size is 8"));
15579
15580 switch (n)
15581 {
15582 case 0: /* VLD1 / VST1. */
15583 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15584 32, 32, -1);
15585 if (align_good == FAIL)
15586 return;
15587 if (do_align)
15588 {
15589 unsigned alignbits = 0;
15590 switch (et.size)
15591 {
15592 case 16: alignbits = 0x1; break;
15593 case 32: alignbits = 0x3; break;
15594 default: ;
15595 }
15596 inst.instruction |= alignbits << 4;
15597 }
15598 break;
15599
15600 case 1: /* VLD2 / VST2. */
15601 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15602 32, 64, -1);
15603 if (align_good == FAIL)
15604 return;
15605 if (do_align)
15606 inst.instruction |= 1 << 4;
15607 break;
15608
15609 case 2: /* VLD3 / VST3. */
15610 constraint (inst.operands[1].immisalign,
15611 _("can't use alignment with this instruction"));
15612 break;
15613
15614 case 3: /* VLD4 / VST4. */
15615 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15616 16, 64, 32, 64, 32, 128, -1);
15617 if (align_good == FAIL)
15618 return;
15619 if (do_align)
15620 {
15621 unsigned alignbits = 0;
15622 switch (et.size)
15623 {
15624 case 8: alignbits = 0x1; break;
15625 case 16: alignbits = 0x1; break;
15626 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15627 default: ;
15628 }
15629 inst.instruction |= alignbits << 4;
15630 }
15631 break;
15632
15633 default: ;
15634 }
15635
15636 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15637 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15638 inst.instruction |= 1 << (4 + logsize);
15639
15640 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15641 inst.instruction |= logsize << 10;
15642 }
15643
15644 /* Encode single n-element structure to all lanes VLD<n> instructions. */
15645
15646 static void
15647 do_neon_ld_dup (void)
15648 {
15649 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15650 int align_good, do_align = 0;
15651
15652 if (et.type == NT_invtype)
15653 return;
15654
15655 switch ((inst.instruction >> 8) & 3)
15656 {
15657 case 0: /* VLD1. */
15658 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
15659 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15660 &do_align, 16, 16, 32, 32, -1);
15661 if (align_good == FAIL)
15662 return;
15663 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15664 {
15665 case 1: break;
15666 case 2: inst.instruction |= 1 << 5; break;
15667 default: first_error (_("bad list length")); return;
15668 }
15669 inst.instruction |= neon_logbits (et.size) << 6;
15670 break;
15671
15672 case 1: /* VLD2. */
15673 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15674 &do_align, 8, 16, 16, 32, 32, 64, -1);
15675 if (align_good == FAIL)
15676 return;
15677 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15678 _("bad list length"));
15679 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15680 inst.instruction |= 1 << 5;
15681 inst.instruction |= neon_logbits (et.size) << 6;
15682 break;
15683
15684 case 2: /* VLD3. */
15685 constraint (inst.operands[1].immisalign,
15686 _("can't use alignment with this instruction"));
15687 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15688 _("bad list length"));
15689 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15690 inst.instruction |= 1 << 5;
15691 inst.instruction |= neon_logbits (et.size) << 6;
15692 break;
15693
15694 case 3: /* VLD4. */
15695 {
15696 int align = inst.operands[1].imm >> 8;
15697 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15698 16, 64, 32, 64, 32, 128, -1);
15699 if (align_good == FAIL)
15700 return;
15701 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15702 _("bad list length"));
15703 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15704 inst.instruction |= 1 << 5;
15705 if (et.size == 32 && align == 128)
15706 inst.instruction |= 0x3 << 6;
15707 else
15708 inst.instruction |= neon_logbits (et.size) << 6;
15709 }
15710 break;
15711
15712 default: ;
15713 }
15714
15715 inst.instruction |= do_align << 4;
15716 }
15717
15718 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15719 apart from bits [11:4]. */
15720
15721 static void
15722 do_neon_ldx_stx (void)
15723 {
15724 if (inst.operands[1].isreg)
15725 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15726
15727 switch (NEON_LANE (inst.operands[0].imm))
15728 {
15729 case NEON_INTERLEAVE_LANES:
15730 NEON_ENCODE (INTERLV, inst);
15731 do_neon_ld_st_interleave ();
15732 break;
15733
15734 case NEON_ALL_LANES:
15735 NEON_ENCODE (DUP, inst);
15736 do_neon_ld_dup ();
15737 break;
15738
15739 default:
15740 NEON_ENCODE (LANE, inst);
15741 do_neon_ld_st_lane ();
15742 }
15743
15744 /* L bit comes from bit mask. */
15745 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15746 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15747 inst.instruction |= inst.operands[1].reg << 16;
15748
15749 if (inst.operands[1].postind)
15750 {
15751 int postreg = inst.operands[1].imm & 0xf;
15752 constraint (!inst.operands[1].immisreg,
15753 _("post-index must be a register"));
15754 constraint (postreg == 0xd || postreg == 0xf,
15755 _("bad register for post-index"));
15756 inst.instruction |= postreg;
15757 }
15758 else if (inst.operands[1].writeback)
15759 {
15760 inst.instruction |= 0xd;
15761 }
15762 else
15763 inst.instruction |= 0xf;
15764
15765 if (thumb_mode)
15766 inst.instruction |= 0xf9000000;
15767 else
15768 inst.instruction |= 0xf4000000;
15769 }
15770 \f
15771 /* Overall per-instruction processing. */
15772
15773 /* We need to be able to fix up arbitrary expressions in some statements.
15774 This is so that we can handle symbols that are an arbitrary distance from
15775 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15776 which returns part of an address in a form which will be valid for
15777 a data instruction. We do this by pushing the expression into a symbol
15778 in the expr_section, and creating a fix for that. */
15779
15780 static void
15781 fix_new_arm (fragS * frag,
15782 int where,
15783 short int size,
15784 expressionS * exp,
15785 int pc_rel,
15786 int reloc)
15787 {
15788 fixS * new_fix;
15789
15790 switch (exp->X_op)
15791 {
15792 case O_constant:
15793 if (pc_rel)
15794 {
15795 /* Create an absolute valued symbol, so we have something to
15796 refer to in the object file. Unfortunately for us, gas's
15797 generic expression parsing will already have folded out
15798 any use of .set foo/.type foo %function that may have
15799 been used to set type information of the target location,
15800 that's being specified symbolically. We have to presume
15801 the user knows what they are doing. */
15802 char name[16 + 8];
15803 symbolS *symbol;
15804
15805 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
15806
15807 symbol = symbol_find_or_make (name);
15808 S_SET_SEGMENT (symbol, absolute_section);
15809 symbol_set_frag (symbol, &zero_address_frag);
15810 S_SET_VALUE (symbol, exp->X_add_number);
15811 exp->X_op = O_symbol;
15812 exp->X_add_symbol = symbol;
15813 exp->X_add_number = 0;
15814 }
15815 /* FALLTHROUGH */
15816 case O_symbol:
15817 case O_add:
15818 case O_subtract:
15819 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15820 (enum bfd_reloc_code_real) reloc);
15821 break;
15822
15823 default:
15824 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15825 pc_rel, (enum bfd_reloc_code_real) reloc);
15826 break;
15827 }
15828
15829 /* Mark whether the fix is to a THUMB instruction, or an ARM
15830 instruction. */
15831 new_fix->tc_fix_data = thumb_mode;
15832 }
15833
15834 /* Create a frg for an instruction requiring relaxation. */
15835 static void
15836 output_relax_insn (void)
15837 {
15838 char * to;
15839 symbolS *sym;
15840 int offset;
15841
15842 /* The size of the instruction is unknown, so tie the debug info to the
15843 start of the instruction. */
15844 dwarf2_emit_insn (0);
15845
15846 switch (inst.reloc.exp.X_op)
15847 {
15848 case O_symbol:
15849 sym = inst.reloc.exp.X_add_symbol;
15850 offset = inst.reloc.exp.X_add_number;
15851 break;
15852 case O_constant:
15853 sym = NULL;
15854 offset = inst.reloc.exp.X_add_number;
15855 break;
15856 default:
15857 sym = make_expr_symbol (&inst.reloc.exp);
15858 offset = 0;
15859 break;
15860 }
15861 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15862 inst.relax, sym, offset, NULL/*offset, opcode*/);
15863 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
15864 }
15865
15866 /* Write a 32-bit thumb instruction to buf. */
15867 static void
15868 put_thumb32_insn (char * buf, unsigned long insn)
15869 {
15870 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15871 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15872 }
15873
15874 static void
15875 output_inst (const char * str)
15876 {
15877 char * to = NULL;
15878
15879 if (inst.error)
15880 {
15881 as_bad ("%s -- `%s'", inst.error, str);
15882 return;
15883 }
15884 if (inst.relax)
15885 {
15886 output_relax_insn ();
15887 return;
15888 }
15889 if (inst.size == 0)
15890 return;
15891
15892 to = frag_more (inst.size);
15893 /* PR 9814: Record the thumb mode into the current frag so that we know
15894 what type of NOP padding to use, if necessary. We override any previous
15895 setting so that if the mode has changed then the NOPS that we use will
15896 match the encoding of the last instruction in the frag. */
15897 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
15898
15899 if (thumb_mode && (inst.size > THUMB_SIZE))
15900 {
15901 gas_assert (inst.size == (2 * THUMB_SIZE));
15902 put_thumb32_insn (to, inst.instruction);
15903 }
15904 else if (inst.size > INSN_SIZE)
15905 {
15906 gas_assert (inst.size == (2 * INSN_SIZE));
15907 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15908 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
15909 }
15910 else
15911 md_number_to_chars (to, inst.instruction, inst.size);
15912
15913 if (inst.reloc.type != BFD_RELOC_UNUSED)
15914 fix_new_arm (frag_now, to - frag_now->fr_literal,
15915 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15916 inst.reloc.type);
15917
15918 dwarf2_emit_insn (inst.size);
15919 }
15920
15921 static char *
15922 output_it_inst (int cond, int mask, char * to)
15923 {
15924 unsigned long instruction = 0xbf00;
15925
15926 mask &= 0xf;
15927 instruction |= mask;
15928 instruction |= cond << 4;
15929
15930 if (to == NULL)
15931 {
15932 to = frag_more (2);
15933 #ifdef OBJ_ELF
15934 dwarf2_emit_insn (2);
15935 #endif
15936 }
15937
15938 md_number_to_chars (to, instruction, 2);
15939
15940 return to;
15941 }
15942
15943 /* Tag values used in struct asm_opcode's tag field. */
15944 enum opcode_tag
15945 {
15946 OT_unconditional, /* Instruction cannot be conditionalized.
15947 The ARM condition field is still 0xE. */
15948 OT_unconditionalF, /* Instruction cannot be conditionalized
15949 and carries 0xF in its ARM condition field. */
15950 OT_csuffix, /* Instruction takes a conditional suffix. */
15951 OT_csuffixF, /* Some forms of the instruction take a conditional
15952 suffix, others place 0xF where the condition field
15953 would be. */
15954 OT_cinfix3, /* Instruction takes a conditional infix,
15955 beginning at character index 3. (In
15956 unified mode, it becomes a suffix.) */
15957 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15958 tsts, cmps, cmns, and teqs. */
15959 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15960 character index 3, even in unified mode. Used for
15961 legacy instructions where suffix and infix forms
15962 may be ambiguous. */
15963 OT_csuf_or_in3, /* Instruction takes either a conditional
15964 suffix or an infix at character index 3. */
15965 OT_odd_infix_unc, /* This is the unconditional variant of an
15966 instruction that takes a conditional infix
15967 at an unusual position. In unified mode,
15968 this variant will accept a suffix. */
15969 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15970 are the conditional variants of instructions that
15971 take conditional infixes in unusual positions.
15972 The infix appears at character index
15973 (tag - OT_odd_infix_0). These are not accepted
15974 in unified mode. */
15975 };
15976
15977 /* Subroutine of md_assemble, responsible for looking up the primary
15978 opcode from the mnemonic the user wrote. STR points to the
15979 beginning of the mnemonic.
15980
15981 This is not simply a hash table lookup, because of conditional
15982 variants. Most instructions have conditional variants, which are
15983 expressed with a _conditional affix_ to the mnemonic. If we were
15984 to encode each conditional variant as a literal string in the opcode
15985 table, it would have approximately 20,000 entries.
15986
15987 Most mnemonics take this affix as a suffix, and in unified syntax,
15988 'most' is upgraded to 'all'. However, in the divided syntax, some
15989 instructions take the affix as an infix, notably the s-variants of
15990 the arithmetic instructions. Of those instructions, all but six
15991 have the infix appear after the third character of the mnemonic.
15992
15993 Accordingly, the algorithm for looking up primary opcodes given
15994 an identifier is:
15995
15996 1. Look up the identifier in the opcode table.
15997 If we find a match, go to step U.
15998
15999 2. Look up the last two characters of the identifier in the
16000 conditions table. If we find a match, look up the first N-2
16001 characters of the identifier in the opcode table. If we
16002 find a match, go to step CE.
16003
16004 3. Look up the fourth and fifth characters of the identifier in
16005 the conditions table. If we find a match, extract those
16006 characters from the identifier, and look up the remaining
16007 characters in the opcode table. If we find a match, go
16008 to step CM.
16009
16010 4. Fail.
16011
16012 U. Examine the tag field of the opcode structure, in case this is
16013 one of the six instructions with its conditional infix in an
16014 unusual place. If it is, the tag tells us where to find the
16015 infix; look it up in the conditions table and set inst.cond
16016 accordingly. Otherwise, this is an unconditional instruction.
16017 Again set inst.cond accordingly. Return the opcode structure.
16018
16019 CE. Examine the tag field to make sure this is an instruction that
16020 should receive a conditional suffix. If it is not, fail.
16021 Otherwise, set inst.cond from the suffix we already looked up,
16022 and return the opcode structure.
16023
16024 CM. Examine the tag field to make sure this is an instruction that
16025 should receive a conditional infix after the third character.
16026 If it is not, fail. Otherwise, undo the edits to the current
16027 line of input and proceed as for case CE. */
16028
16029 static const struct asm_opcode *
16030 opcode_lookup (char **str)
16031 {
16032 char *end, *base;
16033 char *affix;
16034 const struct asm_opcode *opcode;
16035 const struct asm_cond *cond;
16036 char save[2];
16037
16038 /* Scan up to the end of the mnemonic, which must end in white space,
16039 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
16040 for (base = end = *str; *end != '\0'; end++)
16041 if (*end == ' ' || *end == '.')
16042 break;
16043
16044 if (end == base)
16045 return NULL;
16046
16047 /* Handle a possible width suffix and/or Neon type suffix. */
16048 if (end[0] == '.')
16049 {
16050 int offset = 2;
16051
16052 /* The .w and .n suffixes are only valid if the unified syntax is in
16053 use. */
16054 if (unified_syntax && end[1] == 'w')
16055 inst.size_req = 4;
16056 else if (unified_syntax && end[1] == 'n')
16057 inst.size_req = 2;
16058 else
16059 offset = 0;
16060
16061 inst.vectype.elems = 0;
16062
16063 *str = end + offset;
16064
16065 if (end[offset] == '.')
16066 {
16067 /* See if we have a Neon type suffix (possible in either unified or
16068 non-unified ARM syntax mode). */
16069 if (parse_neon_type (&inst.vectype, str) == FAIL)
16070 return NULL;
16071 }
16072 else if (end[offset] != '\0' && end[offset] != ' ')
16073 return NULL;
16074 }
16075 else
16076 *str = end;
16077
16078 /* Look for unaffixed or special-case affixed mnemonic. */
16079 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16080 end - base);
16081 if (opcode)
16082 {
16083 /* step U */
16084 if (opcode->tag < OT_odd_infix_0)
16085 {
16086 inst.cond = COND_ALWAYS;
16087 return opcode;
16088 }
16089
16090 if (warn_on_deprecated && unified_syntax)
16091 as_warn (_("conditional infixes are deprecated in unified syntax"));
16092 affix = base + (opcode->tag - OT_odd_infix_0);
16093 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16094 gas_assert (cond);
16095
16096 inst.cond = cond->value;
16097 return opcode;
16098 }
16099
16100 /* Cannot have a conditional suffix on a mnemonic of less than two
16101 characters. */
16102 if (end - base < 3)
16103 return NULL;
16104
16105 /* Look for suffixed mnemonic. */
16106 affix = end - 2;
16107 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16108 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16109 affix - base);
16110 if (opcode && cond)
16111 {
16112 /* step CE */
16113 switch (opcode->tag)
16114 {
16115 case OT_cinfix3_legacy:
16116 /* Ignore conditional suffixes matched on infix only mnemonics. */
16117 break;
16118
16119 case OT_cinfix3:
16120 case OT_cinfix3_deprecated:
16121 case OT_odd_infix_unc:
16122 if (!unified_syntax)
16123 return 0;
16124 /* else fall through */
16125
16126 case OT_csuffix:
16127 case OT_csuffixF:
16128 case OT_csuf_or_in3:
16129 inst.cond = cond->value;
16130 return opcode;
16131
16132 case OT_unconditional:
16133 case OT_unconditionalF:
16134 if (thumb_mode)
16135 inst.cond = cond->value;
16136 else
16137 {
16138 /* Delayed diagnostic. */
16139 inst.error = BAD_COND;
16140 inst.cond = COND_ALWAYS;
16141 }
16142 return opcode;
16143
16144 default:
16145 return NULL;
16146 }
16147 }
16148
16149 /* Cannot have a usual-position infix on a mnemonic of less than
16150 six characters (five would be a suffix). */
16151 if (end - base < 6)
16152 return NULL;
16153
16154 /* Look for infixed mnemonic in the usual position. */
16155 affix = base + 3;
16156 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16157 if (!cond)
16158 return NULL;
16159
16160 memcpy (save, affix, 2);
16161 memmove (affix, affix + 2, (end - affix) - 2);
16162 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16163 (end - base) - 2);
16164 memmove (affix + 2, affix, (end - affix) - 2);
16165 memcpy (affix, save, 2);
16166
16167 if (opcode
16168 && (opcode->tag == OT_cinfix3
16169 || opcode->tag == OT_cinfix3_deprecated
16170 || opcode->tag == OT_csuf_or_in3
16171 || opcode->tag == OT_cinfix3_legacy))
16172 {
16173 /* Step CM. */
16174 if (warn_on_deprecated && unified_syntax
16175 && (opcode->tag == OT_cinfix3
16176 || opcode->tag == OT_cinfix3_deprecated))
16177 as_warn (_("conditional infixes are deprecated in unified syntax"));
16178
16179 inst.cond = cond->value;
16180 return opcode;
16181 }
16182
16183 return NULL;
16184 }
16185
16186 /* This function generates an initial IT instruction, leaving its block
16187 virtually open for the new instructions. Eventually,
16188 the mask will be updated by now_it_add_mask () each time
16189 a new instruction needs to be included in the IT block.
16190 Finally, the block is closed with close_automatic_it_block ().
16191 The block closure can be requested either from md_assemble (),
16192 a tencode (), or due to a label hook. */
16193
16194 static void
16195 new_automatic_it_block (int cond)
16196 {
16197 now_it.state = AUTOMATIC_IT_BLOCK;
16198 now_it.mask = 0x18;
16199 now_it.cc = cond;
16200 now_it.block_length = 1;
16201 mapping_state (MAP_THUMB);
16202 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
16203 now_it.warn_deprecated = FALSE;
16204 now_it.insn_cond = TRUE;
16205 }
16206
16207 /* Close an automatic IT block.
16208 See comments in new_automatic_it_block (). */
16209
16210 static void
16211 close_automatic_it_block (void)
16212 {
16213 now_it.mask = 0x10;
16214 now_it.block_length = 0;
16215 }
16216
16217 /* Update the mask of the current automatically-generated IT
16218 instruction. See comments in new_automatic_it_block (). */
16219
16220 static void
16221 now_it_add_mask (int cond)
16222 {
16223 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
16224 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
16225 | ((bitvalue) << (nbit)))
16226 const int resulting_bit = (cond & 1);
16227
16228 now_it.mask &= 0xf;
16229 now_it.mask = SET_BIT_VALUE (now_it.mask,
16230 resulting_bit,
16231 (5 - now_it.block_length));
16232 now_it.mask = SET_BIT_VALUE (now_it.mask,
16233 1,
16234 ((5 - now_it.block_length) - 1) );
16235 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
16236
16237 #undef CLEAR_BIT
16238 #undef SET_BIT_VALUE
16239 }
16240
16241 /* The IT blocks handling machinery is accessed through the these functions:
16242 it_fsm_pre_encode () from md_assemble ()
16243 set_it_insn_type () optional, from the tencode functions
16244 set_it_insn_type_last () ditto
16245 in_it_block () ditto
16246 it_fsm_post_encode () from md_assemble ()
16247 force_automatic_it_block_close () from label habdling functions
16248
16249 Rationale:
16250 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
16251 initializing the IT insn type with a generic initial value depending
16252 on the inst.condition.
16253 2) During the tencode function, two things may happen:
16254 a) The tencode function overrides the IT insn type by
16255 calling either set_it_insn_type (type) or set_it_insn_type_last ().
16256 b) The tencode function queries the IT block state by
16257 calling in_it_block () (i.e. to determine narrow/not narrow mode).
16258
16259 Both set_it_insn_type and in_it_block run the internal FSM state
16260 handling function (handle_it_state), because: a) setting the IT insn
16261 type may incur in an invalid state (exiting the function),
16262 and b) querying the state requires the FSM to be updated.
16263 Specifically we want to avoid creating an IT block for conditional
16264 branches, so it_fsm_pre_encode is actually a guess and we can't
16265 determine whether an IT block is required until the tencode () routine
16266 has decided what type of instruction this actually it.
16267 Because of this, if set_it_insn_type and in_it_block have to be used,
16268 set_it_insn_type has to be called first.
16269
16270 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
16271 determines the insn IT type depending on the inst.cond code.
16272 When a tencode () routine encodes an instruction that can be
16273 either outside an IT block, or, in the case of being inside, has to be
16274 the last one, set_it_insn_type_last () will determine the proper
16275 IT instruction type based on the inst.cond code. Otherwise,
16276 set_it_insn_type can be called for overriding that logic or
16277 for covering other cases.
16278
16279 Calling handle_it_state () may not transition the IT block state to
16280 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
16281 still queried. Instead, if the FSM determines that the state should
16282 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
16283 after the tencode () function: that's what it_fsm_post_encode () does.
16284
16285 Since in_it_block () calls the state handling function to get an
16286 updated state, an error may occur (due to invalid insns combination).
16287 In that case, inst.error is set.
16288 Therefore, inst.error has to be checked after the execution of
16289 the tencode () routine.
16290
16291 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
16292 any pending state change (if any) that didn't take place in
16293 handle_it_state () as explained above. */
16294
16295 static void
16296 it_fsm_pre_encode (void)
16297 {
16298 if (inst.cond != COND_ALWAYS)
16299 inst.it_insn_type = INSIDE_IT_INSN;
16300 else
16301 inst.it_insn_type = OUTSIDE_IT_INSN;
16302
16303 now_it.state_handled = 0;
16304 }
16305
16306 /* IT state FSM handling function. */
16307
16308 static int
16309 handle_it_state (void)
16310 {
16311 now_it.state_handled = 1;
16312 now_it.insn_cond = FALSE;
16313
16314 switch (now_it.state)
16315 {
16316 case OUTSIDE_IT_BLOCK:
16317 switch (inst.it_insn_type)
16318 {
16319 case OUTSIDE_IT_INSN:
16320 break;
16321
16322 case INSIDE_IT_INSN:
16323 case INSIDE_IT_LAST_INSN:
16324 if (thumb_mode == 0)
16325 {
16326 if (unified_syntax
16327 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
16328 as_tsktsk (_("Warning: conditional outside an IT block"\
16329 " for Thumb."));
16330 }
16331 else
16332 {
16333 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
16334 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
16335 {
16336 /* Automatically generate the IT instruction. */
16337 new_automatic_it_block (inst.cond);
16338 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
16339 close_automatic_it_block ();
16340 }
16341 else
16342 {
16343 inst.error = BAD_OUT_IT;
16344 return FAIL;
16345 }
16346 }
16347 break;
16348
16349 case IF_INSIDE_IT_LAST_INSN:
16350 case NEUTRAL_IT_INSN:
16351 break;
16352
16353 case IT_INSN:
16354 now_it.state = MANUAL_IT_BLOCK;
16355 now_it.block_length = 0;
16356 break;
16357 }
16358 break;
16359
16360 case AUTOMATIC_IT_BLOCK:
16361 /* Three things may happen now:
16362 a) We should increment current it block size;
16363 b) We should close current it block (closing insn or 4 insns);
16364 c) We should close current it block and start a new one (due
16365 to incompatible conditions or
16366 4 insns-length block reached). */
16367
16368 switch (inst.it_insn_type)
16369 {
16370 case OUTSIDE_IT_INSN:
16371 /* The closure of the block shall happen immediatelly,
16372 so any in_it_block () call reports the block as closed. */
16373 force_automatic_it_block_close ();
16374 break;
16375
16376 case INSIDE_IT_INSN:
16377 case INSIDE_IT_LAST_INSN:
16378 case IF_INSIDE_IT_LAST_INSN:
16379 now_it.block_length++;
16380
16381 if (now_it.block_length > 4
16382 || !now_it_compatible (inst.cond))
16383 {
16384 force_automatic_it_block_close ();
16385 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
16386 new_automatic_it_block (inst.cond);
16387 }
16388 else
16389 {
16390 now_it.insn_cond = TRUE;
16391 now_it_add_mask (inst.cond);
16392 }
16393
16394 if (now_it.state == AUTOMATIC_IT_BLOCK
16395 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
16396 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
16397 close_automatic_it_block ();
16398 break;
16399
16400 case NEUTRAL_IT_INSN:
16401 now_it.block_length++;
16402 now_it.insn_cond = TRUE;
16403
16404 if (now_it.block_length > 4)
16405 force_automatic_it_block_close ();
16406 else
16407 now_it_add_mask (now_it.cc & 1);
16408 break;
16409
16410 case IT_INSN:
16411 close_automatic_it_block ();
16412 now_it.state = MANUAL_IT_BLOCK;
16413 break;
16414 }
16415 break;
16416
16417 case MANUAL_IT_BLOCK:
16418 {
16419 /* Check conditional suffixes. */
16420 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
16421 int is_last;
16422 now_it.mask <<= 1;
16423 now_it.mask &= 0x1f;
16424 is_last = (now_it.mask == 0x10);
16425 now_it.insn_cond = TRUE;
16426
16427 switch (inst.it_insn_type)
16428 {
16429 case OUTSIDE_IT_INSN:
16430 inst.error = BAD_NOT_IT;
16431 return FAIL;
16432
16433 case INSIDE_IT_INSN:
16434 if (cond != inst.cond)
16435 {
16436 inst.error = BAD_IT_COND;
16437 return FAIL;
16438 }
16439 break;
16440
16441 case INSIDE_IT_LAST_INSN:
16442 case IF_INSIDE_IT_LAST_INSN:
16443 if (cond != inst.cond)
16444 {
16445 inst.error = BAD_IT_COND;
16446 return FAIL;
16447 }
16448 if (!is_last)
16449 {
16450 inst.error = BAD_BRANCH;
16451 return FAIL;
16452 }
16453 break;
16454
16455 case NEUTRAL_IT_INSN:
16456 /* The BKPT instruction is unconditional even in an IT block. */
16457 break;
16458
16459 case IT_INSN:
16460 inst.error = BAD_IT_IT;
16461 return FAIL;
16462 }
16463 }
16464 break;
16465 }
16466
16467 return SUCCESS;
16468 }
16469
16470 struct depr_insn_mask
16471 {
16472 unsigned long pattern;
16473 unsigned long mask;
16474 const char* description;
16475 };
16476
16477 /* List of 16-bit instruction patterns deprecated in an IT block in
16478 ARMv8. */
16479 static const struct depr_insn_mask depr_it_insns[] = {
16480 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
16481 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
16482 { 0xa000, 0xb800, N_("ADR") },
16483 { 0x4800, 0xf800, N_("Literal loads") },
16484 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
16485 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
16486 { 0, 0, NULL }
16487 };
16488
16489 static void
16490 it_fsm_post_encode (void)
16491 {
16492 int is_last;
16493
16494 if (!now_it.state_handled)
16495 handle_it_state ();
16496
16497 if (now_it.insn_cond
16498 && !now_it.warn_deprecated
16499 && warn_on_deprecated
16500 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
16501 {
16502 if (inst.instruction >= 0x10000)
16503 {
16504 as_warn (_("it blocks containing wide Thumb instructions are "
16505 "deprecated in ARMv8"));
16506 now_it.warn_deprecated = TRUE;
16507 }
16508 else
16509 {
16510 const struct depr_insn_mask *p = depr_it_insns;
16511
16512 while (p->mask != 0)
16513 {
16514 if ((inst.instruction & p->mask) == p->pattern)
16515 {
16516 as_warn (_("it blocks containing 16-bit Thumb intsructions "
16517 "of the following class are deprecated in ARMv8: "
16518 "%s"), p->description);
16519 now_it.warn_deprecated = TRUE;
16520 break;
16521 }
16522
16523 ++p;
16524 }
16525 }
16526
16527 if (now_it.block_length > 1)
16528 {
16529 as_warn (_("it blocks of more than one conditional instruction are "
16530 "deprecated in ARMv8"));
16531 now_it.warn_deprecated = TRUE;
16532 }
16533 }
16534
16535 is_last = (now_it.mask == 0x10);
16536 if (is_last)
16537 {
16538 now_it.state = OUTSIDE_IT_BLOCK;
16539 now_it.mask = 0;
16540 }
16541 }
16542
16543 static void
16544 force_automatic_it_block_close (void)
16545 {
16546 if (now_it.state == AUTOMATIC_IT_BLOCK)
16547 {
16548 close_automatic_it_block ();
16549 now_it.state = OUTSIDE_IT_BLOCK;
16550 now_it.mask = 0;
16551 }
16552 }
16553
16554 static int
16555 in_it_block (void)
16556 {
16557 if (!now_it.state_handled)
16558 handle_it_state ();
16559
16560 return now_it.state != OUTSIDE_IT_BLOCK;
16561 }
16562
16563 void
16564 md_assemble (char *str)
16565 {
16566 char *p = str;
16567 const struct asm_opcode * opcode;
16568
16569 /* Align the previous label if needed. */
16570 if (last_label_seen != NULL)
16571 {
16572 symbol_set_frag (last_label_seen, frag_now);
16573 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
16574 S_SET_SEGMENT (last_label_seen, now_seg);
16575 }
16576
16577 memset (&inst, '\0', sizeof (inst));
16578 inst.reloc.type = BFD_RELOC_UNUSED;
16579
16580 opcode = opcode_lookup (&p);
16581 if (!opcode)
16582 {
16583 /* It wasn't an instruction, but it might be a register alias of
16584 the form alias .req reg, or a Neon .dn/.qn directive. */
16585 if (! create_register_alias (str, p)
16586 && ! create_neon_reg_alias (str, p))
16587 as_bad (_("bad instruction `%s'"), str);
16588
16589 return;
16590 }
16591
16592 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
16593 as_warn (_("s suffix on comparison instruction is deprecated"));
16594
16595 /* The value which unconditional instructions should have in place of the
16596 condition field. */
16597 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
16598
16599 if (thumb_mode)
16600 {
16601 arm_feature_set variant;
16602
16603 variant = cpu_variant;
16604 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
16605 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
16606 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
16607 /* Check that this instruction is supported for this CPU. */
16608 if (!opcode->tvariant
16609 || (thumb_mode == 1
16610 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
16611 {
16612 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
16613 return;
16614 }
16615 if (inst.cond != COND_ALWAYS && !unified_syntax
16616 && opcode->tencode != do_t_branch)
16617 {
16618 as_bad (_("Thumb does not support conditional execution"));
16619 return;
16620 }
16621
16622 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
16623 {
16624 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
16625 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16626 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16627 {
16628 /* Two things are addressed here.
16629 1) Implicit require narrow instructions on Thumb-1.
16630 This avoids relaxation accidentally introducing Thumb-2
16631 instructions.
16632 2) Reject wide instructions in non Thumb-2 cores. */
16633 if (inst.size_req == 0)
16634 inst.size_req = 2;
16635 else if (inst.size_req == 4)
16636 {
16637 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
16638 return;
16639 }
16640 }
16641 }
16642
16643 inst.instruction = opcode->tvalue;
16644
16645 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
16646 {
16647 /* Prepare the it_insn_type for those encodings that don't set
16648 it. */
16649 it_fsm_pre_encode ();
16650
16651 opcode->tencode ();
16652
16653 it_fsm_post_encode ();
16654 }
16655
16656 if (!(inst.error || inst.relax))
16657 {
16658 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
16659 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16660 if (inst.size_req && inst.size_req != inst.size)
16661 {
16662 as_bad (_("cannot honor width suffix -- `%s'"), str);
16663 return;
16664 }
16665 }
16666
16667 /* Something has gone badly wrong if we try to relax a fixed size
16668 instruction. */
16669 gas_assert (inst.size_req == 0 || !inst.relax);
16670
16671 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16672 *opcode->tvariant);
16673 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
16674 set those bits when Thumb-2 32-bit instructions are seen. ie.
16675 anything other than bl/blx and v6-M instructions.
16676 This is overly pessimistic for relaxable instructions. */
16677 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16678 || inst.relax)
16679 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16680 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
16681 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16682 arm_ext_v6t2);
16683
16684 check_neon_suffixes;
16685
16686 if (!inst.error)
16687 {
16688 mapping_state (MAP_THUMB);
16689 }
16690 }
16691 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
16692 {
16693 bfd_boolean is_bx;
16694
16695 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16696 is_bx = (opcode->aencode == do_bx);
16697
16698 /* Check that this instruction is supported for this CPU. */
16699 if (!(is_bx && fix_v4bx)
16700 && !(opcode->avariant &&
16701 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
16702 {
16703 as_bad (_("selected processor does not support ARM mode `%s'"), str);
16704 return;
16705 }
16706 if (inst.size_req)
16707 {
16708 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16709 return;
16710 }
16711
16712 inst.instruction = opcode->avalue;
16713 if (opcode->tag == OT_unconditionalF)
16714 inst.instruction |= 0xF << 28;
16715 else
16716 inst.instruction |= inst.cond << 28;
16717 inst.size = INSN_SIZE;
16718 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
16719 {
16720 it_fsm_pre_encode ();
16721 opcode->aencode ();
16722 it_fsm_post_encode ();
16723 }
16724 /* Arm mode bx is marked as both v4T and v5 because it's still required
16725 on a hypothetical non-thumb v5 core. */
16726 if (is_bx)
16727 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
16728 else
16729 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16730 *opcode->avariant);
16731
16732 check_neon_suffixes;
16733
16734 if (!inst.error)
16735 {
16736 mapping_state (MAP_ARM);
16737 }
16738 }
16739 else
16740 {
16741 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16742 "-- `%s'"), str);
16743 return;
16744 }
16745 output_inst (str);
16746 }
16747
16748 static void
16749 check_it_blocks_finished (void)
16750 {
16751 #ifdef OBJ_ELF
16752 asection *sect;
16753
16754 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16755 if (seg_info (sect)->tc_segment_info_data.current_it.state
16756 == MANUAL_IT_BLOCK)
16757 {
16758 as_warn (_("section '%s' finished with an open IT block."),
16759 sect->name);
16760 }
16761 #else
16762 if (now_it.state == MANUAL_IT_BLOCK)
16763 as_warn (_("file finished with an open IT block."));
16764 #endif
16765 }
16766
16767 /* Various frobbings of labels and their addresses. */
16768
16769 void
16770 arm_start_line_hook (void)
16771 {
16772 last_label_seen = NULL;
16773 }
16774
16775 void
16776 arm_frob_label (symbolS * sym)
16777 {
16778 last_label_seen = sym;
16779
16780 ARM_SET_THUMB (sym, thumb_mode);
16781
16782 #if defined OBJ_COFF || defined OBJ_ELF
16783 ARM_SET_INTERWORK (sym, support_interwork);
16784 #endif
16785
16786 force_automatic_it_block_close ();
16787
16788 /* Note - do not allow local symbols (.Lxxx) to be labelled
16789 as Thumb functions. This is because these labels, whilst
16790 they exist inside Thumb code, are not the entry points for
16791 possible ARM->Thumb calls. Also, these labels can be used
16792 as part of a computed goto or switch statement. eg gcc
16793 can generate code that looks like this:
16794
16795 ldr r2, [pc, .Laaa]
16796 lsl r3, r3, #2
16797 ldr r2, [r3, r2]
16798 mov pc, r2
16799
16800 .Lbbb: .word .Lxxx
16801 .Lccc: .word .Lyyy
16802 ..etc...
16803 .Laaa: .word Lbbb
16804
16805 The first instruction loads the address of the jump table.
16806 The second instruction converts a table index into a byte offset.
16807 The third instruction gets the jump address out of the table.
16808 The fourth instruction performs the jump.
16809
16810 If the address stored at .Laaa is that of a symbol which has the
16811 Thumb_Func bit set, then the linker will arrange for this address
16812 to have the bottom bit set, which in turn would mean that the
16813 address computation performed by the third instruction would end
16814 up with the bottom bit set. Since the ARM is capable of unaligned
16815 word loads, the instruction would then load the incorrect address
16816 out of the jump table, and chaos would ensue. */
16817 if (label_is_thumb_function_name
16818 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16819 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
16820 {
16821 /* When the address of a Thumb function is taken the bottom
16822 bit of that address should be set. This will allow
16823 interworking between Arm and Thumb functions to work
16824 correctly. */
16825
16826 THUMB_SET_FUNC (sym, 1);
16827
16828 label_is_thumb_function_name = FALSE;
16829 }
16830
16831 dwarf2_emit_label (sym);
16832 }
16833
16834 bfd_boolean
16835 arm_data_in_code (void)
16836 {
16837 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
16838 {
16839 *input_line_pointer = '/';
16840 input_line_pointer += 5;
16841 *input_line_pointer = 0;
16842 return TRUE;
16843 }
16844
16845 return FALSE;
16846 }
16847
16848 char *
16849 arm_canonicalize_symbol_name (char * name)
16850 {
16851 int len;
16852
16853 if (thumb_mode && (len = strlen (name)) > 5
16854 && streq (name + len - 5, "/data"))
16855 *(name + len - 5) = 0;
16856
16857 return name;
16858 }
16859 \f
16860 /* Table of all register names defined by default. The user can
16861 define additional names with .req. Note that all register names
16862 should appear in both upper and lowercase variants. Some registers
16863 also have mixed-case names. */
16864
16865 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
16866 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
16867 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
16868 #define REGSET(p,t) \
16869 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16870 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16871 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16872 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
16873 #define REGSETH(p,t) \
16874 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16875 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16876 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16877 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16878 #define REGSET2(p,t) \
16879 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16880 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16881 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16882 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
16883 #define SPLRBANK(base,bank,t) \
16884 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16885 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16886 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16887 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16888 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16889 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
16890
16891 static const struct reg_entry reg_names[] =
16892 {
16893 /* ARM integer registers. */
16894 REGSET(r, RN), REGSET(R, RN),
16895
16896 /* ATPCS synonyms. */
16897 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16898 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16899 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
16900
16901 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16902 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16903 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
16904
16905 /* Well-known aliases. */
16906 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16907 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16908
16909 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16910 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16911
16912 /* Coprocessor numbers. */
16913 REGSET(p, CP), REGSET(P, CP),
16914
16915 /* Coprocessor register numbers. The "cr" variants are for backward
16916 compatibility. */
16917 REGSET(c, CN), REGSET(C, CN),
16918 REGSET(cr, CN), REGSET(CR, CN),
16919
16920 /* ARM banked registers. */
16921 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
16922 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
16923 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
16924 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
16925 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
16926 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
16927 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
16928
16929 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
16930 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
16931 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
16932 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
16933 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
16934 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
16935 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
16936 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
16937
16938 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
16939 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
16940 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
16941 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
16942 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
16943 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
16944 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
16945 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
16946 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
16947
16948 /* FPA registers. */
16949 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16950 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16951
16952 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16953 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16954
16955 /* VFP SP registers. */
16956 REGSET(s,VFS), REGSET(S,VFS),
16957 REGSETH(s,VFS), REGSETH(S,VFS),
16958
16959 /* VFP DP Registers. */
16960 REGSET(d,VFD), REGSET(D,VFD),
16961 /* Extra Neon DP registers. */
16962 REGSETH(d,VFD), REGSETH(D,VFD),
16963
16964 /* Neon QP registers. */
16965 REGSET2(q,NQ), REGSET2(Q,NQ),
16966
16967 /* VFP control registers. */
16968 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
16969 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
16970 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
16971 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
16972 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
16973 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
16974
16975 /* Maverick DSP coprocessor registers. */
16976 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
16977 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
16978
16979 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
16980 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
16981 REGDEF(dspsc,0,DSPSC),
16982
16983 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
16984 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
16985 REGDEF(DSPSC,0,DSPSC),
16986
16987 /* iWMMXt data registers - p0, c0-15. */
16988 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
16989
16990 /* iWMMXt control registers - p1, c0-3. */
16991 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
16992 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
16993 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
16994 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
16995
16996 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16997 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
16998 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
16999 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
17000 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
17001
17002 /* XScale accumulator registers. */
17003 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
17004 };
17005 #undef REGDEF
17006 #undef REGNUM
17007 #undef REGSET
17008
17009 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
17010 within psr_required_here. */
17011 static const struct asm_psr psrs[] =
17012 {
17013 /* Backward compatibility notation. Note that "all" is no longer
17014 truly all possible PSR bits. */
17015 {"all", PSR_c | PSR_f},
17016 {"flg", PSR_f},
17017 {"ctl", PSR_c},
17018
17019 /* Individual flags. */
17020 {"f", PSR_f},
17021 {"c", PSR_c},
17022 {"x", PSR_x},
17023 {"s", PSR_s},
17024
17025 /* Combinations of flags. */
17026 {"fs", PSR_f | PSR_s},
17027 {"fx", PSR_f | PSR_x},
17028 {"fc", PSR_f | PSR_c},
17029 {"sf", PSR_s | PSR_f},
17030 {"sx", PSR_s | PSR_x},
17031 {"sc", PSR_s | PSR_c},
17032 {"xf", PSR_x | PSR_f},
17033 {"xs", PSR_x | PSR_s},
17034 {"xc", PSR_x | PSR_c},
17035 {"cf", PSR_c | PSR_f},
17036 {"cs", PSR_c | PSR_s},
17037 {"cx", PSR_c | PSR_x},
17038 {"fsx", PSR_f | PSR_s | PSR_x},
17039 {"fsc", PSR_f | PSR_s | PSR_c},
17040 {"fxs", PSR_f | PSR_x | PSR_s},
17041 {"fxc", PSR_f | PSR_x | PSR_c},
17042 {"fcs", PSR_f | PSR_c | PSR_s},
17043 {"fcx", PSR_f | PSR_c | PSR_x},
17044 {"sfx", PSR_s | PSR_f | PSR_x},
17045 {"sfc", PSR_s | PSR_f | PSR_c},
17046 {"sxf", PSR_s | PSR_x | PSR_f},
17047 {"sxc", PSR_s | PSR_x | PSR_c},
17048 {"scf", PSR_s | PSR_c | PSR_f},
17049 {"scx", PSR_s | PSR_c | PSR_x},
17050 {"xfs", PSR_x | PSR_f | PSR_s},
17051 {"xfc", PSR_x | PSR_f | PSR_c},
17052 {"xsf", PSR_x | PSR_s | PSR_f},
17053 {"xsc", PSR_x | PSR_s | PSR_c},
17054 {"xcf", PSR_x | PSR_c | PSR_f},
17055 {"xcs", PSR_x | PSR_c | PSR_s},
17056 {"cfs", PSR_c | PSR_f | PSR_s},
17057 {"cfx", PSR_c | PSR_f | PSR_x},
17058 {"csf", PSR_c | PSR_s | PSR_f},
17059 {"csx", PSR_c | PSR_s | PSR_x},
17060 {"cxf", PSR_c | PSR_x | PSR_f},
17061 {"cxs", PSR_c | PSR_x | PSR_s},
17062 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
17063 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
17064 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
17065 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
17066 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
17067 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
17068 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
17069 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
17070 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
17071 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
17072 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
17073 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
17074 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
17075 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
17076 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
17077 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
17078 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
17079 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
17080 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
17081 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
17082 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
17083 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
17084 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
17085 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
17086 };
17087
17088 /* Table of V7M psr names. */
17089 static const struct asm_psr v7m_psrs[] =
17090 {
17091 {"apsr", 0 }, {"APSR", 0 },
17092 {"iapsr", 1 }, {"IAPSR", 1 },
17093 {"eapsr", 2 }, {"EAPSR", 2 },
17094 {"psr", 3 }, {"PSR", 3 },
17095 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
17096 {"ipsr", 5 }, {"IPSR", 5 },
17097 {"epsr", 6 }, {"EPSR", 6 },
17098 {"iepsr", 7 }, {"IEPSR", 7 },
17099 {"msp", 8 }, {"MSP", 8 },
17100 {"psp", 9 }, {"PSP", 9 },
17101 {"primask", 16}, {"PRIMASK", 16},
17102 {"basepri", 17}, {"BASEPRI", 17},
17103 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
17104 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
17105 {"faultmask", 19}, {"FAULTMASK", 19},
17106 {"control", 20}, {"CONTROL", 20}
17107 };
17108
17109 /* Table of all shift-in-operand names. */
17110 static const struct asm_shift_name shift_names [] =
17111 {
17112 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
17113 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
17114 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
17115 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
17116 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
17117 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
17118 };
17119
17120 /* Table of all explicit relocation names. */
17121 #ifdef OBJ_ELF
17122 static struct reloc_entry reloc_names[] =
17123 {
17124 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
17125 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
17126 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
17127 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
17128 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
17129 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
17130 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
17131 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
17132 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
17133 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
17134 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
17135 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
17136 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
17137 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
17138 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
17139 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
17140 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
17141 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
17142 };
17143 #endif
17144
17145 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
17146 static const struct asm_cond conds[] =
17147 {
17148 {"eq", 0x0},
17149 {"ne", 0x1},
17150 {"cs", 0x2}, {"hs", 0x2},
17151 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
17152 {"mi", 0x4},
17153 {"pl", 0x5},
17154 {"vs", 0x6},
17155 {"vc", 0x7},
17156 {"hi", 0x8},
17157 {"ls", 0x9},
17158 {"ge", 0xa},
17159 {"lt", 0xb},
17160 {"gt", 0xc},
17161 {"le", 0xd},
17162 {"al", 0xe}
17163 };
17164
17165 static struct asm_barrier_opt barrier_opt_names[] =
17166 {
17167 { "sy", 0xf }, { "SY", 0xf },
17168 { "un", 0x7 }, { "UN", 0x7 },
17169 { "st", 0xe }, { "ST", 0xe },
17170 { "unst", 0x6 }, { "UNST", 0x6 },
17171 { "ish", 0xb }, { "ISH", 0xb },
17172 { "sh", 0xb }, { "SH", 0xb },
17173 { "ishst", 0xa }, { "ISHST", 0xa },
17174 { "shst", 0xa }, { "SHST", 0xa },
17175 { "nsh", 0x7 }, { "NSH", 0x7 },
17176 { "nshst", 0x6 }, { "NSHST", 0x6 },
17177 { "osh", 0x3 }, { "OSH", 0x3 },
17178 { "oshst", 0x2 }, { "OSHST", 0x2 }
17179 };
17180
17181 /* Table of ARM-format instructions. */
17182
17183 /* Macros for gluing together operand strings. N.B. In all cases
17184 other than OPS0, the trailing OP_stop comes from default
17185 zero-initialization of the unspecified elements of the array. */
17186 #define OPS0() { OP_stop, }
17187 #define OPS1(a) { OP_##a, }
17188 #define OPS2(a,b) { OP_##a,OP_##b, }
17189 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
17190 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
17191 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
17192 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
17193
17194 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
17195 This is useful when mixing operands for ARM and THUMB, i.e. using the
17196 MIX_ARM_THUMB_OPERANDS macro.
17197 In order to use these macros, prefix the number of operands with _
17198 e.g. _3. */
17199 #define OPS_1(a) { a, }
17200 #define OPS_2(a,b) { a,b, }
17201 #define OPS_3(a,b,c) { a,b,c, }
17202 #define OPS_4(a,b,c,d) { a,b,c,d, }
17203 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
17204 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
17205
17206 /* These macros abstract out the exact format of the mnemonic table and
17207 save some repeated characters. */
17208
17209 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
17210 #define TxCE(mnem, op, top, nops, ops, ae, te) \
17211 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
17212 THUMB_VARIANT, do_##ae, do_##te }
17213
17214 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
17215 a T_MNEM_xyz enumerator. */
17216 #define TCE(mnem, aop, top, nops, ops, ae, te) \
17217 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
17218 #define tCE(mnem, aop, top, nops, ops, ae, te) \
17219 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17220
17221 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
17222 infix after the third character. */
17223 #define TxC3(mnem, op, top, nops, ops, ae, te) \
17224 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
17225 THUMB_VARIANT, do_##ae, do_##te }
17226 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
17227 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
17228 THUMB_VARIANT, do_##ae, do_##te }
17229 #define TC3(mnem, aop, top, nops, ops, ae, te) \
17230 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
17231 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
17232 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
17233 #define tC3(mnem, aop, top, nops, ops, ae, te) \
17234 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17235 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
17236 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17237
17238 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
17239 appear in the condition table. */
17240 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
17241 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
17242 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
17243
17244 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
17245 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
17246 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
17247 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
17248 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
17249 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
17250 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
17251 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
17252 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
17253 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
17254 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
17255 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
17256 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
17257 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
17258 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
17259 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
17260 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
17261 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
17262 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
17263 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
17264
17265 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
17266 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
17267 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
17268 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
17269
17270 /* Mnemonic that cannot be conditionalized. The ARM condition-code
17271 field is still 0xE. Many of the Thumb variants can be executed
17272 conditionally, so this is checked separately. */
17273 #define TUE(mnem, op, top, nops, ops, ae, te) \
17274 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
17275 THUMB_VARIANT, do_##ae, do_##te }
17276
17277 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
17278 condition code field. */
17279 #define TUF(mnem, op, top, nops, ops, ae, te) \
17280 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
17281 THUMB_VARIANT, do_##ae, do_##te }
17282
17283 /* ARM-only variants of all the above. */
17284 #define CE(mnem, op, nops, ops, ae) \
17285 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17286
17287 #define C3(mnem, op, nops, ops, ae) \
17288 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17289
17290 /* Legacy mnemonics that always have conditional infix after the third
17291 character. */
17292 #define CL(mnem, op, nops, ops, ae) \
17293 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17294 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17295
17296 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
17297 #define cCE(mnem, op, nops, ops, ae) \
17298 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17299
17300 /* Legacy coprocessor instructions where conditional infix and conditional
17301 suffix are ambiguous. For consistency this includes all FPA instructions,
17302 not just the potentially ambiguous ones. */
17303 #define cCL(mnem, op, nops, ops, ae) \
17304 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17305 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17306
17307 /* Coprocessor, takes either a suffix or a position-3 infix
17308 (for an FPA corner case). */
17309 #define C3E(mnem, op, nops, ops, ae) \
17310 { mnem, OPS##nops ops, OT_csuf_or_in3, \
17311 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17312
17313 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
17314 { m1 #m2 m3, OPS##nops ops, \
17315 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
17316 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17317
17318 #define CM(m1, m2, op, nops, ops, ae) \
17319 xCM_ (m1, , m2, op, nops, ops, ae), \
17320 xCM_ (m1, eq, m2, op, nops, ops, ae), \
17321 xCM_ (m1, ne, m2, op, nops, ops, ae), \
17322 xCM_ (m1, cs, m2, op, nops, ops, ae), \
17323 xCM_ (m1, hs, m2, op, nops, ops, ae), \
17324 xCM_ (m1, cc, m2, op, nops, ops, ae), \
17325 xCM_ (m1, ul, m2, op, nops, ops, ae), \
17326 xCM_ (m1, lo, m2, op, nops, ops, ae), \
17327 xCM_ (m1, mi, m2, op, nops, ops, ae), \
17328 xCM_ (m1, pl, m2, op, nops, ops, ae), \
17329 xCM_ (m1, vs, m2, op, nops, ops, ae), \
17330 xCM_ (m1, vc, m2, op, nops, ops, ae), \
17331 xCM_ (m1, hi, m2, op, nops, ops, ae), \
17332 xCM_ (m1, ls, m2, op, nops, ops, ae), \
17333 xCM_ (m1, ge, m2, op, nops, ops, ae), \
17334 xCM_ (m1, lt, m2, op, nops, ops, ae), \
17335 xCM_ (m1, gt, m2, op, nops, ops, ae), \
17336 xCM_ (m1, le, m2, op, nops, ops, ae), \
17337 xCM_ (m1, al, m2, op, nops, ops, ae)
17338
17339 #define UE(mnem, op, nops, ops, ae) \
17340 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17341
17342 #define UF(mnem, op, nops, ops, ae) \
17343 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17344
17345 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
17346 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
17347 use the same encoding function for each. */
17348 #define NUF(mnem, op, nops, ops, enc) \
17349 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
17350 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17351
17352 /* Neon data processing, version which indirects through neon_enc_tab for
17353 the various overloaded versions of opcodes. */
17354 #define nUF(mnem, op, nops, ops, enc) \
17355 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
17356 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17357
17358 /* Neon insn with conditional suffix for the ARM version, non-overloaded
17359 version. */
17360 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
17361 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
17362 THUMB_VARIANT, do_##enc, do_##enc }
17363
17364 #define NCE(mnem, op, nops, ops, enc) \
17365 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17366
17367 #define NCEF(mnem, op, nops, ops, enc) \
17368 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17369
17370 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
17371 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
17372 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
17373 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17374
17375 #define nCE(mnem, op, nops, ops, enc) \
17376 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17377
17378 #define nCEF(mnem, op, nops, ops, enc) \
17379 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17380
17381 #define do_0 0
17382
17383 static const struct asm_opcode insns[] =
17384 {
17385 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
17386 #define THUMB_VARIANT &arm_ext_v4t
17387 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
17388 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
17389 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
17390 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
17391 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
17392 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
17393 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
17394 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
17395 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
17396 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
17397 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
17398 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
17399 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
17400 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
17401 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
17402 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
17403
17404 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
17405 for setting PSR flag bits. They are obsolete in V6 and do not
17406 have Thumb equivalents. */
17407 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17408 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17409 CL("tstp", 110f000, 2, (RR, SH), cmp),
17410 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17411 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17412 CL("cmpp", 150f000, 2, (RR, SH), cmp),
17413 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17414 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17415 CL("cmnp", 170f000, 2, (RR, SH), cmp),
17416
17417 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
17418 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
17419 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
17420 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
17421
17422 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
17423 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17424 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
17425 OP_RRnpc),
17426 OP_ADDRGLDR),ldst, t_ldst),
17427 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17428
17429 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17430 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17431 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17432 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17433 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17434 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17435
17436 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
17437 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
17438 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
17439 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
17440
17441 /* Pseudo ops. */
17442 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
17443 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
17444 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
17445
17446 /* Thumb-compatibility pseudo ops. */
17447 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
17448 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
17449 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
17450 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
17451 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
17452 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
17453 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
17454 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
17455 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
17456 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
17457 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
17458 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
17459
17460 /* These may simplify to neg. */
17461 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
17462 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
17463
17464 #undef THUMB_VARIANT
17465 #define THUMB_VARIANT & arm_ext_v6
17466
17467 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
17468
17469 /* V1 instructions with no Thumb analogue prior to V6T2. */
17470 #undef THUMB_VARIANT
17471 #define THUMB_VARIANT & arm_ext_v6t2
17472
17473 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17474 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17475 CL("teqp", 130f000, 2, (RR, SH), cmp),
17476
17477 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17478 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17479 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
17480 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17481
17482 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17483 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17484
17485 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17486 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17487
17488 /* V1 instructions with no Thumb analogue at all. */
17489 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
17490 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
17491
17492 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
17493 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
17494 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
17495 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
17496 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
17497 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
17498 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
17499 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
17500
17501 #undef ARM_VARIANT
17502 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17503 #undef THUMB_VARIANT
17504 #define THUMB_VARIANT & arm_ext_v4t
17505
17506 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17507 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17508
17509 #undef THUMB_VARIANT
17510 #define THUMB_VARIANT & arm_ext_v6t2
17511
17512 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17513 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
17514
17515 /* Generic coprocessor instructions. */
17516 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17517 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17518 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17519 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17520 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17521 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17522 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
17523
17524 #undef ARM_VARIANT
17525 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17526
17527 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17528 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17529
17530 #undef ARM_VARIANT
17531 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17532 #undef THUMB_VARIANT
17533 #define THUMB_VARIANT & arm_ext_msr
17534
17535 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
17536 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
17537
17538 #undef ARM_VARIANT
17539 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
17540 #undef THUMB_VARIANT
17541 #define THUMB_VARIANT & arm_ext_v6t2
17542
17543 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17544 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17545 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17546 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17547 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17548 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17549 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17550 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17551
17552 #undef ARM_VARIANT
17553 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
17554 #undef THUMB_VARIANT
17555 #define THUMB_VARIANT & arm_ext_v4t
17556
17557 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17558 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17559 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17560 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17561 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17562 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17563
17564 #undef ARM_VARIANT
17565 #define ARM_VARIANT & arm_ext_v4t_5
17566
17567 /* ARM Architecture 4T. */
17568 /* Note: bx (and blx) are required on V5, even if the processor does
17569 not support Thumb. */
17570 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
17571
17572 #undef ARM_VARIANT
17573 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
17574 #undef THUMB_VARIANT
17575 #define THUMB_VARIANT & arm_ext_v5t
17576
17577 /* Note: blx has 2 variants; the .value coded here is for
17578 BLX(2). Only this variant has conditional execution. */
17579 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
17580 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
17581
17582 #undef THUMB_VARIANT
17583 #define THUMB_VARIANT & arm_ext_v6t2
17584
17585 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
17586 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17587 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17588 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17589 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17590 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17591 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17592 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17593
17594 #undef ARM_VARIANT
17595 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
17596 #undef THUMB_VARIANT
17597 #define THUMB_VARIANT &arm_ext_v5exp
17598
17599 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17600 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17601 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17602 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17603
17604 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17605 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17606
17607 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17608 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17609 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17610 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17611
17612 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17613 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17614 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17615 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17616
17617 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17618 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17619
17620 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17621 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17622 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17623 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17624
17625 #undef ARM_VARIANT
17626 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
17627 #undef THUMB_VARIANT
17628 #define THUMB_VARIANT &arm_ext_v6t2
17629
17630 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
17631 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17632 ldrd, t_ldstd),
17633 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17634 ADDRGLDRS), ldrd, t_ldstd),
17635
17636 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17637 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17638
17639 #undef ARM_VARIANT
17640 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17641
17642 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
17643
17644 #undef ARM_VARIANT
17645 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17646 #undef THUMB_VARIANT
17647 #define THUMB_VARIANT & arm_ext_v6
17648
17649 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17650 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17651 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17652 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17653 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17654 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17655 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17656 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17657 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17658 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
17659
17660 #undef THUMB_VARIANT
17661 #define THUMB_VARIANT & arm_ext_v6t2
17662
17663 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17664 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17665 strex, t_strex),
17666 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17667 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17668
17669 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17670 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
17671
17672 /* ARM V6 not included in V7M. */
17673 #undef THUMB_VARIANT
17674 #define THUMB_VARIANT & arm_ext_v6_notm
17675 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17676 UF(rfeib, 9900a00, 1, (RRw), rfe),
17677 UF(rfeda, 8100a00, 1, (RRw), rfe),
17678 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17679 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17680 UF(rfefa, 9900a00, 1, (RRw), rfe),
17681 UF(rfeea, 8100a00, 1, (RRw), rfe),
17682 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17683 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17684 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17685 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17686 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
17687
17688 /* ARM V6 not included in V7M (eg. integer SIMD). */
17689 #undef THUMB_VARIANT
17690 #define THUMB_VARIANT & arm_ext_v6_dsp
17691 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17692 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17693 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17694 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17695 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17696 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17697 /* Old name for QASX. */
17698 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17699 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17700 /* Old name for QSAX. */
17701 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17702 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17703 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17704 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17705 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17706 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17707 /* Old name for SASX. */
17708 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17709 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17710 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17711 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17712 /* Old name for SHASX. */
17713 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17714 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17715 /* Old name for SHSAX. */
17716 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17717 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17718 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17719 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17720 /* Old name for SSAX. */
17721 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17722 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17723 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17724 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17725 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17726 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17727 /* Old name for UASX. */
17728 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17729 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17730 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17731 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17732 /* Old name for UHASX. */
17733 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17734 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17735 /* Old name for UHSAX. */
17736 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17737 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17738 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17739 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17740 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17741 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17742 /* Old name for UQASX. */
17743 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17744 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17745 /* Old name for UQSAX. */
17746 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17747 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17748 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17749 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17750 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17751 /* Old name for USAX. */
17752 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17753 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17754 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17755 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17756 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17757 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17758 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17759 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17760 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17761 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17762 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17763 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17764 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17765 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17766 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17767 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17768 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17769 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17770 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17771 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17772 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17773 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17774 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17775 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17776 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17777 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17778 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17779 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17780 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17781 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
17782 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
17783 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17784 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17785 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
17786
17787 #undef ARM_VARIANT
17788 #define ARM_VARIANT & arm_ext_v6k
17789 #undef THUMB_VARIANT
17790 #define THUMB_VARIANT & arm_ext_v6k
17791
17792 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
17793 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
17794 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
17795 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
17796
17797 #undef THUMB_VARIANT
17798 #define THUMB_VARIANT & arm_ext_v6_notm
17799 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
17800 ldrexd, t_ldrexd),
17801 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
17802 RRnpcb), strexd, t_strexd),
17803
17804 #undef THUMB_VARIANT
17805 #define THUMB_VARIANT & arm_ext_v6t2
17806 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
17807 rd_rn, rd_rn),
17808 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
17809 rd_rn, rd_rn),
17810 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17811 strex, t_strexbh),
17812 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17813 strex, t_strexbh),
17814 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
17815
17816 #undef ARM_VARIANT
17817 #define ARM_VARIANT & arm_ext_sec
17818 #undef THUMB_VARIANT
17819 #define THUMB_VARIANT & arm_ext_sec
17820
17821 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
17822
17823 #undef ARM_VARIANT
17824 #define ARM_VARIANT & arm_ext_virt
17825 #undef THUMB_VARIANT
17826 #define THUMB_VARIANT & arm_ext_virt
17827
17828 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
17829 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
17830
17831 #undef ARM_VARIANT
17832 #define ARM_VARIANT & arm_ext_v6t2
17833 #undef THUMB_VARIANT
17834 #define THUMB_VARIANT & arm_ext_v6t2
17835
17836 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17837 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17838 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17839 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17840
17841 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17842 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17843 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17844 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
17845
17846 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17847 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17848 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17849 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17850
17851 /* Thumb-only instructions. */
17852 #undef ARM_VARIANT
17853 #define ARM_VARIANT NULL
17854 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17855 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
17856
17857 /* ARM does not really have an IT instruction, so always allow it.
17858 The opcode is copied from Thumb in order to allow warnings in
17859 -mimplicit-it=[never | arm] modes. */
17860 #undef ARM_VARIANT
17861 #define ARM_VARIANT & arm_ext_v1
17862
17863 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17864 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17865 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17866 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17867 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17868 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17869 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17870 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17871 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17872 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17873 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17874 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17875 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17876 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17877 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
17878 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
17879 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17880 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
17881
17882 /* Thumb2 only instructions. */
17883 #undef ARM_VARIANT
17884 #define ARM_VARIANT NULL
17885
17886 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17887 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17888 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
17889 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
17890 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
17891 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
17892
17893 /* Hardware division instructions. */
17894 #undef ARM_VARIANT
17895 #define ARM_VARIANT & arm_ext_adiv
17896 #undef THUMB_VARIANT
17897 #define THUMB_VARIANT & arm_ext_div
17898
17899 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
17900 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
17901
17902 /* ARM V6M/V7 instructions. */
17903 #undef ARM_VARIANT
17904 #define ARM_VARIANT & arm_ext_barrier
17905 #undef THUMB_VARIANT
17906 #define THUMB_VARIANT & arm_ext_barrier
17907
17908 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
17909 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
17910 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
17911
17912 /* ARM V7 instructions. */
17913 #undef ARM_VARIANT
17914 #define ARM_VARIANT & arm_ext_v7
17915 #undef THUMB_VARIANT
17916 #define THUMB_VARIANT & arm_ext_v7
17917
17918 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
17919 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
17920
17921 #undef ARM_VARIANT
17922 #define ARM_VARIANT & arm_ext_mp
17923 #undef THUMB_VARIANT
17924 #define THUMB_VARIANT & arm_ext_mp
17925
17926 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
17927
17928 #undef ARM_VARIANT
17929 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
17930
17931 cCE("wfs", e200110, 1, (RR), rd),
17932 cCE("rfs", e300110, 1, (RR), rd),
17933 cCE("wfc", e400110, 1, (RR), rd),
17934 cCE("rfc", e500110, 1, (RR), rd),
17935
17936 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
17937 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
17938 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
17939 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
17940
17941 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
17942 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
17943 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
17944 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
17945
17946 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
17947 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
17948 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
17949 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
17950 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
17951 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
17952 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
17953 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
17954 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
17955 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
17956 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
17957 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
17958
17959 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
17960 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
17961 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
17962 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
17963 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
17964 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
17965 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
17966 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
17967 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
17968 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
17969 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
17970 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
17971
17972 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
17973 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
17974 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
17975 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
17976 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
17977 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
17978 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
17979 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
17980 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
17981 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
17982 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
17983 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
17984
17985 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
17986 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
17987 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
17988 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
17989 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
17990 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
17991 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
17992 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
17993 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
17994 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
17995 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
17996 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
17997
17998 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
17999 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
18000 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
18001 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
18002 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
18003 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
18004 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
18005 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
18006 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
18007 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
18008 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
18009 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
18010
18011 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
18012 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
18013 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
18014 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
18015 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
18016 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
18017 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
18018 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
18019 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
18020 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
18021 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
18022 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
18023
18024 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
18025 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
18026 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
18027 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
18028 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
18029 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
18030 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
18031 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
18032 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
18033 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
18034 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
18035 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
18036
18037 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
18038 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
18039 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
18040 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
18041 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
18042 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
18043 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
18044 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
18045 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
18046 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
18047 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
18048 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
18049
18050 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
18051 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
18052 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
18053 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
18054 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
18055 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
18056 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
18057 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
18058 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
18059 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
18060 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
18061 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
18062
18063 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
18064 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
18065 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
18066 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
18067 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
18068 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
18069 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
18070 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
18071 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
18072 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
18073 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
18074 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
18075
18076 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
18077 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
18078 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
18079 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
18080 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
18081 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
18082 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
18083 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
18084 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
18085 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
18086 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
18087 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
18088
18089 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
18090 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
18091 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
18092 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
18093 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
18094 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
18095 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
18096 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
18097 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
18098 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
18099 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
18100 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
18101
18102 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
18103 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
18104 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
18105 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
18106 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
18107 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
18108 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
18109 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
18110 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
18111 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
18112 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
18113 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
18114
18115 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
18116 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
18117 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
18118 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
18119 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
18120 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
18121 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
18122 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
18123 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
18124 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
18125 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
18126 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
18127
18128 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
18129 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
18130 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
18131 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
18132 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
18133 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
18134 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
18135 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
18136 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
18137 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
18138 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
18139 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
18140
18141 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
18142 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
18143 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
18144 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
18145 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
18146 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
18147 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
18148 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
18149 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
18150 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
18151 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
18152 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
18153
18154 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
18155 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
18156 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
18157 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
18158 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
18159 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18160 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18161 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18162 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
18163 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
18164 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
18165 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
18166
18167 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
18168 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
18169 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
18170 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
18171 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
18172 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18173 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18174 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18175 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
18176 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
18177 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
18178 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
18179
18180 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
18181 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
18182 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
18183 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
18184 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
18185 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18186 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18187 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18188 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
18189 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
18190 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
18191 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
18192
18193 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
18194 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
18195 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
18196 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
18197 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
18198 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18199 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18200 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18201 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
18202 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
18203 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
18204 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
18205
18206 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
18207 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
18208 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
18209 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
18210 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
18211 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18212 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18213 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18214 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
18215 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
18216 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
18217 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
18218
18219 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
18220 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
18221 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
18222 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
18223 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
18224 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18225 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18226 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18227 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
18228 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
18229 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
18230 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
18231
18232 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
18233 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
18234 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
18235 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
18236 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
18237 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18238 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18239 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18240 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
18241 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
18242 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
18243 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
18244
18245 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
18246 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
18247 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
18248 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
18249 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
18250 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18251 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18252 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18253 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
18254 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
18255 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
18256 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
18257
18258 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
18259 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
18260 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
18261 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
18262 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
18263 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18264 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18265 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18266 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
18267 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
18268 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
18269 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
18270
18271 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
18272 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
18273 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
18274 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
18275 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
18276 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18277 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18278 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18279 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
18280 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
18281 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
18282 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
18283
18284 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18285 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18286 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18287 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18288 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18289 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18290 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18291 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18292 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18293 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18294 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18295 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18296
18297 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18298 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18299 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18300 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18301 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18302 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18303 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18304 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18305 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18306 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18307 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18308 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18309
18310 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18311 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18312 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18313 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18314 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18315 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18316 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18317 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18318 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18319 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18320 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18321 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18322
18323 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
18324 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
18325 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
18326 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
18327
18328 cCL("flts", e000110, 2, (RF, RR), rn_rd),
18329 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
18330 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
18331 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
18332 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
18333 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
18334 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
18335 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
18336 cCL("flte", e080110, 2, (RF, RR), rn_rd),
18337 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
18338 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
18339 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
18340
18341 /* The implementation of the FIX instruction is broken on some
18342 assemblers, in that it accepts a precision specifier as well as a
18343 rounding specifier, despite the fact that this is meaningless.
18344 To be more compatible, we accept it as well, though of course it
18345 does not set any bits. */
18346 cCE("fix", e100110, 2, (RR, RF), rd_rm),
18347 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
18348 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
18349 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
18350 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
18351 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
18352 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
18353 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
18354 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
18355 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
18356 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
18357 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
18358 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
18359
18360 /* Instructions that were new with the real FPA, call them V2. */
18361 #undef ARM_VARIANT
18362 #define ARM_VARIANT & fpu_fpa_ext_v2
18363
18364 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18365 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18366 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18367 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18368 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18369 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18370
18371 #undef ARM_VARIANT
18372 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
18373
18374 /* Moves and type conversions. */
18375 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
18376 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
18377 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
18378 cCE("fmstat", ef1fa10, 0, (), noargs),
18379 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
18380 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
18381 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
18382 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
18383 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
18384 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18385 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
18386 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18387 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
18388 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
18389
18390 /* Memory operations. */
18391 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18392 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18393 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18394 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18395 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18396 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18397 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18398 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18399 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18400 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18401 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18402 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18403 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18404 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18405 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18406 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18407 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18408 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18409
18410 /* Monadic operations. */
18411 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
18412 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
18413 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
18414
18415 /* Dyadic operations. */
18416 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18417 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18418 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18419 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18420 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18421 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18422 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18423 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18424 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18425
18426 /* Comparisons. */
18427 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
18428 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
18429 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
18430 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
18431
18432 /* Double precision load/store are still present on single precision
18433 implementations. */
18434 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18435 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18436 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18437 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18438 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18439 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18440 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18441 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18442 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18443 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18444
18445 #undef ARM_VARIANT
18446 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
18447
18448 /* Moves and type conversions. */
18449 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18450 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18451 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18452 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
18453 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
18454 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
18455 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
18456 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18457 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
18458 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18459 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18460 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18461 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18462
18463 /* Monadic operations. */
18464 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18465 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18466 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18467
18468 /* Dyadic operations. */
18469 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18470 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18471 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18472 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18473 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18474 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18475 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18476 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18477 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18478
18479 /* Comparisons. */
18480 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18481 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
18482 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18483 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
18484
18485 #undef ARM_VARIANT
18486 #define ARM_VARIANT & fpu_vfp_ext_v2
18487
18488 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
18489 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
18490 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
18491 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
18492
18493 /* Instructions which may belong to either the Neon or VFP instruction sets.
18494 Individual encoder functions perform additional architecture checks. */
18495 #undef ARM_VARIANT
18496 #define ARM_VARIANT & fpu_vfp_ext_v1xd
18497 #undef THUMB_VARIANT
18498 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
18499
18500 /* These mnemonics are unique to VFP. */
18501 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
18502 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
18503 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18504 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18505 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18506 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18507 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18508 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
18509 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
18510 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
18511
18512 /* Mnemonics shared by Neon and VFP. */
18513 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
18514 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18515 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18516
18517 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18518 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18519
18520 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18521 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18522
18523 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18524 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18525 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18526 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18527 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18528 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18529 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18530 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18531
18532 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
18533 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
18534 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
18535 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
18536
18537
18538 /* NOTE: All VMOV encoding is special-cased! */
18539 NCE(vmov, 0, 1, (VMOV), neon_mov),
18540 NCE(vmovq, 0, 1, (VMOV), neon_mov),
18541
18542 #undef THUMB_VARIANT
18543 #define THUMB_VARIANT & fpu_neon_ext_v1
18544 #undef ARM_VARIANT
18545 #define ARM_VARIANT & fpu_neon_ext_v1
18546
18547 /* Data processing with three registers of the same length. */
18548 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
18549 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
18550 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
18551 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18552 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18553 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18554 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18555 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18556 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18557 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
18558 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18559 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18560 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18561 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18562 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18563 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18564 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18565 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18566 /* If not immediate, fall back to neon_dyadic_i64_su.
18567 shl_imm should accept I8 I16 I32 I64,
18568 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
18569 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
18570 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
18571 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
18572 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
18573 /* Logic ops, types optional & ignored. */
18574 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18575 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18576 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18577 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18578 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18579 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18580 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18581 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18582 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
18583 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
18584 /* Bitfield ops, untyped. */
18585 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18586 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18587 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18588 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18589 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18590 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18591 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
18592 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18593 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18594 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18595 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18596 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18597 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18598 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
18599 back to neon_dyadic_if_su. */
18600 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18601 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18602 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18603 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18604 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18605 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18606 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18607 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18608 /* Comparison. Type I8 I16 I32 F32. */
18609 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
18610 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
18611 /* As above, D registers only. */
18612 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18613 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18614 /* Int and float variants, signedness unimportant. */
18615 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18616 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18617 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
18618 /* Add/sub take types I8 I16 I32 I64 F32. */
18619 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18620 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18621 /* vtst takes sizes 8, 16, 32. */
18622 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
18623 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18624 /* VMUL takes I8 I16 I32 F32 P8. */
18625 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
18626 /* VQD{R}MULH takes S16 S32. */
18627 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18628 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18629 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18630 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18631 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18632 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18633 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18634 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18635 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18636 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18637 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18638 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18639 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18640 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18641 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18642 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18643
18644 /* Two address, int/float. Types S8 S16 S32 F32. */
18645 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
18646 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18647
18648 /* Data processing with two registers and a shift amount. */
18649 /* Right shifts, and variants with rounding.
18650 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18651 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18652 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18653 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18654 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18655 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18656 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18657 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18658 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18659 /* Shift and insert. Sizes accepted 8 16 32 64. */
18660 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18661 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18662 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18663 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18664 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18665 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18666 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18667 /* Right shift immediate, saturating & narrowing, with rounding variants.
18668 Types accepted S16 S32 S64 U16 U32 U64. */
18669 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18670 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18671 /* As above, unsigned. Types accepted S16 S32 S64. */
18672 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18673 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18674 /* Right shift narrowing. Types accepted I16 I32 I64. */
18675 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18676 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18677 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
18678 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
18679 /* CVT with optional immediate for fixed-point variant. */
18680 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
18681
18682 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18683 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
18684
18685 /* Data processing, three registers of different lengths. */
18686 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18687 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18688 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18689 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18690 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18691 /* If not scalar, fall back to neon_dyadic_long.
18692 Vector types as above, scalar types S16 S32 U16 U32. */
18693 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18694 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18695 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18696 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18697 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18698 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18699 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18700 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18701 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18702 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18703 /* Saturating doubling multiplies. Types S16 S32. */
18704 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18705 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18706 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18707 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18708 S16 S32 U16 U32. */
18709 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
18710
18711 /* Extract. Size 8. */
18712 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
18713 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
18714
18715 /* Two registers, miscellaneous. */
18716 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18717 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
18718 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
18719 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
18720 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
18721 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
18722 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
18723 /* Vector replicate. Sizes 8 16 32. */
18724 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
18725 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
18726 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18727 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
18728 /* VMOVN. Types I16 I32 I64. */
18729 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
18730 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
18731 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
18732 /* VQMOVUN. Types S16 S32 S64. */
18733 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
18734 /* VZIP / VUZP. Sizes 8 16 32. */
18735 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
18736 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
18737 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
18738 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
18739 /* VQABS / VQNEG. Types S8 S16 S32. */
18740 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18741 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
18742 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18743 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
18744 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18745 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
18746 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
18747 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
18748 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
18749 /* Reciprocal estimates. Types U32 F32. */
18750 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
18751 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
18752 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
18753 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
18754 /* VCLS. Types S8 S16 S32. */
18755 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
18756 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
18757 /* VCLZ. Types I8 I16 I32. */
18758 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
18759 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
18760 /* VCNT. Size 8. */
18761 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
18762 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
18763 /* Two address, untyped. */
18764 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
18765 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
18766 /* VTRN. Sizes 8 16 32. */
18767 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
18768 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
18769
18770 /* Table lookup. Size 8. */
18771 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18772 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18773
18774 #undef THUMB_VARIANT
18775 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18776 #undef ARM_VARIANT
18777 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18778
18779 /* Neon element/structure load/store. */
18780 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18781 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18782 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18783 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18784 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18785 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18786 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18787 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18788
18789 #undef THUMB_VARIANT
18790 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
18791 #undef ARM_VARIANT
18792 #define ARM_VARIANT &fpu_vfp_ext_v3xd
18793 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
18794 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18795 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18796 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18797 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18798 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18799 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18800 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18801 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18802
18803 #undef THUMB_VARIANT
18804 #define THUMB_VARIANT & fpu_vfp_ext_v3
18805 #undef ARM_VARIANT
18806 #define ARM_VARIANT & fpu_vfp_ext_v3
18807
18808 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
18809 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18810 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18811 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18812 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18813 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18814 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18815 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18816 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18817
18818 #undef ARM_VARIANT
18819 #define ARM_VARIANT &fpu_vfp_ext_fma
18820 #undef THUMB_VARIANT
18821 #define THUMB_VARIANT &fpu_vfp_ext_fma
18822 /* Mnemonics shared by Neon and VFP. These are included in the
18823 VFP FMA variant; NEON and VFP FMA always includes the NEON
18824 FMA instructions. */
18825 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18826 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18827 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18828 the v form should always be used. */
18829 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18830 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18831 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18832 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18833 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18834 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18835
18836 #undef THUMB_VARIANT
18837 #undef ARM_VARIANT
18838 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
18839
18840 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18841 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18842 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18843 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18844 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18845 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18846 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
18847 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
18848
18849 #undef ARM_VARIANT
18850 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
18851
18852 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
18853 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
18854 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
18855 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
18856 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
18857 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
18858 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
18859 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
18860 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
18861 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18862 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18863 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18864 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18865 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18866 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18867 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18868 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18869 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18870 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
18871 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
18872 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18873 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18874 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18875 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18876 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18877 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18878 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
18879 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
18880 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
18881 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
18882 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
18883 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
18884 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
18885 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
18886 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
18887 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
18888 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
18889 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18890 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18891 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18892 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18893 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18894 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18895 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18896 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18897 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18898 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
18899 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18900 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18901 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18902 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18903 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18904 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18905 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18906 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18907 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18908 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18909 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18910 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18911 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18912 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18913 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18914 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18915 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18916 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18917 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18918 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18919 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18920 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18921 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18922 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18923 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18924 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18925 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18926 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18927 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18928 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18929 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18930 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18931 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18932 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18933 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18934 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18935 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18936 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18937 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18938 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18939 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18940 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
18941 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18942 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18943 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18944 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18945 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18946 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18947 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18948 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18949 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18950 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18951 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18952 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18953 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18954 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18955 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18956 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18957 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18958 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18959 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18960 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18961 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18962 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
18963 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18964 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18965 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18966 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18967 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18968 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18969 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18970 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18971 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18972 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18973 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18974 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18975 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18976 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18977 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18978 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18979 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18980 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18981 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18982 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18983 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18984 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18985 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18986 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18987 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18988 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18989 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18990 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18991 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18992 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18993 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18994 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
18995 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
18996 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
18997 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
18998 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
18999 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
19000 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19001 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19002 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19003 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
19004 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
19005 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
19006 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
19007 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
19008 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
19009 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19010 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19011 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19012 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19013 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
19014
19015 #undef ARM_VARIANT
19016 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
19017
19018 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
19019 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
19020 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
19021 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
19022 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
19023 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
19024 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19025 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19026 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19027 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19028 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19029 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19030 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19031 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19032 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19033 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19034 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19035 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19036 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19037 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19038 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
19039 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19040 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19041 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19042 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19043 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19044 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19045 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19046 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19047 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19048 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19049 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19050 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19051 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19052 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19053 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19054 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19055 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19056 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19057 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19058 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19059 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19060 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19061 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19062 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19063 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19064 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19065 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19066 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19067 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19068 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19069 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19070 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19071 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19072 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19073 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19074 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19075
19076 #undef ARM_VARIANT
19077 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
19078
19079 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19080 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19081 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19082 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19083 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19084 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19085 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19086 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19087 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
19088 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
19089 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
19090 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
19091 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
19092 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
19093 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
19094 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
19095 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
19096 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
19097 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
19098 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
19099 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
19100 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
19101 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
19102 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
19103 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
19104 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
19105 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
19106 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
19107 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
19108 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
19109 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
19110 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
19111 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
19112 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
19113 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
19114 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
19115 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
19116 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
19117 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
19118 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
19119 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
19120 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
19121 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
19122 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
19123 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
19124 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
19125 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
19126 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
19127 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
19128 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
19129 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
19130 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
19131 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
19132 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
19133 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
19134 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
19135 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
19136 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
19137 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
19138 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
19139 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
19140 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
19141 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
19142 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
19143 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19144 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19145 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19146 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19147 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19148 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19149 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19150 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19151 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19152 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19153 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
19154 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
19155 };
19156 #undef ARM_VARIANT
19157 #undef THUMB_VARIANT
19158 #undef TCE
19159 #undef TCM
19160 #undef TUE
19161 #undef TUF
19162 #undef TCC
19163 #undef cCE
19164 #undef cCL
19165 #undef C3E
19166 #undef CE
19167 #undef CM
19168 #undef UE
19169 #undef UF
19170 #undef UT
19171 #undef NUF
19172 #undef nUF
19173 #undef NCE
19174 #undef nCE
19175 #undef OPS0
19176 #undef OPS1
19177 #undef OPS2
19178 #undef OPS3
19179 #undef OPS4
19180 #undef OPS5
19181 #undef OPS6
19182 #undef do_0
19183 \f
19184 /* MD interface: bits in the object file. */
19185
19186 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
19187 for use in the a.out file, and stores them in the array pointed to by buf.
19188 This knows about the endian-ness of the target machine and does
19189 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
19190 2 (short) and 4 (long) Floating numbers are put out as a series of
19191 LITTLENUMS (shorts, here at least). */
19192
19193 void
19194 md_number_to_chars (char * buf, valueT val, int n)
19195 {
19196 if (target_big_endian)
19197 number_to_chars_bigendian (buf, val, n);
19198 else
19199 number_to_chars_littleendian (buf, val, n);
19200 }
19201
19202 static valueT
19203 md_chars_to_number (char * buf, int n)
19204 {
19205 valueT result = 0;
19206 unsigned char * where = (unsigned char *) buf;
19207
19208 if (target_big_endian)
19209 {
19210 while (n--)
19211 {
19212 result <<= 8;
19213 result |= (*where++ & 255);
19214 }
19215 }
19216 else
19217 {
19218 while (n--)
19219 {
19220 result <<= 8;
19221 result |= (where[n] & 255);
19222 }
19223 }
19224
19225 return result;
19226 }
19227
19228 /* MD interface: Sections. */
19229
19230 /* Calculate the maximum variable size (i.e., excluding fr_fix)
19231 that an rs_machine_dependent frag may reach. */
19232
19233 unsigned int
19234 arm_frag_max_var (fragS *fragp)
19235 {
19236 /* We only use rs_machine_dependent for variable-size Thumb instructions,
19237 which are either THUMB_SIZE (2) or INSN_SIZE (4).
19238
19239 Note that we generate relaxable instructions even for cases that don't
19240 really need it, like an immediate that's a trivial constant. So we're
19241 overestimating the instruction size for some of those cases. Rather
19242 than putting more intelligence here, it would probably be better to
19243 avoid generating a relaxation frag in the first place when it can be
19244 determined up front that a short instruction will suffice. */
19245
19246 gas_assert (fragp->fr_type == rs_machine_dependent);
19247 return INSN_SIZE;
19248 }
19249
19250 /* Estimate the size of a frag before relaxing. Assume everything fits in
19251 2 bytes. */
19252
19253 int
19254 md_estimate_size_before_relax (fragS * fragp,
19255 segT segtype ATTRIBUTE_UNUSED)
19256 {
19257 fragp->fr_var = 2;
19258 return 2;
19259 }
19260
19261 /* Convert a machine dependent frag. */
19262
19263 void
19264 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
19265 {
19266 unsigned long insn;
19267 unsigned long old_op;
19268 char *buf;
19269 expressionS exp;
19270 fixS *fixp;
19271 int reloc_type;
19272 int pc_rel;
19273 int opcode;
19274
19275 buf = fragp->fr_literal + fragp->fr_fix;
19276
19277 old_op = bfd_get_16(abfd, buf);
19278 if (fragp->fr_symbol)
19279 {
19280 exp.X_op = O_symbol;
19281 exp.X_add_symbol = fragp->fr_symbol;
19282 }
19283 else
19284 {
19285 exp.X_op = O_constant;
19286 }
19287 exp.X_add_number = fragp->fr_offset;
19288 opcode = fragp->fr_subtype;
19289 switch (opcode)
19290 {
19291 case T_MNEM_ldr_pc:
19292 case T_MNEM_ldr_pc2:
19293 case T_MNEM_ldr_sp:
19294 case T_MNEM_str_sp:
19295 case T_MNEM_ldr:
19296 case T_MNEM_ldrb:
19297 case T_MNEM_ldrh:
19298 case T_MNEM_str:
19299 case T_MNEM_strb:
19300 case T_MNEM_strh:
19301 if (fragp->fr_var == 4)
19302 {
19303 insn = THUMB_OP32 (opcode);
19304 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
19305 {
19306 insn |= (old_op & 0x700) << 4;
19307 }
19308 else
19309 {
19310 insn |= (old_op & 7) << 12;
19311 insn |= (old_op & 0x38) << 13;
19312 }
19313 insn |= 0x00000c00;
19314 put_thumb32_insn (buf, insn);
19315 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
19316 }
19317 else
19318 {
19319 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
19320 }
19321 pc_rel = (opcode == T_MNEM_ldr_pc2);
19322 break;
19323 case T_MNEM_adr:
19324 if (fragp->fr_var == 4)
19325 {
19326 insn = THUMB_OP32 (opcode);
19327 insn |= (old_op & 0xf0) << 4;
19328 put_thumb32_insn (buf, insn);
19329 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
19330 }
19331 else
19332 {
19333 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19334 exp.X_add_number -= 4;
19335 }
19336 pc_rel = 1;
19337 break;
19338 case T_MNEM_mov:
19339 case T_MNEM_movs:
19340 case T_MNEM_cmp:
19341 case T_MNEM_cmn:
19342 if (fragp->fr_var == 4)
19343 {
19344 int r0off = (opcode == T_MNEM_mov
19345 || opcode == T_MNEM_movs) ? 0 : 8;
19346 insn = THUMB_OP32 (opcode);
19347 insn = (insn & 0xe1ffffff) | 0x10000000;
19348 insn |= (old_op & 0x700) << r0off;
19349 put_thumb32_insn (buf, insn);
19350 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19351 }
19352 else
19353 {
19354 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
19355 }
19356 pc_rel = 0;
19357 break;
19358 case T_MNEM_b:
19359 if (fragp->fr_var == 4)
19360 {
19361 insn = THUMB_OP32(opcode);
19362 put_thumb32_insn (buf, insn);
19363 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
19364 }
19365 else
19366 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
19367 pc_rel = 1;
19368 break;
19369 case T_MNEM_bcond:
19370 if (fragp->fr_var == 4)
19371 {
19372 insn = THUMB_OP32(opcode);
19373 insn |= (old_op & 0xf00) << 14;
19374 put_thumb32_insn (buf, insn);
19375 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
19376 }
19377 else
19378 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
19379 pc_rel = 1;
19380 break;
19381 case T_MNEM_add_sp:
19382 case T_MNEM_add_pc:
19383 case T_MNEM_inc_sp:
19384 case T_MNEM_dec_sp:
19385 if (fragp->fr_var == 4)
19386 {
19387 /* ??? Choose between add and addw. */
19388 insn = THUMB_OP32 (opcode);
19389 insn |= (old_op & 0xf0) << 4;
19390 put_thumb32_insn (buf, insn);
19391 if (opcode == T_MNEM_add_pc)
19392 reloc_type = BFD_RELOC_ARM_T32_IMM12;
19393 else
19394 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19395 }
19396 else
19397 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19398 pc_rel = 0;
19399 break;
19400
19401 case T_MNEM_addi:
19402 case T_MNEM_addis:
19403 case T_MNEM_subi:
19404 case T_MNEM_subis:
19405 if (fragp->fr_var == 4)
19406 {
19407 insn = THUMB_OP32 (opcode);
19408 insn |= (old_op & 0xf0) << 4;
19409 insn |= (old_op & 0xf) << 16;
19410 put_thumb32_insn (buf, insn);
19411 if (insn & (1 << 20))
19412 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19413 else
19414 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19415 }
19416 else
19417 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19418 pc_rel = 0;
19419 break;
19420 default:
19421 abort ();
19422 }
19423 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
19424 (enum bfd_reloc_code_real) reloc_type);
19425 fixp->fx_file = fragp->fr_file;
19426 fixp->fx_line = fragp->fr_line;
19427 fragp->fr_fix += fragp->fr_var;
19428 }
19429
19430 /* Return the size of a relaxable immediate operand instruction.
19431 SHIFT and SIZE specify the form of the allowable immediate. */
19432 static int
19433 relax_immediate (fragS *fragp, int size, int shift)
19434 {
19435 offsetT offset;
19436 offsetT mask;
19437 offsetT low;
19438
19439 /* ??? Should be able to do better than this. */
19440 if (fragp->fr_symbol)
19441 return 4;
19442
19443 low = (1 << shift) - 1;
19444 mask = (1 << (shift + size)) - (1 << shift);
19445 offset = fragp->fr_offset;
19446 /* Force misaligned offsets to 32-bit variant. */
19447 if (offset & low)
19448 return 4;
19449 if (offset & ~mask)
19450 return 4;
19451 return 2;
19452 }
19453
19454 /* Get the address of a symbol during relaxation. */
19455 static addressT
19456 relaxed_symbol_addr (fragS *fragp, long stretch)
19457 {
19458 fragS *sym_frag;
19459 addressT addr;
19460 symbolS *sym;
19461
19462 sym = fragp->fr_symbol;
19463 sym_frag = symbol_get_frag (sym);
19464 know (S_GET_SEGMENT (sym) != absolute_section
19465 || sym_frag == &zero_address_frag);
19466 addr = S_GET_VALUE (sym) + fragp->fr_offset;
19467
19468 /* If frag has yet to be reached on this pass, assume it will
19469 move by STRETCH just as we did. If this is not so, it will
19470 be because some frag between grows, and that will force
19471 another pass. */
19472
19473 if (stretch != 0
19474 && sym_frag->relax_marker != fragp->relax_marker)
19475 {
19476 fragS *f;
19477
19478 /* Adjust stretch for any alignment frag. Note that if have
19479 been expanding the earlier code, the symbol may be
19480 defined in what appears to be an earlier frag. FIXME:
19481 This doesn't handle the fr_subtype field, which specifies
19482 a maximum number of bytes to skip when doing an
19483 alignment. */
19484 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
19485 {
19486 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
19487 {
19488 if (stretch < 0)
19489 stretch = - ((- stretch)
19490 & ~ ((1 << (int) f->fr_offset) - 1));
19491 else
19492 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
19493 if (stretch == 0)
19494 break;
19495 }
19496 }
19497 if (f != NULL)
19498 addr += stretch;
19499 }
19500
19501 return addr;
19502 }
19503
19504 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
19505 load. */
19506 static int
19507 relax_adr (fragS *fragp, asection *sec, long stretch)
19508 {
19509 addressT addr;
19510 offsetT val;
19511
19512 /* Assume worst case for symbols not known to be in the same section. */
19513 if (fragp->fr_symbol == NULL
19514 || !S_IS_DEFINED (fragp->fr_symbol)
19515 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19516 || S_IS_WEAK (fragp->fr_symbol))
19517 return 4;
19518
19519 val = relaxed_symbol_addr (fragp, stretch);
19520 addr = fragp->fr_address + fragp->fr_fix;
19521 addr = (addr + 4) & ~3;
19522 /* Force misaligned targets to 32-bit variant. */
19523 if (val & 3)
19524 return 4;
19525 val -= addr;
19526 if (val < 0 || val > 1020)
19527 return 4;
19528 return 2;
19529 }
19530
19531 /* Return the size of a relaxable add/sub immediate instruction. */
19532 static int
19533 relax_addsub (fragS *fragp, asection *sec)
19534 {
19535 char *buf;
19536 int op;
19537
19538 buf = fragp->fr_literal + fragp->fr_fix;
19539 op = bfd_get_16(sec->owner, buf);
19540 if ((op & 0xf) == ((op >> 4) & 0xf))
19541 return relax_immediate (fragp, 8, 0);
19542 else
19543 return relax_immediate (fragp, 3, 0);
19544 }
19545
19546
19547 /* Return the size of a relaxable branch instruction. BITS is the
19548 size of the offset field in the narrow instruction. */
19549
19550 static int
19551 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
19552 {
19553 addressT addr;
19554 offsetT val;
19555 offsetT limit;
19556
19557 /* Assume worst case for symbols not known to be in the same section. */
19558 if (!S_IS_DEFINED (fragp->fr_symbol)
19559 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19560 || S_IS_WEAK (fragp->fr_symbol))
19561 return 4;
19562
19563 #ifdef OBJ_ELF
19564 if (S_IS_DEFINED (fragp->fr_symbol)
19565 && ARM_IS_FUNC (fragp->fr_symbol))
19566 return 4;
19567
19568 /* PR 12532. Global symbols with default visibility might
19569 be preempted, so do not relax relocations to them. */
19570 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
19571 && (! S_IS_LOCAL (fragp->fr_symbol)))
19572 return 4;
19573 #endif
19574
19575 val = relaxed_symbol_addr (fragp, stretch);
19576 addr = fragp->fr_address + fragp->fr_fix + 4;
19577 val -= addr;
19578
19579 /* Offset is a signed value *2 */
19580 limit = 1 << bits;
19581 if (val >= limit || val < -limit)
19582 return 4;
19583 return 2;
19584 }
19585
19586
19587 /* Relax a machine dependent frag. This returns the amount by which
19588 the current size of the frag should change. */
19589
19590 int
19591 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
19592 {
19593 int oldsize;
19594 int newsize;
19595
19596 oldsize = fragp->fr_var;
19597 switch (fragp->fr_subtype)
19598 {
19599 case T_MNEM_ldr_pc2:
19600 newsize = relax_adr (fragp, sec, stretch);
19601 break;
19602 case T_MNEM_ldr_pc:
19603 case T_MNEM_ldr_sp:
19604 case T_MNEM_str_sp:
19605 newsize = relax_immediate (fragp, 8, 2);
19606 break;
19607 case T_MNEM_ldr:
19608 case T_MNEM_str:
19609 newsize = relax_immediate (fragp, 5, 2);
19610 break;
19611 case T_MNEM_ldrh:
19612 case T_MNEM_strh:
19613 newsize = relax_immediate (fragp, 5, 1);
19614 break;
19615 case T_MNEM_ldrb:
19616 case T_MNEM_strb:
19617 newsize = relax_immediate (fragp, 5, 0);
19618 break;
19619 case T_MNEM_adr:
19620 newsize = relax_adr (fragp, sec, stretch);
19621 break;
19622 case T_MNEM_mov:
19623 case T_MNEM_movs:
19624 case T_MNEM_cmp:
19625 case T_MNEM_cmn:
19626 newsize = relax_immediate (fragp, 8, 0);
19627 break;
19628 case T_MNEM_b:
19629 newsize = relax_branch (fragp, sec, 11, stretch);
19630 break;
19631 case T_MNEM_bcond:
19632 newsize = relax_branch (fragp, sec, 8, stretch);
19633 break;
19634 case T_MNEM_add_sp:
19635 case T_MNEM_add_pc:
19636 newsize = relax_immediate (fragp, 8, 2);
19637 break;
19638 case T_MNEM_inc_sp:
19639 case T_MNEM_dec_sp:
19640 newsize = relax_immediate (fragp, 7, 2);
19641 break;
19642 case T_MNEM_addi:
19643 case T_MNEM_addis:
19644 case T_MNEM_subi:
19645 case T_MNEM_subis:
19646 newsize = relax_addsub (fragp, sec);
19647 break;
19648 default:
19649 abort ();
19650 }
19651
19652 fragp->fr_var = newsize;
19653 /* Freeze wide instructions that are at or before the same location as
19654 in the previous pass. This avoids infinite loops.
19655 Don't freeze them unconditionally because targets may be artificially
19656 misaligned by the expansion of preceding frags. */
19657 if (stretch <= 0 && newsize > 2)
19658 {
19659 md_convert_frag (sec->owner, sec, fragp);
19660 frag_wane (fragp);
19661 }
19662
19663 return newsize - oldsize;
19664 }
19665
19666 /* Round up a section size to the appropriate boundary. */
19667
19668 valueT
19669 md_section_align (segT segment ATTRIBUTE_UNUSED,
19670 valueT size)
19671 {
19672 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19673 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19674 {
19675 /* For a.out, force the section size to be aligned. If we don't do
19676 this, BFD will align it for us, but it will not write out the
19677 final bytes of the section. This may be a bug in BFD, but it is
19678 easier to fix it here since that is how the other a.out targets
19679 work. */
19680 int align;
19681
19682 align = bfd_get_section_alignment (stdoutput, segment);
19683 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19684 }
19685 #endif
19686
19687 return size;
19688 }
19689
19690 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19691 of an rs_align_code fragment. */
19692
19693 void
19694 arm_handle_align (fragS * fragP)
19695 {
19696 static char const arm_noop[2][2][4] =
19697 {
19698 { /* ARMv1 */
19699 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19700 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19701 },
19702 { /* ARMv6k */
19703 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19704 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19705 },
19706 };
19707 static char const thumb_noop[2][2][2] =
19708 {
19709 { /* Thumb-1 */
19710 {0xc0, 0x46}, /* LE */
19711 {0x46, 0xc0}, /* BE */
19712 },
19713 { /* Thumb-2 */
19714 {0x00, 0xbf}, /* LE */
19715 {0xbf, 0x00} /* BE */
19716 }
19717 };
19718 static char const wide_thumb_noop[2][4] =
19719 { /* Wide Thumb-2 */
19720 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19721 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19722 };
19723
19724 unsigned bytes, fix, noop_size;
19725 char * p;
19726 const char * noop;
19727 const char *narrow_noop = NULL;
19728 #ifdef OBJ_ELF
19729 enum mstate state;
19730 #endif
19731
19732 if (fragP->fr_type != rs_align_code)
19733 return;
19734
19735 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
19736 p = fragP->fr_literal + fragP->fr_fix;
19737 fix = 0;
19738
19739 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
19740 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
19741
19742 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
19743
19744 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
19745 {
19746 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
19747 {
19748 narrow_noop = thumb_noop[1][target_big_endian];
19749 noop = wide_thumb_noop[target_big_endian];
19750 }
19751 else
19752 noop = thumb_noop[0][target_big_endian];
19753 noop_size = 2;
19754 #ifdef OBJ_ELF
19755 state = MAP_THUMB;
19756 #endif
19757 }
19758 else
19759 {
19760 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
19761 [target_big_endian];
19762 noop_size = 4;
19763 #ifdef OBJ_ELF
19764 state = MAP_ARM;
19765 #endif
19766 }
19767
19768 fragP->fr_var = noop_size;
19769
19770 if (bytes & (noop_size - 1))
19771 {
19772 fix = bytes & (noop_size - 1);
19773 #ifdef OBJ_ELF
19774 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
19775 #endif
19776 memset (p, 0, fix);
19777 p += fix;
19778 bytes -= fix;
19779 }
19780
19781 if (narrow_noop)
19782 {
19783 if (bytes & noop_size)
19784 {
19785 /* Insert a narrow noop. */
19786 memcpy (p, narrow_noop, noop_size);
19787 p += noop_size;
19788 bytes -= noop_size;
19789 fix += noop_size;
19790 }
19791
19792 /* Use wide noops for the remainder */
19793 noop_size = 4;
19794 }
19795
19796 while (bytes >= noop_size)
19797 {
19798 memcpy (p, noop, noop_size);
19799 p += noop_size;
19800 bytes -= noop_size;
19801 fix += noop_size;
19802 }
19803
19804 fragP->fr_fix += fix;
19805 }
19806
19807 /* Called from md_do_align. Used to create an alignment
19808 frag in a code section. */
19809
19810 void
19811 arm_frag_align_code (int n, int max)
19812 {
19813 char * p;
19814
19815 /* We assume that there will never be a requirement
19816 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
19817 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
19818 {
19819 char err_msg[128];
19820
19821 sprintf (err_msg,
19822 _("alignments greater than %d bytes not supported in .text sections."),
19823 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
19824 as_fatal ("%s", err_msg);
19825 }
19826
19827 p = frag_var (rs_align_code,
19828 MAX_MEM_FOR_RS_ALIGN_CODE,
19829 1,
19830 (relax_substateT) max,
19831 (symbolS *) NULL,
19832 (offsetT) n,
19833 (char *) NULL);
19834 *p = 0;
19835 }
19836
19837 /* Perform target specific initialisation of a frag.
19838 Note - despite the name this initialisation is not done when the frag
19839 is created, but only when its type is assigned. A frag can be created
19840 and used a long time before its type is set, so beware of assuming that
19841 this initialisationis performed first. */
19842
19843 #ifndef OBJ_ELF
19844 void
19845 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
19846 {
19847 /* Record whether this frag is in an ARM or a THUMB area. */
19848 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19849 }
19850
19851 #else /* OBJ_ELF is defined. */
19852 void
19853 arm_init_frag (fragS * fragP, int max_chars)
19854 {
19855 /* If the current ARM vs THUMB mode has not already
19856 been recorded into this frag then do so now. */
19857 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
19858 {
19859 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19860
19861 /* Record a mapping symbol for alignment frags. We will delete this
19862 later if the alignment ends up empty. */
19863 switch (fragP->fr_type)
19864 {
19865 case rs_align:
19866 case rs_align_test:
19867 case rs_fill:
19868 mapping_state_2 (MAP_DATA, max_chars);
19869 break;
19870 case rs_align_code:
19871 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
19872 break;
19873 default:
19874 break;
19875 }
19876 }
19877 }
19878
19879 /* When we change sections we need to issue a new mapping symbol. */
19880
19881 void
19882 arm_elf_change_section (void)
19883 {
19884 /* Link an unlinked unwind index table section to the .text section. */
19885 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
19886 && elf_linked_to_section (now_seg) == NULL)
19887 elf_linked_to_section (now_seg) = text_section;
19888 }
19889
19890 int
19891 arm_elf_section_type (const char * str, size_t len)
19892 {
19893 if (len == 5 && strncmp (str, "exidx", 5) == 0)
19894 return SHT_ARM_EXIDX;
19895
19896 return -1;
19897 }
19898 \f
19899 /* Code to deal with unwinding tables. */
19900
19901 static void add_unwind_adjustsp (offsetT);
19902
19903 /* Generate any deferred unwind frame offset. */
19904
19905 static void
19906 flush_pending_unwind (void)
19907 {
19908 offsetT offset;
19909
19910 offset = unwind.pending_offset;
19911 unwind.pending_offset = 0;
19912 if (offset != 0)
19913 add_unwind_adjustsp (offset);
19914 }
19915
19916 /* Add an opcode to this list for this function. Two-byte opcodes should
19917 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
19918 order. */
19919
19920 static void
19921 add_unwind_opcode (valueT op, int length)
19922 {
19923 /* Add any deferred stack adjustment. */
19924 if (unwind.pending_offset)
19925 flush_pending_unwind ();
19926
19927 unwind.sp_restored = 0;
19928
19929 if (unwind.opcode_count + length > unwind.opcode_alloc)
19930 {
19931 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
19932 if (unwind.opcodes)
19933 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
19934 unwind.opcode_alloc);
19935 else
19936 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
19937 }
19938 while (length > 0)
19939 {
19940 length--;
19941 unwind.opcodes[unwind.opcode_count] = op & 0xff;
19942 op >>= 8;
19943 unwind.opcode_count++;
19944 }
19945 }
19946
19947 /* Add unwind opcodes to adjust the stack pointer. */
19948
19949 static void
19950 add_unwind_adjustsp (offsetT offset)
19951 {
19952 valueT op;
19953
19954 if (offset > 0x200)
19955 {
19956 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
19957 char bytes[5];
19958 int n;
19959 valueT o;
19960
19961 /* Long form: 0xb2, uleb128. */
19962 /* This might not fit in a word so add the individual bytes,
19963 remembering the list is built in reverse order. */
19964 o = (valueT) ((offset - 0x204) >> 2);
19965 if (o == 0)
19966 add_unwind_opcode (0, 1);
19967
19968 /* Calculate the uleb128 encoding of the offset. */
19969 n = 0;
19970 while (o)
19971 {
19972 bytes[n] = o & 0x7f;
19973 o >>= 7;
19974 if (o)
19975 bytes[n] |= 0x80;
19976 n++;
19977 }
19978 /* Add the insn. */
19979 for (; n; n--)
19980 add_unwind_opcode (bytes[n - 1], 1);
19981 add_unwind_opcode (0xb2, 1);
19982 }
19983 else if (offset > 0x100)
19984 {
19985 /* Two short opcodes. */
19986 add_unwind_opcode (0x3f, 1);
19987 op = (offset - 0x104) >> 2;
19988 add_unwind_opcode (op, 1);
19989 }
19990 else if (offset > 0)
19991 {
19992 /* Short opcode. */
19993 op = (offset - 4) >> 2;
19994 add_unwind_opcode (op, 1);
19995 }
19996 else if (offset < 0)
19997 {
19998 offset = -offset;
19999 while (offset > 0x100)
20000 {
20001 add_unwind_opcode (0x7f, 1);
20002 offset -= 0x100;
20003 }
20004 op = ((offset - 4) >> 2) | 0x40;
20005 add_unwind_opcode (op, 1);
20006 }
20007 }
20008
20009 /* Finish the list of unwind opcodes for this function. */
20010 static void
20011 finish_unwind_opcodes (void)
20012 {
20013 valueT op;
20014
20015 if (unwind.fp_used)
20016 {
20017 /* Adjust sp as necessary. */
20018 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
20019 flush_pending_unwind ();
20020
20021 /* After restoring sp from the frame pointer. */
20022 op = 0x90 | unwind.fp_reg;
20023 add_unwind_opcode (op, 1);
20024 }
20025 else
20026 flush_pending_unwind ();
20027 }
20028
20029
20030 /* Start an exception table entry. If idx is nonzero this is an index table
20031 entry. */
20032
20033 static void
20034 start_unwind_section (const segT text_seg, int idx)
20035 {
20036 const char * text_name;
20037 const char * prefix;
20038 const char * prefix_once;
20039 const char * group_name;
20040 size_t prefix_len;
20041 size_t text_len;
20042 char * sec_name;
20043 size_t sec_name_len;
20044 int type;
20045 int flags;
20046 int linkonce;
20047
20048 if (idx)
20049 {
20050 prefix = ELF_STRING_ARM_unwind;
20051 prefix_once = ELF_STRING_ARM_unwind_once;
20052 type = SHT_ARM_EXIDX;
20053 }
20054 else
20055 {
20056 prefix = ELF_STRING_ARM_unwind_info;
20057 prefix_once = ELF_STRING_ARM_unwind_info_once;
20058 type = SHT_PROGBITS;
20059 }
20060
20061 text_name = segment_name (text_seg);
20062 if (streq (text_name, ".text"))
20063 text_name = "";
20064
20065 if (strncmp (text_name, ".gnu.linkonce.t.",
20066 strlen (".gnu.linkonce.t.")) == 0)
20067 {
20068 prefix = prefix_once;
20069 text_name += strlen (".gnu.linkonce.t.");
20070 }
20071
20072 prefix_len = strlen (prefix);
20073 text_len = strlen (text_name);
20074 sec_name_len = prefix_len + text_len;
20075 sec_name = (char *) xmalloc (sec_name_len + 1);
20076 memcpy (sec_name, prefix, prefix_len);
20077 memcpy (sec_name + prefix_len, text_name, text_len);
20078 sec_name[prefix_len + text_len] = '\0';
20079
20080 flags = SHF_ALLOC;
20081 linkonce = 0;
20082 group_name = 0;
20083
20084 /* Handle COMDAT group. */
20085 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
20086 {
20087 group_name = elf_group_name (text_seg);
20088 if (group_name == NULL)
20089 {
20090 as_bad (_("Group section `%s' has no group signature"),
20091 segment_name (text_seg));
20092 ignore_rest_of_line ();
20093 return;
20094 }
20095 flags |= SHF_GROUP;
20096 linkonce = 1;
20097 }
20098
20099 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
20100
20101 /* Set the section link for index tables. */
20102 if (idx)
20103 elf_linked_to_section (now_seg) = text_seg;
20104 }
20105
20106
20107 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
20108 personality routine data. Returns zero, or the index table value for
20109 and inline entry. */
20110
20111 static valueT
20112 create_unwind_entry (int have_data)
20113 {
20114 int size;
20115 addressT where;
20116 char *ptr;
20117 /* The current word of data. */
20118 valueT data;
20119 /* The number of bytes left in this word. */
20120 int n;
20121
20122 finish_unwind_opcodes ();
20123
20124 /* Remember the current text section. */
20125 unwind.saved_seg = now_seg;
20126 unwind.saved_subseg = now_subseg;
20127
20128 start_unwind_section (now_seg, 0);
20129
20130 if (unwind.personality_routine == NULL)
20131 {
20132 if (unwind.personality_index == -2)
20133 {
20134 if (have_data)
20135 as_bad (_("handlerdata in cantunwind frame"));
20136 return 1; /* EXIDX_CANTUNWIND. */
20137 }
20138
20139 /* Use a default personality routine if none is specified. */
20140 if (unwind.personality_index == -1)
20141 {
20142 if (unwind.opcode_count > 3)
20143 unwind.personality_index = 1;
20144 else
20145 unwind.personality_index = 0;
20146 }
20147
20148 /* Space for the personality routine entry. */
20149 if (unwind.personality_index == 0)
20150 {
20151 if (unwind.opcode_count > 3)
20152 as_bad (_("too many unwind opcodes for personality routine 0"));
20153
20154 if (!have_data)
20155 {
20156 /* All the data is inline in the index table. */
20157 data = 0x80;
20158 n = 3;
20159 while (unwind.opcode_count > 0)
20160 {
20161 unwind.opcode_count--;
20162 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20163 n--;
20164 }
20165
20166 /* Pad with "finish" opcodes. */
20167 while (n--)
20168 data = (data << 8) | 0xb0;
20169
20170 return data;
20171 }
20172 size = 0;
20173 }
20174 else
20175 /* We get two opcodes "free" in the first word. */
20176 size = unwind.opcode_count - 2;
20177 }
20178 else
20179 {
20180 gas_assert (unwind.personality_index == -1);
20181
20182 /* An extra byte is required for the opcode count. */
20183 size = unwind.opcode_count + 1;
20184 }
20185
20186 size = (size + 3) >> 2;
20187 if (size > 0xff)
20188 as_bad (_("too many unwind opcodes"));
20189
20190 frag_align (2, 0, 0);
20191 record_alignment (now_seg, 2);
20192 unwind.table_entry = expr_build_dot ();
20193
20194 /* Allocate the table entry. */
20195 ptr = frag_more ((size << 2) + 4);
20196 /* PR 13449: Zero the table entries in case some of them are not used. */
20197 memset (ptr, 0, (size << 2) + 4);
20198 where = frag_now_fix () - ((size << 2) + 4);
20199
20200 switch (unwind.personality_index)
20201 {
20202 case -1:
20203 /* ??? Should this be a PLT generating relocation? */
20204 /* Custom personality routine. */
20205 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
20206 BFD_RELOC_ARM_PREL31);
20207
20208 where += 4;
20209 ptr += 4;
20210
20211 /* Set the first byte to the number of additional words. */
20212 data = size > 0 ? size - 1 : 0;
20213 n = 3;
20214 break;
20215
20216 /* ABI defined personality routines. */
20217 case 0:
20218 /* Three opcodes bytes are packed into the first word. */
20219 data = 0x80;
20220 n = 3;
20221 break;
20222
20223 case 1:
20224 case 2:
20225 /* The size and first two opcode bytes go in the first word. */
20226 data = ((0x80 + unwind.personality_index) << 8) | size;
20227 n = 2;
20228 break;
20229
20230 default:
20231 /* Should never happen. */
20232 abort ();
20233 }
20234
20235 /* Pack the opcodes into words (MSB first), reversing the list at the same
20236 time. */
20237 while (unwind.opcode_count > 0)
20238 {
20239 if (n == 0)
20240 {
20241 md_number_to_chars (ptr, data, 4);
20242 ptr += 4;
20243 n = 4;
20244 data = 0;
20245 }
20246 unwind.opcode_count--;
20247 n--;
20248 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20249 }
20250
20251 /* Finish off the last word. */
20252 if (n < 4)
20253 {
20254 /* Pad with "finish" opcodes. */
20255 while (n--)
20256 data = (data << 8) | 0xb0;
20257
20258 md_number_to_chars (ptr, data, 4);
20259 }
20260
20261 if (!have_data)
20262 {
20263 /* Add an empty descriptor if there is no user-specified data. */
20264 ptr = frag_more (4);
20265 md_number_to_chars (ptr, 0, 4);
20266 }
20267
20268 return 0;
20269 }
20270
20271
20272 /* Initialize the DWARF-2 unwind information for this procedure. */
20273
20274 void
20275 tc_arm_frame_initial_instructions (void)
20276 {
20277 cfi_add_CFA_def_cfa (REG_SP, 0);
20278 }
20279 #endif /* OBJ_ELF */
20280
20281 /* Convert REGNAME to a DWARF-2 register number. */
20282
20283 int
20284 tc_arm_regname_to_dw2regnum (char *regname)
20285 {
20286 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
20287
20288 if (reg == FAIL)
20289 return -1;
20290
20291 return reg;
20292 }
20293
20294 #ifdef TE_PE
20295 void
20296 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
20297 {
20298 expressionS exp;
20299
20300 exp.X_op = O_secrel;
20301 exp.X_add_symbol = symbol;
20302 exp.X_add_number = 0;
20303 emit_expr (&exp, size);
20304 }
20305 #endif
20306
20307 /* MD interface: Symbol and relocation handling. */
20308
20309 /* Return the address within the segment that a PC-relative fixup is
20310 relative to. For ARM, PC-relative fixups applied to instructions
20311 are generally relative to the location of the fixup plus 8 bytes.
20312 Thumb branches are offset by 4, and Thumb loads relative to PC
20313 require special handling. */
20314
20315 long
20316 md_pcrel_from_section (fixS * fixP, segT seg)
20317 {
20318 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
20319
20320 /* If this is pc-relative and we are going to emit a relocation
20321 then we just want to put out any pipeline compensation that the linker
20322 will need. Otherwise we want to use the calculated base.
20323 For WinCE we skip the bias for externals as well, since this
20324 is how the MS ARM-CE assembler behaves and we want to be compatible. */
20325 if (fixP->fx_pcrel
20326 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
20327 || (arm_force_relocation (fixP)
20328 #ifdef TE_WINCE
20329 && !S_IS_EXTERNAL (fixP->fx_addsy)
20330 #endif
20331 )))
20332 base = 0;
20333
20334
20335 switch (fixP->fx_r_type)
20336 {
20337 /* PC relative addressing on the Thumb is slightly odd as the
20338 bottom two bits of the PC are forced to zero for the
20339 calculation. This happens *after* application of the
20340 pipeline offset. However, Thumb adrl already adjusts for
20341 this, so we need not do it again. */
20342 case BFD_RELOC_ARM_THUMB_ADD:
20343 return base & ~3;
20344
20345 case BFD_RELOC_ARM_THUMB_OFFSET:
20346 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20347 case BFD_RELOC_ARM_T32_ADD_PC12:
20348 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
20349 return (base + 4) & ~3;
20350
20351 /* Thumb branches are simply offset by +4. */
20352 case BFD_RELOC_THUMB_PCREL_BRANCH7:
20353 case BFD_RELOC_THUMB_PCREL_BRANCH9:
20354 case BFD_RELOC_THUMB_PCREL_BRANCH12:
20355 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20356 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20357 return base + 4;
20358
20359 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20360 if (fixP->fx_addsy
20361 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20362 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20363 && ARM_IS_FUNC (fixP->fx_addsy)
20364 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20365 base = fixP->fx_where + fixP->fx_frag->fr_address;
20366 return base + 4;
20367
20368 /* BLX is like branches above, but forces the low two bits of PC to
20369 zero. */
20370 case BFD_RELOC_THUMB_PCREL_BLX:
20371 if (fixP->fx_addsy
20372 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20373 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20374 && THUMB_IS_FUNC (fixP->fx_addsy)
20375 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20376 base = fixP->fx_where + fixP->fx_frag->fr_address;
20377 return (base + 4) & ~3;
20378
20379 /* ARM mode branches are offset by +8. However, the Windows CE
20380 loader expects the relocation not to take this into account. */
20381 case BFD_RELOC_ARM_PCREL_BLX:
20382 if (fixP->fx_addsy
20383 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20384 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20385 && ARM_IS_FUNC (fixP->fx_addsy)
20386 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20387 base = fixP->fx_where + fixP->fx_frag->fr_address;
20388 return base + 8;
20389
20390 case BFD_RELOC_ARM_PCREL_CALL:
20391 if (fixP->fx_addsy
20392 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20393 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20394 && THUMB_IS_FUNC (fixP->fx_addsy)
20395 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20396 base = fixP->fx_where + fixP->fx_frag->fr_address;
20397 return base + 8;
20398
20399 case BFD_RELOC_ARM_PCREL_BRANCH:
20400 case BFD_RELOC_ARM_PCREL_JUMP:
20401 case BFD_RELOC_ARM_PLT32:
20402 #ifdef TE_WINCE
20403 /* When handling fixups immediately, because we have already
20404 discovered the value of a symbol, or the address of the frag involved
20405 we must account for the offset by +8, as the OS loader will never see the reloc.
20406 see fixup_segment() in write.c
20407 The S_IS_EXTERNAL test handles the case of global symbols.
20408 Those need the calculated base, not just the pipe compensation the linker will need. */
20409 if (fixP->fx_pcrel
20410 && fixP->fx_addsy != NULL
20411 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20412 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
20413 return base + 8;
20414 return base;
20415 #else
20416 return base + 8;
20417 #endif
20418
20419
20420 /* ARM mode loads relative to PC are also offset by +8. Unlike
20421 branches, the Windows CE loader *does* expect the relocation
20422 to take this into account. */
20423 case BFD_RELOC_ARM_OFFSET_IMM:
20424 case BFD_RELOC_ARM_OFFSET_IMM8:
20425 case BFD_RELOC_ARM_HWLITERAL:
20426 case BFD_RELOC_ARM_LITERAL:
20427 case BFD_RELOC_ARM_CP_OFF_IMM:
20428 return base + 8;
20429
20430
20431 /* Other PC-relative relocations are un-offset. */
20432 default:
20433 return base;
20434 }
20435 }
20436
20437 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
20438 Otherwise we have no need to default values of symbols. */
20439
20440 symbolS *
20441 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
20442 {
20443 #ifdef OBJ_ELF
20444 if (name[0] == '_' && name[1] == 'G'
20445 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
20446 {
20447 if (!GOT_symbol)
20448 {
20449 if (symbol_find (name))
20450 as_bad (_("GOT already in the symbol table"));
20451
20452 GOT_symbol = symbol_new (name, undefined_section,
20453 (valueT) 0, & zero_address_frag);
20454 }
20455
20456 return GOT_symbol;
20457 }
20458 #endif
20459
20460 return NULL;
20461 }
20462
20463 /* Subroutine of md_apply_fix. Check to see if an immediate can be
20464 computed as two separate immediate values, added together. We
20465 already know that this value cannot be computed by just one ARM
20466 instruction. */
20467
20468 static unsigned int
20469 validate_immediate_twopart (unsigned int val,
20470 unsigned int * highpart)
20471 {
20472 unsigned int a;
20473 unsigned int i;
20474
20475 for (i = 0; i < 32; i += 2)
20476 if (((a = rotate_left (val, i)) & 0xff) != 0)
20477 {
20478 if (a & 0xff00)
20479 {
20480 if (a & ~ 0xffff)
20481 continue;
20482 * highpart = (a >> 8) | ((i + 24) << 7);
20483 }
20484 else if (a & 0xff0000)
20485 {
20486 if (a & 0xff000000)
20487 continue;
20488 * highpart = (a >> 16) | ((i + 16) << 7);
20489 }
20490 else
20491 {
20492 gas_assert (a & 0xff000000);
20493 * highpart = (a >> 24) | ((i + 8) << 7);
20494 }
20495
20496 return (a & 0xff) | (i << 7);
20497 }
20498
20499 return FAIL;
20500 }
20501
20502 static int
20503 validate_offset_imm (unsigned int val, int hwse)
20504 {
20505 if ((hwse && val > 255) || val > 4095)
20506 return FAIL;
20507 return val;
20508 }
20509
20510 /* Subroutine of md_apply_fix. Do those data_ops which can take a
20511 negative immediate constant by altering the instruction. A bit of
20512 a hack really.
20513 MOV <-> MVN
20514 AND <-> BIC
20515 ADC <-> SBC
20516 by inverting the second operand, and
20517 ADD <-> SUB
20518 CMP <-> CMN
20519 by negating the second operand. */
20520
20521 static int
20522 negate_data_op (unsigned long * instruction,
20523 unsigned long value)
20524 {
20525 int op, new_inst;
20526 unsigned long negated, inverted;
20527
20528 negated = encode_arm_immediate (-value);
20529 inverted = encode_arm_immediate (~value);
20530
20531 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
20532 switch (op)
20533 {
20534 /* First negates. */
20535 case OPCODE_SUB: /* ADD <-> SUB */
20536 new_inst = OPCODE_ADD;
20537 value = negated;
20538 break;
20539
20540 case OPCODE_ADD:
20541 new_inst = OPCODE_SUB;
20542 value = negated;
20543 break;
20544
20545 case OPCODE_CMP: /* CMP <-> CMN */
20546 new_inst = OPCODE_CMN;
20547 value = negated;
20548 break;
20549
20550 case OPCODE_CMN:
20551 new_inst = OPCODE_CMP;
20552 value = negated;
20553 break;
20554
20555 /* Now Inverted ops. */
20556 case OPCODE_MOV: /* MOV <-> MVN */
20557 new_inst = OPCODE_MVN;
20558 value = inverted;
20559 break;
20560
20561 case OPCODE_MVN:
20562 new_inst = OPCODE_MOV;
20563 value = inverted;
20564 break;
20565
20566 case OPCODE_AND: /* AND <-> BIC */
20567 new_inst = OPCODE_BIC;
20568 value = inverted;
20569 break;
20570
20571 case OPCODE_BIC:
20572 new_inst = OPCODE_AND;
20573 value = inverted;
20574 break;
20575
20576 case OPCODE_ADC: /* ADC <-> SBC */
20577 new_inst = OPCODE_SBC;
20578 value = inverted;
20579 break;
20580
20581 case OPCODE_SBC:
20582 new_inst = OPCODE_ADC;
20583 value = inverted;
20584 break;
20585
20586 /* We cannot do anything. */
20587 default:
20588 return FAIL;
20589 }
20590
20591 if (value == (unsigned) FAIL)
20592 return FAIL;
20593
20594 *instruction &= OPCODE_MASK;
20595 *instruction |= new_inst << DATA_OP_SHIFT;
20596 return value;
20597 }
20598
20599 /* Like negate_data_op, but for Thumb-2. */
20600
20601 static unsigned int
20602 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
20603 {
20604 int op, new_inst;
20605 int rd;
20606 unsigned int negated, inverted;
20607
20608 negated = encode_thumb32_immediate (-value);
20609 inverted = encode_thumb32_immediate (~value);
20610
20611 rd = (*instruction >> 8) & 0xf;
20612 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
20613 switch (op)
20614 {
20615 /* ADD <-> SUB. Includes CMP <-> CMN. */
20616 case T2_OPCODE_SUB:
20617 new_inst = T2_OPCODE_ADD;
20618 value = negated;
20619 break;
20620
20621 case T2_OPCODE_ADD:
20622 new_inst = T2_OPCODE_SUB;
20623 value = negated;
20624 break;
20625
20626 /* ORR <-> ORN. Includes MOV <-> MVN. */
20627 case T2_OPCODE_ORR:
20628 new_inst = T2_OPCODE_ORN;
20629 value = inverted;
20630 break;
20631
20632 case T2_OPCODE_ORN:
20633 new_inst = T2_OPCODE_ORR;
20634 value = inverted;
20635 break;
20636
20637 /* AND <-> BIC. TST has no inverted equivalent. */
20638 case T2_OPCODE_AND:
20639 new_inst = T2_OPCODE_BIC;
20640 if (rd == 15)
20641 value = FAIL;
20642 else
20643 value = inverted;
20644 break;
20645
20646 case T2_OPCODE_BIC:
20647 new_inst = T2_OPCODE_AND;
20648 value = inverted;
20649 break;
20650
20651 /* ADC <-> SBC */
20652 case T2_OPCODE_ADC:
20653 new_inst = T2_OPCODE_SBC;
20654 value = inverted;
20655 break;
20656
20657 case T2_OPCODE_SBC:
20658 new_inst = T2_OPCODE_ADC;
20659 value = inverted;
20660 break;
20661
20662 /* We cannot do anything. */
20663 default:
20664 return FAIL;
20665 }
20666
20667 if (value == (unsigned int)FAIL)
20668 return FAIL;
20669
20670 *instruction &= T2_OPCODE_MASK;
20671 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20672 return value;
20673 }
20674
20675 /* Read a 32-bit thumb instruction from buf. */
20676 static unsigned long
20677 get_thumb32_insn (char * buf)
20678 {
20679 unsigned long insn;
20680 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20681 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20682
20683 return insn;
20684 }
20685
20686
20687 /* We usually want to set the low bit on the address of thumb function
20688 symbols. In particular .word foo - . should have the low bit set.
20689 Generic code tries to fold the difference of two symbols to
20690 a constant. Prevent this and force a relocation when the first symbols
20691 is a thumb function. */
20692
20693 bfd_boolean
20694 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20695 {
20696 if (op == O_subtract
20697 && l->X_op == O_symbol
20698 && r->X_op == O_symbol
20699 && THUMB_IS_FUNC (l->X_add_symbol))
20700 {
20701 l->X_op = O_subtract;
20702 l->X_op_symbol = r->X_add_symbol;
20703 l->X_add_number -= r->X_add_number;
20704 return TRUE;
20705 }
20706
20707 /* Process as normal. */
20708 return FALSE;
20709 }
20710
20711 /* Encode Thumb2 unconditional branches and calls. The encoding
20712 for the 2 are identical for the immediate values. */
20713
20714 static void
20715 encode_thumb2_b_bl_offset (char * buf, offsetT value)
20716 {
20717 #define T2I1I2MASK ((1 << 13) | (1 << 11))
20718 offsetT newval;
20719 offsetT newval2;
20720 addressT S, I1, I2, lo, hi;
20721
20722 S = (value >> 24) & 0x01;
20723 I1 = (value >> 23) & 0x01;
20724 I2 = (value >> 22) & 0x01;
20725 hi = (value >> 12) & 0x3ff;
20726 lo = (value >> 1) & 0x7ff;
20727 newval = md_chars_to_number (buf, THUMB_SIZE);
20728 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20729 newval |= (S << 10) | hi;
20730 newval2 &= ~T2I1I2MASK;
20731 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
20732 md_number_to_chars (buf, newval, THUMB_SIZE);
20733 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20734 }
20735
20736 void
20737 md_apply_fix (fixS * fixP,
20738 valueT * valP,
20739 segT seg)
20740 {
20741 offsetT value = * valP;
20742 offsetT newval;
20743 unsigned int newimm;
20744 unsigned long temp;
20745 int sign;
20746 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
20747
20748 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
20749
20750 /* Note whether this will delete the relocation. */
20751
20752 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
20753 fixP->fx_done = 1;
20754
20755 /* On a 64-bit host, silently truncate 'value' to 32 bits for
20756 consistency with the behaviour on 32-bit hosts. Remember value
20757 for emit_reloc. */
20758 value &= 0xffffffff;
20759 value ^= 0x80000000;
20760 value -= 0x80000000;
20761
20762 *valP = value;
20763 fixP->fx_addnumber = value;
20764
20765 /* Same treatment for fixP->fx_offset. */
20766 fixP->fx_offset &= 0xffffffff;
20767 fixP->fx_offset ^= 0x80000000;
20768 fixP->fx_offset -= 0x80000000;
20769
20770 switch (fixP->fx_r_type)
20771 {
20772 case BFD_RELOC_NONE:
20773 /* This will need to go in the object file. */
20774 fixP->fx_done = 0;
20775 break;
20776
20777 case BFD_RELOC_ARM_IMMEDIATE:
20778 /* We claim that this fixup has been processed here,
20779 even if in fact we generate an error because we do
20780 not have a reloc for it, so tc_gen_reloc will reject it. */
20781 fixP->fx_done = 1;
20782
20783 if (fixP->fx_addsy)
20784 {
20785 const char *msg = 0;
20786
20787 if (! S_IS_DEFINED (fixP->fx_addsy))
20788 msg = _("undefined symbol %s used as an immediate value");
20789 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20790 msg = _("symbol %s is in a different section");
20791 else if (S_IS_WEAK (fixP->fx_addsy))
20792 msg = _("symbol %s is weak and may be overridden later");
20793
20794 if (msg)
20795 {
20796 as_bad_where (fixP->fx_file, fixP->fx_line,
20797 msg, S_GET_NAME (fixP->fx_addsy));
20798 break;
20799 }
20800 }
20801
20802 temp = md_chars_to_number (buf, INSN_SIZE);
20803
20804 /* If the offset is negative, we should use encoding A2 for ADR. */
20805 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
20806 newimm = negate_data_op (&temp, value);
20807 else
20808 {
20809 newimm = encode_arm_immediate (value);
20810
20811 /* If the instruction will fail, see if we can fix things up by
20812 changing the opcode. */
20813 if (newimm == (unsigned int) FAIL)
20814 newimm = negate_data_op (&temp, value);
20815 }
20816
20817 if (newimm == (unsigned int) FAIL)
20818 {
20819 as_bad_where (fixP->fx_file, fixP->fx_line,
20820 _("invalid constant (%lx) after fixup"),
20821 (unsigned long) value);
20822 break;
20823 }
20824
20825 newimm |= (temp & 0xfffff000);
20826 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20827 break;
20828
20829 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20830 {
20831 unsigned int highpart = 0;
20832 unsigned int newinsn = 0xe1a00000; /* nop. */
20833
20834 if (fixP->fx_addsy)
20835 {
20836 const char *msg = 0;
20837
20838 if (! S_IS_DEFINED (fixP->fx_addsy))
20839 msg = _("undefined symbol %s used as an immediate value");
20840 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20841 msg = _("symbol %s is in a different section");
20842 else if (S_IS_WEAK (fixP->fx_addsy))
20843 msg = _("symbol %s is weak and may be overridden later");
20844
20845 if (msg)
20846 {
20847 as_bad_where (fixP->fx_file, fixP->fx_line,
20848 msg, S_GET_NAME (fixP->fx_addsy));
20849 break;
20850 }
20851 }
20852
20853 newimm = encode_arm_immediate (value);
20854 temp = md_chars_to_number (buf, INSN_SIZE);
20855
20856 /* If the instruction will fail, see if we can fix things up by
20857 changing the opcode. */
20858 if (newimm == (unsigned int) FAIL
20859 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
20860 {
20861 /* No ? OK - try using two ADD instructions to generate
20862 the value. */
20863 newimm = validate_immediate_twopart (value, & highpart);
20864
20865 /* Yes - then make sure that the second instruction is
20866 also an add. */
20867 if (newimm != (unsigned int) FAIL)
20868 newinsn = temp;
20869 /* Still No ? Try using a negated value. */
20870 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
20871 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
20872 /* Otherwise - give up. */
20873 else
20874 {
20875 as_bad_where (fixP->fx_file, fixP->fx_line,
20876 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
20877 (long) value);
20878 break;
20879 }
20880
20881 /* Replace the first operand in the 2nd instruction (which
20882 is the PC) with the destination register. We have
20883 already added in the PC in the first instruction and we
20884 do not want to do it again. */
20885 newinsn &= ~ 0xf0000;
20886 newinsn |= ((newinsn & 0x0f000) << 4);
20887 }
20888
20889 newimm |= (temp & 0xfffff000);
20890 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20891
20892 highpart |= (newinsn & 0xfffff000);
20893 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
20894 }
20895 break;
20896
20897 case BFD_RELOC_ARM_OFFSET_IMM:
20898 if (!fixP->fx_done && seg->use_rela_p)
20899 value = 0;
20900
20901 case BFD_RELOC_ARM_LITERAL:
20902 sign = value > 0;
20903
20904 if (value < 0)
20905 value = - value;
20906
20907 if (validate_offset_imm (value, 0) == FAIL)
20908 {
20909 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
20910 as_bad_where (fixP->fx_file, fixP->fx_line,
20911 _("invalid literal constant: pool needs to be closer"));
20912 else
20913 as_bad_where (fixP->fx_file, fixP->fx_line,
20914 _("bad immediate value for offset (%ld)"),
20915 (long) value);
20916 break;
20917 }
20918
20919 newval = md_chars_to_number (buf, INSN_SIZE);
20920 if (value == 0)
20921 newval &= 0xfffff000;
20922 else
20923 {
20924 newval &= 0xff7ff000;
20925 newval |= value | (sign ? INDEX_UP : 0);
20926 }
20927 md_number_to_chars (buf, newval, INSN_SIZE);
20928 break;
20929
20930 case BFD_RELOC_ARM_OFFSET_IMM8:
20931 case BFD_RELOC_ARM_HWLITERAL:
20932 sign = value > 0;
20933
20934 if (value < 0)
20935 value = - value;
20936
20937 if (validate_offset_imm (value, 1) == FAIL)
20938 {
20939 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
20940 as_bad_where (fixP->fx_file, fixP->fx_line,
20941 _("invalid literal constant: pool needs to be closer"));
20942 else
20943 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
20944 (long) value);
20945 break;
20946 }
20947
20948 newval = md_chars_to_number (buf, INSN_SIZE);
20949 if (value == 0)
20950 newval &= 0xfffff0f0;
20951 else
20952 {
20953 newval &= 0xff7ff0f0;
20954 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
20955 }
20956 md_number_to_chars (buf, newval, INSN_SIZE);
20957 break;
20958
20959 case BFD_RELOC_ARM_T32_OFFSET_U8:
20960 if (value < 0 || value > 1020 || value % 4 != 0)
20961 as_bad_where (fixP->fx_file, fixP->fx_line,
20962 _("bad immediate value for offset (%ld)"), (long) value);
20963 value /= 4;
20964
20965 newval = md_chars_to_number (buf+2, THUMB_SIZE);
20966 newval |= value;
20967 md_number_to_chars (buf+2, newval, THUMB_SIZE);
20968 break;
20969
20970 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20971 /* This is a complicated relocation used for all varieties of Thumb32
20972 load/store instruction with immediate offset:
20973
20974 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
20975 *4, optional writeback(W)
20976 (doubleword load/store)
20977
20978 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
20979 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
20980 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
20981 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
20982 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
20983
20984 Uppercase letters indicate bits that are already encoded at
20985 this point. Lowercase letters are our problem. For the
20986 second block of instructions, the secondary opcode nybble
20987 (bits 8..11) is present, and bit 23 is zero, even if this is
20988 a PC-relative operation. */
20989 newval = md_chars_to_number (buf, THUMB_SIZE);
20990 newval <<= 16;
20991 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
20992
20993 if ((newval & 0xf0000000) == 0xe0000000)
20994 {
20995 /* Doubleword load/store: 8-bit offset, scaled by 4. */
20996 if (value >= 0)
20997 newval |= (1 << 23);
20998 else
20999 value = -value;
21000 if (value % 4 != 0)
21001 {
21002 as_bad_where (fixP->fx_file, fixP->fx_line,
21003 _("offset not a multiple of 4"));
21004 break;
21005 }
21006 value /= 4;
21007 if (value > 0xff)
21008 {
21009 as_bad_where (fixP->fx_file, fixP->fx_line,
21010 _("offset out of range"));
21011 break;
21012 }
21013 newval &= ~0xff;
21014 }
21015 else if ((newval & 0x000f0000) == 0x000f0000)
21016 {
21017 /* PC-relative, 12-bit offset. */
21018 if (value >= 0)
21019 newval |= (1 << 23);
21020 else
21021 value = -value;
21022 if (value > 0xfff)
21023 {
21024 as_bad_where (fixP->fx_file, fixP->fx_line,
21025 _("offset out of range"));
21026 break;
21027 }
21028 newval &= ~0xfff;
21029 }
21030 else if ((newval & 0x00000100) == 0x00000100)
21031 {
21032 /* Writeback: 8-bit, +/- offset. */
21033 if (value >= 0)
21034 newval |= (1 << 9);
21035 else
21036 value = -value;
21037 if (value > 0xff)
21038 {
21039 as_bad_where (fixP->fx_file, fixP->fx_line,
21040 _("offset out of range"));
21041 break;
21042 }
21043 newval &= ~0xff;
21044 }
21045 else if ((newval & 0x00000f00) == 0x00000e00)
21046 {
21047 /* T-instruction: positive 8-bit offset. */
21048 if (value < 0 || value > 0xff)
21049 {
21050 as_bad_where (fixP->fx_file, fixP->fx_line,
21051 _("offset out of range"));
21052 break;
21053 }
21054 newval &= ~0xff;
21055 newval |= value;
21056 }
21057 else
21058 {
21059 /* Positive 12-bit or negative 8-bit offset. */
21060 int limit;
21061 if (value >= 0)
21062 {
21063 newval |= (1 << 23);
21064 limit = 0xfff;
21065 }
21066 else
21067 {
21068 value = -value;
21069 limit = 0xff;
21070 }
21071 if (value > limit)
21072 {
21073 as_bad_where (fixP->fx_file, fixP->fx_line,
21074 _("offset out of range"));
21075 break;
21076 }
21077 newval &= ~limit;
21078 }
21079
21080 newval |= value;
21081 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
21082 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
21083 break;
21084
21085 case BFD_RELOC_ARM_SHIFT_IMM:
21086 newval = md_chars_to_number (buf, INSN_SIZE);
21087 if (((unsigned long) value) > 32
21088 || (value == 32
21089 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
21090 {
21091 as_bad_where (fixP->fx_file, fixP->fx_line,
21092 _("shift expression is too large"));
21093 break;
21094 }
21095
21096 if (value == 0)
21097 /* Shifts of zero must be done as lsl. */
21098 newval &= ~0x60;
21099 else if (value == 32)
21100 value = 0;
21101 newval &= 0xfffff07f;
21102 newval |= (value & 0x1f) << 7;
21103 md_number_to_chars (buf, newval, INSN_SIZE);
21104 break;
21105
21106 case BFD_RELOC_ARM_T32_IMMEDIATE:
21107 case BFD_RELOC_ARM_T32_ADD_IMM:
21108 case BFD_RELOC_ARM_T32_IMM12:
21109 case BFD_RELOC_ARM_T32_ADD_PC12:
21110 /* We claim that this fixup has been processed here,
21111 even if in fact we generate an error because we do
21112 not have a reloc for it, so tc_gen_reloc will reject it. */
21113 fixP->fx_done = 1;
21114
21115 if (fixP->fx_addsy
21116 && ! S_IS_DEFINED (fixP->fx_addsy))
21117 {
21118 as_bad_where (fixP->fx_file, fixP->fx_line,
21119 _("undefined symbol %s used as an immediate value"),
21120 S_GET_NAME (fixP->fx_addsy));
21121 break;
21122 }
21123
21124 newval = md_chars_to_number (buf, THUMB_SIZE);
21125 newval <<= 16;
21126 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
21127
21128 newimm = FAIL;
21129 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21130 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
21131 {
21132 newimm = encode_thumb32_immediate (value);
21133 if (newimm == (unsigned int) FAIL)
21134 newimm = thumb32_negate_data_op (&newval, value);
21135 }
21136 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
21137 && newimm == (unsigned int) FAIL)
21138 {
21139 /* Turn add/sum into addw/subw. */
21140 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
21141 newval = (newval & 0xfeffffff) | 0x02000000;
21142 /* No flat 12-bit imm encoding for addsw/subsw. */
21143 if ((newval & 0x00100000) == 0)
21144 {
21145 /* 12 bit immediate for addw/subw. */
21146 if (value < 0)
21147 {
21148 value = -value;
21149 newval ^= 0x00a00000;
21150 }
21151 if (value > 0xfff)
21152 newimm = (unsigned int) FAIL;
21153 else
21154 newimm = value;
21155 }
21156 }
21157
21158 if (newimm == (unsigned int)FAIL)
21159 {
21160 as_bad_where (fixP->fx_file, fixP->fx_line,
21161 _("invalid constant (%lx) after fixup"),
21162 (unsigned long) value);
21163 break;
21164 }
21165
21166 newval |= (newimm & 0x800) << 15;
21167 newval |= (newimm & 0x700) << 4;
21168 newval |= (newimm & 0x0ff);
21169
21170 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
21171 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
21172 break;
21173
21174 case BFD_RELOC_ARM_SMC:
21175 if (((unsigned long) value) > 0xffff)
21176 as_bad_where (fixP->fx_file, fixP->fx_line,
21177 _("invalid smc expression"));
21178 newval = md_chars_to_number (buf, INSN_SIZE);
21179 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21180 md_number_to_chars (buf, newval, INSN_SIZE);
21181 break;
21182
21183 case BFD_RELOC_ARM_HVC:
21184 if (((unsigned long) value) > 0xffff)
21185 as_bad_where (fixP->fx_file, fixP->fx_line,
21186 _("invalid hvc expression"));
21187 newval = md_chars_to_number (buf, INSN_SIZE);
21188 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21189 md_number_to_chars (buf, newval, INSN_SIZE);
21190 break;
21191
21192 case BFD_RELOC_ARM_SWI:
21193 if (fixP->tc_fix_data != 0)
21194 {
21195 if (((unsigned long) value) > 0xff)
21196 as_bad_where (fixP->fx_file, fixP->fx_line,
21197 _("invalid swi expression"));
21198 newval = md_chars_to_number (buf, THUMB_SIZE);
21199 newval |= value;
21200 md_number_to_chars (buf, newval, THUMB_SIZE);
21201 }
21202 else
21203 {
21204 if (((unsigned long) value) > 0x00ffffff)
21205 as_bad_where (fixP->fx_file, fixP->fx_line,
21206 _("invalid swi expression"));
21207 newval = md_chars_to_number (buf, INSN_SIZE);
21208 newval |= value;
21209 md_number_to_chars (buf, newval, INSN_SIZE);
21210 }
21211 break;
21212
21213 case BFD_RELOC_ARM_MULTI:
21214 if (((unsigned long) value) > 0xffff)
21215 as_bad_where (fixP->fx_file, fixP->fx_line,
21216 _("invalid expression in load/store multiple"));
21217 newval = value | md_chars_to_number (buf, INSN_SIZE);
21218 md_number_to_chars (buf, newval, INSN_SIZE);
21219 break;
21220
21221 #ifdef OBJ_ELF
21222 case BFD_RELOC_ARM_PCREL_CALL:
21223
21224 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21225 && fixP->fx_addsy
21226 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21227 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21228 && THUMB_IS_FUNC (fixP->fx_addsy))
21229 /* Flip the bl to blx. This is a simple flip
21230 bit here because we generate PCREL_CALL for
21231 unconditional bls. */
21232 {
21233 newval = md_chars_to_number (buf, INSN_SIZE);
21234 newval = newval | 0x10000000;
21235 md_number_to_chars (buf, newval, INSN_SIZE);
21236 temp = 1;
21237 fixP->fx_done = 1;
21238 }
21239 else
21240 temp = 3;
21241 goto arm_branch_common;
21242
21243 case BFD_RELOC_ARM_PCREL_JUMP:
21244 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21245 && fixP->fx_addsy
21246 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21247 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21248 && THUMB_IS_FUNC (fixP->fx_addsy))
21249 {
21250 /* This would map to a bl<cond>, b<cond>,
21251 b<always> to a Thumb function. We
21252 need to force a relocation for this particular
21253 case. */
21254 newval = md_chars_to_number (buf, INSN_SIZE);
21255 fixP->fx_done = 0;
21256 }
21257
21258 case BFD_RELOC_ARM_PLT32:
21259 #endif
21260 case BFD_RELOC_ARM_PCREL_BRANCH:
21261 temp = 3;
21262 goto arm_branch_common;
21263
21264 case BFD_RELOC_ARM_PCREL_BLX:
21265
21266 temp = 1;
21267 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21268 && fixP->fx_addsy
21269 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21270 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21271 && ARM_IS_FUNC (fixP->fx_addsy))
21272 {
21273 /* Flip the blx to a bl and warn. */
21274 const char *name = S_GET_NAME (fixP->fx_addsy);
21275 newval = 0xeb000000;
21276 as_warn_where (fixP->fx_file, fixP->fx_line,
21277 _("blx to '%s' an ARM ISA state function changed to bl"),
21278 name);
21279 md_number_to_chars (buf, newval, INSN_SIZE);
21280 temp = 3;
21281 fixP->fx_done = 1;
21282 }
21283
21284 #ifdef OBJ_ELF
21285 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21286 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
21287 #endif
21288
21289 arm_branch_common:
21290 /* We are going to store value (shifted right by two) in the
21291 instruction, in a 24 bit, signed field. Bits 26 through 32 either
21292 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
21293 also be be clear. */
21294 if (value & temp)
21295 as_bad_where (fixP->fx_file, fixP->fx_line,
21296 _("misaligned branch destination"));
21297 if ((value & (offsetT)0xfe000000) != (offsetT)0
21298 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
21299 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21300
21301 if (fixP->fx_done || !seg->use_rela_p)
21302 {
21303 newval = md_chars_to_number (buf, INSN_SIZE);
21304 newval |= (value >> 2) & 0x00ffffff;
21305 /* Set the H bit on BLX instructions. */
21306 if (temp == 1)
21307 {
21308 if (value & 2)
21309 newval |= 0x01000000;
21310 else
21311 newval &= ~0x01000000;
21312 }
21313 md_number_to_chars (buf, newval, INSN_SIZE);
21314 }
21315 break;
21316
21317 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
21318 /* CBZ can only branch forward. */
21319
21320 /* Attempts to use CBZ to branch to the next instruction
21321 (which, strictly speaking, are prohibited) will be turned into
21322 no-ops.
21323
21324 FIXME: It may be better to remove the instruction completely and
21325 perform relaxation. */
21326 if (value == -2)
21327 {
21328 newval = md_chars_to_number (buf, THUMB_SIZE);
21329 newval = 0xbf00; /* NOP encoding T1 */
21330 md_number_to_chars (buf, newval, THUMB_SIZE);
21331 }
21332 else
21333 {
21334 if (value & ~0x7e)
21335 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21336
21337 if (fixP->fx_done || !seg->use_rela_p)
21338 {
21339 newval = md_chars_to_number (buf, THUMB_SIZE);
21340 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
21341 md_number_to_chars (buf, newval, THUMB_SIZE);
21342 }
21343 }
21344 break;
21345
21346 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
21347 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
21348 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21349
21350 if (fixP->fx_done || !seg->use_rela_p)
21351 {
21352 newval = md_chars_to_number (buf, THUMB_SIZE);
21353 newval |= (value & 0x1ff) >> 1;
21354 md_number_to_chars (buf, newval, THUMB_SIZE);
21355 }
21356 break;
21357
21358 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
21359 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
21360 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21361
21362 if (fixP->fx_done || !seg->use_rela_p)
21363 {
21364 newval = md_chars_to_number (buf, THUMB_SIZE);
21365 newval |= (value & 0xfff) >> 1;
21366 md_number_to_chars (buf, newval, THUMB_SIZE);
21367 }
21368 break;
21369
21370 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21371 if (fixP->fx_addsy
21372 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21373 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21374 && ARM_IS_FUNC (fixP->fx_addsy)
21375 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21376 {
21377 /* Force a relocation for a branch 20 bits wide. */
21378 fixP->fx_done = 0;
21379 }
21380 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
21381 as_bad_where (fixP->fx_file, fixP->fx_line,
21382 _("conditional branch out of range"));
21383
21384 if (fixP->fx_done || !seg->use_rela_p)
21385 {
21386 offsetT newval2;
21387 addressT S, J1, J2, lo, hi;
21388
21389 S = (value & 0x00100000) >> 20;
21390 J2 = (value & 0x00080000) >> 19;
21391 J1 = (value & 0x00040000) >> 18;
21392 hi = (value & 0x0003f000) >> 12;
21393 lo = (value & 0x00000ffe) >> 1;
21394
21395 newval = md_chars_to_number (buf, THUMB_SIZE);
21396 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21397 newval |= (S << 10) | hi;
21398 newval2 |= (J1 << 13) | (J2 << 11) | lo;
21399 md_number_to_chars (buf, newval, THUMB_SIZE);
21400 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21401 }
21402 break;
21403
21404 case BFD_RELOC_THUMB_PCREL_BLX:
21405 /* If there is a blx from a thumb state function to
21406 another thumb function flip this to a bl and warn
21407 about it. */
21408
21409 if (fixP->fx_addsy
21410 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21411 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21412 && THUMB_IS_FUNC (fixP->fx_addsy))
21413 {
21414 const char *name = S_GET_NAME (fixP->fx_addsy);
21415 as_warn_where (fixP->fx_file, fixP->fx_line,
21416 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
21417 name);
21418 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21419 newval = newval | 0x1000;
21420 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21421 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21422 fixP->fx_done = 1;
21423 }
21424
21425
21426 goto thumb_bl_common;
21427
21428 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21429 /* A bl from Thumb state ISA to an internal ARM state function
21430 is converted to a blx. */
21431 if (fixP->fx_addsy
21432 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21433 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21434 && ARM_IS_FUNC (fixP->fx_addsy)
21435 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21436 {
21437 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21438 newval = newval & ~0x1000;
21439 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21440 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
21441 fixP->fx_done = 1;
21442 }
21443
21444 thumb_bl_common:
21445
21446 #ifdef OBJ_ELF
21447 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
21448 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21449 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21450 #endif
21451
21452 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21453 /* For a BLX instruction, make sure that the relocation is rounded up
21454 to a word boundary. This follows the semantics of the instruction
21455 which specifies that bit 1 of the target address will come from bit
21456 1 of the base address. */
21457 value = (value + 1) & ~ 1;
21458
21459 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
21460 {
21461 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
21462 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21463 else if ((value & ~0x1ffffff)
21464 && ((value & ~0x1ffffff) != ~0x1ffffff))
21465 as_bad_where (fixP->fx_file, fixP->fx_line,
21466 _("Thumb2 branch out of range"));
21467 }
21468
21469 if (fixP->fx_done || !seg->use_rela_p)
21470 encode_thumb2_b_bl_offset (buf, value);
21471
21472 break;
21473
21474 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21475 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
21476 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21477
21478 if (fixP->fx_done || !seg->use_rela_p)
21479 encode_thumb2_b_bl_offset (buf, value);
21480
21481 break;
21482
21483 case BFD_RELOC_8:
21484 if (fixP->fx_done || !seg->use_rela_p)
21485 md_number_to_chars (buf, value, 1);
21486 break;
21487
21488 case BFD_RELOC_16:
21489 if (fixP->fx_done || !seg->use_rela_p)
21490 md_number_to_chars (buf, value, 2);
21491 break;
21492
21493 #ifdef OBJ_ELF
21494 case BFD_RELOC_ARM_TLS_CALL:
21495 case BFD_RELOC_ARM_THM_TLS_CALL:
21496 case BFD_RELOC_ARM_TLS_DESCSEQ:
21497 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21498 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21499 break;
21500
21501 case BFD_RELOC_ARM_TLS_GOTDESC:
21502 case BFD_RELOC_ARM_TLS_GD32:
21503 case BFD_RELOC_ARM_TLS_LE32:
21504 case BFD_RELOC_ARM_TLS_IE32:
21505 case BFD_RELOC_ARM_TLS_LDM32:
21506 case BFD_RELOC_ARM_TLS_LDO32:
21507 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21508 /* fall through */
21509
21510 case BFD_RELOC_ARM_GOT32:
21511 case BFD_RELOC_ARM_GOTOFF:
21512 if (fixP->fx_done || !seg->use_rela_p)
21513 md_number_to_chars (buf, 0, 4);
21514 break;
21515
21516 case BFD_RELOC_ARM_GOT_PREL:
21517 if (fixP->fx_done || !seg->use_rela_p)
21518 md_number_to_chars (buf, value, 4);
21519 break;
21520
21521 case BFD_RELOC_ARM_TARGET2:
21522 /* TARGET2 is not partial-inplace, so we need to write the
21523 addend here for REL targets, because it won't be written out
21524 during reloc processing later. */
21525 if (fixP->fx_done || !seg->use_rela_p)
21526 md_number_to_chars (buf, fixP->fx_offset, 4);
21527 break;
21528 #endif
21529
21530 case BFD_RELOC_RVA:
21531 case BFD_RELOC_32:
21532 case BFD_RELOC_ARM_TARGET1:
21533 case BFD_RELOC_ARM_ROSEGREL32:
21534 case BFD_RELOC_ARM_SBREL32:
21535 case BFD_RELOC_32_PCREL:
21536 #ifdef TE_PE
21537 case BFD_RELOC_32_SECREL:
21538 #endif
21539 if (fixP->fx_done || !seg->use_rela_p)
21540 #ifdef TE_WINCE
21541 /* For WinCE we only do this for pcrel fixups. */
21542 if (fixP->fx_done || fixP->fx_pcrel)
21543 #endif
21544 md_number_to_chars (buf, value, 4);
21545 break;
21546
21547 #ifdef OBJ_ELF
21548 case BFD_RELOC_ARM_PREL31:
21549 if (fixP->fx_done || !seg->use_rela_p)
21550 {
21551 newval = md_chars_to_number (buf, 4) & 0x80000000;
21552 if ((value ^ (value >> 1)) & 0x40000000)
21553 {
21554 as_bad_where (fixP->fx_file, fixP->fx_line,
21555 _("rel31 relocation overflow"));
21556 }
21557 newval |= value & 0x7fffffff;
21558 md_number_to_chars (buf, newval, 4);
21559 }
21560 break;
21561 #endif
21562
21563 case BFD_RELOC_ARM_CP_OFF_IMM:
21564 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
21565 if (value < -1023 || value > 1023 || (value & 3))
21566 as_bad_where (fixP->fx_file, fixP->fx_line,
21567 _("co-processor offset out of range"));
21568 cp_off_common:
21569 sign = value > 0;
21570 if (value < 0)
21571 value = -value;
21572 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21573 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21574 newval = md_chars_to_number (buf, INSN_SIZE);
21575 else
21576 newval = get_thumb32_insn (buf);
21577 if (value == 0)
21578 newval &= 0xffffff00;
21579 else
21580 {
21581 newval &= 0xff7fff00;
21582 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
21583 }
21584 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21585 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21586 md_number_to_chars (buf, newval, INSN_SIZE);
21587 else
21588 put_thumb32_insn (buf, newval);
21589 break;
21590
21591 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
21592 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
21593 if (value < -255 || value > 255)
21594 as_bad_where (fixP->fx_file, fixP->fx_line,
21595 _("co-processor offset out of range"));
21596 value *= 4;
21597 goto cp_off_common;
21598
21599 case BFD_RELOC_ARM_THUMB_OFFSET:
21600 newval = md_chars_to_number (buf, THUMB_SIZE);
21601 /* Exactly what ranges, and where the offset is inserted depends
21602 on the type of instruction, we can establish this from the
21603 top 4 bits. */
21604 switch (newval >> 12)
21605 {
21606 case 4: /* PC load. */
21607 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
21608 forced to zero for these loads; md_pcrel_from has already
21609 compensated for this. */
21610 if (value & 3)
21611 as_bad_where (fixP->fx_file, fixP->fx_line,
21612 _("invalid offset, target not word aligned (0x%08lX)"),
21613 (((unsigned long) fixP->fx_frag->fr_address
21614 + (unsigned long) fixP->fx_where) & ~3)
21615 + (unsigned long) value);
21616
21617 if (value & ~0x3fc)
21618 as_bad_where (fixP->fx_file, fixP->fx_line,
21619 _("invalid offset, value too big (0x%08lX)"),
21620 (long) value);
21621
21622 newval |= value >> 2;
21623 break;
21624
21625 case 9: /* SP load/store. */
21626 if (value & ~0x3fc)
21627 as_bad_where (fixP->fx_file, fixP->fx_line,
21628 _("invalid offset, value too big (0x%08lX)"),
21629 (long) value);
21630 newval |= value >> 2;
21631 break;
21632
21633 case 6: /* Word load/store. */
21634 if (value & ~0x7c)
21635 as_bad_where (fixP->fx_file, fixP->fx_line,
21636 _("invalid offset, value too big (0x%08lX)"),
21637 (long) value);
21638 newval |= value << 4; /* 6 - 2. */
21639 break;
21640
21641 case 7: /* Byte load/store. */
21642 if (value & ~0x1f)
21643 as_bad_where (fixP->fx_file, fixP->fx_line,
21644 _("invalid offset, value too big (0x%08lX)"),
21645 (long) value);
21646 newval |= value << 6;
21647 break;
21648
21649 case 8: /* Halfword load/store. */
21650 if (value & ~0x3e)
21651 as_bad_where (fixP->fx_file, fixP->fx_line,
21652 _("invalid offset, value too big (0x%08lX)"),
21653 (long) value);
21654 newval |= value << 5; /* 6 - 1. */
21655 break;
21656
21657 default:
21658 as_bad_where (fixP->fx_file, fixP->fx_line,
21659 "Unable to process relocation for thumb opcode: %lx",
21660 (unsigned long) newval);
21661 break;
21662 }
21663 md_number_to_chars (buf, newval, THUMB_SIZE);
21664 break;
21665
21666 case BFD_RELOC_ARM_THUMB_ADD:
21667 /* This is a complicated relocation, since we use it for all of
21668 the following immediate relocations:
21669
21670 3bit ADD/SUB
21671 8bit ADD/SUB
21672 9bit ADD/SUB SP word-aligned
21673 10bit ADD PC/SP word-aligned
21674
21675 The type of instruction being processed is encoded in the
21676 instruction field:
21677
21678 0x8000 SUB
21679 0x00F0 Rd
21680 0x000F Rs
21681 */
21682 newval = md_chars_to_number (buf, THUMB_SIZE);
21683 {
21684 int rd = (newval >> 4) & 0xf;
21685 int rs = newval & 0xf;
21686 int subtract = !!(newval & 0x8000);
21687
21688 /* Check for HI regs, only very restricted cases allowed:
21689 Adjusting SP, and using PC or SP to get an address. */
21690 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21691 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21692 as_bad_where (fixP->fx_file, fixP->fx_line,
21693 _("invalid Hi register with immediate"));
21694
21695 /* If value is negative, choose the opposite instruction. */
21696 if (value < 0)
21697 {
21698 value = -value;
21699 subtract = !subtract;
21700 if (value < 0)
21701 as_bad_where (fixP->fx_file, fixP->fx_line,
21702 _("immediate value out of range"));
21703 }
21704
21705 if (rd == REG_SP)
21706 {
21707 if (value & ~0x1fc)
21708 as_bad_where (fixP->fx_file, fixP->fx_line,
21709 _("invalid immediate for stack address calculation"));
21710 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
21711 newval |= value >> 2;
21712 }
21713 else if (rs == REG_PC || rs == REG_SP)
21714 {
21715 if (subtract || value & ~0x3fc)
21716 as_bad_where (fixP->fx_file, fixP->fx_line,
21717 _("invalid immediate for address calculation (value = 0x%08lX)"),
21718 (unsigned long) value);
21719 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
21720 newval |= rd << 8;
21721 newval |= value >> 2;
21722 }
21723 else if (rs == rd)
21724 {
21725 if (value & ~0xff)
21726 as_bad_where (fixP->fx_file, fixP->fx_line,
21727 _("immediate value out of range"));
21728 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
21729 newval |= (rd << 8) | value;
21730 }
21731 else
21732 {
21733 if (value & ~0x7)
21734 as_bad_where (fixP->fx_file, fixP->fx_line,
21735 _("immediate value out of range"));
21736 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
21737 newval |= rd | (rs << 3) | (value << 6);
21738 }
21739 }
21740 md_number_to_chars (buf, newval, THUMB_SIZE);
21741 break;
21742
21743 case BFD_RELOC_ARM_THUMB_IMM:
21744 newval = md_chars_to_number (buf, THUMB_SIZE);
21745 if (value < 0 || value > 255)
21746 as_bad_where (fixP->fx_file, fixP->fx_line,
21747 _("invalid immediate: %ld is out of range"),
21748 (long) value);
21749 newval |= value;
21750 md_number_to_chars (buf, newval, THUMB_SIZE);
21751 break;
21752
21753 case BFD_RELOC_ARM_THUMB_SHIFT:
21754 /* 5bit shift value (0..32). LSL cannot take 32. */
21755 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
21756 temp = newval & 0xf800;
21757 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
21758 as_bad_where (fixP->fx_file, fixP->fx_line,
21759 _("invalid shift value: %ld"), (long) value);
21760 /* Shifts of zero must be encoded as LSL. */
21761 if (value == 0)
21762 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
21763 /* Shifts of 32 are encoded as zero. */
21764 else if (value == 32)
21765 value = 0;
21766 newval |= value << 6;
21767 md_number_to_chars (buf, newval, THUMB_SIZE);
21768 break;
21769
21770 case BFD_RELOC_VTABLE_INHERIT:
21771 case BFD_RELOC_VTABLE_ENTRY:
21772 fixP->fx_done = 0;
21773 return;
21774
21775 case BFD_RELOC_ARM_MOVW:
21776 case BFD_RELOC_ARM_MOVT:
21777 case BFD_RELOC_ARM_THUMB_MOVW:
21778 case BFD_RELOC_ARM_THUMB_MOVT:
21779 if (fixP->fx_done || !seg->use_rela_p)
21780 {
21781 /* REL format relocations are limited to a 16-bit addend. */
21782 if (!fixP->fx_done)
21783 {
21784 if (value < -0x8000 || value > 0x7fff)
21785 as_bad_where (fixP->fx_file, fixP->fx_line,
21786 _("offset out of range"));
21787 }
21788 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21789 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21790 {
21791 value >>= 16;
21792 }
21793
21794 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21795 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21796 {
21797 newval = get_thumb32_insn (buf);
21798 newval &= 0xfbf08f00;
21799 newval |= (value & 0xf000) << 4;
21800 newval |= (value & 0x0800) << 15;
21801 newval |= (value & 0x0700) << 4;
21802 newval |= (value & 0x00ff);
21803 put_thumb32_insn (buf, newval);
21804 }
21805 else
21806 {
21807 newval = md_chars_to_number (buf, 4);
21808 newval &= 0xfff0f000;
21809 newval |= value & 0x0fff;
21810 newval |= (value & 0xf000) << 4;
21811 md_number_to_chars (buf, newval, 4);
21812 }
21813 }
21814 return;
21815
21816 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21817 case BFD_RELOC_ARM_ALU_PC_G0:
21818 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21819 case BFD_RELOC_ARM_ALU_PC_G1:
21820 case BFD_RELOC_ARM_ALU_PC_G2:
21821 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21822 case BFD_RELOC_ARM_ALU_SB_G0:
21823 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21824 case BFD_RELOC_ARM_ALU_SB_G1:
21825 case BFD_RELOC_ARM_ALU_SB_G2:
21826 gas_assert (!fixP->fx_done);
21827 if (!seg->use_rela_p)
21828 {
21829 bfd_vma insn;
21830 bfd_vma encoded_addend;
21831 bfd_vma addend_abs = abs (value);
21832
21833 /* Check that the absolute value of the addend can be
21834 expressed as an 8-bit constant plus a rotation. */
21835 encoded_addend = encode_arm_immediate (addend_abs);
21836 if (encoded_addend == (unsigned int) FAIL)
21837 as_bad_where (fixP->fx_file, fixP->fx_line,
21838 _("the offset 0x%08lX is not representable"),
21839 (unsigned long) addend_abs);
21840
21841 /* Extract the instruction. */
21842 insn = md_chars_to_number (buf, INSN_SIZE);
21843
21844 /* If the addend is positive, use an ADD instruction.
21845 Otherwise use a SUB. Take care not to destroy the S bit. */
21846 insn &= 0xff1fffff;
21847 if (value < 0)
21848 insn |= 1 << 22;
21849 else
21850 insn |= 1 << 23;
21851
21852 /* Place the encoded addend into the first 12 bits of the
21853 instruction. */
21854 insn &= 0xfffff000;
21855 insn |= encoded_addend;
21856
21857 /* Update the instruction. */
21858 md_number_to_chars (buf, insn, INSN_SIZE);
21859 }
21860 break;
21861
21862 case BFD_RELOC_ARM_LDR_PC_G0:
21863 case BFD_RELOC_ARM_LDR_PC_G1:
21864 case BFD_RELOC_ARM_LDR_PC_G2:
21865 case BFD_RELOC_ARM_LDR_SB_G0:
21866 case BFD_RELOC_ARM_LDR_SB_G1:
21867 case BFD_RELOC_ARM_LDR_SB_G2:
21868 gas_assert (!fixP->fx_done);
21869 if (!seg->use_rela_p)
21870 {
21871 bfd_vma insn;
21872 bfd_vma addend_abs = abs (value);
21873
21874 /* Check that the absolute value of the addend can be
21875 encoded in 12 bits. */
21876 if (addend_abs >= 0x1000)
21877 as_bad_where (fixP->fx_file, fixP->fx_line,
21878 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
21879 (unsigned long) addend_abs);
21880
21881 /* Extract the instruction. */
21882 insn = md_chars_to_number (buf, INSN_SIZE);
21883
21884 /* If the addend is negative, clear bit 23 of the instruction.
21885 Otherwise set it. */
21886 if (value < 0)
21887 insn &= ~(1 << 23);
21888 else
21889 insn |= 1 << 23;
21890
21891 /* Place the absolute value of the addend into the first 12 bits
21892 of the instruction. */
21893 insn &= 0xfffff000;
21894 insn |= addend_abs;
21895
21896 /* Update the instruction. */
21897 md_number_to_chars (buf, insn, INSN_SIZE);
21898 }
21899 break;
21900
21901 case BFD_RELOC_ARM_LDRS_PC_G0:
21902 case BFD_RELOC_ARM_LDRS_PC_G1:
21903 case BFD_RELOC_ARM_LDRS_PC_G2:
21904 case BFD_RELOC_ARM_LDRS_SB_G0:
21905 case BFD_RELOC_ARM_LDRS_SB_G1:
21906 case BFD_RELOC_ARM_LDRS_SB_G2:
21907 gas_assert (!fixP->fx_done);
21908 if (!seg->use_rela_p)
21909 {
21910 bfd_vma insn;
21911 bfd_vma addend_abs = abs (value);
21912
21913 /* Check that the absolute value of the addend can be
21914 encoded in 8 bits. */
21915 if (addend_abs >= 0x100)
21916 as_bad_where (fixP->fx_file, fixP->fx_line,
21917 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
21918 (unsigned long) addend_abs);
21919
21920 /* Extract the instruction. */
21921 insn = md_chars_to_number (buf, INSN_SIZE);
21922
21923 /* If the addend is negative, clear bit 23 of the instruction.
21924 Otherwise set it. */
21925 if (value < 0)
21926 insn &= ~(1 << 23);
21927 else
21928 insn |= 1 << 23;
21929
21930 /* Place the first four bits of the absolute value of the addend
21931 into the first 4 bits of the instruction, and the remaining
21932 four into bits 8 .. 11. */
21933 insn &= 0xfffff0f0;
21934 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
21935
21936 /* Update the instruction. */
21937 md_number_to_chars (buf, insn, INSN_SIZE);
21938 }
21939 break;
21940
21941 case BFD_RELOC_ARM_LDC_PC_G0:
21942 case BFD_RELOC_ARM_LDC_PC_G1:
21943 case BFD_RELOC_ARM_LDC_PC_G2:
21944 case BFD_RELOC_ARM_LDC_SB_G0:
21945 case BFD_RELOC_ARM_LDC_SB_G1:
21946 case BFD_RELOC_ARM_LDC_SB_G2:
21947 gas_assert (!fixP->fx_done);
21948 if (!seg->use_rela_p)
21949 {
21950 bfd_vma insn;
21951 bfd_vma addend_abs = abs (value);
21952
21953 /* Check that the absolute value of the addend is a multiple of
21954 four and, when divided by four, fits in 8 bits. */
21955 if (addend_abs & 0x3)
21956 as_bad_where (fixP->fx_file, fixP->fx_line,
21957 _("bad offset 0x%08lX (must be word-aligned)"),
21958 (unsigned long) addend_abs);
21959
21960 if ((addend_abs >> 2) > 0xff)
21961 as_bad_where (fixP->fx_file, fixP->fx_line,
21962 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
21963 (unsigned long) addend_abs);
21964
21965 /* Extract the instruction. */
21966 insn = md_chars_to_number (buf, INSN_SIZE);
21967
21968 /* If the addend is negative, clear bit 23 of the instruction.
21969 Otherwise set it. */
21970 if (value < 0)
21971 insn &= ~(1 << 23);
21972 else
21973 insn |= 1 << 23;
21974
21975 /* Place the addend (divided by four) into the first eight
21976 bits of the instruction. */
21977 insn &= 0xfffffff0;
21978 insn |= addend_abs >> 2;
21979
21980 /* Update the instruction. */
21981 md_number_to_chars (buf, insn, INSN_SIZE);
21982 }
21983 break;
21984
21985 case BFD_RELOC_ARM_V4BX:
21986 /* This will need to go in the object file. */
21987 fixP->fx_done = 0;
21988 break;
21989
21990 case BFD_RELOC_UNUSED:
21991 default:
21992 as_bad_where (fixP->fx_file, fixP->fx_line,
21993 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
21994 }
21995 }
21996
21997 /* Translate internal representation of relocation info to BFD target
21998 format. */
21999
22000 arelent *
22001 tc_gen_reloc (asection *section, fixS *fixp)
22002 {
22003 arelent * reloc;
22004 bfd_reloc_code_real_type code;
22005
22006 reloc = (arelent *) xmalloc (sizeof (arelent));
22007
22008 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
22009 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
22010 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
22011
22012 if (fixp->fx_pcrel)
22013 {
22014 if (section->use_rela_p)
22015 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
22016 else
22017 fixp->fx_offset = reloc->address;
22018 }
22019 reloc->addend = fixp->fx_offset;
22020
22021 switch (fixp->fx_r_type)
22022 {
22023 case BFD_RELOC_8:
22024 if (fixp->fx_pcrel)
22025 {
22026 code = BFD_RELOC_8_PCREL;
22027 break;
22028 }
22029
22030 case BFD_RELOC_16:
22031 if (fixp->fx_pcrel)
22032 {
22033 code = BFD_RELOC_16_PCREL;
22034 break;
22035 }
22036
22037 case BFD_RELOC_32:
22038 if (fixp->fx_pcrel)
22039 {
22040 code = BFD_RELOC_32_PCREL;
22041 break;
22042 }
22043
22044 case BFD_RELOC_ARM_MOVW:
22045 if (fixp->fx_pcrel)
22046 {
22047 code = BFD_RELOC_ARM_MOVW_PCREL;
22048 break;
22049 }
22050
22051 case BFD_RELOC_ARM_MOVT:
22052 if (fixp->fx_pcrel)
22053 {
22054 code = BFD_RELOC_ARM_MOVT_PCREL;
22055 break;
22056 }
22057
22058 case BFD_RELOC_ARM_THUMB_MOVW:
22059 if (fixp->fx_pcrel)
22060 {
22061 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
22062 break;
22063 }
22064
22065 case BFD_RELOC_ARM_THUMB_MOVT:
22066 if (fixp->fx_pcrel)
22067 {
22068 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
22069 break;
22070 }
22071
22072 case BFD_RELOC_NONE:
22073 case BFD_RELOC_ARM_PCREL_BRANCH:
22074 case BFD_RELOC_ARM_PCREL_BLX:
22075 case BFD_RELOC_RVA:
22076 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22077 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22078 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22079 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22080 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22081 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22082 case BFD_RELOC_VTABLE_ENTRY:
22083 case BFD_RELOC_VTABLE_INHERIT:
22084 #ifdef TE_PE
22085 case BFD_RELOC_32_SECREL:
22086 #endif
22087 code = fixp->fx_r_type;
22088 break;
22089
22090 case BFD_RELOC_THUMB_PCREL_BLX:
22091 #ifdef OBJ_ELF
22092 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
22093 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
22094 else
22095 #endif
22096 code = BFD_RELOC_THUMB_PCREL_BLX;
22097 break;
22098
22099 case BFD_RELOC_ARM_LITERAL:
22100 case BFD_RELOC_ARM_HWLITERAL:
22101 /* If this is called then the a literal has
22102 been referenced across a section boundary. */
22103 as_bad_where (fixp->fx_file, fixp->fx_line,
22104 _("literal referenced across section boundary"));
22105 return NULL;
22106
22107 #ifdef OBJ_ELF
22108 case BFD_RELOC_ARM_TLS_CALL:
22109 case BFD_RELOC_ARM_THM_TLS_CALL:
22110 case BFD_RELOC_ARM_TLS_DESCSEQ:
22111 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
22112 case BFD_RELOC_ARM_GOT32:
22113 case BFD_RELOC_ARM_GOTOFF:
22114 case BFD_RELOC_ARM_GOT_PREL:
22115 case BFD_RELOC_ARM_PLT32:
22116 case BFD_RELOC_ARM_TARGET1:
22117 case BFD_RELOC_ARM_ROSEGREL32:
22118 case BFD_RELOC_ARM_SBREL32:
22119 case BFD_RELOC_ARM_PREL31:
22120 case BFD_RELOC_ARM_TARGET2:
22121 case BFD_RELOC_ARM_TLS_LE32:
22122 case BFD_RELOC_ARM_TLS_LDO32:
22123 case BFD_RELOC_ARM_PCREL_CALL:
22124 case BFD_RELOC_ARM_PCREL_JUMP:
22125 case BFD_RELOC_ARM_ALU_PC_G0_NC:
22126 case BFD_RELOC_ARM_ALU_PC_G0:
22127 case BFD_RELOC_ARM_ALU_PC_G1_NC:
22128 case BFD_RELOC_ARM_ALU_PC_G1:
22129 case BFD_RELOC_ARM_ALU_PC_G2:
22130 case BFD_RELOC_ARM_LDR_PC_G0:
22131 case BFD_RELOC_ARM_LDR_PC_G1:
22132 case BFD_RELOC_ARM_LDR_PC_G2:
22133 case BFD_RELOC_ARM_LDRS_PC_G0:
22134 case BFD_RELOC_ARM_LDRS_PC_G1:
22135 case BFD_RELOC_ARM_LDRS_PC_G2:
22136 case BFD_RELOC_ARM_LDC_PC_G0:
22137 case BFD_RELOC_ARM_LDC_PC_G1:
22138 case BFD_RELOC_ARM_LDC_PC_G2:
22139 case BFD_RELOC_ARM_ALU_SB_G0_NC:
22140 case BFD_RELOC_ARM_ALU_SB_G0:
22141 case BFD_RELOC_ARM_ALU_SB_G1_NC:
22142 case BFD_RELOC_ARM_ALU_SB_G1:
22143 case BFD_RELOC_ARM_ALU_SB_G2:
22144 case BFD_RELOC_ARM_LDR_SB_G0:
22145 case BFD_RELOC_ARM_LDR_SB_G1:
22146 case BFD_RELOC_ARM_LDR_SB_G2:
22147 case BFD_RELOC_ARM_LDRS_SB_G0:
22148 case BFD_RELOC_ARM_LDRS_SB_G1:
22149 case BFD_RELOC_ARM_LDRS_SB_G2:
22150 case BFD_RELOC_ARM_LDC_SB_G0:
22151 case BFD_RELOC_ARM_LDC_SB_G1:
22152 case BFD_RELOC_ARM_LDC_SB_G2:
22153 case BFD_RELOC_ARM_V4BX:
22154 code = fixp->fx_r_type;
22155 break;
22156
22157 case BFD_RELOC_ARM_TLS_GOTDESC:
22158 case BFD_RELOC_ARM_TLS_GD32:
22159 case BFD_RELOC_ARM_TLS_IE32:
22160 case BFD_RELOC_ARM_TLS_LDM32:
22161 /* BFD will include the symbol's address in the addend.
22162 But we don't want that, so subtract it out again here. */
22163 if (!S_IS_COMMON (fixp->fx_addsy))
22164 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
22165 code = fixp->fx_r_type;
22166 break;
22167 #endif
22168
22169 case BFD_RELOC_ARM_IMMEDIATE:
22170 as_bad_where (fixp->fx_file, fixp->fx_line,
22171 _("internal relocation (type: IMMEDIATE) not fixed up"));
22172 return NULL;
22173
22174 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
22175 as_bad_where (fixp->fx_file, fixp->fx_line,
22176 _("ADRL used for a symbol not defined in the same file"));
22177 return NULL;
22178
22179 case BFD_RELOC_ARM_OFFSET_IMM:
22180 if (section->use_rela_p)
22181 {
22182 code = fixp->fx_r_type;
22183 break;
22184 }
22185
22186 if (fixp->fx_addsy != NULL
22187 && !S_IS_DEFINED (fixp->fx_addsy)
22188 && S_IS_LOCAL (fixp->fx_addsy))
22189 {
22190 as_bad_where (fixp->fx_file, fixp->fx_line,
22191 _("undefined local label `%s'"),
22192 S_GET_NAME (fixp->fx_addsy));
22193 return NULL;
22194 }
22195
22196 as_bad_where (fixp->fx_file, fixp->fx_line,
22197 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
22198 return NULL;
22199
22200 default:
22201 {
22202 char * type;
22203
22204 switch (fixp->fx_r_type)
22205 {
22206 case BFD_RELOC_NONE: type = "NONE"; break;
22207 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
22208 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
22209 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
22210 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
22211 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
22212 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
22213 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
22214 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
22215 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
22216 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
22217 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
22218 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
22219 default: type = _("<unknown>"); break;
22220 }
22221 as_bad_where (fixp->fx_file, fixp->fx_line,
22222 _("cannot represent %s relocation in this object file format"),
22223 type);
22224 return NULL;
22225 }
22226 }
22227
22228 #ifdef OBJ_ELF
22229 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
22230 && GOT_symbol
22231 && fixp->fx_addsy == GOT_symbol)
22232 {
22233 code = BFD_RELOC_ARM_GOTPC;
22234 reloc->addend = fixp->fx_offset = reloc->address;
22235 }
22236 #endif
22237
22238 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
22239
22240 if (reloc->howto == NULL)
22241 {
22242 as_bad_where (fixp->fx_file, fixp->fx_line,
22243 _("cannot represent %s relocation in this object file format"),
22244 bfd_get_reloc_code_name (code));
22245 return NULL;
22246 }
22247
22248 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
22249 vtable entry to be used in the relocation's section offset. */
22250 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22251 reloc->address = fixp->fx_offset;
22252
22253 return reloc;
22254 }
22255
22256 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
22257
22258 void
22259 cons_fix_new_arm (fragS * frag,
22260 int where,
22261 int size,
22262 expressionS * exp)
22263 {
22264 bfd_reloc_code_real_type type;
22265 int pcrel = 0;
22266
22267 /* Pick a reloc.
22268 FIXME: @@ Should look at CPU word size. */
22269 switch (size)
22270 {
22271 case 1:
22272 type = BFD_RELOC_8;
22273 break;
22274 case 2:
22275 type = BFD_RELOC_16;
22276 break;
22277 case 4:
22278 default:
22279 type = BFD_RELOC_32;
22280 break;
22281 case 8:
22282 type = BFD_RELOC_64;
22283 break;
22284 }
22285
22286 #ifdef TE_PE
22287 if (exp->X_op == O_secrel)
22288 {
22289 exp->X_op = O_symbol;
22290 type = BFD_RELOC_32_SECREL;
22291 }
22292 #endif
22293
22294 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
22295 }
22296
22297 #if defined (OBJ_COFF)
22298 void
22299 arm_validate_fix (fixS * fixP)
22300 {
22301 /* If the destination of the branch is a defined symbol which does not have
22302 the THUMB_FUNC attribute, then we must be calling a function which has
22303 the (interfacearm) attribute. We look for the Thumb entry point to that
22304 function and change the branch to refer to that function instead. */
22305 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
22306 && fixP->fx_addsy != NULL
22307 && S_IS_DEFINED (fixP->fx_addsy)
22308 && ! THUMB_IS_FUNC (fixP->fx_addsy))
22309 {
22310 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
22311 }
22312 }
22313 #endif
22314
22315
22316 int
22317 arm_force_relocation (struct fix * fixp)
22318 {
22319 #if defined (OBJ_COFF) && defined (TE_PE)
22320 if (fixp->fx_r_type == BFD_RELOC_RVA)
22321 return 1;
22322 #endif
22323
22324 /* In case we have a call or a branch to a function in ARM ISA mode from
22325 a thumb function or vice-versa force the relocation. These relocations
22326 are cleared off for some cores that might have blx and simple transformations
22327 are possible. */
22328
22329 #ifdef OBJ_ELF
22330 switch (fixp->fx_r_type)
22331 {
22332 case BFD_RELOC_ARM_PCREL_JUMP:
22333 case BFD_RELOC_ARM_PCREL_CALL:
22334 case BFD_RELOC_THUMB_PCREL_BLX:
22335 if (THUMB_IS_FUNC (fixp->fx_addsy))
22336 return 1;
22337 break;
22338
22339 case BFD_RELOC_ARM_PCREL_BLX:
22340 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22341 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22342 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22343 if (ARM_IS_FUNC (fixp->fx_addsy))
22344 return 1;
22345 break;
22346
22347 default:
22348 break;
22349 }
22350 #endif
22351
22352 /* Resolve these relocations even if the symbol is extern or weak.
22353 Technically this is probably wrong due to symbol preemption.
22354 In practice these relocations do not have enough range to be useful
22355 at dynamic link time, and some code (e.g. in the Linux kernel)
22356 expects these references to be resolved. */
22357 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
22358 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
22359 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
22360 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
22361 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22362 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
22363 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
22364 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
22365 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
22366 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
22367 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
22368 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
22369 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
22370 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
22371 return 0;
22372
22373 /* Always leave these relocations for the linker. */
22374 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22375 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22376 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22377 return 1;
22378
22379 /* Always generate relocations against function symbols. */
22380 if (fixp->fx_r_type == BFD_RELOC_32
22381 && fixp->fx_addsy
22382 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
22383 return 1;
22384
22385 return generic_force_reloc (fixp);
22386 }
22387
22388 #if defined (OBJ_ELF) || defined (OBJ_COFF)
22389 /* Relocations against function names must be left unadjusted,
22390 so that the linker can use this information to generate interworking
22391 stubs. The MIPS version of this function
22392 also prevents relocations that are mips-16 specific, but I do not
22393 know why it does this.
22394
22395 FIXME:
22396 There is one other problem that ought to be addressed here, but
22397 which currently is not: Taking the address of a label (rather
22398 than a function) and then later jumping to that address. Such
22399 addresses also ought to have their bottom bit set (assuming that
22400 they reside in Thumb code), but at the moment they will not. */
22401
22402 bfd_boolean
22403 arm_fix_adjustable (fixS * fixP)
22404 {
22405 if (fixP->fx_addsy == NULL)
22406 return 1;
22407
22408 /* Preserve relocations against symbols with function type. */
22409 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
22410 return FALSE;
22411
22412 if (THUMB_IS_FUNC (fixP->fx_addsy)
22413 && fixP->fx_subsy == NULL)
22414 return FALSE;
22415
22416 /* We need the symbol name for the VTABLE entries. */
22417 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
22418 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22419 return FALSE;
22420
22421 /* Don't allow symbols to be discarded on GOT related relocs. */
22422 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
22423 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
22424 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
22425 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
22426 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
22427 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
22428 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
22429 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
22430 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
22431 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
22432 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
22433 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
22434 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
22435 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
22436 return FALSE;
22437
22438 /* Similarly for group relocations. */
22439 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22440 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22441 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22442 return FALSE;
22443
22444 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
22445 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
22446 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22447 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
22448 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
22449 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22450 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
22451 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
22452 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
22453 return FALSE;
22454
22455 return TRUE;
22456 }
22457 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
22458
22459 #ifdef OBJ_ELF
22460
22461 const char *
22462 elf32_arm_target_format (void)
22463 {
22464 #ifdef TE_SYMBIAN
22465 return (target_big_endian
22466 ? "elf32-bigarm-symbian"
22467 : "elf32-littlearm-symbian");
22468 #elif defined (TE_VXWORKS)
22469 return (target_big_endian
22470 ? "elf32-bigarm-vxworks"
22471 : "elf32-littlearm-vxworks");
22472 #elif defined (TE_NACL)
22473 return (target_big_endian
22474 ? "elf32-bigarm-nacl"
22475 : "elf32-littlearm-nacl");
22476 #else
22477 if (target_big_endian)
22478 return "elf32-bigarm";
22479 else
22480 return "elf32-littlearm";
22481 #endif
22482 }
22483
22484 void
22485 armelf_frob_symbol (symbolS * symp,
22486 int * puntp)
22487 {
22488 elf_frob_symbol (symp, puntp);
22489 }
22490 #endif
22491
22492 /* MD interface: Finalization. */
22493
22494 void
22495 arm_cleanup (void)
22496 {
22497 literal_pool * pool;
22498
22499 /* Ensure that all the IT blocks are properly closed. */
22500 check_it_blocks_finished ();
22501
22502 for (pool = list_of_pools; pool; pool = pool->next)
22503 {
22504 /* Put it at the end of the relevant section. */
22505 subseg_set (pool->section, pool->sub_section);
22506 #ifdef OBJ_ELF
22507 arm_elf_change_section ();
22508 #endif
22509 s_ltorg (0);
22510 }
22511 }
22512
22513 #ifdef OBJ_ELF
22514 /* Remove any excess mapping symbols generated for alignment frags in
22515 SEC. We may have created a mapping symbol before a zero byte
22516 alignment; remove it if there's a mapping symbol after the
22517 alignment. */
22518 static void
22519 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
22520 void *dummy ATTRIBUTE_UNUSED)
22521 {
22522 segment_info_type *seginfo = seg_info (sec);
22523 fragS *fragp;
22524
22525 if (seginfo == NULL || seginfo->frchainP == NULL)
22526 return;
22527
22528 for (fragp = seginfo->frchainP->frch_root;
22529 fragp != NULL;
22530 fragp = fragp->fr_next)
22531 {
22532 symbolS *sym = fragp->tc_frag_data.last_map;
22533 fragS *next = fragp->fr_next;
22534
22535 /* Variable-sized frags have been converted to fixed size by
22536 this point. But if this was variable-sized to start with,
22537 there will be a fixed-size frag after it. So don't handle
22538 next == NULL. */
22539 if (sym == NULL || next == NULL)
22540 continue;
22541
22542 if (S_GET_VALUE (sym) < next->fr_address)
22543 /* Not at the end of this frag. */
22544 continue;
22545 know (S_GET_VALUE (sym) == next->fr_address);
22546
22547 do
22548 {
22549 if (next->tc_frag_data.first_map != NULL)
22550 {
22551 /* Next frag starts with a mapping symbol. Discard this
22552 one. */
22553 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22554 break;
22555 }
22556
22557 if (next->fr_next == NULL)
22558 {
22559 /* This mapping symbol is at the end of the section. Discard
22560 it. */
22561 know (next->fr_fix == 0 && next->fr_var == 0);
22562 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22563 break;
22564 }
22565
22566 /* As long as we have empty frags without any mapping symbols,
22567 keep looking. */
22568 /* If the next frag is non-empty and does not start with a
22569 mapping symbol, then this mapping symbol is required. */
22570 if (next->fr_address != next->fr_next->fr_address)
22571 break;
22572
22573 next = next->fr_next;
22574 }
22575 while (next != NULL);
22576 }
22577 }
22578 #endif
22579
22580 /* Adjust the symbol table. This marks Thumb symbols as distinct from
22581 ARM ones. */
22582
22583 void
22584 arm_adjust_symtab (void)
22585 {
22586 #ifdef OBJ_COFF
22587 symbolS * sym;
22588
22589 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22590 {
22591 if (ARM_IS_THUMB (sym))
22592 {
22593 if (THUMB_IS_FUNC (sym))
22594 {
22595 /* Mark the symbol as a Thumb function. */
22596 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
22597 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
22598 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
22599
22600 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
22601 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
22602 else
22603 as_bad (_("%s: unexpected function type: %d"),
22604 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
22605 }
22606 else switch (S_GET_STORAGE_CLASS (sym))
22607 {
22608 case C_EXT:
22609 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
22610 break;
22611 case C_STAT:
22612 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
22613 break;
22614 case C_LABEL:
22615 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
22616 break;
22617 default:
22618 /* Do nothing. */
22619 break;
22620 }
22621 }
22622
22623 if (ARM_IS_INTERWORK (sym))
22624 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
22625 }
22626 #endif
22627 #ifdef OBJ_ELF
22628 symbolS * sym;
22629 char bind;
22630
22631 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22632 {
22633 if (ARM_IS_THUMB (sym))
22634 {
22635 elf_symbol_type * elf_sym;
22636
22637 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
22638 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
22639
22640 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
22641 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
22642 {
22643 /* If it's a .thumb_func, declare it as so,
22644 otherwise tag label as .code 16. */
22645 if (THUMB_IS_FUNC (sym))
22646 elf_sym->internal_elf_sym.st_target_internal
22647 = ST_BRANCH_TO_THUMB;
22648 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
22649 elf_sym->internal_elf_sym.st_info =
22650 ELF_ST_INFO (bind, STT_ARM_16BIT);
22651 }
22652 }
22653 }
22654
22655 /* Remove any overlapping mapping symbols generated by alignment frags. */
22656 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
22657 /* Now do generic ELF adjustments. */
22658 elf_adjust_symtab ();
22659 #endif
22660 }
22661
22662 /* MD interface: Initialization. */
22663
22664 static void
22665 set_constant_flonums (void)
22666 {
22667 int i;
22668
22669 for (i = 0; i < NUM_FLOAT_VALS; i++)
22670 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
22671 abort ();
22672 }
22673
22674 /* Auto-select Thumb mode if it's the only available instruction set for the
22675 given architecture. */
22676
22677 static void
22678 autoselect_thumb_from_cpu_variant (void)
22679 {
22680 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22681 opcode_select (16);
22682 }
22683
22684 void
22685 md_begin (void)
22686 {
22687 unsigned mach;
22688 unsigned int i;
22689
22690 if ( (arm_ops_hsh = hash_new ()) == NULL
22691 || (arm_cond_hsh = hash_new ()) == NULL
22692 || (arm_shift_hsh = hash_new ()) == NULL
22693 || (arm_psr_hsh = hash_new ()) == NULL
22694 || (arm_v7m_psr_hsh = hash_new ()) == NULL
22695 || (arm_reg_hsh = hash_new ()) == NULL
22696 || (arm_reloc_hsh = hash_new ()) == NULL
22697 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
22698 as_fatal (_("virtual memory exhausted"));
22699
22700 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
22701 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
22702 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
22703 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
22704 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
22705 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
22706 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
22707 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
22708 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
22709 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
22710 (void *) (v7m_psrs + i));
22711 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
22712 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
22713 for (i = 0;
22714 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
22715 i++)
22716 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
22717 (void *) (barrier_opt_names + i));
22718 #ifdef OBJ_ELF
22719 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
22720 {
22721 struct reloc_entry * entry = reloc_names + i;
22722
22723 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
22724 /* This makes encode_branch() use the EABI versions of this relocation. */
22725 entry->reloc = BFD_RELOC_UNUSED;
22726
22727 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
22728 }
22729 #endif
22730
22731 set_constant_flonums ();
22732
22733 /* Set the cpu variant based on the command-line options. We prefer
22734 -mcpu= over -march= if both are set (as for GCC); and we prefer
22735 -mfpu= over any other way of setting the floating point unit.
22736 Use of legacy options with new options are faulted. */
22737 if (legacy_cpu)
22738 {
22739 if (mcpu_cpu_opt || march_cpu_opt)
22740 as_bad (_("use of old and new-style options to set CPU type"));
22741
22742 mcpu_cpu_opt = legacy_cpu;
22743 }
22744 else if (!mcpu_cpu_opt)
22745 mcpu_cpu_opt = march_cpu_opt;
22746
22747 if (legacy_fpu)
22748 {
22749 if (mfpu_opt)
22750 as_bad (_("use of old and new-style options to set FPU type"));
22751
22752 mfpu_opt = legacy_fpu;
22753 }
22754 else if (!mfpu_opt)
22755 {
22756 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22757 || defined (TE_NetBSD) || defined (TE_VXWORKS))
22758 /* Some environments specify a default FPU. If they don't, infer it
22759 from the processor. */
22760 if (mcpu_fpu_opt)
22761 mfpu_opt = mcpu_fpu_opt;
22762 else
22763 mfpu_opt = march_fpu_opt;
22764 #else
22765 mfpu_opt = &fpu_default;
22766 #endif
22767 }
22768
22769 if (!mfpu_opt)
22770 {
22771 if (mcpu_cpu_opt != NULL)
22772 mfpu_opt = &fpu_default;
22773 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
22774 mfpu_opt = &fpu_arch_vfp_v2;
22775 else
22776 mfpu_opt = &fpu_arch_fpa;
22777 }
22778
22779 #ifdef CPU_DEFAULT
22780 if (!mcpu_cpu_opt)
22781 {
22782 mcpu_cpu_opt = &cpu_default;
22783 selected_cpu = cpu_default;
22784 }
22785 #else
22786 if (mcpu_cpu_opt)
22787 selected_cpu = *mcpu_cpu_opt;
22788 else
22789 mcpu_cpu_opt = &arm_arch_any;
22790 #endif
22791
22792 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22793
22794 autoselect_thumb_from_cpu_variant ();
22795
22796 arm_arch_used = thumb_arch_used = arm_arch_none;
22797
22798 #if defined OBJ_COFF || defined OBJ_ELF
22799 {
22800 unsigned int flags = 0;
22801
22802 #if defined OBJ_ELF
22803 flags = meabi_flags;
22804
22805 switch (meabi_flags)
22806 {
22807 case EF_ARM_EABI_UNKNOWN:
22808 #endif
22809 /* Set the flags in the private structure. */
22810 if (uses_apcs_26) flags |= F_APCS26;
22811 if (support_interwork) flags |= F_INTERWORK;
22812 if (uses_apcs_float) flags |= F_APCS_FLOAT;
22813 if (pic_code) flags |= F_PIC;
22814 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
22815 flags |= F_SOFT_FLOAT;
22816
22817 switch (mfloat_abi_opt)
22818 {
22819 case ARM_FLOAT_ABI_SOFT:
22820 case ARM_FLOAT_ABI_SOFTFP:
22821 flags |= F_SOFT_FLOAT;
22822 break;
22823
22824 case ARM_FLOAT_ABI_HARD:
22825 if (flags & F_SOFT_FLOAT)
22826 as_bad (_("hard-float conflicts with specified fpu"));
22827 break;
22828 }
22829
22830 /* Using pure-endian doubles (even if soft-float). */
22831 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
22832 flags |= F_VFP_FLOAT;
22833
22834 #if defined OBJ_ELF
22835 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
22836 flags |= EF_ARM_MAVERICK_FLOAT;
22837 break;
22838
22839 case EF_ARM_EABI_VER4:
22840 case EF_ARM_EABI_VER5:
22841 /* No additional flags to set. */
22842 break;
22843
22844 default:
22845 abort ();
22846 }
22847 #endif
22848 bfd_set_private_flags (stdoutput, flags);
22849
22850 /* We have run out flags in the COFF header to encode the
22851 status of ATPCS support, so instead we create a dummy,
22852 empty, debug section called .arm.atpcs. */
22853 if (atpcs)
22854 {
22855 asection * sec;
22856
22857 sec = bfd_make_section (stdoutput, ".arm.atpcs");
22858
22859 if (sec != NULL)
22860 {
22861 bfd_set_section_flags
22862 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
22863 bfd_set_section_size (stdoutput, sec, 0);
22864 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
22865 }
22866 }
22867 }
22868 #endif
22869
22870 /* Record the CPU type as well. */
22871 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
22872 mach = bfd_mach_arm_iWMMXt2;
22873 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
22874 mach = bfd_mach_arm_iWMMXt;
22875 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
22876 mach = bfd_mach_arm_XScale;
22877 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
22878 mach = bfd_mach_arm_ep9312;
22879 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
22880 mach = bfd_mach_arm_5TE;
22881 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
22882 {
22883 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
22884 mach = bfd_mach_arm_5T;
22885 else
22886 mach = bfd_mach_arm_5;
22887 }
22888 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
22889 {
22890 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
22891 mach = bfd_mach_arm_4T;
22892 else
22893 mach = bfd_mach_arm_4;
22894 }
22895 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
22896 mach = bfd_mach_arm_3M;
22897 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
22898 mach = bfd_mach_arm_3;
22899 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
22900 mach = bfd_mach_arm_2a;
22901 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
22902 mach = bfd_mach_arm_2;
22903 else
22904 mach = bfd_mach_arm_unknown;
22905
22906 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
22907 }
22908
22909 /* Command line processing. */
22910
22911 /* md_parse_option
22912 Invocation line includes a switch not recognized by the base assembler.
22913 See if it's a processor-specific option.
22914
22915 This routine is somewhat complicated by the need for backwards
22916 compatibility (since older releases of gcc can't be changed).
22917 The new options try to make the interface as compatible as
22918 possible with GCC.
22919
22920 New options (supported) are:
22921
22922 -mcpu=<cpu name> Assemble for selected processor
22923 -march=<architecture name> Assemble for selected architecture
22924 -mfpu=<fpu architecture> Assemble for selected FPU.
22925 -EB/-mbig-endian Big-endian
22926 -EL/-mlittle-endian Little-endian
22927 -k Generate PIC code
22928 -mthumb Start in Thumb mode
22929 -mthumb-interwork Code supports ARM/Thumb interworking
22930
22931 -m[no-]warn-deprecated Warn about deprecated features
22932
22933 For now we will also provide support for:
22934
22935 -mapcs-32 32-bit Program counter
22936 -mapcs-26 26-bit Program counter
22937 -macps-float Floats passed in FP registers
22938 -mapcs-reentrant Reentrant code
22939 -matpcs
22940 (sometime these will probably be replaced with -mapcs=<list of options>
22941 and -matpcs=<list of options>)
22942
22943 The remaining options are only supported for back-wards compatibility.
22944 Cpu variants, the arm part is optional:
22945 -m[arm]1 Currently not supported.
22946 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
22947 -m[arm]3 Arm 3 processor
22948 -m[arm]6[xx], Arm 6 processors
22949 -m[arm]7[xx][t][[d]m] Arm 7 processors
22950 -m[arm]8[10] Arm 8 processors
22951 -m[arm]9[20][tdmi] Arm 9 processors
22952 -mstrongarm[110[0]] StrongARM processors
22953 -mxscale XScale processors
22954 -m[arm]v[2345[t[e]]] Arm architectures
22955 -mall All (except the ARM1)
22956 FP variants:
22957 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
22958 -mfpe-old (No float load/store multiples)
22959 -mvfpxd VFP Single precision
22960 -mvfp All VFP
22961 -mno-fpu Disable all floating point instructions
22962
22963 The following CPU names are recognized:
22964 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
22965 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
22966 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
22967 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
22968 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
22969 arm10t arm10e, arm1020t, arm1020e, arm10200e,
22970 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
22971
22972 */
22973
22974 const char * md_shortopts = "m:k";
22975
22976 #ifdef ARM_BI_ENDIAN
22977 #define OPTION_EB (OPTION_MD_BASE + 0)
22978 #define OPTION_EL (OPTION_MD_BASE + 1)
22979 #else
22980 #if TARGET_BYTES_BIG_ENDIAN
22981 #define OPTION_EB (OPTION_MD_BASE + 0)
22982 #else
22983 #define OPTION_EL (OPTION_MD_BASE + 1)
22984 #endif
22985 #endif
22986 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
22987
22988 struct option md_longopts[] =
22989 {
22990 #ifdef OPTION_EB
22991 {"EB", no_argument, NULL, OPTION_EB},
22992 #endif
22993 #ifdef OPTION_EL
22994 {"EL", no_argument, NULL, OPTION_EL},
22995 #endif
22996 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
22997 {NULL, no_argument, NULL, 0}
22998 };
22999
23000 size_t md_longopts_size = sizeof (md_longopts);
23001
23002 struct arm_option_table
23003 {
23004 char *option; /* Option name to match. */
23005 char *help; /* Help information. */
23006 int *var; /* Variable to change. */
23007 int value; /* What to change it to. */
23008 char *deprecated; /* If non-null, print this message. */
23009 };
23010
23011 struct arm_option_table arm_opts[] =
23012 {
23013 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
23014 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
23015 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
23016 &support_interwork, 1, NULL},
23017 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
23018 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
23019 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
23020 1, NULL},
23021 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
23022 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
23023 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
23024 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
23025 NULL},
23026
23027 /* These are recognized by the assembler, but have no affect on code. */
23028 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
23029 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
23030
23031 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
23032 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
23033 &warn_on_deprecated, 0, NULL},
23034 {NULL, NULL, NULL, 0, NULL}
23035 };
23036
23037 struct arm_legacy_option_table
23038 {
23039 char *option; /* Option name to match. */
23040 const arm_feature_set **var; /* Variable to change. */
23041 const arm_feature_set value; /* What to change it to. */
23042 char *deprecated; /* If non-null, print this message. */
23043 };
23044
23045 const struct arm_legacy_option_table arm_legacy_opts[] =
23046 {
23047 /* DON'T add any new processors to this list -- we want the whole list
23048 to go away... Add them to the processors table instead. */
23049 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23050 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23051 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23052 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23053 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23054 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23055 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23056 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23057 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23058 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23059 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23060 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23061 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23062 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23063 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23064 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23065 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23066 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23067 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23068 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23069 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23070 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23071 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23072 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23073 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23074 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23075 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23076 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23077 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23078 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23079 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23080 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23081 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23082 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23083 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23084 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23085 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23086 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23087 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23088 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23089 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23090 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23091 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23092 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23093 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23094 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23095 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23096 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23097 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23098 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23099 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23100 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23101 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23102 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23103 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23104 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23105 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23106 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23107 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23108 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23109 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23110 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23111 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23112 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23113 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23114 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23115 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23116 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23117 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
23118 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
23119 N_("use -mcpu=strongarm110")},
23120 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
23121 N_("use -mcpu=strongarm1100")},
23122 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
23123 N_("use -mcpu=strongarm1110")},
23124 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
23125 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
23126 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
23127
23128 /* Architecture variants -- don't add any more to this list either. */
23129 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23130 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23131 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23132 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23133 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23134 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23135 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23136 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23137 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23138 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23139 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23140 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23141 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23142 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23143 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23144 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23145 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
23146 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
23147
23148 /* Floating point variants -- don't add any more to this list either. */
23149 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
23150 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
23151 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
23152 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
23153 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
23154
23155 {NULL, NULL, ARM_ARCH_NONE, NULL}
23156 };
23157
23158 struct arm_cpu_option_table
23159 {
23160 char *name;
23161 size_t name_len;
23162 const arm_feature_set value;
23163 /* For some CPUs we assume an FPU unless the user explicitly sets
23164 -mfpu=... */
23165 const arm_feature_set default_fpu;
23166 /* The canonical name of the CPU, or NULL to use NAME converted to upper
23167 case. */
23168 const char *canonical_name;
23169 };
23170
23171 /* This list should, at a minimum, contain all the cpu names
23172 recognized by GCC. */
23173 #define ARM_CPU_OPT(N, V, DF, CN) { N, sizeof (N) - 1, V, DF, CN }
23174 static const struct arm_cpu_option_table arm_cpus[] =
23175 {
23176 ARM_CPU_OPT ("all", ARM_ANY, FPU_ARCH_FPA, NULL),
23177 ARM_CPU_OPT ("arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL),
23178 ARM_CPU_OPT ("arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL),
23179 ARM_CPU_OPT ("arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23180 ARM_CPU_OPT ("arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23181 ARM_CPU_OPT ("arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23182 ARM_CPU_OPT ("arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23183 ARM_CPU_OPT ("arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23184 ARM_CPU_OPT ("arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23185 ARM_CPU_OPT ("arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23186 ARM_CPU_OPT ("arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23187 ARM_CPU_OPT ("arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23188 ARM_CPU_OPT ("arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23189 ARM_CPU_OPT ("arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23190 ARM_CPU_OPT ("arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23191 ARM_CPU_OPT ("arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23192 ARM_CPU_OPT ("arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23193 ARM_CPU_OPT ("arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23194 ARM_CPU_OPT ("arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23195 ARM_CPU_OPT ("arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23196 ARM_CPU_OPT ("arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23197 ARM_CPU_OPT ("arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23198 ARM_CPU_OPT ("arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23199 ARM_CPU_OPT ("arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23200 ARM_CPU_OPT ("arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23201 ARM_CPU_OPT ("arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23202 ARM_CPU_OPT ("arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23203 ARM_CPU_OPT ("arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23204 ARM_CPU_OPT ("arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23205 ARM_CPU_OPT ("arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23206 ARM_CPU_OPT ("arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23207 ARM_CPU_OPT ("arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23208 ARM_CPU_OPT ("arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23209 ARM_CPU_OPT ("strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23210 ARM_CPU_OPT ("strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23211 ARM_CPU_OPT ("strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23212 ARM_CPU_OPT ("strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23213 ARM_CPU_OPT ("strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23214 ARM_CPU_OPT ("arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23215 ARM_CPU_OPT ("arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"),
23216 ARM_CPU_OPT ("arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23217 ARM_CPU_OPT ("arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23218 ARM_CPU_OPT ("arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23219 ARM_CPU_OPT ("arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23220 ARM_CPU_OPT ("fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23221 ARM_CPU_OPT ("fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23222 /* For V5 or later processors we default to using VFP; but the user
23223 should really set the FPU type explicitly. */
23224 ARM_CPU_OPT ("arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23225 ARM_CPU_OPT ("arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23226 ARM_CPU_OPT ("arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23227 ARM_CPU_OPT ("arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23228 ARM_CPU_OPT ("arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23229 ARM_CPU_OPT ("arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23230 ARM_CPU_OPT ("arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"),
23231 ARM_CPU_OPT ("arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23232 ARM_CPU_OPT ("arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23233 ARM_CPU_OPT ("arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"),
23234 ARM_CPU_OPT ("arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23235 ARM_CPU_OPT ("arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23236 ARM_CPU_OPT ("arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23237 ARM_CPU_OPT ("arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23238 ARM_CPU_OPT ("arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23239 ARM_CPU_OPT ("arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"),
23240 ARM_CPU_OPT ("arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23241 ARM_CPU_OPT ("arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23242 ARM_CPU_OPT ("arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23243 ARM_CPU_OPT ("arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2,
23244 "ARM1026EJ-S"),
23245 ARM_CPU_OPT ("arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23246 ARM_CPU_OPT ("fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23247 ARM_CPU_OPT ("fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23248 ARM_CPU_OPT ("fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23249 ARM_CPU_OPT ("fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23250 ARM_CPU_OPT ("fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23251 ARM_CPU_OPT ("arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"),
23252 ARM_CPU_OPT ("arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL),
23253 ARM_CPU_OPT ("arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2,
23254 "ARM1136JF-S"),
23255 ARM_CPU_OPT ("arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL),
23256 ARM_CPU_OPT ("mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"),
23257 ARM_CPU_OPT ("mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"),
23258 ARM_CPU_OPT ("arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL),
23259 ARM_CPU_OPT ("arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL),
23260 ARM_CPU_OPT ("arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL),
23261 ARM_CPU_OPT ("arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL),
23262 ARM_CPU_OPT ("cortex-a5", ARM_ARCH_V7A_MP_SEC,
23263 FPU_NONE, "Cortex-A5"),
23264 ARM_CPU_OPT ("cortex-a7", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23265 FPU_ARCH_NEON_VFP_V4,
23266 "Cortex-A7"),
23267 ARM_CPU_OPT ("cortex-a8", ARM_ARCH_V7A_SEC,
23268 ARM_FEATURE (0, FPU_VFP_V3
23269 | FPU_NEON_EXT_V1),
23270 "Cortex-A8"),
23271 ARM_CPU_OPT ("cortex-a9", ARM_ARCH_V7A_MP_SEC,
23272 ARM_FEATURE (0, FPU_VFP_V3
23273 | FPU_NEON_EXT_V1),
23274 "Cortex-A9"),
23275 ARM_CPU_OPT ("cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23276 FPU_ARCH_NEON_VFP_V4,
23277 "Cortex-A15"),
23278 ARM_CPU_OPT ("cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"),
23279 ARM_CPU_OPT ("cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
23280 "Cortex-R4F"),
23281 ARM_CPU_OPT ("cortex-r5", ARM_ARCH_V7R_IDIV,
23282 FPU_NONE, "Cortex-R5"),
23283 ARM_CPU_OPT ("cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"),
23284 ARM_CPU_OPT ("cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"),
23285 ARM_CPU_OPT ("cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"),
23286 ARM_CPU_OPT ("cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"),
23287 ARM_CPU_OPT ("cortex-m0plus", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0+"),
23288 /* ??? XSCALE is really an architecture. */
23289 ARM_CPU_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
23290 /* ??? iwmmxt is not a processor. */
23291 ARM_CPU_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL),
23292 ARM_CPU_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL),
23293 ARM_CPU_OPT ("i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
23294 /* Maverick */
23295 ARM_CPU_OPT ("ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
23296 FPU_ARCH_MAVERICK,
23297 "ARM920T"),
23298 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
23299 };
23300 #undef ARM_CPU_OPT
23301
23302 struct arm_arch_option_table
23303 {
23304 char *name;
23305 size_t name_len;
23306 const arm_feature_set value;
23307 const arm_feature_set default_fpu;
23308 };
23309
23310 /* This list should, at a minimum, contain all the architecture names
23311 recognized by GCC. */
23312 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
23313 static const struct arm_arch_option_table arm_archs[] =
23314 {
23315 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
23316 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
23317 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
23318 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
23319 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
23320 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
23321 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
23322 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
23323 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
23324 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
23325 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
23326 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
23327 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
23328 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
23329 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
23330 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
23331 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
23332 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
23333 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
23334 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
23335 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
23336 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP),
23337 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
23338 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
23339 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
23340 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP),
23341 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
23342 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
23343 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
23344 /* The official spelling of the ARMv7 profile variants is the dashed form.
23345 Accept the non-dashed form for compatibility with old toolchains. */
23346 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23347 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23348 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23349 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23350 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23351 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23352 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
23353 ARM_ARCH_OPT ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP),
23354 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
23355 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
23356 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
23357 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
23358 };
23359 #undef ARM_ARCH_OPT
23360
23361 /* ISA extensions in the co-processor and main instruction set space. */
23362 struct arm_option_extension_value_table
23363 {
23364 char *name;
23365 size_t name_len;
23366 const arm_feature_set value;
23367 const arm_feature_set allowed_archs;
23368 };
23369
23370 /* The following table must be in alphabetical order with a NULL last entry.
23371 */
23372 #define ARM_EXT_OPT(N, V, AA) { N, sizeof (N) - 1, V, AA }
23373 static const struct arm_option_extension_value_table arm_extensions[] =
23374 {
23375 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
23376 ARM_FEATURE (ARM_EXT_V8, 0)),
23377 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8,
23378 ARM_FEATURE (ARM_EXT_V8, 0)),
23379 ARM_EXT_OPT ("idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
23380 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
23381 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY),
23382 ARM_EXT_OPT ("iwmmxt2",
23383 ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY),
23384 ARM_EXT_OPT ("maverick",
23385 ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY),
23386 ARM_EXT_OPT ("mp", ARM_FEATURE (ARM_EXT_MP, 0),
23387 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
23388 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
23389 ARM_FEATURE (ARM_EXT_V8, 0)),
23390 ARM_EXT_OPT ("os", ARM_FEATURE (ARM_EXT_OS, 0),
23391 ARM_FEATURE (ARM_EXT_V6M, 0)),
23392 ARM_EXT_OPT ("sec", ARM_FEATURE (ARM_EXT_SEC, 0),
23393 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)),
23394 ARM_EXT_OPT ("virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV
23395 | ARM_EXT_DIV, 0),
23396 ARM_FEATURE (ARM_EXT_V7A, 0)),
23397 ARM_EXT_OPT ("xscale",ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY),
23398 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
23399 };
23400 #undef ARM_EXT_OPT
23401
23402 /* ISA floating-point and Advanced SIMD extensions. */
23403 struct arm_option_fpu_value_table
23404 {
23405 char *name;
23406 const arm_feature_set value;
23407 };
23408
23409 /* This list should, at a minimum, contain all the fpu names
23410 recognized by GCC. */
23411 static const struct arm_option_fpu_value_table arm_fpus[] =
23412 {
23413 {"softfpa", FPU_NONE},
23414 {"fpe", FPU_ARCH_FPE},
23415 {"fpe2", FPU_ARCH_FPE},
23416 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
23417 {"fpa", FPU_ARCH_FPA},
23418 {"fpa10", FPU_ARCH_FPA},
23419 {"fpa11", FPU_ARCH_FPA},
23420 {"arm7500fe", FPU_ARCH_FPA},
23421 {"softvfp", FPU_ARCH_VFP},
23422 {"softvfp+vfp", FPU_ARCH_VFP_V2},
23423 {"vfp", FPU_ARCH_VFP_V2},
23424 {"vfp9", FPU_ARCH_VFP_V2},
23425 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
23426 {"vfp10", FPU_ARCH_VFP_V2},
23427 {"vfp10-r0", FPU_ARCH_VFP_V1},
23428 {"vfpxd", FPU_ARCH_VFP_V1xD},
23429 {"vfpv2", FPU_ARCH_VFP_V2},
23430 {"vfpv3", FPU_ARCH_VFP_V3},
23431 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
23432 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
23433 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
23434 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
23435 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
23436 {"arm1020t", FPU_ARCH_VFP_V1},
23437 {"arm1020e", FPU_ARCH_VFP_V2},
23438 {"arm1136jfs", FPU_ARCH_VFP_V2},
23439 {"arm1136jf-s", FPU_ARCH_VFP_V2},
23440 {"maverick", FPU_ARCH_MAVERICK},
23441 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
23442 {"neon-fp16", FPU_ARCH_NEON_FP16},
23443 {"vfpv4", FPU_ARCH_VFP_V4},
23444 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
23445 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
23446 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
23447 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
23448 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
23449 {"crypto-neon-fp-armv8",
23450 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
23451 {NULL, ARM_ARCH_NONE}
23452 };
23453
23454 struct arm_option_value_table
23455 {
23456 char *name;
23457 long value;
23458 };
23459
23460 static const struct arm_option_value_table arm_float_abis[] =
23461 {
23462 {"hard", ARM_FLOAT_ABI_HARD},
23463 {"softfp", ARM_FLOAT_ABI_SOFTFP},
23464 {"soft", ARM_FLOAT_ABI_SOFT},
23465 {NULL, 0}
23466 };
23467
23468 #ifdef OBJ_ELF
23469 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
23470 static const struct arm_option_value_table arm_eabis[] =
23471 {
23472 {"gnu", EF_ARM_EABI_UNKNOWN},
23473 {"4", EF_ARM_EABI_VER4},
23474 {"5", EF_ARM_EABI_VER5},
23475 {NULL, 0}
23476 };
23477 #endif
23478
23479 struct arm_long_option_table
23480 {
23481 char * option; /* Substring to match. */
23482 char * help; /* Help information. */
23483 int (* func) (char * subopt); /* Function to decode sub-option. */
23484 char * deprecated; /* If non-null, print this message. */
23485 };
23486
23487 static bfd_boolean
23488 arm_parse_extension (char *str, const arm_feature_set **opt_p)
23489 {
23490 arm_feature_set *ext_set = (arm_feature_set *)
23491 xmalloc (sizeof (arm_feature_set));
23492
23493 /* We insist on extensions being specified in alphabetical order, and with
23494 extensions being added before being removed. We achieve this by having
23495 the global ARM_EXTENSIONS table in alphabetical order, and using the
23496 ADDING_VALUE variable to indicate whether we are adding an extension (1)
23497 or removing it (0) and only allowing it to change in the order
23498 -1 -> 1 -> 0. */
23499 const struct arm_option_extension_value_table * opt = NULL;
23500 int adding_value = -1;
23501
23502 /* Copy the feature set, so that we can modify it. */
23503 *ext_set = **opt_p;
23504 *opt_p = ext_set;
23505
23506 while (str != NULL && *str != 0)
23507 {
23508 char *ext;
23509 size_t len;
23510
23511 if (*str != '+')
23512 {
23513 as_bad (_("invalid architectural extension"));
23514 return FALSE;
23515 }
23516
23517 str++;
23518 ext = strchr (str, '+');
23519
23520 if (ext != NULL)
23521 len = ext - str;
23522 else
23523 len = strlen (str);
23524
23525 if (len >= 2 && strncmp (str, "no", 2) == 0)
23526 {
23527 if (adding_value != 0)
23528 {
23529 adding_value = 0;
23530 opt = arm_extensions;
23531 }
23532
23533 len -= 2;
23534 str += 2;
23535 }
23536 else if (len > 0)
23537 {
23538 if (adding_value == -1)
23539 {
23540 adding_value = 1;
23541 opt = arm_extensions;
23542 }
23543 else if (adding_value != 1)
23544 {
23545 as_bad (_("must specify extensions to add before specifying "
23546 "those to remove"));
23547 return FALSE;
23548 }
23549 }
23550
23551 if (len == 0)
23552 {
23553 as_bad (_("missing architectural extension"));
23554 return FALSE;
23555 }
23556
23557 gas_assert (adding_value != -1);
23558 gas_assert (opt != NULL);
23559
23560 /* Scan over the options table trying to find an exact match. */
23561 for (; opt->name != NULL; opt++)
23562 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23563 {
23564 /* Check we can apply the extension to this architecture. */
23565 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
23566 {
23567 as_bad (_("extension does not apply to the base architecture"));
23568 return FALSE;
23569 }
23570
23571 /* Add or remove the extension. */
23572 if (adding_value)
23573 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
23574 else
23575 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
23576
23577 break;
23578 }
23579
23580 if (opt->name == NULL)
23581 {
23582 /* Did we fail to find an extension because it wasn't specified in
23583 alphabetical order, or because it does not exist? */
23584
23585 for (opt = arm_extensions; opt->name != NULL; opt++)
23586 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23587 break;
23588
23589 if (opt->name == NULL)
23590 as_bad (_("unknown architectural extension `%s'"), str);
23591 else
23592 as_bad (_("architectural extensions must be specified in "
23593 "alphabetical order"));
23594
23595 return FALSE;
23596 }
23597 else
23598 {
23599 /* We should skip the extension we've just matched the next time
23600 round. */
23601 opt++;
23602 }
23603
23604 str = ext;
23605 };
23606
23607 return TRUE;
23608 }
23609
23610 static bfd_boolean
23611 arm_parse_cpu (char *str)
23612 {
23613 const struct arm_cpu_option_table *opt;
23614 char *ext = strchr (str, '+');
23615 size_t len;
23616
23617 if (ext != NULL)
23618 len = ext - str;
23619 else
23620 len = strlen (str);
23621
23622 if (len == 0)
23623 {
23624 as_bad (_("missing cpu name `%s'"), str);
23625 return FALSE;
23626 }
23627
23628 for (opt = arm_cpus; opt->name != NULL; opt++)
23629 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23630 {
23631 mcpu_cpu_opt = &opt->value;
23632 mcpu_fpu_opt = &opt->default_fpu;
23633 if (opt->canonical_name)
23634 strcpy (selected_cpu_name, opt->canonical_name);
23635 else
23636 {
23637 size_t i;
23638
23639 for (i = 0; i < len; i++)
23640 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23641 selected_cpu_name[i] = 0;
23642 }
23643
23644 if (ext != NULL)
23645 return arm_parse_extension (ext, &mcpu_cpu_opt);
23646
23647 return TRUE;
23648 }
23649
23650 as_bad (_("unknown cpu `%s'"), str);
23651 return FALSE;
23652 }
23653
23654 static bfd_boolean
23655 arm_parse_arch (char *str)
23656 {
23657 const struct arm_arch_option_table *opt;
23658 char *ext = strchr (str, '+');
23659 size_t len;
23660
23661 if (ext != NULL)
23662 len = ext - str;
23663 else
23664 len = strlen (str);
23665
23666 if (len == 0)
23667 {
23668 as_bad (_("missing architecture name `%s'"), str);
23669 return FALSE;
23670 }
23671
23672 for (opt = arm_archs; opt->name != NULL; opt++)
23673 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23674 {
23675 march_cpu_opt = &opt->value;
23676 march_fpu_opt = &opt->default_fpu;
23677 strcpy (selected_cpu_name, opt->name);
23678
23679 if (ext != NULL)
23680 return arm_parse_extension (ext, &march_cpu_opt);
23681
23682 return TRUE;
23683 }
23684
23685 as_bad (_("unknown architecture `%s'\n"), str);
23686 return FALSE;
23687 }
23688
23689 static bfd_boolean
23690 arm_parse_fpu (char * str)
23691 {
23692 const struct arm_option_fpu_value_table * opt;
23693
23694 for (opt = arm_fpus; opt->name != NULL; opt++)
23695 if (streq (opt->name, str))
23696 {
23697 mfpu_opt = &opt->value;
23698 return TRUE;
23699 }
23700
23701 as_bad (_("unknown floating point format `%s'\n"), str);
23702 return FALSE;
23703 }
23704
23705 static bfd_boolean
23706 arm_parse_float_abi (char * str)
23707 {
23708 const struct arm_option_value_table * opt;
23709
23710 for (opt = arm_float_abis; opt->name != NULL; opt++)
23711 if (streq (opt->name, str))
23712 {
23713 mfloat_abi_opt = opt->value;
23714 return TRUE;
23715 }
23716
23717 as_bad (_("unknown floating point abi `%s'\n"), str);
23718 return FALSE;
23719 }
23720
23721 #ifdef OBJ_ELF
23722 static bfd_boolean
23723 arm_parse_eabi (char * str)
23724 {
23725 const struct arm_option_value_table *opt;
23726
23727 for (opt = arm_eabis; opt->name != NULL; opt++)
23728 if (streq (opt->name, str))
23729 {
23730 meabi_flags = opt->value;
23731 return TRUE;
23732 }
23733 as_bad (_("unknown EABI `%s'\n"), str);
23734 return FALSE;
23735 }
23736 #endif
23737
23738 static bfd_boolean
23739 arm_parse_it_mode (char * str)
23740 {
23741 bfd_boolean ret = TRUE;
23742
23743 if (streq ("arm", str))
23744 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
23745 else if (streq ("thumb", str))
23746 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
23747 else if (streq ("always", str))
23748 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
23749 else if (streq ("never", str))
23750 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
23751 else
23752 {
23753 as_bad (_("unknown implicit IT mode `%s', should be "\
23754 "arm, thumb, always, or never."), str);
23755 ret = FALSE;
23756 }
23757
23758 return ret;
23759 }
23760
23761 struct arm_long_option_table arm_long_opts[] =
23762 {
23763 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23764 arm_parse_cpu, NULL},
23765 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23766 arm_parse_arch, NULL},
23767 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23768 arm_parse_fpu, NULL},
23769 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23770 arm_parse_float_abi, NULL},
23771 #ifdef OBJ_ELF
23772 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
23773 arm_parse_eabi, NULL},
23774 #endif
23775 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23776 arm_parse_it_mode, NULL},
23777 {NULL, NULL, 0, NULL}
23778 };
23779
23780 int
23781 md_parse_option (int c, char * arg)
23782 {
23783 struct arm_option_table *opt;
23784 const struct arm_legacy_option_table *fopt;
23785 struct arm_long_option_table *lopt;
23786
23787 switch (c)
23788 {
23789 #ifdef OPTION_EB
23790 case OPTION_EB:
23791 target_big_endian = 1;
23792 break;
23793 #endif
23794
23795 #ifdef OPTION_EL
23796 case OPTION_EL:
23797 target_big_endian = 0;
23798 break;
23799 #endif
23800
23801 case OPTION_FIX_V4BX:
23802 fix_v4bx = TRUE;
23803 break;
23804
23805 case 'a':
23806 /* Listing option. Just ignore these, we don't support additional
23807 ones. */
23808 return 0;
23809
23810 default:
23811 for (opt = arm_opts; opt->option != NULL; opt++)
23812 {
23813 if (c == opt->option[0]
23814 && ((arg == NULL && opt->option[1] == 0)
23815 || streq (arg, opt->option + 1)))
23816 {
23817 /* If the option is deprecated, tell the user. */
23818 if (warn_on_deprecated && opt->deprecated != NULL)
23819 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23820 arg ? arg : "", _(opt->deprecated));
23821
23822 if (opt->var != NULL)
23823 *opt->var = opt->value;
23824
23825 return 1;
23826 }
23827 }
23828
23829 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
23830 {
23831 if (c == fopt->option[0]
23832 && ((arg == NULL && fopt->option[1] == 0)
23833 || streq (arg, fopt->option + 1)))
23834 {
23835 /* If the option is deprecated, tell the user. */
23836 if (warn_on_deprecated && fopt->deprecated != NULL)
23837 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23838 arg ? arg : "", _(fopt->deprecated));
23839
23840 if (fopt->var != NULL)
23841 *fopt->var = &fopt->value;
23842
23843 return 1;
23844 }
23845 }
23846
23847 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23848 {
23849 /* These options are expected to have an argument. */
23850 if (c == lopt->option[0]
23851 && arg != NULL
23852 && strncmp (arg, lopt->option + 1,
23853 strlen (lopt->option + 1)) == 0)
23854 {
23855 /* If the option is deprecated, tell the user. */
23856 if (warn_on_deprecated && lopt->deprecated != NULL)
23857 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
23858 _(lopt->deprecated));
23859
23860 /* Call the sup-option parser. */
23861 return lopt->func (arg + strlen (lopt->option) - 1);
23862 }
23863 }
23864
23865 return 0;
23866 }
23867
23868 return 1;
23869 }
23870
23871 void
23872 md_show_usage (FILE * fp)
23873 {
23874 struct arm_option_table *opt;
23875 struct arm_long_option_table *lopt;
23876
23877 fprintf (fp, _(" ARM-specific assembler options:\n"));
23878
23879 for (opt = arm_opts; opt->option != NULL; opt++)
23880 if (opt->help != NULL)
23881 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
23882
23883 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23884 if (lopt->help != NULL)
23885 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
23886
23887 #ifdef OPTION_EB
23888 fprintf (fp, _("\
23889 -EB assemble code for a big-endian cpu\n"));
23890 #endif
23891
23892 #ifdef OPTION_EL
23893 fprintf (fp, _("\
23894 -EL assemble code for a little-endian cpu\n"));
23895 #endif
23896
23897 fprintf (fp, _("\
23898 --fix-v4bx Allow BX in ARMv4 code\n"));
23899 }
23900
23901
23902 #ifdef OBJ_ELF
23903 typedef struct
23904 {
23905 int val;
23906 arm_feature_set flags;
23907 } cpu_arch_ver_table;
23908
23909 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
23910 least features first. */
23911 static const cpu_arch_ver_table cpu_arch_ver[] =
23912 {
23913 {1, ARM_ARCH_V4},
23914 {2, ARM_ARCH_V4T},
23915 {3, ARM_ARCH_V5},
23916 {3, ARM_ARCH_V5T},
23917 {4, ARM_ARCH_V5TE},
23918 {5, ARM_ARCH_V5TEJ},
23919 {6, ARM_ARCH_V6},
23920 {9, ARM_ARCH_V6K},
23921 {7, ARM_ARCH_V6Z},
23922 {11, ARM_ARCH_V6M},
23923 {12, ARM_ARCH_V6SM},
23924 {8, ARM_ARCH_V6T2},
23925 {10, ARM_ARCH_V7A_IDIV_MP_SEC_VIRT},
23926 {10, ARM_ARCH_V7R},
23927 {10, ARM_ARCH_V7M},
23928 {14, ARM_ARCH_V8A},
23929 {0, ARM_ARCH_NONE}
23930 };
23931
23932 /* Set an attribute if it has not already been set by the user. */
23933 static void
23934 aeabi_set_attribute_int (int tag, int value)
23935 {
23936 if (tag < 1
23937 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23938 || !attributes_set_explicitly[tag])
23939 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
23940 }
23941
23942 static void
23943 aeabi_set_attribute_string (int tag, const char *value)
23944 {
23945 if (tag < 1
23946 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23947 || !attributes_set_explicitly[tag])
23948 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
23949 }
23950
23951 /* Set the public EABI object attributes. */
23952 static void
23953 aeabi_set_public_attributes (void)
23954 {
23955 int arch;
23956 char profile;
23957 int virt_sec = 0;
23958 int fp16_optional = 0;
23959 arm_feature_set flags;
23960 arm_feature_set tmp;
23961 const cpu_arch_ver_table *p;
23962
23963 /* Choose the architecture based on the capabilities of the requested cpu
23964 (if any) and/or the instructions actually used. */
23965 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
23966 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
23967 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
23968
23969 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
23970 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
23971
23972 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
23973 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
23974
23975 /* Allow the user to override the reported architecture. */
23976 if (object_arch)
23977 {
23978 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
23979 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
23980 }
23981
23982 /* We need to make sure that the attributes do not identify us as v6S-M
23983 when the only v6S-M feature in use is the Operating System Extensions. */
23984 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
23985 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
23986 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
23987
23988 tmp = flags;
23989 arch = 0;
23990 for (p = cpu_arch_ver; p->val; p++)
23991 {
23992 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
23993 {
23994 arch = p->val;
23995 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
23996 }
23997 }
23998
23999 /* The table lookup above finds the last architecture to contribute
24000 a new feature. Unfortunately, Tag13 is a subset of the union of
24001 v6T2 and v7-M, so it is never seen as contributing a new feature.
24002 We can not search for the last entry which is entirely used,
24003 because if no CPU is specified we build up only those flags
24004 actually used. Perhaps we should separate out the specified
24005 and implicit cases. Avoid taking this path for -march=all by
24006 checking for contradictory v7-A / v7-M features. */
24007 if (arch == 10
24008 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
24009 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
24010 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
24011 arch = 13;
24012
24013 /* Tag_CPU_name. */
24014 if (selected_cpu_name[0])
24015 {
24016 char *q;
24017
24018 q = selected_cpu_name;
24019 if (strncmp (q, "armv", 4) == 0)
24020 {
24021 int i;
24022
24023 q += 4;
24024 for (i = 0; q[i]; i++)
24025 q[i] = TOUPPER (q[i]);
24026 }
24027 aeabi_set_attribute_string (Tag_CPU_name, q);
24028 }
24029
24030 /* Tag_CPU_arch. */
24031 aeabi_set_attribute_int (Tag_CPU_arch, arch);
24032
24033 /* Tag_CPU_arch_profile. */
24034 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
24035 profile = 'A';
24036 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
24037 profile = 'R';
24038 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
24039 profile = 'M';
24040 else
24041 profile = '\0';
24042
24043 if (profile != '\0')
24044 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
24045
24046 /* Tag_ARM_ISA_use. */
24047 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
24048 || arch == 0)
24049 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
24050
24051 /* Tag_THUMB_ISA_use. */
24052 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
24053 || arch == 0)
24054 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
24055 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
24056
24057 /* Tag_VFP_arch. */
24058 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8))
24059 aeabi_set_attribute_int (Tag_VFP_arch, 7);
24060 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
24061 aeabi_set_attribute_int (Tag_VFP_arch,
24062 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
24063 ? 5 : 6);
24064 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
24065 {
24066 fp16_optional = 1;
24067 aeabi_set_attribute_int (Tag_VFP_arch, 3);
24068 }
24069 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
24070 {
24071 aeabi_set_attribute_int (Tag_VFP_arch, 4);
24072 fp16_optional = 1;
24073 }
24074 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
24075 aeabi_set_attribute_int (Tag_VFP_arch, 2);
24076 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
24077 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
24078 aeabi_set_attribute_int (Tag_VFP_arch, 1);
24079
24080 /* Tag_ABI_HardFP_use. */
24081 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
24082 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
24083 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
24084
24085 /* Tag_WMMX_arch. */
24086 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
24087 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
24088 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
24089 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
24090
24091 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
24092 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
24093 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
24094 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
24095 {
24096 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
24097 {
24098 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
24099 }
24100 else
24101 {
24102 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
24103 fp16_optional = 1;
24104 }
24105 }
24106
24107 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
24108 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
24109 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
24110
24111 /* Tag_DIV_use.
24112
24113 We set Tag_DIV_use to two when integer divide instructions have been used
24114 in ARM state, or when Thumb integer divide instructions have been used,
24115 but we have no architecture profile set, nor have we any ARM instructions.
24116
24117 For ARMv8 we set the tag to 0 as integer divide is implied by the base
24118 architecture.
24119
24120 For new architectures we will have to check these tests. */
24121 gas_assert (arch <= TAG_CPU_ARCH_V8);
24122 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8))
24123 aeabi_set_attribute_int (Tag_DIV_use, 0);
24124 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
24125 || (profile == '\0'
24126 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
24127 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
24128 aeabi_set_attribute_int (Tag_DIV_use, 2);
24129
24130 /* Tag_MP_extension_use. */
24131 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
24132 aeabi_set_attribute_int (Tag_MPextension_use, 1);
24133
24134 /* Tag Virtualization_use. */
24135 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
24136 virt_sec |= 1;
24137 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
24138 virt_sec |= 2;
24139 if (virt_sec != 0)
24140 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
24141 }
24142
24143 /* Add the default contents for the .ARM.attributes section. */
24144 void
24145 arm_md_end (void)
24146 {
24147 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
24148 return;
24149
24150 aeabi_set_public_attributes ();
24151 }
24152 #endif /* OBJ_ELF */
24153
24154
24155 /* Parse a .cpu directive. */
24156
24157 static void
24158 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
24159 {
24160 const struct arm_cpu_option_table *opt;
24161 char *name;
24162 char saved_char;
24163
24164 name = input_line_pointer;
24165 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24166 input_line_pointer++;
24167 saved_char = *input_line_pointer;
24168 *input_line_pointer = 0;
24169
24170 /* Skip the first "all" entry. */
24171 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
24172 if (streq (opt->name, name))
24173 {
24174 mcpu_cpu_opt = &opt->value;
24175 selected_cpu = opt->value;
24176 if (opt->canonical_name)
24177 strcpy (selected_cpu_name, opt->canonical_name);
24178 else
24179 {
24180 int i;
24181 for (i = 0; opt->name[i]; i++)
24182 selected_cpu_name[i] = TOUPPER (opt->name[i]);
24183
24184 selected_cpu_name[i] = 0;
24185 }
24186 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24187 *input_line_pointer = saved_char;
24188 demand_empty_rest_of_line ();
24189 return;
24190 }
24191 as_bad (_("unknown cpu `%s'"), name);
24192 *input_line_pointer = saved_char;
24193 ignore_rest_of_line ();
24194 }
24195
24196
24197 /* Parse a .arch directive. */
24198
24199 static void
24200 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
24201 {
24202 const struct arm_arch_option_table *opt;
24203 char saved_char;
24204 char *name;
24205
24206 name = input_line_pointer;
24207 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24208 input_line_pointer++;
24209 saved_char = *input_line_pointer;
24210 *input_line_pointer = 0;
24211
24212 /* Skip the first "all" entry. */
24213 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24214 if (streq (opt->name, name))
24215 {
24216 mcpu_cpu_opt = &opt->value;
24217 selected_cpu = opt->value;
24218 strcpy (selected_cpu_name, opt->name);
24219 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24220 *input_line_pointer = saved_char;
24221 demand_empty_rest_of_line ();
24222 return;
24223 }
24224
24225 as_bad (_("unknown architecture `%s'\n"), name);
24226 *input_line_pointer = saved_char;
24227 ignore_rest_of_line ();
24228 }
24229
24230
24231 /* Parse a .object_arch directive. */
24232
24233 static void
24234 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
24235 {
24236 const struct arm_arch_option_table *opt;
24237 char saved_char;
24238 char *name;
24239
24240 name = input_line_pointer;
24241 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24242 input_line_pointer++;
24243 saved_char = *input_line_pointer;
24244 *input_line_pointer = 0;
24245
24246 /* Skip the first "all" entry. */
24247 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24248 if (streq (opt->name, name))
24249 {
24250 object_arch = &opt->value;
24251 *input_line_pointer = saved_char;
24252 demand_empty_rest_of_line ();
24253 return;
24254 }
24255
24256 as_bad (_("unknown architecture `%s'\n"), name);
24257 *input_line_pointer = saved_char;
24258 ignore_rest_of_line ();
24259 }
24260
24261 /* Parse a .arch_extension directive. */
24262
24263 static void
24264 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
24265 {
24266 const struct arm_option_extension_value_table *opt;
24267 char saved_char;
24268 char *name;
24269 int adding_value = 1;
24270
24271 name = input_line_pointer;
24272 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24273 input_line_pointer++;
24274 saved_char = *input_line_pointer;
24275 *input_line_pointer = 0;
24276
24277 if (strlen (name) >= 2
24278 && strncmp (name, "no", 2) == 0)
24279 {
24280 adding_value = 0;
24281 name += 2;
24282 }
24283
24284 for (opt = arm_extensions; opt->name != NULL; opt++)
24285 if (streq (opt->name, name))
24286 {
24287 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
24288 {
24289 as_bad (_("architectural extension `%s' is not allowed for the "
24290 "current base architecture"), name);
24291 break;
24292 }
24293
24294 if (adding_value)
24295 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
24296 else
24297 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
24298
24299 mcpu_cpu_opt = &selected_cpu;
24300 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24301 *input_line_pointer = saved_char;
24302 demand_empty_rest_of_line ();
24303 return;
24304 }
24305
24306 if (opt->name == NULL)
24307 as_bad (_("unknown architecture `%s'\n"), name);
24308
24309 *input_line_pointer = saved_char;
24310 ignore_rest_of_line ();
24311 }
24312
24313 /* Parse a .fpu directive. */
24314
24315 static void
24316 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
24317 {
24318 const struct arm_option_fpu_value_table *opt;
24319 char saved_char;
24320 char *name;
24321
24322 name = input_line_pointer;
24323 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24324 input_line_pointer++;
24325 saved_char = *input_line_pointer;
24326 *input_line_pointer = 0;
24327
24328 for (opt = arm_fpus; opt->name != NULL; opt++)
24329 if (streq (opt->name, name))
24330 {
24331 mfpu_opt = &opt->value;
24332 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24333 *input_line_pointer = saved_char;
24334 demand_empty_rest_of_line ();
24335 return;
24336 }
24337
24338 as_bad (_("unknown floating point format `%s'\n"), name);
24339 *input_line_pointer = saved_char;
24340 ignore_rest_of_line ();
24341 }
24342
24343 /* Copy symbol information. */
24344
24345 void
24346 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
24347 {
24348 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
24349 }
24350
24351 #ifdef OBJ_ELF
24352 /* Given a symbolic attribute NAME, return the proper integer value.
24353 Returns -1 if the attribute is not known. */
24354
24355 int
24356 arm_convert_symbolic_attribute (const char *name)
24357 {
24358 static const struct
24359 {
24360 const char * name;
24361 const int tag;
24362 }
24363 attribute_table[] =
24364 {
24365 /* When you modify this table you should
24366 also modify the list in doc/c-arm.texi. */
24367 #define T(tag) {#tag, tag}
24368 T (Tag_CPU_raw_name),
24369 T (Tag_CPU_name),
24370 T (Tag_CPU_arch),
24371 T (Tag_CPU_arch_profile),
24372 T (Tag_ARM_ISA_use),
24373 T (Tag_THUMB_ISA_use),
24374 T (Tag_FP_arch),
24375 T (Tag_VFP_arch),
24376 T (Tag_WMMX_arch),
24377 T (Tag_Advanced_SIMD_arch),
24378 T (Tag_PCS_config),
24379 T (Tag_ABI_PCS_R9_use),
24380 T (Tag_ABI_PCS_RW_data),
24381 T (Tag_ABI_PCS_RO_data),
24382 T (Tag_ABI_PCS_GOT_use),
24383 T (Tag_ABI_PCS_wchar_t),
24384 T (Tag_ABI_FP_rounding),
24385 T (Tag_ABI_FP_denormal),
24386 T (Tag_ABI_FP_exceptions),
24387 T (Tag_ABI_FP_user_exceptions),
24388 T (Tag_ABI_FP_number_model),
24389 T (Tag_ABI_align_needed),
24390 T (Tag_ABI_align8_needed),
24391 T (Tag_ABI_align_preserved),
24392 T (Tag_ABI_align8_preserved),
24393 T (Tag_ABI_enum_size),
24394 T (Tag_ABI_HardFP_use),
24395 T (Tag_ABI_VFP_args),
24396 T (Tag_ABI_WMMX_args),
24397 T (Tag_ABI_optimization_goals),
24398 T (Tag_ABI_FP_optimization_goals),
24399 T (Tag_compatibility),
24400 T (Tag_CPU_unaligned_access),
24401 T (Tag_FP_HP_extension),
24402 T (Tag_VFP_HP_extension),
24403 T (Tag_ABI_FP_16bit_format),
24404 T (Tag_MPextension_use),
24405 T (Tag_DIV_use),
24406 T (Tag_nodefaults),
24407 T (Tag_also_compatible_with),
24408 T (Tag_conformance),
24409 T (Tag_T2EE_use),
24410 T (Tag_Virtualization_use),
24411 /* We deliberately do not include Tag_MPextension_use_legacy. */
24412 #undef T
24413 };
24414 unsigned int i;
24415
24416 if (name == NULL)
24417 return -1;
24418
24419 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
24420 if (streq (name, attribute_table[i].name))
24421 return attribute_table[i].tag;
24422
24423 return -1;
24424 }
24425
24426
24427 /* Apply sym value for relocations only in the case that
24428 they are for local symbols and you have the respective
24429 architectural feature for blx and simple switches. */
24430 int
24431 arm_apply_sym_value (struct fix * fixP)
24432 {
24433 if (fixP->fx_addsy
24434 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
24435 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
24436 {
24437 switch (fixP->fx_r_type)
24438 {
24439 case BFD_RELOC_ARM_PCREL_BLX:
24440 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24441 if (ARM_IS_FUNC (fixP->fx_addsy))
24442 return 1;
24443 break;
24444
24445 case BFD_RELOC_ARM_PCREL_CALL:
24446 case BFD_RELOC_THUMB_PCREL_BLX:
24447 if (THUMB_IS_FUNC (fixP->fx_addsy))
24448 return 1;
24449 break;
24450
24451 default:
24452 break;
24453 }
24454
24455 }
24456 return 0;
24457 }
24458 #endif /* OBJ_ELF */