2007-06-14 Paul Brook <paul@codesourcery.com>
[binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include <limits.h>
29 #include <stdarg.h>
30 #define NO_RELOC 0
31 #include "as.h"
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #define WARN_DEPRECATED 1
46
47 #ifdef OBJ_ELF
48 /* Must be at least the size of the largest unwind opcode (currently two). */
49 #define ARM_OPCODE_CHUNK_SIZE 8
50
51 /* This structure holds the unwinding state. */
52
53 static struct
54 {
55 symbolS * proc_start;
56 symbolS * table_entry;
57 symbolS * personality_routine;
58 int personality_index;
59 /* The segment containing the function. */
60 segT saved_seg;
61 subsegT saved_subseg;
62 /* Opcodes generated from this function. */
63 unsigned char * opcodes;
64 int opcode_count;
65 int opcode_alloc;
66 /* The number of bytes pushed to the stack. */
67 offsetT frame_size;
68 /* We don't add stack adjustment opcodes immediately so that we can merge
69 multiple adjustments. We can also omit the final adjustment
70 when using a frame pointer. */
71 offsetT pending_offset;
72 /* These two fields are set by both unwind_movsp and unwind_setfp. They
73 hold the reg+offset to use when restoring sp from a frame pointer. */
74 offsetT fp_offset;
75 int fp_reg;
76 /* Nonzero if an unwind_setfp directive has been seen. */
77 unsigned fp_used:1;
78 /* Nonzero if the last opcode restores sp from fp_reg. */
79 unsigned sp_restored:1;
80 } unwind;
81
82 /* Bit N indicates that an R_ARM_NONE relocation has been output for
83 __aeabi_unwind_cpp_prN already if set. This enables dependencies to be
84 emitted only once per section, to save unnecessary bloat. */
85 static unsigned int marked_pr_dependency = 0;
86
87 #endif /* OBJ_ELF */
88
89 /* Results from operand parsing worker functions. */
90
91 typedef enum
92 {
93 PARSE_OPERAND_SUCCESS,
94 PARSE_OPERAND_FAIL,
95 PARSE_OPERAND_FAIL_NO_BACKTRACK
96 } parse_operand_result;
97
98 enum arm_float_abi
99 {
100 ARM_FLOAT_ABI_HARD,
101 ARM_FLOAT_ABI_SOFTFP,
102 ARM_FLOAT_ABI_SOFT
103 };
104
105 /* Types of processor to assemble for. */
106 #ifndef CPU_DEFAULT
107 #if defined __XSCALE__
108 #define CPU_DEFAULT ARM_ARCH_XSCALE
109 #else
110 #if defined __thumb__
111 #define CPU_DEFAULT ARM_ARCH_V5T
112 #endif
113 #endif
114 #endif
115
116 #ifndef FPU_DEFAULT
117 # ifdef TE_LINUX
118 # define FPU_DEFAULT FPU_ARCH_FPA
119 # elif defined (TE_NetBSD)
120 # ifdef OBJ_ELF
121 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
122 # else
123 /* Legacy a.out format. */
124 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
125 # endif
126 # elif defined (TE_VXWORKS)
127 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
128 # else
129 /* For backwards compatibility, default to FPA. */
130 # define FPU_DEFAULT FPU_ARCH_FPA
131 # endif
132 #endif /* ifndef FPU_DEFAULT */
133
134 #define streq(a, b) (strcmp (a, b) == 0)
135
136 static arm_feature_set cpu_variant;
137 static arm_feature_set arm_arch_used;
138 static arm_feature_set thumb_arch_used;
139
140 /* Flags stored in private area of BFD structure. */
141 static int uses_apcs_26 = FALSE;
142 static int atpcs = FALSE;
143 static int support_interwork = FALSE;
144 static int uses_apcs_float = FALSE;
145 static int pic_code = FALSE;
146
147 /* Variables that we set while parsing command-line options. Once all
148 options have been read we re-process these values to set the real
149 assembly flags. */
150 static const arm_feature_set *legacy_cpu = NULL;
151 static const arm_feature_set *legacy_fpu = NULL;
152
153 static const arm_feature_set *mcpu_cpu_opt = NULL;
154 static const arm_feature_set *mcpu_fpu_opt = NULL;
155 static const arm_feature_set *march_cpu_opt = NULL;
156 static const arm_feature_set *march_fpu_opt = NULL;
157 static const arm_feature_set *mfpu_opt = NULL;
158 static const arm_feature_set *object_arch = NULL;
159
160 /* Constants for known architecture features. */
161 static const arm_feature_set fpu_default = FPU_DEFAULT;
162 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
163 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
164 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
165 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
166 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
167 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
168 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
169 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
170
171 #ifdef CPU_DEFAULT
172 static const arm_feature_set cpu_default = CPU_DEFAULT;
173 #endif
174
175 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
176 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
177 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
178 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
179 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
180 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
181 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
182 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
183 static const arm_feature_set arm_ext_v4t_5 =
184 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
185 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
186 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
187 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
188 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
189 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
190 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
191 static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
192 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
193 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
194 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
195 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
196 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
197 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
198 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
199
200 static const arm_feature_set arm_arch_any = ARM_ANY;
201 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
202 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
203 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
204
205 static const arm_feature_set arm_cext_iwmmxt2 =
206 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
207 static const arm_feature_set arm_cext_iwmmxt =
208 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
209 static const arm_feature_set arm_cext_xscale =
210 ARM_FEATURE (0, ARM_CEXT_XSCALE);
211 static const arm_feature_set arm_cext_maverick =
212 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
213 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
214 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
215 static const arm_feature_set fpu_vfp_ext_v1xd =
216 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
217 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
218 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
219 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
220 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
221 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
222 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
223
224 static int mfloat_abi_opt = -1;
225 /* Record user cpu selection for object attributes. */
226 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
227 /* Must be long enough to hold any of the names in arm_cpus. */
228 static char selected_cpu_name[16];
229 #ifdef OBJ_ELF
230 # ifdef EABI_DEFAULT
231 static int meabi_flags = EABI_DEFAULT;
232 # else
233 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
234 # endif
235
236 bfd_boolean
237 arm_is_eabi(void)
238 {
239 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
240 }
241 #endif
242
243 #ifdef OBJ_ELF
244 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
245 symbolS * GOT_symbol;
246 #endif
247
248 /* 0: assemble for ARM,
249 1: assemble for Thumb,
250 2: assemble for Thumb even though target CPU does not support thumb
251 instructions. */
252 static int thumb_mode = 0;
253
254 /* If unified_syntax is true, we are processing the new unified
255 ARM/Thumb syntax. Important differences from the old ARM mode:
256
257 - Immediate operands do not require a # prefix.
258 - Conditional affixes always appear at the end of the
259 instruction. (For backward compatibility, those instructions
260 that formerly had them in the middle, continue to accept them
261 there.)
262 - The IT instruction may appear, and if it does is validated
263 against subsequent conditional affixes. It does not generate
264 machine code.
265
266 Important differences from the old Thumb mode:
267
268 - Immediate operands do not require a # prefix.
269 - Most of the V6T2 instructions are only available in unified mode.
270 - The .N and .W suffixes are recognized and honored (it is an error
271 if they cannot be honored).
272 - All instructions set the flags if and only if they have an 's' affix.
273 - Conditional affixes may be used. They are validated against
274 preceding IT instructions. Unlike ARM mode, you cannot use a
275 conditional affix except in the scope of an IT instruction. */
276
277 static bfd_boolean unified_syntax = FALSE;
278
279 enum neon_el_type
280 {
281 NT_invtype,
282 NT_untyped,
283 NT_integer,
284 NT_float,
285 NT_poly,
286 NT_signed,
287 NT_unsigned
288 };
289
290 struct neon_type_el
291 {
292 enum neon_el_type type;
293 unsigned size;
294 };
295
296 #define NEON_MAX_TYPE_ELS 4
297
298 struct neon_type
299 {
300 struct neon_type_el el[NEON_MAX_TYPE_ELS];
301 unsigned elems;
302 };
303
304 struct arm_it
305 {
306 const char * error;
307 unsigned long instruction;
308 int size;
309 int size_req;
310 int cond;
311 /* "uncond_value" is set to the value in place of the conditional field in
312 unconditional versions of the instruction, or -1 if nothing is
313 appropriate. */
314 int uncond_value;
315 struct neon_type vectype;
316 /* Set to the opcode if the instruction needs relaxation.
317 Zero if the instruction is not relaxed. */
318 unsigned long relax;
319 struct
320 {
321 bfd_reloc_code_real_type type;
322 expressionS exp;
323 int pc_rel;
324 } reloc;
325
326 struct
327 {
328 unsigned reg;
329 signed int imm;
330 struct neon_type_el vectype;
331 unsigned present : 1; /* Operand present. */
332 unsigned isreg : 1; /* Operand was a register. */
333 unsigned immisreg : 1; /* .imm field is a second register. */
334 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
335 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
336 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
337 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
338 instructions. This allows us to disambiguate ARM <-> vector insns. */
339 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
340 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
341 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
342 unsigned issingle : 1; /* Operand is VFP single-precision register. */
343 unsigned hasreloc : 1; /* Operand has relocation suffix. */
344 unsigned writeback : 1; /* Operand has trailing ! */
345 unsigned preind : 1; /* Preindexed address. */
346 unsigned postind : 1; /* Postindexed address. */
347 unsigned negative : 1; /* Index register was negated. */
348 unsigned shifted : 1; /* Shift applied to operation. */
349 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
350 } operands[6];
351 };
352
353 static struct arm_it inst;
354
355 #define NUM_FLOAT_VALS 8
356
357 const char * fp_const[] =
358 {
359 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
360 };
361
362 /* Number of littlenums required to hold an extended precision number. */
363 #define MAX_LITTLENUMS 6
364
365 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
366
367 #define FAIL (-1)
368 #define SUCCESS (0)
369
370 #define SUFF_S 1
371 #define SUFF_D 2
372 #define SUFF_E 3
373 #define SUFF_P 4
374
375 #define CP_T_X 0x00008000
376 #define CP_T_Y 0x00400000
377
378 #define CONDS_BIT 0x00100000
379 #define LOAD_BIT 0x00100000
380
381 #define DOUBLE_LOAD_FLAG 0x00000001
382
383 struct asm_cond
384 {
385 const char * template;
386 unsigned long value;
387 };
388
389 #define COND_ALWAYS 0xE
390
391 struct asm_psr
392 {
393 const char *template;
394 unsigned long field;
395 };
396
397 struct asm_barrier_opt
398 {
399 const char *template;
400 unsigned long value;
401 };
402
403 /* The bit that distinguishes CPSR and SPSR. */
404 #define SPSR_BIT (1 << 22)
405
406 /* The individual PSR flag bits. */
407 #define PSR_c (1 << 16)
408 #define PSR_x (1 << 17)
409 #define PSR_s (1 << 18)
410 #define PSR_f (1 << 19)
411
412 struct reloc_entry
413 {
414 char *name;
415 bfd_reloc_code_real_type reloc;
416 };
417
418 enum vfp_reg_pos
419 {
420 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
421 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
422 };
423
424 enum vfp_ldstm_type
425 {
426 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
427 };
428
429 /* Bits for DEFINED field in neon_typed_alias. */
430 #define NTA_HASTYPE 1
431 #define NTA_HASINDEX 2
432
433 struct neon_typed_alias
434 {
435 unsigned char defined;
436 unsigned char index;
437 struct neon_type_el eltype;
438 };
439
440 /* ARM register categories. This includes coprocessor numbers and various
441 architecture extensions' registers. */
442 enum arm_reg_type
443 {
444 REG_TYPE_RN,
445 REG_TYPE_CP,
446 REG_TYPE_CN,
447 REG_TYPE_FN,
448 REG_TYPE_VFS,
449 REG_TYPE_VFD,
450 REG_TYPE_NQ,
451 REG_TYPE_VFSD,
452 REG_TYPE_NDQ,
453 REG_TYPE_NSDQ,
454 REG_TYPE_VFC,
455 REG_TYPE_MVF,
456 REG_TYPE_MVD,
457 REG_TYPE_MVFX,
458 REG_TYPE_MVDX,
459 REG_TYPE_MVAX,
460 REG_TYPE_DSPSC,
461 REG_TYPE_MMXWR,
462 REG_TYPE_MMXWC,
463 REG_TYPE_MMXWCG,
464 REG_TYPE_XSCALE,
465 };
466
467 /* Structure for a hash table entry for a register.
468 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
469 information which states whether a vector type or index is specified (for a
470 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
471 struct reg_entry
472 {
473 const char *name;
474 unsigned char number;
475 unsigned char type;
476 unsigned char builtin;
477 struct neon_typed_alias *neon;
478 };
479
480 /* Diagnostics used when we don't get a register of the expected type. */
481 const char *const reg_expected_msgs[] =
482 {
483 N_("ARM register expected"),
484 N_("bad or missing co-processor number"),
485 N_("co-processor register expected"),
486 N_("FPA register expected"),
487 N_("VFP single precision register expected"),
488 N_("VFP/Neon double precision register expected"),
489 N_("Neon quad precision register expected"),
490 N_("VFP single or double precision register expected"),
491 N_("Neon double or quad precision register expected"),
492 N_("VFP single, double or Neon quad precision register expected"),
493 N_("VFP system register expected"),
494 N_("Maverick MVF register expected"),
495 N_("Maverick MVD register expected"),
496 N_("Maverick MVFX register expected"),
497 N_("Maverick MVDX register expected"),
498 N_("Maverick MVAX register expected"),
499 N_("Maverick DSPSC register expected"),
500 N_("iWMMXt data register expected"),
501 N_("iWMMXt control register expected"),
502 N_("iWMMXt scalar register expected"),
503 N_("XScale accumulator register expected"),
504 };
505
506 /* Some well known registers that we refer to directly elsewhere. */
507 #define REG_SP 13
508 #define REG_LR 14
509 #define REG_PC 15
510
511 /* ARM instructions take 4bytes in the object file, Thumb instructions
512 take 2: */
513 #define INSN_SIZE 4
514
515 struct asm_opcode
516 {
517 /* Basic string to match. */
518 const char *template;
519
520 /* Parameters to instruction. */
521 unsigned char operands[8];
522
523 /* Conditional tag - see opcode_lookup. */
524 unsigned int tag : 4;
525
526 /* Basic instruction code. */
527 unsigned int avalue : 28;
528
529 /* Thumb-format instruction code. */
530 unsigned int tvalue;
531
532 /* Which architecture variant provides this instruction. */
533 const arm_feature_set *avariant;
534 const arm_feature_set *tvariant;
535
536 /* Function to call to encode instruction in ARM format. */
537 void (* aencode) (void);
538
539 /* Function to call to encode instruction in Thumb format. */
540 void (* tencode) (void);
541 };
542
543 /* Defines for various bits that we will want to toggle. */
544 #define INST_IMMEDIATE 0x02000000
545 #define OFFSET_REG 0x02000000
546 #define HWOFFSET_IMM 0x00400000
547 #define SHIFT_BY_REG 0x00000010
548 #define PRE_INDEX 0x01000000
549 #define INDEX_UP 0x00800000
550 #define WRITE_BACK 0x00200000
551 #define LDM_TYPE_2_OR_3 0x00400000
552 #define CPSI_MMOD 0x00020000
553
554 #define LITERAL_MASK 0xf000f000
555 #define OPCODE_MASK 0xfe1fffff
556 #define V4_STR_BIT 0x00000020
557
558 #define T2_SUBS_PC_LR 0xf3de8f00
559
560 #define DATA_OP_SHIFT 21
561
562 #define T2_OPCODE_MASK 0xfe1fffff
563 #define T2_DATA_OP_SHIFT 21
564
565 /* Codes to distinguish the arithmetic instructions. */
566 #define OPCODE_AND 0
567 #define OPCODE_EOR 1
568 #define OPCODE_SUB 2
569 #define OPCODE_RSB 3
570 #define OPCODE_ADD 4
571 #define OPCODE_ADC 5
572 #define OPCODE_SBC 6
573 #define OPCODE_RSC 7
574 #define OPCODE_TST 8
575 #define OPCODE_TEQ 9
576 #define OPCODE_CMP 10
577 #define OPCODE_CMN 11
578 #define OPCODE_ORR 12
579 #define OPCODE_MOV 13
580 #define OPCODE_BIC 14
581 #define OPCODE_MVN 15
582
583 #define T2_OPCODE_AND 0
584 #define T2_OPCODE_BIC 1
585 #define T2_OPCODE_ORR 2
586 #define T2_OPCODE_ORN 3
587 #define T2_OPCODE_EOR 4
588 #define T2_OPCODE_ADD 8
589 #define T2_OPCODE_ADC 10
590 #define T2_OPCODE_SBC 11
591 #define T2_OPCODE_SUB 13
592 #define T2_OPCODE_RSB 14
593
594 #define T_OPCODE_MUL 0x4340
595 #define T_OPCODE_TST 0x4200
596 #define T_OPCODE_CMN 0x42c0
597 #define T_OPCODE_NEG 0x4240
598 #define T_OPCODE_MVN 0x43c0
599
600 #define T_OPCODE_ADD_R3 0x1800
601 #define T_OPCODE_SUB_R3 0x1a00
602 #define T_OPCODE_ADD_HI 0x4400
603 #define T_OPCODE_ADD_ST 0xb000
604 #define T_OPCODE_SUB_ST 0xb080
605 #define T_OPCODE_ADD_SP 0xa800
606 #define T_OPCODE_ADD_PC 0xa000
607 #define T_OPCODE_ADD_I8 0x3000
608 #define T_OPCODE_SUB_I8 0x3800
609 #define T_OPCODE_ADD_I3 0x1c00
610 #define T_OPCODE_SUB_I3 0x1e00
611
612 #define T_OPCODE_ASR_R 0x4100
613 #define T_OPCODE_LSL_R 0x4080
614 #define T_OPCODE_LSR_R 0x40c0
615 #define T_OPCODE_ROR_R 0x41c0
616 #define T_OPCODE_ASR_I 0x1000
617 #define T_OPCODE_LSL_I 0x0000
618 #define T_OPCODE_LSR_I 0x0800
619
620 #define T_OPCODE_MOV_I8 0x2000
621 #define T_OPCODE_CMP_I8 0x2800
622 #define T_OPCODE_CMP_LR 0x4280
623 #define T_OPCODE_MOV_HR 0x4600
624 #define T_OPCODE_CMP_HR 0x4500
625
626 #define T_OPCODE_LDR_PC 0x4800
627 #define T_OPCODE_LDR_SP 0x9800
628 #define T_OPCODE_STR_SP 0x9000
629 #define T_OPCODE_LDR_IW 0x6800
630 #define T_OPCODE_STR_IW 0x6000
631 #define T_OPCODE_LDR_IH 0x8800
632 #define T_OPCODE_STR_IH 0x8000
633 #define T_OPCODE_LDR_IB 0x7800
634 #define T_OPCODE_STR_IB 0x7000
635 #define T_OPCODE_LDR_RW 0x5800
636 #define T_OPCODE_STR_RW 0x5000
637 #define T_OPCODE_LDR_RH 0x5a00
638 #define T_OPCODE_STR_RH 0x5200
639 #define T_OPCODE_LDR_RB 0x5c00
640 #define T_OPCODE_STR_RB 0x5400
641
642 #define T_OPCODE_PUSH 0xb400
643 #define T_OPCODE_POP 0xbc00
644
645 #define T_OPCODE_BRANCH 0xe000
646
647 #define THUMB_SIZE 2 /* Size of thumb instruction. */
648 #define THUMB_PP_PC_LR 0x0100
649 #define THUMB_LOAD_BIT 0x0800
650 #define THUMB2_LOAD_BIT 0x00100000
651
652 #define BAD_ARGS _("bad arguments to instruction")
653 #define BAD_PC _("r15 not allowed here")
654 #define BAD_COND _("instruction cannot be conditional")
655 #define BAD_OVERLAP _("registers may not be the same")
656 #define BAD_HIREG _("lo register required")
657 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
658 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
659 #define BAD_BRANCH _("branch must be last instruction in IT block")
660 #define BAD_NOT_IT _("instruction not allowed in IT block")
661 #define BAD_FPU _("selected FPU does not support instruction")
662
663 static struct hash_control *arm_ops_hsh;
664 static struct hash_control *arm_cond_hsh;
665 static struct hash_control *arm_shift_hsh;
666 static struct hash_control *arm_psr_hsh;
667 static struct hash_control *arm_v7m_psr_hsh;
668 static struct hash_control *arm_reg_hsh;
669 static struct hash_control *arm_reloc_hsh;
670 static struct hash_control *arm_barrier_opt_hsh;
671
672 /* Stuff needed to resolve the label ambiguity
673 As:
674 ...
675 label: <insn>
676 may differ from:
677 ...
678 label:
679 <insn>
680 */
681
682 symbolS * last_label_seen;
683 static int label_is_thumb_function_name = FALSE;
684 \f
685 /* Literal pool structure. Held on a per-section
686 and per-sub-section basis. */
687
688 #define MAX_LITERAL_POOL_SIZE 1024
689 typedef struct literal_pool
690 {
691 expressionS literals [MAX_LITERAL_POOL_SIZE];
692 unsigned int next_free_entry;
693 unsigned int id;
694 symbolS * symbol;
695 segT section;
696 subsegT sub_section;
697 struct literal_pool * next;
698 } literal_pool;
699
700 /* Pointer to a linked list of literal pools. */
701 literal_pool * list_of_pools = NULL;
702
703 /* State variables for IT block handling. */
704 static bfd_boolean current_it_mask = 0;
705 static int current_cc;
706
707 \f
708 /* Pure syntax. */
709
710 /* This array holds the chars that always start a comment. If the
711 pre-processor is disabled, these aren't very useful. */
712 const char comment_chars[] = "@";
713
714 /* This array holds the chars that only start a comment at the beginning of
715 a line. If the line seems to have the form '# 123 filename'
716 .line and .file directives will appear in the pre-processed output. */
717 /* Note that input_file.c hand checks for '#' at the beginning of the
718 first line of the input file. This is because the compiler outputs
719 #NO_APP at the beginning of its output. */
720 /* Also note that comments like this one will always work. */
721 const char line_comment_chars[] = "#";
722
723 const char line_separator_chars[] = ";";
724
725 /* Chars that can be used to separate mant
726 from exp in floating point numbers. */
727 const char EXP_CHARS[] = "eE";
728
729 /* Chars that mean this number is a floating point constant. */
730 /* As in 0f12.456 */
731 /* or 0d1.2345e12 */
732
733 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
734
735 /* Prefix characters that indicate the start of an immediate
736 value. */
737 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
738
739 /* Separator character handling. */
740
741 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
742
743 static inline int
744 skip_past_char (char ** str, char c)
745 {
746 if (**str == c)
747 {
748 (*str)++;
749 return SUCCESS;
750 }
751 else
752 return FAIL;
753 }
754 #define skip_past_comma(str) skip_past_char (str, ',')
755
756 /* Arithmetic expressions (possibly involving symbols). */
757
758 /* Return TRUE if anything in the expression is a bignum. */
759
760 static int
761 walk_no_bignums (symbolS * sp)
762 {
763 if (symbol_get_value_expression (sp)->X_op == O_big)
764 return 1;
765
766 if (symbol_get_value_expression (sp)->X_add_symbol)
767 {
768 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
769 || (symbol_get_value_expression (sp)->X_op_symbol
770 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
771 }
772
773 return 0;
774 }
775
776 static int in_my_get_expression = 0;
777
778 /* Third argument to my_get_expression. */
779 #define GE_NO_PREFIX 0
780 #define GE_IMM_PREFIX 1
781 #define GE_OPT_PREFIX 2
782 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
783 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
784 #define GE_OPT_PREFIX_BIG 3
785
786 static int
787 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
788 {
789 char * save_in;
790 segT seg;
791
792 /* In unified syntax, all prefixes are optional. */
793 if (unified_syntax)
794 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
795 : GE_OPT_PREFIX;
796
797 switch (prefix_mode)
798 {
799 case GE_NO_PREFIX: break;
800 case GE_IMM_PREFIX:
801 if (!is_immediate_prefix (**str))
802 {
803 inst.error = _("immediate expression requires a # prefix");
804 return FAIL;
805 }
806 (*str)++;
807 break;
808 case GE_OPT_PREFIX:
809 case GE_OPT_PREFIX_BIG:
810 if (is_immediate_prefix (**str))
811 (*str)++;
812 break;
813 default: abort ();
814 }
815
816 memset (ep, 0, sizeof (expressionS));
817
818 save_in = input_line_pointer;
819 input_line_pointer = *str;
820 in_my_get_expression = 1;
821 seg = expression (ep);
822 in_my_get_expression = 0;
823
824 if (ep->X_op == O_illegal)
825 {
826 /* We found a bad expression in md_operand(). */
827 *str = input_line_pointer;
828 input_line_pointer = save_in;
829 if (inst.error == NULL)
830 inst.error = _("bad expression");
831 return 1;
832 }
833
834 #ifdef OBJ_AOUT
835 if (seg != absolute_section
836 && seg != text_section
837 && seg != data_section
838 && seg != bss_section
839 && seg != undefined_section)
840 {
841 inst.error = _("bad segment");
842 *str = input_line_pointer;
843 input_line_pointer = save_in;
844 return 1;
845 }
846 #endif
847
848 /* Get rid of any bignums now, so that we don't generate an error for which
849 we can't establish a line number later on. Big numbers are never valid
850 in instructions, which is where this routine is always called. */
851 if (prefix_mode != GE_OPT_PREFIX_BIG
852 && (ep->X_op == O_big
853 || (ep->X_add_symbol
854 && (walk_no_bignums (ep->X_add_symbol)
855 || (ep->X_op_symbol
856 && walk_no_bignums (ep->X_op_symbol))))))
857 {
858 inst.error = _("invalid constant");
859 *str = input_line_pointer;
860 input_line_pointer = save_in;
861 return 1;
862 }
863
864 *str = input_line_pointer;
865 input_line_pointer = save_in;
866 return 0;
867 }
868
869 /* Turn a string in input_line_pointer into a floating point constant
870 of type TYPE, and store the appropriate bytes in *LITP. The number
871 of LITTLENUMS emitted is stored in *SIZEP. An error message is
872 returned, or NULL on OK.
873
874 Note that fp constants aren't represent in the normal way on the ARM.
875 In big endian mode, things are as expected. However, in little endian
876 mode fp constants are big-endian word-wise, and little-endian byte-wise
877 within the words. For example, (double) 1.1 in big endian mode is
878 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
879 the byte sequence 99 99 f1 3f 9a 99 99 99.
880
881 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
882
883 char *
884 md_atof (int type, char * litP, int * sizeP)
885 {
886 int prec;
887 LITTLENUM_TYPE words[MAX_LITTLENUMS];
888 char *t;
889 int i;
890
891 switch (type)
892 {
893 case 'f':
894 case 'F':
895 case 's':
896 case 'S':
897 prec = 2;
898 break;
899
900 case 'd':
901 case 'D':
902 case 'r':
903 case 'R':
904 prec = 4;
905 break;
906
907 case 'x':
908 case 'X':
909 prec = 6;
910 break;
911
912 case 'p':
913 case 'P':
914 prec = 6;
915 break;
916
917 default:
918 *sizeP = 0;
919 return _("bad call to MD_ATOF()");
920 }
921
922 t = atof_ieee (input_line_pointer, type, words);
923 if (t)
924 input_line_pointer = t;
925 *sizeP = prec * 2;
926
927 if (target_big_endian)
928 {
929 for (i = 0; i < prec; i++)
930 {
931 md_number_to_chars (litP, (valueT) words[i], 2);
932 litP += 2;
933 }
934 }
935 else
936 {
937 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
938 for (i = prec - 1; i >= 0; i--)
939 {
940 md_number_to_chars (litP, (valueT) words[i], 2);
941 litP += 2;
942 }
943 else
944 /* For a 4 byte float the order of elements in `words' is 1 0.
945 For an 8 byte float the order is 1 0 3 2. */
946 for (i = 0; i < prec; i += 2)
947 {
948 md_number_to_chars (litP, (valueT) words[i + 1], 2);
949 md_number_to_chars (litP + 2, (valueT) words[i], 2);
950 litP += 4;
951 }
952 }
953
954 return 0;
955 }
956
957 /* We handle all bad expressions here, so that we can report the faulty
958 instruction in the error message. */
959 void
960 md_operand (expressionS * expr)
961 {
962 if (in_my_get_expression)
963 expr->X_op = O_illegal;
964 }
965
966 /* Immediate values. */
967
968 /* Generic immediate-value read function for use in directives.
969 Accepts anything that 'expression' can fold to a constant.
970 *val receives the number. */
971 #ifdef OBJ_ELF
972 static int
973 immediate_for_directive (int *val)
974 {
975 expressionS exp;
976 exp.X_op = O_illegal;
977
978 if (is_immediate_prefix (*input_line_pointer))
979 {
980 input_line_pointer++;
981 expression (&exp);
982 }
983
984 if (exp.X_op != O_constant)
985 {
986 as_bad (_("expected #constant"));
987 ignore_rest_of_line ();
988 return FAIL;
989 }
990 *val = exp.X_add_number;
991 return SUCCESS;
992 }
993 #endif
994
995 /* Register parsing. */
996
997 /* Generic register parser. CCP points to what should be the
998 beginning of a register name. If it is indeed a valid register
999 name, advance CCP over it and return the reg_entry structure;
1000 otherwise return NULL. Does not issue diagnostics. */
1001
1002 static struct reg_entry *
1003 arm_reg_parse_multi (char **ccp)
1004 {
1005 char *start = *ccp;
1006 char *p;
1007 struct reg_entry *reg;
1008
1009 #ifdef REGISTER_PREFIX
1010 if (*start != REGISTER_PREFIX)
1011 return NULL;
1012 start++;
1013 #endif
1014 #ifdef OPTIONAL_REGISTER_PREFIX
1015 if (*start == OPTIONAL_REGISTER_PREFIX)
1016 start++;
1017 #endif
1018
1019 p = start;
1020 if (!ISALPHA (*p) || !is_name_beginner (*p))
1021 return NULL;
1022
1023 do
1024 p++;
1025 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1026
1027 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1028
1029 if (!reg)
1030 return NULL;
1031
1032 *ccp = p;
1033 return reg;
1034 }
1035
1036 static int
1037 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1038 enum arm_reg_type type)
1039 {
1040 /* Alternative syntaxes are accepted for a few register classes. */
1041 switch (type)
1042 {
1043 case REG_TYPE_MVF:
1044 case REG_TYPE_MVD:
1045 case REG_TYPE_MVFX:
1046 case REG_TYPE_MVDX:
1047 /* Generic coprocessor register names are allowed for these. */
1048 if (reg && reg->type == REG_TYPE_CN)
1049 return reg->number;
1050 break;
1051
1052 case REG_TYPE_CP:
1053 /* For backward compatibility, a bare number is valid here. */
1054 {
1055 unsigned long processor = strtoul (start, ccp, 10);
1056 if (*ccp != start && processor <= 15)
1057 return processor;
1058 }
1059
1060 case REG_TYPE_MMXWC:
1061 /* WC includes WCG. ??? I'm not sure this is true for all
1062 instructions that take WC registers. */
1063 if (reg && reg->type == REG_TYPE_MMXWCG)
1064 return reg->number;
1065 break;
1066
1067 default:
1068 break;
1069 }
1070
1071 return FAIL;
1072 }
1073
1074 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1075 return value is the register number or FAIL. */
1076
1077 static int
1078 arm_reg_parse (char **ccp, enum arm_reg_type type)
1079 {
1080 char *start = *ccp;
1081 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1082 int ret;
1083
1084 /* Do not allow a scalar (reg+index) to parse as a register. */
1085 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1086 return FAIL;
1087
1088 if (reg && reg->type == type)
1089 return reg->number;
1090
1091 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1092 return ret;
1093
1094 *ccp = start;
1095 return FAIL;
1096 }
1097
1098 /* Parse a Neon type specifier. *STR should point at the leading '.'
1099 character. Does no verification at this stage that the type fits the opcode
1100 properly. E.g.,
1101
1102 .i32.i32.s16
1103 .s32.f32
1104 .u16
1105
1106 Can all be legally parsed by this function.
1107
1108 Fills in neon_type struct pointer with parsed information, and updates STR
1109 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1110 type, FAIL if not. */
1111
1112 static int
1113 parse_neon_type (struct neon_type *type, char **str)
1114 {
1115 char *ptr = *str;
1116
1117 if (type)
1118 type->elems = 0;
1119
1120 while (type->elems < NEON_MAX_TYPE_ELS)
1121 {
1122 enum neon_el_type thistype = NT_untyped;
1123 unsigned thissize = -1u;
1124
1125 if (*ptr != '.')
1126 break;
1127
1128 ptr++;
1129
1130 /* Just a size without an explicit type. */
1131 if (ISDIGIT (*ptr))
1132 goto parsesize;
1133
1134 switch (TOLOWER (*ptr))
1135 {
1136 case 'i': thistype = NT_integer; break;
1137 case 'f': thistype = NT_float; break;
1138 case 'p': thistype = NT_poly; break;
1139 case 's': thistype = NT_signed; break;
1140 case 'u': thistype = NT_unsigned; break;
1141 case 'd':
1142 thistype = NT_float;
1143 thissize = 64;
1144 ptr++;
1145 goto done;
1146 default:
1147 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1148 return FAIL;
1149 }
1150
1151 ptr++;
1152
1153 /* .f is an abbreviation for .f32. */
1154 if (thistype == NT_float && !ISDIGIT (*ptr))
1155 thissize = 32;
1156 else
1157 {
1158 parsesize:
1159 thissize = strtoul (ptr, &ptr, 10);
1160
1161 if (thissize != 8 && thissize != 16 && thissize != 32
1162 && thissize != 64)
1163 {
1164 as_bad (_("bad size %d in type specifier"), thissize);
1165 return FAIL;
1166 }
1167 }
1168
1169 done:
1170 if (type)
1171 {
1172 type->el[type->elems].type = thistype;
1173 type->el[type->elems].size = thissize;
1174 type->elems++;
1175 }
1176 }
1177
1178 /* Empty/missing type is not a successful parse. */
1179 if (type->elems == 0)
1180 return FAIL;
1181
1182 *str = ptr;
1183
1184 return SUCCESS;
1185 }
1186
1187 /* Errors may be set multiple times during parsing or bit encoding
1188 (particularly in the Neon bits), but usually the earliest error which is set
1189 will be the most meaningful. Avoid overwriting it with later (cascading)
1190 errors by calling this function. */
1191
1192 static void
1193 first_error (const char *err)
1194 {
1195 if (!inst.error)
1196 inst.error = err;
1197 }
1198
1199 /* Parse a single type, e.g. ".s32", leading period included. */
1200 static int
1201 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1202 {
1203 char *str = *ccp;
1204 struct neon_type optype;
1205
1206 if (*str == '.')
1207 {
1208 if (parse_neon_type (&optype, &str) == SUCCESS)
1209 {
1210 if (optype.elems == 1)
1211 *vectype = optype.el[0];
1212 else
1213 {
1214 first_error (_("only one type should be specified for operand"));
1215 return FAIL;
1216 }
1217 }
1218 else
1219 {
1220 first_error (_("vector type expected"));
1221 return FAIL;
1222 }
1223 }
1224 else
1225 return FAIL;
1226
1227 *ccp = str;
1228
1229 return SUCCESS;
1230 }
1231
1232 /* Special meanings for indices (which have a range of 0-7), which will fit into
1233 a 4-bit integer. */
1234
1235 #define NEON_ALL_LANES 15
1236 #define NEON_INTERLEAVE_LANES 14
1237
1238 /* Parse either a register or a scalar, with an optional type. Return the
1239 register number, and optionally fill in the actual type of the register
1240 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1241 type/index information in *TYPEINFO. */
1242
1243 static int
1244 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1245 enum arm_reg_type *rtype,
1246 struct neon_typed_alias *typeinfo)
1247 {
1248 char *str = *ccp;
1249 struct reg_entry *reg = arm_reg_parse_multi (&str);
1250 struct neon_typed_alias atype;
1251 struct neon_type_el parsetype;
1252
1253 atype.defined = 0;
1254 atype.index = -1;
1255 atype.eltype.type = NT_invtype;
1256 atype.eltype.size = -1;
1257
1258 /* Try alternate syntax for some types of register. Note these are mutually
1259 exclusive with the Neon syntax extensions. */
1260 if (reg == NULL)
1261 {
1262 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1263 if (altreg != FAIL)
1264 *ccp = str;
1265 if (typeinfo)
1266 *typeinfo = atype;
1267 return altreg;
1268 }
1269
1270 /* Undo polymorphism when a set of register types may be accepted. */
1271 if ((type == REG_TYPE_NDQ
1272 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1273 || (type == REG_TYPE_VFSD
1274 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1275 || (type == REG_TYPE_NSDQ
1276 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1277 || reg->type == REG_TYPE_NQ))
1278 || (type == REG_TYPE_MMXWC
1279 && (reg->type == REG_TYPE_MMXWCG)))
1280 type = reg->type;
1281
1282 if (type != reg->type)
1283 return FAIL;
1284
1285 if (reg->neon)
1286 atype = *reg->neon;
1287
1288 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1289 {
1290 if ((atype.defined & NTA_HASTYPE) != 0)
1291 {
1292 first_error (_("can't redefine type for operand"));
1293 return FAIL;
1294 }
1295 atype.defined |= NTA_HASTYPE;
1296 atype.eltype = parsetype;
1297 }
1298
1299 if (skip_past_char (&str, '[') == SUCCESS)
1300 {
1301 if (type != REG_TYPE_VFD)
1302 {
1303 first_error (_("only D registers may be indexed"));
1304 return FAIL;
1305 }
1306
1307 if ((atype.defined & NTA_HASINDEX) != 0)
1308 {
1309 first_error (_("can't change index for operand"));
1310 return FAIL;
1311 }
1312
1313 atype.defined |= NTA_HASINDEX;
1314
1315 if (skip_past_char (&str, ']') == SUCCESS)
1316 atype.index = NEON_ALL_LANES;
1317 else
1318 {
1319 expressionS exp;
1320
1321 my_get_expression (&exp, &str, GE_NO_PREFIX);
1322
1323 if (exp.X_op != O_constant)
1324 {
1325 first_error (_("constant expression required"));
1326 return FAIL;
1327 }
1328
1329 if (skip_past_char (&str, ']') == FAIL)
1330 return FAIL;
1331
1332 atype.index = exp.X_add_number;
1333 }
1334 }
1335
1336 if (typeinfo)
1337 *typeinfo = atype;
1338
1339 if (rtype)
1340 *rtype = type;
1341
1342 *ccp = str;
1343
1344 return reg->number;
1345 }
1346
1347 /* Like arm_reg_parse, but allow allow the following extra features:
1348 - If RTYPE is non-zero, return the (possibly restricted) type of the
1349 register (e.g. Neon double or quad reg when either has been requested).
1350 - If this is a Neon vector type with additional type information, fill
1351 in the struct pointed to by VECTYPE (if non-NULL).
1352 This function will fault on encountering a scalar.
1353 */
1354
1355 static int
1356 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1357 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1358 {
1359 struct neon_typed_alias atype;
1360 char *str = *ccp;
1361 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1362
1363 if (reg == FAIL)
1364 return FAIL;
1365
1366 /* Do not allow a scalar (reg+index) to parse as a register. */
1367 if ((atype.defined & NTA_HASINDEX) != 0)
1368 {
1369 first_error (_("register operand expected, but got scalar"));
1370 return FAIL;
1371 }
1372
1373 if (vectype)
1374 *vectype = atype.eltype;
1375
1376 *ccp = str;
1377
1378 return reg;
1379 }
1380
1381 #define NEON_SCALAR_REG(X) ((X) >> 4)
1382 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1383
1384 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1385 have enough information to be able to do a good job bounds-checking. So, we
1386 just do easy checks here, and do further checks later. */
1387
1388 static int
1389 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1390 {
1391 int reg;
1392 char *str = *ccp;
1393 struct neon_typed_alias atype;
1394
1395 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1396
1397 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1398 return FAIL;
1399
1400 if (atype.index == NEON_ALL_LANES)
1401 {
1402 first_error (_("scalar must have an index"));
1403 return FAIL;
1404 }
1405 else if (atype.index >= 64 / elsize)
1406 {
1407 first_error (_("scalar index out of range"));
1408 return FAIL;
1409 }
1410
1411 if (type)
1412 *type = atype.eltype;
1413
1414 *ccp = str;
1415
1416 return reg * 16 + atype.index;
1417 }
1418
1419 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1420 static long
1421 parse_reg_list (char ** strp)
1422 {
1423 char * str = * strp;
1424 long range = 0;
1425 int another_range;
1426
1427 /* We come back here if we get ranges concatenated by '+' or '|'. */
1428 do
1429 {
1430 another_range = 0;
1431
1432 if (*str == '{')
1433 {
1434 int in_range = 0;
1435 int cur_reg = -1;
1436
1437 str++;
1438 do
1439 {
1440 int reg;
1441
1442 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1443 {
1444 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1445 return FAIL;
1446 }
1447
1448 if (in_range)
1449 {
1450 int i;
1451
1452 if (reg <= cur_reg)
1453 {
1454 first_error (_("bad range in register list"));
1455 return FAIL;
1456 }
1457
1458 for (i = cur_reg + 1; i < reg; i++)
1459 {
1460 if (range & (1 << i))
1461 as_tsktsk
1462 (_("Warning: duplicated register (r%d) in register list"),
1463 i);
1464 else
1465 range |= 1 << i;
1466 }
1467 in_range = 0;
1468 }
1469
1470 if (range & (1 << reg))
1471 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1472 reg);
1473 else if (reg <= cur_reg)
1474 as_tsktsk (_("Warning: register range not in ascending order"));
1475
1476 range |= 1 << reg;
1477 cur_reg = reg;
1478 }
1479 while (skip_past_comma (&str) != FAIL
1480 || (in_range = 1, *str++ == '-'));
1481 str--;
1482
1483 if (*str++ != '}')
1484 {
1485 first_error (_("missing `}'"));
1486 return FAIL;
1487 }
1488 }
1489 else
1490 {
1491 expressionS expr;
1492
1493 if (my_get_expression (&expr, &str, GE_NO_PREFIX))
1494 return FAIL;
1495
1496 if (expr.X_op == O_constant)
1497 {
1498 if (expr.X_add_number
1499 != (expr.X_add_number & 0x0000ffff))
1500 {
1501 inst.error = _("invalid register mask");
1502 return FAIL;
1503 }
1504
1505 if ((range & expr.X_add_number) != 0)
1506 {
1507 int regno = range & expr.X_add_number;
1508
1509 regno &= -regno;
1510 regno = (1 << regno) - 1;
1511 as_tsktsk
1512 (_("Warning: duplicated register (r%d) in register list"),
1513 regno);
1514 }
1515
1516 range |= expr.X_add_number;
1517 }
1518 else
1519 {
1520 if (inst.reloc.type != 0)
1521 {
1522 inst.error = _("expression too complex");
1523 return FAIL;
1524 }
1525
1526 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1527 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1528 inst.reloc.pc_rel = 0;
1529 }
1530 }
1531
1532 if (*str == '|' || *str == '+')
1533 {
1534 str++;
1535 another_range = 1;
1536 }
1537 }
1538 while (another_range);
1539
1540 *strp = str;
1541 return range;
1542 }
1543
1544 /* Types of registers in a list. */
1545
1546 enum reg_list_els
1547 {
1548 REGLIST_VFP_S,
1549 REGLIST_VFP_D,
1550 REGLIST_NEON_D
1551 };
1552
1553 /* Parse a VFP register list. If the string is invalid return FAIL.
1554 Otherwise return the number of registers, and set PBASE to the first
1555 register. Parses registers of type ETYPE.
1556 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1557 - Q registers can be used to specify pairs of D registers
1558 - { } can be omitted from around a singleton register list
1559 FIXME: This is not implemented, as it would require backtracking in
1560 some cases, e.g.:
1561 vtbl.8 d3,d4,d5
1562 This could be done (the meaning isn't really ambiguous), but doesn't
1563 fit in well with the current parsing framework.
1564 - 32 D registers may be used (also true for VFPv3).
1565 FIXME: Types are ignored in these register lists, which is probably a
1566 bug. */
1567
1568 static int
1569 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1570 {
1571 char *str = *ccp;
1572 int base_reg;
1573 int new_base;
1574 enum arm_reg_type regtype = 0;
1575 int max_regs = 0;
1576 int count = 0;
1577 int warned = 0;
1578 unsigned long mask = 0;
1579 int i;
1580
1581 if (*str != '{')
1582 {
1583 inst.error = _("expecting {");
1584 return FAIL;
1585 }
1586
1587 str++;
1588
1589 switch (etype)
1590 {
1591 case REGLIST_VFP_S:
1592 regtype = REG_TYPE_VFS;
1593 max_regs = 32;
1594 break;
1595
1596 case REGLIST_VFP_D:
1597 regtype = REG_TYPE_VFD;
1598 break;
1599
1600 case REGLIST_NEON_D:
1601 regtype = REG_TYPE_NDQ;
1602 break;
1603 }
1604
1605 if (etype != REGLIST_VFP_S)
1606 {
1607 /* VFPv3 allows 32 D registers. */
1608 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
1609 {
1610 max_regs = 32;
1611 if (thumb_mode)
1612 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1613 fpu_vfp_ext_v3);
1614 else
1615 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1616 fpu_vfp_ext_v3);
1617 }
1618 else
1619 max_regs = 16;
1620 }
1621
1622 base_reg = max_regs;
1623
1624 do
1625 {
1626 int setmask = 1, addregs = 1;
1627
1628 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1629
1630 if (new_base == FAIL)
1631 {
1632 first_error (_(reg_expected_msgs[regtype]));
1633 return FAIL;
1634 }
1635
1636 if (new_base >= max_regs)
1637 {
1638 first_error (_("register out of range in list"));
1639 return FAIL;
1640 }
1641
1642 /* Note: a value of 2 * n is returned for the register Q<n>. */
1643 if (regtype == REG_TYPE_NQ)
1644 {
1645 setmask = 3;
1646 addregs = 2;
1647 }
1648
1649 if (new_base < base_reg)
1650 base_reg = new_base;
1651
1652 if (mask & (setmask << new_base))
1653 {
1654 first_error (_("invalid register list"));
1655 return FAIL;
1656 }
1657
1658 if ((mask >> new_base) != 0 && ! warned)
1659 {
1660 as_tsktsk (_("register list not in ascending order"));
1661 warned = 1;
1662 }
1663
1664 mask |= setmask << new_base;
1665 count += addregs;
1666
1667 if (*str == '-') /* We have the start of a range expression */
1668 {
1669 int high_range;
1670
1671 str++;
1672
1673 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1674 == FAIL)
1675 {
1676 inst.error = gettext (reg_expected_msgs[regtype]);
1677 return FAIL;
1678 }
1679
1680 if (high_range >= max_regs)
1681 {
1682 first_error (_("register out of range in list"));
1683 return FAIL;
1684 }
1685
1686 if (regtype == REG_TYPE_NQ)
1687 high_range = high_range + 1;
1688
1689 if (high_range <= new_base)
1690 {
1691 inst.error = _("register range not in ascending order");
1692 return FAIL;
1693 }
1694
1695 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1696 {
1697 if (mask & (setmask << new_base))
1698 {
1699 inst.error = _("invalid register list");
1700 return FAIL;
1701 }
1702
1703 mask |= setmask << new_base;
1704 count += addregs;
1705 }
1706 }
1707 }
1708 while (skip_past_comma (&str) != FAIL);
1709
1710 str++;
1711
1712 /* Sanity check -- should have raised a parse error above. */
1713 if (count == 0 || count > max_regs)
1714 abort ();
1715
1716 *pbase = base_reg;
1717
1718 /* Final test -- the registers must be consecutive. */
1719 mask >>= base_reg;
1720 for (i = 0; i < count; i++)
1721 {
1722 if ((mask & (1u << i)) == 0)
1723 {
1724 inst.error = _("non-contiguous register range");
1725 return FAIL;
1726 }
1727 }
1728
1729 *ccp = str;
1730
1731 return count;
1732 }
1733
1734 /* True if two alias types are the same. */
1735
1736 static int
1737 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1738 {
1739 if (!a && !b)
1740 return 1;
1741
1742 if (!a || !b)
1743 return 0;
1744
1745 if (a->defined != b->defined)
1746 return 0;
1747
1748 if ((a->defined & NTA_HASTYPE) != 0
1749 && (a->eltype.type != b->eltype.type
1750 || a->eltype.size != b->eltype.size))
1751 return 0;
1752
1753 if ((a->defined & NTA_HASINDEX) != 0
1754 && (a->index != b->index))
1755 return 0;
1756
1757 return 1;
1758 }
1759
1760 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1761 The base register is put in *PBASE.
1762 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1763 the return value.
1764 The register stride (minus one) is put in bit 4 of the return value.
1765 Bits [6:5] encode the list length (minus one).
1766 The type of the list elements is put in *ELTYPE, if non-NULL. */
1767
1768 #define NEON_LANE(X) ((X) & 0xf)
1769 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1770 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1771
1772 static int
1773 parse_neon_el_struct_list (char **str, unsigned *pbase,
1774 struct neon_type_el *eltype)
1775 {
1776 char *ptr = *str;
1777 int base_reg = -1;
1778 int reg_incr = -1;
1779 int count = 0;
1780 int lane = -1;
1781 int leading_brace = 0;
1782 enum arm_reg_type rtype = REG_TYPE_NDQ;
1783 int addregs = 1;
1784 const char *const incr_error = "register stride must be 1 or 2";
1785 const char *const type_error = "mismatched element/structure types in list";
1786 struct neon_typed_alias firsttype;
1787
1788 if (skip_past_char (&ptr, '{') == SUCCESS)
1789 leading_brace = 1;
1790
1791 do
1792 {
1793 struct neon_typed_alias atype;
1794 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1795
1796 if (getreg == FAIL)
1797 {
1798 first_error (_(reg_expected_msgs[rtype]));
1799 return FAIL;
1800 }
1801
1802 if (base_reg == -1)
1803 {
1804 base_reg = getreg;
1805 if (rtype == REG_TYPE_NQ)
1806 {
1807 reg_incr = 1;
1808 addregs = 2;
1809 }
1810 firsttype = atype;
1811 }
1812 else if (reg_incr == -1)
1813 {
1814 reg_incr = getreg - base_reg;
1815 if (reg_incr < 1 || reg_incr > 2)
1816 {
1817 first_error (_(incr_error));
1818 return FAIL;
1819 }
1820 }
1821 else if (getreg != base_reg + reg_incr * count)
1822 {
1823 first_error (_(incr_error));
1824 return FAIL;
1825 }
1826
1827 if (!neon_alias_types_same (&atype, &firsttype))
1828 {
1829 first_error (_(type_error));
1830 return FAIL;
1831 }
1832
1833 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1834 modes. */
1835 if (ptr[0] == '-')
1836 {
1837 struct neon_typed_alias htype;
1838 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1839 if (lane == -1)
1840 lane = NEON_INTERLEAVE_LANES;
1841 else if (lane != NEON_INTERLEAVE_LANES)
1842 {
1843 first_error (_(type_error));
1844 return FAIL;
1845 }
1846 if (reg_incr == -1)
1847 reg_incr = 1;
1848 else if (reg_incr != 1)
1849 {
1850 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1851 return FAIL;
1852 }
1853 ptr++;
1854 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1855 if (hireg == FAIL)
1856 {
1857 first_error (_(reg_expected_msgs[rtype]));
1858 return FAIL;
1859 }
1860 if (!neon_alias_types_same (&htype, &firsttype))
1861 {
1862 first_error (_(type_error));
1863 return FAIL;
1864 }
1865 count += hireg + dregs - getreg;
1866 continue;
1867 }
1868
1869 /* If we're using Q registers, we can't use [] or [n] syntax. */
1870 if (rtype == REG_TYPE_NQ)
1871 {
1872 count += 2;
1873 continue;
1874 }
1875
1876 if ((atype.defined & NTA_HASINDEX) != 0)
1877 {
1878 if (lane == -1)
1879 lane = atype.index;
1880 else if (lane != atype.index)
1881 {
1882 first_error (_(type_error));
1883 return FAIL;
1884 }
1885 }
1886 else if (lane == -1)
1887 lane = NEON_INTERLEAVE_LANES;
1888 else if (lane != NEON_INTERLEAVE_LANES)
1889 {
1890 first_error (_(type_error));
1891 return FAIL;
1892 }
1893 count++;
1894 }
1895 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
1896
1897 /* No lane set by [x]. We must be interleaving structures. */
1898 if (lane == -1)
1899 lane = NEON_INTERLEAVE_LANES;
1900
1901 /* Sanity check. */
1902 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
1903 || (count > 1 && reg_incr == -1))
1904 {
1905 first_error (_("error parsing element/structure list"));
1906 return FAIL;
1907 }
1908
1909 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
1910 {
1911 first_error (_("expected }"));
1912 return FAIL;
1913 }
1914
1915 if (reg_incr == -1)
1916 reg_incr = 1;
1917
1918 if (eltype)
1919 *eltype = firsttype.eltype;
1920
1921 *pbase = base_reg;
1922 *str = ptr;
1923
1924 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
1925 }
1926
1927 /* Parse an explicit relocation suffix on an expression. This is
1928 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
1929 arm_reloc_hsh contains no entries, so this function can only
1930 succeed if there is no () after the word. Returns -1 on error,
1931 BFD_RELOC_UNUSED if there wasn't any suffix. */
1932 static int
1933 parse_reloc (char **str)
1934 {
1935 struct reloc_entry *r;
1936 char *p, *q;
1937
1938 if (**str != '(')
1939 return BFD_RELOC_UNUSED;
1940
1941 p = *str + 1;
1942 q = p;
1943
1944 while (*q && *q != ')' && *q != ',')
1945 q++;
1946 if (*q != ')')
1947 return -1;
1948
1949 if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
1950 return -1;
1951
1952 *str = q + 1;
1953 return r->reloc;
1954 }
1955
1956 /* Directives: register aliases. */
1957
1958 static struct reg_entry *
1959 insert_reg_alias (char *str, int number, int type)
1960 {
1961 struct reg_entry *new;
1962 const char *name;
1963
1964 if ((new = hash_find (arm_reg_hsh, str)) != 0)
1965 {
1966 if (new->builtin)
1967 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
1968
1969 /* Only warn about a redefinition if it's not defined as the
1970 same register. */
1971 else if (new->number != number || new->type != type)
1972 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1973
1974 return 0;
1975 }
1976
1977 name = xstrdup (str);
1978 new = xmalloc (sizeof (struct reg_entry));
1979
1980 new->name = name;
1981 new->number = number;
1982 new->type = type;
1983 new->builtin = FALSE;
1984 new->neon = NULL;
1985
1986 if (hash_insert (arm_reg_hsh, name, (PTR) new))
1987 abort ();
1988
1989 return new;
1990 }
1991
1992 static void
1993 insert_neon_reg_alias (char *str, int number, int type,
1994 struct neon_typed_alias *atype)
1995 {
1996 struct reg_entry *reg = insert_reg_alias (str, number, type);
1997
1998 if (!reg)
1999 {
2000 first_error (_("attempt to redefine typed alias"));
2001 return;
2002 }
2003
2004 if (atype)
2005 {
2006 reg->neon = xmalloc (sizeof (struct neon_typed_alias));
2007 *reg->neon = *atype;
2008 }
2009 }
2010
2011 /* Look for the .req directive. This is of the form:
2012
2013 new_register_name .req existing_register_name
2014
2015 If we find one, or if it looks sufficiently like one that we want to
2016 handle any error here, return non-zero. Otherwise return zero. */
2017
2018 static int
2019 create_register_alias (char * newname, char *p)
2020 {
2021 struct reg_entry *old;
2022 char *oldname, *nbuf;
2023 size_t nlen;
2024
2025 /* The input scrubber ensures that whitespace after the mnemonic is
2026 collapsed to single spaces. */
2027 oldname = p;
2028 if (strncmp (oldname, " .req ", 6) != 0)
2029 return 0;
2030
2031 oldname += 6;
2032 if (*oldname == '\0')
2033 return 0;
2034
2035 old = hash_find (arm_reg_hsh, oldname);
2036 if (!old)
2037 {
2038 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2039 return 1;
2040 }
2041
2042 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2043 the desired alias name, and p points to its end. If not, then
2044 the desired alias name is in the global original_case_string. */
2045 #ifdef TC_CASE_SENSITIVE
2046 nlen = p - newname;
2047 #else
2048 newname = original_case_string;
2049 nlen = strlen (newname);
2050 #endif
2051
2052 nbuf = alloca (nlen + 1);
2053 memcpy (nbuf, newname, nlen);
2054 nbuf[nlen] = '\0';
2055
2056 /* Create aliases under the new name as stated; an all-lowercase
2057 version of the new name; and an all-uppercase version of the new
2058 name. */
2059 insert_reg_alias (nbuf, old->number, old->type);
2060
2061 for (p = nbuf; *p; p++)
2062 *p = TOUPPER (*p);
2063
2064 if (strncmp (nbuf, newname, nlen))
2065 insert_reg_alias (nbuf, old->number, old->type);
2066
2067 for (p = nbuf; *p; p++)
2068 *p = TOLOWER (*p);
2069
2070 if (strncmp (nbuf, newname, nlen))
2071 insert_reg_alias (nbuf, old->number, old->type);
2072
2073 return 1;
2074 }
2075
2076 /* Create a Neon typed/indexed register alias using directives, e.g.:
2077 X .dn d5.s32[1]
2078 Y .qn 6.s16
2079 Z .dn d7
2080 T .dn Z[0]
2081 These typed registers can be used instead of the types specified after the
2082 Neon mnemonic, so long as all operands given have types. Types can also be
2083 specified directly, e.g.:
2084 vadd d0.s32, d1.s32, d2.s32
2085 */
2086
2087 static int
2088 create_neon_reg_alias (char *newname, char *p)
2089 {
2090 enum arm_reg_type basetype;
2091 struct reg_entry *basereg;
2092 struct reg_entry mybasereg;
2093 struct neon_type ntype;
2094 struct neon_typed_alias typeinfo;
2095 char *namebuf, *nameend;
2096 int namelen;
2097
2098 typeinfo.defined = 0;
2099 typeinfo.eltype.type = NT_invtype;
2100 typeinfo.eltype.size = -1;
2101 typeinfo.index = -1;
2102
2103 nameend = p;
2104
2105 if (strncmp (p, " .dn ", 5) == 0)
2106 basetype = REG_TYPE_VFD;
2107 else if (strncmp (p, " .qn ", 5) == 0)
2108 basetype = REG_TYPE_NQ;
2109 else
2110 return 0;
2111
2112 p += 5;
2113
2114 if (*p == '\0')
2115 return 0;
2116
2117 basereg = arm_reg_parse_multi (&p);
2118
2119 if (basereg && basereg->type != basetype)
2120 {
2121 as_bad (_("bad type for register"));
2122 return 0;
2123 }
2124
2125 if (basereg == NULL)
2126 {
2127 expressionS exp;
2128 /* Try parsing as an integer. */
2129 my_get_expression (&exp, &p, GE_NO_PREFIX);
2130 if (exp.X_op != O_constant)
2131 {
2132 as_bad (_("expression must be constant"));
2133 return 0;
2134 }
2135 basereg = &mybasereg;
2136 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2137 : exp.X_add_number;
2138 basereg->neon = 0;
2139 }
2140
2141 if (basereg->neon)
2142 typeinfo = *basereg->neon;
2143
2144 if (parse_neon_type (&ntype, &p) == SUCCESS)
2145 {
2146 /* We got a type. */
2147 if (typeinfo.defined & NTA_HASTYPE)
2148 {
2149 as_bad (_("can't redefine the type of a register alias"));
2150 return 0;
2151 }
2152
2153 typeinfo.defined |= NTA_HASTYPE;
2154 if (ntype.elems != 1)
2155 {
2156 as_bad (_("you must specify a single type only"));
2157 return 0;
2158 }
2159 typeinfo.eltype = ntype.el[0];
2160 }
2161
2162 if (skip_past_char (&p, '[') == SUCCESS)
2163 {
2164 expressionS exp;
2165 /* We got a scalar index. */
2166
2167 if (typeinfo.defined & NTA_HASINDEX)
2168 {
2169 as_bad (_("can't redefine the index of a scalar alias"));
2170 return 0;
2171 }
2172
2173 my_get_expression (&exp, &p, GE_NO_PREFIX);
2174
2175 if (exp.X_op != O_constant)
2176 {
2177 as_bad (_("scalar index must be constant"));
2178 return 0;
2179 }
2180
2181 typeinfo.defined |= NTA_HASINDEX;
2182 typeinfo.index = exp.X_add_number;
2183
2184 if (skip_past_char (&p, ']') == FAIL)
2185 {
2186 as_bad (_("expecting ]"));
2187 return 0;
2188 }
2189 }
2190
2191 namelen = nameend - newname;
2192 namebuf = alloca (namelen + 1);
2193 strncpy (namebuf, newname, namelen);
2194 namebuf[namelen] = '\0';
2195
2196 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2197 typeinfo.defined != 0 ? &typeinfo : NULL);
2198
2199 /* Insert name in all uppercase. */
2200 for (p = namebuf; *p; p++)
2201 *p = TOUPPER (*p);
2202
2203 if (strncmp (namebuf, newname, namelen))
2204 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2205 typeinfo.defined != 0 ? &typeinfo : NULL);
2206
2207 /* Insert name in all lowercase. */
2208 for (p = namebuf; *p; p++)
2209 *p = TOLOWER (*p);
2210
2211 if (strncmp (namebuf, newname, namelen))
2212 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2213 typeinfo.defined != 0 ? &typeinfo : NULL);
2214
2215 return 1;
2216 }
2217
2218 /* Should never be called, as .req goes between the alias and the
2219 register name, not at the beginning of the line. */
2220 static void
2221 s_req (int a ATTRIBUTE_UNUSED)
2222 {
2223 as_bad (_("invalid syntax for .req directive"));
2224 }
2225
2226 static void
2227 s_dn (int a ATTRIBUTE_UNUSED)
2228 {
2229 as_bad (_("invalid syntax for .dn directive"));
2230 }
2231
2232 static void
2233 s_qn (int a ATTRIBUTE_UNUSED)
2234 {
2235 as_bad (_("invalid syntax for .qn directive"));
2236 }
2237
2238 /* The .unreq directive deletes an alias which was previously defined
2239 by .req. For example:
2240
2241 my_alias .req r11
2242 .unreq my_alias */
2243
2244 static void
2245 s_unreq (int a ATTRIBUTE_UNUSED)
2246 {
2247 char * name;
2248 char saved_char;
2249
2250 name = input_line_pointer;
2251
2252 while (*input_line_pointer != 0
2253 && *input_line_pointer != ' '
2254 && *input_line_pointer != '\n')
2255 ++input_line_pointer;
2256
2257 saved_char = *input_line_pointer;
2258 *input_line_pointer = 0;
2259
2260 if (!*name)
2261 as_bad (_("invalid syntax for .unreq directive"));
2262 else
2263 {
2264 struct reg_entry *reg = hash_find (arm_reg_hsh, name);
2265
2266 if (!reg)
2267 as_bad (_("unknown register alias '%s'"), name);
2268 else if (reg->builtin)
2269 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2270 name);
2271 else
2272 {
2273 hash_delete (arm_reg_hsh, name);
2274 free ((char *) reg->name);
2275 if (reg->neon)
2276 free (reg->neon);
2277 free (reg);
2278 }
2279 }
2280
2281 *input_line_pointer = saved_char;
2282 demand_empty_rest_of_line ();
2283 }
2284
2285 /* Directives: Instruction set selection. */
2286
2287 #ifdef OBJ_ELF
2288 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2289 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2290 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2291 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2292
2293 static enum mstate mapstate = MAP_UNDEFINED;
2294
2295 void
2296 mapping_state (enum mstate state)
2297 {
2298 symbolS * symbolP;
2299 const char * symname;
2300 int type;
2301
2302 if (mapstate == state)
2303 /* The mapping symbol has already been emitted.
2304 There is nothing else to do. */
2305 return;
2306
2307 mapstate = state;
2308
2309 switch (state)
2310 {
2311 case MAP_DATA:
2312 symname = "$d";
2313 type = BSF_NO_FLAGS;
2314 break;
2315 case MAP_ARM:
2316 symname = "$a";
2317 type = BSF_NO_FLAGS;
2318 break;
2319 case MAP_THUMB:
2320 symname = "$t";
2321 type = BSF_NO_FLAGS;
2322 break;
2323 case MAP_UNDEFINED:
2324 return;
2325 default:
2326 abort ();
2327 }
2328
2329 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2330
2331 symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now);
2332 symbol_table_insert (symbolP);
2333 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2334
2335 switch (state)
2336 {
2337 case MAP_ARM:
2338 THUMB_SET_FUNC (symbolP, 0);
2339 ARM_SET_THUMB (symbolP, 0);
2340 ARM_SET_INTERWORK (symbolP, support_interwork);
2341 break;
2342
2343 case MAP_THUMB:
2344 THUMB_SET_FUNC (symbolP, 1);
2345 ARM_SET_THUMB (symbolP, 1);
2346 ARM_SET_INTERWORK (symbolP, support_interwork);
2347 break;
2348
2349 case MAP_DATA:
2350 default:
2351 return;
2352 }
2353 }
2354 #else
2355 #define mapping_state(x) /* nothing */
2356 #endif
2357
2358 /* Find the real, Thumb encoded start of a Thumb function. */
2359
2360 static symbolS *
2361 find_real_start (symbolS * symbolP)
2362 {
2363 char * real_start;
2364 const char * name = S_GET_NAME (symbolP);
2365 symbolS * new_target;
2366
2367 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2368 #define STUB_NAME ".real_start_of"
2369
2370 if (name == NULL)
2371 abort ();
2372
2373 /* The compiler may generate BL instructions to local labels because
2374 it needs to perform a branch to a far away location. These labels
2375 do not have a corresponding ".real_start_of" label. We check
2376 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2377 the ".real_start_of" convention for nonlocal branches. */
2378 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2379 return symbolP;
2380
2381 real_start = ACONCAT ((STUB_NAME, name, NULL));
2382 new_target = symbol_find (real_start);
2383
2384 if (new_target == NULL)
2385 {
2386 as_warn ("Failed to find real start of function: %s\n", name);
2387 new_target = symbolP;
2388 }
2389
2390 return new_target;
2391 }
2392
2393 static void
2394 opcode_select (int width)
2395 {
2396 switch (width)
2397 {
2398 case 16:
2399 if (! thumb_mode)
2400 {
2401 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2402 as_bad (_("selected processor does not support THUMB opcodes"));
2403
2404 thumb_mode = 1;
2405 /* No need to force the alignment, since we will have been
2406 coming from ARM mode, which is word-aligned. */
2407 record_alignment (now_seg, 1);
2408 }
2409 mapping_state (MAP_THUMB);
2410 break;
2411
2412 case 32:
2413 if (thumb_mode)
2414 {
2415 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2416 as_bad (_("selected processor does not support ARM opcodes"));
2417
2418 thumb_mode = 0;
2419
2420 if (!need_pass_2)
2421 frag_align (2, 0, 0);
2422
2423 record_alignment (now_seg, 1);
2424 }
2425 mapping_state (MAP_ARM);
2426 break;
2427
2428 default:
2429 as_bad (_("invalid instruction size selected (%d)"), width);
2430 }
2431 }
2432
2433 static void
2434 s_arm (int ignore ATTRIBUTE_UNUSED)
2435 {
2436 opcode_select (32);
2437 demand_empty_rest_of_line ();
2438 }
2439
2440 static void
2441 s_thumb (int ignore ATTRIBUTE_UNUSED)
2442 {
2443 opcode_select (16);
2444 demand_empty_rest_of_line ();
2445 }
2446
2447 static void
2448 s_code (int unused ATTRIBUTE_UNUSED)
2449 {
2450 int temp;
2451
2452 temp = get_absolute_expression ();
2453 switch (temp)
2454 {
2455 case 16:
2456 case 32:
2457 opcode_select (temp);
2458 break;
2459
2460 default:
2461 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2462 }
2463 }
2464
2465 static void
2466 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2467 {
2468 /* If we are not already in thumb mode go into it, EVEN if
2469 the target processor does not support thumb instructions.
2470 This is used by gcc/config/arm/lib1funcs.asm for example
2471 to compile interworking support functions even if the
2472 target processor should not support interworking. */
2473 if (! thumb_mode)
2474 {
2475 thumb_mode = 2;
2476 record_alignment (now_seg, 1);
2477 }
2478
2479 demand_empty_rest_of_line ();
2480 }
2481
2482 static void
2483 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2484 {
2485 s_thumb (0);
2486
2487 /* The following label is the name/address of the start of a Thumb function.
2488 We need to know this for the interworking support. */
2489 label_is_thumb_function_name = TRUE;
2490 }
2491
2492 /* Perform a .set directive, but also mark the alias as
2493 being a thumb function. */
2494
2495 static void
2496 s_thumb_set (int equiv)
2497 {
2498 /* XXX the following is a duplicate of the code for s_set() in read.c
2499 We cannot just call that code as we need to get at the symbol that
2500 is created. */
2501 char * name;
2502 char delim;
2503 char * end_name;
2504 symbolS * symbolP;
2505
2506 /* Especial apologies for the random logic:
2507 This just grew, and could be parsed much more simply!
2508 Dean - in haste. */
2509 name = input_line_pointer;
2510 delim = get_symbol_end ();
2511 end_name = input_line_pointer;
2512 *end_name = delim;
2513
2514 if (*input_line_pointer != ',')
2515 {
2516 *end_name = 0;
2517 as_bad (_("expected comma after name \"%s\""), name);
2518 *end_name = delim;
2519 ignore_rest_of_line ();
2520 return;
2521 }
2522
2523 input_line_pointer++;
2524 *end_name = 0;
2525
2526 if (name[0] == '.' && name[1] == '\0')
2527 {
2528 /* XXX - this should not happen to .thumb_set. */
2529 abort ();
2530 }
2531
2532 if ((symbolP = symbol_find (name)) == NULL
2533 && (symbolP = md_undefined_symbol (name)) == NULL)
2534 {
2535 #ifndef NO_LISTING
2536 /* When doing symbol listings, play games with dummy fragments living
2537 outside the normal fragment chain to record the file and line info
2538 for this symbol. */
2539 if (listing & LISTING_SYMBOLS)
2540 {
2541 extern struct list_info_struct * listing_tail;
2542 fragS * dummy_frag = xmalloc (sizeof (fragS));
2543
2544 memset (dummy_frag, 0, sizeof (fragS));
2545 dummy_frag->fr_type = rs_fill;
2546 dummy_frag->line = listing_tail;
2547 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2548 dummy_frag->fr_symbol = symbolP;
2549 }
2550 else
2551 #endif
2552 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2553
2554 #ifdef OBJ_COFF
2555 /* "set" symbols are local unless otherwise specified. */
2556 SF_SET_LOCAL (symbolP);
2557 #endif /* OBJ_COFF */
2558 } /* Make a new symbol. */
2559
2560 symbol_table_insert (symbolP);
2561
2562 * end_name = delim;
2563
2564 if (equiv
2565 && S_IS_DEFINED (symbolP)
2566 && S_GET_SEGMENT (symbolP) != reg_section)
2567 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2568
2569 pseudo_set (symbolP);
2570
2571 demand_empty_rest_of_line ();
2572
2573 /* XXX Now we come to the Thumb specific bit of code. */
2574
2575 THUMB_SET_FUNC (symbolP, 1);
2576 ARM_SET_THUMB (symbolP, 1);
2577 #if defined OBJ_ELF || defined OBJ_COFF
2578 ARM_SET_INTERWORK (symbolP, support_interwork);
2579 #endif
2580 }
2581
2582 /* Directives: Mode selection. */
2583
2584 /* .syntax [unified|divided] - choose the new unified syntax
2585 (same for Arm and Thumb encoding, modulo slight differences in what
2586 can be represented) or the old divergent syntax for each mode. */
2587 static void
2588 s_syntax (int unused ATTRIBUTE_UNUSED)
2589 {
2590 char *name, delim;
2591
2592 name = input_line_pointer;
2593 delim = get_symbol_end ();
2594
2595 if (!strcasecmp (name, "unified"))
2596 unified_syntax = TRUE;
2597 else if (!strcasecmp (name, "divided"))
2598 unified_syntax = FALSE;
2599 else
2600 {
2601 as_bad (_("unrecognized syntax mode \"%s\""), name);
2602 return;
2603 }
2604 *input_line_pointer = delim;
2605 demand_empty_rest_of_line ();
2606 }
2607
2608 /* Directives: sectioning and alignment. */
2609
2610 /* Same as s_align_ptwo but align 0 => align 2. */
2611
2612 static void
2613 s_align (int unused ATTRIBUTE_UNUSED)
2614 {
2615 int temp;
2616 bfd_boolean fill_p;
2617 long temp_fill;
2618 long max_alignment = 15;
2619
2620 temp = get_absolute_expression ();
2621 if (temp > max_alignment)
2622 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2623 else if (temp < 0)
2624 {
2625 as_bad (_("alignment negative. 0 assumed."));
2626 temp = 0;
2627 }
2628
2629 if (*input_line_pointer == ',')
2630 {
2631 input_line_pointer++;
2632 temp_fill = get_absolute_expression ();
2633 fill_p = TRUE;
2634 }
2635 else
2636 {
2637 fill_p = FALSE;
2638 temp_fill = 0;
2639 }
2640
2641 if (!temp)
2642 temp = 2;
2643
2644 /* Only make a frag if we HAVE to. */
2645 if (temp && !need_pass_2)
2646 {
2647 if (!fill_p && subseg_text_p (now_seg))
2648 frag_align_code (temp, 0);
2649 else
2650 frag_align (temp, (int) temp_fill, 0);
2651 }
2652 demand_empty_rest_of_line ();
2653
2654 record_alignment (now_seg, temp);
2655 }
2656
2657 static void
2658 s_bss (int ignore ATTRIBUTE_UNUSED)
2659 {
2660 /* We don't support putting frags in the BSS segment, we fake it by
2661 marking in_bss, then looking at s_skip for clues. */
2662 subseg_set (bss_section, 0);
2663 demand_empty_rest_of_line ();
2664 mapping_state (MAP_DATA);
2665 }
2666
2667 static void
2668 s_even (int ignore ATTRIBUTE_UNUSED)
2669 {
2670 /* Never make frag if expect extra pass. */
2671 if (!need_pass_2)
2672 frag_align (1, 0, 0);
2673
2674 record_alignment (now_seg, 1);
2675
2676 demand_empty_rest_of_line ();
2677 }
2678
2679 /* Directives: Literal pools. */
2680
2681 static literal_pool *
2682 find_literal_pool (void)
2683 {
2684 literal_pool * pool;
2685
2686 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2687 {
2688 if (pool->section == now_seg
2689 && pool->sub_section == now_subseg)
2690 break;
2691 }
2692
2693 return pool;
2694 }
2695
2696 static literal_pool *
2697 find_or_make_literal_pool (void)
2698 {
2699 /* Next literal pool ID number. */
2700 static unsigned int latest_pool_num = 1;
2701 literal_pool * pool;
2702
2703 pool = find_literal_pool ();
2704
2705 if (pool == NULL)
2706 {
2707 /* Create a new pool. */
2708 pool = xmalloc (sizeof (* pool));
2709 if (! pool)
2710 return NULL;
2711
2712 pool->next_free_entry = 0;
2713 pool->section = now_seg;
2714 pool->sub_section = now_subseg;
2715 pool->next = list_of_pools;
2716 pool->symbol = NULL;
2717
2718 /* Add it to the list. */
2719 list_of_pools = pool;
2720 }
2721
2722 /* New pools, and emptied pools, will have a NULL symbol. */
2723 if (pool->symbol == NULL)
2724 {
2725 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2726 (valueT) 0, &zero_address_frag);
2727 pool->id = latest_pool_num ++;
2728 }
2729
2730 /* Done. */
2731 return pool;
2732 }
2733
2734 /* Add the literal in the global 'inst'
2735 structure to the relevent literal pool. */
2736
2737 static int
2738 add_to_lit_pool (void)
2739 {
2740 literal_pool * pool;
2741 unsigned int entry;
2742
2743 pool = find_or_make_literal_pool ();
2744
2745 /* Check if this literal value is already in the pool. */
2746 for (entry = 0; entry < pool->next_free_entry; entry ++)
2747 {
2748 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2749 && (inst.reloc.exp.X_op == O_constant)
2750 && (pool->literals[entry].X_add_number
2751 == inst.reloc.exp.X_add_number)
2752 && (pool->literals[entry].X_unsigned
2753 == inst.reloc.exp.X_unsigned))
2754 break;
2755
2756 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2757 && (inst.reloc.exp.X_op == O_symbol)
2758 && (pool->literals[entry].X_add_number
2759 == inst.reloc.exp.X_add_number)
2760 && (pool->literals[entry].X_add_symbol
2761 == inst.reloc.exp.X_add_symbol)
2762 && (pool->literals[entry].X_op_symbol
2763 == inst.reloc.exp.X_op_symbol))
2764 break;
2765 }
2766
2767 /* Do we need to create a new entry? */
2768 if (entry == pool->next_free_entry)
2769 {
2770 if (entry >= MAX_LITERAL_POOL_SIZE)
2771 {
2772 inst.error = _("literal pool overflow");
2773 return FAIL;
2774 }
2775
2776 pool->literals[entry] = inst.reloc.exp;
2777 pool->next_free_entry += 1;
2778 }
2779
2780 inst.reloc.exp.X_op = O_symbol;
2781 inst.reloc.exp.X_add_number = ((int) entry) * 4;
2782 inst.reloc.exp.X_add_symbol = pool->symbol;
2783
2784 return SUCCESS;
2785 }
2786
2787 /* Can't use symbol_new here, so have to create a symbol and then at
2788 a later date assign it a value. Thats what these functions do. */
2789
2790 static void
2791 symbol_locate (symbolS * symbolP,
2792 const char * name, /* It is copied, the caller can modify. */
2793 segT segment, /* Segment identifier (SEG_<something>). */
2794 valueT valu, /* Symbol value. */
2795 fragS * frag) /* Associated fragment. */
2796 {
2797 unsigned int name_length;
2798 char * preserved_copy_of_name;
2799
2800 name_length = strlen (name) + 1; /* +1 for \0. */
2801 obstack_grow (&notes, name, name_length);
2802 preserved_copy_of_name = obstack_finish (&notes);
2803
2804 #ifdef tc_canonicalize_symbol_name
2805 preserved_copy_of_name =
2806 tc_canonicalize_symbol_name (preserved_copy_of_name);
2807 #endif
2808
2809 S_SET_NAME (symbolP, preserved_copy_of_name);
2810
2811 S_SET_SEGMENT (symbolP, segment);
2812 S_SET_VALUE (symbolP, valu);
2813 symbol_clear_list_pointers (symbolP);
2814
2815 symbol_set_frag (symbolP, frag);
2816
2817 /* Link to end of symbol chain. */
2818 {
2819 extern int symbol_table_frozen;
2820
2821 if (symbol_table_frozen)
2822 abort ();
2823 }
2824
2825 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
2826
2827 obj_symbol_new_hook (symbolP);
2828
2829 #ifdef tc_symbol_new_hook
2830 tc_symbol_new_hook (symbolP);
2831 #endif
2832
2833 #ifdef DEBUG_SYMS
2834 verify_symbol_chain (symbol_rootP, symbol_lastP);
2835 #endif /* DEBUG_SYMS */
2836 }
2837
2838
2839 static void
2840 s_ltorg (int ignored ATTRIBUTE_UNUSED)
2841 {
2842 unsigned int entry;
2843 literal_pool * pool;
2844 char sym_name[20];
2845
2846 pool = find_literal_pool ();
2847 if (pool == NULL
2848 || pool->symbol == NULL
2849 || pool->next_free_entry == 0)
2850 return;
2851
2852 mapping_state (MAP_DATA);
2853
2854 /* Align pool as you have word accesses.
2855 Only make a frag if we have to. */
2856 if (!need_pass_2)
2857 frag_align (2, 0, 0);
2858
2859 record_alignment (now_seg, 2);
2860
2861 sprintf (sym_name, "$$lit_\002%x", pool->id);
2862
2863 symbol_locate (pool->symbol, sym_name, now_seg,
2864 (valueT) frag_now_fix (), frag_now);
2865 symbol_table_insert (pool->symbol);
2866
2867 ARM_SET_THUMB (pool->symbol, thumb_mode);
2868
2869 #if defined OBJ_COFF || defined OBJ_ELF
2870 ARM_SET_INTERWORK (pool->symbol, support_interwork);
2871 #endif
2872
2873 for (entry = 0; entry < pool->next_free_entry; entry ++)
2874 /* First output the expression in the instruction to the pool. */
2875 emit_expr (&(pool->literals[entry]), 4); /* .word */
2876
2877 /* Mark the pool as empty. */
2878 pool->next_free_entry = 0;
2879 pool->symbol = NULL;
2880 }
2881
2882 #ifdef OBJ_ELF
2883 /* Forward declarations for functions below, in the MD interface
2884 section. */
2885 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
2886 static valueT create_unwind_entry (int);
2887 static void start_unwind_section (const segT, int);
2888 static void add_unwind_opcode (valueT, int);
2889 static void flush_pending_unwind (void);
2890
2891 /* Directives: Data. */
2892
2893 static void
2894 s_arm_elf_cons (int nbytes)
2895 {
2896 expressionS exp;
2897
2898 #ifdef md_flush_pending_output
2899 md_flush_pending_output ();
2900 #endif
2901
2902 if (is_it_end_of_statement ())
2903 {
2904 demand_empty_rest_of_line ();
2905 return;
2906 }
2907
2908 #ifdef md_cons_align
2909 md_cons_align (nbytes);
2910 #endif
2911
2912 mapping_state (MAP_DATA);
2913 do
2914 {
2915 int reloc;
2916 char *base = input_line_pointer;
2917
2918 expression (& exp);
2919
2920 if (exp.X_op != O_symbol)
2921 emit_expr (&exp, (unsigned int) nbytes);
2922 else
2923 {
2924 char *before_reloc = input_line_pointer;
2925 reloc = parse_reloc (&input_line_pointer);
2926 if (reloc == -1)
2927 {
2928 as_bad (_("unrecognized relocation suffix"));
2929 ignore_rest_of_line ();
2930 return;
2931 }
2932 else if (reloc == BFD_RELOC_UNUSED)
2933 emit_expr (&exp, (unsigned int) nbytes);
2934 else
2935 {
2936 reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
2937 int size = bfd_get_reloc_size (howto);
2938
2939 if (reloc == BFD_RELOC_ARM_PLT32)
2940 {
2941 as_bad (_("(plt) is only valid on branch targets"));
2942 reloc = BFD_RELOC_UNUSED;
2943 size = 0;
2944 }
2945
2946 if (size > nbytes)
2947 as_bad (_("%s relocations do not fit in %d bytes"),
2948 howto->name, nbytes);
2949 else
2950 {
2951 /* We've parsed an expression stopping at O_symbol.
2952 But there may be more expression left now that we
2953 have parsed the relocation marker. Parse it again.
2954 XXX Surely there is a cleaner way to do this. */
2955 char *p = input_line_pointer;
2956 int offset;
2957 char *save_buf = alloca (input_line_pointer - base);
2958 memcpy (save_buf, base, input_line_pointer - base);
2959 memmove (base + (input_line_pointer - before_reloc),
2960 base, before_reloc - base);
2961
2962 input_line_pointer = base + (input_line_pointer-before_reloc);
2963 expression (&exp);
2964 memcpy (base, save_buf, p - base);
2965
2966 offset = nbytes - size;
2967 p = frag_more ((int) nbytes);
2968 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
2969 size, &exp, 0, reloc);
2970 }
2971 }
2972 }
2973 }
2974 while (*input_line_pointer++ == ',');
2975
2976 /* Put terminator back into stream. */
2977 input_line_pointer --;
2978 demand_empty_rest_of_line ();
2979 }
2980
2981
2982 /* Parse a .rel31 directive. */
2983
2984 static void
2985 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
2986 {
2987 expressionS exp;
2988 char *p;
2989 valueT highbit;
2990
2991 highbit = 0;
2992 if (*input_line_pointer == '1')
2993 highbit = 0x80000000;
2994 else if (*input_line_pointer != '0')
2995 as_bad (_("expected 0 or 1"));
2996
2997 input_line_pointer++;
2998 if (*input_line_pointer != ',')
2999 as_bad (_("missing comma"));
3000 input_line_pointer++;
3001
3002 #ifdef md_flush_pending_output
3003 md_flush_pending_output ();
3004 #endif
3005
3006 #ifdef md_cons_align
3007 md_cons_align (4);
3008 #endif
3009
3010 mapping_state (MAP_DATA);
3011
3012 expression (&exp);
3013
3014 p = frag_more (4);
3015 md_number_to_chars (p, highbit, 4);
3016 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3017 BFD_RELOC_ARM_PREL31);
3018
3019 demand_empty_rest_of_line ();
3020 }
3021
3022 /* Directives: AEABI stack-unwind tables. */
3023
3024 /* Parse an unwind_fnstart directive. Simply records the current location. */
3025
3026 static void
3027 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3028 {
3029 demand_empty_rest_of_line ();
3030 /* Mark the start of the function. */
3031 unwind.proc_start = expr_build_dot ();
3032
3033 /* Reset the rest of the unwind info. */
3034 unwind.opcode_count = 0;
3035 unwind.table_entry = NULL;
3036 unwind.personality_routine = NULL;
3037 unwind.personality_index = -1;
3038 unwind.frame_size = 0;
3039 unwind.fp_offset = 0;
3040 unwind.fp_reg = 13;
3041 unwind.fp_used = 0;
3042 unwind.sp_restored = 0;
3043 }
3044
3045
3046 /* Parse a handlerdata directive. Creates the exception handling table entry
3047 for the function. */
3048
3049 static void
3050 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3051 {
3052 demand_empty_rest_of_line ();
3053 if (unwind.table_entry)
3054 as_bad (_("dupicate .handlerdata directive"));
3055
3056 create_unwind_entry (1);
3057 }
3058
3059 /* Parse an unwind_fnend directive. Generates the index table entry. */
3060
3061 static void
3062 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3063 {
3064 long where;
3065 char *ptr;
3066 valueT val;
3067
3068 demand_empty_rest_of_line ();
3069
3070 /* Add eh table entry. */
3071 if (unwind.table_entry == NULL)
3072 val = create_unwind_entry (0);
3073 else
3074 val = 0;
3075
3076 /* Add index table entry. This is two words. */
3077 start_unwind_section (unwind.saved_seg, 1);
3078 frag_align (2, 0, 0);
3079 record_alignment (now_seg, 2);
3080
3081 ptr = frag_more (8);
3082 where = frag_now_fix () - 8;
3083
3084 /* Self relative offset of the function start. */
3085 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3086 BFD_RELOC_ARM_PREL31);
3087
3088 /* Indicate dependency on EHABI-defined personality routines to the
3089 linker, if it hasn't been done already. */
3090 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3091 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3092 {
3093 static const char *const name[] = {
3094 "__aeabi_unwind_cpp_pr0",
3095 "__aeabi_unwind_cpp_pr1",
3096 "__aeabi_unwind_cpp_pr2"
3097 };
3098 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3099 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3100 marked_pr_dependency |= 1 << unwind.personality_index;
3101 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3102 = marked_pr_dependency;
3103 }
3104
3105 if (val)
3106 /* Inline exception table entry. */
3107 md_number_to_chars (ptr + 4, val, 4);
3108 else
3109 /* Self relative offset of the table entry. */
3110 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3111 BFD_RELOC_ARM_PREL31);
3112
3113 /* Restore the original section. */
3114 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3115 }
3116
3117
3118 /* Parse an unwind_cantunwind directive. */
3119
3120 static void
3121 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3122 {
3123 demand_empty_rest_of_line ();
3124 if (unwind.personality_routine || unwind.personality_index != -1)
3125 as_bad (_("personality routine specified for cantunwind frame"));
3126
3127 unwind.personality_index = -2;
3128 }
3129
3130
3131 /* Parse a personalityindex directive. */
3132
3133 static void
3134 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3135 {
3136 expressionS exp;
3137
3138 if (unwind.personality_routine || unwind.personality_index != -1)
3139 as_bad (_("duplicate .personalityindex directive"));
3140
3141 expression (&exp);
3142
3143 if (exp.X_op != O_constant
3144 || exp.X_add_number < 0 || exp.X_add_number > 15)
3145 {
3146 as_bad (_("bad personality routine number"));
3147 ignore_rest_of_line ();
3148 return;
3149 }
3150
3151 unwind.personality_index = exp.X_add_number;
3152
3153 demand_empty_rest_of_line ();
3154 }
3155
3156
3157 /* Parse a personality directive. */
3158
3159 static void
3160 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3161 {
3162 char *name, *p, c;
3163
3164 if (unwind.personality_routine || unwind.personality_index != -1)
3165 as_bad (_("duplicate .personality directive"));
3166
3167 name = input_line_pointer;
3168 c = get_symbol_end ();
3169 p = input_line_pointer;
3170 unwind.personality_routine = symbol_find_or_make (name);
3171 *p = c;
3172 demand_empty_rest_of_line ();
3173 }
3174
3175
3176 /* Parse a directive saving core registers. */
3177
3178 static void
3179 s_arm_unwind_save_core (void)
3180 {
3181 valueT op;
3182 long range;
3183 int n;
3184
3185 range = parse_reg_list (&input_line_pointer);
3186 if (range == FAIL)
3187 {
3188 as_bad (_("expected register list"));
3189 ignore_rest_of_line ();
3190 return;
3191 }
3192
3193 demand_empty_rest_of_line ();
3194
3195 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3196 into .unwind_save {..., sp...}. We aren't bothered about the value of
3197 ip because it is clobbered by calls. */
3198 if (unwind.sp_restored && unwind.fp_reg == 12
3199 && (range & 0x3000) == 0x1000)
3200 {
3201 unwind.opcode_count--;
3202 unwind.sp_restored = 0;
3203 range = (range | 0x2000) & ~0x1000;
3204 unwind.pending_offset = 0;
3205 }
3206
3207 /* Pop r4-r15. */
3208 if (range & 0xfff0)
3209 {
3210 /* See if we can use the short opcodes. These pop a block of up to 8
3211 registers starting with r4, plus maybe r14. */
3212 for (n = 0; n < 8; n++)
3213 {
3214 /* Break at the first non-saved register. */
3215 if ((range & (1 << (n + 4))) == 0)
3216 break;
3217 }
3218 /* See if there are any other bits set. */
3219 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3220 {
3221 /* Use the long form. */
3222 op = 0x8000 | ((range >> 4) & 0xfff);
3223 add_unwind_opcode (op, 2);
3224 }
3225 else
3226 {
3227 /* Use the short form. */
3228 if (range & 0x4000)
3229 op = 0xa8; /* Pop r14. */
3230 else
3231 op = 0xa0; /* Do not pop r14. */
3232 op |= (n - 1);
3233 add_unwind_opcode (op, 1);
3234 }
3235 }
3236
3237 /* Pop r0-r3. */
3238 if (range & 0xf)
3239 {
3240 op = 0xb100 | (range & 0xf);
3241 add_unwind_opcode (op, 2);
3242 }
3243
3244 /* Record the number of bytes pushed. */
3245 for (n = 0; n < 16; n++)
3246 {
3247 if (range & (1 << n))
3248 unwind.frame_size += 4;
3249 }
3250 }
3251
3252
3253 /* Parse a directive saving FPA registers. */
3254
3255 static void
3256 s_arm_unwind_save_fpa (int reg)
3257 {
3258 expressionS exp;
3259 int num_regs;
3260 valueT op;
3261
3262 /* Get Number of registers to transfer. */
3263 if (skip_past_comma (&input_line_pointer) != FAIL)
3264 expression (&exp);
3265 else
3266 exp.X_op = O_illegal;
3267
3268 if (exp.X_op != O_constant)
3269 {
3270 as_bad (_("expected , <constant>"));
3271 ignore_rest_of_line ();
3272 return;
3273 }
3274
3275 num_regs = exp.X_add_number;
3276
3277 if (num_regs < 1 || num_regs > 4)
3278 {
3279 as_bad (_("number of registers must be in the range [1:4]"));
3280 ignore_rest_of_line ();
3281 return;
3282 }
3283
3284 demand_empty_rest_of_line ();
3285
3286 if (reg == 4)
3287 {
3288 /* Short form. */
3289 op = 0xb4 | (num_regs - 1);
3290 add_unwind_opcode (op, 1);
3291 }
3292 else
3293 {
3294 /* Long form. */
3295 op = 0xc800 | (reg << 4) | (num_regs - 1);
3296 add_unwind_opcode (op, 2);
3297 }
3298 unwind.frame_size += num_regs * 12;
3299 }
3300
3301
3302 /* Parse a directive saving VFP registers for ARMv6 and above. */
3303
3304 static void
3305 s_arm_unwind_save_vfp_armv6 (void)
3306 {
3307 int count;
3308 unsigned int start;
3309 valueT op;
3310 int num_vfpv3_regs = 0;
3311 int num_regs_below_16;
3312
3313 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3314 if (count == FAIL)
3315 {
3316 as_bad (_("expected register list"));
3317 ignore_rest_of_line ();
3318 return;
3319 }
3320
3321 demand_empty_rest_of_line ();
3322
3323 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3324 than FSTMX/FLDMX-style ones). */
3325
3326 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3327 if (start >= 16)
3328 num_vfpv3_regs = count;
3329 else if (start + count > 16)
3330 num_vfpv3_regs = start + count - 16;
3331
3332 if (num_vfpv3_regs > 0)
3333 {
3334 int start_offset = start > 16 ? start - 16 : 0;
3335 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3336 add_unwind_opcode (op, 2);
3337 }
3338
3339 /* Generate opcode for registers numbered in the range 0 .. 15. */
3340 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3341 assert (num_regs_below_16 + num_vfpv3_regs == count);
3342 if (num_regs_below_16 > 0)
3343 {
3344 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3345 add_unwind_opcode (op, 2);
3346 }
3347
3348 unwind.frame_size += count * 8;
3349 }
3350
3351
3352 /* Parse a directive saving VFP registers for pre-ARMv6. */
3353
3354 static void
3355 s_arm_unwind_save_vfp (void)
3356 {
3357 int count;
3358 unsigned int reg;
3359 valueT op;
3360
3361 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3362 if (count == FAIL)
3363 {
3364 as_bad (_("expected register list"));
3365 ignore_rest_of_line ();
3366 return;
3367 }
3368
3369 demand_empty_rest_of_line ();
3370
3371 if (reg == 8)
3372 {
3373 /* Short form. */
3374 op = 0xb8 | (count - 1);
3375 add_unwind_opcode (op, 1);
3376 }
3377 else
3378 {
3379 /* Long form. */
3380 op = 0xb300 | (reg << 4) | (count - 1);
3381 add_unwind_opcode (op, 2);
3382 }
3383 unwind.frame_size += count * 8 + 4;
3384 }
3385
3386
3387 /* Parse a directive saving iWMMXt data registers. */
3388
3389 static void
3390 s_arm_unwind_save_mmxwr (void)
3391 {
3392 int reg;
3393 int hi_reg;
3394 int i;
3395 unsigned mask = 0;
3396 valueT op;
3397
3398 if (*input_line_pointer == '{')
3399 input_line_pointer++;
3400
3401 do
3402 {
3403 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3404
3405 if (reg == FAIL)
3406 {
3407 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
3408 goto error;
3409 }
3410
3411 if (mask >> reg)
3412 as_tsktsk (_("register list not in ascending order"));
3413 mask |= 1 << reg;
3414
3415 if (*input_line_pointer == '-')
3416 {
3417 input_line_pointer++;
3418 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3419 if (hi_reg == FAIL)
3420 {
3421 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
3422 goto error;
3423 }
3424 else if (reg >= hi_reg)
3425 {
3426 as_bad (_("bad register range"));
3427 goto error;
3428 }
3429 for (; reg < hi_reg; reg++)
3430 mask |= 1 << reg;
3431 }
3432 }
3433 while (skip_past_comma (&input_line_pointer) != FAIL);
3434
3435 if (*input_line_pointer == '}')
3436 input_line_pointer++;
3437
3438 demand_empty_rest_of_line ();
3439
3440 /* Generate any deferred opcodes because we're going to be looking at
3441 the list. */
3442 flush_pending_unwind ();
3443
3444 for (i = 0; i < 16; i++)
3445 {
3446 if (mask & (1 << i))
3447 unwind.frame_size += 8;
3448 }
3449
3450 /* Attempt to combine with a previous opcode. We do this because gcc
3451 likes to output separate unwind directives for a single block of
3452 registers. */
3453 if (unwind.opcode_count > 0)
3454 {
3455 i = unwind.opcodes[unwind.opcode_count - 1];
3456 if ((i & 0xf8) == 0xc0)
3457 {
3458 i &= 7;
3459 /* Only merge if the blocks are contiguous. */
3460 if (i < 6)
3461 {
3462 if ((mask & 0xfe00) == (1 << 9))
3463 {
3464 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3465 unwind.opcode_count--;
3466 }
3467 }
3468 else if (i == 6 && unwind.opcode_count >= 2)
3469 {
3470 i = unwind.opcodes[unwind.opcode_count - 2];
3471 reg = i >> 4;
3472 i &= 0xf;
3473
3474 op = 0xffff << (reg - 1);
3475 if (reg > 0
3476 && ((mask & op) == (1u << (reg - 1))))
3477 {
3478 op = (1 << (reg + i + 1)) - 1;
3479 op &= ~((1 << reg) - 1);
3480 mask |= op;
3481 unwind.opcode_count -= 2;
3482 }
3483 }
3484 }
3485 }
3486
3487 hi_reg = 15;
3488 /* We want to generate opcodes in the order the registers have been
3489 saved, ie. descending order. */
3490 for (reg = 15; reg >= -1; reg--)
3491 {
3492 /* Save registers in blocks. */
3493 if (reg < 0
3494 || !(mask & (1 << reg)))
3495 {
3496 /* We found an unsaved reg. Generate opcodes to save the
3497 preceeding block. */
3498 if (reg != hi_reg)
3499 {
3500 if (reg == 9)
3501 {
3502 /* Short form. */
3503 op = 0xc0 | (hi_reg - 10);
3504 add_unwind_opcode (op, 1);
3505 }
3506 else
3507 {
3508 /* Long form. */
3509 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3510 add_unwind_opcode (op, 2);
3511 }
3512 }
3513 hi_reg = reg - 1;
3514 }
3515 }
3516
3517 return;
3518 error:
3519 ignore_rest_of_line ();
3520 }
3521
3522 static void
3523 s_arm_unwind_save_mmxwcg (void)
3524 {
3525 int reg;
3526 int hi_reg;
3527 unsigned mask = 0;
3528 valueT op;
3529
3530 if (*input_line_pointer == '{')
3531 input_line_pointer++;
3532
3533 do
3534 {
3535 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3536
3537 if (reg == FAIL)
3538 {
3539 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
3540 goto error;
3541 }
3542
3543 reg -= 8;
3544 if (mask >> reg)
3545 as_tsktsk (_("register list not in ascending order"));
3546 mask |= 1 << reg;
3547
3548 if (*input_line_pointer == '-')
3549 {
3550 input_line_pointer++;
3551 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3552 if (hi_reg == FAIL)
3553 {
3554 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
3555 goto error;
3556 }
3557 else if (reg >= hi_reg)
3558 {
3559 as_bad (_("bad register range"));
3560 goto error;
3561 }
3562 for (; reg < hi_reg; reg++)
3563 mask |= 1 << reg;
3564 }
3565 }
3566 while (skip_past_comma (&input_line_pointer) != FAIL);
3567
3568 if (*input_line_pointer == '}')
3569 input_line_pointer++;
3570
3571 demand_empty_rest_of_line ();
3572
3573 /* Generate any deferred opcodes because we're going to be looking at
3574 the list. */
3575 flush_pending_unwind ();
3576
3577 for (reg = 0; reg < 16; reg++)
3578 {
3579 if (mask & (1 << reg))
3580 unwind.frame_size += 4;
3581 }
3582 op = 0xc700 | mask;
3583 add_unwind_opcode (op, 2);
3584 return;
3585 error:
3586 ignore_rest_of_line ();
3587 }
3588
3589
3590 /* Parse an unwind_save directive.
3591 If the argument is non-zero, this is a .vsave directive. */
3592
3593 static void
3594 s_arm_unwind_save (int arch_v6)
3595 {
3596 char *peek;
3597 struct reg_entry *reg;
3598 bfd_boolean had_brace = FALSE;
3599
3600 /* Figure out what sort of save we have. */
3601 peek = input_line_pointer;
3602
3603 if (*peek == '{')
3604 {
3605 had_brace = TRUE;
3606 peek++;
3607 }
3608
3609 reg = arm_reg_parse_multi (&peek);
3610
3611 if (!reg)
3612 {
3613 as_bad (_("register expected"));
3614 ignore_rest_of_line ();
3615 return;
3616 }
3617
3618 switch (reg->type)
3619 {
3620 case REG_TYPE_FN:
3621 if (had_brace)
3622 {
3623 as_bad (_("FPA .unwind_save does not take a register list"));
3624 ignore_rest_of_line ();
3625 return;
3626 }
3627 s_arm_unwind_save_fpa (reg->number);
3628 return;
3629
3630 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
3631 case REG_TYPE_VFD:
3632 if (arch_v6)
3633 s_arm_unwind_save_vfp_armv6 ();
3634 else
3635 s_arm_unwind_save_vfp ();
3636 return;
3637 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
3638 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
3639
3640 default:
3641 as_bad (_(".unwind_save does not support this kind of register"));
3642 ignore_rest_of_line ();
3643 }
3644 }
3645
3646
3647 /* Parse an unwind_movsp directive. */
3648
3649 static void
3650 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
3651 {
3652 int reg;
3653 valueT op;
3654 int offset;
3655
3656 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3657 if (reg == FAIL)
3658 {
3659 as_bad (_(reg_expected_msgs[REG_TYPE_RN]));
3660 ignore_rest_of_line ();
3661 return;
3662 }
3663
3664 /* Optional constant. */
3665 if (skip_past_comma (&input_line_pointer) != FAIL)
3666 {
3667 if (immediate_for_directive (&offset) == FAIL)
3668 return;
3669 }
3670 else
3671 offset = 0;
3672
3673 demand_empty_rest_of_line ();
3674
3675 if (reg == REG_SP || reg == REG_PC)
3676 {
3677 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
3678 return;
3679 }
3680
3681 if (unwind.fp_reg != REG_SP)
3682 as_bad (_("unexpected .unwind_movsp directive"));
3683
3684 /* Generate opcode to restore the value. */
3685 op = 0x90 | reg;
3686 add_unwind_opcode (op, 1);
3687
3688 /* Record the information for later. */
3689 unwind.fp_reg = reg;
3690 unwind.fp_offset = unwind.frame_size - offset;
3691 unwind.sp_restored = 1;
3692 }
3693
3694 /* Parse an unwind_pad directive. */
3695
3696 static void
3697 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
3698 {
3699 int offset;
3700
3701 if (immediate_for_directive (&offset) == FAIL)
3702 return;
3703
3704 if (offset & 3)
3705 {
3706 as_bad (_("stack increment must be multiple of 4"));
3707 ignore_rest_of_line ();
3708 return;
3709 }
3710
3711 /* Don't generate any opcodes, just record the details for later. */
3712 unwind.frame_size += offset;
3713 unwind.pending_offset += offset;
3714
3715 demand_empty_rest_of_line ();
3716 }
3717
3718 /* Parse an unwind_setfp directive. */
3719
3720 static void
3721 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
3722 {
3723 int sp_reg;
3724 int fp_reg;
3725 int offset;
3726
3727 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3728 if (skip_past_comma (&input_line_pointer) == FAIL)
3729 sp_reg = FAIL;
3730 else
3731 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3732
3733 if (fp_reg == FAIL || sp_reg == FAIL)
3734 {
3735 as_bad (_("expected <reg>, <reg>"));
3736 ignore_rest_of_line ();
3737 return;
3738 }
3739
3740 /* Optional constant. */
3741 if (skip_past_comma (&input_line_pointer) != FAIL)
3742 {
3743 if (immediate_for_directive (&offset) == FAIL)
3744 return;
3745 }
3746 else
3747 offset = 0;
3748
3749 demand_empty_rest_of_line ();
3750
3751 if (sp_reg != 13 && sp_reg != unwind.fp_reg)
3752 {
3753 as_bad (_("register must be either sp or set by a previous"
3754 "unwind_movsp directive"));
3755 return;
3756 }
3757
3758 /* Don't generate any opcodes, just record the information for later. */
3759 unwind.fp_reg = fp_reg;
3760 unwind.fp_used = 1;
3761 if (sp_reg == 13)
3762 unwind.fp_offset = unwind.frame_size - offset;
3763 else
3764 unwind.fp_offset -= offset;
3765 }
3766
3767 /* Parse an unwind_raw directive. */
3768
3769 static void
3770 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
3771 {
3772 expressionS exp;
3773 /* This is an arbitrary limit. */
3774 unsigned char op[16];
3775 int count;
3776
3777 expression (&exp);
3778 if (exp.X_op == O_constant
3779 && skip_past_comma (&input_line_pointer) != FAIL)
3780 {
3781 unwind.frame_size += exp.X_add_number;
3782 expression (&exp);
3783 }
3784 else
3785 exp.X_op = O_illegal;
3786
3787 if (exp.X_op != O_constant)
3788 {
3789 as_bad (_("expected <offset>, <opcode>"));
3790 ignore_rest_of_line ();
3791 return;
3792 }
3793
3794 count = 0;
3795
3796 /* Parse the opcode. */
3797 for (;;)
3798 {
3799 if (count >= 16)
3800 {
3801 as_bad (_("unwind opcode too long"));
3802 ignore_rest_of_line ();
3803 }
3804 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
3805 {
3806 as_bad (_("invalid unwind opcode"));
3807 ignore_rest_of_line ();
3808 return;
3809 }
3810 op[count++] = exp.X_add_number;
3811
3812 /* Parse the next byte. */
3813 if (skip_past_comma (&input_line_pointer) == FAIL)
3814 break;
3815
3816 expression (&exp);
3817 }
3818
3819 /* Add the opcode bytes in reverse order. */
3820 while (count--)
3821 add_unwind_opcode (op[count], 1);
3822
3823 demand_empty_rest_of_line ();
3824 }
3825
3826
3827 /* Parse a .eabi_attribute directive. */
3828
3829 static void
3830 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
3831 {
3832 expressionS exp;
3833 bfd_boolean is_string;
3834 int tag;
3835 unsigned int i = 0;
3836 char *s = NULL;
3837 char saved_char;
3838
3839 expression (& exp);
3840 if (exp.X_op != O_constant)
3841 goto bad;
3842
3843 tag = exp.X_add_number;
3844 if (tag == 4 || tag == 5 || tag == 32 || (tag > 32 && (tag & 1) != 0))
3845 is_string = 1;
3846 else
3847 is_string = 0;
3848
3849 if (skip_past_comma (&input_line_pointer) == FAIL)
3850 goto bad;
3851 if (tag == 32 || !is_string)
3852 {
3853 expression (& exp);
3854 if (exp.X_op != O_constant)
3855 {
3856 as_bad (_("expected numeric constant"));
3857 ignore_rest_of_line ();
3858 return;
3859 }
3860 i = exp.X_add_number;
3861 }
3862 if (tag == Tag_compatibility
3863 && skip_past_comma (&input_line_pointer) == FAIL)
3864 {
3865 as_bad (_("expected comma"));
3866 ignore_rest_of_line ();
3867 return;
3868 }
3869 if (is_string)
3870 {
3871 skip_whitespace(input_line_pointer);
3872 if (*input_line_pointer != '"')
3873 goto bad_string;
3874 input_line_pointer++;
3875 s = input_line_pointer;
3876 while (*input_line_pointer && *input_line_pointer != '"')
3877 input_line_pointer++;
3878 if (*input_line_pointer != '"')
3879 goto bad_string;
3880 saved_char = *input_line_pointer;
3881 *input_line_pointer = 0;
3882 }
3883 else
3884 {
3885 s = NULL;
3886 saved_char = 0;
3887 }
3888
3889 if (tag == Tag_compatibility)
3890 elf32_arm_add_eabi_attr_compat (stdoutput, i, s);
3891 else if (is_string)
3892 elf32_arm_add_eabi_attr_string (stdoutput, tag, s);
3893 else
3894 elf32_arm_add_eabi_attr_int (stdoutput, tag, i);
3895
3896 if (s)
3897 {
3898 *input_line_pointer = saved_char;
3899 input_line_pointer++;
3900 }
3901 demand_empty_rest_of_line ();
3902 return;
3903 bad_string:
3904 as_bad (_("bad string constant"));
3905 ignore_rest_of_line ();
3906 return;
3907 bad:
3908 as_bad (_("expected <tag> , <value>"));
3909 ignore_rest_of_line ();
3910 }
3911 #endif /* OBJ_ELF */
3912
3913 static void s_arm_arch (int);
3914 static void s_arm_object_arch (int);
3915 static void s_arm_cpu (int);
3916 static void s_arm_fpu (int);
3917
3918 #ifdef TE_PE
3919
3920 static void
3921 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
3922 {
3923 expressionS exp;
3924
3925 do
3926 {
3927 expression (&exp);
3928 if (exp.X_op == O_symbol)
3929 exp.X_op = O_secrel;
3930
3931 emit_expr (&exp, 4);
3932 }
3933 while (*input_line_pointer++ == ',');
3934
3935 input_line_pointer--;
3936 demand_empty_rest_of_line ();
3937 }
3938 #endif /* TE_PE */
3939
3940 /* This table describes all the machine specific pseudo-ops the assembler
3941 has to support. The fields are:
3942 pseudo-op name without dot
3943 function to call to execute this pseudo-op
3944 Integer arg to pass to the function. */
3945
3946 const pseudo_typeS md_pseudo_table[] =
3947 {
3948 /* Never called because '.req' does not start a line. */
3949 { "req", s_req, 0 },
3950 /* Following two are likewise never called. */
3951 { "dn", s_dn, 0 },
3952 { "qn", s_qn, 0 },
3953 { "unreq", s_unreq, 0 },
3954 { "bss", s_bss, 0 },
3955 { "align", s_align, 0 },
3956 { "arm", s_arm, 0 },
3957 { "thumb", s_thumb, 0 },
3958 { "code", s_code, 0 },
3959 { "force_thumb", s_force_thumb, 0 },
3960 { "thumb_func", s_thumb_func, 0 },
3961 { "thumb_set", s_thumb_set, 0 },
3962 { "even", s_even, 0 },
3963 { "ltorg", s_ltorg, 0 },
3964 { "pool", s_ltorg, 0 },
3965 { "syntax", s_syntax, 0 },
3966 { "cpu", s_arm_cpu, 0 },
3967 { "arch", s_arm_arch, 0 },
3968 { "object_arch", s_arm_object_arch, 0 },
3969 { "fpu", s_arm_fpu, 0 },
3970 #ifdef OBJ_ELF
3971 { "word", s_arm_elf_cons, 4 },
3972 { "long", s_arm_elf_cons, 4 },
3973 { "rel31", s_arm_rel31, 0 },
3974 { "fnstart", s_arm_unwind_fnstart, 0 },
3975 { "fnend", s_arm_unwind_fnend, 0 },
3976 { "cantunwind", s_arm_unwind_cantunwind, 0 },
3977 { "personality", s_arm_unwind_personality, 0 },
3978 { "personalityindex", s_arm_unwind_personalityindex, 0 },
3979 { "handlerdata", s_arm_unwind_handlerdata, 0 },
3980 { "save", s_arm_unwind_save, 0 },
3981 { "vsave", s_arm_unwind_save, 1 },
3982 { "movsp", s_arm_unwind_movsp, 0 },
3983 { "pad", s_arm_unwind_pad, 0 },
3984 { "setfp", s_arm_unwind_setfp, 0 },
3985 { "unwind_raw", s_arm_unwind_raw, 0 },
3986 { "eabi_attribute", s_arm_eabi_attribute, 0 },
3987 #else
3988 { "word", cons, 4},
3989
3990 /* These are used for dwarf. */
3991 {"2byte", cons, 2},
3992 {"4byte", cons, 4},
3993 {"8byte", cons, 8},
3994 /* These are used for dwarf2. */
3995 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
3996 { "loc", dwarf2_directive_loc, 0 },
3997 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
3998 #endif
3999 { "extend", float_cons, 'x' },
4000 { "ldouble", float_cons, 'x' },
4001 { "packed", float_cons, 'p' },
4002 #ifdef TE_PE
4003 {"secrel32", pe_directive_secrel, 0},
4004 #endif
4005 { 0, 0, 0 }
4006 };
4007 \f
4008 /* Parser functions used exclusively in instruction operands. */
4009
4010 /* Generic immediate-value read function for use in insn parsing.
4011 STR points to the beginning of the immediate (the leading #);
4012 VAL receives the value; if the value is outside [MIN, MAX]
4013 issue an error. PREFIX_OPT is true if the immediate prefix is
4014 optional. */
4015
4016 static int
4017 parse_immediate (char **str, int *val, int min, int max,
4018 bfd_boolean prefix_opt)
4019 {
4020 expressionS exp;
4021 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4022 if (exp.X_op != O_constant)
4023 {
4024 inst.error = _("constant expression required");
4025 return FAIL;
4026 }
4027
4028 if (exp.X_add_number < min || exp.X_add_number > max)
4029 {
4030 inst.error = _("immediate value out of range");
4031 return FAIL;
4032 }
4033
4034 *val = exp.X_add_number;
4035 return SUCCESS;
4036 }
4037
4038 /* Less-generic immediate-value read function with the possibility of loading a
4039 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4040 instructions. Puts the result directly in inst.operands[i]. */
4041
4042 static int
4043 parse_big_immediate (char **str, int i)
4044 {
4045 expressionS exp;
4046 char *ptr = *str;
4047
4048 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4049
4050 if (exp.X_op == O_constant)
4051 {
4052 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4054 O_constant. We have to be careful not to break compilation for
4055 32-bit X_add_number, though. */
4056 if ((exp.X_add_number & ~0xffffffffl) != 0)
4057 {
4058 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4059 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4060 inst.operands[i].regisimm = 1;
4061 }
4062 }
4063 else if (exp.X_op == O_big
4064 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4065 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4066 {
4067 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4068 /* Bignums have their least significant bits in
4069 generic_bignum[0]. Make sure we put 32 bits in imm and
4070 32 bits in reg, in a (hopefully) portable way. */
4071 assert (parts != 0);
4072 inst.operands[i].imm = 0;
4073 for (j = 0; j < parts; j++, idx++)
4074 inst.operands[i].imm |= generic_bignum[idx]
4075 << (LITTLENUM_NUMBER_OF_BITS * j);
4076 inst.operands[i].reg = 0;
4077 for (j = 0; j < parts; j++, idx++)
4078 inst.operands[i].reg |= generic_bignum[idx]
4079 << (LITTLENUM_NUMBER_OF_BITS * j);
4080 inst.operands[i].regisimm = 1;
4081 }
4082 else
4083 return FAIL;
4084
4085 *str = ptr;
4086
4087 return SUCCESS;
4088 }
4089
4090 /* Returns the pseudo-register number of an FPA immediate constant,
4091 or FAIL if there isn't a valid constant here. */
4092
4093 static int
4094 parse_fpa_immediate (char ** str)
4095 {
4096 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4097 char * save_in;
4098 expressionS exp;
4099 int i;
4100 int j;
4101
4102 /* First try and match exact strings, this is to guarantee
4103 that some formats will work even for cross assembly. */
4104
4105 for (i = 0; fp_const[i]; i++)
4106 {
4107 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4108 {
4109 char *start = *str;
4110
4111 *str += strlen (fp_const[i]);
4112 if (is_end_of_line[(unsigned char) **str])
4113 return i + 8;
4114 *str = start;
4115 }
4116 }
4117
4118 /* Just because we didn't get a match doesn't mean that the constant
4119 isn't valid, just that it is in a format that we don't
4120 automatically recognize. Try parsing it with the standard
4121 expression routines. */
4122
4123 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4124
4125 /* Look for a raw floating point number. */
4126 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4127 && is_end_of_line[(unsigned char) *save_in])
4128 {
4129 for (i = 0; i < NUM_FLOAT_VALS; i++)
4130 {
4131 for (j = 0; j < MAX_LITTLENUMS; j++)
4132 {
4133 if (words[j] != fp_values[i][j])
4134 break;
4135 }
4136
4137 if (j == MAX_LITTLENUMS)
4138 {
4139 *str = save_in;
4140 return i + 8;
4141 }
4142 }
4143 }
4144
4145 /* Try and parse a more complex expression, this will probably fail
4146 unless the code uses a floating point prefix (eg "0f"). */
4147 save_in = input_line_pointer;
4148 input_line_pointer = *str;
4149 if (expression (&exp) == absolute_section
4150 && exp.X_op == O_big
4151 && exp.X_add_number < 0)
4152 {
4153 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4154 Ditto for 15. */
4155 if (gen_to_words (words, 5, (long) 15) == 0)
4156 {
4157 for (i = 0; i < NUM_FLOAT_VALS; i++)
4158 {
4159 for (j = 0; j < MAX_LITTLENUMS; j++)
4160 {
4161 if (words[j] != fp_values[i][j])
4162 break;
4163 }
4164
4165 if (j == MAX_LITTLENUMS)
4166 {
4167 *str = input_line_pointer;
4168 input_line_pointer = save_in;
4169 return i + 8;
4170 }
4171 }
4172 }
4173 }
4174
4175 *str = input_line_pointer;
4176 input_line_pointer = save_in;
4177 inst.error = _("invalid FPA immediate expression");
4178 return FAIL;
4179 }
4180
4181 /* Returns 1 if a number has "quarter-precision" float format
4182 0baBbbbbbc defgh000 00000000 00000000. */
4183
4184 static int
4185 is_quarter_float (unsigned imm)
4186 {
4187 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4188 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4189 }
4190
4191 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4192 0baBbbbbbc defgh000 00000000 00000000.
4193 The zero and minus-zero cases need special handling, since they can't be
4194 encoded in the "quarter-precision" float format, but can nonetheless be
4195 loaded as integer constants. */
4196
4197 static unsigned
4198 parse_qfloat_immediate (char **ccp, int *immed)
4199 {
4200 char *str = *ccp;
4201 char *fpnum;
4202 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4203 int found_fpchar = 0;
4204
4205 skip_past_char (&str, '#');
4206
4207 /* We must not accidentally parse an integer as a floating-point number. Make
4208 sure that the value we parse is not an integer by checking for special
4209 characters '.' or 'e'.
4210 FIXME: This is a horrible hack, but doing better is tricky because type
4211 information isn't in a very usable state at parse time. */
4212 fpnum = str;
4213 skip_whitespace (fpnum);
4214
4215 if (strncmp (fpnum, "0x", 2) == 0)
4216 return FAIL;
4217 else
4218 {
4219 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4220 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4221 {
4222 found_fpchar = 1;
4223 break;
4224 }
4225
4226 if (!found_fpchar)
4227 return FAIL;
4228 }
4229
4230 if ((str = atof_ieee (str, 's', words)) != NULL)
4231 {
4232 unsigned fpword = 0;
4233 int i;
4234
4235 /* Our FP word must be 32 bits (single-precision FP). */
4236 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4237 {
4238 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4239 fpword |= words[i];
4240 }
4241
4242 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4243 *immed = fpword;
4244 else
4245 return FAIL;
4246
4247 *ccp = str;
4248
4249 return SUCCESS;
4250 }
4251
4252 return FAIL;
4253 }
4254
4255 /* Shift operands. */
4256 enum shift_kind
4257 {
4258 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4259 };
4260
4261 struct asm_shift_name
4262 {
4263 const char *name;
4264 enum shift_kind kind;
4265 };
4266
4267 /* Third argument to parse_shift. */
4268 enum parse_shift_mode
4269 {
4270 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4271 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4272 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4273 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4274 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4275 };
4276
4277 /* Parse a <shift> specifier on an ARM data processing instruction.
4278 This has three forms:
4279
4280 (LSL|LSR|ASL|ASR|ROR) Rs
4281 (LSL|LSR|ASL|ASR|ROR) #imm
4282 RRX
4283
4284 Note that ASL is assimilated to LSL in the instruction encoding, and
4285 RRX to ROR #0 (which cannot be written as such). */
4286
4287 static int
4288 parse_shift (char **str, int i, enum parse_shift_mode mode)
4289 {
4290 const struct asm_shift_name *shift_name;
4291 enum shift_kind shift;
4292 char *s = *str;
4293 char *p = s;
4294 int reg;
4295
4296 for (p = *str; ISALPHA (*p); p++)
4297 ;
4298
4299 if (p == *str)
4300 {
4301 inst.error = _("shift expression expected");
4302 return FAIL;
4303 }
4304
4305 shift_name = hash_find_n (arm_shift_hsh, *str, p - *str);
4306
4307 if (shift_name == NULL)
4308 {
4309 inst.error = _("shift expression expected");
4310 return FAIL;
4311 }
4312
4313 shift = shift_name->kind;
4314
4315 switch (mode)
4316 {
4317 case NO_SHIFT_RESTRICT:
4318 case SHIFT_IMMEDIATE: break;
4319
4320 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4321 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4322 {
4323 inst.error = _("'LSL' or 'ASR' required");
4324 return FAIL;
4325 }
4326 break;
4327
4328 case SHIFT_LSL_IMMEDIATE:
4329 if (shift != SHIFT_LSL)
4330 {
4331 inst.error = _("'LSL' required");
4332 return FAIL;
4333 }
4334 break;
4335
4336 case SHIFT_ASR_IMMEDIATE:
4337 if (shift != SHIFT_ASR)
4338 {
4339 inst.error = _("'ASR' required");
4340 return FAIL;
4341 }
4342 break;
4343
4344 default: abort ();
4345 }
4346
4347 if (shift != SHIFT_RRX)
4348 {
4349 /* Whitespace can appear here if the next thing is a bare digit. */
4350 skip_whitespace (p);
4351
4352 if (mode == NO_SHIFT_RESTRICT
4353 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4354 {
4355 inst.operands[i].imm = reg;
4356 inst.operands[i].immisreg = 1;
4357 }
4358 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4359 return FAIL;
4360 }
4361 inst.operands[i].shift_kind = shift;
4362 inst.operands[i].shifted = 1;
4363 *str = p;
4364 return SUCCESS;
4365 }
4366
4367 /* Parse a <shifter_operand> for an ARM data processing instruction:
4368
4369 #<immediate>
4370 #<immediate>, <rotate>
4371 <Rm>
4372 <Rm>, <shift>
4373
4374 where <shift> is defined by parse_shift above, and <rotate> is a
4375 multiple of 2 between 0 and 30. Validation of immediate operands
4376 is deferred to md_apply_fix. */
4377
4378 static int
4379 parse_shifter_operand (char **str, int i)
4380 {
4381 int value;
4382 expressionS expr;
4383
4384 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4385 {
4386 inst.operands[i].reg = value;
4387 inst.operands[i].isreg = 1;
4388
4389 /* parse_shift will override this if appropriate */
4390 inst.reloc.exp.X_op = O_constant;
4391 inst.reloc.exp.X_add_number = 0;
4392
4393 if (skip_past_comma (str) == FAIL)
4394 return SUCCESS;
4395
4396 /* Shift operation on register. */
4397 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4398 }
4399
4400 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4401 return FAIL;
4402
4403 if (skip_past_comma (str) == SUCCESS)
4404 {
4405 /* #x, y -- ie explicit rotation by Y. */
4406 if (my_get_expression (&expr, str, GE_NO_PREFIX))
4407 return FAIL;
4408
4409 if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4410 {
4411 inst.error = _("constant expression expected");
4412 return FAIL;
4413 }
4414
4415 value = expr.X_add_number;
4416 if (value < 0 || value > 30 || value % 2 != 0)
4417 {
4418 inst.error = _("invalid rotation");
4419 return FAIL;
4420 }
4421 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4422 {
4423 inst.error = _("invalid constant");
4424 return FAIL;
4425 }
4426
4427 /* Convert to decoded value. md_apply_fix will put it back. */
4428 inst.reloc.exp.X_add_number
4429 = (((inst.reloc.exp.X_add_number << (32 - value))
4430 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
4431 }
4432
4433 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4434 inst.reloc.pc_rel = 0;
4435 return SUCCESS;
4436 }
4437
4438 /* Group relocation information. Each entry in the table contains the
4439 textual name of the relocation as may appear in assembler source
4440 and must end with a colon.
4441 Along with this textual name are the relocation codes to be used if
4442 the corresponding instruction is an ALU instruction (ADD or SUB only),
4443 an LDR, an LDRS, or an LDC. */
4444
4445 struct group_reloc_table_entry
4446 {
4447 const char *name;
4448 int alu_code;
4449 int ldr_code;
4450 int ldrs_code;
4451 int ldc_code;
4452 };
4453
4454 typedef enum
4455 {
4456 /* Varieties of non-ALU group relocation. */
4457
4458 GROUP_LDR,
4459 GROUP_LDRS,
4460 GROUP_LDC
4461 } group_reloc_type;
4462
4463 static struct group_reloc_table_entry group_reloc_table[] =
4464 { /* Program counter relative: */
4465 { "pc_g0_nc",
4466 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4467 0, /* LDR */
4468 0, /* LDRS */
4469 0 }, /* LDC */
4470 { "pc_g0",
4471 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4472 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4473 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4474 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4475 { "pc_g1_nc",
4476 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4477 0, /* LDR */
4478 0, /* LDRS */
4479 0 }, /* LDC */
4480 { "pc_g1",
4481 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4482 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4483 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4484 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4485 { "pc_g2",
4486 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4487 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4488 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4489 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4490 /* Section base relative */
4491 { "sb_g0_nc",
4492 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4493 0, /* LDR */
4494 0, /* LDRS */
4495 0 }, /* LDC */
4496 { "sb_g0",
4497 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4498 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4499 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4500 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4501 { "sb_g1_nc",
4502 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4503 0, /* LDR */
4504 0, /* LDRS */
4505 0 }, /* LDC */
4506 { "sb_g1",
4507 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4508 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4509 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4510 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4511 { "sb_g2",
4512 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4513 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4514 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4515 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4516
4517 /* Given the address of a pointer pointing to the textual name of a group
4518 relocation as may appear in assembler source, attempt to find its details
4519 in group_reloc_table. The pointer will be updated to the character after
4520 the trailing colon. On failure, FAIL will be returned; SUCCESS
4521 otherwise. On success, *entry will be updated to point at the relevant
4522 group_reloc_table entry. */
4523
4524 static int
4525 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4526 {
4527 unsigned int i;
4528 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4529 {
4530 int length = strlen (group_reloc_table[i].name);
4531
4532 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0 &&
4533 (*str)[length] == ':')
4534 {
4535 *out = &group_reloc_table[i];
4536 *str += (length + 1);
4537 return SUCCESS;
4538 }
4539 }
4540
4541 return FAIL;
4542 }
4543
4544 /* Parse a <shifter_operand> for an ARM data processing instruction
4545 (as for parse_shifter_operand) where group relocations are allowed:
4546
4547 #<immediate>
4548 #<immediate>, <rotate>
4549 #:<group_reloc>:<expression>
4550 <Rm>
4551 <Rm>, <shift>
4552
4553 where <group_reloc> is one of the strings defined in group_reloc_table.
4554 The hashes are optional.
4555
4556 Everything else is as for parse_shifter_operand. */
4557
4558 static parse_operand_result
4559 parse_shifter_operand_group_reloc (char **str, int i)
4560 {
4561 /* Determine if we have the sequence of characters #: or just :
4562 coming next. If we do, then we check for a group relocation.
4563 If we don't, punt the whole lot to parse_shifter_operand. */
4564
4565 if (((*str)[0] == '#' && (*str)[1] == ':')
4566 || (*str)[0] == ':')
4567 {
4568 struct group_reloc_table_entry *entry;
4569
4570 if ((*str)[0] == '#')
4571 (*str) += 2;
4572 else
4573 (*str)++;
4574
4575 /* Try to parse a group relocation. Anything else is an error. */
4576 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4577 {
4578 inst.error = _("unknown group relocation");
4579 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4580 }
4581
4582 /* We now have the group relocation table entry corresponding to
4583 the name in the assembler source. Next, we parse the expression. */
4584 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4585 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4586
4587 /* Record the relocation type (always the ALU variant here). */
4588 inst.reloc.type = entry->alu_code;
4589 assert (inst.reloc.type != 0);
4590
4591 return PARSE_OPERAND_SUCCESS;
4592 }
4593 else
4594 return parse_shifter_operand (str, i) == SUCCESS
4595 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4596
4597 /* Never reached. */
4598 }
4599
4600 /* Parse all forms of an ARM address expression. Information is written
4601 to inst.operands[i] and/or inst.reloc.
4602
4603 Preindexed addressing (.preind=1):
4604
4605 [Rn, #offset] .reg=Rn .reloc.exp=offset
4606 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4607 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4608 .shift_kind=shift .reloc.exp=shift_imm
4609
4610 These three may have a trailing ! which causes .writeback to be set also.
4611
4612 Postindexed addressing (.postind=1, .writeback=1):
4613
4614 [Rn], #offset .reg=Rn .reloc.exp=offset
4615 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4616 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4617 .shift_kind=shift .reloc.exp=shift_imm
4618
4619 Unindexed addressing (.preind=0, .postind=0):
4620
4621 [Rn], {option} .reg=Rn .imm=option .immisreg=0
4622
4623 Other:
4624
4625 [Rn]{!} shorthand for [Rn,#0]{!}
4626 =immediate .isreg=0 .reloc.exp=immediate
4627 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
4628
4629 It is the caller's responsibility to check for addressing modes not
4630 supported by the instruction, and to set inst.reloc.type. */
4631
4632 static parse_operand_result
4633 parse_address_main (char **str, int i, int group_relocations,
4634 group_reloc_type group_type)
4635 {
4636 char *p = *str;
4637 int reg;
4638
4639 if (skip_past_char (&p, '[') == FAIL)
4640 {
4641 if (skip_past_char (&p, '=') == FAIL)
4642 {
4643 /* bare address - translate to PC-relative offset */
4644 inst.reloc.pc_rel = 1;
4645 inst.operands[i].reg = REG_PC;
4646 inst.operands[i].isreg = 1;
4647 inst.operands[i].preind = 1;
4648 }
4649 /* else a load-constant pseudo op, no special treatment needed here */
4650
4651 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4652 return PARSE_OPERAND_FAIL;
4653
4654 *str = p;
4655 return PARSE_OPERAND_SUCCESS;
4656 }
4657
4658 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
4659 {
4660 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4661 return PARSE_OPERAND_FAIL;
4662 }
4663 inst.operands[i].reg = reg;
4664 inst.operands[i].isreg = 1;
4665
4666 if (skip_past_comma (&p) == SUCCESS)
4667 {
4668 inst.operands[i].preind = 1;
4669
4670 if (*p == '+') p++;
4671 else if (*p == '-') p++, inst.operands[i].negative = 1;
4672
4673 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4674 {
4675 inst.operands[i].imm = reg;
4676 inst.operands[i].immisreg = 1;
4677
4678 if (skip_past_comma (&p) == SUCCESS)
4679 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4680 return PARSE_OPERAND_FAIL;
4681 }
4682 else if (skip_past_char (&p, ':') == SUCCESS)
4683 {
4684 /* FIXME: '@' should be used here, but it's filtered out by generic
4685 code before we get to see it here. This may be subject to
4686 change. */
4687 expressionS exp;
4688 my_get_expression (&exp, &p, GE_NO_PREFIX);
4689 if (exp.X_op != O_constant)
4690 {
4691 inst.error = _("alignment must be constant");
4692 return PARSE_OPERAND_FAIL;
4693 }
4694 inst.operands[i].imm = exp.X_add_number << 8;
4695 inst.operands[i].immisalign = 1;
4696 /* Alignments are not pre-indexes. */
4697 inst.operands[i].preind = 0;
4698 }
4699 else
4700 {
4701 if (inst.operands[i].negative)
4702 {
4703 inst.operands[i].negative = 0;
4704 p--;
4705 }
4706
4707 if (group_relocations &&
4708 ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4709
4710 {
4711 struct group_reloc_table_entry *entry;
4712
4713 /* Skip over the #: or : sequence. */
4714 if (*p == '#')
4715 p += 2;
4716 else
4717 p++;
4718
4719 /* Try to parse a group relocation. Anything else is an
4720 error. */
4721 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
4722 {
4723 inst.error = _("unknown group relocation");
4724 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4725 }
4726
4727 /* We now have the group relocation table entry corresponding to
4728 the name in the assembler source. Next, we parse the
4729 expression. */
4730 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4731 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4732
4733 /* Record the relocation type. */
4734 switch (group_type)
4735 {
4736 case GROUP_LDR:
4737 inst.reloc.type = entry->ldr_code;
4738 break;
4739
4740 case GROUP_LDRS:
4741 inst.reloc.type = entry->ldrs_code;
4742 break;
4743
4744 case GROUP_LDC:
4745 inst.reloc.type = entry->ldc_code;
4746 break;
4747
4748 default:
4749 assert (0);
4750 }
4751
4752 if (inst.reloc.type == 0)
4753 {
4754 inst.error = _("this group relocation is not allowed on this instruction");
4755 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4756 }
4757 }
4758 else
4759 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4760 return PARSE_OPERAND_FAIL;
4761 }
4762 }
4763
4764 if (skip_past_char (&p, ']') == FAIL)
4765 {
4766 inst.error = _("']' expected");
4767 return PARSE_OPERAND_FAIL;
4768 }
4769
4770 if (skip_past_char (&p, '!') == SUCCESS)
4771 inst.operands[i].writeback = 1;
4772
4773 else if (skip_past_comma (&p) == SUCCESS)
4774 {
4775 if (skip_past_char (&p, '{') == SUCCESS)
4776 {
4777 /* [Rn], {expr} - unindexed, with option */
4778 if (parse_immediate (&p, &inst.operands[i].imm,
4779 0, 255, TRUE) == FAIL)
4780 return PARSE_OPERAND_FAIL;
4781
4782 if (skip_past_char (&p, '}') == FAIL)
4783 {
4784 inst.error = _("'}' expected at end of 'option' field");
4785 return PARSE_OPERAND_FAIL;
4786 }
4787 if (inst.operands[i].preind)
4788 {
4789 inst.error = _("cannot combine index with option");
4790 return PARSE_OPERAND_FAIL;
4791 }
4792 *str = p;
4793 return PARSE_OPERAND_SUCCESS;
4794 }
4795 else
4796 {
4797 inst.operands[i].postind = 1;
4798 inst.operands[i].writeback = 1;
4799
4800 if (inst.operands[i].preind)
4801 {
4802 inst.error = _("cannot combine pre- and post-indexing");
4803 return PARSE_OPERAND_FAIL;
4804 }
4805
4806 if (*p == '+') p++;
4807 else if (*p == '-') p++, inst.operands[i].negative = 1;
4808
4809 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4810 {
4811 /* We might be using the immediate for alignment already. If we
4812 are, OR the register number into the low-order bits. */
4813 if (inst.operands[i].immisalign)
4814 inst.operands[i].imm |= reg;
4815 else
4816 inst.operands[i].imm = reg;
4817 inst.operands[i].immisreg = 1;
4818
4819 if (skip_past_comma (&p) == SUCCESS)
4820 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4821 return PARSE_OPERAND_FAIL;
4822 }
4823 else
4824 {
4825 if (inst.operands[i].negative)
4826 {
4827 inst.operands[i].negative = 0;
4828 p--;
4829 }
4830 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4831 return PARSE_OPERAND_FAIL;
4832 }
4833 }
4834 }
4835
4836 /* If at this point neither .preind nor .postind is set, we have a
4837 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
4838 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
4839 {
4840 inst.operands[i].preind = 1;
4841 inst.reloc.exp.X_op = O_constant;
4842 inst.reloc.exp.X_add_number = 0;
4843 }
4844 *str = p;
4845 return PARSE_OPERAND_SUCCESS;
4846 }
4847
4848 static int
4849 parse_address (char **str, int i)
4850 {
4851 return parse_address_main (str, i, 0, 0) == PARSE_OPERAND_SUCCESS
4852 ? SUCCESS : FAIL;
4853 }
4854
4855 static parse_operand_result
4856 parse_address_group_reloc (char **str, int i, group_reloc_type type)
4857 {
4858 return parse_address_main (str, i, 1, type);
4859 }
4860
4861 /* Parse an operand for a MOVW or MOVT instruction. */
4862 static int
4863 parse_half (char **str)
4864 {
4865 char * p;
4866
4867 p = *str;
4868 skip_past_char (&p, '#');
4869 if (strncasecmp (p, ":lower16:", 9) == 0)
4870 inst.reloc.type = BFD_RELOC_ARM_MOVW;
4871 else if (strncasecmp (p, ":upper16:", 9) == 0)
4872 inst.reloc.type = BFD_RELOC_ARM_MOVT;
4873
4874 if (inst.reloc.type != BFD_RELOC_UNUSED)
4875 {
4876 p += 9;
4877 skip_whitespace(p);
4878 }
4879
4880 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4881 return FAIL;
4882
4883 if (inst.reloc.type == BFD_RELOC_UNUSED)
4884 {
4885 if (inst.reloc.exp.X_op != O_constant)
4886 {
4887 inst.error = _("constant expression expected");
4888 return FAIL;
4889 }
4890 if (inst.reloc.exp.X_add_number < 0
4891 || inst.reloc.exp.X_add_number > 0xffff)
4892 {
4893 inst.error = _("immediate value out of range");
4894 return FAIL;
4895 }
4896 }
4897 *str = p;
4898 return SUCCESS;
4899 }
4900
4901 /* Miscellaneous. */
4902
4903 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
4904 or a bitmask suitable to be or-ed into the ARM msr instruction. */
4905 static int
4906 parse_psr (char **str)
4907 {
4908 char *p;
4909 unsigned long psr_field;
4910 const struct asm_psr *psr;
4911 char *start;
4912
4913 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
4914 feature for ease of use and backwards compatibility. */
4915 p = *str;
4916 if (strncasecmp (p, "SPSR", 4) == 0)
4917 psr_field = SPSR_BIT;
4918 else if (strncasecmp (p, "CPSR", 4) == 0)
4919 psr_field = 0;
4920 else
4921 {
4922 start = p;
4923 do
4924 p++;
4925 while (ISALNUM (*p) || *p == '_');
4926
4927 psr = hash_find_n (arm_v7m_psr_hsh, start, p - start);
4928 if (!psr)
4929 return FAIL;
4930
4931 *str = p;
4932 return psr->field;
4933 }
4934
4935 p += 4;
4936 if (*p == '_')
4937 {
4938 /* A suffix follows. */
4939 p++;
4940 start = p;
4941
4942 do
4943 p++;
4944 while (ISALNUM (*p) || *p == '_');
4945
4946 psr = hash_find_n (arm_psr_hsh, start, p - start);
4947 if (!psr)
4948 goto error;
4949
4950 psr_field |= psr->field;
4951 }
4952 else
4953 {
4954 if (ISALNUM (*p))
4955 goto error; /* Garbage after "[CS]PSR". */
4956
4957 psr_field |= (PSR_c | PSR_f);
4958 }
4959 *str = p;
4960 return psr_field;
4961
4962 error:
4963 inst.error = _("flag for {c}psr instruction expected");
4964 return FAIL;
4965 }
4966
4967 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
4968 value suitable for splatting into the AIF field of the instruction. */
4969
4970 static int
4971 parse_cps_flags (char **str)
4972 {
4973 int val = 0;
4974 int saw_a_flag = 0;
4975 char *s = *str;
4976
4977 for (;;)
4978 switch (*s++)
4979 {
4980 case '\0': case ',':
4981 goto done;
4982
4983 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
4984 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
4985 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
4986
4987 default:
4988 inst.error = _("unrecognized CPS flag");
4989 return FAIL;
4990 }
4991
4992 done:
4993 if (saw_a_flag == 0)
4994 {
4995 inst.error = _("missing CPS flags");
4996 return FAIL;
4997 }
4998
4999 *str = s - 1;
5000 return val;
5001 }
5002
5003 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5004 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5005
5006 static int
5007 parse_endian_specifier (char **str)
5008 {
5009 int little_endian;
5010 char *s = *str;
5011
5012 if (strncasecmp (s, "BE", 2))
5013 little_endian = 0;
5014 else if (strncasecmp (s, "LE", 2))
5015 little_endian = 1;
5016 else
5017 {
5018 inst.error = _("valid endian specifiers are be or le");
5019 return FAIL;
5020 }
5021
5022 if (ISALNUM (s[2]) || s[2] == '_')
5023 {
5024 inst.error = _("valid endian specifiers are be or le");
5025 return FAIL;
5026 }
5027
5028 *str = s + 2;
5029 return little_endian;
5030 }
5031
5032 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5033 value suitable for poking into the rotate field of an sxt or sxta
5034 instruction, or FAIL on error. */
5035
5036 static int
5037 parse_ror (char **str)
5038 {
5039 int rot;
5040 char *s = *str;
5041
5042 if (strncasecmp (s, "ROR", 3) == 0)
5043 s += 3;
5044 else
5045 {
5046 inst.error = _("missing rotation field after comma");
5047 return FAIL;
5048 }
5049
5050 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5051 return FAIL;
5052
5053 switch (rot)
5054 {
5055 case 0: *str = s; return 0x0;
5056 case 8: *str = s; return 0x1;
5057 case 16: *str = s; return 0x2;
5058 case 24: *str = s; return 0x3;
5059
5060 default:
5061 inst.error = _("rotation can only be 0, 8, 16, or 24");
5062 return FAIL;
5063 }
5064 }
5065
5066 /* Parse a conditional code (from conds[] below). The value returned is in the
5067 range 0 .. 14, or FAIL. */
5068 static int
5069 parse_cond (char **str)
5070 {
5071 char *p, *q;
5072 const struct asm_cond *c;
5073
5074 p = q = *str;
5075 while (ISALPHA (*q))
5076 q++;
5077
5078 c = hash_find_n (arm_cond_hsh, p, q - p);
5079 if (!c)
5080 {
5081 inst.error = _("condition required");
5082 return FAIL;
5083 }
5084
5085 *str = q;
5086 return c->value;
5087 }
5088
5089 /* Parse an option for a barrier instruction. Returns the encoding for the
5090 option, or FAIL. */
5091 static int
5092 parse_barrier (char **str)
5093 {
5094 char *p, *q;
5095 const struct asm_barrier_opt *o;
5096
5097 p = q = *str;
5098 while (ISALPHA (*q))
5099 q++;
5100
5101 o = hash_find_n (arm_barrier_opt_hsh, p, q - p);
5102 if (!o)
5103 return FAIL;
5104
5105 *str = q;
5106 return o->value;
5107 }
5108
5109 /* Parse the operands of a table branch instruction. Similar to a memory
5110 operand. */
5111 static int
5112 parse_tb (char **str)
5113 {
5114 char * p = *str;
5115 int reg;
5116
5117 if (skip_past_char (&p, '[') == FAIL)
5118 {
5119 inst.error = _("'[' expected");
5120 return FAIL;
5121 }
5122
5123 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5124 {
5125 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5126 return FAIL;
5127 }
5128 inst.operands[0].reg = reg;
5129
5130 if (skip_past_comma (&p) == FAIL)
5131 {
5132 inst.error = _("',' expected");
5133 return FAIL;
5134 }
5135
5136 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5137 {
5138 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5139 return FAIL;
5140 }
5141 inst.operands[0].imm = reg;
5142
5143 if (skip_past_comma (&p) == SUCCESS)
5144 {
5145 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5146 return FAIL;
5147 if (inst.reloc.exp.X_add_number != 1)
5148 {
5149 inst.error = _("invalid shift");
5150 return FAIL;
5151 }
5152 inst.operands[0].shifted = 1;
5153 }
5154
5155 if (skip_past_char (&p, ']') == FAIL)
5156 {
5157 inst.error = _("']' expected");
5158 return FAIL;
5159 }
5160 *str = p;
5161 return SUCCESS;
5162 }
5163
5164 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5165 information on the types the operands can take and how they are encoded.
5166 Up to four operands may be read; this function handles setting the
5167 ".present" field for each read operand itself.
5168 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5169 else returns FAIL. */
5170
5171 static int
5172 parse_neon_mov (char **str, int *which_operand)
5173 {
5174 int i = *which_operand, val;
5175 enum arm_reg_type rtype;
5176 char *ptr = *str;
5177 struct neon_type_el optype;
5178
5179 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5180 {
5181 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5182 inst.operands[i].reg = val;
5183 inst.operands[i].isscalar = 1;
5184 inst.operands[i].vectype = optype;
5185 inst.operands[i++].present = 1;
5186
5187 if (skip_past_comma (&ptr) == FAIL)
5188 goto wanted_comma;
5189
5190 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5191 goto wanted_arm;
5192
5193 inst.operands[i].reg = val;
5194 inst.operands[i].isreg = 1;
5195 inst.operands[i].present = 1;
5196 }
5197 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5198 != FAIL)
5199 {
5200 /* Cases 0, 1, 2, 3, 5 (D only). */
5201 if (skip_past_comma (&ptr) == FAIL)
5202 goto wanted_comma;
5203
5204 inst.operands[i].reg = val;
5205 inst.operands[i].isreg = 1;
5206 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5207 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5208 inst.operands[i].isvec = 1;
5209 inst.operands[i].vectype = optype;
5210 inst.operands[i++].present = 1;
5211
5212 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5213 {
5214 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5215 Case 13: VMOV <Sd>, <Rm> */
5216 inst.operands[i].reg = val;
5217 inst.operands[i].isreg = 1;
5218 inst.operands[i].present = 1;
5219
5220 if (rtype == REG_TYPE_NQ)
5221 {
5222 first_error (_("can't use Neon quad register here"));
5223 return FAIL;
5224 }
5225 else if (rtype != REG_TYPE_VFS)
5226 {
5227 i++;
5228 if (skip_past_comma (&ptr) == FAIL)
5229 goto wanted_comma;
5230 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5231 goto wanted_arm;
5232 inst.operands[i].reg = val;
5233 inst.operands[i].isreg = 1;
5234 inst.operands[i].present = 1;
5235 }
5236 }
5237 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5238 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5239 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5240 Case 10: VMOV.F32 <Sd>, #<imm>
5241 Case 11: VMOV.F64 <Dd>, #<imm> */
5242 inst.operands[i].immisfloat = 1;
5243 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5244 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5245 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5246 ;
5247 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5248 &optype)) != FAIL)
5249 {
5250 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5251 Case 1: VMOV<c><q> <Dd>, <Dm>
5252 Case 8: VMOV.F32 <Sd>, <Sm>
5253 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5254
5255 inst.operands[i].reg = val;
5256 inst.operands[i].isreg = 1;
5257 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5258 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5259 inst.operands[i].isvec = 1;
5260 inst.operands[i].vectype = optype;
5261 inst.operands[i].present = 1;
5262
5263 if (skip_past_comma (&ptr) == SUCCESS)
5264 {
5265 /* Case 15. */
5266 i++;
5267
5268 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5269 goto wanted_arm;
5270
5271 inst.operands[i].reg = val;
5272 inst.operands[i].isreg = 1;
5273 inst.operands[i++].present = 1;
5274
5275 if (skip_past_comma (&ptr) == FAIL)
5276 goto wanted_comma;
5277
5278 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5279 goto wanted_arm;
5280
5281 inst.operands[i].reg = val;
5282 inst.operands[i].isreg = 1;
5283 inst.operands[i++].present = 1;
5284 }
5285 }
5286 else
5287 {
5288 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5289 return FAIL;
5290 }
5291 }
5292 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5293 {
5294 /* Cases 6, 7. */
5295 inst.operands[i].reg = val;
5296 inst.operands[i].isreg = 1;
5297 inst.operands[i++].present = 1;
5298
5299 if (skip_past_comma (&ptr) == FAIL)
5300 goto wanted_comma;
5301
5302 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5303 {
5304 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5305 inst.operands[i].reg = val;
5306 inst.operands[i].isscalar = 1;
5307 inst.operands[i].present = 1;
5308 inst.operands[i].vectype = optype;
5309 }
5310 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5311 {
5312 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5313 inst.operands[i].reg = val;
5314 inst.operands[i].isreg = 1;
5315 inst.operands[i++].present = 1;
5316
5317 if (skip_past_comma (&ptr) == FAIL)
5318 goto wanted_comma;
5319
5320 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5321 == FAIL)
5322 {
5323 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5324 return FAIL;
5325 }
5326
5327 inst.operands[i].reg = val;
5328 inst.operands[i].isreg = 1;
5329 inst.operands[i].isvec = 1;
5330 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5331 inst.operands[i].vectype = optype;
5332 inst.operands[i].present = 1;
5333
5334 if (rtype == REG_TYPE_VFS)
5335 {
5336 /* Case 14. */
5337 i++;
5338 if (skip_past_comma (&ptr) == FAIL)
5339 goto wanted_comma;
5340 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5341 &optype)) == FAIL)
5342 {
5343 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5344 return FAIL;
5345 }
5346 inst.operands[i].reg = val;
5347 inst.operands[i].isreg = 1;
5348 inst.operands[i].isvec = 1;
5349 inst.operands[i].issingle = 1;
5350 inst.operands[i].vectype = optype;
5351 inst.operands[i].present = 1;
5352 }
5353 }
5354 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5355 != FAIL)
5356 {
5357 /* Case 13. */
5358 inst.operands[i].reg = val;
5359 inst.operands[i].isreg = 1;
5360 inst.operands[i].isvec = 1;
5361 inst.operands[i].issingle = 1;
5362 inst.operands[i].vectype = optype;
5363 inst.operands[i++].present = 1;
5364 }
5365 }
5366 else
5367 {
5368 first_error (_("parse error"));
5369 return FAIL;
5370 }
5371
5372 /* Successfully parsed the operands. Update args. */
5373 *which_operand = i;
5374 *str = ptr;
5375 return SUCCESS;
5376
5377 wanted_comma:
5378 first_error (_("expected comma"));
5379 return FAIL;
5380
5381 wanted_arm:
5382 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5383 return FAIL;
5384 }
5385
5386 /* Matcher codes for parse_operands. */
5387 enum operand_parse_code
5388 {
5389 OP_stop, /* end of line */
5390
5391 OP_RR, /* ARM register */
5392 OP_RRnpc, /* ARM register, not r15 */
5393 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5394 OP_RRw, /* ARM register, not r15, optional trailing ! */
5395 OP_RCP, /* Coprocessor number */
5396 OP_RCN, /* Coprocessor register */
5397 OP_RF, /* FPA register */
5398 OP_RVS, /* VFP single precision register */
5399 OP_RVD, /* VFP double precision register (0..15) */
5400 OP_RND, /* Neon double precision register (0..31) */
5401 OP_RNQ, /* Neon quad precision register */
5402 OP_RVSD, /* VFP single or double precision register */
5403 OP_RNDQ, /* Neon double or quad precision register */
5404 OP_RNSDQ, /* Neon single, double or quad precision register */
5405 OP_RNSC, /* Neon scalar D[X] */
5406 OP_RVC, /* VFP control register */
5407 OP_RMF, /* Maverick F register */
5408 OP_RMD, /* Maverick D register */
5409 OP_RMFX, /* Maverick FX register */
5410 OP_RMDX, /* Maverick DX register */
5411 OP_RMAX, /* Maverick AX register */
5412 OP_RMDS, /* Maverick DSPSC register */
5413 OP_RIWR, /* iWMMXt wR register */
5414 OP_RIWC, /* iWMMXt wC register */
5415 OP_RIWG, /* iWMMXt wCG register */
5416 OP_RXA, /* XScale accumulator register */
5417
5418 OP_REGLST, /* ARM register list */
5419 OP_VRSLST, /* VFP single-precision register list */
5420 OP_VRDLST, /* VFP double-precision register list */
5421 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5422 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5423 OP_NSTRLST, /* Neon element/structure list */
5424
5425 OP_NILO, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */
5426 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
5427 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5428 OP_RR_RNSC, /* ARM reg or Neon scalar. */
5429 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5430 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5431 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5432 OP_VMOV, /* Neon VMOV operands. */
5433 OP_RNDQ_IMVNb,/* Neon D or Q reg, or immediate good for VMVN. */
5434 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
5435 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5436
5437 OP_I0, /* immediate zero */
5438 OP_I7, /* immediate value 0 .. 7 */
5439 OP_I15, /* 0 .. 15 */
5440 OP_I16, /* 1 .. 16 */
5441 OP_I16z, /* 0 .. 16 */
5442 OP_I31, /* 0 .. 31 */
5443 OP_I31w, /* 0 .. 31, optional trailing ! */
5444 OP_I32, /* 1 .. 32 */
5445 OP_I32z, /* 0 .. 32 */
5446 OP_I63, /* 0 .. 63 */
5447 OP_I63s, /* -64 .. 63 */
5448 OP_I64, /* 1 .. 64 */
5449 OP_I64z, /* 0 .. 64 */
5450 OP_I255, /* 0 .. 255 */
5451
5452 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5453 OP_I7b, /* 0 .. 7 */
5454 OP_I15b, /* 0 .. 15 */
5455 OP_I31b, /* 0 .. 31 */
5456
5457 OP_SH, /* shifter operand */
5458 OP_SHG, /* shifter operand with possible group relocation */
5459 OP_ADDR, /* Memory address expression (any mode) */
5460 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5461 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5462 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
5463 OP_EXP, /* arbitrary expression */
5464 OP_EXPi, /* same, with optional immediate prefix */
5465 OP_EXPr, /* same, with optional relocation suffix */
5466 OP_HALF, /* 0 .. 65535 or low/high reloc. */
5467
5468 OP_CPSF, /* CPS flags */
5469 OP_ENDI, /* Endianness specifier */
5470 OP_PSR, /* CPSR/SPSR mask for msr */
5471 OP_COND, /* conditional code */
5472 OP_TB, /* Table branch. */
5473
5474 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5475 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5476
5477 OP_RRnpc_I0, /* ARM register or literal 0 */
5478 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5479 OP_RR_EXi, /* ARM register or expression with imm prefix */
5480 OP_RF_IF, /* FPA register or immediate */
5481 OP_RIWR_RIWC, /* iWMMXt R or C reg */
5482 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
5483
5484 /* Optional operands. */
5485 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5486 OP_oI31b, /* 0 .. 31 */
5487 OP_oI32b, /* 1 .. 32 */
5488 OP_oIffffb, /* 0 .. 65535 */
5489 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5490
5491 OP_oRR, /* ARM register */
5492 OP_oRRnpc, /* ARM register, not the PC */
5493 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5494 OP_oRND, /* Optional Neon double precision register */
5495 OP_oRNQ, /* Optional Neon quad precision register */
5496 OP_oRNDQ, /* Optional Neon double or quad precision register */
5497 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5498 OP_oSHll, /* LSL immediate */
5499 OP_oSHar, /* ASR immediate */
5500 OP_oSHllar, /* LSL or ASR immediate */
5501 OP_oROR, /* ROR 0/8/16/24 */
5502 OP_oBARRIER, /* Option argument for a barrier instruction. */
5503
5504 OP_FIRST_OPTIONAL = OP_oI7b
5505 };
5506
5507 /* Generic instruction operand parser. This does no encoding and no
5508 semantic validation; it merely squirrels values away in the inst
5509 structure. Returns SUCCESS or FAIL depending on whether the
5510 specified grammar matched. */
5511 static int
5512 parse_operands (char *str, const unsigned char *pattern)
5513 {
5514 unsigned const char *upat = pattern;
5515 char *backtrack_pos = 0;
5516 const char *backtrack_error = 0;
5517 int i, val, backtrack_index = 0;
5518 enum arm_reg_type rtype;
5519 parse_operand_result result;
5520
5521 #define po_char_or_fail(chr) do { \
5522 if (skip_past_char (&str, chr) == FAIL) \
5523 goto bad_args; \
5524 } while (0)
5525
5526 #define po_reg_or_fail(regtype) do { \
5527 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5528 &inst.operands[i].vectype); \
5529 if (val == FAIL) \
5530 { \
5531 first_error (_(reg_expected_msgs[regtype])); \
5532 goto failure; \
5533 } \
5534 inst.operands[i].reg = val; \
5535 inst.operands[i].isreg = 1; \
5536 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5537 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5538 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5539 || rtype == REG_TYPE_VFD \
5540 || rtype == REG_TYPE_NQ); \
5541 } while (0)
5542
5543 #define po_reg_or_goto(regtype, label) do { \
5544 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5545 &inst.operands[i].vectype); \
5546 if (val == FAIL) \
5547 goto label; \
5548 \
5549 inst.operands[i].reg = val; \
5550 inst.operands[i].isreg = 1; \
5551 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5552 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5553 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5554 || rtype == REG_TYPE_VFD \
5555 || rtype == REG_TYPE_NQ); \
5556 } while (0)
5557
5558 #define po_imm_or_fail(min, max, popt) do { \
5559 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5560 goto failure; \
5561 inst.operands[i].imm = val; \
5562 } while (0)
5563
5564 #define po_scalar_or_goto(elsz, label) do { \
5565 val = parse_scalar (&str, elsz, &inst.operands[i].vectype); \
5566 if (val == FAIL) \
5567 goto label; \
5568 inst.operands[i].reg = val; \
5569 inst.operands[i].isscalar = 1; \
5570 } while (0)
5571
5572 #define po_misc_or_fail(expr) do { \
5573 if (expr) \
5574 goto failure; \
5575 } while (0)
5576
5577 #define po_misc_or_fail_no_backtrack(expr) do { \
5578 result = expr; \
5579 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK)\
5580 backtrack_pos = 0; \
5581 if (result != PARSE_OPERAND_SUCCESS) \
5582 goto failure; \
5583 } while (0)
5584
5585 skip_whitespace (str);
5586
5587 for (i = 0; upat[i] != OP_stop; i++)
5588 {
5589 if (upat[i] >= OP_FIRST_OPTIONAL)
5590 {
5591 /* Remember where we are in case we need to backtrack. */
5592 assert (!backtrack_pos);
5593 backtrack_pos = str;
5594 backtrack_error = inst.error;
5595 backtrack_index = i;
5596 }
5597
5598 if (i > 0 && (i > 1 || inst.operands[0].present))
5599 po_char_or_fail (',');
5600
5601 switch (upat[i])
5602 {
5603 /* Registers */
5604 case OP_oRRnpc:
5605 case OP_RRnpc:
5606 case OP_oRR:
5607 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5608 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5609 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5610 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
5611 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
5612 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5613 case OP_oRND:
5614 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
5615 case OP_RVC: po_reg_or_fail (REG_TYPE_VFC); break;
5616 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
5617 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
5618 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
5619 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
5620 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
5621 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
5622 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
5623 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
5624 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
5625 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5626 case OP_oRNQ:
5627 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
5628 case OP_oRNDQ:
5629 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
5630 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
5631 case OP_oRNSDQ:
5632 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5633
5634 /* Neon scalar. Using an element size of 8 means that some invalid
5635 scalars are accepted here, so deal with those in later code. */
5636 case OP_RNSC: po_scalar_or_goto (8, failure); break;
5637
5638 /* WARNING: We can expand to two operands here. This has the potential
5639 to totally confuse the backtracking mechanism! It will be OK at
5640 least as long as we don't try to use optional args as well,
5641 though. */
5642 case OP_NILO:
5643 {
5644 po_reg_or_goto (REG_TYPE_NDQ, try_imm);
5645 inst.operands[i].present = 1;
5646 i++;
5647 skip_past_comma (&str);
5648 po_reg_or_goto (REG_TYPE_NDQ, one_reg_only);
5649 break;
5650 one_reg_only:
5651 /* Optional register operand was omitted. Unfortunately, it's in
5652 operands[i-1] and we need it to be in inst.operands[i]. Fix that
5653 here (this is a bit grotty). */
5654 inst.operands[i] = inst.operands[i-1];
5655 inst.operands[i-1].present = 0;
5656 break;
5657 try_imm:
5658 /* There's a possibility of getting a 64-bit immediate here, so
5659 we need special handling. */
5660 if (parse_big_immediate (&str, i) == FAIL)
5661 {
5662 inst.error = _("immediate value is out of range");
5663 goto failure;
5664 }
5665 }
5666 break;
5667
5668 case OP_RNDQ_I0:
5669 {
5670 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
5671 break;
5672 try_imm0:
5673 po_imm_or_fail (0, 0, TRUE);
5674 }
5675 break;
5676
5677 case OP_RVSD_I0:
5678 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
5679 break;
5680
5681 case OP_RR_RNSC:
5682 {
5683 po_scalar_or_goto (8, try_rr);
5684 break;
5685 try_rr:
5686 po_reg_or_fail (REG_TYPE_RN);
5687 }
5688 break;
5689
5690 case OP_RNSDQ_RNSC:
5691 {
5692 po_scalar_or_goto (8, try_nsdq);
5693 break;
5694 try_nsdq:
5695 po_reg_or_fail (REG_TYPE_NSDQ);
5696 }
5697 break;
5698
5699 case OP_RNDQ_RNSC:
5700 {
5701 po_scalar_or_goto (8, try_ndq);
5702 break;
5703 try_ndq:
5704 po_reg_or_fail (REG_TYPE_NDQ);
5705 }
5706 break;
5707
5708 case OP_RND_RNSC:
5709 {
5710 po_scalar_or_goto (8, try_vfd);
5711 break;
5712 try_vfd:
5713 po_reg_or_fail (REG_TYPE_VFD);
5714 }
5715 break;
5716
5717 case OP_VMOV:
5718 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
5719 not careful then bad things might happen. */
5720 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
5721 break;
5722
5723 case OP_RNDQ_IMVNb:
5724 {
5725 po_reg_or_goto (REG_TYPE_NDQ, try_mvnimm);
5726 break;
5727 try_mvnimm:
5728 /* There's a possibility of getting a 64-bit immediate here, so
5729 we need special handling. */
5730 if (parse_big_immediate (&str, i) == FAIL)
5731 {
5732 inst.error = _("immediate value is out of range");
5733 goto failure;
5734 }
5735 }
5736 break;
5737
5738 case OP_RNDQ_I63b:
5739 {
5740 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
5741 break;
5742 try_shimm:
5743 po_imm_or_fail (0, 63, TRUE);
5744 }
5745 break;
5746
5747 case OP_RRnpcb:
5748 po_char_or_fail ('[');
5749 po_reg_or_fail (REG_TYPE_RN);
5750 po_char_or_fail (']');
5751 break;
5752
5753 case OP_RRw:
5754 case OP_oRRw:
5755 po_reg_or_fail (REG_TYPE_RN);
5756 if (skip_past_char (&str, '!') == SUCCESS)
5757 inst.operands[i].writeback = 1;
5758 break;
5759
5760 /* Immediates */
5761 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
5762 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
5763 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5764 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
5765 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
5766 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5767 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
5768 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5769 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
5770 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
5771 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
5772 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
5773
5774 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
5775 case OP_oI7b:
5776 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
5777 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
5778 case OP_oI31b:
5779 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5780 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
5781 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
5782
5783 /* Immediate variants */
5784 case OP_oI255c:
5785 po_char_or_fail ('{');
5786 po_imm_or_fail (0, 255, TRUE);
5787 po_char_or_fail ('}');
5788 break;
5789
5790 case OP_I31w:
5791 /* The expression parser chokes on a trailing !, so we have
5792 to find it first and zap it. */
5793 {
5794 char *s = str;
5795 while (*s && *s != ',')
5796 s++;
5797 if (s[-1] == '!')
5798 {
5799 s[-1] = '\0';
5800 inst.operands[i].writeback = 1;
5801 }
5802 po_imm_or_fail (0, 31, TRUE);
5803 if (str == s - 1)
5804 str = s;
5805 }
5806 break;
5807
5808 /* Expressions */
5809 case OP_EXPi: EXPi:
5810 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5811 GE_OPT_PREFIX));
5812 break;
5813
5814 case OP_EXP:
5815 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5816 GE_NO_PREFIX));
5817 break;
5818
5819 case OP_EXPr: EXPr:
5820 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5821 GE_NO_PREFIX));
5822 if (inst.reloc.exp.X_op == O_symbol)
5823 {
5824 val = parse_reloc (&str);
5825 if (val == -1)
5826 {
5827 inst.error = _("unrecognized relocation suffix");
5828 goto failure;
5829 }
5830 else if (val != BFD_RELOC_UNUSED)
5831 {
5832 inst.operands[i].imm = val;
5833 inst.operands[i].hasreloc = 1;
5834 }
5835 }
5836 break;
5837
5838 /* Operand for MOVW or MOVT. */
5839 case OP_HALF:
5840 po_misc_or_fail (parse_half (&str));
5841 break;
5842
5843 /* Register or expression */
5844 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
5845 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
5846
5847 /* Register or immediate */
5848 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
5849 I0: po_imm_or_fail (0, 0, FALSE); break;
5850
5851 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
5852 IF:
5853 if (!is_immediate_prefix (*str))
5854 goto bad_args;
5855 str++;
5856 val = parse_fpa_immediate (&str);
5857 if (val == FAIL)
5858 goto failure;
5859 /* FPA immediates are encoded as registers 8-15.
5860 parse_fpa_immediate has already applied the offset. */
5861 inst.operands[i].reg = val;
5862 inst.operands[i].isreg = 1;
5863 break;
5864
5865 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
5866 I32z: po_imm_or_fail (0, 32, FALSE); break;
5867
5868 /* Two kinds of register */
5869 case OP_RIWR_RIWC:
5870 {
5871 struct reg_entry *rege = arm_reg_parse_multi (&str);
5872 if (!rege
5873 || (rege->type != REG_TYPE_MMXWR
5874 && rege->type != REG_TYPE_MMXWC
5875 && rege->type != REG_TYPE_MMXWCG))
5876 {
5877 inst.error = _("iWMMXt data or control register expected");
5878 goto failure;
5879 }
5880 inst.operands[i].reg = rege->number;
5881 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
5882 }
5883 break;
5884
5885 case OP_RIWC_RIWG:
5886 {
5887 struct reg_entry *rege = arm_reg_parse_multi (&str);
5888 if (!rege
5889 || (rege->type != REG_TYPE_MMXWC
5890 && rege->type != REG_TYPE_MMXWCG))
5891 {
5892 inst.error = _("iWMMXt control register expected");
5893 goto failure;
5894 }
5895 inst.operands[i].reg = rege->number;
5896 inst.operands[i].isreg = 1;
5897 }
5898 break;
5899
5900 /* Misc */
5901 case OP_CPSF: val = parse_cps_flags (&str); break;
5902 case OP_ENDI: val = parse_endian_specifier (&str); break;
5903 case OP_oROR: val = parse_ror (&str); break;
5904 case OP_PSR: val = parse_psr (&str); break;
5905 case OP_COND: val = parse_cond (&str); break;
5906 case OP_oBARRIER:val = parse_barrier (&str); break;
5907
5908 case OP_RVC_PSR:
5909 po_reg_or_goto (REG_TYPE_VFC, try_psr);
5910 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
5911 break;
5912 try_psr:
5913 val = parse_psr (&str);
5914 break;
5915
5916 case OP_APSR_RR:
5917 po_reg_or_goto (REG_TYPE_RN, try_apsr);
5918 break;
5919 try_apsr:
5920 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
5921 instruction). */
5922 if (strncasecmp (str, "APSR_", 5) == 0)
5923 {
5924 unsigned found = 0;
5925 str += 5;
5926 while (found < 15)
5927 switch (*str++)
5928 {
5929 case 'c': found = (found & 1) ? 16 : found | 1; break;
5930 case 'n': found = (found & 2) ? 16 : found | 2; break;
5931 case 'z': found = (found & 4) ? 16 : found | 4; break;
5932 case 'v': found = (found & 8) ? 16 : found | 8; break;
5933 default: found = 16;
5934 }
5935 if (found != 15)
5936 goto failure;
5937 inst.operands[i].isvec = 1;
5938 }
5939 else
5940 goto failure;
5941 break;
5942
5943 case OP_TB:
5944 po_misc_or_fail (parse_tb (&str));
5945 break;
5946
5947 /* Register lists */
5948 case OP_REGLST:
5949 val = parse_reg_list (&str);
5950 if (*str == '^')
5951 {
5952 inst.operands[1].writeback = 1;
5953 str++;
5954 }
5955 break;
5956
5957 case OP_VRSLST:
5958 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
5959 break;
5960
5961 case OP_VRDLST:
5962 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
5963 break;
5964
5965 case OP_VRSDLST:
5966 /* Allow Q registers too. */
5967 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5968 REGLIST_NEON_D);
5969 if (val == FAIL)
5970 {
5971 inst.error = NULL;
5972 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5973 REGLIST_VFP_S);
5974 inst.operands[i].issingle = 1;
5975 }
5976 break;
5977
5978 case OP_NRDLST:
5979 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5980 REGLIST_NEON_D);
5981 break;
5982
5983 case OP_NSTRLST:
5984 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
5985 &inst.operands[i].vectype);
5986 break;
5987
5988 /* Addressing modes */
5989 case OP_ADDR:
5990 po_misc_or_fail (parse_address (&str, i));
5991 break;
5992
5993 case OP_ADDRGLDR:
5994 po_misc_or_fail_no_backtrack (
5995 parse_address_group_reloc (&str, i, GROUP_LDR));
5996 break;
5997
5998 case OP_ADDRGLDRS:
5999 po_misc_or_fail_no_backtrack (
6000 parse_address_group_reloc (&str, i, GROUP_LDRS));
6001 break;
6002
6003 case OP_ADDRGLDC:
6004 po_misc_or_fail_no_backtrack (
6005 parse_address_group_reloc (&str, i, GROUP_LDC));
6006 break;
6007
6008 case OP_SH:
6009 po_misc_or_fail (parse_shifter_operand (&str, i));
6010 break;
6011
6012 case OP_SHG:
6013 po_misc_or_fail_no_backtrack (
6014 parse_shifter_operand_group_reloc (&str, i));
6015 break;
6016
6017 case OP_oSHll:
6018 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6019 break;
6020
6021 case OP_oSHar:
6022 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6023 break;
6024
6025 case OP_oSHllar:
6026 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6027 break;
6028
6029 default:
6030 as_fatal ("unhandled operand code %d", upat[i]);
6031 }
6032
6033 /* Various value-based sanity checks and shared operations. We
6034 do not signal immediate failures for the register constraints;
6035 this allows a syntax error to take precedence. */
6036 switch (upat[i])
6037 {
6038 case OP_oRRnpc:
6039 case OP_RRnpc:
6040 case OP_RRnpcb:
6041 case OP_RRw:
6042 case OP_oRRw:
6043 case OP_RRnpc_I0:
6044 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6045 inst.error = BAD_PC;
6046 break;
6047
6048 case OP_CPSF:
6049 case OP_ENDI:
6050 case OP_oROR:
6051 case OP_PSR:
6052 case OP_RVC_PSR:
6053 case OP_COND:
6054 case OP_oBARRIER:
6055 case OP_REGLST:
6056 case OP_VRSLST:
6057 case OP_VRDLST:
6058 case OP_VRSDLST:
6059 case OP_NRDLST:
6060 case OP_NSTRLST:
6061 if (val == FAIL)
6062 goto failure;
6063 inst.operands[i].imm = val;
6064 break;
6065
6066 default:
6067 break;
6068 }
6069
6070 /* If we get here, this operand was successfully parsed. */
6071 inst.operands[i].present = 1;
6072 continue;
6073
6074 bad_args:
6075 inst.error = BAD_ARGS;
6076
6077 failure:
6078 if (!backtrack_pos)
6079 {
6080 /* The parse routine should already have set inst.error, but set a
6081 defaut here just in case. */
6082 if (!inst.error)
6083 inst.error = _("syntax error");
6084 return FAIL;
6085 }
6086
6087 /* Do not backtrack over a trailing optional argument that
6088 absorbed some text. We will only fail again, with the
6089 'garbage following instruction' error message, which is
6090 probably less helpful than the current one. */
6091 if (backtrack_index == i && backtrack_pos != str
6092 && upat[i+1] == OP_stop)
6093 {
6094 if (!inst.error)
6095 inst.error = _("syntax error");
6096 return FAIL;
6097 }
6098
6099 /* Try again, skipping the optional argument at backtrack_pos. */
6100 str = backtrack_pos;
6101 inst.error = backtrack_error;
6102 inst.operands[backtrack_index].present = 0;
6103 i = backtrack_index;
6104 backtrack_pos = 0;
6105 }
6106
6107 /* Check that we have parsed all the arguments. */
6108 if (*str != '\0' && !inst.error)
6109 inst.error = _("garbage following instruction");
6110
6111 return inst.error ? FAIL : SUCCESS;
6112 }
6113
6114 #undef po_char_or_fail
6115 #undef po_reg_or_fail
6116 #undef po_reg_or_goto
6117 #undef po_imm_or_fail
6118 #undef po_scalar_or_fail
6119 \f
6120 /* Shorthand macro for instruction encoding functions issuing errors. */
6121 #define constraint(expr, err) do { \
6122 if (expr) \
6123 { \
6124 inst.error = err; \
6125 return; \
6126 } \
6127 } while (0)
6128
6129 /* Functions for operand encoding. ARM, then Thumb. */
6130
6131 #define rotate_left(v, n) (v << n | v >> (32 - n))
6132
6133 /* If VAL can be encoded in the immediate field of an ARM instruction,
6134 return the encoded form. Otherwise, return FAIL. */
6135
6136 static unsigned int
6137 encode_arm_immediate (unsigned int val)
6138 {
6139 unsigned int a, i;
6140
6141 for (i = 0; i < 32; i += 2)
6142 if ((a = rotate_left (val, i)) <= 0xff)
6143 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6144
6145 return FAIL;
6146 }
6147
6148 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6149 return the encoded form. Otherwise, return FAIL. */
6150 static unsigned int
6151 encode_thumb32_immediate (unsigned int val)
6152 {
6153 unsigned int a, i;
6154
6155 if (val <= 0xff)
6156 return val;
6157
6158 for (i = 1; i <= 24; i++)
6159 {
6160 a = val >> i;
6161 if ((val & ~(0xff << i)) == 0)
6162 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6163 }
6164
6165 a = val & 0xff;
6166 if (val == ((a << 16) | a))
6167 return 0x100 | a;
6168 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6169 return 0x300 | a;
6170
6171 a = val & 0xff00;
6172 if (val == ((a << 16) | a))
6173 return 0x200 | (a >> 8);
6174
6175 return FAIL;
6176 }
6177 /* Encode a VFP SP or DP register number into inst.instruction. */
6178
6179 static void
6180 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6181 {
6182 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6183 && reg > 15)
6184 {
6185 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
6186 {
6187 if (thumb_mode)
6188 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6189 fpu_vfp_ext_v3);
6190 else
6191 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6192 fpu_vfp_ext_v3);
6193 }
6194 else
6195 {
6196 first_error (_("D register out of range for selected VFP version"));
6197 return;
6198 }
6199 }
6200
6201 switch (pos)
6202 {
6203 case VFP_REG_Sd:
6204 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6205 break;
6206
6207 case VFP_REG_Sn:
6208 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6209 break;
6210
6211 case VFP_REG_Sm:
6212 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6213 break;
6214
6215 case VFP_REG_Dd:
6216 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6217 break;
6218
6219 case VFP_REG_Dn:
6220 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6221 break;
6222
6223 case VFP_REG_Dm:
6224 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6225 break;
6226
6227 default:
6228 abort ();
6229 }
6230 }
6231
6232 /* Encode a <shift> in an ARM-format instruction. The immediate,
6233 if any, is handled by md_apply_fix. */
6234 static void
6235 encode_arm_shift (int i)
6236 {
6237 if (inst.operands[i].shift_kind == SHIFT_RRX)
6238 inst.instruction |= SHIFT_ROR << 5;
6239 else
6240 {
6241 inst.instruction |= inst.operands[i].shift_kind << 5;
6242 if (inst.operands[i].immisreg)
6243 {
6244 inst.instruction |= SHIFT_BY_REG;
6245 inst.instruction |= inst.operands[i].imm << 8;
6246 }
6247 else
6248 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6249 }
6250 }
6251
6252 static void
6253 encode_arm_shifter_operand (int i)
6254 {
6255 if (inst.operands[i].isreg)
6256 {
6257 inst.instruction |= inst.operands[i].reg;
6258 encode_arm_shift (i);
6259 }
6260 else
6261 inst.instruction |= INST_IMMEDIATE;
6262 }
6263
6264 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6265 static void
6266 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
6267 {
6268 assert (inst.operands[i].isreg);
6269 inst.instruction |= inst.operands[i].reg << 16;
6270
6271 if (inst.operands[i].preind)
6272 {
6273 if (is_t)
6274 {
6275 inst.error = _("instruction does not accept preindexed addressing");
6276 return;
6277 }
6278 inst.instruction |= PRE_INDEX;
6279 if (inst.operands[i].writeback)
6280 inst.instruction |= WRITE_BACK;
6281
6282 }
6283 else if (inst.operands[i].postind)
6284 {
6285 assert (inst.operands[i].writeback);
6286 if (is_t)
6287 inst.instruction |= WRITE_BACK;
6288 }
6289 else /* unindexed - only for coprocessor */
6290 {
6291 inst.error = _("instruction does not accept unindexed addressing");
6292 return;
6293 }
6294
6295 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6296 && (((inst.instruction & 0x000f0000) >> 16)
6297 == ((inst.instruction & 0x0000f000) >> 12)))
6298 as_warn ((inst.instruction & LOAD_BIT)
6299 ? _("destination register same as write-back base")
6300 : _("source register same as write-back base"));
6301 }
6302
6303 /* inst.operands[i] was set up by parse_address. Encode it into an
6304 ARM-format mode 2 load or store instruction. If is_t is true,
6305 reject forms that cannot be used with a T instruction (i.e. not
6306 post-indexed). */
6307 static void
6308 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
6309 {
6310 encode_arm_addr_mode_common (i, is_t);
6311
6312 if (inst.operands[i].immisreg)
6313 {
6314 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6315 inst.instruction |= inst.operands[i].imm;
6316 if (!inst.operands[i].negative)
6317 inst.instruction |= INDEX_UP;
6318 if (inst.operands[i].shifted)
6319 {
6320 if (inst.operands[i].shift_kind == SHIFT_RRX)
6321 inst.instruction |= SHIFT_ROR << 5;
6322 else
6323 {
6324 inst.instruction |= inst.operands[i].shift_kind << 5;
6325 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6326 }
6327 }
6328 }
6329 else /* immediate offset in inst.reloc */
6330 {
6331 if (inst.reloc.type == BFD_RELOC_UNUSED)
6332 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
6333 }
6334 }
6335
6336 /* inst.operands[i] was set up by parse_address. Encode it into an
6337 ARM-format mode 3 load or store instruction. Reject forms that
6338 cannot be used with such instructions. If is_t is true, reject
6339 forms that cannot be used with a T instruction (i.e. not
6340 post-indexed). */
6341 static void
6342 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
6343 {
6344 if (inst.operands[i].immisreg && inst.operands[i].shifted)
6345 {
6346 inst.error = _("instruction does not accept scaled register index");
6347 return;
6348 }
6349
6350 encode_arm_addr_mode_common (i, is_t);
6351
6352 if (inst.operands[i].immisreg)
6353 {
6354 inst.instruction |= inst.operands[i].imm;
6355 if (!inst.operands[i].negative)
6356 inst.instruction |= INDEX_UP;
6357 }
6358 else /* immediate offset in inst.reloc */
6359 {
6360 inst.instruction |= HWOFFSET_IMM;
6361 if (inst.reloc.type == BFD_RELOC_UNUSED)
6362 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
6363 }
6364 }
6365
6366 /* inst.operands[i] was set up by parse_address. Encode it into an
6367 ARM-format instruction. Reject all forms which cannot be encoded
6368 into a coprocessor load/store instruction. If wb_ok is false,
6369 reject use of writeback; if unind_ok is false, reject use of
6370 unindexed addressing. If reloc_override is not 0, use it instead
6371 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6372 (in which case it is preserved). */
6373
6374 static int
6375 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
6376 {
6377 inst.instruction |= inst.operands[i].reg << 16;
6378
6379 assert (!(inst.operands[i].preind && inst.operands[i].postind));
6380
6381 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
6382 {
6383 assert (!inst.operands[i].writeback);
6384 if (!unind_ok)
6385 {
6386 inst.error = _("instruction does not support unindexed addressing");
6387 return FAIL;
6388 }
6389 inst.instruction |= inst.operands[i].imm;
6390 inst.instruction |= INDEX_UP;
6391 return SUCCESS;
6392 }
6393
6394 if (inst.operands[i].preind)
6395 inst.instruction |= PRE_INDEX;
6396
6397 if (inst.operands[i].writeback)
6398 {
6399 if (inst.operands[i].reg == REG_PC)
6400 {
6401 inst.error = _("pc may not be used with write-back");
6402 return FAIL;
6403 }
6404 if (!wb_ok)
6405 {
6406 inst.error = _("instruction does not support writeback");
6407 return FAIL;
6408 }
6409 inst.instruction |= WRITE_BACK;
6410 }
6411
6412 if (reloc_override)
6413 inst.reloc.type = reloc_override;
6414 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6415 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6416 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6417 {
6418 if (thumb_mode)
6419 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6420 else
6421 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6422 }
6423
6424 return SUCCESS;
6425 }
6426
6427 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
6428 Determine whether it can be performed with a move instruction; if
6429 it can, convert inst.instruction to that move instruction and
6430 return 1; if it can't, convert inst.instruction to a literal-pool
6431 load and return 0. If this is not a valid thing to do in the
6432 current context, set inst.error and return 1.
6433
6434 inst.operands[i] describes the destination register. */
6435
6436 static int
6437 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6438 {
6439 unsigned long tbit;
6440
6441 if (thumb_p)
6442 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6443 else
6444 tbit = LOAD_BIT;
6445
6446 if ((inst.instruction & tbit) == 0)
6447 {
6448 inst.error = _("invalid pseudo operation");
6449 return 1;
6450 }
6451 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
6452 {
6453 inst.error = _("constant expression expected");
6454 return 1;
6455 }
6456 if (inst.reloc.exp.X_op == O_constant)
6457 {
6458 if (thumb_p)
6459 {
6460 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
6461 {
6462 /* This can be done with a mov(1) instruction. */
6463 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6464 inst.instruction |= inst.reloc.exp.X_add_number;
6465 return 1;
6466 }
6467 }
6468 else
6469 {
6470 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6471 if (value != FAIL)
6472 {
6473 /* This can be done with a mov instruction. */
6474 inst.instruction &= LITERAL_MASK;
6475 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6476 inst.instruction |= value & 0xfff;
6477 return 1;
6478 }
6479
6480 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6481 if (value != FAIL)
6482 {
6483 /* This can be done with a mvn instruction. */
6484 inst.instruction &= LITERAL_MASK;
6485 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6486 inst.instruction |= value & 0xfff;
6487 return 1;
6488 }
6489 }
6490 }
6491
6492 if (add_to_lit_pool () == FAIL)
6493 {
6494 inst.error = _("literal pool insertion failed");
6495 return 1;
6496 }
6497 inst.operands[1].reg = REG_PC;
6498 inst.operands[1].isreg = 1;
6499 inst.operands[1].preind = 1;
6500 inst.reloc.pc_rel = 1;
6501 inst.reloc.type = (thumb_p
6502 ? BFD_RELOC_ARM_THUMB_OFFSET
6503 : (mode_3
6504 ? BFD_RELOC_ARM_HWLITERAL
6505 : BFD_RELOC_ARM_LITERAL));
6506 return 0;
6507 }
6508
6509 /* Functions for instruction encoding, sorted by subarchitecture.
6510 First some generics; their names are taken from the conventional
6511 bit positions for register arguments in ARM format instructions. */
6512
6513 static void
6514 do_noargs (void)
6515 {
6516 }
6517
6518 static void
6519 do_rd (void)
6520 {
6521 inst.instruction |= inst.operands[0].reg << 12;
6522 }
6523
6524 static void
6525 do_rd_rm (void)
6526 {
6527 inst.instruction |= inst.operands[0].reg << 12;
6528 inst.instruction |= inst.operands[1].reg;
6529 }
6530
6531 static void
6532 do_rd_rn (void)
6533 {
6534 inst.instruction |= inst.operands[0].reg << 12;
6535 inst.instruction |= inst.operands[1].reg << 16;
6536 }
6537
6538 static void
6539 do_rn_rd (void)
6540 {
6541 inst.instruction |= inst.operands[0].reg << 16;
6542 inst.instruction |= inst.operands[1].reg << 12;
6543 }
6544
6545 static void
6546 do_rd_rm_rn (void)
6547 {
6548 unsigned Rn = inst.operands[2].reg;
6549 /* Enforce restrictions on SWP instruction. */
6550 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6551 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6552 _("Rn must not overlap other operands"));
6553 inst.instruction |= inst.operands[0].reg << 12;
6554 inst.instruction |= inst.operands[1].reg;
6555 inst.instruction |= Rn << 16;
6556 }
6557
6558 static void
6559 do_rd_rn_rm (void)
6560 {
6561 inst.instruction |= inst.operands[0].reg << 12;
6562 inst.instruction |= inst.operands[1].reg << 16;
6563 inst.instruction |= inst.operands[2].reg;
6564 }
6565
6566 static void
6567 do_rm_rd_rn (void)
6568 {
6569 inst.instruction |= inst.operands[0].reg;
6570 inst.instruction |= inst.operands[1].reg << 12;
6571 inst.instruction |= inst.operands[2].reg << 16;
6572 }
6573
6574 static void
6575 do_imm0 (void)
6576 {
6577 inst.instruction |= inst.operands[0].imm;
6578 }
6579
6580 static void
6581 do_rd_cpaddr (void)
6582 {
6583 inst.instruction |= inst.operands[0].reg << 12;
6584 encode_arm_cp_address (1, TRUE, TRUE, 0);
6585 }
6586
6587 /* ARM instructions, in alphabetical order by function name (except
6588 that wrapper functions appear immediately after the function they
6589 wrap). */
6590
6591 /* This is a pseudo-op of the form "adr rd, label" to be converted
6592 into a relative address of the form "add rd, pc, #label-.-8". */
6593
6594 static void
6595 do_adr (void)
6596 {
6597 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
6598
6599 /* Frag hacking will turn this into a sub instruction if the offset turns
6600 out to be negative. */
6601 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
6602 inst.reloc.pc_rel = 1;
6603 inst.reloc.exp.X_add_number -= 8;
6604 }
6605
6606 /* This is a pseudo-op of the form "adrl rd, label" to be converted
6607 into a relative address of the form:
6608 add rd, pc, #low(label-.-8)"
6609 add rd, rd, #high(label-.-8)" */
6610
6611 static void
6612 do_adrl (void)
6613 {
6614 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
6615
6616 /* Frag hacking will turn this into a sub instruction if the offset turns
6617 out to be negative. */
6618 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
6619 inst.reloc.pc_rel = 1;
6620 inst.size = INSN_SIZE * 2;
6621 inst.reloc.exp.X_add_number -= 8;
6622 }
6623
6624 static void
6625 do_arit (void)
6626 {
6627 if (!inst.operands[1].present)
6628 inst.operands[1].reg = inst.operands[0].reg;
6629 inst.instruction |= inst.operands[0].reg << 12;
6630 inst.instruction |= inst.operands[1].reg << 16;
6631 encode_arm_shifter_operand (2);
6632 }
6633
6634 static void
6635 do_barrier (void)
6636 {
6637 if (inst.operands[0].present)
6638 {
6639 constraint ((inst.instruction & 0xf0) != 0x40
6640 && inst.operands[0].imm != 0xf,
6641 "bad barrier type");
6642 inst.instruction |= inst.operands[0].imm;
6643 }
6644 else
6645 inst.instruction |= 0xf;
6646 }
6647
6648 static void
6649 do_bfc (void)
6650 {
6651 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
6652 constraint (msb > 32, _("bit-field extends past end of register"));
6653 /* The instruction encoding stores the LSB and MSB,
6654 not the LSB and width. */
6655 inst.instruction |= inst.operands[0].reg << 12;
6656 inst.instruction |= inst.operands[1].imm << 7;
6657 inst.instruction |= (msb - 1) << 16;
6658 }
6659
6660 static void
6661 do_bfi (void)
6662 {
6663 unsigned int msb;
6664
6665 /* #0 in second position is alternative syntax for bfc, which is
6666 the same instruction but with REG_PC in the Rm field. */
6667 if (!inst.operands[1].isreg)
6668 inst.operands[1].reg = REG_PC;
6669
6670 msb = inst.operands[2].imm + inst.operands[3].imm;
6671 constraint (msb > 32, _("bit-field extends past end of register"));
6672 /* The instruction encoding stores the LSB and MSB,
6673 not the LSB and width. */
6674 inst.instruction |= inst.operands[0].reg << 12;
6675 inst.instruction |= inst.operands[1].reg;
6676 inst.instruction |= inst.operands[2].imm << 7;
6677 inst.instruction |= (msb - 1) << 16;
6678 }
6679
6680 static void
6681 do_bfx (void)
6682 {
6683 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
6684 _("bit-field extends past end of register"));
6685 inst.instruction |= inst.operands[0].reg << 12;
6686 inst.instruction |= inst.operands[1].reg;
6687 inst.instruction |= inst.operands[2].imm << 7;
6688 inst.instruction |= (inst.operands[3].imm - 1) << 16;
6689 }
6690
6691 /* ARM V5 breakpoint instruction (argument parse)
6692 BKPT <16 bit unsigned immediate>
6693 Instruction is not conditional.
6694 The bit pattern given in insns[] has the COND_ALWAYS condition,
6695 and it is an error if the caller tried to override that. */
6696
6697 static void
6698 do_bkpt (void)
6699 {
6700 /* Top 12 of 16 bits to bits 19:8. */
6701 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
6702
6703 /* Bottom 4 of 16 bits to bits 3:0. */
6704 inst.instruction |= inst.operands[0].imm & 0xf;
6705 }
6706
6707 static void
6708 encode_branch (int default_reloc)
6709 {
6710 if (inst.operands[0].hasreloc)
6711 {
6712 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
6713 _("the only suffix valid here is '(plt)'"));
6714 inst.reloc.type = BFD_RELOC_ARM_PLT32;
6715 }
6716 else
6717 {
6718 inst.reloc.type = default_reloc;
6719 }
6720 inst.reloc.pc_rel = 1;
6721 }
6722
6723 static void
6724 do_branch (void)
6725 {
6726 #ifdef OBJ_ELF
6727 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6728 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6729 else
6730 #endif
6731 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6732 }
6733
6734 static void
6735 do_bl (void)
6736 {
6737 #ifdef OBJ_ELF
6738 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6739 {
6740 if (inst.cond == COND_ALWAYS)
6741 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6742 else
6743 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6744 }
6745 else
6746 #endif
6747 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6748 }
6749
6750 /* ARM V5 branch-link-exchange instruction (argument parse)
6751 BLX <target_addr> ie BLX(1)
6752 BLX{<condition>} <Rm> ie BLX(2)
6753 Unfortunately, there are two different opcodes for this mnemonic.
6754 So, the insns[].value is not used, and the code here zaps values
6755 into inst.instruction.
6756 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
6757
6758 static void
6759 do_blx (void)
6760 {
6761 if (inst.operands[0].isreg)
6762 {
6763 /* Arg is a register; the opcode provided by insns[] is correct.
6764 It is not illegal to do "blx pc", just useless. */
6765 if (inst.operands[0].reg == REG_PC)
6766 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
6767
6768 inst.instruction |= inst.operands[0].reg;
6769 }
6770 else
6771 {
6772 /* Arg is an address; this instruction cannot be executed
6773 conditionally, and the opcode must be adjusted. */
6774 constraint (inst.cond != COND_ALWAYS, BAD_COND);
6775 inst.instruction = 0xfa000000;
6776 #ifdef OBJ_ELF
6777 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6778 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6779 else
6780 #endif
6781 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
6782 }
6783 }
6784
6785 static void
6786 do_bx (void)
6787 {
6788 if (inst.operands[0].reg == REG_PC)
6789 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
6790
6791 inst.instruction |= inst.operands[0].reg;
6792 }
6793
6794
6795 /* ARM v5TEJ. Jump to Jazelle code. */
6796
6797 static void
6798 do_bxj (void)
6799 {
6800 if (inst.operands[0].reg == REG_PC)
6801 as_tsktsk (_("use of r15 in bxj is not really useful"));
6802
6803 inst.instruction |= inst.operands[0].reg;
6804 }
6805
6806 /* Co-processor data operation:
6807 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
6808 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
6809 static void
6810 do_cdp (void)
6811 {
6812 inst.instruction |= inst.operands[0].reg << 8;
6813 inst.instruction |= inst.operands[1].imm << 20;
6814 inst.instruction |= inst.operands[2].reg << 12;
6815 inst.instruction |= inst.operands[3].reg << 16;
6816 inst.instruction |= inst.operands[4].reg;
6817 inst.instruction |= inst.operands[5].imm << 5;
6818 }
6819
6820 static void
6821 do_cmp (void)
6822 {
6823 inst.instruction |= inst.operands[0].reg << 16;
6824 encode_arm_shifter_operand (1);
6825 }
6826
6827 /* Transfer between coprocessor and ARM registers.
6828 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
6829 MRC2
6830 MCR{cond}
6831 MCR2
6832
6833 No special properties. */
6834
6835 static void
6836 do_co_reg (void)
6837 {
6838 inst.instruction |= inst.operands[0].reg << 8;
6839 inst.instruction |= inst.operands[1].imm << 21;
6840 inst.instruction |= inst.operands[2].reg << 12;
6841 inst.instruction |= inst.operands[3].reg << 16;
6842 inst.instruction |= inst.operands[4].reg;
6843 inst.instruction |= inst.operands[5].imm << 5;
6844 }
6845
6846 /* Transfer between coprocessor register and pair of ARM registers.
6847 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
6848 MCRR2
6849 MRRC{cond}
6850 MRRC2
6851
6852 Two XScale instructions are special cases of these:
6853
6854 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
6855 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
6856
6857 Result unpredicatable if Rd or Rn is R15. */
6858
6859 static void
6860 do_co_reg2c (void)
6861 {
6862 inst.instruction |= inst.operands[0].reg << 8;
6863 inst.instruction |= inst.operands[1].imm << 4;
6864 inst.instruction |= inst.operands[2].reg << 12;
6865 inst.instruction |= inst.operands[3].reg << 16;
6866 inst.instruction |= inst.operands[4].reg;
6867 }
6868
6869 static void
6870 do_cpsi (void)
6871 {
6872 inst.instruction |= inst.operands[0].imm << 6;
6873 if (inst.operands[1].present)
6874 {
6875 inst.instruction |= CPSI_MMOD;
6876 inst.instruction |= inst.operands[1].imm;
6877 }
6878 }
6879
6880 static void
6881 do_dbg (void)
6882 {
6883 inst.instruction |= inst.operands[0].imm;
6884 }
6885
6886 static void
6887 do_it (void)
6888 {
6889 /* There is no IT instruction in ARM mode. We
6890 process it but do not generate code for it. */
6891 inst.size = 0;
6892 }
6893
6894 static void
6895 do_ldmstm (void)
6896 {
6897 int base_reg = inst.operands[0].reg;
6898 int range = inst.operands[1].imm;
6899
6900 inst.instruction |= base_reg << 16;
6901 inst.instruction |= range;
6902
6903 if (inst.operands[1].writeback)
6904 inst.instruction |= LDM_TYPE_2_OR_3;
6905
6906 if (inst.operands[0].writeback)
6907 {
6908 inst.instruction |= WRITE_BACK;
6909 /* Check for unpredictable uses of writeback. */
6910 if (inst.instruction & LOAD_BIT)
6911 {
6912 /* Not allowed in LDM type 2. */
6913 if ((inst.instruction & LDM_TYPE_2_OR_3)
6914 && ((range & (1 << REG_PC)) == 0))
6915 as_warn (_("writeback of base register is UNPREDICTABLE"));
6916 /* Only allowed if base reg not in list for other types. */
6917 else if (range & (1 << base_reg))
6918 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
6919 }
6920 else /* STM. */
6921 {
6922 /* Not allowed for type 2. */
6923 if (inst.instruction & LDM_TYPE_2_OR_3)
6924 as_warn (_("writeback of base register is UNPREDICTABLE"));
6925 /* Only allowed if base reg not in list, or first in list. */
6926 else if ((range & (1 << base_reg))
6927 && (range & ((1 << base_reg) - 1)))
6928 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
6929 }
6930 }
6931 }
6932
6933 /* ARMv5TE load-consecutive (argument parse)
6934 Mode is like LDRH.
6935
6936 LDRccD R, mode
6937 STRccD R, mode. */
6938
6939 static void
6940 do_ldrd (void)
6941 {
6942 constraint (inst.operands[0].reg % 2 != 0,
6943 _("first destination register must be even"));
6944 constraint (inst.operands[1].present
6945 && inst.operands[1].reg != inst.operands[0].reg + 1,
6946 _("can only load two consecutive registers"));
6947 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
6948 constraint (!inst.operands[2].isreg, _("'[' expected"));
6949
6950 if (!inst.operands[1].present)
6951 inst.operands[1].reg = inst.operands[0].reg + 1;
6952
6953 if (inst.instruction & LOAD_BIT)
6954 {
6955 /* encode_arm_addr_mode_3 will diagnose overlap between the base
6956 register and the first register written; we have to diagnose
6957 overlap between the base and the second register written here. */
6958
6959 if (inst.operands[2].reg == inst.operands[1].reg
6960 && (inst.operands[2].writeback || inst.operands[2].postind))
6961 as_warn (_("base register written back, and overlaps "
6962 "second destination register"));
6963
6964 /* For an index-register load, the index register must not overlap the
6965 destination (even if not write-back). */
6966 else if (inst.operands[2].immisreg
6967 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
6968 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
6969 as_warn (_("index register overlaps destination register"));
6970 }
6971
6972 inst.instruction |= inst.operands[0].reg << 12;
6973 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
6974 }
6975
6976 static void
6977 do_ldrex (void)
6978 {
6979 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
6980 || inst.operands[1].postind || inst.operands[1].writeback
6981 || inst.operands[1].immisreg || inst.operands[1].shifted
6982 || inst.operands[1].negative
6983 /* This can arise if the programmer has written
6984 strex rN, rM, foo
6985 or if they have mistakenly used a register name as the last
6986 operand, eg:
6987 strex rN, rM, rX
6988 It is very difficult to distinguish between these two cases
6989 because "rX" might actually be a label. ie the register
6990 name has been occluded by a symbol of the same name. So we
6991 just generate a general 'bad addressing mode' type error
6992 message and leave it up to the programmer to discover the
6993 true cause and fix their mistake. */
6994 || (inst.operands[1].reg == REG_PC),
6995 BAD_ADDR_MODE);
6996
6997 constraint (inst.reloc.exp.X_op != O_constant
6998 || inst.reloc.exp.X_add_number != 0,
6999 _("offset must be zero in ARM encoding"));
7000
7001 inst.instruction |= inst.operands[0].reg << 12;
7002 inst.instruction |= inst.operands[1].reg << 16;
7003 inst.reloc.type = BFD_RELOC_UNUSED;
7004 }
7005
7006 static void
7007 do_ldrexd (void)
7008 {
7009 constraint (inst.operands[0].reg % 2 != 0,
7010 _("even register required"));
7011 constraint (inst.operands[1].present
7012 && inst.operands[1].reg != inst.operands[0].reg + 1,
7013 _("can only load two consecutive registers"));
7014 /* If op 1 were present and equal to PC, this function wouldn't
7015 have been called in the first place. */
7016 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7017
7018 inst.instruction |= inst.operands[0].reg << 12;
7019 inst.instruction |= inst.operands[2].reg << 16;
7020 }
7021
7022 static void
7023 do_ldst (void)
7024 {
7025 inst.instruction |= inst.operands[0].reg << 12;
7026 if (!inst.operands[1].isreg)
7027 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
7028 return;
7029 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
7030 }
7031
7032 static void
7033 do_ldstt (void)
7034 {
7035 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7036 reject [Rn,...]. */
7037 if (inst.operands[1].preind)
7038 {
7039 constraint (inst.reloc.exp.X_op != O_constant ||
7040 inst.reloc.exp.X_add_number != 0,
7041 _("this instruction requires a post-indexed address"));
7042
7043 inst.operands[1].preind = 0;
7044 inst.operands[1].postind = 1;
7045 inst.operands[1].writeback = 1;
7046 }
7047 inst.instruction |= inst.operands[0].reg << 12;
7048 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7049 }
7050
7051 /* Halfword and signed-byte load/store operations. */
7052
7053 static void
7054 do_ldstv4 (void)
7055 {
7056 inst.instruction |= inst.operands[0].reg << 12;
7057 if (!inst.operands[1].isreg)
7058 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
7059 return;
7060 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
7061 }
7062
7063 static void
7064 do_ldsttv4 (void)
7065 {
7066 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7067 reject [Rn,...]. */
7068 if (inst.operands[1].preind)
7069 {
7070 constraint (inst.reloc.exp.X_op != O_constant ||
7071 inst.reloc.exp.X_add_number != 0,
7072 _("this instruction requires a post-indexed address"));
7073
7074 inst.operands[1].preind = 0;
7075 inst.operands[1].postind = 1;
7076 inst.operands[1].writeback = 1;
7077 }
7078 inst.instruction |= inst.operands[0].reg << 12;
7079 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7080 }
7081
7082 /* Co-processor register load/store.
7083 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7084 static void
7085 do_lstc (void)
7086 {
7087 inst.instruction |= inst.operands[0].reg << 8;
7088 inst.instruction |= inst.operands[1].reg << 12;
7089 encode_arm_cp_address (2, TRUE, TRUE, 0);
7090 }
7091
7092 static void
7093 do_mlas (void)
7094 {
7095 /* This restriction does not apply to mls (nor to mla in v6 or later). */
7096 if (inst.operands[0].reg == inst.operands[1].reg
7097 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
7098 && !(inst.instruction & 0x00400000))
7099 as_tsktsk (_("Rd and Rm should be different in mla"));
7100
7101 inst.instruction |= inst.operands[0].reg << 16;
7102 inst.instruction |= inst.operands[1].reg;
7103 inst.instruction |= inst.operands[2].reg << 8;
7104 inst.instruction |= inst.operands[3].reg << 12;
7105 }
7106
7107 static void
7108 do_mov (void)
7109 {
7110 inst.instruction |= inst.operands[0].reg << 12;
7111 encode_arm_shifter_operand (1);
7112 }
7113
7114 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7115 static void
7116 do_mov16 (void)
7117 {
7118 bfd_vma imm;
7119 bfd_boolean top;
7120
7121 top = (inst.instruction & 0x00400000) != 0;
7122 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7123 _(":lower16: not allowed this instruction"));
7124 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7125 _(":upper16: not allowed instruction"));
7126 inst.instruction |= inst.operands[0].reg << 12;
7127 if (inst.reloc.type == BFD_RELOC_UNUSED)
7128 {
7129 imm = inst.reloc.exp.X_add_number;
7130 /* The value is in two pieces: 0:11, 16:19. */
7131 inst.instruction |= (imm & 0x00000fff);
7132 inst.instruction |= (imm & 0x0000f000) << 4;
7133 }
7134 }
7135
7136 static void do_vfp_nsyn_opcode (const char *);
7137
7138 static int
7139 do_vfp_nsyn_mrs (void)
7140 {
7141 if (inst.operands[0].isvec)
7142 {
7143 if (inst.operands[1].reg != 1)
7144 first_error (_("operand 1 must be FPSCR"));
7145 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7146 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7147 do_vfp_nsyn_opcode ("fmstat");
7148 }
7149 else if (inst.operands[1].isvec)
7150 do_vfp_nsyn_opcode ("fmrx");
7151 else
7152 return FAIL;
7153
7154 return SUCCESS;
7155 }
7156
7157 static int
7158 do_vfp_nsyn_msr (void)
7159 {
7160 if (inst.operands[0].isvec)
7161 do_vfp_nsyn_opcode ("fmxr");
7162 else
7163 return FAIL;
7164
7165 return SUCCESS;
7166 }
7167
7168 static void
7169 do_mrs (void)
7170 {
7171 if (do_vfp_nsyn_mrs () == SUCCESS)
7172 return;
7173
7174 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7175 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7176 != (PSR_c|PSR_f),
7177 _("'CPSR' or 'SPSR' expected"));
7178 inst.instruction |= inst.operands[0].reg << 12;
7179 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7180 }
7181
7182 /* Two possible forms:
7183 "{C|S}PSR_<field>, Rm",
7184 "{C|S}PSR_f, #expression". */
7185
7186 static void
7187 do_msr (void)
7188 {
7189 if (do_vfp_nsyn_msr () == SUCCESS)
7190 return;
7191
7192 inst.instruction |= inst.operands[0].imm;
7193 if (inst.operands[1].isreg)
7194 inst.instruction |= inst.operands[1].reg;
7195 else
7196 {
7197 inst.instruction |= INST_IMMEDIATE;
7198 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7199 inst.reloc.pc_rel = 0;
7200 }
7201 }
7202
7203 static void
7204 do_mul (void)
7205 {
7206 if (!inst.operands[2].present)
7207 inst.operands[2].reg = inst.operands[0].reg;
7208 inst.instruction |= inst.operands[0].reg << 16;
7209 inst.instruction |= inst.operands[1].reg;
7210 inst.instruction |= inst.operands[2].reg << 8;
7211
7212 if (inst.operands[0].reg == inst.operands[1].reg
7213 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7214 as_tsktsk (_("Rd and Rm should be different in mul"));
7215 }
7216
7217 /* Long Multiply Parser
7218 UMULL RdLo, RdHi, Rm, Rs
7219 SMULL RdLo, RdHi, Rm, Rs
7220 UMLAL RdLo, RdHi, Rm, Rs
7221 SMLAL RdLo, RdHi, Rm, Rs. */
7222
7223 static void
7224 do_mull (void)
7225 {
7226 inst.instruction |= inst.operands[0].reg << 12;
7227 inst.instruction |= inst.operands[1].reg << 16;
7228 inst.instruction |= inst.operands[2].reg;
7229 inst.instruction |= inst.operands[3].reg << 8;
7230
7231 /* rdhi, rdlo and rm must all be different. */
7232 if (inst.operands[0].reg == inst.operands[1].reg
7233 || inst.operands[0].reg == inst.operands[2].reg
7234 || inst.operands[1].reg == inst.operands[2].reg)
7235 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7236 }
7237
7238 static void
7239 do_nop (void)
7240 {
7241 if (inst.operands[0].present)
7242 {
7243 /* Architectural NOP hints are CPSR sets with no bits selected. */
7244 inst.instruction &= 0xf0000000;
7245 inst.instruction |= 0x0320f000 + inst.operands[0].imm;
7246 }
7247 }
7248
7249 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7250 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7251 Condition defaults to COND_ALWAYS.
7252 Error if Rd, Rn or Rm are R15. */
7253
7254 static void
7255 do_pkhbt (void)
7256 {
7257 inst.instruction |= inst.operands[0].reg << 12;
7258 inst.instruction |= inst.operands[1].reg << 16;
7259 inst.instruction |= inst.operands[2].reg;
7260 if (inst.operands[3].present)
7261 encode_arm_shift (3);
7262 }
7263
7264 /* ARM V6 PKHTB (Argument Parse). */
7265
7266 static void
7267 do_pkhtb (void)
7268 {
7269 if (!inst.operands[3].present)
7270 {
7271 /* If the shift specifier is omitted, turn the instruction
7272 into pkhbt rd, rm, rn. */
7273 inst.instruction &= 0xfff00010;
7274 inst.instruction |= inst.operands[0].reg << 12;
7275 inst.instruction |= inst.operands[1].reg;
7276 inst.instruction |= inst.operands[2].reg << 16;
7277 }
7278 else
7279 {
7280 inst.instruction |= inst.operands[0].reg << 12;
7281 inst.instruction |= inst.operands[1].reg << 16;
7282 inst.instruction |= inst.operands[2].reg;
7283 encode_arm_shift (3);
7284 }
7285 }
7286
7287 /* ARMv5TE: Preload-Cache
7288
7289 PLD <addr_mode>
7290
7291 Syntactically, like LDR with B=1, W=0, L=1. */
7292
7293 static void
7294 do_pld (void)
7295 {
7296 constraint (!inst.operands[0].isreg,
7297 _("'[' expected after PLD mnemonic"));
7298 constraint (inst.operands[0].postind,
7299 _("post-indexed expression used in preload instruction"));
7300 constraint (inst.operands[0].writeback,
7301 _("writeback used in preload instruction"));
7302 constraint (!inst.operands[0].preind,
7303 _("unindexed addressing used in preload instruction"));
7304 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7305 }
7306
7307 /* ARMv7: PLI <addr_mode> */
7308 static void
7309 do_pli (void)
7310 {
7311 constraint (!inst.operands[0].isreg,
7312 _("'[' expected after PLI mnemonic"));
7313 constraint (inst.operands[0].postind,
7314 _("post-indexed expression used in preload instruction"));
7315 constraint (inst.operands[0].writeback,
7316 _("writeback used in preload instruction"));
7317 constraint (!inst.operands[0].preind,
7318 _("unindexed addressing used in preload instruction"));
7319 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7320 inst.instruction &= ~PRE_INDEX;
7321 }
7322
7323 static void
7324 do_push_pop (void)
7325 {
7326 inst.operands[1] = inst.operands[0];
7327 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7328 inst.operands[0].isreg = 1;
7329 inst.operands[0].writeback = 1;
7330 inst.operands[0].reg = REG_SP;
7331 do_ldmstm ();
7332 }
7333
7334 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7335 word at the specified address and the following word
7336 respectively.
7337 Unconditionally executed.
7338 Error if Rn is R15. */
7339
7340 static void
7341 do_rfe (void)
7342 {
7343 inst.instruction |= inst.operands[0].reg << 16;
7344 if (inst.operands[0].writeback)
7345 inst.instruction |= WRITE_BACK;
7346 }
7347
7348 /* ARM V6 ssat (argument parse). */
7349
7350 static void
7351 do_ssat (void)
7352 {
7353 inst.instruction |= inst.operands[0].reg << 12;
7354 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7355 inst.instruction |= inst.operands[2].reg;
7356
7357 if (inst.operands[3].present)
7358 encode_arm_shift (3);
7359 }
7360
7361 /* ARM V6 usat (argument parse). */
7362
7363 static void
7364 do_usat (void)
7365 {
7366 inst.instruction |= inst.operands[0].reg << 12;
7367 inst.instruction |= inst.operands[1].imm << 16;
7368 inst.instruction |= inst.operands[2].reg;
7369
7370 if (inst.operands[3].present)
7371 encode_arm_shift (3);
7372 }
7373
7374 /* ARM V6 ssat16 (argument parse). */
7375
7376 static void
7377 do_ssat16 (void)
7378 {
7379 inst.instruction |= inst.operands[0].reg << 12;
7380 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7381 inst.instruction |= inst.operands[2].reg;
7382 }
7383
7384 static void
7385 do_usat16 (void)
7386 {
7387 inst.instruction |= inst.operands[0].reg << 12;
7388 inst.instruction |= inst.operands[1].imm << 16;
7389 inst.instruction |= inst.operands[2].reg;
7390 }
7391
7392 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7393 preserving the other bits.
7394
7395 setend <endian_specifier>, where <endian_specifier> is either
7396 BE or LE. */
7397
7398 static void
7399 do_setend (void)
7400 {
7401 if (inst.operands[0].imm)
7402 inst.instruction |= 0x200;
7403 }
7404
7405 static void
7406 do_shift (void)
7407 {
7408 unsigned int Rm = (inst.operands[1].present
7409 ? inst.operands[1].reg
7410 : inst.operands[0].reg);
7411
7412 inst.instruction |= inst.operands[0].reg << 12;
7413 inst.instruction |= Rm;
7414 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
7415 {
7416 inst.instruction |= inst.operands[2].reg << 8;
7417 inst.instruction |= SHIFT_BY_REG;
7418 }
7419 else
7420 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7421 }
7422
7423 static void
7424 do_smc (void)
7425 {
7426 inst.reloc.type = BFD_RELOC_ARM_SMC;
7427 inst.reloc.pc_rel = 0;
7428 }
7429
7430 static void
7431 do_swi (void)
7432 {
7433 inst.reloc.type = BFD_RELOC_ARM_SWI;
7434 inst.reloc.pc_rel = 0;
7435 }
7436
7437 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7438 SMLAxy{cond} Rd,Rm,Rs,Rn
7439 SMLAWy{cond} Rd,Rm,Rs,Rn
7440 Error if any register is R15. */
7441
7442 static void
7443 do_smla (void)
7444 {
7445 inst.instruction |= inst.operands[0].reg << 16;
7446 inst.instruction |= inst.operands[1].reg;
7447 inst.instruction |= inst.operands[2].reg << 8;
7448 inst.instruction |= inst.operands[3].reg << 12;
7449 }
7450
7451 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7452 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7453 Error if any register is R15.
7454 Warning if Rdlo == Rdhi. */
7455
7456 static void
7457 do_smlal (void)
7458 {
7459 inst.instruction |= inst.operands[0].reg << 12;
7460 inst.instruction |= inst.operands[1].reg << 16;
7461 inst.instruction |= inst.operands[2].reg;
7462 inst.instruction |= inst.operands[3].reg << 8;
7463
7464 if (inst.operands[0].reg == inst.operands[1].reg)
7465 as_tsktsk (_("rdhi and rdlo must be different"));
7466 }
7467
7468 /* ARM V5E (El Segundo) signed-multiply (argument parse)
7469 SMULxy{cond} Rd,Rm,Rs
7470 Error if any register is R15. */
7471
7472 static void
7473 do_smul (void)
7474 {
7475 inst.instruction |= inst.operands[0].reg << 16;
7476 inst.instruction |= inst.operands[1].reg;
7477 inst.instruction |= inst.operands[2].reg << 8;
7478 }
7479
7480 /* ARM V6 srs (argument parse). The variable fields in the encoding are
7481 the same for both ARM and Thumb-2. */
7482
7483 static void
7484 do_srs (void)
7485 {
7486 int reg;
7487
7488 if (inst.operands[0].present)
7489 {
7490 reg = inst.operands[0].reg;
7491 constraint (reg != 13, _("SRS base register must be r13"));
7492 }
7493 else
7494 reg = 13;
7495
7496 inst.instruction |= reg << 16;
7497 inst.instruction |= inst.operands[1].imm;
7498 if (inst.operands[0].writeback || inst.operands[1].writeback)
7499 inst.instruction |= WRITE_BACK;
7500 }
7501
7502 /* ARM V6 strex (argument parse). */
7503
7504 static void
7505 do_strex (void)
7506 {
7507 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
7508 || inst.operands[2].postind || inst.operands[2].writeback
7509 || inst.operands[2].immisreg || inst.operands[2].shifted
7510 || inst.operands[2].negative
7511 /* See comment in do_ldrex(). */
7512 || (inst.operands[2].reg == REG_PC),
7513 BAD_ADDR_MODE);
7514
7515 constraint (inst.operands[0].reg == inst.operands[1].reg
7516 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
7517
7518 constraint (inst.reloc.exp.X_op != O_constant
7519 || inst.reloc.exp.X_add_number != 0,
7520 _("offset must be zero in ARM encoding"));
7521
7522 inst.instruction |= inst.operands[0].reg << 12;
7523 inst.instruction |= inst.operands[1].reg;
7524 inst.instruction |= inst.operands[2].reg << 16;
7525 inst.reloc.type = BFD_RELOC_UNUSED;
7526 }
7527
7528 static void
7529 do_strexd (void)
7530 {
7531 constraint (inst.operands[1].reg % 2 != 0,
7532 _("even register required"));
7533 constraint (inst.operands[2].present
7534 && inst.operands[2].reg != inst.operands[1].reg + 1,
7535 _("can only store two consecutive registers"));
7536 /* If op 2 were present and equal to PC, this function wouldn't
7537 have been called in the first place. */
7538 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
7539
7540 constraint (inst.operands[0].reg == inst.operands[1].reg
7541 || inst.operands[0].reg == inst.operands[1].reg + 1
7542 || inst.operands[0].reg == inst.operands[3].reg,
7543 BAD_OVERLAP);
7544
7545 inst.instruction |= inst.operands[0].reg << 12;
7546 inst.instruction |= inst.operands[1].reg;
7547 inst.instruction |= inst.operands[3].reg << 16;
7548 }
7549
7550 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
7551 extends it to 32-bits, and adds the result to a value in another
7552 register. You can specify a rotation by 0, 8, 16, or 24 bits
7553 before extracting the 16-bit value.
7554 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
7555 Condition defaults to COND_ALWAYS.
7556 Error if any register uses R15. */
7557
7558 static void
7559 do_sxtah (void)
7560 {
7561 inst.instruction |= inst.operands[0].reg << 12;
7562 inst.instruction |= inst.operands[1].reg << 16;
7563 inst.instruction |= inst.operands[2].reg;
7564 inst.instruction |= inst.operands[3].imm << 10;
7565 }
7566
7567 /* ARM V6 SXTH.
7568
7569 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
7570 Condition defaults to COND_ALWAYS.
7571 Error if any register uses R15. */
7572
7573 static void
7574 do_sxth (void)
7575 {
7576 inst.instruction |= inst.operands[0].reg << 12;
7577 inst.instruction |= inst.operands[1].reg;
7578 inst.instruction |= inst.operands[2].imm << 10;
7579 }
7580 \f
7581 /* VFP instructions. In a logical order: SP variant first, monad
7582 before dyad, arithmetic then move then load/store. */
7583
7584 static void
7585 do_vfp_sp_monadic (void)
7586 {
7587 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7588 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
7589 }
7590
7591 static void
7592 do_vfp_sp_dyadic (void)
7593 {
7594 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7595 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7596 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
7597 }
7598
7599 static void
7600 do_vfp_sp_compare_z (void)
7601 {
7602 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7603 }
7604
7605 static void
7606 do_vfp_dp_sp_cvt (void)
7607 {
7608 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7609 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
7610 }
7611
7612 static void
7613 do_vfp_sp_dp_cvt (void)
7614 {
7615 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7616 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7617 }
7618
7619 static void
7620 do_vfp_reg_from_sp (void)
7621 {
7622 inst.instruction |= inst.operands[0].reg << 12;
7623 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7624 }
7625
7626 static void
7627 do_vfp_reg2_from_sp2 (void)
7628 {
7629 constraint (inst.operands[2].imm != 2,
7630 _("only two consecutive VFP SP registers allowed here"));
7631 inst.instruction |= inst.operands[0].reg << 12;
7632 inst.instruction |= inst.operands[1].reg << 16;
7633 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
7634 }
7635
7636 static void
7637 do_vfp_sp_from_reg (void)
7638 {
7639 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
7640 inst.instruction |= inst.operands[1].reg << 12;
7641 }
7642
7643 static void
7644 do_vfp_sp2_from_reg2 (void)
7645 {
7646 constraint (inst.operands[0].imm != 2,
7647 _("only two consecutive VFP SP registers allowed here"));
7648 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
7649 inst.instruction |= inst.operands[1].reg << 12;
7650 inst.instruction |= inst.operands[2].reg << 16;
7651 }
7652
7653 static void
7654 do_vfp_sp_ldst (void)
7655 {
7656 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7657 encode_arm_cp_address (1, FALSE, TRUE, 0);
7658 }
7659
7660 static void
7661 do_vfp_dp_ldst (void)
7662 {
7663 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7664 encode_arm_cp_address (1, FALSE, TRUE, 0);
7665 }
7666
7667
7668 static void
7669 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
7670 {
7671 if (inst.operands[0].writeback)
7672 inst.instruction |= WRITE_BACK;
7673 else
7674 constraint (ldstm_type != VFP_LDSTMIA,
7675 _("this addressing mode requires base-register writeback"));
7676 inst.instruction |= inst.operands[0].reg << 16;
7677 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
7678 inst.instruction |= inst.operands[1].imm;
7679 }
7680
7681 static void
7682 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
7683 {
7684 int count;
7685
7686 if (inst.operands[0].writeback)
7687 inst.instruction |= WRITE_BACK;
7688 else
7689 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
7690 _("this addressing mode requires base-register writeback"));
7691
7692 inst.instruction |= inst.operands[0].reg << 16;
7693 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7694
7695 count = inst.operands[1].imm << 1;
7696 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
7697 count += 1;
7698
7699 inst.instruction |= count;
7700 }
7701
7702 static void
7703 do_vfp_sp_ldstmia (void)
7704 {
7705 vfp_sp_ldstm (VFP_LDSTMIA);
7706 }
7707
7708 static void
7709 do_vfp_sp_ldstmdb (void)
7710 {
7711 vfp_sp_ldstm (VFP_LDSTMDB);
7712 }
7713
7714 static void
7715 do_vfp_dp_ldstmia (void)
7716 {
7717 vfp_dp_ldstm (VFP_LDSTMIA);
7718 }
7719
7720 static void
7721 do_vfp_dp_ldstmdb (void)
7722 {
7723 vfp_dp_ldstm (VFP_LDSTMDB);
7724 }
7725
7726 static void
7727 do_vfp_xp_ldstmia (void)
7728 {
7729 vfp_dp_ldstm (VFP_LDSTMIAX);
7730 }
7731
7732 static void
7733 do_vfp_xp_ldstmdb (void)
7734 {
7735 vfp_dp_ldstm (VFP_LDSTMDBX);
7736 }
7737
7738 static void
7739 do_vfp_dp_rd_rm (void)
7740 {
7741 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7742 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7743 }
7744
7745 static void
7746 do_vfp_dp_rn_rd (void)
7747 {
7748 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
7749 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7750 }
7751
7752 static void
7753 do_vfp_dp_rd_rn (void)
7754 {
7755 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7756 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7757 }
7758
7759 static void
7760 do_vfp_dp_rd_rn_rm (void)
7761 {
7762 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7763 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7764 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
7765 }
7766
7767 static void
7768 do_vfp_dp_rd (void)
7769 {
7770 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7771 }
7772
7773 static void
7774 do_vfp_dp_rm_rd_rn (void)
7775 {
7776 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
7777 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7778 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
7779 }
7780
7781 /* VFPv3 instructions. */
7782 static void
7783 do_vfp_sp_const (void)
7784 {
7785 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7786 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7787 inst.instruction |= (inst.operands[1].imm & 0x0f);
7788 }
7789
7790 static void
7791 do_vfp_dp_const (void)
7792 {
7793 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7794 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7795 inst.instruction |= (inst.operands[1].imm & 0x0f);
7796 }
7797
7798 static void
7799 vfp_conv (int srcsize)
7800 {
7801 unsigned immbits = srcsize - inst.operands[1].imm;
7802 inst.instruction |= (immbits & 1) << 5;
7803 inst.instruction |= (immbits >> 1);
7804 }
7805
7806 static void
7807 do_vfp_sp_conv_16 (void)
7808 {
7809 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7810 vfp_conv (16);
7811 }
7812
7813 static void
7814 do_vfp_dp_conv_16 (void)
7815 {
7816 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7817 vfp_conv (16);
7818 }
7819
7820 static void
7821 do_vfp_sp_conv_32 (void)
7822 {
7823 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7824 vfp_conv (32);
7825 }
7826
7827 static void
7828 do_vfp_dp_conv_32 (void)
7829 {
7830 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7831 vfp_conv (32);
7832 }
7833
7834 \f
7835 /* FPA instructions. Also in a logical order. */
7836
7837 static void
7838 do_fpa_cmp (void)
7839 {
7840 inst.instruction |= inst.operands[0].reg << 16;
7841 inst.instruction |= inst.operands[1].reg;
7842 }
7843
7844 static void
7845 do_fpa_ldmstm (void)
7846 {
7847 inst.instruction |= inst.operands[0].reg << 12;
7848 switch (inst.operands[1].imm)
7849 {
7850 case 1: inst.instruction |= CP_T_X; break;
7851 case 2: inst.instruction |= CP_T_Y; break;
7852 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
7853 case 4: break;
7854 default: abort ();
7855 }
7856
7857 if (inst.instruction & (PRE_INDEX | INDEX_UP))
7858 {
7859 /* The instruction specified "ea" or "fd", so we can only accept
7860 [Rn]{!}. The instruction does not really support stacking or
7861 unstacking, so we have to emulate these by setting appropriate
7862 bits and offsets. */
7863 constraint (inst.reloc.exp.X_op != O_constant
7864 || inst.reloc.exp.X_add_number != 0,
7865 _("this instruction does not support indexing"));
7866
7867 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
7868 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
7869
7870 if (!(inst.instruction & INDEX_UP))
7871 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
7872
7873 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
7874 {
7875 inst.operands[2].preind = 0;
7876 inst.operands[2].postind = 1;
7877 }
7878 }
7879
7880 encode_arm_cp_address (2, TRUE, TRUE, 0);
7881 }
7882
7883 \f
7884 /* iWMMXt instructions: strictly in alphabetical order. */
7885
7886 static void
7887 do_iwmmxt_tandorc (void)
7888 {
7889 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
7890 }
7891
7892 static void
7893 do_iwmmxt_textrc (void)
7894 {
7895 inst.instruction |= inst.operands[0].reg << 12;
7896 inst.instruction |= inst.operands[1].imm;
7897 }
7898
7899 static void
7900 do_iwmmxt_textrm (void)
7901 {
7902 inst.instruction |= inst.operands[0].reg << 12;
7903 inst.instruction |= inst.operands[1].reg << 16;
7904 inst.instruction |= inst.operands[2].imm;
7905 }
7906
7907 static void
7908 do_iwmmxt_tinsr (void)
7909 {
7910 inst.instruction |= inst.operands[0].reg << 16;
7911 inst.instruction |= inst.operands[1].reg << 12;
7912 inst.instruction |= inst.operands[2].imm;
7913 }
7914
7915 static void
7916 do_iwmmxt_tmia (void)
7917 {
7918 inst.instruction |= inst.operands[0].reg << 5;
7919 inst.instruction |= inst.operands[1].reg;
7920 inst.instruction |= inst.operands[2].reg << 12;
7921 }
7922
7923 static void
7924 do_iwmmxt_waligni (void)
7925 {
7926 inst.instruction |= inst.operands[0].reg << 12;
7927 inst.instruction |= inst.operands[1].reg << 16;
7928 inst.instruction |= inst.operands[2].reg;
7929 inst.instruction |= inst.operands[3].imm << 20;
7930 }
7931
7932 static void
7933 do_iwmmxt_wmerge (void)
7934 {
7935 inst.instruction |= inst.operands[0].reg << 12;
7936 inst.instruction |= inst.operands[1].reg << 16;
7937 inst.instruction |= inst.operands[2].reg;
7938 inst.instruction |= inst.operands[3].imm << 21;
7939 }
7940
7941 static void
7942 do_iwmmxt_wmov (void)
7943 {
7944 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
7945 inst.instruction |= inst.operands[0].reg << 12;
7946 inst.instruction |= inst.operands[1].reg << 16;
7947 inst.instruction |= inst.operands[1].reg;
7948 }
7949
7950 static void
7951 do_iwmmxt_wldstbh (void)
7952 {
7953 int reloc;
7954 inst.instruction |= inst.operands[0].reg << 12;
7955 if (thumb_mode)
7956 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
7957 else
7958 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
7959 encode_arm_cp_address (1, TRUE, FALSE, reloc);
7960 }
7961
7962 static void
7963 do_iwmmxt_wldstw (void)
7964 {
7965 /* RIWR_RIWC clears .isreg for a control register. */
7966 if (!inst.operands[0].isreg)
7967 {
7968 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7969 inst.instruction |= 0xf0000000;
7970 }
7971
7972 inst.instruction |= inst.operands[0].reg << 12;
7973 encode_arm_cp_address (1, TRUE, TRUE, 0);
7974 }
7975
7976 static void
7977 do_iwmmxt_wldstd (void)
7978 {
7979 inst.instruction |= inst.operands[0].reg << 12;
7980 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
7981 && inst.operands[1].immisreg)
7982 {
7983 inst.instruction &= ~0x1a000ff;
7984 inst.instruction |= (0xf << 28);
7985 if (inst.operands[1].preind)
7986 inst.instruction |= PRE_INDEX;
7987 if (!inst.operands[1].negative)
7988 inst.instruction |= INDEX_UP;
7989 if (inst.operands[1].writeback)
7990 inst.instruction |= WRITE_BACK;
7991 inst.instruction |= inst.operands[1].reg << 16;
7992 inst.instruction |= inst.reloc.exp.X_add_number << 4;
7993 inst.instruction |= inst.operands[1].imm;
7994 }
7995 else
7996 encode_arm_cp_address (1, TRUE, FALSE, 0);
7997 }
7998
7999 static void
8000 do_iwmmxt_wshufh (void)
8001 {
8002 inst.instruction |= inst.operands[0].reg << 12;
8003 inst.instruction |= inst.operands[1].reg << 16;
8004 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8005 inst.instruction |= (inst.operands[2].imm & 0x0f);
8006 }
8007
8008 static void
8009 do_iwmmxt_wzero (void)
8010 {
8011 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8012 inst.instruction |= inst.operands[0].reg;
8013 inst.instruction |= inst.operands[0].reg << 12;
8014 inst.instruction |= inst.operands[0].reg << 16;
8015 }
8016
8017 static void
8018 do_iwmmxt_wrwrwr_or_imm5 (void)
8019 {
8020 if (inst.operands[2].isreg)
8021 do_rd_rn_rm ();
8022 else {
8023 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8024 _("immediate operand requires iWMMXt2"));
8025 do_rd_rn ();
8026 if (inst.operands[2].imm == 0)
8027 {
8028 switch ((inst.instruction >> 20) & 0xf)
8029 {
8030 case 4:
8031 case 5:
8032 case 6:
8033 case 7:
8034 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8035 inst.operands[2].imm = 16;
8036 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8037 break;
8038 case 8:
8039 case 9:
8040 case 10:
8041 case 11:
8042 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8043 inst.operands[2].imm = 32;
8044 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8045 break;
8046 case 12:
8047 case 13:
8048 case 14:
8049 case 15:
8050 {
8051 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8052 unsigned long wrn;
8053 wrn = (inst.instruction >> 16) & 0xf;
8054 inst.instruction &= 0xff0fff0f;
8055 inst.instruction |= wrn;
8056 /* Bail out here; the instruction is now assembled. */
8057 return;
8058 }
8059 }
8060 }
8061 /* Map 32 -> 0, etc. */
8062 inst.operands[2].imm &= 0x1f;
8063 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8064 }
8065 }
8066 \f
8067 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8068 operations first, then control, shift, and load/store. */
8069
8070 /* Insns like "foo X,Y,Z". */
8071
8072 static void
8073 do_mav_triple (void)
8074 {
8075 inst.instruction |= inst.operands[0].reg << 16;
8076 inst.instruction |= inst.operands[1].reg;
8077 inst.instruction |= inst.operands[2].reg << 12;
8078 }
8079
8080 /* Insns like "foo W,X,Y,Z".
8081 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
8082
8083 static void
8084 do_mav_quad (void)
8085 {
8086 inst.instruction |= inst.operands[0].reg << 5;
8087 inst.instruction |= inst.operands[1].reg << 12;
8088 inst.instruction |= inst.operands[2].reg << 16;
8089 inst.instruction |= inst.operands[3].reg;
8090 }
8091
8092 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8093 static void
8094 do_mav_dspsc (void)
8095 {
8096 inst.instruction |= inst.operands[1].reg << 12;
8097 }
8098
8099 /* Maverick shift immediate instructions.
8100 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8101 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
8102
8103 static void
8104 do_mav_shift (void)
8105 {
8106 int imm = inst.operands[2].imm;
8107
8108 inst.instruction |= inst.operands[0].reg << 12;
8109 inst.instruction |= inst.operands[1].reg << 16;
8110
8111 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8112 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8113 Bit 4 should be 0. */
8114 imm = (imm & 0xf) | ((imm & 0x70) << 1);
8115
8116 inst.instruction |= imm;
8117 }
8118 \f
8119 /* XScale instructions. Also sorted arithmetic before move. */
8120
8121 /* Xscale multiply-accumulate (argument parse)
8122 MIAcc acc0,Rm,Rs
8123 MIAPHcc acc0,Rm,Rs
8124 MIAxycc acc0,Rm,Rs. */
8125
8126 static void
8127 do_xsc_mia (void)
8128 {
8129 inst.instruction |= inst.operands[1].reg;
8130 inst.instruction |= inst.operands[2].reg << 12;
8131 }
8132
8133 /* Xscale move-accumulator-register (argument parse)
8134
8135 MARcc acc0,RdLo,RdHi. */
8136
8137 static void
8138 do_xsc_mar (void)
8139 {
8140 inst.instruction |= inst.operands[1].reg << 12;
8141 inst.instruction |= inst.operands[2].reg << 16;
8142 }
8143
8144 /* Xscale move-register-accumulator (argument parse)
8145
8146 MRAcc RdLo,RdHi,acc0. */
8147
8148 static void
8149 do_xsc_mra (void)
8150 {
8151 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8152 inst.instruction |= inst.operands[0].reg << 12;
8153 inst.instruction |= inst.operands[1].reg << 16;
8154 }
8155 \f
8156 /* Encoding functions relevant only to Thumb. */
8157
8158 /* inst.operands[i] is a shifted-register operand; encode
8159 it into inst.instruction in the format used by Thumb32. */
8160
8161 static void
8162 encode_thumb32_shifted_operand (int i)
8163 {
8164 unsigned int value = inst.reloc.exp.X_add_number;
8165 unsigned int shift = inst.operands[i].shift_kind;
8166
8167 constraint (inst.operands[i].immisreg,
8168 _("shift by register not allowed in thumb mode"));
8169 inst.instruction |= inst.operands[i].reg;
8170 if (shift == SHIFT_RRX)
8171 inst.instruction |= SHIFT_ROR << 4;
8172 else
8173 {
8174 constraint (inst.reloc.exp.X_op != O_constant,
8175 _("expression too complex"));
8176
8177 constraint (value > 32
8178 || (value == 32 && (shift == SHIFT_LSL
8179 || shift == SHIFT_ROR)),
8180 _("shift expression is too large"));
8181
8182 if (value == 0)
8183 shift = SHIFT_LSL;
8184 else if (value == 32)
8185 value = 0;
8186
8187 inst.instruction |= shift << 4;
8188 inst.instruction |= (value & 0x1c) << 10;
8189 inst.instruction |= (value & 0x03) << 6;
8190 }
8191 }
8192
8193
8194 /* inst.operands[i] was set up by parse_address. Encode it into a
8195 Thumb32 format load or store instruction. Reject forms that cannot
8196 be used with such instructions. If is_t is true, reject forms that
8197 cannot be used with a T instruction; if is_d is true, reject forms
8198 that cannot be used with a D instruction. */
8199
8200 static void
8201 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8202 {
8203 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8204
8205 constraint (!inst.operands[i].isreg,
8206 _("Instruction does not support =N addresses"));
8207
8208 inst.instruction |= inst.operands[i].reg << 16;
8209 if (inst.operands[i].immisreg)
8210 {
8211 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
8212 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8213 constraint (inst.operands[i].negative,
8214 _("Thumb does not support negative register indexing"));
8215 constraint (inst.operands[i].postind,
8216 _("Thumb does not support register post-indexing"));
8217 constraint (inst.operands[i].writeback,
8218 _("Thumb does not support register indexing with writeback"));
8219 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8220 _("Thumb supports only LSL in shifted register indexing"));
8221
8222 inst.instruction |= inst.operands[i].imm;
8223 if (inst.operands[i].shifted)
8224 {
8225 constraint (inst.reloc.exp.X_op != O_constant,
8226 _("expression too complex"));
8227 constraint (inst.reloc.exp.X_add_number < 0
8228 || inst.reloc.exp.X_add_number > 3,
8229 _("shift out of range"));
8230 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8231 }
8232 inst.reloc.type = BFD_RELOC_UNUSED;
8233 }
8234 else if (inst.operands[i].preind)
8235 {
8236 constraint (is_pc && inst.operands[i].writeback,
8237 _("cannot use writeback with PC-relative addressing"));
8238 constraint (is_t && inst.operands[i].writeback,
8239 _("cannot use writeback with this instruction"));
8240
8241 if (is_d)
8242 {
8243 inst.instruction |= 0x01000000;
8244 if (inst.operands[i].writeback)
8245 inst.instruction |= 0x00200000;
8246 }
8247 else
8248 {
8249 inst.instruction |= 0x00000c00;
8250 if (inst.operands[i].writeback)
8251 inst.instruction |= 0x00000100;
8252 }
8253 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8254 }
8255 else if (inst.operands[i].postind)
8256 {
8257 assert (inst.operands[i].writeback);
8258 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8259 constraint (is_t, _("cannot use post-indexing with this instruction"));
8260
8261 if (is_d)
8262 inst.instruction |= 0x00200000;
8263 else
8264 inst.instruction |= 0x00000900;
8265 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8266 }
8267 else /* unindexed - only for coprocessor */
8268 inst.error = _("instruction does not accept unindexed addressing");
8269 }
8270
8271 /* Table of Thumb instructions which exist in both 16- and 32-bit
8272 encodings (the latter only in post-V6T2 cores). The index is the
8273 value used in the insns table below. When there is more than one
8274 possible 16-bit encoding for the instruction, this table always
8275 holds variant (1).
8276 Also contains several pseudo-instructions used during relaxation. */
8277 #define T16_32_TAB \
8278 X(adc, 4140, eb400000), \
8279 X(adcs, 4140, eb500000), \
8280 X(add, 1c00, eb000000), \
8281 X(adds, 1c00, eb100000), \
8282 X(addi, 0000, f1000000), \
8283 X(addis, 0000, f1100000), \
8284 X(add_pc,000f, f20f0000), \
8285 X(add_sp,000d, f10d0000), \
8286 X(adr, 000f, f20f0000), \
8287 X(and, 4000, ea000000), \
8288 X(ands, 4000, ea100000), \
8289 X(asr, 1000, fa40f000), \
8290 X(asrs, 1000, fa50f000), \
8291 X(b, e000, f000b000), \
8292 X(bcond, d000, f0008000), \
8293 X(bic, 4380, ea200000), \
8294 X(bics, 4380, ea300000), \
8295 X(cmn, 42c0, eb100f00), \
8296 X(cmp, 2800, ebb00f00), \
8297 X(cpsie, b660, f3af8400), \
8298 X(cpsid, b670, f3af8600), \
8299 X(cpy, 4600, ea4f0000), \
8300 X(dec_sp,80dd, f1ad0d00), \
8301 X(eor, 4040, ea800000), \
8302 X(eors, 4040, ea900000), \
8303 X(inc_sp,00dd, f10d0d00), \
8304 X(ldmia, c800, e8900000), \
8305 X(ldr, 6800, f8500000), \
8306 X(ldrb, 7800, f8100000), \
8307 X(ldrh, 8800, f8300000), \
8308 X(ldrsb, 5600, f9100000), \
8309 X(ldrsh, 5e00, f9300000), \
8310 X(ldr_pc,4800, f85f0000), \
8311 X(ldr_pc2,4800, f85f0000), \
8312 X(ldr_sp,9800, f85d0000), \
8313 X(lsl, 0000, fa00f000), \
8314 X(lsls, 0000, fa10f000), \
8315 X(lsr, 0800, fa20f000), \
8316 X(lsrs, 0800, fa30f000), \
8317 X(mov, 2000, ea4f0000), \
8318 X(movs, 2000, ea5f0000), \
8319 X(mul, 4340, fb00f000), \
8320 X(muls, 4340, ffffffff), /* no 32b muls */ \
8321 X(mvn, 43c0, ea6f0000), \
8322 X(mvns, 43c0, ea7f0000), \
8323 X(neg, 4240, f1c00000), /* rsb #0 */ \
8324 X(negs, 4240, f1d00000), /* rsbs #0 */ \
8325 X(orr, 4300, ea400000), \
8326 X(orrs, 4300, ea500000), \
8327 X(pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8328 X(push, b400, e92d0000), /* stmdb sp!,... */ \
8329 X(rev, ba00, fa90f080), \
8330 X(rev16, ba40, fa90f090), \
8331 X(revsh, bac0, fa90f0b0), \
8332 X(ror, 41c0, fa60f000), \
8333 X(rors, 41c0, fa70f000), \
8334 X(sbc, 4180, eb600000), \
8335 X(sbcs, 4180, eb700000), \
8336 X(stmia, c000, e8800000), \
8337 X(str, 6000, f8400000), \
8338 X(strb, 7000, f8000000), \
8339 X(strh, 8000, f8200000), \
8340 X(str_sp,9000, f84d0000), \
8341 X(sub, 1e00, eba00000), \
8342 X(subs, 1e00, ebb00000), \
8343 X(subi, 8000, f1a00000), \
8344 X(subis, 8000, f1b00000), \
8345 X(sxtb, b240, fa4ff080), \
8346 X(sxth, b200, fa0ff080), \
8347 X(tst, 4200, ea100f00), \
8348 X(uxtb, b2c0, fa5ff080), \
8349 X(uxth, b280, fa1ff080), \
8350 X(nop, bf00, f3af8000), \
8351 X(yield, bf10, f3af8001), \
8352 X(wfe, bf20, f3af8002), \
8353 X(wfi, bf30, f3af8003), \
8354 X(sev, bf40, f3af9004), /* typo, 8004? */
8355
8356 /* To catch errors in encoding functions, the codes are all offset by
8357 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8358 as 16-bit instructions. */
8359 #define X(a,b,c) T_MNEM_##a
8360 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8361 #undef X
8362
8363 #define X(a,b,c) 0x##b
8364 static const unsigned short thumb_op16[] = { T16_32_TAB };
8365 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8366 #undef X
8367
8368 #define X(a,b,c) 0x##c
8369 static const unsigned int thumb_op32[] = { T16_32_TAB };
8370 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8371 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8372 #undef X
8373 #undef T16_32_TAB
8374
8375 /* Thumb instruction encoders, in alphabetical order. */
8376
8377 /* ADDW or SUBW. */
8378 static void
8379 do_t_add_sub_w (void)
8380 {
8381 int Rd, Rn;
8382
8383 Rd = inst.operands[0].reg;
8384 Rn = inst.operands[1].reg;
8385
8386 constraint (Rd == 15, _("PC not allowed as destination"));
8387 inst.instruction |= (Rn << 16) | (Rd << 8);
8388 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8389 }
8390
8391 /* Parse an add or subtract instruction. We get here with inst.instruction
8392 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8393
8394 static void
8395 do_t_add_sub (void)
8396 {
8397 int Rd, Rs, Rn;
8398
8399 Rd = inst.operands[0].reg;
8400 Rs = (inst.operands[1].present
8401 ? inst.operands[1].reg /* Rd, Rs, foo */
8402 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8403
8404 if (unified_syntax)
8405 {
8406 bfd_boolean flags;
8407 bfd_boolean narrow;
8408 int opcode;
8409
8410 flags = (inst.instruction == T_MNEM_adds
8411 || inst.instruction == T_MNEM_subs);
8412 if (flags)
8413 narrow = (current_it_mask == 0);
8414 else
8415 narrow = (current_it_mask != 0);
8416 if (!inst.operands[2].isreg)
8417 {
8418 int add;
8419
8420 add = (inst.instruction == T_MNEM_add
8421 || inst.instruction == T_MNEM_adds);
8422 opcode = 0;
8423 if (inst.size_req != 4)
8424 {
8425 /* Attempt to use a narrow opcode, with relaxation if
8426 appropriate. */
8427 if (Rd == REG_SP && Rs == REG_SP && !flags)
8428 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8429 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8430 opcode = T_MNEM_add_sp;
8431 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8432 opcode = T_MNEM_add_pc;
8433 else if (Rd <= 7 && Rs <= 7 && narrow)
8434 {
8435 if (flags)
8436 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8437 else
8438 opcode = add ? T_MNEM_addi : T_MNEM_subi;
8439 }
8440 if (opcode)
8441 {
8442 inst.instruction = THUMB_OP16(opcode);
8443 inst.instruction |= (Rd << 4) | Rs;
8444 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8445 if (inst.size_req != 2)
8446 inst.relax = opcode;
8447 }
8448 else
8449 constraint (inst.size_req == 2, BAD_HIREG);
8450 }
8451 if (inst.size_req == 4
8452 || (inst.size_req != 2 && !opcode))
8453 {
8454 if (Rd == REG_PC)
8455 {
8456 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
8457 _("only SUBS PC, LR, #const allowed"));
8458 constraint (inst.reloc.exp.X_op != O_constant,
8459 _("expression too complex"));
8460 constraint (inst.reloc.exp.X_add_number < 0
8461 || inst.reloc.exp.X_add_number > 0xff,
8462 _("immediate value out of range"));
8463 inst.instruction = T2_SUBS_PC_LR
8464 | inst.reloc.exp.X_add_number;
8465 inst.reloc.type = BFD_RELOC_UNUSED;
8466 return;
8467 }
8468 else if (Rs == REG_PC)
8469 {
8470 /* Always use addw/subw. */
8471 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
8472 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8473 }
8474 else
8475 {
8476 inst.instruction = THUMB_OP32 (inst.instruction);
8477 inst.instruction = (inst.instruction & 0xe1ffffff)
8478 | 0x10000000;
8479 if (flags)
8480 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8481 else
8482 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
8483 }
8484 inst.instruction |= Rd << 8;
8485 inst.instruction |= Rs << 16;
8486 }
8487 }
8488 else
8489 {
8490 Rn = inst.operands[2].reg;
8491 /* See if we can do this with a 16-bit instruction. */
8492 if (!inst.operands[2].shifted && inst.size_req != 4)
8493 {
8494 if (Rd > 7 || Rs > 7 || Rn > 7)
8495 narrow = FALSE;
8496
8497 if (narrow)
8498 {
8499 inst.instruction = ((inst.instruction == T_MNEM_adds
8500 || inst.instruction == T_MNEM_add)
8501 ? T_OPCODE_ADD_R3
8502 : T_OPCODE_SUB_R3);
8503 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8504 return;
8505 }
8506
8507 if (inst.instruction == T_MNEM_add)
8508 {
8509 if (Rd == Rs)
8510 {
8511 inst.instruction = T_OPCODE_ADD_HI;
8512 inst.instruction |= (Rd & 8) << 4;
8513 inst.instruction |= (Rd & 7);
8514 inst.instruction |= Rn << 3;
8515 return;
8516 }
8517 /* ... because addition is commutative! */
8518 else if (Rd == Rn)
8519 {
8520 inst.instruction = T_OPCODE_ADD_HI;
8521 inst.instruction |= (Rd & 8) << 4;
8522 inst.instruction |= (Rd & 7);
8523 inst.instruction |= Rs << 3;
8524 return;
8525 }
8526 }
8527 }
8528 /* If we get here, it can't be done in 16 bits. */
8529 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
8530 _("shift must be constant"));
8531 inst.instruction = THUMB_OP32 (inst.instruction);
8532 inst.instruction |= Rd << 8;
8533 inst.instruction |= Rs << 16;
8534 encode_thumb32_shifted_operand (2);
8535 }
8536 }
8537 else
8538 {
8539 constraint (inst.instruction == T_MNEM_adds
8540 || inst.instruction == T_MNEM_subs,
8541 BAD_THUMB32);
8542
8543 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
8544 {
8545 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
8546 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
8547 BAD_HIREG);
8548
8549 inst.instruction = (inst.instruction == T_MNEM_add
8550 ? 0x0000 : 0x8000);
8551 inst.instruction |= (Rd << 4) | Rs;
8552 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8553 return;
8554 }
8555
8556 Rn = inst.operands[2].reg;
8557 constraint (inst.operands[2].shifted, _("unshifted register required"));
8558
8559 /* We now have Rd, Rs, and Rn set to registers. */
8560 if (Rd > 7 || Rs > 7 || Rn > 7)
8561 {
8562 /* Can't do this for SUB. */
8563 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
8564 inst.instruction = T_OPCODE_ADD_HI;
8565 inst.instruction |= (Rd & 8) << 4;
8566 inst.instruction |= (Rd & 7);
8567 if (Rs == Rd)
8568 inst.instruction |= Rn << 3;
8569 else if (Rn == Rd)
8570 inst.instruction |= Rs << 3;
8571 else
8572 constraint (1, _("dest must overlap one source register"));
8573 }
8574 else
8575 {
8576 inst.instruction = (inst.instruction == T_MNEM_add
8577 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
8578 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8579 }
8580 }
8581 }
8582
8583 static void
8584 do_t_adr (void)
8585 {
8586 if (unified_syntax && inst.size_req == 0 && inst.operands[0].reg <= 7)
8587 {
8588 /* Defer to section relaxation. */
8589 inst.relax = inst.instruction;
8590 inst.instruction = THUMB_OP16 (inst.instruction);
8591 inst.instruction |= inst.operands[0].reg << 4;
8592 }
8593 else if (unified_syntax && inst.size_req != 2)
8594 {
8595 /* Generate a 32-bit opcode. */
8596 inst.instruction = THUMB_OP32 (inst.instruction);
8597 inst.instruction |= inst.operands[0].reg << 8;
8598 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
8599 inst.reloc.pc_rel = 1;
8600 }
8601 else
8602 {
8603 /* Generate a 16-bit opcode. */
8604 inst.instruction = THUMB_OP16 (inst.instruction);
8605 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8606 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
8607 inst.reloc.pc_rel = 1;
8608
8609 inst.instruction |= inst.operands[0].reg << 4;
8610 }
8611 }
8612
8613 /* Arithmetic instructions for which there is just one 16-bit
8614 instruction encoding, and it allows only two low registers.
8615 For maximal compatibility with ARM syntax, we allow three register
8616 operands even when Thumb-32 instructions are not available, as long
8617 as the first two are identical. For instance, both "sbc r0,r1" and
8618 "sbc r0,r0,r1" are allowed. */
8619 static void
8620 do_t_arit3 (void)
8621 {
8622 int Rd, Rs, Rn;
8623
8624 Rd = inst.operands[0].reg;
8625 Rs = (inst.operands[1].present
8626 ? inst.operands[1].reg /* Rd, Rs, foo */
8627 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8628 Rn = inst.operands[2].reg;
8629
8630 if (unified_syntax)
8631 {
8632 if (!inst.operands[2].isreg)
8633 {
8634 /* For an immediate, we always generate a 32-bit opcode;
8635 section relaxation will shrink it later if possible. */
8636 inst.instruction = THUMB_OP32 (inst.instruction);
8637 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8638 inst.instruction |= Rd << 8;
8639 inst.instruction |= Rs << 16;
8640 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8641 }
8642 else
8643 {
8644 bfd_boolean narrow;
8645
8646 /* See if we can do this with a 16-bit instruction. */
8647 if (THUMB_SETS_FLAGS (inst.instruction))
8648 narrow = current_it_mask == 0;
8649 else
8650 narrow = current_it_mask != 0;
8651
8652 if (Rd > 7 || Rn > 7 || Rs > 7)
8653 narrow = FALSE;
8654 if (inst.operands[2].shifted)
8655 narrow = FALSE;
8656 if (inst.size_req == 4)
8657 narrow = FALSE;
8658
8659 if (narrow
8660 && Rd == Rs)
8661 {
8662 inst.instruction = THUMB_OP16 (inst.instruction);
8663 inst.instruction |= Rd;
8664 inst.instruction |= Rn << 3;
8665 return;
8666 }
8667
8668 /* If we get here, it can't be done in 16 bits. */
8669 constraint (inst.operands[2].shifted
8670 && inst.operands[2].immisreg,
8671 _("shift must be constant"));
8672 inst.instruction = THUMB_OP32 (inst.instruction);
8673 inst.instruction |= Rd << 8;
8674 inst.instruction |= Rs << 16;
8675 encode_thumb32_shifted_operand (2);
8676 }
8677 }
8678 else
8679 {
8680 /* On its face this is a lie - the instruction does set the
8681 flags. However, the only supported mnemonic in this mode
8682 says it doesn't. */
8683 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
8684
8685 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8686 _("unshifted register required"));
8687 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8688 constraint (Rd != Rs,
8689 _("dest and source1 must be the same register"));
8690
8691 inst.instruction = THUMB_OP16 (inst.instruction);
8692 inst.instruction |= Rd;
8693 inst.instruction |= Rn << 3;
8694 }
8695 }
8696
8697 /* Similarly, but for instructions where the arithmetic operation is
8698 commutative, so we can allow either of them to be different from
8699 the destination operand in a 16-bit instruction. For instance, all
8700 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
8701 accepted. */
8702 static void
8703 do_t_arit3c (void)
8704 {
8705 int Rd, Rs, Rn;
8706
8707 Rd = inst.operands[0].reg;
8708 Rs = (inst.operands[1].present
8709 ? inst.operands[1].reg /* Rd, Rs, foo */
8710 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8711 Rn = inst.operands[2].reg;
8712
8713 if (unified_syntax)
8714 {
8715 if (!inst.operands[2].isreg)
8716 {
8717 /* For an immediate, we always generate a 32-bit opcode;
8718 section relaxation will shrink it later if possible. */
8719 inst.instruction = THUMB_OP32 (inst.instruction);
8720 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8721 inst.instruction |= Rd << 8;
8722 inst.instruction |= Rs << 16;
8723 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8724 }
8725 else
8726 {
8727 bfd_boolean narrow;
8728
8729 /* See if we can do this with a 16-bit instruction. */
8730 if (THUMB_SETS_FLAGS (inst.instruction))
8731 narrow = current_it_mask == 0;
8732 else
8733 narrow = current_it_mask != 0;
8734
8735 if (Rd > 7 || Rn > 7 || Rs > 7)
8736 narrow = FALSE;
8737 if (inst.operands[2].shifted)
8738 narrow = FALSE;
8739 if (inst.size_req == 4)
8740 narrow = FALSE;
8741
8742 if (narrow)
8743 {
8744 if (Rd == Rs)
8745 {
8746 inst.instruction = THUMB_OP16 (inst.instruction);
8747 inst.instruction |= Rd;
8748 inst.instruction |= Rn << 3;
8749 return;
8750 }
8751 if (Rd == Rn)
8752 {
8753 inst.instruction = THUMB_OP16 (inst.instruction);
8754 inst.instruction |= Rd;
8755 inst.instruction |= Rs << 3;
8756 return;
8757 }
8758 }
8759
8760 /* If we get here, it can't be done in 16 bits. */
8761 constraint (inst.operands[2].shifted
8762 && inst.operands[2].immisreg,
8763 _("shift must be constant"));
8764 inst.instruction = THUMB_OP32 (inst.instruction);
8765 inst.instruction |= Rd << 8;
8766 inst.instruction |= Rs << 16;
8767 encode_thumb32_shifted_operand (2);
8768 }
8769 }
8770 else
8771 {
8772 /* On its face this is a lie - the instruction does set the
8773 flags. However, the only supported mnemonic in this mode
8774 says it doesn't. */
8775 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
8776
8777 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8778 _("unshifted register required"));
8779 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8780
8781 inst.instruction = THUMB_OP16 (inst.instruction);
8782 inst.instruction |= Rd;
8783
8784 if (Rd == Rs)
8785 inst.instruction |= Rn << 3;
8786 else if (Rd == Rn)
8787 inst.instruction |= Rs << 3;
8788 else
8789 constraint (1, _("dest must overlap one source register"));
8790 }
8791 }
8792
8793 static void
8794 do_t_barrier (void)
8795 {
8796 if (inst.operands[0].present)
8797 {
8798 constraint ((inst.instruction & 0xf0) != 0x40
8799 && inst.operands[0].imm != 0xf,
8800 "bad barrier type");
8801 inst.instruction |= inst.operands[0].imm;
8802 }
8803 else
8804 inst.instruction |= 0xf;
8805 }
8806
8807 static void
8808 do_t_bfc (void)
8809 {
8810 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8811 constraint (msb > 32, _("bit-field extends past end of register"));
8812 /* The instruction encoding stores the LSB and MSB,
8813 not the LSB and width. */
8814 inst.instruction |= inst.operands[0].reg << 8;
8815 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
8816 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
8817 inst.instruction |= msb - 1;
8818 }
8819
8820 static void
8821 do_t_bfi (void)
8822 {
8823 unsigned int msb;
8824
8825 /* #0 in second position is alternative syntax for bfc, which is
8826 the same instruction but with REG_PC in the Rm field. */
8827 if (!inst.operands[1].isreg)
8828 inst.operands[1].reg = REG_PC;
8829
8830 msb = inst.operands[2].imm + inst.operands[3].imm;
8831 constraint (msb > 32, _("bit-field extends past end of register"));
8832 /* The instruction encoding stores the LSB and MSB,
8833 not the LSB and width. */
8834 inst.instruction |= inst.operands[0].reg << 8;
8835 inst.instruction |= inst.operands[1].reg << 16;
8836 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8837 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8838 inst.instruction |= msb - 1;
8839 }
8840
8841 static void
8842 do_t_bfx (void)
8843 {
8844 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8845 _("bit-field extends past end of register"));
8846 inst.instruction |= inst.operands[0].reg << 8;
8847 inst.instruction |= inst.operands[1].reg << 16;
8848 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8849 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8850 inst.instruction |= inst.operands[3].imm - 1;
8851 }
8852
8853 /* ARM V5 Thumb BLX (argument parse)
8854 BLX <target_addr> which is BLX(1)
8855 BLX <Rm> which is BLX(2)
8856 Unfortunately, there are two different opcodes for this mnemonic.
8857 So, the insns[].value is not used, and the code here zaps values
8858 into inst.instruction.
8859
8860 ??? How to take advantage of the additional two bits of displacement
8861 available in Thumb32 mode? Need new relocation? */
8862
8863 static void
8864 do_t_blx (void)
8865 {
8866 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8867 if (inst.operands[0].isreg)
8868 /* We have a register, so this is BLX(2). */
8869 inst.instruction |= inst.operands[0].reg << 3;
8870 else
8871 {
8872 /* No register. This must be BLX(1). */
8873 inst.instruction = 0xf000e800;
8874 #ifdef OBJ_ELF
8875 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8876 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
8877 else
8878 #endif
8879 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
8880 inst.reloc.pc_rel = 1;
8881 }
8882 }
8883
8884 static void
8885 do_t_branch (void)
8886 {
8887 int opcode;
8888 int cond;
8889
8890 if (current_it_mask)
8891 {
8892 /* Conditional branches inside IT blocks are encoded as unconditional
8893 branches. */
8894 cond = COND_ALWAYS;
8895 /* A branch must be the last instruction in an IT block. */
8896 constraint (current_it_mask != 0x10, BAD_BRANCH);
8897 }
8898 else
8899 cond = inst.cond;
8900
8901 if (cond != COND_ALWAYS)
8902 opcode = T_MNEM_bcond;
8903 else
8904 opcode = inst.instruction;
8905
8906 if (unified_syntax && inst.size_req == 4)
8907 {
8908 inst.instruction = THUMB_OP32(opcode);
8909 if (cond == COND_ALWAYS)
8910 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
8911 else
8912 {
8913 assert (cond != 0xF);
8914 inst.instruction |= cond << 22;
8915 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
8916 }
8917 }
8918 else
8919 {
8920 inst.instruction = THUMB_OP16(opcode);
8921 if (cond == COND_ALWAYS)
8922 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
8923 else
8924 {
8925 inst.instruction |= cond << 8;
8926 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
8927 }
8928 /* Allow section relaxation. */
8929 if (unified_syntax && inst.size_req != 2)
8930 inst.relax = opcode;
8931 }
8932
8933 inst.reloc.pc_rel = 1;
8934 }
8935
8936 static void
8937 do_t_bkpt (void)
8938 {
8939 constraint (inst.cond != COND_ALWAYS,
8940 _("instruction is always unconditional"));
8941 if (inst.operands[0].present)
8942 {
8943 constraint (inst.operands[0].imm > 255,
8944 _("immediate value out of range"));
8945 inst.instruction |= inst.operands[0].imm;
8946 }
8947 }
8948
8949 static void
8950 do_t_branch23 (void)
8951 {
8952 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8953 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
8954 inst.reloc.pc_rel = 1;
8955
8956 /* If the destination of the branch is a defined symbol which does not have
8957 the THUMB_FUNC attribute, then we must be calling a function which has
8958 the (interfacearm) attribute. We look for the Thumb entry point to that
8959 function and change the branch to refer to that function instead. */
8960 if ( inst.reloc.exp.X_op == O_symbol
8961 && inst.reloc.exp.X_add_symbol != NULL
8962 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8963 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
8964 inst.reloc.exp.X_add_symbol =
8965 find_real_start (inst.reloc.exp.X_add_symbol);
8966 }
8967
8968 static void
8969 do_t_bx (void)
8970 {
8971 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8972 inst.instruction |= inst.operands[0].reg << 3;
8973 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
8974 should cause the alignment to be checked once it is known. This is
8975 because BX PC only works if the instruction is word aligned. */
8976 }
8977
8978 static void
8979 do_t_bxj (void)
8980 {
8981 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8982 if (inst.operands[0].reg == REG_PC)
8983 as_tsktsk (_("use of r15 in bxj is not really useful"));
8984
8985 inst.instruction |= inst.operands[0].reg << 16;
8986 }
8987
8988 static void
8989 do_t_clz (void)
8990 {
8991 inst.instruction |= inst.operands[0].reg << 8;
8992 inst.instruction |= inst.operands[1].reg << 16;
8993 inst.instruction |= inst.operands[1].reg;
8994 }
8995
8996 static void
8997 do_t_cps (void)
8998 {
8999 constraint (current_it_mask, BAD_NOT_IT);
9000 inst.instruction |= inst.operands[0].imm;
9001 }
9002
9003 static void
9004 do_t_cpsi (void)
9005 {
9006 constraint (current_it_mask, BAD_NOT_IT);
9007 if (unified_syntax
9008 && (inst.operands[1].present || inst.size_req == 4)
9009 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
9010 {
9011 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9012 inst.instruction = 0xf3af8000;
9013 inst.instruction |= imod << 9;
9014 inst.instruction |= inst.operands[0].imm << 5;
9015 if (inst.operands[1].present)
9016 inst.instruction |= 0x100 | inst.operands[1].imm;
9017 }
9018 else
9019 {
9020 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9021 && (inst.operands[0].imm & 4),
9022 _("selected processor does not support 'A' form "
9023 "of this instruction"));
9024 constraint (inst.operands[1].present || inst.size_req == 4,
9025 _("Thumb does not support the 2-argument "
9026 "form of this instruction"));
9027 inst.instruction |= inst.operands[0].imm;
9028 }
9029 }
9030
9031 /* THUMB CPY instruction (argument parse). */
9032
9033 static void
9034 do_t_cpy (void)
9035 {
9036 if (inst.size_req == 4)
9037 {
9038 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9039 inst.instruction |= inst.operands[0].reg << 8;
9040 inst.instruction |= inst.operands[1].reg;
9041 }
9042 else
9043 {
9044 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9045 inst.instruction |= (inst.operands[0].reg & 0x7);
9046 inst.instruction |= inst.operands[1].reg << 3;
9047 }
9048 }
9049
9050 static void
9051 do_t_cbz (void)
9052 {
9053 constraint (current_it_mask, BAD_NOT_IT);
9054 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9055 inst.instruction |= inst.operands[0].reg;
9056 inst.reloc.pc_rel = 1;
9057 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9058 }
9059
9060 static void
9061 do_t_dbg (void)
9062 {
9063 inst.instruction |= inst.operands[0].imm;
9064 }
9065
9066 static void
9067 do_t_div (void)
9068 {
9069 if (!inst.operands[1].present)
9070 inst.operands[1].reg = inst.operands[0].reg;
9071 inst.instruction |= inst.operands[0].reg << 8;
9072 inst.instruction |= inst.operands[1].reg << 16;
9073 inst.instruction |= inst.operands[2].reg;
9074 }
9075
9076 static void
9077 do_t_hint (void)
9078 {
9079 if (unified_syntax && inst.size_req == 4)
9080 inst.instruction = THUMB_OP32 (inst.instruction);
9081 else
9082 inst.instruction = THUMB_OP16 (inst.instruction);
9083 }
9084
9085 static void
9086 do_t_it (void)
9087 {
9088 unsigned int cond = inst.operands[0].imm;
9089
9090 constraint (current_it_mask, BAD_NOT_IT);
9091 current_it_mask = (inst.instruction & 0xf) | 0x10;
9092 current_cc = cond;
9093
9094 /* If the condition is a negative condition, invert the mask. */
9095 if ((cond & 0x1) == 0x0)
9096 {
9097 unsigned int mask = inst.instruction & 0x000f;
9098
9099 if ((mask & 0x7) == 0)
9100 /* no conversion needed */;
9101 else if ((mask & 0x3) == 0)
9102 mask ^= 0x8;
9103 else if ((mask & 0x1) == 0)
9104 mask ^= 0xC;
9105 else
9106 mask ^= 0xE;
9107
9108 inst.instruction &= 0xfff0;
9109 inst.instruction |= mask;
9110 }
9111
9112 inst.instruction |= cond << 4;
9113 }
9114
9115 /* Helper function used for both push/pop and ldm/stm. */
9116 static void
9117 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9118 {
9119 bfd_boolean load;
9120
9121 load = (inst.instruction & (1 << 20)) != 0;
9122
9123 if (mask & (1 << 13))
9124 inst.error = _("SP not allowed in register list");
9125 if (load)
9126 {
9127 if (mask & (1 << 14)
9128 && mask & (1 << 15))
9129 inst.error = _("LR and PC should not both be in register list");
9130
9131 if ((mask & (1 << base)) != 0
9132 && writeback)
9133 as_warn (_("base register should not be in register list "
9134 "when written back"));
9135 }
9136 else
9137 {
9138 if (mask & (1 << 15))
9139 inst.error = _("PC not allowed in register list");
9140
9141 if (mask & (1 << base))
9142 as_warn (_("value stored for r%d is UNPREDICTABLE"), base);
9143 }
9144
9145 if ((mask & (mask - 1)) == 0)
9146 {
9147 /* Single register transfers implemented as str/ldr. */
9148 if (writeback)
9149 {
9150 if (inst.instruction & (1 << 23))
9151 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9152 else
9153 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9154 }
9155 else
9156 {
9157 if (inst.instruction & (1 << 23))
9158 inst.instruction = 0x00800000; /* ia -> [base] */
9159 else
9160 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9161 }
9162
9163 inst.instruction |= 0xf8400000;
9164 if (load)
9165 inst.instruction |= 0x00100000;
9166
9167 mask = ffs(mask) - 1;
9168 mask <<= 12;
9169 }
9170 else if (writeback)
9171 inst.instruction |= WRITE_BACK;
9172
9173 inst.instruction |= mask;
9174 inst.instruction |= base << 16;
9175 }
9176
9177 static void
9178 do_t_ldmstm (void)
9179 {
9180 /* This really doesn't seem worth it. */
9181 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9182 _("expression too complex"));
9183 constraint (inst.operands[1].writeback,
9184 _("Thumb load/store multiple does not support {reglist}^"));
9185
9186 if (unified_syntax)
9187 {
9188 bfd_boolean narrow;
9189 unsigned mask;
9190
9191 narrow = FALSE;
9192 /* See if we can use a 16-bit instruction. */
9193 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9194 && inst.size_req != 4
9195 && !(inst.operands[1].imm & ~0xff))
9196 {
9197 mask = 1 << inst.operands[0].reg;
9198
9199 if (inst.operands[0].reg <= 7
9200 && (inst.instruction == T_MNEM_stmia
9201 ? inst.operands[0].writeback
9202 : (inst.operands[0].writeback
9203 == !(inst.operands[1].imm & mask))))
9204 {
9205 if (inst.instruction == T_MNEM_stmia
9206 && (inst.operands[1].imm & mask)
9207 && (inst.operands[1].imm & (mask - 1)))
9208 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9209 inst.operands[0].reg);
9210
9211 inst.instruction = THUMB_OP16 (inst.instruction);
9212 inst.instruction |= inst.operands[0].reg << 8;
9213 inst.instruction |= inst.operands[1].imm;
9214 narrow = TRUE;
9215 }
9216 else if (inst.operands[0] .reg == REG_SP
9217 && inst.operands[0].writeback)
9218 {
9219 inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9220 ? T_MNEM_push : T_MNEM_pop);
9221 inst.instruction |= inst.operands[1].imm;
9222 narrow = TRUE;
9223 }
9224 }
9225
9226 if (!narrow)
9227 {
9228 if (inst.instruction < 0xffff)
9229 inst.instruction = THUMB_OP32 (inst.instruction);
9230
9231 encode_thumb2_ldmstm(inst.operands[0].reg, inst.operands[1].imm,
9232 inst.operands[0].writeback);
9233 }
9234 }
9235 else
9236 {
9237 constraint (inst.operands[0].reg > 7
9238 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
9239 constraint (inst.instruction != T_MNEM_ldmia
9240 && inst.instruction != T_MNEM_stmia,
9241 _("Thumb-2 instruction only valid in unified syntax"));
9242 if (inst.instruction == T_MNEM_stmia)
9243 {
9244 if (!inst.operands[0].writeback)
9245 as_warn (_("this instruction will write back the base register"));
9246 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9247 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9248 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9249 inst.operands[0].reg);
9250 }
9251 else
9252 {
9253 if (!inst.operands[0].writeback
9254 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9255 as_warn (_("this instruction will write back the base register"));
9256 else if (inst.operands[0].writeback
9257 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9258 as_warn (_("this instruction will not write back the base register"));
9259 }
9260
9261 inst.instruction = THUMB_OP16 (inst.instruction);
9262 inst.instruction |= inst.operands[0].reg << 8;
9263 inst.instruction |= inst.operands[1].imm;
9264 }
9265 }
9266
9267 static void
9268 do_t_ldrex (void)
9269 {
9270 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9271 || inst.operands[1].postind || inst.operands[1].writeback
9272 || inst.operands[1].immisreg || inst.operands[1].shifted
9273 || inst.operands[1].negative,
9274 BAD_ADDR_MODE);
9275
9276 inst.instruction |= inst.operands[0].reg << 12;
9277 inst.instruction |= inst.operands[1].reg << 16;
9278 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9279 }
9280
9281 static void
9282 do_t_ldrexd (void)
9283 {
9284 if (!inst.operands[1].present)
9285 {
9286 constraint (inst.operands[0].reg == REG_LR,
9287 _("r14 not allowed as first register "
9288 "when second register is omitted"));
9289 inst.operands[1].reg = inst.operands[0].reg + 1;
9290 }
9291 constraint (inst.operands[0].reg == inst.operands[1].reg,
9292 BAD_OVERLAP);
9293
9294 inst.instruction |= inst.operands[0].reg << 12;
9295 inst.instruction |= inst.operands[1].reg << 8;
9296 inst.instruction |= inst.operands[2].reg << 16;
9297 }
9298
9299 static void
9300 do_t_ldst (void)
9301 {
9302 unsigned long opcode;
9303 int Rn;
9304
9305 opcode = inst.instruction;
9306 if (unified_syntax)
9307 {
9308 if (!inst.operands[1].isreg)
9309 {
9310 if (opcode <= 0xffff)
9311 inst.instruction = THUMB_OP32 (opcode);
9312 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9313 return;
9314 }
9315 if (inst.operands[1].isreg
9316 && !inst.operands[1].writeback
9317 && !inst.operands[1].shifted && !inst.operands[1].postind
9318 && !inst.operands[1].negative && inst.operands[0].reg <= 7
9319 && opcode <= 0xffff
9320 && inst.size_req != 4)
9321 {
9322 /* Insn may have a 16-bit form. */
9323 Rn = inst.operands[1].reg;
9324 if (inst.operands[1].immisreg)
9325 {
9326 inst.instruction = THUMB_OP16 (opcode);
9327 /* [Rn, Ri] */
9328 if (Rn <= 7 && inst.operands[1].imm <= 7)
9329 goto op16;
9330 }
9331 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9332 && opcode != T_MNEM_ldrsb)
9333 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9334 || (Rn == REG_SP && opcode == T_MNEM_str))
9335 {
9336 /* [Rn, #const] */
9337 if (Rn > 7)
9338 {
9339 if (Rn == REG_PC)
9340 {
9341 if (inst.reloc.pc_rel)
9342 opcode = T_MNEM_ldr_pc2;
9343 else
9344 opcode = T_MNEM_ldr_pc;
9345 }
9346 else
9347 {
9348 if (opcode == T_MNEM_ldr)
9349 opcode = T_MNEM_ldr_sp;
9350 else
9351 opcode = T_MNEM_str_sp;
9352 }
9353 inst.instruction = inst.operands[0].reg << 8;
9354 }
9355 else
9356 {
9357 inst.instruction = inst.operands[0].reg;
9358 inst.instruction |= inst.operands[1].reg << 3;
9359 }
9360 inst.instruction |= THUMB_OP16 (opcode);
9361 if (inst.size_req == 2)
9362 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9363 else
9364 inst.relax = opcode;
9365 return;
9366 }
9367 }
9368 /* Definitely a 32-bit variant. */
9369 inst.instruction = THUMB_OP32 (opcode);
9370 inst.instruction |= inst.operands[0].reg << 12;
9371 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
9372 return;
9373 }
9374
9375 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9376
9377 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
9378 {
9379 /* Only [Rn,Rm] is acceptable. */
9380 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
9381 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
9382 || inst.operands[1].postind || inst.operands[1].shifted
9383 || inst.operands[1].negative,
9384 _("Thumb does not support this addressing mode"));
9385 inst.instruction = THUMB_OP16 (inst.instruction);
9386 goto op16;
9387 }
9388
9389 inst.instruction = THUMB_OP16 (inst.instruction);
9390 if (!inst.operands[1].isreg)
9391 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9392 return;
9393
9394 constraint (!inst.operands[1].preind
9395 || inst.operands[1].shifted
9396 || inst.operands[1].writeback,
9397 _("Thumb does not support this addressing mode"));
9398 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
9399 {
9400 constraint (inst.instruction & 0x0600,
9401 _("byte or halfword not valid for base register"));
9402 constraint (inst.operands[1].reg == REG_PC
9403 && !(inst.instruction & THUMB_LOAD_BIT),
9404 _("r15 based store not allowed"));
9405 constraint (inst.operands[1].immisreg,
9406 _("invalid base register for register offset"));
9407
9408 if (inst.operands[1].reg == REG_PC)
9409 inst.instruction = T_OPCODE_LDR_PC;
9410 else if (inst.instruction & THUMB_LOAD_BIT)
9411 inst.instruction = T_OPCODE_LDR_SP;
9412 else
9413 inst.instruction = T_OPCODE_STR_SP;
9414
9415 inst.instruction |= inst.operands[0].reg << 8;
9416 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9417 return;
9418 }
9419
9420 constraint (inst.operands[1].reg > 7, BAD_HIREG);
9421 if (!inst.operands[1].immisreg)
9422 {
9423 /* Immediate offset. */
9424 inst.instruction |= inst.operands[0].reg;
9425 inst.instruction |= inst.operands[1].reg << 3;
9426 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9427 return;
9428 }
9429
9430 /* Register offset. */
9431 constraint (inst.operands[1].imm > 7, BAD_HIREG);
9432 constraint (inst.operands[1].negative,
9433 _("Thumb does not support this addressing mode"));
9434
9435 op16:
9436 switch (inst.instruction)
9437 {
9438 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
9439 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
9440 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
9441 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
9442 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
9443 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
9444 case 0x5600 /* ldrsb */:
9445 case 0x5e00 /* ldrsh */: break;
9446 default: abort ();
9447 }
9448
9449 inst.instruction |= inst.operands[0].reg;
9450 inst.instruction |= inst.operands[1].reg << 3;
9451 inst.instruction |= inst.operands[1].imm << 6;
9452 }
9453
9454 static void
9455 do_t_ldstd (void)
9456 {
9457 if (!inst.operands[1].present)
9458 {
9459 inst.operands[1].reg = inst.operands[0].reg + 1;
9460 constraint (inst.operands[0].reg == REG_LR,
9461 _("r14 not allowed here"));
9462 }
9463 inst.instruction |= inst.operands[0].reg << 12;
9464 inst.instruction |= inst.operands[1].reg << 8;
9465 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
9466
9467 }
9468
9469 static void
9470 do_t_ldstt (void)
9471 {
9472 inst.instruction |= inst.operands[0].reg << 12;
9473 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
9474 }
9475
9476 static void
9477 do_t_mla (void)
9478 {
9479 inst.instruction |= inst.operands[0].reg << 8;
9480 inst.instruction |= inst.operands[1].reg << 16;
9481 inst.instruction |= inst.operands[2].reg;
9482 inst.instruction |= inst.operands[3].reg << 12;
9483 }
9484
9485 static void
9486 do_t_mlal (void)
9487 {
9488 inst.instruction |= inst.operands[0].reg << 12;
9489 inst.instruction |= inst.operands[1].reg << 8;
9490 inst.instruction |= inst.operands[2].reg << 16;
9491 inst.instruction |= inst.operands[3].reg;
9492 }
9493
9494 static void
9495 do_t_mov_cmp (void)
9496 {
9497 if (unified_syntax)
9498 {
9499 int r0off = (inst.instruction == T_MNEM_mov
9500 || inst.instruction == T_MNEM_movs) ? 8 : 16;
9501 unsigned long opcode;
9502 bfd_boolean narrow;
9503 bfd_boolean low_regs;
9504
9505 low_regs = (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7);
9506 opcode = inst.instruction;
9507 if (current_it_mask)
9508 narrow = opcode != T_MNEM_movs;
9509 else
9510 narrow = opcode != T_MNEM_movs || low_regs;
9511 if (inst.size_req == 4
9512 || inst.operands[1].shifted)
9513 narrow = FALSE;
9514
9515 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
9516 if (opcode == T_MNEM_movs && inst.operands[1].isreg
9517 && !inst.operands[1].shifted
9518 && inst.operands[0].reg == REG_PC
9519 && inst.operands[1].reg == REG_LR)
9520 {
9521 inst.instruction = T2_SUBS_PC_LR;
9522 return;
9523 }
9524
9525 if (!inst.operands[1].isreg)
9526 {
9527 /* Immediate operand. */
9528 if (current_it_mask == 0 && opcode == T_MNEM_mov)
9529 narrow = 0;
9530 if (low_regs && narrow)
9531 {
9532 inst.instruction = THUMB_OP16 (opcode);
9533 inst.instruction |= inst.operands[0].reg << 8;
9534 if (inst.size_req == 2)
9535 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9536 else
9537 inst.relax = opcode;
9538 }
9539 else
9540 {
9541 inst.instruction = THUMB_OP32 (inst.instruction);
9542 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9543 inst.instruction |= inst.operands[0].reg << r0off;
9544 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9545 }
9546 }
9547 else if (inst.operands[1].shifted && inst.operands[1].immisreg
9548 && (inst.instruction == T_MNEM_mov
9549 || inst.instruction == T_MNEM_movs))
9550 {
9551 /* Register shifts are encoded as separate shift instructions. */
9552 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
9553
9554 if (current_it_mask)
9555 narrow = !flags;
9556 else
9557 narrow = flags;
9558
9559 if (inst.size_req == 4)
9560 narrow = FALSE;
9561
9562 if (!low_regs || inst.operands[1].imm > 7)
9563 narrow = FALSE;
9564
9565 if (inst.operands[0].reg != inst.operands[1].reg)
9566 narrow = FALSE;
9567
9568 switch (inst.operands[1].shift_kind)
9569 {
9570 case SHIFT_LSL:
9571 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
9572 break;
9573 case SHIFT_ASR:
9574 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
9575 break;
9576 case SHIFT_LSR:
9577 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
9578 break;
9579 case SHIFT_ROR:
9580 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
9581 break;
9582 default:
9583 abort();
9584 }
9585
9586 inst.instruction = opcode;
9587 if (narrow)
9588 {
9589 inst.instruction |= inst.operands[0].reg;
9590 inst.instruction |= inst.operands[1].imm << 3;
9591 }
9592 else
9593 {
9594 if (flags)
9595 inst.instruction |= CONDS_BIT;
9596
9597 inst.instruction |= inst.operands[0].reg << 8;
9598 inst.instruction |= inst.operands[1].reg << 16;
9599 inst.instruction |= inst.operands[1].imm;
9600 }
9601 }
9602 else if (!narrow)
9603 {
9604 /* Some mov with immediate shift have narrow variants.
9605 Register shifts are handled above. */
9606 if (low_regs && inst.operands[1].shifted
9607 && (inst.instruction == T_MNEM_mov
9608 || inst.instruction == T_MNEM_movs))
9609 {
9610 if (current_it_mask)
9611 narrow = (inst.instruction == T_MNEM_mov);
9612 else
9613 narrow = (inst.instruction == T_MNEM_movs);
9614 }
9615
9616 if (narrow)
9617 {
9618 switch (inst.operands[1].shift_kind)
9619 {
9620 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
9621 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
9622 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
9623 default: narrow = FALSE; break;
9624 }
9625 }
9626
9627 if (narrow)
9628 {
9629 inst.instruction |= inst.operands[0].reg;
9630 inst.instruction |= inst.operands[1].reg << 3;
9631 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
9632 }
9633 else
9634 {
9635 inst.instruction = THUMB_OP32 (inst.instruction);
9636 inst.instruction |= inst.operands[0].reg << r0off;
9637 encode_thumb32_shifted_operand (1);
9638 }
9639 }
9640 else
9641 switch (inst.instruction)
9642 {
9643 case T_MNEM_mov:
9644 inst.instruction = T_OPCODE_MOV_HR;
9645 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9646 inst.instruction |= (inst.operands[0].reg & 0x7);
9647 inst.instruction |= inst.operands[1].reg << 3;
9648 break;
9649
9650 case T_MNEM_movs:
9651 /* We know we have low registers at this point.
9652 Generate ADD Rd, Rs, #0. */
9653 inst.instruction = T_OPCODE_ADD_I3;
9654 inst.instruction |= inst.operands[0].reg;
9655 inst.instruction |= inst.operands[1].reg << 3;
9656 break;
9657
9658 case T_MNEM_cmp:
9659 if (low_regs)
9660 {
9661 inst.instruction = T_OPCODE_CMP_LR;
9662 inst.instruction |= inst.operands[0].reg;
9663 inst.instruction |= inst.operands[1].reg << 3;
9664 }
9665 else
9666 {
9667 inst.instruction = T_OPCODE_CMP_HR;
9668 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9669 inst.instruction |= (inst.operands[0].reg & 0x7);
9670 inst.instruction |= inst.operands[1].reg << 3;
9671 }
9672 break;
9673 }
9674 return;
9675 }
9676
9677 inst.instruction = THUMB_OP16 (inst.instruction);
9678 if (inst.operands[1].isreg)
9679 {
9680 if (inst.operands[0].reg < 8 && inst.operands[1].reg < 8)
9681 {
9682 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
9683 since a MOV instruction produces unpredictable results. */
9684 if (inst.instruction == T_OPCODE_MOV_I8)
9685 inst.instruction = T_OPCODE_ADD_I3;
9686 else
9687 inst.instruction = T_OPCODE_CMP_LR;
9688
9689 inst.instruction |= inst.operands[0].reg;
9690 inst.instruction |= inst.operands[1].reg << 3;
9691 }
9692 else
9693 {
9694 if (inst.instruction == T_OPCODE_MOV_I8)
9695 inst.instruction = T_OPCODE_MOV_HR;
9696 else
9697 inst.instruction = T_OPCODE_CMP_HR;
9698 do_t_cpy ();
9699 }
9700 }
9701 else
9702 {
9703 constraint (inst.operands[0].reg > 7,
9704 _("only lo regs allowed with immediate"));
9705 inst.instruction |= inst.operands[0].reg << 8;
9706 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9707 }
9708 }
9709
9710 static void
9711 do_t_mov16 (void)
9712 {
9713 bfd_vma imm;
9714 bfd_boolean top;
9715
9716 top = (inst.instruction & 0x00800000) != 0;
9717 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
9718 {
9719 constraint (top, _(":lower16: not allowed this instruction"));
9720 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
9721 }
9722 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
9723 {
9724 constraint (!top, _(":upper16: not allowed this instruction"));
9725 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
9726 }
9727
9728 inst.instruction |= inst.operands[0].reg << 8;
9729 if (inst.reloc.type == BFD_RELOC_UNUSED)
9730 {
9731 imm = inst.reloc.exp.X_add_number;
9732 inst.instruction |= (imm & 0xf000) << 4;
9733 inst.instruction |= (imm & 0x0800) << 15;
9734 inst.instruction |= (imm & 0x0700) << 4;
9735 inst.instruction |= (imm & 0x00ff);
9736 }
9737 }
9738
9739 static void
9740 do_t_mvn_tst (void)
9741 {
9742 if (unified_syntax)
9743 {
9744 int r0off = (inst.instruction == T_MNEM_mvn
9745 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
9746 bfd_boolean narrow;
9747
9748 if (inst.size_req == 4
9749 || inst.instruction > 0xffff
9750 || inst.operands[1].shifted
9751 || inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9752 narrow = FALSE;
9753 else if (inst.instruction == T_MNEM_cmn)
9754 narrow = TRUE;
9755 else if (THUMB_SETS_FLAGS (inst.instruction))
9756 narrow = (current_it_mask == 0);
9757 else
9758 narrow = (current_it_mask != 0);
9759
9760 if (!inst.operands[1].isreg)
9761 {
9762 /* For an immediate, we always generate a 32-bit opcode;
9763 section relaxation will shrink it later if possible. */
9764 if (inst.instruction < 0xffff)
9765 inst.instruction = THUMB_OP32 (inst.instruction);
9766 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9767 inst.instruction |= inst.operands[0].reg << r0off;
9768 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9769 }
9770 else
9771 {
9772 /* See if we can do this with a 16-bit instruction. */
9773 if (narrow)
9774 {
9775 inst.instruction = THUMB_OP16 (inst.instruction);
9776 inst.instruction |= inst.operands[0].reg;
9777 inst.instruction |= inst.operands[1].reg << 3;
9778 }
9779 else
9780 {
9781 constraint (inst.operands[1].shifted
9782 && inst.operands[1].immisreg,
9783 _("shift must be constant"));
9784 if (inst.instruction < 0xffff)
9785 inst.instruction = THUMB_OP32 (inst.instruction);
9786 inst.instruction |= inst.operands[0].reg << r0off;
9787 encode_thumb32_shifted_operand (1);
9788 }
9789 }
9790 }
9791 else
9792 {
9793 constraint (inst.instruction > 0xffff
9794 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
9795 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
9796 _("unshifted register required"));
9797 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9798 BAD_HIREG);
9799
9800 inst.instruction = THUMB_OP16 (inst.instruction);
9801 inst.instruction |= inst.operands[0].reg;
9802 inst.instruction |= inst.operands[1].reg << 3;
9803 }
9804 }
9805
9806 static void
9807 do_t_mrs (void)
9808 {
9809 int flags;
9810
9811 if (do_vfp_nsyn_mrs () == SUCCESS)
9812 return;
9813
9814 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
9815 if (flags == 0)
9816 {
9817 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
9818 _("selected processor does not support "
9819 "requested special purpose register"));
9820 }
9821 else
9822 {
9823 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9824 _("selected processor does not support "
9825 "requested special purpose register %x"));
9826 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9827 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
9828 _("'CPSR' or 'SPSR' expected"));
9829 }
9830
9831 inst.instruction |= inst.operands[0].reg << 8;
9832 inst.instruction |= (flags & SPSR_BIT) >> 2;
9833 inst.instruction |= inst.operands[1].imm & 0xff;
9834 }
9835
9836 static void
9837 do_t_msr (void)
9838 {
9839 int flags;
9840
9841 if (do_vfp_nsyn_msr () == SUCCESS)
9842 return;
9843
9844 constraint (!inst.operands[1].isreg,
9845 _("Thumb encoding does not support an immediate here"));
9846 flags = inst.operands[0].imm;
9847 if (flags & ~0xff)
9848 {
9849 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9850 _("selected processor does not support "
9851 "requested special purpose register"));
9852 }
9853 else
9854 {
9855 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
9856 _("selected processor does not support "
9857 "requested special purpose register"));
9858 flags |= PSR_f;
9859 }
9860 inst.instruction |= (flags & SPSR_BIT) >> 2;
9861 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
9862 inst.instruction |= (flags & 0xff);
9863 inst.instruction |= inst.operands[1].reg << 16;
9864 }
9865
9866 static void
9867 do_t_mul (void)
9868 {
9869 if (!inst.operands[2].present)
9870 inst.operands[2].reg = inst.operands[0].reg;
9871
9872 /* There is no 32-bit MULS and no 16-bit MUL. */
9873 if (unified_syntax && inst.instruction == T_MNEM_mul)
9874 {
9875 inst.instruction = THUMB_OP32 (inst.instruction);
9876 inst.instruction |= inst.operands[0].reg << 8;
9877 inst.instruction |= inst.operands[1].reg << 16;
9878 inst.instruction |= inst.operands[2].reg << 0;
9879 }
9880 else
9881 {
9882 constraint (!unified_syntax
9883 && inst.instruction == T_MNEM_muls, BAD_THUMB32);
9884 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9885 BAD_HIREG);
9886
9887 inst.instruction = THUMB_OP16 (inst.instruction);
9888 inst.instruction |= inst.operands[0].reg;
9889
9890 if (inst.operands[0].reg == inst.operands[1].reg)
9891 inst.instruction |= inst.operands[2].reg << 3;
9892 else if (inst.operands[0].reg == inst.operands[2].reg)
9893 inst.instruction |= inst.operands[1].reg << 3;
9894 else
9895 constraint (1, _("dest must overlap one source register"));
9896 }
9897 }
9898
9899 static void
9900 do_t_mull (void)
9901 {
9902 inst.instruction |= inst.operands[0].reg << 12;
9903 inst.instruction |= inst.operands[1].reg << 8;
9904 inst.instruction |= inst.operands[2].reg << 16;
9905 inst.instruction |= inst.operands[3].reg;
9906
9907 if (inst.operands[0].reg == inst.operands[1].reg)
9908 as_tsktsk (_("rdhi and rdlo must be different"));
9909 }
9910
9911 static void
9912 do_t_nop (void)
9913 {
9914 if (unified_syntax)
9915 {
9916 if (inst.size_req == 4 || inst.operands[0].imm > 15)
9917 {
9918 inst.instruction = THUMB_OP32 (inst.instruction);
9919 inst.instruction |= inst.operands[0].imm;
9920 }
9921 else
9922 {
9923 inst.instruction = THUMB_OP16 (inst.instruction);
9924 inst.instruction |= inst.operands[0].imm << 4;
9925 }
9926 }
9927 else
9928 {
9929 constraint (inst.operands[0].present,
9930 _("Thumb does not support NOP with hints"));
9931 inst.instruction = 0x46c0;
9932 }
9933 }
9934
9935 static void
9936 do_t_neg (void)
9937 {
9938 if (unified_syntax)
9939 {
9940 bfd_boolean narrow;
9941
9942 if (THUMB_SETS_FLAGS (inst.instruction))
9943 narrow = (current_it_mask == 0);
9944 else
9945 narrow = (current_it_mask != 0);
9946 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9947 narrow = FALSE;
9948 if (inst.size_req == 4)
9949 narrow = FALSE;
9950
9951 if (!narrow)
9952 {
9953 inst.instruction = THUMB_OP32 (inst.instruction);
9954 inst.instruction |= inst.operands[0].reg << 8;
9955 inst.instruction |= inst.operands[1].reg << 16;
9956 }
9957 else
9958 {
9959 inst.instruction = THUMB_OP16 (inst.instruction);
9960 inst.instruction |= inst.operands[0].reg;
9961 inst.instruction |= inst.operands[1].reg << 3;
9962 }
9963 }
9964 else
9965 {
9966 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9967 BAD_HIREG);
9968 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9969
9970 inst.instruction = THUMB_OP16 (inst.instruction);
9971 inst.instruction |= inst.operands[0].reg;
9972 inst.instruction |= inst.operands[1].reg << 3;
9973 }
9974 }
9975
9976 static void
9977 do_t_pkhbt (void)
9978 {
9979 inst.instruction |= inst.operands[0].reg << 8;
9980 inst.instruction |= inst.operands[1].reg << 16;
9981 inst.instruction |= inst.operands[2].reg;
9982 if (inst.operands[3].present)
9983 {
9984 unsigned int val = inst.reloc.exp.X_add_number;
9985 constraint (inst.reloc.exp.X_op != O_constant,
9986 _("expression too complex"));
9987 inst.instruction |= (val & 0x1c) << 10;
9988 inst.instruction |= (val & 0x03) << 6;
9989 }
9990 }
9991
9992 static void
9993 do_t_pkhtb (void)
9994 {
9995 if (!inst.operands[3].present)
9996 inst.instruction &= ~0x00000020;
9997 do_t_pkhbt ();
9998 }
9999
10000 static void
10001 do_t_pld (void)
10002 {
10003 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
10004 }
10005
10006 static void
10007 do_t_push_pop (void)
10008 {
10009 unsigned mask;
10010
10011 constraint (inst.operands[0].writeback,
10012 _("push/pop do not support {reglist}^"));
10013 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10014 _("expression too complex"));
10015
10016 mask = inst.operands[0].imm;
10017 if ((mask & ~0xff) == 0)
10018 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
10019 else if ((inst.instruction == T_MNEM_push
10020 && (mask & ~0xff) == 1 << REG_LR)
10021 || (inst.instruction == T_MNEM_pop
10022 && (mask & ~0xff) == 1 << REG_PC))
10023 {
10024 inst.instruction = THUMB_OP16 (inst.instruction);
10025 inst.instruction |= THUMB_PP_PC_LR;
10026 inst.instruction |= mask & 0xff;
10027 }
10028 else if (unified_syntax)
10029 {
10030 inst.instruction = THUMB_OP32 (inst.instruction);
10031 encode_thumb2_ldmstm(13, mask, TRUE);
10032 }
10033 else
10034 {
10035 inst.error = _("invalid register list to push/pop instruction");
10036 return;
10037 }
10038 }
10039
10040 static void
10041 do_t_rbit (void)
10042 {
10043 inst.instruction |= inst.operands[0].reg << 8;
10044 inst.instruction |= inst.operands[1].reg << 16;
10045 }
10046
10047 static void
10048 do_t_rev (void)
10049 {
10050 if (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
10051 && inst.size_req != 4)
10052 {
10053 inst.instruction = THUMB_OP16 (inst.instruction);
10054 inst.instruction |= inst.operands[0].reg;
10055 inst.instruction |= inst.operands[1].reg << 3;
10056 }
10057 else if (unified_syntax)
10058 {
10059 inst.instruction = THUMB_OP32 (inst.instruction);
10060 inst.instruction |= inst.operands[0].reg << 8;
10061 inst.instruction |= inst.operands[1].reg << 16;
10062 inst.instruction |= inst.operands[1].reg;
10063 }
10064 else
10065 inst.error = BAD_HIREG;
10066 }
10067
10068 static void
10069 do_t_rsb (void)
10070 {
10071 int Rd, Rs;
10072
10073 Rd = inst.operands[0].reg;
10074 Rs = (inst.operands[1].present
10075 ? inst.operands[1].reg /* Rd, Rs, foo */
10076 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10077
10078 inst.instruction |= Rd << 8;
10079 inst.instruction |= Rs << 16;
10080 if (!inst.operands[2].isreg)
10081 {
10082 bfd_boolean narrow;
10083
10084 if ((inst.instruction & 0x00100000) != 0)
10085 narrow = (current_it_mask == 0);
10086 else
10087 narrow = (current_it_mask != 0);
10088
10089 if (Rd > 7 || Rs > 7)
10090 narrow = FALSE;
10091
10092 if (inst.size_req == 4 || !unified_syntax)
10093 narrow = FALSE;
10094
10095 if (inst.reloc.exp.X_op != O_constant
10096 || inst.reloc.exp.X_add_number != 0)
10097 narrow = FALSE;
10098
10099 /* Turn rsb #0 into 16-bit neg. We should probably do this via
10100 relaxation, but it doesn't seem worth the hassle. */
10101 if (narrow)
10102 {
10103 inst.reloc.type = BFD_RELOC_UNUSED;
10104 inst.instruction = THUMB_OP16 (T_MNEM_negs);
10105 inst.instruction |= Rs << 3;
10106 inst.instruction |= Rd;
10107 }
10108 else
10109 {
10110 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10111 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10112 }
10113 }
10114 else
10115 encode_thumb32_shifted_operand (2);
10116 }
10117
10118 static void
10119 do_t_setend (void)
10120 {
10121 constraint (current_it_mask, BAD_NOT_IT);
10122 if (inst.operands[0].imm)
10123 inst.instruction |= 0x8;
10124 }
10125
10126 static void
10127 do_t_shift (void)
10128 {
10129 if (!inst.operands[1].present)
10130 inst.operands[1].reg = inst.operands[0].reg;
10131
10132 if (unified_syntax)
10133 {
10134 bfd_boolean narrow;
10135 int shift_kind;
10136
10137 switch (inst.instruction)
10138 {
10139 case T_MNEM_asr:
10140 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
10141 case T_MNEM_lsl:
10142 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
10143 case T_MNEM_lsr:
10144 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
10145 case T_MNEM_ror:
10146 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
10147 default: abort ();
10148 }
10149
10150 if (THUMB_SETS_FLAGS (inst.instruction))
10151 narrow = (current_it_mask == 0);
10152 else
10153 narrow = (current_it_mask != 0);
10154 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10155 narrow = FALSE;
10156 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
10157 narrow = FALSE;
10158 if (inst.operands[2].isreg
10159 && (inst.operands[1].reg != inst.operands[0].reg
10160 || inst.operands[2].reg > 7))
10161 narrow = FALSE;
10162 if (inst.size_req == 4)
10163 narrow = FALSE;
10164
10165 if (!narrow)
10166 {
10167 if (inst.operands[2].isreg)
10168 {
10169 inst.instruction = THUMB_OP32 (inst.instruction);
10170 inst.instruction |= inst.operands[0].reg << 8;
10171 inst.instruction |= inst.operands[1].reg << 16;
10172 inst.instruction |= inst.operands[2].reg;
10173 }
10174 else
10175 {
10176 inst.operands[1].shifted = 1;
10177 inst.operands[1].shift_kind = shift_kind;
10178 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
10179 ? T_MNEM_movs : T_MNEM_mov);
10180 inst.instruction |= inst.operands[0].reg << 8;
10181 encode_thumb32_shifted_operand (1);
10182 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
10183 inst.reloc.type = BFD_RELOC_UNUSED;
10184 }
10185 }
10186 else
10187 {
10188 if (inst.operands[2].isreg)
10189 {
10190 switch (shift_kind)
10191 {
10192 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
10193 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
10194 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
10195 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
10196 default: abort ();
10197 }
10198
10199 inst.instruction |= inst.operands[0].reg;
10200 inst.instruction |= inst.operands[2].reg << 3;
10201 }
10202 else
10203 {
10204 switch (shift_kind)
10205 {
10206 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10207 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10208 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10209 default: abort ();
10210 }
10211 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10212 inst.instruction |= inst.operands[0].reg;
10213 inst.instruction |= inst.operands[1].reg << 3;
10214 }
10215 }
10216 }
10217 else
10218 {
10219 constraint (inst.operands[0].reg > 7
10220 || inst.operands[1].reg > 7, BAD_HIREG);
10221 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10222
10223 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
10224 {
10225 constraint (inst.operands[2].reg > 7, BAD_HIREG);
10226 constraint (inst.operands[0].reg != inst.operands[1].reg,
10227 _("source1 and dest must be same register"));
10228
10229 switch (inst.instruction)
10230 {
10231 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
10232 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
10233 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
10234 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
10235 default: abort ();
10236 }
10237
10238 inst.instruction |= inst.operands[0].reg;
10239 inst.instruction |= inst.operands[2].reg << 3;
10240 }
10241 else
10242 {
10243 switch (inst.instruction)
10244 {
10245 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
10246 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
10247 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
10248 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
10249 default: abort ();
10250 }
10251 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10252 inst.instruction |= inst.operands[0].reg;
10253 inst.instruction |= inst.operands[1].reg << 3;
10254 }
10255 }
10256 }
10257
10258 static void
10259 do_t_simd (void)
10260 {
10261 inst.instruction |= inst.operands[0].reg << 8;
10262 inst.instruction |= inst.operands[1].reg << 16;
10263 inst.instruction |= inst.operands[2].reg;
10264 }
10265
10266 static void
10267 do_t_smc (void)
10268 {
10269 unsigned int value = inst.reloc.exp.X_add_number;
10270 constraint (inst.reloc.exp.X_op != O_constant,
10271 _("expression too complex"));
10272 inst.reloc.type = BFD_RELOC_UNUSED;
10273 inst.instruction |= (value & 0xf000) >> 12;
10274 inst.instruction |= (value & 0x0ff0);
10275 inst.instruction |= (value & 0x000f) << 16;
10276 }
10277
10278 static void
10279 do_t_ssat (void)
10280 {
10281 inst.instruction |= inst.operands[0].reg << 8;
10282 inst.instruction |= inst.operands[1].imm - 1;
10283 inst.instruction |= inst.operands[2].reg << 16;
10284
10285 if (inst.operands[3].present)
10286 {
10287 constraint (inst.reloc.exp.X_op != O_constant,
10288 _("expression too complex"));
10289
10290 if (inst.reloc.exp.X_add_number != 0)
10291 {
10292 if (inst.operands[3].shift_kind == SHIFT_ASR)
10293 inst.instruction |= 0x00200000; /* sh bit */
10294 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10295 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
10296 }
10297 inst.reloc.type = BFD_RELOC_UNUSED;
10298 }
10299 }
10300
10301 static void
10302 do_t_ssat16 (void)
10303 {
10304 inst.instruction |= inst.operands[0].reg << 8;
10305 inst.instruction |= inst.operands[1].imm - 1;
10306 inst.instruction |= inst.operands[2].reg << 16;
10307 }
10308
10309 static void
10310 do_t_strex (void)
10311 {
10312 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10313 || inst.operands[2].postind || inst.operands[2].writeback
10314 || inst.operands[2].immisreg || inst.operands[2].shifted
10315 || inst.operands[2].negative,
10316 BAD_ADDR_MODE);
10317
10318 inst.instruction |= inst.operands[0].reg << 8;
10319 inst.instruction |= inst.operands[1].reg << 12;
10320 inst.instruction |= inst.operands[2].reg << 16;
10321 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10322 }
10323
10324 static void
10325 do_t_strexd (void)
10326 {
10327 if (!inst.operands[2].present)
10328 inst.operands[2].reg = inst.operands[1].reg + 1;
10329
10330 constraint (inst.operands[0].reg == inst.operands[1].reg
10331 || inst.operands[0].reg == inst.operands[2].reg
10332 || inst.operands[0].reg == inst.operands[3].reg
10333 || inst.operands[1].reg == inst.operands[2].reg,
10334 BAD_OVERLAP);
10335
10336 inst.instruction |= inst.operands[0].reg;
10337 inst.instruction |= inst.operands[1].reg << 12;
10338 inst.instruction |= inst.operands[2].reg << 8;
10339 inst.instruction |= inst.operands[3].reg << 16;
10340 }
10341
10342 static void
10343 do_t_sxtah (void)
10344 {
10345 inst.instruction |= inst.operands[0].reg << 8;
10346 inst.instruction |= inst.operands[1].reg << 16;
10347 inst.instruction |= inst.operands[2].reg;
10348 inst.instruction |= inst.operands[3].imm << 4;
10349 }
10350
10351 static void
10352 do_t_sxth (void)
10353 {
10354 if (inst.instruction <= 0xffff && inst.size_req != 4
10355 && inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
10356 && (!inst.operands[2].present || inst.operands[2].imm == 0))
10357 {
10358 inst.instruction = THUMB_OP16 (inst.instruction);
10359 inst.instruction |= inst.operands[0].reg;
10360 inst.instruction |= inst.operands[1].reg << 3;
10361 }
10362 else if (unified_syntax)
10363 {
10364 if (inst.instruction <= 0xffff)
10365 inst.instruction = THUMB_OP32 (inst.instruction);
10366 inst.instruction |= inst.operands[0].reg << 8;
10367 inst.instruction |= inst.operands[1].reg;
10368 inst.instruction |= inst.operands[2].imm << 4;
10369 }
10370 else
10371 {
10372 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
10373 _("Thumb encoding does not support rotation"));
10374 constraint (1, BAD_HIREG);
10375 }
10376 }
10377
10378 static void
10379 do_t_swi (void)
10380 {
10381 inst.reloc.type = BFD_RELOC_ARM_SWI;
10382 }
10383
10384 static void
10385 do_t_tb (void)
10386 {
10387 int half;
10388
10389 half = (inst.instruction & 0x10) != 0;
10390 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
10391 constraint (inst.operands[0].immisreg,
10392 _("instruction requires register index"));
10393 constraint (inst.operands[0].imm == 15,
10394 _("PC is not a valid index register"));
10395 constraint (!half && inst.operands[0].shifted,
10396 _("instruction does not allow shifted index"));
10397 inst.instruction |= (inst.operands[0].reg << 16) | inst.operands[0].imm;
10398 }
10399
10400 static void
10401 do_t_usat (void)
10402 {
10403 inst.instruction |= inst.operands[0].reg << 8;
10404 inst.instruction |= inst.operands[1].imm;
10405 inst.instruction |= inst.operands[2].reg << 16;
10406
10407 if (inst.operands[3].present)
10408 {
10409 constraint (inst.reloc.exp.X_op != O_constant,
10410 _("expression too complex"));
10411 if (inst.reloc.exp.X_add_number != 0)
10412 {
10413 if (inst.operands[3].shift_kind == SHIFT_ASR)
10414 inst.instruction |= 0x00200000; /* sh bit */
10415
10416 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10417 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
10418 }
10419 inst.reloc.type = BFD_RELOC_UNUSED;
10420 }
10421 }
10422
10423 static void
10424 do_t_usat16 (void)
10425 {
10426 inst.instruction |= inst.operands[0].reg << 8;
10427 inst.instruction |= inst.operands[1].imm;
10428 inst.instruction |= inst.operands[2].reg << 16;
10429 }
10430
10431 /* Neon instruction encoder helpers. */
10432
10433 /* Encodings for the different types for various Neon opcodes. */
10434
10435 /* An "invalid" code for the following tables. */
10436 #define N_INV -1u
10437
10438 struct neon_tab_entry
10439 {
10440 unsigned integer;
10441 unsigned float_or_poly;
10442 unsigned scalar_or_imm;
10443 };
10444
10445 /* Map overloaded Neon opcodes to their respective encodings. */
10446 #define NEON_ENC_TAB \
10447 X(vabd, 0x0000700, 0x1200d00, N_INV), \
10448 X(vmax, 0x0000600, 0x0000f00, N_INV), \
10449 X(vmin, 0x0000610, 0x0200f00, N_INV), \
10450 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
10451 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
10452 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
10453 X(vadd, 0x0000800, 0x0000d00, N_INV), \
10454 X(vsub, 0x1000800, 0x0200d00, N_INV), \
10455 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
10456 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
10457 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
10458 /* Register variants of the following two instructions are encoded as
10459 vcge / vcgt with the operands reversed. */ \
10460 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
10461 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
10462 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
10463 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
10464 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
10465 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
10466 X(vmlal, 0x0800800, N_INV, 0x0800240), \
10467 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
10468 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
10469 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
10470 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
10471 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
10472 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
10473 X(vshl, 0x0000400, N_INV, 0x0800510), \
10474 X(vqshl, 0x0000410, N_INV, 0x0800710), \
10475 X(vand, 0x0000110, N_INV, 0x0800030), \
10476 X(vbic, 0x0100110, N_INV, 0x0800030), \
10477 X(veor, 0x1000110, N_INV, N_INV), \
10478 X(vorn, 0x0300110, N_INV, 0x0800010), \
10479 X(vorr, 0x0200110, N_INV, 0x0800010), \
10480 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
10481 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
10482 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
10483 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
10484 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
10485 X(vst1, 0x0000000, 0x0800000, N_INV), \
10486 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
10487 X(vst2, 0x0000100, 0x0800100, N_INV), \
10488 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
10489 X(vst3, 0x0000200, 0x0800200, N_INV), \
10490 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
10491 X(vst4, 0x0000300, 0x0800300, N_INV), \
10492 X(vmovn, 0x1b20200, N_INV, N_INV), \
10493 X(vtrn, 0x1b20080, N_INV, N_INV), \
10494 X(vqmovn, 0x1b20200, N_INV, N_INV), \
10495 X(vqmovun, 0x1b20240, N_INV, N_INV), \
10496 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
10497 X(vnmla, 0xe000a40, 0xe000b40, N_INV), \
10498 X(vnmls, 0xe100a40, 0xe100b40, N_INV), \
10499 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
10500 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
10501 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
10502 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
10503
10504 enum neon_opc
10505 {
10506 #define X(OPC,I,F,S) N_MNEM_##OPC
10507 NEON_ENC_TAB
10508 #undef X
10509 };
10510
10511 static const struct neon_tab_entry neon_enc_tab[] =
10512 {
10513 #define X(OPC,I,F,S) { (I), (F), (S) }
10514 NEON_ENC_TAB
10515 #undef X
10516 };
10517
10518 #define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10519 #define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10520 #define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10521 #define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10522 #define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10523 #define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10524 #define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10525 #define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10526 #define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10527 #define NEON_ENC_SINGLE(X) \
10528 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
10529 #define NEON_ENC_DOUBLE(X) \
10530 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
10531
10532 /* Define shapes for instruction operands. The following mnemonic characters
10533 are used in this table:
10534
10535 F - VFP S<n> register
10536 D - Neon D<n> register
10537 Q - Neon Q<n> register
10538 I - Immediate
10539 S - Scalar
10540 R - ARM register
10541 L - D<n> register list
10542
10543 This table is used to generate various data:
10544 - enumerations of the form NS_DDR to be used as arguments to
10545 neon_select_shape.
10546 - a table classifying shapes into single, double, quad, mixed.
10547 - a table used to drive neon_select_shape.
10548 */
10549
10550 #define NEON_SHAPE_DEF \
10551 X(3, (D, D, D), DOUBLE), \
10552 X(3, (Q, Q, Q), QUAD), \
10553 X(3, (D, D, I), DOUBLE), \
10554 X(3, (Q, Q, I), QUAD), \
10555 X(3, (D, D, S), DOUBLE), \
10556 X(3, (Q, Q, S), QUAD), \
10557 X(2, (D, D), DOUBLE), \
10558 X(2, (Q, Q), QUAD), \
10559 X(2, (D, S), DOUBLE), \
10560 X(2, (Q, S), QUAD), \
10561 X(2, (D, R), DOUBLE), \
10562 X(2, (Q, R), QUAD), \
10563 X(2, (D, I), DOUBLE), \
10564 X(2, (Q, I), QUAD), \
10565 X(3, (D, L, D), DOUBLE), \
10566 X(2, (D, Q), MIXED), \
10567 X(2, (Q, D), MIXED), \
10568 X(3, (D, Q, I), MIXED), \
10569 X(3, (Q, D, I), MIXED), \
10570 X(3, (Q, D, D), MIXED), \
10571 X(3, (D, Q, Q), MIXED), \
10572 X(3, (Q, Q, D), MIXED), \
10573 X(3, (Q, D, S), MIXED), \
10574 X(3, (D, Q, S), MIXED), \
10575 X(4, (D, D, D, I), DOUBLE), \
10576 X(4, (Q, Q, Q, I), QUAD), \
10577 X(2, (F, F), SINGLE), \
10578 X(3, (F, F, F), SINGLE), \
10579 X(2, (F, I), SINGLE), \
10580 X(2, (F, D), MIXED), \
10581 X(2, (D, F), MIXED), \
10582 X(3, (F, F, I), MIXED), \
10583 X(4, (R, R, F, F), SINGLE), \
10584 X(4, (F, F, R, R), SINGLE), \
10585 X(3, (D, R, R), DOUBLE), \
10586 X(3, (R, R, D), DOUBLE), \
10587 X(2, (S, R), SINGLE), \
10588 X(2, (R, S), SINGLE), \
10589 X(2, (F, R), SINGLE), \
10590 X(2, (R, F), SINGLE)
10591
10592 #define S2(A,B) NS_##A##B
10593 #define S3(A,B,C) NS_##A##B##C
10594 #define S4(A,B,C,D) NS_##A##B##C##D
10595
10596 #define X(N, L, C) S##N L
10597
10598 enum neon_shape
10599 {
10600 NEON_SHAPE_DEF,
10601 NS_NULL
10602 };
10603
10604 #undef X
10605 #undef S2
10606 #undef S3
10607 #undef S4
10608
10609 enum neon_shape_class
10610 {
10611 SC_SINGLE,
10612 SC_DOUBLE,
10613 SC_QUAD,
10614 SC_MIXED
10615 };
10616
10617 #define X(N, L, C) SC_##C
10618
10619 static enum neon_shape_class neon_shape_class[] =
10620 {
10621 NEON_SHAPE_DEF
10622 };
10623
10624 #undef X
10625
10626 enum neon_shape_el
10627 {
10628 SE_F,
10629 SE_D,
10630 SE_Q,
10631 SE_I,
10632 SE_S,
10633 SE_R,
10634 SE_L
10635 };
10636
10637 /* Register widths of above. */
10638 static unsigned neon_shape_el_size[] =
10639 {
10640 32,
10641 64,
10642 128,
10643 0,
10644 32,
10645 32,
10646 0
10647 };
10648
10649 struct neon_shape_info
10650 {
10651 unsigned els;
10652 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
10653 };
10654
10655 #define S2(A,B) { SE_##A, SE_##B }
10656 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
10657 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
10658
10659 #define X(N, L, C) { N, S##N L }
10660
10661 static struct neon_shape_info neon_shape_tab[] =
10662 {
10663 NEON_SHAPE_DEF
10664 };
10665
10666 #undef X
10667 #undef S2
10668 #undef S3
10669 #undef S4
10670
10671 /* Bit masks used in type checking given instructions.
10672 'N_EQK' means the type must be the same as (or based on in some way) the key
10673 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
10674 set, various other bits can be set as well in order to modify the meaning of
10675 the type constraint. */
10676
10677 enum neon_type_mask
10678 {
10679 N_S8 = 0x000001,
10680 N_S16 = 0x000002,
10681 N_S32 = 0x000004,
10682 N_S64 = 0x000008,
10683 N_U8 = 0x000010,
10684 N_U16 = 0x000020,
10685 N_U32 = 0x000040,
10686 N_U64 = 0x000080,
10687 N_I8 = 0x000100,
10688 N_I16 = 0x000200,
10689 N_I32 = 0x000400,
10690 N_I64 = 0x000800,
10691 N_8 = 0x001000,
10692 N_16 = 0x002000,
10693 N_32 = 0x004000,
10694 N_64 = 0x008000,
10695 N_P8 = 0x010000,
10696 N_P16 = 0x020000,
10697 N_F32 = 0x040000,
10698 N_F64 = 0x080000,
10699 N_KEY = 0x100000, /* key element (main type specifier). */
10700 N_EQK = 0x200000, /* given operand has the same type & size as the key. */
10701 N_VFP = 0x400000, /* VFP mode: operand size must match register width. */
10702 N_DBL = 0x000001, /* if N_EQK, this operand is twice the size. */
10703 N_HLF = 0x000002, /* if N_EQK, this operand is half the size. */
10704 N_SGN = 0x000004, /* if N_EQK, this operand is forced to be signed. */
10705 N_UNS = 0x000008, /* if N_EQK, this operand is forced to be unsigned. */
10706 N_INT = 0x000010, /* if N_EQK, this operand is forced to be integer. */
10707 N_FLT = 0x000020, /* if N_EQK, this operand is forced to be float. */
10708 N_SIZ = 0x000040, /* if N_EQK, this operand is forced to be size-only. */
10709 N_UTYP = 0,
10710 N_MAX_NONSPECIAL = N_F64
10711 };
10712
10713 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
10714
10715 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
10716 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
10717 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
10718 #define N_SUF_32 (N_SU_32 | N_F32)
10719 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
10720 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
10721
10722 /* Pass this as the first type argument to neon_check_type to ignore types
10723 altogether. */
10724 #define N_IGNORE_TYPE (N_KEY | N_EQK)
10725
10726 /* Select a "shape" for the current instruction (describing register types or
10727 sizes) from a list of alternatives. Return NS_NULL if the current instruction
10728 doesn't fit. For non-polymorphic shapes, checking is usually done as a
10729 function of operand parsing, so this function doesn't need to be called.
10730 Shapes should be listed in order of decreasing length. */
10731
10732 static enum neon_shape
10733 neon_select_shape (enum neon_shape shape, ...)
10734 {
10735 va_list ap;
10736 enum neon_shape first_shape = shape;
10737
10738 /* Fix missing optional operands. FIXME: we don't know at this point how
10739 many arguments we should have, so this makes the assumption that we have
10740 > 1. This is true of all current Neon opcodes, I think, but may not be
10741 true in the future. */
10742 if (!inst.operands[1].present)
10743 inst.operands[1] = inst.operands[0];
10744
10745 va_start (ap, shape);
10746
10747 for (; shape != NS_NULL; shape = va_arg (ap, int))
10748 {
10749 unsigned j;
10750 int matches = 1;
10751
10752 for (j = 0; j < neon_shape_tab[shape].els; j++)
10753 {
10754 if (!inst.operands[j].present)
10755 {
10756 matches = 0;
10757 break;
10758 }
10759
10760 switch (neon_shape_tab[shape].el[j])
10761 {
10762 case SE_F:
10763 if (!(inst.operands[j].isreg
10764 && inst.operands[j].isvec
10765 && inst.operands[j].issingle
10766 && !inst.operands[j].isquad))
10767 matches = 0;
10768 break;
10769
10770 case SE_D:
10771 if (!(inst.operands[j].isreg
10772 && inst.operands[j].isvec
10773 && !inst.operands[j].isquad
10774 && !inst.operands[j].issingle))
10775 matches = 0;
10776 break;
10777
10778 case SE_R:
10779 if (!(inst.operands[j].isreg
10780 && !inst.operands[j].isvec))
10781 matches = 0;
10782 break;
10783
10784 case SE_Q:
10785 if (!(inst.operands[j].isreg
10786 && inst.operands[j].isvec
10787 && inst.operands[j].isquad
10788 && !inst.operands[j].issingle))
10789 matches = 0;
10790 break;
10791
10792 case SE_I:
10793 if (!(!inst.operands[j].isreg
10794 && !inst.operands[j].isscalar))
10795 matches = 0;
10796 break;
10797
10798 case SE_S:
10799 if (!(!inst.operands[j].isreg
10800 && inst.operands[j].isscalar))
10801 matches = 0;
10802 break;
10803
10804 case SE_L:
10805 break;
10806 }
10807 }
10808 if (matches)
10809 break;
10810 }
10811
10812 va_end (ap);
10813
10814 if (shape == NS_NULL && first_shape != NS_NULL)
10815 first_error (_("invalid instruction shape"));
10816
10817 return shape;
10818 }
10819
10820 /* True if SHAPE is predominantly a quadword operation (most of the time, this
10821 means the Q bit should be set). */
10822
10823 static int
10824 neon_quad (enum neon_shape shape)
10825 {
10826 return neon_shape_class[shape] == SC_QUAD;
10827 }
10828
10829 static void
10830 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
10831 unsigned *g_size)
10832 {
10833 /* Allow modification to be made to types which are constrained to be
10834 based on the key element, based on bits set alongside N_EQK. */
10835 if ((typebits & N_EQK) != 0)
10836 {
10837 if ((typebits & N_HLF) != 0)
10838 *g_size /= 2;
10839 else if ((typebits & N_DBL) != 0)
10840 *g_size *= 2;
10841 if ((typebits & N_SGN) != 0)
10842 *g_type = NT_signed;
10843 else if ((typebits & N_UNS) != 0)
10844 *g_type = NT_unsigned;
10845 else if ((typebits & N_INT) != 0)
10846 *g_type = NT_integer;
10847 else if ((typebits & N_FLT) != 0)
10848 *g_type = NT_float;
10849 else if ((typebits & N_SIZ) != 0)
10850 *g_type = NT_untyped;
10851 }
10852 }
10853
10854 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
10855 operand type, i.e. the single type specified in a Neon instruction when it
10856 is the only one given. */
10857
10858 static struct neon_type_el
10859 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
10860 {
10861 struct neon_type_el dest = *key;
10862
10863 assert ((thisarg & N_EQK) != 0);
10864
10865 neon_modify_type_size (thisarg, &dest.type, &dest.size);
10866
10867 return dest;
10868 }
10869
10870 /* Convert Neon type and size into compact bitmask representation. */
10871
10872 static enum neon_type_mask
10873 type_chk_of_el_type (enum neon_el_type type, unsigned size)
10874 {
10875 switch (type)
10876 {
10877 case NT_untyped:
10878 switch (size)
10879 {
10880 case 8: return N_8;
10881 case 16: return N_16;
10882 case 32: return N_32;
10883 case 64: return N_64;
10884 default: ;
10885 }
10886 break;
10887
10888 case NT_integer:
10889 switch (size)
10890 {
10891 case 8: return N_I8;
10892 case 16: return N_I16;
10893 case 32: return N_I32;
10894 case 64: return N_I64;
10895 default: ;
10896 }
10897 break;
10898
10899 case NT_float:
10900 switch (size)
10901 {
10902 case 32: return N_F32;
10903 case 64: return N_F64;
10904 default: ;
10905 }
10906 break;
10907
10908 case NT_poly:
10909 switch (size)
10910 {
10911 case 8: return N_P8;
10912 case 16: return N_P16;
10913 default: ;
10914 }
10915 break;
10916
10917 case NT_signed:
10918 switch (size)
10919 {
10920 case 8: return N_S8;
10921 case 16: return N_S16;
10922 case 32: return N_S32;
10923 case 64: return N_S64;
10924 default: ;
10925 }
10926 break;
10927
10928 case NT_unsigned:
10929 switch (size)
10930 {
10931 case 8: return N_U8;
10932 case 16: return N_U16;
10933 case 32: return N_U32;
10934 case 64: return N_U64;
10935 default: ;
10936 }
10937 break;
10938
10939 default: ;
10940 }
10941
10942 return N_UTYP;
10943 }
10944
10945 /* Convert compact Neon bitmask type representation to a type and size. Only
10946 handles the case where a single bit is set in the mask. */
10947
10948 static int
10949 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
10950 enum neon_type_mask mask)
10951 {
10952 if ((mask & N_EQK) != 0)
10953 return FAIL;
10954
10955 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
10956 *size = 8;
10957 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
10958 *size = 16;
10959 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
10960 *size = 32;
10961 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
10962 *size = 64;
10963 else
10964 return FAIL;
10965
10966 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
10967 *type = NT_signed;
10968 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
10969 *type = NT_unsigned;
10970 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
10971 *type = NT_integer;
10972 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
10973 *type = NT_untyped;
10974 else if ((mask & (N_P8 | N_P16)) != 0)
10975 *type = NT_poly;
10976 else if ((mask & (N_F32 | N_F64)) != 0)
10977 *type = NT_float;
10978 else
10979 return FAIL;
10980
10981 return SUCCESS;
10982 }
10983
10984 /* Modify a bitmask of allowed types. This is only needed for type
10985 relaxation. */
10986
10987 static unsigned
10988 modify_types_allowed (unsigned allowed, unsigned mods)
10989 {
10990 unsigned size;
10991 enum neon_el_type type;
10992 unsigned destmask;
10993 int i;
10994
10995 destmask = 0;
10996
10997 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
10998 {
10999 if (el_type_of_type_chk (&type, &size, allowed & i) == SUCCESS)
11000 {
11001 neon_modify_type_size (mods, &type, &size);
11002 destmask |= type_chk_of_el_type (type, size);
11003 }
11004 }
11005
11006 return destmask;
11007 }
11008
11009 /* Check type and return type classification.
11010 The manual states (paraphrase): If one datatype is given, it indicates the
11011 type given in:
11012 - the second operand, if there is one
11013 - the operand, if there is no second operand
11014 - the result, if there are no operands.
11015 This isn't quite good enough though, so we use a concept of a "key" datatype
11016 which is set on a per-instruction basis, which is the one which matters when
11017 only one data type is written.
11018 Note: this function has side-effects (e.g. filling in missing operands). All
11019 Neon instructions should call it before performing bit encoding. */
11020
11021 static struct neon_type_el
11022 neon_check_type (unsigned els, enum neon_shape ns, ...)
11023 {
11024 va_list ap;
11025 unsigned i, pass, key_el = 0;
11026 unsigned types[NEON_MAX_TYPE_ELS];
11027 enum neon_el_type k_type = NT_invtype;
11028 unsigned k_size = -1u;
11029 struct neon_type_el badtype = {NT_invtype, -1};
11030 unsigned key_allowed = 0;
11031
11032 /* Optional registers in Neon instructions are always (not) in operand 1.
11033 Fill in the missing operand here, if it was omitted. */
11034 if (els > 1 && !inst.operands[1].present)
11035 inst.operands[1] = inst.operands[0];
11036
11037 /* Suck up all the varargs. */
11038 va_start (ap, ns);
11039 for (i = 0; i < els; i++)
11040 {
11041 unsigned thisarg = va_arg (ap, unsigned);
11042 if (thisarg == N_IGNORE_TYPE)
11043 {
11044 va_end (ap);
11045 return badtype;
11046 }
11047 types[i] = thisarg;
11048 if ((thisarg & N_KEY) != 0)
11049 key_el = i;
11050 }
11051 va_end (ap);
11052
11053 if (inst.vectype.elems > 0)
11054 for (i = 0; i < els; i++)
11055 if (inst.operands[i].vectype.type != NT_invtype)
11056 {
11057 first_error (_("types specified in both the mnemonic and operands"));
11058 return badtype;
11059 }
11060
11061 /* Duplicate inst.vectype elements here as necessary.
11062 FIXME: No idea if this is exactly the same as the ARM assembler,
11063 particularly when an insn takes one register and one non-register
11064 operand. */
11065 if (inst.vectype.elems == 1 && els > 1)
11066 {
11067 unsigned j;
11068 inst.vectype.elems = els;
11069 inst.vectype.el[key_el] = inst.vectype.el[0];
11070 for (j = 0; j < els; j++)
11071 if (j != key_el)
11072 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11073 types[j]);
11074 }
11075 else if (inst.vectype.elems == 0 && els > 0)
11076 {
11077 unsigned j;
11078 /* No types were given after the mnemonic, so look for types specified
11079 after each operand. We allow some flexibility here; as long as the
11080 "key" operand has a type, we can infer the others. */
11081 for (j = 0; j < els; j++)
11082 if (inst.operands[j].vectype.type != NT_invtype)
11083 inst.vectype.el[j] = inst.operands[j].vectype;
11084
11085 if (inst.operands[key_el].vectype.type != NT_invtype)
11086 {
11087 for (j = 0; j < els; j++)
11088 if (inst.operands[j].vectype.type == NT_invtype)
11089 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11090 types[j]);
11091 }
11092 else
11093 {
11094 first_error (_("operand types can't be inferred"));
11095 return badtype;
11096 }
11097 }
11098 else if (inst.vectype.elems != els)
11099 {
11100 first_error (_("type specifier has the wrong number of parts"));
11101 return badtype;
11102 }
11103
11104 for (pass = 0; pass < 2; pass++)
11105 {
11106 for (i = 0; i < els; i++)
11107 {
11108 unsigned thisarg = types[i];
11109 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
11110 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
11111 enum neon_el_type g_type = inst.vectype.el[i].type;
11112 unsigned g_size = inst.vectype.el[i].size;
11113
11114 /* Decay more-specific signed & unsigned types to sign-insensitive
11115 integer types if sign-specific variants are unavailable. */
11116 if ((g_type == NT_signed || g_type == NT_unsigned)
11117 && (types_allowed & N_SU_ALL) == 0)
11118 g_type = NT_integer;
11119
11120 /* If only untyped args are allowed, decay any more specific types to
11121 them. Some instructions only care about signs for some element
11122 sizes, so handle that properly. */
11123 if ((g_size == 8 && (types_allowed & N_8) != 0)
11124 || (g_size == 16 && (types_allowed & N_16) != 0)
11125 || (g_size == 32 && (types_allowed & N_32) != 0)
11126 || (g_size == 64 && (types_allowed & N_64) != 0))
11127 g_type = NT_untyped;
11128
11129 if (pass == 0)
11130 {
11131 if ((thisarg & N_KEY) != 0)
11132 {
11133 k_type = g_type;
11134 k_size = g_size;
11135 key_allowed = thisarg & ~N_KEY;
11136 }
11137 }
11138 else
11139 {
11140 if ((thisarg & N_VFP) != 0)
11141 {
11142 enum neon_shape_el regshape = neon_shape_tab[ns].el[i];
11143 unsigned regwidth = neon_shape_el_size[regshape], match;
11144
11145 /* In VFP mode, operands must match register widths. If we
11146 have a key operand, use its width, else use the width of
11147 the current operand. */
11148 if (k_size != -1u)
11149 match = k_size;
11150 else
11151 match = g_size;
11152
11153 if (regwidth != match)
11154 {
11155 first_error (_("operand size must match register width"));
11156 return badtype;
11157 }
11158 }
11159
11160 if ((thisarg & N_EQK) == 0)
11161 {
11162 unsigned given_type = type_chk_of_el_type (g_type, g_size);
11163
11164 if ((given_type & types_allowed) == 0)
11165 {
11166 first_error (_("bad type in Neon instruction"));
11167 return badtype;
11168 }
11169 }
11170 else
11171 {
11172 enum neon_el_type mod_k_type = k_type;
11173 unsigned mod_k_size = k_size;
11174 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
11175 if (g_type != mod_k_type || g_size != mod_k_size)
11176 {
11177 first_error (_("inconsistent types in Neon instruction"));
11178 return badtype;
11179 }
11180 }
11181 }
11182 }
11183 }
11184
11185 return inst.vectype.el[key_el];
11186 }
11187
11188 /* Neon-style VFP instruction forwarding. */
11189
11190 /* Thumb VFP instructions have 0xE in the condition field. */
11191
11192 static void
11193 do_vfp_cond_or_thumb (void)
11194 {
11195 if (thumb_mode)
11196 inst.instruction |= 0xe0000000;
11197 else
11198 inst.instruction |= inst.cond << 28;
11199 }
11200
11201 /* Look up and encode a simple mnemonic, for use as a helper function for the
11202 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
11203 etc. It is assumed that operand parsing has already been done, and that the
11204 operands are in the form expected by the given opcode (this isn't necessarily
11205 the same as the form in which they were parsed, hence some massaging must
11206 take place before this function is called).
11207 Checks current arch version against that in the looked-up opcode. */
11208
11209 static void
11210 do_vfp_nsyn_opcode (const char *opname)
11211 {
11212 const struct asm_opcode *opcode;
11213
11214 opcode = hash_find (arm_ops_hsh, opname);
11215
11216 if (!opcode)
11217 abort ();
11218
11219 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
11220 thumb_mode ? *opcode->tvariant : *opcode->avariant),
11221 _(BAD_FPU));
11222
11223 if (thumb_mode)
11224 {
11225 inst.instruction = opcode->tvalue;
11226 opcode->tencode ();
11227 }
11228 else
11229 {
11230 inst.instruction = (inst.cond << 28) | opcode->avalue;
11231 opcode->aencode ();
11232 }
11233 }
11234
11235 static void
11236 do_vfp_nsyn_add_sub (enum neon_shape rs)
11237 {
11238 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
11239
11240 if (rs == NS_FFF)
11241 {
11242 if (is_add)
11243 do_vfp_nsyn_opcode ("fadds");
11244 else
11245 do_vfp_nsyn_opcode ("fsubs");
11246 }
11247 else
11248 {
11249 if (is_add)
11250 do_vfp_nsyn_opcode ("faddd");
11251 else
11252 do_vfp_nsyn_opcode ("fsubd");
11253 }
11254 }
11255
11256 /* Check operand types to see if this is a VFP instruction, and if so call
11257 PFN (). */
11258
11259 static int
11260 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
11261 {
11262 enum neon_shape rs;
11263 struct neon_type_el et;
11264
11265 switch (args)
11266 {
11267 case 2:
11268 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11269 et = neon_check_type (2, rs,
11270 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11271 break;
11272
11273 case 3:
11274 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11275 et = neon_check_type (3, rs,
11276 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11277 break;
11278
11279 default:
11280 abort ();
11281 }
11282
11283 if (et.type != NT_invtype)
11284 {
11285 pfn (rs);
11286 return SUCCESS;
11287 }
11288 else
11289 inst.error = NULL;
11290
11291 return FAIL;
11292 }
11293
11294 static void
11295 do_vfp_nsyn_mla_mls (enum neon_shape rs)
11296 {
11297 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
11298
11299 if (rs == NS_FFF)
11300 {
11301 if (is_mla)
11302 do_vfp_nsyn_opcode ("fmacs");
11303 else
11304 do_vfp_nsyn_opcode ("fmscs");
11305 }
11306 else
11307 {
11308 if (is_mla)
11309 do_vfp_nsyn_opcode ("fmacd");
11310 else
11311 do_vfp_nsyn_opcode ("fmscd");
11312 }
11313 }
11314
11315 static void
11316 do_vfp_nsyn_mul (enum neon_shape rs)
11317 {
11318 if (rs == NS_FFF)
11319 do_vfp_nsyn_opcode ("fmuls");
11320 else
11321 do_vfp_nsyn_opcode ("fmuld");
11322 }
11323
11324 static void
11325 do_vfp_nsyn_abs_neg (enum neon_shape rs)
11326 {
11327 int is_neg = (inst.instruction & 0x80) != 0;
11328 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
11329
11330 if (rs == NS_FF)
11331 {
11332 if (is_neg)
11333 do_vfp_nsyn_opcode ("fnegs");
11334 else
11335 do_vfp_nsyn_opcode ("fabss");
11336 }
11337 else
11338 {
11339 if (is_neg)
11340 do_vfp_nsyn_opcode ("fnegd");
11341 else
11342 do_vfp_nsyn_opcode ("fabsd");
11343 }
11344 }
11345
11346 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
11347 insns belong to Neon, and are handled elsewhere. */
11348
11349 static void
11350 do_vfp_nsyn_ldm_stm (int is_dbmode)
11351 {
11352 int is_ldm = (inst.instruction & (1 << 20)) != 0;
11353 if (is_ldm)
11354 {
11355 if (is_dbmode)
11356 do_vfp_nsyn_opcode ("fldmdbs");
11357 else
11358 do_vfp_nsyn_opcode ("fldmias");
11359 }
11360 else
11361 {
11362 if (is_dbmode)
11363 do_vfp_nsyn_opcode ("fstmdbs");
11364 else
11365 do_vfp_nsyn_opcode ("fstmias");
11366 }
11367 }
11368
11369 static void
11370 do_vfp_nsyn_sqrt (void)
11371 {
11372 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11373 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11374
11375 if (rs == NS_FF)
11376 do_vfp_nsyn_opcode ("fsqrts");
11377 else
11378 do_vfp_nsyn_opcode ("fsqrtd");
11379 }
11380
11381 static void
11382 do_vfp_nsyn_div (void)
11383 {
11384 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11385 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11386 N_F32 | N_F64 | N_KEY | N_VFP);
11387
11388 if (rs == NS_FFF)
11389 do_vfp_nsyn_opcode ("fdivs");
11390 else
11391 do_vfp_nsyn_opcode ("fdivd");
11392 }
11393
11394 static void
11395 do_vfp_nsyn_nmul (void)
11396 {
11397 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11398 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11399 N_F32 | N_F64 | N_KEY | N_VFP);
11400
11401 if (rs == NS_FFF)
11402 {
11403 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11404 do_vfp_sp_dyadic ();
11405 }
11406 else
11407 {
11408 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11409 do_vfp_dp_rd_rn_rm ();
11410 }
11411 do_vfp_cond_or_thumb ();
11412 }
11413
11414 static void
11415 do_vfp_nsyn_cmp (void)
11416 {
11417 if (inst.operands[1].isreg)
11418 {
11419 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11420 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11421
11422 if (rs == NS_FF)
11423 {
11424 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11425 do_vfp_sp_monadic ();
11426 }
11427 else
11428 {
11429 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11430 do_vfp_dp_rd_rm ();
11431 }
11432 }
11433 else
11434 {
11435 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
11436 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
11437
11438 switch (inst.instruction & 0x0fffffff)
11439 {
11440 case N_MNEM_vcmp:
11441 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
11442 break;
11443 case N_MNEM_vcmpe:
11444 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
11445 break;
11446 default:
11447 abort ();
11448 }
11449
11450 if (rs == NS_FI)
11451 {
11452 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11453 do_vfp_sp_compare_z ();
11454 }
11455 else
11456 {
11457 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11458 do_vfp_dp_rd ();
11459 }
11460 }
11461 do_vfp_cond_or_thumb ();
11462 }
11463
11464 static void
11465 nsyn_insert_sp (void)
11466 {
11467 inst.operands[1] = inst.operands[0];
11468 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
11469 inst.operands[0].reg = 13;
11470 inst.operands[0].isreg = 1;
11471 inst.operands[0].writeback = 1;
11472 inst.operands[0].present = 1;
11473 }
11474
11475 static void
11476 do_vfp_nsyn_push (void)
11477 {
11478 nsyn_insert_sp ();
11479 if (inst.operands[1].issingle)
11480 do_vfp_nsyn_opcode ("fstmdbs");
11481 else
11482 do_vfp_nsyn_opcode ("fstmdbd");
11483 }
11484
11485 static void
11486 do_vfp_nsyn_pop (void)
11487 {
11488 nsyn_insert_sp ();
11489 if (inst.operands[1].issingle)
11490 do_vfp_nsyn_opcode ("fldmias");
11491 else
11492 do_vfp_nsyn_opcode ("fldmiad");
11493 }
11494
11495 /* Fix up Neon data-processing instructions, ORing in the correct bits for
11496 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
11497
11498 static unsigned
11499 neon_dp_fixup (unsigned i)
11500 {
11501 if (thumb_mode)
11502 {
11503 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
11504 if (i & (1 << 24))
11505 i |= 1 << 28;
11506
11507 i &= ~(1 << 24);
11508
11509 i |= 0xef000000;
11510 }
11511 else
11512 i |= 0xf2000000;
11513
11514 return i;
11515 }
11516
11517 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
11518 (0, 1, 2, 3). */
11519
11520 static unsigned
11521 neon_logbits (unsigned x)
11522 {
11523 return ffs (x) - 4;
11524 }
11525
11526 #define LOW4(R) ((R) & 0xf)
11527 #define HI1(R) (((R) >> 4) & 1)
11528
11529 /* Encode insns with bit pattern:
11530
11531 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
11532 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
11533
11534 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
11535 different meaning for some instruction. */
11536
11537 static void
11538 neon_three_same (int isquad, int ubit, int size)
11539 {
11540 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11541 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11542 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
11543 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
11544 inst.instruction |= LOW4 (inst.operands[2].reg);
11545 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
11546 inst.instruction |= (isquad != 0) << 6;
11547 inst.instruction |= (ubit != 0) << 24;
11548 if (size != -1)
11549 inst.instruction |= neon_logbits (size) << 20;
11550
11551 inst.instruction = neon_dp_fixup (inst.instruction);
11552 }
11553
11554 /* Encode instructions of the form:
11555
11556 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
11557 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
11558
11559 Don't write size if SIZE == -1. */
11560
11561 static void
11562 neon_two_same (int qbit, int ubit, int size)
11563 {
11564 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11565 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11566 inst.instruction |= LOW4 (inst.operands[1].reg);
11567 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11568 inst.instruction |= (qbit != 0) << 6;
11569 inst.instruction |= (ubit != 0) << 24;
11570
11571 if (size != -1)
11572 inst.instruction |= neon_logbits (size) << 18;
11573
11574 inst.instruction = neon_dp_fixup (inst.instruction);
11575 }
11576
11577 /* Neon instruction encoders, in approximate order of appearance. */
11578
11579 static void
11580 do_neon_dyadic_i_su (void)
11581 {
11582 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11583 struct neon_type_el et = neon_check_type (3, rs,
11584 N_EQK, N_EQK, N_SU_32 | N_KEY);
11585 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11586 }
11587
11588 static void
11589 do_neon_dyadic_i64_su (void)
11590 {
11591 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11592 struct neon_type_el et = neon_check_type (3, rs,
11593 N_EQK, N_EQK, N_SU_ALL | N_KEY);
11594 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11595 }
11596
11597 static void
11598 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
11599 unsigned immbits)
11600 {
11601 unsigned size = et.size >> 3;
11602 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11603 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11604 inst.instruction |= LOW4 (inst.operands[1].reg);
11605 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11606 inst.instruction |= (isquad != 0) << 6;
11607 inst.instruction |= immbits << 16;
11608 inst.instruction |= (size >> 3) << 7;
11609 inst.instruction |= (size & 0x7) << 19;
11610 if (write_ubit)
11611 inst.instruction |= (uval != 0) << 24;
11612
11613 inst.instruction = neon_dp_fixup (inst.instruction);
11614 }
11615
11616 static void
11617 do_neon_shl_imm (void)
11618 {
11619 if (!inst.operands[2].isreg)
11620 {
11621 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11622 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
11623 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11624 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
11625 }
11626 else
11627 {
11628 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11629 struct neon_type_el et = neon_check_type (3, rs,
11630 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
11631 unsigned int tmp;
11632
11633 /* VSHL/VQSHL 3-register variants have syntax such as:
11634 vshl.xx Dd, Dm, Dn
11635 whereas other 3-register operations encoded by neon_three_same have
11636 syntax like:
11637 vadd.xx Dd, Dn, Dm
11638 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
11639 here. */
11640 tmp = inst.operands[2].reg;
11641 inst.operands[2].reg = inst.operands[1].reg;
11642 inst.operands[1].reg = tmp;
11643 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11644 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11645 }
11646 }
11647
11648 static void
11649 do_neon_qshl_imm (void)
11650 {
11651 if (!inst.operands[2].isreg)
11652 {
11653 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11654 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
11655
11656 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11657 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
11658 inst.operands[2].imm);
11659 }
11660 else
11661 {
11662 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11663 struct neon_type_el et = neon_check_type (3, rs,
11664 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
11665 unsigned int tmp;
11666
11667 /* See note in do_neon_shl_imm. */
11668 tmp = inst.operands[2].reg;
11669 inst.operands[2].reg = inst.operands[1].reg;
11670 inst.operands[1].reg = tmp;
11671 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11672 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11673 }
11674 }
11675
11676 static void
11677 do_neon_rshl (void)
11678 {
11679 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11680 struct neon_type_el et = neon_check_type (3, rs,
11681 N_EQK, N_EQK, N_SU_ALL | N_KEY);
11682 unsigned int tmp;
11683
11684 tmp = inst.operands[2].reg;
11685 inst.operands[2].reg = inst.operands[1].reg;
11686 inst.operands[1].reg = tmp;
11687 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11688 }
11689
11690 static int
11691 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
11692 {
11693 /* Handle .I8 pseudo-instructions. */
11694 if (size == 8)
11695 {
11696 /* Unfortunately, this will make everything apart from zero out-of-range.
11697 FIXME is this the intended semantics? There doesn't seem much point in
11698 accepting .I8 if so. */
11699 immediate |= immediate << 8;
11700 size = 16;
11701 }
11702
11703 if (size >= 32)
11704 {
11705 if (immediate == (immediate & 0x000000ff))
11706 {
11707 *immbits = immediate;
11708 return 0x1;
11709 }
11710 else if (immediate == (immediate & 0x0000ff00))
11711 {
11712 *immbits = immediate >> 8;
11713 return 0x3;
11714 }
11715 else if (immediate == (immediate & 0x00ff0000))
11716 {
11717 *immbits = immediate >> 16;
11718 return 0x5;
11719 }
11720 else if (immediate == (immediate & 0xff000000))
11721 {
11722 *immbits = immediate >> 24;
11723 return 0x7;
11724 }
11725 if ((immediate & 0xffff) != (immediate >> 16))
11726 goto bad_immediate;
11727 immediate &= 0xffff;
11728 }
11729
11730 if (immediate == (immediate & 0x000000ff))
11731 {
11732 *immbits = immediate;
11733 return 0x9;
11734 }
11735 else if (immediate == (immediate & 0x0000ff00))
11736 {
11737 *immbits = immediate >> 8;
11738 return 0xb;
11739 }
11740
11741 bad_immediate:
11742 first_error (_("immediate value out of range"));
11743 return FAIL;
11744 }
11745
11746 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
11747 A, B, C, D. */
11748
11749 static int
11750 neon_bits_same_in_bytes (unsigned imm)
11751 {
11752 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
11753 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
11754 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
11755 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
11756 }
11757
11758 /* For immediate of above form, return 0bABCD. */
11759
11760 static unsigned
11761 neon_squash_bits (unsigned imm)
11762 {
11763 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
11764 | ((imm & 0x01000000) >> 21);
11765 }
11766
11767 /* Compress quarter-float representation to 0b...000 abcdefgh. */
11768
11769 static unsigned
11770 neon_qfloat_bits (unsigned imm)
11771 {
11772 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
11773 }
11774
11775 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
11776 the instruction. *OP is passed as the initial value of the op field, and
11777 may be set to a different value depending on the constant (i.e.
11778 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
11779 MVN). If the immediate looks like a repeated parttern then also
11780 try smaller element sizes. */
11781
11782 static int
11783 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
11784 unsigned *immbits, int *op, int size,
11785 enum neon_el_type type)
11786 {
11787 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
11788 float. */
11789 if (type == NT_float && !float_p)
11790 return FAIL;
11791
11792 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
11793 {
11794 if (size != 32 || *op == 1)
11795 return FAIL;
11796 *immbits = neon_qfloat_bits (immlo);
11797 return 0xf;
11798 }
11799
11800 if (size == 64)
11801 {
11802 if (neon_bits_same_in_bytes (immhi)
11803 && neon_bits_same_in_bytes (immlo))
11804 {
11805 if (*op == 1)
11806 return FAIL;
11807 *immbits = (neon_squash_bits (immhi) << 4)
11808 | neon_squash_bits (immlo);
11809 *op = 1;
11810 return 0xe;
11811 }
11812
11813 if (immhi != immlo)
11814 return FAIL;
11815 }
11816
11817 if (size >= 32)
11818 {
11819 if (immlo == (immlo & 0x000000ff))
11820 {
11821 *immbits = immlo;
11822 return 0x0;
11823 }
11824 else if (immlo == (immlo & 0x0000ff00))
11825 {
11826 *immbits = immlo >> 8;
11827 return 0x2;
11828 }
11829 else if (immlo == (immlo & 0x00ff0000))
11830 {
11831 *immbits = immlo >> 16;
11832 return 0x4;
11833 }
11834 else if (immlo == (immlo & 0xff000000))
11835 {
11836 *immbits = immlo >> 24;
11837 return 0x6;
11838 }
11839 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
11840 {
11841 *immbits = (immlo >> 8) & 0xff;
11842 return 0xc;
11843 }
11844 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
11845 {
11846 *immbits = (immlo >> 16) & 0xff;
11847 return 0xd;
11848 }
11849
11850 if ((immlo & 0xffff) != (immlo >> 16))
11851 return FAIL;
11852 immlo &= 0xffff;
11853 }
11854
11855 if (size >= 16)
11856 {
11857 if (immlo == (immlo & 0x000000ff))
11858 {
11859 *immbits = immlo;
11860 return 0x8;
11861 }
11862 else if (immlo == (immlo & 0x0000ff00))
11863 {
11864 *immbits = immlo >> 8;
11865 return 0xa;
11866 }
11867
11868 if ((immlo & 0xff) != (immlo >> 8))
11869 return FAIL;
11870 immlo &= 0xff;
11871 }
11872
11873 if (immlo == (immlo & 0x000000ff))
11874 {
11875 /* Don't allow MVN with 8-bit immediate. */
11876 if (*op == 1)
11877 return FAIL;
11878 *immbits = immlo;
11879 return 0xe;
11880 }
11881
11882 return FAIL;
11883 }
11884
11885 /* Write immediate bits [7:0] to the following locations:
11886
11887 |28/24|23 19|18 16|15 4|3 0|
11888 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
11889
11890 This function is used by VMOV/VMVN/VORR/VBIC. */
11891
11892 static void
11893 neon_write_immbits (unsigned immbits)
11894 {
11895 inst.instruction |= immbits & 0xf;
11896 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
11897 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
11898 }
11899
11900 /* Invert low-order SIZE bits of XHI:XLO. */
11901
11902 static void
11903 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
11904 {
11905 unsigned immlo = xlo ? *xlo : 0;
11906 unsigned immhi = xhi ? *xhi : 0;
11907
11908 switch (size)
11909 {
11910 case 8:
11911 immlo = (~immlo) & 0xff;
11912 break;
11913
11914 case 16:
11915 immlo = (~immlo) & 0xffff;
11916 break;
11917
11918 case 64:
11919 immhi = (~immhi) & 0xffffffff;
11920 /* fall through. */
11921
11922 case 32:
11923 immlo = (~immlo) & 0xffffffff;
11924 break;
11925
11926 default:
11927 abort ();
11928 }
11929
11930 if (xlo)
11931 *xlo = immlo;
11932
11933 if (xhi)
11934 *xhi = immhi;
11935 }
11936
11937 static void
11938 do_neon_logic (void)
11939 {
11940 if (inst.operands[2].present && inst.operands[2].isreg)
11941 {
11942 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11943 neon_check_type (3, rs, N_IGNORE_TYPE);
11944 /* U bit and size field were set as part of the bitmask. */
11945 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11946 neon_three_same (neon_quad (rs), 0, -1);
11947 }
11948 else
11949 {
11950 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
11951 struct neon_type_el et = neon_check_type (2, rs,
11952 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
11953 enum neon_opc opcode = inst.instruction & 0x0fffffff;
11954 unsigned immbits;
11955 int cmode;
11956
11957 if (et.type == NT_invtype)
11958 return;
11959
11960 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11961
11962 immbits = inst.operands[1].imm;
11963 if (et.size == 64)
11964 {
11965 /* .i64 is a pseudo-op, so the immediate must be a repeating
11966 pattern. */
11967 if (immbits != (inst.operands[1].regisimm ?
11968 inst.operands[1].reg : 0))
11969 {
11970 /* Set immbits to an invalid constant. */
11971 immbits = 0xdeadbeef;
11972 }
11973 }
11974
11975 switch (opcode)
11976 {
11977 case N_MNEM_vbic:
11978 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11979 break;
11980
11981 case N_MNEM_vorr:
11982 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11983 break;
11984
11985 case N_MNEM_vand:
11986 /* Pseudo-instruction for VBIC. */
11987 neon_invert_size (&immbits, 0, et.size);
11988 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11989 break;
11990
11991 case N_MNEM_vorn:
11992 /* Pseudo-instruction for VORR. */
11993 neon_invert_size (&immbits, 0, et.size);
11994 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11995 break;
11996
11997 default:
11998 abort ();
11999 }
12000
12001 if (cmode == FAIL)
12002 return;
12003
12004 inst.instruction |= neon_quad (rs) << 6;
12005 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12006 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12007 inst.instruction |= cmode << 8;
12008 neon_write_immbits (immbits);
12009
12010 inst.instruction = neon_dp_fixup (inst.instruction);
12011 }
12012 }
12013
12014 static void
12015 do_neon_bitfield (void)
12016 {
12017 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12018 neon_check_type (3, rs, N_IGNORE_TYPE);
12019 neon_three_same (neon_quad (rs), 0, -1);
12020 }
12021
12022 static void
12023 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
12024 unsigned destbits)
12025 {
12026 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12027 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
12028 types | N_KEY);
12029 if (et.type == NT_float)
12030 {
12031 inst.instruction = NEON_ENC_FLOAT (inst.instruction);
12032 neon_three_same (neon_quad (rs), 0, -1);
12033 }
12034 else
12035 {
12036 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12037 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
12038 }
12039 }
12040
12041 static void
12042 do_neon_dyadic_if_su (void)
12043 {
12044 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
12045 }
12046
12047 static void
12048 do_neon_dyadic_if_su_d (void)
12049 {
12050 /* This version only allow D registers, but that constraint is enforced during
12051 operand parsing so we don't need to do anything extra here. */
12052 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
12053 }
12054
12055 static void
12056 do_neon_dyadic_if_i_d (void)
12057 {
12058 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12059 affected if we specify unsigned args. */
12060 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
12061 }
12062
12063 enum vfp_or_neon_is_neon_bits
12064 {
12065 NEON_CHECK_CC = 1,
12066 NEON_CHECK_ARCH = 2
12067 };
12068
12069 /* Call this function if an instruction which may have belonged to the VFP or
12070 Neon instruction sets, but turned out to be a Neon instruction (due to the
12071 operand types involved, etc.). We have to check and/or fix-up a couple of
12072 things:
12073
12074 - Make sure the user hasn't attempted to make a Neon instruction
12075 conditional.
12076 - Alter the value in the condition code field if necessary.
12077 - Make sure that the arch supports Neon instructions.
12078
12079 Which of these operations take place depends on bits from enum
12080 vfp_or_neon_is_neon_bits.
12081
12082 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
12083 current instruction's condition is COND_ALWAYS, the condition field is
12084 changed to inst.uncond_value. This is necessary because instructions shared
12085 between VFP and Neon may be conditional for the VFP variants only, and the
12086 unconditional Neon version must have, e.g., 0xF in the condition field. */
12087
12088 static int
12089 vfp_or_neon_is_neon (unsigned check)
12090 {
12091 /* Conditions are always legal in Thumb mode (IT blocks). */
12092 if (!thumb_mode && (check & NEON_CHECK_CC))
12093 {
12094 if (inst.cond != COND_ALWAYS)
12095 {
12096 first_error (_(BAD_COND));
12097 return FAIL;
12098 }
12099 if (inst.uncond_value != -1)
12100 inst.instruction |= inst.uncond_value << 28;
12101 }
12102
12103 if ((check & NEON_CHECK_ARCH)
12104 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
12105 {
12106 first_error (_(BAD_FPU));
12107 return FAIL;
12108 }
12109
12110 return SUCCESS;
12111 }
12112
12113 static void
12114 do_neon_addsub_if_i (void)
12115 {
12116 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
12117 return;
12118
12119 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12120 return;
12121
12122 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12123 affected if we specify unsigned args. */
12124 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
12125 }
12126
12127 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
12128 result to be:
12129 V<op> A,B (A is operand 0, B is operand 2)
12130 to mean:
12131 V<op> A,B,A
12132 not:
12133 V<op> A,B,B
12134 so handle that case specially. */
12135
12136 static void
12137 neon_exchange_operands (void)
12138 {
12139 void *scratch = alloca (sizeof (inst.operands[0]));
12140 if (inst.operands[1].present)
12141 {
12142 /* Swap operands[1] and operands[2]. */
12143 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
12144 inst.operands[1] = inst.operands[2];
12145 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
12146 }
12147 else
12148 {
12149 inst.operands[1] = inst.operands[2];
12150 inst.operands[2] = inst.operands[0];
12151 }
12152 }
12153
12154 static void
12155 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
12156 {
12157 if (inst.operands[2].isreg)
12158 {
12159 if (invert)
12160 neon_exchange_operands ();
12161 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
12162 }
12163 else
12164 {
12165 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12166 struct neon_type_el et = neon_check_type (2, rs,
12167 N_EQK | N_SIZ, immtypes | N_KEY);
12168
12169 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12170 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12171 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12172 inst.instruction |= LOW4 (inst.operands[1].reg);
12173 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12174 inst.instruction |= neon_quad (rs) << 6;
12175 inst.instruction |= (et.type == NT_float) << 10;
12176 inst.instruction |= neon_logbits (et.size) << 18;
12177
12178 inst.instruction = neon_dp_fixup (inst.instruction);
12179 }
12180 }
12181
12182 static void
12183 do_neon_cmp (void)
12184 {
12185 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
12186 }
12187
12188 static void
12189 do_neon_cmp_inv (void)
12190 {
12191 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
12192 }
12193
12194 static void
12195 do_neon_ceq (void)
12196 {
12197 neon_compare (N_IF_32, N_IF_32, FALSE);
12198 }
12199
12200 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
12201 scalars, which are encoded in 5 bits, M : Rm.
12202 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
12203 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
12204 index in M. */
12205
12206 static unsigned
12207 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
12208 {
12209 unsigned regno = NEON_SCALAR_REG (scalar);
12210 unsigned elno = NEON_SCALAR_INDEX (scalar);
12211
12212 switch (elsize)
12213 {
12214 case 16:
12215 if (regno > 7 || elno > 3)
12216 goto bad_scalar;
12217 return regno | (elno << 3);
12218
12219 case 32:
12220 if (regno > 15 || elno > 1)
12221 goto bad_scalar;
12222 return regno | (elno << 4);
12223
12224 default:
12225 bad_scalar:
12226 first_error (_("scalar out of range for multiply instruction"));
12227 }
12228
12229 return 0;
12230 }
12231
12232 /* Encode multiply / multiply-accumulate scalar instructions. */
12233
12234 static void
12235 neon_mul_mac (struct neon_type_el et, int ubit)
12236 {
12237 unsigned scalar;
12238
12239 /* Give a more helpful error message if we have an invalid type. */
12240 if (et.type == NT_invtype)
12241 return;
12242
12243 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
12244 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12245 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12246 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12247 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12248 inst.instruction |= LOW4 (scalar);
12249 inst.instruction |= HI1 (scalar) << 5;
12250 inst.instruction |= (et.type == NT_float) << 8;
12251 inst.instruction |= neon_logbits (et.size) << 20;
12252 inst.instruction |= (ubit != 0) << 24;
12253
12254 inst.instruction = neon_dp_fixup (inst.instruction);
12255 }
12256
12257 static void
12258 do_neon_mac_maybe_scalar (void)
12259 {
12260 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
12261 return;
12262
12263 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12264 return;
12265
12266 if (inst.operands[2].isscalar)
12267 {
12268 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
12269 struct neon_type_el et = neon_check_type (3, rs,
12270 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
12271 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12272 neon_mul_mac (et, neon_quad (rs));
12273 }
12274 else
12275 {
12276 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12277 affected if we specify unsigned args. */
12278 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
12279 }
12280 }
12281
12282 static void
12283 do_neon_tst (void)
12284 {
12285 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12286 struct neon_type_el et = neon_check_type (3, rs,
12287 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
12288 neon_three_same (neon_quad (rs), 0, et.size);
12289 }
12290
12291 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
12292 same types as the MAC equivalents. The polynomial type for this instruction
12293 is encoded the same as the integer type. */
12294
12295 static void
12296 do_neon_mul (void)
12297 {
12298 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
12299 return;
12300
12301 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12302 return;
12303
12304 if (inst.operands[2].isscalar)
12305 do_neon_mac_maybe_scalar ();
12306 else
12307 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
12308 }
12309
12310 static void
12311 do_neon_qdmulh (void)
12312 {
12313 if (inst.operands[2].isscalar)
12314 {
12315 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
12316 struct neon_type_el et = neon_check_type (3, rs,
12317 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12318 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12319 neon_mul_mac (et, neon_quad (rs));
12320 }
12321 else
12322 {
12323 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12324 struct neon_type_el et = neon_check_type (3, rs,
12325 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12326 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12327 /* The U bit (rounding) comes from bit mask. */
12328 neon_three_same (neon_quad (rs), 0, et.size);
12329 }
12330 }
12331
12332 static void
12333 do_neon_fcmp_absolute (void)
12334 {
12335 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12336 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
12337 /* Size field comes from bit mask. */
12338 neon_three_same (neon_quad (rs), 1, -1);
12339 }
12340
12341 static void
12342 do_neon_fcmp_absolute_inv (void)
12343 {
12344 neon_exchange_operands ();
12345 do_neon_fcmp_absolute ();
12346 }
12347
12348 static void
12349 do_neon_step (void)
12350 {
12351 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12352 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
12353 neon_three_same (neon_quad (rs), 0, -1);
12354 }
12355
12356 static void
12357 do_neon_abs_neg (void)
12358 {
12359 enum neon_shape rs;
12360 struct neon_type_el et;
12361
12362 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
12363 return;
12364
12365 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12366 return;
12367
12368 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12369 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
12370
12371 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12372 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12373 inst.instruction |= LOW4 (inst.operands[1].reg);
12374 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12375 inst.instruction |= neon_quad (rs) << 6;
12376 inst.instruction |= (et.type == NT_float) << 10;
12377 inst.instruction |= neon_logbits (et.size) << 18;
12378
12379 inst.instruction = neon_dp_fixup (inst.instruction);
12380 }
12381
12382 static void
12383 do_neon_sli (void)
12384 {
12385 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12386 struct neon_type_el et = neon_check_type (2, rs,
12387 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12388 int imm = inst.operands[2].imm;
12389 constraint (imm < 0 || (unsigned)imm >= et.size,
12390 _("immediate out of range for insert"));
12391 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
12392 }
12393
12394 static void
12395 do_neon_sri (void)
12396 {
12397 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12398 struct neon_type_el et = neon_check_type (2, rs,
12399 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12400 int imm = inst.operands[2].imm;
12401 constraint (imm < 1 || (unsigned)imm > et.size,
12402 _("immediate out of range for insert"));
12403 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
12404 }
12405
12406 static void
12407 do_neon_qshlu_imm (void)
12408 {
12409 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12410 struct neon_type_el et = neon_check_type (2, rs,
12411 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
12412 int imm = inst.operands[2].imm;
12413 constraint (imm < 0 || (unsigned)imm >= et.size,
12414 _("immediate out of range for shift"));
12415 /* Only encodes the 'U present' variant of the instruction.
12416 In this case, signed types have OP (bit 8) set to 0.
12417 Unsigned types have OP set to 1. */
12418 inst.instruction |= (et.type == NT_unsigned) << 8;
12419 /* The rest of the bits are the same as other immediate shifts. */
12420 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
12421 }
12422
12423 static void
12424 do_neon_qmovn (void)
12425 {
12426 struct neon_type_el et = neon_check_type (2, NS_DQ,
12427 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12428 /* Saturating move where operands can be signed or unsigned, and the
12429 destination has the same signedness. */
12430 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12431 if (et.type == NT_unsigned)
12432 inst.instruction |= 0xc0;
12433 else
12434 inst.instruction |= 0x80;
12435 neon_two_same (0, 1, et.size / 2);
12436 }
12437
12438 static void
12439 do_neon_qmovun (void)
12440 {
12441 struct neon_type_el et = neon_check_type (2, NS_DQ,
12442 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12443 /* Saturating move with unsigned results. Operands must be signed. */
12444 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12445 neon_two_same (0, 1, et.size / 2);
12446 }
12447
12448 static void
12449 do_neon_rshift_sat_narrow (void)
12450 {
12451 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12452 or unsigned. If operands are unsigned, results must also be unsigned. */
12453 struct neon_type_el et = neon_check_type (2, NS_DQI,
12454 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12455 int imm = inst.operands[2].imm;
12456 /* This gets the bounds check, size encoding and immediate bits calculation
12457 right. */
12458 et.size /= 2;
12459
12460 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
12461 VQMOVN.I<size> <Dd>, <Qm>. */
12462 if (imm == 0)
12463 {
12464 inst.operands[2].present = 0;
12465 inst.instruction = N_MNEM_vqmovn;
12466 do_neon_qmovn ();
12467 return;
12468 }
12469
12470 constraint (imm < 1 || (unsigned)imm > et.size,
12471 _("immediate out of range"));
12472 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
12473 }
12474
12475 static void
12476 do_neon_rshift_sat_narrow_u (void)
12477 {
12478 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12479 or unsigned. If operands are unsigned, results must also be unsigned. */
12480 struct neon_type_el et = neon_check_type (2, NS_DQI,
12481 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12482 int imm = inst.operands[2].imm;
12483 /* This gets the bounds check, size encoding and immediate bits calculation
12484 right. */
12485 et.size /= 2;
12486
12487 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
12488 VQMOVUN.I<size> <Dd>, <Qm>. */
12489 if (imm == 0)
12490 {
12491 inst.operands[2].present = 0;
12492 inst.instruction = N_MNEM_vqmovun;
12493 do_neon_qmovun ();
12494 return;
12495 }
12496
12497 constraint (imm < 1 || (unsigned)imm > et.size,
12498 _("immediate out of range"));
12499 /* FIXME: The manual is kind of unclear about what value U should have in
12500 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
12501 must be 1. */
12502 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
12503 }
12504
12505 static void
12506 do_neon_movn (void)
12507 {
12508 struct neon_type_el et = neon_check_type (2, NS_DQ,
12509 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12510 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12511 neon_two_same (0, 1, et.size / 2);
12512 }
12513
12514 static void
12515 do_neon_rshift_narrow (void)
12516 {
12517 struct neon_type_el et = neon_check_type (2, NS_DQI,
12518 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12519 int imm = inst.operands[2].imm;
12520 /* This gets the bounds check, size encoding and immediate bits calculation
12521 right. */
12522 et.size /= 2;
12523
12524 /* If immediate is zero then we are a pseudo-instruction for
12525 VMOVN.I<size> <Dd>, <Qm> */
12526 if (imm == 0)
12527 {
12528 inst.operands[2].present = 0;
12529 inst.instruction = N_MNEM_vmovn;
12530 do_neon_movn ();
12531 return;
12532 }
12533
12534 constraint (imm < 1 || (unsigned)imm > et.size,
12535 _("immediate out of range for narrowing operation"));
12536 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
12537 }
12538
12539 static void
12540 do_neon_shll (void)
12541 {
12542 /* FIXME: Type checking when lengthening. */
12543 struct neon_type_el et = neon_check_type (2, NS_QDI,
12544 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
12545 unsigned imm = inst.operands[2].imm;
12546
12547 if (imm == et.size)
12548 {
12549 /* Maximum shift variant. */
12550 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12551 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12552 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12553 inst.instruction |= LOW4 (inst.operands[1].reg);
12554 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12555 inst.instruction |= neon_logbits (et.size) << 18;
12556
12557 inst.instruction = neon_dp_fixup (inst.instruction);
12558 }
12559 else
12560 {
12561 /* A more-specific type check for non-max versions. */
12562 et = neon_check_type (2, NS_QDI,
12563 N_EQK | N_DBL, N_SU_32 | N_KEY);
12564 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12565 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
12566 }
12567 }
12568
12569 /* Check the various types for the VCVT instruction, and return which version
12570 the current instruction is. */
12571
12572 static int
12573 neon_cvt_flavour (enum neon_shape rs)
12574 {
12575 #define CVT_VAR(C,X,Y) \
12576 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
12577 if (et.type != NT_invtype) \
12578 { \
12579 inst.error = NULL; \
12580 return (C); \
12581 }
12582 struct neon_type_el et;
12583 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
12584 || rs == NS_FF) ? N_VFP : 0;
12585 /* The instruction versions which take an immediate take one register
12586 argument, which is extended to the width of the full register. Thus the
12587 "source" and "destination" registers must have the same width. Hack that
12588 here by making the size equal to the key (wider, in this case) operand. */
12589 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
12590
12591 CVT_VAR (0, N_S32, N_F32);
12592 CVT_VAR (1, N_U32, N_F32);
12593 CVT_VAR (2, N_F32, N_S32);
12594 CVT_VAR (3, N_F32, N_U32);
12595
12596 whole_reg = N_VFP;
12597
12598 /* VFP instructions. */
12599 CVT_VAR (4, N_F32, N_F64);
12600 CVT_VAR (5, N_F64, N_F32);
12601 CVT_VAR (6, N_S32, N_F64 | key);
12602 CVT_VAR (7, N_U32, N_F64 | key);
12603 CVT_VAR (8, N_F64 | key, N_S32);
12604 CVT_VAR (9, N_F64 | key, N_U32);
12605 /* VFP instructions with bitshift. */
12606 CVT_VAR (10, N_F32 | key, N_S16);
12607 CVT_VAR (11, N_F32 | key, N_U16);
12608 CVT_VAR (12, N_F64 | key, N_S16);
12609 CVT_VAR (13, N_F64 | key, N_U16);
12610 CVT_VAR (14, N_S16, N_F32 | key);
12611 CVT_VAR (15, N_U16, N_F32 | key);
12612 CVT_VAR (16, N_S16, N_F64 | key);
12613 CVT_VAR (17, N_U16, N_F64 | key);
12614
12615 return -1;
12616 #undef CVT_VAR
12617 }
12618
12619 /* Neon-syntax VFP conversions. */
12620
12621 static void
12622 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
12623 {
12624 const char *opname = 0;
12625
12626 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
12627 {
12628 /* Conversions with immediate bitshift. */
12629 const char *enc[] =
12630 {
12631 "ftosls",
12632 "ftouls",
12633 "fsltos",
12634 "fultos",
12635 NULL,
12636 NULL,
12637 "ftosld",
12638 "ftould",
12639 "fsltod",
12640 "fultod",
12641 "fshtos",
12642 "fuhtos",
12643 "fshtod",
12644 "fuhtod",
12645 "ftoshs",
12646 "ftouhs",
12647 "ftoshd",
12648 "ftouhd"
12649 };
12650
12651 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12652 {
12653 opname = enc[flavour];
12654 constraint (inst.operands[0].reg != inst.operands[1].reg,
12655 _("operands 0 and 1 must be the same register"));
12656 inst.operands[1] = inst.operands[2];
12657 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
12658 }
12659 }
12660 else
12661 {
12662 /* Conversions without bitshift. */
12663 const char *enc[] =
12664 {
12665 "ftosis",
12666 "ftouis",
12667 "fsitos",
12668 "fuitos",
12669 "fcvtsd",
12670 "fcvtds",
12671 "ftosid",
12672 "ftouid",
12673 "fsitod",
12674 "fuitod"
12675 };
12676
12677 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12678 opname = enc[flavour];
12679 }
12680
12681 if (opname)
12682 do_vfp_nsyn_opcode (opname);
12683 }
12684
12685 static void
12686 do_vfp_nsyn_cvtz (void)
12687 {
12688 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
12689 int flavour = neon_cvt_flavour (rs);
12690 const char *enc[] =
12691 {
12692 "ftosizs",
12693 "ftouizs",
12694 NULL,
12695 NULL,
12696 NULL,
12697 NULL,
12698 "ftosizd",
12699 "ftouizd"
12700 };
12701
12702 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
12703 do_vfp_nsyn_opcode (enc[flavour]);
12704 }
12705
12706 static void
12707 do_neon_cvt (void)
12708 {
12709 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
12710 NS_FD, NS_DF, NS_FF, NS_NULL);
12711 int flavour = neon_cvt_flavour (rs);
12712
12713 /* VFP rather than Neon conversions. */
12714 if (flavour >= 4)
12715 {
12716 do_vfp_nsyn_cvt (rs, flavour);
12717 return;
12718 }
12719
12720 switch (rs)
12721 {
12722 case NS_DDI:
12723 case NS_QQI:
12724 {
12725 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12726 return;
12727
12728 /* Fixed-point conversion with #0 immediate is encoded as an
12729 integer conversion. */
12730 if (inst.operands[2].present && inst.operands[2].imm == 0)
12731 goto int_encode;
12732 unsigned immbits = 32 - inst.operands[2].imm;
12733 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
12734 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12735 if (flavour != -1)
12736 inst.instruction |= enctab[flavour];
12737 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12738 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12739 inst.instruction |= LOW4 (inst.operands[1].reg);
12740 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12741 inst.instruction |= neon_quad (rs) << 6;
12742 inst.instruction |= 1 << 21;
12743 inst.instruction |= immbits << 16;
12744
12745 inst.instruction = neon_dp_fixup (inst.instruction);
12746 }
12747 break;
12748
12749 case NS_DD:
12750 case NS_QQ:
12751 int_encode:
12752 {
12753 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
12754
12755 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12756
12757 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12758 return;
12759
12760 if (flavour != -1)
12761 inst.instruction |= enctab[flavour];
12762
12763 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12764 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12765 inst.instruction |= LOW4 (inst.operands[1].reg);
12766 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12767 inst.instruction |= neon_quad (rs) << 6;
12768 inst.instruction |= 2 << 18;
12769
12770 inst.instruction = neon_dp_fixup (inst.instruction);
12771 }
12772 break;
12773
12774 default:
12775 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
12776 do_vfp_nsyn_cvt (rs, flavour);
12777 }
12778 }
12779
12780 static void
12781 neon_move_immediate (void)
12782 {
12783 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
12784 struct neon_type_el et = neon_check_type (2, rs,
12785 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
12786 unsigned immlo, immhi = 0, immbits;
12787 int op, cmode, float_p;
12788
12789 constraint (et.type == NT_invtype,
12790 _("operand size must be specified for immediate VMOV"));
12791
12792 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
12793 op = (inst.instruction & (1 << 5)) != 0;
12794
12795 immlo = inst.operands[1].imm;
12796 if (inst.operands[1].regisimm)
12797 immhi = inst.operands[1].reg;
12798
12799 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
12800 _("immediate has bits set outside the operand size"));
12801
12802 float_p = inst.operands[1].immisfloat;
12803
12804 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
12805 et.size, et.type)) == FAIL)
12806 {
12807 /* Invert relevant bits only. */
12808 neon_invert_size (&immlo, &immhi, et.size);
12809 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
12810 with one or the other; those cases are caught by
12811 neon_cmode_for_move_imm. */
12812 op = !op;
12813 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
12814 &op, et.size, et.type)) == FAIL)
12815 {
12816 first_error (_("immediate out of range"));
12817 return;
12818 }
12819 }
12820
12821 inst.instruction &= ~(1 << 5);
12822 inst.instruction |= op << 5;
12823
12824 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12825 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12826 inst.instruction |= neon_quad (rs) << 6;
12827 inst.instruction |= cmode << 8;
12828
12829 neon_write_immbits (immbits);
12830 }
12831
12832 static void
12833 do_neon_mvn (void)
12834 {
12835 if (inst.operands[1].isreg)
12836 {
12837 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12838
12839 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12840 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12841 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12842 inst.instruction |= LOW4 (inst.operands[1].reg);
12843 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12844 inst.instruction |= neon_quad (rs) << 6;
12845 }
12846 else
12847 {
12848 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12849 neon_move_immediate ();
12850 }
12851
12852 inst.instruction = neon_dp_fixup (inst.instruction);
12853 }
12854
12855 /* Encode instructions of form:
12856
12857 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12858 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm |
12859
12860 */
12861
12862 static void
12863 neon_mixed_length (struct neon_type_el et, unsigned size)
12864 {
12865 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12866 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12867 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12868 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12869 inst.instruction |= LOW4 (inst.operands[2].reg);
12870 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12871 inst.instruction |= (et.type == NT_unsigned) << 24;
12872 inst.instruction |= neon_logbits (size) << 20;
12873
12874 inst.instruction = neon_dp_fixup (inst.instruction);
12875 }
12876
12877 static void
12878 do_neon_dyadic_long (void)
12879 {
12880 /* FIXME: Type checking for lengthening op. */
12881 struct neon_type_el et = neon_check_type (3, NS_QDD,
12882 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
12883 neon_mixed_length (et, et.size);
12884 }
12885
12886 static void
12887 do_neon_abal (void)
12888 {
12889 struct neon_type_el et = neon_check_type (3, NS_QDD,
12890 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
12891 neon_mixed_length (et, et.size);
12892 }
12893
12894 static void
12895 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
12896 {
12897 if (inst.operands[2].isscalar)
12898 {
12899 struct neon_type_el et = neon_check_type (3, NS_QDS,
12900 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
12901 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12902 neon_mul_mac (et, et.type == NT_unsigned);
12903 }
12904 else
12905 {
12906 struct neon_type_el et = neon_check_type (3, NS_QDD,
12907 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
12908 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12909 neon_mixed_length (et, et.size);
12910 }
12911 }
12912
12913 static void
12914 do_neon_mac_maybe_scalar_long (void)
12915 {
12916 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
12917 }
12918
12919 static void
12920 do_neon_dyadic_wide (void)
12921 {
12922 struct neon_type_el et = neon_check_type (3, NS_QQD,
12923 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
12924 neon_mixed_length (et, et.size);
12925 }
12926
12927 static void
12928 do_neon_dyadic_narrow (void)
12929 {
12930 struct neon_type_el et = neon_check_type (3, NS_QDD,
12931 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
12932 /* Operand sign is unimportant, and the U bit is part of the opcode,
12933 so force the operand type to integer. */
12934 et.type = NT_integer;
12935 neon_mixed_length (et, et.size / 2);
12936 }
12937
12938 static void
12939 do_neon_mul_sat_scalar_long (void)
12940 {
12941 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
12942 }
12943
12944 static void
12945 do_neon_vmull (void)
12946 {
12947 if (inst.operands[2].isscalar)
12948 do_neon_mac_maybe_scalar_long ();
12949 else
12950 {
12951 struct neon_type_el et = neon_check_type (3, NS_QDD,
12952 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
12953 if (et.type == NT_poly)
12954 inst.instruction = NEON_ENC_POLY (inst.instruction);
12955 else
12956 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12957 /* For polynomial encoding, size field must be 0b00 and the U bit must be
12958 zero. Should be OK as-is. */
12959 neon_mixed_length (et, et.size);
12960 }
12961 }
12962
12963 static void
12964 do_neon_ext (void)
12965 {
12966 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
12967 struct neon_type_el et = neon_check_type (3, rs,
12968 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12969 unsigned imm = (inst.operands[3].imm * et.size) / 8;
12970 constraint (imm >= (neon_quad (rs) ? 16 : 8), _("shift out of range"));
12971 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12972 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12973 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12974 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12975 inst.instruction |= LOW4 (inst.operands[2].reg);
12976 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12977 inst.instruction |= neon_quad (rs) << 6;
12978 inst.instruction |= imm << 8;
12979
12980 inst.instruction = neon_dp_fixup (inst.instruction);
12981 }
12982
12983 static void
12984 do_neon_rev (void)
12985 {
12986 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12987 struct neon_type_el et = neon_check_type (2, rs,
12988 N_EQK, N_8 | N_16 | N_32 | N_KEY);
12989 unsigned op = (inst.instruction >> 7) & 3;
12990 /* N (width of reversed regions) is encoded as part of the bitmask. We
12991 extract it here to check the elements to be reversed are smaller.
12992 Otherwise we'd get a reserved instruction. */
12993 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
12994 assert (elsize != 0);
12995 constraint (et.size >= elsize,
12996 _("elements must be smaller than reversal region"));
12997 neon_two_same (neon_quad (rs), 1, et.size);
12998 }
12999
13000 static void
13001 do_neon_dup (void)
13002 {
13003 if (inst.operands[1].isscalar)
13004 {
13005 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
13006 struct neon_type_el et = neon_check_type (2, rs,
13007 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13008 unsigned sizebits = et.size >> 3;
13009 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
13010 int logsize = neon_logbits (et.size);
13011 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
13012
13013 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
13014 return;
13015
13016 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13017 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13018 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13019 inst.instruction |= LOW4 (dm);
13020 inst.instruction |= HI1 (dm) << 5;
13021 inst.instruction |= neon_quad (rs) << 6;
13022 inst.instruction |= x << 17;
13023 inst.instruction |= sizebits << 16;
13024
13025 inst.instruction = neon_dp_fixup (inst.instruction);
13026 }
13027 else
13028 {
13029 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
13030 struct neon_type_el et = neon_check_type (2, rs,
13031 N_8 | N_16 | N_32 | N_KEY, N_EQK);
13032 /* Duplicate ARM register to lanes of vector. */
13033 inst.instruction = NEON_ENC_ARMREG (inst.instruction);
13034 switch (et.size)
13035 {
13036 case 8: inst.instruction |= 0x400000; break;
13037 case 16: inst.instruction |= 0x000020; break;
13038 case 32: inst.instruction |= 0x000000; break;
13039 default: break;
13040 }
13041 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13042 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
13043 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
13044 inst.instruction |= neon_quad (rs) << 21;
13045 /* The encoding for this instruction is identical for the ARM and Thumb
13046 variants, except for the condition field. */
13047 do_vfp_cond_or_thumb ();
13048 }
13049 }
13050
13051 /* VMOV has particularly many variations. It can be one of:
13052 0. VMOV<c><q> <Qd>, <Qm>
13053 1. VMOV<c><q> <Dd>, <Dm>
13054 (Register operations, which are VORR with Rm = Rn.)
13055 2. VMOV<c><q>.<dt> <Qd>, #<imm>
13056 3. VMOV<c><q>.<dt> <Dd>, #<imm>
13057 (Immediate loads.)
13058 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
13059 (ARM register to scalar.)
13060 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
13061 (Two ARM registers to vector.)
13062 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
13063 (Scalar to ARM register.)
13064 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
13065 (Vector to two ARM registers.)
13066 8. VMOV.F32 <Sd>, <Sm>
13067 9. VMOV.F64 <Dd>, <Dm>
13068 (VFP register moves.)
13069 10. VMOV.F32 <Sd>, #imm
13070 11. VMOV.F64 <Dd>, #imm
13071 (VFP float immediate load.)
13072 12. VMOV <Rd>, <Sm>
13073 (VFP single to ARM reg.)
13074 13. VMOV <Sd>, <Rm>
13075 (ARM reg to VFP single.)
13076 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
13077 (Two ARM regs to two VFP singles.)
13078 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
13079 (Two VFP singles to two ARM regs.)
13080
13081 These cases can be disambiguated using neon_select_shape, except cases 1/9
13082 and 3/11 which depend on the operand type too.
13083
13084 All the encoded bits are hardcoded by this function.
13085
13086 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
13087 Cases 5, 7 may be used with VFPv2 and above.
13088
13089 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
13090 can specify a type where it doesn't make sense to, and is ignored).
13091 */
13092
13093 static void
13094 do_neon_mov (void)
13095 {
13096 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
13097 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
13098 NS_NULL);
13099 struct neon_type_el et;
13100 const char *ldconst = 0;
13101
13102 switch (rs)
13103 {
13104 case NS_DD: /* case 1/9. */
13105 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13106 /* It is not an error here if no type is given. */
13107 inst.error = NULL;
13108 if (et.type == NT_float && et.size == 64)
13109 {
13110 do_vfp_nsyn_opcode ("fcpyd");
13111 break;
13112 }
13113 /* fall through. */
13114
13115 case NS_QQ: /* case 0/1. */
13116 {
13117 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13118 return;
13119 /* The architecture manual I have doesn't explicitly state which
13120 value the U bit should have for register->register moves, but
13121 the equivalent VORR instruction has U = 0, so do that. */
13122 inst.instruction = 0x0200110;
13123 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13124 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13125 inst.instruction |= LOW4 (inst.operands[1].reg);
13126 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13127 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13128 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13129 inst.instruction |= neon_quad (rs) << 6;
13130
13131 inst.instruction = neon_dp_fixup (inst.instruction);
13132 }
13133 break;
13134
13135 case NS_DI: /* case 3/11. */
13136 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13137 inst.error = NULL;
13138 if (et.type == NT_float && et.size == 64)
13139 {
13140 /* case 11 (fconstd). */
13141 ldconst = "fconstd";
13142 goto encode_fconstd;
13143 }
13144 /* fall through. */
13145
13146 case NS_QI: /* case 2/3. */
13147 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13148 return;
13149 inst.instruction = 0x0800010;
13150 neon_move_immediate ();
13151 inst.instruction = neon_dp_fixup (inst.instruction);
13152 break;
13153
13154 case NS_SR: /* case 4. */
13155 {
13156 unsigned bcdebits = 0;
13157 struct neon_type_el et = neon_check_type (2, NS_NULL,
13158 N_8 | N_16 | N_32 | N_KEY, N_EQK);
13159 int logsize = neon_logbits (et.size);
13160 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
13161 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
13162
13163 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13164 _(BAD_FPU));
13165 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13166 && et.size != 32, _(BAD_FPU));
13167 constraint (et.type == NT_invtype, _("bad type for scalar"));
13168 constraint (x >= 64 / et.size, _("scalar index out of range"));
13169
13170 switch (et.size)
13171 {
13172 case 8: bcdebits = 0x8; break;
13173 case 16: bcdebits = 0x1; break;
13174 case 32: bcdebits = 0x0; break;
13175 default: ;
13176 }
13177
13178 bcdebits |= x << logsize;
13179
13180 inst.instruction = 0xe000b10;
13181 do_vfp_cond_or_thumb ();
13182 inst.instruction |= LOW4 (dn) << 16;
13183 inst.instruction |= HI1 (dn) << 7;
13184 inst.instruction |= inst.operands[1].reg << 12;
13185 inst.instruction |= (bcdebits & 3) << 5;
13186 inst.instruction |= (bcdebits >> 2) << 21;
13187 }
13188 break;
13189
13190 case NS_DRR: /* case 5 (fmdrr). */
13191 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
13192 _(BAD_FPU));
13193
13194 inst.instruction = 0xc400b10;
13195 do_vfp_cond_or_thumb ();
13196 inst.instruction |= LOW4 (inst.operands[0].reg);
13197 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
13198 inst.instruction |= inst.operands[1].reg << 12;
13199 inst.instruction |= inst.operands[2].reg << 16;
13200 break;
13201
13202 case NS_RS: /* case 6. */
13203 {
13204 struct neon_type_el et = neon_check_type (2, NS_NULL,
13205 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
13206 unsigned logsize = neon_logbits (et.size);
13207 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
13208 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
13209 unsigned abcdebits = 0;
13210
13211 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13212 _(BAD_FPU));
13213 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13214 && et.size != 32, _(BAD_FPU));
13215 constraint (et.type == NT_invtype, _("bad type for scalar"));
13216 constraint (x >= 64 / et.size, _("scalar index out of range"));
13217
13218 switch (et.size)
13219 {
13220 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
13221 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
13222 case 32: abcdebits = 0x00; break;
13223 default: ;
13224 }
13225
13226 abcdebits |= x << logsize;
13227 inst.instruction = 0xe100b10;
13228 do_vfp_cond_or_thumb ();
13229 inst.instruction |= LOW4 (dn) << 16;
13230 inst.instruction |= HI1 (dn) << 7;
13231 inst.instruction |= inst.operands[0].reg << 12;
13232 inst.instruction |= (abcdebits & 3) << 5;
13233 inst.instruction |= (abcdebits >> 2) << 21;
13234 }
13235 break;
13236
13237 case NS_RRD: /* case 7 (fmrrd). */
13238 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
13239 _(BAD_FPU));
13240
13241 inst.instruction = 0xc500b10;
13242 do_vfp_cond_or_thumb ();
13243 inst.instruction |= inst.operands[0].reg << 12;
13244 inst.instruction |= inst.operands[1].reg << 16;
13245 inst.instruction |= LOW4 (inst.operands[2].reg);
13246 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13247 break;
13248
13249 case NS_FF: /* case 8 (fcpys). */
13250 do_vfp_nsyn_opcode ("fcpys");
13251 break;
13252
13253 case NS_FI: /* case 10 (fconsts). */
13254 ldconst = "fconsts";
13255 encode_fconstd:
13256 if (is_quarter_float (inst.operands[1].imm))
13257 {
13258 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
13259 do_vfp_nsyn_opcode (ldconst);
13260 }
13261 else
13262 first_error (_("immediate out of range"));
13263 break;
13264
13265 case NS_RF: /* case 12 (fmrs). */
13266 do_vfp_nsyn_opcode ("fmrs");
13267 break;
13268
13269 case NS_FR: /* case 13 (fmsr). */
13270 do_vfp_nsyn_opcode ("fmsr");
13271 break;
13272
13273 /* The encoders for the fmrrs and fmsrr instructions expect three operands
13274 (one of which is a list), but we have parsed four. Do some fiddling to
13275 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
13276 expect. */
13277 case NS_RRFF: /* case 14 (fmrrs). */
13278 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
13279 _("VFP registers must be adjacent"));
13280 inst.operands[2].imm = 2;
13281 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13282 do_vfp_nsyn_opcode ("fmrrs");
13283 break;
13284
13285 case NS_FFRR: /* case 15 (fmsrr). */
13286 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
13287 _("VFP registers must be adjacent"));
13288 inst.operands[1] = inst.operands[2];
13289 inst.operands[2] = inst.operands[3];
13290 inst.operands[0].imm = 2;
13291 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13292 do_vfp_nsyn_opcode ("fmsrr");
13293 break;
13294
13295 default:
13296 abort ();
13297 }
13298 }
13299
13300 static void
13301 do_neon_rshift_round_imm (void)
13302 {
13303 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13304 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13305 int imm = inst.operands[2].imm;
13306
13307 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
13308 if (imm == 0)
13309 {
13310 inst.operands[2].present = 0;
13311 do_neon_mov ();
13312 return;
13313 }
13314
13315 constraint (imm < 1 || (unsigned)imm > et.size,
13316 _("immediate out of range for shift"));
13317 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
13318 et.size - imm);
13319 }
13320
13321 static void
13322 do_neon_movl (void)
13323 {
13324 struct neon_type_el et = neon_check_type (2, NS_QD,
13325 N_EQK | N_DBL, N_SU_32 | N_KEY);
13326 unsigned sizebits = et.size >> 3;
13327 inst.instruction |= sizebits << 19;
13328 neon_two_same (0, et.type == NT_unsigned, -1);
13329 }
13330
13331 static void
13332 do_neon_trn (void)
13333 {
13334 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13335 struct neon_type_el et = neon_check_type (2, rs,
13336 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13337 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13338 neon_two_same (neon_quad (rs), 1, et.size);
13339 }
13340
13341 static void
13342 do_neon_zip_uzp (void)
13343 {
13344 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13345 struct neon_type_el et = neon_check_type (2, rs,
13346 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13347 if (rs == NS_DD && et.size == 32)
13348 {
13349 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
13350 inst.instruction = N_MNEM_vtrn;
13351 do_neon_trn ();
13352 return;
13353 }
13354 neon_two_same (neon_quad (rs), 1, et.size);
13355 }
13356
13357 static void
13358 do_neon_sat_abs_neg (void)
13359 {
13360 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13361 struct neon_type_el et = neon_check_type (2, rs,
13362 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
13363 neon_two_same (neon_quad (rs), 1, et.size);
13364 }
13365
13366 static void
13367 do_neon_pair_long (void)
13368 {
13369 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13370 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
13371 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
13372 inst.instruction |= (et.type == NT_unsigned) << 7;
13373 neon_two_same (neon_quad (rs), 1, et.size);
13374 }
13375
13376 static void
13377 do_neon_recip_est (void)
13378 {
13379 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13380 struct neon_type_el et = neon_check_type (2, rs,
13381 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
13382 inst.instruction |= (et.type == NT_float) << 8;
13383 neon_two_same (neon_quad (rs), 1, et.size);
13384 }
13385
13386 static void
13387 do_neon_cls (void)
13388 {
13389 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13390 struct neon_type_el et = neon_check_type (2, rs,
13391 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
13392 neon_two_same (neon_quad (rs), 1, et.size);
13393 }
13394
13395 static void
13396 do_neon_clz (void)
13397 {
13398 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13399 struct neon_type_el et = neon_check_type (2, rs,
13400 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
13401 neon_two_same (neon_quad (rs), 1, et.size);
13402 }
13403
13404 static void
13405 do_neon_cnt (void)
13406 {
13407 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13408 struct neon_type_el et = neon_check_type (2, rs,
13409 N_EQK | N_INT, N_8 | N_KEY);
13410 neon_two_same (neon_quad (rs), 1, et.size);
13411 }
13412
13413 static void
13414 do_neon_swp (void)
13415 {
13416 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13417 neon_two_same (neon_quad (rs), 1, -1);
13418 }
13419
13420 static void
13421 do_neon_tbl_tbx (void)
13422 {
13423 unsigned listlenbits;
13424 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
13425
13426 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
13427 {
13428 first_error (_("bad list length for table lookup"));
13429 return;
13430 }
13431
13432 listlenbits = inst.operands[1].imm - 1;
13433 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13434 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13435 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13436 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13437 inst.instruction |= LOW4 (inst.operands[2].reg);
13438 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13439 inst.instruction |= listlenbits << 8;
13440
13441 inst.instruction = neon_dp_fixup (inst.instruction);
13442 }
13443
13444 static void
13445 do_neon_ldm_stm (void)
13446 {
13447 /* P, U and L bits are part of bitmask. */
13448 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
13449 unsigned offsetbits = inst.operands[1].imm * 2;
13450
13451 if (inst.operands[1].issingle)
13452 {
13453 do_vfp_nsyn_ldm_stm (is_dbmode);
13454 return;
13455 }
13456
13457 constraint (is_dbmode && !inst.operands[0].writeback,
13458 _("writeback (!) must be used for VLDMDB and VSTMDB"));
13459
13460 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
13461 _("register list must contain at least 1 and at most 16 "
13462 "registers"));
13463
13464 inst.instruction |= inst.operands[0].reg << 16;
13465 inst.instruction |= inst.operands[0].writeback << 21;
13466 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13467 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
13468
13469 inst.instruction |= offsetbits;
13470
13471 do_vfp_cond_or_thumb ();
13472 }
13473
13474 static void
13475 do_neon_ldr_str (void)
13476 {
13477 int is_ldr = (inst.instruction & (1 << 20)) != 0;
13478
13479 if (inst.operands[0].issingle)
13480 {
13481 if (is_ldr)
13482 do_vfp_nsyn_opcode ("flds");
13483 else
13484 do_vfp_nsyn_opcode ("fsts");
13485 }
13486 else
13487 {
13488 if (is_ldr)
13489 do_vfp_nsyn_opcode ("fldd");
13490 else
13491 do_vfp_nsyn_opcode ("fstd");
13492 }
13493 }
13494
13495 /* "interleave" version also handles non-interleaving register VLD1/VST1
13496 instructions. */
13497
13498 static void
13499 do_neon_ld_st_interleave (void)
13500 {
13501 struct neon_type_el et = neon_check_type (1, NS_NULL,
13502 N_8 | N_16 | N_32 | N_64);
13503 unsigned alignbits = 0;
13504 unsigned idx;
13505 /* The bits in this table go:
13506 0: register stride of one (0) or two (1)
13507 1,2: register list length, minus one (1, 2, 3, 4).
13508 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
13509 We use -1 for invalid entries. */
13510 const int typetable[] =
13511 {
13512 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
13513 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
13514 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
13515 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
13516 };
13517 int typebits;
13518
13519 if (et.type == NT_invtype)
13520 return;
13521
13522 if (inst.operands[1].immisalign)
13523 switch (inst.operands[1].imm >> 8)
13524 {
13525 case 64: alignbits = 1; break;
13526 case 128:
13527 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13528 goto bad_alignment;
13529 alignbits = 2;
13530 break;
13531 case 256:
13532 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13533 goto bad_alignment;
13534 alignbits = 3;
13535 break;
13536 default:
13537 bad_alignment:
13538 first_error (_("bad alignment"));
13539 return;
13540 }
13541
13542 inst.instruction |= alignbits << 4;
13543 inst.instruction |= neon_logbits (et.size) << 6;
13544
13545 /* Bits [4:6] of the immediate in a list specifier encode register stride
13546 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
13547 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
13548 up the right value for "type" in a table based on this value and the given
13549 list style, then stick it back. */
13550 idx = ((inst.operands[0].imm >> 4) & 7)
13551 | (((inst.instruction >> 8) & 3) << 3);
13552
13553 typebits = typetable[idx];
13554
13555 constraint (typebits == -1, _("bad list type for instruction"));
13556
13557 inst.instruction &= ~0xf00;
13558 inst.instruction |= typebits << 8;
13559 }
13560
13561 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
13562 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
13563 otherwise. The variable arguments are a list of pairs of legal (size, align)
13564 values, terminated with -1. */
13565
13566 static int
13567 neon_alignment_bit (int size, int align, int *do_align, ...)
13568 {
13569 va_list ap;
13570 int result = FAIL, thissize, thisalign;
13571
13572 if (!inst.operands[1].immisalign)
13573 {
13574 *do_align = 0;
13575 return SUCCESS;
13576 }
13577
13578 va_start (ap, do_align);
13579
13580 do
13581 {
13582 thissize = va_arg (ap, int);
13583 if (thissize == -1)
13584 break;
13585 thisalign = va_arg (ap, int);
13586
13587 if (size == thissize && align == thisalign)
13588 result = SUCCESS;
13589 }
13590 while (result != SUCCESS);
13591
13592 va_end (ap);
13593
13594 if (result == SUCCESS)
13595 *do_align = 1;
13596 else
13597 first_error (_("unsupported alignment for instruction"));
13598
13599 return result;
13600 }
13601
13602 static void
13603 do_neon_ld_st_lane (void)
13604 {
13605 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
13606 int align_good, do_align = 0;
13607 int logsize = neon_logbits (et.size);
13608 int align = inst.operands[1].imm >> 8;
13609 int n = (inst.instruction >> 8) & 3;
13610 int max_el = 64 / et.size;
13611
13612 if (et.type == NT_invtype)
13613 return;
13614
13615 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
13616 _("bad list length"));
13617 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
13618 _("scalar index out of range"));
13619 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
13620 && et.size == 8,
13621 _("stride of 2 unavailable when element size is 8"));
13622
13623 switch (n)
13624 {
13625 case 0: /* VLD1 / VST1. */
13626 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
13627 32, 32, -1);
13628 if (align_good == FAIL)
13629 return;
13630 if (do_align)
13631 {
13632 unsigned alignbits = 0;
13633 switch (et.size)
13634 {
13635 case 16: alignbits = 0x1; break;
13636 case 32: alignbits = 0x3; break;
13637 default: ;
13638 }
13639 inst.instruction |= alignbits << 4;
13640 }
13641 break;
13642
13643 case 1: /* VLD2 / VST2. */
13644 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
13645 32, 64, -1);
13646 if (align_good == FAIL)
13647 return;
13648 if (do_align)
13649 inst.instruction |= 1 << 4;
13650 break;
13651
13652 case 2: /* VLD3 / VST3. */
13653 constraint (inst.operands[1].immisalign,
13654 _("can't use alignment with this instruction"));
13655 break;
13656
13657 case 3: /* VLD4 / VST4. */
13658 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13659 16, 64, 32, 64, 32, 128, -1);
13660 if (align_good == FAIL)
13661 return;
13662 if (do_align)
13663 {
13664 unsigned alignbits = 0;
13665 switch (et.size)
13666 {
13667 case 8: alignbits = 0x1; break;
13668 case 16: alignbits = 0x1; break;
13669 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
13670 default: ;
13671 }
13672 inst.instruction |= alignbits << 4;
13673 }
13674 break;
13675
13676 default: ;
13677 }
13678
13679 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
13680 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13681 inst.instruction |= 1 << (4 + logsize);
13682
13683 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
13684 inst.instruction |= logsize << 10;
13685 }
13686
13687 /* Encode single n-element structure to all lanes VLD<n> instructions. */
13688
13689 static void
13690 do_neon_ld_dup (void)
13691 {
13692 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
13693 int align_good, do_align = 0;
13694
13695 if (et.type == NT_invtype)
13696 return;
13697
13698 switch ((inst.instruction >> 8) & 3)
13699 {
13700 case 0: /* VLD1. */
13701 assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
13702 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13703 &do_align, 16, 16, 32, 32, -1);
13704 if (align_good == FAIL)
13705 return;
13706 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
13707 {
13708 case 1: break;
13709 case 2: inst.instruction |= 1 << 5; break;
13710 default: first_error (_("bad list length")); return;
13711 }
13712 inst.instruction |= neon_logbits (et.size) << 6;
13713 break;
13714
13715 case 1: /* VLD2. */
13716 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13717 &do_align, 8, 16, 16, 32, 32, 64, -1);
13718 if (align_good == FAIL)
13719 return;
13720 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
13721 _("bad list length"));
13722 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13723 inst.instruction |= 1 << 5;
13724 inst.instruction |= neon_logbits (et.size) << 6;
13725 break;
13726
13727 case 2: /* VLD3. */
13728 constraint (inst.operands[1].immisalign,
13729 _("can't use alignment with this instruction"));
13730 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
13731 _("bad list length"));
13732 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13733 inst.instruction |= 1 << 5;
13734 inst.instruction |= neon_logbits (et.size) << 6;
13735 break;
13736
13737 case 3: /* VLD4. */
13738 {
13739 int align = inst.operands[1].imm >> 8;
13740 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13741 16, 64, 32, 64, 32, 128, -1);
13742 if (align_good == FAIL)
13743 return;
13744 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
13745 _("bad list length"));
13746 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13747 inst.instruction |= 1 << 5;
13748 if (et.size == 32 && align == 128)
13749 inst.instruction |= 0x3 << 6;
13750 else
13751 inst.instruction |= neon_logbits (et.size) << 6;
13752 }
13753 break;
13754
13755 default: ;
13756 }
13757
13758 inst.instruction |= do_align << 4;
13759 }
13760
13761 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
13762 apart from bits [11:4]. */
13763
13764 static void
13765 do_neon_ldx_stx (void)
13766 {
13767 switch (NEON_LANE (inst.operands[0].imm))
13768 {
13769 case NEON_INTERLEAVE_LANES:
13770 inst.instruction = NEON_ENC_INTERLV (inst.instruction);
13771 do_neon_ld_st_interleave ();
13772 break;
13773
13774 case NEON_ALL_LANES:
13775 inst.instruction = NEON_ENC_DUP (inst.instruction);
13776 do_neon_ld_dup ();
13777 break;
13778
13779 default:
13780 inst.instruction = NEON_ENC_LANE (inst.instruction);
13781 do_neon_ld_st_lane ();
13782 }
13783
13784 /* L bit comes from bit mask. */
13785 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13786 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13787 inst.instruction |= inst.operands[1].reg << 16;
13788
13789 if (inst.operands[1].postind)
13790 {
13791 int postreg = inst.operands[1].imm & 0xf;
13792 constraint (!inst.operands[1].immisreg,
13793 _("post-index must be a register"));
13794 constraint (postreg == 0xd || postreg == 0xf,
13795 _("bad register for post-index"));
13796 inst.instruction |= postreg;
13797 }
13798 else if (inst.operands[1].writeback)
13799 {
13800 inst.instruction |= 0xd;
13801 }
13802 else
13803 inst.instruction |= 0xf;
13804
13805 if (thumb_mode)
13806 inst.instruction |= 0xf9000000;
13807 else
13808 inst.instruction |= 0xf4000000;
13809 }
13810
13811 \f
13812 /* Overall per-instruction processing. */
13813
13814 /* We need to be able to fix up arbitrary expressions in some statements.
13815 This is so that we can handle symbols that are an arbitrary distance from
13816 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
13817 which returns part of an address in a form which will be valid for
13818 a data instruction. We do this by pushing the expression into a symbol
13819 in the expr_section, and creating a fix for that. */
13820
13821 static void
13822 fix_new_arm (fragS * frag,
13823 int where,
13824 short int size,
13825 expressionS * exp,
13826 int pc_rel,
13827 int reloc)
13828 {
13829 fixS * new_fix;
13830
13831 switch (exp->X_op)
13832 {
13833 case O_constant:
13834 case O_symbol:
13835 case O_add:
13836 case O_subtract:
13837 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
13838 break;
13839
13840 default:
13841 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
13842 pc_rel, reloc);
13843 break;
13844 }
13845
13846 /* Mark whether the fix is to a THUMB instruction, or an ARM
13847 instruction. */
13848 new_fix->tc_fix_data = thumb_mode;
13849 }
13850
13851 /* Create a frg for an instruction requiring relaxation. */
13852 static void
13853 output_relax_insn (void)
13854 {
13855 char * to;
13856 symbolS *sym;
13857 int offset;
13858
13859 /* The size of the instruction is unknown, so tie the debug info to the
13860 start of the instruction. */
13861 dwarf2_emit_insn (0);
13862
13863 switch (inst.reloc.exp.X_op)
13864 {
13865 case O_symbol:
13866 sym = inst.reloc.exp.X_add_symbol;
13867 offset = inst.reloc.exp.X_add_number;
13868 break;
13869 case O_constant:
13870 sym = NULL;
13871 offset = inst.reloc.exp.X_add_number;
13872 break;
13873 default:
13874 sym = make_expr_symbol (&inst.reloc.exp);
13875 offset = 0;
13876 break;
13877 }
13878 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
13879 inst.relax, sym, offset, NULL/*offset, opcode*/);
13880 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
13881 }
13882
13883 /* Write a 32-bit thumb instruction to buf. */
13884 static void
13885 put_thumb32_insn (char * buf, unsigned long insn)
13886 {
13887 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
13888 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
13889 }
13890
13891 static void
13892 output_inst (const char * str)
13893 {
13894 char * to = NULL;
13895
13896 if (inst.error)
13897 {
13898 as_bad ("%s -- `%s'", inst.error, str);
13899 return;
13900 }
13901 if (inst.relax) {
13902 output_relax_insn();
13903 return;
13904 }
13905 if (inst.size == 0)
13906 return;
13907
13908 to = frag_more (inst.size);
13909
13910 if (thumb_mode && (inst.size > THUMB_SIZE))
13911 {
13912 assert (inst.size == (2 * THUMB_SIZE));
13913 put_thumb32_insn (to, inst.instruction);
13914 }
13915 else if (inst.size > INSN_SIZE)
13916 {
13917 assert (inst.size == (2 * INSN_SIZE));
13918 md_number_to_chars (to, inst.instruction, INSN_SIZE);
13919 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
13920 }
13921 else
13922 md_number_to_chars (to, inst.instruction, inst.size);
13923
13924 if (inst.reloc.type != BFD_RELOC_UNUSED)
13925 fix_new_arm (frag_now, to - frag_now->fr_literal,
13926 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
13927 inst.reloc.type);
13928
13929 dwarf2_emit_insn (inst.size);
13930 }
13931
13932 /* Tag values used in struct asm_opcode's tag field. */
13933 enum opcode_tag
13934 {
13935 OT_unconditional, /* Instruction cannot be conditionalized.
13936 The ARM condition field is still 0xE. */
13937 OT_unconditionalF, /* Instruction cannot be conditionalized
13938 and carries 0xF in its ARM condition field. */
13939 OT_csuffix, /* Instruction takes a conditional suffix. */
13940 OT_csuffixF, /* Some forms of the instruction take a conditional
13941 suffix, others place 0xF where the condition field
13942 would be. */
13943 OT_cinfix3, /* Instruction takes a conditional infix,
13944 beginning at character index 3. (In
13945 unified mode, it becomes a suffix.) */
13946 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
13947 tsts, cmps, cmns, and teqs. */
13948 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
13949 character index 3, even in unified mode. Used for
13950 legacy instructions where suffix and infix forms
13951 may be ambiguous. */
13952 OT_csuf_or_in3, /* Instruction takes either a conditional
13953 suffix or an infix at character index 3. */
13954 OT_odd_infix_unc, /* This is the unconditional variant of an
13955 instruction that takes a conditional infix
13956 at an unusual position. In unified mode,
13957 this variant will accept a suffix. */
13958 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
13959 are the conditional variants of instructions that
13960 take conditional infixes in unusual positions.
13961 The infix appears at character index
13962 (tag - OT_odd_infix_0). These are not accepted
13963 in unified mode. */
13964 };
13965
13966 /* Subroutine of md_assemble, responsible for looking up the primary
13967 opcode from the mnemonic the user wrote. STR points to the
13968 beginning of the mnemonic.
13969
13970 This is not simply a hash table lookup, because of conditional
13971 variants. Most instructions have conditional variants, which are
13972 expressed with a _conditional affix_ to the mnemonic. If we were
13973 to encode each conditional variant as a literal string in the opcode
13974 table, it would have approximately 20,000 entries.
13975
13976 Most mnemonics take this affix as a suffix, and in unified syntax,
13977 'most' is upgraded to 'all'. However, in the divided syntax, some
13978 instructions take the affix as an infix, notably the s-variants of
13979 the arithmetic instructions. Of those instructions, all but six
13980 have the infix appear after the third character of the mnemonic.
13981
13982 Accordingly, the algorithm for looking up primary opcodes given
13983 an identifier is:
13984
13985 1. Look up the identifier in the opcode table.
13986 If we find a match, go to step U.
13987
13988 2. Look up the last two characters of the identifier in the
13989 conditions table. If we find a match, look up the first N-2
13990 characters of the identifier in the opcode table. If we
13991 find a match, go to step CE.
13992
13993 3. Look up the fourth and fifth characters of the identifier in
13994 the conditions table. If we find a match, extract those
13995 characters from the identifier, and look up the remaining
13996 characters in the opcode table. If we find a match, go
13997 to step CM.
13998
13999 4. Fail.
14000
14001 U. Examine the tag field of the opcode structure, in case this is
14002 one of the six instructions with its conditional infix in an
14003 unusual place. If it is, the tag tells us where to find the
14004 infix; look it up in the conditions table and set inst.cond
14005 accordingly. Otherwise, this is an unconditional instruction.
14006 Again set inst.cond accordingly. Return the opcode structure.
14007
14008 CE. Examine the tag field to make sure this is an instruction that
14009 should receive a conditional suffix. If it is not, fail.
14010 Otherwise, set inst.cond from the suffix we already looked up,
14011 and return the opcode structure.
14012
14013 CM. Examine the tag field to make sure this is an instruction that
14014 should receive a conditional infix after the third character.
14015 If it is not, fail. Otherwise, undo the edits to the current
14016 line of input and proceed as for case CE. */
14017
14018 static const struct asm_opcode *
14019 opcode_lookup (char **str)
14020 {
14021 char *end, *base;
14022 char *affix;
14023 const struct asm_opcode *opcode;
14024 const struct asm_cond *cond;
14025 char save[2];
14026 bfd_boolean neon_supported;
14027
14028 neon_supported = ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1);
14029
14030 /* Scan up to the end of the mnemonic, which must end in white space,
14031 '.' (in unified mode, or for Neon instructions), or end of string. */
14032 for (base = end = *str; *end != '\0'; end++)
14033 if (*end == ' ' || ((unified_syntax || neon_supported) && *end == '.'))
14034 break;
14035
14036 if (end == base)
14037 return 0;
14038
14039 /* Handle a possible width suffix and/or Neon type suffix. */
14040 if (end[0] == '.')
14041 {
14042 int offset = 2;
14043
14044 /* The .w and .n suffixes are only valid if the unified syntax is in
14045 use. */
14046 if (unified_syntax && end[1] == 'w')
14047 inst.size_req = 4;
14048 else if (unified_syntax && end[1] == 'n')
14049 inst.size_req = 2;
14050 else
14051 offset = 0;
14052
14053 inst.vectype.elems = 0;
14054
14055 *str = end + offset;
14056
14057 if (end[offset] == '.')
14058 {
14059 /* See if we have a Neon type suffix (possible in either unified or
14060 non-unified ARM syntax mode). */
14061 if (parse_neon_type (&inst.vectype, str) == FAIL)
14062 return 0;
14063 }
14064 else if (end[offset] != '\0' && end[offset] != ' ')
14065 return 0;
14066 }
14067 else
14068 *str = end;
14069
14070 /* Look for unaffixed or special-case affixed mnemonic. */
14071 opcode = hash_find_n (arm_ops_hsh, base, end - base);
14072 if (opcode)
14073 {
14074 /* step U */
14075 if (opcode->tag < OT_odd_infix_0)
14076 {
14077 inst.cond = COND_ALWAYS;
14078 return opcode;
14079 }
14080
14081 if (unified_syntax)
14082 as_warn (_("conditional infixes are deprecated in unified syntax"));
14083 affix = base + (opcode->tag - OT_odd_infix_0);
14084 cond = hash_find_n (arm_cond_hsh, affix, 2);
14085 assert (cond);
14086
14087 inst.cond = cond->value;
14088 return opcode;
14089 }
14090
14091 /* Cannot have a conditional suffix on a mnemonic of less than two
14092 characters. */
14093 if (end - base < 3)
14094 return 0;
14095
14096 /* Look for suffixed mnemonic. */
14097 affix = end - 2;
14098 cond = hash_find_n (arm_cond_hsh, affix, 2);
14099 opcode = hash_find_n (arm_ops_hsh, base, affix - base);
14100 if (opcode && cond)
14101 {
14102 /* step CE */
14103 switch (opcode->tag)
14104 {
14105 case OT_cinfix3_legacy:
14106 /* Ignore conditional suffixes matched on infix only mnemonics. */
14107 break;
14108
14109 case OT_cinfix3:
14110 case OT_cinfix3_deprecated:
14111 case OT_odd_infix_unc:
14112 if (!unified_syntax)
14113 return 0;
14114 /* else fall through */
14115
14116 case OT_csuffix:
14117 case OT_csuffixF:
14118 case OT_csuf_or_in3:
14119 inst.cond = cond->value;
14120 return opcode;
14121
14122 case OT_unconditional:
14123 case OT_unconditionalF:
14124 if (thumb_mode)
14125 {
14126 inst.cond = cond->value;
14127 }
14128 else
14129 {
14130 /* delayed diagnostic */
14131 inst.error = BAD_COND;
14132 inst.cond = COND_ALWAYS;
14133 }
14134 return opcode;
14135
14136 default:
14137 return 0;
14138 }
14139 }
14140
14141 /* Cannot have a usual-position infix on a mnemonic of less than
14142 six characters (five would be a suffix). */
14143 if (end - base < 6)
14144 return 0;
14145
14146 /* Look for infixed mnemonic in the usual position. */
14147 affix = base + 3;
14148 cond = hash_find_n (arm_cond_hsh, affix, 2);
14149 if (!cond)
14150 return 0;
14151
14152 memcpy (save, affix, 2);
14153 memmove (affix, affix + 2, (end - affix) - 2);
14154 opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2);
14155 memmove (affix + 2, affix, (end - affix) - 2);
14156 memcpy (affix, save, 2);
14157
14158 if (opcode
14159 && (opcode->tag == OT_cinfix3
14160 || opcode->tag == OT_cinfix3_deprecated
14161 || opcode->tag == OT_csuf_or_in3
14162 || opcode->tag == OT_cinfix3_legacy))
14163 {
14164 /* step CM */
14165 if (unified_syntax
14166 && (opcode->tag == OT_cinfix3
14167 || opcode->tag == OT_cinfix3_deprecated))
14168 as_warn (_("conditional infixes are deprecated in unified syntax"));
14169
14170 inst.cond = cond->value;
14171 return opcode;
14172 }
14173
14174 return 0;
14175 }
14176
14177 void
14178 md_assemble (char *str)
14179 {
14180 char *p = str;
14181 const struct asm_opcode * opcode;
14182
14183 /* Align the previous label if needed. */
14184 if (last_label_seen != NULL)
14185 {
14186 symbol_set_frag (last_label_seen, frag_now);
14187 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
14188 S_SET_SEGMENT (last_label_seen, now_seg);
14189 }
14190
14191 memset (&inst, '\0', sizeof (inst));
14192 inst.reloc.type = BFD_RELOC_UNUSED;
14193
14194 opcode = opcode_lookup (&p);
14195 if (!opcode)
14196 {
14197 /* It wasn't an instruction, but it might be a register alias of
14198 the form alias .req reg, or a Neon .dn/.qn directive. */
14199 if (!create_register_alias (str, p)
14200 && !create_neon_reg_alias (str, p))
14201 as_bad (_("bad instruction `%s'"), str);
14202
14203 return;
14204 }
14205
14206 if (opcode->tag == OT_cinfix3_deprecated)
14207 as_warn (_("s suffix on comparison instruction is deprecated"));
14208
14209 /* The value which unconditional instructions should have in place of the
14210 condition field. */
14211 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
14212
14213 if (thumb_mode)
14214 {
14215 arm_feature_set variant;
14216
14217 variant = cpu_variant;
14218 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
14219 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
14220 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
14221 /* Check that this instruction is supported for this CPU. */
14222 if (!opcode->tvariant
14223 || (thumb_mode == 1
14224 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
14225 {
14226 as_bad (_("selected processor does not support `%s'"), str);
14227 return;
14228 }
14229 if (inst.cond != COND_ALWAYS && !unified_syntax
14230 && opcode->tencode != do_t_branch)
14231 {
14232 as_bad (_("Thumb does not support conditional execution"));
14233 return;
14234 }
14235
14236 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2) && !inst.size_req)
14237 {
14238 /* Implicit require narrow instructions on Thumb-1. This avoids
14239 relaxation accidentally introducing Thumb-2 instructions. */
14240 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23)
14241 inst.size_req = 2;
14242 }
14243
14244 /* Check conditional suffixes. */
14245 if (current_it_mask)
14246 {
14247 int cond;
14248 cond = current_cc ^ ((current_it_mask >> 4) & 1) ^ 1;
14249 current_it_mask <<= 1;
14250 current_it_mask &= 0x1f;
14251 /* The BKPT instruction is unconditional even in an IT block. */
14252 if (!inst.error
14253 && cond != inst.cond && opcode->tencode != do_t_bkpt)
14254 {
14255 as_bad (_("incorrect condition in IT block"));
14256 return;
14257 }
14258 }
14259 else if (inst.cond != COND_ALWAYS && opcode->tencode != do_t_branch)
14260 {
14261 as_bad (_("thumb conditional instrunction not in IT block"));
14262 return;
14263 }
14264
14265 mapping_state (MAP_THUMB);
14266 inst.instruction = opcode->tvalue;
14267
14268 if (!parse_operands (p, opcode->operands))
14269 opcode->tencode ();
14270
14271 /* Clear current_it_mask at the end of an IT block. */
14272 if (current_it_mask == 0x10)
14273 current_it_mask = 0;
14274
14275 if (!(inst.error || inst.relax))
14276 {
14277 assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
14278 inst.size = (inst.instruction > 0xffff ? 4 : 2);
14279 if (inst.size_req && inst.size_req != inst.size)
14280 {
14281 as_bad (_("cannot honor width suffix -- `%s'"), str);
14282 return;
14283 }
14284 }
14285
14286 /* Something has gone badly wrong if we try to relax a fixed size
14287 instruction. */
14288 assert (inst.size_req == 0 || !inst.relax);
14289
14290 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14291 *opcode->tvariant);
14292 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
14293 set those bits when Thumb-2 32-bit instructions are seen. ie.
14294 anything other than bl/blx.
14295 This is overly pessimistic for relaxable instructions. */
14296 if ((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
14297 || inst.relax)
14298 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14299 arm_ext_v6t2);
14300 }
14301 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
14302 {
14303 /* Check that this instruction is supported for this CPU. */
14304 if (!opcode->avariant ||
14305 !ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))
14306 {
14307 as_bad (_("selected processor does not support `%s'"), str);
14308 return;
14309 }
14310 if (inst.size_req)
14311 {
14312 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
14313 return;
14314 }
14315
14316 mapping_state (MAP_ARM);
14317 inst.instruction = opcode->avalue;
14318 if (opcode->tag == OT_unconditionalF)
14319 inst.instruction |= 0xF << 28;
14320 else
14321 inst.instruction |= inst.cond << 28;
14322 inst.size = INSN_SIZE;
14323 if (!parse_operands (p, opcode->operands))
14324 opcode->aencode ();
14325 /* Arm mode bx is marked as both v4T and v5 because it's still required
14326 on a hypothetical non-thumb v5 core. */
14327 if (ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v4t)
14328 || ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v5))
14329 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
14330 else
14331 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
14332 *opcode->avariant);
14333 }
14334 else
14335 {
14336 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
14337 "-- `%s'"), str);
14338 return;
14339 }
14340 output_inst (str);
14341 }
14342
14343 /* Various frobbings of labels and their addresses. */
14344
14345 void
14346 arm_start_line_hook (void)
14347 {
14348 last_label_seen = NULL;
14349 }
14350
14351 void
14352 arm_frob_label (symbolS * sym)
14353 {
14354 last_label_seen = sym;
14355
14356 ARM_SET_THUMB (sym, thumb_mode);
14357
14358 #if defined OBJ_COFF || defined OBJ_ELF
14359 ARM_SET_INTERWORK (sym, support_interwork);
14360 #endif
14361
14362 /* Note - do not allow local symbols (.Lxxx) to be labeled
14363 as Thumb functions. This is because these labels, whilst
14364 they exist inside Thumb code, are not the entry points for
14365 possible ARM->Thumb calls. Also, these labels can be used
14366 as part of a computed goto or switch statement. eg gcc
14367 can generate code that looks like this:
14368
14369 ldr r2, [pc, .Laaa]
14370 lsl r3, r3, #2
14371 ldr r2, [r3, r2]
14372 mov pc, r2
14373
14374 .Lbbb: .word .Lxxx
14375 .Lccc: .word .Lyyy
14376 ..etc...
14377 .Laaa: .word Lbbb
14378
14379 The first instruction loads the address of the jump table.
14380 The second instruction converts a table index into a byte offset.
14381 The third instruction gets the jump address out of the table.
14382 The fourth instruction performs the jump.
14383
14384 If the address stored at .Laaa is that of a symbol which has the
14385 Thumb_Func bit set, then the linker will arrange for this address
14386 to have the bottom bit set, which in turn would mean that the
14387 address computation performed by the third instruction would end
14388 up with the bottom bit set. Since the ARM is capable of unaligned
14389 word loads, the instruction would then load the incorrect address
14390 out of the jump table, and chaos would ensue. */
14391 if (label_is_thumb_function_name
14392 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
14393 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
14394 {
14395 /* When the address of a Thumb function is taken the bottom
14396 bit of that address should be set. This will allow
14397 interworking between Arm and Thumb functions to work
14398 correctly. */
14399
14400 THUMB_SET_FUNC (sym, 1);
14401
14402 label_is_thumb_function_name = FALSE;
14403 }
14404
14405 dwarf2_emit_label (sym);
14406 }
14407
14408 int
14409 arm_data_in_code (void)
14410 {
14411 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
14412 {
14413 *input_line_pointer = '/';
14414 input_line_pointer += 5;
14415 *input_line_pointer = 0;
14416 return 1;
14417 }
14418
14419 return 0;
14420 }
14421
14422 char *
14423 arm_canonicalize_symbol_name (char * name)
14424 {
14425 int len;
14426
14427 if (thumb_mode && (len = strlen (name)) > 5
14428 && streq (name + len - 5, "/data"))
14429 *(name + len - 5) = 0;
14430
14431 return name;
14432 }
14433 \f
14434 /* Table of all register names defined by default. The user can
14435 define additional names with .req. Note that all register names
14436 should appear in both upper and lowercase variants. Some registers
14437 also have mixed-case names. */
14438
14439 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
14440 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
14441 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
14442 #define REGSET(p,t) \
14443 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
14444 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
14445 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
14446 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
14447 #define REGSETH(p,t) \
14448 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
14449 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
14450 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
14451 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
14452 #define REGSET2(p,t) \
14453 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
14454 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
14455 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
14456 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
14457
14458 static const struct reg_entry reg_names[] =
14459 {
14460 /* ARM integer registers. */
14461 REGSET(r, RN), REGSET(R, RN),
14462
14463 /* ATPCS synonyms. */
14464 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
14465 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
14466 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
14467
14468 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
14469 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
14470 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
14471
14472 /* Well-known aliases. */
14473 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
14474 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
14475
14476 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
14477 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
14478
14479 /* Coprocessor numbers. */
14480 REGSET(p, CP), REGSET(P, CP),
14481
14482 /* Coprocessor register numbers. The "cr" variants are for backward
14483 compatibility. */
14484 REGSET(c, CN), REGSET(C, CN),
14485 REGSET(cr, CN), REGSET(CR, CN),
14486
14487 /* FPA registers. */
14488 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
14489 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
14490
14491 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
14492 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
14493
14494 /* VFP SP registers. */
14495 REGSET(s,VFS), REGSET(S,VFS),
14496 REGSETH(s,VFS), REGSETH(S,VFS),
14497
14498 /* VFP DP Registers. */
14499 REGSET(d,VFD), REGSET(D,VFD),
14500 /* Extra Neon DP registers. */
14501 REGSETH(d,VFD), REGSETH(D,VFD),
14502
14503 /* Neon QP registers. */
14504 REGSET2(q,NQ), REGSET2(Q,NQ),
14505
14506 /* VFP control registers. */
14507 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
14508 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
14509
14510 /* Maverick DSP coprocessor registers. */
14511 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
14512 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
14513
14514 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
14515 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
14516 REGDEF(dspsc,0,DSPSC),
14517
14518 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
14519 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
14520 REGDEF(DSPSC,0,DSPSC),
14521
14522 /* iWMMXt data registers - p0, c0-15. */
14523 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
14524
14525 /* iWMMXt control registers - p1, c0-3. */
14526 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
14527 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
14528 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
14529 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
14530
14531 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
14532 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
14533 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
14534 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
14535 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
14536
14537 /* XScale accumulator registers. */
14538 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
14539 };
14540 #undef REGDEF
14541 #undef REGNUM
14542 #undef REGSET
14543
14544 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
14545 within psr_required_here. */
14546 static const struct asm_psr psrs[] =
14547 {
14548 /* Backward compatibility notation. Note that "all" is no longer
14549 truly all possible PSR bits. */
14550 {"all", PSR_c | PSR_f},
14551 {"flg", PSR_f},
14552 {"ctl", PSR_c},
14553
14554 /* Individual flags. */
14555 {"f", PSR_f},
14556 {"c", PSR_c},
14557 {"x", PSR_x},
14558 {"s", PSR_s},
14559 /* Combinations of flags. */
14560 {"fs", PSR_f | PSR_s},
14561 {"fx", PSR_f | PSR_x},
14562 {"fc", PSR_f | PSR_c},
14563 {"sf", PSR_s | PSR_f},
14564 {"sx", PSR_s | PSR_x},
14565 {"sc", PSR_s | PSR_c},
14566 {"xf", PSR_x | PSR_f},
14567 {"xs", PSR_x | PSR_s},
14568 {"xc", PSR_x | PSR_c},
14569 {"cf", PSR_c | PSR_f},
14570 {"cs", PSR_c | PSR_s},
14571 {"cx", PSR_c | PSR_x},
14572 {"fsx", PSR_f | PSR_s | PSR_x},
14573 {"fsc", PSR_f | PSR_s | PSR_c},
14574 {"fxs", PSR_f | PSR_x | PSR_s},
14575 {"fxc", PSR_f | PSR_x | PSR_c},
14576 {"fcs", PSR_f | PSR_c | PSR_s},
14577 {"fcx", PSR_f | PSR_c | PSR_x},
14578 {"sfx", PSR_s | PSR_f | PSR_x},
14579 {"sfc", PSR_s | PSR_f | PSR_c},
14580 {"sxf", PSR_s | PSR_x | PSR_f},
14581 {"sxc", PSR_s | PSR_x | PSR_c},
14582 {"scf", PSR_s | PSR_c | PSR_f},
14583 {"scx", PSR_s | PSR_c | PSR_x},
14584 {"xfs", PSR_x | PSR_f | PSR_s},
14585 {"xfc", PSR_x | PSR_f | PSR_c},
14586 {"xsf", PSR_x | PSR_s | PSR_f},
14587 {"xsc", PSR_x | PSR_s | PSR_c},
14588 {"xcf", PSR_x | PSR_c | PSR_f},
14589 {"xcs", PSR_x | PSR_c | PSR_s},
14590 {"cfs", PSR_c | PSR_f | PSR_s},
14591 {"cfx", PSR_c | PSR_f | PSR_x},
14592 {"csf", PSR_c | PSR_s | PSR_f},
14593 {"csx", PSR_c | PSR_s | PSR_x},
14594 {"cxf", PSR_c | PSR_x | PSR_f},
14595 {"cxs", PSR_c | PSR_x | PSR_s},
14596 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
14597 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
14598 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
14599 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
14600 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
14601 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
14602 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
14603 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
14604 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
14605 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
14606 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
14607 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
14608 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
14609 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
14610 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
14611 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
14612 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
14613 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
14614 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
14615 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
14616 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
14617 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
14618 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
14619 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
14620 };
14621
14622 /* Table of V7M psr names. */
14623 static const struct asm_psr v7m_psrs[] =
14624 {
14625 {"apsr", 0 }, {"APSR", 0 },
14626 {"iapsr", 1 }, {"IAPSR", 1 },
14627 {"eapsr", 2 }, {"EAPSR", 2 },
14628 {"psr", 3 }, {"PSR", 3 },
14629 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
14630 {"ipsr", 5 }, {"IPSR", 5 },
14631 {"epsr", 6 }, {"EPSR", 6 },
14632 {"iepsr", 7 }, {"IEPSR", 7 },
14633 {"msp", 8 }, {"MSP", 8 },
14634 {"psp", 9 }, {"PSP", 9 },
14635 {"primask", 16}, {"PRIMASK", 16},
14636 {"basepri", 17}, {"BASEPRI", 17},
14637 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
14638 {"faultmask", 19}, {"FAULTMASK", 19},
14639 {"control", 20}, {"CONTROL", 20}
14640 };
14641
14642 /* Table of all shift-in-operand names. */
14643 static const struct asm_shift_name shift_names [] =
14644 {
14645 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
14646 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
14647 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
14648 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
14649 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
14650 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
14651 };
14652
14653 /* Table of all explicit relocation names. */
14654 #ifdef OBJ_ELF
14655 static struct reloc_entry reloc_names[] =
14656 {
14657 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
14658 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
14659 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
14660 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
14661 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
14662 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
14663 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
14664 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
14665 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
14666 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
14667 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
14668 };
14669 #endif
14670
14671 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
14672 static const struct asm_cond conds[] =
14673 {
14674 {"eq", 0x0},
14675 {"ne", 0x1},
14676 {"cs", 0x2}, {"hs", 0x2},
14677 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
14678 {"mi", 0x4},
14679 {"pl", 0x5},
14680 {"vs", 0x6},
14681 {"vc", 0x7},
14682 {"hi", 0x8},
14683 {"ls", 0x9},
14684 {"ge", 0xa},
14685 {"lt", 0xb},
14686 {"gt", 0xc},
14687 {"le", 0xd},
14688 {"al", 0xe}
14689 };
14690
14691 static struct asm_barrier_opt barrier_opt_names[] =
14692 {
14693 { "sy", 0xf },
14694 { "un", 0x7 },
14695 { "st", 0xe },
14696 { "unst", 0x6 }
14697 };
14698
14699 /* Table of ARM-format instructions. */
14700
14701 /* Macros for gluing together operand strings. N.B. In all cases
14702 other than OPS0, the trailing OP_stop comes from default
14703 zero-initialization of the unspecified elements of the array. */
14704 #define OPS0() { OP_stop, }
14705 #define OPS1(a) { OP_##a, }
14706 #define OPS2(a,b) { OP_##a,OP_##b, }
14707 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
14708 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
14709 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
14710 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
14711
14712 /* These macros abstract out the exact format of the mnemonic table and
14713 save some repeated characters. */
14714
14715 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
14716 #define TxCE(mnem, op, top, nops, ops, ae, te) \
14717 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
14718 THUMB_VARIANT, do_##ae, do_##te }
14719
14720 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
14721 a T_MNEM_xyz enumerator. */
14722 #define TCE(mnem, aop, top, nops, ops, ae, te) \
14723 TxCE(mnem, aop, 0x##top, nops, ops, ae, te)
14724 #define tCE(mnem, aop, top, nops, ops, ae, te) \
14725 TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14726
14727 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
14728 infix after the third character. */
14729 #define TxC3(mnem, op, top, nops, ops, ae, te) \
14730 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
14731 THUMB_VARIANT, do_##ae, do_##te }
14732 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
14733 { #mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
14734 THUMB_VARIANT, do_##ae, do_##te }
14735 #define TC3(mnem, aop, top, nops, ops, ae, te) \
14736 TxC3(mnem, aop, 0x##top, nops, ops, ae, te)
14737 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
14738 TxC3w(mnem, aop, 0x##top, nops, ops, ae, te)
14739 #define tC3(mnem, aop, top, nops, ops, ae, te) \
14740 TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14741 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
14742 TxC3w(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14743
14744 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
14745 appear in the condition table. */
14746 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
14747 { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14748 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
14749
14750 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
14751 TxCM_(m1, , m2, op, top, nops, ops, ae, te), \
14752 TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \
14753 TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \
14754 TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \
14755 TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \
14756 TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \
14757 TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \
14758 TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \
14759 TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \
14760 TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \
14761 TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \
14762 TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \
14763 TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \
14764 TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \
14765 TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \
14766 TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \
14767 TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \
14768 TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \
14769 TxCM_(m1, al, m2, op, top, nops, ops, ae, te)
14770
14771 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
14772 TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te)
14773 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
14774 TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
14775
14776 /* Mnemonic that cannot be conditionalized. The ARM condition-code
14777 field is still 0xE. Many of the Thumb variants can be executed
14778 conditionally, so this is checked separately. */
14779 #define TUE(mnem, op, top, nops, ops, ae, te) \
14780 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
14781 THUMB_VARIANT, do_##ae, do_##te }
14782
14783 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
14784 condition code field. */
14785 #define TUF(mnem, op, top, nops, ops, ae, te) \
14786 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
14787 THUMB_VARIANT, do_##ae, do_##te }
14788
14789 /* ARM-only variants of all the above. */
14790 #define CE(mnem, op, nops, ops, ae) \
14791 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14792
14793 #define C3(mnem, op, nops, ops, ae) \
14794 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14795
14796 /* Legacy mnemonics that always have conditional infix after the third
14797 character. */
14798 #define CL(mnem, op, nops, ops, ae) \
14799 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14800 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14801
14802 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
14803 #define cCE(mnem, op, nops, ops, ae) \
14804 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14805
14806 /* Legacy coprocessor instructions where conditional infix and conditional
14807 suffix are ambiguous. For consistency this includes all FPA instructions,
14808 not just the potentially ambiguous ones. */
14809 #define cCL(mnem, op, nops, ops, ae) \
14810 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14811 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14812
14813 /* Coprocessor, takes either a suffix or a position-3 infix
14814 (for an FPA corner case). */
14815 #define C3E(mnem, op, nops, ops, ae) \
14816 { #mnem, OPS##nops ops, OT_csuf_or_in3, \
14817 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14818
14819 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
14820 { #m1 #m2 #m3, OPS##nops ops, \
14821 sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14822 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14823
14824 #define CM(m1, m2, op, nops, ops, ae) \
14825 xCM_(m1, , m2, op, nops, ops, ae), \
14826 xCM_(m1, eq, m2, op, nops, ops, ae), \
14827 xCM_(m1, ne, m2, op, nops, ops, ae), \
14828 xCM_(m1, cs, m2, op, nops, ops, ae), \
14829 xCM_(m1, hs, m2, op, nops, ops, ae), \
14830 xCM_(m1, cc, m2, op, nops, ops, ae), \
14831 xCM_(m1, ul, m2, op, nops, ops, ae), \
14832 xCM_(m1, lo, m2, op, nops, ops, ae), \
14833 xCM_(m1, mi, m2, op, nops, ops, ae), \
14834 xCM_(m1, pl, m2, op, nops, ops, ae), \
14835 xCM_(m1, vs, m2, op, nops, ops, ae), \
14836 xCM_(m1, vc, m2, op, nops, ops, ae), \
14837 xCM_(m1, hi, m2, op, nops, ops, ae), \
14838 xCM_(m1, ls, m2, op, nops, ops, ae), \
14839 xCM_(m1, ge, m2, op, nops, ops, ae), \
14840 xCM_(m1, lt, m2, op, nops, ops, ae), \
14841 xCM_(m1, gt, m2, op, nops, ops, ae), \
14842 xCM_(m1, le, m2, op, nops, ops, ae), \
14843 xCM_(m1, al, m2, op, nops, ops, ae)
14844
14845 #define UE(mnem, op, nops, ops, ae) \
14846 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14847
14848 #define UF(mnem, op, nops, ops, ae) \
14849 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14850
14851 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
14852 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
14853 use the same encoding function for each. */
14854 #define NUF(mnem, op, nops, ops, enc) \
14855 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
14856 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14857
14858 /* Neon data processing, version which indirects through neon_enc_tab for
14859 the various overloaded versions of opcodes. */
14860 #define nUF(mnem, op, nops, ops, enc) \
14861 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM_##op, N_MNEM_##op, \
14862 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14863
14864 /* Neon insn with conditional suffix for the ARM version, non-overloaded
14865 version. */
14866 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
14867 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
14868 THUMB_VARIANT, do_##enc, do_##enc }
14869
14870 #define NCE(mnem, op, nops, ops, enc) \
14871 NCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14872
14873 #define NCEF(mnem, op, nops, ops, enc) \
14874 NCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14875
14876 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
14877 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
14878 { #mnem, OPS##nops ops, tag, N_MNEM_##op, N_MNEM_##op, \
14879 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14880
14881 #define nCE(mnem, op, nops, ops, enc) \
14882 nCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14883
14884 #define nCEF(mnem, op, nops, ops, enc) \
14885 nCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14886
14887 #define do_0 0
14888
14889 /* Thumb-only, unconditional. */
14890 #define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te)
14891
14892 static const struct asm_opcode insns[] =
14893 {
14894 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
14895 #define THUMB_VARIANT &arm_ext_v4t
14896 tCE(and, 0000000, and, 3, (RR, oRR, SH), arit, t_arit3c),
14897 tC3(ands, 0100000, ands, 3, (RR, oRR, SH), arit, t_arit3c),
14898 tCE(eor, 0200000, eor, 3, (RR, oRR, SH), arit, t_arit3c),
14899 tC3(eors, 0300000, eors, 3, (RR, oRR, SH), arit, t_arit3c),
14900 tCE(sub, 0400000, sub, 3, (RR, oRR, SH), arit, t_add_sub),
14901 tC3(subs, 0500000, subs, 3, (RR, oRR, SH), arit, t_add_sub),
14902 tCE(add, 0800000, add, 3, (RR, oRR, SHG), arit, t_add_sub),
14903 tC3(adds, 0900000, adds, 3, (RR, oRR, SHG), arit, t_add_sub),
14904 tCE(adc, 0a00000, adc, 3, (RR, oRR, SH), arit, t_arit3c),
14905 tC3(adcs, 0b00000, adcs, 3, (RR, oRR, SH), arit, t_arit3c),
14906 tCE(sbc, 0c00000, sbc, 3, (RR, oRR, SH), arit, t_arit3),
14907 tC3(sbcs, 0d00000, sbcs, 3, (RR, oRR, SH), arit, t_arit3),
14908 tCE(orr, 1800000, orr, 3, (RR, oRR, SH), arit, t_arit3c),
14909 tC3(orrs, 1900000, orrs, 3, (RR, oRR, SH), arit, t_arit3c),
14910 tCE(bic, 1c00000, bic, 3, (RR, oRR, SH), arit, t_arit3),
14911 tC3(bics, 1d00000, bics, 3, (RR, oRR, SH), arit, t_arit3),
14912
14913 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
14914 for setting PSR flag bits. They are obsolete in V6 and do not
14915 have Thumb equivalents. */
14916 tCE(tst, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
14917 tC3w(tsts, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
14918 CL(tstp, 110f000, 2, (RR, SH), cmp),
14919 tCE(cmp, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
14920 tC3w(cmps, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
14921 CL(cmpp, 150f000, 2, (RR, SH), cmp),
14922 tCE(cmn, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
14923 tC3w(cmns, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
14924 CL(cmnp, 170f000, 2, (RR, SH), cmp),
14925
14926 tCE(mov, 1a00000, mov, 2, (RR, SH), mov, t_mov_cmp),
14927 tC3(movs, 1b00000, movs, 2, (RR, SH), mov, t_mov_cmp),
14928 tCE(mvn, 1e00000, mvn, 2, (RR, SH), mov, t_mvn_tst),
14929 tC3(mvns, 1f00000, mvns, 2, (RR, SH), mov, t_mvn_tst),
14930
14931 tCE(ldr, 4100000, ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
14932 tC3(ldrb, 4500000, ldrb, 2, (RR, ADDRGLDR),ldst, t_ldst),
14933 tCE(str, 4000000, str, 2, (RR, ADDRGLDR),ldst, t_ldst),
14934 tC3(strb, 4400000, strb, 2, (RR, ADDRGLDR),ldst, t_ldst),
14935
14936 tCE(stm, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14937 tC3(stmia, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14938 tC3(stmea, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14939 tCE(ldm, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14940 tC3(ldmia, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14941 tC3(ldmfd, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14942
14943 TCE(swi, f000000, df00, 1, (EXPi), swi, t_swi),
14944 TCE(svc, f000000, df00, 1, (EXPi), swi, t_swi),
14945 tCE(b, a000000, b, 1, (EXPr), branch, t_branch),
14946 TCE(bl, b000000, f000f800, 1, (EXPr), bl, t_branch23),
14947
14948 /* Pseudo ops. */
14949 tCE(adr, 28f0000, adr, 2, (RR, EXP), adr, t_adr),
14950 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
14951 tCE(nop, 1a00000, nop, 1, (oI255c), nop, t_nop),
14952
14953 /* Thumb-compatibility pseudo ops. */
14954 tCE(lsl, 1a00000, lsl, 3, (RR, oRR, SH), shift, t_shift),
14955 tC3(lsls, 1b00000, lsls, 3, (RR, oRR, SH), shift, t_shift),
14956 tCE(lsr, 1a00020, lsr, 3, (RR, oRR, SH), shift, t_shift),
14957 tC3(lsrs, 1b00020, lsrs, 3, (RR, oRR, SH), shift, t_shift),
14958 tCE(asr, 1a00040, asr, 3, (RR, oRR, SH), shift, t_shift),
14959 tC3(asrs, 1b00040, asrs, 3, (RR, oRR, SH), shift, t_shift),
14960 tCE(ror, 1a00060, ror, 3, (RR, oRR, SH), shift, t_shift),
14961 tC3(rors, 1b00060, rors, 3, (RR, oRR, SH), shift, t_shift),
14962 tCE(neg, 2600000, neg, 2, (RR, RR), rd_rn, t_neg),
14963 tC3(negs, 2700000, negs, 2, (RR, RR), rd_rn, t_neg),
14964 tCE(push, 92d0000, push, 1, (REGLST), push_pop, t_push_pop),
14965 tCE(pop, 8bd0000, pop, 1, (REGLST), push_pop, t_push_pop),
14966
14967 /* These may simplify to neg. */
14968 TCE(rsb, 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
14969 TC3(rsbs, 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
14970
14971 #undef THUMB_VARIANT
14972 #define THUMB_VARIANT &arm_ext_v6
14973 TCE(cpy, 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
14974
14975 /* V1 instructions with no Thumb analogue prior to V6T2. */
14976 #undef THUMB_VARIANT
14977 #define THUMB_VARIANT &arm_ext_v6t2
14978 TCE(teq, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
14979 TC3w(teqs, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
14980 CL(teqp, 130f000, 2, (RR, SH), cmp),
14981
14982 TC3(ldrt, 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
14983 TC3(ldrbt, 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
14984 TC3(strt, 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
14985 TC3(strbt, 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
14986
14987 TC3(stmdb, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14988 TC3(stmfd, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14989
14990 TC3(ldmdb, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14991 TC3(ldmea, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14992
14993 /* V1 instructions with no Thumb analogue at all. */
14994 CE(rsc, 0e00000, 3, (RR, oRR, SH), arit),
14995 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
14996
14997 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
14998 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
14999 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
15000 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
15001 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
15002 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
15003 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
15004 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
15005
15006 #undef ARM_VARIANT
15007 #define ARM_VARIANT &arm_ext_v2 /* ARM 2 - multiplies. */
15008 #undef THUMB_VARIANT
15009 #define THUMB_VARIANT &arm_ext_v4t
15010 tCE(mul, 0000090, mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
15011 tC3(muls, 0100090, muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
15012
15013 #undef THUMB_VARIANT
15014 #define THUMB_VARIANT &arm_ext_v6t2
15015 TCE(mla, 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
15016 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
15017
15018 /* Generic coprocessor instructions. */
15019 TCE(cdp, e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
15020 TCE(ldc, c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15021 TC3(ldcl, c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15022 TCE(stc, c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15023 TC3(stcl, c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15024 TCE(mcr, e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15025 TCE(mrc, e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15026
15027 #undef ARM_VARIANT
15028 #define ARM_VARIANT &arm_ext_v2s /* ARM 3 - swp instructions. */
15029 CE(swp, 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
15030 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
15031
15032 #undef ARM_VARIANT
15033 #define ARM_VARIANT &arm_ext_v3 /* ARM 6 Status register instructions. */
15034 TCE(mrs, 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
15035 TCE(msr, 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
15036
15037 #undef ARM_VARIANT
15038 #define ARM_VARIANT &arm_ext_v3m /* ARM 7M long multiplies. */
15039 TCE(smull, 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15040 CM(smull,s, 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15041 TCE(umull, 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15042 CM(umull,s, 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15043 TCE(smlal, 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15044 CM(smlal,s, 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15045 TCE(umlal, 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15046 CM(umlal,s, 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15047
15048 #undef ARM_VARIANT
15049 #define ARM_VARIANT &arm_ext_v4 /* ARM Architecture 4. */
15050 #undef THUMB_VARIANT
15051 #define THUMB_VARIANT &arm_ext_v4t
15052 tC3(ldrh, 01000b0, ldrh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15053 tC3(strh, 00000b0, strh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15054 tC3(ldrsh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15055 tC3(ldrsb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15056 tCM(ld,sh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15057 tCM(ld,sb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15058
15059 #undef ARM_VARIANT
15060 #define ARM_VARIANT &arm_ext_v4t_5
15061 /* ARM Architecture 4T. */
15062 /* Note: bx (and blx) are required on V5, even if the processor does
15063 not support Thumb. */
15064 TCE(bx, 12fff10, 4700, 1, (RR), bx, t_bx),
15065
15066 #undef ARM_VARIANT
15067 #define ARM_VARIANT &arm_ext_v5 /* ARM Architecture 5T. */
15068 #undef THUMB_VARIANT
15069 #define THUMB_VARIANT &arm_ext_v5t
15070 /* Note: blx has 2 variants; the .value coded here is for
15071 BLX(2). Only this variant has conditional execution. */
15072 TCE(blx, 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
15073 TUE(bkpt, 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
15074
15075 #undef THUMB_VARIANT
15076 #define THUMB_VARIANT &arm_ext_v6t2
15077 TCE(clz, 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
15078 TUF(ldc2, c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15079 TUF(ldc2l, c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15080 TUF(stc2, c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15081 TUF(stc2l, c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15082 TUF(cdp2, e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
15083 TUF(mcr2, e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15084 TUF(mrc2, e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15085
15086 #undef ARM_VARIANT
15087 #define ARM_VARIANT &arm_ext_v5exp /* ARM Architecture 5TExP. */
15088 TCE(smlabb, 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15089 TCE(smlatb, 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15090 TCE(smlabt, 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15091 TCE(smlatt, 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15092
15093 TCE(smlawb, 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15094 TCE(smlawt, 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15095
15096 TCE(smlalbb, 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15097 TCE(smlaltb, 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15098 TCE(smlalbt, 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15099 TCE(smlaltt, 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15100
15101 TCE(smulbb, 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15102 TCE(smultb, 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15103 TCE(smulbt, 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15104 TCE(smultt, 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15105
15106 TCE(smulwb, 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15107 TCE(smulwt, 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15108
15109 TCE(qadd, 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15110 TCE(qdadd, 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15111 TCE(qsub, 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15112 TCE(qdsub, 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15113
15114 #undef ARM_VARIANT
15115 #define ARM_VARIANT &arm_ext_v5e /* ARM Architecture 5TE. */
15116 TUF(pld, 450f000, f810f000, 1, (ADDR), pld, t_pld),
15117 TC3(ldrd, 00000d0, e8500000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
15118 TC3(strd, 00000f0, e8400000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
15119
15120 TCE(mcrr, c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15121 TCE(mrrc, c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15122
15123 #undef ARM_VARIANT
15124 #define ARM_VARIANT &arm_ext_v5j /* ARM Architecture 5TEJ. */
15125 TCE(bxj, 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
15126
15127 #undef ARM_VARIANT
15128 #define ARM_VARIANT &arm_ext_v6 /* ARM V6. */
15129 #undef THUMB_VARIANT
15130 #define THUMB_VARIANT &arm_ext_v6
15131 TUF(cpsie, 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
15132 TUF(cpsid, 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
15133 tCE(rev, 6bf0f30, rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15134 tCE(rev16, 6bf0fb0, rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15135 tCE(revsh, 6ff0fb0, revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15136 tCE(sxth, 6bf0070, sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15137 tCE(uxth, 6ff0070, uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15138 tCE(sxtb, 6af0070, sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15139 tCE(uxtb, 6ef0070, uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15140 TUF(setend, 1010000, b650, 1, (ENDI), setend, t_setend),
15141
15142 #undef THUMB_VARIANT
15143 #define THUMB_VARIANT &arm_ext_v6t2
15144 TCE(ldrex, 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
15145 TCE(strex, 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
15146 TUF(mcrr2, c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15147 TUF(mrrc2, c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15148
15149 TCE(ssat, 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
15150 TCE(usat, 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
15151
15152 /* ARM V6 not included in V7M (eg. integer SIMD). */
15153 #undef THUMB_VARIANT
15154 #define THUMB_VARIANT &arm_ext_v6_notm
15155 TUF(cps, 1020000, f3af8100, 1, (I31b), imm0, t_cps),
15156 TCE(pkhbt, 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
15157 TCE(pkhtb, 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
15158 TCE(qadd16, 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15159 TCE(qadd8, 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15160 TCE(qaddsubx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15161 TCE(qsub16, 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15162 TCE(qsub8, 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15163 TCE(qsubaddx, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15164 TCE(sadd16, 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15165 TCE(sadd8, 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15166 TCE(saddsubx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15167 TCE(shadd16, 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15168 TCE(shadd8, 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15169 TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15170 TCE(shsub16, 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15171 TCE(shsub8, 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15172 TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15173 TCE(ssub16, 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15174 TCE(ssub8, 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15175 TCE(ssubaddx, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15176 TCE(uadd16, 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15177 TCE(uadd8, 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15178 TCE(uaddsubx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15179 TCE(uhadd16, 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15180 TCE(uhadd8, 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15181 TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15182 TCE(uhsub16, 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15183 TCE(uhsub8, 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15184 TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15185 TCE(uqadd16, 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15186 TCE(uqadd8, 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15187 TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15188 TCE(uqsub16, 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15189 TCE(uqsub8, 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15190 TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15191 TCE(usub16, 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15192 TCE(usub8, 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15193 TCE(usubaddx, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15194 TUF(rfeia, 8900a00, e990c000, 1, (RRw), rfe, rfe),
15195 UF(rfeib, 9900a00, 1, (RRw), rfe),
15196 UF(rfeda, 8100a00, 1, (RRw), rfe),
15197 TUF(rfedb, 9100a00, e810c000, 1, (RRw), rfe, rfe),
15198 TUF(rfefd, 8900a00, e990c000, 1, (RRw), rfe, rfe),
15199 UF(rfefa, 9900a00, 1, (RRw), rfe),
15200 UF(rfeea, 8100a00, 1, (RRw), rfe),
15201 TUF(rfeed, 9100a00, e810c000, 1, (RRw), rfe, rfe),
15202 TCE(sxtah, 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15203 TCE(sxtab16, 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15204 TCE(sxtab, 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15205 TCE(sxtb16, 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15206 TCE(uxtah, 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15207 TCE(uxtab16, 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15208 TCE(uxtab, 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15209 TCE(uxtb16, 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15210 TCE(sel, 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15211 TCE(smlad, 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15212 TCE(smladx, 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15213 TCE(smlald, 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15214 TCE(smlaldx, 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15215 TCE(smlsd, 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15216 TCE(smlsdx, 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15217 TCE(smlsld, 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15218 TCE(smlsldx, 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15219 TCE(smmla, 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15220 TCE(smmlar, 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15221 TCE(smmls, 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15222 TCE(smmlsr, 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15223 TCE(smmul, 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15224 TCE(smmulr, 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15225 TCE(smuad, 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15226 TCE(smuadx, 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15227 TCE(smusd, 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15228 TCE(smusdx, 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15229 TUF(srsia, 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
15230 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
15231 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
15232 TUF(srsdb, 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
15233 TCE(ssat16, 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
15234 TCE(umaal, 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
15235 TCE(usad8, 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15236 TCE(usada8, 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15237 TCE(usat16, 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
15238
15239 #undef ARM_VARIANT
15240 #define ARM_VARIANT &arm_ext_v6k
15241 #undef THUMB_VARIANT
15242 #define THUMB_VARIANT &arm_ext_v6k
15243 tCE(yield, 320f001, yield, 0, (), noargs, t_hint),
15244 tCE(wfe, 320f002, wfe, 0, (), noargs, t_hint),
15245 tCE(wfi, 320f003, wfi, 0, (), noargs, t_hint),
15246 tCE(sev, 320f004, sev, 0, (), noargs, t_hint),
15247
15248 #undef THUMB_VARIANT
15249 #define THUMB_VARIANT &arm_ext_v6_notm
15250 TCE(ldrexd, 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
15251 TCE(strexd, 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
15252
15253 #undef THUMB_VARIANT
15254 #define THUMB_VARIANT &arm_ext_v6t2
15255 TCE(ldrexb, 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
15256 TCE(ldrexh, 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
15257 TCE(strexb, 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
15258 TCE(strexh, 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
15259 TUF(clrex, 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
15260
15261 #undef ARM_VARIANT
15262 #define ARM_VARIANT &arm_ext_v6z
15263 TCE(smc, 1600070, f7f08000, 1, (EXPi), smc, t_smc),
15264
15265 #undef ARM_VARIANT
15266 #define ARM_VARIANT &arm_ext_v6t2
15267 TCE(bfc, 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
15268 TCE(bfi, 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
15269 TCE(sbfx, 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15270 TCE(ubfx, 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15271
15272 TCE(mls, 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
15273 TCE(movw, 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
15274 TCE(movt, 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
15275 TCE(rbit, 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
15276
15277 TC3(ldrht, 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15278 TC3(ldrsht, 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15279 TC3(ldrsbt, 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15280 TC3(strht, 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15281
15282 UT(cbnz, b900, 2, (RR, EXP), t_cbz),
15283 UT(cbz, b100, 2, (RR, EXP), t_cbz),
15284 /* ARM does not really have an IT instruction, so always allow it. */
15285 #undef ARM_VARIANT
15286 #define ARM_VARIANT &arm_ext_v1
15287 TUE(it, 0, bf08, 1, (COND), it, t_it),
15288 TUE(itt, 0, bf0c, 1, (COND), it, t_it),
15289 TUE(ite, 0, bf04, 1, (COND), it, t_it),
15290 TUE(ittt, 0, bf0e, 1, (COND), it, t_it),
15291 TUE(itet, 0, bf06, 1, (COND), it, t_it),
15292 TUE(itte, 0, bf0a, 1, (COND), it, t_it),
15293 TUE(itee, 0, bf02, 1, (COND), it, t_it),
15294 TUE(itttt, 0, bf0f, 1, (COND), it, t_it),
15295 TUE(itett, 0, bf07, 1, (COND), it, t_it),
15296 TUE(ittet, 0, bf0b, 1, (COND), it, t_it),
15297 TUE(iteet, 0, bf03, 1, (COND), it, t_it),
15298 TUE(ittte, 0, bf0d, 1, (COND), it, t_it),
15299 TUE(itete, 0, bf05, 1, (COND), it, t_it),
15300 TUE(ittee, 0, bf09, 1, (COND), it, t_it),
15301 TUE(iteee, 0, bf01, 1, (COND), it, t_it),
15302
15303 /* Thumb2 only instructions. */
15304 #undef ARM_VARIANT
15305 #define ARM_VARIANT NULL
15306
15307 TCE(addw, 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15308 TCE(subw, 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15309 TCE(tbb, 0, e8d0f000, 1, (TB), 0, t_tb),
15310 TCE(tbh, 0, e8d0f010, 1, (TB), 0, t_tb),
15311
15312 /* Thumb-2 hardware division instructions (R and M profiles only). */
15313 #undef THUMB_VARIANT
15314 #define THUMB_VARIANT &arm_ext_div
15315 TCE(sdiv, 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
15316 TCE(udiv, 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
15317
15318 /* ARM V7 instructions. */
15319 #undef ARM_VARIANT
15320 #define ARM_VARIANT &arm_ext_v7
15321 #undef THUMB_VARIANT
15322 #define THUMB_VARIANT &arm_ext_v7
15323 TUF(pli, 450f000, f910f000, 1, (ADDR), pli, t_pld),
15324 TCE(dbg, 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
15325 TUF(dmb, 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
15326 TUF(dsb, 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
15327 TUF(isb, 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
15328
15329 #undef ARM_VARIANT
15330 #define ARM_VARIANT &fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
15331 cCE(wfs, e200110, 1, (RR), rd),
15332 cCE(rfs, e300110, 1, (RR), rd),
15333 cCE(wfc, e400110, 1, (RR), rd),
15334 cCE(rfc, e500110, 1, (RR), rd),
15335
15336 cCL(ldfs, c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
15337 cCL(ldfd, c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
15338 cCL(ldfe, c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
15339 cCL(ldfp, c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
15340
15341 cCL(stfs, c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
15342 cCL(stfd, c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
15343 cCL(stfe, c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
15344 cCL(stfp, c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
15345
15346 cCL(mvfs, e008100, 2, (RF, RF_IF), rd_rm),
15347 cCL(mvfsp, e008120, 2, (RF, RF_IF), rd_rm),
15348 cCL(mvfsm, e008140, 2, (RF, RF_IF), rd_rm),
15349 cCL(mvfsz, e008160, 2, (RF, RF_IF), rd_rm),
15350 cCL(mvfd, e008180, 2, (RF, RF_IF), rd_rm),
15351 cCL(mvfdp, e0081a0, 2, (RF, RF_IF), rd_rm),
15352 cCL(mvfdm, e0081c0, 2, (RF, RF_IF), rd_rm),
15353 cCL(mvfdz, e0081e0, 2, (RF, RF_IF), rd_rm),
15354 cCL(mvfe, e088100, 2, (RF, RF_IF), rd_rm),
15355 cCL(mvfep, e088120, 2, (RF, RF_IF), rd_rm),
15356 cCL(mvfem, e088140, 2, (RF, RF_IF), rd_rm),
15357 cCL(mvfez, e088160, 2, (RF, RF_IF), rd_rm),
15358
15359 cCL(mnfs, e108100, 2, (RF, RF_IF), rd_rm),
15360 cCL(mnfsp, e108120, 2, (RF, RF_IF), rd_rm),
15361 cCL(mnfsm, e108140, 2, (RF, RF_IF), rd_rm),
15362 cCL(mnfsz, e108160, 2, (RF, RF_IF), rd_rm),
15363 cCL(mnfd, e108180, 2, (RF, RF_IF), rd_rm),
15364 cCL(mnfdp, e1081a0, 2, (RF, RF_IF), rd_rm),
15365 cCL(mnfdm, e1081c0, 2, (RF, RF_IF), rd_rm),
15366 cCL(mnfdz, e1081e0, 2, (RF, RF_IF), rd_rm),
15367 cCL(mnfe, e188100, 2, (RF, RF_IF), rd_rm),
15368 cCL(mnfep, e188120, 2, (RF, RF_IF), rd_rm),
15369 cCL(mnfem, e188140, 2, (RF, RF_IF), rd_rm),
15370 cCL(mnfez, e188160, 2, (RF, RF_IF), rd_rm),
15371
15372 cCL(abss, e208100, 2, (RF, RF_IF), rd_rm),
15373 cCL(abssp, e208120, 2, (RF, RF_IF), rd_rm),
15374 cCL(abssm, e208140, 2, (RF, RF_IF), rd_rm),
15375 cCL(abssz, e208160, 2, (RF, RF_IF), rd_rm),
15376 cCL(absd, e208180, 2, (RF, RF_IF), rd_rm),
15377 cCL(absdp, e2081a0, 2, (RF, RF_IF), rd_rm),
15378 cCL(absdm, e2081c0, 2, (RF, RF_IF), rd_rm),
15379 cCL(absdz, e2081e0, 2, (RF, RF_IF), rd_rm),
15380 cCL(abse, e288100, 2, (RF, RF_IF), rd_rm),
15381 cCL(absep, e288120, 2, (RF, RF_IF), rd_rm),
15382 cCL(absem, e288140, 2, (RF, RF_IF), rd_rm),
15383 cCL(absez, e288160, 2, (RF, RF_IF), rd_rm),
15384
15385 cCL(rnds, e308100, 2, (RF, RF_IF), rd_rm),
15386 cCL(rndsp, e308120, 2, (RF, RF_IF), rd_rm),
15387 cCL(rndsm, e308140, 2, (RF, RF_IF), rd_rm),
15388 cCL(rndsz, e308160, 2, (RF, RF_IF), rd_rm),
15389 cCL(rndd, e308180, 2, (RF, RF_IF), rd_rm),
15390 cCL(rnddp, e3081a0, 2, (RF, RF_IF), rd_rm),
15391 cCL(rnddm, e3081c0, 2, (RF, RF_IF), rd_rm),
15392 cCL(rnddz, e3081e0, 2, (RF, RF_IF), rd_rm),
15393 cCL(rnde, e388100, 2, (RF, RF_IF), rd_rm),
15394 cCL(rndep, e388120, 2, (RF, RF_IF), rd_rm),
15395 cCL(rndem, e388140, 2, (RF, RF_IF), rd_rm),
15396 cCL(rndez, e388160, 2, (RF, RF_IF), rd_rm),
15397
15398 cCL(sqts, e408100, 2, (RF, RF_IF), rd_rm),
15399 cCL(sqtsp, e408120, 2, (RF, RF_IF), rd_rm),
15400 cCL(sqtsm, e408140, 2, (RF, RF_IF), rd_rm),
15401 cCL(sqtsz, e408160, 2, (RF, RF_IF), rd_rm),
15402 cCL(sqtd, e408180, 2, (RF, RF_IF), rd_rm),
15403 cCL(sqtdp, e4081a0, 2, (RF, RF_IF), rd_rm),
15404 cCL(sqtdm, e4081c0, 2, (RF, RF_IF), rd_rm),
15405 cCL(sqtdz, e4081e0, 2, (RF, RF_IF), rd_rm),
15406 cCL(sqte, e488100, 2, (RF, RF_IF), rd_rm),
15407 cCL(sqtep, e488120, 2, (RF, RF_IF), rd_rm),
15408 cCL(sqtem, e488140, 2, (RF, RF_IF), rd_rm),
15409 cCL(sqtez, e488160, 2, (RF, RF_IF), rd_rm),
15410
15411 cCL(logs, e508100, 2, (RF, RF_IF), rd_rm),
15412 cCL(logsp, e508120, 2, (RF, RF_IF), rd_rm),
15413 cCL(logsm, e508140, 2, (RF, RF_IF), rd_rm),
15414 cCL(logsz, e508160, 2, (RF, RF_IF), rd_rm),
15415 cCL(logd, e508180, 2, (RF, RF_IF), rd_rm),
15416 cCL(logdp, e5081a0, 2, (RF, RF_IF), rd_rm),
15417 cCL(logdm, e5081c0, 2, (RF, RF_IF), rd_rm),
15418 cCL(logdz, e5081e0, 2, (RF, RF_IF), rd_rm),
15419 cCL(loge, e588100, 2, (RF, RF_IF), rd_rm),
15420 cCL(logep, e588120, 2, (RF, RF_IF), rd_rm),
15421 cCL(logem, e588140, 2, (RF, RF_IF), rd_rm),
15422 cCL(logez, e588160, 2, (RF, RF_IF), rd_rm),
15423
15424 cCL(lgns, e608100, 2, (RF, RF_IF), rd_rm),
15425 cCL(lgnsp, e608120, 2, (RF, RF_IF), rd_rm),
15426 cCL(lgnsm, e608140, 2, (RF, RF_IF), rd_rm),
15427 cCL(lgnsz, e608160, 2, (RF, RF_IF), rd_rm),
15428 cCL(lgnd, e608180, 2, (RF, RF_IF), rd_rm),
15429 cCL(lgndp, e6081a0, 2, (RF, RF_IF), rd_rm),
15430 cCL(lgndm, e6081c0, 2, (RF, RF_IF), rd_rm),
15431 cCL(lgndz, e6081e0, 2, (RF, RF_IF), rd_rm),
15432 cCL(lgne, e688100, 2, (RF, RF_IF), rd_rm),
15433 cCL(lgnep, e688120, 2, (RF, RF_IF), rd_rm),
15434 cCL(lgnem, e688140, 2, (RF, RF_IF), rd_rm),
15435 cCL(lgnez, e688160, 2, (RF, RF_IF), rd_rm),
15436
15437 cCL(exps, e708100, 2, (RF, RF_IF), rd_rm),
15438 cCL(expsp, e708120, 2, (RF, RF_IF), rd_rm),
15439 cCL(expsm, e708140, 2, (RF, RF_IF), rd_rm),
15440 cCL(expsz, e708160, 2, (RF, RF_IF), rd_rm),
15441 cCL(expd, e708180, 2, (RF, RF_IF), rd_rm),
15442 cCL(expdp, e7081a0, 2, (RF, RF_IF), rd_rm),
15443 cCL(expdm, e7081c0, 2, (RF, RF_IF), rd_rm),
15444 cCL(expdz, e7081e0, 2, (RF, RF_IF), rd_rm),
15445 cCL(expe, e788100, 2, (RF, RF_IF), rd_rm),
15446 cCL(expep, e788120, 2, (RF, RF_IF), rd_rm),
15447 cCL(expem, e788140, 2, (RF, RF_IF), rd_rm),
15448 cCL(expdz, e788160, 2, (RF, RF_IF), rd_rm),
15449
15450 cCL(sins, e808100, 2, (RF, RF_IF), rd_rm),
15451 cCL(sinsp, e808120, 2, (RF, RF_IF), rd_rm),
15452 cCL(sinsm, e808140, 2, (RF, RF_IF), rd_rm),
15453 cCL(sinsz, e808160, 2, (RF, RF_IF), rd_rm),
15454 cCL(sind, e808180, 2, (RF, RF_IF), rd_rm),
15455 cCL(sindp, e8081a0, 2, (RF, RF_IF), rd_rm),
15456 cCL(sindm, e8081c0, 2, (RF, RF_IF), rd_rm),
15457 cCL(sindz, e8081e0, 2, (RF, RF_IF), rd_rm),
15458 cCL(sine, e888100, 2, (RF, RF_IF), rd_rm),
15459 cCL(sinep, e888120, 2, (RF, RF_IF), rd_rm),
15460 cCL(sinem, e888140, 2, (RF, RF_IF), rd_rm),
15461 cCL(sinez, e888160, 2, (RF, RF_IF), rd_rm),
15462
15463 cCL(coss, e908100, 2, (RF, RF_IF), rd_rm),
15464 cCL(cossp, e908120, 2, (RF, RF_IF), rd_rm),
15465 cCL(cossm, e908140, 2, (RF, RF_IF), rd_rm),
15466 cCL(cossz, e908160, 2, (RF, RF_IF), rd_rm),
15467 cCL(cosd, e908180, 2, (RF, RF_IF), rd_rm),
15468 cCL(cosdp, e9081a0, 2, (RF, RF_IF), rd_rm),
15469 cCL(cosdm, e9081c0, 2, (RF, RF_IF), rd_rm),
15470 cCL(cosdz, e9081e0, 2, (RF, RF_IF), rd_rm),
15471 cCL(cose, e988100, 2, (RF, RF_IF), rd_rm),
15472 cCL(cosep, e988120, 2, (RF, RF_IF), rd_rm),
15473 cCL(cosem, e988140, 2, (RF, RF_IF), rd_rm),
15474 cCL(cosez, e988160, 2, (RF, RF_IF), rd_rm),
15475
15476 cCL(tans, ea08100, 2, (RF, RF_IF), rd_rm),
15477 cCL(tansp, ea08120, 2, (RF, RF_IF), rd_rm),
15478 cCL(tansm, ea08140, 2, (RF, RF_IF), rd_rm),
15479 cCL(tansz, ea08160, 2, (RF, RF_IF), rd_rm),
15480 cCL(tand, ea08180, 2, (RF, RF_IF), rd_rm),
15481 cCL(tandp, ea081a0, 2, (RF, RF_IF), rd_rm),
15482 cCL(tandm, ea081c0, 2, (RF, RF_IF), rd_rm),
15483 cCL(tandz, ea081e0, 2, (RF, RF_IF), rd_rm),
15484 cCL(tane, ea88100, 2, (RF, RF_IF), rd_rm),
15485 cCL(tanep, ea88120, 2, (RF, RF_IF), rd_rm),
15486 cCL(tanem, ea88140, 2, (RF, RF_IF), rd_rm),
15487 cCL(tanez, ea88160, 2, (RF, RF_IF), rd_rm),
15488
15489 cCL(asns, eb08100, 2, (RF, RF_IF), rd_rm),
15490 cCL(asnsp, eb08120, 2, (RF, RF_IF), rd_rm),
15491 cCL(asnsm, eb08140, 2, (RF, RF_IF), rd_rm),
15492 cCL(asnsz, eb08160, 2, (RF, RF_IF), rd_rm),
15493 cCL(asnd, eb08180, 2, (RF, RF_IF), rd_rm),
15494 cCL(asndp, eb081a0, 2, (RF, RF_IF), rd_rm),
15495 cCL(asndm, eb081c0, 2, (RF, RF_IF), rd_rm),
15496 cCL(asndz, eb081e0, 2, (RF, RF_IF), rd_rm),
15497 cCL(asne, eb88100, 2, (RF, RF_IF), rd_rm),
15498 cCL(asnep, eb88120, 2, (RF, RF_IF), rd_rm),
15499 cCL(asnem, eb88140, 2, (RF, RF_IF), rd_rm),
15500 cCL(asnez, eb88160, 2, (RF, RF_IF), rd_rm),
15501
15502 cCL(acss, ec08100, 2, (RF, RF_IF), rd_rm),
15503 cCL(acssp, ec08120, 2, (RF, RF_IF), rd_rm),
15504 cCL(acssm, ec08140, 2, (RF, RF_IF), rd_rm),
15505 cCL(acssz, ec08160, 2, (RF, RF_IF), rd_rm),
15506 cCL(acsd, ec08180, 2, (RF, RF_IF), rd_rm),
15507 cCL(acsdp, ec081a0, 2, (RF, RF_IF), rd_rm),
15508 cCL(acsdm, ec081c0, 2, (RF, RF_IF), rd_rm),
15509 cCL(acsdz, ec081e0, 2, (RF, RF_IF), rd_rm),
15510 cCL(acse, ec88100, 2, (RF, RF_IF), rd_rm),
15511 cCL(acsep, ec88120, 2, (RF, RF_IF), rd_rm),
15512 cCL(acsem, ec88140, 2, (RF, RF_IF), rd_rm),
15513 cCL(acsez, ec88160, 2, (RF, RF_IF), rd_rm),
15514
15515 cCL(atns, ed08100, 2, (RF, RF_IF), rd_rm),
15516 cCL(atnsp, ed08120, 2, (RF, RF_IF), rd_rm),
15517 cCL(atnsm, ed08140, 2, (RF, RF_IF), rd_rm),
15518 cCL(atnsz, ed08160, 2, (RF, RF_IF), rd_rm),
15519 cCL(atnd, ed08180, 2, (RF, RF_IF), rd_rm),
15520 cCL(atndp, ed081a0, 2, (RF, RF_IF), rd_rm),
15521 cCL(atndm, ed081c0, 2, (RF, RF_IF), rd_rm),
15522 cCL(atndz, ed081e0, 2, (RF, RF_IF), rd_rm),
15523 cCL(atne, ed88100, 2, (RF, RF_IF), rd_rm),
15524 cCL(atnep, ed88120, 2, (RF, RF_IF), rd_rm),
15525 cCL(atnem, ed88140, 2, (RF, RF_IF), rd_rm),
15526 cCL(atnez, ed88160, 2, (RF, RF_IF), rd_rm),
15527
15528 cCL(urds, ee08100, 2, (RF, RF_IF), rd_rm),
15529 cCL(urdsp, ee08120, 2, (RF, RF_IF), rd_rm),
15530 cCL(urdsm, ee08140, 2, (RF, RF_IF), rd_rm),
15531 cCL(urdsz, ee08160, 2, (RF, RF_IF), rd_rm),
15532 cCL(urdd, ee08180, 2, (RF, RF_IF), rd_rm),
15533 cCL(urddp, ee081a0, 2, (RF, RF_IF), rd_rm),
15534 cCL(urddm, ee081c0, 2, (RF, RF_IF), rd_rm),
15535 cCL(urddz, ee081e0, 2, (RF, RF_IF), rd_rm),
15536 cCL(urde, ee88100, 2, (RF, RF_IF), rd_rm),
15537 cCL(urdep, ee88120, 2, (RF, RF_IF), rd_rm),
15538 cCL(urdem, ee88140, 2, (RF, RF_IF), rd_rm),
15539 cCL(urdez, ee88160, 2, (RF, RF_IF), rd_rm),
15540
15541 cCL(nrms, ef08100, 2, (RF, RF_IF), rd_rm),
15542 cCL(nrmsp, ef08120, 2, (RF, RF_IF), rd_rm),
15543 cCL(nrmsm, ef08140, 2, (RF, RF_IF), rd_rm),
15544 cCL(nrmsz, ef08160, 2, (RF, RF_IF), rd_rm),
15545 cCL(nrmd, ef08180, 2, (RF, RF_IF), rd_rm),
15546 cCL(nrmdp, ef081a0, 2, (RF, RF_IF), rd_rm),
15547 cCL(nrmdm, ef081c0, 2, (RF, RF_IF), rd_rm),
15548 cCL(nrmdz, ef081e0, 2, (RF, RF_IF), rd_rm),
15549 cCL(nrme, ef88100, 2, (RF, RF_IF), rd_rm),
15550 cCL(nrmep, ef88120, 2, (RF, RF_IF), rd_rm),
15551 cCL(nrmem, ef88140, 2, (RF, RF_IF), rd_rm),
15552 cCL(nrmez, ef88160, 2, (RF, RF_IF), rd_rm),
15553
15554 cCL(adfs, e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
15555 cCL(adfsp, e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
15556 cCL(adfsm, e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
15557 cCL(adfsz, e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
15558 cCL(adfd, e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
15559 cCL(adfdp, e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15560 cCL(adfdm, e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15561 cCL(adfdz, e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15562 cCL(adfe, e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
15563 cCL(adfep, e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
15564 cCL(adfem, e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
15565 cCL(adfez, e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
15566
15567 cCL(sufs, e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
15568 cCL(sufsp, e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
15569 cCL(sufsm, e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
15570 cCL(sufsz, e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
15571 cCL(sufd, e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
15572 cCL(sufdp, e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15573 cCL(sufdm, e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15574 cCL(sufdz, e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15575 cCL(sufe, e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
15576 cCL(sufep, e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
15577 cCL(sufem, e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
15578 cCL(sufez, e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
15579
15580 cCL(rsfs, e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
15581 cCL(rsfsp, e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
15582 cCL(rsfsm, e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
15583 cCL(rsfsz, e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
15584 cCL(rsfd, e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
15585 cCL(rsfdp, e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15586 cCL(rsfdm, e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15587 cCL(rsfdz, e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15588 cCL(rsfe, e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
15589 cCL(rsfep, e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
15590 cCL(rsfem, e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
15591 cCL(rsfez, e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
15592
15593 cCL(mufs, e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
15594 cCL(mufsp, e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
15595 cCL(mufsm, e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
15596 cCL(mufsz, e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
15597 cCL(mufd, e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
15598 cCL(mufdp, e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15599 cCL(mufdm, e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15600 cCL(mufdz, e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15601 cCL(mufe, e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
15602 cCL(mufep, e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
15603 cCL(mufem, e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
15604 cCL(mufez, e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
15605
15606 cCL(dvfs, e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
15607 cCL(dvfsp, e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
15608 cCL(dvfsm, e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
15609 cCL(dvfsz, e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
15610 cCL(dvfd, e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
15611 cCL(dvfdp, e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15612 cCL(dvfdm, e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15613 cCL(dvfdz, e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15614 cCL(dvfe, e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
15615 cCL(dvfep, e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
15616 cCL(dvfem, e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
15617 cCL(dvfez, e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
15618
15619 cCL(rdfs, e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
15620 cCL(rdfsp, e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
15621 cCL(rdfsm, e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
15622 cCL(rdfsz, e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
15623 cCL(rdfd, e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
15624 cCL(rdfdp, e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15625 cCL(rdfdm, e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15626 cCL(rdfdz, e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15627 cCL(rdfe, e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
15628 cCL(rdfep, e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
15629 cCL(rdfem, e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
15630 cCL(rdfez, e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
15631
15632 cCL(pows, e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
15633 cCL(powsp, e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
15634 cCL(powsm, e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
15635 cCL(powsz, e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
15636 cCL(powd, e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
15637 cCL(powdp, e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15638 cCL(powdm, e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15639 cCL(powdz, e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15640 cCL(powe, e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
15641 cCL(powep, e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
15642 cCL(powem, e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
15643 cCL(powez, e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
15644
15645 cCL(rpws, e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
15646 cCL(rpwsp, e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
15647 cCL(rpwsm, e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
15648 cCL(rpwsz, e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
15649 cCL(rpwd, e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
15650 cCL(rpwdp, e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15651 cCL(rpwdm, e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15652 cCL(rpwdz, e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15653 cCL(rpwe, e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
15654 cCL(rpwep, e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
15655 cCL(rpwem, e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
15656 cCL(rpwez, e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
15657
15658 cCL(rmfs, e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
15659 cCL(rmfsp, e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
15660 cCL(rmfsm, e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
15661 cCL(rmfsz, e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
15662 cCL(rmfd, e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
15663 cCL(rmfdp, e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15664 cCL(rmfdm, e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15665 cCL(rmfdz, e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15666 cCL(rmfe, e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
15667 cCL(rmfep, e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
15668 cCL(rmfem, e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
15669 cCL(rmfez, e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
15670
15671 cCL(fmls, e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
15672 cCL(fmlsp, e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
15673 cCL(fmlsm, e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
15674 cCL(fmlsz, e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
15675 cCL(fmld, e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
15676 cCL(fmldp, e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15677 cCL(fmldm, e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15678 cCL(fmldz, e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15679 cCL(fmle, e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
15680 cCL(fmlep, e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
15681 cCL(fmlem, e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
15682 cCL(fmlez, e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
15683
15684 cCL(fdvs, ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15685 cCL(fdvsp, ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15686 cCL(fdvsm, ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15687 cCL(fdvsz, ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15688 cCL(fdvd, ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15689 cCL(fdvdp, ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15690 cCL(fdvdm, ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15691 cCL(fdvdz, ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15692 cCL(fdve, ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15693 cCL(fdvep, ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15694 cCL(fdvem, ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15695 cCL(fdvez, ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15696
15697 cCL(frds, eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15698 cCL(frdsp, eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15699 cCL(frdsm, eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15700 cCL(frdsz, eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15701 cCL(frdd, eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15702 cCL(frddp, eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15703 cCL(frddm, eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15704 cCL(frddz, eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15705 cCL(frde, eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15706 cCL(frdep, eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15707 cCL(frdem, eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15708 cCL(frdez, eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15709
15710 cCL(pols, ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15711 cCL(polsp, ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15712 cCL(polsm, ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15713 cCL(polsz, ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15714 cCL(pold, ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15715 cCL(poldp, ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15716 cCL(poldm, ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15717 cCL(poldz, ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15718 cCL(pole, ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15719 cCL(polep, ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15720 cCL(polem, ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15721 cCL(polez, ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15722
15723 cCE(cmf, e90f110, 2, (RF, RF_IF), fpa_cmp),
15724 C3E(cmfe, ed0f110, 2, (RF, RF_IF), fpa_cmp),
15725 cCE(cnf, eb0f110, 2, (RF, RF_IF), fpa_cmp),
15726 C3E(cnfe, ef0f110, 2, (RF, RF_IF), fpa_cmp),
15727
15728 cCL(flts, e000110, 2, (RF, RR), rn_rd),
15729 cCL(fltsp, e000130, 2, (RF, RR), rn_rd),
15730 cCL(fltsm, e000150, 2, (RF, RR), rn_rd),
15731 cCL(fltsz, e000170, 2, (RF, RR), rn_rd),
15732 cCL(fltd, e000190, 2, (RF, RR), rn_rd),
15733 cCL(fltdp, e0001b0, 2, (RF, RR), rn_rd),
15734 cCL(fltdm, e0001d0, 2, (RF, RR), rn_rd),
15735 cCL(fltdz, e0001f0, 2, (RF, RR), rn_rd),
15736 cCL(flte, e080110, 2, (RF, RR), rn_rd),
15737 cCL(fltep, e080130, 2, (RF, RR), rn_rd),
15738 cCL(fltem, e080150, 2, (RF, RR), rn_rd),
15739 cCL(fltez, e080170, 2, (RF, RR), rn_rd),
15740
15741 /* The implementation of the FIX instruction is broken on some
15742 assemblers, in that it accepts a precision specifier as well as a
15743 rounding specifier, despite the fact that this is meaningless.
15744 To be more compatible, we accept it as well, though of course it
15745 does not set any bits. */
15746 cCE(fix, e100110, 2, (RR, RF), rd_rm),
15747 cCL(fixp, e100130, 2, (RR, RF), rd_rm),
15748 cCL(fixm, e100150, 2, (RR, RF), rd_rm),
15749 cCL(fixz, e100170, 2, (RR, RF), rd_rm),
15750 cCL(fixsp, e100130, 2, (RR, RF), rd_rm),
15751 cCL(fixsm, e100150, 2, (RR, RF), rd_rm),
15752 cCL(fixsz, e100170, 2, (RR, RF), rd_rm),
15753 cCL(fixdp, e100130, 2, (RR, RF), rd_rm),
15754 cCL(fixdm, e100150, 2, (RR, RF), rd_rm),
15755 cCL(fixdz, e100170, 2, (RR, RF), rd_rm),
15756 cCL(fixep, e100130, 2, (RR, RF), rd_rm),
15757 cCL(fixem, e100150, 2, (RR, RF), rd_rm),
15758 cCL(fixez, e100170, 2, (RR, RF), rd_rm),
15759
15760 /* Instructions that were new with the real FPA, call them V2. */
15761 #undef ARM_VARIANT
15762 #define ARM_VARIANT &fpu_fpa_ext_v2
15763 cCE(lfm, c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15764 cCL(lfmfd, c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15765 cCL(lfmea, d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15766 cCE(sfm, c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15767 cCL(sfmfd, d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15768 cCL(sfmea, c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15769
15770 #undef ARM_VARIANT
15771 #define ARM_VARIANT &fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
15772 /* Moves and type conversions. */
15773 cCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
15774 cCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
15775 cCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
15776 cCE(fmstat, ef1fa10, 0, (), noargs),
15777 cCE(fsitos, eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
15778 cCE(fuitos, eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
15779 cCE(ftosis, ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
15780 cCE(ftosizs, ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15781 cCE(ftouis, ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
15782 cCE(ftouizs, ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15783 cCE(fmrx, ef00a10, 2, (RR, RVC), rd_rn),
15784 cCE(fmxr, ee00a10, 2, (RVC, RR), rn_rd),
15785
15786 /* Memory operations. */
15787 cCE(flds, d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
15788 cCE(fsts, d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
15789 cCE(fldmias, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15790 cCE(fldmfds, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15791 cCE(fldmdbs, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15792 cCE(fldmeas, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15793 cCE(fldmiax, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15794 cCE(fldmfdx, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15795 cCE(fldmdbx, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15796 cCE(fldmeax, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15797 cCE(fstmias, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15798 cCE(fstmeas, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15799 cCE(fstmdbs, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15800 cCE(fstmfds, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15801 cCE(fstmiax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15802 cCE(fstmeax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15803 cCE(fstmdbx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15804 cCE(fstmfdx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15805
15806 /* Monadic operations. */
15807 cCE(fabss, eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
15808 cCE(fnegs, eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
15809 cCE(fsqrts, eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
15810
15811 /* Dyadic operations. */
15812 cCE(fadds, e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15813 cCE(fsubs, e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15814 cCE(fmuls, e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15815 cCE(fdivs, e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15816 cCE(fmacs, e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15817 cCE(fmscs, e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15818 cCE(fnmuls, e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15819 cCE(fnmacs, e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15820 cCE(fnmscs, e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15821
15822 /* Comparisons. */
15823 cCE(fcmps, eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
15824 cCE(fcmpzs, eb50a40, 1, (RVS), vfp_sp_compare_z),
15825 cCE(fcmpes, eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
15826 cCE(fcmpezs, eb50ac0, 1, (RVS), vfp_sp_compare_z),
15827
15828 #undef ARM_VARIANT
15829 #define ARM_VARIANT &fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
15830 /* Moves and type conversions. */
15831 cCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15832 cCE(fcvtds, eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15833 cCE(fcvtsd, eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15834 cCE(fmdhr, e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
15835 cCE(fmdlr, e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
15836 cCE(fmrdh, e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
15837 cCE(fmrdl, e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
15838 cCE(fsitod, eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15839 cCE(fuitod, eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
15840 cCE(ftosid, ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15841 cCE(ftosizd, ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15842 cCE(ftouid, ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15843 cCE(ftouizd, ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15844
15845 /* Memory operations. */
15846 cCE(fldd, d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
15847 cCE(fstd, d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
15848 cCE(fldmiad, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15849 cCE(fldmfdd, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15850 cCE(fldmdbd, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15851 cCE(fldmead, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15852 cCE(fstmiad, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15853 cCE(fstmead, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15854 cCE(fstmdbd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15855 cCE(fstmfdd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15856
15857 /* Monadic operations. */
15858 cCE(fabsd, eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15859 cCE(fnegd, eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15860 cCE(fsqrtd, eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15861
15862 /* Dyadic operations. */
15863 cCE(faddd, e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15864 cCE(fsubd, e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15865 cCE(fmuld, e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15866 cCE(fdivd, e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15867 cCE(fmacd, e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15868 cCE(fmscd, e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15869 cCE(fnmuld, e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15870 cCE(fnmacd, e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15871 cCE(fnmscd, e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15872
15873 /* Comparisons. */
15874 cCE(fcmpd, eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15875 cCE(fcmpzd, eb50b40, 1, (RVD), vfp_dp_rd),
15876 cCE(fcmped, eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15877 cCE(fcmpezd, eb50bc0, 1, (RVD), vfp_dp_rd),
15878
15879 #undef ARM_VARIANT
15880 #define ARM_VARIANT &fpu_vfp_ext_v2
15881 cCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
15882 cCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
15883 cCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
15884 cCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
15885
15886 /* Instructions which may belong to either the Neon or VFP instruction sets.
15887 Individual encoder functions perform additional architecture checks. */
15888 #undef ARM_VARIANT
15889 #define ARM_VARIANT &fpu_vfp_ext_v1xd
15890 #undef THUMB_VARIANT
15891 #define THUMB_VARIANT &fpu_vfp_ext_v1xd
15892 /* These mnemonics are unique to VFP. */
15893 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
15894 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
15895 nCE(vnmul, vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15896 nCE(vnmla, vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15897 nCE(vnmls, vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15898 nCE(vcmp, vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
15899 nCE(vcmpe, vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
15900 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
15901 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
15902 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
15903
15904 /* Mnemonics shared by Neon and VFP. */
15905 nCEF(vmul, vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
15906 nCEF(vmla, vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
15907 nCEF(vmls, vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
15908
15909 nCEF(vadd, vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
15910 nCEF(vsub, vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
15911
15912 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
15913 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
15914
15915 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15916 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15917 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15918 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15919 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15920 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15921 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
15922 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
15923
15924 nCEF(vcvt, vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
15925
15926 /* NOTE: All VMOV encoding is special-cased! */
15927 NCE(vmov, 0, 1, (VMOV), neon_mov),
15928 NCE(vmovq, 0, 1, (VMOV), neon_mov),
15929
15930 #undef THUMB_VARIANT
15931 #define THUMB_VARIANT &fpu_neon_ext_v1
15932 #undef ARM_VARIANT
15933 #define ARM_VARIANT &fpu_neon_ext_v1
15934 /* Data processing with three registers of the same length. */
15935 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
15936 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
15937 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
15938 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15939 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15940 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15941 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15942 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15943 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15944 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
15945 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15946 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
15947 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15948 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
15949 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
15950 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
15951 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
15952 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
15953 /* If not immediate, fall back to neon_dyadic_i64_su.
15954 shl_imm should accept I8 I16 I32 I64,
15955 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
15956 nUF(vshl, vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
15957 nUF(vshlq, vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
15958 nUF(vqshl, vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
15959 nUF(vqshlq, vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
15960 /* Logic ops, types optional & ignored. */
15961 nUF(vand, vand, 2, (RNDQ, NILO), neon_logic),
15962 nUF(vandq, vand, 2, (RNQ, NILO), neon_logic),
15963 nUF(vbic, vbic, 2, (RNDQ, NILO), neon_logic),
15964 nUF(vbicq, vbic, 2, (RNQ, NILO), neon_logic),
15965 nUF(vorr, vorr, 2, (RNDQ, NILO), neon_logic),
15966 nUF(vorrq, vorr, 2, (RNQ, NILO), neon_logic),
15967 nUF(vorn, vorn, 2, (RNDQ, NILO), neon_logic),
15968 nUF(vornq, vorn, 2, (RNQ, NILO), neon_logic),
15969 nUF(veor, veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
15970 nUF(veorq, veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
15971 /* Bitfield ops, untyped. */
15972 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15973 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15974 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15975 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15976 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15977 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15978 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
15979 nUF(vabd, vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15980 nUF(vabdq, vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15981 nUF(vmax, vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15982 nUF(vmaxq, vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15983 nUF(vmin, vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15984 nUF(vminq, vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15985 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
15986 back to neon_dyadic_if_su. */
15987 nUF(vcge, vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
15988 nUF(vcgeq, vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
15989 nUF(vcgt, vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
15990 nUF(vcgtq, vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
15991 nUF(vclt, vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
15992 nUF(vcltq, vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
15993 nUF(vcle, vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
15994 nUF(vcleq, vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
15995 /* Comparison. Type I8 I16 I32 F32. */
15996 nUF(vceq, vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
15997 nUF(vceqq, vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
15998 /* As above, D registers only. */
15999 nUF(vpmax, vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
16000 nUF(vpmin, vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
16001 /* Int and float variants, signedness unimportant. */
16002 nUF(vmlaq, vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
16003 nUF(vmlsq, vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
16004 nUF(vpadd, vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
16005 /* Add/sub take types I8 I16 I32 I64 F32. */
16006 nUF(vaddq, vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
16007 nUF(vsubq, vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
16008 /* vtst takes sizes 8, 16, 32. */
16009 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
16010 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
16011 /* VMUL takes I8 I16 I32 F32 P8. */
16012 nUF(vmulq, vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
16013 /* VQD{R}MULH takes S16 S32. */
16014 nUF(vqdmulh, vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
16015 nUF(vqdmulhq, vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
16016 nUF(vqrdmulh, vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
16017 nUF(vqrdmulhq, vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
16018 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
16019 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
16020 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
16021 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
16022 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
16023 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
16024 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
16025 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
16026 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
16027 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
16028 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
16029 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
16030
16031 /* Two address, int/float. Types S8 S16 S32 F32. */
16032 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
16033 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
16034
16035 /* Data processing with two registers and a shift amount. */
16036 /* Right shifts, and variants with rounding.
16037 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
16038 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
16039 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
16040 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
16041 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
16042 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
16043 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
16044 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
16045 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
16046 /* Shift and insert. Sizes accepted 8 16 32 64. */
16047 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
16048 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
16049 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
16050 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
16051 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
16052 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
16053 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
16054 /* Right shift immediate, saturating & narrowing, with rounding variants.
16055 Types accepted S16 S32 S64 U16 U32 U64. */
16056 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
16057 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
16058 /* As above, unsigned. Types accepted S16 S32 S64. */
16059 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
16060 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
16061 /* Right shift narrowing. Types accepted I16 I32 I64. */
16062 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
16063 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
16064 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
16065 nUF(vshll, vshll, 3, (RNQ, RND, I32), neon_shll),
16066 /* CVT with optional immediate for fixed-point variant. */
16067 nUF(vcvtq, vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
16068
16069 nUF(vmvn, vmvn, 2, (RNDQ, RNDQ_IMVNb), neon_mvn),
16070 nUF(vmvnq, vmvn, 2, (RNQ, RNDQ_IMVNb), neon_mvn),
16071
16072 /* Data processing, three registers of different lengths. */
16073 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
16074 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
16075 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
16076 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
16077 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
16078 /* If not scalar, fall back to neon_dyadic_long.
16079 Vector types as above, scalar types S16 S32 U16 U32. */
16080 nUF(vmlal, vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
16081 nUF(vmlsl, vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
16082 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
16083 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
16084 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
16085 /* Dyadic, narrowing insns. Types I16 I32 I64. */
16086 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16087 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16088 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16089 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16090 /* Saturating doubling multiplies. Types S16 S32. */
16091 nUF(vqdmlal, vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16092 nUF(vqdmlsl, vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16093 nUF(vqdmull, vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16094 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
16095 S16 S32 U16 U32. */
16096 nUF(vmull, vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
16097
16098 /* Extract. Size 8. */
16099 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
16100 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
16101
16102 /* Two registers, miscellaneous. */
16103 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
16104 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
16105 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
16106 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
16107 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
16108 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
16109 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
16110 /* Vector replicate. Sizes 8 16 32. */
16111 nCE(vdup, vdup, 2, (RNDQ, RR_RNSC), neon_dup),
16112 nCE(vdupq, vdup, 2, (RNQ, RR_RNSC), neon_dup),
16113 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
16114 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
16115 /* VMOVN. Types I16 I32 I64. */
16116 nUF(vmovn, vmovn, 2, (RND, RNQ), neon_movn),
16117 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
16118 nUF(vqmovn, vqmovn, 2, (RND, RNQ), neon_qmovn),
16119 /* VQMOVUN. Types S16 S32 S64. */
16120 nUF(vqmovun, vqmovun, 2, (RND, RNQ), neon_qmovun),
16121 /* VZIP / VUZP. Sizes 8 16 32. */
16122 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
16123 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
16124 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
16125 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
16126 /* VQABS / VQNEG. Types S8 S16 S32. */
16127 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
16128 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
16129 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
16130 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
16131 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
16132 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
16133 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
16134 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
16135 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
16136 /* Reciprocal estimates. Types U32 F32. */
16137 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
16138 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
16139 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
16140 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
16141 /* VCLS. Types S8 S16 S32. */
16142 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
16143 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
16144 /* VCLZ. Types I8 I16 I32. */
16145 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
16146 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
16147 /* VCNT. Size 8. */
16148 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
16149 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
16150 /* Two address, untyped. */
16151 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
16152 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
16153 /* VTRN. Sizes 8 16 32. */
16154 nUF(vtrn, vtrn, 2, (RNDQ, RNDQ), neon_trn),
16155 nUF(vtrnq, vtrn, 2, (RNQ, RNQ), neon_trn),
16156
16157 /* Table lookup. Size 8. */
16158 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
16159 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
16160
16161 #undef THUMB_VARIANT
16162 #define THUMB_VARIANT &fpu_vfp_v3_or_neon_ext
16163 #undef ARM_VARIANT
16164 #define ARM_VARIANT &fpu_vfp_v3_or_neon_ext
16165 /* Neon element/structure load/store. */
16166 nUF(vld1, vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
16167 nUF(vst1, vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
16168 nUF(vld2, vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
16169 nUF(vst2, vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
16170 nUF(vld3, vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
16171 nUF(vst3, vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
16172 nUF(vld4, vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
16173 nUF(vst4, vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
16174
16175 #undef THUMB_VARIANT
16176 #define THUMB_VARIANT &fpu_vfp_ext_v3
16177 #undef ARM_VARIANT
16178 #define ARM_VARIANT &fpu_vfp_ext_v3
16179 cCE(fconsts, eb00a00, 2, (RVS, I255), vfp_sp_const),
16180 cCE(fconstd, eb00b00, 2, (RVD, I255), vfp_dp_const),
16181 cCE(fshtos, eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16182 cCE(fshtod, eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16183 cCE(fsltos, eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16184 cCE(fsltod, eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16185 cCE(fuhtos, ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16186 cCE(fuhtod, ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16187 cCE(fultos, ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16188 cCE(fultod, ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16189 cCE(ftoshs, ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16190 cCE(ftoshd, ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16191 cCE(ftosls, ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16192 cCE(ftosld, ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16193 cCE(ftouhs, ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16194 cCE(ftouhd, ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16195 cCE(ftouls, ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16196 cCE(ftould, ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16197
16198 #undef THUMB_VARIANT
16199 #undef ARM_VARIANT
16200 #define ARM_VARIANT &arm_cext_xscale /* Intel XScale extensions. */
16201 cCE(mia, e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16202 cCE(miaph, e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16203 cCE(miabb, e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16204 cCE(miabt, e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16205 cCE(miatb, e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16206 cCE(miatt, e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16207 cCE(mar, c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
16208 cCE(mra, c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
16209
16210 #undef ARM_VARIANT
16211 #define ARM_VARIANT &arm_cext_iwmmxt /* Intel Wireless MMX technology. */
16212 cCE(tandcb, e13f130, 1, (RR), iwmmxt_tandorc),
16213 cCE(tandch, e53f130, 1, (RR), iwmmxt_tandorc),
16214 cCE(tandcw, e93f130, 1, (RR), iwmmxt_tandorc),
16215 cCE(tbcstb, e400010, 2, (RIWR, RR), rn_rd),
16216 cCE(tbcsth, e400050, 2, (RIWR, RR), rn_rd),
16217 cCE(tbcstw, e400090, 2, (RIWR, RR), rn_rd),
16218 cCE(textrcb, e130170, 2, (RR, I7), iwmmxt_textrc),
16219 cCE(textrch, e530170, 2, (RR, I7), iwmmxt_textrc),
16220 cCE(textrcw, e930170, 2, (RR, I7), iwmmxt_textrc),
16221 cCE(textrmub, e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16222 cCE(textrmuh, e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16223 cCE(textrmuw, e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16224 cCE(textrmsb, e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16225 cCE(textrmsh, e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16226 cCE(textrmsw, e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16227 cCE(tinsrb, e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16228 cCE(tinsrh, e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16229 cCE(tinsrw, e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16230 cCE(tmcr, e000110, 2, (RIWC_RIWG, RR), rn_rd),
16231 cCE(tmcrr, c400000, 3, (RIWR, RR, RR), rm_rd_rn),
16232 cCE(tmia, e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16233 cCE(tmiaph, e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16234 cCE(tmiabb, e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16235 cCE(tmiabt, e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16236 cCE(tmiatb, e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16237 cCE(tmiatt, e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16238 cCE(tmovmskb, e100030, 2, (RR, RIWR), rd_rn),
16239 cCE(tmovmskh, e500030, 2, (RR, RIWR), rd_rn),
16240 cCE(tmovmskw, e900030, 2, (RR, RIWR), rd_rn),
16241 cCE(tmrc, e100110, 2, (RR, RIWC_RIWG), rd_rn),
16242 cCE(tmrrc, c500000, 3, (RR, RR, RIWR), rd_rn_rm),
16243 cCE(torcb, e13f150, 1, (RR), iwmmxt_tandorc),
16244 cCE(torch, e53f150, 1, (RR), iwmmxt_tandorc),
16245 cCE(torcw, e93f150, 1, (RR), iwmmxt_tandorc),
16246 cCE(waccb, e0001c0, 2, (RIWR, RIWR), rd_rn),
16247 cCE(wacch, e4001c0, 2, (RIWR, RIWR), rd_rn),
16248 cCE(waccw, e8001c0, 2, (RIWR, RIWR), rd_rn),
16249 cCE(waddbss, e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16250 cCE(waddb, e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16251 cCE(waddbus, e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16252 cCE(waddhss, e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16253 cCE(waddh, e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16254 cCE(waddhus, e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16255 cCE(waddwss, eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16256 cCE(waddw, e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16257 cCE(waddwus, e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16258 cCE(waligni, e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
16259 cCE(walignr0, e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16260 cCE(walignr1, e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16261 cCE(walignr2, ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16262 cCE(walignr3, eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16263 cCE(wand, e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16264 cCE(wandn, e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16265 cCE(wavg2b, e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16266 cCE(wavg2br, e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16267 cCE(wavg2h, ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16268 cCE(wavg2hr, ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16269 cCE(wcmpeqb, e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16270 cCE(wcmpeqh, e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16271 cCE(wcmpeqw, e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16272 cCE(wcmpgtub, e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16273 cCE(wcmpgtuh, e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16274 cCE(wcmpgtuw, e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16275 cCE(wcmpgtsb, e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16276 cCE(wcmpgtsh, e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16277 cCE(wcmpgtsw, eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16278 cCE(wldrb, c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16279 cCE(wldrh, c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16280 cCE(wldrw, c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16281 cCE(wldrd, c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16282 cCE(wmacs, e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16283 cCE(wmacsz, e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16284 cCE(wmacu, e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16285 cCE(wmacuz, e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16286 cCE(wmadds, ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16287 cCE(wmaddu, e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16288 cCE(wmaxsb, e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16289 cCE(wmaxsh, e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16290 cCE(wmaxsw, ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16291 cCE(wmaxub, e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16292 cCE(wmaxuh, e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16293 cCE(wmaxuw, e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16294 cCE(wminsb, e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16295 cCE(wminsh, e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16296 cCE(wminsw, eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16297 cCE(wminub, e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16298 cCE(wminuh, e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16299 cCE(wminuw, e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16300 cCE(wmov, e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
16301 cCE(wmulsm, e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16302 cCE(wmulsl, e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16303 cCE(wmulum, e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16304 cCE(wmulul, e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16305 cCE(wor, e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16306 cCE(wpackhss, e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16307 cCE(wpackhus, e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16308 cCE(wpackwss, eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16309 cCE(wpackwus, e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16310 cCE(wpackdss, ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16311 cCE(wpackdus, ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16312 cCE(wrorh, e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16313 cCE(wrorhg, e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16314 cCE(wrorw, eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16315 cCE(wrorwg, eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16316 cCE(wrord, ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16317 cCE(wrordg, ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16318 cCE(wsadb, e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16319 cCE(wsadbz, e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16320 cCE(wsadh, e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16321 cCE(wsadhz, e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16322 cCE(wshufh, e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
16323 cCE(wsllh, e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16324 cCE(wsllhg, e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16325 cCE(wsllw, e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16326 cCE(wsllwg, e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16327 cCE(wslld, ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16328 cCE(wslldg, ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16329 cCE(wsrah, e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16330 cCE(wsrahg, e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16331 cCE(wsraw, e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16332 cCE(wsrawg, e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16333 cCE(wsrad, ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16334 cCE(wsradg, ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16335 cCE(wsrlh, e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16336 cCE(wsrlhg, e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16337 cCE(wsrlw, ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16338 cCE(wsrlwg, ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16339 cCE(wsrld, ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16340 cCE(wsrldg, ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16341 cCE(wstrb, c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16342 cCE(wstrh, c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16343 cCE(wstrw, c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16344 cCE(wstrd, c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16345 cCE(wsubbss, e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16346 cCE(wsubb, e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16347 cCE(wsubbus, e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16348 cCE(wsubhss, e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16349 cCE(wsubh, e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16350 cCE(wsubhus, e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16351 cCE(wsubwss, eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16352 cCE(wsubw, e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16353 cCE(wsubwus, e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16354 cCE(wunpckehub,e0000c0, 2, (RIWR, RIWR), rd_rn),
16355 cCE(wunpckehuh,e4000c0, 2, (RIWR, RIWR), rd_rn),
16356 cCE(wunpckehuw,e8000c0, 2, (RIWR, RIWR), rd_rn),
16357 cCE(wunpckehsb,e2000c0, 2, (RIWR, RIWR), rd_rn),
16358 cCE(wunpckehsh,e6000c0, 2, (RIWR, RIWR), rd_rn),
16359 cCE(wunpckehsw,ea000c0, 2, (RIWR, RIWR), rd_rn),
16360 cCE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16361 cCE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16362 cCE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16363 cCE(wunpckelub,e0000e0, 2, (RIWR, RIWR), rd_rn),
16364 cCE(wunpckeluh,e4000e0, 2, (RIWR, RIWR), rd_rn),
16365 cCE(wunpckeluw,e8000e0, 2, (RIWR, RIWR), rd_rn),
16366 cCE(wunpckelsb,e2000e0, 2, (RIWR, RIWR), rd_rn),
16367 cCE(wunpckelsh,e6000e0, 2, (RIWR, RIWR), rd_rn),
16368 cCE(wunpckelsw,ea000e0, 2, (RIWR, RIWR), rd_rn),
16369 cCE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16370 cCE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16371 cCE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16372 cCE(wxor, e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16373 cCE(wzero, e300000, 1, (RIWR), iwmmxt_wzero),
16374
16375 #undef ARM_VARIANT
16376 #define ARM_VARIANT &arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
16377 cCE(torvscb, e13f190, 1, (RR), iwmmxt_tandorc),
16378 cCE(torvsch, e53f190, 1, (RR), iwmmxt_tandorc),
16379 cCE(torvscw, e93f190, 1, (RR), iwmmxt_tandorc),
16380 cCE(wabsb, e2001c0, 2, (RIWR, RIWR), rd_rn),
16381 cCE(wabsh, e6001c0, 2, (RIWR, RIWR), rd_rn),
16382 cCE(wabsw, ea001c0, 2, (RIWR, RIWR), rd_rn),
16383 cCE(wabsdiffb, e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16384 cCE(wabsdiffh, e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16385 cCE(wabsdiffw, e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16386 cCE(waddbhusl, e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16387 cCE(waddbhusm, e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16388 cCE(waddhc, e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16389 cCE(waddwc, ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16390 cCE(waddsubhx, ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16391 cCE(wavg4, e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16392 cCE(wavg4r, e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16393 cCE(wmaddsn, ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16394 cCE(wmaddsx, eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16395 cCE(wmaddun, ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16396 cCE(wmaddux, e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16397 cCE(wmerge, e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
16398 cCE(wmiabb, e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16399 cCE(wmiabt, e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16400 cCE(wmiatb, e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16401 cCE(wmiatt, e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16402 cCE(wmiabbn, e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16403 cCE(wmiabtn, e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16404 cCE(wmiatbn, e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16405 cCE(wmiattn, e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16406 cCE(wmiawbb, e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16407 cCE(wmiawbt, e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16408 cCE(wmiawtb, ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16409 cCE(wmiawtt, eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16410 cCE(wmiawbbn, ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16411 cCE(wmiawbtn, ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16412 cCE(wmiawtbn, ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16413 cCE(wmiawttn, ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16414 cCE(wmulsmr, ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16415 cCE(wmulumr, ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16416 cCE(wmulwumr, ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16417 cCE(wmulwsmr, ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16418 cCE(wmulwum, ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16419 cCE(wmulwsm, ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16420 cCE(wmulwl, eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16421 cCE(wqmiabb, e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16422 cCE(wqmiabt, e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16423 cCE(wqmiatb, ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16424 cCE(wqmiatt, eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16425 cCE(wqmiabbn, ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16426 cCE(wqmiabtn, ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16427 cCE(wqmiatbn, ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16428 cCE(wqmiattn, ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16429 cCE(wqmulm, e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16430 cCE(wqmulmr, e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16431 cCE(wqmulwm, ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16432 cCE(wqmulwmr, ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16433 cCE(wsubaddhx, ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16434
16435 #undef ARM_VARIANT
16436 #define ARM_VARIANT &arm_cext_maverick /* Cirrus Maverick instructions. */
16437 cCE(cfldrs, c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
16438 cCE(cfldrd, c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
16439 cCE(cfldr32, c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
16440 cCE(cfldr64, c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
16441 cCE(cfstrs, c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
16442 cCE(cfstrd, c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
16443 cCE(cfstr32, c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
16444 cCE(cfstr64, c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
16445 cCE(cfmvsr, e000450, 2, (RMF, RR), rn_rd),
16446 cCE(cfmvrs, e100450, 2, (RR, RMF), rd_rn),
16447 cCE(cfmvdlr, e000410, 2, (RMD, RR), rn_rd),
16448 cCE(cfmvrdl, e100410, 2, (RR, RMD), rd_rn),
16449 cCE(cfmvdhr, e000430, 2, (RMD, RR), rn_rd),
16450 cCE(cfmvrdh, e100430, 2, (RR, RMD), rd_rn),
16451 cCE(cfmv64lr, e000510, 2, (RMDX, RR), rn_rd),
16452 cCE(cfmvr64l, e100510, 2, (RR, RMDX), rd_rn),
16453 cCE(cfmv64hr, e000530, 2, (RMDX, RR), rn_rd),
16454 cCE(cfmvr64h, e100530, 2, (RR, RMDX), rd_rn),
16455 cCE(cfmval32, e200440, 2, (RMAX, RMFX), rd_rn),
16456 cCE(cfmv32al, e100440, 2, (RMFX, RMAX), rd_rn),
16457 cCE(cfmvam32, e200460, 2, (RMAX, RMFX), rd_rn),
16458 cCE(cfmv32am, e100460, 2, (RMFX, RMAX), rd_rn),
16459 cCE(cfmvah32, e200480, 2, (RMAX, RMFX), rd_rn),
16460 cCE(cfmv32ah, e100480, 2, (RMFX, RMAX), rd_rn),
16461 cCE(cfmva32, e2004a0, 2, (RMAX, RMFX), rd_rn),
16462 cCE(cfmv32a, e1004a0, 2, (RMFX, RMAX), rd_rn),
16463 cCE(cfmva64, e2004c0, 2, (RMAX, RMDX), rd_rn),
16464 cCE(cfmv64a, e1004c0, 2, (RMDX, RMAX), rd_rn),
16465 cCE(cfmvsc32, e2004e0, 2, (RMDS, RMDX), mav_dspsc),
16466 cCE(cfmv32sc, e1004e0, 2, (RMDX, RMDS), rd),
16467 cCE(cfcpys, e000400, 2, (RMF, RMF), rd_rn),
16468 cCE(cfcpyd, e000420, 2, (RMD, RMD), rd_rn),
16469 cCE(cfcvtsd, e000460, 2, (RMD, RMF), rd_rn),
16470 cCE(cfcvtds, e000440, 2, (RMF, RMD), rd_rn),
16471 cCE(cfcvt32s, e000480, 2, (RMF, RMFX), rd_rn),
16472 cCE(cfcvt32d, e0004a0, 2, (RMD, RMFX), rd_rn),
16473 cCE(cfcvt64s, e0004c0, 2, (RMF, RMDX), rd_rn),
16474 cCE(cfcvt64d, e0004e0, 2, (RMD, RMDX), rd_rn),
16475 cCE(cfcvts32, e100580, 2, (RMFX, RMF), rd_rn),
16476 cCE(cfcvtd32, e1005a0, 2, (RMFX, RMD), rd_rn),
16477 cCE(cftruncs32,e1005c0, 2, (RMFX, RMF), rd_rn),
16478 cCE(cftruncd32,e1005e0, 2, (RMFX, RMD), rd_rn),
16479 cCE(cfrshl32, e000550, 3, (RMFX, RMFX, RR), mav_triple),
16480 cCE(cfrshl64, e000570, 3, (RMDX, RMDX, RR), mav_triple),
16481 cCE(cfsh32, e000500, 3, (RMFX, RMFX, I63s), mav_shift),
16482 cCE(cfsh64, e200500, 3, (RMDX, RMDX, I63s), mav_shift),
16483 cCE(cfcmps, e100490, 3, (RR, RMF, RMF), rd_rn_rm),
16484 cCE(cfcmpd, e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
16485 cCE(cfcmp32, e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
16486 cCE(cfcmp64, e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
16487 cCE(cfabss, e300400, 2, (RMF, RMF), rd_rn),
16488 cCE(cfabsd, e300420, 2, (RMD, RMD), rd_rn),
16489 cCE(cfnegs, e300440, 2, (RMF, RMF), rd_rn),
16490 cCE(cfnegd, e300460, 2, (RMD, RMD), rd_rn),
16491 cCE(cfadds, e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
16492 cCE(cfaddd, e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
16493 cCE(cfsubs, e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
16494 cCE(cfsubd, e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
16495 cCE(cfmuls, e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
16496 cCE(cfmuld, e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
16497 cCE(cfabs32, e300500, 2, (RMFX, RMFX), rd_rn),
16498 cCE(cfabs64, e300520, 2, (RMDX, RMDX), rd_rn),
16499 cCE(cfneg32, e300540, 2, (RMFX, RMFX), rd_rn),
16500 cCE(cfneg64, e300560, 2, (RMDX, RMDX), rd_rn),
16501 cCE(cfadd32, e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16502 cCE(cfadd64, e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16503 cCE(cfsub32, e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16504 cCE(cfsub64, e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16505 cCE(cfmul32, e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16506 cCE(cfmul64, e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16507 cCE(cfmac32, e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16508 cCE(cfmsc32, e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16509 cCE(cfmadd32, e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
16510 cCE(cfmsub32, e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
16511 cCE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
16512 cCE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
16513 };
16514 #undef ARM_VARIANT
16515 #undef THUMB_VARIANT
16516 #undef TCE
16517 #undef TCM
16518 #undef TUE
16519 #undef TUF
16520 #undef TCC
16521 #undef cCE
16522 #undef cCL
16523 #undef C3E
16524 #undef CE
16525 #undef CM
16526 #undef UE
16527 #undef UF
16528 #undef UT
16529 #undef NUF
16530 #undef nUF
16531 #undef NCE
16532 #undef nCE
16533 #undef OPS0
16534 #undef OPS1
16535 #undef OPS2
16536 #undef OPS3
16537 #undef OPS4
16538 #undef OPS5
16539 #undef OPS6
16540 #undef do_0
16541 \f
16542 /* MD interface: bits in the object file. */
16543
16544 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
16545 for use in the a.out file, and stores them in the array pointed to by buf.
16546 This knows about the endian-ness of the target machine and does
16547 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
16548 2 (short) and 4 (long) Floating numbers are put out as a series of
16549 LITTLENUMS (shorts, here at least). */
16550
16551 void
16552 md_number_to_chars (char * buf, valueT val, int n)
16553 {
16554 if (target_big_endian)
16555 number_to_chars_bigendian (buf, val, n);
16556 else
16557 number_to_chars_littleendian (buf, val, n);
16558 }
16559
16560 static valueT
16561 md_chars_to_number (char * buf, int n)
16562 {
16563 valueT result = 0;
16564 unsigned char * where = (unsigned char *) buf;
16565
16566 if (target_big_endian)
16567 {
16568 while (n--)
16569 {
16570 result <<= 8;
16571 result |= (*where++ & 255);
16572 }
16573 }
16574 else
16575 {
16576 while (n--)
16577 {
16578 result <<= 8;
16579 result |= (where[n] & 255);
16580 }
16581 }
16582
16583 return result;
16584 }
16585
16586 /* MD interface: Sections. */
16587
16588 /* Estimate the size of a frag before relaxing. Assume everything fits in
16589 2 bytes. */
16590
16591 int
16592 md_estimate_size_before_relax (fragS * fragp,
16593 segT segtype ATTRIBUTE_UNUSED)
16594 {
16595 fragp->fr_var = 2;
16596 return 2;
16597 }
16598
16599 /* Convert a machine dependent frag. */
16600
16601 void
16602 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
16603 {
16604 unsigned long insn;
16605 unsigned long old_op;
16606 char *buf;
16607 expressionS exp;
16608 fixS *fixp;
16609 int reloc_type;
16610 int pc_rel;
16611 int opcode;
16612
16613 buf = fragp->fr_literal + fragp->fr_fix;
16614
16615 old_op = bfd_get_16(abfd, buf);
16616 if (fragp->fr_symbol) {
16617 exp.X_op = O_symbol;
16618 exp.X_add_symbol = fragp->fr_symbol;
16619 } else {
16620 exp.X_op = O_constant;
16621 }
16622 exp.X_add_number = fragp->fr_offset;
16623 opcode = fragp->fr_subtype;
16624 switch (opcode)
16625 {
16626 case T_MNEM_ldr_pc:
16627 case T_MNEM_ldr_pc2:
16628 case T_MNEM_ldr_sp:
16629 case T_MNEM_str_sp:
16630 case T_MNEM_ldr:
16631 case T_MNEM_ldrb:
16632 case T_MNEM_ldrh:
16633 case T_MNEM_str:
16634 case T_MNEM_strb:
16635 case T_MNEM_strh:
16636 if (fragp->fr_var == 4)
16637 {
16638 insn = THUMB_OP32(opcode);
16639 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
16640 {
16641 insn |= (old_op & 0x700) << 4;
16642 }
16643 else
16644 {
16645 insn |= (old_op & 7) << 12;
16646 insn |= (old_op & 0x38) << 13;
16647 }
16648 insn |= 0x00000c00;
16649 put_thumb32_insn (buf, insn);
16650 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
16651 }
16652 else
16653 {
16654 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
16655 }
16656 pc_rel = (opcode == T_MNEM_ldr_pc2);
16657 break;
16658 case T_MNEM_adr:
16659 if (fragp->fr_var == 4)
16660 {
16661 insn = THUMB_OP32 (opcode);
16662 insn |= (old_op & 0xf0) << 4;
16663 put_thumb32_insn (buf, insn);
16664 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
16665 }
16666 else
16667 {
16668 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16669 exp.X_add_number -= 4;
16670 }
16671 pc_rel = 1;
16672 break;
16673 case T_MNEM_mov:
16674 case T_MNEM_movs:
16675 case T_MNEM_cmp:
16676 case T_MNEM_cmn:
16677 if (fragp->fr_var == 4)
16678 {
16679 int r0off = (opcode == T_MNEM_mov
16680 || opcode == T_MNEM_movs) ? 0 : 8;
16681 insn = THUMB_OP32 (opcode);
16682 insn = (insn & 0xe1ffffff) | 0x10000000;
16683 insn |= (old_op & 0x700) << r0off;
16684 put_thumb32_insn (buf, insn);
16685 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
16686 }
16687 else
16688 {
16689 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
16690 }
16691 pc_rel = 0;
16692 break;
16693 case T_MNEM_b:
16694 if (fragp->fr_var == 4)
16695 {
16696 insn = THUMB_OP32(opcode);
16697 put_thumb32_insn (buf, insn);
16698 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
16699 }
16700 else
16701 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
16702 pc_rel = 1;
16703 break;
16704 case T_MNEM_bcond:
16705 if (fragp->fr_var == 4)
16706 {
16707 insn = THUMB_OP32(opcode);
16708 insn |= (old_op & 0xf00) << 14;
16709 put_thumb32_insn (buf, insn);
16710 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
16711 }
16712 else
16713 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
16714 pc_rel = 1;
16715 break;
16716 case T_MNEM_add_sp:
16717 case T_MNEM_add_pc:
16718 case T_MNEM_inc_sp:
16719 case T_MNEM_dec_sp:
16720 if (fragp->fr_var == 4)
16721 {
16722 /* ??? Choose between add and addw. */
16723 insn = THUMB_OP32 (opcode);
16724 insn |= (old_op & 0xf0) << 4;
16725 put_thumb32_insn (buf, insn);
16726 if (opcode == T_MNEM_add_pc)
16727 reloc_type = BFD_RELOC_ARM_T32_IMM12;
16728 else
16729 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
16730 }
16731 else
16732 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16733 pc_rel = 0;
16734 break;
16735
16736 case T_MNEM_addi:
16737 case T_MNEM_addis:
16738 case T_MNEM_subi:
16739 case T_MNEM_subis:
16740 if (fragp->fr_var == 4)
16741 {
16742 insn = THUMB_OP32 (opcode);
16743 insn |= (old_op & 0xf0) << 4;
16744 insn |= (old_op & 0xf) << 16;
16745 put_thumb32_insn (buf, insn);
16746 if (insn & (1 << 20))
16747 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
16748 else
16749 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
16750 }
16751 else
16752 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16753 pc_rel = 0;
16754 break;
16755 default:
16756 abort();
16757 }
16758 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
16759 reloc_type);
16760 fixp->fx_file = fragp->fr_file;
16761 fixp->fx_line = fragp->fr_line;
16762 fragp->fr_fix += fragp->fr_var;
16763 }
16764
16765 /* Return the size of a relaxable immediate operand instruction.
16766 SHIFT and SIZE specify the form of the allowable immediate. */
16767 static int
16768 relax_immediate (fragS *fragp, int size, int shift)
16769 {
16770 offsetT offset;
16771 offsetT mask;
16772 offsetT low;
16773
16774 /* ??? Should be able to do better than this. */
16775 if (fragp->fr_symbol)
16776 return 4;
16777
16778 low = (1 << shift) - 1;
16779 mask = (1 << (shift + size)) - (1 << shift);
16780 offset = fragp->fr_offset;
16781 /* Force misaligned offsets to 32-bit variant. */
16782 if (offset & low)
16783 return 4;
16784 if (offset & ~mask)
16785 return 4;
16786 return 2;
16787 }
16788
16789 /* Get the address of a symbol during relaxation. */
16790 static addressT
16791 relaxed_symbol_addr(fragS *fragp, long stretch)
16792 {
16793 fragS *sym_frag;
16794 addressT addr;
16795 symbolS *sym;
16796
16797 sym = fragp->fr_symbol;
16798 sym_frag = symbol_get_frag (sym);
16799 know (S_GET_SEGMENT (sym) != absolute_section
16800 || sym_frag == &zero_address_frag);
16801 addr = S_GET_VALUE (sym) + fragp->fr_offset;
16802
16803 /* If frag has yet to be reached on this pass, assume it will
16804 move by STRETCH just as we did. If this is not so, it will
16805 be because some frag between grows, and that will force
16806 another pass. */
16807
16808 if (stretch != 0
16809 && sym_frag->relax_marker != fragp->relax_marker)
16810 addr += stretch;
16811
16812 return addr;
16813 }
16814
16815 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
16816 load. */
16817 static int
16818 relax_adr (fragS *fragp, asection *sec, long stretch)
16819 {
16820 addressT addr;
16821 offsetT val;
16822
16823 /* Assume worst case for symbols not known to be in the same section. */
16824 if (!S_IS_DEFINED(fragp->fr_symbol)
16825 || sec != S_GET_SEGMENT (fragp->fr_symbol))
16826 return 4;
16827
16828 val = relaxed_symbol_addr(fragp, stretch);
16829 addr = fragp->fr_address + fragp->fr_fix;
16830 addr = (addr + 4) & ~3;
16831 /* Force misaligned targets to 32-bit variant. */
16832 if (val & 3)
16833 return 4;
16834 val -= addr;
16835 if (val < 0 || val > 1020)
16836 return 4;
16837 return 2;
16838 }
16839
16840 /* Return the size of a relaxable add/sub immediate instruction. */
16841 static int
16842 relax_addsub (fragS *fragp, asection *sec)
16843 {
16844 char *buf;
16845 int op;
16846
16847 buf = fragp->fr_literal + fragp->fr_fix;
16848 op = bfd_get_16(sec->owner, buf);
16849 if ((op & 0xf) == ((op >> 4) & 0xf))
16850 return relax_immediate (fragp, 8, 0);
16851 else
16852 return relax_immediate (fragp, 3, 0);
16853 }
16854
16855
16856 /* Return the size of a relaxable branch instruction. BITS is the
16857 size of the offset field in the narrow instruction. */
16858
16859 static int
16860 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
16861 {
16862 addressT addr;
16863 offsetT val;
16864 offsetT limit;
16865
16866 /* Assume worst case for symbols not known to be in the same section. */
16867 if (!S_IS_DEFINED(fragp->fr_symbol)
16868 || sec != S_GET_SEGMENT (fragp->fr_symbol))
16869 return 4;
16870
16871 val = relaxed_symbol_addr(fragp, stretch);
16872 addr = fragp->fr_address + fragp->fr_fix + 4;
16873 val -= addr;
16874
16875 /* Offset is a signed value *2 */
16876 limit = 1 << bits;
16877 if (val >= limit || val < -limit)
16878 return 4;
16879 return 2;
16880 }
16881
16882
16883 /* Relax a machine dependent frag. This returns the amount by which
16884 the current size of the frag should change. */
16885
16886 int
16887 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
16888 {
16889 int oldsize;
16890 int newsize;
16891
16892 oldsize = fragp->fr_var;
16893 switch (fragp->fr_subtype)
16894 {
16895 case T_MNEM_ldr_pc2:
16896 newsize = relax_adr(fragp, sec, stretch);
16897 break;
16898 case T_MNEM_ldr_pc:
16899 case T_MNEM_ldr_sp:
16900 case T_MNEM_str_sp:
16901 newsize = relax_immediate(fragp, 8, 2);
16902 break;
16903 case T_MNEM_ldr:
16904 case T_MNEM_str:
16905 newsize = relax_immediate(fragp, 5, 2);
16906 break;
16907 case T_MNEM_ldrh:
16908 case T_MNEM_strh:
16909 newsize = relax_immediate(fragp, 5, 1);
16910 break;
16911 case T_MNEM_ldrb:
16912 case T_MNEM_strb:
16913 newsize = relax_immediate(fragp, 5, 0);
16914 break;
16915 case T_MNEM_adr:
16916 newsize = relax_adr(fragp, sec, stretch);
16917 break;
16918 case T_MNEM_mov:
16919 case T_MNEM_movs:
16920 case T_MNEM_cmp:
16921 case T_MNEM_cmn:
16922 newsize = relax_immediate(fragp, 8, 0);
16923 break;
16924 case T_MNEM_b:
16925 newsize = relax_branch(fragp, sec, 11, stretch);
16926 break;
16927 case T_MNEM_bcond:
16928 newsize = relax_branch(fragp, sec, 8, stretch);
16929 break;
16930 case T_MNEM_add_sp:
16931 case T_MNEM_add_pc:
16932 newsize = relax_immediate (fragp, 8, 2);
16933 break;
16934 case T_MNEM_inc_sp:
16935 case T_MNEM_dec_sp:
16936 newsize = relax_immediate (fragp, 7, 2);
16937 break;
16938 case T_MNEM_addi:
16939 case T_MNEM_addis:
16940 case T_MNEM_subi:
16941 case T_MNEM_subis:
16942 newsize = relax_addsub (fragp, sec);
16943 break;
16944 default:
16945 abort();
16946 }
16947
16948 fragp->fr_var = newsize;
16949 /* Freeze wide instructions that are at or before the same location as
16950 in the previous pass. This avoids infinite loops.
16951 Don't freeze them unconditionally because targets may be artificialy
16952 misaligned by the expansion of preceeding frags. */
16953 if (stretch <= 0 && newsize > 2)
16954 {
16955 md_convert_frag (sec->owner, sec, fragp);
16956 frag_wane(fragp);
16957 }
16958
16959 return newsize - oldsize;
16960 }
16961
16962 /* Round up a section size to the appropriate boundary. */
16963
16964 valueT
16965 md_section_align (segT segment ATTRIBUTE_UNUSED,
16966 valueT size)
16967 {
16968 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
16969 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
16970 {
16971 /* For a.out, force the section size to be aligned. If we don't do
16972 this, BFD will align it for us, but it will not write out the
16973 final bytes of the section. This may be a bug in BFD, but it is
16974 easier to fix it here since that is how the other a.out targets
16975 work. */
16976 int align;
16977
16978 align = bfd_get_section_alignment (stdoutput, segment);
16979 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
16980 }
16981 #endif
16982
16983 return size;
16984 }
16985
16986 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
16987 of an rs_align_code fragment. */
16988
16989 void
16990 arm_handle_align (fragS * fragP)
16991 {
16992 static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 };
16993 static char const thumb_noop[2] = { 0xc0, 0x46 };
16994 static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 };
16995 static char const thumb_bigend_noop[2] = { 0x46, 0xc0 };
16996
16997 int bytes, fix, noop_size;
16998 char * p;
16999 const char * noop;
17000
17001 if (fragP->fr_type != rs_align_code)
17002 return;
17003
17004 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
17005 p = fragP->fr_literal + fragP->fr_fix;
17006 fix = 0;
17007
17008 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
17009 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
17010
17011 if (fragP->tc_frag_data)
17012 {
17013 if (target_big_endian)
17014 noop = thumb_bigend_noop;
17015 else
17016 noop = thumb_noop;
17017 noop_size = sizeof (thumb_noop);
17018 }
17019 else
17020 {
17021 if (target_big_endian)
17022 noop = arm_bigend_noop;
17023 else
17024 noop = arm_noop;
17025 noop_size = sizeof (arm_noop);
17026 }
17027
17028 if (bytes & (noop_size - 1))
17029 {
17030 fix = bytes & (noop_size - 1);
17031 memset (p, 0, fix);
17032 p += fix;
17033 bytes -= fix;
17034 }
17035
17036 while (bytes >= noop_size)
17037 {
17038 memcpy (p, noop, noop_size);
17039 p += noop_size;
17040 bytes -= noop_size;
17041 fix += noop_size;
17042 }
17043
17044 fragP->fr_fix += fix;
17045 fragP->fr_var = noop_size;
17046 }
17047
17048 /* Called from md_do_align. Used to create an alignment
17049 frag in a code section. */
17050
17051 void
17052 arm_frag_align_code (int n, int max)
17053 {
17054 char * p;
17055
17056 /* We assume that there will never be a requirement
17057 to support alignments greater than 32 bytes. */
17058 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
17059 as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
17060
17061 p = frag_var (rs_align_code,
17062 MAX_MEM_FOR_RS_ALIGN_CODE,
17063 1,
17064 (relax_substateT) max,
17065 (symbolS *) NULL,
17066 (offsetT) n,
17067 (char *) NULL);
17068 *p = 0;
17069 }
17070
17071 /* Perform target specific initialisation of a frag. */
17072
17073 void
17074 arm_init_frag (fragS * fragP)
17075 {
17076 /* Record whether this frag is in an ARM or a THUMB area. */
17077 fragP->tc_frag_data = thumb_mode;
17078 }
17079
17080 #ifdef OBJ_ELF
17081 /* When we change sections we need to issue a new mapping symbol. */
17082
17083 void
17084 arm_elf_change_section (void)
17085 {
17086 flagword flags;
17087 segment_info_type *seginfo;
17088
17089 /* Link an unlinked unwind index table section to the .text section. */
17090 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
17091 && elf_linked_to_section (now_seg) == NULL)
17092 elf_linked_to_section (now_seg) = text_section;
17093
17094 if (!SEG_NORMAL (now_seg))
17095 return;
17096
17097 flags = bfd_get_section_flags (stdoutput, now_seg);
17098
17099 /* We can ignore sections that only contain debug info. */
17100 if ((flags & SEC_ALLOC) == 0)
17101 return;
17102
17103 seginfo = seg_info (now_seg);
17104 mapstate = seginfo->tc_segment_info_data.mapstate;
17105 marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency;
17106 }
17107
17108 int
17109 arm_elf_section_type (const char * str, size_t len)
17110 {
17111 if (len == 5 && strncmp (str, "exidx", 5) == 0)
17112 return SHT_ARM_EXIDX;
17113
17114 return -1;
17115 }
17116 \f
17117 /* Code to deal with unwinding tables. */
17118
17119 static void add_unwind_adjustsp (offsetT);
17120
17121 /* Cenerate and deferred unwind frame offset. */
17122
17123 static void
17124 flush_pending_unwind (void)
17125 {
17126 offsetT offset;
17127
17128 offset = unwind.pending_offset;
17129 unwind.pending_offset = 0;
17130 if (offset != 0)
17131 add_unwind_adjustsp (offset);
17132 }
17133
17134 /* Add an opcode to this list for this function. Two-byte opcodes should
17135 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
17136 order. */
17137
17138 static void
17139 add_unwind_opcode (valueT op, int length)
17140 {
17141 /* Add any deferred stack adjustment. */
17142 if (unwind.pending_offset)
17143 flush_pending_unwind ();
17144
17145 unwind.sp_restored = 0;
17146
17147 if (unwind.opcode_count + length > unwind.opcode_alloc)
17148 {
17149 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
17150 if (unwind.opcodes)
17151 unwind.opcodes = xrealloc (unwind.opcodes,
17152 unwind.opcode_alloc);
17153 else
17154 unwind.opcodes = xmalloc (unwind.opcode_alloc);
17155 }
17156 while (length > 0)
17157 {
17158 length--;
17159 unwind.opcodes[unwind.opcode_count] = op & 0xff;
17160 op >>= 8;
17161 unwind.opcode_count++;
17162 }
17163 }
17164
17165 /* Add unwind opcodes to adjust the stack pointer. */
17166
17167 static void
17168 add_unwind_adjustsp (offsetT offset)
17169 {
17170 valueT op;
17171
17172 if (offset > 0x200)
17173 {
17174 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
17175 char bytes[5];
17176 int n;
17177 valueT o;
17178
17179 /* Long form: 0xb2, uleb128. */
17180 /* This might not fit in a word so add the individual bytes,
17181 remembering the list is built in reverse order. */
17182 o = (valueT) ((offset - 0x204) >> 2);
17183 if (o == 0)
17184 add_unwind_opcode (0, 1);
17185
17186 /* Calculate the uleb128 encoding of the offset. */
17187 n = 0;
17188 while (o)
17189 {
17190 bytes[n] = o & 0x7f;
17191 o >>= 7;
17192 if (o)
17193 bytes[n] |= 0x80;
17194 n++;
17195 }
17196 /* Add the insn. */
17197 for (; n; n--)
17198 add_unwind_opcode (bytes[n - 1], 1);
17199 add_unwind_opcode (0xb2, 1);
17200 }
17201 else if (offset > 0x100)
17202 {
17203 /* Two short opcodes. */
17204 add_unwind_opcode (0x3f, 1);
17205 op = (offset - 0x104) >> 2;
17206 add_unwind_opcode (op, 1);
17207 }
17208 else if (offset > 0)
17209 {
17210 /* Short opcode. */
17211 op = (offset - 4) >> 2;
17212 add_unwind_opcode (op, 1);
17213 }
17214 else if (offset < 0)
17215 {
17216 offset = -offset;
17217 while (offset > 0x100)
17218 {
17219 add_unwind_opcode (0x7f, 1);
17220 offset -= 0x100;
17221 }
17222 op = ((offset - 4) >> 2) | 0x40;
17223 add_unwind_opcode (op, 1);
17224 }
17225 }
17226
17227 /* Finish the list of unwind opcodes for this function. */
17228 static void
17229 finish_unwind_opcodes (void)
17230 {
17231 valueT op;
17232
17233 if (unwind.fp_used)
17234 {
17235 /* Adjust sp as necessary. */
17236 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
17237 flush_pending_unwind ();
17238
17239 /* After restoring sp from the frame pointer. */
17240 op = 0x90 | unwind.fp_reg;
17241 add_unwind_opcode (op, 1);
17242 }
17243 else
17244 flush_pending_unwind ();
17245 }
17246
17247
17248 /* Start an exception table entry. If idx is nonzero this is an index table
17249 entry. */
17250
17251 static void
17252 start_unwind_section (const segT text_seg, int idx)
17253 {
17254 const char * text_name;
17255 const char * prefix;
17256 const char * prefix_once;
17257 const char * group_name;
17258 size_t prefix_len;
17259 size_t text_len;
17260 char * sec_name;
17261 size_t sec_name_len;
17262 int type;
17263 int flags;
17264 int linkonce;
17265
17266 if (idx)
17267 {
17268 prefix = ELF_STRING_ARM_unwind;
17269 prefix_once = ELF_STRING_ARM_unwind_once;
17270 type = SHT_ARM_EXIDX;
17271 }
17272 else
17273 {
17274 prefix = ELF_STRING_ARM_unwind_info;
17275 prefix_once = ELF_STRING_ARM_unwind_info_once;
17276 type = SHT_PROGBITS;
17277 }
17278
17279 text_name = segment_name (text_seg);
17280 if (streq (text_name, ".text"))
17281 text_name = "";
17282
17283 if (strncmp (text_name, ".gnu.linkonce.t.",
17284 strlen (".gnu.linkonce.t.")) == 0)
17285 {
17286 prefix = prefix_once;
17287 text_name += strlen (".gnu.linkonce.t.");
17288 }
17289
17290 prefix_len = strlen (prefix);
17291 text_len = strlen (text_name);
17292 sec_name_len = prefix_len + text_len;
17293 sec_name = xmalloc (sec_name_len + 1);
17294 memcpy (sec_name, prefix, prefix_len);
17295 memcpy (sec_name + prefix_len, text_name, text_len);
17296 sec_name[prefix_len + text_len] = '\0';
17297
17298 flags = SHF_ALLOC;
17299 linkonce = 0;
17300 group_name = 0;
17301
17302 /* Handle COMDAT group. */
17303 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
17304 {
17305 group_name = elf_group_name (text_seg);
17306 if (group_name == NULL)
17307 {
17308 as_bad ("Group section `%s' has no group signature",
17309 segment_name (text_seg));
17310 ignore_rest_of_line ();
17311 return;
17312 }
17313 flags |= SHF_GROUP;
17314 linkonce = 1;
17315 }
17316
17317 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
17318
17319 /* Set the setion link for index tables. */
17320 if (idx)
17321 elf_linked_to_section (now_seg) = text_seg;
17322 }
17323
17324
17325 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
17326 personality routine data. Returns zero, or the index table value for
17327 and inline entry. */
17328
17329 static valueT
17330 create_unwind_entry (int have_data)
17331 {
17332 int size;
17333 addressT where;
17334 char *ptr;
17335 /* The current word of data. */
17336 valueT data;
17337 /* The number of bytes left in this word. */
17338 int n;
17339
17340 finish_unwind_opcodes ();
17341
17342 /* Remember the current text section. */
17343 unwind.saved_seg = now_seg;
17344 unwind.saved_subseg = now_subseg;
17345
17346 start_unwind_section (now_seg, 0);
17347
17348 if (unwind.personality_routine == NULL)
17349 {
17350 if (unwind.personality_index == -2)
17351 {
17352 if (have_data)
17353 as_bad (_("handerdata in cantunwind frame"));
17354 return 1; /* EXIDX_CANTUNWIND. */
17355 }
17356
17357 /* Use a default personality routine if none is specified. */
17358 if (unwind.personality_index == -1)
17359 {
17360 if (unwind.opcode_count > 3)
17361 unwind.personality_index = 1;
17362 else
17363 unwind.personality_index = 0;
17364 }
17365
17366 /* Space for the personality routine entry. */
17367 if (unwind.personality_index == 0)
17368 {
17369 if (unwind.opcode_count > 3)
17370 as_bad (_("too many unwind opcodes for personality routine 0"));
17371
17372 if (!have_data)
17373 {
17374 /* All the data is inline in the index table. */
17375 data = 0x80;
17376 n = 3;
17377 while (unwind.opcode_count > 0)
17378 {
17379 unwind.opcode_count--;
17380 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
17381 n--;
17382 }
17383
17384 /* Pad with "finish" opcodes. */
17385 while (n--)
17386 data = (data << 8) | 0xb0;
17387
17388 return data;
17389 }
17390 size = 0;
17391 }
17392 else
17393 /* We get two opcodes "free" in the first word. */
17394 size = unwind.opcode_count - 2;
17395 }
17396 else
17397 /* An extra byte is required for the opcode count. */
17398 size = unwind.opcode_count + 1;
17399
17400 size = (size + 3) >> 2;
17401 if (size > 0xff)
17402 as_bad (_("too many unwind opcodes"));
17403
17404 frag_align (2, 0, 0);
17405 record_alignment (now_seg, 2);
17406 unwind.table_entry = expr_build_dot ();
17407
17408 /* Allocate the table entry. */
17409 ptr = frag_more ((size << 2) + 4);
17410 where = frag_now_fix () - ((size << 2) + 4);
17411
17412 switch (unwind.personality_index)
17413 {
17414 case -1:
17415 /* ??? Should this be a PLT generating relocation? */
17416 /* Custom personality routine. */
17417 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
17418 BFD_RELOC_ARM_PREL31);
17419
17420 where += 4;
17421 ptr += 4;
17422
17423 /* Set the first byte to the number of additional words. */
17424 data = size - 1;
17425 n = 3;
17426 break;
17427
17428 /* ABI defined personality routines. */
17429 case 0:
17430 /* Three opcodes bytes are packed into the first word. */
17431 data = 0x80;
17432 n = 3;
17433 break;
17434
17435 case 1:
17436 case 2:
17437 /* The size and first two opcode bytes go in the first word. */
17438 data = ((0x80 + unwind.personality_index) << 8) | size;
17439 n = 2;
17440 break;
17441
17442 default:
17443 /* Should never happen. */
17444 abort ();
17445 }
17446
17447 /* Pack the opcodes into words (MSB first), reversing the list at the same
17448 time. */
17449 while (unwind.opcode_count > 0)
17450 {
17451 if (n == 0)
17452 {
17453 md_number_to_chars (ptr, data, 4);
17454 ptr += 4;
17455 n = 4;
17456 data = 0;
17457 }
17458 unwind.opcode_count--;
17459 n--;
17460 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
17461 }
17462
17463 /* Finish off the last word. */
17464 if (n < 4)
17465 {
17466 /* Pad with "finish" opcodes. */
17467 while (n--)
17468 data = (data << 8) | 0xb0;
17469
17470 md_number_to_chars (ptr, data, 4);
17471 }
17472
17473 if (!have_data)
17474 {
17475 /* Add an empty descriptor if there is no user-specified data. */
17476 ptr = frag_more (4);
17477 md_number_to_chars (ptr, 0, 4);
17478 }
17479
17480 return 0;
17481 }
17482
17483
17484 /* Initialize the DWARF-2 unwind information for this procedure. */
17485
17486 void
17487 tc_arm_frame_initial_instructions (void)
17488 {
17489 cfi_add_CFA_def_cfa (REG_SP, 0);
17490 }
17491 #endif /* OBJ_ELF */
17492
17493 /* Convert REGNAME to a DWARF-2 register number. */
17494
17495 int
17496 tc_arm_regname_to_dw2regnum (char *regname)
17497 {
17498 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
17499
17500 if (reg == FAIL)
17501 return -1;
17502
17503 return reg;
17504 }
17505
17506 #ifdef TE_PE
17507 void
17508 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
17509 {
17510 expressionS expr;
17511
17512 expr.X_op = O_secrel;
17513 expr.X_add_symbol = symbol;
17514 expr.X_add_number = 0;
17515 emit_expr (&expr, size);
17516 }
17517 #endif
17518
17519 /* MD interface: Symbol and relocation handling. */
17520
17521 /* Return the address within the segment that a PC-relative fixup is
17522 relative to. For ARM, PC-relative fixups applied to instructions
17523 are generally relative to the location of the fixup plus 8 bytes.
17524 Thumb branches are offset by 4, and Thumb loads relative to PC
17525 require special handling. */
17526
17527 long
17528 md_pcrel_from_section (fixS * fixP, segT seg)
17529 {
17530 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
17531
17532 /* If this is pc-relative and we are going to emit a relocation
17533 then we just want to put out any pipeline compensation that the linker
17534 will need. Otherwise we want to use the calculated base.
17535 For WinCE we skip the bias for externals as well, since this
17536 is how the MS ARM-CE assembler behaves and we want to be compatible. */
17537 if (fixP->fx_pcrel
17538 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
17539 || (arm_force_relocation (fixP)
17540 #ifdef TE_WINCE
17541 && !S_IS_EXTERNAL (fixP->fx_addsy)
17542 #endif
17543 )))
17544 base = 0;
17545
17546 switch (fixP->fx_r_type)
17547 {
17548 /* PC relative addressing on the Thumb is slightly odd as the
17549 bottom two bits of the PC are forced to zero for the
17550 calculation. This happens *after* application of the
17551 pipeline offset. However, Thumb adrl already adjusts for
17552 this, so we need not do it again. */
17553 case BFD_RELOC_ARM_THUMB_ADD:
17554 return base & ~3;
17555
17556 case BFD_RELOC_ARM_THUMB_OFFSET:
17557 case BFD_RELOC_ARM_T32_OFFSET_IMM:
17558 case BFD_RELOC_ARM_T32_ADD_PC12:
17559 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
17560 return (base + 4) & ~3;
17561
17562 /* Thumb branches are simply offset by +4. */
17563 case BFD_RELOC_THUMB_PCREL_BRANCH7:
17564 case BFD_RELOC_THUMB_PCREL_BRANCH9:
17565 case BFD_RELOC_THUMB_PCREL_BRANCH12:
17566 case BFD_RELOC_THUMB_PCREL_BRANCH20:
17567 case BFD_RELOC_THUMB_PCREL_BRANCH23:
17568 case BFD_RELOC_THUMB_PCREL_BRANCH25:
17569 case BFD_RELOC_THUMB_PCREL_BLX:
17570 return base + 4;
17571
17572 /* ARM mode branches are offset by +8. However, the Windows CE
17573 loader expects the relocation not to take this into account. */
17574 case BFD_RELOC_ARM_PCREL_BRANCH:
17575 case BFD_RELOC_ARM_PCREL_CALL:
17576 case BFD_RELOC_ARM_PCREL_JUMP:
17577 case BFD_RELOC_ARM_PCREL_BLX:
17578 case BFD_RELOC_ARM_PLT32:
17579 #ifdef TE_WINCE
17580 /* When handling fixups immediately, because we have already
17581 discovered the value of a symbol, or the address of the frag involved
17582 we must account for the offset by +8, as the OS loader will never see the reloc.
17583 see fixup_segment() in write.c
17584 The S_IS_EXTERNAL test handles the case of global symbols.
17585 Those need the calculated base, not just the pipe compensation the linker will need. */
17586 if (fixP->fx_pcrel
17587 && fixP->fx_addsy != NULL
17588 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
17589 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
17590 return base + 8;
17591 return base;
17592 #else
17593 return base + 8;
17594 #endif
17595
17596 /* ARM mode loads relative to PC are also offset by +8. Unlike
17597 branches, the Windows CE loader *does* expect the relocation
17598 to take this into account. */
17599 case BFD_RELOC_ARM_OFFSET_IMM:
17600 case BFD_RELOC_ARM_OFFSET_IMM8:
17601 case BFD_RELOC_ARM_HWLITERAL:
17602 case BFD_RELOC_ARM_LITERAL:
17603 case BFD_RELOC_ARM_CP_OFF_IMM:
17604 return base + 8;
17605
17606
17607 /* Other PC-relative relocations are un-offset. */
17608 default:
17609 return base;
17610 }
17611 }
17612
17613 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
17614 Otherwise we have no need to default values of symbols. */
17615
17616 symbolS *
17617 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
17618 {
17619 #ifdef OBJ_ELF
17620 if (name[0] == '_' && name[1] == 'G'
17621 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
17622 {
17623 if (!GOT_symbol)
17624 {
17625 if (symbol_find (name))
17626 as_bad ("GOT already in the symbol table");
17627
17628 GOT_symbol = symbol_new (name, undefined_section,
17629 (valueT) 0, & zero_address_frag);
17630 }
17631
17632 return GOT_symbol;
17633 }
17634 #endif
17635
17636 return 0;
17637 }
17638
17639 /* Subroutine of md_apply_fix. Check to see if an immediate can be
17640 computed as two separate immediate values, added together. We
17641 already know that this value cannot be computed by just one ARM
17642 instruction. */
17643
17644 static unsigned int
17645 validate_immediate_twopart (unsigned int val,
17646 unsigned int * highpart)
17647 {
17648 unsigned int a;
17649 unsigned int i;
17650
17651 for (i = 0; i < 32; i += 2)
17652 if (((a = rotate_left (val, i)) & 0xff) != 0)
17653 {
17654 if (a & 0xff00)
17655 {
17656 if (a & ~ 0xffff)
17657 continue;
17658 * highpart = (a >> 8) | ((i + 24) << 7);
17659 }
17660 else if (a & 0xff0000)
17661 {
17662 if (a & 0xff000000)
17663 continue;
17664 * highpart = (a >> 16) | ((i + 16) << 7);
17665 }
17666 else
17667 {
17668 assert (a & 0xff000000);
17669 * highpart = (a >> 24) | ((i + 8) << 7);
17670 }
17671
17672 return (a & 0xff) | (i << 7);
17673 }
17674
17675 return FAIL;
17676 }
17677
17678 static int
17679 validate_offset_imm (unsigned int val, int hwse)
17680 {
17681 if ((hwse && val > 255) || val > 4095)
17682 return FAIL;
17683 return val;
17684 }
17685
17686 /* Subroutine of md_apply_fix. Do those data_ops which can take a
17687 negative immediate constant by altering the instruction. A bit of
17688 a hack really.
17689 MOV <-> MVN
17690 AND <-> BIC
17691 ADC <-> SBC
17692 by inverting the second operand, and
17693 ADD <-> SUB
17694 CMP <-> CMN
17695 by negating the second operand. */
17696
17697 static int
17698 negate_data_op (unsigned long * instruction,
17699 unsigned long value)
17700 {
17701 int op, new_inst;
17702 unsigned long negated, inverted;
17703
17704 negated = encode_arm_immediate (-value);
17705 inverted = encode_arm_immediate (~value);
17706
17707 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
17708 switch (op)
17709 {
17710 /* First negates. */
17711 case OPCODE_SUB: /* ADD <-> SUB */
17712 new_inst = OPCODE_ADD;
17713 value = negated;
17714 break;
17715
17716 case OPCODE_ADD:
17717 new_inst = OPCODE_SUB;
17718 value = negated;
17719 break;
17720
17721 case OPCODE_CMP: /* CMP <-> CMN */
17722 new_inst = OPCODE_CMN;
17723 value = negated;
17724 break;
17725
17726 case OPCODE_CMN:
17727 new_inst = OPCODE_CMP;
17728 value = negated;
17729 break;
17730
17731 /* Now Inverted ops. */
17732 case OPCODE_MOV: /* MOV <-> MVN */
17733 new_inst = OPCODE_MVN;
17734 value = inverted;
17735 break;
17736
17737 case OPCODE_MVN:
17738 new_inst = OPCODE_MOV;
17739 value = inverted;
17740 break;
17741
17742 case OPCODE_AND: /* AND <-> BIC */
17743 new_inst = OPCODE_BIC;
17744 value = inverted;
17745 break;
17746
17747 case OPCODE_BIC:
17748 new_inst = OPCODE_AND;
17749 value = inverted;
17750 break;
17751
17752 case OPCODE_ADC: /* ADC <-> SBC */
17753 new_inst = OPCODE_SBC;
17754 value = inverted;
17755 break;
17756
17757 case OPCODE_SBC:
17758 new_inst = OPCODE_ADC;
17759 value = inverted;
17760 break;
17761
17762 /* We cannot do anything. */
17763 default:
17764 return FAIL;
17765 }
17766
17767 if (value == (unsigned) FAIL)
17768 return FAIL;
17769
17770 *instruction &= OPCODE_MASK;
17771 *instruction |= new_inst << DATA_OP_SHIFT;
17772 return value;
17773 }
17774
17775 /* Like negate_data_op, but for Thumb-2. */
17776
17777 static unsigned int
17778 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
17779 {
17780 int op, new_inst;
17781 int rd;
17782 unsigned int negated, inverted;
17783
17784 negated = encode_thumb32_immediate (-value);
17785 inverted = encode_thumb32_immediate (~value);
17786
17787 rd = (*instruction >> 8) & 0xf;
17788 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
17789 switch (op)
17790 {
17791 /* ADD <-> SUB. Includes CMP <-> CMN. */
17792 case T2_OPCODE_SUB:
17793 new_inst = T2_OPCODE_ADD;
17794 value = negated;
17795 break;
17796
17797 case T2_OPCODE_ADD:
17798 new_inst = T2_OPCODE_SUB;
17799 value = negated;
17800 break;
17801
17802 /* ORR <-> ORN. Includes MOV <-> MVN. */
17803 case T2_OPCODE_ORR:
17804 new_inst = T2_OPCODE_ORN;
17805 value = inverted;
17806 break;
17807
17808 case T2_OPCODE_ORN:
17809 new_inst = T2_OPCODE_ORR;
17810 value = inverted;
17811 break;
17812
17813 /* AND <-> BIC. TST has no inverted equivalent. */
17814 case T2_OPCODE_AND:
17815 new_inst = T2_OPCODE_BIC;
17816 if (rd == 15)
17817 value = FAIL;
17818 else
17819 value = inverted;
17820 break;
17821
17822 case T2_OPCODE_BIC:
17823 new_inst = T2_OPCODE_AND;
17824 value = inverted;
17825 break;
17826
17827 /* ADC <-> SBC */
17828 case T2_OPCODE_ADC:
17829 new_inst = T2_OPCODE_SBC;
17830 value = inverted;
17831 break;
17832
17833 case T2_OPCODE_SBC:
17834 new_inst = T2_OPCODE_ADC;
17835 value = inverted;
17836 break;
17837
17838 /* We cannot do anything. */
17839 default:
17840 return FAIL;
17841 }
17842
17843 if (value == (unsigned int)FAIL)
17844 return FAIL;
17845
17846 *instruction &= T2_OPCODE_MASK;
17847 *instruction |= new_inst << T2_DATA_OP_SHIFT;
17848 return value;
17849 }
17850
17851 /* Read a 32-bit thumb instruction from buf. */
17852 static unsigned long
17853 get_thumb32_insn (char * buf)
17854 {
17855 unsigned long insn;
17856 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
17857 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
17858
17859 return insn;
17860 }
17861
17862
17863 /* We usually want to set the low bit on the address of thumb function
17864 symbols. In particular .word foo - . should have the low bit set.
17865 Generic code tries to fold the difference of two symbols to
17866 a constant. Prevent this and force a relocation when the first symbols
17867 is a thumb function. */
17868 int
17869 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
17870 {
17871 if (op == O_subtract
17872 && l->X_op == O_symbol
17873 && r->X_op == O_symbol
17874 && THUMB_IS_FUNC (l->X_add_symbol))
17875 {
17876 l->X_op = O_subtract;
17877 l->X_op_symbol = r->X_add_symbol;
17878 l->X_add_number -= r->X_add_number;
17879 return 1;
17880 }
17881 /* Process as normal. */
17882 return 0;
17883 }
17884
17885 void
17886 md_apply_fix (fixS * fixP,
17887 valueT * valP,
17888 segT seg)
17889 {
17890 offsetT value = * valP;
17891 offsetT newval;
17892 unsigned int newimm;
17893 unsigned long temp;
17894 int sign;
17895 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
17896
17897 assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
17898
17899 /* Note whether this will delete the relocation. */
17900
17901 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
17902 fixP->fx_done = 1;
17903
17904 /* On a 64-bit host, silently truncate 'value' to 32 bits for
17905 consistency with the behavior on 32-bit hosts. Remember value
17906 for emit_reloc. */
17907 value &= 0xffffffff;
17908 value ^= 0x80000000;
17909 value -= 0x80000000;
17910
17911 *valP = value;
17912 fixP->fx_addnumber = value;
17913
17914 /* Same treatment for fixP->fx_offset. */
17915 fixP->fx_offset &= 0xffffffff;
17916 fixP->fx_offset ^= 0x80000000;
17917 fixP->fx_offset -= 0x80000000;
17918
17919 switch (fixP->fx_r_type)
17920 {
17921 case BFD_RELOC_NONE:
17922 /* This will need to go in the object file. */
17923 fixP->fx_done = 0;
17924 break;
17925
17926 case BFD_RELOC_ARM_IMMEDIATE:
17927 /* We claim that this fixup has been processed here,
17928 even if in fact we generate an error because we do
17929 not have a reloc for it, so tc_gen_reloc will reject it. */
17930 fixP->fx_done = 1;
17931
17932 if (fixP->fx_addsy
17933 && ! S_IS_DEFINED (fixP->fx_addsy))
17934 {
17935 as_bad_where (fixP->fx_file, fixP->fx_line,
17936 _("undefined symbol %s used as an immediate value"),
17937 S_GET_NAME (fixP->fx_addsy));
17938 break;
17939 }
17940
17941 newimm = encode_arm_immediate (value);
17942 temp = md_chars_to_number (buf, INSN_SIZE);
17943
17944 /* If the instruction will fail, see if we can fix things up by
17945 changing the opcode. */
17946 if (newimm == (unsigned int) FAIL
17947 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
17948 {
17949 as_bad_where (fixP->fx_file, fixP->fx_line,
17950 _("invalid constant (%lx) after fixup"),
17951 (unsigned long) value);
17952 break;
17953 }
17954
17955 newimm |= (temp & 0xfffff000);
17956 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
17957 break;
17958
17959 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
17960 {
17961 unsigned int highpart = 0;
17962 unsigned int newinsn = 0xe1a00000; /* nop. */
17963
17964 newimm = encode_arm_immediate (value);
17965 temp = md_chars_to_number (buf, INSN_SIZE);
17966
17967 /* If the instruction will fail, see if we can fix things up by
17968 changing the opcode. */
17969 if (newimm == (unsigned int) FAIL
17970 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
17971 {
17972 /* No ? OK - try using two ADD instructions to generate
17973 the value. */
17974 newimm = validate_immediate_twopart (value, & highpart);
17975
17976 /* Yes - then make sure that the second instruction is
17977 also an add. */
17978 if (newimm != (unsigned int) FAIL)
17979 newinsn = temp;
17980 /* Still No ? Try using a negated value. */
17981 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
17982 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
17983 /* Otherwise - give up. */
17984 else
17985 {
17986 as_bad_where (fixP->fx_file, fixP->fx_line,
17987 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
17988 (long) value);
17989 break;
17990 }
17991
17992 /* Replace the first operand in the 2nd instruction (which
17993 is the PC) with the destination register. We have
17994 already added in the PC in the first instruction and we
17995 do not want to do it again. */
17996 newinsn &= ~ 0xf0000;
17997 newinsn |= ((newinsn & 0x0f000) << 4);
17998 }
17999
18000 newimm |= (temp & 0xfffff000);
18001 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
18002
18003 highpart |= (newinsn & 0xfffff000);
18004 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
18005 }
18006 break;
18007
18008 case BFD_RELOC_ARM_OFFSET_IMM:
18009 if (!fixP->fx_done && seg->use_rela_p)
18010 value = 0;
18011
18012 case BFD_RELOC_ARM_LITERAL:
18013 sign = value >= 0;
18014
18015 if (value < 0)
18016 value = - value;
18017
18018 if (validate_offset_imm (value, 0) == FAIL)
18019 {
18020 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
18021 as_bad_where (fixP->fx_file, fixP->fx_line,
18022 _("invalid literal constant: pool needs to be closer"));
18023 else
18024 as_bad_where (fixP->fx_file, fixP->fx_line,
18025 _("bad immediate value for offset (%ld)"),
18026 (long) value);
18027 break;
18028 }
18029
18030 newval = md_chars_to_number (buf, INSN_SIZE);
18031 newval &= 0xff7ff000;
18032 newval |= value | (sign ? INDEX_UP : 0);
18033 md_number_to_chars (buf, newval, INSN_SIZE);
18034 break;
18035
18036 case BFD_RELOC_ARM_OFFSET_IMM8:
18037 case BFD_RELOC_ARM_HWLITERAL:
18038 sign = value >= 0;
18039
18040 if (value < 0)
18041 value = - value;
18042
18043 if (validate_offset_imm (value, 1) == FAIL)
18044 {
18045 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
18046 as_bad_where (fixP->fx_file, fixP->fx_line,
18047 _("invalid literal constant: pool needs to be closer"));
18048 else
18049 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
18050 (long) value);
18051 break;
18052 }
18053
18054 newval = md_chars_to_number (buf, INSN_SIZE);
18055 newval &= 0xff7ff0f0;
18056 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
18057 md_number_to_chars (buf, newval, INSN_SIZE);
18058 break;
18059
18060 case BFD_RELOC_ARM_T32_OFFSET_U8:
18061 if (value < 0 || value > 1020 || value % 4 != 0)
18062 as_bad_where (fixP->fx_file, fixP->fx_line,
18063 _("bad immediate value for offset (%ld)"), (long) value);
18064 value /= 4;
18065
18066 newval = md_chars_to_number (buf+2, THUMB_SIZE);
18067 newval |= value;
18068 md_number_to_chars (buf+2, newval, THUMB_SIZE);
18069 break;
18070
18071 case BFD_RELOC_ARM_T32_OFFSET_IMM:
18072 /* This is a complicated relocation used for all varieties of Thumb32
18073 load/store instruction with immediate offset:
18074
18075 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
18076 *4, optional writeback(W)
18077 (doubleword load/store)
18078
18079 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
18080 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
18081 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
18082 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
18083 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
18084
18085 Uppercase letters indicate bits that are already encoded at
18086 this point. Lowercase letters are our problem. For the
18087 second block of instructions, the secondary opcode nybble
18088 (bits 8..11) is present, and bit 23 is zero, even if this is
18089 a PC-relative operation. */
18090 newval = md_chars_to_number (buf, THUMB_SIZE);
18091 newval <<= 16;
18092 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
18093
18094 if ((newval & 0xf0000000) == 0xe0000000)
18095 {
18096 /* Doubleword load/store: 8-bit offset, scaled by 4. */
18097 if (value >= 0)
18098 newval |= (1 << 23);
18099 else
18100 value = -value;
18101 if (value % 4 != 0)
18102 {
18103 as_bad_where (fixP->fx_file, fixP->fx_line,
18104 _("offset not a multiple of 4"));
18105 break;
18106 }
18107 value /= 4;
18108 if (value > 0xff)
18109 {
18110 as_bad_where (fixP->fx_file, fixP->fx_line,
18111 _("offset out of range"));
18112 break;
18113 }
18114 newval &= ~0xff;
18115 }
18116 else if ((newval & 0x000f0000) == 0x000f0000)
18117 {
18118 /* PC-relative, 12-bit offset. */
18119 if (value >= 0)
18120 newval |= (1 << 23);
18121 else
18122 value = -value;
18123 if (value > 0xfff)
18124 {
18125 as_bad_where (fixP->fx_file, fixP->fx_line,
18126 _("offset out of range"));
18127 break;
18128 }
18129 newval &= ~0xfff;
18130 }
18131 else if ((newval & 0x00000100) == 0x00000100)
18132 {
18133 /* Writeback: 8-bit, +/- offset. */
18134 if (value >= 0)
18135 newval |= (1 << 9);
18136 else
18137 value = -value;
18138 if (value > 0xff)
18139 {
18140 as_bad_where (fixP->fx_file, fixP->fx_line,
18141 _("offset out of range"));
18142 break;
18143 }
18144 newval &= ~0xff;
18145 }
18146 else if ((newval & 0x00000f00) == 0x00000e00)
18147 {
18148 /* T-instruction: positive 8-bit offset. */
18149 if (value < 0 || value > 0xff)
18150 {
18151 as_bad_where (fixP->fx_file, fixP->fx_line,
18152 _("offset out of range"));
18153 break;
18154 }
18155 newval &= ~0xff;
18156 newval |= value;
18157 }
18158 else
18159 {
18160 /* Positive 12-bit or negative 8-bit offset. */
18161 int limit;
18162 if (value >= 0)
18163 {
18164 newval |= (1 << 23);
18165 limit = 0xfff;
18166 }
18167 else
18168 {
18169 value = -value;
18170 limit = 0xff;
18171 }
18172 if (value > limit)
18173 {
18174 as_bad_where (fixP->fx_file, fixP->fx_line,
18175 _("offset out of range"));
18176 break;
18177 }
18178 newval &= ~limit;
18179 }
18180
18181 newval |= value;
18182 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
18183 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
18184 break;
18185
18186 case BFD_RELOC_ARM_SHIFT_IMM:
18187 newval = md_chars_to_number (buf, INSN_SIZE);
18188 if (((unsigned long) value) > 32
18189 || (value == 32
18190 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
18191 {
18192 as_bad_where (fixP->fx_file, fixP->fx_line,
18193 _("shift expression is too large"));
18194 break;
18195 }
18196
18197 if (value == 0)
18198 /* Shifts of zero must be done as lsl. */
18199 newval &= ~0x60;
18200 else if (value == 32)
18201 value = 0;
18202 newval &= 0xfffff07f;
18203 newval |= (value & 0x1f) << 7;
18204 md_number_to_chars (buf, newval, INSN_SIZE);
18205 break;
18206
18207 case BFD_RELOC_ARM_T32_IMMEDIATE:
18208 case BFD_RELOC_ARM_T32_ADD_IMM:
18209 case BFD_RELOC_ARM_T32_IMM12:
18210 case BFD_RELOC_ARM_T32_ADD_PC12:
18211 /* We claim that this fixup has been processed here,
18212 even if in fact we generate an error because we do
18213 not have a reloc for it, so tc_gen_reloc will reject it. */
18214 fixP->fx_done = 1;
18215
18216 if (fixP->fx_addsy
18217 && ! S_IS_DEFINED (fixP->fx_addsy))
18218 {
18219 as_bad_where (fixP->fx_file, fixP->fx_line,
18220 _("undefined symbol %s used as an immediate value"),
18221 S_GET_NAME (fixP->fx_addsy));
18222 break;
18223 }
18224
18225 newval = md_chars_to_number (buf, THUMB_SIZE);
18226 newval <<= 16;
18227 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
18228
18229 newimm = FAIL;
18230 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
18231 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
18232 {
18233 newimm = encode_thumb32_immediate (value);
18234 if (newimm == (unsigned int) FAIL)
18235 newimm = thumb32_negate_data_op (&newval, value);
18236 }
18237 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
18238 && newimm == (unsigned int) FAIL)
18239 {
18240 /* Turn add/sum into addw/subw. */
18241 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
18242 newval = (newval & 0xfeffffff) | 0x02000000;
18243
18244 /* 12 bit immediate for addw/subw. */
18245 if (value < 0)
18246 {
18247 value = -value;
18248 newval ^= 0x00a00000;
18249 }
18250 if (value > 0xfff)
18251 newimm = (unsigned int) FAIL;
18252 else
18253 newimm = value;
18254 }
18255
18256 if (newimm == (unsigned int)FAIL)
18257 {
18258 as_bad_where (fixP->fx_file, fixP->fx_line,
18259 _("invalid constant (%lx) after fixup"),
18260 (unsigned long) value);
18261 break;
18262 }
18263
18264 newval |= (newimm & 0x800) << 15;
18265 newval |= (newimm & 0x700) << 4;
18266 newval |= (newimm & 0x0ff);
18267
18268 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
18269 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
18270 break;
18271
18272 case BFD_RELOC_ARM_SMC:
18273 if (((unsigned long) value) > 0xffff)
18274 as_bad_where (fixP->fx_file, fixP->fx_line,
18275 _("invalid smc expression"));
18276 newval = md_chars_to_number (buf, INSN_SIZE);
18277 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
18278 md_number_to_chars (buf, newval, INSN_SIZE);
18279 break;
18280
18281 case BFD_RELOC_ARM_SWI:
18282 if (fixP->tc_fix_data != 0)
18283 {
18284 if (((unsigned long) value) > 0xff)
18285 as_bad_where (fixP->fx_file, fixP->fx_line,
18286 _("invalid swi expression"));
18287 newval = md_chars_to_number (buf, THUMB_SIZE);
18288 newval |= value;
18289 md_number_to_chars (buf, newval, THUMB_SIZE);
18290 }
18291 else
18292 {
18293 if (((unsigned long) value) > 0x00ffffff)
18294 as_bad_where (fixP->fx_file, fixP->fx_line,
18295 _("invalid swi expression"));
18296 newval = md_chars_to_number (buf, INSN_SIZE);
18297 newval |= value;
18298 md_number_to_chars (buf, newval, INSN_SIZE);
18299 }
18300 break;
18301
18302 case BFD_RELOC_ARM_MULTI:
18303 if (((unsigned long) value) > 0xffff)
18304 as_bad_where (fixP->fx_file, fixP->fx_line,
18305 _("invalid expression in load/store multiple"));
18306 newval = value | md_chars_to_number (buf, INSN_SIZE);
18307 md_number_to_chars (buf, newval, INSN_SIZE);
18308 break;
18309
18310 #ifdef OBJ_ELF
18311 case BFD_RELOC_ARM_PCREL_CALL:
18312 newval = md_chars_to_number (buf, INSN_SIZE);
18313 if ((newval & 0xf0000000) == 0xf0000000)
18314 temp = 1;
18315 else
18316 temp = 3;
18317 goto arm_branch_common;
18318
18319 case BFD_RELOC_ARM_PCREL_JUMP:
18320 case BFD_RELOC_ARM_PLT32:
18321 #endif
18322 case BFD_RELOC_ARM_PCREL_BRANCH:
18323 temp = 3;
18324 goto arm_branch_common;
18325
18326 case BFD_RELOC_ARM_PCREL_BLX:
18327 temp = 1;
18328 arm_branch_common:
18329 /* We are going to store value (shifted right by two) in the
18330 instruction, in a 24 bit, signed field. Bits 26 through 32 either
18331 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
18332 also be be clear. */
18333 if (value & temp)
18334 as_bad_where (fixP->fx_file, fixP->fx_line,
18335 _("misaligned branch destination"));
18336 if ((value & (offsetT)0xfe000000) != (offsetT)0
18337 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
18338 as_bad_where (fixP->fx_file, fixP->fx_line,
18339 _("branch out of range"));
18340
18341 if (fixP->fx_done || !seg->use_rela_p)
18342 {
18343 newval = md_chars_to_number (buf, INSN_SIZE);
18344 newval |= (value >> 2) & 0x00ffffff;
18345 /* Set the H bit on BLX instructions. */
18346 if (temp == 1)
18347 {
18348 if (value & 2)
18349 newval |= 0x01000000;
18350 else
18351 newval &= ~0x01000000;
18352 }
18353 md_number_to_chars (buf, newval, INSN_SIZE);
18354 }
18355 break;
18356
18357 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
18358 /* CBZ can only branch forward. */
18359
18360 /* Attempts to use CBZ to branch to the next instruction
18361 (which, strictly speaking, are prohibited) will be turned into
18362 no-ops.
18363
18364 FIXME: It may be better to remove the instruction completely and
18365 perform relaxation. */
18366 if (value == -2)
18367 {
18368 newval = md_chars_to_number (buf, THUMB_SIZE);
18369 newval = 0xbf00; /* NOP encoding T1 */
18370 md_number_to_chars (buf, newval, THUMB_SIZE);
18371 }
18372 else
18373 {
18374 if (value & ~0x7e)
18375 as_bad_where (fixP->fx_file, fixP->fx_line,
18376 _("branch out of range"));
18377
18378 if (fixP->fx_done || !seg->use_rela_p)
18379 {
18380 newval = md_chars_to_number (buf, THUMB_SIZE);
18381 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
18382 md_number_to_chars (buf, newval, THUMB_SIZE);
18383 }
18384 }
18385 break;
18386
18387 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
18388 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
18389 as_bad_where (fixP->fx_file, fixP->fx_line,
18390 _("branch out of range"));
18391
18392 if (fixP->fx_done || !seg->use_rela_p)
18393 {
18394 newval = md_chars_to_number (buf, THUMB_SIZE);
18395 newval |= (value & 0x1ff) >> 1;
18396 md_number_to_chars (buf, newval, THUMB_SIZE);
18397 }
18398 break;
18399
18400 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
18401 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
18402 as_bad_where (fixP->fx_file, fixP->fx_line,
18403 _("branch out of range"));
18404
18405 if (fixP->fx_done || !seg->use_rela_p)
18406 {
18407 newval = md_chars_to_number (buf, THUMB_SIZE);
18408 newval |= (value & 0xfff) >> 1;
18409 md_number_to_chars (buf, newval, THUMB_SIZE);
18410 }
18411 break;
18412
18413 case BFD_RELOC_THUMB_PCREL_BRANCH20:
18414 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
18415 as_bad_where (fixP->fx_file, fixP->fx_line,
18416 _("conditional branch out of range"));
18417
18418 if (fixP->fx_done || !seg->use_rela_p)
18419 {
18420 offsetT newval2;
18421 addressT S, J1, J2, lo, hi;
18422
18423 S = (value & 0x00100000) >> 20;
18424 J2 = (value & 0x00080000) >> 19;
18425 J1 = (value & 0x00040000) >> 18;
18426 hi = (value & 0x0003f000) >> 12;
18427 lo = (value & 0x00000ffe) >> 1;
18428
18429 newval = md_chars_to_number (buf, THUMB_SIZE);
18430 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18431 newval |= (S << 10) | hi;
18432 newval2 |= (J1 << 13) | (J2 << 11) | lo;
18433 md_number_to_chars (buf, newval, THUMB_SIZE);
18434 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18435 }
18436 break;
18437
18438 case BFD_RELOC_THUMB_PCREL_BLX:
18439 case BFD_RELOC_THUMB_PCREL_BRANCH23:
18440 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
18441 as_bad_where (fixP->fx_file, fixP->fx_line,
18442 _("branch out of range"));
18443
18444 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
18445 /* For a BLX instruction, make sure that the relocation is rounded up
18446 to a word boundary. This follows the semantics of the instruction
18447 which specifies that bit 1 of the target address will come from bit
18448 1 of the base address. */
18449 value = (value + 1) & ~ 1;
18450
18451 if (fixP->fx_done || !seg->use_rela_p)
18452 {
18453 offsetT newval2;
18454
18455 newval = md_chars_to_number (buf, THUMB_SIZE);
18456 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18457 newval |= (value & 0x7fffff) >> 12;
18458 newval2 |= (value & 0xfff) >> 1;
18459 md_number_to_chars (buf, newval, THUMB_SIZE);
18460 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18461 }
18462 break;
18463
18464 case BFD_RELOC_THUMB_PCREL_BRANCH25:
18465 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
18466 as_bad_where (fixP->fx_file, fixP->fx_line,
18467 _("branch out of range"));
18468
18469 if (fixP->fx_done || !seg->use_rela_p)
18470 {
18471 offsetT newval2;
18472 addressT S, I1, I2, lo, hi;
18473
18474 S = (value & 0x01000000) >> 24;
18475 I1 = (value & 0x00800000) >> 23;
18476 I2 = (value & 0x00400000) >> 22;
18477 hi = (value & 0x003ff000) >> 12;
18478 lo = (value & 0x00000ffe) >> 1;
18479
18480 I1 = !(I1 ^ S);
18481 I2 = !(I2 ^ S);
18482
18483 newval = md_chars_to_number (buf, THUMB_SIZE);
18484 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18485 newval |= (S << 10) | hi;
18486 newval2 |= (I1 << 13) | (I2 << 11) | lo;
18487 md_number_to_chars (buf, newval, THUMB_SIZE);
18488 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18489 }
18490 break;
18491
18492 case BFD_RELOC_8:
18493 if (fixP->fx_done || !seg->use_rela_p)
18494 md_number_to_chars (buf, value, 1);
18495 break;
18496
18497 case BFD_RELOC_16:
18498 if (fixP->fx_done || !seg->use_rela_p)
18499 md_number_to_chars (buf, value, 2);
18500 break;
18501
18502 #ifdef OBJ_ELF
18503 case BFD_RELOC_ARM_TLS_GD32:
18504 case BFD_RELOC_ARM_TLS_LE32:
18505 case BFD_RELOC_ARM_TLS_IE32:
18506 case BFD_RELOC_ARM_TLS_LDM32:
18507 case BFD_RELOC_ARM_TLS_LDO32:
18508 S_SET_THREAD_LOCAL (fixP->fx_addsy);
18509 /* fall through */
18510
18511 case BFD_RELOC_ARM_GOT32:
18512 case BFD_RELOC_ARM_GOTOFF:
18513 case BFD_RELOC_ARM_TARGET2:
18514 if (fixP->fx_done || !seg->use_rela_p)
18515 md_number_to_chars (buf, 0, 4);
18516 break;
18517 #endif
18518
18519 case BFD_RELOC_RVA:
18520 case BFD_RELOC_32:
18521 case BFD_RELOC_ARM_TARGET1:
18522 case BFD_RELOC_ARM_ROSEGREL32:
18523 case BFD_RELOC_ARM_SBREL32:
18524 case BFD_RELOC_32_PCREL:
18525 #ifdef TE_PE
18526 case BFD_RELOC_32_SECREL:
18527 #endif
18528 if (fixP->fx_done || !seg->use_rela_p)
18529 #ifdef TE_WINCE
18530 /* For WinCE we only do this for pcrel fixups. */
18531 if (fixP->fx_done || fixP->fx_pcrel)
18532 #endif
18533 md_number_to_chars (buf, value, 4);
18534 break;
18535
18536 #ifdef OBJ_ELF
18537 case BFD_RELOC_ARM_PREL31:
18538 if (fixP->fx_done || !seg->use_rela_p)
18539 {
18540 newval = md_chars_to_number (buf, 4) & 0x80000000;
18541 if ((value ^ (value >> 1)) & 0x40000000)
18542 {
18543 as_bad_where (fixP->fx_file, fixP->fx_line,
18544 _("rel31 relocation overflow"));
18545 }
18546 newval |= value & 0x7fffffff;
18547 md_number_to_chars (buf, newval, 4);
18548 }
18549 break;
18550 #endif
18551
18552 case BFD_RELOC_ARM_CP_OFF_IMM:
18553 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
18554 if (value < -1023 || value > 1023 || (value & 3))
18555 as_bad_where (fixP->fx_file, fixP->fx_line,
18556 _("co-processor offset out of range"));
18557 cp_off_common:
18558 sign = value >= 0;
18559 if (value < 0)
18560 value = -value;
18561 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
18562 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
18563 newval = md_chars_to_number (buf, INSN_SIZE);
18564 else
18565 newval = get_thumb32_insn (buf);
18566 newval &= 0xff7fff00;
18567 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
18568 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
18569 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
18570 md_number_to_chars (buf, newval, INSN_SIZE);
18571 else
18572 put_thumb32_insn (buf, newval);
18573 break;
18574
18575 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
18576 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
18577 if (value < -255 || value > 255)
18578 as_bad_where (fixP->fx_file, fixP->fx_line,
18579 _("co-processor offset out of range"));
18580 value *= 4;
18581 goto cp_off_common;
18582
18583 case BFD_RELOC_ARM_THUMB_OFFSET:
18584 newval = md_chars_to_number (buf, THUMB_SIZE);
18585 /* Exactly what ranges, and where the offset is inserted depends
18586 on the type of instruction, we can establish this from the
18587 top 4 bits. */
18588 switch (newval >> 12)
18589 {
18590 case 4: /* PC load. */
18591 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
18592 forced to zero for these loads; md_pcrel_from has already
18593 compensated for this. */
18594 if (value & 3)
18595 as_bad_where (fixP->fx_file, fixP->fx_line,
18596 _("invalid offset, target not word aligned (0x%08lX)"),
18597 (((unsigned long) fixP->fx_frag->fr_address
18598 + (unsigned long) fixP->fx_where) & ~3)
18599 + (unsigned long) value);
18600
18601 if (value & ~0x3fc)
18602 as_bad_where (fixP->fx_file, fixP->fx_line,
18603 _("invalid offset, value too big (0x%08lX)"),
18604 (long) value);
18605
18606 newval |= value >> 2;
18607 break;
18608
18609 case 9: /* SP load/store. */
18610 if (value & ~0x3fc)
18611 as_bad_where (fixP->fx_file, fixP->fx_line,
18612 _("invalid offset, value too big (0x%08lX)"),
18613 (long) value);
18614 newval |= value >> 2;
18615 break;
18616
18617 case 6: /* Word load/store. */
18618 if (value & ~0x7c)
18619 as_bad_where (fixP->fx_file, fixP->fx_line,
18620 _("invalid offset, value too big (0x%08lX)"),
18621 (long) value);
18622 newval |= value << 4; /* 6 - 2. */
18623 break;
18624
18625 case 7: /* Byte load/store. */
18626 if (value & ~0x1f)
18627 as_bad_where (fixP->fx_file, fixP->fx_line,
18628 _("invalid offset, value too big (0x%08lX)"),
18629 (long) value);
18630 newval |= value << 6;
18631 break;
18632
18633 case 8: /* Halfword load/store. */
18634 if (value & ~0x3e)
18635 as_bad_where (fixP->fx_file, fixP->fx_line,
18636 _("invalid offset, value too big (0x%08lX)"),
18637 (long) value);
18638 newval |= value << 5; /* 6 - 1. */
18639 break;
18640
18641 default:
18642 as_bad_where (fixP->fx_file, fixP->fx_line,
18643 "Unable to process relocation for thumb opcode: %lx",
18644 (unsigned long) newval);
18645 break;
18646 }
18647 md_number_to_chars (buf, newval, THUMB_SIZE);
18648 break;
18649
18650 case BFD_RELOC_ARM_THUMB_ADD:
18651 /* This is a complicated relocation, since we use it for all of
18652 the following immediate relocations:
18653
18654 3bit ADD/SUB
18655 8bit ADD/SUB
18656 9bit ADD/SUB SP word-aligned
18657 10bit ADD PC/SP word-aligned
18658
18659 The type of instruction being processed is encoded in the
18660 instruction field:
18661
18662 0x8000 SUB
18663 0x00F0 Rd
18664 0x000F Rs
18665 */
18666 newval = md_chars_to_number (buf, THUMB_SIZE);
18667 {
18668 int rd = (newval >> 4) & 0xf;
18669 int rs = newval & 0xf;
18670 int subtract = !!(newval & 0x8000);
18671
18672 /* Check for HI regs, only very restricted cases allowed:
18673 Adjusting SP, and using PC or SP to get an address. */
18674 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
18675 || (rs > 7 && rs != REG_SP && rs != REG_PC))
18676 as_bad_where (fixP->fx_file, fixP->fx_line,
18677 _("invalid Hi register with immediate"));
18678
18679 /* If value is negative, choose the opposite instruction. */
18680 if (value < 0)
18681 {
18682 value = -value;
18683 subtract = !subtract;
18684 if (value < 0)
18685 as_bad_where (fixP->fx_file, fixP->fx_line,
18686 _("immediate value out of range"));
18687 }
18688
18689 if (rd == REG_SP)
18690 {
18691 if (value & ~0x1fc)
18692 as_bad_where (fixP->fx_file, fixP->fx_line,
18693 _("invalid immediate for stack address calculation"));
18694 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
18695 newval |= value >> 2;
18696 }
18697 else if (rs == REG_PC || rs == REG_SP)
18698 {
18699 if (subtract || value & ~0x3fc)
18700 as_bad_where (fixP->fx_file, fixP->fx_line,
18701 _("invalid immediate for address calculation (value = 0x%08lX)"),
18702 (unsigned long) value);
18703 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
18704 newval |= rd << 8;
18705 newval |= value >> 2;
18706 }
18707 else if (rs == rd)
18708 {
18709 if (value & ~0xff)
18710 as_bad_where (fixP->fx_file, fixP->fx_line,
18711 _("immediate value out of range"));
18712 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
18713 newval |= (rd << 8) | value;
18714 }
18715 else
18716 {
18717 if (value & ~0x7)
18718 as_bad_where (fixP->fx_file, fixP->fx_line,
18719 _("immediate value out of range"));
18720 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
18721 newval |= rd | (rs << 3) | (value << 6);
18722 }
18723 }
18724 md_number_to_chars (buf, newval, THUMB_SIZE);
18725 break;
18726
18727 case BFD_RELOC_ARM_THUMB_IMM:
18728 newval = md_chars_to_number (buf, THUMB_SIZE);
18729 if (value < 0 || value > 255)
18730 as_bad_where (fixP->fx_file, fixP->fx_line,
18731 _("invalid immediate: %ld is too large"),
18732 (long) value);
18733 newval |= value;
18734 md_number_to_chars (buf, newval, THUMB_SIZE);
18735 break;
18736
18737 case BFD_RELOC_ARM_THUMB_SHIFT:
18738 /* 5bit shift value (0..32). LSL cannot take 32. */
18739 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
18740 temp = newval & 0xf800;
18741 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
18742 as_bad_where (fixP->fx_file, fixP->fx_line,
18743 _("invalid shift value: %ld"), (long) value);
18744 /* Shifts of zero must be encoded as LSL. */
18745 if (value == 0)
18746 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
18747 /* Shifts of 32 are encoded as zero. */
18748 else if (value == 32)
18749 value = 0;
18750 newval |= value << 6;
18751 md_number_to_chars (buf, newval, THUMB_SIZE);
18752 break;
18753
18754 case BFD_RELOC_VTABLE_INHERIT:
18755 case BFD_RELOC_VTABLE_ENTRY:
18756 fixP->fx_done = 0;
18757 return;
18758
18759 case BFD_RELOC_ARM_MOVW:
18760 case BFD_RELOC_ARM_MOVT:
18761 case BFD_RELOC_ARM_THUMB_MOVW:
18762 case BFD_RELOC_ARM_THUMB_MOVT:
18763 if (fixP->fx_done || !seg->use_rela_p)
18764 {
18765 /* REL format relocations are limited to a 16-bit addend. */
18766 if (!fixP->fx_done)
18767 {
18768 if (value < -0x1000 || value > 0xffff)
18769 as_bad_where (fixP->fx_file, fixP->fx_line,
18770 _("offset too big"));
18771 }
18772 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
18773 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18774 {
18775 value >>= 16;
18776 }
18777
18778 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
18779 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18780 {
18781 newval = get_thumb32_insn (buf);
18782 newval &= 0xfbf08f00;
18783 newval |= (value & 0xf000) << 4;
18784 newval |= (value & 0x0800) << 15;
18785 newval |= (value & 0x0700) << 4;
18786 newval |= (value & 0x00ff);
18787 put_thumb32_insn (buf, newval);
18788 }
18789 else
18790 {
18791 newval = md_chars_to_number (buf, 4);
18792 newval &= 0xfff0f000;
18793 newval |= value & 0x0fff;
18794 newval |= (value & 0xf000) << 4;
18795 md_number_to_chars (buf, newval, 4);
18796 }
18797 }
18798 return;
18799
18800 case BFD_RELOC_ARM_ALU_PC_G0_NC:
18801 case BFD_RELOC_ARM_ALU_PC_G0:
18802 case BFD_RELOC_ARM_ALU_PC_G1_NC:
18803 case BFD_RELOC_ARM_ALU_PC_G1:
18804 case BFD_RELOC_ARM_ALU_PC_G2:
18805 case BFD_RELOC_ARM_ALU_SB_G0_NC:
18806 case BFD_RELOC_ARM_ALU_SB_G0:
18807 case BFD_RELOC_ARM_ALU_SB_G1_NC:
18808 case BFD_RELOC_ARM_ALU_SB_G1:
18809 case BFD_RELOC_ARM_ALU_SB_G2:
18810 assert (!fixP->fx_done);
18811 if (!seg->use_rela_p)
18812 {
18813 bfd_vma insn;
18814 bfd_vma encoded_addend;
18815 bfd_vma addend_abs = abs (value);
18816
18817 /* Check that the absolute value of the addend can be
18818 expressed as an 8-bit constant plus a rotation. */
18819 encoded_addend = encode_arm_immediate (addend_abs);
18820 if (encoded_addend == (unsigned int) FAIL)
18821 as_bad_where (fixP->fx_file, fixP->fx_line,
18822 _("the offset 0x%08lX is not representable"),
18823 addend_abs);
18824
18825 /* Extract the instruction. */
18826 insn = md_chars_to_number (buf, INSN_SIZE);
18827
18828 /* If the addend is positive, use an ADD instruction.
18829 Otherwise use a SUB. Take care not to destroy the S bit. */
18830 insn &= 0xff1fffff;
18831 if (value < 0)
18832 insn |= 1 << 22;
18833 else
18834 insn |= 1 << 23;
18835
18836 /* Place the encoded addend into the first 12 bits of the
18837 instruction. */
18838 insn &= 0xfffff000;
18839 insn |= encoded_addend;
18840
18841 /* Update the instruction. */
18842 md_number_to_chars (buf, insn, INSN_SIZE);
18843 }
18844 break;
18845
18846 case BFD_RELOC_ARM_LDR_PC_G0:
18847 case BFD_RELOC_ARM_LDR_PC_G1:
18848 case BFD_RELOC_ARM_LDR_PC_G2:
18849 case BFD_RELOC_ARM_LDR_SB_G0:
18850 case BFD_RELOC_ARM_LDR_SB_G1:
18851 case BFD_RELOC_ARM_LDR_SB_G2:
18852 assert (!fixP->fx_done);
18853 if (!seg->use_rela_p)
18854 {
18855 bfd_vma insn;
18856 bfd_vma addend_abs = abs (value);
18857
18858 /* Check that the absolute value of the addend can be
18859 encoded in 12 bits. */
18860 if (addend_abs >= 0x1000)
18861 as_bad_where (fixP->fx_file, fixP->fx_line,
18862 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
18863 addend_abs);
18864
18865 /* Extract the instruction. */
18866 insn = md_chars_to_number (buf, INSN_SIZE);
18867
18868 /* If the addend is negative, clear bit 23 of the instruction.
18869 Otherwise set it. */
18870 if (value < 0)
18871 insn &= ~(1 << 23);
18872 else
18873 insn |= 1 << 23;
18874
18875 /* Place the absolute value of the addend into the first 12 bits
18876 of the instruction. */
18877 insn &= 0xfffff000;
18878 insn |= addend_abs;
18879
18880 /* Update the instruction. */
18881 md_number_to_chars (buf, insn, INSN_SIZE);
18882 }
18883 break;
18884
18885 case BFD_RELOC_ARM_LDRS_PC_G0:
18886 case BFD_RELOC_ARM_LDRS_PC_G1:
18887 case BFD_RELOC_ARM_LDRS_PC_G2:
18888 case BFD_RELOC_ARM_LDRS_SB_G0:
18889 case BFD_RELOC_ARM_LDRS_SB_G1:
18890 case BFD_RELOC_ARM_LDRS_SB_G2:
18891 assert (!fixP->fx_done);
18892 if (!seg->use_rela_p)
18893 {
18894 bfd_vma insn;
18895 bfd_vma addend_abs = abs (value);
18896
18897 /* Check that the absolute value of the addend can be
18898 encoded in 8 bits. */
18899 if (addend_abs >= 0x100)
18900 as_bad_where (fixP->fx_file, fixP->fx_line,
18901 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
18902 addend_abs);
18903
18904 /* Extract the instruction. */
18905 insn = md_chars_to_number (buf, INSN_SIZE);
18906
18907 /* If the addend is negative, clear bit 23 of the instruction.
18908 Otherwise set it. */
18909 if (value < 0)
18910 insn &= ~(1 << 23);
18911 else
18912 insn |= 1 << 23;
18913
18914 /* Place the first four bits of the absolute value of the addend
18915 into the first 4 bits of the instruction, and the remaining
18916 four into bits 8 .. 11. */
18917 insn &= 0xfffff0f0;
18918 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
18919
18920 /* Update the instruction. */
18921 md_number_to_chars (buf, insn, INSN_SIZE);
18922 }
18923 break;
18924
18925 case BFD_RELOC_ARM_LDC_PC_G0:
18926 case BFD_RELOC_ARM_LDC_PC_G1:
18927 case BFD_RELOC_ARM_LDC_PC_G2:
18928 case BFD_RELOC_ARM_LDC_SB_G0:
18929 case BFD_RELOC_ARM_LDC_SB_G1:
18930 case BFD_RELOC_ARM_LDC_SB_G2:
18931 assert (!fixP->fx_done);
18932 if (!seg->use_rela_p)
18933 {
18934 bfd_vma insn;
18935 bfd_vma addend_abs = abs (value);
18936
18937 /* Check that the absolute value of the addend is a multiple of
18938 four and, when divided by four, fits in 8 bits. */
18939 if (addend_abs & 0x3)
18940 as_bad_where (fixP->fx_file, fixP->fx_line,
18941 _("bad offset 0x%08lX (must be word-aligned)"),
18942 addend_abs);
18943
18944 if ((addend_abs >> 2) > 0xff)
18945 as_bad_where (fixP->fx_file, fixP->fx_line,
18946 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
18947 addend_abs);
18948
18949 /* Extract the instruction. */
18950 insn = md_chars_to_number (buf, INSN_SIZE);
18951
18952 /* If the addend is negative, clear bit 23 of the instruction.
18953 Otherwise set it. */
18954 if (value < 0)
18955 insn &= ~(1 << 23);
18956 else
18957 insn |= 1 << 23;
18958
18959 /* Place the addend (divided by four) into the first eight
18960 bits of the instruction. */
18961 insn &= 0xfffffff0;
18962 insn |= addend_abs >> 2;
18963
18964 /* Update the instruction. */
18965 md_number_to_chars (buf, insn, INSN_SIZE);
18966 }
18967 break;
18968
18969 case BFD_RELOC_UNUSED:
18970 default:
18971 as_bad_where (fixP->fx_file, fixP->fx_line,
18972 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
18973 }
18974 }
18975
18976 /* Translate internal representation of relocation info to BFD target
18977 format. */
18978
18979 arelent *
18980 tc_gen_reloc (asection *section, fixS *fixp)
18981 {
18982 arelent * reloc;
18983 bfd_reloc_code_real_type code;
18984
18985 reloc = xmalloc (sizeof (arelent));
18986
18987 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
18988 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
18989 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
18990
18991 if (fixp->fx_pcrel)
18992 {
18993 if (section->use_rela_p)
18994 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
18995 else
18996 fixp->fx_offset = reloc->address;
18997 }
18998 reloc->addend = fixp->fx_offset;
18999
19000 switch (fixp->fx_r_type)
19001 {
19002 case BFD_RELOC_8:
19003 if (fixp->fx_pcrel)
19004 {
19005 code = BFD_RELOC_8_PCREL;
19006 break;
19007 }
19008
19009 case BFD_RELOC_16:
19010 if (fixp->fx_pcrel)
19011 {
19012 code = BFD_RELOC_16_PCREL;
19013 break;
19014 }
19015
19016 case BFD_RELOC_32:
19017 if (fixp->fx_pcrel)
19018 {
19019 code = BFD_RELOC_32_PCREL;
19020 break;
19021 }
19022
19023 case BFD_RELOC_ARM_MOVW:
19024 if (fixp->fx_pcrel)
19025 {
19026 code = BFD_RELOC_ARM_MOVW_PCREL;
19027 break;
19028 }
19029
19030 case BFD_RELOC_ARM_MOVT:
19031 if (fixp->fx_pcrel)
19032 {
19033 code = BFD_RELOC_ARM_MOVT_PCREL;
19034 break;
19035 }
19036
19037 case BFD_RELOC_ARM_THUMB_MOVW:
19038 if (fixp->fx_pcrel)
19039 {
19040 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
19041 break;
19042 }
19043
19044 case BFD_RELOC_ARM_THUMB_MOVT:
19045 if (fixp->fx_pcrel)
19046 {
19047 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
19048 break;
19049 }
19050
19051 case BFD_RELOC_NONE:
19052 case BFD_RELOC_ARM_PCREL_BRANCH:
19053 case BFD_RELOC_ARM_PCREL_BLX:
19054 case BFD_RELOC_RVA:
19055 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19056 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19057 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19058 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19059 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19060 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19061 case BFD_RELOC_THUMB_PCREL_BLX:
19062 case BFD_RELOC_VTABLE_ENTRY:
19063 case BFD_RELOC_VTABLE_INHERIT:
19064 #ifdef TE_PE
19065 case BFD_RELOC_32_SECREL:
19066 #endif
19067 code = fixp->fx_r_type;
19068 break;
19069
19070 case BFD_RELOC_ARM_LITERAL:
19071 case BFD_RELOC_ARM_HWLITERAL:
19072 /* If this is called then the a literal has
19073 been referenced across a section boundary. */
19074 as_bad_where (fixp->fx_file, fixp->fx_line,
19075 _("literal referenced across section boundary"));
19076 return NULL;
19077
19078 #ifdef OBJ_ELF
19079 case BFD_RELOC_ARM_GOT32:
19080 case BFD_RELOC_ARM_GOTOFF:
19081 case BFD_RELOC_ARM_PLT32:
19082 case BFD_RELOC_ARM_TARGET1:
19083 case BFD_RELOC_ARM_ROSEGREL32:
19084 case BFD_RELOC_ARM_SBREL32:
19085 case BFD_RELOC_ARM_PREL31:
19086 case BFD_RELOC_ARM_TARGET2:
19087 case BFD_RELOC_ARM_TLS_LE32:
19088 case BFD_RELOC_ARM_TLS_LDO32:
19089 case BFD_RELOC_ARM_PCREL_CALL:
19090 case BFD_RELOC_ARM_PCREL_JUMP:
19091 case BFD_RELOC_ARM_ALU_PC_G0_NC:
19092 case BFD_RELOC_ARM_ALU_PC_G0:
19093 case BFD_RELOC_ARM_ALU_PC_G1_NC:
19094 case BFD_RELOC_ARM_ALU_PC_G1:
19095 case BFD_RELOC_ARM_ALU_PC_G2:
19096 case BFD_RELOC_ARM_LDR_PC_G0:
19097 case BFD_RELOC_ARM_LDR_PC_G1:
19098 case BFD_RELOC_ARM_LDR_PC_G2:
19099 case BFD_RELOC_ARM_LDRS_PC_G0:
19100 case BFD_RELOC_ARM_LDRS_PC_G1:
19101 case BFD_RELOC_ARM_LDRS_PC_G2:
19102 case BFD_RELOC_ARM_LDC_PC_G0:
19103 case BFD_RELOC_ARM_LDC_PC_G1:
19104 case BFD_RELOC_ARM_LDC_PC_G2:
19105 case BFD_RELOC_ARM_ALU_SB_G0_NC:
19106 case BFD_RELOC_ARM_ALU_SB_G0:
19107 case BFD_RELOC_ARM_ALU_SB_G1_NC:
19108 case BFD_RELOC_ARM_ALU_SB_G1:
19109 case BFD_RELOC_ARM_ALU_SB_G2:
19110 case BFD_RELOC_ARM_LDR_SB_G0:
19111 case BFD_RELOC_ARM_LDR_SB_G1:
19112 case BFD_RELOC_ARM_LDR_SB_G2:
19113 case BFD_RELOC_ARM_LDRS_SB_G0:
19114 case BFD_RELOC_ARM_LDRS_SB_G1:
19115 case BFD_RELOC_ARM_LDRS_SB_G2:
19116 case BFD_RELOC_ARM_LDC_SB_G0:
19117 case BFD_RELOC_ARM_LDC_SB_G1:
19118 case BFD_RELOC_ARM_LDC_SB_G2:
19119 code = fixp->fx_r_type;
19120 break;
19121
19122 case BFD_RELOC_ARM_TLS_GD32:
19123 case BFD_RELOC_ARM_TLS_IE32:
19124 case BFD_RELOC_ARM_TLS_LDM32:
19125 /* BFD will include the symbol's address in the addend.
19126 But we don't want that, so subtract it out again here. */
19127 if (!S_IS_COMMON (fixp->fx_addsy))
19128 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
19129 code = fixp->fx_r_type;
19130 break;
19131 #endif
19132
19133 case BFD_RELOC_ARM_IMMEDIATE:
19134 as_bad_where (fixp->fx_file, fixp->fx_line,
19135 _("internal relocation (type: IMMEDIATE) not fixed up"));
19136 return NULL;
19137
19138 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
19139 as_bad_where (fixp->fx_file, fixp->fx_line,
19140 _("ADRL used for a symbol not defined in the same file"));
19141 return NULL;
19142
19143 case BFD_RELOC_ARM_OFFSET_IMM:
19144 if (section->use_rela_p)
19145 {
19146 code = fixp->fx_r_type;
19147 break;
19148 }
19149
19150 if (fixp->fx_addsy != NULL
19151 && !S_IS_DEFINED (fixp->fx_addsy)
19152 && S_IS_LOCAL (fixp->fx_addsy))
19153 {
19154 as_bad_where (fixp->fx_file, fixp->fx_line,
19155 _("undefined local label `%s'"),
19156 S_GET_NAME (fixp->fx_addsy));
19157 return NULL;
19158 }
19159
19160 as_bad_where (fixp->fx_file, fixp->fx_line,
19161 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
19162 return NULL;
19163
19164 default:
19165 {
19166 char * type;
19167
19168 switch (fixp->fx_r_type)
19169 {
19170 case BFD_RELOC_NONE: type = "NONE"; break;
19171 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
19172 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
19173 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
19174 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
19175 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
19176 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
19177 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
19178 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
19179 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
19180 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
19181 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
19182 default: type = _("<unknown>"); break;
19183 }
19184 as_bad_where (fixp->fx_file, fixp->fx_line,
19185 _("cannot represent %s relocation in this object file format"),
19186 type);
19187 return NULL;
19188 }
19189 }
19190
19191 #ifdef OBJ_ELF
19192 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
19193 && GOT_symbol
19194 && fixp->fx_addsy == GOT_symbol)
19195 {
19196 code = BFD_RELOC_ARM_GOTPC;
19197 reloc->addend = fixp->fx_offset = reloc->address;
19198 }
19199 #endif
19200
19201 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
19202
19203 if (reloc->howto == NULL)
19204 {
19205 as_bad_where (fixp->fx_file, fixp->fx_line,
19206 _("cannot represent %s relocation in this object file format"),
19207 bfd_get_reloc_code_name (code));
19208 return NULL;
19209 }
19210
19211 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
19212 vtable entry to be used in the relocation's section offset. */
19213 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19214 reloc->address = fixp->fx_offset;
19215
19216 return reloc;
19217 }
19218
19219 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
19220
19221 void
19222 cons_fix_new_arm (fragS * frag,
19223 int where,
19224 int size,
19225 expressionS * exp)
19226 {
19227 bfd_reloc_code_real_type type;
19228 int pcrel = 0;
19229
19230 /* Pick a reloc.
19231 FIXME: @@ Should look at CPU word size. */
19232 switch (size)
19233 {
19234 case 1:
19235 type = BFD_RELOC_8;
19236 break;
19237 case 2:
19238 type = BFD_RELOC_16;
19239 break;
19240 case 4:
19241 default:
19242 type = BFD_RELOC_32;
19243 break;
19244 case 8:
19245 type = BFD_RELOC_64;
19246 break;
19247 }
19248
19249 #ifdef TE_PE
19250 if (exp->X_op == O_secrel)
19251 {
19252 exp->X_op = O_symbol;
19253 type = BFD_RELOC_32_SECREL;
19254 }
19255 #endif
19256
19257 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
19258 }
19259
19260 #if defined OBJ_COFF || defined OBJ_ELF
19261 void
19262 arm_validate_fix (fixS * fixP)
19263 {
19264 /* If the destination of the branch is a defined symbol which does not have
19265 the THUMB_FUNC attribute, then we must be calling a function which has
19266 the (interfacearm) attribute. We look for the Thumb entry point to that
19267 function and change the branch to refer to that function instead. */
19268 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
19269 && fixP->fx_addsy != NULL
19270 && S_IS_DEFINED (fixP->fx_addsy)
19271 && ! THUMB_IS_FUNC (fixP->fx_addsy))
19272 {
19273 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
19274 }
19275 }
19276 #endif
19277
19278 int
19279 arm_force_relocation (struct fix * fixp)
19280 {
19281 #if defined (OBJ_COFF) && defined (TE_PE)
19282 if (fixp->fx_r_type == BFD_RELOC_RVA)
19283 return 1;
19284 #endif
19285
19286 /* Resolve these relocations even if the symbol is extern or weak. */
19287 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
19288 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
19289 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
19290 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
19291 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
19292 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
19293 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
19294 return 0;
19295
19296 /* Always leave these relocations for the linker. */
19297 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19298 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19299 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19300 return 1;
19301
19302 /* Always generate relocations against function symbols. */
19303 if (fixp->fx_r_type == BFD_RELOC_32
19304 && fixp->fx_addsy
19305 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
19306 return 1;
19307
19308 return generic_force_reloc (fixp);
19309 }
19310
19311 #if defined (OBJ_ELF) || defined (OBJ_COFF)
19312 /* Relocations against function names must be left unadjusted,
19313 so that the linker can use this information to generate interworking
19314 stubs. The MIPS version of this function
19315 also prevents relocations that are mips-16 specific, but I do not
19316 know why it does this.
19317
19318 FIXME:
19319 There is one other problem that ought to be addressed here, but
19320 which currently is not: Taking the address of a label (rather
19321 than a function) and then later jumping to that address. Such
19322 addresses also ought to have their bottom bit set (assuming that
19323 they reside in Thumb code), but at the moment they will not. */
19324
19325 bfd_boolean
19326 arm_fix_adjustable (fixS * fixP)
19327 {
19328 if (fixP->fx_addsy == NULL)
19329 return 1;
19330
19331 /* Preserve relocations against symbols with function type. */
19332 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
19333 return 0;
19334
19335 if (THUMB_IS_FUNC (fixP->fx_addsy)
19336 && fixP->fx_subsy == NULL)
19337 return 0;
19338
19339 /* We need the symbol name for the VTABLE entries. */
19340 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
19341 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19342 return 0;
19343
19344 /* Don't allow symbols to be discarded on GOT related relocs. */
19345 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
19346 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
19347 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
19348 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
19349 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
19350 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
19351 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
19352 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
19353 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
19354 return 0;
19355
19356 /* Similarly for group relocations. */
19357 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19358 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19359 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19360 return 0;
19361
19362 return 1;
19363 }
19364 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
19365
19366 #ifdef OBJ_ELF
19367
19368 const char *
19369 elf32_arm_target_format (void)
19370 {
19371 #ifdef TE_SYMBIAN
19372 return (target_big_endian
19373 ? "elf32-bigarm-symbian"
19374 : "elf32-littlearm-symbian");
19375 #elif defined (TE_VXWORKS)
19376 return (target_big_endian
19377 ? "elf32-bigarm-vxworks"
19378 : "elf32-littlearm-vxworks");
19379 #else
19380 if (target_big_endian)
19381 return "elf32-bigarm";
19382 else
19383 return "elf32-littlearm";
19384 #endif
19385 }
19386
19387 void
19388 armelf_frob_symbol (symbolS * symp,
19389 int * puntp)
19390 {
19391 elf_frob_symbol (symp, puntp);
19392 }
19393 #endif
19394
19395 /* MD interface: Finalization. */
19396
19397 /* A good place to do this, although this was probably not intended
19398 for this kind of use. We need to dump the literal pool before
19399 references are made to a null symbol pointer. */
19400
19401 void
19402 arm_cleanup (void)
19403 {
19404 literal_pool * pool;
19405
19406 for (pool = list_of_pools; pool; pool = pool->next)
19407 {
19408 /* Put it at the end of the relevent section. */
19409 subseg_set (pool->section, pool->sub_section);
19410 #ifdef OBJ_ELF
19411 arm_elf_change_section ();
19412 #endif
19413 s_ltorg (0);
19414 }
19415 }
19416
19417 /* Adjust the symbol table. This marks Thumb symbols as distinct from
19418 ARM ones. */
19419
19420 void
19421 arm_adjust_symtab (void)
19422 {
19423 #ifdef OBJ_COFF
19424 symbolS * sym;
19425
19426 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
19427 {
19428 if (ARM_IS_THUMB (sym))
19429 {
19430 if (THUMB_IS_FUNC (sym))
19431 {
19432 /* Mark the symbol as a Thumb function. */
19433 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
19434 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
19435 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
19436
19437 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
19438 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
19439 else
19440 as_bad (_("%s: unexpected function type: %d"),
19441 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
19442 }
19443 else switch (S_GET_STORAGE_CLASS (sym))
19444 {
19445 case C_EXT:
19446 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
19447 break;
19448 case C_STAT:
19449 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
19450 break;
19451 case C_LABEL:
19452 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
19453 break;
19454 default:
19455 /* Do nothing. */
19456 break;
19457 }
19458 }
19459
19460 if (ARM_IS_INTERWORK (sym))
19461 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
19462 }
19463 #endif
19464 #ifdef OBJ_ELF
19465 symbolS * sym;
19466 char bind;
19467
19468 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
19469 {
19470 if (ARM_IS_THUMB (sym))
19471 {
19472 elf_symbol_type * elf_sym;
19473
19474 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
19475 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
19476
19477 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
19478 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
19479 {
19480 /* If it's a .thumb_func, declare it as so,
19481 otherwise tag label as .code 16. */
19482 if (THUMB_IS_FUNC (sym))
19483 elf_sym->internal_elf_sym.st_info =
19484 ELF_ST_INFO (bind, STT_ARM_TFUNC);
19485 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
19486 elf_sym->internal_elf_sym.st_info =
19487 ELF_ST_INFO (bind, STT_ARM_16BIT);
19488 }
19489 }
19490 }
19491 #endif
19492 }
19493
19494 /* MD interface: Initialization. */
19495
19496 static void
19497 set_constant_flonums (void)
19498 {
19499 int i;
19500
19501 for (i = 0; i < NUM_FLOAT_VALS; i++)
19502 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
19503 abort ();
19504 }
19505
19506 /* Auto-select Thumb mode if it's the only available instruction set for the
19507 given architecture. */
19508
19509 static void
19510 autoselect_thumb_from_cpu_variant (void)
19511 {
19512 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
19513 opcode_select (16);
19514 }
19515
19516 void
19517 md_begin (void)
19518 {
19519 unsigned mach;
19520 unsigned int i;
19521
19522 if ( (arm_ops_hsh = hash_new ()) == NULL
19523 || (arm_cond_hsh = hash_new ()) == NULL
19524 || (arm_shift_hsh = hash_new ()) == NULL
19525 || (arm_psr_hsh = hash_new ()) == NULL
19526 || (arm_v7m_psr_hsh = hash_new ()) == NULL
19527 || (arm_reg_hsh = hash_new ()) == NULL
19528 || (arm_reloc_hsh = hash_new ()) == NULL
19529 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
19530 as_fatal (_("virtual memory exhausted"));
19531
19532 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
19533 hash_insert (arm_ops_hsh, insns[i].template, (PTR) (insns + i));
19534 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
19535 hash_insert (arm_cond_hsh, conds[i].template, (PTR) (conds + i));
19536 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
19537 hash_insert (arm_shift_hsh, shift_names[i].name, (PTR) (shift_names + i));
19538 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
19539 hash_insert (arm_psr_hsh, psrs[i].template, (PTR) (psrs + i));
19540 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
19541 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template, (PTR) (v7m_psrs + i));
19542 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
19543 hash_insert (arm_reg_hsh, reg_names[i].name, (PTR) (reg_names + i));
19544 for (i = 0;
19545 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
19546 i++)
19547 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template,
19548 (PTR) (barrier_opt_names + i));
19549 #ifdef OBJ_ELF
19550 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
19551 hash_insert (arm_reloc_hsh, reloc_names[i].name, (PTR) (reloc_names + i));
19552 #endif
19553
19554 set_constant_flonums ();
19555
19556 /* Set the cpu variant based on the command-line options. We prefer
19557 -mcpu= over -march= if both are set (as for GCC); and we prefer
19558 -mfpu= over any other way of setting the floating point unit.
19559 Use of legacy options with new options are faulted. */
19560 if (legacy_cpu)
19561 {
19562 if (mcpu_cpu_opt || march_cpu_opt)
19563 as_bad (_("use of old and new-style options to set CPU type"));
19564
19565 mcpu_cpu_opt = legacy_cpu;
19566 }
19567 else if (!mcpu_cpu_opt)
19568 mcpu_cpu_opt = march_cpu_opt;
19569
19570 if (legacy_fpu)
19571 {
19572 if (mfpu_opt)
19573 as_bad (_("use of old and new-style options to set FPU type"));
19574
19575 mfpu_opt = legacy_fpu;
19576 }
19577 else if (!mfpu_opt)
19578 {
19579 #if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS))
19580 /* Some environments specify a default FPU. If they don't, infer it
19581 from the processor. */
19582 if (mcpu_fpu_opt)
19583 mfpu_opt = mcpu_fpu_opt;
19584 else
19585 mfpu_opt = march_fpu_opt;
19586 #else
19587 mfpu_opt = &fpu_default;
19588 #endif
19589 }
19590
19591 if (!mfpu_opt)
19592 {
19593 if (mcpu_cpu_opt != NULL)
19594 mfpu_opt = &fpu_default;
19595 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
19596 mfpu_opt = &fpu_arch_vfp_v2;
19597 else
19598 mfpu_opt = &fpu_arch_fpa;
19599 }
19600
19601 #ifdef CPU_DEFAULT
19602 if (!mcpu_cpu_opt)
19603 {
19604 mcpu_cpu_opt = &cpu_default;
19605 selected_cpu = cpu_default;
19606 }
19607 #else
19608 if (mcpu_cpu_opt)
19609 selected_cpu = *mcpu_cpu_opt;
19610 else
19611 mcpu_cpu_opt = &arm_arch_any;
19612 #endif
19613
19614 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
19615
19616 autoselect_thumb_from_cpu_variant ();
19617
19618 arm_arch_used = thumb_arch_used = arm_arch_none;
19619
19620 #if defined OBJ_COFF || defined OBJ_ELF
19621 {
19622 unsigned int flags = 0;
19623
19624 #if defined OBJ_ELF
19625 flags = meabi_flags;
19626
19627 switch (meabi_flags)
19628 {
19629 case EF_ARM_EABI_UNKNOWN:
19630 #endif
19631 /* Set the flags in the private structure. */
19632 if (uses_apcs_26) flags |= F_APCS26;
19633 if (support_interwork) flags |= F_INTERWORK;
19634 if (uses_apcs_float) flags |= F_APCS_FLOAT;
19635 if (pic_code) flags |= F_PIC;
19636 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
19637 flags |= F_SOFT_FLOAT;
19638
19639 switch (mfloat_abi_opt)
19640 {
19641 case ARM_FLOAT_ABI_SOFT:
19642 case ARM_FLOAT_ABI_SOFTFP:
19643 flags |= F_SOFT_FLOAT;
19644 break;
19645
19646 case ARM_FLOAT_ABI_HARD:
19647 if (flags & F_SOFT_FLOAT)
19648 as_bad (_("hard-float conflicts with specified fpu"));
19649 break;
19650 }
19651
19652 /* Using pure-endian doubles (even if soft-float). */
19653 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
19654 flags |= F_VFP_FLOAT;
19655
19656 #if defined OBJ_ELF
19657 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
19658 flags |= EF_ARM_MAVERICK_FLOAT;
19659 break;
19660
19661 case EF_ARM_EABI_VER4:
19662 case EF_ARM_EABI_VER5:
19663 /* No additional flags to set. */
19664 break;
19665
19666 default:
19667 abort ();
19668 }
19669 #endif
19670 bfd_set_private_flags (stdoutput, flags);
19671
19672 /* We have run out flags in the COFF header to encode the
19673 status of ATPCS support, so instead we create a dummy,
19674 empty, debug section called .arm.atpcs. */
19675 if (atpcs)
19676 {
19677 asection * sec;
19678
19679 sec = bfd_make_section (stdoutput, ".arm.atpcs");
19680
19681 if (sec != NULL)
19682 {
19683 bfd_set_section_flags
19684 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
19685 bfd_set_section_size (stdoutput, sec, 0);
19686 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
19687 }
19688 }
19689 }
19690 #endif
19691
19692 /* Record the CPU type as well. */
19693 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
19694 mach = bfd_mach_arm_iWMMXt2;
19695 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
19696 mach = bfd_mach_arm_iWMMXt;
19697 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
19698 mach = bfd_mach_arm_XScale;
19699 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
19700 mach = bfd_mach_arm_ep9312;
19701 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
19702 mach = bfd_mach_arm_5TE;
19703 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
19704 {
19705 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
19706 mach = bfd_mach_arm_5T;
19707 else
19708 mach = bfd_mach_arm_5;
19709 }
19710 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
19711 {
19712 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
19713 mach = bfd_mach_arm_4T;
19714 else
19715 mach = bfd_mach_arm_4;
19716 }
19717 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
19718 mach = bfd_mach_arm_3M;
19719 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
19720 mach = bfd_mach_arm_3;
19721 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
19722 mach = bfd_mach_arm_2a;
19723 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
19724 mach = bfd_mach_arm_2;
19725 else
19726 mach = bfd_mach_arm_unknown;
19727
19728 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
19729 }
19730
19731 /* Command line processing. */
19732
19733 /* md_parse_option
19734 Invocation line includes a switch not recognized by the base assembler.
19735 See if it's a processor-specific option.
19736
19737 This routine is somewhat complicated by the need for backwards
19738 compatibility (since older releases of gcc can't be changed).
19739 The new options try to make the interface as compatible as
19740 possible with GCC.
19741
19742 New options (supported) are:
19743
19744 -mcpu=<cpu name> Assemble for selected processor
19745 -march=<architecture name> Assemble for selected architecture
19746 -mfpu=<fpu architecture> Assemble for selected FPU.
19747 -EB/-mbig-endian Big-endian
19748 -EL/-mlittle-endian Little-endian
19749 -k Generate PIC code
19750 -mthumb Start in Thumb mode
19751 -mthumb-interwork Code supports ARM/Thumb interworking
19752
19753 For now we will also provide support for:
19754
19755 -mapcs-32 32-bit Program counter
19756 -mapcs-26 26-bit Program counter
19757 -macps-float Floats passed in FP registers
19758 -mapcs-reentrant Reentrant code
19759 -matpcs
19760 (sometime these will probably be replaced with -mapcs=<list of options>
19761 and -matpcs=<list of options>)
19762
19763 The remaining options are only supported for back-wards compatibility.
19764 Cpu variants, the arm part is optional:
19765 -m[arm]1 Currently not supported.
19766 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
19767 -m[arm]3 Arm 3 processor
19768 -m[arm]6[xx], Arm 6 processors
19769 -m[arm]7[xx][t][[d]m] Arm 7 processors
19770 -m[arm]8[10] Arm 8 processors
19771 -m[arm]9[20][tdmi] Arm 9 processors
19772 -mstrongarm[110[0]] StrongARM processors
19773 -mxscale XScale processors
19774 -m[arm]v[2345[t[e]]] Arm architectures
19775 -mall All (except the ARM1)
19776 FP variants:
19777 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
19778 -mfpe-old (No float load/store multiples)
19779 -mvfpxd VFP Single precision
19780 -mvfp All VFP
19781 -mno-fpu Disable all floating point instructions
19782
19783 The following CPU names are recognized:
19784 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
19785 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
19786 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
19787 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
19788 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
19789 arm10t arm10e, arm1020t, arm1020e, arm10200e,
19790 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
19791
19792 */
19793
19794 const char * md_shortopts = "m:k";
19795
19796 #ifdef ARM_BI_ENDIAN
19797 #define OPTION_EB (OPTION_MD_BASE + 0)
19798 #define OPTION_EL (OPTION_MD_BASE + 1)
19799 #else
19800 #if TARGET_BYTES_BIG_ENDIAN
19801 #define OPTION_EB (OPTION_MD_BASE + 0)
19802 #else
19803 #define OPTION_EL (OPTION_MD_BASE + 1)
19804 #endif
19805 #endif
19806
19807 struct option md_longopts[] =
19808 {
19809 #ifdef OPTION_EB
19810 {"EB", no_argument, NULL, OPTION_EB},
19811 #endif
19812 #ifdef OPTION_EL
19813 {"EL", no_argument, NULL, OPTION_EL},
19814 #endif
19815 {NULL, no_argument, NULL, 0}
19816 };
19817
19818 size_t md_longopts_size = sizeof (md_longopts);
19819
19820 struct arm_option_table
19821 {
19822 char *option; /* Option name to match. */
19823 char *help; /* Help information. */
19824 int *var; /* Variable to change. */
19825 int value; /* What to change it to. */
19826 char *deprecated; /* If non-null, print this message. */
19827 };
19828
19829 struct arm_option_table arm_opts[] =
19830 {
19831 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
19832 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
19833 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
19834 &support_interwork, 1, NULL},
19835 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
19836 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
19837 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
19838 1, NULL},
19839 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
19840 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
19841 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
19842 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
19843 NULL},
19844
19845 /* These are recognized by the assembler, but have no affect on code. */
19846 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
19847 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
19848 {NULL, NULL, NULL, 0, NULL}
19849 };
19850
19851 struct arm_legacy_option_table
19852 {
19853 char *option; /* Option name to match. */
19854 const arm_feature_set **var; /* Variable to change. */
19855 const arm_feature_set value; /* What to change it to. */
19856 char *deprecated; /* If non-null, print this message. */
19857 };
19858
19859 const struct arm_legacy_option_table arm_legacy_opts[] =
19860 {
19861 /* DON'T add any new processors to this list -- we want the whole list
19862 to go away... Add them to the processors table instead. */
19863 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
19864 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
19865 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
19866 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
19867 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
19868 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
19869 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
19870 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
19871 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
19872 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
19873 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
19874 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
19875 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
19876 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
19877 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
19878 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
19879 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
19880 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
19881 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
19882 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
19883 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
19884 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
19885 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
19886 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
19887 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
19888 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
19889 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
19890 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
19891 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
19892 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
19893 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
19894 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
19895 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
19896 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
19897 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
19898 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
19899 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
19900 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
19901 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
19902 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
19903 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
19904 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
19905 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
19906 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
19907 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
19908 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
19909 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19910 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19911 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19912 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19913 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
19914 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
19915 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
19916 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
19917 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
19918 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
19919 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
19920 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
19921 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
19922 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
19923 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
19924 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
19925 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
19926 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
19927 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
19928 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
19929 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
19930 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
19931 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
19932 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
19933 N_("use -mcpu=strongarm110")},
19934 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
19935 N_("use -mcpu=strongarm1100")},
19936 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
19937 N_("use -mcpu=strongarm1110")},
19938 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
19939 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
19940 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
19941
19942 /* Architecture variants -- don't add any more to this list either. */
19943 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
19944 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
19945 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
19946 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
19947 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
19948 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
19949 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
19950 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
19951 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
19952 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
19953 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
19954 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
19955 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
19956 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
19957 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
19958 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
19959 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
19960 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
19961
19962 /* Floating point variants -- don't add any more to this list either. */
19963 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
19964 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
19965 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
19966 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
19967 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
19968
19969 {NULL, NULL, ARM_ARCH_NONE, NULL}
19970 };
19971
19972 struct arm_cpu_option_table
19973 {
19974 char *name;
19975 const arm_feature_set value;
19976 /* For some CPUs we assume an FPU unless the user explicitly sets
19977 -mfpu=... */
19978 const arm_feature_set default_fpu;
19979 /* The canonical name of the CPU, or NULL to use NAME converted to upper
19980 case. */
19981 const char *canonical_name;
19982 };
19983
19984 /* This list should, at a minimum, contain all the cpu names
19985 recognized by GCC. */
19986 static const struct arm_cpu_option_table arm_cpus[] =
19987 {
19988 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
19989 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
19990 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
19991 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
19992 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
19993 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19994 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19995 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19996 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19997 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19998 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19999 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20000 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20001 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20002 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20003 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20004 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20005 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20006 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20007 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20008 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20009 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20010 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20011 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20012 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20013 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20014 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20015 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20016 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20017 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20018 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20019 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20020 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20021 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20022 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20023 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20024 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20025 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20026 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20027 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
20028 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20029 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20030 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20031 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20032 /* For V5 or later processors we default to using VFP; but the user
20033 should really set the FPU type explicitly. */
20034 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20035 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20036 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
20037 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
20038 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
20039 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20040 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
20041 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20042 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20043 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
20044 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20045 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20046 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20047 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20048 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20049 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
20050 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20051 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20052 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20053 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
20054 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
20055 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
20056 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
20057 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
20058 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
20059 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
20060 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
20061 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
20062 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
20063 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
20064 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
20065 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3
20066 | FPU_NEON_EXT_V1),
20067 NULL},
20068 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
20069 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
20070 /* ??? XSCALE is really an architecture. */
20071 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
20072 /* ??? iwmmxt is not a processor. */
20073 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
20074 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
20075 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
20076 /* Maverick */
20077 {"ep9312", ARM_FEATURE(ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
20078 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
20079 };
20080
20081 struct arm_arch_option_table
20082 {
20083 char *name;
20084 const arm_feature_set value;
20085 const arm_feature_set default_fpu;
20086 };
20087
20088 /* This list should, at a minimum, contain all the architecture names
20089 recognized by GCC. */
20090 static const struct arm_arch_option_table arm_archs[] =
20091 {
20092 {"all", ARM_ANY, FPU_ARCH_FPA},
20093 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
20094 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
20095 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
20096 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
20097 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
20098 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
20099 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
20100 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
20101 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
20102 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
20103 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
20104 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
20105 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
20106 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
20107 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
20108 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
20109 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
20110 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
20111 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
20112 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
20113 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
20114 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
20115 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
20116 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
20117 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
20118 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
20119 /* The official spelling of the ARMv7 profile variants is the dashed form.
20120 Accept the non-dashed form for compatibility with old toolchains. */
20121 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
20122 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
20123 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
20124 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
20125 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
20126 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
20127 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
20128 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
20129 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
20130 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
20131 };
20132
20133 /* ISA extensions in the co-processor space. */
20134 struct arm_option_cpu_value_table
20135 {
20136 char *name;
20137 const arm_feature_set value;
20138 };
20139
20140 static const struct arm_option_cpu_value_table arm_extensions[] =
20141 {
20142 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
20143 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
20144 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
20145 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
20146 {NULL, ARM_ARCH_NONE}
20147 };
20148
20149 /* This list should, at a minimum, contain all the fpu names
20150 recognized by GCC. */
20151 static const struct arm_option_cpu_value_table arm_fpus[] =
20152 {
20153 {"softfpa", FPU_NONE},
20154 {"fpe", FPU_ARCH_FPE},
20155 {"fpe2", FPU_ARCH_FPE},
20156 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
20157 {"fpa", FPU_ARCH_FPA},
20158 {"fpa10", FPU_ARCH_FPA},
20159 {"fpa11", FPU_ARCH_FPA},
20160 {"arm7500fe", FPU_ARCH_FPA},
20161 {"softvfp", FPU_ARCH_VFP},
20162 {"softvfp+vfp", FPU_ARCH_VFP_V2},
20163 {"vfp", FPU_ARCH_VFP_V2},
20164 {"vfp9", FPU_ARCH_VFP_V2},
20165 {"vfp3", FPU_ARCH_VFP_V3},
20166 {"vfp10", FPU_ARCH_VFP_V2},
20167 {"vfp10-r0", FPU_ARCH_VFP_V1},
20168 {"vfpxd", FPU_ARCH_VFP_V1xD},
20169 {"arm1020t", FPU_ARCH_VFP_V1},
20170 {"arm1020e", FPU_ARCH_VFP_V2},
20171 {"arm1136jfs", FPU_ARCH_VFP_V2},
20172 {"arm1136jf-s", FPU_ARCH_VFP_V2},
20173 {"maverick", FPU_ARCH_MAVERICK},
20174 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
20175 {NULL, ARM_ARCH_NONE}
20176 };
20177
20178 struct arm_option_value_table
20179 {
20180 char *name;
20181 long value;
20182 };
20183
20184 static const struct arm_option_value_table arm_float_abis[] =
20185 {
20186 {"hard", ARM_FLOAT_ABI_HARD},
20187 {"softfp", ARM_FLOAT_ABI_SOFTFP},
20188 {"soft", ARM_FLOAT_ABI_SOFT},
20189 {NULL, 0}
20190 };
20191
20192 #ifdef OBJ_ELF
20193 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
20194 static const struct arm_option_value_table arm_eabis[] =
20195 {
20196 {"gnu", EF_ARM_EABI_UNKNOWN},
20197 {"4", EF_ARM_EABI_VER4},
20198 {"5", EF_ARM_EABI_VER5},
20199 {NULL, 0}
20200 };
20201 #endif
20202
20203 struct arm_long_option_table
20204 {
20205 char * option; /* Substring to match. */
20206 char * help; /* Help information. */
20207 int (* func) (char * subopt); /* Function to decode sub-option. */
20208 char * deprecated; /* If non-null, print this message. */
20209 };
20210
20211 static int
20212 arm_parse_extension (char * str, const arm_feature_set **opt_p)
20213 {
20214 arm_feature_set *ext_set = xmalloc (sizeof (arm_feature_set));
20215
20216 /* Copy the feature set, so that we can modify it. */
20217 *ext_set = **opt_p;
20218 *opt_p = ext_set;
20219
20220 while (str != NULL && *str != 0)
20221 {
20222 const struct arm_option_cpu_value_table * opt;
20223 char * ext;
20224 int optlen;
20225
20226 if (*str != '+')
20227 {
20228 as_bad (_("invalid architectural extension"));
20229 return 0;
20230 }
20231
20232 str++;
20233 ext = strchr (str, '+');
20234
20235 if (ext != NULL)
20236 optlen = ext - str;
20237 else
20238 optlen = strlen (str);
20239
20240 if (optlen == 0)
20241 {
20242 as_bad (_("missing architectural extension"));
20243 return 0;
20244 }
20245
20246 for (opt = arm_extensions; opt->name != NULL; opt++)
20247 if (strncmp (opt->name, str, optlen) == 0)
20248 {
20249 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
20250 break;
20251 }
20252
20253 if (opt->name == NULL)
20254 {
20255 as_bad (_("unknown architectural extnsion `%s'"), str);
20256 return 0;
20257 }
20258
20259 str = ext;
20260 };
20261
20262 return 1;
20263 }
20264
20265 static int
20266 arm_parse_cpu (char * str)
20267 {
20268 const struct arm_cpu_option_table * opt;
20269 char * ext = strchr (str, '+');
20270 int optlen;
20271
20272 if (ext != NULL)
20273 optlen = ext - str;
20274 else
20275 optlen = strlen (str);
20276
20277 if (optlen == 0)
20278 {
20279 as_bad (_("missing cpu name `%s'"), str);
20280 return 0;
20281 }
20282
20283 for (opt = arm_cpus; opt->name != NULL; opt++)
20284 if (strncmp (opt->name, str, optlen) == 0)
20285 {
20286 mcpu_cpu_opt = &opt->value;
20287 mcpu_fpu_opt = &opt->default_fpu;
20288 if (opt->canonical_name)
20289 strcpy(selected_cpu_name, opt->canonical_name);
20290 else
20291 {
20292 int i;
20293 for (i = 0; i < optlen; i++)
20294 selected_cpu_name[i] = TOUPPER (opt->name[i]);
20295 selected_cpu_name[i] = 0;
20296 }
20297
20298 if (ext != NULL)
20299 return arm_parse_extension (ext, &mcpu_cpu_opt);
20300
20301 return 1;
20302 }
20303
20304 as_bad (_("unknown cpu `%s'"), str);
20305 return 0;
20306 }
20307
20308 static int
20309 arm_parse_arch (char * str)
20310 {
20311 const struct arm_arch_option_table *opt;
20312 char *ext = strchr (str, '+');
20313 int optlen;
20314
20315 if (ext != NULL)
20316 optlen = ext - str;
20317 else
20318 optlen = strlen (str);
20319
20320 if (optlen == 0)
20321 {
20322 as_bad (_("missing architecture name `%s'"), str);
20323 return 0;
20324 }
20325
20326 for (opt = arm_archs; opt->name != NULL; opt++)
20327 if (streq (opt->name, str))
20328 {
20329 march_cpu_opt = &opt->value;
20330 march_fpu_opt = &opt->default_fpu;
20331 strcpy(selected_cpu_name, opt->name);
20332
20333 if (ext != NULL)
20334 return arm_parse_extension (ext, &march_cpu_opt);
20335
20336 return 1;
20337 }
20338
20339 as_bad (_("unknown architecture `%s'\n"), str);
20340 return 0;
20341 }
20342
20343 static int
20344 arm_parse_fpu (char * str)
20345 {
20346 const struct arm_option_cpu_value_table * opt;
20347
20348 for (opt = arm_fpus; opt->name != NULL; opt++)
20349 if (streq (opt->name, str))
20350 {
20351 mfpu_opt = &opt->value;
20352 return 1;
20353 }
20354
20355 as_bad (_("unknown floating point format `%s'\n"), str);
20356 return 0;
20357 }
20358
20359 static int
20360 arm_parse_float_abi (char * str)
20361 {
20362 const struct arm_option_value_table * opt;
20363
20364 for (opt = arm_float_abis; opt->name != NULL; opt++)
20365 if (streq (opt->name, str))
20366 {
20367 mfloat_abi_opt = opt->value;
20368 return 1;
20369 }
20370
20371 as_bad (_("unknown floating point abi `%s'\n"), str);
20372 return 0;
20373 }
20374
20375 #ifdef OBJ_ELF
20376 static int
20377 arm_parse_eabi (char * str)
20378 {
20379 const struct arm_option_value_table *opt;
20380
20381 for (opt = arm_eabis; opt->name != NULL; opt++)
20382 if (streq (opt->name, str))
20383 {
20384 meabi_flags = opt->value;
20385 return 1;
20386 }
20387 as_bad (_("unknown EABI `%s'\n"), str);
20388 return 0;
20389 }
20390 #endif
20391
20392 struct arm_long_option_table arm_long_opts[] =
20393 {
20394 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
20395 arm_parse_cpu, NULL},
20396 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
20397 arm_parse_arch, NULL},
20398 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
20399 arm_parse_fpu, NULL},
20400 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
20401 arm_parse_float_abi, NULL},
20402 #ifdef OBJ_ELF
20403 {"meabi=", N_("<ver>\t assemble for eabi version <ver>"),
20404 arm_parse_eabi, NULL},
20405 #endif
20406 {NULL, NULL, 0, NULL}
20407 };
20408
20409 int
20410 md_parse_option (int c, char * arg)
20411 {
20412 struct arm_option_table *opt;
20413 const struct arm_legacy_option_table *fopt;
20414 struct arm_long_option_table *lopt;
20415
20416 switch (c)
20417 {
20418 #ifdef OPTION_EB
20419 case OPTION_EB:
20420 target_big_endian = 1;
20421 break;
20422 #endif
20423
20424 #ifdef OPTION_EL
20425 case OPTION_EL:
20426 target_big_endian = 0;
20427 break;
20428 #endif
20429
20430 case 'a':
20431 /* Listing option. Just ignore these, we don't support additional
20432 ones. */
20433 return 0;
20434
20435 default:
20436 for (opt = arm_opts; opt->option != NULL; opt++)
20437 {
20438 if (c == opt->option[0]
20439 && ((arg == NULL && opt->option[1] == 0)
20440 || streq (arg, opt->option + 1)))
20441 {
20442 #if WARN_DEPRECATED
20443 /* If the option is deprecated, tell the user. */
20444 if (opt->deprecated != NULL)
20445 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
20446 arg ? arg : "", _(opt->deprecated));
20447 #endif
20448
20449 if (opt->var != NULL)
20450 *opt->var = opt->value;
20451
20452 return 1;
20453 }
20454 }
20455
20456 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
20457 {
20458 if (c == fopt->option[0]
20459 && ((arg == NULL && fopt->option[1] == 0)
20460 || streq (arg, fopt->option + 1)))
20461 {
20462 #if WARN_DEPRECATED
20463 /* If the option is deprecated, tell the user. */
20464 if (fopt->deprecated != NULL)
20465 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
20466 arg ? arg : "", _(fopt->deprecated));
20467 #endif
20468
20469 if (fopt->var != NULL)
20470 *fopt->var = &fopt->value;
20471
20472 return 1;
20473 }
20474 }
20475
20476 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
20477 {
20478 /* These options are expected to have an argument. */
20479 if (c == lopt->option[0]
20480 && arg != NULL
20481 && strncmp (arg, lopt->option + 1,
20482 strlen (lopt->option + 1)) == 0)
20483 {
20484 #if WARN_DEPRECATED
20485 /* If the option is deprecated, tell the user. */
20486 if (lopt->deprecated != NULL)
20487 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
20488 _(lopt->deprecated));
20489 #endif
20490
20491 /* Call the sup-option parser. */
20492 return lopt->func (arg + strlen (lopt->option) - 1);
20493 }
20494 }
20495
20496 return 0;
20497 }
20498
20499 return 1;
20500 }
20501
20502 void
20503 md_show_usage (FILE * fp)
20504 {
20505 struct arm_option_table *opt;
20506 struct arm_long_option_table *lopt;
20507
20508 fprintf (fp, _(" ARM-specific assembler options:\n"));
20509
20510 for (opt = arm_opts; opt->option != NULL; opt++)
20511 if (opt->help != NULL)
20512 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
20513
20514 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
20515 if (lopt->help != NULL)
20516 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
20517
20518 #ifdef OPTION_EB
20519 fprintf (fp, _("\
20520 -EB assemble code for a big-endian cpu\n"));
20521 #endif
20522
20523 #ifdef OPTION_EL
20524 fprintf (fp, _("\
20525 -EL assemble code for a little-endian cpu\n"));
20526 #endif
20527 }
20528
20529
20530 #ifdef OBJ_ELF
20531 typedef struct
20532 {
20533 int val;
20534 arm_feature_set flags;
20535 } cpu_arch_ver_table;
20536
20537 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
20538 least features first. */
20539 static const cpu_arch_ver_table cpu_arch_ver[] =
20540 {
20541 {1, ARM_ARCH_V4},
20542 {2, ARM_ARCH_V4T},
20543 {3, ARM_ARCH_V5},
20544 {4, ARM_ARCH_V5TE},
20545 {5, ARM_ARCH_V5TEJ},
20546 {6, ARM_ARCH_V6},
20547 {7, ARM_ARCH_V6Z},
20548 {8, ARM_ARCH_V6K},
20549 {9, ARM_ARCH_V6T2},
20550 {10, ARM_ARCH_V7A},
20551 {10, ARM_ARCH_V7R},
20552 {10, ARM_ARCH_V7M},
20553 {0, ARM_ARCH_NONE}
20554 };
20555
20556 /* Set the public EABI object attributes. */
20557 static void
20558 aeabi_set_public_attributes (void)
20559 {
20560 int arch;
20561 arm_feature_set flags;
20562 arm_feature_set tmp;
20563 const cpu_arch_ver_table *p;
20564
20565 /* Choose the architecture based on the capabilities of the requested cpu
20566 (if any) and/or the instructions actually used. */
20567 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
20568 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
20569 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
20570 /*Allow the user to override the reported architecture. */
20571 if (object_arch)
20572 {
20573 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
20574 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
20575 }
20576
20577 tmp = flags;
20578 arch = 0;
20579 for (p = cpu_arch_ver; p->val; p++)
20580 {
20581 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
20582 {
20583 arch = p->val;
20584 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
20585 }
20586 }
20587
20588 /* Tag_CPU_name. */
20589 if (selected_cpu_name[0])
20590 {
20591 char *p;
20592
20593 p = selected_cpu_name;
20594 if (strncmp(p, "armv", 4) == 0)
20595 {
20596 int i;
20597
20598 p += 4;
20599 for (i = 0; p[i]; i++)
20600 p[i] = TOUPPER (p[i]);
20601 }
20602 elf32_arm_add_eabi_attr_string (stdoutput, 5, p);
20603 }
20604 /* Tag_CPU_arch. */
20605 elf32_arm_add_eabi_attr_int (stdoutput, 6, arch);
20606 /* Tag_CPU_arch_profile. */
20607 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
20608 elf32_arm_add_eabi_attr_int (stdoutput, 7, 'A');
20609 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
20610 elf32_arm_add_eabi_attr_int (stdoutput, 7, 'R');
20611 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m))
20612 elf32_arm_add_eabi_attr_int (stdoutput, 7, 'M');
20613 /* Tag_ARM_ISA_use. */
20614 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_full))
20615 elf32_arm_add_eabi_attr_int (stdoutput, 8, 1);
20616 /* Tag_THUMB_ISA_use. */
20617 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_full))
20618 elf32_arm_add_eabi_attr_int (stdoutput, 9,
20619 ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2) ? 2 : 1);
20620 /* Tag_VFP_arch. */
20621 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v3)
20622 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v3))
20623 elf32_arm_add_eabi_attr_int (stdoutput, 10, 3);
20624 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v2)
20625 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v2))
20626 elf32_arm_add_eabi_attr_int (stdoutput, 10, 2);
20627 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1)
20628 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1)
20629 || ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1xd)
20630 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1xd))
20631 elf32_arm_add_eabi_attr_int (stdoutput, 10, 1);
20632 /* Tag_WMMX_arch. */
20633 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_cext_iwmmxt)
20634 || ARM_CPU_HAS_FEATURE (arm_arch_used, arm_cext_iwmmxt))
20635 elf32_arm_add_eabi_attr_int (stdoutput, 11, 1);
20636 /* Tag_NEON_arch. */
20637 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_neon_ext_v1)
20638 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_neon_ext_v1))
20639 elf32_arm_add_eabi_attr_int (stdoutput, 12, 1);
20640 }
20641
20642 /* Add the .ARM.attributes section. */
20643 void
20644 arm_md_end (void)
20645 {
20646 segT s;
20647 char *p;
20648 addressT addr;
20649 offsetT size;
20650
20651 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
20652 return;
20653
20654 aeabi_set_public_attributes ();
20655 size = elf32_arm_eabi_attr_size (stdoutput);
20656 s = subseg_new (".ARM.attributes", 0);
20657 bfd_set_section_flags (stdoutput, s, SEC_READONLY | SEC_DATA);
20658 addr = frag_now_fix ();
20659 p = frag_more (size);
20660 elf32_arm_set_eabi_attr_contents (stdoutput, (bfd_byte *)p, size);
20661 }
20662 #endif /* OBJ_ELF */
20663
20664
20665 /* Parse a .cpu directive. */
20666
20667 static void
20668 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
20669 {
20670 const struct arm_cpu_option_table *opt;
20671 char *name;
20672 char saved_char;
20673
20674 name = input_line_pointer;
20675 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20676 input_line_pointer++;
20677 saved_char = *input_line_pointer;
20678 *input_line_pointer = 0;
20679
20680 /* Skip the first "all" entry. */
20681 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
20682 if (streq (opt->name, name))
20683 {
20684 mcpu_cpu_opt = &opt->value;
20685 selected_cpu = opt->value;
20686 if (opt->canonical_name)
20687 strcpy(selected_cpu_name, opt->canonical_name);
20688 else
20689 {
20690 int i;
20691 for (i = 0; opt->name[i]; i++)
20692 selected_cpu_name[i] = TOUPPER (opt->name[i]);
20693 selected_cpu_name[i] = 0;
20694 }
20695 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
20696 *input_line_pointer = saved_char;
20697 demand_empty_rest_of_line ();
20698 return;
20699 }
20700 as_bad (_("unknown cpu `%s'"), name);
20701 *input_line_pointer = saved_char;
20702 ignore_rest_of_line ();
20703 }
20704
20705
20706 /* Parse a .arch directive. */
20707
20708 static void
20709 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
20710 {
20711 const struct arm_arch_option_table *opt;
20712 char saved_char;
20713 char *name;
20714
20715 name = input_line_pointer;
20716 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20717 input_line_pointer++;
20718 saved_char = *input_line_pointer;
20719 *input_line_pointer = 0;
20720
20721 /* Skip the first "all" entry. */
20722 for (opt = arm_archs + 1; opt->name != NULL; opt++)
20723 if (streq (opt->name, name))
20724 {
20725 mcpu_cpu_opt = &opt->value;
20726 selected_cpu = opt->value;
20727 strcpy(selected_cpu_name, opt->name);
20728 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
20729 *input_line_pointer = saved_char;
20730 demand_empty_rest_of_line ();
20731 return;
20732 }
20733
20734 as_bad (_("unknown architecture `%s'\n"), name);
20735 *input_line_pointer = saved_char;
20736 ignore_rest_of_line ();
20737 }
20738
20739
20740 /* Parse a .object_arch directive. */
20741
20742 static void
20743 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
20744 {
20745 const struct arm_arch_option_table *opt;
20746 char saved_char;
20747 char *name;
20748
20749 name = input_line_pointer;
20750 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20751 input_line_pointer++;
20752 saved_char = *input_line_pointer;
20753 *input_line_pointer = 0;
20754
20755 /* Skip the first "all" entry. */
20756 for (opt = arm_archs + 1; opt->name != NULL; opt++)
20757 if (streq (opt->name, name))
20758 {
20759 object_arch = &opt->value;
20760 *input_line_pointer = saved_char;
20761 demand_empty_rest_of_line ();
20762 return;
20763 }
20764
20765 as_bad (_("unknown architecture `%s'\n"), name);
20766 *input_line_pointer = saved_char;
20767 ignore_rest_of_line ();
20768 }
20769
20770
20771 /* Parse a .fpu directive. */
20772
20773 static void
20774 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
20775 {
20776 const struct arm_option_cpu_value_table *opt;
20777 char saved_char;
20778 char *name;
20779
20780 name = input_line_pointer;
20781 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20782 input_line_pointer++;
20783 saved_char = *input_line_pointer;
20784 *input_line_pointer = 0;
20785
20786 for (opt = arm_fpus; opt->name != NULL; opt++)
20787 if (streq (opt->name, name))
20788 {
20789 mfpu_opt = &opt->value;
20790 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
20791 *input_line_pointer = saved_char;
20792 demand_empty_rest_of_line ();
20793 return;
20794 }
20795
20796 as_bad (_("unknown floating point format `%s'\n"), name);
20797 *input_line_pointer = saved_char;
20798 ignore_rest_of_line ();
20799 }
20800
20801 /* Copy symbol information. */
20802 void
20803 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
20804 {
20805 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
20806 }