[PATCH 32/57][Arm][GAS] Add support for MVE instructions: vrintn, vrintx, vrinta...
[binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35
36 #ifdef OBJ_ELF
37 #include "elf/arm.h"
38 #include "dw2gencfi.h"
39 #endif
40
41 #include "dwarf2dbg.h"
42
43 #ifdef OBJ_ELF
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
46
47 /* This structure holds the unwinding state. */
48
49 static struct
50 {
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
55 /* The segment containing the function. */
56 segT saved_seg;
57 subsegT saved_subseg;
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
60 int opcode_count;
61 int opcode_alloc;
62 /* The number of bytes pushed to the stack. */
63 offsetT frame_size;
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
72 /* Nonzero if an unwind_setfp directive has been seen. */
73 unsigned fp_used:1;
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored:1;
76 } unwind;
77
78 /* Whether --fdpic was given. */
79 static int arm_fdpic;
80
81 #endif /* OBJ_ELF */
82
83 /* Results from operand parsing worker functions. */
84
85 typedef enum
86 {
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90 } parse_operand_result;
91
92 enum arm_float_abi
93 {
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97 };
98
99 /* Types of processor to assemble for. */
100 #ifndef CPU_DEFAULT
101 /* The code that was here used to select a default CPU depending on compiler
102 pre-defines which were only present when doing native builds, thus
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
107 #endif
108
109 #ifndef FPU_DEFAULT
110 # ifdef TE_LINUX
111 # define FPU_DEFAULT FPU_ARCH_FPA
112 # elif defined (TE_NetBSD)
113 # ifdef OBJ_ELF
114 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115 # else
116 /* Legacy a.out format. */
117 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118 # endif
119 # elif defined (TE_VXWORKS)
120 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
121 # else
122 /* For backwards compatibility, default to FPA. */
123 # define FPU_DEFAULT FPU_ARCH_FPA
124 # endif
125 #endif /* ifndef FPU_DEFAULT */
126
127 #define streq(a, b) (strcmp (a, b) == 0)
128
129 /* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
132 static arm_feature_set cpu_variant;
133 /* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
135 static arm_feature_set arm_arch_used;
136 static arm_feature_set thumb_arch_used;
137
138 /* Flags stored in private area of BFD structure. */
139 static int uses_apcs_26 = FALSE;
140 static int atpcs = FALSE;
141 static int support_interwork = FALSE;
142 static int uses_apcs_float = FALSE;
143 static int pic_code = FALSE;
144 static int fix_v4bx = FALSE;
145 /* Warn on using deprecated features. */
146 static int warn_on_deprecated = TRUE;
147
148 /* Understand CodeComposer Studio assembly syntax. */
149 bfd_boolean codecomposer_syntax = FALSE;
150
151 /* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
154
155 /* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157 static const arm_feature_set *legacy_cpu = NULL;
158 static const arm_feature_set *legacy_fpu = NULL;
159
160 /* CPU, extension and FPU feature bits selected by -mcpu. */
161 static const arm_feature_set *mcpu_cpu_opt = NULL;
162 static arm_feature_set *mcpu_ext_opt = NULL;
163 static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165 /* CPU, extension and FPU feature bits selected by -march. */
166 static const arm_feature_set *march_cpu_opt = NULL;
167 static arm_feature_set *march_ext_opt = NULL;
168 static const arm_feature_set *march_fpu_opt = NULL;
169
170 /* Feature bits selected by -mfpu. */
171 static const arm_feature_set *mfpu_opt = NULL;
172
173 /* Constants for known architecture features. */
174 static const arm_feature_set fpu_default = FPU_DEFAULT;
175 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
176 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
177 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
179 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
181 #ifdef OBJ_ELF
182 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
183 #endif
184 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186 #ifdef CPU_DEFAULT
187 static const arm_feature_set cpu_default = CPU_DEFAULT;
188 #endif
189
190 static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
191 static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
192 static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193 static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194 static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195 static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196 static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197 static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
198 static const arm_feature_set arm_ext_v4t_5 =
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200 static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201 static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203 static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204 static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205 static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
207 /* Only for compatability of hint instructions. */
208 static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
210 static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212 static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214 static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216 static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218 static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219 static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220 static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221 static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
222 #ifdef OBJ_ELF
223 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
224 #endif
225 static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
226 static const arm_feature_set arm_ext_m =
227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
229 static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230 static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231 static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232 static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233 static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
234 static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
235 static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
236 static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
238 static const arm_feature_set arm_ext_v8_1m_main =
239 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
240 /* Instructions in ARMv8-M only found in M profile architectures. */
241 static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
243 static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
245 /* Instructions shared between ARMv8-A and ARMv8-M. */
246 static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
248 #ifdef OBJ_ELF
249 /* DSP instructions Tag_DSP_extension refers to. */
250 static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
252 #endif
253 static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
255 /* FP16 instructions. */
256 static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
258 static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
260 static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
262 static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
264 static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
266 static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
268
269 static const arm_feature_set arm_arch_any = ARM_ANY;
270 #ifdef OBJ_ELF
271 static const arm_feature_set fpu_any = FPU_ANY;
272 #endif
273 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
274 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
277 static const arm_feature_set arm_cext_iwmmxt2 =
278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
279 static const arm_feature_set arm_cext_iwmmxt =
280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
281 static const arm_feature_set arm_cext_xscale =
282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
283 static const arm_feature_set arm_cext_maverick =
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285 static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287 static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
289 static const arm_feature_set fpu_vfp_ext_v1xd =
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291 static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293 static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295 static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297 static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
299 static const arm_feature_set fpu_vfp_ext_d32 =
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301 static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
303 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
305 static const arm_feature_set mve_ext =
306 ARM_FEATURE_COPROC (FPU_MVE);
307 static const arm_feature_set mve_fp_ext =
308 ARM_FEATURE_COPROC (FPU_MVE_FP);
309 #ifdef OBJ_ELF
310 static const arm_feature_set fpu_vfp_fp16 =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
312 static const arm_feature_set fpu_neon_ext_fma =
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
314 #endif
315 static const arm_feature_set fpu_vfp_ext_fma =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
317 static const arm_feature_set fpu_vfp_ext_armv8 =
318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
319 static const arm_feature_set fpu_vfp_ext_armv8xd =
320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
321 static const arm_feature_set fpu_neon_ext_armv8 =
322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
323 static const arm_feature_set fpu_crypto_ext_armv8 =
324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
325 static const arm_feature_set crc_ext_armv8 =
326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
327 static const arm_feature_set fpu_neon_ext_v8_1 =
328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
329 static const arm_feature_set fpu_neon_ext_dotprod =
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
331
332 static int mfloat_abi_opt = -1;
333 /* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
334 directive. */
335 static arm_feature_set selected_arch = ARM_ARCH_NONE;
336 /* Extension feature bits selected by the last -mcpu/-march or .arch_extension
337 directive. */
338 static arm_feature_set selected_ext = ARM_ARCH_NONE;
339 /* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
341 directive. */
342 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
343 /* FPU feature bits selected by the last -mfpu or .fpu directive. */
344 static arm_feature_set selected_fpu = FPU_NONE;
345 /* Feature bits selected by the last .object_arch directive. */
346 static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
347 /* Must be long enough to hold any of the names in arm_cpus. */
348 static char selected_cpu_name[20];
349
350 extern FLONUM_TYPE generic_floating_point_number;
351
352 /* Return if no cpu was selected on command-line. */
353 static bfd_boolean
354 no_cpu_selected (void)
355 {
356 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
357 }
358
359 #ifdef OBJ_ELF
360 # ifdef EABI_DEFAULT
361 static int meabi_flags = EABI_DEFAULT;
362 # else
363 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
364 # endif
365
366 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
367
368 bfd_boolean
369 arm_is_eabi (void)
370 {
371 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
372 }
373 #endif
374
375 #ifdef OBJ_ELF
376 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
377 symbolS * GOT_symbol;
378 #endif
379
380 /* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
383 instructions. */
384 static int thumb_mode = 0;
385 /* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388 #define MODE_RECORDED (1 << 4)
389
390 /* Specifies the intrinsic IT insn behavior mode. */
391 enum implicit_it_mode
392 {
393 IMPLICIT_IT_MODE_NEVER = 0x00,
394 IMPLICIT_IT_MODE_ARM = 0x01,
395 IMPLICIT_IT_MODE_THUMB = 0x02,
396 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
397 };
398 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
399
400 /* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
402
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
407 there.)
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
410 machine code.
411
412 Important differences from the old Thumb mode:
413
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
422
423 static bfd_boolean unified_syntax = FALSE;
424
425 /* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429 const char arm_symbol_chars[] = "#[]{}";
430
431 enum neon_el_type
432 {
433 NT_invtype,
434 NT_untyped,
435 NT_integer,
436 NT_float,
437 NT_poly,
438 NT_signed,
439 NT_unsigned
440 };
441
442 struct neon_type_el
443 {
444 enum neon_el_type type;
445 unsigned size;
446 };
447
448 #define NEON_MAX_TYPE_ELS 4
449
450 struct neon_type
451 {
452 struct neon_type_el el[NEON_MAX_TYPE_ELS];
453 unsigned elems;
454 };
455
456 enum pred_instruction_type
457 {
458 OUTSIDE_PRED_INSN,
459 INSIDE_VPT_INSN,
460 INSIDE_IT_INSN,
461 INSIDE_IT_LAST_INSN,
462 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
463 if inside, should be the last one. */
464 NEUTRAL_IT_INSN, /* This could be either inside or outside,
465 i.e. BKPT and NOP. */
466 IT_INSN, /* The IT insn has been parsed. */
467 VPT_INSN, /* The VPT/VPST insn has been parsed. */
468 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
469 a predication code. */
470 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
471 };
472
473 /* The maximum number of operands we need. */
474 #define ARM_IT_MAX_OPERANDS 6
475 #define ARM_IT_MAX_RELOCS 3
476
477 struct arm_it
478 {
479 const char * error;
480 unsigned long instruction;
481 int size;
482 int size_req;
483 int cond;
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
486 appropriate. */
487 int uncond_value;
488 struct neon_type vectype;
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
491 int is_neon;
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
494 unsigned long relax;
495 struct
496 {
497 bfd_reloc_code_real_type type;
498 expressionS exp;
499 int pc_rel;
500 } relocs[ARM_IT_MAX_RELOCS];
501
502 enum pred_instruction_type pred_insn_type;
503
504 struct
505 {
506 unsigned reg;
507 signed int imm;
508 struct neon_type_el vectype;
509 unsigned present : 1; /* Operand present. */
510 unsigned isreg : 1; /* Operand was a register. */
511 unsigned immisreg : 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
513 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
514 0) not scalar,
515 1) Neon scalar,
516 2) MVE scalar. */
517 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
518 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
522 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
523 unsigned isquad : 1; /* Operand is SIMD quad register. */
524 unsigned issingle : 1; /* Operand is VFP single-precision register. */
525 unsigned iszr : 1; /* Operand is ZR register. */
526 unsigned hasreloc : 1; /* Operand has relocation suffix. */
527 unsigned writeback : 1; /* Operand has trailing ! */
528 unsigned preind : 1; /* Preindexed address. */
529 unsigned postind : 1; /* Postindexed address. */
530 unsigned negative : 1; /* Index register was negated. */
531 unsigned shifted : 1; /* Shift applied to operation. */
532 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
533 } operands[ARM_IT_MAX_OPERANDS];
534 };
535
536 static struct arm_it inst;
537
538 #define NUM_FLOAT_VALS 8
539
540 const char * fp_const[] =
541 {
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
543 };
544
545 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
546
547 #define FAIL (-1)
548 #define SUCCESS (0)
549
550 #define SUFF_S 1
551 #define SUFF_D 2
552 #define SUFF_E 3
553 #define SUFF_P 4
554
555 #define CP_T_X 0x00008000
556 #define CP_T_Y 0x00400000
557
558 #define CONDS_BIT 0x00100000
559 #define LOAD_BIT 0x00100000
560
561 #define DOUBLE_LOAD_FLAG 0x00000001
562
563 struct asm_cond
564 {
565 const char * template_name;
566 unsigned long value;
567 };
568
569 #define COND_ALWAYS 0xE
570
571 struct asm_psr
572 {
573 const char * template_name;
574 unsigned long field;
575 };
576
577 struct asm_barrier_opt
578 {
579 const char * template_name;
580 unsigned long value;
581 const arm_feature_set arch;
582 };
583
584 /* The bit that distinguishes CPSR and SPSR. */
585 #define SPSR_BIT (1 << 22)
586
587 /* The individual PSR flag bits. */
588 #define PSR_c (1 << 16)
589 #define PSR_x (1 << 17)
590 #define PSR_s (1 << 18)
591 #define PSR_f (1 << 19)
592
593 struct reloc_entry
594 {
595 const char * name;
596 bfd_reloc_code_real_type reloc;
597 };
598
599 enum vfp_reg_pos
600 {
601 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
602 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
603 };
604
605 enum vfp_ldstm_type
606 {
607 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
608 };
609
610 /* Bits for DEFINED field in neon_typed_alias. */
611 #define NTA_HASTYPE 1
612 #define NTA_HASINDEX 2
613
614 struct neon_typed_alias
615 {
616 unsigned char defined;
617 unsigned char index;
618 struct neon_type_el eltype;
619 };
620
621 /* ARM register categories. This includes coprocessor numbers and various
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
624 enum arm_reg_type
625 {
626 REG_TYPE_RN,
627 REG_TYPE_CP,
628 REG_TYPE_CN,
629 REG_TYPE_FN,
630 REG_TYPE_VFS,
631 REG_TYPE_VFD,
632 REG_TYPE_NQ,
633 REG_TYPE_VFSD,
634 REG_TYPE_NDQ,
635 REG_TYPE_NSD,
636 REG_TYPE_NSDQ,
637 REG_TYPE_VFC,
638 REG_TYPE_MVF,
639 REG_TYPE_MVD,
640 REG_TYPE_MVFX,
641 REG_TYPE_MVDX,
642 REG_TYPE_MVAX,
643 REG_TYPE_MQ,
644 REG_TYPE_DSPSC,
645 REG_TYPE_MMXWR,
646 REG_TYPE_MMXWC,
647 REG_TYPE_MMXWCG,
648 REG_TYPE_XSCALE,
649 REG_TYPE_RNB,
650 REG_TYPE_ZR
651 };
652
653 /* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
657 struct reg_entry
658 {
659 const char * name;
660 unsigned int number;
661 unsigned char type;
662 unsigned char builtin;
663 struct neon_typed_alias * neon;
664 };
665
666 /* Diagnostics used when we don't get a register of the expected type. */
667 const char * const reg_expected_msgs[] =
668 {
669 [REG_TYPE_RN] = N_("ARM register expected"),
670 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN] = N_("co-processor register expected"),
672 [REG_TYPE_FN] = N_("FPA register expected"),
673 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
680 " expected"),
681 [REG_TYPE_VFC] = N_("VFP system register expected"),
682 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
692 [REG_TYPE_MQ] = N_("MVE vector register expected"),
693 [REG_TYPE_RNB] = N_("")
694 };
695
696 /* Some well known registers that we refer to directly elsewhere. */
697 #define REG_R12 12
698 #define REG_SP 13
699 #define REG_LR 14
700 #define REG_PC 15
701
702 /* ARM instructions take 4bytes in the object file, Thumb instructions
703 take 2: */
704 #define INSN_SIZE 4
705
706 struct asm_opcode
707 {
708 /* Basic string to match. */
709 const char * template_name;
710
711 /* Parameters to instruction. */
712 unsigned int operands[8];
713
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag : 4;
716
717 /* Basic instruction code. */
718 unsigned int avalue;
719
720 /* Thumb-format instruction code. */
721 unsigned int tvalue;
722
723 /* Which architecture variant provides this instruction. */
724 const arm_feature_set * avariant;
725 const arm_feature_set * tvariant;
726
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode) (void);
729
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode) (void);
732
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred : 1;
735 };
736
737 /* Defines for various bits that we will want to toggle. */
738 #define INST_IMMEDIATE 0x02000000
739 #define OFFSET_REG 0x02000000
740 #define HWOFFSET_IMM 0x00400000
741 #define SHIFT_BY_REG 0x00000010
742 #define PRE_INDEX 0x01000000
743 #define INDEX_UP 0x00800000
744 #define WRITE_BACK 0x00200000
745 #define LDM_TYPE_2_OR_3 0x00400000
746 #define CPSI_MMOD 0x00020000
747
748 #define LITERAL_MASK 0xf000f000
749 #define OPCODE_MASK 0xfe1fffff
750 #define V4_STR_BIT 0x00000020
751 #define VLDR_VMOV_SAME 0x0040f000
752
753 #define T2_SUBS_PC_LR 0xf3de8f00
754
755 #define DATA_OP_SHIFT 21
756 #define SBIT_SHIFT 20
757
758 #define T2_OPCODE_MASK 0xfe1fffff
759 #define T2_DATA_OP_SHIFT 21
760 #define T2_SBIT_SHIFT 20
761
762 #define A_COND_MASK 0xf0000000
763 #define A_PUSH_POP_OP_MASK 0x0fff0000
764
765 /* Opcodes for pushing/poping registers to/from the stack. */
766 #define A1_OPCODE_PUSH 0x092d0000
767 #define A2_OPCODE_PUSH 0x052d0004
768 #define A2_OPCODE_POP 0x049d0004
769
770 /* Codes to distinguish the arithmetic instructions. */
771 #define OPCODE_AND 0
772 #define OPCODE_EOR 1
773 #define OPCODE_SUB 2
774 #define OPCODE_RSB 3
775 #define OPCODE_ADD 4
776 #define OPCODE_ADC 5
777 #define OPCODE_SBC 6
778 #define OPCODE_RSC 7
779 #define OPCODE_TST 8
780 #define OPCODE_TEQ 9
781 #define OPCODE_CMP 10
782 #define OPCODE_CMN 11
783 #define OPCODE_ORR 12
784 #define OPCODE_MOV 13
785 #define OPCODE_BIC 14
786 #define OPCODE_MVN 15
787
788 #define T2_OPCODE_AND 0
789 #define T2_OPCODE_BIC 1
790 #define T2_OPCODE_ORR 2
791 #define T2_OPCODE_ORN 3
792 #define T2_OPCODE_EOR 4
793 #define T2_OPCODE_ADD 8
794 #define T2_OPCODE_ADC 10
795 #define T2_OPCODE_SBC 11
796 #define T2_OPCODE_SUB 13
797 #define T2_OPCODE_RSB 14
798
799 #define T_OPCODE_MUL 0x4340
800 #define T_OPCODE_TST 0x4200
801 #define T_OPCODE_CMN 0x42c0
802 #define T_OPCODE_NEG 0x4240
803 #define T_OPCODE_MVN 0x43c0
804
805 #define T_OPCODE_ADD_R3 0x1800
806 #define T_OPCODE_SUB_R3 0x1a00
807 #define T_OPCODE_ADD_HI 0x4400
808 #define T_OPCODE_ADD_ST 0xb000
809 #define T_OPCODE_SUB_ST 0xb080
810 #define T_OPCODE_ADD_SP 0xa800
811 #define T_OPCODE_ADD_PC 0xa000
812 #define T_OPCODE_ADD_I8 0x3000
813 #define T_OPCODE_SUB_I8 0x3800
814 #define T_OPCODE_ADD_I3 0x1c00
815 #define T_OPCODE_SUB_I3 0x1e00
816
817 #define T_OPCODE_ASR_R 0x4100
818 #define T_OPCODE_LSL_R 0x4080
819 #define T_OPCODE_LSR_R 0x40c0
820 #define T_OPCODE_ROR_R 0x41c0
821 #define T_OPCODE_ASR_I 0x1000
822 #define T_OPCODE_LSL_I 0x0000
823 #define T_OPCODE_LSR_I 0x0800
824
825 #define T_OPCODE_MOV_I8 0x2000
826 #define T_OPCODE_CMP_I8 0x2800
827 #define T_OPCODE_CMP_LR 0x4280
828 #define T_OPCODE_MOV_HR 0x4600
829 #define T_OPCODE_CMP_HR 0x4500
830
831 #define T_OPCODE_LDR_PC 0x4800
832 #define T_OPCODE_LDR_SP 0x9800
833 #define T_OPCODE_STR_SP 0x9000
834 #define T_OPCODE_LDR_IW 0x6800
835 #define T_OPCODE_STR_IW 0x6000
836 #define T_OPCODE_LDR_IH 0x8800
837 #define T_OPCODE_STR_IH 0x8000
838 #define T_OPCODE_LDR_IB 0x7800
839 #define T_OPCODE_STR_IB 0x7000
840 #define T_OPCODE_LDR_RW 0x5800
841 #define T_OPCODE_STR_RW 0x5000
842 #define T_OPCODE_LDR_RH 0x5a00
843 #define T_OPCODE_STR_RH 0x5200
844 #define T_OPCODE_LDR_RB 0x5c00
845 #define T_OPCODE_STR_RB 0x5400
846
847 #define T_OPCODE_PUSH 0xb400
848 #define T_OPCODE_POP 0xbc00
849
850 #define T_OPCODE_BRANCH 0xe000
851
852 #define THUMB_SIZE 2 /* Size of thumb instruction. */
853 #define THUMB_PP_PC_LR 0x0100
854 #define THUMB_LOAD_BIT 0x0800
855 #define THUMB2_LOAD_BIT 0x00100000
856
857 #define BAD_SYNTAX _("syntax error")
858 #define BAD_ARGS _("bad arguments to instruction")
859 #define BAD_SP _("r13 not allowed here")
860 #define BAD_PC _("r15 not allowed here")
861 #define BAD_ODD _("Odd register not allowed here")
862 #define BAD_EVEN _("Even register not allowed here")
863 #define BAD_COND _("instruction cannot be conditional")
864 #define BAD_OVERLAP _("registers may not be the same")
865 #define BAD_HIREG _("lo register required")
866 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
867 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
868 #define BAD_BRANCH _("branch must be last instruction in IT block")
869 #define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
870 #define BAD_NOT_IT _("instruction not allowed in IT block")
871 #define BAD_NOT_VPT _("instruction missing MVE vector predication code")
872 #define BAD_FPU _("selected FPU does not support instruction")
873 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
874 #define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
876 #define BAD_IT_COND _("incorrect condition in IT block")
877 #define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
878 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
879 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
880 #define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882 #define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
884 #define BAD_RANGE _("branch out of range")
885 #define BAD_FP16 _("selected processor does not support fp16 instruction")
886 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
887 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
888 #define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
889 "block")
890 #define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
891 "block")
892 #define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
893 " operand")
894 #define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
895 " operand")
896 #define BAD_SIMD_TYPE _("bad type in SIMD instruction")
897 #define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900 #define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
902 #define BAD_EL_TYPE _("bad element type for instruction")
903 #define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
904
905 static struct hash_control * arm_ops_hsh;
906 static struct hash_control * arm_cond_hsh;
907 static struct hash_control * arm_vcond_hsh;
908 static struct hash_control * arm_shift_hsh;
909 static struct hash_control * arm_psr_hsh;
910 static struct hash_control * arm_v7m_psr_hsh;
911 static struct hash_control * arm_reg_hsh;
912 static struct hash_control * arm_reloc_hsh;
913 static struct hash_control * arm_barrier_opt_hsh;
914
915 /* Stuff needed to resolve the label ambiguity
916 As:
917 ...
918 label: <insn>
919 may differ from:
920 ...
921 label:
922 <insn> */
923
924 symbolS * last_label_seen;
925 static int label_is_thumb_function_name = FALSE;
926
927 /* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
929
930 #define MAX_LITERAL_POOL_SIZE 1024
931 typedef struct literal_pool
932 {
933 expressionS literals [MAX_LITERAL_POOL_SIZE];
934 unsigned int next_free_entry;
935 unsigned int id;
936 symbolS * symbol;
937 segT section;
938 subsegT sub_section;
939 #ifdef OBJ_ELF
940 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
941 #endif
942 struct literal_pool * next;
943 unsigned int alignment;
944 } literal_pool;
945
946 /* Pointer to a linked list of literal pools. */
947 literal_pool * list_of_pools = NULL;
948
949 typedef enum asmfunc_states
950 {
951 OUTSIDE_ASMFUNC,
952 WAITING_ASMFUNC_NAME,
953 WAITING_ENDASMFUNC
954 } asmfunc_states;
955
956 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
957
958 #ifdef OBJ_ELF
959 # define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
960 #else
961 static struct current_pred now_pred;
962 #endif
963
964 static inline int
965 now_pred_compatible (int cond)
966 {
967 return (cond & ~1) == (now_pred.cc & ~1);
968 }
969
970 static inline int
971 conditional_insn (void)
972 {
973 return inst.cond != COND_ALWAYS;
974 }
975
976 static int in_pred_block (void);
977
978 static int handle_pred_state (void);
979
980 static void force_automatic_it_block_close (void);
981
982 static void it_fsm_post_encode (void);
983
984 #define set_pred_insn_type(type) \
985 do \
986 { \
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
989 return; \
990 } \
991 while (0)
992
993 #define set_pred_insn_type_nonvoid(type, failret) \
994 do \
995 { \
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
998 return failret; \
999 } \
1000 while(0)
1001
1002 #define set_pred_insn_type_last() \
1003 do \
1004 { \
1005 if (inst.cond == COND_ALWAYS) \
1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
1007 else \
1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
1009 } \
1010 while (0)
1011
1012 /* Pure syntax. */
1013
1014 /* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
1016 char arm_comment_chars[] = "@";
1017
1018 /* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021 /* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024 /* Also note that comments like this one will always work. */
1025 const char line_comment_chars[] = "#";
1026
1027 char arm_line_separator_chars[] = ";";
1028
1029 /* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031 const char EXP_CHARS[] = "eE";
1032
1033 /* Chars that mean this number is a floating point constant. */
1034 /* As in 0f12.456 */
1035 /* or 0d1.2345e12 */
1036
1037 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
1038
1039 /* Prefix characters that indicate the start of an immediate
1040 value. */
1041 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
1042
1043 /* Separator character handling. */
1044
1045 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1046
1047 static inline int
1048 skip_past_char (char ** str, char c)
1049 {
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str);
1052
1053 if (**str == c)
1054 {
1055 (*str)++;
1056 return SUCCESS;
1057 }
1058 else
1059 return FAIL;
1060 }
1061
1062 #define skip_past_comma(str) skip_past_char (str, ',')
1063
1064 /* Arithmetic expressions (possibly involving symbols). */
1065
1066 /* Return TRUE if anything in the expression is a bignum. */
1067
1068 static bfd_boolean
1069 walk_no_bignums (symbolS * sp)
1070 {
1071 if (symbol_get_value_expression (sp)->X_op == O_big)
1072 return TRUE;
1073
1074 if (symbol_get_value_expression (sp)->X_add_symbol)
1075 {
1076 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1077 || (symbol_get_value_expression (sp)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
1079 }
1080
1081 return FALSE;
1082 }
1083
1084 static bfd_boolean in_my_get_expression = FALSE;
1085
1086 /* Third argument to my_get_expression. */
1087 #define GE_NO_PREFIX 0
1088 #define GE_IMM_PREFIX 1
1089 #define GE_OPT_PREFIX 2
1090 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092 #define GE_OPT_PREFIX_BIG 3
1093
1094 static int
1095 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
1096 {
1097 char * save_in;
1098
1099 /* In unified syntax, all prefixes are optional. */
1100 if (unified_syntax)
1101 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
1102 : GE_OPT_PREFIX;
1103
1104 switch (prefix_mode)
1105 {
1106 case GE_NO_PREFIX: break;
1107 case GE_IMM_PREFIX:
1108 if (!is_immediate_prefix (**str))
1109 {
1110 inst.error = _("immediate expression requires a # prefix");
1111 return FAIL;
1112 }
1113 (*str)++;
1114 break;
1115 case GE_OPT_PREFIX:
1116 case GE_OPT_PREFIX_BIG:
1117 if (is_immediate_prefix (**str))
1118 (*str)++;
1119 break;
1120 default:
1121 abort ();
1122 }
1123
1124 memset (ep, 0, sizeof (expressionS));
1125
1126 save_in = input_line_pointer;
1127 input_line_pointer = *str;
1128 in_my_get_expression = TRUE;
1129 expression (ep);
1130 in_my_get_expression = FALSE;
1131
1132 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1133 {
1134 /* We found a bad or missing expression in md_operand(). */
1135 *str = input_line_pointer;
1136 input_line_pointer = save_in;
1137 if (inst.error == NULL)
1138 inst.error = (ep->X_op == O_absent
1139 ? _("missing expression") :_("bad expression"));
1140 return 1;
1141 }
1142
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
1146 if (prefix_mode != GE_OPT_PREFIX_BIG
1147 && (ep->X_op == O_big
1148 || (ep->X_add_symbol
1149 && (walk_no_bignums (ep->X_add_symbol)
1150 || (ep->X_op_symbol
1151 && walk_no_bignums (ep->X_op_symbol))))))
1152 {
1153 inst.error = _("invalid constant");
1154 *str = input_line_pointer;
1155 input_line_pointer = save_in;
1156 return 1;
1157 }
1158
1159 *str = input_line_pointer;
1160 input_line_pointer = save_in;
1161 return SUCCESS;
1162 }
1163
1164 /* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
1168
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
1175
1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1177
1178 const char *
1179 md_atof (int type, char * litP, int * sizeP)
1180 {
1181 int prec;
1182 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1183 char *t;
1184 int i;
1185
1186 switch (type)
1187 {
1188 case 'f':
1189 case 'F':
1190 case 's':
1191 case 'S':
1192 prec = 2;
1193 break;
1194
1195 case 'd':
1196 case 'D':
1197 case 'r':
1198 case 'R':
1199 prec = 4;
1200 break;
1201
1202 case 'x':
1203 case 'X':
1204 prec = 5;
1205 break;
1206
1207 case 'p':
1208 case 'P':
1209 prec = 5;
1210 break;
1211
1212 default:
1213 *sizeP = 0;
1214 return _("Unrecognized or unsupported floating point constant");
1215 }
1216
1217 t = atof_ieee (input_line_pointer, type, words);
1218 if (t)
1219 input_line_pointer = t;
1220 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1221
1222 if (target_big_endian)
1223 {
1224 for (i = 0; i < prec; i++)
1225 {
1226 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1227 litP += sizeof (LITTLENUM_TYPE);
1228 }
1229 }
1230 else
1231 {
1232 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1233 for (i = prec - 1; i >= 0; i--)
1234 {
1235 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1236 litP += sizeof (LITTLENUM_TYPE);
1237 }
1238 else
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i = 0; i < prec; i += 2)
1242 {
1243 md_number_to_chars (litP, (valueT) words[i + 1],
1244 sizeof (LITTLENUM_TYPE));
1245 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1246 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1247 litP += 2 * sizeof (LITTLENUM_TYPE);
1248 }
1249 }
1250
1251 return NULL;
1252 }
1253
1254 /* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
1256
1257 void
1258 md_operand (expressionS * exp)
1259 {
1260 if (in_my_get_expression)
1261 exp->X_op = O_illegal;
1262 }
1263
1264 /* Immediate values. */
1265
1266 #ifdef OBJ_ELF
1267 /* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
1270
1271 static int
1272 immediate_for_directive (int *val)
1273 {
1274 expressionS exp;
1275 exp.X_op = O_illegal;
1276
1277 if (is_immediate_prefix (*input_line_pointer))
1278 {
1279 input_line_pointer++;
1280 expression (&exp);
1281 }
1282
1283 if (exp.X_op != O_constant)
1284 {
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1287 return FAIL;
1288 }
1289 *val = exp.X_add_number;
1290 return SUCCESS;
1291 }
1292 #endif
1293
1294 /* Register parsing. */
1295
1296 /* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1300
1301 static struct reg_entry *
1302 arm_reg_parse_multi (char **ccp)
1303 {
1304 char *start = *ccp;
1305 char *p;
1306 struct reg_entry *reg;
1307
1308 skip_whitespace (start);
1309
1310 #ifdef REGISTER_PREFIX
1311 if (*start != REGISTER_PREFIX)
1312 return NULL;
1313 start++;
1314 #endif
1315 #ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start == OPTIONAL_REGISTER_PREFIX)
1317 start++;
1318 #endif
1319
1320 p = start;
1321 if (!ISALPHA (*p) || !is_name_beginner (*p))
1322 return NULL;
1323
1324 do
1325 p++;
1326 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1327
1328 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1329
1330 if (!reg)
1331 return NULL;
1332
1333 *ccp = p;
1334 return reg;
1335 }
1336
1337 static int
1338 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1339 enum arm_reg_type type)
1340 {
1341 /* Alternative syntaxes are accepted for a few register classes. */
1342 switch (type)
1343 {
1344 case REG_TYPE_MVF:
1345 case REG_TYPE_MVD:
1346 case REG_TYPE_MVFX:
1347 case REG_TYPE_MVDX:
1348 /* Generic coprocessor register names are allowed for these. */
1349 if (reg && reg->type == REG_TYPE_CN)
1350 return reg->number;
1351 break;
1352
1353 case REG_TYPE_CP:
1354 /* For backward compatibility, a bare number is valid here. */
1355 {
1356 unsigned long processor = strtoul (start, ccp, 10);
1357 if (*ccp != start && processor <= 15)
1358 return processor;
1359 }
1360 /* Fall through. */
1361
1362 case REG_TYPE_MMXWC:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
1365 if (reg && reg->type == REG_TYPE_MMXWCG)
1366 return reg->number;
1367 break;
1368
1369 default:
1370 break;
1371 }
1372
1373 return FAIL;
1374 }
1375
1376 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1378
1379 static int
1380 arm_reg_parse (char **ccp, enum arm_reg_type type)
1381 {
1382 char *start = *ccp;
1383 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1384 int ret;
1385
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1388 return FAIL;
1389
1390 if (reg && reg->type == type)
1391 return reg->number;
1392
1393 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1394 return ret;
1395
1396 *ccp = start;
1397 return FAIL;
1398 }
1399
1400 /* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1402 properly. E.g.,
1403
1404 .i32.i32.s16
1405 .s32.f32
1406 .u16
1407
1408 Can all be legally parsed by this function.
1409
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1413
1414 static int
1415 parse_neon_type (struct neon_type *type, char **str)
1416 {
1417 char *ptr = *str;
1418
1419 if (type)
1420 type->elems = 0;
1421
1422 while (type->elems < NEON_MAX_TYPE_ELS)
1423 {
1424 enum neon_el_type thistype = NT_untyped;
1425 unsigned thissize = -1u;
1426
1427 if (*ptr != '.')
1428 break;
1429
1430 ptr++;
1431
1432 /* Just a size without an explicit type. */
1433 if (ISDIGIT (*ptr))
1434 goto parsesize;
1435
1436 switch (TOLOWER (*ptr))
1437 {
1438 case 'i': thistype = NT_integer; break;
1439 case 'f': thistype = NT_float; break;
1440 case 'p': thistype = NT_poly; break;
1441 case 's': thistype = NT_signed; break;
1442 case 'u': thistype = NT_unsigned; break;
1443 case 'd':
1444 thistype = NT_float;
1445 thissize = 64;
1446 ptr++;
1447 goto done;
1448 default:
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1450 return FAIL;
1451 }
1452
1453 ptr++;
1454
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype == NT_float && !ISDIGIT (*ptr))
1457 thissize = 32;
1458 else
1459 {
1460 parsesize:
1461 thissize = strtoul (ptr, &ptr, 10);
1462
1463 if (thissize != 8 && thissize != 16 && thissize != 32
1464 && thissize != 64)
1465 {
1466 as_bad (_("bad size %d in type specifier"), thissize);
1467 return FAIL;
1468 }
1469 }
1470
1471 done:
1472 if (type)
1473 {
1474 type->el[type->elems].type = thistype;
1475 type->el[type->elems].size = thissize;
1476 type->elems++;
1477 }
1478 }
1479
1480 /* Empty/missing type is not a successful parse. */
1481 if (type->elems == 0)
1482 return FAIL;
1483
1484 *str = ptr;
1485
1486 return SUCCESS;
1487 }
1488
1489 /* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1493
1494 static void
1495 first_error (const char *err)
1496 {
1497 if (!inst.error)
1498 inst.error = err;
1499 }
1500
1501 /* Parse a single type, e.g. ".s32", leading period included. */
1502 static int
1503 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1504 {
1505 char *str = *ccp;
1506 struct neon_type optype;
1507
1508 if (*str == '.')
1509 {
1510 if (parse_neon_type (&optype, &str) == SUCCESS)
1511 {
1512 if (optype.elems == 1)
1513 *vectype = optype.el[0];
1514 else
1515 {
1516 first_error (_("only one type should be specified for operand"));
1517 return FAIL;
1518 }
1519 }
1520 else
1521 {
1522 first_error (_("vector type expected"));
1523 return FAIL;
1524 }
1525 }
1526 else
1527 return FAIL;
1528
1529 *ccp = str;
1530
1531 return SUCCESS;
1532 }
1533
1534 /* Special meanings for indices (which have a range of 0-7), which will fit into
1535 a 4-bit integer. */
1536
1537 #define NEON_ALL_LANES 15
1538 #define NEON_INTERLEAVE_LANES 14
1539
1540 /* Record a use of the given feature. */
1541 static void
1542 record_feature_use (const arm_feature_set *feature)
1543 {
1544 if (thumb_mode)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1546 else
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1548 }
1549
1550 /* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1552 static bfd_boolean
1553 mark_feature_used (const arm_feature_set *feature)
1554 {
1555
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1557 -march=all. */
1558 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1559 && ARM_CPU_IS_ANY (cpu_variant))
1560 {
1561 first_error (BAD_MVE_AUTO);
1562 return FALSE;
1563 }
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1566 return FALSE;
1567
1568 /* Add the appropriate architecture feature for the barrier option used.
1569 */
1570 record_feature_use (feature);
1571
1572 return TRUE;
1573 }
1574
1575 /* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1579
1580 static int
1581 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1582 enum arm_reg_type *rtype,
1583 struct neon_typed_alias *typeinfo)
1584 {
1585 char *str = *ccp;
1586 struct reg_entry *reg = arm_reg_parse_multi (&str);
1587 struct neon_typed_alias atype;
1588 struct neon_type_el parsetype;
1589
1590 atype.defined = 0;
1591 atype.index = -1;
1592 atype.eltype.type = NT_invtype;
1593 atype.eltype.size = -1;
1594
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1597 if (reg == NULL)
1598 {
1599 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1600 if (altreg != FAIL)
1601 *ccp = str;
1602 if (typeinfo)
1603 *typeinfo = atype;
1604 return altreg;
1605 }
1606
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type == REG_TYPE_NDQ
1609 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1610 || (type == REG_TYPE_VFSD
1611 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1612 || (type == REG_TYPE_NSDQ
1613 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1614 || reg->type == REG_TYPE_NQ))
1615 || (type == REG_TYPE_NSD
1616 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1617 || (type == REG_TYPE_MMXWC
1618 && (reg->type == REG_TYPE_MMXWCG)))
1619 type = (enum arm_reg_type) reg->type;
1620
1621 if (type == REG_TYPE_MQ)
1622 {
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1624 return FAIL;
1625
1626 if (!reg || reg->type != REG_TYPE_NQ)
1627 return FAIL;
1628
1629 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1630 {
1631 first_error (_("expected MVE register [q0..q7]"));
1632 return FAIL;
1633 }
1634 type = REG_TYPE_NQ;
1635 }
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1637 && (type == REG_TYPE_NQ))
1638 return FAIL;
1639
1640
1641 if (type != reg->type)
1642 return FAIL;
1643
1644 if (reg->neon)
1645 atype = *reg->neon;
1646
1647 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1648 {
1649 if ((atype.defined & NTA_HASTYPE) != 0)
1650 {
1651 first_error (_("can't redefine type for operand"));
1652 return FAIL;
1653 }
1654 atype.defined |= NTA_HASTYPE;
1655 atype.eltype = parsetype;
1656 }
1657
1658 if (skip_past_char (&str, '[') == SUCCESS)
1659 {
1660 if (type != REG_TYPE_VFD
1661 && !(type == REG_TYPE_VFS
1662 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1663 && !(type == REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
1665 {
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1667 first_error (_("only D and Q registers may be indexed"));
1668 else
1669 first_error (_("only D registers may be indexed"));
1670 return FAIL;
1671 }
1672
1673 if ((atype.defined & NTA_HASINDEX) != 0)
1674 {
1675 first_error (_("can't change index for operand"));
1676 return FAIL;
1677 }
1678
1679 atype.defined |= NTA_HASINDEX;
1680
1681 if (skip_past_char (&str, ']') == SUCCESS)
1682 atype.index = NEON_ALL_LANES;
1683 else
1684 {
1685 expressionS exp;
1686
1687 my_get_expression (&exp, &str, GE_NO_PREFIX);
1688
1689 if (exp.X_op != O_constant)
1690 {
1691 first_error (_("constant expression required"));
1692 return FAIL;
1693 }
1694
1695 if (skip_past_char (&str, ']') == FAIL)
1696 return FAIL;
1697
1698 atype.index = exp.X_add_number;
1699 }
1700 }
1701
1702 if (typeinfo)
1703 *typeinfo = atype;
1704
1705 if (rtype)
1706 *rtype = type;
1707
1708 *ccp = str;
1709
1710 return reg->number;
1711 }
1712
1713 /* Like arm_reg_parse, but also allow the following extra features:
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
1718 This function will fault on encountering a scalar. */
1719
1720 static int
1721 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1722 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1723 {
1724 struct neon_typed_alias atype;
1725 char *str = *ccp;
1726 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1727
1728 if (reg == FAIL)
1729 return FAIL;
1730
1731 /* Do not allow regname(... to parse as a register. */
1732 if (*str == '(')
1733 return FAIL;
1734
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype.defined & NTA_HASINDEX) != 0)
1737 {
1738 first_error (_("register operand expected, but got scalar"));
1739 return FAIL;
1740 }
1741
1742 if (vectype)
1743 *vectype = atype.eltype;
1744
1745 *ccp = str;
1746
1747 return reg;
1748 }
1749
1750 #define NEON_SCALAR_REG(X) ((X) >> 4)
1751 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1752
1753 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1756
1757 static int
1758 parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1759 arm_reg_type reg_type)
1760 {
1761 int reg;
1762 char *str = *ccp;
1763 struct neon_typed_alias atype;
1764 unsigned reg_size;
1765
1766 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
1767
1768 switch (reg_type)
1769 {
1770 case REG_TYPE_VFS:
1771 reg_size = 32;
1772 break;
1773 case REG_TYPE_VFD:
1774 reg_size = 64;
1775 break;
1776 case REG_TYPE_MQ:
1777 reg_size = 128;
1778 break;
1779 default:
1780 gas_assert (0);
1781 return FAIL;
1782 }
1783
1784 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1785 return FAIL;
1786
1787 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
1788 {
1789 first_error (_("scalar must have an index"));
1790 return FAIL;
1791 }
1792 else if (atype.index >= reg_size / elsize)
1793 {
1794 first_error (_("scalar index out of range"));
1795 return FAIL;
1796 }
1797
1798 if (type)
1799 *type = atype.eltype;
1800
1801 *ccp = str;
1802
1803 return reg * 16 + atype.index;
1804 }
1805
1806 /* Types of registers in a list. */
1807
1808 enum reg_list_els
1809 {
1810 REGLIST_RN,
1811 REGLIST_CLRM,
1812 REGLIST_VFP_S,
1813 REGLIST_VFP_S_VPR,
1814 REGLIST_VFP_D,
1815 REGLIST_VFP_D_VPR,
1816 REGLIST_NEON_D
1817 };
1818
1819 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1820
1821 static long
1822 parse_reg_list (char ** strp, enum reg_list_els etype)
1823 {
1824 char *str = *strp;
1825 long range = 0;
1826 int another_range;
1827
1828 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
1829
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1831 do
1832 {
1833 skip_whitespace (str);
1834
1835 another_range = 0;
1836
1837 if (*str == '{')
1838 {
1839 int in_range = 0;
1840 int cur_reg = -1;
1841
1842 str++;
1843 do
1844 {
1845 int reg;
1846 const char apsr_str[] = "apsr";
1847 int apsr_str_len = strlen (apsr_str);
1848
1849 reg = arm_reg_parse (&str, REGLIST_RN);
1850 if (etype == REGLIST_CLRM)
1851 {
1852 if (reg == REG_SP || reg == REG_PC)
1853 reg = FAIL;
1854 else if (reg == FAIL
1855 && !strncasecmp (str, apsr_str, apsr_str_len)
1856 && !ISALPHA (*(str + apsr_str_len)))
1857 {
1858 reg = 15;
1859 str += apsr_str_len;
1860 }
1861
1862 if (reg == FAIL)
1863 {
1864 first_error (_("r0-r12, lr or APSR expected"));
1865 return FAIL;
1866 }
1867 }
1868 else /* etype == REGLIST_RN. */
1869 {
1870 if (reg == FAIL)
1871 {
1872 first_error (_(reg_expected_msgs[REGLIST_RN]));
1873 return FAIL;
1874 }
1875 }
1876
1877 if (in_range)
1878 {
1879 int i;
1880
1881 if (reg <= cur_reg)
1882 {
1883 first_error (_("bad range in register list"));
1884 return FAIL;
1885 }
1886
1887 for (i = cur_reg + 1; i < reg; i++)
1888 {
1889 if (range & (1 << i))
1890 as_tsktsk
1891 (_("Warning: duplicated register (r%d) in register list"),
1892 i);
1893 else
1894 range |= 1 << i;
1895 }
1896 in_range = 0;
1897 }
1898
1899 if (range & (1 << reg))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1901 reg);
1902 else if (reg <= cur_reg)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
1904
1905 range |= 1 << reg;
1906 cur_reg = reg;
1907 }
1908 while (skip_past_comma (&str) != FAIL
1909 || (in_range = 1, *str++ == '-'));
1910 str--;
1911
1912 if (skip_past_char (&str, '}') == FAIL)
1913 {
1914 first_error (_("missing `}'"));
1915 return FAIL;
1916 }
1917 }
1918 else if (etype == REGLIST_RN)
1919 {
1920 expressionS exp;
1921
1922 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1923 return FAIL;
1924
1925 if (exp.X_op == O_constant)
1926 {
1927 if (exp.X_add_number
1928 != (exp.X_add_number & 0x0000ffff))
1929 {
1930 inst.error = _("invalid register mask");
1931 return FAIL;
1932 }
1933
1934 if ((range & exp.X_add_number) != 0)
1935 {
1936 int regno = range & exp.X_add_number;
1937
1938 regno &= -regno;
1939 regno = (1 << regno) - 1;
1940 as_tsktsk
1941 (_("Warning: duplicated register (r%d) in register list"),
1942 regno);
1943 }
1944
1945 range |= exp.X_add_number;
1946 }
1947 else
1948 {
1949 if (inst.relocs[0].type != 0)
1950 {
1951 inst.error = _("expression too complex");
1952 return FAIL;
1953 }
1954
1955 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1956 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1957 inst.relocs[0].pc_rel = 0;
1958 }
1959 }
1960
1961 if (*str == '|' || *str == '+')
1962 {
1963 str++;
1964 another_range = 1;
1965 }
1966 }
1967 while (another_range);
1968
1969 *strp = str;
1970 return range;
1971 }
1972
1973 /* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
1979 FIXME: This is not implemented, as it would require backtracking in
1980 some cases, e.g.:
1981 vtbl.8 d3,d4,d5
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1986 bug. */
1987
1988 static int
1989 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
1990 bfd_boolean *partial_match)
1991 {
1992 char *str = *ccp;
1993 int base_reg;
1994 int new_base;
1995 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1996 int max_regs = 0;
1997 int count = 0;
1998 int warned = 0;
1999 unsigned long mask = 0;
2000 int i;
2001 bfd_boolean vpr_seen = FALSE;
2002 bfd_boolean expect_vpr =
2003 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
2004
2005 if (skip_past_char (&str, '{') == FAIL)
2006 {
2007 inst.error = _("expecting {");
2008 return FAIL;
2009 }
2010
2011 switch (etype)
2012 {
2013 case REGLIST_VFP_S:
2014 case REGLIST_VFP_S_VPR:
2015 regtype = REG_TYPE_VFS;
2016 max_regs = 32;
2017 break;
2018
2019 case REGLIST_VFP_D:
2020 case REGLIST_VFP_D_VPR:
2021 regtype = REG_TYPE_VFD;
2022 break;
2023
2024 case REGLIST_NEON_D:
2025 regtype = REG_TYPE_NDQ;
2026 break;
2027
2028 default:
2029 gas_assert (0);
2030 }
2031
2032 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
2033 {
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
2036 {
2037 max_regs = 32;
2038 if (thumb_mode)
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2040 fpu_vfp_ext_d32);
2041 else
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2043 fpu_vfp_ext_d32);
2044 }
2045 else
2046 max_regs = 16;
2047 }
2048
2049 base_reg = max_regs;
2050 *partial_match = FALSE;
2051
2052 do
2053 {
2054 int setmask = 1, addregs = 1;
2055 const char vpr_str[] = "vpr";
2056 int vpr_str_len = strlen (vpr_str);
2057
2058 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
2059
2060 if (expect_vpr)
2061 {
2062 if (new_base == FAIL
2063 && !strncasecmp (str, vpr_str, vpr_str_len)
2064 && !ISALPHA (*(str + vpr_str_len))
2065 && !vpr_seen)
2066 {
2067 vpr_seen = TRUE;
2068 str += vpr_str_len;
2069 if (count == 0)
2070 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2071 }
2072 else if (vpr_seen)
2073 {
2074 first_error (_("VPR expected last"));
2075 return FAIL;
2076 }
2077 else if (new_base == FAIL)
2078 {
2079 if (regtype == REG_TYPE_VFS)
2080 first_error (_("VFP single precision register or VPR "
2081 "expected"));
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2084 "expected"));
2085 return FAIL;
2086 }
2087 }
2088 else if (new_base == FAIL)
2089 {
2090 first_error (_(reg_expected_msgs[regtype]));
2091 return FAIL;
2092 }
2093
2094 *partial_match = TRUE;
2095 if (vpr_seen)
2096 continue;
2097
2098 if (new_base >= max_regs)
2099 {
2100 first_error (_("register out of range in list"));
2101 return FAIL;
2102 }
2103
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype == REG_TYPE_NQ)
2106 {
2107 setmask = 3;
2108 addregs = 2;
2109 }
2110
2111 if (new_base < base_reg)
2112 base_reg = new_base;
2113
2114 if (mask & (setmask << new_base))
2115 {
2116 first_error (_("invalid register list"));
2117 return FAIL;
2118 }
2119
2120 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
2121 {
2122 as_tsktsk (_("register list not in ascending order"));
2123 warned = 1;
2124 }
2125
2126 mask |= setmask << new_base;
2127 count += addregs;
2128
2129 if (*str == '-') /* We have the start of a range expression */
2130 {
2131 int high_range;
2132
2133 str++;
2134
2135 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
2136 == FAIL)
2137 {
2138 inst.error = gettext (reg_expected_msgs[regtype]);
2139 return FAIL;
2140 }
2141
2142 if (high_range >= max_regs)
2143 {
2144 first_error (_("register out of range in list"));
2145 return FAIL;
2146 }
2147
2148 if (regtype == REG_TYPE_NQ)
2149 high_range = high_range + 1;
2150
2151 if (high_range <= new_base)
2152 {
2153 inst.error = _("register range not in ascending order");
2154 return FAIL;
2155 }
2156
2157 for (new_base += addregs; new_base <= high_range; new_base += addregs)
2158 {
2159 if (mask & (setmask << new_base))
2160 {
2161 inst.error = _("invalid register list");
2162 return FAIL;
2163 }
2164
2165 mask |= setmask << new_base;
2166 count += addregs;
2167 }
2168 }
2169 }
2170 while (skip_past_comma (&str) != FAIL);
2171
2172 str++;
2173
2174 /* Sanity check -- should have raised a parse error above. */
2175 if ((!vpr_seen && count == 0) || count > max_regs)
2176 abort ();
2177
2178 *pbase = base_reg;
2179
2180 if (expect_vpr && !vpr_seen)
2181 {
2182 first_error (_("VPR expected last"));
2183 return FAIL;
2184 }
2185
2186 /* Final test -- the registers must be consecutive. */
2187 mask >>= base_reg;
2188 for (i = 0; i < count; i++)
2189 {
2190 if ((mask & (1u << i)) == 0)
2191 {
2192 inst.error = _("non-contiguous register range");
2193 return FAIL;
2194 }
2195 }
2196
2197 *ccp = str;
2198
2199 return count;
2200 }
2201
2202 /* True if two alias types are the same. */
2203
2204 static bfd_boolean
2205 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2206 {
2207 if (!a && !b)
2208 return TRUE;
2209
2210 if (!a || !b)
2211 return FALSE;
2212
2213 if (a->defined != b->defined)
2214 return FALSE;
2215
2216 if ((a->defined & NTA_HASTYPE) != 0
2217 && (a->eltype.type != b->eltype.type
2218 || a->eltype.size != b->eltype.size))
2219 return FALSE;
2220
2221 if ((a->defined & NTA_HASINDEX) != 0
2222 && (a->index != b->index))
2223 return FALSE;
2224
2225 return TRUE;
2226 }
2227
2228 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2231 the return value.
2232 The register stride (minus one) is put in bit 4 of the return value.
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
2235
2236 #define NEON_LANE(X) ((X) & 0xf)
2237 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2238 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2239
2240 static int
2241 parse_neon_el_struct_list (char **str, unsigned *pbase,
2242 int mve,
2243 struct neon_type_el *eltype)
2244 {
2245 char *ptr = *str;
2246 int base_reg = -1;
2247 int reg_incr = -1;
2248 int count = 0;
2249 int lane = -1;
2250 int leading_brace = 0;
2251 enum arm_reg_type rtype = REG_TYPE_NDQ;
2252 const char *const incr_error = mve ? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
2254 const char *const type_error = _("mismatched element/structure types in list");
2255 struct neon_typed_alias firsttype;
2256 firsttype.defined = 0;
2257 firsttype.eltype.type = NT_invtype;
2258 firsttype.eltype.size = -1;
2259 firsttype.index = -1;
2260
2261 if (skip_past_char (&ptr, '{') == SUCCESS)
2262 leading_brace = 1;
2263
2264 do
2265 {
2266 struct neon_typed_alias atype;
2267 if (mve)
2268 rtype = REG_TYPE_MQ;
2269 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2270
2271 if (getreg == FAIL)
2272 {
2273 first_error (_(reg_expected_msgs[rtype]));
2274 return FAIL;
2275 }
2276
2277 if (base_reg == -1)
2278 {
2279 base_reg = getreg;
2280 if (rtype == REG_TYPE_NQ)
2281 {
2282 reg_incr = 1;
2283 }
2284 firsttype = atype;
2285 }
2286 else if (reg_incr == -1)
2287 {
2288 reg_incr = getreg - base_reg;
2289 if (reg_incr < 1 || reg_incr > 2)
2290 {
2291 first_error (_(incr_error));
2292 return FAIL;
2293 }
2294 }
2295 else if (getreg != base_reg + reg_incr * count)
2296 {
2297 first_error (_(incr_error));
2298 return FAIL;
2299 }
2300
2301 if (! neon_alias_types_same (&atype, &firsttype))
2302 {
2303 first_error (_(type_error));
2304 return FAIL;
2305 }
2306
2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2308 modes. */
2309 if (ptr[0] == '-')
2310 {
2311 struct neon_typed_alias htype;
2312 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2313 if (lane == -1)
2314 lane = NEON_INTERLEAVE_LANES;
2315 else if (lane != NEON_INTERLEAVE_LANES)
2316 {
2317 first_error (_(type_error));
2318 return FAIL;
2319 }
2320 if (reg_incr == -1)
2321 reg_incr = 1;
2322 else if (reg_incr != 1)
2323 {
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2325 return FAIL;
2326 }
2327 ptr++;
2328 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2329 if (hireg == FAIL)
2330 {
2331 first_error (_(reg_expected_msgs[rtype]));
2332 return FAIL;
2333 }
2334 if (! neon_alias_types_same (&htype, &firsttype))
2335 {
2336 first_error (_(type_error));
2337 return FAIL;
2338 }
2339 count += hireg + dregs - getreg;
2340 continue;
2341 }
2342
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype == REG_TYPE_NQ)
2345 {
2346 count += 2;
2347 continue;
2348 }
2349
2350 if ((atype.defined & NTA_HASINDEX) != 0)
2351 {
2352 if (lane == -1)
2353 lane = atype.index;
2354 else if (lane != atype.index)
2355 {
2356 first_error (_(type_error));
2357 return FAIL;
2358 }
2359 }
2360 else if (lane == -1)
2361 lane = NEON_INTERLEAVE_LANES;
2362 else if (lane != NEON_INTERLEAVE_LANES)
2363 {
2364 first_error (_(type_error));
2365 return FAIL;
2366 }
2367 count++;
2368 }
2369 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2370
2371 /* No lane set by [x]. We must be interleaving structures. */
2372 if (lane == -1)
2373 lane = NEON_INTERLEAVE_LANES;
2374
2375 /* Sanity check. */
2376 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
2377 || (count > 1 && reg_incr == -1))
2378 {
2379 first_error (_("error parsing element/structure list"));
2380 return FAIL;
2381 }
2382
2383 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2384 {
2385 first_error (_("expected }"));
2386 return FAIL;
2387 }
2388
2389 if (reg_incr == -1)
2390 reg_incr = 1;
2391
2392 if (eltype)
2393 *eltype = firsttype.eltype;
2394
2395 *pbase = base_reg;
2396 *str = ptr;
2397
2398 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2399 }
2400
2401 /* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
2406
2407 static int
2408 parse_reloc (char **str)
2409 {
2410 struct reloc_entry *r;
2411 char *p, *q;
2412
2413 if (**str != '(')
2414 return BFD_RELOC_UNUSED;
2415
2416 p = *str + 1;
2417 q = p;
2418
2419 while (*q && *q != ')' && *q != ',')
2420 q++;
2421 if (*q != ')')
2422 return -1;
2423
2424 if ((r = (struct reloc_entry *)
2425 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2426 return -1;
2427
2428 *str = q + 1;
2429 return r->reloc;
2430 }
2431
2432 /* Directives: register aliases. */
2433
2434 static struct reg_entry *
2435 insert_reg_alias (char *str, unsigned number, int type)
2436 {
2437 struct reg_entry *new_reg;
2438 const char *name;
2439
2440 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2441 {
2442 if (new_reg->builtin)
2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2444
2445 /* Only warn about a redefinition if it's not defined as the
2446 same register. */
2447 else if (new_reg->number != number || new_reg->type != type)
2448 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2449
2450 return NULL;
2451 }
2452
2453 name = xstrdup (str);
2454 new_reg = XNEW (struct reg_entry);
2455
2456 new_reg->name = name;
2457 new_reg->number = number;
2458 new_reg->type = type;
2459 new_reg->builtin = FALSE;
2460 new_reg->neon = NULL;
2461
2462 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2463 abort ();
2464
2465 return new_reg;
2466 }
2467
2468 static void
2469 insert_neon_reg_alias (char *str, int number, int type,
2470 struct neon_typed_alias *atype)
2471 {
2472 struct reg_entry *reg = insert_reg_alias (str, number, type);
2473
2474 if (!reg)
2475 {
2476 first_error (_("attempt to redefine typed alias"));
2477 return;
2478 }
2479
2480 if (atype)
2481 {
2482 reg->neon = XNEW (struct neon_typed_alias);
2483 *reg->neon = *atype;
2484 }
2485 }
2486
2487 /* Look for the .req directive. This is of the form:
2488
2489 new_register_name .req existing_register_name
2490
2491 If we find one, or if it looks sufficiently like one that we want to
2492 handle any error here, return TRUE. Otherwise return FALSE. */
2493
2494 static bfd_boolean
2495 create_register_alias (char * newname, char *p)
2496 {
2497 struct reg_entry *old;
2498 char *oldname, *nbuf;
2499 size_t nlen;
2500
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2503 oldname = p;
2504 if (strncmp (oldname, " .req ", 6) != 0)
2505 return FALSE;
2506
2507 oldname += 6;
2508 if (*oldname == '\0')
2509 return FALSE;
2510
2511 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2512 if (!old)
2513 {
2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2515 return TRUE;
2516 }
2517
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521 #ifdef TC_CASE_SENSITIVE
2522 nlen = p - newname;
2523 #else
2524 newname = original_case_string;
2525 nlen = strlen (newname);
2526 #endif
2527
2528 nbuf = xmemdup0 (newname, nlen);
2529
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2532 name. */
2533 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2534 {
2535 for (p = nbuf; *p; p++)
2536 *p = TOUPPER (*p);
2537
2538 if (strncmp (nbuf, newname, nlen))
2539 {
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2544 foo .req r0
2545 Foo .req r1
2546 The second .req creates the "Foo" alias but then fails to create
2547 the artificial FOO alias because it has already been created by the
2548 first .req. */
2549 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2550 {
2551 free (nbuf);
2552 return TRUE;
2553 }
2554 }
2555
2556 for (p = nbuf; *p; p++)
2557 *p = TOLOWER (*p);
2558
2559 if (strncmp (nbuf, newname, nlen))
2560 insert_reg_alias (nbuf, old->number, old->type);
2561 }
2562
2563 free (nbuf);
2564 return TRUE;
2565 }
2566
2567 /* Create a Neon typed/indexed register alias using directives, e.g.:
2568 X .dn d5.s32[1]
2569 Y .qn 6.s16
2570 Z .dn d7
2571 T .dn Z[0]
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
2575 vadd d0.s32, d1.s32, d2.s32 */
2576
2577 static bfd_boolean
2578 create_neon_reg_alias (char *newname, char *p)
2579 {
2580 enum arm_reg_type basetype;
2581 struct reg_entry *basereg;
2582 struct reg_entry mybasereg;
2583 struct neon_type ntype;
2584 struct neon_typed_alias typeinfo;
2585 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2586 int namelen;
2587
2588 typeinfo.defined = 0;
2589 typeinfo.eltype.type = NT_invtype;
2590 typeinfo.eltype.size = -1;
2591 typeinfo.index = -1;
2592
2593 nameend = p;
2594
2595 if (strncmp (p, " .dn ", 5) == 0)
2596 basetype = REG_TYPE_VFD;
2597 else if (strncmp (p, " .qn ", 5) == 0)
2598 basetype = REG_TYPE_NQ;
2599 else
2600 return FALSE;
2601
2602 p += 5;
2603
2604 if (*p == '\0')
2605 return FALSE;
2606
2607 basereg = arm_reg_parse_multi (&p);
2608
2609 if (basereg && basereg->type != basetype)
2610 {
2611 as_bad (_("bad type for register"));
2612 return FALSE;
2613 }
2614
2615 if (basereg == NULL)
2616 {
2617 expressionS exp;
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp, &p, GE_NO_PREFIX);
2620 if (exp.X_op != O_constant)
2621 {
2622 as_bad (_("expression must be constant"));
2623 return FALSE;
2624 }
2625 basereg = &mybasereg;
2626 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2627 : exp.X_add_number;
2628 basereg->neon = 0;
2629 }
2630
2631 if (basereg->neon)
2632 typeinfo = *basereg->neon;
2633
2634 if (parse_neon_type (&ntype, &p) == SUCCESS)
2635 {
2636 /* We got a type. */
2637 if (typeinfo.defined & NTA_HASTYPE)
2638 {
2639 as_bad (_("can't redefine the type of a register alias"));
2640 return FALSE;
2641 }
2642
2643 typeinfo.defined |= NTA_HASTYPE;
2644 if (ntype.elems != 1)
2645 {
2646 as_bad (_("you must specify a single type only"));
2647 return FALSE;
2648 }
2649 typeinfo.eltype = ntype.el[0];
2650 }
2651
2652 if (skip_past_char (&p, '[') == SUCCESS)
2653 {
2654 expressionS exp;
2655 /* We got a scalar index. */
2656
2657 if (typeinfo.defined & NTA_HASINDEX)
2658 {
2659 as_bad (_("can't redefine the index of a scalar alias"));
2660 return FALSE;
2661 }
2662
2663 my_get_expression (&exp, &p, GE_NO_PREFIX);
2664
2665 if (exp.X_op != O_constant)
2666 {
2667 as_bad (_("scalar index must be constant"));
2668 return FALSE;
2669 }
2670
2671 typeinfo.defined |= NTA_HASINDEX;
2672 typeinfo.index = exp.X_add_number;
2673
2674 if (skip_past_char (&p, ']') == FAIL)
2675 {
2676 as_bad (_("expecting ]"));
2677 return FALSE;
2678 }
2679 }
2680
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684 #ifdef TC_CASE_SENSITIVE
2685 namelen = nameend - newname;
2686 #else
2687 newname = original_case_string;
2688 namelen = strlen (newname);
2689 #endif
2690
2691 namebuf = xmemdup0 (newname, namelen);
2692
2693 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2694 typeinfo.defined != 0 ? &typeinfo : NULL);
2695
2696 /* Insert name in all uppercase. */
2697 for (p = namebuf; *p; p++)
2698 *p = TOUPPER (*p);
2699
2700 if (strncmp (namebuf, newname, namelen))
2701 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2702 typeinfo.defined != 0 ? &typeinfo : NULL);
2703
2704 /* Insert name in all lowercase. */
2705 for (p = namebuf; *p; p++)
2706 *p = TOLOWER (*p);
2707
2708 if (strncmp (namebuf, newname, namelen))
2709 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2710 typeinfo.defined != 0 ? &typeinfo : NULL);
2711
2712 free (namebuf);
2713 return TRUE;
2714 }
2715
2716 /* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
2718
2719 static void
2720 s_req (int a ATTRIBUTE_UNUSED)
2721 {
2722 as_bad (_("invalid syntax for .req directive"));
2723 }
2724
2725 static void
2726 s_dn (int a ATTRIBUTE_UNUSED)
2727 {
2728 as_bad (_("invalid syntax for .dn directive"));
2729 }
2730
2731 static void
2732 s_qn (int a ATTRIBUTE_UNUSED)
2733 {
2734 as_bad (_("invalid syntax for .qn directive"));
2735 }
2736
2737 /* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
2739
2740 my_alias .req r11
2741 .unreq my_alias */
2742
2743 static void
2744 s_unreq (int a ATTRIBUTE_UNUSED)
2745 {
2746 char * name;
2747 char saved_char;
2748
2749 name = input_line_pointer;
2750
2751 while (*input_line_pointer != 0
2752 && *input_line_pointer != ' '
2753 && *input_line_pointer != '\n')
2754 ++input_line_pointer;
2755
2756 saved_char = *input_line_pointer;
2757 *input_line_pointer = 0;
2758
2759 if (!*name)
2760 as_bad (_("invalid syntax for .unreq directive"));
2761 else
2762 {
2763 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2764 name);
2765
2766 if (!reg)
2767 as_bad (_("unknown register alias '%s'"), name);
2768 else if (reg->builtin)
2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2770 name);
2771 else
2772 {
2773 char * p;
2774 char * nbuf;
2775
2776 hash_delete (arm_reg_hsh, name, FALSE);
2777 free ((char *) reg->name);
2778 if (reg->neon)
2779 free (reg->neon);
2780 free (reg);
2781
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
2785
2786 nbuf = strdup (name);
2787 for (p = nbuf; *p; p++)
2788 *p = TOUPPER (*p);
2789 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2790 if (reg)
2791 {
2792 hash_delete (arm_reg_hsh, nbuf, FALSE);
2793 free ((char *) reg->name);
2794 if (reg->neon)
2795 free (reg->neon);
2796 free (reg);
2797 }
2798
2799 for (p = nbuf; *p; p++)
2800 *p = TOLOWER (*p);
2801 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2802 if (reg)
2803 {
2804 hash_delete (arm_reg_hsh, nbuf, FALSE);
2805 free ((char *) reg->name);
2806 if (reg->neon)
2807 free (reg->neon);
2808 free (reg);
2809 }
2810
2811 free (nbuf);
2812 }
2813 }
2814
2815 *input_line_pointer = saved_char;
2816 demand_empty_rest_of_line ();
2817 }
2818
2819 /* Directives: Instruction set selection. */
2820
2821 #ifdef OBJ_ELF
2822 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2826
2827 /* Create a new mapping symbol for the transition to STATE. */
2828
2829 static void
2830 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2831 {
2832 symbolS * symbolP;
2833 const char * symname;
2834 int type;
2835
2836 switch (state)
2837 {
2838 case MAP_DATA:
2839 symname = "$d";
2840 type = BSF_NO_FLAGS;
2841 break;
2842 case MAP_ARM:
2843 symname = "$a";
2844 type = BSF_NO_FLAGS;
2845 break;
2846 case MAP_THUMB:
2847 symname = "$t";
2848 type = BSF_NO_FLAGS;
2849 break;
2850 default:
2851 abort ();
2852 }
2853
2854 symbolP = symbol_new (symname, now_seg, value, frag);
2855 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2856
2857 switch (state)
2858 {
2859 case MAP_ARM:
2860 THUMB_SET_FUNC (symbolP, 0);
2861 ARM_SET_THUMB (symbolP, 0);
2862 ARM_SET_INTERWORK (symbolP, support_interwork);
2863 break;
2864
2865 case MAP_THUMB:
2866 THUMB_SET_FUNC (symbolP, 1);
2867 ARM_SET_THUMB (symbolP, 1);
2868 ARM_SET_INTERWORK (symbolP, support_interwork);
2869 break;
2870
2871 case MAP_DATA:
2872 default:
2873 break;
2874 }
2875
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2879 check_mapping_symbols.
2880
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
2885 if (value == 0)
2886 {
2887 if (frag->tc_frag_data.first_map != NULL)
2888 {
2889 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2890 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2891 }
2892 frag->tc_frag_data.first_map = symbolP;
2893 }
2894 if (frag->tc_frag_data.last_map != NULL)
2895 {
2896 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2897 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2898 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2899 }
2900 frag->tc_frag_data.last_map = symbolP;
2901 }
2902
2903 /* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2906
2907 static void
2908 insert_data_mapping_symbol (enum mstate state,
2909 valueT value, fragS *frag, offsetT bytes)
2910 {
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag->tc_frag_data.last_map != NULL
2913 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2914 {
2915 symbolS *symp = frag->tc_frag_data.last_map;
2916
2917 if (value == 0)
2918 {
2919 know (frag->tc_frag_data.first_map == symp);
2920 frag->tc_frag_data.first_map = NULL;
2921 }
2922 frag->tc_frag_data.last_map = NULL;
2923 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2924 }
2925
2926 make_mapping_symbol (MAP_DATA, value, frag);
2927 make_mapping_symbol (state, value + bytes, frag);
2928 }
2929
2930 static void mapping_state_2 (enum mstate state, int max_chars);
2931
2932 /* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2934
2935 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2936 void
2937 mapping_state (enum mstate state)
2938 {
2939 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2940
2941 if (mapstate == state)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2944 return;
2945
2946 if (state == MAP_ARM || state == MAP_THUMB)
2947 /* PR gas/12931
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2950
2951 When emitting instructions into any section, mark the section
2952 appropriately.
2953
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
2956 PC- relative forms. However, these cases will involve implicit
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2961
2962 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2963 /* This case will be evaluated later. */
2964 return;
2965
2966 mapping_state_2 (state, 0);
2967 }
2968
2969 /* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2971
2972 static void
2973 mapping_state_2 (enum mstate state, int max_chars)
2974 {
2975 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2976
2977 if (!SEG_NORMAL (now_seg))
2978 return;
2979
2980 if (mapstate == state)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2983 return;
2984
2985 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2986 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2987 {
2988 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2989 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2990
2991 if (add_symbol)
2992 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2993 }
2994
2995 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2996 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2997 }
2998 #undef TRANSITION
2999 #else
3000 #define mapping_state(x) ((void)0)
3001 #define mapping_state_2(x, y) ((void)0)
3002 #endif
3003
3004 /* Find the real, Thumb encoded start of a Thumb function. */
3005
3006 #ifdef OBJ_COFF
3007 static symbolS *
3008 find_real_start (symbolS * symbolP)
3009 {
3010 char * real_start;
3011 const char * name = S_GET_NAME (symbolP);
3012 symbolS * new_target;
3013
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015 #define STUB_NAME ".real_start_of"
3016
3017 if (name == NULL)
3018 abort ();
3019
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP) || name[0] == '.')
3026 return symbolP;
3027
3028 real_start = concat (STUB_NAME, name, NULL);
3029 new_target = symbol_find (real_start);
3030 free (real_start);
3031
3032 if (new_target == NULL)
3033 {
3034 as_warn (_("Failed to find real start of function: %s\n"), name);
3035 new_target = symbolP;
3036 }
3037
3038 return new_target;
3039 }
3040 #endif
3041
3042 static void
3043 opcode_select (int width)
3044 {
3045 switch (width)
3046 {
3047 case 16:
3048 if (! thumb_mode)
3049 {
3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3052
3053 thumb_mode = 1;
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg, 1);
3057 }
3058 break;
3059
3060 case 32:
3061 if (thumb_mode)
3062 {
3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
3064 as_bad (_("selected processor does not support ARM opcodes"));
3065
3066 thumb_mode = 0;
3067
3068 if (!need_pass_2)
3069 frag_align (2, 0, 0);
3070
3071 record_alignment (now_seg, 1);
3072 }
3073 break;
3074
3075 default:
3076 as_bad (_("invalid instruction size selected (%d)"), width);
3077 }
3078 }
3079
3080 static void
3081 s_arm (int ignore ATTRIBUTE_UNUSED)
3082 {
3083 opcode_select (32);
3084 demand_empty_rest_of_line ();
3085 }
3086
3087 static void
3088 s_thumb (int ignore ATTRIBUTE_UNUSED)
3089 {
3090 opcode_select (16);
3091 demand_empty_rest_of_line ();
3092 }
3093
3094 static void
3095 s_code (int unused ATTRIBUTE_UNUSED)
3096 {
3097 int temp;
3098
3099 temp = get_absolute_expression ();
3100 switch (temp)
3101 {
3102 case 16:
3103 case 32:
3104 opcode_select (temp);
3105 break;
3106
3107 default:
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3109 }
3110 }
3111
3112 static void
3113 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3114 {
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3120 if (! thumb_mode)
3121 {
3122 thumb_mode = 2;
3123 record_alignment (now_seg, 1);
3124 }
3125
3126 demand_empty_rest_of_line ();
3127 }
3128
3129 static void
3130 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3131 {
3132 s_thumb (0);
3133
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name = TRUE;
3137 }
3138
3139 /* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3141
3142 static void
3143 s_thumb_set (int equiv)
3144 {
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3147 is created. */
3148 char * name;
3149 char delim;
3150 char * end_name;
3151 symbolS * symbolP;
3152
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3155 Dean - in haste. */
3156 delim = get_symbol_name (& name);
3157 end_name = input_line_pointer;
3158 (void) restore_line_pointer (delim);
3159
3160 if (*input_line_pointer != ',')
3161 {
3162 *end_name = 0;
3163 as_bad (_("expected comma after name \"%s\""), name);
3164 *end_name = delim;
3165 ignore_rest_of_line ();
3166 return;
3167 }
3168
3169 input_line_pointer++;
3170 *end_name = 0;
3171
3172 if (name[0] == '.' && name[1] == '\0')
3173 {
3174 /* XXX - this should not happen to .thumb_set. */
3175 abort ();
3176 }
3177
3178 if ((symbolP = symbol_find (name)) == NULL
3179 && (symbolP = md_undefined_symbol (name)) == NULL)
3180 {
3181 #ifndef NO_LISTING
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
3184 for this symbol. */
3185 if (listing & LISTING_SYMBOLS)
3186 {
3187 extern struct list_info_struct * listing_tail;
3188 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
3189
3190 memset (dummy_frag, 0, sizeof (fragS));
3191 dummy_frag->fr_type = rs_fill;
3192 dummy_frag->line = listing_tail;
3193 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3194 dummy_frag->fr_symbol = symbolP;
3195 }
3196 else
3197 #endif
3198 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3199
3200 #ifdef OBJ_COFF
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP);
3203 #endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3205
3206 symbol_table_insert (symbolP);
3207
3208 * end_name = delim;
3209
3210 if (equiv
3211 && S_IS_DEFINED (symbolP)
3212 && S_GET_SEGMENT (symbolP) != reg_section)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3214
3215 pseudo_set (symbolP);
3216
3217 demand_empty_rest_of_line ();
3218
3219 /* XXX Now we come to the Thumb specific bit of code. */
3220
3221 THUMB_SET_FUNC (symbolP, 1);
3222 ARM_SET_THUMB (symbolP, 1);
3223 #if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP, support_interwork);
3225 #endif
3226 }
3227
3228 /* Directives: Mode selection. */
3229
3230 /* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
3233 static void
3234 s_syntax (int unused ATTRIBUTE_UNUSED)
3235 {
3236 char *name, delim;
3237
3238 delim = get_symbol_name (& name);
3239
3240 if (!strcasecmp (name, "unified"))
3241 unified_syntax = TRUE;
3242 else if (!strcasecmp (name, "divided"))
3243 unified_syntax = FALSE;
3244 else
3245 {
3246 as_bad (_("unrecognized syntax mode \"%s\""), name);
3247 return;
3248 }
3249 (void) restore_line_pointer (delim);
3250 demand_empty_rest_of_line ();
3251 }
3252
3253 /* Directives: sectioning and alignment. */
3254
3255 static void
3256 s_bss (int ignore ATTRIBUTE_UNUSED)
3257 {
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section, 0);
3261 demand_empty_rest_of_line ();
3262
3263 #ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3265 #endif
3266 }
3267
3268 static void
3269 s_even (int ignore ATTRIBUTE_UNUSED)
3270 {
3271 /* Never make frag if expect extra pass. */
3272 if (!need_pass_2)
3273 frag_align (1, 0, 0);
3274
3275 record_alignment (now_seg, 1);
3276
3277 demand_empty_rest_of_line ();
3278 }
3279
3280 /* Directives: CodeComposer Studio. */
3281
3282 /* .ref (for CodeComposer Studio syntax only). */
3283 static void
3284 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3285 {
3286 if (codecomposer_syntax)
3287 ignore_rest_of_line ();
3288 else
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3290 }
3291
3292 /* If name is not NULL, then it is used for marking the beginning of a
3293 function, whereas if it is NULL then it means the function end. */
3294 static void
3295 asmfunc_debug (const char * name)
3296 {
3297 static const char * last_name = NULL;
3298
3299 if (name != NULL)
3300 {
3301 gas_assert (last_name == NULL);
3302 last_name = name;
3303
3304 if (debug_type == DEBUG_STABS)
3305 stabs_generate_asm_func (name, name);
3306 }
3307 else
3308 {
3309 gas_assert (last_name != NULL);
3310
3311 if (debug_type == DEBUG_STABS)
3312 stabs_generate_asm_endfunc (last_name, last_name);
3313
3314 last_name = NULL;
3315 }
3316 }
3317
3318 static void
3319 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3320 {
3321 if (codecomposer_syntax)
3322 {
3323 switch (asmfunc_state)
3324 {
3325 case OUTSIDE_ASMFUNC:
3326 asmfunc_state = WAITING_ASMFUNC_NAME;
3327 break;
3328
3329 case WAITING_ASMFUNC_NAME:
3330 as_bad (_(".asmfunc repeated."));
3331 break;
3332
3333 case WAITING_ENDASMFUNC:
3334 as_bad (_(".asmfunc without function."));
3335 break;
3336 }
3337 demand_empty_rest_of_line ();
3338 }
3339 else
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3341 }
3342
3343 static void
3344 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3345 {
3346 if (codecomposer_syntax)
3347 {
3348 switch (asmfunc_state)
3349 {
3350 case OUTSIDE_ASMFUNC:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3352 break;
3353
3354 case WAITING_ASMFUNC_NAME:
3355 as_bad (_(".endasmfunc without function."));
3356 break;
3357
3358 case WAITING_ENDASMFUNC:
3359 asmfunc_state = OUTSIDE_ASMFUNC;
3360 asmfunc_debug (NULL);
3361 break;
3362 }
3363 demand_empty_rest_of_line ();
3364 }
3365 else
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3367 }
3368
3369 static void
3370 s_ccs_def (int name)
3371 {
3372 if (codecomposer_syntax)
3373 s_globl (name);
3374 else
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3376 }
3377
3378 /* Directives: Literal pools. */
3379
3380 static literal_pool *
3381 find_literal_pool (void)
3382 {
3383 literal_pool * pool;
3384
3385 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3386 {
3387 if (pool->section == now_seg
3388 && pool->sub_section == now_subseg)
3389 break;
3390 }
3391
3392 return pool;
3393 }
3394
3395 static literal_pool *
3396 find_or_make_literal_pool (void)
3397 {
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num = 1;
3400 literal_pool * pool;
3401
3402 pool = find_literal_pool ();
3403
3404 if (pool == NULL)
3405 {
3406 /* Create a new pool. */
3407 pool = XNEW (literal_pool);
3408 if (! pool)
3409 return NULL;
3410
3411 pool->next_free_entry = 0;
3412 pool->section = now_seg;
3413 pool->sub_section = now_subseg;
3414 pool->next = list_of_pools;
3415 pool->symbol = NULL;
3416 pool->alignment = 2;
3417
3418 /* Add it to the list. */
3419 list_of_pools = pool;
3420 }
3421
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool->symbol == NULL)
3424 {
3425 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3426 (valueT) 0, &zero_address_frag);
3427 pool->id = latest_pool_num ++;
3428 }
3429
3430 /* Done. */
3431 return pool;
3432 }
3433
3434 /* Add the literal in the global 'inst'
3435 structure to the relevant literal pool. */
3436
3437 static int
3438 add_to_lit_pool (unsigned int nbytes)
3439 {
3440 #define PADDING_SLOT 0x1
3441 #define LIT_ENTRY_SIZE_MASK 0xFF
3442 literal_pool * pool;
3443 unsigned int entry, pool_size = 0;
3444 bfd_boolean padding_slot_p = FALSE;
3445 unsigned imm1 = 0;
3446 unsigned imm2 = 0;
3447
3448 if (nbytes == 8)
3449 {
3450 imm1 = inst.operands[1].imm;
3451 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3452 : inst.relocs[0].exp.X_unsigned ? 0
3453 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3454 if (target_big_endian)
3455 {
3456 imm1 = imm2;
3457 imm2 = inst.operands[1].imm;
3458 }
3459 }
3460
3461 pool = find_or_make_literal_pool ();
3462
3463 /* Check if this literal value is already in the pool. */
3464 for (entry = 0; entry < pool->next_free_entry; entry ++)
3465 {
3466 if (nbytes == 4)
3467 {
3468 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3469 && (inst.relocs[0].exp.X_op == O_constant)
3470 && (pool->literals[entry].X_add_number
3471 == inst.relocs[0].exp.X_add_number)
3472 && (pool->literals[entry].X_md == nbytes)
3473 && (pool->literals[entry].X_unsigned
3474 == inst.relocs[0].exp.X_unsigned))
3475 break;
3476
3477 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3478 && (inst.relocs[0].exp.X_op == O_symbol)
3479 && (pool->literals[entry].X_add_number
3480 == inst.relocs[0].exp.X_add_number)
3481 && (pool->literals[entry].X_add_symbol
3482 == inst.relocs[0].exp.X_add_symbol)
3483 && (pool->literals[entry].X_op_symbol
3484 == inst.relocs[0].exp.X_op_symbol)
3485 && (pool->literals[entry].X_md == nbytes))
3486 break;
3487 }
3488 else if ((nbytes == 8)
3489 && !(pool_size & 0x7)
3490 && ((entry + 1) != pool->next_free_entry)
3491 && (pool->literals[entry].X_op == O_constant)
3492 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3493 && (pool->literals[entry].X_unsigned
3494 == inst.relocs[0].exp.X_unsigned)
3495 && (pool->literals[entry + 1].X_op == O_constant)
3496 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3497 && (pool->literals[entry + 1].X_unsigned
3498 == inst.relocs[0].exp.X_unsigned))
3499 break;
3500
3501 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3502 if (padding_slot_p && (nbytes == 4))
3503 break;
3504
3505 pool_size += 4;
3506 }
3507
3508 /* Do we need to create a new entry? */
3509 if (entry == pool->next_free_entry)
3510 {
3511 if (entry >= MAX_LITERAL_POOL_SIZE)
3512 {
3513 inst.error = _("literal pool overflow");
3514 return FAIL;
3515 }
3516
3517 if (nbytes == 8)
3518 {
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3524
3525 We also need to make sure there is enough space for
3526 the split.
3527
3528 We also check to make sure the literal operand is a
3529 constant number. */
3530 if (!(inst.relocs[0].exp.X_op == O_constant
3531 || inst.relocs[0].exp.X_op == O_big))
3532 {
3533 inst.error = _("invalid type for literal pool");
3534 return FAIL;
3535 }
3536 else if (pool_size & 0x7)
3537 {
3538 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3539 {
3540 inst.error = _("literal pool overflow");
3541 return FAIL;
3542 }
3543
3544 pool->literals[entry] = inst.relocs[0].exp;
3545 pool->literals[entry].X_op = O_constant;
3546 pool->literals[entry].X_add_number = 0;
3547 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3548 pool->next_free_entry += 1;
3549 pool_size += 4;
3550 }
3551 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3552 {
3553 inst.error = _("literal pool overflow");
3554 return FAIL;
3555 }
3556
3557 pool->literals[entry] = inst.relocs[0].exp;
3558 pool->literals[entry].X_op = O_constant;
3559 pool->literals[entry].X_add_number = imm1;
3560 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3561 pool->literals[entry++].X_md = 4;
3562 pool->literals[entry] = inst.relocs[0].exp;
3563 pool->literals[entry].X_op = O_constant;
3564 pool->literals[entry].X_add_number = imm2;
3565 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3566 pool->literals[entry].X_md = 4;
3567 pool->alignment = 3;
3568 pool->next_free_entry += 1;
3569 }
3570 else
3571 {
3572 pool->literals[entry] = inst.relocs[0].exp;
3573 pool->literals[entry].X_md = 4;
3574 }
3575
3576 #ifdef OBJ_ELF
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type == DEBUG_DWARF2)
3582 dwarf2_where (pool->locs + entry);
3583 #endif
3584 pool->next_free_entry += 1;
3585 }
3586 else if (padding_slot_p)
3587 {
3588 pool->literals[entry] = inst.relocs[0].exp;
3589 pool->literals[entry].X_md = nbytes;
3590 }
3591
3592 inst.relocs[0].exp.X_op = O_symbol;
3593 inst.relocs[0].exp.X_add_number = pool_size;
3594 inst.relocs[0].exp.X_add_symbol = pool->symbol;
3595
3596 return SUCCESS;
3597 }
3598
3599 bfd_boolean
3600 tc_start_label_without_colon (void)
3601 {
3602 bfd_boolean ret = TRUE;
3603
3604 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3605 {
3606 const char *label = input_line_pointer;
3607
3608 while (!is_end_of_line[(int) label[-1]])
3609 --label;
3610
3611 if (*label == '.')
3612 {
3613 as_bad (_("Invalid label '%s'"), label);
3614 ret = FALSE;
3615 }
3616
3617 asmfunc_debug (label);
3618
3619 asmfunc_state = WAITING_ENDASMFUNC;
3620 }
3621
3622 return ret;
3623 }
3624
3625 /* Can't use symbol_new here, so have to create a symbol and then at
3626 a later date assign it a value. That's what these functions do. */
3627
3628 static void
3629 symbol_locate (symbolS * symbolP,
3630 const char * name, /* It is copied, the caller can modify. */
3631 segT segment, /* Segment identifier (SEG_<something>). */
3632 valueT valu, /* Symbol value. */
3633 fragS * frag) /* Associated fragment. */
3634 {
3635 size_t name_length;
3636 char * preserved_copy_of_name;
3637
3638 name_length = strlen (name) + 1; /* +1 for \0. */
3639 obstack_grow (&notes, name, name_length);
3640 preserved_copy_of_name = (char *) obstack_finish (&notes);
3641
3642 #ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name =
3644 tc_canonicalize_symbol_name (preserved_copy_of_name);
3645 #endif
3646
3647 S_SET_NAME (symbolP, preserved_copy_of_name);
3648
3649 S_SET_SEGMENT (symbolP, segment);
3650 S_SET_VALUE (symbolP, valu);
3651 symbol_clear_list_pointers (symbolP);
3652
3653 symbol_set_frag (symbolP, frag);
3654
3655 /* Link to end of symbol chain. */
3656 {
3657 extern int symbol_table_frozen;
3658
3659 if (symbol_table_frozen)
3660 abort ();
3661 }
3662
3663 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3664
3665 obj_symbol_new_hook (symbolP);
3666
3667 #ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP);
3669 #endif
3670
3671 #ifdef DEBUG_SYMS
3672 verify_symbol_chain (symbol_rootP, symbol_lastP);
3673 #endif /* DEBUG_SYMS */
3674 }
3675
3676 static void
3677 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3678 {
3679 unsigned int entry;
3680 literal_pool * pool;
3681 char sym_name[20];
3682
3683 pool = find_literal_pool ();
3684 if (pool == NULL
3685 || pool->symbol == NULL
3686 || pool->next_free_entry == 0)
3687 return;
3688
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3691 if (!need_pass_2)
3692 frag_align (pool->alignment, 0, 0);
3693
3694 record_alignment (now_seg, 2);
3695
3696 #ifdef OBJ_ELF
3697 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3698 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3699 #endif
3700 sprintf (sym_name, "$$lit_\002%x", pool->id);
3701
3702 symbol_locate (pool->symbol, sym_name, now_seg,
3703 (valueT) frag_now_fix (), frag_now);
3704 symbol_table_insert (pool->symbol);
3705
3706 ARM_SET_THUMB (pool->symbol, thumb_mode);
3707
3708 #if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3710 #endif
3711
3712 for (entry = 0; entry < pool->next_free_entry; entry ++)
3713 {
3714 #ifdef OBJ_ELF
3715 if (debug_type == DEBUG_DWARF2)
3716 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3717 #endif
3718 /* First output the expression in the instruction to the pool. */
3719 emit_expr (&(pool->literals[entry]),
3720 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3721 }
3722
3723 /* Mark the pool as empty. */
3724 pool->next_free_entry = 0;
3725 pool->symbol = NULL;
3726 }
3727
3728 #ifdef OBJ_ELF
3729 /* Forward declarations for functions below, in the MD interface
3730 section. */
3731 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3732 static valueT create_unwind_entry (int);
3733 static void start_unwind_section (const segT, int);
3734 static void add_unwind_opcode (valueT, int);
3735 static void flush_pending_unwind (void);
3736
3737 /* Directives: Data. */
3738
3739 static void
3740 s_arm_elf_cons (int nbytes)
3741 {
3742 expressionS exp;
3743
3744 #ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3746 #endif
3747
3748 if (is_it_end_of_statement ())
3749 {
3750 demand_empty_rest_of_line ();
3751 return;
3752 }
3753
3754 #ifdef md_cons_align
3755 md_cons_align (nbytes);
3756 #endif
3757
3758 mapping_state (MAP_DATA);
3759 do
3760 {
3761 int reloc;
3762 char *base = input_line_pointer;
3763
3764 expression (& exp);
3765
3766 if (exp.X_op != O_symbol)
3767 emit_expr (&exp, (unsigned int) nbytes);
3768 else
3769 {
3770 char *before_reloc = input_line_pointer;
3771 reloc = parse_reloc (&input_line_pointer);
3772 if (reloc == -1)
3773 {
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3776 return;
3777 }
3778 else if (reloc == BFD_RELOC_UNUSED)
3779 emit_expr (&exp, (unsigned int) nbytes);
3780 else
3781 {
3782 reloc_howto_type *howto = (reloc_howto_type *)
3783 bfd_reloc_type_lookup (stdoutput,
3784 (bfd_reloc_code_real_type) reloc);
3785 int size = bfd_get_reloc_size (howto);
3786
3787 if (reloc == BFD_RELOC_ARM_PLT32)
3788 {
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc = BFD_RELOC_UNUSED;
3791 size = 0;
3792 }
3793
3794 if (size > nbytes)
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3797 nbytes),
3798 howto->name, nbytes);
3799 else
3800 {
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p = input_line_pointer;
3806 int offset;
3807 char *save_buf = XNEWVEC (char, input_line_pointer - base);
3808
3809 memcpy (save_buf, base, input_line_pointer - base);
3810 memmove (base + (input_line_pointer - before_reloc),
3811 base, before_reloc - base);
3812
3813 input_line_pointer = base + (input_line_pointer-before_reloc);
3814 expression (&exp);
3815 memcpy (base, save_buf, p - base);
3816
3817 offset = nbytes - size;
3818 p = frag_more (nbytes);
3819 memset (p, 0, nbytes);
3820 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3821 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3822 free (save_buf);
3823 }
3824 }
3825 }
3826 }
3827 while (*input_line_pointer++ == ',');
3828
3829 /* Put terminator back into stream. */
3830 input_line_pointer --;
3831 demand_empty_rest_of_line ();
3832 }
3833
3834 /* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3836
3837 static void
3838 emit_thumb32_expr (expressionS * exp)
3839 {
3840 expressionS exp_high = *exp;
3841
3842 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3843 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3844 exp->X_add_number &= 0xffff;
3845 emit_expr (exp, (unsigned int) THUMB_SIZE);
3846 }
3847
3848 /* Guess the instruction size based on the opcode. */
3849
3850 static int
3851 thumb_insn_size (int opcode)
3852 {
3853 if ((unsigned int) opcode < 0xe800u)
3854 return 2;
3855 else if ((unsigned int) opcode >= 0xe8000000u)
3856 return 4;
3857 else
3858 return 0;
3859 }
3860
3861 static bfd_boolean
3862 emit_insn (expressionS *exp, int nbytes)
3863 {
3864 int size = 0;
3865
3866 if (exp->X_op == O_constant)
3867 {
3868 size = nbytes;
3869
3870 if (size == 0)
3871 size = thumb_insn_size (exp->X_add_number);
3872
3873 if (size != 0)
3874 {
3875 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3876 {
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3879 size = 0;
3880 }
3881 else
3882 {
3883 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
3885 else
3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3887
3888 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3889 emit_thumb32_expr (exp);
3890 else
3891 emit_expr (exp, (unsigned int) size);
3892
3893 it_fsm_post_encode ();
3894 }
3895 }
3896 else
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3899 }
3900 else
3901 as_bad (_("constant expression required"));
3902
3903 return (size != 0);
3904 }
3905
3906 /* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3908
3909 static void
3910 s_arm_elf_inst (int nbytes)
3911 {
3912 if (is_it_end_of_statement ())
3913 {
3914 demand_empty_rest_of_line ();
3915 return;
3916 }
3917
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3920
3921 if (thumb_mode)
3922 mapping_state (MAP_THUMB);
3923 else
3924 {
3925 if (nbytes != 0)
3926 {
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3929 return;
3930 }
3931
3932 nbytes = 4;
3933
3934 mapping_state (MAP_ARM);
3935 }
3936
3937 do
3938 {
3939 expressionS exp;
3940
3941 expression (& exp);
3942
3943 if (! emit_insn (& exp, nbytes))
3944 {
3945 ignore_rest_of_line ();
3946 return;
3947 }
3948 }
3949 while (*input_line_pointer++ == ',');
3950
3951 /* Put terminator back into stream. */
3952 input_line_pointer --;
3953 demand_empty_rest_of_line ();
3954 }
3955
3956 /* Parse a .rel31 directive. */
3957
3958 static void
3959 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3960 {
3961 expressionS exp;
3962 char *p;
3963 valueT highbit;
3964
3965 highbit = 0;
3966 if (*input_line_pointer == '1')
3967 highbit = 0x80000000;
3968 else if (*input_line_pointer != '0')
3969 as_bad (_("expected 0 or 1"));
3970
3971 input_line_pointer++;
3972 if (*input_line_pointer != ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer++;
3975
3976 #ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3978 #endif
3979
3980 #ifdef md_cons_align
3981 md_cons_align (4);
3982 #endif
3983
3984 mapping_state (MAP_DATA);
3985
3986 expression (&exp);
3987
3988 p = frag_more (4);
3989 md_number_to_chars (p, highbit, 4);
3990 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3991 BFD_RELOC_ARM_PREL31);
3992
3993 demand_empty_rest_of_line ();
3994 }
3995
3996 /* Directives: AEABI stack-unwind tables. */
3997
3998 /* Parse an unwind_fnstart directive. Simply records the current location. */
3999
4000 static void
4001 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4002 {
4003 demand_empty_rest_of_line ();
4004 if (unwind.proc_start)
4005 {
4006 as_bad (_("duplicate .fnstart directive"));
4007 return;
4008 }
4009
4010 /* Mark the start of the function. */
4011 unwind.proc_start = expr_build_dot ();
4012
4013 /* Reset the rest of the unwind info. */
4014 unwind.opcode_count = 0;
4015 unwind.table_entry = NULL;
4016 unwind.personality_routine = NULL;
4017 unwind.personality_index = -1;
4018 unwind.frame_size = 0;
4019 unwind.fp_offset = 0;
4020 unwind.fp_reg = REG_SP;
4021 unwind.fp_used = 0;
4022 unwind.sp_restored = 0;
4023 }
4024
4025
4026 /* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
4028
4029 static void
4030 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4031 {
4032 demand_empty_rest_of_line ();
4033 if (!unwind.proc_start)
4034 as_bad (MISSING_FNSTART);
4035
4036 if (unwind.table_entry)
4037 as_bad (_("duplicate .handlerdata directive"));
4038
4039 create_unwind_entry (1);
4040 }
4041
4042 /* Parse an unwind_fnend directive. Generates the index table entry. */
4043
4044 static void
4045 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4046 {
4047 long where;
4048 char *ptr;
4049 valueT val;
4050 unsigned int marked_pr_dependency;
4051
4052 demand_empty_rest_of_line ();
4053
4054 if (!unwind.proc_start)
4055 {
4056 as_bad (_(".fnend directive without .fnstart"));
4057 return;
4058 }
4059
4060 /* Add eh table entry. */
4061 if (unwind.table_entry == NULL)
4062 val = create_unwind_entry (0);
4063 else
4064 val = 0;
4065
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind.saved_seg, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg, 2);
4070
4071 ptr = frag_more (8);
4072 memset (ptr, 0, 8);
4073 where = frag_now_fix () - 8;
4074
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4077 BFD_RELOC_ARM_PREL31);
4078
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
4081 marked_pr_dependency
4082 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
4083 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4084 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4085 {
4086 static const char *const name[] =
4087 {
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4091 };
4092 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4093 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
4094 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
4095 |= 1 << unwind.personality_index;
4096 }
4097
4098 if (val)
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr + 4, val, 4);
4101 else
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4104 BFD_RELOC_ARM_PREL31);
4105
4106 /* Restore the original section. */
4107 subseg_set (unwind.saved_seg, unwind.saved_subseg);
4108
4109 unwind.proc_start = NULL;
4110 }
4111
4112
4113 /* Parse an unwind_cantunwind directive. */
4114
4115 static void
4116 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4117 {
4118 demand_empty_rest_of_line ();
4119 if (!unwind.proc_start)
4120 as_bad (MISSING_FNSTART);
4121
4122 if (unwind.personality_routine || unwind.personality_index != -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
4124
4125 unwind.personality_index = -2;
4126 }
4127
4128
4129 /* Parse a personalityindex directive. */
4130
4131 static void
4132 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4133 {
4134 expressionS exp;
4135
4136 if (!unwind.proc_start)
4137 as_bad (MISSING_FNSTART);
4138
4139 if (unwind.personality_routine || unwind.personality_index != -1)
4140 as_bad (_("duplicate .personalityindex directive"));
4141
4142 expression (&exp);
4143
4144 if (exp.X_op != O_constant
4145 || exp.X_add_number < 0 || exp.X_add_number > 15)
4146 {
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4149 return;
4150 }
4151
4152 unwind.personality_index = exp.X_add_number;
4153
4154 demand_empty_rest_of_line ();
4155 }
4156
4157
4158 /* Parse a personality directive. */
4159
4160 static void
4161 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4162 {
4163 char *name, *p, c;
4164
4165 if (!unwind.proc_start)
4166 as_bad (MISSING_FNSTART);
4167
4168 if (unwind.personality_routine || unwind.personality_index != -1)
4169 as_bad (_("duplicate .personality directive"));
4170
4171 c = get_symbol_name (& name);
4172 p = input_line_pointer;
4173 if (c == '"')
4174 ++ input_line_pointer;
4175 unwind.personality_routine = symbol_find_or_make (name);
4176 *p = c;
4177 demand_empty_rest_of_line ();
4178 }
4179
4180
4181 /* Parse a directive saving core registers. */
4182
4183 static void
4184 s_arm_unwind_save_core (void)
4185 {
4186 valueT op;
4187 long range;
4188 int n;
4189
4190 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
4191 if (range == FAIL)
4192 {
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4195 return;
4196 }
4197
4198 demand_empty_rest_of_line ();
4199
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind.sp_restored && unwind.fp_reg == 12
4204 && (range & 0x3000) == 0x1000)
4205 {
4206 unwind.opcode_count--;
4207 unwind.sp_restored = 0;
4208 range = (range | 0x2000) & ~0x1000;
4209 unwind.pending_offset = 0;
4210 }
4211
4212 /* Pop r4-r15. */
4213 if (range & 0xfff0)
4214 {
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n = 0; n < 8; n++)
4218 {
4219 /* Break at the first non-saved register. */
4220 if ((range & (1 << (n + 4))) == 0)
4221 break;
4222 }
4223 /* See if there are any other bits set. */
4224 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4225 {
4226 /* Use the long form. */
4227 op = 0x8000 | ((range >> 4) & 0xfff);
4228 add_unwind_opcode (op, 2);
4229 }
4230 else
4231 {
4232 /* Use the short form. */
4233 if (range & 0x4000)
4234 op = 0xa8; /* Pop r14. */
4235 else
4236 op = 0xa0; /* Do not pop r14. */
4237 op |= (n - 1);
4238 add_unwind_opcode (op, 1);
4239 }
4240 }
4241
4242 /* Pop r0-r3. */
4243 if (range & 0xf)
4244 {
4245 op = 0xb100 | (range & 0xf);
4246 add_unwind_opcode (op, 2);
4247 }
4248
4249 /* Record the number of bytes pushed. */
4250 for (n = 0; n < 16; n++)
4251 {
4252 if (range & (1 << n))
4253 unwind.frame_size += 4;
4254 }
4255 }
4256
4257
4258 /* Parse a directive saving FPA registers. */
4259
4260 static void
4261 s_arm_unwind_save_fpa (int reg)
4262 {
4263 expressionS exp;
4264 int num_regs;
4265 valueT op;
4266
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer) != FAIL)
4269 expression (&exp);
4270 else
4271 exp.X_op = O_illegal;
4272
4273 if (exp.X_op != O_constant)
4274 {
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
4277 return;
4278 }
4279
4280 num_regs = exp.X_add_number;
4281
4282 if (num_regs < 1 || num_regs > 4)
4283 {
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
4286 return;
4287 }
4288
4289 demand_empty_rest_of_line ();
4290
4291 if (reg == 4)
4292 {
4293 /* Short form. */
4294 op = 0xb4 | (num_regs - 1);
4295 add_unwind_opcode (op, 1);
4296 }
4297 else
4298 {
4299 /* Long form. */
4300 op = 0xc800 | (reg << 4) | (num_regs - 1);
4301 add_unwind_opcode (op, 2);
4302 }
4303 unwind.frame_size += num_regs * 12;
4304 }
4305
4306
4307 /* Parse a directive saving VFP registers for ARMv6 and above. */
4308
4309 static void
4310 s_arm_unwind_save_vfp_armv6 (void)
4311 {
4312 int count;
4313 unsigned int start;
4314 valueT op;
4315 int num_vfpv3_regs = 0;
4316 int num_regs_below_16;
4317 bfd_boolean partial_match;
4318
4319 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4320 &partial_match);
4321 if (count == FAIL)
4322 {
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4325 return;
4326 }
4327
4328 demand_empty_rest_of_line ();
4329
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4332
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4334 if (start >= 16)
4335 num_vfpv3_regs = count;
4336 else if (start + count > 16)
4337 num_vfpv3_regs = start + count - 16;
4338
4339 if (num_vfpv3_regs > 0)
4340 {
4341 int start_offset = start > 16 ? start - 16 : 0;
4342 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4343 add_unwind_opcode (op, 2);
4344 }
4345
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4348 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4349 if (num_regs_below_16 > 0)
4350 {
4351 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4352 add_unwind_opcode (op, 2);
4353 }
4354
4355 unwind.frame_size += count * 8;
4356 }
4357
4358
4359 /* Parse a directive saving VFP registers for pre-ARMv6. */
4360
4361 static void
4362 s_arm_unwind_save_vfp (void)
4363 {
4364 int count;
4365 unsigned int reg;
4366 valueT op;
4367 bfd_boolean partial_match;
4368
4369 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4370 &partial_match);
4371 if (count == FAIL)
4372 {
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
4375 return;
4376 }
4377
4378 demand_empty_rest_of_line ();
4379
4380 if (reg == 8)
4381 {
4382 /* Short form. */
4383 op = 0xb8 | (count - 1);
4384 add_unwind_opcode (op, 1);
4385 }
4386 else
4387 {
4388 /* Long form. */
4389 op = 0xb300 | (reg << 4) | (count - 1);
4390 add_unwind_opcode (op, 2);
4391 }
4392 unwind.frame_size += count * 8 + 4;
4393 }
4394
4395
4396 /* Parse a directive saving iWMMXt data registers. */
4397
4398 static void
4399 s_arm_unwind_save_mmxwr (void)
4400 {
4401 int reg;
4402 int hi_reg;
4403 int i;
4404 unsigned mask = 0;
4405 valueT op;
4406
4407 if (*input_line_pointer == '{')
4408 input_line_pointer++;
4409
4410 do
4411 {
4412 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4413
4414 if (reg == FAIL)
4415 {
4416 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4417 goto error;
4418 }
4419
4420 if (mask >> reg)
4421 as_tsktsk (_("register list not in ascending order"));
4422 mask |= 1 << reg;
4423
4424 if (*input_line_pointer == '-')
4425 {
4426 input_line_pointer++;
4427 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4428 if (hi_reg == FAIL)
4429 {
4430 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4431 goto error;
4432 }
4433 else if (reg >= hi_reg)
4434 {
4435 as_bad (_("bad register range"));
4436 goto error;
4437 }
4438 for (; reg < hi_reg; reg++)
4439 mask |= 1 << reg;
4440 }
4441 }
4442 while (skip_past_comma (&input_line_pointer) != FAIL);
4443
4444 skip_past_char (&input_line_pointer, '}');
4445
4446 demand_empty_rest_of_line ();
4447
4448 /* Generate any deferred opcodes because we're going to be looking at
4449 the list. */
4450 flush_pending_unwind ();
4451
4452 for (i = 0; i < 16; i++)
4453 {
4454 if (mask & (1 << i))
4455 unwind.frame_size += 8;
4456 }
4457
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4460 registers. */
4461 if (unwind.opcode_count > 0)
4462 {
4463 i = unwind.opcodes[unwind.opcode_count - 1];
4464 if ((i & 0xf8) == 0xc0)
4465 {
4466 i &= 7;
4467 /* Only merge if the blocks are contiguous. */
4468 if (i < 6)
4469 {
4470 if ((mask & 0xfe00) == (1 << 9))
4471 {
4472 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4473 unwind.opcode_count--;
4474 }
4475 }
4476 else if (i == 6 && unwind.opcode_count >= 2)
4477 {
4478 i = unwind.opcodes[unwind.opcode_count - 2];
4479 reg = i >> 4;
4480 i &= 0xf;
4481
4482 op = 0xffff << (reg - 1);
4483 if (reg > 0
4484 && ((mask & op) == (1u << (reg - 1))))
4485 {
4486 op = (1 << (reg + i + 1)) - 1;
4487 op &= ~((1 << reg) - 1);
4488 mask |= op;
4489 unwind.opcode_count -= 2;
4490 }
4491 }
4492 }
4493 }
4494
4495 hi_reg = 15;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg = 15; reg >= -1; reg--)
4499 {
4500 /* Save registers in blocks. */
4501 if (reg < 0
4502 || !(mask & (1 << reg)))
4503 {
4504 /* We found an unsaved reg. Generate opcodes to save the
4505 preceding block. */
4506 if (reg != hi_reg)
4507 {
4508 if (reg == 9)
4509 {
4510 /* Short form. */
4511 op = 0xc0 | (hi_reg - 10);
4512 add_unwind_opcode (op, 1);
4513 }
4514 else
4515 {
4516 /* Long form. */
4517 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4518 add_unwind_opcode (op, 2);
4519 }
4520 }
4521 hi_reg = reg - 1;
4522 }
4523 }
4524
4525 return;
4526 error:
4527 ignore_rest_of_line ();
4528 }
4529
4530 static void
4531 s_arm_unwind_save_mmxwcg (void)
4532 {
4533 int reg;
4534 int hi_reg;
4535 unsigned mask = 0;
4536 valueT op;
4537
4538 if (*input_line_pointer == '{')
4539 input_line_pointer++;
4540
4541 skip_whitespace (input_line_pointer);
4542
4543 do
4544 {
4545 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4546
4547 if (reg == FAIL)
4548 {
4549 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4550 goto error;
4551 }
4552
4553 reg -= 8;
4554 if (mask >> reg)
4555 as_tsktsk (_("register list not in ascending order"));
4556 mask |= 1 << reg;
4557
4558 if (*input_line_pointer == '-')
4559 {
4560 input_line_pointer++;
4561 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4562 if (hi_reg == FAIL)
4563 {
4564 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4565 goto error;
4566 }
4567 else if (reg >= hi_reg)
4568 {
4569 as_bad (_("bad register range"));
4570 goto error;
4571 }
4572 for (; reg < hi_reg; reg++)
4573 mask |= 1 << reg;
4574 }
4575 }
4576 while (skip_past_comma (&input_line_pointer) != FAIL);
4577
4578 skip_past_char (&input_line_pointer, '}');
4579
4580 demand_empty_rest_of_line ();
4581
4582 /* Generate any deferred opcodes because we're going to be looking at
4583 the list. */
4584 flush_pending_unwind ();
4585
4586 for (reg = 0; reg < 16; reg++)
4587 {
4588 if (mask & (1 << reg))
4589 unwind.frame_size += 4;
4590 }
4591 op = 0xc700 | mask;
4592 add_unwind_opcode (op, 2);
4593 return;
4594 error:
4595 ignore_rest_of_line ();
4596 }
4597
4598
4599 /* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
4601
4602 static void
4603 s_arm_unwind_save (int arch_v6)
4604 {
4605 char *peek;
4606 struct reg_entry *reg;
4607 bfd_boolean had_brace = FALSE;
4608
4609 if (!unwind.proc_start)
4610 as_bad (MISSING_FNSTART);
4611
4612 /* Figure out what sort of save we have. */
4613 peek = input_line_pointer;
4614
4615 if (*peek == '{')
4616 {
4617 had_brace = TRUE;
4618 peek++;
4619 }
4620
4621 reg = arm_reg_parse_multi (&peek);
4622
4623 if (!reg)
4624 {
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
4627 return;
4628 }
4629
4630 switch (reg->type)
4631 {
4632 case REG_TYPE_FN:
4633 if (had_brace)
4634 {
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4637 return;
4638 }
4639 input_line_pointer = peek;
4640 s_arm_unwind_save_fpa (reg->number);
4641 return;
4642
4643 case REG_TYPE_RN:
4644 s_arm_unwind_save_core ();
4645 return;
4646
4647 case REG_TYPE_VFD:
4648 if (arch_v6)
4649 s_arm_unwind_save_vfp_armv6 ();
4650 else
4651 s_arm_unwind_save_vfp ();
4652 return;
4653
4654 case REG_TYPE_MMXWR:
4655 s_arm_unwind_save_mmxwr ();
4656 return;
4657
4658 case REG_TYPE_MMXWCG:
4659 s_arm_unwind_save_mmxwcg ();
4660 return;
4661
4662 default:
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
4665 }
4666 }
4667
4668
4669 /* Parse an unwind_movsp directive. */
4670
4671 static void
4672 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4673 {
4674 int reg;
4675 valueT op;
4676 int offset;
4677
4678 if (!unwind.proc_start)
4679 as_bad (MISSING_FNSTART);
4680
4681 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4682 if (reg == FAIL)
4683 {
4684 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4685 ignore_rest_of_line ();
4686 return;
4687 }
4688
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer) != FAIL)
4691 {
4692 if (immediate_for_directive (&offset) == FAIL)
4693 return;
4694 }
4695 else
4696 offset = 0;
4697
4698 demand_empty_rest_of_line ();
4699
4700 if (reg == REG_SP || reg == REG_PC)
4701 {
4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4703 return;
4704 }
4705
4706 if (unwind.fp_reg != REG_SP)
4707 as_bad (_("unexpected .unwind_movsp directive"));
4708
4709 /* Generate opcode to restore the value. */
4710 op = 0x90 | reg;
4711 add_unwind_opcode (op, 1);
4712
4713 /* Record the information for later. */
4714 unwind.fp_reg = reg;
4715 unwind.fp_offset = unwind.frame_size - offset;
4716 unwind.sp_restored = 1;
4717 }
4718
4719 /* Parse an unwind_pad directive. */
4720
4721 static void
4722 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4723 {
4724 int offset;
4725
4726 if (!unwind.proc_start)
4727 as_bad (MISSING_FNSTART);
4728
4729 if (immediate_for_directive (&offset) == FAIL)
4730 return;
4731
4732 if (offset & 3)
4733 {
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4736 return;
4737 }
4738
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind.frame_size += offset;
4741 unwind.pending_offset += offset;
4742
4743 demand_empty_rest_of_line ();
4744 }
4745
4746 /* Parse an unwind_setfp directive. */
4747
4748 static void
4749 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4750 {
4751 int sp_reg;
4752 int fp_reg;
4753 int offset;
4754
4755 if (!unwind.proc_start)
4756 as_bad (MISSING_FNSTART);
4757
4758 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4759 if (skip_past_comma (&input_line_pointer) == FAIL)
4760 sp_reg = FAIL;
4761 else
4762 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4763
4764 if (fp_reg == FAIL || sp_reg == FAIL)
4765 {
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4768 return;
4769 }
4770
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer) != FAIL)
4773 {
4774 if (immediate_for_directive (&offset) == FAIL)
4775 return;
4776 }
4777 else
4778 offset = 0;
4779
4780 demand_empty_rest_of_line ();
4781
4782 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4783 {
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4786 return;
4787 }
4788
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind.fp_reg = fp_reg;
4791 unwind.fp_used = 1;
4792 if (sp_reg == REG_SP)
4793 unwind.fp_offset = unwind.frame_size - offset;
4794 else
4795 unwind.fp_offset -= offset;
4796 }
4797
4798 /* Parse an unwind_raw directive. */
4799
4800 static void
4801 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4802 {
4803 expressionS exp;
4804 /* This is an arbitrary limit. */
4805 unsigned char op[16];
4806 int count;
4807
4808 if (!unwind.proc_start)
4809 as_bad (MISSING_FNSTART);
4810
4811 expression (&exp);
4812 if (exp.X_op == O_constant
4813 && skip_past_comma (&input_line_pointer) != FAIL)
4814 {
4815 unwind.frame_size += exp.X_add_number;
4816 expression (&exp);
4817 }
4818 else
4819 exp.X_op = O_illegal;
4820
4821 if (exp.X_op != O_constant)
4822 {
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4825 return;
4826 }
4827
4828 count = 0;
4829
4830 /* Parse the opcode. */
4831 for (;;)
4832 {
4833 if (count >= 16)
4834 {
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
4837 }
4838 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4839 {
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4842 return;
4843 }
4844 op[count++] = exp.X_add_number;
4845
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer) == FAIL)
4848 break;
4849
4850 expression (&exp);
4851 }
4852
4853 /* Add the opcode bytes in reverse order. */
4854 while (count--)
4855 add_unwind_opcode (op[count], 1);
4856
4857 demand_empty_rest_of_line ();
4858 }
4859
4860
4861 /* Parse a .eabi_attribute directive. */
4862
4863 static void
4864 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4865 {
4866 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4867
4868 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4869 attributes_set_explicitly[tag] = 1;
4870 }
4871
4872 /* Emit a tls fix for the symbol. */
4873
4874 static void
4875 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4876 {
4877 char *p;
4878 expressionS exp;
4879 #ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4881 #endif
4882
4883 #ifdef md_cons_align
4884 md_cons_align (4);
4885 #endif
4886
4887 /* Since we're just labelling the code, there's no need to define a
4888 mapping symbol. */
4889 expression (&exp);
4890 p = obstack_next_free (&frchain_now->frch_obstack);
4891 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4892 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ);
4894 }
4895 #endif /* OBJ_ELF */
4896
4897 static void s_arm_arch (int);
4898 static void s_arm_object_arch (int);
4899 static void s_arm_cpu (int);
4900 static void s_arm_fpu (int);
4901 static void s_arm_arch_extension (int);
4902
4903 #ifdef TE_PE
4904
4905 static void
4906 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4907 {
4908 expressionS exp;
4909
4910 do
4911 {
4912 expression (&exp);
4913 if (exp.X_op == O_symbol)
4914 exp.X_op = O_secrel;
4915
4916 emit_expr (&exp, 4);
4917 }
4918 while (*input_line_pointer++ == ',');
4919
4920 input_line_pointer--;
4921 demand_empty_rest_of_line ();
4922 }
4923 #endif /* TE_PE */
4924
4925 /* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
4930
4931 const pseudo_typeS md_pseudo_table[] =
4932 {
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req, 0 },
4935 /* Following two are likewise never called. */
4936 { "dn", s_dn, 0 },
4937 { "qn", s_qn, 0 },
4938 { "unreq", s_unreq, 0 },
4939 { "bss", s_bss, 0 },
4940 { "align", s_align_ptwo, 2 },
4941 { "arm", s_arm, 0 },
4942 { "thumb", s_thumb, 0 },
4943 { "code", s_code, 0 },
4944 { "force_thumb", s_force_thumb, 0 },
4945 { "thumb_func", s_thumb_func, 0 },
4946 { "thumb_set", s_thumb_set, 0 },
4947 { "even", s_even, 0 },
4948 { "ltorg", s_ltorg, 0 },
4949 { "pool", s_ltorg, 0 },
4950 { "syntax", s_syntax, 0 },
4951 { "cpu", s_arm_cpu, 0 },
4952 { "arch", s_arm_arch, 0 },
4953 { "object_arch", s_arm_object_arch, 0 },
4954 { "fpu", s_arm_fpu, 0 },
4955 { "arch_extension", s_arm_arch_extension, 0 },
4956 #ifdef OBJ_ELF
4957 { "word", s_arm_elf_cons, 4 },
4958 { "long", s_arm_elf_cons, 4 },
4959 { "inst.n", s_arm_elf_inst, 2 },
4960 { "inst.w", s_arm_elf_inst, 4 },
4961 { "inst", s_arm_elf_inst, 0 },
4962 { "rel31", s_arm_rel31, 0 },
4963 { "fnstart", s_arm_unwind_fnstart, 0 },
4964 { "fnend", s_arm_unwind_fnend, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4966 { "personality", s_arm_unwind_personality, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4969 { "save", s_arm_unwind_save, 0 },
4970 { "vsave", s_arm_unwind_save, 1 },
4971 { "movsp", s_arm_unwind_movsp, 0 },
4972 { "pad", s_arm_unwind_pad, 0 },
4973 { "setfp", s_arm_unwind_setfp, 0 },
4974 { "unwind_raw", s_arm_unwind_raw, 0 },
4975 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4976 { "tlsdescseq", s_arm_tls_descseq, 0 },
4977 #else
4978 { "word", cons, 4},
4979
4980 /* These are used for dwarf. */
4981 {"2byte", cons, 2},
4982 {"4byte", cons, 4},
4983 {"8byte", cons, 8},
4984 /* These are used for dwarf2. */
4985 { "file", dwarf2_directive_file, 0 },
4986 { "loc", dwarf2_directive_loc, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4988 #endif
4989 { "extend", float_cons, 'x' },
4990 { "ldouble", float_cons, 'x' },
4991 { "packed", float_cons, 'p' },
4992 #ifdef TE_PE
4993 {"secrel32", pe_directive_secrel, 0},
4994 #endif
4995
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref, 0},
4998 {"def", s_ccs_def, 0},
4999 {"asmfunc", s_ccs_asmfunc, 0},
5000 {"endasmfunc", s_ccs_endasmfunc, 0},
5001
5002 { 0, 0, 0 }
5003 };
5004 \f
5005 /* Parser functions used exclusively in instruction operands. */
5006
5007 /* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5011 optional. */
5012
5013 static int
5014 parse_immediate (char **str, int *val, int min, int max,
5015 bfd_boolean prefix_opt)
5016 {
5017 expressionS exp;
5018
5019 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5020 if (exp.X_op != O_constant)
5021 {
5022 inst.error = _("constant expression required");
5023 return FAIL;
5024 }
5025
5026 if (exp.X_add_number < min || exp.X_add_number > max)
5027 {
5028 inst.error = _("immediate value out of range");
5029 return FAIL;
5030 }
5031
5032 *val = exp.X_add_number;
5033 return SUCCESS;
5034 }
5035
5036 /* Less-generic immediate-value read function with the possibility of loading a
5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5038 instructions. Puts the result directly in inst.operands[i]. */
5039
5040 static int
5041 parse_big_immediate (char **str, int i, expressionS *in_exp,
5042 bfd_boolean allow_symbol_p)
5043 {
5044 expressionS exp;
5045 expressionS *exp_p = in_exp ? in_exp : &exp;
5046 char *ptr = *str;
5047
5048 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5049
5050 if (exp_p->X_op == O_constant)
5051 {
5052 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
5056 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
5057 {
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5060 & 0xffffffff);
5061 inst.operands[i].regisimm = 1;
5062 }
5063 }
5064 else if (exp_p->X_op == O_big
5065 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5066 {
5067 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
5068
5069 /* Bignums have their least significant bits in
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
5072 gas_assert (parts != 0);
5073
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
5078 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
5079 {
5080 LITTLENUM_TYPE m = -1;
5081
5082 if (generic_bignum[parts * 2] != 0
5083 && generic_bignum[parts * 2] != m)
5084 return FAIL;
5085
5086 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
5087 if (generic_bignum[j] != generic_bignum[j-1])
5088 return FAIL;
5089 }
5090
5091 inst.operands[i].imm = 0;
5092 for (j = 0; j < parts; j++, idx++)
5093 inst.operands[i].imm |= generic_bignum[idx]
5094 << (LITTLENUM_NUMBER_OF_BITS * j);
5095 inst.operands[i].reg = 0;
5096 for (j = 0; j < parts; j++, idx++)
5097 inst.operands[i].reg |= generic_bignum[idx]
5098 << (LITTLENUM_NUMBER_OF_BITS * j);
5099 inst.operands[i].regisimm = 1;
5100 }
5101 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5102 return FAIL;
5103
5104 *str = ptr;
5105
5106 return SUCCESS;
5107 }
5108
5109 /* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
5111
5112 static int
5113 parse_fpa_immediate (char ** str)
5114 {
5115 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5116 char * save_in;
5117 expressionS exp;
5118 int i;
5119 int j;
5120
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
5123
5124 for (i = 0; fp_const[i]; i++)
5125 {
5126 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
5127 {
5128 char *start = *str;
5129
5130 *str += strlen (fp_const[i]);
5131 if (is_end_of_line[(unsigned char) **str])
5132 return i + 8;
5133 *str = start;
5134 }
5135 }
5136
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
5141
5142 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
5143
5144 /* Look for a raw floating point number. */
5145 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5146 && is_end_of_line[(unsigned char) *save_in])
5147 {
5148 for (i = 0; i < NUM_FLOAT_VALS; i++)
5149 {
5150 for (j = 0; j < MAX_LITTLENUMS; j++)
5151 {
5152 if (words[j] != fp_values[i][j])
5153 break;
5154 }
5155
5156 if (j == MAX_LITTLENUMS)
5157 {
5158 *str = save_in;
5159 return i + 8;
5160 }
5161 }
5162 }
5163
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in = input_line_pointer;
5167 input_line_pointer = *str;
5168 if (expression (&exp) == absolute_section
5169 && exp.X_op == O_big
5170 && exp.X_add_number < 0)
5171 {
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5173 Ditto for 15. */
5174 #define X_PRECISION 5
5175 #define E_PRECISION 15L
5176 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
5177 {
5178 for (i = 0; i < NUM_FLOAT_VALS; i++)
5179 {
5180 for (j = 0; j < MAX_LITTLENUMS; j++)
5181 {
5182 if (words[j] != fp_values[i][j])
5183 break;
5184 }
5185
5186 if (j == MAX_LITTLENUMS)
5187 {
5188 *str = input_line_pointer;
5189 input_line_pointer = save_in;
5190 return i + 8;
5191 }
5192 }
5193 }
5194 }
5195
5196 *str = input_line_pointer;
5197 input_line_pointer = save_in;
5198 inst.error = _("invalid FPA immediate expression");
5199 return FAIL;
5200 }
5201
5202 /* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5204
5205 static int
5206 is_quarter_float (unsigned imm)
5207 {
5208 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5210 }
5211
5212
5213 /* Detect the presence of a floating point or integer zero constant,
5214 i.e. #0.0 or #0. */
5215
5216 static bfd_boolean
5217 parse_ifimm_zero (char **in)
5218 {
5219 int error_code;
5220
5221 if (!is_immediate_prefix (**in))
5222 {
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax)
5225 return FALSE;
5226 }
5227 else
5228 ++*in;
5229
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in, "0x", 2) == 0)
5232 {
5233 int val;
5234 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5235 return FALSE;
5236 return TRUE;
5237 }
5238
5239 error_code = atof_generic (in, ".", EXP_CHARS,
5240 &generic_floating_point_number);
5241
5242 if (!error_code
5243 && generic_floating_point_number.sign == '+'
5244 && (generic_floating_point_number.low
5245 > generic_floating_point_number.leader))
5246 return TRUE;
5247
5248 return FALSE;
5249 }
5250
5251 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
5256
5257 static unsigned
5258 parse_qfloat_immediate (char **ccp, int *immed)
5259 {
5260 char *str = *ccp;
5261 char *fpnum;
5262 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5263 int found_fpchar = 0;
5264
5265 skip_past_char (&str, '#');
5266
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5272 fpnum = str;
5273 skip_whitespace (fpnum);
5274
5275 if (strncmp (fpnum, "0x", 2) == 0)
5276 return FAIL;
5277 else
5278 {
5279 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
5280 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5281 {
5282 found_fpchar = 1;
5283 break;
5284 }
5285
5286 if (!found_fpchar)
5287 return FAIL;
5288 }
5289
5290 if ((str = atof_ieee (str, 's', words)) != NULL)
5291 {
5292 unsigned fpword = 0;
5293 int i;
5294
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
5297 {
5298 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5299 fpword |= words[i];
5300 }
5301
5302 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5303 *immed = fpword;
5304 else
5305 return FAIL;
5306
5307 *ccp = str;
5308
5309 return SUCCESS;
5310 }
5311
5312 return FAIL;
5313 }
5314
5315 /* Shift operands. */
5316 enum shift_kind
5317 {
5318 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
5319 };
5320
5321 struct asm_shift_name
5322 {
5323 const char *name;
5324 enum shift_kind kind;
5325 };
5326
5327 /* Third argument to parse_shift. */
5328 enum parse_shift_mode
5329 {
5330 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5335 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
5336 };
5337
5338 /* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
5340
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5343 RRX
5344
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
5347
5348 static int
5349 parse_shift (char **str, int i, enum parse_shift_mode mode)
5350 {
5351 const struct asm_shift_name *shift_name;
5352 enum shift_kind shift;
5353 char *s = *str;
5354 char *p = s;
5355 int reg;
5356
5357 for (p = *str; ISALPHA (*p); p++)
5358 ;
5359
5360 if (p == *str)
5361 {
5362 inst.error = _("shift expression expected");
5363 return FAIL;
5364 }
5365
5366 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5367 p - *str);
5368
5369 if (shift_name == NULL)
5370 {
5371 inst.error = _("shift expression expected");
5372 return FAIL;
5373 }
5374
5375 shift = shift_name->kind;
5376
5377 switch (mode)
5378 {
5379 case NO_SHIFT_RESTRICT:
5380 case SHIFT_IMMEDIATE:
5381 if (shift == SHIFT_UXTW)
5382 {
5383 inst.error = _("'UXTW' not allowed here");
5384 return FAIL;
5385 }
5386 break;
5387
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5389 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5390 {
5391 inst.error = _("'LSL' or 'ASR' required");
5392 return FAIL;
5393 }
5394 break;
5395
5396 case SHIFT_LSL_IMMEDIATE:
5397 if (shift != SHIFT_LSL)
5398 {
5399 inst.error = _("'LSL' required");
5400 return FAIL;
5401 }
5402 break;
5403
5404 case SHIFT_ASR_IMMEDIATE:
5405 if (shift != SHIFT_ASR)
5406 {
5407 inst.error = _("'ASR' required");
5408 return FAIL;
5409 }
5410 break;
5411 case SHIFT_UXTW_IMMEDIATE:
5412 if (shift != SHIFT_UXTW)
5413 {
5414 inst.error = _("'UXTW' required");
5415 return FAIL;
5416 }
5417 break;
5418
5419 default: abort ();
5420 }
5421
5422 if (shift != SHIFT_RRX)
5423 {
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p);
5426
5427 if (mode == NO_SHIFT_RESTRICT
5428 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5429 {
5430 inst.operands[i].imm = reg;
5431 inst.operands[i].immisreg = 1;
5432 }
5433 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5434 return FAIL;
5435 }
5436 inst.operands[i].shift_kind = shift;
5437 inst.operands[i].shifted = 1;
5438 *str = p;
5439 return SUCCESS;
5440 }
5441
5442 /* Parse a <shifter_operand> for an ARM data processing instruction:
5443
5444 #<immediate>
5445 #<immediate>, <rotate>
5446 <Rm>
5447 <Rm>, <shift>
5448
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
5451 is deferred to md_apply_fix. */
5452
5453 static int
5454 parse_shifter_operand (char **str, int i)
5455 {
5456 int value;
5457 expressionS exp;
5458
5459 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5460 {
5461 inst.operands[i].reg = value;
5462 inst.operands[i].isreg = 1;
5463
5464 /* parse_shift will override this if appropriate */
5465 inst.relocs[0].exp.X_op = O_constant;
5466 inst.relocs[0].exp.X_add_number = 0;
5467
5468 if (skip_past_comma (str) == FAIL)
5469 return SUCCESS;
5470
5471 /* Shift operation on register. */
5472 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5473 }
5474
5475 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
5476 return FAIL;
5477
5478 if (skip_past_comma (str) == SUCCESS)
5479 {
5480 /* #x, y -- ie explicit rotation by Y. */
5481 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5482 return FAIL;
5483
5484 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
5485 {
5486 inst.error = _("constant expression expected");
5487 return FAIL;
5488 }
5489
5490 value = exp.X_add_number;
5491 if (value < 0 || value > 30 || value % 2 != 0)
5492 {
5493 inst.error = _("invalid rotation");
5494 return FAIL;
5495 }
5496 if (inst.relocs[0].exp.X_add_number < 0
5497 || inst.relocs[0].exp.X_add_number > 255)
5498 {
5499 inst.error = _("invalid constant");
5500 return FAIL;
5501 }
5502
5503 /* Encode as specified. */
5504 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
5505 return SUCCESS;
5506 }
5507
5508 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5509 inst.relocs[0].pc_rel = 0;
5510 return SUCCESS;
5511 }
5512
5513 /* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5519
5520 struct group_reloc_table_entry
5521 {
5522 const char *name;
5523 int alu_code;
5524 int ldr_code;
5525 int ldrs_code;
5526 int ldc_code;
5527 };
5528
5529 typedef enum
5530 {
5531 /* Varieties of non-ALU group relocation. */
5532
5533 GROUP_LDR,
5534 GROUP_LDRS,
5535 GROUP_LDC,
5536 GROUP_MVE
5537 } group_reloc_type;
5538
5539 static struct group_reloc_table_entry group_reloc_table[] =
5540 { /* Program counter relative: */
5541 { "pc_g0_nc",
5542 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5543 0, /* LDR */
5544 0, /* LDRS */
5545 0 }, /* LDC */
5546 { "pc_g0",
5547 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5551 { "pc_g1_nc",
5552 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5553 0, /* LDR */
5554 0, /* LDRS */
5555 0 }, /* LDC */
5556 { "pc_g1",
5557 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5561 { "pc_g2",
5562 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5566 /* Section base relative */
5567 { "sb_g0_nc",
5568 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5569 0, /* LDR */
5570 0, /* LDRS */
5571 0 }, /* LDC */
5572 { "sb_g0",
5573 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5577 { "sb_g1_nc",
5578 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5579 0, /* LDR */
5580 0, /* LDRS */
5581 0 }, /* LDC */
5582 { "sb_g1",
5583 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5587 { "sb_g2",
5588 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5591 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5592 /* Absolute thumb alu relocations. */
5593 { "lower0_7",
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5595 0, /* LDR. */
5596 0, /* LDRS. */
5597 0 }, /* LDC. */
5598 { "lower8_15",
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5600 0, /* LDR. */
5601 0, /* LDRS. */
5602 0 }, /* LDC. */
5603 { "upper0_7",
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5605 0, /* LDR. */
5606 0, /* LDRS. */
5607 0 }, /* LDC. */
5608 { "upper8_15",
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5610 0, /* LDR. */
5611 0, /* LDRS. */
5612 0 } }; /* LDC. */
5613
5614 /* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5620
5621 static int
5622 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5623 {
5624 unsigned int i;
5625 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5626 {
5627 int length = strlen (group_reloc_table[i].name);
5628
5629 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5630 && (*str)[length] == ':')
5631 {
5632 *out = &group_reloc_table[i];
5633 *str += (length + 1);
5634 return SUCCESS;
5635 }
5636 }
5637
5638 return FAIL;
5639 }
5640
5641 /* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5643
5644 #<immediate>
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5647 <Rm>
5648 <Rm>, <shift>
5649
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5652
5653 Everything else is as for parse_shifter_operand. */
5654
5655 static parse_operand_result
5656 parse_shifter_operand_group_reloc (char **str, int i)
5657 {
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5661
5662 if (((*str)[0] == '#' && (*str)[1] == ':')
5663 || (*str)[0] == ':')
5664 {
5665 struct group_reloc_table_entry *entry;
5666
5667 if ((*str)[0] == '#')
5668 (*str) += 2;
5669 else
5670 (*str)++;
5671
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5674 {
5675 inst.error = _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5677 }
5678
5679 /* We now have the group relocation table entry corresponding to
5680 the name in the assembler source. Next, we parse the expression. */
5681 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5683
5684 /* Record the relocation type (always the ALU variant here). */
5685 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5686 gas_assert (inst.relocs[0].type != 0);
5687
5688 return PARSE_OPERAND_SUCCESS;
5689 }
5690 else
5691 return parse_shifter_operand (str, i) == SUCCESS
5692 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5693
5694 /* Never reached. */
5695 }
5696
5697 /* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
5699
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701 static parse_operand_result
5702 parse_neon_alignment (char **str, int i)
5703 {
5704 char *p = *str;
5705 expressionS exp;
5706
5707 my_get_expression (&exp, &p, GE_NO_PREFIX);
5708
5709 if (exp.X_op != O_constant)
5710 {
5711 inst.error = _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL;
5713 }
5714
5715 inst.operands[i].imm = exp.X_add_number << 8;
5716 inst.operands[i].immisalign = 1;
5717 /* Alignments are not pre-indexes. */
5718 inst.operands[i].preind = 0;
5719
5720 *str = p;
5721 return PARSE_OPERAND_SUCCESS;
5722 }
5723
5724 /* Parse all forms of an ARM address expression. Information is written
5725 to inst.operands[i] and/or inst.relocs[0].
5726
5727 Preindexed addressing (.preind=1):
5728
5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5732 .shift_kind=shift .relocs[0].exp=shift_imm
5733
5734 These three may have a trailing ! which causes .writeback to be set also.
5735
5736 Postindexed addressing (.postind=1, .writeback=1):
5737
5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5741 .shift_kind=shift .relocs[0].exp=shift_imm
5742
5743 Unindexed addressing (.preind=0, .postind=0):
5744
5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5746
5747 Other:
5748
5749 [Rn]{!} shorthand for [Rn,#0]{!}
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
5752
5753 It is the caller's responsibility to check for addressing modes not
5754 supported by the instruction, and to set inst.relocs[0].type. */
5755
5756 static parse_operand_result
5757 parse_address_main (char **str, int i, int group_relocations,
5758 group_reloc_type group_type)
5759 {
5760 char *p = *str;
5761 int reg;
5762
5763 if (skip_past_char (&p, '[') == FAIL)
5764 {
5765 if (skip_past_char (&p, '=') == FAIL)
5766 {
5767 /* Bare address - translate to PC-relative offset. */
5768 inst.relocs[0].pc_rel = 1;
5769 inst.operands[i].reg = REG_PC;
5770 inst.operands[i].isreg = 1;
5771 inst.operands[i].preind = 1;
5772
5773 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
5774 return PARSE_OPERAND_FAIL;
5775 }
5776 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
5777 /*allow_symbol_p=*/TRUE))
5778 return PARSE_OPERAND_FAIL;
5779
5780 *str = p;
5781 return PARSE_OPERAND_SUCCESS;
5782 }
5783
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p);
5786
5787 if (group_type == GROUP_MVE)
5788 {
5789 enum arm_reg_type rtype = REG_TYPE_MQ;
5790 struct neon_type_el et;
5791 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5792 {
5793 inst.operands[i].isquad = 1;
5794 }
5795 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5796 {
5797 inst.error = BAD_ADDR_MODE;
5798 return PARSE_OPERAND_FAIL;
5799 }
5800 }
5801 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5802 {
5803 if (group_type == GROUP_MVE)
5804 inst.error = BAD_ADDR_MODE;
5805 else
5806 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5807 return PARSE_OPERAND_FAIL;
5808 }
5809 inst.operands[i].reg = reg;
5810 inst.operands[i].isreg = 1;
5811
5812 if (skip_past_comma (&p) == SUCCESS)
5813 {
5814 inst.operands[i].preind = 1;
5815
5816 if (*p == '+') p++;
5817 else if (*p == '-') p++, inst.operands[i].negative = 1;
5818
5819 enum arm_reg_type rtype = REG_TYPE_MQ;
5820 struct neon_type_el et;
5821 if (group_type == GROUP_MVE
5822 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5823 {
5824 inst.operands[i].immisreg = 2;
5825 inst.operands[i].imm = reg;
5826
5827 if (skip_past_comma (&p) == SUCCESS)
5828 {
5829 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5830 {
5831 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5832 inst.relocs[0].exp.X_add_number = 0;
5833 }
5834 else
5835 return PARSE_OPERAND_FAIL;
5836 }
5837 }
5838 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5839 {
5840 inst.operands[i].imm = reg;
5841 inst.operands[i].immisreg = 1;
5842
5843 if (skip_past_comma (&p) == SUCCESS)
5844 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5845 return PARSE_OPERAND_FAIL;
5846 }
5847 else if (skip_past_char (&p, ':') == SUCCESS)
5848 {
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5851 change. */
5852 parse_operand_result result = parse_neon_alignment (&p, i);
5853
5854 if (result != PARSE_OPERAND_SUCCESS)
5855 return result;
5856 }
5857 else
5858 {
5859 if (inst.operands[i].negative)
5860 {
5861 inst.operands[i].negative = 0;
5862 p--;
5863 }
5864
5865 if (group_relocations
5866 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5867 {
5868 struct group_reloc_table_entry *entry;
5869
5870 /* Skip over the #: or : sequence. */
5871 if (*p == '#')
5872 p += 2;
5873 else
5874 p++;
5875
5876 /* Try to parse a group relocation. Anything else is an
5877 error. */
5878 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5879 {
5880 inst.error = _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5882 }
5883
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
5886 expression. */
5887 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5889
5890 /* Record the relocation type. */
5891 switch (group_type)
5892 {
5893 case GROUP_LDR:
5894 inst.relocs[0].type
5895 = (bfd_reloc_code_real_type) entry->ldr_code;
5896 break;
5897
5898 case GROUP_LDRS:
5899 inst.relocs[0].type
5900 = (bfd_reloc_code_real_type) entry->ldrs_code;
5901 break;
5902
5903 case GROUP_LDC:
5904 inst.relocs[0].type
5905 = (bfd_reloc_code_real_type) entry->ldc_code;
5906 break;
5907
5908 default:
5909 gas_assert (0);
5910 }
5911
5912 if (inst.relocs[0].type == 0)
5913 {
5914 inst.error = _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5916 }
5917 }
5918 else
5919 {
5920 char *q = p;
5921
5922 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5923 return PARSE_OPERAND_FAIL;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
5925 if (inst.relocs[0].exp.X_op == O_constant
5926 && inst.relocs[0].exp.X_add_number == 0)
5927 {
5928 skip_whitespace (q);
5929 if (*q == '#')
5930 {
5931 q++;
5932 skip_whitespace (q);
5933 }
5934 if (*q == '-')
5935 inst.operands[i].negative = 1;
5936 }
5937 }
5938 }
5939 }
5940 else if (skip_past_char (&p, ':') == SUCCESS)
5941 {
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result = parse_neon_alignment (&p, i);
5945
5946 if (result != PARSE_OPERAND_SUCCESS)
5947 return result;
5948 }
5949
5950 if (skip_past_char (&p, ']') == FAIL)
5951 {
5952 inst.error = _("']' expected");
5953 return PARSE_OPERAND_FAIL;
5954 }
5955
5956 if (skip_past_char (&p, '!') == SUCCESS)
5957 inst.operands[i].writeback = 1;
5958
5959 else if (skip_past_comma (&p) == SUCCESS)
5960 {
5961 if (skip_past_char (&p, '{') == SUCCESS)
5962 {
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p, &inst.operands[i].imm,
5965 0, 255, TRUE) == FAIL)
5966 return PARSE_OPERAND_FAIL;
5967
5968 if (skip_past_char (&p, '}') == FAIL)
5969 {
5970 inst.error = _("'}' expected at end of 'option' field");
5971 return PARSE_OPERAND_FAIL;
5972 }
5973 if (inst.operands[i].preind)
5974 {
5975 inst.error = _("cannot combine index with option");
5976 return PARSE_OPERAND_FAIL;
5977 }
5978 *str = p;
5979 return PARSE_OPERAND_SUCCESS;
5980 }
5981 else
5982 {
5983 inst.operands[i].postind = 1;
5984 inst.operands[i].writeback = 1;
5985
5986 if (inst.operands[i].preind)
5987 {
5988 inst.error = _("cannot combine pre- and post-indexing");
5989 return PARSE_OPERAND_FAIL;
5990 }
5991
5992 if (*p == '+') p++;
5993 else if (*p == '-') p++, inst.operands[i].negative = 1;
5994
5995 enum arm_reg_type rtype = REG_TYPE_MQ;
5996 struct neon_type_el et;
5997 if (group_type == GROUP_MVE
5998 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5999 {
6000 inst.operands[i].immisreg = 2;
6001 inst.operands[i].imm = reg;
6002 }
6003 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
6004 {
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst.operands[i].immisalign)
6008 inst.operands[i].imm |= reg;
6009 else
6010 inst.operands[i].imm = reg;
6011 inst.operands[i].immisreg = 1;
6012
6013 if (skip_past_comma (&p) == SUCCESS)
6014 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
6015 return PARSE_OPERAND_FAIL;
6016 }
6017 else
6018 {
6019 char *q = p;
6020
6021 if (inst.operands[i].negative)
6022 {
6023 inst.operands[i].negative = 0;
6024 p--;
6025 }
6026 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
6027 return PARSE_OPERAND_FAIL;
6028 /* If the offset is 0, find out if it's a +0 or -0. */
6029 if (inst.relocs[0].exp.X_op == O_constant
6030 && inst.relocs[0].exp.X_add_number == 0)
6031 {
6032 skip_whitespace (q);
6033 if (*q == '#')
6034 {
6035 q++;
6036 skip_whitespace (q);
6037 }
6038 if (*q == '-')
6039 inst.operands[i].negative = 1;
6040 }
6041 }
6042 }
6043 }
6044
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6048 {
6049 inst.operands[i].preind = 1;
6050 inst.relocs[0].exp.X_op = O_constant;
6051 inst.relocs[0].exp.X_add_number = 0;
6052 }
6053 *str = p;
6054 return PARSE_OPERAND_SUCCESS;
6055 }
6056
6057 static int
6058 parse_address (char **str, int i)
6059 {
6060 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
6061 ? SUCCESS : FAIL;
6062 }
6063
6064 static parse_operand_result
6065 parse_address_group_reloc (char **str, int i, group_reloc_type type)
6066 {
6067 return parse_address_main (str, i, 1, type);
6068 }
6069
6070 /* Parse an operand for a MOVW or MOVT instruction. */
6071 static int
6072 parse_half (char **str)
6073 {
6074 char * p;
6075
6076 p = *str;
6077 skip_past_char (&p, '#');
6078 if (strncasecmp (p, ":lower16:", 9) == 0)
6079 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
6080 else if (strncasecmp (p, ":upper16:", 9) == 0)
6081 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
6082
6083 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
6084 {
6085 p += 9;
6086 skip_whitespace (p);
6087 }
6088
6089 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
6090 return FAIL;
6091
6092 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
6093 {
6094 if (inst.relocs[0].exp.X_op != O_constant)
6095 {
6096 inst.error = _("constant expression expected");
6097 return FAIL;
6098 }
6099 if (inst.relocs[0].exp.X_add_number < 0
6100 || inst.relocs[0].exp.X_add_number > 0xffff)
6101 {
6102 inst.error = _("immediate value out of range");
6103 return FAIL;
6104 }
6105 }
6106 *str = p;
6107 return SUCCESS;
6108 }
6109
6110 /* Miscellaneous. */
6111
6112 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6114 static int
6115 parse_psr (char **str, bfd_boolean lhs)
6116 {
6117 char *p;
6118 unsigned long psr_field;
6119 const struct asm_psr *psr;
6120 char *start;
6121 bfd_boolean is_apsr = FALSE;
6122 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
6123
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
6128 m_profile = FALSE;
6129
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6132 p = *str;
6133 if (strncasecmp (p, "SPSR", 4) == 0)
6134 {
6135 if (m_profile)
6136 goto unsupported_psr;
6137
6138 psr_field = SPSR_BIT;
6139 }
6140 else if (strncasecmp (p, "CPSR", 4) == 0)
6141 {
6142 if (m_profile)
6143 goto unsupported_psr;
6144
6145 psr_field = 0;
6146 }
6147 else if (strncasecmp (p, "APSR", 4) == 0)
6148 {
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6151 is_apsr = TRUE;
6152 psr_field = 0;
6153 }
6154 else if (m_profile)
6155 {
6156 start = p;
6157 do
6158 p++;
6159 while (ISALNUM (*p) || *p == '_');
6160
6161 if (strncasecmp (start, "iapsr", 5) == 0
6162 || strncasecmp (start, "eapsr", 5) == 0
6163 || strncasecmp (start, "xpsr", 4) == 0
6164 || strncasecmp (start, "psr", 3) == 0)
6165 p = start + strcspn (start, "rR") + 1;
6166
6167 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
6168 p - start);
6169
6170 if (!psr)
6171 return FAIL;
6172
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr->field <= 3)
6176 {
6177 psr_field = psr->field;
6178 is_apsr = TRUE;
6179 goto check_suffix;
6180 }
6181
6182 *str = p;
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6186 here. */
6187 return psr->field | (lhs ? PSR_f : 0);
6188 }
6189 else
6190 goto unsupported_psr;
6191
6192 p += 4;
6193 check_suffix:
6194 if (*p == '_')
6195 {
6196 /* A suffix follows. */
6197 p++;
6198 start = p;
6199
6200 do
6201 p++;
6202 while (ISALNUM (*p) || *p == '_');
6203
6204 if (is_apsr)
6205 {
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits = 0;
6208 unsigned int g_bit = 0;
6209 char *bit;
6210
6211 for (bit = start; bit != p; bit++)
6212 {
6213 switch (TOLOWER (*bit))
6214 {
6215 case 'n':
6216 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6217 break;
6218
6219 case 'z':
6220 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6221 break;
6222
6223 case 'c':
6224 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6225 break;
6226
6227 case 'v':
6228 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6229 break;
6230
6231 case 'q':
6232 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6233 break;
6234
6235 case 'g':
6236 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6237 break;
6238
6239 default:
6240 inst.error = _("unexpected bit specified after APSR");
6241 return FAIL;
6242 }
6243 }
6244
6245 if (nzcvq_bits == 0x1f)
6246 psr_field |= PSR_f;
6247
6248 if (g_bit == 0x1)
6249 {
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
6251 {
6252 inst.error = _("selected processor does not "
6253 "support DSP extension");
6254 return FAIL;
6255 }
6256
6257 psr_field |= PSR_s;
6258 }
6259
6260 if ((nzcvq_bits & 0x20) != 0
6261 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6262 || (g_bit & 0x2) != 0)
6263 {
6264 inst.error = _("bad bitmask specified after APSR");
6265 return FAIL;
6266 }
6267 }
6268 else
6269 {
6270 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
6271 p - start);
6272 if (!psr)
6273 goto error;
6274
6275 psr_field |= psr->field;
6276 }
6277 }
6278 else
6279 {
6280 if (ISALNUM (*p))
6281 goto error; /* Garbage after "[CS]PSR". */
6282
6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
6284 is deprecated, but allow it anyway. */
6285 if (is_apsr && lhs)
6286 {
6287 psr_field |= PSR_f;
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6289 "deprecated"));
6290 }
6291 else if (!m_profile)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field |= (PSR_c | PSR_f);
6295 }
6296 *str = p;
6297 return psr_field;
6298
6299 unsupported_psr:
6300 inst.error = _("selected processor does not support requested special "
6301 "purpose register");
6302 return FAIL;
6303
6304 error:
6305 inst.error = _("flag for {c}psr instruction expected");
6306 return FAIL;
6307 }
6308
6309 static int
6310 parse_sys_vldr_vstr (char **str)
6311 {
6312 unsigned i;
6313 int val = FAIL;
6314 struct {
6315 const char *name;
6316 int regl;
6317 int regh;
6318 } sysregs[] = {
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6321 {"VPR", 0x4, 0x1},
6322 {"P0", 0x5, 0x1},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6325 };
6326 char *op_end = strchr (*str, ',');
6327 size_t op_strlen = op_end - *str;
6328
6329 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6330 {
6331 if (!strncmp (*str, sysregs[i].name, op_strlen))
6332 {
6333 val = sysregs[i].regl | (sysregs[i].regh << 3);
6334 *str = op_end;
6335 break;
6336 }
6337 }
6338
6339 return val;
6340 }
6341
6342 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
6344
6345 static int
6346 parse_cps_flags (char **str)
6347 {
6348 int val = 0;
6349 int saw_a_flag = 0;
6350 char *s = *str;
6351
6352 for (;;)
6353 switch (*s++)
6354 {
6355 case '\0': case ',':
6356 goto done;
6357
6358 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6359 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6360 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
6361
6362 default:
6363 inst.error = _("unrecognized CPS flag");
6364 return FAIL;
6365 }
6366
6367 done:
6368 if (saw_a_flag == 0)
6369 {
6370 inst.error = _("missing CPS flags");
6371 return FAIL;
6372 }
6373
6374 *str = s - 1;
6375 return val;
6376 }
6377
6378 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6380
6381 static int
6382 parse_endian_specifier (char **str)
6383 {
6384 int little_endian;
6385 char *s = *str;
6386
6387 if (strncasecmp (s, "BE", 2))
6388 little_endian = 0;
6389 else if (strncasecmp (s, "LE", 2))
6390 little_endian = 1;
6391 else
6392 {
6393 inst.error = _("valid endian specifiers are be or le");
6394 return FAIL;
6395 }
6396
6397 if (ISALNUM (s[2]) || s[2] == '_')
6398 {
6399 inst.error = _("valid endian specifiers are be or le");
6400 return FAIL;
6401 }
6402
6403 *str = s + 2;
6404 return little_endian;
6405 }
6406
6407 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6410
6411 static int
6412 parse_ror (char **str)
6413 {
6414 int rot;
6415 char *s = *str;
6416
6417 if (strncasecmp (s, "ROR", 3) == 0)
6418 s += 3;
6419 else
6420 {
6421 inst.error = _("missing rotation field after comma");
6422 return FAIL;
6423 }
6424
6425 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6426 return FAIL;
6427
6428 switch (rot)
6429 {
6430 case 0: *str = s; return 0x0;
6431 case 8: *str = s; return 0x1;
6432 case 16: *str = s; return 0x2;
6433 case 24: *str = s; return 0x3;
6434
6435 default:
6436 inst.error = _("rotation can only be 0, 8, 16, or 24");
6437 return FAIL;
6438 }
6439 }
6440
6441 /* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6443 static int
6444 parse_cond (char **str)
6445 {
6446 char *q;
6447 const struct asm_cond *c;
6448 int n;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6451 char cond[3];
6452
6453 q = *str;
6454 n = 0;
6455 while (ISALPHA (*q) && n < 3)
6456 {
6457 cond[n] = TOLOWER (*q);
6458 q++;
6459 n++;
6460 }
6461
6462 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6463 if (!c)
6464 {
6465 inst.error = _("condition required");
6466 return FAIL;
6467 }
6468
6469 *str = q;
6470 return c->value;
6471 }
6472
6473 /* Parse an option for a barrier instruction. Returns the encoding for the
6474 option, or FAIL. */
6475 static int
6476 parse_barrier (char **str)
6477 {
6478 char *p, *q;
6479 const struct asm_barrier_opt *o;
6480
6481 p = q = *str;
6482 while (ISALPHA (*q))
6483 q++;
6484
6485 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6486 q - p);
6487 if (!o)
6488 return FAIL;
6489
6490 if (!mark_feature_used (&o->arch))
6491 return FAIL;
6492
6493 *str = q;
6494 return o->value;
6495 }
6496
6497 /* Parse the operands of a table branch instruction. Similar to a memory
6498 operand. */
6499 static int
6500 parse_tb (char **str)
6501 {
6502 char * p = *str;
6503 int reg;
6504
6505 if (skip_past_char (&p, '[') == FAIL)
6506 {
6507 inst.error = _("'[' expected");
6508 return FAIL;
6509 }
6510
6511 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6512 {
6513 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6514 return FAIL;
6515 }
6516 inst.operands[0].reg = reg;
6517
6518 if (skip_past_comma (&p) == FAIL)
6519 {
6520 inst.error = _("',' expected");
6521 return FAIL;
6522 }
6523
6524 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6525 {
6526 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6527 return FAIL;
6528 }
6529 inst.operands[0].imm = reg;
6530
6531 if (skip_past_comma (&p) == SUCCESS)
6532 {
6533 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6534 return FAIL;
6535 if (inst.relocs[0].exp.X_add_number != 1)
6536 {
6537 inst.error = _("invalid shift");
6538 return FAIL;
6539 }
6540 inst.operands[0].shifted = 1;
6541 }
6542
6543 if (skip_past_char (&p, ']') == FAIL)
6544 {
6545 inst.error = _("']' expected");
6546 return FAIL;
6547 }
6548 *str = p;
6549 return SUCCESS;
6550 }
6551
6552 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6558
6559 static int
6560 parse_neon_mov (char **str, int *which_operand)
6561 {
6562 int i = *which_operand, val;
6563 enum arm_reg_type rtype;
6564 char *ptr = *str;
6565 struct neon_type_el optype;
6566
6567 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6568 {
6569 /* Cases 17 or 19. */
6570 inst.operands[i].reg = val;
6571 inst.operands[i].isvec = 1;
6572 inst.operands[i].isscalar = 2;
6573 inst.operands[i].vectype = optype;
6574 inst.operands[i++].present = 1;
6575
6576 if (skip_past_comma (&ptr) == FAIL)
6577 goto wanted_comma;
6578
6579 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6580 {
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst.operands[i].reg = val;
6583 inst.operands[i].isreg = 1;
6584 inst.operands[i].present = 1;
6585 }
6586 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6587 {
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst.operands[i].reg = val;
6590 inst.operands[i].isvec = 1;
6591 inst.operands[i].isscalar = 2;
6592 inst.operands[i].vectype = optype;
6593 inst.operands[i++].present = 1;
6594
6595 if (skip_past_comma (&ptr) == FAIL)
6596 goto wanted_comma;
6597
6598 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6599 goto wanted_arm;
6600
6601 inst.operands[i].reg = val;
6602 inst.operands[i].isreg = 1;
6603 inst.operands[i++].present = 1;
6604
6605 if (skip_past_comma (&ptr) == FAIL)
6606 goto wanted_comma;
6607
6608 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6609 goto wanted_arm;
6610
6611 inst.operands[i].reg = val;
6612 inst.operands[i].isreg = 1;
6613 inst.operands[i].present = 1;
6614 }
6615 else
6616 {
6617 first_error (_("expected ARM or MVE vector register"));
6618 return FAIL;
6619 }
6620 }
6621 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6622 {
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst.operands[i].reg = val;
6625 inst.operands[i].isscalar = 1;
6626 inst.operands[i].vectype = optype;
6627 inst.operands[i++].present = 1;
6628
6629 if (skip_past_comma (&ptr) == FAIL)
6630 goto wanted_comma;
6631
6632 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6633 goto wanted_arm;
6634
6635 inst.operands[i].reg = val;
6636 inst.operands[i].isreg = 1;
6637 inst.operands[i].present = 1;
6638 }
6639 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6640 != FAIL)
6641 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6642 != FAIL))
6643 {
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr) == FAIL)
6646 goto wanted_comma;
6647
6648 inst.operands[i].reg = val;
6649 inst.operands[i].isreg = 1;
6650 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6651 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6652 inst.operands[i].isvec = 1;
6653 inst.operands[i].vectype = optype;
6654 inst.operands[i++].present = 1;
6655
6656 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6657 {
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst.operands[i].reg = val;
6661 inst.operands[i].isreg = 1;
6662 inst.operands[i].present = 1;
6663
6664 if (rtype == REG_TYPE_NQ)
6665 {
6666 first_error (_("can't use Neon quad register here"));
6667 return FAIL;
6668 }
6669 else if (rtype != REG_TYPE_VFS)
6670 {
6671 i++;
6672 if (skip_past_comma (&ptr) == FAIL)
6673 goto wanted_comma;
6674 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6675 goto wanted_arm;
6676 inst.operands[i].reg = val;
6677 inst.operands[i].isreg = 1;
6678 inst.operands[i].present = 1;
6679 }
6680 }
6681 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6682 &optype)) != FAIL)
6683 {
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6688
6689 inst.operands[i].reg = val;
6690 inst.operands[i].isreg = 1;
6691 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6692 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6693 inst.operands[i].isvec = 1;
6694 inst.operands[i].vectype = optype;
6695 inst.operands[i].present = 1;
6696
6697 if (skip_past_comma (&ptr) == SUCCESS)
6698 {
6699 /* Case 15. */
6700 i++;
6701
6702 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6703 goto wanted_arm;
6704
6705 inst.operands[i].reg = val;
6706 inst.operands[i].isreg = 1;
6707 inst.operands[i++].present = 1;
6708
6709 if (skip_past_comma (&ptr) == FAIL)
6710 goto wanted_comma;
6711
6712 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6713 goto wanted_arm;
6714
6715 inst.operands[i].reg = val;
6716 inst.operands[i].isreg = 1;
6717 inst.operands[i].present = 1;
6718 }
6719 }
6720 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst.operands[i].immisfloat = 1;
6726 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6727 == SUCCESS)
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6730 ;
6731 else
6732 {
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6734 return FAIL;
6735 }
6736 }
6737 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6738 {
6739 /* Cases 6, 7, 16, 18. */
6740 inst.operands[i].reg = val;
6741 inst.operands[i].isreg = 1;
6742 inst.operands[i++].present = 1;
6743
6744 if (skip_past_comma (&ptr) == FAIL)
6745 goto wanted_comma;
6746
6747 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6748 {
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst.operands[i].reg = val;
6751 inst.operands[i].isscalar = 2;
6752 inst.operands[i].present = 1;
6753 inst.operands[i].vectype = optype;
6754 }
6755 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6756 {
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst.operands[i].reg = val;
6759 inst.operands[i].isscalar = 1;
6760 inst.operands[i].present = 1;
6761 inst.operands[i].vectype = optype;
6762 }
6763 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6764 {
6765 inst.operands[i].reg = val;
6766 inst.operands[i].isreg = 1;
6767 inst.operands[i++].present = 1;
6768
6769 if (skip_past_comma (&ptr) == FAIL)
6770 goto wanted_comma;
6771
6772 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6773 != FAIL)
6774 {
6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6776
6777 inst.operands[i].reg = val;
6778 inst.operands[i].isreg = 1;
6779 inst.operands[i].isvec = 1;
6780 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6781 inst.operands[i].vectype = optype;
6782 inst.operands[i].present = 1;
6783
6784 if (rtype == REG_TYPE_VFS)
6785 {
6786 /* Case 14. */
6787 i++;
6788 if (skip_past_comma (&ptr) == FAIL)
6789 goto wanted_comma;
6790 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6791 &optype)) == FAIL)
6792 {
6793 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6794 return FAIL;
6795 }
6796 inst.operands[i].reg = val;
6797 inst.operands[i].isreg = 1;
6798 inst.operands[i].isvec = 1;
6799 inst.operands[i].issingle = 1;
6800 inst.operands[i].vectype = optype;
6801 inst.operands[i].present = 1;
6802 }
6803 }
6804 else
6805 {
6806 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6807 != FAIL)
6808 {
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst.operands[i].reg = val;
6811 inst.operands[i].isvec = 1;
6812 inst.operands[i].isscalar = 2;
6813 inst.operands[i].vectype = optype;
6814 inst.operands[i++].present = 1;
6815
6816 if (skip_past_comma (&ptr) == FAIL)
6817 goto wanted_comma;
6818
6819 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6820 == FAIL)
6821 {
6822 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6823 return FAIL;
6824 }
6825 inst.operands[i].reg = val;
6826 inst.operands[i].isvec = 1;
6827 inst.operands[i].isscalar = 2;
6828 inst.operands[i].vectype = optype;
6829 inst.operands[i].present = 1;
6830 }
6831 else
6832 {
6833 first_error (_("VFP single, double or MVE vector register"
6834 " expected"));
6835 return FAIL;
6836 }
6837 }
6838 }
6839 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6840 != FAIL)
6841 {
6842 /* Case 13. */
6843 inst.operands[i].reg = val;
6844 inst.operands[i].isreg = 1;
6845 inst.operands[i].isvec = 1;
6846 inst.operands[i].issingle = 1;
6847 inst.operands[i].vectype = optype;
6848 inst.operands[i].present = 1;
6849 }
6850 }
6851 else
6852 {
6853 first_error (_("parse error"));
6854 return FAIL;
6855 }
6856
6857 /* Successfully parsed the operands. Update args. */
6858 *which_operand = i;
6859 *str = ptr;
6860 return SUCCESS;
6861
6862 wanted_comma:
6863 first_error (_("expected comma"));
6864 return FAIL;
6865
6866 wanted_arm:
6867 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6868 return FAIL;
6869 }
6870
6871 /* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6875
6876 /* Matcher codes for parse_operands. */
6877 enum operand_parse_code
6878 {
6879 OP_stop, /* end of line */
6880
6881 OP_RR, /* ARM register */
6882 OP_RRnpc, /* ARM register, not r15 */
6883 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6884 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6885 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6886 optional trailing ! */
6887 OP_RRw, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP, /* Coprocessor number */
6889 OP_RCN, /* Coprocessor register */
6890 OP_RF, /* FPA register */
6891 OP_RVS, /* VFP single precision register */
6892 OP_RVD, /* VFP double precision register (0..15) */
6893 OP_RND, /* Neon double precision register (0..31) */
6894 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
6896 */
6897 OP_RNQ, /* Neon quad precision register */
6898 OP_RNQMQ, /* Neon quad or MVE vector register. */
6899 OP_RVSD, /* VFP single or double precision register */
6900 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
6901 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
6902 OP_RNSD, /* Neon single or double precision register */
6903 OP_RNDQ, /* Neon double or quad precision register */
6904 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
6905 OP_RNDQMQR, /* Neon double, quad, MVE vector or ARM register. */
6906 OP_RNSDQ, /* Neon single, double or quad precision register */
6907 OP_RNSC, /* Neon scalar D[X] */
6908 OP_RVC, /* VFP control register */
6909 OP_RMF, /* Maverick F register */
6910 OP_RMD, /* Maverick D register */
6911 OP_RMFX, /* Maverick FX register */
6912 OP_RMDX, /* Maverick DX register */
6913 OP_RMAX, /* Maverick AX register */
6914 OP_RMDS, /* Maverick DSPSC register */
6915 OP_RIWR, /* iWMMXt wR register */
6916 OP_RIWC, /* iWMMXt wC register */
6917 OP_RIWG, /* iWMMXt wCG register */
6918 OP_RXA, /* XScale accumulator register */
6919
6920 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
6921 */
6922 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
6923 GPR (no SP/SP) */
6924 OP_RMQ, /* MVE vector register. */
6925 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
6926 OP_RMQRR, /* MVE vector or ARM register. */
6927
6928 /* New operands for Armv8.1-M Mainline. */
6929 OP_LR, /* ARM LR register */
6930 OP_RRe, /* ARM register, only even numbered. */
6931 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
6932 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
6933
6934 OP_REGLST, /* ARM register list */
6935 OP_CLRMLST, /* CLRM register list */
6936 OP_VRSLST, /* VFP single-precision register list */
6937 OP_VRDLST, /* VFP double-precision register list */
6938 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6939 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6940 OP_NSTRLST, /* Neon element/structure list */
6941 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
6942 OP_MSTRLST2, /* MVE vector list with two elements. */
6943 OP_MSTRLST4, /* MVE vector list with four elements. */
6944
6945 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6946 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6947 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
6948 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
6949 zero. */
6950 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6951 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
6952 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6953 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6954 */
6955 OP_RNSDQ_RNSC_MQ_RR, /* Vector S, D or Q reg, or MVE vector reg , or Neon
6956 scalar, or ARM register. */
6957 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6958 OP_RNDQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, or ARM register. */
6959 OP_RNDQMQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, MVE vector or ARM
6960 register. */
6961 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
6962 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6963 OP_VMOV, /* Neon VMOV operands. */
6964 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6965 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
6966 OP_RNDQMQ_Ibig,
6967 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6968 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6969 OP_VLDR, /* VLDR operand. */
6970
6971 OP_I0, /* immediate zero */
6972 OP_I7, /* immediate value 0 .. 7 */
6973 OP_I15, /* 0 .. 15 */
6974 OP_I16, /* 1 .. 16 */
6975 OP_I16z, /* 0 .. 16 */
6976 OP_I31, /* 0 .. 31 */
6977 OP_I31w, /* 0 .. 31, optional trailing ! */
6978 OP_I32, /* 1 .. 32 */
6979 OP_I32z, /* 0 .. 32 */
6980 OP_I63, /* 0 .. 63 */
6981 OP_I63s, /* -64 .. 63 */
6982 OP_I64, /* 1 .. 64 */
6983 OP_I64z, /* 0 .. 64 */
6984 OP_I255, /* 0 .. 255 */
6985
6986 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6987 OP_I7b, /* 0 .. 7 */
6988 OP_I15b, /* 0 .. 15 */
6989 OP_I31b, /* 0 .. 31 */
6990
6991 OP_SH, /* shifter operand */
6992 OP_SHG, /* shifter operand with possible group relocation */
6993 OP_ADDR, /* Memory address expression (any mode) */
6994 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
6995 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6996 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6997 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6998 OP_EXP, /* arbitrary expression */
6999 OP_EXPi, /* same, with optional immediate prefix */
7000 OP_EXPr, /* same, with optional relocation suffix */
7001 OP_EXPs, /* same, with optional non-first operand relocation suffix */
7002 OP_HALF, /* 0 .. 65535 or low/high reloc. */
7003 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
7004 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
7005
7006 OP_CPSF, /* CPS flags */
7007 OP_ENDI, /* Endianness specifier */
7008 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7009 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
7010 OP_COND, /* conditional code */
7011 OP_TB, /* Table branch. */
7012
7013 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7014
7015 OP_RRnpc_I0, /* ARM register or literal 0 */
7016 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
7017 OP_RR_EXi, /* ARM register or expression with imm prefix */
7018 OP_RF_IF, /* FPA register or immediate */
7019 OP_RIWR_RIWC, /* iWMMXt R or C reg */
7020 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
7021
7022 /* Optional operands. */
7023 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7024 OP_oI31b, /* 0 .. 31 */
7025 OP_oI32b, /* 1 .. 32 */
7026 OP_oI32z, /* 0 .. 32 */
7027 OP_oIffffb, /* 0 .. 65535 */
7028 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7029
7030 OP_oRR, /* ARM register */
7031 OP_oLR, /* ARM LR register */
7032 OP_oRRnpc, /* ARM register, not the PC */
7033 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
7034 OP_oRRw, /* ARM register, not r15, optional trailing ! */
7035 OP_oRND, /* Optional Neon double precision register */
7036 OP_oRNQ, /* Optional Neon quad precision register */
7037 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
7038 OP_oRNDQ, /* Optional Neon double or quad precision register */
7039 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
7040 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7041 register. */
7042 OP_oSHll, /* LSL immediate */
7043 OP_oSHar, /* ASR immediate */
7044 OP_oSHllar, /* LSL or ASR immediate */
7045 OP_oROR, /* ROR 0/8/16/24 */
7046 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
7047
7048 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7049
7050 /* Some pre-defined mixed (ARM/THUMB) operands. */
7051 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7052 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7053 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7054
7055 OP_FIRST_OPTIONAL = OP_oI7b
7056 };
7057
7058 /* Generic instruction operand parser. This does no encoding and no
7059 semantic validation; it merely squirrels values away in the inst
7060 structure. Returns SUCCESS or FAIL depending on whether the
7061 specified grammar matched. */
7062 static int
7063 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
7064 {
7065 unsigned const int *upat = pattern;
7066 char *backtrack_pos = 0;
7067 const char *backtrack_error = 0;
7068 int i, val = 0, backtrack_index = 0;
7069 enum arm_reg_type rtype;
7070 parse_operand_result result;
7071 unsigned int op_parse_code;
7072 bfd_boolean partial_match;
7073
7074 #define po_char_or_fail(chr) \
7075 do \
7076 { \
7077 if (skip_past_char (&str, chr) == FAIL) \
7078 goto bad_args; \
7079 } \
7080 while (0)
7081
7082 #define po_reg_or_fail(regtype) \
7083 do \
7084 { \
7085 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7086 & inst.operands[i].vectype); \
7087 if (val == FAIL) \
7088 { \
7089 first_error (_(reg_expected_msgs[regtype])); \
7090 goto failure; \
7091 } \
7092 inst.operands[i].reg = val; \
7093 inst.operands[i].isreg = 1; \
7094 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7095 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7096 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7097 || rtype == REG_TYPE_VFD \
7098 || rtype == REG_TYPE_NQ); \
7099 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7100 } \
7101 while (0)
7102
7103 #define po_reg_or_goto(regtype, label) \
7104 do \
7105 { \
7106 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7107 & inst.operands[i].vectype); \
7108 if (val == FAIL) \
7109 goto label; \
7110 \
7111 inst.operands[i].reg = val; \
7112 inst.operands[i].isreg = 1; \
7113 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7114 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7115 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7116 || rtype == REG_TYPE_VFD \
7117 || rtype == REG_TYPE_NQ); \
7118 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7119 } \
7120 while (0)
7121
7122 #define po_imm_or_fail(min, max, popt) \
7123 do \
7124 { \
7125 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7126 goto failure; \
7127 inst.operands[i].imm = val; \
7128 } \
7129 while (0)
7130
7131 #define po_scalar_or_goto(elsz, label, reg_type) \
7132 do \
7133 { \
7134 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7135 reg_type); \
7136 if (val == FAIL) \
7137 goto label; \
7138 inst.operands[i].reg = val; \
7139 inst.operands[i].isscalar = 1; \
7140 } \
7141 while (0)
7142
7143 #define po_misc_or_fail(expr) \
7144 do \
7145 { \
7146 if (expr) \
7147 goto failure; \
7148 } \
7149 while (0)
7150
7151 #define po_misc_or_fail_no_backtrack(expr) \
7152 do \
7153 { \
7154 result = expr; \
7155 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7156 backtrack_pos = 0; \
7157 if (result != PARSE_OPERAND_SUCCESS) \
7158 goto failure; \
7159 } \
7160 while (0)
7161
7162 #define po_barrier_or_imm(str) \
7163 do \
7164 { \
7165 val = parse_barrier (&str); \
7166 if (val == FAIL && ! ISALPHA (*str)) \
7167 goto immediate; \
7168 if (val == FAIL \
7169 /* ISB can only take SY as an option. */ \
7170 || ((inst.instruction & 0xf0) == 0x60 \
7171 && val != 0xf)) \
7172 { \
7173 inst.error = _("invalid barrier type"); \
7174 backtrack_pos = 0; \
7175 goto failure; \
7176 } \
7177 } \
7178 while (0)
7179
7180 skip_whitespace (str);
7181
7182 for (i = 0; upat[i] != OP_stop; i++)
7183 {
7184 op_parse_code = upat[i];
7185 if (op_parse_code >= 1<<16)
7186 op_parse_code = thumb ? (op_parse_code >> 16)
7187 : (op_parse_code & ((1<<16)-1));
7188
7189 if (op_parse_code >= OP_FIRST_OPTIONAL)
7190 {
7191 /* Remember where we are in case we need to backtrack. */
7192 backtrack_pos = str;
7193 backtrack_error = inst.error;
7194 backtrack_index = i;
7195 }
7196
7197 if (i > 0 && (i > 1 || inst.operands[0].present))
7198 po_char_or_fail (',');
7199
7200 switch (op_parse_code)
7201 {
7202 /* Registers */
7203 case OP_oRRnpc:
7204 case OP_oRRnpcsp:
7205 case OP_RRnpc:
7206 case OP_RRnpcsp:
7207 case OP_oRR:
7208 case OP_RRe:
7209 case OP_RRo:
7210 case OP_LR:
7211 case OP_oLR:
7212 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7213 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7214 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7215 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7216 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7217 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
7218 case OP_oRND:
7219 case OP_RNDMQR:
7220 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7221 break;
7222 try_rndmq:
7223 case OP_RNDMQ:
7224 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7225 break;
7226 try_rnd:
7227 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
7228 case OP_RVC:
7229 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7230 break;
7231 /* Also accept generic coprocessor regs for unknown registers. */
7232 coproc_reg:
7233 po_reg_or_fail (REG_TYPE_CN);
7234 break;
7235 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7236 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7237 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7238 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7239 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7240 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7241 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7242 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7243 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7244 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
7245 case OP_oRNQ:
7246 case OP_RNQMQ:
7247 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7248 break;
7249 try_nq:
7250 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
7251 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7252 case OP_RNDQMQR:
7253 po_reg_or_goto (REG_TYPE_RN, try_rndqmq);
7254 break;
7255 try_rndqmq:
7256 case OP_oRNDQMQ:
7257 case OP_RNDQMQ:
7258 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7259 break;
7260 try_rndq:
7261 case OP_oRNDQ:
7262 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
7263 case OP_RVSDMQ:
7264 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7265 break;
7266 try_rvsd:
7267 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
7268 case OP_RVSD_COND:
7269 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7270 break;
7271 case OP_oRNSDQ:
7272 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
7273 case OP_RNSDQMQR:
7274 po_reg_or_goto (REG_TYPE_RN, try_mq);
7275 break;
7276 try_mq:
7277 case OP_oRNSDQMQ:
7278 case OP_RNSDQMQ:
7279 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7280 break;
7281 try_nsdq2:
7282 po_reg_or_fail (REG_TYPE_NSDQ);
7283 inst.error = 0;
7284 break;
7285 case OP_RMQRR:
7286 po_reg_or_goto (REG_TYPE_RN, try_rmq);
7287 break;
7288 try_rmq:
7289 case OP_RMQ:
7290 po_reg_or_fail (REG_TYPE_MQ);
7291 break;
7292 /* Neon scalar. Using an element size of 8 means that some invalid
7293 scalars are accepted here, so deal with those in later code. */
7294 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
7295
7296 case OP_RNDQ_I0:
7297 {
7298 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7299 break;
7300 try_imm0:
7301 po_imm_or_fail (0, 0, TRUE);
7302 }
7303 break;
7304
7305 case OP_RVSD_I0:
7306 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7307 break;
7308
7309 case OP_RSVDMQ_FI0:
7310 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7311 break;
7312 try_rsvd_fi0:
7313 case OP_RSVD_FI0:
7314 {
7315 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7316 break;
7317 try_ifimm0:
7318 if (parse_ifimm_zero (&str))
7319 inst.operands[i].imm = 0;
7320 else
7321 {
7322 inst.error
7323 = _("only floating point zero is allowed as immediate value");
7324 goto failure;
7325 }
7326 }
7327 break;
7328
7329 case OP_RR_RNSC:
7330 {
7331 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
7332 break;
7333 try_rr:
7334 po_reg_or_fail (REG_TYPE_RN);
7335 }
7336 break;
7337
7338 case OP_RNSDQ_RNSC_MQ_RR:
7339 po_reg_or_goto (REG_TYPE_RN, try_rnsdq_rnsc_mq);
7340 break;
7341 try_rnsdq_rnsc_mq:
7342 case OP_RNSDQ_RNSC_MQ:
7343 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7344 break;
7345 try_rnsdq_rnsc:
7346 case OP_RNSDQ_RNSC:
7347 {
7348 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7349 inst.error = 0;
7350 break;
7351 try_nsdq:
7352 po_reg_or_fail (REG_TYPE_NSDQ);
7353 inst.error = 0;
7354 }
7355 break;
7356
7357 case OP_RNSD_RNSC:
7358 {
7359 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
7360 break;
7361 try_s_scalar:
7362 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
7363 break;
7364 try_nsd:
7365 po_reg_or_fail (REG_TYPE_NSD);
7366 }
7367 break;
7368
7369 case OP_RNDQMQ_RNSC_RR:
7370 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc_rr);
7371 break;
7372 try_rndq_rnsc_rr:
7373 case OP_RNDQ_RNSC_RR:
7374 po_reg_or_goto (REG_TYPE_RN, try_rndq_rnsc);
7375 break;
7376 case OP_RNDQMQ_RNSC:
7377 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7378 break;
7379 try_rndq_rnsc:
7380 case OP_RNDQ_RNSC:
7381 {
7382 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
7383 break;
7384 try_ndq:
7385 po_reg_or_fail (REG_TYPE_NDQ);
7386 }
7387 break;
7388
7389 case OP_RND_RNSC:
7390 {
7391 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
7392 break;
7393 try_vfd:
7394 po_reg_or_fail (REG_TYPE_VFD);
7395 }
7396 break;
7397
7398 case OP_VMOV:
7399 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7400 not careful then bad things might happen. */
7401 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7402 break;
7403
7404 case OP_RNDQMQ_Ibig:
7405 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7406 break;
7407 try_rndq_ibig:
7408 case OP_RNDQ_Ibig:
7409 {
7410 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7411 break;
7412 try_immbig:
7413 /* There's a possibility of getting a 64-bit immediate here, so
7414 we need special handling. */
7415 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7416 == FAIL)
7417 {
7418 inst.error = _("immediate value is out of range");
7419 goto failure;
7420 }
7421 }
7422 break;
7423
7424 case OP_RNDQ_I63b:
7425 {
7426 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7427 break;
7428 try_shimm:
7429 po_imm_or_fail (0, 63, TRUE);
7430 }
7431 break;
7432
7433 case OP_RRnpcb:
7434 po_char_or_fail ('[');
7435 po_reg_or_fail (REG_TYPE_RN);
7436 po_char_or_fail (']');
7437 break;
7438
7439 case OP_RRnpctw:
7440 case OP_RRw:
7441 case OP_oRRw:
7442 po_reg_or_fail (REG_TYPE_RN);
7443 if (skip_past_char (&str, '!') == SUCCESS)
7444 inst.operands[i].writeback = 1;
7445 break;
7446
7447 /* Immediates */
7448 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7449 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7450 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
7451 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
7452 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7453 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
7454 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
7455 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
7456 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7457 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7458 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
7459 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
7460
7461 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7462 case OP_oI7b:
7463 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7464 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7465 case OP_oI31b:
7466 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
7467 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7468 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
7469 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7470
7471 /* Immediate variants */
7472 case OP_oI255c:
7473 po_char_or_fail ('{');
7474 po_imm_or_fail (0, 255, TRUE);
7475 po_char_or_fail ('}');
7476 break;
7477
7478 case OP_I31w:
7479 /* The expression parser chokes on a trailing !, so we have
7480 to find it first and zap it. */
7481 {
7482 char *s = str;
7483 while (*s && *s != ',')
7484 s++;
7485 if (s[-1] == '!')
7486 {
7487 s[-1] = '\0';
7488 inst.operands[i].writeback = 1;
7489 }
7490 po_imm_or_fail (0, 31, TRUE);
7491 if (str == s - 1)
7492 str = s;
7493 }
7494 break;
7495
7496 /* Expressions */
7497 case OP_EXPi: EXPi:
7498 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7499 GE_OPT_PREFIX));
7500 break;
7501
7502 case OP_EXP:
7503 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7504 GE_NO_PREFIX));
7505 break;
7506
7507 case OP_EXPr: EXPr:
7508 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7509 GE_NO_PREFIX));
7510 if (inst.relocs[0].exp.X_op == O_symbol)
7511 {
7512 val = parse_reloc (&str);
7513 if (val == -1)
7514 {
7515 inst.error = _("unrecognized relocation suffix");
7516 goto failure;
7517 }
7518 else if (val != BFD_RELOC_UNUSED)
7519 {
7520 inst.operands[i].imm = val;
7521 inst.operands[i].hasreloc = 1;
7522 }
7523 }
7524 break;
7525
7526 case OP_EXPs:
7527 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7528 GE_NO_PREFIX));
7529 if (inst.relocs[i].exp.X_op == O_symbol)
7530 {
7531 inst.operands[i].hasreloc = 1;
7532 }
7533 else if (inst.relocs[i].exp.X_op == O_constant)
7534 {
7535 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7536 inst.operands[i].hasreloc = 0;
7537 }
7538 break;
7539
7540 /* Operand for MOVW or MOVT. */
7541 case OP_HALF:
7542 po_misc_or_fail (parse_half (&str));
7543 break;
7544
7545 /* Register or expression. */
7546 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7547 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
7548
7549 /* Register or immediate. */
7550 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7551 I0: po_imm_or_fail (0, 0, FALSE); break;
7552
7553 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7554 IF:
7555 if (!is_immediate_prefix (*str))
7556 goto bad_args;
7557 str++;
7558 val = parse_fpa_immediate (&str);
7559 if (val == FAIL)
7560 goto failure;
7561 /* FPA immediates are encoded as registers 8-15.
7562 parse_fpa_immediate has already applied the offset. */
7563 inst.operands[i].reg = val;
7564 inst.operands[i].isreg = 1;
7565 break;
7566
7567 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7568 I32z: po_imm_or_fail (0, 32, FALSE); break;
7569
7570 /* Two kinds of register. */
7571 case OP_RIWR_RIWC:
7572 {
7573 struct reg_entry *rege = arm_reg_parse_multi (&str);
7574 if (!rege
7575 || (rege->type != REG_TYPE_MMXWR
7576 && rege->type != REG_TYPE_MMXWC
7577 && rege->type != REG_TYPE_MMXWCG))
7578 {
7579 inst.error = _("iWMMXt data or control register expected");
7580 goto failure;
7581 }
7582 inst.operands[i].reg = rege->number;
7583 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7584 }
7585 break;
7586
7587 case OP_RIWC_RIWG:
7588 {
7589 struct reg_entry *rege = arm_reg_parse_multi (&str);
7590 if (!rege
7591 || (rege->type != REG_TYPE_MMXWC
7592 && rege->type != REG_TYPE_MMXWCG))
7593 {
7594 inst.error = _("iWMMXt control register expected");
7595 goto failure;
7596 }
7597 inst.operands[i].reg = rege->number;
7598 inst.operands[i].isreg = 1;
7599 }
7600 break;
7601
7602 /* Misc */
7603 case OP_CPSF: val = parse_cps_flags (&str); break;
7604 case OP_ENDI: val = parse_endian_specifier (&str); break;
7605 case OP_oROR: val = parse_ror (&str); break;
7606 try_cond:
7607 case OP_COND: val = parse_cond (&str); break;
7608 case OP_oBARRIER_I15:
7609 po_barrier_or_imm (str); break;
7610 immediate:
7611 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
7612 goto failure;
7613 break;
7614
7615 case OP_wPSR:
7616 case OP_rPSR:
7617 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7618 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7619 {
7620 inst.error = _("Banked registers are not available with this "
7621 "architecture.");
7622 goto failure;
7623 }
7624 break;
7625 try_psr:
7626 val = parse_psr (&str, op_parse_code == OP_wPSR);
7627 break;
7628
7629 case OP_VLDR:
7630 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7631 break;
7632 try_sysreg:
7633 val = parse_sys_vldr_vstr (&str);
7634 break;
7635
7636 case OP_APSR_RR:
7637 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7638 break;
7639 try_apsr:
7640 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7641 instruction). */
7642 if (strncasecmp (str, "APSR_", 5) == 0)
7643 {
7644 unsigned found = 0;
7645 str += 5;
7646 while (found < 15)
7647 switch (*str++)
7648 {
7649 case 'c': found = (found & 1) ? 16 : found | 1; break;
7650 case 'n': found = (found & 2) ? 16 : found | 2; break;
7651 case 'z': found = (found & 4) ? 16 : found | 4; break;
7652 case 'v': found = (found & 8) ? 16 : found | 8; break;
7653 default: found = 16;
7654 }
7655 if (found != 15)
7656 goto failure;
7657 inst.operands[i].isvec = 1;
7658 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7659 inst.operands[i].reg = REG_PC;
7660 }
7661 else
7662 goto failure;
7663 break;
7664
7665 case OP_TB:
7666 po_misc_or_fail (parse_tb (&str));
7667 break;
7668
7669 /* Register lists. */
7670 case OP_REGLST:
7671 val = parse_reg_list (&str, REGLIST_RN);
7672 if (*str == '^')
7673 {
7674 inst.operands[i].writeback = 1;
7675 str++;
7676 }
7677 break;
7678
7679 case OP_CLRMLST:
7680 val = parse_reg_list (&str, REGLIST_CLRM);
7681 break;
7682
7683 case OP_VRSLST:
7684 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7685 &partial_match);
7686 break;
7687
7688 case OP_VRDLST:
7689 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7690 &partial_match);
7691 break;
7692
7693 case OP_VRSDLST:
7694 /* Allow Q registers too. */
7695 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7696 REGLIST_NEON_D, &partial_match);
7697 if (val == FAIL)
7698 {
7699 inst.error = NULL;
7700 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7701 REGLIST_VFP_S, &partial_match);
7702 inst.operands[i].issingle = 1;
7703 }
7704 break;
7705
7706 case OP_VRSDVLST:
7707 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7708 REGLIST_VFP_D_VPR, &partial_match);
7709 if (val == FAIL && !partial_match)
7710 {
7711 inst.error = NULL;
7712 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7713 REGLIST_VFP_S_VPR, &partial_match);
7714 inst.operands[i].issingle = 1;
7715 }
7716 break;
7717
7718 case OP_NRDLST:
7719 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7720 REGLIST_NEON_D, &partial_match);
7721 break;
7722
7723 case OP_MSTRLST4:
7724 case OP_MSTRLST2:
7725 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7726 1, &inst.operands[i].vectype);
7727 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7728 goto failure;
7729 break;
7730 case OP_NSTRLST:
7731 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7732 0, &inst.operands[i].vectype);
7733 break;
7734
7735 /* Addressing modes */
7736 case OP_ADDRMVE:
7737 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7738 break;
7739
7740 case OP_ADDR:
7741 po_misc_or_fail (parse_address (&str, i));
7742 break;
7743
7744 case OP_ADDRGLDR:
7745 po_misc_or_fail_no_backtrack (
7746 parse_address_group_reloc (&str, i, GROUP_LDR));
7747 break;
7748
7749 case OP_ADDRGLDRS:
7750 po_misc_or_fail_no_backtrack (
7751 parse_address_group_reloc (&str, i, GROUP_LDRS));
7752 break;
7753
7754 case OP_ADDRGLDC:
7755 po_misc_or_fail_no_backtrack (
7756 parse_address_group_reloc (&str, i, GROUP_LDC));
7757 break;
7758
7759 case OP_SH:
7760 po_misc_or_fail (parse_shifter_operand (&str, i));
7761 break;
7762
7763 case OP_SHG:
7764 po_misc_or_fail_no_backtrack (
7765 parse_shifter_operand_group_reloc (&str, i));
7766 break;
7767
7768 case OP_oSHll:
7769 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7770 break;
7771
7772 case OP_oSHar:
7773 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7774 break;
7775
7776 case OP_oSHllar:
7777 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7778 break;
7779
7780 case OP_RMQRZ:
7781 case OP_oRMQRZ:
7782 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7783 break;
7784 try_rr_zr:
7785 po_reg_or_goto (REG_TYPE_RN, ZR);
7786 break;
7787 ZR:
7788 po_reg_or_fail (REG_TYPE_ZR);
7789 break;
7790
7791 default:
7792 as_fatal (_("unhandled operand code %d"), op_parse_code);
7793 }
7794
7795 /* Various value-based sanity checks and shared operations. We
7796 do not signal immediate failures for the register constraints;
7797 this allows a syntax error to take precedence. */
7798 switch (op_parse_code)
7799 {
7800 case OP_oRRnpc:
7801 case OP_RRnpc:
7802 case OP_RRnpcb:
7803 case OP_RRw:
7804 case OP_oRRw:
7805 case OP_RRnpc_I0:
7806 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7807 inst.error = BAD_PC;
7808 break;
7809
7810 case OP_oRRnpcsp:
7811 case OP_RRnpcsp:
7812 if (inst.operands[i].isreg)
7813 {
7814 if (inst.operands[i].reg == REG_PC)
7815 inst.error = BAD_PC;
7816 else if (inst.operands[i].reg == REG_SP
7817 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7818 relaxed since ARMv8-A. */
7819 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7820 {
7821 gas_assert (thumb);
7822 inst.error = BAD_SP;
7823 }
7824 }
7825 break;
7826
7827 case OP_RRnpctw:
7828 if (inst.operands[i].isreg
7829 && inst.operands[i].reg == REG_PC
7830 && (inst.operands[i].writeback || thumb))
7831 inst.error = BAD_PC;
7832 break;
7833
7834 case OP_RVSD_COND:
7835 case OP_VLDR:
7836 if (inst.operands[i].isreg)
7837 break;
7838 /* fall through. */
7839
7840 case OP_CPSF:
7841 case OP_ENDI:
7842 case OP_oROR:
7843 case OP_wPSR:
7844 case OP_rPSR:
7845 case OP_COND:
7846 case OP_oBARRIER_I15:
7847 case OP_REGLST:
7848 case OP_CLRMLST:
7849 case OP_VRSLST:
7850 case OP_VRDLST:
7851 case OP_VRSDLST:
7852 case OP_VRSDVLST:
7853 case OP_NRDLST:
7854 case OP_NSTRLST:
7855 case OP_MSTRLST2:
7856 case OP_MSTRLST4:
7857 if (val == FAIL)
7858 goto failure;
7859 inst.operands[i].imm = val;
7860 break;
7861
7862 case OP_LR:
7863 case OP_oLR:
7864 if (inst.operands[i].reg != REG_LR)
7865 inst.error = _("operand must be LR register");
7866 break;
7867
7868 case OP_RMQRZ:
7869 case OP_oRMQRZ:
7870 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
7871 inst.error = BAD_PC;
7872 break;
7873
7874 case OP_RRe:
7875 if (inst.operands[i].isreg
7876 && (inst.operands[i].reg & 0x00000001) != 0)
7877 inst.error = BAD_ODD;
7878 break;
7879
7880 case OP_RRo:
7881 if (inst.operands[i].isreg)
7882 {
7883 if ((inst.operands[i].reg & 0x00000001) != 1)
7884 inst.error = BAD_EVEN;
7885 else if (inst.operands[i].reg == REG_SP)
7886 as_tsktsk (MVE_BAD_SP);
7887 else if (inst.operands[i].reg == REG_PC)
7888 inst.error = BAD_PC;
7889 }
7890 break;
7891
7892 default:
7893 break;
7894 }
7895
7896 /* If we get here, this operand was successfully parsed. */
7897 inst.operands[i].present = 1;
7898 continue;
7899
7900 bad_args:
7901 inst.error = BAD_ARGS;
7902
7903 failure:
7904 if (!backtrack_pos)
7905 {
7906 /* The parse routine should already have set inst.error, but set a
7907 default here just in case. */
7908 if (!inst.error)
7909 inst.error = BAD_SYNTAX;
7910 return FAIL;
7911 }
7912
7913 /* Do not backtrack over a trailing optional argument that
7914 absorbed some text. We will only fail again, with the
7915 'garbage following instruction' error message, which is
7916 probably less helpful than the current one. */
7917 if (backtrack_index == i && backtrack_pos != str
7918 && upat[i+1] == OP_stop)
7919 {
7920 if (!inst.error)
7921 inst.error = BAD_SYNTAX;
7922 return FAIL;
7923 }
7924
7925 /* Try again, skipping the optional argument at backtrack_pos. */
7926 str = backtrack_pos;
7927 inst.error = backtrack_error;
7928 inst.operands[backtrack_index].present = 0;
7929 i = backtrack_index;
7930 backtrack_pos = 0;
7931 }
7932
7933 /* Check that we have parsed all the arguments. */
7934 if (*str != '\0' && !inst.error)
7935 inst.error = _("garbage following instruction");
7936
7937 return inst.error ? FAIL : SUCCESS;
7938 }
7939
7940 #undef po_char_or_fail
7941 #undef po_reg_or_fail
7942 #undef po_reg_or_goto
7943 #undef po_imm_or_fail
7944 #undef po_scalar_or_fail
7945 #undef po_barrier_or_imm
7946
7947 /* Shorthand macro for instruction encoding functions issuing errors. */
7948 #define constraint(expr, err) \
7949 do \
7950 { \
7951 if (expr) \
7952 { \
7953 inst.error = err; \
7954 return; \
7955 } \
7956 } \
7957 while (0)
7958
7959 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7960 instructions are unpredictable if these registers are used. This
7961 is the BadReg predicate in ARM's Thumb-2 documentation.
7962
7963 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7964 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7965 #define reject_bad_reg(reg) \
7966 do \
7967 if (reg == REG_PC) \
7968 { \
7969 inst.error = BAD_PC; \
7970 return; \
7971 } \
7972 else if (reg == REG_SP \
7973 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7974 { \
7975 inst.error = BAD_SP; \
7976 return; \
7977 } \
7978 while (0)
7979
7980 /* If REG is R13 (the stack pointer), warn that its use is
7981 deprecated. */
7982 #define warn_deprecated_sp(reg) \
7983 do \
7984 if (warn_on_deprecated && reg == REG_SP) \
7985 as_tsktsk (_("use of r13 is deprecated")); \
7986 while (0)
7987
7988 /* Functions for operand encoding. ARM, then Thumb. */
7989
7990 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
7991
7992 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7993
7994 The only binary encoding difference is the Coprocessor number. Coprocessor
7995 9 is used for half-precision calculations or conversions. The format of the
7996 instruction is the same as the equivalent Coprocessor 10 instruction that
7997 exists for Single-Precision operation. */
7998
7999 static void
8000 do_scalar_fp16_v82_encode (void)
8001 {
8002 if (inst.cond < COND_ALWAYS)
8003 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
8004 " the behaviour is UNPREDICTABLE"));
8005 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
8006 _(BAD_FP16));
8007
8008 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
8009 mark_feature_used (&arm_ext_fp16);
8010 }
8011
8012 /* If VAL can be encoded in the immediate field of an ARM instruction,
8013 return the encoded form. Otherwise, return FAIL. */
8014
8015 static unsigned int
8016 encode_arm_immediate (unsigned int val)
8017 {
8018 unsigned int a, i;
8019
8020 if (val <= 0xff)
8021 return val;
8022
8023 for (i = 2; i < 32; i += 2)
8024 if ((a = rotate_left (val, i)) <= 0xff)
8025 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8026
8027 return FAIL;
8028 }
8029
8030 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8031 return the encoded form. Otherwise, return FAIL. */
8032 static unsigned int
8033 encode_thumb32_immediate (unsigned int val)
8034 {
8035 unsigned int a, i;
8036
8037 if (val <= 0xff)
8038 return val;
8039
8040 for (i = 1; i <= 24; i++)
8041 {
8042 a = val >> i;
8043 if ((val & ~(0xff << i)) == 0)
8044 return ((val >> i) & 0x7f) | ((32 - i) << 7);
8045 }
8046
8047 a = val & 0xff;
8048 if (val == ((a << 16) | a))
8049 return 0x100 | a;
8050 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8051 return 0x300 | a;
8052
8053 a = val & 0xff00;
8054 if (val == ((a << 16) | a))
8055 return 0x200 | (a >> 8);
8056
8057 return FAIL;
8058 }
8059 /* Encode a VFP SP or DP register number into inst.instruction. */
8060
8061 static void
8062 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8063 {
8064 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8065 && reg > 15)
8066 {
8067 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
8068 {
8069 if (thumb_mode)
8070 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8071 fpu_vfp_ext_d32);
8072 else
8073 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8074 fpu_vfp_ext_d32);
8075 }
8076 else
8077 {
8078 first_error (_("D register out of range for selected VFP version"));
8079 return;
8080 }
8081 }
8082
8083 switch (pos)
8084 {
8085 case VFP_REG_Sd:
8086 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8087 break;
8088
8089 case VFP_REG_Sn:
8090 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8091 break;
8092
8093 case VFP_REG_Sm:
8094 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8095 break;
8096
8097 case VFP_REG_Dd:
8098 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8099 break;
8100
8101 case VFP_REG_Dn:
8102 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8103 break;
8104
8105 case VFP_REG_Dm:
8106 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8107 break;
8108
8109 default:
8110 abort ();
8111 }
8112 }
8113
8114 /* Encode a <shift> in an ARM-format instruction. The immediate,
8115 if any, is handled by md_apply_fix. */
8116 static void
8117 encode_arm_shift (int i)
8118 {
8119 /* register-shifted register. */
8120 if (inst.operands[i].immisreg)
8121 {
8122 int op_index;
8123 for (op_index = 0; op_index <= i; ++op_index)
8124 {
8125 /* Check the operand only when it's presented. In pre-UAL syntax,
8126 if the destination register is the same as the first operand, two
8127 register form of the instruction can be used. */
8128 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8129 && inst.operands[op_index].reg == REG_PC)
8130 as_warn (UNPRED_REG ("r15"));
8131 }
8132
8133 if (inst.operands[i].imm == REG_PC)
8134 as_warn (UNPRED_REG ("r15"));
8135 }
8136
8137 if (inst.operands[i].shift_kind == SHIFT_RRX)
8138 inst.instruction |= SHIFT_ROR << 5;
8139 else
8140 {
8141 inst.instruction |= inst.operands[i].shift_kind << 5;
8142 if (inst.operands[i].immisreg)
8143 {
8144 inst.instruction |= SHIFT_BY_REG;
8145 inst.instruction |= inst.operands[i].imm << 8;
8146 }
8147 else
8148 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8149 }
8150 }
8151
8152 static void
8153 encode_arm_shifter_operand (int i)
8154 {
8155 if (inst.operands[i].isreg)
8156 {
8157 inst.instruction |= inst.operands[i].reg;
8158 encode_arm_shift (i);
8159 }
8160 else
8161 {
8162 inst.instruction |= INST_IMMEDIATE;
8163 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
8164 inst.instruction |= inst.operands[i].imm;
8165 }
8166 }
8167
8168 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
8169 static void
8170 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
8171 {
8172 /* PR 14260:
8173 Generate an error if the operand is not a register. */
8174 constraint (!inst.operands[i].isreg,
8175 _("Instruction does not support =N addresses"));
8176
8177 inst.instruction |= inst.operands[i].reg << 16;
8178
8179 if (inst.operands[i].preind)
8180 {
8181 if (is_t)
8182 {
8183 inst.error = _("instruction does not accept preindexed addressing");
8184 return;
8185 }
8186 inst.instruction |= PRE_INDEX;
8187 if (inst.operands[i].writeback)
8188 inst.instruction |= WRITE_BACK;
8189
8190 }
8191 else if (inst.operands[i].postind)
8192 {
8193 gas_assert (inst.operands[i].writeback);
8194 if (is_t)
8195 inst.instruction |= WRITE_BACK;
8196 }
8197 else /* unindexed - only for coprocessor */
8198 {
8199 inst.error = _("instruction does not accept unindexed addressing");
8200 return;
8201 }
8202
8203 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8204 && (((inst.instruction & 0x000f0000) >> 16)
8205 == ((inst.instruction & 0x0000f000) >> 12)))
8206 as_warn ((inst.instruction & LOAD_BIT)
8207 ? _("destination register same as write-back base")
8208 : _("source register same as write-back base"));
8209 }
8210
8211 /* inst.operands[i] was set up by parse_address. Encode it into an
8212 ARM-format mode 2 load or store instruction. If is_t is true,
8213 reject forms that cannot be used with a T instruction (i.e. not
8214 post-indexed). */
8215 static void
8216 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
8217 {
8218 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8219
8220 encode_arm_addr_mode_common (i, is_t);
8221
8222 if (inst.operands[i].immisreg)
8223 {
8224 constraint ((inst.operands[i].imm == REG_PC
8225 || (is_pc && inst.operands[i].writeback)),
8226 BAD_PC_ADDRESSING);
8227 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8228 inst.instruction |= inst.operands[i].imm;
8229 if (!inst.operands[i].negative)
8230 inst.instruction |= INDEX_UP;
8231 if (inst.operands[i].shifted)
8232 {
8233 if (inst.operands[i].shift_kind == SHIFT_RRX)
8234 inst.instruction |= SHIFT_ROR << 5;
8235 else
8236 {
8237 inst.instruction |= inst.operands[i].shift_kind << 5;
8238 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8239 }
8240 }
8241 }
8242 else /* immediate offset in inst.relocs[0] */
8243 {
8244 if (is_pc && !inst.relocs[0].pc_rel)
8245 {
8246 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
8247
8248 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8249 cannot use PC in addressing.
8250 PC cannot be used in writeback addressing, either. */
8251 constraint ((is_t || inst.operands[i].writeback),
8252 BAD_PC_ADDRESSING);
8253
8254 /* Use of PC in str is deprecated for ARMv7. */
8255 if (warn_on_deprecated
8256 && !is_load
8257 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
8258 as_tsktsk (_("use of PC in this instruction is deprecated"));
8259 }
8260
8261 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8262 {
8263 /* Prefer + for zero encoded value. */
8264 if (!inst.operands[i].negative)
8265 inst.instruction |= INDEX_UP;
8266 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
8267 }
8268 }
8269 }
8270
8271 /* inst.operands[i] was set up by parse_address. Encode it into an
8272 ARM-format mode 3 load or store instruction. Reject forms that
8273 cannot be used with such instructions. If is_t is true, reject
8274 forms that cannot be used with a T instruction (i.e. not
8275 post-indexed). */
8276 static void
8277 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
8278 {
8279 if (inst.operands[i].immisreg && inst.operands[i].shifted)
8280 {
8281 inst.error = _("instruction does not accept scaled register index");
8282 return;
8283 }
8284
8285 encode_arm_addr_mode_common (i, is_t);
8286
8287 if (inst.operands[i].immisreg)
8288 {
8289 constraint ((inst.operands[i].imm == REG_PC
8290 || (is_t && inst.operands[i].reg == REG_PC)),
8291 BAD_PC_ADDRESSING);
8292 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8293 BAD_PC_WRITEBACK);
8294 inst.instruction |= inst.operands[i].imm;
8295 if (!inst.operands[i].negative)
8296 inst.instruction |= INDEX_UP;
8297 }
8298 else /* immediate offset in inst.relocs[0] */
8299 {
8300 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
8301 && inst.operands[i].writeback),
8302 BAD_PC_WRITEBACK);
8303 inst.instruction |= HWOFFSET_IMM;
8304 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8305 {
8306 /* Prefer + for zero encoded value. */
8307 if (!inst.operands[i].negative)
8308 inst.instruction |= INDEX_UP;
8309
8310 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
8311 }
8312 }
8313 }
8314
8315 /* Write immediate bits [7:0] to the following locations:
8316
8317 |28/24|23 19|18 16|15 4|3 0|
8318 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8319
8320 This function is used by VMOV/VMVN/VORR/VBIC. */
8321
8322 static void
8323 neon_write_immbits (unsigned immbits)
8324 {
8325 inst.instruction |= immbits & 0xf;
8326 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8327 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8328 }
8329
8330 /* Invert low-order SIZE bits of XHI:XLO. */
8331
8332 static void
8333 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8334 {
8335 unsigned immlo = xlo ? *xlo : 0;
8336 unsigned immhi = xhi ? *xhi : 0;
8337
8338 switch (size)
8339 {
8340 case 8:
8341 immlo = (~immlo) & 0xff;
8342 break;
8343
8344 case 16:
8345 immlo = (~immlo) & 0xffff;
8346 break;
8347
8348 case 64:
8349 immhi = (~immhi) & 0xffffffff;
8350 /* fall through. */
8351
8352 case 32:
8353 immlo = (~immlo) & 0xffffffff;
8354 break;
8355
8356 default:
8357 abort ();
8358 }
8359
8360 if (xlo)
8361 *xlo = immlo;
8362
8363 if (xhi)
8364 *xhi = immhi;
8365 }
8366
8367 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8368 A, B, C, D. */
8369
8370 static int
8371 neon_bits_same_in_bytes (unsigned imm)
8372 {
8373 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8374 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8375 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8376 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8377 }
8378
8379 /* For immediate of above form, return 0bABCD. */
8380
8381 static unsigned
8382 neon_squash_bits (unsigned imm)
8383 {
8384 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8385 | ((imm & 0x01000000) >> 21);
8386 }
8387
8388 /* Compress quarter-float representation to 0b...000 abcdefgh. */
8389
8390 static unsigned
8391 neon_qfloat_bits (unsigned imm)
8392 {
8393 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8394 }
8395
8396 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8397 the instruction. *OP is passed as the initial value of the op field, and
8398 may be set to a different value depending on the constant (i.e.
8399 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8400 MVN). If the immediate looks like a repeated pattern then also
8401 try smaller element sizes. */
8402
8403 static int
8404 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8405 unsigned *immbits, int *op, int size,
8406 enum neon_el_type type)
8407 {
8408 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8409 float. */
8410 if (type == NT_float && !float_p)
8411 return FAIL;
8412
8413 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
8414 {
8415 if (size != 32 || *op == 1)
8416 return FAIL;
8417 *immbits = neon_qfloat_bits (immlo);
8418 return 0xf;
8419 }
8420
8421 if (size == 64)
8422 {
8423 if (neon_bits_same_in_bytes (immhi)
8424 && neon_bits_same_in_bytes (immlo))
8425 {
8426 if (*op == 1)
8427 return FAIL;
8428 *immbits = (neon_squash_bits (immhi) << 4)
8429 | neon_squash_bits (immlo);
8430 *op = 1;
8431 return 0xe;
8432 }
8433
8434 if (immhi != immlo)
8435 return FAIL;
8436 }
8437
8438 if (size >= 32)
8439 {
8440 if (immlo == (immlo & 0x000000ff))
8441 {
8442 *immbits = immlo;
8443 return 0x0;
8444 }
8445 else if (immlo == (immlo & 0x0000ff00))
8446 {
8447 *immbits = immlo >> 8;
8448 return 0x2;
8449 }
8450 else if (immlo == (immlo & 0x00ff0000))
8451 {
8452 *immbits = immlo >> 16;
8453 return 0x4;
8454 }
8455 else if (immlo == (immlo & 0xff000000))
8456 {
8457 *immbits = immlo >> 24;
8458 return 0x6;
8459 }
8460 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8461 {
8462 *immbits = (immlo >> 8) & 0xff;
8463 return 0xc;
8464 }
8465 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8466 {
8467 *immbits = (immlo >> 16) & 0xff;
8468 return 0xd;
8469 }
8470
8471 if ((immlo & 0xffff) != (immlo >> 16))
8472 return FAIL;
8473 immlo &= 0xffff;
8474 }
8475
8476 if (size >= 16)
8477 {
8478 if (immlo == (immlo & 0x000000ff))
8479 {
8480 *immbits = immlo;
8481 return 0x8;
8482 }
8483 else if (immlo == (immlo & 0x0000ff00))
8484 {
8485 *immbits = immlo >> 8;
8486 return 0xa;
8487 }
8488
8489 if ((immlo & 0xff) != (immlo >> 8))
8490 return FAIL;
8491 immlo &= 0xff;
8492 }
8493
8494 if (immlo == (immlo & 0x000000ff))
8495 {
8496 /* Don't allow MVN with 8-bit immediate. */
8497 if (*op == 1)
8498 return FAIL;
8499 *immbits = immlo;
8500 return 0xe;
8501 }
8502
8503 return FAIL;
8504 }
8505
8506 #if defined BFD_HOST_64_BIT
8507 /* Returns TRUE if double precision value V may be cast
8508 to single precision without loss of accuracy. */
8509
8510 static bfd_boolean
8511 is_double_a_single (bfd_int64_t v)
8512 {
8513 int exp = (int)((v >> 52) & 0x7FF);
8514 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8515
8516 return (exp == 0 || exp == 0x7FF
8517 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8518 && (mantissa & 0x1FFFFFFFl) == 0;
8519 }
8520
8521 /* Returns a double precision value casted to single precision
8522 (ignoring the least significant bits in exponent and mantissa). */
8523
8524 static int
8525 double_to_single (bfd_int64_t v)
8526 {
8527 int sign = (int) ((v >> 63) & 1l);
8528 int exp = (int) ((v >> 52) & 0x7FF);
8529 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8530
8531 if (exp == 0x7FF)
8532 exp = 0xFF;
8533 else
8534 {
8535 exp = exp - 1023 + 127;
8536 if (exp >= 0xFF)
8537 {
8538 /* Infinity. */
8539 exp = 0x7F;
8540 mantissa = 0;
8541 }
8542 else if (exp < 0)
8543 {
8544 /* No denormalized numbers. */
8545 exp = 0;
8546 mantissa = 0;
8547 }
8548 }
8549 mantissa >>= 29;
8550 return (sign << 31) | (exp << 23) | mantissa;
8551 }
8552 #endif /* BFD_HOST_64_BIT */
8553
8554 enum lit_type
8555 {
8556 CONST_THUMB,
8557 CONST_ARM,
8558 CONST_VEC
8559 };
8560
8561 static void do_vfp_nsyn_opcode (const char *);
8562
8563 /* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
8564 Determine whether it can be performed with a move instruction; if
8565 it can, convert inst.instruction to that move instruction and
8566 return TRUE; if it can't, convert inst.instruction to a literal-pool
8567 load and return FALSE. If this is not a valid thing to do in the
8568 current context, set inst.error and return TRUE.
8569
8570 inst.operands[i] describes the destination register. */
8571
8572 static bfd_boolean
8573 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
8574 {
8575 unsigned long tbit;
8576 bfd_boolean thumb_p = (t == CONST_THUMB);
8577 bfd_boolean arm_p = (t == CONST_ARM);
8578
8579 if (thumb_p)
8580 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8581 else
8582 tbit = LOAD_BIT;
8583
8584 if ((inst.instruction & tbit) == 0)
8585 {
8586 inst.error = _("invalid pseudo operation");
8587 return TRUE;
8588 }
8589
8590 if (inst.relocs[0].exp.X_op != O_constant
8591 && inst.relocs[0].exp.X_op != O_symbol
8592 && inst.relocs[0].exp.X_op != O_big)
8593 {
8594 inst.error = _("constant expression expected");
8595 return TRUE;
8596 }
8597
8598 if (inst.relocs[0].exp.X_op == O_constant
8599 || inst.relocs[0].exp.X_op == O_big)
8600 {
8601 #if defined BFD_HOST_64_BIT
8602 bfd_int64_t v;
8603 #else
8604 offsetT v;
8605 #endif
8606 if (inst.relocs[0].exp.X_op == O_big)
8607 {
8608 LITTLENUM_TYPE w[X_PRECISION];
8609 LITTLENUM_TYPE * l;
8610
8611 if (inst.relocs[0].exp.X_add_number == -1)
8612 {
8613 gen_to_words (w, X_PRECISION, E_PRECISION);
8614 l = w;
8615 /* FIXME: Should we check words w[2..5] ? */
8616 }
8617 else
8618 l = generic_bignum;
8619
8620 #if defined BFD_HOST_64_BIT
8621 v =
8622 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8623 << LITTLENUM_NUMBER_OF_BITS)
8624 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8625 << LITTLENUM_NUMBER_OF_BITS)
8626 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8627 << LITTLENUM_NUMBER_OF_BITS)
8628 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8629 #else
8630 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8631 | (l[0] & LITTLENUM_MASK);
8632 #endif
8633 }
8634 else
8635 v = inst.relocs[0].exp.X_add_number;
8636
8637 if (!inst.operands[i].issingle)
8638 {
8639 if (thumb_p)
8640 {
8641 /* LDR should not use lead in a flag-setting instruction being
8642 chosen so we do not check whether movs can be used. */
8643
8644 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
8645 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8646 && inst.operands[i].reg != 13
8647 && inst.operands[i].reg != 15)
8648 {
8649 /* Check if on thumb2 it can be done with a mov.w, mvn or
8650 movw instruction. */
8651 unsigned int newimm;
8652 bfd_boolean isNegated;
8653
8654 newimm = encode_thumb32_immediate (v);
8655 if (newimm != (unsigned int) FAIL)
8656 isNegated = FALSE;
8657 else
8658 {
8659 newimm = encode_thumb32_immediate (~v);
8660 if (newimm != (unsigned int) FAIL)
8661 isNegated = TRUE;
8662 }
8663
8664 /* The number can be loaded with a mov.w or mvn
8665 instruction. */
8666 if (newimm != (unsigned int) FAIL
8667 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
8668 {
8669 inst.instruction = (0xf04f0000 /* MOV.W. */
8670 | (inst.operands[i].reg << 8));
8671 /* Change to MOVN. */
8672 inst.instruction |= (isNegated ? 0x200000 : 0);
8673 inst.instruction |= (newimm & 0x800) << 15;
8674 inst.instruction |= (newimm & 0x700) << 4;
8675 inst.instruction |= (newimm & 0x0ff);
8676 return TRUE;
8677 }
8678 /* The number can be loaded with a movw instruction. */
8679 else if ((v & ~0xFFFF) == 0
8680 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8681 {
8682 int imm = v & 0xFFFF;
8683
8684 inst.instruction = 0xf2400000; /* MOVW. */
8685 inst.instruction |= (inst.operands[i].reg << 8);
8686 inst.instruction |= (imm & 0xf000) << 4;
8687 inst.instruction |= (imm & 0x0800) << 15;
8688 inst.instruction |= (imm & 0x0700) << 4;
8689 inst.instruction |= (imm & 0x00ff);
8690 return TRUE;
8691 }
8692 }
8693 }
8694 else if (arm_p)
8695 {
8696 int value = encode_arm_immediate (v);
8697
8698 if (value != FAIL)
8699 {
8700 /* This can be done with a mov instruction. */
8701 inst.instruction &= LITERAL_MASK;
8702 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8703 inst.instruction |= value & 0xfff;
8704 return TRUE;
8705 }
8706
8707 value = encode_arm_immediate (~ v);
8708 if (value != FAIL)
8709 {
8710 /* This can be done with a mvn instruction. */
8711 inst.instruction &= LITERAL_MASK;
8712 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8713 inst.instruction |= value & 0xfff;
8714 return TRUE;
8715 }
8716 }
8717 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8718 {
8719 int op = 0;
8720 unsigned immbits = 0;
8721 unsigned immlo = inst.operands[1].imm;
8722 unsigned immhi = inst.operands[1].regisimm
8723 ? inst.operands[1].reg
8724 : inst.relocs[0].exp.X_unsigned
8725 ? 0
8726 : ((bfd_int64_t)((int) immlo)) >> 32;
8727 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8728 &op, 64, NT_invtype);
8729
8730 if (cmode == FAIL)
8731 {
8732 neon_invert_size (&immlo, &immhi, 64);
8733 op = !op;
8734 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8735 &op, 64, NT_invtype);
8736 }
8737
8738 if (cmode != FAIL)
8739 {
8740 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8741 | (1 << 23)
8742 | (cmode << 8)
8743 | (op << 5)
8744 | (1 << 4);
8745
8746 /* Fill other bits in vmov encoding for both thumb and arm. */
8747 if (thumb_mode)
8748 inst.instruction |= (0x7U << 29) | (0xF << 24);
8749 else
8750 inst.instruction |= (0xFU << 28) | (0x1 << 25);
8751 neon_write_immbits (immbits);
8752 return TRUE;
8753 }
8754 }
8755 }
8756
8757 if (t == CONST_VEC)
8758 {
8759 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8760 if (inst.operands[i].issingle
8761 && is_quarter_float (inst.operands[1].imm)
8762 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8763 {
8764 inst.operands[1].imm =
8765 neon_qfloat_bits (v);
8766 do_vfp_nsyn_opcode ("fconsts");
8767 return TRUE;
8768 }
8769
8770 /* If our host does not support a 64-bit type then we cannot perform
8771 the following optimization. This mean that there will be a
8772 discrepancy between the output produced by an assembler built for
8773 a 32-bit-only host and the output produced from a 64-bit host, but
8774 this cannot be helped. */
8775 #if defined BFD_HOST_64_BIT
8776 else if (!inst.operands[1].issingle
8777 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8778 {
8779 if (is_double_a_single (v)
8780 && is_quarter_float (double_to_single (v)))
8781 {
8782 inst.operands[1].imm =
8783 neon_qfloat_bits (double_to_single (v));
8784 do_vfp_nsyn_opcode ("fconstd");
8785 return TRUE;
8786 }
8787 }
8788 #endif
8789 }
8790 }
8791
8792 if (add_to_lit_pool ((!inst.operands[i].isvec
8793 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8794 return TRUE;
8795
8796 inst.operands[1].reg = REG_PC;
8797 inst.operands[1].isreg = 1;
8798 inst.operands[1].preind = 1;
8799 inst.relocs[0].pc_rel = 1;
8800 inst.relocs[0].type = (thumb_p
8801 ? BFD_RELOC_ARM_THUMB_OFFSET
8802 : (mode_3
8803 ? BFD_RELOC_ARM_HWLITERAL
8804 : BFD_RELOC_ARM_LITERAL));
8805 return FALSE;
8806 }
8807
8808 /* inst.operands[i] was set up by parse_address. Encode it into an
8809 ARM-format instruction. Reject all forms which cannot be encoded
8810 into a coprocessor load/store instruction. If wb_ok is false,
8811 reject use of writeback; if unind_ok is false, reject use of
8812 unindexed addressing. If reloc_override is not 0, use it instead
8813 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8814 (in which case it is preserved). */
8815
8816 static int
8817 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8818 {
8819 if (!inst.operands[i].isreg)
8820 {
8821 /* PR 18256 */
8822 if (! inst.operands[0].isvec)
8823 {
8824 inst.error = _("invalid co-processor operand");
8825 return FAIL;
8826 }
8827 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8828 return SUCCESS;
8829 }
8830
8831 inst.instruction |= inst.operands[i].reg << 16;
8832
8833 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8834
8835 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8836 {
8837 gas_assert (!inst.operands[i].writeback);
8838 if (!unind_ok)
8839 {
8840 inst.error = _("instruction does not support unindexed addressing");
8841 return FAIL;
8842 }
8843 inst.instruction |= inst.operands[i].imm;
8844 inst.instruction |= INDEX_UP;
8845 return SUCCESS;
8846 }
8847
8848 if (inst.operands[i].preind)
8849 inst.instruction |= PRE_INDEX;
8850
8851 if (inst.operands[i].writeback)
8852 {
8853 if (inst.operands[i].reg == REG_PC)
8854 {
8855 inst.error = _("pc may not be used with write-back");
8856 return FAIL;
8857 }
8858 if (!wb_ok)
8859 {
8860 inst.error = _("instruction does not support writeback");
8861 return FAIL;
8862 }
8863 inst.instruction |= WRITE_BACK;
8864 }
8865
8866 if (reloc_override)
8867 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8868 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8869 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8870 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
8871 {
8872 if (thumb_mode)
8873 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8874 else
8875 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
8876 }
8877
8878 /* Prefer + for zero encoded value. */
8879 if (!inst.operands[i].negative)
8880 inst.instruction |= INDEX_UP;
8881
8882 return SUCCESS;
8883 }
8884
8885 /* Functions for instruction encoding, sorted by sub-architecture.
8886 First some generics; their names are taken from the conventional
8887 bit positions for register arguments in ARM format instructions. */
8888
8889 static void
8890 do_noargs (void)
8891 {
8892 }
8893
8894 static void
8895 do_rd (void)
8896 {
8897 inst.instruction |= inst.operands[0].reg << 12;
8898 }
8899
8900 static void
8901 do_rn (void)
8902 {
8903 inst.instruction |= inst.operands[0].reg << 16;
8904 }
8905
8906 static void
8907 do_rd_rm (void)
8908 {
8909 inst.instruction |= inst.operands[0].reg << 12;
8910 inst.instruction |= inst.operands[1].reg;
8911 }
8912
8913 static void
8914 do_rm_rn (void)
8915 {
8916 inst.instruction |= inst.operands[0].reg;
8917 inst.instruction |= inst.operands[1].reg << 16;
8918 }
8919
8920 static void
8921 do_rd_rn (void)
8922 {
8923 inst.instruction |= inst.operands[0].reg << 12;
8924 inst.instruction |= inst.operands[1].reg << 16;
8925 }
8926
8927 static void
8928 do_rn_rd (void)
8929 {
8930 inst.instruction |= inst.operands[0].reg << 16;
8931 inst.instruction |= inst.operands[1].reg << 12;
8932 }
8933
8934 static void
8935 do_tt (void)
8936 {
8937 inst.instruction |= inst.operands[0].reg << 8;
8938 inst.instruction |= inst.operands[1].reg << 16;
8939 }
8940
8941 static bfd_boolean
8942 check_obsolete (const arm_feature_set *feature, const char *msg)
8943 {
8944 if (ARM_CPU_IS_ANY (cpu_variant))
8945 {
8946 as_tsktsk ("%s", msg);
8947 return TRUE;
8948 }
8949 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8950 {
8951 as_bad ("%s", msg);
8952 return TRUE;
8953 }
8954
8955 return FALSE;
8956 }
8957
8958 static void
8959 do_rd_rm_rn (void)
8960 {
8961 unsigned Rn = inst.operands[2].reg;
8962 /* Enforce restrictions on SWP instruction. */
8963 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
8964 {
8965 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8966 _("Rn must not overlap other operands"));
8967
8968 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8969 */
8970 if (!check_obsolete (&arm_ext_v8,
8971 _("swp{b} use is obsoleted for ARMv8 and later"))
8972 && warn_on_deprecated
8973 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
8974 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
8975 }
8976
8977 inst.instruction |= inst.operands[0].reg << 12;
8978 inst.instruction |= inst.operands[1].reg;
8979 inst.instruction |= Rn << 16;
8980 }
8981
8982 static void
8983 do_rd_rn_rm (void)
8984 {
8985 inst.instruction |= inst.operands[0].reg << 12;
8986 inst.instruction |= inst.operands[1].reg << 16;
8987 inst.instruction |= inst.operands[2].reg;
8988 }
8989
8990 static void
8991 do_rm_rd_rn (void)
8992 {
8993 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
8994 constraint (((inst.relocs[0].exp.X_op != O_constant
8995 && inst.relocs[0].exp.X_op != O_illegal)
8996 || inst.relocs[0].exp.X_add_number != 0),
8997 BAD_ADDR_MODE);
8998 inst.instruction |= inst.operands[0].reg;
8999 inst.instruction |= inst.operands[1].reg << 12;
9000 inst.instruction |= inst.operands[2].reg << 16;
9001 }
9002
9003 static void
9004 do_imm0 (void)
9005 {
9006 inst.instruction |= inst.operands[0].imm;
9007 }
9008
9009 static void
9010 do_rd_cpaddr (void)
9011 {
9012 inst.instruction |= inst.operands[0].reg << 12;
9013 encode_arm_cp_address (1, TRUE, TRUE, 0);
9014 }
9015
9016 /* ARM instructions, in alphabetical order by function name (except
9017 that wrapper functions appear immediately after the function they
9018 wrap). */
9019
9020 /* This is a pseudo-op of the form "adr rd, label" to be converted
9021 into a relative address of the form "add rd, pc, #label-.-8". */
9022
9023 static void
9024 do_adr (void)
9025 {
9026 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9027
9028 /* Frag hacking will turn this into a sub instruction if the offset turns
9029 out to be negative. */
9030 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9031 inst.relocs[0].pc_rel = 1;
9032 inst.relocs[0].exp.X_add_number -= 8;
9033
9034 if (support_interwork
9035 && inst.relocs[0].exp.X_op == O_symbol
9036 && inst.relocs[0].exp.X_add_symbol != NULL
9037 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9038 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9039 inst.relocs[0].exp.X_add_number |= 1;
9040 }
9041
9042 /* This is a pseudo-op of the form "adrl rd, label" to be converted
9043 into a relative address of the form:
9044 add rd, pc, #low(label-.-8)"
9045 add rd, rd, #high(label-.-8)" */
9046
9047 static void
9048 do_adrl (void)
9049 {
9050 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9051
9052 /* Frag hacking will turn this into a sub instruction if the offset turns
9053 out to be negative. */
9054 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9055 inst.relocs[0].pc_rel = 1;
9056 inst.size = INSN_SIZE * 2;
9057 inst.relocs[0].exp.X_add_number -= 8;
9058
9059 if (support_interwork
9060 && inst.relocs[0].exp.X_op == O_symbol
9061 && inst.relocs[0].exp.X_add_symbol != NULL
9062 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9063 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9064 inst.relocs[0].exp.X_add_number |= 1;
9065 }
9066
9067 static void
9068 do_arit (void)
9069 {
9070 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9071 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9072 THUMB1_RELOC_ONLY);
9073 if (!inst.operands[1].present)
9074 inst.operands[1].reg = inst.operands[0].reg;
9075 inst.instruction |= inst.operands[0].reg << 12;
9076 inst.instruction |= inst.operands[1].reg << 16;
9077 encode_arm_shifter_operand (2);
9078 }
9079
9080 static void
9081 do_barrier (void)
9082 {
9083 if (inst.operands[0].present)
9084 inst.instruction |= inst.operands[0].imm;
9085 else
9086 inst.instruction |= 0xf;
9087 }
9088
9089 static void
9090 do_bfc (void)
9091 {
9092 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9093 constraint (msb > 32, _("bit-field extends past end of register"));
9094 /* The instruction encoding stores the LSB and MSB,
9095 not the LSB and width. */
9096 inst.instruction |= inst.operands[0].reg << 12;
9097 inst.instruction |= inst.operands[1].imm << 7;
9098 inst.instruction |= (msb - 1) << 16;
9099 }
9100
9101 static void
9102 do_bfi (void)
9103 {
9104 unsigned int msb;
9105
9106 /* #0 in second position is alternative syntax for bfc, which is
9107 the same instruction but with REG_PC in the Rm field. */
9108 if (!inst.operands[1].isreg)
9109 inst.operands[1].reg = REG_PC;
9110
9111 msb = inst.operands[2].imm + inst.operands[3].imm;
9112 constraint (msb > 32, _("bit-field extends past end of register"));
9113 /* The instruction encoding stores the LSB and MSB,
9114 not the LSB and width. */
9115 inst.instruction |= inst.operands[0].reg << 12;
9116 inst.instruction |= inst.operands[1].reg;
9117 inst.instruction |= inst.operands[2].imm << 7;
9118 inst.instruction |= (msb - 1) << 16;
9119 }
9120
9121 static void
9122 do_bfx (void)
9123 {
9124 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9125 _("bit-field extends past end of register"));
9126 inst.instruction |= inst.operands[0].reg << 12;
9127 inst.instruction |= inst.operands[1].reg;
9128 inst.instruction |= inst.operands[2].imm << 7;
9129 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9130 }
9131
9132 /* ARM V5 breakpoint instruction (argument parse)
9133 BKPT <16 bit unsigned immediate>
9134 Instruction is not conditional.
9135 The bit pattern given in insns[] has the COND_ALWAYS condition,
9136 and it is an error if the caller tried to override that. */
9137
9138 static void
9139 do_bkpt (void)
9140 {
9141 /* Top 12 of 16 bits to bits 19:8. */
9142 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
9143
9144 /* Bottom 4 of 16 bits to bits 3:0. */
9145 inst.instruction |= inst.operands[0].imm & 0xf;
9146 }
9147
9148 static void
9149 encode_branch (int default_reloc)
9150 {
9151 if (inst.operands[0].hasreloc)
9152 {
9153 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9154 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9155 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
9156 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
9157 ? BFD_RELOC_ARM_PLT32
9158 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
9159 }
9160 else
9161 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9162 inst.relocs[0].pc_rel = 1;
9163 }
9164
9165 static void
9166 do_branch (void)
9167 {
9168 #ifdef OBJ_ELF
9169 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9170 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9171 else
9172 #endif
9173 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9174 }
9175
9176 static void
9177 do_bl (void)
9178 {
9179 #ifdef OBJ_ELF
9180 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9181 {
9182 if (inst.cond == COND_ALWAYS)
9183 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9184 else
9185 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9186 }
9187 else
9188 #endif
9189 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9190 }
9191
9192 /* ARM V5 branch-link-exchange instruction (argument parse)
9193 BLX <target_addr> ie BLX(1)
9194 BLX{<condition>} <Rm> ie BLX(2)
9195 Unfortunately, there are two different opcodes for this mnemonic.
9196 So, the insns[].value is not used, and the code here zaps values
9197 into inst.instruction.
9198 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
9199
9200 static void
9201 do_blx (void)
9202 {
9203 if (inst.operands[0].isreg)
9204 {
9205 /* Arg is a register; the opcode provided by insns[] is correct.
9206 It is not illegal to do "blx pc", just useless. */
9207 if (inst.operands[0].reg == REG_PC)
9208 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
9209
9210 inst.instruction |= inst.operands[0].reg;
9211 }
9212 else
9213 {
9214 /* Arg is an address; this instruction cannot be executed
9215 conditionally, and the opcode must be adjusted.
9216 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9217 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
9218 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9219 inst.instruction = 0xfa000000;
9220 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
9221 }
9222 }
9223
9224 static void
9225 do_bx (void)
9226 {
9227 bfd_boolean want_reloc;
9228
9229 if (inst.operands[0].reg == REG_PC)
9230 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
9231
9232 inst.instruction |= inst.operands[0].reg;
9233 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9234 it is for ARMv4t or earlier. */
9235 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
9236 if (!ARM_FEATURE_ZERO (selected_object_arch)
9237 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
9238 want_reloc = TRUE;
9239
9240 #ifdef OBJ_ELF
9241 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
9242 #endif
9243 want_reloc = FALSE;
9244
9245 if (want_reloc)
9246 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
9247 }
9248
9249
9250 /* ARM v5TEJ. Jump to Jazelle code. */
9251
9252 static void
9253 do_bxj (void)
9254 {
9255 if (inst.operands[0].reg == REG_PC)
9256 as_tsktsk (_("use of r15 in bxj is not really useful"));
9257
9258 inst.instruction |= inst.operands[0].reg;
9259 }
9260
9261 /* Co-processor data operation:
9262 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9263 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9264 static void
9265 do_cdp (void)
9266 {
9267 inst.instruction |= inst.operands[0].reg << 8;
9268 inst.instruction |= inst.operands[1].imm << 20;
9269 inst.instruction |= inst.operands[2].reg << 12;
9270 inst.instruction |= inst.operands[3].reg << 16;
9271 inst.instruction |= inst.operands[4].reg;
9272 inst.instruction |= inst.operands[5].imm << 5;
9273 }
9274
9275 static void
9276 do_cmp (void)
9277 {
9278 inst.instruction |= inst.operands[0].reg << 16;
9279 encode_arm_shifter_operand (1);
9280 }
9281
9282 /* Transfer between coprocessor and ARM registers.
9283 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9284 MRC2
9285 MCR{cond}
9286 MCR2
9287
9288 No special properties. */
9289
9290 struct deprecated_coproc_regs_s
9291 {
9292 unsigned cp;
9293 int opc1;
9294 unsigned crn;
9295 unsigned crm;
9296 int opc2;
9297 arm_feature_set deprecated;
9298 arm_feature_set obsoleted;
9299 const char *dep_msg;
9300 const char *obs_msg;
9301 };
9302
9303 #define DEPR_ACCESS_V8 \
9304 N_("This coprocessor register access is deprecated in ARMv8")
9305
9306 /* Table of all deprecated coprocessor registers. */
9307 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9308 {
9309 {15, 0, 7, 10, 5, /* CP15DMB. */
9310 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9311 DEPR_ACCESS_V8, NULL},
9312 {15, 0, 7, 10, 4, /* CP15DSB. */
9313 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9314 DEPR_ACCESS_V8, NULL},
9315 {15, 0, 7, 5, 4, /* CP15ISB. */
9316 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9317 DEPR_ACCESS_V8, NULL},
9318 {14, 6, 1, 0, 0, /* TEEHBR. */
9319 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9320 DEPR_ACCESS_V8, NULL},
9321 {14, 6, 0, 0, 0, /* TEECR. */
9322 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9323 DEPR_ACCESS_V8, NULL},
9324 };
9325
9326 #undef DEPR_ACCESS_V8
9327
9328 static const size_t deprecated_coproc_reg_count =
9329 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9330
9331 static void
9332 do_co_reg (void)
9333 {
9334 unsigned Rd;
9335 size_t i;
9336
9337 Rd = inst.operands[2].reg;
9338 if (thumb_mode)
9339 {
9340 if (inst.instruction == 0xee000010
9341 || inst.instruction == 0xfe000010)
9342 /* MCR, MCR2 */
9343 reject_bad_reg (Rd);
9344 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9345 /* MRC, MRC2 */
9346 constraint (Rd == REG_SP, BAD_SP);
9347 }
9348 else
9349 {
9350 /* MCR */
9351 if (inst.instruction == 0xe000010)
9352 constraint (Rd == REG_PC, BAD_PC);
9353 }
9354
9355 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9356 {
9357 const struct deprecated_coproc_regs_s *r =
9358 deprecated_coproc_regs + i;
9359
9360 if (inst.operands[0].reg == r->cp
9361 && inst.operands[1].imm == r->opc1
9362 && inst.operands[3].reg == r->crn
9363 && inst.operands[4].reg == r->crm
9364 && inst.operands[5].imm == r->opc2)
9365 {
9366 if (! ARM_CPU_IS_ANY (cpu_variant)
9367 && warn_on_deprecated
9368 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
9369 as_tsktsk ("%s", r->dep_msg);
9370 }
9371 }
9372
9373 inst.instruction |= inst.operands[0].reg << 8;
9374 inst.instruction |= inst.operands[1].imm << 21;
9375 inst.instruction |= Rd << 12;
9376 inst.instruction |= inst.operands[3].reg << 16;
9377 inst.instruction |= inst.operands[4].reg;
9378 inst.instruction |= inst.operands[5].imm << 5;
9379 }
9380
9381 /* Transfer between coprocessor register and pair of ARM registers.
9382 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9383 MCRR2
9384 MRRC{cond}
9385 MRRC2
9386
9387 Two XScale instructions are special cases of these:
9388
9389 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9390 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
9391
9392 Result unpredictable if Rd or Rn is R15. */
9393
9394 static void
9395 do_co_reg2c (void)
9396 {
9397 unsigned Rd, Rn;
9398
9399 Rd = inst.operands[2].reg;
9400 Rn = inst.operands[3].reg;
9401
9402 if (thumb_mode)
9403 {
9404 reject_bad_reg (Rd);
9405 reject_bad_reg (Rn);
9406 }
9407 else
9408 {
9409 constraint (Rd == REG_PC, BAD_PC);
9410 constraint (Rn == REG_PC, BAD_PC);
9411 }
9412
9413 /* Only check the MRRC{2} variants. */
9414 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9415 {
9416 /* If Rd == Rn, error that the operation is
9417 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9418 constraint (Rd == Rn, BAD_OVERLAP);
9419 }
9420
9421 inst.instruction |= inst.operands[0].reg << 8;
9422 inst.instruction |= inst.operands[1].imm << 4;
9423 inst.instruction |= Rd << 12;
9424 inst.instruction |= Rn << 16;
9425 inst.instruction |= inst.operands[4].reg;
9426 }
9427
9428 static void
9429 do_cpsi (void)
9430 {
9431 inst.instruction |= inst.operands[0].imm << 6;
9432 if (inst.operands[1].present)
9433 {
9434 inst.instruction |= CPSI_MMOD;
9435 inst.instruction |= inst.operands[1].imm;
9436 }
9437 }
9438
9439 static void
9440 do_dbg (void)
9441 {
9442 inst.instruction |= inst.operands[0].imm;
9443 }
9444
9445 static void
9446 do_div (void)
9447 {
9448 unsigned Rd, Rn, Rm;
9449
9450 Rd = inst.operands[0].reg;
9451 Rn = (inst.operands[1].present
9452 ? inst.operands[1].reg : Rd);
9453 Rm = inst.operands[2].reg;
9454
9455 constraint ((Rd == REG_PC), BAD_PC);
9456 constraint ((Rn == REG_PC), BAD_PC);
9457 constraint ((Rm == REG_PC), BAD_PC);
9458
9459 inst.instruction |= Rd << 16;
9460 inst.instruction |= Rn << 0;
9461 inst.instruction |= Rm << 8;
9462 }
9463
9464 static void
9465 do_it (void)
9466 {
9467 /* There is no IT instruction in ARM mode. We
9468 process it to do the validation as if in
9469 thumb mode, just in case the code gets
9470 assembled for thumb using the unified syntax. */
9471
9472 inst.size = 0;
9473 if (unified_syntax)
9474 {
9475 set_pred_insn_type (IT_INSN);
9476 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9477 now_pred.cc = inst.operands[0].imm;
9478 }
9479 }
9480
9481 /* If there is only one register in the register list,
9482 then return its register number. Otherwise return -1. */
9483 static int
9484 only_one_reg_in_list (int range)
9485 {
9486 int i = ffs (range) - 1;
9487 return (i > 15 || range != (1 << i)) ? -1 : i;
9488 }
9489
9490 static void
9491 encode_ldmstm(int from_push_pop_mnem)
9492 {
9493 int base_reg = inst.operands[0].reg;
9494 int range = inst.operands[1].imm;
9495 int one_reg;
9496
9497 inst.instruction |= base_reg << 16;
9498 inst.instruction |= range;
9499
9500 if (inst.operands[1].writeback)
9501 inst.instruction |= LDM_TYPE_2_OR_3;
9502
9503 if (inst.operands[0].writeback)
9504 {
9505 inst.instruction |= WRITE_BACK;
9506 /* Check for unpredictable uses of writeback. */
9507 if (inst.instruction & LOAD_BIT)
9508 {
9509 /* Not allowed in LDM type 2. */
9510 if ((inst.instruction & LDM_TYPE_2_OR_3)
9511 && ((range & (1 << REG_PC)) == 0))
9512 as_warn (_("writeback of base register is UNPREDICTABLE"));
9513 /* Only allowed if base reg not in list for other types. */
9514 else if (range & (1 << base_reg))
9515 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9516 }
9517 else /* STM. */
9518 {
9519 /* Not allowed for type 2. */
9520 if (inst.instruction & LDM_TYPE_2_OR_3)
9521 as_warn (_("writeback of base register is UNPREDICTABLE"));
9522 /* Only allowed if base reg not in list, or first in list. */
9523 else if ((range & (1 << base_reg))
9524 && (range & ((1 << base_reg) - 1)))
9525 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
9526 }
9527 }
9528
9529 /* If PUSH/POP has only one register, then use the A2 encoding. */
9530 one_reg = only_one_reg_in_list (range);
9531 if (from_push_pop_mnem && one_reg >= 0)
9532 {
9533 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9534
9535 if (is_push && one_reg == 13 /* SP */)
9536 /* PR 22483: The A2 encoding cannot be used when
9537 pushing the stack pointer as this is UNPREDICTABLE. */
9538 return;
9539
9540 inst.instruction &= A_COND_MASK;
9541 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9542 inst.instruction |= one_reg << 12;
9543 }
9544 }
9545
9546 static void
9547 do_ldmstm (void)
9548 {
9549 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
9550 }
9551
9552 /* ARMv5TE load-consecutive (argument parse)
9553 Mode is like LDRH.
9554
9555 LDRccD R, mode
9556 STRccD R, mode. */
9557
9558 static void
9559 do_ldrd (void)
9560 {
9561 constraint (inst.operands[0].reg % 2 != 0,
9562 _("first transfer register must be even"));
9563 constraint (inst.operands[1].present
9564 && inst.operands[1].reg != inst.operands[0].reg + 1,
9565 _("can only transfer two consecutive registers"));
9566 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9567 constraint (!inst.operands[2].isreg, _("'[' expected"));
9568
9569 if (!inst.operands[1].present)
9570 inst.operands[1].reg = inst.operands[0].reg + 1;
9571
9572 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9573 register and the first register written; we have to diagnose
9574 overlap between the base and the second register written here. */
9575
9576 if (inst.operands[2].reg == inst.operands[1].reg
9577 && (inst.operands[2].writeback || inst.operands[2].postind))
9578 as_warn (_("base register written back, and overlaps "
9579 "second transfer register"));
9580
9581 if (!(inst.instruction & V4_STR_BIT))
9582 {
9583 /* For an index-register load, the index register must not overlap the
9584 destination (even if not write-back). */
9585 if (inst.operands[2].immisreg
9586 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9587 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9588 as_warn (_("index register overlaps transfer register"));
9589 }
9590 inst.instruction |= inst.operands[0].reg << 12;
9591 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
9592 }
9593
9594 static void
9595 do_ldrex (void)
9596 {
9597 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9598 || inst.operands[1].postind || inst.operands[1].writeback
9599 || inst.operands[1].immisreg || inst.operands[1].shifted
9600 || inst.operands[1].negative
9601 /* This can arise if the programmer has written
9602 strex rN, rM, foo
9603 or if they have mistakenly used a register name as the last
9604 operand, eg:
9605 strex rN, rM, rX
9606 It is very difficult to distinguish between these two cases
9607 because "rX" might actually be a label. ie the register
9608 name has been occluded by a symbol of the same name. So we
9609 just generate a general 'bad addressing mode' type error
9610 message and leave it up to the programmer to discover the
9611 true cause and fix their mistake. */
9612 || (inst.operands[1].reg == REG_PC),
9613 BAD_ADDR_MODE);
9614
9615 constraint (inst.relocs[0].exp.X_op != O_constant
9616 || inst.relocs[0].exp.X_add_number != 0,
9617 _("offset must be zero in ARM encoding"));
9618
9619 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9620
9621 inst.instruction |= inst.operands[0].reg << 12;
9622 inst.instruction |= inst.operands[1].reg << 16;
9623 inst.relocs[0].type = BFD_RELOC_UNUSED;
9624 }
9625
9626 static void
9627 do_ldrexd (void)
9628 {
9629 constraint (inst.operands[0].reg % 2 != 0,
9630 _("even register required"));
9631 constraint (inst.operands[1].present
9632 && inst.operands[1].reg != inst.operands[0].reg + 1,
9633 _("can only load two consecutive registers"));
9634 /* If op 1 were present and equal to PC, this function wouldn't
9635 have been called in the first place. */
9636 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9637
9638 inst.instruction |= inst.operands[0].reg << 12;
9639 inst.instruction |= inst.operands[2].reg << 16;
9640 }
9641
9642 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9643 which is not a multiple of four is UNPREDICTABLE. */
9644 static void
9645 check_ldr_r15_aligned (void)
9646 {
9647 constraint (!(inst.operands[1].immisreg)
9648 && (inst.operands[0].reg == REG_PC
9649 && inst.operands[1].reg == REG_PC
9650 && (inst.relocs[0].exp.X_add_number & 0x3)),
9651 _("ldr to register 15 must be 4-byte aligned"));
9652 }
9653
9654 static void
9655 do_ldst (void)
9656 {
9657 inst.instruction |= inst.operands[0].reg << 12;
9658 if (!inst.operands[1].isreg)
9659 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
9660 return;
9661 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
9662 check_ldr_r15_aligned ();
9663 }
9664
9665 static void
9666 do_ldstt (void)
9667 {
9668 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9669 reject [Rn,...]. */
9670 if (inst.operands[1].preind)
9671 {
9672 constraint (inst.relocs[0].exp.X_op != O_constant
9673 || inst.relocs[0].exp.X_add_number != 0,
9674 _("this instruction requires a post-indexed address"));
9675
9676 inst.operands[1].preind = 0;
9677 inst.operands[1].postind = 1;
9678 inst.operands[1].writeback = 1;
9679 }
9680 inst.instruction |= inst.operands[0].reg << 12;
9681 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9682 }
9683
9684 /* Halfword and signed-byte load/store operations. */
9685
9686 static void
9687 do_ldstv4 (void)
9688 {
9689 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9690 inst.instruction |= inst.operands[0].reg << 12;
9691 if (!inst.operands[1].isreg)
9692 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
9693 return;
9694 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
9695 }
9696
9697 static void
9698 do_ldsttv4 (void)
9699 {
9700 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9701 reject [Rn,...]. */
9702 if (inst.operands[1].preind)
9703 {
9704 constraint (inst.relocs[0].exp.X_op != O_constant
9705 || inst.relocs[0].exp.X_add_number != 0,
9706 _("this instruction requires a post-indexed address"));
9707
9708 inst.operands[1].preind = 0;
9709 inst.operands[1].postind = 1;
9710 inst.operands[1].writeback = 1;
9711 }
9712 inst.instruction |= inst.operands[0].reg << 12;
9713 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9714 }
9715
9716 /* Co-processor register load/store.
9717 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9718 static void
9719 do_lstc (void)
9720 {
9721 inst.instruction |= inst.operands[0].reg << 8;
9722 inst.instruction |= inst.operands[1].reg << 12;
9723 encode_arm_cp_address (2, TRUE, TRUE, 0);
9724 }
9725
9726 static void
9727 do_mlas (void)
9728 {
9729 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9730 if (inst.operands[0].reg == inst.operands[1].reg
9731 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
9732 && !(inst.instruction & 0x00400000))
9733 as_tsktsk (_("Rd and Rm should be different in mla"));
9734
9735 inst.instruction |= inst.operands[0].reg << 16;
9736 inst.instruction |= inst.operands[1].reg;
9737 inst.instruction |= inst.operands[2].reg << 8;
9738 inst.instruction |= inst.operands[3].reg << 12;
9739 }
9740
9741 static void
9742 do_mov (void)
9743 {
9744 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9745 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9746 THUMB1_RELOC_ONLY);
9747 inst.instruction |= inst.operands[0].reg << 12;
9748 encode_arm_shifter_operand (1);
9749 }
9750
9751 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9752 static void
9753 do_mov16 (void)
9754 {
9755 bfd_vma imm;
9756 bfd_boolean top;
9757
9758 top = (inst.instruction & 0x00400000) != 0;
9759 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
9760 _(":lower16: not allowed in this instruction"));
9761 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
9762 _(":upper16: not allowed in this instruction"));
9763 inst.instruction |= inst.operands[0].reg << 12;
9764 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
9765 {
9766 imm = inst.relocs[0].exp.X_add_number;
9767 /* The value is in two pieces: 0:11, 16:19. */
9768 inst.instruction |= (imm & 0x00000fff);
9769 inst.instruction |= (imm & 0x0000f000) << 4;
9770 }
9771 }
9772
9773 static int
9774 do_vfp_nsyn_mrs (void)
9775 {
9776 if (inst.operands[0].isvec)
9777 {
9778 if (inst.operands[1].reg != 1)
9779 first_error (_("operand 1 must be FPSCR"));
9780 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9781 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9782 do_vfp_nsyn_opcode ("fmstat");
9783 }
9784 else if (inst.operands[1].isvec)
9785 do_vfp_nsyn_opcode ("fmrx");
9786 else
9787 return FAIL;
9788
9789 return SUCCESS;
9790 }
9791
9792 static int
9793 do_vfp_nsyn_msr (void)
9794 {
9795 if (inst.operands[0].isvec)
9796 do_vfp_nsyn_opcode ("fmxr");
9797 else
9798 return FAIL;
9799
9800 return SUCCESS;
9801 }
9802
9803 static void
9804 do_vmrs (void)
9805 {
9806 unsigned Rt = inst.operands[0].reg;
9807
9808 if (thumb_mode && Rt == REG_SP)
9809 {
9810 inst.error = BAD_SP;
9811 return;
9812 }
9813
9814 /* MVFR2 is only valid at ARMv8-A. */
9815 if (inst.operands[1].reg == 5)
9816 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9817 _(BAD_FPU));
9818
9819 /* APSR_ sets isvec. All other refs to PC are illegal. */
9820 if (!inst.operands[0].isvec && Rt == REG_PC)
9821 {
9822 inst.error = BAD_PC;
9823 return;
9824 }
9825
9826 /* If we get through parsing the register name, we just insert the number
9827 generated into the instruction without further validation. */
9828 inst.instruction |= (inst.operands[1].reg << 16);
9829 inst.instruction |= (Rt << 12);
9830 }
9831
9832 static void
9833 do_vmsr (void)
9834 {
9835 unsigned Rt = inst.operands[1].reg;
9836
9837 if (thumb_mode)
9838 reject_bad_reg (Rt);
9839 else if (Rt == REG_PC)
9840 {
9841 inst.error = BAD_PC;
9842 return;
9843 }
9844
9845 /* MVFR2 is only valid for ARMv8-A. */
9846 if (inst.operands[0].reg == 5)
9847 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9848 _(BAD_FPU));
9849
9850 /* If we get through parsing the register name, we just insert the number
9851 generated into the instruction without further validation. */
9852 inst.instruction |= (inst.operands[0].reg << 16);
9853 inst.instruction |= (Rt << 12);
9854 }
9855
9856 static void
9857 do_mrs (void)
9858 {
9859 unsigned br;
9860
9861 if (do_vfp_nsyn_mrs () == SUCCESS)
9862 return;
9863
9864 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9865 inst.instruction |= inst.operands[0].reg << 12;
9866
9867 if (inst.operands[1].isreg)
9868 {
9869 br = inst.operands[1].reg;
9870 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
9871 as_bad (_("bad register for mrs"));
9872 }
9873 else
9874 {
9875 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9876 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9877 != (PSR_c|PSR_f),
9878 _("'APSR', 'CPSR' or 'SPSR' expected"));
9879 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9880 }
9881
9882 inst.instruction |= br;
9883 }
9884
9885 /* Two possible forms:
9886 "{C|S}PSR_<field>, Rm",
9887 "{C|S}PSR_f, #expression". */
9888
9889 static void
9890 do_msr (void)
9891 {
9892 if (do_vfp_nsyn_msr () == SUCCESS)
9893 return;
9894
9895 inst.instruction |= inst.operands[0].imm;
9896 if (inst.operands[1].isreg)
9897 inst.instruction |= inst.operands[1].reg;
9898 else
9899 {
9900 inst.instruction |= INST_IMMEDIATE;
9901 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9902 inst.relocs[0].pc_rel = 0;
9903 }
9904 }
9905
9906 static void
9907 do_mul (void)
9908 {
9909 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9910
9911 if (!inst.operands[2].present)
9912 inst.operands[2].reg = inst.operands[0].reg;
9913 inst.instruction |= inst.operands[0].reg << 16;
9914 inst.instruction |= inst.operands[1].reg;
9915 inst.instruction |= inst.operands[2].reg << 8;
9916
9917 if (inst.operands[0].reg == inst.operands[1].reg
9918 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9919 as_tsktsk (_("Rd and Rm should be different in mul"));
9920 }
9921
9922 /* Long Multiply Parser
9923 UMULL RdLo, RdHi, Rm, Rs
9924 SMULL RdLo, RdHi, Rm, Rs
9925 UMLAL RdLo, RdHi, Rm, Rs
9926 SMLAL RdLo, RdHi, Rm, Rs. */
9927
9928 static void
9929 do_mull (void)
9930 {
9931 inst.instruction |= inst.operands[0].reg << 12;
9932 inst.instruction |= inst.operands[1].reg << 16;
9933 inst.instruction |= inst.operands[2].reg;
9934 inst.instruction |= inst.operands[3].reg << 8;
9935
9936 /* rdhi and rdlo must be different. */
9937 if (inst.operands[0].reg == inst.operands[1].reg)
9938 as_tsktsk (_("rdhi and rdlo must be different"));
9939
9940 /* rdhi, rdlo and rm must all be different before armv6. */
9941 if ((inst.operands[0].reg == inst.operands[2].reg
9942 || inst.operands[1].reg == inst.operands[2].reg)
9943 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9944 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9945 }
9946
9947 static void
9948 do_nop (void)
9949 {
9950 if (inst.operands[0].present
9951 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
9952 {
9953 /* Architectural NOP hints are CPSR sets with no bits selected. */
9954 inst.instruction &= 0xf0000000;
9955 inst.instruction |= 0x0320f000;
9956 if (inst.operands[0].present)
9957 inst.instruction |= inst.operands[0].imm;
9958 }
9959 }
9960
9961 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9962 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9963 Condition defaults to COND_ALWAYS.
9964 Error if Rd, Rn or Rm are R15. */
9965
9966 static void
9967 do_pkhbt (void)
9968 {
9969 inst.instruction |= inst.operands[0].reg << 12;
9970 inst.instruction |= inst.operands[1].reg << 16;
9971 inst.instruction |= inst.operands[2].reg;
9972 if (inst.operands[3].present)
9973 encode_arm_shift (3);
9974 }
9975
9976 /* ARM V6 PKHTB (Argument Parse). */
9977
9978 static void
9979 do_pkhtb (void)
9980 {
9981 if (!inst.operands[3].present)
9982 {
9983 /* If the shift specifier is omitted, turn the instruction
9984 into pkhbt rd, rm, rn. */
9985 inst.instruction &= 0xfff00010;
9986 inst.instruction |= inst.operands[0].reg << 12;
9987 inst.instruction |= inst.operands[1].reg;
9988 inst.instruction |= inst.operands[2].reg << 16;
9989 }
9990 else
9991 {
9992 inst.instruction |= inst.operands[0].reg << 12;
9993 inst.instruction |= inst.operands[1].reg << 16;
9994 inst.instruction |= inst.operands[2].reg;
9995 encode_arm_shift (3);
9996 }
9997 }
9998
9999 /* ARMv5TE: Preload-Cache
10000 MP Extensions: Preload for write
10001
10002 PLD(W) <addr_mode>
10003
10004 Syntactically, like LDR with B=1, W=0, L=1. */
10005
10006 static void
10007 do_pld (void)
10008 {
10009 constraint (!inst.operands[0].isreg,
10010 _("'[' expected after PLD mnemonic"));
10011 constraint (inst.operands[0].postind,
10012 _("post-indexed expression used in preload instruction"));
10013 constraint (inst.operands[0].writeback,
10014 _("writeback used in preload instruction"));
10015 constraint (!inst.operands[0].preind,
10016 _("unindexed addressing used in preload instruction"));
10017 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10018 }
10019
10020 /* ARMv7: PLI <addr_mode> */
10021 static void
10022 do_pli (void)
10023 {
10024 constraint (!inst.operands[0].isreg,
10025 _("'[' expected after PLI mnemonic"));
10026 constraint (inst.operands[0].postind,
10027 _("post-indexed expression used in preload instruction"));
10028 constraint (inst.operands[0].writeback,
10029 _("writeback used in preload instruction"));
10030 constraint (!inst.operands[0].preind,
10031 _("unindexed addressing used in preload instruction"));
10032 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10033 inst.instruction &= ~PRE_INDEX;
10034 }
10035
10036 static void
10037 do_push_pop (void)
10038 {
10039 constraint (inst.operands[0].writeback,
10040 _("push/pop do not support {reglist}^"));
10041 inst.operands[1] = inst.operands[0];
10042 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10043 inst.operands[0].isreg = 1;
10044 inst.operands[0].writeback = 1;
10045 inst.operands[0].reg = REG_SP;
10046 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
10047 }
10048
10049 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10050 word at the specified address and the following word
10051 respectively.
10052 Unconditionally executed.
10053 Error if Rn is R15. */
10054
10055 static void
10056 do_rfe (void)
10057 {
10058 inst.instruction |= inst.operands[0].reg << 16;
10059 if (inst.operands[0].writeback)
10060 inst.instruction |= WRITE_BACK;
10061 }
10062
10063 /* ARM V6 ssat (argument parse). */
10064
10065 static void
10066 do_ssat (void)
10067 {
10068 inst.instruction |= inst.operands[0].reg << 12;
10069 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10070 inst.instruction |= inst.operands[2].reg;
10071
10072 if (inst.operands[3].present)
10073 encode_arm_shift (3);
10074 }
10075
10076 /* ARM V6 usat (argument parse). */
10077
10078 static void
10079 do_usat (void)
10080 {
10081 inst.instruction |= inst.operands[0].reg << 12;
10082 inst.instruction |= inst.operands[1].imm << 16;
10083 inst.instruction |= inst.operands[2].reg;
10084
10085 if (inst.operands[3].present)
10086 encode_arm_shift (3);
10087 }
10088
10089 /* ARM V6 ssat16 (argument parse). */
10090
10091 static void
10092 do_ssat16 (void)
10093 {
10094 inst.instruction |= inst.operands[0].reg << 12;
10095 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10096 inst.instruction |= inst.operands[2].reg;
10097 }
10098
10099 static void
10100 do_usat16 (void)
10101 {
10102 inst.instruction |= inst.operands[0].reg << 12;
10103 inst.instruction |= inst.operands[1].imm << 16;
10104 inst.instruction |= inst.operands[2].reg;
10105 }
10106
10107 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10108 preserving the other bits.
10109
10110 setend <endian_specifier>, where <endian_specifier> is either
10111 BE or LE. */
10112
10113 static void
10114 do_setend (void)
10115 {
10116 if (warn_on_deprecated
10117 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10118 as_tsktsk (_("setend use is deprecated for ARMv8"));
10119
10120 if (inst.operands[0].imm)
10121 inst.instruction |= 0x200;
10122 }
10123
10124 static void
10125 do_shift (void)
10126 {
10127 unsigned int Rm = (inst.operands[1].present
10128 ? inst.operands[1].reg
10129 : inst.operands[0].reg);
10130
10131 inst.instruction |= inst.operands[0].reg << 12;
10132 inst.instruction |= Rm;
10133 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
10134 {
10135 inst.instruction |= inst.operands[2].reg << 8;
10136 inst.instruction |= SHIFT_BY_REG;
10137 /* PR 12854: Error on extraneous shifts. */
10138 constraint (inst.operands[2].shifted,
10139 _("extraneous shift as part of operand to shift insn"));
10140 }
10141 else
10142 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
10143 }
10144
10145 static void
10146 do_smc (void)
10147 {
10148 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10149 inst.relocs[0].pc_rel = 0;
10150 }
10151
10152 static void
10153 do_hvc (void)
10154 {
10155 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10156 inst.relocs[0].pc_rel = 0;
10157 }
10158
10159 static void
10160 do_swi (void)
10161 {
10162 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10163 inst.relocs[0].pc_rel = 0;
10164 }
10165
10166 static void
10167 do_setpan (void)
10168 {
10169 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10170 _("selected processor does not support SETPAN instruction"));
10171
10172 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10173 }
10174
10175 static void
10176 do_t_setpan (void)
10177 {
10178 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10179 _("selected processor does not support SETPAN instruction"));
10180
10181 inst.instruction |= (inst.operands[0].imm << 3);
10182 }
10183
10184 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10185 SMLAxy{cond} Rd,Rm,Rs,Rn
10186 SMLAWy{cond} Rd,Rm,Rs,Rn
10187 Error if any register is R15. */
10188
10189 static void
10190 do_smla (void)
10191 {
10192 inst.instruction |= inst.operands[0].reg << 16;
10193 inst.instruction |= inst.operands[1].reg;
10194 inst.instruction |= inst.operands[2].reg << 8;
10195 inst.instruction |= inst.operands[3].reg << 12;
10196 }
10197
10198 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10199 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10200 Error if any register is R15.
10201 Warning if Rdlo == Rdhi. */
10202
10203 static void
10204 do_smlal (void)
10205 {
10206 inst.instruction |= inst.operands[0].reg << 12;
10207 inst.instruction |= inst.operands[1].reg << 16;
10208 inst.instruction |= inst.operands[2].reg;
10209 inst.instruction |= inst.operands[3].reg << 8;
10210
10211 if (inst.operands[0].reg == inst.operands[1].reg)
10212 as_tsktsk (_("rdhi and rdlo must be different"));
10213 }
10214
10215 /* ARM V5E (El Segundo) signed-multiply (argument parse)
10216 SMULxy{cond} Rd,Rm,Rs
10217 Error if any register is R15. */
10218
10219 static void
10220 do_smul (void)
10221 {
10222 inst.instruction |= inst.operands[0].reg << 16;
10223 inst.instruction |= inst.operands[1].reg;
10224 inst.instruction |= inst.operands[2].reg << 8;
10225 }
10226
10227 /* ARM V6 srs (argument parse). The variable fields in the encoding are
10228 the same for both ARM and Thumb-2. */
10229
10230 static void
10231 do_srs (void)
10232 {
10233 int reg;
10234
10235 if (inst.operands[0].present)
10236 {
10237 reg = inst.operands[0].reg;
10238 constraint (reg != REG_SP, _("SRS base register must be r13"));
10239 }
10240 else
10241 reg = REG_SP;
10242
10243 inst.instruction |= reg << 16;
10244 inst.instruction |= inst.operands[1].imm;
10245 if (inst.operands[0].writeback || inst.operands[1].writeback)
10246 inst.instruction |= WRITE_BACK;
10247 }
10248
10249 /* ARM V6 strex (argument parse). */
10250
10251 static void
10252 do_strex (void)
10253 {
10254 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10255 || inst.operands[2].postind || inst.operands[2].writeback
10256 || inst.operands[2].immisreg || inst.operands[2].shifted
10257 || inst.operands[2].negative
10258 /* See comment in do_ldrex(). */
10259 || (inst.operands[2].reg == REG_PC),
10260 BAD_ADDR_MODE);
10261
10262 constraint (inst.operands[0].reg == inst.operands[1].reg
10263 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10264
10265 constraint (inst.relocs[0].exp.X_op != O_constant
10266 || inst.relocs[0].exp.X_add_number != 0,
10267 _("offset must be zero in ARM encoding"));
10268
10269 inst.instruction |= inst.operands[0].reg << 12;
10270 inst.instruction |= inst.operands[1].reg;
10271 inst.instruction |= inst.operands[2].reg << 16;
10272 inst.relocs[0].type = BFD_RELOC_UNUSED;
10273 }
10274
10275 static void
10276 do_t_strexbh (void)
10277 {
10278 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10279 || inst.operands[2].postind || inst.operands[2].writeback
10280 || inst.operands[2].immisreg || inst.operands[2].shifted
10281 || inst.operands[2].negative,
10282 BAD_ADDR_MODE);
10283
10284 constraint (inst.operands[0].reg == inst.operands[1].reg
10285 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10286
10287 do_rm_rd_rn ();
10288 }
10289
10290 static void
10291 do_strexd (void)
10292 {
10293 constraint (inst.operands[1].reg % 2 != 0,
10294 _("even register required"));
10295 constraint (inst.operands[2].present
10296 && inst.operands[2].reg != inst.operands[1].reg + 1,
10297 _("can only store two consecutive registers"));
10298 /* If op 2 were present and equal to PC, this function wouldn't
10299 have been called in the first place. */
10300 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
10301
10302 constraint (inst.operands[0].reg == inst.operands[1].reg
10303 || inst.operands[0].reg == inst.operands[1].reg + 1
10304 || inst.operands[0].reg == inst.operands[3].reg,
10305 BAD_OVERLAP);
10306
10307 inst.instruction |= inst.operands[0].reg << 12;
10308 inst.instruction |= inst.operands[1].reg;
10309 inst.instruction |= inst.operands[3].reg << 16;
10310 }
10311
10312 /* ARM V8 STRL. */
10313 static void
10314 do_stlex (void)
10315 {
10316 constraint (inst.operands[0].reg == inst.operands[1].reg
10317 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10318
10319 do_rd_rm_rn ();
10320 }
10321
10322 static void
10323 do_t_stlex (void)
10324 {
10325 constraint (inst.operands[0].reg == inst.operands[1].reg
10326 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10327
10328 do_rm_rd_rn ();
10329 }
10330
10331 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10332 extends it to 32-bits, and adds the result to a value in another
10333 register. You can specify a rotation by 0, 8, 16, or 24 bits
10334 before extracting the 16-bit value.
10335 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10336 Condition defaults to COND_ALWAYS.
10337 Error if any register uses R15. */
10338
10339 static void
10340 do_sxtah (void)
10341 {
10342 inst.instruction |= inst.operands[0].reg << 12;
10343 inst.instruction |= inst.operands[1].reg << 16;
10344 inst.instruction |= inst.operands[2].reg;
10345 inst.instruction |= inst.operands[3].imm << 10;
10346 }
10347
10348 /* ARM V6 SXTH.
10349
10350 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10351 Condition defaults to COND_ALWAYS.
10352 Error if any register uses R15. */
10353
10354 static void
10355 do_sxth (void)
10356 {
10357 inst.instruction |= inst.operands[0].reg << 12;
10358 inst.instruction |= inst.operands[1].reg;
10359 inst.instruction |= inst.operands[2].imm << 10;
10360 }
10361 \f
10362 /* VFP instructions. In a logical order: SP variant first, monad
10363 before dyad, arithmetic then move then load/store. */
10364
10365 static void
10366 do_vfp_sp_monadic (void)
10367 {
10368 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10369 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10370 _(BAD_FPU));
10371
10372 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10373 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10374 }
10375
10376 static void
10377 do_vfp_sp_dyadic (void)
10378 {
10379 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10380 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10381 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10382 }
10383
10384 static void
10385 do_vfp_sp_compare_z (void)
10386 {
10387 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10388 }
10389
10390 static void
10391 do_vfp_dp_sp_cvt (void)
10392 {
10393 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10394 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10395 }
10396
10397 static void
10398 do_vfp_sp_dp_cvt (void)
10399 {
10400 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10401 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10402 }
10403
10404 static void
10405 do_vfp_reg_from_sp (void)
10406 {
10407 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10408 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10409 _(BAD_FPU));
10410
10411 inst.instruction |= inst.operands[0].reg << 12;
10412 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10413 }
10414
10415 static void
10416 do_vfp_reg2_from_sp2 (void)
10417 {
10418 constraint (inst.operands[2].imm != 2,
10419 _("only two consecutive VFP SP registers allowed here"));
10420 inst.instruction |= inst.operands[0].reg << 12;
10421 inst.instruction |= inst.operands[1].reg << 16;
10422 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10423 }
10424
10425 static void
10426 do_vfp_sp_from_reg (void)
10427 {
10428 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10429 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10430 _(BAD_FPU));
10431
10432 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
10433 inst.instruction |= inst.operands[1].reg << 12;
10434 }
10435
10436 static void
10437 do_vfp_sp2_from_reg2 (void)
10438 {
10439 constraint (inst.operands[0].imm != 2,
10440 _("only two consecutive VFP SP registers allowed here"));
10441 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
10442 inst.instruction |= inst.operands[1].reg << 12;
10443 inst.instruction |= inst.operands[2].reg << 16;
10444 }
10445
10446 static void
10447 do_vfp_sp_ldst (void)
10448 {
10449 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10450 encode_arm_cp_address (1, FALSE, TRUE, 0);
10451 }
10452
10453 static void
10454 do_vfp_dp_ldst (void)
10455 {
10456 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10457 encode_arm_cp_address (1, FALSE, TRUE, 0);
10458 }
10459
10460
10461 static void
10462 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
10463 {
10464 if (inst.operands[0].writeback)
10465 inst.instruction |= WRITE_BACK;
10466 else
10467 constraint (ldstm_type != VFP_LDSTMIA,
10468 _("this addressing mode requires base-register writeback"));
10469 inst.instruction |= inst.operands[0].reg << 16;
10470 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
10471 inst.instruction |= inst.operands[1].imm;
10472 }
10473
10474 static void
10475 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
10476 {
10477 int count;
10478
10479 if (inst.operands[0].writeback)
10480 inst.instruction |= WRITE_BACK;
10481 else
10482 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10483 _("this addressing mode requires base-register writeback"));
10484
10485 inst.instruction |= inst.operands[0].reg << 16;
10486 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10487
10488 count = inst.operands[1].imm << 1;
10489 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10490 count += 1;
10491
10492 inst.instruction |= count;
10493 }
10494
10495 static void
10496 do_vfp_sp_ldstmia (void)
10497 {
10498 vfp_sp_ldstm (VFP_LDSTMIA);
10499 }
10500
10501 static void
10502 do_vfp_sp_ldstmdb (void)
10503 {
10504 vfp_sp_ldstm (VFP_LDSTMDB);
10505 }
10506
10507 static void
10508 do_vfp_dp_ldstmia (void)
10509 {
10510 vfp_dp_ldstm (VFP_LDSTMIA);
10511 }
10512
10513 static void
10514 do_vfp_dp_ldstmdb (void)
10515 {
10516 vfp_dp_ldstm (VFP_LDSTMDB);
10517 }
10518
10519 static void
10520 do_vfp_xp_ldstmia (void)
10521 {
10522 vfp_dp_ldstm (VFP_LDSTMIAX);
10523 }
10524
10525 static void
10526 do_vfp_xp_ldstmdb (void)
10527 {
10528 vfp_dp_ldstm (VFP_LDSTMDBX);
10529 }
10530
10531 static void
10532 do_vfp_dp_rd_rm (void)
10533 {
10534 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10535 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10536 _(BAD_FPU));
10537
10538 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10539 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10540 }
10541
10542 static void
10543 do_vfp_dp_rn_rd (void)
10544 {
10545 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10546 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10547 }
10548
10549 static void
10550 do_vfp_dp_rd_rn (void)
10551 {
10552 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10553 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10554 }
10555
10556 static void
10557 do_vfp_dp_rd_rn_rm (void)
10558 {
10559 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10560 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10561 _(BAD_FPU));
10562
10563 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10564 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10565 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10566 }
10567
10568 static void
10569 do_vfp_dp_rd (void)
10570 {
10571 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10572 }
10573
10574 static void
10575 do_vfp_dp_rm_rd_rn (void)
10576 {
10577 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10578 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10579 _(BAD_FPU));
10580
10581 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10582 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10583 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10584 }
10585
10586 /* VFPv3 instructions. */
10587 static void
10588 do_vfp_sp_const (void)
10589 {
10590 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10591 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10592 inst.instruction |= (inst.operands[1].imm & 0x0f);
10593 }
10594
10595 static void
10596 do_vfp_dp_const (void)
10597 {
10598 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10599 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10600 inst.instruction |= (inst.operands[1].imm & 0x0f);
10601 }
10602
10603 static void
10604 vfp_conv (int srcsize)
10605 {
10606 int immbits = srcsize - inst.operands[1].imm;
10607
10608 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10609 {
10610 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
10611 i.e. immbits must be in range 0 - 16. */
10612 inst.error = _("immediate value out of range, expected range [0, 16]");
10613 return;
10614 }
10615 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
10616 {
10617 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
10618 i.e. immbits must be in range 0 - 31. */
10619 inst.error = _("immediate value out of range, expected range [1, 32]");
10620 return;
10621 }
10622
10623 inst.instruction |= (immbits & 1) << 5;
10624 inst.instruction |= (immbits >> 1);
10625 }
10626
10627 static void
10628 do_vfp_sp_conv_16 (void)
10629 {
10630 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10631 vfp_conv (16);
10632 }
10633
10634 static void
10635 do_vfp_dp_conv_16 (void)
10636 {
10637 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10638 vfp_conv (16);
10639 }
10640
10641 static void
10642 do_vfp_sp_conv_32 (void)
10643 {
10644 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10645 vfp_conv (32);
10646 }
10647
10648 static void
10649 do_vfp_dp_conv_32 (void)
10650 {
10651 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10652 vfp_conv (32);
10653 }
10654 \f
10655 /* FPA instructions. Also in a logical order. */
10656
10657 static void
10658 do_fpa_cmp (void)
10659 {
10660 inst.instruction |= inst.operands[0].reg << 16;
10661 inst.instruction |= inst.operands[1].reg;
10662 }
10663
10664 static void
10665 do_fpa_ldmstm (void)
10666 {
10667 inst.instruction |= inst.operands[0].reg << 12;
10668 switch (inst.operands[1].imm)
10669 {
10670 case 1: inst.instruction |= CP_T_X; break;
10671 case 2: inst.instruction |= CP_T_Y; break;
10672 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10673 case 4: break;
10674 default: abort ();
10675 }
10676
10677 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10678 {
10679 /* The instruction specified "ea" or "fd", so we can only accept
10680 [Rn]{!}. The instruction does not really support stacking or
10681 unstacking, so we have to emulate these by setting appropriate
10682 bits and offsets. */
10683 constraint (inst.relocs[0].exp.X_op != O_constant
10684 || inst.relocs[0].exp.X_add_number != 0,
10685 _("this instruction does not support indexing"));
10686
10687 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
10688 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
10689
10690 if (!(inst.instruction & INDEX_UP))
10691 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
10692
10693 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10694 {
10695 inst.operands[2].preind = 0;
10696 inst.operands[2].postind = 1;
10697 }
10698 }
10699
10700 encode_arm_cp_address (2, TRUE, TRUE, 0);
10701 }
10702 \f
10703 /* iWMMXt instructions: strictly in alphabetical order. */
10704
10705 static void
10706 do_iwmmxt_tandorc (void)
10707 {
10708 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10709 }
10710
10711 static void
10712 do_iwmmxt_textrc (void)
10713 {
10714 inst.instruction |= inst.operands[0].reg << 12;
10715 inst.instruction |= inst.operands[1].imm;
10716 }
10717
10718 static void
10719 do_iwmmxt_textrm (void)
10720 {
10721 inst.instruction |= inst.operands[0].reg << 12;
10722 inst.instruction |= inst.operands[1].reg << 16;
10723 inst.instruction |= inst.operands[2].imm;
10724 }
10725
10726 static void
10727 do_iwmmxt_tinsr (void)
10728 {
10729 inst.instruction |= inst.operands[0].reg << 16;
10730 inst.instruction |= inst.operands[1].reg << 12;
10731 inst.instruction |= inst.operands[2].imm;
10732 }
10733
10734 static void
10735 do_iwmmxt_tmia (void)
10736 {
10737 inst.instruction |= inst.operands[0].reg << 5;
10738 inst.instruction |= inst.operands[1].reg;
10739 inst.instruction |= inst.operands[2].reg << 12;
10740 }
10741
10742 static void
10743 do_iwmmxt_waligni (void)
10744 {
10745 inst.instruction |= inst.operands[0].reg << 12;
10746 inst.instruction |= inst.operands[1].reg << 16;
10747 inst.instruction |= inst.operands[2].reg;
10748 inst.instruction |= inst.operands[3].imm << 20;
10749 }
10750
10751 static void
10752 do_iwmmxt_wmerge (void)
10753 {
10754 inst.instruction |= inst.operands[0].reg << 12;
10755 inst.instruction |= inst.operands[1].reg << 16;
10756 inst.instruction |= inst.operands[2].reg;
10757 inst.instruction |= inst.operands[3].imm << 21;
10758 }
10759
10760 static void
10761 do_iwmmxt_wmov (void)
10762 {
10763 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10764 inst.instruction |= inst.operands[0].reg << 12;
10765 inst.instruction |= inst.operands[1].reg << 16;
10766 inst.instruction |= inst.operands[1].reg;
10767 }
10768
10769 static void
10770 do_iwmmxt_wldstbh (void)
10771 {
10772 int reloc;
10773 inst.instruction |= inst.operands[0].reg << 12;
10774 if (thumb_mode)
10775 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10776 else
10777 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10778 encode_arm_cp_address (1, TRUE, FALSE, reloc);
10779 }
10780
10781 static void
10782 do_iwmmxt_wldstw (void)
10783 {
10784 /* RIWR_RIWC clears .isreg for a control register. */
10785 if (!inst.operands[0].isreg)
10786 {
10787 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10788 inst.instruction |= 0xf0000000;
10789 }
10790
10791 inst.instruction |= inst.operands[0].reg << 12;
10792 encode_arm_cp_address (1, TRUE, TRUE, 0);
10793 }
10794
10795 static void
10796 do_iwmmxt_wldstd (void)
10797 {
10798 inst.instruction |= inst.operands[0].reg << 12;
10799 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10800 && inst.operands[1].immisreg)
10801 {
10802 inst.instruction &= ~0x1a000ff;
10803 inst.instruction |= (0xfU << 28);
10804 if (inst.operands[1].preind)
10805 inst.instruction |= PRE_INDEX;
10806 if (!inst.operands[1].negative)
10807 inst.instruction |= INDEX_UP;
10808 if (inst.operands[1].writeback)
10809 inst.instruction |= WRITE_BACK;
10810 inst.instruction |= inst.operands[1].reg << 16;
10811 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
10812 inst.instruction |= inst.operands[1].imm;
10813 }
10814 else
10815 encode_arm_cp_address (1, TRUE, FALSE, 0);
10816 }
10817
10818 static void
10819 do_iwmmxt_wshufh (void)
10820 {
10821 inst.instruction |= inst.operands[0].reg << 12;
10822 inst.instruction |= inst.operands[1].reg << 16;
10823 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10824 inst.instruction |= (inst.operands[2].imm & 0x0f);
10825 }
10826
10827 static void
10828 do_iwmmxt_wzero (void)
10829 {
10830 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10831 inst.instruction |= inst.operands[0].reg;
10832 inst.instruction |= inst.operands[0].reg << 12;
10833 inst.instruction |= inst.operands[0].reg << 16;
10834 }
10835
10836 static void
10837 do_iwmmxt_wrwrwr_or_imm5 (void)
10838 {
10839 if (inst.operands[2].isreg)
10840 do_rd_rn_rm ();
10841 else {
10842 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10843 _("immediate operand requires iWMMXt2"));
10844 do_rd_rn ();
10845 if (inst.operands[2].imm == 0)
10846 {
10847 switch ((inst.instruction >> 20) & 0xf)
10848 {
10849 case 4:
10850 case 5:
10851 case 6:
10852 case 7:
10853 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10854 inst.operands[2].imm = 16;
10855 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10856 break;
10857 case 8:
10858 case 9:
10859 case 10:
10860 case 11:
10861 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10862 inst.operands[2].imm = 32;
10863 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10864 break;
10865 case 12:
10866 case 13:
10867 case 14:
10868 case 15:
10869 {
10870 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10871 unsigned long wrn;
10872 wrn = (inst.instruction >> 16) & 0xf;
10873 inst.instruction &= 0xff0fff0f;
10874 inst.instruction |= wrn;
10875 /* Bail out here; the instruction is now assembled. */
10876 return;
10877 }
10878 }
10879 }
10880 /* Map 32 -> 0, etc. */
10881 inst.operands[2].imm &= 0x1f;
10882 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
10883 }
10884 }
10885 \f
10886 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10887 operations first, then control, shift, and load/store. */
10888
10889 /* Insns like "foo X,Y,Z". */
10890
10891 static void
10892 do_mav_triple (void)
10893 {
10894 inst.instruction |= inst.operands[0].reg << 16;
10895 inst.instruction |= inst.operands[1].reg;
10896 inst.instruction |= inst.operands[2].reg << 12;
10897 }
10898
10899 /* Insns like "foo W,X,Y,Z".
10900 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
10901
10902 static void
10903 do_mav_quad (void)
10904 {
10905 inst.instruction |= inst.operands[0].reg << 5;
10906 inst.instruction |= inst.operands[1].reg << 12;
10907 inst.instruction |= inst.operands[2].reg << 16;
10908 inst.instruction |= inst.operands[3].reg;
10909 }
10910
10911 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10912 static void
10913 do_mav_dspsc (void)
10914 {
10915 inst.instruction |= inst.operands[1].reg << 12;
10916 }
10917
10918 /* Maverick shift immediate instructions.
10919 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10920 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
10921
10922 static void
10923 do_mav_shift (void)
10924 {
10925 int imm = inst.operands[2].imm;
10926
10927 inst.instruction |= inst.operands[0].reg << 12;
10928 inst.instruction |= inst.operands[1].reg << 16;
10929
10930 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10931 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10932 Bit 4 should be 0. */
10933 imm = (imm & 0xf) | ((imm & 0x70) << 1);
10934
10935 inst.instruction |= imm;
10936 }
10937 \f
10938 /* XScale instructions. Also sorted arithmetic before move. */
10939
10940 /* Xscale multiply-accumulate (argument parse)
10941 MIAcc acc0,Rm,Rs
10942 MIAPHcc acc0,Rm,Rs
10943 MIAxycc acc0,Rm,Rs. */
10944
10945 static void
10946 do_xsc_mia (void)
10947 {
10948 inst.instruction |= inst.operands[1].reg;
10949 inst.instruction |= inst.operands[2].reg << 12;
10950 }
10951
10952 /* Xscale move-accumulator-register (argument parse)
10953
10954 MARcc acc0,RdLo,RdHi. */
10955
10956 static void
10957 do_xsc_mar (void)
10958 {
10959 inst.instruction |= inst.operands[1].reg << 12;
10960 inst.instruction |= inst.operands[2].reg << 16;
10961 }
10962
10963 /* Xscale move-register-accumulator (argument parse)
10964
10965 MRAcc RdLo,RdHi,acc0. */
10966
10967 static void
10968 do_xsc_mra (void)
10969 {
10970 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10971 inst.instruction |= inst.operands[0].reg << 12;
10972 inst.instruction |= inst.operands[1].reg << 16;
10973 }
10974 \f
10975 /* Encoding functions relevant only to Thumb. */
10976
10977 /* inst.operands[i] is a shifted-register operand; encode
10978 it into inst.instruction in the format used by Thumb32. */
10979
10980 static void
10981 encode_thumb32_shifted_operand (int i)
10982 {
10983 unsigned int value = inst.relocs[0].exp.X_add_number;
10984 unsigned int shift = inst.operands[i].shift_kind;
10985
10986 constraint (inst.operands[i].immisreg,
10987 _("shift by register not allowed in thumb mode"));
10988 inst.instruction |= inst.operands[i].reg;
10989 if (shift == SHIFT_RRX)
10990 inst.instruction |= SHIFT_ROR << 4;
10991 else
10992 {
10993 constraint (inst.relocs[0].exp.X_op != O_constant,
10994 _("expression too complex"));
10995
10996 constraint (value > 32
10997 || (value == 32 && (shift == SHIFT_LSL
10998 || shift == SHIFT_ROR)),
10999 _("shift expression is too large"));
11000
11001 if (value == 0)
11002 shift = SHIFT_LSL;
11003 else if (value == 32)
11004 value = 0;
11005
11006 inst.instruction |= shift << 4;
11007 inst.instruction |= (value & 0x1c) << 10;
11008 inst.instruction |= (value & 0x03) << 6;
11009 }
11010 }
11011
11012
11013 /* inst.operands[i] was set up by parse_address. Encode it into a
11014 Thumb32 format load or store instruction. Reject forms that cannot
11015 be used with such instructions. If is_t is true, reject forms that
11016 cannot be used with a T instruction; if is_d is true, reject forms
11017 that cannot be used with a D instruction. If it is a store insn,
11018 reject PC in Rn. */
11019
11020 static void
11021 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
11022 {
11023 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
11024
11025 constraint (!inst.operands[i].isreg,
11026 _("Instruction does not support =N addresses"));
11027
11028 inst.instruction |= inst.operands[i].reg << 16;
11029 if (inst.operands[i].immisreg)
11030 {
11031 constraint (is_pc, BAD_PC_ADDRESSING);
11032 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11033 constraint (inst.operands[i].negative,
11034 _("Thumb does not support negative register indexing"));
11035 constraint (inst.operands[i].postind,
11036 _("Thumb does not support register post-indexing"));
11037 constraint (inst.operands[i].writeback,
11038 _("Thumb does not support register indexing with writeback"));
11039 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11040 _("Thumb supports only LSL in shifted register indexing"));
11041
11042 inst.instruction |= inst.operands[i].imm;
11043 if (inst.operands[i].shifted)
11044 {
11045 constraint (inst.relocs[0].exp.X_op != O_constant,
11046 _("expression too complex"));
11047 constraint (inst.relocs[0].exp.X_add_number < 0
11048 || inst.relocs[0].exp.X_add_number > 3,
11049 _("shift out of range"));
11050 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
11051 }
11052 inst.relocs[0].type = BFD_RELOC_UNUSED;
11053 }
11054 else if (inst.operands[i].preind)
11055 {
11056 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
11057 constraint (is_t && inst.operands[i].writeback,
11058 _("cannot use writeback with this instruction"));
11059 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11060 BAD_PC_ADDRESSING);
11061
11062 if (is_d)
11063 {
11064 inst.instruction |= 0x01000000;
11065 if (inst.operands[i].writeback)
11066 inst.instruction |= 0x00200000;
11067 }
11068 else
11069 {
11070 inst.instruction |= 0x00000c00;
11071 if (inst.operands[i].writeback)
11072 inst.instruction |= 0x00000100;
11073 }
11074 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11075 }
11076 else if (inst.operands[i].postind)
11077 {
11078 gas_assert (inst.operands[i].writeback);
11079 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11080 constraint (is_t, _("cannot use post-indexing with this instruction"));
11081
11082 if (is_d)
11083 inst.instruction |= 0x00200000;
11084 else
11085 inst.instruction |= 0x00000900;
11086 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11087 }
11088 else /* unindexed - only for coprocessor */
11089 inst.error = _("instruction does not accept unindexed addressing");
11090 }
11091
11092 /* Table of Thumb instructions which exist in both 16- and 32-bit
11093 encodings (the latter only in post-V6T2 cores). The index is the
11094 value used in the insns table below. When there is more than one
11095 possible 16-bit encoding for the instruction, this table always
11096 holds variant (1).
11097 Also contains several pseudo-instructions used during relaxation. */
11098 #define T16_32_TAB \
11099 X(_adc, 4140, eb400000), \
11100 X(_adcs, 4140, eb500000), \
11101 X(_add, 1c00, eb000000), \
11102 X(_adds, 1c00, eb100000), \
11103 X(_addi, 0000, f1000000), \
11104 X(_addis, 0000, f1100000), \
11105 X(_add_pc,000f, f20f0000), \
11106 X(_add_sp,000d, f10d0000), \
11107 X(_adr, 000f, f20f0000), \
11108 X(_and, 4000, ea000000), \
11109 X(_ands, 4000, ea100000), \
11110 X(_asr, 1000, fa40f000), \
11111 X(_asrs, 1000, fa50f000), \
11112 X(_b, e000, f000b000), \
11113 X(_bcond, d000, f0008000), \
11114 X(_bf, 0000, f040e001), \
11115 X(_bfcsel,0000, f000e001), \
11116 X(_bfx, 0000, f060e001), \
11117 X(_bfl, 0000, f000c001), \
11118 X(_bflx, 0000, f070e001), \
11119 X(_bic, 4380, ea200000), \
11120 X(_bics, 4380, ea300000), \
11121 X(_cmn, 42c0, eb100f00), \
11122 X(_cmp, 2800, ebb00f00), \
11123 X(_cpsie, b660, f3af8400), \
11124 X(_cpsid, b670, f3af8600), \
11125 X(_cpy, 4600, ea4f0000), \
11126 X(_dec_sp,80dd, f1ad0d00), \
11127 X(_dls, 0000, f040e001), \
11128 X(_eor, 4040, ea800000), \
11129 X(_eors, 4040, ea900000), \
11130 X(_inc_sp,00dd, f10d0d00), \
11131 X(_ldmia, c800, e8900000), \
11132 X(_ldr, 6800, f8500000), \
11133 X(_ldrb, 7800, f8100000), \
11134 X(_ldrh, 8800, f8300000), \
11135 X(_ldrsb, 5600, f9100000), \
11136 X(_ldrsh, 5e00, f9300000), \
11137 X(_ldr_pc,4800, f85f0000), \
11138 X(_ldr_pc2,4800, f85f0000), \
11139 X(_ldr_sp,9800, f85d0000), \
11140 X(_le, 0000, f00fc001), \
11141 X(_lsl, 0000, fa00f000), \
11142 X(_lsls, 0000, fa10f000), \
11143 X(_lsr, 0800, fa20f000), \
11144 X(_lsrs, 0800, fa30f000), \
11145 X(_mov, 2000, ea4f0000), \
11146 X(_movs, 2000, ea5f0000), \
11147 X(_mul, 4340, fb00f000), \
11148 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11149 X(_mvn, 43c0, ea6f0000), \
11150 X(_mvns, 43c0, ea7f0000), \
11151 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11152 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11153 X(_orr, 4300, ea400000), \
11154 X(_orrs, 4300, ea500000), \
11155 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11156 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11157 X(_rev, ba00, fa90f080), \
11158 X(_rev16, ba40, fa90f090), \
11159 X(_revsh, bac0, fa90f0b0), \
11160 X(_ror, 41c0, fa60f000), \
11161 X(_rors, 41c0, fa70f000), \
11162 X(_sbc, 4180, eb600000), \
11163 X(_sbcs, 4180, eb700000), \
11164 X(_stmia, c000, e8800000), \
11165 X(_str, 6000, f8400000), \
11166 X(_strb, 7000, f8000000), \
11167 X(_strh, 8000, f8200000), \
11168 X(_str_sp,9000, f84d0000), \
11169 X(_sub, 1e00, eba00000), \
11170 X(_subs, 1e00, ebb00000), \
11171 X(_subi, 8000, f1a00000), \
11172 X(_subis, 8000, f1b00000), \
11173 X(_sxtb, b240, fa4ff080), \
11174 X(_sxth, b200, fa0ff080), \
11175 X(_tst, 4200, ea100f00), \
11176 X(_uxtb, b2c0, fa5ff080), \
11177 X(_uxth, b280, fa1ff080), \
11178 X(_nop, bf00, f3af8000), \
11179 X(_yield, bf10, f3af8001), \
11180 X(_wfe, bf20, f3af8002), \
11181 X(_wfi, bf30, f3af8003), \
11182 X(_wls, 0000, f040c001), \
11183 X(_sev, bf40, f3af8004), \
11184 X(_sevl, bf50, f3af8005), \
11185 X(_udf, de00, f7f0a000)
11186
11187 /* To catch errors in encoding functions, the codes are all offset by
11188 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11189 as 16-bit instructions. */
11190 #define X(a,b,c) T_MNEM##a
11191 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11192 #undef X
11193
11194 #define X(a,b,c) 0x##b
11195 static const unsigned short thumb_op16[] = { T16_32_TAB };
11196 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11197 #undef X
11198
11199 #define X(a,b,c) 0x##c
11200 static const unsigned int thumb_op32[] = { T16_32_TAB };
11201 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11202 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
11203 #undef X
11204 #undef T16_32_TAB
11205
11206 /* Thumb instruction encoders, in alphabetical order. */
11207
11208 /* ADDW or SUBW. */
11209
11210 static void
11211 do_t_add_sub_w (void)
11212 {
11213 int Rd, Rn;
11214
11215 Rd = inst.operands[0].reg;
11216 Rn = inst.operands[1].reg;
11217
11218 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11219 is the SP-{plus,minus}-immediate form of the instruction. */
11220 if (Rn == REG_SP)
11221 constraint (Rd == REG_PC, BAD_PC);
11222 else
11223 reject_bad_reg (Rd);
11224
11225 inst.instruction |= (Rn << 16) | (Rd << 8);
11226 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11227 }
11228
11229 /* Parse an add or subtract instruction. We get here with inst.instruction
11230 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
11231
11232 static void
11233 do_t_add_sub (void)
11234 {
11235 int Rd, Rs, Rn;
11236
11237 Rd = inst.operands[0].reg;
11238 Rs = (inst.operands[1].present
11239 ? inst.operands[1].reg /* Rd, Rs, foo */
11240 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11241
11242 if (Rd == REG_PC)
11243 set_pred_insn_type_last ();
11244
11245 if (unified_syntax)
11246 {
11247 bfd_boolean flags;
11248 bfd_boolean narrow;
11249 int opcode;
11250
11251 flags = (inst.instruction == T_MNEM_adds
11252 || inst.instruction == T_MNEM_subs);
11253 if (flags)
11254 narrow = !in_pred_block ();
11255 else
11256 narrow = in_pred_block ();
11257 if (!inst.operands[2].isreg)
11258 {
11259 int add;
11260
11261 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11262 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11263
11264 add = (inst.instruction == T_MNEM_add
11265 || inst.instruction == T_MNEM_adds);
11266 opcode = 0;
11267 if (inst.size_req != 4)
11268 {
11269 /* Attempt to use a narrow opcode, with relaxation if
11270 appropriate. */
11271 if (Rd == REG_SP && Rs == REG_SP && !flags)
11272 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11273 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11274 opcode = T_MNEM_add_sp;
11275 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11276 opcode = T_MNEM_add_pc;
11277 else if (Rd <= 7 && Rs <= 7 && narrow)
11278 {
11279 if (flags)
11280 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11281 else
11282 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11283 }
11284 if (opcode)
11285 {
11286 inst.instruction = THUMB_OP16(opcode);
11287 inst.instruction |= (Rd << 4) | Rs;
11288 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11289 || (inst.relocs[0].type
11290 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
11291 {
11292 if (inst.size_req == 2)
11293 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11294 else
11295 inst.relax = opcode;
11296 }
11297 }
11298 else
11299 constraint (inst.size_req == 2, BAD_HIREG);
11300 }
11301 if (inst.size_req == 4
11302 || (inst.size_req != 2 && !opcode))
11303 {
11304 constraint ((inst.relocs[0].type
11305 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11306 && (inst.relocs[0].type
11307 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
11308 THUMB1_RELOC_ONLY);
11309 if (Rd == REG_PC)
11310 {
11311 constraint (add, BAD_PC);
11312 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11313 _("only SUBS PC, LR, #const allowed"));
11314 constraint (inst.relocs[0].exp.X_op != O_constant,
11315 _("expression too complex"));
11316 constraint (inst.relocs[0].exp.X_add_number < 0
11317 || inst.relocs[0].exp.X_add_number > 0xff,
11318 _("immediate value out of range"));
11319 inst.instruction = T2_SUBS_PC_LR
11320 | inst.relocs[0].exp.X_add_number;
11321 inst.relocs[0].type = BFD_RELOC_UNUSED;
11322 return;
11323 }
11324 else if (Rs == REG_PC)
11325 {
11326 /* Always use addw/subw. */
11327 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
11328 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11329 }
11330 else
11331 {
11332 inst.instruction = THUMB_OP32 (inst.instruction);
11333 inst.instruction = (inst.instruction & 0xe1ffffff)
11334 | 0x10000000;
11335 if (flags)
11336 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11337 else
11338 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
11339 }
11340 inst.instruction |= Rd << 8;
11341 inst.instruction |= Rs << 16;
11342 }
11343 }
11344 else
11345 {
11346 unsigned int value = inst.relocs[0].exp.X_add_number;
11347 unsigned int shift = inst.operands[2].shift_kind;
11348
11349 Rn = inst.operands[2].reg;
11350 /* See if we can do this with a 16-bit instruction. */
11351 if (!inst.operands[2].shifted && inst.size_req != 4)
11352 {
11353 if (Rd > 7 || Rs > 7 || Rn > 7)
11354 narrow = FALSE;
11355
11356 if (narrow)
11357 {
11358 inst.instruction = ((inst.instruction == T_MNEM_adds
11359 || inst.instruction == T_MNEM_add)
11360 ? T_OPCODE_ADD_R3
11361 : T_OPCODE_SUB_R3);
11362 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11363 return;
11364 }
11365
11366 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
11367 {
11368 /* Thumb-1 cores (except v6-M) require at least one high
11369 register in a narrow non flag setting add. */
11370 if (Rd > 7 || Rn > 7
11371 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11372 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
11373 {
11374 if (Rd == Rn)
11375 {
11376 Rn = Rs;
11377 Rs = Rd;
11378 }
11379 inst.instruction = T_OPCODE_ADD_HI;
11380 inst.instruction |= (Rd & 8) << 4;
11381 inst.instruction |= (Rd & 7);
11382 inst.instruction |= Rn << 3;
11383 return;
11384 }
11385 }
11386 }
11387
11388 constraint (Rd == REG_PC, BAD_PC);
11389 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11390 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11391 constraint (Rs == REG_PC, BAD_PC);
11392 reject_bad_reg (Rn);
11393
11394 /* If we get here, it can't be done in 16 bits. */
11395 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11396 _("shift must be constant"));
11397 inst.instruction = THUMB_OP32 (inst.instruction);
11398 inst.instruction |= Rd << 8;
11399 inst.instruction |= Rs << 16;
11400 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11401 _("shift value over 3 not allowed in thumb mode"));
11402 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11403 _("only LSL shift allowed in thumb mode"));
11404 encode_thumb32_shifted_operand (2);
11405 }
11406 }
11407 else
11408 {
11409 constraint (inst.instruction == T_MNEM_adds
11410 || inst.instruction == T_MNEM_subs,
11411 BAD_THUMB32);
11412
11413 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
11414 {
11415 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11416 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11417 BAD_HIREG);
11418
11419 inst.instruction = (inst.instruction == T_MNEM_add
11420 ? 0x0000 : 0x8000);
11421 inst.instruction |= (Rd << 4) | Rs;
11422 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11423 return;
11424 }
11425
11426 Rn = inst.operands[2].reg;
11427 constraint (inst.operands[2].shifted, _("unshifted register required"));
11428
11429 /* We now have Rd, Rs, and Rn set to registers. */
11430 if (Rd > 7 || Rs > 7 || Rn > 7)
11431 {
11432 /* Can't do this for SUB. */
11433 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11434 inst.instruction = T_OPCODE_ADD_HI;
11435 inst.instruction |= (Rd & 8) << 4;
11436 inst.instruction |= (Rd & 7);
11437 if (Rs == Rd)
11438 inst.instruction |= Rn << 3;
11439 else if (Rn == Rd)
11440 inst.instruction |= Rs << 3;
11441 else
11442 constraint (1, _("dest must overlap one source register"));
11443 }
11444 else
11445 {
11446 inst.instruction = (inst.instruction == T_MNEM_add
11447 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11448 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11449 }
11450 }
11451 }
11452
11453 static void
11454 do_t_adr (void)
11455 {
11456 unsigned Rd;
11457
11458 Rd = inst.operands[0].reg;
11459 reject_bad_reg (Rd);
11460
11461 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
11462 {
11463 /* Defer to section relaxation. */
11464 inst.relax = inst.instruction;
11465 inst.instruction = THUMB_OP16 (inst.instruction);
11466 inst.instruction |= Rd << 4;
11467 }
11468 else if (unified_syntax && inst.size_req != 2)
11469 {
11470 /* Generate a 32-bit opcode. */
11471 inst.instruction = THUMB_OP32 (inst.instruction);
11472 inst.instruction |= Rd << 8;
11473 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11474 inst.relocs[0].pc_rel = 1;
11475 }
11476 else
11477 {
11478 /* Generate a 16-bit opcode. */
11479 inst.instruction = THUMB_OP16 (inst.instruction);
11480 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11481 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11482 inst.relocs[0].pc_rel = 1;
11483 inst.instruction |= Rd << 4;
11484 }
11485
11486 if (inst.relocs[0].exp.X_op == O_symbol
11487 && inst.relocs[0].exp.X_add_symbol != NULL
11488 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11489 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11490 inst.relocs[0].exp.X_add_number += 1;
11491 }
11492
11493 /* Arithmetic instructions for which there is just one 16-bit
11494 instruction encoding, and it allows only two low registers.
11495 For maximal compatibility with ARM syntax, we allow three register
11496 operands even when Thumb-32 instructions are not available, as long
11497 as the first two are identical. For instance, both "sbc r0,r1" and
11498 "sbc r0,r0,r1" are allowed. */
11499 static void
11500 do_t_arit3 (void)
11501 {
11502 int Rd, Rs, Rn;
11503
11504 Rd = inst.operands[0].reg;
11505 Rs = (inst.operands[1].present
11506 ? inst.operands[1].reg /* Rd, Rs, foo */
11507 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11508 Rn = inst.operands[2].reg;
11509
11510 reject_bad_reg (Rd);
11511 reject_bad_reg (Rs);
11512 if (inst.operands[2].isreg)
11513 reject_bad_reg (Rn);
11514
11515 if (unified_syntax)
11516 {
11517 if (!inst.operands[2].isreg)
11518 {
11519 /* For an immediate, we always generate a 32-bit opcode;
11520 section relaxation will shrink it later if possible. */
11521 inst.instruction = THUMB_OP32 (inst.instruction);
11522 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11523 inst.instruction |= Rd << 8;
11524 inst.instruction |= Rs << 16;
11525 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11526 }
11527 else
11528 {
11529 bfd_boolean narrow;
11530
11531 /* See if we can do this with a 16-bit instruction. */
11532 if (THUMB_SETS_FLAGS (inst.instruction))
11533 narrow = !in_pred_block ();
11534 else
11535 narrow = in_pred_block ();
11536
11537 if (Rd > 7 || Rn > 7 || Rs > 7)
11538 narrow = FALSE;
11539 if (inst.operands[2].shifted)
11540 narrow = FALSE;
11541 if (inst.size_req == 4)
11542 narrow = FALSE;
11543
11544 if (narrow
11545 && Rd == Rs)
11546 {
11547 inst.instruction = THUMB_OP16 (inst.instruction);
11548 inst.instruction |= Rd;
11549 inst.instruction |= Rn << 3;
11550 return;
11551 }
11552
11553 /* If we get here, it can't be done in 16 bits. */
11554 constraint (inst.operands[2].shifted
11555 && inst.operands[2].immisreg,
11556 _("shift must be constant"));
11557 inst.instruction = THUMB_OP32 (inst.instruction);
11558 inst.instruction |= Rd << 8;
11559 inst.instruction |= Rs << 16;
11560 encode_thumb32_shifted_operand (2);
11561 }
11562 }
11563 else
11564 {
11565 /* On its face this is a lie - the instruction does set the
11566 flags. However, the only supported mnemonic in this mode
11567 says it doesn't. */
11568 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11569
11570 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11571 _("unshifted register required"));
11572 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11573 constraint (Rd != Rs,
11574 _("dest and source1 must be the same register"));
11575
11576 inst.instruction = THUMB_OP16 (inst.instruction);
11577 inst.instruction |= Rd;
11578 inst.instruction |= Rn << 3;
11579 }
11580 }
11581
11582 /* Similarly, but for instructions where the arithmetic operation is
11583 commutative, so we can allow either of them to be different from
11584 the destination operand in a 16-bit instruction. For instance, all
11585 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11586 accepted. */
11587 static void
11588 do_t_arit3c (void)
11589 {
11590 int Rd, Rs, Rn;
11591
11592 Rd = inst.operands[0].reg;
11593 Rs = (inst.operands[1].present
11594 ? inst.operands[1].reg /* Rd, Rs, foo */
11595 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11596 Rn = inst.operands[2].reg;
11597
11598 reject_bad_reg (Rd);
11599 reject_bad_reg (Rs);
11600 if (inst.operands[2].isreg)
11601 reject_bad_reg (Rn);
11602
11603 if (unified_syntax)
11604 {
11605 if (!inst.operands[2].isreg)
11606 {
11607 /* For an immediate, we always generate a 32-bit opcode;
11608 section relaxation will shrink it later if possible. */
11609 inst.instruction = THUMB_OP32 (inst.instruction);
11610 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11611 inst.instruction |= Rd << 8;
11612 inst.instruction |= Rs << 16;
11613 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11614 }
11615 else
11616 {
11617 bfd_boolean narrow;
11618
11619 /* See if we can do this with a 16-bit instruction. */
11620 if (THUMB_SETS_FLAGS (inst.instruction))
11621 narrow = !in_pred_block ();
11622 else
11623 narrow = in_pred_block ();
11624
11625 if (Rd > 7 || Rn > 7 || Rs > 7)
11626 narrow = FALSE;
11627 if (inst.operands[2].shifted)
11628 narrow = FALSE;
11629 if (inst.size_req == 4)
11630 narrow = FALSE;
11631
11632 if (narrow)
11633 {
11634 if (Rd == Rs)
11635 {
11636 inst.instruction = THUMB_OP16 (inst.instruction);
11637 inst.instruction |= Rd;
11638 inst.instruction |= Rn << 3;
11639 return;
11640 }
11641 if (Rd == Rn)
11642 {
11643 inst.instruction = THUMB_OP16 (inst.instruction);
11644 inst.instruction |= Rd;
11645 inst.instruction |= Rs << 3;
11646 return;
11647 }
11648 }
11649
11650 /* If we get here, it can't be done in 16 bits. */
11651 constraint (inst.operands[2].shifted
11652 && inst.operands[2].immisreg,
11653 _("shift must be constant"));
11654 inst.instruction = THUMB_OP32 (inst.instruction);
11655 inst.instruction |= Rd << 8;
11656 inst.instruction |= Rs << 16;
11657 encode_thumb32_shifted_operand (2);
11658 }
11659 }
11660 else
11661 {
11662 /* On its face this is a lie - the instruction does set the
11663 flags. However, the only supported mnemonic in this mode
11664 says it doesn't. */
11665 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11666
11667 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11668 _("unshifted register required"));
11669 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11670
11671 inst.instruction = THUMB_OP16 (inst.instruction);
11672 inst.instruction |= Rd;
11673
11674 if (Rd == Rs)
11675 inst.instruction |= Rn << 3;
11676 else if (Rd == Rn)
11677 inst.instruction |= Rs << 3;
11678 else
11679 constraint (1, _("dest must overlap one source register"));
11680 }
11681 }
11682
11683 static void
11684 do_t_bfc (void)
11685 {
11686 unsigned Rd;
11687 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11688 constraint (msb > 32, _("bit-field extends past end of register"));
11689 /* The instruction encoding stores the LSB and MSB,
11690 not the LSB and width. */
11691 Rd = inst.operands[0].reg;
11692 reject_bad_reg (Rd);
11693 inst.instruction |= Rd << 8;
11694 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11695 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11696 inst.instruction |= msb - 1;
11697 }
11698
11699 static void
11700 do_t_bfi (void)
11701 {
11702 int Rd, Rn;
11703 unsigned int msb;
11704
11705 Rd = inst.operands[0].reg;
11706 reject_bad_reg (Rd);
11707
11708 /* #0 in second position is alternative syntax for bfc, which is
11709 the same instruction but with REG_PC in the Rm field. */
11710 if (!inst.operands[1].isreg)
11711 Rn = REG_PC;
11712 else
11713 {
11714 Rn = inst.operands[1].reg;
11715 reject_bad_reg (Rn);
11716 }
11717
11718 msb = inst.operands[2].imm + inst.operands[3].imm;
11719 constraint (msb > 32, _("bit-field extends past end of register"));
11720 /* The instruction encoding stores the LSB and MSB,
11721 not the LSB and width. */
11722 inst.instruction |= Rd << 8;
11723 inst.instruction |= Rn << 16;
11724 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11725 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11726 inst.instruction |= msb - 1;
11727 }
11728
11729 static void
11730 do_t_bfx (void)
11731 {
11732 unsigned Rd, Rn;
11733
11734 Rd = inst.operands[0].reg;
11735 Rn = inst.operands[1].reg;
11736
11737 reject_bad_reg (Rd);
11738 reject_bad_reg (Rn);
11739
11740 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11741 _("bit-field extends past end of register"));
11742 inst.instruction |= Rd << 8;
11743 inst.instruction |= Rn << 16;
11744 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11745 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11746 inst.instruction |= inst.operands[3].imm - 1;
11747 }
11748
11749 /* ARM V5 Thumb BLX (argument parse)
11750 BLX <target_addr> which is BLX(1)
11751 BLX <Rm> which is BLX(2)
11752 Unfortunately, there are two different opcodes for this mnemonic.
11753 So, the insns[].value is not used, and the code here zaps values
11754 into inst.instruction.
11755
11756 ??? How to take advantage of the additional two bits of displacement
11757 available in Thumb32 mode? Need new relocation? */
11758
11759 static void
11760 do_t_blx (void)
11761 {
11762 set_pred_insn_type_last ();
11763
11764 if (inst.operands[0].isreg)
11765 {
11766 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11767 /* We have a register, so this is BLX(2). */
11768 inst.instruction |= inst.operands[0].reg << 3;
11769 }
11770 else
11771 {
11772 /* No register. This must be BLX(1). */
11773 inst.instruction = 0xf000e800;
11774 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
11775 }
11776 }
11777
11778 static void
11779 do_t_branch (void)
11780 {
11781 int opcode;
11782 int cond;
11783 bfd_reloc_code_real_type reloc;
11784
11785 cond = inst.cond;
11786 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
11787
11788 if (in_pred_block ())
11789 {
11790 /* Conditional branches inside IT blocks are encoded as unconditional
11791 branches. */
11792 cond = COND_ALWAYS;
11793 }
11794 else
11795 cond = inst.cond;
11796
11797 if (cond != COND_ALWAYS)
11798 opcode = T_MNEM_bcond;
11799 else
11800 opcode = inst.instruction;
11801
11802 if (unified_syntax
11803 && (inst.size_req == 4
11804 || (inst.size_req != 2
11805 && (inst.operands[0].hasreloc
11806 || inst.relocs[0].exp.X_op == O_constant))))
11807 {
11808 inst.instruction = THUMB_OP32(opcode);
11809 if (cond == COND_ALWAYS)
11810 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
11811 else
11812 {
11813 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11814 _("selected architecture does not support "
11815 "wide conditional branch instruction"));
11816
11817 gas_assert (cond != 0xF);
11818 inst.instruction |= cond << 22;
11819 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
11820 }
11821 }
11822 else
11823 {
11824 inst.instruction = THUMB_OP16(opcode);
11825 if (cond == COND_ALWAYS)
11826 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
11827 else
11828 {
11829 inst.instruction |= cond << 8;
11830 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
11831 }
11832 /* Allow section relaxation. */
11833 if (unified_syntax && inst.size_req != 2)
11834 inst.relax = opcode;
11835 }
11836 inst.relocs[0].type = reloc;
11837 inst.relocs[0].pc_rel = 1;
11838 }
11839
11840 /* Actually do the work for Thumb state bkpt and hlt. The only difference
11841 between the two is the maximum immediate allowed - which is passed in
11842 RANGE. */
11843 static void
11844 do_t_bkpt_hlt1 (int range)
11845 {
11846 constraint (inst.cond != COND_ALWAYS,
11847 _("instruction is always unconditional"));
11848 if (inst.operands[0].present)
11849 {
11850 constraint (inst.operands[0].imm > range,
11851 _("immediate value out of range"));
11852 inst.instruction |= inst.operands[0].imm;
11853 }
11854
11855 set_pred_insn_type (NEUTRAL_IT_INSN);
11856 }
11857
11858 static void
11859 do_t_hlt (void)
11860 {
11861 do_t_bkpt_hlt1 (63);
11862 }
11863
11864 static void
11865 do_t_bkpt (void)
11866 {
11867 do_t_bkpt_hlt1 (255);
11868 }
11869
11870 static void
11871 do_t_branch23 (void)
11872 {
11873 set_pred_insn_type_last ();
11874 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
11875
11876 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11877 this file. We used to simply ignore the PLT reloc type here --
11878 the branch encoding is now needed to deal with TLSCALL relocs.
11879 So if we see a PLT reloc now, put it back to how it used to be to
11880 keep the preexisting behaviour. */
11881 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11882 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
11883
11884 #if defined(OBJ_COFF)
11885 /* If the destination of the branch is a defined symbol which does not have
11886 the THUMB_FUNC attribute, then we must be calling a function which has
11887 the (interfacearm) attribute. We look for the Thumb entry point to that
11888 function and change the branch to refer to that function instead. */
11889 if ( inst.relocs[0].exp.X_op == O_symbol
11890 && inst.relocs[0].exp.X_add_symbol != NULL
11891 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11892 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11893 inst.relocs[0].exp.X_add_symbol
11894 = find_real_start (inst.relocs[0].exp.X_add_symbol);
11895 #endif
11896 }
11897
11898 static void
11899 do_t_bx (void)
11900 {
11901 set_pred_insn_type_last ();
11902 inst.instruction |= inst.operands[0].reg << 3;
11903 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11904 should cause the alignment to be checked once it is known. This is
11905 because BX PC only works if the instruction is word aligned. */
11906 }
11907
11908 static void
11909 do_t_bxj (void)
11910 {
11911 int Rm;
11912
11913 set_pred_insn_type_last ();
11914 Rm = inst.operands[0].reg;
11915 reject_bad_reg (Rm);
11916 inst.instruction |= Rm << 16;
11917 }
11918
11919 static void
11920 do_t_clz (void)
11921 {
11922 unsigned Rd;
11923 unsigned Rm;
11924
11925 Rd = inst.operands[0].reg;
11926 Rm = inst.operands[1].reg;
11927
11928 reject_bad_reg (Rd);
11929 reject_bad_reg (Rm);
11930
11931 inst.instruction |= Rd << 8;
11932 inst.instruction |= Rm << 16;
11933 inst.instruction |= Rm;
11934 }
11935
11936 static void
11937 do_t_csdb (void)
11938 {
11939 set_pred_insn_type (OUTSIDE_PRED_INSN);
11940 }
11941
11942 static void
11943 do_t_cps (void)
11944 {
11945 set_pred_insn_type (OUTSIDE_PRED_INSN);
11946 inst.instruction |= inst.operands[0].imm;
11947 }
11948
11949 static void
11950 do_t_cpsi (void)
11951 {
11952 set_pred_insn_type (OUTSIDE_PRED_INSN);
11953 if (unified_syntax
11954 && (inst.operands[1].present || inst.size_req == 4)
11955 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
11956 {
11957 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11958 inst.instruction = 0xf3af8000;
11959 inst.instruction |= imod << 9;
11960 inst.instruction |= inst.operands[0].imm << 5;
11961 if (inst.operands[1].present)
11962 inst.instruction |= 0x100 | inst.operands[1].imm;
11963 }
11964 else
11965 {
11966 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11967 && (inst.operands[0].imm & 4),
11968 _("selected processor does not support 'A' form "
11969 "of this instruction"));
11970 constraint (inst.operands[1].present || inst.size_req == 4,
11971 _("Thumb does not support the 2-argument "
11972 "form of this instruction"));
11973 inst.instruction |= inst.operands[0].imm;
11974 }
11975 }
11976
11977 /* THUMB CPY instruction (argument parse). */
11978
11979 static void
11980 do_t_cpy (void)
11981 {
11982 if (inst.size_req == 4)
11983 {
11984 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11985 inst.instruction |= inst.operands[0].reg << 8;
11986 inst.instruction |= inst.operands[1].reg;
11987 }
11988 else
11989 {
11990 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11991 inst.instruction |= (inst.operands[0].reg & 0x7);
11992 inst.instruction |= inst.operands[1].reg << 3;
11993 }
11994 }
11995
11996 static void
11997 do_t_cbz (void)
11998 {
11999 set_pred_insn_type (OUTSIDE_PRED_INSN);
12000 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12001 inst.instruction |= inst.operands[0].reg;
12002 inst.relocs[0].pc_rel = 1;
12003 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
12004 }
12005
12006 static void
12007 do_t_dbg (void)
12008 {
12009 inst.instruction |= inst.operands[0].imm;
12010 }
12011
12012 static void
12013 do_t_div (void)
12014 {
12015 unsigned Rd, Rn, Rm;
12016
12017 Rd = inst.operands[0].reg;
12018 Rn = (inst.operands[1].present
12019 ? inst.operands[1].reg : Rd);
12020 Rm = inst.operands[2].reg;
12021
12022 reject_bad_reg (Rd);
12023 reject_bad_reg (Rn);
12024 reject_bad_reg (Rm);
12025
12026 inst.instruction |= Rd << 8;
12027 inst.instruction |= Rn << 16;
12028 inst.instruction |= Rm;
12029 }
12030
12031 static void
12032 do_t_hint (void)
12033 {
12034 if (unified_syntax && inst.size_req == 4)
12035 inst.instruction = THUMB_OP32 (inst.instruction);
12036 else
12037 inst.instruction = THUMB_OP16 (inst.instruction);
12038 }
12039
12040 static void
12041 do_t_it (void)
12042 {
12043 unsigned int cond = inst.operands[0].imm;
12044
12045 set_pred_insn_type (IT_INSN);
12046 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12047 now_pred.cc = cond;
12048 now_pred.warn_deprecated = FALSE;
12049 now_pred.type = SCALAR_PRED;
12050
12051 /* If the condition is a negative condition, invert the mask. */
12052 if ((cond & 0x1) == 0x0)
12053 {
12054 unsigned int mask = inst.instruction & 0x000f;
12055
12056 if ((mask & 0x7) == 0)
12057 {
12058 /* No conversion needed. */
12059 now_pred.block_length = 1;
12060 }
12061 else if ((mask & 0x3) == 0)
12062 {
12063 mask ^= 0x8;
12064 now_pred.block_length = 2;
12065 }
12066 else if ((mask & 0x1) == 0)
12067 {
12068 mask ^= 0xC;
12069 now_pred.block_length = 3;
12070 }
12071 else
12072 {
12073 mask ^= 0xE;
12074 now_pred.block_length = 4;
12075 }
12076
12077 inst.instruction &= 0xfff0;
12078 inst.instruction |= mask;
12079 }
12080
12081 inst.instruction |= cond << 4;
12082 }
12083
12084 /* Helper function used for both push/pop and ldm/stm. */
12085 static void
12086 encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12087 bfd_boolean writeback)
12088 {
12089 bfd_boolean load, store;
12090
12091 gas_assert (base != -1 || !do_io);
12092 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12093 store = do_io && !load;
12094
12095 if (mask & (1 << 13))
12096 inst.error = _("SP not allowed in register list");
12097
12098 if (do_io && (mask & (1 << base)) != 0
12099 && writeback)
12100 inst.error = _("having the base register in the register list when "
12101 "using write back is UNPREDICTABLE");
12102
12103 if (load)
12104 {
12105 if (mask & (1 << 15))
12106 {
12107 if (mask & (1 << 14))
12108 inst.error = _("LR and PC should not both be in register list");
12109 else
12110 set_pred_insn_type_last ();
12111 }
12112 }
12113 else if (store)
12114 {
12115 if (mask & (1 << 15))
12116 inst.error = _("PC not allowed in register list");
12117 }
12118
12119 if (do_io && ((mask & (mask - 1)) == 0))
12120 {
12121 /* Single register transfers implemented as str/ldr. */
12122 if (writeback)
12123 {
12124 if (inst.instruction & (1 << 23))
12125 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12126 else
12127 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12128 }
12129 else
12130 {
12131 if (inst.instruction & (1 << 23))
12132 inst.instruction = 0x00800000; /* ia -> [base] */
12133 else
12134 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12135 }
12136
12137 inst.instruction |= 0xf8400000;
12138 if (load)
12139 inst.instruction |= 0x00100000;
12140
12141 mask = ffs (mask) - 1;
12142 mask <<= 12;
12143 }
12144 else if (writeback)
12145 inst.instruction |= WRITE_BACK;
12146
12147 inst.instruction |= mask;
12148 if (do_io)
12149 inst.instruction |= base << 16;
12150 }
12151
12152 static void
12153 do_t_ldmstm (void)
12154 {
12155 /* This really doesn't seem worth it. */
12156 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
12157 _("expression too complex"));
12158 constraint (inst.operands[1].writeback,
12159 _("Thumb load/store multiple does not support {reglist}^"));
12160
12161 if (unified_syntax)
12162 {
12163 bfd_boolean narrow;
12164 unsigned mask;
12165
12166 narrow = FALSE;
12167 /* See if we can use a 16-bit instruction. */
12168 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12169 && inst.size_req != 4
12170 && !(inst.operands[1].imm & ~0xff))
12171 {
12172 mask = 1 << inst.operands[0].reg;
12173
12174 if (inst.operands[0].reg <= 7)
12175 {
12176 if (inst.instruction == T_MNEM_stmia
12177 ? inst.operands[0].writeback
12178 : (inst.operands[0].writeback
12179 == !(inst.operands[1].imm & mask)))
12180 {
12181 if (inst.instruction == T_MNEM_stmia
12182 && (inst.operands[1].imm & mask)
12183 && (inst.operands[1].imm & (mask - 1)))
12184 as_warn (_("value stored for r%d is UNKNOWN"),
12185 inst.operands[0].reg);
12186
12187 inst.instruction = THUMB_OP16 (inst.instruction);
12188 inst.instruction |= inst.operands[0].reg << 8;
12189 inst.instruction |= inst.operands[1].imm;
12190 narrow = TRUE;
12191 }
12192 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12193 {
12194 /* This means 1 register in reg list one of 3 situations:
12195 1. Instruction is stmia, but without writeback.
12196 2. lmdia without writeback, but with Rn not in
12197 reglist.
12198 3. ldmia with writeback, but with Rn in reglist.
12199 Case 3 is UNPREDICTABLE behaviour, so we handle
12200 case 1 and 2 which can be converted into a 16-bit
12201 str or ldr. The SP cases are handled below. */
12202 unsigned long opcode;
12203 /* First, record an error for Case 3. */
12204 if (inst.operands[1].imm & mask
12205 && inst.operands[0].writeback)
12206 inst.error =
12207 _("having the base register in the register list when "
12208 "using write back is UNPREDICTABLE");
12209
12210 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
12211 : T_MNEM_ldr);
12212 inst.instruction = THUMB_OP16 (opcode);
12213 inst.instruction |= inst.operands[0].reg << 3;
12214 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12215 narrow = TRUE;
12216 }
12217 }
12218 else if (inst.operands[0] .reg == REG_SP)
12219 {
12220 if (inst.operands[0].writeback)
12221 {
12222 inst.instruction =
12223 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12224 ? T_MNEM_push : T_MNEM_pop);
12225 inst.instruction |= inst.operands[1].imm;
12226 narrow = TRUE;
12227 }
12228 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12229 {
12230 inst.instruction =
12231 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12232 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
12233 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
12234 narrow = TRUE;
12235 }
12236 }
12237 }
12238
12239 if (!narrow)
12240 {
12241 if (inst.instruction < 0xffff)
12242 inst.instruction = THUMB_OP32 (inst.instruction);
12243
12244 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12245 inst.operands[1].imm,
12246 inst.operands[0].writeback);
12247 }
12248 }
12249 else
12250 {
12251 constraint (inst.operands[0].reg > 7
12252 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
12253 constraint (inst.instruction != T_MNEM_ldmia
12254 && inst.instruction != T_MNEM_stmia,
12255 _("Thumb-2 instruction only valid in unified syntax"));
12256 if (inst.instruction == T_MNEM_stmia)
12257 {
12258 if (!inst.operands[0].writeback)
12259 as_warn (_("this instruction will write back the base register"));
12260 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12261 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
12262 as_warn (_("value stored for r%d is UNKNOWN"),
12263 inst.operands[0].reg);
12264 }
12265 else
12266 {
12267 if (!inst.operands[0].writeback
12268 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12269 as_warn (_("this instruction will write back the base register"));
12270 else if (inst.operands[0].writeback
12271 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12272 as_warn (_("this instruction will not write back the base register"));
12273 }
12274
12275 inst.instruction = THUMB_OP16 (inst.instruction);
12276 inst.instruction |= inst.operands[0].reg << 8;
12277 inst.instruction |= inst.operands[1].imm;
12278 }
12279 }
12280
12281 static void
12282 do_t_ldrex (void)
12283 {
12284 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12285 || inst.operands[1].postind || inst.operands[1].writeback
12286 || inst.operands[1].immisreg || inst.operands[1].shifted
12287 || inst.operands[1].negative,
12288 BAD_ADDR_MODE);
12289
12290 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12291
12292 inst.instruction |= inst.operands[0].reg << 12;
12293 inst.instruction |= inst.operands[1].reg << 16;
12294 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
12295 }
12296
12297 static void
12298 do_t_ldrexd (void)
12299 {
12300 if (!inst.operands[1].present)
12301 {
12302 constraint (inst.operands[0].reg == REG_LR,
12303 _("r14 not allowed as first register "
12304 "when second register is omitted"));
12305 inst.operands[1].reg = inst.operands[0].reg + 1;
12306 }
12307 constraint (inst.operands[0].reg == inst.operands[1].reg,
12308 BAD_OVERLAP);
12309
12310 inst.instruction |= inst.operands[0].reg << 12;
12311 inst.instruction |= inst.operands[1].reg << 8;
12312 inst.instruction |= inst.operands[2].reg << 16;
12313 }
12314
12315 static void
12316 do_t_ldst (void)
12317 {
12318 unsigned long opcode;
12319 int Rn;
12320
12321 if (inst.operands[0].isreg
12322 && !inst.operands[0].preind
12323 && inst.operands[0].reg == REG_PC)
12324 set_pred_insn_type_last ();
12325
12326 opcode = inst.instruction;
12327 if (unified_syntax)
12328 {
12329 if (!inst.operands[1].isreg)
12330 {
12331 if (opcode <= 0xffff)
12332 inst.instruction = THUMB_OP32 (opcode);
12333 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12334 return;
12335 }
12336 if (inst.operands[1].isreg
12337 && !inst.operands[1].writeback
12338 && !inst.operands[1].shifted && !inst.operands[1].postind
12339 && !inst.operands[1].negative && inst.operands[0].reg <= 7
12340 && opcode <= 0xffff
12341 && inst.size_req != 4)
12342 {
12343 /* Insn may have a 16-bit form. */
12344 Rn = inst.operands[1].reg;
12345 if (inst.operands[1].immisreg)
12346 {
12347 inst.instruction = THUMB_OP16 (opcode);
12348 /* [Rn, Rik] */
12349 if (Rn <= 7 && inst.operands[1].imm <= 7)
12350 goto op16;
12351 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12352 reject_bad_reg (inst.operands[1].imm);
12353 }
12354 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12355 && opcode != T_MNEM_ldrsb)
12356 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12357 || (Rn == REG_SP && opcode == T_MNEM_str))
12358 {
12359 /* [Rn, #const] */
12360 if (Rn > 7)
12361 {
12362 if (Rn == REG_PC)
12363 {
12364 if (inst.relocs[0].pc_rel)
12365 opcode = T_MNEM_ldr_pc2;
12366 else
12367 opcode = T_MNEM_ldr_pc;
12368 }
12369 else
12370 {
12371 if (opcode == T_MNEM_ldr)
12372 opcode = T_MNEM_ldr_sp;
12373 else
12374 opcode = T_MNEM_str_sp;
12375 }
12376 inst.instruction = inst.operands[0].reg << 8;
12377 }
12378 else
12379 {
12380 inst.instruction = inst.operands[0].reg;
12381 inst.instruction |= inst.operands[1].reg << 3;
12382 }
12383 inst.instruction |= THUMB_OP16 (opcode);
12384 if (inst.size_req == 2)
12385 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12386 else
12387 inst.relax = opcode;
12388 return;
12389 }
12390 }
12391 /* Definitely a 32-bit variant. */
12392
12393 /* Warning for Erratum 752419. */
12394 if (opcode == T_MNEM_ldr
12395 && inst.operands[0].reg == REG_SP
12396 && inst.operands[1].writeback == 1
12397 && !inst.operands[1].immisreg)
12398 {
12399 if (no_cpu_selected ()
12400 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
12401 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12402 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
12403 as_warn (_("This instruction may be unpredictable "
12404 "if executed on M-profile cores "
12405 "with interrupts enabled."));
12406 }
12407
12408 /* Do some validations regarding addressing modes. */
12409 if (inst.operands[1].immisreg)
12410 reject_bad_reg (inst.operands[1].imm);
12411
12412 constraint (inst.operands[1].writeback == 1
12413 && inst.operands[0].reg == inst.operands[1].reg,
12414 BAD_OVERLAP);
12415
12416 inst.instruction = THUMB_OP32 (opcode);
12417 inst.instruction |= inst.operands[0].reg << 12;
12418 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
12419 check_ldr_r15_aligned ();
12420 return;
12421 }
12422
12423 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12424
12425 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
12426 {
12427 /* Only [Rn,Rm] is acceptable. */
12428 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12429 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12430 || inst.operands[1].postind || inst.operands[1].shifted
12431 || inst.operands[1].negative,
12432 _("Thumb does not support this addressing mode"));
12433 inst.instruction = THUMB_OP16 (inst.instruction);
12434 goto op16;
12435 }
12436
12437 inst.instruction = THUMB_OP16 (inst.instruction);
12438 if (!inst.operands[1].isreg)
12439 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12440 return;
12441
12442 constraint (!inst.operands[1].preind
12443 || inst.operands[1].shifted
12444 || inst.operands[1].writeback,
12445 _("Thumb does not support this addressing mode"));
12446 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
12447 {
12448 constraint (inst.instruction & 0x0600,
12449 _("byte or halfword not valid for base register"));
12450 constraint (inst.operands[1].reg == REG_PC
12451 && !(inst.instruction & THUMB_LOAD_BIT),
12452 _("r15 based store not allowed"));
12453 constraint (inst.operands[1].immisreg,
12454 _("invalid base register for register offset"));
12455
12456 if (inst.operands[1].reg == REG_PC)
12457 inst.instruction = T_OPCODE_LDR_PC;
12458 else if (inst.instruction & THUMB_LOAD_BIT)
12459 inst.instruction = T_OPCODE_LDR_SP;
12460 else
12461 inst.instruction = T_OPCODE_STR_SP;
12462
12463 inst.instruction |= inst.operands[0].reg << 8;
12464 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12465 return;
12466 }
12467
12468 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12469 if (!inst.operands[1].immisreg)
12470 {
12471 /* Immediate offset. */
12472 inst.instruction |= inst.operands[0].reg;
12473 inst.instruction |= inst.operands[1].reg << 3;
12474 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12475 return;
12476 }
12477
12478 /* Register offset. */
12479 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12480 constraint (inst.operands[1].negative,
12481 _("Thumb does not support this addressing mode"));
12482
12483 op16:
12484 switch (inst.instruction)
12485 {
12486 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12487 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12488 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12489 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12490 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12491 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12492 case 0x5600 /* ldrsb */:
12493 case 0x5e00 /* ldrsh */: break;
12494 default: abort ();
12495 }
12496
12497 inst.instruction |= inst.operands[0].reg;
12498 inst.instruction |= inst.operands[1].reg << 3;
12499 inst.instruction |= inst.operands[1].imm << 6;
12500 }
12501
12502 static void
12503 do_t_ldstd (void)
12504 {
12505 if (!inst.operands[1].present)
12506 {
12507 inst.operands[1].reg = inst.operands[0].reg + 1;
12508 constraint (inst.operands[0].reg == REG_LR,
12509 _("r14 not allowed here"));
12510 constraint (inst.operands[0].reg == REG_R12,
12511 _("r12 not allowed here"));
12512 }
12513
12514 if (inst.operands[2].writeback
12515 && (inst.operands[0].reg == inst.operands[2].reg
12516 || inst.operands[1].reg == inst.operands[2].reg))
12517 as_warn (_("base register written back, and overlaps "
12518 "one of transfer registers"));
12519
12520 inst.instruction |= inst.operands[0].reg << 12;
12521 inst.instruction |= inst.operands[1].reg << 8;
12522 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
12523 }
12524
12525 static void
12526 do_t_ldstt (void)
12527 {
12528 inst.instruction |= inst.operands[0].reg << 12;
12529 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12530 }
12531
12532 static void
12533 do_t_mla (void)
12534 {
12535 unsigned Rd, Rn, Rm, Ra;
12536
12537 Rd = inst.operands[0].reg;
12538 Rn = inst.operands[1].reg;
12539 Rm = inst.operands[2].reg;
12540 Ra = inst.operands[3].reg;
12541
12542 reject_bad_reg (Rd);
12543 reject_bad_reg (Rn);
12544 reject_bad_reg (Rm);
12545 reject_bad_reg (Ra);
12546
12547 inst.instruction |= Rd << 8;
12548 inst.instruction |= Rn << 16;
12549 inst.instruction |= Rm;
12550 inst.instruction |= Ra << 12;
12551 }
12552
12553 static void
12554 do_t_mlal (void)
12555 {
12556 unsigned RdLo, RdHi, Rn, Rm;
12557
12558 RdLo = inst.operands[0].reg;
12559 RdHi = inst.operands[1].reg;
12560 Rn = inst.operands[2].reg;
12561 Rm = inst.operands[3].reg;
12562
12563 reject_bad_reg (RdLo);
12564 reject_bad_reg (RdHi);
12565 reject_bad_reg (Rn);
12566 reject_bad_reg (Rm);
12567
12568 inst.instruction |= RdLo << 12;
12569 inst.instruction |= RdHi << 8;
12570 inst.instruction |= Rn << 16;
12571 inst.instruction |= Rm;
12572 }
12573
12574 static void
12575 do_t_mov_cmp (void)
12576 {
12577 unsigned Rn, Rm;
12578
12579 Rn = inst.operands[0].reg;
12580 Rm = inst.operands[1].reg;
12581
12582 if (Rn == REG_PC)
12583 set_pred_insn_type_last ();
12584
12585 if (unified_syntax)
12586 {
12587 int r0off = (inst.instruction == T_MNEM_mov
12588 || inst.instruction == T_MNEM_movs) ? 8 : 16;
12589 unsigned long opcode;
12590 bfd_boolean narrow;
12591 bfd_boolean low_regs;
12592
12593 low_regs = (Rn <= 7 && Rm <= 7);
12594 opcode = inst.instruction;
12595 if (in_pred_block ())
12596 narrow = opcode != T_MNEM_movs;
12597 else
12598 narrow = opcode != T_MNEM_movs || low_regs;
12599 if (inst.size_req == 4
12600 || inst.operands[1].shifted)
12601 narrow = FALSE;
12602
12603 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12604 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12605 && !inst.operands[1].shifted
12606 && Rn == REG_PC
12607 && Rm == REG_LR)
12608 {
12609 inst.instruction = T2_SUBS_PC_LR;
12610 return;
12611 }
12612
12613 if (opcode == T_MNEM_cmp)
12614 {
12615 constraint (Rn == REG_PC, BAD_PC);
12616 if (narrow)
12617 {
12618 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12619 but valid. */
12620 warn_deprecated_sp (Rm);
12621 /* R15 was documented as a valid choice for Rm in ARMv6,
12622 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12623 tools reject R15, so we do too. */
12624 constraint (Rm == REG_PC, BAD_PC);
12625 }
12626 else
12627 reject_bad_reg (Rm);
12628 }
12629 else if (opcode == T_MNEM_mov
12630 || opcode == T_MNEM_movs)
12631 {
12632 if (inst.operands[1].isreg)
12633 {
12634 if (opcode == T_MNEM_movs)
12635 {
12636 reject_bad_reg (Rn);
12637 reject_bad_reg (Rm);
12638 }
12639 else if (narrow)
12640 {
12641 /* This is mov.n. */
12642 if ((Rn == REG_SP || Rn == REG_PC)
12643 && (Rm == REG_SP || Rm == REG_PC))
12644 {
12645 as_tsktsk (_("Use of r%u as a source register is "
12646 "deprecated when r%u is the destination "
12647 "register."), Rm, Rn);
12648 }
12649 }
12650 else
12651 {
12652 /* This is mov.w. */
12653 constraint (Rn == REG_PC, BAD_PC);
12654 constraint (Rm == REG_PC, BAD_PC);
12655 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12656 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
12657 }
12658 }
12659 else
12660 reject_bad_reg (Rn);
12661 }
12662
12663 if (!inst.operands[1].isreg)
12664 {
12665 /* Immediate operand. */
12666 if (!in_pred_block () && opcode == T_MNEM_mov)
12667 narrow = 0;
12668 if (low_regs && narrow)
12669 {
12670 inst.instruction = THUMB_OP16 (opcode);
12671 inst.instruction |= Rn << 8;
12672 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12673 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
12674 {
12675 if (inst.size_req == 2)
12676 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12677 else
12678 inst.relax = opcode;
12679 }
12680 }
12681 else
12682 {
12683 constraint ((inst.relocs[0].type
12684 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12685 && (inst.relocs[0].type
12686 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
12687 THUMB1_RELOC_ONLY);
12688
12689 inst.instruction = THUMB_OP32 (inst.instruction);
12690 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12691 inst.instruction |= Rn << r0off;
12692 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12693 }
12694 }
12695 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12696 && (inst.instruction == T_MNEM_mov
12697 || inst.instruction == T_MNEM_movs))
12698 {
12699 /* Register shifts are encoded as separate shift instructions. */
12700 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12701
12702 if (in_pred_block ())
12703 narrow = !flags;
12704 else
12705 narrow = flags;
12706
12707 if (inst.size_req == 4)
12708 narrow = FALSE;
12709
12710 if (!low_regs || inst.operands[1].imm > 7)
12711 narrow = FALSE;
12712
12713 if (Rn != Rm)
12714 narrow = FALSE;
12715
12716 switch (inst.operands[1].shift_kind)
12717 {
12718 case SHIFT_LSL:
12719 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12720 break;
12721 case SHIFT_ASR:
12722 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12723 break;
12724 case SHIFT_LSR:
12725 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12726 break;
12727 case SHIFT_ROR:
12728 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12729 break;
12730 default:
12731 abort ();
12732 }
12733
12734 inst.instruction = opcode;
12735 if (narrow)
12736 {
12737 inst.instruction |= Rn;
12738 inst.instruction |= inst.operands[1].imm << 3;
12739 }
12740 else
12741 {
12742 if (flags)
12743 inst.instruction |= CONDS_BIT;
12744
12745 inst.instruction |= Rn << 8;
12746 inst.instruction |= Rm << 16;
12747 inst.instruction |= inst.operands[1].imm;
12748 }
12749 }
12750 else if (!narrow)
12751 {
12752 /* Some mov with immediate shift have narrow variants.
12753 Register shifts are handled above. */
12754 if (low_regs && inst.operands[1].shifted
12755 && (inst.instruction == T_MNEM_mov
12756 || inst.instruction == T_MNEM_movs))
12757 {
12758 if (in_pred_block ())
12759 narrow = (inst.instruction == T_MNEM_mov);
12760 else
12761 narrow = (inst.instruction == T_MNEM_movs);
12762 }
12763
12764 if (narrow)
12765 {
12766 switch (inst.operands[1].shift_kind)
12767 {
12768 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12769 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12770 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12771 default: narrow = FALSE; break;
12772 }
12773 }
12774
12775 if (narrow)
12776 {
12777 inst.instruction |= Rn;
12778 inst.instruction |= Rm << 3;
12779 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
12780 }
12781 else
12782 {
12783 inst.instruction = THUMB_OP32 (inst.instruction);
12784 inst.instruction |= Rn << r0off;
12785 encode_thumb32_shifted_operand (1);
12786 }
12787 }
12788 else
12789 switch (inst.instruction)
12790 {
12791 case T_MNEM_mov:
12792 /* In v4t or v5t a move of two lowregs produces unpredictable
12793 results. Don't allow this. */
12794 if (low_regs)
12795 {
12796 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12797 "MOV Rd, Rs with two low registers is not "
12798 "permitted on this architecture");
12799 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
12800 arm_ext_v6);
12801 }
12802
12803 inst.instruction = T_OPCODE_MOV_HR;
12804 inst.instruction |= (Rn & 0x8) << 4;
12805 inst.instruction |= (Rn & 0x7);
12806 inst.instruction |= Rm << 3;
12807 break;
12808
12809 case T_MNEM_movs:
12810 /* We know we have low registers at this point.
12811 Generate LSLS Rd, Rs, #0. */
12812 inst.instruction = T_OPCODE_LSL_I;
12813 inst.instruction |= Rn;
12814 inst.instruction |= Rm << 3;
12815 break;
12816
12817 case T_MNEM_cmp:
12818 if (low_regs)
12819 {
12820 inst.instruction = T_OPCODE_CMP_LR;
12821 inst.instruction |= Rn;
12822 inst.instruction |= Rm << 3;
12823 }
12824 else
12825 {
12826 inst.instruction = T_OPCODE_CMP_HR;
12827 inst.instruction |= (Rn & 0x8) << 4;
12828 inst.instruction |= (Rn & 0x7);
12829 inst.instruction |= Rm << 3;
12830 }
12831 break;
12832 }
12833 return;
12834 }
12835
12836 inst.instruction = THUMB_OP16 (inst.instruction);
12837
12838 /* PR 10443: Do not silently ignore shifted operands. */
12839 constraint (inst.operands[1].shifted,
12840 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12841
12842 if (inst.operands[1].isreg)
12843 {
12844 if (Rn < 8 && Rm < 8)
12845 {
12846 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12847 since a MOV instruction produces unpredictable results. */
12848 if (inst.instruction == T_OPCODE_MOV_I8)
12849 inst.instruction = T_OPCODE_ADD_I3;
12850 else
12851 inst.instruction = T_OPCODE_CMP_LR;
12852
12853 inst.instruction |= Rn;
12854 inst.instruction |= Rm << 3;
12855 }
12856 else
12857 {
12858 if (inst.instruction == T_OPCODE_MOV_I8)
12859 inst.instruction = T_OPCODE_MOV_HR;
12860 else
12861 inst.instruction = T_OPCODE_CMP_HR;
12862 do_t_cpy ();
12863 }
12864 }
12865 else
12866 {
12867 constraint (Rn > 7,
12868 _("only lo regs allowed with immediate"));
12869 inst.instruction |= Rn << 8;
12870 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12871 }
12872 }
12873
12874 static void
12875 do_t_mov16 (void)
12876 {
12877 unsigned Rd;
12878 bfd_vma imm;
12879 bfd_boolean top;
12880
12881 top = (inst.instruction & 0x00800000) != 0;
12882 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
12883 {
12884 constraint (top, _(":lower16: not allowed in this instruction"));
12885 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
12886 }
12887 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
12888 {
12889 constraint (!top, _(":upper16: not allowed in this instruction"));
12890 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
12891 }
12892
12893 Rd = inst.operands[0].reg;
12894 reject_bad_reg (Rd);
12895
12896 inst.instruction |= Rd << 8;
12897 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
12898 {
12899 imm = inst.relocs[0].exp.X_add_number;
12900 inst.instruction |= (imm & 0xf000) << 4;
12901 inst.instruction |= (imm & 0x0800) << 15;
12902 inst.instruction |= (imm & 0x0700) << 4;
12903 inst.instruction |= (imm & 0x00ff);
12904 }
12905 }
12906
12907 static void
12908 do_t_mvn_tst (void)
12909 {
12910 unsigned Rn, Rm;
12911
12912 Rn = inst.operands[0].reg;
12913 Rm = inst.operands[1].reg;
12914
12915 if (inst.instruction == T_MNEM_cmp
12916 || inst.instruction == T_MNEM_cmn)
12917 constraint (Rn == REG_PC, BAD_PC);
12918 else
12919 reject_bad_reg (Rn);
12920 reject_bad_reg (Rm);
12921
12922 if (unified_syntax)
12923 {
12924 int r0off = (inst.instruction == T_MNEM_mvn
12925 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
12926 bfd_boolean narrow;
12927
12928 if (inst.size_req == 4
12929 || inst.instruction > 0xffff
12930 || inst.operands[1].shifted
12931 || Rn > 7 || Rm > 7)
12932 narrow = FALSE;
12933 else if (inst.instruction == T_MNEM_cmn
12934 || inst.instruction == T_MNEM_tst)
12935 narrow = TRUE;
12936 else if (THUMB_SETS_FLAGS (inst.instruction))
12937 narrow = !in_pred_block ();
12938 else
12939 narrow = in_pred_block ();
12940
12941 if (!inst.operands[1].isreg)
12942 {
12943 /* For an immediate, we always generate a 32-bit opcode;
12944 section relaxation will shrink it later if possible. */
12945 if (inst.instruction < 0xffff)
12946 inst.instruction = THUMB_OP32 (inst.instruction);
12947 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12948 inst.instruction |= Rn << r0off;
12949 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12950 }
12951 else
12952 {
12953 /* See if we can do this with a 16-bit instruction. */
12954 if (narrow)
12955 {
12956 inst.instruction = THUMB_OP16 (inst.instruction);
12957 inst.instruction |= Rn;
12958 inst.instruction |= Rm << 3;
12959 }
12960 else
12961 {
12962 constraint (inst.operands[1].shifted
12963 && inst.operands[1].immisreg,
12964 _("shift must be constant"));
12965 if (inst.instruction < 0xffff)
12966 inst.instruction = THUMB_OP32 (inst.instruction);
12967 inst.instruction |= Rn << r0off;
12968 encode_thumb32_shifted_operand (1);
12969 }
12970 }
12971 }
12972 else
12973 {
12974 constraint (inst.instruction > 0xffff
12975 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12976 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12977 _("unshifted register required"));
12978 constraint (Rn > 7 || Rm > 7,
12979 BAD_HIREG);
12980
12981 inst.instruction = THUMB_OP16 (inst.instruction);
12982 inst.instruction |= Rn;
12983 inst.instruction |= Rm << 3;
12984 }
12985 }
12986
12987 static void
12988 do_t_mrs (void)
12989 {
12990 unsigned Rd;
12991
12992 if (do_vfp_nsyn_mrs () == SUCCESS)
12993 return;
12994
12995 Rd = inst.operands[0].reg;
12996 reject_bad_reg (Rd);
12997 inst.instruction |= Rd << 8;
12998
12999 if (inst.operands[1].isreg)
13000 {
13001 unsigned br = inst.operands[1].reg;
13002 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
13003 as_bad (_("bad register for mrs"));
13004
13005 inst.instruction |= br & (0xf << 16);
13006 inst.instruction |= (br & 0x300) >> 4;
13007 inst.instruction |= (br & SPSR_BIT) >> 2;
13008 }
13009 else
13010 {
13011 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13012
13013 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13014 {
13015 /* PR gas/12698: The constraint is only applied for m_profile.
13016 If the user has specified -march=all, we want to ignore it as
13017 we are building for any CPU type, including non-m variants. */
13018 bfd_boolean m_profile =
13019 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13020 constraint ((flags != 0) && m_profile, _("selected processor does "
13021 "not support requested special purpose register"));
13022 }
13023 else
13024 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13025 devices). */
13026 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13027 _("'APSR', 'CPSR' or 'SPSR' expected"));
13028
13029 inst.instruction |= (flags & SPSR_BIT) >> 2;
13030 inst.instruction |= inst.operands[1].imm & 0xff;
13031 inst.instruction |= 0xf0000;
13032 }
13033 }
13034
13035 static void
13036 do_t_msr (void)
13037 {
13038 int flags;
13039 unsigned Rn;
13040
13041 if (do_vfp_nsyn_msr () == SUCCESS)
13042 return;
13043
13044 constraint (!inst.operands[1].isreg,
13045 _("Thumb encoding does not support an immediate here"));
13046
13047 if (inst.operands[0].isreg)
13048 flags = (int)(inst.operands[0].reg);
13049 else
13050 flags = inst.operands[0].imm;
13051
13052 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13053 {
13054 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13055
13056 /* PR gas/12698: The constraint is only applied for m_profile.
13057 If the user has specified -march=all, we want to ignore it as
13058 we are building for any CPU type, including non-m variants. */
13059 bfd_boolean m_profile =
13060 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13061 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13062 && (bits & ~(PSR_s | PSR_f)) != 0)
13063 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13064 && bits != PSR_f)) && m_profile,
13065 _("selected processor does not support requested special "
13066 "purpose register"));
13067 }
13068 else
13069 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13070 "requested special purpose register"));
13071
13072 Rn = inst.operands[1].reg;
13073 reject_bad_reg (Rn);
13074
13075 inst.instruction |= (flags & SPSR_BIT) >> 2;
13076 inst.instruction |= (flags & 0xf0000) >> 8;
13077 inst.instruction |= (flags & 0x300) >> 4;
13078 inst.instruction |= (flags & 0xff);
13079 inst.instruction |= Rn << 16;
13080 }
13081
13082 static void
13083 do_t_mul (void)
13084 {
13085 bfd_boolean narrow;
13086 unsigned Rd, Rn, Rm;
13087
13088 if (!inst.operands[2].present)
13089 inst.operands[2].reg = inst.operands[0].reg;
13090
13091 Rd = inst.operands[0].reg;
13092 Rn = inst.operands[1].reg;
13093 Rm = inst.operands[2].reg;
13094
13095 if (unified_syntax)
13096 {
13097 if (inst.size_req == 4
13098 || (Rd != Rn
13099 && Rd != Rm)
13100 || Rn > 7
13101 || Rm > 7)
13102 narrow = FALSE;
13103 else if (inst.instruction == T_MNEM_muls)
13104 narrow = !in_pred_block ();
13105 else
13106 narrow = in_pred_block ();
13107 }
13108 else
13109 {
13110 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
13111 constraint (Rn > 7 || Rm > 7,
13112 BAD_HIREG);
13113 narrow = TRUE;
13114 }
13115
13116 if (narrow)
13117 {
13118 /* 16-bit MULS/Conditional MUL. */
13119 inst.instruction = THUMB_OP16 (inst.instruction);
13120 inst.instruction |= Rd;
13121
13122 if (Rd == Rn)
13123 inst.instruction |= Rm << 3;
13124 else if (Rd == Rm)
13125 inst.instruction |= Rn << 3;
13126 else
13127 constraint (1, _("dest must overlap one source register"));
13128 }
13129 else
13130 {
13131 constraint (inst.instruction != T_MNEM_mul,
13132 _("Thumb-2 MUL must not set flags"));
13133 /* 32-bit MUL. */
13134 inst.instruction = THUMB_OP32 (inst.instruction);
13135 inst.instruction |= Rd << 8;
13136 inst.instruction |= Rn << 16;
13137 inst.instruction |= Rm << 0;
13138
13139 reject_bad_reg (Rd);
13140 reject_bad_reg (Rn);
13141 reject_bad_reg (Rm);
13142 }
13143 }
13144
13145 static void
13146 do_t_mull (void)
13147 {
13148 unsigned RdLo, RdHi, Rn, Rm;
13149
13150 RdLo = inst.operands[0].reg;
13151 RdHi = inst.operands[1].reg;
13152 Rn = inst.operands[2].reg;
13153 Rm = inst.operands[3].reg;
13154
13155 reject_bad_reg (RdLo);
13156 reject_bad_reg (RdHi);
13157 reject_bad_reg (Rn);
13158 reject_bad_reg (Rm);
13159
13160 inst.instruction |= RdLo << 12;
13161 inst.instruction |= RdHi << 8;
13162 inst.instruction |= Rn << 16;
13163 inst.instruction |= Rm;
13164
13165 if (RdLo == RdHi)
13166 as_tsktsk (_("rdhi and rdlo must be different"));
13167 }
13168
13169 static void
13170 do_t_nop (void)
13171 {
13172 set_pred_insn_type (NEUTRAL_IT_INSN);
13173
13174 if (unified_syntax)
13175 {
13176 if (inst.size_req == 4 || inst.operands[0].imm > 15)
13177 {
13178 inst.instruction = THUMB_OP32 (inst.instruction);
13179 inst.instruction |= inst.operands[0].imm;
13180 }
13181 else
13182 {
13183 /* PR9722: Check for Thumb2 availability before
13184 generating a thumb2 nop instruction. */
13185 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
13186 {
13187 inst.instruction = THUMB_OP16 (inst.instruction);
13188 inst.instruction |= inst.operands[0].imm << 4;
13189 }
13190 else
13191 inst.instruction = 0x46c0;
13192 }
13193 }
13194 else
13195 {
13196 constraint (inst.operands[0].present,
13197 _("Thumb does not support NOP with hints"));
13198 inst.instruction = 0x46c0;
13199 }
13200 }
13201
13202 static void
13203 do_t_neg (void)
13204 {
13205 if (unified_syntax)
13206 {
13207 bfd_boolean narrow;
13208
13209 if (THUMB_SETS_FLAGS (inst.instruction))
13210 narrow = !in_pred_block ();
13211 else
13212 narrow = in_pred_block ();
13213 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13214 narrow = FALSE;
13215 if (inst.size_req == 4)
13216 narrow = FALSE;
13217
13218 if (!narrow)
13219 {
13220 inst.instruction = THUMB_OP32 (inst.instruction);
13221 inst.instruction |= inst.operands[0].reg << 8;
13222 inst.instruction |= inst.operands[1].reg << 16;
13223 }
13224 else
13225 {
13226 inst.instruction = THUMB_OP16 (inst.instruction);
13227 inst.instruction |= inst.operands[0].reg;
13228 inst.instruction |= inst.operands[1].reg << 3;
13229 }
13230 }
13231 else
13232 {
13233 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13234 BAD_HIREG);
13235 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13236
13237 inst.instruction = THUMB_OP16 (inst.instruction);
13238 inst.instruction |= inst.operands[0].reg;
13239 inst.instruction |= inst.operands[1].reg << 3;
13240 }
13241 }
13242
13243 static void
13244 do_t_orn (void)
13245 {
13246 unsigned Rd, Rn;
13247
13248 Rd = inst.operands[0].reg;
13249 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13250
13251 reject_bad_reg (Rd);
13252 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13253 reject_bad_reg (Rn);
13254
13255 inst.instruction |= Rd << 8;
13256 inst.instruction |= Rn << 16;
13257
13258 if (!inst.operands[2].isreg)
13259 {
13260 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13261 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13262 }
13263 else
13264 {
13265 unsigned Rm;
13266
13267 Rm = inst.operands[2].reg;
13268 reject_bad_reg (Rm);
13269
13270 constraint (inst.operands[2].shifted
13271 && inst.operands[2].immisreg,
13272 _("shift must be constant"));
13273 encode_thumb32_shifted_operand (2);
13274 }
13275 }
13276
13277 static void
13278 do_t_pkhbt (void)
13279 {
13280 unsigned Rd, Rn, Rm;
13281
13282 Rd = inst.operands[0].reg;
13283 Rn = inst.operands[1].reg;
13284 Rm = inst.operands[2].reg;
13285
13286 reject_bad_reg (Rd);
13287 reject_bad_reg (Rn);
13288 reject_bad_reg (Rm);
13289
13290 inst.instruction |= Rd << 8;
13291 inst.instruction |= Rn << 16;
13292 inst.instruction |= Rm;
13293 if (inst.operands[3].present)
13294 {
13295 unsigned int val = inst.relocs[0].exp.X_add_number;
13296 constraint (inst.relocs[0].exp.X_op != O_constant,
13297 _("expression too complex"));
13298 inst.instruction |= (val & 0x1c) << 10;
13299 inst.instruction |= (val & 0x03) << 6;
13300 }
13301 }
13302
13303 static void
13304 do_t_pkhtb (void)
13305 {
13306 if (!inst.operands[3].present)
13307 {
13308 unsigned Rtmp;
13309
13310 inst.instruction &= ~0x00000020;
13311
13312 /* PR 10168. Swap the Rm and Rn registers. */
13313 Rtmp = inst.operands[1].reg;
13314 inst.operands[1].reg = inst.operands[2].reg;
13315 inst.operands[2].reg = Rtmp;
13316 }
13317 do_t_pkhbt ();
13318 }
13319
13320 static void
13321 do_t_pld (void)
13322 {
13323 if (inst.operands[0].immisreg)
13324 reject_bad_reg (inst.operands[0].imm);
13325
13326 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13327 }
13328
13329 static void
13330 do_t_push_pop (void)
13331 {
13332 unsigned mask;
13333
13334 constraint (inst.operands[0].writeback,
13335 _("push/pop do not support {reglist}^"));
13336 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
13337 _("expression too complex"));
13338
13339 mask = inst.operands[0].imm;
13340 if (inst.size_req != 4 && (mask & ~0xff) == 0)
13341 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
13342 else if (inst.size_req != 4
13343 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
13344 ? REG_LR : REG_PC)))
13345 {
13346 inst.instruction = THUMB_OP16 (inst.instruction);
13347 inst.instruction |= THUMB_PP_PC_LR;
13348 inst.instruction |= mask & 0xff;
13349 }
13350 else if (unified_syntax)
13351 {
13352 inst.instruction = THUMB_OP32 (inst.instruction);
13353 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13354 }
13355 else
13356 {
13357 inst.error = _("invalid register list to push/pop instruction");
13358 return;
13359 }
13360 }
13361
13362 static void
13363 do_t_clrm (void)
13364 {
13365 if (unified_syntax)
13366 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
13367 else
13368 {
13369 inst.error = _("invalid register list to push/pop instruction");
13370 return;
13371 }
13372 }
13373
13374 static void
13375 do_t_vscclrm (void)
13376 {
13377 if (inst.operands[0].issingle)
13378 {
13379 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13380 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13381 inst.instruction |= inst.operands[0].imm;
13382 }
13383 else
13384 {
13385 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13386 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13387 inst.instruction |= 1 << 8;
13388 inst.instruction |= inst.operands[0].imm << 1;
13389 }
13390 }
13391
13392 static void
13393 do_t_rbit (void)
13394 {
13395 unsigned Rd, Rm;
13396
13397 Rd = inst.operands[0].reg;
13398 Rm = inst.operands[1].reg;
13399
13400 reject_bad_reg (Rd);
13401 reject_bad_reg (Rm);
13402
13403 inst.instruction |= Rd << 8;
13404 inst.instruction |= Rm << 16;
13405 inst.instruction |= Rm;
13406 }
13407
13408 static void
13409 do_t_rev (void)
13410 {
13411 unsigned Rd, Rm;
13412
13413 Rd = inst.operands[0].reg;
13414 Rm = inst.operands[1].reg;
13415
13416 reject_bad_reg (Rd);
13417 reject_bad_reg (Rm);
13418
13419 if (Rd <= 7 && Rm <= 7
13420 && inst.size_req != 4)
13421 {
13422 inst.instruction = THUMB_OP16 (inst.instruction);
13423 inst.instruction |= Rd;
13424 inst.instruction |= Rm << 3;
13425 }
13426 else if (unified_syntax)
13427 {
13428 inst.instruction = THUMB_OP32 (inst.instruction);
13429 inst.instruction |= Rd << 8;
13430 inst.instruction |= Rm << 16;
13431 inst.instruction |= Rm;
13432 }
13433 else
13434 inst.error = BAD_HIREG;
13435 }
13436
13437 static void
13438 do_t_rrx (void)
13439 {
13440 unsigned Rd, Rm;
13441
13442 Rd = inst.operands[0].reg;
13443 Rm = inst.operands[1].reg;
13444
13445 reject_bad_reg (Rd);
13446 reject_bad_reg (Rm);
13447
13448 inst.instruction |= Rd << 8;
13449 inst.instruction |= Rm;
13450 }
13451
13452 static void
13453 do_t_rsb (void)
13454 {
13455 unsigned Rd, Rs;
13456
13457 Rd = inst.operands[0].reg;
13458 Rs = (inst.operands[1].present
13459 ? inst.operands[1].reg /* Rd, Rs, foo */
13460 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
13461
13462 reject_bad_reg (Rd);
13463 reject_bad_reg (Rs);
13464 if (inst.operands[2].isreg)
13465 reject_bad_reg (inst.operands[2].reg);
13466
13467 inst.instruction |= Rd << 8;
13468 inst.instruction |= Rs << 16;
13469 if (!inst.operands[2].isreg)
13470 {
13471 bfd_boolean narrow;
13472
13473 if ((inst.instruction & 0x00100000) != 0)
13474 narrow = !in_pred_block ();
13475 else
13476 narrow = in_pred_block ();
13477
13478 if (Rd > 7 || Rs > 7)
13479 narrow = FALSE;
13480
13481 if (inst.size_req == 4 || !unified_syntax)
13482 narrow = FALSE;
13483
13484 if (inst.relocs[0].exp.X_op != O_constant
13485 || inst.relocs[0].exp.X_add_number != 0)
13486 narrow = FALSE;
13487
13488 /* Turn rsb #0 into 16-bit neg. We should probably do this via
13489 relaxation, but it doesn't seem worth the hassle. */
13490 if (narrow)
13491 {
13492 inst.relocs[0].type = BFD_RELOC_UNUSED;
13493 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13494 inst.instruction |= Rs << 3;
13495 inst.instruction |= Rd;
13496 }
13497 else
13498 {
13499 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13500 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13501 }
13502 }
13503 else
13504 encode_thumb32_shifted_operand (2);
13505 }
13506
13507 static void
13508 do_t_setend (void)
13509 {
13510 if (warn_on_deprecated
13511 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13512 as_tsktsk (_("setend use is deprecated for ARMv8"));
13513
13514 set_pred_insn_type (OUTSIDE_PRED_INSN);
13515 if (inst.operands[0].imm)
13516 inst.instruction |= 0x8;
13517 }
13518
13519 static void
13520 do_t_shift (void)
13521 {
13522 if (!inst.operands[1].present)
13523 inst.operands[1].reg = inst.operands[0].reg;
13524
13525 if (unified_syntax)
13526 {
13527 bfd_boolean narrow;
13528 int shift_kind;
13529
13530 switch (inst.instruction)
13531 {
13532 case T_MNEM_asr:
13533 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13534 case T_MNEM_lsl:
13535 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13536 case T_MNEM_lsr:
13537 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13538 case T_MNEM_ror:
13539 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13540 default: abort ();
13541 }
13542
13543 if (THUMB_SETS_FLAGS (inst.instruction))
13544 narrow = !in_pred_block ();
13545 else
13546 narrow = in_pred_block ();
13547 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13548 narrow = FALSE;
13549 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13550 narrow = FALSE;
13551 if (inst.operands[2].isreg
13552 && (inst.operands[1].reg != inst.operands[0].reg
13553 || inst.operands[2].reg > 7))
13554 narrow = FALSE;
13555 if (inst.size_req == 4)
13556 narrow = FALSE;
13557
13558 reject_bad_reg (inst.operands[0].reg);
13559 reject_bad_reg (inst.operands[1].reg);
13560
13561 if (!narrow)
13562 {
13563 if (inst.operands[2].isreg)
13564 {
13565 reject_bad_reg (inst.operands[2].reg);
13566 inst.instruction = THUMB_OP32 (inst.instruction);
13567 inst.instruction |= inst.operands[0].reg << 8;
13568 inst.instruction |= inst.operands[1].reg << 16;
13569 inst.instruction |= inst.operands[2].reg;
13570
13571 /* PR 12854: Error on extraneous shifts. */
13572 constraint (inst.operands[2].shifted,
13573 _("extraneous shift as part of operand to shift insn"));
13574 }
13575 else
13576 {
13577 inst.operands[1].shifted = 1;
13578 inst.operands[1].shift_kind = shift_kind;
13579 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13580 ? T_MNEM_movs : T_MNEM_mov);
13581 inst.instruction |= inst.operands[0].reg << 8;
13582 encode_thumb32_shifted_operand (1);
13583 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
13584 inst.relocs[0].type = BFD_RELOC_UNUSED;
13585 }
13586 }
13587 else
13588 {
13589 if (inst.operands[2].isreg)
13590 {
13591 switch (shift_kind)
13592 {
13593 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13594 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13595 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13596 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
13597 default: abort ();
13598 }
13599
13600 inst.instruction |= inst.operands[0].reg;
13601 inst.instruction |= inst.operands[2].reg << 3;
13602
13603 /* PR 12854: Error on extraneous shifts. */
13604 constraint (inst.operands[2].shifted,
13605 _("extraneous shift as part of operand to shift insn"));
13606 }
13607 else
13608 {
13609 switch (shift_kind)
13610 {
13611 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13612 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13613 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
13614 default: abort ();
13615 }
13616 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13617 inst.instruction |= inst.operands[0].reg;
13618 inst.instruction |= inst.operands[1].reg << 3;
13619 }
13620 }
13621 }
13622 else
13623 {
13624 constraint (inst.operands[0].reg > 7
13625 || inst.operands[1].reg > 7, BAD_HIREG);
13626 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13627
13628 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13629 {
13630 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13631 constraint (inst.operands[0].reg != inst.operands[1].reg,
13632 _("source1 and dest must be same register"));
13633
13634 switch (inst.instruction)
13635 {
13636 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13637 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13638 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13639 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13640 default: abort ();
13641 }
13642
13643 inst.instruction |= inst.operands[0].reg;
13644 inst.instruction |= inst.operands[2].reg << 3;
13645
13646 /* PR 12854: Error on extraneous shifts. */
13647 constraint (inst.operands[2].shifted,
13648 _("extraneous shift as part of operand to shift insn"));
13649 }
13650 else
13651 {
13652 switch (inst.instruction)
13653 {
13654 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13655 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13656 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13657 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13658 default: abort ();
13659 }
13660 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13661 inst.instruction |= inst.operands[0].reg;
13662 inst.instruction |= inst.operands[1].reg << 3;
13663 }
13664 }
13665 }
13666
13667 static void
13668 do_t_simd (void)
13669 {
13670 unsigned Rd, Rn, Rm;
13671
13672 Rd = inst.operands[0].reg;
13673 Rn = inst.operands[1].reg;
13674 Rm = inst.operands[2].reg;
13675
13676 reject_bad_reg (Rd);
13677 reject_bad_reg (Rn);
13678 reject_bad_reg (Rm);
13679
13680 inst.instruction |= Rd << 8;
13681 inst.instruction |= Rn << 16;
13682 inst.instruction |= Rm;
13683 }
13684
13685 static void
13686 do_t_simd2 (void)
13687 {
13688 unsigned Rd, Rn, Rm;
13689
13690 Rd = inst.operands[0].reg;
13691 Rm = inst.operands[1].reg;
13692 Rn = inst.operands[2].reg;
13693
13694 reject_bad_reg (Rd);
13695 reject_bad_reg (Rn);
13696 reject_bad_reg (Rm);
13697
13698 inst.instruction |= Rd << 8;
13699 inst.instruction |= Rn << 16;
13700 inst.instruction |= Rm;
13701 }
13702
13703 static void
13704 do_t_smc (void)
13705 {
13706 unsigned int value = inst.relocs[0].exp.X_add_number;
13707 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13708 _("SMC is not permitted on this architecture"));
13709 constraint (inst.relocs[0].exp.X_op != O_constant,
13710 _("expression too complex"));
13711 inst.relocs[0].type = BFD_RELOC_UNUSED;
13712 inst.instruction |= (value & 0xf000) >> 12;
13713 inst.instruction |= (value & 0x0ff0);
13714 inst.instruction |= (value & 0x000f) << 16;
13715 /* PR gas/15623: SMC instructions must be last in an IT block. */
13716 set_pred_insn_type_last ();
13717 }
13718
13719 static void
13720 do_t_hvc (void)
13721 {
13722 unsigned int value = inst.relocs[0].exp.X_add_number;
13723
13724 inst.relocs[0].type = BFD_RELOC_UNUSED;
13725 inst.instruction |= (value & 0x0fff);
13726 inst.instruction |= (value & 0xf000) << 4;
13727 }
13728
13729 static void
13730 do_t_ssat_usat (int bias)
13731 {
13732 unsigned Rd, Rn;
13733
13734 Rd = inst.operands[0].reg;
13735 Rn = inst.operands[2].reg;
13736
13737 reject_bad_reg (Rd);
13738 reject_bad_reg (Rn);
13739
13740 inst.instruction |= Rd << 8;
13741 inst.instruction |= inst.operands[1].imm - bias;
13742 inst.instruction |= Rn << 16;
13743
13744 if (inst.operands[3].present)
13745 {
13746 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
13747
13748 inst.relocs[0].type = BFD_RELOC_UNUSED;
13749
13750 constraint (inst.relocs[0].exp.X_op != O_constant,
13751 _("expression too complex"));
13752
13753 if (shift_amount != 0)
13754 {
13755 constraint (shift_amount > 31,
13756 _("shift expression is too large"));
13757
13758 if (inst.operands[3].shift_kind == SHIFT_ASR)
13759 inst.instruction |= 0x00200000; /* sh bit. */
13760
13761 inst.instruction |= (shift_amount & 0x1c) << 10;
13762 inst.instruction |= (shift_amount & 0x03) << 6;
13763 }
13764 }
13765 }
13766
13767 static void
13768 do_t_ssat (void)
13769 {
13770 do_t_ssat_usat (1);
13771 }
13772
13773 static void
13774 do_t_ssat16 (void)
13775 {
13776 unsigned Rd, Rn;
13777
13778 Rd = inst.operands[0].reg;
13779 Rn = inst.operands[2].reg;
13780
13781 reject_bad_reg (Rd);
13782 reject_bad_reg (Rn);
13783
13784 inst.instruction |= Rd << 8;
13785 inst.instruction |= inst.operands[1].imm - 1;
13786 inst.instruction |= Rn << 16;
13787 }
13788
13789 static void
13790 do_t_strex (void)
13791 {
13792 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13793 || inst.operands[2].postind || inst.operands[2].writeback
13794 || inst.operands[2].immisreg || inst.operands[2].shifted
13795 || inst.operands[2].negative,
13796 BAD_ADDR_MODE);
13797
13798 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13799
13800 inst.instruction |= inst.operands[0].reg << 8;
13801 inst.instruction |= inst.operands[1].reg << 12;
13802 inst.instruction |= inst.operands[2].reg << 16;
13803 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
13804 }
13805
13806 static void
13807 do_t_strexd (void)
13808 {
13809 if (!inst.operands[2].present)
13810 inst.operands[2].reg = inst.operands[1].reg + 1;
13811
13812 constraint (inst.operands[0].reg == inst.operands[1].reg
13813 || inst.operands[0].reg == inst.operands[2].reg
13814 || inst.operands[0].reg == inst.operands[3].reg,
13815 BAD_OVERLAP);
13816
13817 inst.instruction |= inst.operands[0].reg;
13818 inst.instruction |= inst.operands[1].reg << 12;
13819 inst.instruction |= inst.operands[2].reg << 8;
13820 inst.instruction |= inst.operands[3].reg << 16;
13821 }
13822
13823 static void
13824 do_t_sxtah (void)
13825 {
13826 unsigned Rd, Rn, Rm;
13827
13828 Rd = inst.operands[0].reg;
13829 Rn = inst.operands[1].reg;
13830 Rm = inst.operands[2].reg;
13831
13832 reject_bad_reg (Rd);
13833 reject_bad_reg (Rn);
13834 reject_bad_reg (Rm);
13835
13836 inst.instruction |= Rd << 8;
13837 inst.instruction |= Rn << 16;
13838 inst.instruction |= Rm;
13839 inst.instruction |= inst.operands[3].imm << 4;
13840 }
13841
13842 static void
13843 do_t_sxth (void)
13844 {
13845 unsigned Rd, Rm;
13846
13847 Rd = inst.operands[0].reg;
13848 Rm = inst.operands[1].reg;
13849
13850 reject_bad_reg (Rd);
13851 reject_bad_reg (Rm);
13852
13853 if (inst.instruction <= 0xffff
13854 && inst.size_req != 4
13855 && Rd <= 7 && Rm <= 7
13856 && (!inst.operands[2].present || inst.operands[2].imm == 0))
13857 {
13858 inst.instruction = THUMB_OP16 (inst.instruction);
13859 inst.instruction |= Rd;
13860 inst.instruction |= Rm << 3;
13861 }
13862 else if (unified_syntax)
13863 {
13864 if (inst.instruction <= 0xffff)
13865 inst.instruction = THUMB_OP32 (inst.instruction);
13866 inst.instruction |= Rd << 8;
13867 inst.instruction |= Rm;
13868 inst.instruction |= inst.operands[2].imm << 4;
13869 }
13870 else
13871 {
13872 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13873 _("Thumb encoding does not support rotation"));
13874 constraint (1, BAD_HIREG);
13875 }
13876 }
13877
13878 static void
13879 do_t_swi (void)
13880 {
13881 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
13882 }
13883
13884 static void
13885 do_t_tb (void)
13886 {
13887 unsigned Rn, Rm;
13888 int half;
13889
13890 half = (inst.instruction & 0x10) != 0;
13891 set_pred_insn_type_last ();
13892 constraint (inst.operands[0].immisreg,
13893 _("instruction requires register index"));
13894
13895 Rn = inst.operands[0].reg;
13896 Rm = inst.operands[0].imm;
13897
13898 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13899 constraint (Rn == REG_SP, BAD_SP);
13900 reject_bad_reg (Rm);
13901
13902 constraint (!half && inst.operands[0].shifted,
13903 _("instruction does not allow shifted index"));
13904 inst.instruction |= (Rn << 16) | Rm;
13905 }
13906
13907 static void
13908 do_t_udf (void)
13909 {
13910 if (!inst.operands[0].present)
13911 inst.operands[0].imm = 0;
13912
13913 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13914 {
13915 constraint (inst.size_req == 2,
13916 _("immediate value out of range"));
13917 inst.instruction = THUMB_OP32 (inst.instruction);
13918 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13919 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13920 }
13921 else
13922 {
13923 inst.instruction = THUMB_OP16 (inst.instruction);
13924 inst.instruction |= inst.operands[0].imm;
13925 }
13926
13927 set_pred_insn_type (NEUTRAL_IT_INSN);
13928 }
13929
13930
13931 static void
13932 do_t_usat (void)
13933 {
13934 do_t_ssat_usat (0);
13935 }
13936
13937 static void
13938 do_t_usat16 (void)
13939 {
13940 unsigned Rd, Rn;
13941
13942 Rd = inst.operands[0].reg;
13943 Rn = inst.operands[2].reg;
13944
13945 reject_bad_reg (Rd);
13946 reject_bad_reg (Rn);
13947
13948 inst.instruction |= Rd << 8;
13949 inst.instruction |= inst.operands[1].imm;
13950 inst.instruction |= Rn << 16;
13951 }
13952
13953 /* Checking the range of the branch offset (VAL) with NBITS bits
13954 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13955 static int
13956 v8_1_branch_value_check (int val, int nbits, int is_signed)
13957 {
13958 gas_assert (nbits > 0 && nbits <= 32);
13959 if (is_signed)
13960 {
13961 int cmp = (1 << (nbits - 1));
13962 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13963 return FAIL;
13964 }
13965 else
13966 {
13967 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13968 return FAIL;
13969 }
13970 return SUCCESS;
13971 }
13972
13973 /* For branches in Armv8.1-M Mainline. */
13974 static void
13975 do_t_branch_future (void)
13976 {
13977 unsigned long insn = inst.instruction;
13978
13979 inst.instruction = THUMB_OP32 (inst.instruction);
13980 if (inst.operands[0].hasreloc == 0)
13981 {
13982 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
13983 as_bad (BAD_BRANCH_OFF);
13984
13985 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
13986 }
13987 else
13988 {
13989 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
13990 inst.relocs[0].pc_rel = 1;
13991 }
13992
13993 switch (insn)
13994 {
13995 case T_MNEM_bf:
13996 if (inst.operands[1].hasreloc == 0)
13997 {
13998 int val = inst.operands[1].imm;
13999 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
14000 as_bad (BAD_BRANCH_OFF);
14001
14002 int immA = (val & 0x0001f000) >> 12;
14003 int immB = (val & 0x00000ffc) >> 2;
14004 int immC = (val & 0x00000002) >> 1;
14005 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14006 }
14007 else
14008 {
14009 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
14010 inst.relocs[1].pc_rel = 1;
14011 }
14012 break;
14013
14014 case T_MNEM_bfl:
14015 if (inst.operands[1].hasreloc == 0)
14016 {
14017 int val = inst.operands[1].imm;
14018 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
14019 as_bad (BAD_BRANCH_OFF);
14020
14021 int immA = (val & 0x0007f000) >> 12;
14022 int immB = (val & 0x00000ffc) >> 2;
14023 int immC = (val & 0x00000002) >> 1;
14024 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14025 }
14026 else
14027 {
14028 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14029 inst.relocs[1].pc_rel = 1;
14030 }
14031 break;
14032
14033 case T_MNEM_bfcsel:
14034 /* Operand 1. */
14035 if (inst.operands[1].hasreloc == 0)
14036 {
14037 int val = inst.operands[1].imm;
14038 int immA = (val & 0x00001000) >> 12;
14039 int immB = (val & 0x00000ffc) >> 2;
14040 int immC = (val & 0x00000002) >> 1;
14041 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14042 }
14043 else
14044 {
14045 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14046 inst.relocs[1].pc_rel = 1;
14047 }
14048
14049 /* Operand 2. */
14050 if (inst.operands[2].hasreloc == 0)
14051 {
14052 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14053 int val2 = inst.operands[2].imm;
14054 int val0 = inst.operands[0].imm & 0x1f;
14055 int diff = val2 - val0;
14056 if (diff == 4)
14057 inst.instruction |= 1 << 17; /* T bit. */
14058 else if (diff != 2)
14059 as_bad (_("out of range label-relative fixup value"));
14060 }
14061 else
14062 {
14063 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14064 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14065 inst.relocs[2].pc_rel = 1;
14066 }
14067
14068 /* Operand 3. */
14069 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14070 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14071 break;
14072
14073 case T_MNEM_bfx:
14074 case T_MNEM_bflx:
14075 inst.instruction |= inst.operands[1].reg << 16;
14076 break;
14077
14078 default: abort ();
14079 }
14080 }
14081
14082 /* Helper function for do_t_loloop to handle relocations. */
14083 static void
14084 v8_1_loop_reloc (int is_le)
14085 {
14086 if (inst.relocs[0].exp.X_op == O_constant)
14087 {
14088 int value = inst.relocs[0].exp.X_add_number;
14089 value = (is_le) ? -value : value;
14090
14091 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14092 as_bad (BAD_BRANCH_OFF);
14093
14094 int imml, immh;
14095
14096 immh = (value & 0x00000ffc) >> 2;
14097 imml = (value & 0x00000002) >> 1;
14098
14099 inst.instruction |= (imml << 11) | (immh << 1);
14100 }
14101 else
14102 {
14103 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14104 inst.relocs[0].pc_rel = 1;
14105 }
14106 }
14107
14108 /* To handle the Scalar Low Overhead Loop instructions
14109 in Armv8.1-M Mainline. */
14110 static void
14111 do_t_loloop (void)
14112 {
14113 unsigned long insn = inst.instruction;
14114
14115 set_pred_insn_type (OUTSIDE_PRED_INSN);
14116 inst.instruction = THUMB_OP32 (inst.instruction);
14117
14118 switch (insn)
14119 {
14120 case T_MNEM_le:
14121 /* le <label>. */
14122 if (!inst.operands[0].present)
14123 inst.instruction |= 1 << 21;
14124
14125 v8_1_loop_reloc (TRUE);
14126 break;
14127
14128 case T_MNEM_wls:
14129 v8_1_loop_reloc (FALSE);
14130 /* Fall through. */
14131 case T_MNEM_dls:
14132 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
14133 inst.instruction |= (inst.operands[1].reg << 16);
14134 break;
14135
14136 default: abort();
14137 }
14138 }
14139
14140 /* MVE instruction encoder helpers. */
14141 #define M_MNEM_vabav 0xee800f01
14142 #define M_MNEM_vmladav 0xeef00e00
14143 #define M_MNEM_vmladava 0xeef00e20
14144 #define M_MNEM_vmladavx 0xeef01e00
14145 #define M_MNEM_vmladavax 0xeef01e20
14146 #define M_MNEM_vmlsdav 0xeef00e01
14147 #define M_MNEM_vmlsdava 0xeef00e21
14148 #define M_MNEM_vmlsdavx 0xeef01e01
14149 #define M_MNEM_vmlsdavax 0xeef01e21
14150 #define M_MNEM_vmullt 0xee011e00
14151 #define M_MNEM_vmullb 0xee010e00
14152 #define M_MNEM_vst20 0xfc801e00
14153 #define M_MNEM_vst21 0xfc801e20
14154 #define M_MNEM_vst40 0xfc801e01
14155 #define M_MNEM_vst41 0xfc801e21
14156 #define M_MNEM_vst42 0xfc801e41
14157 #define M_MNEM_vst43 0xfc801e61
14158 #define M_MNEM_vld20 0xfc901e00
14159 #define M_MNEM_vld21 0xfc901e20
14160 #define M_MNEM_vld40 0xfc901e01
14161 #define M_MNEM_vld41 0xfc901e21
14162 #define M_MNEM_vld42 0xfc901e41
14163 #define M_MNEM_vld43 0xfc901e61
14164 #define M_MNEM_vstrb 0xec000e00
14165 #define M_MNEM_vstrh 0xec000e10
14166 #define M_MNEM_vstrw 0xec000e40
14167 #define M_MNEM_vstrd 0xec000e50
14168 #define M_MNEM_vldrb 0xec100e00
14169 #define M_MNEM_vldrh 0xec100e10
14170 #define M_MNEM_vldrw 0xec100e40
14171 #define M_MNEM_vldrd 0xec100e50
14172 #define M_MNEM_vmovlt 0xeea01f40
14173 #define M_MNEM_vmovlb 0xeea00f40
14174 #define M_MNEM_vmovnt 0xfe311e81
14175 #define M_MNEM_vmovnb 0xfe310e81
14176 #define M_MNEM_vadc 0xee300f00
14177 #define M_MNEM_vadci 0xee301f00
14178 #define M_MNEM_vbrsr 0xfe011e60
14179 #define M_MNEM_vaddlv 0xee890f00
14180 #define M_MNEM_vaddlva 0xee890f20
14181 #define M_MNEM_vaddv 0xeef10f00
14182 #define M_MNEM_vaddva 0xeef10f20
14183 #define M_MNEM_vddup 0xee011f6e
14184 #define M_MNEM_vdwdup 0xee011f60
14185 #define M_MNEM_vidup 0xee010f6e
14186 #define M_MNEM_viwdup 0xee010f60
14187 #define M_MNEM_vmaxv 0xeee20f00
14188 #define M_MNEM_vmaxav 0xeee00f00
14189 #define M_MNEM_vminv 0xeee20f80
14190 #define M_MNEM_vminav 0xeee00f80
14191 #define M_MNEM_vmlaldav 0xee800e00
14192 #define M_MNEM_vmlaldava 0xee800e20
14193 #define M_MNEM_vmlaldavx 0xee801e00
14194 #define M_MNEM_vmlaldavax 0xee801e20
14195 #define M_MNEM_vmlsldav 0xee800e01
14196 #define M_MNEM_vmlsldava 0xee800e21
14197 #define M_MNEM_vmlsldavx 0xee801e01
14198 #define M_MNEM_vmlsldavax 0xee801e21
14199 #define M_MNEM_vrmlaldavhx 0xee801f00
14200 #define M_MNEM_vrmlaldavhax 0xee801f20
14201 #define M_MNEM_vrmlsldavh 0xfe800e01
14202 #define M_MNEM_vrmlsldavha 0xfe800e21
14203 #define M_MNEM_vrmlsldavhx 0xfe801e01
14204 #define M_MNEM_vrmlsldavhax 0xfe801e21
14205 #define M_MNEM_vqmovnt 0xee331e01
14206 #define M_MNEM_vqmovnb 0xee330e01
14207 #define M_MNEM_vqmovunt 0xee311e81
14208 #define M_MNEM_vqmovunb 0xee310e81
14209 #define M_MNEM_vshrnt 0xee801fc1
14210 #define M_MNEM_vshrnb 0xee800fc1
14211 #define M_MNEM_vrshrnt 0xfe801fc1
14212 #define M_MNEM_vqshrnt 0xee801f40
14213 #define M_MNEM_vqshrnb 0xee800f40
14214 #define M_MNEM_vqshrunt 0xee801fc0
14215 #define M_MNEM_vqshrunb 0xee800fc0
14216 #define M_MNEM_vrshrnb 0xfe800fc1
14217 #define M_MNEM_vqrshrnt 0xee801f41
14218 #define M_MNEM_vqrshrnb 0xee800f41
14219 #define M_MNEM_vqrshrunt 0xfe801fc0
14220 #define M_MNEM_vqrshrunb 0xfe800fc0
14221
14222 /* Neon instruction encoder helpers. */
14223
14224 /* Encodings for the different types for various Neon opcodes. */
14225
14226 /* An "invalid" code for the following tables. */
14227 #define N_INV -1u
14228
14229 struct neon_tab_entry
14230 {
14231 unsigned integer;
14232 unsigned float_or_poly;
14233 unsigned scalar_or_imm;
14234 };
14235
14236 /* Map overloaded Neon opcodes to their respective encodings. */
14237 #define NEON_ENC_TAB \
14238 X(vabd, 0x0000700, 0x1200d00, N_INV), \
14239 X(vabdl, 0x0800700, N_INV, N_INV), \
14240 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14241 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14242 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14243 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14244 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14245 X(vadd, 0x0000800, 0x0000d00, N_INV), \
14246 X(vaddl, 0x0800000, N_INV, N_INV), \
14247 X(vsub, 0x1000800, 0x0200d00, N_INV), \
14248 X(vsubl, 0x0800200, N_INV, N_INV), \
14249 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14250 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14251 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14252 /* Register variants of the following two instructions are encoded as
14253 vcge / vcgt with the operands reversed. */ \
14254 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14255 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
14256 X(vfma, N_INV, 0x0000c10, N_INV), \
14257 X(vfms, N_INV, 0x0200c10, N_INV), \
14258 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14259 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14260 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14261 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14262 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14263 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14264 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14265 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14266 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14267 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14268 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
14269 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14270 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
14271 X(vshl, 0x0000400, N_INV, 0x0800510), \
14272 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14273 X(vand, 0x0000110, N_INV, 0x0800030), \
14274 X(vbic, 0x0100110, N_INV, 0x0800030), \
14275 X(veor, 0x1000110, N_INV, N_INV), \
14276 X(vorn, 0x0300110, N_INV, 0x0800010), \
14277 X(vorr, 0x0200110, N_INV, 0x0800010), \
14278 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14279 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14280 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14281 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14282 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14283 X(vst1, 0x0000000, 0x0800000, N_INV), \
14284 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14285 X(vst2, 0x0000100, 0x0800100, N_INV), \
14286 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14287 X(vst3, 0x0000200, 0x0800200, N_INV), \
14288 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14289 X(vst4, 0x0000300, 0x0800300, N_INV), \
14290 X(vmovn, 0x1b20200, N_INV, N_INV), \
14291 X(vtrn, 0x1b20080, N_INV, N_INV), \
14292 X(vqmovn, 0x1b20200, N_INV, N_INV), \
14293 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14294 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
14295 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14296 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
14297 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14298 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
14299 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14300 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14301 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
14302 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14303 X(vseleq, 0xe000a00, N_INV, N_INV), \
14304 X(vselvs, 0xe100a00, N_INV, N_INV), \
14305 X(vselge, 0xe200a00, N_INV, N_INV), \
14306 X(vselgt, 0xe300a00, N_INV, N_INV), \
14307 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
14308 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
14309 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14310 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
14311 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
14312 X(aes, 0x3b00300, N_INV, N_INV), \
14313 X(sha3op, 0x2000c00, N_INV, N_INV), \
14314 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14315 X(sha2op, 0x3ba0380, N_INV, N_INV)
14316
14317 enum neon_opc
14318 {
14319 #define X(OPC,I,F,S) N_MNEM_##OPC
14320 NEON_ENC_TAB
14321 #undef X
14322 };
14323
14324 static const struct neon_tab_entry neon_enc_tab[] =
14325 {
14326 #define X(OPC,I,F,S) { (I), (F), (S) }
14327 NEON_ENC_TAB
14328 #undef X
14329 };
14330
14331 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
14332 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14333 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14334 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14335 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14336 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14337 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14338 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14339 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14340 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14341 #define NEON_ENC_SINGLE_(X) \
14342 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
14343 #define NEON_ENC_DOUBLE_(X) \
14344 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
14345 #define NEON_ENC_FPV8_(X) \
14346 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
14347
14348 #define NEON_ENCODE(type, inst) \
14349 do \
14350 { \
14351 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14352 inst.is_neon = 1; \
14353 } \
14354 while (0)
14355
14356 #define check_neon_suffixes \
14357 do \
14358 { \
14359 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14360 { \
14361 as_bad (_("invalid neon suffix for non neon instruction")); \
14362 return; \
14363 } \
14364 } \
14365 while (0)
14366
14367 /* Define shapes for instruction operands. The following mnemonic characters
14368 are used in this table:
14369
14370 F - VFP S<n> register
14371 D - Neon D<n> register
14372 Q - Neon Q<n> register
14373 I - Immediate
14374 S - Scalar
14375 R - ARM register
14376 L - D<n> register list
14377
14378 This table is used to generate various data:
14379 - enumerations of the form NS_DDR to be used as arguments to
14380 neon_select_shape.
14381 - a table classifying shapes into single, double, quad, mixed.
14382 - a table used to drive neon_select_shape. */
14383
14384 #define NEON_SHAPE_DEF \
14385 X(4, (R, R, Q, Q), QUAD), \
14386 X(4, (Q, R, R, I), QUAD), \
14387 X(4, (R, R, S, S), QUAD), \
14388 X(4, (S, S, R, R), QUAD), \
14389 X(3, (Q, R, I), QUAD), \
14390 X(3, (I, Q, Q), QUAD), \
14391 X(3, (I, Q, R), QUAD), \
14392 X(3, (R, Q, Q), QUAD), \
14393 X(3, (D, D, D), DOUBLE), \
14394 X(3, (Q, Q, Q), QUAD), \
14395 X(3, (D, D, I), DOUBLE), \
14396 X(3, (Q, Q, I), QUAD), \
14397 X(3, (D, D, S), DOUBLE), \
14398 X(3, (Q, Q, S), QUAD), \
14399 X(3, (Q, Q, R), QUAD), \
14400 X(3, (R, R, Q), QUAD), \
14401 X(2, (R, Q), QUAD), \
14402 X(2, (D, D), DOUBLE), \
14403 X(2, (Q, Q), QUAD), \
14404 X(2, (D, S), DOUBLE), \
14405 X(2, (Q, S), QUAD), \
14406 X(2, (D, R), DOUBLE), \
14407 X(2, (Q, R), QUAD), \
14408 X(2, (D, I), DOUBLE), \
14409 X(2, (Q, I), QUAD), \
14410 X(3, (D, L, D), DOUBLE), \
14411 X(2, (D, Q), MIXED), \
14412 X(2, (Q, D), MIXED), \
14413 X(3, (D, Q, I), MIXED), \
14414 X(3, (Q, D, I), MIXED), \
14415 X(3, (Q, D, D), MIXED), \
14416 X(3, (D, Q, Q), MIXED), \
14417 X(3, (Q, Q, D), MIXED), \
14418 X(3, (Q, D, S), MIXED), \
14419 X(3, (D, Q, S), MIXED), \
14420 X(4, (D, D, D, I), DOUBLE), \
14421 X(4, (Q, Q, Q, I), QUAD), \
14422 X(4, (D, D, S, I), DOUBLE), \
14423 X(4, (Q, Q, S, I), QUAD), \
14424 X(2, (F, F), SINGLE), \
14425 X(3, (F, F, F), SINGLE), \
14426 X(2, (F, I), SINGLE), \
14427 X(2, (F, D), MIXED), \
14428 X(2, (D, F), MIXED), \
14429 X(3, (F, F, I), MIXED), \
14430 X(4, (R, R, F, F), SINGLE), \
14431 X(4, (F, F, R, R), SINGLE), \
14432 X(3, (D, R, R), DOUBLE), \
14433 X(3, (R, R, D), DOUBLE), \
14434 X(2, (S, R), SINGLE), \
14435 X(2, (R, S), SINGLE), \
14436 X(2, (F, R), SINGLE), \
14437 X(2, (R, F), SINGLE), \
14438 /* Half float shape supported so far. */\
14439 X (2, (H, D), MIXED), \
14440 X (2, (D, H), MIXED), \
14441 X (2, (H, F), MIXED), \
14442 X (2, (F, H), MIXED), \
14443 X (2, (H, H), HALF), \
14444 X (2, (H, R), HALF), \
14445 X (2, (R, H), HALF), \
14446 X (2, (H, I), HALF), \
14447 X (3, (H, H, H), HALF), \
14448 X (3, (H, F, I), MIXED), \
14449 X (3, (F, H, I), MIXED), \
14450 X (3, (D, H, H), MIXED), \
14451 X (3, (D, H, S), MIXED)
14452
14453 #define S2(A,B) NS_##A##B
14454 #define S3(A,B,C) NS_##A##B##C
14455 #define S4(A,B,C,D) NS_##A##B##C##D
14456
14457 #define X(N, L, C) S##N L
14458
14459 enum neon_shape
14460 {
14461 NEON_SHAPE_DEF,
14462 NS_NULL
14463 };
14464
14465 #undef X
14466 #undef S2
14467 #undef S3
14468 #undef S4
14469
14470 enum neon_shape_class
14471 {
14472 SC_HALF,
14473 SC_SINGLE,
14474 SC_DOUBLE,
14475 SC_QUAD,
14476 SC_MIXED
14477 };
14478
14479 #define X(N, L, C) SC_##C
14480
14481 static enum neon_shape_class neon_shape_class[] =
14482 {
14483 NEON_SHAPE_DEF
14484 };
14485
14486 #undef X
14487
14488 enum neon_shape_el
14489 {
14490 SE_H,
14491 SE_F,
14492 SE_D,
14493 SE_Q,
14494 SE_I,
14495 SE_S,
14496 SE_R,
14497 SE_L
14498 };
14499
14500 /* Register widths of above. */
14501 static unsigned neon_shape_el_size[] =
14502 {
14503 16,
14504 32,
14505 64,
14506 128,
14507 0,
14508 32,
14509 32,
14510 0
14511 };
14512
14513 struct neon_shape_info
14514 {
14515 unsigned els;
14516 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14517 };
14518
14519 #define S2(A,B) { SE_##A, SE_##B }
14520 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14521 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14522
14523 #define X(N, L, C) { N, S##N L }
14524
14525 static struct neon_shape_info neon_shape_tab[] =
14526 {
14527 NEON_SHAPE_DEF
14528 };
14529
14530 #undef X
14531 #undef S2
14532 #undef S3
14533 #undef S4
14534
14535 /* Bit masks used in type checking given instructions.
14536 'N_EQK' means the type must be the same as (or based on in some way) the key
14537 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14538 set, various other bits can be set as well in order to modify the meaning of
14539 the type constraint. */
14540
14541 enum neon_type_mask
14542 {
14543 N_S8 = 0x0000001,
14544 N_S16 = 0x0000002,
14545 N_S32 = 0x0000004,
14546 N_S64 = 0x0000008,
14547 N_U8 = 0x0000010,
14548 N_U16 = 0x0000020,
14549 N_U32 = 0x0000040,
14550 N_U64 = 0x0000080,
14551 N_I8 = 0x0000100,
14552 N_I16 = 0x0000200,
14553 N_I32 = 0x0000400,
14554 N_I64 = 0x0000800,
14555 N_8 = 0x0001000,
14556 N_16 = 0x0002000,
14557 N_32 = 0x0004000,
14558 N_64 = 0x0008000,
14559 N_P8 = 0x0010000,
14560 N_P16 = 0x0020000,
14561 N_F16 = 0x0040000,
14562 N_F32 = 0x0080000,
14563 N_F64 = 0x0100000,
14564 N_P64 = 0x0200000,
14565 N_KEY = 0x1000000, /* Key element (main type specifier). */
14566 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
14567 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
14568 N_UNT = 0x8000000, /* Must be explicitly untyped. */
14569 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14570 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14571 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14572 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14573 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14574 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14575 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
14576 N_UTYP = 0,
14577 N_MAX_NONSPECIAL = N_P64
14578 };
14579
14580 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14581
14582 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14583 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14584 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
14585 #define N_S_32 (N_S8 | N_S16 | N_S32)
14586 #define N_F_16_32 (N_F16 | N_F32)
14587 #define N_SUF_32 (N_SU_32 | N_F_16_32)
14588 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
14589 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
14590 #define N_F_ALL (N_F16 | N_F32 | N_F64)
14591 #define N_I_MVE (N_I8 | N_I16 | N_I32)
14592 #define N_F_MVE (N_F16 | N_F32)
14593 #define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14594
14595 /* Pass this as the first type argument to neon_check_type to ignore types
14596 altogether. */
14597 #define N_IGNORE_TYPE (N_KEY | N_EQK)
14598
14599 /* Select a "shape" for the current instruction (describing register types or
14600 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14601 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14602 function of operand parsing, so this function doesn't need to be called.
14603 Shapes should be listed in order of decreasing length. */
14604
14605 static enum neon_shape
14606 neon_select_shape (enum neon_shape shape, ...)
14607 {
14608 va_list ap;
14609 enum neon_shape first_shape = shape;
14610
14611 /* Fix missing optional operands. FIXME: we don't know at this point how
14612 many arguments we should have, so this makes the assumption that we have
14613 > 1. This is true of all current Neon opcodes, I think, but may not be
14614 true in the future. */
14615 if (!inst.operands[1].present)
14616 inst.operands[1] = inst.operands[0];
14617
14618 va_start (ap, shape);
14619
14620 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
14621 {
14622 unsigned j;
14623 int matches = 1;
14624
14625 for (j = 0; j < neon_shape_tab[shape].els; j++)
14626 {
14627 if (!inst.operands[j].present)
14628 {
14629 matches = 0;
14630 break;
14631 }
14632
14633 switch (neon_shape_tab[shape].el[j])
14634 {
14635 /* If a .f16, .16, .u16, .s16 type specifier is given over
14636 a VFP single precision register operand, it's essentially
14637 means only half of the register is used.
14638
14639 If the type specifier is given after the mnemonics, the
14640 information is stored in inst.vectype. If the type specifier
14641 is given after register operand, the information is stored
14642 in inst.operands[].vectype.
14643
14644 When there is only one type specifier, and all the register
14645 operands are the same type of hardware register, the type
14646 specifier applies to all register operands.
14647
14648 If no type specifier is given, the shape is inferred from
14649 operand information.
14650
14651 for example:
14652 vadd.f16 s0, s1, s2: NS_HHH
14653 vabs.f16 s0, s1: NS_HH
14654 vmov.f16 s0, r1: NS_HR
14655 vmov.f16 r0, s1: NS_RH
14656 vcvt.f16 r0, s1: NS_RH
14657 vcvt.f16.s32 s2, s2, #29: NS_HFI
14658 vcvt.f16.s32 s2, s2: NS_HF
14659 */
14660 case SE_H:
14661 if (!(inst.operands[j].isreg
14662 && inst.operands[j].isvec
14663 && inst.operands[j].issingle
14664 && !inst.operands[j].isquad
14665 && ((inst.vectype.elems == 1
14666 && inst.vectype.el[0].size == 16)
14667 || (inst.vectype.elems > 1
14668 && inst.vectype.el[j].size == 16)
14669 || (inst.vectype.elems == 0
14670 && inst.operands[j].vectype.type != NT_invtype
14671 && inst.operands[j].vectype.size == 16))))
14672 matches = 0;
14673 break;
14674
14675 case SE_F:
14676 if (!(inst.operands[j].isreg
14677 && inst.operands[j].isvec
14678 && inst.operands[j].issingle
14679 && !inst.operands[j].isquad
14680 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
14681 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
14682 || (inst.vectype.elems == 0
14683 && (inst.operands[j].vectype.size == 32
14684 || inst.operands[j].vectype.type == NT_invtype)))))
14685 matches = 0;
14686 break;
14687
14688 case SE_D:
14689 if (!(inst.operands[j].isreg
14690 && inst.operands[j].isvec
14691 && !inst.operands[j].isquad
14692 && !inst.operands[j].issingle))
14693 matches = 0;
14694 break;
14695
14696 case SE_R:
14697 if (!(inst.operands[j].isreg
14698 && !inst.operands[j].isvec))
14699 matches = 0;
14700 break;
14701
14702 case SE_Q:
14703 if (!(inst.operands[j].isreg
14704 && inst.operands[j].isvec
14705 && inst.operands[j].isquad
14706 && !inst.operands[j].issingle))
14707 matches = 0;
14708 break;
14709
14710 case SE_I:
14711 if (!(!inst.operands[j].isreg
14712 && !inst.operands[j].isscalar))
14713 matches = 0;
14714 break;
14715
14716 case SE_S:
14717 if (!(!inst.operands[j].isreg
14718 && inst.operands[j].isscalar))
14719 matches = 0;
14720 break;
14721
14722 case SE_L:
14723 break;
14724 }
14725 if (!matches)
14726 break;
14727 }
14728 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
14729 /* We've matched all the entries in the shape table, and we don't
14730 have any left over operands which have not been matched. */
14731 break;
14732 }
14733
14734 va_end (ap);
14735
14736 if (shape == NS_NULL && first_shape != NS_NULL)
14737 first_error (_("invalid instruction shape"));
14738
14739 return shape;
14740 }
14741
14742 /* True if SHAPE is predominantly a quadword operation (most of the time, this
14743 means the Q bit should be set). */
14744
14745 static int
14746 neon_quad (enum neon_shape shape)
14747 {
14748 return neon_shape_class[shape] == SC_QUAD;
14749 }
14750
14751 static void
14752 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
14753 unsigned *g_size)
14754 {
14755 /* Allow modification to be made to types which are constrained to be
14756 based on the key element, based on bits set alongside N_EQK. */
14757 if ((typebits & N_EQK) != 0)
14758 {
14759 if ((typebits & N_HLF) != 0)
14760 *g_size /= 2;
14761 else if ((typebits & N_DBL) != 0)
14762 *g_size *= 2;
14763 if ((typebits & N_SGN) != 0)
14764 *g_type = NT_signed;
14765 else if ((typebits & N_UNS) != 0)
14766 *g_type = NT_unsigned;
14767 else if ((typebits & N_INT) != 0)
14768 *g_type = NT_integer;
14769 else if ((typebits & N_FLT) != 0)
14770 *g_type = NT_float;
14771 else if ((typebits & N_SIZ) != 0)
14772 *g_type = NT_untyped;
14773 }
14774 }
14775
14776 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14777 operand type, i.e. the single type specified in a Neon instruction when it
14778 is the only one given. */
14779
14780 static struct neon_type_el
14781 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
14782 {
14783 struct neon_type_el dest = *key;
14784
14785 gas_assert ((thisarg & N_EQK) != 0);
14786
14787 neon_modify_type_size (thisarg, &dest.type, &dest.size);
14788
14789 return dest;
14790 }
14791
14792 /* Convert Neon type and size into compact bitmask representation. */
14793
14794 static enum neon_type_mask
14795 type_chk_of_el_type (enum neon_el_type type, unsigned size)
14796 {
14797 switch (type)
14798 {
14799 case NT_untyped:
14800 switch (size)
14801 {
14802 case 8: return N_8;
14803 case 16: return N_16;
14804 case 32: return N_32;
14805 case 64: return N_64;
14806 default: ;
14807 }
14808 break;
14809
14810 case NT_integer:
14811 switch (size)
14812 {
14813 case 8: return N_I8;
14814 case 16: return N_I16;
14815 case 32: return N_I32;
14816 case 64: return N_I64;
14817 default: ;
14818 }
14819 break;
14820
14821 case NT_float:
14822 switch (size)
14823 {
14824 case 16: return N_F16;
14825 case 32: return N_F32;
14826 case 64: return N_F64;
14827 default: ;
14828 }
14829 break;
14830
14831 case NT_poly:
14832 switch (size)
14833 {
14834 case 8: return N_P8;
14835 case 16: return N_P16;
14836 case 64: return N_P64;
14837 default: ;
14838 }
14839 break;
14840
14841 case NT_signed:
14842 switch (size)
14843 {
14844 case 8: return N_S8;
14845 case 16: return N_S16;
14846 case 32: return N_S32;
14847 case 64: return N_S64;
14848 default: ;
14849 }
14850 break;
14851
14852 case NT_unsigned:
14853 switch (size)
14854 {
14855 case 8: return N_U8;
14856 case 16: return N_U16;
14857 case 32: return N_U32;
14858 case 64: return N_U64;
14859 default: ;
14860 }
14861 break;
14862
14863 default: ;
14864 }
14865
14866 return N_UTYP;
14867 }
14868
14869 /* Convert compact Neon bitmask type representation to a type and size. Only
14870 handles the case where a single bit is set in the mask. */
14871
14872 static int
14873 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
14874 enum neon_type_mask mask)
14875 {
14876 if ((mask & N_EQK) != 0)
14877 return FAIL;
14878
14879 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14880 *size = 8;
14881 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
14882 *size = 16;
14883 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
14884 *size = 32;
14885 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
14886 *size = 64;
14887 else
14888 return FAIL;
14889
14890 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14891 *type = NT_signed;
14892 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
14893 *type = NT_unsigned;
14894 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
14895 *type = NT_integer;
14896 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
14897 *type = NT_untyped;
14898 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
14899 *type = NT_poly;
14900 else if ((mask & (N_F_ALL)) != 0)
14901 *type = NT_float;
14902 else
14903 return FAIL;
14904
14905 return SUCCESS;
14906 }
14907
14908 /* Modify a bitmask of allowed types. This is only needed for type
14909 relaxation. */
14910
14911 static unsigned
14912 modify_types_allowed (unsigned allowed, unsigned mods)
14913 {
14914 unsigned size;
14915 enum neon_el_type type;
14916 unsigned destmask;
14917 int i;
14918
14919 destmask = 0;
14920
14921 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14922 {
14923 if (el_type_of_type_chk (&type, &size,
14924 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14925 {
14926 neon_modify_type_size (mods, &type, &size);
14927 destmask |= type_chk_of_el_type (type, size);
14928 }
14929 }
14930
14931 return destmask;
14932 }
14933
14934 /* Check type and return type classification.
14935 The manual states (paraphrase): If one datatype is given, it indicates the
14936 type given in:
14937 - the second operand, if there is one
14938 - the operand, if there is no second operand
14939 - the result, if there are no operands.
14940 This isn't quite good enough though, so we use a concept of a "key" datatype
14941 which is set on a per-instruction basis, which is the one which matters when
14942 only one data type is written.
14943 Note: this function has side-effects (e.g. filling in missing operands). All
14944 Neon instructions should call it before performing bit encoding. */
14945
14946 static struct neon_type_el
14947 neon_check_type (unsigned els, enum neon_shape ns, ...)
14948 {
14949 va_list ap;
14950 unsigned i, pass, key_el = 0;
14951 unsigned types[NEON_MAX_TYPE_ELS];
14952 enum neon_el_type k_type = NT_invtype;
14953 unsigned k_size = -1u;
14954 struct neon_type_el badtype = {NT_invtype, -1};
14955 unsigned key_allowed = 0;
14956
14957 /* Optional registers in Neon instructions are always (not) in operand 1.
14958 Fill in the missing operand here, if it was omitted. */
14959 if (els > 1 && !inst.operands[1].present)
14960 inst.operands[1] = inst.operands[0];
14961
14962 /* Suck up all the varargs. */
14963 va_start (ap, ns);
14964 for (i = 0; i < els; i++)
14965 {
14966 unsigned thisarg = va_arg (ap, unsigned);
14967 if (thisarg == N_IGNORE_TYPE)
14968 {
14969 va_end (ap);
14970 return badtype;
14971 }
14972 types[i] = thisarg;
14973 if ((thisarg & N_KEY) != 0)
14974 key_el = i;
14975 }
14976 va_end (ap);
14977
14978 if (inst.vectype.elems > 0)
14979 for (i = 0; i < els; i++)
14980 if (inst.operands[i].vectype.type != NT_invtype)
14981 {
14982 first_error (_("types specified in both the mnemonic and operands"));
14983 return badtype;
14984 }
14985
14986 /* Duplicate inst.vectype elements here as necessary.
14987 FIXME: No idea if this is exactly the same as the ARM assembler,
14988 particularly when an insn takes one register and one non-register
14989 operand. */
14990 if (inst.vectype.elems == 1 && els > 1)
14991 {
14992 unsigned j;
14993 inst.vectype.elems = els;
14994 inst.vectype.el[key_el] = inst.vectype.el[0];
14995 for (j = 0; j < els; j++)
14996 if (j != key_el)
14997 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14998 types[j]);
14999 }
15000 else if (inst.vectype.elems == 0 && els > 0)
15001 {
15002 unsigned j;
15003 /* No types were given after the mnemonic, so look for types specified
15004 after each operand. We allow some flexibility here; as long as the
15005 "key" operand has a type, we can infer the others. */
15006 for (j = 0; j < els; j++)
15007 if (inst.operands[j].vectype.type != NT_invtype)
15008 inst.vectype.el[j] = inst.operands[j].vectype;
15009
15010 if (inst.operands[key_el].vectype.type != NT_invtype)
15011 {
15012 for (j = 0; j < els; j++)
15013 if (inst.operands[j].vectype.type == NT_invtype)
15014 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
15015 types[j]);
15016 }
15017 else
15018 {
15019 first_error (_("operand types can't be inferred"));
15020 return badtype;
15021 }
15022 }
15023 else if (inst.vectype.elems != els)
15024 {
15025 first_error (_("type specifier has the wrong number of parts"));
15026 return badtype;
15027 }
15028
15029 for (pass = 0; pass < 2; pass++)
15030 {
15031 for (i = 0; i < els; i++)
15032 {
15033 unsigned thisarg = types[i];
15034 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
15035 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
15036 enum neon_el_type g_type = inst.vectype.el[i].type;
15037 unsigned g_size = inst.vectype.el[i].size;
15038
15039 /* Decay more-specific signed & unsigned types to sign-insensitive
15040 integer types if sign-specific variants are unavailable. */
15041 if ((g_type == NT_signed || g_type == NT_unsigned)
15042 && (types_allowed & N_SU_ALL) == 0)
15043 g_type = NT_integer;
15044
15045 /* If only untyped args are allowed, decay any more specific types to
15046 them. Some instructions only care about signs for some element
15047 sizes, so handle that properly. */
15048 if (((types_allowed & N_UNT) == 0)
15049 && ((g_size == 8 && (types_allowed & N_8) != 0)
15050 || (g_size == 16 && (types_allowed & N_16) != 0)
15051 || (g_size == 32 && (types_allowed & N_32) != 0)
15052 || (g_size == 64 && (types_allowed & N_64) != 0)))
15053 g_type = NT_untyped;
15054
15055 if (pass == 0)
15056 {
15057 if ((thisarg & N_KEY) != 0)
15058 {
15059 k_type = g_type;
15060 k_size = g_size;
15061 key_allowed = thisarg & ~N_KEY;
15062
15063 /* Check architecture constraint on FP16 extension. */
15064 if (k_size == 16
15065 && k_type == NT_float
15066 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15067 {
15068 inst.error = _(BAD_FP16);
15069 return badtype;
15070 }
15071 }
15072 }
15073 else
15074 {
15075 if ((thisarg & N_VFP) != 0)
15076 {
15077 enum neon_shape_el regshape;
15078 unsigned regwidth, match;
15079
15080 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15081 if (ns == NS_NULL)
15082 {
15083 first_error (_("invalid instruction shape"));
15084 return badtype;
15085 }
15086 regshape = neon_shape_tab[ns].el[i];
15087 regwidth = neon_shape_el_size[regshape];
15088
15089 /* In VFP mode, operands must match register widths. If we
15090 have a key operand, use its width, else use the width of
15091 the current operand. */
15092 if (k_size != -1u)
15093 match = k_size;
15094 else
15095 match = g_size;
15096
15097 /* FP16 will use a single precision register. */
15098 if (regwidth == 32 && match == 16)
15099 {
15100 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15101 match = regwidth;
15102 else
15103 {
15104 inst.error = _(BAD_FP16);
15105 return badtype;
15106 }
15107 }
15108
15109 if (regwidth != match)
15110 {
15111 first_error (_("operand size must match register width"));
15112 return badtype;
15113 }
15114 }
15115
15116 if ((thisarg & N_EQK) == 0)
15117 {
15118 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15119
15120 if ((given_type & types_allowed) == 0)
15121 {
15122 first_error (BAD_SIMD_TYPE);
15123 return badtype;
15124 }
15125 }
15126 else
15127 {
15128 enum neon_el_type mod_k_type = k_type;
15129 unsigned mod_k_size = k_size;
15130 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15131 if (g_type != mod_k_type || g_size != mod_k_size)
15132 {
15133 first_error (_("inconsistent types in Neon instruction"));
15134 return badtype;
15135 }
15136 }
15137 }
15138 }
15139 }
15140
15141 return inst.vectype.el[key_el];
15142 }
15143
15144 /* Neon-style VFP instruction forwarding. */
15145
15146 /* Thumb VFP instructions have 0xE in the condition field. */
15147
15148 static void
15149 do_vfp_cond_or_thumb (void)
15150 {
15151 inst.is_neon = 1;
15152
15153 if (thumb_mode)
15154 inst.instruction |= 0xe0000000;
15155 else
15156 inst.instruction |= inst.cond << 28;
15157 }
15158
15159 /* Look up and encode a simple mnemonic, for use as a helper function for the
15160 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15161 etc. It is assumed that operand parsing has already been done, and that the
15162 operands are in the form expected by the given opcode (this isn't necessarily
15163 the same as the form in which they were parsed, hence some massaging must
15164 take place before this function is called).
15165 Checks current arch version against that in the looked-up opcode. */
15166
15167 static void
15168 do_vfp_nsyn_opcode (const char *opname)
15169 {
15170 const struct asm_opcode *opcode;
15171
15172 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
15173
15174 if (!opcode)
15175 abort ();
15176
15177 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
15178 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15179 _(BAD_FPU));
15180
15181 inst.is_neon = 1;
15182
15183 if (thumb_mode)
15184 {
15185 inst.instruction = opcode->tvalue;
15186 opcode->tencode ();
15187 }
15188 else
15189 {
15190 inst.instruction = (inst.cond << 28) | opcode->avalue;
15191 opcode->aencode ();
15192 }
15193 }
15194
15195 static void
15196 do_vfp_nsyn_add_sub (enum neon_shape rs)
15197 {
15198 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15199
15200 if (rs == NS_FFF || rs == NS_HHH)
15201 {
15202 if (is_add)
15203 do_vfp_nsyn_opcode ("fadds");
15204 else
15205 do_vfp_nsyn_opcode ("fsubs");
15206
15207 /* ARMv8.2 fp16 instruction. */
15208 if (rs == NS_HHH)
15209 do_scalar_fp16_v82_encode ();
15210 }
15211 else
15212 {
15213 if (is_add)
15214 do_vfp_nsyn_opcode ("faddd");
15215 else
15216 do_vfp_nsyn_opcode ("fsubd");
15217 }
15218 }
15219
15220 /* Check operand types to see if this is a VFP instruction, and if so call
15221 PFN (). */
15222
15223 static int
15224 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15225 {
15226 enum neon_shape rs;
15227 struct neon_type_el et;
15228
15229 switch (args)
15230 {
15231 case 2:
15232 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15233 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15234 break;
15235
15236 case 3:
15237 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15238 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15239 N_F_ALL | N_KEY | N_VFP);
15240 break;
15241
15242 default:
15243 abort ();
15244 }
15245
15246 if (et.type != NT_invtype)
15247 {
15248 pfn (rs);
15249 return SUCCESS;
15250 }
15251
15252 inst.error = NULL;
15253 return FAIL;
15254 }
15255
15256 static void
15257 do_vfp_nsyn_mla_mls (enum neon_shape rs)
15258 {
15259 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
15260
15261 if (rs == NS_FFF || rs == NS_HHH)
15262 {
15263 if (is_mla)
15264 do_vfp_nsyn_opcode ("fmacs");
15265 else
15266 do_vfp_nsyn_opcode ("fnmacs");
15267
15268 /* ARMv8.2 fp16 instruction. */
15269 if (rs == NS_HHH)
15270 do_scalar_fp16_v82_encode ();
15271 }
15272 else
15273 {
15274 if (is_mla)
15275 do_vfp_nsyn_opcode ("fmacd");
15276 else
15277 do_vfp_nsyn_opcode ("fnmacd");
15278 }
15279 }
15280
15281 static void
15282 do_vfp_nsyn_fma_fms (enum neon_shape rs)
15283 {
15284 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15285
15286 if (rs == NS_FFF || rs == NS_HHH)
15287 {
15288 if (is_fma)
15289 do_vfp_nsyn_opcode ("ffmas");
15290 else
15291 do_vfp_nsyn_opcode ("ffnmas");
15292
15293 /* ARMv8.2 fp16 instruction. */
15294 if (rs == NS_HHH)
15295 do_scalar_fp16_v82_encode ();
15296 }
15297 else
15298 {
15299 if (is_fma)
15300 do_vfp_nsyn_opcode ("ffmad");
15301 else
15302 do_vfp_nsyn_opcode ("ffnmad");
15303 }
15304 }
15305
15306 static void
15307 do_vfp_nsyn_mul (enum neon_shape rs)
15308 {
15309 if (rs == NS_FFF || rs == NS_HHH)
15310 {
15311 do_vfp_nsyn_opcode ("fmuls");
15312
15313 /* ARMv8.2 fp16 instruction. */
15314 if (rs == NS_HHH)
15315 do_scalar_fp16_v82_encode ();
15316 }
15317 else
15318 do_vfp_nsyn_opcode ("fmuld");
15319 }
15320
15321 static void
15322 do_vfp_nsyn_abs_neg (enum neon_shape rs)
15323 {
15324 int is_neg = (inst.instruction & 0x80) != 0;
15325 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
15326
15327 if (rs == NS_FF || rs == NS_HH)
15328 {
15329 if (is_neg)
15330 do_vfp_nsyn_opcode ("fnegs");
15331 else
15332 do_vfp_nsyn_opcode ("fabss");
15333
15334 /* ARMv8.2 fp16 instruction. */
15335 if (rs == NS_HH)
15336 do_scalar_fp16_v82_encode ();
15337 }
15338 else
15339 {
15340 if (is_neg)
15341 do_vfp_nsyn_opcode ("fnegd");
15342 else
15343 do_vfp_nsyn_opcode ("fabsd");
15344 }
15345 }
15346
15347 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15348 insns belong to Neon, and are handled elsewhere. */
15349
15350 static void
15351 do_vfp_nsyn_ldm_stm (int is_dbmode)
15352 {
15353 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15354 if (is_ldm)
15355 {
15356 if (is_dbmode)
15357 do_vfp_nsyn_opcode ("fldmdbs");
15358 else
15359 do_vfp_nsyn_opcode ("fldmias");
15360 }
15361 else
15362 {
15363 if (is_dbmode)
15364 do_vfp_nsyn_opcode ("fstmdbs");
15365 else
15366 do_vfp_nsyn_opcode ("fstmias");
15367 }
15368 }
15369
15370 static void
15371 do_vfp_nsyn_sqrt (void)
15372 {
15373 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15374 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15375
15376 if (rs == NS_FF || rs == NS_HH)
15377 {
15378 do_vfp_nsyn_opcode ("fsqrts");
15379
15380 /* ARMv8.2 fp16 instruction. */
15381 if (rs == NS_HH)
15382 do_scalar_fp16_v82_encode ();
15383 }
15384 else
15385 do_vfp_nsyn_opcode ("fsqrtd");
15386 }
15387
15388 static void
15389 do_vfp_nsyn_div (void)
15390 {
15391 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15392 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15393 N_F_ALL | N_KEY | N_VFP);
15394
15395 if (rs == NS_FFF || rs == NS_HHH)
15396 {
15397 do_vfp_nsyn_opcode ("fdivs");
15398
15399 /* ARMv8.2 fp16 instruction. */
15400 if (rs == NS_HHH)
15401 do_scalar_fp16_v82_encode ();
15402 }
15403 else
15404 do_vfp_nsyn_opcode ("fdivd");
15405 }
15406
15407 static void
15408 do_vfp_nsyn_nmul (void)
15409 {
15410 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15411 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15412 N_F_ALL | N_KEY | N_VFP);
15413
15414 if (rs == NS_FFF || rs == NS_HHH)
15415 {
15416 NEON_ENCODE (SINGLE, inst);
15417 do_vfp_sp_dyadic ();
15418
15419 /* ARMv8.2 fp16 instruction. */
15420 if (rs == NS_HHH)
15421 do_scalar_fp16_v82_encode ();
15422 }
15423 else
15424 {
15425 NEON_ENCODE (DOUBLE, inst);
15426 do_vfp_dp_rd_rn_rm ();
15427 }
15428 do_vfp_cond_or_thumb ();
15429
15430 }
15431
15432 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15433 (0, 1, 2, 3). */
15434
15435 static unsigned
15436 neon_logbits (unsigned x)
15437 {
15438 return ffs (x) - 4;
15439 }
15440
15441 #define LOW4(R) ((R) & 0xf)
15442 #define HI1(R) (((R) >> 4) & 1)
15443
15444 static unsigned
15445 mve_get_vcmp_vpt_cond (struct neon_type_el et)
15446 {
15447 switch (et.type)
15448 {
15449 default:
15450 first_error (BAD_EL_TYPE);
15451 return 0;
15452 case NT_float:
15453 switch (inst.operands[0].imm)
15454 {
15455 default:
15456 first_error (_("invalid condition"));
15457 return 0;
15458 case 0x0:
15459 /* eq. */
15460 return 0;
15461 case 0x1:
15462 /* ne. */
15463 return 1;
15464 case 0xa:
15465 /* ge/ */
15466 return 4;
15467 case 0xb:
15468 /* lt. */
15469 return 5;
15470 case 0xc:
15471 /* gt. */
15472 return 6;
15473 case 0xd:
15474 /* le. */
15475 return 7;
15476 }
15477 case NT_integer:
15478 /* only accept eq and ne. */
15479 if (inst.operands[0].imm > 1)
15480 {
15481 first_error (_("invalid condition"));
15482 return 0;
15483 }
15484 return inst.operands[0].imm;
15485 case NT_unsigned:
15486 if (inst.operands[0].imm == 0x2)
15487 return 2;
15488 else if (inst.operands[0].imm == 0x8)
15489 return 3;
15490 else
15491 {
15492 first_error (_("invalid condition"));
15493 return 0;
15494 }
15495 case NT_signed:
15496 switch (inst.operands[0].imm)
15497 {
15498 default:
15499 first_error (_("invalid condition"));
15500 return 0;
15501 case 0xa:
15502 /* ge. */
15503 return 4;
15504 case 0xb:
15505 /* lt. */
15506 return 5;
15507 case 0xc:
15508 /* gt. */
15509 return 6;
15510 case 0xd:
15511 /* le. */
15512 return 7;
15513 }
15514 }
15515 /* Should be unreachable. */
15516 abort ();
15517 }
15518
15519 static void
15520 do_mve_vpt (void)
15521 {
15522 /* We are dealing with a vector predicated block. */
15523 if (inst.operands[0].present)
15524 {
15525 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15526 struct neon_type_el et
15527 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15528 N_EQK);
15529
15530 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15531
15532 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15533
15534 if (et.type == NT_invtype)
15535 return;
15536
15537 if (et.type == NT_float)
15538 {
15539 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15540 BAD_FPU);
15541 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15542 inst.instruction |= (et.size == 16) << 28;
15543 inst.instruction |= 0x3 << 20;
15544 }
15545 else
15546 {
15547 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15548 BAD_EL_TYPE);
15549 inst.instruction |= 1 << 28;
15550 inst.instruction |= neon_logbits (et.size) << 20;
15551 }
15552
15553 if (inst.operands[2].isquad)
15554 {
15555 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15556 inst.instruction |= LOW4 (inst.operands[2].reg);
15557 inst.instruction |= (fcond & 0x2) >> 1;
15558 }
15559 else
15560 {
15561 if (inst.operands[2].reg == REG_SP)
15562 as_tsktsk (MVE_BAD_SP);
15563 inst.instruction |= 1 << 6;
15564 inst.instruction |= (fcond & 0x2) << 4;
15565 inst.instruction |= inst.operands[2].reg;
15566 }
15567 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15568 inst.instruction |= (fcond & 0x4) << 10;
15569 inst.instruction |= (fcond & 0x1) << 7;
15570
15571 }
15572 set_pred_insn_type (VPT_INSN);
15573 now_pred.cc = 0;
15574 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15575 | ((inst.instruction & 0xe000) >> 13);
15576 now_pred.warn_deprecated = FALSE;
15577 now_pred.type = VECTOR_PRED;
15578 inst.is_neon = 1;
15579 }
15580
15581 static void
15582 do_mve_vcmp (void)
15583 {
15584 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15585 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15586 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
15587 if (!inst.operands[2].present)
15588 first_error (_("MVE vector or ARM register expected"));
15589 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15590
15591 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15592 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
15593 && inst.operands[1].isquad)
15594 {
15595 inst.instruction = N_MNEM_vcmp;
15596 inst.cond = 0x10;
15597 }
15598
15599 if (inst.cond > COND_ALWAYS)
15600 inst.pred_insn_type = INSIDE_VPT_INSN;
15601 else
15602 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15603
15604 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15605 struct neon_type_el et
15606 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15607 N_EQK);
15608
15609 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
15610 && !inst.operands[2].iszr, BAD_PC);
15611
15612 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15613
15614 inst.instruction = 0xee010f00;
15615 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15616 inst.instruction |= (fcond & 0x4) << 10;
15617 inst.instruction |= (fcond & 0x1) << 7;
15618 if (et.type == NT_float)
15619 {
15620 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15621 BAD_FPU);
15622 inst.instruction |= (et.size == 16) << 28;
15623 inst.instruction |= 0x3 << 20;
15624 }
15625 else
15626 {
15627 inst.instruction |= 1 << 28;
15628 inst.instruction |= neon_logbits (et.size) << 20;
15629 }
15630 if (inst.operands[2].isquad)
15631 {
15632 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15633 inst.instruction |= (fcond & 0x2) >> 1;
15634 inst.instruction |= LOW4 (inst.operands[2].reg);
15635 }
15636 else
15637 {
15638 if (inst.operands[2].reg == REG_SP)
15639 as_tsktsk (MVE_BAD_SP);
15640 inst.instruction |= 1 << 6;
15641 inst.instruction |= (fcond & 0x2) << 4;
15642 inst.instruction |= inst.operands[2].reg;
15643 }
15644
15645 inst.is_neon = 1;
15646 return;
15647 }
15648
15649 static void
15650 do_mve_vmaxa_vmina (void)
15651 {
15652 if (inst.cond > COND_ALWAYS)
15653 inst.pred_insn_type = INSIDE_VPT_INSN;
15654 else
15655 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15656
15657 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15658 struct neon_type_el et
15659 = neon_check_type (2, rs, N_EQK, N_KEY | N_S8 | N_S16 | N_S32);
15660
15661 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15662 inst.instruction |= neon_logbits (et.size) << 18;
15663 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15664 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15665 inst.instruction |= LOW4 (inst.operands[1].reg);
15666 inst.is_neon = 1;
15667 }
15668
15669 static void
15670 do_mve_vfmas (void)
15671 {
15672 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15673 struct neon_type_el et
15674 = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK);
15675
15676 if (inst.cond > COND_ALWAYS)
15677 inst.pred_insn_type = INSIDE_VPT_INSN;
15678 else
15679 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15680
15681 if (inst.operands[2].reg == REG_SP)
15682 as_tsktsk (MVE_BAD_SP);
15683 else if (inst.operands[2].reg == REG_PC)
15684 as_tsktsk (MVE_BAD_PC);
15685
15686 inst.instruction |= (et.size == 16) << 28;
15687 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15688 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15689 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15690 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15691 inst.instruction |= inst.operands[2].reg;
15692 inst.is_neon = 1;
15693 }
15694
15695 static void
15696 do_mve_viddup (void)
15697 {
15698 if (inst.cond > COND_ALWAYS)
15699 inst.pred_insn_type = INSIDE_VPT_INSN;
15700 else
15701 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15702
15703 unsigned imm = inst.relocs[0].exp.X_add_number;
15704 constraint (imm != 1 && imm != 2 && imm != 4 && imm != 8,
15705 _("immediate must be either 1, 2, 4 or 8"));
15706
15707 enum neon_shape rs;
15708 struct neon_type_el et;
15709 unsigned Rm;
15710 if (inst.instruction == M_MNEM_vddup || inst.instruction == M_MNEM_vidup)
15711 {
15712 rs = neon_select_shape (NS_QRI, NS_NULL);
15713 et = neon_check_type (2, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK);
15714 Rm = 7;
15715 }
15716 else
15717 {
15718 constraint ((inst.operands[2].reg % 2) != 1, BAD_EVEN);
15719 if (inst.operands[2].reg == REG_SP)
15720 as_tsktsk (MVE_BAD_SP);
15721 else if (inst.operands[2].reg == REG_PC)
15722 first_error (BAD_PC);
15723
15724 rs = neon_select_shape (NS_QRRI, NS_NULL);
15725 et = neon_check_type (3, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK, N_EQK);
15726 Rm = inst.operands[2].reg >> 1;
15727 }
15728 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15729 inst.instruction |= neon_logbits (et.size) << 20;
15730 inst.instruction |= inst.operands[1].reg << 16;
15731 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15732 inst.instruction |= (imm > 2) << 7;
15733 inst.instruction |= Rm << 1;
15734 inst.instruction |= (imm == 2 || imm == 8);
15735 inst.is_neon = 1;
15736 }
15737
15738 static void
15739 do_mve_vmlas (void)
15740 {
15741 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15742 struct neon_type_el et
15743 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
15744
15745 if (inst.operands[2].reg == REG_PC)
15746 as_tsktsk (MVE_BAD_PC);
15747 else if (inst.operands[2].reg == REG_SP)
15748 as_tsktsk (MVE_BAD_SP);
15749
15750 if (inst.cond > COND_ALWAYS)
15751 inst.pred_insn_type = INSIDE_VPT_INSN;
15752 else
15753 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15754
15755 inst.instruction |= (et.type == NT_unsigned) << 28;
15756 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15757 inst.instruction |= neon_logbits (et.size) << 20;
15758 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15759 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15760 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15761 inst.instruction |= inst.operands[2].reg;
15762 inst.is_neon = 1;
15763 }
15764
15765 static void
15766 do_mve_vshrn (void)
15767 {
15768 unsigned types;
15769 switch (inst.instruction)
15770 {
15771 case M_MNEM_vshrnt:
15772 case M_MNEM_vshrnb:
15773 case M_MNEM_vrshrnt:
15774 case M_MNEM_vrshrnb:
15775 types = N_I16 | N_I32;
15776 break;
15777 case M_MNEM_vqshrnt:
15778 case M_MNEM_vqshrnb:
15779 case M_MNEM_vqrshrnt:
15780 case M_MNEM_vqrshrnb:
15781 types = N_U16 | N_U32 | N_S16 | N_S32;
15782 break;
15783 case M_MNEM_vqshrunt:
15784 case M_MNEM_vqshrunb:
15785 case M_MNEM_vqrshrunt:
15786 case M_MNEM_vqrshrunb:
15787 types = N_S16 | N_S32;
15788 break;
15789 default:
15790 abort ();
15791 }
15792
15793 struct neon_type_el et = neon_check_type (2, NS_QQI, N_EQK, types | N_KEY);
15794
15795 if (inst.cond > COND_ALWAYS)
15796 inst.pred_insn_type = INSIDE_VPT_INSN;
15797 else
15798 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15799
15800 unsigned Qd = inst.operands[0].reg;
15801 unsigned Qm = inst.operands[1].reg;
15802 unsigned imm = inst.operands[2].imm;
15803 constraint (imm < 1 || ((unsigned) imm) > (et.size / 2),
15804 et.size == 16
15805 ? _("immediate operand expected in the range [1,8]")
15806 : _("immediate operand expected in the range [1,16]"));
15807
15808 inst.instruction |= (et.type == NT_unsigned) << 28;
15809 inst.instruction |= HI1 (Qd) << 22;
15810 inst.instruction |= (et.size - imm) << 16;
15811 inst.instruction |= LOW4 (Qd) << 12;
15812 inst.instruction |= HI1 (Qm) << 5;
15813 inst.instruction |= LOW4 (Qm);
15814 inst.is_neon = 1;
15815 }
15816
15817 static void
15818 do_mve_vqmovn (void)
15819 {
15820 struct neon_type_el et;
15821 if (inst.instruction == M_MNEM_vqmovnt
15822 || inst.instruction == M_MNEM_vqmovnb)
15823 et = neon_check_type (2, NS_QQ, N_EQK,
15824 N_U16 | N_U32 | N_S16 | N_S32 | N_KEY);
15825 else
15826 et = neon_check_type (2, NS_QQ, N_EQK, N_S16 | N_S32 | N_KEY);
15827
15828 if (inst.cond > COND_ALWAYS)
15829 inst.pred_insn_type = INSIDE_VPT_INSN;
15830 else
15831 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15832
15833 inst.instruction |= (et.type == NT_unsigned) << 28;
15834 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15835 inst.instruction |= (et.size == 32) << 18;
15836 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15837 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15838 inst.instruction |= LOW4 (inst.operands[1].reg);
15839 inst.is_neon = 1;
15840 }
15841
15842 static void
15843 do_mve_vpsel (void)
15844 {
15845 neon_select_shape (NS_QQQ, NS_NULL);
15846
15847 if (inst.cond > COND_ALWAYS)
15848 inst.pred_insn_type = INSIDE_VPT_INSN;
15849 else
15850 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15851
15852 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15853 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15854 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15855 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15856 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15857 inst.instruction |= LOW4 (inst.operands[2].reg);
15858 inst.is_neon = 1;
15859 }
15860
15861 static void
15862 do_mve_vpnot (void)
15863 {
15864 if (inst.cond > COND_ALWAYS)
15865 inst.pred_insn_type = INSIDE_VPT_INSN;
15866 else
15867 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15868 }
15869
15870 static void
15871 do_mve_vmaxnma_vminnma (void)
15872 {
15873 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15874 struct neon_type_el et
15875 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
15876
15877 if (inst.cond > COND_ALWAYS)
15878 inst.pred_insn_type = INSIDE_VPT_INSN;
15879 else
15880 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15881
15882 inst.instruction |= (et.size == 16) << 28;
15883 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15884 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15885 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15886 inst.instruction |= LOW4 (inst.operands[1].reg);
15887 inst.is_neon = 1;
15888 }
15889
15890 static void
15891 do_mve_vcmul (void)
15892 {
15893 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
15894 struct neon_type_el et
15895 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
15896
15897 if (inst.cond > COND_ALWAYS)
15898 inst.pred_insn_type = INSIDE_VPT_INSN;
15899 else
15900 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15901
15902 unsigned rot = inst.relocs[0].exp.X_add_number;
15903 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
15904 _("immediate out of range"));
15905
15906 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
15907 || inst.operands[0].reg == inst.operands[2].reg))
15908 as_tsktsk (BAD_MVE_SRCDEST);
15909
15910 inst.instruction |= (et.size == 32) << 28;
15911 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15912 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15913 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15914 inst.instruction |= (rot > 90) << 12;
15915 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15916 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15917 inst.instruction |= LOW4 (inst.operands[2].reg);
15918 inst.instruction |= (rot == 90 || rot == 270);
15919 inst.is_neon = 1;
15920 }
15921
15922 static void
15923 do_vfp_nsyn_cmp (void)
15924 {
15925 enum neon_shape rs;
15926 if (!inst.operands[0].isreg)
15927 {
15928 do_mve_vcmp ();
15929 return;
15930 }
15931 else
15932 {
15933 constraint (inst.operands[2].present, BAD_SYNTAX);
15934 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
15935 BAD_FPU);
15936 }
15937
15938 if (inst.operands[1].isreg)
15939 {
15940 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15941 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15942
15943 if (rs == NS_FF || rs == NS_HH)
15944 {
15945 NEON_ENCODE (SINGLE, inst);
15946 do_vfp_sp_monadic ();
15947 }
15948 else
15949 {
15950 NEON_ENCODE (DOUBLE, inst);
15951 do_vfp_dp_rd_rm ();
15952 }
15953 }
15954 else
15955 {
15956 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
15957 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
15958
15959 switch (inst.instruction & 0x0fffffff)
15960 {
15961 case N_MNEM_vcmp:
15962 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
15963 break;
15964 case N_MNEM_vcmpe:
15965 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
15966 break;
15967 default:
15968 abort ();
15969 }
15970
15971 if (rs == NS_FI || rs == NS_HI)
15972 {
15973 NEON_ENCODE (SINGLE, inst);
15974 do_vfp_sp_compare_z ();
15975 }
15976 else
15977 {
15978 NEON_ENCODE (DOUBLE, inst);
15979 do_vfp_dp_rd ();
15980 }
15981 }
15982 do_vfp_cond_or_thumb ();
15983
15984 /* ARMv8.2 fp16 instruction. */
15985 if (rs == NS_HI || rs == NS_HH)
15986 do_scalar_fp16_v82_encode ();
15987 }
15988
15989 static void
15990 nsyn_insert_sp (void)
15991 {
15992 inst.operands[1] = inst.operands[0];
15993 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
15994 inst.operands[0].reg = REG_SP;
15995 inst.operands[0].isreg = 1;
15996 inst.operands[0].writeback = 1;
15997 inst.operands[0].present = 1;
15998 }
15999
16000 static void
16001 do_vfp_nsyn_push (void)
16002 {
16003 nsyn_insert_sp ();
16004
16005 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16006 _("register list must contain at least 1 and at most 16 "
16007 "registers"));
16008
16009 if (inst.operands[1].issingle)
16010 do_vfp_nsyn_opcode ("fstmdbs");
16011 else
16012 do_vfp_nsyn_opcode ("fstmdbd");
16013 }
16014
16015 static void
16016 do_vfp_nsyn_pop (void)
16017 {
16018 nsyn_insert_sp ();
16019
16020 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16021 _("register list must contain at least 1 and at most 16 "
16022 "registers"));
16023
16024 if (inst.operands[1].issingle)
16025 do_vfp_nsyn_opcode ("fldmias");
16026 else
16027 do_vfp_nsyn_opcode ("fldmiad");
16028 }
16029
16030 /* Fix up Neon data-processing instructions, ORing in the correct bits for
16031 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
16032
16033 static void
16034 neon_dp_fixup (struct arm_it* insn)
16035 {
16036 unsigned int i = insn->instruction;
16037 insn->is_neon = 1;
16038
16039 if (thumb_mode)
16040 {
16041 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
16042 if (i & (1 << 24))
16043 i |= 1 << 28;
16044
16045 i &= ~(1 << 24);
16046
16047 i |= 0xef000000;
16048 }
16049 else
16050 i |= 0xf2000000;
16051
16052 insn->instruction = i;
16053 }
16054
16055 static void
16056 mve_encode_qqr (int size, int U, int fp)
16057 {
16058 if (inst.operands[2].reg == REG_SP)
16059 as_tsktsk (MVE_BAD_SP);
16060 else if (inst.operands[2].reg == REG_PC)
16061 as_tsktsk (MVE_BAD_PC);
16062
16063 if (fp)
16064 {
16065 /* vadd. */
16066 if (((unsigned)inst.instruction) == 0xd00)
16067 inst.instruction = 0xee300f40;
16068 /* vsub. */
16069 else if (((unsigned)inst.instruction) == 0x200d00)
16070 inst.instruction = 0xee301f40;
16071 /* vmul. */
16072 else if (((unsigned)inst.instruction) == 0x1000d10)
16073 inst.instruction = 0xee310e60;
16074
16075 /* Setting size which is 1 for F16 and 0 for F32. */
16076 inst.instruction |= (size == 16) << 28;
16077 }
16078 else
16079 {
16080 /* vadd. */
16081 if (((unsigned)inst.instruction) == 0x800)
16082 inst.instruction = 0xee010f40;
16083 /* vsub. */
16084 else if (((unsigned)inst.instruction) == 0x1000800)
16085 inst.instruction = 0xee011f40;
16086 /* vhadd. */
16087 else if (((unsigned)inst.instruction) == 0)
16088 inst.instruction = 0xee000f40;
16089 /* vhsub. */
16090 else if (((unsigned)inst.instruction) == 0x200)
16091 inst.instruction = 0xee001f40;
16092 /* vmla. */
16093 else if (((unsigned)inst.instruction) == 0x900)
16094 inst.instruction = 0xee010e40;
16095 /* vmul. */
16096 else if (((unsigned)inst.instruction) == 0x910)
16097 inst.instruction = 0xee011e60;
16098 /* vqadd. */
16099 else if (((unsigned)inst.instruction) == 0x10)
16100 inst.instruction = 0xee000f60;
16101 /* vqsub. */
16102 else if (((unsigned)inst.instruction) == 0x210)
16103 inst.instruction = 0xee001f60;
16104 /* vqrdmlah. */
16105 else if (((unsigned)inst.instruction) == 0x3000b10)
16106 inst.instruction = 0xee000e40;
16107 /* vqdmulh. */
16108 else if (((unsigned)inst.instruction) == 0x0000b00)
16109 inst.instruction = 0xee010e60;
16110 /* vqrdmulh. */
16111 else if (((unsigned)inst.instruction) == 0x1000b00)
16112 inst.instruction = 0xfe010e60;
16113
16114 /* Set U-bit. */
16115 inst.instruction |= U << 28;
16116
16117 /* Setting bits for size. */
16118 inst.instruction |= neon_logbits (size) << 20;
16119 }
16120 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16121 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16122 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16123 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16124 inst.instruction |= inst.operands[2].reg;
16125 inst.is_neon = 1;
16126 }
16127
16128 static void
16129 mve_encode_rqq (unsigned bit28, unsigned size)
16130 {
16131 inst.instruction |= bit28 << 28;
16132 inst.instruction |= neon_logbits (size) << 20;
16133 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16134 inst.instruction |= inst.operands[0].reg << 12;
16135 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16136 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16137 inst.instruction |= LOW4 (inst.operands[2].reg);
16138 inst.is_neon = 1;
16139 }
16140
16141 static void
16142 mve_encode_qqq (int ubit, int size)
16143 {
16144
16145 inst.instruction |= (ubit != 0) << 28;
16146 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16147 inst.instruction |= neon_logbits (size) << 20;
16148 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16149 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16150 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16151 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16152 inst.instruction |= LOW4 (inst.operands[2].reg);
16153
16154 inst.is_neon = 1;
16155 }
16156
16157 static void
16158 mve_encode_rq (unsigned bit28, unsigned size)
16159 {
16160 inst.instruction |= bit28 << 28;
16161 inst.instruction |= neon_logbits (size) << 18;
16162 inst.instruction |= inst.operands[0].reg << 12;
16163 inst.instruction |= LOW4 (inst.operands[1].reg);
16164 inst.is_neon = 1;
16165 }
16166
16167 static void
16168 mve_encode_rrqq (unsigned U, unsigned size)
16169 {
16170 constraint (inst.operands[3].reg > 14, MVE_BAD_QREG);
16171
16172 inst.instruction |= U << 28;
16173 inst.instruction |= (inst.operands[1].reg >> 1) << 20;
16174 inst.instruction |= LOW4 (inst.operands[2].reg) << 16;
16175 inst.instruction |= (size == 32) << 16;
16176 inst.instruction |= inst.operands[0].reg << 12;
16177 inst.instruction |= HI1 (inst.operands[2].reg) << 7;
16178 inst.instruction |= inst.operands[3].reg;
16179 inst.is_neon = 1;
16180 }
16181
16182 /* Encode insns with bit pattern:
16183
16184 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16185 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
16186
16187 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
16188 different meaning for some instruction. */
16189
16190 static void
16191 neon_three_same (int isquad, int ubit, int size)
16192 {
16193 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16194 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16195 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16196 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16197 inst.instruction |= LOW4 (inst.operands[2].reg);
16198 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16199 inst.instruction |= (isquad != 0) << 6;
16200 inst.instruction |= (ubit != 0) << 24;
16201 if (size != -1)
16202 inst.instruction |= neon_logbits (size) << 20;
16203
16204 neon_dp_fixup (&inst);
16205 }
16206
16207 /* Encode instructions of the form:
16208
16209 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
16210 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
16211
16212 Don't write size if SIZE == -1. */
16213
16214 static void
16215 neon_two_same (int qbit, int ubit, int size)
16216 {
16217 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16218 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16219 inst.instruction |= LOW4 (inst.operands[1].reg);
16220 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16221 inst.instruction |= (qbit != 0) << 6;
16222 inst.instruction |= (ubit != 0) << 24;
16223
16224 if (size != -1)
16225 inst.instruction |= neon_logbits (size) << 18;
16226
16227 neon_dp_fixup (&inst);
16228 }
16229
16230 enum vfp_or_neon_is_neon_bits
16231 {
16232 NEON_CHECK_CC = 1,
16233 NEON_CHECK_ARCH = 2,
16234 NEON_CHECK_ARCH8 = 4
16235 };
16236
16237 /* Call this function if an instruction which may have belonged to the VFP or
16238 Neon instruction sets, but turned out to be a Neon instruction (due to the
16239 operand types involved, etc.). We have to check and/or fix-up a couple of
16240 things:
16241
16242 - Make sure the user hasn't attempted to make a Neon instruction
16243 conditional.
16244 - Alter the value in the condition code field if necessary.
16245 - Make sure that the arch supports Neon instructions.
16246
16247 Which of these operations take place depends on bits from enum
16248 vfp_or_neon_is_neon_bits.
16249
16250 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16251 current instruction's condition is COND_ALWAYS, the condition field is
16252 changed to inst.uncond_value. This is necessary because instructions shared
16253 between VFP and Neon may be conditional for the VFP variants only, and the
16254 unconditional Neon version must have, e.g., 0xF in the condition field. */
16255
16256 static int
16257 vfp_or_neon_is_neon (unsigned check)
16258 {
16259 /* Conditions are always legal in Thumb mode (IT blocks). */
16260 if (!thumb_mode && (check & NEON_CHECK_CC))
16261 {
16262 if (inst.cond != COND_ALWAYS)
16263 {
16264 first_error (_(BAD_COND));
16265 return FAIL;
16266 }
16267 if (inst.uncond_value != -1)
16268 inst.instruction |= inst.uncond_value << 28;
16269 }
16270
16271
16272 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16273 || ((check & NEON_CHECK_ARCH8)
16274 && !mark_feature_used (&fpu_neon_ext_armv8)))
16275 {
16276 first_error (_(BAD_FPU));
16277 return FAIL;
16278 }
16279
16280 return SUCCESS;
16281 }
16282
16283 static int
16284 check_simd_pred_availability (int fp, unsigned check)
16285 {
16286 if (inst.cond > COND_ALWAYS)
16287 {
16288 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16289 {
16290 inst.error = BAD_FPU;
16291 return 1;
16292 }
16293 inst.pred_insn_type = INSIDE_VPT_INSN;
16294 }
16295 else if (inst.cond < COND_ALWAYS)
16296 {
16297 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16298 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16299 else if (vfp_or_neon_is_neon (check) == FAIL)
16300 return 2;
16301 }
16302 else
16303 {
16304 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16305 && vfp_or_neon_is_neon (check) == FAIL)
16306 return 3;
16307
16308 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16309 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16310 }
16311 return 0;
16312 }
16313
16314 /* Neon instruction encoders, in approximate order of appearance. */
16315
16316 static void
16317 do_neon_dyadic_i_su (void)
16318 {
16319 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
16320 return;
16321
16322 enum neon_shape rs;
16323 struct neon_type_el et;
16324 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16325 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16326 else
16327 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16328
16329 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_32 | N_KEY);
16330
16331
16332 if (rs != NS_QQR)
16333 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16334 else
16335 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16336 }
16337
16338 static void
16339 do_neon_dyadic_i64_su (void)
16340 {
16341 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
16342 return;
16343 enum neon_shape rs;
16344 struct neon_type_el et;
16345 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16346 {
16347 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16348 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16349 }
16350 else
16351 {
16352 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16353 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16354 }
16355 if (rs == NS_QQR)
16356 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16357 else
16358 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16359 }
16360
16361 static void
16362 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
16363 unsigned immbits)
16364 {
16365 unsigned size = et.size >> 3;
16366 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16367 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16368 inst.instruction |= LOW4 (inst.operands[1].reg);
16369 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16370 inst.instruction |= (isquad != 0) << 6;
16371 inst.instruction |= immbits << 16;
16372 inst.instruction |= (size >> 3) << 7;
16373 inst.instruction |= (size & 0x7) << 19;
16374 if (write_ubit)
16375 inst.instruction |= (uval != 0) << 24;
16376
16377 neon_dp_fixup (&inst);
16378 }
16379
16380 static void
16381 do_neon_shl_imm (void)
16382 {
16383 if (!inst.operands[2].isreg)
16384 {
16385 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16386 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
16387 int imm = inst.operands[2].imm;
16388
16389 constraint (imm < 0 || (unsigned)imm >= et.size,
16390 _("immediate out of range for shift"));
16391 NEON_ENCODE (IMMED, inst);
16392 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
16393 }
16394 else
16395 {
16396 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16397 struct neon_type_el et = neon_check_type (3, rs,
16398 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16399 unsigned int tmp;
16400
16401 /* VSHL/VQSHL 3-register variants have syntax such as:
16402 vshl.xx Dd, Dm, Dn
16403 whereas other 3-register operations encoded by neon_three_same have
16404 syntax like:
16405 vadd.xx Dd, Dn, Dm
16406 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
16407 here. */
16408 tmp = inst.operands[2].reg;
16409 inst.operands[2].reg = inst.operands[1].reg;
16410 inst.operands[1].reg = tmp;
16411 NEON_ENCODE (INTEGER, inst);
16412 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16413 }
16414 }
16415
16416 static void
16417 do_neon_qshl_imm (void)
16418 {
16419 if (!inst.operands[2].isreg)
16420 {
16421 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16422 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16423 int imm = inst.operands[2].imm;
16424
16425 constraint (imm < 0 || (unsigned)imm >= et.size,
16426 _("immediate out of range for shift"));
16427 NEON_ENCODE (IMMED, inst);
16428 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
16429 }
16430 else
16431 {
16432 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16433 struct neon_type_el et = neon_check_type (3, rs,
16434 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16435 unsigned int tmp;
16436
16437 /* See note in do_neon_shl_imm. */
16438 tmp = inst.operands[2].reg;
16439 inst.operands[2].reg = inst.operands[1].reg;
16440 inst.operands[1].reg = tmp;
16441 NEON_ENCODE (INTEGER, inst);
16442 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16443 }
16444 }
16445
16446 static void
16447 do_neon_rshl (void)
16448 {
16449 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
16450 return;
16451
16452 enum neon_shape rs;
16453 struct neon_type_el et;
16454 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16455 {
16456 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16457 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16458 }
16459 else
16460 {
16461 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16462 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16463 }
16464
16465 unsigned int tmp;
16466
16467 if (rs == NS_QQR)
16468 {
16469 if (inst.operands[2].reg == REG_PC)
16470 as_tsktsk (MVE_BAD_PC);
16471 else if (inst.operands[2].reg == REG_SP)
16472 as_tsktsk (MVE_BAD_SP);
16473
16474 constraint (inst.operands[0].reg != inst.operands[1].reg,
16475 _("invalid instruction shape"));
16476
16477 if (inst.instruction == 0x0000510)
16478 /* We are dealing with vqrshl. */
16479 inst.instruction = 0xee331ee0;
16480 else
16481 /* We are dealing with vrshl. */
16482 inst.instruction = 0xee331e60;
16483
16484 inst.instruction |= (et.type == NT_unsigned) << 28;
16485 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16486 inst.instruction |= neon_logbits (et.size) << 18;
16487 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16488 inst.instruction |= inst.operands[2].reg;
16489 inst.is_neon = 1;
16490 }
16491 else
16492 {
16493 tmp = inst.operands[2].reg;
16494 inst.operands[2].reg = inst.operands[1].reg;
16495 inst.operands[1].reg = tmp;
16496 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16497 }
16498 }
16499
16500 static int
16501 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
16502 {
16503 /* Handle .I8 pseudo-instructions. */
16504 if (size == 8)
16505 {
16506 /* Unfortunately, this will make everything apart from zero out-of-range.
16507 FIXME is this the intended semantics? There doesn't seem much point in
16508 accepting .I8 if so. */
16509 immediate |= immediate << 8;
16510 size = 16;
16511 }
16512
16513 if (size >= 32)
16514 {
16515 if (immediate == (immediate & 0x000000ff))
16516 {
16517 *immbits = immediate;
16518 return 0x1;
16519 }
16520 else if (immediate == (immediate & 0x0000ff00))
16521 {
16522 *immbits = immediate >> 8;
16523 return 0x3;
16524 }
16525 else if (immediate == (immediate & 0x00ff0000))
16526 {
16527 *immbits = immediate >> 16;
16528 return 0x5;
16529 }
16530 else if (immediate == (immediate & 0xff000000))
16531 {
16532 *immbits = immediate >> 24;
16533 return 0x7;
16534 }
16535 if ((immediate & 0xffff) != (immediate >> 16))
16536 goto bad_immediate;
16537 immediate &= 0xffff;
16538 }
16539
16540 if (immediate == (immediate & 0x000000ff))
16541 {
16542 *immbits = immediate;
16543 return 0x9;
16544 }
16545 else if (immediate == (immediate & 0x0000ff00))
16546 {
16547 *immbits = immediate >> 8;
16548 return 0xb;
16549 }
16550
16551 bad_immediate:
16552 first_error (_("immediate value out of range"));
16553 return FAIL;
16554 }
16555
16556 static void
16557 do_neon_logic (void)
16558 {
16559 if (inst.operands[2].present && inst.operands[2].isreg)
16560 {
16561 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16562 if (rs == NS_QQQ
16563 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16564 == FAIL)
16565 return;
16566 else if (rs != NS_QQQ
16567 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16568 first_error (BAD_FPU);
16569
16570 neon_check_type (3, rs, N_IGNORE_TYPE);
16571 /* U bit and size field were set as part of the bitmask. */
16572 NEON_ENCODE (INTEGER, inst);
16573 neon_three_same (neon_quad (rs), 0, -1);
16574 }
16575 else
16576 {
16577 const int three_ops_form = (inst.operands[2].present
16578 && !inst.operands[2].isreg);
16579 const int immoperand = (three_ops_form ? 2 : 1);
16580 enum neon_shape rs = (three_ops_form
16581 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
16582 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
16583 /* Because neon_select_shape makes the second operand a copy of the first
16584 if the second operand is not present. */
16585 if (rs == NS_QQI
16586 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16587 == FAIL)
16588 return;
16589 else if (rs != NS_QQI
16590 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16591 first_error (BAD_FPU);
16592
16593 struct neon_type_el et;
16594 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16595 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
16596 else
16597 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
16598 | N_KEY, N_EQK);
16599
16600 if (et.type == NT_invtype)
16601 return;
16602 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
16603 unsigned immbits;
16604 int cmode;
16605
16606
16607 if (three_ops_form)
16608 constraint (inst.operands[0].reg != inst.operands[1].reg,
16609 _("first and second operands shall be the same register"));
16610
16611 NEON_ENCODE (IMMED, inst);
16612
16613 immbits = inst.operands[immoperand].imm;
16614 if (et.size == 64)
16615 {
16616 /* .i64 is a pseudo-op, so the immediate must be a repeating
16617 pattern. */
16618 if (immbits != (inst.operands[immoperand].regisimm ?
16619 inst.operands[immoperand].reg : 0))
16620 {
16621 /* Set immbits to an invalid constant. */
16622 immbits = 0xdeadbeef;
16623 }
16624 }
16625
16626 switch (opcode)
16627 {
16628 case N_MNEM_vbic:
16629 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16630 break;
16631
16632 case N_MNEM_vorr:
16633 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16634 break;
16635
16636 case N_MNEM_vand:
16637 /* Pseudo-instruction for VBIC. */
16638 neon_invert_size (&immbits, 0, et.size);
16639 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16640 break;
16641
16642 case N_MNEM_vorn:
16643 /* Pseudo-instruction for VORR. */
16644 neon_invert_size (&immbits, 0, et.size);
16645 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16646 break;
16647
16648 default:
16649 abort ();
16650 }
16651
16652 if (cmode == FAIL)
16653 return;
16654
16655 inst.instruction |= neon_quad (rs) << 6;
16656 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16657 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16658 inst.instruction |= cmode << 8;
16659 neon_write_immbits (immbits);
16660
16661 neon_dp_fixup (&inst);
16662 }
16663 }
16664
16665 static void
16666 do_neon_bitfield (void)
16667 {
16668 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16669 neon_check_type (3, rs, N_IGNORE_TYPE);
16670 neon_three_same (neon_quad (rs), 0, -1);
16671 }
16672
16673 static void
16674 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
16675 unsigned destbits)
16676 {
16677 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16678 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
16679 types | N_KEY);
16680 if (et.type == NT_float)
16681 {
16682 NEON_ENCODE (FLOAT, inst);
16683 if (rs == NS_QQR)
16684 mve_encode_qqr (et.size, 0, 1);
16685 else
16686 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
16687 }
16688 else
16689 {
16690 NEON_ENCODE (INTEGER, inst);
16691 if (rs == NS_QQR)
16692 mve_encode_qqr (et.size, et.type == ubit_meaning, 0);
16693 else
16694 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
16695 }
16696 }
16697
16698
16699 static void
16700 do_neon_dyadic_if_su_d (void)
16701 {
16702 /* This version only allow D registers, but that constraint is enforced during
16703 operand parsing so we don't need to do anything extra here. */
16704 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16705 }
16706
16707 static void
16708 do_neon_dyadic_if_i_d (void)
16709 {
16710 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16711 affected if we specify unsigned args. */
16712 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16713 }
16714
16715 static void
16716 do_mve_vstr_vldr_QI (int size, int elsize, int load)
16717 {
16718 constraint (size < 32, BAD_ADDR_MODE);
16719 constraint (size != elsize, BAD_EL_TYPE);
16720 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16721 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
16722 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
16723 _("destination register and offset register may not be the"
16724 " same"));
16725
16726 int imm = inst.relocs[0].exp.X_add_number;
16727 int add = 1;
16728 if (imm < 0)
16729 {
16730 add = 0;
16731 imm = -imm;
16732 }
16733 constraint ((imm % (size / 8) != 0)
16734 || imm > (0x7f << neon_logbits (size)),
16735 (size == 32) ? _("immediate must be a multiple of 4 in the"
16736 " range of +/-[0,508]")
16737 : _("immediate must be a multiple of 8 in the"
16738 " range of +/-[0,1016]"));
16739 inst.instruction |= 0x11 << 24;
16740 inst.instruction |= add << 23;
16741 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16742 inst.instruction |= inst.operands[1].writeback << 21;
16743 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16744 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16745 inst.instruction |= 1 << 12;
16746 inst.instruction |= (size == 64) << 8;
16747 inst.instruction &= 0xffffff00;
16748 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16749 inst.instruction |= imm >> neon_logbits (size);
16750 }
16751
16752 static void
16753 do_mve_vstr_vldr_RQ (int size, int elsize, int load)
16754 {
16755 unsigned os = inst.operands[1].imm >> 5;
16756 constraint (os != 0 && size == 8,
16757 _("can not shift offsets when accessing less than half-word"));
16758 constraint (os && os != neon_logbits (size),
16759 _("shift immediate must be 1, 2 or 3 for half-word, word"
16760 " or double-word accesses respectively"));
16761 if (inst.operands[1].reg == REG_PC)
16762 as_tsktsk (MVE_BAD_PC);
16763
16764 switch (size)
16765 {
16766 case 8:
16767 constraint (elsize >= 64, BAD_EL_TYPE);
16768 break;
16769 case 16:
16770 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16771 break;
16772 case 32:
16773 case 64:
16774 constraint (elsize != size, BAD_EL_TYPE);
16775 break;
16776 default:
16777 break;
16778 }
16779 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
16780 BAD_ADDR_MODE);
16781 if (load)
16782 {
16783 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
16784 _("destination register and offset register may not be"
16785 " the same"));
16786 constraint (size == elsize && inst.vectype.el[0].type != NT_unsigned,
16787 BAD_EL_TYPE);
16788 constraint (inst.vectype.el[0].type != NT_unsigned
16789 && inst.vectype.el[0].type != NT_signed, BAD_EL_TYPE);
16790 inst.instruction |= (inst.vectype.el[0].type == NT_unsigned) << 28;
16791 }
16792 else
16793 {
16794 constraint (inst.vectype.el[0].type != NT_untyped, BAD_EL_TYPE);
16795 }
16796
16797 inst.instruction |= 1 << 23;
16798 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16799 inst.instruction |= inst.operands[1].reg << 16;
16800 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16801 inst.instruction |= neon_logbits (elsize) << 7;
16802 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
16803 inst.instruction |= LOW4 (inst.operands[1].imm);
16804 inst.instruction |= !!os;
16805 }
16806
16807 static void
16808 do_mve_vstr_vldr_RI (int size, int elsize, int load)
16809 {
16810 enum neon_el_type type = inst.vectype.el[0].type;
16811
16812 constraint (size >= 64, BAD_ADDR_MODE);
16813 switch (size)
16814 {
16815 case 16:
16816 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16817 break;
16818 case 32:
16819 constraint (elsize != size, BAD_EL_TYPE);
16820 break;
16821 default:
16822 break;
16823 }
16824 if (load)
16825 {
16826 constraint (elsize != size && type != NT_unsigned
16827 && type != NT_signed, BAD_EL_TYPE);
16828 }
16829 else
16830 {
16831 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
16832 }
16833
16834 int imm = inst.relocs[0].exp.X_add_number;
16835 int add = 1;
16836 if (imm < 0)
16837 {
16838 add = 0;
16839 imm = -imm;
16840 }
16841
16842 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
16843 {
16844 switch (size)
16845 {
16846 case 8:
16847 constraint (1, _("immediate must be in the range of +/-[0,127]"));
16848 break;
16849 case 16:
16850 constraint (1, _("immediate must be a multiple of 2 in the"
16851 " range of +/-[0,254]"));
16852 break;
16853 case 32:
16854 constraint (1, _("immediate must be a multiple of 4 in the"
16855 " range of +/-[0,508]"));
16856 break;
16857 }
16858 }
16859
16860 if (size != elsize)
16861 {
16862 constraint (inst.operands[1].reg > 7, BAD_HIREG);
16863 constraint (inst.operands[0].reg > 14,
16864 _("MVE vector register in the range [Q0..Q7] expected"));
16865 inst.instruction |= (load && type == NT_unsigned) << 28;
16866 inst.instruction |= (size == 16) << 19;
16867 inst.instruction |= neon_logbits (elsize) << 7;
16868 }
16869 else
16870 {
16871 if (inst.operands[1].reg == REG_PC)
16872 as_tsktsk (MVE_BAD_PC);
16873 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16874 as_tsktsk (MVE_BAD_SP);
16875 inst.instruction |= 1 << 12;
16876 inst.instruction |= neon_logbits (size) << 7;
16877 }
16878 inst.instruction |= inst.operands[1].preind << 24;
16879 inst.instruction |= add << 23;
16880 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16881 inst.instruction |= inst.operands[1].writeback << 21;
16882 inst.instruction |= inst.operands[1].reg << 16;
16883 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16884 inst.instruction &= 0xffffff80;
16885 inst.instruction |= imm >> neon_logbits (size);
16886
16887 }
16888
16889 static void
16890 do_mve_vstr_vldr (void)
16891 {
16892 unsigned size;
16893 int load = 0;
16894
16895 if (inst.cond > COND_ALWAYS)
16896 inst.pred_insn_type = INSIDE_VPT_INSN;
16897 else
16898 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16899
16900 switch (inst.instruction)
16901 {
16902 default:
16903 gas_assert (0);
16904 break;
16905 case M_MNEM_vldrb:
16906 load = 1;
16907 /* fall through. */
16908 case M_MNEM_vstrb:
16909 size = 8;
16910 break;
16911 case M_MNEM_vldrh:
16912 load = 1;
16913 /* fall through. */
16914 case M_MNEM_vstrh:
16915 size = 16;
16916 break;
16917 case M_MNEM_vldrw:
16918 load = 1;
16919 /* fall through. */
16920 case M_MNEM_vstrw:
16921 size = 32;
16922 break;
16923 case M_MNEM_vldrd:
16924 load = 1;
16925 /* fall through. */
16926 case M_MNEM_vstrd:
16927 size = 64;
16928 break;
16929 }
16930 unsigned elsize = inst.vectype.el[0].size;
16931
16932 if (inst.operands[1].isquad)
16933 {
16934 /* We are dealing with [Q, imm]{!} cases. */
16935 do_mve_vstr_vldr_QI (size, elsize, load);
16936 }
16937 else
16938 {
16939 if (inst.operands[1].immisreg == 2)
16940 {
16941 /* We are dealing with [R, Q, {UXTW #os}] cases. */
16942 do_mve_vstr_vldr_RQ (size, elsize, load);
16943 }
16944 else if (!inst.operands[1].immisreg)
16945 {
16946 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
16947 do_mve_vstr_vldr_RI (size, elsize, load);
16948 }
16949 else
16950 constraint (1, BAD_ADDR_MODE);
16951 }
16952
16953 inst.is_neon = 1;
16954 }
16955
16956 static void
16957 do_mve_vst_vld (void)
16958 {
16959 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16960 return;
16961
16962 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
16963 || inst.relocs[0].exp.X_add_number != 0
16964 || inst.operands[1].immisreg != 0,
16965 BAD_ADDR_MODE);
16966 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
16967 if (inst.operands[1].reg == REG_PC)
16968 as_tsktsk (MVE_BAD_PC);
16969 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16970 as_tsktsk (MVE_BAD_SP);
16971
16972
16973 /* These instructions are one of the "exceptions" mentioned in
16974 handle_pred_state. They are MVE instructions that are not VPT compatible
16975 and do not accept a VPT code, thus appending such a code is a syntax
16976 error. */
16977 if (inst.cond > COND_ALWAYS)
16978 first_error (BAD_SYNTAX);
16979 /* If we append a scalar condition code we can set this to
16980 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
16981 else if (inst.cond < COND_ALWAYS)
16982 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16983 else
16984 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
16985
16986 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16987 inst.instruction |= inst.operands[1].writeback << 21;
16988 inst.instruction |= inst.operands[1].reg << 16;
16989 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16990 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
16991 inst.is_neon = 1;
16992 }
16993
16994 static void
16995 do_mve_vaddlv (void)
16996 {
16997 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
16998 struct neon_type_el et
16999 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
17000
17001 if (et.type == NT_invtype)
17002 first_error (BAD_EL_TYPE);
17003
17004 if (inst.cond > COND_ALWAYS)
17005 inst.pred_insn_type = INSIDE_VPT_INSN;
17006 else
17007 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17008
17009 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17010
17011 inst.instruction |= (et.type == NT_unsigned) << 28;
17012 inst.instruction |= inst.operands[1].reg << 19;
17013 inst.instruction |= inst.operands[0].reg << 12;
17014 inst.instruction |= inst.operands[2].reg;
17015 inst.is_neon = 1;
17016 }
17017
17018 static void
17019 do_neon_dyadic_if_su (void)
17020 {
17021 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17022 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17023 N_SUF_32 | N_KEY);
17024
17025 constraint ((inst.instruction == ((unsigned) N_MNEM_vmax)
17026 || inst.instruction == ((unsigned) N_MNEM_vmin))
17027 && et.type == NT_float
17028 && !ARM_CPU_HAS_FEATURE (cpu_variant,fpu_neon_ext_v1), BAD_FPU);
17029
17030 if (check_simd_pred_availability (et.type == NT_float,
17031 NEON_CHECK_ARCH | NEON_CHECK_CC))
17032 return;
17033
17034 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
17035 }
17036
17037 static void
17038 do_neon_addsub_if_i (void)
17039 {
17040 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
17041 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
17042 return;
17043
17044 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17045 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
17046 N_EQK, N_IF_32 | N_I64 | N_KEY);
17047
17048 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
17049 /* If we are parsing Q registers and the element types match MVE, which NEON
17050 also supports, then we must check whether this is an instruction that can
17051 be used by both MVE/NEON. This distinction can be made based on whether
17052 they are predicated or not. */
17053 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
17054 {
17055 if (check_simd_pred_availability (et.type == NT_float,
17056 NEON_CHECK_ARCH | NEON_CHECK_CC))
17057 return;
17058 }
17059 else
17060 {
17061 /* If they are either in a D register or are using an unsupported. */
17062 if (rs != NS_QQR
17063 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17064 return;
17065 }
17066
17067 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17068 affected if we specify unsigned args. */
17069 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
17070 }
17071
17072 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
17073 result to be:
17074 V<op> A,B (A is operand 0, B is operand 2)
17075 to mean:
17076 V<op> A,B,A
17077 not:
17078 V<op> A,B,B
17079 so handle that case specially. */
17080
17081 static void
17082 neon_exchange_operands (void)
17083 {
17084 if (inst.operands[1].present)
17085 {
17086 void *scratch = xmalloc (sizeof (inst.operands[0]));
17087
17088 /* Swap operands[1] and operands[2]. */
17089 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
17090 inst.operands[1] = inst.operands[2];
17091 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
17092 free (scratch);
17093 }
17094 else
17095 {
17096 inst.operands[1] = inst.operands[2];
17097 inst.operands[2] = inst.operands[0];
17098 }
17099 }
17100
17101 static void
17102 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
17103 {
17104 if (inst.operands[2].isreg)
17105 {
17106 if (invert)
17107 neon_exchange_operands ();
17108 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
17109 }
17110 else
17111 {
17112 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17113 struct neon_type_el et = neon_check_type (2, rs,
17114 N_EQK | N_SIZ, immtypes | N_KEY);
17115
17116 NEON_ENCODE (IMMED, inst);
17117 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17118 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17119 inst.instruction |= LOW4 (inst.operands[1].reg);
17120 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17121 inst.instruction |= neon_quad (rs) << 6;
17122 inst.instruction |= (et.type == NT_float) << 10;
17123 inst.instruction |= neon_logbits (et.size) << 18;
17124
17125 neon_dp_fixup (&inst);
17126 }
17127 }
17128
17129 static void
17130 do_neon_cmp (void)
17131 {
17132 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
17133 }
17134
17135 static void
17136 do_neon_cmp_inv (void)
17137 {
17138 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
17139 }
17140
17141 static void
17142 do_neon_ceq (void)
17143 {
17144 neon_compare (N_IF_32, N_IF_32, FALSE);
17145 }
17146
17147 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
17148 scalars, which are encoded in 5 bits, M : Rm.
17149 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
17150 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
17151 index in M.
17152
17153 Dot Product instructions are similar to multiply instructions except elsize
17154 should always be 32.
17155
17156 This function translates SCALAR, which is GAS's internal encoding of indexed
17157 scalar register, to raw encoding. There is also register and index range
17158 check based on ELSIZE. */
17159
17160 static unsigned
17161 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
17162 {
17163 unsigned regno = NEON_SCALAR_REG (scalar);
17164 unsigned elno = NEON_SCALAR_INDEX (scalar);
17165
17166 switch (elsize)
17167 {
17168 case 16:
17169 if (regno > 7 || elno > 3)
17170 goto bad_scalar;
17171 return regno | (elno << 3);
17172
17173 case 32:
17174 if (regno > 15 || elno > 1)
17175 goto bad_scalar;
17176 return regno | (elno << 4);
17177
17178 default:
17179 bad_scalar:
17180 first_error (_("scalar out of range for multiply instruction"));
17181 }
17182
17183 return 0;
17184 }
17185
17186 /* Encode multiply / multiply-accumulate scalar instructions. */
17187
17188 static void
17189 neon_mul_mac (struct neon_type_el et, int ubit)
17190 {
17191 unsigned scalar;
17192
17193 /* Give a more helpful error message if we have an invalid type. */
17194 if (et.type == NT_invtype)
17195 return;
17196
17197 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
17198 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17199 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17200 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17201 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17202 inst.instruction |= LOW4 (scalar);
17203 inst.instruction |= HI1 (scalar) << 5;
17204 inst.instruction |= (et.type == NT_float) << 8;
17205 inst.instruction |= neon_logbits (et.size) << 20;
17206 inst.instruction |= (ubit != 0) << 24;
17207
17208 neon_dp_fixup (&inst);
17209 }
17210
17211 static void
17212 do_neon_mac_maybe_scalar (void)
17213 {
17214 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
17215 return;
17216
17217 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
17218 return;
17219
17220 if (inst.operands[2].isscalar)
17221 {
17222 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17223 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17224 struct neon_type_el et = neon_check_type (3, rs,
17225 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
17226 NEON_ENCODE (SCALAR, inst);
17227 neon_mul_mac (et, neon_quad (rs));
17228 }
17229 else if (!inst.operands[2].isvec)
17230 {
17231 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17232
17233 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17234 neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17235
17236 neon_dyadic_misc (NT_unsigned, N_SU_MVE, 0);
17237 }
17238 else
17239 {
17240 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17241 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17242 affected if we specify unsigned args. */
17243 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17244 }
17245 }
17246
17247 static void
17248 do_neon_fmac (void)
17249 {
17250 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_fma)
17251 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
17252 return;
17253
17254 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
17255 return;
17256
17257 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17258 {
17259 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17260 struct neon_type_el et = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK,
17261 N_EQK);
17262
17263 if (rs == NS_QQR)
17264 {
17265 if (inst.operands[2].reg == REG_SP)
17266 as_tsktsk (MVE_BAD_SP);
17267 else if (inst.operands[2].reg == REG_PC)
17268 as_tsktsk (MVE_BAD_PC);
17269
17270 inst.instruction = 0xee310e40;
17271 inst.instruction |= (et.size == 16) << 28;
17272 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17273 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17274 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17275 inst.instruction |= HI1 (inst.operands[1].reg) << 6;
17276 inst.instruction |= inst.operands[2].reg;
17277 inst.is_neon = 1;
17278 return;
17279 }
17280 }
17281 else
17282 {
17283 constraint (!inst.operands[2].isvec, BAD_FPU);
17284 }
17285
17286 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17287 }
17288
17289 static void
17290 do_neon_tst (void)
17291 {
17292 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17293 struct neon_type_el et = neon_check_type (3, rs,
17294 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17295 neon_three_same (neon_quad (rs), 0, et.size);
17296 }
17297
17298 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
17299 same types as the MAC equivalents. The polynomial type for this instruction
17300 is encoded the same as the integer type. */
17301
17302 static void
17303 do_neon_mul (void)
17304 {
17305 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
17306 return;
17307
17308 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
17309 return;
17310
17311 if (inst.operands[2].isscalar)
17312 {
17313 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17314 do_neon_mac_maybe_scalar ();
17315 }
17316 else
17317 {
17318 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17319 {
17320 enum neon_shape rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17321 struct neon_type_el et
17322 = neon_check_type (3, rs, N_EQK, N_EQK, N_I_MVE | N_F_MVE | N_KEY);
17323 if (et.type == NT_float)
17324 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
17325 BAD_FPU);
17326
17327 neon_dyadic_misc (NT_float, N_I_MVE | N_F_MVE, 0);
17328 }
17329 else
17330 {
17331 constraint (!inst.operands[2].isvec, BAD_FPU);
17332 neon_dyadic_misc (NT_poly,
17333 N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
17334 }
17335 }
17336 }
17337
17338 static void
17339 do_neon_qdmulh (void)
17340 {
17341 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
17342 return;
17343
17344 if (inst.operands[2].isscalar)
17345 {
17346 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17347 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17348 struct neon_type_el et = neon_check_type (3, rs,
17349 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17350 NEON_ENCODE (SCALAR, inst);
17351 neon_mul_mac (et, neon_quad (rs));
17352 }
17353 else
17354 {
17355 enum neon_shape rs;
17356 struct neon_type_el et;
17357 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17358 {
17359 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17360 et = neon_check_type (3, rs,
17361 N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17362 }
17363 else
17364 {
17365 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17366 et = neon_check_type (3, rs,
17367 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17368 }
17369
17370 NEON_ENCODE (INTEGER, inst);
17371 if (rs == NS_QQR)
17372 mve_encode_qqr (et.size, 0, 0);
17373 else
17374 /* The U bit (rounding) comes from bit mask. */
17375 neon_three_same (neon_quad (rs), 0, et.size);
17376 }
17377 }
17378
17379 static void
17380 do_mve_vaddv (void)
17381 {
17382 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17383 struct neon_type_el et
17384 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
17385
17386 if (et.type == NT_invtype)
17387 first_error (BAD_EL_TYPE);
17388
17389 if (inst.cond > COND_ALWAYS)
17390 inst.pred_insn_type = INSIDE_VPT_INSN;
17391 else
17392 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17393
17394 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17395
17396 mve_encode_rq (et.type == NT_unsigned, et.size);
17397 }
17398
17399 static void
17400 do_mve_vhcadd (void)
17401 {
17402 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
17403 struct neon_type_el et
17404 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17405
17406 if (inst.cond > COND_ALWAYS)
17407 inst.pred_insn_type = INSIDE_VPT_INSN;
17408 else
17409 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17410
17411 unsigned rot = inst.relocs[0].exp.X_add_number;
17412 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17413
17414 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
17415 as_tsktsk (_("Warning: 32-bit element size and same first and third "
17416 "operand makes instruction UNPREDICTABLE"));
17417
17418 mve_encode_qqq (0, et.size);
17419 inst.instruction |= (rot == 270) << 12;
17420 inst.is_neon = 1;
17421 }
17422
17423 static void
17424 do_mve_vqdmull (void)
17425 {
17426 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17427 struct neon_type_el et
17428 = neon_check_type (3, rs, N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17429
17430 if (et.size == 32
17431 && (inst.operands[0].reg == inst.operands[1].reg
17432 || (rs == NS_QQQ && inst.operands[0].reg == inst.operands[2].reg)))
17433 as_tsktsk (BAD_MVE_SRCDEST);
17434
17435 if (inst.cond > COND_ALWAYS)
17436 inst.pred_insn_type = INSIDE_VPT_INSN;
17437 else
17438 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17439
17440 if (rs == NS_QQQ)
17441 {
17442 mve_encode_qqq (et.size == 32, 64);
17443 inst.instruction |= 1;
17444 }
17445 else
17446 {
17447 mve_encode_qqr (64, et.size == 32, 0);
17448 inst.instruction |= 0x3 << 5;
17449 }
17450 }
17451
17452 static void
17453 do_mve_vadc (void)
17454 {
17455 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17456 struct neon_type_el et
17457 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
17458
17459 if (et.type == NT_invtype)
17460 first_error (BAD_EL_TYPE);
17461
17462 if (inst.cond > COND_ALWAYS)
17463 inst.pred_insn_type = INSIDE_VPT_INSN;
17464 else
17465 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17466
17467 mve_encode_qqq (0, 64);
17468 }
17469
17470 static void
17471 do_mve_vbrsr (void)
17472 {
17473 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17474 struct neon_type_el et
17475 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17476
17477 if (inst.cond > COND_ALWAYS)
17478 inst.pred_insn_type = INSIDE_VPT_INSN;
17479 else
17480 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17481
17482 mve_encode_qqr (et.size, 0, 0);
17483 }
17484
17485 static void
17486 do_mve_vsbc (void)
17487 {
17488 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
17489
17490 if (inst.cond > COND_ALWAYS)
17491 inst.pred_insn_type = INSIDE_VPT_INSN;
17492 else
17493 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17494
17495 mve_encode_qqq (1, 64);
17496 }
17497
17498 static void
17499 do_mve_vmulh (void)
17500 {
17501 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17502 struct neon_type_el et
17503 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17504
17505 if (inst.cond > COND_ALWAYS)
17506 inst.pred_insn_type = INSIDE_VPT_INSN;
17507 else
17508 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17509
17510 mve_encode_qqq (et.type == NT_unsigned, et.size);
17511 }
17512
17513 static void
17514 do_mve_vqdmlah (void)
17515 {
17516 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17517 struct neon_type_el et
17518 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17519
17520 if (inst.cond > COND_ALWAYS)
17521 inst.pred_insn_type = INSIDE_VPT_INSN;
17522 else
17523 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17524
17525 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
17526 }
17527
17528 static void
17529 do_mve_vqdmladh (void)
17530 {
17531 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17532 struct neon_type_el et
17533 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17534
17535 if (inst.cond > COND_ALWAYS)
17536 inst.pred_insn_type = INSIDE_VPT_INSN;
17537 else
17538 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17539
17540 if (et.size == 32
17541 && (inst.operands[0].reg == inst.operands[1].reg
17542 || inst.operands[0].reg == inst.operands[2].reg))
17543 as_tsktsk (BAD_MVE_SRCDEST);
17544
17545 mve_encode_qqq (0, et.size);
17546 }
17547
17548
17549 static void
17550 do_mve_vmull (void)
17551 {
17552
17553 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
17554 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
17555 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
17556 && inst.cond == COND_ALWAYS
17557 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
17558 {
17559 if (rs == NS_QQQ)
17560 {
17561
17562 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17563 N_SUF_32 | N_F64 | N_P8
17564 | N_P16 | N_I_MVE | N_KEY);
17565 if (((et.type == NT_poly) && et.size == 8
17566 && ARM_CPU_IS_ANY (cpu_variant))
17567 || (et.type == NT_integer) || (et.type == NT_float))
17568 goto neon_vmul;
17569 }
17570 else
17571 goto neon_vmul;
17572 }
17573
17574 constraint (rs != NS_QQQ, BAD_FPU);
17575 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17576 N_SU_32 | N_P8 | N_P16 | N_KEY);
17577
17578 /* We are dealing with MVE's vmullt. */
17579 if (et.size == 32
17580 && (inst.operands[0].reg == inst.operands[1].reg
17581 || inst.operands[0].reg == inst.operands[2].reg))
17582 as_tsktsk (BAD_MVE_SRCDEST);
17583
17584 if (inst.cond > COND_ALWAYS)
17585 inst.pred_insn_type = INSIDE_VPT_INSN;
17586 else
17587 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17588
17589 if (et.type == NT_poly)
17590 mve_encode_qqq (neon_logbits (et.size), 64);
17591 else
17592 mve_encode_qqq (et.type == NT_unsigned, et.size);
17593
17594 return;
17595
17596 neon_vmul:
17597 inst.instruction = N_MNEM_vmul;
17598 inst.cond = 0xb;
17599 if (thumb_mode)
17600 inst.pred_insn_type = INSIDE_IT_INSN;
17601 do_neon_mul ();
17602 }
17603
17604 static void
17605 do_mve_vabav (void)
17606 {
17607 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17608
17609 if (rs == NS_NULL)
17610 return;
17611
17612 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17613 return;
17614
17615 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
17616 | N_S16 | N_S32 | N_U8 | N_U16
17617 | N_U32);
17618
17619 if (inst.cond > COND_ALWAYS)
17620 inst.pred_insn_type = INSIDE_VPT_INSN;
17621 else
17622 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17623
17624 mve_encode_rqq (et.type == NT_unsigned, et.size);
17625 }
17626
17627 static void
17628 do_mve_vmladav (void)
17629 {
17630 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17631 struct neon_type_el et = neon_check_type (3, rs,
17632 N_EQK, N_EQK, N_SU_MVE | N_KEY);
17633
17634 if (et.type == NT_unsigned
17635 && (inst.instruction == M_MNEM_vmladavx
17636 || inst.instruction == M_MNEM_vmladavax
17637 || inst.instruction == M_MNEM_vmlsdav
17638 || inst.instruction == M_MNEM_vmlsdava
17639 || inst.instruction == M_MNEM_vmlsdavx
17640 || inst.instruction == M_MNEM_vmlsdavax))
17641 first_error (BAD_SIMD_TYPE);
17642
17643 constraint (inst.operands[2].reg > 14,
17644 _("MVE vector register in the range [Q0..Q7] expected"));
17645
17646 if (inst.cond > COND_ALWAYS)
17647 inst.pred_insn_type = INSIDE_VPT_INSN;
17648 else
17649 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17650
17651 if (inst.instruction == M_MNEM_vmlsdav
17652 || inst.instruction == M_MNEM_vmlsdava
17653 || inst.instruction == M_MNEM_vmlsdavx
17654 || inst.instruction == M_MNEM_vmlsdavax)
17655 inst.instruction |= (et.size == 8) << 28;
17656 else
17657 inst.instruction |= (et.size == 8) << 8;
17658
17659 mve_encode_rqq (et.type == NT_unsigned, 64);
17660 inst.instruction |= (et.size == 32) << 16;
17661 }
17662
17663 static void
17664 do_mve_vmlaldav (void)
17665 {
17666 enum neon_shape rs = neon_select_shape (NS_RRQQ, NS_NULL);
17667 struct neon_type_el et
17668 = neon_check_type (4, rs, N_EQK, N_EQK, N_EQK,
17669 N_S16 | N_S32 | N_U16 | N_U32 | N_KEY);
17670
17671 if (et.type == NT_unsigned
17672 && (inst.instruction == M_MNEM_vmlsldav
17673 || inst.instruction == M_MNEM_vmlsldava
17674 || inst.instruction == M_MNEM_vmlsldavx
17675 || inst.instruction == M_MNEM_vmlsldavax))
17676 first_error (BAD_SIMD_TYPE);
17677
17678 if (inst.cond > COND_ALWAYS)
17679 inst.pred_insn_type = INSIDE_VPT_INSN;
17680 else
17681 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17682
17683 mve_encode_rrqq (et.type == NT_unsigned, et.size);
17684 }
17685
17686 static void
17687 do_mve_vrmlaldavh (void)
17688 {
17689 struct neon_type_el et;
17690 if (inst.instruction == M_MNEM_vrmlsldavh
17691 || inst.instruction == M_MNEM_vrmlsldavha
17692 || inst.instruction == M_MNEM_vrmlsldavhx
17693 || inst.instruction == M_MNEM_vrmlsldavhax)
17694 {
17695 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
17696 if (inst.operands[1].reg == REG_SP)
17697 as_tsktsk (MVE_BAD_SP);
17698 }
17699 else
17700 {
17701 if (inst.instruction == M_MNEM_vrmlaldavhx
17702 || inst.instruction == M_MNEM_vrmlaldavhax)
17703 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
17704 else
17705 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK,
17706 N_U32 | N_S32 | N_KEY);
17707 /* vrmlaldavh's encoding with SP as the second, odd, GPR operand may alias
17708 with vmax/min instructions, making the use of SP in assembly really
17709 nonsensical, so instead of issuing a warning like we do for other uses
17710 of SP for the odd register operand we error out. */
17711 constraint (inst.operands[1].reg == REG_SP, BAD_SP);
17712 }
17713
17714 /* Make sure we still check the second operand is an odd one and that PC is
17715 disallowed. This because we are parsing for any GPR operand, to be able
17716 to distinguish between giving a warning or an error for SP as described
17717 above. */
17718 constraint ((inst.operands[1].reg % 2) != 1, BAD_EVEN);
17719 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
17720
17721 if (inst.cond > COND_ALWAYS)
17722 inst.pred_insn_type = INSIDE_VPT_INSN;
17723 else
17724 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17725
17726 mve_encode_rrqq (et.type == NT_unsigned, 0);
17727 }
17728
17729
17730 static void
17731 do_mve_vmaxnmv (void)
17732 {
17733 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17734 struct neon_type_el et
17735 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
17736
17737 if (inst.cond > COND_ALWAYS)
17738 inst.pred_insn_type = INSIDE_VPT_INSN;
17739 else
17740 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17741
17742 if (inst.operands[0].reg == REG_SP)
17743 as_tsktsk (MVE_BAD_SP);
17744 else if (inst.operands[0].reg == REG_PC)
17745 as_tsktsk (MVE_BAD_PC);
17746
17747 mve_encode_rq (et.size == 16, 64);
17748 }
17749
17750 static void
17751 do_mve_vmaxv (void)
17752 {
17753 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17754 struct neon_type_el et;
17755
17756 if (inst.instruction == M_MNEM_vmaxv || inst.instruction == M_MNEM_vminv)
17757 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
17758 else
17759 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17760
17761 if (inst.cond > COND_ALWAYS)
17762 inst.pred_insn_type = INSIDE_VPT_INSN;
17763 else
17764 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17765
17766 if (inst.operands[0].reg == REG_SP)
17767 as_tsktsk (MVE_BAD_SP);
17768 else if (inst.operands[0].reg == REG_PC)
17769 as_tsktsk (MVE_BAD_PC);
17770
17771 mve_encode_rq (et.type == NT_unsigned, et.size);
17772 }
17773
17774
17775 static void
17776 do_neon_qrdmlah (void)
17777 {
17778 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
17779 return;
17780 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17781 {
17782 /* Check we're on the correct architecture. */
17783 if (!mark_feature_used (&fpu_neon_ext_armv8))
17784 inst.error
17785 = _("instruction form not available on this architecture.");
17786 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
17787 {
17788 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
17789 record_feature_use (&fpu_neon_ext_v8_1);
17790 }
17791 if (inst.operands[2].isscalar)
17792 {
17793 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17794 struct neon_type_el et = neon_check_type (3, rs,
17795 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17796 NEON_ENCODE (SCALAR, inst);
17797 neon_mul_mac (et, neon_quad (rs));
17798 }
17799 else
17800 {
17801 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17802 struct neon_type_el et = neon_check_type (3, rs,
17803 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17804 NEON_ENCODE (INTEGER, inst);
17805 /* The U bit (rounding) comes from bit mask. */
17806 neon_three_same (neon_quad (rs), 0, et.size);
17807 }
17808 }
17809 else
17810 {
17811 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17812 struct neon_type_el et
17813 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17814
17815 NEON_ENCODE (INTEGER, inst);
17816 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
17817 }
17818 }
17819
17820 static void
17821 do_neon_fcmp_absolute (void)
17822 {
17823 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17824 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17825 N_F_16_32 | N_KEY);
17826 /* Size field comes from bit mask. */
17827 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
17828 }
17829
17830 static void
17831 do_neon_fcmp_absolute_inv (void)
17832 {
17833 neon_exchange_operands ();
17834 do_neon_fcmp_absolute ();
17835 }
17836
17837 static void
17838 do_neon_step (void)
17839 {
17840 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17841 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17842 N_F_16_32 | N_KEY);
17843 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
17844 }
17845
17846 static void
17847 do_neon_abs_neg (void)
17848 {
17849 enum neon_shape rs;
17850 struct neon_type_el et;
17851
17852 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
17853 return;
17854
17855 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
17856 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
17857
17858 if (check_simd_pred_availability (et.type == NT_float,
17859 NEON_CHECK_ARCH | NEON_CHECK_CC))
17860 return;
17861
17862 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17863 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17864 inst.instruction |= LOW4 (inst.operands[1].reg);
17865 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17866 inst.instruction |= neon_quad (rs) << 6;
17867 inst.instruction |= (et.type == NT_float) << 10;
17868 inst.instruction |= neon_logbits (et.size) << 18;
17869
17870 neon_dp_fixup (&inst);
17871 }
17872
17873 static void
17874 do_neon_sli (void)
17875 {
17876 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17877 struct neon_type_el et = neon_check_type (2, rs,
17878 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17879 int imm = inst.operands[2].imm;
17880 constraint (imm < 0 || (unsigned)imm >= et.size,
17881 _("immediate out of range for insert"));
17882 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
17883 }
17884
17885 static void
17886 do_neon_sri (void)
17887 {
17888 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17889 struct neon_type_el et = neon_check_type (2, rs,
17890 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17891 int imm = inst.operands[2].imm;
17892 constraint (imm < 1 || (unsigned)imm > et.size,
17893 _("immediate out of range for insert"));
17894 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
17895 }
17896
17897 static void
17898 do_neon_qshlu_imm (void)
17899 {
17900 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17901 struct neon_type_el et = neon_check_type (2, rs,
17902 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
17903 int imm = inst.operands[2].imm;
17904 constraint (imm < 0 || (unsigned)imm >= et.size,
17905 _("immediate out of range for shift"));
17906 /* Only encodes the 'U present' variant of the instruction.
17907 In this case, signed types have OP (bit 8) set to 0.
17908 Unsigned types have OP set to 1. */
17909 inst.instruction |= (et.type == NT_unsigned) << 8;
17910 /* The rest of the bits are the same as other immediate shifts. */
17911 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
17912 }
17913
17914 static void
17915 do_neon_qmovn (void)
17916 {
17917 struct neon_type_el et = neon_check_type (2, NS_DQ,
17918 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17919 /* Saturating move where operands can be signed or unsigned, and the
17920 destination has the same signedness. */
17921 NEON_ENCODE (INTEGER, inst);
17922 if (et.type == NT_unsigned)
17923 inst.instruction |= 0xc0;
17924 else
17925 inst.instruction |= 0x80;
17926 neon_two_same (0, 1, et.size / 2);
17927 }
17928
17929 static void
17930 do_neon_qmovun (void)
17931 {
17932 struct neon_type_el et = neon_check_type (2, NS_DQ,
17933 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17934 /* Saturating move with unsigned results. Operands must be signed. */
17935 NEON_ENCODE (INTEGER, inst);
17936 neon_two_same (0, 1, et.size / 2);
17937 }
17938
17939 static void
17940 do_neon_rshift_sat_narrow (void)
17941 {
17942 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17943 or unsigned. If operands are unsigned, results must also be unsigned. */
17944 struct neon_type_el et = neon_check_type (2, NS_DQI,
17945 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17946 int imm = inst.operands[2].imm;
17947 /* This gets the bounds check, size encoding and immediate bits calculation
17948 right. */
17949 et.size /= 2;
17950
17951 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
17952 VQMOVN.I<size> <Dd>, <Qm>. */
17953 if (imm == 0)
17954 {
17955 inst.operands[2].present = 0;
17956 inst.instruction = N_MNEM_vqmovn;
17957 do_neon_qmovn ();
17958 return;
17959 }
17960
17961 constraint (imm < 1 || (unsigned)imm > et.size,
17962 _("immediate out of range"));
17963 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
17964 }
17965
17966 static void
17967 do_neon_rshift_sat_narrow_u (void)
17968 {
17969 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17970 or unsigned. If operands are unsigned, results must also be unsigned. */
17971 struct neon_type_el et = neon_check_type (2, NS_DQI,
17972 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17973 int imm = inst.operands[2].imm;
17974 /* This gets the bounds check, size encoding and immediate bits calculation
17975 right. */
17976 et.size /= 2;
17977
17978 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
17979 VQMOVUN.I<size> <Dd>, <Qm>. */
17980 if (imm == 0)
17981 {
17982 inst.operands[2].present = 0;
17983 inst.instruction = N_MNEM_vqmovun;
17984 do_neon_qmovun ();
17985 return;
17986 }
17987
17988 constraint (imm < 1 || (unsigned)imm > et.size,
17989 _("immediate out of range"));
17990 /* FIXME: The manual is kind of unclear about what value U should have in
17991 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
17992 must be 1. */
17993 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
17994 }
17995
17996 static void
17997 do_neon_movn (void)
17998 {
17999 struct neon_type_el et = neon_check_type (2, NS_DQ,
18000 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
18001 NEON_ENCODE (INTEGER, inst);
18002 neon_two_same (0, 1, et.size / 2);
18003 }
18004
18005 static void
18006 do_neon_rshift_narrow (void)
18007 {
18008 struct neon_type_el et = neon_check_type (2, NS_DQI,
18009 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
18010 int imm = inst.operands[2].imm;
18011 /* This gets the bounds check, size encoding and immediate bits calculation
18012 right. */
18013 et.size /= 2;
18014
18015 /* If immediate is zero then we are a pseudo-instruction for
18016 VMOVN.I<size> <Dd>, <Qm> */
18017 if (imm == 0)
18018 {
18019 inst.operands[2].present = 0;
18020 inst.instruction = N_MNEM_vmovn;
18021 do_neon_movn ();
18022 return;
18023 }
18024
18025 constraint (imm < 1 || (unsigned)imm > et.size,
18026 _("immediate out of range for narrowing operation"));
18027 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
18028 }
18029
18030 static void
18031 do_neon_shll (void)
18032 {
18033 /* FIXME: Type checking when lengthening. */
18034 struct neon_type_el et = neon_check_type (2, NS_QDI,
18035 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
18036 unsigned imm = inst.operands[2].imm;
18037
18038 if (imm == et.size)
18039 {
18040 /* Maximum shift variant. */
18041 NEON_ENCODE (INTEGER, inst);
18042 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18043 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18044 inst.instruction |= LOW4 (inst.operands[1].reg);
18045 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18046 inst.instruction |= neon_logbits (et.size) << 18;
18047
18048 neon_dp_fixup (&inst);
18049 }
18050 else
18051 {
18052 /* A more-specific type check for non-max versions. */
18053 et = neon_check_type (2, NS_QDI,
18054 N_EQK | N_DBL, N_SU_32 | N_KEY);
18055 NEON_ENCODE (IMMED, inst);
18056 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
18057 }
18058 }
18059
18060 /* Check the various types for the VCVT instruction, and return which version
18061 the current instruction is. */
18062
18063 #define CVT_FLAVOUR_VAR \
18064 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
18065 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
18066 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
18067 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
18068 /* Half-precision conversions. */ \
18069 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18070 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18071 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
18072 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
18073 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
18074 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
18075 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
18076 Compared with single/double precision variants, only the co-processor \
18077 field is different, so the encoding flow is reused here. */ \
18078 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
18079 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
18080 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
18081 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
18082 /* VFP instructions. */ \
18083 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
18084 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
18085 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
18086 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
18087 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
18088 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
18089 /* VFP instructions with bitshift. */ \
18090 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
18091 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
18092 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
18093 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
18094 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
18095 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
18096 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
18097 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
18098
18099 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
18100 neon_cvt_flavour_##C,
18101
18102 /* The different types of conversions we can do. */
18103 enum neon_cvt_flavour
18104 {
18105 CVT_FLAVOUR_VAR
18106 neon_cvt_flavour_invalid,
18107 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
18108 };
18109
18110 #undef CVT_VAR
18111
18112 static enum neon_cvt_flavour
18113 get_neon_cvt_flavour (enum neon_shape rs)
18114 {
18115 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
18116 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
18117 if (et.type != NT_invtype) \
18118 { \
18119 inst.error = NULL; \
18120 return (neon_cvt_flavour_##C); \
18121 }
18122
18123 struct neon_type_el et;
18124 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
18125 || rs == NS_FF) ? N_VFP : 0;
18126 /* The instruction versions which take an immediate take one register
18127 argument, which is extended to the width of the full register. Thus the
18128 "source" and "destination" registers must have the same width. Hack that
18129 here by making the size equal to the key (wider, in this case) operand. */
18130 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
18131
18132 CVT_FLAVOUR_VAR;
18133
18134 return neon_cvt_flavour_invalid;
18135 #undef CVT_VAR
18136 }
18137
18138 enum neon_cvt_mode
18139 {
18140 neon_cvt_mode_a,
18141 neon_cvt_mode_n,
18142 neon_cvt_mode_p,
18143 neon_cvt_mode_m,
18144 neon_cvt_mode_z,
18145 neon_cvt_mode_x,
18146 neon_cvt_mode_r
18147 };
18148
18149 /* Neon-syntax VFP conversions. */
18150
18151 static void
18152 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
18153 {
18154 const char *opname = 0;
18155
18156 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
18157 || rs == NS_FHI || rs == NS_HFI)
18158 {
18159 /* Conversions with immediate bitshift. */
18160 const char *enc[] =
18161 {
18162 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
18163 CVT_FLAVOUR_VAR
18164 NULL
18165 #undef CVT_VAR
18166 };
18167
18168 if (flavour < (int) ARRAY_SIZE (enc))
18169 {
18170 opname = enc[flavour];
18171 constraint (inst.operands[0].reg != inst.operands[1].reg,
18172 _("operands 0 and 1 must be the same register"));
18173 inst.operands[1] = inst.operands[2];
18174 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
18175 }
18176 }
18177 else
18178 {
18179 /* Conversions without bitshift. */
18180 const char *enc[] =
18181 {
18182 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
18183 CVT_FLAVOUR_VAR
18184 NULL
18185 #undef CVT_VAR
18186 };
18187
18188 if (flavour < (int) ARRAY_SIZE (enc))
18189 opname = enc[flavour];
18190 }
18191
18192 if (opname)
18193 do_vfp_nsyn_opcode (opname);
18194
18195 /* ARMv8.2 fp16 VCVT instruction. */
18196 if (flavour == neon_cvt_flavour_s32_f16
18197 || flavour == neon_cvt_flavour_u32_f16
18198 || flavour == neon_cvt_flavour_f16_u32
18199 || flavour == neon_cvt_flavour_f16_s32)
18200 do_scalar_fp16_v82_encode ();
18201 }
18202
18203 static void
18204 do_vfp_nsyn_cvtz (void)
18205 {
18206 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
18207 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18208 const char *enc[] =
18209 {
18210 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
18211 CVT_FLAVOUR_VAR
18212 NULL
18213 #undef CVT_VAR
18214 };
18215
18216 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
18217 do_vfp_nsyn_opcode (enc[flavour]);
18218 }
18219
18220 static void
18221 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
18222 enum neon_cvt_mode mode)
18223 {
18224 int sz, op;
18225 int rm;
18226
18227 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
18228 D register operands. */
18229 if (flavour == neon_cvt_flavour_s32_f64
18230 || flavour == neon_cvt_flavour_u32_f64)
18231 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18232 _(BAD_FPU));
18233
18234 if (flavour == neon_cvt_flavour_s32_f16
18235 || flavour == neon_cvt_flavour_u32_f16)
18236 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
18237 _(BAD_FP16));
18238
18239 set_pred_insn_type (OUTSIDE_PRED_INSN);
18240
18241 switch (flavour)
18242 {
18243 case neon_cvt_flavour_s32_f64:
18244 sz = 1;
18245 op = 1;
18246 break;
18247 case neon_cvt_flavour_s32_f32:
18248 sz = 0;
18249 op = 1;
18250 break;
18251 case neon_cvt_flavour_s32_f16:
18252 sz = 0;
18253 op = 1;
18254 break;
18255 case neon_cvt_flavour_u32_f64:
18256 sz = 1;
18257 op = 0;
18258 break;
18259 case neon_cvt_flavour_u32_f32:
18260 sz = 0;
18261 op = 0;
18262 break;
18263 case neon_cvt_flavour_u32_f16:
18264 sz = 0;
18265 op = 0;
18266 break;
18267 default:
18268 first_error (_("invalid instruction shape"));
18269 return;
18270 }
18271
18272 switch (mode)
18273 {
18274 case neon_cvt_mode_a: rm = 0; break;
18275 case neon_cvt_mode_n: rm = 1; break;
18276 case neon_cvt_mode_p: rm = 2; break;
18277 case neon_cvt_mode_m: rm = 3; break;
18278 default: first_error (_("invalid rounding mode")); return;
18279 }
18280
18281 NEON_ENCODE (FPV8, inst);
18282 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
18283 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
18284 inst.instruction |= sz << 8;
18285
18286 /* ARMv8.2 fp16 VCVT instruction. */
18287 if (flavour == neon_cvt_flavour_s32_f16
18288 ||flavour == neon_cvt_flavour_u32_f16)
18289 do_scalar_fp16_v82_encode ();
18290 inst.instruction |= op << 7;
18291 inst.instruction |= rm << 16;
18292 inst.instruction |= 0xf0000000;
18293 inst.is_neon = TRUE;
18294 }
18295
18296 static void
18297 do_neon_cvt_1 (enum neon_cvt_mode mode)
18298 {
18299 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
18300 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
18301 NS_FH, NS_HF, NS_FHI, NS_HFI,
18302 NS_NULL);
18303 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18304
18305 if (flavour == neon_cvt_flavour_invalid)
18306 return;
18307
18308 /* PR11109: Handle round-to-zero for VCVT conversions. */
18309 if (mode == neon_cvt_mode_z
18310 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
18311 && (flavour == neon_cvt_flavour_s16_f16
18312 || flavour == neon_cvt_flavour_u16_f16
18313 || flavour == neon_cvt_flavour_s32_f32
18314 || flavour == neon_cvt_flavour_u32_f32
18315 || flavour == neon_cvt_flavour_s32_f64
18316 || flavour == neon_cvt_flavour_u32_f64)
18317 && (rs == NS_FD || rs == NS_FF))
18318 {
18319 do_vfp_nsyn_cvtz ();
18320 return;
18321 }
18322
18323 /* ARMv8.2 fp16 VCVT conversions. */
18324 if (mode == neon_cvt_mode_z
18325 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
18326 && (flavour == neon_cvt_flavour_s32_f16
18327 || flavour == neon_cvt_flavour_u32_f16)
18328 && (rs == NS_FH))
18329 {
18330 do_vfp_nsyn_cvtz ();
18331 do_scalar_fp16_v82_encode ();
18332 return;
18333 }
18334
18335 /* VFP rather than Neon conversions. */
18336 if (flavour >= neon_cvt_flavour_first_fp)
18337 {
18338 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18339 do_vfp_nsyn_cvt (rs, flavour);
18340 else
18341 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
18342
18343 return;
18344 }
18345
18346 switch (rs)
18347 {
18348 case NS_QQI:
18349 if (mode == neon_cvt_mode_z
18350 && (flavour == neon_cvt_flavour_f16_s16
18351 || flavour == neon_cvt_flavour_f16_u16
18352 || flavour == neon_cvt_flavour_s16_f16
18353 || flavour == neon_cvt_flavour_u16_f16
18354 || flavour == neon_cvt_flavour_f32_u32
18355 || flavour == neon_cvt_flavour_f32_s32
18356 || flavour == neon_cvt_flavour_s32_f32
18357 || flavour == neon_cvt_flavour_u32_f32))
18358 {
18359 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
18360 return;
18361 }
18362 else if (mode == neon_cvt_mode_n)
18363 {
18364 /* We are dealing with vcvt with the 'ne' condition. */
18365 inst.cond = 0x1;
18366 inst.instruction = N_MNEM_vcvt;
18367 do_neon_cvt_1 (neon_cvt_mode_z);
18368 return;
18369 }
18370 /* fall through. */
18371 case NS_DDI:
18372 {
18373 unsigned immbits;
18374 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
18375 0x0000100, 0x1000100, 0x0, 0x1000000};
18376
18377 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18378 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18379 return;
18380
18381 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18382 {
18383 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
18384 _("immediate value out of range"));
18385 switch (flavour)
18386 {
18387 case neon_cvt_flavour_f16_s16:
18388 case neon_cvt_flavour_f16_u16:
18389 case neon_cvt_flavour_s16_f16:
18390 case neon_cvt_flavour_u16_f16:
18391 constraint (inst.operands[2].imm > 16,
18392 _("immediate value out of range"));
18393 break;
18394 case neon_cvt_flavour_f32_u32:
18395 case neon_cvt_flavour_f32_s32:
18396 case neon_cvt_flavour_s32_f32:
18397 case neon_cvt_flavour_u32_f32:
18398 constraint (inst.operands[2].imm > 32,
18399 _("immediate value out of range"));
18400 break;
18401 default:
18402 inst.error = BAD_FPU;
18403 return;
18404 }
18405 }
18406
18407 /* Fixed-point conversion with #0 immediate is encoded as an
18408 integer conversion. */
18409 if (inst.operands[2].present && inst.operands[2].imm == 0)
18410 goto int_encode;
18411 NEON_ENCODE (IMMED, inst);
18412 if (flavour != neon_cvt_flavour_invalid)
18413 inst.instruction |= enctab[flavour];
18414 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18415 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18416 inst.instruction |= LOW4 (inst.operands[1].reg);
18417 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18418 inst.instruction |= neon_quad (rs) << 6;
18419 inst.instruction |= 1 << 21;
18420 if (flavour < neon_cvt_flavour_s16_f16)
18421 {
18422 inst.instruction |= 1 << 21;
18423 immbits = 32 - inst.operands[2].imm;
18424 inst.instruction |= immbits << 16;
18425 }
18426 else
18427 {
18428 inst.instruction |= 3 << 20;
18429 immbits = 16 - inst.operands[2].imm;
18430 inst.instruction |= immbits << 16;
18431 inst.instruction &= ~(1 << 9);
18432 }
18433
18434 neon_dp_fixup (&inst);
18435 }
18436 break;
18437
18438 case NS_QQ:
18439 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
18440 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
18441 && (flavour == neon_cvt_flavour_s16_f16
18442 || flavour == neon_cvt_flavour_u16_f16
18443 || flavour == neon_cvt_flavour_s32_f32
18444 || flavour == neon_cvt_flavour_u32_f32))
18445 {
18446 if (check_simd_pred_availability (1,
18447 NEON_CHECK_CC | NEON_CHECK_ARCH8))
18448 return;
18449 }
18450 else if (mode == neon_cvt_mode_z
18451 && (flavour == neon_cvt_flavour_f16_s16
18452 || flavour == neon_cvt_flavour_f16_u16
18453 || flavour == neon_cvt_flavour_s16_f16
18454 || flavour == neon_cvt_flavour_u16_f16
18455 || flavour == neon_cvt_flavour_f32_u32
18456 || flavour == neon_cvt_flavour_f32_s32
18457 || flavour == neon_cvt_flavour_s32_f32
18458 || flavour == neon_cvt_flavour_u32_f32))
18459 {
18460 if (check_simd_pred_availability (1,
18461 NEON_CHECK_CC | NEON_CHECK_ARCH))
18462 return;
18463 }
18464 /* fall through. */
18465 case NS_DD:
18466 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
18467 {
18468
18469 NEON_ENCODE (FLOAT, inst);
18470 if (check_simd_pred_availability (1,
18471 NEON_CHECK_CC | NEON_CHECK_ARCH8))
18472 return;
18473
18474 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18475 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18476 inst.instruction |= LOW4 (inst.operands[1].reg);
18477 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18478 inst.instruction |= neon_quad (rs) << 6;
18479 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
18480 || flavour == neon_cvt_flavour_u32_f32) << 7;
18481 inst.instruction |= mode << 8;
18482 if (flavour == neon_cvt_flavour_u16_f16
18483 || flavour == neon_cvt_flavour_s16_f16)
18484 /* Mask off the original size bits and reencode them. */
18485 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
18486
18487 if (thumb_mode)
18488 inst.instruction |= 0xfc000000;
18489 else
18490 inst.instruction |= 0xf0000000;
18491 }
18492 else
18493 {
18494 int_encode:
18495 {
18496 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
18497 0x100, 0x180, 0x0, 0x080};
18498
18499 NEON_ENCODE (INTEGER, inst);
18500
18501 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18502 {
18503 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18504 return;
18505 }
18506
18507 if (flavour != neon_cvt_flavour_invalid)
18508 inst.instruction |= enctab[flavour];
18509
18510 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18511 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18512 inst.instruction |= LOW4 (inst.operands[1].reg);
18513 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18514 inst.instruction |= neon_quad (rs) << 6;
18515 if (flavour >= neon_cvt_flavour_s16_f16
18516 && flavour <= neon_cvt_flavour_f16_u16)
18517 /* Half precision. */
18518 inst.instruction |= 1 << 18;
18519 else
18520 inst.instruction |= 2 << 18;
18521
18522 neon_dp_fixup (&inst);
18523 }
18524 }
18525 break;
18526
18527 /* Half-precision conversions for Advanced SIMD -- neon. */
18528 case NS_QD:
18529 case NS_DQ:
18530 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18531 return;
18532
18533 if ((rs == NS_DQ)
18534 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
18535 {
18536 as_bad (_("operand size must match register width"));
18537 break;
18538 }
18539
18540 if ((rs == NS_QD)
18541 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
18542 {
18543 as_bad (_("operand size must match register width"));
18544 break;
18545 }
18546
18547 if (rs == NS_DQ)
18548 inst.instruction = 0x3b60600;
18549 else
18550 inst.instruction = 0x3b60700;
18551
18552 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18553 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18554 inst.instruction |= LOW4 (inst.operands[1].reg);
18555 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18556 neon_dp_fixup (&inst);
18557 break;
18558
18559 default:
18560 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
18561 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18562 do_vfp_nsyn_cvt (rs, flavour);
18563 else
18564 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
18565 }
18566 }
18567
18568 static void
18569 do_neon_cvtr (void)
18570 {
18571 do_neon_cvt_1 (neon_cvt_mode_x);
18572 }
18573
18574 static void
18575 do_neon_cvt (void)
18576 {
18577 do_neon_cvt_1 (neon_cvt_mode_z);
18578 }
18579
18580 static void
18581 do_neon_cvta (void)
18582 {
18583 do_neon_cvt_1 (neon_cvt_mode_a);
18584 }
18585
18586 static void
18587 do_neon_cvtn (void)
18588 {
18589 do_neon_cvt_1 (neon_cvt_mode_n);
18590 }
18591
18592 static void
18593 do_neon_cvtp (void)
18594 {
18595 do_neon_cvt_1 (neon_cvt_mode_p);
18596 }
18597
18598 static void
18599 do_neon_cvtm (void)
18600 {
18601 do_neon_cvt_1 (neon_cvt_mode_m);
18602 }
18603
18604 static void
18605 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
18606 {
18607 if (is_double)
18608 mark_feature_used (&fpu_vfp_ext_armv8);
18609
18610 encode_arm_vfp_reg (inst.operands[0].reg,
18611 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
18612 encode_arm_vfp_reg (inst.operands[1].reg,
18613 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
18614 inst.instruction |= to ? 0x10000 : 0;
18615 inst.instruction |= t ? 0x80 : 0;
18616 inst.instruction |= is_double ? 0x100 : 0;
18617 do_vfp_cond_or_thumb ();
18618 }
18619
18620 static void
18621 do_neon_cvttb_1 (bfd_boolean t)
18622 {
18623 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
18624 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
18625
18626 if (rs == NS_NULL)
18627 return;
18628 else if (rs == NS_QQ || rs == NS_QQI)
18629 {
18630 int single_to_half = 0;
18631 if (check_simd_pred_availability (1, NEON_CHECK_ARCH))
18632 return;
18633
18634 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18635
18636 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18637 && (flavour == neon_cvt_flavour_u16_f16
18638 || flavour == neon_cvt_flavour_s16_f16
18639 || flavour == neon_cvt_flavour_f16_s16
18640 || flavour == neon_cvt_flavour_f16_u16
18641 || flavour == neon_cvt_flavour_u32_f32
18642 || flavour == neon_cvt_flavour_s32_f32
18643 || flavour == neon_cvt_flavour_f32_s32
18644 || flavour == neon_cvt_flavour_f32_u32))
18645 {
18646 inst.cond = 0xf;
18647 inst.instruction = N_MNEM_vcvt;
18648 set_pred_insn_type (INSIDE_VPT_INSN);
18649 do_neon_cvt_1 (neon_cvt_mode_z);
18650 return;
18651 }
18652 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
18653 single_to_half = 1;
18654 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
18655 {
18656 first_error (BAD_FPU);
18657 return;
18658 }
18659
18660 inst.instruction = 0xee3f0e01;
18661 inst.instruction |= single_to_half << 28;
18662 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18663 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
18664 inst.instruction |= t << 12;
18665 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18666 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
18667 inst.is_neon = 1;
18668 }
18669 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
18670 {
18671 inst.error = NULL;
18672 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
18673 }
18674 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
18675 {
18676 inst.error = NULL;
18677 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
18678 }
18679 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
18680 {
18681 /* The VCVTB and VCVTT instructions with D-register operands
18682 don't work for SP only targets. */
18683 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18684 _(BAD_FPU));
18685
18686 inst.error = NULL;
18687 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
18688 }
18689 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
18690 {
18691 /* The VCVTB and VCVTT instructions with D-register operands
18692 don't work for SP only targets. */
18693 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18694 _(BAD_FPU));
18695
18696 inst.error = NULL;
18697 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
18698 }
18699 else
18700 return;
18701 }
18702
18703 static void
18704 do_neon_cvtb (void)
18705 {
18706 do_neon_cvttb_1 (FALSE);
18707 }
18708
18709
18710 static void
18711 do_neon_cvtt (void)
18712 {
18713 do_neon_cvttb_1 (TRUE);
18714 }
18715
18716 static void
18717 neon_move_immediate (void)
18718 {
18719 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
18720 struct neon_type_el et = neon_check_type (2, rs,
18721 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
18722 unsigned immlo, immhi = 0, immbits;
18723 int op, cmode, float_p;
18724
18725 constraint (et.type == NT_invtype,
18726 _("operand size must be specified for immediate VMOV"));
18727
18728 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
18729 op = (inst.instruction & (1 << 5)) != 0;
18730
18731 immlo = inst.operands[1].imm;
18732 if (inst.operands[1].regisimm)
18733 immhi = inst.operands[1].reg;
18734
18735 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
18736 _("immediate has bits set outside the operand size"));
18737
18738 float_p = inst.operands[1].immisfloat;
18739
18740 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
18741 et.size, et.type)) == FAIL)
18742 {
18743 /* Invert relevant bits only. */
18744 neon_invert_size (&immlo, &immhi, et.size);
18745 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
18746 with one or the other; those cases are caught by
18747 neon_cmode_for_move_imm. */
18748 op = !op;
18749 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
18750 &op, et.size, et.type)) == FAIL)
18751 {
18752 first_error (_("immediate out of range"));
18753 return;
18754 }
18755 }
18756
18757 inst.instruction &= ~(1 << 5);
18758 inst.instruction |= op << 5;
18759
18760 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18761 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18762 inst.instruction |= neon_quad (rs) << 6;
18763 inst.instruction |= cmode << 8;
18764
18765 neon_write_immbits (immbits);
18766 }
18767
18768 static void
18769 do_neon_mvn (void)
18770 {
18771 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
18772 return;
18773
18774 if (inst.operands[1].isreg)
18775 {
18776 enum neon_shape rs;
18777 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18778 rs = neon_select_shape (NS_QQ, NS_NULL);
18779 else
18780 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18781
18782 NEON_ENCODE (INTEGER, inst);
18783 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18784 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18785 inst.instruction |= LOW4 (inst.operands[1].reg);
18786 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18787 inst.instruction |= neon_quad (rs) << 6;
18788 }
18789 else
18790 {
18791 NEON_ENCODE (IMMED, inst);
18792 neon_move_immediate ();
18793 }
18794
18795 neon_dp_fixup (&inst);
18796
18797 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18798 {
18799 constraint (!inst.operands[1].isreg && !inst.operands[0].isquad, BAD_FPU);
18800 constraint ((inst.instruction & 0xd00) == 0xd00,
18801 _("immediate value out of range"));
18802 }
18803 }
18804
18805 /* Encode instructions of form:
18806
18807 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
18808 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
18809
18810 static void
18811 neon_mixed_length (struct neon_type_el et, unsigned size)
18812 {
18813 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18814 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18815 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18816 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18817 inst.instruction |= LOW4 (inst.operands[2].reg);
18818 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18819 inst.instruction |= (et.type == NT_unsigned) << 24;
18820 inst.instruction |= neon_logbits (size) << 20;
18821
18822 neon_dp_fixup (&inst);
18823 }
18824
18825 static void
18826 do_neon_dyadic_long (void)
18827 {
18828 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
18829 if (rs == NS_QDD)
18830 {
18831 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
18832 return;
18833
18834 NEON_ENCODE (INTEGER, inst);
18835 /* FIXME: Type checking for lengthening op. */
18836 struct neon_type_el et = neon_check_type (3, NS_QDD,
18837 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
18838 neon_mixed_length (et, et.size);
18839 }
18840 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18841 && (inst.cond == 0xf || inst.cond == 0x10))
18842 {
18843 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
18844 in an IT block with le/lt conditions. */
18845
18846 if (inst.cond == 0xf)
18847 inst.cond = 0xb;
18848 else if (inst.cond == 0x10)
18849 inst.cond = 0xd;
18850
18851 inst.pred_insn_type = INSIDE_IT_INSN;
18852
18853 if (inst.instruction == N_MNEM_vaddl)
18854 {
18855 inst.instruction = N_MNEM_vadd;
18856 do_neon_addsub_if_i ();
18857 }
18858 else if (inst.instruction == N_MNEM_vsubl)
18859 {
18860 inst.instruction = N_MNEM_vsub;
18861 do_neon_addsub_if_i ();
18862 }
18863 else if (inst.instruction == N_MNEM_vabdl)
18864 {
18865 inst.instruction = N_MNEM_vabd;
18866 do_neon_dyadic_if_su ();
18867 }
18868 }
18869 else
18870 first_error (BAD_FPU);
18871 }
18872
18873 static void
18874 do_neon_abal (void)
18875 {
18876 struct neon_type_el et = neon_check_type (3, NS_QDD,
18877 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
18878 neon_mixed_length (et, et.size);
18879 }
18880
18881 static void
18882 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
18883 {
18884 if (inst.operands[2].isscalar)
18885 {
18886 struct neon_type_el et = neon_check_type (3, NS_QDS,
18887 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
18888 NEON_ENCODE (SCALAR, inst);
18889 neon_mul_mac (et, et.type == NT_unsigned);
18890 }
18891 else
18892 {
18893 struct neon_type_el et = neon_check_type (3, NS_QDD,
18894 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
18895 NEON_ENCODE (INTEGER, inst);
18896 neon_mixed_length (et, et.size);
18897 }
18898 }
18899
18900 static void
18901 do_neon_mac_maybe_scalar_long (void)
18902 {
18903 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
18904 }
18905
18906 /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
18907 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
18908
18909 static unsigned
18910 neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
18911 {
18912 unsigned regno = NEON_SCALAR_REG (scalar);
18913 unsigned elno = NEON_SCALAR_INDEX (scalar);
18914
18915 if (quad_p)
18916 {
18917 if (regno > 7 || elno > 3)
18918 goto bad_scalar;
18919
18920 return ((regno & 0x7)
18921 | ((elno & 0x1) << 3)
18922 | (((elno >> 1) & 0x1) << 5));
18923 }
18924 else
18925 {
18926 if (regno > 15 || elno > 1)
18927 goto bad_scalar;
18928
18929 return (((regno & 0x1) << 5)
18930 | ((regno >> 1) & 0x7)
18931 | ((elno & 0x1) << 3));
18932 }
18933
18934 bad_scalar:
18935 first_error (_("scalar out of range for multiply instruction"));
18936 return 0;
18937 }
18938
18939 static void
18940 do_neon_fmac_maybe_scalar_long (int subtype)
18941 {
18942 enum neon_shape rs;
18943 int high8;
18944 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
18945 field (bits[21:20]) has different meaning. For scalar index variant, it's
18946 used to differentiate add and subtract, otherwise it's with fixed value
18947 0x2. */
18948 int size = -1;
18949
18950 if (inst.cond != COND_ALWAYS)
18951 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
18952 "behaviour is UNPREDICTABLE"));
18953
18954 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
18955 _(BAD_FP16));
18956
18957 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
18958 _(BAD_FPU));
18959
18960 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
18961 be a scalar index register. */
18962 if (inst.operands[2].isscalar)
18963 {
18964 high8 = 0xfe000000;
18965 if (subtype)
18966 size = 16;
18967 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
18968 }
18969 else
18970 {
18971 high8 = 0xfc000000;
18972 size = 32;
18973 if (subtype)
18974 inst.instruction |= (0x1 << 23);
18975 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
18976 }
18977
18978 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
18979
18980 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
18981 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
18982 so we simply pass -1 as size. */
18983 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
18984 neon_three_same (quad_p, 0, size);
18985
18986 /* Undo neon_dp_fixup. Redo the high eight bits. */
18987 inst.instruction &= 0x00ffffff;
18988 inst.instruction |= high8;
18989
18990 #define LOW1(R) ((R) & 0x1)
18991 #define HI4(R) (((R) >> 1) & 0xf)
18992 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
18993 whether the instruction is in Q form and whether Vm is a scalar indexed
18994 operand. */
18995 if (inst.operands[2].isscalar)
18996 {
18997 unsigned rm
18998 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
18999 inst.instruction &= 0xffffffd0;
19000 inst.instruction |= rm;
19001
19002 if (!quad_p)
19003 {
19004 /* Redo Rn as well. */
19005 inst.instruction &= 0xfff0ff7f;
19006 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
19007 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
19008 }
19009 }
19010 else if (!quad_p)
19011 {
19012 /* Redo Rn and Rm. */
19013 inst.instruction &= 0xfff0ff50;
19014 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
19015 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
19016 inst.instruction |= HI4 (inst.operands[2].reg);
19017 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
19018 }
19019 }
19020
19021 static void
19022 do_neon_vfmal (void)
19023 {
19024 return do_neon_fmac_maybe_scalar_long (0);
19025 }
19026
19027 static void
19028 do_neon_vfmsl (void)
19029 {
19030 return do_neon_fmac_maybe_scalar_long (1);
19031 }
19032
19033 static void
19034 do_neon_dyadic_wide (void)
19035 {
19036 struct neon_type_el et = neon_check_type (3, NS_QQD,
19037 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
19038 neon_mixed_length (et, et.size);
19039 }
19040
19041 static void
19042 do_neon_dyadic_narrow (void)
19043 {
19044 struct neon_type_el et = neon_check_type (3, NS_QDD,
19045 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
19046 /* Operand sign is unimportant, and the U bit is part of the opcode,
19047 so force the operand type to integer. */
19048 et.type = NT_integer;
19049 neon_mixed_length (et, et.size / 2);
19050 }
19051
19052 static void
19053 do_neon_mul_sat_scalar_long (void)
19054 {
19055 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
19056 }
19057
19058 static void
19059 do_neon_vmull (void)
19060 {
19061 if (inst.operands[2].isscalar)
19062 do_neon_mac_maybe_scalar_long ();
19063 else
19064 {
19065 struct neon_type_el et = neon_check_type (3, NS_QDD,
19066 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
19067
19068 if (et.type == NT_poly)
19069 NEON_ENCODE (POLY, inst);
19070 else
19071 NEON_ENCODE (INTEGER, inst);
19072
19073 /* For polynomial encoding the U bit must be zero, and the size must
19074 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
19075 obviously, as 0b10). */
19076 if (et.size == 64)
19077 {
19078 /* Check we're on the correct architecture. */
19079 if (!mark_feature_used (&fpu_crypto_ext_armv8))
19080 inst.error =
19081 _("Instruction form not available on this architecture.");
19082
19083 et.size = 32;
19084 }
19085
19086 neon_mixed_length (et, et.size);
19087 }
19088 }
19089
19090 static void
19091 do_neon_ext (void)
19092 {
19093 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19094 struct neon_type_el et = neon_check_type (3, rs,
19095 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
19096 unsigned imm = (inst.operands[3].imm * et.size) / 8;
19097
19098 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
19099 _("shift out of range"));
19100 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19101 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19102 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19103 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19104 inst.instruction |= LOW4 (inst.operands[2].reg);
19105 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19106 inst.instruction |= neon_quad (rs) << 6;
19107 inst.instruction |= imm << 8;
19108
19109 neon_dp_fixup (&inst);
19110 }
19111
19112 static void
19113 do_neon_rev (void)
19114 {
19115 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19116 struct neon_type_el et = neon_check_type (2, rs,
19117 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19118 unsigned op = (inst.instruction >> 7) & 3;
19119 /* N (width of reversed regions) is encoded as part of the bitmask. We
19120 extract it here to check the elements to be reversed are smaller.
19121 Otherwise we'd get a reserved instruction. */
19122 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
19123 gas_assert (elsize != 0);
19124 constraint (et.size >= elsize,
19125 _("elements must be smaller than reversal region"));
19126 neon_two_same (neon_quad (rs), 1, et.size);
19127 }
19128
19129 static void
19130 do_neon_dup (void)
19131 {
19132 if (inst.operands[1].isscalar)
19133 {
19134 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19135 BAD_FPU);
19136 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
19137 struct neon_type_el et = neon_check_type (2, rs,
19138 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19139 unsigned sizebits = et.size >> 3;
19140 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
19141 int logsize = neon_logbits (et.size);
19142 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
19143
19144 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
19145 return;
19146
19147 NEON_ENCODE (SCALAR, inst);
19148 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19149 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19150 inst.instruction |= LOW4 (dm);
19151 inst.instruction |= HI1 (dm) << 5;
19152 inst.instruction |= neon_quad (rs) << 6;
19153 inst.instruction |= x << 17;
19154 inst.instruction |= sizebits << 16;
19155
19156 neon_dp_fixup (&inst);
19157 }
19158 else
19159 {
19160 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
19161 struct neon_type_el et = neon_check_type (2, rs,
19162 N_8 | N_16 | N_32 | N_KEY, N_EQK);
19163 if (rs == NS_QR)
19164 {
19165 if (check_simd_pred_availability (0, NEON_CHECK_ARCH))
19166 return;
19167 }
19168 else
19169 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19170 BAD_FPU);
19171
19172 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19173 {
19174 if (inst.operands[1].reg == REG_SP)
19175 as_tsktsk (MVE_BAD_SP);
19176 else if (inst.operands[1].reg == REG_PC)
19177 as_tsktsk (MVE_BAD_PC);
19178 }
19179
19180 /* Duplicate ARM register to lanes of vector. */
19181 NEON_ENCODE (ARMREG, inst);
19182 switch (et.size)
19183 {
19184 case 8: inst.instruction |= 0x400000; break;
19185 case 16: inst.instruction |= 0x000020; break;
19186 case 32: inst.instruction |= 0x000000; break;
19187 default: break;
19188 }
19189 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19190 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
19191 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
19192 inst.instruction |= neon_quad (rs) << 21;
19193 /* The encoding for this instruction is identical for the ARM and Thumb
19194 variants, except for the condition field. */
19195 do_vfp_cond_or_thumb ();
19196 }
19197 }
19198
19199 static void
19200 do_mve_mov (int toQ)
19201 {
19202 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19203 return;
19204 if (inst.cond > COND_ALWAYS)
19205 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
19206
19207 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
19208 if (toQ)
19209 {
19210 Q0 = 0;
19211 Q1 = 1;
19212 Rt = 2;
19213 Rt2 = 3;
19214 }
19215
19216 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
19217 _("Index one must be [2,3] and index two must be two less than"
19218 " index one."));
19219 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
19220 _("General purpose registers may not be the same"));
19221 constraint (inst.operands[Rt].reg == REG_SP
19222 || inst.operands[Rt2].reg == REG_SP,
19223 BAD_SP);
19224 constraint (inst.operands[Rt].reg == REG_PC
19225 || inst.operands[Rt2].reg == REG_PC,
19226 BAD_PC);
19227
19228 inst.instruction = 0xec000f00;
19229 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
19230 inst.instruction |= !!toQ << 20;
19231 inst.instruction |= inst.operands[Rt2].reg << 16;
19232 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
19233 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
19234 inst.instruction |= inst.operands[Rt].reg;
19235 }
19236
19237 static void
19238 do_mve_movn (void)
19239 {
19240 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19241 return;
19242
19243 if (inst.cond > COND_ALWAYS)
19244 inst.pred_insn_type = INSIDE_VPT_INSN;
19245 else
19246 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
19247
19248 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
19249 | N_KEY);
19250
19251 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19252 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
19253 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19254 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19255 inst.instruction |= LOW4 (inst.operands[1].reg);
19256 inst.is_neon = 1;
19257
19258 }
19259
19260 /* VMOV has particularly many variations. It can be one of:
19261 0. VMOV<c><q> <Qd>, <Qm>
19262 1. VMOV<c><q> <Dd>, <Dm>
19263 (Register operations, which are VORR with Rm = Rn.)
19264 2. VMOV<c><q>.<dt> <Qd>, #<imm>
19265 3. VMOV<c><q>.<dt> <Dd>, #<imm>
19266 (Immediate loads.)
19267 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
19268 (ARM register to scalar.)
19269 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
19270 (Two ARM registers to vector.)
19271 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
19272 (Scalar to ARM register.)
19273 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
19274 (Vector to two ARM registers.)
19275 8. VMOV.F32 <Sd>, <Sm>
19276 9. VMOV.F64 <Dd>, <Dm>
19277 (VFP register moves.)
19278 10. VMOV.F32 <Sd>, #imm
19279 11. VMOV.F64 <Dd>, #imm
19280 (VFP float immediate load.)
19281 12. VMOV <Rd>, <Sm>
19282 (VFP single to ARM reg.)
19283 13. VMOV <Sd>, <Rm>
19284 (ARM reg to VFP single.)
19285 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
19286 (Two ARM regs to two VFP singles.)
19287 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
19288 (Two VFP singles to two ARM regs.)
19289 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
19290 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
19291 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
19292 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
19293
19294 These cases can be disambiguated using neon_select_shape, except cases 1/9
19295 and 3/11 which depend on the operand type too.
19296
19297 All the encoded bits are hardcoded by this function.
19298
19299 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
19300 Cases 5, 7 may be used with VFPv2 and above.
19301
19302 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
19303 can specify a type where it doesn't make sense to, and is ignored). */
19304
19305 static void
19306 do_neon_mov (void)
19307 {
19308 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
19309 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
19310 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
19311 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
19312 NS_NULL);
19313 struct neon_type_el et;
19314 const char *ldconst = 0;
19315
19316 switch (rs)
19317 {
19318 case NS_DD: /* case 1/9. */
19319 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19320 /* It is not an error here if no type is given. */
19321 inst.error = NULL;
19322 if (et.type == NT_float && et.size == 64)
19323 {
19324 do_vfp_nsyn_opcode ("fcpyd");
19325 break;
19326 }
19327 /* fall through. */
19328
19329 case NS_QQ: /* case 0/1. */
19330 {
19331 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
19332 return;
19333 /* The architecture manual I have doesn't explicitly state which
19334 value the U bit should have for register->register moves, but
19335 the equivalent VORR instruction has U = 0, so do that. */
19336 inst.instruction = 0x0200110;
19337 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19338 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19339 inst.instruction |= LOW4 (inst.operands[1].reg);
19340 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19341 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19342 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19343 inst.instruction |= neon_quad (rs) << 6;
19344
19345 neon_dp_fixup (&inst);
19346 }
19347 break;
19348
19349 case NS_DI: /* case 3/11. */
19350 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19351 inst.error = NULL;
19352 if (et.type == NT_float && et.size == 64)
19353 {
19354 /* case 11 (fconstd). */
19355 ldconst = "fconstd";
19356 goto encode_fconstd;
19357 }
19358 /* fall through. */
19359
19360 case NS_QI: /* case 2/3. */
19361 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
19362 return;
19363 inst.instruction = 0x0800010;
19364 neon_move_immediate ();
19365 neon_dp_fixup (&inst);
19366 break;
19367
19368 case NS_SR: /* case 4. */
19369 {
19370 unsigned bcdebits = 0;
19371 int logsize;
19372 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
19373 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
19374
19375 /* .<size> is optional here, defaulting to .32. */
19376 if (inst.vectype.elems == 0
19377 && inst.operands[0].vectype.type == NT_invtype
19378 && inst.operands[1].vectype.type == NT_invtype)
19379 {
19380 inst.vectype.el[0].type = NT_untyped;
19381 inst.vectype.el[0].size = 32;
19382 inst.vectype.elems = 1;
19383 }
19384
19385 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
19386 logsize = neon_logbits (et.size);
19387
19388 if (et.size != 32)
19389 {
19390 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19391 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
19392 return;
19393 }
19394 else
19395 {
19396 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19397 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19398 _(BAD_FPU));
19399 }
19400
19401 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19402 {
19403 if (inst.operands[1].reg == REG_SP)
19404 as_tsktsk (MVE_BAD_SP);
19405 else if (inst.operands[1].reg == REG_PC)
19406 as_tsktsk (MVE_BAD_PC);
19407 }
19408 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
19409
19410 constraint (et.type == NT_invtype, _("bad type for scalar"));
19411 constraint (x >= size / et.size, _("scalar index out of range"));
19412
19413
19414 switch (et.size)
19415 {
19416 case 8: bcdebits = 0x8; break;
19417 case 16: bcdebits = 0x1; break;
19418 case 32: bcdebits = 0x0; break;
19419 default: ;
19420 }
19421
19422 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
19423
19424 inst.instruction = 0xe000b10;
19425 do_vfp_cond_or_thumb ();
19426 inst.instruction |= LOW4 (dn) << 16;
19427 inst.instruction |= HI1 (dn) << 7;
19428 inst.instruction |= inst.operands[1].reg << 12;
19429 inst.instruction |= (bcdebits & 3) << 5;
19430 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
19431 inst.instruction |= (x >> (3-logsize)) << 16;
19432 }
19433 break;
19434
19435 case NS_DRR: /* case 5 (fmdrr). */
19436 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19437 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19438 _(BAD_FPU));
19439
19440 inst.instruction = 0xc400b10;
19441 do_vfp_cond_or_thumb ();
19442 inst.instruction |= LOW4 (inst.operands[0].reg);
19443 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
19444 inst.instruction |= inst.operands[1].reg << 12;
19445 inst.instruction |= inst.operands[2].reg << 16;
19446 break;
19447
19448 case NS_RS: /* case 6. */
19449 {
19450 unsigned logsize;
19451 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
19452 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
19453 unsigned abcdebits = 0;
19454
19455 /* .<dt> is optional here, defaulting to .32. */
19456 if (inst.vectype.elems == 0
19457 && inst.operands[0].vectype.type == NT_invtype
19458 && inst.operands[1].vectype.type == NT_invtype)
19459 {
19460 inst.vectype.el[0].type = NT_untyped;
19461 inst.vectype.el[0].size = 32;
19462 inst.vectype.elems = 1;
19463 }
19464
19465 et = neon_check_type (2, NS_NULL,
19466 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
19467 logsize = neon_logbits (et.size);
19468
19469 if (et.size != 32)
19470 {
19471 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19472 && vfp_or_neon_is_neon (NEON_CHECK_CC
19473 | NEON_CHECK_ARCH) == FAIL)
19474 return;
19475 }
19476 else
19477 {
19478 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19479 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19480 _(BAD_FPU));
19481 }
19482
19483 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19484 {
19485 if (inst.operands[0].reg == REG_SP)
19486 as_tsktsk (MVE_BAD_SP);
19487 else if (inst.operands[0].reg == REG_PC)
19488 as_tsktsk (MVE_BAD_PC);
19489 }
19490
19491 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
19492
19493 constraint (et.type == NT_invtype, _("bad type for scalar"));
19494 constraint (x >= size / et.size, _("scalar index out of range"));
19495
19496 switch (et.size)
19497 {
19498 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
19499 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
19500 case 32: abcdebits = 0x00; break;
19501 default: ;
19502 }
19503
19504 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
19505 inst.instruction = 0xe100b10;
19506 do_vfp_cond_or_thumb ();
19507 inst.instruction |= LOW4 (dn) << 16;
19508 inst.instruction |= HI1 (dn) << 7;
19509 inst.instruction |= inst.operands[0].reg << 12;
19510 inst.instruction |= (abcdebits & 3) << 5;
19511 inst.instruction |= (abcdebits >> 2) << 21;
19512 inst.instruction |= (x >> (3-logsize)) << 16;
19513 }
19514 break;
19515
19516 case NS_RRD: /* case 7 (fmrrd). */
19517 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19518 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19519 _(BAD_FPU));
19520
19521 inst.instruction = 0xc500b10;
19522 do_vfp_cond_or_thumb ();
19523 inst.instruction |= inst.operands[0].reg << 12;
19524 inst.instruction |= inst.operands[1].reg << 16;
19525 inst.instruction |= LOW4 (inst.operands[2].reg);
19526 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19527 break;
19528
19529 case NS_FF: /* case 8 (fcpys). */
19530 do_vfp_nsyn_opcode ("fcpys");
19531 break;
19532
19533 case NS_HI:
19534 case NS_FI: /* case 10 (fconsts). */
19535 ldconst = "fconsts";
19536 encode_fconstd:
19537 if (!inst.operands[1].immisfloat)
19538 {
19539 unsigned new_imm;
19540 /* Immediate has to fit in 8 bits so float is enough. */
19541 float imm = (float) inst.operands[1].imm;
19542 memcpy (&new_imm, &imm, sizeof (float));
19543 /* But the assembly may have been written to provide an integer
19544 bit pattern that equates to a float, so check that the
19545 conversion has worked. */
19546 if (is_quarter_float (new_imm))
19547 {
19548 if (is_quarter_float (inst.operands[1].imm))
19549 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
19550
19551 inst.operands[1].imm = new_imm;
19552 inst.operands[1].immisfloat = 1;
19553 }
19554 }
19555
19556 if (is_quarter_float (inst.operands[1].imm))
19557 {
19558 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
19559 do_vfp_nsyn_opcode (ldconst);
19560
19561 /* ARMv8.2 fp16 vmov.f16 instruction. */
19562 if (rs == NS_HI)
19563 do_scalar_fp16_v82_encode ();
19564 }
19565 else
19566 first_error (_("immediate out of range"));
19567 break;
19568
19569 case NS_RH:
19570 case NS_RF: /* case 12 (fmrs). */
19571 do_vfp_nsyn_opcode ("fmrs");
19572 /* ARMv8.2 fp16 vmov.f16 instruction. */
19573 if (rs == NS_RH)
19574 do_scalar_fp16_v82_encode ();
19575 break;
19576
19577 case NS_HR:
19578 case NS_FR: /* case 13 (fmsr). */
19579 do_vfp_nsyn_opcode ("fmsr");
19580 /* ARMv8.2 fp16 vmov.f16 instruction. */
19581 if (rs == NS_HR)
19582 do_scalar_fp16_v82_encode ();
19583 break;
19584
19585 case NS_RRSS:
19586 do_mve_mov (0);
19587 break;
19588 case NS_SSRR:
19589 do_mve_mov (1);
19590 break;
19591
19592 /* The encoders for the fmrrs and fmsrr instructions expect three operands
19593 (one of which is a list), but we have parsed four. Do some fiddling to
19594 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
19595 expect. */
19596 case NS_RRFF: /* case 14 (fmrrs). */
19597 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19598 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19599 _(BAD_FPU));
19600 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
19601 _("VFP registers must be adjacent"));
19602 inst.operands[2].imm = 2;
19603 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19604 do_vfp_nsyn_opcode ("fmrrs");
19605 break;
19606
19607 case NS_FFRR: /* case 15 (fmsrr). */
19608 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19609 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19610 _(BAD_FPU));
19611 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
19612 _("VFP registers must be adjacent"));
19613 inst.operands[1] = inst.operands[2];
19614 inst.operands[2] = inst.operands[3];
19615 inst.operands[0].imm = 2;
19616 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19617 do_vfp_nsyn_opcode ("fmsrr");
19618 break;
19619
19620 case NS_NULL:
19621 /* neon_select_shape has determined that the instruction
19622 shape is wrong and has already set the error message. */
19623 break;
19624
19625 default:
19626 abort ();
19627 }
19628 }
19629
19630 static void
19631 do_mve_movl (void)
19632 {
19633 if (!(inst.operands[0].present && inst.operands[0].isquad
19634 && inst.operands[1].present && inst.operands[1].isquad
19635 && !inst.operands[2].present))
19636 {
19637 inst.instruction = 0;
19638 inst.cond = 0xb;
19639 if (thumb_mode)
19640 set_pred_insn_type (INSIDE_IT_INSN);
19641 do_neon_mov ();
19642 return;
19643 }
19644
19645 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19646 return;
19647
19648 if (inst.cond != COND_ALWAYS)
19649 inst.pred_insn_type = INSIDE_VPT_INSN;
19650
19651 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
19652 | N_S16 | N_U16 | N_KEY);
19653
19654 inst.instruction |= (et.type == NT_unsigned) << 28;
19655 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19656 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
19657 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19658 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19659 inst.instruction |= LOW4 (inst.operands[1].reg);
19660 inst.is_neon = 1;
19661 }
19662
19663 static void
19664 do_neon_rshift_round_imm (void)
19665 {
19666 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
19667 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
19668 int imm = inst.operands[2].imm;
19669
19670 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
19671 if (imm == 0)
19672 {
19673 inst.operands[2].present = 0;
19674 do_neon_mov ();
19675 return;
19676 }
19677
19678 constraint (imm < 1 || (unsigned)imm > et.size,
19679 _("immediate out of range for shift"));
19680 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
19681 et.size - imm);
19682 }
19683
19684 static void
19685 do_neon_movhf (void)
19686 {
19687 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
19688 constraint (rs != NS_HH, _("invalid suffix"));
19689
19690 if (inst.cond != COND_ALWAYS)
19691 {
19692 if (thumb_mode)
19693 {
19694 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
19695 " the behaviour is UNPREDICTABLE"));
19696 }
19697 else
19698 {
19699 inst.error = BAD_COND;
19700 return;
19701 }
19702 }
19703
19704 do_vfp_sp_monadic ();
19705
19706 inst.is_neon = 1;
19707 inst.instruction |= 0xf0000000;
19708 }
19709
19710 static void
19711 do_neon_movl (void)
19712 {
19713 struct neon_type_el et = neon_check_type (2, NS_QD,
19714 N_EQK | N_DBL, N_SU_32 | N_KEY);
19715 unsigned sizebits = et.size >> 3;
19716 inst.instruction |= sizebits << 19;
19717 neon_two_same (0, et.type == NT_unsigned, -1);
19718 }
19719
19720 static void
19721 do_neon_trn (void)
19722 {
19723 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19724 struct neon_type_el et = neon_check_type (2, rs,
19725 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19726 NEON_ENCODE (INTEGER, inst);
19727 neon_two_same (neon_quad (rs), 1, et.size);
19728 }
19729
19730 static void
19731 do_neon_zip_uzp (void)
19732 {
19733 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19734 struct neon_type_el et = neon_check_type (2, rs,
19735 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19736 if (rs == NS_DD && et.size == 32)
19737 {
19738 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
19739 inst.instruction = N_MNEM_vtrn;
19740 do_neon_trn ();
19741 return;
19742 }
19743 neon_two_same (neon_quad (rs), 1, et.size);
19744 }
19745
19746 static void
19747 do_neon_sat_abs_neg (void)
19748 {
19749 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
19750 return;
19751
19752 enum neon_shape rs;
19753 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19754 rs = neon_select_shape (NS_QQ, NS_NULL);
19755 else
19756 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19757 struct neon_type_el et = neon_check_type (2, rs,
19758 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
19759 neon_two_same (neon_quad (rs), 1, et.size);
19760 }
19761
19762 static void
19763 do_neon_pair_long (void)
19764 {
19765 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19766 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
19767 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
19768 inst.instruction |= (et.type == NT_unsigned) << 7;
19769 neon_two_same (neon_quad (rs), 1, et.size);
19770 }
19771
19772 static void
19773 do_neon_recip_est (void)
19774 {
19775 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19776 struct neon_type_el et = neon_check_type (2, rs,
19777 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
19778 inst.instruction |= (et.type == NT_float) << 8;
19779 neon_two_same (neon_quad (rs), 1, et.size);
19780 }
19781
19782 static void
19783 do_neon_cls (void)
19784 {
19785 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19786 return;
19787
19788 enum neon_shape rs;
19789 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19790 rs = neon_select_shape (NS_QQ, NS_NULL);
19791 else
19792 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19793
19794 struct neon_type_el et = neon_check_type (2, rs,
19795 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
19796 neon_two_same (neon_quad (rs), 1, et.size);
19797 }
19798
19799 static void
19800 do_neon_clz (void)
19801 {
19802 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19803 return;
19804
19805 enum neon_shape rs;
19806 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19807 rs = neon_select_shape (NS_QQ, NS_NULL);
19808 else
19809 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19810
19811 struct neon_type_el et = neon_check_type (2, rs,
19812 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
19813 neon_two_same (neon_quad (rs), 1, et.size);
19814 }
19815
19816 static void
19817 do_neon_cnt (void)
19818 {
19819 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19820 struct neon_type_el et = neon_check_type (2, rs,
19821 N_EQK | N_INT, N_8 | N_KEY);
19822 neon_two_same (neon_quad (rs), 1, et.size);
19823 }
19824
19825 static void
19826 do_neon_swp (void)
19827 {
19828 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19829 neon_two_same (neon_quad (rs), 1, -1);
19830 }
19831
19832 static void
19833 do_neon_tbl_tbx (void)
19834 {
19835 unsigned listlenbits;
19836 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
19837
19838 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
19839 {
19840 first_error (_("bad list length for table lookup"));
19841 return;
19842 }
19843
19844 listlenbits = inst.operands[1].imm - 1;
19845 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19846 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19847 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19848 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19849 inst.instruction |= LOW4 (inst.operands[2].reg);
19850 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19851 inst.instruction |= listlenbits << 8;
19852
19853 neon_dp_fixup (&inst);
19854 }
19855
19856 static void
19857 do_neon_ldm_stm (void)
19858 {
19859 /* P, U and L bits are part of bitmask. */
19860 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
19861 unsigned offsetbits = inst.operands[1].imm * 2;
19862
19863 if (inst.operands[1].issingle)
19864 {
19865 do_vfp_nsyn_ldm_stm (is_dbmode);
19866 return;
19867 }
19868
19869 constraint (is_dbmode && !inst.operands[0].writeback,
19870 _("writeback (!) must be used for VLDMDB and VSTMDB"));
19871
19872 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
19873 _("register list must contain at least 1 and at most 16 "
19874 "registers"));
19875
19876 inst.instruction |= inst.operands[0].reg << 16;
19877 inst.instruction |= inst.operands[0].writeback << 21;
19878 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19879 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
19880
19881 inst.instruction |= offsetbits;
19882
19883 do_vfp_cond_or_thumb ();
19884 }
19885
19886 static void
19887 do_neon_ldr_str (void)
19888 {
19889 int is_ldr = (inst.instruction & (1 << 20)) != 0;
19890
19891 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
19892 And is UNPREDICTABLE in thumb mode. */
19893 if (!is_ldr
19894 && inst.operands[1].reg == REG_PC
19895 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
19896 {
19897 if (thumb_mode)
19898 inst.error = _("Use of PC here is UNPREDICTABLE");
19899 else if (warn_on_deprecated)
19900 as_tsktsk (_("Use of PC here is deprecated"));
19901 }
19902
19903 if (inst.operands[0].issingle)
19904 {
19905 if (is_ldr)
19906 do_vfp_nsyn_opcode ("flds");
19907 else
19908 do_vfp_nsyn_opcode ("fsts");
19909
19910 /* ARMv8.2 vldr.16/vstr.16 instruction. */
19911 if (inst.vectype.el[0].size == 16)
19912 do_scalar_fp16_v82_encode ();
19913 }
19914 else
19915 {
19916 if (is_ldr)
19917 do_vfp_nsyn_opcode ("fldd");
19918 else
19919 do_vfp_nsyn_opcode ("fstd");
19920 }
19921 }
19922
19923 static void
19924 do_t_vldr_vstr_sysreg (void)
19925 {
19926 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
19927 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
19928
19929 /* Use of PC is UNPREDICTABLE. */
19930 if (inst.operands[1].reg == REG_PC)
19931 inst.error = _("Use of PC here is UNPREDICTABLE");
19932
19933 if (inst.operands[1].immisreg)
19934 inst.error = _("instruction does not accept register index");
19935
19936 if (!inst.operands[1].isreg)
19937 inst.error = _("instruction does not accept PC-relative addressing");
19938
19939 if (abs (inst.operands[1].imm) >= (1 << 7))
19940 inst.error = _("immediate value out of range");
19941
19942 inst.instruction = 0xec000f80;
19943 if (is_vldr)
19944 inst.instruction |= 1 << sysreg_vldr_bitno;
19945 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
19946 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
19947 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
19948 }
19949
19950 static void
19951 do_vldr_vstr (void)
19952 {
19953 bfd_boolean sysreg_op = !inst.operands[0].isreg;
19954
19955 /* VLDR/VSTR (System Register). */
19956 if (sysreg_op)
19957 {
19958 if (!mark_feature_used (&arm_ext_v8_1m_main))
19959 as_bad (_("Instruction not permitted on this architecture"));
19960
19961 do_t_vldr_vstr_sysreg ();
19962 }
19963 /* VLDR/VSTR. */
19964 else
19965 {
19966 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
19967 as_bad (_("Instruction not permitted on this architecture"));
19968 do_neon_ldr_str ();
19969 }
19970 }
19971
19972 /* "interleave" version also handles non-interleaving register VLD1/VST1
19973 instructions. */
19974
19975 static void
19976 do_neon_ld_st_interleave (void)
19977 {
19978 struct neon_type_el et = neon_check_type (1, NS_NULL,
19979 N_8 | N_16 | N_32 | N_64);
19980 unsigned alignbits = 0;
19981 unsigned idx;
19982 /* The bits in this table go:
19983 0: register stride of one (0) or two (1)
19984 1,2: register list length, minus one (1, 2, 3, 4).
19985 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
19986 We use -1 for invalid entries. */
19987 const int typetable[] =
19988 {
19989 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
19990 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
19991 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
19992 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
19993 };
19994 int typebits;
19995
19996 if (et.type == NT_invtype)
19997 return;
19998
19999 if (inst.operands[1].immisalign)
20000 switch (inst.operands[1].imm >> 8)
20001 {
20002 case 64: alignbits = 1; break;
20003 case 128:
20004 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
20005 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
20006 goto bad_alignment;
20007 alignbits = 2;
20008 break;
20009 case 256:
20010 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
20011 goto bad_alignment;
20012 alignbits = 3;
20013 break;
20014 default:
20015 bad_alignment:
20016 first_error (_("bad alignment"));
20017 return;
20018 }
20019
20020 inst.instruction |= alignbits << 4;
20021 inst.instruction |= neon_logbits (et.size) << 6;
20022
20023 /* Bits [4:6] of the immediate in a list specifier encode register stride
20024 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
20025 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
20026 up the right value for "type" in a table based on this value and the given
20027 list style, then stick it back. */
20028 idx = ((inst.operands[0].imm >> 4) & 7)
20029 | (((inst.instruction >> 8) & 3) << 3);
20030
20031 typebits = typetable[idx];
20032
20033 constraint (typebits == -1, _("bad list type for instruction"));
20034 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
20035 BAD_EL_TYPE);
20036
20037 inst.instruction &= ~0xf00;
20038 inst.instruction |= typebits << 8;
20039 }
20040
20041 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
20042 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
20043 otherwise. The variable arguments are a list of pairs of legal (size, align)
20044 values, terminated with -1. */
20045
20046 static int
20047 neon_alignment_bit (int size, int align, int *do_alignment, ...)
20048 {
20049 va_list ap;
20050 int result = FAIL, thissize, thisalign;
20051
20052 if (!inst.operands[1].immisalign)
20053 {
20054 *do_alignment = 0;
20055 return SUCCESS;
20056 }
20057
20058 va_start (ap, do_alignment);
20059
20060 do
20061 {
20062 thissize = va_arg (ap, int);
20063 if (thissize == -1)
20064 break;
20065 thisalign = va_arg (ap, int);
20066
20067 if (size == thissize && align == thisalign)
20068 result = SUCCESS;
20069 }
20070 while (result != SUCCESS);
20071
20072 va_end (ap);
20073
20074 if (result == SUCCESS)
20075 *do_alignment = 1;
20076 else
20077 first_error (_("unsupported alignment for instruction"));
20078
20079 return result;
20080 }
20081
20082 static void
20083 do_neon_ld_st_lane (void)
20084 {
20085 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
20086 int align_good, do_alignment = 0;
20087 int logsize = neon_logbits (et.size);
20088 int align = inst.operands[1].imm >> 8;
20089 int n = (inst.instruction >> 8) & 3;
20090 int max_el = 64 / et.size;
20091
20092 if (et.type == NT_invtype)
20093 return;
20094
20095 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
20096 _("bad list length"));
20097 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
20098 _("scalar index out of range"));
20099 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
20100 && et.size == 8,
20101 _("stride of 2 unavailable when element size is 8"));
20102
20103 switch (n)
20104 {
20105 case 0: /* VLD1 / VST1. */
20106 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
20107 32, 32, -1);
20108 if (align_good == FAIL)
20109 return;
20110 if (do_alignment)
20111 {
20112 unsigned alignbits = 0;
20113 switch (et.size)
20114 {
20115 case 16: alignbits = 0x1; break;
20116 case 32: alignbits = 0x3; break;
20117 default: ;
20118 }
20119 inst.instruction |= alignbits << 4;
20120 }
20121 break;
20122
20123 case 1: /* VLD2 / VST2. */
20124 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
20125 16, 32, 32, 64, -1);
20126 if (align_good == FAIL)
20127 return;
20128 if (do_alignment)
20129 inst.instruction |= 1 << 4;
20130 break;
20131
20132 case 2: /* VLD3 / VST3. */
20133 constraint (inst.operands[1].immisalign,
20134 _("can't use alignment with this instruction"));
20135 break;
20136
20137 case 3: /* VLD4 / VST4. */
20138 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
20139 16, 64, 32, 64, 32, 128, -1);
20140 if (align_good == FAIL)
20141 return;
20142 if (do_alignment)
20143 {
20144 unsigned alignbits = 0;
20145 switch (et.size)
20146 {
20147 case 8: alignbits = 0x1; break;
20148 case 16: alignbits = 0x1; break;
20149 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
20150 default: ;
20151 }
20152 inst.instruction |= alignbits << 4;
20153 }
20154 break;
20155
20156 default: ;
20157 }
20158
20159 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
20160 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20161 inst.instruction |= 1 << (4 + logsize);
20162
20163 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
20164 inst.instruction |= logsize << 10;
20165 }
20166
20167 /* Encode single n-element structure to all lanes VLD<n> instructions. */
20168
20169 static void
20170 do_neon_ld_dup (void)
20171 {
20172 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
20173 int align_good, do_alignment = 0;
20174
20175 if (et.type == NT_invtype)
20176 return;
20177
20178 switch ((inst.instruction >> 8) & 3)
20179 {
20180 case 0: /* VLD1. */
20181 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
20182 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
20183 &do_alignment, 16, 16, 32, 32, -1);
20184 if (align_good == FAIL)
20185 return;
20186 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
20187 {
20188 case 1: break;
20189 case 2: inst.instruction |= 1 << 5; break;
20190 default: first_error (_("bad list length")); return;
20191 }
20192 inst.instruction |= neon_logbits (et.size) << 6;
20193 break;
20194
20195 case 1: /* VLD2. */
20196 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
20197 &do_alignment, 8, 16, 16, 32, 32, 64,
20198 -1);
20199 if (align_good == FAIL)
20200 return;
20201 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
20202 _("bad list length"));
20203 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20204 inst.instruction |= 1 << 5;
20205 inst.instruction |= neon_logbits (et.size) << 6;
20206 break;
20207
20208 case 2: /* VLD3. */
20209 constraint (inst.operands[1].immisalign,
20210 _("can't use alignment with this instruction"));
20211 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
20212 _("bad list length"));
20213 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20214 inst.instruction |= 1 << 5;
20215 inst.instruction |= neon_logbits (et.size) << 6;
20216 break;
20217
20218 case 3: /* VLD4. */
20219 {
20220 int align = inst.operands[1].imm >> 8;
20221 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
20222 16, 64, 32, 64, 32, 128, -1);
20223 if (align_good == FAIL)
20224 return;
20225 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
20226 _("bad list length"));
20227 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20228 inst.instruction |= 1 << 5;
20229 if (et.size == 32 && align == 128)
20230 inst.instruction |= 0x3 << 6;
20231 else
20232 inst.instruction |= neon_logbits (et.size) << 6;
20233 }
20234 break;
20235
20236 default: ;
20237 }
20238
20239 inst.instruction |= do_alignment << 4;
20240 }
20241
20242 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
20243 apart from bits [11:4]. */
20244
20245 static void
20246 do_neon_ldx_stx (void)
20247 {
20248 if (inst.operands[1].isreg)
20249 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
20250
20251 switch (NEON_LANE (inst.operands[0].imm))
20252 {
20253 case NEON_INTERLEAVE_LANES:
20254 NEON_ENCODE (INTERLV, inst);
20255 do_neon_ld_st_interleave ();
20256 break;
20257
20258 case NEON_ALL_LANES:
20259 NEON_ENCODE (DUP, inst);
20260 if (inst.instruction == N_INV)
20261 {
20262 first_error ("only loads support such operands");
20263 break;
20264 }
20265 do_neon_ld_dup ();
20266 break;
20267
20268 default:
20269 NEON_ENCODE (LANE, inst);
20270 do_neon_ld_st_lane ();
20271 }
20272
20273 /* L bit comes from bit mask. */
20274 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20275 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20276 inst.instruction |= inst.operands[1].reg << 16;
20277
20278 if (inst.operands[1].postind)
20279 {
20280 int postreg = inst.operands[1].imm & 0xf;
20281 constraint (!inst.operands[1].immisreg,
20282 _("post-index must be a register"));
20283 constraint (postreg == 0xd || postreg == 0xf,
20284 _("bad register for post-index"));
20285 inst.instruction |= postreg;
20286 }
20287 else
20288 {
20289 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
20290 constraint (inst.relocs[0].exp.X_op != O_constant
20291 || inst.relocs[0].exp.X_add_number != 0,
20292 BAD_ADDR_MODE);
20293
20294 if (inst.operands[1].writeback)
20295 {
20296 inst.instruction |= 0xd;
20297 }
20298 else
20299 inst.instruction |= 0xf;
20300 }
20301
20302 if (thumb_mode)
20303 inst.instruction |= 0xf9000000;
20304 else
20305 inst.instruction |= 0xf4000000;
20306 }
20307
20308 /* FP v8. */
20309 static void
20310 do_vfp_nsyn_fpv8 (enum neon_shape rs)
20311 {
20312 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20313 D register operands. */
20314 if (neon_shape_class[rs] == SC_DOUBLE)
20315 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20316 _(BAD_FPU));
20317
20318 NEON_ENCODE (FPV8, inst);
20319
20320 if (rs == NS_FFF || rs == NS_HHH)
20321 {
20322 do_vfp_sp_dyadic ();
20323
20324 /* ARMv8.2 fp16 instruction. */
20325 if (rs == NS_HHH)
20326 do_scalar_fp16_v82_encode ();
20327 }
20328 else
20329 do_vfp_dp_rd_rn_rm ();
20330
20331 if (rs == NS_DDD)
20332 inst.instruction |= 0x100;
20333
20334 inst.instruction |= 0xf0000000;
20335 }
20336
20337 static void
20338 do_vsel (void)
20339 {
20340 set_pred_insn_type (OUTSIDE_PRED_INSN);
20341
20342 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
20343 first_error (_("invalid instruction shape"));
20344 }
20345
20346 static void
20347 do_vmaxnm (void)
20348 {
20349 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20350 set_pred_insn_type (OUTSIDE_PRED_INSN);
20351
20352 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
20353 return;
20354
20355 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH8))
20356 return;
20357
20358 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
20359 }
20360
20361 static void
20362 do_vrint_1 (enum neon_cvt_mode mode)
20363 {
20364 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
20365 struct neon_type_el et;
20366
20367 if (rs == NS_NULL)
20368 return;
20369
20370 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20371 D register operands. */
20372 if (neon_shape_class[rs] == SC_DOUBLE)
20373 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20374 _(BAD_FPU));
20375
20376 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
20377 | N_VFP);
20378 if (et.type != NT_invtype)
20379 {
20380 /* VFP encodings. */
20381 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
20382 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
20383 set_pred_insn_type (OUTSIDE_PRED_INSN);
20384
20385 NEON_ENCODE (FPV8, inst);
20386 if (rs == NS_FF || rs == NS_HH)
20387 do_vfp_sp_monadic ();
20388 else
20389 do_vfp_dp_rd_rm ();
20390
20391 switch (mode)
20392 {
20393 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
20394 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
20395 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
20396 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
20397 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
20398 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
20399 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
20400 default: abort ();
20401 }
20402
20403 inst.instruction |= (rs == NS_DD) << 8;
20404 do_vfp_cond_or_thumb ();
20405
20406 /* ARMv8.2 fp16 vrint instruction. */
20407 if (rs == NS_HH)
20408 do_scalar_fp16_v82_encode ();
20409 }
20410 else
20411 {
20412 /* Neon encodings (or something broken...). */
20413 inst.error = NULL;
20414 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
20415
20416 if (et.type == NT_invtype)
20417 return;
20418
20419 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH8))
20420 return;
20421
20422 NEON_ENCODE (FLOAT, inst);
20423
20424 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20425 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20426 inst.instruction |= LOW4 (inst.operands[1].reg);
20427 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20428 inst.instruction |= neon_quad (rs) << 6;
20429 /* Mask off the original size bits and reencode them. */
20430 inst.instruction = ((inst.instruction & 0xfff3ffff)
20431 | neon_logbits (et.size) << 18);
20432
20433 switch (mode)
20434 {
20435 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
20436 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
20437 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
20438 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
20439 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
20440 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
20441 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
20442 default: abort ();
20443 }
20444
20445 if (thumb_mode)
20446 inst.instruction |= 0xfc000000;
20447 else
20448 inst.instruction |= 0xf0000000;
20449 }
20450 }
20451
20452 static void
20453 do_vrintx (void)
20454 {
20455 do_vrint_1 (neon_cvt_mode_x);
20456 }
20457
20458 static void
20459 do_vrintz (void)
20460 {
20461 do_vrint_1 (neon_cvt_mode_z);
20462 }
20463
20464 static void
20465 do_vrintr (void)
20466 {
20467 do_vrint_1 (neon_cvt_mode_r);
20468 }
20469
20470 static void
20471 do_vrinta (void)
20472 {
20473 do_vrint_1 (neon_cvt_mode_a);
20474 }
20475
20476 static void
20477 do_vrintn (void)
20478 {
20479 do_vrint_1 (neon_cvt_mode_n);
20480 }
20481
20482 static void
20483 do_vrintp (void)
20484 {
20485 do_vrint_1 (neon_cvt_mode_p);
20486 }
20487
20488 static void
20489 do_vrintm (void)
20490 {
20491 do_vrint_1 (neon_cvt_mode_m);
20492 }
20493
20494 static unsigned
20495 neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
20496 {
20497 unsigned regno = NEON_SCALAR_REG (opnd);
20498 unsigned elno = NEON_SCALAR_INDEX (opnd);
20499
20500 if (elsize == 16 && elno < 2 && regno < 16)
20501 return regno | (elno << 4);
20502 else if (elsize == 32 && elno == 0)
20503 return regno;
20504
20505 first_error (_("scalar out of range"));
20506 return 0;
20507 }
20508
20509 static void
20510 do_vcmla (void)
20511 {
20512 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
20513 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20514 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
20515 constraint (inst.relocs[0].exp.X_op != O_constant,
20516 _("expression too complex"));
20517 unsigned rot = inst.relocs[0].exp.X_add_number;
20518 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
20519 _("immediate out of range"));
20520 rot /= 90;
20521
20522 if (check_simd_pred_availability (1, NEON_CHECK_ARCH8 | NEON_CHECK_CC))
20523 return;
20524
20525 if (inst.operands[2].isscalar)
20526 {
20527 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20528 first_error (_("invalid instruction shape"));
20529 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
20530 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20531 N_KEY | N_F16 | N_F32).size;
20532 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
20533 inst.is_neon = 1;
20534 inst.instruction = 0xfe000800;
20535 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20536 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20537 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20538 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20539 inst.instruction |= LOW4 (m);
20540 inst.instruction |= HI1 (m) << 5;
20541 inst.instruction |= neon_quad (rs) << 6;
20542 inst.instruction |= rot << 20;
20543 inst.instruction |= (size == 32) << 23;
20544 }
20545 else
20546 {
20547 enum neon_shape rs;
20548 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20549 rs = neon_select_shape (NS_QQQI, NS_NULL);
20550 else
20551 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20552
20553 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20554 N_KEY | N_F16 | N_F32).size;
20555 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
20556 && (inst.operands[0].reg == inst.operands[1].reg
20557 || inst.operands[0].reg == inst.operands[2].reg))
20558 as_tsktsk (BAD_MVE_SRCDEST);
20559
20560 neon_three_same (neon_quad (rs), 0, -1);
20561 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20562 inst.instruction |= 0xfc200800;
20563 inst.instruction |= rot << 23;
20564 inst.instruction |= (size == 32) << 20;
20565 }
20566 }
20567
20568 static void
20569 do_vcadd (void)
20570 {
20571 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
20572 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20573 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
20574 constraint (inst.relocs[0].exp.X_op != O_constant,
20575 _("expression too complex"));
20576
20577 unsigned rot = inst.relocs[0].exp.X_add_number;
20578 constraint (rot != 90 && rot != 270, _("immediate out of range"));
20579 enum neon_shape rs;
20580 struct neon_type_el et;
20581 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20582 {
20583 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20584 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
20585 }
20586 else
20587 {
20588 rs = neon_select_shape (NS_QQQI, NS_NULL);
20589 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
20590 | N_I16 | N_I32);
20591 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
20592 as_tsktsk (_("Warning: 32-bit element size and same first and third "
20593 "operand makes instruction UNPREDICTABLE"));
20594 }
20595
20596 if (et.type == NT_invtype)
20597 return;
20598
20599 if (check_simd_pred_availability (et.type == NT_float, NEON_CHECK_ARCH8
20600 | NEON_CHECK_CC))
20601 return;
20602
20603 if (et.type == NT_float)
20604 {
20605 neon_three_same (neon_quad (rs), 0, -1);
20606 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20607 inst.instruction |= 0xfc800800;
20608 inst.instruction |= (rot == 270) << 24;
20609 inst.instruction |= (et.size == 32) << 20;
20610 }
20611 else
20612 {
20613 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
20614 inst.instruction = 0xfe000f00;
20615 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20616 inst.instruction |= neon_logbits (et.size) << 20;
20617 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20618 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20619 inst.instruction |= (rot == 270) << 12;
20620 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20621 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20622 inst.instruction |= LOW4 (inst.operands[2].reg);
20623 inst.is_neon = 1;
20624 }
20625 }
20626
20627 /* Dot Product instructions encoding support. */
20628
20629 static void
20630 do_neon_dotproduct (int unsigned_p)
20631 {
20632 enum neon_shape rs;
20633 unsigned scalar_oprd2 = 0;
20634 int high8;
20635
20636 if (inst.cond != COND_ALWAYS)
20637 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
20638 "is UNPREDICTABLE"));
20639
20640 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
20641 _(BAD_FPU));
20642
20643 /* Dot Product instructions are in three-same D/Q register format or the third
20644 operand can be a scalar index register. */
20645 if (inst.operands[2].isscalar)
20646 {
20647 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
20648 high8 = 0xfe000000;
20649 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
20650 }
20651 else
20652 {
20653 high8 = 0xfc000000;
20654 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
20655 }
20656
20657 if (unsigned_p)
20658 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
20659 else
20660 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
20661
20662 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
20663 Product instruction, so we pass 0 as the "ubit" parameter. And the
20664 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
20665 neon_three_same (neon_quad (rs), 0, 32);
20666
20667 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
20668 different NEON three-same encoding. */
20669 inst.instruction &= 0x00ffffff;
20670 inst.instruction |= high8;
20671 /* Encode 'U' bit which indicates signedness. */
20672 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
20673 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
20674 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
20675 the instruction encoding. */
20676 if (inst.operands[2].isscalar)
20677 {
20678 inst.instruction &= 0xffffffd0;
20679 inst.instruction |= LOW4 (scalar_oprd2);
20680 inst.instruction |= HI1 (scalar_oprd2) << 5;
20681 }
20682 }
20683
20684 /* Dot Product instructions for signed integer. */
20685
20686 static void
20687 do_neon_dotproduct_s (void)
20688 {
20689 return do_neon_dotproduct (0);
20690 }
20691
20692 /* Dot Product instructions for unsigned integer. */
20693
20694 static void
20695 do_neon_dotproduct_u (void)
20696 {
20697 return do_neon_dotproduct (1);
20698 }
20699
20700 /* Crypto v1 instructions. */
20701 static void
20702 do_crypto_2op_1 (unsigned elttype, int op)
20703 {
20704 set_pred_insn_type (OUTSIDE_PRED_INSN);
20705
20706 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
20707 == NT_invtype)
20708 return;
20709
20710 inst.error = NULL;
20711
20712 NEON_ENCODE (INTEGER, inst);
20713 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20714 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20715 inst.instruction |= LOW4 (inst.operands[1].reg);
20716 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20717 if (op != -1)
20718 inst.instruction |= op << 6;
20719
20720 if (thumb_mode)
20721 inst.instruction |= 0xfc000000;
20722 else
20723 inst.instruction |= 0xf0000000;
20724 }
20725
20726 static void
20727 do_crypto_3op_1 (int u, int op)
20728 {
20729 set_pred_insn_type (OUTSIDE_PRED_INSN);
20730
20731 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
20732 N_32 | N_UNT | N_KEY).type == NT_invtype)
20733 return;
20734
20735 inst.error = NULL;
20736
20737 NEON_ENCODE (INTEGER, inst);
20738 neon_three_same (1, u, 8 << op);
20739 }
20740
20741 static void
20742 do_aese (void)
20743 {
20744 do_crypto_2op_1 (N_8, 0);
20745 }
20746
20747 static void
20748 do_aesd (void)
20749 {
20750 do_crypto_2op_1 (N_8, 1);
20751 }
20752
20753 static void
20754 do_aesmc (void)
20755 {
20756 do_crypto_2op_1 (N_8, 2);
20757 }
20758
20759 static void
20760 do_aesimc (void)
20761 {
20762 do_crypto_2op_1 (N_8, 3);
20763 }
20764
20765 static void
20766 do_sha1c (void)
20767 {
20768 do_crypto_3op_1 (0, 0);
20769 }
20770
20771 static void
20772 do_sha1p (void)
20773 {
20774 do_crypto_3op_1 (0, 1);
20775 }
20776
20777 static void
20778 do_sha1m (void)
20779 {
20780 do_crypto_3op_1 (0, 2);
20781 }
20782
20783 static void
20784 do_sha1su0 (void)
20785 {
20786 do_crypto_3op_1 (0, 3);
20787 }
20788
20789 static void
20790 do_sha256h (void)
20791 {
20792 do_crypto_3op_1 (1, 0);
20793 }
20794
20795 static void
20796 do_sha256h2 (void)
20797 {
20798 do_crypto_3op_1 (1, 1);
20799 }
20800
20801 static void
20802 do_sha256su1 (void)
20803 {
20804 do_crypto_3op_1 (1, 2);
20805 }
20806
20807 static void
20808 do_sha1h (void)
20809 {
20810 do_crypto_2op_1 (N_32, -1);
20811 }
20812
20813 static void
20814 do_sha1su1 (void)
20815 {
20816 do_crypto_2op_1 (N_32, 0);
20817 }
20818
20819 static void
20820 do_sha256su0 (void)
20821 {
20822 do_crypto_2op_1 (N_32, 1);
20823 }
20824
20825 static void
20826 do_crc32_1 (unsigned int poly, unsigned int sz)
20827 {
20828 unsigned int Rd = inst.operands[0].reg;
20829 unsigned int Rn = inst.operands[1].reg;
20830 unsigned int Rm = inst.operands[2].reg;
20831
20832 set_pred_insn_type (OUTSIDE_PRED_INSN);
20833 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
20834 inst.instruction |= LOW4 (Rn) << 16;
20835 inst.instruction |= LOW4 (Rm);
20836 inst.instruction |= sz << (thumb_mode ? 4 : 21);
20837 inst.instruction |= poly << (thumb_mode ? 20 : 9);
20838
20839 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
20840 as_warn (UNPRED_REG ("r15"));
20841 }
20842
20843 static void
20844 do_crc32b (void)
20845 {
20846 do_crc32_1 (0, 0);
20847 }
20848
20849 static void
20850 do_crc32h (void)
20851 {
20852 do_crc32_1 (0, 1);
20853 }
20854
20855 static void
20856 do_crc32w (void)
20857 {
20858 do_crc32_1 (0, 2);
20859 }
20860
20861 static void
20862 do_crc32cb (void)
20863 {
20864 do_crc32_1 (1, 0);
20865 }
20866
20867 static void
20868 do_crc32ch (void)
20869 {
20870 do_crc32_1 (1, 1);
20871 }
20872
20873 static void
20874 do_crc32cw (void)
20875 {
20876 do_crc32_1 (1, 2);
20877 }
20878
20879 static void
20880 do_vjcvt (void)
20881 {
20882 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20883 _(BAD_FPU));
20884 neon_check_type (2, NS_FD, N_S32, N_F64);
20885 do_vfp_sp_dp_cvt ();
20886 do_vfp_cond_or_thumb ();
20887 }
20888
20889 \f
20890 /* Overall per-instruction processing. */
20891
20892 /* We need to be able to fix up arbitrary expressions in some statements.
20893 This is so that we can handle symbols that are an arbitrary distance from
20894 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
20895 which returns part of an address in a form which will be valid for
20896 a data instruction. We do this by pushing the expression into a symbol
20897 in the expr_section, and creating a fix for that. */
20898
20899 static void
20900 fix_new_arm (fragS * frag,
20901 int where,
20902 short int size,
20903 expressionS * exp,
20904 int pc_rel,
20905 int reloc)
20906 {
20907 fixS * new_fix;
20908
20909 switch (exp->X_op)
20910 {
20911 case O_constant:
20912 if (pc_rel)
20913 {
20914 /* Create an absolute valued symbol, so we have something to
20915 refer to in the object file. Unfortunately for us, gas's
20916 generic expression parsing will already have folded out
20917 any use of .set foo/.type foo %function that may have
20918 been used to set type information of the target location,
20919 that's being specified symbolically. We have to presume
20920 the user knows what they are doing. */
20921 char name[16 + 8];
20922 symbolS *symbol;
20923
20924 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
20925
20926 symbol = symbol_find_or_make (name);
20927 S_SET_SEGMENT (symbol, absolute_section);
20928 symbol_set_frag (symbol, &zero_address_frag);
20929 S_SET_VALUE (symbol, exp->X_add_number);
20930 exp->X_op = O_symbol;
20931 exp->X_add_symbol = symbol;
20932 exp->X_add_number = 0;
20933 }
20934 /* FALLTHROUGH */
20935 case O_symbol:
20936 case O_add:
20937 case O_subtract:
20938 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
20939 (enum bfd_reloc_code_real) reloc);
20940 break;
20941
20942 default:
20943 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
20944 pc_rel, (enum bfd_reloc_code_real) reloc);
20945 break;
20946 }
20947
20948 /* Mark whether the fix is to a THUMB instruction, or an ARM
20949 instruction. */
20950 new_fix->tc_fix_data = thumb_mode;
20951 }
20952
20953 /* Create a frg for an instruction requiring relaxation. */
20954 static void
20955 output_relax_insn (void)
20956 {
20957 char * to;
20958 symbolS *sym;
20959 int offset;
20960
20961 /* The size of the instruction is unknown, so tie the debug info to the
20962 start of the instruction. */
20963 dwarf2_emit_insn (0);
20964
20965 switch (inst.relocs[0].exp.X_op)
20966 {
20967 case O_symbol:
20968 sym = inst.relocs[0].exp.X_add_symbol;
20969 offset = inst.relocs[0].exp.X_add_number;
20970 break;
20971 case O_constant:
20972 sym = NULL;
20973 offset = inst.relocs[0].exp.X_add_number;
20974 break;
20975 default:
20976 sym = make_expr_symbol (&inst.relocs[0].exp);
20977 offset = 0;
20978 break;
20979 }
20980 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
20981 inst.relax, sym, offset, NULL/*offset, opcode*/);
20982 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
20983 }
20984
20985 /* Write a 32-bit thumb instruction to buf. */
20986 static void
20987 put_thumb32_insn (char * buf, unsigned long insn)
20988 {
20989 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
20990 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
20991 }
20992
20993 static void
20994 output_inst (const char * str)
20995 {
20996 char * to = NULL;
20997
20998 if (inst.error)
20999 {
21000 as_bad ("%s -- `%s'", inst.error, str);
21001 return;
21002 }
21003 if (inst.relax)
21004 {
21005 output_relax_insn ();
21006 return;
21007 }
21008 if (inst.size == 0)
21009 return;
21010
21011 to = frag_more (inst.size);
21012 /* PR 9814: Record the thumb mode into the current frag so that we know
21013 what type of NOP padding to use, if necessary. We override any previous
21014 setting so that if the mode has changed then the NOPS that we use will
21015 match the encoding of the last instruction in the frag. */
21016 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
21017
21018 if (thumb_mode && (inst.size > THUMB_SIZE))
21019 {
21020 gas_assert (inst.size == (2 * THUMB_SIZE));
21021 put_thumb32_insn (to, inst.instruction);
21022 }
21023 else if (inst.size > INSN_SIZE)
21024 {
21025 gas_assert (inst.size == (2 * INSN_SIZE));
21026 md_number_to_chars (to, inst.instruction, INSN_SIZE);
21027 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
21028 }
21029 else
21030 md_number_to_chars (to, inst.instruction, inst.size);
21031
21032 int r;
21033 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21034 {
21035 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
21036 fix_new_arm (frag_now, to - frag_now->fr_literal,
21037 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
21038 inst.relocs[r].type);
21039 }
21040
21041 dwarf2_emit_insn (inst.size);
21042 }
21043
21044 static char *
21045 output_it_inst (int cond, int mask, char * to)
21046 {
21047 unsigned long instruction = 0xbf00;
21048
21049 mask &= 0xf;
21050 instruction |= mask;
21051 instruction |= cond << 4;
21052
21053 if (to == NULL)
21054 {
21055 to = frag_more (2);
21056 #ifdef OBJ_ELF
21057 dwarf2_emit_insn (2);
21058 #endif
21059 }
21060
21061 md_number_to_chars (to, instruction, 2);
21062
21063 return to;
21064 }
21065
21066 /* Tag values used in struct asm_opcode's tag field. */
21067 enum opcode_tag
21068 {
21069 OT_unconditional, /* Instruction cannot be conditionalized.
21070 The ARM condition field is still 0xE. */
21071 OT_unconditionalF, /* Instruction cannot be conditionalized
21072 and carries 0xF in its ARM condition field. */
21073 OT_csuffix, /* Instruction takes a conditional suffix. */
21074 OT_csuffixF, /* Some forms of the instruction take a scalar
21075 conditional suffix, others place 0xF where the
21076 condition field would be, others take a vector
21077 conditional suffix. */
21078 OT_cinfix3, /* Instruction takes a conditional infix,
21079 beginning at character index 3. (In
21080 unified mode, it becomes a suffix.) */
21081 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
21082 tsts, cmps, cmns, and teqs. */
21083 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
21084 character index 3, even in unified mode. Used for
21085 legacy instructions where suffix and infix forms
21086 may be ambiguous. */
21087 OT_csuf_or_in3, /* Instruction takes either a conditional
21088 suffix or an infix at character index 3. */
21089 OT_odd_infix_unc, /* This is the unconditional variant of an
21090 instruction that takes a conditional infix
21091 at an unusual position. In unified mode,
21092 this variant will accept a suffix. */
21093 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
21094 are the conditional variants of instructions that
21095 take conditional infixes in unusual positions.
21096 The infix appears at character index
21097 (tag - OT_odd_infix_0). These are not accepted
21098 in unified mode. */
21099 };
21100
21101 /* Subroutine of md_assemble, responsible for looking up the primary
21102 opcode from the mnemonic the user wrote. STR points to the
21103 beginning of the mnemonic.
21104
21105 This is not simply a hash table lookup, because of conditional
21106 variants. Most instructions have conditional variants, which are
21107 expressed with a _conditional affix_ to the mnemonic. If we were
21108 to encode each conditional variant as a literal string in the opcode
21109 table, it would have approximately 20,000 entries.
21110
21111 Most mnemonics take this affix as a suffix, and in unified syntax,
21112 'most' is upgraded to 'all'. However, in the divided syntax, some
21113 instructions take the affix as an infix, notably the s-variants of
21114 the arithmetic instructions. Of those instructions, all but six
21115 have the infix appear after the third character of the mnemonic.
21116
21117 Accordingly, the algorithm for looking up primary opcodes given
21118 an identifier is:
21119
21120 1. Look up the identifier in the opcode table.
21121 If we find a match, go to step U.
21122
21123 2. Look up the last two characters of the identifier in the
21124 conditions table. If we find a match, look up the first N-2
21125 characters of the identifier in the opcode table. If we
21126 find a match, go to step CE.
21127
21128 3. Look up the fourth and fifth characters of the identifier in
21129 the conditions table. If we find a match, extract those
21130 characters from the identifier, and look up the remaining
21131 characters in the opcode table. If we find a match, go
21132 to step CM.
21133
21134 4. Fail.
21135
21136 U. Examine the tag field of the opcode structure, in case this is
21137 one of the six instructions with its conditional infix in an
21138 unusual place. If it is, the tag tells us where to find the
21139 infix; look it up in the conditions table and set inst.cond
21140 accordingly. Otherwise, this is an unconditional instruction.
21141 Again set inst.cond accordingly. Return the opcode structure.
21142
21143 CE. Examine the tag field to make sure this is an instruction that
21144 should receive a conditional suffix. If it is not, fail.
21145 Otherwise, set inst.cond from the suffix we already looked up,
21146 and return the opcode structure.
21147
21148 CM. Examine the tag field to make sure this is an instruction that
21149 should receive a conditional infix after the third character.
21150 If it is not, fail. Otherwise, undo the edits to the current
21151 line of input and proceed as for case CE. */
21152
21153 static const struct asm_opcode *
21154 opcode_lookup (char **str)
21155 {
21156 char *end, *base;
21157 char *affix;
21158 const struct asm_opcode *opcode;
21159 const struct asm_cond *cond;
21160 char save[2];
21161
21162 /* Scan up to the end of the mnemonic, which must end in white space,
21163 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
21164 for (base = end = *str; *end != '\0'; end++)
21165 if (*end == ' ' || *end == '.')
21166 break;
21167
21168 if (end == base)
21169 return NULL;
21170
21171 /* Handle a possible width suffix and/or Neon type suffix. */
21172 if (end[0] == '.')
21173 {
21174 int offset = 2;
21175
21176 /* The .w and .n suffixes are only valid if the unified syntax is in
21177 use. */
21178 if (unified_syntax && end[1] == 'w')
21179 inst.size_req = 4;
21180 else if (unified_syntax && end[1] == 'n')
21181 inst.size_req = 2;
21182 else
21183 offset = 0;
21184
21185 inst.vectype.elems = 0;
21186
21187 *str = end + offset;
21188
21189 if (end[offset] == '.')
21190 {
21191 /* See if we have a Neon type suffix (possible in either unified or
21192 non-unified ARM syntax mode). */
21193 if (parse_neon_type (&inst.vectype, str) == FAIL)
21194 return NULL;
21195 }
21196 else if (end[offset] != '\0' && end[offset] != ' ')
21197 return NULL;
21198 }
21199 else
21200 *str = end;
21201
21202 /* Look for unaffixed or special-case affixed mnemonic. */
21203 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21204 end - base);
21205 if (opcode)
21206 {
21207 /* step U */
21208 if (opcode->tag < OT_odd_infix_0)
21209 {
21210 inst.cond = COND_ALWAYS;
21211 return opcode;
21212 }
21213
21214 if (warn_on_deprecated && unified_syntax)
21215 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
21216 affix = base + (opcode->tag - OT_odd_infix_0);
21217 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21218 gas_assert (cond);
21219
21220 inst.cond = cond->value;
21221 return opcode;
21222 }
21223 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
21224 {
21225 /* Cannot have a conditional suffix on a mnemonic of less than a character.
21226 */
21227 if (end - base < 2)
21228 return NULL;
21229 affix = end - 1;
21230 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
21231 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21232 affix - base);
21233 /* If this opcode can not be vector predicated then don't accept it with a
21234 vector predication code. */
21235 if (opcode && !opcode->mayBeVecPred)
21236 opcode = NULL;
21237 }
21238 if (!opcode || !cond)
21239 {
21240 /* Cannot have a conditional suffix on a mnemonic of less than two
21241 characters. */
21242 if (end - base < 3)
21243 return NULL;
21244
21245 /* Look for suffixed mnemonic. */
21246 affix = end - 2;
21247 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21248 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21249 affix - base);
21250 }
21251
21252 if (opcode && cond)
21253 {
21254 /* step CE */
21255 switch (opcode->tag)
21256 {
21257 case OT_cinfix3_legacy:
21258 /* Ignore conditional suffixes matched on infix only mnemonics. */
21259 break;
21260
21261 case OT_cinfix3:
21262 case OT_cinfix3_deprecated:
21263 case OT_odd_infix_unc:
21264 if (!unified_syntax)
21265 return NULL;
21266 /* Fall through. */
21267
21268 case OT_csuffix:
21269 case OT_csuffixF:
21270 case OT_csuf_or_in3:
21271 inst.cond = cond->value;
21272 return opcode;
21273
21274 case OT_unconditional:
21275 case OT_unconditionalF:
21276 if (thumb_mode)
21277 inst.cond = cond->value;
21278 else
21279 {
21280 /* Delayed diagnostic. */
21281 inst.error = BAD_COND;
21282 inst.cond = COND_ALWAYS;
21283 }
21284 return opcode;
21285
21286 default:
21287 return NULL;
21288 }
21289 }
21290
21291 /* Cannot have a usual-position infix on a mnemonic of less than
21292 six characters (five would be a suffix). */
21293 if (end - base < 6)
21294 return NULL;
21295
21296 /* Look for infixed mnemonic in the usual position. */
21297 affix = base + 3;
21298 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21299 if (!cond)
21300 return NULL;
21301
21302 memcpy (save, affix, 2);
21303 memmove (affix, affix + 2, (end - affix) - 2);
21304 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21305 (end - base) - 2);
21306 memmove (affix + 2, affix, (end - affix) - 2);
21307 memcpy (affix, save, 2);
21308
21309 if (opcode
21310 && (opcode->tag == OT_cinfix3
21311 || opcode->tag == OT_cinfix3_deprecated
21312 || opcode->tag == OT_csuf_or_in3
21313 || opcode->tag == OT_cinfix3_legacy))
21314 {
21315 /* Step CM. */
21316 if (warn_on_deprecated && unified_syntax
21317 && (opcode->tag == OT_cinfix3
21318 || opcode->tag == OT_cinfix3_deprecated))
21319 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
21320
21321 inst.cond = cond->value;
21322 return opcode;
21323 }
21324
21325 return NULL;
21326 }
21327
21328 /* This function generates an initial IT instruction, leaving its block
21329 virtually open for the new instructions. Eventually,
21330 the mask will be updated by now_pred_add_mask () each time
21331 a new instruction needs to be included in the IT block.
21332 Finally, the block is closed with close_automatic_it_block ().
21333 The block closure can be requested either from md_assemble (),
21334 a tencode (), or due to a label hook. */
21335
21336 static void
21337 new_automatic_it_block (int cond)
21338 {
21339 now_pred.state = AUTOMATIC_PRED_BLOCK;
21340 now_pred.mask = 0x18;
21341 now_pred.cc = cond;
21342 now_pred.block_length = 1;
21343 mapping_state (MAP_THUMB);
21344 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
21345 now_pred.warn_deprecated = FALSE;
21346 now_pred.insn_cond = TRUE;
21347 }
21348
21349 /* Close an automatic IT block.
21350 See comments in new_automatic_it_block (). */
21351
21352 static void
21353 close_automatic_it_block (void)
21354 {
21355 now_pred.mask = 0x10;
21356 now_pred.block_length = 0;
21357 }
21358
21359 /* Update the mask of the current automatically-generated IT
21360 instruction. See comments in new_automatic_it_block (). */
21361
21362 static void
21363 now_pred_add_mask (int cond)
21364 {
21365 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
21366 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
21367 | ((bitvalue) << (nbit)))
21368 const int resulting_bit = (cond & 1);
21369
21370 now_pred.mask &= 0xf;
21371 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
21372 resulting_bit,
21373 (5 - now_pred.block_length));
21374 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
21375 1,
21376 ((5 - now_pred.block_length) - 1));
21377 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
21378
21379 #undef CLEAR_BIT
21380 #undef SET_BIT_VALUE
21381 }
21382
21383 /* The IT blocks handling machinery is accessed through the these functions:
21384 it_fsm_pre_encode () from md_assemble ()
21385 set_pred_insn_type () optional, from the tencode functions
21386 set_pred_insn_type_last () ditto
21387 in_pred_block () ditto
21388 it_fsm_post_encode () from md_assemble ()
21389 force_automatic_it_block_close () from label handling functions
21390
21391 Rationale:
21392 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
21393 initializing the IT insn type with a generic initial value depending
21394 on the inst.condition.
21395 2) During the tencode function, two things may happen:
21396 a) The tencode function overrides the IT insn type by
21397 calling either set_pred_insn_type (type) or
21398 set_pred_insn_type_last ().
21399 b) The tencode function queries the IT block state by
21400 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
21401
21402 Both set_pred_insn_type and in_pred_block run the internal FSM state
21403 handling function (handle_pred_state), because: a) setting the IT insn
21404 type may incur in an invalid state (exiting the function),
21405 and b) querying the state requires the FSM to be updated.
21406 Specifically we want to avoid creating an IT block for conditional
21407 branches, so it_fsm_pre_encode is actually a guess and we can't
21408 determine whether an IT block is required until the tencode () routine
21409 has decided what type of instruction this actually it.
21410 Because of this, if set_pred_insn_type and in_pred_block have to be
21411 used, set_pred_insn_type has to be called first.
21412
21413 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
21414 that determines the insn IT type depending on the inst.cond code.
21415 When a tencode () routine encodes an instruction that can be
21416 either outside an IT block, or, in the case of being inside, has to be
21417 the last one, set_pred_insn_type_last () will determine the proper
21418 IT instruction type based on the inst.cond code. Otherwise,
21419 set_pred_insn_type can be called for overriding that logic or
21420 for covering other cases.
21421
21422 Calling handle_pred_state () may not transition the IT block state to
21423 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
21424 still queried. Instead, if the FSM determines that the state should
21425 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
21426 after the tencode () function: that's what it_fsm_post_encode () does.
21427
21428 Since in_pred_block () calls the state handling function to get an
21429 updated state, an error may occur (due to invalid insns combination).
21430 In that case, inst.error is set.
21431 Therefore, inst.error has to be checked after the execution of
21432 the tencode () routine.
21433
21434 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
21435 any pending state change (if any) that didn't take place in
21436 handle_pred_state () as explained above. */
21437
21438 static void
21439 it_fsm_pre_encode (void)
21440 {
21441 if (inst.cond != COND_ALWAYS)
21442 inst.pred_insn_type = INSIDE_IT_INSN;
21443 else
21444 inst.pred_insn_type = OUTSIDE_PRED_INSN;
21445
21446 now_pred.state_handled = 0;
21447 }
21448
21449 /* IT state FSM handling function. */
21450 /* MVE instructions and non-MVE instructions are handled differently because of
21451 the introduction of VPT blocks.
21452 Specifications say that any non-MVE instruction inside a VPT block is
21453 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
21454 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
21455 few exceptions we have MVE_UNPREDICABLE_INSN.
21456 The error messages provided depending on the different combinations possible
21457 are described in the cases below:
21458 For 'most' MVE instructions:
21459 1) In an IT block, with an IT code: syntax error
21460 2) In an IT block, with a VPT code: error: must be in a VPT block
21461 3) In an IT block, with no code: warning: UNPREDICTABLE
21462 4) In a VPT block, with an IT code: syntax error
21463 5) In a VPT block, with a VPT code: OK!
21464 6) In a VPT block, with no code: error: missing code
21465 7) Outside a pred block, with an IT code: error: syntax error
21466 8) Outside a pred block, with a VPT code: error: should be in a VPT block
21467 9) Outside a pred block, with no code: OK!
21468 For non-MVE instructions:
21469 10) In an IT block, with an IT code: OK!
21470 11) In an IT block, with a VPT code: syntax error
21471 12) In an IT block, with no code: error: missing code
21472 13) In a VPT block, with an IT code: error: should be in an IT block
21473 14) In a VPT block, with a VPT code: syntax error
21474 15) In a VPT block, with no code: UNPREDICTABLE
21475 16) Outside a pred block, with an IT code: error: should be in an IT block
21476 17) Outside a pred block, with a VPT code: syntax error
21477 18) Outside a pred block, with no code: OK!
21478 */
21479
21480
21481 static int
21482 handle_pred_state (void)
21483 {
21484 now_pred.state_handled = 1;
21485 now_pred.insn_cond = FALSE;
21486
21487 switch (now_pred.state)
21488 {
21489 case OUTSIDE_PRED_BLOCK:
21490 switch (inst.pred_insn_type)
21491 {
21492 case MVE_UNPREDICABLE_INSN:
21493 case MVE_OUTSIDE_PRED_INSN:
21494 if (inst.cond < COND_ALWAYS)
21495 {
21496 /* Case 7: Outside a pred block, with an IT code: error: syntax
21497 error. */
21498 inst.error = BAD_SYNTAX;
21499 return FAIL;
21500 }
21501 /* Case 9: Outside a pred block, with no code: OK! */
21502 break;
21503 case OUTSIDE_PRED_INSN:
21504 if (inst.cond > COND_ALWAYS)
21505 {
21506 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21507 */
21508 inst.error = BAD_SYNTAX;
21509 return FAIL;
21510 }
21511 /* Case 18: Outside a pred block, with no code: OK! */
21512 break;
21513
21514 case INSIDE_VPT_INSN:
21515 /* Case 8: Outside a pred block, with a VPT code: error: should be in
21516 a VPT block. */
21517 inst.error = BAD_OUT_VPT;
21518 return FAIL;
21519
21520 case INSIDE_IT_INSN:
21521 case INSIDE_IT_LAST_INSN:
21522 if (inst.cond < COND_ALWAYS)
21523 {
21524 /* Case 16: Outside a pred block, with an IT code: error: should
21525 be in an IT block. */
21526 if (thumb_mode == 0)
21527 {
21528 if (unified_syntax
21529 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
21530 as_tsktsk (_("Warning: conditional outside an IT block"\
21531 " for Thumb."));
21532 }
21533 else
21534 {
21535 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
21536 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
21537 {
21538 /* Automatically generate the IT instruction. */
21539 new_automatic_it_block (inst.cond);
21540 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
21541 close_automatic_it_block ();
21542 }
21543 else
21544 {
21545 inst.error = BAD_OUT_IT;
21546 return FAIL;
21547 }
21548 }
21549 break;
21550 }
21551 else if (inst.cond > COND_ALWAYS)
21552 {
21553 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21554 */
21555 inst.error = BAD_SYNTAX;
21556 return FAIL;
21557 }
21558 else
21559 gas_assert (0);
21560 case IF_INSIDE_IT_LAST_INSN:
21561 case NEUTRAL_IT_INSN:
21562 break;
21563
21564 case VPT_INSN:
21565 if (inst.cond != COND_ALWAYS)
21566 first_error (BAD_SYNTAX);
21567 now_pred.state = MANUAL_PRED_BLOCK;
21568 now_pred.block_length = 0;
21569 now_pred.type = VECTOR_PRED;
21570 now_pred.cc = 0;
21571 break;
21572 case IT_INSN:
21573 now_pred.state = MANUAL_PRED_BLOCK;
21574 now_pred.block_length = 0;
21575 now_pred.type = SCALAR_PRED;
21576 break;
21577 }
21578 break;
21579
21580 case AUTOMATIC_PRED_BLOCK:
21581 /* Three things may happen now:
21582 a) We should increment current it block size;
21583 b) We should close current it block (closing insn or 4 insns);
21584 c) We should close current it block and start a new one (due
21585 to incompatible conditions or
21586 4 insns-length block reached). */
21587
21588 switch (inst.pred_insn_type)
21589 {
21590 case INSIDE_VPT_INSN:
21591 case VPT_INSN:
21592 case MVE_UNPREDICABLE_INSN:
21593 case MVE_OUTSIDE_PRED_INSN:
21594 gas_assert (0);
21595 case OUTSIDE_PRED_INSN:
21596 /* The closure of the block shall happen immediately,
21597 so any in_pred_block () call reports the block as closed. */
21598 force_automatic_it_block_close ();
21599 break;
21600
21601 case INSIDE_IT_INSN:
21602 case INSIDE_IT_LAST_INSN:
21603 case IF_INSIDE_IT_LAST_INSN:
21604 now_pred.block_length++;
21605
21606 if (now_pred.block_length > 4
21607 || !now_pred_compatible (inst.cond))
21608 {
21609 force_automatic_it_block_close ();
21610 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
21611 new_automatic_it_block (inst.cond);
21612 }
21613 else
21614 {
21615 now_pred.insn_cond = TRUE;
21616 now_pred_add_mask (inst.cond);
21617 }
21618
21619 if (now_pred.state == AUTOMATIC_PRED_BLOCK
21620 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
21621 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
21622 close_automatic_it_block ();
21623 break;
21624
21625 case NEUTRAL_IT_INSN:
21626 now_pred.block_length++;
21627 now_pred.insn_cond = TRUE;
21628
21629 if (now_pred.block_length > 4)
21630 force_automatic_it_block_close ();
21631 else
21632 now_pred_add_mask (now_pred.cc & 1);
21633 break;
21634
21635 case IT_INSN:
21636 close_automatic_it_block ();
21637 now_pred.state = MANUAL_PRED_BLOCK;
21638 break;
21639 }
21640 break;
21641
21642 case MANUAL_PRED_BLOCK:
21643 {
21644 int cond, is_last;
21645 if (now_pred.type == SCALAR_PRED)
21646 {
21647 /* Check conditional suffixes. */
21648 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
21649 now_pred.mask <<= 1;
21650 now_pred.mask &= 0x1f;
21651 is_last = (now_pred.mask == 0x10);
21652 }
21653 else
21654 {
21655 now_pred.cc ^= (now_pred.mask >> 4);
21656 cond = now_pred.cc + 0xf;
21657 now_pred.mask <<= 1;
21658 now_pred.mask &= 0x1f;
21659 is_last = now_pred.mask == 0x10;
21660 }
21661 now_pred.insn_cond = TRUE;
21662
21663 switch (inst.pred_insn_type)
21664 {
21665 case OUTSIDE_PRED_INSN:
21666 if (now_pred.type == SCALAR_PRED)
21667 {
21668 if (inst.cond == COND_ALWAYS)
21669 {
21670 /* Case 12: In an IT block, with no code: error: missing
21671 code. */
21672 inst.error = BAD_NOT_IT;
21673 return FAIL;
21674 }
21675 else if (inst.cond > COND_ALWAYS)
21676 {
21677 /* Case 11: In an IT block, with a VPT code: syntax error.
21678 */
21679 inst.error = BAD_SYNTAX;
21680 return FAIL;
21681 }
21682 else if (thumb_mode)
21683 {
21684 /* This is for some special cases where a non-MVE
21685 instruction is not allowed in an IT block, such as cbz,
21686 but are put into one with a condition code.
21687 You could argue this should be a syntax error, but we
21688 gave the 'not allowed in IT block' diagnostic in the
21689 past so we will keep doing so. */
21690 inst.error = BAD_NOT_IT;
21691 return FAIL;
21692 }
21693 break;
21694 }
21695 else
21696 {
21697 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
21698 as_tsktsk (MVE_NOT_VPT);
21699 return SUCCESS;
21700 }
21701 case MVE_OUTSIDE_PRED_INSN:
21702 if (now_pred.type == SCALAR_PRED)
21703 {
21704 if (inst.cond == COND_ALWAYS)
21705 {
21706 /* Case 3: In an IT block, with no code: warning:
21707 UNPREDICTABLE. */
21708 as_tsktsk (MVE_NOT_IT);
21709 return SUCCESS;
21710 }
21711 else if (inst.cond < COND_ALWAYS)
21712 {
21713 /* Case 1: In an IT block, with an IT code: syntax error.
21714 */
21715 inst.error = BAD_SYNTAX;
21716 return FAIL;
21717 }
21718 else
21719 gas_assert (0);
21720 }
21721 else
21722 {
21723 if (inst.cond < COND_ALWAYS)
21724 {
21725 /* Case 4: In a VPT block, with an IT code: syntax error.
21726 */
21727 inst.error = BAD_SYNTAX;
21728 return FAIL;
21729 }
21730 else if (inst.cond == COND_ALWAYS)
21731 {
21732 /* Case 6: In a VPT block, with no code: error: missing
21733 code. */
21734 inst.error = BAD_NOT_VPT;
21735 return FAIL;
21736 }
21737 else
21738 {
21739 gas_assert (0);
21740 }
21741 }
21742 case MVE_UNPREDICABLE_INSN:
21743 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
21744 return SUCCESS;
21745 case INSIDE_IT_INSN:
21746 if (inst.cond > COND_ALWAYS)
21747 {
21748 /* Case 11: In an IT block, with a VPT code: syntax error. */
21749 /* Case 14: In a VPT block, with a VPT code: syntax error. */
21750 inst.error = BAD_SYNTAX;
21751 return FAIL;
21752 }
21753 else if (now_pred.type == SCALAR_PRED)
21754 {
21755 /* Case 10: In an IT block, with an IT code: OK! */
21756 if (cond != inst.cond)
21757 {
21758 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
21759 BAD_VPT_COND;
21760 return FAIL;
21761 }
21762 }
21763 else
21764 {
21765 /* Case 13: In a VPT block, with an IT code: error: should be
21766 in an IT block. */
21767 inst.error = BAD_OUT_IT;
21768 return FAIL;
21769 }
21770 break;
21771
21772 case INSIDE_VPT_INSN:
21773 if (now_pred.type == SCALAR_PRED)
21774 {
21775 /* Case 2: In an IT block, with a VPT code: error: must be in a
21776 VPT block. */
21777 inst.error = BAD_OUT_VPT;
21778 return FAIL;
21779 }
21780 /* Case 5: In a VPT block, with a VPT code: OK! */
21781 else if (cond != inst.cond)
21782 {
21783 inst.error = BAD_VPT_COND;
21784 return FAIL;
21785 }
21786 break;
21787 case INSIDE_IT_LAST_INSN:
21788 case IF_INSIDE_IT_LAST_INSN:
21789 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
21790 {
21791 /* Case 4: In a VPT block, with an IT code: syntax error. */
21792 /* Case 11: In an IT block, with a VPT code: syntax error. */
21793 inst.error = BAD_SYNTAX;
21794 return FAIL;
21795 }
21796 else if (cond != inst.cond)
21797 {
21798 inst.error = BAD_IT_COND;
21799 return FAIL;
21800 }
21801 if (!is_last)
21802 {
21803 inst.error = BAD_BRANCH;
21804 return FAIL;
21805 }
21806 break;
21807
21808 case NEUTRAL_IT_INSN:
21809 /* The BKPT instruction is unconditional even in a IT or VPT
21810 block. */
21811 break;
21812
21813 case IT_INSN:
21814 if (now_pred.type == SCALAR_PRED)
21815 {
21816 inst.error = BAD_IT_IT;
21817 return FAIL;
21818 }
21819 /* fall through. */
21820 case VPT_INSN:
21821 if (inst.cond == COND_ALWAYS)
21822 {
21823 /* Executing a VPT/VPST instruction inside an IT block or a
21824 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
21825 */
21826 if (now_pred.type == SCALAR_PRED)
21827 as_tsktsk (MVE_NOT_IT);
21828 else
21829 as_tsktsk (MVE_NOT_VPT);
21830 return SUCCESS;
21831 }
21832 else
21833 {
21834 /* VPT/VPST do not accept condition codes. */
21835 inst.error = BAD_SYNTAX;
21836 return FAIL;
21837 }
21838 }
21839 }
21840 break;
21841 }
21842
21843 return SUCCESS;
21844 }
21845
21846 struct depr_insn_mask
21847 {
21848 unsigned long pattern;
21849 unsigned long mask;
21850 const char* description;
21851 };
21852
21853 /* List of 16-bit instruction patterns deprecated in an IT block in
21854 ARMv8. */
21855 static const struct depr_insn_mask depr_it_insns[] = {
21856 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
21857 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
21858 { 0xa000, 0xb800, N_("ADR") },
21859 { 0x4800, 0xf800, N_("Literal loads") },
21860 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
21861 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
21862 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
21863 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
21864 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
21865 { 0, 0, NULL }
21866 };
21867
21868 static void
21869 it_fsm_post_encode (void)
21870 {
21871 int is_last;
21872
21873 if (!now_pred.state_handled)
21874 handle_pred_state ();
21875
21876 if (now_pred.insn_cond
21877 && !now_pred.warn_deprecated
21878 && warn_on_deprecated
21879 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
21880 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
21881 {
21882 if (inst.instruction >= 0x10000)
21883 {
21884 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
21885 "performance deprecated in ARMv8-A and ARMv8-R"));
21886 now_pred.warn_deprecated = TRUE;
21887 }
21888 else
21889 {
21890 const struct depr_insn_mask *p = depr_it_insns;
21891
21892 while (p->mask != 0)
21893 {
21894 if ((inst.instruction & p->mask) == p->pattern)
21895 {
21896 as_tsktsk (_("IT blocks containing 16-bit Thumb "
21897 "instructions of the following class are "
21898 "performance deprecated in ARMv8-A and "
21899 "ARMv8-R: %s"), p->description);
21900 now_pred.warn_deprecated = TRUE;
21901 break;
21902 }
21903
21904 ++p;
21905 }
21906 }
21907
21908 if (now_pred.block_length > 1)
21909 {
21910 as_tsktsk (_("IT blocks containing more than one conditional "
21911 "instruction are performance deprecated in ARMv8-A and "
21912 "ARMv8-R"));
21913 now_pred.warn_deprecated = TRUE;
21914 }
21915 }
21916
21917 is_last = (now_pred.mask == 0x10);
21918 if (is_last)
21919 {
21920 now_pred.state = OUTSIDE_PRED_BLOCK;
21921 now_pred.mask = 0;
21922 }
21923 }
21924
21925 static void
21926 force_automatic_it_block_close (void)
21927 {
21928 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
21929 {
21930 close_automatic_it_block ();
21931 now_pred.state = OUTSIDE_PRED_BLOCK;
21932 now_pred.mask = 0;
21933 }
21934 }
21935
21936 static int
21937 in_pred_block (void)
21938 {
21939 if (!now_pred.state_handled)
21940 handle_pred_state ();
21941
21942 return now_pred.state != OUTSIDE_PRED_BLOCK;
21943 }
21944
21945 /* Whether OPCODE only has T32 encoding. Since this function is only used by
21946 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
21947 here, hence the "known" in the function name. */
21948
21949 static bfd_boolean
21950 known_t32_only_insn (const struct asm_opcode *opcode)
21951 {
21952 /* Original Thumb-1 wide instruction. */
21953 if (opcode->tencode == do_t_blx
21954 || opcode->tencode == do_t_branch23
21955 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
21956 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
21957 return TRUE;
21958
21959 /* Wide-only instruction added to ARMv8-M Baseline. */
21960 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
21961 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
21962 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
21963 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
21964 return TRUE;
21965
21966 return FALSE;
21967 }
21968
21969 /* Whether wide instruction variant can be used if available for a valid OPCODE
21970 in ARCH. */
21971
21972 static bfd_boolean
21973 t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
21974 {
21975 if (known_t32_only_insn (opcode))
21976 return TRUE;
21977
21978 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
21979 of variant T3 of B.W is checked in do_t_branch. */
21980 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21981 && opcode->tencode == do_t_branch)
21982 return TRUE;
21983
21984 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
21985 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21986 && opcode->tencode == do_t_mov_cmp
21987 /* Make sure CMP instruction is not affected. */
21988 && opcode->aencode == do_mov)
21989 return TRUE;
21990
21991 /* Wide instruction variants of all instructions with narrow *and* wide
21992 variants become available with ARMv6t2. Other opcodes are either
21993 narrow-only or wide-only and are thus available if OPCODE is valid. */
21994 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
21995 return TRUE;
21996
21997 /* OPCODE with narrow only instruction variant or wide variant not
21998 available. */
21999 return FALSE;
22000 }
22001
22002 void
22003 md_assemble (char *str)
22004 {
22005 char *p = str;
22006 const struct asm_opcode * opcode;
22007
22008 /* Align the previous label if needed. */
22009 if (last_label_seen != NULL)
22010 {
22011 symbol_set_frag (last_label_seen, frag_now);
22012 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
22013 S_SET_SEGMENT (last_label_seen, now_seg);
22014 }
22015
22016 memset (&inst, '\0', sizeof (inst));
22017 int r;
22018 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
22019 inst.relocs[r].type = BFD_RELOC_UNUSED;
22020
22021 opcode = opcode_lookup (&p);
22022 if (!opcode)
22023 {
22024 /* It wasn't an instruction, but it might be a register alias of
22025 the form alias .req reg, or a Neon .dn/.qn directive. */
22026 if (! create_register_alias (str, p)
22027 && ! create_neon_reg_alias (str, p))
22028 as_bad (_("bad instruction `%s'"), str);
22029
22030 return;
22031 }
22032
22033 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
22034 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
22035
22036 /* The value which unconditional instructions should have in place of the
22037 condition field. */
22038 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
22039
22040 if (thumb_mode)
22041 {
22042 arm_feature_set variant;
22043
22044 variant = cpu_variant;
22045 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
22046 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
22047 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
22048 /* Check that this instruction is supported for this CPU. */
22049 if (!opcode->tvariant
22050 || (thumb_mode == 1
22051 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
22052 {
22053 if (opcode->tencode == do_t_swi)
22054 as_bad (_("SVC is not permitted on this architecture"));
22055 else
22056 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
22057 return;
22058 }
22059 if (inst.cond != COND_ALWAYS && !unified_syntax
22060 && opcode->tencode != do_t_branch)
22061 {
22062 as_bad (_("Thumb does not support conditional execution"));
22063 return;
22064 }
22065
22066 /* Two things are addressed here:
22067 1) Implicit require narrow instructions on Thumb-1.
22068 This avoids relaxation accidentally introducing Thumb-2
22069 instructions.
22070 2) Reject wide instructions in non Thumb-2 cores.
22071
22072 Only instructions with narrow and wide variants need to be handled
22073 but selecting all non wide-only instructions is easier. */
22074 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
22075 && !t32_insn_ok (variant, opcode))
22076 {
22077 if (inst.size_req == 0)
22078 inst.size_req = 2;
22079 else if (inst.size_req == 4)
22080 {
22081 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
22082 as_bad (_("selected processor does not support 32bit wide "
22083 "variant of instruction `%s'"), str);
22084 else
22085 as_bad (_("selected processor does not support `%s' in "
22086 "Thumb-2 mode"), str);
22087 return;
22088 }
22089 }
22090
22091 inst.instruction = opcode->tvalue;
22092
22093 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
22094 {
22095 /* Prepare the pred_insn_type for those encodings that don't set
22096 it. */
22097 it_fsm_pre_encode ();
22098
22099 opcode->tencode ();
22100
22101 it_fsm_post_encode ();
22102 }
22103
22104 if (!(inst.error || inst.relax))
22105 {
22106 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
22107 inst.size = (inst.instruction > 0xffff ? 4 : 2);
22108 if (inst.size_req && inst.size_req != inst.size)
22109 {
22110 as_bad (_("cannot honor width suffix -- `%s'"), str);
22111 return;
22112 }
22113 }
22114
22115 /* Something has gone badly wrong if we try to relax a fixed size
22116 instruction. */
22117 gas_assert (inst.size_req == 0 || !inst.relax);
22118
22119 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
22120 *opcode->tvariant);
22121 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
22122 set those bits when Thumb-2 32-bit instructions are seen. The impact
22123 of relaxable instructions will be considered later after we finish all
22124 relaxation. */
22125 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
22126 variant = arm_arch_none;
22127 else
22128 variant = cpu_variant;
22129 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
22130 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
22131 arm_ext_v6t2);
22132
22133 check_neon_suffixes;
22134
22135 if (!inst.error)
22136 {
22137 mapping_state (MAP_THUMB);
22138 }
22139 }
22140 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22141 {
22142 bfd_boolean is_bx;
22143
22144 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
22145 is_bx = (opcode->aencode == do_bx);
22146
22147 /* Check that this instruction is supported for this CPU. */
22148 if (!(is_bx && fix_v4bx)
22149 && !(opcode->avariant &&
22150 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
22151 {
22152 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
22153 return;
22154 }
22155 if (inst.size_req)
22156 {
22157 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
22158 return;
22159 }
22160
22161 inst.instruction = opcode->avalue;
22162 if (opcode->tag == OT_unconditionalF)
22163 inst.instruction |= 0xFU << 28;
22164 else
22165 inst.instruction |= inst.cond << 28;
22166 inst.size = INSN_SIZE;
22167 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
22168 {
22169 it_fsm_pre_encode ();
22170 opcode->aencode ();
22171 it_fsm_post_encode ();
22172 }
22173 /* Arm mode bx is marked as both v4T and v5 because it's still required
22174 on a hypothetical non-thumb v5 core. */
22175 if (is_bx)
22176 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
22177 else
22178 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
22179 *opcode->avariant);
22180
22181 check_neon_suffixes;
22182
22183 if (!inst.error)
22184 {
22185 mapping_state (MAP_ARM);
22186 }
22187 }
22188 else
22189 {
22190 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
22191 "-- `%s'"), str);
22192 return;
22193 }
22194 output_inst (str);
22195 }
22196
22197 static void
22198 check_pred_blocks_finished (void)
22199 {
22200 #ifdef OBJ_ELF
22201 asection *sect;
22202
22203 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
22204 if (seg_info (sect)->tc_segment_info_data.current_pred.state
22205 == MANUAL_PRED_BLOCK)
22206 {
22207 if (now_pred.type == SCALAR_PRED)
22208 as_warn (_("section '%s' finished with an open IT block."),
22209 sect->name);
22210 else
22211 as_warn (_("section '%s' finished with an open VPT/VPST block."),
22212 sect->name);
22213 }
22214 #else
22215 if (now_pred.state == MANUAL_PRED_BLOCK)
22216 {
22217 if (now_pred.type == SCALAR_PRED)
22218 as_warn (_("file finished with an open IT block."));
22219 else
22220 as_warn (_("file finished with an open VPT/VPST block."));
22221 }
22222 #endif
22223 }
22224
22225 /* Various frobbings of labels and their addresses. */
22226
22227 void
22228 arm_start_line_hook (void)
22229 {
22230 last_label_seen = NULL;
22231 }
22232
22233 void
22234 arm_frob_label (symbolS * sym)
22235 {
22236 last_label_seen = sym;
22237
22238 ARM_SET_THUMB (sym, thumb_mode);
22239
22240 #if defined OBJ_COFF || defined OBJ_ELF
22241 ARM_SET_INTERWORK (sym, support_interwork);
22242 #endif
22243
22244 force_automatic_it_block_close ();
22245
22246 /* Note - do not allow local symbols (.Lxxx) to be labelled
22247 as Thumb functions. This is because these labels, whilst
22248 they exist inside Thumb code, are not the entry points for
22249 possible ARM->Thumb calls. Also, these labels can be used
22250 as part of a computed goto or switch statement. eg gcc
22251 can generate code that looks like this:
22252
22253 ldr r2, [pc, .Laaa]
22254 lsl r3, r3, #2
22255 ldr r2, [r3, r2]
22256 mov pc, r2
22257
22258 .Lbbb: .word .Lxxx
22259 .Lccc: .word .Lyyy
22260 ..etc...
22261 .Laaa: .word Lbbb
22262
22263 The first instruction loads the address of the jump table.
22264 The second instruction converts a table index into a byte offset.
22265 The third instruction gets the jump address out of the table.
22266 The fourth instruction performs the jump.
22267
22268 If the address stored at .Laaa is that of a symbol which has the
22269 Thumb_Func bit set, then the linker will arrange for this address
22270 to have the bottom bit set, which in turn would mean that the
22271 address computation performed by the third instruction would end
22272 up with the bottom bit set. Since the ARM is capable of unaligned
22273 word loads, the instruction would then load the incorrect address
22274 out of the jump table, and chaos would ensue. */
22275 if (label_is_thumb_function_name
22276 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
22277 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
22278 {
22279 /* When the address of a Thumb function is taken the bottom
22280 bit of that address should be set. This will allow
22281 interworking between Arm and Thumb functions to work
22282 correctly. */
22283
22284 THUMB_SET_FUNC (sym, 1);
22285
22286 label_is_thumb_function_name = FALSE;
22287 }
22288
22289 dwarf2_emit_label (sym);
22290 }
22291
22292 bfd_boolean
22293 arm_data_in_code (void)
22294 {
22295 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
22296 {
22297 *input_line_pointer = '/';
22298 input_line_pointer += 5;
22299 *input_line_pointer = 0;
22300 return TRUE;
22301 }
22302
22303 return FALSE;
22304 }
22305
22306 char *
22307 arm_canonicalize_symbol_name (char * name)
22308 {
22309 int len;
22310
22311 if (thumb_mode && (len = strlen (name)) > 5
22312 && streq (name + len - 5, "/data"))
22313 *(name + len - 5) = 0;
22314
22315 return name;
22316 }
22317 \f
22318 /* Table of all register names defined by default. The user can
22319 define additional names with .req. Note that all register names
22320 should appear in both upper and lowercase variants. Some registers
22321 also have mixed-case names. */
22322
22323 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
22324 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
22325 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
22326 #define REGSET(p,t) \
22327 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
22328 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
22329 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
22330 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
22331 #define REGSETH(p,t) \
22332 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
22333 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
22334 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
22335 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
22336 #define REGSET2(p,t) \
22337 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
22338 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
22339 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
22340 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
22341 #define SPLRBANK(base,bank,t) \
22342 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
22343 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
22344 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
22345 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
22346 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
22347 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
22348
22349 static const struct reg_entry reg_names[] =
22350 {
22351 /* ARM integer registers. */
22352 REGSET(r, RN), REGSET(R, RN),
22353
22354 /* ATPCS synonyms. */
22355 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
22356 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
22357 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
22358
22359 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
22360 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
22361 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
22362
22363 /* Well-known aliases. */
22364 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
22365 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
22366
22367 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
22368 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
22369
22370 /* Defining the new Zero register from ARMv8.1-M. */
22371 REGDEF(zr,15,ZR),
22372 REGDEF(ZR,15,ZR),
22373
22374 /* Coprocessor numbers. */
22375 REGSET(p, CP), REGSET(P, CP),
22376
22377 /* Coprocessor register numbers. The "cr" variants are for backward
22378 compatibility. */
22379 REGSET(c, CN), REGSET(C, CN),
22380 REGSET(cr, CN), REGSET(CR, CN),
22381
22382 /* ARM banked registers. */
22383 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
22384 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
22385 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
22386 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
22387 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
22388 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
22389 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
22390
22391 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
22392 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
22393 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
22394 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
22395 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
22396 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
22397 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
22398 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
22399
22400 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
22401 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
22402 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
22403 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
22404 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
22405 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
22406 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
22407 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
22408 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
22409
22410 /* FPA registers. */
22411 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
22412 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
22413
22414 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
22415 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
22416
22417 /* VFP SP registers. */
22418 REGSET(s,VFS), REGSET(S,VFS),
22419 REGSETH(s,VFS), REGSETH(S,VFS),
22420
22421 /* VFP DP Registers. */
22422 REGSET(d,VFD), REGSET(D,VFD),
22423 /* Extra Neon DP registers. */
22424 REGSETH(d,VFD), REGSETH(D,VFD),
22425
22426 /* Neon QP registers. */
22427 REGSET2(q,NQ), REGSET2(Q,NQ),
22428
22429 /* VFP control registers. */
22430 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
22431 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
22432 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
22433 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
22434 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
22435 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
22436 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
22437
22438 /* Maverick DSP coprocessor registers. */
22439 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
22440 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
22441
22442 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
22443 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
22444 REGDEF(dspsc,0,DSPSC),
22445
22446 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
22447 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
22448 REGDEF(DSPSC,0,DSPSC),
22449
22450 /* iWMMXt data registers - p0, c0-15. */
22451 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
22452
22453 /* iWMMXt control registers - p1, c0-3. */
22454 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
22455 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
22456 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
22457 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
22458
22459 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
22460 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
22461 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
22462 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
22463 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
22464
22465 /* XScale accumulator registers. */
22466 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
22467 };
22468 #undef REGDEF
22469 #undef REGNUM
22470 #undef REGSET
22471
22472 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
22473 within psr_required_here. */
22474 static const struct asm_psr psrs[] =
22475 {
22476 /* Backward compatibility notation. Note that "all" is no longer
22477 truly all possible PSR bits. */
22478 {"all", PSR_c | PSR_f},
22479 {"flg", PSR_f},
22480 {"ctl", PSR_c},
22481
22482 /* Individual flags. */
22483 {"f", PSR_f},
22484 {"c", PSR_c},
22485 {"x", PSR_x},
22486 {"s", PSR_s},
22487
22488 /* Combinations of flags. */
22489 {"fs", PSR_f | PSR_s},
22490 {"fx", PSR_f | PSR_x},
22491 {"fc", PSR_f | PSR_c},
22492 {"sf", PSR_s | PSR_f},
22493 {"sx", PSR_s | PSR_x},
22494 {"sc", PSR_s | PSR_c},
22495 {"xf", PSR_x | PSR_f},
22496 {"xs", PSR_x | PSR_s},
22497 {"xc", PSR_x | PSR_c},
22498 {"cf", PSR_c | PSR_f},
22499 {"cs", PSR_c | PSR_s},
22500 {"cx", PSR_c | PSR_x},
22501 {"fsx", PSR_f | PSR_s | PSR_x},
22502 {"fsc", PSR_f | PSR_s | PSR_c},
22503 {"fxs", PSR_f | PSR_x | PSR_s},
22504 {"fxc", PSR_f | PSR_x | PSR_c},
22505 {"fcs", PSR_f | PSR_c | PSR_s},
22506 {"fcx", PSR_f | PSR_c | PSR_x},
22507 {"sfx", PSR_s | PSR_f | PSR_x},
22508 {"sfc", PSR_s | PSR_f | PSR_c},
22509 {"sxf", PSR_s | PSR_x | PSR_f},
22510 {"sxc", PSR_s | PSR_x | PSR_c},
22511 {"scf", PSR_s | PSR_c | PSR_f},
22512 {"scx", PSR_s | PSR_c | PSR_x},
22513 {"xfs", PSR_x | PSR_f | PSR_s},
22514 {"xfc", PSR_x | PSR_f | PSR_c},
22515 {"xsf", PSR_x | PSR_s | PSR_f},
22516 {"xsc", PSR_x | PSR_s | PSR_c},
22517 {"xcf", PSR_x | PSR_c | PSR_f},
22518 {"xcs", PSR_x | PSR_c | PSR_s},
22519 {"cfs", PSR_c | PSR_f | PSR_s},
22520 {"cfx", PSR_c | PSR_f | PSR_x},
22521 {"csf", PSR_c | PSR_s | PSR_f},
22522 {"csx", PSR_c | PSR_s | PSR_x},
22523 {"cxf", PSR_c | PSR_x | PSR_f},
22524 {"cxs", PSR_c | PSR_x | PSR_s},
22525 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
22526 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
22527 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
22528 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
22529 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
22530 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
22531 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
22532 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
22533 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
22534 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
22535 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
22536 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
22537 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
22538 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
22539 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
22540 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
22541 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
22542 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
22543 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
22544 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
22545 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
22546 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
22547 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
22548 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
22549 };
22550
22551 /* Table of V7M psr names. */
22552 static const struct asm_psr v7m_psrs[] =
22553 {
22554 {"apsr", 0x0 }, {"APSR", 0x0 },
22555 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
22556 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
22557 {"psr", 0x3 }, {"PSR", 0x3 },
22558 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
22559 {"ipsr", 0x5 }, {"IPSR", 0x5 },
22560 {"epsr", 0x6 }, {"EPSR", 0x6 },
22561 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
22562 {"msp", 0x8 }, {"MSP", 0x8 },
22563 {"psp", 0x9 }, {"PSP", 0x9 },
22564 {"msplim", 0xa }, {"MSPLIM", 0xa },
22565 {"psplim", 0xb }, {"PSPLIM", 0xb },
22566 {"primask", 0x10}, {"PRIMASK", 0x10},
22567 {"basepri", 0x11}, {"BASEPRI", 0x11},
22568 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
22569 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
22570 {"control", 0x14}, {"CONTROL", 0x14},
22571 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
22572 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
22573 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
22574 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
22575 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
22576 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
22577 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
22578 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
22579 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
22580 };
22581
22582 /* Table of all shift-in-operand names. */
22583 static const struct asm_shift_name shift_names [] =
22584 {
22585 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
22586 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
22587 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
22588 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
22589 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
22590 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
22591 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
22592 };
22593
22594 /* Table of all explicit relocation names. */
22595 #ifdef OBJ_ELF
22596 static struct reloc_entry reloc_names[] =
22597 {
22598 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
22599 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
22600 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
22601 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
22602 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
22603 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
22604 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
22605 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
22606 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
22607 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
22608 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
22609 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
22610 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
22611 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
22612 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
22613 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
22614 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
22615 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
22616 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
22617 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
22618 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22619 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22620 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
22621 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
22622 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
22623 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
22624 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
22625 };
22626 #endif
22627
22628 /* Table of all conditional affixes. */
22629 static const struct asm_cond conds[] =
22630 {
22631 {"eq", 0x0},
22632 {"ne", 0x1},
22633 {"cs", 0x2}, {"hs", 0x2},
22634 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
22635 {"mi", 0x4},
22636 {"pl", 0x5},
22637 {"vs", 0x6},
22638 {"vc", 0x7},
22639 {"hi", 0x8},
22640 {"ls", 0x9},
22641 {"ge", 0xa},
22642 {"lt", 0xb},
22643 {"gt", 0xc},
22644 {"le", 0xd},
22645 {"al", 0xe}
22646 };
22647 static const struct asm_cond vconds[] =
22648 {
22649 {"t", 0xf},
22650 {"e", 0x10}
22651 };
22652
22653 #define UL_BARRIER(L,U,CODE,FEAT) \
22654 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
22655 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
22656
22657 static struct asm_barrier_opt barrier_opt_names[] =
22658 {
22659 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
22660 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
22661 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
22662 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
22663 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
22664 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
22665 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
22666 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
22667 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
22668 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
22669 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
22670 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
22671 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
22672 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
22673 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
22674 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
22675 };
22676
22677 #undef UL_BARRIER
22678
22679 /* Table of ARM-format instructions. */
22680
22681 /* Macros for gluing together operand strings. N.B. In all cases
22682 other than OPS0, the trailing OP_stop comes from default
22683 zero-initialization of the unspecified elements of the array. */
22684 #define OPS0() { OP_stop, }
22685 #define OPS1(a) { OP_##a, }
22686 #define OPS2(a,b) { OP_##a,OP_##b, }
22687 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
22688 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
22689 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
22690 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
22691
22692 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
22693 This is useful when mixing operands for ARM and THUMB, i.e. using the
22694 MIX_ARM_THUMB_OPERANDS macro.
22695 In order to use these macros, prefix the number of operands with _
22696 e.g. _3. */
22697 #define OPS_1(a) { a, }
22698 #define OPS_2(a,b) { a,b, }
22699 #define OPS_3(a,b,c) { a,b,c, }
22700 #define OPS_4(a,b,c,d) { a,b,c,d, }
22701 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
22702 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
22703
22704 /* These macros abstract out the exact format of the mnemonic table and
22705 save some repeated characters. */
22706
22707 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
22708 #define TxCE(mnem, op, top, nops, ops, ae, te) \
22709 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
22710 THUMB_VARIANT, do_##ae, do_##te, 0 }
22711
22712 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
22713 a T_MNEM_xyz enumerator. */
22714 #define TCE(mnem, aop, top, nops, ops, ae, te) \
22715 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
22716 #define tCE(mnem, aop, top, nops, ops, ae, te) \
22717 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22718
22719 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
22720 infix after the third character. */
22721 #define TxC3(mnem, op, top, nops, ops, ae, te) \
22722 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
22723 THUMB_VARIANT, do_##ae, do_##te, 0 }
22724 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
22725 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
22726 THUMB_VARIANT, do_##ae, do_##te, 0 }
22727 #define TC3(mnem, aop, top, nops, ops, ae, te) \
22728 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
22729 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
22730 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
22731 #define tC3(mnem, aop, top, nops, ops, ae, te) \
22732 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22733 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
22734 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22735
22736 /* Mnemonic that cannot be conditionalized. The ARM condition-code
22737 field is still 0xE. Many of the Thumb variants can be executed
22738 conditionally, so this is checked separately. */
22739 #define TUE(mnem, op, top, nops, ops, ae, te) \
22740 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
22741 THUMB_VARIANT, do_##ae, do_##te, 0 }
22742
22743 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
22744 Used by mnemonics that have very minimal differences in the encoding for
22745 ARM and Thumb variants and can be handled in a common function. */
22746 #define TUEc(mnem, op, top, nops, ops, en) \
22747 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
22748 THUMB_VARIANT, do_##en, do_##en, 0 }
22749
22750 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
22751 condition code field. */
22752 #define TUF(mnem, op, top, nops, ops, ae, te) \
22753 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
22754 THUMB_VARIANT, do_##ae, do_##te, 0 }
22755
22756 /* ARM-only variants of all the above. */
22757 #define CE(mnem, op, nops, ops, ae) \
22758 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22759
22760 #define C3(mnem, op, nops, ops, ae) \
22761 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22762
22763 /* Thumb-only variants of TCE and TUE. */
22764 #define ToC(mnem, top, nops, ops, te) \
22765 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22766 do_##te, 0 }
22767
22768 #define ToU(mnem, top, nops, ops, te) \
22769 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
22770 NULL, do_##te, 0 }
22771
22772 /* T_MNEM_xyz enumerator variants of ToC. */
22773 #define toC(mnem, top, nops, ops, te) \
22774 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
22775 do_##te, 0 }
22776
22777 /* T_MNEM_xyz enumerator variants of ToU. */
22778 #define toU(mnem, top, nops, ops, te) \
22779 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
22780 NULL, do_##te, 0 }
22781
22782 /* Legacy mnemonics that always have conditional infix after the third
22783 character. */
22784 #define CL(mnem, op, nops, ops, ae) \
22785 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
22786 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22787
22788 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
22789 #define cCE(mnem, op, nops, ops, ae) \
22790 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22791
22792 /* mov instructions that are shared between coprocessor and MVE. */
22793 #define mcCE(mnem, op, nops, ops, ae) \
22794 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
22795
22796 /* Legacy coprocessor instructions where conditional infix and conditional
22797 suffix are ambiguous. For consistency this includes all FPA instructions,
22798 not just the potentially ambiguous ones. */
22799 #define cCL(mnem, op, nops, ops, ae) \
22800 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
22801 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22802
22803 /* Coprocessor, takes either a suffix or a position-3 infix
22804 (for an FPA corner case). */
22805 #define C3E(mnem, op, nops, ops, ae) \
22806 { mnem, OPS##nops ops, OT_csuf_or_in3, \
22807 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22808
22809 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
22810 { m1 #m2 m3, OPS##nops ops, \
22811 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
22812 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22813
22814 #define CM(m1, m2, op, nops, ops, ae) \
22815 xCM_ (m1, , m2, op, nops, ops, ae), \
22816 xCM_ (m1, eq, m2, op, nops, ops, ae), \
22817 xCM_ (m1, ne, m2, op, nops, ops, ae), \
22818 xCM_ (m1, cs, m2, op, nops, ops, ae), \
22819 xCM_ (m1, hs, m2, op, nops, ops, ae), \
22820 xCM_ (m1, cc, m2, op, nops, ops, ae), \
22821 xCM_ (m1, ul, m2, op, nops, ops, ae), \
22822 xCM_ (m1, lo, m2, op, nops, ops, ae), \
22823 xCM_ (m1, mi, m2, op, nops, ops, ae), \
22824 xCM_ (m1, pl, m2, op, nops, ops, ae), \
22825 xCM_ (m1, vs, m2, op, nops, ops, ae), \
22826 xCM_ (m1, vc, m2, op, nops, ops, ae), \
22827 xCM_ (m1, hi, m2, op, nops, ops, ae), \
22828 xCM_ (m1, ls, m2, op, nops, ops, ae), \
22829 xCM_ (m1, ge, m2, op, nops, ops, ae), \
22830 xCM_ (m1, lt, m2, op, nops, ops, ae), \
22831 xCM_ (m1, gt, m2, op, nops, ops, ae), \
22832 xCM_ (m1, le, m2, op, nops, ops, ae), \
22833 xCM_ (m1, al, m2, op, nops, ops, ae)
22834
22835 #define UE(mnem, op, nops, ops, ae) \
22836 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22837
22838 #define UF(mnem, op, nops, ops, ae) \
22839 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22840
22841 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
22842 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
22843 use the same encoding function for each. */
22844 #define NUF(mnem, op, nops, ops, enc) \
22845 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22846 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
22847
22848 /* Neon data processing, version which indirects through neon_enc_tab for
22849 the various overloaded versions of opcodes. */
22850 #define nUF(mnem, op, nops, ops, enc) \
22851 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22852 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
22853
22854 /* Neon insn with conditional suffix for the ARM version, non-overloaded
22855 version. */
22856 #define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
22857 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
22858 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
22859
22860 #define NCE(mnem, op, nops, ops, enc) \
22861 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
22862
22863 #define NCEF(mnem, op, nops, ops, enc) \
22864 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22865
22866 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
22867 #define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
22868 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
22869 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
22870
22871 #define nCE(mnem, op, nops, ops, enc) \
22872 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
22873
22874 #define nCEF(mnem, op, nops, ops, enc) \
22875 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22876
22877 /* */
22878 #define mCEF(mnem, op, nops, ops, enc) \
22879 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
22880 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22881
22882
22883 /* nCEF but for MVE predicated instructions. */
22884 #define mnCEF(mnem, op, nops, ops, enc) \
22885 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22886
22887 /* nCE but for MVE predicated instructions. */
22888 #define mnCE(mnem, op, nops, ops, enc) \
22889 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22890
22891 /* NUF but for potentially MVE predicated instructions. */
22892 #define MNUF(mnem, op, nops, ops, enc) \
22893 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22894 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22895
22896 /* nUF but for potentially MVE predicated instructions. */
22897 #define mnUF(mnem, op, nops, ops, enc) \
22898 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22899 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22900
22901 /* ToC but for potentially MVE predicated instructions. */
22902 #define mToC(mnem, top, nops, ops, te) \
22903 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22904 do_##te, 1 }
22905
22906 /* NCE but for MVE predicated instructions. */
22907 #define MNCE(mnem, op, nops, ops, enc) \
22908 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22909
22910 /* NCEF but for MVE predicated instructions. */
22911 #define MNCEF(mnem, op, nops, ops, enc) \
22912 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22913 #define do_0 0
22914
22915 static const struct asm_opcode insns[] =
22916 {
22917 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
22918 #define THUMB_VARIANT & arm_ext_v4t
22919 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
22920 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
22921 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
22922 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
22923 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
22924 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
22925 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
22926 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
22927 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
22928 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
22929 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
22930 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
22931 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
22932 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
22933 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
22934 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
22935
22936 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
22937 for setting PSR flag bits. They are obsolete in V6 and do not
22938 have Thumb equivalents. */
22939 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22940 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22941 CL("tstp", 110f000, 2, (RR, SH), cmp),
22942 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22943 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22944 CL("cmpp", 150f000, 2, (RR, SH), cmp),
22945 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22946 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22947 CL("cmnp", 170f000, 2, (RR, SH), cmp),
22948
22949 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
22950 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
22951 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
22952 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
22953
22954 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
22955 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22956 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
22957 OP_RRnpc),
22958 OP_ADDRGLDR),ldst, t_ldst),
22959 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22960
22961 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22962 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22963 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22964 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22965 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22966 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22967
22968 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
22969 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
22970
22971 /* Pseudo ops. */
22972 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
22973 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
22974 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
22975 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
22976
22977 /* Thumb-compatibility pseudo ops. */
22978 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
22979 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
22980 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
22981 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
22982 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
22983 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
22984 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
22985 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
22986 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
22987 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
22988 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
22989 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
22990
22991 /* These may simplify to neg. */
22992 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
22993 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
22994
22995 #undef THUMB_VARIANT
22996 #define THUMB_VARIANT & arm_ext_os
22997
22998 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
22999 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
23000
23001 #undef THUMB_VARIANT
23002 #define THUMB_VARIANT & arm_ext_v6
23003
23004 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
23005
23006 /* V1 instructions with no Thumb analogue prior to V6T2. */
23007 #undef THUMB_VARIANT
23008 #define THUMB_VARIANT & arm_ext_v6t2
23009
23010 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
23011 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
23012 CL("teqp", 130f000, 2, (RR, SH), cmp),
23013
23014 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23015 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23016 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
23017 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23018
23019 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23020 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23021
23022 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23023 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23024
23025 /* V1 instructions with no Thumb analogue at all. */
23026 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
23027 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
23028
23029 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
23030 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
23031 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
23032 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
23033 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
23034 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
23035 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
23036 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
23037
23038 #undef ARM_VARIANT
23039 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
23040 #undef THUMB_VARIANT
23041 #define THUMB_VARIANT & arm_ext_v4t
23042
23043 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
23044 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
23045
23046 #undef THUMB_VARIANT
23047 #define THUMB_VARIANT & arm_ext_v6t2
23048
23049 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
23050 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
23051
23052 /* Generic coprocessor instructions. */
23053 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
23054 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23055 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23056 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23057 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23058 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
23059 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
23060
23061 #undef ARM_VARIANT
23062 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
23063
23064 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
23065 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
23066
23067 #undef ARM_VARIANT
23068 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
23069 #undef THUMB_VARIANT
23070 #define THUMB_VARIANT & arm_ext_msr
23071
23072 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
23073 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
23074
23075 #undef ARM_VARIANT
23076 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
23077 #undef THUMB_VARIANT
23078 #define THUMB_VARIANT & arm_ext_v6t2
23079
23080 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23081 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23082 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23083 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23084 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23085 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23086 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23087 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23088
23089 #undef ARM_VARIANT
23090 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
23091 #undef THUMB_VARIANT
23092 #define THUMB_VARIANT & arm_ext_v4t
23093
23094 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23095 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23096 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23097 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23098 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23099 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23100
23101 #undef ARM_VARIANT
23102 #define ARM_VARIANT & arm_ext_v4t_5
23103
23104 /* ARM Architecture 4T. */
23105 /* Note: bx (and blx) are required on V5, even if the processor does
23106 not support Thumb. */
23107 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
23108
23109 #undef ARM_VARIANT
23110 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
23111 #undef THUMB_VARIANT
23112 #define THUMB_VARIANT & arm_ext_v5t
23113
23114 /* Note: blx has 2 variants; the .value coded here is for
23115 BLX(2). Only this variant has conditional execution. */
23116 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
23117 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
23118
23119 #undef THUMB_VARIANT
23120 #define THUMB_VARIANT & arm_ext_v6t2
23121
23122 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
23123 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23124 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23125 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23126 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23127 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
23128 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
23129 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
23130
23131 #undef ARM_VARIANT
23132 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
23133 #undef THUMB_VARIANT
23134 #define THUMB_VARIANT & arm_ext_v5exp
23135
23136 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23137 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23138 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23139 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23140
23141 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23142 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23143
23144 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23145 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23146 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23147 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23148
23149 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23150 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23151 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23152 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23153
23154 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23155 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23156
23157 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23158 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23159 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23160 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23161
23162 #undef ARM_VARIANT
23163 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
23164 #undef THUMB_VARIANT
23165 #define THUMB_VARIANT & arm_ext_v6t2
23166
23167 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
23168 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
23169 ldrd, t_ldstd),
23170 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
23171 ADDRGLDRS), ldrd, t_ldstd),
23172
23173 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23174 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23175
23176 #undef ARM_VARIANT
23177 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
23178
23179 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
23180
23181 #undef ARM_VARIANT
23182 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
23183 #undef THUMB_VARIANT
23184 #define THUMB_VARIANT & arm_ext_v6
23185
23186 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
23187 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
23188 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23189 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23190 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23191 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23192 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23193 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23194 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23195 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
23196
23197 #undef THUMB_VARIANT
23198 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23199
23200 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
23201 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23202 strex, t_strex),
23203 #undef THUMB_VARIANT
23204 #define THUMB_VARIANT & arm_ext_v6t2
23205
23206 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23207 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23208
23209 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
23210 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
23211
23212 /* ARM V6 not included in V7M. */
23213 #undef THUMB_VARIANT
23214 #define THUMB_VARIANT & arm_ext_v6_notm
23215 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
23216 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
23217 UF(rfeib, 9900a00, 1, (RRw), rfe),
23218 UF(rfeda, 8100a00, 1, (RRw), rfe),
23219 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
23220 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
23221 UF(rfefa, 8100a00, 1, (RRw), rfe),
23222 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
23223 UF(rfeed, 9900a00, 1, (RRw), rfe),
23224 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23225 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23226 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23227 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
23228 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
23229 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
23230 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
23231 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
23232 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
23233 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
23234
23235 /* ARM V6 not included in V7M (eg. integer SIMD). */
23236 #undef THUMB_VARIANT
23237 #define THUMB_VARIANT & arm_ext_v6_dsp
23238 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
23239 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
23240 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23241 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23242 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23243 /* Old name for QASX. */
23244 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23245 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23246 /* Old name for QSAX. */
23247 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23248 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23249 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23250 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23251 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23252 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23253 /* Old name for SASX. */
23254 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23255 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23256 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23257 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23258 /* Old name for SHASX. */
23259 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23260 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23261 /* Old name for SHSAX. */
23262 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23263 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23264 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23265 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23266 /* Old name for SSAX. */
23267 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23268 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23269 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23270 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23271 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23272 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23273 /* Old name for UASX. */
23274 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23275 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23276 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23277 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23278 /* Old name for UHASX. */
23279 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23280 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23281 /* Old name for UHSAX. */
23282 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23283 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23284 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23285 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23286 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23287 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23288 /* Old name for UQASX. */
23289 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23290 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23291 /* Old name for UQSAX. */
23292 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23293 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23294 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23295 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23296 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23297 /* Old name for USAX. */
23298 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23299 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23300 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23301 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23302 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23303 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23304 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23305 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23306 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23307 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23308 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23309 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23310 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23311 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23312 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23313 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23314 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23315 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23316 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23317 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23318 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23319 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23320 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23321 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23322 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23323 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23324 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23325 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23326 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23327 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
23328 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
23329 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23330 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23331 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
23332
23333 #undef ARM_VARIANT
23334 #define ARM_VARIANT & arm_ext_v6k_v6t2
23335 #undef THUMB_VARIANT
23336 #define THUMB_VARIANT & arm_ext_v6k_v6t2
23337
23338 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
23339 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
23340 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
23341 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
23342
23343 #undef THUMB_VARIANT
23344 #define THUMB_VARIANT & arm_ext_v6_notm
23345 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
23346 ldrexd, t_ldrexd),
23347 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
23348 RRnpcb), strexd, t_strexd),
23349
23350 #undef THUMB_VARIANT
23351 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23352 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
23353 rd_rn, rd_rn),
23354 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
23355 rd_rn, rd_rn),
23356 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23357 strex, t_strexbh),
23358 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23359 strex, t_strexbh),
23360 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
23361
23362 #undef ARM_VARIANT
23363 #define ARM_VARIANT & arm_ext_sec
23364 #undef THUMB_VARIANT
23365 #define THUMB_VARIANT & arm_ext_sec
23366
23367 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
23368
23369 #undef ARM_VARIANT
23370 #define ARM_VARIANT & arm_ext_virt
23371 #undef THUMB_VARIANT
23372 #define THUMB_VARIANT & arm_ext_virt
23373
23374 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
23375 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
23376
23377 #undef ARM_VARIANT
23378 #define ARM_VARIANT & arm_ext_pan
23379 #undef THUMB_VARIANT
23380 #define THUMB_VARIANT & arm_ext_pan
23381
23382 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
23383
23384 #undef ARM_VARIANT
23385 #define ARM_VARIANT & arm_ext_v6t2
23386 #undef THUMB_VARIANT
23387 #define THUMB_VARIANT & arm_ext_v6t2
23388
23389 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
23390 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
23391 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
23392 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
23393
23394 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
23395 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
23396
23397 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23398 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23399 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23400 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23401
23402 #undef ARM_VARIANT
23403 #define ARM_VARIANT & arm_ext_v3
23404 #undef THUMB_VARIANT
23405 #define THUMB_VARIANT & arm_ext_v6t2
23406
23407 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
23408 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
23409 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
23410
23411 #undef ARM_VARIANT
23412 #define ARM_VARIANT & arm_ext_v6t2
23413 #undef THUMB_VARIANT
23414 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23415 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
23416 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
23417
23418 /* Thumb-only instructions. */
23419 #undef ARM_VARIANT
23420 #define ARM_VARIANT NULL
23421 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
23422 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
23423
23424 /* ARM does not really have an IT instruction, so always allow it.
23425 The opcode is copied from Thumb in order to allow warnings in
23426 -mimplicit-it=[never | arm] modes. */
23427 #undef ARM_VARIANT
23428 #define ARM_VARIANT & arm_ext_v1
23429 #undef THUMB_VARIANT
23430 #define THUMB_VARIANT & arm_ext_v6t2
23431
23432 TUE("it", bf08, bf08, 1, (COND), it, t_it),
23433 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
23434 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
23435 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
23436 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
23437 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
23438 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
23439 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
23440 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
23441 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
23442 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
23443 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
23444 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
23445 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
23446 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
23447 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
23448 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
23449 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
23450
23451 /* Thumb2 only instructions. */
23452 #undef ARM_VARIANT
23453 #define ARM_VARIANT NULL
23454
23455 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23456 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23457 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
23458 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
23459 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
23460 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
23461
23462 /* Hardware division instructions. */
23463 #undef ARM_VARIANT
23464 #define ARM_VARIANT & arm_ext_adiv
23465 #undef THUMB_VARIANT
23466 #define THUMB_VARIANT & arm_ext_div
23467
23468 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
23469 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
23470
23471 /* ARM V6M/V7 instructions. */
23472 #undef ARM_VARIANT
23473 #define ARM_VARIANT & arm_ext_barrier
23474 #undef THUMB_VARIANT
23475 #define THUMB_VARIANT & arm_ext_barrier
23476
23477 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
23478 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
23479 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
23480
23481 /* ARM V7 instructions. */
23482 #undef ARM_VARIANT
23483 #define ARM_VARIANT & arm_ext_v7
23484 #undef THUMB_VARIANT
23485 #define THUMB_VARIANT & arm_ext_v7
23486
23487 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
23488 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
23489
23490 #undef ARM_VARIANT
23491 #define ARM_VARIANT & arm_ext_mp
23492 #undef THUMB_VARIANT
23493 #define THUMB_VARIANT & arm_ext_mp
23494
23495 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
23496
23497 /* AArchv8 instructions. */
23498 #undef ARM_VARIANT
23499 #define ARM_VARIANT & arm_ext_v8
23500
23501 /* Instructions shared between armv8-a and armv8-m. */
23502 #undef THUMB_VARIANT
23503 #define THUMB_VARIANT & arm_ext_atomics
23504
23505 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23506 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23507 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23508 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23509 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23510 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23511 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23512 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
23513 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23514 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
23515 stlex, t_stlex),
23516 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
23517 stlex, t_stlex),
23518 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
23519 stlex, t_stlex),
23520 #undef THUMB_VARIANT
23521 #define THUMB_VARIANT & arm_ext_v8
23522
23523 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
23524 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
23525 ldrexd, t_ldrexd),
23526 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
23527 strexd, t_strexd),
23528
23529 /* Defined in V8 but is in undefined encoding space for earlier
23530 architectures. However earlier architectures are required to treat
23531 this instuction as a semihosting trap as well. Hence while not explicitly
23532 defined as such, it is in fact correct to define the instruction for all
23533 architectures. */
23534 #undef THUMB_VARIANT
23535 #define THUMB_VARIANT & arm_ext_v1
23536 #undef ARM_VARIANT
23537 #define ARM_VARIANT & arm_ext_v1
23538 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
23539
23540 /* ARMv8 T32 only. */
23541 #undef ARM_VARIANT
23542 #define ARM_VARIANT NULL
23543 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
23544 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
23545 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
23546
23547 /* FP for ARMv8. */
23548 #undef ARM_VARIANT
23549 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
23550 #undef THUMB_VARIANT
23551 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
23552
23553 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
23554 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
23555 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
23556 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
23557 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
23558 mnCE(vrintz, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintz),
23559 mnCE(vrintx, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintx),
23560 mnUF(vrinta, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrinta),
23561 mnUF(vrintn, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintn),
23562 mnUF(vrintp, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintp),
23563 mnUF(vrintm, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintm),
23564
23565 /* Crypto v1 extensions. */
23566 #undef ARM_VARIANT
23567 #define ARM_VARIANT & fpu_crypto_ext_armv8
23568 #undef THUMB_VARIANT
23569 #define THUMB_VARIANT & fpu_crypto_ext_armv8
23570
23571 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
23572 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
23573 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
23574 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
23575 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
23576 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
23577 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
23578 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
23579 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
23580 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
23581 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
23582 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
23583 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
23584 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
23585
23586 #undef ARM_VARIANT
23587 #define ARM_VARIANT & crc_ext_armv8
23588 #undef THUMB_VARIANT
23589 #define THUMB_VARIANT & crc_ext_armv8
23590 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
23591 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
23592 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
23593 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
23594 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
23595 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
23596
23597 /* ARMv8.2 RAS extension. */
23598 #undef ARM_VARIANT
23599 #define ARM_VARIANT & arm_ext_ras
23600 #undef THUMB_VARIANT
23601 #define THUMB_VARIANT & arm_ext_ras
23602 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
23603
23604 #undef ARM_VARIANT
23605 #define ARM_VARIANT & arm_ext_v8_3
23606 #undef THUMB_VARIANT
23607 #define THUMB_VARIANT & arm_ext_v8_3
23608 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
23609
23610 #undef ARM_VARIANT
23611 #define ARM_VARIANT & fpu_neon_ext_dotprod
23612 #undef THUMB_VARIANT
23613 #define THUMB_VARIANT & fpu_neon_ext_dotprod
23614 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
23615 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
23616
23617 #undef ARM_VARIANT
23618 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
23619 #undef THUMB_VARIANT
23620 #define THUMB_VARIANT NULL
23621
23622 cCE("wfs", e200110, 1, (RR), rd),
23623 cCE("rfs", e300110, 1, (RR), rd),
23624 cCE("wfc", e400110, 1, (RR), rd),
23625 cCE("rfc", e500110, 1, (RR), rd),
23626
23627 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
23628 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
23629 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
23630 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
23631
23632 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
23633 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
23634 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
23635 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
23636
23637 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
23638 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
23639 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
23640 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
23641 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
23642 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
23643 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
23644 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
23645 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
23646 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
23647 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
23648 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
23649
23650 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
23651 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
23652 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
23653 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
23654 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
23655 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
23656 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
23657 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
23658 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
23659 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
23660 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
23661 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
23662
23663 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
23664 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
23665 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
23666 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
23667 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
23668 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
23669 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
23670 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
23671 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
23672 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
23673 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
23674 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
23675
23676 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
23677 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
23678 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
23679 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
23680 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
23681 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
23682 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
23683 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
23684 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
23685 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
23686 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
23687 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
23688
23689 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
23690 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
23691 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
23692 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
23693 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
23694 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
23695 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
23696 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
23697 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
23698 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
23699 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
23700 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
23701
23702 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
23703 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
23704 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
23705 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
23706 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
23707 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
23708 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
23709 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
23710 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
23711 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
23712 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
23713 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
23714
23715 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
23716 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
23717 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
23718 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
23719 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
23720 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
23721 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
23722 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
23723 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
23724 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
23725 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
23726 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
23727
23728 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
23729 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
23730 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
23731 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
23732 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
23733 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
23734 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
23735 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
23736 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
23737 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
23738 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
23739 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
23740
23741 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
23742 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
23743 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
23744 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
23745 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
23746 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
23747 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
23748 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
23749 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
23750 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
23751 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
23752 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
23753
23754 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
23755 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
23756 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
23757 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
23758 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
23759 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
23760 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
23761 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
23762 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
23763 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
23764 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
23765 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
23766
23767 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
23768 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
23769 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
23770 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
23771 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
23772 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
23773 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
23774 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
23775 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
23776 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
23777 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
23778 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
23779
23780 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
23781 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
23782 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
23783 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
23784 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
23785 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
23786 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
23787 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
23788 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
23789 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
23790 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
23791 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
23792
23793 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
23794 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
23795 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
23796 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
23797 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
23798 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
23799 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
23800 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
23801 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
23802 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
23803 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
23804 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
23805
23806 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
23807 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
23808 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
23809 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
23810 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
23811 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
23812 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
23813 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
23814 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
23815 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
23816 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
23817 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
23818
23819 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
23820 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
23821 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
23822 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
23823 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
23824 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
23825 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
23826 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
23827 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
23828 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
23829 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
23830 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
23831
23832 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
23833 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
23834 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
23835 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
23836 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
23837 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
23838 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
23839 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
23840 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
23841 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
23842 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
23843 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
23844
23845 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
23846 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
23847 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
23848 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
23849 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
23850 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23851 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23852 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23853 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
23854 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
23855 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
23856 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
23857
23858 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
23859 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
23860 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
23861 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
23862 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
23863 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23864 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23865 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23866 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
23867 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
23868 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
23869 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
23870
23871 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
23872 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
23873 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
23874 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
23875 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
23876 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23877 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23878 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23879 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
23880 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
23881 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
23882 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
23883
23884 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
23885 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
23886 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
23887 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
23888 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
23889 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23890 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23891 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23892 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
23893 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
23894 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
23895 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
23896
23897 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
23898 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
23899 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
23900 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
23901 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
23902 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23903 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23904 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23905 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
23906 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
23907 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
23908 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
23909
23910 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
23911 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
23912 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
23913 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
23914 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
23915 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23916 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23917 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23918 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
23919 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
23920 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
23921 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
23922
23923 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
23924 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
23925 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
23926 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
23927 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
23928 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23929 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23930 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23931 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
23932 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
23933 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
23934 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
23935
23936 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
23937 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
23938 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
23939 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
23940 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
23941 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23942 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23943 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23944 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
23945 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
23946 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
23947 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
23948
23949 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
23950 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
23951 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
23952 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
23953 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
23954 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23955 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23956 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23957 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
23958 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
23959 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
23960 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
23961
23962 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
23963 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
23964 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
23965 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
23966 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
23967 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23968 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23969 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23970 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
23971 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
23972 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
23973 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
23974
23975 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23976 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23977 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23978 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23979 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23980 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23981 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23982 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23983 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23984 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23985 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23986 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23987
23988 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23989 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23990 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23991 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23992 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23993 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23994 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23995 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23996 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23997 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23998 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23999 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24000
24001 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24002 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24003 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24004 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24005 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24006 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24007 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24008 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24009 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24010 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24011 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24012 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24013
24014 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
24015 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
24016 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
24017 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
24018
24019 cCL("flts", e000110, 2, (RF, RR), rn_rd),
24020 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
24021 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
24022 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
24023 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
24024 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
24025 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
24026 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
24027 cCL("flte", e080110, 2, (RF, RR), rn_rd),
24028 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
24029 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
24030 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
24031
24032 /* The implementation of the FIX instruction is broken on some
24033 assemblers, in that it accepts a precision specifier as well as a
24034 rounding specifier, despite the fact that this is meaningless.
24035 To be more compatible, we accept it as well, though of course it
24036 does not set any bits. */
24037 cCE("fix", e100110, 2, (RR, RF), rd_rm),
24038 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
24039 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
24040 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
24041 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
24042 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
24043 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
24044 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
24045 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
24046 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
24047 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
24048 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
24049 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
24050
24051 /* Instructions that were new with the real FPA, call them V2. */
24052 #undef ARM_VARIANT
24053 #define ARM_VARIANT & fpu_fpa_ext_v2
24054
24055 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24056 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24057 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24058 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24059 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24060 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24061
24062 #undef ARM_VARIANT
24063 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
24064
24065 /* Moves and type conversions. */
24066 cCE("fmstat", ef1fa10, 0, (), noargs),
24067 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
24068 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
24069 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
24070 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
24071 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
24072 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
24073 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
24074 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
24075 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
24076 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
24077
24078 /* Memory operations. */
24079 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
24080 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
24081 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24082 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24083 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24084 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24085 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24086 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24087 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24088 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24089 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24090 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24091 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24092 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24093 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24094 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24095 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24096 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24097
24098 /* Monadic operations. */
24099 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
24100 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
24101 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
24102
24103 /* Dyadic operations. */
24104 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24105 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24106 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24107 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24108 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24109 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24110 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24111 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24112 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24113
24114 /* Comparisons. */
24115 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
24116 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
24117 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
24118 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
24119
24120 /* Double precision load/store are still present on single precision
24121 implementations. */
24122 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
24123 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
24124 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24125 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24126 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24127 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24128 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24129 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24130 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24131 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24132
24133 #undef ARM_VARIANT
24134 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
24135
24136 /* Moves and type conversions. */
24137 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
24138 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24139 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
24140 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
24141 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
24142 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
24143 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
24144 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
24145 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
24146 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24147 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
24148 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24149
24150 /* Monadic operations. */
24151 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24152 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24153 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24154
24155 /* Dyadic operations. */
24156 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24157 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24158 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24159 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24160 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24161 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24162 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24163 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24164 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24165
24166 /* Comparisons. */
24167 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24168 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
24169 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24170 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
24171
24172 /* Instructions which may belong to either the Neon or VFP instruction sets.
24173 Individual encoder functions perform additional architecture checks. */
24174 #undef ARM_VARIANT
24175 #define ARM_VARIANT & fpu_vfp_ext_v1xd
24176 #undef THUMB_VARIANT
24177 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
24178
24179 /* These mnemonics are unique to VFP. */
24180 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
24181 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
24182 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24183 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24184 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24185 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
24186 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
24187 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
24188
24189 /* Mnemonics shared by Neon and VFP. */
24190 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
24191
24192 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24193 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24194 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24195 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24196 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24197 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24198
24199 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
24200 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
24201 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
24202 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
24203
24204
24205 /* NOTE: All VMOV encoding is special-cased! */
24206 NCE(vmovq, 0, 1, (VMOV), neon_mov),
24207
24208 #undef THUMB_VARIANT
24209 /* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
24210 by different feature bits. Since we are setting the Thumb guard, we can
24211 require Thumb-1 which makes it a nop guard and set the right feature bit in
24212 do_vldr_vstr (). */
24213 #define THUMB_VARIANT & arm_ext_v4t
24214 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
24215 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
24216
24217 #undef ARM_VARIANT
24218 #define ARM_VARIANT & arm_ext_fp16
24219 #undef THUMB_VARIANT
24220 #define THUMB_VARIANT & arm_ext_fp16
24221 /* New instructions added from v8.2, allowing the extraction and insertion of
24222 the upper 16 bits of a 32-bit vector register. */
24223 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
24224 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
24225
24226 /* New backported fma/fms instructions optional in v8.2. */
24227 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
24228 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
24229
24230 #undef THUMB_VARIANT
24231 #define THUMB_VARIANT & fpu_neon_ext_v1
24232 #undef ARM_VARIANT
24233 #define ARM_VARIANT & fpu_neon_ext_v1
24234
24235 /* Data processing with three registers of the same length. */
24236 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
24237 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
24238 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
24239 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24240 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24241 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24242 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
24243 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
24244 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
24245 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
24246 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
24247 /* If not immediate, fall back to neon_dyadic_i64_su.
24248 shl_imm should accept I8 I16 I32 I64,
24249 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
24250 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
24251 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
24252 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
24253 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
24254 /* Logic ops, types optional & ignored. */
24255 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24256 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24257 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24258 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24259 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
24260 /* Bitfield ops, untyped. */
24261 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24262 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24263 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24264 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24265 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24266 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24267 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
24268 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
24269 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
24270 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
24271 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
24272 back to neon_dyadic_if_su. */
24273 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24274 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24275 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24276 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24277 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24278 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
24279 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24280 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
24281 /* Comparison. Type I8 I16 I32 F32. */
24282 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
24283 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
24284 /* As above, D registers only. */
24285 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
24286 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
24287 /* Int and float variants, signedness unimportant. */
24288 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24289 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24290 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
24291 /* Add/sub take types I8 I16 I32 I64 F32. */
24292 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
24293 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
24294 /* vtst takes sizes 8, 16, 32. */
24295 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
24296 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
24297 /* VMUL takes I8 I16 I32 F32 P8. */
24298 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
24299 /* VQD{R}MULH takes S16 S32. */
24300 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
24301 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
24302 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24303 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
24304 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24305 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
24306 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24307 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
24308 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24309 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
24310 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24311 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
24312 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24313 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
24314 /* ARM v8.1 extension. */
24315 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
24316 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
24317 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
24318
24319 /* Two address, int/float. Types S8 S16 S32 F32. */
24320 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
24321 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
24322
24323 /* Data processing with two registers and a shift amount. */
24324 /* Right shifts, and variants with rounding.
24325 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
24326 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
24327 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24328 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
24329 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24330 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24331 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24332 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24333 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24334 /* Shift and insert. Sizes accepted 8 16 32 64. */
24335 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
24336 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
24337 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
24338 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
24339 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
24340 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
24341 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
24342 /* Right shift immediate, saturating & narrowing, with rounding variants.
24343 Types accepted S16 S32 S64 U16 U32 U64. */
24344 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24345 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24346 /* As above, unsigned. Types accepted S16 S32 S64. */
24347 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24348 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24349 /* Right shift narrowing. Types accepted I16 I32 I64. */
24350 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24351 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24352 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
24353 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
24354 /* CVT with optional immediate for fixed-point variant. */
24355 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
24356
24357 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
24358
24359 /* Data processing, three registers of different lengths. */
24360 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
24361 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
24362 /* If not scalar, fall back to neon_dyadic_long.
24363 Vector types as above, scalar types S16 S32 U16 U32. */
24364 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
24365 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
24366 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
24367 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24368 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24369 /* Dyadic, narrowing insns. Types I16 I32 I64. */
24370 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24371 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24372 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24373 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24374 /* Saturating doubling multiplies. Types S16 S32. */
24375 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24376 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24377 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24378 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
24379 S16 S32 U16 U32. */
24380 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
24381
24382 /* Extract. Size 8. */
24383 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
24384 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
24385
24386 /* Two registers, miscellaneous. */
24387 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
24388 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
24389 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
24390 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
24391 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
24392 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
24393 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
24394 /* Vector replicate. Sizes 8 16 32. */
24395 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
24396 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
24397 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
24398 /* VMOVN. Types I16 I32 I64. */
24399 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
24400 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
24401 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
24402 /* VQMOVUN. Types S16 S32 S64. */
24403 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
24404 /* VZIP / VUZP. Sizes 8 16 32. */
24405 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
24406 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
24407 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
24408 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
24409 /* VQABS / VQNEG. Types S8 S16 S32. */
24410 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
24411 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
24412 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
24413 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
24414 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
24415 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
24416 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
24417 /* Reciprocal estimates. Types U32 F16 F32. */
24418 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
24419 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
24420 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
24421 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
24422 /* VCLS. Types S8 S16 S32. */
24423 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
24424 /* VCLZ. Types I8 I16 I32. */
24425 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
24426 /* VCNT. Size 8. */
24427 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
24428 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
24429 /* Two address, untyped. */
24430 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
24431 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
24432 /* VTRN. Sizes 8 16 32. */
24433 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
24434 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
24435
24436 /* Table lookup. Size 8. */
24437 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24438 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24439
24440 #undef THUMB_VARIANT
24441 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
24442 #undef ARM_VARIANT
24443 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
24444
24445 /* Neon element/structure load/store. */
24446 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24447 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24448 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24449 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24450 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24451 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24452 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
24453 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
24454
24455 #undef THUMB_VARIANT
24456 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
24457 #undef ARM_VARIANT
24458 #define ARM_VARIANT & fpu_vfp_ext_v3xd
24459 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
24460 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24461 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24462 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24463 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24464 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24465 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24466 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24467 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24468
24469 #undef THUMB_VARIANT
24470 #define THUMB_VARIANT & fpu_vfp_ext_v3
24471 #undef ARM_VARIANT
24472 #define ARM_VARIANT & fpu_vfp_ext_v3
24473
24474 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
24475 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24476 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24477 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24478 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24479 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24480 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24481 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24482 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24483
24484 #undef ARM_VARIANT
24485 #define ARM_VARIANT & fpu_vfp_ext_fma
24486 #undef THUMB_VARIANT
24487 #define THUMB_VARIANT & fpu_vfp_ext_fma
24488 /* Mnemonics shared by Neon, VFP and MVE. These are included in the
24489 VFP FMA variant; NEON and VFP FMA always includes the NEON
24490 FMA instructions. */
24491 mnCEF(vfma, _vfma, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_fmac),
24492 mnCEF(vfms, _vfms, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), neon_fmac),
24493
24494 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
24495 the v form should always be used. */
24496 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24497 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24498 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24499 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24500 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24501 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24502
24503 #undef THUMB_VARIANT
24504 #undef ARM_VARIANT
24505 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
24506
24507 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24508 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24509 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24510 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24511 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24512 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24513 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
24514 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
24515
24516 #undef ARM_VARIANT
24517 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
24518
24519 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
24520 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
24521 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
24522 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
24523 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
24524 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
24525 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
24526 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
24527 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
24528 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24529 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24530 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24531 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24532 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24533 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24534 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24535 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24536 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24537 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
24538 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
24539 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24540 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24541 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24542 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24543 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24544 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24545 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
24546 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
24547 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
24548 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
24549 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
24550 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
24551 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
24552 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
24553 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
24554 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
24555 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
24556 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24557 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24558 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24559 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24560 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24561 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24562 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24563 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24564 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24565 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
24566 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24567 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24568 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24569 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24570 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24571 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24572 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24573 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24574 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24575 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24576 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24577 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24578 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24579 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24580 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24581 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24582 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24583 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24584 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24585 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24586 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24587 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24588 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24589 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24590 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24591 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24592 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24593 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24594 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24595 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24596 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24597 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24598 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24599 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24600 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24601 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24602 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24603 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24604 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24605 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24606 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24607 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
24608 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24609 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24610 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24611 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24612 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24613 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24614 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24615 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24616 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24617 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24618 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24619 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24620 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24621 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24622 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24623 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24624 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24625 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24626 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24627 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24628 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24629 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
24630 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24631 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24632 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24633 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24634 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24635 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24636 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24637 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24638 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24639 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24640 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24641 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24642 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24643 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24644 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24645 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24646 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24647 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24648 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24649 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24650 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24651 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24652 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24653 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24654 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24655 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24656 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24657 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24658 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24659 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24660 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24661 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
24662 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
24663 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
24664 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
24665 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
24666 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
24667 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24668 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24669 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24670 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
24671 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
24672 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
24673 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
24674 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
24675 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
24676 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24677 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24678 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24679 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24680 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
24681
24682 #undef ARM_VARIANT
24683 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
24684
24685 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
24686 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
24687 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
24688 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
24689 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
24690 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
24691 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24692 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24693 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24694 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24695 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24696 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24697 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24698 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24699 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24700 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24701 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24702 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24703 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24704 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24705 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
24706 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24707 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24708 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24709 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24710 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24711 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24712 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24713 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24714 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24715 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24716 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24717 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24718 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24719 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24720 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24721 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24722 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24723 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24724 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24725 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24726 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24727 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24728 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24729 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24730 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24731 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24732 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24733 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24734 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24735 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24736 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24737 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24738 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24739 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24740 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24741 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24742
24743 #undef ARM_VARIANT
24744 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
24745
24746 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24747 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24748 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24749 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24750 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24751 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24752 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24753 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24754 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
24755 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
24756 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
24757 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
24758 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
24759 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
24760 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
24761 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
24762 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
24763 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
24764 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
24765 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
24766 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
24767 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
24768 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
24769 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
24770 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
24771 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
24772 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
24773 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
24774 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
24775 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
24776 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
24777 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
24778 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
24779 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
24780 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
24781 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
24782 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
24783 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
24784 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
24785 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
24786 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
24787 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
24788 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
24789 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
24790 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
24791 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
24792 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
24793 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
24794 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
24795 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
24796 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
24797 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
24798 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
24799 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
24800 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
24801 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
24802 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
24803 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
24804 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
24805 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
24806 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
24807 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
24808 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
24809 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
24810 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24811 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24812 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24813 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24814 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24815 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24816 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24817 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24818 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24819 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24820 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24821 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24822
24823 /* ARMv8.5-A instructions. */
24824 #undef ARM_VARIANT
24825 #define ARM_VARIANT & arm_ext_sb
24826 #undef THUMB_VARIANT
24827 #define THUMB_VARIANT & arm_ext_sb
24828 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
24829
24830 #undef ARM_VARIANT
24831 #define ARM_VARIANT & arm_ext_predres
24832 #undef THUMB_VARIANT
24833 #define THUMB_VARIANT & arm_ext_predres
24834 CE("cfprctx", e070f93, 1, (RRnpc), rd),
24835 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
24836 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
24837
24838 /* ARMv8-M instructions. */
24839 #undef ARM_VARIANT
24840 #define ARM_VARIANT NULL
24841 #undef THUMB_VARIANT
24842 #define THUMB_VARIANT & arm_ext_v8m
24843 ToU("sg", e97fe97f, 0, (), noargs),
24844 ToC("blxns", 4784, 1, (RRnpc), t_blx),
24845 ToC("bxns", 4704, 1, (RRnpc), t_bx),
24846 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
24847 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
24848 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
24849 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
24850
24851 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
24852 instructions behave as nop if no VFP is present. */
24853 #undef THUMB_VARIANT
24854 #define THUMB_VARIANT & arm_ext_v8m_main
24855 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
24856 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
24857
24858 /* Armv8.1-M Mainline instructions. */
24859 #undef THUMB_VARIANT
24860 #define THUMB_VARIANT & arm_ext_v8_1m_main
24861 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
24862 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
24863 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
24864 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
24865 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
24866
24867 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
24868 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
24869 toU("le", _le, 2, (oLR, EXP), t_loloop),
24870
24871 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
24872 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
24873
24874 #undef THUMB_VARIANT
24875 #define THUMB_VARIANT & mve_ext
24876
24877 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24878 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24879 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24880 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24881 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24882 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24883 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24884 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24885 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24886 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24887 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24888 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24889 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24890 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24891 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24892
24893 ToC("vpst", fe710f4d, 0, (), mve_vpt),
24894 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
24895 ToC("vpste", fe718f4d, 0, (), mve_vpt),
24896 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
24897 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
24898 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
24899 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
24900 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
24901 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
24902 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
24903 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
24904 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
24905 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
24906 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
24907 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
24908
24909 /* MVE and MVE FP only. */
24910 mToC("vhcadd", ee000f00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vhcadd),
24911 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
24912 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
24913 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24914 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24915 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
24916 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
24917 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24918 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24919 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24920 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24921 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24922 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24923 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24924 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24925 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24926 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24927
24928 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24929 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24930 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24931 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24932 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24933 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24934 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24935 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24936 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24937 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24938 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24939 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24940 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24941 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24942 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24943 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24944 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24945 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24946 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24947 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24948
24949 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
24950 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
24951 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
24952 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
24953 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
24954 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
24955 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
24956 mCEF(vddup, _vddup, 3, (RMQ, RRe, EXPi), mve_viddup),
24957 mCEF(vdwdup, _vdwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
24958 mCEF(vidup, _vidup, 3, (RMQ, RRe, EXPi), mve_viddup),
24959 mCEF(viwdup, _viwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
24960 mToC("vmaxa", ee330e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
24961 mToC("vmina", ee331e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
24962 mCEF(vmaxv, _vmaxv, 2, (RR, RMQ), mve_vmaxv),
24963 mCEF(vmaxav, _vmaxav, 2, (RR, RMQ), mve_vmaxv),
24964 mCEF(vminv, _vminv, 2, (RR, RMQ), mve_vmaxv),
24965 mCEF(vminav, _vminav, 2, (RR, RMQ), mve_vmaxv),
24966
24967 mCEF(vmlaldav, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24968 mCEF(vmlaldava, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24969 mCEF(vmlaldavx, _vmlaldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24970 mCEF(vmlaldavax, _vmlaldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24971 mCEF(vmlalv, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24972 mCEF(vmlalva, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24973 mCEF(vmlsldav, _vmlsldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24974 mCEF(vmlsldava, _vmlsldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24975 mCEF(vmlsldavx, _vmlsldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24976 mCEF(vmlsldavax, _vmlsldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24977 mToC("vrmlaldavh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24978 mToC("vrmlaldavha",ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24979 mCEF(vrmlaldavhx, _vrmlaldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24980 mCEF(vrmlaldavhax, _vrmlaldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24981 mToC("vrmlalvh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24982 mToC("vrmlalvha", ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24983 mCEF(vrmlsldavh, _vrmlsldavh, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24984 mCEF(vrmlsldavha, _vrmlsldavha, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24985 mCEF(vrmlsldavhx, _vrmlsldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24986 mCEF(vrmlsldavhax, _vrmlsldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24987
24988 mToC("vmlas", ee011e40, 3, (RMQ, RMQ, RR), mve_vmlas),
24989 mToC("vmulh", ee010e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
24990 mToC("vrmulh", ee011e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
24991 mToC("vpnot", fe310f4d, 0, (), mve_vpnot),
24992 mToC("vpsel", fe310f01, 3, (RMQ, RMQ, RMQ), mve_vpsel),
24993
24994 mToC("vqdmladh", ee000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24995 mToC("vqdmladhx", ee001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24996 mToC("vqrdmladh", ee000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24997 mToC("vqrdmladhx",ee001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24998 mToC("vqdmlsdh", fe000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24999 mToC("vqdmlsdhx", fe001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25000 mToC("vqrdmlsdh", fe000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25001 mToC("vqrdmlsdhx",fe001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25002 mToC("vqdmlah", ee000e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25003 mToC("vqdmlash", ee001e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25004 mToC("vqrdmlash", ee001e40, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25005 mToC("vqdmullt", ee301f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
25006 mToC("vqdmullb", ee300f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
25007 mCEF(vqmovnt, _vqmovnt, 2, (RMQ, RMQ), mve_vqmovn),
25008 mCEF(vqmovnb, _vqmovnb, 2, (RMQ, RMQ), mve_vqmovn),
25009 mCEF(vqmovunt, _vqmovunt, 2, (RMQ, RMQ), mve_vqmovn),
25010 mCEF(vqmovunb, _vqmovunb, 2, (RMQ, RMQ), mve_vqmovn),
25011
25012 mCEF(vshrnt, _vshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25013 mCEF(vshrnb, _vshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25014 mCEF(vrshrnt, _vrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25015 mCEF(vrshrnb, _vrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25016 mCEF(vqshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25017 mCEF(vqshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25018 mCEF(vqshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25019 mCEF(vqshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25020 mCEF(vqrshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25021 mCEF(vqrshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25022 mCEF(vqrshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25023 mCEF(vqrshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25024
25025 #undef THUMB_VARIANT
25026 #define THUMB_VARIANT & mve_fp_ext
25027 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
25028 mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas),
25029 mToC("vmaxnma", ee3f0e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
25030 mToC("vminnma", ee3f1e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
25031 mToC("vmaxnmv", eeee0f00, 2, (RR, RMQ), mve_vmaxnmv),
25032 mToC("vmaxnmav",eeec0f00, 2, (RR, RMQ), mve_vmaxnmv),
25033 mToC("vminnmv", eeee0f80, 2, (RR, RMQ), mve_vmaxnmv),
25034 mToC("vminnmav",eeec0f80, 2, (RR, RMQ), mve_vmaxnmv),
25035
25036 #undef ARM_VARIANT
25037 #define ARM_VARIANT & fpu_vfp_ext_v1
25038 #undef THUMB_VARIANT
25039 #define THUMB_VARIANT & arm_ext_v6t2
25040 mnCEF(vmla, _vmla, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mac_maybe_scalar),
25041 mnCEF(vmul, _vmul, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mul),
25042
25043 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
25044
25045 #undef ARM_VARIANT
25046 #define ARM_VARIANT & fpu_vfp_ext_v1xd
25047
25048 MNCE(vmov, 0, 1, (VMOV), neon_mov),
25049 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
25050 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
25051 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
25052
25053 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
25054 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
25055 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
25056
25057 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
25058 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
25059
25060 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
25061 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
25062
25063 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
25064 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
25065
25066 #undef ARM_VARIANT
25067 #define ARM_VARIANT & fpu_vfp_ext_v2
25068
25069 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
25070 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
25071 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
25072 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
25073
25074 #undef ARM_VARIANT
25075 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
25076 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
25077 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
25078 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
25079 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
25080 mnUF(vmaxnm, _vmaxnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
25081 mnUF(vminnm, _vminnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
25082
25083 #undef ARM_VARIANT
25084 #define ARM_VARIANT & fpu_neon_ext_v1
25085 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
25086 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
25087 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
25088 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
25089 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25090 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25091 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25092 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25093 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
25094 MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls),
25095 MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz),
25096 mnCE(vdup, _vdup, 2, (RNDQMQ, RR_RNSC), neon_dup),
25097 MNUF(vhadd, 00000000, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
25098 MNUF(vrhadd, 00000100, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_i_su),
25099 MNUF(vhsub, 00000200, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
25100 mnUF(vmin, _vmin, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
25101 mnUF(vmax, _vmax, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
25102 MNUF(vqadd, 0000010, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
25103 MNUF(vqsub, 0000210, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
25104 mnUF(vmvn, _vmvn, 2, (RNDQMQ, RNDQMQ_Ibig), neon_mvn),
25105 MNUF(vqabs, 1b00700, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
25106 MNUF(vqneg, 1b00780, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
25107 mnUF(vqrdmlah, _vqrdmlah,3, (RNDQMQ, oRNDQMQ, RNDQ_RNSC_RR), neon_qrdmlah),
25108 mnUF(vqdmulh, _vqdmulh, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
25109 mnUF(vqrdmulh, _vqrdmulh,3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
25110 MNUF(vqrshl, 0000510, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
25111 MNUF(vrshl, 0000500, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
25112
25113 #undef ARM_VARIANT
25114 #define ARM_VARIANT & arm_ext_v8_3
25115 #undef THUMB_VARIANT
25116 #define THUMB_VARIANT & arm_ext_v6t2_v8m
25117 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
25118 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
25119 };
25120 #undef ARM_VARIANT
25121 #undef THUMB_VARIANT
25122 #undef TCE
25123 #undef TUE
25124 #undef TUF
25125 #undef TCC
25126 #undef cCE
25127 #undef cCL
25128 #undef C3E
25129 #undef C3
25130 #undef CE
25131 #undef CM
25132 #undef CL
25133 #undef UE
25134 #undef UF
25135 #undef UT
25136 #undef NUF
25137 #undef nUF
25138 #undef NCE
25139 #undef nCE
25140 #undef OPS0
25141 #undef OPS1
25142 #undef OPS2
25143 #undef OPS3
25144 #undef OPS4
25145 #undef OPS5
25146 #undef OPS6
25147 #undef do_0
25148 #undef ToC
25149 #undef toC
25150 #undef ToU
25151 #undef toU
25152 \f
25153 /* MD interface: bits in the object file. */
25154
25155 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
25156 for use in the a.out file, and stores them in the array pointed to by buf.
25157 This knows about the endian-ness of the target machine and does
25158 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
25159 2 (short) and 4 (long) Floating numbers are put out as a series of
25160 LITTLENUMS (shorts, here at least). */
25161
25162 void
25163 md_number_to_chars (char * buf, valueT val, int n)
25164 {
25165 if (target_big_endian)
25166 number_to_chars_bigendian (buf, val, n);
25167 else
25168 number_to_chars_littleendian (buf, val, n);
25169 }
25170
25171 static valueT
25172 md_chars_to_number (char * buf, int n)
25173 {
25174 valueT result = 0;
25175 unsigned char * where = (unsigned char *) buf;
25176
25177 if (target_big_endian)
25178 {
25179 while (n--)
25180 {
25181 result <<= 8;
25182 result |= (*where++ & 255);
25183 }
25184 }
25185 else
25186 {
25187 while (n--)
25188 {
25189 result <<= 8;
25190 result |= (where[n] & 255);
25191 }
25192 }
25193
25194 return result;
25195 }
25196
25197 /* MD interface: Sections. */
25198
25199 /* Calculate the maximum variable size (i.e., excluding fr_fix)
25200 that an rs_machine_dependent frag may reach. */
25201
25202 unsigned int
25203 arm_frag_max_var (fragS *fragp)
25204 {
25205 /* We only use rs_machine_dependent for variable-size Thumb instructions,
25206 which are either THUMB_SIZE (2) or INSN_SIZE (4).
25207
25208 Note that we generate relaxable instructions even for cases that don't
25209 really need it, like an immediate that's a trivial constant. So we're
25210 overestimating the instruction size for some of those cases. Rather
25211 than putting more intelligence here, it would probably be better to
25212 avoid generating a relaxation frag in the first place when it can be
25213 determined up front that a short instruction will suffice. */
25214
25215 gas_assert (fragp->fr_type == rs_machine_dependent);
25216 return INSN_SIZE;
25217 }
25218
25219 /* Estimate the size of a frag before relaxing. Assume everything fits in
25220 2 bytes. */
25221
25222 int
25223 md_estimate_size_before_relax (fragS * fragp,
25224 segT segtype ATTRIBUTE_UNUSED)
25225 {
25226 fragp->fr_var = 2;
25227 return 2;
25228 }
25229
25230 /* Convert a machine dependent frag. */
25231
25232 void
25233 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
25234 {
25235 unsigned long insn;
25236 unsigned long old_op;
25237 char *buf;
25238 expressionS exp;
25239 fixS *fixp;
25240 int reloc_type;
25241 int pc_rel;
25242 int opcode;
25243
25244 buf = fragp->fr_literal + fragp->fr_fix;
25245
25246 old_op = bfd_get_16(abfd, buf);
25247 if (fragp->fr_symbol)
25248 {
25249 exp.X_op = O_symbol;
25250 exp.X_add_symbol = fragp->fr_symbol;
25251 }
25252 else
25253 {
25254 exp.X_op = O_constant;
25255 }
25256 exp.X_add_number = fragp->fr_offset;
25257 opcode = fragp->fr_subtype;
25258 switch (opcode)
25259 {
25260 case T_MNEM_ldr_pc:
25261 case T_MNEM_ldr_pc2:
25262 case T_MNEM_ldr_sp:
25263 case T_MNEM_str_sp:
25264 case T_MNEM_ldr:
25265 case T_MNEM_ldrb:
25266 case T_MNEM_ldrh:
25267 case T_MNEM_str:
25268 case T_MNEM_strb:
25269 case T_MNEM_strh:
25270 if (fragp->fr_var == 4)
25271 {
25272 insn = THUMB_OP32 (opcode);
25273 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
25274 {
25275 insn |= (old_op & 0x700) << 4;
25276 }
25277 else
25278 {
25279 insn |= (old_op & 7) << 12;
25280 insn |= (old_op & 0x38) << 13;
25281 }
25282 insn |= 0x00000c00;
25283 put_thumb32_insn (buf, insn);
25284 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
25285 }
25286 else
25287 {
25288 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
25289 }
25290 pc_rel = (opcode == T_MNEM_ldr_pc2);
25291 break;
25292 case T_MNEM_adr:
25293 if (fragp->fr_var == 4)
25294 {
25295 insn = THUMB_OP32 (opcode);
25296 insn |= (old_op & 0xf0) << 4;
25297 put_thumb32_insn (buf, insn);
25298 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
25299 }
25300 else
25301 {
25302 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25303 exp.X_add_number -= 4;
25304 }
25305 pc_rel = 1;
25306 break;
25307 case T_MNEM_mov:
25308 case T_MNEM_movs:
25309 case T_MNEM_cmp:
25310 case T_MNEM_cmn:
25311 if (fragp->fr_var == 4)
25312 {
25313 int r0off = (opcode == T_MNEM_mov
25314 || opcode == T_MNEM_movs) ? 0 : 8;
25315 insn = THUMB_OP32 (opcode);
25316 insn = (insn & 0xe1ffffff) | 0x10000000;
25317 insn |= (old_op & 0x700) << r0off;
25318 put_thumb32_insn (buf, insn);
25319 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
25320 }
25321 else
25322 {
25323 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
25324 }
25325 pc_rel = 0;
25326 break;
25327 case T_MNEM_b:
25328 if (fragp->fr_var == 4)
25329 {
25330 insn = THUMB_OP32(opcode);
25331 put_thumb32_insn (buf, insn);
25332 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
25333 }
25334 else
25335 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
25336 pc_rel = 1;
25337 break;
25338 case T_MNEM_bcond:
25339 if (fragp->fr_var == 4)
25340 {
25341 insn = THUMB_OP32(opcode);
25342 insn |= (old_op & 0xf00) << 14;
25343 put_thumb32_insn (buf, insn);
25344 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
25345 }
25346 else
25347 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
25348 pc_rel = 1;
25349 break;
25350 case T_MNEM_add_sp:
25351 case T_MNEM_add_pc:
25352 case T_MNEM_inc_sp:
25353 case T_MNEM_dec_sp:
25354 if (fragp->fr_var == 4)
25355 {
25356 /* ??? Choose between add and addw. */
25357 insn = THUMB_OP32 (opcode);
25358 insn |= (old_op & 0xf0) << 4;
25359 put_thumb32_insn (buf, insn);
25360 if (opcode == T_MNEM_add_pc)
25361 reloc_type = BFD_RELOC_ARM_T32_IMM12;
25362 else
25363 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
25364 }
25365 else
25366 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25367 pc_rel = 0;
25368 break;
25369
25370 case T_MNEM_addi:
25371 case T_MNEM_addis:
25372 case T_MNEM_subi:
25373 case T_MNEM_subis:
25374 if (fragp->fr_var == 4)
25375 {
25376 insn = THUMB_OP32 (opcode);
25377 insn |= (old_op & 0xf0) << 4;
25378 insn |= (old_op & 0xf) << 16;
25379 put_thumb32_insn (buf, insn);
25380 if (insn & (1 << 20))
25381 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
25382 else
25383 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
25384 }
25385 else
25386 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25387 pc_rel = 0;
25388 break;
25389 default:
25390 abort ();
25391 }
25392 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
25393 (enum bfd_reloc_code_real) reloc_type);
25394 fixp->fx_file = fragp->fr_file;
25395 fixp->fx_line = fragp->fr_line;
25396 fragp->fr_fix += fragp->fr_var;
25397
25398 /* Set whether we use thumb-2 ISA based on final relaxation results. */
25399 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
25400 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
25401 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
25402 }
25403
25404 /* Return the size of a relaxable immediate operand instruction.
25405 SHIFT and SIZE specify the form of the allowable immediate. */
25406 static int
25407 relax_immediate (fragS *fragp, int size, int shift)
25408 {
25409 offsetT offset;
25410 offsetT mask;
25411 offsetT low;
25412
25413 /* ??? Should be able to do better than this. */
25414 if (fragp->fr_symbol)
25415 return 4;
25416
25417 low = (1 << shift) - 1;
25418 mask = (1 << (shift + size)) - (1 << shift);
25419 offset = fragp->fr_offset;
25420 /* Force misaligned offsets to 32-bit variant. */
25421 if (offset & low)
25422 return 4;
25423 if (offset & ~mask)
25424 return 4;
25425 return 2;
25426 }
25427
25428 /* Get the address of a symbol during relaxation. */
25429 static addressT
25430 relaxed_symbol_addr (fragS *fragp, long stretch)
25431 {
25432 fragS *sym_frag;
25433 addressT addr;
25434 symbolS *sym;
25435
25436 sym = fragp->fr_symbol;
25437 sym_frag = symbol_get_frag (sym);
25438 know (S_GET_SEGMENT (sym) != absolute_section
25439 || sym_frag == &zero_address_frag);
25440 addr = S_GET_VALUE (sym) + fragp->fr_offset;
25441
25442 /* If frag has yet to be reached on this pass, assume it will
25443 move by STRETCH just as we did. If this is not so, it will
25444 be because some frag between grows, and that will force
25445 another pass. */
25446
25447 if (stretch != 0
25448 && sym_frag->relax_marker != fragp->relax_marker)
25449 {
25450 fragS *f;
25451
25452 /* Adjust stretch for any alignment frag. Note that if have
25453 been expanding the earlier code, the symbol may be
25454 defined in what appears to be an earlier frag. FIXME:
25455 This doesn't handle the fr_subtype field, which specifies
25456 a maximum number of bytes to skip when doing an
25457 alignment. */
25458 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
25459 {
25460 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
25461 {
25462 if (stretch < 0)
25463 stretch = - ((- stretch)
25464 & ~ ((1 << (int) f->fr_offset) - 1));
25465 else
25466 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
25467 if (stretch == 0)
25468 break;
25469 }
25470 }
25471 if (f != NULL)
25472 addr += stretch;
25473 }
25474
25475 return addr;
25476 }
25477
25478 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
25479 load. */
25480 static int
25481 relax_adr (fragS *fragp, asection *sec, long stretch)
25482 {
25483 addressT addr;
25484 offsetT val;
25485
25486 /* Assume worst case for symbols not known to be in the same section. */
25487 if (fragp->fr_symbol == NULL
25488 || !S_IS_DEFINED (fragp->fr_symbol)
25489 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25490 || S_IS_WEAK (fragp->fr_symbol))
25491 return 4;
25492
25493 val = relaxed_symbol_addr (fragp, stretch);
25494 addr = fragp->fr_address + fragp->fr_fix;
25495 addr = (addr + 4) & ~3;
25496 /* Force misaligned targets to 32-bit variant. */
25497 if (val & 3)
25498 return 4;
25499 val -= addr;
25500 if (val < 0 || val > 1020)
25501 return 4;
25502 return 2;
25503 }
25504
25505 /* Return the size of a relaxable add/sub immediate instruction. */
25506 static int
25507 relax_addsub (fragS *fragp, asection *sec)
25508 {
25509 char *buf;
25510 int op;
25511
25512 buf = fragp->fr_literal + fragp->fr_fix;
25513 op = bfd_get_16(sec->owner, buf);
25514 if ((op & 0xf) == ((op >> 4) & 0xf))
25515 return relax_immediate (fragp, 8, 0);
25516 else
25517 return relax_immediate (fragp, 3, 0);
25518 }
25519
25520 /* Return TRUE iff the definition of symbol S could be pre-empted
25521 (overridden) at link or load time. */
25522 static bfd_boolean
25523 symbol_preemptible (symbolS *s)
25524 {
25525 /* Weak symbols can always be pre-empted. */
25526 if (S_IS_WEAK (s))
25527 return TRUE;
25528
25529 /* Non-global symbols cannot be pre-empted. */
25530 if (! S_IS_EXTERNAL (s))
25531 return FALSE;
25532
25533 #ifdef OBJ_ELF
25534 /* In ELF, a global symbol can be marked protected, or private. In that
25535 case it can't be pre-empted (other definitions in the same link unit
25536 would violate the ODR). */
25537 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
25538 return FALSE;
25539 #endif
25540
25541 /* Other global symbols might be pre-empted. */
25542 return TRUE;
25543 }
25544
25545 /* Return the size of a relaxable branch instruction. BITS is the
25546 size of the offset field in the narrow instruction. */
25547
25548 static int
25549 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
25550 {
25551 addressT addr;
25552 offsetT val;
25553 offsetT limit;
25554
25555 /* Assume worst case for symbols not known to be in the same section. */
25556 if (!S_IS_DEFINED (fragp->fr_symbol)
25557 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25558 || S_IS_WEAK (fragp->fr_symbol))
25559 return 4;
25560
25561 #ifdef OBJ_ELF
25562 /* A branch to a function in ARM state will require interworking. */
25563 if (S_IS_DEFINED (fragp->fr_symbol)
25564 && ARM_IS_FUNC (fragp->fr_symbol))
25565 return 4;
25566 #endif
25567
25568 if (symbol_preemptible (fragp->fr_symbol))
25569 return 4;
25570
25571 val = relaxed_symbol_addr (fragp, stretch);
25572 addr = fragp->fr_address + fragp->fr_fix + 4;
25573 val -= addr;
25574
25575 /* Offset is a signed value *2 */
25576 limit = 1 << bits;
25577 if (val >= limit || val < -limit)
25578 return 4;
25579 return 2;
25580 }
25581
25582
25583 /* Relax a machine dependent frag. This returns the amount by which
25584 the current size of the frag should change. */
25585
25586 int
25587 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
25588 {
25589 int oldsize;
25590 int newsize;
25591
25592 oldsize = fragp->fr_var;
25593 switch (fragp->fr_subtype)
25594 {
25595 case T_MNEM_ldr_pc2:
25596 newsize = relax_adr (fragp, sec, stretch);
25597 break;
25598 case T_MNEM_ldr_pc:
25599 case T_MNEM_ldr_sp:
25600 case T_MNEM_str_sp:
25601 newsize = relax_immediate (fragp, 8, 2);
25602 break;
25603 case T_MNEM_ldr:
25604 case T_MNEM_str:
25605 newsize = relax_immediate (fragp, 5, 2);
25606 break;
25607 case T_MNEM_ldrh:
25608 case T_MNEM_strh:
25609 newsize = relax_immediate (fragp, 5, 1);
25610 break;
25611 case T_MNEM_ldrb:
25612 case T_MNEM_strb:
25613 newsize = relax_immediate (fragp, 5, 0);
25614 break;
25615 case T_MNEM_adr:
25616 newsize = relax_adr (fragp, sec, stretch);
25617 break;
25618 case T_MNEM_mov:
25619 case T_MNEM_movs:
25620 case T_MNEM_cmp:
25621 case T_MNEM_cmn:
25622 newsize = relax_immediate (fragp, 8, 0);
25623 break;
25624 case T_MNEM_b:
25625 newsize = relax_branch (fragp, sec, 11, stretch);
25626 break;
25627 case T_MNEM_bcond:
25628 newsize = relax_branch (fragp, sec, 8, stretch);
25629 break;
25630 case T_MNEM_add_sp:
25631 case T_MNEM_add_pc:
25632 newsize = relax_immediate (fragp, 8, 2);
25633 break;
25634 case T_MNEM_inc_sp:
25635 case T_MNEM_dec_sp:
25636 newsize = relax_immediate (fragp, 7, 2);
25637 break;
25638 case T_MNEM_addi:
25639 case T_MNEM_addis:
25640 case T_MNEM_subi:
25641 case T_MNEM_subis:
25642 newsize = relax_addsub (fragp, sec);
25643 break;
25644 default:
25645 abort ();
25646 }
25647
25648 fragp->fr_var = newsize;
25649 /* Freeze wide instructions that are at or before the same location as
25650 in the previous pass. This avoids infinite loops.
25651 Don't freeze them unconditionally because targets may be artificially
25652 misaligned by the expansion of preceding frags. */
25653 if (stretch <= 0 && newsize > 2)
25654 {
25655 md_convert_frag (sec->owner, sec, fragp);
25656 frag_wane (fragp);
25657 }
25658
25659 return newsize - oldsize;
25660 }
25661
25662 /* Round up a section size to the appropriate boundary. */
25663
25664 valueT
25665 md_section_align (segT segment ATTRIBUTE_UNUSED,
25666 valueT size)
25667 {
25668 return size;
25669 }
25670
25671 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
25672 of an rs_align_code fragment. */
25673
25674 void
25675 arm_handle_align (fragS * fragP)
25676 {
25677 static unsigned char const arm_noop[2][2][4] =
25678 {
25679 { /* ARMv1 */
25680 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
25681 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
25682 },
25683 { /* ARMv6k */
25684 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
25685 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
25686 },
25687 };
25688 static unsigned char const thumb_noop[2][2][2] =
25689 {
25690 { /* Thumb-1 */
25691 {0xc0, 0x46}, /* LE */
25692 {0x46, 0xc0}, /* BE */
25693 },
25694 { /* Thumb-2 */
25695 {0x00, 0xbf}, /* LE */
25696 {0xbf, 0x00} /* BE */
25697 }
25698 };
25699 static unsigned char const wide_thumb_noop[2][4] =
25700 { /* Wide Thumb-2 */
25701 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
25702 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
25703 };
25704
25705 unsigned bytes, fix, noop_size;
25706 char * p;
25707 const unsigned char * noop;
25708 const unsigned char *narrow_noop = NULL;
25709 #ifdef OBJ_ELF
25710 enum mstate state;
25711 #endif
25712
25713 if (fragP->fr_type != rs_align_code)
25714 return;
25715
25716 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
25717 p = fragP->fr_literal + fragP->fr_fix;
25718 fix = 0;
25719
25720 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
25721 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
25722
25723 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
25724
25725 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
25726 {
25727 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25728 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
25729 {
25730 narrow_noop = thumb_noop[1][target_big_endian];
25731 noop = wide_thumb_noop[target_big_endian];
25732 }
25733 else
25734 noop = thumb_noop[0][target_big_endian];
25735 noop_size = 2;
25736 #ifdef OBJ_ELF
25737 state = MAP_THUMB;
25738 #endif
25739 }
25740 else
25741 {
25742 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25743 ? selected_cpu : arm_arch_none,
25744 arm_ext_v6k) != 0]
25745 [target_big_endian];
25746 noop_size = 4;
25747 #ifdef OBJ_ELF
25748 state = MAP_ARM;
25749 #endif
25750 }
25751
25752 fragP->fr_var = noop_size;
25753
25754 if (bytes & (noop_size - 1))
25755 {
25756 fix = bytes & (noop_size - 1);
25757 #ifdef OBJ_ELF
25758 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
25759 #endif
25760 memset (p, 0, fix);
25761 p += fix;
25762 bytes -= fix;
25763 }
25764
25765 if (narrow_noop)
25766 {
25767 if (bytes & noop_size)
25768 {
25769 /* Insert a narrow noop. */
25770 memcpy (p, narrow_noop, noop_size);
25771 p += noop_size;
25772 bytes -= noop_size;
25773 fix += noop_size;
25774 }
25775
25776 /* Use wide noops for the remainder */
25777 noop_size = 4;
25778 }
25779
25780 while (bytes >= noop_size)
25781 {
25782 memcpy (p, noop, noop_size);
25783 p += noop_size;
25784 bytes -= noop_size;
25785 fix += noop_size;
25786 }
25787
25788 fragP->fr_fix += fix;
25789 }
25790
25791 /* Called from md_do_align. Used to create an alignment
25792 frag in a code section. */
25793
25794 void
25795 arm_frag_align_code (int n, int max)
25796 {
25797 char * p;
25798
25799 /* We assume that there will never be a requirement
25800 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
25801 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
25802 {
25803 char err_msg[128];
25804
25805 sprintf (err_msg,
25806 _("alignments greater than %d bytes not supported in .text sections."),
25807 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
25808 as_fatal ("%s", err_msg);
25809 }
25810
25811 p = frag_var (rs_align_code,
25812 MAX_MEM_FOR_RS_ALIGN_CODE,
25813 1,
25814 (relax_substateT) max,
25815 (symbolS *) NULL,
25816 (offsetT) n,
25817 (char *) NULL);
25818 *p = 0;
25819 }
25820
25821 /* Perform target specific initialisation of a frag.
25822 Note - despite the name this initialisation is not done when the frag
25823 is created, but only when its type is assigned. A frag can be created
25824 and used a long time before its type is set, so beware of assuming that
25825 this initialisation is performed first. */
25826
25827 #ifndef OBJ_ELF
25828 void
25829 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
25830 {
25831 /* Record whether this frag is in an ARM or a THUMB area. */
25832 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
25833 }
25834
25835 #else /* OBJ_ELF is defined. */
25836 void
25837 arm_init_frag (fragS * fragP, int max_chars)
25838 {
25839 bfd_boolean frag_thumb_mode;
25840
25841 /* If the current ARM vs THUMB mode has not already
25842 been recorded into this frag then do so now. */
25843 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
25844 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
25845
25846 /* PR 21809: Do not set a mapping state for debug sections
25847 - it just confuses other tools. */
25848 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
25849 return;
25850
25851 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
25852
25853 /* Record a mapping symbol for alignment frags. We will delete this
25854 later if the alignment ends up empty. */
25855 switch (fragP->fr_type)
25856 {
25857 case rs_align:
25858 case rs_align_test:
25859 case rs_fill:
25860 mapping_state_2 (MAP_DATA, max_chars);
25861 break;
25862 case rs_align_code:
25863 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
25864 break;
25865 default:
25866 break;
25867 }
25868 }
25869
25870 /* When we change sections we need to issue a new mapping symbol. */
25871
25872 void
25873 arm_elf_change_section (void)
25874 {
25875 /* Link an unlinked unwind index table section to the .text section. */
25876 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
25877 && elf_linked_to_section (now_seg) == NULL)
25878 elf_linked_to_section (now_seg) = text_section;
25879 }
25880
25881 int
25882 arm_elf_section_type (const char * str, size_t len)
25883 {
25884 if (len == 5 && strncmp (str, "exidx", 5) == 0)
25885 return SHT_ARM_EXIDX;
25886
25887 return -1;
25888 }
25889 \f
25890 /* Code to deal with unwinding tables. */
25891
25892 static void add_unwind_adjustsp (offsetT);
25893
25894 /* Generate any deferred unwind frame offset. */
25895
25896 static void
25897 flush_pending_unwind (void)
25898 {
25899 offsetT offset;
25900
25901 offset = unwind.pending_offset;
25902 unwind.pending_offset = 0;
25903 if (offset != 0)
25904 add_unwind_adjustsp (offset);
25905 }
25906
25907 /* Add an opcode to this list for this function. Two-byte opcodes should
25908 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
25909 order. */
25910
25911 static void
25912 add_unwind_opcode (valueT op, int length)
25913 {
25914 /* Add any deferred stack adjustment. */
25915 if (unwind.pending_offset)
25916 flush_pending_unwind ();
25917
25918 unwind.sp_restored = 0;
25919
25920 if (unwind.opcode_count + length > unwind.opcode_alloc)
25921 {
25922 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
25923 if (unwind.opcodes)
25924 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
25925 unwind.opcode_alloc);
25926 else
25927 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
25928 }
25929 while (length > 0)
25930 {
25931 length--;
25932 unwind.opcodes[unwind.opcode_count] = op & 0xff;
25933 op >>= 8;
25934 unwind.opcode_count++;
25935 }
25936 }
25937
25938 /* Add unwind opcodes to adjust the stack pointer. */
25939
25940 static void
25941 add_unwind_adjustsp (offsetT offset)
25942 {
25943 valueT op;
25944
25945 if (offset > 0x200)
25946 {
25947 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
25948 char bytes[5];
25949 int n;
25950 valueT o;
25951
25952 /* Long form: 0xb2, uleb128. */
25953 /* This might not fit in a word so add the individual bytes,
25954 remembering the list is built in reverse order. */
25955 o = (valueT) ((offset - 0x204) >> 2);
25956 if (o == 0)
25957 add_unwind_opcode (0, 1);
25958
25959 /* Calculate the uleb128 encoding of the offset. */
25960 n = 0;
25961 while (o)
25962 {
25963 bytes[n] = o & 0x7f;
25964 o >>= 7;
25965 if (o)
25966 bytes[n] |= 0x80;
25967 n++;
25968 }
25969 /* Add the insn. */
25970 for (; n; n--)
25971 add_unwind_opcode (bytes[n - 1], 1);
25972 add_unwind_opcode (0xb2, 1);
25973 }
25974 else if (offset > 0x100)
25975 {
25976 /* Two short opcodes. */
25977 add_unwind_opcode (0x3f, 1);
25978 op = (offset - 0x104) >> 2;
25979 add_unwind_opcode (op, 1);
25980 }
25981 else if (offset > 0)
25982 {
25983 /* Short opcode. */
25984 op = (offset - 4) >> 2;
25985 add_unwind_opcode (op, 1);
25986 }
25987 else if (offset < 0)
25988 {
25989 offset = -offset;
25990 while (offset > 0x100)
25991 {
25992 add_unwind_opcode (0x7f, 1);
25993 offset -= 0x100;
25994 }
25995 op = ((offset - 4) >> 2) | 0x40;
25996 add_unwind_opcode (op, 1);
25997 }
25998 }
25999
26000 /* Finish the list of unwind opcodes for this function. */
26001
26002 static void
26003 finish_unwind_opcodes (void)
26004 {
26005 valueT op;
26006
26007 if (unwind.fp_used)
26008 {
26009 /* Adjust sp as necessary. */
26010 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
26011 flush_pending_unwind ();
26012
26013 /* After restoring sp from the frame pointer. */
26014 op = 0x90 | unwind.fp_reg;
26015 add_unwind_opcode (op, 1);
26016 }
26017 else
26018 flush_pending_unwind ();
26019 }
26020
26021
26022 /* Start an exception table entry. If idx is nonzero this is an index table
26023 entry. */
26024
26025 static void
26026 start_unwind_section (const segT text_seg, int idx)
26027 {
26028 const char * text_name;
26029 const char * prefix;
26030 const char * prefix_once;
26031 const char * group_name;
26032 char * sec_name;
26033 int type;
26034 int flags;
26035 int linkonce;
26036
26037 if (idx)
26038 {
26039 prefix = ELF_STRING_ARM_unwind;
26040 prefix_once = ELF_STRING_ARM_unwind_once;
26041 type = SHT_ARM_EXIDX;
26042 }
26043 else
26044 {
26045 prefix = ELF_STRING_ARM_unwind_info;
26046 prefix_once = ELF_STRING_ARM_unwind_info_once;
26047 type = SHT_PROGBITS;
26048 }
26049
26050 text_name = segment_name (text_seg);
26051 if (streq (text_name, ".text"))
26052 text_name = "";
26053
26054 if (strncmp (text_name, ".gnu.linkonce.t.",
26055 strlen (".gnu.linkonce.t.")) == 0)
26056 {
26057 prefix = prefix_once;
26058 text_name += strlen (".gnu.linkonce.t.");
26059 }
26060
26061 sec_name = concat (prefix, text_name, (char *) NULL);
26062
26063 flags = SHF_ALLOC;
26064 linkonce = 0;
26065 group_name = 0;
26066
26067 /* Handle COMDAT group. */
26068 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
26069 {
26070 group_name = elf_group_name (text_seg);
26071 if (group_name == NULL)
26072 {
26073 as_bad (_("Group section `%s' has no group signature"),
26074 segment_name (text_seg));
26075 ignore_rest_of_line ();
26076 return;
26077 }
26078 flags |= SHF_GROUP;
26079 linkonce = 1;
26080 }
26081
26082 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
26083 linkonce, 0);
26084
26085 /* Set the section link for index tables. */
26086 if (idx)
26087 elf_linked_to_section (now_seg) = text_seg;
26088 }
26089
26090
26091 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
26092 personality routine data. Returns zero, or the index table value for
26093 an inline entry. */
26094
26095 static valueT
26096 create_unwind_entry (int have_data)
26097 {
26098 int size;
26099 addressT where;
26100 char *ptr;
26101 /* The current word of data. */
26102 valueT data;
26103 /* The number of bytes left in this word. */
26104 int n;
26105
26106 finish_unwind_opcodes ();
26107
26108 /* Remember the current text section. */
26109 unwind.saved_seg = now_seg;
26110 unwind.saved_subseg = now_subseg;
26111
26112 start_unwind_section (now_seg, 0);
26113
26114 if (unwind.personality_routine == NULL)
26115 {
26116 if (unwind.personality_index == -2)
26117 {
26118 if (have_data)
26119 as_bad (_("handlerdata in cantunwind frame"));
26120 return 1; /* EXIDX_CANTUNWIND. */
26121 }
26122
26123 /* Use a default personality routine if none is specified. */
26124 if (unwind.personality_index == -1)
26125 {
26126 if (unwind.opcode_count > 3)
26127 unwind.personality_index = 1;
26128 else
26129 unwind.personality_index = 0;
26130 }
26131
26132 /* Space for the personality routine entry. */
26133 if (unwind.personality_index == 0)
26134 {
26135 if (unwind.opcode_count > 3)
26136 as_bad (_("too many unwind opcodes for personality routine 0"));
26137
26138 if (!have_data)
26139 {
26140 /* All the data is inline in the index table. */
26141 data = 0x80;
26142 n = 3;
26143 while (unwind.opcode_count > 0)
26144 {
26145 unwind.opcode_count--;
26146 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
26147 n--;
26148 }
26149
26150 /* Pad with "finish" opcodes. */
26151 while (n--)
26152 data = (data << 8) | 0xb0;
26153
26154 return data;
26155 }
26156 size = 0;
26157 }
26158 else
26159 /* We get two opcodes "free" in the first word. */
26160 size = unwind.opcode_count - 2;
26161 }
26162 else
26163 {
26164 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
26165 if (unwind.personality_index != -1)
26166 {
26167 as_bad (_("attempt to recreate an unwind entry"));
26168 return 1;
26169 }
26170
26171 /* An extra byte is required for the opcode count. */
26172 size = unwind.opcode_count + 1;
26173 }
26174
26175 size = (size + 3) >> 2;
26176 if (size > 0xff)
26177 as_bad (_("too many unwind opcodes"));
26178
26179 frag_align (2, 0, 0);
26180 record_alignment (now_seg, 2);
26181 unwind.table_entry = expr_build_dot ();
26182
26183 /* Allocate the table entry. */
26184 ptr = frag_more ((size << 2) + 4);
26185 /* PR 13449: Zero the table entries in case some of them are not used. */
26186 memset (ptr, 0, (size << 2) + 4);
26187 where = frag_now_fix () - ((size << 2) + 4);
26188
26189 switch (unwind.personality_index)
26190 {
26191 case -1:
26192 /* ??? Should this be a PLT generating relocation? */
26193 /* Custom personality routine. */
26194 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
26195 BFD_RELOC_ARM_PREL31);
26196
26197 where += 4;
26198 ptr += 4;
26199
26200 /* Set the first byte to the number of additional words. */
26201 data = size > 0 ? size - 1 : 0;
26202 n = 3;
26203 break;
26204
26205 /* ABI defined personality routines. */
26206 case 0:
26207 /* Three opcodes bytes are packed into the first word. */
26208 data = 0x80;
26209 n = 3;
26210 break;
26211
26212 case 1:
26213 case 2:
26214 /* The size and first two opcode bytes go in the first word. */
26215 data = ((0x80 + unwind.personality_index) << 8) | size;
26216 n = 2;
26217 break;
26218
26219 default:
26220 /* Should never happen. */
26221 abort ();
26222 }
26223
26224 /* Pack the opcodes into words (MSB first), reversing the list at the same
26225 time. */
26226 while (unwind.opcode_count > 0)
26227 {
26228 if (n == 0)
26229 {
26230 md_number_to_chars (ptr, data, 4);
26231 ptr += 4;
26232 n = 4;
26233 data = 0;
26234 }
26235 unwind.opcode_count--;
26236 n--;
26237 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
26238 }
26239
26240 /* Finish off the last word. */
26241 if (n < 4)
26242 {
26243 /* Pad with "finish" opcodes. */
26244 while (n--)
26245 data = (data << 8) | 0xb0;
26246
26247 md_number_to_chars (ptr, data, 4);
26248 }
26249
26250 if (!have_data)
26251 {
26252 /* Add an empty descriptor if there is no user-specified data. */
26253 ptr = frag_more (4);
26254 md_number_to_chars (ptr, 0, 4);
26255 }
26256
26257 return 0;
26258 }
26259
26260
26261 /* Initialize the DWARF-2 unwind information for this procedure. */
26262
26263 void
26264 tc_arm_frame_initial_instructions (void)
26265 {
26266 cfi_add_CFA_def_cfa (REG_SP, 0);
26267 }
26268 #endif /* OBJ_ELF */
26269
26270 /* Convert REGNAME to a DWARF-2 register number. */
26271
26272 int
26273 tc_arm_regname_to_dw2regnum (char *regname)
26274 {
26275 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
26276 if (reg != FAIL)
26277 return reg;
26278
26279 /* PR 16694: Allow VFP registers as well. */
26280 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
26281 if (reg != FAIL)
26282 return 64 + reg;
26283
26284 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
26285 if (reg != FAIL)
26286 return reg + 256;
26287
26288 return FAIL;
26289 }
26290
26291 #ifdef TE_PE
26292 void
26293 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
26294 {
26295 expressionS exp;
26296
26297 exp.X_op = O_secrel;
26298 exp.X_add_symbol = symbol;
26299 exp.X_add_number = 0;
26300 emit_expr (&exp, size);
26301 }
26302 #endif
26303
26304 /* MD interface: Symbol and relocation handling. */
26305
26306 /* Return the address within the segment that a PC-relative fixup is
26307 relative to. For ARM, PC-relative fixups applied to instructions
26308 are generally relative to the location of the fixup plus 8 bytes.
26309 Thumb branches are offset by 4, and Thumb loads relative to PC
26310 require special handling. */
26311
26312 long
26313 md_pcrel_from_section (fixS * fixP, segT seg)
26314 {
26315 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
26316
26317 /* If this is pc-relative and we are going to emit a relocation
26318 then we just want to put out any pipeline compensation that the linker
26319 will need. Otherwise we want to use the calculated base.
26320 For WinCE we skip the bias for externals as well, since this
26321 is how the MS ARM-CE assembler behaves and we want to be compatible. */
26322 if (fixP->fx_pcrel
26323 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
26324 || (arm_force_relocation (fixP)
26325 #ifdef TE_WINCE
26326 && !S_IS_EXTERNAL (fixP->fx_addsy)
26327 #endif
26328 )))
26329 base = 0;
26330
26331
26332 switch (fixP->fx_r_type)
26333 {
26334 /* PC relative addressing on the Thumb is slightly odd as the
26335 bottom two bits of the PC are forced to zero for the
26336 calculation. This happens *after* application of the
26337 pipeline offset. However, Thumb adrl already adjusts for
26338 this, so we need not do it again. */
26339 case BFD_RELOC_ARM_THUMB_ADD:
26340 return base & ~3;
26341
26342 case BFD_RELOC_ARM_THUMB_OFFSET:
26343 case BFD_RELOC_ARM_T32_OFFSET_IMM:
26344 case BFD_RELOC_ARM_T32_ADD_PC12:
26345 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
26346 return (base + 4) & ~3;
26347
26348 /* Thumb branches are simply offset by +4. */
26349 case BFD_RELOC_THUMB_PCREL_BRANCH5:
26350 case BFD_RELOC_THUMB_PCREL_BRANCH7:
26351 case BFD_RELOC_THUMB_PCREL_BRANCH9:
26352 case BFD_RELOC_THUMB_PCREL_BRANCH12:
26353 case BFD_RELOC_THUMB_PCREL_BRANCH20:
26354 case BFD_RELOC_THUMB_PCREL_BRANCH25:
26355 case BFD_RELOC_THUMB_PCREL_BFCSEL:
26356 case BFD_RELOC_ARM_THUMB_BF17:
26357 case BFD_RELOC_ARM_THUMB_BF19:
26358 case BFD_RELOC_ARM_THUMB_BF13:
26359 case BFD_RELOC_ARM_THUMB_LOOP12:
26360 return base + 4;
26361
26362 case BFD_RELOC_THUMB_PCREL_BRANCH23:
26363 if (fixP->fx_addsy
26364 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26365 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26366 && ARM_IS_FUNC (fixP->fx_addsy)
26367 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26368 base = fixP->fx_where + fixP->fx_frag->fr_address;
26369 return base + 4;
26370
26371 /* BLX is like branches above, but forces the low two bits of PC to
26372 zero. */
26373 case BFD_RELOC_THUMB_PCREL_BLX:
26374 if (fixP->fx_addsy
26375 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26376 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26377 && THUMB_IS_FUNC (fixP->fx_addsy)
26378 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26379 base = fixP->fx_where + fixP->fx_frag->fr_address;
26380 return (base + 4) & ~3;
26381
26382 /* ARM mode branches are offset by +8. However, the Windows CE
26383 loader expects the relocation not to take this into account. */
26384 case BFD_RELOC_ARM_PCREL_BLX:
26385 if (fixP->fx_addsy
26386 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26387 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26388 && ARM_IS_FUNC (fixP->fx_addsy)
26389 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26390 base = fixP->fx_where + fixP->fx_frag->fr_address;
26391 return base + 8;
26392
26393 case BFD_RELOC_ARM_PCREL_CALL:
26394 if (fixP->fx_addsy
26395 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26396 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26397 && THUMB_IS_FUNC (fixP->fx_addsy)
26398 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26399 base = fixP->fx_where + fixP->fx_frag->fr_address;
26400 return base + 8;
26401
26402 case BFD_RELOC_ARM_PCREL_BRANCH:
26403 case BFD_RELOC_ARM_PCREL_JUMP:
26404 case BFD_RELOC_ARM_PLT32:
26405 #ifdef TE_WINCE
26406 /* When handling fixups immediately, because we have already
26407 discovered the value of a symbol, or the address of the frag involved
26408 we must account for the offset by +8, as the OS loader will never see the reloc.
26409 see fixup_segment() in write.c
26410 The S_IS_EXTERNAL test handles the case of global symbols.
26411 Those need the calculated base, not just the pipe compensation the linker will need. */
26412 if (fixP->fx_pcrel
26413 && fixP->fx_addsy != NULL
26414 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26415 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
26416 return base + 8;
26417 return base;
26418 #else
26419 return base + 8;
26420 #endif
26421
26422
26423 /* ARM mode loads relative to PC are also offset by +8. Unlike
26424 branches, the Windows CE loader *does* expect the relocation
26425 to take this into account. */
26426 case BFD_RELOC_ARM_OFFSET_IMM:
26427 case BFD_RELOC_ARM_OFFSET_IMM8:
26428 case BFD_RELOC_ARM_HWLITERAL:
26429 case BFD_RELOC_ARM_LITERAL:
26430 case BFD_RELOC_ARM_CP_OFF_IMM:
26431 return base + 8;
26432
26433
26434 /* Other PC-relative relocations are un-offset. */
26435 default:
26436 return base;
26437 }
26438 }
26439
26440 static bfd_boolean flag_warn_syms = TRUE;
26441
26442 bfd_boolean
26443 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
26444 {
26445 /* PR 18347 - Warn if the user attempts to create a symbol with the same
26446 name as an ARM instruction. Whilst strictly speaking it is allowed, it
26447 does mean that the resulting code might be very confusing to the reader.
26448 Also this warning can be triggered if the user omits an operand before
26449 an immediate address, eg:
26450
26451 LDR =foo
26452
26453 GAS treats this as an assignment of the value of the symbol foo to a
26454 symbol LDR, and so (without this code) it will not issue any kind of
26455 warning or error message.
26456
26457 Note - ARM instructions are case-insensitive but the strings in the hash
26458 table are all stored in lower case, so we must first ensure that name is
26459 lower case too. */
26460 if (flag_warn_syms && arm_ops_hsh)
26461 {
26462 char * nbuf = strdup (name);
26463 char * p;
26464
26465 for (p = nbuf; *p; p++)
26466 *p = TOLOWER (*p);
26467 if (hash_find (arm_ops_hsh, nbuf) != NULL)
26468 {
26469 static struct hash_control * already_warned = NULL;
26470
26471 if (already_warned == NULL)
26472 already_warned = hash_new ();
26473 /* Only warn about the symbol once. To keep the code
26474 simple we let hash_insert do the lookup for us. */
26475 if (hash_insert (already_warned, nbuf, NULL) == NULL)
26476 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
26477 }
26478 else
26479 free (nbuf);
26480 }
26481
26482 return FALSE;
26483 }
26484
26485 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
26486 Otherwise we have no need to default values of symbols. */
26487
26488 symbolS *
26489 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
26490 {
26491 #ifdef OBJ_ELF
26492 if (name[0] == '_' && name[1] == 'G'
26493 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
26494 {
26495 if (!GOT_symbol)
26496 {
26497 if (symbol_find (name))
26498 as_bad (_("GOT already in the symbol table"));
26499
26500 GOT_symbol = symbol_new (name, undefined_section,
26501 (valueT) 0, & zero_address_frag);
26502 }
26503
26504 return GOT_symbol;
26505 }
26506 #endif
26507
26508 return NULL;
26509 }
26510
26511 /* Subroutine of md_apply_fix. Check to see if an immediate can be
26512 computed as two separate immediate values, added together. We
26513 already know that this value cannot be computed by just one ARM
26514 instruction. */
26515
26516 static unsigned int
26517 validate_immediate_twopart (unsigned int val,
26518 unsigned int * highpart)
26519 {
26520 unsigned int a;
26521 unsigned int i;
26522
26523 for (i = 0; i < 32; i += 2)
26524 if (((a = rotate_left (val, i)) & 0xff) != 0)
26525 {
26526 if (a & 0xff00)
26527 {
26528 if (a & ~ 0xffff)
26529 continue;
26530 * highpart = (a >> 8) | ((i + 24) << 7);
26531 }
26532 else if (a & 0xff0000)
26533 {
26534 if (a & 0xff000000)
26535 continue;
26536 * highpart = (a >> 16) | ((i + 16) << 7);
26537 }
26538 else
26539 {
26540 gas_assert (a & 0xff000000);
26541 * highpart = (a >> 24) | ((i + 8) << 7);
26542 }
26543
26544 return (a & 0xff) | (i << 7);
26545 }
26546
26547 return FAIL;
26548 }
26549
26550 static int
26551 validate_offset_imm (unsigned int val, int hwse)
26552 {
26553 if ((hwse && val > 255) || val > 4095)
26554 return FAIL;
26555 return val;
26556 }
26557
26558 /* Subroutine of md_apply_fix. Do those data_ops which can take a
26559 negative immediate constant by altering the instruction. A bit of
26560 a hack really.
26561 MOV <-> MVN
26562 AND <-> BIC
26563 ADC <-> SBC
26564 by inverting the second operand, and
26565 ADD <-> SUB
26566 CMP <-> CMN
26567 by negating the second operand. */
26568
26569 static int
26570 negate_data_op (unsigned long * instruction,
26571 unsigned long value)
26572 {
26573 int op, new_inst;
26574 unsigned long negated, inverted;
26575
26576 negated = encode_arm_immediate (-value);
26577 inverted = encode_arm_immediate (~value);
26578
26579 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
26580 switch (op)
26581 {
26582 /* First negates. */
26583 case OPCODE_SUB: /* ADD <-> SUB */
26584 new_inst = OPCODE_ADD;
26585 value = negated;
26586 break;
26587
26588 case OPCODE_ADD:
26589 new_inst = OPCODE_SUB;
26590 value = negated;
26591 break;
26592
26593 case OPCODE_CMP: /* CMP <-> CMN */
26594 new_inst = OPCODE_CMN;
26595 value = negated;
26596 break;
26597
26598 case OPCODE_CMN:
26599 new_inst = OPCODE_CMP;
26600 value = negated;
26601 break;
26602
26603 /* Now Inverted ops. */
26604 case OPCODE_MOV: /* MOV <-> MVN */
26605 new_inst = OPCODE_MVN;
26606 value = inverted;
26607 break;
26608
26609 case OPCODE_MVN:
26610 new_inst = OPCODE_MOV;
26611 value = inverted;
26612 break;
26613
26614 case OPCODE_AND: /* AND <-> BIC */
26615 new_inst = OPCODE_BIC;
26616 value = inverted;
26617 break;
26618
26619 case OPCODE_BIC:
26620 new_inst = OPCODE_AND;
26621 value = inverted;
26622 break;
26623
26624 case OPCODE_ADC: /* ADC <-> SBC */
26625 new_inst = OPCODE_SBC;
26626 value = inverted;
26627 break;
26628
26629 case OPCODE_SBC:
26630 new_inst = OPCODE_ADC;
26631 value = inverted;
26632 break;
26633
26634 /* We cannot do anything. */
26635 default:
26636 return FAIL;
26637 }
26638
26639 if (value == (unsigned) FAIL)
26640 return FAIL;
26641
26642 *instruction &= OPCODE_MASK;
26643 *instruction |= new_inst << DATA_OP_SHIFT;
26644 return value;
26645 }
26646
26647 /* Like negate_data_op, but for Thumb-2. */
26648
26649 static unsigned int
26650 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
26651 {
26652 int op, new_inst;
26653 int rd;
26654 unsigned int negated, inverted;
26655
26656 negated = encode_thumb32_immediate (-value);
26657 inverted = encode_thumb32_immediate (~value);
26658
26659 rd = (*instruction >> 8) & 0xf;
26660 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
26661 switch (op)
26662 {
26663 /* ADD <-> SUB. Includes CMP <-> CMN. */
26664 case T2_OPCODE_SUB:
26665 new_inst = T2_OPCODE_ADD;
26666 value = negated;
26667 break;
26668
26669 case T2_OPCODE_ADD:
26670 new_inst = T2_OPCODE_SUB;
26671 value = negated;
26672 break;
26673
26674 /* ORR <-> ORN. Includes MOV <-> MVN. */
26675 case T2_OPCODE_ORR:
26676 new_inst = T2_OPCODE_ORN;
26677 value = inverted;
26678 break;
26679
26680 case T2_OPCODE_ORN:
26681 new_inst = T2_OPCODE_ORR;
26682 value = inverted;
26683 break;
26684
26685 /* AND <-> BIC. TST has no inverted equivalent. */
26686 case T2_OPCODE_AND:
26687 new_inst = T2_OPCODE_BIC;
26688 if (rd == 15)
26689 value = FAIL;
26690 else
26691 value = inverted;
26692 break;
26693
26694 case T2_OPCODE_BIC:
26695 new_inst = T2_OPCODE_AND;
26696 value = inverted;
26697 break;
26698
26699 /* ADC <-> SBC */
26700 case T2_OPCODE_ADC:
26701 new_inst = T2_OPCODE_SBC;
26702 value = inverted;
26703 break;
26704
26705 case T2_OPCODE_SBC:
26706 new_inst = T2_OPCODE_ADC;
26707 value = inverted;
26708 break;
26709
26710 /* We cannot do anything. */
26711 default:
26712 return FAIL;
26713 }
26714
26715 if (value == (unsigned int)FAIL)
26716 return FAIL;
26717
26718 *instruction &= T2_OPCODE_MASK;
26719 *instruction |= new_inst << T2_DATA_OP_SHIFT;
26720 return value;
26721 }
26722
26723 /* Read a 32-bit thumb instruction from buf. */
26724
26725 static unsigned long
26726 get_thumb32_insn (char * buf)
26727 {
26728 unsigned long insn;
26729 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
26730 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26731
26732 return insn;
26733 }
26734
26735 /* We usually want to set the low bit on the address of thumb function
26736 symbols. In particular .word foo - . should have the low bit set.
26737 Generic code tries to fold the difference of two symbols to
26738 a constant. Prevent this and force a relocation when the first symbols
26739 is a thumb function. */
26740
26741 bfd_boolean
26742 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
26743 {
26744 if (op == O_subtract
26745 && l->X_op == O_symbol
26746 && r->X_op == O_symbol
26747 && THUMB_IS_FUNC (l->X_add_symbol))
26748 {
26749 l->X_op = O_subtract;
26750 l->X_op_symbol = r->X_add_symbol;
26751 l->X_add_number -= r->X_add_number;
26752 return TRUE;
26753 }
26754
26755 /* Process as normal. */
26756 return FALSE;
26757 }
26758
26759 /* Encode Thumb2 unconditional branches and calls. The encoding
26760 for the 2 are identical for the immediate values. */
26761
26762 static void
26763 encode_thumb2_b_bl_offset (char * buf, offsetT value)
26764 {
26765 #define T2I1I2MASK ((1 << 13) | (1 << 11))
26766 offsetT newval;
26767 offsetT newval2;
26768 addressT S, I1, I2, lo, hi;
26769
26770 S = (value >> 24) & 0x01;
26771 I1 = (value >> 23) & 0x01;
26772 I2 = (value >> 22) & 0x01;
26773 hi = (value >> 12) & 0x3ff;
26774 lo = (value >> 1) & 0x7ff;
26775 newval = md_chars_to_number (buf, THUMB_SIZE);
26776 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26777 newval |= (S << 10) | hi;
26778 newval2 &= ~T2I1I2MASK;
26779 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
26780 md_number_to_chars (buf, newval, THUMB_SIZE);
26781 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
26782 }
26783
26784 void
26785 md_apply_fix (fixS * fixP,
26786 valueT * valP,
26787 segT seg)
26788 {
26789 offsetT value = * valP;
26790 offsetT newval;
26791 unsigned int newimm;
26792 unsigned long temp;
26793 int sign;
26794 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
26795
26796 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
26797
26798 /* Note whether this will delete the relocation. */
26799
26800 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
26801 fixP->fx_done = 1;
26802
26803 /* On a 64-bit host, silently truncate 'value' to 32 bits for
26804 consistency with the behaviour on 32-bit hosts. Remember value
26805 for emit_reloc. */
26806 value &= 0xffffffff;
26807 value ^= 0x80000000;
26808 value -= 0x80000000;
26809
26810 *valP = value;
26811 fixP->fx_addnumber = value;
26812
26813 /* Same treatment for fixP->fx_offset. */
26814 fixP->fx_offset &= 0xffffffff;
26815 fixP->fx_offset ^= 0x80000000;
26816 fixP->fx_offset -= 0x80000000;
26817
26818 switch (fixP->fx_r_type)
26819 {
26820 case BFD_RELOC_NONE:
26821 /* This will need to go in the object file. */
26822 fixP->fx_done = 0;
26823 break;
26824
26825 case BFD_RELOC_ARM_IMMEDIATE:
26826 /* We claim that this fixup has been processed here,
26827 even if in fact we generate an error because we do
26828 not have a reloc for it, so tc_gen_reloc will reject it. */
26829 fixP->fx_done = 1;
26830
26831 if (fixP->fx_addsy)
26832 {
26833 const char *msg = 0;
26834
26835 if (! S_IS_DEFINED (fixP->fx_addsy))
26836 msg = _("undefined symbol %s used as an immediate value");
26837 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26838 msg = _("symbol %s is in a different section");
26839 else if (S_IS_WEAK (fixP->fx_addsy))
26840 msg = _("symbol %s is weak and may be overridden later");
26841
26842 if (msg)
26843 {
26844 as_bad_where (fixP->fx_file, fixP->fx_line,
26845 msg, S_GET_NAME (fixP->fx_addsy));
26846 break;
26847 }
26848 }
26849
26850 temp = md_chars_to_number (buf, INSN_SIZE);
26851
26852 /* If the offset is negative, we should use encoding A2 for ADR. */
26853 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
26854 newimm = negate_data_op (&temp, value);
26855 else
26856 {
26857 newimm = encode_arm_immediate (value);
26858
26859 /* If the instruction will fail, see if we can fix things up by
26860 changing the opcode. */
26861 if (newimm == (unsigned int) FAIL)
26862 newimm = negate_data_op (&temp, value);
26863 /* MOV accepts both ARM modified immediate (A1 encoding) and
26864 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
26865 When disassembling, MOV is preferred when there is no encoding
26866 overlap. */
26867 if (newimm == (unsigned int) FAIL
26868 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
26869 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
26870 && !((temp >> SBIT_SHIFT) & 0x1)
26871 && value >= 0 && value <= 0xffff)
26872 {
26873 /* Clear bits[23:20] to change encoding from A1 to A2. */
26874 temp &= 0xff0fffff;
26875 /* Encoding high 4bits imm. Code below will encode the remaining
26876 low 12bits. */
26877 temp |= (value & 0x0000f000) << 4;
26878 newimm = value & 0x00000fff;
26879 }
26880 }
26881
26882 if (newimm == (unsigned int) FAIL)
26883 {
26884 as_bad_where (fixP->fx_file, fixP->fx_line,
26885 _("invalid constant (%lx) after fixup"),
26886 (unsigned long) value);
26887 break;
26888 }
26889
26890 newimm |= (temp & 0xfffff000);
26891 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26892 break;
26893
26894 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
26895 {
26896 unsigned int highpart = 0;
26897 unsigned int newinsn = 0xe1a00000; /* nop. */
26898
26899 if (fixP->fx_addsy)
26900 {
26901 const char *msg = 0;
26902
26903 if (! S_IS_DEFINED (fixP->fx_addsy))
26904 msg = _("undefined symbol %s used as an immediate value");
26905 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26906 msg = _("symbol %s is in a different section");
26907 else if (S_IS_WEAK (fixP->fx_addsy))
26908 msg = _("symbol %s is weak and may be overridden later");
26909
26910 if (msg)
26911 {
26912 as_bad_where (fixP->fx_file, fixP->fx_line,
26913 msg, S_GET_NAME (fixP->fx_addsy));
26914 break;
26915 }
26916 }
26917
26918 newimm = encode_arm_immediate (value);
26919 temp = md_chars_to_number (buf, INSN_SIZE);
26920
26921 /* If the instruction will fail, see if we can fix things up by
26922 changing the opcode. */
26923 if (newimm == (unsigned int) FAIL
26924 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
26925 {
26926 /* No ? OK - try using two ADD instructions to generate
26927 the value. */
26928 newimm = validate_immediate_twopart (value, & highpart);
26929
26930 /* Yes - then make sure that the second instruction is
26931 also an add. */
26932 if (newimm != (unsigned int) FAIL)
26933 newinsn = temp;
26934 /* Still No ? Try using a negated value. */
26935 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
26936 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
26937 /* Otherwise - give up. */
26938 else
26939 {
26940 as_bad_where (fixP->fx_file, fixP->fx_line,
26941 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
26942 (long) value);
26943 break;
26944 }
26945
26946 /* Replace the first operand in the 2nd instruction (which
26947 is the PC) with the destination register. We have
26948 already added in the PC in the first instruction and we
26949 do not want to do it again. */
26950 newinsn &= ~ 0xf0000;
26951 newinsn |= ((newinsn & 0x0f000) << 4);
26952 }
26953
26954 newimm |= (temp & 0xfffff000);
26955 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26956
26957 highpart |= (newinsn & 0xfffff000);
26958 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
26959 }
26960 break;
26961
26962 case BFD_RELOC_ARM_OFFSET_IMM:
26963 if (!fixP->fx_done && seg->use_rela_p)
26964 value = 0;
26965 /* Fall through. */
26966
26967 case BFD_RELOC_ARM_LITERAL:
26968 sign = value > 0;
26969
26970 if (value < 0)
26971 value = - value;
26972
26973 if (validate_offset_imm (value, 0) == FAIL)
26974 {
26975 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
26976 as_bad_where (fixP->fx_file, fixP->fx_line,
26977 _("invalid literal constant: pool needs to be closer"));
26978 else
26979 as_bad_where (fixP->fx_file, fixP->fx_line,
26980 _("bad immediate value for offset (%ld)"),
26981 (long) value);
26982 break;
26983 }
26984
26985 newval = md_chars_to_number (buf, INSN_SIZE);
26986 if (value == 0)
26987 newval &= 0xfffff000;
26988 else
26989 {
26990 newval &= 0xff7ff000;
26991 newval |= value | (sign ? INDEX_UP : 0);
26992 }
26993 md_number_to_chars (buf, newval, INSN_SIZE);
26994 break;
26995
26996 case BFD_RELOC_ARM_OFFSET_IMM8:
26997 case BFD_RELOC_ARM_HWLITERAL:
26998 sign = value > 0;
26999
27000 if (value < 0)
27001 value = - value;
27002
27003 if (validate_offset_imm (value, 1) == FAIL)
27004 {
27005 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
27006 as_bad_where (fixP->fx_file, fixP->fx_line,
27007 _("invalid literal constant: pool needs to be closer"));
27008 else
27009 as_bad_where (fixP->fx_file, fixP->fx_line,
27010 _("bad immediate value for 8-bit offset (%ld)"),
27011 (long) value);
27012 break;
27013 }
27014
27015 newval = md_chars_to_number (buf, INSN_SIZE);
27016 if (value == 0)
27017 newval &= 0xfffff0f0;
27018 else
27019 {
27020 newval &= 0xff7ff0f0;
27021 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
27022 }
27023 md_number_to_chars (buf, newval, INSN_SIZE);
27024 break;
27025
27026 case BFD_RELOC_ARM_T32_OFFSET_U8:
27027 if (value < 0 || value > 1020 || value % 4 != 0)
27028 as_bad_where (fixP->fx_file, fixP->fx_line,
27029 _("bad immediate value for offset (%ld)"), (long) value);
27030 value /= 4;
27031
27032 newval = md_chars_to_number (buf+2, THUMB_SIZE);
27033 newval |= value;
27034 md_number_to_chars (buf+2, newval, THUMB_SIZE);
27035 break;
27036
27037 case BFD_RELOC_ARM_T32_OFFSET_IMM:
27038 /* This is a complicated relocation used for all varieties of Thumb32
27039 load/store instruction with immediate offset:
27040
27041 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
27042 *4, optional writeback(W)
27043 (doubleword load/store)
27044
27045 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
27046 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
27047 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
27048 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
27049 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
27050
27051 Uppercase letters indicate bits that are already encoded at
27052 this point. Lowercase letters are our problem. For the
27053 second block of instructions, the secondary opcode nybble
27054 (bits 8..11) is present, and bit 23 is zero, even if this is
27055 a PC-relative operation. */
27056 newval = md_chars_to_number (buf, THUMB_SIZE);
27057 newval <<= 16;
27058 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
27059
27060 if ((newval & 0xf0000000) == 0xe0000000)
27061 {
27062 /* Doubleword load/store: 8-bit offset, scaled by 4. */
27063 if (value >= 0)
27064 newval |= (1 << 23);
27065 else
27066 value = -value;
27067 if (value % 4 != 0)
27068 {
27069 as_bad_where (fixP->fx_file, fixP->fx_line,
27070 _("offset not a multiple of 4"));
27071 break;
27072 }
27073 value /= 4;
27074 if (value > 0xff)
27075 {
27076 as_bad_where (fixP->fx_file, fixP->fx_line,
27077 _("offset out of range"));
27078 break;
27079 }
27080 newval &= ~0xff;
27081 }
27082 else if ((newval & 0x000f0000) == 0x000f0000)
27083 {
27084 /* PC-relative, 12-bit offset. */
27085 if (value >= 0)
27086 newval |= (1 << 23);
27087 else
27088 value = -value;
27089 if (value > 0xfff)
27090 {
27091 as_bad_where (fixP->fx_file, fixP->fx_line,
27092 _("offset out of range"));
27093 break;
27094 }
27095 newval &= ~0xfff;
27096 }
27097 else if ((newval & 0x00000100) == 0x00000100)
27098 {
27099 /* Writeback: 8-bit, +/- offset. */
27100 if (value >= 0)
27101 newval |= (1 << 9);
27102 else
27103 value = -value;
27104 if (value > 0xff)
27105 {
27106 as_bad_where (fixP->fx_file, fixP->fx_line,
27107 _("offset out of range"));
27108 break;
27109 }
27110 newval &= ~0xff;
27111 }
27112 else if ((newval & 0x00000f00) == 0x00000e00)
27113 {
27114 /* T-instruction: positive 8-bit offset. */
27115 if (value < 0 || value > 0xff)
27116 {
27117 as_bad_where (fixP->fx_file, fixP->fx_line,
27118 _("offset out of range"));
27119 break;
27120 }
27121 newval &= ~0xff;
27122 newval |= value;
27123 }
27124 else
27125 {
27126 /* Positive 12-bit or negative 8-bit offset. */
27127 int limit;
27128 if (value >= 0)
27129 {
27130 newval |= (1 << 23);
27131 limit = 0xfff;
27132 }
27133 else
27134 {
27135 value = -value;
27136 limit = 0xff;
27137 }
27138 if (value > limit)
27139 {
27140 as_bad_where (fixP->fx_file, fixP->fx_line,
27141 _("offset out of range"));
27142 break;
27143 }
27144 newval &= ~limit;
27145 }
27146
27147 newval |= value;
27148 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
27149 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
27150 break;
27151
27152 case BFD_RELOC_ARM_SHIFT_IMM:
27153 newval = md_chars_to_number (buf, INSN_SIZE);
27154 if (((unsigned long) value) > 32
27155 || (value == 32
27156 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
27157 {
27158 as_bad_where (fixP->fx_file, fixP->fx_line,
27159 _("shift expression is too large"));
27160 break;
27161 }
27162
27163 if (value == 0)
27164 /* Shifts of zero must be done as lsl. */
27165 newval &= ~0x60;
27166 else if (value == 32)
27167 value = 0;
27168 newval &= 0xfffff07f;
27169 newval |= (value & 0x1f) << 7;
27170 md_number_to_chars (buf, newval, INSN_SIZE);
27171 break;
27172
27173 case BFD_RELOC_ARM_T32_IMMEDIATE:
27174 case BFD_RELOC_ARM_T32_ADD_IMM:
27175 case BFD_RELOC_ARM_T32_IMM12:
27176 case BFD_RELOC_ARM_T32_ADD_PC12:
27177 /* We claim that this fixup has been processed here,
27178 even if in fact we generate an error because we do
27179 not have a reloc for it, so tc_gen_reloc will reject it. */
27180 fixP->fx_done = 1;
27181
27182 if (fixP->fx_addsy
27183 && ! S_IS_DEFINED (fixP->fx_addsy))
27184 {
27185 as_bad_where (fixP->fx_file, fixP->fx_line,
27186 _("undefined symbol %s used as an immediate value"),
27187 S_GET_NAME (fixP->fx_addsy));
27188 break;
27189 }
27190
27191 newval = md_chars_to_number (buf, THUMB_SIZE);
27192 newval <<= 16;
27193 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
27194
27195 newimm = FAIL;
27196 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
27197 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
27198 Thumb2 modified immediate encoding (T2). */
27199 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
27200 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
27201 {
27202 newimm = encode_thumb32_immediate (value);
27203 if (newimm == (unsigned int) FAIL)
27204 newimm = thumb32_negate_data_op (&newval, value);
27205 }
27206 if (newimm == (unsigned int) FAIL)
27207 {
27208 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
27209 {
27210 /* Turn add/sum into addw/subw. */
27211 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
27212 newval = (newval & 0xfeffffff) | 0x02000000;
27213 /* No flat 12-bit imm encoding for addsw/subsw. */
27214 if ((newval & 0x00100000) == 0)
27215 {
27216 /* 12 bit immediate for addw/subw. */
27217 if (value < 0)
27218 {
27219 value = -value;
27220 newval ^= 0x00a00000;
27221 }
27222 if (value > 0xfff)
27223 newimm = (unsigned int) FAIL;
27224 else
27225 newimm = value;
27226 }
27227 }
27228 else
27229 {
27230 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
27231 UINT16 (T3 encoding), MOVW only accepts UINT16. When
27232 disassembling, MOV is preferred when there is no encoding
27233 overlap. */
27234 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
27235 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
27236 but with the Rn field [19:16] set to 1111. */
27237 && (((newval >> 16) & 0xf) == 0xf)
27238 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
27239 && !((newval >> T2_SBIT_SHIFT) & 0x1)
27240 && value >= 0 && value <= 0xffff)
27241 {
27242 /* Toggle bit[25] to change encoding from T2 to T3. */
27243 newval ^= 1 << 25;
27244 /* Clear bits[19:16]. */
27245 newval &= 0xfff0ffff;
27246 /* Encoding high 4bits imm. Code below will encode the
27247 remaining low 12bits. */
27248 newval |= (value & 0x0000f000) << 4;
27249 newimm = value & 0x00000fff;
27250 }
27251 }
27252 }
27253
27254 if (newimm == (unsigned int)FAIL)
27255 {
27256 as_bad_where (fixP->fx_file, fixP->fx_line,
27257 _("invalid constant (%lx) after fixup"),
27258 (unsigned long) value);
27259 break;
27260 }
27261
27262 newval |= (newimm & 0x800) << 15;
27263 newval |= (newimm & 0x700) << 4;
27264 newval |= (newimm & 0x0ff);
27265
27266 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
27267 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
27268 break;
27269
27270 case BFD_RELOC_ARM_SMC:
27271 if (((unsigned long) value) > 0xffff)
27272 as_bad_where (fixP->fx_file, fixP->fx_line,
27273 _("invalid smc expression"));
27274 newval = md_chars_to_number (buf, INSN_SIZE);
27275 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
27276 md_number_to_chars (buf, newval, INSN_SIZE);
27277 break;
27278
27279 case BFD_RELOC_ARM_HVC:
27280 if (((unsigned long) value) > 0xffff)
27281 as_bad_where (fixP->fx_file, fixP->fx_line,
27282 _("invalid hvc expression"));
27283 newval = md_chars_to_number (buf, INSN_SIZE);
27284 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
27285 md_number_to_chars (buf, newval, INSN_SIZE);
27286 break;
27287
27288 case BFD_RELOC_ARM_SWI:
27289 if (fixP->tc_fix_data != 0)
27290 {
27291 if (((unsigned long) value) > 0xff)
27292 as_bad_where (fixP->fx_file, fixP->fx_line,
27293 _("invalid swi expression"));
27294 newval = md_chars_to_number (buf, THUMB_SIZE);
27295 newval |= value;
27296 md_number_to_chars (buf, newval, THUMB_SIZE);
27297 }
27298 else
27299 {
27300 if (((unsigned long) value) > 0x00ffffff)
27301 as_bad_where (fixP->fx_file, fixP->fx_line,
27302 _("invalid swi expression"));
27303 newval = md_chars_to_number (buf, INSN_SIZE);
27304 newval |= value;
27305 md_number_to_chars (buf, newval, INSN_SIZE);
27306 }
27307 break;
27308
27309 case BFD_RELOC_ARM_MULTI:
27310 if (((unsigned long) value) > 0xffff)
27311 as_bad_where (fixP->fx_file, fixP->fx_line,
27312 _("invalid expression in load/store multiple"));
27313 newval = value | md_chars_to_number (buf, INSN_SIZE);
27314 md_number_to_chars (buf, newval, INSN_SIZE);
27315 break;
27316
27317 #ifdef OBJ_ELF
27318 case BFD_RELOC_ARM_PCREL_CALL:
27319
27320 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27321 && fixP->fx_addsy
27322 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27323 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27324 && THUMB_IS_FUNC (fixP->fx_addsy))
27325 /* Flip the bl to blx. This is a simple flip
27326 bit here because we generate PCREL_CALL for
27327 unconditional bls. */
27328 {
27329 newval = md_chars_to_number (buf, INSN_SIZE);
27330 newval = newval | 0x10000000;
27331 md_number_to_chars (buf, newval, INSN_SIZE);
27332 temp = 1;
27333 fixP->fx_done = 1;
27334 }
27335 else
27336 temp = 3;
27337 goto arm_branch_common;
27338
27339 case BFD_RELOC_ARM_PCREL_JUMP:
27340 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27341 && fixP->fx_addsy
27342 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27343 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27344 && THUMB_IS_FUNC (fixP->fx_addsy))
27345 {
27346 /* This would map to a bl<cond>, b<cond>,
27347 b<always> to a Thumb function. We
27348 need to force a relocation for this particular
27349 case. */
27350 newval = md_chars_to_number (buf, INSN_SIZE);
27351 fixP->fx_done = 0;
27352 }
27353 /* Fall through. */
27354
27355 case BFD_RELOC_ARM_PLT32:
27356 #endif
27357 case BFD_RELOC_ARM_PCREL_BRANCH:
27358 temp = 3;
27359 goto arm_branch_common;
27360
27361 case BFD_RELOC_ARM_PCREL_BLX:
27362
27363 temp = 1;
27364 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27365 && fixP->fx_addsy
27366 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27367 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27368 && ARM_IS_FUNC (fixP->fx_addsy))
27369 {
27370 /* Flip the blx to a bl and warn. */
27371 const char *name = S_GET_NAME (fixP->fx_addsy);
27372 newval = 0xeb000000;
27373 as_warn_where (fixP->fx_file, fixP->fx_line,
27374 _("blx to '%s' an ARM ISA state function changed to bl"),
27375 name);
27376 md_number_to_chars (buf, newval, INSN_SIZE);
27377 temp = 3;
27378 fixP->fx_done = 1;
27379 }
27380
27381 #ifdef OBJ_ELF
27382 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
27383 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
27384 #endif
27385
27386 arm_branch_common:
27387 /* We are going to store value (shifted right by two) in the
27388 instruction, in a 24 bit, signed field. Bits 26 through 32 either
27389 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
27390 also be clear. */
27391 if (value & temp)
27392 as_bad_where (fixP->fx_file, fixP->fx_line,
27393 _("misaligned branch destination"));
27394 if ((value & (offsetT)0xfe000000) != (offsetT)0
27395 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
27396 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27397
27398 if (fixP->fx_done || !seg->use_rela_p)
27399 {
27400 newval = md_chars_to_number (buf, INSN_SIZE);
27401 newval |= (value >> 2) & 0x00ffffff;
27402 /* Set the H bit on BLX instructions. */
27403 if (temp == 1)
27404 {
27405 if (value & 2)
27406 newval |= 0x01000000;
27407 else
27408 newval &= ~0x01000000;
27409 }
27410 md_number_to_chars (buf, newval, INSN_SIZE);
27411 }
27412 break;
27413
27414 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
27415 /* CBZ can only branch forward. */
27416
27417 /* Attempts to use CBZ to branch to the next instruction
27418 (which, strictly speaking, are prohibited) will be turned into
27419 no-ops.
27420
27421 FIXME: It may be better to remove the instruction completely and
27422 perform relaxation. */
27423 if (value == -2)
27424 {
27425 newval = md_chars_to_number (buf, THUMB_SIZE);
27426 newval = 0xbf00; /* NOP encoding T1 */
27427 md_number_to_chars (buf, newval, THUMB_SIZE);
27428 }
27429 else
27430 {
27431 if (value & ~0x7e)
27432 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27433
27434 if (fixP->fx_done || !seg->use_rela_p)
27435 {
27436 newval = md_chars_to_number (buf, THUMB_SIZE);
27437 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
27438 md_number_to_chars (buf, newval, THUMB_SIZE);
27439 }
27440 }
27441 break;
27442
27443 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
27444 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
27445 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27446
27447 if (fixP->fx_done || !seg->use_rela_p)
27448 {
27449 newval = md_chars_to_number (buf, THUMB_SIZE);
27450 newval |= (value & 0x1ff) >> 1;
27451 md_number_to_chars (buf, newval, THUMB_SIZE);
27452 }
27453 break;
27454
27455 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
27456 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
27457 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27458
27459 if (fixP->fx_done || !seg->use_rela_p)
27460 {
27461 newval = md_chars_to_number (buf, THUMB_SIZE);
27462 newval |= (value & 0xfff) >> 1;
27463 md_number_to_chars (buf, newval, THUMB_SIZE);
27464 }
27465 break;
27466
27467 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27468 if (fixP->fx_addsy
27469 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27470 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27471 && ARM_IS_FUNC (fixP->fx_addsy)
27472 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27473 {
27474 /* Force a relocation for a branch 20 bits wide. */
27475 fixP->fx_done = 0;
27476 }
27477 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
27478 as_bad_where (fixP->fx_file, fixP->fx_line,
27479 _("conditional branch out of range"));
27480
27481 if (fixP->fx_done || !seg->use_rela_p)
27482 {
27483 offsetT newval2;
27484 addressT S, J1, J2, lo, hi;
27485
27486 S = (value & 0x00100000) >> 20;
27487 J2 = (value & 0x00080000) >> 19;
27488 J1 = (value & 0x00040000) >> 18;
27489 hi = (value & 0x0003f000) >> 12;
27490 lo = (value & 0x00000ffe) >> 1;
27491
27492 newval = md_chars_to_number (buf, THUMB_SIZE);
27493 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27494 newval |= (S << 10) | hi;
27495 newval2 |= (J1 << 13) | (J2 << 11) | lo;
27496 md_number_to_chars (buf, newval, THUMB_SIZE);
27497 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27498 }
27499 break;
27500
27501 case BFD_RELOC_THUMB_PCREL_BLX:
27502 /* If there is a blx from a thumb state function to
27503 another thumb function flip this to a bl and warn
27504 about it. */
27505
27506 if (fixP->fx_addsy
27507 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27508 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27509 && THUMB_IS_FUNC (fixP->fx_addsy))
27510 {
27511 const char *name = S_GET_NAME (fixP->fx_addsy);
27512 as_warn_where (fixP->fx_file, fixP->fx_line,
27513 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
27514 name);
27515 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27516 newval = newval | 0x1000;
27517 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
27518 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
27519 fixP->fx_done = 1;
27520 }
27521
27522
27523 goto thumb_bl_common;
27524
27525 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27526 /* A bl from Thumb state ISA to an internal ARM state function
27527 is converted to a blx. */
27528 if (fixP->fx_addsy
27529 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27530 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27531 && ARM_IS_FUNC (fixP->fx_addsy)
27532 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27533 {
27534 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27535 newval = newval & ~0x1000;
27536 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
27537 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
27538 fixP->fx_done = 1;
27539 }
27540
27541 thumb_bl_common:
27542
27543 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
27544 /* For a BLX instruction, make sure that the relocation is rounded up
27545 to a word boundary. This follows the semantics of the instruction
27546 which specifies that bit 1 of the target address will come from bit
27547 1 of the base address. */
27548 value = (value + 3) & ~ 3;
27549
27550 #ifdef OBJ_ELF
27551 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
27552 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
27553 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
27554 #endif
27555
27556 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
27557 {
27558 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
27559 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27560 else if ((value & ~0x1ffffff)
27561 && ((value & ~0x1ffffff) != ~0x1ffffff))
27562 as_bad_where (fixP->fx_file, fixP->fx_line,
27563 _("Thumb2 branch out of range"));
27564 }
27565
27566 if (fixP->fx_done || !seg->use_rela_p)
27567 encode_thumb2_b_bl_offset (buf, value);
27568
27569 break;
27570
27571 case BFD_RELOC_THUMB_PCREL_BRANCH25:
27572 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
27573 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27574
27575 if (fixP->fx_done || !seg->use_rela_p)
27576 encode_thumb2_b_bl_offset (buf, value);
27577
27578 break;
27579
27580 case BFD_RELOC_8:
27581 if (fixP->fx_done || !seg->use_rela_p)
27582 *buf = value;
27583 break;
27584
27585 case BFD_RELOC_16:
27586 if (fixP->fx_done || !seg->use_rela_p)
27587 md_number_to_chars (buf, value, 2);
27588 break;
27589
27590 #ifdef OBJ_ELF
27591 case BFD_RELOC_ARM_TLS_CALL:
27592 case BFD_RELOC_ARM_THM_TLS_CALL:
27593 case BFD_RELOC_ARM_TLS_DESCSEQ:
27594 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
27595 case BFD_RELOC_ARM_TLS_GOTDESC:
27596 case BFD_RELOC_ARM_TLS_GD32:
27597 case BFD_RELOC_ARM_TLS_LE32:
27598 case BFD_RELOC_ARM_TLS_IE32:
27599 case BFD_RELOC_ARM_TLS_LDM32:
27600 case BFD_RELOC_ARM_TLS_LDO32:
27601 S_SET_THREAD_LOCAL (fixP->fx_addsy);
27602 break;
27603
27604 /* Same handling as above, but with the arm_fdpic guard. */
27605 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
27606 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
27607 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
27608 if (arm_fdpic)
27609 {
27610 S_SET_THREAD_LOCAL (fixP->fx_addsy);
27611 }
27612 else
27613 {
27614 as_bad_where (fixP->fx_file, fixP->fx_line,
27615 _("Relocation supported only in FDPIC mode"));
27616 }
27617 break;
27618
27619 case BFD_RELOC_ARM_GOT32:
27620 case BFD_RELOC_ARM_GOTOFF:
27621 break;
27622
27623 case BFD_RELOC_ARM_GOT_PREL:
27624 if (fixP->fx_done || !seg->use_rela_p)
27625 md_number_to_chars (buf, value, 4);
27626 break;
27627
27628 case BFD_RELOC_ARM_TARGET2:
27629 /* TARGET2 is not partial-inplace, so we need to write the
27630 addend here for REL targets, because it won't be written out
27631 during reloc processing later. */
27632 if (fixP->fx_done || !seg->use_rela_p)
27633 md_number_to_chars (buf, fixP->fx_offset, 4);
27634 break;
27635
27636 /* Relocations for FDPIC. */
27637 case BFD_RELOC_ARM_GOTFUNCDESC:
27638 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
27639 case BFD_RELOC_ARM_FUNCDESC:
27640 if (arm_fdpic)
27641 {
27642 if (fixP->fx_done || !seg->use_rela_p)
27643 md_number_to_chars (buf, 0, 4);
27644 }
27645 else
27646 {
27647 as_bad_where (fixP->fx_file, fixP->fx_line,
27648 _("Relocation supported only in FDPIC mode"));
27649 }
27650 break;
27651 #endif
27652
27653 case BFD_RELOC_RVA:
27654 case BFD_RELOC_32:
27655 case BFD_RELOC_ARM_TARGET1:
27656 case BFD_RELOC_ARM_ROSEGREL32:
27657 case BFD_RELOC_ARM_SBREL32:
27658 case BFD_RELOC_32_PCREL:
27659 #ifdef TE_PE
27660 case BFD_RELOC_32_SECREL:
27661 #endif
27662 if (fixP->fx_done || !seg->use_rela_p)
27663 #ifdef TE_WINCE
27664 /* For WinCE we only do this for pcrel fixups. */
27665 if (fixP->fx_done || fixP->fx_pcrel)
27666 #endif
27667 md_number_to_chars (buf, value, 4);
27668 break;
27669
27670 #ifdef OBJ_ELF
27671 case BFD_RELOC_ARM_PREL31:
27672 if (fixP->fx_done || !seg->use_rela_p)
27673 {
27674 newval = md_chars_to_number (buf, 4) & 0x80000000;
27675 if ((value ^ (value >> 1)) & 0x40000000)
27676 {
27677 as_bad_where (fixP->fx_file, fixP->fx_line,
27678 _("rel31 relocation overflow"));
27679 }
27680 newval |= value & 0x7fffffff;
27681 md_number_to_chars (buf, newval, 4);
27682 }
27683 break;
27684 #endif
27685
27686 case BFD_RELOC_ARM_CP_OFF_IMM:
27687 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
27688 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
27689 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
27690 newval = md_chars_to_number (buf, INSN_SIZE);
27691 else
27692 newval = get_thumb32_insn (buf);
27693 if ((newval & 0x0f200f00) == 0x0d000900)
27694 {
27695 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
27696 has permitted values that are multiples of 2, in the range 0
27697 to 510. */
27698 if (value < -510 || value > 510 || (value & 1))
27699 as_bad_where (fixP->fx_file, fixP->fx_line,
27700 _("co-processor offset out of range"));
27701 }
27702 else if ((newval & 0xfe001f80) == 0xec000f80)
27703 {
27704 if (value < -511 || value > 512 || (value & 3))
27705 as_bad_where (fixP->fx_file, fixP->fx_line,
27706 _("co-processor offset out of range"));
27707 }
27708 else if (value < -1023 || value > 1023 || (value & 3))
27709 as_bad_where (fixP->fx_file, fixP->fx_line,
27710 _("co-processor offset out of range"));
27711 cp_off_common:
27712 sign = value > 0;
27713 if (value < 0)
27714 value = -value;
27715 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27716 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27717 newval = md_chars_to_number (buf, INSN_SIZE);
27718 else
27719 newval = get_thumb32_insn (buf);
27720 if (value == 0)
27721 {
27722 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27723 newval &= 0xffffff80;
27724 else
27725 newval &= 0xffffff00;
27726 }
27727 else
27728 {
27729 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27730 newval &= 0xff7fff80;
27731 else
27732 newval &= 0xff7fff00;
27733 if ((newval & 0x0f200f00) == 0x0d000900)
27734 {
27735 /* This is a fp16 vstr/vldr.
27736
27737 It requires the immediate offset in the instruction is shifted
27738 left by 1 to be a half-word offset.
27739
27740 Here, left shift by 1 first, and later right shift by 2
27741 should get the right offset. */
27742 value <<= 1;
27743 }
27744 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
27745 }
27746 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27747 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27748 md_number_to_chars (buf, newval, INSN_SIZE);
27749 else
27750 put_thumb32_insn (buf, newval);
27751 break;
27752
27753 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
27754 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
27755 if (value < -255 || value > 255)
27756 as_bad_where (fixP->fx_file, fixP->fx_line,
27757 _("co-processor offset out of range"));
27758 value *= 4;
27759 goto cp_off_common;
27760
27761 case BFD_RELOC_ARM_THUMB_OFFSET:
27762 newval = md_chars_to_number (buf, THUMB_SIZE);
27763 /* Exactly what ranges, and where the offset is inserted depends
27764 on the type of instruction, we can establish this from the
27765 top 4 bits. */
27766 switch (newval >> 12)
27767 {
27768 case 4: /* PC load. */
27769 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
27770 forced to zero for these loads; md_pcrel_from has already
27771 compensated for this. */
27772 if (value & 3)
27773 as_bad_where (fixP->fx_file, fixP->fx_line,
27774 _("invalid offset, target not word aligned (0x%08lX)"),
27775 (((unsigned long) fixP->fx_frag->fr_address
27776 + (unsigned long) fixP->fx_where) & ~3)
27777 + (unsigned long) value);
27778
27779 if (value & ~0x3fc)
27780 as_bad_where (fixP->fx_file, fixP->fx_line,
27781 _("invalid offset, value too big (0x%08lX)"),
27782 (long) value);
27783
27784 newval |= value >> 2;
27785 break;
27786
27787 case 9: /* SP load/store. */
27788 if (value & ~0x3fc)
27789 as_bad_where (fixP->fx_file, fixP->fx_line,
27790 _("invalid offset, value too big (0x%08lX)"),
27791 (long) value);
27792 newval |= value >> 2;
27793 break;
27794
27795 case 6: /* Word load/store. */
27796 if (value & ~0x7c)
27797 as_bad_where (fixP->fx_file, fixP->fx_line,
27798 _("invalid offset, value too big (0x%08lX)"),
27799 (long) value);
27800 newval |= value << 4; /* 6 - 2. */
27801 break;
27802
27803 case 7: /* Byte load/store. */
27804 if (value & ~0x1f)
27805 as_bad_where (fixP->fx_file, fixP->fx_line,
27806 _("invalid offset, value too big (0x%08lX)"),
27807 (long) value);
27808 newval |= value << 6;
27809 break;
27810
27811 case 8: /* Halfword load/store. */
27812 if (value & ~0x3e)
27813 as_bad_where (fixP->fx_file, fixP->fx_line,
27814 _("invalid offset, value too big (0x%08lX)"),
27815 (long) value);
27816 newval |= value << 5; /* 6 - 1. */
27817 break;
27818
27819 default:
27820 as_bad_where (fixP->fx_file, fixP->fx_line,
27821 "Unable to process relocation for thumb opcode: %lx",
27822 (unsigned long) newval);
27823 break;
27824 }
27825 md_number_to_chars (buf, newval, THUMB_SIZE);
27826 break;
27827
27828 case BFD_RELOC_ARM_THUMB_ADD:
27829 /* This is a complicated relocation, since we use it for all of
27830 the following immediate relocations:
27831
27832 3bit ADD/SUB
27833 8bit ADD/SUB
27834 9bit ADD/SUB SP word-aligned
27835 10bit ADD PC/SP word-aligned
27836
27837 The type of instruction being processed is encoded in the
27838 instruction field:
27839
27840 0x8000 SUB
27841 0x00F0 Rd
27842 0x000F Rs
27843 */
27844 newval = md_chars_to_number (buf, THUMB_SIZE);
27845 {
27846 int rd = (newval >> 4) & 0xf;
27847 int rs = newval & 0xf;
27848 int subtract = !!(newval & 0x8000);
27849
27850 /* Check for HI regs, only very restricted cases allowed:
27851 Adjusting SP, and using PC or SP to get an address. */
27852 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
27853 || (rs > 7 && rs != REG_SP && rs != REG_PC))
27854 as_bad_where (fixP->fx_file, fixP->fx_line,
27855 _("invalid Hi register with immediate"));
27856
27857 /* If value is negative, choose the opposite instruction. */
27858 if (value < 0)
27859 {
27860 value = -value;
27861 subtract = !subtract;
27862 if (value < 0)
27863 as_bad_where (fixP->fx_file, fixP->fx_line,
27864 _("immediate value out of range"));
27865 }
27866
27867 if (rd == REG_SP)
27868 {
27869 if (value & ~0x1fc)
27870 as_bad_where (fixP->fx_file, fixP->fx_line,
27871 _("invalid immediate for stack address calculation"));
27872 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
27873 newval |= value >> 2;
27874 }
27875 else if (rs == REG_PC || rs == REG_SP)
27876 {
27877 /* PR gas/18541. If the addition is for a defined symbol
27878 within range of an ADR instruction then accept it. */
27879 if (subtract
27880 && value == 4
27881 && fixP->fx_addsy != NULL)
27882 {
27883 subtract = 0;
27884
27885 if (! S_IS_DEFINED (fixP->fx_addsy)
27886 || S_GET_SEGMENT (fixP->fx_addsy) != seg
27887 || S_IS_WEAK (fixP->fx_addsy))
27888 {
27889 as_bad_where (fixP->fx_file, fixP->fx_line,
27890 _("address calculation needs a strongly defined nearby symbol"));
27891 }
27892 else
27893 {
27894 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
27895
27896 /* Round up to the next 4-byte boundary. */
27897 if (v & 3)
27898 v = (v + 3) & ~ 3;
27899 else
27900 v += 4;
27901 v = S_GET_VALUE (fixP->fx_addsy) - v;
27902
27903 if (v & ~0x3fc)
27904 {
27905 as_bad_where (fixP->fx_file, fixP->fx_line,
27906 _("symbol too far away"));
27907 }
27908 else
27909 {
27910 fixP->fx_done = 1;
27911 value = v;
27912 }
27913 }
27914 }
27915
27916 if (subtract || value & ~0x3fc)
27917 as_bad_where (fixP->fx_file, fixP->fx_line,
27918 _("invalid immediate for address calculation (value = 0x%08lX)"),
27919 (unsigned long) (subtract ? - value : value));
27920 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
27921 newval |= rd << 8;
27922 newval |= value >> 2;
27923 }
27924 else if (rs == rd)
27925 {
27926 if (value & ~0xff)
27927 as_bad_where (fixP->fx_file, fixP->fx_line,
27928 _("immediate value out of range"));
27929 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
27930 newval |= (rd << 8) | value;
27931 }
27932 else
27933 {
27934 if (value & ~0x7)
27935 as_bad_where (fixP->fx_file, fixP->fx_line,
27936 _("immediate value out of range"));
27937 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
27938 newval |= rd | (rs << 3) | (value << 6);
27939 }
27940 }
27941 md_number_to_chars (buf, newval, THUMB_SIZE);
27942 break;
27943
27944 case BFD_RELOC_ARM_THUMB_IMM:
27945 newval = md_chars_to_number (buf, THUMB_SIZE);
27946 if (value < 0 || value > 255)
27947 as_bad_where (fixP->fx_file, fixP->fx_line,
27948 _("invalid immediate: %ld is out of range"),
27949 (long) value);
27950 newval |= value;
27951 md_number_to_chars (buf, newval, THUMB_SIZE);
27952 break;
27953
27954 case BFD_RELOC_ARM_THUMB_SHIFT:
27955 /* 5bit shift value (0..32). LSL cannot take 32. */
27956 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
27957 temp = newval & 0xf800;
27958 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
27959 as_bad_where (fixP->fx_file, fixP->fx_line,
27960 _("invalid shift value: %ld"), (long) value);
27961 /* Shifts of zero must be encoded as LSL. */
27962 if (value == 0)
27963 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
27964 /* Shifts of 32 are encoded as zero. */
27965 else if (value == 32)
27966 value = 0;
27967 newval |= value << 6;
27968 md_number_to_chars (buf, newval, THUMB_SIZE);
27969 break;
27970
27971 case BFD_RELOC_VTABLE_INHERIT:
27972 case BFD_RELOC_VTABLE_ENTRY:
27973 fixP->fx_done = 0;
27974 return;
27975
27976 case BFD_RELOC_ARM_MOVW:
27977 case BFD_RELOC_ARM_MOVT:
27978 case BFD_RELOC_ARM_THUMB_MOVW:
27979 case BFD_RELOC_ARM_THUMB_MOVT:
27980 if (fixP->fx_done || !seg->use_rela_p)
27981 {
27982 /* REL format relocations are limited to a 16-bit addend. */
27983 if (!fixP->fx_done)
27984 {
27985 if (value < -0x8000 || value > 0x7fff)
27986 as_bad_where (fixP->fx_file, fixP->fx_line,
27987 _("offset out of range"));
27988 }
27989 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
27990 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27991 {
27992 value >>= 16;
27993 }
27994
27995 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
27996 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27997 {
27998 newval = get_thumb32_insn (buf);
27999 newval &= 0xfbf08f00;
28000 newval |= (value & 0xf000) << 4;
28001 newval |= (value & 0x0800) << 15;
28002 newval |= (value & 0x0700) << 4;
28003 newval |= (value & 0x00ff);
28004 put_thumb32_insn (buf, newval);
28005 }
28006 else
28007 {
28008 newval = md_chars_to_number (buf, 4);
28009 newval &= 0xfff0f000;
28010 newval |= value & 0x0fff;
28011 newval |= (value & 0xf000) << 4;
28012 md_number_to_chars (buf, newval, 4);
28013 }
28014 }
28015 return;
28016
28017 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
28018 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
28019 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
28020 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
28021 gas_assert (!fixP->fx_done);
28022 {
28023 bfd_vma insn;
28024 bfd_boolean is_mov;
28025 bfd_vma encoded_addend = value;
28026
28027 /* Check that addend can be encoded in instruction. */
28028 if (!seg->use_rela_p && (value < 0 || value > 255))
28029 as_bad_where (fixP->fx_file, fixP->fx_line,
28030 _("the offset 0x%08lX is not representable"),
28031 (unsigned long) encoded_addend);
28032
28033 /* Extract the instruction. */
28034 insn = md_chars_to_number (buf, THUMB_SIZE);
28035 is_mov = (insn & 0xf800) == 0x2000;
28036
28037 /* Encode insn. */
28038 if (is_mov)
28039 {
28040 if (!seg->use_rela_p)
28041 insn |= encoded_addend;
28042 }
28043 else
28044 {
28045 int rd, rs;
28046
28047 /* Extract the instruction. */
28048 /* Encoding is the following
28049 0x8000 SUB
28050 0x00F0 Rd
28051 0x000F Rs
28052 */
28053 /* The following conditions must be true :
28054 - ADD
28055 - Rd == Rs
28056 - Rd <= 7
28057 */
28058 rd = (insn >> 4) & 0xf;
28059 rs = insn & 0xf;
28060 if ((insn & 0x8000) || (rd != rs) || rd > 7)
28061 as_bad_where (fixP->fx_file, fixP->fx_line,
28062 _("Unable to process relocation for thumb opcode: %lx"),
28063 (unsigned long) insn);
28064
28065 /* Encode as ADD immediate8 thumb 1 code. */
28066 insn = 0x3000 | (rd << 8);
28067
28068 /* Place the encoded addend into the first 8 bits of the
28069 instruction. */
28070 if (!seg->use_rela_p)
28071 insn |= encoded_addend;
28072 }
28073
28074 /* Update the instruction. */
28075 md_number_to_chars (buf, insn, THUMB_SIZE);
28076 }
28077 break;
28078
28079 case BFD_RELOC_ARM_ALU_PC_G0_NC:
28080 case BFD_RELOC_ARM_ALU_PC_G0:
28081 case BFD_RELOC_ARM_ALU_PC_G1_NC:
28082 case BFD_RELOC_ARM_ALU_PC_G1:
28083 case BFD_RELOC_ARM_ALU_PC_G2:
28084 case BFD_RELOC_ARM_ALU_SB_G0_NC:
28085 case BFD_RELOC_ARM_ALU_SB_G0:
28086 case BFD_RELOC_ARM_ALU_SB_G1_NC:
28087 case BFD_RELOC_ARM_ALU_SB_G1:
28088 case BFD_RELOC_ARM_ALU_SB_G2:
28089 gas_assert (!fixP->fx_done);
28090 if (!seg->use_rela_p)
28091 {
28092 bfd_vma insn;
28093 bfd_vma encoded_addend;
28094 bfd_vma addend_abs = llabs (value);
28095
28096 /* Check that the absolute value of the addend can be
28097 expressed as an 8-bit constant plus a rotation. */
28098 encoded_addend = encode_arm_immediate (addend_abs);
28099 if (encoded_addend == (unsigned int) FAIL)
28100 as_bad_where (fixP->fx_file, fixP->fx_line,
28101 _("the offset 0x%08lX is not representable"),
28102 (unsigned long) addend_abs);
28103
28104 /* Extract the instruction. */
28105 insn = md_chars_to_number (buf, INSN_SIZE);
28106
28107 /* If the addend is positive, use an ADD instruction.
28108 Otherwise use a SUB. Take care not to destroy the S bit. */
28109 insn &= 0xff1fffff;
28110 if (value < 0)
28111 insn |= 1 << 22;
28112 else
28113 insn |= 1 << 23;
28114
28115 /* Place the encoded addend into the first 12 bits of the
28116 instruction. */
28117 insn &= 0xfffff000;
28118 insn |= encoded_addend;
28119
28120 /* Update the instruction. */
28121 md_number_to_chars (buf, insn, INSN_SIZE);
28122 }
28123 break;
28124
28125 case BFD_RELOC_ARM_LDR_PC_G0:
28126 case BFD_RELOC_ARM_LDR_PC_G1:
28127 case BFD_RELOC_ARM_LDR_PC_G2:
28128 case BFD_RELOC_ARM_LDR_SB_G0:
28129 case BFD_RELOC_ARM_LDR_SB_G1:
28130 case BFD_RELOC_ARM_LDR_SB_G2:
28131 gas_assert (!fixP->fx_done);
28132 if (!seg->use_rela_p)
28133 {
28134 bfd_vma insn;
28135 bfd_vma addend_abs = llabs (value);
28136
28137 /* Check that the absolute value of the addend can be
28138 encoded in 12 bits. */
28139 if (addend_abs >= 0x1000)
28140 as_bad_where (fixP->fx_file, fixP->fx_line,
28141 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
28142 (unsigned long) addend_abs);
28143
28144 /* Extract the instruction. */
28145 insn = md_chars_to_number (buf, INSN_SIZE);
28146
28147 /* If the addend is negative, clear bit 23 of the instruction.
28148 Otherwise set it. */
28149 if (value < 0)
28150 insn &= ~(1 << 23);
28151 else
28152 insn |= 1 << 23;
28153
28154 /* Place the absolute value of the addend into the first 12 bits
28155 of the instruction. */
28156 insn &= 0xfffff000;
28157 insn |= addend_abs;
28158
28159 /* Update the instruction. */
28160 md_number_to_chars (buf, insn, INSN_SIZE);
28161 }
28162 break;
28163
28164 case BFD_RELOC_ARM_LDRS_PC_G0:
28165 case BFD_RELOC_ARM_LDRS_PC_G1:
28166 case BFD_RELOC_ARM_LDRS_PC_G2:
28167 case BFD_RELOC_ARM_LDRS_SB_G0:
28168 case BFD_RELOC_ARM_LDRS_SB_G1:
28169 case BFD_RELOC_ARM_LDRS_SB_G2:
28170 gas_assert (!fixP->fx_done);
28171 if (!seg->use_rela_p)
28172 {
28173 bfd_vma insn;
28174 bfd_vma addend_abs = llabs (value);
28175
28176 /* Check that the absolute value of the addend can be
28177 encoded in 8 bits. */
28178 if (addend_abs >= 0x100)
28179 as_bad_where (fixP->fx_file, fixP->fx_line,
28180 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
28181 (unsigned long) addend_abs);
28182
28183 /* Extract the instruction. */
28184 insn = md_chars_to_number (buf, INSN_SIZE);
28185
28186 /* If the addend is negative, clear bit 23 of the instruction.
28187 Otherwise set it. */
28188 if (value < 0)
28189 insn &= ~(1 << 23);
28190 else
28191 insn |= 1 << 23;
28192
28193 /* Place the first four bits of the absolute value of the addend
28194 into the first 4 bits of the instruction, and the remaining
28195 four into bits 8 .. 11. */
28196 insn &= 0xfffff0f0;
28197 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
28198
28199 /* Update the instruction. */
28200 md_number_to_chars (buf, insn, INSN_SIZE);
28201 }
28202 break;
28203
28204 case BFD_RELOC_ARM_LDC_PC_G0:
28205 case BFD_RELOC_ARM_LDC_PC_G1:
28206 case BFD_RELOC_ARM_LDC_PC_G2:
28207 case BFD_RELOC_ARM_LDC_SB_G0:
28208 case BFD_RELOC_ARM_LDC_SB_G1:
28209 case BFD_RELOC_ARM_LDC_SB_G2:
28210 gas_assert (!fixP->fx_done);
28211 if (!seg->use_rela_p)
28212 {
28213 bfd_vma insn;
28214 bfd_vma addend_abs = llabs (value);
28215
28216 /* Check that the absolute value of the addend is a multiple of
28217 four and, when divided by four, fits in 8 bits. */
28218 if (addend_abs & 0x3)
28219 as_bad_where (fixP->fx_file, fixP->fx_line,
28220 _("bad offset 0x%08lX (must be word-aligned)"),
28221 (unsigned long) addend_abs);
28222
28223 if ((addend_abs >> 2) > 0xff)
28224 as_bad_where (fixP->fx_file, fixP->fx_line,
28225 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
28226 (unsigned long) addend_abs);
28227
28228 /* Extract the instruction. */
28229 insn = md_chars_to_number (buf, INSN_SIZE);
28230
28231 /* If the addend is negative, clear bit 23 of the instruction.
28232 Otherwise set it. */
28233 if (value < 0)
28234 insn &= ~(1 << 23);
28235 else
28236 insn |= 1 << 23;
28237
28238 /* Place the addend (divided by four) into the first eight
28239 bits of the instruction. */
28240 insn &= 0xfffffff0;
28241 insn |= addend_abs >> 2;
28242
28243 /* Update the instruction. */
28244 md_number_to_chars (buf, insn, INSN_SIZE);
28245 }
28246 break;
28247
28248 case BFD_RELOC_THUMB_PCREL_BRANCH5:
28249 if (fixP->fx_addsy
28250 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28251 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28252 && ARM_IS_FUNC (fixP->fx_addsy)
28253 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28254 {
28255 /* Force a relocation for a branch 5 bits wide. */
28256 fixP->fx_done = 0;
28257 }
28258 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
28259 as_bad_where (fixP->fx_file, fixP->fx_line,
28260 BAD_BRANCH_OFF);
28261
28262 if (fixP->fx_done || !seg->use_rela_p)
28263 {
28264 addressT boff = value >> 1;
28265
28266 newval = md_chars_to_number (buf, THUMB_SIZE);
28267 newval |= (boff << 7);
28268 md_number_to_chars (buf, newval, THUMB_SIZE);
28269 }
28270 break;
28271
28272 case BFD_RELOC_THUMB_PCREL_BFCSEL:
28273 if (fixP->fx_addsy
28274 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28275 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28276 && ARM_IS_FUNC (fixP->fx_addsy)
28277 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28278 {
28279 fixP->fx_done = 0;
28280 }
28281 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
28282 as_bad_where (fixP->fx_file, fixP->fx_line,
28283 _("branch out of range"));
28284
28285 if (fixP->fx_done || !seg->use_rela_p)
28286 {
28287 newval = md_chars_to_number (buf, THUMB_SIZE);
28288
28289 addressT boff = ((newval & 0x0780) >> 7) << 1;
28290 addressT diff = value - boff;
28291
28292 if (diff == 4)
28293 {
28294 newval |= 1 << 1; /* T bit. */
28295 }
28296 else if (diff != 2)
28297 {
28298 as_bad_where (fixP->fx_file, fixP->fx_line,
28299 _("out of range label-relative fixup value"));
28300 }
28301 md_number_to_chars (buf, newval, THUMB_SIZE);
28302 }
28303 break;
28304
28305 case BFD_RELOC_ARM_THUMB_BF17:
28306 if (fixP->fx_addsy
28307 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28308 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28309 && ARM_IS_FUNC (fixP->fx_addsy)
28310 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28311 {
28312 /* Force a relocation for a branch 17 bits wide. */
28313 fixP->fx_done = 0;
28314 }
28315
28316 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
28317 as_bad_where (fixP->fx_file, fixP->fx_line,
28318 BAD_BRANCH_OFF);
28319
28320 if (fixP->fx_done || !seg->use_rela_p)
28321 {
28322 offsetT newval2;
28323 addressT immA, immB, immC;
28324
28325 immA = (value & 0x0001f000) >> 12;
28326 immB = (value & 0x00000ffc) >> 2;
28327 immC = (value & 0x00000002) >> 1;
28328
28329 newval = md_chars_to_number (buf, THUMB_SIZE);
28330 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28331 newval |= immA;
28332 newval2 |= (immC << 11) | (immB << 1);
28333 md_number_to_chars (buf, newval, THUMB_SIZE);
28334 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28335 }
28336 break;
28337
28338 case BFD_RELOC_ARM_THUMB_BF19:
28339 if (fixP->fx_addsy
28340 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28341 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28342 && ARM_IS_FUNC (fixP->fx_addsy)
28343 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28344 {
28345 /* Force a relocation for a branch 19 bits wide. */
28346 fixP->fx_done = 0;
28347 }
28348
28349 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
28350 as_bad_where (fixP->fx_file, fixP->fx_line,
28351 BAD_BRANCH_OFF);
28352
28353 if (fixP->fx_done || !seg->use_rela_p)
28354 {
28355 offsetT newval2;
28356 addressT immA, immB, immC;
28357
28358 immA = (value & 0x0007f000) >> 12;
28359 immB = (value & 0x00000ffc) >> 2;
28360 immC = (value & 0x00000002) >> 1;
28361
28362 newval = md_chars_to_number (buf, THUMB_SIZE);
28363 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28364 newval |= immA;
28365 newval2 |= (immC << 11) | (immB << 1);
28366 md_number_to_chars (buf, newval, THUMB_SIZE);
28367 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28368 }
28369 break;
28370
28371 case BFD_RELOC_ARM_THUMB_BF13:
28372 if (fixP->fx_addsy
28373 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28374 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28375 && ARM_IS_FUNC (fixP->fx_addsy)
28376 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28377 {
28378 /* Force a relocation for a branch 13 bits wide. */
28379 fixP->fx_done = 0;
28380 }
28381
28382 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
28383 as_bad_where (fixP->fx_file, fixP->fx_line,
28384 BAD_BRANCH_OFF);
28385
28386 if (fixP->fx_done || !seg->use_rela_p)
28387 {
28388 offsetT newval2;
28389 addressT immA, immB, immC;
28390
28391 immA = (value & 0x00001000) >> 12;
28392 immB = (value & 0x00000ffc) >> 2;
28393 immC = (value & 0x00000002) >> 1;
28394
28395 newval = md_chars_to_number (buf, THUMB_SIZE);
28396 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28397 newval |= immA;
28398 newval2 |= (immC << 11) | (immB << 1);
28399 md_number_to_chars (buf, newval, THUMB_SIZE);
28400 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28401 }
28402 break;
28403
28404 case BFD_RELOC_ARM_THUMB_LOOP12:
28405 if (fixP->fx_addsy
28406 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28407 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28408 && ARM_IS_FUNC (fixP->fx_addsy)
28409 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28410 {
28411 /* Force a relocation for a branch 12 bits wide. */
28412 fixP->fx_done = 0;
28413 }
28414
28415 bfd_vma insn = get_thumb32_insn (buf);
28416 /* le lr, <label> or le <label> */
28417 if (((insn & 0xffffffff) == 0xf00fc001)
28418 || ((insn & 0xffffffff) == 0xf02fc001))
28419 value = -value;
28420
28421 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
28422 as_bad_where (fixP->fx_file, fixP->fx_line,
28423 BAD_BRANCH_OFF);
28424 if (fixP->fx_done || !seg->use_rela_p)
28425 {
28426 addressT imml, immh;
28427
28428 immh = (value & 0x00000ffc) >> 2;
28429 imml = (value & 0x00000002) >> 1;
28430
28431 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28432 newval |= (imml << 11) | (immh << 1);
28433 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
28434 }
28435 break;
28436
28437 case BFD_RELOC_ARM_V4BX:
28438 /* This will need to go in the object file. */
28439 fixP->fx_done = 0;
28440 break;
28441
28442 case BFD_RELOC_UNUSED:
28443 default:
28444 as_bad_where (fixP->fx_file, fixP->fx_line,
28445 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
28446 }
28447 }
28448
28449 /* Translate internal representation of relocation info to BFD target
28450 format. */
28451
28452 arelent *
28453 tc_gen_reloc (asection *section, fixS *fixp)
28454 {
28455 arelent * reloc;
28456 bfd_reloc_code_real_type code;
28457
28458 reloc = XNEW (arelent);
28459
28460 reloc->sym_ptr_ptr = XNEW (asymbol *);
28461 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
28462 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
28463
28464 if (fixp->fx_pcrel)
28465 {
28466 if (section->use_rela_p)
28467 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
28468 else
28469 fixp->fx_offset = reloc->address;
28470 }
28471 reloc->addend = fixp->fx_offset;
28472
28473 switch (fixp->fx_r_type)
28474 {
28475 case BFD_RELOC_8:
28476 if (fixp->fx_pcrel)
28477 {
28478 code = BFD_RELOC_8_PCREL;
28479 break;
28480 }
28481 /* Fall through. */
28482
28483 case BFD_RELOC_16:
28484 if (fixp->fx_pcrel)
28485 {
28486 code = BFD_RELOC_16_PCREL;
28487 break;
28488 }
28489 /* Fall through. */
28490
28491 case BFD_RELOC_32:
28492 if (fixp->fx_pcrel)
28493 {
28494 code = BFD_RELOC_32_PCREL;
28495 break;
28496 }
28497 /* Fall through. */
28498
28499 case BFD_RELOC_ARM_MOVW:
28500 if (fixp->fx_pcrel)
28501 {
28502 code = BFD_RELOC_ARM_MOVW_PCREL;
28503 break;
28504 }
28505 /* Fall through. */
28506
28507 case BFD_RELOC_ARM_MOVT:
28508 if (fixp->fx_pcrel)
28509 {
28510 code = BFD_RELOC_ARM_MOVT_PCREL;
28511 break;
28512 }
28513 /* Fall through. */
28514
28515 case BFD_RELOC_ARM_THUMB_MOVW:
28516 if (fixp->fx_pcrel)
28517 {
28518 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
28519 break;
28520 }
28521 /* Fall through. */
28522
28523 case BFD_RELOC_ARM_THUMB_MOVT:
28524 if (fixp->fx_pcrel)
28525 {
28526 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
28527 break;
28528 }
28529 /* Fall through. */
28530
28531 case BFD_RELOC_NONE:
28532 case BFD_RELOC_ARM_PCREL_BRANCH:
28533 case BFD_RELOC_ARM_PCREL_BLX:
28534 case BFD_RELOC_RVA:
28535 case BFD_RELOC_THUMB_PCREL_BRANCH7:
28536 case BFD_RELOC_THUMB_PCREL_BRANCH9:
28537 case BFD_RELOC_THUMB_PCREL_BRANCH12:
28538 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28539 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28540 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28541 case BFD_RELOC_VTABLE_ENTRY:
28542 case BFD_RELOC_VTABLE_INHERIT:
28543 #ifdef TE_PE
28544 case BFD_RELOC_32_SECREL:
28545 #endif
28546 code = fixp->fx_r_type;
28547 break;
28548
28549 case BFD_RELOC_THUMB_PCREL_BLX:
28550 #ifdef OBJ_ELF
28551 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
28552 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
28553 else
28554 #endif
28555 code = BFD_RELOC_THUMB_PCREL_BLX;
28556 break;
28557
28558 case BFD_RELOC_ARM_LITERAL:
28559 case BFD_RELOC_ARM_HWLITERAL:
28560 /* If this is called then the a literal has
28561 been referenced across a section boundary. */
28562 as_bad_where (fixp->fx_file, fixp->fx_line,
28563 _("literal referenced across section boundary"));
28564 return NULL;
28565
28566 #ifdef OBJ_ELF
28567 case BFD_RELOC_ARM_TLS_CALL:
28568 case BFD_RELOC_ARM_THM_TLS_CALL:
28569 case BFD_RELOC_ARM_TLS_DESCSEQ:
28570 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
28571 case BFD_RELOC_ARM_GOT32:
28572 case BFD_RELOC_ARM_GOTOFF:
28573 case BFD_RELOC_ARM_GOT_PREL:
28574 case BFD_RELOC_ARM_PLT32:
28575 case BFD_RELOC_ARM_TARGET1:
28576 case BFD_RELOC_ARM_ROSEGREL32:
28577 case BFD_RELOC_ARM_SBREL32:
28578 case BFD_RELOC_ARM_PREL31:
28579 case BFD_RELOC_ARM_TARGET2:
28580 case BFD_RELOC_ARM_TLS_LDO32:
28581 case BFD_RELOC_ARM_PCREL_CALL:
28582 case BFD_RELOC_ARM_PCREL_JUMP:
28583 case BFD_RELOC_ARM_ALU_PC_G0_NC:
28584 case BFD_RELOC_ARM_ALU_PC_G0:
28585 case BFD_RELOC_ARM_ALU_PC_G1_NC:
28586 case BFD_RELOC_ARM_ALU_PC_G1:
28587 case BFD_RELOC_ARM_ALU_PC_G2:
28588 case BFD_RELOC_ARM_LDR_PC_G0:
28589 case BFD_RELOC_ARM_LDR_PC_G1:
28590 case BFD_RELOC_ARM_LDR_PC_G2:
28591 case BFD_RELOC_ARM_LDRS_PC_G0:
28592 case BFD_RELOC_ARM_LDRS_PC_G1:
28593 case BFD_RELOC_ARM_LDRS_PC_G2:
28594 case BFD_RELOC_ARM_LDC_PC_G0:
28595 case BFD_RELOC_ARM_LDC_PC_G1:
28596 case BFD_RELOC_ARM_LDC_PC_G2:
28597 case BFD_RELOC_ARM_ALU_SB_G0_NC:
28598 case BFD_RELOC_ARM_ALU_SB_G0:
28599 case BFD_RELOC_ARM_ALU_SB_G1_NC:
28600 case BFD_RELOC_ARM_ALU_SB_G1:
28601 case BFD_RELOC_ARM_ALU_SB_G2:
28602 case BFD_RELOC_ARM_LDR_SB_G0:
28603 case BFD_RELOC_ARM_LDR_SB_G1:
28604 case BFD_RELOC_ARM_LDR_SB_G2:
28605 case BFD_RELOC_ARM_LDRS_SB_G0:
28606 case BFD_RELOC_ARM_LDRS_SB_G1:
28607 case BFD_RELOC_ARM_LDRS_SB_G2:
28608 case BFD_RELOC_ARM_LDC_SB_G0:
28609 case BFD_RELOC_ARM_LDC_SB_G1:
28610 case BFD_RELOC_ARM_LDC_SB_G2:
28611 case BFD_RELOC_ARM_V4BX:
28612 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
28613 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
28614 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
28615 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
28616 case BFD_RELOC_ARM_GOTFUNCDESC:
28617 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
28618 case BFD_RELOC_ARM_FUNCDESC:
28619 case BFD_RELOC_ARM_THUMB_BF17:
28620 case BFD_RELOC_ARM_THUMB_BF19:
28621 case BFD_RELOC_ARM_THUMB_BF13:
28622 code = fixp->fx_r_type;
28623 break;
28624
28625 case BFD_RELOC_ARM_TLS_GOTDESC:
28626 case BFD_RELOC_ARM_TLS_GD32:
28627 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
28628 case BFD_RELOC_ARM_TLS_LE32:
28629 case BFD_RELOC_ARM_TLS_IE32:
28630 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
28631 case BFD_RELOC_ARM_TLS_LDM32:
28632 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
28633 /* BFD will include the symbol's address in the addend.
28634 But we don't want that, so subtract it out again here. */
28635 if (!S_IS_COMMON (fixp->fx_addsy))
28636 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
28637 code = fixp->fx_r_type;
28638 break;
28639 #endif
28640
28641 case BFD_RELOC_ARM_IMMEDIATE:
28642 as_bad_where (fixp->fx_file, fixp->fx_line,
28643 _("internal relocation (type: IMMEDIATE) not fixed up"));
28644 return NULL;
28645
28646 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
28647 as_bad_where (fixp->fx_file, fixp->fx_line,
28648 _("ADRL used for a symbol not defined in the same file"));
28649 return NULL;
28650
28651 case BFD_RELOC_THUMB_PCREL_BRANCH5:
28652 case BFD_RELOC_THUMB_PCREL_BFCSEL:
28653 case BFD_RELOC_ARM_THUMB_LOOP12:
28654 as_bad_where (fixp->fx_file, fixp->fx_line,
28655 _("%s used for a symbol not defined in the same file"),
28656 bfd_get_reloc_code_name (fixp->fx_r_type));
28657 return NULL;
28658
28659 case BFD_RELOC_ARM_OFFSET_IMM:
28660 if (section->use_rela_p)
28661 {
28662 code = fixp->fx_r_type;
28663 break;
28664 }
28665
28666 if (fixp->fx_addsy != NULL
28667 && !S_IS_DEFINED (fixp->fx_addsy)
28668 && S_IS_LOCAL (fixp->fx_addsy))
28669 {
28670 as_bad_where (fixp->fx_file, fixp->fx_line,
28671 _("undefined local label `%s'"),
28672 S_GET_NAME (fixp->fx_addsy));
28673 return NULL;
28674 }
28675
28676 as_bad_where (fixp->fx_file, fixp->fx_line,
28677 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
28678 return NULL;
28679
28680 default:
28681 {
28682 const char * type;
28683
28684 switch (fixp->fx_r_type)
28685 {
28686 case BFD_RELOC_NONE: type = "NONE"; break;
28687 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
28688 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
28689 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
28690 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
28691 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
28692 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
28693 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
28694 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
28695 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
28696 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
28697 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
28698 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
28699 default: type = _("<unknown>"); break;
28700 }
28701 as_bad_where (fixp->fx_file, fixp->fx_line,
28702 _("cannot represent %s relocation in this object file format"),
28703 type);
28704 return NULL;
28705 }
28706 }
28707
28708 #ifdef OBJ_ELF
28709 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
28710 && GOT_symbol
28711 && fixp->fx_addsy == GOT_symbol)
28712 {
28713 code = BFD_RELOC_ARM_GOTPC;
28714 reloc->addend = fixp->fx_offset = reloc->address;
28715 }
28716 #endif
28717
28718 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
28719
28720 if (reloc->howto == NULL)
28721 {
28722 as_bad_where (fixp->fx_file, fixp->fx_line,
28723 _("cannot represent %s relocation in this object file format"),
28724 bfd_get_reloc_code_name (code));
28725 return NULL;
28726 }
28727
28728 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
28729 vtable entry to be used in the relocation's section offset. */
28730 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
28731 reloc->address = fixp->fx_offset;
28732
28733 return reloc;
28734 }
28735
28736 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
28737
28738 void
28739 cons_fix_new_arm (fragS * frag,
28740 int where,
28741 int size,
28742 expressionS * exp,
28743 bfd_reloc_code_real_type reloc)
28744 {
28745 int pcrel = 0;
28746
28747 /* Pick a reloc.
28748 FIXME: @@ Should look at CPU word size. */
28749 switch (size)
28750 {
28751 case 1:
28752 reloc = BFD_RELOC_8;
28753 break;
28754 case 2:
28755 reloc = BFD_RELOC_16;
28756 break;
28757 case 4:
28758 default:
28759 reloc = BFD_RELOC_32;
28760 break;
28761 case 8:
28762 reloc = BFD_RELOC_64;
28763 break;
28764 }
28765
28766 #ifdef TE_PE
28767 if (exp->X_op == O_secrel)
28768 {
28769 exp->X_op = O_symbol;
28770 reloc = BFD_RELOC_32_SECREL;
28771 }
28772 #endif
28773
28774 fix_new_exp (frag, where, size, exp, pcrel, reloc);
28775 }
28776
28777 #if defined (OBJ_COFF)
28778 void
28779 arm_validate_fix (fixS * fixP)
28780 {
28781 /* If the destination of the branch is a defined symbol which does not have
28782 the THUMB_FUNC attribute, then we must be calling a function which has
28783 the (interfacearm) attribute. We look for the Thumb entry point to that
28784 function and change the branch to refer to that function instead. */
28785 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
28786 && fixP->fx_addsy != NULL
28787 && S_IS_DEFINED (fixP->fx_addsy)
28788 && ! THUMB_IS_FUNC (fixP->fx_addsy))
28789 {
28790 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
28791 }
28792 }
28793 #endif
28794
28795
28796 int
28797 arm_force_relocation (struct fix * fixp)
28798 {
28799 #if defined (OBJ_COFF) && defined (TE_PE)
28800 if (fixp->fx_r_type == BFD_RELOC_RVA)
28801 return 1;
28802 #endif
28803
28804 /* In case we have a call or a branch to a function in ARM ISA mode from
28805 a thumb function or vice-versa force the relocation. These relocations
28806 are cleared off for some cores that might have blx and simple transformations
28807 are possible. */
28808
28809 #ifdef OBJ_ELF
28810 switch (fixp->fx_r_type)
28811 {
28812 case BFD_RELOC_ARM_PCREL_JUMP:
28813 case BFD_RELOC_ARM_PCREL_CALL:
28814 case BFD_RELOC_THUMB_PCREL_BLX:
28815 if (THUMB_IS_FUNC (fixp->fx_addsy))
28816 return 1;
28817 break;
28818
28819 case BFD_RELOC_ARM_PCREL_BLX:
28820 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28821 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28822 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28823 if (ARM_IS_FUNC (fixp->fx_addsy))
28824 return 1;
28825 break;
28826
28827 default:
28828 break;
28829 }
28830 #endif
28831
28832 /* Resolve these relocations even if the symbol is extern or weak.
28833 Technically this is probably wrong due to symbol preemption.
28834 In practice these relocations do not have enough range to be useful
28835 at dynamic link time, and some code (e.g. in the Linux kernel)
28836 expects these references to be resolved. */
28837 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
28838 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
28839 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
28840 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
28841 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28842 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
28843 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
28844 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
28845 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
28846 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
28847 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
28848 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
28849 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
28850 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
28851 return 0;
28852
28853 /* Always leave these relocations for the linker. */
28854 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28855 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28856 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
28857 return 1;
28858
28859 /* Always generate relocations against function symbols. */
28860 if (fixp->fx_r_type == BFD_RELOC_32
28861 && fixp->fx_addsy
28862 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
28863 return 1;
28864
28865 return generic_force_reloc (fixp);
28866 }
28867
28868 #if defined (OBJ_ELF) || defined (OBJ_COFF)
28869 /* Relocations against function names must be left unadjusted,
28870 so that the linker can use this information to generate interworking
28871 stubs. The MIPS version of this function
28872 also prevents relocations that are mips-16 specific, but I do not
28873 know why it does this.
28874
28875 FIXME:
28876 There is one other problem that ought to be addressed here, but
28877 which currently is not: Taking the address of a label (rather
28878 than a function) and then later jumping to that address. Such
28879 addresses also ought to have their bottom bit set (assuming that
28880 they reside in Thumb code), but at the moment they will not. */
28881
28882 bfd_boolean
28883 arm_fix_adjustable (fixS * fixP)
28884 {
28885 if (fixP->fx_addsy == NULL)
28886 return 1;
28887
28888 /* Preserve relocations against symbols with function type. */
28889 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
28890 return FALSE;
28891
28892 if (THUMB_IS_FUNC (fixP->fx_addsy)
28893 && fixP->fx_subsy == NULL)
28894 return FALSE;
28895
28896 /* We need the symbol name for the VTABLE entries. */
28897 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
28898 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
28899 return FALSE;
28900
28901 /* Don't allow symbols to be discarded on GOT related relocs. */
28902 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
28903 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
28904 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
28905 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
28906 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
28907 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
28908 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
28909 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
28910 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
28911 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
28912 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
28913 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
28914 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
28915 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
28916 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
28917 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
28918 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
28919 return FALSE;
28920
28921 /* Similarly for group relocations. */
28922 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28923 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28924 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
28925 return FALSE;
28926
28927 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
28928 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
28929 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28930 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
28931 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
28932 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28933 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
28934 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
28935 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
28936 return FALSE;
28937
28938 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
28939 offsets, so keep these symbols. */
28940 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
28941 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
28942 return FALSE;
28943
28944 return TRUE;
28945 }
28946 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
28947
28948 #ifdef OBJ_ELF
28949 const char *
28950 elf32_arm_target_format (void)
28951 {
28952 #ifdef TE_SYMBIAN
28953 return (target_big_endian
28954 ? "elf32-bigarm-symbian"
28955 : "elf32-littlearm-symbian");
28956 #elif defined (TE_VXWORKS)
28957 return (target_big_endian
28958 ? "elf32-bigarm-vxworks"
28959 : "elf32-littlearm-vxworks");
28960 #elif defined (TE_NACL)
28961 return (target_big_endian
28962 ? "elf32-bigarm-nacl"
28963 : "elf32-littlearm-nacl");
28964 #else
28965 if (arm_fdpic)
28966 {
28967 if (target_big_endian)
28968 return "elf32-bigarm-fdpic";
28969 else
28970 return "elf32-littlearm-fdpic";
28971 }
28972 else
28973 {
28974 if (target_big_endian)
28975 return "elf32-bigarm";
28976 else
28977 return "elf32-littlearm";
28978 }
28979 #endif
28980 }
28981
28982 void
28983 armelf_frob_symbol (symbolS * symp,
28984 int * puntp)
28985 {
28986 elf_frob_symbol (symp, puntp);
28987 }
28988 #endif
28989
28990 /* MD interface: Finalization. */
28991
28992 void
28993 arm_cleanup (void)
28994 {
28995 literal_pool * pool;
28996
28997 /* Ensure that all the predication blocks are properly closed. */
28998 check_pred_blocks_finished ();
28999
29000 for (pool = list_of_pools; pool; pool = pool->next)
29001 {
29002 /* Put it at the end of the relevant section. */
29003 subseg_set (pool->section, pool->sub_section);
29004 #ifdef OBJ_ELF
29005 arm_elf_change_section ();
29006 #endif
29007 s_ltorg (0);
29008 }
29009 }
29010
29011 #ifdef OBJ_ELF
29012 /* Remove any excess mapping symbols generated for alignment frags in
29013 SEC. We may have created a mapping symbol before a zero byte
29014 alignment; remove it if there's a mapping symbol after the
29015 alignment. */
29016 static void
29017 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
29018 void *dummy ATTRIBUTE_UNUSED)
29019 {
29020 segment_info_type *seginfo = seg_info (sec);
29021 fragS *fragp;
29022
29023 if (seginfo == NULL || seginfo->frchainP == NULL)
29024 return;
29025
29026 for (fragp = seginfo->frchainP->frch_root;
29027 fragp != NULL;
29028 fragp = fragp->fr_next)
29029 {
29030 symbolS *sym = fragp->tc_frag_data.last_map;
29031 fragS *next = fragp->fr_next;
29032
29033 /* Variable-sized frags have been converted to fixed size by
29034 this point. But if this was variable-sized to start with,
29035 there will be a fixed-size frag after it. So don't handle
29036 next == NULL. */
29037 if (sym == NULL || next == NULL)
29038 continue;
29039
29040 if (S_GET_VALUE (sym) < next->fr_address)
29041 /* Not at the end of this frag. */
29042 continue;
29043 know (S_GET_VALUE (sym) == next->fr_address);
29044
29045 do
29046 {
29047 if (next->tc_frag_data.first_map != NULL)
29048 {
29049 /* Next frag starts with a mapping symbol. Discard this
29050 one. */
29051 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
29052 break;
29053 }
29054
29055 if (next->fr_next == NULL)
29056 {
29057 /* This mapping symbol is at the end of the section. Discard
29058 it. */
29059 know (next->fr_fix == 0 && next->fr_var == 0);
29060 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
29061 break;
29062 }
29063
29064 /* As long as we have empty frags without any mapping symbols,
29065 keep looking. */
29066 /* If the next frag is non-empty and does not start with a
29067 mapping symbol, then this mapping symbol is required. */
29068 if (next->fr_address != next->fr_next->fr_address)
29069 break;
29070
29071 next = next->fr_next;
29072 }
29073 while (next != NULL);
29074 }
29075 }
29076 #endif
29077
29078 /* Adjust the symbol table. This marks Thumb symbols as distinct from
29079 ARM ones. */
29080
29081 void
29082 arm_adjust_symtab (void)
29083 {
29084 #ifdef OBJ_COFF
29085 symbolS * sym;
29086
29087 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
29088 {
29089 if (ARM_IS_THUMB (sym))
29090 {
29091 if (THUMB_IS_FUNC (sym))
29092 {
29093 /* Mark the symbol as a Thumb function. */
29094 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
29095 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
29096 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
29097
29098 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
29099 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
29100 else
29101 as_bad (_("%s: unexpected function type: %d"),
29102 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
29103 }
29104 else switch (S_GET_STORAGE_CLASS (sym))
29105 {
29106 case C_EXT:
29107 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
29108 break;
29109 case C_STAT:
29110 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
29111 break;
29112 case C_LABEL:
29113 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
29114 break;
29115 default:
29116 /* Do nothing. */
29117 break;
29118 }
29119 }
29120
29121 if (ARM_IS_INTERWORK (sym))
29122 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
29123 }
29124 #endif
29125 #ifdef OBJ_ELF
29126 symbolS * sym;
29127 char bind;
29128
29129 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
29130 {
29131 if (ARM_IS_THUMB (sym))
29132 {
29133 elf_symbol_type * elf_sym;
29134
29135 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
29136 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
29137
29138 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
29139 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
29140 {
29141 /* If it's a .thumb_func, declare it as so,
29142 otherwise tag label as .code 16. */
29143 if (THUMB_IS_FUNC (sym))
29144 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
29145 ST_BRANCH_TO_THUMB);
29146 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
29147 elf_sym->internal_elf_sym.st_info =
29148 ELF_ST_INFO (bind, STT_ARM_16BIT);
29149 }
29150 }
29151 }
29152
29153 /* Remove any overlapping mapping symbols generated by alignment frags. */
29154 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
29155 /* Now do generic ELF adjustments. */
29156 elf_adjust_symtab ();
29157 #endif
29158 }
29159
29160 /* MD interface: Initialization. */
29161
29162 static void
29163 set_constant_flonums (void)
29164 {
29165 int i;
29166
29167 for (i = 0; i < NUM_FLOAT_VALS; i++)
29168 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
29169 abort ();
29170 }
29171
29172 /* Auto-select Thumb mode if it's the only available instruction set for the
29173 given architecture. */
29174
29175 static void
29176 autoselect_thumb_from_cpu_variant (void)
29177 {
29178 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
29179 opcode_select (16);
29180 }
29181
29182 void
29183 md_begin (void)
29184 {
29185 unsigned mach;
29186 unsigned int i;
29187
29188 if ( (arm_ops_hsh = hash_new ()) == NULL
29189 || (arm_cond_hsh = hash_new ()) == NULL
29190 || (arm_vcond_hsh = hash_new ()) == NULL
29191 || (arm_shift_hsh = hash_new ()) == NULL
29192 || (arm_psr_hsh = hash_new ()) == NULL
29193 || (arm_v7m_psr_hsh = hash_new ()) == NULL
29194 || (arm_reg_hsh = hash_new ()) == NULL
29195 || (arm_reloc_hsh = hash_new ()) == NULL
29196 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
29197 as_fatal (_("virtual memory exhausted"));
29198
29199 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
29200 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
29201 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
29202 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
29203 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
29204 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
29205 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
29206 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
29207 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
29208 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
29209 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
29210 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
29211 (void *) (v7m_psrs + i));
29212 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
29213 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
29214 for (i = 0;
29215 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
29216 i++)
29217 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
29218 (void *) (barrier_opt_names + i));
29219 #ifdef OBJ_ELF
29220 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
29221 {
29222 struct reloc_entry * entry = reloc_names + i;
29223
29224 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
29225 /* This makes encode_branch() use the EABI versions of this relocation. */
29226 entry->reloc = BFD_RELOC_UNUSED;
29227
29228 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
29229 }
29230 #endif
29231
29232 set_constant_flonums ();
29233
29234 /* Set the cpu variant based on the command-line options. We prefer
29235 -mcpu= over -march= if both are set (as for GCC); and we prefer
29236 -mfpu= over any other way of setting the floating point unit.
29237 Use of legacy options with new options are faulted. */
29238 if (legacy_cpu)
29239 {
29240 if (mcpu_cpu_opt || march_cpu_opt)
29241 as_bad (_("use of old and new-style options to set CPU type"));
29242
29243 selected_arch = *legacy_cpu;
29244 }
29245 else if (mcpu_cpu_opt)
29246 {
29247 selected_arch = *mcpu_cpu_opt;
29248 selected_ext = *mcpu_ext_opt;
29249 }
29250 else if (march_cpu_opt)
29251 {
29252 selected_arch = *march_cpu_opt;
29253 selected_ext = *march_ext_opt;
29254 }
29255 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
29256
29257 if (legacy_fpu)
29258 {
29259 if (mfpu_opt)
29260 as_bad (_("use of old and new-style options to set FPU type"));
29261
29262 selected_fpu = *legacy_fpu;
29263 }
29264 else if (mfpu_opt)
29265 selected_fpu = *mfpu_opt;
29266 else
29267 {
29268 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
29269 || defined (TE_NetBSD) || defined (TE_VXWORKS))
29270 /* Some environments specify a default FPU. If they don't, infer it
29271 from the processor. */
29272 if (mcpu_fpu_opt)
29273 selected_fpu = *mcpu_fpu_opt;
29274 else if (march_fpu_opt)
29275 selected_fpu = *march_fpu_opt;
29276 #else
29277 selected_fpu = fpu_default;
29278 #endif
29279 }
29280
29281 if (ARM_FEATURE_ZERO (selected_fpu))
29282 {
29283 if (!no_cpu_selected ())
29284 selected_fpu = fpu_default;
29285 else
29286 selected_fpu = fpu_arch_fpa;
29287 }
29288
29289 #ifdef CPU_DEFAULT
29290 if (ARM_FEATURE_ZERO (selected_arch))
29291 {
29292 selected_arch = cpu_default;
29293 selected_cpu = selected_arch;
29294 }
29295 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
29296 #else
29297 /* Autodection of feature mode: allow all features in cpu_variant but leave
29298 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
29299 after all instruction have been processed and we can decide what CPU
29300 should be selected. */
29301 if (ARM_FEATURE_ZERO (selected_arch))
29302 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
29303 else
29304 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
29305 #endif
29306
29307 autoselect_thumb_from_cpu_variant ();
29308
29309 arm_arch_used = thumb_arch_used = arm_arch_none;
29310
29311 #if defined OBJ_COFF || defined OBJ_ELF
29312 {
29313 unsigned int flags = 0;
29314
29315 #if defined OBJ_ELF
29316 flags = meabi_flags;
29317
29318 switch (meabi_flags)
29319 {
29320 case EF_ARM_EABI_UNKNOWN:
29321 #endif
29322 /* Set the flags in the private structure. */
29323 if (uses_apcs_26) flags |= F_APCS26;
29324 if (support_interwork) flags |= F_INTERWORK;
29325 if (uses_apcs_float) flags |= F_APCS_FLOAT;
29326 if (pic_code) flags |= F_PIC;
29327 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
29328 flags |= F_SOFT_FLOAT;
29329
29330 switch (mfloat_abi_opt)
29331 {
29332 case ARM_FLOAT_ABI_SOFT:
29333 case ARM_FLOAT_ABI_SOFTFP:
29334 flags |= F_SOFT_FLOAT;
29335 break;
29336
29337 case ARM_FLOAT_ABI_HARD:
29338 if (flags & F_SOFT_FLOAT)
29339 as_bad (_("hard-float conflicts with specified fpu"));
29340 break;
29341 }
29342
29343 /* Using pure-endian doubles (even if soft-float). */
29344 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
29345 flags |= F_VFP_FLOAT;
29346
29347 #if defined OBJ_ELF
29348 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
29349 flags |= EF_ARM_MAVERICK_FLOAT;
29350 break;
29351
29352 case EF_ARM_EABI_VER4:
29353 case EF_ARM_EABI_VER5:
29354 /* No additional flags to set. */
29355 break;
29356
29357 default:
29358 abort ();
29359 }
29360 #endif
29361 bfd_set_private_flags (stdoutput, flags);
29362
29363 /* We have run out flags in the COFF header to encode the
29364 status of ATPCS support, so instead we create a dummy,
29365 empty, debug section called .arm.atpcs. */
29366 if (atpcs)
29367 {
29368 asection * sec;
29369
29370 sec = bfd_make_section (stdoutput, ".arm.atpcs");
29371
29372 if (sec != NULL)
29373 {
29374 bfd_set_section_flags
29375 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
29376 bfd_set_section_size (stdoutput, sec, 0);
29377 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
29378 }
29379 }
29380 }
29381 #endif
29382
29383 /* Record the CPU type as well. */
29384 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
29385 mach = bfd_mach_arm_iWMMXt2;
29386 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
29387 mach = bfd_mach_arm_iWMMXt;
29388 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
29389 mach = bfd_mach_arm_XScale;
29390 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
29391 mach = bfd_mach_arm_ep9312;
29392 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
29393 mach = bfd_mach_arm_5TE;
29394 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
29395 {
29396 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
29397 mach = bfd_mach_arm_5T;
29398 else
29399 mach = bfd_mach_arm_5;
29400 }
29401 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
29402 {
29403 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
29404 mach = bfd_mach_arm_4T;
29405 else
29406 mach = bfd_mach_arm_4;
29407 }
29408 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
29409 mach = bfd_mach_arm_3M;
29410 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
29411 mach = bfd_mach_arm_3;
29412 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
29413 mach = bfd_mach_arm_2a;
29414 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
29415 mach = bfd_mach_arm_2;
29416 else
29417 mach = bfd_mach_arm_unknown;
29418
29419 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
29420 }
29421
29422 /* Command line processing. */
29423
29424 /* md_parse_option
29425 Invocation line includes a switch not recognized by the base assembler.
29426 See if it's a processor-specific option.
29427
29428 This routine is somewhat complicated by the need for backwards
29429 compatibility (since older releases of gcc can't be changed).
29430 The new options try to make the interface as compatible as
29431 possible with GCC.
29432
29433 New options (supported) are:
29434
29435 -mcpu=<cpu name> Assemble for selected processor
29436 -march=<architecture name> Assemble for selected architecture
29437 -mfpu=<fpu architecture> Assemble for selected FPU.
29438 -EB/-mbig-endian Big-endian
29439 -EL/-mlittle-endian Little-endian
29440 -k Generate PIC code
29441 -mthumb Start in Thumb mode
29442 -mthumb-interwork Code supports ARM/Thumb interworking
29443
29444 -m[no-]warn-deprecated Warn about deprecated features
29445 -m[no-]warn-syms Warn when symbols match instructions
29446
29447 For now we will also provide support for:
29448
29449 -mapcs-32 32-bit Program counter
29450 -mapcs-26 26-bit Program counter
29451 -macps-float Floats passed in FP registers
29452 -mapcs-reentrant Reentrant code
29453 -matpcs
29454 (sometime these will probably be replaced with -mapcs=<list of options>
29455 and -matpcs=<list of options>)
29456
29457 The remaining options are only supported for back-wards compatibility.
29458 Cpu variants, the arm part is optional:
29459 -m[arm]1 Currently not supported.
29460 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
29461 -m[arm]3 Arm 3 processor
29462 -m[arm]6[xx], Arm 6 processors
29463 -m[arm]7[xx][t][[d]m] Arm 7 processors
29464 -m[arm]8[10] Arm 8 processors
29465 -m[arm]9[20][tdmi] Arm 9 processors
29466 -mstrongarm[110[0]] StrongARM processors
29467 -mxscale XScale processors
29468 -m[arm]v[2345[t[e]]] Arm architectures
29469 -mall All (except the ARM1)
29470 FP variants:
29471 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
29472 -mfpe-old (No float load/store multiples)
29473 -mvfpxd VFP Single precision
29474 -mvfp All VFP
29475 -mno-fpu Disable all floating point instructions
29476
29477 The following CPU names are recognized:
29478 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
29479 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
29480 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
29481 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
29482 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
29483 arm10t arm10e, arm1020t, arm1020e, arm10200e,
29484 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
29485
29486 */
29487
29488 const char * md_shortopts = "m:k";
29489
29490 #ifdef ARM_BI_ENDIAN
29491 #define OPTION_EB (OPTION_MD_BASE + 0)
29492 #define OPTION_EL (OPTION_MD_BASE + 1)
29493 #else
29494 #if TARGET_BYTES_BIG_ENDIAN
29495 #define OPTION_EB (OPTION_MD_BASE + 0)
29496 #else
29497 #define OPTION_EL (OPTION_MD_BASE + 1)
29498 #endif
29499 #endif
29500 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
29501 #define OPTION_FDPIC (OPTION_MD_BASE + 3)
29502
29503 struct option md_longopts[] =
29504 {
29505 #ifdef OPTION_EB
29506 {"EB", no_argument, NULL, OPTION_EB},
29507 #endif
29508 #ifdef OPTION_EL
29509 {"EL", no_argument, NULL, OPTION_EL},
29510 #endif
29511 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
29512 #ifdef OBJ_ELF
29513 {"fdpic", no_argument, NULL, OPTION_FDPIC},
29514 #endif
29515 {NULL, no_argument, NULL, 0}
29516 };
29517
29518 size_t md_longopts_size = sizeof (md_longopts);
29519
29520 struct arm_option_table
29521 {
29522 const char * option; /* Option name to match. */
29523 const char * help; /* Help information. */
29524 int * var; /* Variable to change. */
29525 int value; /* What to change it to. */
29526 const char * deprecated; /* If non-null, print this message. */
29527 };
29528
29529 struct arm_option_table arm_opts[] =
29530 {
29531 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
29532 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
29533 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
29534 &support_interwork, 1, NULL},
29535 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
29536 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
29537 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
29538 1, NULL},
29539 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
29540 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
29541 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
29542 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
29543 NULL},
29544
29545 /* These are recognized by the assembler, but have no affect on code. */
29546 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
29547 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
29548
29549 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
29550 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
29551 &warn_on_deprecated, 0, NULL},
29552 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
29553 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
29554 {NULL, NULL, NULL, 0, NULL}
29555 };
29556
29557 struct arm_legacy_option_table
29558 {
29559 const char * option; /* Option name to match. */
29560 const arm_feature_set ** var; /* Variable to change. */
29561 const arm_feature_set value; /* What to change it to. */
29562 const char * deprecated; /* If non-null, print this message. */
29563 };
29564
29565 const struct arm_legacy_option_table arm_legacy_opts[] =
29566 {
29567 /* DON'T add any new processors to this list -- we want the whole list
29568 to go away... Add them to the processors table instead. */
29569 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29570 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29571 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29572 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29573 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29574 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29575 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29576 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29577 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29578 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29579 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29580 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29581 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29582 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29583 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29584 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29585 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29586 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29587 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29588 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29589 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29590 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29591 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29592 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29593 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29594 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29595 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29596 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29597 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29598 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29599 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29600 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29601 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29602 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29603 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29604 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29605 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29606 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29607 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29608 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29609 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29610 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29611 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29612 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29613 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29614 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29615 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29616 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29617 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29618 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29619 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29620 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29621 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29622 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29623 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29624 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29625 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29626 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29627 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29628 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29629 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29630 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29631 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29632 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29633 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29634 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29635 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29636 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29637 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
29638 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
29639 N_("use -mcpu=strongarm110")},
29640 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
29641 N_("use -mcpu=strongarm1100")},
29642 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
29643 N_("use -mcpu=strongarm1110")},
29644 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
29645 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
29646 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
29647
29648 /* Architecture variants -- don't add any more to this list either. */
29649 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29650 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29651 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29652 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29653 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29654 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29655 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29656 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29657 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29658 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29659 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29660 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29661 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29662 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29663 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29664 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29665 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
29666 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
29667
29668 /* Floating point variants -- don't add any more to this list either. */
29669 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
29670 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
29671 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
29672 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
29673 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
29674
29675 {NULL, NULL, ARM_ARCH_NONE, NULL}
29676 };
29677
29678 struct arm_cpu_option_table
29679 {
29680 const char * name;
29681 size_t name_len;
29682 const arm_feature_set value;
29683 const arm_feature_set ext;
29684 /* For some CPUs we assume an FPU unless the user explicitly sets
29685 -mfpu=... */
29686 const arm_feature_set default_fpu;
29687 /* The canonical name of the CPU, or NULL to use NAME converted to upper
29688 case. */
29689 const char * canonical_name;
29690 };
29691
29692 /* This list should, at a minimum, contain all the cpu names
29693 recognized by GCC. */
29694 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
29695
29696 static const struct arm_cpu_option_table arm_cpus[] =
29697 {
29698 ARM_CPU_OPT ("all", NULL, ARM_ANY,
29699 ARM_ARCH_NONE,
29700 FPU_ARCH_FPA),
29701 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
29702 ARM_ARCH_NONE,
29703 FPU_ARCH_FPA),
29704 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
29705 ARM_ARCH_NONE,
29706 FPU_ARCH_FPA),
29707 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
29708 ARM_ARCH_NONE,
29709 FPU_ARCH_FPA),
29710 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
29711 ARM_ARCH_NONE,
29712 FPU_ARCH_FPA),
29713 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
29714 ARM_ARCH_NONE,
29715 FPU_ARCH_FPA),
29716 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
29717 ARM_ARCH_NONE,
29718 FPU_ARCH_FPA),
29719 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
29720 ARM_ARCH_NONE,
29721 FPU_ARCH_FPA),
29722 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
29723 ARM_ARCH_NONE,
29724 FPU_ARCH_FPA),
29725 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
29726 ARM_ARCH_NONE,
29727 FPU_ARCH_FPA),
29728 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
29729 ARM_ARCH_NONE,
29730 FPU_ARCH_FPA),
29731 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
29732 ARM_ARCH_NONE,
29733 FPU_ARCH_FPA),
29734 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
29735 ARM_ARCH_NONE,
29736 FPU_ARCH_FPA),
29737 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
29738 ARM_ARCH_NONE,
29739 FPU_ARCH_FPA),
29740 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
29741 ARM_ARCH_NONE,
29742 FPU_ARCH_FPA),
29743 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
29744 ARM_ARCH_NONE,
29745 FPU_ARCH_FPA),
29746 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
29747 ARM_ARCH_NONE,
29748 FPU_ARCH_FPA),
29749 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
29750 ARM_ARCH_NONE,
29751 FPU_ARCH_FPA),
29752 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
29753 ARM_ARCH_NONE,
29754 FPU_ARCH_FPA),
29755 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
29756 ARM_ARCH_NONE,
29757 FPU_ARCH_FPA),
29758 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
29759 ARM_ARCH_NONE,
29760 FPU_ARCH_FPA),
29761 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
29762 ARM_ARCH_NONE,
29763 FPU_ARCH_FPA),
29764 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
29765 ARM_ARCH_NONE,
29766 FPU_ARCH_FPA),
29767 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
29768 ARM_ARCH_NONE,
29769 FPU_ARCH_FPA),
29770 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
29771 ARM_ARCH_NONE,
29772 FPU_ARCH_FPA),
29773 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
29774 ARM_ARCH_NONE,
29775 FPU_ARCH_FPA),
29776 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
29777 ARM_ARCH_NONE,
29778 FPU_ARCH_FPA),
29779 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
29780 ARM_ARCH_NONE,
29781 FPU_ARCH_FPA),
29782 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
29783 ARM_ARCH_NONE,
29784 FPU_ARCH_FPA),
29785 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
29786 ARM_ARCH_NONE,
29787 FPU_ARCH_FPA),
29788 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
29789 ARM_ARCH_NONE,
29790 FPU_ARCH_FPA),
29791 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
29792 ARM_ARCH_NONE,
29793 FPU_ARCH_FPA),
29794 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
29795 ARM_ARCH_NONE,
29796 FPU_ARCH_FPA),
29797 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
29798 ARM_ARCH_NONE,
29799 FPU_ARCH_FPA),
29800 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
29801 ARM_ARCH_NONE,
29802 FPU_ARCH_FPA),
29803 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
29804 ARM_ARCH_NONE,
29805 FPU_ARCH_FPA),
29806 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
29807 ARM_ARCH_NONE,
29808 FPU_ARCH_FPA),
29809 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
29810 ARM_ARCH_NONE,
29811 FPU_ARCH_FPA),
29812 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
29813 ARM_ARCH_NONE,
29814 FPU_ARCH_FPA),
29815 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
29816 ARM_ARCH_NONE,
29817 FPU_ARCH_FPA),
29818 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
29819 ARM_ARCH_NONE,
29820 FPU_ARCH_FPA),
29821 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
29822 ARM_ARCH_NONE,
29823 FPU_ARCH_FPA),
29824 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
29825 ARM_ARCH_NONE,
29826 FPU_ARCH_FPA),
29827 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
29828 ARM_ARCH_NONE,
29829 FPU_ARCH_FPA),
29830 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
29831 ARM_ARCH_NONE,
29832 FPU_ARCH_FPA),
29833 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
29834 ARM_ARCH_NONE,
29835 FPU_ARCH_FPA),
29836
29837 /* For V5 or later processors we default to using VFP; but the user
29838 should really set the FPU type explicitly. */
29839 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
29840 ARM_ARCH_NONE,
29841 FPU_ARCH_VFP_V2),
29842 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
29843 ARM_ARCH_NONE,
29844 FPU_ARCH_VFP_V2),
29845 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29846 ARM_ARCH_NONE,
29847 FPU_ARCH_VFP_V2),
29848 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29849 ARM_ARCH_NONE,
29850 FPU_ARCH_VFP_V2),
29851 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
29852 ARM_ARCH_NONE,
29853 FPU_ARCH_VFP_V2),
29854 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
29855 ARM_ARCH_NONE,
29856 FPU_ARCH_VFP_V2),
29857 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
29858 ARM_ARCH_NONE,
29859 FPU_ARCH_VFP_V2),
29860 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
29861 ARM_ARCH_NONE,
29862 FPU_ARCH_VFP_V2),
29863 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
29864 ARM_ARCH_NONE,
29865 FPU_ARCH_VFP_V2),
29866 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
29867 ARM_ARCH_NONE,
29868 FPU_ARCH_VFP_V2),
29869 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
29870 ARM_ARCH_NONE,
29871 FPU_ARCH_VFP_V2),
29872 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
29873 ARM_ARCH_NONE,
29874 FPU_ARCH_VFP_V2),
29875 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
29876 ARM_ARCH_NONE,
29877 FPU_ARCH_VFP_V1),
29878 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
29879 ARM_ARCH_NONE,
29880 FPU_ARCH_VFP_V1),
29881 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
29882 ARM_ARCH_NONE,
29883 FPU_ARCH_VFP_V2),
29884 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
29885 ARM_ARCH_NONE,
29886 FPU_ARCH_VFP_V2),
29887 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
29888 ARM_ARCH_NONE,
29889 FPU_ARCH_VFP_V1),
29890 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
29891 ARM_ARCH_NONE,
29892 FPU_ARCH_VFP_V2),
29893 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
29894 ARM_ARCH_NONE,
29895 FPU_ARCH_VFP_V2),
29896 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
29897 ARM_ARCH_NONE,
29898 FPU_ARCH_VFP_V2),
29899 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
29900 ARM_ARCH_NONE,
29901 FPU_ARCH_VFP_V2),
29902 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
29903 ARM_ARCH_NONE,
29904 FPU_ARCH_VFP_V2),
29905 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
29906 ARM_ARCH_NONE,
29907 FPU_ARCH_VFP_V2),
29908 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
29909 ARM_ARCH_NONE,
29910 FPU_ARCH_VFP_V2),
29911 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
29912 ARM_ARCH_NONE,
29913 FPU_ARCH_VFP_V2),
29914 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
29915 ARM_ARCH_NONE,
29916 FPU_ARCH_VFP_V2),
29917 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
29918 ARM_ARCH_NONE,
29919 FPU_NONE),
29920 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
29921 ARM_ARCH_NONE,
29922 FPU_NONE),
29923 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
29924 ARM_ARCH_NONE,
29925 FPU_ARCH_VFP_V2),
29926 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
29927 ARM_ARCH_NONE,
29928 FPU_ARCH_VFP_V2),
29929 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
29930 ARM_ARCH_NONE,
29931 FPU_ARCH_VFP_V2),
29932 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
29933 ARM_ARCH_NONE,
29934 FPU_NONE),
29935 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
29936 ARM_ARCH_NONE,
29937 FPU_NONE),
29938 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
29939 ARM_ARCH_NONE,
29940 FPU_ARCH_VFP_V2),
29941 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
29942 ARM_ARCH_NONE,
29943 FPU_NONE),
29944 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
29945 ARM_ARCH_NONE,
29946 FPU_ARCH_VFP_V2),
29947 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
29948 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29949 FPU_NONE),
29950 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
29951 ARM_ARCH_NONE,
29952 FPU_ARCH_NEON_VFP_V4),
29953 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
29954 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29955 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29956 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
29957 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29958 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29959 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
29960 ARM_ARCH_NONE,
29961 FPU_ARCH_NEON_VFP_V4),
29962 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
29963 ARM_ARCH_NONE,
29964 FPU_ARCH_NEON_VFP_V4),
29965 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
29966 ARM_ARCH_NONE,
29967 FPU_ARCH_NEON_VFP_V4),
29968 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
29969 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29970 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29971 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
29972 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29973 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29974 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
29975 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29976 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29977 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
29978 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29979 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29980 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
29981 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29982 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29983 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
29984 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29985 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29986 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
29987 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29988 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29989 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
29990 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29991 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29992 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
29993 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29994 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29995 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
29996 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29997 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29998 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
29999 ARM_ARCH_NONE,
30000 FPU_NONE),
30001 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
30002 ARM_ARCH_NONE,
30003 FPU_ARCH_VFP_V3D16),
30004 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
30005 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30006 FPU_NONE),
30007 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
30008 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30009 FPU_ARCH_VFP_V3D16),
30010 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
30011 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30012 FPU_ARCH_VFP_V3D16),
30013 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
30014 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30015 FPU_ARCH_NEON_VFP_ARMV8),
30016 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
30017 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30018 FPU_NONE),
30019 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
30020 ARM_ARCH_NONE,
30021 FPU_NONE),
30022 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
30023 ARM_ARCH_NONE,
30024 FPU_NONE),
30025 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
30026 ARM_ARCH_NONE,
30027 FPU_NONE),
30028 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
30029 ARM_ARCH_NONE,
30030 FPU_NONE),
30031 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
30032 ARM_ARCH_NONE,
30033 FPU_NONE),
30034 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
30035 ARM_ARCH_NONE,
30036 FPU_NONE),
30037 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
30038 ARM_ARCH_NONE,
30039 FPU_NONE),
30040 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
30041 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30042 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30043 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
30044 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30045 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30046 /* ??? XSCALE is really an architecture. */
30047 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
30048 ARM_ARCH_NONE,
30049 FPU_ARCH_VFP_V2),
30050
30051 /* ??? iwmmxt is not a processor. */
30052 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
30053 ARM_ARCH_NONE,
30054 FPU_ARCH_VFP_V2),
30055 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
30056 ARM_ARCH_NONE,
30057 FPU_ARCH_VFP_V2),
30058 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
30059 ARM_ARCH_NONE,
30060 FPU_ARCH_VFP_V2),
30061
30062 /* Maverick. */
30063 ARM_CPU_OPT ("ep9312", "ARM920T",
30064 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
30065 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
30066
30067 /* Marvell processors. */
30068 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
30069 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30070 FPU_ARCH_VFP_V3D16),
30071 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
30072 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30073 FPU_ARCH_NEON_VFP_V4),
30074
30075 /* APM X-Gene family. */
30076 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
30077 ARM_ARCH_NONE,
30078 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30079 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
30080 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30081 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30082
30083 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
30084 };
30085 #undef ARM_CPU_OPT
30086
30087 struct arm_ext_table
30088 {
30089 const char * name;
30090 size_t name_len;
30091 const arm_feature_set merge;
30092 const arm_feature_set clear;
30093 };
30094
30095 struct arm_arch_option_table
30096 {
30097 const char * name;
30098 size_t name_len;
30099 const arm_feature_set value;
30100 const arm_feature_set default_fpu;
30101 const struct arm_ext_table * ext_table;
30102 };
30103
30104 /* Used to add support for +E and +noE extension. */
30105 #define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
30106 /* Used to add support for a +E extension. */
30107 #define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
30108 /* Used to add support for a +noE extension. */
30109 #define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
30110
30111 #define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
30112 ~0 & ~FPU_ENDIAN_PURE)
30113
30114 static const struct arm_ext_table armv5te_ext_table[] =
30115 {
30116 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
30117 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30118 };
30119
30120 static const struct arm_ext_table armv7_ext_table[] =
30121 {
30122 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30123 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30124 };
30125
30126 static const struct arm_ext_table armv7ve_ext_table[] =
30127 {
30128 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
30129 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
30130 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
30131 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30132 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
30133 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
30134 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
30135
30136 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
30137 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
30138
30139 /* Aliases for +simd. */
30140 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
30141
30142 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30143 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30144 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
30145
30146 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30147 };
30148
30149 static const struct arm_ext_table armv7a_ext_table[] =
30150 {
30151 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30152 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
30153 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
30154 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30155 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
30156 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
30157 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
30158
30159 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
30160 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
30161
30162 /* Aliases for +simd. */
30163 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30164 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30165
30166 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
30167 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
30168
30169 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
30170 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
30171 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30172 };
30173
30174 static const struct arm_ext_table armv7r_ext_table[] =
30175 {
30176 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
30177 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
30178 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30179 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
30180 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
30181 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30182 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30183 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
30184 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30185 };
30186
30187 static const struct arm_ext_table armv7em_ext_table[] =
30188 {
30189 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
30190 /* Alias for +fp, used to be known as fpv4-sp-d16. */
30191 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
30192 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
30193 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
30194 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
30195 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30196 };
30197
30198 static const struct arm_ext_table armv8a_ext_table[] =
30199 {
30200 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30201 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30202 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30203 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30204
30205 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30206 should use the +simd option to turn on FP. */
30207 ARM_REMOVE ("fp", ALL_FP),
30208 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30209 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30210 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30211 };
30212
30213
30214 static const struct arm_ext_table armv81a_ext_table[] =
30215 {
30216 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
30217 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
30218 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30219
30220 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30221 should use the +simd option to turn on FP. */
30222 ARM_REMOVE ("fp", ALL_FP),
30223 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30224 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30225 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30226 };
30227
30228 static const struct arm_ext_table armv82a_ext_table[] =
30229 {
30230 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
30231 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
30232 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
30233 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
30234 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30235 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30236
30237 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30238 should use the +simd option to turn on FP. */
30239 ARM_REMOVE ("fp", ALL_FP),
30240 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30241 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30242 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30243 };
30244
30245 static const struct arm_ext_table armv84a_ext_table[] =
30246 {
30247 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30248 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
30249 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
30250 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30251
30252 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30253 should use the +simd option to turn on FP. */
30254 ARM_REMOVE ("fp", ALL_FP),
30255 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30256 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30257 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30258 };
30259
30260 static const struct arm_ext_table armv85a_ext_table[] =
30261 {
30262 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30263 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
30264 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
30265 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30266
30267 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30268 should use the +simd option to turn on FP. */
30269 ARM_REMOVE ("fp", ALL_FP),
30270 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30271 };
30272
30273 static const struct arm_ext_table armv8m_main_ext_table[] =
30274 {
30275 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30276 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30277 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
30278 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
30279 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30280 };
30281
30282 static const struct arm_ext_table armv8_1m_main_ext_table[] =
30283 {
30284 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30285 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30286 ARM_EXT ("fp",
30287 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30288 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
30289 ALL_FP),
30290 ARM_ADD ("fp.dp",
30291 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30292 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
30293 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
30294 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
30295 ARM_ADD ("mve.fp",
30296 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30297 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
30298 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
30299 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30300 };
30301
30302 static const struct arm_ext_table armv8r_ext_table[] =
30303 {
30304 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30305 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30306 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30307 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30308 ARM_REMOVE ("fp", ALL_FP),
30309 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
30310 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30311 };
30312
30313 /* This list should, at a minimum, contain all the architecture names
30314 recognized by GCC. */
30315 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
30316 #define ARM_ARCH_OPT2(N, V, DF, ext) \
30317 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
30318
30319 static const struct arm_arch_option_table arm_archs[] =
30320 {
30321 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
30322 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
30323 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
30324 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
30325 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
30326 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
30327 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
30328 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
30329 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
30330 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
30331 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
30332 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
30333 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
30334 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
30335 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
30336 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
30337 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
30338 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30339 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30340 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
30341 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
30342 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
30343 kept to preserve existing behaviour. */
30344 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30345 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30346 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
30347 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
30348 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
30349 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
30350 kept to preserve existing behaviour. */
30351 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
30352 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
30353 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
30354 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
30355 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
30356 /* The official spelling of the ARMv7 profile variants is the dashed form.
30357 Accept the non-dashed form for compatibility with old toolchains. */
30358 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30359 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
30360 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
30361 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
30362 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30363 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
30364 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
30365 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
30366 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
30367 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
30368 armv8m_main),
30369 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
30370 armv8_1m_main),
30371 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
30372 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
30373 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
30374 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
30375 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
30376 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
30377 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
30378 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
30379 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
30380 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
30381 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
30382 };
30383 #undef ARM_ARCH_OPT
30384
30385 /* ISA extensions in the co-processor and main instruction set space. */
30386
30387 struct arm_option_extension_value_table
30388 {
30389 const char * name;
30390 size_t name_len;
30391 const arm_feature_set merge_value;
30392 const arm_feature_set clear_value;
30393 /* List of architectures for which an extension is available. ARM_ARCH_NONE
30394 indicates that an extension is available for all architectures while
30395 ARM_ANY marks an empty entry. */
30396 const arm_feature_set allowed_archs[2];
30397 };
30398
30399 /* The following table must be in alphabetical order with a NULL last entry. */
30400
30401 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
30402 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
30403
30404 /* DEPRECATED: Refrain from using this table to add any new extensions, instead
30405 use the context sensitive approach using arm_ext_table's. */
30406 static const struct arm_option_extension_value_table arm_extensions[] =
30407 {
30408 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30409 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30410 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30411 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
30412 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30413 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
30414 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
30415 ARM_ARCH_V8_2A),
30416 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30417 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30418 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
30419 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
30420 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30421 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30422 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30423 ARM_ARCH_V8_2A),
30424 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30425 | ARM_EXT2_FP16_FML),
30426 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30427 | ARM_EXT2_FP16_FML),
30428 ARM_ARCH_V8_2A),
30429 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30430 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30431 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30432 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
30433 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
30434 Thumb divide instruction. Due to this having the same name as the
30435 previous entry, this will be ignored when doing command-line parsing and
30436 only considered by build attribute selection code. */
30437 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30438 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30439 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
30440 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
30441 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
30442 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
30443 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
30444 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
30445 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
30446 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
30447 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
30448 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30449 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
30450 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30451 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30452 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
30453 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
30454 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
30455 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
30456 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30457 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30458 ARM_ARCH_V8A),
30459 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
30460 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
30461 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
30462 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
30463 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
30464 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
30465 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30466 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30467 ARM_ARCH_V8A),
30468 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
30469 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
30470 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
30471 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
30472 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
30473 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
30474 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30475 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
30476 | ARM_EXT_DIV),
30477 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
30478 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
30479 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
30480 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
30481 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
30482 };
30483 #undef ARM_EXT_OPT
30484
30485 /* ISA floating-point and Advanced SIMD extensions. */
30486 struct arm_option_fpu_value_table
30487 {
30488 const char * name;
30489 const arm_feature_set value;
30490 };
30491
30492 /* This list should, at a minimum, contain all the fpu names
30493 recognized by GCC. */
30494 static const struct arm_option_fpu_value_table arm_fpus[] =
30495 {
30496 {"softfpa", FPU_NONE},
30497 {"fpe", FPU_ARCH_FPE},
30498 {"fpe2", FPU_ARCH_FPE},
30499 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
30500 {"fpa", FPU_ARCH_FPA},
30501 {"fpa10", FPU_ARCH_FPA},
30502 {"fpa11", FPU_ARCH_FPA},
30503 {"arm7500fe", FPU_ARCH_FPA},
30504 {"softvfp", FPU_ARCH_VFP},
30505 {"softvfp+vfp", FPU_ARCH_VFP_V2},
30506 {"vfp", FPU_ARCH_VFP_V2},
30507 {"vfp9", FPU_ARCH_VFP_V2},
30508 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
30509 {"vfp10", FPU_ARCH_VFP_V2},
30510 {"vfp10-r0", FPU_ARCH_VFP_V1},
30511 {"vfpxd", FPU_ARCH_VFP_V1xD},
30512 {"vfpv2", FPU_ARCH_VFP_V2},
30513 {"vfpv3", FPU_ARCH_VFP_V3},
30514 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
30515 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
30516 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
30517 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
30518 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
30519 {"arm1020t", FPU_ARCH_VFP_V1},
30520 {"arm1020e", FPU_ARCH_VFP_V2},
30521 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
30522 {"arm1136jf-s", FPU_ARCH_VFP_V2},
30523 {"maverick", FPU_ARCH_MAVERICK},
30524 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
30525 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
30526 {"neon-fp16", FPU_ARCH_NEON_FP16},
30527 {"vfpv4", FPU_ARCH_VFP_V4},
30528 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
30529 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
30530 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
30531 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
30532 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
30533 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
30534 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
30535 {"crypto-neon-fp-armv8",
30536 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
30537 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
30538 {"crypto-neon-fp-armv8.1",
30539 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
30540 {NULL, ARM_ARCH_NONE}
30541 };
30542
30543 struct arm_option_value_table
30544 {
30545 const char *name;
30546 long value;
30547 };
30548
30549 static const struct arm_option_value_table arm_float_abis[] =
30550 {
30551 {"hard", ARM_FLOAT_ABI_HARD},
30552 {"softfp", ARM_FLOAT_ABI_SOFTFP},
30553 {"soft", ARM_FLOAT_ABI_SOFT},
30554 {NULL, 0}
30555 };
30556
30557 #ifdef OBJ_ELF
30558 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
30559 static const struct arm_option_value_table arm_eabis[] =
30560 {
30561 {"gnu", EF_ARM_EABI_UNKNOWN},
30562 {"4", EF_ARM_EABI_VER4},
30563 {"5", EF_ARM_EABI_VER5},
30564 {NULL, 0}
30565 };
30566 #endif
30567
30568 struct arm_long_option_table
30569 {
30570 const char * option; /* Substring to match. */
30571 const char * help; /* Help information. */
30572 int (* func) (const char * subopt); /* Function to decode sub-option. */
30573 const char * deprecated; /* If non-null, print this message. */
30574 };
30575
30576 static bfd_boolean
30577 arm_parse_extension (const char *str, const arm_feature_set *opt_set,
30578 arm_feature_set *ext_set,
30579 const struct arm_ext_table *ext_table)
30580 {
30581 /* We insist on extensions being specified in alphabetical order, and with
30582 extensions being added before being removed. We achieve this by having
30583 the global ARM_EXTENSIONS table in alphabetical order, and using the
30584 ADDING_VALUE variable to indicate whether we are adding an extension (1)
30585 or removing it (0) and only allowing it to change in the order
30586 -1 -> 1 -> 0. */
30587 const struct arm_option_extension_value_table * opt = NULL;
30588 const arm_feature_set arm_any = ARM_ANY;
30589 int adding_value = -1;
30590
30591 while (str != NULL && *str != 0)
30592 {
30593 const char *ext;
30594 size_t len;
30595
30596 if (*str != '+')
30597 {
30598 as_bad (_("invalid architectural extension"));
30599 return FALSE;
30600 }
30601
30602 str++;
30603 ext = strchr (str, '+');
30604
30605 if (ext != NULL)
30606 len = ext - str;
30607 else
30608 len = strlen (str);
30609
30610 if (len >= 2 && strncmp (str, "no", 2) == 0)
30611 {
30612 if (adding_value != 0)
30613 {
30614 adding_value = 0;
30615 opt = arm_extensions;
30616 }
30617
30618 len -= 2;
30619 str += 2;
30620 }
30621 else if (len > 0)
30622 {
30623 if (adding_value == -1)
30624 {
30625 adding_value = 1;
30626 opt = arm_extensions;
30627 }
30628 else if (adding_value != 1)
30629 {
30630 as_bad (_("must specify extensions to add before specifying "
30631 "those to remove"));
30632 return FALSE;
30633 }
30634 }
30635
30636 if (len == 0)
30637 {
30638 as_bad (_("missing architectural extension"));
30639 return FALSE;
30640 }
30641
30642 gas_assert (adding_value != -1);
30643 gas_assert (opt != NULL);
30644
30645 if (ext_table != NULL)
30646 {
30647 const struct arm_ext_table * ext_opt = ext_table;
30648 bfd_boolean found = FALSE;
30649 for (; ext_opt->name != NULL; ext_opt++)
30650 if (ext_opt->name_len == len
30651 && strncmp (ext_opt->name, str, len) == 0)
30652 {
30653 if (adding_value)
30654 {
30655 if (ARM_FEATURE_ZERO (ext_opt->merge))
30656 /* TODO: Option not supported. When we remove the
30657 legacy table this case should error out. */
30658 continue;
30659
30660 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
30661 }
30662 else
30663 {
30664 if (ARM_FEATURE_ZERO (ext_opt->clear))
30665 /* TODO: Option not supported. When we remove the
30666 legacy table this case should error out. */
30667 continue;
30668 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
30669 }
30670 found = TRUE;
30671 break;
30672 }
30673 if (found)
30674 {
30675 str = ext;
30676 continue;
30677 }
30678 }
30679
30680 /* Scan over the options table trying to find an exact match. */
30681 for (; opt->name != NULL; opt++)
30682 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30683 {
30684 int i, nb_allowed_archs =
30685 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
30686 /* Check we can apply the extension to this architecture. */
30687 for (i = 0; i < nb_allowed_archs; i++)
30688 {
30689 /* Empty entry. */
30690 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
30691 continue;
30692 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
30693 break;
30694 }
30695 if (i == nb_allowed_archs)
30696 {
30697 as_bad (_("extension does not apply to the base architecture"));
30698 return FALSE;
30699 }
30700
30701 /* Add or remove the extension. */
30702 if (adding_value)
30703 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
30704 else
30705 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
30706
30707 /* Allowing Thumb division instructions for ARMv7 in autodetection
30708 rely on this break so that duplicate extensions (extensions
30709 with the same name as a previous extension in the list) are not
30710 considered for command-line parsing. */
30711 break;
30712 }
30713
30714 if (opt->name == NULL)
30715 {
30716 /* Did we fail to find an extension because it wasn't specified in
30717 alphabetical order, or because it does not exist? */
30718
30719 for (opt = arm_extensions; opt->name != NULL; opt++)
30720 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30721 break;
30722
30723 if (opt->name == NULL)
30724 as_bad (_("unknown architectural extension `%s'"), str);
30725 else
30726 as_bad (_("architectural extensions must be specified in "
30727 "alphabetical order"));
30728
30729 return FALSE;
30730 }
30731 else
30732 {
30733 /* We should skip the extension we've just matched the next time
30734 round. */
30735 opt++;
30736 }
30737
30738 str = ext;
30739 };
30740
30741 return TRUE;
30742 }
30743
30744 static bfd_boolean
30745 arm_parse_cpu (const char *str)
30746 {
30747 const struct arm_cpu_option_table *opt;
30748 const char *ext = strchr (str, '+');
30749 size_t len;
30750
30751 if (ext != NULL)
30752 len = ext - str;
30753 else
30754 len = strlen (str);
30755
30756 if (len == 0)
30757 {
30758 as_bad (_("missing cpu name `%s'"), str);
30759 return FALSE;
30760 }
30761
30762 for (opt = arm_cpus; opt->name != NULL; opt++)
30763 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30764 {
30765 mcpu_cpu_opt = &opt->value;
30766 if (mcpu_ext_opt == NULL)
30767 mcpu_ext_opt = XNEW (arm_feature_set);
30768 *mcpu_ext_opt = opt->ext;
30769 mcpu_fpu_opt = &opt->default_fpu;
30770 if (opt->canonical_name)
30771 {
30772 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
30773 strcpy (selected_cpu_name, opt->canonical_name);
30774 }
30775 else
30776 {
30777 size_t i;
30778
30779 if (len >= sizeof selected_cpu_name)
30780 len = (sizeof selected_cpu_name) - 1;
30781
30782 for (i = 0; i < len; i++)
30783 selected_cpu_name[i] = TOUPPER (opt->name[i]);
30784 selected_cpu_name[i] = 0;
30785 }
30786
30787 if (ext != NULL)
30788 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
30789
30790 return TRUE;
30791 }
30792
30793 as_bad (_("unknown cpu `%s'"), str);
30794 return FALSE;
30795 }
30796
30797 static bfd_boolean
30798 arm_parse_arch (const char *str)
30799 {
30800 const struct arm_arch_option_table *opt;
30801 const char *ext = strchr (str, '+');
30802 size_t len;
30803
30804 if (ext != NULL)
30805 len = ext - str;
30806 else
30807 len = strlen (str);
30808
30809 if (len == 0)
30810 {
30811 as_bad (_("missing architecture name `%s'"), str);
30812 return FALSE;
30813 }
30814
30815 for (opt = arm_archs; opt->name != NULL; opt++)
30816 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30817 {
30818 march_cpu_opt = &opt->value;
30819 if (march_ext_opt == NULL)
30820 march_ext_opt = XNEW (arm_feature_set);
30821 *march_ext_opt = arm_arch_none;
30822 march_fpu_opt = &opt->default_fpu;
30823 strcpy (selected_cpu_name, opt->name);
30824
30825 if (ext != NULL)
30826 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
30827 opt->ext_table);
30828
30829 return TRUE;
30830 }
30831
30832 as_bad (_("unknown architecture `%s'\n"), str);
30833 return FALSE;
30834 }
30835
30836 static bfd_boolean
30837 arm_parse_fpu (const char * str)
30838 {
30839 const struct arm_option_fpu_value_table * opt;
30840
30841 for (opt = arm_fpus; opt->name != NULL; opt++)
30842 if (streq (opt->name, str))
30843 {
30844 mfpu_opt = &opt->value;
30845 return TRUE;
30846 }
30847
30848 as_bad (_("unknown floating point format `%s'\n"), str);
30849 return FALSE;
30850 }
30851
30852 static bfd_boolean
30853 arm_parse_float_abi (const char * str)
30854 {
30855 const struct arm_option_value_table * opt;
30856
30857 for (opt = arm_float_abis; opt->name != NULL; opt++)
30858 if (streq (opt->name, str))
30859 {
30860 mfloat_abi_opt = opt->value;
30861 return TRUE;
30862 }
30863
30864 as_bad (_("unknown floating point abi `%s'\n"), str);
30865 return FALSE;
30866 }
30867
30868 #ifdef OBJ_ELF
30869 static bfd_boolean
30870 arm_parse_eabi (const char * str)
30871 {
30872 const struct arm_option_value_table *opt;
30873
30874 for (opt = arm_eabis; opt->name != NULL; opt++)
30875 if (streq (opt->name, str))
30876 {
30877 meabi_flags = opt->value;
30878 return TRUE;
30879 }
30880 as_bad (_("unknown EABI `%s'\n"), str);
30881 return FALSE;
30882 }
30883 #endif
30884
30885 static bfd_boolean
30886 arm_parse_it_mode (const char * str)
30887 {
30888 bfd_boolean ret = TRUE;
30889
30890 if (streq ("arm", str))
30891 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
30892 else if (streq ("thumb", str))
30893 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
30894 else if (streq ("always", str))
30895 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
30896 else if (streq ("never", str))
30897 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
30898 else
30899 {
30900 as_bad (_("unknown implicit IT mode `%s', should be "\
30901 "arm, thumb, always, or never."), str);
30902 ret = FALSE;
30903 }
30904
30905 return ret;
30906 }
30907
30908 static bfd_boolean
30909 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
30910 {
30911 codecomposer_syntax = TRUE;
30912 arm_comment_chars[0] = ';';
30913 arm_line_separator_chars[0] = 0;
30914 return TRUE;
30915 }
30916
30917 struct arm_long_option_table arm_long_opts[] =
30918 {
30919 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
30920 arm_parse_cpu, NULL},
30921 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
30922 arm_parse_arch, NULL},
30923 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
30924 arm_parse_fpu, NULL},
30925 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
30926 arm_parse_float_abi, NULL},
30927 #ifdef OBJ_ELF
30928 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
30929 arm_parse_eabi, NULL},
30930 #endif
30931 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
30932 arm_parse_it_mode, NULL},
30933 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
30934 arm_ccs_mode, NULL},
30935 {NULL, NULL, 0, NULL}
30936 };
30937
30938 int
30939 md_parse_option (int c, const char * arg)
30940 {
30941 struct arm_option_table *opt;
30942 const struct arm_legacy_option_table *fopt;
30943 struct arm_long_option_table *lopt;
30944
30945 switch (c)
30946 {
30947 #ifdef OPTION_EB
30948 case OPTION_EB:
30949 target_big_endian = 1;
30950 break;
30951 #endif
30952
30953 #ifdef OPTION_EL
30954 case OPTION_EL:
30955 target_big_endian = 0;
30956 break;
30957 #endif
30958
30959 case OPTION_FIX_V4BX:
30960 fix_v4bx = TRUE;
30961 break;
30962
30963 #ifdef OBJ_ELF
30964 case OPTION_FDPIC:
30965 arm_fdpic = TRUE;
30966 break;
30967 #endif /* OBJ_ELF */
30968
30969 case 'a':
30970 /* Listing option. Just ignore these, we don't support additional
30971 ones. */
30972 return 0;
30973
30974 default:
30975 for (opt = arm_opts; opt->option != NULL; opt++)
30976 {
30977 if (c == opt->option[0]
30978 && ((arg == NULL && opt->option[1] == 0)
30979 || streq (arg, opt->option + 1)))
30980 {
30981 /* If the option is deprecated, tell the user. */
30982 if (warn_on_deprecated && opt->deprecated != NULL)
30983 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30984 arg ? arg : "", _(opt->deprecated));
30985
30986 if (opt->var != NULL)
30987 *opt->var = opt->value;
30988
30989 return 1;
30990 }
30991 }
30992
30993 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
30994 {
30995 if (c == fopt->option[0]
30996 && ((arg == NULL && fopt->option[1] == 0)
30997 || streq (arg, fopt->option + 1)))
30998 {
30999 /* If the option is deprecated, tell the user. */
31000 if (warn_on_deprecated && fopt->deprecated != NULL)
31001 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
31002 arg ? arg : "", _(fopt->deprecated));
31003
31004 if (fopt->var != NULL)
31005 *fopt->var = &fopt->value;
31006
31007 return 1;
31008 }
31009 }
31010
31011 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
31012 {
31013 /* These options are expected to have an argument. */
31014 if (c == lopt->option[0]
31015 && arg != NULL
31016 && strncmp (arg, lopt->option + 1,
31017 strlen (lopt->option + 1)) == 0)
31018 {
31019 /* If the option is deprecated, tell the user. */
31020 if (warn_on_deprecated && lopt->deprecated != NULL)
31021 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
31022 _(lopt->deprecated));
31023
31024 /* Call the sup-option parser. */
31025 return lopt->func (arg + strlen (lopt->option) - 1);
31026 }
31027 }
31028
31029 return 0;
31030 }
31031
31032 return 1;
31033 }
31034
31035 void
31036 md_show_usage (FILE * fp)
31037 {
31038 struct arm_option_table *opt;
31039 struct arm_long_option_table *lopt;
31040
31041 fprintf (fp, _(" ARM-specific assembler options:\n"));
31042
31043 for (opt = arm_opts; opt->option != NULL; opt++)
31044 if (opt->help != NULL)
31045 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
31046
31047 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
31048 if (lopt->help != NULL)
31049 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
31050
31051 #ifdef OPTION_EB
31052 fprintf (fp, _("\
31053 -EB assemble code for a big-endian cpu\n"));
31054 #endif
31055
31056 #ifdef OPTION_EL
31057 fprintf (fp, _("\
31058 -EL assemble code for a little-endian cpu\n"));
31059 #endif
31060
31061 fprintf (fp, _("\
31062 --fix-v4bx Allow BX in ARMv4 code\n"));
31063
31064 #ifdef OBJ_ELF
31065 fprintf (fp, _("\
31066 --fdpic generate an FDPIC object file\n"));
31067 #endif /* OBJ_ELF */
31068 }
31069
31070 #ifdef OBJ_ELF
31071
31072 typedef struct
31073 {
31074 int val;
31075 arm_feature_set flags;
31076 } cpu_arch_ver_table;
31077
31078 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
31079 chronologically for architectures, with an exception for ARMv6-M and
31080 ARMv6S-M due to legacy reasons. No new architecture should have a
31081 special case. This allows for build attribute selection results to be
31082 stable when new architectures are added. */
31083 static const cpu_arch_ver_table cpu_arch_ver[] =
31084 {
31085 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
31086 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
31087 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
31088 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
31089 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
31090 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
31091 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
31092 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
31093 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
31094 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
31095 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
31096 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
31097 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
31098 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
31099 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
31100 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
31101 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
31102 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
31103 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
31104 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
31105 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
31106 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
31107 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
31108 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
31109
31110 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
31111 always selected build attributes to match those of ARMv6-M
31112 (resp. ARMv6S-M). However, due to these architectures being a strict
31113 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
31114 would be selected when fully respecting chronology of architectures.
31115 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
31116 move them before ARMv7 architectures. */
31117 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
31118 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
31119
31120 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
31121 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
31122 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
31123 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
31124 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
31125 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
31126 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
31127 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
31128 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
31129 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
31130 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
31131 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
31132 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
31133 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
31134 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
31135 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
31136 {-1, ARM_ARCH_NONE}
31137 };
31138
31139 /* Set an attribute if it has not already been set by the user. */
31140
31141 static void
31142 aeabi_set_attribute_int (int tag, int value)
31143 {
31144 if (tag < 1
31145 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
31146 || !attributes_set_explicitly[tag])
31147 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
31148 }
31149
31150 static void
31151 aeabi_set_attribute_string (int tag, const char *value)
31152 {
31153 if (tag < 1
31154 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
31155 || !attributes_set_explicitly[tag])
31156 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
31157 }
31158
31159 /* Return whether features in the *NEEDED feature set are available via
31160 extensions for the architecture whose feature set is *ARCH_FSET. */
31161
31162 static bfd_boolean
31163 have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
31164 const arm_feature_set *needed)
31165 {
31166 int i, nb_allowed_archs;
31167 arm_feature_set ext_fset;
31168 const struct arm_option_extension_value_table *opt;
31169
31170 ext_fset = arm_arch_none;
31171 for (opt = arm_extensions; opt->name != NULL; opt++)
31172 {
31173 /* Extension does not provide any feature we need. */
31174 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
31175 continue;
31176
31177 nb_allowed_archs =
31178 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
31179 for (i = 0; i < nb_allowed_archs; i++)
31180 {
31181 /* Empty entry. */
31182 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
31183 break;
31184
31185 /* Extension is available, add it. */
31186 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
31187 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
31188 }
31189 }
31190
31191 /* Can we enable all features in *needed? */
31192 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
31193 }
31194
31195 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
31196 a given architecture feature set *ARCH_EXT_FSET including extension feature
31197 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
31198 - if true, check for an exact match of the architecture modulo extensions;
31199 - otherwise, select build attribute value of the first superset
31200 architecture released so that results remains stable when new architectures
31201 are added.
31202 For -march/-mcpu=all the build attribute value of the most featureful
31203 architecture is returned. Tag_CPU_arch_profile result is returned in
31204 PROFILE. */
31205
31206 static int
31207 get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
31208 const arm_feature_set *ext_fset,
31209 char *profile, int exact_match)
31210 {
31211 arm_feature_set arch_fset;
31212 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
31213
31214 /* Select most featureful architecture with all its extensions if building
31215 for -march=all as the feature sets used to set build attributes. */
31216 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
31217 {
31218 /* Force revisiting of decision for each new architecture. */
31219 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
31220 *profile = 'A';
31221 return TAG_CPU_ARCH_V8;
31222 }
31223
31224 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
31225
31226 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
31227 {
31228 arm_feature_set known_arch_fset;
31229
31230 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
31231 if (exact_match)
31232 {
31233 /* Base architecture match user-specified architecture and
31234 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
31235 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
31236 {
31237 p_ver_ret = p_ver;
31238 goto found;
31239 }
31240 /* Base architecture match user-specified architecture only
31241 (eg. ARMv6-M in the same case as above). Record it in case we
31242 find a match with above condition. */
31243 else if (p_ver_ret == NULL
31244 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
31245 p_ver_ret = p_ver;
31246 }
31247 else
31248 {
31249
31250 /* Architecture has all features wanted. */
31251 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
31252 {
31253 arm_feature_set added_fset;
31254
31255 /* Compute features added by this architecture over the one
31256 recorded in p_ver_ret. */
31257 if (p_ver_ret != NULL)
31258 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
31259 p_ver_ret->flags);
31260 /* First architecture that match incl. with extensions, or the
31261 only difference in features over the recorded match is
31262 features that were optional and are now mandatory. */
31263 if (p_ver_ret == NULL
31264 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
31265 {
31266 p_ver_ret = p_ver;
31267 goto found;
31268 }
31269 }
31270 else if (p_ver_ret == NULL)
31271 {
31272 arm_feature_set needed_ext_fset;
31273
31274 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
31275
31276 /* Architecture has all features needed when using some
31277 extensions. Record it and continue searching in case there
31278 exist an architecture providing all needed features without
31279 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
31280 OS extension). */
31281 if (have_ext_for_needed_feat_p (&known_arch_fset,
31282 &needed_ext_fset))
31283 p_ver_ret = p_ver;
31284 }
31285 }
31286 }
31287
31288 if (p_ver_ret == NULL)
31289 return -1;
31290
31291 found:
31292 /* Tag_CPU_arch_profile. */
31293 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
31294 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
31295 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
31296 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
31297 *profile = 'A';
31298 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
31299 *profile = 'R';
31300 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
31301 *profile = 'M';
31302 else
31303 *profile = '\0';
31304 return p_ver_ret->val;
31305 }
31306
31307 /* Set the public EABI object attributes. */
31308
31309 static void
31310 aeabi_set_public_attributes (void)
31311 {
31312 char profile = '\0';
31313 int arch = -1;
31314 int virt_sec = 0;
31315 int fp16_optional = 0;
31316 int skip_exact_match = 0;
31317 arm_feature_set flags, flags_arch, flags_ext;
31318
31319 /* Autodetection mode, choose the architecture based the instructions
31320 actually used. */
31321 if (no_cpu_selected ())
31322 {
31323 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
31324
31325 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
31326 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
31327
31328 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
31329 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
31330
31331 /* Code run during relaxation relies on selected_cpu being set. */
31332 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
31333 flags_ext = arm_arch_none;
31334 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
31335 selected_ext = flags_ext;
31336 selected_cpu = flags;
31337 }
31338 /* Otherwise, choose the architecture based on the capabilities of the
31339 requested cpu. */
31340 else
31341 {
31342 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
31343 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
31344 flags_ext = selected_ext;
31345 flags = selected_cpu;
31346 }
31347 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
31348
31349 /* Allow the user to override the reported architecture. */
31350 if (!ARM_FEATURE_ZERO (selected_object_arch))
31351 {
31352 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
31353 flags_ext = arm_arch_none;
31354 }
31355 else
31356 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
31357
31358 /* When this function is run again after relaxation has happened there is no
31359 way to determine whether an architecture or CPU was specified by the user:
31360 - selected_cpu is set above for relaxation to work;
31361 - march_cpu_opt is not set if only -mcpu or .cpu is used;
31362 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
31363 Therefore, if not in -march=all case we first try an exact match and fall
31364 back to autodetection. */
31365 if (!skip_exact_match)
31366 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
31367 if (arch == -1)
31368 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
31369 if (arch == -1)
31370 as_bad (_("no architecture contains all the instructions used\n"));
31371
31372 /* Tag_CPU_name. */
31373 if (selected_cpu_name[0])
31374 {
31375 char *q;
31376
31377 q = selected_cpu_name;
31378 if (strncmp (q, "armv", 4) == 0)
31379 {
31380 int i;
31381
31382 q += 4;
31383 for (i = 0; q[i]; i++)
31384 q[i] = TOUPPER (q[i]);
31385 }
31386 aeabi_set_attribute_string (Tag_CPU_name, q);
31387 }
31388
31389 /* Tag_CPU_arch. */
31390 aeabi_set_attribute_int (Tag_CPU_arch, arch);
31391
31392 /* Tag_CPU_arch_profile. */
31393 if (profile != '\0')
31394 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
31395
31396 /* Tag_DSP_extension. */
31397 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
31398 aeabi_set_attribute_int (Tag_DSP_extension, 1);
31399
31400 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
31401 /* Tag_ARM_ISA_use. */
31402 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
31403 || ARM_FEATURE_ZERO (flags_arch))
31404 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
31405
31406 /* Tag_THUMB_ISA_use. */
31407 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
31408 || ARM_FEATURE_ZERO (flags_arch))
31409 {
31410 int thumb_isa_use;
31411
31412 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
31413 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
31414 thumb_isa_use = 3;
31415 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
31416 thumb_isa_use = 2;
31417 else
31418 thumb_isa_use = 1;
31419 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
31420 }
31421
31422 /* Tag_VFP_arch. */
31423 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
31424 aeabi_set_attribute_int (Tag_VFP_arch,
31425 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31426 ? 7 : 8);
31427 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
31428 aeabi_set_attribute_int (Tag_VFP_arch,
31429 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31430 ? 5 : 6);
31431 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
31432 {
31433 fp16_optional = 1;
31434 aeabi_set_attribute_int (Tag_VFP_arch, 3);
31435 }
31436 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
31437 {
31438 aeabi_set_attribute_int (Tag_VFP_arch, 4);
31439 fp16_optional = 1;
31440 }
31441 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
31442 aeabi_set_attribute_int (Tag_VFP_arch, 2);
31443 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
31444 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
31445 aeabi_set_attribute_int (Tag_VFP_arch, 1);
31446
31447 /* Tag_ABI_HardFP_use. */
31448 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
31449 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
31450 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
31451
31452 /* Tag_WMMX_arch. */
31453 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
31454 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
31455 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
31456 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
31457
31458 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
31459 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
31460 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
31461 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
31462 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
31463 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
31464 {
31465 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
31466 {
31467 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
31468 }
31469 else
31470 {
31471 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
31472 fp16_optional = 1;
31473 }
31474 }
31475
31476 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
31477 aeabi_set_attribute_int (Tag_MVE_arch, 2);
31478 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
31479 aeabi_set_attribute_int (Tag_MVE_arch, 1);
31480
31481 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
31482 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
31483 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
31484
31485 /* Tag_DIV_use.
31486
31487 We set Tag_DIV_use to two when integer divide instructions have been used
31488 in ARM state, or when Thumb integer divide instructions have been used,
31489 but we have no architecture profile set, nor have we any ARM instructions.
31490
31491 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
31492 by the base architecture.
31493
31494 For new architectures we will have to check these tests. */
31495 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
31496 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
31497 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
31498 aeabi_set_attribute_int (Tag_DIV_use, 0);
31499 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
31500 || (profile == '\0'
31501 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
31502 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
31503 aeabi_set_attribute_int (Tag_DIV_use, 2);
31504
31505 /* Tag_MP_extension_use. */
31506 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
31507 aeabi_set_attribute_int (Tag_MPextension_use, 1);
31508
31509 /* Tag Virtualization_use. */
31510 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
31511 virt_sec |= 1;
31512 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
31513 virt_sec |= 2;
31514 if (virt_sec != 0)
31515 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
31516 }
31517
31518 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
31519 finished and free extension feature bits which will not be used anymore. */
31520
31521 void
31522 arm_md_post_relax (void)
31523 {
31524 aeabi_set_public_attributes ();
31525 XDELETE (mcpu_ext_opt);
31526 mcpu_ext_opt = NULL;
31527 XDELETE (march_ext_opt);
31528 march_ext_opt = NULL;
31529 }
31530
31531 /* Add the default contents for the .ARM.attributes section. */
31532
31533 void
31534 arm_md_end (void)
31535 {
31536 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
31537 return;
31538
31539 aeabi_set_public_attributes ();
31540 }
31541 #endif /* OBJ_ELF */
31542
31543 /* Parse a .cpu directive. */
31544
31545 static void
31546 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
31547 {
31548 const struct arm_cpu_option_table *opt;
31549 char *name;
31550 char saved_char;
31551
31552 name = input_line_pointer;
31553 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31554 input_line_pointer++;
31555 saved_char = *input_line_pointer;
31556 *input_line_pointer = 0;
31557
31558 /* Skip the first "all" entry. */
31559 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
31560 if (streq (opt->name, name))
31561 {
31562 selected_arch = opt->value;
31563 selected_ext = opt->ext;
31564 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
31565 if (opt->canonical_name)
31566 strcpy (selected_cpu_name, opt->canonical_name);
31567 else
31568 {
31569 int i;
31570 for (i = 0; opt->name[i]; i++)
31571 selected_cpu_name[i] = TOUPPER (opt->name[i]);
31572
31573 selected_cpu_name[i] = 0;
31574 }
31575 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31576
31577 *input_line_pointer = saved_char;
31578 demand_empty_rest_of_line ();
31579 return;
31580 }
31581 as_bad (_("unknown cpu `%s'"), name);
31582 *input_line_pointer = saved_char;
31583 ignore_rest_of_line ();
31584 }
31585
31586 /* Parse a .arch directive. */
31587
31588 static void
31589 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
31590 {
31591 const struct arm_arch_option_table *opt;
31592 char saved_char;
31593 char *name;
31594
31595 name = input_line_pointer;
31596 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31597 input_line_pointer++;
31598 saved_char = *input_line_pointer;
31599 *input_line_pointer = 0;
31600
31601 /* Skip the first "all" entry. */
31602 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31603 if (streq (opt->name, name))
31604 {
31605 selected_arch = opt->value;
31606 selected_ext = arm_arch_none;
31607 selected_cpu = selected_arch;
31608 strcpy (selected_cpu_name, opt->name);
31609 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31610 *input_line_pointer = saved_char;
31611 demand_empty_rest_of_line ();
31612 return;
31613 }
31614
31615 as_bad (_("unknown architecture `%s'\n"), name);
31616 *input_line_pointer = saved_char;
31617 ignore_rest_of_line ();
31618 }
31619
31620 /* Parse a .object_arch directive. */
31621
31622 static void
31623 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
31624 {
31625 const struct arm_arch_option_table *opt;
31626 char saved_char;
31627 char *name;
31628
31629 name = input_line_pointer;
31630 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31631 input_line_pointer++;
31632 saved_char = *input_line_pointer;
31633 *input_line_pointer = 0;
31634
31635 /* Skip the first "all" entry. */
31636 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31637 if (streq (opt->name, name))
31638 {
31639 selected_object_arch = opt->value;
31640 *input_line_pointer = saved_char;
31641 demand_empty_rest_of_line ();
31642 return;
31643 }
31644
31645 as_bad (_("unknown architecture `%s'\n"), name);
31646 *input_line_pointer = saved_char;
31647 ignore_rest_of_line ();
31648 }
31649
31650 /* Parse a .arch_extension directive. */
31651
31652 static void
31653 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
31654 {
31655 const struct arm_option_extension_value_table *opt;
31656 char saved_char;
31657 char *name;
31658 int adding_value = 1;
31659
31660 name = input_line_pointer;
31661 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31662 input_line_pointer++;
31663 saved_char = *input_line_pointer;
31664 *input_line_pointer = 0;
31665
31666 if (strlen (name) >= 2
31667 && strncmp (name, "no", 2) == 0)
31668 {
31669 adding_value = 0;
31670 name += 2;
31671 }
31672
31673 for (opt = arm_extensions; opt->name != NULL; opt++)
31674 if (streq (opt->name, name))
31675 {
31676 int i, nb_allowed_archs =
31677 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
31678 for (i = 0; i < nb_allowed_archs; i++)
31679 {
31680 /* Empty entry. */
31681 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
31682 continue;
31683 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
31684 break;
31685 }
31686
31687 if (i == nb_allowed_archs)
31688 {
31689 as_bad (_("architectural extension `%s' is not allowed for the "
31690 "current base architecture"), name);
31691 break;
31692 }
31693
31694 if (adding_value)
31695 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
31696 opt->merge_value);
31697 else
31698 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
31699
31700 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
31701 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31702 *input_line_pointer = saved_char;
31703 demand_empty_rest_of_line ();
31704 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
31705 on this return so that duplicate extensions (extensions with the
31706 same name as a previous extension in the list) are not considered
31707 for command-line parsing. */
31708 return;
31709 }
31710
31711 if (opt->name == NULL)
31712 as_bad (_("unknown architecture extension `%s'\n"), name);
31713
31714 *input_line_pointer = saved_char;
31715 ignore_rest_of_line ();
31716 }
31717
31718 /* Parse a .fpu directive. */
31719
31720 static void
31721 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
31722 {
31723 const struct arm_option_fpu_value_table *opt;
31724 char saved_char;
31725 char *name;
31726
31727 name = input_line_pointer;
31728 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31729 input_line_pointer++;
31730 saved_char = *input_line_pointer;
31731 *input_line_pointer = 0;
31732
31733 for (opt = arm_fpus; opt->name != NULL; opt++)
31734 if (streq (opt->name, name))
31735 {
31736 selected_fpu = opt->value;
31737 #ifndef CPU_DEFAULT
31738 if (no_cpu_selected ())
31739 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
31740 else
31741 #endif
31742 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31743 *input_line_pointer = saved_char;
31744 demand_empty_rest_of_line ();
31745 return;
31746 }
31747
31748 as_bad (_("unknown floating point format `%s'\n"), name);
31749 *input_line_pointer = saved_char;
31750 ignore_rest_of_line ();
31751 }
31752
31753 /* Copy symbol information. */
31754
31755 void
31756 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
31757 {
31758 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
31759 }
31760
31761 #ifdef OBJ_ELF
31762 /* Given a symbolic attribute NAME, return the proper integer value.
31763 Returns -1 if the attribute is not known. */
31764
31765 int
31766 arm_convert_symbolic_attribute (const char *name)
31767 {
31768 static const struct
31769 {
31770 const char * name;
31771 const int tag;
31772 }
31773 attribute_table[] =
31774 {
31775 /* When you modify this table you should
31776 also modify the list in doc/c-arm.texi. */
31777 #define T(tag) {#tag, tag}
31778 T (Tag_CPU_raw_name),
31779 T (Tag_CPU_name),
31780 T (Tag_CPU_arch),
31781 T (Tag_CPU_arch_profile),
31782 T (Tag_ARM_ISA_use),
31783 T (Tag_THUMB_ISA_use),
31784 T (Tag_FP_arch),
31785 T (Tag_VFP_arch),
31786 T (Tag_WMMX_arch),
31787 T (Tag_Advanced_SIMD_arch),
31788 T (Tag_PCS_config),
31789 T (Tag_ABI_PCS_R9_use),
31790 T (Tag_ABI_PCS_RW_data),
31791 T (Tag_ABI_PCS_RO_data),
31792 T (Tag_ABI_PCS_GOT_use),
31793 T (Tag_ABI_PCS_wchar_t),
31794 T (Tag_ABI_FP_rounding),
31795 T (Tag_ABI_FP_denormal),
31796 T (Tag_ABI_FP_exceptions),
31797 T (Tag_ABI_FP_user_exceptions),
31798 T (Tag_ABI_FP_number_model),
31799 T (Tag_ABI_align_needed),
31800 T (Tag_ABI_align8_needed),
31801 T (Tag_ABI_align_preserved),
31802 T (Tag_ABI_align8_preserved),
31803 T (Tag_ABI_enum_size),
31804 T (Tag_ABI_HardFP_use),
31805 T (Tag_ABI_VFP_args),
31806 T (Tag_ABI_WMMX_args),
31807 T (Tag_ABI_optimization_goals),
31808 T (Tag_ABI_FP_optimization_goals),
31809 T (Tag_compatibility),
31810 T (Tag_CPU_unaligned_access),
31811 T (Tag_FP_HP_extension),
31812 T (Tag_VFP_HP_extension),
31813 T (Tag_ABI_FP_16bit_format),
31814 T (Tag_MPextension_use),
31815 T (Tag_DIV_use),
31816 T (Tag_nodefaults),
31817 T (Tag_also_compatible_with),
31818 T (Tag_conformance),
31819 T (Tag_T2EE_use),
31820 T (Tag_Virtualization_use),
31821 T (Tag_DSP_extension),
31822 T (Tag_MVE_arch),
31823 /* We deliberately do not include Tag_MPextension_use_legacy. */
31824 #undef T
31825 };
31826 unsigned int i;
31827
31828 if (name == NULL)
31829 return -1;
31830
31831 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
31832 if (streq (name, attribute_table[i].name))
31833 return attribute_table[i].tag;
31834
31835 return -1;
31836 }
31837
31838 /* Apply sym value for relocations only in the case that they are for
31839 local symbols in the same segment as the fixup and you have the
31840 respective architectural feature for blx and simple switches. */
31841
31842 int
31843 arm_apply_sym_value (struct fix * fixP, segT this_seg)
31844 {
31845 if (fixP->fx_addsy
31846 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
31847 /* PR 17444: If the local symbol is in a different section then a reloc
31848 will always be generated for it, so applying the symbol value now
31849 will result in a double offset being stored in the relocation. */
31850 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
31851 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
31852 {
31853 switch (fixP->fx_r_type)
31854 {
31855 case BFD_RELOC_ARM_PCREL_BLX:
31856 case BFD_RELOC_THUMB_PCREL_BRANCH23:
31857 if (ARM_IS_FUNC (fixP->fx_addsy))
31858 return 1;
31859 break;
31860
31861 case BFD_RELOC_ARM_PCREL_CALL:
31862 case BFD_RELOC_THUMB_PCREL_BLX:
31863 if (THUMB_IS_FUNC (fixP->fx_addsy))
31864 return 1;
31865 break;
31866
31867 default:
31868 break;
31869 }
31870
31871 }
31872 return 0;
31873 }
31874 #endif /* OBJ_ELF */