[PATCH 17/57][Arm][GAS] Add support for MVE instructions: vfma and vfms
[binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35
36 #ifdef OBJ_ELF
37 #include "elf/arm.h"
38 #include "dw2gencfi.h"
39 #endif
40
41 #include "dwarf2dbg.h"
42
43 #ifdef OBJ_ELF
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
46
47 /* This structure holds the unwinding state. */
48
49 static struct
50 {
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
55 /* The segment containing the function. */
56 segT saved_seg;
57 subsegT saved_subseg;
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
60 int opcode_count;
61 int opcode_alloc;
62 /* The number of bytes pushed to the stack. */
63 offsetT frame_size;
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
72 /* Nonzero if an unwind_setfp directive has been seen. */
73 unsigned fp_used:1;
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored:1;
76 } unwind;
77
78 /* Whether --fdpic was given. */
79 static int arm_fdpic;
80
81 #endif /* OBJ_ELF */
82
83 /* Results from operand parsing worker functions. */
84
85 typedef enum
86 {
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90 } parse_operand_result;
91
92 enum arm_float_abi
93 {
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97 };
98
99 /* Types of processor to assemble for. */
100 #ifndef CPU_DEFAULT
101 /* The code that was here used to select a default CPU depending on compiler
102 pre-defines which were only present when doing native builds, thus
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
107 #endif
108
109 #ifndef FPU_DEFAULT
110 # ifdef TE_LINUX
111 # define FPU_DEFAULT FPU_ARCH_FPA
112 # elif defined (TE_NetBSD)
113 # ifdef OBJ_ELF
114 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115 # else
116 /* Legacy a.out format. */
117 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118 # endif
119 # elif defined (TE_VXWORKS)
120 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
121 # else
122 /* For backwards compatibility, default to FPA. */
123 # define FPU_DEFAULT FPU_ARCH_FPA
124 # endif
125 #endif /* ifndef FPU_DEFAULT */
126
127 #define streq(a, b) (strcmp (a, b) == 0)
128
129 /* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
132 static arm_feature_set cpu_variant;
133 /* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
135 static arm_feature_set arm_arch_used;
136 static arm_feature_set thumb_arch_used;
137
138 /* Flags stored in private area of BFD structure. */
139 static int uses_apcs_26 = FALSE;
140 static int atpcs = FALSE;
141 static int support_interwork = FALSE;
142 static int uses_apcs_float = FALSE;
143 static int pic_code = FALSE;
144 static int fix_v4bx = FALSE;
145 /* Warn on using deprecated features. */
146 static int warn_on_deprecated = TRUE;
147
148 /* Understand CodeComposer Studio assembly syntax. */
149 bfd_boolean codecomposer_syntax = FALSE;
150
151 /* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
154
155 /* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157 static const arm_feature_set *legacy_cpu = NULL;
158 static const arm_feature_set *legacy_fpu = NULL;
159
160 /* CPU, extension and FPU feature bits selected by -mcpu. */
161 static const arm_feature_set *mcpu_cpu_opt = NULL;
162 static arm_feature_set *mcpu_ext_opt = NULL;
163 static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165 /* CPU, extension and FPU feature bits selected by -march. */
166 static const arm_feature_set *march_cpu_opt = NULL;
167 static arm_feature_set *march_ext_opt = NULL;
168 static const arm_feature_set *march_fpu_opt = NULL;
169
170 /* Feature bits selected by -mfpu. */
171 static const arm_feature_set *mfpu_opt = NULL;
172
173 /* Constants for known architecture features. */
174 static const arm_feature_set fpu_default = FPU_DEFAULT;
175 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
176 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
177 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
179 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
181 #ifdef OBJ_ELF
182 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
183 #endif
184 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186 #ifdef CPU_DEFAULT
187 static const arm_feature_set cpu_default = CPU_DEFAULT;
188 #endif
189
190 static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
191 static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
192 static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193 static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194 static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195 static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196 static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197 static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
198 static const arm_feature_set arm_ext_v4t_5 =
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200 static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201 static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203 static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204 static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205 static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
207 /* Only for compatability of hint instructions. */
208 static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
210 static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212 static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214 static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216 static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218 static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219 static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220 static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221 static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
222 #ifdef OBJ_ELF
223 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
224 #endif
225 static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
226 static const arm_feature_set arm_ext_m =
227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
229 static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230 static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231 static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232 static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233 static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
234 static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
235 static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
236 static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
238 static const arm_feature_set arm_ext_v8_1m_main =
239 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
240 /* Instructions in ARMv8-M only found in M profile architectures. */
241 static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
243 static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
245 /* Instructions shared between ARMv8-A and ARMv8-M. */
246 static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
248 #ifdef OBJ_ELF
249 /* DSP instructions Tag_DSP_extension refers to. */
250 static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
252 #endif
253 static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
255 /* FP16 instructions. */
256 static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
258 static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
260 static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
262 static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
264 static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
266 static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
268
269 static const arm_feature_set arm_arch_any = ARM_ANY;
270 #ifdef OBJ_ELF
271 static const arm_feature_set fpu_any = FPU_ANY;
272 #endif
273 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
274 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
277 static const arm_feature_set arm_cext_iwmmxt2 =
278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
279 static const arm_feature_set arm_cext_iwmmxt =
280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
281 static const arm_feature_set arm_cext_xscale =
282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
283 static const arm_feature_set arm_cext_maverick =
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285 static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287 static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
289 static const arm_feature_set fpu_vfp_ext_v1xd =
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291 static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293 static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295 static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297 static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
299 static const arm_feature_set fpu_vfp_ext_d32 =
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301 static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
303 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
305 static const arm_feature_set mve_ext =
306 ARM_FEATURE_COPROC (FPU_MVE);
307 static const arm_feature_set mve_fp_ext =
308 ARM_FEATURE_COPROC (FPU_MVE_FP);
309 #ifdef OBJ_ELF
310 static const arm_feature_set fpu_vfp_fp16 =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
312 static const arm_feature_set fpu_neon_ext_fma =
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
314 #endif
315 static const arm_feature_set fpu_vfp_ext_fma =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
317 static const arm_feature_set fpu_vfp_ext_armv8 =
318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
319 static const arm_feature_set fpu_vfp_ext_armv8xd =
320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
321 static const arm_feature_set fpu_neon_ext_armv8 =
322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
323 static const arm_feature_set fpu_crypto_ext_armv8 =
324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
325 static const arm_feature_set crc_ext_armv8 =
326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
327 static const arm_feature_set fpu_neon_ext_v8_1 =
328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
329 static const arm_feature_set fpu_neon_ext_dotprod =
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
331
332 static int mfloat_abi_opt = -1;
333 /* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
334 directive. */
335 static arm_feature_set selected_arch = ARM_ARCH_NONE;
336 /* Extension feature bits selected by the last -mcpu/-march or .arch_extension
337 directive. */
338 static arm_feature_set selected_ext = ARM_ARCH_NONE;
339 /* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
341 directive. */
342 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
343 /* FPU feature bits selected by the last -mfpu or .fpu directive. */
344 static arm_feature_set selected_fpu = FPU_NONE;
345 /* Feature bits selected by the last .object_arch directive. */
346 static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
347 /* Must be long enough to hold any of the names in arm_cpus. */
348 static char selected_cpu_name[20];
349
350 extern FLONUM_TYPE generic_floating_point_number;
351
352 /* Return if no cpu was selected on command-line. */
353 static bfd_boolean
354 no_cpu_selected (void)
355 {
356 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
357 }
358
359 #ifdef OBJ_ELF
360 # ifdef EABI_DEFAULT
361 static int meabi_flags = EABI_DEFAULT;
362 # else
363 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
364 # endif
365
366 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
367
368 bfd_boolean
369 arm_is_eabi (void)
370 {
371 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
372 }
373 #endif
374
375 #ifdef OBJ_ELF
376 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
377 symbolS * GOT_symbol;
378 #endif
379
380 /* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
383 instructions. */
384 static int thumb_mode = 0;
385 /* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388 #define MODE_RECORDED (1 << 4)
389
390 /* Specifies the intrinsic IT insn behavior mode. */
391 enum implicit_it_mode
392 {
393 IMPLICIT_IT_MODE_NEVER = 0x00,
394 IMPLICIT_IT_MODE_ARM = 0x01,
395 IMPLICIT_IT_MODE_THUMB = 0x02,
396 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
397 };
398 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
399
400 /* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
402
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
407 there.)
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
410 machine code.
411
412 Important differences from the old Thumb mode:
413
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
422
423 static bfd_boolean unified_syntax = FALSE;
424
425 /* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429 const char arm_symbol_chars[] = "#[]{}";
430
431 enum neon_el_type
432 {
433 NT_invtype,
434 NT_untyped,
435 NT_integer,
436 NT_float,
437 NT_poly,
438 NT_signed,
439 NT_unsigned
440 };
441
442 struct neon_type_el
443 {
444 enum neon_el_type type;
445 unsigned size;
446 };
447
448 #define NEON_MAX_TYPE_ELS 4
449
450 struct neon_type
451 {
452 struct neon_type_el el[NEON_MAX_TYPE_ELS];
453 unsigned elems;
454 };
455
456 enum pred_instruction_type
457 {
458 OUTSIDE_PRED_INSN,
459 INSIDE_VPT_INSN,
460 INSIDE_IT_INSN,
461 INSIDE_IT_LAST_INSN,
462 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
463 if inside, should be the last one. */
464 NEUTRAL_IT_INSN, /* This could be either inside or outside,
465 i.e. BKPT and NOP. */
466 IT_INSN, /* The IT insn has been parsed. */
467 VPT_INSN, /* The VPT/VPST insn has been parsed. */
468 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
469 a predication code. */
470 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
471 };
472
473 /* The maximum number of operands we need. */
474 #define ARM_IT_MAX_OPERANDS 6
475 #define ARM_IT_MAX_RELOCS 3
476
477 struct arm_it
478 {
479 const char * error;
480 unsigned long instruction;
481 int size;
482 int size_req;
483 int cond;
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
486 appropriate. */
487 int uncond_value;
488 struct neon_type vectype;
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
491 int is_neon;
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
494 unsigned long relax;
495 struct
496 {
497 bfd_reloc_code_real_type type;
498 expressionS exp;
499 int pc_rel;
500 } relocs[ARM_IT_MAX_RELOCS];
501
502 enum pred_instruction_type pred_insn_type;
503
504 struct
505 {
506 unsigned reg;
507 signed int imm;
508 struct neon_type_el vectype;
509 unsigned present : 1; /* Operand present. */
510 unsigned isreg : 1; /* Operand was a register. */
511 unsigned immisreg : 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
513 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
514 0) not scalar,
515 1) Neon scalar,
516 2) MVE scalar. */
517 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
518 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
522 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
523 unsigned isquad : 1; /* Operand is SIMD quad register. */
524 unsigned issingle : 1; /* Operand is VFP single-precision register. */
525 unsigned iszr : 1; /* Operand is ZR register. */
526 unsigned hasreloc : 1; /* Operand has relocation suffix. */
527 unsigned writeback : 1; /* Operand has trailing ! */
528 unsigned preind : 1; /* Preindexed address. */
529 unsigned postind : 1; /* Postindexed address. */
530 unsigned negative : 1; /* Index register was negated. */
531 unsigned shifted : 1; /* Shift applied to operation. */
532 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
533 } operands[ARM_IT_MAX_OPERANDS];
534 };
535
536 static struct arm_it inst;
537
538 #define NUM_FLOAT_VALS 8
539
540 const char * fp_const[] =
541 {
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
543 };
544
545 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
546
547 #define FAIL (-1)
548 #define SUCCESS (0)
549
550 #define SUFF_S 1
551 #define SUFF_D 2
552 #define SUFF_E 3
553 #define SUFF_P 4
554
555 #define CP_T_X 0x00008000
556 #define CP_T_Y 0x00400000
557
558 #define CONDS_BIT 0x00100000
559 #define LOAD_BIT 0x00100000
560
561 #define DOUBLE_LOAD_FLAG 0x00000001
562
563 struct asm_cond
564 {
565 const char * template_name;
566 unsigned long value;
567 };
568
569 #define COND_ALWAYS 0xE
570
571 struct asm_psr
572 {
573 const char * template_name;
574 unsigned long field;
575 };
576
577 struct asm_barrier_opt
578 {
579 const char * template_name;
580 unsigned long value;
581 const arm_feature_set arch;
582 };
583
584 /* The bit that distinguishes CPSR and SPSR. */
585 #define SPSR_BIT (1 << 22)
586
587 /* The individual PSR flag bits. */
588 #define PSR_c (1 << 16)
589 #define PSR_x (1 << 17)
590 #define PSR_s (1 << 18)
591 #define PSR_f (1 << 19)
592
593 struct reloc_entry
594 {
595 const char * name;
596 bfd_reloc_code_real_type reloc;
597 };
598
599 enum vfp_reg_pos
600 {
601 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
602 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
603 };
604
605 enum vfp_ldstm_type
606 {
607 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
608 };
609
610 /* Bits for DEFINED field in neon_typed_alias. */
611 #define NTA_HASTYPE 1
612 #define NTA_HASINDEX 2
613
614 struct neon_typed_alias
615 {
616 unsigned char defined;
617 unsigned char index;
618 struct neon_type_el eltype;
619 };
620
621 /* ARM register categories. This includes coprocessor numbers and various
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
624 enum arm_reg_type
625 {
626 REG_TYPE_RN,
627 REG_TYPE_CP,
628 REG_TYPE_CN,
629 REG_TYPE_FN,
630 REG_TYPE_VFS,
631 REG_TYPE_VFD,
632 REG_TYPE_NQ,
633 REG_TYPE_VFSD,
634 REG_TYPE_NDQ,
635 REG_TYPE_NSD,
636 REG_TYPE_NSDQ,
637 REG_TYPE_VFC,
638 REG_TYPE_MVF,
639 REG_TYPE_MVD,
640 REG_TYPE_MVFX,
641 REG_TYPE_MVDX,
642 REG_TYPE_MVAX,
643 REG_TYPE_MQ,
644 REG_TYPE_DSPSC,
645 REG_TYPE_MMXWR,
646 REG_TYPE_MMXWC,
647 REG_TYPE_MMXWCG,
648 REG_TYPE_XSCALE,
649 REG_TYPE_RNB,
650 REG_TYPE_ZR
651 };
652
653 /* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
657 struct reg_entry
658 {
659 const char * name;
660 unsigned int number;
661 unsigned char type;
662 unsigned char builtin;
663 struct neon_typed_alias * neon;
664 };
665
666 /* Diagnostics used when we don't get a register of the expected type. */
667 const char * const reg_expected_msgs[] =
668 {
669 [REG_TYPE_RN] = N_("ARM register expected"),
670 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN] = N_("co-processor register expected"),
672 [REG_TYPE_FN] = N_("FPA register expected"),
673 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
680 " expected"),
681 [REG_TYPE_VFC] = N_("VFP system register expected"),
682 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
692 [REG_TYPE_MQ] = N_("MVE vector register expected"),
693 [REG_TYPE_RNB] = N_("")
694 };
695
696 /* Some well known registers that we refer to directly elsewhere. */
697 #define REG_R12 12
698 #define REG_SP 13
699 #define REG_LR 14
700 #define REG_PC 15
701
702 /* ARM instructions take 4bytes in the object file, Thumb instructions
703 take 2: */
704 #define INSN_SIZE 4
705
706 struct asm_opcode
707 {
708 /* Basic string to match. */
709 const char * template_name;
710
711 /* Parameters to instruction. */
712 unsigned int operands[8];
713
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag : 4;
716
717 /* Basic instruction code. */
718 unsigned int avalue;
719
720 /* Thumb-format instruction code. */
721 unsigned int tvalue;
722
723 /* Which architecture variant provides this instruction. */
724 const arm_feature_set * avariant;
725 const arm_feature_set * tvariant;
726
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode) (void);
729
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode) (void);
732
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred : 1;
735 };
736
737 /* Defines for various bits that we will want to toggle. */
738 #define INST_IMMEDIATE 0x02000000
739 #define OFFSET_REG 0x02000000
740 #define HWOFFSET_IMM 0x00400000
741 #define SHIFT_BY_REG 0x00000010
742 #define PRE_INDEX 0x01000000
743 #define INDEX_UP 0x00800000
744 #define WRITE_BACK 0x00200000
745 #define LDM_TYPE_2_OR_3 0x00400000
746 #define CPSI_MMOD 0x00020000
747
748 #define LITERAL_MASK 0xf000f000
749 #define OPCODE_MASK 0xfe1fffff
750 #define V4_STR_BIT 0x00000020
751 #define VLDR_VMOV_SAME 0x0040f000
752
753 #define T2_SUBS_PC_LR 0xf3de8f00
754
755 #define DATA_OP_SHIFT 21
756 #define SBIT_SHIFT 20
757
758 #define T2_OPCODE_MASK 0xfe1fffff
759 #define T2_DATA_OP_SHIFT 21
760 #define T2_SBIT_SHIFT 20
761
762 #define A_COND_MASK 0xf0000000
763 #define A_PUSH_POP_OP_MASK 0x0fff0000
764
765 /* Opcodes for pushing/poping registers to/from the stack. */
766 #define A1_OPCODE_PUSH 0x092d0000
767 #define A2_OPCODE_PUSH 0x052d0004
768 #define A2_OPCODE_POP 0x049d0004
769
770 /* Codes to distinguish the arithmetic instructions. */
771 #define OPCODE_AND 0
772 #define OPCODE_EOR 1
773 #define OPCODE_SUB 2
774 #define OPCODE_RSB 3
775 #define OPCODE_ADD 4
776 #define OPCODE_ADC 5
777 #define OPCODE_SBC 6
778 #define OPCODE_RSC 7
779 #define OPCODE_TST 8
780 #define OPCODE_TEQ 9
781 #define OPCODE_CMP 10
782 #define OPCODE_CMN 11
783 #define OPCODE_ORR 12
784 #define OPCODE_MOV 13
785 #define OPCODE_BIC 14
786 #define OPCODE_MVN 15
787
788 #define T2_OPCODE_AND 0
789 #define T2_OPCODE_BIC 1
790 #define T2_OPCODE_ORR 2
791 #define T2_OPCODE_ORN 3
792 #define T2_OPCODE_EOR 4
793 #define T2_OPCODE_ADD 8
794 #define T2_OPCODE_ADC 10
795 #define T2_OPCODE_SBC 11
796 #define T2_OPCODE_SUB 13
797 #define T2_OPCODE_RSB 14
798
799 #define T_OPCODE_MUL 0x4340
800 #define T_OPCODE_TST 0x4200
801 #define T_OPCODE_CMN 0x42c0
802 #define T_OPCODE_NEG 0x4240
803 #define T_OPCODE_MVN 0x43c0
804
805 #define T_OPCODE_ADD_R3 0x1800
806 #define T_OPCODE_SUB_R3 0x1a00
807 #define T_OPCODE_ADD_HI 0x4400
808 #define T_OPCODE_ADD_ST 0xb000
809 #define T_OPCODE_SUB_ST 0xb080
810 #define T_OPCODE_ADD_SP 0xa800
811 #define T_OPCODE_ADD_PC 0xa000
812 #define T_OPCODE_ADD_I8 0x3000
813 #define T_OPCODE_SUB_I8 0x3800
814 #define T_OPCODE_ADD_I3 0x1c00
815 #define T_OPCODE_SUB_I3 0x1e00
816
817 #define T_OPCODE_ASR_R 0x4100
818 #define T_OPCODE_LSL_R 0x4080
819 #define T_OPCODE_LSR_R 0x40c0
820 #define T_OPCODE_ROR_R 0x41c0
821 #define T_OPCODE_ASR_I 0x1000
822 #define T_OPCODE_LSL_I 0x0000
823 #define T_OPCODE_LSR_I 0x0800
824
825 #define T_OPCODE_MOV_I8 0x2000
826 #define T_OPCODE_CMP_I8 0x2800
827 #define T_OPCODE_CMP_LR 0x4280
828 #define T_OPCODE_MOV_HR 0x4600
829 #define T_OPCODE_CMP_HR 0x4500
830
831 #define T_OPCODE_LDR_PC 0x4800
832 #define T_OPCODE_LDR_SP 0x9800
833 #define T_OPCODE_STR_SP 0x9000
834 #define T_OPCODE_LDR_IW 0x6800
835 #define T_OPCODE_STR_IW 0x6000
836 #define T_OPCODE_LDR_IH 0x8800
837 #define T_OPCODE_STR_IH 0x8000
838 #define T_OPCODE_LDR_IB 0x7800
839 #define T_OPCODE_STR_IB 0x7000
840 #define T_OPCODE_LDR_RW 0x5800
841 #define T_OPCODE_STR_RW 0x5000
842 #define T_OPCODE_LDR_RH 0x5a00
843 #define T_OPCODE_STR_RH 0x5200
844 #define T_OPCODE_LDR_RB 0x5c00
845 #define T_OPCODE_STR_RB 0x5400
846
847 #define T_OPCODE_PUSH 0xb400
848 #define T_OPCODE_POP 0xbc00
849
850 #define T_OPCODE_BRANCH 0xe000
851
852 #define THUMB_SIZE 2 /* Size of thumb instruction. */
853 #define THUMB_PP_PC_LR 0x0100
854 #define THUMB_LOAD_BIT 0x0800
855 #define THUMB2_LOAD_BIT 0x00100000
856
857 #define BAD_SYNTAX _("syntax error")
858 #define BAD_ARGS _("bad arguments to instruction")
859 #define BAD_SP _("r13 not allowed here")
860 #define BAD_PC _("r15 not allowed here")
861 #define BAD_ODD _("Odd register not allowed here")
862 #define BAD_EVEN _("Even register not allowed here")
863 #define BAD_COND _("instruction cannot be conditional")
864 #define BAD_OVERLAP _("registers may not be the same")
865 #define BAD_HIREG _("lo register required")
866 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
867 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
868 #define BAD_BRANCH _("branch must be last instruction in IT block")
869 #define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
870 #define BAD_NOT_IT _("instruction not allowed in IT block")
871 #define BAD_NOT_VPT _("instruction missing MVE vector predication code")
872 #define BAD_FPU _("selected FPU does not support instruction")
873 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
874 #define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
876 #define BAD_IT_COND _("incorrect condition in IT block")
877 #define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
878 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
879 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
880 #define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882 #define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
884 #define BAD_RANGE _("branch out of range")
885 #define BAD_FP16 _("selected processor does not support fp16 instruction")
886 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
887 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
888 #define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
889 "block")
890 #define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
891 "block")
892 #define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
893 " operand")
894 #define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
895 " operand")
896 #define BAD_SIMD_TYPE _("bad type in SIMD instruction")
897 #define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900 #define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
902 #define BAD_EL_TYPE _("bad element type for instruction")
903 #define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
904
905 static struct hash_control * arm_ops_hsh;
906 static struct hash_control * arm_cond_hsh;
907 static struct hash_control * arm_vcond_hsh;
908 static struct hash_control * arm_shift_hsh;
909 static struct hash_control * arm_psr_hsh;
910 static struct hash_control * arm_v7m_psr_hsh;
911 static struct hash_control * arm_reg_hsh;
912 static struct hash_control * arm_reloc_hsh;
913 static struct hash_control * arm_barrier_opt_hsh;
914
915 /* Stuff needed to resolve the label ambiguity
916 As:
917 ...
918 label: <insn>
919 may differ from:
920 ...
921 label:
922 <insn> */
923
924 symbolS * last_label_seen;
925 static int label_is_thumb_function_name = FALSE;
926
927 /* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
929
930 #define MAX_LITERAL_POOL_SIZE 1024
931 typedef struct literal_pool
932 {
933 expressionS literals [MAX_LITERAL_POOL_SIZE];
934 unsigned int next_free_entry;
935 unsigned int id;
936 symbolS * symbol;
937 segT section;
938 subsegT sub_section;
939 #ifdef OBJ_ELF
940 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
941 #endif
942 struct literal_pool * next;
943 unsigned int alignment;
944 } literal_pool;
945
946 /* Pointer to a linked list of literal pools. */
947 literal_pool * list_of_pools = NULL;
948
949 typedef enum asmfunc_states
950 {
951 OUTSIDE_ASMFUNC,
952 WAITING_ASMFUNC_NAME,
953 WAITING_ENDASMFUNC
954 } asmfunc_states;
955
956 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
957
958 #ifdef OBJ_ELF
959 # define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
960 #else
961 static struct current_pred now_pred;
962 #endif
963
964 static inline int
965 now_pred_compatible (int cond)
966 {
967 return (cond & ~1) == (now_pred.cc & ~1);
968 }
969
970 static inline int
971 conditional_insn (void)
972 {
973 return inst.cond != COND_ALWAYS;
974 }
975
976 static int in_pred_block (void);
977
978 static int handle_pred_state (void);
979
980 static void force_automatic_it_block_close (void);
981
982 static void it_fsm_post_encode (void);
983
984 #define set_pred_insn_type(type) \
985 do \
986 { \
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
989 return; \
990 } \
991 while (0)
992
993 #define set_pred_insn_type_nonvoid(type, failret) \
994 do \
995 { \
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
998 return failret; \
999 } \
1000 while(0)
1001
1002 #define set_pred_insn_type_last() \
1003 do \
1004 { \
1005 if (inst.cond == COND_ALWAYS) \
1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
1007 else \
1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
1009 } \
1010 while (0)
1011
1012 /* Pure syntax. */
1013
1014 /* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
1016 char arm_comment_chars[] = "@";
1017
1018 /* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021 /* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024 /* Also note that comments like this one will always work. */
1025 const char line_comment_chars[] = "#";
1026
1027 char arm_line_separator_chars[] = ";";
1028
1029 /* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031 const char EXP_CHARS[] = "eE";
1032
1033 /* Chars that mean this number is a floating point constant. */
1034 /* As in 0f12.456 */
1035 /* or 0d1.2345e12 */
1036
1037 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
1038
1039 /* Prefix characters that indicate the start of an immediate
1040 value. */
1041 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
1042
1043 /* Separator character handling. */
1044
1045 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1046
1047 static inline int
1048 skip_past_char (char ** str, char c)
1049 {
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str);
1052
1053 if (**str == c)
1054 {
1055 (*str)++;
1056 return SUCCESS;
1057 }
1058 else
1059 return FAIL;
1060 }
1061
1062 #define skip_past_comma(str) skip_past_char (str, ',')
1063
1064 /* Arithmetic expressions (possibly involving symbols). */
1065
1066 /* Return TRUE if anything in the expression is a bignum. */
1067
1068 static bfd_boolean
1069 walk_no_bignums (symbolS * sp)
1070 {
1071 if (symbol_get_value_expression (sp)->X_op == O_big)
1072 return TRUE;
1073
1074 if (symbol_get_value_expression (sp)->X_add_symbol)
1075 {
1076 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1077 || (symbol_get_value_expression (sp)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
1079 }
1080
1081 return FALSE;
1082 }
1083
1084 static bfd_boolean in_my_get_expression = FALSE;
1085
1086 /* Third argument to my_get_expression. */
1087 #define GE_NO_PREFIX 0
1088 #define GE_IMM_PREFIX 1
1089 #define GE_OPT_PREFIX 2
1090 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092 #define GE_OPT_PREFIX_BIG 3
1093
1094 static int
1095 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
1096 {
1097 char * save_in;
1098
1099 /* In unified syntax, all prefixes are optional. */
1100 if (unified_syntax)
1101 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
1102 : GE_OPT_PREFIX;
1103
1104 switch (prefix_mode)
1105 {
1106 case GE_NO_PREFIX: break;
1107 case GE_IMM_PREFIX:
1108 if (!is_immediate_prefix (**str))
1109 {
1110 inst.error = _("immediate expression requires a # prefix");
1111 return FAIL;
1112 }
1113 (*str)++;
1114 break;
1115 case GE_OPT_PREFIX:
1116 case GE_OPT_PREFIX_BIG:
1117 if (is_immediate_prefix (**str))
1118 (*str)++;
1119 break;
1120 default:
1121 abort ();
1122 }
1123
1124 memset (ep, 0, sizeof (expressionS));
1125
1126 save_in = input_line_pointer;
1127 input_line_pointer = *str;
1128 in_my_get_expression = TRUE;
1129 expression (ep);
1130 in_my_get_expression = FALSE;
1131
1132 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1133 {
1134 /* We found a bad or missing expression in md_operand(). */
1135 *str = input_line_pointer;
1136 input_line_pointer = save_in;
1137 if (inst.error == NULL)
1138 inst.error = (ep->X_op == O_absent
1139 ? _("missing expression") :_("bad expression"));
1140 return 1;
1141 }
1142
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
1146 if (prefix_mode != GE_OPT_PREFIX_BIG
1147 && (ep->X_op == O_big
1148 || (ep->X_add_symbol
1149 && (walk_no_bignums (ep->X_add_symbol)
1150 || (ep->X_op_symbol
1151 && walk_no_bignums (ep->X_op_symbol))))))
1152 {
1153 inst.error = _("invalid constant");
1154 *str = input_line_pointer;
1155 input_line_pointer = save_in;
1156 return 1;
1157 }
1158
1159 *str = input_line_pointer;
1160 input_line_pointer = save_in;
1161 return SUCCESS;
1162 }
1163
1164 /* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
1168
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
1175
1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1177
1178 const char *
1179 md_atof (int type, char * litP, int * sizeP)
1180 {
1181 int prec;
1182 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1183 char *t;
1184 int i;
1185
1186 switch (type)
1187 {
1188 case 'f':
1189 case 'F':
1190 case 's':
1191 case 'S':
1192 prec = 2;
1193 break;
1194
1195 case 'd':
1196 case 'D':
1197 case 'r':
1198 case 'R':
1199 prec = 4;
1200 break;
1201
1202 case 'x':
1203 case 'X':
1204 prec = 5;
1205 break;
1206
1207 case 'p':
1208 case 'P':
1209 prec = 5;
1210 break;
1211
1212 default:
1213 *sizeP = 0;
1214 return _("Unrecognized or unsupported floating point constant");
1215 }
1216
1217 t = atof_ieee (input_line_pointer, type, words);
1218 if (t)
1219 input_line_pointer = t;
1220 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1221
1222 if (target_big_endian)
1223 {
1224 for (i = 0; i < prec; i++)
1225 {
1226 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1227 litP += sizeof (LITTLENUM_TYPE);
1228 }
1229 }
1230 else
1231 {
1232 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1233 for (i = prec - 1; i >= 0; i--)
1234 {
1235 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1236 litP += sizeof (LITTLENUM_TYPE);
1237 }
1238 else
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i = 0; i < prec; i += 2)
1242 {
1243 md_number_to_chars (litP, (valueT) words[i + 1],
1244 sizeof (LITTLENUM_TYPE));
1245 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1246 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1247 litP += 2 * sizeof (LITTLENUM_TYPE);
1248 }
1249 }
1250
1251 return NULL;
1252 }
1253
1254 /* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
1256
1257 void
1258 md_operand (expressionS * exp)
1259 {
1260 if (in_my_get_expression)
1261 exp->X_op = O_illegal;
1262 }
1263
1264 /* Immediate values. */
1265
1266 #ifdef OBJ_ELF
1267 /* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
1270
1271 static int
1272 immediate_for_directive (int *val)
1273 {
1274 expressionS exp;
1275 exp.X_op = O_illegal;
1276
1277 if (is_immediate_prefix (*input_line_pointer))
1278 {
1279 input_line_pointer++;
1280 expression (&exp);
1281 }
1282
1283 if (exp.X_op != O_constant)
1284 {
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1287 return FAIL;
1288 }
1289 *val = exp.X_add_number;
1290 return SUCCESS;
1291 }
1292 #endif
1293
1294 /* Register parsing. */
1295
1296 /* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1300
1301 static struct reg_entry *
1302 arm_reg_parse_multi (char **ccp)
1303 {
1304 char *start = *ccp;
1305 char *p;
1306 struct reg_entry *reg;
1307
1308 skip_whitespace (start);
1309
1310 #ifdef REGISTER_PREFIX
1311 if (*start != REGISTER_PREFIX)
1312 return NULL;
1313 start++;
1314 #endif
1315 #ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start == OPTIONAL_REGISTER_PREFIX)
1317 start++;
1318 #endif
1319
1320 p = start;
1321 if (!ISALPHA (*p) || !is_name_beginner (*p))
1322 return NULL;
1323
1324 do
1325 p++;
1326 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1327
1328 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1329
1330 if (!reg)
1331 return NULL;
1332
1333 *ccp = p;
1334 return reg;
1335 }
1336
1337 static int
1338 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1339 enum arm_reg_type type)
1340 {
1341 /* Alternative syntaxes are accepted for a few register classes. */
1342 switch (type)
1343 {
1344 case REG_TYPE_MVF:
1345 case REG_TYPE_MVD:
1346 case REG_TYPE_MVFX:
1347 case REG_TYPE_MVDX:
1348 /* Generic coprocessor register names are allowed for these. */
1349 if (reg && reg->type == REG_TYPE_CN)
1350 return reg->number;
1351 break;
1352
1353 case REG_TYPE_CP:
1354 /* For backward compatibility, a bare number is valid here. */
1355 {
1356 unsigned long processor = strtoul (start, ccp, 10);
1357 if (*ccp != start && processor <= 15)
1358 return processor;
1359 }
1360 /* Fall through. */
1361
1362 case REG_TYPE_MMXWC:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
1365 if (reg && reg->type == REG_TYPE_MMXWCG)
1366 return reg->number;
1367 break;
1368
1369 default:
1370 break;
1371 }
1372
1373 return FAIL;
1374 }
1375
1376 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1378
1379 static int
1380 arm_reg_parse (char **ccp, enum arm_reg_type type)
1381 {
1382 char *start = *ccp;
1383 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1384 int ret;
1385
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1388 return FAIL;
1389
1390 if (reg && reg->type == type)
1391 return reg->number;
1392
1393 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1394 return ret;
1395
1396 *ccp = start;
1397 return FAIL;
1398 }
1399
1400 /* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1402 properly. E.g.,
1403
1404 .i32.i32.s16
1405 .s32.f32
1406 .u16
1407
1408 Can all be legally parsed by this function.
1409
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1413
1414 static int
1415 parse_neon_type (struct neon_type *type, char **str)
1416 {
1417 char *ptr = *str;
1418
1419 if (type)
1420 type->elems = 0;
1421
1422 while (type->elems < NEON_MAX_TYPE_ELS)
1423 {
1424 enum neon_el_type thistype = NT_untyped;
1425 unsigned thissize = -1u;
1426
1427 if (*ptr != '.')
1428 break;
1429
1430 ptr++;
1431
1432 /* Just a size without an explicit type. */
1433 if (ISDIGIT (*ptr))
1434 goto parsesize;
1435
1436 switch (TOLOWER (*ptr))
1437 {
1438 case 'i': thistype = NT_integer; break;
1439 case 'f': thistype = NT_float; break;
1440 case 'p': thistype = NT_poly; break;
1441 case 's': thistype = NT_signed; break;
1442 case 'u': thistype = NT_unsigned; break;
1443 case 'd':
1444 thistype = NT_float;
1445 thissize = 64;
1446 ptr++;
1447 goto done;
1448 default:
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1450 return FAIL;
1451 }
1452
1453 ptr++;
1454
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype == NT_float && !ISDIGIT (*ptr))
1457 thissize = 32;
1458 else
1459 {
1460 parsesize:
1461 thissize = strtoul (ptr, &ptr, 10);
1462
1463 if (thissize != 8 && thissize != 16 && thissize != 32
1464 && thissize != 64)
1465 {
1466 as_bad (_("bad size %d in type specifier"), thissize);
1467 return FAIL;
1468 }
1469 }
1470
1471 done:
1472 if (type)
1473 {
1474 type->el[type->elems].type = thistype;
1475 type->el[type->elems].size = thissize;
1476 type->elems++;
1477 }
1478 }
1479
1480 /* Empty/missing type is not a successful parse. */
1481 if (type->elems == 0)
1482 return FAIL;
1483
1484 *str = ptr;
1485
1486 return SUCCESS;
1487 }
1488
1489 /* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1493
1494 static void
1495 first_error (const char *err)
1496 {
1497 if (!inst.error)
1498 inst.error = err;
1499 }
1500
1501 /* Parse a single type, e.g. ".s32", leading period included. */
1502 static int
1503 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1504 {
1505 char *str = *ccp;
1506 struct neon_type optype;
1507
1508 if (*str == '.')
1509 {
1510 if (parse_neon_type (&optype, &str) == SUCCESS)
1511 {
1512 if (optype.elems == 1)
1513 *vectype = optype.el[0];
1514 else
1515 {
1516 first_error (_("only one type should be specified for operand"));
1517 return FAIL;
1518 }
1519 }
1520 else
1521 {
1522 first_error (_("vector type expected"));
1523 return FAIL;
1524 }
1525 }
1526 else
1527 return FAIL;
1528
1529 *ccp = str;
1530
1531 return SUCCESS;
1532 }
1533
1534 /* Special meanings for indices (which have a range of 0-7), which will fit into
1535 a 4-bit integer. */
1536
1537 #define NEON_ALL_LANES 15
1538 #define NEON_INTERLEAVE_LANES 14
1539
1540 /* Record a use of the given feature. */
1541 static void
1542 record_feature_use (const arm_feature_set *feature)
1543 {
1544 if (thumb_mode)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1546 else
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1548 }
1549
1550 /* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1552 static bfd_boolean
1553 mark_feature_used (const arm_feature_set *feature)
1554 {
1555
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1557 -march=all. */
1558 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1559 && ARM_CPU_IS_ANY (cpu_variant))
1560 {
1561 first_error (BAD_MVE_AUTO);
1562 return FALSE;
1563 }
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1566 return FALSE;
1567
1568 /* Add the appropriate architecture feature for the barrier option used.
1569 */
1570 record_feature_use (feature);
1571
1572 return TRUE;
1573 }
1574
1575 /* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1579
1580 static int
1581 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1582 enum arm_reg_type *rtype,
1583 struct neon_typed_alias *typeinfo)
1584 {
1585 char *str = *ccp;
1586 struct reg_entry *reg = arm_reg_parse_multi (&str);
1587 struct neon_typed_alias atype;
1588 struct neon_type_el parsetype;
1589
1590 atype.defined = 0;
1591 atype.index = -1;
1592 atype.eltype.type = NT_invtype;
1593 atype.eltype.size = -1;
1594
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1597 if (reg == NULL)
1598 {
1599 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1600 if (altreg != FAIL)
1601 *ccp = str;
1602 if (typeinfo)
1603 *typeinfo = atype;
1604 return altreg;
1605 }
1606
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type == REG_TYPE_NDQ
1609 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1610 || (type == REG_TYPE_VFSD
1611 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1612 || (type == REG_TYPE_NSDQ
1613 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1614 || reg->type == REG_TYPE_NQ))
1615 || (type == REG_TYPE_NSD
1616 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1617 || (type == REG_TYPE_MMXWC
1618 && (reg->type == REG_TYPE_MMXWCG)))
1619 type = (enum arm_reg_type) reg->type;
1620
1621 if (type == REG_TYPE_MQ)
1622 {
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1624 return FAIL;
1625
1626 if (!reg || reg->type != REG_TYPE_NQ)
1627 return FAIL;
1628
1629 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1630 {
1631 first_error (_("expected MVE register [q0..q7]"));
1632 return FAIL;
1633 }
1634 type = REG_TYPE_NQ;
1635 }
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1637 && (type == REG_TYPE_NQ))
1638 return FAIL;
1639
1640
1641 if (type != reg->type)
1642 return FAIL;
1643
1644 if (reg->neon)
1645 atype = *reg->neon;
1646
1647 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1648 {
1649 if ((atype.defined & NTA_HASTYPE) != 0)
1650 {
1651 first_error (_("can't redefine type for operand"));
1652 return FAIL;
1653 }
1654 atype.defined |= NTA_HASTYPE;
1655 atype.eltype = parsetype;
1656 }
1657
1658 if (skip_past_char (&str, '[') == SUCCESS)
1659 {
1660 if (type != REG_TYPE_VFD
1661 && !(type == REG_TYPE_VFS
1662 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1663 && !(type == REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
1665 {
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1667 first_error (_("only D and Q registers may be indexed"));
1668 else
1669 first_error (_("only D registers may be indexed"));
1670 return FAIL;
1671 }
1672
1673 if ((atype.defined & NTA_HASINDEX) != 0)
1674 {
1675 first_error (_("can't change index for operand"));
1676 return FAIL;
1677 }
1678
1679 atype.defined |= NTA_HASINDEX;
1680
1681 if (skip_past_char (&str, ']') == SUCCESS)
1682 atype.index = NEON_ALL_LANES;
1683 else
1684 {
1685 expressionS exp;
1686
1687 my_get_expression (&exp, &str, GE_NO_PREFIX);
1688
1689 if (exp.X_op != O_constant)
1690 {
1691 first_error (_("constant expression required"));
1692 return FAIL;
1693 }
1694
1695 if (skip_past_char (&str, ']') == FAIL)
1696 return FAIL;
1697
1698 atype.index = exp.X_add_number;
1699 }
1700 }
1701
1702 if (typeinfo)
1703 *typeinfo = atype;
1704
1705 if (rtype)
1706 *rtype = type;
1707
1708 *ccp = str;
1709
1710 return reg->number;
1711 }
1712
1713 /* Like arm_reg_parse, but also allow the following extra features:
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
1718 This function will fault on encountering a scalar. */
1719
1720 static int
1721 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1722 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1723 {
1724 struct neon_typed_alias atype;
1725 char *str = *ccp;
1726 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1727
1728 if (reg == FAIL)
1729 return FAIL;
1730
1731 /* Do not allow regname(... to parse as a register. */
1732 if (*str == '(')
1733 return FAIL;
1734
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype.defined & NTA_HASINDEX) != 0)
1737 {
1738 first_error (_("register operand expected, but got scalar"));
1739 return FAIL;
1740 }
1741
1742 if (vectype)
1743 *vectype = atype.eltype;
1744
1745 *ccp = str;
1746
1747 return reg;
1748 }
1749
1750 #define NEON_SCALAR_REG(X) ((X) >> 4)
1751 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1752
1753 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1756
1757 static int
1758 parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1759 arm_reg_type reg_type)
1760 {
1761 int reg;
1762 char *str = *ccp;
1763 struct neon_typed_alias atype;
1764 unsigned reg_size;
1765
1766 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
1767
1768 switch (reg_type)
1769 {
1770 case REG_TYPE_VFS:
1771 reg_size = 32;
1772 break;
1773 case REG_TYPE_VFD:
1774 reg_size = 64;
1775 break;
1776 case REG_TYPE_MQ:
1777 reg_size = 128;
1778 break;
1779 default:
1780 gas_assert (0);
1781 return FAIL;
1782 }
1783
1784 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1785 return FAIL;
1786
1787 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
1788 {
1789 first_error (_("scalar must have an index"));
1790 return FAIL;
1791 }
1792 else if (atype.index >= reg_size / elsize)
1793 {
1794 first_error (_("scalar index out of range"));
1795 return FAIL;
1796 }
1797
1798 if (type)
1799 *type = atype.eltype;
1800
1801 *ccp = str;
1802
1803 return reg * 16 + atype.index;
1804 }
1805
1806 /* Types of registers in a list. */
1807
1808 enum reg_list_els
1809 {
1810 REGLIST_RN,
1811 REGLIST_CLRM,
1812 REGLIST_VFP_S,
1813 REGLIST_VFP_S_VPR,
1814 REGLIST_VFP_D,
1815 REGLIST_VFP_D_VPR,
1816 REGLIST_NEON_D
1817 };
1818
1819 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1820
1821 static long
1822 parse_reg_list (char ** strp, enum reg_list_els etype)
1823 {
1824 char *str = *strp;
1825 long range = 0;
1826 int another_range;
1827
1828 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
1829
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1831 do
1832 {
1833 skip_whitespace (str);
1834
1835 another_range = 0;
1836
1837 if (*str == '{')
1838 {
1839 int in_range = 0;
1840 int cur_reg = -1;
1841
1842 str++;
1843 do
1844 {
1845 int reg;
1846 const char apsr_str[] = "apsr";
1847 int apsr_str_len = strlen (apsr_str);
1848
1849 reg = arm_reg_parse (&str, REGLIST_RN);
1850 if (etype == REGLIST_CLRM)
1851 {
1852 if (reg == REG_SP || reg == REG_PC)
1853 reg = FAIL;
1854 else if (reg == FAIL
1855 && !strncasecmp (str, apsr_str, apsr_str_len)
1856 && !ISALPHA (*(str + apsr_str_len)))
1857 {
1858 reg = 15;
1859 str += apsr_str_len;
1860 }
1861
1862 if (reg == FAIL)
1863 {
1864 first_error (_("r0-r12, lr or APSR expected"));
1865 return FAIL;
1866 }
1867 }
1868 else /* etype == REGLIST_RN. */
1869 {
1870 if (reg == FAIL)
1871 {
1872 first_error (_(reg_expected_msgs[REGLIST_RN]));
1873 return FAIL;
1874 }
1875 }
1876
1877 if (in_range)
1878 {
1879 int i;
1880
1881 if (reg <= cur_reg)
1882 {
1883 first_error (_("bad range in register list"));
1884 return FAIL;
1885 }
1886
1887 for (i = cur_reg + 1; i < reg; i++)
1888 {
1889 if (range & (1 << i))
1890 as_tsktsk
1891 (_("Warning: duplicated register (r%d) in register list"),
1892 i);
1893 else
1894 range |= 1 << i;
1895 }
1896 in_range = 0;
1897 }
1898
1899 if (range & (1 << reg))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1901 reg);
1902 else if (reg <= cur_reg)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
1904
1905 range |= 1 << reg;
1906 cur_reg = reg;
1907 }
1908 while (skip_past_comma (&str) != FAIL
1909 || (in_range = 1, *str++ == '-'));
1910 str--;
1911
1912 if (skip_past_char (&str, '}') == FAIL)
1913 {
1914 first_error (_("missing `}'"));
1915 return FAIL;
1916 }
1917 }
1918 else if (etype == REGLIST_RN)
1919 {
1920 expressionS exp;
1921
1922 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1923 return FAIL;
1924
1925 if (exp.X_op == O_constant)
1926 {
1927 if (exp.X_add_number
1928 != (exp.X_add_number & 0x0000ffff))
1929 {
1930 inst.error = _("invalid register mask");
1931 return FAIL;
1932 }
1933
1934 if ((range & exp.X_add_number) != 0)
1935 {
1936 int regno = range & exp.X_add_number;
1937
1938 regno &= -regno;
1939 regno = (1 << regno) - 1;
1940 as_tsktsk
1941 (_("Warning: duplicated register (r%d) in register list"),
1942 regno);
1943 }
1944
1945 range |= exp.X_add_number;
1946 }
1947 else
1948 {
1949 if (inst.relocs[0].type != 0)
1950 {
1951 inst.error = _("expression too complex");
1952 return FAIL;
1953 }
1954
1955 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1956 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1957 inst.relocs[0].pc_rel = 0;
1958 }
1959 }
1960
1961 if (*str == '|' || *str == '+')
1962 {
1963 str++;
1964 another_range = 1;
1965 }
1966 }
1967 while (another_range);
1968
1969 *strp = str;
1970 return range;
1971 }
1972
1973 /* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
1979 FIXME: This is not implemented, as it would require backtracking in
1980 some cases, e.g.:
1981 vtbl.8 d3,d4,d5
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1986 bug. */
1987
1988 static int
1989 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
1990 bfd_boolean *partial_match)
1991 {
1992 char *str = *ccp;
1993 int base_reg;
1994 int new_base;
1995 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1996 int max_regs = 0;
1997 int count = 0;
1998 int warned = 0;
1999 unsigned long mask = 0;
2000 int i;
2001 bfd_boolean vpr_seen = FALSE;
2002 bfd_boolean expect_vpr =
2003 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
2004
2005 if (skip_past_char (&str, '{') == FAIL)
2006 {
2007 inst.error = _("expecting {");
2008 return FAIL;
2009 }
2010
2011 switch (etype)
2012 {
2013 case REGLIST_VFP_S:
2014 case REGLIST_VFP_S_VPR:
2015 regtype = REG_TYPE_VFS;
2016 max_regs = 32;
2017 break;
2018
2019 case REGLIST_VFP_D:
2020 case REGLIST_VFP_D_VPR:
2021 regtype = REG_TYPE_VFD;
2022 break;
2023
2024 case REGLIST_NEON_D:
2025 regtype = REG_TYPE_NDQ;
2026 break;
2027
2028 default:
2029 gas_assert (0);
2030 }
2031
2032 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
2033 {
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
2036 {
2037 max_regs = 32;
2038 if (thumb_mode)
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2040 fpu_vfp_ext_d32);
2041 else
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2043 fpu_vfp_ext_d32);
2044 }
2045 else
2046 max_regs = 16;
2047 }
2048
2049 base_reg = max_regs;
2050 *partial_match = FALSE;
2051
2052 do
2053 {
2054 int setmask = 1, addregs = 1;
2055 const char vpr_str[] = "vpr";
2056 int vpr_str_len = strlen (vpr_str);
2057
2058 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
2059
2060 if (expect_vpr)
2061 {
2062 if (new_base == FAIL
2063 && !strncasecmp (str, vpr_str, vpr_str_len)
2064 && !ISALPHA (*(str + vpr_str_len))
2065 && !vpr_seen)
2066 {
2067 vpr_seen = TRUE;
2068 str += vpr_str_len;
2069 if (count == 0)
2070 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2071 }
2072 else if (vpr_seen)
2073 {
2074 first_error (_("VPR expected last"));
2075 return FAIL;
2076 }
2077 else if (new_base == FAIL)
2078 {
2079 if (regtype == REG_TYPE_VFS)
2080 first_error (_("VFP single precision register or VPR "
2081 "expected"));
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2084 "expected"));
2085 return FAIL;
2086 }
2087 }
2088 else if (new_base == FAIL)
2089 {
2090 first_error (_(reg_expected_msgs[regtype]));
2091 return FAIL;
2092 }
2093
2094 *partial_match = TRUE;
2095 if (vpr_seen)
2096 continue;
2097
2098 if (new_base >= max_regs)
2099 {
2100 first_error (_("register out of range in list"));
2101 return FAIL;
2102 }
2103
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype == REG_TYPE_NQ)
2106 {
2107 setmask = 3;
2108 addregs = 2;
2109 }
2110
2111 if (new_base < base_reg)
2112 base_reg = new_base;
2113
2114 if (mask & (setmask << new_base))
2115 {
2116 first_error (_("invalid register list"));
2117 return FAIL;
2118 }
2119
2120 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
2121 {
2122 as_tsktsk (_("register list not in ascending order"));
2123 warned = 1;
2124 }
2125
2126 mask |= setmask << new_base;
2127 count += addregs;
2128
2129 if (*str == '-') /* We have the start of a range expression */
2130 {
2131 int high_range;
2132
2133 str++;
2134
2135 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
2136 == FAIL)
2137 {
2138 inst.error = gettext (reg_expected_msgs[regtype]);
2139 return FAIL;
2140 }
2141
2142 if (high_range >= max_regs)
2143 {
2144 first_error (_("register out of range in list"));
2145 return FAIL;
2146 }
2147
2148 if (regtype == REG_TYPE_NQ)
2149 high_range = high_range + 1;
2150
2151 if (high_range <= new_base)
2152 {
2153 inst.error = _("register range not in ascending order");
2154 return FAIL;
2155 }
2156
2157 for (new_base += addregs; new_base <= high_range; new_base += addregs)
2158 {
2159 if (mask & (setmask << new_base))
2160 {
2161 inst.error = _("invalid register list");
2162 return FAIL;
2163 }
2164
2165 mask |= setmask << new_base;
2166 count += addregs;
2167 }
2168 }
2169 }
2170 while (skip_past_comma (&str) != FAIL);
2171
2172 str++;
2173
2174 /* Sanity check -- should have raised a parse error above. */
2175 if ((!vpr_seen && count == 0) || count > max_regs)
2176 abort ();
2177
2178 *pbase = base_reg;
2179
2180 if (expect_vpr && !vpr_seen)
2181 {
2182 first_error (_("VPR expected last"));
2183 return FAIL;
2184 }
2185
2186 /* Final test -- the registers must be consecutive. */
2187 mask >>= base_reg;
2188 for (i = 0; i < count; i++)
2189 {
2190 if ((mask & (1u << i)) == 0)
2191 {
2192 inst.error = _("non-contiguous register range");
2193 return FAIL;
2194 }
2195 }
2196
2197 *ccp = str;
2198
2199 return count;
2200 }
2201
2202 /* True if two alias types are the same. */
2203
2204 static bfd_boolean
2205 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2206 {
2207 if (!a && !b)
2208 return TRUE;
2209
2210 if (!a || !b)
2211 return FALSE;
2212
2213 if (a->defined != b->defined)
2214 return FALSE;
2215
2216 if ((a->defined & NTA_HASTYPE) != 0
2217 && (a->eltype.type != b->eltype.type
2218 || a->eltype.size != b->eltype.size))
2219 return FALSE;
2220
2221 if ((a->defined & NTA_HASINDEX) != 0
2222 && (a->index != b->index))
2223 return FALSE;
2224
2225 return TRUE;
2226 }
2227
2228 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2231 the return value.
2232 The register stride (minus one) is put in bit 4 of the return value.
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
2235
2236 #define NEON_LANE(X) ((X) & 0xf)
2237 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2238 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2239
2240 static int
2241 parse_neon_el_struct_list (char **str, unsigned *pbase,
2242 int mve,
2243 struct neon_type_el *eltype)
2244 {
2245 char *ptr = *str;
2246 int base_reg = -1;
2247 int reg_incr = -1;
2248 int count = 0;
2249 int lane = -1;
2250 int leading_brace = 0;
2251 enum arm_reg_type rtype = REG_TYPE_NDQ;
2252 const char *const incr_error = mve ? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
2254 const char *const type_error = _("mismatched element/structure types in list");
2255 struct neon_typed_alias firsttype;
2256 firsttype.defined = 0;
2257 firsttype.eltype.type = NT_invtype;
2258 firsttype.eltype.size = -1;
2259 firsttype.index = -1;
2260
2261 if (skip_past_char (&ptr, '{') == SUCCESS)
2262 leading_brace = 1;
2263
2264 do
2265 {
2266 struct neon_typed_alias atype;
2267 if (mve)
2268 rtype = REG_TYPE_MQ;
2269 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2270
2271 if (getreg == FAIL)
2272 {
2273 first_error (_(reg_expected_msgs[rtype]));
2274 return FAIL;
2275 }
2276
2277 if (base_reg == -1)
2278 {
2279 base_reg = getreg;
2280 if (rtype == REG_TYPE_NQ)
2281 {
2282 reg_incr = 1;
2283 }
2284 firsttype = atype;
2285 }
2286 else if (reg_incr == -1)
2287 {
2288 reg_incr = getreg - base_reg;
2289 if (reg_incr < 1 || reg_incr > 2)
2290 {
2291 first_error (_(incr_error));
2292 return FAIL;
2293 }
2294 }
2295 else if (getreg != base_reg + reg_incr * count)
2296 {
2297 first_error (_(incr_error));
2298 return FAIL;
2299 }
2300
2301 if (! neon_alias_types_same (&atype, &firsttype))
2302 {
2303 first_error (_(type_error));
2304 return FAIL;
2305 }
2306
2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2308 modes. */
2309 if (ptr[0] == '-')
2310 {
2311 struct neon_typed_alias htype;
2312 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2313 if (lane == -1)
2314 lane = NEON_INTERLEAVE_LANES;
2315 else if (lane != NEON_INTERLEAVE_LANES)
2316 {
2317 first_error (_(type_error));
2318 return FAIL;
2319 }
2320 if (reg_incr == -1)
2321 reg_incr = 1;
2322 else if (reg_incr != 1)
2323 {
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2325 return FAIL;
2326 }
2327 ptr++;
2328 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2329 if (hireg == FAIL)
2330 {
2331 first_error (_(reg_expected_msgs[rtype]));
2332 return FAIL;
2333 }
2334 if (! neon_alias_types_same (&htype, &firsttype))
2335 {
2336 first_error (_(type_error));
2337 return FAIL;
2338 }
2339 count += hireg + dregs - getreg;
2340 continue;
2341 }
2342
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype == REG_TYPE_NQ)
2345 {
2346 count += 2;
2347 continue;
2348 }
2349
2350 if ((atype.defined & NTA_HASINDEX) != 0)
2351 {
2352 if (lane == -1)
2353 lane = atype.index;
2354 else if (lane != atype.index)
2355 {
2356 first_error (_(type_error));
2357 return FAIL;
2358 }
2359 }
2360 else if (lane == -1)
2361 lane = NEON_INTERLEAVE_LANES;
2362 else if (lane != NEON_INTERLEAVE_LANES)
2363 {
2364 first_error (_(type_error));
2365 return FAIL;
2366 }
2367 count++;
2368 }
2369 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2370
2371 /* No lane set by [x]. We must be interleaving structures. */
2372 if (lane == -1)
2373 lane = NEON_INTERLEAVE_LANES;
2374
2375 /* Sanity check. */
2376 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
2377 || (count > 1 && reg_incr == -1))
2378 {
2379 first_error (_("error parsing element/structure list"));
2380 return FAIL;
2381 }
2382
2383 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2384 {
2385 first_error (_("expected }"));
2386 return FAIL;
2387 }
2388
2389 if (reg_incr == -1)
2390 reg_incr = 1;
2391
2392 if (eltype)
2393 *eltype = firsttype.eltype;
2394
2395 *pbase = base_reg;
2396 *str = ptr;
2397
2398 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2399 }
2400
2401 /* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
2406
2407 static int
2408 parse_reloc (char **str)
2409 {
2410 struct reloc_entry *r;
2411 char *p, *q;
2412
2413 if (**str != '(')
2414 return BFD_RELOC_UNUSED;
2415
2416 p = *str + 1;
2417 q = p;
2418
2419 while (*q && *q != ')' && *q != ',')
2420 q++;
2421 if (*q != ')')
2422 return -1;
2423
2424 if ((r = (struct reloc_entry *)
2425 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2426 return -1;
2427
2428 *str = q + 1;
2429 return r->reloc;
2430 }
2431
2432 /* Directives: register aliases. */
2433
2434 static struct reg_entry *
2435 insert_reg_alias (char *str, unsigned number, int type)
2436 {
2437 struct reg_entry *new_reg;
2438 const char *name;
2439
2440 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2441 {
2442 if (new_reg->builtin)
2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2444
2445 /* Only warn about a redefinition if it's not defined as the
2446 same register. */
2447 else if (new_reg->number != number || new_reg->type != type)
2448 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2449
2450 return NULL;
2451 }
2452
2453 name = xstrdup (str);
2454 new_reg = XNEW (struct reg_entry);
2455
2456 new_reg->name = name;
2457 new_reg->number = number;
2458 new_reg->type = type;
2459 new_reg->builtin = FALSE;
2460 new_reg->neon = NULL;
2461
2462 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2463 abort ();
2464
2465 return new_reg;
2466 }
2467
2468 static void
2469 insert_neon_reg_alias (char *str, int number, int type,
2470 struct neon_typed_alias *atype)
2471 {
2472 struct reg_entry *reg = insert_reg_alias (str, number, type);
2473
2474 if (!reg)
2475 {
2476 first_error (_("attempt to redefine typed alias"));
2477 return;
2478 }
2479
2480 if (atype)
2481 {
2482 reg->neon = XNEW (struct neon_typed_alias);
2483 *reg->neon = *atype;
2484 }
2485 }
2486
2487 /* Look for the .req directive. This is of the form:
2488
2489 new_register_name .req existing_register_name
2490
2491 If we find one, or if it looks sufficiently like one that we want to
2492 handle any error here, return TRUE. Otherwise return FALSE. */
2493
2494 static bfd_boolean
2495 create_register_alias (char * newname, char *p)
2496 {
2497 struct reg_entry *old;
2498 char *oldname, *nbuf;
2499 size_t nlen;
2500
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2503 oldname = p;
2504 if (strncmp (oldname, " .req ", 6) != 0)
2505 return FALSE;
2506
2507 oldname += 6;
2508 if (*oldname == '\0')
2509 return FALSE;
2510
2511 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2512 if (!old)
2513 {
2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2515 return TRUE;
2516 }
2517
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521 #ifdef TC_CASE_SENSITIVE
2522 nlen = p - newname;
2523 #else
2524 newname = original_case_string;
2525 nlen = strlen (newname);
2526 #endif
2527
2528 nbuf = xmemdup0 (newname, nlen);
2529
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2532 name. */
2533 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2534 {
2535 for (p = nbuf; *p; p++)
2536 *p = TOUPPER (*p);
2537
2538 if (strncmp (nbuf, newname, nlen))
2539 {
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2544 foo .req r0
2545 Foo .req r1
2546 The second .req creates the "Foo" alias but then fails to create
2547 the artificial FOO alias because it has already been created by the
2548 first .req. */
2549 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2550 {
2551 free (nbuf);
2552 return TRUE;
2553 }
2554 }
2555
2556 for (p = nbuf; *p; p++)
2557 *p = TOLOWER (*p);
2558
2559 if (strncmp (nbuf, newname, nlen))
2560 insert_reg_alias (nbuf, old->number, old->type);
2561 }
2562
2563 free (nbuf);
2564 return TRUE;
2565 }
2566
2567 /* Create a Neon typed/indexed register alias using directives, e.g.:
2568 X .dn d5.s32[1]
2569 Y .qn 6.s16
2570 Z .dn d7
2571 T .dn Z[0]
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
2575 vadd d0.s32, d1.s32, d2.s32 */
2576
2577 static bfd_boolean
2578 create_neon_reg_alias (char *newname, char *p)
2579 {
2580 enum arm_reg_type basetype;
2581 struct reg_entry *basereg;
2582 struct reg_entry mybasereg;
2583 struct neon_type ntype;
2584 struct neon_typed_alias typeinfo;
2585 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2586 int namelen;
2587
2588 typeinfo.defined = 0;
2589 typeinfo.eltype.type = NT_invtype;
2590 typeinfo.eltype.size = -1;
2591 typeinfo.index = -1;
2592
2593 nameend = p;
2594
2595 if (strncmp (p, " .dn ", 5) == 0)
2596 basetype = REG_TYPE_VFD;
2597 else if (strncmp (p, " .qn ", 5) == 0)
2598 basetype = REG_TYPE_NQ;
2599 else
2600 return FALSE;
2601
2602 p += 5;
2603
2604 if (*p == '\0')
2605 return FALSE;
2606
2607 basereg = arm_reg_parse_multi (&p);
2608
2609 if (basereg && basereg->type != basetype)
2610 {
2611 as_bad (_("bad type for register"));
2612 return FALSE;
2613 }
2614
2615 if (basereg == NULL)
2616 {
2617 expressionS exp;
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp, &p, GE_NO_PREFIX);
2620 if (exp.X_op != O_constant)
2621 {
2622 as_bad (_("expression must be constant"));
2623 return FALSE;
2624 }
2625 basereg = &mybasereg;
2626 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2627 : exp.X_add_number;
2628 basereg->neon = 0;
2629 }
2630
2631 if (basereg->neon)
2632 typeinfo = *basereg->neon;
2633
2634 if (parse_neon_type (&ntype, &p) == SUCCESS)
2635 {
2636 /* We got a type. */
2637 if (typeinfo.defined & NTA_HASTYPE)
2638 {
2639 as_bad (_("can't redefine the type of a register alias"));
2640 return FALSE;
2641 }
2642
2643 typeinfo.defined |= NTA_HASTYPE;
2644 if (ntype.elems != 1)
2645 {
2646 as_bad (_("you must specify a single type only"));
2647 return FALSE;
2648 }
2649 typeinfo.eltype = ntype.el[0];
2650 }
2651
2652 if (skip_past_char (&p, '[') == SUCCESS)
2653 {
2654 expressionS exp;
2655 /* We got a scalar index. */
2656
2657 if (typeinfo.defined & NTA_HASINDEX)
2658 {
2659 as_bad (_("can't redefine the index of a scalar alias"));
2660 return FALSE;
2661 }
2662
2663 my_get_expression (&exp, &p, GE_NO_PREFIX);
2664
2665 if (exp.X_op != O_constant)
2666 {
2667 as_bad (_("scalar index must be constant"));
2668 return FALSE;
2669 }
2670
2671 typeinfo.defined |= NTA_HASINDEX;
2672 typeinfo.index = exp.X_add_number;
2673
2674 if (skip_past_char (&p, ']') == FAIL)
2675 {
2676 as_bad (_("expecting ]"));
2677 return FALSE;
2678 }
2679 }
2680
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684 #ifdef TC_CASE_SENSITIVE
2685 namelen = nameend - newname;
2686 #else
2687 newname = original_case_string;
2688 namelen = strlen (newname);
2689 #endif
2690
2691 namebuf = xmemdup0 (newname, namelen);
2692
2693 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2694 typeinfo.defined != 0 ? &typeinfo : NULL);
2695
2696 /* Insert name in all uppercase. */
2697 for (p = namebuf; *p; p++)
2698 *p = TOUPPER (*p);
2699
2700 if (strncmp (namebuf, newname, namelen))
2701 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2702 typeinfo.defined != 0 ? &typeinfo : NULL);
2703
2704 /* Insert name in all lowercase. */
2705 for (p = namebuf; *p; p++)
2706 *p = TOLOWER (*p);
2707
2708 if (strncmp (namebuf, newname, namelen))
2709 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2710 typeinfo.defined != 0 ? &typeinfo : NULL);
2711
2712 free (namebuf);
2713 return TRUE;
2714 }
2715
2716 /* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
2718
2719 static void
2720 s_req (int a ATTRIBUTE_UNUSED)
2721 {
2722 as_bad (_("invalid syntax for .req directive"));
2723 }
2724
2725 static void
2726 s_dn (int a ATTRIBUTE_UNUSED)
2727 {
2728 as_bad (_("invalid syntax for .dn directive"));
2729 }
2730
2731 static void
2732 s_qn (int a ATTRIBUTE_UNUSED)
2733 {
2734 as_bad (_("invalid syntax for .qn directive"));
2735 }
2736
2737 /* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
2739
2740 my_alias .req r11
2741 .unreq my_alias */
2742
2743 static void
2744 s_unreq (int a ATTRIBUTE_UNUSED)
2745 {
2746 char * name;
2747 char saved_char;
2748
2749 name = input_line_pointer;
2750
2751 while (*input_line_pointer != 0
2752 && *input_line_pointer != ' '
2753 && *input_line_pointer != '\n')
2754 ++input_line_pointer;
2755
2756 saved_char = *input_line_pointer;
2757 *input_line_pointer = 0;
2758
2759 if (!*name)
2760 as_bad (_("invalid syntax for .unreq directive"));
2761 else
2762 {
2763 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2764 name);
2765
2766 if (!reg)
2767 as_bad (_("unknown register alias '%s'"), name);
2768 else if (reg->builtin)
2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2770 name);
2771 else
2772 {
2773 char * p;
2774 char * nbuf;
2775
2776 hash_delete (arm_reg_hsh, name, FALSE);
2777 free ((char *) reg->name);
2778 if (reg->neon)
2779 free (reg->neon);
2780 free (reg);
2781
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
2785
2786 nbuf = strdup (name);
2787 for (p = nbuf; *p; p++)
2788 *p = TOUPPER (*p);
2789 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2790 if (reg)
2791 {
2792 hash_delete (arm_reg_hsh, nbuf, FALSE);
2793 free ((char *) reg->name);
2794 if (reg->neon)
2795 free (reg->neon);
2796 free (reg);
2797 }
2798
2799 for (p = nbuf; *p; p++)
2800 *p = TOLOWER (*p);
2801 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2802 if (reg)
2803 {
2804 hash_delete (arm_reg_hsh, nbuf, FALSE);
2805 free ((char *) reg->name);
2806 if (reg->neon)
2807 free (reg->neon);
2808 free (reg);
2809 }
2810
2811 free (nbuf);
2812 }
2813 }
2814
2815 *input_line_pointer = saved_char;
2816 demand_empty_rest_of_line ();
2817 }
2818
2819 /* Directives: Instruction set selection. */
2820
2821 #ifdef OBJ_ELF
2822 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2826
2827 /* Create a new mapping symbol for the transition to STATE. */
2828
2829 static void
2830 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2831 {
2832 symbolS * symbolP;
2833 const char * symname;
2834 int type;
2835
2836 switch (state)
2837 {
2838 case MAP_DATA:
2839 symname = "$d";
2840 type = BSF_NO_FLAGS;
2841 break;
2842 case MAP_ARM:
2843 symname = "$a";
2844 type = BSF_NO_FLAGS;
2845 break;
2846 case MAP_THUMB:
2847 symname = "$t";
2848 type = BSF_NO_FLAGS;
2849 break;
2850 default:
2851 abort ();
2852 }
2853
2854 symbolP = symbol_new (symname, now_seg, value, frag);
2855 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2856
2857 switch (state)
2858 {
2859 case MAP_ARM:
2860 THUMB_SET_FUNC (symbolP, 0);
2861 ARM_SET_THUMB (symbolP, 0);
2862 ARM_SET_INTERWORK (symbolP, support_interwork);
2863 break;
2864
2865 case MAP_THUMB:
2866 THUMB_SET_FUNC (symbolP, 1);
2867 ARM_SET_THUMB (symbolP, 1);
2868 ARM_SET_INTERWORK (symbolP, support_interwork);
2869 break;
2870
2871 case MAP_DATA:
2872 default:
2873 break;
2874 }
2875
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2879 check_mapping_symbols.
2880
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
2885 if (value == 0)
2886 {
2887 if (frag->tc_frag_data.first_map != NULL)
2888 {
2889 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2890 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2891 }
2892 frag->tc_frag_data.first_map = symbolP;
2893 }
2894 if (frag->tc_frag_data.last_map != NULL)
2895 {
2896 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2897 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2898 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2899 }
2900 frag->tc_frag_data.last_map = symbolP;
2901 }
2902
2903 /* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2906
2907 static void
2908 insert_data_mapping_symbol (enum mstate state,
2909 valueT value, fragS *frag, offsetT bytes)
2910 {
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag->tc_frag_data.last_map != NULL
2913 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2914 {
2915 symbolS *symp = frag->tc_frag_data.last_map;
2916
2917 if (value == 0)
2918 {
2919 know (frag->tc_frag_data.first_map == symp);
2920 frag->tc_frag_data.first_map = NULL;
2921 }
2922 frag->tc_frag_data.last_map = NULL;
2923 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2924 }
2925
2926 make_mapping_symbol (MAP_DATA, value, frag);
2927 make_mapping_symbol (state, value + bytes, frag);
2928 }
2929
2930 static void mapping_state_2 (enum mstate state, int max_chars);
2931
2932 /* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2934
2935 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2936 void
2937 mapping_state (enum mstate state)
2938 {
2939 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2940
2941 if (mapstate == state)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2944 return;
2945
2946 if (state == MAP_ARM || state == MAP_THUMB)
2947 /* PR gas/12931
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2950
2951 When emitting instructions into any section, mark the section
2952 appropriately.
2953
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
2956 PC- relative forms. However, these cases will involve implicit
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2961
2962 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2963 /* This case will be evaluated later. */
2964 return;
2965
2966 mapping_state_2 (state, 0);
2967 }
2968
2969 /* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2971
2972 static void
2973 mapping_state_2 (enum mstate state, int max_chars)
2974 {
2975 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2976
2977 if (!SEG_NORMAL (now_seg))
2978 return;
2979
2980 if (mapstate == state)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2983 return;
2984
2985 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2986 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2987 {
2988 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2989 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2990
2991 if (add_symbol)
2992 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2993 }
2994
2995 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2996 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2997 }
2998 #undef TRANSITION
2999 #else
3000 #define mapping_state(x) ((void)0)
3001 #define mapping_state_2(x, y) ((void)0)
3002 #endif
3003
3004 /* Find the real, Thumb encoded start of a Thumb function. */
3005
3006 #ifdef OBJ_COFF
3007 static symbolS *
3008 find_real_start (symbolS * symbolP)
3009 {
3010 char * real_start;
3011 const char * name = S_GET_NAME (symbolP);
3012 symbolS * new_target;
3013
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015 #define STUB_NAME ".real_start_of"
3016
3017 if (name == NULL)
3018 abort ();
3019
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP) || name[0] == '.')
3026 return symbolP;
3027
3028 real_start = concat (STUB_NAME, name, NULL);
3029 new_target = symbol_find (real_start);
3030 free (real_start);
3031
3032 if (new_target == NULL)
3033 {
3034 as_warn (_("Failed to find real start of function: %s\n"), name);
3035 new_target = symbolP;
3036 }
3037
3038 return new_target;
3039 }
3040 #endif
3041
3042 static void
3043 opcode_select (int width)
3044 {
3045 switch (width)
3046 {
3047 case 16:
3048 if (! thumb_mode)
3049 {
3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3052
3053 thumb_mode = 1;
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg, 1);
3057 }
3058 break;
3059
3060 case 32:
3061 if (thumb_mode)
3062 {
3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
3064 as_bad (_("selected processor does not support ARM opcodes"));
3065
3066 thumb_mode = 0;
3067
3068 if (!need_pass_2)
3069 frag_align (2, 0, 0);
3070
3071 record_alignment (now_seg, 1);
3072 }
3073 break;
3074
3075 default:
3076 as_bad (_("invalid instruction size selected (%d)"), width);
3077 }
3078 }
3079
3080 static void
3081 s_arm (int ignore ATTRIBUTE_UNUSED)
3082 {
3083 opcode_select (32);
3084 demand_empty_rest_of_line ();
3085 }
3086
3087 static void
3088 s_thumb (int ignore ATTRIBUTE_UNUSED)
3089 {
3090 opcode_select (16);
3091 demand_empty_rest_of_line ();
3092 }
3093
3094 static void
3095 s_code (int unused ATTRIBUTE_UNUSED)
3096 {
3097 int temp;
3098
3099 temp = get_absolute_expression ();
3100 switch (temp)
3101 {
3102 case 16:
3103 case 32:
3104 opcode_select (temp);
3105 break;
3106
3107 default:
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3109 }
3110 }
3111
3112 static void
3113 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3114 {
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3120 if (! thumb_mode)
3121 {
3122 thumb_mode = 2;
3123 record_alignment (now_seg, 1);
3124 }
3125
3126 demand_empty_rest_of_line ();
3127 }
3128
3129 static void
3130 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3131 {
3132 s_thumb (0);
3133
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name = TRUE;
3137 }
3138
3139 /* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3141
3142 static void
3143 s_thumb_set (int equiv)
3144 {
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3147 is created. */
3148 char * name;
3149 char delim;
3150 char * end_name;
3151 symbolS * symbolP;
3152
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3155 Dean - in haste. */
3156 delim = get_symbol_name (& name);
3157 end_name = input_line_pointer;
3158 (void) restore_line_pointer (delim);
3159
3160 if (*input_line_pointer != ',')
3161 {
3162 *end_name = 0;
3163 as_bad (_("expected comma after name \"%s\""), name);
3164 *end_name = delim;
3165 ignore_rest_of_line ();
3166 return;
3167 }
3168
3169 input_line_pointer++;
3170 *end_name = 0;
3171
3172 if (name[0] == '.' && name[1] == '\0')
3173 {
3174 /* XXX - this should not happen to .thumb_set. */
3175 abort ();
3176 }
3177
3178 if ((symbolP = symbol_find (name)) == NULL
3179 && (symbolP = md_undefined_symbol (name)) == NULL)
3180 {
3181 #ifndef NO_LISTING
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
3184 for this symbol. */
3185 if (listing & LISTING_SYMBOLS)
3186 {
3187 extern struct list_info_struct * listing_tail;
3188 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
3189
3190 memset (dummy_frag, 0, sizeof (fragS));
3191 dummy_frag->fr_type = rs_fill;
3192 dummy_frag->line = listing_tail;
3193 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3194 dummy_frag->fr_symbol = symbolP;
3195 }
3196 else
3197 #endif
3198 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3199
3200 #ifdef OBJ_COFF
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP);
3203 #endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3205
3206 symbol_table_insert (symbolP);
3207
3208 * end_name = delim;
3209
3210 if (equiv
3211 && S_IS_DEFINED (symbolP)
3212 && S_GET_SEGMENT (symbolP) != reg_section)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3214
3215 pseudo_set (symbolP);
3216
3217 demand_empty_rest_of_line ();
3218
3219 /* XXX Now we come to the Thumb specific bit of code. */
3220
3221 THUMB_SET_FUNC (symbolP, 1);
3222 ARM_SET_THUMB (symbolP, 1);
3223 #if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP, support_interwork);
3225 #endif
3226 }
3227
3228 /* Directives: Mode selection. */
3229
3230 /* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
3233 static void
3234 s_syntax (int unused ATTRIBUTE_UNUSED)
3235 {
3236 char *name, delim;
3237
3238 delim = get_symbol_name (& name);
3239
3240 if (!strcasecmp (name, "unified"))
3241 unified_syntax = TRUE;
3242 else if (!strcasecmp (name, "divided"))
3243 unified_syntax = FALSE;
3244 else
3245 {
3246 as_bad (_("unrecognized syntax mode \"%s\""), name);
3247 return;
3248 }
3249 (void) restore_line_pointer (delim);
3250 demand_empty_rest_of_line ();
3251 }
3252
3253 /* Directives: sectioning and alignment. */
3254
3255 static void
3256 s_bss (int ignore ATTRIBUTE_UNUSED)
3257 {
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section, 0);
3261 demand_empty_rest_of_line ();
3262
3263 #ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3265 #endif
3266 }
3267
3268 static void
3269 s_even (int ignore ATTRIBUTE_UNUSED)
3270 {
3271 /* Never make frag if expect extra pass. */
3272 if (!need_pass_2)
3273 frag_align (1, 0, 0);
3274
3275 record_alignment (now_seg, 1);
3276
3277 demand_empty_rest_of_line ();
3278 }
3279
3280 /* Directives: CodeComposer Studio. */
3281
3282 /* .ref (for CodeComposer Studio syntax only). */
3283 static void
3284 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3285 {
3286 if (codecomposer_syntax)
3287 ignore_rest_of_line ();
3288 else
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3290 }
3291
3292 /* If name is not NULL, then it is used for marking the beginning of a
3293 function, whereas if it is NULL then it means the function end. */
3294 static void
3295 asmfunc_debug (const char * name)
3296 {
3297 static const char * last_name = NULL;
3298
3299 if (name != NULL)
3300 {
3301 gas_assert (last_name == NULL);
3302 last_name = name;
3303
3304 if (debug_type == DEBUG_STABS)
3305 stabs_generate_asm_func (name, name);
3306 }
3307 else
3308 {
3309 gas_assert (last_name != NULL);
3310
3311 if (debug_type == DEBUG_STABS)
3312 stabs_generate_asm_endfunc (last_name, last_name);
3313
3314 last_name = NULL;
3315 }
3316 }
3317
3318 static void
3319 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3320 {
3321 if (codecomposer_syntax)
3322 {
3323 switch (asmfunc_state)
3324 {
3325 case OUTSIDE_ASMFUNC:
3326 asmfunc_state = WAITING_ASMFUNC_NAME;
3327 break;
3328
3329 case WAITING_ASMFUNC_NAME:
3330 as_bad (_(".asmfunc repeated."));
3331 break;
3332
3333 case WAITING_ENDASMFUNC:
3334 as_bad (_(".asmfunc without function."));
3335 break;
3336 }
3337 demand_empty_rest_of_line ();
3338 }
3339 else
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3341 }
3342
3343 static void
3344 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3345 {
3346 if (codecomposer_syntax)
3347 {
3348 switch (asmfunc_state)
3349 {
3350 case OUTSIDE_ASMFUNC:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3352 break;
3353
3354 case WAITING_ASMFUNC_NAME:
3355 as_bad (_(".endasmfunc without function."));
3356 break;
3357
3358 case WAITING_ENDASMFUNC:
3359 asmfunc_state = OUTSIDE_ASMFUNC;
3360 asmfunc_debug (NULL);
3361 break;
3362 }
3363 demand_empty_rest_of_line ();
3364 }
3365 else
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3367 }
3368
3369 static void
3370 s_ccs_def (int name)
3371 {
3372 if (codecomposer_syntax)
3373 s_globl (name);
3374 else
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3376 }
3377
3378 /* Directives: Literal pools. */
3379
3380 static literal_pool *
3381 find_literal_pool (void)
3382 {
3383 literal_pool * pool;
3384
3385 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3386 {
3387 if (pool->section == now_seg
3388 && pool->sub_section == now_subseg)
3389 break;
3390 }
3391
3392 return pool;
3393 }
3394
3395 static literal_pool *
3396 find_or_make_literal_pool (void)
3397 {
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num = 1;
3400 literal_pool * pool;
3401
3402 pool = find_literal_pool ();
3403
3404 if (pool == NULL)
3405 {
3406 /* Create a new pool. */
3407 pool = XNEW (literal_pool);
3408 if (! pool)
3409 return NULL;
3410
3411 pool->next_free_entry = 0;
3412 pool->section = now_seg;
3413 pool->sub_section = now_subseg;
3414 pool->next = list_of_pools;
3415 pool->symbol = NULL;
3416 pool->alignment = 2;
3417
3418 /* Add it to the list. */
3419 list_of_pools = pool;
3420 }
3421
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool->symbol == NULL)
3424 {
3425 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3426 (valueT) 0, &zero_address_frag);
3427 pool->id = latest_pool_num ++;
3428 }
3429
3430 /* Done. */
3431 return pool;
3432 }
3433
3434 /* Add the literal in the global 'inst'
3435 structure to the relevant literal pool. */
3436
3437 static int
3438 add_to_lit_pool (unsigned int nbytes)
3439 {
3440 #define PADDING_SLOT 0x1
3441 #define LIT_ENTRY_SIZE_MASK 0xFF
3442 literal_pool * pool;
3443 unsigned int entry, pool_size = 0;
3444 bfd_boolean padding_slot_p = FALSE;
3445 unsigned imm1 = 0;
3446 unsigned imm2 = 0;
3447
3448 if (nbytes == 8)
3449 {
3450 imm1 = inst.operands[1].imm;
3451 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3452 : inst.relocs[0].exp.X_unsigned ? 0
3453 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3454 if (target_big_endian)
3455 {
3456 imm1 = imm2;
3457 imm2 = inst.operands[1].imm;
3458 }
3459 }
3460
3461 pool = find_or_make_literal_pool ();
3462
3463 /* Check if this literal value is already in the pool. */
3464 for (entry = 0; entry < pool->next_free_entry; entry ++)
3465 {
3466 if (nbytes == 4)
3467 {
3468 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3469 && (inst.relocs[0].exp.X_op == O_constant)
3470 && (pool->literals[entry].X_add_number
3471 == inst.relocs[0].exp.X_add_number)
3472 && (pool->literals[entry].X_md == nbytes)
3473 && (pool->literals[entry].X_unsigned
3474 == inst.relocs[0].exp.X_unsigned))
3475 break;
3476
3477 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3478 && (inst.relocs[0].exp.X_op == O_symbol)
3479 && (pool->literals[entry].X_add_number
3480 == inst.relocs[0].exp.X_add_number)
3481 && (pool->literals[entry].X_add_symbol
3482 == inst.relocs[0].exp.X_add_symbol)
3483 && (pool->literals[entry].X_op_symbol
3484 == inst.relocs[0].exp.X_op_symbol)
3485 && (pool->literals[entry].X_md == nbytes))
3486 break;
3487 }
3488 else if ((nbytes == 8)
3489 && !(pool_size & 0x7)
3490 && ((entry + 1) != pool->next_free_entry)
3491 && (pool->literals[entry].X_op == O_constant)
3492 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3493 && (pool->literals[entry].X_unsigned
3494 == inst.relocs[0].exp.X_unsigned)
3495 && (pool->literals[entry + 1].X_op == O_constant)
3496 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3497 && (pool->literals[entry + 1].X_unsigned
3498 == inst.relocs[0].exp.X_unsigned))
3499 break;
3500
3501 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3502 if (padding_slot_p && (nbytes == 4))
3503 break;
3504
3505 pool_size += 4;
3506 }
3507
3508 /* Do we need to create a new entry? */
3509 if (entry == pool->next_free_entry)
3510 {
3511 if (entry >= MAX_LITERAL_POOL_SIZE)
3512 {
3513 inst.error = _("literal pool overflow");
3514 return FAIL;
3515 }
3516
3517 if (nbytes == 8)
3518 {
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3524
3525 We also need to make sure there is enough space for
3526 the split.
3527
3528 We also check to make sure the literal operand is a
3529 constant number. */
3530 if (!(inst.relocs[0].exp.X_op == O_constant
3531 || inst.relocs[0].exp.X_op == O_big))
3532 {
3533 inst.error = _("invalid type for literal pool");
3534 return FAIL;
3535 }
3536 else if (pool_size & 0x7)
3537 {
3538 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3539 {
3540 inst.error = _("literal pool overflow");
3541 return FAIL;
3542 }
3543
3544 pool->literals[entry] = inst.relocs[0].exp;
3545 pool->literals[entry].X_op = O_constant;
3546 pool->literals[entry].X_add_number = 0;
3547 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3548 pool->next_free_entry += 1;
3549 pool_size += 4;
3550 }
3551 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3552 {
3553 inst.error = _("literal pool overflow");
3554 return FAIL;
3555 }
3556
3557 pool->literals[entry] = inst.relocs[0].exp;
3558 pool->literals[entry].X_op = O_constant;
3559 pool->literals[entry].X_add_number = imm1;
3560 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3561 pool->literals[entry++].X_md = 4;
3562 pool->literals[entry] = inst.relocs[0].exp;
3563 pool->literals[entry].X_op = O_constant;
3564 pool->literals[entry].X_add_number = imm2;
3565 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3566 pool->literals[entry].X_md = 4;
3567 pool->alignment = 3;
3568 pool->next_free_entry += 1;
3569 }
3570 else
3571 {
3572 pool->literals[entry] = inst.relocs[0].exp;
3573 pool->literals[entry].X_md = 4;
3574 }
3575
3576 #ifdef OBJ_ELF
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type == DEBUG_DWARF2)
3582 dwarf2_where (pool->locs + entry);
3583 #endif
3584 pool->next_free_entry += 1;
3585 }
3586 else if (padding_slot_p)
3587 {
3588 pool->literals[entry] = inst.relocs[0].exp;
3589 pool->literals[entry].X_md = nbytes;
3590 }
3591
3592 inst.relocs[0].exp.X_op = O_symbol;
3593 inst.relocs[0].exp.X_add_number = pool_size;
3594 inst.relocs[0].exp.X_add_symbol = pool->symbol;
3595
3596 return SUCCESS;
3597 }
3598
3599 bfd_boolean
3600 tc_start_label_without_colon (void)
3601 {
3602 bfd_boolean ret = TRUE;
3603
3604 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3605 {
3606 const char *label = input_line_pointer;
3607
3608 while (!is_end_of_line[(int) label[-1]])
3609 --label;
3610
3611 if (*label == '.')
3612 {
3613 as_bad (_("Invalid label '%s'"), label);
3614 ret = FALSE;
3615 }
3616
3617 asmfunc_debug (label);
3618
3619 asmfunc_state = WAITING_ENDASMFUNC;
3620 }
3621
3622 return ret;
3623 }
3624
3625 /* Can't use symbol_new here, so have to create a symbol and then at
3626 a later date assign it a value. That's what these functions do. */
3627
3628 static void
3629 symbol_locate (symbolS * symbolP,
3630 const char * name, /* It is copied, the caller can modify. */
3631 segT segment, /* Segment identifier (SEG_<something>). */
3632 valueT valu, /* Symbol value. */
3633 fragS * frag) /* Associated fragment. */
3634 {
3635 size_t name_length;
3636 char * preserved_copy_of_name;
3637
3638 name_length = strlen (name) + 1; /* +1 for \0. */
3639 obstack_grow (&notes, name, name_length);
3640 preserved_copy_of_name = (char *) obstack_finish (&notes);
3641
3642 #ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name =
3644 tc_canonicalize_symbol_name (preserved_copy_of_name);
3645 #endif
3646
3647 S_SET_NAME (symbolP, preserved_copy_of_name);
3648
3649 S_SET_SEGMENT (symbolP, segment);
3650 S_SET_VALUE (symbolP, valu);
3651 symbol_clear_list_pointers (symbolP);
3652
3653 symbol_set_frag (symbolP, frag);
3654
3655 /* Link to end of symbol chain. */
3656 {
3657 extern int symbol_table_frozen;
3658
3659 if (symbol_table_frozen)
3660 abort ();
3661 }
3662
3663 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3664
3665 obj_symbol_new_hook (symbolP);
3666
3667 #ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP);
3669 #endif
3670
3671 #ifdef DEBUG_SYMS
3672 verify_symbol_chain (symbol_rootP, symbol_lastP);
3673 #endif /* DEBUG_SYMS */
3674 }
3675
3676 static void
3677 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3678 {
3679 unsigned int entry;
3680 literal_pool * pool;
3681 char sym_name[20];
3682
3683 pool = find_literal_pool ();
3684 if (pool == NULL
3685 || pool->symbol == NULL
3686 || pool->next_free_entry == 0)
3687 return;
3688
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3691 if (!need_pass_2)
3692 frag_align (pool->alignment, 0, 0);
3693
3694 record_alignment (now_seg, 2);
3695
3696 #ifdef OBJ_ELF
3697 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3698 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3699 #endif
3700 sprintf (sym_name, "$$lit_\002%x", pool->id);
3701
3702 symbol_locate (pool->symbol, sym_name, now_seg,
3703 (valueT) frag_now_fix (), frag_now);
3704 symbol_table_insert (pool->symbol);
3705
3706 ARM_SET_THUMB (pool->symbol, thumb_mode);
3707
3708 #if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3710 #endif
3711
3712 for (entry = 0; entry < pool->next_free_entry; entry ++)
3713 {
3714 #ifdef OBJ_ELF
3715 if (debug_type == DEBUG_DWARF2)
3716 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3717 #endif
3718 /* First output the expression in the instruction to the pool. */
3719 emit_expr (&(pool->literals[entry]),
3720 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3721 }
3722
3723 /* Mark the pool as empty. */
3724 pool->next_free_entry = 0;
3725 pool->symbol = NULL;
3726 }
3727
3728 #ifdef OBJ_ELF
3729 /* Forward declarations for functions below, in the MD interface
3730 section. */
3731 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3732 static valueT create_unwind_entry (int);
3733 static void start_unwind_section (const segT, int);
3734 static void add_unwind_opcode (valueT, int);
3735 static void flush_pending_unwind (void);
3736
3737 /* Directives: Data. */
3738
3739 static void
3740 s_arm_elf_cons (int nbytes)
3741 {
3742 expressionS exp;
3743
3744 #ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3746 #endif
3747
3748 if (is_it_end_of_statement ())
3749 {
3750 demand_empty_rest_of_line ();
3751 return;
3752 }
3753
3754 #ifdef md_cons_align
3755 md_cons_align (nbytes);
3756 #endif
3757
3758 mapping_state (MAP_DATA);
3759 do
3760 {
3761 int reloc;
3762 char *base = input_line_pointer;
3763
3764 expression (& exp);
3765
3766 if (exp.X_op != O_symbol)
3767 emit_expr (&exp, (unsigned int) nbytes);
3768 else
3769 {
3770 char *before_reloc = input_line_pointer;
3771 reloc = parse_reloc (&input_line_pointer);
3772 if (reloc == -1)
3773 {
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3776 return;
3777 }
3778 else if (reloc == BFD_RELOC_UNUSED)
3779 emit_expr (&exp, (unsigned int) nbytes);
3780 else
3781 {
3782 reloc_howto_type *howto = (reloc_howto_type *)
3783 bfd_reloc_type_lookup (stdoutput,
3784 (bfd_reloc_code_real_type) reloc);
3785 int size = bfd_get_reloc_size (howto);
3786
3787 if (reloc == BFD_RELOC_ARM_PLT32)
3788 {
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc = BFD_RELOC_UNUSED;
3791 size = 0;
3792 }
3793
3794 if (size > nbytes)
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3797 nbytes),
3798 howto->name, nbytes);
3799 else
3800 {
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p = input_line_pointer;
3806 int offset;
3807 char *save_buf = XNEWVEC (char, input_line_pointer - base);
3808
3809 memcpy (save_buf, base, input_line_pointer - base);
3810 memmove (base + (input_line_pointer - before_reloc),
3811 base, before_reloc - base);
3812
3813 input_line_pointer = base + (input_line_pointer-before_reloc);
3814 expression (&exp);
3815 memcpy (base, save_buf, p - base);
3816
3817 offset = nbytes - size;
3818 p = frag_more (nbytes);
3819 memset (p, 0, nbytes);
3820 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3821 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3822 free (save_buf);
3823 }
3824 }
3825 }
3826 }
3827 while (*input_line_pointer++ == ',');
3828
3829 /* Put terminator back into stream. */
3830 input_line_pointer --;
3831 demand_empty_rest_of_line ();
3832 }
3833
3834 /* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3836
3837 static void
3838 emit_thumb32_expr (expressionS * exp)
3839 {
3840 expressionS exp_high = *exp;
3841
3842 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3843 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3844 exp->X_add_number &= 0xffff;
3845 emit_expr (exp, (unsigned int) THUMB_SIZE);
3846 }
3847
3848 /* Guess the instruction size based on the opcode. */
3849
3850 static int
3851 thumb_insn_size (int opcode)
3852 {
3853 if ((unsigned int) opcode < 0xe800u)
3854 return 2;
3855 else if ((unsigned int) opcode >= 0xe8000000u)
3856 return 4;
3857 else
3858 return 0;
3859 }
3860
3861 static bfd_boolean
3862 emit_insn (expressionS *exp, int nbytes)
3863 {
3864 int size = 0;
3865
3866 if (exp->X_op == O_constant)
3867 {
3868 size = nbytes;
3869
3870 if (size == 0)
3871 size = thumb_insn_size (exp->X_add_number);
3872
3873 if (size != 0)
3874 {
3875 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3876 {
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3879 size = 0;
3880 }
3881 else
3882 {
3883 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
3885 else
3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3887
3888 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3889 emit_thumb32_expr (exp);
3890 else
3891 emit_expr (exp, (unsigned int) size);
3892
3893 it_fsm_post_encode ();
3894 }
3895 }
3896 else
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3899 }
3900 else
3901 as_bad (_("constant expression required"));
3902
3903 return (size != 0);
3904 }
3905
3906 /* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3908
3909 static void
3910 s_arm_elf_inst (int nbytes)
3911 {
3912 if (is_it_end_of_statement ())
3913 {
3914 demand_empty_rest_of_line ();
3915 return;
3916 }
3917
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3920
3921 if (thumb_mode)
3922 mapping_state (MAP_THUMB);
3923 else
3924 {
3925 if (nbytes != 0)
3926 {
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3929 return;
3930 }
3931
3932 nbytes = 4;
3933
3934 mapping_state (MAP_ARM);
3935 }
3936
3937 do
3938 {
3939 expressionS exp;
3940
3941 expression (& exp);
3942
3943 if (! emit_insn (& exp, nbytes))
3944 {
3945 ignore_rest_of_line ();
3946 return;
3947 }
3948 }
3949 while (*input_line_pointer++ == ',');
3950
3951 /* Put terminator back into stream. */
3952 input_line_pointer --;
3953 demand_empty_rest_of_line ();
3954 }
3955
3956 /* Parse a .rel31 directive. */
3957
3958 static void
3959 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3960 {
3961 expressionS exp;
3962 char *p;
3963 valueT highbit;
3964
3965 highbit = 0;
3966 if (*input_line_pointer == '1')
3967 highbit = 0x80000000;
3968 else if (*input_line_pointer != '0')
3969 as_bad (_("expected 0 or 1"));
3970
3971 input_line_pointer++;
3972 if (*input_line_pointer != ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer++;
3975
3976 #ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3978 #endif
3979
3980 #ifdef md_cons_align
3981 md_cons_align (4);
3982 #endif
3983
3984 mapping_state (MAP_DATA);
3985
3986 expression (&exp);
3987
3988 p = frag_more (4);
3989 md_number_to_chars (p, highbit, 4);
3990 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3991 BFD_RELOC_ARM_PREL31);
3992
3993 demand_empty_rest_of_line ();
3994 }
3995
3996 /* Directives: AEABI stack-unwind tables. */
3997
3998 /* Parse an unwind_fnstart directive. Simply records the current location. */
3999
4000 static void
4001 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4002 {
4003 demand_empty_rest_of_line ();
4004 if (unwind.proc_start)
4005 {
4006 as_bad (_("duplicate .fnstart directive"));
4007 return;
4008 }
4009
4010 /* Mark the start of the function. */
4011 unwind.proc_start = expr_build_dot ();
4012
4013 /* Reset the rest of the unwind info. */
4014 unwind.opcode_count = 0;
4015 unwind.table_entry = NULL;
4016 unwind.personality_routine = NULL;
4017 unwind.personality_index = -1;
4018 unwind.frame_size = 0;
4019 unwind.fp_offset = 0;
4020 unwind.fp_reg = REG_SP;
4021 unwind.fp_used = 0;
4022 unwind.sp_restored = 0;
4023 }
4024
4025
4026 /* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
4028
4029 static void
4030 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4031 {
4032 demand_empty_rest_of_line ();
4033 if (!unwind.proc_start)
4034 as_bad (MISSING_FNSTART);
4035
4036 if (unwind.table_entry)
4037 as_bad (_("duplicate .handlerdata directive"));
4038
4039 create_unwind_entry (1);
4040 }
4041
4042 /* Parse an unwind_fnend directive. Generates the index table entry. */
4043
4044 static void
4045 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4046 {
4047 long where;
4048 char *ptr;
4049 valueT val;
4050 unsigned int marked_pr_dependency;
4051
4052 demand_empty_rest_of_line ();
4053
4054 if (!unwind.proc_start)
4055 {
4056 as_bad (_(".fnend directive without .fnstart"));
4057 return;
4058 }
4059
4060 /* Add eh table entry. */
4061 if (unwind.table_entry == NULL)
4062 val = create_unwind_entry (0);
4063 else
4064 val = 0;
4065
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind.saved_seg, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg, 2);
4070
4071 ptr = frag_more (8);
4072 memset (ptr, 0, 8);
4073 where = frag_now_fix () - 8;
4074
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4077 BFD_RELOC_ARM_PREL31);
4078
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
4081 marked_pr_dependency
4082 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
4083 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4084 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4085 {
4086 static const char *const name[] =
4087 {
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4091 };
4092 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4093 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
4094 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
4095 |= 1 << unwind.personality_index;
4096 }
4097
4098 if (val)
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr + 4, val, 4);
4101 else
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4104 BFD_RELOC_ARM_PREL31);
4105
4106 /* Restore the original section. */
4107 subseg_set (unwind.saved_seg, unwind.saved_subseg);
4108
4109 unwind.proc_start = NULL;
4110 }
4111
4112
4113 /* Parse an unwind_cantunwind directive. */
4114
4115 static void
4116 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4117 {
4118 demand_empty_rest_of_line ();
4119 if (!unwind.proc_start)
4120 as_bad (MISSING_FNSTART);
4121
4122 if (unwind.personality_routine || unwind.personality_index != -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
4124
4125 unwind.personality_index = -2;
4126 }
4127
4128
4129 /* Parse a personalityindex directive. */
4130
4131 static void
4132 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4133 {
4134 expressionS exp;
4135
4136 if (!unwind.proc_start)
4137 as_bad (MISSING_FNSTART);
4138
4139 if (unwind.personality_routine || unwind.personality_index != -1)
4140 as_bad (_("duplicate .personalityindex directive"));
4141
4142 expression (&exp);
4143
4144 if (exp.X_op != O_constant
4145 || exp.X_add_number < 0 || exp.X_add_number > 15)
4146 {
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4149 return;
4150 }
4151
4152 unwind.personality_index = exp.X_add_number;
4153
4154 demand_empty_rest_of_line ();
4155 }
4156
4157
4158 /* Parse a personality directive. */
4159
4160 static void
4161 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4162 {
4163 char *name, *p, c;
4164
4165 if (!unwind.proc_start)
4166 as_bad (MISSING_FNSTART);
4167
4168 if (unwind.personality_routine || unwind.personality_index != -1)
4169 as_bad (_("duplicate .personality directive"));
4170
4171 c = get_symbol_name (& name);
4172 p = input_line_pointer;
4173 if (c == '"')
4174 ++ input_line_pointer;
4175 unwind.personality_routine = symbol_find_or_make (name);
4176 *p = c;
4177 demand_empty_rest_of_line ();
4178 }
4179
4180
4181 /* Parse a directive saving core registers. */
4182
4183 static void
4184 s_arm_unwind_save_core (void)
4185 {
4186 valueT op;
4187 long range;
4188 int n;
4189
4190 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
4191 if (range == FAIL)
4192 {
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4195 return;
4196 }
4197
4198 demand_empty_rest_of_line ();
4199
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind.sp_restored && unwind.fp_reg == 12
4204 && (range & 0x3000) == 0x1000)
4205 {
4206 unwind.opcode_count--;
4207 unwind.sp_restored = 0;
4208 range = (range | 0x2000) & ~0x1000;
4209 unwind.pending_offset = 0;
4210 }
4211
4212 /* Pop r4-r15. */
4213 if (range & 0xfff0)
4214 {
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n = 0; n < 8; n++)
4218 {
4219 /* Break at the first non-saved register. */
4220 if ((range & (1 << (n + 4))) == 0)
4221 break;
4222 }
4223 /* See if there are any other bits set. */
4224 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4225 {
4226 /* Use the long form. */
4227 op = 0x8000 | ((range >> 4) & 0xfff);
4228 add_unwind_opcode (op, 2);
4229 }
4230 else
4231 {
4232 /* Use the short form. */
4233 if (range & 0x4000)
4234 op = 0xa8; /* Pop r14. */
4235 else
4236 op = 0xa0; /* Do not pop r14. */
4237 op |= (n - 1);
4238 add_unwind_opcode (op, 1);
4239 }
4240 }
4241
4242 /* Pop r0-r3. */
4243 if (range & 0xf)
4244 {
4245 op = 0xb100 | (range & 0xf);
4246 add_unwind_opcode (op, 2);
4247 }
4248
4249 /* Record the number of bytes pushed. */
4250 for (n = 0; n < 16; n++)
4251 {
4252 if (range & (1 << n))
4253 unwind.frame_size += 4;
4254 }
4255 }
4256
4257
4258 /* Parse a directive saving FPA registers. */
4259
4260 static void
4261 s_arm_unwind_save_fpa (int reg)
4262 {
4263 expressionS exp;
4264 int num_regs;
4265 valueT op;
4266
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer) != FAIL)
4269 expression (&exp);
4270 else
4271 exp.X_op = O_illegal;
4272
4273 if (exp.X_op != O_constant)
4274 {
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
4277 return;
4278 }
4279
4280 num_regs = exp.X_add_number;
4281
4282 if (num_regs < 1 || num_regs > 4)
4283 {
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
4286 return;
4287 }
4288
4289 demand_empty_rest_of_line ();
4290
4291 if (reg == 4)
4292 {
4293 /* Short form. */
4294 op = 0xb4 | (num_regs - 1);
4295 add_unwind_opcode (op, 1);
4296 }
4297 else
4298 {
4299 /* Long form. */
4300 op = 0xc800 | (reg << 4) | (num_regs - 1);
4301 add_unwind_opcode (op, 2);
4302 }
4303 unwind.frame_size += num_regs * 12;
4304 }
4305
4306
4307 /* Parse a directive saving VFP registers for ARMv6 and above. */
4308
4309 static void
4310 s_arm_unwind_save_vfp_armv6 (void)
4311 {
4312 int count;
4313 unsigned int start;
4314 valueT op;
4315 int num_vfpv3_regs = 0;
4316 int num_regs_below_16;
4317 bfd_boolean partial_match;
4318
4319 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4320 &partial_match);
4321 if (count == FAIL)
4322 {
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4325 return;
4326 }
4327
4328 demand_empty_rest_of_line ();
4329
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4332
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4334 if (start >= 16)
4335 num_vfpv3_regs = count;
4336 else if (start + count > 16)
4337 num_vfpv3_regs = start + count - 16;
4338
4339 if (num_vfpv3_regs > 0)
4340 {
4341 int start_offset = start > 16 ? start - 16 : 0;
4342 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4343 add_unwind_opcode (op, 2);
4344 }
4345
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4348 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4349 if (num_regs_below_16 > 0)
4350 {
4351 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4352 add_unwind_opcode (op, 2);
4353 }
4354
4355 unwind.frame_size += count * 8;
4356 }
4357
4358
4359 /* Parse a directive saving VFP registers for pre-ARMv6. */
4360
4361 static void
4362 s_arm_unwind_save_vfp (void)
4363 {
4364 int count;
4365 unsigned int reg;
4366 valueT op;
4367 bfd_boolean partial_match;
4368
4369 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4370 &partial_match);
4371 if (count == FAIL)
4372 {
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
4375 return;
4376 }
4377
4378 demand_empty_rest_of_line ();
4379
4380 if (reg == 8)
4381 {
4382 /* Short form. */
4383 op = 0xb8 | (count - 1);
4384 add_unwind_opcode (op, 1);
4385 }
4386 else
4387 {
4388 /* Long form. */
4389 op = 0xb300 | (reg << 4) | (count - 1);
4390 add_unwind_opcode (op, 2);
4391 }
4392 unwind.frame_size += count * 8 + 4;
4393 }
4394
4395
4396 /* Parse a directive saving iWMMXt data registers. */
4397
4398 static void
4399 s_arm_unwind_save_mmxwr (void)
4400 {
4401 int reg;
4402 int hi_reg;
4403 int i;
4404 unsigned mask = 0;
4405 valueT op;
4406
4407 if (*input_line_pointer == '{')
4408 input_line_pointer++;
4409
4410 do
4411 {
4412 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4413
4414 if (reg == FAIL)
4415 {
4416 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4417 goto error;
4418 }
4419
4420 if (mask >> reg)
4421 as_tsktsk (_("register list not in ascending order"));
4422 mask |= 1 << reg;
4423
4424 if (*input_line_pointer == '-')
4425 {
4426 input_line_pointer++;
4427 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4428 if (hi_reg == FAIL)
4429 {
4430 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4431 goto error;
4432 }
4433 else if (reg >= hi_reg)
4434 {
4435 as_bad (_("bad register range"));
4436 goto error;
4437 }
4438 for (; reg < hi_reg; reg++)
4439 mask |= 1 << reg;
4440 }
4441 }
4442 while (skip_past_comma (&input_line_pointer) != FAIL);
4443
4444 skip_past_char (&input_line_pointer, '}');
4445
4446 demand_empty_rest_of_line ();
4447
4448 /* Generate any deferred opcodes because we're going to be looking at
4449 the list. */
4450 flush_pending_unwind ();
4451
4452 for (i = 0; i < 16; i++)
4453 {
4454 if (mask & (1 << i))
4455 unwind.frame_size += 8;
4456 }
4457
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4460 registers. */
4461 if (unwind.opcode_count > 0)
4462 {
4463 i = unwind.opcodes[unwind.opcode_count - 1];
4464 if ((i & 0xf8) == 0xc0)
4465 {
4466 i &= 7;
4467 /* Only merge if the blocks are contiguous. */
4468 if (i < 6)
4469 {
4470 if ((mask & 0xfe00) == (1 << 9))
4471 {
4472 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4473 unwind.opcode_count--;
4474 }
4475 }
4476 else if (i == 6 && unwind.opcode_count >= 2)
4477 {
4478 i = unwind.opcodes[unwind.opcode_count - 2];
4479 reg = i >> 4;
4480 i &= 0xf;
4481
4482 op = 0xffff << (reg - 1);
4483 if (reg > 0
4484 && ((mask & op) == (1u << (reg - 1))))
4485 {
4486 op = (1 << (reg + i + 1)) - 1;
4487 op &= ~((1 << reg) - 1);
4488 mask |= op;
4489 unwind.opcode_count -= 2;
4490 }
4491 }
4492 }
4493 }
4494
4495 hi_reg = 15;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg = 15; reg >= -1; reg--)
4499 {
4500 /* Save registers in blocks. */
4501 if (reg < 0
4502 || !(mask & (1 << reg)))
4503 {
4504 /* We found an unsaved reg. Generate opcodes to save the
4505 preceding block. */
4506 if (reg != hi_reg)
4507 {
4508 if (reg == 9)
4509 {
4510 /* Short form. */
4511 op = 0xc0 | (hi_reg - 10);
4512 add_unwind_opcode (op, 1);
4513 }
4514 else
4515 {
4516 /* Long form. */
4517 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4518 add_unwind_opcode (op, 2);
4519 }
4520 }
4521 hi_reg = reg - 1;
4522 }
4523 }
4524
4525 return;
4526 error:
4527 ignore_rest_of_line ();
4528 }
4529
4530 static void
4531 s_arm_unwind_save_mmxwcg (void)
4532 {
4533 int reg;
4534 int hi_reg;
4535 unsigned mask = 0;
4536 valueT op;
4537
4538 if (*input_line_pointer == '{')
4539 input_line_pointer++;
4540
4541 skip_whitespace (input_line_pointer);
4542
4543 do
4544 {
4545 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4546
4547 if (reg == FAIL)
4548 {
4549 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4550 goto error;
4551 }
4552
4553 reg -= 8;
4554 if (mask >> reg)
4555 as_tsktsk (_("register list not in ascending order"));
4556 mask |= 1 << reg;
4557
4558 if (*input_line_pointer == '-')
4559 {
4560 input_line_pointer++;
4561 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4562 if (hi_reg == FAIL)
4563 {
4564 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4565 goto error;
4566 }
4567 else if (reg >= hi_reg)
4568 {
4569 as_bad (_("bad register range"));
4570 goto error;
4571 }
4572 for (; reg < hi_reg; reg++)
4573 mask |= 1 << reg;
4574 }
4575 }
4576 while (skip_past_comma (&input_line_pointer) != FAIL);
4577
4578 skip_past_char (&input_line_pointer, '}');
4579
4580 demand_empty_rest_of_line ();
4581
4582 /* Generate any deferred opcodes because we're going to be looking at
4583 the list. */
4584 flush_pending_unwind ();
4585
4586 for (reg = 0; reg < 16; reg++)
4587 {
4588 if (mask & (1 << reg))
4589 unwind.frame_size += 4;
4590 }
4591 op = 0xc700 | mask;
4592 add_unwind_opcode (op, 2);
4593 return;
4594 error:
4595 ignore_rest_of_line ();
4596 }
4597
4598
4599 /* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
4601
4602 static void
4603 s_arm_unwind_save (int arch_v6)
4604 {
4605 char *peek;
4606 struct reg_entry *reg;
4607 bfd_boolean had_brace = FALSE;
4608
4609 if (!unwind.proc_start)
4610 as_bad (MISSING_FNSTART);
4611
4612 /* Figure out what sort of save we have. */
4613 peek = input_line_pointer;
4614
4615 if (*peek == '{')
4616 {
4617 had_brace = TRUE;
4618 peek++;
4619 }
4620
4621 reg = arm_reg_parse_multi (&peek);
4622
4623 if (!reg)
4624 {
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
4627 return;
4628 }
4629
4630 switch (reg->type)
4631 {
4632 case REG_TYPE_FN:
4633 if (had_brace)
4634 {
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4637 return;
4638 }
4639 input_line_pointer = peek;
4640 s_arm_unwind_save_fpa (reg->number);
4641 return;
4642
4643 case REG_TYPE_RN:
4644 s_arm_unwind_save_core ();
4645 return;
4646
4647 case REG_TYPE_VFD:
4648 if (arch_v6)
4649 s_arm_unwind_save_vfp_armv6 ();
4650 else
4651 s_arm_unwind_save_vfp ();
4652 return;
4653
4654 case REG_TYPE_MMXWR:
4655 s_arm_unwind_save_mmxwr ();
4656 return;
4657
4658 case REG_TYPE_MMXWCG:
4659 s_arm_unwind_save_mmxwcg ();
4660 return;
4661
4662 default:
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
4665 }
4666 }
4667
4668
4669 /* Parse an unwind_movsp directive. */
4670
4671 static void
4672 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4673 {
4674 int reg;
4675 valueT op;
4676 int offset;
4677
4678 if (!unwind.proc_start)
4679 as_bad (MISSING_FNSTART);
4680
4681 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4682 if (reg == FAIL)
4683 {
4684 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4685 ignore_rest_of_line ();
4686 return;
4687 }
4688
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer) != FAIL)
4691 {
4692 if (immediate_for_directive (&offset) == FAIL)
4693 return;
4694 }
4695 else
4696 offset = 0;
4697
4698 demand_empty_rest_of_line ();
4699
4700 if (reg == REG_SP || reg == REG_PC)
4701 {
4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4703 return;
4704 }
4705
4706 if (unwind.fp_reg != REG_SP)
4707 as_bad (_("unexpected .unwind_movsp directive"));
4708
4709 /* Generate opcode to restore the value. */
4710 op = 0x90 | reg;
4711 add_unwind_opcode (op, 1);
4712
4713 /* Record the information for later. */
4714 unwind.fp_reg = reg;
4715 unwind.fp_offset = unwind.frame_size - offset;
4716 unwind.sp_restored = 1;
4717 }
4718
4719 /* Parse an unwind_pad directive. */
4720
4721 static void
4722 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4723 {
4724 int offset;
4725
4726 if (!unwind.proc_start)
4727 as_bad (MISSING_FNSTART);
4728
4729 if (immediate_for_directive (&offset) == FAIL)
4730 return;
4731
4732 if (offset & 3)
4733 {
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4736 return;
4737 }
4738
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind.frame_size += offset;
4741 unwind.pending_offset += offset;
4742
4743 demand_empty_rest_of_line ();
4744 }
4745
4746 /* Parse an unwind_setfp directive. */
4747
4748 static void
4749 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4750 {
4751 int sp_reg;
4752 int fp_reg;
4753 int offset;
4754
4755 if (!unwind.proc_start)
4756 as_bad (MISSING_FNSTART);
4757
4758 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4759 if (skip_past_comma (&input_line_pointer) == FAIL)
4760 sp_reg = FAIL;
4761 else
4762 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4763
4764 if (fp_reg == FAIL || sp_reg == FAIL)
4765 {
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4768 return;
4769 }
4770
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer) != FAIL)
4773 {
4774 if (immediate_for_directive (&offset) == FAIL)
4775 return;
4776 }
4777 else
4778 offset = 0;
4779
4780 demand_empty_rest_of_line ();
4781
4782 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4783 {
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4786 return;
4787 }
4788
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind.fp_reg = fp_reg;
4791 unwind.fp_used = 1;
4792 if (sp_reg == REG_SP)
4793 unwind.fp_offset = unwind.frame_size - offset;
4794 else
4795 unwind.fp_offset -= offset;
4796 }
4797
4798 /* Parse an unwind_raw directive. */
4799
4800 static void
4801 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4802 {
4803 expressionS exp;
4804 /* This is an arbitrary limit. */
4805 unsigned char op[16];
4806 int count;
4807
4808 if (!unwind.proc_start)
4809 as_bad (MISSING_FNSTART);
4810
4811 expression (&exp);
4812 if (exp.X_op == O_constant
4813 && skip_past_comma (&input_line_pointer) != FAIL)
4814 {
4815 unwind.frame_size += exp.X_add_number;
4816 expression (&exp);
4817 }
4818 else
4819 exp.X_op = O_illegal;
4820
4821 if (exp.X_op != O_constant)
4822 {
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4825 return;
4826 }
4827
4828 count = 0;
4829
4830 /* Parse the opcode. */
4831 for (;;)
4832 {
4833 if (count >= 16)
4834 {
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
4837 }
4838 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4839 {
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4842 return;
4843 }
4844 op[count++] = exp.X_add_number;
4845
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer) == FAIL)
4848 break;
4849
4850 expression (&exp);
4851 }
4852
4853 /* Add the opcode bytes in reverse order. */
4854 while (count--)
4855 add_unwind_opcode (op[count], 1);
4856
4857 demand_empty_rest_of_line ();
4858 }
4859
4860
4861 /* Parse a .eabi_attribute directive. */
4862
4863 static void
4864 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4865 {
4866 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4867
4868 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4869 attributes_set_explicitly[tag] = 1;
4870 }
4871
4872 /* Emit a tls fix for the symbol. */
4873
4874 static void
4875 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4876 {
4877 char *p;
4878 expressionS exp;
4879 #ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4881 #endif
4882
4883 #ifdef md_cons_align
4884 md_cons_align (4);
4885 #endif
4886
4887 /* Since we're just labelling the code, there's no need to define a
4888 mapping symbol. */
4889 expression (&exp);
4890 p = obstack_next_free (&frchain_now->frch_obstack);
4891 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4892 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ);
4894 }
4895 #endif /* OBJ_ELF */
4896
4897 static void s_arm_arch (int);
4898 static void s_arm_object_arch (int);
4899 static void s_arm_cpu (int);
4900 static void s_arm_fpu (int);
4901 static void s_arm_arch_extension (int);
4902
4903 #ifdef TE_PE
4904
4905 static void
4906 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4907 {
4908 expressionS exp;
4909
4910 do
4911 {
4912 expression (&exp);
4913 if (exp.X_op == O_symbol)
4914 exp.X_op = O_secrel;
4915
4916 emit_expr (&exp, 4);
4917 }
4918 while (*input_line_pointer++ == ',');
4919
4920 input_line_pointer--;
4921 demand_empty_rest_of_line ();
4922 }
4923 #endif /* TE_PE */
4924
4925 /* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
4930
4931 const pseudo_typeS md_pseudo_table[] =
4932 {
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req, 0 },
4935 /* Following two are likewise never called. */
4936 { "dn", s_dn, 0 },
4937 { "qn", s_qn, 0 },
4938 { "unreq", s_unreq, 0 },
4939 { "bss", s_bss, 0 },
4940 { "align", s_align_ptwo, 2 },
4941 { "arm", s_arm, 0 },
4942 { "thumb", s_thumb, 0 },
4943 { "code", s_code, 0 },
4944 { "force_thumb", s_force_thumb, 0 },
4945 { "thumb_func", s_thumb_func, 0 },
4946 { "thumb_set", s_thumb_set, 0 },
4947 { "even", s_even, 0 },
4948 { "ltorg", s_ltorg, 0 },
4949 { "pool", s_ltorg, 0 },
4950 { "syntax", s_syntax, 0 },
4951 { "cpu", s_arm_cpu, 0 },
4952 { "arch", s_arm_arch, 0 },
4953 { "object_arch", s_arm_object_arch, 0 },
4954 { "fpu", s_arm_fpu, 0 },
4955 { "arch_extension", s_arm_arch_extension, 0 },
4956 #ifdef OBJ_ELF
4957 { "word", s_arm_elf_cons, 4 },
4958 { "long", s_arm_elf_cons, 4 },
4959 { "inst.n", s_arm_elf_inst, 2 },
4960 { "inst.w", s_arm_elf_inst, 4 },
4961 { "inst", s_arm_elf_inst, 0 },
4962 { "rel31", s_arm_rel31, 0 },
4963 { "fnstart", s_arm_unwind_fnstart, 0 },
4964 { "fnend", s_arm_unwind_fnend, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4966 { "personality", s_arm_unwind_personality, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4969 { "save", s_arm_unwind_save, 0 },
4970 { "vsave", s_arm_unwind_save, 1 },
4971 { "movsp", s_arm_unwind_movsp, 0 },
4972 { "pad", s_arm_unwind_pad, 0 },
4973 { "setfp", s_arm_unwind_setfp, 0 },
4974 { "unwind_raw", s_arm_unwind_raw, 0 },
4975 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4976 { "tlsdescseq", s_arm_tls_descseq, 0 },
4977 #else
4978 { "word", cons, 4},
4979
4980 /* These are used for dwarf. */
4981 {"2byte", cons, 2},
4982 {"4byte", cons, 4},
4983 {"8byte", cons, 8},
4984 /* These are used for dwarf2. */
4985 { "file", dwarf2_directive_file, 0 },
4986 { "loc", dwarf2_directive_loc, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4988 #endif
4989 { "extend", float_cons, 'x' },
4990 { "ldouble", float_cons, 'x' },
4991 { "packed", float_cons, 'p' },
4992 #ifdef TE_PE
4993 {"secrel32", pe_directive_secrel, 0},
4994 #endif
4995
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref, 0},
4998 {"def", s_ccs_def, 0},
4999 {"asmfunc", s_ccs_asmfunc, 0},
5000 {"endasmfunc", s_ccs_endasmfunc, 0},
5001
5002 { 0, 0, 0 }
5003 };
5004 \f
5005 /* Parser functions used exclusively in instruction operands. */
5006
5007 /* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5011 optional. */
5012
5013 static int
5014 parse_immediate (char **str, int *val, int min, int max,
5015 bfd_boolean prefix_opt)
5016 {
5017 expressionS exp;
5018
5019 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5020 if (exp.X_op != O_constant)
5021 {
5022 inst.error = _("constant expression required");
5023 return FAIL;
5024 }
5025
5026 if (exp.X_add_number < min || exp.X_add_number > max)
5027 {
5028 inst.error = _("immediate value out of range");
5029 return FAIL;
5030 }
5031
5032 *val = exp.X_add_number;
5033 return SUCCESS;
5034 }
5035
5036 /* Less-generic immediate-value read function with the possibility of loading a
5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5038 instructions. Puts the result directly in inst.operands[i]. */
5039
5040 static int
5041 parse_big_immediate (char **str, int i, expressionS *in_exp,
5042 bfd_boolean allow_symbol_p)
5043 {
5044 expressionS exp;
5045 expressionS *exp_p = in_exp ? in_exp : &exp;
5046 char *ptr = *str;
5047
5048 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5049
5050 if (exp_p->X_op == O_constant)
5051 {
5052 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
5056 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
5057 {
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5060 & 0xffffffff);
5061 inst.operands[i].regisimm = 1;
5062 }
5063 }
5064 else if (exp_p->X_op == O_big
5065 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5066 {
5067 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
5068
5069 /* Bignums have their least significant bits in
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
5072 gas_assert (parts != 0);
5073
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
5078 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
5079 {
5080 LITTLENUM_TYPE m = -1;
5081
5082 if (generic_bignum[parts * 2] != 0
5083 && generic_bignum[parts * 2] != m)
5084 return FAIL;
5085
5086 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
5087 if (generic_bignum[j] != generic_bignum[j-1])
5088 return FAIL;
5089 }
5090
5091 inst.operands[i].imm = 0;
5092 for (j = 0; j < parts; j++, idx++)
5093 inst.operands[i].imm |= generic_bignum[idx]
5094 << (LITTLENUM_NUMBER_OF_BITS * j);
5095 inst.operands[i].reg = 0;
5096 for (j = 0; j < parts; j++, idx++)
5097 inst.operands[i].reg |= generic_bignum[idx]
5098 << (LITTLENUM_NUMBER_OF_BITS * j);
5099 inst.operands[i].regisimm = 1;
5100 }
5101 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5102 return FAIL;
5103
5104 *str = ptr;
5105
5106 return SUCCESS;
5107 }
5108
5109 /* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
5111
5112 static int
5113 parse_fpa_immediate (char ** str)
5114 {
5115 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5116 char * save_in;
5117 expressionS exp;
5118 int i;
5119 int j;
5120
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
5123
5124 for (i = 0; fp_const[i]; i++)
5125 {
5126 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
5127 {
5128 char *start = *str;
5129
5130 *str += strlen (fp_const[i]);
5131 if (is_end_of_line[(unsigned char) **str])
5132 return i + 8;
5133 *str = start;
5134 }
5135 }
5136
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
5141
5142 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
5143
5144 /* Look for a raw floating point number. */
5145 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5146 && is_end_of_line[(unsigned char) *save_in])
5147 {
5148 for (i = 0; i < NUM_FLOAT_VALS; i++)
5149 {
5150 for (j = 0; j < MAX_LITTLENUMS; j++)
5151 {
5152 if (words[j] != fp_values[i][j])
5153 break;
5154 }
5155
5156 if (j == MAX_LITTLENUMS)
5157 {
5158 *str = save_in;
5159 return i + 8;
5160 }
5161 }
5162 }
5163
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in = input_line_pointer;
5167 input_line_pointer = *str;
5168 if (expression (&exp) == absolute_section
5169 && exp.X_op == O_big
5170 && exp.X_add_number < 0)
5171 {
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5173 Ditto for 15. */
5174 #define X_PRECISION 5
5175 #define E_PRECISION 15L
5176 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
5177 {
5178 for (i = 0; i < NUM_FLOAT_VALS; i++)
5179 {
5180 for (j = 0; j < MAX_LITTLENUMS; j++)
5181 {
5182 if (words[j] != fp_values[i][j])
5183 break;
5184 }
5185
5186 if (j == MAX_LITTLENUMS)
5187 {
5188 *str = input_line_pointer;
5189 input_line_pointer = save_in;
5190 return i + 8;
5191 }
5192 }
5193 }
5194 }
5195
5196 *str = input_line_pointer;
5197 input_line_pointer = save_in;
5198 inst.error = _("invalid FPA immediate expression");
5199 return FAIL;
5200 }
5201
5202 /* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5204
5205 static int
5206 is_quarter_float (unsigned imm)
5207 {
5208 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5210 }
5211
5212
5213 /* Detect the presence of a floating point or integer zero constant,
5214 i.e. #0.0 or #0. */
5215
5216 static bfd_boolean
5217 parse_ifimm_zero (char **in)
5218 {
5219 int error_code;
5220
5221 if (!is_immediate_prefix (**in))
5222 {
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax)
5225 return FALSE;
5226 }
5227 else
5228 ++*in;
5229
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in, "0x", 2) == 0)
5232 {
5233 int val;
5234 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5235 return FALSE;
5236 return TRUE;
5237 }
5238
5239 error_code = atof_generic (in, ".", EXP_CHARS,
5240 &generic_floating_point_number);
5241
5242 if (!error_code
5243 && generic_floating_point_number.sign == '+'
5244 && (generic_floating_point_number.low
5245 > generic_floating_point_number.leader))
5246 return TRUE;
5247
5248 return FALSE;
5249 }
5250
5251 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
5256
5257 static unsigned
5258 parse_qfloat_immediate (char **ccp, int *immed)
5259 {
5260 char *str = *ccp;
5261 char *fpnum;
5262 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5263 int found_fpchar = 0;
5264
5265 skip_past_char (&str, '#');
5266
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5272 fpnum = str;
5273 skip_whitespace (fpnum);
5274
5275 if (strncmp (fpnum, "0x", 2) == 0)
5276 return FAIL;
5277 else
5278 {
5279 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
5280 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5281 {
5282 found_fpchar = 1;
5283 break;
5284 }
5285
5286 if (!found_fpchar)
5287 return FAIL;
5288 }
5289
5290 if ((str = atof_ieee (str, 's', words)) != NULL)
5291 {
5292 unsigned fpword = 0;
5293 int i;
5294
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
5297 {
5298 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5299 fpword |= words[i];
5300 }
5301
5302 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5303 *immed = fpword;
5304 else
5305 return FAIL;
5306
5307 *ccp = str;
5308
5309 return SUCCESS;
5310 }
5311
5312 return FAIL;
5313 }
5314
5315 /* Shift operands. */
5316 enum shift_kind
5317 {
5318 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
5319 };
5320
5321 struct asm_shift_name
5322 {
5323 const char *name;
5324 enum shift_kind kind;
5325 };
5326
5327 /* Third argument to parse_shift. */
5328 enum parse_shift_mode
5329 {
5330 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5335 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
5336 };
5337
5338 /* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
5340
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5343 RRX
5344
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
5347
5348 static int
5349 parse_shift (char **str, int i, enum parse_shift_mode mode)
5350 {
5351 const struct asm_shift_name *shift_name;
5352 enum shift_kind shift;
5353 char *s = *str;
5354 char *p = s;
5355 int reg;
5356
5357 for (p = *str; ISALPHA (*p); p++)
5358 ;
5359
5360 if (p == *str)
5361 {
5362 inst.error = _("shift expression expected");
5363 return FAIL;
5364 }
5365
5366 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5367 p - *str);
5368
5369 if (shift_name == NULL)
5370 {
5371 inst.error = _("shift expression expected");
5372 return FAIL;
5373 }
5374
5375 shift = shift_name->kind;
5376
5377 switch (mode)
5378 {
5379 case NO_SHIFT_RESTRICT:
5380 case SHIFT_IMMEDIATE:
5381 if (shift == SHIFT_UXTW)
5382 {
5383 inst.error = _("'UXTW' not allowed here");
5384 return FAIL;
5385 }
5386 break;
5387
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5389 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5390 {
5391 inst.error = _("'LSL' or 'ASR' required");
5392 return FAIL;
5393 }
5394 break;
5395
5396 case SHIFT_LSL_IMMEDIATE:
5397 if (shift != SHIFT_LSL)
5398 {
5399 inst.error = _("'LSL' required");
5400 return FAIL;
5401 }
5402 break;
5403
5404 case SHIFT_ASR_IMMEDIATE:
5405 if (shift != SHIFT_ASR)
5406 {
5407 inst.error = _("'ASR' required");
5408 return FAIL;
5409 }
5410 break;
5411 case SHIFT_UXTW_IMMEDIATE:
5412 if (shift != SHIFT_UXTW)
5413 {
5414 inst.error = _("'UXTW' required");
5415 return FAIL;
5416 }
5417 break;
5418
5419 default: abort ();
5420 }
5421
5422 if (shift != SHIFT_RRX)
5423 {
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p);
5426
5427 if (mode == NO_SHIFT_RESTRICT
5428 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5429 {
5430 inst.operands[i].imm = reg;
5431 inst.operands[i].immisreg = 1;
5432 }
5433 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5434 return FAIL;
5435 }
5436 inst.operands[i].shift_kind = shift;
5437 inst.operands[i].shifted = 1;
5438 *str = p;
5439 return SUCCESS;
5440 }
5441
5442 /* Parse a <shifter_operand> for an ARM data processing instruction:
5443
5444 #<immediate>
5445 #<immediate>, <rotate>
5446 <Rm>
5447 <Rm>, <shift>
5448
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
5451 is deferred to md_apply_fix. */
5452
5453 static int
5454 parse_shifter_operand (char **str, int i)
5455 {
5456 int value;
5457 expressionS exp;
5458
5459 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5460 {
5461 inst.operands[i].reg = value;
5462 inst.operands[i].isreg = 1;
5463
5464 /* parse_shift will override this if appropriate */
5465 inst.relocs[0].exp.X_op = O_constant;
5466 inst.relocs[0].exp.X_add_number = 0;
5467
5468 if (skip_past_comma (str) == FAIL)
5469 return SUCCESS;
5470
5471 /* Shift operation on register. */
5472 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5473 }
5474
5475 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
5476 return FAIL;
5477
5478 if (skip_past_comma (str) == SUCCESS)
5479 {
5480 /* #x, y -- ie explicit rotation by Y. */
5481 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5482 return FAIL;
5483
5484 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
5485 {
5486 inst.error = _("constant expression expected");
5487 return FAIL;
5488 }
5489
5490 value = exp.X_add_number;
5491 if (value < 0 || value > 30 || value % 2 != 0)
5492 {
5493 inst.error = _("invalid rotation");
5494 return FAIL;
5495 }
5496 if (inst.relocs[0].exp.X_add_number < 0
5497 || inst.relocs[0].exp.X_add_number > 255)
5498 {
5499 inst.error = _("invalid constant");
5500 return FAIL;
5501 }
5502
5503 /* Encode as specified. */
5504 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
5505 return SUCCESS;
5506 }
5507
5508 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5509 inst.relocs[0].pc_rel = 0;
5510 return SUCCESS;
5511 }
5512
5513 /* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5519
5520 struct group_reloc_table_entry
5521 {
5522 const char *name;
5523 int alu_code;
5524 int ldr_code;
5525 int ldrs_code;
5526 int ldc_code;
5527 };
5528
5529 typedef enum
5530 {
5531 /* Varieties of non-ALU group relocation. */
5532
5533 GROUP_LDR,
5534 GROUP_LDRS,
5535 GROUP_LDC,
5536 GROUP_MVE
5537 } group_reloc_type;
5538
5539 static struct group_reloc_table_entry group_reloc_table[] =
5540 { /* Program counter relative: */
5541 { "pc_g0_nc",
5542 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5543 0, /* LDR */
5544 0, /* LDRS */
5545 0 }, /* LDC */
5546 { "pc_g0",
5547 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5551 { "pc_g1_nc",
5552 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5553 0, /* LDR */
5554 0, /* LDRS */
5555 0 }, /* LDC */
5556 { "pc_g1",
5557 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5561 { "pc_g2",
5562 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5566 /* Section base relative */
5567 { "sb_g0_nc",
5568 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5569 0, /* LDR */
5570 0, /* LDRS */
5571 0 }, /* LDC */
5572 { "sb_g0",
5573 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5577 { "sb_g1_nc",
5578 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5579 0, /* LDR */
5580 0, /* LDRS */
5581 0 }, /* LDC */
5582 { "sb_g1",
5583 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5587 { "sb_g2",
5588 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5591 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5592 /* Absolute thumb alu relocations. */
5593 { "lower0_7",
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5595 0, /* LDR. */
5596 0, /* LDRS. */
5597 0 }, /* LDC. */
5598 { "lower8_15",
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5600 0, /* LDR. */
5601 0, /* LDRS. */
5602 0 }, /* LDC. */
5603 { "upper0_7",
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5605 0, /* LDR. */
5606 0, /* LDRS. */
5607 0 }, /* LDC. */
5608 { "upper8_15",
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5610 0, /* LDR. */
5611 0, /* LDRS. */
5612 0 } }; /* LDC. */
5613
5614 /* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5620
5621 static int
5622 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5623 {
5624 unsigned int i;
5625 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5626 {
5627 int length = strlen (group_reloc_table[i].name);
5628
5629 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5630 && (*str)[length] == ':')
5631 {
5632 *out = &group_reloc_table[i];
5633 *str += (length + 1);
5634 return SUCCESS;
5635 }
5636 }
5637
5638 return FAIL;
5639 }
5640
5641 /* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5643
5644 #<immediate>
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5647 <Rm>
5648 <Rm>, <shift>
5649
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5652
5653 Everything else is as for parse_shifter_operand. */
5654
5655 static parse_operand_result
5656 parse_shifter_operand_group_reloc (char **str, int i)
5657 {
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5661
5662 if (((*str)[0] == '#' && (*str)[1] == ':')
5663 || (*str)[0] == ':')
5664 {
5665 struct group_reloc_table_entry *entry;
5666
5667 if ((*str)[0] == '#')
5668 (*str) += 2;
5669 else
5670 (*str)++;
5671
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5674 {
5675 inst.error = _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5677 }
5678
5679 /* We now have the group relocation table entry corresponding to
5680 the name in the assembler source. Next, we parse the expression. */
5681 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5683
5684 /* Record the relocation type (always the ALU variant here). */
5685 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5686 gas_assert (inst.relocs[0].type != 0);
5687
5688 return PARSE_OPERAND_SUCCESS;
5689 }
5690 else
5691 return parse_shifter_operand (str, i) == SUCCESS
5692 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5693
5694 /* Never reached. */
5695 }
5696
5697 /* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
5699
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701 static parse_operand_result
5702 parse_neon_alignment (char **str, int i)
5703 {
5704 char *p = *str;
5705 expressionS exp;
5706
5707 my_get_expression (&exp, &p, GE_NO_PREFIX);
5708
5709 if (exp.X_op != O_constant)
5710 {
5711 inst.error = _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL;
5713 }
5714
5715 inst.operands[i].imm = exp.X_add_number << 8;
5716 inst.operands[i].immisalign = 1;
5717 /* Alignments are not pre-indexes. */
5718 inst.operands[i].preind = 0;
5719
5720 *str = p;
5721 return PARSE_OPERAND_SUCCESS;
5722 }
5723
5724 /* Parse all forms of an ARM address expression. Information is written
5725 to inst.operands[i] and/or inst.relocs[0].
5726
5727 Preindexed addressing (.preind=1):
5728
5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5732 .shift_kind=shift .relocs[0].exp=shift_imm
5733
5734 These three may have a trailing ! which causes .writeback to be set also.
5735
5736 Postindexed addressing (.postind=1, .writeback=1):
5737
5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5741 .shift_kind=shift .relocs[0].exp=shift_imm
5742
5743 Unindexed addressing (.preind=0, .postind=0):
5744
5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5746
5747 Other:
5748
5749 [Rn]{!} shorthand for [Rn,#0]{!}
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
5752
5753 It is the caller's responsibility to check for addressing modes not
5754 supported by the instruction, and to set inst.relocs[0].type. */
5755
5756 static parse_operand_result
5757 parse_address_main (char **str, int i, int group_relocations,
5758 group_reloc_type group_type)
5759 {
5760 char *p = *str;
5761 int reg;
5762
5763 if (skip_past_char (&p, '[') == FAIL)
5764 {
5765 if (skip_past_char (&p, '=') == FAIL)
5766 {
5767 /* Bare address - translate to PC-relative offset. */
5768 inst.relocs[0].pc_rel = 1;
5769 inst.operands[i].reg = REG_PC;
5770 inst.operands[i].isreg = 1;
5771 inst.operands[i].preind = 1;
5772
5773 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
5774 return PARSE_OPERAND_FAIL;
5775 }
5776 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
5777 /*allow_symbol_p=*/TRUE))
5778 return PARSE_OPERAND_FAIL;
5779
5780 *str = p;
5781 return PARSE_OPERAND_SUCCESS;
5782 }
5783
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p);
5786
5787 if (group_type == GROUP_MVE)
5788 {
5789 enum arm_reg_type rtype = REG_TYPE_MQ;
5790 struct neon_type_el et;
5791 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5792 {
5793 inst.operands[i].isquad = 1;
5794 }
5795 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5796 {
5797 inst.error = BAD_ADDR_MODE;
5798 return PARSE_OPERAND_FAIL;
5799 }
5800 }
5801 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5802 {
5803 if (group_type == GROUP_MVE)
5804 inst.error = BAD_ADDR_MODE;
5805 else
5806 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5807 return PARSE_OPERAND_FAIL;
5808 }
5809 inst.operands[i].reg = reg;
5810 inst.operands[i].isreg = 1;
5811
5812 if (skip_past_comma (&p) == SUCCESS)
5813 {
5814 inst.operands[i].preind = 1;
5815
5816 if (*p == '+') p++;
5817 else if (*p == '-') p++, inst.operands[i].negative = 1;
5818
5819 enum arm_reg_type rtype = REG_TYPE_MQ;
5820 struct neon_type_el et;
5821 if (group_type == GROUP_MVE
5822 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5823 {
5824 inst.operands[i].immisreg = 2;
5825 inst.operands[i].imm = reg;
5826
5827 if (skip_past_comma (&p) == SUCCESS)
5828 {
5829 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5830 {
5831 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5832 inst.relocs[0].exp.X_add_number = 0;
5833 }
5834 else
5835 return PARSE_OPERAND_FAIL;
5836 }
5837 }
5838 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5839 {
5840 inst.operands[i].imm = reg;
5841 inst.operands[i].immisreg = 1;
5842
5843 if (skip_past_comma (&p) == SUCCESS)
5844 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5845 return PARSE_OPERAND_FAIL;
5846 }
5847 else if (skip_past_char (&p, ':') == SUCCESS)
5848 {
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5851 change. */
5852 parse_operand_result result = parse_neon_alignment (&p, i);
5853
5854 if (result != PARSE_OPERAND_SUCCESS)
5855 return result;
5856 }
5857 else
5858 {
5859 if (inst.operands[i].negative)
5860 {
5861 inst.operands[i].negative = 0;
5862 p--;
5863 }
5864
5865 if (group_relocations
5866 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5867 {
5868 struct group_reloc_table_entry *entry;
5869
5870 /* Skip over the #: or : sequence. */
5871 if (*p == '#')
5872 p += 2;
5873 else
5874 p++;
5875
5876 /* Try to parse a group relocation. Anything else is an
5877 error. */
5878 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5879 {
5880 inst.error = _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5882 }
5883
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
5886 expression. */
5887 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5889
5890 /* Record the relocation type. */
5891 switch (group_type)
5892 {
5893 case GROUP_LDR:
5894 inst.relocs[0].type
5895 = (bfd_reloc_code_real_type) entry->ldr_code;
5896 break;
5897
5898 case GROUP_LDRS:
5899 inst.relocs[0].type
5900 = (bfd_reloc_code_real_type) entry->ldrs_code;
5901 break;
5902
5903 case GROUP_LDC:
5904 inst.relocs[0].type
5905 = (bfd_reloc_code_real_type) entry->ldc_code;
5906 break;
5907
5908 default:
5909 gas_assert (0);
5910 }
5911
5912 if (inst.relocs[0].type == 0)
5913 {
5914 inst.error = _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5916 }
5917 }
5918 else
5919 {
5920 char *q = p;
5921
5922 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5923 return PARSE_OPERAND_FAIL;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
5925 if (inst.relocs[0].exp.X_op == O_constant
5926 && inst.relocs[0].exp.X_add_number == 0)
5927 {
5928 skip_whitespace (q);
5929 if (*q == '#')
5930 {
5931 q++;
5932 skip_whitespace (q);
5933 }
5934 if (*q == '-')
5935 inst.operands[i].negative = 1;
5936 }
5937 }
5938 }
5939 }
5940 else if (skip_past_char (&p, ':') == SUCCESS)
5941 {
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result = parse_neon_alignment (&p, i);
5945
5946 if (result != PARSE_OPERAND_SUCCESS)
5947 return result;
5948 }
5949
5950 if (skip_past_char (&p, ']') == FAIL)
5951 {
5952 inst.error = _("']' expected");
5953 return PARSE_OPERAND_FAIL;
5954 }
5955
5956 if (skip_past_char (&p, '!') == SUCCESS)
5957 inst.operands[i].writeback = 1;
5958
5959 else if (skip_past_comma (&p) == SUCCESS)
5960 {
5961 if (skip_past_char (&p, '{') == SUCCESS)
5962 {
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p, &inst.operands[i].imm,
5965 0, 255, TRUE) == FAIL)
5966 return PARSE_OPERAND_FAIL;
5967
5968 if (skip_past_char (&p, '}') == FAIL)
5969 {
5970 inst.error = _("'}' expected at end of 'option' field");
5971 return PARSE_OPERAND_FAIL;
5972 }
5973 if (inst.operands[i].preind)
5974 {
5975 inst.error = _("cannot combine index with option");
5976 return PARSE_OPERAND_FAIL;
5977 }
5978 *str = p;
5979 return PARSE_OPERAND_SUCCESS;
5980 }
5981 else
5982 {
5983 inst.operands[i].postind = 1;
5984 inst.operands[i].writeback = 1;
5985
5986 if (inst.operands[i].preind)
5987 {
5988 inst.error = _("cannot combine pre- and post-indexing");
5989 return PARSE_OPERAND_FAIL;
5990 }
5991
5992 if (*p == '+') p++;
5993 else if (*p == '-') p++, inst.operands[i].negative = 1;
5994
5995 enum arm_reg_type rtype = REG_TYPE_MQ;
5996 struct neon_type_el et;
5997 if (group_type == GROUP_MVE
5998 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5999 {
6000 inst.operands[i].immisreg = 2;
6001 inst.operands[i].imm = reg;
6002 }
6003 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
6004 {
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst.operands[i].immisalign)
6008 inst.operands[i].imm |= reg;
6009 else
6010 inst.operands[i].imm = reg;
6011 inst.operands[i].immisreg = 1;
6012
6013 if (skip_past_comma (&p) == SUCCESS)
6014 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
6015 return PARSE_OPERAND_FAIL;
6016 }
6017 else
6018 {
6019 char *q = p;
6020
6021 if (inst.operands[i].negative)
6022 {
6023 inst.operands[i].negative = 0;
6024 p--;
6025 }
6026 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
6027 return PARSE_OPERAND_FAIL;
6028 /* If the offset is 0, find out if it's a +0 or -0. */
6029 if (inst.relocs[0].exp.X_op == O_constant
6030 && inst.relocs[0].exp.X_add_number == 0)
6031 {
6032 skip_whitespace (q);
6033 if (*q == '#')
6034 {
6035 q++;
6036 skip_whitespace (q);
6037 }
6038 if (*q == '-')
6039 inst.operands[i].negative = 1;
6040 }
6041 }
6042 }
6043 }
6044
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6048 {
6049 inst.operands[i].preind = 1;
6050 inst.relocs[0].exp.X_op = O_constant;
6051 inst.relocs[0].exp.X_add_number = 0;
6052 }
6053 *str = p;
6054 return PARSE_OPERAND_SUCCESS;
6055 }
6056
6057 static int
6058 parse_address (char **str, int i)
6059 {
6060 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
6061 ? SUCCESS : FAIL;
6062 }
6063
6064 static parse_operand_result
6065 parse_address_group_reloc (char **str, int i, group_reloc_type type)
6066 {
6067 return parse_address_main (str, i, 1, type);
6068 }
6069
6070 /* Parse an operand for a MOVW or MOVT instruction. */
6071 static int
6072 parse_half (char **str)
6073 {
6074 char * p;
6075
6076 p = *str;
6077 skip_past_char (&p, '#');
6078 if (strncasecmp (p, ":lower16:", 9) == 0)
6079 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
6080 else if (strncasecmp (p, ":upper16:", 9) == 0)
6081 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
6082
6083 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
6084 {
6085 p += 9;
6086 skip_whitespace (p);
6087 }
6088
6089 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
6090 return FAIL;
6091
6092 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
6093 {
6094 if (inst.relocs[0].exp.X_op != O_constant)
6095 {
6096 inst.error = _("constant expression expected");
6097 return FAIL;
6098 }
6099 if (inst.relocs[0].exp.X_add_number < 0
6100 || inst.relocs[0].exp.X_add_number > 0xffff)
6101 {
6102 inst.error = _("immediate value out of range");
6103 return FAIL;
6104 }
6105 }
6106 *str = p;
6107 return SUCCESS;
6108 }
6109
6110 /* Miscellaneous. */
6111
6112 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6114 static int
6115 parse_psr (char **str, bfd_boolean lhs)
6116 {
6117 char *p;
6118 unsigned long psr_field;
6119 const struct asm_psr *psr;
6120 char *start;
6121 bfd_boolean is_apsr = FALSE;
6122 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
6123
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
6128 m_profile = FALSE;
6129
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6132 p = *str;
6133 if (strncasecmp (p, "SPSR", 4) == 0)
6134 {
6135 if (m_profile)
6136 goto unsupported_psr;
6137
6138 psr_field = SPSR_BIT;
6139 }
6140 else if (strncasecmp (p, "CPSR", 4) == 0)
6141 {
6142 if (m_profile)
6143 goto unsupported_psr;
6144
6145 psr_field = 0;
6146 }
6147 else if (strncasecmp (p, "APSR", 4) == 0)
6148 {
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6151 is_apsr = TRUE;
6152 psr_field = 0;
6153 }
6154 else if (m_profile)
6155 {
6156 start = p;
6157 do
6158 p++;
6159 while (ISALNUM (*p) || *p == '_');
6160
6161 if (strncasecmp (start, "iapsr", 5) == 0
6162 || strncasecmp (start, "eapsr", 5) == 0
6163 || strncasecmp (start, "xpsr", 4) == 0
6164 || strncasecmp (start, "psr", 3) == 0)
6165 p = start + strcspn (start, "rR") + 1;
6166
6167 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
6168 p - start);
6169
6170 if (!psr)
6171 return FAIL;
6172
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr->field <= 3)
6176 {
6177 psr_field = psr->field;
6178 is_apsr = TRUE;
6179 goto check_suffix;
6180 }
6181
6182 *str = p;
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6186 here. */
6187 return psr->field | (lhs ? PSR_f : 0);
6188 }
6189 else
6190 goto unsupported_psr;
6191
6192 p += 4;
6193 check_suffix:
6194 if (*p == '_')
6195 {
6196 /* A suffix follows. */
6197 p++;
6198 start = p;
6199
6200 do
6201 p++;
6202 while (ISALNUM (*p) || *p == '_');
6203
6204 if (is_apsr)
6205 {
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits = 0;
6208 unsigned int g_bit = 0;
6209 char *bit;
6210
6211 for (bit = start; bit != p; bit++)
6212 {
6213 switch (TOLOWER (*bit))
6214 {
6215 case 'n':
6216 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6217 break;
6218
6219 case 'z':
6220 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6221 break;
6222
6223 case 'c':
6224 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6225 break;
6226
6227 case 'v':
6228 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6229 break;
6230
6231 case 'q':
6232 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6233 break;
6234
6235 case 'g':
6236 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6237 break;
6238
6239 default:
6240 inst.error = _("unexpected bit specified after APSR");
6241 return FAIL;
6242 }
6243 }
6244
6245 if (nzcvq_bits == 0x1f)
6246 psr_field |= PSR_f;
6247
6248 if (g_bit == 0x1)
6249 {
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
6251 {
6252 inst.error = _("selected processor does not "
6253 "support DSP extension");
6254 return FAIL;
6255 }
6256
6257 psr_field |= PSR_s;
6258 }
6259
6260 if ((nzcvq_bits & 0x20) != 0
6261 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6262 || (g_bit & 0x2) != 0)
6263 {
6264 inst.error = _("bad bitmask specified after APSR");
6265 return FAIL;
6266 }
6267 }
6268 else
6269 {
6270 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
6271 p - start);
6272 if (!psr)
6273 goto error;
6274
6275 psr_field |= psr->field;
6276 }
6277 }
6278 else
6279 {
6280 if (ISALNUM (*p))
6281 goto error; /* Garbage after "[CS]PSR". */
6282
6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
6284 is deprecated, but allow it anyway. */
6285 if (is_apsr && lhs)
6286 {
6287 psr_field |= PSR_f;
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6289 "deprecated"));
6290 }
6291 else if (!m_profile)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field |= (PSR_c | PSR_f);
6295 }
6296 *str = p;
6297 return psr_field;
6298
6299 unsupported_psr:
6300 inst.error = _("selected processor does not support requested special "
6301 "purpose register");
6302 return FAIL;
6303
6304 error:
6305 inst.error = _("flag for {c}psr instruction expected");
6306 return FAIL;
6307 }
6308
6309 static int
6310 parse_sys_vldr_vstr (char **str)
6311 {
6312 unsigned i;
6313 int val = FAIL;
6314 struct {
6315 const char *name;
6316 int regl;
6317 int regh;
6318 } sysregs[] = {
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6321 {"VPR", 0x4, 0x1},
6322 {"P0", 0x5, 0x1},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6325 };
6326 char *op_end = strchr (*str, ',');
6327 size_t op_strlen = op_end - *str;
6328
6329 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6330 {
6331 if (!strncmp (*str, sysregs[i].name, op_strlen))
6332 {
6333 val = sysregs[i].regl | (sysregs[i].regh << 3);
6334 *str = op_end;
6335 break;
6336 }
6337 }
6338
6339 return val;
6340 }
6341
6342 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
6344
6345 static int
6346 parse_cps_flags (char **str)
6347 {
6348 int val = 0;
6349 int saw_a_flag = 0;
6350 char *s = *str;
6351
6352 for (;;)
6353 switch (*s++)
6354 {
6355 case '\0': case ',':
6356 goto done;
6357
6358 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6359 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6360 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
6361
6362 default:
6363 inst.error = _("unrecognized CPS flag");
6364 return FAIL;
6365 }
6366
6367 done:
6368 if (saw_a_flag == 0)
6369 {
6370 inst.error = _("missing CPS flags");
6371 return FAIL;
6372 }
6373
6374 *str = s - 1;
6375 return val;
6376 }
6377
6378 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6380
6381 static int
6382 parse_endian_specifier (char **str)
6383 {
6384 int little_endian;
6385 char *s = *str;
6386
6387 if (strncasecmp (s, "BE", 2))
6388 little_endian = 0;
6389 else if (strncasecmp (s, "LE", 2))
6390 little_endian = 1;
6391 else
6392 {
6393 inst.error = _("valid endian specifiers are be or le");
6394 return FAIL;
6395 }
6396
6397 if (ISALNUM (s[2]) || s[2] == '_')
6398 {
6399 inst.error = _("valid endian specifiers are be or le");
6400 return FAIL;
6401 }
6402
6403 *str = s + 2;
6404 return little_endian;
6405 }
6406
6407 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6410
6411 static int
6412 parse_ror (char **str)
6413 {
6414 int rot;
6415 char *s = *str;
6416
6417 if (strncasecmp (s, "ROR", 3) == 0)
6418 s += 3;
6419 else
6420 {
6421 inst.error = _("missing rotation field after comma");
6422 return FAIL;
6423 }
6424
6425 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6426 return FAIL;
6427
6428 switch (rot)
6429 {
6430 case 0: *str = s; return 0x0;
6431 case 8: *str = s; return 0x1;
6432 case 16: *str = s; return 0x2;
6433 case 24: *str = s; return 0x3;
6434
6435 default:
6436 inst.error = _("rotation can only be 0, 8, 16, or 24");
6437 return FAIL;
6438 }
6439 }
6440
6441 /* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6443 static int
6444 parse_cond (char **str)
6445 {
6446 char *q;
6447 const struct asm_cond *c;
6448 int n;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6451 char cond[3];
6452
6453 q = *str;
6454 n = 0;
6455 while (ISALPHA (*q) && n < 3)
6456 {
6457 cond[n] = TOLOWER (*q);
6458 q++;
6459 n++;
6460 }
6461
6462 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6463 if (!c)
6464 {
6465 inst.error = _("condition required");
6466 return FAIL;
6467 }
6468
6469 *str = q;
6470 return c->value;
6471 }
6472
6473 /* Parse an option for a barrier instruction. Returns the encoding for the
6474 option, or FAIL. */
6475 static int
6476 parse_barrier (char **str)
6477 {
6478 char *p, *q;
6479 const struct asm_barrier_opt *o;
6480
6481 p = q = *str;
6482 while (ISALPHA (*q))
6483 q++;
6484
6485 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6486 q - p);
6487 if (!o)
6488 return FAIL;
6489
6490 if (!mark_feature_used (&o->arch))
6491 return FAIL;
6492
6493 *str = q;
6494 return o->value;
6495 }
6496
6497 /* Parse the operands of a table branch instruction. Similar to a memory
6498 operand. */
6499 static int
6500 parse_tb (char **str)
6501 {
6502 char * p = *str;
6503 int reg;
6504
6505 if (skip_past_char (&p, '[') == FAIL)
6506 {
6507 inst.error = _("'[' expected");
6508 return FAIL;
6509 }
6510
6511 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6512 {
6513 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6514 return FAIL;
6515 }
6516 inst.operands[0].reg = reg;
6517
6518 if (skip_past_comma (&p) == FAIL)
6519 {
6520 inst.error = _("',' expected");
6521 return FAIL;
6522 }
6523
6524 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6525 {
6526 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6527 return FAIL;
6528 }
6529 inst.operands[0].imm = reg;
6530
6531 if (skip_past_comma (&p) == SUCCESS)
6532 {
6533 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6534 return FAIL;
6535 if (inst.relocs[0].exp.X_add_number != 1)
6536 {
6537 inst.error = _("invalid shift");
6538 return FAIL;
6539 }
6540 inst.operands[0].shifted = 1;
6541 }
6542
6543 if (skip_past_char (&p, ']') == FAIL)
6544 {
6545 inst.error = _("']' expected");
6546 return FAIL;
6547 }
6548 *str = p;
6549 return SUCCESS;
6550 }
6551
6552 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6558
6559 static int
6560 parse_neon_mov (char **str, int *which_operand)
6561 {
6562 int i = *which_operand, val;
6563 enum arm_reg_type rtype;
6564 char *ptr = *str;
6565 struct neon_type_el optype;
6566
6567 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6568 {
6569 /* Cases 17 or 19. */
6570 inst.operands[i].reg = val;
6571 inst.operands[i].isvec = 1;
6572 inst.operands[i].isscalar = 2;
6573 inst.operands[i].vectype = optype;
6574 inst.operands[i++].present = 1;
6575
6576 if (skip_past_comma (&ptr) == FAIL)
6577 goto wanted_comma;
6578
6579 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6580 {
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst.operands[i].reg = val;
6583 inst.operands[i].isreg = 1;
6584 inst.operands[i].present = 1;
6585 }
6586 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6587 {
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst.operands[i].reg = val;
6590 inst.operands[i].isvec = 1;
6591 inst.operands[i].isscalar = 2;
6592 inst.operands[i].vectype = optype;
6593 inst.operands[i++].present = 1;
6594
6595 if (skip_past_comma (&ptr) == FAIL)
6596 goto wanted_comma;
6597
6598 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6599 goto wanted_arm;
6600
6601 inst.operands[i].reg = val;
6602 inst.operands[i].isreg = 1;
6603 inst.operands[i++].present = 1;
6604
6605 if (skip_past_comma (&ptr) == FAIL)
6606 goto wanted_comma;
6607
6608 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6609 goto wanted_arm;
6610
6611 inst.operands[i].reg = val;
6612 inst.operands[i].isreg = 1;
6613 inst.operands[i].present = 1;
6614 }
6615 else
6616 {
6617 first_error (_("expected ARM or MVE vector register"));
6618 return FAIL;
6619 }
6620 }
6621 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6622 {
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst.operands[i].reg = val;
6625 inst.operands[i].isscalar = 1;
6626 inst.operands[i].vectype = optype;
6627 inst.operands[i++].present = 1;
6628
6629 if (skip_past_comma (&ptr) == FAIL)
6630 goto wanted_comma;
6631
6632 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6633 goto wanted_arm;
6634
6635 inst.operands[i].reg = val;
6636 inst.operands[i].isreg = 1;
6637 inst.operands[i].present = 1;
6638 }
6639 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6640 != FAIL)
6641 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6642 != FAIL))
6643 {
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr) == FAIL)
6646 goto wanted_comma;
6647
6648 inst.operands[i].reg = val;
6649 inst.operands[i].isreg = 1;
6650 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6651 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6652 inst.operands[i].isvec = 1;
6653 inst.operands[i].vectype = optype;
6654 inst.operands[i++].present = 1;
6655
6656 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6657 {
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst.operands[i].reg = val;
6661 inst.operands[i].isreg = 1;
6662 inst.operands[i].present = 1;
6663
6664 if (rtype == REG_TYPE_NQ)
6665 {
6666 first_error (_("can't use Neon quad register here"));
6667 return FAIL;
6668 }
6669 else if (rtype != REG_TYPE_VFS)
6670 {
6671 i++;
6672 if (skip_past_comma (&ptr) == FAIL)
6673 goto wanted_comma;
6674 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6675 goto wanted_arm;
6676 inst.operands[i].reg = val;
6677 inst.operands[i].isreg = 1;
6678 inst.operands[i].present = 1;
6679 }
6680 }
6681 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6682 &optype)) != FAIL)
6683 {
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6688
6689 inst.operands[i].reg = val;
6690 inst.operands[i].isreg = 1;
6691 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6692 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6693 inst.operands[i].isvec = 1;
6694 inst.operands[i].vectype = optype;
6695 inst.operands[i].present = 1;
6696
6697 if (skip_past_comma (&ptr) == SUCCESS)
6698 {
6699 /* Case 15. */
6700 i++;
6701
6702 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6703 goto wanted_arm;
6704
6705 inst.operands[i].reg = val;
6706 inst.operands[i].isreg = 1;
6707 inst.operands[i++].present = 1;
6708
6709 if (skip_past_comma (&ptr) == FAIL)
6710 goto wanted_comma;
6711
6712 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6713 goto wanted_arm;
6714
6715 inst.operands[i].reg = val;
6716 inst.operands[i].isreg = 1;
6717 inst.operands[i].present = 1;
6718 }
6719 }
6720 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst.operands[i].immisfloat = 1;
6726 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6727 == SUCCESS)
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6730 ;
6731 else
6732 {
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6734 return FAIL;
6735 }
6736 }
6737 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6738 {
6739 /* Cases 6, 7, 16, 18. */
6740 inst.operands[i].reg = val;
6741 inst.operands[i].isreg = 1;
6742 inst.operands[i++].present = 1;
6743
6744 if (skip_past_comma (&ptr) == FAIL)
6745 goto wanted_comma;
6746
6747 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6748 {
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst.operands[i].reg = val;
6751 inst.operands[i].isscalar = 2;
6752 inst.operands[i].present = 1;
6753 inst.operands[i].vectype = optype;
6754 }
6755 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6756 {
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst.operands[i].reg = val;
6759 inst.operands[i].isscalar = 1;
6760 inst.operands[i].present = 1;
6761 inst.operands[i].vectype = optype;
6762 }
6763 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6764 {
6765 inst.operands[i].reg = val;
6766 inst.operands[i].isreg = 1;
6767 inst.operands[i++].present = 1;
6768
6769 if (skip_past_comma (&ptr) == FAIL)
6770 goto wanted_comma;
6771
6772 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6773 != FAIL)
6774 {
6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6776
6777 inst.operands[i].reg = val;
6778 inst.operands[i].isreg = 1;
6779 inst.operands[i].isvec = 1;
6780 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6781 inst.operands[i].vectype = optype;
6782 inst.operands[i].present = 1;
6783
6784 if (rtype == REG_TYPE_VFS)
6785 {
6786 /* Case 14. */
6787 i++;
6788 if (skip_past_comma (&ptr) == FAIL)
6789 goto wanted_comma;
6790 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6791 &optype)) == FAIL)
6792 {
6793 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6794 return FAIL;
6795 }
6796 inst.operands[i].reg = val;
6797 inst.operands[i].isreg = 1;
6798 inst.operands[i].isvec = 1;
6799 inst.operands[i].issingle = 1;
6800 inst.operands[i].vectype = optype;
6801 inst.operands[i].present = 1;
6802 }
6803 }
6804 else
6805 {
6806 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6807 != FAIL)
6808 {
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst.operands[i].reg = val;
6811 inst.operands[i].isvec = 1;
6812 inst.operands[i].isscalar = 2;
6813 inst.operands[i].vectype = optype;
6814 inst.operands[i++].present = 1;
6815
6816 if (skip_past_comma (&ptr) == FAIL)
6817 goto wanted_comma;
6818
6819 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6820 == FAIL)
6821 {
6822 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6823 return FAIL;
6824 }
6825 inst.operands[i].reg = val;
6826 inst.operands[i].isvec = 1;
6827 inst.operands[i].isscalar = 2;
6828 inst.operands[i].vectype = optype;
6829 inst.operands[i].present = 1;
6830 }
6831 else
6832 {
6833 first_error (_("VFP single, double or MVE vector register"
6834 " expected"));
6835 return FAIL;
6836 }
6837 }
6838 }
6839 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6840 != FAIL)
6841 {
6842 /* Case 13. */
6843 inst.operands[i].reg = val;
6844 inst.operands[i].isreg = 1;
6845 inst.operands[i].isvec = 1;
6846 inst.operands[i].issingle = 1;
6847 inst.operands[i].vectype = optype;
6848 inst.operands[i].present = 1;
6849 }
6850 }
6851 else
6852 {
6853 first_error (_("parse error"));
6854 return FAIL;
6855 }
6856
6857 /* Successfully parsed the operands. Update args. */
6858 *which_operand = i;
6859 *str = ptr;
6860 return SUCCESS;
6861
6862 wanted_comma:
6863 first_error (_("expected comma"));
6864 return FAIL;
6865
6866 wanted_arm:
6867 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6868 return FAIL;
6869 }
6870
6871 /* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6875
6876 /* Matcher codes for parse_operands. */
6877 enum operand_parse_code
6878 {
6879 OP_stop, /* end of line */
6880
6881 OP_RR, /* ARM register */
6882 OP_RRnpc, /* ARM register, not r15 */
6883 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6884 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6885 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6886 optional trailing ! */
6887 OP_RRw, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP, /* Coprocessor number */
6889 OP_RCN, /* Coprocessor register */
6890 OP_RF, /* FPA register */
6891 OP_RVS, /* VFP single precision register */
6892 OP_RVD, /* VFP double precision register (0..15) */
6893 OP_RND, /* Neon double precision register (0..31) */
6894 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
6896 */
6897 OP_RNQ, /* Neon quad precision register */
6898 OP_RNQMQ, /* Neon quad or MVE vector register. */
6899 OP_RVSD, /* VFP single or double precision register */
6900 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
6901 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
6902 OP_RNSD, /* Neon single or double precision register */
6903 OP_RNDQ, /* Neon double or quad precision register */
6904 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
6905 OP_RNSDQ, /* Neon single, double or quad precision register */
6906 OP_RNSC, /* Neon scalar D[X] */
6907 OP_RVC, /* VFP control register */
6908 OP_RMF, /* Maverick F register */
6909 OP_RMD, /* Maverick D register */
6910 OP_RMFX, /* Maverick FX register */
6911 OP_RMDX, /* Maverick DX register */
6912 OP_RMAX, /* Maverick AX register */
6913 OP_RMDS, /* Maverick DSPSC register */
6914 OP_RIWR, /* iWMMXt wR register */
6915 OP_RIWC, /* iWMMXt wC register */
6916 OP_RIWG, /* iWMMXt wCG register */
6917 OP_RXA, /* XScale accumulator register */
6918
6919 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
6920 */
6921 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
6922 GPR (no SP/SP) */
6923 OP_RMQ, /* MVE vector register. */
6924 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
6925
6926 /* New operands for Armv8.1-M Mainline. */
6927 OP_LR, /* ARM LR register */
6928 OP_RRe, /* ARM register, only even numbered. */
6929 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
6930 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
6931
6932 OP_REGLST, /* ARM register list */
6933 OP_CLRMLST, /* CLRM register list */
6934 OP_VRSLST, /* VFP single-precision register list */
6935 OP_VRDLST, /* VFP double-precision register list */
6936 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6937 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6938 OP_NSTRLST, /* Neon element/structure list */
6939 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
6940 OP_MSTRLST2, /* MVE vector list with two elements. */
6941 OP_MSTRLST4, /* MVE vector list with four elements. */
6942
6943 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6944 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6945 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
6946 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
6947 zero. */
6948 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6949 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
6950 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6951 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6952 */
6953 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6954 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
6955 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6956 OP_VMOV, /* Neon VMOV operands. */
6957 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6958 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
6959 OP_RNDQMQ_Ibig,
6960 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6961 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6962 OP_VLDR, /* VLDR operand. */
6963
6964 OP_I0, /* immediate zero */
6965 OP_I7, /* immediate value 0 .. 7 */
6966 OP_I15, /* 0 .. 15 */
6967 OP_I16, /* 1 .. 16 */
6968 OP_I16z, /* 0 .. 16 */
6969 OP_I31, /* 0 .. 31 */
6970 OP_I31w, /* 0 .. 31, optional trailing ! */
6971 OP_I32, /* 1 .. 32 */
6972 OP_I32z, /* 0 .. 32 */
6973 OP_I63, /* 0 .. 63 */
6974 OP_I63s, /* -64 .. 63 */
6975 OP_I64, /* 1 .. 64 */
6976 OP_I64z, /* 0 .. 64 */
6977 OP_I255, /* 0 .. 255 */
6978
6979 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6980 OP_I7b, /* 0 .. 7 */
6981 OP_I15b, /* 0 .. 15 */
6982 OP_I31b, /* 0 .. 31 */
6983
6984 OP_SH, /* shifter operand */
6985 OP_SHG, /* shifter operand with possible group relocation */
6986 OP_ADDR, /* Memory address expression (any mode) */
6987 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
6988 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6989 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6990 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6991 OP_EXP, /* arbitrary expression */
6992 OP_EXPi, /* same, with optional immediate prefix */
6993 OP_EXPr, /* same, with optional relocation suffix */
6994 OP_EXPs, /* same, with optional non-first operand relocation suffix */
6995 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6996 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
6997 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
6998
6999 OP_CPSF, /* CPS flags */
7000 OP_ENDI, /* Endianness specifier */
7001 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7002 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
7003 OP_COND, /* conditional code */
7004 OP_TB, /* Table branch. */
7005
7006 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7007
7008 OP_RRnpc_I0, /* ARM register or literal 0 */
7009 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
7010 OP_RR_EXi, /* ARM register or expression with imm prefix */
7011 OP_RF_IF, /* FPA register or immediate */
7012 OP_RIWR_RIWC, /* iWMMXt R or C reg */
7013 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
7014
7015 /* Optional operands. */
7016 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7017 OP_oI31b, /* 0 .. 31 */
7018 OP_oI32b, /* 1 .. 32 */
7019 OP_oI32z, /* 0 .. 32 */
7020 OP_oIffffb, /* 0 .. 65535 */
7021 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7022
7023 OP_oRR, /* ARM register */
7024 OP_oLR, /* ARM LR register */
7025 OP_oRRnpc, /* ARM register, not the PC */
7026 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
7027 OP_oRRw, /* ARM register, not r15, optional trailing ! */
7028 OP_oRND, /* Optional Neon double precision register */
7029 OP_oRNQ, /* Optional Neon quad precision register */
7030 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
7031 OP_oRNDQ, /* Optional Neon double or quad precision register */
7032 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
7033 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7034 register. */
7035 OP_oSHll, /* LSL immediate */
7036 OP_oSHar, /* ASR immediate */
7037 OP_oSHllar, /* LSL or ASR immediate */
7038 OP_oROR, /* ROR 0/8/16/24 */
7039 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
7040
7041 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7042
7043 /* Some pre-defined mixed (ARM/THUMB) operands. */
7044 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7045 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7046 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7047
7048 OP_FIRST_OPTIONAL = OP_oI7b
7049 };
7050
7051 /* Generic instruction operand parser. This does no encoding and no
7052 semantic validation; it merely squirrels values away in the inst
7053 structure. Returns SUCCESS or FAIL depending on whether the
7054 specified grammar matched. */
7055 static int
7056 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
7057 {
7058 unsigned const int *upat = pattern;
7059 char *backtrack_pos = 0;
7060 const char *backtrack_error = 0;
7061 int i, val = 0, backtrack_index = 0;
7062 enum arm_reg_type rtype;
7063 parse_operand_result result;
7064 unsigned int op_parse_code;
7065 bfd_boolean partial_match;
7066
7067 #define po_char_or_fail(chr) \
7068 do \
7069 { \
7070 if (skip_past_char (&str, chr) == FAIL) \
7071 goto bad_args; \
7072 } \
7073 while (0)
7074
7075 #define po_reg_or_fail(regtype) \
7076 do \
7077 { \
7078 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7079 & inst.operands[i].vectype); \
7080 if (val == FAIL) \
7081 { \
7082 first_error (_(reg_expected_msgs[regtype])); \
7083 goto failure; \
7084 } \
7085 inst.operands[i].reg = val; \
7086 inst.operands[i].isreg = 1; \
7087 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7088 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7089 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7090 || rtype == REG_TYPE_VFD \
7091 || rtype == REG_TYPE_NQ); \
7092 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7093 } \
7094 while (0)
7095
7096 #define po_reg_or_goto(regtype, label) \
7097 do \
7098 { \
7099 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7100 & inst.operands[i].vectype); \
7101 if (val == FAIL) \
7102 goto label; \
7103 \
7104 inst.operands[i].reg = val; \
7105 inst.operands[i].isreg = 1; \
7106 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7107 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7108 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7109 || rtype == REG_TYPE_VFD \
7110 || rtype == REG_TYPE_NQ); \
7111 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7112 } \
7113 while (0)
7114
7115 #define po_imm_or_fail(min, max, popt) \
7116 do \
7117 { \
7118 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7119 goto failure; \
7120 inst.operands[i].imm = val; \
7121 } \
7122 while (0)
7123
7124 #define po_scalar_or_goto(elsz, label, reg_type) \
7125 do \
7126 { \
7127 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7128 reg_type); \
7129 if (val == FAIL) \
7130 goto label; \
7131 inst.operands[i].reg = val; \
7132 inst.operands[i].isscalar = 1; \
7133 } \
7134 while (0)
7135
7136 #define po_misc_or_fail(expr) \
7137 do \
7138 { \
7139 if (expr) \
7140 goto failure; \
7141 } \
7142 while (0)
7143
7144 #define po_misc_or_fail_no_backtrack(expr) \
7145 do \
7146 { \
7147 result = expr; \
7148 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7149 backtrack_pos = 0; \
7150 if (result != PARSE_OPERAND_SUCCESS) \
7151 goto failure; \
7152 } \
7153 while (0)
7154
7155 #define po_barrier_or_imm(str) \
7156 do \
7157 { \
7158 val = parse_barrier (&str); \
7159 if (val == FAIL && ! ISALPHA (*str)) \
7160 goto immediate; \
7161 if (val == FAIL \
7162 /* ISB can only take SY as an option. */ \
7163 || ((inst.instruction & 0xf0) == 0x60 \
7164 && val != 0xf)) \
7165 { \
7166 inst.error = _("invalid barrier type"); \
7167 backtrack_pos = 0; \
7168 goto failure; \
7169 } \
7170 } \
7171 while (0)
7172
7173 skip_whitespace (str);
7174
7175 for (i = 0; upat[i] != OP_stop; i++)
7176 {
7177 op_parse_code = upat[i];
7178 if (op_parse_code >= 1<<16)
7179 op_parse_code = thumb ? (op_parse_code >> 16)
7180 : (op_parse_code & ((1<<16)-1));
7181
7182 if (op_parse_code >= OP_FIRST_OPTIONAL)
7183 {
7184 /* Remember where we are in case we need to backtrack. */
7185 backtrack_pos = str;
7186 backtrack_error = inst.error;
7187 backtrack_index = i;
7188 }
7189
7190 if (i > 0 && (i > 1 || inst.operands[0].present))
7191 po_char_or_fail (',');
7192
7193 switch (op_parse_code)
7194 {
7195 /* Registers */
7196 case OP_oRRnpc:
7197 case OP_oRRnpcsp:
7198 case OP_RRnpc:
7199 case OP_RRnpcsp:
7200 case OP_oRR:
7201 case OP_RRe:
7202 case OP_RRo:
7203 case OP_LR:
7204 case OP_oLR:
7205 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7206 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7207 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7208 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7209 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7210 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
7211 case OP_oRND:
7212 case OP_RNDMQR:
7213 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7214 break;
7215 try_rndmq:
7216 case OP_RNDMQ:
7217 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7218 break;
7219 try_rnd:
7220 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
7221 case OP_RVC:
7222 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7223 break;
7224 /* Also accept generic coprocessor regs for unknown registers. */
7225 coproc_reg:
7226 po_reg_or_fail (REG_TYPE_CN);
7227 break;
7228 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7229 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7230 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7231 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7232 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7233 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7234 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7235 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7236 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7237 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
7238 case OP_oRNQ:
7239 case OP_RNQMQ:
7240 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7241 break;
7242 try_nq:
7243 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
7244 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7245 case OP_oRNDQMQ:
7246 case OP_RNDQMQ:
7247 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7248 break;
7249 try_rndq:
7250 case OP_oRNDQ:
7251 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
7252 case OP_RVSDMQ:
7253 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7254 break;
7255 try_rvsd:
7256 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
7257 case OP_RVSD_COND:
7258 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7259 break;
7260 case OP_oRNSDQ:
7261 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
7262 case OP_RNSDQMQR:
7263 po_reg_or_goto (REG_TYPE_RN, try_mq);
7264 break;
7265 try_mq:
7266 case OP_oRNSDQMQ:
7267 case OP_RNSDQMQ:
7268 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7269 break;
7270 try_nsdq2:
7271 po_reg_or_fail (REG_TYPE_NSDQ);
7272 inst.error = 0;
7273 break;
7274 case OP_RMQ:
7275 po_reg_or_fail (REG_TYPE_MQ);
7276 break;
7277 /* Neon scalar. Using an element size of 8 means that some invalid
7278 scalars are accepted here, so deal with those in later code. */
7279 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
7280
7281 case OP_RNDQ_I0:
7282 {
7283 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7284 break;
7285 try_imm0:
7286 po_imm_or_fail (0, 0, TRUE);
7287 }
7288 break;
7289
7290 case OP_RVSD_I0:
7291 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7292 break;
7293
7294 case OP_RSVDMQ_FI0:
7295 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7296 break;
7297 try_rsvd_fi0:
7298 case OP_RSVD_FI0:
7299 {
7300 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7301 break;
7302 try_ifimm0:
7303 if (parse_ifimm_zero (&str))
7304 inst.operands[i].imm = 0;
7305 else
7306 {
7307 inst.error
7308 = _("only floating point zero is allowed as immediate value");
7309 goto failure;
7310 }
7311 }
7312 break;
7313
7314 case OP_RR_RNSC:
7315 {
7316 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
7317 break;
7318 try_rr:
7319 po_reg_or_fail (REG_TYPE_RN);
7320 }
7321 break;
7322
7323 case OP_RNSDQ_RNSC_MQ:
7324 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7325 break;
7326 try_rnsdq_rnsc:
7327 case OP_RNSDQ_RNSC:
7328 {
7329 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7330 inst.error = 0;
7331 break;
7332 try_nsdq:
7333 po_reg_or_fail (REG_TYPE_NSDQ);
7334 inst.error = 0;
7335 }
7336 break;
7337
7338 case OP_RNSD_RNSC:
7339 {
7340 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
7341 break;
7342 try_s_scalar:
7343 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
7344 break;
7345 try_nsd:
7346 po_reg_or_fail (REG_TYPE_NSD);
7347 }
7348 break;
7349
7350 case OP_RNDQMQ_RNSC:
7351 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7352 break;
7353 try_rndq_rnsc:
7354 case OP_RNDQ_RNSC:
7355 {
7356 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
7357 break;
7358 try_ndq:
7359 po_reg_or_fail (REG_TYPE_NDQ);
7360 }
7361 break;
7362
7363 case OP_RND_RNSC:
7364 {
7365 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
7366 break;
7367 try_vfd:
7368 po_reg_or_fail (REG_TYPE_VFD);
7369 }
7370 break;
7371
7372 case OP_VMOV:
7373 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7374 not careful then bad things might happen. */
7375 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7376 break;
7377
7378 case OP_RNDQMQ_Ibig:
7379 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7380 break;
7381 try_rndq_ibig:
7382 case OP_RNDQ_Ibig:
7383 {
7384 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7385 break;
7386 try_immbig:
7387 /* There's a possibility of getting a 64-bit immediate here, so
7388 we need special handling. */
7389 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7390 == FAIL)
7391 {
7392 inst.error = _("immediate value is out of range");
7393 goto failure;
7394 }
7395 }
7396 break;
7397
7398 case OP_RNDQ_I63b:
7399 {
7400 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7401 break;
7402 try_shimm:
7403 po_imm_or_fail (0, 63, TRUE);
7404 }
7405 break;
7406
7407 case OP_RRnpcb:
7408 po_char_or_fail ('[');
7409 po_reg_or_fail (REG_TYPE_RN);
7410 po_char_or_fail (']');
7411 break;
7412
7413 case OP_RRnpctw:
7414 case OP_RRw:
7415 case OP_oRRw:
7416 po_reg_or_fail (REG_TYPE_RN);
7417 if (skip_past_char (&str, '!') == SUCCESS)
7418 inst.operands[i].writeback = 1;
7419 break;
7420
7421 /* Immediates */
7422 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7423 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7424 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
7425 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
7426 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7427 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
7428 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
7429 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
7430 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7431 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7432 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
7433 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
7434
7435 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7436 case OP_oI7b:
7437 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7438 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7439 case OP_oI31b:
7440 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
7441 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7442 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
7443 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7444
7445 /* Immediate variants */
7446 case OP_oI255c:
7447 po_char_or_fail ('{');
7448 po_imm_or_fail (0, 255, TRUE);
7449 po_char_or_fail ('}');
7450 break;
7451
7452 case OP_I31w:
7453 /* The expression parser chokes on a trailing !, so we have
7454 to find it first and zap it. */
7455 {
7456 char *s = str;
7457 while (*s && *s != ',')
7458 s++;
7459 if (s[-1] == '!')
7460 {
7461 s[-1] = '\0';
7462 inst.operands[i].writeback = 1;
7463 }
7464 po_imm_or_fail (0, 31, TRUE);
7465 if (str == s - 1)
7466 str = s;
7467 }
7468 break;
7469
7470 /* Expressions */
7471 case OP_EXPi: EXPi:
7472 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7473 GE_OPT_PREFIX));
7474 break;
7475
7476 case OP_EXP:
7477 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7478 GE_NO_PREFIX));
7479 break;
7480
7481 case OP_EXPr: EXPr:
7482 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7483 GE_NO_PREFIX));
7484 if (inst.relocs[0].exp.X_op == O_symbol)
7485 {
7486 val = parse_reloc (&str);
7487 if (val == -1)
7488 {
7489 inst.error = _("unrecognized relocation suffix");
7490 goto failure;
7491 }
7492 else if (val != BFD_RELOC_UNUSED)
7493 {
7494 inst.operands[i].imm = val;
7495 inst.operands[i].hasreloc = 1;
7496 }
7497 }
7498 break;
7499
7500 case OP_EXPs:
7501 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7502 GE_NO_PREFIX));
7503 if (inst.relocs[i].exp.X_op == O_symbol)
7504 {
7505 inst.operands[i].hasreloc = 1;
7506 }
7507 else if (inst.relocs[i].exp.X_op == O_constant)
7508 {
7509 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7510 inst.operands[i].hasreloc = 0;
7511 }
7512 break;
7513
7514 /* Operand for MOVW or MOVT. */
7515 case OP_HALF:
7516 po_misc_or_fail (parse_half (&str));
7517 break;
7518
7519 /* Register or expression. */
7520 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7521 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
7522
7523 /* Register or immediate. */
7524 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7525 I0: po_imm_or_fail (0, 0, FALSE); break;
7526
7527 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7528 IF:
7529 if (!is_immediate_prefix (*str))
7530 goto bad_args;
7531 str++;
7532 val = parse_fpa_immediate (&str);
7533 if (val == FAIL)
7534 goto failure;
7535 /* FPA immediates are encoded as registers 8-15.
7536 parse_fpa_immediate has already applied the offset. */
7537 inst.operands[i].reg = val;
7538 inst.operands[i].isreg = 1;
7539 break;
7540
7541 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7542 I32z: po_imm_or_fail (0, 32, FALSE); break;
7543
7544 /* Two kinds of register. */
7545 case OP_RIWR_RIWC:
7546 {
7547 struct reg_entry *rege = arm_reg_parse_multi (&str);
7548 if (!rege
7549 || (rege->type != REG_TYPE_MMXWR
7550 && rege->type != REG_TYPE_MMXWC
7551 && rege->type != REG_TYPE_MMXWCG))
7552 {
7553 inst.error = _("iWMMXt data or control register expected");
7554 goto failure;
7555 }
7556 inst.operands[i].reg = rege->number;
7557 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7558 }
7559 break;
7560
7561 case OP_RIWC_RIWG:
7562 {
7563 struct reg_entry *rege = arm_reg_parse_multi (&str);
7564 if (!rege
7565 || (rege->type != REG_TYPE_MMXWC
7566 && rege->type != REG_TYPE_MMXWCG))
7567 {
7568 inst.error = _("iWMMXt control register expected");
7569 goto failure;
7570 }
7571 inst.operands[i].reg = rege->number;
7572 inst.operands[i].isreg = 1;
7573 }
7574 break;
7575
7576 /* Misc */
7577 case OP_CPSF: val = parse_cps_flags (&str); break;
7578 case OP_ENDI: val = parse_endian_specifier (&str); break;
7579 case OP_oROR: val = parse_ror (&str); break;
7580 try_cond:
7581 case OP_COND: val = parse_cond (&str); break;
7582 case OP_oBARRIER_I15:
7583 po_barrier_or_imm (str); break;
7584 immediate:
7585 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
7586 goto failure;
7587 break;
7588
7589 case OP_wPSR:
7590 case OP_rPSR:
7591 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7592 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7593 {
7594 inst.error = _("Banked registers are not available with this "
7595 "architecture.");
7596 goto failure;
7597 }
7598 break;
7599 try_psr:
7600 val = parse_psr (&str, op_parse_code == OP_wPSR);
7601 break;
7602
7603 case OP_VLDR:
7604 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7605 break;
7606 try_sysreg:
7607 val = parse_sys_vldr_vstr (&str);
7608 break;
7609
7610 case OP_APSR_RR:
7611 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7612 break;
7613 try_apsr:
7614 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7615 instruction). */
7616 if (strncasecmp (str, "APSR_", 5) == 0)
7617 {
7618 unsigned found = 0;
7619 str += 5;
7620 while (found < 15)
7621 switch (*str++)
7622 {
7623 case 'c': found = (found & 1) ? 16 : found | 1; break;
7624 case 'n': found = (found & 2) ? 16 : found | 2; break;
7625 case 'z': found = (found & 4) ? 16 : found | 4; break;
7626 case 'v': found = (found & 8) ? 16 : found | 8; break;
7627 default: found = 16;
7628 }
7629 if (found != 15)
7630 goto failure;
7631 inst.operands[i].isvec = 1;
7632 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7633 inst.operands[i].reg = REG_PC;
7634 }
7635 else
7636 goto failure;
7637 break;
7638
7639 case OP_TB:
7640 po_misc_or_fail (parse_tb (&str));
7641 break;
7642
7643 /* Register lists. */
7644 case OP_REGLST:
7645 val = parse_reg_list (&str, REGLIST_RN);
7646 if (*str == '^')
7647 {
7648 inst.operands[i].writeback = 1;
7649 str++;
7650 }
7651 break;
7652
7653 case OP_CLRMLST:
7654 val = parse_reg_list (&str, REGLIST_CLRM);
7655 break;
7656
7657 case OP_VRSLST:
7658 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7659 &partial_match);
7660 break;
7661
7662 case OP_VRDLST:
7663 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7664 &partial_match);
7665 break;
7666
7667 case OP_VRSDLST:
7668 /* Allow Q registers too. */
7669 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7670 REGLIST_NEON_D, &partial_match);
7671 if (val == FAIL)
7672 {
7673 inst.error = NULL;
7674 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7675 REGLIST_VFP_S, &partial_match);
7676 inst.operands[i].issingle = 1;
7677 }
7678 break;
7679
7680 case OP_VRSDVLST:
7681 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7682 REGLIST_VFP_D_VPR, &partial_match);
7683 if (val == FAIL && !partial_match)
7684 {
7685 inst.error = NULL;
7686 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7687 REGLIST_VFP_S_VPR, &partial_match);
7688 inst.operands[i].issingle = 1;
7689 }
7690 break;
7691
7692 case OP_NRDLST:
7693 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7694 REGLIST_NEON_D, &partial_match);
7695 break;
7696
7697 case OP_MSTRLST4:
7698 case OP_MSTRLST2:
7699 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7700 1, &inst.operands[i].vectype);
7701 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7702 goto failure;
7703 break;
7704 case OP_NSTRLST:
7705 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7706 0, &inst.operands[i].vectype);
7707 break;
7708
7709 /* Addressing modes */
7710 case OP_ADDRMVE:
7711 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7712 break;
7713
7714 case OP_ADDR:
7715 po_misc_or_fail (parse_address (&str, i));
7716 break;
7717
7718 case OP_ADDRGLDR:
7719 po_misc_or_fail_no_backtrack (
7720 parse_address_group_reloc (&str, i, GROUP_LDR));
7721 break;
7722
7723 case OP_ADDRGLDRS:
7724 po_misc_or_fail_no_backtrack (
7725 parse_address_group_reloc (&str, i, GROUP_LDRS));
7726 break;
7727
7728 case OP_ADDRGLDC:
7729 po_misc_or_fail_no_backtrack (
7730 parse_address_group_reloc (&str, i, GROUP_LDC));
7731 break;
7732
7733 case OP_SH:
7734 po_misc_or_fail (parse_shifter_operand (&str, i));
7735 break;
7736
7737 case OP_SHG:
7738 po_misc_or_fail_no_backtrack (
7739 parse_shifter_operand_group_reloc (&str, i));
7740 break;
7741
7742 case OP_oSHll:
7743 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7744 break;
7745
7746 case OP_oSHar:
7747 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7748 break;
7749
7750 case OP_oSHllar:
7751 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7752 break;
7753
7754 case OP_RMQRZ:
7755 case OP_oRMQRZ:
7756 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7757 break;
7758 try_rr_zr:
7759 po_reg_or_goto (REG_TYPE_RN, ZR);
7760 break;
7761 ZR:
7762 po_reg_or_fail (REG_TYPE_ZR);
7763 break;
7764
7765 default:
7766 as_fatal (_("unhandled operand code %d"), op_parse_code);
7767 }
7768
7769 /* Various value-based sanity checks and shared operations. We
7770 do not signal immediate failures for the register constraints;
7771 this allows a syntax error to take precedence. */
7772 switch (op_parse_code)
7773 {
7774 case OP_oRRnpc:
7775 case OP_RRnpc:
7776 case OP_RRnpcb:
7777 case OP_RRw:
7778 case OP_oRRw:
7779 case OP_RRnpc_I0:
7780 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7781 inst.error = BAD_PC;
7782 break;
7783
7784 case OP_oRRnpcsp:
7785 case OP_RRnpcsp:
7786 if (inst.operands[i].isreg)
7787 {
7788 if (inst.operands[i].reg == REG_PC)
7789 inst.error = BAD_PC;
7790 else if (inst.operands[i].reg == REG_SP
7791 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7792 relaxed since ARMv8-A. */
7793 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7794 {
7795 gas_assert (thumb);
7796 inst.error = BAD_SP;
7797 }
7798 }
7799 break;
7800
7801 case OP_RRnpctw:
7802 if (inst.operands[i].isreg
7803 && inst.operands[i].reg == REG_PC
7804 && (inst.operands[i].writeback || thumb))
7805 inst.error = BAD_PC;
7806 break;
7807
7808 case OP_RVSD_COND:
7809 case OP_VLDR:
7810 if (inst.operands[i].isreg)
7811 break;
7812 /* fall through. */
7813
7814 case OP_CPSF:
7815 case OP_ENDI:
7816 case OP_oROR:
7817 case OP_wPSR:
7818 case OP_rPSR:
7819 case OP_COND:
7820 case OP_oBARRIER_I15:
7821 case OP_REGLST:
7822 case OP_CLRMLST:
7823 case OP_VRSLST:
7824 case OP_VRDLST:
7825 case OP_VRSDLST:
7826 case OP_VRSDVLST:
7827 case OP_NRDLST:
7828 case OP_NSTRLST:
7829 case OP_MSTRLST2:
7830 case OP_MSTRLST4:
7831 if (val == FAIL)
7832 goto failure;
7833 inst.operands[i].imm = val;
7834 break;
7835
7836 case OP_LR:
7837 case OP_oLR:
7838 if (inst.operands[i].reg != REG_LR)
7839 inst.error = _("operand must be LR register");
7840 break;
7841
7842 case OP_RMQRZ:
7843 case OP_oRMQRZ:
7844 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
7845 inst.error = BAD_PC;
7846 break;
7847
7848 case OP_RRe:
7849 if (inst.operands[i].isreg
7850 && (inst.operands[i].reg & 0x00000001) != 0)
7851 inst.error = BAD_ODD;
7852 break;
7853
7854 case OP_RRo:
7855 if (inst.operands[i].isreg)
7856 {
7857 if ((inst.operands[i].reg & 0x00000001) != 1)
7858 inst.error = BAD_EVEN;
7859 else if (inst.operands[i].reg == REG_SP)
7860 as_tsktsk (MVE_BAD_SP);
7861 else if (inst.operands[i].reg == REG_PC)
7862 inst.error = BAD_PC;
7863 }
7864 break;
7865
7866 default:
7867 break;
7868 }
7869
7870 /* If we get here, this operand was successfully parsed. */
7871 inst.operands[i].present = 1;
7872 continue;
7873
7874 bad_args:
7875 inst.error = BAD_ARGS;
7876
7877 failure:
7878 if (!backtrack_pos)
7879 {
7880 /* The parse routine should already have set inst.error, but set a
7881 default here just in case. */
7882 if (!inst.error)
7883 inst.error = BAD_SYNTAX;
7884 return FAIL;
7885 }
7886
7887 /* Do not backtrack over a trailing optional argument that
7888 absorbed some text. We will only fail again, with the
7889 'garbage following instruction' error message, which is
7890 probably less helpful than the current one. */
7891 if (backtrack_index == i && backtrack_pos != str
7892 && upat[i+1] == OP_stop)
7893 {
7894 if (!inst.error)
7895 inst.error = BAD_SYNTAX;
7896 return FAIL;
7897 }
7898
7899 /* Try again, skipping the optional argument at backtrack_pos. */
7900 str = backtrack_pos;
7901 inst.error = backtrack_error;
7902 inst.operands[backtrack_index].present = 0;
7903 i = backtrack_index;
7904 backtrack_pos = 0;
7905 }
7906
7907 /* Check that we have parsed all the arguments. */
7908 if (*str != '\0' && !inst.error)
7909 inst.error = _("garbage following instruction");
7910
7911 return inst.error ? FAIL : SUCCESS;
7912 }
7913
7914 #undef po_char_or_fail
7915 #undef po_reg_or_fail
7916 #undef po_reg_or_goto
7917 #undef po_imm_or_fail
7918 #undef po_scalar_or_fail
7919 #undef po_barrier_or_imm
7920
7921 /* Shorthand macro for instruction encoding functions issuing errors. */
7922 #define constraint(expr, err) \
7923 do \
7924 { \
7925 if (expr) \
7926 { \
7927 inst.error = err; \
7928 return; \
7929 } \
7930 } \
7931 while (0)
7932
7933 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7934 instructions are unpredictable if these registers are used. This
7935 is the BadReg predicate in ARM's Thumb-2 documentation.
7936
7937 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7938 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7939 #define reject_bad_reg(reg) \
7940 do \
7941 if (reg == REG_PC) \
7942 { \
7943 inst.error = BAD_PC; \
7944 return; \
7945 } \
7946 else if (reg == REG_SP \
7947 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7948 { \
7949 inst.error = BAD_SP; \
7950 return; \
7951 } \
7952 while (0)
7953
7954 /* If REG is R13 (the stack pointer), warn that its use is
7955 deprecated. */
7956 #define warn_deprecated_sp(reg) \
7957 do \
7958 if (warn_on_deprecated && reg == REG_SP) \
7959 as_tsktsk (_("use of r13 is deprecated")); \
7960 while (0)
7961
7962 /* Functions for operand encoding. ARM, then Thumb. */
7963
7964 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
7965
7966 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7967
7968 The only binary encoding difference is the Coprocessor number. Coprocessor
7969 9 is used for half-precision calculations or conversions. The format of the
7970 instruction is the same as the equivalent Coprocessor 10 instruction that
7971 exists for Single-Precision operation. */
7972
7973 static void
7974 do_scalar_fp16_v82_encode (void)
7975 {
7976 if (inst.cond < COND_ALWAYS)
7977 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7978 " the behaviour is UNPREDICTABLE"));
7979 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
7980 _(BAD_FP16));
7981
7982 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
7983 mark_feature_used (&arm_ext_fp16);
7984 }
7985
7986 /* If VAL can be encoded in the immediate field of an ARM instruction,
7987 return the encoded form. Otherwise, return FAIL. */
7988
7989 static unsigned int
7990 encode_arm_immediate (unsigned int val)
7991 {
7992 unsigned int a, i;
7993
7994 if (val <= 0xff)
7995 return val;
7996
7997 for (i = 2; i < 32; i += 2)
7998 if ((a = rotate_left (val, i)) <= 0xff)
7999 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8000
8001 return FAIL;
8002 }
8003
8004 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8005 return the encoded form. Otherwise, return FAIL. */
8006 static unsigned int
8007 encode_thumb32_immediate (unsigned int val)
8008 {
8009 unsigned int a, i;
8010
8011 if (val <= 0xff)
8012 return val;
8013
8014 for (i = 1; i <= 24; i++)
8015 {
8016 a = val >> i;
8017 if ((val & ~(0xff << i)) == 0)
8018 return ((val >> i) & 0x7f) | ((32 - i) << 7);
8019 }
8020
8021 a = val & 0xff;
8022 if (val == ((a << 16) | a))
8023 return 0x100 | a;
8024 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8025 return 0x300 | a;
8026
8027 a = val & 0xff00;
8028 if (val == ((a << 16) | a))
8029 return 0x200 | (a >> 8);
8030
8031 return FAIL;
8032 }
8033 /* Encode a VFP SP or DP register number into inst.instruction. */
8034
8035 static void
8036 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8037 {
8038 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8039 && reg > 15)
8040 {
8041 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
8042 {
8043 if (thumb_mode)
8044 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8045 fpu_vfp_ext_d32);
8046 else
8047 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8048 fpu_vfp_ext_d32);
8049 }
8050 else
8051 {
8052 first_error (_("D register out of range for selected VFP version"));
8053 return;
8054 }
8055 }
8056
8057 switch (pos)
8058 {
8059 case VFP_REG_Sd:
8060 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8061 break;
8062
8063 case VFP_REG_Sn:
8064 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8065 break;
8066
8067 case VFP_REG_Sm:
8068 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8069 break;
8070
8071 case VFP_REG_Dd:
8072 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8073 break;
8074
8075 case VFP_REG_Dn:
8076 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8077 break;
8078
8079 case VFP_REG_Dm:
8080 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8081 break;
8082
8083 default:
8084 abort ();
8085 }
8086 }
8087
8088 /* Encode a <shift> in an ARM-format instruction. The immediate,
8089 if any, is handled by md_apply_fix. */
8090 static void
8091 encode_arm_shift (int i)
8092 {
8093 /* register-shifted register. */
8094 if (inst.operands[i].immisreg)
8095 {
8096 int op_index;
8097 for (op_index = 0; op_index <= i; ++op_index)
8098 {
8099 /* Check the operand only when it's presented. In pre-UAL syntax,
8100 if the destination register is the same as the first operand, two
8101 register form of the instruction can be used. */
8102 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8103 && inst.operands[op_index].reg == REG_PC)
8104 as_warn (UNPRED_REG ("r15"));
8105 }
8106
8107 if (inst.operands[i].imm == REG_PC)
8108 as_warn (UNPRED_REG ("r15"));
8109 }
8110
8111 if (inst.operands[i].shift_kind == SHIFT_RRX)
8112 inst.instruction |= SHIFT_ROR << 5;
8113 else
8114 {
8115 inst.instruction |= inst.operands[i].shift_kind << 5;
8116 if (inst.operands[i].immisreg)
8117 {
8118 inst.instruction |= SHIFT_BY_REG;
8119 inst.instruction |= inst.operands[i].imm << 8;
8120 }
8121 else
8122 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8123 }
8124 }
8125
8126 static void
8127 encode_arm_shifter_operand (int i)
8128 {
8129 if (inst.operands[i].isreg)
8130 {
8131 inst.instruction |= inst.operands[i].reg;
8132 encode_arm_shift (i);
8133 }
8134 else
8135 {
8136 inst.instruction |= INST_IMMEDIATE;
8137 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
8138 inst.instruction |= inst.operands[i].imm;
8139 }
8140 }
8141
8142 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
8143 static void
8144 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
8145 {
8146 /* PR 14260:
8147 Generate an error if the operand is not a register. */
8148 constraint (!inst.operands[i].isreg,
8149 _("Instruction does not support =N addresses"));
8150
8151 inst.instruction |= inst.operands[i].reg << 16;
8152
8153 if (inst.operands[i].preind)
8154 {
8155 if (is_t)
8156 {
8157 inst.error = _("instruction does not accept preindexed addressing");
8158 return;
8159 }
8160 inst.instruction |= PRE_INDEX;
8161 if (inst.operands[i].writeback)
8162 inst.instruction |= WRITE_BACK;
8163
8164 }
8165 else if (inst.operands[i].postind)
8166 {
8167 gas_assert (inst.operands[i].writeback);
8168 if (is_t)
8169 inst.instruction |= WRITE_BACK;
8170 }
8171 else /* unindexed - only for coprocessor */
8172 {
8173 inst.error = _("instruction does not accept unindexed addressing");
8174 return;
8175 }
8176
8177 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8178 && (((inst.instruction & 0x000f0000) >> 16)
8179 == ((inst.instruction & 0x0000f000) >> 12)))
8180 as_warn ((inst.instruction & LOAD_BIT)
8181 ? _("destination register same as write-back base")
8182 : _("source register same as write-back base"));
8183 }
8184
8185 /* inst.operands[i] was set up by parse_address. Encode it into an
8186 ARM-format mode 2 load or store instruction. If is_t is true,
8187 reject forms that cannot be used with a T instruction (i.e. not
8188 post-indexed). */
8189 static void
8190 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
8191 {
8192 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8193
8194 encode_arm_addr_mode_common (i, is_t);
8195
8196 if (inst.operands[i].immisreg)
8197 {
8198 constraint ((inst.operands[i].imm == REG_PC
8199 || (is_pc && inst.operands[i].writeback)),
8200 BAD_PC_ADDRESSING);
8201 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8202 inst.instruction |= inst.operands[i].imm;
8203 if (!inst.operands[i].negative)
8204 inst.instruction |= INDEX_UP;
8205 if (inst.operands[i].shifted)
8206 {
8207 if (inst.operands[i].shift_kind == SHIFT_RRX)
8208 inst.instruction |= SHIFT_ROR << 5;
8209 else
8210 {
8211 inst.instruction |= inst.operands[i].shift_kind << 5;
8212 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8213 }
8214 }
8215 }
8216 else /* immediate offset in inst.relocs[0] */
8217 {
8218 if (is_pc && !inst.relocs[0].pc_rel)
8219 {
8220 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
8221
8222 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8223 cannot use PC in addressing.
8224 PC cannot be used in writeback addressing, either. */
8225 constraint ((is_t || inst.operands[i].writeback),
8226 BAD_PC_ADDRESSING);
8227
8228 /* Use of PC in str is deprecated for ARMv7. */
8229 if (warn_on_deprecated
8230 && !is_load
8231 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
8232 as_tsktsk (_("use of PC in this instruction is deprecated"));
8233 }
8234
8235 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8236 {
8237 /* Prefer + for zero encoded value. */
8238 if (!inst.operands[i].negative)
8239 inst.instruction |= INDEX_UP;
8240 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
8241 }
8242 }
8243 }
8244
8245 /* inst.operands[i] was set up by parse_address. Encode it into an
8246 ARM-format mode 3 load or store instruction. Reject forms that
8247 cannot be used with such instructions. If is_t is true, reject
8248 forms that cannot be used with a T instruction (i.e. not
8249 post-indexed). */
8250 static void
8251 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
8252 {
8253 if (inst.operands[i].immisreg && inst.operands[i].shifted)
8254 {
8255 inst.error = _("instruction does not accept scaled register index");
8256 return;
8257 }
8258
8259 encode_arm_addr_mode_common (i, is_t);
8260
8261 if (inst.operands[i].immisreg)
8262 {
8263 constraint ((inst.operands[i].imm == REG_PC
8264 || (is_t && inst.operands[i].reg == REG_PC)),
8265 BAD_PC_ADDRESSING);
8266 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8267 BAD_PC_WRITEBACK);
8268 inst.instruction |= inst.operands[i].imm;
8269 if (!inst.operands[i].negative)
8270 inst.instruction |= INDEX_UP;
8271 }
8272 else /* immediate offset in inst.relocs[0] */
8273 {
8274 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
8275 && inst.operands[i].writeback),
8276 BAD_PC_WRITEBACK);
8277 inst.instruction |= HWOFFSET_IMM;
8278 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8279 {
8280 /* Prefer + for zero encoded value. */
8281 if (!inst.operands[i].negative)
8282 inst.instruction |= INDEX_UP;
8283
8284 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
8285 }
8286 }
8287 }
8288
8289 /* Write immediate bits [7:0] to the following locations:
8290
8291 |28/24|23 19|18 16|15 4|3 0|
8292 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8293
8294 This function is used by VMOV/VMVN/VORR/VBIC. */
8295
8296 static void
8297 neon_write_immbits (unsigned immbits)
8298 {
8299 inst.instruction |= immbits & 0xf;
8300 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8301 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8302 }
8303
8304 /* Invert low-order SIZE bits of XHI:XLO. */
8305
8306 static void
8307 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8308 {
8309 unsigned immlo = xlo ? *xlo : 0;
8310 unsigned immhi = xhi ? *xhi : 0;
8311
8312 switch (size)
8313 {
8314 case 8:
8315 immlo = (~immlo) & 0xff;
8316 break;
8317
8318 case 16:
8319 immlo = (~immlo) & 0xffff;
8320 break;
8321
8322 case 64:
8323 immhi = (~immhi) & 0xffffffff;
8324 /* fall through. */
8325
8326 case 32:
8327 immlo = (~immlo) & 0xffffffff;
8328 break;
8329
8330 default:
8331 abort ();
8332 }
8333
8334 if (xlo)
8335 *xlo = immlo;
8336
8337 if (xhi)
8338 *xhi = immhi;
8339 }
8340
8341 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8342 A, B, C, D. */
8343
8344 static int
8345 neon_bits_same_in_bytes (unsigned imm)
8346 {
8347 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8348 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8349 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8350 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8351 }
8352
8353 /* For immediate of above form, return 0bABCD. */
8354
8355 static unsigned
8356 neon_squash_bits (unsigned imm)
8357 {
8358 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8359 | ((imm & 0x01000000) >> 21);
8360 }
8361
8362 /* Compress quarter-float representation to 0b...000 abcdefgh. */
8363
8364 static unsigned
8365 neon_qfloat_bits (unsigned imm)
8366 {
8367 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8368 }
8369
8370 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8371 the instruction. *OP is passed as the initial value of the op field, and
8372 may be set to a different value depending on the constant (i.e.
8373 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8374 MVN). If the immediate looks like a repeated pattern then also
8375 try smaller element sizes. */
8376
8377 static int
8378 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8379 unsigned *immbits, int *op, int size,
8380 enum neon_el_type type)
8381 {
8382 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8383 float. */
8384 if (type == NT_float && !float_p)
8385 return FAIL;
8386
8387 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
8388 {
8389 if (size != 32 || *op == 1)
8390 return FAIL;
8391 *immbits = neon_qfloat_bits (immlo);
8392 return 0xf;
8393 }
8394
8395 if (size == 64)
8396 {
8397 if (neon_bits_same_in_bytes (immhi)
8398 && neon_bits_same_in_bytes (immlo))
8399 {
8400 if (*op == 1)
8401 return FAIL;
8402 *immbits = (neon_squash_bits (immhi) << 4)
8403 | neon_squash_bits (immlo);
8404 *op = 1;
8405 return 0xe;
8406 }
8407
8408 if (immhi != immlo)
8409 return FAIL;
8410 }
8411
8412 if (size >= 32)
8413 {
8414 if (immlo == (immlo & 0x000000ff))
8415 {
8416 *immbits = immlo;
8417 return 0x0;
8418 }
8419 else if (immlo == (immlo & 0x0000ff00))
8420 {
8421 *immbits = immlo >> 8;
8422 return 0x2;
8423 }
8424 else if (immlo == (immlo & 0x00ff0000))
8425 {
8426 *immbits = immlo >> 16;
8427 return 0x4;
8428 }
8429 else if (immlo == (immlo & 0xff000000))
8430 {
8431 *immbits = immlo >> 24;
8432 return 0x6;
8433 }
8434 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8435 {
8436 *immbits = (immlo >> 8) & 0xff;
8437 return 0xc;
8438 }
8439 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8440 {
8441 *immbits = (immlo >> 16) & 0xff;
8442 return 0xd;
8443 }
8444
8445 if ((immlo & 0xffff) != (immlo >> 16))
8446 return FAIL;
8447 immlo &= 0xffff;
8448 }
8449
8450 if (size >= 16)
8451 {
8452 if (immlo == (immlo & 0x000000ff))
8453 {
8454 *immbits = immlo;
8455 return 0x8;
8456 }
8457 else if (immlo == (immlo & 0x0000ff00))
8458 {
8459 *immbits = immlo >> 8;
8460 return 0xa;
8461 }
8462
8463 if ((immlo & 0xff) != (immlo >> 8))
8464 return FAIL;
8465 immlo &= 0xff;
8466 }
8467
8468 if (immlo == (immlo & 0x000000ff))
8469 {
8470 /* Don't allow MVN with 8-bit immediate. */
8471 if (*op == 1)
8472 return FAIL;
8473 *immbits = immlo;
8474 return 0xe;
8475 }
8476
8477 return FAIL;
8478 }
8479
8480 #if defined BFD_HOST_64_BIT
8481 /* Returns TRUE if double precision value V may be cast
8482 to single precision without loss of accuracy. */
8483
8484 static bfd_boolean
8485 is_double_a_single (bfd_int64_t v)
8486 {
8487 int exp = (int)((v >> 52) & 0x7FF);
8488 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8489
8490 return (exp == 0 || exp == 0x7FF
8491 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8492 && (mantissa & 0x1FFFFFFFl) == 0;
8493 }
8494
8495 /* Returns a double precision value casted to single precision
8496 (ignoring the least significant bits in exponent and mantissa). */
8497
8498 static int
8499 double_to_single (bfd_int64_t v)
8500 {
8501 int sign = (int) ((v >> 63) & 1l);
8502 int exp = (int) ((v >> 52) & 0x7FF);
8503 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8504
8505 if (exp == 0x7FF)
8506 exp = 0xFF;
8507 else
8508 {
8509 exp = exp - 1023 + 127;
8510 if (exp >= 0xFF)
8511 {
8512 /* Infinity. */
8513 exp = 0x7F;
8514 mantissa = 0;
8515 }
8516 else if (exp < 0)
8517 {
8518 /* No denormalized numbers. */
8519 exp = 0;
8520 mantissa = 0;
8521 }
8522 }
8523 mantissa >>= 29;
8524 return (sign << 31) | (exp << 23) | mantissa;
8525 }
8526 #endif /* BFD_HOST_64_BIT */
8527
8528 enum lit_type
8529 {
8530 CONST_THUMB,
8531 CONST_ARM,
8532 CONST_VEC
8533 };
8534
8535 static void do_vfp_nsyn_opcode (const char *);
8536
8537 /* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
8538 Determine whether it can be performed with a move instruction; if
8539 it can, convert inst.instruction to that move instruction and
8540 return TRUE; if it can't, convert inst.instruction to a literal-pool
8541 load and return FALSE. If this is not a valid thing to do in the
8542 current context, set inst.error and return TRUE.
8543
8544 inst.operands[i] describes the destination register. */
8545
8546 static bfd_boolean
8547 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
8548 {
8549 unsigned long tbit;
8550 bfd_boolean thumb_p = (t == CONST_THUMB);
8551 bfd_boolean arm_p = (t == CONST_ARM);
8552
8553 if (thumb_p)
8554 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8555 else
8556 tbit = LOAD_BIT;
8557
8558 if ((inst.instruction & tbit) == 0)
8559 {
8560 inst.error = _("invalid pseudo operation");
8561 return TRUE;
8562 }
8563
8564 if (inst.relocs[0].exp.X_op != O_constant
8565 && inst.relocs[0].exp.X_op != O_symbol
8566 && inst.relocs[0].exp.X_op != O_big)
8567 {
8568 inst.error = _("constant expression expected");
8569 return TRUE;
8570 }
8571
8572 if (inst.relocs[0].exp.X_op == O_constant
8573 || inst.relocs[0].exp.X_op == O_big)
8574 {
8575 #if defined BFD_HOST_64_BIT
8576 bfd_int64_t v;
8577 #else
8578 offsetT v;
8579 #endif
8580 if (inst.relocs[0].exp.X_op == O_big)
8581 {
8582 LITTLENUM_TYPE w[X_PRECISION];
8583 LITTLENUM_TYPE * l;
8584
8585 if (inst.relocs[0].exp.X_add_number == -1)
8586 {
8587 gen_to_words (w, X_PRECISION, E_PRECISION);
8588 l = w;
8589 /* FIXME: Should we check words w[2..5] ? */
8590 }
8591 else
8592 l = generic_bignum;
8593
8594 #if defined BFD_HOST_64_BIT
8595 v =
8596 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8597 << LITTLENUM_NUMBER_OF_BITS)
8598 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8599 << LITTLENUM_NUMBER_OF_BITS)
8600 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8601 << LITTLENUM_NUMBER_OF_BITS)
8602 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8603 #else
8604 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8605 | (l[0] & LITTLENUM_MASK);
8606 #endif
8607 }
8608 else
8609 v = inst.relocs[0].exp.X_add_number;
8610
8611 if (!inst.operands[i].issingle)
8612 {
8613 if (thumb_p)
8614 {
8615 /* LDR should not use lead in a flag-setting instruction being
8616 chosen so we do not check whether movs can be used. */
8617
8618 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
8619 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8620 && inst.operands[i].reg != 13
8621 && inst.operands[i].reg != 15)
8622 {
8623 /* Check if on thumb2 it can be done with a mov.w, mvn or
8624 movw instruction. */
8625 unsigned int newimm;
8626 bfd_boolean isNegated;
8627
8628 newimm = encode_thumb32_immediate (v);
8629 if (newimm != (unsigned int) FAIL)
8630 isNegated = FALSE;
8631 else
8632 {
8633 newimm = encode_thumb32_immediate (~v);
8634 if (newimm != (unsigned int) FAIL)
8635 isNegated = TRUE;
8636 }
8637
8638 /* The number can be loaded with a mov.w or mvn
8639 instruction. */
8640 if (newimm != (unsigned int) FAIL
8641 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
8642 {
8643 inst.instruction = (0xf04f0000 /* MOV.W. */
8644 | (inst.operands[i].reg << 8));
8645 /* Change to MOVN. */
8646 inst.instruction |= (isNegated ? 0x200000 : 0);
8647 inst.instruction |= (newimm & 0x800) << 15;
8648 inst.instruction |= (newimm & 0x700) << 4;
8649 inst.instruction |= (newimm & 0x0ff);
8650 return TRUE;
8651 }
8652 /* The number can be loaded with a movw instruction. */
8653 else if ((v & ~0xFFFF) == 0
8654 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8655 {
8656 int imm = v & 0xFFFF;
8657
8658 inst.instruction = 0xf2400000; /* MOVW. */
8659 inst.instruction |= (inst.operands[i].reg << 8);
8660 inst.instruction |= (imm & 0xf000) << 4;
8661 inst.instruction |= (imm & 0x0800) << 15;
8662 inst.instruction |= (imm & 0x0700) << 4;
8663 inst.instruction |= (imm & 0x00ff);
8664 return TRUE;
8665 }
8666 }
8667 }
8668 else if (arm_p)
8669 {
8670 int value = encode_arm_immediate (v);
8671
8672 if (value != FAIL)
8673 {
8674 /* This can be done with a mov instruction. */
8675 inst.instruction &= LITERAL_MASK;
8676 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8677 inst.instruction |= value & 0xfff;
8678 return TRUE;
8679 }
8680
8681 value = encode_arm_immediate (~ v);
8682 if (value != FAIL)
8683 {
8684 /* This can be done with a mvn instruction. */
8685 inst.instruction &= LITERAL_MASK;
8686 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8687 inst.instruction |= value & 0xfff;
8688 return TRUE;
8689 }
8690 }
8691 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8692 {
8693 int op = 0;
8694 unsigned immbits = 0;
8695 unsigned immlo = inst.operands[1].imm;
8696 unsigned immhi = inst.operands[1].regisimm
8697 ? inst.operands[1].reg
8698 : inst.relocs[0].exp.X_unsigned
8699 ? 0
8700 : ((bfd_int64_t)((int) immlo)) >> 32;
8701 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8702 &op, 64, NT_invtype);
8703
8704 if (cmode == FAIL)
8705 {
8706 neon_invert_size (&immlo, &immhi, 64);
8707 op = !op;
8708 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8709 &op, 64, NT_invtype);
8710 }
8711
8712 if (cmode != FAIL)
8713 {
8714 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8715 | (1 << 23)
8716 | (cmode << 8)
8717 | (op << 5)
8718 | (1 << 4);
8719
8720 /* Fill other bits in vmov encoding for both thumb and arm. */
8721 if (thumb_mode)
8722 inst.instruction |= (0x7U << 29) | (0xF << 24);
8723 else
8724 inst.instruction |= (0xFU << 28) | (0x1 << 25);
8725 neon_write_immbits (immbits);
8726 return TRUE;
8727 }
8728 }
8729 }
8730
8731 if (t == CONST_VEC)
8732 {
8733 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8734 if (inst.operands[i].issingle
8735 && is_quarter_float (inst.operands[1].imm)
8736 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8737 {
8738 inst.operands[1].imm =
8739 neon_qfloat_bits (v);
8740 do_vfp_nsyn_opcode ("fconsts");
8741 return TRUE;
8742 }
8743
8744 /* If our host does not support a 64-bit type then we cannot perform
8745 the following optimization. This mean that there will be a
8746 discrepancy between the output produced by an assembler built for
8747 a 32-bit-only host and the output produced from a 64-bit host, but
8748 this cannot be helped. */
8749 #if defined BFD_HOST_64_BIT
8750 else if (!inst.operands[1].issingle
8751 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8752 {
8753 if (is_double_a_single (v)
8754 && is_quarter_float (double_to_single (v)))
8755 {
8756 inst.operands[1].imm =
8757 neon_qfloat_bits (double_to_single (v));
8758 do_vfp_nsyn_opcode ("fconstd");
8759 return TRUE;
8760 }
8761 }
8762 #endif
8763 }
8764 }
8765
8766 if (add_to_lit_pool ((!inst.operands[i].isvec
8767 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8768 return TRUE;
8769
8770 inst.operands[1].reg = REG_PC;
8771 inst.operands[1].isreg = 1;
8772 inst.operands[1].preind = 1;
8773 inst.relocs[0].pc_rel = 1;
8774 inst.relocs[0].type = (thumb_p
8775 ? BFD_RELOC_ARM_THUMB_OFFSET
8776 : (mode_3
8777 ? BFD_RELOC_ARM_HWLITERAL
8778 : BFD_RELOC_ARM_LITERAL));
8779 return FALSE;
8780 }
8781
8782 /* inst.operands[i] was set up by parse_address. Encode it into an
8783 ARM-format instruction. Reject all forms which cannot be encoded
8784 into a coprocessor load/store instruction. If wb_ok is false,
8785 reject use of writeback; if unind_ok is false, reject use of
8786 unindexed addressing. If reloc_override is not 0, use it instead
8787 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8788 (in which case it is preserved). */
8789
8790 static int
8791 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8792 {
8793 if (!inst.operands[i].isreg)
8794 {
8795 /* PR 18256 */
8796 if (! inst.operands[0].isvec)
8797 {
8798 inst.error = _("invalid co-processor operand");
8799 return FAIL;
8800 }
8801 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8802 return SUCCESS;
8803 }
8804
8805 inst.instruction |= inst.operands[i].reg << 16;
8806
8807 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8808
8809 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8810 {
8811 gas_assert (!inst.operands[i].writeback);
8812 if (!unind_ok)
8813 {
8814 inst.error = _("instruction does not support unindexed addressing");
8815 return FAIL;
8816 }
8817 inst.instruction |= inst.operands[i].imm;
8818 inst.instruction |= INDEX_UP;
8819 return SUCCESS;
8820 }
8821
8822 if (inst.operands[i].preind)
8823 inst.instruction |= PRE_INDEX;
8824
8825 if (inst.operands[i].writeback)
8826 {
8827 if (inst.operands[i].reg == REG_PC)
8828 {
8829 inst.error = _("pc may not be used with write-back");
8830 return FAIL;
8831 }
8832 if (!wb_ok)
8833 {
8834 inst.error = _("instruction does not support writeback");
8835 return FAIL;
8836 }
8837 inst.instruction |= WRITE_BACK;
8838 }
8839
8840 if (reloc_override)
8841 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8842 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8843 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8844 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
8845 {
8846 if (thumb_mode)
8847 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8848 else
8849 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
8850 }
8851
8852 /* Prefer + for zero encoded value. */
8853 if (!inst.operands[i].negative)
8854 inst.instruction |= INDEX_UP;
8855
8856 return SUCCESS;
8857 }
8858
8859 /* Functions for instruction encoding, sorted by sub-architecture.
8860 First some generics; their names are taken from the conventional
8861 bit positions for register arguments in ARM format instructions. */
8862
8863 static void
8864 do_noargs (void)
8865 {
8866 }
8867
8868 static void
8869 do_rd (void)
8870 {
8871 inst.instruction |= inst.operands[0].reg << 12;
8872 }
8873
8874 static void
8875 do_rn (void)
8876 {
8877 inst.instruction |= inst.operands[0].reg << 16;
8878 }
8879
8880 static void
8881 do_rd_rm (void)
8882 {
8883 inst.instruction |= inst.operands[0].reg << 12;
8884 inst.instruction |= inst.operands[1].reg;
8885 }
8886
8887 static void
8888 do_rm_rn (void)
8889 {
8890 inst.instruction |= inst.operands[0].reg;
8891 inst.instruction |= inst.operands[1].reg << 16;
8892 }
8893
8894 static void
8895 do_rd_rn (void)
8896 {
8897 inst.instruction |= inst.operands[0].reg << 12;
8898 inst.instruction |= inst.operands[1].reg << 16;
8899 }
8900
8901 static void
8902 do_rn_rd (void)
8903 {
8904 inst.instruction |= inst.operands[0].reg << 16;
8905 inst.instruction |= inst.operands[1].reg << 12;
8906 }
8907
8908 static void
8909 do_tt (void)
8910 {
8911 inst.instruction |= inst.operands[0].reg << 8;
8912 inst.instruction |= inst.operands[1].reg << 16;
8913 }
8914
8915 static bfd_boolean
8916 check_obsolete (const arm_feature_set *feature, const char *msg)
8917 {
8918 if (ARM_CPU_IS_ANY (cpu_variant))
8919 {
8920 as_tsktsk ("%s", msg);
8921 return TRUE;
8922 }
8923 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8924 {
8925 as_bad ("%s", msg);
8926 return TRUE;
8927 }
8928
8929 return FALSE;
8930 }
8931
8932 static void
8933 do_rd_rm_rn (void)
8934 {
8935 unsigned Rn = inst.operands[2].reg;
8936 /* Enforce restrictions on SWP instruction. */
8937 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
8938 {
8939 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8940 _("Rn must not overlap other operands"));
8941
8942 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8943 */
8944 if (!check_obsolete (&arm_ext_v8,
8945 _("swp{b} use is obsoleted for ARMv8 and later"))
8946 && warn_on_deprecated
8947 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
8948 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
8949 }
8950
8951 inst.instruction |= inst.operands[0].reg << 12;
8952 inst.instruction |= inst.operands[1].reg;
8953 inst.instruction |= Rn << 16;
8954 }
8955
8956 static void
8957 do_rd_rn_rm (void)
8958 {
8959 inst.instruction |= inst.operands[0].reg << 12;
8960 inst.instruction |= inst.operands[1].reg << 16;
8961 inst.instruction |= inst.operands[2].reg;
8962 }
8963
8964 static void
8965 do_rm_rd_rn (void)
8966 {
8967 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
8968 constraint (((inst.relocs[0].exp.X_op != O_constant
8969 && inst.relocs[0].exp.X_op != O_illegal)
8970 || inst.relocs[0].exp.X_add_number != 0),
8971 BAD_ADDR_MODE);
8972 inst.instruction |= inst.operands[0].reg;
8973 inst.instruction |= inst.operands[1].reg << 12;
8974 inst.instruction |= inst.operands[2].reg << 16;
8975 }
8976
8977 static void
8978 do_imm0 (void)
8979 {
8980 inst.instruction |= inst.operands[0].imm;
8981 }
8982
8983 static void
8984 do_rd_cpaddr (void)
8985 {
8986 inst.instruction |= inst.operands[0].reg << 12;
8987 encode_arm_cp_address (1, TRUE, TRUE, 0);
8988 }
8989
8990 /* ARM instructions, in alphabetical order by function name (except
8991 that wrapper functions appear immediately after the function they
8992 wrap). */
8993
8994 /* This is a pseudo-op of the form "adr rd, label" to be converted
8995 into a relative address of the form "add rd, pc, #label-.-8". */
8996
8997 static void
8998 do_adr (void)
8999 {
9000 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9001
9002 /* Frag hacking will turn this into a sub instruction if the offset turns
9003 out to be negative. */
9004 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9005 inst.relocs[0].pc_rel = 1;
9006 inst.relocs[0].exp.X_add_number -= 8;
9007
9008 if (support_interwork
9009 && inst.relocs[0].exp.X_op == O_symbol
9010 && inst.relocs[0].exp.X_add_symbol != NULL
9011 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9012 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9013 inst.relocs[0].exp.X_add_number |= 1;
9014 }
9015
9016 /* This is a pseudo-op of the form "adrl rd, label" to be converted
9017 into a relative address of the form:
9018 add rd, pc, #low(label-.-8)"
9019 add rd, rd, #high(label-.-8)" */
9020
9021 static void
9022 do_adrl (void)
9023 {
9024 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9025
9026 /* Frag hacking will turn this into a sub instruction if the offset turns
9027 out to be negative. */
9028 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9029 inst.relocs[0].pc_rel = 1;
9030 inst.size = INSN_SIZE * 2;
9031 inst.relocs[0].exp.X_add_number -= 8;
9032
9033 if (support_interwork
9034 && inst.relocs[0].exp.X_op == O_symbol
9035 && inst.relocs[0].exp.X_add_symbol != NULL
9036 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9037 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9038 inst.relocs[0].exp.X_add_number |= 1;
9039 }
9040
9041 static void
9042 do_arit (void)
9043 {
9044 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9045 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9046 THUMB1_RELOC_ONLY);
9047 if (!inst.operands[1].present)
9048 inst.operands[1].reg = inst.operands[0].reg;
9049 inst.instruction |= inst.operands[0].reg << 12;
9050 inst.instruction |= inst.operands[1].reg << 16;
9051 encode_arm_shifter_operand (2);
9052 }
9053
9054 static void
9055 do_barrier (void)
9056 {
9057 if (inst.operands[0].present)
9058 inst.instruction |= inst.operands[0].imm;
9059 else
9060 inst.instruction |= 0xf;
9061 }
9062
9063 static void
9064 do_bfc (void)
9065 {
9066 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9067 constraint (msb > 32, _("bit-field extends past end of register"));
9068 /* The instruction encoding stores the LSB and MSB,
9069 not the LSB and width. */
9070 inst.instruction |= inst.operands[0].reg << 12;
9071 inst.instruction |= inst.operands[1].imm << 7;
9072 inst.instruction |= (msb - 1) << 16;
9073 }
9074
9075 static void
9076 do_bfi (void)
9077 {
9078 unsigned int msb;
9079
9080 /* #0 in second position is alternative syntax for bfc, which is
9081 the same instruction but with REG_PC in the Rm field. */
9082 if (!inst.operands[1].isreg)
9083 inst.operands[1].reg = REG_PC;
9084
9085 msb = inst.operands[2].imm + inst.operands[3].imm;
9086 constraint (msb > 32, _("bit-field extends past end of register"));
9087 /* The instruction encoding stores the LSB and MSB,
9088 not the LSB and width. */
9089 inst.instruction |= inst.operands[0].reg << 12;
9090 inst.instruction |= inst.operands[1].reg;
9091 inst.instruction |= inst.operands[2].imm << 7;
9092 inst.instruction |= (msb - 1) << 16;
9093 }
9094
9095 static void
9096 do_bfx (void)
9097 {
9098 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9099 _("bit-field extends past end of register"));
9100 inst.instruction |= inst.operands[0].reg << 12;
9101 inst.instruction |= inst.operands[1].reg;
9102 inst.instruction |= inst.operands[2].imm << 7;
9103 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9104 }
9105
9106 /* ARM V5 breakpoint instruction (argument parse)
9107 BKPT <16 bit unsigned immediate>
9108 Instruction is not conditional.
9109 The bit pattern given in insns[] has the COND_ALWAYS condition,
9110 and it is an error if the caller tried to override that. */
9111
9112 static void
9113 do_bkpt (void)
9114 {
9115 /* Top 12 of 16 bits to bits 19:8. */
9116 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
9117
9118 /* Bottom 4 of 16 bits to bits 3:0. */
9119 inst.instruction |= inst.operands[0].imm & 0xf;
9120 }
9121
9122 static void
9123 encode_branch (int default_reloc)
9124 {
9125 if (inst.operands[0].hasreloc)
9126 {
9127 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9128 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9129 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
9130 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
9131 ? BFD_RELOC_ARM_PLT32
9132 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
9133 }
9134 else
9135 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9136 inst.relocs[0].pc_rel = 1;
9137 }
9138
9139 static void
9140 do_branch (void)
9141 {
9142 #ifdef OBJ_ELF
9143 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9144 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9145 else
9146 #endif
9147 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9148 }
9149
9150 static void
9151 do_bl (void)
9152 {
9153 #ifdef OBJ_ELF
9154 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9155 {
9156 if (inst.cond == COND_ALWAYS)
9157 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9158 else
9159 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9160 }
9161 else
9162 #endif
9163 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9164 }
9165
9166 /* ARM V5 branch-link-exchange instruction (argument parse)
9167 BLX <target_addr> ie BLX(1)
9168 BLX{<condition>} <Rm> ie BLX(2)
9169 Unfortunately, there are two different opcodes for this mnemonic.
9170 So, the insns[].value is not used, and the code here zaps values
9171 into inst.instruction.
9172 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
9173
9174 static void
9175 do_blx (void)
9176 {
9177 if (inst.operands[0].isreg)
9178 {
9179 /* Arg is a register; the opcode provided by insns[] is correct.
9180 It is not illegal to do "blx pc", just useless. */
9181 if (inst.operands[0].reg == REG_PC)
9182 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
9183
9184 inst.instruction |= inst.operands[0].reg;
9185 }
9186 else
9187 {
9188 /* Arg is an address; this instruction cannot be executed
9189 conditionally, and the opcode must be adjusted.
9190 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9191 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
9192 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9193 inst.instruction = 0xfa000000;
9194 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
9195 }
9196 }
9197
9198 static void
9199 do_bx (void)
9200 {
9201 bfd_boolean want_reloc;
9202
9203 if (inst.operands[0].reg == REG_PC)
9204 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
9205
9206 inst.instruction |= inst.operands[0].reg;
9207 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9208 it is for ARMv4t or earlier. */
9209 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
9210 if (!ARM_FEATURE_ZERO (selected_object_arch)
9211 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
9212 want_reloc = TRUE;
9213
9214 #ifdef OBJ_ELF
9215 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
9216 #endif
9217 want_reloc = FALSE;
9218
9219 if (want_reloc)
9220 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
9221 }
9222
9223
9224 /* ARM v5TEJ. Jump to Jazelle code. */
9225
9226 static void
9227 do_bxj (void)
9228 {
9229 if (inst.operands[0].reg == REG_PC)
9230 as_tsktsk (_("use of r15 in bxj is not really useful"));
9231
9232 inst.instruction |= inst.operands[0].reg;
9233 }
9234
9235 /* Co-processor data operation:
9236 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9237 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9238 static void
9239 do_cdp (void)
9240 {
9241 inst.instruction |= inst.operands[0].reg << 8;
9242 inst.instruction |= inst.operands[1].imm << 20;
9243 inst.instruction |= inst.operands[2].reg << 12;
9244 inst.instruction |= inst.operands[3].reg << 16;
9245 inst.instruction |= inst.operands[4].reg;
9246 inst.instruction |= inst.operands[5].imm << 5;
9247 }
9248
9249 static void
9250 do_cmp (void)
9251 {
9252 inst.instruction |= inst.operands[0].reg << 16;
9253 encode_arm_shifter_operand (1);
9254 }
9255
9256 /* Transfer between coprocessor and ARM registers.
9257 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9258 MRC2
9259 MCR{cond}
9260 MCR2
9261
9262 No special properties. */
9263
9264 struct deprecated_coproc_regs_s
9265 {
9266 unsigned cp;
9267 int opc1;
9268 unsigned crn;
9269 unsigned crm;
9270 int opc2;
9271 arm_feature_set deprecated;
9272 arm_feature_set obsoleted;
9273 const char *dep_msg;
9274 const char *obs_msg;
9275 };
9276
9277 #define DEPR_ACCESS_V8 \
9278 N_("This coprocessor register access is deprecated in ARMv8")
9279
9280 /* Table of all deprecated coprocessor registers. */
9281 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9282 {
9283 {15, 0, 7, 10, 5, /* CP15DMB. */
9284 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9285 DEPR_ACCESS_V8, NULL},
9286 {15, 0, 7, 10, 4, /* CP15DSB. */
9287 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9288 DEPR_ACCESS_V8, NULL},
9289 {15, 0, 7, 5, 4, /* CP15ISB. */
9290 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9291 DEPR_ACCESS_V8, NULL},
9292 {14, 6, 1, 0, 0, /* TEEHBR. */
9293 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9294 DEPR_ACCESS_V8, NULL},
9295 {14, 6, 0, 0, 0, /* TEECR. */
9296 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9297 DEPR_ACCESS_V8, NULL},
9298 };
9299
9300 #undef DEPR_ACCESS_V8
9301
9302 static const size_t deprecated_coproc_reg_count =
9303 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9304
9305 static void
9306 do_co_reg (void)
9307 {
9308 unsigned Rd;
9309 size_t i;
9310
9311 Rd = inst.operands[2].reg;
9312 if (thumb_mode)
9313 {
9314 if (inst.instruction == 0xee000010
9315 || inst.instruction == 0xfe000010)
9316 /* MCR, MCR2 */
9317 reject_bad_reg (Rd);
9318 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9319 /* MRC, MRC2 */
9320 constraint (Rd == REG_SP, BAD_SP);
9321 }
9322 else
9323 {
9324 /* MCR */
9325 if (inst.instruction == 0xe000010)
9326 constraint (Rd == REG_PC, BAD_PC);
9327 }
9328
9329 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9330 {
9331 const struct deprecated_coproc_regs_s *r =
9332 deprecated_coproc_regs + i;
9333
9334 if (inst.operands[0].reg == r->cp
9335 && inst.operands[1].imm == r->opc1
9336 && inst.operands[3].reg == r->crn
9337 && inst.operands[4].reg == r->crm
9338 && inst.operands[5].imm == r->opc2)
9339 {
9340 if (! ARM_CPU_IS_ANY (cpu_variant)
9341 && warn_on_deprecated
9342 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
9343 as_tsktsk ("%s", r->dep_msg);
9344 }
9345 }
9346
9347 inst.instruction |= inst.operands[0].reg << 8;
9348 inst.instruction |= inst.operands[1].imm << 21;
9349 inst.instruction |= Rd << 12;
9350 inst.instruction |= inst.operands[3].reg << 16;
9351 inst.instruction |= inst.operands[4].reg;
9352 inst.instruction |= inst.operands[5].imm << 5;
9353 }
9354
9355 /* Transfer between coprocessor register and pair of ARM registers.
9356 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9357 MCRR2
9358 MRRC{cond}
9359 MRRC2
9360
9361 Two XScale instructions are special cases of these:
9362
9363 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9364 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
9365
9366 Result unpredictable if Rd or Rn is R15. */
9367
9368 static void
9369 do_co_reg2c (void)
9370 {
9371 unsigned Rd, Rn;
9372
9373 Rd = inst.operands[2].reg;
9374 Rn = inst.operands[3].reg;
9375
9376 if (thumb_mode)
9377 {
9378 reject_bad_reg (Rd);
9379 reject_bad_reg (Rn);
9380 }
9381 else
9382 {
9383 constraint (Rd == REG_PC, BAD_PC);
9384 constraint (Rn == REG_PC, BAD_PC);
9385 }
9386
9387 /* Only check the MRRC{2} variants. */
9388 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9389 {
9390 /* If Rd == Rn, error that the operation is
9391 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9392 constraint (Rd == Rn, BAD_OVERLAP);
9393 }
9394
9395 inst.instruction |= inst.operands[0].reg << 8;
9396 inst.instruction |= inst.operands[1].imm << 4;
9397 inst.instruction |= Rd << 12;
9398 inst.instruction |= Rn << 16;
9399 inst.instruction |= inst.operands[4].reg;
9400 }
9401
9402 static void
9403 do_cpsi (void)
9404 {
9405 inst.instruction |= inst.operands[0].imm << 6;
9406 if (inst.operands[1].present)
9407 {
9408 inst.instruction |= CPSI_MMOD;
9409 inst.instruction |= inst.operands[1].imm;
9410 }
9411 }
9412
9413 static void
9414 do_dbg (void)
9415 {
9416 inst.instruction |= inst.operands[0].imm;
9417 }
9418
9419 static void
9420 do_div (void)
9421 {
9422 unsigned Rd, Rn, Rm;
9423
9424 Rd = inst.operands[0].reg;
9425 Rn = (inst.operands[1].present
9426 ? inst.operands[1].reg : Rd);
9427 Rm = inst.operands[2].reg;
9428
9429 constraint ((Rd == REG_PC), BAD_PC);
9430 constraint ((Rn == REG_PC), BAD_PC);
9431 constraint ((Rm == REG_PC), BAD_PC);
9432
9433 inst.instruction |= Rd << 16;
9434 inst.instruction |= Rn << 0;
9435 inst.instruction |= Rm << 8;
9436 }
9437
9438 static void
9439 do_it (void)
9440 {
9441 /* There is no IT instruction in ARM mode. We
9442 process it to do the validation as if in
9443 thumb mode, just in case the code gets
9444 assembled for thumb using the unified syntax. */
9445
9446 inst.size = 0;
9447 if (unified_syntax)
9448 {
9449 set_pred_insn_type (IT_INSN);
9450 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9451 now_pred.cc = inst.operands[0].imm;
9452 }
9453 }
9454
9455 /* If there is only one register in the register list,
9456 then return its register number. Otherwise return -1. */
9457 static int
9458 only_one_reg_in_list (int range)
9459 {
9460 int i = ffs (range) - 1;
9461 return (i > 15 || range != (1 << i)) ? -1 : i;
9462 }
9463
9464 static void
9465 encode_ldmstm(int from_push_pop_mnem)
9466 {
9467 int base_reg = inst.operands[0].reg;
9468 int range = inst.operands[1].imm;
9469 int one_reg;
9470
9471 inst.instruction |= base_reg << 16;
9472 inst.instruction |= range;
9473
9474 if (inst.operands[1].writeback)
9475 inst.instruction |= LDM_TYPE_2_OR_3;
9476
9477 if (inst.operands[0].writeback)
9478 {
9479 inst.instruction |= WRITE_BACK;
9480 /* Check for unpredictable uses of writeback. */
9481 if (inst.instruction & LOAD_BIT)
9482 {
9483 /* Not allowed in LDM type 2. */
9484 if ((inst.instruction & LDM_TYPE_2_OR_3)
9485 && ((range & (1 << REG_PC)) == 0))
9486 as_warn (_("writeback of base register is UNPREDICTABLE"));
9487 /* Only allowed if base reg not in list for other types. */
9488 else if (range & (1 << base_reg))
9489 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9490 }
9491 else /* STM. */
9492 {
9493 /* Not allowed for type 2. */
9494 if (inst.instruction & LDM_TYPE_2_OR_3)
9495 as_warn (_("writeback of base register is UNPREDICTABLE"));
9496 /* Only allowed if base reg not in list, or first in list. */
9497 else if ((range & (1 << base_reg))
9498 && (range & ((1 << base_reg) - 1)))
9499 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
9500 }
9501 }
9502
9503 /* If PUSH/POP has only one register, then use the A2 encoding. */
9504 one_reg = only_one_reg_in_list (range);
9505 if (from_push_pop_mnem && one_reg >= 0)
9506 {
9507 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9508
9509 if (is_push && one_reg == 13 /* SP */)
9510 /* PR 22483: The A2 encoding cannot be used when
9511 pushing the stack pointer as this is UNPREDICTABLE. */
9512 return;
9513
9514 inst.instruction &= A_COND_MASK;
9515 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9516 inst.instruction |= one_reg << 12;
9517 }
9518 }
9519
9520 static void
9521 do_ldmstm (void)
9522 {
9523 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
9524 }
9525
9526 /* ARMv5TE load-consecutive (argument parse)
9527 Mode is like LDRH.
9528
9529 LDRccD R, mode
9530 STRccD R, mode. */
9531
9532 static void
9533 do_ldrd (void)
9534 {
9535 constraint (inst.operands[0].reg % 2 != 0,
9536 _("first transfer register must be even"));
9537 constraint (inst.operands[1].present
9538 && inst.operands[1].reg != inst.operands[0].reg + 1,
9539 _("can only transfer two consecutive registers"));
9540 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9541 constraint (!inst.operands[2].isreg, _("'[' expected"));
9542
9543 if (!inst.operands[1].present)
9544 inst.operands[1].reg = inst.operands[0].reg + 1;
9545
9546 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9547 register and the first register written; we have to diagnose
9548 overlap between the base and the second register written here. */
9549
9550 if (inst.operands[2].reg == inst.operands[1].reg
9551 && (inst.operands[2].writeback || inst.operands[2].postind))
9552 as_warn (_("base register written back, and overlaps "
9553 "second transfer register"));
9554
9555 if (!(inst.instruction & V4_STR_BIT))
9556 {
9557 /* For an index-register load, the index register must not overlap the
9558 destination (even if not write-back). */
9559 if (inst.operands[2].immisreg
9560 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9561 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9562 as_warn (_("index register overlaps transfer register"));
9563 }
9564 inst.instruction |= inst.operands[0].reg << 12;
9565 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
9566 }
9567
9568 static void
9569 do_ldrex (void)
9570 {
9571 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9572 || inst.operands[1].postind || inst.operands[1].writeback
9573 || inst.operands[1].immisreg || inst.operands[1].shifted
9574 || inst.operands[1].negative
9575 /* This can arise if the programmer has written
9576 strex rN, rM, foo
9577 or if they have mistakenly used a register name as the last
9578 operand, eg:
9579 strex rN, rM, rX
9580 It is very difficult to distinguish between these two cases
9581 because "rX" might actually be a label. ie the register
9582 name has been occluded by a symbol of the same name. So we
9583 just generate a general 'bad addressing mode' type error
9584 message and leave it up to the programmer to discover the
9585 true cause and fix their mistake. */
9586 || (inst.operands[1].reg == REG_PC),
9587 BAD_ADDR_MODE);
9588
9589 constraint (inst.relocs[0].exp.X_op != O_constant
9590 || inst.relocs[0].exp.X_add_number != 0,
9591 _("offset must be zero in ARM encoding"));
9592
9593 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9594
9595 inst.instruction |= inst.operands[0].reg << 12;
9596 inst.instruction |= inst.operands[1].reg << 16;
9597 inst.relocs[0].type = BFD_RELOC_UNUSED;
9598 }
9599
9600 static void
9601 do_ldrexd (void)
9602 {
9603 constraint (inst.operands[0].reg % 2 != 0,
9604 _("even register required"));
9605 constraint (inst.operands[1].present
9606 && inst.operands[1].reg != inst.operands[0].reg + 1,
9607 _("can only load two consecutive registers"));
9608 /* If op 1 were present and equal to PC, this function wouldn't
9609 have been called in the first place. */
9610 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9611
9612 inst.instruction |= inst.operands[0].reg << 12;
9613 inst.instruction |= inst.operands[2].reg << 16;
9614 }
9615
9616 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9617 which is not a multiple of four is UNPREDICTABLE. */
9618 static void
9619 check_ldr_r15_aligned (void)
9620 {
9621 constraint (!(inst.operands[1].immisreg)
9622 && (inst.operands[0].reg == REG_PC
9623 && inst.operands[1].reg == REG_PC
9624 && (inst.relocs[0].exp.X_add_number & 0x3)),
9625 _("ldr to register 15 must be 4-byte aligned"));
9626 }
9627
9628 static void
9629 do_ldst (void)
9630 {
9631 inst.instruction |= inst.operands[0].reg << 12;
9632 if (!inst.operands[1].isreg)
9633 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
9634 return;
9635 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
9636 check_ldr_r15_aligned ();
9637 }
9638
9639 static void
9640 do_ldstt (void)
9641 {
9642 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9643 reject [Rn,...]. */
9644 if (inst.operands[1].preind)
9645 {
9646 constraint (inst.relocs[0].exp.X_op != O_constant
9647 || inst.relocs[0].exp.X_add_number != 0,
9648 _("this instruction requires a post-indexed address"));
9649
9650 inst.operands[1].preind = 0;
9651 inst.operands[1].postind = 1;
9652 inst.operands[1].writeback = 1;
9653 }
9654 inst.instruction |= inst.operands[0].reg << 12;
9655 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9656 }
9657
9658 /* Halfword and signed-byte load/store operations. */
9659
9660 static void
9661 do_ldstv4 (void)
9662 {
9663 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9664 inst.instruction |= inst.operands[0].reg << 12;
9665 if (!inst.operands[1].isreg)
9666 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
9667 return;
9668 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
9669 }
9670
9671 static void
9672 do_ldsttv4 (void)
9673 {
9674 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9675 reject [Rn,...]. */
9676 if (inst.operands[1].preind)
9677 {
9678 constraint (inst.relocs[0].exp.X_op != O_constant
9679 || inst.relocs[0].exp.X_add_number != 0,
9680 _("this instruction requires a post-indexed address"));
9681
9682 inst.operands[1].preind = 0;
9683 inst.operands[1].postind = 1;
9684 inst.operands[1].writeback = 1;
9685 }
9686 inst.instruction |= inst.operands[0].reg << 12;
9687 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9688 }
9689
9690 /* Co-processor register load/store.
9691 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9692 static void
9693 do_lstc (void)
9694 {
9695 inst.instruction |= inst.operands[0].reg << 8;
9696 inst.instruction |= inst.operands[1].reg << 12;
9697 encode_arm_cp_address (2, TRUE, TRUE, 0);
9698 }
9699
9700 static void
9701 do_mlas (void)
9702 {
9703 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9704 if (inst.operands[0].reg == inst.operands[1].reg
9705 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
9706 && !(inst.instruction & 0x00400000))
9707 as_tsktsk (_("Rd and Rm should be different in mla"));
9708
9709 inst.instruction |= inst.operands[0].reg << 16;
9710 inst.instruction |= inst.operands[1].reg;
9711 inst.instruction |= inst.operands[2].reg << 8;
9712 inst.instruction |= inst.operands[3].reg << 12;
9713 }
9714
9715 static void
9716 do_mov (void)
9717 {
9718 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9719 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9720 THUMB1_RELOC_ONLY);
9721 inst.instruction |= inst.operands[0].reg << 12;
9722 encode_arm_shifter_operand (1);
9723 }
9724
9725 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9726 static void
9727 do_mov16 (void)
9728 {
9729 bfd_vma imm;
9730 bfd_boolean top;
9731
9732 top = (inst.instruction & 0x00400000) != 0;
9733 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
9734 _(":lower16: not allowed in this instruction"));
9735 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
9736 _(":upper16: not allowed in this instruction"));
9737 inst.instruction |= inst.operands[0].reg << 12;
9738 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
9739 {
9740 imm = inst.relocs[0].exp.X_add_number;
9741 /* The value is in two pieces: 0:11, 16:19. */
9742 inst.instruction |= (imm & 0x00000fff);
9743 inst.instruction |= (imm & 0x0000f000) << 4;
9744 }
9745 }
9746
9747 static int
9748 do_vfp_nsyn_mrs (void)
9749 {
9750 if (inst.operands[0].isvec)
9751 {
9752 if (inst.operands[1].reg != 1)
9753 first_error (_("operand 1 must be FPSCR"));
9754 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9755 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9756 do_vfp_nsyn_opcode ("fmstat");
9757 }
9758 else if (inst.operands[1].isvec)
9759 do_vfp_nsyn_opcode ("fmrx");
9760 else
9761 return FAIL;
9762
9763 return SUCCESS;
9764 }
9765
9766 static int
9767 do_vfp_nsyn_msr (void)
9768 {
9769 if (inst.operands[0].isvec)
9770 do_vfp_nsyn_opcode ("fmxr");
9771 else
9772 return FAIL;
9773
9774 return SUCCESS;
9775 }
9776
9777 static void
9778 do_vmrs (void)
9779 {
9780 unsigned Rt = inst.operands[0].reg;
9781
9782 if (thumb_mode && Rt == REG_SP)
9783 {
9784 inst.error = BAD_SP;
9785 return;
9786 }
9787
9788 /* MVFR2 is only valid at ARMv8-A. */
9789 if (inst.operands[1].reg == 5)
9790 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9791 _(BAD_FPU));
9792
9793 /* APSR_ sets isvec. All other refs to PC are illegal. */
9794 if (!inst.operands[0].isvec && Rt == REG_PC)
9795 {
9796 inst.error = BAD_PC;
9797 return;
9798 }
9799
9800 /* If we get through parsing the register name, we just insert the number
9801 generated into the instruction without further validation. */
9802 inst.instruction |= (inst.operands[1].reg << 16);
9803 inst.instruction |= (Rt << 12);
9804 }
9805
9806 static void
9807 do_vmsr (void)
9808 {
9809 unsigned Rt = inst.operands[1].reg;
9810
9811 if (thumb_mode)
9812 reject_bad_reg (Rt);
9813 else if (Rt == REG_PC)
9814 {
9815 inst.error = BAD_PC;
9816 return;
9817 }
9818
9819 /* MVFR2 is only valid for ARMv8-A. */
9820 if (inst.operands[0].reg == 5)
9821 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9822 _(BAD_FPU));
9823
9824 /* If we get through parsing the register name, we just insert the number
9825 generated into the instruction without further validation. */
9826 inst.instruction |= (inst.operands[0].reg << 16);
9827 inst.instruction |= (Rt << 12);
9828 }
9829
9830 static void
9831 do_mrs (void)
9832 {
9833 unsigned br;
9834
9835 if (do_vfp_nsyn_mrs () == SUCCESS)
9836 return;
9837
9838 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9839 inst.instruction |= inst.operands[0].reg << 12;
9840
9841 if (inst.operands[1].isreg)
9842 {
9843 br = inst.operands[1].reg;
9844 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
9845 as_bad (_("bad register for mrs"));
9846 }
9847 else
9848 {
9849 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9850 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9851 != (PSR_c|PSR_f),
9852 _("'APSR', 'CPSR' or 'SPSR' expected"));
9853 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9854 }
9855
9856 inst.instruction |= br;
9857 }
9858
9859 /* Two possible forms:
9860 "{C|S}PSR_<field>, Rm",
9861 "{C|S}PSR_f, #expression". */
9862
9863 static void
9864 do_msr (void)
9865 {
9866 if (do_vfp_nsyn_msr () == SUCCESS)
9867 return;
9868
9869 inst.instruction |= inst.operands[0].imm;
9870 if (inst.operands[1].isreg)
9871 inst.instruction |= inst.operands[1].reg;
9872 else
9873 {
9874 inst.instruction |= INST_IMMEDIATE;
9875 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9876 inst.relocs[0].pc_rel = 0;
9877 }
9878 }
9879
9880 static void
9881 do_mul (void)
9882 {
9883 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9884
9885 if (!inst.operands[2].present)
9886 inst.operands[2].reg = inst.operands[0].reg;
9887 inst.instruction |= inst.operands[0].reg << 16;
9888 inst.instruction |= inst.operands[1].reg;
9889 inst.instruction |= inst.operands[2].reg << 8;
9890
9891 if (inst.operands[0].reg == inst.operands[1].reg
9892 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9893 as_tsktsk (_("Rd and Rm should be different in mul"));
9894 }
9895
9896 /* Long Multiply Parser
9897 UMULL RdLo, RdHi, Rm, Rs
9898 SMULL RdLo, RdHi, Rm, Rs
9899 UMLAL RdLo, RdHi, Rm, Rs
9900 SMLAL RdLo, RdHi, Rm, Rs. */
9901
9902 static void
9903 do_mull (void)
9904 {
9905 inst.instruction |= inst.operands[0].reg << 12;
9906 inst.instruction |= inst.operands[1].reg << 16;
9907 inst.instruction |= inst.operands[2].reg;
9908 inst.instruction |= inst.operands[3].reg << 8;
9909
9910 /* rdhi and rdlo must be different. */
9911 if (inst.operands[0].reg == inst.operands[1].reg)
9912 as_tsktsk (_("rdhi and rdlo must be different"));
9913
9914 /* rdhi, rdlo and rm must all be different before armv6. */
9915 if ((inst.operands[0].reg == inst.operands[2].reg
9916 || inst.operands[1].reg == inst.operands[2].reg)
9917 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9918 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9919 }
9920
9921 static void
9922 do_nop (void)
9923 {
9924 if (inst.operands[0].present
9925 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
9926 {
9927 /* Architectural NOP hints are CPSR sets with no bits selected. */
9928 inst.instruction &= 0xf0000000;
9929 inst.instruction |= 0x0320f000;
9930 if (inst.operands[0].present)
9931 inst.instruction |= inst.operands[0].imm;
9932 }
9933 }
9934
9935 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9936 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9937 Condition defaults to COND_ALWAYS.
9938 Error if Rd, Rn or Rm are R15. */
9939
9940 static void
9941 do_pkhbt (void)
9942 {
9943 inst.instruction |= inst.operands[0].reg << 12;
9944 inst.instruction |= inst.operands[1].reg << 16;
9945 inst.instruction |= inst.operands[2].reg;
9946 if (inst.operands[3].present)
9947 encode_arm_shift (3);
9948 }
9949
9950 /* ARM V6 PKHTB (Argument Parse). */
9951
9952 static void
9953 do_pkhtb (void)
9954 {
9955 if (!inst.operands[3].present)
9956 {
9957 /* If the shift specifier is omitted, turn the instruction
9958 into pkhbt rd, rm, rn. */
9959 inst.instruction &= 0xfff00010;
9960 inst.instruction |= inst.operands[0].reg << 12;
9961 inst.instruction |= inst.operands[1].reg;
9962 inst.instruction |= inst.operands[2].reg << 16;
9963 }
9964 else
9965 {
9966 inst.instruction |= inst.operands[0].reg << 12;
9967 inst.instruction |= inst.operands[1].reg << 16;
9968 inst.instruction |= inst.operands[2].reg;
9969 encode_arm_shift (3);
9970 }
9971 }
9972
9973 /* ARMv5TE: Preload-Cache
9974 MP Extensions: Preload for write
9975
9976 PLD(W) <addr_mode>
9977
9978 Syntactically, like LDR with B=1, W=0, L=1. */
9979
9980 static void
9981 do_pld (void)
9982 {
9983 constraint (!inst.operands[0].isreg,
9984 _("'[' expected after PLD mnemonic"));
9985 constraint (inst.operands[0].postind,
9986 _("post-indexed expression used in preload instruction"));
9987 constraint (inst.operands[0].writeback,
9988 _("writeback used in preload instruction"));
9989 constraint (!inst.operands[0].preind,
9990 _("unindexed addressing used in preload instruction"));
9991 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9992 }
9993
9994 /* ARMv7: PLI <addr_mode> */
9995 static void
9996 do_pli (void)
9997 {
9998 constraint (!inst.operands[0].isreg,
9999 _("'[' expected after PLI mnemonic"));
10000 constraint (inst.operands[0].postind,
10001 _("post-indexed expression used in preload instruction"));
10002 constraint (inst.operands[0].writeback,
10003 _("writeback used in preload instruction"));
10004 constraint (!inst.operands[0].preind,
10005 _("unindexed addressing used in preload instruction"));
10006 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10007 inst.instruction &= ~PRE_INDEX;
10008 }
10009
10010 static void
10011 do_push_pop (void)
10012 {
10013 constraint (inst.operands[0].writeback,
10014 _("push/pop do not support {reglist}^"));
10015 inst.operands[1] = inst.operands[0];
10016 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10017 inst.operands[0].isreg = 1;
10018 inst.operands[0].writeback = 1;
10019 inst.operands[0].reg = REG_SP;
10020 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
10021 }
10022
10023 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10024 word at the specified address and the following word
10025 respectively.
10026 Unconditionally executed.
10027 Error if Rn is R15. */
10028
10029 static void
10030 do_rfe (void)
10031 {
10032 inst.instruction |= inst.operands[0].reg << 16;
10033 if (inst.operands[0].writeback)
10034 inst.instruction |= WRITE_BACK;
10035 }
10036
10037 /* ARM V6 ssat (argument parse). */
10038
10039 static void
10040 do_ssat (void)
10041 {
10042 inst.instruction |= inst.operands[0].reg << 12;
10043 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10044 inst.instruction |= inst.operands[2].reg;
10045
10046 if (inst.operands[3].present)
10047 encode_arm_shift (3);
10048 }
10049
10050 /* ARM V6 usat (argument parse). */
10051
10052 static void
10053 do_usat (void)
10054 {
10055 inst.instruction |= inst.operands[0].reg << 12;
10056 inst.instruction |= inst.operands[1].imm << 16;
10057 inst.instruction |= inst.operands[2].reg;
10058
10059 if (inst.operands[3].present)
10060 encode_arm_shift (3);
10061 }
10062
10063 /* ARM V6 ssat16 (argument parse). */
10064
10065 static void
10066 do_ssat16 (void)
10067 {
10068 inst.instruction |= inst.operands[0].reg << 12;
10069 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10070 inst.instruction |= inst.operands[2].reg;
10071 }
10072
10073 static void
10074 do_usat16 (void)
10075 {
10076 inst.instruction |= inst.operands[0].reg << 12;
10077 inst.instruction |= inst.operands[1].imm << 16;
10078 inst.instruction |= inst.operands[2].reg;
10079 }
10080
10081 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10082 preserving the other bits.
10083
10084 setend <endian_specifier>, where <endian_specifier> is either
10085 BE or LE. */
10086
10087 static void
10088 do_setend (void)
10089 {
10090 if (warn_on_deprecated
10091 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10092 as_tsktsk (_("setend use is deprecated for ARMv8"));
10093
10094 if (inst.operands[0].imm)
10095 inst.instruction |= 0x200;
10096 }
10097
10098 static void
10099 do_shift (void)
10100 {
10101 unsigned int Rm = (inst.operands[1].present
10102 ? inst.operands[1].reg
10103 : inst.operands[0].reg);
10104
10105 inst.instruction |= inst.operands[0].reg << 12;
10106 inst.instruction |= Rm;
10107 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
10108 {
10109 inst.instruction |= inst.operands[2].reg << 8;
10110 inst.instruction |= SHIFT_BY_REG;
10111 /* PR 12854: Error on extraneous shifts. */
10112 constraint (inst.operands[2].shifted,
10113 _("extraneous shift as part of operand to shift insn"));
10114 }
10115 else
10116 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
10117 }
10118
10119 static void
10120 do_smc (void)
10121 {
10122 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10123 inst.relocs[0].pc_rel = 0;
10124 }
10125
10126 static void
10127 do_hvc (void)
10128 {
10129 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10130 inst.relocs[0].pc_rel = 0;
10131 }
10132
10133 static void
10134 do_swi (void)
10135 {
10136 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10137 inst.relocs[0].pc_rel = 0;
10138 }
10139
10140 static void
10141 do_setpan (void)
10142 {
10143 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10144 _("selected processor does not support SETPAN instruction"));
10145
10146 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10147 }
10148
10149 static void
10150 do_t_setpan (void)
10151 {
10152 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10153 _("selected processor does not support SETPAN instruction"));
10154
10155 inst.instruction |= (inst.operands[0].imm << 3);
10156 }
10157
10158 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10159 SMLAxy{cond} Rd,Rm,Rs,Rn
10160 SMLAWy{cond} Rd,Rm,Rs,Rn
10161 Error if any register is R15. */
10162
10163 static void
10164 do_smla (void)
10165 {
10166 inst.instruction |= inst.operands[0].reg << 16;
10167 inst.instruction |= inst.operands[1].reg;
10168 inst.instruction |= inst.operands[2].reg << 8;
10169 inst.instruction |= inst.operands[3].reg << 12;
10170 }
10171
10172 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10173 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10174 Error if any register is R15.
10175 Warning if Rdlo == Rdhi. */
10176
10177 static void
10178 do_smlal (void)
10179 {
10180 inst.instruction |= inst.operands[0].reg << 12;
10181 inst.instruction |= inst.operands[1].reg << 16;
10182 inst.instruction |= inst.operands[2].reg;
10183 inst.instruction |= inst.operands[3].reg << 8;
10184
10185 if (inst.operands[0].reg == inst.operands[1].reg)
10186 as_tsktsk (_("rdhi and rdlo must be different"));
10187 }
10188
10189 /* ARM V5E (El Segundo) signed-multiply (argument parse)
10190 SMULxy{cond} Rd,Rm,Rs
10191 Error if any register is R15. */
10192
10193 static void
10194 do_smul (void)
10195 {
10196 inst.instruction |= inst.operands[0].reg << 16;
10197 inst.instruction |= inst.operands[1].reg;
10198 inst.instruction |= inst.operands[2].reg << 8;
10199 }
10200
10201 /* ARM V6 srs (argument parse). The variable fields in the encoding are
10202 the same for both ARM and Thumb-2. */
10203
10204 static void
10205 do_srs (void)
10206 {
10207 int reg;
10208
10209 if (inst.operands[0].present)
10210 {
10211 reg = inst.operands[0].reg;
10212 constraint (reg != REG_SP, _("SRS base register must be r13"));
10213 }
10214 else
10215 reg = REG_SP;
10216
10217 inst.instruction |= reg << 16;
10218 inst.instruction |= inst.operands[1].imm;
10219 if (inst.operands[0].writeback || inst.operands[1].writeback)
10220 inst.instruction |= WRITE_BACK;
10221 }
10222
10223 /* ARM V6 strex (argument parse). */
10224
10225 static void
10226 do_strex (void)
10227 {
10228 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10229 || inst.operands[2].postind || inst.operands[2].writeback
10230 || inst.operands[2].immisreg || inst.operands[2].shifted
10231 || inst.operands[2].negative
10232 /* See comment in do_ldrex(). */
10233 || (inst.operands[2].reg == REG_PC),
10234 BAD_ADDR_MODE);
10235
10236 constraint (inst.operands[0].reg == inst.operands[1].reg
10237 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10238
10239 constraint (inst.relocs[0].exp.X_op != O_constant
10240 || inst.relocs[0].exp.X_add_number != 0,
10241 _("offset must be zero in ARM encoding"));
10242
10243 inst.instruction |= inst.operands[0].reg << 12;
10244 inst.instruction |= inst.operands[1].reg;
10245 inst.instruction |= inst.operands[2].reg << 16;
10246 inst.relocs[0].type = BFD_RELOC_UNUSED;
10247 }
10248
10249 static void
10250 do_t_strexbh (void)
10251 {
10252 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10253 || inst.operands[2].postind || inst.operands[2].writeback
10254 || inst.operands[2].immisreg || inst.operands[2].shifted
10255 || inst.operands[2].negative,
10256 BAD_ADDR_MODE);
10257
10258 constraint (inst.operands[0].reg == inst.operands[1].reg
10259 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10260
10261 do_rm_rd_rn ();
10262 }
10263
10264 static void
10265 do_strexd (void)
10266 {
10267 constraint (inst.operands[1].reg % 2 != 0,
10268 _("even register required"));
10269 constraint (inst.operands[2].present
10270 && inst.operands[2].reg != inst.operands[1].reg + 1,
10271 _("can only store two consecutive registers"));
10272 /* If op 2 were present and equal to PC, this function wouldn't
10273 have been called in the first place. */
10274 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
10275
10276 constraint (inst.operands[0].reg == inst.operands[1].reg
10277 || inst.operands[0].reg == inst.operands[1].reg + 1
10278 || inst.operands[0].reg == inst.operands[3].reg,
10279 BAD_OVERLAP);
10280
10281 inst.instruction |= inst.operands[0].reg << 12;
10282 inst.instruction |= inst.operands[1].reg;
10283 inst.instruction |= inst.operands[3].reg << 16;
10284 }
10285
10286 /* ARM V8 STRL. */
10287 static void
10288 do_stlex (void)
10289 {
10290 constraint (inst.operands[0].reg == inst.operands[1].reg
10291 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10292
10293 do_rd_rm_rn ();
10294 }
10295
10296 static void
10297 do_t_stlex (void)
10298 {
10299 constraint (inst.operands[0].reg == inst.operands[1].reg
10300 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10301
10302 do_rm_rd_rn ();
10303 }
10304
10305 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10306 extends it to 32-bits, and adds the result to a value in another
10307 register. You can specify a rotation by 0, 8, 16, or 24 bits
10308 before extracting the 16-bit value.
10309 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10310 Condition defaults to COND_ALWAYS.
10311 Error if any register uses R15. */
10312
10313 static void
10314 do_sxtah (void)
10315 {
10316 inst.instruction |= inst.operands[0].reg << 12;
10317 inst.instruction |= inst.operands[1].reg << 16;
10318 inst.instruction |= inst.operands[2].reg;
10319 inst.instruction |= inst.operands[3].imm << 10;
10320 }
10321
10322 /* ARM V6 SXTH.
10323
10324 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10325 Condition defaults to COND_ALWAYS.
10326 Error if any register uses R15. */
10327
10328 static void
10329 do_sxth (void)
10330 {
10331 inst.instruction |= inst.operands[0].reg << 12;
10332 inst.instruction |= inst.operands[1].reg;
10333 inst.instruction |= inst.operands[2].imm << 10;
10334 }
10335 \f
10336 /* VFP instructions. In a logical order: SP variant first, monad
10337 before dyad, arithmetic then move then load/store. */
10338
10339 static void
10340 do_vfp_sp_monadic (void)
10341 {
10342 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10343 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10344 _(BAD_FPU));
10345
10346 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10347 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10348 }
10349
10350 static void
10351 do_vfp_sp_dyadic (void)
10352 {
10353 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10354 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10355 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10356 }
10357
10358 static void
10359 do_vfp_sp_compare_z (void)
10360 {
10361 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10362 }
10363
10364 static void
10365 do_vfp_dp_sp_cvt (void)
10366 {
10367 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10368 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10369 }
10370
10371 static void
10372 do_vfp_sp_dp_cvt (void)
10373 {
10374 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10375 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10376 }
10377
10378 static void
10379 do_vfp_reg_from_sp (void)
10380 {
10381 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10382 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10383 _(BAD_FPU));
10384
10385 inst.instruction |= inst.operands[0].reg << 12;
10386 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10387 }
10388
10389 static void
10390 do_vfp_reg2_from_sp2 (void)
10391 {
10392 constraint (inst.operands[2].imm != 2,
10393 _("only two consecutive VFP SP registers allowed here"));
10394 inst.instruction |= inst.operands[0].reg << 12;
10395 inst.instruction |= inst.operands[1].reg << 16;
10396 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10397 }
10398
10399 static void
10400 do_vfp_sp_from_reg (void)
10401 {
10402 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10403 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10404 _(BAD_FPU));
10405
10406 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
10407 inst.instruction |= inst.operands[1].reg << 12;
10408 }
10409
10410 static void
10411 do_vfp_sp2_from_reg2 (void)
10412 {
10413 constraint (inst.operands[0].imm != 2,
10414 _("only two consecutive VFP SP registers allowed here"));
10415 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
10416 inst.instruction |= inst.operands[1].reg << 12;
10417 inst.instruction |= inst.operands[2].reg << 16;
10418 }
10419
10420 static void
10421 do_vfp_sp_ldst (void)
10422 {
10423 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10424 encode_arm_cp_address (1, FALSE, TRUE, 0);
10425 }
10426
10427 static void
10428 do_vfp_dp_ldst (void)
10429 {
10430 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10431 encode_arm_cp_address (1, FALSE, TRUE, 0);
10432 }
10433
10434
10435 static void
10436 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
10437 {
10438 if (inst.operands[0].writeback)
10439 inst.instruction |= WRITE_BACK;
10440 else
10441 constraint (ldstm_type != VFP_LDSTMIA,
10442 _("this addressing mode requires base-register writeback"));
10443 inst.instruction |= inst.operands[0].reg << 16;
10444 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
10445 inst.instruction |= inst.operands[1].imm;
10446 }
10447
10448 static void
10449 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
10450 {
10451 int count;
10452
10453 if (inst.operands[0].writeback)
10454 inst.instruction |= WRITE_BACK;
10455 else
10456 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10457 _("this addressing mode requires base-register writeback"));
10458
10459 inst.instruction |= inst.operands[0].reg << 16;
10460 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10461
10462 count = inst.operands[1].imm << 1;
10463 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10464 count += 1;
10465
10466 inst.instruction |= count;
10467 }
10468
10469 static void
10470 do_vfp_sp_ldstmia (void)
10471 {
10472 vfp_sp_ldstm (VFP_LDSTMIA);
10473 }
10474
10475 static void
10476 do_vfp_sp_ldstmdb (void)
10477 {
10478 vfp_sp_ldstm (VFP_LDSTMDB);
10479 }
10480
10481 static void
10482 do_vfp_dp_ldstmia (void)
10483 {
10484 vfp_dp_ldstm (VFP_LDSTMIA);
10485 }
10486
10487 static void
10488 do_vfp_dp_ldstmdb (void)
10489 {
10490 vfp_dp_ldstm (VFP_LDSTMDB);
10491 }
10492
10493 static void
10494 do_vfp_xp_ldstmia (void)
10495 {
10496 vfp_dp_ldstm (VFP_LDSTMIAX);
10497 }
10498
10499 static void
10500 do_vfp_xp_ldstmdb (void)
10501 {
10502 vfp_dp_ldstm (VFP_LDSTMDBX);
10503 }
10504
10505 static void
10506 do_vfp_dp_rd_rm (void)
10507 {
10508 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10509 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10510 _(BAD_FPU));
10511
10512 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10513 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10514 }
10515
10516 static void
10517 do_vfp_dp_rn_rd (void)
10518 {
10519 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10520 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10521 }
10522
10523 static void
10524 do_vfp_dp_rd_rn (void)
10525 {
10526 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10527 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10528 }
10529
10530 static void
10531 do_vfp_dp_rd_rn_rm (void)
10532 {
10533 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10534 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10535 _(BAD_FPU));
10536
10537 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10538 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10539 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10540 }
10541
10542 static void
10543 do_vfp_dp_rd (void)
10544 {
10545 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10546 }
10547
10548 static void
10549 do_vfp_dp_rm_rd_rn (void)
10550 {
10551 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10552 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10553 _(BAD_FPU));
10554
10555 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10556 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10557 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10558 }
10559
10560 /* VFPv3 instructions. */
10561 static void
10562 do_vfp_sp_const (void)
10563 {
10564 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10565 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10566 inst.instruction |= (inst.operands[1].imm & 0x0f);
10567 }
10568
10569 static void
10570 do_vfp_dp_const (void)
10571 {
10572 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10573 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10574 inst.instruction |= (inst.operands[1].imm & 0x0f);
10575 }
10576
10577 static void
10578 vfp_conv (int srcsize)
10579 {
10580 int immbits = srcsize - inst.operands[1].imm;
10581
10582 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10583 {
10584 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
10585 i.e. immbits must be in range 0 - 16. */
10586 inst.error = _("immediate value out of range, expected range [0, 16]");
10587 return;
10588 }
10589 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
10590 {
10591 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
10592 i.e. immbits must be in range 0 - 31. */
10593 inst.error = _("immediate value out of range, expected range [1, 32]");
10594 return;
10595 }
10596
10597 inst.instruction |= (immbits & 1) << 5;
10598 inst.instruction |= (immbits >> 1);
10599 }
10600
10601 static void
10602 do_vfp_sp_conv_16 (void)
10603 {
10604 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10605 vfp_conv (16);
10606 }
10607
10608 static void
10609 do_vfp_dp_conv_16 (void)
10610 {
10611 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10612 vfp_conv (16);
10613 }
10614
10615 static void
10616 do_vfp_sp_conv_32 (void)
10617 {
10618 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10619 vfp_conv (32);
10620 }
10621
10622 static void
10623 do_vfp_dp_conv_32 (void)
10624 {
10625 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10626 vfp_conv (32);
10627 }
10628 \f
10629 /* FPA instructions. Also in a logical order. */
10630
10631 static void
10632 do_fpa_cmp (void)
10633 {
10634 inst.instruction |= inst.operands[0].reg << 16;
10635 inst.instruction |= inst.operands[1].reg;
10636 }
10637
10638 static void
10639 do_fpa_ldmstm (void)
10640 {
10641 inst.instruction |= inst.operands[0].reg << 12;
10642 switch (inst.operands[1].imm)
10643 {
10644 case 1: inst.instruction |= CP_T_X; break;
10645 case 2: inst.instruction |= CP_T_Y; break;
10646 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10647 case 4: break;
10648 default: abort ();
10649 }
10650
10651 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10652 {
10653 /* The instruction specified "ea" or "fd", so we can only accept
10654 [Rn]{!}. The instruction does not really support stacking or
10655 unstacking, so we have to emulate these by setting appropriate
10656 bits and offsets. */
10657 constraint (inst.relocs[0].exp.X_op != O_constant
10658 || inst.relocs[0].exp.X_add_number != 0,
10659 _("this instruction does not support indexing"));
10660
10661 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
10662 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
10663
10664 if (!(inst.instruction & INDEX_UP))
10665 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
10666
10667 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10668 {
10669 inst.operands[2].preind = 0;
10670 inst.operands[2].postind = 1;
10671 }
10672 }
10673
10674 encode_arm_cp_address (2, TRUE, TRUE, 0);
10675 }
10676 \f
10677 /* iWMMXt instructions: strictly in alphabetical order. */
10678
10679 static void
10680 do_iwmmxt_tandorc (void)
10681 {
10682 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10683 }
10684
10685 static void
10686 do_iwmmxt_textrc (void)
10687 {
10688 inst.instruction |= inst.operands[0].reg << 12;
10689 inst.instruction |= inst.operands[1].imm;
10690 }
10691
10692 static void
10693 do_iwmmxt_textrm (void)
10694 {
10695 inst.instruction |= inst.operands[0].reg << 12;
10696 inst.instruction |= inst.operands[1].reg << 16;
10697 inst.instruction |= inst.operands[2].imm;
10698 }
10699
10700 static void
10701 do_iwmmxt_tinsr (void)
10702 {
10703 inst.instruction |= inst.operands[0].reg << 16;
10704 inst.instruction |= inst.operands[1].reg << 12;
10705 inst.instruction |= inst.operands[2].imm;
10706 }
10707
10708 static void
10709 do_iwmmxt_tmia (void)
10710 {
10711 inst.instruction |= inst.operands[0].reg << 5;
10712 inst.instruction |= inst.operands[1].reg;
10713 inst.instruction |= inst.operands[2].reg << 12;
10714 }
10715
10716 static void
10717 do_iwmmxt_waligni (void)
10718 {
10719 inst.instruction |= inst.operands[0].reg << 12;
10720 inst.instruction |= inst.operands[1].reg << 16;
10721 inst.instruction |= inst.operands[2].reg;
10722 inst.instruction |= inst.operands[3].imm << 20;
10723 }
10724
10725 static void
10726 do_iwmmxt_wmerge (void)
10727 {
10728 inst.instruction |= inst.operands[0].reg << 12;
10729 inst.instruction |= inst.operands[1].reg << 16;
10730 inst.instruction |= inst.operands[2].reg;
10731 inst.instruction |= inst.operands[3].imm << 21;
10732 }
10733
10734 static void
10735 do_iwmmxt_wmov (void)
10736 {
10737 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10738 inst.instruction |= inst.operands[0].reg << 12;
10739 inst.instruction |= inst.operands[1].reg << 16;
10740 inst.instruction |= inst.operands[1].reg;
10741 }
10742
10743 static void
10744 do_iwmmxt_wldstbh (void)
10745 {
10746 int reloc;
10747 inst.instruction |= inst.operands[0].reg << 12;
10748 if (thumb_mode)
10749 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10750 else
10751 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10752 encode_arm_cp_address (1, TRUE, FALSE, reloc);
10753 }
10754
10755 static void
10756 do_iwmmxt_wldstw (void)
10757 {
10758 /* RIWR_RIWC clears .isreg for a control register. */
10759 if (!inst.operands[0].isreg)
10760 {
10761 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10762 inst.instruction |= 0xf0000000;
10763 }
10764
10765 inst.instruction |= inst.operands[0].reg << 12;
10766 encode_arm_cp_address (1, TRUE, TRUE, 0);
10767 }
10768
10769 static void
10770 do_iwmmxt_wldstd (void)
10771 {
10772 inst.instruction |= inst.operands[0].reg << 12;
10773 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10774 && inst.operands[1].immisreg)
10775 {
10776 inst.instruction &= ~0x1a000ff;
10777 inst.instruction |= (0xfU << 28);
10778 if (inst.operands[1].preind)
10779 inst.instruction |= PRE_INDEX;
10780 if (!inst.operands[1].negative)
10781 inst.instruction |= INDEX_UP;
10782 if (inst.operands[1].writeback)
10783 inst.instruction |= WRITE_BACK;
10784 inst.instruction |= inst.operands[1].reg << 16;
10785 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
10786 inst.instruction |= inst.operands[1].imm;
10787 }
10788 else
10789 encode_arm_cp_address (1, TRUE, FALSE, 0);
10790 }
10791
10792 static void
10793 do_iwmmxt_wshufh (void)
10794 {
10795 inst.instruction |= inst.operands[0].reg << 12;
10796 inst.instruction |= inst.operands[1].reg << 16;
10797 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10798 inst.instruction |= (inst.operands[2].imm & 0x0f);
10799 }
10800
10801 static void
10802 do_iwmmxt_wzero (void)
10803 {
10804 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10805 inst.instruction |= inst.operands[0].reg;
10806 inst.instruction |= inst.operands[0].reg << 12;
10807 inst.instruction |= inst.operands[0].reg << 16;
10808 }
10809
10810 static void
10811 do_iwmmxt_wrwrwr_or_imm5 (void)
10812 {
10813 if (inst.operands[2].isreg)
10814 do_rd_rn_rm ();
10815 else {
10816 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10817 _("immediate operand requires iWMMXt2"));
10818 do_rd_rn ();
10819 if (inst.operands[2].imm == 0)
10820 {
10821 switch ((inst.instruction >> 20) & 0xf)
10822 {
10823 case 4:
10824 case 5:
10825 case 6:
10826 case 7:
10827 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10828 inst.operands[2].imm = 16;
10829 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10830 break;
10831 case 8:
10832 case 9:
10833 case 10:
10834 case 11:
10835 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10836 inst.operands[2].imm = 32;
10837 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10838 break;
10839 case 12:
10840 case 13:
10841 case 14:
10842 case 15:
10843 {
10844 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10845 unsigned long wrn;
10846 wrn = (inst.instruction >> 16) & 0xf;
10847 inst.instruction &= 0xff0fff0f;
10848 inst.instruction |= wrn;
10849 /* Bail out here; the instruction is now assembled. */
10850 return;
10851 }
10852 }
10853 }
10854 /* Map 32 -> 0, etc. */
10855 inst.operands[2].imm &= 0x1f;
10856 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
10857 }
10858 }
10859 \f
10860 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10861 operations first, then control, shift, and load/store. */
10862
10863 /* Insns like "foo X,Y,Z". */
10864
10865 static void
10866 do_mav_triple (void)
10867 {
10868 inst.instruction |= inst.operands[0].reg << 16;
10869 inst.instruction |= inst.operands[1].reg;
10870 inst.instruction |= inst.operands[2].reg << 12;
10871 }
10872
10873 /* Insns like "foo W,X,Y,Z".
10874 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
10875
10876 static void
10877 do_mav_quad (void)
10878 {
10879 inst.instruction |= inst.operands[0].reg << 5;
10880 inst.instruction |= inst.operands[1].reg << 12;
10881 inst.instruction |= inst.operands[2].reg << 16;
10882 inst.instruction |= inst.operands[3].reg;
10883 }
10884
10885 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10886 static void
10887 do_mav_dspsc (void)
10888 {
10889 inst.instruction |= inst.operands[1].reg << 12;
10890 }
10891
10892 /* Maverick shift immediate instructions.
10893 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10894 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
10895
10896 static void
10897 do_mav_shift (void)
10898 {
10899 int imm = inst.operands[2].imm;
10900
10901 inst.instruction |= inst.operands[0].reg << 12;
10902 inst.instruction |= inst.operands[1].reg << 16;
10903
10904 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10905 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10906 Bit 4 should be 0. */
10907 imm = (imm & 0xf) | ((imm & 0x70) << 1);
10908
10909 inst.instruction |= imm;
10910 }
10911 \f
10912 /* XScale instructions. Also sorted arithmetic before move. */
10913
10914 /* Xscale multiply-accumulate (argument parse)
10915 MIAcc acc0,Rm,Rs
10916 MIAPHcc acc0,Rm,Rs
10917 MIAxycc acc0,Rm,Rs. */
10918
10919 static void
10920 do_xsc_mia (void)
10921 {
10922 inst.instruction |= inst.operands[1].reg;
10923 inst.instruction |= inst.operands[2].reg << 12;
10924 }
10925
10926 /* Xscale move-accumulator-register (argument parse)
10927
10928 MARcc acc0,RdLo,RdHi. */
10929
10930 static void
10931 do_xsc_mar (void)
10932 {
10933 inst.instruction |= inst.operands[1].reg << 12;
10934 inst.instruction |= inst.operands[2].reg << 16;
10935 }
10936
10937 /* Xscale move-register-accumulator (argument parse)
10938
10939 MRAcc RdLo,RdHi,acc0. */
10940
10941 static void
10942 do_xsc_mra (void)
10943 {
10944 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10945 inst.instruction |= inst.operands[0].reg << 12;
10946 inst.instruction |= inst.operands[1].reg << 16;
10947 }
10948 \f
10949 /* Encoding functions relevant only to Thumb. */
10950
10951 /* inst.operands[i] is a shifted-register operand; encode
10952 it into inst.instruction in the format used by Thumb32. */
10953
10954 static void
10955 encode_thumb32_shifted_operand (int i)
10956 {
10957 unsigned int value = inst.relocs[0].exp.X_add_number;
10958 unsigned int shift = inst.operands[i].shift_kind;
10959
10960 constraint (inst.operands[i].immisreg,
10961 _("shift by register not allowed in thumb mode"));
10962 inst.instruction |= inst.operands[i].reg;
10963 if (shift == SHIFT_RRX)
10964 inst.instruction |= SHIFT_ROR << 4;
10965 else
10966 {
10967 constraint (inst.relocs[0].exp.X_op != O_constant,
10968 _("expression too complex"));
10969
10970 constraint (value > 32
10971 || (value == 32 && (shift == SHIFT_LSL
10972 || shift == SHIFT_ROR)),
10973 _("shift expression is too large"));
10974
10975 if (value == 0)
10976 shift = SHIFT_LSL;
10977 else if (value == 32)
10978 value = 0;
10979
10980 inst.instruction |= shift << 4;
10981 inst.instruction |= (value & 0x1c) << 10;
10982 inst.instruction |= (value & 0x03) << 6;
10983 }
10984 }
10985
10986
10987 /* inst.operands[i] was set up by parse_address. Encode it into a
10988 Thumb32 format load or store instruction. Reject forms that cannot
10989 be used with such instructions. If is_t is true, reject forms that
10990 cannot be used with a T instruction; if is_d is true, reject forms
10991 that cannot be used with a D instruction. If it is a store insn,
10992 reject PC in Rn. */
10993
10994 static void
10995 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
10996 {
10997 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
10998
10999 constraint (!inst.operands[i].isreg,
11000 _("Instruction does not support =N addresses"));
11001
11002 inst.instruction |= inst.operands[i].reg << 16;
11003 if (inst.operands[i].immisreg)
11004 {
11005 constraint (is_pc, BAD_PC_ADDRESSING);
11006 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11007 constraint (inst.operands[i].negative,
11008 _("Thumb does not support negative register indexing"));
11009 constraint (inst.operands[i].postind,
11010 _("Thumb does not support register post-indexing"));
11011 constraint (inst.operands[i].writeback,
11012 _("Thumb does not support register indexing with writeback"));
11013 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11014 _("Thumb supports only LSL in shifted register indexing"));
11015
11016 inst.instruction |= inst.operands[i].imm;
11017 if (inst.operands[i].shifted)
11018 {
11019 constraint (inst.relocs[0].exp.X_op != O_constant,
11020 _("expression too complex"));
11021 constraint (inst.relocs[0].exp.X_add_number < 0
11022 || inst.relocs[0].exp.X_add_number > 3,
11023 _("shift out of range"));
11024 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
11025 }
11026 inst.relocs[0].type = BFD_RELOC_UNUSED;
11027 }
11028 else if (inst.operands[i].preind)
11029 {
11030 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
11031 constraint (is_t && inst.operands[i].writeback,
11032 _("cannot use writeback with this instruction"));
11033 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11034 BAD_PC_ADDRESSING);
11035
11036 if (is_d)
11037 {
11038 inst.instruction |= 0x01000000;
11039 if (inst.operands[i].writeback)
11040 inst.instruction |= 0x00200000;
11041 }
11042 else
11043 {
11044 inst.instruction |= 0x00000c00;
11045 if (inst.operands[i].writeback)
11046 inst.instruction |= 0x00000100;
11047 }
11048 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11049 }
11050 else if (inst.operands[i].postind)
11051 {
11052 gas_assert (inst.operands[i].writeback);
11053 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11054 constraint (is_t, _("cannot use post-indexing with this instruction"));
11055
11056 if (is_d)
11057 inst.instruction |= 0x00200000;
11058 else
11059 inst.instruction |= 0x00000900;
11060 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11061 }
11062 else /* unindexed - only for coprocessor */
11063 inst.error = _("instruction does not accept unindexed addressing");
11064 }
11065
11066 /* Table of Thumb instructions which exist in both 16- and 32-bit
11067 encodings (the latter only in post-V6T2 cores). The index is the
11068 value used in the insns table below. When there is more than one
11069 possible 16-bit encoding for the instruction, this table always
11070 holds variant (1).
11071 Also contains several pseudo-instructions used during relaxation. */
11072 #define T16_32_TAB \
11073 X(_adc, 4140, eb400000), \
11074 X(_adcs, 4140, eb500000), \
11075 X(_add, 1c00, eb000000), \
11076 X(_adds, 1c00, eb100000), \
11077 X(_addi, 0000, f1000000), \
11078 X(_addis, 0000, f1100000), \
11079 X(_add_pc,000f, f20f0000), \
11080 X(_add_sp,000d, f10d0000), \
11081 X(_adr, 000f, f20f0000), \
11082 X(_and, 4000, ea000000), \
11083 X(_ands, 4000, ea100000), \
11084 X(_asr, 1000, fa40f000), \
11085 X(_asrs, 1000, fa50f000), \
11086 X(_b, e000, f000b000), \
11087 X(_bcond, d000, f0008000), \
11088 X(_bf, 0000, f040e001), \
11089 X(_bfcsel,0000, f000e001), \
11090 X(_bfx, 0000, f060e001), \
11091 X(_bfl, 0000, f000c001), \
11092 X(_bflx, 0000, f070e001), \
11093 X(_bic, 4380, ea200000), \
11094 X(_bics, 4380, ea300000), \
11095 X(_cmn, 42c0, eb100f00), \
11096 X(_cmp, 2800, ebb00f00), \
11097 X(_cpsie, b660, f3af8400), \
11098 X(_cpsid, b670, f3af8600), \
11099 X(_cpy, 4600, ea4f0000), \
11100 X(_dec_sp,80dd, f1ad0d00), \
11101 X(_dls, 0000, f040e001), \
11102 X(_eor, 4040, ea800000), \
11103 X(_eors, 4040, ea900000), \
11104 X(_inc_sp,00dd, f10d0d00), \
11105 X(_ldmia, c800, e8900000), \
11106 X(_ldr, 6800, f8500000), \
11107 X(_ldrb, 7800, f8100000), \
11108 X(_ldrh, 8800, f8300000), \
11109 X(_ldrsb, 5600, f9100000), \
11110 X(_ldrsh, 5e00, f9300000), \
11111 X(_ldr_pc,4800, f85f0000), \
11112 X(_ldr_pc2,4800, f85f0000), \
11113 X(_ldr_sp,9800, f85d0000), \
11114 X(_le, 0000, f00fc001), \
11115 X(_lsl, 0000, fa00f000), \
11116 X(_lsls, 0000, fa10f000), \
11117 X(_lsr, 0800, fa20f000), \
11118 X(_lsrs, 0800, fa30f000), \
11119 X(_mov, 2000, ea4f0000), \
11120 X(_movs, 2000, ea5f0000), \
11121 X(_mul, 4340, fb00f000), \
11122 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11123 X(_mvn, 43c0, ea6f0000), \
11124 X(_mvns, 43c0, ea7f0000), \
11125 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11126 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11127 X(_orr, 4300, ea400000), \
11128 X(_orrs, 4300, ea500000), \
11129 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11130 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11131 X(_rev, ba00, fa90f080), \
11132 X(_rev16, ba40, fa90f090), \
11133 X(_revsh, bac0, fa90f0b0), \
11134 X(_ror, 41c0, fa60f000), \
11135 X(_rors, 41c0, fa70f000), \
11136 X(_sbc, 4180, eb600000), \
11137 X(_sbcs, 4180, eb700000), \
11138 X(_stmia, c000, e8800000), \
11139 X(_str, 6000, f8400000), \
11140 X(_strb, 7000, f8000000), \
11141 X(_strh, 8000, f8200000), \
11142 X(_str_sp,9000, f84d0000), \
11143 X(_sub, 1e00, eba00000), \
11144 X(_subs, 1e00, ebb00000), \
11145 X(_subi, 8000, f1a00000), \
11146 X(_subis, 8000, f1b00000), \
11147 X(_sxtb, b240, fa4ff080), \
11148 X(_sxth, b200, fa0ff080), \
11149 X(_tst, 4200, ea100f00), \
11150 X(_uxtb, b2c0, fa5ff080), \
11151 X(_uxth, b280, fa1ff080), \
11152 X(_nop, bf00, f3af8000), \
11153 X(_yield, bf10, f3af8001), \
11154 X(_wfe, bf20, f3af8002), \
11155 X(_wfi, bf30, f3af8003), \
11156 X(_wls, 0000, f040c001), \
11157 X(_sev, bf40, f3af8004), \
11158 X(_sevl, bf50, f3af8005), \
11159 X(_udf, de00, f7f0a000)
11160
11161 /* To catch errors in encoding functions, the codes are all offset by
11162 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11163 as 16-bit instructions. */
11164 #define X(a,b,c) T_MNEM##a
11165 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11166 #undef X
11167
11168 #define X(a,b,c) 0x##b
11169 static const unsigned short thumb_op16[] = { T16_32_TAB };
11170 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11171 #undef X
11172
11173 #define X(a,b,c) 0x##c
11174 static const unsigned int thumb_op32[] = { T16_32_TAB };
11175 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11176 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
11177 #undef X
11178 #undef T16_32_TAB
11179
11180 /* Thumb instruction encoders, in alphabetical order. */
11181
11182 /* ADDW or SUBW. */
11183
11184 static void
11185 do_t_add_sub_w (void)
11186 {
11187 int Rd, Rn;
11188
11189 Rd = inst.operands[0].reg;
11190 Rn = inst.operands[1].reg;
11191
11192 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11193 is the SP-{plus,minus}-immediate form of the instruction. */
11194 if (Rn == REG_SP)
11195 constraint (Rd == REG_PC, BAD_PC);
11196 else
11197 reject_bad_reg (Rd);
11198
11199 inst.instruction |= (Rn << 16) | (Rd << 8);
11200 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11201 }
11202
11203 /* Parse an add or subtract instruction. We get here with inst.instruction
11204 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
11205
11206 static void
11207 do_t_add_sub (void)
11208 {
11209 int Rd, Rs, Rn;
11210
11211 Rd = inst.operands[0].reg;
11212 Rs = (inst.operands[1].present
11213 ? inst.operands[1].reg /* Rd, Rs, foo */
11214 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11215
11216 if (Rd == REG_PC)
11217 set_pred_insn_type_last ();
11218
11219 if (unified_syntax)
11220 {
11221 bfd_boolean flags;
11222 bfd_boolean narrow;
11223 int opcode;
11224
11225 flags = (inst.instruction == T_MNEM_adds
11226 || inst.instruction == T_MNEM_subs);
11227 if (flags)
11228 narrow = !in_pred_block ();
11229 else
11230 narrow = in_pred_block ();
11231 if (!inst.operands[2].isreg)
11232 {
11233 int add;
11234
11235 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11236 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11237
11238 add = (inst.instruction == T_MNEM_add
11239 || inst.instruction == T_MNEM_adds);
11240 opcode = 0;
11241 if (inst.size_req != 4)
11242 {
11243 /* Attempt to use a narrow opcode, with relaxation if
11244 appropriate. */
11245 if (Rd == REG_SP && Rs == REG_SP && !flags)
11246 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11247 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11248 opcode = T_MNEM_add_sp;
11249 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11250 opcode = T_MNEM_add_pc;
11251 else if (Rd <= 7 && Rs <= 7 && narrow)
11252 {
11253 if (flags)
11254 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11255 else
11256 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11257 }
11258 if (opcode)
11259 {
11260 inst.instruction = THUMB_OP16(opcode);
11261 inst.instruction |= (Rd << 4) | Rs;
11262 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11263 || (inst.relocs[0].type
11264 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
11265 {
11266 if (inst.size_req == 2)
11267 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11268 else
11269 inst.relax = opcode;
11270 }
11271 }
11272 else
11273 constraint (inst.size_req == 2, BAD_HIREG);
11274 }
11275 if (inst.size_req == 4
11276 || (inst.size_req != 2 && !opcode))
11277 {
11278 constraint ((inst.relocs[0].type
11279 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11280 && (inst.relocs[0].type
11281 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
11282 THUMB1_RELOC_ONLY);
11283 if (Rd == REG_PC)
11284 {
11285 constraint (add, BAD_PC);
11286 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11287 _("only SUBS PC, LR, #const allowed"));
11288 constraint (inst.relocs[0].exp.X_op != O_constant,
11289 _("expression too complex"));
11290 constraint (inst.relocs[0].exp.X_add_number < 0
11291 || inst.relocs[0].exp.X_add_number > 0xff,
11292 _("immediate value out of range"));
11293 inst.instruction = T2_SUBS_PC_LR
11294 | inst.relocs[0].exp.X_add_number;
11295 inst.relocs[0].type = BFD_RELOC_UNUSED;
11296 return;
11297 }
11298 else if (Rs == REG_PC)
11299 {
11300 /* Always use addw/subw. */
11301 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
11302 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11303 }
11304 else
11305 {
11306 inst.instruction = THUMB_OP32 (inst.instruction);
11307 inst.instruction = (inst.instruction & 0xe1ffffff)
11308 | 0x10000000;
11309 if (flags)
11310 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11311 else
11312 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
11313 }
11314 inst.instruction |= Rd << 8;
11315 inst.instruction |= Rs << 16;
11316 }
11317 }
11318 else
11319 {
11320 unsigned int value = inst.relocs[0].exp.X_add_number;
11321 unsigned int shift = inst.operands[2].shift_kind;
11322
11323 Rn = inst.operands[2].reg;
11324 /* See if we can do this with a 16-bit instruction. */
11325 if (!inst.operands[2].shifted && inst.size_req != 4)
11326 {
11327 if (Rd > 7 || Rs > 7 || Rn > 7)
11328 narrow = FALSE;
11329
11330 if (narrow)
11331 {
11332 inst.instruction = ((inst.instruction == T_MNEM_adds
11333 || inst.instruction == T_MNEM_add)
11334 ? T_OPCODE_ADD_R3
11335 : T_OPCODE_SUB_R3);
11336 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11337 return;
11338 }
11339
11340 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
11341 {
11342 /* Thumb-1 cores (except v6-M) require at least one high
11343 register in a narrow non flag setting add. */
11344 if (Rd > 7 || Rn > 7
11345 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11346 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
11347 {
11348 if (Rd == Rn)
11349 {
11350 Rn = Rs;
11351 Rs = Rd;
11352 }
11353 inst.instruction = T_OPCODE_ADD_HI;
11354 inst.instruction |= (Rd & 8) << 4;
11355 inst.instruction |= (Rd & 7);
11356 inst.instruction |= Rn << 3;
11357 return;
11358 }
11359 }
11360 }
11361
11362 constraint (Rd == REG_PC, BAD_PC);
11363 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11364 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11365 constraint (Rs == REG_PC, BAD_PC);
11366 reject_bad_reg (Rn);
11367
11368 /* If we get here, it can't be done in 16 bits. */
11369 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11370 _("shift must be constant"));
11371 inst.instruction = THUMB_OP32 (inst.instruction);
11372 inst.instruction |= Rd << 8;
11373 inst.instruction |= Rs << 16;
11374 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11375 _("shift value over 3 not allowed in thumb mode"));
11376 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11377 _("only LSL shift allowed in thumb mode"));
11378 encode_thumb32_shifted_operand (2);
11379 }
11380 }
11381 else
11382 {
11383 constraint (inst.instruction == T_MNEM_adds
11384 || inst.instruction == T_MNEM_subs,
11385 BAD_THUMB32);
11386
11387 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
11388 {
11389 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11390 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11391 BAD_HIREG);
11392
11393 inst.instruction = (inst.instruction == T_MNEM_add
11394 ? 0x0000 : 0x8000);
11395 inst.instruction |= (Rd << 4) | Rs;
11396 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11397 return;
11398 }
11399
11400 Rn = inst.operands[2].reg;
11401 constraint (inst.operands[2].shifted, _("unshifted register required"));
11402
11403 /* We now have Rd, Rs, and Rn set to registers. */
11404 if (Rd > 7 || Rs > 7 || Rn > 7)
11405 {
11406 /* Can't do this for SUB. */
11407 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11408 inst.instruction = T_OPCODE_ADD_HI;
11409 inst.instruction |= (Rd & 8) << 4;
11410 inst.instruction |= (Rd & 7);
11411 if (Rs == Rd)
11412 inst.instruction |= Rn << 3;
11413 else if (Rn == Rd)
11414 inst.instruction |= Rs << 3;
11415 else
11416 constraint (1, _("dest must overlap one source register"));
11417 }
11418 else
11419 {
11420 inst.instruction = (inst.instruction == T_MNEM_add
11421 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11422 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11423 }
11424 }
11425 }
11426
11427 static void
11428 do_t_adr (void)
11429 {
11430 unsigned Rd;
11431
11432 Rd = inst.operands[0].reg;
11433 reject_bad_reg (Rd);
11434
11435 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
11436 {
11437 /* Defer to section relaxation. */
11438 inst.relax = inst.instruction;
11439 inst.instruction = THUMB_OP16 (inst.instruction);
11440 inst.instruction |= Rd << 4;
11441 }
11442 else if (unified_syntax && inst.size_req != 2)
11443 {
11444 /* Generate a 32-bit opcode. */
11445 inst.instruction = THUMB_OP32 (inst.instruction);
11446 inst.instruction |= Rd << 8;
11447 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11448 inst.relocs[0].pc_rel = 1;
11449 }
11450 else
11451 {
11452 /* Generate a 16-bit opcode. */
11453 inst.instruction = THUMB_OP16 (inst.instruction);
11454 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11455 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11456 inst.relocs[0].pc_rel = 1;
11457 inst.instruction |= Rd << 4;
11458 }
11459
11460 if (inst.relocs[0].exp.X_op == O_symbol
11461 && inst.relocs[0].exp.X_add_symbol != NULL
11462 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11463 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11464 inst.relocs[0].exp.X_add_number += 1;
11465 }
11466
11467 /* Arithmetic instructions for which there is just one 16-bit
11468 instruction encoding, and it allows only two low registers.
11469 For maximal compatibility with ARM syntax, we allow three register
11470 operands even when Thumb-32 instructions are not available, as long
11471 as the first two are identical. For instance, both "sbc r0,r1" and
11472 "sbc r0,r0,r1" are allowed. */
11473 static void
11474 do_t_arit3 (void)
11475 {
11476 int Rd, Rs, Rn;
11477
11478 Rd = inst.operands[0].reg;
11479 Rs = (inst.operands[1].present
11480 ? inst.operands[1].reg /* Rd, Rs, foo */
11481 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11482 Rn = inst.operands[2].reg;
11483
11484 reject_bad_reg (Rd);
11485 reject_bad_reg (Rs);
11486 if (inst.operands[2].isreg)
11487 reject_bad_reg (Rn);
11488
11489 if (unified_syntax)
11490 {
11491 if (!inst.operands[2].isreg)
11492 {
11493 /* For an immediate, we always generate a 32-bit opcode;
11494 section relaxation will shrink it later if possible. */
11495 inst.instruction = THUMB_OP32 (inst.instruction);
11496 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11497 inst.instruction |= Rd << 8;
11498 inst.instruction |= Rs << 16;
11499 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11500 }
11501 else
11502 {
11503 bfd_boolean narrow;
11504
11505 /* See if we can do this with a 16-bit instruction. */
11506 if (THUMB_SETS_FLAGS (inst.instruction))
11507 narrow = !in_pred_block ();
11508 else
11509 narrow = in_pred_block ();
11510
11511 if (Rd > 7 || Rn > 7 || Rs > 7)
11512 narrow = FALSE;
11513 if (inst.operands[2].shifted)
11514 narrow = FALSE;
11515 if (inst.size_req == 4)
11516 narrow = FALSE;
11517
11518 if (narrow
11519 && Rd == Rs)
11520 {
11521 inst.instruction = THUMB_OP16 (inst.instruction);
11522 inst.instruction |= Rd;
11523 inst.instruction |= Rn << 3;
11524 return;
11525 }
11526
11527 /* If we get here, it can't be done in 16 bits. */
11528 constraint (inst.operands[2].shifted
11529 && inst.operands[2].immisreg,
11530 _("shift must be constant"));
11531 inst.instruction = THUMB_OP32 (inst.instruction);
11532 inst.instruction |= Rd << 8;
11533 inst.instruction |= Rs << 16;
11534 encode_thumb32_shifted_operand (2);
11535 }
11536 }
11537 else
11538 {
11539 /* On its face this is a lie - the instruction does set the
11540 flags. However, the only supported mnemonic in this mode
11541 says it doesn't. */
11542 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11543
11544 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11545 _("unshifted register required"));
11546 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11547 constraint (Rd != Rs,
11548 _("dest and source1 must be the same register"));
11549
11550 inst.instruction = THUMB_OP16 (inst.instruction);
11551 inst.instruction |= Rd;
11552 inst.instruction |= Rn << 3;
11553 }
11554 }
11555
11556 /* Similarly, but for instructions where the arithmetic operation is
11557 commutative, so we can allow either of them to be different from
11558 the destination operand in a 16-bit instruction. For instance, all
11559 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11560 accepted. */
11561 static void
11562 do_t_arit3c (void)
11563 {
11564 int Rd, Rs, Rn;
11565
11566 Rd = inst.operands[0].reg;
11567 Rs = (inst.operands[1].present
11568 ? inst.operands[1].reg /* Rd, Rs, foo */
11569 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11570 Rn = inst.operands[2].reg;
11571
11572 reject_bad_reg (Rd);
11573 reject_bad_reg (Rs);
11574 if (inst.operands[2].isreg)
11575 reject_bad_reg (Rn);
11576
11577 if (unified_syntax)
11578 {
11579 if (!inst.operands[2].isreg)
11580 {
11581 /* For an immediate, we always generate a 32-bit opcode;
11582 section relaxation will shrink it later if possible. */
11583 inst.instruction = THUMB_OP32 (inst.instruction);
11584 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11585 inst.instruction |= Rd << 8;
11586 inst.instruction |= Rs << 16;
11587 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11588 }
11589 else
11590 {
11591 bfd_boolean narrow;
11592
11593 /* See if we can do this with a 16-bit instruction. */
11594 if (THUMB_SETS_FLAGS (inst.instruction))
11595 narrow = !in_pred_block ();
11596 else
11597 narrow = in_pred_block ();
11598
11599 if (Rd > 7 || Rn > 7 || Rs > 7)
11600 narrow = FALSE;
11601 if (inst.operands[2].shifted)
11602 narrow = FALSE;
11603 if (inst.size_req == 4)
11604 narrow = FALSE;
11605
11606 if (narrow)
11607 {
11608 if (Rd == Rs)
11609 {
11610 inst.instruction = THUMB_OP16 (inst.instruction);
11611 inst.instruction |= Rd;
11612 inst.instruction |= Rn << 3;
11613 return;
11614 }
11615 if (Rd == Rn)
11616 {
11617 inst.instruction = THUMB_OP16 (inst.instruction);
11618 inst.instruction |= Rd;
11619 inst.instruction |= Rs << 3;
11620 return;
11621 }
11622 }
11623
11624 /* If we get here, it can't be done in 16 bits. */
11625 constraint (inst.operands[2].shifted
11626 && inst.operands[2].immisreg,
11627 _("shift must be constant"));
11628 inst.instruction = THUMB_OP32 (inst.instruction);
11629 inst.instruction |= Rd << 8;
11630 inst.instruction |= Rs << 16;
11631 encode_thumb32_shifted_operand (2);
11632 }
11633 }
11634 else
11635 {
11636 /* On its face this is a lie - the instruction does set the
11637 flags. However, the only supported mnemonic in this mode
11638 says it doesn't. */
11639 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11640
11641 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11642 _("unshifted register required"));
11643 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11644
11645 inst.instruction = THUMB_OP16 (inst.instruction);
11646 inst.instruction |= Rd;
11647
11648 if (Rd == Rs)
11649 inst.instruction |= Rn << 3;
11650 else if (Rd == Rn)
11651 inst.instruction |= Rs << 3;
11652 else
11653 constraint (1, _("dest must overlap one source register"));
11654 }
11655 }
11656
11657 static void
11658 do_t_bfc (void)
11659 {
11660 unsigned Rd;
11661 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11662 constraint (msb > 32, _("bit-field extends past end of register"));
11663 /* The instruction encoding stores the LSB and MSB,
11664 not the LSB and width. */
11665 Rd = inst.operands[0].reg;
11666 reject_bad_reg (Rd);
11667 inst.instruction |= Rd << 8;
11668 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11669 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11670 inst.instruction |= msb - 1;
11671 }
11672
11673 static void
11674 do_t_bfi (void)
11675 {
11676 int Rd, Rn;
11677 unsigned int msb;
11678
11679 Rd = inst.operands[0].reg;
11680 reject_bad_reg (Rd);
11681
11682 /* #0 in second position is alternative syntax for bfc, which is
11683 the same instruction but with REG_PC in the Rm field. */
11684 if (!inst.operands[1].isreg)
11685 Rn = REG_PC;
11686 else
11687 {
11688 Rn = inst.operands[1].reg;
11689 reject_bad_reg (Rn);
11690 }
11691
11692 msb = inst.operands[2].imm + inst.operands[3].imm;
11693 constraint (msb > 32, _("bit-field extends past end of register"));
11694 /* The instruction encoding stores the LSB and MSB,
11695 not the LSB and width. */
11696 inst.instruction |= Rd << 8;
11697 inst.instruction |= Rn << 16;
11698 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11699 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11700 inst.instruction |= msb - 1;
11701 }
11702
11703 static void
11704 do_t_bfx (void)
11705 {
11706 unsigned Rd, Rn;
11707
11708 Rd = inst.operands[0].reg;
11709 Rn = inst.operands[1].reg;
11710
11711 reject_bad_reg (Rd);
11712 reject_bad_reg (Rn);
11713
11714 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11715 _("bit-field extends past end of register"));
11716 inst.instruction |= Rd << 8;
11717 inst.instruction |= Rn << 16;
11718 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11719 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11720 inst.instruction |= inst.operands[3].imm - 1;
11721 }
11722
11723 /* ARM V5 Thumb BLX (argument parse)
11724 BLX <target_addr> which is BLX(1)
11725 BLX <Rm> which is BLX(2)
11726 Unfortunately, there are two different opcodes for this mnemonic.
11727 So, the insns[].value is not used, and the code here zaps values
11728 into inst.instruction.
11729
11730 ??? How to take advantage of the additional two bits of displacement
11731 available in Thumb32 mode? Need new relocation? */
11732
11733 static void
11734 do_t_blx (void)
11735 {
11736 set_pred_insn_type_last ();
11737
11738 if (inst.operands[0].isreg)
11739 {
11740 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11741 /* We have a register, so this is BLX(2). */
11742 inst.instruction |= inst.operands[0].reg << 3;
11743 }
11744 else
11745 {
11746 /* No register. This must be BLX(1). */
11747 inst.instruction = 0xf000e800;
11748 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
11749 }
11750 }
11751
11752 static void
11753 do_t_branch (void)
11754 {
11755 int opcode;
11756 int cond;
11757 bfd_reloc_code_real_type reloc;
11758
11759 cond = inst.cond;
11760 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
11761
11762 if (in_pred_block ())
11763 {
11764 /* Conditional branches inside IT blocks are encoded as unconditional
11765 branches. */
11766 cond = COND_ALWAYS;
11767 }
11768 else
11769 cond = inst.cond;
11770
11771 if (cond != COND_ALWAYS)
11772 opcode = T_MNEM_bcond;
11773 else
11774 opcode = inst.instruction;
11775
11776 if (unified_syntax
11777 && (inst.size_req == 4
11778 || (inst.size_req != 2
11779 && (inst.operands[0].hasreloc
11780 || inst.relocs[0].exp.X_op == O_constant))))
11781 {
11782 inst.instruction = THUMB_OP32(opcode);
11783 if (cond == COND_ALWAYS)
11784 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
11785 else
11786 {
11787 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11788 _("selected architecture does not support "
11789 "wide conditional branch instruction"));
11790
11791 gas_assert (cond != 0xF);
11792 inst.instruction |= cond << 22;
11793 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
11794 }
11795 }
11796 else
11797 {
11798 inst.instruction = THUMB_OP16(opcode);
11799 if (cond == COND_ALWAYS)
11800 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
11801 else
11802 {
11803 inst.instruction |= cond << 8;
11804 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
11805 }
11806 /* Allow section relaxation. */
11807 if (unified_syntax && inst.size_req != 2)
11808 inst.relax = opcode;
11809 }
11810 inst.relocs[0].type = reloc;
11811 inst.relocs[0].pc_rel = 1;
11812 }
11813
11814 /* Actually do the work for Thumb state bkpt and hlt. The only difference
11815 between the two is the maximum immediate allowed - which is passed in
11816 RANGE. */
11817 static void
11818 do_t_bkpt_hlt1 (int range)
11819 {
11820 constraint (inst.cond != COND_ALWAYS,
11821 _("instruction is always unconditional"));
11822 if (inst.operands[0].present)
11823 {
11824 constraint (inst.operands[0].imm > range,
11825 _("immediate value out of range"));
11826 inst.instruction |= inst.operands[0].imm;
11827 }
11828
11829 set_pred_insn_type (NEUTRAL_IT_INSN);
11830 }
11831
11832 static void
11833 do_t_hlt (void)
11834 {
11835 do_t_bkpt_hlt1 (63);
11836 }
11837
11838 static void
11839 do_t_bkpt (void)
11840 {
11841 do_t_bkpt_hlt1 (255);
11842 }
11843
11844 static void
11845 do_t_branch23 (void)
11846 {
11847 set_pred_insn_type_last ();
11848 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
11849
11850 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11851 this file. We used to simply ignore the PLT reloc type here --
11852 the branch encoding is now needed to deal with TLSCALL relocs.
11853 So if we see a PLT reloc now, put it back to how it used to be to
11854 keep the preexisting behaviour. */
11855 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11856 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
11857
11858 #if defined(OBJ_COFF)
11859 /* If the destination of the branch is a defined symbol which does not have
11860 the THUMB_FUNC attribute, then we must be calling a function which has
11861 the (interfacearm) attribute. We look for the Thumb entry point to that
11862 function and change the branch to refer to that function instead. */
11863 if ( inst.relocs[0].exp.X_op == O_symbol
11864 && inst.relocs[0].exp.X_add_symbol != NULL
11865 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11866 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11867 inst.relocs[0].exp.X_add_symbol
11868 = find_real_start (inst.relocs[0].exp.X_add_symbol);
11869 #endif
11870 }
11871
11872 static void
11873 do_t_bx (void)
11874 {
11875 set_pred_insn_type_last ();
11876 inst.instruction |= inst.operands[0].reg << 3;
11877 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11878 should cause the alignment to be checked once it is known. This is
11879 because BX PC only works if the instruction is word aligned. */
11880 }
11881
11882 static void
11883 do_t_bxj (void)
11884 {
11885 int Rm;
11886
11887 set_pred_insn_type_last ();
11888 Rm = inst.operands[0].reg;
11889 reject_bad_reg (Rm);
11890 inst.instruction |= Rm << 16;
11891 }
11892
11893 static void
11894 do_t_clz (void)
11895 {
11896 unsigned Rd;
11897 unsigned Rm;
11898
11899 Rd = inst.operands[0].reg;
11900 Rm = inst.operands[1].reg;
11901
11902 reject_bad_reg (Rd);
11903 reject_bad_reg (Rm);
11904
11905 inst.instruction |= Rd << 8;
11906 inst.instruction |= Rm << 16;
11907 inst.instruction |= Rm;
11908 }
11909
11910 static void
11911 do_t_csdb (void)
11912 {
11913 set_pred_insn_type (OUTSIDE_PRED_INSN);
11914 }
11915
11916 static void
11917 do_t_cps (void)
11918 {
11919 set_pred_insn_type (OUTSIDE_PRED_INSN);
11920 inst.instruction |= inst.operands[0].imm;
11921 }
11922
11923 static void
11924 do_t_cpsi (void)
11925 {
11926 set_pred_insn_type (OUTSIDE_PRED_INSN);
11927 if (unified_syntax
11928 && (inst.operands[1].present || inst.size_req == 4)
11929 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
11930 {
11931 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11932 inst.instruction = 0xf3af8000;
11933 inst.instruction |= imod << 9;
11934 inst.instruction |= inst.operands[0].imm << 5;
11935 if (inst.operands[1].present)
11936 inst.instruction |= 0x100 | inst.operands[1].imm;
11937 }
11938 else
11939 {
11940 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11941 && (inst.operands[0].imm & 4),
11942 _("selected processor does not support 'A' form "
11943 "of this instruction"));
11944 constraint (inst.operands[1].present || inst.size_req == 4,
11945 _("Thumb does not support the 2-argument "
11946 "form of this instruction"));
11947 inst.instruction |= inst.operands[0].imm;
11948 }
11949 }
11950
11951 /* THUMB CPY instruction (argument parse). */
11952
11953 static void
11954 do_t_cpy (void)
11955 {
11956 if (inst.size_req == 4)
11957 {
11958 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11959 inst.instruction |= inst.operands[0].reg << 8;
11960 inst.instruction |= inst.operands[1].reg;
11961 }
11962 else
11963 {
11964 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11965 inst.instruction |= (inst.operands[0].reg & 0x7);
11966 inst.instruction |= inst.operands[1].reg << 3;
11967 }
11968 }
11969
11970 static void
11971 do_t_cbz (void)
11972 {
11973 set_pred_insn_type (OUTSIDE_PRED_INSN);
11974 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11975 inst.instruction |= inst.operands[0].reg;
11976 inst.relocs[0].pc_rel = 1;
11977 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
11978 }
11979
11980 static void
11981 do_t_dbg (void)
11982 {
11983 inst.instruction |= inst.operands[0].imm;
11984 }
11985
11986 static void
11987 do_t_div (void)
11988 {
11989 unsigned Rd, Rn, Rm;
11990
11991 Rd = inst.operands[0].reg;
11992 Rn = (inst.operands[1].present
11993 ? inst.operands[1].reg : Rd);
11994 Rm = inst.operands[2].reg;
11995
11996 reject_bad_reg (Rd);
11997 reject_bad_reg (Rn);
11998 reject_bad_reg (Rm);
11999
12000 inst.instruction |= Rd << 8;
12001 inst.instruction |= Rn << 16;
12002 inst.instruction |= Rm;
12003 }
12004
12005 static void
12006 do_t_hint (void)
12007 {
12008 if (unified_syntax && inst.size_req == 4)
12009 inst.instruction = THUMB_OP32 (inst.instruction);
12010 else
12011 inst.instruction = THUMB_OP16 (inst.instruction);
12012 }
12013
12014 static void
12015 do_t_it (void)
12016 {
12017 unsigned int cond = inst.operands[0].imm;
12018
12019 set_pred_insn_type (IT_INSN);
12020 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12021 now_pred.cc = cond;
12022 now_pred.warn_deprecated = FALSE;
12023 now_pred.type = SCALAR_PRED;
12024
12025 /* If the condition is a negative condition, invert the mask. */
12026 if ((cond & 0x1) == 0x0)
12027 {
12028 unsigned int mask = inst.instruction & 0x000f;
12029
12030 if ((mask & 0x7) == 0)
12031 {
12032 /* No conversion needed. */
12033 now_pred.block_length = 1;
12034 }
12035 else if ((mask & 0x3) == 0)
12036 {
12037 mask ^= 0x8;
12038 now_pred.block_length = 2;
12039 }
12040 else if ((mask & 0x1) == 0)
12041 {
12042 mask ^= 0xC;
12043 now_pred.block_length = 3;
12044 }
12045 else
12046 {
12047 mask ^= 0xE;
12048 now_pred.block_length = 4;
12049 }
12050
12051 inst.instruction &= 0xfff0;
12052 inst.instruction |= mask;
12053 }
12054
12055 inst.instruction |= cond << 4;
12056 }
12057
12058 /* Helper function used for both push/pop and ldm/stm. */
12059 static void
12060 encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12061 bfd_boolean writeback)
12062 {
12063 bfd_boolean load, store;
12064
12065 gas_assert (base != -1 || !do_io);
12066 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12067 store = do_io && !load;
12068
12069 if (mask & (1 << 13))
12070 inst.error = _("SP not allowed in register list");
12071
12072 if (do_io && (mask & (1 << base)) != 0
12073 && writeback)
12074 inst.error = _("having the base register in the register list when "
12075 "using write back is UNPREDICTABLE");
12076
12077 if (load)
12078 {
12079 if (mask & (1 << 15))
12080 {
12081 if (mask & (1 << 14))
12082 inst.error = _("LR and PC should not both be in register list");
12083 else
12084 set_pred_insn_type_last ();
12085 }
12086 }
12087 else if (store)
12088 {
12089 if (mask & (1 << 15))
12090 inst.error = _("PC not allowed in register list");
12091 }
12092
12093 if (do_io && ((mask & (mask - 1)) == 0))
12094 {
12095 /* Single register transfers implemented as str/ldr. */
12096 if (writeback)
12097 {
12098 if (inst.instruction & (1 << 23))
12099 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12100 else
12101 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12102 }
12103 else
12104 {
12105 if (inst.instruction & (1 << 23))
12106 inst.instruction = 0x00800000; /* ia -> [base] */
12107 else
12108 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12109 }
12110
12111 inst.instruction |= 0xf8400000;
12112 if (load)
12113 inst.instruction |= 0x00100000;
12114
12115 mask = ffs (mask) - 1;
12116 mask <<= 12;
12117 }
12118 else if (writeback)
12119 inst.instruction |= WRITE_BACK;
12120
12121 inst.instruction |= mask;
12122 if (do_io)
12123 inst.instruction |= base << 16;
12124 }
12125
12126 static void
12127 do_t_ldmstm (void)
12128 {
12129 /* This really doesn't seem worth it. */
12130 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
12131 _("expression too complex"));
12132 constraint (inst.operands[1].writeback,
12133 _("Thumb load/store multiple does not support {reglist}^"));
12134
12135 if (unified_syntax)
12136 {
12137 bfd_boolean narrow;
12138 unsigned mask;
12139
12140 narrow = FALSE;
12141 /* See if we can use a 16-bit instruction. */
12142 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12143 && inst.size_req != 4
12144 && !(inst.operands[1].imm & ~0xff))
12145 {
12146 mask = 1 << inst.operands[0].reg;
12147
12148 if (inst.operands[0].reg <= 7)
12149 {
12150 if (inst.instruction == T_MNEM_stmia
12151 ? inst.operands[0].writeback
12152 : (inst.operands[0].writeback
12153 == !(inst.operands[1].imm & mask)))
12154 {
12155 if (inst.instruction == T_MNEM_stmia
12156 && (inst.operands[1].imm & mask)
12157 && (inst.operands[1].imm & (mask - 1)))
12158 as_warn (_("value stored for r%d is UNKNOWN"),
12159 inst.operands[0].reg);
12160
12161 inst.instruction = THUMB_OP16 (inst.instruction);
12162 inst.instruction |= inst.operands[0].reg << 8;
12163 inst.instruction |= inst.operands[1].imm;
12164 narrow = TRUE;
12165 }
12166 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12167 {
12168 /* This means 1 register in reg list one of 3 situations:
12169 1. Instruction is stmia, but without writeback.
12170 2. lmdia without writeback, but with Rn not in
12171 reglist.
12172 3. ldmia with writeback, but with Rn in reglist.
12173 Case 3 is UNPREDICTABLE behaviour, so we handle
12174 case 1 and 2 which can be converted into a 16-bit
12175 str or ldr. The SP cases are handled below. */
12176 unsigned long opcode;
12177 /* First, record an error for Case 3. */
12178 if (inst.operands[1].imm & mask
12179 && inst.operands[0].writeback)
12180 inst.error =
12181 _("having the base register in the register list when "
12182 "using write back is UNPREDICTABLE");
12183
12184 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
12185 : T_MNEM_ldr);
12186 inst.instruction = THUMB_OP16 (opcode);
12187 inst.instruction |= inst.operands[0].reg << 3;
12188 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12189 narrow = TRUE;
12190 }
12191 }
12192 else if (inst.operands[0] .reg == REG_SP)
12193 {
12194 if (inst.operands[0].writeback)
12195 {
12196 inst.instruction =
12197 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12198 ? T_MNEM_push : T_MNEM_pop);
12199 inst.instruction |= inst.operands[1].imm;
12200 narrow = TRUE;
12201 }
12202 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12203 {
12204 inst.instruction =
12205 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12206 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
12207 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
12208 narrow = TRUE;
12209 }
12210 }
12211 }
12212
12213 if (!narrow)
12214 {
12215 if (inst.instruction < 0xffff)
12216 inst.instruction = THUMB_OP32 (inst.instruction);
12217
12218 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12219 inst.operands[1].imm,
12220 inst.operands[0].writeback);
12221 }
12222 }
12223 else
12224 {
12225 constraint (inst.operands[0].reg > 7
12226 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
12227 constraint (inst.instruction != T_MNEM_ldmia
12228 && inst.instruction != T_MNEM_stmia,
12229 _("Thumb-2 instruction only valid in unified syntax"));
12230 if (inst.instruction == T_MNEM_stmia)
12231 {
12232 if (!inst.operands[0].writeback)
12233 as_warn (_("this instruction will write back the base register"));
12234 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12235 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
12236 as_warn (_("value stored for r%d is UNKNOWN"),
12237 inst.operands[0].reg);
12238 }
12239 else
12240 {
12241 if (!inst.operands[0].writeback
12242 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12243 as_warn (_("this instruction will write back the base register"));
12244 else if (inst.operands[0].writeback
12245 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12246 as_warn (_("this instruction will not write back the base register"));
12247 }
12248
12249 inst.instruction = THUMB_OP16 (inst.instruction);
12250 inst.instruction |= inst.operands[0].reg << 8;
12251 inst.instruction |= inst.operands[1].imm;
12252 }
12253 }
12254
12255 static void
12256 do_t_ldrex (void)
12257 {
12258 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12259 || inst.operands[1].postind || inst.operands[1].writeback
12260 || inst.operands[1].immisreg || inst.operands[1].shifted
12261 || inst.operands[1].negative,
12262 BAD_ADDR_MODE);
12263
12264 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12265
12266 inst.instruction |= inst.operands[0].reg << 12;
12267 inst.instruction |= inst.operands[1].reg << 16;
12268 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
12269 }
12270
12271 static void
12272 do_t_ldrexd (void)
12273 {
12274 if (!inst.operands[1].present)
12275 {
12276 constraint (inst.operands[0].reg == REG_LR,
12277 _("r14 not allowed as first register "
12278 "when second register is omitted"));
12279 inst.operands[1].reg = inst.operands[0].reg + 1;
12280 }
12281 constraint (inst.operands[0].reg == inst.operands[1].reg,
12282 BAD_OVERLAP);
12283
12284 inst.instruction |= inst.operands[0].reg << 12;
12285 inst.instruction |= inst.operands[1].reg << 8;
12286 inst.instruction |= inst.operands[2].reg << 16;
12287 }
12288
12289 static void
12290 do_t_ldst (void)
12291 {
12292 unsigned long opcode;
12293 int Rn;
12294
12295 if (inst.operands[0].isreg
12296 && !inst.operands[0].preind
12297 && inst.operands[0].reg == REG_PC)
12298 set_pred_insn_type_last ();
12299
12300 opcode = inst.instruction;
12301 if (unified_syntax)
12302 {
12303 if (!inst.operands[1].isreg)
12304 {
12305 if (opcode <= 0xffff)
12306 inst.instruction = THUMB_OP32 (opcode);
12307 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12308 return;
12309 }
12310 if (inst.operands[1].isreg
12311 && !inst.operands[1].writeback
12312 && !inst.operands[1].shifted && !inst.operands[1].postind
12313 && !inst.operands[1].negative && inst.operands[0].reg <= 7
12314 && opcode <= 0xffff
12315 && inst.size_req != 4)
12316 {
12317 /* Insn may have a 16-bit form. */
12318 Rn = inst.operands[1].reg;
12319 if (inst.operands[1].immisreg)
12320 {
12321 inst.instruction = THUMB_OP16 (opcode);
12322 /* [Rn, Rik] */
12323 if (Rn <= 7 && inst.operands[1].imm <= 7)
12324 goto op16;
12325 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12326 reject_bad_reg (inst.operands[1].imm);
12327 }
12328 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12329 && opcode != T_MNEM_ldrsb)
12330 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12331 || (Rn == REG_SP && opcode == T_MNEM_str))
12332 {
12333 /* [Rn, #const] */
12334 if (Rn > 7)
12335 {
12336 if (Rn == REG_PC)
12337 {
12338 if (inst.relocs[0].pc_rel)
12339 opcode = T_MNEM_ldr_pc2;
12340 else
12341 opcode = T_MNEM_ldr_pc;
12342 }
12343 else
12344 {
12345 if (opcode == T_MNEM_ldr)
12346 opcode = T_MNEM_ldr_sp;
12347 else
12348 opcode = T_MNEM_str_sp;
12349 }
12350 inst.instruction = inst.operands[0].reg << 8;
12351 }
12352 else
12353 {
12354 inst.instruction = inst.operands[0].reg;
12355 inst.instruction |= inst.operands[1].reg << 3;
12356 }
12357 inst.instruction |= THUMB_OP16 (opcode);
12358 if (inst.size_req == 2)
12359 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12360 else
12361 inst.relax = opcode;
12362 return;
12363 }
12364 }
12365 /* Definitely a 32-bit variant. */
12366
12367 /* Warning for Erratum 752419. */
12368 if (opcode == T_MNEM_ldr
12369 && inst.operands[0].reg == REG_SP
12370 && inst.operands[1].writeback == 1
12371 && !inst.operands[1].immisreg)
12372 {
12373 if (no_cpu_selected ()
12374 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
12375 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12376 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
12377 as_warn (_("This instruction may be unpredictable "
12378 "if executed on M-profile cores "
12379 "with interrupts enabled."));
12380 }
12381
12382 /* Do some validations regarding addressing modes. */
12383 if (inst.operands[1].immisreg)
12384 reject_bad_reg (inst.operands[1].imm);
12385
12386 constraint (inst.operands[1].writeback == 1
12387 && inst.operands[0].reg == inst.operands[1].reg,
12388 BAD_OVERLAP);
12389
12390 inst.instruction = THUMB_OP32 (opcode);
12391 inst.instruction |= inst.operands[0].reg << 12;
12392 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
12393 check_ldr_r15_aligned ();
12394 return;
12395 }
12396
12397 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12398
12399 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
12400 {
12401 /* Only [Rn,Rm] is acceptable. */
12402 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12403 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12404 || inst.operands[1].postind || inst.operands[1].shifted
12405 || inst.operands[1].negative,
12406 _("Thumb does not support this addressing mode"));
12407 inst.instruction = THUMB_OP16 (inst.instruction);
12408 goto op16;
12409 }
12410
12411 inst.instruction = THUMB_OP16 (inst.instruction);
12412 if (!inst.operands[1].isreg)
12413 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12414 return;
12415
12416 constraint (!inst.operands[1].preind
12417 || inst.operands[1].shifted
12418 || inst.operands[1].writeback,
12419 _("Thumb does not support this addressing mode"));
12420 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
12421 {
12422 constraint (inst.instruction & 0x0600,
12423 _("byte or halfword not valid for base register"));
12424 constraint (inst.operands[1].reg == REG_PC
12425 && !(inst.instruction & THUMB_LOAD_BIT),
12426 _("r15 based store not allowed"));
12427 constraint (inst.operands[1].immisreg,
12428 _("invalid base register for register offset"));
12429
12430 if (inst.operands[1].reg == REG_PC)
12431 inst.instruction = T_OPCODE_LDR_PC;
12432 else if (inst.instruction & THUMB_LOAD_BIT)
12433 inst.instruction = T_OPCODE_LDR_SP;
12434 else
12435 inst.instruction = T_OPCODE_STR_SP;
12436
12437 inst.instruction |= inst.operands[0].reg << 8;
12438 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12439 return;
12440 }
12441
12442 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12443 if (!inst.operands[1].immisreg)
12444 {
12445 /* Immediate offset. */
12446 inst.instruction |= inst.operands[0].reg;
12447 inst.instruction |= inst.operands[1].reg << 3;
12448 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12449 return;
12450 }
12451
12452 /* Register offset. */
12453 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12454 constraint (inst.operands[1].negative,
12455 _("Thumb does not support this addressing mode"));
12456
12457 op16:
12458 switch (inst.instruction)
12459 {
12460 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12461 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12462 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12463 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12464 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12465 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12466 case 0x5600 /* ldrsb */:
12467 case 0x5e00 /* ldrsh */: break;
12468 default: abort ();
12469 }
12470
12471 inst.instruction |= inst.operands[0].reg;
12472 inst.instruction |= inst.operands[1].reg << 3;
12473 inst.instruction |= inst.operands[1].imm << 6;
12474 }
12475
12476 static void
12477 do_t_ldstd (void)
12478 {
12479 if (!inst.operands[1].present)
12480 {
12481 inst.operands[1].reg = inst.operands[0].reg + 1;
12482 constraint (inst.operands[0].reg == REG_LR,
12483 _("r14 not allowed here"));
12484 constraint (inst.operands[0].reg == REG_R12,
12485 _("r12 not allowed here"));
12486 }
12487
12488 if (inst.operands[2].writeback
12489 && (inst.operands[0].reg == inst.operands[2].reg
12490 || inst.operands[1].reg == inst.operands[2].reg))
12491 as_warn (_("base register written back, and overlaps "
12492 "one of transfer registers"));
12493
12494 inst.instruction |= inst.operands[0].reg << 12;
12495 inst.instruction |= inst.operands[1].reg << 8;
12496 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
12497 }
12498
12499 static void
12500 do_t_ldstt (void)
12501 {
12502 inst.instruction |= inst.operands[0].reg << 12;
12503 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12504 }
12505
12506 static void
12507 do_t_mla (void)
12508 {
12509 unsigned Rd, Rn, Rm, Ra;
12510
12511 Rd = inst.operands[0].reg;
12512 Rn = inst.operands[1].reg;
12513 Rm = inst.operands[2].reg;
12514 Ra = inst.operands[3].reg;
12515
12516 reject_bad_reg (Rd);
12517 reject_bad_reg (Rn);
12518 reject_bad_reg (Rm);
12519 reject_bad_reg (Ra);
12520
12521 inst.instruction |= Rd << 8;
12522 inst.instruction |= Rn << 16;
12523 inst.instruction |= Rm;
12524 inst.instruction |= Ra << 12;
12525 }
12526
12527 static void
12528 do_t_mlal (void)
12529 {
12530 unsigned RdLo, RdHi, Rn, Rm;
12531
12532 RdLo = inst.operands[0].reg;
12533 RdHi = inst.operands[1].reg;
12534 Rn = inst.operands[2].reg;
12535 Rm = inst.operands[3].reg;
12536
12537 reject_bad_reg (RdLo);
12538 reject_bad_reg (RdHi);
12539 reject_bad_reg (Rn);
12540 reject_bad_reg (Rm);
12541
12542 inst.instruction |= RdLo << 12;
12543 inst.instruction |= RdHi << 8;
12544 inst.instruction |= Rn << 16;
12545 inst.instruction |= Rm;
12546 }
12547
12548 static void
12549 do_t_mov_cmp (void)
12550 {
12551 unsigned Rn, Rm;
12552
12553 Rn = inst.operands[0].reg;
12554 Rm = inst.operands[1].reg;
12555
12556 if (Rn == REG_PC)
12557 set_pred_insn_type_last ();
12558
12559 if (unified_syntax)
12560 {
12561 int r0off = (inst.instruction == T_MNEM_mov
12562 || inst.instruction == T_MNEM_movs) ? 8 : 16;
12563 unsigned long opcode;
12564 bfd_boolean narrow;
12565 bfd_boolean low_regs;
12566
12567 low_regs = (Rn <= 7 && Rm <= 7);
12568 opcode = inst.instruction;
12569 if (in_pred_block ())
12570 narrow = opcode != T_MNEM_movs;
12571 else
12572 narrow = opcode != T_MNEM_movs || low_regs;
12573 if (inst.size_req == 4
12574 || inst.operands[1].shifted)
12575 narrow = FALSE;
12576
12577 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12578 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12579 && !inst.operands[1].shifted
12580 && Rn == REG_PC
12581 && Rm == REG_LR)
12582 {
12583 inst.instruction = T2_SUBS_PC_LR;
12584 return;
12585 }
12586
12587 if (opcode == T_MNEM_cmp)
12588 {
12589 constraint (Rn == REG_PC, BAD_PC);
12590 if (narrow)
12591 {
12592 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12593 but valid. */
12594 warn_deprecated_sp (Rm);
12595 /* R15 was documented as a valid choice for Rm in ARMv6,
12596 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12597 tools reject R15, so we do too. */
12598 constraint (Rm == REG_PC, BAD_PC);
12599 }
12600 else
12601 reject_bad_reg (Rm);
12602 }
12603 else if (opcode == T_MNEM_mov
12604 || opcode == T_MNEM_movs)
12605 {
12606 if (inst.operands[1].isreg)
12607 {
12608 if (opcode == T_MNEM_movs)
12609 {
12610 reject_bad_reg (Rn);
12611 reject_bad_reg (Rm);
12612 }
12613 else if (narrow)
12614 {
12615 /* This is mov.n. */
12616 if ((Rn == REG_SP || Rn == REG_PC)
12617 && (Rm == REG_SP || Rm == REG_PC))
12618 {
12619 as_tsktsk (_("Use of r%u as a source register is "
12620 "deprecated when r%u is the destination "
12621 "register."), Rm, Rn);
12622 }
12623 }
12624 else
12625 {
12626 /* This is mov.w. */
12627 constraint (Rn == REG_PC, BAD_PC);
12628 constraint (Rm == REG_PC, BAD_PC);
12629 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12630 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
12631 }
12632 }
12633 else
12634 reject_bad_reg (Rn);
12635 }
12636
12637 if (!inst.operands[1].isreg)
12638 {
12639 /* Immediate operand. */
12640 if (!in_pred_block () && opcode == T_MNEM_mov)
12641 narrow = 0;
12642 if (low_regs && narrow)
12643 {
12644 inst.instruction = THUMB_OP16 (opcode);
12645 inst.instruction |= Rn << 8;
12646 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12647 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
12648 {
12649 if (inst.size_req == 2)
12650 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12651 else
12652 inst.relax = opcode;
12653 }
12654 }
12655 else
12656 {
12657 constraint ((inst.relocs[0].type
12658 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12659 && (inst.relocs[0].type
12660 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
12661 THUMB1_RELOC_ONLY);
12662
12663 inst.instruction = THUMB_OP32 (inst.instruction);
12664 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12665 inst.instruction |= Rn << r0off;
12666 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12667 }
12668 }
12669 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12670 && (inst.instruction == T_MNEM_mov
12671 || inst.instruction == T_MNEM_movs))
12672 {
12673 /* Register shifts are encoded as separate shift instructions. */
12674 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12675
12676 if (in_pred_block ())
12677 narrow = !flags;
12678 else
12679 narrow = flags;
12680
12681 if (inst.size_req == 4)
12682 narrow = FALSE;
12683
12684 if (!low_regs || inst.operands[1].imm > 7)
12685 narrow = FALSE;
12686
12687 if (Rn != Rm)
12688 narrow = FALSE;
12689
12690 switch (inst.operands[1].shift_kind)
12691 {
12692 case SHIFT_LSL:
12693 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12694 break;
12695 case SHIFT_ASR:
12696 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12697 break;
12698 case SHIFT_LSR:
12699 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12700 break;
12701 case SHIFT_ROR:
12702 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12703 break;
12704 default:
12705 abort ();
12706 }
12707
12708 inst.instruction = opcode;
12709 if (narrow)
12710 {
12711 inst.instruction |= Rn;
12712 inst.instruction |= inst.operands[1].imm << 3;
12713 }
12714 else
12715 {
12716 if (flags)
12717 inst.instruction |= CONDS_BIT;
12718
12719 inst.instruction |= Rn << 8;
12720 inst.instruction |= Rm << 16;
12721 inst.instruction |= inst.operands[1].imm;
12722 }
12723 }
12724 else if (!narrow)
12725 {
12726 /* Some mov with immediate shift have narrow variants.
12727 Register shifts are handled above. */
12728 if (low_regs && inst.operands[1].shifted
12729 && (inst.instruction == T_MNEM_mov
12730 || inst.instruction == T_MNEM_movs))
12731 {
12732 if (in_pred_block ())
12733 narrow = (inst.instruction == T_MNEM_mov);
12734 else
12735 narrow = (inst.instruction == T_MNEM_movs);
12736 }
12737
12738 if (narrow)
12739 {
12740 switch (inst.operands[1].shift_kind)
12741 {
12742 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12743 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12744 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12745 default: narrow = FALSE; break;
12746 }
12747 }
12748
12749 if (narrow)
12750 {
12751 inst.instruction |= Rn;
12752 inst.instruction |= Rm << 3;
12753 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
12754 }
12755 else
12756 {
12757 inst.instruction = THUMB_OP32 (inst.instruction);
12758 inst.instruction |= Rn << r0off;
12759 encode_thumb32_shifted_operand (1);
12760 }
12761 }
12762 else
12763 switch (inst.instruction)
12764 {
12765 case T_MNEM_mov:
12766 /* In v4t or v5t a move of two lowregs produces unpredictable
12767 results. Don't allow this. */
12768 if (low_regs)
12769 {
12770 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12771 "MOV Rd, Rs with two low registers is not "
12772 "permitted on this architecture");
12773 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
12774 arm_ext_v6);
12775 }
12776
12777 inst.instruction = T_OPCODE_MOV_HR;
12778 inst.instruction |= (Rn & 0x8) << 4;
12779 inst.instruction |= (Rn & 0x7);
12780 inst.instruction |= Rm << 3;
12781 break;
12782
12783 case T_MNEM_movs:
12784 /* We know we have low registers at this point.
12785 Generate LSLS Rd, Rs, #0. */
12786 inst.instruction = T_OPCODE_LSL_I;
12787 inst.instruction |= Rn;
12788 inst.instruction |= Rm << 3;
12789 break;
12790
12791 case T_MNEM_cmp:
12792 if (low_regs)
12793 {
12794 inst.instruction = T_OPCODE_CMP_LR;
12795 inst.instruction |= Rn;
12796 inst.instruction |= Rm << 3;
12797 }
12798 else
12799 {
12800 inst.instruction = T_OPCODE_CMP_HR;
12801 inst.instruction |= (Rn & 0x8) << 4;
12802 inst.instruction |= (Rn & 0x7);
12803 inst.instruction |= Rm << 3;
12804 }
12805 break;
12806 }
12807 return;
12808 }
12809
12810 inst.instruction = THUMB_OP16 (inst.instruction);
12811
12812 /* PR 10443: Do not silently ignore shifted operands. */
12813 constraint (inst.operands[1].shifted,
12814 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12815
12816 if (inst.operands[1].isreg)
12817 {
12818 if (Rn < 8 && Rm < 8)
12819 {
12820 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12821 since a MOV instruction produces unpredictable results. */
12822 if (inst.instruction == T_OPCODE_MOV_I8)
12823 inst.instruction = T_OPCODE_ADD_I3;
12824 else
12825 inst.instruction = T_OPCODE_CMP_LR;
12826
12827 inst.instruction |= Rn;
12828 inst.instruction |= Rm << 3;
12829 }
12830 else
12831 {
12832 if (inst.instruction == T_OPCODE_MOV_I8)
12833 inst.instruction = T_OPCODE_MOV_HR;
12834 else
12835 inst.instruction = T_OPCODE_CMP_HR;
12836 do_t_cpy ();
12837 }
12838 }
12839 else
12840 {
12841 constraint (Rn > 7,
12842 _("only lo regs allowed with immediate"));
12843 inst.instruction |= Rn << 8;
12844 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12845 }
12846 }
12847
12848 static void
12849 do_t_mov16 (void)
12850 {
12851 unsigned Rd;
12852 bfd_vma imm;
12853 bfd_boolean top;
12854
12855 top = (inst.instruction & 0x00800000) != 0;
12856 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
12857 {
12858 constraint (top, _(":lower16: not allowed in this instruction"));
12859 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
12860 }
12861 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
12862 {
12863 constraint (!top, _(":upper16: not allowed in this instruction"));
12864 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
12865 }
12866
12867 Rd = inst.operands[0].reg;
12868 reject_bad_reg (Rd);
12869
12870 inst.instruction |= Rd << 8;
12871 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
12872 {
12873 imm = inst.relocs[0].exp.X_add_number;
12874 inst.instruction |= (imm & 0xf000) << 4;
12875 inst.instruction |= (imm & 0x0800) << 15;
12876 inst.instruction |= (imm & 0x0700) << 4;
12877 inst.instruction |= (imm & 0x00ff);
12878 }
12879 }
12880
12881 static void
12882 do_t_mvn_tst (void)
12883 {
12884 unsigned Rn, Rm;
12885
12886 Rn = inst.operands[0].reg;
12887 Rm = inst.operands[1].reg;
12888
12889 if (inst.instruction == T_MNEM_cmp
12890 || inst.instruction == T_MNEM_cmn)
12891 constraint (Rn == REG_PC, BAD_PC);
12892 else
12893 reject_bad_reg (Rn);
12894 reject_bad_reg (Rm);
12895
12896 if (unified_syntax)
12897 {
12898 int r0off = (inst.instruction == T_MNEM_mvn
12899 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
12900 bfd_boolean narrow;
12901
12902 if (inst.size_req == 4
12903 || inst.instruction > 0xffff
12904 || inst.operands[1].shifted
12905 || Rn > 7 || Rm > 7)
12906 narrow = FALSE;
12907 else if (inst.instruction == T_MNEM_cmn
12908 || inst.instruction == T_MNEM_tst)
12909 narrow = TRUE;
12910 else if (THUMB_SETS_FLAGS (inst.instruction))
12911 narrow = !in_pred_block ();
12912 else
12913 narrow = in_pred_block ();
12914
12915 if (!inst.operands[1].isreg)
12916 {
12917 /* For an immediate, we always generate a 32-bit opcode;
12918 section relaxation will shrink it later if possible. */
12919 if (inst.instruction < 0xffff)
12920 inst.instruction = THUMB_OP32 (inst.instruction);
12921 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12922 inst.instruction |= Rn << r0off;
12923 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12924 }
12925 else
12926 {
12927 /* See if we can do this with a 16-bit instruction. */
12928 if (narrow)
12929 {
12930 inst.instruction = THUMB_OP16 (inst.instruction);
12931 inst.instruction |= Rn;
12932 inst.instruction |= Rm << 3;
12933 }
12934 else
12935 {
12936 constraint (inst.operands[1].shifted
12937 && inst.operands[1].immisreg,
12938 _("shift must be constant"));
12939 if (inst.instruction < 0xffff)
12940 inst.instruction = THUMB_OP32 (inst.instruction);
12941 inst.instruction |= Rn << r0off;
12942 encode_thumb32_shifted_operand (1);
12943 }
12944 }
12945 }
12946 else
12947 {
12948 constraint (inst.instruction > 0xffff
12949 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12950 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12951 _("unshifted register required"));
12952 constraint (Rn > 7 || Rm > 7,
12953 BAD_HIREG);
12954
12955 inst.instruction = THUMB_OP16 (inst.instruction);
12956 inst.instruction |= Rn;
12957 inst.instruction |= Rm << 3;
12958 }
12959 }
12960
12961 static void
12962 do_t_mrs (void)
12963 {
12964 unsigned Rd;
12965
12966 if (do_vfp_nsyn_mrs () == SUCCESS)
12967 return;
12968
12969 Rd = inst.operands[0].reg;
12970 reject_bad_reg (Rd);
12971 inst.instruction |= Rd << 8;
12972
12973 if (inst.operands[1].isreg)
12974 {
12975 unsigned br = inst.operands[1].reg;
12976 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12977 as_bad (_("bad register for mrs"));
12978
12979 inst.instruction |= br & (0xf << 16);
12980 inst.instruction |= (br & 0x300) >> 4;
12981 inst.instruction |= (br & SPSR_BIT) >> 2;
12982 }
12983 else
12984 {
12985 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12986
12987 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
12988 {
12989 /* PR gas/12698: The constraint is only applied for m_profile.
12990 If the user has specified -march=all, we want to ignore it as
12991 we are building for any CPU type, including non-m variants. */
12992 bfd_boolean m_profile =
12993 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
12994 constraint ((flags != 0) && m_profile, _("selected processor does "
12995 "not support requested special purpose register"));
12996 }
12997 else
12998 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
12999 devices). */
13000 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13001 _("'APSR', 'CPSR' or 'SPSR' expected"));
13002
13003 inst.instruction |= (flags & SPSR_BIT) >> 2;
13004 inst.instruction |= inst.operands[1].imm & 0xff;
13005 inst.instruction |= 0xf0000;
13006 }
13007 }
13008
13009 static void
13010 do_t_msr (void)
13011 {
13012 int flags;
13013 unsigned Rn;
13014
13015 if (do_vfp_nsyn_msr () == SUCCESS)
13016 return;
13017
13018 constraint (!inst.operands[1].isreg,
13019 _("Thumb encoding does not support an immediate here"));
13020
13021 if (inst.operands[0].isreg)
13022 flags = (int)(inst.operands[0].reg);
13023 else
13024 flags = inst.operands[0].imm;
13025
13026 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13027 {
13028 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13029
13030 /* PR gas/12698: The constraint is only applied for m_profile.
13031 If the user has specified -march=all, we want to ignore it as
13032 we are building for any CPU type, including non-m variants. */
13033 bfd_boolean m_profile =
13034 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13035 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13036 && (bits & ~(PSR_s | PSR_f)) != 0)
13037 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13038 && bits != PSR_f)) && m_profile,
13039 _("selected processor does not support requested special "
13040 "purpose register"));
13041 }
13042 else
13043 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13044 "requested special purpose register"));
13045
13046 Rn = inst.operands[1].reg;
13047 reject_bad_reg (Rn);
13048
13049 inst.instruction |= (flags & SPSR_BIT) >> 2;
13050 inst.instruction |= (flags & 0xf0000) >> 8;
13051 inst.instruction |= (flags & 0x300) >> 4;
13052 inst.instruction |= (flags & 0xff);
13053 inst.instruction |= Rn << 16;
13054 }
13055
13056 static void
13057 do_t_mul (void)
13058 {
13059 bfd_boolean narrow;
13060 unsigned Rd, Rn, Rm;
13061
13062 if (!inst.operands[2].present)
13063 inst.operands[2].reg = inst.operands[0].reg;
13064
13065 Rd = inst.operands[0].reg;
13066 Rn = inst.operands[1].reg;
13067 Rm = inst.operands[2].reg;
13068
13069 if (unified_syntax)
13070 {
13071 if (inst.size_req == 4
13072 || (Rd != Rn
13073 && Rd != Rm)
13074 || Rn > 7
13075 || Rm > 7)
13076 narrow = FALSE;
13077 else if (inst.instruction == T_MNEM_muls)
13078 narrow = !in_pred_block ();
13079 else
13080 narrow = in_pred_block ();
13081 }
13082 else
13083 {
13084 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
13085 constraint (Rn > 7 || Rm > 7,
13086 BAD_HIREG);
13087 narrow = TRUE;
13088 }
13089
13090 if (narrow)
13091 {
13092 /* 16-bit MULS/Conditional MUL. */
13093 inst.instruction = THUMB_OP16 (inst.instruction);
13094 inst.instruction |= Rd;
13095
13096 if (Rd == Rn)
13097 inst.instruction |= Rm << 3;
13098 else if (Rd == Rm)
13099 inst.instruction |= Rn << 3;
13100 else
13101 constraint (1, _("dest must overlap one source register"));
13102 }
13103 else
13104 {
13105 constraint (inst.instruction != T_MNEM_mul,
13106 _("Thumb-2 MUL must not set flags"));
13107 /* 32-bit MUL. */
13108 inst.instruction = THUMB_OP32 (inst.instruction);
13109 inst.instruction |= Rd << 8;
13110 inst.instruction |= Rn << 16;
13111 inst.instruction |= Rm << 0;
13112
13113 reject_bad_reg (Rd);
13114 reject_bad_reg (Rn);
13115 reject_bad_reg (Rm);
13116 }
13117 }
13118
13119 static void
13120 do_t_mull (void)
13121 {
13122 unsigned RdLo, RdHi, Rn, Rm;
13123
13124 RdLo = inst.operands[0].reg;
13125 RdHi = inst.operands[1].reg;
13126 Rn = inst.operands[2].reg;
13127 Rm = inst.operands[3].reg;
13128
13129 reject_bad_reg (RdLo);
13130 reject_bad_reg (RdHi);
13131 reject_bad_reg (Rn);
13132 reject_bad_reg (Rm);
13133
13134 inst.instruction |= RdLo << 12;
13135 inst.instruction |= RdHi << 8;
13136 inst.instruction |= Rn << 16;
13137 inst.instruction |= Rm;
13138
13139 if (RdLo == RdHi)
13140 as_tsktsk (_("rdhi and rdlo must be different"));
13141 }
13142
13143 static void
13144 do_t_nop (void)
13145 {
13146 set_pred_insn_type (NEUTRAL_IT_INSN);
13147
13148 if (unified_syntax)
13149 {
13150 if (inst.size_req == 4 || inst.operands[0].imm > 15)
13151 {
13152 inst.instruction = THUMB_OP32 (inst.instruction);
13153 inst.instruction |= inst.operands[0].imm;
13154 }
13155 else
13156 {
13157 /* PR9722: Check for Thumb2 availability before
13158 generating a thumb2 nop instruction. */
13159 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
13160 {
13161 inst.instruction = THUMB_OP16 (inst.instruction);
13162 inst.instruction |= inst.operands[0].imm << 4;
13163 }
13164 else
13165 inst.instruction = 0x46c0;
13166 }
13167 }
13168 else
13169 {
13170 constraint (inst.operands[0].present,
13171 _("Thumb does not support NOP with hints"));
13172 inst.instruction = 0x46c0;
13173 }
13174 }
13175
13176 static void
13177 do_t_neg (void)
13178 {
13179 if (unified_syntax)
13180 {
13181 bfd_boolean narrow;
13182
13183 if (THUMB_SETS_FLAGS (inst.instruction))
13184 narrow = !in_pred_block ();
13185 else
13186 narrow = in_pred_block ();
13187 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13188 narrow = FALSE;
13189 if (inst.size_req == 4)
13190 narrow = FALSE;
13191
13192 if (!narrow)
13193 {
13194 inst.instruction = THUMB_OP32 (inst.instruction);
13195 inst.instruction |= inst.operands[0].reg << 8;
13196 inst.instruction |= inst.operands[1].reg << 16;
13197 }
13198 else
13199 {
13200 inst.instruction = THUMB_OP16 (inst.instruction);
13201 inst.instruction |= inst.operands[0].reg;
13202 inst.instruction |= inst.operands[1].reg << 3;
13203 }
13204 }
13205 else
13206 {
13207 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13208 BAD_HIREG);
13209 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13210
13211 inst.instruction = THUMB_OP16 (inst.instruction);
13212 inst.instruction |= inst.operands[0].reg;
13213 inst.instruction |= inst.operands[1].reg << 3;
13214 }
13215 }
13216
13217 static void
13218 do_t_orn (void)
13219 {
13220 unsigned Rd, Rn;
13221
13222 Rd = inst.operands[0].reg;
13223 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13224
13225 reject_bad_reg (Rd);
13226 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13227 reject_bad_reg (Rn);
13228
13229 inst.instruction |= Rd << 8;
13230 inst.instruction |= Rn << 16;
13231
13232 if (!inst.operands[2].isreg)
13233 {
13234 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13235 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13236 }
13237 else
13238 {
13239 unsigned Rm;
13240
13241 Rm = inst.operands[2].reg;
13242 reject_bad_reg (Rm);
13243
13244 constraint (inst.operands[2].shifted
13245 && inst.operands[2].immisreg,
13246 _("shift must be constant"));
13247 encode_thumb32_shifted_operand (2);
13248 }
13249 }
13250
13251 static void
13252 do_t_pkhbt (void)
13253 {
13254 unsigned Rd, Rn, Rm;
13255
13256 Rd = inst.operands[0].reg;
13257 Rn = inst.operands[1].reg;
13258 Rm = inst.operands[2].reg;
13259
13260 reject_bad_reg (Rd);
13261 reject_bad_reg (Rn);
13262 reject_bad_reg (Rm);
13263
13264 inst.instruction |= Rd << 8;
13265 inst.instruction |= Rn << 16;
13266 inst.instruction |= Rm;
13267 if (inst.operands[3].present)
13268 {
13269 unsigned int val = inst.relocs[0].exp.X_add_number;
13270 constraint (inst.relocs[0].exp.X_op != O_constant,
13271 _("expression too complex"));
13272 inst.instruction |= (val & 0x1c) << 10;
13273 inst.instruction |= (val & 0x03) << 6;
13274 }
13275 }
13276
13277 static void
13278 do_t_pkhtb (void)
13279 {
13280 if (!inst.operands[3].present)
13281 {
13282 unsigned Rtmp;
13283
13284 inst.instruction &= ~0x00000020;
13285
13286 /* PR 10168. Swap the Rm and Rn registers. */
13287 Rtmp = inst.operands[1].reg;
13288 inst.operands[1].reg = inst.operands[2].reg;
13289 inst.operands[2].reg = Rtmp;
13290 }
13291 do_t_pkhbt ();
13292 }
13293
13294 static void
13295 do_t_pld (void)
13296 {
13297 if (inst.operands[0].immisreg)
13298 reject_bad_reg (inst.operands[0].imm);
13299
13300 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13301 }
13302
13303 static void
13304 do_t_push_pop (void)
13305 {
13306 unsigned mask;
13307
13308 constraint (inst.operands[0].writeback,
13309 _("push/pop do not support {reglist}^"));
13310 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
13311 _("expression too complex"));
13312
13313 mask = inst.operands[0].imm;
13314 if (inst.size_req != 4 && (mask & ~0xff) == 0)
13315 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
13316 else if (inst.size_req != 4
13317 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
13318 ? REG_LR : REG_PC)))
13319 {
13320 inst.instruction = THUMB_OP16 (inst.instruction);
13321 inst.instruction |= THUMB_PP_PC_LR;
13322 inst.instruction |= mask & 0xff;
13323 }
13324 else if (unified_syntax)
13325 {
13326 inst.instruction = THUMB_OP32 (inst.instruction);
13327 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13328 }
13329 else
13330 {
13331 inst.error = _("invalid register list to push/pop instruction");
13332 return;
13333 }
13334 }
13335
13336 static void
13337 do_t_clrm (void)
13338 {
13339 if (unified_syntax)
13340 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
13341 else
13342 {
13343 inst.error = _("invalid register list to push/pop instruction");
13344 return;
13345 }
13346 }
13347
13348 static void
13349 do_t_vscclrm (void)
13350 {
13351 if (inst.operands[0].issingle)
13352 {
13353 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13354 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13355 inst.instruction |= inst.operands[0].imm;
13356 }
13357 else
13358 {
13359 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13360 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13361 inst.instruction |= 1 << 8;
13362 inst.instruction |= inst.operands[0].imm << 1;
13363 }
13364 }
13365
13366 static void
13367 do_t_rbit (void)
13368 {
13369 unsigned Rd, Rm;
13370
13371 Rd = inst.operands[0].reg;
13372 Rm = inst.operands[1].reg;
13373
13374 reject_bad_reg (Rd);
13375 reject_bad_reg (Rm);
13376
13377 inst.instruction |= Rd << 8;
13378 inst.instruction |= Rm << 16;
13379 inst.instruction |= Rm;
13380 }
13381
13382 static void
13383 do_t_rev (void)
13384 {
13385 unsigned Rd, Rm;
13386
13387 Rd = inst.operands[0].reg;
13388 Rm = inst.operands[1].reg;
13389
13390 reject_bad_reg (Rd);
13391 reject_bad_reg (Rm);
13392
13393 if (Rd <= 7 && Rm <= 7
13394 && inst.size_req != 4)
13395 {
13396 inst.instruction = THUMB_OP16 (inst.instruction);
13397 inst.instruction |= Rd;
13398 inst.instruction |= Rm << 3;
13399 }
13400 else if (unified_syntax)
13401 {
13402 inst.instruction = THUMB_OP32 (inst.instruction);
13403 inst.instruction |= Rd << 8;
13404 inst.instruction |= Rm << 16;
13405 inst.instruction |= Rm;
13406 }
13407 else
13408 inst.error = BAD_HIREG;
13409 }
13410
13411 static void
13412 do_t_rrx (void)
13413 {
13414 unsigned Rd, Rm;
13415
13416 Rd = inst.operands[0].reg;
13417 Rm = inst.operands[1].reg;
13418
13419 reject_bad_reg (Rd);
13420 reject_bad_reg (Rm);
13421
13422 inst.instruction |= Rd << 8;
13423 inst.instruction |= Rm;
13424 }
13425
13426 static void
13427 do_t_rsb (void)
13428 {
13429 unsigned Rd, Rs;
13430
13431 Rd = inst.operands[0].reg;
13432 Rs = (inst.operands[1].present
13433 ? inst.operands[1].reg /* Rd, Rs, foo */
13434 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
13435
13436 reject_bad_reg (Rd);
13437 reject_bad_reg (Rs);
13438 if (inst.operands[2].isreg)
13439 reject_bad_reg (inst.operands[2].reg);
13440
13441 inst.instruction |= Rd << 8;
13442 inst.instruction |= Rs << 16;
13443 if (!inst.operands[2].isreg)
13444 {
13445 bfd_boolean narrow;
13446
13447 if ((inst.instruction & 0x00100000) != 0)
13448 narrow = !in_pred_block ();
13449 else
13450 narrow = in_pred_block ();
13451
13452 if (Rd > 7 || Rs > 7)
13453 narrow = FALSE;
13454
13455 if (inst.size_req == 4 || !unified_syntax)
13456 narrow = FALSE;
13457
13458 if (inst.relocs[0].exp.X_op != O_constant
13459 || inst.relocs[0].exp.X_add_number != 0)
13460 narrow = FALSE;
13461
13462 /* Turn rsb #0 into 16-bit neg. We should probably do this via
13463 relaxation, but it doesn't seem worth the hassle. */
13464 if (narrow)
13465 {
13466 inst.relocs[0].type = BFD_RELOC_UNUSED;
13467 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13468 inst.instruction |= Rs << 3;
13469 inst.instruction |= Rd;
13470 }
13471 else
13472 {
13473 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13474 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13475 }
13476 }
13477 else
13478 encode_thumb32_shifted_operand (2);
13479 }
13480
13481 static void
13482 do_t_setend (void)
13483 {
13484 if (warn_on_deprecated
13485 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13486 as_tsktsk (_("setend use is deprecated for ARMv8"));
13487
13488 set_pred_insn_type (OUTSIDE_PRED_INSN);
13489 if (inst.operands[0].imm)
13490 inst.instruction |= 0x8;
13491 }
13492
13493 static void
13494 do_t_shift (void)
13495 {
13496 if (!inst.operands[1].present)
13497 inst.operands[1].reg = inst.operands[0].reg;
13498
13499 if (unified_syntax)
13500 {
13501 bfd_boolean narrow;
13502 int shift_kind;
13503
13504 switch (inst.instruction)
13505 {
13506 case T_MNEM_asr:
13507 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13508 case T_MNEM_lsl:
13509 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13510 case T_MNEM_lsr:
13511 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13512 case T_MNEM_ror:
13513 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13514 default: abort ();
13515 }
13516
13517 if (THUMB_SETS_FLAGS (inst.instruction))
13518 narrow = !in_pred_block ();
13519 else
13520 narrow = in_pred_block ();
13521 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13522 narrow = FALSE;
13523 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13524 narrow = FALSE;
13525 if (inst.operands[2].isreg
13526 && (inst.operands[1].reg != inst.operands[0].reg
13527 || inst.operands[2].reg > 7))
13528 narrow = FALSE;
13529 if (inst.size_req == 4)
13530 narrow = FALSE;
13531
13532 reject_bad_reg (inst.operands[0].reg);
13533 reject_bad_reg (inst.operands[1].reg);
13534
13535 if (!narrow)
13536 {
13537 if (inst.operands[2].isreg)
13538 {
13539 reject_bad_reg (inst.operands[2].reg);
13540 inst.instruction = THUMB_OP32 (inst.instruction);
13541 inst.instruction |= inst.operands[0].reg << 8;
13542 inst.instruction |= inst.operands[1].reg << 16;
13543 inst.instruction |= inst.operands[2].reg;
13544
13545 /* PR 12854: Error on extraneous shifts. */
13546 constraint (inst.operands[2].shifted,
13547 _("extraneous shift as part of operand to shift insn"));
13548 }
13549 else
13550 {
13551 inst.operands[1].shifted = 1;
13552 inst.operands[1].shift_kind = shift_kind;
13553 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13554 ? T_MNEM_movs : T_MNEM_mov);
13555 inst.instruction |= inst.operands[0].reg << 8;
13556 encode_thumb32_shifted_operand (1);
13557 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
13558 inst.relocs[0].type = BFD_RELOC_UNUSED;
13559 }
13560 }
13561 else
13562 {
13563 if (inst.operands[2].isreg)
13564 {
13565 switch (shift_kind)
13566 {
13567 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13568 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13569 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13570 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
13571 default: abort ();
13572 }
13573
13574 inst.instruction |= inst.operands[0].reg;
13575 inst.instruction |= inst.operands[2].reg << 3;
13576
13577 /* PR 12854: Error on extraneous shifts. */
13578 constraint (inst.operands[2].shifted,
13579 _("extraneous shift as part of operand to shift insn"));
13580 }
13581 else
13582 {
13583 switch (shift_kind)
13584 {
13585 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13586 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13587 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
13588 default: abort ();
13589 }
13590 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13591 inst.instruction |= inst.operands[0].reg;
13592 inst.instruction |= inst.operands[1].reg << 3;
13593 }
13594 }
13595 }
13596 else
13597 {
13598 constraint (inst.operands[0].reg > 7
13599 || inst.operands[1].reg > 7, BAD_HIREG);
13600 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13601
13602 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13603 {
13604 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13605 constraint (inst.operands[0].reg != inst.operands[1].reg,
13606 _("source1 and dest must be same register"));
13607
13608 switch (inst.instruction)
13609 {
13610 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13611 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13612 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13613 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13614 default: abort ();
13615 }
13616
13617 inst.instruction |= inst.operands[0].reg;
13618 inst.instruction |= inst.operands[2].reg << 3;
13619
13620 /* PR 12854: Error on extraneous shifts. */
13621 constraint (inst.operands[2].shifted,
13622 _("extraneous shift as part of operand to shift insn"));
13623 }
13624 else
13625 {
13626 switch (inst.instruction)
13627 {
13628 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13629 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13630 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13631 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13632 default: abort ();
13633 }
13634 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13635 inst.instruction |= inst.operands[0].reg;
13636 inst.instruction |= inst.operands[1].reg << 3;
13637 }
13638 }
13639 }
13640
13641 static void
13642 do_t_simd (void)
13643 {
13644 unsigned Rd, Rn, Rm;
13645
13646 Rd = inst.operands[0].reg;
13647 Rn = inst.operands[1].reg;
13648 Rm = inst.operands[2].reg;
13649
13650 reject_bad_reg (Rd);
13651 reject_bad_reg (Rn);
13652 reject_bad_reg (Rm);
13653
13654 inst.instruction |= Rd << 8;
13655 inst.instruction |= Rn << 16;
13656 inst.instruction |= Rm;
13657 }
13658
13659 static void
13660 do_t_simd2 (void)
13661 {
13662 unsigned Rd, Rn, Rm;
13663
13664 Rd = inst.operands[0].reg;
13665 Rm = inst.operands[1].reg;
13666 Rn = inst.operands[2].reg;
13667
13668 reject_bad_reg (Rd);
13669 reject_bad_reg (Rn);
13670 reject_bad_reg (Rm);
13671
13672 inst.instruction |= Rd << 8;
13673 inst.instruction |= Rn << 16;
13674 inst.instruction |= Rm;
13675 }
13676
13677 static void
13678 do_t_smc (void)
13679 {
13680 unsigned int value = inst.relocs[0].exp.X_add_number;
13681 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13682 _("SMC is not permitted on this architecture"));
13683 constraint (inst.relocs[0].exp.X_op != O_constant,
13684 _("expression too complex"));
13685 inst.relocs[0].type = BFD_RELOC_UNUSED;
13686 inst.instruction |= (value & 0xf000) >> 12;
13687 inst.instruction |= (value & 0x0ff0);
13688 inst.instruction |= (value & 0x000f) << 16;
13689 /* PR gas/15623: SMC instructions must be last in an IT block. */
13690 set_pred_insn_type_last ();
13691 }
13692
13693 static void
13694 do_t_hvc (void)
13695 {
13696 unsigned int value = inst.relocs[0].exp.X_add_number;
13697
13698 inst.relocs[0].type = BFD_RELOC_UNUSED;
13699 inst.instruction |= (value & 0x0fff);
13700 inst.instruction |= (value & 0xf000) << 4;
13701 }
13702
13703 static void
13704 do_t_ssat_usat (int bias)
13705 {
13706 unsigned Rd, Rn;
13707
13708 Rd = inst.operands[0].reg;
13709 Rn = inst.operands[2].reg;
13710
13711 reject_bad_reg (Rd);
13712 reject_bad_reg (Rn);
13713
13714 inst.instruction |= Rd << 8;
13715 inst.instruction |= inst.operands[1].imm - bias;
13716 inst.instruction |= Rn << 16;
13717
13718 if (inst.operands[3].present)
13719 {
13720 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
13721
13722 inst.relocs[0].type = BFD_RELOC_UNUSED;
13723
13724 constraint (inst.relocs[0].exp.X_op != O_constant,
13725 _("expression too complex"));
13726
13727 if (shift_amount != 0)
13728 {
13729 constraint (shift_amount > 31,
13730 _("shift expression is too large"));
13731
13732 if (inst.operands[3].shift_kind == SHIFT_ASR)
13733 inst.instruction |= 0x00200000; /* sh bit. */
13734
13735 inst.instruction |= (shift_amount & 0x1c) << 10;
13736 inst.instruction |= (shift_amount & 0x03) << 6;
13737 }
13738 }
13739 }
13740
13741 static void
13742 do_t_ssat (void)
13743 {
13744 do_t_ssat_usat (1);
13745 }
13746
13747 static void
13748 do_t_ssat16 (void)
13749 {
13750 unsigned Rd, Rn;
13751
13752 Rd = inst.operands[0].reg;
13753 Rn = inst.operands[2].reg;
13754
13755 reject_bad_reg (Rd);
13756 reject_bad_reg (Rn);
13757
13758 inst.instruction |= Rd << 8;
13759 inst.instruction |= inst.operands[1].imm - 1;
13760 inst.instruction |= Rn << 16;
13761 }
13762
13763 static void
13764 do_t_strex (void)
13765 {
13766 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13767 || inst.operands[2].postind || inst.operands[2].writeback
13768 || inst.operands[2].immisreg || inst.operands[2].shifted
13769 || inst.operands[2].negative,
13770 BAD_ADDR_MODE);
13771
13772 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13773
13774 inst.instruction |= inst.operands[0].reg << 8;
13775 inst.instruction |= inst.operands[1].reg << 12;
13776 inst.instruction |= inst.operands[2].reg << 16;
13777 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
13778 }
13779
13780 static void
13781 do_t_strexd (void)
13782 {
13783 if (!inst.operands[2].present)
13784 inst.operands[2].reg = inst.operands[1].reg + 1;
13785
13786 constraint (inst.operands[0].reg == inst.operands[1].reg
13787 || inst.operands[0].reg == inst.operands[2].reg
13788 || inst.operands[0].reg == inst.operands[3].reg,
13789 BAD_OVERLAP);
13790
13791 inst.instruction |= inst.operands[0].reg;
13792 inst.instruction |= inst.operands[1].reg << 12;
13793 inst.instruction |= inst.operands[2].reg << 8;
13794 inst.instruction |= inst.operands[3].reg << 16;
13795 }
13796
13797 static void
13798 do_t_sxtah (void)
13799 {
13800 unsigned Rd, Rn, Rm;
13801
13802 Rd = inst.operands[0].reg;
13803 Rn = inst.operands[1].reg;
13804 Rm = inst.operands[2].reg;
13805
13806 reject_bad_reg (Rd);
13807 reject_bad_reg (Rn);
13808 reject_bad_reg (Rm);
13809
13810 inst.instruction |= Rd << 8;
13811 inst.instruction |= Rn << 16;
13812 inst.instruction |= Rm;
13813 inst.instruction |= inst.operands[3].imm << 4;
13814 }
13815
13816 static void
13817 do_t_sxth (void)
13818 {
13819 unsigned Rd, Rm;
13820
13821 Rd = inst.operands[0].reg;
13822 Rm = inst.operands[1].reg;
13823
13824 reject_bad_reg (Rd);
13825 reject_bad_reg (Rm);
13826
13827 if (inst.instruction <= 0xffff
13828 && inst.size_req != 4
13829 && Rd <= 7 && Rm <= 7
13830 && (!inst.operands[2].present || inst.operands[2].imm == 0))
13831 {
13832 inst.instruction = THUMB_OP16 (inst.instruction);
13833 inst.instruction |= Rd;
13834 inst.instruction |= Rm << 3;
13835 }
13836 else if (unified_syntax)
13837 {
13838 if (inst.instruction <= 0xffff)
13839 inst.instruction = THUMB_OP32 (inst.instruction);
13840 inst.instruction |= Rd << 8;
13841 inst.instruction |= Rm;
13842 inst.instruction |= inst.operands[2].imm << 4;
13843 }
13844 else
13845 {
13846 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13847 _("Thumb encoding does not support rotation"));
13848 constraint (1, BAD_HIREG);
13849 }
13850 }
13851
13852 static void
13853 do_t_swi (void)
13854 {
13855 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
13856 }
13857
13858 static void
13859 do_t_tb (void)
13860 {
13861 unsigned Rn, Rm;
13862 int half;
13863
13864 half = (inst.instruction & 0x10) != 0;
13865 set_pred_insn_type_last ();
13866 constraint (inst.operands[0].immisreg,
13867 _("instruction requires register index"));
13868
13869 Rn = inst.operands[0].reg;
13870 Rm = inst.operands[0].imm;
13871
13872 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13873 constraint (Rn == REG_SP, BAD_SP);
13874 reject_bad_reg (Rm);
13875
13876 constraint (!half && inst.operands[0].shifted,
13877 _("instruction does not allow shifted index"));
13878 inst.instruction |= (Rn << 16) | Rm;
13879 }
13880
13881 static void
13882 do_t_udf (void)
13883 {
13884 if (!inst.operands[0].present)
13885 inst.operands[0].imm = 0;
13886
13887 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13888 {
13889 constraint (inst.size_req == 2,
13890 _("immediate value out of range"));
13891 inst.instruction = THUMB_OP32 (inst.instruction);
13892 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13893 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13894 }
13895 else
13896 {
13897 inst.instruction = THUMB_OP16 (inst.instruction);
13898 inst.instruction |= inst.operands[0].imm;
13899 }
13900
13901 set_pred_insn_type (NEUTRAL_IT_INSN);
13902 }
13903
13904
13905 static void
13906 do_t_usat (void)
13907 {
13908 do_t_ssat_usat (0);
13909 }
13910
13911 static void
13912 do_t_usat16 (void)
13913 {
13914 unsigned Rd, Rn;
13915
13916 Rd = inst.operands[0].reg;
13917 Rn = inst.operands[2].reg;
13918
13919 reject_bad_reg (Rd);
13920 reject_bad_reg (Rn);
13921
13922 inst.instruction |= Rd << 8;
13923 inst.instruction |= inst.operands[1].imm;
13924 inst.instruction |= Rn << 16;
13925 }
13926
13927 /* Checking the range of the branch offset (VAL) with NBITS bits
13928 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13929 static int
13930 v8_1_branch_value_check (int val, int nbits, int is_signed)
13931 {
13932 gas_assert (nbits > 0 && nbits <= 32);
13933 if (is_signed)
13934 {
13935 int cmp = (1 << (nbits - 1));
13936 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13937 return FAIL;
13938 }
13939 else
13940 {
13941 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13942 return FAIL;
13943 }
13944 return SUCCESS;
13945 }
13946
13947 /* For branches in Armv8.1-M Mainline. */
13948 static void
13949 do_t_branch_future (void)
13950 {
13951 unsigned long insn = inst.instruction;
13952
13953 inst.instruction = THUMB_OP32 (inst.instruction);
13954 if (inst.operands[0].hasreloc == 0)
13955 {
13956 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
13957 as_bad (BAD_BRANCH_OFF);
13958
13959 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
13960 }
13961 else
13962 {
13963 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
13964 inst.relocs[0].pc_rel = 1;
13965 }
13966
13967 switch (insn)
13968 {
13969 case T_MNEM_bf:
13970 if (inst.operands[1].hasreloc == 0)
13971 {
13972 int val = inst.operands[1].imm;
13973 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
13974 as_bad (BAD_BRANCH_OFF);
13975
13976 int immA = (val & 0x0001f000) >> 12;
13977 int immB = (val & 0x00000ffc) >> 2;
13978 int immC = (val & 0x00000002) >> 1;
13979 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
13980 }
13981 else
13982 {
13983 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
13984 inst.relocs[1].pc_rel = 1;
13985 }
13986 break;
13987
13988 case T_MNEM_bfl:
13989 if (inst.operands[1].hasreloc == 0)
13990 {
13991 int val = inst.operands[1].imm;
13992 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
13993 as_bad (BAD_BRANCH_OFF);
13994
13995 int immA = (val & 0x0007f000) >> 12;
13996 int immB = (val & 0x00000ffc) >> 2;
13997 int immC = (val & 0x00000002) >> 1;
13998 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
13999 }
14000 else
14001 {
14002 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14003 inst.relocs[1].pc_rel = 1;
14004 }
14005 break;
14006
14007 case T_MNEM_bfcsel:
14008 /* Operand 1. */
14009 if (inst.operands[1].hasreloc == 0)
14010 {
14011 int val = inst.operands[1].imm;
14012 int immA = (val & 0x00001000) >> 12;
14013 int immB = (val & 0x00000ffc) >> 2;
14014 int immC = (val & 0x00000002) >> 1;
14015 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14016 }
14017 else
14018 {
14019 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14020 inst.relocs[1].pc_rel = 1;
14021 }
14022
14023 /* Operand 2. */
14024 if (inst.operands[2].hasreloc == 0)
14025 {
14026 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14027 int val2 = inst.operands[2].imm;
14028 int val0 = inst.operands[0].imm & 0x1f;
14029 int diff = val2 - val0;
14030 if (diff == 4)
14031 inst.instruction |= 1 << 17; /* T bit. */
14032 else if (diff != 2)
14033 as_bad (_("out of range label-relative fixup value"));
14034 }
14035 else
14036 {
14037 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14038 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14039 inst.relocs[2].pc_rel = 1;
14040 }
14041
14042 /* Operand 3. */
14043 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14044 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14045 break;
14046
14047 case T_MNEM_bfx:
14048 case T_MNEM_bflx:
14049 inst.instruction |= inst.operands[1].reg << 16;
14050 break;
14051
14052 default: abort ();
14053 }
14054 }
14055
14056 /* Helper function for do_t_loloop to handle relocations. */
14057 static void
14058 v8_1_loop_reloc (int is_le)
14059 {
14060 if (inst.relocs[0].exp.X_op == O_constant)
14061 {
14062 int value = inst.relocs[0].exp.X_add_number;
14063 value = (is_le) ? -value : value;
14064
14065 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14066 as_bad (BAD_BRANCH_OFF);
14067
14068 int imml, immh;
14069
14070 immh = (value & 0x00000ffc) >> 2;
14071 imml = (value & 0x00000002) >> 1;
14072
14073 inst.instruction |= (imml << 11) | (immh << 1);
14074 }
14075 else
14076 {
14077 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14078 inst.relocs[0].pc_rel = 1;
14079 }
14080 }
14081
14082 /* To handle the Scalar Low Overhead Loop instructions
14083 in Armv8.1-M Mainline. */
14084 static void
14085 do_t_loloop (void)
14086 {
14087 unsigned long insn = inst.instruction;
14088
14089 set_pred_insn_type (OUTSIDE_PRED_INSN);
14090 inst.instruction = THUMB_OP32 (inst.instruction);
14091
14092 switch (insn)
14093 {
14094 case T_MNEM_le:
14095 /* le <label>. */
14096 if (!inst.operands[0].present)
14097 inst.instruction |= 1 << 21;
14098
14099 v8_1_loop_reloc (TRUE);
14100 break;
14101
14102 case T_MNEM_wls:
14103 v8_1_loop_reloc (FALSE);
14104 /* Fall through. */
14105 case T_MNEM_dls:
14106 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
14107 inst.instruction |= (inst.operands[1].reg << 16);
14108 break;
14109
14110 default: abort();
14111 }
14112 }
14113
14114 /* MVE instruction encoder helpers. */
14115 #define M_MNEM_vabav 0xee800f01
14116 #define M_MNEM_vmladav 0xeef00e00
14117 #define M_MNEM_vmladava 0xeef00e20
14118 #define M_MNEM_vmladavx 0xeef01e00
14119 #define M_MNEM_vmladavax 0xeef01e20
14120 #define M_MNEM_vmlsdav 0xeef00e01
14121 #define M_MNEM_vmlsdava 0xeef00e21
14122 #define M_MNEM_vmlsdavx 0xeef01e01
14123 #define M_MNEM_vmlsdavax 0xeef01e21
14124 #define M_MNEM_vmullt 0xee011e00
14125 #define M_MNEM_vmullb 0xee010e00
14126 #define M_MNEM_vst20 0xfc801e00
14127 #define M_MNEM_vst21 0xfc801e20
14128 #define M_MNEM_vst40 0xfc801e01
14129 #define M_MNEM_vst41 0xfc801e21
14130 #define M_MNEM_vst42 0xfc801e41
14131 #define M_MNEM_vst43 0xfc801e61
14132 #define M_MNEM_vld20 0xfc901e00
14133 #define M_MNEM_vld21 0xfc901e20
14134 #define M_MNEM_vld40 0xfc901e01
14135 #define M_MNEM_vld41 0xfc901e21
14136 #define M_MNEM_vld42 0xfc901e41
14137 #define M_MNEM_vld43 0xfc901e61
14138 #define M_MNEM_vstrb 0xec000e00
14139 #define M_MNEM_vstrh 0xec000e10
14140 #define M_MNEM_vstrw 0xec000e40
14141 #define M_MNEM_vstrd 0xec000e50
14142 #define M_MNEM_vldrb 0xec100e00
14143 #define M_MNEM_vldrh 0xec100e10
14144 #define M_MNEM_vldrw 0xec100e40
14145 #define M_MNEM_vldrd 0xec100e50
14146 #define M_MNEM_vmovlt 0xeea01f40
14147 #define M_MNEM_vmovlb 0xeea00f40
14148 #define M_MNEM_vmovnt 0xfe311e81
14149 #define M_MNEM_vmovnb 0xfe310e81
14150 #define M_MNEM_vadc 0xee300f00
14151 #define M_MNEM_vadci 0xee301f00
14152 #define M_MNEM_vbrsr 0xfe011e60
14153 #define M_MNEM_vaddlv 0xee890f00
14154 #define M_MNEM_vaddlva 0xee890f20
14155 #define M_MNEM_vaddv 0xeef10f00
14156 #define M_MNEM_vaddva 0xeef10f20
14157 #define M_MNEM_vddup 0xee011f6e
14158 #define M_MNEM_vdwdup 0xee011f60
14159 #define M_MNEM_vidup 0xee010f6e
14160 #define M_MNEM_viwdup 0xee010f60
14161
14162 /* Neon instruction encoder helpers. */
14163
14164 /* Encodings for the different types for various Neon opcodes. */
14165
14166 /* An "invalid" code for the following tables. */
14167 #define N_INV -1u
14168
14169 struct neon_tab_entry
14170 {
14171 unsigned integer;
14172 unsigned float_or_poly;
14173 unsigned scalar_or_imm;
14174 };
14175
14176 /* Map overloaded Neon opcodes to their respective encodings. */
14177 #define NEON_ENC_TAB \
14178 X(vabd, 0x0000700, 0x1200d00, N_INV), \
14179 X(vabdl, 0x0800700, N_INV, N_INV), \
14180 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14181 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14182 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14183 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14184 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14185 X(vadd, 0x0000800, 0x0000d00, N_INV), \
14186 X(vaddl, 0x0800000, N_INV, N_INV), \
14187 X(vsub, 0x1000800, 0x0200d00, N_INV), \
14188 X(vsubl, 0x0800200, N_INV, N_INV), \
14189 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14190 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14191 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14192 /* Register variants of the following two instructions are encoded as
14193 vcge / vcgt with the operands reversed. */ \
14194 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14195 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
14196 X(vfma, N_INV, 0x0000c10, N_INV), \
14197 X(vfms, N_INV, 0x0200c10, N_INV), \
14198 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14199 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14200 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14201 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14202 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14203 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14204 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14205 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14206 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14207 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14208 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
14209 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14210 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
14211 X(vshl, 0x0000400, N_INV, 0x0800510), \
14212 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14213 X(vand, 0x0000110, N_INV, 0x0800030), \
14214 X(vbic, 0x0100110, N_INV, 0x0800030), \
14215 X(veor, 0x1000110, N_INV, N_INV), \
14216 X(vorn, 0x0300110, N_INV, 0x0800010), \
14217 X(vorr, 0x0200110, N_INV, 0x0800010), \
14218 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14219 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14220 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14221 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14222 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14223 X(vst1, 0x0000000, 0x0800000, N_INV), \
14224 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14225 X(vst2, 0x0000100, 0x0800100, N_INV), \
14226 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14227 X(vst3, 0x0000200, 0x0800200, N_INV), \
14228 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14229 X(vst4, 0x0000300, 0x0800300, N_INV), \
14230 X(vmovn, 0x1b20200, N_INV, N_INV), \
14231 X(vtrn, 0x1b20080, N_INV, N_INV), \
14232 X(vqmovn, 0x1b20200, N_INV, N_INV), \
14233 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14234 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
14235 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14236 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
14237 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14238 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
14239 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14240 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14241 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
14242 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14243 X(vseleq, 0xe000a00, N_INV, N_INV), \
14244 X(vselvs, 0xe100a00, N_INV, N_INV), \
14245 X(vselge, 0xe200a00, N_INV, N_INV), \
14246 X(vselgt, 0xe300a00, N_INV, N_INV), \
14247 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
14248 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
14249 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14250 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
14251 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
14252 X(aes, 0x3b00300, N_INV, N_INV), \
14253 X(sha3op, 0x2000c00, N_INV, N_INV), \
14254 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14255 X(sha2op, 0x3ba0380, N_INV, N_INV)
14256
14257 enum neon_opc
14258 {
14259 #define X(OPC,I,F,S) N_MNEM_##OPC
14260 NEON_ENC_TAB
14261 #undef X
14262 };
14263
14264 static const struct neon_tab_entry neon_enc_tab[] =
14265 {
14266 #define X(OPC,I,F,S) { (I), (F), (S) }
14267 NEON_ENC_TAB
14268 #undef X
14269 };
14270
14271 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
14272 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14273 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14274 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14275 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14276 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14277 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14278 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14279 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14280 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14281 #define NEON_ENC_SINGLE_(X) \
14282 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
14283 #define NEON_ENC_DOUBLE_(X) \
14284 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
14285 #define NEON_ENC_FPV8_(X) \
14286 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
14287
14288 #define NEON_ENCODE(type, inst) \
14289 do \
14290 { \
14291 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14292 inst.is_neon = 1; \
14293 } \
14294 while (0)
14295
14296 #define check_neon_suffixes \
14297 do \
14298 { \
14299 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14300 { \
14301 as_bad (_("invalid neon suffix for non neon instruction")); \
14302 return; \
14303 } \
14304 } \
14305 while (0)
14306
14307 /* Define shapes for instruction operands. The following mnemonic characters
14308 are used in this table:
14309
14310 F - VFP S<n> register
14311 D - Neon D<n> register
14312 Q - Neon Q<n> register
14313 I - Immediate
14314 S - Scalar
14315 R - ARM register
14316 L - D<n> register list
14317
14318 This table is used to generate various data:
14319 - enumerations of the form NS_DDR to be used as arguments to
14320 neon_select_shape.
14321 - a table classifying shapes into single, double, quad, mixed.
14322 - a table used to drive neon_select_shape. */
14323
14324 #define NEON_SHAPE_DEF \
14325 X(4, (Q, R, R, I), QUAD), \
14326 X(4, (R, R, S, S), QUAD), \
14327 X(4, (S, S, R, R), QUAD), \
14328 X(3, (Q, R, I), QUAD), \
14329 X(3, (I, Q, Q), QUAD), \
14330 X(3, (I, Q, R), QUAD), \
14331 X(3, (R, Q, Q), QUAD), \
14332 X(3, (D, D, D), DOUBLE), \
14333 X(3, (Q, Q, Q), QUAD), \
14334 X(3, (D, D, I), DOUBLE), \
14335 X(3, (Q, Q, I), QUAD), \
14336 X(3, (D, D, S), DOUBLE), \
14337 X(3, (Q, Q, S), QUAD), \
14338 X(3, (Q, Q, R), QUAD), \
14339 X(3, (R, R, Q), QUAD), \
14340 X(2, (R, Q), QUAD), \
14341 X(2, (D, D), DOUBLE), \
14342 X(2, (Q, Q), QUAD), \
14343 X(2, (D, S), DOUBLE), \
14344 X(2, (Q, S), QUAD), \
14345 X(2, (D, R), DOUBLE), \
14346 X(2, (Q, R), QUAD), \
14347 X(2, (D, I), DOUBLE), \
14348 X(2, (Q, I), QUAD), \
14349 X(3, (D, L, D), DOUBLE), \
14350 X(2, (D, Q), MIXED), \
14351 X(2, (Q, D), MIXED), \
14352 X(3, (D, Q, I), MIXED), \
14353 X(3, (Q, D, I), MIXED), \
14354 X(3, (Q, D, D), MIXED), \
14355 X(3, (D, Q, Q), MIXED), \
14356 X(3, (Q, Q, D), MIXED), \
14357 X(3, (Q, D, S), MIXED), \
14358 X(3, (D, Q, S), MIXED), \
14359 X(4, (D, D, D, I), DOUBLE), \
14360 X(4, (Q, Q, Q, I), QUAD), \
14361 X(4, (D, D, S, I), DOUBLE), \
14362 X(4, (Q, Q, S, I), QUAD), \
14363 X(2, (F, F), SINGLE), \
14364 X(3, (F, F, F), SINGLE), \
14365 X(2, (F, I), SINGLE), \
14366 X(2, (F, D), MIXED), \
14367 X(2, (D, F), MIXED), \
14368 X(3, (F, F, I), MIXED), \
14369 X(4, (R, R, F, F), SINGLE), \
14370 X(4, (F, F, R, R), SINGLE), \
14371 X(3, (D, R, R), DOUBLE), \
14372 X(3, (R, R, D), DOUBLE), \
14373 X(2, (S, R), SINGLE), \
14374 X(2, (R, S), SINGLE), \
14375 X(2, (F, R), SINGLE), \
14376 X(2, (R, F), SINGLE), \
14377 /* Half float shape supported so far. */\
14378 X (2, (H, D), MIXED), \
14379 X (2, (D, H), MIXED), \
14380 X (2, (H, F), MIXED), \
14381 X (2, (F, H), MIXED), \
14382 X (2, (H, H), HALF), \
14383 X (2, (H, R), HALF), \
14384 X (2, (R, H), HALF), \
14385 X (2, (H, I), HALF), \
14386 X (3, (H, H, H), HALF), \
14387 X (3, (H, F, I), MIXED), \
14388 X (3, (F, H, I), MIXED), \
14389 X (3, (D, H, H), MIXED), \
14390 X (3, (D, H, S), MIXED)
14391
14392 #define S2(A,B) NS_##A##B
14393 #define S3(A,B,C) NS_##A##B##C
14394 #define S4(A,B,C,D) NS_##A##B##C##D
14395
14396 #define X(N, L, C) S##N L
14397
14398 enum neon_shape
14399 {
14400 NEON_SHAPE_DEF,
14401 NS_NULL
14402 };
14403
14404 #undef X
14405 #undef S2
14406 #undef S3
14407 #undef S4
14408
14409 enum neon_shape_class
14410 {
14411 SC_HALF,
14412 SC_SINGLE,
14413 SC_DOUBLE,
14414 SC_QUAD,
14415 SC_MIXED
14416 };
14417
14418 #define X(N, L, C) SC_##C
14419
14420 static enum neon_shape_class neon_shape_class[] =
14421 {
14422 NEON_SHAPE_DEF
14423 };
14424
14425 #undef X
14426
14427 enum neon_shape_el
14428 {
14429 SE_H,
14430 SE_F,
14431 SE_D,
14432 SE_Q,
14433 SE_I,
14434 SE_S,
14435 SE_R,
14436 SE_L
14437 };
14438
14439 /* Register widths of above. */
14440 static unsigned neon_shape_el_size[] =
14441 {
14442 16,
14443 32,
14444 64,
14445 128,
14446 0,
14447 32,
14448 32,
14449 0
14450 };
14451
14452 struct neon_shape_info
14453 {
14454 unsigned els;
14455 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14456 };
14457
14458 #define S2(A,B) { SE_##A, SE_##B }
14459 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14460 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14461
14462 #define X(N, L, C) { N, S##N L }
14463
14464 static struct neon_shape_info neon_shape_tab[] =
14465 {
14466 NEON_SHAPE_DEF
14467 };
14468
14469 #undef X
14470 #undef S2
14471 #undef S3
14472 #undef S4
14473
14474 /* Bit masks used in type checking given instructions.
14475 'N_EQK' means the type must be the same as (or based on in some way) the key
14476 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14477 set, various other bits can be set as well in order to modify the meaning of
14478 the type constraint. */
14479
14480 enum neon_type_mask
14481 {
14482 N_S8 = 0x0000001,
14483 N_S16 = 0x0000002,
14484 N_S32 = 0x0000004,
14485 N_S64 = 0x0000008,
14486 N_U8 = 0x0000010,
14487 N_U16 = 0x0000020,
14488 N_U32 = 0x0000040,
14489 N_U64 = 0x0000080,
14490 N_I8 = 0x0000100,
14491 N_I16 = 0x0000200,
14492 N_I32 = 0x0000400,
14493 N_I64 = 0x0000800,
14494 N_8 = 0x0001000,
14495 N_16 = 0x0002000,
14496 N_32 = 0x0004000,
14497 N_64 = 0x0008000,
14498 N_P8 = 0x0010000,
14499 N_P16 = 0x0020000,
14500 N_F16 = 0x0040000,
14501 N_F32 = 0x0080000,
14502 N_F64 = 0x0100000,
14503 N_P64 = 0x0200000,
14504 N_KEY = 0x1000000, /* Key element (main type specifier). */
14505 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
14506 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
14507 N_UNT = 0x8000000, /* Must be explicitly untyped. */
14508 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14509 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14510 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14511 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14512 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14513 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14514 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
14515 N_UTYP = 0,
14516 N_MAX_NONSPECIAL = N_P64
14517 };
14518
14519 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14520
14521 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14522 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14523 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
14524 #define N_S_32 (N_S8 | N_S16 | N_S32)
14525 #define N_F_16_32 (N_F16 | N_F32)
14526 #define N_SUF_32 (N_SU_32 | N_F_16_32)
14527 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
14528 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
14529 #define N_F_ALL (N_F16 | N_F32 | N_F64)
14530 #define N_I_MVE (N_I8 | N_I16 | N_I32)
14531 #define N_F_MVE (N_F16 | N_F32)
14532 #define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14533
14534 /* Pass this as the first type argument to neon_check_type to ignore types
14535 altogether. */
14536 #define N_IGNORE_TYPE (N_KEY | N_EQK)
14537
14538 /* Select a "shape" for the current instruction (describing register types or
14539 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14540 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14541 function of operand parsing, so this function doesn't need to be called.
14542 Shapes should be listed in order of decreasing length. */
14543
14544 static enum neon_shape
14545 neon_select_shape (enum neon_shape shape, ...)
14546 {
14547 va_list ap;
14548 enum neon_shape first_shape = shape;
14549
14550 /* Fix missing optional operands. FIXME: we don't know at this point how
14551 many arguments we should have, so this makes the assumption that we have
14552 > 1. This is true of all current Neon opcodes, I think, but may not be
14553 true in the future. */
14554 if (!inst.operands[1].present)
14555 inst.operands[1] = inst.operands[0];
14556
14557 va_start (ap, shape);
14558
14559 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
14560 {
14561 unsigned j;
14562 int matches = 1;
14563
14564 for (j = 0; j < neon_shape_tab[shape].els; j++)
14565 {
14566 if (!inst.operands[j].present)
14567 {
14568 matches = 0;
14569 break;
14570 }
14571
14572 switch (neon_shape_tab[shape].el[j])
14573 {
14574 /* If a .f16, .16, .u16, .s16 type specifier is given over
14575 a VFP single precision register operand, it's essentially
14576 means only half of the register is used.
14577
14578 If the type specifier is given after the mnemonics, the
14579 information is stored in inst.vectype. If the type specifier
14580 is given after register operand, the information is stored
14581 in inst.operands[].vectype.
14582
14583 When there is only one type specifier, and all the register
14584 operands are the same type of hardware register, the type
14585 specifier applies to all register operands.
14586
14587 If no type specifier is given, the shape is inferred from
14588 operand information.
14589
14590 for example:
14591 vadd.f16 s0, s1, s2: NS_HHH
14592 vabs.f16 s0, s1: NS_HH
14593 vmov.f16 s0, r1: NS_HR
14594 vmov.f16 r0, s1: NS_RH
14595 vcvt.f16 r0, s1: NS_RH
14596 vcvt.f16.s32 s2, s2, #29: NS_HFI
14597 vcvt.f16.s32 s2, s2: NS_HF
14598 */
14599 case SE_H:
14600 if (!(inst.operands[j].isreg
14601 && inst.operands[j].isvec
14602 && inst.operands[j].issingle
14603 && !inst.operands[j].isquad
14604 && ((inst.vectype.elems == 1
14605 && inst.vectype.el[0].size == 16)
14606 || (inst.vectype.elems > 1
14607 && inst.vectype.el[j].size == 16)
14608 || (inst.vectype.elems == 0
14609 && inst.operands[j].vectype.type != NT_invtype
14610 && inst.operands[j].vectype.size == 16))))
14611 matches = 0;
14612 break;
14613
14614 case SE_F:
14615 if (!(inst.operands[j].isreg
14616 && inst.operands[j].isvec
14617 && inst.operands[j].issingle
14618 && !inst.operands[j].isquad
14619 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
14620 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
14621 || (inst.vectype.elems == 0
14622 && (inst.operands[j].vectype.size == 32
14623 || inst.operands[j].vectype.type == NT_invtype)))))
14624 matches = 0;
14625 break;
14626
14627 case SE_D:
14628 if (!(inst.operands[j].isreg
14629 && inst.operands[j].isvec
14630 && !inst.operands[j].isquad
14631 && !inst.operands[j].issingle))
14632 matches = 0;
14633 break;
14634
14635 case SE_R:
14636 if (!(inst.operands[j].isreg
14637 && !inst.operands[j].isvec))
14638 matches = 0;
14639 break;
14640
14641 case SE_Q:
14642 if (!(inst.operands[j].isreg
14643 && inst.operands[j].isvec
14644 && inst.operands[j].isquad
14645 && !inst.operands[j].issingle))
14646 matches = 0;
14647 break;
14648
14649 case SE_I:
14650 if (!(!inst.operands[j].isreg
14651 && !inst.operands[j].isscalar))
14652 matches = 0;
14653 break;
14654
14655 case SE_S:
14656 if (!(!inst.operands[j].isreg
14657 && inst.operands[j].isscalar))
14658 matches = 0;
14659 break;
14660
14661 case SE_L:
14662 break;
14663 }
14664 if (!matches)
14665 break;
14666 }
14667 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
14668 /* We've matched all the entries in the shape table, and we don't
14669 have any left over operands which have not been matched. */
14670 break;
14671 }
14672
14673 va_end (ap);
14674
14675 if (shape == NS_NULL && first_shape != NS_NULL)
14676 first_error (_("invalid instruction shape"));
14677
14678 return shape;
14679 }
14680
14681 /* True if SHAPE is predominantly a quadword operation (most of the time, this
14682 means the Q bit should be set). */
14683
14684 static int
14685 neon_quad (enum neon_shape shape)
14686 {
14687 return neon_shape_class[shape] == SC_QUAD;
14688 }
14689
14690 static void
14691 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
14692 unsigned *g_size)
14693 {
14694 /* Allow modification to be made to types which are constrained to be
14695 based on the key element, based on bits set alongside N_EQK. */
14696 if ((typebits & N_EQK) != 0)
14697 {
14698 if ((typebits & N_HLF) != 0)
14699 *g_size /= 2;
14700 else if ((typebits & N_DBL) != 0)
14701 *g_size *= 2;
14702 if ((typebits & N_SGN) != 0)
14703 *g_type = NT_signed;
14704 else if ((typebits & N_UNS) != 0)
14705 *g_type = NT_unsigned;
14706 else if ((typebits & N_INT) != 0)
14707 *g_type = NT_integer;
14708 else if ((typebits & N_FLT) != 0)
14709 *g_type = NT_float;
14710 else if ((typebits & N_SIZ) != 0)
14711 *g_type = NT_untyped;
14712 }
14713 }
14714
14715 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14716 operand type, i.e. the single type specified in a Neon instruction when it
14717 is the only one given. */
14718
14719 static struct neon_type_el
14720 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
14721 {
14722 struct neon_type_el dest = *key;
14723
14724 gas_assert ((thisarg & N_EQK) != 0);
14725
14726 neon_modify_type_size (thisarg, &dest.type, &dest.size);
14727
14728 return dest;
14729 }
14730
14731 /* Convert Neon type and size into compact bitmask representation. */
14732
14733 static enum neon_type_mask
14734 type_chk_of_el_type (enum neon_el_type type, unsigned size)
14735 {
14736 switch (type)
14737 {
14738 case NT_untyped:
14739 switch (size)
14740 {
14741 case 8: return N_8;
14742 case 16: return N_16;
14743 case 32: return N_32;
14744 case 64: return N_64;
14745 default: ;
14746 }
14747 break;
14748
14749 case NT_integer:
14750 switch (size)
14751 {
14752 case 8: return N_I8;
14753 case 16: return N_I16;
14754 case 32: return N_I32;
14755 case 64: return N_I64;
14756 default: ;
14757 }
14758 break;
14759
14760 case NT_float:
14761 switch (size)
14762 {
14763 case 16: return N_F16;
14764 case 32: return N_F32;
14765 case 64: return N_F64;
14766 default: ;
14767 }
14768 break;
14769
14770 case NT_poly:
14771 switch (size)
14772 {
14773 case 8: return N_P8;
14774 case 16: return N_P16;
14775 case 64: return N_P64;
14776 default: ;
14777 }
14778 break;
14779
14780 case NT_signed:
14781 switch (size)
14782 {
14783 case 8: return N_S8;
14784 case 16: return N_S16;
14785 case 32: return N_S32;
14786 case 64: return N_S64;
14787 default: ;
14788 }
14789 break;
14790
14791 case NT_unsigned:
14792 switch (size)
14793 {
14794 case 8: return N_U8;
14795 case 16: return N_U16;
14796 case 32: return N_U32;
14797 case 64: return N_U64;
14798 default: ;
14799 }
14800 break;
14801
14802 default: ;
14803 }
14804
14805 return N_UTYP;
14806 }
14807
14808 /* Convert compact Neon bitmask type representation to a type and size. Only
14809 handles the case where a single bit is set in the mask. */
14810
14811 static int
14812 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
14813 enum neon_type_mask mask)
14814 {
14815 if ((mask & N_EQK) != 0)
14816 return FAIL;
14817
14818 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14819 *size = 8;
14820 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
14821 *size = 16;
14822 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
14823 *size = 32;
14824 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
14825 *size = 64;
14826 else
14827 return FAIL;
14828
14829 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14830 *type = NT_signed;
14831 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
14832 *type = NT_unsigned;
14833 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
14834 *type = NT_integer;
14835 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
14836 *type = NT_untyped;
14837 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
14838 *type = NT_poly;
14839 else if ((mask & (N_F_ALL)) != 0)
14840 *type = NT_float;
14841 else
14842 return FAIL;
14843
14844 return SUCCESS;
14845 }
14846
14847 /* Modify a bitmask of allowed types. This is only needed for type
14848 relaxation. */
14849
14850 static unsigned
14851 modify_types_allowed (unsigned allowed, unsigned mods)
14852 {
14853 unsigned size;
14854 enum neon_el_type type;
14855 unsigned destmask;
14856 int i;
14857
14858 destmask = 0;
14859
14860 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14861 {
14862 if (el_type_of_type_chk (&type, &size,
14863 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14864 {
14865 neon_modify_type_size (mods, &type, &size);
14866 destmask |= type_chk_of_el_type (type, size);
14867 }
14868 }
14869
14870 return destmask;
14871 }
14872
14873 /* Check type and return type classification.
14874 The manual states (paraphrase): If one datatype is given, it indicates the
14875 type given in:
14876 - the second operand, if there is one
14877 - the operand, if there is no second operand
14878 - the result, if there are no operands.
14879 This isn't quite good enough though, so we use a concept of a "key" datatype
14880 which is set on a per-instruction basis, which is the one which matters when
14881 only one data type is written.
14882 Note: this function has side-effects (e.g. filling in missing operands). All
14883 Neon instructions should call it before performing bit encoding. */
14884
14885 static struct neon_type_el
14886 neon_check_type (unsigned els, enum neon_shape ns, ...)
14887 {
14888 va_list ap;
14889 unsigned i, pass, key_el = 0;
14890 unsigned types[NEON_MAX_TYPE_ELS];
14891 enum neon_el_type k_type = NT_invtype;
14892 unsigned k_size = -1u;
14893 struct neon_type_el badtype = {NT_invtype, -1};
14894 unsigned key_allowed = 0;
14895
14896 /* Optional registers in Neon instructions are always (not) in operand 1.
14897 Fill in the missing operand here, if it was omitted. */
14898 if (els > 1 && !inst.operands[1].present)
14899 inst.operands[1] = inst.operands[0];
14900
14901 /* Suck up all the varargs. */
14902 va_start (ap, ns);
14903 for (i = 0; i < els; i++)
14904 {
14905 unsigned thisarg = va_arg (ap, unsigned);
14906 if (thisarg == N_IGNORE_TYPE)
14907 {
14908 va_end (ap);
14909 return badtype;
14910 }
14911 types[i] = thisarg;
14912 if ((thisarg & N_KEY) != 0)
14913 key_el = i;
14914 }
14915 va_end (ap);
14916
14917 if (inst.vectype.elems > 0)
14918 for (i = 0; i < els; i++)
14919 if (inst.operands[i].vectype.type != NT_invtype)
14920 {
14921 first_error (_("types specified in both the mnemonic and operands"));
14922 return badtype;
14923 }
14924
14925 /* Duplicate inst.vectype elements here as necessary.
14926 FIXME: No idea if this is exactly the same as the ARM assembler,
14927 particularly when an insn takes one register and one non-register
14928 operand. */
14929 if (inst.vectype.elems == 1 && els > 1)
14930 {
14931 unsigned j;
14932 inst.vectype.elems = els;
14933 inst.vectype.el[key_el] = inst.vectype.el[0];
14934 for (j = 0; j < els; j++)
14935 if (j != key_el)
14936 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14937 types[j]);
14938 }
14939 else if (inst.vectype.elems == 0 && els > 0)
14940 {
14941 unsigned j;
14942 /* No types were given after the mnemonic, so look for types specified
14943 after each operand. We allow some flexibility here; as long as the
14944 "key" operand has a type, we can infer the others. */
14945 for (j = 0; j < els; j++)
14946 if (inst.operands[j].vectype.type != NT_invtype)
14947 inst.vectype.el[j] = inst.operands[j].vectype;
14948
14949 if (inst.operands[key_el].vectype.type != NT_invtype)
14950 {
14951 for (j = 0; j < els; j++)
14952 if (inst.operands[j].vectype.type == NT_invtype)
14953 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14954 types[j]);
14955 }
14956 else
14957 {
14958 first_error (_("operand types can't be inferred"));
14959 return badtype;
14960 }
14961 }
14962 else if (inst.vectype.elems != els)
14963 {
14964 first_error (_("type specifier has the wrong number of parts"));
14965 return badtype;
14966 }
14967
14968 for (pass = 0; pass < 2; pass++)
14969 {
14970 for (i = 0; i < els; i++)
14971 {
14972 unsigned thisarg = types[i];
14973 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
14974 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
14975 enum neon_el_type g_type = inst.vectype.el[i].type;
14976 unsigned g_size = inst.vectype.el[i].size;
14977
14978 /* Decay more-specific signed & unsigned types to sign-insensitive
14979 integer types if sign-specific variants are unavailable. */
14980 if ((g_type == NT_signed || g_type == NT_unsigned)
14981 && (types_allowed & N_SU_ALL) == 0)
14982 g_type = NT_integer;
14983
14984 /* If only untyped args are allowed, decay any more specific types to
14985 them. Some instructions only care about signs for some element
14986 sizes, so handle that properly. */
14987 if (((types_allowed & N_UNT) == 0)
14988 && ((g_size == 8 && (types_allowed & N_8) != 0)
14989 || (g_size == 16 && (types_allowed & N_16) != 0)
14990 || (g_size == 32 && (types_allowed & N_32) != 0)
14991 || (g_size == 64 && (types_allowed & N_64) != 0)))
14992 g_type = NT_untyped;
14993
14994 if (pass == 0)
14995 {
14996 if ((thisarg & N_KEY) != 0)
14997 {
14998 k_type = g_type;
14999 k_size = g_size;
15000 key_allowed = thisarg & ~N_KEY;
15001
15002 /* Check architecture constraint on FP16 extension. */
15003 if (k_size == 16
15004 && k_type == NT_float
15005 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15006 {
15007 inst.error = _(BAD_FP16);
15008 return badtype;
15009 }
15010 }
15011 }
15012 else
15013 {
15014 if ((thisarg & N_VFP) != 0)
15015 {
15016 enum neon_shape_el regshape;
15017 unsigned regwidth, match;
15018
15019 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15020 if (ns == NS_NULL)
15021 {
15022 first_error (_("invalid instruction shape"));
15023 return badtype;
15024 }
15025 regshape = neon_shape_tab[ns].el[i];
15026 regwidth = neon_shape_el_size[regshape];
15027
15028 /* In VFP mode, operands must match register widths. If we
15029 have a key operand, use its width, else use the width of
15030 the current operand. */
15031 if (k_size != -1u)
15032 match = k_size;
15033 else
15034 match = g_size;
15035
15036 /* FP16 will use a single precision register. */
15037 if (regwidth == 32 && match == 16)
15038 {
15039 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15040 match = regwidth;
15041 else
15042 {
15043 inst.error = _(BAD_FP16);
15044 return badtype;
15045 }
15046 }
15047
15048 if (regwidth != match)
15049 {
15050 first_error (_("operand size must match register width"));
15051 return badtype;
15052 }
15053 }
15054
15055 if ((thisarg & N_EQK) == 0)
15056 {
15057 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15058
15059 if ((given_type & types_allowed) == 0)
15060 {
15061 first_error (BAD_SIMD_TYPE);
15062 return badtype;
15063 }
15064 }
15065 else
15066 {
15067 enum neon_el_type mod_k_type = k_type;
15068 unsigned mod_k_size = k_size;
15069 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15070 if (g_type != mod_k_type || g_size != mod_k_size)
15071 {
15072 first_error (_("inconsistent types in Neon instruction"));
15073 return badtype;
15074 }
15075 }
15076 }
15077 }
15078 }
15079
15080 return inst.vectype.el[key_el];
15081 }
15082
15083 /* Neon-style VFP instruction forwarding. */
15084
15085 /* Thumb VFP instructions have 0xE in the condition field. */
15086
15087 static void
15088 do_vfp_cond_or_thumb (void)
15089 {
15090 inst.is_neon = 1;
15091
15092 if (thumb_mode)
15093 inst.instruction |= 0xe0000000;
15094 else
15095 inst.instruction |= inst.cond << 28;
15096 }
15097
15098 /* Look up and encode a simple mnemonic, for use as a helper function for the
15099 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15100 etc. It is assumed that operand parsing has already been done, and that the
15101 operands are in the form expected by the given opcode (this isn't necessarily
15102 the same as the form in which they were parsed, hence some massaging must
15103 take place before this function is called).
15104 Checks current arch version against that in the looked-up opcode. */
15105
15106 static void
15107 do_vfp_nsyn_opcode (const char *opname)
15108 {
15109 const struct asm_opcode *opcode;
15110
15111 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
15112
15113 if (!opcode)
15114 abort ();
15115
15116 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
15117 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15118 _(BAD_FPU));
15119
15120 inst.is_neon = 1;
15121
15122 if (thumb_mode)
15123 {
15124 inst.instruction = opcode->tvalue;
15125 opcode->tencode ();
15126 }
15127 else
15128 {
15129 inst.instruction = (inst.cond << 28) | opcode->avalue;
15130 opcode->aencode ();
15131 }
15132 }
15133
15134 static void
15135 do_vfp_nsyn_add_sub (enum neon_shape rs)
15136 {
15137 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15138
15139 if (rs == NS_FFF || rs == NS_HHH)
15140 {
15141 if (is_add)
15142 do_vfp_nsyn_opcode ("fadds");
15143 else
15144 do_vfp_nsyn_opcode ("fsubs");
15145
15146 /* ARMv8.2 fp16 instruction. */
15147 if (rs == NS_HHH)
15148 do_scalar_fp16_v82_encode ();
15149 }
15150 else
15151 {
15152 if (is_add)
15153 do_vfp_nsyn_opcode ("faddd");
15154 else
15155 do_vfp_nsyn_opcode ("fsubd");
15156 }
15157 }
15158
15159 /* Check operand types to see if this is a VFP instruction, and if so call
15160 PFN (). */
15161
15162 static int
15163 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15164 {
15165 enum neon_shape rs;
15166 struct neon_type_el et;
15167
15168 switch (args)
15169 {
15170 case 2:
15171 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15172 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15173 break;
15174
15175 case 3:
15176 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15177 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15178 N_F_ALL | N_KEY | N_VFP);
15179 break;
15180
15181 default:
15182 abort ();
15183 }
15184
15185 if (et.type != NT_invtype)
15186 {
15187 pfn (rs);
15188 return SUCCESS;
15189 }
15190
15191 inst.error = NULL;
15192 return FAIL;
15193 }
15194
15195 static void
15196 do_vfp_nsyn_mla_mls (enum neon_shape rs)
15197 {
15198 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
15199
15200 if (rs == NS_FFF || rs == NS_HHH)
15201 {
15202 if (is_mla)
15203 do_vfp_nsyn_opcode ("fmacs");
15204 else
15205 do_vfp_nsyn_opcode ("fnmacs");
15206
15207 /* ARMv8.2 fp16 instruction. */
15208 if (rs == NS_HHH)
15209 do_scalar_fp16_v82_encode ();
15210 }
15211 else
15212 {
15213 if (is_mla)
15214 do_vfp_nsyn_opcode ("fmacd");
15215 else
15216 do_vfp_nsyn_opcode ("fnmacd");
15217 }
15218 }
15219
15220 static void
15221 do_vfp_nsyn_fma_fms (enum neon_shape rs)
15222 {
15223 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15224
15225 if (rs == NS_FFF || rs == NS_HHH)
15226 {
15227 if (is_fma)
15228 do_vfp_nsyn_opcode ("ffmas");
15229 else
15230 do_vfp_nsyn_opcode ("ffnmas");
15231
15232 /* ARMv8.2 fp16 instruction. */
15233 if (rs == NS_HHH)
15234 do_scalar_fp16_v82_encode ();
15235 }
15236 else
15237 {
15238 if (is_fma)
15239 do_vfp_nsyn_opcode ("ffmad");
15240 else
15241 do_vfp_nsyn_opcode ("ffnmad");
15242 }
15243 }
15244
15245 static void
15246 do_vfp_nsyn_mul (enum neon_shape rs)
15247 {
15248 if (rs == NS_FFF || rs == NS_HHH)
15249 {
15250 do_vfp_nsyn_opcode ("fmuls");
15251
15252 /* ARMv8.2 fp16 instruction. */
15253 if (rs == NS_HHH)
15254 do_scalar_fp16_v82_encode ();
15255 }
15256 else
15257 do_vfp_nsyn_opcode ("fmuld");
15258 }
15259
15260 static void
15261 do_vfp_nsyn_abs_neg (enum neon_shape rs)
15262 {
15263 int is_neg = (inst.instruction & 0x80) != 0;
15264 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
15265
15266 if (rs == NS_FF || rs == NS_HH)
15267 {
15268 if (is_neg)
15269 do_vfp_nsyn_opcode ("fnegs");
15270 else
15271 do_vfp_nsyn_opcode ("fabss");
15272
15273 /* ARMv8.2 fp16 instruction. */
15274 if (rs == NS_HH)
15275 do_scalar_fp16_v82_encode ();
15276 }
15277 else
15278 {
15279 if (is_neg)
15280 do_vfp_nsyn_opcode ("fnegd");
15281 else
15282 do_vfp_nsyn_opcode ("fabsd");
15283 }
15284 }
15285
15286 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15287 insns belong to Neon, and are handled elsewhere. */
15288
15289 static void
15290 do_vfp_nsyn_ldm_stm (int is_dbmode)
15291 {
15292 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15293 if (is_ldm)
15294 {
15295 if (is_dbmode)
15296 do_vfp_nsyn_opcode ("fldmdbs");
15297 else
15298 do_vfp_nsyn_opcode ("fldmias");
15299 }
15300 else
15301 {
15302 if (is_dbmode)
15303 do_vfp_nsyn_opcode ("fstmdbs");
15304 else
15305 do_vfp_nsyn_opcode ("fstmias");
15306 }
15307 }
15308
15309 static void
15310 do_vfp_nsyn_sqrt (void)
15311 {
15312 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15313 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15314
15315 if (rs == NS_FF || rs == NS_HH)
15316 {
15317 do_vfp_nsyn_opcode ("fsqrts");
15318
15319 /* ARMv8.2 fp16 instruction. */
15320 if (rs == NS_HH)
15321 do_scalar_fp16_v82_encode ();
15322 }
15323 else
15324 do_vfp_nsyn_opcode ("fsqrtd");
15325 }
15326
15327 static void
15328 do_vfp_nsyn_div (void)
15329 {
15330 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15331 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15332 N_F_ALL | N_KEY | N_VFP);
15333
15334 if (rs == NS_FFF || rs == NS_HHH)
15335 {
15336 do_vfp_nsyn_opcode ("fdivs");
15337
15338 /* ARMv8.2 fp16 instruction. */
15339 if (rs == NS_HHH)
15340 do_scalar_fp16_v82_encode ();
15341 }
15342 else
15343 do_vfp_nsyn_opcode ("fdivd");
15344 }
15345
15346 static void
15347 do_vfp_nsyn_nmul (void)
15348 {
15349 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15350 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15351 N_F_ALL | N_KEY | N_VFP);
15352
15353 if (rs == NS_FFF || rs == NS_HHH)
15354 {
15355 NEON_ENCODE (SINGLE, inst);
15356 do_vfp_sp_dyadic ();
15357
15358 /* ARMv8.2 fp16 instruction. */
15359 if (rs == NS_HHH)
15360 do_scalar_fp16_v82_encode ();
15361 }
15362 else
15363 {
15364 NEON_ENCODE (DOUBLE, inst);
15365 do_vfp_dp_rd_rn_rm ();
15366 }
15367 do_vfp_cond_or_thumb ();
15368
15369 }
15370
15371 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15372 (0, 1, 2, 3). */
15373
15374 static unsigned
15375 neon_logbits (unsigned x)
15376 {
15377 return ffs (x) - 4;
15378 }
15379
15380 #define LOW4(R) ((R) & 0xf)
15381 #define HI1(R) (((R) >> 4) & 1)
15382
15383 static unsigned
15384 mve_get_vcmp_vpt_cond (struct neon_type_el et)
15385 {
15386 switch (et.type)
15387 {
15388 default:
15389 first_error (BAD_EL_TYPE);
15390 return 0;
15391 case NT_float:
15392 switch (inst.operands[0].imm)
15393 {
15394 default:
15395 first_error (_("invalid condition"));
15396 return 0;
15397 case 0x0:
15398 /* eq. */
15399 return 0;
15400 case 0x1:
15401 /* ne. */
15402 return 1;
15403 case 0xa:
15404 /* ge/ */
15405 return 4;
15406 case 0xb:
15407 /* lt. */
15408 return 5;
15409 case 0xc:
15410 /* gt. */
15411 return 6;
15412 case 0xd:
15413 /* le. */
15414 return 7;
15415 }
15416 case NT_integer:
15417 /* only accept eq and ne. */
15418 if (inst.operands[0].imm > 1)
15419 {
15420 first_error (_("invalid condition"));
15421 return 0;
15422 }
15423 return inst.operands[0].imm;
15424 case NT_unsigned:
15425 if (inst.operands[0].imm == 0x2)
15426 return 2;
15427 else if (inst.operands[0].imm == 0x8)
15428 return 3;
15429 else
15430 {
15431 first_error (_("invalid condition"));
15432 return 0;
15433 }
15434 case NT_signed:
15435 switch (inst.operands[0].imm)
15436 {
15437 default:
15438 first_error (_("invalid condition"));
15439 return 0;
15440 case 0xa:
15441 /* ge. */
15442 return 4;
15443 case 0xb:
15444 /* lt. */
15445 return 5;
15446 case 0xc:
15447 /* gt. */
15448 return 6;
15449 case 0xd:
15450 /* le. */
15451 return 7;
15452 }
15453 }
15454 /* Should be unreachable. */
15455 abort ();
15456 }
15457
15458 static void
15459 do_mve_vpt (void)
15460 {
15461 /* We are dealing with a vector predicated block. */
15462 if (inst.operands[0].present)
15463 {
15464 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15465 struct neon_type_el et
15466 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15467 N_EQK);
15468
15469 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15470
15471 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15472
15473 if (et.type == NT_invtype)
15474 return;
15475
15476 if (et.type == NT_float)
15477 {
15478 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15479 BAD_FPU);
15480 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15481 inst.instruction |= (et.size == 16) << 28;
15482 inst.instruction |= 0x3 << 20;
15483 }
15484 else
15485 {
15486 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15487 BAD_EL_TYPE);
15488 inst.instruction |= 1 << 28;
15489 inst.instruction |= neon_logbits (et.size) << 20;
15490 }
15491
15492 if (inst.operands[2].isquad)
15493 {
15494 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15495 inst.instruction |= LOW4 (inst.operands[2].reg);
15496 inst.instruction |= (fcond & 0x2) >> 1;
15497 }
15498 else
15499 {
15500 if (inst.operands[2].reg == REG_SP)
15501 as_tsktsk (MVE_BAD_SP);
15502 inst.instruction |= 1 << 6;
15503 inst.instruction |= (fcond & 0x2) << 4;
15504 inst.instruction |= inst.operands[2].reg;
15505 }
15506 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15507 inst.instruction |= (fcond & 0x4) << 10;
15508 inst.instruction |= (fcond & 0x1) << 7;
15509
15510 }
15511 set_pred_insn_type (VPT_INSN);
15512 now_pred.cc = 0;
15513 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15514 | ((inst.instruction & 0xe000) >> 13);
15515 now_pred.warn_deprecated = FALSE;
15516 now_pred.type = VECTOR_PRED;
15517 inst.is_neon = 1;
15518 }
15519
15520 static void
15521 do_mve_vcmp (void)
15522 {
15523 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15524 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15525 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
15526 if (!inst.operands[2].present)
15527 first_error (_("MVE vector or ARM register expected"));
15528 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15529
15530 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15531 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
15532 && inst.operands[1].isquad)
15533 {
15534 inst.instruction = N_MNEM_vcmp;
15535 inst.cond = 0x10;
15536 }
15537
15538 if (inst.cond > COND_ALWAYS)
15539 inst.pred_insn_type = INSIDE_VPT_INSN;
15540 else
15541 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15542
15543 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15544 struct neon_type_el et
15545 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15546 N_EQK);
15547
15548 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
15549 && !inst.operands[2].iszr, BAD_PC);
15550
15551 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15552
15553 inst.instruction = 0xee010f00;
15554 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15555 inst.instruction |= (fcond & 0x4) << 10;
15556 inst.instruction |= (fcond & 0x1) << 7;
15557 if (et.type == NT_float)
15558 {
15559 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15560 BAD_FPU);
15561 inst.instruction |= (et.size == 16) << 28;
15562 inst.instruction |= 0x3 << 20;
15563 }
15564 else
15565 {
15566 inst.instruction |= 1 << 28;
15567 inst.instruction |= neon_logbits (et.size) << 20;
15568 }
15569 if (inst.operands[2].isquad)
15570 {
15571 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15572 inst.instruction |= (fcond & 0x2) >> 1;
15573 inst.instruction |= LOW4 (inst.operands[2].reg);
15574 }
15575 else
15576 {
15577 if (inst.operands[2].reg == REG_SP)
15578 as_tsktsk (MVE_BAD_SP);
15579 inst.instruction |= 1 << 6;
15580 inst.instruction |= (fcond & 0x2) << 4;
15581 inst.instruction |= inst.operands[2].reg;
15582 }
15583
15584 inst.is_neon = 1;
15585 return;
15586 }
15587
15588 static void
15589 do_mve_vfmas (void)
15590 {
15591 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15592 struct neon_type_el et
15593 = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK);
15594
15595 if (inst.cond > COND_ALWAYS)
15596 inst.pred_insn_type = INSIDE_VPT_INSN;
15597 else
15598 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15599
15600 if (inst.operands[2].reg == REG_SP)
15601 as_tsktsk (MVE_BAD_SP);
15602 else if (inst.operands[2].reg == REG_PC)
15603 as_tsktsk (MVE_BAD_PC);
15604
15605 inst.instruction |= (et.size == 16) << 28;
15606 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15607 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15608 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15609 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15610 inst.instruction |= inst.operands[2].reg;
15611 inst.is_neon = 1;
15612 }
15613
15614 static void
15615 do_mve_viddup (void)
15616 {
15617 if (inst.cond > COND_ALWAYS)
15618 inst.pred_insn_type = INSIDE_VPT_INSN;
15619 else
15620 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15621
15622 unsigned imm = inst.relocs[0].exp.X_add_number;
15623 constraint (imm != 1 && imm != 2 && imm != 4 && imm != 8,
15624 _("immediate must be either 1, 2, 4 or 8"));
15625
15626 enum neon_shape rs;
15627 struct neon_type_el et;
15628 unsigned Rm;
15629 if (inst.instruction == M_MNEM_vddup || inst.instruction == M_MNEM_vidup)
15630 {
15631 rs = neon_select_shape (NS_QRI, NS_NULL);
15632 et = neon_check_type (2, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK);
15633 Rm = 7;
15634 }
15635 else
15636 {
15637 constraint ((inst.operands[2].reg % 2) != 1, BAD_EVEN);
15638 if (inst.operands[2].reg == REG_SP)
15639 as_tsktsk (MVE_BAD_SP);
15640 else if (inst.operands[2].reg == REG_PC)
15641 first_error (BAD_PC);
15642
15643 rs = neon_select_shape (NS_QRRI, NS_NULL);
15644 et = neon_check_type (3, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK, N_EQK);
15645 Rm = inst.operands[2].reg >> 1;
15646 }
15647 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15648 inst.instruction |= neon_logbits (et.size) << 20;
15649 inst.instruction |= inst.operands[1].reg << 16;
15650 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15651 inst.instruction |= (imm > 2) << 7;
15652 inst.instruction |= Rm << 1;
15653 inst.instruction |= (imm == 2 || imm == 8);
15654 inst.is_neon = 1;
15655 }
15656
15657 static void
15658 do_mve_vcmul (void)
15659 {
15660 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
15661 struct neon_type_el et
15662 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
15663
15664 if (inst.cond > COND_ALWAYS)
15665 inst.pred_insn_type = INSIDE_VPT_INSN;
15666 else
15667 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15668
15669 unsigned rot = inst.relocs[0].exp.X_add_number;
15670 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
15671 _("immediate out of range"));
15672
15673 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
15674 || inst.operands[0].reg == inst.operands[2].reg))
15675 as_tsktsk (BAD_MVE_SRCDEST);
15676
15677 inst.instruction |= (et.size == 32) << 28;
15678 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15679 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15680 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15681 inst.instruction |= (rot > 90) << 12;
15682 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15683 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15684 inst.instruction |= LOW4 (inst.operands[2].reg);
15685 inst.instruction |= (rot == 90 || rot == 270);
15686 inst.is_neon = 1;
15687 }
15688
15689 static void
15690 do_vfp_nsyn_cmp (void)
15691 {
15692 enum neon_shape rs;
15693 if (!inst.operands[0].isreg)
15694 {
15695 do_mve_vcmp ();
15696 return;
15697 }
15698 else
15699 {
15700 constraint (inst.operands[2].present, BAD_SYNTAX);
15701 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
15702 BAD_FPU);
15703 }
15704
15705 if (inst.operands[1].isreg)
15706 {
15707 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15708 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15709
15710 if (rs == NS_FF || rs == NS_HH)
15711 {
15712 NEON_ENCODE (SINGLE, inst);
15713 do_vfp_sp_monadic ();
15714 }
15715 else
15716 {
15717 NEON_ENCODE (DOUBLE, inst);
15718 do_vfp_dp_rd_rm ();
15719 }
15720 }
15721 else
15722 {
15723 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
15724 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
15725
15726 switch (inst.instruction & 0x0fffffff)
15727 {
15728 case N_MNEM_vcmp:
15729 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
15730 break;
15731 case N_MNEM_vcmpe:
15732 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
15733 break;
15734 default:
15735 abort ();
15736 }
15737
15738 if (rs == NS_FI || rs == NS_HI)
15739 {
15740 NEON_ENCODE (SINGLE, inst);
15741 do_vfp_sp_compare_z ();
15742 }
15743 else
15744 {
15745 NEON_ENCODE (DOUBLE, inst);
15746 do_vfp_dp_rd ();
15747 }
15748 }
15749 do_vfp_cond_or_thumb ();
15750
15751 /* ARMv8.2 fp16 instruction. */
15752 if (rs == NS_HI || rs == NS_HH)
15753 do_scalar_fp16_v82_encode ();
15754 }
15755
15756 static void
15757 nsyn_insert_sp (void)
15758 {
15759 inst.operands[1] = inst.operands[0];
15760 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
15761 inst.operands[0].reg = REG_SP;
15762 inst.operands[0].isreg = 1;
15763 inst.operands[0].writeback = 1;
15764 inst.operands[0].present = 1;
15765 }
15766
15767 static void
15768 do_vfp_nsyn_push (void)
15769 {
15770 nsyn_insert_sp ();
15771
15772 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15773 _("register list must contain at least 1 and at most 16 "
15774 "registers"));
15775
15776 if (inst.operands[1].issingle)
15777 do_vfp_nsyn_opcode ("fstmdbs");
15778 else
15779 do_vfp_nsyn_opcode ("fstmdbd");
15780 }
15781
15782 static void
15783 do_vfp_nsyn_pop (void)
15784 {
15785 nsyn_insert_sp ();
15786
15787 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15788 _("register list must contain at least 1 and at most 16 "
15789 "registers"));
15790
15791 if (inst.operands[1].issingle)
15792 do_vfp_nsyn_opcode ("fldmias");
15793 else
15794 do_vfp_nsyn_opcode ("fldmiad");
15795 }
15796
15797 /* Fix up Neon data-processing instructions, ORing in the correct bits for
15798 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
15799
15800 static void
15801 neon_dp_fixup (struct arm_it* insn)
15802 {
15803 unsigned int i = insn->instruction;
15804 insn->is_neon = 1;
15805
15806 if (thumb_mode)
15807 {
15808 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
15809 if (i & (1 << 24))
15810 i |= 1 << 28;
15811
15812 i &= ~(1 << 24);
15813
15814 i |= 0xef000000;
15815 }
15816 else
15817 i |= 0xf2000000;
15818
15819 insn->instruction = i;
15820 }
15821
15822 static void
15823 mve_encode_qqr (int size, int fp)
15824 {
15825 if (inst.operands[2].reg == REG_SP)
15826 as_tsktsk (MVE_BAD_SP);
15827 else if (inst.operands[2].reg == REG_PC)
15828 as_tsktsk (MVE_BAD_PC);
15829
15830 if (fp)
15831 {
15832 /* vadd. */
15833 if (((unsigned)inst.instruction) == 0xd00)
15834 inst.instruction = 0xee300f40;
15835 /* vsub. */
15836 else if (((unsigned)inst.instruction) == 0x200d00)
15837 inst.instruction = 0xee301f40;
15838
15839 /* Setting size which is 1 for F16 and 0 for F32. */
15840 inst.instruction |= (size == 16) << 28;
15841 }
15842 else
15843 {
15844 /* vadd. */
15845 if (((unsigned)inst.instruction) == 0x800)
15846 inst.instruction = 0xee010f40;
15847 /* vsub. */
15848 else if (((unsigned)inst.instruction) == 0x1000800)
15849 inst.instruction = 0xee011f40;
15850 /* Setting bits for size. */
15851 inst.instruction |= neon_logbits (size) << 20;
15852 }
15853 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15854 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15855 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15856 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15857 inst.instruction |= inst.operands[2].reg;
15858 inst.is_neon = 1;
15859 }
15860
15861 static void
15862 mve_encode_rqq (unsigned bit28, unsigned size)
15863 {
15864 inst.instruction |= bit28 << 28;
15865 inst.instruction |= neon_logbits (size) << 20;
15866 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15867 inst.instruction |= inst.operands[0].reg << 12;
15868 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15869 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15870 inst.instruction |= LOW4 (inst.operands[2].reg);
15871 inst.is_neon = 1;
15872 }
15873
15874 static void
15875 mve_encode_qqq (int ubit, int size)
15876 {
15877
15878 inst.instruction |= (ubit != 0) << 28;
15879 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15880 inst.instruction |= neon_logbits (size) << 20;
15881 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15882 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15883 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15884 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15885 inst.instruction |= LOW4 (inst.operands[2].reg);
15886
15887 inst.is_neon = 1;
15888 }
15889
15890 static void
15891 mve_encode_rq (unsigned bit28, unsigned size)
15892 {
15893 inst.instruction |= bit28 << 28;
15894 inst.instruction |= neon_logbits (size) << 18;
15895 inst.instruction |= inst.operands[0].reg << 12;
15896 inst.instruction |= LOW4 (inst.operands[1].reg);
15897 inst.is_neon = 1;
15898 }
15899
15900 /* Encode insns with bit pattern:
15901
15902 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
15903 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
15904
15905 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
15906 different meaning for some instruction. */
15907
15908 static void
15909 neon_three_same (int isquad, int ubit, int size)
15910 {
15911 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15912 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15913 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15914 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15915 inst.instruction |= LOW4 (inst.operands[2].reg);
15916 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15917 inst.instruction |= (isquad != 0) << 6;
15918 inst.instruction |= (ubit != 0) << 24;
15919 if (size != -1)
15920 inst.instruction |= neon_logbits (size) << 20;
15921
15922 neon_dp_fixup (&inst);
15923 }
15924
15925 /* Encode instructions of the form:
15926
15927 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
15928 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
15929
15930 Don't write size if SIZE == -1. */
15931
15932 static void
15933 neon_two_same (int qbit, int ubit, int size)
15934 {
15935 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15936 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15937 inst.instruction |= LOW4 (inst.operands[1].reg);
15938 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15939 inst.instruction |= (qbit != 0) << 6;
15940 inst.instruction |= (ubit != 0) << 24;
15941
15942 if (size != -1)
15943 inst.instruction |= neon_logbits (size) << 18;
15944
15945 neon_dp_fixup (&inst);
15946 }
15947
15948 /* Neon instruction encoders, in approximate order of appearance. */
15949
15950 static void
15951 do_neon_dyadic_i_su (void)
15952 {
15953 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15954 struct neon_type_el et = neon_check_type (3, rs,
15955 N_EQK, N_EQK, N_SU_32 | N_KEY);
15956 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
15957 }
15958
15959 static void
15960 do_neon_dyadic_i64_su (void)
15961 {
15962 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15963 struct neon_type_el et = neon_check_type (3, rs,
15964 N_EQK, N_EQK, N_SU_ALL | N_KEY);
15965 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
15966 }
15967
15968 static void
15969 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
15970 unsigned immbits)
15971 {
15972 unsigned size = et.size >> 3;
15973 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15974 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15975 inst.instruction |= LOW4 (inst.operands[1].reg);
15976 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15977 inst.instruction |= (isquad != 0) << 6;
15978 inst.instruction |= immbits << 16;
15979 inst.instruction |= (size >> 3) << 7;
15980 inst.instruction |= (size & 0x7) << 19;
15981 if (write_ubit)
15982 inst.instruction |= (uval != 0) << 24;
15983
15984 neon_dp_fixup (&inst);
15985 }
15986
15987 static void
15988 do_neon_shl_imm (void)
15989 {
15990 if (!inst.operands[2].isreg)
15991 {
15992 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15993 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
15994 int imm = inst.operands[2].imm;
15995
15996 constraint (imm < 0 || (unsigned)imm >= et.size,
15997 _("immediate out of range for shift"));
15998 NEON_ENCODE (IMMED, inst);
15999 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
16000 }
16001 else
16002 {
16003 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16004 struct neon_type_el et = neon_check_type (3, rs,
16005 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16006 unsigned int tmp;
16007
16008 /* VSHL/VQSHL 3-register variants have syntax such as:
16009 vshl.xx Dd, Dm, Dn
16010 whereas other 3-register operations encoded by neon_three_same have
16011 syntax like:
16012 vadd.xx Dd, Dn, Dm
16013 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
16014 here. */
16015 tmp = inst.operands[2].reg;
16016 inst.operands[2].reg = inst.operands[1].reg;
16017 inst.operands[1].reg = tmp;
16018 NEON_ENCODE (INTEGER, inst);
16019 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16020 }
16021 }
16022
16023 static void
16024 do_neon_qshl_imm (void)
16025 {
16026 if (!inst.operands[2].isreg)
16027 {
16028 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16029 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16030 int imm = inst.operands[2].imm;
16031
16032 constraint (imm < 0 || (unsigned)imm >= et.size,
16033 _("immediate out of range for shift"));
16034 NEON_ENCODE (IMMED, inst);
16035 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
16036 }
16037 else
16038 {
16039 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16040 struct neon_type_el et = neon_check_type (3, rs,
16041 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16042 unsigned int tmp;
16043
16044 /* See note in do_neon_shl_imm. */
16045 tmp = inst.operands[2].reg;
16046 inst.operands[2].reg = inst.operands[1].reg;
16047 inst.operands[1].reg = tmp;
16048 NEON_ENCODE (INTEGER, inst);
16049 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16050 }
16051 }
16052
16053 static void
16054 do_neon_rshl (void)
16055 {
16056 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16057 struct neon_type_el et = neon_check_type (3, rs,
16058 N_EQK, N_EQK, N_SU_ALL | N_KEY);
16059 unsigned int tmp;
16060
16061 tmp = inst.operands[2].reg;
16062 inst.operands[2].reg = inst.operands[1].reg;
16063 inst.operands[1].reg = tmp;
16064 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16065 }
16066
16067 static int
16068 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
16069 {
16070 /* Handle .I8 pseudo-instructions. */
16071 if (size == 8)
16072 {
16073 /* Unfortunately, this will make everything apart from zero out-of-range.
16074 FIXME is this the intended semantics? There doesn't seem much point in
16075 accepting .I8 if so. */
16076 immediate |= immediate << 8;
16077 size = 16;
16078 }
16079
16080 if (size >= 32)
16081 {
16082 if (immediate == (immediate & 0x000000ff))
16083 {
16084 *immbits = immediate;
16085 return 0x1;
16086 }
16087 else if (immediate == (immediate & 0x0000ff00))
16088 {
16089 *immbits = immediate >> 8;
16090 return 0x3;
16091 }
16092 else if (immediate == (immediate & 0x00ff0000))
16093 {
16094 *immbits = immediate >> 16;
16095 return 0x5;
16096 }
16097 else if (immediate == (immediate & 0xff000000))
16098 {
16099 *immbits = immediate >> 24;
16100 return 0x7;
16101 }
16102 if ((immediate & 0xffff) != (immediate >> 16))
16103 goto bad_immediate;
16104 immediate &= 0xffff;
16105 }
16106
16107 if (immediate == (immediate & 0x000000ff))
16108 {
16109 *immbits = immediate;
16110 return 0x9;
16111 }
16112 else if (immediate == (immediate & 0x0000ff00))
16113 {
16114 *immbits = immediate >> 8;
16115 return 0xb;
16116 }
16117
16118 bad_immediate:
16119 first_error (_("immediate value out of range"));
16120 return FAIL;
16121 }
16122
16123 enum vfp_or_neon_is_neon_bits
16124 {
16125 NEON_CHECK_CC = 1,
16126 NEON_CHECK_ARCH = 2,
16127 NEON_CHECK_ARCH8 = 4
16128 };
16129
16130 /* Call this function if an instruction which may have belonged to the VFP or
16131 Neon instruction sets, but turned out to be a Neon instruction (due to the
16132 operand types involved, etc.). We have to check and/or fix-up a couple of
16133 things:
16134
16135 - Make sure the user hasn't attempted to make a Neon instruction
16136 conditional.
16137 - Alter the value in the condition code field if necessary.
16138 - Make sure that the arch supports Neon instructions.
16139
16140 Which of these operations take place depends on bits from enum
16141 vfp_or_neon_is_neon_bits.
16142
16143 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16144 current instruction's condition is COND_ALWAYS, the condition field is
16145 changed to inst.uncond_value. This is necessary because instructions shared
16146 between VFP and Neon may be conditional for the VFP variants only, and the
16147 unconditional Neon version must have, e.g., 0xF in the condition field. */
16148
16149 static int
16150 vfp_or_neon_is_neon (unsigned check)
16151 {
16152 /* Conditions are always legal in Thumb mode (IT blocks). */
16153 if (!thumb_mode && (check & NEON_CHECK_CC))
16154 {
16155 if (inst.cond != COND_ALWAYS)
16156 {
16157 first_error (_(BAD_COND));
16158 return FAIL;
16159 }
16160 if (inst.uncond_value != -1)
16161 inst.instruction |= inst.uncond_value << 28;
16162 }
16163
16164
16165 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16166 || ((check & NEON_CHECK_ARCH8)
16167 && !mark_feature_used (&fpu_neon_ext_armv8)))
16168 {
16169 first_error (_(BAD_FPU));
16170 return FAIL;
16171 }
16172
16173 return SUCCESS;
16174 }
16175
16176 static int
16177 check_simd_pred_availability (int fp, unsigned check)
16178 {
16179 if (inst.cond > COND_ALWAYS)
16180 {
16181 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16182 {
16183 inst.error = BAD_FPU;
16184 return 1;
16185 }
16186 inst.pred_insn_type = INSIDE_VPT_INSN;
16187 }
16188 else if (inst.cond < COND_ALWAYS)
16189 {
16190 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16191 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16192 else if (vfp_or_neon_is_neon (check) == FAIL)
16193 return 2;
16194 }
16195 else
16196 {
16197 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16198 && vfp_or_neon_is_neon (check) == FAIL)
16199 return 3;
16200
16201 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16202 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16203 }
16204 return 0;
16205 }
16206
16207 static void
16208 do_neon_logic (void)
16209 {
16210 if (inst.operands[2].present && inst.operands[2].isreg)
16211 {
16212 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16213 if (rs == NS_QQQ
16214 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16215 == FAIL)
16216 return;
16217 else if (rs != NS_QQQ
16218 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16219 first_error (BAD_FPU);
16220
16221 neon_check_type (3, rs, N_IGNORE_TYPE);
16222 /* U bit and size field were set as part of the bitmask. */
16223 NEON_ENCODE (INTEGER, inst);
16224 neon_three_same (neon_quad (rs), 0, -1);
16225 }
16226 else
16227 {
16228 const int three_ops_form = (inst.operands[2].present
16229 && !inst.operands[2].isreg);
16230 const int immoperand = (three_ops_form ? 2 : 1);
16231 enum neon_shape rs = (three_ops_form
16232 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
16233 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
16234 /* Because neon_select_shape makes the second operand a copy of the first
16235 if the second operand is not present. */
16236 if (rs == NS_QQI
16237 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16238 == FAIL)
16239 return;
16240 else if (rs != NS_QQI
16241 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16242 first_error (BAD_FPU);
16243
16244 struct neon_type_el et;
16245 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16246 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
16247 else
16248 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
16249 | N_KEY, N_EQK);
16250
16251 if (et.type == NT_invtype)
16252 return;
16253 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
16254 unsigned immbits;
16255 int cmode;
16256
16257
16258 if (three_ops_form)
16259 constraint (inst.operands[0].reg != inst.operands[1].reg,
16260 _("first and second operands shall be the same register"));
16261
16262 NEON_ENCODE (IMMED, inst);
16263
16264 immbits = inst.operands[immoperand].imm;
16265 if (et.size == 64)
16266 {
16267 /* .i64 is a pseudo-op, so the immediate must be a repeating
16268 pattern. */
16269 if (immbits != (inst.operands[immoperand].regisimm ?
16270 inst.operands[immoperand].reg : 0))
16271 {
16272 /* Set immbits to an invalid constant. */
16273 immbits = 0xdeadbeef;
16274 }
16275 }
16276
16277 switch (opcode)
16278 {
16279 case N_MNEM_vbic:
16280 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16281 break;
16282
16283 case N_MNEM_vorr:
16284 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16285 break;
16286
16287 case N_MNEM_vand:
16288 /* Pseudo-instruction for VBIC. */
16289 neon_invert_size (&immbits, 0, et.size);
16290 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16291 break;
16292
16293 case N_MNEM_vorn:
16294 /* Pseudo-instruction for VORR. */
16295 neon_invert_size (&immbits, 0, et.size);
16296 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16297 break;
16298
16299 default:
16300 abort ();
16301 }
16302
16303 if (cmode == FAIL)
16304 return;
16305
16306 inst.instruction |= neon_quad (rs) << 6;
16307 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16308 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16309 inst.instruction |= cmode << 8;
16310 neon_write_immbits (immbits);
16311
16312 neon_dp_fixup (&inst);
16313 }
16314 }
16315
16316 static void
16317 do_neon_bitfield (void)
16318 {
16319 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16320 neon_check_type (3, rs, N_IGNORE_TYPE);
16321 neon_three_same (neon_quad (rs), 0, -1);
16322 }
16323
16324 static void
16325 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
16326 unsigned destbits)
16327 {
16328 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16329 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
16330 types | N_KEY);
16331 if (et.type == NT_float)
16332 {
16333 NEON_ENCODE (FLOAT, inst);
16334 if (rs == NS_QQR)
16335 mve_encode_qqr (et.size, 1);
16336 else
16337 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
16338 }
16339 else
16340 {
16341 NEON_ENCODE (INTEGER, inst);
16342 if (rs == NS_QQR)
16343 mve_encode_qqr (et.size, 0);
16344 else
16345 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
16346 }
16347 }
16348
16349
16350 static void
16351 do_neon_dyadic_if_su_d (void)
16352 {
16353 /* This version only allow D registers, but that constraint is enforced during
16354 operand parsing so we don't need to do anything extra here. */
16355 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16356 }
16357
16358 static void
16359 do_neon_dyadic_if_i_d (void)
16360 {
16361 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16362 affected if we specify unsigned args. */
16363 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16364 }
16365
16366 static void
16367 do_mve_vstr_vldr_QI (int size, int elsize, int load)
16368 {
16369 constraint (size < 32, BAD_ADDR_MODE);
16370 constraint (size != elsize, BAD_EL_TYPE);
16371 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16372 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
16373 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
16374 _("destination register and offset register may not be the"
16375 " same"));
16376
16377 int imm = inst.relocs[0].exp.X_add_number;
16378 int add = 1;
16379 if (imm < 0)
16380 {
16381 add = 0;
16382 imm = -imm;
16383 }
16384 constraint ((imm % (size / 8) != 0)
16385 || imm > (0x7f << neon_logbits (size)),
16386 (size == 32) ? _("immediate must be a multiple of 4 in the"
16387 " range of +/-[0,508]")
16388 : _("immediate must be a multiple of 8 in the"
16389 " range of +/-[0,1016]"));
16390 inst.instruction |= 0x11 << 24;
16391 inst.instruction |= add << 23;
16392 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16393 inst.instruction |= inst.operands[1].writeback << 21;
16394 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16395 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16396 inst.instruction |= 1 << 12;
16397 inst.instruction |= (size == 64) << 8;
16398 inst.instruction &= 0xffffff00;
16399 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16400 inst.instruction |= imm >> neon_logbits (size);
16401 }
16402
16403 static void
16404 do_mve_vstr_vldr_RQ (int size, int elsize, int load)
16405 {
16406 unsigned os = inst.operands[1].imm >> 5;
16407 constraint (os != 0 && size == 8,
16408 _("can not shift offsets when accessing less than half-word"));
16409 constraint (os && os != neon_logbits (size),
16410 _("shift immediate must be 1, 2 or 3 for half-word, word"
16411 " or double-word accesses respectively"));
16412 if (inst.operands[1].reg == REG_PC)
16413 as_tsktsk (MVE_BAD_PC);
16414
16415 switch (size)
16416 {
16417 case 8:
16418 constraint (elsize >= 64, BAD_EL_TYPE);
16419 break;
16420 case 16:
16421 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16422 break;
16423 case 32:
16424 case 64:
16425 constraint (elsize != size, BAD_EL_TYPE);
16426 break;
16427 default:
16428 break;
16429 }
16430 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
16431 BAD_ADDR_MODE);
16432 if (load)
16433 {
16434 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
16435 _("destination register and offset register may not be"
16436 " the same"));
16437 constraint (size == elsize && inst.vectype.el[0].type != NT_unsigned,
16438 BAD_EL_TYPE);
16439 constraint (inst.vectype.el[0].type != NT_unsigned
16440 && inst.vectype.el[0].type != NT_signed, BAD_EL_TYPE);
16441 inst.instruction |= (inst.vectype.el[0].type == NT_unsigned) << 28;
16442 }
16443 else
16444 {
16445 constraint (inst.vectype.el[0].type != NT_untyped, BAD_EL_TYPE);
16446 }
16447
16448 inst.instruction |= 1 << 23;
16449 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16450 inst.instruction |= inst.operands[1].reg << 16;
16451 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16452 inst.instruction |= neon_logbits (elsize) << 7;
16453 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
16454 inst.instruction |= LOW4 (inst.operands[1].imm);
16455 inst.instruction |= !!os;
16456 }
16457
16458 static void
16459 do_mve_vstr_vldr_RI (int size, int elsize, int load)
16460 {
16461 enum neon_el_type type = inst.vectype.el[0].type;
16462
16463 constraint (size >= 64, BAD_ADDR_MODE);
16464 switch (size)
16465 {
16466 case 16:
16467 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16468 break;
16469 case 32:
16470 constraint (elsize != size, BAD_EL_TYPE);
16471 break;
16472 default:
16473 break;
16474 }
16475 if (load)
16476 {
16477 constraint (elsize != size && type != NT_unsigned
16478 && type != NT_signed, BAD_EL_TYPE);
16479 }
16480 else
16481 {
16482 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
16483 }
16484
16485 int imm = inst.relocs[0].exp.X_add_number;
16486 int add = 1;
16487 if (imm < 0)
16488 {
16489 add = 0;
16490 imm = -imm;
16491 }
16492
16493 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
16494 {
16495 switch (size)
16496 {
16497 case 8:
16498 constraint (1, _("immediate must be in the range of +/-[0,127]"));
16499 break;
16500 case 16:
16501 constraint (1, _("immediate must be a multiple of 2 in the"
16502 " range of +/-[0,254]"));
16503 break;
16504 case 32:
16505 constraint (1, _("immediate must be a multiple of 4 in the"
16506 " range of +/-[0,508]"));
16507 break;
16508 }
16509 }
16510
16511 if (size != elsize)
16512 {
16513 constraint (inst.operands[1].reg > 7, BAD_HIREG);
16514 constraint (inst.operands[0].reg > 14,
16515 _("MVE vector register in the range [Q0..Q7] expected"));
16516 inst.instruction |= (load && type == NT_unsigned) << 28;
16517 inst.instruction |= (size == 16) << 19;
16518 inst.instruction |= neon_logbits (elsize) << 7;
16519 }
16520 else
16521 {
16522 if (inst.operands[1].reg == REG_PC)
16523 as_tsktsk (MVE_BAD_PC);
16524 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16525 as_tsktsk (MVE_BAD_SP);
16526 inst.instruction |= 1 << 12;
16527 inst.instruction |= neon_logbits (size) << 7;
16528 }
16529 inst.instruction |= inst.operands[1].preind << 24;
16530 inst.instruction |= add << 23;
16531 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16532 inst.instruction |= inst.operands[1].writeback << 21;
16533 inst.instruction |= inst.operands[1].reg << 16;
16534 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16535 inst.instruction &= 0xffffff80;
16536 inst.instruction |= imm >> neon_logbits (size);
16537
16538 }
16539
16540 static void
16541 do_mve_vstr_vldr (void)
16542 {
16543 unsigned size;
16544 int load = 0;
16545
16546 if (inst.cond > COND_ALWAYS)
16547 inst.pred_insn_type = INSIDE_VPT_INSN;
16548 else
16549 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16550
16551 switch (inst.instruction)
16552 {
16553 default:
16554 gas_assert (0);
16555 break;
16556 case M_MNEM_vldrb:
16557 load = 1;
16558 /* fall through. */
16559 case M_MNEM_vstrb:
16560 size = 8;
16561 break;
16562 case M_MNEM_vldrh:
16563 load = 1;
16564 /* fall through. */
16565 case M_MNEM_vstrh:
16566 size = 16;
16567 break;
16568 case M_MNEM_vldrw:
16569 load = 1;
16570 /* fall through. */
16571 case M_MNEM_vstrw:
16572 size = 32;
16573 break;
16574 case M_MNEM_vldrd:
16575 load = 1;
16576 /* fall through. */
16577 case M_MNEM_vstrd:
16578 size = 64;
16579 break;
16580 }
16581 unsigned elsize = inst.vectype.el[0].size;
16582
16583 if (inst.operands[1].isquad)
16584 {
16585 /* We are dealing with [Q, imm]{!} cases. */
16586 do_mve_vstr_vldr_QI (size, elsize, load);
16587 }
16588 else
16589 {
16590 if (inst.operands[1].immisreg == 2)
16591 {
16592 /* We are dealing with [R, Q, {UXTW #os}] cases. */
16593 do_mve_vstr_vldr_RQ (size, elsize, load);
16594 }
16595 else if (!inst.operands[1].immisreg)
16596 {
16597 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
16598 do_mve_vstr_vldr_RI (size, elsize, load);
16599 }
16600 else
16601 constraint (1, BAD_ADDR_MODE);
16602 }
16603
16604 inst.is_neon = 1;
16605 }
16606
16607 static void
16608 do_mve_vst_vld (void)
16609 {
16610 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16611 return;
16612
16613 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
16614 || inst.relocs[0].exp.X_add_number != 0
16615 || inst.operands[1].immisreg != 0,
16616 BAD_ADDR_MODE);
16617 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
16618 if (inst.operands[1].reg == REG_PC)
16619 as_tsktsk (MVE_BAD_PC);
16620 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16621 as_tsktsk (MVE_BAD_SP);
16622
16623
16624 /* These instructions are one of the "exceptions" mentioned in
16625 handle_pred_state. They are MVE instructions that are not VPT compatible
16626 and do not accept a VPT code, thus appending such a code is a syntax
16627 error. */
16628 if (inst.cond > COND_ALWAYS)
16629 first_error (BAD_SYNTAX);
16630 /* If we append a scalar condition code we can set this to
16631 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
16632 else if (inst.cond < COND_ALWAYS)
16633 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16634 else
16635 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
16636
16637 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16638 inst.instruction |= inst.operands[1].writeback << 21;
16639 inst.instruction |= inst.operands[1].reg << 16;
16640 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16641 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
16642 inst.is_neon = 1;
16643 }
16644
16645 static void
16646 do_mve_vaddlv (void)
16647 {
16648 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
16649 struct neon_type_el et
16650 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
16651
16652 if (et.type == NT_invtype)
16653 first_error (BAD_EL_TYPE);
16654
16655 if (inst.cond > COND_ALWAYS)
16656 inst.pred_insn_type = INSIDE_VPT_INSN;
16657 else
16658 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16659
16660 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16661
16662 inst.instruction |= (et.type == NT_unsigned) << 28;
16663 inst.instruction |= inst.operands[1].reg << 19;
16664 inst.instruction |= inst.operands[0].reg << 12;
16665 inst.instruction |= inst.operands[2].reg;
16666 inst.is_neon = 1;
16667 }
16668
16669 static void
16670 do_neon_dyadic_if_su (void)
16671 {
16672 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16673 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16674 N_SUF_32 | N_KEY);
16675
16676 if (check_simd_pred_availability (et.type == NT_float,
16677 NEON_CHECK_ARCH | NEON_CHECK_CC))
16678 return;
16679
16680 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16681 }
16682
16683 static void
16684 do_neon_addsub_if_i (void)
16685 {
16686 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
16687 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
16688 return;
16689
16690 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16691 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
16692 N_EQK, N_IF_32 | N_I64 | N_KEY);
16693
16694 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
16695 /* If we are parsing Q registers and the element types match MVE, which NEON
16696 also supports, then we must check whether this is an instruction that can
16697 be used by both MVE/NEON. This distinction can be made based on whether
16698 they are predicated or not. */
16699 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
16700 {
16701 if (check_simd_pred_availability (et.type == NT_float,
16702 NEON_CHECK_ARCH | NEON_CHECK_CC))
16703 return;
16704 }
16705 else
16706 {
16707 /* If they are either in a D register or are using an unsupported. */
16708 if (rs != NS_QQR
16709 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16710 return;
16711 }
16712
16713 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16714 affected if we specify unsigned args. */
16715 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
16716 }
16717
16718 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
16719 result to be:
16720 V<op> A,B (A is operand 0, B is operand 2)
16721 to mean:
16722 V<op> A,B,A
16723 not:
16724 V<op> A,B,B
16725 so handle that case specially. */
16726
16727 static void
16728 neon_exchange_operands (void)
16729 {
16730 if (inst.operands[1].present)
16731 {
16732 void *scratch = xmalloc (sizeof (inst.operands[0]));
16733
16734 /* Swap operands[1] and operands[2]. */
16735 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
16736 inst.operands[1] = inst.operands[2];
16737 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
16738 free (scratch);
16739 }
16740 else
16741 {
16742 inst.operands[1] = inst.operands[2];
16743 inst.operands[2] = inst.operands[0];
16744 }
16745 }
16746
16747 static void
16748 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
16749 {
16750 if (inst.operands[2].isreg)
16751 {
16752 if (invert)
16753 neon_exchange_operands ();
16754 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
16755 }
16756 else
16757 {
16758 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16759 struct neon_type_el et = neon_check_type (2, rs,
16760 N_EQK | N_SIZ, immtypes | N_KEY);
16761
16762 NEON_ENCODE (IMMED, inst);
16763 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16764 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16765 inst.instruction |= LOW4 (inst.operands[1].reg);
16766 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16767 inst.instruction |= neon_quad (rs) << 6;
16768 inst.instruction |= (et.type == NT_float) << 10;
16769 inst.instruction |= neon_logbits (et.size) << 18;
16770
16771 neon_dp_fixup (&inst);
16772 }
16773 }
16774
16775 static void
16776 do_neon_cmp (void)
16777 {
16778 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
16779 }
16780
16781 static void
16782 do_neon_cmp_inv (void)
16783 {
16784 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
16785 }
16786
16787 static void
16788 do_neon_ceq (void)
16789 {
16790 neon_compare (N_IF_32, N_IF_32, FALSE);
16791 }
16792
16793 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
16794 scalars, which are encoded in 5 bits, M : Rm.
16795 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
16796 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
16797 index in M.
16798
16799 Dot Product instructions are similar to multiply instructions except elsize
16800 should always be 32.
16801
16802 This function translates SCALAR, which is GAS's internal encoding of indexed
16803 scalar register, to raw encoding. There is also register and index range
16804 check based on ELSIZE. */
16805
16806 static unsigned
16807 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
16808 {
16809 unsigned regno = NEON_SCALAR_REG (scalar);
16810 unsigned elno = NEON_SCALAR_INDEX (scalar);
16811
16812 switch (elsize)
16813 {
16814 case 16:
16815 if (regno > 7 || elno > 3)
16816 goto bad_scalar;
16817 return regno | (elno << 3);
16818
16819 case 32:
16820 if (regno > 15 || elno > 1)
16821 goto bad_scalar;
16822 return regno | (elno << 4);
16823
16824 default:
16825 bad_scalar:
16826 first_error (_("scalar out of range for multiply instruction"));
16827 }
16828
16829 return 0;
16830 }
16831
16832 /* Encode multiply / multiply-accumulate scalar instructions. */
16833
16834 static void
16835 neon_mul_mac (struct neon_type_el et, int ubit)
16836 {
16837 unsigned scalar;
16838
16839 /* Give a more helpful error message if we have an invalid type. */
16840 if (et.type == NT_invtype)
16841 return;
16842
16843 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
16844 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16845 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16846 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16847 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16848 inst.instruction |= LOW4 (scalar);
16849 inst.instruction |= HI1 (scalar) << 5;
16850 inst.instruction |= (et.type == NT_float) << 8;
16851 inst.instruction |= neon_logbits (et.size) << 20;
16852 inst.instruction |= (ubit != 0) << 24;
16853
16854 neon_dp_fixup (&inst);
16855 }
16856
16857 static void
16858 do_neon_mac_maybe_scalar (void)
16859 {
16860 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
16861 return;
16862
16863 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16864 return;
16865
16866 if (inst.operands[2].isscalar)
16867 {
16868 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
16869 struct neon_type_el et = neon_check_type (3, rs,
16870 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
16871 NEON_ENCODE (SCALAR, inst);
16872 neon_mul_mac (et, neon_quad (rs));
16873 }
16874 else
16875 {
16876 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16877 affected if we specify unsigned args. */
16878 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16879 }
16880 }
16881
16882 static void
16883 do_neon_fmac (void)
16884 {
16885 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_fma)
16886 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
16887 return;
16888
16889 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
16890 return;
16891
16892 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
16893 {
16894 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16895 struct neon_type_el et = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK,
16896 N_EQK);
16897
16898 if (rs == NS_QQR)
16899 {
16900 if (inst.operands[2].reg == REG_SP)
16901 as_tsktsk (MVE_BAD_SP);
16902 else if (inst.operands[2].reg == REG_PC)
16903 as_tsktsk (MVE_BAD_PC);
16904
16905 inst.instruction = 0xee310e40;
16906 inst.instruction |= (et.size == 16) << 28;
16907 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16908 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16909 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16910 inst.instruction |= HI1 (inst.operands[1].reg) << 6;
16911 inst.instruction |= inst.operands[2].reg;
16912 inst.is_neon = 1;
16913 return;
16914 }
16915 }
16916 else
16917 {
16918 constraint (!inst.operands[2].isvec, BAD_FPU);
16919 }
16920
16921 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16922 }
16923
16924 static void
16925 do_neon_tst (void)
16926 {
16927 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16928 struct neon_type_el et = neon_check_type (3, rs,
16929 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
16930 neon_three_same (neon_quad (rs), 0, et.size);
16931 }
16932
16933 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
16934 same types as the MAC equivalents. The polynomial type for this instruction
16935 is encoded the same as the integer type. */
16936
16937 static void
16938 do_neon_mul (void)
16939 {
16940 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
16941 return;
16942
16943 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16944 return;
16945
16946 if (inst.operands[2].isscalar)
16947 do_neon_mac_maybe_scalar ();
16948 else
16949 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
16950 }
16951
16952 static void
16953 do_neon_qdmulh (void)
16954 {
16955 if (inst.operands[2].isscalar)
16956 {
16957 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
16958 struct neon_type_el et = neon_check_type (3, rs,
16959 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
16960 NEON_ENCODE (SCALAR, inst);
16961 neon_mul_mac (et, neon_quad (rs));
16962 }
16963 else
16964 {
16965 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16966 struct neon_type_el et = neon_check_type (3, rs,
16967 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
16968 NEON_ENCODE (INTEGER, inst);
16969 /* The U bit (rounding) comes from bit mask. */
16970 neon_three_same (neon_quad (rs), 0, et.size);
16971 }
16972 }
16973
16974 static void
16975 do_mve_vaddv (void)
16976 {
16977 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
16978 struct neon_type_el et
16979 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
16980
16981 if (et.type == NT_invtype)
16982 first_error (BAD_EL_TYPE);
16983
16984 if (inst.cond > COND_ALWAYS)
16985 inst.pred_insn_type = INSIDE_VPT_INSN;
16986 else
16987 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16988
16989 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16990
16991 mve_encode_rq (et.type == NT_unsigned, et.size);
16992 }
16993
16994 static void
16995 do_mve_vadc (void)
16996 {
16997 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
16998 struct neon_type_el et
16999 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
17000
17001 if (et.type == NT_invtype)
17002 first_error (BAD_EL_TYPE);
17003
17004 if (inst.cond > COND_ALWAYS)
17005 inst.pred_insn_type = INSIDE_VPT_INSN;
17006 else
17007 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17008
17009 mve_encode_qqq (0, 64);
17010 }
17011
17012 static void
17013 do_mve_vbrsr (void)
17014 {
17015 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17016 struct neon_type_el et
17017 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17018
17019 if (inst.cond > COND_ALWAYS)
17020 inst.pred_insn_type = INSIDE_VPT_INSN;
17021 else
17022 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17023
17024 mve_encode_qqr (et.size, 0);
17025 }
17026
17027 static void
17028 do_mve_vsbc (void)
17029 {
17030 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
17031
17032 if (inst.cond > COND_ALWAYS)
17033 inst.pred_insn_type = INSIDE_VPT_INSN;
17034 else
17035 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17036
17037 mve_encode_qqq (1, 64);
17038 }
17039
17040 static void
17041 do_mve_vmull (void)
17042 {
17043
17044 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
17045 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
17046 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
17047 && inst.cond == COND_ALWAYS
17048 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
17049 {
17050 if (rs == NS_QQQ)
17051 {
17052
17053 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17054 N_SUF_32 | N_F64 | N_P8
17055 | N_P16 | N_I_MVE | N_KEY);
17056 if (((et.type == NT_poly) && et.size == 8
17057 && ARM_CPU_IS_ANY (cpu_variant))
17058 || (et.type == NT_integer) || (et.type == NT_float))
17059 goto neon_vmul;
17060 }
17061 else
17062 goto neon_vmul;
17063 }
17064
17065 constraint (rs != NS_QQQ, BAD_FPU);
17066 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17067 N_SU_32 | N_P8 | N_P16 | N_KEY);
17068
17069 /* We are dealing with MVE's vmullt. */
17070 if (et.size == 32
17071 && (inst.operands[0].reg == inst.operands[1].reg
17072 || inst.operands[0].reg == inst.operands[2].reg))
17073 as_tsktsk (BAD_MVE_SRCDEST);
17074
17075 if (inst.cond > COND_ALWAYS)
17076 inst.pred_insn_type = INSIDE_VPT_INSN;
17077 else
17078 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17079
17080 if (et.type == NT_poly)
17081 mve_encode_qqq (neon_logbits (et.size), 64);
17082 else
17083 mve_encode_qqq (et.type == NT_unsigned, et.size);
17084
17085 return;
17086
17087 neon_vmul:
17088 inst.instruction = N_MNEM_vmul;
17089 inst.cond = 0xb;
17090 if (thumb_mode)
17091 inst.pred_insn_type = INSIDE_IT_INSN;
17092 do_neon_mul ();
17093 }
17094
17095 static void
17096 do_mve_vabav (void)
17097 {
17098 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17099
17100 if (rs == NS_NULL)
17101 return;
17102
17103 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17104 return;
17105
17106 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
17107 | N_S16 | N_S32 | N_U8 | N_U16
17108 | N_U32);
17109
17110 if (inst.cond > COND_ALWAYS)
17111 inst.pred_insn_type = INSIDE_VPT_INSN;
17112 else
17113 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17114
17115 mve_encode_rqq (et.type == NT_unsigned, et.size);
17116 }
17117
17118 static void
17119 do_mve_vmladav (void)
17120 {
17121 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17122 struct neon_type_el et = neon_check_type (3, rs,
17123 N_EQK, N_EQK, N_SU_MVE | N_KEY);
17124
17125 if (et.type == NT_unsigned
17126 && (inst.instruction == M_MNEM_vmladavx
17127 || inst.instruction == M_MNEM_vmladavax
17128 || inst.instruction == M_MNEM_vmlsdav
17129 || inst.instruction == M_MNEM_vmlsdava
17130 || inst.instruction == M_MNEM_vmlsdavx
17131 || inst.instruction == M_MNEM_vmlsdavax))
17132 first_error (BAD_SIMD_TYPE);
17133
17134 constraint (inst.operands[2].reg > 14,
17135 _("MVE vector register in the range [Q0..Q7] expected"));
17136
17137 if (inst.cond > COND_ALWAYS)
17138 inst.pred_insn_type = INSIDE_VPT_INSN;
17139 else
17140 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17141
17142 if (inst.instruction == M_MNEM_vmlsdav
17143 || inst.instruction == M_MNEM_vmlsdava
17144 || inst.instruction == M_MNEM_vmlsdavx
17145 || inst.instruction == M_MNEM_vmlsdavax)
17146 inst.instruction |= (et.size == 8) << 28;
17147 else
17148 inst.instruction |= (et.size == 8) << 8;
17149
17150 mve_encode_rqq (et.type == NT_unsigned, 64);
17151 inst.instruction |= (et.size == 32) << 16;
17152 }
17153
17154 static void
17155 do_neon_qrdmlah (void)
17156 {
17157 /* Check we're on the correct architecture. */
17158 if (!mark_feature_used (&fpu_neon_ext_armv8))
17159 inst.error =
17160 _("instruction form not available on this architecture.");
17161 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
17162 {
17163 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
17164 record_feature_use (&fpu_neon_ext_v8_1);
17165 }
17166
17167 if (inst.operands[2].isscalar)
17168 {
17169 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17170 struct neon_type_el et = neon_check_type (3, rs,
17171 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17172 NEON_ENCODE (SCALAR, inst);
17173 neon_mul_mac (et, neon_quad (rs));
17174 }
17175 else
17176 {
17177 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17178 struct neon_type_el et = neon_check_type (3, rs,
17179 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17180 NEON_ENCODE (INTEGER, inst);
17181 /* The U bit (rounding) comes from bit mask. */
17182 neon_three_same (neon_quad (rs), 0, et.size);
17183 }
17184 }
17185
17186 static void
17187 do_neon_fcmp_absolute (void)
17188 {
17189 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17190 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17191 N_F_16_32 | N_KEY);
17192 /* Size field comes from bit mask. */
17193 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
17194 }
17195
17196 static void
17197 do_neon_fcmp_absolute_inv (void)
17198 {
17199 neon_exchange_operands ();
17200 do_neon_fcmp_absolute ();
17201 }
17202
17203 static void
17204 do_neon_step (void)
17205 {
17206 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17207 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17208 N_F_16_32 | N_KEY);
17209 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
17210 }
17211
17212 static void
17213 do_neon_abs_neg (void)
17214 {
17215 enum neon_shape rs;
17216 struct neon_type_el et;
17217
17218 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
17219 return;
17220
17221 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
17222 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
17223
17224 if (check_simd_pred_availability (et.type == NT_float,
17225 NEON_CHECK_ARCH | NEON_CHECK_CC))
17226 return;
17227
17228 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17229 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17230 inst.instruction |= LOW4 (inst.operands[1].reg);
17231 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17232 inst.instruction |= neon_quad (rs) << 6;
17233 inst.instruction |= (et.type == NT_float) << 10;
17234 inst.instruction |= neon_logbits (et.size) << 18;
17235
17236 neon_dp_fixup (&inst);
17237 }
17238
17239 static void
17240 do_neon_sli (void)
17241 {
17242 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17243 struct neon_type_el et = neon_check_type (2, rs,
17244 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17245 int imm = inst.operands[2].imm;
17246 constraint (imm < 0 || (unsigned)imm >= et.size,
17247 _("immediate out of range for insert"));
17248 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
17249 }
17250
17251 static void
17252 do_neon_sri (void)
17253 {
17254 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17255 struct neon_type_el et = neon_check_type (2, rs,
17256 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17257 int imm = inst.operands[2].imm;
17258 constraint (imm < 1 || (unsigned)imm > et.size,
17259 _("immediate out of range for insert"));
17260 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
17261 }
17262
17263 static void
17264 do_neon_qshlu_imm (void)
17265 {
17266 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17267 struct neon_type_el et = neon_check_type (2, rs,
17268 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
17269 int imm = inst.operands[2].imm;
17270 constraint (imm < 0 || (unsigned)imm >= et.size,
17271 _("immediate out of range for shift"));
17272 /* Only encodes the 'U present' variant of the instruction.
17273 In this case, signed types have OP (bit 8) set to 0.
17274 Unsigned types have OP set to 1. */
17275 inst.instruction |= (et.type == NT_unsigned) << 8;
17276 /* The rest of the bits are the same as other immediate shifts. */
17277 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
17278 }
17279
17280 static void
17281 do_neon_qmovn (void)
17282 {
17283 struct neon_type_el et = neon_check_type (2, NS_DQ,
17284 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17285 /* Saturating move where operands can be signed or unsigned, and the
17286 destination has the same signedness. */
17287 NEON_ENCODE (INTEGER, inst);
17288 if (et.type == NT_unsigned)
17289 inst.instruction |= 0xc0;
17290 else
17291 inst.instruction |= 0x80;
17292 neon_two_same (0, 1, et.size / 2);
17293 }
17294
17295 static void
17296 do_neon_qmovun (void)
17297 {
17298 struct neon_type_el et = neon_check_type (2, NS_DQ,
17299 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17300 /* Saturating move with unsigned results. Operands must be signed. */
17301 NEON_ENCODE (INTEGER, inst);
17302 neon_two_same (0, 1, et.size / 2);
17303 }
17304
17305 static void
17306 do_neon_rshift_sat_narrow (void)
17307 {
17308 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17309 or unsigned. If operands are unsigned, results must also be unsigned. */
17310 struct neon_type_el et = neon_check_type (2, NS_DQI,
17311 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17312 int imm = inst.operands[2].imm;
17313 /* This gets the bounds check, size encoding and immediate bits calculation
17314 right. */
17315 et.size /= 2;
17316
17317 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
17318 VQMOVN.I<size> <Dd>, <Qm>. */
17319 if (imm == 0)
17320 {
17321 inst.operands[2].present = 0;
17322 inst.instruction = N_MNEM_vqmovn;
17323 do_neon_qmovn ();
17324 return;
17325 }
17326
17327 constraint (imm < 1 || (unsigned)imm > et.size,
17328 _("immediate out of range"));
17329 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
17330 }
17331
17332 static void
17333 do_neon_rshift_sat_narrow_u (void)
17334 {
17335 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17336 or unsigned. If operands are unsigned, results must also be unsigned. */
17337 struct neon_type_el et = neon_check_type (2, NS_DQI,
17338 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17339 int imm = inst.operands[2].imm;
17340 /* This gets the bounds check, size encoding and immediate bits calculation
17341 right. */
17342 et.size /= 2;
17343
17344 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
17345 VQMOVUN.I<size> <Dd>, <Qm>. */
17346 if (imm == 0)
17347 {
17348 inst.operands[2].present = 0;
17349 inst.instruction = N_MNEM_vqmovun;
17350 do_neon_qmovun ();
17351 return;
17352 }
17353
17354 constraint (imm < 1 || (unsigned)imm > et.size,
17355 _("immediate out of range"));
17356 /* FIXME: The manual is kind of unclear about what value U should have in
17357 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
17358 must be 1. */
17359 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
17360 }
17361
17362 static void
17363 do_neon_movn (void)
17364 {
17365 struct neon_type_el et = neon_check_type (2, NS_DQ,
17366 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17367 NEON_ENCODE (INTEGER, inst);
17368 neon_two_same (0, 1, et.size / 2);
17369 }
17370
17371 static void
17372 do_neon_rshift_narrow (void)
17373 {
17374 struct neon_type_el et = neon_check_type (2, NS_DQI,
17375 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17376 int imm = inst.operands[2].imm;
17377 /* This gets the bounds check, size encoding and immediate bits calculation
17378 right. */
17379 et.size /= 2;
17380
17381 /* If immediate is zero then we are a pseudo-instruction for
17382 VMOVN.I<size> <Dd>, <Qm> */
17383 if (imm == 0)
17384 {
17385 inst.operands[2].present = 0;
17386 inst.instruction = N_MNEM_vmovn;
17387 do_neon_movn ();
17388 return;
17389 }
17390
17391 constraint (imm < 1 || (unsigned)imm > et.size,
17392 _("immediate out of range for narrowing operation"));
17393 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
17394 }
17395
17396 static void
17397 do_neon_shll (void)
17398 {
17399 /* FIXME: Type checking when lengthening. */
17400 struct neon_type_el et = neon_check_type (2, NS_QDI,
17401 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
17402 unsigned imm = inst.operands[2].imm;
17403
17404 if (imm == et.size)
17405 {
17406 /* Maximum shift variant. */
17407 NEON_ENCODE (INTEGER, inst);
17408 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17409 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17410 inst.instruction |= LOW4 (inst.operands[1].reg);
17411 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17412 inst.instruction |= neon_logbits (et.size) << 18;
17413
17414 neon_dp_fixup (&inst);
17415 }
17416 else
17417 {
17418 /* A more-specific type check for non-max versions. */
17419 et = neon_check_type (2, NS_QDI,
17420 N_EQK | N_DBL, N_SU_32 | N_KEY);
17421 NEON_ENCODE (IMMED, inst);
17422 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
17423 }
17424 }
17425
17426 /* Check the various types for the VCVT instruction, and return which version
17427 the current instruction is. */
17428
17429 #define CVT_FLAVOUR_VAR \
17430 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
17431 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
17432 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
17433 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
17434 /* Half-precision conversions. */ \
17435 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17436 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17437 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
17438 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
17439 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
17440 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
17441 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
17442 Compared with single/double precision variants, only the co-processor \
17443 field is different, so the encoding flow is reused here. */ \
17444 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
17445 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
17446 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
17447 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
17448 /* VFP instructions. */ \
17449 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
17450 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
17451 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
17452 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
17453 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
17454 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
17455 /* VFP instructions with bitshift. */ \
17456 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
17457 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
17458 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
17459 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
17460 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
17461 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
17462 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
17463 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
17464
17465 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
17466 neon_cvt_flavour_##C,
17467
17468 /* The different types of conversions we can do. */
17469 enum neon_cvt_flavour
17470 {
17471 CVT_FLAVOUR_VAR
17472 neon_cvt_flavour_invalid,
17473 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
17474 };
17475
17476 #undef CVT_VAR
17477
17478 static enum neon_cvt_flavour
17479 get_neon_cvt_flavour (enum neon_shape rs)
17480 {
17481 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
17482 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
17483 if (et.type != NT_invtype) \
17484 { \
17485 inst.error = NULL; \
17486 return (neon_cvt_flavour_##C); \
17487 }
17488
17489 struct neon_type_el et;
17490 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
17491 || rs == NS_FF) ? N_VFP : 0;
17492 /* The instruction versions which take an immediate take one register
17493 argument, which is extended to the width of the full register. Thus the
17494 "source" and "destination" registers must have the same width. Hack that
17495 here by making the size equal to the key (wider, in this case) operand. */
17496 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
17497
17498 CVT_FLAVOUR_VAR;
17499
17500 return neon_cvt_flavour_invalid;
17501 #undef CVT_VAR
17502 }
17503
17504 enum neon_cvt_mode
17505 {
17506 neon_cvt_mode_a,
17507 neon_cvt_mode_n,
17508 neon_cvt_mode_p,
17509 neon_cvt_mode_m,
17510 neon_cvt_mode_z,
17511 neon_cvt_mode_x,
17512 neon_cvt_mode_r
17513 };
17514
17515 /* Neon-syntax VFP conversions. */
17516
17517 static void
17518 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
17519 {
17520 const char *opname = 0;
17521
17522 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
17523 || rs == NS_FHI || rs == NS_HFI)
17524 {
17525 /* Conversions with immediate bitshift. */
17526 const char *enc[] =
17527 {
17528 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
17529 CVT_FLAVOUR_VAR
17530 NULL
17531 #undef CVT_VAR
17532 };
17533
17534 if (flavour < (int) ARRAY_SIZE (enc))
17535 {
17536 opname = enc[flavour];
17537 constraint (inst.operands[0].reg != inst.operands[1].reg,
17538 _("operands 0 and 1 must be the same register"));
17539 inst.operands[1] = inst.operands[2];
17540 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
17541 }
17542 }
17543 else
17544 {
17545 /* Conversions without bitshift. */
17546 const char *enc[] =
17547 {
17548 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
17549 CVT_FLAVOUR_VAR
17550 NULL
17551 #undef CVT_VAR
17552 };
17553
17554 if (flavour < (int) ARRAY_SIZE (enc))
17555 opname = enc[flavour];
17556 }
17557
17558 if (opname)
17559 do_vfp_nsyn_opcode (opname);
17560
17561 /* ARMv8.2 fp16 VCVT instruction. */
17562 if (flavour == neon_cvt_flavour_s32_f16
17563 || flavour == neon_cvt_flavour_u32_f16
17564 || flavour == neon_cvt_flavour_f16_u32
17565 || flavour == neon_cvt_flavour_f16_s32)
17566 do_scalar_fp16_v82_encode ();
17567 }
17568
17569 static void
17570 do_vfp_nsyn_cvtz (void)
17571 {
17572 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
17573 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
17574 const char *enc[] =
17575 {
17576 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
17577 CVT_FLAVOUR_VAR
17578 NULL
17579 #undef CVT_VAR
17580 };
17581
17582 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
17583 do_vfp_nsyn_opcode (enc[flavour]);
17584 }
17585
17586 static void
17587 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
17588 enum neon_cvt_mode mode)
17589 {
17590 int sz, op;
17591 int rm;
17592
17593 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17594 D register operands. */
17595 if (flavour == neon_cvt_flavour_s32_f64
17596 || flavour == neon_cvt_flavour_u32_f64)
17597 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17598 _(BAD_FPU));
17599
17600 if (flavour == neon_cvt_flavour_s32_f16
17601 || flavour == neon_cvt_flavour_u32_f16)
17602 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
17603 _(BAD_FP16));
17604
17605 set_pred_insn_type (OUTSIDE_PRED_INSN);
17606
17607 switch (flavour)
17608 {
17609 case neon_cvt_flavour_s32_f64:
17610 sz = 1;
17611 op = 1;
17612 break;
17613 case neon_cvt_flavour_s32_f32:
17614 sz = 0;
17615 op = 1;
17616 break;
17617 case neon_cvt_flavour_s32_f16:
17618 sz = 0;
17619 op = 1;
17620 break;
17621 case neon_cvt_flavour_u32_f64:
17622 sz = 1;
17623 op = 0;
17624 break;
17625 case neon_cvt_flavour_u32_f32:
17626 sz = 0;
17627 op = 0;
17628 break;
17629 case neon_cvt_flavour_u32_f16:
17630 sz = 0;
17631 op = 0;
17632 break;
17633 default:
17634 first_error (_("invalid instruction shape"));
17635 return;
17636 }
17637
17638 switch (mode)
17639 {
17640 case neon_cvt_mode_a: rm = 0; break;
17641 case neon_cvt_mode_n: rm = 1; break;
17642 case neon_cvt_mode_p: rm = 2; break;
17643 case neon_cvt_mode_m: rm = 3; break;
17644 default: first_error (_("invalid rounding mode")); return;
17645 }
17646
17647 NEON_ENCODE (FPV8, inst);
17648 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
17649 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
17650 inst.instruction |= sz << 8;
17651
17652 /* ARMv8.2 fp16 VCVT instruction. */
17653 if (flavour == neon_cvt_flavour_s32_f16
17654 ||flavour == neon_cvt_flavour_u32_f16)
17655 do_scalar_fp16_v82_encode ();
17656 inst.instruction |= op << 7;
17657 inst.instruction |= rm << 16;
17658 inst.instruction |= 0xf0000000;
17659 inst.is_neon = TRUE;
17660 }
17661
17662 static void
17663 do_neon_cvt_1 (enum neon_cvt_mode mode)
17664 {
17665 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
17666 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
17667 NS_FH, NS_HF, NS_FHI, NS_HFI,
17668 NS_NULL);
17669 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
17670
17671 if (flavour == neon_cvt_flavour_invalid)
17672 return;
17673
17674 /* PR11109: Handle round-to-zero for VCVT conversions. */
17675 if (mode == neon_cvt_mode_z
17676 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
17677 && (flavour == neon_cvt_flavour_s16_f16
17678 || flavour == neon_cvt_flavour_u16_f16
17679 || flavour == neon_cvt_flavour_s32_f32
17680 || flavour == neon_cvt_flavour_u32_f32
17681 || flavour == neon_cvt_flavour_s32_f64
17682 || flavour == neon_cvt_flavour_u32_f64)
17683 && (rs == NS_FD || rs == NS_FF))
17684 {
17685 do_vfp_nsyn_cvtz ();
17686 return;
17687 }
17688
17689 /* ARMv8.2 fp16 VCVT conversions. */
17690 if (mode == neon_cvt_mode_z
17691 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
17692 && (flavour == neon_cvt_flavour_s32_f16
17693 || flavour == neon_cvt_flavour_u32_f16)
17694 && (rs == NS_FH))
17695 {
17696 do_vfp_nsyn_cvtz ();
17697 do_scalar_fp16_v82_encode ();
17698 return;
17699 }
17700
17701 /* VFP rather than Neon conversions. */
17702 if (flavour >= neon_cvt_flavour_first_fp)
17703 {
17704 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
17705 do_vfp_nsyn_cvt (rs, flavour);
17706 else
17707 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
17708
17709 return;
17710 }
17711
17712 switch (rs)
17713 {
17714 case NS_QQI:
17715 if (mode == neon_cvt_mode_z
17716 && (flavour == neon_cvt_flavour_f16_s16
17717 || flavour == neon_cvt_flavour_f16_u16
17718 || flavour == neon_cvt_flavour_s16_f16
17719 || flavour == neon_cvt_flavour_u16_f16
17720 || flavour == neon_cvt_flavour_f32_u32
17721 || flavour == neon_cvt_flavour_f32_s32
17722 || flavour == neon_cvt_flavour_s32_f32
17723 || flavour == neon_cvt_flavour_u32_f32))
17724 {
17725 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
17726 return;
17727 }
17728 else if (mode == neon_cvt_mode_n)
17729 {
17730 /* We are dealing with vcvt with the 'ne' condition. */
17731 inst.cond = 0x1;
17732 inst.instruction = N_MNEM_vcvt;
17733 do_neon_cvt_1 (neon_cvt_mode_z);
17734 return;
17735 }
17736 /* fall through. */
17737 case NS_DDI:
17738 {
17739 unsigned immbits;
17740 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
17741 0x0000100, 0x1000100, 0x0, 0x1000000};
17742
17743 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17744 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17745 return;
17746
17747 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17748 {
17749 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
17750 _("immediate value out of range"));
17751 switch (flavour)
17752 {
17753 case neon_cvt_flavour_f16_s16:
17754 case neon_cvt_flavour_f16_u16:
17755 case neon_cvt_flavour_s16_f16:
17756 case neon_cvt_flavour_u16_f16:
17757 constraint (inst.operands[2].imm > 16,
17758 _("immediate value out of range"));
17759 break;
17760 case neon_cvt_flavour_f32_u32:
17761 case neon_cvt_flavour_f32_s32:
17762 case neon_cvt_flavour_s32_f32:
17763 case neon_cvt_flavour_u32_f32:
17764 constraint (inst.operands[2].imm > 32,
17765 _("immediate value out of range"));
17766 break;
17767 default:
17768 inst.error = BAD_FPU;
17769 return;
17770 }
17771 }
17772
17773 /* Fixed-point conversion with #0 immediate is encoded as an
17774 integer conversion. */
17775 if (inst.operands[2].present && inst.operands[2].imm == 0)
17776 goto int_encode;
17777 NEON_ENCODE (IMMED, inst);
17778 if (flavour != neon_cvt_flavour_invalid)
17779 inst.instruction |= enctab[flavour];
17780 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17781 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17782 inst.instruction |= LOW4 (inst.operands[1].reg);
17783 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17784 inst.instruction |= neon_quad (rs) << 6;
17785 inst.instruction |= 1 << 21;
17786 if (flavour < neon_cvt_flavour_s16_f16)
17787 {
17788 inst.instruction |= 1 << 21;
17789 immbits = 32 - inst.operands[2].imm;
17790 inst.instruction |= immbits << 16;
17791 }
17792 else
17793 {
17794 inst.instruction |= 3 << 20;
17795 immbits = 16 - inst.operands[2].imm;
17796 inst.instruction |= immbits << 16;
17797 inst.instruction &= ~(1 << 9);
17798 }
17799
17800 neon_dp_fixup (&inst);
17801 }
17802 break;
17803
17804 case NS_QQ:
17805 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
17806 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
17807 && (flavour == neon_cvt_flavour_s16_f16
17808 || flavour == neon_cvt_flavour_u16_f16
17809 || flavour == neon_cvt_flavour_s32_f32
17810 || flavour == neon_cvt_flavour_u32_f32))
17811 {
17812 if (check_simd_pred_availability (1,
17813 NEON_CHECK_CC | NEON_CHECK_ARCH8))
17814 return;
17815 }
17816 else if (mode == neon_cvt_mode_z
17817 && (flavour == neon_cvt_flavour_f16_s16
17818 || flavour == neon_cvt_flavour_f16_u16
17819 || flavour == neon_cvt_flavour_s16_f16
17820 || flavour == neon_cvt_flavour_u16_f16
17821 || flavour == neon_cvt_flavour_f32_u32
17822 || flavour == neon_cvt_flavour_f32_s32
17823 || flavour == neon_cvt_flavour_s32_f32
17824 || flavour == neon_cvt_flavour_u32_f32))
17825 {
17826 if (check_simd_pred_availability (1,
17827 NEON_CHECK_CC | NEON_CHECK_ARCH))
17828 return;
17829 }
17830 /* fall through. */
17831 case NS_DD:
17832 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
17833 {
17834
17835 NEON_ENCODE (FLOAT, inst);
17836 if (check_simd_pred_availability (1,
17837 NEON_CHECK_CC | NEON_CHECK_ARCH8))
17838 return;
17839
17840 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17841 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17842 inst.instruction |= LOW4 (inst.operands[1].reg);
17843 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17844 inst.instruction |= neon_quad (rs) << 6;
17845 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
17846 || flavour == neon_cvt_flavour_u32_f32) << 7;
17847 inst.instruction |= mode << 8;
17848 if (flavour == neon_cvt_flavour_u16_f16
17849 || flavour == neon_cvt_flavour_s16_f16)
17850 /* Mask off the original size bits and reencode them. */
17851 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
17852
17853 if (thumb_mode)
17854 inst.instruction |= 0xfc000000;
17855 else
17856 inst.instruction |= 0xf0000000;
17857 }
17858 else
17859 {
17860 int_encode:
17861 {
17862 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
17863 0x100, 0x180, 0x0, 0x080};
17864
17865 NEON_ENCODE (INTEGER, inst);
17866
17867 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17868 {
17869 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17870 return;
17871 }
17872
17873 if (flavour != neon_cvt_flavour_invalid)
17874 inst.instruction |= enctab[flavour];
17875
17876 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17877 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17878 inst.instruction |= LOW4 (inst.operands[1].reg);
17879 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17880 inst.instruction |= neon_quad (rs) << 6;
17881 if (flavour >= neon_cvt_flavour_s16_f16
17882 && flavour <= neon_cvt_flavour_f16_u16)
17883 /* Half precision. */
17884 inst.instruction |= 1 << 18;
17885 else
17886 inst.instruction |= 2 << 18;
17887
17888 neon_dp_fixup (&inst);
17889 }
17890 }
17891 break;
17892
17893 /* Half-precision conversions for Advanced SIMD -- neon. */
17894 case NS_QD:
17895 case NS_DQ:
17896 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17897 return;
17898
17899 if ((rs == NS_DQ)
17900 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
17901 {
17902 as_bad (_("operand size must match register width"));
17903 break;
17904 }
17905
17906 if ((rs == NS_QD)
17907 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
17908 {
17909 as_bad (_("operand size must match register width"));
17910 break;
17911 }
17912
17913 if (rs == NS_DQ)
17914 inst.instruction = 0x3b60600;
17915 else
17916 inst.instruction = 0x3b60700;
17917
17918 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17919 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17920 inst.instruction |= LOW4 (inst.operands[1].reg);
17921 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17922 neon_dp_fixup (&inst);
17923 break;
17924
17925 default:
17926 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
17927 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
17928 do_vfp_nsyn_cvt (rs, flavour);
17929 else
17930 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
17931 }
17932 }
17933
17934 static void
17935 do_neon_cvtr (void)
17936 {
17937 do_neon_cvt_1 (neon_cvt_mode_x);
17938 }
17939
17940 static void
17941 do_neon_cvt (void)
17942 {
17943 do_neon_cvt_1 (neon_cvt_mode_z);
17944 }
17945
17946 static void
17947 do_neon_cvta (void)
17948 {
17949 do_neon_cvt_1 (neon_cvt_mode_a);
17950 }
17951
17952 static void
17953 do_neon_cvtn (void)
17954 {
17955 do_neon_cvt_1 (neon_cvt_mode_n);
17956 }
17957
17958 static void
17959 do_neon_cvtp (void)
17960 {
17961 do_neon_cvt_1 (neon_cvt_mode_p);
17962 }
17963
17964 static void
17965 do_neon_cvtm (void)
17966 {
17967 do_neon_cvt_1 (neon_cvt_mode_m);
17968 }
17969
17970 static void
17971 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
17972 {
17973 if (is_double)
17974 mark_feature_used (&fpu_vfp_ext_armv8);
17975
17976 encode_arm_vfp_reg (inst.operands[0].reg,
17977 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
17978 encode_arm_vfp_reg (inst.operands[1].reg,
17979 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
17980 inst.instruction |= to ? 0x10000 : 0;
17981 inst.instruction |= t ? 0x80 : 0;
17982 inst.instruction |= is_double ? 0x100 : 0;
17983 do_vfp_cond_or_thumb ();
17984 }
17985
17986 static void
17987 do_neon_cvttb_1 (bfd_boolean t)
17988 {
17989 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
17990 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
17991
17992 if (rs == NS_NULL)
17993 return;
17994 else if (rs == NS_QQ || rs == NS_QQI)
17995 {
17996 int single_to_half = 0;
17997 if (check_simd_pred_availability (1, NEON_CHECK_ARCH))
17998 return;
17999
18000 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18001
18002 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18003 && (flavour == neon_cvt_flavour_u16_f16
18004 || flavour == neon_cvt_flavour_s16_f16
18005 || flavour == neon_cvt_flavour_f16_s16
18006 || flavour == neon_cvt_flavour_f16_u16
18007 || flavour == neon_cvt_flavour_u32_f32
18008 || flavour == neon_cvt_flavour_s32_f32
18009 || flavour == neon_cvt_flavour_f32_s32
18010 || flavour == neon_cvt_flavour_f32_u32))
18011 {
18012 inst.cond = 0xf;
18013 inst.instruction = N_MNEM_vcvt;
18014 set_pred_insn_type (INSIDE_VPT_INSN);
18015 do_neon_cvt_1 (neon_cvt_mode_z);
18016 return;
18017 }
18018 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
18019 single_to_half = 1;
18020 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
18021 {
18022 first_error (BAD_FPU);
18023 return;
18024 }
18025
18026 inst.instruction = 0xee3f0e01;
18027 inst.instruction |= single_to_half << 28;
18028 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18029 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
18030 inst.instruction |= t << 12;
18031 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18032 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
18033 inst.is_neon = 1;
18034 }
18035 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
18036 {
18037 inst.error = NULL;
18038 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
18039 }
18040 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
18041 {
18042 inst.error = NULL;
18043 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
18044 }
18045 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
18046 {
18047 /* The VCVTB and VCVTT instructions with D-register operands
18048 don't work for SP only targets. */
18049 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18050 _(BAD_FPU));
18051
18052 inst.error = NULL;
18053 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
18054 }
18055 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
18056 {
18057 /* The VCVTB and VCVTT instructions with D-register operands
18058 don't work for SP only targets. */
18059 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18060 _(BAD_FPU));
18061
18062 inst.error = NULL;
18063 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
18064 }
18065 else
18066 return;
18067 }
18068
18069 static void
18070 do_neon_cvtb (void)
18071 {
18072 do_neon_cvttb_1 (FALSE);
18073 }
18074
18075
18076 static void
18077 do_neon_cvtt (void)
18078 {
18079 do_neon_cvttb_1 (TRUE);
18080 }
18081
18082 static void
18083 neon_move_immediate (void)
18084 {
18085 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
18086 struct neon_type_el et = neon_check_type (2, rs,
18087 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
18088 unsigned immlo, immhi = 0, immbits;
18089 int op, cmode, float_p;
18090
18091 constraint (et.type == NT_invtype,
18092 _("operand size must be specified for immediate VMOV"));
18093
18094 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
18095 op = (inst.instruction & (1 << 5)) != 0;
18096
18097 immlo = inst.operands[1].imm;
18098 if (inst.operands[1].regisimm)
18099 immhi = inst.operands[1].reg;
18100
18101 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
18102 _("immediate has bits set outside the operand size"));
18103
18104 float_p = inst.operands[1].immisfloat;
18105
18106 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
18107 et.size, et.type)) == FAIL)
18108 {
18109 /* Invert relevant bits only. */
18110 neon_invert_size (&immlo, &immhi, et.size);
18111 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
18112 with one or the other; those cases are caught by
18113 neon_cmode_for_move_imm. */
18114 op = !op;
18115 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
18116 &op, et.size, et.type)) == FAIL)
18117 {
18118 first_error (_("immediate out of range"));
18119 return;
18120 }
18121 }
18122
18123 inst.instruction &= ~(1 << 5);
18124 inst.instruction |= op << 5;
18125
18126 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18127 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18128 inst.instruction |= neon_quad (rs) << 6;
18129 inst.instruction |= cmode << 8;
18130
18131 neon_write_immbits (immbits);
18132 }
18133
18134 static void
18135 do_neon_mvn (void)
18136 {
18137 if (inst.operands[1].isreg)
18138 {
18139 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18140
18141 NEON_ENCODE (INTEGER, inst);
18142 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18143 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18144 inst.instruction |= LOW4 (inst.operands[1].reg);
18145 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18146 inst.instruction |= neon_quad (rs) << 6;
18147 }
18148 else
18149 {
18150 NEON_ENCODE (IMMED, inst);
18151 neon_move_immediate ();
18152 }
18153
18154 neon_dp_fixup (&inst);
18155 }
18156
18157 /* Encode instructions of form:
18158
18159 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
18160 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
18161
18162 static void
18163 neon_mixed_length (struct neon_type_el et, unsigned size)
18164 {
18165 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18166 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18167 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18168 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18169 inst.instruction |= LOW4 (inst.operands[2].reg);
18170 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18171 inst.instruction |= (et.type == NT_unsigned) << 24;
18172 inst.instruction |= neon_logbits (size) << 20;
18173
18174 neon_dp_fixup (&inst);
18175 }
18176
18177 static void
18178 do_neon_dyadic_long (void)
18179 {
18180 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
18181 if (rs == NS_QDD)
18182 {
18183 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
18184 return;
18185
18186 NEON_ENCODE (INTEGER, inst);
18187 /* FIXME: Type checking for lengthening op. */
18188 struct neon_type_el et = neon_check_type (3, NS_QDD,
18189 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
18190 neon_mixed_length (et, et.size);
18191 }
18192 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18193 && (inst.cond == 0xf || inst.cond == 0x10))
18194 {
18195 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
18196 in an IT block with le/lt conditions. */
18197
18198 if (inst.cond == 0xf)
18199 inst.cond = 0xb;
18200 else if (inst.cond == 0x10)
18201 inst.cond = 0xd;
18202
18203 inst.pred_insn_type = INSIDE_IT_INSN;
18204
18205 if (inst.instruction == N_MNEM_vaddl)
18206 {
18207 inst.instruction = N_MNEM_vadd;
18208 do_neon_addsub_if_i ();
18209 }
18210 else if (inst.instruction == N_MNEM_vsubl)
18211 {
18212 inst.instruction = N_MNEM_vsub;
18213 do_neon_addsub_if_i ();
18214 }
18215 else if (inst.instruction == N_MNEM_vabdl)
18216 {
18217 inst.instruction = N_MNEM_vabd;
18218 do_neon_dyadic_if_su ();
18219 }
18220 }
18221 else
18222 first_error (BAD_FPU);
18223 }
18224
18225 static void
18226 do_neon_abal (void)
18227 {
18228 struct neon_type_el et = neon_check_type (3, NS_QDD,
18229 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
18230 neon_mixed_length (et, et.size);
18231 }
18232
18233 static void
18234 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
18235 {
18236 if (inst.operands[2].isscalar)
18237 {
18238 struct neon_type_el et = neon_check_type (3, NS_QDS,
18239 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
18240 NEON_ENCODE (SCALAR, inst);
18241 neon_mul_mac (et, et.type == NT_unsigned);
18242 }
18243 else
18244 {
18245 struct neon_type_el et = neon_check_type (3, NS_QDD,
18246 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
18247 NEON_ENCODE (INTEGER, inst);
18248 neon_mixed_length (et, et.size);
18249 }
18250 }
18251
18252 static void
18253 do_neon_mac_maybe_scalar_long (void)
18254 {
18255 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
18256 }
18257
18258 /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
18259 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
18260
18261 static unsigned
18262 neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
18263 {
18264 unsigned regno = NEON_SCALAR_REG (scalar);
18265 unsigned elno = NEON_SCALAR_INDEX (scalar);
18266
18267 if (quad_p)
18268 {
18269 if (regno > 7 || elno > 3)
18270 goto bad_scalar;
18271
18272 return ((regno & 0x7)
18273 | ((elno & 0x1) << 3)
18274 | (((elno >> 1) & 0x1) << 5));
18275 }
18276 else
18277 {
18278 if (regno > 15 || elno > 1)
18279 goto bad_scalar;
18280
18281 return (((regno & 0x1) << 5)
18282 | ((regno >> 1) & 0x7)
18283 | ((elno & 0x1) << 3));
18284 }
18285
18286 bad_scalar:
18287 first_error (_("scalar out of range for multiply instruction"));
18288 return 0;
18289 }
18290
18291 static void
18292 do_neon_fmac_maybe_scalar_long (int subtype)
18293 {
18294 enum neon_shape rs;
18295 int high8;
18296 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
18297 field (bits[21:20]) has different meaning. For scalar index variant, it's
18298 used to differentiate add and subtract, otherwise it's with fixed value
18299 0x2. */
18300 int size = -1;
18301
18302 if (inst.cond != COND_ALWAYS)
18303 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
18304 "behaviour is UNPREDICTABLE"));
18305
18306 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
18307 _(BAD_FP16));
18308
18309 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
18310 _(BAD_FPU));
18311
18312 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
18313 be a scalar index register. */
18314 if (inst.operands[2].isscalar)
18315 {
18316 high8 = 0xfe000000;
18317 if (subtype)
18318 size = 16;
18319 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
18320 }
18321 else
18322 {
18323 high8 = 0xfc000000;
18324 size = 32;
18325 if (subtype)
18326 inst.instruction |= (0x1 << 23);
18327 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
18328 }
18329
18330 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
18331
18332 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
18333 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
18334 so we simply pass -1 as size. */
18335 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
18336 neon_three_same (quad_p, 0, size);
18337
18338 /* Undo neon_dp_fixup. Redo the high eight bits. */
18339 inst.instruction &= 0x00ffffff;
18340 inst.instruction |= high8;
18341
18342 #define LOW1(R) ((R) & 0x1)
18343 #define HI4(R) (((R) >> 1) & 0xf)
18344 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
18345 whether the instruction is in Q form and whether Vm is a scalar indexed
18346 operand. */
18347 if (inst.operands[2].isscalar)
18348 {
18349 unsigned rm
18350 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
18351 inst.instruction &= 0xffffffd0;
18352 inst.instruction |= rm;
18353
18354 if (!quad_p)
18355 {
18356 /* Redo Rn as well. */
18357 inst.instruction &= 0xfff0ff7f;
18358 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18359 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18360 }
18361 }
18362 else if (!quad_p)
18363 {
18364 /* Redo Rn and Rm. */
18365 inst.instruction &= 0xfff0ff50;
18366 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18367 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18368 inst.instruction |= HI4 (inst.operands[2].reg);
18369 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
18370 }
18371 }
18372
18373 static void
18374 do_neon_vfmal (void)
18375 {
18376 return do_neon_fmac_maybe_scalar_long (0);
18377 }
18378
18379 static void
18380 do_neon_vfmsl (void)
18381 {
18382 return do_neon_fmac_maybe_scalar_long (1);
18383 }
18384
18385 static void
18386 do_neon_dyadic_wide (void)
18387 {
18388 struct neon_type_el et = neon_check_type (3, NS_QQD,
18389 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
18390 neon_mixed_length (et, et.size);
18391 }
18392
18393 static void
18394 do_neon_dyadic_narrow (void)
18395 {
18396 struct neon_type_el et = neon_check_type (3, NS_QDD,
18397 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
18398 /* Operand sign is unimportant, and the U bit is part of the opcode,
18399 so force the operand type to integer. */
18400 et.type = NT_integer;
18401 neon_mixed_length (et, et.size / 2);
18402 }
18403
18404 static void
18405 do_neon_mul_sat_scalar_long (void)
18406 {
18407 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
18408 }
18409
18410 static void
18411 do_neon_vmull (void)
18412 {
18413 if (inst.operands[2].isscalar)
18414 do_neon_mac_maybe_scalar_long ();
18415 else
18416 {
18417 struct neon_type_el et = neon_check_type (3, NS_QDD,
18418 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
18419
18420 if (et.type == NT_poly)
18421 NEON_ENCODE (POLY, inst);
18422 else
18423 NEON_ENCODE (INTEGER, inst);
18424
18425 /* For polynomial encoding the U bit must be zero, and the size must
18426 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
18427 obviously, as 0b10). */
18428 if (et.size == 64)
18429 {
18430 /* Check we're on the correct architecture. */
18431 if (!mark_feature_used (&fpu_crypto_ext_armv8))
18432 inst.error =
18433 _("Instruction form not available on this architecture.");
18434
18435 et.size = 32;
18436 }
18437
18438 neon_mixed_length (et, et.size);
18439 }
18440 }
18441
18442 static void
18443 do_neon_ext (void)
18444 {
18445 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
18446 struct neon_type_el et = neon_check_type (3, rs,
18447 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18448 unsigned imm = (inst.operands[3].imm * et.size) / 8;
18449
18450 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
18451 _("shift out of range"));
18452 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18453 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18454 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18455 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18456 inst.instruction |= LOW4 (inst.operands[2].reg);
18457 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18458 inst.instruction |= neon_quad (rs) << 6;
18459 inst.instruction |= imm << 8;
18460
18461 neon_dp_fixup (&inst);
18462 }
18463
18464 static void
18465 do_neon_rev (void)
18466 {
18467 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18468 struct neon_type_el et = neon_check_type (2, rs,
18469 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18470 unsigned op = (inst.instruction >> 7) & 3;
18471 /* N (width of reversed regions) is encoded as part of the bitmask. We
18472 extract it here to check the elements to be reversed are smaller.
18473 Otherwise we'd get a reserved instruction. */
18474 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
18475 gas_assert (elsize != 0);
18476 constraint (et.size >= elsize,
18477 _("elements must be smaller than reversal region"));
18478 neon_two_same (neon_quad (rs), 1, et.size);
18479 }
18480
18481 static void
18482 do_neon_dup (void)
18483 {
18484 if (inst.operands[1].isscalar)
18485 {
18486 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
18487 BAD_FPU);
18488 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
18489 struct neon_type_el et = neon_check_type (2, rs,
18490 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18491 unsigned sizebits = et.size >> 3;
18492 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
18493 int logsize = neon_logbits (et.size);
18494 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
18495
18496 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
18497 return;
18498
18499 NEON_ENCODE (SCALAR, inst);
18500 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18501 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18502 inst.instruction |= LOW4 (dm);
18503 inst.instruction |= HI1 (dm) << 5;
18504 inst.instruction |= neon_quad (rs) << 6;
18505 inst.instruction |= x << 17;
18506 inst.instruction |= sizebits << 16;
18507
18508 neon_dp_fixup (&inst);
18509 }
18510 else
18511 {
18512 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
18513 struct neon_type_el et = neon_check_type (2, rs,
18514 N_8 | N_16 | N_32 | N_KEY, N_EQK);
18515 if (rs == NS_QR)
18516 {
18517 if (check_simd_pred_availability (0, NEON_CHECK_ARCH))
18518 return;
18519 }
18520 else
18521 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
18522 BAD_FPU);
18523
18524 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18525 {
18526 if (inst.operands[1].reg == REG_SP)
18527 as_tsktsk (MVE_BAD_SP);
18528 else if (inst.operands[1].reg == REG_PC)
18529 as_tsktsk (MVE_BAD_PC);
18530 }
18531
18532 /* Duplicate ARM register to lanes of vector. */
18533 NEON_ENCODE (ARMREG, inst);
18534 switch (et.size)
18535 {
18536 case 8: inst.instruction |= 0x400000; break;
18537 case 16: inst.instruction |= 0x000020; break;
18538 case 32: inst.instruction |= 0x000000; break;
18539 default: break;
18540 }
18541 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
18542 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
18543 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
18544 inst.instruction |= neon_quad (rs) << 21;
18545 /* The encoding for this instruction is identical for the ARM and Thumb
18546 variants, except for the condition field. */
18547 do_vfp_cond_or_thumb ();
18548 }
18549 }
18550
18551 static void
18552 do_mve_mov (int toQ)
18553 {
18554 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18555 return;
18556 if (inst.cond > COND_ALWAYS)
18557 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
18558
18559 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
18560 if (toQ)
18561 {
18562 Q0 = 0;
18563 Q1 = 1;
18564 Rt = 2;
18565 Rt2 = 3;
18566 }
18567
18568 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
18569 _("Index one must be [2,3] and index two must be two less than"
18570 " index one."));
18571 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
18572 _("General purpose registers may not be the same"));
18573 constraint (inst.operands[Rt].reg == REG_SP
18574 || inst.operands[Rt2].reg == REG_SP,
18575 BAD_SP);
18576 constraint (inst.operands[Rt].reg == REG_PC
18577 || inst.operands[Rt2].reg == REG_PC,
18578 BAD_PC);
18579
18580 inst.instruction = 0xec000f00;
18581 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
18582 inst.instruction |= !!toQ << 20;
18583 inst.instruction |= inst.operands[Rt2].reg << 16;
18584 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
18585 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
18586 inst.instruction |= inst.operands[Rt].reg;
18587 }
18588
18589 static void
18590 do_mve_movn (void)
18591 {
18592 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18593 return;
18594
18595 if (inst.cond > COND_ALWAYS)
18596 inst.pred_insn_type = INSIDE_VPT_INSN;
18597 else
18598 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18599
18600 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
18601 | N_KEY);
18602
18603 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18604 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
18605 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18606 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18607 inst.instruction |= LOW4 (inst.operands[1].reg);
18608 inst.is_neon = 1;
18609
18610 }
18611
18612 /* VMOV has particularly many variations. It can be one of:
18613 0. VMOV<c><q> <Qd>, <Qm>
18614 1. VMOV<c><q> <Dd>, <Dm>
18615 (Register operations, which are VORR with Rm = Rn.)
18616 2. VMOV<c><q>.<dt> <Qd>, #<imm>
18617 3. VMOV<c><q>.<dt> <Dd>, #<imm>
18618 (Immediate loads.)
18619 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
18620 (ARM register to scalar.)
18621 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
18622 (Two ARM registers to vector.)
18623 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
18624 (Scalar to ARM register.)
18625 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
18626 (Vector to two ARM registers.)
18627 8. VMOV.F32 <Sd>, <Sm>
18628 9. VMOV.F64 <Dd>, <Dm>
18629 (VFP register moves.)
18630 10. VMOV.F32 <Sd>, #imm
18631 11. VMOV.F64 <Dd>, #imm
18632 (VFP float immediate load.)
18633 12. VMOV <Rd>, <Sm>
18634 (VFP single to ARM reg.)
18635 13. VMOV <Sd>, <Rm>
18636 (ARM reg to VFP single.)
18637 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
18638 (Two ARM regs to two VFP singles.)
18639 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
18640 (Two VFP singles to two ARM regs.)
18641 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
18642 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
18643 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
18644 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
18645
18646 These cases can be disambiguated using neon_select_shape, except cases 1/9
18647 and 3/11 which depend on the operand type too.
18648
18649 All the encoded bits are hardcoded by this function.
18650
18651 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
18652 Cases 5, 7 may be used with VFPv2 and above.
18653
18654 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
18655 can specify a type where it doesn't make sense to, and is ignored). */
18656
18657 static void
18658 do_neon_mov (void)
18659 {
18660 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
18661 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
18662 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
18663 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
18664 NS_NULL);
18665 struct neon_type_el et;
18666 const char *ldconst = 0;
18667
18668 switch (rs)
18669 {
18670 case NS_DD: /* case 1/9. */
18671 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
18672 /* It is not an error here if no type is given. */
18673 inst.error = NULL;
18674 if (et.type == NT_float && et.size == 64)
18675 {
18676 do_vfp_nsyn_opcode ("fcpyd");
18677 break;
18678 }
18679 /* fall through. */
18680
18681 case NS_QQ: /* case 0/1. */
18682 {
18683 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
18684 return;
18685 /* The architecture manual I have doesn't explicitly state which
18686 value the U bit should have for register->register moves, but
18687 the equivalent VORR instruction has U = 0, so do that. */
18688 inst.instruction = 0x0200110;
18689 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18690 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18691 inst.instruction |= LOW4 (inst.operands[1].reg);
18692 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18693 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18694 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18695 inst.instruction |= neon_quad (rs) << 6;
18696
18697 neon_dp_fixup (&inst);
18698 }
18699 break;
18700
18701 case NS_DI: /* case 3/11. */
18702 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
18703 inst.error = NULL;
18704 if (et.type == NT_float && et.size == 64)
18705 {
18706 /* case 11 (fconstd). */
18707 ldconst = "fconstd";
18708 goto encode_fconstd;
18709 }
18710 /* fall through. */
18711
18712 case NS_QI: /* case 2/3. */
18713 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
18714 return;
18715 inst.instruction = 0x0800010;
18716 neon_move_immediate ();
18717 neon_dp_fixup (&inst);
18718 break;
18719
18720 case NS_SR: /* case 4. */
18721 {
18722 unsigned bcdebits = 0;
18723 int logsize;
18724 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
18725 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
18726
18727 /* .<size> is optional here, defaulting to .32. */
18728 if (inst.vectype.elems == 0
18729 && inst.operands[0].vectype.type == NT_invtype
18730 && inst.operands[1].vectype.type == NT_invtype)
18731 {
18732 inst.vectype.el[0].type = NT_untyped;
18733 inst.vectype.el[0].size = 32;
18734 inst.vectype.elems = 1;
18735 }
18736
18737 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
18738 logsize = neon_logbits (et.size);
18739
18740 if (et.size != 32)
18741 {
18742 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18743 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
18744 return;
18745 }
18746 else
18747 {
18748 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
18749 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18750 _(BAD_FPU));
18751 }
18752
18753 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18754 {
18755 if (inst.operands[1].reg == REG_SP)
18756 as_tsktsk (MVE_BAD_SP);
18757 else if (inst.operands[1].reg == REG_PC)
18758 as_tsktsk (MVE_BAD_PC);
18759 }
18760 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
18761
18762 constraint (et.type == NT_invtype, _("bad type for scalar"));
18763 constraint (x >= size / et.size, _("scalar index out of range"));
18764
18765
18766 switch (et.size)
18767 {
18768 case 8: bcdebits = 0x8; break;
18769 case 16: bcdebits = 0x1; break;
18770 case 32: bcdebits = 0x0; break;
18771 default: ;
18772 }
18773
18774 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
18775
18776 inst.instruction = 0xe000b10;
18777 do_vfp_cond_or_thumb ();
18778 inst.instruction |= LOW4 (dn) << 16;
18779 inst.instruction |= HI1 (dn) << 7;
18780 inst.instruction |= inst.operands[1].reg << 12;
18781 inst.instruction |= (bcdebits & 3) << 5;
18782 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
18783 inst.instruction |= (x >> (3-logsize)) << 16;
18784 }
18785 break;
18786
18787 case NS_DRR: /* case 5 (fmdrr). */
18788 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18789 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18790 _(BAD_FPU));
18791
18792 inst.instruction = 0xc400b10;
18793 do_vfp_cond_or_thumb ();
18794 inst.instruction |= LOW4 (inst.operands[0].reg);
18795 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
18796 inst.instruction |= inst.operands[1].reg << 12;
18797 inst.instruction |= inst.operands[2].reg << 16;
18798 break;
18799
18800 case NS_RS: /* case 6. */
18801 {
18802 unsigned logsize;
18803 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
18804 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
18805 unsigned abcdebits = 0;
18806
18807 /* .<dt> is optional here, defaulting to .32. */
18808 if (inst.vectype.elems == 0
18809 && inst.operands[0].vectype.type == NT_invtype
18810 && inst.operands[1].vectype.type == NT_invtype)
18811 {
18812 inst.vectype.el[0].type = NT_untyped;
18813 inst.vectype.el[0].size = 32;
18814 inst.vectype.elems = 1;
18815 }
18816
18817 et = neon_check_type (2, NS_NULL,
18818 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
18819 logsize = neon_logbits (et.size);
18820
18821 if (et.size != 32)
18822 {
18823 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18824 && vfp_or_neon_is_neon (NEON_CHECK_CC
18825 | NEON_CHECK_ARCH) == FAIL)
18826 return;
18827 }
18828 else
18829 {
18830 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
18831 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18832 _(BAD_FPU));
18833 }
18834
18835 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18836 {
18837 if (inst.operands[0].reg == REG_SP)
18838 as_tsktsk (MVE_BAD_SP);
18839 else if (inst.operands[0].reg == REG_PC)
18840 as_tsktsk (MVE_BAD_PC);
18841 }
18842
18843 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
18844
18845 constraint (et.type == NT_invtype, _("bad type for scalar"));
18846 constraint (x >= size / et.size, _("scalar index out of range"));
18847
18848 switch (et.size)
18849 {
18850 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
18851 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
18852 case 32: abcdebits = 0x00; break;
18853 default: ;
18854 }
18855
18856 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
18857 inst.instruction = 0xe100b10;
18858 do_vfp_cond_or_thumb ();
18859 inst.instruction |= LOW4 (dn) << 16;
18860 inst.instruction |= HI1 (dn) << 7;
18861 inst.instruction |= inst.operands[0].reg << 12;
18862 inst.instruction |= (abcdebits & 3) << 5;
18863 inst.instruction |= (abcdebits >> 2) << 21;
18864 inst.instruction |= (x >> (3-logsize)) << 16;
18865 }
18866 break;
18867
18868 case NS_RRD: /* case 7 (fmrrd). */
18869 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18870 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18871 _(BAD_FPU));
18872
18873 inst.instruction = 0xc500b10;
18874 do_vfp_cond_or_thumb ();
18875 inst.instruction |= inst.operands[0].reg << 12;
18876 inst.instruction |= inst.operands[1].reg << 16;
18877 inst.instruction |= LOW4 (inst.operands[2].reg);
18878 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18879 break;
18880
18881 case NS_FF: /* case 8 (fcpys). */
18882 do_vfp_nsyn_opcode ("fcpys");
18883 break;
18884
18885 case NS_HI:
18886 case NS_FI: /* case 10 (fconsts). */
18887 ldconst = "fconsts";
18888 encode_fconstd:
18889 if (!inst.operands[1].immisfloat)
18890 {
18891 unsigned new_imm;
18892 /* Immediate has to fit in 8 bits so float is enough. */
18893 float imm = (float) inst.operands[1].imm;
18894 memcpy (&new_imm, &imm, sizeof (float));
18895 /* But the assembly may have been written to provide an integer
18896 bit pattern that equates to a float, so check that the
18897 conversion has worked. */
18898 if (is_quarter_float (new_imm))
18899 {
18900 if (is_quarter_float (inst.operands[1].imm))
18901 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
18902
18903 inst.operands[1].imm = new_imm;
18904 inst.operands[1].immisfloat = 1;
18905 }
18906 }
18907
18908 if (is_quarter_float (inst.operands[1].imm))
18909 {
18910 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
18911 do_vfp_nsyn_opcode (ldconst);
18912
18913 /* ARMv8.2 fp16 vmov.f16 instruction. */
18914 if (rs == NS_HI)
18915 do_scalar_fp16_v82_encode ();
18916 }
18917 else
18918 first_error (_("immediate out of range"));
18919 break;
18920
18921 case NS_RH:
18922 case NS_RF: /* case 12 (fmrs). */
18923 do_vfp_nsyn_opcode ("fmrs");
18924 /* ARMv8.2 fp16 vmov.f16 instruction. */
18925 if (rs == NS_RH)
18926 do_scalar_fp16_v82_encode ();
18927 break;
18928
18929 case NS_HR:
18930 case NS_FR: /* case 13 (fmsr). */
18931 do_vfp_nsyn_opcode ("fmsr");
18932 /* ARMv8.2 fp16 vmov.f16 instruction. */
18933 if (rs == NS_HR)
18934 do_scalar_fp16_v82_encode ();
18935 break;
18936
18937 case NS_RRSS:
18938 do_mve_mov (0);
18939 break;
18940 case NS_SSRR:
18941 do_mve_mov (1);
18942 break;
18943
18944 /* The encoders for the fmrrs and fmsrr instructions expect three operands
18945 (one of which is a list), but we have parsed four. Do some fiddling to
18946 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
18947 expect. */
18948 case NS_RRFF: /* case 14 (fmrrs). */
18949 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18950 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18951 _(BAD_FPU));
18952 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
18953 _("VFP registers must be adjacent"));
18954 inst.operands[2].imm = 2;
18955 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
18956 do_vfp_nsyn_opcode ("fmrrs");
18957 break;
18958
18959 case NS_FFRR: /* case 15 (fmsrr). */
18960 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18961 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18962 _(BAD_FPU));
18963 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
18964 _("VFP registers must be adjacent"));
18965 inst.operands[1] = inst.operands[2];
18966 inst.operands[2] = inst.operands[3];
18967 inst.operands[0].imm = 2;
18968 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
18969 do_vfp_nsyn_opcode ("fmsrr");
18970 break;
18971
18972 case NS_NULL:
18973 /* neon_select_shape has determined that the instruction
18974 shape is wrong and has already set the error message. */
18975 break;
18976
18977 default:
18978 abort ();
18979 }
18980 }
18981
18982 static void
18983 do_mve_movl (void)
18984 {
18985 if (!(inst.operands[0].present && inst.operands[0].isquad
18986 && inst.operands[1].present && inst.operands[1].isquad
18987 && !inst.operands[2].present))
18988 {
18989 inst.instruction = 0;
18990 inst.cond = 0xb;
18991 if (thumb_mode)
18992 set_pred_insn_type (INSIDE_IT_INSN);
18993 do_neon_mov ();
18994 return;
18995 }
18996
18997 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18998 return;
18999
19000 if (inst.cond != COND_ALWAYS)
19001 inst.pred_insn_type = INSIDE_VPT_INSN;
19002
19003 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
19004 | N_S16 | N_U16 | N_KEY);
19005
19006 inst.instruction |= (et.type == NT_unsigned) << 28;
19007 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19008 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
19009 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19010 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19011 inst.instruction |= LOW4 (inst.operands[1].reg);
19012 inst.is_neon = 1;
19013 }
19014
19015 static void
19016 do_neon_rshift_round_imm (void)
19017 {
19018 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
19019 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
19020 int imm = inst.operands[2].imm;
19021
19022 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
19023 if (imm == 0)
19024 {
19025 inst.operands[2].present = 0;
19026 do_neon_mov ();
19027 return;
19028 }
19029
19030 constraint (imm < 1 || (unsigned)imm > et.size,
19031 _("immediate out of range for shift"));
19032 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
19033 et.size - imm);
19034 }
19035
19036 static void
19037 do_neon_movhf (void)
19038 {
19039 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
19040 constraint (rs != NS_HH, _("invalid suffix"));
19041
19042 if (inst.cond != COND_ALWAYS)
19043 {
19044 if (thumb_mode)
19045 {
19046 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
19047 " the behaviour is UNPREDICTABLE"));
19048 }
19049 else
19050 {
19051 inst.error = BAD_COND;
19052 return;
19053 }
19054 }
19055
19056 do_vfp_sp_monadic ();
19057
19058 inst.is_neon = 1;
19059 inst.instruction |= 0xf0000000;
19060 }
19061
19062 static void
19063 do_neon_movl (void)
19064 {
19065 struct neon_type_el et = neon_check_type (2, NS_QD,
19066 N_EQK | N_DBL, N_SU_32 | N_KEY);
19067 unsigned sizebits = et.size >> 3;
19068 inst.instruction |= sizebits << 19;
19069 neon_two_same (0, et.type == NT_unsigned, -1);
19070 }
19071
19072 static void
19073 do_neon_trn (void)
19074 {
19075 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19076 struct neon_type_el et = neon_check_type (2, rs,
19077 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19078 NEON_ENCODE (INTEGER, inst);
19079 neon_two_same (neon_quad (rs), 1, et.size);
19080 }
19081
19082 static void
19083 do_neon_zip_uzp (void)
19084 {
19085 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19086 struct neon_type_el et = neon_check_type (2, rs,
19087 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19088 if (rs == NS_DD && et.size == 32)
19089 {
19090 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
19091 inst.instruction = N_MNEM_vtrn;
19092 do_neon_trn ();
19093 return;
19094 }
19095 neon_two_same (neon_quad (rs), 1, et.size);
19096 }
19097
19098 static void
19099 do_neon_sat_abs_neg (void)
19100 {
19101 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19102 struct neon_type_el et = neon_check_type (2, rs,
19103 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
19104 neon_two_same (neon_quad (rs), 1, et.size);
19105 }
19106
19107 static void
19108 do_neon_pair_long (void)
19109 {
19110 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19111 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
19112 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
19113 inst.instruction |= (et.type == NT_unsigned) << 7;
19114 neon_two_same (neon_quad (rs), 1, et.size);
19115 }
19116
19117 static void
19118 do_neon_recip_est (void)
19119 {
19120 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19121 struct neon_type_el et = neon_check_type (2, rs,
19122 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
19123 inst.instruction |= (et.type == NT_float) << 8;
19124 neon_two_same (neon_quad (rs), 1, et.size);
19125 }
19126
19127 static void
19128 do_neon_cls (void)
19129 {
19130 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19131 return;
19132
19133 enum neon_shape rs;
19134 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19135 rs = neon_select_shape (NS_QQ, NS_NULL);
19136 else
19137 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19138
19139 struct neon_type_el et = neon_check_type (2, rs,
19140 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
19141 neon_two_same (neon_quad (rs), 1, et.size);
19142 }
19143
19144 static void
19145 do_neon_clz (void)
19146 {
19147 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19148 return;
19149
19150 enum neon_shape rs;
19151 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19152 rs = neon_select_shape (NS_QQ, NS_NULL);
19153 else
19154 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19155
19156 struct neon_type_el et = neon_check_type (2, rs,
19157 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
19158 neon_two_same (neon_quad (rs), 1, et.size);
19159 }
19160
19161 static void
19162 do_neon_cnt (void)
19163 {
19164 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19165 struct neon_type_el et = neon_check_type (2, rs,
19166 N_EQK | N_INT, N_8 | N_KEY);
19167 neon_two_same (neon_quad (rs), 1, et.size);
19168 }
19169
19170 static void
19171 do_neon_swp (void)
19172 {
19173 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19174 neon_two_same (neon_quad (rs), 1, -1);
19175 }
19176
19177 static void
19178 do_neon_tbl_tbx (void)
19179 {
19180 unsigned listlenbits;
19181 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
19182
19183 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
19184 {
19185 first_error (_("bad list length for table lookup"));
19186 return;
19187 }
19188
19189 listlenbits = inst.operands[1].imm - 1;
19190 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19191 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19192 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19193 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19194 inst.instruction |= LOW4 (inst.operands[2].reg);
19195 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19196 inst.instruction |= listlenbits << 8;
19197
19198 neon_dp_fixup (&inst);
19199 }
19200
19201 static void
19202 do_neon_ldm_stm (void)
19203 {
19204 /* P, U and L bits are part of bitmask. */
19205 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
19206 unsigned offsetbits = inst.operands[1].imm * 2;
19207
19208 if (inst.operands[1].issingle)
19209 {
19210 do_vfp_nsyn_ldm_stm (is_dbmode);
19211 return;
19212 }
19213
19214 constraint (is_dbmode && !inst.operands[0].writeback,
19215 _("writeback (!) must be used for VLDMDB and VSTMDB"));
19216
19217 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
19218 _("register list must contain at least 1 and at most 16 "
19219 "registers"));
19220
19221 inst.instruction |= inst.operands[0].reg << 16;
19222 inst.instruction |= inst.operands[0].writeback << 21;
19223 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19224 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
19225
19226 inst.instruction |= offsetbits;
19227
19228 do_vfp_cond_or_thumb ();
19229 }
19230
19231 static void
19232 do_neon_ldr_str (void)
19233 {
19234 int is_ldr = (inst.instruction & (1 << 20)) != 0;
19235
19236 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
19237 And is UNPREDICTABLE in thumb mode. */
19238 if (!is_ldr
19239 && inst.operands[1].reg == REG_PC
19240 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
19241 {
19242 if (thumb_mode)
19243 inst.error = _("Use of PC here is UNPREDICTABLE");
19244 else if (warn_on_deprecated)
19245 as_tsktsk (_("Use of PC here is deprecated"));
19246 }
19247
19248 if (inst.operands[0].issingle)
19249 {
19250 if (is_ldr)
19251 do_vfp_nsyn_opcode ("flds");
19252 else
19253 do_vfp_nsyn_opcode ("fsts");
19254
19255 /* ARMv8.2 vldr.16/vstr.16 instruction. */
19256 if (inst.vectype.el[0].size == 16)
19257 do_scalar_fp16_v82_encode ();
19258 }
19259 else
19260 {
19261 if (is_ldr)
19262 do_vfp_nsyn_opcode ("fldd");
19263 else
19264 do_vfp_nsyn_opcode ("fstd");
19265 }
19266 }
19267
19268 static void
19269 do_t_vldr_vstr_sysreg (void)
19270 {
19271 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
19272 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
19273
19274 /* Use of PC is UNPREDICTABLE. */
19275 if (inst.operands[1].reg == REG_PC)
19276 inst.error = _("Use of PC here is UNPREDICTABLE");
19277
19278 if (inst.operands[1].immisreg)
19279 inst.error = _("instruction does not accept register index");
19280
19281 if (!inst.operands[1].isreg)
19282 inst.error = _("instruction does not accept PC-relative addressing");
19283
19284 if (abs (inst.operands[1].imm) >= (1 << 7))
19285 inst.error = _("immediate value out of range");
19286
19287 inst.instruction = 0xec000f80;
19288 if (is_vldr)
19289 inst.instruction |= 1 << sysreg_vldr_bitno;
19290 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
19291 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
19292 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
19293 }
19294
19295 static void
19296 do_vldr_vstr (void)
19297 {
19298 bfd_boolean sysreg_op = !inst.operands[0].isreg;
19299
19300 /* VLDR/VSTR (System Register). */
19301 if (sysreg_op)
19302 {
19303 if (!mark_feature_used (&arm_ext_v8_1m_main))
19304 as_bad (_("Instruction not permitted on this architecture"));
19305
19306 do_t_vldr_vstr_sysreg ();
19307 }
19308 /* VLDR/VSTR. */
19309 else
19310 {
19311 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
19312 as_bad (_("Instruction not permitted on this architecture"));
19313 do_neon_ldr_str ();
19314 }
19315 }
19316
19317 /* "interleave" version also handles non-interleaving register VLD1/VST1
19318 instructions. */
19319
19320 static void
19321 do_neon_ld_st_interleave (void)
19322 {
19323 struct neon_type_el et = neon_check_type (1, NS_NULL,
19324 N_8 | N_16 | N_32 | N_64);
19325 unsigned alignbits = 0;
19326 unsigned idx;
19327 /* The bits in this table go:
19328 0: register stride of one (0) or two (1)
19329 1,2: register list length, minus one (1, 2, 3, 4).
19330 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
19331 We use -1 for invalid entries. */
19332 const int typetable[] =
19333 {
19334 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
19335 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
19336 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
19337 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
19338 };
19339 int typebits;
19340
19341 if (et.type == NT_invtype)
19342 return;
19343
19344 if (inst.operands[1].immisalign)
19345 switch (inst.operands[1].imm >> 8)
19346 {
19347 case 64: alignbits = 1; break;
19348 case 128:
19349 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
19350 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19351 goto bad_alignment;
19352 alignbits = 2;
19353 break;
19354 case 256:
19355 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19356 goto bad_alignment;
19357 alignbits = 3;
19358 break;
19359 default:
19360 bad_alignment:
19361 first_error (_("bad alignment"));
19362 return;
19363 }
19364
19365 inst.instruction |= alignbits << 4;
19366 inst.instruction |= neon_logbits (et.size) << 6;
19367
19368 /* Bits [4:6] of the immediate in a list specifier encode register stride
19369 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
19370 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
19371 up the right value for "type" in a table based on this value and the given
19372 list style, then stick it back. */
19373 idx = ((inst.operands[0].imm >> 4) & 7)
19374 | (((inst.instruction >> 8) & 3) << 3);
19375
19376 typebits = typetable[idx];
19377
19378 constraint (typebits == -1, _("bad list type for instruction"));
19379 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
19380 BAD_EL_TYPE);
19381
19382 inst.instruction &= ~0xf00;
19383 inst.instruction |= typebits << 8;
19384 }
19385
19386 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
19387 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
19388 otherwise. The variable arguments are a list of pairs of legal (size, align)
19389 values, terminated with -1. */
19390
19391 static int
19392 neon_alignment_bit (int size, int align, int *do_alignment, ...)
19393 {
19394 va_list ap;
19395 int result = FAIL, thissize, thisalign;
19396
19397 if (!inst.operands[1].immisalign)
19398 {
19399 *do_alignment = 0;
19400 return SUCCESS;
19401 }
19402
19403 va_start (ap, do_alignment);
19404
19405 do
19406 {
19407 thissize = va_arg (ap, int);
19408 if (thissize == -1)
19409 break;
19410 thisalign = va_arg (ap, int);
19411
19412 if (size == thissize && align == thisalign)
19413 result = SUCCESS;
19414 }
19415 while (result != SUCCESS);
19416
19417 va_end (ap);
19418
19419 if (result == SUCCESS)
19420 *do_alignment = 1;
19421 else
19422 first_error (_("unsupported alignment for instruction"));
19423
19424 return result;
19425 }
19426
19427 static void
19428 do_neon_ld_st_lane (void)
19429 {
19430 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
19431 int align_good, do_alignment = 0;
19432 int logsize = neon_logbits (et.size);
19433 int align = inst.operands[1].imm >> 8;
19434 int n = (inst.instruction >> 8) & 3;
19435 int max_el = 64 / et.size;
19436
19437 if (et.type == NT_invtype)
19438 return;
19439
19440 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
19441 _("bad list length"));
19442 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
19443 _("scalar index out of range"));
19444 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
19445 && et.size == 8,
19446 _("stride of 2 unavailable when element size is 8"));
19447
19448 switch (n)
19449 {
19450 case 0: /* VLD1 / VST1. */
19451 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
19452 32, 32, -1);
19453 if (align_good == FAIL)
19454 return;
19455 if (do_alignment)
19456 {
19457 unsigned alignbits = 0;
19458 switch (et.size)
19459 {
19460 case 16: alignbits = 0x1; break;
19461 case 32: alignbits = 0x3; break;
19462 default: ;
19463 }
19464 inst.instruction |= alignbits << 4;
19465 }
19466 break;
19467
19468 case 1: /* VLD2 / VST2. */
19469 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
19470 16, 32, 32, 64, -1);
19471 if (align_good == FAIL)
19472 return;
19473 if (do_alignment)
19474 inst.instruction |= 1 << 4;
19475 break;
19476
19477 case 2: /* VLD3 / VST3. */
19478 constraint (inst.operands[1].immisalign,
19479 _("can't use alignment with this instruction"));
19480 break;
19481
19482 case 3: /* VLD4 / VST4. */
19483 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
19484 16, 64, 32, 64, 32, 128, -1);
19485 if (align_good == FAIL)
19486 return;
19487 if (do_alignment)
19488 {
19489 unsigned alignbits = 0;
19490 switch (et.size)
19491 {
19492 case 8: alignbits = 0x1; break;
19493 case 16: alignbits = 0x1; break;
19494 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
19495 default: ;
19496 }
19497 inst.instruction |= alignbits << 4;
19498 }
19499 break;
19500
19501 default: ;
19502 }
19503
19504 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
19505 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19506 inst.instruction |= 1 << (4 + logsize);
19507
19508 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
19509 inst.instruction |= logsize << 10;
19510 }
19511
19512 /* Encode single n-element structure to all lanes VLD<n> instructions. */
19513
19514 static void
19515 do_neon_ld_dup (void)
19516 {
19517 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
19518 int align_good, do_alignment = 0;
19519
19520 if (et.type == NT_invtype)
19521 return;
19522
19523 switch ((inst.instruction >> 8) & 3)
19524 {
19525 case 0: /* VLD1. */
19526 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
19527 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
19528 &do_alignment, 16, 16, 32, 32, -1);
19529 if (align_good == FAIL)
19530 return;
19531 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
19532 {
19533 case 1: break;
19534 case 2: inst.instruction |= 1 << 5; break;
19535 default: first_error (_("bad list length")); return;
19536 }
19537 inst.instruction |= neon_logbits (et.size) << 6;
19538 break;
19539
19540 case 1: /* VLD2. */
19541 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
19542 &do_alignment, 8, 16, 16, 32, 32, 64,
19543 -1);
19544 if (align_good == FAIL)
19545 return;
19546 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
19547 _("bad list length"));
19548 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19549 inst.instruction |= 1 << 5;
19550 inst.instruction |= neon_logbits (et.size) << 6;
19551 break;
19552
19553 case 2: /* VLD3. */
19554 constraint (inst.operands[1].immisalign,
19555 _("can't use alignment with this instruction"));
19556 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
19557 _("bad list length"));
19558 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19559 inst.instruction |= 1 << 5;
19560 inst.instruction |= neon_logbits (et.size) << 6;
19561 break;
19562
19563 case 3: /* VLD4. */
19564 {
19565 int align = inst.operands[1].imm >> 8;
19566 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
19567 16, 64, 32, 64, 32, 128, -1);
19568 if (align_good == FAIL)
19569 return;
19570 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
19571 _("bad list length"));
19572 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19573 inst.instruction |= 1 << 5;
19574 if (et.size == 32 && align == 128)
19575 inst.instruction |= 0x3 << 6;
19576 else
19577 inst.instruction |= neon_logbits (et.size) << 6;
19578 }
19579 break;
19580
19581 default: ;
19582 }
19583
19584 inst.instruction |= do_alignment << 4;
19585 }
19586
19587 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
19588 apart from bits [11:4]. */
19589
19590 static void
19591 do_neon_ldx_stx (void)
19592 {
19593 if (inst.operands[1].isreg)
19594 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
19595
19596 switch (NEON_LANE (inst.operands[0].imm))
19597 {
19598 case NEON_INTERLEAVE_LANES:
19599 NEON_ENCODE (INTERLV, inst);
19600 do_neon_ld_st_interleave ();
19601 break;
19602
19603 case NEON_ALL_LANES:
19604 NEON_ENCODE (DUP, inst);
19605 if (inst.instruction == N_INV)
19606 {
19607 first_error ("only loads support such operands");
19608 break;
19609 }
19610 do_neon_ld_dup ();
19611 break;
19612
19613 default:
19614 NEON_ENCODE (LANE, inst);
19615 do_neon_ld_st_lane ();
19616 }
19617
19618 /* L bit comes from bit mask. */
19619 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19620 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19621 inst.instruction |= inst.operands[1].reg << 16;
19622
19623 if (inst.operands[1].postind)
19624 {
19625 int postreg = inst.operands[1].imm & 0xf;
19626 constraint (!inst.operands[1].immisreg,
19627 _("post-index must be a register"));
19628 constraint (postreg == 0xd || postreg == 0xf,
19629 _("bad register for post-index"));
19630 inst.instruction |= postreg;
19631 }
19632 else
19633 {
19634 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
19635 constraint (inst.relocs[0].exp.X_op != O_constant
19636 || inst.relocs[0].exp.X_add_number != 0,
19637 BAD_ADDR_MODE);
19638
19639 if (inst.operands[1].writeback)
19640 {
19641 inst.instruction |= 0xd;
19642 }
19643 else
19644 inst.instruction |= 0xf;
19645 }
19646
19647 if (thumb_mode)
19648 inst.instruction |= 0xf9000000;
19649 else
19650 inst.instruction |= 0xf4000000;
19651 }
19652
19653 /* FP v8. */
19654 static void
19655 do_vfp_nsyn_fpv8 (enum neon_shape rs)
19656 {
19657 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
19658 D register operands. */
19659 if (neon_shape_class[rs] == SC_DOUBLE)
19660 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19661 _(BAD_FPU));
19662
19663 NEON_ENCODE (FPV8, inst);
19664
19665 if (rs == NS_FFF || rs == NS_HHH)
19666 {
19667 do_vfp_sp_dyadic ();
19668
19669 /* ARMv8.2 fp16 instruction. */
19670 if (rs == NS_HHH)
19671 do_scalar_fp16_v82_encode ();
19672 }
19673 else
19674 do_vfp_dp_rd_rn_rm ();
19675
19676 if (rs == NS_DDD)
19677 inst.instruction |= 0x100;
19678
19679 inst.instruction |= 0xf0000000;
19680 }
19681
19682 static void
19683 do_vsel (void)
19684 {
19685 set_pred_insn_type (OUTSIDE_PRED_INSN);
19686
19687 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
19688 first_error (_("invalid instruction shape"));
19689 }
19690
19691 static void
19692 do_vmaxnm (void)
19693 {
19694 set_pred_insn_type (OUTSIDE_PRED_INSN);
19695
19696 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
19697 return;
19698
19699 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
19700 return;
19701
19702 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
19703 }
19704
19705 static void
19706 do_vrint_1 (enum neon_cvt_mode mode)
19707 {
19708 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
19709 struct neon_type_el et;
19710
19711 if (rs == NS_NULL)
19712 return;
19713
19714 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
19715 D register operands. */
19716 if (neon_shape_class[rs] == SC_DOUBLE)
19717 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19718 _(BAD_FPU));
19719
19720 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
19721 | N_VFP);
19722 if (et.type != NT_invtype)
19723 {
19724 /* VFP encodings. */
19725 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
19726 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
19727 set_pred_insn_type (OUTSIDE_PRED_INSN);
19728
19729 NEON_ENCODE (FPV8, inst);
19730 if (rs == NS_FF || rs == NS_HH)
19731 do_vfp_sp_monadic ();
19732 else
19733 do_vfp_dp_rd_rm ();
19734
19735 switch (mode)
19736 {
19737 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
19738 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
19739 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
19740 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
19741 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
19742 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
19743 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
19744 default: abort ();
19745 }
19746
19747 inst.instruction |= (rs == NS_DD) << 8;
19748 do_vfp_cond_or_thumb ();
19749
19750 /* ARMv8.2 fp16 vrint instruction. */
19751 if (rs == NS_HH)
19752 do_scalar_fp16_v82_encode ();
19753 }
19754 else
19755 {
19756 /* Neon encodings (or something broken...). */
19757 inst.error = NULL;
19758 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
19759
19760 if (et.type == NT_invtype)
19761 return;
19762
19763 set_pred_insn_type (OUTSIDE_PRED_INSN);
19764 NEON_ENCODE (FLOAT, inst);
19765
19766 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
19767 return;
19768
19769 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19770 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19771 inst.instruction |= LOW4 (inst.operands[1].reg);
19772 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19773 inst.instruction |= neon_quad (rs) << 6;
19774 /* Mask off the original size bits and reencode them. */
19775 inst.instruction = ((inst.instruction & 0xfff3ffff)
19776 | neon_logbits (et.size) << 18);
19777
19778 switch (mode)
19779 {
19780 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
19781 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
19782 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
19783 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
19784 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
19785 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
19786 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
19787 default: abort ();
19788 }
19789
19790 if (thumb_mode)
19791 inst.instruction |= 0xfc000000;
19792 else
19793 inst.instruction |= 0xf0000000;
19794 }
19795 }
19796
19797 static void
19798 do_vrintx (void)
19799 {
19800 do_vrint_1 (neon_cvt_mode_x);
19801 }
19802
19803 static void
19804 do_vrintz (void)
19805 {
19806 do_vrint_1 (neon_cvt_mode_z);
19807 }
19808
19809 static void
19810 do_vrintr (void)
19811 {
19812 do_vrint_1 (neon_cvt_mode_r);
19813 }
19814
19815 static void
19816 do_vrinta (void)
19817 {
19818 do_vrint_1 (neon_cvt_mode_a);
19819 }
19820
19821 static void
19822 do_vrintn (void)
19823 {
19824 do_vrint_1 (neon_cvt_mode_n);
19825 }
19826
19827 static void
19828 do_vrintp (void)
19829 {
19830 do_vrint_1 (neon_cvt_mode_p);
19831 }
19832
19833 static void
19834 do_vrintm (void)
19835 {
19836 do_vrint_1 (neon_cvt_mode_m);
19837 }
19838
19839 static unsigned
19840 neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
19841 {
19842 unsigned regno = NEON_SCALAR_REG (opnd);
19843 unsigned elno = NEON_SCALAR_INDEX (opnd);
19844
19845 if (elsize == 16 && elno < 2 && regno < 16)
19846 return regno | (elno << 4);
19847 else if (elsize == 32 && elno == 0)
19848 return regno;
19849
19850 first_error (_("scalar out of range"));
19851 return 0;
19852 }
19853
19854 static void
19855 do_vcmla (void)
19856 {
19857 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
19858 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
19859 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
19860 constraint (inst.relocs[0].exp.X_op != O_constant,
19861 _("expression too complex"));
19862 unsigned rot = inst.relocs[0].exp.X_add_number;
19863 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
19864 _("immediate out of range"));
19865 rot /= 90;
19866
19867 if (check_simd_pred_availability (1, NEON_CHECK_ARCH8 | NEON_CHECK_CC))
19868 return;
19869
19870 if (inst.operands[2].isscalar)
19871 {
19872 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19873 first_error (_("invalid instruction shape"));
19874 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
19875 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
19876 N_KEY | N_F16 | N_F32).size;
19877 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
19878 inst.is_neon = 1;
19879 inst.instruction = 0xfe000800;
19880 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19881 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19882 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19883 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19884 inst.instruction |= LOW4 (m);
19885 inst.instruction |= HI1 (m) << 5;
19886 inst.instruction |= neon_quad (rs) << 6;
19887 inst.instruction |= rot << 20;
19888 inst.instruction |= (size == 32) << 23;
19889 }
19890 else
19891 {
19892 enum neon_shape rs;
19893 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19894 rs = neon_select_shape (NS_QQQI, NS_NULL);
19895 else
19896 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19897
19898 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
19899 N_KEY | N_F16 | N_F32).size;
19900 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
19901 && (inst.operands[0].reg == inst.operands[1].reg
19902 || inst.operands[0].reg == inst.operands[2].reg))
19903 as_tsktsk (BAD_MVE_SRCDEST);
19904
19905 neon_three_same (neon_quad (rs), 0, -1);
19906 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
19907 inst.instruction |= 0xfc200800;
19908 inst.instruction |= rot << 23;
19909 inst.instruction |= (size == 32) << 20;
19910 }
19911 }
19912
19913 static void
19914 do_vcadd (void)
19915 {
19916 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19917 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
19918 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
19919 constraint (inst.relocs[0].exp.X_op != O_constant,
19920 _("expression too complex"));
19921
19922 unsigned rot = inst.relocs[0].exp.X_add_number;
19923 constraint (rot != 90 && rot != 270, _("immediate out of range"));
19924 enum neon_shape rs;
19925 struct neon_type_el et;
19926 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19927 {
19928 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19929 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
19930 }
19931 else
19932 {
19933 rs = neon_select_shape (NS_QQQI, NS_NULL);
19934 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
19935 | N_I16 | N_I32);
19936 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
19937 as_tsktsk (_("Warning: 32-bit element size and same first and third "
19938 "operand makes instruction UNPREDICTABLE"));
19939 }
19940
19941 if (et.type == NT_invtype)
19942 return;
19943
19944 if (check_simd_pred_availability (et.type == NT_float, NEON_CHECK_ARCH8
19945 | NEON_CHECK_CC))
19946 return;
19947
19948 if (et.type == NT_float)
19949 {
19950 neon_three_same (neon_quad (rs), 0, -1);
19951 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
19952 inst.instruction |= 0xfc800800;
19953 inst.instruction |= (rot == 270) << 24;
19954 inst.instruction |= (et.size == 32) << 20;
19955 }
19956 else
19957 {
19958 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
19959 inst.instruction = 0xfe000f00;
19960 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19961 inst.instruction |= neon_logbits (et.size) << 20;
19962 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19963 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19964 inst.instruction |= (rot == 270) << 12;
19965 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19966 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19967 inst.instruction |= LOW4 (inst.operands[2].reg);
19968 inst.is_neon = 1;
19969 }
19970 }
19971
19972 /* Dot Product instructions encoding support. */
19973
19974 static void
19975 do_neon_dotproduct (int unsigned_p)
19976 {
19977 enum neon_shape rs;
19978 unsigned scalar_oprd2 = 0;
19979 int high8;
19980
19981 if (inst.cond != COND_ALWAYS)
19982 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
19983 "is UNPREDICTABLE"));
19984
19985 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
19986 _(BAD_FPU));
19987
19988 /* Dot Product instructions are in three-same D/Q register format or the third
19989 operand can be a scalar index register. */
19990 if (inst.operands[2].isscalar)
19991 {
19992 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
19993 high8 = 0xfe000000;
19994 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
19995 }
19996 else
19997 {
19998 high8 = 0xfc000000;
19999 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
20000 }
20001
20002 if (unsigned_p)
20003 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
20004 else
20005 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
20006
20007 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
20008 Product instruction, so we pass 0 as the "ubit" parameter. And the
20009 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
20010 neon_three_same (neon_quad (rs), 0, 32);
20011
20012 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
20013 different NEON three-same encoding. */
20014 inst.instruction &= 0x00ffffff;
20015 inst.instruction |= high8;
20016 /* Encode 'U' bit which indicates signedness. */
20017 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
20018 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
20019 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
20020 the instruction encoding. */
20021 if (inst.operands[2].isscalar)
20022 {
20023 inst.instruction &= 0xffffffd0;
20024 inst.instruction |= LOW4 (scalar_oprd2);
20025 inst.instruction |= HI1 (scalar_oprd2) << 5;
20026 }
20027 }
20028
20029 /* Dot Product instructions for signed integer. */
20030
20031 static void
20032 do_neon_dotproduct_s (void)
20033 {
20034 return do_neon_dotproduct (0);
20035 }
20036
20037 /* Dot Product instructions for unsigned integer. */
20038
20039 static void
20040 do_neon_dotproduct_u (void)
20041 {
20042 return do_neon_dotproduct (1);
20043 }
20044
20045 /* Crypto v1 instructions. */
20046 static void
20047 do_crypto_2op_1 (unsigned elttype, int op)
20048 {
20049 set_pred_insn_type (OUTSIDE_PRED_INSN);
20050
20051 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
20052 == NT_invtype)
20053 return;
20054
20055 inst.error = NULL;
20056
20057 NEON_ENCODE (INTEGER, inst);
20058 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20059 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20060 inst.instruction |= LOW4 (inst.operands[1].reg);
20061 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20062 if (op != -1)
20063 inst.instruction |= op << 6;
20064
20065 if (thumb_mode)
20066 inst.instruction |= 0xfc000000;
20067 else
20068 inst.instruction |= 0xf0000000;
20069 }
20070
20071 static void
20072 do_crypto_3op_1 (int u, int op)
20073 {
20074 set_pred_insn_type (OUTSIDE_PRED_INSN);
20075
20076 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
20077 N_32 | N_UNT | N_KEY).type == NT_invtype)
20078 return;
20079
20080 inst.error = NULL;
20081
20082 NEON_ENCODE (INTEGER, inst);
20083 neon_three_same (1, u, 8 << op);
20084 }
20085
20086 static void
20087 do_aese (void)
20088 {
20089 do_crypto_2op_1 (N_8, 0);
20090 }
20091
20092 static void
20093 do_aesd (void)
20094 {
20095 do_crypto_2op_1 (N_8, 1);
20096 }
20097
20098 static void
20099 do_aesmc (void)
20100 {
20101 do_crypto_2op_1 (N_8, 2);
20102 }
20103
20104 static void
20105 do_aesimc (void)
20106 {
20107 do_crypto_2op_1 (N_8, 3);
20108 }
20109
20110 static void
20111 do_sha1c (void)
20112 {
20113 do_crypto_3op_1 (0, 0);
20114 }
20115
20116 static void
20117 do_sha1p (void)
20118 {
20119 do_crypto_3op_1 (0, 1);
20120 }
20121
20122 static void
20123 do_sha1m (void)
20124 {
20125 do_crypto_3op_1 (0, 2);
20126 }
20127
20128 static void
20129 do_sha1su0 (void)
20130 {
20131 do_crypto_3op_1 (0, 3);
20132 }
20133
20134 static void
20135 do_sha256h (void)
20136 {
20137 do_crypto_3op_1 (1, 0);
20138 }
20139
20140 static void
20141 do_sha256h2 (void)
20142 {
20143 do_crypto_3op_1 (1, 1);
20144 }
20145
20146 static void
20147 do_sha256su1 (void)
20148 {
20149 do_crypto_3op_1 (1, 2);
20150 }
20151
20152 static void
20153 do_sha1h (void)
20154 {
20155 do_crypto_2op_1 (N_32, -1);
20156 }
20157
20158 static void
20159 do_sha1su1 (void)
20160 {
20161 do_crypto_2op_1 (N_32, 0);
20162 }
20163
20164 static void
20165 do_sha256su0 (void)
20166 {
20167 do_crypto_2op_1 (N_32, 1);
20168 }
20169
20170 static void
20171 do_crc32_1 (unsigned int poly, unsigned int sz)
20172 {
20173 unsigned int Rd = inst.operands[0].reg;
20174 unsigned int Rn = inst.operands[1].reg;
20175 unsigned int Rm = inst.operands[2].reg;
20176
20177 set_pred_insn_type (OUTSIDE_PRED_INSN);
20178 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
20179 inst.instruction |= LOW4 (Rn) << 16;
20180 inst.instruction |= LOW4 (Rm);
20181 inst.instruction |= sz << (thumb_mode ? 4 : 21);
20182 inst.instruction |= poly << (thumb_mode ? 20 : 9);
20183
20184 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
20185 as_warn (UNPRED_REG ("r15"));
20186 }
20187
20188 static void
20189 do_crc32b (void)
20190 {
20191 do_crc32_1 (0, 0);
20192 }
20193
20194 static void
20195 do_crc32h (void)
20196 {
20197 do_crc32_1 (0, 1);
20198 }
20199
20200 static void
20201 do_crc32w (void)
20202 {
20203 do_crc32_1 (0, 2);
20204 }
20205
20206 static void
20207 do_crc32cb (void)
20208 {
20209 do_crc32_1 (1, 0);
20210 }
20211
20212 static void
20213 do_crc32ch (void)
20214 {
20215 do_crc32_1 (1, 1);
20216 }
20217
20218 static void
20219 do_crc32cw (void)
20220 {
20221 do_crc32_1 (1, 2);
20222 }
20223
20224 static void
20225 do_vjcvt (void)
20226 {
20227 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20228 _(BAD_FPU));
20229 neon_check_type (2, NS_FD, N_S32, N_F64);
20230 do_vfp_sp_dp_cvt ();
20231 do_vfp_cond_or_thumb ();
20232 }
20233
20234 \f
20235 /* Overall per-instruction processing. */
20236
20237 /* We need to be able to fix up arbitrary expressions in some statements.
20238 This is so that we can handle symbols that are an arbitrary distance from
20239 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
20240 which returns part of an address in a form which will be valid for
20241 a data instruction. We do this by pushing the expression into a symbol
20242 in the expr_section, and creating a fix for that. */
20243
20244 static void
20245 fix_new_arm (fragS * frag,
20246 int where,
20247 short int size,
20248 expressionS * exp,
20249 int pc_rel,
20250 int reloc)
20251 {
20252 fixS * new_fix;
20253
20254 switch (exp->X_op)
20255 {
20256 case O_constant:
20257 if (pc_rel)
20258 {
20259 /* Create an absolute valued symbol, so we have something to
20260 refer to in the object file. Unfortunately for us, gas's
20261 generic expression parsing will already have folded out
20262 any use of .set foo/.type foo %function that may have
20263 been used to set type information of the target location,
20264 that's being specified symbolically. We have to presume
20265 the user knows what they are doing. */
20266 char name[16 + 8];
20267 symbolS *symbol;
20268
20269 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
20270
20271 symbol = symbol_find_or_make (name);
20272 S_SET_SEGMENT (symbol, absolute_section);
20273 symbol_set_frag (symbol, &zero_address_frag);
20274 S_SET_VALUE (symbol, exp->X_add_number);
20275 exp->X_op = O_symbol;
20276 exp->X_add_symbol = symbol;
20277 exp->X_add_number = 0;
20278 }
20279 /* FALLTHROUGH */
20280 case O_symbol:
20281 case O_add:
20282 case O_subtract:
20283 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
20284 (enum bfd_reloc_code_real) reloc);
20285 break;
20286
20287 default:
20288 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
20289 pc_rel, (enum bfd_reloc_code_real) reloc);
20290 break;
20291 }
20292
20293 /* Mark whether the fix is to a THUMB instruction, or an ARM
20294 instruction. */
20295 new_fix->tc_fix_data = thumb_mode;
20296 }
20297
20298 /* Create a frg for an instruction requiring relaxation. */
20299 static void
20300 output_relax_insn (void)
20301 {
20302 char * to;
20303 symbolS *sym;
20304 int offset;
20305
20306 /* The size of the instruction is unknown, so tie the debug info to the
20307 start of the instruction. */
20308 dwarf2_emit_insn (0);
20309
20310 switch (inst.relocs[0].exp.X_op)
20311 {
20312 case O_symbol:
20313 sym = inst.relocs[0].exp.X_add_symbol;
20314 offset = inst.relocs[0].exp.X_add_number;
20315 break;
20316 case O_constant:
20317 sym = NULL;
20318 offset = inst.relocs[0].exp.X_add_number;
20319 break;
20320 default:
20321 sym = make_expr_symbol (&inst.relocs[0].exp);
20322 offset = 0;
20323 break;
20324 }
20325 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
20326 inst.relax, sym, offset, NULL/*offset, opcode*/);
20327 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
20328 }
20329
20330 /* Write a 32-bit thumb instruction to buf. */
20331 static void
20332 put_thumb32_insn (char * buf, unsigned long insn)
20333 {
20334 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
20335 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
20336 }
20337
20338 static void
20339 output_inst (const char * str)
20340 {
20341 char * to = NULL;
20342
20343 if (inst.error)
20344 {
20345 as_bad ("%s -- `%s'", inst.error, str);
20346 return;
20347 }
20348 if (inst.relax)
20349 {
20350 output_relax_insn ();
20351 return;
20352 }
20353 if (inst.size == 0)
20354 return;
20355
20356 to = frag_more (inst.size);
20357 /* PR 9814: Record the thumb mode into the current frag so that we know
20358 what type of NOP padding to use, if necessary. We override any previous
20359 setting so that if the mode has changed then the NOPS that we use will
20360 match the encoding of the last instruction in the frag. */
20361 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
20362
20363 if (thumb_mode && (inst.size > THUMB_SIZE))
20364 {
20365 gas_assert (inst.size == (2 * THUMB_SIZE));
20366 put_thumb32_insn (to, inst.instruction);
20367 }
20368 else if (inst.size > INSN_SIZE)
20369 {
20370 gas_assert (inst.size == (2 * INSN_SIZE));
20371 md_number_to_chars (to, inst.instruction, INSN_SIZE);
20372 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
20373 }
20374 else
20375 md_number_to_chars (to, inst.instruction, inst.size);
20376
20377 int r;
20378 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
20379 {
20380 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
20381 fix_new_arm (frag_now, to - frag_now->fr_literal,
20382 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
20383 inst.relocs[r].type);
20384 }
20385
20386 dwarf2_emit_insn (inst.size);
20387 }
20388
20389 static char *
20390 output_it_inst (int cond, int mask, char * to)
20391 {
20392 unsigned long instruction = 0xbf00;
20393
20394 mask &= 0xf;
20395 instruction |= mask;
20396 instruction |= cond << 4;
20397
20398 if (to == NULL)
20399 {
20400 to = frag_more (2);
20401 #ifdef OBJ_ELF
20402 dwarf2_emit_insn (2);
20403 #endif
20404 }
20405
20406 md_number_to_chars (to, instruction, 2);
20407
20408 return to;
20409 }
20410
20411 /* Tag values used in struct asm_opcode's tag field. */
20412 enum opcode_tag
20413 {
20414 OT_unconditional, /* Instruction cannot be conditionalized.
20415 The ARM condition field is still 0xE. */
20416 OT_unconditionalF, /* Instruction cannot be conditionalized
20417 and carries 0xF in its ARM condition field. */
20418 OT_csuffix, /* Instruction takes a conditional suffix. */
20419 OT_csuffixF, /* Some forms of the instruction take a scalar
20420 conditional suffix, others place 0xF where the
20421 condition field would be, others take a vector
20422 conditional suffix. */
20423 OT_cinfix3, /* Instruction takes a conditional infix,
20424 beginning at character index 3. (In
20425 unified mode, it becomes a suffix.) */
20426 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
20427 tsts, cmps, cmns, and teqs. */
20428 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
20429 character index 3, even in unified mode. Used for
20430 legacy instructions where suffix and infix forms
20431 may be ambiguous. */
20432 OT_csuf_or_in3, /* Instruction takes either a conditional
20433 suffix or an infix at character index 3. */
20434 OT_odd_infix_unc, /* This is the unconditional variant of an
20435 instruction that takes a conditional infix
20436 at an unusual position. In unified mode,
20437 this variant will accept a suffix. */
20438 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
20439 are the conditional variants of instructions that
20440 take conditional infixes in unusual positions.
20441 The infix appears at character index
20442 (tag - OT_odd_infix_0). These are not accepted
20443 in unified mode. */
20444 };
20445
20446 /* Subroutine of md_assemble, responsible for looking up the primary
20447 opcode from the mnemonic the user wrote. STR points to the
20448 beginning of the mnemonic.
20449
20450 This is not simply a hash table lookup, because of conditional
20451 variants. Most instructions have conditional variants, which are
20452 expressed with a _conditional affix_ to the mnemonic. If we were
20453 to encode each conditional variant as a literal string in the opcode
20454 table, it would have approximately 20,000 entries.
20455
20456 Most mnemonics take this affix as a suffix, and in unified syntax,
20457 'most' is upgraded to 'all'. However, in the divided syntax, some
20458 instructions take the affix as an infix, notably the s-variants of
20459 the arithmetic instructions. Of those instructions, all but six
20460 have the infix appear after the third character of the mnemonic.
20461
20462 Accordingly, the algorithm for looking up primary opcodes given
20463 an identifier is:
20464
20465 1. Look up the identifier in the opcode table.
20466 If we find a match, go to step U.
20467
20468 2. Look up the last two characters of the identifier in the
20469 conditions table. If we find a match, look up the first N-2
20470 characters of the identifier in the opcode table. If we
20471 find a match, go to step CE.
20472
20473 3. Look up the fourth and fifth characters of the identifier in
20474 the conditions table. If we find a match, extract those
20475 characters from the identifier, and look up the remaining
20476 characters in the opcode table. If we find a match, go
20477 to step CM.
20478
20479 4. Fail.
20480
20481 U. Examine the tag field of the opcode structure, in case this is
20482 one of the six instructions with its conditional infix in an
20483 unusual place. If it is, the tag tells us where to find the
20484 infix; look it up in the conditions table and set inst.cond
20485 accordingly. Otherwise, this is an unconditional instruction.
20486 Again set inst.cond accordingly. Return the opcode structure.
20487
20488 CE. Examine the tag field to make sure this is an instruction that
20489 should receive a conditional suffix. If it is not, fail.
20490 Otherwise, set inst.cond from the suffix we already looked up,
20491 and return the opcode structure.
20492
20493 CM. Examine the tag field to make sure this is an instruction that
20494 should receive a conditional infix after the third character.
20495 If it is not, fail. Otherwise, undo the edits to the current
20496 line of input and proceed as for case CE. */
20497
20498 static const struct asm_opcode *
20499 opcode_lookup (char **str)
20500 {
20501 char *end, *base;
20502 char *affix;
20503 const struct asm_opcode *opcode;
20504 const struct asm_cond *cond;
20505 char save[2];
20506
20507 /* Scan up to the end of the mnemonic, which must end in white space,
20508 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
20509 for (base = end = *str; *end != '\0'; end++)
20510 if (*end == ' ' || *end == '.')
20511 break;
20512
20513 if (end == base)
20514 return NULL;
20515
20516 /* Handle a possible width suffix and/or Neon type suffix. */
20517 if (end[0] == '.')
20518 {
20519 int offset = 2;
20520
20521 /* The .w and .n suffixes are only valid if the unified syntax is in
20522 use. */
20523 if (unified_syntax && end[1] == 'w')
20524 inst.size_req = 4;
20525 else if (unified_syntax && end[1] == 'n')
20526 inst.size_req = 2;
20527 else
20528 offset = 0;
20529
20530 inst.vectype.elems = 0;
20531
20532 *str = end + offset;
20533
20534 if (end[offset] == '.')
20535 {
20536 /* See if we have a Neon type suffix (possible in either unified or
20537 non-unified ARM syntax mode). */
20538 if (parse_neon_type (&inst.vectype, str) == FAIL)
20539 return NULL;
20540 }
20541 else if (end[offset] != '\0' && end[offset] != ' ')
20542 return NULL;
20543 }
20544 else
20545 *str = end;
20546
20547 /* Look for unaffixed or special-case affixed mnemonic. */
20548 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20549 end - base);
20550 if (opcode)
20551 {
20552 /* step U */
20553 if (opcode->tag < OT_odd_infix_0)
20554 {
20555 inst.cond = COND_ALWAYS;
20556 return opcode;
20557 }
20558
20559 if (warn_on_deprecated && unified_syntax)
20560 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
20561 affix = base + (opcode->tag - OT_odd_infix_0);
20562 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
20563 gas_assert (cond);
20564
20565 inst.cond = cond->value;
20566 return opcode;
20567 }
20568 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20569 {
20570 /* Cannot have a conditional suffix on a mnemonic of less than a character.
20571 */
20572 if (end - base < 2)
20573 return NULL;
20574 affix = end - 1;
20575 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
20576 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20577 affix - base);
20578 /* If this opcode can not be vector predicated then don't accept it with a
20579 vector predication code. */
20580 if (opcode && !opcode->mayBeVecPred)
20581 opcode = NULL;
20582 }
20583 if (!opcode || !cond)
20584 {
20585 /* Cannot have a conditional suffix on a mnemonic of less than two
20586 characters. */
20587 if (end - base < 3)
20588 return NULL;
20589
20590 /* Look for suffixed mnemonic. */
20591 affix = end - 2;
20592 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
20593 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20594 affix - base);
20595 }
20596
20597 if (opcode && cond)
20598 {
20599 /* step CE */
20600 switch (opcode->tag)
20601 {
20602 case OT_cinfix3_legacy:
20603 /* Ignore conditional suffixes matched on infix only mnemonics. */
20604 break;
20605
20606 case OT_cinfix3:
20607 case OT_cinfix3_deprecated:
20608 case OT_odd_infix_unc:
20609 if (!unified_syntax)
20610 return NULL;
20611 /* Fall through. */
20612
20613 case OT_csuffix:
20614 case OT_csuffixF:
20615 case OT_csuf_or_in3:
20616 inst.cond = cond->value;
20617 return opcode;
20618
20619 case OT_unconditional:
20620 case OT_unconditionalF:
20621 if (thumb_mode)
20622 inst.cond = cond->value;
20623 else
20624 {
20625 /* Delayed diagnostic. */
20626 inst.error = BAD_COND;
20627 inst.cond = COND_ALWAYS;
20628 }
20629 return opcode;
20630
20631 default:
20632 return NULL;
20633 }
20634 }
20635
20636 /* Cannot have a usual-position infix on a mnemonic of less than
20637 six characters (five would be a suffix). */
20638 if (end - base < 6)
20639 return NULL;
20640
20641 /* Look for infixed mnemonic in the usual position. */
20642 affix = base + 3;
20643 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
20644 if (!cond)
20645 return NULL;
20646
20647 memcpy (save, affix, 2);
20648 memmove (affix, affix + 2, (end - affix) - 2);
20649 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20650 (end - base) - 2);
20651 memmove (affix + 2, affix, (end - affix) - 2);
20652 memcpy (affix, save, 2);
20653
20654 if (opcode
20655 && (opcode->tag == OT_cinfix3
20656 || opcode->tag == OT_cinfix3_deprecated
20657 || opcode->tag == OT_csuf_or_in3
20658 || opcode->tag == OT_cinfix3_legacy))
20659 {
20660 /* Step CM. */
20661 if (warn_on_deprecated && unified_syntax
20662 && (opcode->tag == OT_cinfix3
20663 || opcode->tag == OT_cinfix3_deprecated))
20664 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
20665
20666 inst.cond = cond->value;
20667 return opcode;
20668 }
20669
20670 return NULL;
20671 }
20672
20673 /* This function generates an initial IT instruction, leaving its block
20674 virtually open for the new instructions. Eventually,
20675 the mask will be updated by now_pred_add_mask () each time
20676 a new instruction needs to be included in the IT block.
20677 Finally, the block is closed with close_automatic_it_block ().
20678 The block closure can be requested either from md_assemble (),
20679 a tencode (), or due to a label hook. */
20680
20681 static void
20682 new_automatic_it_block (int cond)
20683 {
20684 now_pred.state = AUTOMATIC_PRED_BLOCK;
20685 now_pred.mask = 0x18;
20686 now_pred.cc = cond;
20687 now_pred.block_length = 1;
20688 mapping_state (MAP_THUMB);
20689 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
20690 now_pred.warn_deprecated = FALSE;
20691 now_pred.insn_cond = TRUE;
20692 }
20693
20694 /* Close an automatic IT block.
20695 See comments in new_automatic_it_block (). */
20696
20697 static void
20698 close_automatic_it_block (void)
20699 {
20700 now_pred.mask = 0x10;
20701 now_pred.block_length = 0;
20702 }
20703
20704 /* Update the mask of the current automatically-generated IT
20705 instruction. See comments in new_automatic_it_block (). */
20706
20707 static void
20708 now_pred_add_mask (int cond)
20709 {
20710 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
20711 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
20712 | ((bitvalue) << (nbit)))
20713 const int resulting_bit = (cond & 1);
20714
20715 now_pred.mask &= 0xf;
20716 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
20717 resulting_bit,
20718 (5 - now_pred.block_length));
20719 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
20720 1,
20721 ((5 - now_pred.block_length) - 1));
20722 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
20723
20724 #undef CLEAR_BIT
20725 #undef SET_BIT_VALUE
20726 }
20727
20728 /* The IT blocks handling machinery is accessed through the these functions:
20729 it_fsm_pre_encode () from md_assemble ()
20730 set_pred_insn_type () optional, from the tencode functions
20731 set_pred_insn_type_last () ditto
20732 in_pred_block () ditto
20733 it_fsm_post_encode () from md_assemble ()
20734 force_automatic_it_block_close () from label handling functions
20735
20736 Rationale:
20737 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
20738 initializing the IT insn type with a generic initial value depending
20739 on the inst.condition.
20740 2) During the tencode function, two things may happen:
20741 a) The tencode function overrides the IT insn type by
20742 calling either set_pred_insn_type (type) or
20743 set_pred_insn_type_last ().
20744 b) The tencode function queries the IT block state by
20745 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
20746
20747 Both set_pred_insn_type and in_pred_block run the internal FSM state
20748 handling function (handle_pred_state), because: a) setting the IT insn
20749 type may incur in an invalid state (exiting the function),
20750 and b) querying the state requires the FSM to be updated.
20751 Specifically we want to avoid creating an IT block for conditional
20752 branches, so it_fsm_pre_encode is actually a guess and we can't
20753 determine whether an IT block is required until the tencode () routine
20754 has decided what type of instruction this actually it.
20755 Because of this, if set_pred_insn_type and in_pred_block have to be
20756 used, set_pred_insn_type has to be called first.
20757
20758 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
20759 that determines the insn IT type depending on the inst.cond code.
20760 When a tencode () routine encodes an instruction that can be
20761 either outside an IT block, or, in the case of being inside, has to be
20762 the last one, set_pred_insn_type_last () will determine the proper
20763 IT instruction type based on the inst.cond code. Otherwise,
20764 set_pred_insn_type can be called for overriding that logic or
20765 for covering other cases.
20766
20767 Calling handle_pred_state () may not transition the IT block state to
20768 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
20769 still queried. Instead, if the FSM determines that the state should
20770 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
20771 after the tencode () function: that's what it_fsm_post_encode () does.
20772
20773 Since in_pred_block () calls the state handling function to get an
20774 updated state, an error may occur (due to invalid insns combination).
20775 In that case, inst.error is set.
20776 Therefore, inst.error has to be checked after the execution of
20777 the tencode () routine.
20778
20779 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
20780 any pending state change (if any) that didn't take place in
20781 handle_pred_state () as explained above. */
20782
20783 static void
20784 it_fsm_pre_encode (void)
20785 {
20786 if (inst.cond != COND_ALWAYS)
20787 inst.pred_insn_type = INSIDE_IT_INSN;
20788 else
20789 inst.pred_insn_type = OUTSIDE_PRED_INSN;
20790
20791 now_pred.state_handled = 0;
20792 }
20793
20794 /* IT state FSM handling function. */
20795 /* MVE instructions and non-MVE instructions are handled differently because of
20796 the introduction of VPT blocks.
20797 Specifications say that any non-MVE instruction inside a VPT block is
20798 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
20799 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
20800 few exceptions we have MVE_UNPREDICABLE_INSN.
20801 The error messages provided depending on the different combinations possible
20802 are described in the cases below:
20803 For 'most' MVE instructions:
20804 1) In an IT block, with an IT code: syntax error
20805 2) In an IT block, with a VPT code: error: must be in a VPT block
20806 3) In an IT block, with no code: warning: UNPREDICTABLE
20807 4) In a VPT block, with an IT code: syntax error
20808 5) In a VPT block, with a VPT code: OK!
20809 6) In a VPT block, with no code: error: missing code
20810 7) Outside a pred block, with an IT code: error: syntax error
20811 8) Outside a pred block, with a VPT code: error: should be in a VPT block
20812 9) Outside a pred block, with no code: OK!
20813 For non-MVE instructions:
20814 10) In an IT block, with an IT code: OK!
20815 11) In an IT block, with a VPT code: syntax error
20816 12) In an IT block, with no code: error: missing code
20817 13) In a VPT block, with an IT code: error: should be in an IT block
20818 14) In a VPT block, with a VPT code: syntax error
20819 15) In a VPT block, with no code: UNPREDICTABLE
20820 16) Outside a pred block, with an IT code: error: should be in an IT block
20821 17) Outside a pred block, with a VPT code: syntax error
20822 18) Outside a pred block, with no code: OK!
20823 */
20824
20825
20826 static int
20827 handle_pred_state (void)
20828 {
20829 now_pred.state_handled = 1;
20830 now_pred.insn_cond = FALSE;
20831
20832 switch (now_pred.state)
20833 {
20834 case OUTSIDE_PRED_BLOCK:
20835 switch (inst.pred_insn_type)
20836 {
20837 case MVE_UNPREDICABLE_INSN:
20838 case MVE_OUTSIDE_PRED_INSN:
20839 if (inst.cond < COND_ALWAYS)
20840 {
20841 /* Case 7: Outside a pred block, with an IT code: error: syntax
20842 error. */
20843 inst.error = BAD_SYNTAX;
20844 return FAIL;
20845 }
20846 /* Case 9: Outside a pred block, with no code: OK! */
20847 break;
20848 case OUTSIDE_PRED_INSN:
20849 if (inst.cond > COND_ALWAYS)
20850 {
20851 /* Case 17: Outside a pred block, with a VPT code: syntax error.
20852 */
20853 inst.error = BAD_SYNTAX;
20854 return FAIL;
20855 }
20856 /* Case 18: Outside a pred block, with no code: OK! */
20857 break;
20858
20859 case INSIDE_VPT_INSN:
20860 /* Case 8: Outside a pred block, with a VPT code: error: should be in
20861 a VPT block. */
20862 inst.error = BAD_OUT_VPT;
20863 return FAIL;
20864
20865 case INSIDE_IT_INSN:
20866 case INSIDE_IT_LAST_INSN:
20867 if (inst.cond < COND_ALWAYS)
20868 {
20869 /* Case 16: Outside a pred block, with an IT code: error: should
20870 be in an IT block. */
20871 if (thumb_mode == 0)
20872 {
20873 if (unified_syntax
20874 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
20875 as_tsktsk (_("Warning: conditional outside an IT block"\
20876 " for Thumb."));
20877 }
20878 else
20879 {
20880 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
20881 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
20882 {
20883 /* Automatically generate the IT instruction. */
20884 new_automatic_it_block (inst.cond);
20885 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
20886 close_automatic_it_block ();
20887 }
20888 else
20889 {
20890 inst.error = BAD_OUT_IT;
20891 return FAIL;
20892 }
20893 }
20894 break;
20895 }
20896 else if (inst.cond > COND_ALWAYS)
20897 {
20898 /* Case 17: Outside a pred block, with a VPT code: syntax error.
20899 */
20900 inst.error = BAD_SYNTAX;
20901 return FAIL;
20902 }
20903 else
20904 gas_assert (0);
20905 case IF_INSIDE_IT_LAST_INSN:
20906 case NEUTRAL_IT_INSN:
20907 break;
20908
20909 case VPT_INSN:
20910 if (inst.cond != COND_ALWAYS)
20911 first_error (BAD_SYNTAX);
20912 now_pred.state = MANUAL_PRED_BLOCK;
20913 now_pred.block_length = 0;
20914 now_pred.type = VECTOR_PRED;
20915 now_pred.cc = 0;
20916 break;
20917 case IT_INSN:
20918 now_pred.state = MANUAL_PRED_BLOCK;
20919 now_pred.block_length = 0;
20920 now_pred.type = SCALAR_PRED;
20921 break;
20922 }
20923 break;
20924
20925 case AUTOMATIC_PRED_BLOCK:
20926 /* Three things may happen now:
20927 a) We should increment current it block size;
20928 b) We should close current it block (closing insn or 4 insns);
20929 c) We should close current it block and start a new one (due
20930 to incompatible conditions or
20931 4 insns-length block reached). */
20932
20933 switch (inst.pred_insn_type)
20934 {
20935 case INSIDE_VPT_INSN:
20936 case VPT_INSN:
20937 case MVE_UNPREDICABLE_INSN:
20938 case MVE_OUTSIDE_PRED_INSN:
20939 gas_assert (0);
20940 case OUTSIDE_PRED_INSN:
20941 /* The closure of the block shall happen immediately,
20942 so any in_pred_block () call reports the block as closed. */
20943 force_automatic_it_block_close ();
20944 break;
20945
20946 case INSIDE_IT_INSN:
20947 case INSIDE_IT_LAST_INSN:
20948 case IF_INSIDE_IT_LAST_INSN:
20949 now_pred.block_length++;
20950
20951 if (now_pred.block_length > 4
20952 || !now_pred_compatible (inst.cond))
20953 {
20954 force_automatic_it_block_close ();
20955 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
20956 new_automatic_it_block (inst.cond);
20957 }
20958 else
20959 {
20960 now_pred.insn_cond = TRUE;
20961 now_pred_add_mask (inst.cond);
20962 }
20963
20964 if (now_pred.state == AUTOMATIC_PRED_BLOCK
20965 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
20966 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
20967 close_automatic_it_block ();
20968 break;
20969
20970 case NEUTRAL_IT_INSN:
20971 now_pred.block_length++;
20972 now_pred.insn_cond = TRUE;
20973
20974 if (now_pred.block_length > 4)
20975 force_automatic_it_block_close ();
20976 else
20977 now_pred_add_mask (now_pred.cc & 1);
20978 break;
20979
20980 case IT_INSN:
20981 close_automatic_it_block ();
20982 now_pred.state = MANUAL_PRED_BLOCK;
20983 break;
20984 }
20985 break;
20986
20987 case MANUAL_PRED_BLOCK:
20988 {
20989 int cond, is_last;
20990 if (now_pred.type == SCALAR_PRED)
20991 {
20992 /* Check conditional suffixes. */
20993 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
20994 now_pred.mask <<= 1;
20995 now_pred.mask &= 0x1f;
20996 is_last = (now_pred.mask == 0x10);
20997 }
20998 else
20999 {
21000 now_pred.cc ^= (now_pred.mask >> 4);
21001 cond = now_pred.cc + 0xf;
21002 now_pred.mask <<= 1;
21003 now_pred.mask &= 0x1f;
21004 is_last = now_pred.mask == 0x10;
21005 }
21006 now_pred.insn_cond = TRUE;
21007
21008 switch (inst.pred_insn_type)
21009 {
21010 case OUTSIDE_PRED_INSN:
21011 if (now_pred.type == SCALAR_PRED)
21012 {
21013 if (inst.cond == COND_ALWAYS)
21014 {
21015 /* Case 12: In an IT block, with no code: error: missing
21016 code. */
21017 inst.error = BAD_NOT_IT;
21018 return FAIL;
21019 }
21020 else if (inst.cond > COND_ALWAYS)
21021 {
21022 /* Case 11: In an IT block, with a VPT code: syntax error.
21023 */
21024 inst.error = BAD_SYNTAX;
21025 return FAIL;
21026 }
21027 else if (thumb_mode)
21028 {
21029 /* This is for some special cases where a non-MVE
21030 instruction is not allowed in an IT block, such as cbz,
21031 but are put into one with a condition code.
21032 You could argue this should be a syntax error, but we
21033 gave the 'not allowed in IT block' diagnostic in the
21034 past so we will keep doing so. */
21035 inst.error = BAD_NOT_IT;
21036 return FAIL;
21037 }
21038 break;
21039 }
21040 else
21041 {
21042 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
21043 as_tsktsk (MVE_NOT_VPT);
21044 return SUCCESS;
21045 }
21046 case MVE_OUTSIDE_PRED_INSN:
21047 if (now_pred.type == SCALAR_PRED)
21048 {
21049 if (inst.cond == COND_ALWAYS)
21050 {
21051 /* Case 3: In an IT block, with no code: warning:
21052 UNPREDICTABLE. */
21053 as_tsktsk (MVE_NOT_IT);
21054 return SUCCESS;
21055 }
21056 else if (inst.cond < COND_ALWAYS)
21057 {
21058 /* Case 1: In an IT block, with an IT code: syntax error.
21059 */
21060 inst.error = BAD_SYNTAX;
21061 return FAIL;
21062 }
21063 else
21064 gas_assert (0);
21065 }
21066 else
21067 {
21068 if (inst.cond < COND_ALWAYS)
21069 {
21070 /* Case 4: In a VPT block, with an IT code: syntax error.
21071 */
21072 inst.error = BAD_SYNTAX;
21073 return FAIL;
21074 }
21075 else if (inst.cond == COND_ALWAYS)
21076 {
21077 /* Case 6: In a VPT block, with no code: error: missing
21078 code. */
21079 inst.error = BAD_NOT_VPT;
21080 return FAIL;
21081 }
21082 else
21083 {
21084 gas_assert (0);
21085 }
21086 }
21087 case MVE_UNPREDICABLE_INSN:
21088 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
21089 return SUCCESS;
21090 case INSIDE_IT_INSN:
21091 if (inst.cond > COND_ALWAYS)
21092 {
21093 /* Case 11: In an IT block, with a VPT code: syntax error. */
21094 /* Case 14: In a VPT block, with a VPT code: syntax error. */
21095 inst.error = BAD_SYNTAX;
21096 return FAIL;
21097 }
21098 else if (now_pred.type == SCALAR_PRED)
21099 {
21100 /* Case 10: In an IT block, with an IT code: OK! */
21101 if (cond != inst.cond)
21102 {
21103 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
21104 BAD_VPT_COND;
21105 return FAIL;
21106 }
21107 }
21108 else
21109 {
21110 /* Case 13: In a VPT block, with an IT code: error: should be
21111 in an IT block. */
21112 inst.error = BAD_OUT_IT;
21113 return FAIL;
21114 }
21115 break;
21116
21117 case INSIDE_VPT_INSN:
21118 if (now_pred.type == SCALAR_PRED)
21119 {
21120 /* Case 2: In an IT block, with a VPT code: error: must be in a
21121 VPT block. */
21122 inst.error = BAD_OUT_VPT;
21123 return FAIL;
21124 }
21125 /* Case 5: In a VPT block, with a VPT code: OK! */
21126 else if (cond != inst.cond)
21127 {
21128 inst.error = BAD_VPT_COND;
21129 return FAIL;
21130 }
21131 break;
21132 case INSIDE_IT_LAST_INSN:
21133 case IF_INSIDE_IT_LAST_INSN:
21134 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
21135 {
21136 /* Case 4: In a VPT block, with an IT code: syntax error. */
21137 /* Case 11: In an IT block, with a VPT code: syntax error. */
21138 inst.error = BAD_SYNTAX;
21139 return FAIL;
21140 }
21141 else if (cond != inst.cond)
21142 {
21143 inst.error = BAD_IT_COND;
21144 return FAIL;
21145 }
21146 if (!is_last)
21147 {
21148 inst.error = BAD_BRANCH;
21149 return FAIL;
21150 }
21151 break;
21152
21153 case NEUTRAL_IT_INSN:
21154 /* The BKPT instruction is unconditional even in a IT or VPT
21155 block. */
21156 break;
21157
21158 case IT_INSN:
21159 if (now_pred.type == SCALAR_PRED)
21160 {
21161 inst.error = BAD_IT_IT;
21162 return FAIL;
21163 }
21164 /* fall through. */
21165 case VPT_INSN:
21166 if (inst.cond == COND_ALWAYS)
21167 {
21168 /* Executing a VPT/VPST instruction inside an IT block or a
21169 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
21170 */
21171 if (now_pred.type == SCALAR_PRED)
21172 as_tsktsk (MVE_NOT_IT);
21173 else
21174 as_tsktsk (MVE_NOT_VPT);
21175 return SUCCESS;
21176 }
21177 else
21178 {
21179 /* VPT/VPST do not accept condition codes. */
21180 inst.error = BAD_SYNTAX;
21181 return FAIL;
21182 }
21183 }
21184 }
21185 break;
21186 }
21187
21188 return SUCCESS;
21189 }
21190
21191 struct depr_insn_mask
21192 {
21193 unsigned long pattern;
21194 unsigned long mask;
21195 const char* description;
21196 };
21197
21198 /* List of 16-bit instruction patterns deprecated in an IT block in
21199 ARMv8. */
21200 static const struct depr_insn_mask depr_it_insns[] = {
21201 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
21202 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
21203 { 0xa000, 0xb800, N_("ADR") },
21204 { 0x4800, 0xf800, N_("Literal loads") },
21205 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
21206 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
21207 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
21208 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
21209 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
21210 { 0, 0, NULL }
21211 };
21212
21213 static void
21214 it_fsm_post_encode (void)
21215 {
21216 int is_last;
21217
21218 if (!now_pred.state_handled)
21219 handle_pred_state ();
21220
21221 if (now_pred.insn_cond
21222 && !now_pred.warn_deprecated
21223 && warn_on_deprecated
21224 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
21225 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
21226 {
21227 if (inst.instruction >= 0x10000)
21228 {
21229 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
21230 "performance deprecated in ARMv8-A and ARMv8-R"));
21231 now_pred.warn_deprecated = TRUE;
21232 }
21233 else
21234 {
21235 const struct depr_insn_mask *p = depr_it_insns;
21236
21237 while (p->mask != 0)
21238 {
21239 if ((inst.instruction & p->mask) == p->pattern)
21240 {
21241 as_tsktsk (_("IT blocks containing 16-bit Thumb "
21242 "instructions of the following class are "
21243 "performance deprecated in ARMv8-A and "
21244 "ARMv8-R: %s"), p->description);
21245 now_pred.warn_deprecated = TRUE;
21246 break;
21247 }
21248
21249 ++p;
21250 }
21251 }
21252
21253 if (now_pred.block_length > 1)
21254 {
21255 as_tsktsk (_("IT blocks containing more than one conditional "
21256 "instruction are performance deprecated in ARMv8-A and "
21257 "ARMv8-R"));
21258 now_pred.warn_deprecated = TRUE;
21259 }
21260 }
21261
21262 is_last = (now_pred.mask == 0x10);
21263 if (is_last)
21264 {
21265 now_pred.state = OUTSIDE_PRED_BLOCK;
21266 now_pred.mask = 0;
21267 }
21268 }
21269
21270 static void
21271 force_automatic_it_block_close (void)
21272 {
21273 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
21274 {
21275 close_automatic_it_block ();
21276 now_pred.state = OUTSIDE_PRED_BLOCK;
21277 now_pred.mask = 0;
21278 }
21279 }
21280
21281 static int
21282 in_pred_block (void)
21283 {
21284 if (!now_pred.state_handled)
21285 handle_pred_state ();
21286
21287 return now_pred.state != OUTSIDE_PRED_BLOCK;
21288 }
21289
21290 /* Whether OPCODE only has T32 encoding. Since this function is only used by
21291 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
21292 here, hence the "known" in the function name. */
21293
21294 static bfd_boolean
21295 known_t32_only_insn (const struct asm_opcode *opcode)
21296 {
21297 /* Original Thumb-1 wide instruction. */
21298 if (opcode->tencode == do_t_blx
21299 || opcode->tencode == do_t_branch23
21300 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
21301 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
21302 return TRUE;
21303
21304 /* Wide-only instruction added to ARMv8-M Baseline. */
21305 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
21306 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
21307 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
21308 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
21309 return TRUE;
21310
21311 return FALSE;
21312 }
21313
21314 /* Whether wide instruction variant can be used if available for a valid OPCODE
21315 in ARCH. */
21316
21317 static bfd_boolean
21318 t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
21319 {
21320 if (known_t32_only_insn (opcode))
21321 return TRUE;
21322
21323 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
21324 of variant T3 of B.W is checked in do_t_branch. */
21325 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21326 && opcode->tencode == do_t_branch)
21327 return TRUE;
21328
21329 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
21330 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21331 && opcode->tencode == do_t_mov_cmp
21332 /* Make sure CMP instruction is not affected. */
21333 && opcode->aencode == do_mov)
21334 return TRUE;
21335
21336 /* Wide instruction variants of all instructions with narrow *and* wide
21337 variants become available with ARMv6t2. Other opcodes are either
21338 narrow-only or wide-only and are thus available if OPCODE is valid. */
21339 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
21340 return TRUE;
21341
21342 /* OPCODE with narrow only instruction variant or wide variant not
21343 available. */
21344 return FALSE;
21345 }
21346
21347 void
21348 md_assemble (char *str)
21349 {
21350 char *p = str;
21351 const struct asm_opcode * opcode;
21352
21353 /* Align the previous label if needed. */
21354 if (last_label_seen != NULL)
21355 {
21356 symbol_set_frag (last_label_seen, frag_now);
21357 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
21358 S_SET_SEGMENT (last_label_seen, now_seg);
21359 }
21360
21361 memset (&inst, '\0', sizeof (inst));
21362 int r;
21363 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21364 inst.relocs[r].type = BFD_RELOC_UNUSED;
21365
21366 opcode = opcode_lookup (&p);
21367 if (!opcode)
21368 {
21369 /* It wasn't an instruction, but it might be a register alias of
21370 the form alias .req reg, or a Neon .dn/.qn directive. */
21371 if (! create_register_alias (str, p)
21372 && ! create_neon_reg_alias (str, p))
21373 as_bad (_("bad instruction `%s'"), str);
21374
21375 return;
21376 }
21377
21378 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
21379 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
21380
21381 /* The value which unconditional instructions should have in place of the
21382 condition field. */
21383 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
21384
21385 if (thumb_mode)
21386 {
21387 arm_feature_set variant;
21388
21389 variant = cpu_variant;
21390 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
21391 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
21392 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
21393 /* Check that this instruction is supported for this CPU. */
21394 if (!opcode->tvariant
21395 || (thumb_mode == 1
21396 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
21397 {
21398 if (opcode->tencode == do_t_swi)
21399 as_bad (_("SVC is not permitted on this architecture"));
21400 else
21401 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
21402 return;
21403 }
21404 if (inst.cond != COND_ALWAYS && !unified_syntax
21405 && opcode->tencode != do_t_branch)
21406 {
21407 as_bad (_("Thumb does not support conditional execution"));
21408 return;
21409 }
21410
21411 /* Two things are addressed here:
21412 1) Implicit require narrow instructions on Thumb-1.
21413 This avoids relaxation accidentally introducing Thumb-2
21414 instructions.
21415 2) Reject wide instructions in non Thumb-2 cores.
21416
21417 Only instructions with narrow and wide variants need to be handled
21418 but selecting all non wide-only instructions is easier. */
21419 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
21420 && !t32_insn_ok (variant, opcode))
21421 {
21422 if (inst.size_req == 0)
21423 inst.size_req = 2;
21424 else if (inst.size_req == 4)
21425 {
21426 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
21427 as_bad (_("selected processor does not support 32bit wide "
21428 "variant of instruction `%s'"), str);
21429 else
21430 as_bad (_("selected processor does not support `%s' in "
21431 "Thumb-2 mode"), str);
21432 return;
21433 }
21434 }
21435
21436 inst.instruction = opcode->tvalue;
21437
21438 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
21439 {
21440 /* Prepare the pred_insn_type for those encodings that don't set
21441 it. */
21442 it_fsm_pre_encode ();
21443
21444 opcode->tencode ();
21445
21446 it_fsm_post_encode ();
21447 }
21448
21449 if (!(inst.error || inst.relax))
21450 {
21451 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
21452 inst.size = (inst.instruction > 0xffff ? 4 : 2);
21453 if (inst.size_req && inst.size_req != inst.size)
21454 {
21455 as_bad (_("cannot honor width suffix -- `%s'"), str);
21456 return;
21457 }
21458 }
21459
21460 /* Something has gone badly wrong if we try to relax a fixed size
21461 instruction. */
21462 gas_assert (inst.size_req == 0 || !inst.relax);
21463
21464 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21465 *opcode->tvariant);
21466 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
21467 set those bits when Thumb-2 32-bit instructions are seen. The impact
21468 of relaxable instructions will be considered later after we finish all
21469 relaxation. */
21470 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
21471 variant = arm_arch_none;
21472 else
21473 variant = cpu_variant;
21474 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
21475 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21476 arm_ext_v6t2);
21477
21478 check_neon_suffixes;
21479
21480 if (!inst.error)
21481 {
21482 mapping_state (MAP_THUMB);
21483 }
21484 }
21485 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
21486 {
21487 bfd_boolean is_bx;
21488
21489 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
21490 is_bx = (opcode->aencode == do_bx);
21491
21492 /* Check that this instruction is supported for this CPU. */
21493 if (!(is_bx && fix_v4bx)
21494 && !(opcode->avariant &&
21495 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
21496 {
21497 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
21498 return;
21499 }
21500 if (inst.size_req)
21501 {
21502 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
21503 return;
21504 }
21505
21506 inst.instruction = opcode->avalue;
21507 if (opcode->tag == OT_unconditionalF)
21508 inst.instruction |= 0xFU << 28;
21509 else
21510 inst.instruction |= inst.cond << 28;
21511 inst.size = INSN_SIZE;
21512 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
21513 {
21514 it_fsm_pre_encode ();
21515 opcode->aencode ();
21516 it_fsm_post_encode ();
21517 }
21518 /* Arm mode bx is marked as both v4T and v5 because it's still required
21519 on a hypothetical non-thumb v5 core. */
21520 if (is_bx)
21521 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
21522 else
21523 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
21524 *opcode->avariant);
21525
21526 check_neon_suffixes;
21527
21528 if (!inst.error)
21529 {
21530 mapping_state (MAP_ARM);
21531 }
21532 }
21533 else
21534 {
21535 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
21536 "-- `%s'"), str);
21537 return;
21538 }
21539 output_inst (str);
21540 }
21541
21542 static void
21543 check_pred_blocks_finished (void)
21544 {
21545 #ifdef OBJ_ELF
21546 asection *sect;
21547
21548 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
21549 if (seg_info (sect)->tc_segment_info_data.current_pred.state
21550 == MANUAL_PRED_BLOCK)
21551 {
21552 if (now_pred.type == SCALAR_PRED)
21553 as_warn (_("section '%s' finished with an open IT block."),
21554 sect->name);
21555 else
21556 as_warn (_("section '%s' finished with an open VPT/VPST block."),
21557 sect->name);
21558 }
21559 #else
21560 if (now_pred.state == MANUAL_PRED_BLOCK)
21561 {
21562 if (now_pred.type == SCALAR_PRED)
21563 as_warn (_("file finished with an open IT block."));
21564 else
21565 as_warn (_("file finished with an open VPT/VPST block."));
21566 }
21567 #endif
21568 }
21569
21570 /* Various frobbings of labels and their addresses. */
21571
21572 void
21573 arm_start_line_hook (void)
21574 {
21575 last_label_seen = NULL;
21576 }
21577
21578 void
21579 arm_frob_label (symbolS * sym)
21580 {
21581 last_label_seen = sym;
21582
21583 ARM_SET_THUMB (sym, thumb_mode);
21584
21585 #if defined OBJ_COFF || defined OBJ_ELF
21586 ARM_SET_INTERWORK (sym, support_interwork);
21587 #endif
21588
21589 force_automatic_it_block_close ();
21590
21591 /* Note - do not allow local symbols (.Lxxx) to be labelled
21592 as Thumb functions. This is because these labels, whilst
21593 they exist inside Thumb code, are not the entry points for
21594 possible ARM->Thumb calls. Also, these labels can be used
21595 as part of a computed goto or switch statement. eg gcc
21596 can generate code that looks like this:
21597
21598 ldr r2, [pc, .Laaa]
21599 lsl r3, r3, #2
21600 ldr r2, [r3, r2]
21601 mov pc, r2
21602
21603 .Lbbb: .word .Lxxx
21604 .Lccc: .word .Lyyy
21605 ..etc...
21606 .Laaa: .word Lbbb
21607
21608 The first instruction loads the address of the jump table.
21609 The second instruction converts a table index into a byte offset.
21610 The third instruction gets the jump address out of the table.
21611 The fourth instruction performs the jump.
21612
21613 If the address stored at .Laaa is that of a symbol which has the
21614 Thumb_Func bit set, then the linker will arrange for this address
21615 to have the bottom bit set, which in turn would mean that the
21616 address computation performed by the third instruction would end
21617 up with the bottom bit set. Since the ARM is capable of unaligned
21618 word loads, the instruction would then load the incorrect address
21619 out of the jump table, and chaos would ensue. */
21620 if (label_is_thumb_function_name
21621 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
21622 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
21623 {
21624 /* When the address of a Thumb function is taken the bottom
21625 bit of that address should be set. This will allow
21626 interworking between Arm and Thumb functions to work
21627 correctly. */
21628
21629 THUMB_SET_FUNC (sym, 1);
21630
21631 label_is_thumb_function_name = FALSE;
21632 }
21633
21634 dwarf2_emit_label (sym);
21635 }
21636
21637 bfd_boolean
21638 arm_data_in_code (void)
21639 {
21640 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
21641 {
21642 *input_line_pointer = '/';
21643 input_line_pointer += 5;
21644 *input_line_pointer = 0;
21645 return TRUE;
21646 }
21647
21648 return FALSE;
21649 }
21650
21651 char *
21652 arm_canonicalize_symbol_name (char * name)
21653 {
21654 int len;
21655
21656 if (thumb_mode && (len = strlen (name)) > 5
21657 && streq (name + len - 5, "/data"))
21658 *(name + len - 5) = 0;
21659
21660 return name;
21661 }
21662 \f
21663 /* Table of all register names defined by default. The user can
21664 define additional names with .req. Note that all register names
21665 should appear in both upper and lowercase variants. Some registers
21666 also have mixed-case names. */
21667
21668 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
21669 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
21670 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
21671 #define REGSET(p,t) \
21672 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
21673 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
21674 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
21675 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
21676 #define REGSETH(p,t) \
21677 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
21678 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
21679 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
21680 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
21681 #define REGSET2(p,t) \
21682 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
21683 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
21684 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
21685 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
21686 #define SPLRBANK(base,bank,t) \
21687 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
21688 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
21689 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
21690 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
21691 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
21692 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
21693
21694 static const struct reg_entry reg_names[] =
21695 {
21696 /* ARM integer registers. */
21697 REGSET(r, RN), REGSET(R, RN),
21698
21699 /* ATPCS synonyms. */
21700 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
21701 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
21702 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
21703
21704 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
21705 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
21706 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
21707
21708 /* Well-known aliases. */
21709 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
21710 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
21711
21712 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
21713 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
21714
21715 /* Defining the new Zero register from ARMv8.1-M. */
21716 REGDEF(zr,15,ZR),
21717 REGDEF(ZR,15,ZR),
21718
21719 /* Coprocessor numbers. */
21720 REGSET(p, CP), REGSET(P, CP),
21721
21722 /* Coprocessor register numbers. The "cr" variants are for backward
21723 compatibility. */
21724 REGSET(c, CN), REGSET(C, CN),
21725 REGSET(cr, CN), REGSET(CR, CN),
21726
21727 /* ARM banked registers. */
21728 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
21729 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
21730 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
21731 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
21732 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
21733 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
21734 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
21735
21736 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
21737 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
21738 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
21739 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
21740 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
21741 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
21742 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
21743 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
21744
21745 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
21746 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
21747 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
21748 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
21749 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
21750 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
21751 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
21752 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
21753 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
21754
21755 /* FPA registers. */
21756 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
21757 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
21758
21759 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
21760 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
21761
21762 /* VFP SP registers. */
21763 REGSET(s,VFS), REGSET(S,VFS),
21764 REGSETH(s,VFS), REGSETH(S,VFS),
21765
21766 /* VFP DP Registers. */
21767 REGSET(d,VFD), REGSET(D,VFD),
21768 /* Extra Neon DP registers. */
21769 REGSETH(d,VFD), REGSETH(D,VFD),
21770
21771 /* Neon QP registers. */
21772 REGSET2(q,NQ), REGSET2(Q,NQ),
21773
21774 /* VFP control registers. */
21775 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
21776 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
21777 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
21778 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
21779 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
21780 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
21781 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
21782
21783 /* Maverick DSP coprocessor registers. */
21784 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
21785 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
21786
21787 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
21788 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
21789 REGDEF(dspsc,0,DSPSC),
21790
21791 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
21792 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
21793 REGDEF(DSPSC,0,DSPSC),
21794
21795 /* iWMMXt data registers - p0, c0-15. */
21796 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
21797
21798 /* iWMMXt control registers - p1, c0-3. */
21799 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
21800 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
21801 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
21802 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
21803
21804 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
21805 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
21806 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
21807 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
21808 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
21809
21810 /* XScale accumulator registers. */
21811 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
21812 };
21813 #undef REGDEF
21814 #undef REGNUM
21815 #undef REGSET
21816
21817 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
21818 within psr_required_here. */
21819 static const struct asm_psr psrs[] =
21820 {
21821 /* Backward compatibility notation. Note that "all" is no longer
21822 truly all possible PSR bits. */
21823 {"all", PSR_c | PSR_f},
21824 {"flg", PSR_f},
21825 {"ctl", PSR_c},
21826
21827 /* Individual flags. */
21828 {"f", PSR_f},
21829 {"c", PSR_c},
21830 {"x", PSR_x},
21831 {"s", PSR_s},
21832
21833 /* Combinations of flags. */
21834 {"fs", PSR_f | PSR_s},
21835 {"fx", PSR_f | PSR_x},
21836 {"fc", PSR_f | PSR_c},
21837 {"sf", PSR_s | PSR_f},
21838 {"sx", PSR_s | PSR_x},
21839 {"sc", PSR_s | PSR_c},
21840 {"xf", PSR_x | PSR_f},
21841 {"xs", PSR_x | PSR_s},
21842 {"xc", PSR_x | PSR_c},
21843 {"cf", PSR_c | PSR_f},
21844 {"cs", PSR_c | PSR_s},
21845 {"cx", PSR_c | PSR_x},
21846 {"fsx", PSR_f | PSR_s | PSR_x},
21847 {"fsc", PSR_f | PSR_s | PSR_c},
21848 {"fxs", PSR_f | PSR_x | PSR_s},
21849 {"fxc", PSR_f | PSR_x | PSR_c},
21850 {"fcs", PSR_f | PSR_c | PSR_s},
21851 {"fcx", PSR_f | PSR_c | PSR_x},
21852 {"sfx", PSR_s | PSR_f | PSR_x},
21853 {"sfc", PSR_s | PSR_f | PSR_c},
21854 {"sxf", PSR_s | PSR_x | PSR_f},
21855 {"sxc", PSR_s | PSR_x | PSR_c},
21856 {"scf", PSR_s | PSR_c | PSR_f},
21857 {"scx", PSR_s | PSR_c | PSR_x},
21858 {"xfs", PSR_x | PSR_f | PSR_s},
21859 {"xfc", PSR_x | PSR_f | PSR_c},
21860 {"xsf", PSR_x | PSR_s | PSR_f},
21861 {"xsc", PSR_x | PSR_s | PSR_c},
21862 {"xcf", PSR_x | PSR_c | PSR_f},
21863 {"xcs", PSR_x | PSR_c | PSR_s},
21864 {"cfs", PSR_c | PSR_f | PSR_s},
21865 {"cfx", PSR_c | PSR_f | PSR_x},
21866 {"csf", PSR_c | PSR_s | PSR_f},
21867 {"csx", PSR_c | PSR_s | PSR_x},
21868 {"cxf", PSR_c | PSR_x | PSR_f},
21869 {"cxs", PSR_c | PSR_x | PSR_s},
21870 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
21871 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
21872 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
21873 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
21874 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
21875 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
21876 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
21877 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
21878 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
21879 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
21880 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
21881 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
21882 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
21883 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
21884 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
21885 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
21886 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
21887 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
21888 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
21889 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
21890 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
21891 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
21892 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
21893 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
21894 };
21895
21896 /* Table of V7M psr names. */
21897 static const struct asm_psr v7m_psrs[] =
21898 {
21899 {"apsr", 0x0 }, {"APSR", 0x0 },
21900 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
21901 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
21902 {"psr", 0x3 }, {"PSR", 0x3 },
21903 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
21904 {"ipsr", 0x5 }, {"IPSR", 0x5 },
21905 {"epsr", 0x6 }, {"EPSR", 0x6 },
21906 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
21907 {"msp", 0x8 }, {"MSP", 0x8 },
21908 {"psp", 0x9 }, {"PSP", 0x9 },
21909 {"msplim", 0xa }, {"MSPLIM", 0xa },
21910 {"psplim", 0xb }, {"PSPLIM", 0xb },
21911 {"primask", 0x10}, {"PRIMASK", 0x10},
21912 {"basepri", 0x11}, {"BASEPRI", 0x11},
21913 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
21914 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
21915 {"control", 0x14}, {"CONTROL", 0x14},
21916 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
21917 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
21918 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
21919 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
21920 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
21921 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
21922 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
21923 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
21924 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
21925 };
21926
21927 /* Table of all shift-in-operand names. */
21928 static const struct asm_shift_name shift_names [] =
21929 {
21930 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
21931 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
21932 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
21933 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
21934 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
21935 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
21936 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
21937 };
21938
21939 /* Table of all explicit relocation names. */
21940 #ifdef OBJ_ELF
21941 static struct reloc_entry reloc_names[] =
21942 {
21943 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
21944 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
21945 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
21946 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
21947 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
21948 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
21949 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
21950 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
21951 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
21952 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
21953 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
21954 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
21955 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
21956 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
21957 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
21958 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
21959 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
21960 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
21961 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
21962 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
21963 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
21964 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
21965 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
21966 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
21967 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
21968 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
21969 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
21970 };
21971 #endif
21972
21973 /* Table of all conditional affixes. */
21974 static const struct asm_cond conds[] =
21975 {
21976 {"eq", 0x0},
21977 {"ne", 0x1},
21978 {"cs", 0x2}, {"hs", 0x2},
21979 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
21980 {"mi", 0x4},
21981 {"pl", 0x5},
21982 {"vs", 0x6},
21983 {"vc", 0x7},
21984 {"hi", 0x8},
21985 {"ls", 0x9},
21986 {"ge", 0xa},
21987 {"lt", 0xb},
21988 {"gt", 0xc},
21989 {"le", 0xd},
21990 {"al", 0xe}
21991 };
21992 static const struct asm_cond vconds[] =
21993 {
21994 {"t", 0xf},
21995 {"e", 0x10}
21996 };
21997
21998 #define UL_BARRIER(L,U,CODE,FEAT) \
21999 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
22000 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
22001
22002 static struct asm_barrier_opt barrier_opt_names[] =
22003 {
22004 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
22005 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
22006 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
22007 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
22008 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
22009 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
22010 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
22011 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
22012 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
22013 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
22014 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
22015 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
22016 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
22017 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
22018 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
22019 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
22020 };
22021
22022 #undef UL_BARRIER
22023
22024 /* Table of ARM-format instructions. */
22025
22026 /* Macros for gluing together operand strings. N.B. In all cases
22027 other than OPS0, the trailing OP_stop comes from default
22028 zero-initialization of the unspecified elements of the array. */
22029 #define OPS0() { OP_stop, }
22030 #define OPS1(a) { OP_##a, }
22031 #define OPS2(a,b) { OP_##a,OP_##b, }
22032 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
22033 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
22034 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
22035 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
22036
22037 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
22038 This is useful when mixing operands for ARM and THUMB, i.e. using the
22039 MIX_ARM_THUMB_OPERANDS macro.
22040 In order to use these macros, prefix the number of operands with _
22041 e.g. _3. */
22042 #define OPS_1(a) { a, }
22043 #define OPS_2(a,b) { a,b, }
22044 #define OPS_3(a,b,c) { a,b,c, }
22045 #define OPS_4(a,b,c,d) { a,b,c,d, }
22046 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
22047 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
22048
22049 /* These macros abstract out the exact format of the mnemonic table and
22050 save some repeated characters. */
22051
22052 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
22053 #define TxCE(mnem, op, top, nops, ops, ae, te) \
22054 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
22055 THUMB_VARIANT, do_##ae, do_##te, 0 }
22056
22057 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
22058 a T_MNEM_xyz enumerator. */
22059 #define TCE(mnem, aop, top, nops, ops, ae, te) \
22060 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
22061 #define tCE(mnem, aop, top, nops, ops, ae, te) \
22062 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22063
22064 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
22065 infix after the third character. */
22066 #define TxC3(mnem, op, top, nops, ops, ae, te) \
22067 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
22068 THUMB_VARIANT, do_##ae, do_##te, 0 }
22069 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
22070 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
22071 THUMB_VARIANT, do_##ae, do_##te, 0 }
22072 #define TC3(mnem, aop, top, nops, ops, ae, te) \
22073 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
22074 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
22075 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
22076 #define tC3(mnem, aop, top, nops, ops, ae, te) \
22077 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22078 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
22079 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22080
22081 /* Mnemonic that cannot be conditionalized. The ARM condition-code
22082 field is still 0xE. Many of the Thumb variants can be executed
22083 conditionally, so this is checked separately. */
22084 #define TUE(mnem, op, top, nops, ops, ae, te) \
22085 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
22086 THUMB_VARIANT, do_##ae, do_##te, 0 }
22087
22088 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
22089 Used by mnemonics that have very minimal differences in the encoding for
22090 ARM and Thumb variants and can be handled in a common function. */
22091 #define TUEc(mnem, op, top, nops, ops, en) \
22092 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
22093 THUMB_VARIANT, do_##en, do_##en, 0 }
22094
22095 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
22096 condition code field. */
22097 #define TUF(mnem, op, top, nops, ops, ae, te) \
22098 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
22099 THUMB_VARIANT, do_##ae, do_##te, 0 }
22100
22101 /* ARM-only variants of all the above. */
22102 #define CE(mnem, op, nops, ops, ae) \
22103 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22104
22105 #define C3(mnem, op, nops, ops, ae) \
22106 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22107
22108 /* Thumb-only variants of TCE and TUE. */
22109 #define ToC(mnem, top, nops, ops, te) \
22110 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22111 do_##te, 0 }
22112
22113 #define ToU(mnem, top, nops, ops, te) \
22114 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
22115 NULL, do_##te, 0 }
22116
22117 /* T_MNEM_xyz enumerator variants of ToC. */
22118 #define toC(mnem, top, nops, ops, te) \
22119 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
22120 do_##te, 0 }
22121
22122 /* T_MNEM_xyz enumerator variants of ToU. */
22123 #define toU(mnem, top, nops, ops, te) \
22124 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
22125 NULL, do_##te, 0 }
22126
22127 /* Legacy mnemonics that always have conditional infix after the third
22128 character. */
22129 #define CL(mnem, op, nops, ops, ae) \
22130 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
22131 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22132
22133 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
22134 #define cCE(mnem, op, nops, ops, ae) \
22135 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22136
22137 /* mov instructions that are shared between coprocessor and MVE. */
22138 #define mcCE(mnem, op, nops, ops, ae) \
22139 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
22140
22141 /* Legacy coprocessor instructions where conditional infix and conditional
22142 suffix are ambiguous. For consistency this includes all FPA instructions,
22143 not just the potentially ambiguous ones. */
22144 #define cCL(mnem, op, nops, ops, ae) \
22145 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
22146 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22147
22148 /* Coprocessor, takes either a suffix or a position-3 infix
22149 (for an FPA corner case). */
22150 #define C3E(mnem, op, nops, ops, ae) \
22151 { mnem, OPS##nops ops, OT_csuf_or_in3, \
22152 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22153
22154 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
22155 { m1 #m2 m3, OPS##nops ops, \
22156 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
22157 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22158
22159 #define CM(m1, m2, op, nops, ops, ae) \
22160 xCM_ (m1, , m2, op, nops, ops, ae), \
22161 xCM_ (m1, eq, m2, op, nops, ops, ae), \
22162 xCM_ (m1, ne, m2, op, nops, ops, ae), \
22163 xCM_ (m1, cs, m2, op, nops, ops, ae), \
22164 xCM_ (m1, hs, m2, op, nops, ops, ae), \
22165 xCM_ (m1, cc, m2, op, nops, ops, ae), \
22166 xCM_ (m1, ul, m2, op, nops, ops, ae), \
22167 xCM_ (m1, lo, m2, op, nops, ops, ae), \
22168 xCM_ (m1, mi, m2, op, nops, ops, ae), \
22169 xCM_ (m1, pl, m2, op, nops, ops, ae), \
22170 xCM_ (m1, vs, m2, op, nops, ops, ae), \
22171 xCM_ (m1, vc, m2, op, nops, ops, ae), \
22172 xCM_ (m1, hi, m2, op, nops, ops, ae), \
22173 xCM_ (m1, ls, m2, op, nops, ops, ae), \
22174 xCM_ (m1, ge, m2, op, nops, ops, ae), \
22175 xCM_ (m1, lt, m2, op, nops, ops, ae), \
22176 xCM_ (m1, gt, m2, op, nops, ops, ae), \
22177 xCM_ (m1, le, m2, op, nops, ops, ae), \
22178 xCM_ (m1, al, m2, op, nops, ops, ae)
22179
22180 #define UE(mnem, op, nops, ops, ae) \
22181 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22182
22183 #define UF(mnem, op, nops, ops, ae) \
22184 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22185
22186 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
22187 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
22188 use the same encoding function for each. */
22189 #define NUF(mnem, op, nops, ops, enc) \
22190 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22191 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
22192
22193 /* Neon data processing, version which indirects through neon_enc_tab for
22194 the various overloaded versions of opcodes. */
22195 #define nUF(mnem, op, nops, ops, enc) \
22196 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22197 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
22198
22199 /* Neon insn with conditional suffix for the ARM version, non-overloaded
22200 version. */
22201 #define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
22202 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
22203 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
22204
22205 #define NCE(mnem, op, nops, ops, enc) \
22206 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
22207
22208 #define NCEF(mnem, op, nops, ops, enc) \
22209 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22210
22211 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
22212 #define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
22213 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
22214 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
22215
22216 #define nCE(mnem, op, nops, ops, enc) \
22217 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
22218
22219 #define nCEF(mnem, op, nops, ops, enc) \
22220 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22221
22222 /* */
22223 #define mCEF(mnem, op, nops, ops, enc) \
22224 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
22225 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22226
22227
22228 /* nCEF but for MVE predicated instructions. */
22229 #define mnCEF(mnem, op, nops, ops, enc) \
22230 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22231
22232 /* nCE but for MVE predicated instructions. */
22233 #define mnCE(mnem, op, nops, ops, enc) \
22234 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22235
22236 /* NUF but for potentially MVE predicated instructions. */
22237 #define MNUF(mnem, op, nops, ops, enc) \
22238 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22239 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22240
22241 /* nUF but for potentially MVE predicated instructions. */
22242 #define mnUF(mnem, op, nops, ops, enc) \
22243 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22244 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22245
22246 /* ToC but for potentially MVE predicated instructions. */
22247 #define mToC(mnem, top, nops, ops, te) \
22248 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22249 do_##te, 1 }
22250
22251 /* NCE but for MVE predicated instructions. */
22252 #define MNCE(mnem, op, nops, ops, enc) \
22253 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22254
22255 /* NCEF but for MVE predicated instructions. */
22256 #define MNCEF(mnem, op, nops, ops, enc) \
22257 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22258 #define do_0 0
22259
22260 static const struct asm_opcode insns[] =
22261 {
22262 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
22263 #define THUMB_VARIANT & arm_ext_v4t
22264 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
22265 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
22266 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
22267 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
22268 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
22269 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
22270 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
22271 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
22272 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
22273 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
22274 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
22275 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
22276 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
22277 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
22278 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
22279 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
22280
22281 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
22282 for setting PSR flag bits. They are obsolete in V6 and do not
22283 have Thumb equivalents. */
22284 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22285 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22286 CL("tstp", 110f000, 2, (RR, SH), cmp),
22287 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22288 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22289 CL("cmpp", 150f000, 2, (RR, SH), cmp),
22290 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22291 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22292 CL("cmnp", 170f000, 2, (RR, SH), cmp),
22293
22294 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
22295 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
22296 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
22297 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
22298
22299 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
22300 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22301 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
22302 OP_RRnpc),
22303 OP_ADDRGLDR),ldst, t_ldst),
22304 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22305
22306 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22307 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22308 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22309 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22310 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22311 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22312
22313 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
22314 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
22315
22316 /* Pseudo ops. */
22317 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
22318 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
22319 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
22320 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
22321
22322 /* Thumb-compatibility pseudo ops. */
22323 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
22324 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
22325 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
22326 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
22327 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
22328 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
22329 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
22330 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
22331 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
22332 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
22333 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
22334 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
22335
22336 /* These may simplify to neg. */
22337 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
22338 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
22339
22340 #undef THUMB_VARIANT
22341 #define THUMB_VARIANT & arm_ext_os
22342
22343 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
22344 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
22345
22346 #undef THUMB_VARIANT
22347 #define THUMB_VARIANT & arm_ext_v6
22348
22349 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
22350
22351 /* V1 instructions with no Thumb analogue prior to V6T2. */
22352 #undef THUMB_VARIANT
22353 #define THUMB_VARIANT & arm_ext_v6t2
22354
22355 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22356 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22357 CL("teqp", 130f000, 2, (RR, SH), cmp),
22358
22359 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22360 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22361 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
22362 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22363
22364 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22365 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22366
22367 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22368 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22369
22370 /* V1 instructions with no Thumb analogue at all. */
22371 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
22372 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
22373
22374 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
22375 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
22376 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
22377 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
22378 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
22379 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
22380 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
22381 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
22382
22383 #undef ARM_VARIANT
22384 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
22385 #undef THUMB_VARIANT
22386 #define THUMB_VARIANT & arm_ext_v4t
22387
22388 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22389 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22390
22391 #undef THUMB_VARIANT
22392 #define THUMB_VARIANT & arm_ext_v6t2
22393
22394 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
22395 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
22396
22397 /* Generic coprocessor instructions. */
22398 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22399 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22400 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22401 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22402 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22403 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22404 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
22405
22406 #undef ARM_VARIANT
22407 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
22408
22409 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
22410 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
22411
22412 #undef ARM_VARIANT
22413 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
22414 #undef THUMB_VARIANT
22415 #define THUMB_VARIANT & arm_ext_msr
22416
22417 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
22418 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
22419
22420 #undef ARM_VARIANT
22421 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
22422 #undef THUMB_VARIANT
22423 #define THUMB_VARIANT & arm_ext_v6t2
22424
22425 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22426 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22427 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22428 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22429 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22430 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22431 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22432 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22433
22434 #undef ARM_VARIANT
22435 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
22436 #undef THUMB_VARIANT
22437 #define THUMB_VARIANT & arm_ext_v4t
22438
22439 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22440 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22441 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22442 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22443 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22444 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22445
22446 #undef ARM_VARIANT
22447 #define ARM_VARIANT & arm_ext_v4t_5
22448
22449 /* ARM Architecture 4T. */
22450 /* Note: bx (and blx) are required on V5, even if the processor does
22451 not support Thumb. */
22452 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
22453
22454 #undef ARM_VARIANT
22455 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
22456 #undef THUMB_VARIANT
22457 #define THUMB_VARIANT & arm_ext_v5t
22458
22459 /* Note: blx has 2 variants; the .value coded here is for
22460 BLX(2). Only this variant has conditional execution. */
22461 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
22462 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
22463
22464 #undef THUMB_VARIANT
22465 #define THUMB_VARIANT & arm_ext_v6t2
22466
22467 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
22468 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22469 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22470 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22471 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22472 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22473 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22474 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22475
22476 #undef ARM_VARIANT
22477 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
22478 #undef THUMB_VARIANT
22479 #define THUMB_VARIANT & arm_ext_v5exp
22480
22481 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22482 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22483 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22484 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22485
22486 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22487 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22488
22489 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22490 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22491 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22492 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22493
22494 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22495 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22496 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22497 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22498
22499 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22500 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22501
22502 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22503 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22504 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22505 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22506
22507 #undef ARM_VARIANT
22508 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
22509 #undef THUMB_VARIANT
22510 #define THUMB_VARIANT & arm_ext_v6t2
22511
22512 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
22513 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
22514 ldrd, t_ldstd),
22515 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
22516 ADDRGLDRS), ldrd, t_ldstd),
22517
22518 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22519 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22520
22521 #undef ARM_VARIANT
22522 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
22523
22524 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
22525
22526 #undef ARM_VARIANT
22527 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
22528 #undef THUMB_VARIANT
22529 #define THUMB_VARIANT & arm_ext_v6
22530
22531 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
22532 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
22533 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22534 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22535 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22536 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22537 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22538 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22539 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22540 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
22541
22542 #undef THUMB_VARIANT
22543 #define THUMB_VARIANT & arm_ext_v6t2_v8m
22544
22545 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
22546 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
22547 strex, t_strex),
22548 #undef THUMB_VARIANT
22549 #define THUMB_VARIANT & arm_ext_v6t2
22550
22551 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22552 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22553
22554 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
22555 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
22556
22557 /* ARM V6 not included in V7M. */
22558 #undef THUMB_VARIANT
22559 #define THUMB_VARIANT & arm_ext_v6_notm
22560 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
22561 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
22562 UF(rfeib, 9900a00, 1, (RRw), rfe),
22563 UF(rfeda, 8100a00, 1, (RRw), rfe),
22564 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
22565 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
22566 UF(rfefa, 8100a00, 1, (RRw), rfe),
22567 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
22568 UF(rfeed, 9900a00, 1, (RRw), rfe),
22569 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
22570 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
22571 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
22572 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
22573 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
22574 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
22575 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
22576 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
22577 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
22578 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
22579
22580 /* ARM V6 not included in V7M (eg. integer SIMD). */
22581 #undef THUMB_VARIANT
22582 #define THUMB_VARIANT & arm_ext_v6_dsp
22583 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
22584 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
22585 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22586 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22587 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22588 /* Old name for QASX. */
22589 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22590 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22591 /* Old name for QSAX. */
22592 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22593 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22594 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22595 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22596 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22597 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22598 /* Old name for SASX. */
22599 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22600 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22601 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22602 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22603 /* Old name for SHASX. */
22604 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22605 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22606 /* Old name for SHSAX. */
22607 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22608 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22609 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22610 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22611 /* Old name for SSAX. */
22612 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22613 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22614 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22615 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22616 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22617 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22618 /* Old name for UASX. */
22619 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22620 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22621 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22622 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22623 /* Old name for UHASX. */
22624 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22625 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22626 /* Old name for UHSAX. */
22627 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22628 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22629 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22630 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22631 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22632 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22633 /* Old name for UQASX. */
22634 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22635 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22636 /* Old name for UQSAX. */
22637 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22638 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22639 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22640 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22641 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22642 /* Old name for USAX. */
22643 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22644 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22645 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22646 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22647 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22648 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22649 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22650 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22651 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22652 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22653 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22654 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22655 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22656 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22657 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22658 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22659 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22660 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22661 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22662 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22663 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22664 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22665 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22666 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22667 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22668 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22669 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22670 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22671 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22672 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
22673 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
22674 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22675 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22676 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
22677
22678 #undef ARM_VARIANT
22679 #define ARM_VARIANT & arm_ext_v6k_v6t2
22680 #undef THUMB_VARIANT
22681 #define THUMB_VARIANT & arm_ext_v6k_v6t2
22682
22683 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
22684 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
22685 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
22686 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
22687
22688 #undef THUMB_VARIANT
22689 #define THUMB_VARIANT & arm_ext_v6_notm
22690 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
22691 ldrexd, t_ldrexd),
22692 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
22693 RRnpcb), strexd, t_strexd),
22694
22695 #undef THUMB_VARIANT
22696 #define THUMB_VARIANT & arm_ext_v6t2_v8m
22697 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
22698 rd_rn, rd_rn),
22699 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
22700 rd_rn, rd_rn),
22701 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
22702 strex, t_strexbh),
22703 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
22704 strex, t_strexbh),
22705 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
22706
22707 #undef ARM_VARIANT
22708 #define ARM_VARIANT & arm_ext_sec
22709 #undef THUMB_VARIANT
22710 #define THUMB_VARIANT & arm_ext_sec
22711
22712 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
22713
22714 #undef ARM_VARIANT
22715 #define ARM_VARIANT & arm_ext_virt
22716 #undef THUMB_VARIANT
22717 #define THUMB_VARIANT & arm_ext_virt
22718
22719 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
22720 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
22721
22722 #undef ARM_VARIANT
22723 #define ARM_VARIANT & arm_ext_pan
22724 #undef THUMB_VARIANT
22725 #define THUMB_VARIANT & arm_ext_pan
22726
22727 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
22728
22729 #undef ARM_VARIANT
22730 #define ARM_VARIANT & arm_ext_v6t2
22731 #undef THUMB_VARIANT
22732 #define THUMB_VARIANT & arm_ext_v6t2
22733
22734 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
22735 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
22736 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
22737 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
22738
22739 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
22740 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
22741
22742 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22743 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22744 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22745 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22746
22747 #undef ARM_VARIANT
22748 #define ARM_VARIANT & arm_ext_v3
22749 #undef THUMB_VARIANT
22750 #define THUMB_VARIANT & arm_ext_v6t2
22751
22752 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
22753 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
22754 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
22755
22756 #undef ARM_VARIANT
22757 #define ARM_VARIANT & arm_ext_v6t2
22758 #undef THUMB_VARIANT
22759 #define THUMB_VARIANT & arm_ext_v6t2_v8m
22760 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
22761 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
22762
22763 /* Thumb-only instructions. */
22764 #undef ARM_VARIANT
22765 #define ARM_VARIANT NULL
22766 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
22767 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
22768
22769 /* ARM does not really have an IT instruction, so always allow it.
22770 The opcode is copied from Thumb in order to allow warnings in
22771 -mimplicit-it=[never | arm] modes. */
22772 #undef ARM_VARIANT
22773 #define ARM_VARIANT & arm_ext_v1
22774 #undef THUMB_VARIANT
22775 #define THUMB_VARIANT & arm_ext_v6t2
22776
22777 TUE("it", bf08, bf08, 1, (COND), it, t_it),
22778 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
22779 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
22780 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
22781 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
22782 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
22783 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
22784 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
22785 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
22786 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
22787 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
22788 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
22789 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
22790 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
22791 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
22792 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
22793 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
22794 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
22795
22796 /* Thumb2 only instructions. */
22797 #undef ARM_VARIANT
22798 #define ARM_VARIANT NULL
22799
22800 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
22801 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
22802 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
22803 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
22804 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
22805 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
22806
22807 /* Hardware division instructions. */
22808 #undef ARM_VARIANT
22809 #define ARM_VARIANT & arm_ext_adiv
22810 #undef THUMB_VARIANT
22811 #define THUMB_VARIANT & arm_ext_div
22812
22813 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
22814 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
22815
22816 /* ARM V6M/V7 instructions. */
22817 #undef ARM_VARIANT
22818 #define ARM_VARIANT & arm_ext_barrier
22819 #undef THUMB_VARIANT
22820 #define THUMB_VARIANT & arm_ext_barrier
22821
22822 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
22823 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
22824 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
22825
22826 /* ARM V7 instructions. */
22827 #undef ARM_VARIANT
22828 #define ARM_VARIANT & arm_ext_v7
22829 #undef THUMB_VARIANT
22830 #define THUMB_VARIANT & arm_ext_v7
22831
22832 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
22833 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
22834
22835 #undef ARM_VARIANT
22836 #define ARM_VARIANT & arm_ext_mp
22837 #undef THUMB_VARIANT
22838 #define THUMB_VARIANT & arm_ext_mp
22839
22840 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
22841
22842 /* AArchv8 instructions. */
22843 #undef ARM_VARIANT
22844 #define ARM_VARIANT & arm_ext_v8
22845
22846 /* Instructions shared between armv8-a and armv8-m. */
22847 #undef THUMB_VARIANT
22848 #define THUMB_VARIANT & arm_ext_atomics
22849
22850 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22851 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22852 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22853 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
22854 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
22855 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
22856 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22857 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
22858 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22859 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
22860 stlex, t_stlex),
22861 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
22862 stlex, t_stlex),
22863 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
22864 stlex, t_stlex),
22865 #undef THUMB_VARIANT
22866 #define THUMB_VARIANT & arm_ext_v8
22867
22868 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
22869 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
22870 ldrexd, t_ldrexd),
22871 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
22872 strexd, t_strexd),
22873
22874 /* Defined in V8 but is in undefined encoding space for earlier
22875 architectures. However earlier architectures are required to treat
22876 this instuction as a semihosting trap as well. Hence while not explicitly
22877 defined as such, it is in fact correct to define the instruction for all
22878 architectures. */
22879 #undef THUMB_VARIANT
22880 #define THUMB_VARIANT & arm_ext_v1
22881 #undef ARM_VARIANT
22882 #define ARM_VARIANT & arm_ext_v1
22883 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
22884
22885 /* ARMv8 T32 only. */
22886 #undef ARM_VARIANT
22887 #define ARM_VARIANT NULL
22888 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
22889 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
22890 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
22891
22892 /* FP for ARMv8. */
22893 #undef ARM_VARIANT
22894 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
22895 #undef THUMB_VARIANT
22896 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
22897
22898 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
22899 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
22900 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
22901 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
22902 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
22903 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
22904 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
22905 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
22906 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
22907 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
22908 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
22909 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
22910 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
22911
22912 /* Crypto v1 extensions. */
22913 #undef ARM_VARIANT
22914 #define ARM_VARIANT & fpu_crypto_ext_armv8
22915 #undef THUMB_VARIANT
22916 #define THUMB_VARIANT & fpu_crypto_ext_armv8
22917
22918 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
22919 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
22920 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
22921 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
22922 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
22923 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
22924 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
22925 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
22926 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
22927 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
22928 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
22929 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
22930 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
22931 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
22932
22933 #undef ARM_VARIANT
22934 #define ARM_VARIANT & crc_ext_armv8
22935 #undef THUMB_VARIANT
22936 #define THUMB_VARIANT & crc_ext_armv8
22937 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
22938 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
22939 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
22940 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
22941 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
22942 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
22943
22944 /* ARMv8.2 RAS extension. */
22945 #undef ARM_VARIANT
22946 #define ARM_VARIANT & arm_ext_ras
22947 #undef THUMB_VARIANT
22948 #define THUMB_VARIANT & arm_ext_ras
22949 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
22950
22951 #undef ARM_VARIANT
22952 #define ARM_VARIANT & arm_ext_v8_3
22953 #undef THUMB_VARIANT
22954 #define THUMB_VARIANT & arm_ext_v8_3
22955 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
22956
22957 #undef ARM_VARIANT
22958 #define ARM_VARIANT & fpu_neon_ext_dotprod
22959 #undef THUMB_VARIANT
22960 #define THUMB_VARIANT & fpu_neon_ext_dotprod
22961 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
22962 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
22963
22964 #undef ARM_VARIANT
22965 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
22966 #undef THUMB_VARIANT
22967 #define THUMB_VARIANT NULL
22968
22969 cCE("wfs", e200110, 1, (RR), rd),
22970 cCE("rfs", e300110, 1, (RR), rd),
22971 cCE("wfc", e400110, 1, (RR), rd),
22972 cCE("rfc", e500110, 1, (RR), rd),
22973
22974 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
22975 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
22976 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
22977 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
22978
22979 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
22980 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
22981 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
22982 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
22983
22984 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
22985 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
22986 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
22987 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
22988 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
22989 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
22990 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
22991 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
22992 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
22993 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
22994 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
22995 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
22996
22997 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
22998 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
22999 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
23000 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
23001 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
23002 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
23003 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
23004 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
23005 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
23006 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
23007 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
23008 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
23009
23010 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
23011 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
23012 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
23013 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
23014 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
23015 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
23016 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
23017 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
23018 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
23019 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
23020 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
23021 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
23022
23023 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
23024 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
23025 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
23026 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
23027 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
23028 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
23029 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
23030 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
23031 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
23032 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
23033 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
23034 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
23035
23036 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
23037 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
23038 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
23039 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
23040 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
23041 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
23042 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
23043 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
23044 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
23045 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
23046 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
23047 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
23048
23049 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
23050 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
23051 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
23052 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
23053 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
23054 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
23055 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
23056 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
23057 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
23058 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
23059 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
23060 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
23061
23062 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
23063 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
23064 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
23065 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
23066 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
23067 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
23068 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
23069 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
23070 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
23071 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
23072 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
23073 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
23074
23075 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
23076 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
23077 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
23078 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
23079 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
23080 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
23081 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
23082 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
23083 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
23084 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
23085 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
23086 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
23087
23088 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
23089 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
23090 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
23091 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
23092 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
23093 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
23094 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
23095 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
23096 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
23097 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
23098 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
23099 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
23100
23101 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
23102 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
23103 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
23104 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
23105 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
23106 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
23107 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
23108 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
23109 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
23110 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
23111 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
23112 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
23113
23114 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
23115 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
23116 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
23117 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
23118 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
23119 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
23120 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
23121 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
23122 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
23123 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
23124 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
23125 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
23126
23127 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
23128 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
23129 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
23130 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
23131 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
23132 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
23133 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
23134 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
23135 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
23136 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
23137 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
23138 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
23139
23140 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
23141 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
23142 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
23143 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
23144 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
23145 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
23146 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
23147 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
23148 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
23149 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
23150 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
23151 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
23152
23153 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
23154 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
23155 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
23156 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
23157 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
23158 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
23159 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
23160 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
23161 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
23162 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
23163 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
23164 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
23165
23166 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
23167 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
23168 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
23169 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
23170 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
23171 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
23172 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
23173 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
23174 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
23175 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
23176 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
23177 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
23178
23179 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
23180 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
23181 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
23182 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
23183 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
23184 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
23185 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
23186 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
23187 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
23188 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
23189 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
23190 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
23191
23192 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
23193 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
23194 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
23195 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
23196 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
23197 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23198 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23199 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23200 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
23201 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
23202 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
23203 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
23204
23205 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
23206 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
23207 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
23208 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
23209 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
23210 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23211 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23212 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23213 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
23214 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
23215 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
23216 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
23217
23218 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
23219 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
23220 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
23221 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
23222 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
23223 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23224 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23225 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23226 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
23227 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
23228 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
23229 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
23230
23231 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
23232 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
23233 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
23234 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
23235 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
23236 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23237 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23238 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23239 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
23240 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
23241 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
23242 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
23243
23244 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
23245 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
23246 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
23247 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
23248 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
23249 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23250 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23251 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23252 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
23253 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
23254 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
23255 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
23256
23257 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
23258 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
23259 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
23260 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
23261 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
23262 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23263 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23264 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23265 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
23266 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
23267 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
23268 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
23269
23270 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
23271 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
23272 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
23273 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
23274 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
23275 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23276 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23277 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23278 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
23279 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
23280 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
23281 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
23282
23283 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
23284 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
23285 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
23286 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
23287 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
23288 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23289 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23290 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23291 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
23292 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
23293 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
23294 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
23295
23296 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
23297 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
23298 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
23299 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
23300 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
23301 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23302 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23303 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23304 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
23305 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
23306 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
23307 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
23308
23309 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
23310 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
23311 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
23312 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
23313 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
23314 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23315 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23316 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23317 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
23318 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
23319 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
23320 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
23321
23322 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23323 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23324 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23325 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23326 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23327 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23328 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23329 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23330 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23331 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23332 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23333 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23334
23335 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23336 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23337 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23338 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23339 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23340 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23341 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23342 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23343 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23344 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23345 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23346 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23347
23348 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23349 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23350 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23351 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23352 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23353 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23354 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23355 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23356 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23357 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23358 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23359 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23360
23361 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
23362 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
23363 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
23364 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
23365
23366 cCL("flts", e000110, 2, (RF, RR), rn_rd),
23367 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
23368 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
23369 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
23370 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
23371 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
23372 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
23373 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
23374 cCL("flte", e080110, 2, (RF, RR), rn_rd),
23375 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
23376 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
23377 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
23378
23379 /* The implementation of the FIX instruction is broken on some
23380 assemblers, in that it accepts a precision specifier as well as a
23381 rounding specifier, despite the fact that this is meaningless.
23382 To be more compatible, we accept it as well, though of course it
23383 does not set any bits. */
23384 cCE("fix", e100110, 2, (RR, RF), rd_rm),
23385 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
23386 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
23387 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
23388 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
23389 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
23390 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
23391 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
23392 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
23393 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
23394 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
23395 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
23396 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
23397
23398 /* Instructions that were new with the real FPA, call them V2. */
23399 #undef ARM_VARIANT
23400 #define ARM_VARIANT & fpu_fpa_ext_v2
23401
23402 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23403 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23404 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23405 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23406 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23407 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23408
23409 #undef ARM_VARIANT
23410 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
23411
23412 /* Moves and type conversions. */
23413 cCE("fmstat", ef1fa10, 0, (), noargs),
23414 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
23415 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
23416 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
23417 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
23418 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
23419 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23420 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
23421 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23422 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
23423 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
23424
23425 /* Memory operations. */
23426 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
23427 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
23428 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23429 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23430 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23431 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23432 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23433 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23434 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23435 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23436 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23437 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23438 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23439 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23440 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23441 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23442 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23443 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23444
23445 /* Monadic operations. */
23446 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
23447 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
23448 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
23449
23450 /* Dyadic operations. */
23451 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23452 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23453 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23454 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23455 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23456 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23457 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23458 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23459 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23460
23461 /* Comparisons. */
23462 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
23463 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
23464 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
23465 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
23466
23467 /* Double precision load/store are still present on single precision
23468 implementations. */
23469 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
23470 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
23471 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23472 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23473 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23474 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23475 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23476 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23477 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23478 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23479
23480 #undef ARM_VARIANT
23481 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
23482
23483 /* Moves and type conversions. */
23484 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23485 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23486 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
23487 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
23488 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
23489 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
23490 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23491 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
23492 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23493 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23494 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23495 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23496
23497 /* Monadic operations. */
23498 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23499 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23500 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23501
23502 /* Dyadic operations. */
23503 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23504 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23505 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23506 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23507 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23508 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23509 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23510 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23511 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23512
23513 /* Comparisons. */
23514 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23515 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
23516 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23517 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
23518
23519 /* Instructions which may belong to either the Neon or VFP instruction sets.
23520 Individual encoder functions perform additional architecture checks. */
23521 #undef ARM_VARIANT
23522 #define ARM_VARIANT & fpu_vfp_ext_v1xd
23523 #undef THUMB_VARIANT
23524 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
23525
23526 /* These mnemonics are unique to VFP. */
23527 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
23528 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
23529 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23530 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23531 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23532 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
23533 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
23534 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
23535
23536 /* Mnemonics shared by Neon and VFP. */
23537 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
23538 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
23539 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
23540
23541 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23542 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23543 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23544 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23545 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23546 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23547
23548 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
23549 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
23550 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
23551 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
23552
23553
23554 /* NOTE: All VMOV encoding is special-cased! */
23555 NCE(vmovq, 0, 1, (VMOV), neon_mov),
23556
23557 #undef THUMB_VARIANT
23558 /* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
23559 by different feature bits. Since we are setting the Thumb guard, we can
23560 require Thumb-1 which makes it a nop guard and set the right feature bit in
23561 do_vldr_vstr (). */
23562 #define THUMB_VARIANT & arm_ext_v4t
23563 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
23564 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
23565
23566 #undef ARM_VARIANT
23567 #define ARM_VARIANT & arm_ext_fp16
23568 #undef THUMB_VARIANT
23569 #define THUMB_VARIANT & arm_ext_fp16
23570 /* New instructions added from v8.2, allowing the extraction and insertion of
23571 the upper 16 bits of a 32-bit vector register. */
23572 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
23573 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
23574
23575 /* New backported fma/fms instructions optional in v8.2. */
23576 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
23577 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
23578
23579 #undef THUMB_VARIANT
23580 #define THUMB_VARIANT & fpu_neon_ext_v1
23581 #undef ARM_VARIANT
23582 #define ARM_VARIANT & fpu_neon_ext_v1
23583
23584 /* Data processing with three registers of the same length. */
23585 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
23586 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
23587 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
23588 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
23589 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23590 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
23591 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23592 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
23593 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23594 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
23595 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
23596 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
23597 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
23598 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
23599 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
23600 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
23601 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
23602 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
23603 /* If not immediate, fall back to neon_dyadic_i64_su.
23604 shl_imm should accept I8 I16 I32 I64,
23605 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
23606 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
23607 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
23608 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
23609 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
23610 /* Logic ops, types optional & ignored. */
23611 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23612 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23613 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23614 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23615 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
23616 /* Bitfield ops, untyped. */
23617 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23618 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23619 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23620 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23621 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23622 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23623 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
23624 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23625 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
23626 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23627 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
23628 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23629 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
23630 back to neon_dyadic_if_su. */
23631 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
23632 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
23633 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
23634 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
23635 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
23636 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
23637 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
23638 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
23639 /* Comparison. Type I8 I16 I32 F32. */
23640 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
23641 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
23642 /* As above, D registers only. */
23643 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
23644 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
23645 /* Int and float variants, signedness unimportant. */
23646 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
23647 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
23648 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
23649 /* Add/sub take types I8 I16 I32 I64 F32. */
23650 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
23651 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
23652 /* vtst takes sizes 8, 16, 32. */
23653 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
23654 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
23655 /* VMUL takes I8 I16 I32 F32 P8. */
23656 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
23657 /* VQD{R}MULH takes S16 S32. */
23658 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
23659 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
23660 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
23661 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
23662 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
23663 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
23664 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
23665 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
23666 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
23667 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
23668 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
23669 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
23670 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
23671 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
23672 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
23673 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
23674 /* ARM v8.1 extension. */
23675 nUF (vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
23676 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
23677 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
23678 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
23679
23680 /* Two address, int/float. Types S8 S16 S32 F32. */
23681 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
23682 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
23683
23684 /* Data processing with two registers and a shift amount. */
23685 /* Right shifts, and variants with rounding.
23686 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
23687 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
23688 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
23689 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
23690 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
23691 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
23692 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
23693 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
23694 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
23695 /* Shift and insert. Sizes accepted 8 16 32 64. */
23696 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
23697 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
23698 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
23699 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
23700 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
23701 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
23702 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
23703 /* Right shift immediate, saturating & narrowing, with rounding variants.
23704 Types accepted S16 S32 S64 U16 U32 U64. */
23705 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
23706 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
23707 /* As above, unsigned. Types accepted S16 S32 S64. */
23708 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
23709 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
23710 /* Right shift narrowing. Types accepted I16 I32 I64. */
23711 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
23712 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
23713 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
23714 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
23715 /* CVT with optional immediate for fixed-point variant. */
23716 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
23717
23718 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
23719 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
23720
23721 /* Data processing, three registers of different lengths. */
23722 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
23723 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
23724 /* If not scalar, fall back to neon_dyadic_long.
23725 Vector types as above, scalar types S16 S32 U16 U32. */
23726 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
23727 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
23728 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
23729 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
23730 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
23731 /* Dyadic, narrowing insns. Types I16 I32 I64. */
23732 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23733 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23734 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23735 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23736 /* Saturating doubling multiplies. Types S16 S32. */
23737 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
23738 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
23739 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
23740 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
23741 S16 S32 U16 U32. */
23742 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
23743
23744 /* Extract. Size 8. */
23745 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
23746 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
23747
23748 /* Two registers, miscellaneous. */
23749 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
23750 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
23751 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
23752 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
23753 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
23754 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
23755 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
23756 /* Vector replicate. Sizes 8 16 32. */
23757 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
23758 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
23759 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
23760 /* VMOVN. Types I16 I32 I64. */
23761 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
23762 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
23763 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
23764 /* VQMOVUN. Types S16 S32 S64. */
23765 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
23766 /* VZIP / VUZP. Sizes 8 16 32. */
23767 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
23768 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
23769 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
23770 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
23771 /* VQABS / VQNEG. Types S8 S16 S32. */
23772 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
23773 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
23774 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
23775 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
23776 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
23777 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
23778 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
23779 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
23780 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
23781 /* Reciprocal estimates. Types U32 F16 F32. */
23782 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
23783 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
23784 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
23785 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
23786 /* VCLS. Types S8 S16 S32. */
23787 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
23788 /* VCLZ. Types I8 I16 I32. */
23789 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
23790 /* VCNT. Size 8. */
23791 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
23792 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
23793 /* Two address, untyped. */
23794 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
23795 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
23796 /* VTRN. Sizes 8 16 32. */
23797 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
23798 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
23799
23800 /* Table lookup. Size 8. */
23801 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
23802 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
23803
23804 #undef THUMB_VARIANT
23805 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
23806 #undef ARM_VARIANT
23807 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
23808
23809 /* Neon element/structure load/store. */
23810 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
23811 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
23812 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
23813 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
23814 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
23815 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
23816 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
23817 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
23818
23819 #undef THUMB_VARIANT
23820 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
23821 #undef ARM_VARIANT
23822 #define ARM_VARIANT & fpu_vfp_ext_v3xd
23823 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
23824 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23825 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23826 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23827 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23828 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23829 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23830 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23831 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23832
23833 #undef THUMB_VARIANT
23834 #define THUMB_VARIANT & fpu_vfp_ext_v3
23835 #undef ARM_VARIANT
23836 #define ARM_VARIANT & fpu_vfp_ext_v3
23837
23838 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
23839 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
23840 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
23841 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
23842 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
23843 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
23844 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
23845 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
23846 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
23847
23848 #undef ARM_VARIANT
23849 #define ARM_VARIANT & fpu_vfp_ext_fma
23850 #undef THUMB_VARIANT
23851 #define THUMB_VARIANT & fpu_vfp_ext_fma
23852 /* Mnemonics shared by Neon, VFP and MVE. These are included in the
23853 VFP FMA variant; NEON and VFP FMA always includes the NEON
23854 FMA instructions. */
23855 mnCEF(vfma, _vfma, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_fmac),
23856 mnCEF(vfms, _vfms, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), neon_fmac),
23857
23858 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
23859 the v form should always be used. */
23860 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23861 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23862 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23863 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23864 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23865 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23866
23867 #undef THUMB_VARIANT
23868 #undef ARM_VARIANT
23869 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
23870
23871 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23872 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23873 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23874 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23875 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23876 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23877 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
23878 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
23879
23880 #undef ARM_VARIANT
23881 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
23882
23883 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
23884 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
23885 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
23886 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
23887 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
23888 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
23889 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
23890 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
23891 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
23892 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
23893 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
23894 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
23895 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
23896 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
23897 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
23898 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
23899 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
23900 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
23901 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
23902 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
23903 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23904 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23905 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23906 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23907 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23908 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23909 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
23910 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
23911 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
23912 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
23913 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
23914 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
23915 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
23916 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
23917 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
23918 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
23919 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
23920 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23921 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23922 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23923 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23924 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23925 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23926 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23927 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23928 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23929 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
23930 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23931 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23932 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23933 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23934 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23935 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23936 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23937 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23938 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23939 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23940 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23941 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23942 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23943 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23944 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23945 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23946 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23947 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23948 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23949 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
23950 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
23951 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
23952 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
23953 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23954 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23955 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23956 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23957 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23958 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23959 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23960 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23961 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23962 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23963 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23964 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23965 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23966 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23967 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23968 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23969 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23970 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23971 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
23972 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23973 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23974 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23975 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23976 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23977 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23978 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23979 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23980 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23981 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23982 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23983 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23984 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23985 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23986 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23987 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23988 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23989 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23990 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23991 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23992 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23993 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
23994 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23995 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23996 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23997 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23998 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23999 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24000 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24001 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24002 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24003 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24004 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24005 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24006 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24007 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24008 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24009 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24010 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24011 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24012 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24013 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24014 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24015 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24016 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24017 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24018 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24019 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24020 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24021 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24022 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24023 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24024 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24025 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
24026 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
24027 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
24028 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
24029 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
24030 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
24031 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24032 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24033 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24034 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
24035 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
24036 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
24037 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
24038 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
24039 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
24040 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24041 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24042 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24043 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24044 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
24045
24046 #undef ARM_VARIANT
24047 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
24048
24049 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
24050 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
24051 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
24052 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
24053 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
24054 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
24055 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24056 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24057 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24058 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24059 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24060 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24061 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24062 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24063 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24064 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24065 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24066 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24067 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24068 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24069 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
24070 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24071 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24072 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24073 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24074 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24075 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24076 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24077 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24078 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24079 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24080 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24081 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24082 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24083 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24084 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24085 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24086 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24087 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24088 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24089 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24090 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24091 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24092 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24093 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24094 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24095 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24096 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24097 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24098 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24099 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24100 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24101 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24102 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24103 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24104 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24105 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24106
24107 #undef ARM_VARIANT
24108 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
24109
24110 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24111 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24112 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24113 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24114 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24115 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24116 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24117 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24118 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
24119 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
24120 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
24121 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
24122 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
24123 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
24124 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
24125 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
24126 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
24127 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
24128 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
24129 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
24130 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
24131 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
24132 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
24133 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
24134 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
24135 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
24136 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
24137 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
24138 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
24139 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
24140 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
24141 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
24142 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
24143 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
24144 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
24145 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
24146 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
24147 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
24148 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
24149 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
24150 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
24151 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
24152 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
24153 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
24154 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
24155 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
24156 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
24157 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
24158 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
24159 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
24160 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
24161 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
24162 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
24163 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
24164 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
24165 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
24166 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
24167 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
24168 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
24169 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
24170 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
24171 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
24172 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
24173 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
24174 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24175 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24176 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24177 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24178 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24179 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24180 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24181 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24182 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24183 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24184 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24185 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24186
24187 /* ARMv8.5-A instructions. */
24188 #undef ARM_VARIANT
24189 #define ARM_VARIANT & arm_ext_sb
24190 #undef THUMB_VARIANT
24191 #define THUMB_VARIANT & arm_ext_sb
24192 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
24193
24194 #undef ARM_VARIANT
24195 #define ARM_VARIANT & arm_ext_predres
24196 #undef THUMB_VARIANT
24197 #define THUMB_VARIANT & arm_ext_predres
24198 CE("cfprctx", e070f93, 1, (RRnpc), rd),
24199 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
24200 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
24201
24202 /* ARMv8-M instructions. */
24203 #undef ARM_VARIANT
24204 #define ARM_VARIANT NULL
24205 #undef THUMB_VARIANT
24206 #define THUMB_VARIANT & arm_ext_v8m
24207 ToU("sg", e97fe97f, 0, (), noargs),
24208 ToC("blxns", 4784, 1, (RRnpc), t_blx),
24209 ToC("bxns", 4704, 1, (RRnpc), t_bx),
24210 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
24211 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
24212 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
24213 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
24214
24215 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
24216 instructions behave as nop if no VFP is present. */
24217 #undef THUMB_VARIANT
24218 #define THUMB_VARIANT & arm_ext_v8m_main
24219 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
24220 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
24221
24222 /* Armv8.1-M Mainline instructions. */
24223 #undef THUMB_VARIANT
24224 #define THUMB_VARIANT & arm_ext_v8_1m_main
24225 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
24226 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
24227 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
24228 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
24229 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
24230
24231 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
24232 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
24233 toU("le", _le, 2, (oLR, EXP), t_loloop),
24234
24235 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
24236 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
24237
24238 #undef THUMB_VARIANT
24239 #define THUMB_VARIANT & mve_ext
24240
24241 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24242 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24243 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24244 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24245 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24246 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24247 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24248 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24249 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24250 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24251 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24252 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24253 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24254 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24255 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24256
24257 ToC("vpst", fe710f4d, 0, (), mve_vpt),
24258 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
24259 ToC("vpste", fe718f4d, 0, (), mve_vpt),
24260 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
24261 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
24262 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
24263 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
24264 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
24265 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
24266 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
24267 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
24268 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
24269 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
24270 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
24271 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
24272
24273 /* MVE and MVE FP only. */
24274 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
24275 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
24276 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24277 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24278 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
24279 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
24280 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24281 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24282 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24283 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24284 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24285 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24286 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24287 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24288 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24289 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24290
24291 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24292 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24293 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24294 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24295 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24296 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24297 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24298 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24299 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24300 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24301 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24302 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24303 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24304 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24305 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24306 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24307 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24308 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24309 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24310 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24311
24312 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
24313 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
24314 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
24315 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
24316 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
24317 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
24318 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
24319 mCEF(vddup, _vddup, 3, (RMQ, RRe, EXPi), mve_viddup),
24320 mCEF(vdwdup, _vdwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
24321 mCEF(vidup, _vidup, 3, (RMQ, RRe, EXPi), mve_viddup),
24322 mCEF(viwdup, _viwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
24323
24324 #undef THUMB_VARIANT
24325 #define THUMB_VARIANT & mve_fp_ext
24326 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
24327 mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas),
24328
24329 #undef ARM_VARIANT
24330 #define ARM_VARIANT & fpu_vfp_ext_v1
24331 #undef THUMB_VARIANT
24332 #define THUMB_VARIANT & arm_ext_v6t2
24333
24334 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24335
24336 #undef ARM_VARIANT
24337 #define ARM_VARIANT & fpu_vfp_ext_v1xd
24338
24339 MNCE(vmov, 0, 1, (VMOV), neon_mov),
24340 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
24341 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
24342 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
24343
24344 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
24345 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
24346 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
24347
24348 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24349 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24350
24351 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
24352 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
24353
24354 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24355 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24356
24357 #undef ARM_VARIANT
24358 #define ARM_VARIANT & fpu_vfp_ext_v2
24359
24360 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
24361 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
24362 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
24363 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
24364
24365 #undef ARM_VARIANT
24366 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
24367 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
24368 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
24369 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
24370 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
24371
24372 #undef ARM_VARIANT
24373 #define ARM_VARIANT & fpu_neon_ext_v1
24374 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
24375 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
24376 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
24377 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
24378 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24379 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24380 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24381 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24382 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
24383 MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls),
24384 MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz),
24385 mnCE(vdup, _vdup, 2, (RNDQMQ, RR_RNSC), neon_dup),
24386
24387 #undef ARM_VARIANT
24388 #define ARM_VARIANT & arm_ext_v8_3
24389 #undef THUMB_VARIANT
24390 #define THUMB_VARIANT & arm_ext_v6t2_v8m
24391 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
24392 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
24393 };
24394 #undef ARM_VARIANT
24395 #undef THUMB_VARIANT
24396 #undef TCE
24397 #undef TUE
24398 #undef TUF
24399 #undef TCC
24400 #undef cCE
24401 #undef cCL
24402 #undef C3E
24403 #undef C3
24404 #undef CE
24405 #undef CM
24406 #undef CL
24407 #undef UE
24408 #undef UF
24409 #undef UT
24410 #undef NUF
24411 #undef nUF
24412 #undef NCE
24413 #undef nCE
24414 #undef OPS0
24415 #undef OPS1
24416 #undef OPS2
24417 #undef OPS3
24418 #undef OPS4
24419 #undef OPS5
24420 #undef OPS6
24421 #undef do_0
24422 #undef ToC
24423 #undef toC
24424 #undef ToU
24425 #undef toU
24426 \f
24427 /* MD interface: bits in the object file. */
24428
24429 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
24430 for use in the a.out file, and stores them in the array pointed to by buf.
24431 This knows about the endian-ness of the target machine and does
24432 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
24433 2 (short) and 4 (long) Floating numbers are put out as a series of
24434 LITTLENUMS (shorts, here at least). */
24435
24436 void
24437 md_number_to_chars (char * buf, valueT val, int n)
24438 {
24439 if (target_big_endian)
24440 number_to_chars_bigendian (buf, val, n);
24441 else
24442 number_to_chars_littleendian (buf, val, n);
24443 }
24444
24445 static valueT
24446 md_chars_to_number (char * buf, int n)
24447 {
24448 valueT result = 0;
24449 unsigned char * where = (unsigned char *) buf;
24450
24451 if (target_big_endian)
24452 {
24453 while (n--)
24454 {
24455 result <<= 8;
24456 result |= (*where++ & 255);
24457 }
24458 }
24459 else
24460 {
24461 while (n--)
24462 {
24463 result <<= 8;
24464 result |= (where[n] & 255);
24465 }
24466 }
24467
24468 return result;
24469 }
24470
24471 /* MD interface: Sections. */
24472
24473 /* Calculate the maximum variable size (i.e., excluding fr_fix)
24474 that an rs_machine_dependent frag may reach. */
24475
24476 unsigned int
24477 arm_frag_max_var (fragS *fragp)
24478 {
24479 /* We only use rs_machine_dependent for variable-size Thumb instructions,
24480 which are either THUMB_SIZE (2) or INSN_SIZE (4).
24481
24482 Note that we generate relaxable instructions even for cases that don't
24483 really need it, like an immediate that's a trivial constant. So we're
24484 overestimating the instruction size for some of those cases. Rather
24485 than putting more intelligence here, it would probably be better to
24486 avoid generating a relaxation frag in the first place when it can be
24487 determined up front that a short instruction will suffice. */
24488
24489 gas_assert (fragp->fr_type == rs_machine_dependent);
24490 return INSN_SIZE;
24491 }
24492
24493 /* Estimate the size of a frag before relaxing. Assume everything fits in
24494 2 bytes. */
24495
24496 int
24497 md_estimate_size_before_relax (fragS * fragp,
24498 segT segtype ATTRIBUTE_UNUSED)
24499 {
24500 fragp->fr_var = 2;
24501 return 2;
24502 }
24503
24504 /* Convert a machine dependent frag. */
24505
24506 void
24507 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
24508 {
24509 unsigned long insn;
24510 unsigned long old_op;
24511 char *buf;
24512 expressionS exp;
24513 fixS *fixp;
24514 int reloc_type;
24515 int pc_rel;
24516 int opcode;
24517
24518 buf = fragp->fr_literal + fragp->fr_fix;
24519
24520 old_op = bfd_get_16(abfd, buf);
24521 if (fragp->fr_symbol)
24522 {
24523 exp.X_op = O_symbol;
24524 exp.X_add_symbol = fragp->fr_symbol;
24525 }
24526 else
24527 {
24528 exp.X_op = O_constant;
24529 }
24530 exp.X_add_number = fragp->fr_offset;
24531 opcode = fragp->fr_subtype;
24532 switch (opcode)
24533 {
24534 case T_MNEM_ldr_pc:
24535 case T_MNEM_ldr_pc2:
24536 case T_MNEM_ldr_sp:
24537 case T_MNEM_str_sp:
24538 case T_MNEM_ldr:
24539 case T_MNEM_ldrb:
24540 case T_MNEM_ldrh:
24541 case T_MNEM_str:
24542 case T_MNEM_strb:
24543 case T_MNEM_strh:
24544 if (fragp->fr_var == 4)
24545 {
24546 insn = THUMB_OP32 (opcode);
24547 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
24548 {
24549 insn |= (old_op & 0x700) << 4;
24550 }
24551 else
24552 {
24553 insn |= (old_op & 7) << 12;
24554 insn |= (old_op & 0x38) << 13;
24555 }
24556 insn |= 0x00000c00;
24557 put_thumb32_insn (buf, insn);
24558 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
24559 }
24560 else
24561 {
24562 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
24563 }
24564 pc_rel = (opcode == T_MNEM_ldr_pc2);
24565 break;
24566 case T_MNEM_adr:
24567 if (fragp->fr_var == 4)
24568 {
24569 insn = THUMB_OP32 (opcode);
24570 insn |= (old_op & 0xf0) << 4;
24571 put_thumb32_insn (buf, insn);
24572 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
24573 }
24574 else
24575 {
24576 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24577 exp.X_add_number -= 4;
24578 }
24579 pc_rel = 1;
24580 break;
24581 case T_MNEM_mov:
24582 case T_MNEM_movs:
24583 case T_MNEM_cmp:
24584 case T_MNEM_cmn:
24585 if (fragp->fr_var == 4)
24586 {
24587 int r0off = (opcode == T_MNEM_mov
24588 || opcode == T_MNEM_movs) ? 0 : 8;
24589 insn = THUMB_OP32 (opcode);
24590 insn = (insn & 0xe1ffffff) | 0x10000000;
24591 insn |= (old_op & 0x700) << r0off;
24592 put_thumb32_insn (buf, insn);
24593 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
24594 }
24595 else
24596 {
24597 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
24598 }
24599 pc_rel = 0;
24600 break;
24601 case T_MNEM_b:
24602 if (fragp->fr_var == 4)
24603 {
24604 insn = THUMB_OP32(opcode);
24605 put_thumb32_insn (buf, insn);
24606 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
24607 }
24608 else
24609 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
24610 pc_rel = 1;
24611 break;
24612 case T_MNEM_bcond:
24613 if (fragp->fr_var == 4)
24614 {
24615 insn = THUMB_OP32(opcode);
24616 insn |= (old_op & 0xf00) << 14;
24617 put_thumb32_insn (buf, insn);
24618 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
24619 }
24620 else
24621 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
24622 pc_rel = 1;
24623 break;
24624 case T_MNEM_add_sp:
24625 case T_MNEM_add_pc:
24626 case T_MNEM_inc_sp:
24627 case T_MNEM_dec_sp:
24628 if (fragp->fr_var == 4)
24629 {
24630 /* ??? Choose between add and addw. */
24631 insn = THUMB_OP32 (opcode);
24632 insn |= (old_op & 0xf0) << 4;
24633 put_thumb32_insn (buf, insn);
24634 if (opcode == T_MNEM_add_pc)
24635 reloc_type = BFD_RELOC_ARM_T32_IMM12;
24636 else
24637 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
24638 }
24639 else
24640 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24641 pc_rel = 0;
24642 break;
24643
24644 case T_MNEM_addi:
24645 case T_MNEM_addis:
24646 case T_MNEM_subi:
24647 case T_MNEM_subis:
24648 if (fragp->fr_var == 4)
24649 {
24650 insn = THUMB_OP32 (opcode);
24651 insn |= (old_op & 0xf0) << 4;
24652 insn |= (old_op & 0xf) << 16;
24653 put_thumb32_insn (buf, insn);
24654 if (insn & (1 << 20))
24655 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
24656 else
24657 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
24658 }
24659 else
24660 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24661 pc_rel = 0;
24662 break;
24663 default:
24664 abort ();
24665 }
24666 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
24667 (enum bfd_reloc_code_real) reloc_type);
24668 fixp->fx_file = fragp->fr_file;
24669 fixp->fx_line = fragp->fr_line;
24670 fragp->fr_fix += fragp->fr_var;
24671
24672 /* Set whether we use thumb-2 ISA based on final relaxation results. */
24673 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
24674 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
24675 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
24676 }
24677
24678 /* Return the size of a relaxable immediate operand instruction.
24679 SHIFT and SIZE specify the form of the allowable immediate. */
24680 static int
24681 relax_immediate (fragS *fragp, int size, int shift)
24682 {
24683 offsetT offset;
24684 offsetT mask;
24685 offsetT low;
24686
24687 /* ??? Should be able to do better than this. */
24688 if (fragp->fr_symbol)
24689 return 4;
24690
24691 low = (1 << shift) - 1;
24692 mask = (1 << (shift + size)) - (1 << shift);
24693 offset = fragp->fr_offset;
24694 /* Force misaligned offsets to 32-bit variant. */
24695 if (offset & low)
24696 return 4;
24697 if (offset & ~mask)
24698 return 4;
24699 return 2;
24700 }
24701
24702 /* Get the address of a symbol during relaxation. */
24703 static addressT
24704 relaxed_symbol_addr (fragS *fragp, long stretch)
24705 {
24706 fragS *sym_frag;
24707 addressT addr;
24708 symbolS *sym;
24709
24710 sym = fragp->fr_symbol;
24711 sym_frag = symbol_get_frag (sym);
24712 know (S_GET_SEGMENT (sym) != absolute_section
24713 || sym_frag == &zero_address_frag);
24714 addr = S_GET_VALUE (sym) + fragp->fr_offset;
24715
24716 /* If frag has yet to be reached on this pass, assume it will
24717 move by STRETCH just as we did. If this is not so, it will
24718 be because some frag between grows, and that will force
24719 another pass. */
24720
24721 if (stretch != 0
24722 && sym_frag->relax_marker != fragp->relax_marker)
24723 {
24724 fragS *f;
24725
24726 /* Adjust stretch for any alignment frag. Note that if have
24727 been expanding the earlier code, the symbol may be
24728 defined in what appears to be an earlier frag. FIXME:
24729 This doesn't handle the fr_subtype field, which specifies
24730 a maximum number of bytes to skip when doing an
24731 alignment. */
24732 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
24733 {
24734 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
24735 {
24736 if (stretch < 0)
24737 stretch = - ((- stretch)
24738 & ~ ((1 << (int) f->fr_offset) - 1));
24739 else
24740 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
24741 if (stretch == 0)
24742 break;
24743 }
24744 }
24745 if (f != NULL)
24746 addr += stretch;
24747 }
24748
24749 return addr;
24750 }
24751
24752 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
24753 load. */
24754 static int
24755 relax_adr (fragS *fragp, asection *sec, long stretch)
24756 {
24757 addressT addr;
24758 offsetT val;
24759
24760 /* Assume worst case for symbols not known to be in the same section. */
24761 if (fragp->fr_symbol == NULL
24762 || !S_IS_DEFINED (fragp->fr_symbol)
24763 || sec != S_GET_SEGMENT (fragp->fr_symbol)
24764 || S_IS_WEAK (fragp->fr_symbol))
24765 return 4;
24766
24767 val = relaxed_symbol_addr (fragp, stretch);
24768 addr = fragp->fr_address + fragp->fr_fix;
24769 addr = (addr + 4) & ~3;
24770 /* Force misaligned targets to 32-bit variant. */
24771 if (val & 3)
24772 return 4;
24773 val -= addr;
24774 if (val < 0 || val > 1020)
24775 return 4;
24776 return 2;
24777 }
24778
24779 /* Return the size of a relaxable add/sub immediate instruction. */
24780 static int
24781 relax_addsub (fragS *fragp, asection *sec)
24782 {
24783 char *buf;
24784 int op;
24785
24786 buf = fragp->fr_literal + fragp->fr_fix;
24787 op = bfd_get_16(sec->owner, buf);
24788 if ((op & 0xf) == ((op >> 4) & 0xf))
24789 return relax_immediate (fragp, 8, 0);
24790 else
24791 return relax_immediate (fragp, 3, 0);
24792 }
24793
24794 /* Return TRUE iff the definition of symbol S could be pre-empted
24795 (overridden) at link or load time. */
24796 static bfd_boolean
24797 symbol_preemptible (symbolS *s)
24798 {
24799 /* Weak symbols can always be pre-empted. */
24800 if (S_IS_WEAK (s))
24801 return TRUE;
24802
24803 /* Non-global symbols cannot be pre-empted. */
24804 if (! S_IS_EXTERNAL (s))
24805 return FALSE;
24806
24807 #ifdef OBJ_ELF
24808 /* In ELF, a global symbol can be marked protected, or private. In that
24809 case it can't be pre-empted (other definitions in the same link unit
24810 would violate the ODR). */
24811 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
24812 return FALSE;
24813 #endif
24814
24815 /* Other global symbols might be pre-empted. */
24816 return TRUE;
24817 }
24818
24819 /* Return the size of a relaxable branch instruction. BITS is the
24820 size of the offset field in the narrow instruction. */
24821
24822 static int
24823 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
24824 {
24825 addressT addr;
24826 offsetT val;
24827 offsetT limit;
24828
24829 /* Assume worst case for symbols not known to be in the same section. */
24830 if (!S_IS_DEFINED (fragp->fr_symbol)
24831 || sec != S_GET_SEGMENT (fragp->fr_symbol)
24832 || S_IS_WEAK (fragp->fr_symbol))
24833 return 4;
24834
24835 #ifdef OBJ_ELF
24836 /* A branch to a function in ARM state will require interworking. */
24837 if (S_IS_DEFINED (fragp->fr_symbol)
24838 && ARM_IS_FUNC (fragp->fr_symbol))
24839 return 4;
24840 #endif
24841
24842 if (symbol_preemptible (fragp->fr_symbol))
24843 return 4;
24844
24845 val = relaxed_symbol_addr (fragp, stretch);
24846 addr = fragp->fr_address + fragp->fr_fix + 4;
24847 val -= addr;
24848
24849 /* Offset is a signed value *2 */
24850 limit = 1 << bits;
24851 if (val >= limit || val < -limit)
24852 return 4;
24853 return 2;
24854 }
24855
24856
24857 /* Relax a machine dependent frag. This returns the amount by which
24858 the current size of the frag should change. */
24859
24860 int
24861 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
24862 {
24863 int oldsize;
24864 int newsize;
24865
24866 oldsize = fragp->fr_var;
24867 switch (fragp->fr_subtype)
24868 {
24869 case T_MNEM_ldr_pc2:
24870 newsize = relax_adr (fragp, sec, stretch);
24871 break;
24872 case T_MNEM_ldr_pc:
24873 case T_MNEM_ldr_sp:
24874 case T_MNEM_str_sp:
24875 newsize = relax_immediate (fragp, 8, 2);
24876 break;
24877 case T_MNEM_ldr:
24878 case T_MNEM_str:
24879 newsize = relax_immediate (fragp, 5, 2);
24880 break;
24881 case T_MNEM_ldrh:
24882 case T_MNEM_strh:
24883 newsize = relax_immediate (fragp, 5, 1);
24884 break;
24885 case T_MNEM_ldrb:
24886 case T_MNEM_strb:
24887 newsize = relax_immediate (fragp, 5, 0);
24888 break;
24889 case T_MNEM_adr:
24890 newsize = relax_adr (fragp, sec, stretch);
24891 break;
24892 case T_MNEM_mov:
24893 case T_MNEM_movs:
24894 case T_MNEM_cmp:
24895 case T_MNEM_cmn:
24896 newsize = relax_immediate (fragp, 8, 0);
24897 break;
24898 case T_MNEM_b:
24899 newsize = relax_branch (fragp, sec, 11, stretch);
24900 break;
24901 case T_MNEM_bcond:
24902 newsize = relax_branch (fragp, sec, 8, stretch);
24903 break;
24904 case T_MNEM_add_sp:
24905 case T_MNEM_add_pc:
24906 newsize = relax_immediate (fragp, 8, 2);
24907 break;
24908 case T_MNEM_inc_sp:
24909 case T_MNEM_dec_sp:
24910 newsize = relax_immediate (fragp, 7, 2);
24911 break;
24912 case T_MNEM_addi:
24913 case T_MNEM_addis:
24914 case T_MNEM_subi:
24915 case T_MNEM_subis:
24916 newsize = relax_addsub (fragp, sec);
24917 break;
24918 default:
24919 abort ();
24920 }
24921
24922 fragp->fr_var = newsize;
24923 /* Freeze wide instructions that are at or before the same location as
24924 in the previous pass. This avoids infinite loops.
24925 Don't freeze them unconditionally because targets may be artificially
24926 misaligned by the expansion of preceding frags. */
24927 if (stretch <= 0 && newsize > 2)
24928 {
24929 md_convert_frag (sec->owner, sec, fragp);
24930 frag_wane (fragp);
24931 }
24932
24933 return newsize - oldsize;
24934 }
24935
24936 /* Round up a section size to the appropriate boundary. */
24937
24938 valueT
24939 md_section_align (segT segment ATTRIBUTE_UNUSED,
24940 valueT size)
24941 {
24942 return size;
24943 }
24944
24945 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
24946 of an rs_align_code fragment. */
24947
24948 void
24949 arm_handle_align (fragS * fragP)
24950 {
24951 static unsigned char const arm_noop[2][2][4] =
24952 {
24953 { /* ARMv1 */
24954 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
24955 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
24956 },
24957 { /* ARMv6k */
24958 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
24959 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
24960 },
24961 };
24962 static unsigned char const thumb_noop[2][2][2] =
24963 {
24964 { /* Thumb-1 */
24965 {0xc0, 0x46}, /* LE */
24966 {0x46, 0xc0}, /* BE */
24967 },
24968 { /* Thumb-2 */
24969 {0x00, 0xbf}, /* LE */
24970 {0xbf, 0x00} /* BE */
24971 }
24972 };
24973 static unsigned char const wide_thumb_noop[2][4] =
24974 { /* Wide Thumb-2 */
24975 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
24976 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
24977 };
24978
24979 unsigned bytes, fix, noop_size;
24980 char * p;
24981 const unsigned char * noop;
24982 const unsigned char *narrow_noop = NULL;
24983 #ifdef OBJ_ELF
24984 enum mstate state;
24985 #endif
24986
24987 if (fragP->fr_type != rs_align_code)
24988 return;
24989
24990 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
24991 p = fragP->fr_literal + fragP->fr_fix;
24992 fix = 0;
24993
24994 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
24995 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
24996
24997 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
24998
24999 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
25000 {
25001 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25002 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
25003 {
25004 narrow_noop = thumb_noop[1][target_big_endian];
25005 noop = wide_thumb_noop[target_big_endian];
25006 }
25007 else
25008 noop = thumb_noop[0][target_big_endian];
25009 noop_size = 2;
25010 #ifdef OBJ_ELF
25011 state = MAP_THUMB;
25012 #endif
25013 }
25014 else
25015 {
25016 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25017 ? selected_cpu : arm_arch_none,
25018 arm_ext_v6k) != 0]
25019 [target_big_endian];
25020 noop_size = 4;
25021 #ifdef OBJ_ELF
25022 state = MAP_ARM;
25023 #endif
25024 }
25025
25026 fragP->fr_var = noop_size;
25027
25028 if (bytes & (noop_size - 1))
25029 {
25030 fix = bytes & (noop_size - 1);
25031 #ifdef OBJ_ELF
25032 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
25033 #endif
25034 memset (p, 0, fix);
25035 p += fix;
25036 bytes -= fix;
25037 }
25038
25039 if (narrow_noop)
25040 {
25041 if (bytes & noop_size)
25042 {
25043 /* Insert a narrow noop. */
25044 memcpy (p, narrow_noop, noop_size);
25045 p += noop_size;
25046 bytes -= noop_size;
25047 fix += noop_size;
25048 }
25049
25050 /* Use wide noops for the remainder */
25051 noop_size = 4;
25052 }
25053
25054 while (bytes >= noop_size)
25055 {
25056 memcpy (p, noop, noop_size);
25057 p += noop_size;
25058 bytes -= noop_size;
25059 fix += noop_size;
25060 }
25061
25062 fragP->fr_fix += fix;
25063 }
25064
25065 /* Called from md_do_align. Used to create an alignment
25066 frag in a code section. */
25067
25068 void
25069 arm_frag_align_code (int n, int max)
25070 {
25071 char * p;
25072
25073 /* We assume that there will never be a requirement
25074 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
25075 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
25076 {
25077 char err_msg[128];
25078
25079 sprintf (err_msg,
25080 _("alignments greater than %d bytes not supported in .text sections."),
25081 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
25082 as_fatal ("%s", err_msg);
25083 }
25084
25085 p = frag_var (rs_align_code,
25086 MAX_MEM_FOR_RS_ALIGN_CODE,
25087 1,
25088 (relax_substateT) max,
25089 (symbolS *) NULL,
25090 (offsetT) n,
25091 (char *) NULL);
25092 *p = 0;
25093 }
25094
25095 /* Perform target specific initialisation of a frag.
25096 Note - despite the name this initialisation is not done when the frag
25097 is created, but only when its type is assigned. A frag can be created
25098 and used a long time before its type is set, so beware of assuming that
25099 this initialisation is performed first. */
25100
25101 #ifndef OBJ_ELF
25102 void
25103 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
25104 {
25105 /* Record whether this frag is in an ARM or a THUMB area. */
25106 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
25107 }
25108
25109 #else /* OBJ_ELF is defined. */
25110 void
25111 arm_init_frag (fragS * fragP, int max_chars)
25112 {
25113 bfd_boolean frag_thumb_mode;
25114
25115 /* If the current ARM vs THUMB mode has not already
25116 been recorded into this frag then do so now. */
25117 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
25118 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
25119
25120 /* PR 21809: Do not set a mapping state for debug sections
25121 - it just confuses other tools. */
25122 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
25123 return;
25124
25125 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
25126
25127 /* Record a mapping symbol for alignment frags. We will delete this
25128 later if the alignment ends up empty. */
25129 switch (fragP->fr_type)
25130 {
25131 case rs_align:
25132 case rs_align_test:
25133 case rs_fill:
25134 mapping_state_2 (MAP_DATA, max_chars);
25135 break;
25136 case rs_align_code:
25137 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
25138 break;
25139 default:
25140 break;
25141 }
25142 }
25143
25144 /* When we change sections we need to issue a new mapping symbol. */
25145
25146 void
25147 arm_elf_change_section (void)
25148 {
25149 /* Link an unlinked unwind index table section to the .text section. */
25150 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
25151 && elf_linked_to_section (now_seg) == NULL)
25152 elf_linked_to_section (now_seg) = text_section;
25153 }
25154
25155 int
25156 arm_elf_section_type (const char * str, size_t len)
25157 {
25158 if (len == 5 && strncmp (str, "exidx", 5) == 0)
25159 return SHT_ARM_EXIDX;
25160
25161 return -1;
25162 }
25163 \f
25164 /* Code to deal with unwinding tables. */
25165
25166 static void add_unwind_adjustsp (offsetT);
25167
25168 /* Generate any deferred unwind frame offset. */
25169
25170 static void
25171 flush_pending_unwind (void)
25172 {
25173 offsetT offset;
25174
25175 offset = unwind.pending_offset;
25176 unwind.pending_offset = 0;
25177 if (offset != 0)
25178 add_unwind_adjustsp (offset);
25179 }
25180
25181 /* Add an opcode to this list for this function. Two-byte opcodes should
25182 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
25183 order. */
25184
25185 static void
25186 add_unwind_opcode (valueT op, int length)
25187 {
25188 /* Add any deferred stack adjustment. */
25189 if (unwind.pending_offset)
25190 flush_pending_unwind ();
25191
25192 unwind.sp_restored = 0;
25193
25194 if (unwind.opcode_count + length > unwind.opcode_alloc)
25195 {
25196 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
25197 if (unwind.opcodes)
25198 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
25199 unwind.opcode_alloc);
25200 else
25201 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
25202 }
25203 while (length > 0)
25204 {
25205 length--;
25206 unwind.opcodes[unwind.opcode_count] = op & 0xff;
25207 op >>= 8;
25208 unwind.opcode_count++;
25209 }
25210 }
25211
25212 /* Add unwind opcodes to adjust the stack pointer. */
25213
25214 static void
25215 add_unwind_adjustsp (offsetT offset)
25216 {
25217 valueT op;
25218
25219 if (offset > 0x200)
25220 {
25221 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
25222 char bytes[5];
25223 int n;
25224 valueT o;
25225
25226 /* Long form: 0xb2, uleb128. */
25227 /* This might not fit in a word so add the individual bytes,
25228 remembering the list is built in reverse order. */
25229 o = (valueT) ((offset - 0x204) >> 2);
25230 if (o == 0)
25231 add_unwind_opcode (0, 1);
25232
25233 /* Calculate the uleb128 encoding of the offset. */
25234 n = 0;
25235 while (o)
25236 {
25237 bytes[n] = o & 0x7f;
25238 o >>= 7;
25239 if (o)
25240 bytes[n] |= 0x80;
25241 n++;
25242 }
25243 /* Add the insn. */
25244 for (; n; n--)
25245 add_unwind_opcode (bytes[n - 1], 1);
25246 add_unwind_opcode (0xb2, 1);
25247 }
25248 else if (offset > 0x100)
25249 {
25250 /* Two short opcodes. */
25251 add_unwind_opcode (0x3f, 1);
25252 op = (offset - 0x104) >> 2;
25253 add_unwind_opcode (op, 1);
25254 }
25255 else if (offset > 0)
25256 {
25257 /* Short opcode. */
25258 op = (offset - 4) >> 2;
25259 add_unwind_opcode (op, 1);
25260 }
25261 else if (offset < 0)
25262 {
25263 offset = -offset;
25264 while (offset > 0x100)
25265 {
25266 add_unwind_opcode (0x7f, 1);
25267 offset -= 0x100;
25268 }
25269 op = ((offset - 4) >> 2) | 0x40;
25270 add_unwind_opcode (op, 1);
25271 }
25272 }
25273
25274 /* Finish the list of unwind opcodes for this function. */
25275
25276 static void
25277 finish_unwind_opcodes (void)
25278 {
25279 valueT op;
25280
25281 if (unwind.fp_used)
25282 {
25283 /* Adjust sp as necessary. */
25284 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
25285 flush_pending_unwind ();
25286
25287 /* After restoring sp from the frame pointer. */
25288 op = 0x90 | unwind.fp_reg;
25289 add_unwind_opcode (op, 1);
25290 }
25291 else
25292 flush_pending_unwind ();
25293 }
25294
25295
25296 /* Start an exception table entry. If idx is nonzero this is an index table
25297 entry. */
25298
25299 static void
25300 start_unwind_section (const segT text_seg, int idx)
25301 {
25302 const char * text_name;
25303 const char * prefix;
25304 const char * prefix_once;
25305 const char * group_name;
25306 char * sec_name;
25307 int type;
25308 int flags;
25309 int linkonce;
25310
25311 if (idx)
25312 {
25313 prefix = ELF_STRING_ARM_unwind;
25314 prefix_once = ELF_STRING_ARM_unwind_once;
25315 type = SHT_ARM_EXIDX;
25316 }
25317 else
25318 {
25319 prefix = ELF_STRING_ARM_unwind_info;
25320 prefix_once = ELF_STRING_ARM_unwind_info_once;
25321 type = SHT_PROGBITS;
25322 }
25323
25324 text_name = segment_name (text_seg);
25325 if (streq (text_name, ".text"))
25326 text_name = "";
25327
25328 if (strncmp (text_name, ".gnu.linkonce.t.",
25329 strlen (".gnu.linkonce.t.")) == 0)
25330 {
25331 prefix = prefix_once;
25332 text_name += strlen (".gnu.linkonce.t.");
25333 }
25334
25335 sec_name = concat (prefix, text_name, (char *) NULL);
25336
25337 flags = SHF_ALLOC;
25338 linkonce = 0;
25339 group_name = 0;
25340
25341 /* Handle COMDAT group. */
25342 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
25343 {
25344 group_name = elf_group_name (text_seg);
25345 if (group_name == NULL)
25346 {
25347 as_bad (_("Group section `%s' has no group signature"),
25348 segment_name (text_seg));
25349 ignore_rest_of_line ();
25350 return;
25351 }
25352 flags |= SHF_GROUP;
25353 linkonce = 1;
25354 }
25355
25356 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
25357 linkonce, 0);
25358
25359 /* Set the section link for index tables. */
25360 if (idx)
25361 elf_linked_to_section (now_seg) = text_seg;
25362 }
25363
25364
25365 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
25366 personality routine data. Returns zero, or the index table value for
25367 an inline entry. */
25368
25369 static valueT
25370 create_unwind_entry (int have_data)
25371 {
25372 int size;
25373 addressT where;
25374 char *ptr;
25375 /* The current word of data. */
25376 valueT data;
25377 /* The number of bytes left in this word. */
25378 int n;
25379
25380 finish_unwind_opcodes ();
25381
25382 /* Remember the current text section. */
25383 unwind.saved_seg = now_seg;
25384 unwind.saved_subseg = now_subseg;
25385
25386 start_unwind_section (now_seg, 0);
25387
25388 if (unwind.personality_routine == NULL)
25389 {
25390 if (unwind.personality_index == -2)
25391 {
25392 if (have_data)
25393 as_bad (_("handlerdata in cantunwind frame"));
25394 return 1; /* EXIDX_CANTUNWIND. */
25395 }
25396
25397 /* Use a default personality routine if none is specified. */
25398 if (unwind.personality_index == -1)
25399 {
25400 if (unwind.opcode_count > 3)
25401 unwind.personality_index = 1;
25402 else
25403 unwind.personality_index = 0;
25404 }
25405
25406 /* Space for the personality routine entry. */
25407 if (unwind.personality_index == 0)
25408 {
25409 if (unwind.opcode_count > 3)
25410 as_bad (_("too many unwind opcodes for personality routine 0"));
25411
25412 if (!have_data)
25413 {
25414 /* All the data is inline in the index table. */
25415 data = 0x80;
25416 n = 3;
25417 while (unwind.opcode_count > 0)
25418 {
25419 unwind.opcode_count--;
25420 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25421 n--;
25422 }
25423
25424 /* Pad with "finish" opcodes. */
25425 while (n--)
25426 data = (data << 8) | 0xb0;
25427
25428 return data;
25429 }
25430 size = 0;
25431 }
25432 else
25433 /* We get two opcodes "free" in the first word. */
25434 size = unwind.opcode_count - 2;
25435 }
25436 else
25437 {
25438 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
25439 if (unwind.personality_index != -1)
25440 {
25441 as_bad (_("attempt to recreate an unwind entry"));
25442 return 1;
25443 }
25444
25445 /* An extra byte is required for the opcode count. */
25446 size = unwind.opcode_count + 1;
25447 }
25448
25449 size = (size + 3) >> 2;
25450 if (size > 0xff)
25451 as_bad (_("too many unwind opcodes"));
25452
25453 frag_align (2, 0, 0);
25454 record_alignment (now_seg, 2);
25455 unwind.table_entry = expr_build_dot ();
25456
25457 /* Allocate the table entry. */
25458 ptr = frag_more ((size << 2) + 4);
25459 /* PR 13449: Zero the table entries in case some of them are not used. */
25460 memset (ptr, 0, (size << 2) + 4);
25461 where = frag_now_fix () - ((size << 2) + 4);
25462
25463 switch (unwind.personality_index)
25464 {
25465 case -1:
25466 /* ??? Should this be a PLT generating relocation? */
25467 /* Custom personality routine. */
25468 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
25469 BFD_RELOC_ARM_PREL31);
25470
25471 where += 4;
25472 ptr += 4;
25473
25474 /* Set the first byte to the number of additional words. */
25475 data = size > 0 ? size - 1 : 0;
25476 n = 3;
25477 break;
25478
25479 /* ABI defined personality routines. */
25480 case 0:
25481 /* Three opcodes bytes are packed into the first word. */
25482 data = 0x80;
25483 n = 3;
25484 break;
25485
25486 case 1:
25487 case 2:
25488 /* The size and first two opcode bytes go in the first word. */
25489 data = ((0x80 + unwind.personality_index) << 8) | size;
25490 n = 2;
25491 break;
25492
25493 default:
25494 /* Should never happen. */
25495 abort ();
25496 }
25497
25498 /* Pack the opcodes into words (MSB first), reversing the list at the same
25499 time. */
25500 while (unwind.opcode_count > 0)
25501 {
25502 if (n == 0)
25503 {
25504 md_number_to_chars (ptr, data, 4);
25505 ptr += 4;
25506 n = 4;
25507 data = 0;
25508 }
25509 unwind.opcode_count--;
25510 n--;
25511 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25512 }
25513
25514 /* Finish off the last word. */
25515 if (n < 4)
25516 {
25517 /* Pad with "finish" opcodes. */
25518 while (n--)
25519 data = (data << 8) | 0xb0;
25520
25521 md_number_to_chars (ptr, data, 4);
25522 }
25523
25524 if (!have_data)
25525 {
25526 /* Add an empty descriptor if there is no user-specified data. */
25527 ptr = frag_more (4);
25528 md_number_to_chars (ptr, 0, 4);
25529 }
25530
25531 return 0;
25532 }
25533
25534
25535 /* Initialize the DWARF-2 unwind information for this procedure. */
25536
25537 void
25538 tc_arm_frame_initial_instructions (void)
25539 {
25540 cfi_add_CFA_def_cfa (REG_SP, 0);
25541 }
25542 #endif /* OBJ_ELF */
25543
25544 /* Convert REGNAME to a DWARF-2 register number. */
25545
25546 int
25547 tc_arm_regname_to_dw2regnum (char *regname)
25548 {
25549 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
25550 if (reg != FAIL)
25551 return reg;
25552
25553 /* PR 16694: Allow VFP registers as well. */
25554 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
25555 if (reg != FAIL)
25556 return 64 + reg;
25557
25558 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
25559 if (reg != FAIL)
25560 return reg + 256;
25561
25562 return FAIL;
25563 }
25564
25565 #ifdef TE_PE
25566 void
25567 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
25568 {
25569 expressionS exp;
25570
25571 exp.X_op = O_secrel;
25572 exp.X_add_symbol = symbol;
25573 exp.X_add_number = 0;
25574 emit_expr (&exp, size);
25575 }
25576 #endif
25577
25578 /* MD interface: Symbol and relocation handling. */
25579
25580 /* Return the address within the segment that a PC-relative fixup is
25581 relative to. For ARM, PC-relative fixups applied to instructions
25582 are generally relative to the location of the fixup plus 8 bytes.
25583 Thumb branches are offset by 4, and Thumb loads relative to PC
25584 require special handling. */
25585
25586 long
25587 md_pcrel_from_section (fixS * fixP, segT seg)
25588 {
25589 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
25590
25591 /* If this is pc-relative and we are going to emit a relocation
25592 then we just want to put out any pipeline compensation that the linker
25593 will need. Otherwise we want to use the calculated base.
25594 For WinCE we skip the bias for externals as well, since this
25595 is how the MS ARM-CE assembler behaves and we want to be compatible. */
25596 if (fixP->fx_pcrel
25597 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
25598 || (arm_force_relocation (fixP)
25599 #ifdef TE_WINCE
25600 && !S_IS_EXTERNAL (fixP->fx_addsy)
25601 #endif
25602 )))
25603 base = 0;
25604
25605
25606 switch (fixP->fx_r_type)
25607 {
25608 /* PC relative addressing on the Thumb is slightly odd as the
25609 bottom two bits of the PC are forced to zero for the
25610 calculation. This happens *after* application of the
25611 pipeline offset. However, Thumb adrl already adjusts for
25612 this, so we need not do it again. */
25613 case BFD_RELOC_ARM_THUMB_ADD:
25614 return base & ~3;
25615
25616 case BFD_RELOC_ARM_THUMB_OFFSET:
25617 case BFD_RELOC_ARM_T32_OFFSET_IMM:
25618 case BFD_RELOC_ARM_T32_ADD_PC12:
25619 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
25620 return (base + 4) & ~3;
25621
25622 /* Thumb branches are simply offset by +4. */
25623 case BFD_RELOC_THUMB_PCREL_BRANCH5:
25624 case BFD_RELOC_THUMB_PCREL_BRANCH7:
25625 case BFD_RELOC_THUMB_PCREL_BRANCH9:
25626 case BFD_RELOC_THUMB_PCREL_BRANCH12:
25627 case BFD_RELOC_THUMB_PCREL_BRANCH20:
25628 case BFD_RELOC_THUMB_PCREL_BRANCH25:
25629 case BFD_RELOC_THUMB_PCREL_BFCSEL:
25630 case BFD_RELOC_ARM_THUMB_BF17:
25631 case BFD_RELOC_ARM_THUMB_BF19:
25632 case BFD_RELOC_ARM_THUMB_BF13:
25633 case BFD_RELOC_ARM_THUMB_LOOP12:
25634 return base + 4;
25635
25636 case BFD_RELOC_THUMB_PCREL_BRANCH23:
25637 if (fixP->fx_addsy
25638 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25639 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
25640 && ARM_IS_FUNC (fixP->fx_addsy)
25641 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25642 base = fixP->fx_where + fixP->fx_frag->fr_address;
25643 return base + 4;
25644
25645 /* BLX is like branches above, but forces the low two bits of PC to
25646 zero. */
25647 case BFD_RELOC_THUMB_PCREL_BLX:
25648 if (fixP->fx_addsy
25649 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25650 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
25651 && THUMB_IS_FUNC (fixP->fx_addsy)
25652 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25653 base = fixP->fx_where + fixP->fx_frag->fr_address;
25654 return (base + 4) & ~3;
25655
25656 /* ARM mode branches are offset by +8. However, the Windows CE
25657 loader expects the relocation not to take this into account. */
25658 case BFD_RELOC_ARM_PCREL_BLX:
25659 if (fixP->fx_addsy
25660 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25661 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
25662 && ARM_IS_FUNC (fixP->fx_addsy)
25663 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25664 base = fixP->fx_where + fixP->fx_frag->fr_address;
25665 return base + 8;
25666
25667 case BFD_RELOC_ARM_PCREL_CALL:
25668 if (fixP->fx_addsy
25669 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25670 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
25671 && THUMB_IS_FUNC (fixP->fx_addsy)
25672 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25673 base = fixP->fx_where + fixP->fx_frag->fr_address;
25674 return base + 8;
25675
25676 case BFD_RELOC_ARM_PCREL_BRANCH:
25677 case BFD_RELOC_ARM_PCREL_JUMP:
25678 case BFD_RELOC_ARM_PLT32:
25679 #ifdef TE_WINCE
25680 /* When handling fixups immediately, because we have already
25681 discovered the value of a symbol, or the address of the frag involved
25682 we must account for the offset by +8, as the OS loader will never see the reloc.
25683 see fixup_segment() in write.c
25684 The S_IS_EXTERNAL test handles the case of global symbols.
25685 Those need the calculated base, not just the pipe compensation the linker will need. */
25686 if (fixP->fx_pcrel
25687 && fixP->fx_addsy != NULL
25688 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25689 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
25690 return base + 8;
25691 return base;
25692 #else
25693 return base + 8;
25694 #endif
25695
25696
25697 /* ARM mode loads relative to PC are also offset by +8. Unlike
25698 branches, the Windows CE loader *does* expect the relocation
25699 to take this into account. */
25700 case BFD_RELOC_ARM_OFFSET_IMM:
25701 case BFD_RELOC_ARM_OFFSET_IMM8:
25702 case BFD_RELOC_ARM_HWLITERAL:
25703 case BFD_RELOC_ARM_LITERAL:
25704 case BFD_RELOC_ARM_CP_OFF_IMM:
25705 return base + 8;
25706
25707
25708 /* Other PC-relative relocations are un-offset. */
25709 default:
25710 return base;
25711 }
25712 }
25713
25714 static bfd_boolean flag_warn_syms = TRUE;
25715
25716 bfd_boolean
25717 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
25718 {
25719 /* PR 18347 - Warn if the user attempts to create a symbol with the same
25720 name as an ARM instruction. Whilst strictly speaking it is allowed, it
25721 does mean that the resulting code might be very confusing to the reader.
25722 Also this warning can be triggered if the user omits an operand before
25723 an immediate address, eg:
25724
25725 LDR =foo
25726
25727 GAS treats this as an assignment of the value of the symbol foo to a
25728 symbol LDR, and so (without this code) it will not issue any kind of
25729 warning or error message.
25730
25731 Note - ARM instructions are case-insensitive but the strings in the hash
25732 table are all stored in lower case, so we must first ensure that name is
25733 lower case too. */
25734 if (flag_warn_syms && arm_ops_hsh)
25735 {
25736 char * nbuf = strdup (name);
25737 char * p;
25738
25739 for (p = nbuf; *p; p++)
25740 *p = TOLOWER (*p);
25741 if (hash_find (arm_ops_hsh, nbuf) != NULL)
25742 {
25743 static struct hash_control * already_warned = NULL;
25744
25745 if (already_warned == NULL)
25746 already_warned = hash_new ();
25747 /* Only warn about the symbol once. To keep the code
25748 simple we let hash_insert do the lookup for us. */
25749 if (hash_insert (already_warned, nbuf, NULL) == NULL)
25750 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
25751 }
25752 else
25753 free (nbuf);
25754 }
25755
25756 return FALSE;
25757 }
25758
25759 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
25760 Otherwise we have no need to default values of symbols. */
25761
25762 symbolS *
25763 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
25764 {
25765 #ifdef OBJ_ELF
25766 if (name[0] == '_' && name[1] == 'G'
25767 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
25768 {
25769 if (!GOT_symbol)
25770 {
25771 if (symbol_find (name))
25772 as_bad (_("GOT already in the symbol table"));
25773
25774 GOT_symbol = symbol_new (name, undefined_section,
25775 (valueT) 0, & zero_address_frag);
25776 }
25777
25778 return GOT_symbol;
25779 }
25780 #endif
25781
25782 return NULL;
25783 }
25784
25785 /* Subroutine of md_apply_fix. Check to see if an immediate can be
25786 computed as two separate immediate values, added together. We
25787 already know that this value cannot be computed by just one ARM
25788 instruction. */
25789
25790 static unsigned int
25791 validate_immediate_twopart (unsigned int val,
25792 unsigned int * highpart)
25793 {
25794 unsigned int a;
25795 unsigned int i;
25796
25797 for (i = 0; i < 32; i += 2)
25798 if (((a = rotate_left (val, i)) & 0xff) != 0)
25799 {
25800 if (a & 0xff00)
25801 {
25802 if (a & ~ 0xffff)
25803 continue;
25804 * highpart = (a >> 8) | ((i + 24) << 7);
25805 }
25806 else if (a & 0xff0000)
25807 {
25808 if (a & 0xff000000)
25809 continue;
25810 * highpart = (a >> 16) | ((i + 16) << 7);
25811 }
25812 else
25813 {
25814 gas_assert (a & 0xff000000);
25815 * highpart = (a >> 24) | ((i + 8) << 7);
25816 }
25817
25818 return (a & 0xff) | (i << 7);
25819 }
25820
25821 return FAIL;
25822 }
25823
25824 static int
25825 validate_offset_imm (unsigned int val, int hwse)
25826 {
25827 if ((hwse && val > 255) || val > 4095)
25828 return FAIL;
25829 return val;
25830 }
25831
25832 /* Subroutine of md_apply_fix. Do those data_ops which can take a
25833 negative immediate constant by altering the instruction. A bit of
25834 a hack really.
25835 MOV <-> MVN
25836 AND <-> BIC
25837 ADC <-> SBC
25838 by inverting the second operand, and
25839 ADD <-> SUB
25840 CMP <-> CMN
25841 by negating the second operand. */
25842
25843 static int
25844 negate_data_op (unsigned long * instruction,
25845 unsigned long value)
25846 {
25847 int op, new_inst;
25848 unsigned long negated, inverted;
25849
25850 negated = encode_arm_immediate (-value);
25851 inverted = encode_arm_immediate (~value);
25852
25853 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
25854 switch (op)
25855 {
25856 /* First negates. */
25857 case OPCODE_SUB: /* ADD <-> SUB */
25858 new_inst = OPCODE_ADD;
25859 value = negated;
25860 break;
25861
25862 case OPCODE_ADD:
25863 new_inst = OPCODE_SUB;
25864 value = negated;
25865 break;
25866
25867 case OPCODE_CMP: /* CMP <-> CMN */
25868 new_inst = OPCODE_CMN;
25869 value = negated;
25870 break;
25871
25872 case OPCODE_CMN:
25873 new_inst = OPCODE_CMP;
25874 value = negated;
25875 break;
25876
25877 /* Now Inverted ops. */
25878 case OPCODE_MOV: /* MOV <-> MVN */
25879 new_inst = OPCODE_MVN;
25880 value = inverted;
25881 break;
25882
25883 case OPCODE_MVN:
25884 new_inst = OPCODE_MOV;
25885 value = inverted;
25886 break;
25887
25888 case OPCODE_AND: /* AND <-> BIC */
25889 new_inst = OPCODE_BIC;
25890 value = inverted;
25891 break;
25892
25893 case OPCODE_BIC:
25894 new_inst = OPCODE_AND;
25895 value = inverted;
25896 break;
25897
25898 case OPCODE_ADC: /* ADC <-> SBC */
25899 new_inst = OPCODE_SBC;
25900 value = inverted;
25901 break;
25902
25903 case OPCODE_SBC:
25904 new_inst = OPCODE_ADC;
25905 value = inverted;
25906 break;
25907
25908 /* We cannot do anything. */
25909 default:
25910 return FAIL;
25911 }
25912
25913 if (value == (unsigned) FAIL)
25914 return FAIL;
25915
25916 *instruction &= OPCODE_MASK;
25917 *instruction |= new_inst << DATA_OP_SHIFT;
25918 return value;
25919 }
25920
25921 /* Like negate_data_op, but for Thumb-2. */
25922
25923 static unsigned int
25924 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
25925 {
25926 int op, new_inst;
25927 int rd;
25928 unsigned int negated, inverted;
25929
25930 negated = encode_thumb32_immediate (-value);
25931 inverted = encode_thumb32_immediate (~value);
25932
25933 rd = (*instruction >> 8) & 0xf;
25934 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
25935 switch (op)
25936 {
25937 /* ADD <-> SUB. Includes CMP <-> CMN. */
25938 case T2_OPCODE_SUB:
25939 new_inst = T2_OPCODE_ADD;
25940 value = negated;
25941 break;
25942
25943 case T2_OPCODE_ADD:
25944 new_inst = T2_OPCODE_SUB;
25945 value = negated;
25946 break;
25947
25948 /* ORR <-> ORN. Includes MOV <-> MVN. */
25949 case T2_OPCODE_ORR:
25950 new_inst = T2_OPCODE_ORN;
25951 value = inverted;
25952 break;
25953
25954 case T2_OPCODE_ORN:
25955 new_inst = T2_OPCODE_ORR;
25956 value = inverted;
25957 break;
25958
25959 /* AND <-> BIC. TST has no inverted equivalent. */
25960 case T2_OPCODE_AND:
25961 new_inst = T2_OPCODE_BIC;
25962 if (rd == 15)
25963 value = FAIL;
25964 else
25965 value = inverted;
25966 break;
25967
25968 case T2_OPCODE_BIC:
25969 new_inst = T2_OPCODE_AND;
25970 value = inverted;
25971 break;
25972
25973 /* ADC <-> SBC */
25974 case T2_OPCODE_ADC:
25975 new_inst = T2_OPCODE_SBC;
25976 value = inverted;
25977 break;
25978
25979 case T2_OPCODE_SBC:
25980 new_inst = T2_OPCODE_ADC;
25981 value = inverted;
25982 break;
25983
25984 /* We cannot do anything. */
25985 default:
25986 return FAIL;
25987 }
25988
25989 if (value == (unsigned int)FAIL)
25990 return FAIL;
25991
25992 *instruction &= T2_OPCODE_MASK;
25993 *instruction |= new_inst << T2_DATA_OP_SHIFT;
25994 return value;
25995 }
25996
25997 /* Read a 32-bit thumb instruction from buf. */
25998
25999 static unsigned long
26000 get_thumb32_insn (char * buf)
26001 {
26002 unsigned long insn;
26003 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
26004 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26005
26006 return insn;
26007 }
26008
26009 /* We usually want to set the low bit on the address of thumb function
26010 symbols. In particular .word foo - . should have the low bit set.
26011 Generic code tries to fold the difference of two symbols to
26012 a constant. Prevent this and force a relocation when the first symbols
26013 is a thumb function. */
26014
26015 bfd_boolean
26016 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
26017 {
26018 if (op == O_subtract
26019 && l->X_op == O_symbol
26020 && r->X_op == O_symbol
26021 && THUMB_IS_FUNC (l->X_add_symbol))
26022 {
26023 l->X_op = O_subtract;
26024 l->X_op_symbol = r->X_add_symbol;
26025 l->X_add_number -= r->X_add_number;
26026 return TRUE;
26027 }
26028
26029 /* Process as normal. */
26030 return FALSE;
26031 }
26032
26033 /* Encode Thumb2 unconditional branches and calls. The encoding
26034 for the 2 are identical for the immediate values. */
26035
26036 static void
26037 encode_thumb2_b_bl_offset (char * buf, offsetT value)
26038 {
26039 #define T2I1I2MASK ((1 << 13) | (1 << 11))
26040 offsetT newval;
26041 offsetT newval2;
26042 addressT S, I1, I2, lo, hi;
26043
26044 S = (value >> 24) & 0x01;
26045 I1 = (value >> 23) & 0x01;
26046 I2 = (value >> 22) & 0x01;
26047 hi = (value >> 12) & 0x3ff;
26048 lo = (value >> 1) & 0x7ff;
26049 newval = md_chars_to_number (buf, THUMB_SIZE);
26050 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26051 newval |= (S << 10) | hi;
26052 newval2 &= ~T2I1I2MASK;
26053 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
26054 md_number_to_chars (buf, newval, THUMB_SIZE);
26055 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
26056 }
26057
26058 void
26059 md_apply_fix (fixS * fixP,
26060 valueT * valP,
26061 segT seg)
26062 {
26063 offsetT value = * valP;
26064 offsetT newval;
26065 unsigned int newimm;
26066 unsigned long temp;
26067 int sign;
26068 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
26069
26070 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
26071
26072 /* Note whether this will delete the relocation. */
26073
26074 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
26075 fixP->fx_done = 1;
26076
26077 /* On a 64-bit host, silently truncate 'value' to 32 bits for
26078 consistency with the behaviour on 32-bit hosts. Remember value
26079 for emit_reloc. */
26080 value &= 0xffffffff;
26081 value ^= 0x80000000;
26082 value -= 0x80000000;
26083
26084 *valP = value;
26085 fixP->fx_addnumber = value;
26086
26087 /* Same treatment for fixP->fx_offset. */
26088 fixP->fx_offset &= 0xffffffff;
26089 fixP->fx_offset ^= 0x80000000;
26090 fixP->fx_offset -= 0x80000000;
26091
26092 switch (fixP->fx_r_type)
26093 {
26094 case BFD_RELOC_NONE:
26095 /* This will need to go in the object file. */
26096 fixP->fx_done = 0;
26097 break;
26098
26099 case BFD_RELOC_ARM_IMMEDIATE:
26100 /* We claim that this fixup has been processed here,
26101 even if in fact we generate an error because we do
26102 not have a reloc for it, so tc_gen_reloc will reject it. */
26103 fixP->fx_done = 1;
26104
26105 if (fixP->fx_addsy)
26106 {
26107 const char *msg = 0;
26108
26109 if (! S_IS_DEFINED (fixP->fx_addsy))
26110 msg = _("undefined symbol %s used as an immediate value");
26111 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26112 msg = _("symbol %s is in a different section");
26113 else if (S_IS_WEAK (fixP->fx_addsy))
26114 msg = _("symbol %s is weak and may be overridden later");
26115
26116 if (msg)
26117 {
26118 as_bad_where (fixP->fx_file, fixP->fx_line,
26119 msg, S_GET_NAME (fixP->fx_addsy));
26120 break;
26121 }
26122 }
26123
26124 temp = md_chars_to_number (buf, INSN_SIZE);
26125
26126 /* If the offset is negative, we should use encoding A2 for ADR. */
26127 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
26128 newimm = negate_data_op (&temp, value);
26129 else
26130 {
26131 newimm = encode_arm_immediate (value);
26132
26133 /* If the instruction will fail, see if we can fix things up by
26134 changing the opcode. */
26135 if (newimm == (unsigned int) FAIL)
26136 newimm = negate_data_op (&temp, value);
26137 /* MOV accepts both ARM modified immediate (A1 encoding) and
26138 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
26139 When disassembling, MOV is preferred when there is no encoding
26140 overlap. */
26141 if (newimm == (unsigned int) FAIL
26142 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
26143 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
26144 && !((temp >> SBIT_SHIFT) & 0x1)
26145 && value >= 0 && value <= 0xffff)
26146 {
26147 /* Clear bits[23:20] to change encoding from A1 to A2. */
26148 temp &= 0xff0fffff;
26149 /* Encoding high 4bits imm. Code below will encode the remaining
26150 low 12bits. */
26151 temp |= (value & 0x0000f000) << 4;
26152 newimm = value & 0x00000fff;
26153 }
26154 }
26155
26156 if (newimm == (unsigned int) FAIL)
26157 {
26158 as_bad_where (fixP->fx_file, fixP->fx_line,
26159 _("invalid constant (%lx) after fixup"),
26160 (unsigned long) value);
26161 break;
26162 }
26163
26164 newimm |= (temp & 0xfffff000);
26165 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26166 break;
26167
26168 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
26169 {
26170 unsigned int highpart = 0;
26171 unsigned int newinsn = 0xe1a00000; /* nop. */
26172
26173 if (fixP->fx_addsy)
26174 {
26175 const char *msg = 0;
26176
26177 if (! S_IS_DEFINED (fixP->fx_addsy))
26178 msg = _("undefined symbol %s used as an immediate value");
26179 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26180 msg = _("symbol %s is in a different section");
26181 else if (S_IS_WEAK (fixP->fx_addsy))
26182 msg = _("symbol %s is weak and may be overridden later");
26183
26184 if (msg)
26185 {
26186 as_bad_where (fixP->fx_file, fixP->fx_line,
26187 msg, S_GET_NAME (fixP->fx_addsy));
26188 break;
26189 }
26190 }
26191
26192 newimm = encode_arm_immediate (value);
26193 temp = md_chars_to_number (buf, INSN_SIZE);
26194
26195 /* If the instruction will fail, see if we can fix things up by
26196 changing the opcode. */
26197 if (newimm == (unsigned int) FAIL
26198 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
26199 {
26200 /* No ? OK - try using two ADD instructions to generate
26201 the value. */
26202 newimm = validate_immediate_twopart (value, & highpart);
26203
26204 /* Yes - then make sure that the second instruction is
26205 also an add. */
26206 if (newimm != (unsigned int) FAIL)
26207 newinsn = temp;
26208 /* Still No ? Try using a negated value. */
26209 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
26210 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
26211 /* Otherwise - give up. */
26212 else
26213 {
26214 as_bad_where (fixP->fx_file, fixP->fx_line,
26215 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
26216 (long) value);
26217 break;
26218 }
26219
26220 /* Replace the first operand in the 2nd instruction (which
26221 is the PC) with the destination register. We have
26222 already added in the PC in the first instruction and we
26223 do not want to do it again. */
26224 newinsn &= ~ 0xf0000;
26225 newinsn |= ((newinsn & 0x0f000) << 4);
26226 }
26227
26228 newimm |= (temp & 0xfffff000);
26229 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26230
26231 highpart |= (newinsn & 0xfffff000);
26232 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
26233 }
26234 break;
26235
26236 case BFD_RELOC_ARM_OFFSET_IMM:
26237 if (!fixP->fx_done && seg->use_rela_p)
26238 value = 0;
26239 /* Fall through. */
26240
26241 case BFD_RELOC_ARM_LITERAL:
26242 sign = value > 0;
26243
26244 if (value < 0)
26245 value = - value;
26246
26247 if (validate_offset_imm (value, 0) == FAIL)
26248 {
26249 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
26250 as_bad_where (fixP->fx_file, fixP->fx_line,
26251 _("invalid literal constant: pool needs to be closer"));
26252 else
26253 as_bad_where (fixP->fx_file, fixP->fx_line,
26254 _("bad immediate value for offset (%ld)"),
26255 (long) value);
26256 break;
26257 }
26258
26259 newval = md_chars_to_number (buf, INSN_SIZE);
26260 if (value == 0)
26261 newval &= 0xfffff000;
26262 else
26263 {
26264 newval &= 0xff7ff000;
26265 newval |= value | (sign ? INDEX_UP : 0);
26266 }
26267 md_number_to_chars (buf, newval, INSN_SIZE);
26268 break;
26269
26270 case BFD_RELOC_ARM_OFFSET_IMM8:
26271 case BFD_RELOC_ARM_HWLITERAL:
26272 sign = value > 0;
26273
26274 if (value < 0)
26275 value = - value;
26276
26277 if (validate_offset_imm (value, 1) == FAIL)
26278 {
26279 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
26280 as_bad_where (fixP->fx_file, fixP->fx_line,
26281 _("invalid literal constant: pool needs to be closer"));
26282 else
26283 as_bad_where (fixP->fx_file, fixP->fx_line,
26284 _("bad immediate value for 8-bit offset (%ld)"),
26285 (long) value);
26286 break;
26287 }
26288
26289 newval = md_chars_to_number (buf, INSN_SIZE);
26290 if (value == 0)
26291 newval &= 0xfffff0f0;
26292 else
26293 {
26294 newval &= 0xff7ff0f0;
26295 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
26296 }
26297 md_number_to_chars (buf, newval, INSN_SIZE);
26298 break;
26299
26300 case BFD_RELOC_ARM_T32_OFFSET_U8:
26301 if (value < 0 || value > 1020 || value % 4 != 0)
26302 as_bad_where (fixP->fx_file, fixP->fx_line,
26303 _("bad immediate value for offset (%ld)"), (long) value);
26304 value /= 4;
26305
26306 newval = md_chars_to_number (buf+2, THUMB_SIZE);
26307 newval |= value;
26308 md_number_to_chars (buf+2, newval, THUMB_SIZE);
26309 break;
26310
26311 case BFD_RELOC_ARM_T32_OFFSET_IMM:
26312 /* This is a complicated relocation used for all varieties of Thumb32
26313 load/store instruction with immediate offset:
26314
26315 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
26316 *4, optional writeback(W)
26317 (doubleword load/store)
26318
26319 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
26320 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
26321 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
26322 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
26323 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
26324
26325 Uppercase letters indicate bits that are already encoded at
26326 this point. Lowercase letters are our problem. For the
26327 second block of instructions, the secondary opcode nybble
26328 (bits 8..11) is present, and bit 23 is zero, even if this is
26329 a PC-relative operation. */
26330 newval = md_chars_to_number (buf, THUMB_SIZE);
26331 newval <<= 16;
26332 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
26333
26334 if ((newval & 0xf0000000) == 0xe0000000)
26335 {
26336 /* Doubleword load/store: 8-bit offset, scaled by 4. */
26337 if (value >= 0)
26338 newval |= (1 << 23);
26339 else
26340 value = -value;
26341 if (value % 4 != 0)
26342 {
26343 as_bad_where (fixP->fx_file, fixP->fx_line,
26344 _("offset not a multiple of 4"));
26345 break;
26346 }
26347 value /= 4;
26348 if (value > 0xff)
26349 {
26350 as_bad_where (fixP->fx_file, fixP->fx_line,
26351 _("offset out of range"));
26352 break;
26353 }
26354 newval &= ~0xff;
26355 }
26356 else if ((newval & 0x000f0000) == 0x000f0000)
26357 {
26358 /* PC-relative, 12-bit offset. */
26359 if (value >= 0)
26360 newval |= (1 << 23);
26361 else
26362 value = -value;
26363 if (value > 0xfff)
26364 {
26365 as_bad_where (fixP->fx_file, fixP->fx_line,
26366 _("offset out of range"));
26367 break;
26368 }
26369 newval &= ~0xfff;
26370 }
26371 else if ((newval & 0x00000100) == 0x00000100)
26372 {
26373 /* Writeback: 8-bit, +/- offset. */
26374 if (value >= 0)
26375 newval |= (1 << 9);
26376 else
26377 value = -value;
26378 if (value > 0xff)
26379 {
26380 as_bad_where (fixP->fx_file, fixP->fx_line,
26381 _("offset out of range"));
26382 break;
26383 }
26384 newval &= ~0xff;
26385 }
26386 else if ((newval & 0x00000f00) == 0x00000e00)
26387 {
26388 /* T-instruction: positive 8-bit offset. */
26389 if (value < 0 || value > 0xff)
26390 {
26391 as_bad_where (fixP->fx_file, fixP->fx_line,
26392 _("offset out of range"));
26393 break;
26394 }
26395 newval &= ~0xff;
26396 newval |= value;
26397 }
26398 else
26399 {
26400 /* Positive 12-bit or negative 8-bit offset. */
26401 int limit;
26402 if (value >= 0)
26403 {
26404 newval |= (1 << 23);
26405 limit = 0xfff;
26406 }
26407 else
26408 {
26409 value = -value;
26410 limit = 0xff;
26411 }
26412 if (value > limit)
26413 {
26414 as_bad_where (fixP->fx_file, fixP->fx_line,
26415 _("offset out of range"));
26416 break;
26417 }
26418 newval &= ~limit;
26419 }
26420
26421 newval |= value;
26422 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
26423 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
26424 break;
26425
26426 case BFD_RELOC_ARM_SHIFT_IMM:
26427 newval = md_chars_to_number (buf, INSN_SIZE);
26428 if (((unsigned long) value) > 32
26429 || (value == 32
26430 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
26431 {
26432 as_bad_where (fixP->fx_file, fixP->fx_line,
26433 _("shift expression is too large"));
26434 break;
26435 }
26436
26437 if (value == 0)
26438 /* Shifts of zero must be done as lsl. */
26439 newval &= ~0x60;
26440 else if (value == 32)
26441 value = 0;
26442 newval &= 0xfffff07f;
26443 newval |= (value & 0x1f) << 7;
26444 md_number_to_chars (buf, newval, INSN_SIZE);
26445 break;
26446
26447 case BFD_RELOC_ARM_T32_IMMEDIATE:
26448 case BFD_RELOC_ARM_T32_ADD_IMM:
26449 case BFD_RELOC_ARM_T32_IMM12:
26450 case BFD_RELOC_ARM_T32_ADD_PC12:
26451 /* We claim that this fixup has been processed here,
26452 even if in fact we generate an error because we do
26453 not have a reloc for it, so tc_gen_reloc will reject it. */
26454 fixP->fx_done = 1;
26455
26456 if (fixP->fx_addsy
26457 && ! S_IS_DEFINED (fixP->fx_addsy))
26458 {
26459 as_bad_where (fixP->fx_file, fixP->fx_line,
26460 _("undefined symbol %s used as an immediate value"),
26461 S_GET_NAME (fixP->fx_addsy));
26462 break;
26463 }
26464
26465 newval = md_chars_to_number (buf, THUMB_SIZE);
26466 newval <<= 16;
26467 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
26468
26469 newimm = FAIL;
26470 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
26471 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
26472 Thumb2 modified immediate encoding (T2). */
26473 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
26474 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
26475 {
26476 newimm = encode_thumb32_immediate (value);
26477 if (newimm == (unsigned int) FAIL)
26478 newimm = thumb32_negate_data_op (&newval, value);
26479 }
26480 if (newimm == (unsigned int) FAIL)
26481 {
26482 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
26483 {
26484 /* Turn add/sum into addw/subw. */
26485 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
26486 newval = (newval & 0xfeffffff) | 0x02000000;
26487 /* No flat 12-bit imm encoding for addsw/subsw. */
26488 if ((newval & 0x00100000) == 0)
26489 {
26490 /* 12 bit immediate for addw/subw. */
26491 if (value < 0)
26492 {
26493 value = -value;
26494 newval ^= 0x00a00000;
26495 }
26496 if (value > 0xfff)
26497 newimm = (unsigned int) FAIL;
26498 else
26499 newimm = value;
26500 }
26501 }
26502 else
26503 {
26504 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
26505 UINT16 (T3 encoding), MOVW only accepts UINT16. When
26506 disassembling, MOV is preferred when there is no encoding
26507 overlap. */
26508 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
26509 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
26510 but with the Rn field [19:16] set to 1111. */
26511 && (((newval >> 16) & 0xf) == 0xf)
26512 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
26513 && !((newval >> T2_SBIT_SHIFT) & 0x1)
26514 && value >= 0 && value <= 0xffff)
26515 {
26516 /* Toggle bit[25] to change encoding from T2 to T3. */
26517 newval ^= 1 << 25;
26518 /* Clear bits[19:16]. */
26519 newval &= 0xfff0ffff;
26520 /* Encoding high 4bits imm. Code below will encode the
26521 remaining low 12bits. */
26522 newval |= (value & 0x0000f000) << 4;
26523 newimm = value & 0x00000fff;
26524 }
26525 }
26526 }
26527
26528 if (newimm == (unsigned int)FAIL)
26529 {
26530 as_bad_where (fixP->fx_file, fixP->fx_line,
26531 _("invalid constant (%lx) after fixup"),
26532 (unsigned long) value);
26533 break;
26534 }
26535
26536 newval |= (newimm & 0x800) << 15;
26537 newval |= (newimm & 0x700) << 4;
26538 newval |= (newimm & 0x0ff);
26539
26540 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
26541 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
26542 break;
26543
26544 case BFD_RELOC_ARM_SMC:
26545 if (((unsigned long) value) > 0xffff)
26546 as_bad_where (fixP->fx_file, fixP->fx_line,
26547 _("invalid smc expression"));
26548 newval = md_chars_to_number (buf, INSN_SIZE);
26549 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
26550 md_number_to_chars (buf, newval, INSN_SIZE);
26551 break;
26552
26553 case BFD_RELOC_ARM_HVC:
26554 if (((unsigned long) value) > 0xffff)
26555 as_bad_where (fixP->fx_file, fixP->fx_line,
26556 _("invalid hvc expression"));
26557 newval = md_chars_to_number (buf, INSN_SIZE);
26558 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
26559 md_number_to_chars (buf, newval, INSN_SIZE);
26560 break;
26561
26562 case BFD_RELOC_ARM_SWI:
26563 if (fixP->tc_fix_data != 0)
26564 {
26565 if (((unsigned long) value) > 0xff)
26566 as_bad_where (fixP->fx_file, fixP->fx_line,
26567 _("invalid swi expression"));
26568 newval = md_chars_to_number (buf, THUMB_SIZE);
26569 newval |= value;
26570 md_number_to_chars (buf, newval, THUMB_SIZE);
26571 }
26572 else
26573 {
26574 if (((unsigned long) value) > 0x00ffffff)
26575 as_bad_where (fixP->fx_file, fixP->fx_line,
26576 _("invalid swi expression"));
26577 newval = md_chars_to_number (buf, INSN_SIZE);
26578 newval |= value;
26579 md_number_to_chars (buf, newval, INSN_SIZE);
26580 }
26581 break;
26582
26583 case BFD_RELOC_ARM_MULTI:
26584 if (((unsigned long) value) > 0xffff)
26585 as_bad_where (fixP->fx_file, fixP->fx_line,
26586 _("invalid expression in load/store multiple"));
26587 newval = value | md_chars_to_number (buf, INSN_SIZE);
26588 md_number_to_chars (buf, newval, INSN_SIZE);
26589 break;
26590
26591 #ifdef OBJ_ELF
26592 case BFD_RELOC_ARM_PCREL_CALL:
26593
26594 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26595 && fixP->fx_addsy
26596 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26597 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26598 && THUMB_IS_FUNC (fixP->fx_addsy))
26599 /* Flip the bl to blx. This is a simple flip
26600 bit here because we generate PCREL_CALL for
26601 unconditional bls. */
26602 {
26603 newval = md_chars_to_number (buf, INSN_SIZE);
26604 newval = newval | 0x10000000;
26605 md_number_to_chars (buf, newval, INSN_SIZE);
26606 temp = 1;
26607 fixP->fx_done = 1;
26608 }
26609 else
26610 temp = 3;
26611 goto arm_branch_common;
26612
26613 case BFD_RELOC_ARM_PCREL_JUMP:
26614 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26615 && fixP->fx_addsy
26616 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26617 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26618 && THUMB_IS_FUNC (fixP->fx_addsy))
26619 {
26620 /* This would map to a bl<cond>, b<cond>,
26621 b<always> to a Thumb function. We
26622 need to force a relocation for this particular
26623 case. */
26624 newval = md_chars_to_number (buf, INSN_SIZE);
26625 fixP->fx_done = 0;
26626 }
26627 /* Fall through. */
26628
26629 case BFD_RELOC_ARM_PLT32:
26630 #endif
26631 case BFD_RELOC_ARM_PCREL_BRANCH:
26632 temp = 3;
26633 goto arm_branch_common;
26634
26635 case BFD_RELOC_ARM_PCREL_BLX:
26636
26637 temp = 1;
26638 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26639 && fixP->fx_addsy
26640 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26641 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26642 && ARM_IS_FUNC (fixP->fx_addsy))
26643 {
26644 /* Flip the blx to a bl and warn. */
26645 const char *name = S_GET_NAME (fixP->fx_addsy);
26646 newval = 0xeb000000;
26647 as_warn_where (fixP->fx_file, fixP->fx_line,
26648 _("blx to '%s' an ARM ISA state function changed to bl"),
26649 name);
26650 md_number_to_chars (buf, newval, INSN_SIZE);
26651 temp = 3;
26652 fixP->fx_done = 1;
26653 }
26654
26655 #ifdef OBJ_ELF
26656 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
26657 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
26658 #endif
26659
26660 arm_branch_common:
26661 /* We are going to store value (shifted right by two) in the
26662 instruction, in a 24 bit, signed field. Bits 26 through 32 either
26663 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
26664 also be clear. */
26665 if (value & temp)
26666 as_bad_where (fixP->fx_file, fixP->fx_line,
26667 _("misaligned branch destination"));
26668 if ((value & (offsetT)0xfe000000) != (offsetT)0
26669 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
26670 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26671
26672 if (fixP->fx_done || !seg->use_rela_p)
26673 {
26674 newval = md_chars_to_number (buf, INSN_SIZE);
26675 newval |= (value >> 2) & 0x00ffffff;
26676 /* Set the H bit on BLX instructions. */
26677 if (temp == 1)
26678 {
26679 if (value & 2)
26680 newval |= 0x01000000;
26681 else
26682 newval &= ~0x01000000;
26683 }
26684 md_number_to_chars (buf, newval, INSN_SIZE);
26685 }
26686 break;
26687
26688 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
26689 /* CBZ can only branch forward. */
26690
26691 /* Attempts to use CBZ to branch to the next instruction
26692 (which, strictly speaking, are prohibited) will be turned into
26693 no-ops.
26694
26695 FIXME: It may be better to remove the instruction completely and
26696 perform relaxation. */
26697 if (value == -2)
26698 {
26699 newval = md_chars_to_number (buf, THUMB_SIZE);
26700 newval = 0xbf00; /* NOP encoding T1 */
26701 md_number_to_chars (buf, newval, THUMB_SIZE);
26702 }
26703 else
26704 {
26705 if (value & ~0x7e)
26706 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26707
26708 if (fixP->fx_done || !seg->use_rela_p)
26709 {
26710 newval = md_chars_to_number (buf, THUMB_SIZE);
26711 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
26712 md_number_to_chars (buf, newval, THUMB_SIZE);
26713 }
26714 }
26715 break;
26716
26717 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
26718 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
26719 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26720
26721 if (fixP->fx_done || !seg->use_rela_p)
26722 {
26723 newval = md_chars_to_number (buf, THUMB_SIZE);
26724 newval |= (value & 0x1ff) >> 1;
26725 md_number_to_chars (buf, newval, THUMB_SIZE);
26726 }
26727 break;
26728
26729 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
26730 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
26731 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26732
26733 if (fixP->fx_done || !seg->use_rela_p)
26734 {
26735 newval = md_chars_to_number (buf, THUMB_SIZE);
26736 newval |= (value & 0xfff) >> 1;
26737 md_number_to_chars (buf, newval, THUMB_SIZE);
26738 }
26739 break;
26740
26741 case BFD_RELOC_THUMB_PCREL_BRANCH20:
26742 if (fixP->fx_addsy
26743 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26744 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26745 && ARM_IS_FUNC (fixP->fx_addsy)
26746 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26747 {
26748 /* Force a relocation for a branch 20 bits wide. */
26749 fixP->fx_done = 0;
26750 }
26751 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
26752 as_bad_where (fixP->fx_file, fixP->fx_line,
26753 _("conditional branch out of range"));
26754
26755 if (fixP->fx_done || !seg->use_rela_p)
26756 {
26757 offsetT newval2;
26758 addressT S, J1, J2, lo, hi;
26759
26760 S = (value & 0x00100000) >> 20;
26761 J2 = (value & 0x00080000) >> 19;
26762 J1 = (value & 0x00040000) >> 18;
26763 hi = (value & 0x0003f000) >> 12;
26764 lo = (value & 0x00000ffe) >> 1;
26765
26766 newval = md_chars_to_number (buf, THUMB_SIZE);
26767 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26768 newval |= (S << 10) | hi;
26769 newval2 |= (J1 << 13) | (J2 << 11) | lo;
26770 md_number_to_chars (buf, newval, THUMB_SIZE);
26771 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
26772 }
26773 break;
26774
26775 case BFD_RELOC_THUMB_PCREL_BLX:
26776 /* If there is a blx from a thumb state function to
26777 another thumb function flip this to a bl and warn
26778 about it. */
26779
26780 if (fixP->fx_addsy
26781 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26782 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26783 && THUMB_IS_FUNC (fixP->fx_addsy))
26784 {
26785 const char *name = S_GET_NAME (fixP->fx_addsy);
26786 as_warn_where (fixP->fx_file, fixP->fx_line,
26787 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
26788 name);
26789 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26790 newval = newval | 0x1000;
26791 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
26792 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
26793 fixP->fx_done = 1;
26794 }
26795
26796
26797 goto thumb_bl_common;
26798
26799 case BFD_RELOC_THUMB_PCREL_BRANCH23:
26800 /* A bl from Thumb state ISA to an internal ARM state function
26801 is converted to a blx. */
26802 if (fixP->fx_addsy
26803 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26804 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26805 && ARM_IS_FUNC (fixP->fx_addsy)
26806 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26807 {
26808 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26809 newval = newval & ~0x1000;
26810 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
26811 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
26812 fixP->fx_done = 1;
26813 }
26814
26815 thumb_bl_common:
26816
26817 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
26818 /* For a BLX instruction, make sure that the relocation is rounded up
26819 to a word boundary. This follows the semantics of the instruction
26820 which specifies that bit 1 of the target address will come from bit
26821 1 of the base address. */
26822 value = (value + 3) & ~ 3;
26823
26824 #ifdef OBJ_ELF
26825 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
26826 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
26827 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
26828 #endif
26829
26830 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
26831 {
26832 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
26833 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26834 else if ((value & ~0x1ffffff)
26835 && ((value & ~0x1ffffff) != ~0x1ffffff))
26836 as_bad_where (fixP->fx_file, fixP->fx_line,
26837 _("Thumb2 branch out of range"));
26838 }
26839
26840 if (fixP->fx_done || !seg->use_rela_p)
26841 encode_thumb2_b_bl_offset (buf, value);
26842
26843 break;
26844
26845 case BFD_RELOC_THUMB_PCREL_BRANCH25:
26846 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
26847 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26848
26849 if (fixP->fx_done || !seg->use_rela_p)
26850 encode_thumb2_b_bl_offset (buf, value);
26851
26852 break;
26853
26854 case BFD_RELOC_8:
26855 if (fixP->fx_done || !seg->use_rela_p)
26856 *buf = value;
26857 break;
26858
26859 case BFD_RELOC_16:
26860 if (fixP->fx_done || !seg->use_rela_p)
26861 md_number_to_chars (buf, value, 2);
26862 break;
26863
26864 #ifdef OBJ_ELF
26865 case BFD_RELOC_ARM_TLS_CALL:
26866 case BFD_RELOC_ARM_THM_TLS_CALL:
26867 case BFD_RELOC_ARM_TLS_DESCSEQ:
26868 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
26869 case BFD_RELOC_ARM_TLS_GOTDESC:
26870 case BFD_RELOC_ARM_TLS_GD32:
26871 case BFD_RELOC_ARM_TLS_LE32:
26872 case BFD_RELOC_ARM_TLS_IE32:
26873 case BFD_RELOC_ARM_TLS_LDM32:
26874 case BFD_RELOC_ARM_TLS_LDO32:
26875 S_SET_THREAD_LOCAL (fixP->fx_addsy);
26876 break;
26877
26878 /* Same handling as above, but with the arm_fdpic guard. */
26879 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
26880 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
26881 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
26882 if (arm_fdpic)
26883 {
26884 S_SET_THREAD_LOCAL (fixP->fx_addsy);
26885 }
26886 else
26887 {
26888 as_bad_where (fixP->fx_file, fixP->fx_line,
26889 _("Relocation supported only in FDPIC mode"));
26890 }
26891 break;
26892
26893 case BFD_RELOC_ARM_GOT32:
26894 case BFD_RELOC_ARM_GOTOFF:
26895 break;
26896
26897 case BFD_RELOC_ARM_GOT_PREL:
26898 if (fixP->fx_done || !seg->use_rela_p)
26899 md_number_to_chars (buf, value, 4);
26900 break;
26901
26902 case BFD_RELOC_ARM_TARGET2:
26903 /* TARGET2 is not partial-inplace, so we need to write the
26904 addend here for REL targets, because it won't be written out
26905 during reloc processing later. */
26906 if (fixP->fx_done || !seg->use_rela_p)
26907 md_number_to_chars (buf, fixP->fx_offset, 4);
26908 break;
26909
26910 /* Relocations for FDPIC. */
26911 case BFD_RELOC_ARM_GOTFUNCDESC:
26912 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
26913 case BFD_RELOC_ARM_FUNCDESC:
26914 if (arm_fdpic)
26915 {
26916 if (fixP->fx_done || !seg->use_rela_p)
26917 md_number_to_chars (buf, 0, 4);
26918 }
26919 else
26920 {
26921 as_bad_where (fixP->fx_file, fixP->fx_line,
26922 _("Relocation supported only in FDPIC mode"));
26923 }
26924 break;
26925 #endif
26926
26927 case BFD_RELOC_RVA:
26928 case BFD_RELOC_32:
26929 case BFD_RELOC_ARM_TARGET1:
26930 case BFD_RELOC_ARM_ROSEGREL32:
26931 case BFD_RELOC_ARM_SBREL32:
26932 case BFD_RELOC_32_PCREL:
26933 #ifdef TE_PE
26934 case BFD_RELOC_32_SECREL:
26935 #endif
26936 if (fixP->fx_done || !seg->use_rela_p)
26937 #ifdef TE_WINCE
26938 /* For WinCE we only do this for pcrel fixups. */
26939 if (fixP->fx_done || fixP->fx_pcrel)
26940 #endif
26941 md_number_to_chars (buf, value, 4);
26942 break;
26943
26944 #ifdef OBJ_ELF
26945 case BFD_RELOC_ARM_PREL31:
26946 if (fixP->fx_done || !seg->use_rela_p)
26947 {
26948 newval = md_chars_to_number (buf, 4) & 0x80000000;
26949 if ((value ^ (value >> 1)) & 0x40000000)
26950 {
26951 as_bad_where (fixP->fx_file, fixP->fx_line,
26952 _("rel31 relocation overflow"));
26953 }
26954 newval |= value & 0x7fffffff;
26955 md_number_to_chars (buf, newval, 4);
26956 }
26957 break;
26958 #endif
26959
26960 case BFD_RELOC_ARM_CP_OFF_IMM:
26961 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
26962 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
26963 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
26964 newval = md_chars_to_number (buf, INSN_SIZE);
26965 else
26966 newval = get_thumb32_insn (buf);
26967 if ((newval & 0x0f200f00) == 0x0d000900)
26968 {
26969 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
26970 has permitted values that are multiples of 2, in the range 0
26971 to 510. */
26972 if (value < -510 || value > 510 || (value & 1))
26973 as_bad_where (fixP->fx_file, fixP->fx_line,
26974 _("co-processor offset out of range"));
26975 }
26976 else if ((newval & 0xfe001f80) == 0xec000f80)
26977 {
26978 if (value < -511 || value > 512 || (value & 3))
26979 as_bad_where (fixP->fx_file, fixP->fx_line,
26980 _("co-processor offset out of range"));
26981 }
26982 else if (value < -1023 || value > 1023 || (value & 3))
26983 as_bad_where (fixP->fx_file, fixP->fx_line,
26984 _("co-processor offset out of range"));
26985 cp_off_common:
26986 sign = value > 0;
26987 if (value < 0)
26988 value = -value;
26989 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
26990 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
26991 newval = md_chars_to_number (buf, INSN_SIZE);
26992 else
26993 newval = get_thumb32_insn (buf);
26994 if (value == 0)
26995 {
26996 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
26997 newval &= 0xffffff80;
26998 else
26999 newval &= 0xffffff00;
27000 }
27001 else
27002 {
27003 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27004 newval &= 0xff7fff80;
27005 else
27006 newval &= 0xff7fff00;
27007 if ((newval & 0x0f200f00) == 0x0d000900)
27008 {
27009 /* This is a fp16 vstr/vldr.
27010
27011 It requires the immediate offset in the instruction is shifted
27012 left by 1 to be a half-word offset.
27013
27014 Here, left shift by 1 first, and later right shift by 2
27015 should get the right offset. */
27016 value <<= 1;
27017 }
27018 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
27019 }
27020 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27021 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27022 md_number_to_chars (buf, newval, INSN_SIZE);
27023 else
27024 put_thumb32_insn (buf, newval);
27025 break;
27026
27027 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
27028 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
27029 if (value < -255 || value > 255)
27030 as_bad_where (fixP->fx_file, fixP->fx_line,
27031 _("co-processor offset out of range"));
27032 value *= 4;
27033 goto cp_off_common;
27034
27035 case BFD_RELOC_ARM_THUMB_OFFSET:
27036 newval = md_chars_to_number (buf, THUMB_SIZE);
27037 /* Exactly what ranges, and where the offset is inserted depends
27038 on the type of instruction, we can establish this from the
27039 top 4 bits. */
27040 switch (newval >> 12)
27041 {
27042 case 4: /* PC load. */
27043 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
27044 forced to zero for these loads; md_pcrel_from has already
27045 compensated for this. */
27046 if (value & 3)
27047 as_bad_where (fixP->fx_file, fixP->fx_line,
27048 _("invalid offset, target not word aligned (0x%08lX)"),
27049 (((unsigned long) fixP->fx_frag->fr_address
27050 + (unsigned long) fixP->fx_where) & ~3)
27051 + (unsigned long) value);
27052
27053 if (value & ~0x3fc)
27054 as_bad_where (fixP->fx_file, fixP->fx_line,
27055 _("invalid offset, value too big (0x%08lX)"),
27056 (long) value);
27057
27058 newval |= value >> 2;
27059 break;
27060
27061 case 9: /* SP load/store. */
27062 if (value & ~0x3fc)
27063 as_bad_where (fixP->fx_file, fixP->fx_line,
27064 _("invalid offset, value too big (0x%08lX)"),
27065 (long) value);
27066 newval |= value >> 2;
27067 break;
27068
27069 case 6: /* Word load/store. */
27070 if (value & ~0x7c)
27071 as_bad_where (fixP->fx_file, fixP->fx_line,
27072 _("invalid offset, value too big (0x%08lX)"),
27073 (long) value);
27074 newval |= value << 4; /* 6 - 2. */
27075 break;
27076
27077 case 7: /* Byte load/store. */
27078 if (value & ~0x1f)
27079 as_bad_where (fixP->fx_file, fixP->fx_line,
27080 _("invalid offset, value too big (0x%08lX)"),
27081 (long) value);
27082 newval |= value << 6;
27083 break;
27084
27085 case 8: /* Halfword load/store. */
27086 if (value & ~0x3e)
27087 as_bad_where (fixP->fx_file, fixP->fx_line,
27088 _("invalid offset, value too big (0x%08lX)"),
27089 (long) value);
27090 newval |= value << 5; /* 6 - 1. */
27091 break;
27092
27093 default:
27094 as_bad_where (fixP->fx_file, fixP->fx_line,
27095 "Unable to process relocation for thumb opcode: %lx",
27096 (unsigned long) newval);
27097 break;
27098 }
27099 md_number_to_chars (buf, newval, THUMB_SIZE);
27100 break;
27101
27102 case BFD_RELOC_ARM_THUMB_ADD:
27103 /* This is a complicated relocation, since we use it for all of
27104 the following immediate relocations:
27105
27106 3bit ADD/SUB
27107 8bit ADD/SUB
27108 9bit ADD/SUB SP word-aligned
27109 10bit ADD PC/SP word-aligned
27110
27111 The type of instruction being processed is encoded in the
27112 instruction field:
27113
27114 0x8000 SUB
27115 0x00F0 Rd
27116 0x000F Rs
27117 */
27118 newval = md_chars_to_number (buf, THUMB_SIZE);
27119 {
27120 int rd = (newval >> 4) & 0xf;
27121 int rs = newval & 0xf;
27122 int subtract = !!(newval & 0x8000);
27123
27124 /* Check for HI regs, only very restricted cases allowed:
27125 Adjusting SP, and using PC or SP to get an address. */
27126 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
27127 || (rs > 7 && rs != REG_SP && rs != REG_PC))
27128 as_bad_where (fixP->fx_file, fixP->fx_line,
27129 _("invalid Hi register with immediate"));
27130
27131 /* If value is negative, choose the opposite instruction. */
27132 if (value < 0)
27133 {
27134 value = -value;
27135 subtract = !subtract;
27136 if (value < 0)
27137 as_bad_where (fixP->fx_file, fixP->fx_line,
27138 _("immediate value out of range"));
27139 }
27140
27141 if (rd == REG_SP)
27142 {
27143 if (value & ~0x1fc)
27144 as_bad_where (fixP->fx_file, fixP->fx_line,
27145 _("invalid immediate for stack address calculation"));
27146 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
27147 newval |= value >> 2;
27148 }
27149 else if (rs == REG_PC || rs == REG_SP)
27150 {
27151 /* PR gas/18541. If the addition is for a defined symbol
27152 within range of an ADR instruction then accept it. */
27153 if (subtract
27154 && value == 4
27155 && fixP->fx_addsy != NULL)
27156 {
27157 subtract = 0;
27158
27159 if (! S_IS_DEFINED (fixP->fx_addsy)
27160 || S_GET_SEGMENT (fixP->fx_addsy) != seg
27161 || S_IS_WEAK (fixP->fx_addsy))
27162 {
27163 as_bad_where (fixP->fx_file, fixP->fx_line,
27164 _("address calculation needs a strongly defined nearby symbol"));
27165 }
27166 else
27167 {
27168 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
27169
27170 /* Round up to the next 4-byte boundary. */
27171 if (v & 3)
27172 v = (v + 3) & ~ 3;
27173 else
27174 v += 4;
27175 v = S_GET_VALUE (fixP->fx_addsy) - v;
27176
27177 if (v & ~0x3fc)
27178 {
27179 as_bad_where (fixP->fx_file, fixP->fx_line,
27180 _("symbol too far away"));
27181 }
27182 else
27183 {
27184 fixP->fx_done = 1;
27185 value = v;
27186 }
27187 }
27188 }
27189
27190 if (subtract || value & ~0x3fc)
27191 as_bad_where (fixP->fx_file, fixP->fx_line,
27192 _("invalid immediate for address calculation (value = 0x%08lX)"),
27193 (unsigned long) (subtract ? - value : value));
27194 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
27195 newval |= rd << 8;
27196 newval |= value >> 2;
27197 }
27198 else if (rs == rd)
27199 {
27200 if (value & ~0xff)
27201 as_bad_where (fixP->fx_file, fixP->fx_line,
27202 _("immediate value out of range"));
27203 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
27204 newval |= (rd << 8) | value;
27205 }
27206 else
27207 {
27208 if (value & ~0x7)
27209 as_bad_where (fixP->fx_file, fixP->fx_line,
27210 _("immediate value out of range"));
27211 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
27212 newval |= rd | (rs << 3) | (value << 6);
27213 }
27214 }
27215 md_number_to_chars (buf, newval, THUMB_SIZE);
27216 break;
27217
27218 case BFD_RELOC_ARM_THUMB_IMM:
27219 newval = md_chars_to_number (buf, THUMB_SIZE);
27220 if (value < 0 || value > 255)
27221 as_bad_where (fixP->fx_file, fixP->fx_line,
27222 _("invalid immediate: %ld is out of range"),
27223 (long) value);
27224 newval |= value;
27225 md_number_to_chars (buf, newval, THUMB_SIZE);
27226 break;
27227
27228 case BFD_RELOC_ARM_THUMB_SHIFT:
27229 /* 5bit shift value (0..32). LSL cannot take 32. */
27230 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
27231 temp = newval & 0xf800;
27232 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
27233 as_bad_where (fixP->fx_file, fixP->fx_line,
27234 _("invalid shift value: %ld"), (long) value);
27235 /* Shifts of zero must be encoded as LSL. */
27236 if (value == 0)
27237 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
27238 /* Shifts of 32 are encoded as zero. */
27239 else if (value == 32)
27240 value = 0;
27241 newval |= value << 6;
27242 md_number_to_chars (buf, newval, THUMB_SIZE);
27243 break;
27244
27245 case BFD_RELOC_VTABLE_INHERIT:
27246 case BFD_RELOC_VTABLE_ENTRY:
27247 fixP->fx_done = 0;
27248 return;
27249
27250 case BFD_RELOC_ARM_MOVW:
27251 case BFD_RELOC_ARM_MOVT:
27252 case BFD_RELOC_ARM_THUMB_MOVW:
27253 case BFD_RELOC_ARM_THUMB_MOVT:
27254 if (fixP->fx_done || !seg->use_rela_p)
27255 {
27256 /* REL format relocations are limited to a 16-bit addend. */
27257 if (!fixP->fx_done)
27258 {
27259 if (value < -0x8000 || value > 0x7fff)
27260 as_bad_where (fixP->fx_file, fixP->fx_line,
27261 _("offset out of range"));
27262 }
27263 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
27264 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27265 {
27266 value >>= 16;
27267 }
27268
27269 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
27270 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27271 {
27272 newval = get_thumb32_insn (buf);
27273 newval &= 0xfbf08f00;
27274 newval |= (value & 0xf000) << 4;
27275 newval |= (value & 0x0800) << 15;
27276 newval |= (value & 0x0700) << 4;
27277 newval |= (value & 0x00ff);
27278 put_thumb32_insn (buf, newval);
27279 }
27280 else
27281 {
27282 newval = md_chars_to_number (buf, 4);
27283 newval &= 0xfff0f000;
27284 newval |= value & 0x0fff;
27285 newval |= (value & 0xf000) << 4;
27286 md_number_to_chars (buf, newval, 4);
27287 }
27288 }
27289 return;
27290
27291 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
27292 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
27293 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
27294 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
27295 gas_assert (!fixP->fx_done);
27296 {
27297 bfd_vma insn;
27298 bfd_boolean is_mov;
27299 bfd_vma encoded_addend = value;
27300
27301 /* Check that addend can be encoded in instruction. */
27302 if (!seg->use_rela_p && (value < 0 || value > 255))
27303 as_bad_where (fixP->fx_file, fixP->fx_line,
27304 _("the offset 0x%08lX is not representable"),
27305 (unsigned long) encoded_addend);
27306
27307 /* Extract the instruction. */
27308 insn = md_chars_to_number (buf, THUMB_SIZE);
27309 is_mov = (insn & 0xf800) == 0x2000;
27310
27311 /* Encode insn. */
27312 if (is_mov)
27313 {
27314 if (!seg->use_rela_p)
27315 insn |= encoded_addend;
27316 }
27317 else
27318 {
27319 int rd, rs;
27320
27321 /* Extract the instruction. */
27322 /* Encoding is the following
27323 0x8000 SUB
27324 0x00F0 Rd
27325 0x000F Rs
27326 */
27327 /* The following conditions must be true :
27328 - ADD
27329 - Rd == Rs
27330 - Rd <= 7
27331 */
27332 rd = (insn >> 4) & 0xf;
27333 rs = insn & 0xf;
27334 if ((insn & 0x8000) || (rd != rs) || rd > 7)
27335 as_bad_where (fixP->fx_file, fixP->fx_line,
27336 _("Unable to process relocation for thumb opcode: %lx"),
27337 (unsigned long) insn);
27338
27339 /* Encode as ADD immediate8 thumb 1 code. */
27340 insn = 0x3000 | (rd << 8);
27341
27342 /* Place the encoded addend into the first 8 bits of the
27343 instruction. */
27344 if (!seg->use_rela_p)
27345 insn |= encoded_addend;
27346 }
27347
27348 /* Update the instruction. */
27349 md_number_to_chars (buf, insn, THUMB_SIZE);
27350 }
27351 break;
27352
27353 case BFD_RELOC_ARM_ALU_PC_G0_NC:
27354 case BFD_RELOC_ARM_ALU_PC_G0:
27355 case BFD_RELOC_ARM_ALU_PC_G1_NC:
27356 case BFD_RELOC_ARM_ALU_PC_G1:
27357 case BFD_RELOC_ARM_ALU_PC_G2:
27358 case BFD_RELOC_ARM_ALU_SB_G0_NC:
27359 case BFD_RELOC_ARM_ALU_SB_G0:
27360 case BFD_RELOC_ARM_ALU_SB_G1_NC:
27361 case BFD_RELOC_ARM_ALU_SB_G1:
27362 case BFD_RELOC_ARM_ALU_SB_G2:
27363 gas_assert (!fixP->fx_done);
27364 if (!seg->use_rela_p)
27365 {
27366 bfd_vma insn;
27367 bfd_vma encoded_addend;
27368 bfd_vma addend_abs = llabs (value);
27369
27370 /* Check that the absolute value of the addend can be
27371 expressed as an 8-bit constant plus a rotation. */
27372 encoded_addend = encode_arm_immediate (addend_abs);
27373 if (encoded_addend == (unsigned int) FAIL)
27374 as_bad_where (fixP->fx_file, fixP->fx_line,
27375 _("the offset 0x%08lX is not representable"),
27376 (unsigned long) addend_abs);
27377
27378 /* Extract the instruction. */
27379 insn = md_chars_to_number (buf, INSN_SIZE);
27380
27381 /* If the addend is positive, use an ADD instruction.
27382 Otherwise use a SUB. Take care not to destroy the S bit. */
27383 insn &= 0xff1fffff;
27384 if (value < 0)
27385 insn |= 1 << 22;
27386 else
27387 insn |= 1 << 23;
27388
27389 /* Place the encoded addend into the first 12 bits of the
27390 instruction. */
27391 insn &= 0xfffff000;
27392 insn |= encoded_addend;
27393
27394 /* Update the instruction. */
27395 md_number_to_chars (buf, insn, INSN_SIZE);
27396 }
27397 break;
27398
27399 case BFD_RELOC_ARM_LDR_PC_G0:
27400 case BFD_RELOC_ARM_LDR_PC_G1:
27401 case BFD_RELOC_ARM_LDR_PC_G2:
27402 case BFD_RELOC_ARM_LDR_SB_G0:
27403 case BFD_RELOC_ARM_LDR_SB_G1:
27404 case BFD_RELOC_ARM_LDR_SB_G2:
27405 gas_assert (!fixP->fx_done);
27406 if (!seg->use_rela_p)
27407 {
27408 bfd_vma insn;
27409 bfd_vma addend_abs = llabs (value);
27410
27411 /* Check that the absolute value of the addend can be
27412 encoded in 12 bits. */
27413 if (addend_abs >= 0x1000)
27414 as_bad_where (fixP->fx_file, fixP->fx_line,
27415 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
27416 (unsigned long) addend_abs);
27417
27418 /* Extract the instruction. */
27419 insn = md_chars_to_number (buf, INSN_SIZE);
27420
27421 /* If the addend is negative, clear bit 23 of the instruction.
27422 Otherwise set it. */
27423 if (value < 0)
27424 insn &= ~(1 << 23);
27425 else
27426 insn |= 1 << 23;
27427
27428 /* Place the absolute value of the addend into the first 12 bits
27429 of the instruction. */
27430 insn &= 0xfffff000;
27431 insn |= addend_abs;
27432
27433 /* Update the instruction. */
27434 md_number_to_chars (buf, insn, INSN_SIZE);
27435 }
27436 break;
27437
27438 case BFD_RELOC_ARM_LDRS_PC_G0:
27439 case BFD_RELOC_ARM_LDRS_PC_G1:
27440 case BFD_RELOC_ARM_LDRS_PC_G2:
27441 case BFD_RELOC_ARM_LDRS_SB_G0:
27442 case BFD_RELOC_ARM_LDRS_SB_G1:
27443 case BFD_RELOC_ARM_LDRS_SB_G2:
27444 gas_assert (!fixP->fx_done);
27445 if (!seg->use_rela_p)
27446 {
27447 bfd_vma insn;
27448 bfd_vma addend_abs = llabs (value);
27449
27450 /* Check that the absolute value of the addend can be
27451 encoded in 8 bits. */
27452 if (addend_abs >= 0x100)
27453 as_bad_where (fixP->fx_file, fixP->fx_line,
27454 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
27455 (unsigned long) addend_abs);
27456
27457 /* Extract the instruction. */
27458 insn = md_chars_to_number (buf, INSN_SIZE);
27459
27460 /* If the addend is negative, clear bit 23 of the instruction.
27461 Otherwise set it. */
27462 if (value < 0)
27463 insn &= ~(1 << 23);
27464 else
27465 insn |= 1 << 23;
27466
27467 /* Place the first four bits of the absolute value of the addend
27468 into the first 4 bits of the instruction, and the remaining
27469 four into bits 8 .. 11. */
27470 insn &= 0xfffff0f0;
27471 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
27472
27473 /* Update the instruction. */
27474 md_number_to_chars (buf, insn, INSN_SIZE);
27475 }
27476 break;
27477
27478 case BFD_RELOC_ARM_LDC_PC_G0:
27479 case BFD_RELOC_ARM_LDC_PC_G1:
27480 case BFD_RELOC_ARM_LDC_PC_G2:
27481 case BFD_RELOC_ARM_LDC_SB_G0:
27482 case BFD_RELOC_ARM_LDC_SB_G1:
27483 case BFD_RELOC_ARM_LDC_SB_G2:
27484 gas_assert (!fixP->fx_done);
27485 if (!seg->use_rela_p)
27486 {
27487 bfd_vma insn;
27488 bfd_vma addend_abs = llabs (value);
27489
27490 /* Check that the absolute value of the addend is a multiple of
27491 four and, when divided by four, fits in 8 bits. */
27492 if (addend_abs & 0x3)
27493 as_bad_where (fixP->fx_file, fixP->fx_line,
27494 _("bad offset 0x%08lX (must be word-aligned)"),
27495 (unsigned long) addend_abs);
27496
27497 if ((addend_abs >> 2) > 0xff)
27498 as_bad_where (fixP->fx_file, fixP->fx_line,
27499 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
27500 (unsigned long) addend_abs);
27501
27502 /* Extract the instruction. */
27503 insn = md_chars_to_number (buf, INSN_SIZE);
27504
27505 /* If the addend is negative, clear bit 23 of the instruction.
27506 Otherwise set it. */
27507 if (value < 0)
27508 insn &= ~(1 << 23);
27509 else
27510 insn |= 1 << 23;
27511
27512 /* Place the addend (divided by four) into the first eight
27513 bits of the instruction. */
27514 insn &= 0xfffffff0;
27515 insn |= addend_abs >> 2;
27516
27517 /* Update the instruction. */
27518 md_number_to_chars (buf, insn, INSN_SIZE);
27519 }
27520 break;
27521
27522 case BFD_RELOC_THUMB_PCREL_BRANCH5:
27523 if (fixP->fx_addsy
27524 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27525 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27526 && ARM_IS_FUNC (fixP->fx_addsy)
27527 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27528 {
27529 /* Force a relocation for a branch 5 bits wide. */
27530 fixP->fx_done = 0;
27531 }
27532 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
27533 as_bad_where (fixP->fx_file, fixP->fx_line,
27534 BAD_BRANCH_OFF);
27535
27536 if (fixP->fx_done || !seg->use_rela_p)
27537 {
27538 addressT boff = value >> 1;
27539
27540 newval = md_chars_to_number (buf, THUMB_SIZE);
27541 newval |= (boff << 7);
27542 md_number_to_chars (buf, newval, THUMB_SIZE);
27543 }
27544 break;
27545
27546 case BFD_RELOC_THUMB_PCREL_BFCSEL:
27547 if (fixP->fx_addsy
27548 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27549 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27550 && ARM_IS_FUNC (fixP->fx_addsy)
27551 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27552 {
27553 fixP->fx_done = 0;
27554 }
27555 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
27556 as_bad_where (fixP->fx_file, fixP->fx_line,
27557 _("branch out of range"));
27558
27559 if (fixP->fx_done || !seg->use_rela_p)
27560 {
27561 newval = md_chars_to_number (buf, THUMB_SIZE);
27562
27563 addressT boff = ((newval & 0x0780) >> 7) << 1;
27564 addressT diff = value - boff;
27565
27566 if (diff == 4)
27567 {
27568 newval |= 1 << 1; /* T bit. */
27569 }
27570 else if (diff != 2)
27571 {
27572 as_bad_where (fixP->fx_file, fixP->fx_line,
27573 _("out of range label-relative fixup value"));
27574 }
27575 md_number_to_chars (buf, newval, THUMB_SIZE);
27576 }
27577 break;
27578
27579 case BFD_RELOC_ARM_THUMB_BF17:
27580 if (fixP->fx_addsy
27581 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27582 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27583 && ARM_IS_FUNC (fixP->fx_addsy)
27584 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27585 {
27586 /* Force a relocation for a branch 17 bits wide. */
27587 fixP->fx_done = 0;
27588 }
27589
27590 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
27591 as_bad_where (fixP->fx_file, fixP->fx_line,
27592 BAD_BRANCH_OFF);
27593
27594 if (fixP->fx_done || !seg->use_rela_p)
27595 {
27596 offsetT newval2;
27597 addressT immA, immB, immC;
27598
27599 immA = (value & 0x0001f000) >> 12;
27600 immB = (value & 0x00000ffc) >> 2;
27601 immC = (value & 0x00000002) >> 1;
27602
27603 newval = md_chars_to_number (buf, THUMB_SIZE);
27604 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27605 newval |= immA;
27606 newval2 |= (immC << 11) | (immB << 1);
27607 md_number_to_chars (buf, newval, THUMB_SIZE);
27608 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27609 }
27610 break;
27611
27612 case BFD_RELOC_ARM_THUMB_BF19:
27613 if (fixP->fx_addsy
27614 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27615 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27616 && ARM_IS_FUNC (fixP->fx_addsy)
27617 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27618 {
27619 /* Force a relocation for a branch 19 bits wide. */
27620 fixP->fx_done = 0;
27621 }
27622
27623 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
27624 as_bad_where (fixP->fx_file, fixP->fx_line,
27625 BAD_BRANCH_OFF);
27626
27627 if (fixP->fx_done || !seg->use_rela_p)
27628 {
27629 offsetT newval2;
27630 addressT immA, immB, immC;
27631
27632 immA = (value & 0x0007f000) >> 12;
27633 immB = (value & 0x00000ffc) >> 2;
27634 immC = (value & 0x00000002) >> 1;
27635
27636 newval = md_chars_to_number (buf, THUMB_SIZE);
27637 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27638 newval |= immA;
27639 newval2 |= (immC << 11) | (immB << 1);
27640 md_number_to_chars (buf, newval, THUMB_SIZE);
27641 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27642 }
27643 break;
27644
27645 case BFD_RELOC_ARM_THUMB_BF13:
27646 if (fixP->fx_addsy
27647 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27648 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27649 && ARM_IS_FUNC (fixP->fx_addsy)
27650 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27651 {
27652 /* Force a relocation for a branch 13 bits wide. */
27653 fixP->fx_done = 0;
27654 }
27655
27656 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
27657 as_bad_where (fixP->fx_file, fixP->fx_line,
27658 BAD_BRANCH_OFF);
27659
27660 if (fixP->fx_done || !seg->use_rela_p)
27661 {
27662 offsetT newval2;
27663 addressT immA, immB, immC;
27664
27665 immA = (value & 0x00001000) >> 12;
27666 immB = (value & 0x00000ffc) >> 2;
27667 immC = (value & 0x00000002) >> 1;
27668
27669 newval = md_chars_to_number (buf, THUMB_SIZE);
27670 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27671 newval |= immA;
27672 newval2 |= (immC << 11) | (immB << 1);
27673 md_number_to_chars (buf, newval, THUMB_SIZE);
27674 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27675 }
27676 break;
27677
27678 case BFD_RELOC_ARM_THUMB_LOOP12:
27679 if (fixP->fx_addsy
27680 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27681 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27682 && ARM_IS_FUNC (fixP->fx_addsy)
27683 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27684 {
27685 /* Force a relocation for a branch 12 bits wide. */
27686 fixP->fx_done = 0;
27687 }
27688
27689 bfd_vma insn = get_thumb32_insn (buf);
27690 /* le lr, <label> or le <label> */
27691 if (((insn & 0xffffffff) == 0xf00fc001)
27692 || ((insn & 0xffffffff) == 0xf02fc001))
27693 value = -value;
27694
27695 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
27696 as_bad_where (fixP->fx_file, fixP->fx_line,
27697 BAD_BRANCH_OFF);
27698 if (fixP->fx_done || !seg->use_rela_p)
27699 {
27700 addressT imml, immh;
27701
27702 immh = (value & 0x00000ffc) >> 2;
27703 imml = (value & 0x00000002) >> 1;
27704
27705 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27706 newval |= (imml << 11) | (immh << 1);
27707 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
27708 }
27709 break;
27710
27711 case BFD_RELOC_ARM_V4BX:
27712 /* This will need to go in the object file. */
27713 fixP->fx_done = 0;
27714 break;
27715
27716 case BFD_RELOC_UNUSED:
27717 default:
27718 as_bad_where (fixP->fx_file, fixP->fx_line,
27719 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
27720 }
27721 }
27722
27723 /* Translate internal representation of relocation info to BFD target
27724 format. */
27725
27726 arelent *
27727 tc_gen_reloc (asection *section, fixS *fixp)
27728 {
27729 arelent * reloc;
27730 bfd_reloc_code_real_type code;
27731
27732 reloc = XNEW (arelent);
27733
27734 reloc->sym_ptr_ptr = XNEW (asymbol *);
27735 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
27736 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
27737
27738 if (fixp->fx_pcrel)
27739 {
27740 if (section->use_rela_p)
27741 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
27742 else
27743 fixp->fx_offset = reloc->address;
27744 }
27745 reloc->addend = fixp->fx_offset;
27746
27747 switch (fixp->fx_r_type)
27748 {
27749 case BFD_RELOC_8:
27750 if (fixp->fx_pcrel)
27751 {
27752 code = BFD_RELOC_8_PCREL;
27753 break;
27754 }
27755 /* Fall through. */
27756
27757 case BFD_RELOC_16:
27758 if (fixp->fx_pcrel)
27759 {
27760 code = BFD_RELOC_16_PCREL;
27761 break;
27762 }
27763 /* Fall through. */
27764
27765 case BFD_RELOC_32:
27766 if (fixp->fx_pcrel)
27767 {
27768 code = BFD_RELOC_32_PCREL;
27769 break;
27770 }
27771 /* Fall through. */
27772
27773 case BFD_RELOC_ARM_MOVW:
27774 if (fixp->fx_pcrel)
27775 {
27776 code = BFD_RELOC_ARM_MOVW_PCREL;
27777 break;
27778 }
27779 /* Fall through. */
27780
27781 case BFD_RELOC_ARM_MOVT:
27782 if (fixp->fx_pcrel)
27783 {
27784 code = BFD_RELOC_ARM_MOVT_PCREL;
27785 break;
27786 }
27787 /* Fall through. */
27788
27789 case BFD_RELOC_ARM_THUMB_MOVW:
27790 if (fixp->fx_pcrel)
27791 {
27792 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
27793 break;
27794 }
27795 /* Fall through. */
27796
27797 case BFD_RELOC_ARM_THUMB_MOVT:
27798 if (fixp->fx_pcrel)
27799 {
27800 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
27801 break;
27802 }
27803 /* Fall through. */
27804
27805 case BFD_RELOC_NONE:
27806 case BFD_RELOC_ARM_PCREL_BRANCH:
27807 case BFD_RELOC_ARM_PCREL_BLX:
27808 case BFD_RELOC_RVA:
27809 case BFD_RELOC_THUMB_PCREL_BRANCH7:
27810 case BFD_RELOC_THUMB_PCREL_BRANCH9:
27811 case BFD_RELOC_THUMB_PCREL_BRANCH12:
27812 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27813 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27814 case BFD_RELOC_THUMB_PCREL_BRANCH25:
27815 case BFD_RELOC_VTABLE_ENTRY:
27816 case BFD_RELOC_VTABLE_INHERIT:
27817 #ifdef TE_PE
27818 case BFD_RELOC_32_SECREL:
27819 #endif
27820 code = fixp->fx_r_type;
27821 break;
27822
27823 case BFD_RELOC_THUMB_PCREL_BLX:
27824 #ifdef OBJ_ELF
27825 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
27826 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
27827 else
27828 #endif
27829 code = BFD_RELOC_THUMB_PCREL_BLX;
27830 break;
27831
27832 case BFD_RELOC_ARM_LITERAL:
27833 case BFD_RELOC_ARM_HWLITERAL:
27834 /* If this is called then the a literal has
27835 been referenced across a section boundary. */
27836 as_bad_where (fixp->fx_file, fixp->fx_line,
27837 _("literal referenced across section boundary"));
27838 return NULL;
27839
27840 #ifdef OBJ_ELF
27841 case BFD_RELOC_ARM_TLS_CALL:
27842 case BFD_RELOC_ARM_THM_TLS_CALL:
27843 case BFD_RELOC_ARM_TLS_DESCSEQ:
27844 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
27845 case BFD_RELOC_ARM_GOT32:
27846 case BFD_RELOC_ARM_GOTOFF:
27847 case BFD_RELOC_ARM_GOT_PREL:
27848 case BFD_RELOC_ARM_PLT32:
27849 case BFD_RELOC_ARM_TARGET1:
27850 case BFD_RELOC_ARM_ROSEGREL32:
27851 case BFD_RELOC_ARM_SBREL32:
27852 case BFD_RELOC_ARM_PREL31:
27853 case BFD_RELOC_ARM_TARGET2:
27854 case BFD_RELOC_ARM_TLS_LDO32:
27855 case BFD_RELOC_ARM_PCREL_CALL:
27856 case BFD_RELOC_ARM_PCREL_JUMP:
27857 case BFD_RELOC_ARM_ALU_PC_G0_NC:
27858 case BFD_RELOC_ARM_ALU_PC_G0:
27859 case BFD_RELOC_ARM_ALU_PC_G1_NC:
27860 case BFD_RELOC_ARM_ALU_PC_G1:
27861 case BFD_RELOC_ARM_ALU_PC_G2:
27862 case BFD_RELOC_ARM_LDR_PC_G0:
27863 case BFD_RELOC_ARM_LDR_PC_G1:
27864 case BFD_RELOC_ARM_LDR_PC_G2:
27865 case BFD_RELOC_ARM_LDRS_PC_G0:
27866 case BFD_RELOC_ARM_LDRS_PC_G1:
27867 case BFD_RELOC_ARM_LDRS_PC_G2:
27868 case BFD_RELOC_ARM_LDC_PC_G0:
27869 case BFD_RELOC_ARM_LDC_PC_G1:
27870 case BFD_RELOC_ARM_LDC_PC_G2:
27871 case BFD_RELOC_ARM_ALU_SB_G0_NC:
27872 case BFD_RELOC_ARM_ALU_SB_G0:
27873 case BFD_RELOC_ARM_ALU_SB_G1_NC:
27874 case BFD_RELOC_ARM_ALU_SB_G1:
27875 case BFD_RELOC_ARM_ALU_SB_G2:
27876 case BFD_RELOC_ARM_LDR_SB_G0:
27877 case BFD_RELOC_ARM_LDR_SB_G1:
27878 case BFD_RELOC_ARM_LDR_SB_G2:
27879 case BFD_RELOC_ARM_LDRS_SB_G0:
27880 case BFD_RELOC_ARM_LDRS_SB_G1:
27881 case BFD_RELOC_ARM_LDRS_SB_G2:
27882 case BFD_RELOC_ARM_LDC_SB_G0:
27883 case BFD_RELOC_ARM_LDC_SB_G1:
27884 case BFD_RELOC_ARM_LDC_SB_G2:
27885 case BFD_RELOC_ARM_V4BX:
27886 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
27887 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
27888 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
27889 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
27890 case BFD_RELOC_ARM_GOTFUNCDESC:
27891 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
27892 case BFD_RELOC_ARM_FUNCDESC:
27893 case BFD_RELOC_ARM_THUMB_BF17:
27894 case BFD_RELOC_ARM_THUMB_BF19:
27895 case BFD_RELOC_ARM_THUMB_BF13:
27896 code = fixp->fx_r_type;
27897 break;
27898
27899 case BFD_RELOC_ARM_TLS_GOTDESC:
27900 case BFD_RELOC_ARM_TLS_GD32:
27901 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
27902 case BFD_RELOC_ARM_TLS_LE32:
27903 case BFD_RELOC_ARM_TLS_IE32:
27904 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
27905 case BFD_RELOC_ARM_TLS_LDM32:
27906 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
27907 /* BFD will include the symbol's address in the addend.
27908 But we don't want that, so subtract it out again here. */
27909 if (!S_IS_COMMON (fixp->fx_addsy))
27910 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
27911 code = fixp->fx_r_type;
27912 break;
27913 #endif
27914
27915 case BFD_RELOC_ARM_IMMEDIATE:
27916 as_bad_where (fixp->fx_file, fixp->fx_line,
27917 _("internal relocation (type: IMMEDIATE) not fixed up"));
27918 return NULL;
27919
27920 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
27921 as_bad_where (fixp->fx_file, fixp->fx_line,
27922 _("ADRL used for a symbol not defined in the same file"));
27923 return NULL;
27924
27925 case BFD_RELOC_THUMB_PCREL_BRANCH5:
27926 case BFD_RELOC_THUMB_PCREL_BFCSEL:
27927 case BFD_RELOC_ARM_THUMB_LOOP12:
27928 as_bad_where (fixp->fx_file, fixp->fx_line,
27929 _("%s used for a symbol not defined in the same file"),
27930 bfd_get_reloc_code_name (fixp->fx_r_type));
27931 return NULL;
27932
27933 case BFD_RELOC_ARM_OFFSET_IMM:
27934 if (section->use_rela_p)
27935 {
27936 code = fixp->fx_r_type;
27937 break;
27938 }
27939
27940 if (fixp->fx_addsy != NULL
27941 && !S_IS_DEFINED (fixp->fx_addsy)
27942 && S_IS_LOCAL (fixp->fx_addsy))
27943 {
27944 as_bad_where (fixp->fx_file, fixp->fx_line,
27945 _("undefined local label `%s'"),
27946 S_GET_NAME (fixp->fx_addsy));
27947 return NULL;
27948 }
27949
27950 as_bad_where (fixp->fx_file, fixp->fx_line,
27951 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
27952 return NULL;
27953
27954 default:
27955 {
27956 const char * type;
27957
27958 switch (fixp->fx_r_type)
27959 {
27960 case BFD_RELOC_NONE: type = "NONE"; break;
27961 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
27962 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
27963 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
27964 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
27965 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
27966 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
27967 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
27968 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
27969 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
27970 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
27971 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
27972 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
27973 default: type = _("<unknown>"); break;
27974 }
27975 as_bad_where (fixp->fx_file, fixp->fx_line,
27976 _("cannot represent %s relocation in this object file format"),
27977 type);
27978 return NULL;
27979 }
27980 }
27981
27982 #ifdef OBJ_ELF
27983 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
27984 && GOT_symbol
27985 && fixp->fx_addsy == GOT_symbol)
27986 {
27987 code = BFD_RELOC_ARM_GOTPC;
27988 reloc->addend = fixp->fx_offset = reloc->address;
27989 }
27990 #endif
27991
27992 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
27993
27994 if (reloc->howto == NULL)
27995 {
27996 as_bad_where (fixp->fx_file, fixp->fx_line,
27997 _("cannot represent %s relocation in this object file format"),
27998 bfd_get_reloc_code_name (code));
27999 return NULL;
28000 }
28001
28002 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
28003 vtable entry to be used in the relocation's section offset. */
28004 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
28005 reloc->address = fixp->fx_offset;
28006
28007 return reloc;
28008 }
28009
28010 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
28011
28012 void
28013 cons_fix_new_arm (fragS * frag,
28014 int where,
28015 int size,
28016 expressionS * exp,
28017 bfd_reloc_code_real_type reloc)
28018 {
28019 int pcrel = 0;
28020
28021 /* Pick a reloc.
28022 FIXME: @@ Should look at CPU word size. */
28023 switch (size)
28024 {
28025 case 1:
28026 reloc = BFD_RELOC_8;
28027 break;
28028 case 2:
28029 reloc = BFD_RELOC_16;
28030 break;
28031 case 4:
28032 default:
28033 reloc = BFD_RELOC_32;
28034 break;
28035 case 8:
28036 reloc = BFD_RELOC_64;
28037 break;
28038 }
28039
28040 #ifdef TE_PE
28041 if (exp->X_op == O_secrel)
28042 {
28043 exp->X_op = O_symbol;
28044 reloc = BFD_RELOC_32_SECREL;
28045 }
28046 #endif
28047
28048 fix_new_exp (frag, where, size, exp, pcrel, reloc);
28049 }
28050
28051 #if defined (OBJ_COFF)
28052 void
28053 arm_validate_fix (fixS * fixP)
28054 {
28055 /* If the destination of the branch is a defined symbol which does not have
28056 the THUMB_FUNC attribute, then we must be calling a function which has
28057 the (interfacearm) attribute. We look for the Thumb entry point to that
28058 function and change the branch to refer to that function instead. */
28059 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
28060 && fixP->fx_addsy != NULL
28061 && S_IS_DEFINED (fixP->fx_addsy)
28062 && ! THUMB_IS_FUNC (fixP->fx_addsy))
28063 {
28064 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
28065 }
28066 }
28067 #endif
28068
28069
28070 int
28071 arm_force_relocation (struct fix * fixp)
28072 {
28073 #if defined (OBJ_COFF) && defined (TE_PE)
28074 if (fixp->fx_r_type == BFD_RELOC_RVA)
28075 return 1;
28076 #endif
28077
28078 /* In case we have a call or a branch to a function in ARM ISA mode from
28079 a thumb function or vice-versa force the relocation. These relocations
28080 are cleared off for some cores that might have blx and simple transformations
28081 are possible. */
28082
28083 #ifdef OBJ_ELF
28084 switch (fixp->fx_r_type)
28085 {
28086 case BFD_RELOC_ARM_PCREL_JUMP:
28087 case BFD_RELOC_ARM_PCREL_CALL:
28088 case BFD_RELOC_THUMB_PCREL_BLX:
28089 if (THUMB_IS_FUNC (fixp->fx_addsy))
28090 return 1;
28091 break;
28092
28093 case BFD_RELOC_ARM_PCREL_BLX:
28094 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28095 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28096 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28097 if (ARM_IS_FUNC (fixp->fx_addsy))
28098 return 1;
28099 break;
28100
28101 default:
28102 break;
28103 }
28104 #endif
28105
28106 /* Resolve these relocations even if the symbol is extern or weak.
28107 Technically this is probably wrong due to symbol preemption.
28108 In practice these relocations do not have enough range to be useful
28109 at dynamic link time, and some code (e.g. in the Linux kernel)
28110 expects these references to be resolved. */
28111 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
28112 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
28113 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
28114 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
28115 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28116 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
28117 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
28118 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
28119 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
28120 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
28121 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
28122 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
28123 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
28124 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
28125 return 0;
28126
28127 /* Always leave these relocations for the linker. */
28128 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28129 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28130 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
28131 return 1;
28132
28133 /* Always generate relocations against function symbols. */
28134 if (fixp->fx_r_type == BFD_RELOC_32
28135 && fixp->fx_addsy
28136 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
28137 return 1;
28138
28139 return generic_force_reloc (fixp);
28140 }
28141
28142 #if defined (OBJ_ELF) || defined (OBJ_COFF)
28143 /* Relocations against function names must be left unadjusted,
28144 so that the linker can use this information to generate interworking
28145 stubs. The MIPS version of this function
28146 also prevents relocations that are mips-16 specific, but I do not
28147 know why it does this.
28148
28149 FIXME:
28150 There is one other problem that ought to be addressed here, but
28151 which currently is not: Taking the address of a label (rather
28152 than a function) and then later jumping to that address. Such
28153 addresses also ought to have their bottom bit set (assuming that
28154 they reside in Thumb code), but at the moment they will not. */
28155
28156 bfd_boolean
28157 arm_fix_adjustable (fixS * fixP)
28158 {
28159 if (fixP->fx_addsy == NULL)
28160 return 1;
28161
28162 /* Preserve relocations against symbols with function type. */
28163 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
28164 return FALSE;
28165
28166 if (THUMB_IS_FUNC (fixP->fx_addsy)
28167 && fixP->fx_subsy == NULL)
28168 return FALSE;
28169
28170 /* We need the symbol name for the VTABLE entries. */
28171 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
28172 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
28173 return FALSE;
28174
28175 /* Don't allow symbols to be discarded on GOT related relocs. */
28176 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
28177 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
28178 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
28179 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
28180 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
28181 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
28182 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
28183 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
28184 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
28185 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
28186 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
28187 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
28188 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
28189 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
28190 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
28191 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
28192 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
28193 return FALSE;
28194
28195 /* Similarly for group relocations. */
28196 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28197 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28198 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
28199 return FALSE;
28200
28201 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
28202 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
28203 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28204 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
28205 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
28206 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28207 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
28208 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
28209 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
28210 return FALSE;
28211
28212 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
28213 offsets, so keep these symbols. */
28214 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
28215 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
28216 return FALSE;
28217
28218 return TRUE;
28219 }
28220 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
28221
28222 #ifdef OBJ_ELF
28223 const char *
28224 elf32_arm_target_format (void)
28225 {
28226 #ifdef TE_SYMBIAN
28227 return (target_big_endian
28228 ? "elf32-bigarm-symbian"
28229 : "elf32-littlearm-symbian");
28230 #elif defined (TE_VXWORKS)
28231 return (target_big_endian
28232 ? "elf32-bigarm-vxworks"
28233 : "elf32-littlearm-vxworks");
28234 #elif defined (TE_NACL)
28235 return (target_big_endian
28236 ? "elf32-bigarm-nacl"
28237 : "elf32-littlearm-nacl");
28238 #else
28239 if (arm_fdpic)
28240 {
28241 if (target_big_endian)
28242 return "elf32-bigarm-fdpic";
28243 else
28244 return "elf32-littlearm-fdpic";
28245 }
28246 else
28247 {
28248 if (target_big_endian)
28249 return "elf32-bigarm";
28250 else
28251 return "elf32-littlearm";
28252 }
28253 #endif
28254 }
28255
28256 void
28257 armelf_frob_symbol (symbolS * symp,
28258 int * puntp)
28259 {
28260 elf_frob_symbol (symp, puntp);
28261 }
28262 #endif
28263
28264 /* MD interface: Finalization. */
28265
28266 void
28267 arm_cleanup (void)
28268 {
28269 literal_pool * pool;
28270
28271 /* Ensure that all the predication blocks are properly closed. */
28272 check_pred_blocks_finished ();
28273
28274 for (pool = list_of_pools; pool; pool = pool->next)
28275 {
28276 /* Put it at the end of the relevant section. */
28277 subseg_set (pool->section, pool->sub_section);
28278 #ifdef OBJ_ELF
28279 arm_elf_change_section ();
28280 #endif
28281 s_ltorg (0);
28282 }
28283 }
28284
28285 #ifdef OBJ_ELF
28286 /* Remove any excess mapping symbols generated for alignment frags in
28287 SEC. We may have created a mapping symbol before a zero byte
28288 alignment; remove it if there's a mapping symbol after the
28289 alignment. */
28290 static void
28291 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
28292 void *dummy ATTRIBUTE_UNUSED)
28293 {
28294 segment_info_type *seginfo = seg_info (sec);
28295 fragS *fragp;
28296
28297 if (seginfo == NULL || seginfo->frchainP == NULL)
28298 return;
28299
28300 for (fragp = seginfo->frchainP->frch_root;
28301 fragp != NULL;
28302 fragp = fragp->fr_next)
28303 {
28304 symbolS *sym = fragp->tc_frag_data.last_map;
28305 fragS *next = fragp->fr_next;
28306
28307 /* Variable-sized frags have been converted to fixed size by
28308 this point. But if this was variable-sized to start with,
28309 there will be a fixed-size frag after it. So don't handle
28310 next == NULL. */
28311 if (sym == NULL || next == NULL)
28312 continue;
28313
28314 if (S_GET_VALUE (sym) < next->fr_address)
28315 /* Not at the end of this frag. */
28316 continue;
28317 know (S_GET_VALUE (sym) == next->fr_address);
28318
28319 do
28320 {
28321 if (next->tc_frag_data.first_map != NULL)
28322 {
28323 /* Next frag starts with a mapping symbol. Discard this
28324 one. */
28325 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28326 break;
28327 }
28328
28329 if (next->fr_next == NULL)
28330 {
28331 /* This mapping symbol is at the end of the section. Discard
28332 it. */
28333 know (next->fr_fix == 0 && next->fr_var == 0);
28334 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28335 break;
28336 }
28337
28338 /* As long as we have empty frags without any mapping symbols,
28339 keep looking. */
28340 /* If the next frag is non-empty and does not start with a
28341 mapping symbol, then this mapping symbol is required. */
28342 if (next->fr_address != next->fr_next->fr_address)
28343 break;
28344
28345 next = next->fr_next;
28346 }
28347 while (next != NULL);
28348 }
28349 }
28350 #endif
28351
28352 /* Adjust the symbol table. This marks Thumb symbols as distinct from
28353 ARM ones. */
28354
28355 void
28356 arm_adjust_symtab (void)
28357 {
28358 #ifdef OBJ_COFF
28359 symbolS * sym;
28360
28361 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
28362 {
28363 if (ARM_IS_THUMB (sym))
28364 {
28365 if (THUMB_IS_FUNC (sym))
28366 {
28367 /* Mark the symbol as a Thumb function. */
28368 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
28369 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
28370 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
28371
28372 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
28373 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
28374 else
28375 as_bad (_("%s: unexpected function type: %d"),
28376 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
28377 }
28378 else switch (S_GET_STORAGE_CLASS (sym))
28379 {
28380 case C_EXT:
28381 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
28382 break;
28383 case C_STAT:
28384 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
28385 break;
28386 case C_LABEL:
28387 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
28388 break;
28389 default:
28390 /* Do nothing. */
28391 break;
28392 }
28393 }
28394
28395 if (ARM_IS_INTERWORK (sym))
28396 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
28397 }
28398 #endif
28399 #ifdef OBJ_ELF
28400 symbolS * sym;
28401 char bind;
28402
28403 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
28404 {
28405 if (ARM_IS_THUMB (sym))
28406 {
28407 elf_symbol_type * elf_sym;
28408
28409 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
28410 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
28411
28412 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
28413 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
28414 {
28415 /* If it's a .thumb_func, declare it as so,
28416 otherwise tag label as .code 16. */
28417 if (THUMB_IS_FUNC (sym))
28418 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
28419 ST_BRANCH_TO_THUMB);
28420 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
28421 elf_sym->internal_elf_sym.st_info =
28422 ELF_ST_INFO (bind, STT_ARM_16BIT);
28423 }
28424 }
28425 }
28426
28427 /* Remove any overlapping mapping symbols generated by alignment frags. */
28428 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
28429 /* Now do generic ELF adjustments. */
28430 elf_adjust_symtab ();
28431 #endif
28432 }
28433
28434 /* MD interface: Initialization. */
28435
28436 static void
28437 set_constant_flonums (void)
28438 {
28439 int i;
28440
28441 for (i = 0; i < NUM_FLOAT_VALS; i++)
28442 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
28443 abort ();
28444 }
28445
28446 /* Auto-select Thumb mode if it's the only available instruction set for the
28447 given architecture. */
28448
28449 static void
28450 autoselect_thumb_from_cpu_variant (void)
28451 {
28452 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
28453 opcode_select (16);
28454 }
28455
28456 void
28457 md_begin (void)
28458 {
28459 unsigned mach;
28460 unsigned int i;
28461
28462 if ( (arm_ops_hsh = hash_new ()) == NULL
28463 || (arm_cond_hsh = hash_new ()) == NULL
28464 || (arm_vcond_hsh = hash_new ()) == NULL
28465 || (arm_shift_hsh = hash_new ()) == NULL
28466 || (arm_psr_hsh = hash_new ()) == NULL
28467 || (arm_v7m_psr_hsh = hash_new ()) == NULL
28468 || (arm_reg_hsh = hash_new ()) == NULL
28469 || (arm_reloc_hsh = hash_new ()) == NULL
28470 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
28471 as_fatal (_("virtual memory exhausted"));
28472
28473 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
28474 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
28475 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
28476 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
28477 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
28478 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
28479 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
28480 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
28481 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
28482 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
28483 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
28484 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
28485 (void *) (v7m_psrs + i));
28486 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
28487 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
28488 for (i = 0;
28489 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
28490 i++)
28491 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
28492 (void *) (barrier_opt_names + i));
28493 #ifdef OBJ_ELF
28494 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
28495 {
28496 struct reloc_entry * entry = reloc_names + i;
28497
28498 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
28499 /* This makes encode_branch() use the EABI versions of this relocation. */
28500 entry->reloc = BFD_RELOC_UNUSED;
28501
28502 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
28503 }
28504 #endif
28505
28506 set_constant_flonums ();
28507
28508 /* Set the cpu variant based on the command-line options. We prefer
28509 -mcpu= over -march= if both are set (as for GCC); and we prefer
28510 -mfpu= over any other way of setting the floating point unit.
28511 Use of legacy options with new options are faulted. */
28512 if (legacy_cpu)
28513 {
28514 if (mcpu_cpu_opt || march_cpu_opt)
28515 as_bad (_("use of old and new-style options to set CPU type"));
28516
28517 selected_arch = *legacy_cpu;
28518 }
28519 else if (mcpu_cpu_opt)
28520 {
28521 selected_arch = *mcpu_cpu_opt;
28522 selected_ext = *mcpu_ext_opt;
28523 }
28524 else if (march_cpu_opt)
28525 {
28526 selected_arch = *march_cpu_opt;
28527 selected_ext = *march_ext_opt;
28528 }
28529 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
28530
28531 if (legacy_fpu)
28532 {
28533 if (mfpu_opt)
28534 as_bad (_("use of old and new-style options to set FPU type"));
28535
28536 selected_fpu = *legacy_fpu;
28537 }
28538 else if (mfpu_opt)
28539 selected_fpu = *mfpu_opt;
28540 else
28541 {
28542 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
28543 || defined (TE_NetBSD) || defined (TE_VXWORKS))
28544 /* Some environments specify a default FPU. If they don't, infer it
28545 from the processor. */
28546 if (mcpu_fpu_opt)
28547 selected_fpu = *mcpu_fpu_opt;
28548 else if (march_fpu_opt)
28549 selected_fpu = *march_fpu_opt;
28550 #else
28551 selected_fpu = fpu_default;
28552 #endif
28553 }
28554
28555 if (ARM_FEATURE_ZERO (selected_fpu))
28556 {
28557 if (!no_cpu_selected ())
28558 selected_fpu = fpu_default;
28559 else
28560 selected_fpu = fpu_arch_fpa;
28561 }
28562
28563 #ifdef CPU_DEFAULT
28564 if (ARM_FEATURE_ZERO (selected_arch))
28565 {
28566 selected_arch = cpu_default;
28567 selected_cpu = selected_arch;
28568 }
28569 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
28570 #else
28571 /* Autodection of feature mode: allow all features in cpu_variant but leave
28572 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
28573 after all instruction have been processed and we can decide what CPU
28574 should be selected. */
28575 if (ARM_FEATURE_ZERO (selected_arch))
28576 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
28577 else
28578 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
28579 #endif
28580
28581 autoselect_thumb_from_cpu_variant ();
28582
28583 arm_arch_used = thumb_arch_used = arm_arch_none;
28584
28585 #if defined OBJ_COFF || defined OBJ_ELF
28586 {
28587 unsigned int flags = 0;
28588
28589 #if defined OBJ_ELF
28590 flags = meabi_flags;
28591
28592 switch (meabi_flags)
28593 {
28594 case EF_ARM_EABI_UNKNOWN:
28595 #endif
28596 /* Set the flags in the private structure. */
28597 if (uses_apcs_26) flags |= F_APCS26;
28598 if (support_interwork) flags |= F_INTERWORK;
28599 if (uses_apcs_float) flags |= F_APCS_FLOAT;
28600 if (pic_code) flags |= F_PIC;
28601 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
28602 flags |= F_SOFT_FLOAT;
28603
28604 switch (mfloat_abi_opt)
28605 {
28606 case ARM_FLOAT_ABI_SOFT:
28607 case ARM_FLOAT_ABI_SOFTFP:
28608 flags |= F_SOFT_FLOAT;
28609 break;
28610
28611 case ARM_FLOAT_ABI_HARD:
28612 if (flags & F_SOFT_FLOAT)
28613 as_bad (_("hard-float conflicts with specified fpu"));
28614 break;
28615 }
28616
28617 /* Using pure-endian doubles (even if soft-float). */
28618 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
28619 flags |= F_VFP_FLOAT;
28620
28621 #if defined OBJ_ELF
28622 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
28623 flags |= EF_ARM_MAVERICK_FLOAT;
28624 break;
28625
28626 case EF_ARM_EABI_VER4:
28627 case EF_ARM_EABI_VER5:
28628 /* No additional flags to set. */
28629 break;
28630
28631 default:
28632 abort ();
28633 }
28634 #endif
28635 bfd_set_private_flags (stdoutput, flags);
28636
28637 /* We have run out flags in the COFF header to encode the
28638 status of ATPCS support, so instead we create a dummy,
28639 empty, debug section called .arm.atpcs. */
28640 if (atpcs)
28641 {
28642 asection * sec;
28643
28644 sec = bfd_make_section (stdoutput, ".arm.atpcs");
28645
28646 if (sec != NULL)
28647 {
28648 bfd_set_section_flags
28649 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
28650 bfd_set_section_size (stdoutput, sec, 0);
28651 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
28652 }
28653 }
28654 }
28655 #endif
28656
28657 /* Record the CPU type as well. */
28658 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
28659 mach = bfd_mach_arm_iWMMXt2;
28660 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
28661 mach = bfd_mach_arm_iWMMXt;
28662 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
28663 mach = bfd_mach_arm_XScale;
28664 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
28665 mach = bfd_mach_arm_ep9312;
28666 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
28667 mach = bfd_mach_arm_5TE;
28668 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
28669 {
28670 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
28671 mach = bfd_mach_arm_5T;
28672 else
28673 mach = bfd_mach_arm_5;
28674 }
28675 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
28676 {
28677 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
28678 mach = bfd_mach_arm_4T;
28679 else
28680 mach = bfd_mach_arm_4;
28681 }
28682 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
28683 mach = bfd_mach_arm_3M;
28684 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
28685 mach = bfd_mach_arm_3;
28686 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
28687 mach = bfd_mach_arm_2a;
28688 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
28689 mach = bfd_mach_arm_2;
28690 else
28691 mach = bfd_mach_arm_unknown;
28692
28693 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
28694 }
28695
28696 /* Command line processing. */
28697
28698 /* md_parse_option
28699 Invocation line includes a switch not recognized by the base assembler.
28700 See if it's a processor-specific option.
28701
28702 This routine is somewhat complicated by the need for backwards
28703 compatibility (since older releases of gcc can't be changed).
28704 The new options try to make the interface as compatible as
28705 possible with GCC.
28706
28707 New options (supported) are:
28708
28709 -mcpu=<cpu name> Assemble for selected processor
28710 -march=<architecture name> Assemble for selected architecture
28711 -mfpu=<fpu architecture> Assemble for selected FPU.
28712 -EB/-mbig-endian Big-endian
28713 -EL/-mlittle-endian Little-endian
28714 -k Generate PIC code
28715 -mthumb Start in Thumb mode
28716 -mthumb-interwork Code supports ARM/Thumb interworking
28717
28718 -m[no-]warn-deprecated Warn about deprecated features
28719 -m[no-]warn-syms Warn when symbols match instructions
28720
28721 For now we will also provide support for:
28722
28723 -mapcs-32 32-bit Program counter
28724 -mapcs-26 26-bit Program counter
28725 -macps-float Floats passed in FP registers
28726 -mapcs-reentrant Reentrant code
28727 -matpcs
28728 (sometime these will probably be replaced with -mapcs=<list of options>
28729 and -matpcs=<list of options>)
28730
28731 The remaining options are only supported for back-wards compatibility.
28732 Cpu variants, the arm part is optional:
28733 -m[arm]1 Currently not supported.
28734 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
28735 -m[arm]3 Arm 3 processor
28736 -m[arm]6[xx], Arm 6 processors
28737 -m[arm]7[xx][t][[d]m] Arm 7 processors
28738 -m[arm]8[10] Arm 8 processors
28739 -m[arm]9[20][tdmi] Arm 9 processors
28740 -mstrongarm[110[0]] StrongARM processors
28741 -mxscale XScale processors
28742 -m[arm]v[2345[t[e]]] Arm architectures
28743 -mall All (except the ARM1)
28744 FP variants:
28745 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
28746 -mfpe-old (No float load/store multiples)
28747 -mvfpxd VFP Single precision
28748 -mvfp All VFP
28749 -mno-fpu Disable all floating point instructions
28750
28751 The following CPU names are recognized:
28752 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
28753 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
28754 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
28755 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
28756 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
28757 arm10t arm10e, arm1020t, arm1020e, arm10200e,
28758 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
28759
28760 */
28761
28762 const char * md_shortopts = "m:k";
28763
28764 #ifdef ARM_BI_ENDIAN
28765 #define OPTION_EB (OPTION_MD_BASE + 0)
28766 #define OPTION_EL (OPTION_MD_BASE + 1)
28767 #else
28768 #if TARGET_BYTES_BIG_ENDIAN
28769 #define OPTION_EB (OPTION_MD_BASE + 0)
28770 #else
28771 #define OPTION_EL (OPTION_MD_BASE + 1)
28772 #endif
28773 #endif
28774 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
28775 #define OPTION_FDPIC (OPTION_MD_BASE + 3)
28776
28777 struct option md_longopts[] =
28778 {
28779 #ifdef OPTION_EB
28780 {"EB", no_argument, NULL, OPTION_EB},
28781 #endif
28782 #ifdef OPTION_EL
28783 {"EL", no_argument, NULL, OPTION_EL},
28784 #endif
28785 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
28786 #ifdef OBJ_ELF
28787 {"fdpic", no_argument, NULL, OPTION_FDPIC},
28788 #endif
28789 {NULL, no_argument, NULL, 0}
28790 };
28791
28792 size_t md_longopts_size = sizeof (md_longopts);
28793
28794 struct arm_option_table
28795 {
28796 const char * option; /* Option name to match. */
28797 const char * help; /* Help information. */
28798 int * var; /* Variable to change. */
28799 int value; /* What to change it to. */
28800 const char * deprecated; /* If non-null, print this message. */
28801 };
28802
28803 struct arm_option_table arm_opts[] =
28804 {
28805 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
28806 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
28807 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
28808 &support_interwork, 1, NULL},
28809 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
28810 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
28811 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
28812 1, NULL},
28813 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
28814 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
28815 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
28816 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
28817 NULL},
28818
28819 /* These are recognized by the assembler, but have no affect on code. */
28820 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
28821 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
28822
28823 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
28824 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
28825 &warn_on_deprecated, 0, NULL},
28826 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
28827 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
28828 {NULL, NULL, NULL, 0, NULL}
28829 };
28830
28831 struct arm_legacy_option_table
28832 {
28833 const char * option; /* Option name to match. */
28834 const arm_feature_set ** var; /* Variable to change. */
28835 const arm_feature_set value; /* What to change it to. */
28836 const char * deprecated; /* If non-null, print this message. */
28837 };
28838
28839 const struct arm_legacy_option_table arm_legacy_opts[] =
28840 {
28841 /* DON'T add any new processors to this list -- we want the whole list
28842 to go away... Add them to the processors table instead. */
28843 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
28844 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
28845 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
28846 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
28847 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
28848 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
28849 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
28850 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
28851 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
28852 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
28853 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
28854 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
28855 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
28856 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
28857 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
28858 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
28859 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
28860 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
28861 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
28862 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
28863 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
28864 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
28865 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
28866 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
28867 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
28868 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
28869 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
28870 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
28871 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
28872 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
28873 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
28874 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
28875 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
28876 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
28877 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
28878 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
28879 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
28880 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
28881 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
28882 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
28883 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
28884 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
28885 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
28886 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
28887 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
28888 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
28889 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28890 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28891 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28892 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28893 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
28894 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
28895 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
28896 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
28897 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
28898 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
28899 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
28900 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
28901 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
28902 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
28903 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
28904 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
28905 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
28906 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
28907 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
28908 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
28909 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
28910 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
28911 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
28912 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
28913 N_("use -mcpu=strongarm110")},
28914 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
28915 N_("use -mcpu=strongarm1100")},
28916 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
28917 N_("use -mcpu=strongarm1110")},
28918 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
28919 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
28920 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
28921
28922 /* Architecture variants -- don't add any more to this list either. */
28923 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
28924 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
28925 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
28926 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
28927 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
28928 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
28929 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
28930 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
28931 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
28932 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
28933 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
28934 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
28935 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
28936 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
28937 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
28938 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
28939 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
28940 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
28941
28942 /* Floating point variants -- don't add any more to this list either. */
28943 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
28944 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
28945 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
28946 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
28947 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
28948
28949 {NULL, NULL, ARM_ARCH_NONE, NULL}
28950 };
28951
28952 struct arm_cpu_option_table
28953 {
28954 const char * name;
28955 size_t name_len;
28956 const arm_feature_set value;
28957 const arm_feature_set ext;
28958 /* For some CPUs we assume an FPU unless the user explicitly sets
28959 -mfpu=... */
28960 const arm_feature_set default_fpu;
28961 /* The canonical name of the CPU, or NULL to use NAME converted to upper
28962 case. */
28963 const char * canonical_name;
28964 };
28965
28966 /* This list should, at a minimum, contain all the cpu names
28967 recognized by GCC. */
28968 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
28969
28970 static const struct arm_cpu_option_table arm_cpus[] =
28971 {
28972 ARM_CPU_OPT ("all", NULL, ARM_ANY,
28973 ARM_ARCH_NONE,
28974 FPU_ARCH_FPA),
28975 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
28976 ARM_ARCH_NONE,
28977 FPU_ARCH_FPA),
28978 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
28979 ARM_ARCH_NONE,
28980 FPU_ARCH_FPA),
28981 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
28982 ARM_ARCH_NONE,
28983 FPU_ARCH_FPA),
28984 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
28985 ARM_ARCH_NONE,
28986 FPU_ARCH_FPA),
28987 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
28988 ARM_ARCH_NONE,
28989 FPU_ARCH_FPA),
28990 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
28991 ARM_ARCH_NONE,
28992 FPU_ARCH_FPA),
28993 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
28994 ARM_ARCH_NONE,
28995 FPU_ARCH_FPA),
28996 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
28997 ARM_ARCH_NONE,
28998 FPU_ARCH_FPA),
28999 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
29000 ARM_ARCH_NONE,
29001 FPU_ARCH_FPA),
29002 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
29003 ARM_ARCH_NONE,
29004 FPU_ARCH_FPA),
29005 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
29006 ARM_ARCH_NONE,
29007 FPU_ARCH_FPA),
29008 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
29009 ARM_ARCH_NONE,
29010 FPU_ARCH_FPA),
29011 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
29012 ARM_ARCH_NONE,
29013 FPU_ARCH_FPA),
29014 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
29015 ARM_ARCH_NONE,
29016 FPU_ARCH_FPA),
29017 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
29018 ARM_ARCH_NONE,
29019 FPU_ARCH_FPA),
29020 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
29021 ARM_ARCH_NONE,
29022 FPU_ARCH_FPA),
29023 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
29024 ARM_ARCH_NONE,
29025 FPU_ARCH_FPA),
29026 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
29027 ARM_ARCH_NONE,
29028 FPU_ARCH_FPA),
29029 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
29030 ARM_ARCH_NONE,
29031 FPU_ARCH_FPA),
29032 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
29033 ARM_ARCH_NONE,
29034 FPU_ARCH_FPA),
29035 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
29036 ARM_ARCH_NONE,
29037 FPU_ARCH_FPA),
29038 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
29039 ARM_ARCH_NONE,
29040 FPU_ARCH_FPA),
29041 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
29042 ARM_ARCH_NONE,
29043 FPU_ARCH_FPA),
29044 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
29045 ARM_ARCH_NONE,
29046 FPU_ARCH_FPA),
29047 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
29048 ARM_ARCH_NONE,
29049 FPU_ARCH_FPA),
29050 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
29051 ARM_ARCH_NONE,
29052 FPU_ARCH_FPA),
29053 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
29054 ARM_ARCH_NONE,
29055 FPU_ARCH_FPA),
29056 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
29057 ARM_ARCH_NONE,
29058 FPU_ARCH_FPA),
29059 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
29060 ARM_ARCH_NONE,
29061 FPU_ARCH_FPA),
29062 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
29063 ARM_ARCH_NONE,
29064 FPU_ARCH_FPA),
29065 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
29066 ARM_ARCH_NONE,
29067 FPU_ARCH_FPA),
29068 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
29069 ARM_ARCH_NONE,
29070 FPU_ARCH_FPA),
29071 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
29072 ARM_ARCH_NONE,
29073 FPU_ARCH_FPA),
29074 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
29075 ARM_ARCH_NONE,
29076 FPU_ARCH_FPA),
29077 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
29078 ARM_ARCH_NONE,
29079 FPU_ARCH_FPA),
29080 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
29081 ARM_ARCH_NONE,
29082 FPU_ARCH_FPA),
29083 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
29084 ARM_ARCH_NONE,
29085 FPU_ARCH_FPA),
29086 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
29087 ARM_ARCH_NONE,
29088 FPU_ARCH_FPA),
29089 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
29090 ARM_ARCH_NONE,
29091 FPU_ARCH_FPA),
29092 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
29093 ARM_ARCH_NONE,
29094 FPU_ARCH_FPA),
29095 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
29096 ARM_ARCH_NONE,
29097 FPU_ARCH_FPA),
29098 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
29099 ARM_ARCH_NONE,
29100 FPU_ARCH_FPA),
29101 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
29102 ARM_ARCH_NONE,
29103 FPU_ARCH_FPA),
29104 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
29105 ARM_ARCH_NONE,
29106 FPU_ARCH_FPA),
29107 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
29108 ARM_ARCH_NONE,
29109 FPU_ARCH_FPA),
29110
29111 /* For V5 or later processors we default to using VFP; but the user
29112 should really set the FPU type explicitly. */
29113 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
29114 ARM_ARCH_NONE,
29115 FPU_ARCH_VFP_V2),
29116 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
29117 ARM_ARCH_NONE,
29118 FPU_ARCH_VFP_V2),
29119 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29120 ARM_ARCH_NONE,
29121 FPU_ARCH_VFP_V2),
29122 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29123 ARM_ARCH_NONE,
29124 FPU_ARCH_VFP_V2),
29125 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
29126 ARM_ARCH_NONE,
29127 FPU_ARCH_VFP_V2),
29128 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
29129 ARM_ARCH_NONE,
29130 FPU_ARCH_VFP_V2),
29131 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
29132 ARM_ARCH_NONE,
29133 FPU_ARCH_VFP_V2),
29134 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
29135 ARM_ARCH_NONE,
29136 FPU_ARCH_VFP_V2),
29137 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
29138 ARM_ARCH_NONE,
29139 FPU_ARCH_VFP_V2),
29140 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
29141 ARM_ARCH_NONE,
29142 FPU_ARCH_VFP_V2),
29143 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
29144 ARM_ARCH_NONE,
29145 FPU_ARCH_VFP_V2),
29146 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
29147 ARM_ARCH_NONE,
29148 FPU_ARCH_VFP_V2),
29149 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
29150 ARM_ARCH_NONE,
29151 FPU_ARCH_VFP_V1),
29152 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
29153 ARM_ARCH_NONE,
29154 FPU_ARCH_VFP_V1),
29155 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
29156 ARM_ARCH_NONE,
29157 FPU_ARCH_VFP_V2),
29158 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
29159 ARM_ARCH_NONE,
29160 FPU_ARCH_VFP_V2),
29161 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
29162 ARM_ARCH_NONE,
29163 FPU_ARCH_VFP_V1),
29164 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
29165 ARM_ARCH_NONE,
29166 FPU_ARCH_VFP_V2),
29167 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
29168 ARM_ARCH_NONE,
29169 FPU_ARCH_VFP_V2),
29170 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
29171 ARM_ARCH_NONE,
29172 FPU_ARCH_VFP_V2),
29173 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
29174 ARM_ARCH_NONE,
29175 FPU_ARCH_VFP_V2),
29176 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
29177 ARM_ARCH_NONE,
29178 FPU_ARCH_VFP_V2),
29179 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
29180 ARM_ARCH_NONE,
29181 FPU_ARCH_VFP_V2),
29182 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
29183 ARM_ARCH_NONE,
29184 FPU_ARCH_VFP_V2),
29185 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
29186 ARM_ARCH_NONE,
29187 FPU_ARCH_VFP_V2),
29188 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
29189 ARM_ARCH_NONE,
29190 FPU_ARCH_VFP_V2),
29191 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
29192 ARM_ARCH_NONE,
29193 FPU_NONE),
29194 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
29195 ARM_ARCH_NONE,
29196 FPU_NONE),
29197 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
29198 ARM_ARCH_NONE,
29199 FPU_ARCH_VFP_V2),
29200 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
29201 ARM_ARCH_NONE,
29202 FPU_ARCH_VFP_V2),
29203 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
29204 ARM_ARCH_NONE,
29205 FPU_ARCH_VFP_V2),
29206 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
29207 ARM_ARCH_NONE,
29208 FPU_NONE),
29209 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
29210 ARM_ARCH_NONE,
29211 FPU_NONE),
29212 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
29213 ARM_ARCH_NONE,
29214 FPU_ARCH_VFP_V2),
29215 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
29216 ARM_ARCH_NONE,
29217 FPU_NONE),
29218 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
29219 ARM_ARCH_NONE,
29220 FPU_ARCH_VFP_V2),
29221 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
29222 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29223 FPU_NONE),
29224 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
29225 ARM_ARCH_NONE,
29226 FPU_ARCH_NEON_VFP_V4),
29227 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
29228 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29229 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29230 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
29231 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29232 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29233 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
29234 ARM_ARCH_NONE,
29235 FPU_ARCH_NEON_VFP_V4),
29236 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
29237 ARM_ARCH_NONE,
29238 FPU_ARCH_NEON_VFP_V4),
29239 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
29240 ARM_ARCH_NONE,
29241 FPU_ARCH_NEON_VFP_V4),
29242 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
29243 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29244 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29245 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
29246 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29247 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29248 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
29249 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29250 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29251 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
29252 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29253 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29254 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
29255 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29256 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29257 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
29258 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29259 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29260 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
29261 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29262 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29263 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
29264 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29265 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29266 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
29267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29268 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29269 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
29270 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29271 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29272 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
29273 ARM_ARCH_NONE,
29274 FPU_NONE),
29275 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
29276 ARM_ARCH_NONE,
29277 FPU_ARCH_VFP_V3D16),
29278 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
29279 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29280 FPU_NONE),
29281 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
29282 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29283 FPU_ARCH_VFP_V3D16),
29284 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
29285 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29286 FPU_ARCH_VFP_V3D16),
29287 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
29288 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29289 FPU_ARCH_NEON_VFP_ARMV8),
29290 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
29291 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29292 FPU_NONE),
29293 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
29294 ARM_ARCH_NONE,
29295 FPU_NONE),
29296 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
29297 ARM_ARCH_NONE,
29298 FPU_NONE),
29299 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
29300 ARM_ARCH_NONE,
29301 FPU_NONE),
29302 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
29303 ARM_ARCH_NONE,
29304 FPU_NONE),
29305 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
29306 ARM_ARCH_NONE,
29307 FPU_NONE),
29308 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
29309 ARM_ARCH_NONE,
29310 FPU_NONE),
29311 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
29312 ARM_ARCH_NONE,
29313 FPU_NONE),
29314 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
29315 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29316 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29317 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
29318 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29319 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29320 /* ??? XSCALE is really an architecture. */
29321 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
29322 ARM_ARCH_NONE,
29323 FPU_ARCH_VFP_V2),
29324
29325 /* ??? iwmmxt is not a processor. */
29326 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
29327 ARM_ARCH_NONE,
29328 FPU_ARCH_VFP_V2),
29329 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
29330 ARM_ARCH_NONE,
29331 FPU_ARCH_VFP_V2),
29332 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
29333 ARM_ARCH_NONE,
29334 FPU_ARCH_VFP_V2),
29335
29336 /* Maverick. */
29337 ARM_CPU_OPT ("ep9312", "ARM920T",
29338 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
29339 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
29340
29341 /* Marvell processors. */
29342 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
29343 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29344 FPU_ARCH_VFP_V3D16),
29345 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
29346 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29347 FPU_ARCH_NEON_VFP_V4),
29348
29349 /* APM X-Gene family. */
29350 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
29351 ARM_ARCH_NONE,
29352 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29353 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
29354 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29355 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29356
29357 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
29358 };
29359 #undef ARM_CPU_OPT
29360
29361 struct arm_ext_table
29362 {
29363 const char * name;
29364 size_t name_len;
29365 const arm_feature_set merge;
29366 const arm_feature_set clear;
29367 };
29368
29369 struct arm_arch_option_table
29370 {
29371 const char * name;
29372 size_t name_len;
29373 const arm_feature_set value;
29374 const arm_feature_set default_fpu;
29375 const struct arm_ext_table * ext_table;
29376 };
29377
29378 /* Used to add support for +E and +noE extension. */
29379 #define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
29380 /* Used to add support for a +E extension. */
29381 #define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
29382 /* Used to add support for a +noE extension. */
29383 #define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
29384
29385 #define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
29386 ~0 & ~FPU_ENDIAN_PURE)
29387
29388 static const struct arm_ext_table armv5te_ext_table[] =
29389 {
29390 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
29391 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29392 };
29393
29394 static const struct arm_ext_table armv7_ext_table[] =
29395 {
29396 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29397 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29398 };
29399
29400 static const struct arm_ext_table armv7ve_ext_table[] =
29401 {
29402 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
29403 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
29404 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29405 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29406 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29407 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
29408 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29409
29410 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
29411 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29412
29413 /* Aliases for +simd. */
29414 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29415
29416 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29417 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29418 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29419
29420 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29421 };
29422
29423 static const struct arm_ext_table armv7a_ext_table[] =
29424 {
29425 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29426 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29427 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29428 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29429 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29430 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
29431 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29432
29433 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
29434 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29435
29436 /* Aliases for +simd. */
29437 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29438 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29439
29440 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29441 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29442
29443 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
29444 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
29445 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29446 };
29447
29448 static const struct arm_ext_table armv7r_ext_table[] =
29449 {
29450 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
29451 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
29452 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29453 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29454 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
29455 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29456 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
29457 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
29458 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29459 };
29460
29461 static const struct arm_ext_table armv7em_ext_table[] =
29462 {
29463 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
29464 /* Alias for +fp, used to be known as fpv4-sp-d16. */
29465 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
29466 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
29467 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
29468 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
29469 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29470 };
29471
29472 static const struct arm_ext_table armv8a_ext_table[] =
29473 {
29474 ARM_ADD ("crc", ARCH_CRC_ARMV8),
29475 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
29476 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29477 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29478
29479 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29480 should use the +simd option to turn on FP. */
29481 ARM_REMOVE ("fp", ALL_FP),
29482 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29483 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29484 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29485 };
29486
29487
29488 static const struct arm_ext_table armv81a_ext_table[] =
29489 {
29490 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
29491 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
29492 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29493
29494 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29495 should use the +simd option to turn on FP. */
29496 ARM_REMOVE ("fp", ALL_FP),
29497 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29498 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29499 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29500 };
29501
29502 static const struct arm_ext_table armv82a_ext_table[] =
29503 {
29504 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
29505 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
29506 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
29507 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
29508 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29509 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29510
29511 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29512 should use the +simd option to turn on FP. */
29513 ARM_REMOVE ("fp", ALL_FP),
29514 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29515 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29516 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29517 };
29518
29519 static const struct arm_ext_table armv84a_ext_table[] =
29520 {
29521 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29522 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
29523 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
29524 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29525
29526 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29527 should use the +simd option to turn on FP. */
29528 ARM_REMOVE ("fp", ALL_FP),
29529 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29530 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29531 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29532 };
29533
29534 static const struct arm_ext_table armv85a_ext_table[] =
29535 {
29536 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29537 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
29538 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
29539 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29540
29541 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29542 should use the +simd option to turn on FP. */
29543 ARM_REMOVE ("fp", ALL_FP),
29544 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29545 };
29546
29547 static const struct arm_ext_table armv8m_main_ext_table[] =
29548 {
29549 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29550 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
29551 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
29552 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
29553 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29554 };
29555
29556 static const struct arm_ext_table armv8_1m_main_ext_table[] =
29557 {
29558 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29559 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
29560 ARM_EXT ("fp",
29561 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29562 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
29563 ALL_FP),
29564 ARM_ADD ("fp.dp",
29565 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29566 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
29567 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
29568 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
29569 ARM_ADD ("mve.fp",
29570 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29571 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
29572 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
29573 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29574 };
29575
29576 static const struct arm_ext_table armv8r_ext_table[] =
29577 {
29578 ARM_ADD ("crc", ARCH_CRC_ARMV8),
29579 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
29580 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29581 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29582 ARM_REMOVE ("fp", ALL_FP),
29583 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
29584 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29585 };
29586
29587 /* This list should, at a minimum, contain all the architecture names
29588 recognized by GCC. */
29589 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
29590 #define ARM_ARCH_OPT2(N, V, DF, ext) \
29591 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
29592
29593 static const struct arm_arch_option_table arm_archs[] =
29594 {
29595 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
29596 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
29597 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
29598 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
29599 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
29600 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
29601 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
29602 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
29603 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
29604 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
29605 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
29606 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
29607 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
29608 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
29609 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
29610 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
29611 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
29612 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
29613 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
29614 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
29615 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
29616 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
29617 kept to preserve existing behaviour. */
29618 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
29619 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
29620 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
29621 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
29622 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
29623 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
29624 kept to preserve existing behaviour. */
29625 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
29626 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
29627 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
29628 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
29629 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
29630 /* The official spelling of the ARMv7 profile variants is the dashed form.
29631 Accept the non-dashed form for compatibility with old toolchains. */
29632 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
29633 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
29634 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
29635 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
29636 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
29637 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
29638 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
29639 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
29640 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
29641 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
29642 armv8m_main),
29643 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
29644 armv8_1m_main),
29645 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
29646 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
29647 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
29648 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
29649 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
29650 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
29651 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
29652 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
29653 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
29654 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
29655 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
29656 };
29657 #undef ARM_ARCH_OPT
29658
29659 /* ISA extensions in the co-processor and main instruction set space. */
29660
29661 struct arm_option_extension_value_table
29662 {
29663 const char * name;
29664 size_t name_len;
29665 const arm_feature_set merge_value;
29666 const arm_feature_set clear_value;
29667 /* List of architectures for which an extension is available. ARM_ARCH_NONE
29668 indicates that an extension is available for all architectures while
29669 ARM_ANY marks an empty entry. */
29670 const arm_feature_set allowed_archs[2];
29671 };
29672
29673 /* The following table must be in alphabetical order with a NULL last entry. */
29674
29675 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
29676 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
29677
29678 /* DEPRECATED: Refrain from using this table to add any new extensions, instead
29679 use the context sensitive approach using arm_ext_table's. */
29680 static const struct arm_option_extension_value_table arm_extensions[] =
29681 {
29682 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29683 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
29684 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29685 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
29686 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
29687 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
29688 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
29689 ARM_ARCH_V8_2A),
29690 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29691 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29692 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
29693 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
29694 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
29695 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29696 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29697 ARM_ARCH_V8_2A),
29698 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
29699 | ARM_EXT2_FP16_FML),
29700 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
29701 | ARM_EXT2_FP16_FML),
29702 ARM_ARCH_V8_2A),
29703 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
29704 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
29705 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
29706 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
29707 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
29708 Thumb divide instruction. Due to this having the same name as the
29709 previous entry, this will be ignored when doing command-line parsing and
29710 only considered by build attribute selection code. */
29711 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
29712 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
29713 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
29714 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
29715 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
29716 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
29717 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
29718 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
29719 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
29720 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
29721 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
29722 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
29723 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
29724 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
29725 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
29726 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
29727 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
29728 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
29729 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
29730 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
29731 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
29732 ARM_ARCH_V8A),
29733 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
29734 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
29735 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
29736 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
29737 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
29738 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
29739 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
29740 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
29741 ARM_ARCH_V8A),
29742 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29743 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29744 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
29745 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
29746 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
29747 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
29748 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
29749 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
29750 | ARM_EXT_DIV),
29751 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
29752 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
29753 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
29754 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
29755 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
29756 };
29757 #undef ARM_EXT_OPT
29758
29759 /* ISA floating-point and Advanced SIMD extensions. */
29760 struct arm_option_fpu_value_table
29761 {
29762 const char * name;
29763 const arm_feature_set value;
29764 };
29765
29766 /* This list should, at a minimum, contain all the fpu names
29767 recognized by GCC. */
29768 static const struct arm_option_fpu_value_table arm_fpus[] =
29769 {
29770 {"softfpa", FPU_NONE},
29771 {"fpe", FPU_ARCH_FPE},
29772 {"fpe2", FPU_ARCH_FPE},
29773 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
29774 {"fpa", FPU_ARCH_FPA},
29775 {"fpa10", FPU_ARCH_FPA},
29776 {"fpa11", FPU_ARCH_FPA},
29777 {"arm7500fe", FPU_ARCH_FPA},
29778 {"softvfp", FPU_ARCH_VFP},
29779 {"softvfp+vfp", FPU_ARCH_VFP_V2},
29780 {"vfp", FPU_ARCH_VFP_V2},
29781 {"vfp9", FPU_ARCH_VFP_V2},
29782 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
29783 {"vfp10", FPU_ARCH_VFP_V2},
29784 {"vfp10-r0", FPU_ARCH_VFP_V1},
29785 {"vfpxd", FPU_ARCH_VFP_V1xD},
29786 {"vfpv2", FPU_ARCH_VFP_V2},
29787 {"vfpv3", FPU_ARCH_VFP_V3},
29788 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
29789 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
29790 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
29791 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
29792 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
29793 {"arm1020t", FPU_ARCH_VFP_V1},
29794 {"arm1020e", FPU_ARCH_VFP_V2},
29795 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
29796 {"arm1136jf-s", FPU_ARCH_VFP_V2},
29797 {"maverick", FPU_ARCH_MAVERICK},
29798 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
29799 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
29800 {"neon-fp16", FPU_ARCH_NEON_FP16},
29801 {"vfpv4", FPU_ARCH_VFP_V4},
29802 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
29803 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
29804 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
29805 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
29806 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
29807 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
29808 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
29809 {"crypto-neon-fp-armv8",
29810 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
29811 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
29812 {"crypto-neon-fp-armv8.1",
29813 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
29814 {NULL, ARM_ARCH_NONE}
29815 };
29816
29817 struct arm_option_value_table
29818 {
29819 const char *name;
29820 long value;
29821 };
29822
29823 static const struct arm_option_value_table arm_float_abis[] =
29824 {
29825 {"hard", ARM_FLOAT_ABI_HARD},
29826 {"softfp", ARM_FLOAT_ABI_SOFTFP},
29827 {"soft", ARM_FLOAT_ABI_SOFT},
29828 {NULL, 0}
29829 };
29830
29831 #ifdef OBJ_ELF
29832 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
29833 static const struct arm_option_value_table arm_eabis[] =
29834 {
29835 {"gnu", EF_ARM_EABI_UNKNOWN},
29836 {"4", EF_ARM_EABI_VER4},
29837 {"5", EF_ARM_EABI_VER5},
29838 {NULL, 0}
29839 };
29840 #endif
29841
29842 struct arm_long_option_table
29843 {
29844 const char * option; /* Substring to match. */
29845 const char * help; /* Help information. */
29846 int (* func) (const char * subopt); /* Function to decode sub-option. */
29847 const char * deprecated; /* If non-null, print this message. */
29848 };
29849
29850 static bfd_boolean
29851 arm_parse_extension (const char *str, const arm_feature_set *opt_set,
29852 arm_feature_set *ext_set,
29853 const struct arm_ext_table *ext_table)
29854 {
29855 /* We insist on extensions being specified in alphabetical order, and with
29856 extensions being added before being removed. We achieve this by having
29857 the global ARM_EXTENSIONS table in alphabetical order, and using the
29858 ADDING_VALUE variable to indicate whether we are adding an extension (1)
29859 or removing it (0) and only allowing it to change in the order
29860 -1 -> 1 -> 0. */
29861 const struct arm_option_extension_value_table * opt = NULL;
29862 const arm_feature_set arm_any = ARM_ANY;
29863 int adding_value = -1;
29864
29865 while (str != NULL && *str != 0)
29866 {
29867 const char *ext;
29868 size_t len;
29869
29870 if (*str != '+')
29871 {
29872 as_bad (_("invalid architectural extension"));
29873 return FALSE;
29874 }
29875
29876 str++;
29877 ext = strchr (str, '+');
29878
29879 if (ext != NULL)
29880 len = ext - str;
29881 else
29882 len = strlen (str);
29883
29884 if (len >= 2 && strncmp (str, "no", 2) == 0)
29885 {
29886 if (adding_value != 0)
29887 {
29888 adding_value = 0;
29889 opt = arm_extensions;
29890 }
29891
29892 len -= 2;
29893 str += 2;
29894 }
29895 else if (len > 0)
29896 {
29897 if (adding_value == -1)
29898 {
29899 adding_value = 1;
29900 opt = arm_extensions;
29901 }
29902 else if (adding_value != 1)
29903 {
29904 as_bad (_("must specify extensions to add before specifying "
29905 "those to remove"));
29906 return FALSE;
29907 }
29908 }
29909
29910 if (len == 0)
29911 {
29912 as_bad (_("missing architectural extension"));
29913 return FALSE;
29914 }
29915
29916 gas_assert (adding_value != -1);
29917 gas_assert (opt != NULL);
29918
29919 if (ext_table != NULL)
29920 {
29921 const struct arm_ext_table * ext_opt = ext_table;
29922 bfd_boolean found = FALSE;
29923 for (; ext_opt->name != NULL; ext_opt++)
29924 if (ext_opt->name_len == len
29925 && strncmp (ext_opt->name, str, len) == 0)
29926 {
29927 if (adding_value)
29928 {
29929 if (ARM_FEATURE_ZERO (ext_opt->merge))
29930 /* TODO: Option not supported. When we remove the
29931 legacy table this case should error out. */
29932 continue;
29933
29934 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
29935 }
29936 else
29937 {
29938 if (ARM_FEATURE_ZERO (ext_opt->clear))
29939 /* TODO: Option not supported. When we remove the
29940 legacy table this case should error out. */
29941 continue;
29942 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
29943 }
29944 found = TRUE;
29945 break;
29946 }
29947 if (found)
29948 {
29949 str = ext;
29950 continue;
29951 }
29952 }
29953
29954 /* Scan over the options table trying to find an exact match. */
29955 for (; opt->name != NULL; opt++)
29956 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
29957 {
29958 int i, nb_allowed_archs =
29959 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
29960 /* Check we can apply the extension to this architecture. */
29961 for (i = 0; i < nb_allowed_archs; i++)
29962 {
29963 /* Empty entry. */
29964 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
29965 continue;
29966 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
29967 break;
29968 }
29969 if (i == nb_allowed_archs)
29970 {
29971 as_bad (_("extension does not apply to the base architecture"));
29972 return FALSE;
29973 }
29974
29975 /* Add or remove the extension. */
29976 if (adding_value)
29977 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
29978 else
29979 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
29980
29981 /* Allowing Thumb division instructions for ARMv7 in autodetection
29982 rely on this break so that duplicate extensions (extensions
29983 with the same name as a previous extension in the list) are not
29984 considered for command-line parsing. */
29985 break;
29986 }
29987
29988 if (opt->name == NULL)
29989 {
29990 /* Did we fail to find an extension because it wasn't specified in
29991 alphabetical order, or because it does not exist? */
29992
29993 for (opt = arm_extensions; opt->name != NULL; opt++)
29994 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
29995 break;
29996
29997 if (opt->name == NULL)
29998 as_bad (_("unknown architectural extension `%s'"), str);
29999 else
30000 as_bad (_("architectural extensions must be specified in "
30001 "alphabetical order"));
30002
30003 return FALSE;
30004 }
30005 else
30006 {
30007 /* We should skip the extension we've just matched the next time
30008 round. */
30009 opt++;
30010 }
30011
30012 str = ext;
30013 };
30014
30015 return TRUE;
30016 }
30017
30018 static bfd_boolean
30019 arm_parse_cpu (const char *str)
30020 {
30021 const struct arm_cpu_option_table *opt;
30022 const char *ext = strchr (str, '+');
30023 size_t len;
30024
30025 if (ext != NULL)
30026 len = ext - str;
30027 else
30028 len = strlen (str);
30029
30030 if (len == 0)
30031 {
30032 as_bad (_("missing cpu name `%s'"), str);
30033 return FALSE;
30034 }
30035
30036 for (opt = arm_cpus; opt->name != NULL; opt++)
30037 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30038 {
30039 mcpu_cpu_opt = &opt->value;
30040 if (mcpu_ext_opt == NULL)
30041 mcpu_ext_opt = XNEW (arm_feature_set);
30042 *mcpu_ext_opt = opt->ext;
30043 mcpu_fpu_opt = &opt->default_fpu;
30044 if (opt->canonical_name)
30045 {
30046 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
30047 strcpy (selected_cpu_name, opt->canonical_name);
30048 }
30049 else
30050 {
30051 size_t i;
30052
30053 if (len >= sizeof selected_cpu_name)
30054 len = (sizeof selected_cpu_name) - 1;
30055
30056 for (i = 0; i < len; i++)
30057 selected_cpu_name[i] = TOUPPER (opt->name[i]);
30058 selected_cpu_name[i] = 0;
30059 }
30060
30061 if (ext != NULL)
30062 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
30063
30064 return TRUE;
30065 }
30066
30067 as_bad (_("unknown cpu `%s'"), str);
30068 return FALSE;
30069 }
30070
30071 static bfd_boolean
30072 arm_parse_arch (const char *str)
30073 {
30074 const struct arm_arch_option_table *opt;
30075 const char *ext = strchr (str, '+');
30076 size_t len;
30077
30078 if (ext != NULL)
30079 len = ext - str;
30080 else
30081 len = strlen (str);
30082
30083 if (len == 0)
30084 {
30085 as_bad (_("missing architecture name `%s'"), str);
30086 return FALSE;
30087 }
30088
30089 for (opt = arm_archs; opt->name != NULL; opt++)
30090 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30091 {
30092 march_cpu_opt = &opt->value;
30093 if (march_ext_opt == NULL)
30094 march_ext_opt = XNEW (arm_feature_set);
30095 *march_ext_opt = arm_arch_none;
30096 march_fpu_opt = &opt->default_fpu;
30097 strcpy (selected_cpu_name, opt->name);
30098
30099 if (ext != NULL)
30100 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
30101 opt->ext_table);
30102
30103 return TRUE;
30104 }
30105
30106 as_bad (_("unknown architecture `%s'\n"), str);
30107 return FALSE;
30108 }
30109
30110 static bfd_boolean
30111 arm_parse_fpu (const char * str)
30112 {
30113 const struct arm_option_fpu_value_table * opt;
30114
30115 for (opt = arm_fpus; opt->name != NULL; opt++)
30116 if (streq (opt->name, str))
30117 {
30118 mfpu_opt = &opt->value;
30119 return TRUE;
30120 }
30121
30122 as_bad (_("unknown floating point format `%s'\n"), str);
30123 return FALSE;
30124 }
30125
30126 static bfd_boolean
30127 arm_parse_float_abi (const char * str)
30128 {
30129 const struct arm_option_value_table * opt;
30130
30131 for (opt = arm_float_abis; opt->name != NULL; opt++)
30132 if (streq (opt->name, str))
30133 {
30134 mfloat_abi_opt = opt->value;
30135 return TRUE;
30136 }
30137
30138 as_bad (_("unknown floating point abi `%s'\n"), str);
30139 return FALSE;
30140 }
30141
30142 #ifdef OBJ_ELF
30143 static bfd_boolean
30144 arm_parse_eabi (const char * str)
30145 {
30146 const struct arm_option_value_table *opt;
30147
30148 for (opt = arm_eabis; opt->name != NULL; opt++)
30149 if (streq (opt->name, str))
30150 {
30151 meabi_flags = opt->value;
30152 return TRUE;
30153 }
30154 as_bad (_("unknown EABI `%s'\n"), str);
30155 return FALSE;
30156 }
30157 #endif
30158
30159 static bfd_boolean
30160 arm_parse_it_mode (const char * str)
30161 {
30162 bfd_boolean ret = TRUE;
30163
30164 if (streq ("arm", str))
30165 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
30166 else if (streq ("thumb", str))
30167 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
30168 else if (streq ("always", str))
30169 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
30170 else if (streq ("never", str))
30171 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
30172 else
30173 {
30174 as_bad (_("unknown implicit IT mode `%s', should be "\
30175 "arm, thumb, always, or never."), str);
30176 ret = FALSE;
30177 }
30178
30179 return ret;
30180 }
30181
30182 static bfd_boolean
30183 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
30184 {
30185 codecomposer_syntax = TRUE;
30186 arm_comment_chars[0] = ';';
30187 arm_line_separator_chars[0] = 0;
30188 return TRUE;
30189 }
30190
30191 struct arm_long_option_table arm_long_opts[] =
30192 {
30193 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
30194 arm_parse_cpu, NULL},
30195 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
30196 arm_parse_arch, NULL},
30197 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
30198 arm_parse_fpu, NULL},
30199 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
30200 arm_parse_float_abi, NULL},
30201 #ifdef OBJ_ELF
30202 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
30203 arm_parse_eabi, NULL},
30204 #endif
30205 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
30206 arm_parse_it_mode, NULL},
30207 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
30208 arm_ccs_mode, NULL},
30209 {NULL, NULL, 0, NULL}
30210 };
30211
30212 int
30213 md_parse_option (int c, const char * arg)
30214 {
30215 struct arm_option_table *opt;
30216 const struct arm_legacy_option_table *fopt;
30217 struct arm_long_option_table *lopt;
30218
30219 switch (c)
30220 {
30221 #ifdef OPTION_EB
30222 case OPTION_EB:
30223 target_big_endian = 1;
30224 break;
30225 #endif
30226
30227 #ifdef OPTION_EL
30228 case OPTION_EL:
30229 target_big_endian = 0;
30230 break;
30231 #endif
30232
30233 case OPTION_FIX_V4BX:
30234 fix_v4bx = TRUE;
30235 break;
30236
30237 #ifdef OBJ_ELF
30238 case OPTION_FDPIC:
30239 arm_fdpic = TRUE;
30240 break;
30241 #endif /* OBJ_ELF */
30242
30243 case 'a':
30244 /* Listing option. Just ignore these, we don't support additional
30245 ones. */
30246 return 0;
30247
30248 default:
30249 for (opt = arm_opts; opt->option != NULL; opt++)
30250 {
30251 if (c == opt->option[0]
30252 && ((arg == NULL && opt->option[1] == 0)
30253 || streq (arg, opt->option + 1)))
30254 {
30255 /* If the option is deprecated, tell the user. */
30256 if (warn_on_deprecated && opt->deprecated != NULL)
30257 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30258 arg ? arg : "", _(opt->deprecated));
30259
30260 if (opt->var != NULL)
30261 *opt->var = opt->value;
30262
30263 return 1;
30264 }
30265 }
30266
30267 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
30268 {
30269 if (c == fopt->option[0]
30270 && ((arg == NULL && fopt->option[1] == 0)
30271 || streq (arg, fopt->option + 1)))
30272 {
30273 /* If the option is deprecated, tell the user. */
30274 if (warn_on_deprecated && fopt->deprecated != NULL)
30275 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30276 arg ? arg : "", _(fopt->deprecated));
30277
30278 if (fopt->var != NULL)
30279 *fopt->var = &fopt->value;
30280
30281 return 1;
30282 }
30283 }
30284
30285 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30286 {
30287 /* These options are expected to have an argument. */
30288 if (c == lopt->option[0]
30289 && arg != NULL
30290 && strncmp (arg, lopt->option + 1,
30291 strlen (lopt->option + 1)) == 0)
30292 {
30293 /* If the option is deprecated, tell the user. */
30294 if (warn_on_deprecated && lopt->deprecated != NULL)
30295 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
30296 _(lopt->deprecated));
30297
30298 /* Call the sup-option parser. */
30299 return lopt->func (arg + strlen (lopt->option) - 1);
30300 }
30301 }
30302
30303 return 0;
30304 }
30305
30306 return 1;
30307 }
30308
30309 void
30310 md_show_usage (FILE * fp)
30311 {
30312 struct arm_option_table *opt;
30313 struct arm_long_option_table *lopt;
30314
30315 fprintf (fp, _(" ARM-specific assembler options:\n"));
30316
30317 for (opt = arm_opts; opt->option != NULL; opt++)
30318 if (opt->help != NULL)
30319 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
30320
30321 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30322 if (lopt->help != NULL)
30323 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
30324
30325 #ifdef OPTION_EB
30326 fprintf (fp, _("\
30327 -EB assemble code for a big-endian cpu\n"));
30328 #endif
30329
30330 #ifdef OPTION_EL
30331 fprintf (fp, _("\
30332 -EL assemble code for a little-endian cpu\n"));
30333 #endif
30334
30335 fprintf (fp, _("\
30336 --fix-v4bx Allow BX in ARMv4 code\n"));
30337
30338 #ifdef OBJ_ELF
30339 fprintf (fp, _("\
30340 --fdpic generate an FDPIC object file\n"));
30341 #endif /* OBJ_ELF */
30342 }
30343
30344 #ifdef OBJ_ELF
30345
30346 typedef struct
30347 {
30348 int val;
30349 arm_feature_set flags;
30350 } cpu_arch_ver_table;
30351
30352 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
30353 chronologically for architectures, with an exception for ARMv6-M and
30354 ARMv6S-M due to legacy reasons. No new architecture should have a
30355 special case. This allows for build attribute selection results to be
30356 stable when new architectures are added. */
30357 static const cpu_arch_ver_table cpu_arch_ver[] =
30358 {
30359 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
30360 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
30361 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
30362 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
30363 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
30364 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
30365 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
30366 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
30367 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
30368 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
30369 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
30370 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
30371 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
30372 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
30373 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
30374 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
30375 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
30376 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
30377 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
30378 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
30379 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
30380 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
30381 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
30382 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
30383
30384 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
30385 always selected build attributes to match those of ARMv6-M
30386 (resp. ARMv6S-M). However, due to these architectures being a strict
30387 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
30388 would be selected when fully respecting chronology of architectures.
30389 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
30390 move them before ARMv7 architectures. */
30391 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
30392 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
30393
30394 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
30395 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
30396 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
30397 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
30398 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
30399 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
30400 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
30401 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
30402 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
30403 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
30404 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
30405 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
30406 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
30407 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
30408 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
30409 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
30410 {-1, ARM_ARCH_NONE}
30411 };
30412
30413 /* Set an attribute if it has not already been set by the user. */
30414
30415 static void
30416 aeabi_set_attribute_int (int tag, int value)
30417 {
30418 if (tag < 1
30419 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30420 || !attributes_set_explicitly[tag])
30421 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
30422 }
30423
30424 static void
30425 aeabi_set_attribute_string (int tag, const char *value)
30426 {
30427 if (tag < 1
30428 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30429 || !attributes_set_explicitly[tag])
30430 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
30431 }
30432
30433 /* Return whether features in the *NEEDED feature set are available via
30434 extensions for the architecture whose feature set is *ARCH_FSET. */
30435
30436 static bfd_boolean
30437 have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
30438 const arm_feature_set *needed)
30439 {
30440 int i, nb_allowed_archs;
30441 arm_feature_set ext_fset;
30442 const struct arm_option_extension_value_table *opt;
30443
30444 ext_fset = arm_arch_none;
30445 for (opt = arm_extensions; opt->name != NULL; opt++)
30446 {
30447 /* Extension does not provide any feature we need. */
30448 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
30449 continue;
30450
30451 nb_allowed_archs =
30452 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
30453 for (i = 0; i < nb_allowed_archs; i++)
30454 {
30455 /* Empty entry. */
30456 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
30457 break;
30458
30459 /* Extension is available, add it. */
30460 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
30461 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
30462 }
30463 }
30464
30465 /* Can we enable all features in *needed? */
30466 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
30467 }
30468
30469 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
30470 a given architecture feature set *ARCH_EXT_FSET including extension feature
30471 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
30472 - if true, check for an exact match of the architecture modulo extensions;
30473 - otherwise, select build attribute value of the first superset
30474 architecture released so that results remains stable when new architectures
30475 are added.
30476 For -march/-mcpu=all the build attribute value of the most featureful
30477 architecture is returned. Tag_CPU_arch_profile result is returned in
30478 PROFILE. */
30479
30480 static int
30481 get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
30482 const arm_feature_set *ext_fset,
30483 char *profile, int exact_match)
30484 {
30485 arm_feature_set arch_fset;
30486 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
30487
30488 /* Select most featureful architecture with all its extensions if building
30489 for -march=all as the feature sets used to set build attributes. */
30490 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
30491 {
30492 /* Force revisiting of decision for each new architecture. */
30493 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
30494 *profile = 'A';
30495 return TAG_CPU_ARCH_V8;
30496 }
30497
30498 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
30499
30500 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
30501 {
30502 arm_feature_set known_arch_fset;
30503
30504 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
30505 if (exact_match)
30506 {
30507 /* Base architecture match user-specified architecture and
30508 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
30509 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
30510 {
30511 p_ver_ret = p_ver;
30512 goto found;
30513 }
30514 /* Base architecture match user-specified architecture only
30515 (eg. ARMv6-M in the same case as above). Record it in case we
30516 find a match with above condition. */
30517 else if (p_ver_ret == NULL
30518 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
30519 p_ver_ret = p_ver;
30520 }
30521 else
30522 {
30523
30524 /* Architecture has all features wanted. */
30525 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
30526 {
30527 arm_feature_set added_fset;
30528
30529 /* Compute features added by this architecture over the one
30530 recorded in p_ver_ret. */
30531 if (p_ver_ret != NULL)
30532 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
30533 p_ver_ret->flags);
30534 /* First architecture that match incl. with extensions, or the
30535 only difference in features over the recorded match is
30536 features that were optional and are now mandatory. */
30537 if (p_ver_ret == NULL
30538 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
30539 {
30540 p_ver_ret = p_ver;
30541 goto found;
30542 }
30543 }
30544 else if (p_ver_ret == NULL)
30545 {
30546 arm_feature_set needed_ext_fset;
30547
30548 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
30549
30550 /* Architecture has all features needed when using some
30551 extensions. Record it and continue searching in case there
30552 exist an architecture providing all needed features without
30553 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
30554 OS extension). */
30555 if (have_ext_for_needed_feat_p (&known_arch_fset,
30556 &needed_ext_fset))
30557 p_ver_ret = p_ver;
30558 }
30559 }
30560 }
30561
30562 if (p_ver_ret == NULL)
30563 return -1;
30564
30565 found:
30566 /* Tag_CPU_arch_profile. */
30567 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
30568 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
30569 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
30570 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
30571 *profile = 'A';
30572 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
30573 *profile = 'R';
30574 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
30575 *profile = 'M';
30576 else
30577 *profile = '\0';
30578 return p_ver_ret->val;
30579 }
30580
30581 /* Set the public EABI object attributes. */
30582
30583 static void
30584 aeabi_set_public_attributes (void)
30585 {
30586 char profile = '\0';
30587 int arch = -1;
30588 int virt_sec = 0;
30589 int fp16_optional = 0;
30590 int skip_exact_match = 0;
30591 arm_feature_set flags, flags_arch, flags_ext;
30592
30593 /* Autodetection mode, choose the architecture based the instructions
30594 actually used. */
30595 if (no_cpu_selected ())
30596 {
30597 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
30598
30599 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
30600 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
30601
30602 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
30603 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
30604
30605 /* Code run during relaxation relies on selected_cpu being set. */
30606 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
30607 flags_ext = arm_arch_none;
30608 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
30609 selected_ext = flags_ext;
30610 selected_cpu = flags;
30611 }
30612 /* Otherwise, choose the architecture based on the capabilities of the
30613 requested cpu. */
30614 else
30615 {
30616 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
30617 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
30618 flags_ext = selected_ext;
30619 flags = selected_cpu;
30620 }
30621 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
30622
30623 /* Allow the user to override the reported architecture. */
30624 if (!ARM_FEATURE_ZERO (selected_object_arch))
30625 {
30626 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
30627 flags_ext = arm_arch_none;
30628 }
30629 else
30630 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
30631
30632 /* When this function is run again after relaxation has happened there is no
30633 way to determine whether an architecture or CPU was specified by the user:
30634 - selected_cpu is set above for relaxation to work;
30635 - march_cpu_opt is not set if only -mcpu or .cpu is used;
30636 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
30637 Therefore, if not in -march=all case we first try an exact match and fall
30638 back to autodetection. */
30639 if (!skip_exact_match)
30640 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
30641 if (arch == -1)
30642 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
30643 if (arch == -1)
30644 as_bad (_("no architecture contains all the instructions used\n"));
30645
30646 /* Tag_CPU_name. */
30647 if (selected_cpu_name[0])
30648 {
30649 char *q;
30650
30651 q = selected_cpu_name;
30652 if (strncmp (q, "armv", 4) == 0)
30653 {
30654 int i;
30655
30656 q += 4;
30657 for (i = 0; q[i]; i++)
30658 q[i] = TOUPPER (q[i]);
30659 }
30660 aeabi_set_attribute_string (Tag_CPU_name, q);
30661 }
30662
30663 /* Tag_CPU_arch. */
30664 aeabi_set_attribute_int (Tag_CPU_arch, arch);
30665
30666 /* Tag_CPU_arch_profile. */
30667 if (profile != '\0')
30668 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
30669
30670 /* Tag_DSP_extension. */
30671 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
30672 aeabi_set_attribute_int (Tag_DSP_extension, 1);
30673
30674 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
30675 /* Tag_ARM_ISA_use. */
30676 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
30677 || ARM_FEATURE_ZERO (flags_arch))
30678 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
30679
30680 /* Tag_THUMB_ISA_use. */
30681 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
30682 || ARM_FEATURE_ZERO (flags_arch))
30683 {
30684 int thumb_isa_use;
30685
30686 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
30687 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
30688 thumb_isa_use = 3;
30689 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
30690 thumb_isa_use = 2;
30691 else
30692 thumb_isa_use = 1;
30693 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
30694 }
30695
30696 /* Tag_VFP_arch. */
30697 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
30698 aeabi_set_attribute_int (Tag_VFP_arch,
30699 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
30700 ? 7 : 8);
30701 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
30702 aeabi_set_attribute_int (Tag_VFP_arch,
30703 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
30704 ? 5 : 6);
30705 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
30706 {
30707 fp16_optional = 1;
30708 aeabi_set_attribute_int (Tag_VFP_arch, 3);
30709 }
30710 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
30711 {
30712 aeabi_set_attribute_int (Tag_VFP_arch, 4);
30713 fp16_optional = 1;
30714 }
30715 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
30716 aeabi_set_attribute_int (Tag_VFP_arch, 2);
30717 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
30718 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
30719 aeabi_set_attribute_int (Tag_VFP_arch, 1);
30720
30721 /* Tag_ABI_HardFP_use. */
30722 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
30723 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
30724 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
30725
30726 /* Tag_WMMX_arch. */
30727 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
30728 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
30729 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
30730 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
30731
30732 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
30733 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
30734 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
30735 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
30736 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
30737 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
30738 {
30739 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
30740 {
30741 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
30742 }
30743 else
30744 {
30745 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
30746 fp16_optional = 1;
30747 }
30748 }
30749
30750 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
30751 aeabi_set_attribute_int (Tag_MVE_arch, 2);
30752 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
30753 aeabi_set_attribute_int (Tag_MVE_arch, 1);
30754
30755 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
30756 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
30757 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
30758
30759 /* Tag_DIV_use.
30760
30761 We set Tag_DIV_use to two when integer divide instructions have been used
30762 in ARM state, or when Thumb integer divide instructions have been used,
30763 but we have no architecture profile set, nor have we any ARM instructions.
30764
30765 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
30766 by the base architecture.
30767
30768 For new architectures we will have to check these tests. */
30769 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
30770 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
30771 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
30772 aeabi_set_attribute_int (Tag_DIV_use, 0);
30773 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
30774 || (profile == '\0'
30775 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
30776 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
30777 aeabi_set_attribute_int (Tag_DIV_use, 2);
30778
30779 /* Tag_MP_extension_use. */
30780 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
30781 aeabi_set_attribute_int (Tag_MPextension_use, 1);
30782
30783 /* Tag Virtualization_use. */
30784 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
30785 virt_sec |= 1;
30786 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
30787 virt_sec |= 2;
30788 if (virt_sec != 0)
30789 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
30790 }
30791
30792 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
30793 finished and free extension feature bits which will not be used anymore. */
30794
30795 void
30796 arm_md_post_relax (void)
30797 {
30798 aeabi_set_public_attributes ();
30799 XDELETE (mcpu_ext_opt);
30800 mcpu_ext_opt = NULL;
30801 XDELETE (march_ext_opt);
30802 march_ext_opt = NULL;
30803 }
30804
30805 /* Add the default contents for the .ARM.attributes section. */
30806
30807 void
30808 arm_md_end (void)
30809 {
30810 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
30811 return;
30812
30813 aeabi_set_public_attributes ();
30814 }
30815 #endif /* OBJ_ELF */
30816
30817 /* Parse a .cpu directive. */
30818
30819 static void
30820 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
30821 {
30822 const struct arm_cpu_option_table *opt;
30823 char *name;
30824 char saved_char;
30825
30826 name = input_line_pointer;
30827 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30828 input_line_pointer++;
30829 saved_char = *input_line_pointer;
30830 *input_line_pointer = 0;
30831
30832 /* Skip the first "all" entry. */
30833 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
30834 if (streq (opt->name, name))
30835 {
30836 selected_arch = opt->value;
30837 selected_ext = opt->ext;
30838 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
30839 if (opt->canonical_name)
30840 strcpy (selected_cpu_name, opt->canonical_name);
30841 else
30842 {
30843 int i;
30844 for (i = 0; opt->name[i]; i++)
30845 selected_cpu_name[i] = TOUPPER (opt->name[i]);
30846
30847 selected_cpu_name[i] = 0;
30848 }
30849 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30850
30851 *input_line_pointer = saved_char;
30852 demand_empty_rest_of_line ();
30853 return;
30854 }
30855 as_bad (_("unknown cpu `%s'"), name);
30856 *input_line_pointer = saved_char;
30857 ignore_rest_of_line ();
30858 }
30859
30860 /* Parse a .arch directive. */
30861
30862 static void
30863 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
30864 {
30865 const struct arm_arch_option_table *opt;
30866 char saved_char;
30867 char *name;
30868
30869 name = input_line_pointer;
30870 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30871 input_line_pointer++;
30872 saved_char = *input_line_pointer;
30873 *input_line_pointer = 0;
30874
30875 /* Skip the first "all" entry. */
30876 for (opt = arm_archs + 1; opt->name != NULL; opt++)
30877 if (streq (opt->name, name))
30878 {
30879 selected_arch = opt->value;
30880 selected_ext = arm_arch_none;
30881 selected_cpu = selected_arch;
30882 strcpy (selected_cpu_name, opt->name);
30883 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30884 *input_line_pointer = saved_char;
30885 demand_empty_rest_of_line ();
30886 return;
30887 }
30888
30889 as_bad (_("unknown architecture `%s'\n"), name);
30890 *input_line_pointer = saved_char;
30891 ignore_rest_of_line ();
30892 }
30893
30894 /* Parse a .object_arch directive. */
30895
30896 static void
30897 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
30898 {
30899 const struct arm_arch_option_table *opt;
30900 char saved_char;
30901 char *name;
30902
30903 name = input_line_pointer;
30904 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30905 input_line_pointer++;
30906 saved_char = *input_line_pointer;
30907 *input_line_pointer = 0;
30908
30909 /* Skip the first "all" entry. */
30910 for (opt = arm_archs + 1; opt->name != NULL; opt++)
30911 if (streq (opt->name, name))
30912 {
30913 selected_object_arch = opt->value;
30914 *input_line_pointer = saved_char;
30915 demand_empty_rest_of_line ();
30916 return;
30917 }
30918
30919 as_bad (_("unknown architecture `%s'\n"), name);
30920 *input_line_pointer = saved_char;
30921 ignore_rest_of_line ();
30922 }
30923
30924 /* Parse a .arch_extension directive. */
30925
30926 static void
30927 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
30928 {
30929 const struct arm_option_extension_value_table *opt;
30930 char saved_char;
30931 char *name;
30932 int adding_value = 1;
30933
30934 name = input_line_pointer;
30935 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30936 input_line_pointer++;
30937 saved_char = *input_line_pointer;
30938 *input_line_pointer = 0;
30939
30940 if (strlen (name) >= 2
30941 && strncmp (name, "no", 2) == 0)
30942 {
30943 adding_value = 0;
30944 name += 2;
30945 }
30946
30947 for (opt = arm_extensions; opt->name != NULL; opt++)
30948 if (streq (opt->name, name))
30949 {
30950 int i, nb_allowed_archs =
30951 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
30952 for (i = 0; i < nb_allowed_archs; i++)
30953 {
30954 /* Empty entry. */
30955 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
30956 continue;
30957 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
30958 break;
30959 }
30960
30961 if (i == nb_allowed_archs)
30962 {
30963 as_bad (_("architectural extension `%s' is not allowed for the "
30964 "current base architecture"), name);
30965 break;
30966 }
30967
30968 if (adding_value)
30969 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
30970 opt->merge_value);
30971 else
30972 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
30973
30974 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
30975 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30976 *input_line_pointer = saved_char;
30977 demand_empty_rest_of_line ();
30978 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
30979 on this return so that duplicate extensions (extensions with the
30980 same name as a previous extension in the list) are not considered
30981 for command-line parsing. */
30982 return;
30983 }
30984
30985 if (opt->name == NULL)
30986 as_bad (_("unknown architecture extension `%s'\n"), name);
30987
30988 *input_line_pointer = saved_char;
30989 ignore_rest_of_line ();
30990 }
30991
30992 /* Parse a .fpu directive. */
30993
30994 static void
30995 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
30996 {
30997 const struct arm_option_fpu_value_table *opt;
30998 char saved_char;
30999 char *name;
31000
31001 name = input_line_pointer;
31002 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31003 input_line_pointer++;
31004 saved_char = *input_line_pointer;
31005 *input_line_pointer = 0;
31006
31007 for (opt = arm_fpus; opt->name != NULL; opt++)
31008 if (streq (opt->name, name))
31009 {
31010 selected_fpu = opt->value;
31011 #ifndef CPU_DEFAULT
31012 if (no_cpu_selected ())
31013 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
31014 else
31015 #endif
31016 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31017 *input_line_pointer = saved_char;
31018 demand_empty_rest_of_line ();
31019 return;
31020 }
31021
31022 as_bad (_("unknown floating point format `%s'\n"), name);
31023 *input_line_pointer = saved_char;
31024 ignore_rest_of_line ();
31025 }
31026
31027 /* Copy symbol information. */
31028
31029 void
31030 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
31031 {
31032 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
31033 }
31034
31035 #ifdef OBJ_ELF
31036 /* Given a symbolic attribute NAME, return the proper integer value.
31037 Returns -1 if the attribute is not known. */
31038
31039 int
31040 arm_convert_symbolic_attribute (const char *name)
31041 {
31042 static const struct
31043 {
31044 const char * name;
31045 const int tag;
31046 }
31047 attribute_table[] =
31048 {
31049 /* When you modify this table you should
31050 also modify the list in doc/c-arm.texi. */
31051 #define T(tag) {#tag, tag}
31052 T (Tag_CPU_raw_name),
31053 T (Tag_CPU_name),
31054 T (Tag_CPU_arch),
31055 T (Tag_CPU_arch_profile),
31056 T (Tag_ARM_ISA_use),
31057 T (Tag_THUMB_ISA_use),
31058 T (Tag_FP_arch),
31059 T (Tag_VFP_arch),
31060 T (Tag_WMMX_arch),
31061 T (Tag_Advanced_SIMD_arch),
31062 T (Tag_PCS_config),
31063 T (Tag_ABI_PCS_R9_use),
31064 T (Tag_ABI_PCS_RW_data),
31065 T (Tag_ABI_PCS_RO_data),
31066 T (Tag_ABI_PCS_GOT_use),
31067 T (Tag_ABI_PCS_wchar_t),
31068 T (Tag_ABI_FP_rounding),
31069 T (Tag_ABI_FP_denormal),
31070 T (Tag_ABI_FP_exceptions),
31071 T (Tag_ABI_FP_user_exceptions),
31072 T (Tag_ABI_FP_number_model),
31073 T (Tag_ABI_align_needed),
31074 T (Tag_ABI_align8_needed),
31075 T (Tag_ABI_align_preserved),
31076 T (Tag_ABI_align8_preserved),
31077 T (Tag_ABI_enum_size),
31078 T (Tag_ABI_HardFP_use),
31079 T (Tag_ABI_VFP_args),
31080 T (Tag_ABI_WMMX_args),
31081 T (Tag_ABI_optimization_goals),
31082 T (Tag_ABI_FP_optimization_goals),
31083 T (Tag_compatibility),
31084 T (Tag_CPU_unaligned_access),
31085 T (Tag_FP_HP_extension),
31086 T (Tag_VFP_HP_extension),
31087 T (Tag_ABI_FP_16bit_format),
31088 T (Tag_MPextension_use),
31089 T (Tag_DIV_use),
31090 T (Tag_nodefaults),
31091 T (Tag_also_compatible_with),
31092 T (Tag_conformance),
31093 T (Tag_T2EE_use),
31094 T (Tag_Virtualization_use),
31095 T (Tag_DSP_extension),
31096 T (Tag_MVE_arch),
31097 /* We deliberately do not include Tag_MPextension_use_legacy. */
31098 #undef T
31099 };
31100 unsigned int i;
31101
31102 if (name == NULL)
31103 return -1;
31104
31105 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
31106 if (streq (name, attribute_table[i].name))
31107 return attribute_table[i].tag;
31108
31109 return -1;
31110 }
31111
31112 /* Apply sym value for relocations only in the case that they are for
31113 local symbols in the same segment as the fixup and you have the
31114 respective architectural feature for blx and simple switches. */
31115
31116 int
31117 arm_apply_sym_value (struct fix * fixP, segT this_seg)
31118 {
31119 if (fixP->fx_addsy
31120 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
31121 /* PR 17444: If the local symbol is in a different section then a reloc
31122 will always be generated for it, so applying the symbol value now
31123 will result in a double offset being stored in the relocation. */
31124 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
31125 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
31126 {
31127 switch (fixP->fx_r_type)
31128 {
31129 case BFD_RELOC_ARM_PCREL_BLX:
31130 case BFD_RELOC_THUMB_PCREL_BRANCH23:
31131 if (ARM_IS_FUNC (fixP->fx_addsy))
31132 return 1;
31133 break;
31134
31135 case BFD_RELOC_ARM_PCREL_CALL:
31136 case BFD_RELOC_THUMB_PCREL_BLX:
31137 if (THUMB_IS_FUNC (fixP->fx_addsy))
31138 return 1;
31139 break;
31140
31141 default:
31142 break;
31143 }
31144
31145 }
31146 return 0;
31147 }
31148 #endif /* OBJ_ELF */