* gas/config/tc-arm.c (asm_barrier_opt): Add arch field.
[binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include "as.h"
29 #include <limits.h>
30 #include <stdarg.h>
31 #define NO_RELOC 0
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35 #include "libiberty.h"
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
48
49 /* This structure holds the unwinding state. */
50
51 static struct
52 {
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
79
80 #endif /* OBJ_ELF */
81
82 /* Results from operand parsing worker functions. */
83
84 typedef enum
85 {
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result;
90
91 enum arm_float_abi
92 {
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96 };
97
98 /* Types of processor to assemble for. */
99 #ifndef CPU_DEFAULT
100 /* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
106 #endif
107
108 #ifndef FPU_DEFAULT
109 # ifdef TE_LINUX
110 # define FPU_DEFAULT FPU_ARCH_FPA
111 # elif defined (TE_NetBSD)
112 # ifdef OBJ_ELF
113 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114 # else
115 /* Legacy a.out format. */
116 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117 # endif
118 # elif defined (TE_VXWORKS)
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
120 # else
121 /* For backwards compatibility, default to FPA. */
122 # define FPU_DEFAULT FPU_ARCH_FPA
123 # endif
124 #endif /* ifndef FPU_DEFAULT */
125
126 #define streq(a, b) (strcmp (a, b) == 0)
127
128 static arm_feature_set cpu_variant;
129 static arm_feature_set arm_arch_used;
130 static arm_feature_set thumb_arch_used;
131
132 /* Flags stored in private area of BFD structure. */
133 static int uses_apcs_26 = FALSE;
134 static int atpcs = FALSE;
135 static int support_interwork = FALSE;
136 static int uses_apcs_float = FALSE;
137 static int pic_code = FALSE;
138 static int fix_v4bx = FALSE;
139 /* Warn on using deprecated features. */
140 static int warn_on_deprecated = TRUE;
141
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static const arm_feature_set *mcpu_fpu_opt = NULL;
151 static const arm_feature_set *march_cpu_opt = NULL;
152 static const arm_feature_set *march_fpu_opt = NULL;
153 static const arm_feature_set *mfpu_opt = NULL;
154 static const arm_feature_set *object_arch = NULL;
155
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default = FPU_DEFAULT;
158 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
160 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
162 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167 #ifdef CPU_DEFAULT
168 static const arm_feature_set cpu_default = CPU_DEFAULT;
169 #endif
170
171 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179 static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
187 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
188 static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
189 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
190 static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
191 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
198 static const arm_feature_set arm_ext_v8 = ARM_FEATURE (ARM_EXT_V8, 0);
199 static const arm_feature_set arm_ext_m =
200 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
201 static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
202 static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
203 static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
204 static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
205 static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
206
207 static const arm_feature_set arm_arch_any = ARM_ANY;
208 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
209 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
210 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
211 static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
212
213 static const arm_feature_set arm_cext_iwmmxt2 =
214 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
215 static const arm_feature_set arm_cext_iwmmxt =
216 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
217 static const arm_feature_set arm_cext_xscale =
218 ARM_FEATURE (0, ARM_CEXT_XSCALE);
219 static const arm_feature_set arm_cext_maverick =
220 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
221 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
222 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
223 static const arm_feature_set fpu_vfp_ext_v1xd =
224 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
225 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
226 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
227 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
228 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
229 static const arm_feature_set fpu_vfp_ext_d32 =
230 ARM_FEATURE (0, FPU_VFP_EXT_D32);
231 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
232 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
233 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
234 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
235 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
236 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
237 static const arm_feature_set fpu_vfp_ext_armv8 =
238 ARM_FEATURE (0, FPU_VFP_EXT_ARMV8);
239 static const arm_feature_set fpu_neon_ext_armv8 =
240 ARM_FEATURE (0, FPU_NEON_EXT_ARMV8);
241 static const arm_feature_set fpu_crypto_ext_armv8 =
242 ARM_FEATURE (0, FPU_CRYPTO_EXT_ARMV8);
243
244 static int mfloat_abi_opt = -1;
245 /* Record user cpu selection for object attributes. */
246 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
247 /* Must be long enough to hold any of the names in arm_cpus. */
248 static char selected_cpu_name[16];
249
250 /* Return if no cpu was selected on command-line. */
251 static bfd_boolean
252 no_cpu_selected (void)
253 {
254 return selected_cpu.core == arm_arch_none.core
255 && selected_cpu.coproc == arm_arch_none.coproc;
256 }
257
258 #ifdef OBJ_ELF
259 # ifdef EABI_DEFAULT
260 static int meabi_flags = EABI_DEFAULT;
261 # else
262 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
263 # endif
264
265 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
266
267 bfd_boolean
268 arm_is_eabi (void)
269 {
270 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
271 }
272 #endif
273
274 #ifdef OBJ_ELF
275 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
276 symbolS * GOT_symbol;
277 #endif
278
279 /* 0: assemble for ARM,
280 1: assemble for Thumb,
281 2: assemble for Thumb even though target CPU does not support thumb
282 instructions. */
283 static int thumb_mode = 0;
284 /* A value distinct from the possible values for thumb_mode that we
285 can use to record whether thumb_mode has been copied into the
286 tc_frag_data field of a frag. */
287 #define MODE_RECORDED (1 << 4)
288
289 /* Specifies the intrinsic IT insn behavior mode. */
290 enum implicit_it_mode
291 {
292 IMPLICIT_IT_MODE_NEVER = 0x00,
293 IMPLICIT_IT_MODE_ARM = 0x01,
294 IMPLICIT_IT_MODE_THUMB = 0x02,
295 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
296 };
297 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
298
299 /* If unified_syntax is true, we are processing the new unified
300 ARM/Thumb syntax. Important differences from the old ARM mode:
301
302 - Immediate operands do not require a # prefix.
303 - Conditional affixes always appear at the end of the
304 instruction. (For backward compatibility, those instructions
305 that formerly had them in the middle, continue to accept them
306 there.)
307 - The IT instruction may appear, and if it does is validated
308 against subsequent conditional affixes. It does not generate
309 machine code.
310
311 Important differences from the old Thumb mode:
312
313 - Immediate operands do not require a # prefix.
314 - Most of the V6T2 instructions are only available in unified mode.
315 - The .N and .W suffixes are recognized and honored (it is an error
316 if they cannot be honored).
317 - All instructions set the flags if and only if they have an 's' affix.
318 - Conditional affixes may be used. They are validated against
319 preceding IT instructions. Unlike ARM mode, you cannot use a
320 conditional affix except in the scope of an IT instruction. */
321
322 static bfd_boolean unified_syntax = FALSE;
323
324 enum neon_el_type
325 {
326 NT_invtype,
327 NT_untyped,
328 NT_integer,
329 NT_float,
330 NT_poly,
331 NT_signed,
332 NT_unsigned
333 };
334
335 struct neon_type_el
336 {
337 enum neon_el_type type;
338 unsigned size;
339 };
340
341 #define NEON_MAX_TYPE_ELS 4
342
343 struct neon_type
344 {
345 struct neon_type_el el[NEON_MAX_TYPE_ELS];
346 unsigned elems;
347 };
348
349 enum it_instruction_type
350 {
351 OUTSIDE_IT_INSN,
352 INSIDE_IT_INSN,
353 INSIDE_IT_LAST_INSN,
354 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
355 if inside, should be the last one. */
356 NEUTRAL_IT_INSN, /* This could be either inside or outside,
357 i.e. BKPT and NOP. */
358 IT_INSN /* The IT insn has been parsed. */
359 };
360
361 /* The maximum number of operands we need. */
362 #define ARM_IT_MAX_OPERANDS 6
363
364 struct arm_it
365 {
366 const char * error;
367 unsigned long instruction;
368 int size;
369 int size_req;
370 int cond;
371 /* "uncond_value" is set to the value in place of the conditional field in
372 unconditional versions of the instruction, or -1 if nothing is
373 appropriate. */
374 int uncond_value;
375 struct neon_type vectype;
376 /* This does not indicate an actual NEON instruction, only that
377 the mnemonic accepts neon-style type suffixes. */
378 int is_neon;
379 /* Set to the opcode if the instruction needs relaxation.
380 Zero if the instruction is not relaxed. */
381 unsigned long relax;
382 struct
383 {
384 bfd_reloc_code_real_type type;
385 expressionS exp;
386 int pc_rel;
387 } reloc;
388
389 enum it_instruction_type it_insn_type;
390
391 struct
392 {
393 unsigned reg;
394 signed int imm;
395 struct neon_type_el vectype;
396 unsigned present : 1; /* Operand present. */
397 unsigned isreg : 1; /* Operand was a register. */
398 unsigned immisreg : 1; /* .imm field is a second register. */
399 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
400 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
401 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
402 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
403 instructions. This allows us to disambiguate ARM <-> vector insns. */
404 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
405 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
406 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
407 unsigned issingle : 1; /* Operand is VFP single-precision register. */
408 unsigned hasreloc : 1; /* Operand has relocation suffix. */
409 unsigned writeback : 1; /* Operand has trailing ! */
410 unsigned preind : 1; /* Preindexed address. */
411 unsigned postind : 1; /* Postindexed address. */
412 unsigned negative : 1; /* Index register was negated. */
413 unsigned shifted : 1; /* Shift applied to operation. */
414 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
415 } operands[ARM_IT_MAX_OPERANDS];
416 };
417
418 static struct arm_it inst;
419
420 #define NUM_FLOAT_VALS 8
421
422 const char * fp_const[] =
423 {
424 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
425 };
426
427 /* Number of littlenums required to hold an extended precision number. */
428 #define MAX_LITTLENUMS 6
429
430 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
431
432 #define FAIL (-1)
433 #define SUCCESS (0)
434
435 #define SUFF_S 1
436 #define SUFF_D 2
437 #define SUFF_E 3
438 #define SUFF_P 4
439
440 #define CP_T_X 0x00008000
441 #define CP_T_Y 0x00400000
442
443 #define CONDS_BIT 0x00100000
444 #define LOAD_BIT 0x00100000
445
446 #define DOUBLE_LOAD_FLAG 0x00000001
447
448 struct asm_cond
449 {
450 const char * template_name;
451 unsigned long value;
452 };
453
454 #define COND_ALWAYS 0xE
455
456 struct asm_psr
457 {
458 const char * template_name;
459 unsigned long field;
460 };
461
462 struct asm_barrier_opt
463 {
464 const char * template_name;
465 unsigned long value;
466 const arm_feature_set arch;
467 };
468
469 /* The bit that distinguishes CPSR and SPSR. */
470 #define SPSR_BIT (1 << 22)
471
472 /* The individual PSR flag bits. */
473 #define PSR_c (1 << 16)
474 #define PSR_x (1 << 17)
475 #define PSR_s (1 << 18)
476 #define PSR_f (1 << 19)
477
478 struct reloc_entry
479 {
480 char * name;
481 bfd_reloc_code_real_type reloc;
482 };
483
484 enum vfp_reg_pos
485 {
486 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
487 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
488 };
489
490 enum vfp_ldstm_type
491 {
492 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
493 };
494
495 /* Bits for DEFINED field in neon_typed_alias. */
496 #define NTA_HASTYPE 1
497 #define NTA_HASINDEX 2
498
499 struct neon_typed_alias
500 {
501 unsigned char defined;
502 unsigned char index;
503 struct neon_type_el eltype;
504 };
505
506 /* ARM register categories. This includes coprocessor numbers and various
507 architecture extensions' registers. */
508 enum arm_reg_type
509 {
510 REG_TYPE_RN,
511 REG_TYPE_CP,
512 REG_TYPE_CN,
513 REG_TYPE_FN,
514 REG_TYPE_VFS,
515 REG_TYPE_VFD,
516 REG_TYPE_NQ,
517 REG_TYPE_VFSD,
518 REG_TYPE_NDQ,
519 REG_TYPE_NSDQ,
520 REG_TYPE_VFC,
521 REG_TYPE_MVF,
522 REG_TYPE_MVD,
523 REG_TYPE_MVFX,
524 REG_TYPE_MVDX,
525 REG_TYPE_MVAX,
526 REG_TYPE_DSPSC,
527 REG_TYPE_MMXWR,
528 REG_TYPE_MMXWC,
529 REG_TYPE_MMXWCG,
530 REG_TYPE_XSCALE,
531 REG_TYPE_RNB
532 };
533
534 /* Structure for a hash table entry for a register.
535 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
536 information which states whether a vector type or index is specified (for a
537 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
538 struct reg_entry
539 {
540 const char * name;
541 unsigned int number;
542 unsigned char type;
543 unsigned char builtin;
544 struct neon_typed_alias * neon;
545 };
546
547 /* Diagnostics used when we don't get a register of the expected type. */
548 const char * const reg_expected_msgs[] =
549 {
550 N_("ARM register expected"),
551 N_("bad or missing co-processor number"),
552 N_("co-processor register expected"),
553 N_("FPA register expected"),
554 N_("VFP single precision register expected"),
555 N_("VFP/Neon double precision register expected"),
556 N_("Neon quad precision register expected"),
557 N_("VFP single or double precision register expected"),
558 N_("Neon double or quad precision register expected"),
559 N_("VFP single, double or Neon quad precision register expected"),
560 N_("VFP system register expected"),
561 N_("Maverick MVF register expected"),
562 N_("Maverick MVD register expected"),
563 N_("Maverick MVFX register expected"),
564 N_("Maverick MVDX register expected"),
565 N_("Maverick MVAX register expected"),
566 N_("Maverick DSPSC register expected"),
567 N_("iWMMXt data register expected"),
568 N_("iWMMXt control register expected"),
569 N_("iWMMXt scalar register expected"),
570 N_("XScale accumulator register expected"),
571 };
572
573 /* Some well known registers that we refer to directly elsewhere. */
574 #define REG_R12 12
575 #define REG_SP 13
576 #define REG_LR 14
577 #define REG_PC 15
578
579 /* ARM instructions take 4bytes in the object file, Thumb instructions
580 take 2: */
581 #define INSN_SIZE 4
582
583 struct asm_opcode
584 {
585 /* Basic string to match. */
586 const char * template_name;
587
588 /* Parameters to instruction. */
589 unsigned int operands[8];
590
591 /* Conditional tag - see opcode_lookup. */
592 unsigned int tag : 4;
593
594 /* Basic instruction code. */
595 unsigned int avalue : 28;
596
597 /* Thumb-format instruction code. */
598 unsigned int tvalue;
599
600 /* Which architecture variant provides this instruction. */
601 const arm_feature_set * avariant;
602 const arm_feature_set * tvariant;
603
604 /* Function to call to encode instruction in ARM format. */
605 void (* aencode) (void);
606
607 /* Function to call to encode instruction in Thumb format. */
608 void (* tencode) (void);
609 };
610
611 /* Defines for various bits that we will want to toggle. */
612 #define INST_IMMEDIATE 0x02000000
613 #define OFFSET_REG 0x02000000
614 #define HWOFFSET_IMM 0x00400000
615 #define SHIFT_BY_REG 0x00000010
616 #define PRE_INDEX 0x01000000
617 #define INDEX_UP 0x00800000
618 #define WRITE_BACK 0x00200000
619 #define LDM_TYPE_2_OR_3 0x00400000
620 #define CPSI_MMOD 0x00020000
621
622 #define LITERAL_MASK 0xf000f000
623 #define OPCODE_MASK 0xfe1fffff
624 #define V4_STR_BIT 0x00000020
625
626 #define T2_SUBS_PC_LR 0xf3de8f00
627
628 #define DATA_OP_SHIFT 21
629
630 #define T2_OPCODE_MASK 0xfe1fffff
631 #define T2_DATA_OP_SHIFT 21
632
633 #define A_COND_MASK 0xf0000000
634 #define A_PUSH_POP_OP_MASK 0x0fff0000
635
636 /* Opcodes for pushing/poping registers to/from the stack. */
637 #define A1_OPCODE_PUSH 0x092d0000
638 #define A2_OPCODE_PUSH 0x052d0004
639 #define A2_OPCODE_POP 0x049d0004
640
641 /* Codes to distinguish the arithmetic instructions. */
642 #define OPCODE_AND 0
643 #define OPCODE_EOR 1
644 #define OPCODE_SUB 2
645 #define OPCODE_RSB 3
646 #define OPCODE_ADD 4
647 #define OPCODE_ADC 5
648 #define OPCODE_SBC 6
649 #define OPCODE_RSC 7
650 #define OPCODE_TST 8
651 #define OPCODE_TEQ 9
652 #define OPCODE_CMP 10
653 #define OPCODE_CMN 11
654 #define OPCODE_ORR 12
655 #define OPCODE_MOV 13
656 #define OPCODE_BIC 14
657 #define OPCODE_MVN 15
658
659 #define T2_OPCODE_AND 0
660 #define T2_OPCODE_BIC 1
661 #define T2_OPCODE_ORR 2
662 #define T2_OPCODE_ORN 3
663 #define T2_OPCODE_EOR 4
664 #define T2_OPCODE_ADD 8
665 #define T2_OPCODE_ADC 10
666 #define T2_OPCODE_SBC 11
667 #define T2_OPCODE_SUB 13
668 #define T2_OPCODE_RSB 14
669
670 #define T_OPCODE_MUL 0x4340
671 #define T_OPCODE_TST 0x4200
672 #define T_OPCODE_CMN 0x42c0
673 #define T_OPCODE_NEG 0x4240
674 #define T_OPCODE_MVN 0x43c0
675
676 #define T_OPCODE_ADD_R3 0x1800
677 #define T_OPCODE_SUB_R3 0x1a00
678 #define T_OPCODE_ADD_HI 0x4400
679 #define T_OPCODE_ADD_ST 0xb000
680 #define T_OPCODE_SUB_ST 0xb080
681 #define T_OPCODE_ADD_SP 0xa800
682 #define T_OPCODE_ADD_PC 0xa000
683 #define T_OPCODE_ADD_I8 0x3000
684 #define T_OPCODE_SUB_I8 0x3800
685 #define T_OPCODE_ADD_I3 0x1c00
686 #define T_OPCODE_SUB_I3 0x1e00
687
688 #define T_OPCODE_ASR_R 0x4100
689 #define T_OPCODE_LSL_R 0x4080
690 #define T_OPCODE_LSR_R 0x40c0
691 #define T_OPCODE_ROR_R 0x41c0
692 #define T_OPCODE_ASR_I 0x1000
693 #define T_OPCODE_LSL_I 0x0000
694 #define T_OPCODE_LSR_I 0x0800
695
696 #define T_OPCODE_MOV_I8 0x2000
697 #define T_OPCODE_CMP_I8 0x2800
698 #define T_OPCODE_CMP_LR 0x4280
699 #define T_OPCODE_MOV_HR 0x4600
700 #define T_OPCODE_CMP_HR 0x4500
701
702 #define T_OPCODE_LDR_PC 0x4800
703 #define T_OPCODE_LDR_SP 0x9800
704 #define T_OPCODE_STR_SP 0x9000
705 #define T_OPCODE_LDR_IW 0x6800
706 #define T_OPCODE_STR_IW 0x6000
707 #define T_OPCODE_LDR_IH 0x8800
708 #define T_OPCODE_STR_IH 0x8000
709 #define T_OPCODE_LDR_IB 0x7800
710 #define T_OPCODE_STR_IB 0x7000
711 #define T_OPCODE_LDR_RW 0x5800
712 #define T_OPCODE_STR_RW 0x5000
713 #define T_OPCODE_LDR_RH 0x5a00
714 #define T_OPCODE_STR_RH 0x5200
715 #define T_OPCODE_LDR_RB 0x5c00
716 #define T_OPCODE_STR_RB 0x5400
717
718 #define T_OPCODE_PUSH 0xb400
719 #define T_OPCODE_POP 0xbc00
720
721 #define T_OPCODE_BRANCH 0xe000
722
723 #define THUMB_SIZE 2 /* Size of thumb instruction. */
724 #define THUMB_PP_PC_LR 0x0100
725 #define THUMB_LOAD_BIT 0x0800
726 #define THUMB2_LOAD_BIT 0x00100000
727
728 #define BAD_ARGS _("bad arguments to instruction")
729 #define BAD_SP _("r13 not allowed here")
730 #define BAD_PC _("r15 not allowed here")
731 #define BAD_COND _("instruction cannot be conditional")
732 #define BAD_OVERLAP _("registers may not be the same")
733 #define BAD_HIREG _("lo register required")
734 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
735 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
736 #define BAD_BRANCH _("branch must be last instruction in IT block")
737 #define BAD_NOT_IT _("instruction not allowed in IT block")
738 #define BAD_FPU _("selected FPU does not support instruction")
739 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
740 #define BAD_IT_COND _("incorrect condition in IT block")
741 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
742 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
743 #define BAD_PC_ADDRESSING \
744 _("cannot use register index with PC-relative addressing")
745 #define BAD_PC_WRITEBACK \
746 _("cannot use writeback with PC-relative addressing")
747 #define BAD_RANGE _("branch out of range")
748
749 static struct hash_control * arm_ops_hsh;
750 static struct hash_control * arm_cond_hsh;
751 static struct hash_control * arm_shift_hsh;
752 static struct hash_control * arm_psr_hsh;
753 static struct hash_control * arm_v7m_psr_hsh;
754 static struct hash_control * arm_reg_hsh;
755 static struct hash_control * arm_reloc_hsh;
756 static struct hash_control * arm_barrier_opt_hsh;
757
758 /* Stuff needed to resolve the label ambiguity
759 As:
760 ...
761 label: <insn>
762 may differ from:
763 ...
764 label:
765 <insn> */
766
767 symbolS * last_label_seen;
768 static int label_is_thumb_function_name = FALSE;
769
770 /* Literal pool structure. Held on a per-section
771 and per-sub-section basis. */
772
773 #define MAX_LITERAL_POOL_SIZE 1024
774 typedef struct literal_pool
775 {
776 expressionS literals [MAX_LITERAL_POOL_SIZE];
777 unsigned int next_free_entry;
778 unsigned int id;
779 symbolS * symbol;
780 segT section;
781 subsegT sub_section;
782 #ifdef OBJ_ELF
783 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
784 #endif
785 struct literal_pool * next;
786 } literal_pool;
787
788 /* Pointer to a linked list of literal pools. */
789 literal_pool * list_of_pools = NULL;
790
791 #ifdef OBJ_ELF
792 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
793 #else
794 static struct current_it now_it;
795 #endif
796
797 static inline int
798 now_it_compatible (int cond)
799 {
800 return (cond & ~1) == (now_it.cc & ~1);
801 }
802
803 static inline int
804 conditional_insn (void)
805 {
806 return inst.cond != COND_ALWAYS;
807 }
808
809 static int in_it_block (void);
810
811 static int handle_it_state (void);
812
813 static void force_automatic_it_block_close (void);
814
815 static void it_fsm_post_encode (void);
816
817 #define set_it_insn_type(type) \
818 do \
819 { \
820 inst.it_insn_type = type; \
821 if (handle_it_state () == FAIL) \
822 return; \
823 } \
824 while (0)
825
826 #define set_it_insn_type_nonvoid(type, failret) \
827 do \
828 { \
829 inst.it_insn_type = type; \
830 if (handle_it_state () == FAIL) \
831 return failret; \
832 } \
833 while(0)
834
835 #define set_it_insn_type_last() \
836 do \
837 { \
838 if (inst.cond == COND_ALWAYS) \
839 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
840 else \
841 set_it_insn_type (INSIDE_IT_LAST_INSN); \
842 } \
843 while (0)
844
845 /* Pure syntax. */
846
847 /* This array holds the chars that always start a comment. If the
848 pre-processor is disabled, these aren't very useful. */
849 const char comment_chars[] = "@";
850
851 /* This array holds the chars that only start a comment at the beginning of
852 a line. If the line seems to have the form '# 123 filename'
853 .line and .file directives will appear in the pre-processed output. */
854 /* Note that input_file.c hand checks for '#' at the beginning of the
855 first line of the input file. This is because the compiler outputs
856 #NO_APP at the beginning of its output. */
857 /* Also note that comments like this one will always work. */
858 const char line_comment_chars[] = "#";
859
860 const char line_separator_chars[] = ";";
861
862 /* Chars that can be used to separate mant
863 from exp in floating point numbers. */
864 const char EXP_CHARS[] = "eE";
865
866 /* Chars that mean this number is a floating point constant. */
867 /* As in 0f12.456 */
868 /* or 0d1.2345e12 */
869
870 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
871
872 /* Prefix characters that indicate the start of an immediate
873 value. */
874 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
875
876 /* Separator character handling. */
877
878 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
879
880 static inline int
881 skip_past_char (char ** str, char c)
882 {
883 if (**str == c)
884 {
885 (*str)++;
886 return SUCCESS;
887 }
888 else
889 return FAIL;
890 }
891
892 #define skip_past_comma(str) skip_past_char (str, ',')
893
894 /* Arithmetic expressions (possibly involving symbols). */
895
896 /* Return TRUE if anything in the expression is a bignum. */
897
898 static int
899 walk_no_bignums (symbolS * sp)
900 {
901 if (symbol_get_value_expression (sp)->X_op == O_big)
902 return 1;
903
904 if (symbol_get_value_expression (sp)->X_add_symbol)
905 {
906 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
907 || (symbol_get_value_expression (sp)->X_op_symbol
908 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
909 }
910
911 return 0;
912 }
913
914 static int in_my_get_expression = 0;
915
916 /* Third argument to my_get_expression. */
917 #define GE_NO_PREFIX 0
918 #define GE_IMM_PREFIX 1
919 #define GE_OPT_PREFIX 2
920 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
921 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
922 #define GE_OPT_PREFIX_BIG 3
923
924 static int
925 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
926 {
927 char * save_in;
928 segT seg;
929
930 /* In unified syntax, all prefixes are optional. */
931 if (unified_syntax)
932 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
933 : GE_OPT_PREFIX;
934
935 switch (prefix_mode)
936 {
937 case GE_NO_PREFIX: break;
938 case GE_IMM_PREFIX:
939 if (!is_immediate_prefix (**str))
940 {
941 inst.error = _("immediate expression requires a # prefix");
942 return FAIL;
943 }
944 (*str)++;
945 break;
946 case GE_OPT_PREFIX:
947 case GE_OPT_PREFIX_BIG:
948 if (is_immediate_prefix (**str))
949 (*str)++;
950 break;
951 default: abort ();
952 }
953
954 memset (ep, 0, sizeof (expressionS));
955
956 save_in = input_line_pointer;
957 input_line_pointer = *str;
958 in_my_get_expression = 1;
959 seg = expression (ep);
960 in_my_get_expression = 0;
961
962 if (ep->X_op == O_illegal || ep->X_op == O_absent)
963 {
964 /* We found a bad or missing expression in md_operand(). */
965 *str = input_line_pointer;
966 input_line_pointer = save_in;
967 if (inst.error == NULL)
968 inst.error = (ep->X_op == O_absent
969 ? _("missing expression") :_("bad expression"));
970 return 1;
971 }
972
973 #ifdef OBJ_AOUT
974 if (seg != absolute_section
975 && seg != text_section
976 && seg != data_section
977 && seg != bss_section
978 && seg != undefined_section)
979 {
980 inst.error = _("bad segment");
981 *str = input_line_pointer;
982 input_line_pointer = save_in;
983 return 1;
984 }
985 #else
986 (void) seg;
987 #endif
988
989 /* Get rid of any bignums now, so that we don't generate an error for which
990 we can't establish a line number later on. Big numbers are never valid
991 in instructions, which is where this routine is always called. */
992 if (prefix_mode != GE_OPT_PREFIX_BIG
993 && (ep->X_op == O_big
994 || (ep->X_add_symbol
995 && (walk_no_bignums (ep->X_add_symbol)
996 || (ep->X_op_symbol
997 && walk_no_bignums (ep->X_op_symbol))))))
998 {
999 inst.error = _("invalid constant");
1000 *str = input_line_pointer;
1001 input_line_pointer = save_in;
1002 return 1;
1003 }
1004
1005 *str = input_line_pointer;
1006 input_line_pointer = save_in;
1007 return 0;
1008 }
1009
1010 /* Turn a string in input_line_pointer into a floating point constant
1011 of type TYPE, and store the appropriate bytes in *LITP. The number
1012 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1013 returned, or NULL on OK.
1014
1015 Note that fp constants aren't represent in the normal way on the ARM.
1016 In big endian mode, things are as expected. However, in little endian
1017 mode fp constants are big-endian word-wise, and little-endian byte-wise
1018 within the words. For example, (double) 1.1 in big endian mode is
1019 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1020 the byte sequence 99 99 f1 3f 9a 99 99 99.
1021
1022 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1023
1024 char *
1025 md_atof (int type, char * litP, int * sizeP)
1026 {
1027 int prec;
1028 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1029 char *t;
1030 int i;
1031
1032 switch (type)
1033 {
1034 case 'f':
1035 case 'F':
1036 case 's':
1037 case 'S':
1038 prec = 2;
1039 break;
1040
1041 case 'd':
1042 case 'D':
1043 case 'r':
1044 case 'R':
1045 prec = 4;
1046 break;
1047
1048 case 'x':
1049 case 'X':
1050 prec = 5;
1051 break;
1052
1053 case 'p':
1054 case 'P':
1055 prec = 5;
1056 break;
1057
1058 default:
1059 *sizeP = 0;
1060 return _("Unrecognized or unsupported floating point constant");
1061 }
1062
1063 t = atof_ieee (input_line_pointer, type, words);
1064 if (t)
1065 input_line_pointer = t;
1066 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1067
1068 if (target_big_endian)
1069 {
1070 for (i = 0; i < prec; i++)
1071 {
1072 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1073 litP += sizeof (LITTLENUM_TYPE);
1074 }
1075 }
1076 else
1077 {
1078 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1079 for (i = prec - 1; i >= 0; i--)
1080 {
1081 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1082 litP += sizeof (LITTLENUM_TYPE);
1083 }
1084 else
1085 /* For a 4 byte float the order of elements in `words' is 1 0.
1086 For an 8 byte float the order is 1 0 3 2. */
1087 for (i = 0; i < prec; i += 2)
1088 {
1089 md_number_to_chars (litP, (valueT) words[i + 1],
1090 sizeof (LITTLENUM_TYPE));
1091 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1092 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1093 litP += 2 * sizeof (LITTLENUM_TYPE);
1094 }
1095 }
1096
1097 return NULL;
1098 }
1099
1100 /* We handle all bad expressions here, so that we can report the faulty
1101 instruction in the error message. */
1102 void
1103 md_operand (expressionS * exp)
1104 {
1105 if (in_my_get_expression)
1106 exp->X_op = O_illegal;
1107 }
1108
1109 /* Immediate values. */
1110
1111 /* Generic immediate-value read function for use in directives.
1112 Accepts anything that 'expression' can fold to a constant.
1113 *val receives the number. */
1114 #ifdef OBJ_ELF
1115 static int
1116 immediate_for_directive (int *val)
1117 {
1118 expressionS exp;
1119 exp.X_op = O_illegal;
1120
1121 if (is_immediate_prefix (*input_line_pointer))
1122 {
1123 input_line_pointer++;
1124 expression (&exp);
1125 }
1126
1127 if (exp.X_op != O_constant)
1128 {
1129 as_bad (_("expected #constant"));
1130 ignore_rest_of_line ();
1131 return FAIL;
1132 }
1133 *val = exp.X_add_number;
1134 return SUCCESS;
1135 }
1136 #endif
1137
1138 /* Register parsing. */
1139
1140 /* Generic register parser. CCP points to what should be the
1141 beginning of a register name. If it is indeed a valid register
1142 name, advance CCP over it and return the reg_entry structure;
1143 otherwise return NULL. Does not issue diagnostics. */
1144
1145 static struct reg_entry *
1146 arm_reg_parse_multi (char **ccp)
1147 {
1148 char *start = *ccp;
1149 char *p;
1150 struct reg_entry *reg;
1151
1152 #ifdef REGISTER_PREFIX
1153 if (*start != REGISTER_PREFIX)
1154 return NULL;
1155 start++;
1156 #endif
1157 #ifdef OPTIONAL_REGISTER_PREFIX
1158 if (*start == OPTIONAL_REGISTER_PREFIX)
1159 start++;
1160 #endif
1161
1162 p = start;
1163 if (!ISALPHA (*p) || !is_name_beginner (*p))
1164 return NULL;
1165
1166 do
1167 p++;
1168 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1169
1170 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1171
1172 if (!reg)
1173 return NULL;
1174
1175 *ccp = p;
1176 return reg;
1177 }
1178
1179 static int
1180 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1181 enum arm_reg_type type)
1182 {
1183 /* Alternative syntaxes are accepted for a few register classes. */
1184 switch (type)
1185 {
1186 case REG_TYPE_MVF:
1187 case REG_TYPE_MVD:
1188 case REG_TYPE_MVFX:
1189 case REG_TYPE_MVDX:
1190 /* Generic coprocessor register names are allowed for these. */
1191 if (reg && reg->type == REG_TYPE_CN)
1192 return reg->number;
1193 break;
1194
1195 case REG_TYPE_CP:
1196 /* For backward compatibility, a bare number is valid here. */
1197 {
1198 unsigned long processor = strtoul (start, ccp, 10);
1199 if (*ccp != start && processor <= 15)
1200 return processor;
1201 }
1202
1203 case REG_TYPE_MMXWC:
1204 /* WC includes WCG. ??? I'm not sure this is true for all
1205 instructions that take WC registers. */
1206 if (reg && reg->type == REG_TYPE_MMXWCG)
1207 return reg->number;
1208 break;
1209
1210 default:
1211 break;
1212 }
1213
1214 return FAIL;
1215 }
1216
1217 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1218 return value is the register number or FAIL. */
1219
1220 static int
1221 arm_reg_parse (char **ccp, enum arm_reg_type type)
1222 {
1223 char *start = *ccp;
1224 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1225 int ret;
1226
1227 /* Do not allow a scalar (reg+index) to parse as a register. */
1228 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1229 return FAIL;
1230
1231 if (reg && reg->type == type)
1232 return reg->number;
1233
1234 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1235 return ret;
1236
1237 *ccp = start;
1238 return FAIL;
1239 }
1240
1241 /* Parse a Neon type specifier. *STR should point at the leading '.'
1242 character. Does no verification at this stage that the type fits the opcode
1243 properly. E.g.,
1244
1245 .i32.i32.s16
1246 .s32.f32
1247 .u16
1248
1249 Can all be legally parsed by this function.
1250
1251 Fills in neon_type struct pointer with parsed information, and updates STR
1252 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1253 type, FAIL if not. */
1254
1255 static int
1256 parse_neon_type (struct neon_type *type, char **str)
1257 {
1258 char *ptr = *str;
1259
1260 if (type)
1261 type->elems = 0;
1262
1263 while (type->elems < NEON_MAX_TYPE_ELS)
1264 {
1265 enum neon_el_type thistype = NT_untyped;
1266 unsigned thissize = -1u;
1267
1268 if (*ptr != '.')
1269 break;
1270
1271 ptr++;
1272
1273 /* Just a size without an explicit type. */
1274 if (ISDIGIT (*ptr))
1275 goto parsesize;
1276
1277 switch (TOLOWER (*ptr))
1278 {
1279 case 'i': thistype = NT_integer; break;
1280 case 'f': thistype = NT_float; break;
1281 case 'p': thistype = NT_poly; break;
1282 case 's': thistype = NT_signed; break;
1283 case 'u': thistype = NT_unsigned; break;
1284 case 'd':
1285 thistype = NT_float;
1286 thissize = 64;
1287 ptr++;
1288 goto done;
1289 default:
1290 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1291 return FAIL;
1292 }
1293
1294 ptr++;
1295
1296 /* .f is an abbreviation for .f32. */
1297 if (thistype == NT_float && !ISDIGIT (*ptr))
1298 thissize = 32;
1299 else
1300 {
1301 parsesize:
1302 thissize = strtoul (ptr, &ptr, 10);
1303
1304 if (thissize != 8 && thissize != 16 && thissize != 32
1305 && thissize != 64)
1306 {
1307 as_bad (_("bad size %d in type specifier"), thissize);
1308 return FAIL;
1309 }
1310 }
1311
1312 done:
1313 if (type)
1314 {
1315 type->el[type->elems].type = thistype;
1316 type->el[type->elems].size = thissize;
1317 type->elems++;
1318 }
1319 }
1320
1321 /* Empty/missing type is not a successful parse. */
1322 if (type->elems == 0)
1323 return FAIL;
1324
1325 *str = ptr;
1326
1327 return SUCCESS;
1328 }
1329
1330 /* Errors may be set multiple times during parsing or bit encoding
1331 (particularly in the Neon bits), but usually the earliest error which is set
1332 will be the most meaningful. Avoid overwriting it with later (cascading)
1333 errors by calling this function. */
1334
1335 static void
1336 first_error (const char *err)
1337 {
1338 if (!inst.error)
1339 inst.error = err;
1340 }
1341
1342 /* Parse a single type, e.g. ".s32", leading period included. */
1343 static int
1344 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1345 {
1346 char *str = *ccp;
1347 struct neon_type optype;
1348
1349 if (*str == '.')
1350 {
1351 if (parse_neon_type (&optype, &str) == SUCCESS)
1352 {
1353 if (optype.elems == 1)
1354 *vectype = optype.el[0];
1355 else
1356 {
1357 first_error (_("only one type should be specified for operand"));
1358 return FAIL;
1359 }
1360 }
1361 else
1362 {
1363 first_error (_("vector type expected"));
1364 return FAIL;
1365 }
1366 }
1367 else
1368 return FAIL;
1369
1370 *ccp = str;
1371
1372 return SUCCESS;
1373 }
1374
1375 /* Special meanings for indices (which have a range of 0-7), which will fit into
1376 a 4-bit integer. */
1377
1378 #define NEON_ALL_LANES 15
1379 #define NEON_INTERLEAVE_LANES 14
1380
1381 /* Parse either a register or a scalar, with an optional type. Return the
1382 register number, and optionally fill in the actual type of the register
1383 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1384 type/index information in *TYPEINFO. */
1385
1386 static int
1387 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1388 enum arm_reg_type *rtype,
1389 struct neon_typed_alias *typeinfo)
1390 {
1391 char *str = *ccp;
1392 struct reg_entry *reg = arm_reg_parse_multi (&str);
1393 struct neon_typed_alias atype;
1394 struct neon_type_el parsetype;
1395
1396 atype.defined = 0;
1397 atype.index = -1;
1398 atype.eltype.type = NT_invtype;
1399 atype.eltype.size = -1;
1400
1401 /* Try alternate syntax for some types of register. Note these are mutually
1402 exclusive with the Neon syntax extensions. */
1403 if (reg == NULL)
1404 {
1405 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1406 if (altreg != FAIL)
1407 *ccp = str;
1408 if (typeinfo)
1409 *typeinfo = atype;
1410 return altreg;
1411 }
1412
1413 /* Undo polymorphism when a set of register types may be accepted. */
1414 if ((type == REG_TYPE_NDQ
1415 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1416 || (type == REG_TYPE_VFSD
1417 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1418 || (type == REG_TYPE_NSDQ
1419 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1420 || reg->type == REG_TYPE_NQ))
1421 || (type == REG_TYPE_MMXWC
1422 && (reg->type == REG_TYPE_MMXWCG)))
1423 type = (enum arm_reg_type) reg->type;
1424
1425 if (type != reg->type)
1426 return FAIL;
1427
1428 if (reg->neon)
1429 atype = *reg->neon;
1430
1431 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1432 {
1433 if ((atype.defined & NTA_HASTYPE) != 0)
1434 {
1435 first_error (_("can't redefine type for operand"));
1436 return FAIL;
1437 }
1438 atype.defined |= NTA_HASTYPE;
1439 atype.eltype = parsetype;
1440 }
1441
1442 if (skip_past_char (&str, '[') == SUCCESS)
1443 {
1444 if (type != REG_TYPE_VFD)
1445 {
1446 first_error (_("only D registers may be indexed"));
1447 return FAIL;
1448 }
1449
1450 if ((atype.defined & NTA_HASINDEX) != 0)
1451 {
1452 first_error (_("can't change index for operand"));
1453 return FAIL;
1454 }
1455
1456 atype.defined |= NTA_HASINDEX;
1457
1458 if (skip_past_char (&str, ']') == SUCCESS)
1459 atype.index = NEON_ALL_LANES;
1460 else
1461 {
1462 expressionS exp;
1463
1464 my_get_expression (&exp, &str, GE_NO_PREFIX);
1465
1466 if (exp.X_op != O_constant)
1467 {
1468 first_error (_("constant expression required"));
1469 return FAIL;
1470 }
1471
1472 if (skip_past_char (&str, ']') == FAIL)
1473 return FAIL;
1474
1475 atype.index = exp.X_add_number;
1476 }
1477 }
1478
1479 if (typeinfo)
1480 *typeinfo = atype;
1481
1482 if (rtype)
1483 *rtype = type;
1484
1485 *ccp = str;
1486
1487 return reg->number;
1488 }
1489
1490 /* Like arm_reg_parse, but allow allow the following extra features:
1491 - If RTYPE is non-zero, return the (possibly restricted) type of the
1492 register (e.g. Neon double or quad reg when either has been requested).
1493 - If this is a Neon vector type with additional type information, fill
1494 in the struct pointed to by VECTYPE (if non-NULL).
1495 This function will fault on encountering a scalar. */
1496
1497 static int
1498 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1499 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1500 {
1501 struct neon_typed_alias atype;
1502 char *str = *ccp;
1503 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1504
1505 if (reg == FAIL)
1506 return FAIL;
1507
1508 /* Do not allow regname(... to parse as a register. */
1509 if (*str == '(')
1510 return FAIL;
1511
1512 /* Do not allow a scalar (reg+index) to parse as a register. */
1513 if ((atype.defined & NTA_HASINDEX) != 0)
1514 {
1515 first_error (_("register operand expected, but got scalar"));
1516 return FAIL;
1517 }
1518
1519 if (vectype)
1520 *vectype = atype.eltype;
1521
1522 *ccp = str;
1523
1524 return reg;
1525 }
1526
1527 #define NEON_SCALAR_REG(X) ((X) >> 4)
1528 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1529
1530 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1531 have enough information to be able to do a good job bounds-checking. So, we
1532 just do easy checks here, and do further checks later. */
1533
1534 static int
1535 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1536 {
1537 int reg;
1538 char *str = *ccp;
1539 struct neon_typed_alias atype;
1540
1541 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1542
1543 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1544 return FAIL;
1545
1546 if (atype.index == NEON_ALL_LANES)
1547 {
1548 first_error (_("scalar must have an index"));
1549 return FAIL;
1550 }
1551 else if (atype.index >= 64 / elsize)
1552 {
1553 first_error (_("scalar index out of range"));
1554 return FAIL;
1555 }
1556
1557 if (type)
1558 *type = atype.eltype;
1559
1560 *ccp = str;
1561
1562 return reg * 16 + atype.index;
1563 }
1564
1565 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1566
1567 static long
1568 parse_reg_list (char ** strp)
1569 {
1570 char * str = * strp;
1571 long range = 0;
1572 int another_range;
1573
1574 /* We come back here if we get ranges concatenated by '+' or '|'. */
1575 do
1576 {
1577 another_range = 0;
1578
1579 if (*str == '{')
1580 {
1581 int in_range = 0;
1582 int cur_reg = -1;
1583
1584 str++;
1585 do
1586 {
1587 int reg;
1588
1589 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1590 {
1591 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1592 return FAIL;
1593 }
1594
1595 if (in_range)
1596 {
1597 int i;
1598
1599 if (reg <= cur_reg)
1600 {
1601 first_error (_("bad range in register list"));
1602 return FAIL;
1603 }
1604
1605 for (i = cur_reg + 1; i < reg; i++)
1606 {
1607 if (range & (1 << i))
1608 as_tsktsk
1609 (_("Warning: duplicated register (r%d) in register list"),
1610 i);
1611 else
1612 range |= 1 << i;
1613 }
1614 in_range = 0;
1615 }
1616
1617 if (range & (1 << reg))
1618 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1619 reg);
1620 else if (reg <= cur_reg)
1621 as_tsktsk (_("Warning: register range not in ascending order"));
1622
1623 range |= 1 << reg;
1624 cur_reg = reg;
1625 }
1626 while (skip_past_comma (&str) != FAIL
1627 || (in_range = 1, *str++ == '-'));
1628 str--;
1629
1630 if (*str++ != '}')
1631 {
1632 first_error (_("missing `}'"));
1633 return FAIL;
1634 }
1635 }
1636 else
1637 {
1638 expressionS exp;
1639
1640 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1641 return FAIL;
1642
1643 if (exp.X_op == O_constant)
1644 {
1645 if (exp.X_add_number
1646 != (exp.X_add_number & 0x0000ffff))
1647 {
1648 inst.error = _("invalid register mask");
1649 return FAIL;
1650 }
1651
1652 if ((range & exp.X_add_number) != 0)
1653 {
1654 int regno = range & exp.X_add_number;
1655
1656 regno &= -regno;
1657 regno = (1 << regno) - 1;
1658 as_tsktsk
1659 (_("Warning: duplicated register (r%d) in register list"),
1660 regno);
1661 }
1662
1663 range |= exp.X_add_number;
1664 }
1665 else
1666 {
1667 if (inst.reloc.type != 0)
1668 {
1669 inst.error = _("expression too complex");
1670 return FAIL;
1671 }
1672
1673 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1674 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1675 inst.reloc.pc_rel = 0;
1676 }
1677 }
1678
1679 if (*str == '|' || *str == '+')
1680 {
1681 str++;
1682 another_range = 1;
1683 }
1684 }
1685 while (another_range);
1686
1687 *strp = str;
1688 return range;
1689 }
1690
1691 /* Types of registers in a list. */
1692
1693 enum reg_list_els
1694 {
1695 REGLIST_VFP_S,
1696 REGLIST_VFP_D,
1697 REGLIST_NEON_D
1698 };
1699
1700 /* Parse a VFP register list. If the string is invalid return FAIL.
1701 Otherwise return the number of registers, and set PBASE to the first
1702 register. Parses registers of type ETYPE.
1703 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1704 - Q registers can be used to specify pairs of D registers
1705 - { } can be omitted from around a singleton register list
1706 FIXME: This is not implemented, as it would require backtracking in
1707 some cases, e.g.:
1708 vtbl.8 d3,d4,d5
1709 This could be done (the meaning isn't really ambiguous), but doesn't
1710 fit in well with the current parsing framework.
1711 - 32 D registers may be used (also true for VFPv3).
1712 FIXME: Types are ignored in these register lists, which is probably a
1713 bug. */
1714
1715 static int
1716 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1717 {
1718 char *str = *ccp;
1719 int base_reg;
1720 int new_base;
1721 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1722 int max_regs = 0;
1723 int count = 0;
1724 int warned = 0;
1725 unsigned long mask = 0;
1726 int i;
1727
1728 if (*str != '{')
1729 {
1730 inst.error = _("expecting {");
1731 return FAIL;
1732 }
1733
1734 str++;
1735
1736 switch (etype)
1737 {
1738 case REGLIST_VFP_S:
1739 regtype = REG_TYPE_VFS;
1740 max_regs = 32;
1741 break;
1742
1743 case REGLIST_VFP_D:
1744 regtype = REG_TYPE_VFD;
1745 break;
1746
1747 case REGLIST_NEON_D:
1748 regtype = REG_TYPE_NDQ;
1749 break;
1750 }
1751
1752 if (etype != REGLIST_VFP_S)
1753 {
1754 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1755 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1756 {
1757 max_regs = 32;
1758 if (thumb_mode)
1759 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1760 fpu_vfp_ext_d32);
1761 else
1762 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1763 fpu_vfp_ext_d32);
1764 }
1765 else
1766 max_regs = 16;
1767 }
1768
1769 base_reg = max_regs;
1770
1771 do
1772 {
1773 int setmask = 1, addregs = 1;
1774
1775 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1776
1777 if (new_base == FAIL)
1778 {
1779 first_error (_(reg_expected_msgs[regtype]));
1780 return FAIL;
1781 }
1782
1783 if (new_base >= max_regs)
1784 {
1785 first_error (_("register out of range in list"));
1786 return FAIL;
1787 }
1788
1789 /* Note: a value of 2 * n is returned for the register Q<n>. */
1790 if (regtype == REG_TYPE_NQ)
1791 {
1792 setmask = 3;
1793 addregs = 2;
1794 }
1795
1796 if (new_base < base_reg)
1797 base_reg = new_base;
1798
1799 if (mask & (setmask << new_base))
1800 {
1801 first_error (_("invalid register list"));
1802 return FAIL;
1803 }
1804
1805 if ((mask >> new_base) != 0 && ! warned)
1806 {
1807 as_tsktsk (_("register list not in ascending order"));
1808 warned = 1;
1809 }
1810
1811 mask |= setmask << new_base;
1812 count += addregs;
1813
1814 if (*str == '-') /* We have the start of a range expression */
1815 {
1816 int high_range;
1817
1818 str++;
1819
1820 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1821 == FAIL)
1822 {
1823 inst.error = gettext (reg_expected_msgs[regtype]);
1824 return FAIL;
1825 }
1826
1827 if (high_range >= max_regs)
1828 {
1829 first_error (_("register out of range in list"));
1830 return FAIL;
1831 }
1832
1833 if (regtype == REG_TYPE_NQ)
1834 high_range = high_range + 1;
1835
1836 if (high_range <= new_base)
1837 {
1838 inst.error = _("register range not in ascending order");
1839 return FAIL;
1840 }
1841
1842 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1843 {
1844 if (mask & (setmask << new_base))
1845 {
1846 inst.error = _("invalid register list");
1847 return FAIL;
1848 }
1849
1850 mask |= setmask << new_base;
1851 count += addregs;
1852 }
1853 }
1854 }
1855 while (skip_past_comma (&str) != FAIL);
1856
1857 str++;
1858
1859 /* Sanity check -- should have raised a parse error above. */
1860 if (count == 0 || count > max_regs)
1861 abort ();
1862
1863 *pbase = base_reg;
1864
1865 /* Final test -- the registers must be consecutive. */
1866 mask >>= base_reg;
1867 for (i = 0; i < count; i++)
1868 {
1869 if ((mask & (1u << i)) == 0)
1870 {
1871 inst.error = _("non-contiguous register range");
1872 return FAIL;
1873 }
1874 }
1875
1876 *ccp = str;
1877
1878 return count;
1879 }
1880
1881 /* True if two alias types are the same. */
1882
1883 static bfd_boolean
1884 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1885 {
1886 if (!a && !b)
1887 return TRUE;
1888
1889 if (!a || !b)
1890 return FALSE;
1891
1892 if (a->defined != b->defined)
1893 return FALSE;
1894
1895 if ((a->defined & NTA_HASTYPE) != 0
1896 && (a->eltype.type != b->eltype.type
1897 || a->eltype.size != b->eltype.size))
1898 return FALSE;
1899
1900 if ((a->defined & NTA_HASINDEX) != 0
1901 && (a->index != b->index))
1902 return FALSE;
1903
1904 return TRUE;
1905 }
1906
1907 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1908 The base register is put in *PBASE.
1909 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1910 the return value.
1911 The register stride (minus one) is put in bit 4 of the return value.
1912 Bits [6:5] encode the list length (minus one).
1913 The type of the list elements is put in *ELTYPE, if non-NULL. */
1914
1915 #define NEON_LANE(X) ((X) & 0xf)
1916 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1917 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1918
1919 static int
1920 parse_neon_el_struct_list (char **str, unsigned *pbase,
1921 struct neon_type_el *eltype)
1922 {
1923 char *ptr = *str;
1924 int base_reg = -1;
1925 int reg_incr = -1;
1926 int count = 0;
1927 int lane = -1;
1928 int leading_brace = 0;
1929 enum arm_reg_type rtype = REG_TYPE_NDQ;
1930 const char *const incr_error = _("register stride must be 1 or 2");
1931 const char *const type_error = _("mismatched element/structure types in list");
1932 struct neon_typed_alias firsttype;
1933
1934 if (skip_past_char (&ptr, '{') == SUCCESS)
1935 leading_brace = 1;
1936
1937 do
1938 {
1939 struct neon_typed_alias atype;
1940 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1941
1942 if (getreg == FAIL)
1943 {
1944 first_error (_(reg_expected_msgs[rtype]));
1945 return FAIL;
1946 }
1947
1948 if (base_reg == -1)
1949 {
1950 base_reg = getreg;
1951 if (rtype == REG_TYPE_NQ)
1952 {
1953 reg_incr = 1;
1954 }
1955 firsttype = atype;
1956 }
1957 else if (reg_incr == -1)
1958 {
1959 reg_incr = getreg - base_reg;
1960 if (reg_incr < 1 || reg_incr > 2)
1961 {
1962 first_error (_(incr_error));
1963 return FAIL;
1964 }
1965 }
1966 else if (getreg != base_reg + reg_incr * count)
1967 {
1968 first_error (_(incr_error));
1969 return FAIL;
1970 }
1971
1972 if (! neon_alias_types_same (&atype, &firsttype))
1973 {
1974 first_error (_(type_error));
1975 return FAIL;
1976 }
1977
1978 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1979 modes. */
1980 if (ptr[0] == '-')
1981 {
1982 struct neon_typed_alias htype;
1983 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1984 if (lane == -1)
1985 lane = NEON_INTERLEAVE_LANES;
1986 else if (lane != NEON_INTERLEAVE_LANES)
1987 {
1988 first_error (_(type_error));
1989 return FAIL;
1990 }
1991 if (reg_incr == -1)
1992 reg_incr = 1;
1993 else if (reg_incr != 1)
1994 {
1995 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1996 return FAIL;
1997 }
1998 ptr++;
1999 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2000 if (hireg == FAIL)
2001 {
2002 first_error (_(reg_expected_msgs[rtype]));
2003 return FAIL;
2004 }
2005 if (! neon_alias_types_same (&htype, &firsttype))
2006 {
2007 first_error (_(type_error));
2008 return FAIL;
2009 }
2010 count += hireg + dregs - getreg;
2011 continue;
2012 }
2013
2014 /* If we're using Q registers, we can't use [] or [n] syntax. */
2015 if (rtype == REG_TYPE_NQ)
2016 {
2017 count += 2;
2018 continue;
2019 }
2020
2021 if ((atype.defined & NTA_HASINDEX) != 0)
2022 {
2023 if (lane == -1)
2024 lane = atype.index;
2025 else if (lane != atype.index)
2026 {
2027 first_error (_(type_error));
2028 return FAIL;
2029 }
2030 }
2031 else if (lane == -1)
2032 lane = NEON_INTERLEAVE_LANES;
2033 else if (lane != NEON_INTERLEAVE_LANES)
2034 {
2035 first_error (_(type_error));
2036 return FAIL;
2037 }
2038 count++;
2039 }
2040 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2041
2042 /* No lane set by [x]. We must be interleaving structures. */
2043 if (lane == -1)
2044 lane = NEON_INTERLEAVE_LANES;
2045
2046 /* Sanity check. */
2047 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2048 || (count > 1 && reg_incr == -1))
2049 {
2050 first_error (_("error parsing element/structure list"));
2051 return FAIL;
2052 }
2053
2054 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2055 {
2056 first_error (_("expected }"));
2057 return FAIL;
2058 }
2059
2060 if (reg_incr == -1)
2061 reg_incr = 1;
2062
2063 if (eltype)
2064 *eltype = firsttype.eltype;
2065
2066 *pbase = base_reg;
2067 *str = ptr;
2068
2069 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2070 }
2071
2072 /* Parse an explicit relocation suffix on an expression. This is
2073 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2074 arm_reloc_hsh contains no entries, so this function can only
2075 succeed if there is no () after the word. Returns -1 on error,
2076 BFD_RELOC_UNUSED if there wasn't any suffix. */
2077
2078 static int
2079 parse_reloc (char **str)
2080 {
2081 struct reloc_entry *r;
2082 char *p, *q;
2083
2084 if (**str != '(')
2085 return BFD_RELOC_UNUSED;
2086
2087 p = *str + 1;
2088 q = p;
2089
2090 while (*q && *q != ')' && *q != ',')
2091 q++;
2092 if (*q != ')')
2093 return -1;
2094
2095 if ((r = (struct reloc_entry *)
2096 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2097 return -1;
2098
2099 *str = q + 1;
2100 return r->reloc;
2101 }
2102
2103 /* Directives: register aliases. */
2104
2105 static struct reg_entry *
2106 insert_reg_alias (char *str, unsigned number, int type)
2107 {
2108 struct reg_entry *new_reg;
2109 const char *name;
2110
2111 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2112 {
2113 if (new_reg->builtin)
2114 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2115
2116 /* Only warn about a redefinition if it's not defined as the
2117 same register. */
2118 else if (new_reg->number != number || new_reg->type != type)
2119 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2120
2121 return NULL;
2122 }
2123
2124 name = xstrdup (str);
2125 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2126
2127 new_reg->name = name;
2128 new_reg->number = number;
2129 new_reg->type = type;
2130 new_reg->builtin = FALSE;
2131 new_reg->neon = NULL;
2132
2133 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2134 abort ();
2135
2136 return new_reg;
2137 }
2138
2139 static void
2140 insert_neon_reg_alias (char *str, int number, int type,
2141 struct neon_typed_alias *atype)
2142 {
2143 struct reg_entry *reg = insert_reg_alias (str, number, type);
2144
2145 if (!reg)
2146 {
2147 first_error (_("attempt to redefine typed alias"));
2148 return;
2149 }
2150
2151 if (atype)
2152 {
2153 reg->neon = (struct neon_typed_alias *)
2154 xmalloc (sizeof (struct neon_typed_alias));
2155 *reg->neon = *atype;
2156 }
2157 }
2158
2159 /* Look for the .req directive. This is of the form:
2160
2161 new_register_name .req existing_register_name
2162
2163 If we find one, or if it looks sufficiently like one that we want to
2164 handle any error here, return TRUE. Otherwise return FALSE. */
2165
2166 static bfd_boolean
2167 create_register_alias (char * newname, char *p)
2168 {
2169 struct reg_entry *old;
2170 char *oldname, *nbuf;
2171 size_t nlen;
2172
2173 /* The input scrubber ensures that whitespace after the mnemonic is
2174 collapsed to single spaces. */
2175 oldname = p;
2176 if (strncmp (oldname, " .req ", 6) != 0)
2177 return FALSE;
2178
2179 oldname += 6;
2180 if (*oldname == '\0')
2181 return FALSE;
2182
2183 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2184 if (!old)
2185 {
2186 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2187 return TRUE;
2188 }
2189
2190 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2191 the desired alias name, and p points to its end. If not, then
2192 the desired alias name is in the global original_case_string. */
2193 #ifdef TC_CASE_SENSITIVE
2194 nlen = p - newname;
2195 #else
2196 newname = original_case_string;
2197 nlen = strlen (newname);
2198 #endif
2199
2200 nbuf = (char *) alloca (nlen + 1);
2201 memcpy (nbuf, newname, nlen);
2202 nbuf[nlen] = '\0';
2203
2204 /* Create aliases under the new name as stated; an all-lowercase
2205 version of the new name; and an all-uppercase version of the new
2206 name. */
2207 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2208 {
2209 for (p = nbuf; *p; p++)
2210 *p = TOUPPER (*p);
2211
2212 if (strncmp (nbuf, newname, nlen))
2213 {
2214 /* If this attempt to create an additional alias fails, do not bother
2215 trying to create the all-lower case alias. We will fail and issue
2216 a second, duplicate error message. This situation arises when the
2217 programmer does something like:
2218 foo .req r0
2219 Foo .req r1
2220 The second .req creates the "Foo" alias but then fails to create
2221 the artificial FOO alias because it has already been created by the
2222 first .req. */
2223 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2224 return TRUE;
2225 }
2226
2227 for (p = nbuf; *p; p++)
2228 *p = TOLOWER (*p);
2229
2230 if (strncmp (nbuf, newname, nlen))
2231 insert_reg_alias (nbuf, old->number, old->type);
2232 }
2233
2234 return TRUE;
2235 }
2236
2237 /* Create a Neon typed/indexed register alias using directives, e.g.:
2238 X .dn d5.s32[1]
2239 Y .qn 6.s16
2240 Z .dn d7
2241 T .dn Z[0]
2242 These typed registers can be used instead of the types specified after the
2243 Neon mnemonic, so long as all operands given have types. Types can also be
2244 specified directly, e.g.:
2245 vadd d0.s32, d1.s32, d2.s32 */
2246
2247 static bfd_boolean
2248 create_neon_reg_alias (char *newname, char *p)
2249 {
2250 enum arm_reg_type basetype;
2251 struct reg_entry *basereg;
2252 struct reg_entry mybasereg;
2253 struct neon_type ntype;
2254 struct neon_typed_alias typeinfo;
2255 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2256 int namelen;
2257
2258 typeinfo.defined = 0;
2259 typeinfo.eltype.type = NT_invtype;
2260 typeinfo.eltype.size = -1;
2261 typeinfo.index = -1;
2262
2263 nameend = p;
2264
2265 if (strncmp (p, " .dn ", 5) == 0)
2266 basetype = REG_TYPE_VFD;
2267 else if (strncmp (p, " .qn ", 5) == 0)
2268 basetype = REG_TYPE_NQ;
2269 else
2270 return FALSE;
2271
2272 p += 5;
2273
2274 if (*p == '\0')
2275 return FALSE;
2276
2277 basereg = arm_reg_parse_multi (&p);
2278
2279 if (basereg && basereg->type != basetype)
2280 {
2281 as_bad (_("bad type for register"));
2282 return FALSE;
2283 }
2284
2285 if (basereg == NULL)
2286 {
2287 expressionS exp;
2288 /* Try parsing as an integer. */
2289 my_get_expression (&exp, &p, GE_NO_PREFIX);
2290 if (exp.X_op != O_constant)
2291 {
2292 as_bad (_("expression must be constant"));
2293 return FALSE;
2294 }
2295 basereg = &mybasereg;
2296 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2297 : exp.X_add_number;
2298 basereg->neon = 0;
2299 }
2300
2301 if (basereg->neon)
2302 typeinfo = *basereg->neon;
2303
2304 if (parse_neon_type (&ntype, &p) == SUCCESS)
2305 {
2306 /* We got a type. */
2307 if (typeinfo.defined & NTA_HASTYPE)
2308 {
2309 as_bad (_("can't redefine the type of a register alias"));
2310 return FALSE;
2311 }
2312
2313 typeinfo.defined |= NTA_HASTYPE;
2314 if (ntype.elems != 1)
2315 {
2316 as_bad (_("you must specify a single type only"));
2317 return FALSE;
2318 }
2319 typeinfo.eltype = ntype.el[0];
2320 }
2321
2322 if (skip_past_char (&p, '[') == SUCCESS)
2323 {
2324 expressionS exp;
2325 /* We got a scalar index. */
2326
2327 if (typeinfo.defined & NTA_HASINDEX)
2328 {
2329 as_bad (_("can't redefine the index of a scalar alias"));
2330 return FALSE;
2331 }
2332
2333 my_get_expression (&exp, &p, GE_NO_PREFIX);
2334
2335 if (exp.X_op != O_constant)
2336 {
2337 as_bad (_("scalar index must be constant"));
2338 return FALSE;
2339 }
2340
2341 typeinfo.defined |= NTA_HASINDEX;
2342 typeinfo.index = exp.X_add_number;
2343
2344 if (skip_past_char (&p, ']') == FAIL)
2345 {
2346 as_bad (_("expecting ]"));
2347 return FALSE;
2348 }
2349 }
2350
2351 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2352 the desired alias name, and p points to its end. If not, then
2353 the desired alias name is in the global original_case_string. */
2354 #ifdef TC_CASE_SENSITIVE
2355 namelen = nameend - newname;
2356 #else
2357 newname = original_case_string;
2358 namelen = strlen (newname);
2359 #endif
2360
2361 namebuf = (char *) alloca (namelen + 1);
2362 strncpy (namebuf, newname, namelen);
2363 namebuf[namelen] = '\0';
2364
2365 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2366 typeinfo.defined != 0 ? &typeinfo : NULL);
2367
2368 /* Insert name in all uppercase. */
2369 for (p = namebuf; *p; p++)
2370 *p = TOUPPER (*p);
2371
2372 if (strncmp (namebuf, newname, namelen))
2373 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2374 typeinfo.defined != 0 ? &typeinfo : NULL);
2375
2376 /* Insert name in all lowercase. */
2377 for (p = namebuf; *p; p++)
2378 *p = TOLOWER (*p);
2379
2380 if (strncmp (namebuf, newname, namelen))
2381 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2382 typeinfo.defined != 0 ? &typeinfo : NULL);
2383
2384 return TRUE;
2385 }
2386
2387 /* Should never be called, as .req goes between the alias and the
2388 register name, not at the beginning of the line. */
2389
2390 static void
2391 s_req (int a ATTRIBUTE_UNUSED)
2392 {
2393 as_bad (_("invalid syntax for .req directive"));
2394 }
2395
2396 static void
2397 s_dn (int a ATTRIBUTE_UNUSED)
2398 {
2399 as_bad (_("invalid syntax for .dn directive"));
2400 }
2401
2402 static void
2403 s_qn (int a ATTRIBUTE_UNUSED)
2404 {
2405 as_bad (_("invalid syntax for .qn directive"));
2406 }
2407
2408 /* The .unreq directive deletes an alias which was previously defined
2409 by .req. For example:
2410
2411 my_alias .req r11
2412 .unreq my_alias */
2413
2414 static void
2415 s_unreq (int a ATTRIBUTE_UNUSED)
2416 {
2417 char * name;
2418 char saved_char;
2419
2420 name = input_line_pointer;
2421
2422 while (*input_line_pointer != 0
2423 && *input_line_pointer != ' '
2424 && *input_line_pointer != '\n')
2425 ++input_line_pointer;
2426
2427 saved_char = *input_line_pointer;
2428 *input_line_pointer = 0;
2429
2430 if (!*name)
2431 as_bad (_("invalid syntax for .unreq directive"));
2432 else
2433 {
2434 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2435 name);
2436
2437 if (!reg)
2438 as_bad (_("unknown register alias '%s'"), name);
2439 else if (reg->builtin)
2440 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2441 name);
2442 else
2443 {
2444 char * p;
2445 char * nbuf;
2446
2447 hash_delete (arm_reg_hsh, name, FALSE);
2448 free ((char *) reg->name);
2449 if (reg->neon)
2450 free (reg->neon);
2451 free (reg);
2452
2453 /* Also locate the all upper case and all lower case versions.
2454 Do not complain if we cannot find one or the other as it
2455 was probably deleted above. */
2456
2457 nbuf = strdup (name);
2458 for (p = nbuf; *p; p++)
2459 *p = TOUPPER (*p);
2460 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2461 if (reg)
2462 {
2463 hash_delete (arm_reg_hsh, nbuf, FALSE);
2464 free ((char *) reg->name);
2465 if (reg->neon)
2466 free (reg->neon);
2467 free (reg);
2468 }
2469
2470 for (p = nbuf; *p; p++)
2471 *p = TOLOWER (*p);
2472 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2473 if (reg)
2474 {
2475 hash_delete (arm_reg_hsh, nbuf, FALSE);
2476 free ((char *) reg->name);
2477 if (reg->neon)
2478 free (reg->neon);
2479 free (reg);
2480 }
2481
2482 free (nbuf);
2483 }
2484 }
2485
2486 *input_line_pointer = saved_char;
2487 demand_empty_rest_of_line ();
2488 }
2489
2490 /* Directives: Instruction set selection. */
2491
2492 #ifdef OBJ_ELF
2493 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2494 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2495 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2496 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2497
2498 /* Create a new mapping symbol for the transition to STATE. */
2499
2500 static void
2501 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2502 {
2503 symbolS * symbolP;
2504 const char * symname;
2505 int type;
2506
2507 switch (state)
2508 {
2509 case MAP_DATA:
2510 symname = "$d";
2511 type = BSF_NO_FLAGS;
2512 break;
2513 case MAP_ARM:
2514 symname = "$a";
2515 type = BSF_NO_FLAGS;
2516 break;
2517 case MAP_THUMB:
2518 symname = "$t";
2519 type = BSF_NO_FLAGS;
2520 break;
2521 default:
2522 abort ();
2523 }
2524
2525 symbolP = symbol_new (symname, now_seg, value, frag);
2526 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2527
2528 switch (state)
2529 {
2530 case MAP_ARM:
2531 THUMB_SET_FUNC (symbolP, 0);
2532 ARM_SET_THUMB (symbolP, 0);
2533 ARM_SET_INTERWORK (symbolP, support_interwork);
2534 break;
2535
2536 case MAP_THUMB:
2537 THUMB_SET_FUNC (symbolP, 1);
2538 ARM_SET_THUMB (symbolP, 1);
2539 ARM_SET_INTERWORK (symbolP, support_interwork);
2540 break;
2541
2542 case MAP_DATA:
2543 default:
2544 break;
2545 }
2546
2547 /* Save the mapping symbols for future reference. Also check that
2548 we do not place two mapping symbols at the same offset within a
2549 frag. We'll handle overlap between frags in
2550 check_mapping_symbols.
2551
2552 If .fill or other data filling directive generates zero sized data,
2553 the mapping symbol for the following code will have the same value
2554 as the one generated for the data filling directive. In this case,
2555 we replace the old symbol with the new one at the same address. */
2556 if (value == 0)
2557 {
2558 if (frag->tc_frag_data.first_map != NULL)
2559 {
2560 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2561 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2562 }
2563 frag->tc_frag_data.first_map = symbolP;
2564 }
2565 if (frag->tc_frag_data.last_map != NULL)
2566 {
2567 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2568 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2569 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2570 }
2571 frag->tc_frag_data.last_map = symbolP;
2572 }
2573
2574 /* We must sometimes convert a region marked as code to data during
2575 code alignment, if an odd number of bytes have to be padded. The
2576 code mapping symbol is pushed to an aligned address. */
2577
2578 static void
2579 insert_data_mapping_symbol (enum mstate state,
2580 valueT value, fragS *frag, offsetT bytes)
2581 {
2582 /* If there was already a mapping symbol, remove it. */
2583 if (frag->tc_frag_data.last_map != NULL
2584 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2585 {
2586 symbolS *symp = frag->tc_frag_data.last_map;
2587
2588 if (value == 0)
2589 {
2590 know (frag->tc_frag_data.first_map == symp);
2591 frag->tc_frag_data.first_map = NULL;
2592 }
2593 frag->tc_frag_data.last_map = NULL;
2594 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2595 }
2596
2597 make_mapping_symbol (MAP_DATA, value, frag);
2598 make_mapping_symbol (state, value + bytes, frag);
2599 }
2600
2601 static void mapping_state_2 (enum mstate state, int max_chars);
2602
2603 /* Set the mapping state to STATE. Only call this when about to
2604 emit some STATE bytes to the file. */
2605
2606 void
2607 mapping_state (enum mstate state)
2608 {
2609 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2610
2611 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2612
2613 if (mapstate == state)
2614 /* The mapping symbol has already been emitted.
2615 There is nothing else to do. */
2616 return;
2617
2618 if (state == MAP_ARM || state == MAP_THUMB)
2619 /* PR gas/12931
2620 All ARM instructions require 4-byte alignment.
2621 (Almost) all Thumb instructions require 2-byte alignment.
2622
2623 When emitting instructions into any section, mark the section
2624 appropriately.
2625
2626 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2627 but themselves require 2-byte alignment; this applies to some
2628 PC- relative forms. However, these cases will invovle implicit
2629 literal pool generation or an explicit .align >=2, both of
2630 which will cause the section to me marked with sufficient
2631 alignment. Thus, we don't handle those cases here. */
2632 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2633
2634 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2635 /* This case will be evaluated later in the next else. */
2636 return;
2637 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2638 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2639 {
2640 /* Only add the symbol if the offset is > 0:
2641 if we're at the first frag, check it's size > 0;
2642 if we're not at the first frag, then for sure
2643 the offset is > 0. */
2644 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2645 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2646
2647 if (add_symbol)
2648 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2649 }
2650
2651 mapping_state_2 (state, 0);
2652 #undef TRANSITION
2653 }
2654
2655 /* Same as mapping_state, but MAX_CHARS bytes have already been
2656 allocated. Put the mapping symbol that far back. */
2657
2658 static void
2659 mapping_state_2 (enum mstate state, int max_chars)
2660 {
2661 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2662
2663 if (!SEG_NORMAL (now_seg))
2664 return;
2665
2666 if (mapstate == state)
2667 /* The mapping symbol has already been emitted.
2668 There is nothing else to do. */
2669 return;
2670
2671 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2672 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2673 }
2674 #else
2675 #define mapping_state(x) ((void)0)
2676 #define mapping_state_2(x, y) ((void)0)
2677 #endif
2678
2679 /* Find the real, Thumb encoded start of a Thumb function. */
2680
2681 #ifdef OBJ_COFF
2682 static symbolS *
2683 find_real_start (symbolS * symbolP)
2684 {
2685 char * real_start;
2686 const char * name = S_GET_NAME (symbolP);
2687 symbolS * new_target;
2688
2689 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2690 #define STUB_NAME ".real_start_of"
2691
2692 if (name == NULL)
2693 abort ();
2694
2695 /* The compiler may generate BL instructions to local labels because
2696 it needs to perform a branch to a far away location. These labels
2697 do not have a corresponding ".real_start_of" label. We check
2698 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2699 the ".real_start_of" convention for nonlocal branches. */
2700 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2701 return symbolP;
2702
2703 real_start = ACONCAT ((STUB_NAME, name, NULL));
2704 new_target = symbol_find (real_start);
2705
2706 if (new_target == NULL)
2707 {
2708 as_warn (_("Failed to find real start of function: %s\n"), name);
2709 new_target = symbolP;
2710 }
2711
2712 return new_target;
2713 }
2714 #endif
2715
2716 static void
2717 opcode_select (int width)
2718 {
2719 switch (width)
2720 {
2721 case 16:
2722 if (! thumb_mode)
2723 {
2724 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2725 as_bad (_("selected processor does not support THUMB opcodes"));
2726
2727 thumb_mode = 1;
2728 /* No need to force the alignment, since we will have been
2729 coming from ARM mode, which is word-aligned. */
2730 record_alignment (now_seg, 1);
2731 }
2732 break;
2733
2734 case 32:
2735 if (thumb_mode)
2736 {
2737 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2738 as_bad (_("selected processor does not support ARM opcodes"));
2739
2740 thumb_mode = 0;
2741
2742 if (!need_pass_2)
2743 frag_align (2, 0, 0);
2744
2745 record_alignment (now_seg, 1);
2746 }
2747 break;
2748
2749 default:
2750 as_bad (_("invalid instruction size selected (%d)"), width);
2751 }
2752 }
2753
2754 static void
2755 s_arm (int ignore ATTRIBUTE_UNUSED)
2756 {
2757 opcode_select (32);
2758 demand_empty_rest_of_line ();
2759 }
2760
2761 static void
2762 s_thumb (int ignore ATTRIBUTE_UNUSED)
2763 {
2764 opcode_select (16);
2765 demand_empty_rest_of_line ();
2766 }
2767
2768 static void
2769 s_code (int unused ATTRIBUTE_UNUSED)
2770 {
2771 int temp;
2772
2773 temp = get_absolute_expression ();
2774 switch (temp)
2775 {
2776 case 16:
2777 case 32:
2778 opcode_select (temp);
2779 break;
2780
2781 default:
2782 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2783 }
2784 }
2785
2786 static void
2787 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2788 {
2789 /* If we are not already in thumb mode go into it, EVEN if
2790 the target processor does not support thumb instructions.
2791 This is used by gcc/config/arm/lib1funcs.asm for example
2792 to compile interworking support functions even if the
2793 target processor should not support interworking. */
2794 if (! thumb_mode)
2795 {
2796 thumb_mode = 2;
2797 record_alignment (now_seg, 1);
2798 }
2799
2800 demand_empty_rest_of_line ();
2801 }
2802
2803 static void
2804 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2805 {
2806 s_thumb (0);
2807
2808 /* The following label is the name/address of the start of a Thumb function.
2809 We need to know this for the interworking support. */
2810 label_is_thumb_function_name = TRUE;
2811 }
2812
2813 /* Perform a .set directive, but also mark the alias as
2814 being a thumb function. */
2815
2816 static void
2817 s_thumb_set (int equiv)
2818 {
2819 /* XXX the following is a duplicate of the code for s_set() in read.c
2820 We cannot just call that code as we need to get at the symbol that
2821 is created. */
2822 char * name;
2823 char delim;
2824 char * end_name;
2825 symbolS * symbolP;
2826
2827 /* Especial apologies for the random logic:
2828 This just grew, and could be parsed much more simply!
2829 Dean - in haste. */
2830 name = input_line_pointer;
2831 delim = get_symbol_end ();
2832 end_name = input_line_pointer;
2833 *end_name = delim;
2834
2835 if (*input_line_pointer != ',')
2836 {
2837 *end_name = 0;
2838 as_bad (_("expected comma after name \"%s\""), name);
2839 *end_name = delim;
2840 ignore_rest_of_line ();
2841 return;
2842 }
2843
2844 input_line_pointer++;
2845 *end_name = 0;
2846
2847 if (name[0] == '.' && name[1] == '\0')
2848 {
2849 /* XXX - this should not happen to .thumb_set. */
2850 abort ();
2851 }
2852
2853 if ((symbolP = symbol_find (name)) == NULL
2854 && (symbolP = md_undefined_symbol (name)) == NULL)
2855 {
2856 #ifndef NO_LISTING
2857 /* When doing symbol listings, play games with dummy fragments living
2858 outside the normal fragment chain to record the file and line info
2859 for this symbol. */
2860 if (listing & LISTING_SYMBOLS)
2861 {
2862 extern struct list_info_struct * listing_tail;
2863 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2864
2865 memset (dummy_frag, 0, sizeof (fragS));
2866 dummy_frag->fr_type = rs_fill;
2867 dummy_frag->line = listing_tail;
2868 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2869 dummy_frag->fr_symbol = symbolP;
2870 }
2871 else
2872 #endif
2873 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2874
2875 #ifdef OBJ_COFF
2876 /* "set" symbols are local unless otherwise specified. */
2877 SF_SET_LOCAL (symbolP);
2878 #endif /* OBJ_COFF */
2879 } /* Make a new symbol. */
2880
2881 symbol_table_insert (symbolP);
2882
2883 * end_name = delim;
2884
2885 if (equiv
2886 && S_IS_DEFINED (symbolP)
2887 && S_GET_SEGMENT (symbolP) != reg_section)
2888 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2889
2890 pseudo_set (symbolP);
2891
2892 demand_empty_rest_of_line ();
2893
2894 /* XXX Now we come to the Thumb specific bit of code. */
2895
2896 THUMB_SET_FUNC (symbolP, 1);
2897 ARM_SET_THUMB (symbolP, 1);
2898 #if defined OBJ_ELF || defined OBJ_COFF
2899 ARM_SET_INTERWORK (symbolP, support_interwork);
2900 #endif
2901 }
2902
2903 /* Directives: Mode selection. */
2904
2905 /* .syntax [unified|divided] - choose the new unified syntax
2906 (same for Arm and Thumb encoding, modulo slight differences in what
2907 can be represented) or the old divergent syntax for each mode. */
2908 static void
2909 s_syntax (int unused ATTRIBUTE_UNUSED)
2910 {
2911 char *name, delim;
2912
2913 name = input_line_pointer;
2914 delim = get_symbol_end ();
2915
2916 if (!strcasecmp (name, "unified"))
2917 unified_syntax = TRUE;
2918 else if (!strcasecmp (name, "divided"))
2919 unified_syntax = FALSE;
2920 else
2921 {
2922 as_bad (_("unrecognized syntax mode \"%s\""), name);
2923 return;
2924 }
2925 *input_line_pointer = delim;
2926 demand_empty_rest_of_line ();
2927 }
2928
2929 /* Directives: sectioning and alignment. */
2930
2931 /* Same as s_align_ptwo but align 0 => align 2. */
2932
2933 static void
2934 s_align (int unused ATTRIBUTE_UNUSED)
2935 {
2936 int temp;
2937 bfd_boolean fill_p;
2938 long temp_fill;
2939 long max_alignment = 15;
2940
2941 temp = get_absolute_expression ();
2942 if (temp > max_alignment)
2943 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2944 else if (temp < 0)
2945 {
2946 as_bad (_("alignment negative. 0 assumed."));
2947 temp = 0;
2948 }
2949
2950 if (*input_line_pointer == ',')
2951 {
2952 input_line_pointer++;
2953 temp_fill = get_absolute_expression ();
2954 fill_p = TRUE;
2955 }
2956 else
2957 {
2958 fill_p = FALSE;
2959 temp_fill = 0;
2960 }
2961
2962 if (!temp)
2963 temp = 2;
2964
2965 /* Only make a frag if we HAVE to. */
2966 if (temp && !need_pass_2)
2967 {
2968 if (!fill_p && subseg_text_p (now_seg))
2969 frag_align_code (temp, 0);
2970 else
2971 frag_align (temp, (int) temp_fill, 0);
2972 }
2973 demand_empty_rest_of_line ();
2974
2975 record_alignment (now_seg, temp);
2976 }
2977
2978 static void
2979 s_bss (int ignore ATTRIBUTE_UNUSED)
2980 {
2981 /* We don't support putting frags in the BSS segment, we fake it by
2982 marking in_bss, then looking at s_skip for clues. */
2983 subseg_set (bss_section, 0);
2984 demand_empty_rest_of_line ();
2985
2986 #ifdef md_elf_section_change_hook
2987 md_elf_section_change_hook ();
2988 #endif
2989 }
2990
2991 static void
2992 s_even (int ignore ATTRIBUTE_UNUSED)
2993 {
2994 /* Never make frag if expect extra pass. */
2995 if (!need_pass_2)
2996 frag_align (1, 0, 0);
2997
2998 record_alignment (now_seg, 1);
2999
3000 demand_empty_rest_of_line ();
3001 }
3002
3003 /* Directives: Literal pools. */
3004
3005 static literal_pool *
3006 find_literal_pool (void)
3007 {
3008 literal_pool * pool;
3009
3010 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3011 {
3012 if (pool->section == now_seg
3013 && pool->sub_section == now_subseg)
3014 break;
3015 }
3016
3017 return pool;
3018 }
3019
3020 static literal_pool *
3021 find_or_make_literal_pool (void)
3022 {
3023 /* Next literal pool ID number. */
3024 static unsigned int latest_pool_num = 1;
3025 literal_pool * pool;
3026
3027 pool = find_literal_pool ();
3028
3029 if (pool == NULL)
3030 {
3031 /* Create a new pool. */
3032 pool = (literal_pool *) xmalloc (sizeof (* pool));
3033 if (! pool)
3034 return NULL;
3035
3036 pool->next_free_entry = 0;
3037 pool->section = now_seg;
3038 pool->sub_section = now_subseg;
3039 pool->next = list_of_pools;
3040 pool->symbol = NULL;
3041
3042 /* Add it to the list. */
3043 list_of_pools = pool;
3044 }
3045
3046 /* New pools, and emptied pools, will have a NULL symbol. */
3047 if (pool->symbol == NULL)
3048 {
3049 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3050 (valueT) 0, &zero_address_frag);
3051 pool->id = latest_pool_num ++;
3052 }
3053
3054 /* Done. */
3055 return pool;
3056 }
3057
3058 /* Add the literal in the global 'inst'
3059 structure to the relevant literal pool. */
3060
3061 static int
3062 add_to_lit_pool (void)
3063 {
3064 literal_pool * pool;
3065 unsigned int entry;
3066
3067 pool = find_or_make_literal_pool ();
3068
3069 /* Check if this literal value is already in the pool. */
3070 for (entry = 0; entry < pool->next_free_entry; entry ++)
3071 {
3072 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3073 && (inst.reloc.exp.X_op == O_constant)
3074 && (pool->literals[entry].X_add_number
3075 == inst.reloc.exp.X_add_number)
3076 && (pool->literals[entry].X_unsigned
3077 == inst.reloc.exp.X_unsigned))
3078 break;
3079
3080 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3081 && (inst.reloc.exp.X_op == O_symbol)
3082 && (pool->literals[entry].X_add_number
3083 == inst.reloc.exp.X_add_number)
3084 && (pool->literals[entry].X_add_symbol
3085 == inst.reloc.exp.X_add_symbol)
3086 && (pool->literals[entry].X_op_symbol
3087 == inst.reloc.exp.X_op_symbol))
3088 break;
3089 }
3090
3091 /* Do we need to create a new entry? */
3092 if (entry == pool->next_free_entry)
3093 {
3094 if (entry >= MAX_LITERAL_POOL_SIZE)
3095 {
3096 inst.error = _("literal pool overflow");
3097 return FAIL;
3098 }
3099
3100 pool->literals[entry] = inst.reloc.exp;
3101 #ifdef OBJ_ELF
3102 /* PR ld/12974: Record the location of the first source line to reference
3103 this entry in the literal pool. If it turns out during linking that the
3104 symbol does not exist we will be able to give an accurate line number for
3105 the (first use of the) missing reference. */
3106 if (debug_type == DEBUG_DWARF2)
3107 dwarf2_where (pool->locs + entry);
3108 #endif
3109 pool->next_free_entry += 1;
3110 }
3111
3112 inst.reloc.exp.X_op = O_symbol;
3113 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3114 inst.reloc.exp.X_add_symbol = pool->symbol;
3115
3116 return SUCCESS;
3117 }
3118
3119 /* Can't use symbol_new here, so have to create a symbol and then at
3120 a later date assign it a value. Thats what these functions do. */
3121
3122 static void
3123 symbol_locate (symbolS * symbolP,
3124 const char * name, /* It is copied, the caller can modify. */
3125 segT segment, /* Segment identifier (SEG_<something>). */
3126 valueT valu, /* Symbol value. */
3127 fragS * frag) /* Associated fragment. */
3128 {
3129 unsigned int name_length;
3130 char * preserved_copy_of_name;
3131
3132 name_length = strlen (name) + 1; /* +1 for \0. */
3133 obstack_grow (&notes, name, name_length);
3134 preserved_copy_of_name = (char *) obstack_finish (&notes);
3135
3136 #ifdef tc_canonicalize_symbol_name
3137 preserved_copy_of_name =
3138 tc_canonicalize_symbol_name (preserved_copy_of_name);
3139 #endif
3140
3141 S_SET_NAME (symbolP, preserved_copy_of_name);
3142
3143 S_SET_SEGMENT (symbolP, segment);
3144 S_SET_VALUE (symbolP, valu);
3145 symbol_clear_list_pointers (symbolP);
3146
3147 symbol_set_frag (symbolP, frag);
3148
3149 /* Link to end of symbol chain. */
3150 {
3151 extern int symbol_table_frozen;
3152
3153 if (symbol_table_frozen)
3154 abort ();
3155 }
3156
3157 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3158
3159 obj_symbol_new_hook (symbolP);
3160
3161 #ifdef tc_symbol_new_hook
3162 tc_symbol_new_hook (symbolP);
3163 #endif
3164
3165 #ifdef DEBUG_SYMS
3166 verify_symbol_chain (symbol_rootP, symbol_lastP);
3167 #endif /* DEBUG_SYMS */
3168 }
3169
3170
3171 static void
3172 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3173 {
3174 unsigned int entry;
3175 literal_pool * pool;
3176 char sym_name[20];
3177
3178 pool = find_literal_pool ();
3179 if (pool == NULL
3180 || pool->symbol == NULL
3181 || pool->next_free_entry == 0)
3182 return;
3183
3184 mapping_state (MAP_DATA);
3185
3186 /* Align pool as you have word accesses.
3187 Only make a frag if we have to. */
3188 if (!need_pass_2)
3189 frag_align (2, 0, 0);
3190
3191 record_alignment (now_seg, 2);
3192
3193 sprintf (sym_name, "$$lit_\002%x", pool->id);
3194
3195 symbol_locate (pool->symbol, sym_name, now_seg,
3196 (valueT) frag_now_fix (), frag_now);
3197 symbol_table_insert (pool->symbol);
3198
3199 ARM_SET_THUMB (pool->symbol, thumb_mode);
3200
3201 #if defined OBJ_COFF || defined OBJ_ELF
3202 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3203 #endif
3204
3205 for (entry = 0; entry < pool->next_free_entry; entry ++)
3206 {
3207 #ifdef OBJ_ELF
3208 if (debug_type == DEBUG_DWARF2)
3209 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3210 #endif
3211 /* First output the expression in the instruction to the pool. */
3212 emit_expr (&(pool->literals[entry]), 4); /* .word */
3213 }
3214
3215 /* Mark the pool as empty. */
3216 pool->next_free_entry = 0;
3217 pool->symbol = NULL;
3218 }
3219
3220 #ifdef OBJ_ELF
3221 /* Forward declarations for functions below, in the MD interface
3222 section. */
3223 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3224 static valueT create_unwind_entry (int);
3225 static void start_unwind_section (const segT, int);
3226 static void add_unwind_opcode (valueT, int);
3227 static void flush_pending_unwind (void);
3228
3229 /* Directives: Data. */
3230
3231 static void
3232 s_arm_elf_cons (int nbytes)
3233 {
3234 expressionS exp;
3235
3236 #ifdef md_flush_pending_output
3237 md_flush_pending_output ();
3238 #endif
3239
3240 if (is_it_end_of_statement ())
3241 {
3242 demand_empty_rest_of_line ();
3243 return;
3244 }
3245
3246 #ifdef md_cons_align
3247 md_cons_align (nbytes);
3248 #endif
3249
3250 mapping_state (MAP_DATA);
3251 do
3252 {
3253 int reloc;
3254 char *base = input_line_pointer;
3255
3256 expression (& exp);
3257
3258 if (exp.X_op != O_symbol)
3259 emit_expr (&exp, (unsigned int) nbytes);
3260 else
3261 {
3262 char *before_reloc = input_line_pointer;
3263 reloc = parse_reloc (&input_line_pointer);
3264 if (reloc == -1)
3265 {
3266 as_bad (_("unrecognized relocation suffix"));
3267 ignore_rest_of_line ();
3268 return;
3269 }
3270 else if (reloc == BFD_RELOC_UNUSED)
3271 emit_expr (&exp, (unsigned int) nbytes);
3272 else
3273 {
3274 reloc_howto_type *howto = (reloc_howto_type *)
3275 bfd_reloc_type_lookup (stdoutput,
3276 (bfd_reloc_code_real_type) reloc);
3277 int size = bfd_get_reloc_size (howto);
3278
3279 if (reloc == BFD_RELOC_ARM_PLT32)
3280 {
3281 as_bad (_("(plt) is only valid on branch targets"));
3282 reloc = BFD_RELOC_UNUSED;
3283 size = 0;
3284 }
3285
3286 if (size > nbytes)
3287 as_bad (_("%s relocations do not fit in %d bytes"),
3288 howto->name, nbytes);
3289 else
3290 {
3291 /* We've parsed an expression stopping at O_symbol.
3292 But there may be more expression left now that we
3293 have parsed the relocation marker. Parse it again.
3294 XXX Surely there is a cleaner way to do this. */
3295 char *p = input_line_pointer;
3296 int offset;
3297 char *save_buf = (char *) alloca (input_line_pointer - base);
3298 memcpy (save_buf, base, input_line_pointer - base);
3299 memmove (base + (input_line_pointer - before_reloc),
3300 base, before_reloc - base);
3301
3302 input_line_pointer = base + (input_line_pointer-before_reloc);
3303 expression (&exp);
3304 memcpy (base, save_buf, p - base);
3305
3306 offset = nbytes - size;
3307 p = frag_more ((int) nbytes);
3308 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3309 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3310 }
3311 }
3312 }
3313 }
3314 while (*input_line_pointer++ == ',');
3315
3316 /* Put terminator back into stream. */
3317 input_line_pointer --;
3318 demand_empty_rest_of_line ();
3319 }
3320
3321 /* Emit an expression containing a 32-bit thumb instruction.
3322 Implementation based on put_thumb32_insn. */
3323
3324 static void
3325 emit_thumb32_expr (expressionS * exp)
3326 {
3327 expressionS exp_high = *exp;
3328
3329 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3330 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3331 exp->X_add_number &= 0xffff;
3332 emit_expr (exp, (unsigned int) THUMB_SIZE);
3333 }
3334
3335 /* Guess the instruction size based on the opcode. */
3336
3337 static int
3338 thumb_insn_size (int opcode)
3339 {
3340 if ((unsigned int) opcode < 0xe800u)
3341 return 2;
3342 else if ((unsigned int) opcode >= 0xe8000000u)
3343 return 4;
3344 else
3345 return 0;
3346 }
3347
3348 static bfd_boolean
3349 emit_insn (expressionS *exp, int nbytes)
3350 {
3351 int size = 0;
3352
3353 if (exp->X_op == O_constant)
3354 {
3355 size = nbytes;
3356
3357 if (size == 0)
3358 size = thumb_insn_size (exp->X_add_number);
3359
3360 if (size != 0)
3361 {
3362 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3363 {
3364 as_bad (_(".inst.n operand too big. "\
3365 "Use .inst.w instead"));
3366 size = 0;
3367 }
3368 else
3369 {
3370 if (now_it.state == AUTOMATIC_IT_BLOCK)
3371 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3372 else
3373 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3374
3375 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3376 emit_thumb32_expr (exp);
3377 else
3378 emit_expr (exp, (unsigned int) size);
3379
3380 it_fsm_post_encode ();
3381 }
3382 }
3383 else
3384 as_bad (_("cannot determine Thumb instruction size. " \
3385 "Use .inst.n/.inst.w instead"));
3386 }
3387 else
3388 as_bad (_("constant expression required"));
3389
3390 return (size != 0);
3391 }
3392
3393 /* Like s_arm_elf_cons but do not use md_cons_align and
3394 set the mapping state to MAP_ARM/MAP_THUMB. */
3395
3396 static void
3397 s_arm_elf_inst (int nbytes)
3398 {
3399 if (is_it_end_of_statement ())
3400 {
3401 demand_empty_rest_of_line ();
3402 return;
3403 }
3404
3405 /* Calling mapping_state () here will not change ARM/THUMB,
3406 but will ensure not to be in DATA state. */
3407
3408 if (thumb_mode)
3409 mapping_state (MAP_THUMB);
3410 else
3411 {
3412 if (nbytes != 0)
3413 {
3414 as_bad (_("width suffixes are invalid in ARM mode"));
3415 ignore_rest_of_line ();
3416 return;
3417 }
3418
3419 nbytes = 4;
3420
3421 mapping_state (MAP_ARM);
3422 }
3423
3424 do
3425 {
3426 expressionS exp;
3427
3428 expression (& exp);
3429
3430 if (! emit_insn (& exp, nbytes))
3431 {
3432 ignore_rest_of_line ();
3433 return;
3434 }
3435 }
3436 while (*input_line_pointer++ == ',');
3437
3438 /* Put terminator back into stream. */
3439 input_line_pointer --;
3440 demand_empty_rest_of_line ();
3441 }
3442
3443 /* Parse a .rel31 directive. */
3444
3445 static void
3446 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3447 {
3448 expressionS exp;
3449 char *p;
3450 valueT highbit;
3451
3452 highbit = 0;
3453 if (*input_line_pointer == '1')
3454 highbit = 0x80000000;
3455 else if (*input_line_pointer != '0')
3456 as_bad (_("expected 0 or 1"));
3457
3458 input_line_pointer++;
3459 if (*input_line_pointer != ',')
3460 as_bad (_("missing comma"));
3461 input_line_pointer++;
3462
3463 #ifdef md_flush_pending_output
3464 md_flush_pending_output ();
3465 #endif
3466
3467 #ifdef md_cons_align
3468 md_cons_align (4);
3469 #endif
3470
3471 mapping_state (MAP_DATA);
3472
3473 expression (&exp);
3474
3475 p = frag_more (4);
3476 md_number_to_chars (p, highbit, 4);
3477 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3478 BFD_RELOC_ARM_PREL31);
3479
3480 demand_empty_rest_of_line ();
3481 }
3482
3483 /* Directives: AEABI stack-unwind tables. */
3484
3485 /* Parse an unwind_fnstart directive. Simply records the current location. */
3486
3487 static void
3488 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3489 {
3490 demand_empty_rest_of_line ();
3491 if (unwind.proc_start)
3492 {
3493 as_bad (_("duplicate .fnstart directive"));
3494 return;
3495 }
3496
3497 /* Mark the start of the function. */
3498 unwind.proc_start = expr_build_dot ();
3499
3500 /* Reset the rest of the unwind info. */
3501 unwind.opcode_count = 0;
3502 unwind.table_entry = NULL;
3503 unwind.personality_routine = NULL;
3504 unwind.personality_index = -1;
3505 unwind.frame_size = 0;
3506 unwind.fp_offset = 0;
3507 unwind.fp_reg = REG_SP;
3508 unwind.fp_used = 0;
3509 unwind.sp_restored = 0;
3510 }
3511
3512
3513 /* Parse a handlerdata directive. Creates the exception handling table entry
3514 for the function. */
3515
3516 static void
3517 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3518 {
3519 demand_empty_rest_of_line ();
3520 if (!unwind.proc_start)
3521 as_bad (MISSING_FNSTART);
3522
3523 if (unwind.table_entry)
3524 as_bad (_("duplicate .handlerdata directive"));
3525
3526 create_unwind_entry (1);
3527 }
3528
3529 /* Parse an unwind_fnend directive. Generates the index table entry. */
3530
3531 static void
3532 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3533 {
3534 long where;
3535 char *ptr;
3536 valueT val;
3537 unsigned int marked_pr_dependency;
3538
3539 demand_empty_rest_of_line ();
3540
3541 if (!unwind.proc_start)
3542 {
3543 as_bad (_(".fnend directive without .fnstart"));
3544 return;
3545 }
3546
3547 /* Add eh table entry. */
3548 if (unwind.table_entry == NULL)
3549 val = create_unwind_entry (0);
3550 else
3551 val = 0;
3552
3553 /* Add index table entry. This is two words. */
3554 start_unwind_section (unwind.saved_seg, 1);
3555 frag_align (2, 0, 0);
3556 record_alignment (now_seg, 2);
3557
3558 ptr = frag_more (8);
3559 memset (ptr, 0, 8);
3560 where = frag_now_fix () - 8;
3561
3562 /* Self relative offset of the function start. */
3563 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3564 BFD_RELOC_ARM_PREL31);
3565
3566 /* Indicate dependency on EHABI-defined personality routines to the
3567 linker, if it hasn't been done already. */
3568 marked_pr_dependency
3569 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3570 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3571 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3572 {
3573 static const char *const name[] =
3574 {
3575 "__aeabi_unwind_cpp_pr0",
3576 "__aeabi_unwind_cpp_pr1",
3577 "__aeabi_unwind_cpp_pr2"
3578 };
3579 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3580 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3581 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3582 |= 1 << unwind.personality_index;
3583 }
3584
3585 if (val)
3586 /* Inline exception table entry. */
3587 md_number_to_chars (ptr + 4, val, 4);
3588 else
3589 /* Self relative offset of the table entry. */
3590 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3591 BFD_RELOC_ARM_PREL31);
3592
3593 /* Restore the original section. */
3594 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3595
3596 unwind.proc_start = NULL;
3597 }
3598
3599
3600 /* Parse an unwind_cantunwind directive. */
3601
3602 static void
3603 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3604 {
3605 demand_empty_rest_of_line ();
3606 if (!unwind.proc_start)
3607 as_bad (MISSING_FNSTART);
3608
3609 if (unwind.personality_routine || unwind.personality_index != -1)
3610 as_bad (_("personality routine specified for cantunwind frame"));
3611
3612 unwind.personality_index = -2;
3613 }
3614
3615
3616 /* Parse a personalityindex directive. */
3617
3618 static void
3619 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3620 {
3621 expressionS exp;
3622
3623 if (!unwind.proc_start)
3624 as_bad (MISSING_FNSTART);
3625
3626 if (unwind.personality_routine || unwind.personality_index != -1)
3627 as_bad (_("duplicate .personalityindex directive"));
3628
3629 expression (&exp);
3630
3631 if (exp.X_op != O_constant
3632 || exp.X_add_number < 0 || exp.X_add_number > 15)
3633 {
3634 as_bad (_("bad personality routine number"));
3635 ignore_rest_of_line ();
3636 return;
3637 }
3638
3639 unwind.personality_index = exp.X_add_number;
3640
3641 demand_empty_rest_of_line ();
3642 }
3643
3644
3645 /* Parse a personality directive. */
3646
3647 static void
3648 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3649 {
3650 char *name, *p, c;
3651
3652 if (!unwind.proc_start)
3653 as_bad (MISSING_FNSTART);
3654
3655 if (unwind.personality_routine || unwind.personality_index != -1)
3656 as_bad (_("duplicate .personality directive"));
3657
3658 name = input_line_pointer;
3659 c = get_symbol_end ();
3660 p = input_line_pointer;
3661 unwind.personality_routine = symbol_find_or_make (name);
3662 *p = c;
3663 demand_empty_rest_of_line ();
3664 }
3665
3666
3667 /* Parse a directive saving core registers. */
3668
3669 static void
3670 s_arm_unwind_save_core (void)
3671 {
3672 valueT op;
3673 long range;
3674 int n;
3675
3676 range = parse_reg_list (&input_line_pointer);
3677 if (range == FAIL)
3678 {
3679 as_bad (_("expected register list"));
3680 ignore_rest_of_line ();
3681 return;
3682 }
3683
3684 demand_empty_rest_of_line ();
3685
3686 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3687 into .unwind_save {..., sp...}. We aren't bothered about the value of
3688 ip because it is clobbered by calls. */
3689 if (unwind.sp_restored && unwind.fp_reg == 12
3690 && (range & 0x3000) == 0x1000)
3691 {
3692 unwind.opcode_count--;
3693 unwind.sp_restored = 0;
3694 range = (range | 0x2000) & ~0x1000;
3695 unwind.pending_offset = 0;
3696 }
3697
3698 /* Pop r4-r15. */
3699 if (range & 0xfff0)
3700 {
3701 /* See if we can use the short opcodes. These pop a block of up to 8
3702 registers starting with r4, plus maybe r14. */
3703 for (n = 0; n < 8; n++)
3704 {
3705 /* Break at the first non-saved register. */
3706 if ((range & (1 << (n + 4))) == 0)
3707 break;
3708 }
3709 /* See if there are any other bits set. */
3710 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3711 {
3712 /* Use the long form. */
3713 op = 0x8000 | ((range >> 4) & 0xfff);
3714 add_unwind_opcode (op, 2);
3715 }
3716 else
3717 {
3718 /* Use the short form. */
3719 if (range & 0x4000)
3720 op = 0xa8; /* Pop r14. */
3721 else
3722 op = 0xa0; /* Do not pop r14. */
3723 op |= (n - 1);
3724 add_unwind_opcode (op, 1);
3725 }
3726 }
3727
3728 /* Pop r0-r3. */
3729 if (range & 0xf)
3730 {
3731 op = 0xb100 | (range & 0xf);
3732 add_unwind_opcode (op, 2);
3733 }
3734
3735 /* Record the number of bytes pushed. */
3736 for (n = 0; n < 16; n++)
3737 {
3738 if (range & (1 << n))
3739 unwind.frame_size += 4;
3740 }
3741 }
3742
3743
3744 /* Parse a directive saving FPA registers. */
3745
3746 static void
3747 s_arm_unwind_save_fpa (int reg)
3748 {
3749 expressionS exp;
3750 int num_regs;
3751 valueT op;
3752
3753 /* Get Number of registers to transfer. */
3754 if (skip_past_comma (&input_line_pointer) != FAIL)
3755 expression (&exp);
3756 else
3757 exp.X_op = O_illegal;
3758
3759 if (exp.X_op != O_constant)
3760 {
3761 as_bad (_("expected , <constant>"));
3762 ignore_rest_of_line ();
3763 return;
3764 }
3765
3766 num_regs = exp.X_add_number;
3767
3768 if (num_regs < 1 || num_regs > 4)
3769 {
3770 as_bad (_("number of registers must be in the range [1:4]"));
3771 ignore_rest_of_line ();
3772 return;
3773 }
3774
3775 demand_empty_rest_of_line ();
3776
3777 if (reg == 4)
3778 {
3779 /* Short form. */
3780 op = 0xb4 | (num_regs - 1);
3781 add_unwind_opcode (op, 1);
3782 }
3783 else
3784 {
3785 /* Long form. */
3786 op = 0xc800 | (reg << 4) | (num_regs - 1);
3787 add_unwind_opcode (op, 2);
3788 }
3789 unwind.frame_size += num_regs * 12;
3790 }
3791
3792
3793 /* Parse a directive saving VFP registers for ARMv6 and above. */
3794
3795 static void
3796 s_arm_unwind_save_vfp_armv6 (void)
3797 {
3798 int count;
3799 unsigned int start;
3800 valueT op;
3801 int num_vfpv3_regs = 0;
3802 int num_regs_below_16;
3803
3804 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3805 if (count == FAIL)
3806 {
3807 as_bad (_("expected register list"));
3808 ignore_rest_of_line ();
3809 return;
3810 }
3811
3812 demand_empty_rest_of_line ();
3813
3814 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3815 than FSTMX/FLDMX-style ones). */
3816
3817 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3818 if (start >= 16)
3819 num_vfpv3_regs = count;
3820 else if (start + count > 16)
3821 num_vfpv3_regs = start + count - 16;
3822
3823 if (num_vfpv3_regs > 0)
3824 {
3825 int start_offset = start > 16 ? start - 16 : 0;
3826 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3827 add_unwind_opcode (op, 2);
3828 }
3829
3830 /* Generate opcode for registers numbered in the range 0 .. 15. */
3831 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3832 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3833 if (num_regs_below_16 > 0)
3834 {
3835 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3836 add_unwind_opcode (op, 2);
3837 }
3838
3839 unwind.frame_size += count * 8;
3840 }
3841
3842
3843 /* Parse a directive saving VFP registers for pre-ARMv6. */
3844
3845 static void
3846 s_arm_unwind_save_vfp (void)
3847 {
3848 int count;
3849 unsigned int reg;
3850 valueT op;
3851
3852 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3853 if (count == FAIL)
3854 {
3855 as_bad (_("expected register list"));
3856 ignore_rest_of_line ();
3857 return;
3858 }
3859
3860 demand_empty_rest_of_line ();
3861
3862 if (reg == 8)
3863 {
3864 /* Short form. */
3865 op = 0xb8 | (count - 1);
3866 add_unwind_opcode (op, 1);
3867 }
3868 else
3869 {
3870 /* Long form. */
3871 op = 0xb300 | (reg << 4) | (count - 1);
3872 add_unwind_opcode (op, 2);
3873 }
3874 unwind.frame_size += count * 8 + 4;
3875 }
3876
3877
3878 /* Parse a directive saving iWMMXt data registers. */
3879
3880 static void
3881 s_arm_unwind_save_mmxwr (void)
3882 {
3883 int reg;
3884 int hi_reg;
3885 int i;
3886 unsigned mask = 0;
3887 valueT op;
3888
3889 if (*input_line_pointer == '{')
3890 input_line_pointer++;
3891
3892 do
3893 {
3894 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3895
3896 if (reg == FAIL)
3897 {
3898 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3899 goto error;
3900 }
3901
3902 if (mask >> reg)
3903 as_tsktsk (_("register list not in ascending order"));
3904 mask |= 1 << reg;
3905
3906 if (*input_line_pointer == '-')
3907 {
3908 input_line_pointer++;
3909 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3910 if (hi_reg == FAIL)
3911 {
3912 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3913 goto error;
3914 }
3915 else if (reg >= hi_reg)
3916 {
3917 as_bad (_("bad register range"));
3918 goto error;
3919 }
3920 for (; reg < hi_reg; reg++)
3921 mask |= 1 << reg;
3922 }
3923 }
3924 while (skip_past_comma (&input_line_pointer) != FAIL);
3925
3926 if (*input_line_pointer == '}')
3927 input_line_pointer++;
3928
3929 demand_empty_rest_of_line ();
3930
3931 /* Generate any deferred opcodes because we're going to be looking at
3932 the list. */
3933 flush_pending_unwind ();
3934
3935 for (i = 0; i < 16; i++)
3936 {
3937 if (mask & (1 << i))
3938 unwind.frame_size += 8;
3939 }
3940
3941 /* Attempt to combine with a previous opcode. We do this because gcc
3942 likes to output separate unwind directives for a single block of
3943 registers. */
3944 if (unwind.opcode_count > 0)
3945 {
3946 i = unwind.opcodes[unwind.opcode_count - 1];
3947 if ((i & 0xf8) == 0xc0)
3948 {
3949 i &= 7;
3950 /* Only merge if the blocks are contiguous. */
3951 if (i < 6)
3952 {
3953 if ((mask & 0xfe00) == (1 << 9))
3954 {
3955 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3956 unwind.opcode_count--;
3957 }
3958 }
3959 else if (i == 6 && unwind.opcode_count >= 2)
3960 {
3961 i = unwind.opcodes[unwind.opcode_count - 2];
3962 reg = i >> 4;
3963 i &= 0xf;
3964
3965 op = 0xffff << (reg - 1);
3966 if (reg > 0
3967 && ((mask & op) == (1u << (reg - 1))))
3968 {
3969 op = (1 << (reg + i + 1)) - 1;
3970 op &= ~((1 << reg) - 1);
3971 mask |= op;
3972 unwind.opcode_count -= 2;
3973 }
3974 }
3975 }
3976 }
3977
3978 hi_reg = 15;
3979 /* We want to generate opcodes in the order the registers have been
3980 saved, ie. descending order. */
3981 for (reg = 15; reg >= -1; reg--)
3982 {
3983 /* Save registers in blocks. */
3984 if (reg < 0
3985 || !(mask & (1 << reg)))
3986 {
3987 /* We found an unsaved reg. Generate opcodes to save the
3988 preceding block. */
3989 if (reg != hi_reg)
3990 {
3991 if (reg == 9)
3992 {
3993 /* Short form. */
3994 op = 0xc0 | (hi_reg - 10);
3995 add_unwind_opcode (op, 1);
3996 }
3997 else
3998 {
3999 /* Long form. */
4000 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4001 add_unwind_opcode (op, 2);
4002 }
4003 }
4004 hi_reg = reg - 1;
4005 }
4006 }
4007
4008 return;
4009 error:
4010 ignore_rest_of_line ();
4011 }
4012
4013 static void
4014 s_arm_unwind_save_mmxwcg (void)
4015 {
4016 int reg;
4017 int hi_reg;
4018 unsigned mask = 0;
4019 valueT op;
4020
4021 if (*input_line_pointer == '{')
4022 input_line_pointer++;
4023
4024 do
4025 {
4026 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4027
4028 if (reg == FAIL)
4029 {
4030 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4031 goto error;
4032 }
4033
4034 reg -= 8;
4035 if (mask >> reg)
4036 as_tsktsk (_("register list not in ascending order"));
4037 mask |= 1 << reg;
4038
4039 if (*input_line_pointer == '-')
4040 {
4041 input_line_pointer++;
4042 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4043 if (hi_reg == FAIL)
4044 {
4045 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4046 goto error;
4047 }
4048 else if (reg >= hi_reg)
4049 {
4050 as_bad (_("bad register range"));
4051 goto error;
4052 }
4053 for (; reg < hi_reg; reg++)
4054 mask |= 1 << reg;
4055 }
4056 }
4057 while (skip_past_comma (&input_line_pointer) != FAIL);
4058
4059 if (*input_line_pointer == '}')
4060 input_line_pointer++;
4061
4062 demand_empty_rest_of_line ();
4063
4064 /* Generate any deferred opcodes because we're going to be looking at
4065 the list. */
4066 flush_pending_unwind ();
4067
4068 for (reg = 0; reg < 16; reg++)
4069 {
4070 if (mask & (1 << reg))
4071 unwind.frame_size += 4;
4072 }
4073 op = 0xc700 | mask;
4074 add_unwind_opcode (op, 2);
4075 return;
4076 error:
4077 ignore_rest_of_line ();
4078 }
4079
4080
4081 /* Parse an unwind_save directive.
4082 If the argument is non-zero, this is a .vsave directive. */
4083
4084 static void
4085 s_arm_unwind_save (int arch_v6)
4086 {
4087 char *peek;
4088 struct reg_entry *reg;
4089 bfd_boolean had_brace = FALSE;
4090
4091 if (!unwind.proc_start)
4092 as_bad (MISSING_FNSTART);
4093
4094 /* Figure out what sort of save we have. */
4095 peek = input_line_pointer;
4096
4097 if (*peek == '{')
4098 {
4099 had_brace = TRUE;
4100 peek++;
4101 }
4102
4103 reg = arm_reg_parse_multi (&peek);
4104
4105 if (!reg)
4106 {
4107 as_bad (_("register expected"));
4108 ignore_rest_of_line ();
4109 return;
4110 }
4111
4112 switch (reg->type)
4113 {
4114 case REG_TYPE_FN:
4115 if (had_brace)
4116 {
4117 as_bad (_("FPA .unwind_save does not take a register list"));
4118 ignore_rest_of_line ();
4119 return;
4120 }
4121 input_line_pointer = peek;
4122 s_arm_unwind_save_fpa (reg->number);
4123 return;
4124
4125 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
4126 case REG_TYPE_VFD:
4127 if (arch_v6)
4128 s_arm_unwind_save_vfp_armv6 ();
4129 else
4130 s_arm_unwind_save_vfp ();
4131 return;
4132 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4133 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4134
4135 default:
4136 as_bad (_(".unwind_save does not support this kind of register"));
4137 ignore_rest_of_line ();
4138 }
4139 }
4140
4141
4142 /* Parse an unwind_movsp directive. */
4143
4144 static void
4145 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4146 {
4147 int reg;
4148 valueT op;
4149 int offset;
4150
4151 if (!unwind.proc_start)
4152 as_bad (MISSING_FNSTART);
4153
4154 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4155 if (reg == FAIL)
4156 {
4157 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4158 ignore_rest_of_line ();
4159 return;
4160 }
4161
4162 /* Optional constant. */
4163 if (skip_past_comma (&input_line_pointer) != FAIL)
4164 {
4165 if (immediate_for_directive (&offset) == FAIL)
4166 return;
4167 }
4168 else
4169 offset = 0;
4170
4171 demand_empty_rest_of_line ();
4172
4173 if (reg == REG_SP || reg == REG_PC)
4174 {
4175 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4176 return;
4177 }
4178
4179 if (unwind.fp_reg != REG_SP)
4180 as_bad (_("unexpected .unwind_movsp directive"));
4181
4182 /* Generate opcode to restore the value. */
4183 op = 0x90 | reg;
4184 add_unwind_opcode (op, 1);
4185
4186 /* Record the information for later. */
4187 unwind.fp_reg = reg;
4188 unwind.fp_offset = unwind.frame_size - offset;
4189 unwind.sp_restored = 1;
4190 }
4191
4192 /* Parse an unwind_pad directive. */
4193
4194 static void
4195 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4196 {
4197 int offset;
4198
4199 if (!unwind.proc_start)
4200 as_bad (MISSING_FNSTART);
4201
4202 if (immediate_for_directive (&offset) == FAIL)
4203 return;
4204
4205 if (offset & 3)
4206 {
4207 as_bad (_("stack increment must be multiple of 4"));
4208 ignore_rest_of_line ();
4209 return;
4210 }
4211
4212 /* Don't generate any opcodes, just record the details for later. */
4213 unwind.frame_size += offset;
4214 unwind.pending_offset += offset;
4215
4216 demand_empty_rest_of_line ();
4217 }
4218
4219 /* Parse an unwind_setfp directive. */
4220
4221 static void
4222 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4223 {
4224 int sp_reg;
4225 int fp_reg;
4226 int offset;
4227
4228 if (!unwind.proc_start)
4229 as_bad (MISSING_FNSTART);
4230
4231 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4232 if (skip_past_comma (&input_line_pointer) == FAIL)
4233 sp_reg = FAIL;
4234 else
4235 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4236
4237 if (fp_reg == FAIL || sp_reg == FAIL)
4238 {
4239 as_bad (_("expected <reg>, <reg>"));
4240 ignore_rest_of_line ();
4241 return;
4242 }
4243
4244 /* Optional constant. */
4245 if (skip_past_comma (&input_line_pointer) != FAIL)
4246 {
4247 if (immediate_for_directive (&offset) == FAIL)
4248 return;
4249 }
4250 else
4251 offset = 0;
4252
4253 demand_empty_rest_of_line ();
4254
4255 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4256 {
4257 as_bad (_("register must be either sp or set by a previous"
4258 "unwind_movsp directive"));
4259 return;
4260 }
4261
4262 /* Don't generate any opcodes, just record the information for later. */
4263 unwind.fp_reg = fp_reg;
4264 unwind.fp_used = 1;
4265 if (sp_reg == REG_SP)
4266 unwind.fp_offset = unwind.frame_size - offset;
4267 else
4268 unwind.fp_offset -= offset;
4269 }
4270
4271 /* Parse an unwind_raw directive. */
4272
4273 static void
4274 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4275 {
4276 expressionS exp;
4277 /* This is an arbitrary limit. */
4278 unsigned char op[16];
4279 int count;
4280
4281 if (!unwind.proc_start)
4282 as_bad (MISSING_FNSTART);
4283
4284 expression (&exp);
4285 if (exp.X_op == O_constant
4286 && skip_past_comma (&input_line_pointer) != FAIL)
4287 {
4288 unwind.frame_size += exp.X_add_number;
4289 expression (&exp);
4290 }
4291 else
4292 exp.X_op = O_illegal;
4293
4294 if (exp.X_op != O_constant)
4295 {
4296 as_bad (_("expected <offset>, <opcode>"));
4297 ignore_rest_of_line ();
4298 return;
4299 }
4300
4301 count = 0;
4302
4303 /* Parse the opcode. */
4304 for (;;)
4305 {
4306 if (count >= 16)
4307 {
4308 as_bad (_("unwind opcode too long"));
4309 ignore_rest_of_line ();
4310 }
4311 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4312 {
4313 as_bad (_("invalid unwind opcode"));
4314 ignore_rest_of_line ();
4315 return;
4316 }
4317 op[count++] = exp.X_add_number;
4318
4319 /* Parse the next byte. */
4320 if (skip_past_comma (&input_line_pointer) == FAIL)
4321 break;
4322
4323 expression (&exp);
4324 }
4325
4326 /* Add the opcode bytes in reverse order. */
4327 while (count--)
4328 add_unwind_opcode (op[count], 1);
4329
4330 demand_empty_rest_of_line ();
4331 }
4332
4333
4334 /* Parse a .eabi_attribute directive. */
4335
4336 static void
4337 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4338 {
4339 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4340
4341 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4342 attributes_set_explicitly[tag] = 1;
4343 }
4344
4345 /* Emit a tls fix for the symbol. */
4346
4347 static void
4348 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4349 {
4350 char *p;
4351 expressionS exp;
4352 #ifdef md_flush_pending_output
4353 md_flush_pending_output ();
4354 #endif
4355
4356 #ifdef md_cons_align
4357 md_cons_align (4);
4358 #endif
4359
4360 /* Since we're just labelling the code, there's no need to define a
4361 mapping symbol. */
4362 expression (&exp);
4363 p = obstack_next_free (&frchain_now->frch_obstack);
4364 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4365 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4366 : BFD_RELOC_ARM_TLS_DESCSEQ);
4367 }
4368 #endif /* OBJ_ELF */
4369
4370 static void s_arm_arch (int);
4371 static void s_arm_object_arch (int);
4372 static void s_arm_cpu (int);
4373 static void s_arm_fpu (int);
4374 static void s_arm_arch_extension (int);
4375
4376 #ifdef TE_PE
4377
4378 static void
4379 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4380 {
4381 expressionS exp;
4382
4383 do
4384 {
4385 expression (&exp);
4386 if (exp.X_op == O_symbol)
4387 exp.X_op = O_secrel;
4388
4389 emit_expr (&exp, 4);
4390 }
4391 while (*input_line_pointer++ == ',');
4392
4393 input_line_pointer--;
4394 demand_empty_rest_of_line ();
4395 }
4396 #endif /* TE_PE */
4397
4398 /* This table describes all the machine specific pseudo-ops the assembler
4399 has to support. The fields are:
4400 pseudo-op name without dot
4401 function to call to execute this pseudo-op
4402 Integer arg to pass to the function. */
4403
4404 const pseudo_typeS md_pseudo_table[] =
4405 {
4406 /* Never called because '.req' does not start a line. */
4407 { "req", s_req, 0 },
4408 /* Following two are likewise never called. */
4409 { "dn", s_dn, 0 },
4410 { "qn", s_qn, 0 },
4411 { "unreq", s_unreq, 0 },
4412 { "bss", s_bss, 0 },
4413 { "align", s_align, 0 },
4414 { "arm", s_arm, 0 },
4415 { "thumb", s_thumb, 0 },
4416 { "code", s_code, 0 },
4417 { "force_thumb", s_force_thumb, 0 },
4418 { "thumb_func", s_thumb_func, 0 },
4419 { "thumb_set", s_thumb_set, 0 },
4420 { "even", s_even, 0 },
4421 { "ltorg", s_ltorg, 0 },
4422 { "pool", s_ltorg, 0 },
4423 { "syntax", s_syntax, 0 },
4424 { "cpu", s_arm_cpu, 0 },
4425 { "arch", s_arm_arch, 0 },
4426 { "object_arch", s_arm_object_arch, 0 },
4427 { "fpu", s_arm_fpu, 0 },
4428 { "arch_extension", s_arm_arch_extension, 0 },
4429 #ifdef OBJ_ELF
4430 { "word", s_arm_elf_cons, 4 },
4431 { "long", s_arm_elf_cons, 4 },
4432 { "inst.n", s_arm_elf_inst, 2 },
4433 { "inst.w", s_arm_elf_inst, 4 },
4434 { "inst", s_arm_elf_inst, 0 },
4435 { "rel31", s_arm_rel31, 0 },
4436 { "fnstart", s_arm_unwind_fnstart, 0 },
4437 { "fnend", s_arm_unwind_fnend, 0 },
4438 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4439 { "personality", s_arm_unwind_personality, 0 },
4440 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4441 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4442 { "save", s_arm_unwind_save, 0 },
4443 { "vsave", s_arm_unwind_save, 1 },
4444 { "movsp", s_arm_unwind_movsp, 0 },
4445 { "pad", s_arm_unwind_pad, 0 },
4446 { "setfp", s_arm_unwind_setfp, 0 },
4447 { "unwind_raw", s_arm_unwind_raw, 0 },
4448 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4449 { "tlsdescseq", s_arm_tls_descseq, 0 },
4450 #else
4451 { "word", cons, 4},
4452
4453 /* These are used for dwarf. */
4454 {"2byte", cons, 2},
4455 {"4byte", cons, 4},
4456 {"8byte", cons, 8},
4457 /* These are used for dwarf2. */
4458 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4459 { "loc", dwarf2_directive_loc, 0 },
4460 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4461 #endif
4462 { "extend", float_cons, 'x' },
4463 { "ldouble", float_cons, 'x' },
4464 { "packed", float_cons, 'p' },
4465 #ifdef TE_PE
4466 {"secrel32", pe_directive_secrel, 0},
4467 #endif
4468 { 0, 0, 0 }
4469 };
4470 \f
4471 /* Parser functions used exclusively in instruction operands. */
4472
4473 /* Generic immediate-value read function for use in insn parsing.
4474 STR points to the beginning of the immediate (the leading #);
4475 VAL receives the value; if the value is outside [MIN, MAX]
4476 issue an error. PREFIX_OPT is true if the immediate prefix is
4477 optional. */
4478
4479 static int
4480 parse_immediate (char **str, int *val, int min, int max,
4481 bfd_boolean prefix_opt)
4482 {
4483 expressionS exp;
4484 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4485 if (exp.X_op != O_constant)
4486 {
4487 inst.error = _("constant expression required");
4488 return FAIL;
4489 }
4490
4491 if (exp.X_add_number < min || exp.X_add_number > max)
4492 {
4493 inst.error = _("immediate value out of range");
4494 return FAIL;
4495 }
4496
4497 *val = exp.X_add_number;
4498 return SUCCESS;
4499 }
4500
4501 /* Less-generic immediate-value read function with the possibility of loading a
4502 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4503 instructions. Puts the result directly in inst.operands[i]. */
4504
4505 static int
4506 parse_big_immediate (char **str, int i)
4507 {
4508 expressionS exp;
4509 char *ptr = *str;
4510
4511 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4512
4513 if (exp.X_op == O_constant)
4514 {
4515 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4516 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4517 O_constant. We have to be careful not to break compilation for
4518 32-bit X_add_number, though. */
4519 if ((exp.X_add_number & ~(offsetT)(0xffffffffU)) != 0)
4520 {
4521 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4522 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4523 inst.operands[i].regisimm = 1;
4524 }
4525 }
4526 else if (exp.X_op == O_big
4527 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
4528 {
4529 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4530
4531 /* Bignums have their least significant bits in
4532 generic_bignum[0]. Make sure we put 32 bits in imm and
4533 32 bits in reg, in a (hopefully) portable way. */
4534 gas_assert (parts != 0);
4535
4536 /* Make sure that the number is not too big.
4537 PR 11972: Bignums can now be sign-extended to the
4538 size of a .octa so check that the out of range bits
4539 are all zero or all one. */
4540 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4541 {
4542 LITTLENUM_TYPE m = -1;
4543
4544 if (generic_bignum[parts * 2] != 0
4545 && generic_bignum[parts * 2] != m)
4546 return FAIL;
4547
4548 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4549 if (generic_bignum[j] != generic_bignum[j-1])
4550 return FAIL;
4551 }
4552
4553 inst.operands[i].imm = 0;
4554 for (j = 0; j < parts; j++, idx++)
4555 inst.operands[i].imm |= generic_bignum[idx]
4556 << (LITTLENUM_NUMBER_OF_BITS * j);
4557 inst.operands[i].reg = 0;
4558 for (j = 0; j < parts; j++, idx++)
4559 inst.operands[i].reg |= generic_bignum[idx]
4560 << (LITTLENUM_NUMBER_OF_BITS * j);
4561 inst.operands[i].regisimm = 1;
4562 }
4563 else
4564 return FAIL;
4565
4566 *str = ptr;
4567
4568 return SUCCESS;
4569 }
4570
4571 /* Returns the pseudo-register number of an FPA immediate constant,
4572 or FAIL if there isn't a valid constant here. */
4573
4574 static int
4575 parse_fpa_immediate (char ** str)
4576 {
4577 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4578 char * save_in;
4579 expressionS exp;
4580 int i;
4581 int j;
4582
4583 /* First try and match exact strings, this is to guarantee
4584 that some formats will work even for cross assembly. */
4585
4586 for (i = 0; fp_const[i]; i++)
4587 {
4588 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4589 {
4590 char *start = *str;
4591
4592 *str += strlen (fp_const[i]);
4593 if (is_end_of_line[(unsigned char) **str])
4594 return i + 8;
4595 *str = start;
4596 }
4597 }
4598
4599 /* Just because we didn't get a match doesn't mean that the constant
4600 isn't valid, just that it is in a format that we don't
4601 automatically recognize. Try parsing it with the standard
4602 expression routines. */
4603
4604 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4605
4606 /* Look for a raw floating point number. */
4607 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4608 && is_end_of_line[(unsigned char) *save_in])
4609 {
4610 for (i = 0; i < NUM_FLOAT_VALS; i++)
4611 {
4612 for (j = 0; j < MAX_LITTLENUMS; j++)
4613 {
4614 if (words[j] != fp_values[i][j])
4615 break;
4616 }
4617
4618 if (j == MAX_LITTLENUMS)
4619 {
4620 *str = save_in;
4621 return i + 8;
4622 }
4623 }
4624 }
4625
4626 /* Try and parse a more complex expression, this will probably fail
4627 unless the code uses a floating point prefix (eg "0f"). */
4628 save_in = input_line_pointer;
4629 input_line_pointer = *str;
4630 if (expression (&exp) == absolute_section
4631 && exp.X_op == O_big
4632 && exp.X_add_number < 0)
4633 {
4634 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4635 Ditto for 15. */
4636 if (gen_to_words (words, 5, (long) 15) == 0)
4637 {
4638 for (i = 0; i < NUM_FLOAT_VALS; i++)
4639 {
4640 for (j = 0; j < MAX_LITTLENUMS; j++)
4641 {
4642 if (words[j] != fp_values[i][j])
4643 break;
4644 }
4645
4646 if (j == MAX_LITTLENUMS)
4647 {
4648 *str = input_line_pointer;
4649 input_line_pointer = save_in;
4650 return i + 8;
4651 }
4652 }
4653 }
4654 }
4655
4656 *str = input_line_pointer;
4657 input_line_pointer = save_in;
4658 inst.error = _("invalid FPA immediate expression");
4659 return FAIL;
4660 }
4661
4662 /* Returns 1 if a number has "quarter-precision" float format
4663 0baBbbbbbc defgh000 00000000 00000000. */
4664
4665 static int
4666 is_quarter_float (unsigned imm)
4667 {
4668 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4669 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4670 }
4671
4672 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4673 0baBbbbbbc defgh000 00000000 00000000.
4674 The zero and minus-zero cases need special handling, since they can't be
4675 encoded in the "quarter-precision" float format, but can nonetheless be
4676 loaded as integer constants. */
4677
4678 static unsigned
4679 parse_qfloat_immediate (char **ccp, int *immed)
4680 {
4681 char *str = *ccp;
4682 char *fpnum;
4683 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4684 int found_fpchar = 0;
4685
4686 skip_past_char (&str, '#');
4687
4688 /* We must not accidentally parse an integer as a floating-point number. Make
4689 sure that the value we parse is not an integer by checking for special
4690 characters '.' or 'e'.
4691 FIXME: This is a horrible hack, but doing better is tricky because type
4692 information isn't in a very usable state at parse time. */
4693 fpnum = str;
4694 skip_whitespace (fpnum);
4695
4696 if (strncmp (fpnum, "0x", 2) == 0)
4697 return FAIL;
4698 else
4699 {
4700 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4701 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4702 {
4703 found_fpchar = 1;
4704 break;
4705 }
4706
4707 if (!found_fpchar)
4708 return FAIL;
4709 }
4710
4711 if ((str = atof_ieee (str, 's', words)) != NULL)
4712 {
4713 unsigned fpword = 0;
4714 int i;
4715
4716 /* Our FP word must be 32 bits (single-precision FP). */
4717 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4718 {
4719 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4720 fpword |= words[i];
4721 }
4722
4723 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4724 *immed = fpword;
4725 else
4726 return FAIL;
4727
4728 *ccp = str;
4729
4730 return SUCCESS;
4731 }
4732
4733 return FAIL;
4734 }
4735
4736 /* Shift operands. */
4737 enum shift_kind
4738 {
4739 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4740 };
4741
4742 struct asm_shift_name
4743 {
4744 const char *name;
4745 enum shift_kind kind;
4746 };
4747
4748 /* Third argument to parse_shift. */
4749 enum parse_shift_mode
4750 {
4751 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4752 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4753 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4754 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4755 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4756 };
4757
4758 /* Parse a <shift> specifier on an ARM data processing instruction.
4759 This has three forms:
4760
4761 (LSL|LSR|ASL|ASR|ROR) Rs
4762 (LSL|LSR|ASL|ASR|ROR) #imm
4763 RRX
4764
4765 Note that ASL is assimilated to LSL in the instruction encoding, and
4766 RRX to ROR #0 (which cannot be written as such). */
4767
4768 static int
4769 parse_shift (char **str, int i, enum parse_shift_mode mode)
4770 {
4771 const struct asm_shift_name *shift_name;
4772 enum shift_kind shift;
4773 char *s = *str;
4774 char *p = s;
4775 int reg;
4776
4777 for (p = *str; ISALPHA (*p); p++)
4778 ;
4779
4780 if (p == *str)
4781 {
4782 inst.error = _("shift expression expected");
4783 return FAIL;
4784 }
4785
4786 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4787 p - *str);
4788
4789 if (shift_name == NULL)
4790 {
4791 inst.error = _("shift expression expected");
4792 return FAIL;
4793 }
4794
4795 shift = shift_name->kind;
4796
4797 switch (mode)
4798 {
4799 case NO_SHIFT_RESTRICT:
4800 case SHIFT_IMMEDIATE: break;
4801
4802 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4803 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4804 {
4805 inst.error = _("'LSL' or 'ASR' required");
4806 return FAIL;
4807 }
4808 break;
4809
4810 case SHIFT_LSL_IMMEDIATE:
4811 if (shift != SHIFT_LSL)
4812 {
4813 inst.error = _("'LSL' required");
4814 return FAIL;
4815 }
4816 break;
4817
4818 case SHIFT_ASR_IMMEDIATE:
4819 if (shift != SHIFT_ASR)
4820 {
4821 inst.error = _("'ASR' required");
4822 return FAIL;
4823 }
4824 break;
4825
4826 default: abort ();
4827 }
4828
4829 if (shift != SHIFT_RRX)
4830 {
4831 /* Whitespace can appear here if the next thing is a bare digit. */
4832 skip_whitespace (p);
4833
4834 if (mode == NO_SHIFT_RESTRICT
4835 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4836 {
4837 inst.operands[i].imm = reg;
4838 inst.operands[i].immisreg = 1;
4839 }
4840 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4841 return FAIL;
4842 }
4843 inst.operands[i].shift_kind = shift;
4844 inst.operands[i].shifted = 1;
4845 *str = p;
4846 return SUCCESS;
4847 }
4848
4849 /* Parse a <shifter_operand> for an ARM data processing instruction:
4850
4851 #<immediate>
4852 #<immediate>, <rotate>
4853 <Rm>
4854 <Rm>, <shift>
4855
4856 where <shift> is defined by parse_shift above, and <rotate> is a
4857 multiple of 2 between 0 and 30. Validation of immediate operands
4858 is deferred to md_apply_fix. */
4859
4860 static int
4861 parse_shifter_operand (char **str, int i)
4862 {
4863 int value;
4864 expressionS exp;
4865
4866 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4867 {
4868 inst.operands[i].reg = value;
4869 inst.operands[i].isreg = 1;
4870
4871 /* parse_shift will override this if appropriate */
4872 inst.reloc.exp.X_op = O_constant;
4873 inst.reloc.exp.X_add_number = 0;
4874
4875 if (skip_past_comma (str) == FAIL)
4876 return SUCCESS;
4877
4878 /* Shift operation on register. */
4879 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4880 }
4881
4882 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4883 return FAIL;
4884
4885 if (skip_past_comma (str) == SUCCESS)
4886 {
4887 /* #x, y -- ie explicit rotation by Y. */
4888 if (my_get_expression (&exp, str, GE_NO_PREFIX))
4889 return FAIL;
4890
4891 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4892 {
4893 inst.error = _("constant expression expected");
4894 return FAIL;
4895 }
4896
4897 value = exp.X_add_number;
4898 if (value < 0 || value > 30 || value % 2 != 0)
4899 {
4900 inst.error = _("invalid rotation");
4901 return FAIL;
4902 }
4903 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4904 {
4905 inst.error = _("invalid constant");
4906 return FAIL;
4907 }
4908
4909 /* Encode as specified. */
4910 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
4911 return SUCCESS;
4912 }
4913
4914 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4915 inst.reloc.pc_rel = 0;
4916 return SUCCESS;
4917 }
4918
4919 /* Group relocation information. Each entry in the table contains the
4920 textual name of the relocation as may appear in assembler source
4921 and must end with a colon.
4922 Along with this textual name are the relocation codes to be used if
4923 the corresponding instruction is an ALU instruction (ADD or SUB only),
4924 an LDR, an LDRS, or an LDC. */
4925
4926 struct group_reloc_table_entry
4927 {
4928 const char *name;
4929 int alu_code;
4930 int ldr_code;
4931 int ldrs_code;
4932 int ldc_code;
4933 };
4934
4935 typedef enum
4936 {
4937 /* Varieties of non-ALU group relocation. */
4938
4939 GROUP_LDR,
4940 GROUP_LDRS,
4941 GROUP_LDC
4942 } group_reloc_type;
4943
4944 static struct group_reloc_table_entry group_reloc_table[] =
4945 { /* Program counter relative: */
4946 { "pc_g0_nc",
4947 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4948 0, /* LDR */
4949 0, /* LDRS */
4950 0 }, /* LDC */
4951 { "pc_g0",
4952 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4953 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4954 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4955 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4956 { "pc_g1_nc",
4957 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4958 0, /* LDR */
4959 0, /* LDRS */
4960 0 }, /* LDC */
4961 { "pc_g1",
4962 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4963 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4964 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4965 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4966 { "pc_g2",
4967 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4968 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4969 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4970 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4971 /* Section base relative */
4972 { "sb_g0_nc",
4973 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4974 0, /* LDR */
4975 0, /* LDRS */
4976 0 }, /* LDC */
4977 { "sb_g0",
4978 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4979 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4980 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4981 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4982 { "sb_g1_nc",
4983 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4984 0, /* LDR */
4985 0, /* LDRS */
4986 0 }, /* LDC */
4987 { "sb_g1",
4988 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4989 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4990 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4991 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4992 { "sb_g2",
4993 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4994 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4995 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4996 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4997
4998 /* Given the address of a pointer pointing to the textual name of a group
4999 relocation as may appear in assembler source, attempt to find its details
5000 in group_reloc_table. The pointer will be updated to the character after
5001 the trailing colon. On failure, FAIL will be returned; SUCCESS
5002 otherwise. On success, *entry will be updated to point at the relevant
5003 group_reloc_table entry. */
5004
5005 static int
5006 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5007 {
5008 unsigned int i;
5009 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5010 {
5011 int length = strlen (group_reloc_table[i].name);
5012
5013 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5014 && (*str)[length] == ':')
5015 {
5016 *out = &group_reloc_table[i];
5017 *str += (length + 1);
5018 return SUCCESS;
5019 }
5020 }
5021
5022 return FAIL;
5023 }
5024
5025 /* Parse a <shifter_operand> for an ARM data processing instruction
5026 (as for parse_shifter_operand) where group relocations are allowed:
5027
5028 #<immediate>
5029 #<immediate>, <rotate>
5030 #:<group_reloc>:<expression>
5031 <Rm>
5032 <Rm>, <shift>
5033
5034 where <group_reloc> is one of the strings defined in group_reloc_table.
5035 The hashes are optional.
5036
5037 Everything else is as for parse_shifter_operand. */
5038
5039 static parse_operand_result
5040 parse_shifter_operand_group_reloc (char **str, int i)
5041 {
5042 /* Determine if we have the sequence of characters #: or just :
5043 coming next. If we do, then we check for a group relocation.
5044 If we don't, punt the whole lot to parse_shifter_operand. */
5045
5046 if (((*str)[0] == '#' && (*str)[1] == ':')
5047 || (*str)[0] == ':')
5048 {
5049 struct group_reloc_table_entry *entry;
5050
5051 if ((*str)[0] == '#')
5052 (*str) += 2;
5053 else
5054 (*str)++;
5055
5056 /* Try to parse a group relocation. Anything else is an error. */
5057 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5058 {
5059 inst.error = _("unknown group relocation");
5060 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5061 }
5062
5063 /* We now have the group relocation table entry corresponding to
5064 the name in the assembler source. Next, we parse the expression. */
5065 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5066 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5067
5068 /* Record the relocation type (always the ALU variant here). */
5069 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
5070 gas_assert (inst.reloc.type != 0);
5071
5072 return PARSE_OPERAND_SUCCESS;
5073 }
5074 else
5075 return parse_shifter_operand (str, i) == SUCCESS
5076 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5077
5078 /* Never reached. */
5079 }
5080
5081 /* Parse a Neon alignment expression. Information is written to
5082 inst.operands[i]. We assume the initial ':' has been skipped.
5083
5084 align .imm = align << 8, .immisalign=1, .preind=0 */
5085 static parse_operand_result
5086 parse_neon_alignment (char **str, int i)
5087 {
5088 char *p = *str;
5089 expressionS exp;
5090
5091 my_get_expression (&exp, &p, GE_NO_PREFIX);
5092
5093 if (exp.X_op != O_constant)
5094 {
5095 inst.error = _("alignment must be constant");
5096 return PARSE_OPERAND_FAIL;
5097 }
5098
5099 inst.operands[i].imm = exp.X_add_number << 8;
5100 inst.operands[i].immisalign = 1;
5101 /* Alignments are not pre-indexes. */
5102 inst.operands[i].preind = 0;
5103
5104 *str = p;
5105 return PARSE_OPERAND_SUCCESS;
5106 }
5107
5108 /* Parse all forms of an ARM address expression. Information is written
5109 to inst.operands[i] and/or inst.reloc.
5110
5111 Preindexed addressing (.preind=1):
5112
5113 [Rn, #offset] .reg=Rn .reloc.exp=offset
5114 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5115 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5116 .shift_kind=shift .reloc.exp=shift_imm
5117
5118 These three may have a trailing ! which causes .writeback to be set also.
5119
5120 Postindexed addressing (.postind=1, .writeback=1):
5121
5122 [Rn], #offset .reg=Rn .reloc.exp=offset
5123 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5124 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5125 .shift_kind=shift .reloc.exp=shift_imm
5126
5127 Unindexed addressing (.preind=0, .postind=0):
5128
5129 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5130
5131 Other:
5132
5133 [Rn]{!} shorthand for [Rn,#0]{!}
5134 =immediate .isreg=0 .reloc.exp=immediate
5135 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5136
5137 It is the caller's responsibility to check for addressing modes not
5138 supported by the instruction, and to set inst.reloc.type. */
5139
5140 static parse_operand_result
5141 parse_address_main (char **str, int i, int group_relocations,
5142 group_reloc_type group_type)
5143 {
5144 char *p = *str;
5145 int reg;
5146
5147 if (skip_past_char (&p, '[') == FAIL)
5148 {
5149 if (skip_past_char (&p, '=') == FAIL)
5150 {
5151 /* Bare address - translate to PC-relative offset. */
5152 inst.reloc.pc_rel = 1;
5153 inst.operands[i].reg = REG_PC;
5154 inst.operands[i].isreg = 1;
5155 inst.operands[i].preind = 1;
5156 }
5157 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
5158
5159 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5160 return PARSE_OPERAND_FAIL;
5161
5162 *str = p;
5163 return PARSE_OPERAND_SUCCESS;
5164 }
5165
5166 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5167 {
5168 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5169 return PARSE_OPERAND_FAIL;
5170 }
5171 inst.operands[i].reg = reg;
5172 inst.operands[i].isreg = 1;
5173
5174 if (skip_past_comma (&p) == SUCCESS)
5175 {
5176 inst.operands[i].preind = 1;
5177
5178 if (*p == '+') p++;
5179 else if (*p == '-') p++, inst.operands[i].negative = 1;
5180
5181 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5182 {
5183 inst.operands[i].imm = reg;
5184 inst.operands[i].immisreg = 1;
5185
5186 if (skip_past_comma (&p) == SUCCESS)
5187 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5188 return PARSE_OPERAND_FAIL;
5189 }
5190 else if (skip_past_char (&p, ':') == SUCCESS)
5191 {
5192 /* FIXME: '@' should be used here, but it's filtered out by generic
5193 code before we get to see it here. This may be subject to
5194 change. */
5195 parse_operand_result result = parse_neon_alignment (&p, i);
5196
5197 if (result != PARSE_OPERAND_SUCCESS)
5198 return result;
5199 }
5200 else
5201 {
5202 if (inst.operands[i].negative)
5203 {
5204 inst.operands[i].negative = 0;
5205 p--;
5206 }
5207
5208 if (group_relocations
5209 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5210 {
5211 struct group_reloc_table_entry *entry;
5212
5213 /* Skip over the #: or : sequence. */
5214 if (*p == '#')
5215 p += 2;
5216 else
5217 p++;
5218
5219 /* Try to parse a group relocation. Anything else is an
5220 error. */
5221 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5222 {
5223 inst.error = _("unknown group relocation");
5224 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5225 }
5226
5227 /* We now have the group relocation table entry corresponding to
5228 the name in the assembler source. Next, we parse the
5229 expression. */
5230 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5231 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5232
5233 /* Record the relocation type. */
5234 switch (group_type)
5235 {
5236 case GROUP_LDR:
5237 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5238 break;
5239
5240 case GROUP_LDRS:
5241 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5242 break;
5243
5244 case GROUP_LDC:
5245 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5246 break;
5247
5248 default:
5249 gas_assert (0);
5250 }
5251
5252 if (inst.reloc.type == 0)
5253 {
5254 inst.error = _("this group relocation is not allowed on this instruction");
5255 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5256 }
5257 }
5258 else
5259 {
5260 char *q = p;
5261 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5262 return PARSE_OPERAND_FAIL;
5263 /* If the offset is 0, find out if it's a +0 or -0. */
5264 if (inst.reloc.exp.X_op == O_constant
5265 && inst.reloc.exp.X_add_number == 0)
5266 {
5267 skip_whitespace (q);
5268 if (*q == '#')
5269 {
5270 q++;
5271 skip_whitespace (q);
5272 }
5273 if (*q == '-')
5274 inst.operands[i].negative = 1;
5275 }
5276 }
5277 }
5278 }
5279 else if (skip_past_char (&p, ':') == SUCCESS)
5280 {
5281 /* FIXME: '@' should be used here, but it's filtered out by generic code
5282 before we get to see it here. This may be subject to change. */
5283 parse_operand_result result = parse_neon_alignment (&p, i);
5284
5285 if (result != PARSE_OPERAND_SUCCESS)
5286 return result;
5287 }
5288
5289 if (skip_past_char (&p, ']') == FAIL)
5290 {
5291 inst.error = _("']' expected");
5292 return PARSE_OPERAND_FAIL;
5293 }
5294
5295 if (skip_past_char (&p, '!') == SUCCESS)
5296 inst.operands[i].writeback = 1;
5297
5298 else if (skip_past_comma (&p) == SUCCESS)
5299 {
5300 if (skip_past_char (&p, '{') == SUCCESS)
5301 {
5302 /* [Rn], {expr} - unindexed, with option */
5303 if (parse_immediate (&p, &inst.operands[i].imm,
5304 0, 255, TRUE) == FAIL)
5305 return PARSE_OPERAND_FAIL;
5306
5307 if (skip_past_char (&p, '}') == FAIL)
5308 {
5309 inst.error = _("'}' expected at end of 'option' field");
5310 return PARSE_OPERAND_FAIL;
5311 }
5312 if (inst.operands[i].preind)
5313 {
5314 inst.error = _("cannot combine index with option");
5315 return PARSE_OPERAND_FAIL;
5316 }
5317 *str = p;
5318 return PARSE_OPERAND_SUCCESS;
5319 }
5320 else
5321 {
5322 inst.operands[i].postind = 1;
5323 inst.operands[i].writeback = 1;
5324
5325 if (inst.operands[i].preind)
5326 {
5327 inst.error = _("cannot combine pre- and post-indexing");
5328 return PARSE_OPERAND_FAIL;
5329 }
5330
5331 if (*p == '+') p++;
5332 else if (*p == '-') p++, inst.operands[i].negative = 1;
5333
5334 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5335 {
5336 /* We might be using the immediate for alignment already. If we
5337 are, OR the register number into the low-order bits. */
5338 if (inst.operands[i].immisalign)
5339 inst.operands[i].imm |= reg;
5340 else
5341 inst.operands[i].imm = reg;
5342 inst.operands[i].immisreg = 1;
5343
5344 if (skip_past_comma (&p) == SUCCESS)
5345 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5346 return PARSE_OPERAND_FAIL;
5347 }
5348 else
5349 {
5350 char *q = p;
5351 if (inst.operands[i].negative)
5352 {
5353 inst.operands[i].negative = 0;
5354 p--;
5355 }
5356 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5357 return PARSE_OPERAND_FAIL;
5358 /* If the offset is 0, find out if it's a +0 or -0. */
5359 if (inst.reloc.exp.X_op == O_constant
5360 && inst.reloc.exp.X_add_number == 0)
5361 {
5362 skip_whitespace (q);
5363 if (*q == '#')
5364 {
5365 q++;
5366 skip_whitespace (q);
5367 }
5368 if (*q == '-')
5369 inst.operands[i].negative = 1;
5370 }
5371 }
5372 }
5373 }
5374
5375 /* If at this point neither .preind nor .postind is set, we have a
5376 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5377 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5378 {
5379 inst.operands[i].preind = 1;
5380 inst.reloc.exp.X_op = O_constant;
5381 inst.reloc.exp.X_add_number = 0;
5382 }
5383 *str = p;
5384 return PARSE_OPERAND_SUCCESS;
5385 }
5386
5387 static int
5388 parse_address (char **str, int i)
5389 {
5390 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5391 ? SUCCESS : FAIL;
5392 }
5393
5394 static parse_operand_result
5395 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5396 {
5397 return parse_address_main (str, i, 1, type);
5398 }
5399
5400 /* Parse an operand for a MOVW or MOVT instruction. */
5401 static int
5402 parse_half (char **str)
5403 {
5404 char * p;
5405
5406 p = *str;
5407 skip_past_char (&p, '#');
5408 if (strncasecmp (p, ":lower16:", 9) == 0)
5409 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5410 else if (strncasecmp (p, ":upper16:", 9) == 0)
5411 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5412
5413 if (inst.reloc.type != BFD_RELOC_UNUSED)
5414 {
5415 p += 9;
5416 skip_whitespace (p);
5417 }
5418
5419 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5420 return FAIL;
5421
5422 if (inst.reloc.type == BFD_RELOC_UNUSED)
5423 {
5424 if (inst.reloc.exp.X_op != O_constant)
5425 {
5426 inst.error = _("constant expression expected");
5427 return FAIL;
5428 }
5429 if (inst.reloc.exp.X_add_number < 0
5430 || inst.reloc.exp.X_add_number > 0xffff)
5431 {
5432 inst.error = _("immediate value out of range");
5433 return FAIL;
5434 }
5435 }
5436 *str = p;
5437 return SUCCESS;
5438 }
5439
5440 /* Miscellaneous. */
5441
5442 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5443 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5444 static int
5445 parse_psr (char **str, bfd_boolean lhs)
5446 {
5447 char *p;
5448 unsigned long psr_field;
5449 const struct asm_psr *psr;
5450 char *start;
5451 bfd_boolean is_apsr = FALSE;
5452 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
5453
5454 /* PR gas/12698: If the user has specified -march=all then m_profile will
5455 be TRUE, but we want to ignore it in this case as we are building for any
5456 CPU type, including non-m variants. */
5457 if (selected_cpu.core == arm_arch_any.core)
5458 m_profile = FALSE;
5459
5460 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5461 feature for ease of use and backwards compatibility. */
5462 p = *str;
5463 if (strncasecmp (p, "SPSR", 4) == 0)
5464 {
5465 if (m_profile)
5466 goto unsupported_psr;
5467
5468 psr_field = SPSR_BIT;
5469 }
5470 else if (strncasecmp (p, "CPSR", 4) == 0)
5471 {
5472 if (m_profile)
5473 goto unsupported_psr;
5474
5475 psr_field = 0;
5476 }
5477 else if (strncasecmp (p, "APSR", 4) == 0)
5478 {
5479 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5480 and ARMv7-R architecture CPUs. */
5481 is_apsr = TRUE;
5482 psr_field = 0;
5483 }
5484 else if (m_profile)
5485 {
5486 start = p;
5487 do
5488 p++;
5489 while (ISALNUM (*p) || *p == '_');
5490
5491 if (strncasecmp (start, "iapsr", 5) == 0
5492 || strncasecmp (start, "eapsr", 5) == 0
5493 || strncasecmp (start, "xpsr", 4) == 0
5494 || strncasecmp (start, "psr", 3) == 0)
5495 p = start + strcspn (start, "rR") + 1;
5496
5497 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5498 p - start);
5499
5500 if (!psr)
5501 return FAIL;
5502
5503 /* If APSR is being written, a bitfield may be specified. Note that
5504 APSR itself is handled above. */
5505 if (psr->field <= 3)
5506 {
5507 psr_field = psr->field;
5508 is_apsr = TRUE;
5509 goto check_suffix;
5510 }
5511
5512 *str = p;
5513 /* M-profile MSR instructions have the mask field set to "10", except
5514 *PSR variants which modify APSR, which may use a different mask (and
5515 have been handled already). Do that by setting the PSR_f field
5516 here. */
5517 return psr->field | (lhs ? PSR_f : 0);
5518 }
5519 else
5520 goto unsupported_psr;
5521
5522 p += 4;
5523 check_suffix:
5524 if (*p == '_')
5525 {
5526 /* A suffix follows. */
5527 p++;
5528 start = p;
5529
5530 do
5531 p++;
5532 while (ISALNUM (*p) || *p == '_');
5533
5534 if (is_apsr)
5535 {
5536 /* APSR uses a notation for bits, rather than fields. */
5537 unsigned int nzcvq_bits = 0;
5538 unsigned int g_bit = 0;
5539 char *bit;
5540
5541 for (bit = start; bit != p; bit++)
5542 {
5543 switch (TOLOWER (*bit))
5544 {
5545 case 'n':
5546 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5547 break;
5548
5549 case 'z':
5550 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5551 break;
5552
5553 case 'c':
5554 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5555 break;
5556
5557 case 'v':
5558 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5559 break;
5560
5561 case 'q':
5562 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5563 break;
5564
5565 case 'g':
5566 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5567 break;
5568
5569 default:
5570 inst.error = _("unexpected bit specified after APSR");
5571 return FAIL;
5572 }
5573 }
5574
5575 if (nzcvq_bits == 0x1f)
5576 psr_field |= PSR_f;
5577
5578 if (g_bit == 0x1)
5579 {
5580 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5581 {
5582 inst.error = _("selected processor does not "
5583 "support DSP extension");
5584 return FAIL;
5585 }
5586
5587 psr_field |= PSR_s;
5588 }
5589
5590 if ((nzcvq_bits & 0x20) != 0
5591 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5592 || (g_bit & 0x2) != 0)
5593 {
5594 inst.error = _("bad bitmask specified after APSR");
5595 return FAIL;
5596 }
5597 }
5598 else
5599 {
5600 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5601 p - start);
5602 if (!psr)
5603 goto error;
5604
5605 psr_field |= psr->field;
5606 }
5607 }
5608 else
5609 {
5610 if (ISALNUM (*p))
5611 goto error; /* Garbage after "[CS]PSR". */
5612
5613 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5614 is deprecated, but allow it anyway. */
5615 if (is_apsr && lhs)
5616 {
5617 psr_field |= PSR_f;
5618 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5619 "deprecated"));
5620 }
5621 else if (!m_profile)
5622 /* These bits are never right for M-profile devices: don't set them
5623 (only code paths which read/write APSR reach here). */
5624 psr_field |= (PSR_c | PSR_f);
5625 }
5626 *str = p;
5627 return psr_field;
5628
5629 unsupported_psr:
5630 inst.error = _("selected processor does not support requested special "
5631 "purpose register");
5632 return FAIL;
5633
5634 error:
5635 inst.error = _("flag for {c}psr instruction expected");
5636 return FAIL;
5637 }
5638
5639 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5640 value suitable for splatting into the AIF field of the instruction. */
5641
5642 static int
5643 parse_cps_flags (char **str)
5644 {
5645 int val = 0;
5646 int saw_a_flag = 0;
5647 char *s = *str;
5648
5649 for (;;)
5650 switch (*s++)
5651 {
5652 case '\0': case ',':
5653 goto done;
5654
5655 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5656 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5657 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5658
5659 default:
5660 inst.error = _("unrecognized CPS flag");
5661 return FAIL;
5662 }
5663
5664 done:
5665 if (saw_a_flag == 0)
5666 {
5667 inst.error = _("missing CPS flags");
5668 return FAIL;
5669 }
5670
5671 *str = s - 1;
5672 return val;
5673 }
5674
5675 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5676 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5677
5678 static int
5679 parse_endian_specifier (char **str)
5680 {
5681 int little_endian;
5682 char *s = *str;
5683
5684 if (strncasecmp (s, "BE", 2))
5685 little_endian = 0;
5686 else if (strncasecmp (s, "LE", 2))
5687 little_endian = 1;
5688 else
5689 {
5690 inst.error = _("valid endian specifiers are be or le");
5691 return FAIL;
5692 }
5693
5694 if (ISALNUM (s[2]) || s[2] == '_')
5695 {
5696 inst.error = _("valid endian specifiers are be or le");
5697 return FAIL;
5698 }
5699
5700 *str = s + 2;
5701 return little_endian;
5702 }
5703
5704 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5705 value suitable for poking into the rotate field of an sxt or sxta
5706 instruction, or FAIL on error. */
5707
5708 static int
5709 parse_ror (char **str)
5710 {
5711 int rot;
5712 char *s = *str;
5713
5714 if (strncasecmp (s, "ROR", 3) == 0)
5715 s += 3;
5716 else
5717 {
5718 inst.error = _("missing rotation field after comma");
5719 return FAIL;
5720 }
5721
5722 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5723 return FAIL;
5724
5725 switch (rot)
5726 {
5727 case 0: *str = s; return 0x0;
5728 case 8: *str = s; return 0x1;
5729 case 16: *str = s; return 0x2;
5730 case 24: *str = s; return 0x3;
5731
5732 default:
5733 inst.error = _("rotation can only be 0, 8, 16, or 24");
5734 return FAIL;
5735 }
5736 }
5737
5738 /* Parse a conditional code (from conds[] below). The value returned is in the
5739 range 0 .. 14, or FAIL. */
5740 static int
5741 parse_cond (char **str)
5742 {
5743 char *q;
5744 const struct asm_cond *c;
5745 int n;
5746 /* Condition codes are always 2 characters, so matching up to
5747 3 characters is sufficient. */
5748 char cond[3];
5749
5750 q = *str;
5751 n = 0;
5752 while (ISALPHA (*q) && n < 3)
5753 {
5754 cond[n] = TOLOWER (*q);
5755 q++;
5756 n++;
5757 }
5758
5759 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5760 if (!c)
5761 {
5762 inst.error = _("condition required");
5763 return FAIL;
5764 }
5765
5766 *str = q;
5767 return c->value;
5768 }
5769
5770 /* If the given feature available in the selected CPU, mark it as used.
5771 Returns TRUE iff feature is available. */
5772 static bfd_boolean
5773 mark_feature_used (const arm_feature_set *feature)
5774 {
5775 /* Ensure the option is valid on the current architecture. */
5776 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
5777 return FALSE;
5778
5779 /* Add the appropriate architecture feature for the barrier option used.
5780 */
5781 if (thumb_mode)
5782 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
5783 else
5784 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
5785
5786 return TRUE;
5787 }
5788
5789 /* Parse an option for a barrier instruction. Returns the encoding for the
5790 option, or FAIL. */
5791 static int
5792 parse_barrier (char **str)
5793 {
5794 char *p, *q;
5795 const struct asm_barrier_opt *o;
5796
5797 p = q = *str;
5798 while (ISALPHA (*q))
5799 q++;
5800
5801 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5802 q - p);
5803 if (!o)
5804 return FAIL;
5805
5806 if (!mark_feature_used (&o->arch))
5807 return FAIL;
5808
5809 *str = q;
5810 return o->value;
5811 }
5812
5813 /* Parse the operands of a table branch instruction. Similar to a memory
5814 operand. */
5815 static int
5816 parse_tb (char **str)
5817 {
5818 char * p = *str;
5819 int reg;
5820
5821 if (skip_past_char (&p, '[') == FAIL)
5822 {
5823 inst.error = _("'[' expected");
5824 return FAIL;
5825 }
5826
5827 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5828 {
5829 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5830 return FAIL;
5831 }
5832 inst.operands[0].reg = reg;
5833
5834 if (skip_past_comma (&p) == FAIL)
5835 {
5836 inst.error = _("',' expected");
5837 return FAIL;
5838 }
5839
5840 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5841 {
5842 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5843 return FAIL;
5844 }
5845 inst.operands[0].imm = reg;
5846
5847 if (skip_past_comma (&p) == SUCCESS)
5848 {
5849 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5850 return FAIL;
5851 if (inst.reloc.exp.X_add_number != 1)
5852 {
5853 inst.error = _("invalid shift");
5854 return FAIL;
5855 }
5856 inst.operands[0].shifted = 1;
5857 }
5858
5859 if (skip_past_char (&p, ']') == FAIL)
5860 {
5861 inst.error = _("']' expected");
5862 return FAIL;
5863 }
5864 *str = p;
5865 return SUCCESS;
5866 }
5867
5868 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5869 information on the types the operands can take and how they are encoded.
5870 Up to four operands may be read; this function handles setting the
5871 ".present" field for each read operand itself.
5872 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5873 else returns FAIL. */
5874
5875 static int
5876 parse_neon_mov (char **str, int *which_operand)
5877 {
5878 int i = *which_operand, val;
5879 enum arm_reg_type rtype;
5880 char *ptr = *str;
5881 struct neon_type_el optype;
5882
5883 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5884 {
5885 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5886 inst.operands[i].reg = val;
5887 inst.operands[i].isscalar = 1;
5888 inst.operands[i].vectype = optype;
5889 inst.operands[i++].present = 1;
5890
5891 if (skip_past_comma (&ptr) == FAIL)
5892 goto wanted_comma;
5893
5894 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5895 goto wanted_arm;
5896
5897 inst.operands[i].reg = val;
5898 inst.operands[i].isreg = 1;
5899 inst.operands[i].present = 1;
5900 }
5901 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5902 != FAIL)
5903 {
5904 /* Cases 0, 1, 2, 3, 5 (D only). */
5905 if (skip_past_comma (&ptr) == FAIL)
5906 goto wanted_comma;
5907
5908 inst.operands[i].reg = val;
5909 inst.operands[i].isreg = 1;
5910 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5911 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5912 inst.operands[i].isvec = 1;
5913 inst.operands[i].vectype = optype;
5914 inst.operands[i++].present = 1;
5915
5916 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5917 {
5918 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5919 Case 13: VMOV <Sd>, <Rm> */
5920 inst.operands[i].reg = val;
5921 inst.operands[i].isreg = 1;
5922 inst.operands[i].present = 1;
5923
5924 if (rtype == REG_TYPE_NQ)
5925 {
5926 first_error (_("can't use Neon quad register here"));
5927 return FAIL;
5928 }
5929 else if (rtype != REG_TYPE_VFS)
5930 {
5931 i++;
5932 if (skip_past_comma (&ptr) == FAIL)
5933 goto wanted_comma;
5934 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5935 goto wanted_arm;
5936 inst.operands[i].reg = val;
5937 inst.operands[i].isreg = 1;
5938 inst.operands[i].present = 1;
5939 }
5940 }
5941 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5942 &optype)) != FAIL)
5943 {
5944 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5945 Case 1: VMOV<c><q> <Dd>, <Dm>
5946 Case 8: VMOV.F32 <Sd>, <Sm>
5947 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5948
5949 inst.operands[i].reg = val;
5950 inst.operands[i].isreg = 1;
5951 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5952 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5953 inst.operands[i].isvec = 1;
5954 inst.operands[i].vectype = optype;
5955 inst.operands[i].present = 1;
5956
5957 if (skip_past_comma (&ptr) == SUCCESS)
5958 {
5959 /* Case 15. */
5960 i++;
5961
5962 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5963 goto wanted_arm;
5964
5965 inst.operands[i].reg = val;
5966 inst.operands[i].isreg = 1;
5967 inst.operands[i++].present = 1;
5968
5969 if (skip_past_comma (&ptr) == FAIL)
5970 goto wanted_comma;
5971
5972 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5973 goto wanted_arm;
5974
5975 inst.operands[i].reg = val;
5976 inst.operands[i].isreg = 1;
5977 inst.operands[i].present = 1;
5978 }
5979 }
5980 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5981 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5982 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5983 Case 10: VMOV.F32 <Sd>, #<imm>
5984 Case 11: VMOV.F64 <Dd>, #<imm> */
5985 inst.operands[i].immisfloat = 1;
5986 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5987 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5988 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5989 ;
5990 else
5991 {
5992 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5993 return FAIL;
5994 }
5995 }
5996 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5997 {
5998 /* Cases 6, 7. */
5999 inst.operands[i].reg = val;
6000 inst.operands[i].isreg = 1;
6001 inst.operands[i++].present = 1;
6002
6003 if (skip_past_comma (&ptr) == FAIL)
6004 goto wanted_comma;
6005
6006 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6007 {
6008 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6009 inst.operands[i].reg = val;
6010 inst.operands[i].isscalar = 1;
6011 inst.operands[i].present = 1;
6012 inst.operands[i].vectype = optype;
6013 }
6014 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6015 {
6016 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6017 inst.operands[i].reg = val;
6018 inst.operands[i].isreg = 1;
6019 inst.operands[i++].present = 1;
6020
6021 if (skip_past_comma (&ptr) == FAIL)
6022 goto wanted_comma;
6023
6024 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6025 == FAIL)
6026 {
6027 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
6028 return FAIL;
6029 }
6030
6031 inst.operands[i].reg = val;
6032 inst.operands[i].isreg = 1;
6033 inst.operands[i].isvec = 1;
6034 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6035 inst.operands[i].vectype = optype;
6036 inst.operands[i].present = 1;
6037
6038 if (rtype == REG_TYPE_VFS)
6039 {
6040 /* Case 14. */
6041 i++;
6042 if (skip_past_comma (&ptr) == FAIL)
6043 goto wanted_comma;
6044 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6045 &optype)) == FAIL)
6046 {
6047 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6048 return FAIL;
6049 }
6050 inst.operands[i].reg = val;
6051 inst.operands[i].isreg = 1;
6052 inst.operands[i].isvec = 1;
6053 inst.operands[i].issingle = 1;
6054 inst.operands[i].vectype = optype;
6055 inst.operands[i].present = 1;
6056 }
6057 }
6058 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6059 != FAIL)
6060 {
6061 /* Case 13. */
6062 inst.operands[i].reg = val;
6063 inst.operands[i].isreg = 1;
6064 inst.operands[i].isvec = 1;
6065 inst.operands[i].issingle = 1;
6066 inst.operands[i].vectype = optype;
6067 inst.operands[i].present = 1;
6068 }
6069 }
6070 else
6071 {
6072 first_error (_("parse error"));
6073 return FAIL;
6074 }
6075
6076 /* Successfully parsed the operands. Update args. */
6077 *which_operand = i;
6078 *str = ptr;
6079 return SUCCESS;
6080
6081 wanted_comma:
6082 first_error (_("expected comma"));
6083 return FAIL;
6084
6085 wanted_arm:
6086 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6087 return FAIL;
6088 }
6089
6090 /* Use this macro when the operand constraints are different
6091 for ARM and THUMB (e.g. ldrd). */
6092 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6093 ((arm_operand) | ((thumb_operand) << 16))
6094
6095 /* Matcher codes for parse_operands. */
6096 enum operand_parse_code
6097 {
6098 OP_stop, /* end of line */
6099
6100 OP_RR, /* ARM register */
6101 OP_RRnpc, /* ARM register, not r15 */
6102 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6103 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6104 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6105 optional trailing ! */
6106 OP_RRw, /* ARM register, not r15, optional trailing ! */
6107 OP_RCP, /* Coprocessor number */
6108 OP_RCN, /* Coprocessor register */
6109 OP_RF, /* FPA register */
6110 OP_RVS, /* VFP single precision register */
6111 OP_RVD, /* VFP double precision register (0..15) */
6112 OP_RND, /* Neon double precision register (0..31) */
6113 OP_RNQ, /* Neon quad precision register */
6114 OP_RVSD, /* VFP single or double precision register */
6115 OP_RNDQ, /* Neon double or quad precision register */
6116 OP_RNSDQ, /* Neon single, double or quad precision register */
6117 OP_RNSC, /* Neon scalar D[X] */
6118 OP_RVC, /* VFP control register */
6119 OP_RMF, /* Maverick F register */
6120 OP_RMD, /* Maverick D register */
6121 OP_RMFX, /* Maverick FX register */
6122 OP_RMDX, /* Maverick DX register */
6123 OP_RMAX, /* Maverick AX register */
6124 OP_RMDS, /* Maverick DSPSC register */
6125 OP_RIWR, /* iWMMXt wR register */
6126 OP_RIWC, /* iWMMXt wC register */
6127 OP_RIWG, /* iWMMXt wCG register */
6128 OP_RXA, /* XScale accumulator register */
6129
6130 OP_REGLST, /* ARM register list */
6131 OP_VRSLST, /* VFP single-precision register list */
6132 OP_VRDLST, /* VFP double-precision register list */
6133 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6134 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6135 OP_NSTRLST, /* Neon element/structure list */
6136
6137 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6138 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6139 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6140 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6141 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6142 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6143 OP_VMOV, /* Neon VMOV operands. */
6144 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6145 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6146 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6147
6148 OP_I0, /* immediate zero */
6149 OP_I7, /* immediate value 0 .. 7 */
6150 OP_I15, /* 0 .. 15 */
6151 OP_I16, /* 1 .. 16 */
6152 OP_I16z, /* 0 .. 16 */
6153 OP_I31, /* 0 .. 31 */
6154 OP_I31w, /* 0 .. 31, optional trailing ! */
6155 OP_I32, /* 1 .. 32 */
6156 OP_I32z, /* 0 .. 32 */
6157 OP_I63, /* 0 .. 63 */
6158 OP_I63s, /* -64 .. 63 */
6159 OP_I64, /* 1 .. 64 */
6160 OP_I64z, /* 0 .. 64 */
6161 OP_I255, /* 0 .. 255 */
6162
6163 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6164 OP_I7b, /* 0 .. 7 */
6165 OP_I15b, /* 0 .. 15 */
6166 OP_I31b, /* 0 .. 31 */
6167
6168 OP_SH, /* shifter operand */
6169 OP_SHG, /* shifter operand with possible group relocation */
6170 OP_ADDR, /* Memory address expression (any mode) */
6171 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6172 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6173 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6174 OP_EXP, /* arbitrary expression */
6175 OP_EXPi, /* same, with optional immediate prefix */
6176 OP_EXPr, /* same, with optional relocation suffix */
6177 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6178
6179 OP_CPSF, /* CPS flags */
6180 OP_ENDI, /* Endianness specifier */
6181 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6182 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
6183 OP_COND, /* conditional code */
6184 OP_TB, /* Table branch. */
6185
6186 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6187
6188 OP_RRnpc_I0, /* ARM register or literal 0 */
6189 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6190 OP_RR_EXi, /* ARM register or expression with imm prefix */
6191 OP_RF_IF, /* FPA register or immediate */
6192 OP_RIWR_RIWC, /* iWMMXt R or C reg */
6193 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
6194
6195 /* Optional operands. */
6196 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6197 OP_oI31b, /* 0 .. 31 */
6198 OP_oI32b, /* 1 .. 32 */
6199 OP_oI32z, /* 0 .. 32 */
6200 OP_oIffffb, /* 0 .. 65535 */
6201 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6202
6203 OP_oRR, /* ARM register */
6204 OP_oRRnpc, /* ARM register, not the PC */
6205 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6206 OP_oRRw, /* ARM register, not r15, optional trailing ! */
6207 OP_oRND, /* Optional Neon double precision register */
6208 OP_oRNQ, /* Optional Neon quad precision register */
6209 OP_oRNDQ, /* Optional Neon double or quad precision register */
6210 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
6211 OP_oSHll, /* LSL immediate */
6212 OP_oSHar, /* ASR immediate */
6213 OP_oSHllar, /* LSL or ASR immediate */
6214 OP_oROR, /* ROR 0/8/16/24 */
6215 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
6216
6217 /* Some pre-defined mixed (ARM/THUMB) operands. */
6218 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6219 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6220 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6221
6222 OP_FIRST_OPTIONAL = OP_oI7b
6223 };
6224
6225 /* Generic instruction operand parser. This does no encoding and no
6226 semantic validation; it merely squirrels values away in the inst
6227 structure. Returns SUCCESS or FAIL depending on whether the
6228 specified grammar matched. */
6229 static int
6230 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
6231 {
6232 unsigned const int *upat = pattern;
6233 char *backtrack_pos = 0;
6234 const char *backtrack_error = 0;
6235 int i, val = 0, backtrack_index = 0;
6236 enum arm_reg_type rtype;
6237 parse_operand_result result;
6238 unsigned int op_parse_code;
6239
6240 #define po_char_or_fail(chr) \
6241 do \
6242 { \
6243 if (skip_past_char (&str, chr) == FAIL) \
6244 goto bad_args; \
6245 } \
6246 while (0)
6247
6248 #define po_reg_or_fail(regtype) \
6249 do \
6250 { \
6251 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6252 & inst.operands[i].vectype); \
6253 if (val == FAIL) \
6254 { \
6255 first_error (_(reg_expected_msgs[regtype])); \
6256 goto failure; \
6257 } \
6258 inst.operands[i].reg = val; \
6259 inst.operands[i].isreg = 1; \
6260 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6261 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6262 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6263 || rtype == REG_TYPE_VFD \
6264 || rtype == REG_TYPE_NQ); \
6265 } \
6266 while (0)
6267
6268 #define po_reg_or_goto(regtype, label) \
6269 do \
6270 { \
6271 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6272 & inst.operands[i].vectype); \
6273 if (val == FAIL) \
6274 goto label; \
6275 \
6276 inst.operands[i].reg = val; \
6277 inst.operands[i].isreg = 1; \
6278 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6279 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6280 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6281 || rtype == REG_TYPE_VFD \
6282 || rtype == REG_TYPE_NQ); \
6283 } \
6284 while (0)
6285
6286 #define po_imm_or_fail(min, max, popt) \
6287 do \
6288 { \
6289 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6290 goto failure; \
6291 inst.operands[i].imm = val; \
6292 } \
6293 while (0)
6294
6295 #define po_scalar_or_goto(elsz, label) \
6296 do \
6297 { \
6298 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6299 if (val == FAIL) \
6300 goto label; \
6301 inst.operands[i].reg = val; \
6302 inst.operands[i].isscalar = 1; \
6303 } \
6304 while (0)
6305
6306 #define po_misc_or_fail(expr) \
6307 do \
6308 { \
6309 if (expr) \
6310 goto failure; \
6311 } \
6312 while (0)
6313
6314 #define po_misc_or_fail_no_backtrack(expr) \
6315 do \
6316 { \
6317 result = expr; \
6318 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6319 backtrack_pos = 0; \
6320 if (result != PARSE_OPERAND_SUCCESS) \
6321 goto failure; \
6322 } \
6323 while (0)
6324
6325 #define po_barrier_or_imm(str) \
6326 do \
6327 { \
6328 val = parse_barrier (&str); \
6329 if (val == FAIL) \
6330 { \
6331 if (ISALPHA (*str)) \
6332 goto failure; \
6333 else \
6334 goto immediate; \
6335 } \
6336 else \
6337 { \
6338 if ((inst.instruction & 0xf0) == 0x60 \
6339 && val != 0xf) \
6340 { \
6341 /* ISB can only take SY as an option. */ \
6342 inst.error = _("invalid barrier type"); \
6343 goto failure; \
6344 } \
6345 } \
6346 } \
6347 while (0)
6348
6349 skip_whitespace (str);
6350
6351 for (i = 0; upat[i] != OP_stop; i++)
6352 {
6353 op_parse_code = upat[i];
6354 if (op_parse_code >= 1<<16)
6355 op_parse_code = thumb ? (op_parse_code >> 16)
6356 : (op_parse_code & ((1<<16)-1));
6357
6358 if (op_parse_code >= OP_FIRST_OPTIONAL)
6359 {
6360 /* Remember where we are in case we need to backtrack. */
6361 gas_assert (!backtrack_pos);
6362 backtrack_pos = str;
6363 backtrack_error = inst.error;
6364 backtrack_index = i;
6365 }
6366
6367 if (i > 0 && (i > 1 || inst.operands[0].present))
6368 po_char_or_fail (',');
6369
6370 switch (op_parse_code)
6371 {
6372 /* Registers */
6373 case OP_oRRnpc:
6374 case OP_oRRnpcsp:
6375 case OP_RRnpc:
6376 case OP_RRnpcsp:
6377 case OP_oRR:
6378 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6379 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6380 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6381 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6382 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6383 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6384 case OP_oRND:
6385 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6386 case OP_RVC:
6387 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6388 break;
6389 /* Also accept generic coprocessor regs for unknown registers. */
6390 coproc_reg:
6391 po_reg_or_fail (REG_TYPE_CN);
6392 break;
6393 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6394 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6395 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6396 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6397 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6398 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6399 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6400 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6401 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6402 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6403 case OP_oRNQ:
6404 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6405 case OP_oRNDQ:
6406 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6407 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6408 case OP_oRNSDQ:
6409 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6410
6411 /* Neon scalar. Using an element size of 8 means that some invalid
6412 scalars are accepted here, so deal with those in later code. */
6413 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6414
6415 case OP_RNDQ_I0:
6416 {
6417 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6418 break;
6419 try_imm0:
6420 po_imm_or_fail (0, 0, TRUE);
6421 }
6422 break;
6423
6424 case OP_RVSD_I0:
6425 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6426 break;
6427
6428 case OP_RR_RNSC:
6429 {
6430 po_scalar_or_goto (8, try_rr);
6431 break;
6432 try_rr:
6433 po_reg_or_fail (REG_TYPE_RN);
6434 }
6435 break;
6436
6437 case OP_RNSDQ_RNSC:
6438 {
6439 po_scalar_or_goto (8, try_nsdq);
6440 break;
6441 try_nsdq:
6442 po_reg_or_fail (REG_TYPE_NSDQ);
6443 }
6444 break;
6445
6446 case OP_RNDQ_RNSC:
6447 {
6448 po_scalar_or_goto (8, try_ndq);
6449 break;
6450 try_ndq:
6451 po_reg_or_fail (REG_TYPE_NDQ);
6452 }
6453 break;
6454
6455 case OP_RND_RNSC:
6456 {
6457 po_scalar_or_goto (8, try_vfd);
6458 break;
6459 try_vfd:
6460 po_reg_or_fail (REG_TYPE_VFD);
6461 }
6462 break;
6463
6464 case OP_VMOV:
6465 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6466 not careful then bad things might happen. */
6467 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6468 break;
6469
6470 case OP_RNDQ_Ibig:
6471 {
6472 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6473 break;
6474 try_immbig:
6475 /* There's a possibility of getting a 64-bit immediate here, so
6476 we need special handling. */
6477 if (parse_big_immediate (&str, i) == FAIL)
6478 {
6479 inst.error = _("immediate value is out of range");
6480 goto failure;
6481 }
6482 }
6483 break;
6484
6485 case OP_RNDQ_I63b:
6486 {
6487 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6488 break;
6489 try_shimm:
6490 po_imm_or_fail (0, 63, TRUE);
6491 }
6492 break;
6493
6494 case OP_RRnpcb:
6495 po_char_or_fail ('[');
6496 po_reg_or_fail (REG_TYPE_RN);
6497 po_char_or_fail (']');
6498 break;
6499
6500 case OP_RRnpctw:
6501 case OP_RRw:
6502 case OP_oRRw:
6503 po_reg_or_fail (REG_TYPE_RN);
6504 if (skip_past_char (&str, '!') == SUCCESS)
6505 inst.operands[i].writeback = 1;
6506 break;
6507
6508 /* Immediates */
6509 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6510 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6511 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6512 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6513 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6514 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6515 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6516 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6517 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6518 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6519 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6520 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6521
6522 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6523 case OP_oI7b:
6524 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6525 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6526 case OP_oI31b:
6527 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6528 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6529 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
6530 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6531
6532 /* Immediate variants */
6533 case OP_oI255c:
6534 po_char_or_fail ('{');
6535 po_imm_or_fail (0, 255, TRUE);
6536 po_char_or_fail ('}');
6537 break;
6538
6539 case OP_I31w:
6540 /* The expression parser chokes on a trailing !, so we have
6541 to find it first and zap it. */
6542 {
6543 char *s = str;
6544 while (*s && *s != ',')
6545 s++;
6546 if (s[-1] == '!')
6547 {
6548 s[-1] = '\0';
6549 inst.operands[i].writeback = 1;
6550 }
6551 po_imm_or_fail (0, 31, TRUE);
6552 if (str == s - 1)
6553 str = s;
6554 }
6555 break;
6556
6557 /* Expressions */
6558 case OP_EXPi: EXPi:
6559 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6560 GE_OPT_PREFIX));
6561 break;
6562
6563 case OP_EXP:
6564 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6565 GE_NO_PREFIX));
6566 break;
6567
6568 case OP_EXPr: EXPr:
6569 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6570 GE_NO_PREFIX));
6571 if (inst.reloc.exp.X_op == O_symbol)
6572 {
6573 val = parse_reloc (&str);
6574 if (val == -1)
6575 {
6576 inst.error = _("unrecognized relocation suffix");
6577 goto failure;
6578 }
6579 else if (val != BFD_RELOC_UNUSED)
6580 {
6581 inst.operands[i].imm = val;
6582 inst.operands[i].hasreloc = 1;
6583 }
6584 }
6585 break;
6586
6587 /* Operand for MOVW or MOVT. */
6588 case OP_HALF:
6589 po_misc_or_fail (parse_half (&str));
6590 break;
6591
6592 /* Register or expression. */
6593 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6594 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6595
6596 /* Register or immediate. */
6597 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6598 I0: po_imm_or_fail (0, 0, FALSE); break;
6599
6600 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6601 IF:
6602 if (!is_immediate_prefix (*str))
6603 goto bad_args;
6604 str++;
6605 val = parse_fpa_immediate (&str);
6606 if (val == FAIL)
6607 goto failure;
6608 /* FPA immediates are encoded as registers 8-15.
6609 parse_fpa_immediate has already applied the offset. */
6610 inst.operands[i].reg = val;
6611 inst.operands[i].isreg = 1;
6612 break;
6613
6614 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6615 I32z: po_imm_or_fail (0, 32, FALSE); break;
6616
6617 /* Two kinds of register. */
6618 case OP_RIWR_RIWC:
6619 {
6620 struct reg_entry *rege = arm_reg_parse_multi (&str);
6621 if (!rege
6622 || (rege->type != REG_TYPE_MMXWR
6623 && rege->type != REG_TYPE_MMXWC
6624 && rege->type != REG_TYPE_MMXWCG))
6625 {
6626 inst.error = _("iWMMXt data or control register expected");
6627 goto failure;
6628 }
6629 inst.operands[i].reg = rege->number;
6630 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6631 }
6632 break;
6633
6634 case OP_RIWC_RIWG:
6635 {
6636 struct reg_entry *rege = arm_reg_parse_multi (&str);
6637 if (!rege
6638 || (rege->type != REG_TYPE_MMXWC
6639 && rege->type != REG_TYPE_MMXWCG))
6640 {
6641 inst.error = _("iWMMXt control register expected");
6642 goto failure;
6643 }
6644 inst.operands[i].reg = rege->number;
6645 inst.operands[i].isreg = 1;
6646 }
6647 break;
6648
6649 /* Misc */
6650 case OP_CPSF: val = parse_cps_flags (&str); break;
6651 case OP_ENDI: val = parse_endian_specifier (&str); break;
6652 case OP_oROR: val = parse_ror (&str); break;
6653 case OP_COND: val = parse_cond (&str); break;
6654 case OP_oBARRIER_I15:
6655 po_barrier_or_imm (str); break;
6656 immediate:
6657 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6658 goto failure;
6659 break;
6660
6661 case OP_wPSR:
6662 case OP_rPSR:
6663 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6664 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6665 {
6666 inst.error = _("Banked registers are not available with this "
6667 "architecture.");
6668 goto failure;
6669 }
6670 break;
6671 try_psr:
6672 val = parse_psr (&str, op_parse_code == OP_wPSR);
6673 break;
6674
6675 case OP_APSR_RR:
6676 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6677 break;
6678 try_apsr:
6679 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6680 instruction). */
6681 if (strncasecmp (str, "APSR_", 5) == 0)
6682 {
6683 unsigned found = 0;
6684 str += 5;
6685 while (found < 15)
6686 switch (*str++)
6687 {
6688 case 'c': found = (found & 1) ? 16 : found | 1; break;
6689 case 'n': found = (found & 2) ? 16 : found | 2; break;
6690 case 'z': found = (found & 4) ? 16 : found | 4; break;
6691 case 'v': found = (found & 8) ? 16 : found | 8; break;
6692 default: found = 16;
6693 }
6694 if (found != 15)
6695 goto failure;
6696 inst.operands[i].isvec = 1;
6697 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6698 inst.operands[i].reg = REG_PC;
6699 }
6700 else
6701 goto failure;
6702 break;
6703
6704 case OP_TB:
6705 po_misc_or_fail (parse_tb (&str));
6706 break;
6707
6708 /* Register lists. */
6709 case OP_REGLST:
6710 val = parse_reg_list (&str);
6711 if (*str == '^')
6712 {
6713 inst.operands[1].writeback = 1;
6714 str++;
6715 }
6716 break;
6717
6718 case OP_VRSLST:
6719 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6720 break;
6721
6722 case OP_VRDLST:
6723 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6724 break;
6725
6726 case OP_VRSDLST:
6727 /* Allow Q registers too. */
6728 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6729 REGLIST_NEON_D);
6730 if (val == FAIL)
6731 {
6732 inst.error = NULL;
6733 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6734 REGLIST_VFP_S);
6735 inst.operands[i].issingle = 1;
6736 }
6737 break;
6738
6739 case OP_NRDLST:
6740 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6741 REGLIST_NEON_D);
6742 break;
6743
6744 case OP_NSTRLST:
6745 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6746 &inst.operands[i].vectype);
6747 break;
6748
6749 /* Addressing modes */
6750 case OP_ADDR:
6751 po_misc_or_fail (parse_address (&str, i));
6752 break;
6753
6754 case OP_ADDRGLDR:
6755 po_misc_or_fail_no_backtrack (
6756 parse_address_group_reloc (&str, i, GROUP_LDR));
6757 break;
6758
6759 case OP_ADDRGLDRS:
6760 po_misc_or_fail_no_backtrack (
6761 parse_address_group_reloc (&str, i, GROUP_LDRS));
6762 break;
6763
6764 case OP_ADDRGLDC:
6765 po_misc_or_fail_no_backtrack (
6766 parse_address_group_reloc (&str, i, GROUP_LDC));
6767 break;
6768
6769 case OP_SH:
6770 po_misc_or_fail (parse_shifter_operand (&str, i));
6771 break;
6772
6773 case OP_SHG:
6774 po_misc_or_fail_no_backtrack (
6775 parse_shifter_operand_group_reloc (&str, i));
6776 break;
6777
6778 case OP_oSHll:
6779 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6780 break;
6781
6782 case OP_oSHar:
6783 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6784 break;
6785
6786 case OP_oSHllar:
6787 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6788 break;
6789
6790 default:
6791 as_fatal (_("unhandled operand code %d"), op_parse_code);
6792 }
6793
6794 /* Various value-based sanity checks and shared operations. We
6795 do not signal immediate failures for the register constraints;
6796 this allows a syntax error to take precedence. */
6797 switch (op_parse_code)
6798 {
6799 case OP_oRRnpc:
6800 case OP_RRnpc:
6801 case OP_RRnpcb:
6802 case OP_RRw:
6803 case OP_oRRw:
6804 case OP_RRnpc_I0:
6805 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6806 inst.error = BAD_PC;
6807 break;
6808
6809 case OP_oRRnpcsp:
6810 case OP_RRnpcsp:
6811 if (inst.operands[i].isreg)
6812 {
6813 if (inst.operands[i].reg == REG_PC)
6814 inst.error = BAD_PC;
6815 else if (inst.operands[i].reg == REG_SP)
6816 inst.error = BAD_SP;
6817 }
6818 break;
6819
6820 case OP_RRnpctw:
6821 if (inst.operands[i].isreg
6822 && inst.operands[i].reg == REG_PC
6823 && (inst.operands[i].writeback || thumb))
6824 inst.error = BAD_PC;
6825 break;
6826
6827 case OP_CPSF:
6828 case OP_ENDI:
6829 case OP_oROR:
6830 case OP_wPSR:
6831 case OP_rPSR:
6832 case OP_COND:
6833 case OP_oBARRIER_I15:
6834 case OP_REGLST:
6835 case OP_VRSLST:
6836 case OP_VRDLST:
6837 case OP_VRSDLST:
6838 case OP_NRDLST:
6839 case OP_NSTRLST:
6840 if (val == FAIL)
6841 goto failure;
6842 inst.operands[i].imm = val;
6843 break;
6844
6845 default:
6846 break;
6847 }
6848
6849 /* If we get here, this operand was successfully parsed. */
6850 inst.operands[i].present = 1;
6851 continue;
6852
6853 bad_args:
6854 inst.error = BAD_ARGS;
6855
6856 failure:
6857 if (!backtrack_pos)
6858 {
6859 /* The parse routine should already have set inst.error, but set a
6860 default here just in case. */
6861 if (!inst.error)
6862 inst.error = _("syntax error");
6863 return FAIL;
6864 }
6865
6866 /* Do not backtrack over a trailing optional argument that
6867 absorbed some text. We will only fail again, with the
6868 'garbage following instruction' error message, which is
6869 probably less helpful than the current one. */
6870 if (backtrack_index == i && backtrack_pos != str
6871 && upat[i+1] == OP_stop)
6872 {
6873 if (!inst.error)
6874 inst.error = _("syntax error");
6875 return FAIL;
6876 }
6877
6878 /* Try again, skipping the optional argument at backtrack_pos. */
6879 str = backtrack_pos;
6880 inst.error = backtrack_error;
6881 inst.operands[backtrack_index].present = 0;
6882 i = backtrack_index;
6883 backtrack_pos = 0;
6884 }
6885
6886 /* Check that we have parsed all the arguments. */
6887 if (*str != '\0' && !inst.error)
6888 inst.error = _("garbage following instruction");
6889
6890 return inst.error ? FAIL : SUCCESS;
6891 }
6892
6893 #undef po_char_or_fail
6894 #undef po_reg_or_fail
6895 #undef po_reg_or_goto
6896 #undef po_imm_or_fail
6897 #undef po_scalar_or_fail
6898 #undef po_barrier_or_imm
6899
6900 /* Shorthand macro for instruction encoding functions issuing errors. */
6901 #define constraint(expr, err) \
6902 do \
6903 { \
6904 if (expr) \
6905 { \
6906 inst.error = err; \
6907 return; \
6908 } \
6909 } \
6910 while (0)
6911
6912 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6913 instructions are unpredictable if these registers are used. This
6914 is the BadReg predicate in ARM's Thumb-2 documentation. */
6915 #define reject_bad_reg(reg) \
6916 do \
6917 if (reg == REG_SP || reg == REG_PC) \
6918 { \
6919 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6920 return; \
6921 } \
6922 while (0)
6923
6924 /* If REG is R13 (the stack pointer), warn that its use is
6925 deprecated. */
6926 #define warn_deprecated_sp(reg) \
6927 do \
6928 if (warn_on_deprecated && reg == REG_SP) \
6929 as_warn (_("use of r13 is deprecated")); \
6930 while (0)
6931
6932 /* Functions for operand encoding. ARM, then Thumb. */
6933
6934 #define rotate_left(v, n) (v << n | v >> (32 - n))
6935
6936 /* If VAL can be encoded in the immediate field of an ARM instruction,
6937 return the encoded form. Otherwise, return FAIL. */
6938
6939 static unsigned int
6940 encode_arm_immediate (unsigned int val)
6941 {
6942 unsigned int a, i;
6943
6944 for (i = 0; i < 32; i += 2)
6945 if ((a = rotate_left (val, i)) <= 0xff)
6946 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6947
6948 return FAIL;
6949 }
6950
6951 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6952 return the encoded form. Otherwise, return FAIL. */
6953 static unsigned int
6954 encode_thumb32_immediate (unsigned int val)
6955 {
6956 unsigned int a, i;
6957
6958 if (val <= 0xff)
6959 return val;
6960
6961 for (i = 1; i <= 24; i++)
6962 {
6963 a = val >> i;
6964 if ((val & ~(0xff << i)) == 0)
6965 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6966 }
6967
6968 a = val & 0xff;
6969 if (val == ((a << 16) | a))
6970 return 0x100 | a;
6971 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6972 return 0x300 | a;
6973
6974 a = val & 0xff00;
6975 if (val == ((a << 16) | a))
6976 return 0x200 | (a >> 8);
6977
6978 return FAIL;
6979 }
6980 /* Encode a VFP SP or DP register number into inst.instruction. */
6981
6982 static void
6983 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6984 {
6985 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6986 && reg > 15)
6987 {
6988 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6989 {
6990 if (thumb_mode)
6991 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6992 fpu_vfp_ext_d32);
6993 else
6994 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6995 fpu_vfp_ext_d32);
6996 }
6997 else
6998 {
6999 first_error (_("D register out of range for selected VFP version"));
7000 return;
7001 }
7002 }
7003
7004 switch (pos)
7005 {
7006 case VFP_REG_Sd:
7007 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7008 break;
7009
7010 case VFP_REG_Sn:
7011 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7012 break;
7013
7014 case VFP_REG_Sm:
7015 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7016 break;
7017
7018 case VFP_REG_Dd:
7019 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7020 break;
7021
7022 case VFP_REG_Dn:
7023 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7024 break;
7025
7026 case VFP_REG_Dm:
7027 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7028 break;
7029
7030 default:
7031 abort ();
7032 }
7033 }
7034
7035 /* Encode a <shift> in an ARM-format instruction. The immediate,
7036 if any, is handled by md_apply_fix. */
7037 static void
7038 encode_arm_shift (int i)
7039 {
7040 if (inst.operands[i].shift_kind == SHIFT_RRX)
7041 inst.instruction |= SHIFT_ROR << 5;
7042 else
7043 {
7044 inst.instruction |= inst.operands[i].shift_kind << 5;
7045 if (inst.operands[i].immisreg)
7046 {
7047 inst.instruction |= SHIFT_BY_REG;
7048 inst.instruction |= inst.operands[i].imm << 8;
7049 }
7050 else
7051 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7052 }
7053 }
7054
7055 static void
7056 encode_arm_shifter_operand (int i)
7057 {
7058 if (inst.operands[i].isreg)
7059 {
7060 inst.instruction |= inst.operands[i].reg;
7061 encode_arm_shift (i);
7062 }
7063 else
7064 {
7065 inst.instruction |= INST_IMMEDIATE;
7066 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7067 inst.instruction |= inst.operands[i].imm;
7068 }
7069 }
7070
7071 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
7072 static void
7073 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
7074 {
7075 /* PR 14260:
7076 Generate an error if the operand is not a register. */
7077 constraint (!inst.operands[i].isreg,
7078 _("Instruction does not support =N addresses"));
7079
7080 inst.instruction |= inst.operands[i].reg << 16;
7081
7082 if (inst.operands[i].preind)
7083 {
7084 if (is_t)
7085 {
7086 inst.error = _("instruction does not accept preindexed addressing");
7087 return;
7088 }
7089 inst.instruction |= PRE_INDEX;
7090 if (inst.operands[i].writeback)
7091 inst.instruction |= WRITE_BACK;
7092
7093 }
7094 else if (inst.operands[i].postind)
7095 {
7096 gas_assert (inst.operands[i].writeback);
7097 if (is_t)
7098 inst.instruction |= WRITE_BACK;
7099 }
7100 else /* unindexed - only for coprocessor */
7101 {
7102 inst.error = _("instruction does not accept unindexed addressing");
7103 return;
7104 }
7105
7106 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7107 && (((inst.instruction & 0x000f0000) >> 16)
7108 == ((inst.instruction & 0x0000f000) >> 12)))
7109 as_warn ((inst.instruction & LOAD_BIT)
7110 ? _("destination register same as write-back base")
7111 : _("source register same as write-back base"));
7112 }
7113
7114 /* inst.operands[i] was set up by parse_address. Encode it into an
7115 ARM-format mode 2 load or store instruction. If is_t is true,
7116 reject forms that cannot be used with a T instruction (i.e. not
7117 post-indexed). */
7118 static void
7119 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
7120 {
7121 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7122
7123 encode_arm_addr_mode_common (i, is_t);
7124
7125 if (inst.operands[i].immisreg)
7126 {
7127 constraint ((inst.operands[i].imm == REG_PC
7128 || (is_pc && inst.operands[i].writeback)),
7129 BAD_PC_ADDRESSING);
7130 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7131 inst.instruction |= inst.operands[i].imm;
7132 if (!inst.operands[i].negative)
7133 inst.instruction |= INDEX_UP;
7134 if (inst.operands[i].shifted)
7135 {
7136 if (inst.operands[i].shift_kind == SHIFT_RRX)
7137 inst.instruction |= SHIFT_ROR << 5;
7138 else
7139 {
7140 inst.instruction |= inst.operands[i].shift_kind << 5;
7141 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7142 }
7143 }
7144 }
7145 else /* immediate offset in inst.reloc */
7146 {
7147 if (is_pc && !inst.reloc.pc_rel)
7148 {
7149 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
7150
7151 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7152 cannot use PC in addressing.
7153 PC cannot be used in writeback addressing, either. */
7154 constraint ((is_t || inst.operands[i].writeback),
7155 BAD_PC_ADDRESSING);
7156
7157 /* Use of PC in str is deprecated for ARMv7. */
7158 if (warn_on_deprecated
7159 && !is_load
7160 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7161 as_warn (_("use of PC in this instruction is deprecated"));
7162 }
7163
7164 if (inst.reloc.type == BFD_RELOC_UNUSED)
7165 {
7166 /* Prefer + for zero encoded value. */
7167 if (!inst.operands[i].negative)
7168 inst.instruction |= INDEX_UP;
7169 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7170 }
7171 }
7172 }
7173
7174 /* inst.operands[i] was set up by parse_address. Encode it into an
7175 ARM-format mode 3 load or store instruction. Reject forms that
7176 cannot be used with such instructions. If is_t is true, reject
7177 forms that cannot be used with a T instruction (i.e. not
7178 post-indexed). */
7179 static void
7180 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
7181 {
7182 if (inst.operands[i].immisreg && inst.operands[i].shifted)
7183 {
7184 inst.error = _("instruction does not accept scaled register index");
7185 return;
7186 }
7187
7188 encode_arm_addr_mode_common (i, is_t);
7189
7190 if (inst.operands[i].immisreg)
7191 {
7192 constraint ((inst.operands[i].imm == REG_PC
7193 || inst.operands[i].reg == REG_PC),
7194 BAD_PC_ADDRESSING);
7195 inst.instruction |= inst.operands[i].imm;
7196 if (!inst.operands[i].negative)
7197 inst.instruction |= INDEX_UP;
7198 }
7199 else /* immediate offset in inst.reloc */
7200 {
7201 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7202 && inst.operands[i].writeback),
7203 BAD_PC_WRITEBACK);
7204 inst.instruction |= HWOFFSET_IMM;
7205 if (inst.reloc.type == BFD_RELOC_UNUSED)
7206 {
7207 /* Prefer + for zero encoded value. */
7208 if (!inst.operands[i].negative)
7209 inst.instruction |= INDEX_UP;
7210
7211 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7212 }
7213 }
7214 }
7215
7216 /* inst.operands[i] was set up by parse_address. Encode it into an
7217 ARM-format instruction. Reject all forms which cannot be encoded
7218 into a coprocessor load/store instruction. If wb_ok is false,
7219 reject use of writeback; if unind_ok is false, reject use of
7220 unindexed addressing. If reloc_override is not 0, use it instead
7221 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7222 (in which case it is preserved). */
7223
7224 static int
7225 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
7226 {
7227 inst.instruction |= inst.operands[i].reg << 16;
7228
7229 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
7230
7231 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
7232 {
7233 gas_assert (!inst.operands[i].writeback);
7234 if (!unind_ok)
7235 {
7236 inst.error = _("instruction does not support unindexed addressing");
7237 return FAIL;
7238 }
7239 inst.instruction |= inst.operands[i].imm;
7240 inst.instruction |= INDEX_UP;
7241 return SUCCESS;
7242 }
7243
7244 if (inst.operands[i].preind)
7245 inst.instruction |= PRE_INDEX;
7246
7247 if (inst.operands[i].writeback)
7248 {
7249 if (inst.operands[i].reg == REG_PC)
7250 {
7251 inst.error = _("pc may not be used with write-back");
7252 return FAIL;
7253 }
7254 if (!wb_ok)
7255 {
7256 inst.error = _("instruction does not support writeback");
7257 return FAIL;
7258 }
7259 inst.instruction |= WRITE_BACK;
7260 }
7261
7262 if (reloc_override)
7263 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
7264 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7265 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7266 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7267 {
7268 if (thumb_mode)
7269 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7270 else
7271 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7272 }
7273
7274 /* Prefer + for zero encoded value. */
7275 if (!inst.operands[i].negative)
7276 inst.instruction |= INDEX_UP;
7277
7278 return SUCCESS;
7279 }
7280
7281 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7282 Determine whether it can be performed with a move instruction; if
7283 it can, convert inst.instruction to that move instruction and
7284 return TRUE; if it can't, convert inst.instruction to a literal-pool
7285 load and return FALSE. If this is not a valid thing to do in the
7286 current context, set inst.error and return TRUE.
7287
7288 inst.operands[i] describes the destination register. */
7289
7290 static bfd_boolean
7291 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7292 {
7293 unsigned long tbit;
7294
7295 if (thumb_p)
7296 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7297 else
7298 tbit = LOAD_BIT;
7299
7300 if ((inst.instruction & tbit) == 0)
7301 {
7302 inst.error = _("invalid pseudo operation");
7303 return TRUE;
7304 }
7305 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
7306 {
7307 inst.error = _("constant expression expected");
7308 return TRUE;
7309 }
7310 if (inst.reloc.exp.X_op == O_constant)
7311 {
7312 if (thumb_p)
7313 {
7314 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
7315 {
7316 /* This can be done with a mov(1) instruction. */
7317 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7318 inst.instruction |= inst.reloc.exp.X_add_number;
7319 return TRUE;
7320 }
7321 }
7322 else
7323 {
7324 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7325 if (value != FAIL)
7326 {
7327 /* This can be done with a mov instruction. */
7328 inst.instruction &= LITERAL_MASK;
7329 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7330 inst.instruction |= value & 0xfff;
7331 return TRUE;
7332 }
7333
7334 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7335 if (value != FAIL)
7336 {
7337 /* This can be done with a mvn instruction. */
7338 inst.instruction &= LITERAL_MASK;
7339 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7340 inst.instruction |= value & 0xfff;
7341 return TRUE;
7342 }
7343 }
7344 }
7345
7346 if (add_to_lit_pool () == FAIL)
7347 {
7348 inst.error = _("literal pool insertion failed");
7349 return TRUE;
7350 }
7351 inst.operands[1].reg = REG_PC;
7352 inst.operands[1].isreg = 1;
7353 inst.operands[1].preind = 1;
7354 inst.reloc.pc_rel = 1;
7355 inst.reloc.type = (thumb_p
7356 ? BFD_RELOC_ARM_THUMB_OFFSET
7357 : (mode_3
7358 ? BFD_RELOC_ARM_HWLITERAL
7359 : BFD_RELOC_ARM_LITERAL));
7360 return FALSE;
7361 }
7362
7363 /* Functions for instruction encoding, sorted by sub-architecture.
7364 First some generics; their names are taken from the conventional
7365 bit positions for register arguments in ARM format instructions. */
7366
7367 static void
7368 do_noargs (void)
7369 {
7370 }
7371
7372 static void
7373 do_rd (void)
7374 {
7375 inst.instruction |= inst.operands[0].reg << 12;
7376 }
7377
7378 static void
7379 do_rd_rm (void)
7380 {
7381 inst.instruction |= inst.operands[0].reg << 12;
7382 inst.instruction |= inst.operands[1].reg;
7383 }
7384
7385 static void
7386 do_rd_rn (void)
7387 {
7388 inst.instruction |= inst.operands[0].reg << 12;
7389 inst.instruction |= inst.operands[1].reg << 16;
7390 }
7391
7392 static void
7393 do_rn_rd (void)
7394 {
7395 inst.instruction |= inst.operands[0].reg << 16;
7396 inst.instruction |= inst.operands[1].reg << 12;
7397 }
7398
7399 static bfd_boolean
7400 check_obsolete (const arm_feature_set *feature, const char *msg)
7401 {
7402 if (ARM_CPU_IS_ANY (cpu_variant))
7403 {
7404 as_warn ("%s", msg);
7405 return TRUE;
7406 }
7407 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
7408 {
7409 as_bad ("%s", msg);
7410 return TRUE;
7411 }
7412
7413 return FALSE;
7414 }
7415
7416 static void
7417 do_rd_rm_rn (void)
7418 {
7419 unsigned Rn = inst.operands[2].reg;
7420 /* Enforce restrictions on SWP instruction. */
7421 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
7422 {
7423 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7424 _("Rn must not overlap other operands"));
7425
7426 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
7427 */
7428 if (!check_obsolete (&arm_ext_v8,
7429 _("swp{b} use is obsoleted for ARMv8 and later"))
7430 && warn_on_deprecated
7431 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
7432 as_warn (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
7433 }
7434
7435 inst.instruction |= inst.operands[0].reg << 12;
7436 inst.instruction |= inst.operands[1].reg;
7437 inst.instruction |= Rn << 16;
7438 }
7439
7440 static void
7441 do_rd_rn_rm (void)
7442 {
7443 inst.instruction |= inst.operands[0].reg << 12;
7444 inst.instruction |= inst.operands[1].reg << 16;
7445 inst.instruction |= inst.operands[2].reg;
7446 }
7447
7448 static void
7449 do_rm_rd_rn (void)
7450 {
7451 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7452 constraint (((inst.reloc.exp.X_op != O_constant
7453 && inst.reloc.exp.X_op != O_illegal)
7454 || inst.reloc.exp.X_add_number != 0),
7455 BAD_ADDR_MODE);
7456 inst.instruction |= inst.operands[0].reg;
7457 inst.instruction |= inst.operands[1].reg << 12;
7458 inst.instruction |= inst.operands[2].reg << 16;
7459 }
7460
7461 static void
7462 do_imm0 (void)
7463 {
7464 inst.instruction |= inst.operands[0].imm;
7465 }
7466
7467 static void
7468 do_rd_cpaddr (void)
7469 {
7470 inst.instruction |= inst.operands[0].reg << 12;
7471 encode_arm_cp_address (1, TRUE, TRUE, 0);
7472 }
7473
7474 /* ARM instructions, in alphabetical order by function name (except
7475 that wrapper functions appear immediately after the function they
7476 wrap). */
7477
7478 /* This is a pseudo-op of the form "adr rd, label" to be converted
7479 into a relative address of the form "add rd, pc, #label-.-8". */
7480
7481 static void
7482 do_adr (void)
7483 {
7484 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7485
7486 /* Frag hacking will turn this into a sub instruction if the offset turns
7487 out to be negative. */
7488 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7489 inst.reloc.pc_rel = 1;
7490 inst.reloc.exp.X_add_number -= 8;
7491 }
7492
7493 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7494 into a relative address of the form:
7495 add rd, pc, #low(label-.-8)"
7496 add rd, rd, #high(label-.-8)" */
7497
7498 static void
7499 do_adrl (void)
7500 {
7501 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7502
7503 /* Frag hacking will turn this into a sub instruction if the offset turns
7504 out to be negative. */
7505 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7506 inst.reloc.pc_rel = 1;
7507 inst.size = INSN_SIZE * 2;
7508 inst.reloc.exp.X_add_number -= 8;
7509 }
7510
7511 static void
7512 do_arit (void)
7513 {
7514 if (!inst.operands[1].present)
7515 inst.operands[1].reg = inst.operands[0].reg;
7516 inst.instruction |= inst.operands[0].reg << 12;
7517 inst.instruction |= inst.operands[1].reg << 16;
7518 encode_arm_shifter_operand (2);
7519 }
7520
7521 static void
7522 do_barrier (void)
7523 {
7524 if (inst.operands[0].present)
7525 {
7526 constraint ((inst.instruction & 0xf0) != 0x40
7527 && inst.operands[0].imm > 0xf
7528 && inst.operands[0].imm < 0x0,
7529 _("bad barrier type"));
7530 inst.instruction |= inst.operands[0].imm;
7531 }
7532 else
7533 inst.instruction |= 0xf;
7534 }
7535
7536 static void
7537 do_bfc (void)
7538 {
7539 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7540 constraint (msb > 32, _("bit-field extends past end of register"));
7541 /* The instruction encoding stores the LSB and MSB,
7542 not the LSB and width. */
7543 inst.instruction |= inst.operands[0].reg << 12;
7544 inst.instruction |= inst.operands[1].imm << 7;
7545 inst.instruction |= (msb - 1) << 16;
7546 }
7547
7548 static void
7549 do_bfi (void)
7550 {
7551 unsigned int msb;
7552
7553 /* #0 in second position is alternative syntax for bfc, which is
7554 the same instruction but with REG_PC in the Rm field. */
7555 if (!inst.operands[1].isreg)
7556 inst.operands[1].reg = REG_PC;
7557
7558 msb = inst.operands[2].imm + inst.operands[3].imm;
7559 constraint (msb > 32, _("bit-field extends past end of register"));
7560 /* The instruction encoding stores the LSB and MSB,
7561 not the LSB and width. */
7562 inst.instruction |= inst.operands[0].reg << 12;
7563 inst.instruction |= inst.operands[1].reg;
7564 inst.instruction |= inst.operands[2].imm << 7;
7565 inst.instruction |= (msb - 1) << 16;
7566 }
7567
7568 static void
7569 do_bfx (void)
7570 {
7571 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7572 _("bit-field extends past end of register"));
7573 inst.instruction |= inst.operands[0].reg << 12;
7574 inst.instruction |= inst.operands[1].reg;
7575 inst.instruction |= inst.operands[2].imm << 7;
7576 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7577 }
7578
7579 /* ARM V5 breakpoint instruction (argument parse)
7580 BKPT <16 bit unsigned immediate>
7581 Instruction is not conditional.
7582 The bit pattern given in insns[] has the COND_ALWAYS condition,
7583 and it is an error if the caller tried to override that. */
7584
7585 static void
7586 do_bkpt (void)
7587 {
7588 /* Top 12 of 16 bits to bits 19:8. */
7589 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7590
7591 /* Bottom 4 of 16 bits to bits 3:0. */
7592 inst.instruction |= inst.operands[0].imm & 0xf;
7593 }
7594
7595 static void
7596 encode_branch (int default_reloc)
7597 {
7598 if (inst.operands[0].hasreloc)
7599 {
7600 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7601 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7602 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7603 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7604 ? BFD_RELOC_ARM_PLT32
7605 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
7606 }
7607 else
7608 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7609 inst.reloc.pc_rel = 1;
7610 }
7611
7612 static void
7613 do_branch (void)
7614 {
7615 #ifdef OBJ_ELF
7616 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7617 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7618 else
7619 #endif
7620 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7621 }
7622
7623 static void
7624 do_bl (void)
7625 {
7626 #ifdef OBJ_ELF
7627 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7628 {
7629 if (inst.cond == COND_ALWAYS)
7630 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7631 else
7632 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7633 }
7634 else
7635 #endif
7636 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7637 }
7638
7639 /* ARM V5 branch-link-exchange instruction (argument parse)
7640 BLX <target_addr> ie BLX(1)
7641 BLX{<condition>} <Rm> ie BLX(2)
7642 Unfortunately, there are two different opcodes for this mnemonic.
7643 So, the insns[].value is not used, and the code here zaps values
7644 into inst.instruction.
7645 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7646
7647 static void
7648 do_blx (void)
7649 {
7650 if (inst.operands[0].isreg)
7651 {
7652 /* Arg is a register; the opcode provided by insns[] is correct.
7653 It is not illegal to do "blx pc", just useless. */
7654 if (inst.operands[0].reg == REG_PC)
7655 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7656
7657 inst.instruction |= inst.operands[0].reg;
7658 }
7659 else
7660 {
7661 /* Arg is an address; this instruction cannot be executed
7662 conditionally, and the opcode must be adjusted.
7663 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7664 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7665 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7666 inst.instruction = 0xfa000000;
7667 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7668 }
7669 }
7670
7671 static void
7672 do_bx (void)
7673 {
7674 bfd_boolean want_reloc;
7675
7676 if (inst.operands[0].reg == REG_PC)
7677 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7678
7679 inst.instruction |= inst.operands[0].reg;
7680 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7681 it is for ARMv4t or earlier. */
7682 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7683 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7684 want_reloc = TRUE;
7685
7686 #ifdef OBJ_ELF
7687 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7688 #endif
7689 want_reloc = FALSE;
7690
7691 if (want_reloc)
7692 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7693 }
7694
7695
7696 /* ARM v5TEJ. Jump to Jazelle code. */
7697
7698 static void
7699 do_bxj (void)
7700 {
7701 if (inst.operands[0].reg == REG_PC)
7702 as_tsktsk (_("use of r15 in bxj is not really useful"));
7703
7704 inst.instruction |= inst.operands[0].reg;
7705 }
7706
7707 /* Co-processor data operation:
7708 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7709 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7710 static void
7711 do_cdp (void)
7712 {
7713 inst.instruction |= inst.operands[0].reg << 8;
7714 inst.instruction |= inst.operands[1].imm << 20;
7715 inst.instruction |= inst.operands[2].reg << 12;
7716 inst.instruction |= inst.operands[3].reg << 16;
7717 inst.instruction |= inst.operands[4].reg;
7718 inst.instruction |= inst.operands[5].imm << 5;
7719 }
7720
7721 static void
7722 do_cmp (void)
7723 {
7724 inst.instruction |= inst.operands[0].reg << 16;
7725 encode_arm_shifter_operand (1);
7726 }
7727
7728 /* Transfer between coprocessor and ARM registers.
7729 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7730 MRC2
7731 MCR{cond}
7732 MCR2
7733
7734 No special properties. */
7735
7736 struct deprecated_coproc_regs_s
7737 {
7738 unsigned cp;
7739 int opc1;
7740 unsigned crn;
7741 unsigned crm;
7742 int opc2;
7743 arm_feature_set deprecated;
7744 arm_feature_set obsoleted;
7745 const char *dep_msg;
7746 const char *obs_msg;
7747 };
7748
7749 #define DEPR_ACCESS_V8 \
7750 N_("This coprocessor register access is deprecated in ARMv8")
7751
7752 /* Table of all deprecated coprocessor registers. */
7753 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
7754 {
7755 {15, 0, 7, 10, 5, /* CP15DMB. */
7756 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7757 DEPR_ACCESS_V8, NULL},
7758 {15, 0, 7, 10, 4, /* CP15DSB. */
7759 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7760 DEPR_ACCESS_V8, NULL},
7761 {15, 0, 7, 5, 4, /* CP15ISB. */
7762 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7763 DEPR_ACCESS_V8, NULL},
7764 {14, 6, 1, 0, 0, /* TEEHBR. */
7765 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7766 DEPR_ACCESS_V8, NULL},
7767 {14, 6, 0, 0, 0, /* TEECR. */
7768 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7769 DEPR_ACCESS_V8, NULL},
7770 };
7771
7772 #undef DEPR_ACCESS_V8
7773
7774 static const size_t deprecated_coproc_reg_count =
7775 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
7776
7777 static void
7778 do_co_reg (void)
7779 {
7780 unsigned Rd;
7781 size_t i;
7782
7783 Rd = inst.operands[2].reg;
7784 if (thumb_mode)
7785 {
7786 if (inst.instruction == 0xee000010
7787 || inst.instruction == 0xfe000010)
7788 /* MCR, MCR2 */
7789 reject_bad_reg (Rd);
7790 else
7791 /* MRC, MRC2 */
7792 constraint (Rd == REG_SP, BAD_SP);
7793 }
7794 else
7795 {
7796 /* MCR */
7797 if (inst.instruction == 0xe000010)
7798 constraint (Rd == REG_PC, BAD_PC);
7799 }
7800
7801 for (i = 0; i < deprecated_coproc_reg_count; ++i)
7802 {
7803 const struct deprecated_coproc_regs_s *r =
7804 deprecated_coproc_regs + i;
7805
7806 if (inst.operands[0].reg == r->cp
7807 && inst.operands[1].imm == r->opc1
7808 && inst.operands[3].reg == r->crn
7809 && inst.operands[4].reg == r->crm
7810 && inst.operands[5].imm == r->opc2)
7811 {
7812 if (!check_obsolete (&r->obsoleted, r->obs_msg)
7813 && warn_on_deprecated
7814 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
7815 as_warn ("%s", r->dep_msg);
7816 }
7817 }
7818
7819 inst.instruction |= inst.operands[0].reg << 8;
7820 inst.instruction |= inst.operands[1].imm << 21;
7821 inst.instruction |= Rd << 12;
7822 inst.instruction |= inst.operands[3].reg << 16;
7823 inst.instruction |= inst.operands[4].reg;
7824 inst.instruction |= inst.operands[5].imm << 5;
7825 }
7826
7827 /* Transfer between coprocessor register and pair of ARM registers.
7828 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7829 MCRR2
7830 MRRC{cond}
7831 MRRC2
7832
7833 Two XScale instructions are special cases of these:
7834
7835 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7836 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7837
7838 Result unpredictable if Rd or Rn is R15. */
7839
7840 static void
7841 do_co_reg2c (void)
7842 {
7843 unsigned Rd, Rn;
7844
7845 Rd = inst.operands[2].reg;
7846 Rn = inst.operands[3].reg;
7847
7848 if (thumb_mode)
7849 {
7850 reject_bad_reg (Rd);
7851 reject_bad_reg (Rn);
7852 }
7853 else
7854 {
7855 constraint (Rd == REG_PC, BAD_PC);
7856 constraint (Rn == REG_PC, BAD_PC);
7857 }
7858
7859 inst.instruction |= inst.operands[0].reg << 8;
7860 inst.instruction |= inst.operands[1].imm << 4;
7861 inst.instruction |= Rd << 12;
7862 inst.instruction |= Rn << 16;
7863 inst.instruction |= inst.operands[4].reg;
7864 }
7865
7866 static void
7867 do_cpsi (void)
7868 {
7869 inst.instruction |= inst.operands[0].imm << 6;
7870 if (inst.operands[1].present)
7871 {
7872 inst.instruction |= CPSI_MMOD;
7873 inst.instruction |= inst.operands[1].imm;
7874 }
7875 }
7876
7877 static void
7878 do_dbg (void)
7879 {
7880 inst.instruction |= inst.operands[0].imm;
7881 }
7882
7883 static void
7884 do_div (void)
7885 {
7886 unsigned Rd, Rn, Rm;
7887
7888 Rd = inst.operands[0].reg;
7889 Rn = (inst.operands[1].present
7890 ? inst.operands[1].reg : Rd);
7891 Rm = inst.operands[2].reg;
7892
7893 constraint ((Rd == REG_PC), BAD_PC);
7894 constraint ((Rn == REG_PC), BAD_PC);
7895 constraint ((Rm == REG_PC), BAD_PC);
7896
7897 inst.instruction |= Rd << 16;
7898 inst.instruction |= Rn << 0;
7899 inst.instruction |= Rm << 8;
7900 }
7901
7902 static void
7903 do_it (void)
7904 {
7905 /* There is no IT instruction in ARM mode. We
7906 process it to do the validation as if in
7907 thumb mode, just in case the code gets
7908 assembled for thumb using the unified syntax. */
7909
7910 inst.size = 0;
7911 if (unified_syntax)
7912 {
7913 set_it_insn_type (IT_INSN);
7914 now_it.mask = (inst.instruction & 0xf) | 0x10;
7915 now_it.cc = inst.operands[0].imm;
7916 }
7917 }
7918
7919 /* If there is only one register in the register list,
7920 then return its register number. Otherwise return -1. */
7921 static int
7922 only_one_reg_in_list (int range)
7923 {
7924 int i = ffs (range) - 1;
7925 return (i > 15 || range != (1 << i)) ? -1 : i;
7926 }
7927
7928 static void
7929 encode_ldmstm(int from_push_pop_mnem)
7930 {
7931 int base_reg = inst.operands[0].reg;
7932 int range = inst.operands[1].imm;
7933 int one_reg;
7934
7935 inst.instruction |= base_reg << 16;
7936 inst.instruction |= range;
7937
7938 if (inst.operands[1].writeback)
7939 inst.instruction |= LDM_TYPE_2_OR_3;
7940
7941 if (inst.operands[0].writeback)
7942 {
7943 inst.instruction |= WRITE_BACK;
7944 /* Check for unpredictable uses of writeback. */
7945 if (inst.instruction & LOAD_BIT)
7946 {
7947 /* Not allowed in LDM type 2. */
7948 if ((inst.instruction & LDM_TYPE_2_OR_3)
7949 && ((range & (1 << REG_PC)) == 0))
7950 as_warn (_("writeback of base register is UNPREDICTABLE"));
7951 /* Only allowed if base reg not in list for other types. */
7952 else if (range & (1 << base_reg))
7953 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7954 }
7955 else /* STM. */
7956 {
7957 /* Not allowed for type 2. */
7958 if (inst.instruction & LDM_TYPE_2_OR_3)
7959 as_warn (_("writeback of base register is UNPREDICTABLE"));
7960 /* Only allowed if base reg not in list, or first in list. */
7961 else if ((range & (1 << base_reg))
7962 && (range & ((1 << base_reg) - 1)))
7963 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7964 }
7965 }
7966
7967 /* If PUSH/POP has only one register, then use the A2 encoding. */
7968 one_reg = only_one_reg_in_list (range);
7969 if (from_push_pop_mnem && one_reg >= 0)
7970 {
7971 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
7972
7973 inst.instruction &= A_COND_MASK;
7974 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
7975 inst.instruction |= one_reg << 12;
7976 }
7977 }
7978
7979 static void
7980 do_ldmstm (void)
7981 {
7982 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
7983 }
7984
7985 /* ARMv5TE load-consecutive (argument parse)
7986 Mode is like LDRH.
7987
7988 LDRccD R, mode
7989 STRccD R, mode. */
7990
7991 static void
7992 do_ldrd (void)
7993 {
7994 constraint (inst.operands[0].reg % 2 != 0,
7995 _("first transfer register must be even"));
7996 constraint (inst.operands[1].present
7997 && inst.operands[1].reg != inst.operands[0].reg + 1,
7998 _("can only transfer two consecutive registers"));
7999 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8000 constraint (!inst.operands[2].isreg, _("'[' expected"));
8001
8002 if (!inst.operands[1].present)
8003 inst.operands[1].reg = inst.operands[0].reg + 1;
8004
8005 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8006 register and the first register written; we have to diagnose
8007 overlap between the base and the second register written here. */
8008
8009 if (inst.operands[2].reg == inst.operands[1].reg
8010 && (inst.operands[2].writeback || inst.operands[2].postind))
8011 as_warn (_("base register written back, and overlaps "
8012 "second transfer register"));
8013
8014 if (!(inst.instruction & V4_STR_BIT))
8015 {
8016 /* For an index-register load, the index register must not overlap the
8017 destination (even if not write-back). */
8018 if (inst.operands[2].immisreg
8019 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
8020 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
8021 as_warn (_("index register overlaps transfer register"));
8022 }
8023 inst.instruction |= inst.operands[0].reg << 12;
8024 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
8025 }
8026
8027 static void
8028 do_ldrex (void)
8029 {
8030 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8031 || inst.operands[1].postind || inst.operands[1].writeback
8032 || inst.operands[1].immisreg || inst.operands[1].shifted
8033 || inst.operands[1].negative
8034 /* This can arise if the programmer has written
8035 strex rN, rM, foo
8036 or if they have mistakenly used a register name as the last
8037 operand, eg:
8038 strex rN, rM, rX
8039 It is very difficult to distinguish between these two cases
8040 because "rX" might actually be a label. ie the register
8041 name has been occluded by a symbol of the same name. So we
8042 just generate a general 'bad addressing mode' type error
8043 message and leave it up to the programmer to discover the
8044 true cause and fix their mistake. */
8045 || (inst.operands[1].reg == REG_PC),
8046 BAD_ADDR_MODE);
8047
8048 constraint (inst.reloc.exp.X_op != O_constant
8049 || inst.reloc.exp.X_add_number != 0,
8050 _("offset must be zero in ARM encoding"));
8051
8052 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
8053
8054 inst.instruction |= inst.operands[0].reg << 12;
8055 inst.instruction |= inst.operands[1].reg << 16;
8056 inst.reloc.type = BFD_RELOC_UNUSED;
8057 }
8058
8059 static void
8060 do_ldrexd (void)
8061 {
8062 constraint (inst.operands[0].reg % 2 != 0,
8063 _("even register required"));
8064 constraint (inst.operands[1].present
8065 && inst.operands[1].reg != inst.operands[0].reg + 1,
8066 _("can only load two consecutive registers"));
8067 /* If op 1 were present and equal to PC, this function wouldn't
8068 have been called in the first place. */
8069 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8070
8071 inst.instruction |= inst.operands[0].reg << 12;
8072 inst.instruction |= inst.operands[2].reg << 16;
8073 }
8074
8075 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
8076 which is not a multiple of four is UNPREDICTABLE. */
8077 static void
8078 check_ldr_r15_aligned (void)
8079 {
8080 constraint (!(inst.operands[1].immisreg)
8081 && (inst.operands[0].reg == REG_PC
8082 && inst.operands[1].reg == REG_PC
8083 && (inst.reloc.exp.X_add_number & 0x3)),
8084 _("ldr to register 15 must be 4-byte alligned"));
8085 }
8086
8087 static void
8088 do_ldst (void)
8089 {
8090 inst.instruction |= inst.operands[0].reg << 12;
8091 if (!inst.operands[1].isreg)
8092 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
8093 return;
8094 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
8095 check_ldr_r15_aligned ();
8096 }
8097
8098 static void
8099 do_ldstt (void)
8100 {
8101 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8102 reject [Rn,...]. */
8103 if (inst.operands[1].preind)
8104 {
8105 constraint (inst.reloc.exp.X_op != O_constant
8106 || inst.reloc.exp.X_add_number != 0,
8107 _("this instruction requires a post-indexed address"));
8108
8109 inst.operands[1].preind = 0;
8110 inst.operands[1].postind = 1;
8111 inst.operands[1].writeback = 1;
8112 }
8113 inst.instruction |= inst.operands[0].reg << 12;
8114 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
8115 }
8116
8117 /* Halfword and signed-byte load/store operations. */
8118
8119 static void
8120 do_ldstv4 (void)
8121 {
8122 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8123 inst.instruction |= inst.operands[0].reg << 12;
8124 if (!inst.operands[1].isreg)
8125 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
8126 return;
8127 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
8128 }
8129
8130 static void
8131 do_ldsttv4 (void)
8132 {
8133 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8134 reject [Rn,...]. */
8135 if (inst.operands[1].preind)
8136 {
8137 constraint (inst.reloc.exp.X_op != O_constant
8138 || inst.reloc.exp.X_add_number != 0,
8139 _("this instruction requires a post-indexed address"));
8140
8141 inst.operands[1].preind = 0;
8142 inst.operands[1].postind = 1;
8143 inst.operands[1].writeback = 1;
8144 }
8145 inst.instruction |= inst.operands[0].reg << 12;
8146 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
8147 }
8148
8149 /* Co-processor register load/store.
8150 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
8151 static void
8152 do_lstc (void)
8153 {
8154 inst.instruction |= inst.operands[0].reg << 8;
8155 inst.instruction |= inst.operands[1].reg << 12;
8156 encode_arm_cp_address (2, TRUE, TRUE, 0);
8157 }
8158
8159 static void
8160 do_mlas (void)
8161 {
8162 /* This restriction does not apply to mls (nor to mla in v6 or later). */
8163 if (inst.operands[0].reg == inst.operands[1].reg
8164 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
8165 && !(inst.instruction & 0x00400000))
8166 as_tsktsk (_("Rd and Rm should be different in mla"));
8167
8168 inst.instruction |= inst.operands[0].reg << 16;
8169 inst.instruction |= inst.operands[1].reg;
8170 inst.instruction |= inst.operands[2].reg << 8;
8171 inst.instruction |= inst.operands[3].reg << 12;
8172 }
8173
8174 static void
8175 do_mov (void)
8176 {
8177 inst.instruction |= inst.operands[0].reg << 12;
8178 encode_arm_shifter_operand (1);
8179 }
8180
8181 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
8182 static void
8183 do_mov16 (void)
8184 {
8185 bfd_vma imm;
8186 bfd_boolean top;
8187
8188 top = (inst.instruction & 0x00400000) != 0;
8189 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
8190 _(":lower16: not allowed this instruction"));
8191 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
8192 _(":upper16: not allowed instruction"));
8193 inst.instruction |= inst.operands[0].reg << 12;
8194 if (inst.reloc.type == BFD_RELOC_UNUSED)
8195 {
8196 imm = inst.reloc.exp.X_add_number;
8197 /* The value is in two pieces: 0:11, 16:19. */
8198 inst.instruction |= (imm & 0x00000fff);
8199 inst.instruction |= (imm & 0x0000f000) << 4;
8200 }
8201 }
8202
8203 static void do_vfp_nsyn_opcode (const char *);
8204
8205 static int
8206 do_vfp_nsyn_mrs (void)
8207 {
8208 if (inst.operands[0].isvec)
8209 {
8210 if (inst.operands[1].reg != 1)
8211 first_error (_("operand 1 must be FPSCR"));
8212 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8213 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8214 do_vfp_nsyn_opcode ("fmstat");
8215 }
8216 else if (inst.operands[1].isvec)
8217 do_vfp_nsyn_opcode ("fmrx");
8218 else
8219 return FAIL;
8220
8221 return SUCCESS;
8222 }
8223
8224 static int
8225 do_vfp_nsyn_msr (void)
8226 {
8227 if (inst.operands[0].isvec)
8228 do_vfp_nsyn_opcode ("fmxr");
8229 else
8230 return FAIL;
8231
8232 return SUCCESS;
8233 }
8234
8235 static void
8236 do_vmrs (void)
8237 {
8238 unsigned Rt = inst.operands[0].reg;
8239
8240 if (thumb_mode && inst.operands[0].reg == REG_SP)
8241 {
8242 inst.error = BAD_SP;
8243 return;
8244 }
8245
8246 /* APSR_ sets isvec. All other refs to PC are illegal. */
8247 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
8248 {
8249 inst.error = BAD_PC;
8250 return;
8251 }
8252
8253 switch (inst.operands[1].reg)
8254 {
8255 case 0: /* FPSID */
8256 case 1: /* FPSCR */
8257 case 6: /* MVFR1 */
8258 case 7: /* MVFR0 */
8259 case 8: /* FPEXC */
8260 inst.instruction |= (inst.operands[1].reg << 16);
8261 break;
8262 default:
8263 first_error (_("operand 1 must be a VFP extension System Register"));
8264 }
8265
8266 inst.instruction |= (Rt << 12);
8267 }
8268
8269 static void
8270 do_vmsr (void)
8271 {
8272 unsigned Rt = inst.operands[1].reg;
8273
8274 if (thumb_mode)
8275 reject_bad_reg (Rt);
8276 else if (Rt == REG_PC)
8277 {
8278 inst.error = BAD_PC;
8279 return;
8280 }
8281
8282 switch (inst.operands[0].reg)
8283 {
8284 case 0: /* FPSID */
8285 case 1: /* FPSCR */
8286 case 8: /* FPEXC */
8287 inst.instruction |= (inst.operands[0].reg << 16);
8288 break;
8289 default:
8290 first_error (_("operand 0 must be FPSID or FPSCR pr FPEXC"));
8291 }
8292
8293 inst.instruction |= (Rt << 12);
8294 }
8295
8296 static void
8297 do_mrs (void)
8298 {
8299 unsigned br;
8300
8301 if (do_vfp_nsyn_mrs () == SUCCESS)
8302 return;
8303
8304 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8305 inst.instruction |= inst.operands[0].reg << 12;
8306
8307 if (inst.operands[1].isreg)
8308 {
8309 br = inst.operands[1].reg;
8310 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8311 as_bad (_("bad register for mrs"));
8312 }
8313 else
8314 {
8315 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8316 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8317 != (PSR_c|PSR_f),
8318 _("'APSR', 'CPSR' or 'SPSR' expected"));
8319 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8320 }
8321
8322 inst.instruction |= br;
8323 }
8324
8325 /* Two possible forms:
8326 "{C|S}PSR_<field>, Rm",
8327 "{C|S}PSR_f, #expression". */
8328
8329 static void
8330 do_msr (void)
8331 {
8332 if (do_vfp_nsyn_msr () == SUCCESS)
8333 return;
8334
8335 inst.instruction |= inst.operands[0].imm;
8336 if (inst.operands[1].isreg)
8337 inst.instruction |= inst.operands[1].reg;
8338 else
8339 {
8340 inst.instruction |= INST_IMMEDIATE;
8341 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8342 inst.reloc.pc_rel = 0;
8343 }
8344 }
8345
8346 static void
8347 do_mul (void)
8348 {
8349 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8350
8351 if (!inst.operands[2].present)
8352 inst.operands[2].reg = inst.operands[0].reg;
8353 inst.instruction |= inst.operands[0].reg << 16;
8354 inst.instruction |= inst.operands[1].reg;
8355 inst.instruction |= inst.operands[2].reg << 8;
8356
8357 if (inst.operands[0].reg == inst.operands[1].reg
8358 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8359 as_tsktsk (_("Rd and Rm should be different in mul"));
8360 }
8361
8362 /* Long Multiply Parser
8363 UMULL RdLo, RdHi, Rm, Rs
8364 SMULL RdLo, RdHi, Rm, Rs
8365 UMLAL RdLo, RdHi, Rm, Rs
8366 SMLAL RdLo, RdHi, Rm, Rs. */
8367
8368 static void
8369 do_mull (void)
8370 {
8371 inst.instruction |= inst.operands[0].reg << 12;
8372 inst.instruction |= inst.operands[1].reg << 16;
8373 inst.instruction |= inst.operands[2].reg;
8374 inst.instruction |= inst.operands[3].reg << 8;
8375
8376 /* rdhi and rdlo must be different. */
8377 if (inst.operands[0].reg == inst.operands[1].reg)
8378 as_tsktsk (_("rdhi and rdlo must be different"));
8379
8380 /* rdhi, rdlo and rm must all be different before armv6. */
8381 if ((inst.operands[0].reg == inst.operands[2].reg
8382 || inst.operands[1].reg == inst.operands[2].reg)
8383 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8384 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8385 }
8386
8387 static void
8388 do_nop (void)
8389 {
8390 if (inst.operands[0].present
8391 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
8392 {
8393 /* Architectural NOP hints are CPSR sets with no bits selected. */
8394 inst.instruction &= 0xf0000000;
8395 inst.instruction |= 0x0320f000;
8396 if (inst.operands[0].present)
8397 inst.instruction |= inst.operands[0].imm;
8398 }
8399 }
8400
8401 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8402 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8403 Condition defaults to COND_ALWAYS.
8404 Error if Rd, Rn or Rm are R15. */
8405
8406 static void
8407 do_pkhbt (void)
8408 {
8409 inst.instruction |= inst.operands[0].reg << 12;
8410 inst.instruction |= inst.operands[1].reg << 16;
8411 inst.instruction |= inst.operands[2].reg;
8412 if (inst.operands[3].present)
8413 encode_arm_shift (3);
8414 }
8415
8416 /* ARM V6 PKHTB (Argument Parse). */
8417
8418 static void
8419 do_pkhtb (void)
8420 {
8421 if (!inst.operands[3].present)
8422 {
8423 /* If the shift specifier is omitted, turn the instruction
8424 into pkhbt rd, rm, rn. */
8425 inst.instruction &= 0xfff00010;
8426 inst.instruction |= inst.operands[0].reg << 12;
8427 inst.instruction |= inst.operands[1].reg;
8428 inst.instruction |= inst.operands[2].reg << 16;
8429 }
8430 else
8431 {
8432 inst.instruction |= inst.operands[0].reg << 12;
8433 inst.instruction |= inst.operands[1].reg << 16;
8434 inst.instruction |= inst.operands[2].reg;
8435 encode_arm_shift (3);
8436 }
8437 }
8438
8439 /* ARMv5TE: Preload-Cache
8440 MP Extensions: Preload for write
8441
8442 PLD(W) <addr_mode>
8443
8444 Syntactically, like LDR with B=1, W=0, L=1. */
8445
8446 static void
8447 do_pld (void)
8448 {
8449 constraint (!inst.operands[0].isreg,
8450 _("'[' expected after PLD mnemonic"));
8451 constraint (inst.operands[0].postind,
8452 _("post-indexed expression used in preload instruction"));
8453 constraint (inst.operands[0].writeback,
8454 _("writeback used in preload instruction"));
8455 constraint (!inst.operands[0].preind,
8456 _("unindexed addressing used in preload instruction"));
8457 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8458 }
8459
8460 /* ARMv7: PLI <addr_mode> */
8461 static void
8462 do_pli (void)
8463 {
8464 constraint (!inst.operands[0].isreg,
8465 _("'[' expected after PLI mnemonic"));
8466 constraint (inst.operands[0].postind,
8467 _("post-indexed expression used in preload instruction"));
8468 constraint (inst.operands[0].writeback,
8469 _("writeback used in preload instruction"));
8470 constraint (!inst.operands[0].preind,
8471 _("unindexed addressing used in preload instruction"));
8472 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8473 inst.instruction &= ~PRE_INDEX;
8474 }
8475
8476 static void
8477 do_push_pop (void)
8478 {
8479 inst.operands[1] = inst.operands[0];
8480 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8481 inst.operands[0].isreg = 1;
8482 inst.operands[0].writeback = 1;
8483 inst.operands[0].reg = REG_SP;
8484 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
8485 }
8486
8487 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8488 word at the specified address and the following word
8489 respectively.
8490 Unconditionally executed.
8491 Error if Rn is R15. */
8492
8493 static void
8494 do_rfe (void)
8495 {
8496 inst.instruction |= inst.operands[0].reg << 16;
8497 if (inst.operands[0].writeback)
8498 inst.instruction |= WRITE_BACK;
8499 }
8500
8501 /* ARM V6 ssat (argument parse). */
8502
8503 static void
8504 do_ssat (void)
8505 {
8506 inst.instruction |= inst.operands[0].reg << 12;
8507 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8508 inst.instruction |= inst.operands[2].reg;
8509
8510 if (inst.operands[3].present)
8511 encode_arm_shift (3);
8512 }
8513
8514 /* ARM V6 usat (argument parse). */
8515
8516 static void
8517 do_usat (void)
8518 {
8519 inst.instruction |= inst.operands[0].reg << 12;
8520 inst.instruction |= inst.operands[1].imm << 16;
8521 inst.instruction |= inst.operands[2].reg;
8522
8523 if (inst.operands[3].present)
8524 encode_arm_shift (3);
8525 }
8526
8527 /* ARM V6 ssat16 (argument parse). */
8528
8529 static void
8530 do_ssat16 (void)
8531 {
8532 inst.instruction |= inst.operands[0].reg << 12;
8533 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8534 inst.instruction |= inst.operands[2].reg;
8535 }
8536
8537 static void
8538 do_usat16 (void)
8539 {
8540 inst.instruction |= inst.operands[0].reg << 12;
8541 inst.instruction |= inst.operands[1].imm << 16;
8542 inst.instruction |= inst.operands[2].reg;
8543 }
8544
8545 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8546 preserving the other bits.
8547
8548 setend <endian_specifier>, where <endian_specifier> is either
8549 BE or LE. */
8550
8551 static void
8552 do_setend (void)
8553 {
8554 if (warn_on_deprecated
8555 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
8556 as_warn (_("setend use is deprecated for ARMv8"));
8557
8558 if (inst.operands[0].imm)
8559 inst.instruction |= 0x200;
8560 }
8561
8562 static void
8563 do_shift (void)
8564 {
8565 unsigned int Rm = (inst.operands[1].present
8566 ? inst.operands[1].reg
8567 : inst.operands[0].reg);
8568
8569 inst.instruction |= inst.operands[0].reg << 12;
8570 inst.instruction |= Rm;
8571 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
8572 {
8573 inst.instruction |= inst.operands[2].reg << 8;
8574 inst.instruction |= SHIFT_BY_REG;
8575 /* PR 12854: Error on extraneous shifts. */
8576 constraint (inst.operands[2].shifted,
8577 _("extraneous shift as part of operand to shift insn"));
8578 }
8579 else
8580 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
8581 }
8582
8583 static void
8584 do_smc (void)
8585 {
8586 inst.reloc.type = BFD_RELOC_ARM_SMC;
8587 inst.reloc.pc_rel = 0;
8588 }
8589
8590 static void
8591 do_hvc (void)
8592 {
8593 inst.reloc.type = BFD_RELOC_ARM_HVC;
8594 inst.reloc.pc_rel = 0;
8595 }
8596
8597 static void
8598 do_swi (void)
8599 {
8600 inst.reloc.type = BFD_RELOC_ARM_SWI;
8601 inst.reloc.pc_rel = 0;
8602 }
8603
8604 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8605 SMLAxy{cond} Rd,Rm,Rs,Rn
8606 SMLAWy{cond} Rd,Rm,Rs,Rn
8607 Error if any register is R15. */
8608
8609 static void
8610 do_smla (void)
8611 {
8612 inst.instruction |= inst.operands[0].reg << 16;
8613 inst.instruction |= inst.operands[1].reg;
8614 inst.instruction |= inst.operands[2].reg << 8;
8615 inst.instruction |= inst.operands[3].reg << 12;
8616 }
8617
8618 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8619 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8620 Error if any register is R15.
8621 Warning if Rdlo == Rdhi. */
8622
8623 static void
8624 do_smlal (void)
8625 {
8626 inst.instruction |= inst.operands[0].reg << 12;
8627 inst.instruction |= inst.operands[1].reg << 16;
8628 inst.instruction |= inst.operands[2].reg;
8629 inst.instruction |= inst.operands[3].reg << 8;
8630
8631 if (inst.operands[0].reg == inst.operands[1].reg)
8632 as_tsktsk (_("rdhi and rdlo must be different"));
8633 }
8634
8635 /* ARM V5E (El Segundo) signed-multiply (argument parse)
8636 SMULxy{cond} Rd,Rm,Rs
8637 Error if any register is R15. */
8638
8639 static void
8640 do_smul (void)
8641 {
8642 inst.instruction |= inst.operands[0].reg << 16;
8643 inst.instruction |= inst.operands[1].reg;
8644 inst.instruction |= inst.operands[2].reg << 8;
8645 }
8646
8647 /* ARM V6 srs (argument parse). The variable fields in the encoding are
8648 the same for both ARM and Thumb-2. */
8649
8650 static void
8651 do_srs (void)
8652 {
8653 int reg;
8654
8655 if (inst.operands[0].present)
8656 {
8657 reg = inst.operands[0].reg;
8658 constraint (reg != REG_SP, _("SRS base register must be r13"));
8659 }
8660 else
8661 reg = REG_SP;
8662
8663 inst.instruction |= reg << 16;
8664 inst.instruction |= inst.operands[1].imm;
8665 if (inst.operands[0].writeback || inst.operands[1].writeback)
8666 inst.instruction |= WRITE_BACK;
8667 }
8668
8669 /* ARM V6 strex (argument parse). */
8670
8671 static void
8672 do_strex (void)
8673 {
8674 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8675 || inst.operands[2].postind || inst.operands[2].writeback
8676 || inst.operands[2].immisreg || inst.operands[2].shifted
8677 || inst.operands[2].negative
8678 /* See comment in do_ldrex(). */
8679 || (inst.operands[2].reg == REG_PC),
8680 BAD_ADDR_MODE);
8681
8682 constraint (inst.operands[0].reg == inst.operands[1].reg
8683 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8684
8685 constraint (inst.reloc.exp.X_op != O_constant
8686 || inst.reloc.exp.X_add_number != 0,
8687 _("offset must be zero in ARM encoding"));
8688
8689 inst.instruction |= inst.operands[0].reg << 12;
8690 inst.instruction |= inst.operands[1].reg;
8691 inst.instruction |= inst.operands[2].reg << 16;
8692 inst.reloc.type = BFD_RELOC_UNUSED;
8693 }
8694
8695 static void
8696 do_t_strexbh (void)
8697 {
8698 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8699 || inst.operands[2].postind || inst.operands[2].writeback
8700 || inst.operands[2].immisreg || inst.operands[2].shifted
8701 || inst.operands[2].negative,
8702 BAD_ADDR_MODE);
8703
8704 constraint (inst.operands[0].reg == inst.operands[1].reg
8705 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8706
8707 do_rm_rd_rn ();
8708 }
8709
8710 static void
8711 do_strexd (void)
8712 {
8713 constraint (inst.operands[1].reg % 2 != 0,
8714 _("even register required"));
8715 constraint (inst.operands[2].present
8716 && inst.operands[2].reg != inst.operands[1].reg + 1,
8717 _("can only store two consecutive registers"));
8718 /* If op 2 were present and equal to PC, this function wouldn't
8719 have been called in the first place. */
8720 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
8721
8722 constraint (inst.operands[0].reg == inst.operands[1].reg
8723 || inst.operands[0].reg == inst.operands[1].reg + 1
8724 || inst.operands[0].reg == inst.operands[3].reg,
8725 BAD_OVERLAP);
8726
8727 inst.instruction |= inst.operands[0].reg << 12;
8728 inst.instruction |= inst.operands[1].reg;
8729 inst.instruction |= inst.operands[3].reg << 16;
8730 }
8731
8732 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8733 extends it to 32-bits, and adds the result to a value in another
8734 register. You can specify a rotation by 0, 8, 16, or 24 bits
8735 before extracting the 16-bit value.
8736 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8737 Condition defaults to COND_ALWAYS.
8738 Error if any register uses R15. */
8739
8740 static void
8741 do_sxtah (void)
8742 {
8743 inst.instruction |= inst.operands[0].reg << 12;
8744 inst.instruction |= inst.operands[1].reg << 16;
8745 inst.instruction |= inst.operands[2].reg;
8746 inst.instruction |= inst.operands[3].imm << 10;
8747 }
8748
8749 /* ARM V6 SXTH.
8750
8751 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8752 Condition defaults to COND_ALWAYS.
8753 Error if any register uses R15. */
8754
8755 static void
8756 do_sxth (void)
8757 {
8758 inst.instruction |= inst.operands[0].reg << 12;
8759 inst.instruction |= inst.operands[1].reg;
8760 inst.instruction |= inst.operands[2].imm << 10;
8761 }
8762 \f
8763 /* VFP instructions. In a logical order: SP variant first, monad
8764 before dyad, arithmetic then move then load/store. */
8765
8766 static void
8767 do_vfp_sp_monadic (void)
8768 {
8769 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8770 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8771 }
8772
8773 static void
8774 do_vfp_sp_dyadic (void)
8775 {
8776 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8777 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8778 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8779 }
8780
8781 static void
8782 do_vfp_sp_compare_z (void)
8783 {
8784 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8785 }
8786
8787 static void
8788 do_vfp_dp_sp_cvt (void)
8789 {
8790 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8791 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8792 }
8793
8794 static void
8795 do_vfp_sp_dp_cvt (void)
8796 {
8797 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8798 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8799 }
8800
8801 static void
8802 do_vfp_reg_from_sp (void)
8803 {
8804 inst.instruction |= inst.operands[0].reg << 12;
8805 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8806 }
8807
8808 static void
8809 do_vfp_reg2_from_sp2 (void)
8810 {
8811 constraint (inst.operands[2].imm != 2,
8812 _("only two consecutive VFP SP registers allowed here"));
8813 inst.instruction |= inst.operands[0].reg << 12;
8814 inst.instruction |= inst.operands[1].reg << 16;
8815 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8816 }
8817
8818 static void
8819 do_vfp_sp_from_reg (void)
8820 {
8821 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8822 inst.instruction |= inst.operands[1].reg << 12;
8823 }
8824
8825 static void
8826 do_vfp_sp2_from_reg2 (void)
8827 {
8828 constraint (inst.operands[0].imm != 2,
8829 _("only two consecutive VFP SP registers allowed here"));
8830 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8831 inst.instruction |= inst.operands[1].reg << 12;
8832 inst.instruction |= inst.operands[2].reg << 16;
8833 }
8834
8835 static void
8836 do_vfp_sp_ldst (void)
8837 {
8838 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8839 encode_arm_cp_address (1, FALSE, TRUE, 0);
8840 }
8841
8842 static void
8843 do_vfp_dp_ldst (void)
8844 {
8845 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8846 encode_arm_cp_address (1, FALSE, TRUE, 0);
8847 }
8848
8849
8850 static void
8851 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8852 {
8853 if (inst.operands[0].writeback)
8854 inst.instruction |= WRITE_BACK;
8855 else
8856 constraint (ldstm_type != VFP_LDSTMIA,
8857 _("this addressing mode requires base-register writeback"));
8858 inst.instruction |= inst.operands[0].reg << 16;
8859 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8860 inst.instruction |= inst.operands[1].imm;
8861 }
8862
8863 static void
8864 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8865 {
8866 int count;
8867
8868 if (inst.operands[0].writeback)
8869 inst.instruction |= WRITE_BACK;
8870 else
8871 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8872 _("this addressing mode requires base-register writeback"));
8873
8874 inst.instruction |= inst.operands[0].reg << 16;
8875 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8876
8877 count = inst.operands[1].imm << 1;
8878 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8879 count += 1;
8880
8881 inst.instruction |= count;
8882 }
8883
8884 static void
8885 do_vfp_sp_ldstmia (void)
8886 {
8887 vfp_sp_ldstm (VFP_LDSTMIA);
8888 }
8889
8890 static void
8891 do_vfp_sp_ldstmdb (void)
8892 {
8893 vfp_sp_ldstm (VFP_LDSTMDB);
8894 }
8895
8896 static void
8897 do_vfp_dp_ldstmia (void)
8898 {
8899 vfp_dp_ldstm (VFP_LDSTMIA);
8900 }
8901
8902 static void
8903 do_vfp_dp_ldstmdb (void)
8904 {
8905 vfp_dp_ldstm (VFP_LDSTMDB);
8906 }
8907
8908 static void
8909 do_vfp_xp_ldstmia (void)
8910 {
8911 vfp_dp_ldstm (VFP_LDSTMIAX);
8912 }
8913
8914 static void
8915 do_vfp_xp_ldstmdb (void)
8916 {
8917 vfp_dp_ldstm (VFP_LDSTMDBX);
8918 }
8919
8920 static void
8921 do_vfp_dp_rd_rm (void)
8922 {
8923 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8924 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8925 }
8926
8927 static void
8928 do_vfp_dp_rn_rd (void)
8929 {
8930 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8931 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8932 }
8933
8934 static void
8935 do_vfp_dp_rd_rn (void)
8936 {
8937 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8938 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8939 }
8940
8941 static void
8942 do_vfp_dp_rd_rn_rm (void)
8943 {
8944 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8945 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8946 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8947 }
8948
8949 static void
8950 do_vfp_dp_rd (void)
8951 {
8952 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8953 }
8954
8955 static void
8956 do_vfp_dp_rm_rd_rn (void)
8957 {
8958 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8959 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8960 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8961 }
8962
8963 /* VFPv3 instructions. */
8964 static void
8965 do_vfp_sp_const (void)
8966 {
8967 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8968 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8969 inst.instruction |= (inst.operands[1].imm & 0x0f);
8970 }
8971
8972 static void
8973 do_vfp_dp_const (void)
8974 {
8975 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8976 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8977 inst.instruction |= (inst.operands[1].imm & 0x0f);
8978 }
8979
8980 static void
8981 vfp_conv (int srcsize)
8982 {
8983 int immbits = srcsize - inst.operands[1].imm;
8984
8985 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
8986 {
8987 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
8988 i.e. immbits must be in range 0 - 16. */
8989 inst.error = _("immediate value out of range, expected range [0, 16]");
8990 return;
8991 }
8992 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
8993 {
8994 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
8995 i.e. immbits must be in range 0 - 31. */
8996 inst.error = _("immediate value out of range, expected range [1, 32]");
8997 return;
8998 }
8999
9000 inst.instruction |= (immbits & 1) << 5;
9001 inst.instruction |= (immbits >> 1);
9002 }
9003
9004 static void
9005 do_vfp_sp_conv_16 (void)
9006 {
9007 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9008 vfp_conv (16);
9009 }
9010
9011 static void
9012 do_vfp_dp_conv_16 (void)
9013 {
9014 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9015 vfp_conv (16);
9016 }
9017
9018 static void
9019 do_vfp_sp_conv_32 (void)
9020 {
9021 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9022 vfp_conv (32);
9023 }
9024
9025 static void
9026 do_vfp_dp_conv_32 (void)
9027 {
9028 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9029 vfp_conv (32);
9030 }
9031 \f
9032 /* FPA instructions. Also in a logical order. */
9033
9034 static void
9035 do_fpa_cmp (void)
9036 {
9037 inst.instruction |= inst.operands[0].reg << 16;
9038 inst.instruction |= inst.operands[1].reg;
9039 }
9040
9041 static void
9042 do_fpa_ldmstm (void)
9043 {
9044 inst.instruction |= inst.operands[0].reg << 12;
9045 switch (inst.operands[1].imm)
9046 {
9047 case 1: inst.instruction |= CP_T_X; break;
9048 case 2: inst.instruction |= CP_T_Y; break;
9049 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
9050 case 4: break;
9051 default: abort ();
9052 }
9053
9054 if (inst.instruction & (PRE_INDEX | INDEX_UP))
9055 {
9056 /* The instruction specified "ea" or "fd", so we can only accept
9057 [Rn]{!}. The instruction does not really support stacking or
9058 unstacking, so we have to emulate these by setting appropriate
9059 bits and offsets. */
9060 constraint (inst.reloc.exp.X_op != O_constant
9061 || inst.reloc.exp.X_add_number != 0,
9062 _("this instruction does not support indexing"));
9063
9064 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
9065 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
9066
9067 if (!(inst.instruction & INDEX_UP))
9068 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
9069
9070 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
9071 {
9072 inst.operands[2].preind = 0;
9073 inst.operands[2].postind = 1;
9074 }
9075 }
9076
9077 encode_arm_cp_address (2, TRUE, TRUE, 0);
9078 }
9079 \f
9080 /* iWMMXt instructions: strictly in alphabetical order. */
9081
9082 static void
9083 do_iwmmxt_tandorc (void)
9084 {
9085 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
9086 }
9087
9088 static void
9089 do_iwmmxt_textrc (void)
9090 {
9091 inst.instruction |= inst.operands[0].reg << 12;
9092 inst.instruction |= inst.operands[1].imm;
9093 }
9094
9095 static void
9096 do_iwmmxt_textrm (void)
9097 {
9098 inst.instruction |= inst.operands[0].reg << 12;
9099 inst.instruction |= inst.operands[1].reg << 16;
9100 inst.instruction |= inst.operands[2].imm;
9101 }
9102
9103 static void
9104 do_iwmmxt_tinsr (void)
9105 {
9106 inst.instruction |= inst.operands[0].reg << 16;
9107 inst.instruction |= inst.operands[1].reg << 12;
9108 inst.instruction |= inst.operands[2].imm;
9109 }
9110
9111 static void
9112 do_iwmmxt_tmia (void)
9113 {
9114 inst.instruction |= inst.operands[0].reg << 5;
9115 inst.instruction |= inst.operands[1].reg;
9116 inst.instruction |= inst.operands[2].reg << 12;
9117 }
9118
9119 static void
9120 do_iwmmxt_waligni (void)
9121 {
9122 inst.instruction |= inst.operands[0].reg << 12;
9123 inst.instruction |= inst.operands[1].reg << 16;
9124 inst.instruction |= inst.operands[2].reg;
9125 inst.instruction |= inst.operands[3].imm << 20;
9126 }
9127
9128 static void
9129 do_iwmmxt_wmerge (void)
9130 {
9131 inst.instruction |= inst.operands[0].reg << 12;
9132 inst.instruction |= inst.operands[1].reg << 16;
9133 inst.instruction |= inst.operands[2].reg;
9134 inst.instruction |= inst.operands[3].imm << 21;
9135 }
9136
9137 static void
9138 do_iwmmxt_wmov (void)
9139 {
9140 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
9141 inst.instruction |= inst.operands[0].reg << 12;
9142 inst.instruction |= inst.operands[1].reg << 16;
9143 inst.instruction |= inst.operands[1].reg;
9144 }
9145
9146 static void
9147 do_iwmmxt_wldstbh (void)
9148 {
9149 int reloc;
9150 inst.instruction |= inst.operands[0].reg << 12;
9151 if (thumb_mode)
9152 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
9153 else
9154 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
9155 encode_arm_cp_address (1, TRUE, FALSE, reloc);
9156 }
9157
9158 static void
9159 do_iwmmxt_wldstw (void)
9160 {
9161 /* RIWR_RIWC clears .isreg for a control register. */
9162 if (!inst.operands[0].isreg)
9163 {
9164 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9165 inst.instruction |= 0xf0000000;
9166 }
9167
9168 inst.instruction |= inst.operands[0].reg << 12;
9169 encode_arm_cp_address (1, TRUE, TRUE, 0);
9170 }
9171
9172 static void
9173 do_iwmmxt_wldstd (void)
9174 {
9175 inst.instruction |= inst.operands[0].reg << 12;
9176 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
9177 && inst.operands[1].immisreg)
9178 {
9179 inst.instruction &= ~0x1a000ff;
9180 inst.instruction |= (0xf << 28);
9181 if (inst.operands[1].preind)
9182 inst.instruction |= PRE_INDEX;
9183 if (!inst.operands[1].negative)
9184 inst.instruction |= INDEX_UP;
9185 if (inst.operands[1].writeback)
9186 inst.instruction |= WRITE_BACK;
9187 inst.instruction |= inst.operands[1].reg << 16;
9188 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9189 inst.instruction |= inst.operands[1].imm;
9190 }
9191 else
9192 encode_arm_cp_address (1, TRUE, FALSE, 0);
9193 }
9194
9195 static void
9196 do_iwmmxt_wshufh (void)
9197 {
9198 inst.instruction |= inst.operands[0].reg << 12;
9199 inst.instruction |= inst.operands[1].reg << 16;
9200 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
9201 inst.instruction |= (inst.operands[2].imm & 0x0f);
9202 }
9203
9204 static void
9205 do_iwmmxt_wzero (void)
9206 {
9207 /* WZERO reg is an alias for WANDN reg, reg, reg. */
9208 inst.instruction |= inst.operands[0].reg;
9209 inst.instruction |= inst.operands[0].reg << 12;
9210 inst.instruction |= inst.operands[0].reg << 16;
9211 }
9212
9213 static void
9214 do_iwmmxt_wrwrwr_or_imm5 (void)
9215 {
9216 if (inst.operands[2].isreg)
9217 do_rd_rn_rm ();
9218 else {
9219 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
9220 _("immediate operand requires iWMMXt2"));
9221 do_rd_rn ();
9222 if (inst.operands[2].imm == 0)
9223 {
9224 switch ((inst.instruction >> 20) & 0xf)
9225 {
9226 case 4:
9227 case 5:
9228 case 6:
9229 case 7:
9230 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
9231 inst.operands[2].imm = 16;
9232 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
9233 break;
9234 case 8:
9235 case 9:
9236 case 10:
9237 case 11:
9238 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
9239 inst.operands[2].imm = 32;
9240 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
9241 break;
9242 case 12:
9243 case 13:
9244 case 14:
9245 case 15:
9246 {
9247 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
9248 unsigned long wrn;
9249 wrn = (inst.instruction >> 16) & 0xf;
9250 inst.instruction &= 0xff0fff0f;
9251 inst.instruction |= wrn;
9252 /* Bail out here; the instruction is now assembled. */
9253 return;
9254 }
9255 }
9256 }
9257 /* Map 32 -> 0, etc. */
9258 inst.operands[2].imm &= 0x1f;
9259 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
9260 }
9261 }
9262 \f
9263 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
9264 operations first, then control, shift, and load/store. */
9265
9266 /* Insns like "foo X,Y,Z". */
9267
9268 static void
9269 do_mav_triple (void)
9270 {
9271 inst.instruction |= inst.operands[0].reg << 16;
9272 inst.instruction |= inst.operands[1].reg;
9273 inst.instruction |= inst.operands[2].reg << 12;
9274 }
9275
9276 /* Insns like "foo W,X,Y,Z".
9277 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
9278
9279 static void
9280 do_mav_quad (void)
9281 {
9282 inst.instruction |= inst.operands[0].reg << 5;
9283 inst.instruction |= inst.operands[1].reg << 12;
9284 inst.instruction |= inst.operands[2].reg << 16;
9285 inst.instruction |= inst.operands[3].reg;
9286 }
9287
9288 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9289 static void
9290 do_mav_dspsc (void)
9291 {
9292 inst.instruction |= inst.operands[1].reg << 12;
9293 }
9294
9295 /* Maverick shift immediate instructions.
9296 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9297 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
9298
9299 static void
9300 do_mav_shift (void)
9301 {
9302 int imm = inst.operands[2].imm;
9303
9304 inst.instruction |= inst.operands[0].reg << 12;
9305 inst.instruction |= inst.operands[1].reg << 16;
9306
9307 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9308 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9309 Bit 4 should be 0. */
9310 imm = (imm & 0xf) | ((imm & 0x70) << 1);
9311
9312 inst.instruction |= imm;
9313 }
9314 \f
9315 /* XScale instructions. Also sorted arithmetic before move. */
9316
9317 /* Xscale multiply-accumulate (argument parse)
9318 MIAcc acc0,Rm,Rs
9319 MIAPHcc acc0,Rm,Rs
9320 MIAxycc acc0,Rm,Rs. */
9321
9322 static void
9323 do_xsc_mia (void)
9324 {
9325 inst.instruction |= inst.operands[1].reg;
9326 inst.instruction |= inst.operands[2].reg << 12;
9327 }
9328
9329 /* Xscale move-accumulator-register (argument parse)
9330
9331 MARcc acc0,RdLo,RdHi. */
9332
9333 static void
9334 do_xsc_mar (void)
9335 {
9336 inst.instruction |= inst.operands[1].reg << 12;
9337 inst.instruction |= inst.operands[2].reg << 16;
9338 }
9339
9340 /* Xscale move-register-accumulator (argument parse)
9341
9342 MRAcc RdLo,RdHi,acc0. */
9343
9344 static void
9345 do_xsc_mra (void)
9346 {
9347 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9348 inst.instruction |= inst.operands[0].reg << 12;
9349 inst.instruction |= inst.operands[1].reg << 16;
9350 }
9351 \f
9352 /* Encoding functions relevant only to Thumb. */
9353
9354 /* inst.operands[i] is a shifted-register operand; encode
9355 it into inst.instruction in the format used by Thumb32. */
9356
9357 static void
9358 encode_thumb32_shifted_operand (int i)
9359 {
9360 unsigned int value = inst.reloc.exp.X_add_number;
9361 unsigned int shift = inst.operands[i].shift_kind;
9362
9363 constraint (inst.operands[i].immisreg,
9364 _("shift by register not allowed in thumb mode"));
9365 inst.instruction |= inst.operands[i].reg;
9366 if (shift == SHIFT_RRX)
9367 inst.instruction |= SHIFT_ROR << 4;
9368 else
9369 {
9370 constraint (inst.reloc.exp.X_op != O_constant,
9371 _("expression too complex"));
9372
9373 constraint (value > 32
9374 || (value == 32 && (shift == SHIFT_LSL
9375 || shift == SHIFT_ROR)),
9376 _("shift expression is too large"));
9377
9378 if (value == 0)
9379 shift = SHIFT_LSL;
9380 else if (value == 32)
9381 value = 0;
9382
9383 inst.instruction |= shift << 4;
9384 inst.instruction |= (value & 0x1c) << 10;
9385 inst.instruction |= (value & 0x03) << 6;
9386 }
9387 }
9388
9389
9390 /* inst.operands[i] was set up by parse_address. Encode it into a
9391 Thumb32 format load or store instruction. Reject forms that cannot
9392 be used with such instructions. If is_t is true, reject forms that
9393 cannot be used with a T instruction; if is_d is true, reject forms
9394 that cannot be used with a D instruction. If it is a store insn,
9395 reject PC in Rn. */
9396
9397 static void
9398 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9399 {
9400 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
9401
9402 constraint (!inst.operands[i].isreg,
9403 _("Instruction does not support =N addresses"));
9404
9405 inst.instruction |= inst.operands[i].reg << 16;
9406 if (inst.operands[i].immisreg)
9407 {
9408 constraint (is_pc, BAD_PC_ADDRESSING);
9409 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9410 constraint (inst.operands[i].negative,
9411 _("Thumb does not support negative register indexing"));
9412 constraint (inst.operands[i].postind,
9413 _("Thumb does not support register post-indexing"));
9414 constraint (inst.operands[i].writeback,
9415 _("Thumb does not support register indexing with writeback"));
9416 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9417 _("Thumb supports only LSL in shifted register indexing"));
9418
9419 inst.instruction |= inst.operands[i].imm;
9420 if (inst.operands[i].shifted)
9421 {
9422 constraint (inst.reloc.exp.X_op != O_constant,
9423 _("expression too complex"));
9424 constraint (inst.reloc.exp.X_add_number < 0
9425 || inst.reloc.exp.X_add_number > 3,
9426 _("shift out of range"));
9427 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9428 }
9429 inst.reloc.type = BFD_RELOC_UNUSED;
9430 }
9431 else if (inst.operands[i].preind)
9432 {
9433 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
9434 constraint (is_t && inst.operands[i].writeback,
9435 _("cannot use writeback with this instruction"));
9436 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
9437 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
9438
9439 if (is_d)
9440 {
9441 inst.instruction |= 0x01000000;
9442 if (inst.operands[i].writeback)
9443 inst.instruction |= 0x00200000;
9444 }
9445 else
9446 {
9447 inst.instruction |= 0x00000c00;
9448 if (inst.operands[i].writeback)
9449 inst.instruction |= 0x00000100;
9450 }
9451 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9452 }
9453 else if (inst.operands[i].postind)
9454 {
9455 gas_assert (inst.operands[i].writeback);
9456 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9457 constraint (is_t, _("cannot use post-indexing with this instruction"));
9458
9459 if (is_d)
9460 inst.instruction |= 0x00200000;
9461 else
9462 inst.instruction |= 0x00000900;
9463 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9464 }
9465 else /* unindexed - only for coprocessor */
9466 inst.error = _("instruction does not accept unindexed addressing");
9467 }
9468
9469 /* Table of Thumb instructions which exist in both 16- and 32-bit
9470 encodings (the latter only in post-V6T2 cores). The index is the
9471 value used in the insns table below. When there is more than one
9472 possible 16-bit encoding for the instruction, this table always
9473 holds variant (1).
9474 Also contains several pseudo-instructions used during relaxation. */
9475 #define T16_32_TAB \
9476 X(_adc, 4140, eb400000), \
9477 X(_adcs, 4140, eb500000), \
9478 X(_add, 1c00, eb000000), \
9479 X(_adds, 1c00, eb100000), \
9480 X(_addi, 0000, f1000000), \
9481 X(_addis, 0000, f1100000), \
9482 X(_add_pc,000f, f20f0000), \
9483 X(_add_sp,000d, f10d0000), \
9484 X(_adr, 000f, f20f0000), \
9485 X(_and, 4000, ea000000), \
9486 X(_ands, 4000, ea100000), \
9487 X(_asr, 1000, fa40f000), \
9488 X(_asrs, 1000, fa50f000), \
9489 X(_b, e000, f000b000), \
9490 X(_bcond, d000, f0008000), \
9491 X(_bic, 4380, ea200000), \
9492 X(_bics, 4380, ea300000), \
9493 X(_cmn, 42c0, eb100f00), \
9494 X(_cmp, 2800, ebb00f00), \
9495 X(_cpsie, b660, f3af8400), \
9496 X(_cpsid, b670, f3af8600), \
9497 X(_cpy, 4600, ea4f0000), \
9498 X(_dec_sp,80dd, f1ad0d00), \
9499 X(_eor, 4040, ea800000), \
9500 X(_eors, 4040, ea900000), \
9501 X(_inc_sp,00dd, f10d0d00), \
9502 X(_ldmia, c800, e8900000), \
9503 X(_ldr, 6800, f8500000), \
9504 X(_ldrb, 7800, f8100000), \
9505 X(_ldrh, 8800, f8300000), \
9506 X(_ldrsb, 5600, f9100000), \
9507 X(_ldrsh, 5e00, f9300000), \
9508 X(_ldr_pc,4800, f85f0000), \
9509 X(_ldr_pc2,4800, f85f0000), \
9510 X(_ldr_sp,9800, f85d0000), \
9511 X(_lsl, 0000, fa00f000), \
9512 X(_lsls, 0000, fa10f000), \
9513 X(_lsr, 0800, fa20f000), \
9514 X(_lsrs, 0800, fa30f000), \
9515 X(_mov, 2000, ea4f0000), \
9516 X(_movs, 2000, ea5f0000), \
9517 X(_mul, 4340, fb00f000), \
9518 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9519 X(_mvn, 43c0, ea6f0000), \
9520 X(_mvns, 43c0, ea7f0000), \
9521 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9522 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9523 X(_orr, 4300, ea400000), \
9524 X(_orrs, 4300, ea500000), \
9525 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9526 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9527 X(_rev, ba00, fa90f080), \
9528 X(_rev16, ba40, fa90f090), \
9529 X(_revsh, bac0, fa90f0b0), \
9530 X(_ror, 41c0, fa60f000), \
9531 X(_rors, 41c0, fa70f000), \
9532 X(_sbc, 4180, eb600000), \
9533 X(_sbcs, 4180, eb700000), \
9534 X(_stmia, c000, e8800000), \
9535 X(_str, 6000, f8400000), \
9536 X(_strb, 7000, f8000000), \
9537 X(_strh, 8000, f8200000), \
9538 X(_str_sp,9000, f84d0000), \
9539 X(_sub, 1e00, eba00000), \
9540 X(_subs, 1e00, ebb00000), \
9541 X(_subi, 8000, f1a00000), \
9542 X(_subis, 8000, f1b00000), \
9543 X(_sxtb, b240, fa4ff080), \
9544 X(_sxth, b200, fa0ff080), \
9545 X(_tst, 4200, ea100f00), \
9546 X(_uxtb, b2c0, fa5ff080), \
9547 X(_uxth, b280, fa1ff080), \
9548 X(_nop, bf00, f3af8000), \
9549 X(_yield, bf10, f3af8001), \
9550 X(_wfe, bf20, f3af8002), \
9551 X(_wfi, bf30, f3af8003), \
9552 X(_sev, bf40, f3af8004),
9553
9554 /* To catch errors in encoding functions, the codes are all offset by
9555 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9556 as 16-bit instructions. */
9557 #define X(a,b,c) T_MNEM##a
9558 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9559 #undef X
9560
9561 #define X(a,b,c) 0x##b
9562 static const unsigned short thumb_op16[] = { T16_32_TAB };
9563 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9564 #undef X
9565
9566 #define X(a,b,c) 0x##c
9567 static const unsigned int thumb_op32[] = { T16_32_TAB };
9568 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9569 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
9570 #undef X
9571 #undef T16_32_TAB
9572
9573 /* Thumb instruction encoders, in alphabetical order. */
9574
9575 /* ADDW or SUBW. */
9576
9577 static void
9578 do_t_add_sub_w (void)
9579 {
9580 int Rd, Rn;
9581
9582 Rd = inst.operands[0].reg;
9583 Rn = inst.operands[1].reg;
9584
9585 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9586 is the SP-{plus,minus}-immediate form of the instruction. */
9587 if (Rn == REG_SP)
9588 constraint (Rd == REG_PC, BAD_PC);
9589 else
9590 reject_bad_reg (Rd);
9591
9592 inst.instruction |= (Rn << 16) | (Rd << 8);
9593 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9594 }
9595
9596 /* Parse an add or subtract instruction. We get here with inst.instruction
9597 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9598
9599 static void
9600 do_t_add_sub (void)
9601 {
9602 int Rd, Rs, Rn;
9603
9604 Rd = inst.operands[0].reg;
9605 Rs = (inst.operands[1].present
9606 ? inst.operands[1].reg /* Rd, Rs, foo */
9607 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9608
9609 if (Rd == REG_PC)
9610 set_it_insn_type_last ();
9611
9612 if (unified_syntax)
9613 {
9614 bfd_boolean flags;
9615 bfd_boolean narrow;
9616 int opcode;
9617
9618 flags = (inst.instruction == T_MNEM_adds
9619 || inst.instruction == T_MNEM_subs);
9620 if (flags)
9621 narrow = !in_it_block ();
9622 else
9623 narrow = in_it_block ();
9624 if (!inst.operands[2].isreg)
9625 {
9626 int add;
9627
9628 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9629
9630 add = (inst.instruction == T_MNEM_add
9631 || inst.instruction == T_MNEM_adds);
9632 opcode = 0;
9633 if (inst.size_req != 4)
9634 {
9635 /* Attempt to use a narrow opcode, with relaxation if
9636 appropriate. */
9637 if (Rd == REG_SP && Rs == REG_SP && !flags)
9638 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9639 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9640 opcode = T_MNEM_add_sp;
9641 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9642 opcode = T_MNEM_add_pc;
9643 else if (Rd <= 7 && Rs <= 7 && narrow)
9644 {
9645 if (flags)
9646 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9647 else
9648 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9649 }
9650 if (opcode)
9651 {
9652 inst.instruction = THUMB_OP16(opcode);
9653 inst.instruction |= (Rd << 4) | Rs;
9654 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9655 if (inst.size_req != 2)
9656 inst.relax = opcode;
9657 }
9658 else
9659 constraint (inst.size_req == 2, BAD_HIREG);
9660 }
9661 if (inst.size_req == 4
9662 || (inst.size_req != 2 && !opcode))
9663 {
9664 if (Rd == REG_PC)
9665 {
9666 constraint (add, BAD_PC);
9667 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9668 _("only SUBS PC, LR, #const allowed"));
9669 constraint (inst.reloc.exp.X_op != O_constant,
9670 _("expression too complex"));
9671 constraint (inst.reloc.exp.X_add_number < 0
9672 || inst.reloc.exp.X_add_number > 0xff,
9673 _("immediate value out of range"));
9674 inst.instruction = T2_SUBS_PC_LR
9675 | inst.reloc.exp.X_add_number;
9676 inst.reloc.type = BFD_RELOC_UNUSED;
9677 return;
9678 }
9679 else if (Rs == REG_PC)
9680 {
9681 /* Always use addw/subw. */
9682 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9683 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9684 }
9685 else
9686 {
9687 inst.instruction = THUMB_OP32 (inst.instruction);
9688 inst.instruction = (inst.instruction & 0xe1ffffff)
9689 | 0x10000000;
9690 if (flags)
9691 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9692 else
9693 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9694 }
9695 inst.instruction |= Rd << 8;
9696 inst.instruction |= Rs << 16;
9697 }
9698 }
9699 else
9700 {
9701 unsigned int value = inst.reloc.exp.X_add_number;
9702 unsigned int shift = inst.operands[2].shift_kind;
9703
9704 Rn = inst.operands[2].reg;
9705 /* See if we can do this with a 16-bit instruction. */
9706 if (!inst.operands[2].shifted && inst.size_req != 4)
9707 {
9708 if (Rd > 7 || Rs > 7 || Rn > 7)
9709 narrow = FALSE;
9710
9711 if (narrow)
9712 {
9713 inst.instruction = ((inst.instruction == T_MNEM_adds
9714 || inst.instruction == T_MNEM_add)
9715 ? T_OPCODE_ADD_R3
9716 : T_OPCODE_SUB_R3);
9717 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9718 return;
9719 }
9720
9721 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
9722 {
9723 /* Thumb-1 cores (except v6-M) require at least one high
9724 register in a narrow non flag setting add. */
9725 if (Rd > 7 || Rn > 7
9726 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9727 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
9728 {
9729 if (Rd == Rn)
9730 {
9731 Rn = Rs;
9732 Rs = Rd;
9733 }
9734 inst.instruction = T_OPCODE_ADD_HI;
9735 inst.instruction |= (Rd & 8) << 4;
9736 inst.instruction |= (Rd & 7);
9737 inst.instruction |= Rn << 3;
9738 return;
9739 }
9740 }
9741 }
9742
9743 constraint (Rd == REG_PC, BAD_PC);
9744 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9745 constraint (Rs == REG_PC, BAD_PC);
9746 reject_bad_reg (Rn);
9747
9748 /* If we get here, it can't be done in 16 bits. */
9749 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9750 _("shift must be constant"));
9751 inst.instruction = THUMB_OP32 (inst.instruction);
9752 inst.instruction |= Rd << 8;
9753 inst.instruction |= Rs << 16;
9754 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
9755 _("shift value over 3 not allowed in thumb mode"));
9756 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
9757 _("only LSL shift allowed in thumb mode"));
9758 encode_thumb32_shifted_operand (2);
9759 }
9760 }
9761 else
9762 {
9763 constraint (inst.instruction == T_MNEM_adds
9764 || inst.instruction == T_MNEM_subs,
9765 BAD_THUMB32);
9766
9767 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9768 {
9769 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9770 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9771 BAD_HIREG);
9772
9773 inst.instruction = (inst.instruction == T_MNEM_add
9774 ? 0x0000 : 0x8000);
9775 inst.instruction |= (Rd << 4) | Rs;
9776 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9777 return;
9778 }
9779
9780 Rn = inst.operands[2].reg;
9781 constraint (inst.operands[2].shifted, _("unshifted register required"));
9782
9783 /* We now have Rd, Rs, and Rn set to registers. */
9784 if (Rd > 7 || Rs > 7 || Rn > 7)
9785 {
9786 /* Can't do this for SUB. */
9787 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9788 inst.instruction = T_OPCODE_ADD_HI;
9789 inst.instruction |= (Rd & 8) << 4;
9790 inst.instruction |= (Rd & 7);
9791 if (Rs == Rd)
9792 inst.instruction |= Rn << 3;
9793 else if (Rn == Rd)
9794 inst.instruction |= Rs << 3;
9795 else
9796 constraint (1, _("dest must overlap one source register"));
9797 }
9798 else
9799 {
9800 inst.instruction = (inst.instruction == T_MNEM_add
9801 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9802 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9803 }
9804 }
9805 }
9806
9807 static void
9808 do_t_adr (void)
9809 {
9810 unsigned Rd;
9811
9812 Rd = inst.operands[0].reg;
9813 reject_bad_reg (Rd);
9814
9815 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9816 {
9817 /* Defer to section relaxation. */
9818 inst.relax = inst.instruction;
9819 inst.instruction = THUMB_OP16 (inst.instruction);
9820 inst.instruction |= Rd << 4;
9821 }
9822 else if (unified_syntax && inst.size_req != 2)
9823 {
9824 /* Generate a 32-bit opcode. */
9825 inst.instruction = THUMB_OP32 (inst.instruction);
9826 inst.instruction |= Rd << 8;
9827 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9828 inst.reloc.pc_rel = 1;
9829 }
9830 else
9831 {
9832 /* Generate a 16-bit opcode. */
9833 inst.instruction = THUMB_OP16 (inst.instruction);
9834 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9835 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9836 inst.reloc.pc_rel = 1;
9837
9838 inst.instruction |= Rd << 4;
9839 }
9840 }
9841
9842 /* Arithmetic instructions for which there is just one 16-bit
9843 instruction encoding, and it allows only two low registers.
9844 For maximal compatibility with ARM syntax, we allow three register
9845 operands even when Thumb-32 instructions are not available, as long
9846 as the first two are identical. For instance, both "sbc r0,r1" and
9847 "sbc r0,r0,r1" are allowed. */
9848 static void
9849 do_t_arit3 (void)
9850 {
9851 int Rd, Rs, Rn;
9852
9853 Rd = inst.operands[0].reg;
9854 Rs = (inst.operands[1].present
9855 ? inst.operands[1].reg /* Rd, Rs, foo */
9856 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9857 Rn = inst.operands[2].reg;
9858
9859 reject_bad_reg (Rd);
9860 reject_bad_reg (Rs);
9861 if (inst.operands[2].isreg)
9862 reject_bad_reg (Rn);
9863
9864 if (unified_syntax)
9865 {
9866 if (!inst.operands[2].isreg)
9867 {
9868 /* For an immediate, we always generate a 32-bit opcode;
9869 section relaxation will shrink it later if possible. */
9870 inst.instruction = THUMB_OP32 (inst.instruction);
9871 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9872 inst.instruction |= Rd << 8;
9873 inst.instruction |= Rs << 16;
9874 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9875 }
9876 else
9877 {
9878 bfd_boolean narrow;
9879
9880 /* See if we can do this with a 16-bit instruction. */
9881 if (THUMB_SETS_FLAGS (inst.instruction))
9882 narrow = !in_it_block ();
9883 else
9884 narrow = in_it_block ();
9885
9886 if (Rd > 7 || Rn > 7 || Rs > 7)
9887 narrow = FALSE;
9888 if (inst.operands[2].shifted)
9889 narrow = FALSE;
9890 if (inst.size_req == 4)
9891 narrow = FALSE;
9892
9893 if (narrow
9894 && Rd == Rs)
9895 {
9896 inst.instruction = THUMB_OP16 (inst.instruction);
9897 inst.instruction |= Rd;
9898 inst.instruction |= Rn << 3;
9899 return;
9900 }
9901
9902 /* If we get here, it can't be done in 16 bits. */
9903 constraint (inst.operands[2].shifted
9904 && inst.operands[2].immisreg,
9905 _("shift must be constant"));
9906 inst.instruction = THUMB_OP32 (inst.instruction);
9907 inst.instruction |= Rd << 8;
9908 inst.instruction |= Rs << 16;
9909 encode_thumb32_shifted_operand (2);
9910 }
9911 }
9912 else
9913 {
9914 /* On its face this is a lie - the instruction does set the
9915 flags. However, the only supported mnemonic in this mode
9916 says it doesn't. */
9917 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9918
9919 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9920 _("unshifted register required"));
9921 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9922 constraint (Rd != Rs,
9923 _("dest and source1 must be the same register"));
9924
9925 inst.instruction = THUMB_OP16 (inst.instruction);
9926 inst.instruction |= Rd;
9927 inst.instruction |= Rn << 3;
9928 }
9929 }
9930
9931 /* Similarly, but for instructions where the arithmetic operation is
9932 commutative, so we can allow either of them to be different from
9933 the destination operand in a 16-bit instruction. For instance, all
9934 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9935 accepted. */
9936 static void
9937 do_t_arit3c (void)
9938 {
9939 int Rd, Rs, Rn;
9940
9941 Rd = inst.operands[0].reg;
9942 Rs = (inst.operands[1].present
9943 ? inst.operands[1].reg /* Rd, Rs, foo */
9944 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9945 Rn = inst.operands[2].reg;
9946
9947 reject_bad_reg (Rd);
9948 reject_bad_reg (Rs);
9949 if (inst.operands[2].isreg)
9950 reject_bad_reg (Rn);
9951
9952 if (unified_syntax)
9953 {
9954 if (!inst.operands[2].isreg)
9955 {
9956 /* For an immediate, we always generate a 32-bit opcode;
9957 section relaxation will shrink it later if possible. */
9958 inst.instruction = THUMB_OP32 (inst.instruction);
9959 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9960 inst.instruction |= Rd << 8;
9961 inst.instruction |= Rs << 16;
9962 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9963 }
9964 else
9965 {
9966 bfd_boolean narrow;
9967
9968 /* See if we can do this with a 16-bit instruction. */
9969 if (THUMB_SETS_FLAGS (inst.instruction))
9970 narrow = !in_it_block ();
9971 else
9972 narrow = in_it_block ();
9973
9974 if (Rd > 7 || Rn > 7 || Rs > 7)
9975 narrow = FALSE;
9976 if (inst.operands[2].shifted)
9977 narrow = FALSE;
9978 if (inst.size_req == 4)
9979 narrow = FALSE;
9980
9981 if (narrow)
9982 {
9983 if (Rd == Rs)
9984 {
9985 inst.instruction = THUMB_OP16 (inst.instruction);
9986 inst.instruction |= Rd;
9987 inst.instruction |= Rn << 3;
9988 return;
9989 }
9990 if (Rd == Rn)
9991 {
9992 inst.instruction = THUMB_OP16 (inst.instruction);
9993 inst.instruction |= Rd;
9994 inst.instruction |= Rs << 3;
9995 return;
9996 }
9997 }
9998
9999 /* If we get here, it can't be done in 16 bits. */
10000 constraint (inst.operands[2].shifted
10001 && inst.operands[2].immisreg,
10002 _("shift must be constant"));
10003 inst.instruction = THUMB_OP32 (inst.instruction);
10004 inst.instruction |= Rd << 8;
10005 inst.instruction |= Rs << 16;
10006 encode_thumb32_shifted_operand (2);
10007 }
10008 }
10009 else
10010 {
10011 /* On its face this is a lie - the instruction does set the
10012 flags. However, the only supported mnemonic in this mode
10013 says it doesn't. */
10014 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10015
10016 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10017 _("unshifted register required"));
10018 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10019
10020 inst.instruction = THUMB_OP16 (inst.instruction);
10021 inst.instruction |= Rd;
10022
10023 if (Rd == Rs)
10024 inst.instruction |= Rn << 3;
10025 else if (Rd == Rn)
10026 inst.instruction |= Rs << 3;
10027 else
10028 constraint (1, _("dest must overlap one source register"));
10029 }
10030 }
10031
10032 static void
10033 do_t_barrier (void)
10034 {
10035 if (inst.operands[0].present)
10036 {
10037 constraint ((inst.instruction & 0xf0) != 0x40
10038 && inst.operands[0].imm > 0xf
10039 && inst.operands[0].imm < 0x0,
10040 _("bad barrier type"));
10041 inst.instruction |= inst.operands[0].imm;
10042 }
10043 else
10044 inst.instruction |= 0xf;
10045 }
10046
10047 static void
10048 do_t_bfc (void)
10049 {
10050 unsigned Rd;
10051 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
10052 constraint (msb > 32, _("bit-field extends past end of register"));
10053 /* The instruction encoding stores the LSB and MSB,
10054 not the LSB and width. */
10055 Rd = inst.operands[0].reg;
10056 reject_bad_reg (Rd);
10057 inst.instruction |= Rd << 8;
10058 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
10059 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
10060 inst.instruction |= msb - 1;
10061 }
10062
10063 static void
10064 do_t_bfi (void)
10065 {
10066 int Rd, Rn;
10067 unsigned int msb;
10068
10069 Rd = inst.operands[0].reg;
10070 reject_bad_reg (Rd);
10071
10072 /* #0 in second position is alternative syntax for bfc, which is
10073 the same instruction but with REG_PC in the Rm field. */
10074 if (!inst.operands[1].isreg)
10075 Rn = REG_PC;
10076 else
10077 {
10078 Rn = inst.operands[1].reg;
10079 reject_bad_reg (Rn);
10080 }
10081
10082 msb = inst.operands[2].imm + inst.operands[3].imm;
10083 constraint (msb > 32, _("bit-field extends past end of register"));
10084 /* The instruction encoding stores the LSB and MSB,
10085 not the LSB and width. */
10086 inst.instruction |= Rd << 8;
10087 inst.instruction |= Rn << 16;
10088 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10089 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10090 inst.instruction |= msb - 1;
10091 }
10092
10093 static void
10094 do_t_bfx (void)
10095 {
10096 unsigned Rd, Rn;
10097
10098 Rd = inst.operands[0].reg;
10099 Rn = inst.operands[1].reg;
10100
10101 reject_bad_reg (Rd);
10102 reject_bad_reg (Rn);
10103
10104 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
10105 _("bit-field extends past end of register"));
10106 inst.instruction |= Rd << 8;
10107 inst.instruction |= Rn << 16;
10108 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10109 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10110 inst.instruction |= inst.operands[3].imm - 1;
10111 }
10112
10113 /* ARM V5 Thumb BLX (argument parse)
10114 BLX <target_addr> which is BLX(1)
10115 BLX <Rm> which is BLX(2)
10116 Unfortunately, there are two different opcodes for this mnemonic.
10117 So, the insns[].value is not used, and the code here zaps values
10118 into inst.instruction.
10119
10120 ??? How to take advantage of the additional two bits of displacement
10121 available in Thumb32 mode? Need new relocation? */
10122
10123 static void
10124 do_t_blx (void)
10125 {
10126 set_it_insn_type_last ();
10127
10128 if (inst.operands[0].isreg)
10129 {
10130 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
10131 /* We have a register, so this is BLX(2). */
10132 inst.instruction |= inst.operands[0].reg << 3;
10133 }
10134 else
10135 {
10136 /* No register. This must be BLX(1). */
10137 inst.instruction = 0xf000e800;
10138 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
10139 }
10140 }
10141
10142 static void
10143 do_t_branch (void)
10144 {
10145 int opcode;
10146 int cond;
10147 int reloc;
10148
10149 cond = inst.cond;
10150 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
10151
10152 if (in_it_block ())
10153 {
10154 /* Conditional branches inside IT blocks are encoded as unconditional
10155 branches. */
10156 cond = COND_ALWAYS;
10157 }
10158 else
10159 cond = inst.cond;
10160
10161 if (cond != COND_ALWAYS)
10162 opcode = T_MNEM_bcond;
10163 else
10164 opcode = inst.instruction;
10165
10166 if (unified_syntax
10167 && (inst.size_req == 4
10168 || (inst.size_req != 2
10169 && (inst.operands[0].hasreloc
10170 || inst.reloc.exp.X_op == O_constant))))
10171 {
10172 inst.instruction = THUMB_OP32(opcode);
10173 if (cond == COND_ALWAYS)
10174 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
10175 else
10176 {
10177 gas_assert (cond != 0xF);
10178 inst.instruction |= cond << 22;
10179 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
10180 }
10181 }
10182 else
10183 {
10184 inst.instruction = THUMB_OP16(opcode);
10185 if (cond == COND_ALWAYS)
10186 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
10187 else
10188 {
10189 inst.instruction |= cond << 8;
10190 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
10191 }
10192 /* Allow section relaxation. */
10193 if (unified_syntax && inst.size_req != 2)
10194 inst.relax = opcode;
10195 }
10196 inst.reloc.type = reloc;
10197 inst.reloc.pc_rel = 1;
10198 }
10199
10200 static void
10201 do_t_bkpt (void)
10202 {
10203 constraint (inst.cond != COND_ALWAYS,
10204 _("instruction is always unconditional"));
10205 if (inst.operands[0].present)
10206 {
10207 constraint (inst.operands[0].imm > 255,
10208 _("immediate value out of range"));
10209 inst.instruction |= inst.operands[0].imm;
10210 set_it_insn_type (NEUTRAL_IT_INSN);
10211 }
10212 }
10213
10214 static void
10215 do_t_branch23 (void)
10216 {
10217 set_it_insn_type_last ();
10218 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
10219
10220 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
10221 this file. We used to simply ignore the PLT reloc type here --
10222 the branch encoding is now needed to deal with TLSCALL relocs.
10223 So if we see a PLT reloc now, put it back to how it used to be to
10224 keep the preexisting behaviour. */
10225 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
10226 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
10227
10228 #if defined(OBJ_COFF)
10229 /* If the destination of the branch is a defined symbol which does not have
10230 the THUMB_FUNC attribute, then we must be calling a function which has
10231 the (interfacearm) attribute. We look for the Thumb entry point to that
10232 function and change the branch to refer to that function instead. */
10233 if ( inst.reloc.exp.X_op == O_symbol
10234 && inst.reloc.exp.X_add_symbol != NULL
10235 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10236 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10237 inst.reloc.exp.X_add_symbol =
10238 find_real_start (inst.reloc.exp.X_add_symbol);
10239 #endif
10240 }
10241
10242 static void
10243 do_t_bx (void)
10244 {
10245 set_it_insn_type_last ();
10246 inst.instruction |= inst.operands[0].reg << 3;
10247 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
10248 should cause the alignment to be checked once it is known. This is
10249 because BX PC only works if the instruction is word aligned. */
10250 }
10251
10252 static void
10253 do_t_bxj (void)
10254 {
10255 int Rm;
10256
10257 set_it_insn_type_last ();
10258 Rm = inst.operands[0].reg;
10259 reject_bad_reg (Rm);
10260 inst.instruction |= Rm << 16;
10261 }
10262
10263 static void
10264 do_t_clz (void)
10265 {
10266 unsigned Rd;
10267 unsigned Rm;
10268
10269 Rd = inst.operands[0].reg;
10270 Rm = inst.operands[1].reg;
10271
10272 reject_bad_reg (Rd);
10273 reject_bad_reg (Rm);
10274
10275 inst.instruction |= Rd << 8;
10276 inst.instruction |= Rm << 16;
10277 inst.instruction |= Rm;
10278 }
10279
10280 static void
10281 do_t_cps (void)
10282 {
10283 set_it_insn_type (OUTSIDE_IT_INSN);
10284 inst.instruction |= inst.operands[0].imm;
10285 }
10286
10287 static void
10288 do_t_cpsi (void)
10289 {
10290 set_it_insn_type (OUTSIDE_IT_INSN);
10291 if (unified_syntax
10292 && (inst.operands[1].present || inst.size_req == 4)
10293 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
10294 {
10295 unsigned int imod = (inst.instruction & 0x0030) >> 4;
10296 inst.instruction = 0xf3af8000;
10297 inst.instruction |= imod << 9;
10298 inst.instruction |= inst.operands[0].imm << 5;
10299 if (inst.operands[1].present)
10300 inst.instruction |= 0x100 | inst.operands[1].imm;
10301 }
10302 else
10303 {
10304 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
10305 && (inst.operands[0].imm & 4),
10306 _("selected processor does not support 'A' form "
10307 "of this instruction"));
10308 constraint (inst.operands[1].present || inst.size_req == 4,
10309 _("Thumb does not support the 2-argument "
10310 "form of this instruction"));
10311 inst.instruction |= inst.operands[0].imm;
10312 }
10313 }
10314
10315 /* THUMB CPY instruction (argument parse). */
10316
10317 static void
10318 do_t_cpy (void)
10319 {
10320 if (inst.size_req == 4)
10321 {
10322 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10323 inst.instruction |= inst.operands[0].reg << 8;
10324 inst.instruction |= inst.operands[1].reg;
10325 }
10326 else
10327 {
10328 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10329 inst.instruction |= (inst.operands[0].reg & 0x7);
10330 inst.instruction |= inst.operands[1].reg << 3;
10331 }
10332 }
10333
10334 static void
10335 do_t_cbz (void)
10336 {
10337 set_it_insn_type (OUTSIDE_IT_INSN);
10338 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10339 inst.instruction |= inst.operands[0].reg;
10340 inst.reloc.pc_rel = 1;
10341 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10342 }
10343
10344 static void
10345 do_t_dbg (void)
10346 {
10347 inst.instruction |= inst.operands[0].imm;
10348 }
10349
10350 static void
10351 do_t_div (void)
10352 {
10353 unsigned Rd, Rn, Rm;
10354
10355 Rd = inst.operands[0].reg;
10356 Rn = (inst.operands[1].present
10357 ? inst.operands[1].reg : Rd);
10358 Rm = inst.operands[2].reg;
10359
10360 reject_bad_reg (Rd);
10361 reject_bad_reg (Rn);
10362 reject_bad_reg (Rm);
10363
10364 inst.instruction |= Rd << 8;
10365 inst.instruction |= Rn << 16;
10366 inst.instruction |= Rm;
10367 }
10368
10369 static void
10370 do_t_hint (void)
10371 {
10372 if (unified_syntax && inst.size_req == 4)
10373 inst.instruction = THUMB_OP32 (inst.instruction);
10374 else
10375 inst.instruction = THUMB_OP16 (inst.instruction);
10376 }
10377
10378 static void
10379 do_t_it (void)
10380 {
10381 unsigned int cond = inst.operands[0].imm;
10382
10383 set_it_insn_type (IT_INSN);
10384 now_it.mask = (inst.instruction & 0xf) | 0x10;
10385 now_it.cc = cond;
10386 now_it.warn_deprecated = FALSE;
10387
10388 /* If the condition is a negative condition, invert the mask. */
10389 if ((cond & 0x1) == 0x0)
10390 {
10391 unsigned int mask = inst.instruction & 0x000f;
10392
10393 if ((mask & 0x7) == 0)
10394 {
10395 /* No conversion needed. */
10396 now_it.block_length = 1;
10397 }
10398 else if ((mask & 0x3) == 0)
10399 {
10400 mask ^= 0x8;
10401 now_it.block_length = 2;
10402 }
10403 else if ((mask & 0x1) == 0)
10404 {
10405 mask ^= 0xC;
10406 now_it.block_length = 3;
10407 }
10408 else
10409 {
10410 mask ^= 0xE;
10411 now_it.block_length = 4;
10412 }
10413
10414 inst.instruction &= 0xfff0;
10415 inst.instruction |= mask;
10416 }
10417
10418 inst.instruction |= cond << 4;
10419 }
10420
10421 /* Helper function used for both push/pop and ldm/stm. */
10422 static void
10423 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10424 {
10425 bfd_boolean load;
10426
10427 load = (inst.instruction & (1 << 20)) != 0;
10428
10429 if (mask & (1 << 13))
10430 inst.error = _("SP not allowed in register list");
10431
10432 if ((mask & (1 << base)) != 0
10433 && writeback)
10434 inst.error = _("having the base register in the register list when "
10435 "using write back is UNPREDICTABLE");
10436
10437 if (load)
10438 {
10439 if (mask & (1 << 15))
10440 {
10441 if (mask & (1 << 14))
10442 inst.error = _("LR and PC should not both be in register list");
10443 else
10444 set_it_insn_type_last ();
10445 }
10446 }
10447 else
10448 {
10449 if (mask & (1 << 15))
10450 inst.error = _("PC not allowed in register list");
10451 }
10452
10453 if ((mask & (mask - 1)) == 0)
10454 {
10455 /* Single register transfers implemented as str/ldr. */
10456 if (writeback)
10457 {
10458 if (inst.instruction & (1 << 23))
10459 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10460 else
10461 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10462 }
10463 else
10464 {
10465 if (inst.instruction & (1 << 23))
10466 inst.instruction = 0x00800000; /* ia -> [base] */
10467 else
10468 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10469 }
10470
10471 inst.instruction |= 0xf8400000;
10472 if (load)
10473 inst.instruction |= 0x00100000;
10474
10475 mask = ffs (mask) - 1;
10476 mask <<= 12;
10477 }
10478 else if (writeback)
10479 inst.instruction |= WRITE_BACK;
10480
10481 inst.instruction |= mask;
10482 inst.instruction |= base << 16;
10483 }
10484
10485 static void
10486 do_t_ldmstm (void)
10487 {
10488 /* This really doesn't seem worth it. */
10489 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10490 _("expression too complex"));
10491 constraint (inst.operands[1].writeback,
10492 _("Thumb load/store multiple does not support {reglist}^"));
10493
10494 if (unified_syntax)
10495 {
10496 bfd_boolean narrow;
10497 unsigned mask;
10498
10499 narrow = FALSE;
10500 /* See if we can use a 16-bit instruction. */
10501 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10502 && inst.size_req != 4
10503 && !(inst.operands[1].imm & ~0xff))
10504 {
10505 mask = 1 << inst.operands[0].reg;
10506
10507 if (inst.operands[0].reg <= 7)
10508 {
10509 if (inst.instruction == T_MNEM_stmia
10510 ? inst.operands[0].writeback
10511 : (inst.operands[0].writeback
10512 == !(inst.operands[1].imm & mask)))
10513 {
10514 if (inst.instruction == T_MNEM_stmia
10515 && (inst.operands[1].imm & mask)
10516 && (inst.operands[1].imm & (mask - 1)))
10517 as_warn (_("value stored for r%d is UNKNOWN"),
10518 inst.operands[0].reg);
10519
10520 inst.instruction = THUMB_OP16 (inst.instruction);
10521 inst.instruction |= inst.operands[0].reg << 8;
10522 inst.instruction |= inst.operands[1].imm;
10523 narrow = TRUE;
10524 }
10525 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10526 {
10527 /* This means 1 register in reg list one of 3 situations:
10528 1. Instruction is stmia, but without writeback.
10529 2. lmdia without writeback, but with Rn not in
10530 reglist.
10531 3. ldmia with writeback, but with Rn in reglist.
10532 Case 3 is UNPREDICTABLE behaviour, so we handle
10533 case 1 and 2 which can be converted into a 16-bit
10534 str or ldr. The SP cases are handled below. */
10535 unsigned long opcode;
10536 /* First, record an error for Case 3. */
10537 if (inst.operands[1].imm & mask
10538 && inst.operands[0].writeback)
10539 inst.error =
10540 _("having the base register in the register list when "
10541 "using write back is UNPREDICTABLE");
10542
10543 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10544 : T_MNEM_ldr);
10545 inst.instruction = THUMB_OP16 (opcode);
10546 inst.instruction |= inst.operands[0].reg << 3;
10547 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10548 narrow = TRUE;
10549 }
10550 }
10551 else if (inst.operands[0] .reg == REG_SP)
10552 {
10553 if (inst.operands[0].writeback)
10554 {
10555 inst.instruction =
10556 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10557 ? T_MNEM_push : T_MNEM_pop);
10558 inst.instruction |= inst.operands[1].imm;
10559 narrow = TRUE;
10560 }
10561 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10562 {
10563 inst.instruction =
10564 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10565 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10566 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10567 narrow = TRUE;
10568 }
10569 }
10570 }
10571
10572 if (!narrow)
10573 {
10574 if (inst.instruction < 0xffff)
10575 inst.instruction = THUMB_OP32 (inst.instruction);
10576
10577 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10578 inst.operands[0].writeback);
10579 }
10580 }
10581 else
10582 {
10583 constraint (inst.operands[0].reg > 7
10584 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
10585 constraint (inst.instruction != T_MNEM_ldmia
10586 && inst.instruction != T_MNEM_stmia,
10587 _("Thumb-2 instruction only valid in unified syntax"));
10588 if (inst.instruction == T_MNEM_stmia)
10589 {
10590 if (!inst.operands[0].writeback)
10591 as_warn (_("this instruction will write back the base register"));
10592 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10593 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
10594 as_warn (_("value stored for r%d is UNKNOWN"),
10595 inst.operands[0].reg);
10596 }
10597 else
10598 {
10599 if (!inst.operands[0].writeback
10600 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10601 as_warn (_("this instruction will write back the base register"));
10602 else if (inst.operands[0].writeback
10603 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10604 as_warn (_("this instruction will not write back the base register"));
10605 }
10606
10607 inst.instruction = THUMB_OP16 (inst.instruction);
10608 inst.instruction |= inst.operands[0].reg << 8;
10609 inst.instruction |= inst.operands[1].imm;
10610 }
10611 }
10612
10613 static void
10614 do_t_ldrex (void)
10615 {
10616 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10617 || inst.operands[1].postind || inst.operands[1].writeback
10618 || inst.operands[1].immisreg || inst.operands[1].shifted
10619 || inst.operands[1].negative,
10620 BAD_ADDR_MODE);
10621
10622 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10623
10624 inst.instruction |= inst.operands[0].reg << 12;
10625 inst.instruction |= inst.operands[1].reg << 16;
10626 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10627 }
10628
10629 static void
10630 do_t_ldrexd (void)
10631 {
10632 if (!inst.operands[1].present)
10633 {
10634 constraint (inst.operands[0].reg == REG_LR,
10635 _("r14 not allowed as first register "
10636 "when second register is omitted"));
10637 inst.operands[1].reg = inst.operands[0].reg + 1;
10638 }
10639 constraint (inst.operands[0].reg == inst.operands[1].reg,
10640 BAD_OVERLAP);
10641
10642 inst.instruction |= inst.operands[0].reg << 12;
10643 inst.instruction |= inst.operands[1].reg << 8;
10644 inst.instruction |= inst.operands[2].reg << 16;
10645 }
10646
10647 static void
10648 do_t_ldst (void)
10649 {
10650 unsigned long opcode;
10651 int Rn;
10652
10653 if (inst.operands[0].isreg
10654 && !inst.operands[0].preind
10655 && inst.operands[0].reg == REG_PC)
10656 set_it_insn_type_last ();
10657
10658 opcode = inst.instruction;
10659 if (unified_syntax)
10660 {
10661 if (!inst.operands[1].isreg)
10662 {
10663 if (opcode <= 0xffff)
10664 inst.instruction = THUMB_OP32 (opcode);
10665 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10666 return;
10667 }
10668 if (inst.operands[1].isreg
10669 && !inst.operands[1].writeback
10670 && !inst.operands[1].shifted && !inst.operands[1].postind
10671 && !inst.operands[1].negative && inst.operands[0].reg <= 7
10672 && opcode <= 0xffff
10673 && inst.size_req != 4)
10674 {
10675 /* Insn may have a 16-bit form. */
10676 Rn = inst.operands[1].reg;
10677 if (inst.operands[1].immisreg)
10678 {
10679 inst.instruction = THUMB_OP16 (opcode);
10680 /* [Rn, Rik] */
10681 if (Rn <= 7 && inst.operands[1].imm <= 7)
10682 goto op16;
10683 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10684 reject_bad_reg (inst.operands[1].imm);
10685 }
10686 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10687 && opcode != T_MNEM_ldrsb)
10688 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10689 || (Rn == REG_SP && opcode == T_MNEM_str))
10690 {
10691 /* [Rn, #const] */
10692 if (Rn > 7)
10693 {
10694 if (Rn == REG_PC)
10695 {
10696 if (inst.reloc.pc_rel)
10697 opcode = T_MNEM_ldr_pc2;
10698 else
10699 opcode = T_MNEM_ldr_pc;
10700 }
10701 else
10702 {
10703 if (opcode == T_MNEM_ldr)
10704 opcode = T_MNEM_ldr_sp;
10705 else
10706 opcode = T_MNEM_str_sp;
10707 }
10708 inst.instruction = inst.operands[0].reg << 8;
10709 }
10710 else
10711 {
10712 inst.instruction = inst.operands[0].reg;
10713 inst.instruction |= inst.operands[1].reg << 3;
10714 }
10715 inst.instruction |= THUMB_OP16 (opcode);
10716 if (inst.size_req == 2)
10717 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10718 else
10719 inst.relax = opcode;
10720 return;
10721 }
10722 }
10723 /* Definitely a 32-bit variant. */
10724
10725 /* Warning for Erratum 752419. */
10726 if (opcode == T_MNEM_ldr
10727 && inst.operands[0].reg == REG_SP
10728 && inst.operands[1].writeback == 1
10729 && !inst.operands[1].immisreg)
10730 {
10731 if (no_cpu_selected ()
10732 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
10733 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
10734 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
10735 as_warn (_("This instruction may be unpredictable "
10736 "if executed on M-profile cores "
10737 "with interrupts enabled."));
10738 }
10739
10740 /* Do some validations regarding addressing modes. */
10741 if (inst.operands[1].immisreg)
10742 reject_bad_reg (inst.operands[1].imm);
10743
10744 constraint (inst.operands[1].writeback == 1
10745 && inst.operands[0].reg == inst.operands[1].reg,
10746 BAD_OVERLAP);
10747
10748 inst.instruction = THUMB_OP32 (opcode);
10749 inst.instruction |= inst.operands[0].reg << 12;
10750 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
10751 check_ldr_r15_aligned ();
10752 return;
10753 }
10754
10755 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10756
10757 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
10758 {
10759 /* Only [Rn,Rm] is acceptable. */
10760 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10761 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10762 || inst.operands[1].postind || inst.operands[1].shifted
10763 || inst.operands[1].negative,
10764 _("Thumb does not support this addressing mode"));
10765 inst.instruction = THUMB_OP16 (inst.instruction);
10766 goto op16;
10767 }
10768
10769 inst.instruction = THUMB_OP16 (inst.instruction);
10770 if (!inst.operands[1].isreg)
10771 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10772 return;
10773
10774 constraint (!inst.operands[1].preind
10775 || inst.operands[1].shifted
10776 || inst.operands[1].writeback,
10777 _("Thumb does not support this addressing mode"));
10778 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
10779 {
10780 constraint (inst.instruction & 0x0600,
10781 _("byte or halfword not valid for base register"));
10782 constraint (inst.operands[1].reg == REG_PC
10783 && !(inst.instruction & THUMB_LOAD_BIT),
10784 _("r15 based store not allowed"));
10785 constraint (inst.operands[1].immisreg,
10786 _("invalid base register for register offset"));
10787
10788 if (inst.operands[1].reg == REG_PC)
10789 inst.instruction = T_OPCODE_LDR_PC;
10790 else if (inst.instruction & THUMB_LOAD_BIT)
10791 inst.instruction = T_OPCODE_LDR_SP;
10792 else
10793 inst.instruction = T_OPCODE_STR_SP;
10794
10795 inst.instruction |= inst.operands[0].reg << 8;
10796 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10797 return;
10798 }
10799
10800 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10801 if (!inst.operands[1].immisreg)
10802 {
10803 /* Immediate offset. */
10804 inst.instruction |= inst.operands[0].reg;
10805 inst.instruction |= inst.operands[1].reg << 3;
10806 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10807 return;
10808 }
10809
10810 /* Register offset. */
10811 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10812 constraint (inst.operands[1].negative,
10813 _("Thumb does not support this addressing mode"));
10814
10815 op16:
10816 switch (inst.instruction)
10817 {
10818 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10819 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10820 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10821 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10822 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10823 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10824 case 0x5600 /* ldrsb */:
10825 case 0x5e00 /* ldrsh */: break;
10826 default: abort ();
10827 }
10828
10829 inst.instruction |= inst.operands[0].reg;
10830 inst.instruction |= inst.operands[1].reg << 3;
10831 inst.instruction |= inst.operands[1].imm << 6;
10832 }
10833
10834 static void
10835 do_t_ldstd (void)
10836 {
10837 if (!inst.operands[1].present)
10838 {
10839 inst.operands[1].reg = inst.operands[0].reg + 1;
10840 constraint (inst.operands[0].reg == REG_LR,
10841 _("r14 not allowed here"));
10842 constraint (inst.operands[0].reg == REG_R12,
10843 _("r12 not allowed here"));
10844 }
10845
10846 if (inst.operands[2].writeback
10847 && (inst.operands[0].reg == inst.operands[2].reg
10848 || inst.operands[1].reg == inst.operands[2].reg))
10849 as_warn (_("base register written back, and overlaps "
10850 "one of transfer registers"));
10851
10852 inst.instruction |= inst.operands[0].reg << 12;
10853 inst.instruction |= inst.operands[1].reg << 8;
10854 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
10855 }
10856
10857 static void
10858 do_t_ldstt (void)
10859 {
10860 inst.instruction |= inst.operands[0].reg << 12;
10861 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10862 }
10863
10864 static void
10865 do_t_mla (void)
10866 {
10867 unsigned Rd, Rn, Rm, Ra;
10868
10869 Rd = inst.operands[0].reg;
10870 Rn = inst.operands[1].reg;
10871 Rm = inst.operands[2].reg;
10872 Ra = inst.operands[3].reg;
10873
10874 reject_bad_reg (Rd);
10875 reject_bad_reg (Rn);
10876 reject_bad_reg (Rm);
10877 reject_bad_reg (Ra);
10878
10879 inst.instruction |= Rd << 8;
10880 inst.instruction |= Rn << 16;
10881 inst.instruction |= Rm;
10882 inst.instruction |= Ra << 12;
10883 }
10884
10885 static void
10886 do_t_mlal (void)
10887 {
10888 unsigned RdLo, RdHi, Rn, Rm;
10889
10890 RdLo = inst.operands[0].reg;
10891 RdHi = inst.operands[1].reg;
10892 Rn = inst.operands[2].reg;
10893 Rm = inst.operands[3].reg;
10894
10895 reject_bad_reg (RdLo);
10896 reject_bad_reg (RdHi);
10897 reject_bad_reg (Rn);
10898 reject_bad_reg (Rm);
10899
10900 inst.instruction |= RdLo << 12;
10901 inst.instruction |= RdHi << 8;
10902 inst.instruction |= Rn << 16;
10903 inst.instruction |= Rm;
10904 }
10905
10906 static void
10907 do_t_mov_cmp (void)
10908 {
10909 unsigned Rn, Rm;
10910
10911 Rn = inst.operands[0].reg;
10912 Rm = inst.operands[1].reg;
10913
10914 if (Rn == REG_PC)
10915 set_it_insn_type_last ();
10916
10917 if (unified_syntax)
10918 {
10919 int r0off = (inst.instruction == T_MNEM_mov
10920 || inst.instruction == T_MNEM_movs) ? 8 : 16;
10921 unsigned long opcode;
10922 bfd_boolean narrow;
10923 bfd_boolean low_regs;
10924
10925 low_regs = (Rn <= 7 && Rm <= 7);
10926 opcode = inst.instruction;
10927 if (in_it_block ())
10928 narrow = opcode != T_MNEM_movs;
10929 else
10930 narrow = opcode != T_MNEM_movs || low_regs;
10931 if (inst.size_req == 4
10932 || inst.operands[1].shifted)
10933 narrow = FALSE;
10934
10935 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10936 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10937 && !inst.operands[1].shifted
10938 && Rn == REG_PC
10939 && Rm == REG_LR)
10940 {
10941 inst.instruction = T2_SUBS_PC_LR;
10942 return;
10943 }
10944
10945 if (opcode == T_MNEM_cmp)
10946 {
10947 constraint (Rn == REG_PC, BAD_PC);
10948 if (narrow)
10949 {
10950 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10951 but valid. */
10952 warn_deprecated_sp (Rm);
10953 /* R15 was documented as a valid choice for Rm in ARMv6,
10954 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10955 tools reject R15, so we do too. */
10956 constraint (Rm == REG_PC, BAD_PC);
10957 }
10958 else
10959 reject_bad_reg (Rm);
10960 }
10961 else if (opcode == T_MNEM_mov
10962 || opcode == T_MNEM_movs)
10963 {
10964 if (inst.operands[1].isreg)
10965 {
10966 if (opcode == T_MNEM_movs)
10967 {
10968 reject_bad_reg (Rn);
10969 reject_bad_reg (Rm);
10970 }
10971 else if (narrow)
10972 {
10973 /* This is mov.n. */
10974 if ((Rn == REG_SP || Rn == REG_PC)
10975 && (Rm == REG_SP || Rm == REG_PC))
10976 {
10977 as_warn (_("Use of r%u as a source register is "
10978 "deprecated when r%u is the destination "
10979 "register."), Rm, Rn);
10980 }
10981 }
10982 else
10983 {
10984 /* This is mov.w. */
10985 constraint (Rn == REG_PC, BAD_PC);
10986 constraint (Rm == REG_PC, BAD_PC);
10987 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
10988 }
10989 }
10990 else
10991 reject_bad_reg (Rn);
10992 }
10993
10994 if (!inst.operands[1].isreg)
10995 {
10996 /* Immediate operand. */
10997 if (!in_it_block () && opcode == T_MNEM_mov)
10998 narrow = 0;
10999 if (low_regs && narrow)
11000 {
11001 inst.instruction = THUMB_OP16 (opcode);
11002 inst.instruction |= Rn << 8;
11003 if (inst.size_req == 2)
11004 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11005 else
11006 inst.relax = opcode;
11007 }
11008 else
11009 {
11010 inst.instruction = THUMB_OP32 (inst.instruction);
11011 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11012 inst.instruction |= Rn << r0off;
11013 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11014 }
11015 }
11016 else if (inst.operands[1].shifted && inst.operands[1].immisreg
11017 && (inst.instruction == T_MNEM_mov
11018 || inst.instruction == T_MNEM_movs))
11019 {
11020 /* Register shifts are encoded as separate shift instructions. */
11021 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
11022
11023 if (in_it_block ())
11024 narrow = !flags;
11025 else
11026 narrow = flags;
11027
11028 if (inst.size_req == 4)
11029 narrow = FALSE;
11030
11031 if (!low_regs || inst.operands[1].imm > 7)
11032 narrow = FALSE;
11033
11034 if (Rn != Rm)
11035 narrow = FALSE;
11036
11037 switch (inst.operands[1].shift_kind)
11038 {
11039 case SHIFT_LSL:
11040 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
11041 break;
11042 case SHIFT_ASR:
11043 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
11044 break;
11045 case SHIFT_LSR:
11046 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
11047 break;
11048 case SHIFT_ROR:
11049 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
11050 break;
11051 default:
11052 abort ();
11053 }
11054
11055 inst.instruction = opcode;
11056 if (narrow)
11057 {
11058 inst.instruction |= Rn;
11059 inst.instruction |= inst.operands[1].imm << 3;
11060 }
11061 else
11062 {
11063 if (flags)
11064 inst.instruction |= CONDS_BIT;
11065
11066 inst.instruction |= Rn << 8;
11067 inst.instruction |= Rm << 16;
11068 inst.instruction |= inst.operands[1].imm;
11069 }
11070 }
11071 else if (!narrow)
11072 {
11073 /* Some mov with immediate shift have narrow variants.
11074 Register shifts are handled above. */
11075 if (low_regs && inst.operands[1].shifted
11076 && (inst.instruction == T_MNEM_mov
11077 || inst.instruction == T_MNEM_movs))
11078 {
11079 if (in_it_block ())
11080 narrow = (inst.instruction == T_MNEM_mov);
11081 else
11082 narrow = (inst.instruction == T_MNEM_movs);
11083 }
11084
11085 if (narrow)
11086 {
11087 switch (inst.operands[1].shift_kind)
11088 {
11089 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11090 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11091 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11092 default: narrow = FALSE; break;
11093 }
11094 }
11095
11096 if (narrow)
11097 {
11098 inst.instruction |= Rn;
11099 inst.instruction |= Rm << 3;
11100 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11101 }
11102 else
11103 {
11104 inst.instruction = THUMB_OP32 (inst.instruction);
11105 inst.instruction |= Rn << r0off;
11106 encode_thumb32_shifted_operand (1);
11107 }
11108 }
11109 else
11110 switch (inst.instruction)
11111 {
11112 case T_MNEM_mov:
11113 /* In v4t or v5t a move of two lowregs produces unpredictable
11114 results. Don't allow this. */
11115 if (low_regs)
11116 {
11117 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
11118 "MOV Rd, Rs with two low registers is not "
11119 "permitted on this architecture");
11120 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
11121 arm_ext_v6);
11122 }
11123
11124 inst.instruction = T_OPCODE_MOV_HR;
11125 inst.instruction |= (Rn & 0x8) << 4;
11126 inst.instruction |= (Rn & 0x7);
11127 inst.instruction |= Rm << 3;
11128 break;
11129
11130 case T_MNEM_movs:
11131 /* We know we have low registers at this point.
11132 Generate LSLS Rd, Rs, #0. */
11133 inst.instruction = T_OPCODE_LSL_I;
11134 inst.instruction |= Rn;
11135 inst.instruction |= Rm << 3;
11136 break;
11137
11138 case T_MNEM_cmp:
11139 if (low_regs)
11140 {
11141 inst.instruction = T_OPCODE_CMP_LR;
11142 inst.instruction |= Rn;
11143 inst.instruction |= Rm << 3;
11144 }
11145 else
11146 {
11147 inst.instruction = T_OPCODE_CMP_HR;
11148 inst.instruction |= (Rn & 0x8) << 4;
11149 inst.instruction |= (Rn & 0x7);
11150 inst.instruction |= Rm << 3;
11151 }
11152 break;
11153 }
11154 return;
11155 }
11156
11157 inst.instruction = THUMB_OP16 (inst.instruction);
11158
11159 /* PR 10443: Do not silently ignore shifted operands. */
11160 constraint (inst.operands[1].shifted,
11161 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
11162
11163 if (inst.operands[1].isreg)
11164 {
11165 if (Rn < 8 && Rm < 8)
11166 {
11167 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
11168 since a MOV instruction produces unpredictable results. */
11169 if (inst.instruction == T_OPCODE_MOV_I8)
11170 inst.instruction = T_OPCODE_ADD_I3;
11171 else
11172 inst.instruction = T_OPCODE_CMP_LR;
11173
11174 inst.instruction |= Rn;
11175 inst.instruction |= Rm << 3;
11176 }
11177 else
11178 {
11179 if (inst.instruction == T_OPCODE_MOV_I8)
11180 inst.instruction = T_OPCODE_MOV_HR;
11181 else
11182 inst.instruction = T_OPCODE_CMP_HR;
11183 do_t_cpy ();
11184 }
11185 }
11186 else
11187 {
11188 constraint (Rn > 7,
11189 _("only lo regs allowed with immediate"));
11190 inst.instruction |= Rn << 8;
11191 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11192 }
11193 }
11194
11195 static void
11196 do_t_mov16 (void)
11197 {
11198 unsigned Rd;
11199 bfd_vma imm;
11200 bfd_boolean top;
11201
11202 top = (inst.instruction & 0x00800000) != 0;
11203 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
11204 {
11205 constraint (top, _(":lower16: not allowed this instruction"));
11206 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
11207 }
11208 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
11209 {
11210 constraint (!top, _(":upper16: not allowed this instruction"));
11211 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
11212 }
11213
11214 Rd = inst.operands[0].reg;
11215 reject_bad_reg (Rd);
11216
11217 inst.instruction |= Rd << 8;
11218 if (inst.reloc.type == BFD_RELOC_UNUSED)
11219 {
11220 imm = inst.reloc.exp.X_add_number;
11221 inst.instruction |= (imm & 0xf000) << 4;
11222 inst.instruction |= (imm & 0x0800) << 15;
11223 inst.instruction |= (imm & 0x0700) << 4;
11224 inst.instruction |= (imm & 0x00ff);
11225 }
11226 }
11227
11228 static void
11229 do_t_mvn_tst (void)
11230 {
11231 unsigned Rn, Rm;
11232
11233 Rn = inst.operands[0].reg;
11234 Rm = inst.operands[1].reg;
11235
11236 if (inst.instruction == T_MNEM_cmp
11237 || inst.instruction == T_MNEM_cmn)
11238 constraint (Rn == REG_PC, BAD_PC);
11239 else
11240 reject_bad_reg (Rn);
11241 reject_bad_reg (Rm);
11242
11243 if (unified_syntax)
11244 {
11245 int r0off = (inst.instruction == T_MNEM_mvn
11246 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
11247 bfd_boolean narrow;
11248
11249 if (inst.size_req == 4
11250 || inst.instruction > 0xffff
11251 || inst.operands[1].shifted
11252 || Rn > 7 || Rm > 7)
11253 narrow = FALSE;
11254 else if (inst.instruction == T_MNEM_cmn)
11255 narrow = TRUE;
11256 else if (THUMB_SETS_FLAGS (inst.instruction))
11257 narrow = !in_it_block ();
11258 else
11259 narrow = in_it_block ();
11260
11261 if (!inst.operands[1].isreg)
11262 {
11263 /* For an immediate, we always generate a 32-bit opcode;
11264 section relaxation will shrink it later if possible. */
11265 if (inst.instruction < 0xffff)
11266 inst.instruction = THUMB_OP32 (inst.instruction);
11267 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11268 inst.instruction |= Rn << r0off;
11269 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11270 }
11271 else
11272 {
11273 /* See if we can do this with a 16-bit instruction. */
11274 if (narrow)
11275 {
11276 inst.instruction = THUMB_OP16 (inst.instruction);
11277 inst.instruction |= Rn;
11278 inst.instruction |= Rm << 3;
11279 }
11280 else
11281 {
11282 constraint (inst.operands[1].shifted
11283 && inst.operands[1].immisreg,
11284 _("shift must be constant"));
11285 if (inst.instruction < 0xffff)
11286 inst.instruction = THUMB_OP32 (inst.instruction);
11287 inst.instruction |= Rn << r0off;
11288 encode_thumb32_shifted_operand (1);
11289 }
11290 }
11291 }
11292 else
11293 {
11294 constraint (inst.instruction > 0xffff
11295 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
11296 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
11297 _("unshifted register required"));
11298 constraint (Rn > 7 || Rm > 7,
11299 BAD_HIREG);
11300
11301 inst.instruction = THUMB_OP16 (inst.instruction);
11302 inst.instruction |= Rn;
11303 inst.instruction |= Rm << 3;
11304 }
11305 }
11306
11307 static void
11308 do_t_mrs (void)
11309 {
11310 unsigned Rd;
11311
11312 if (do_vfp_nsyn_mrs () == SUCCESS)
11313 return;
11314
11315 Rd = inst.operands[0].reg;
11316 reject_bad_reg (Rd);
11317 inst.instruction |= Rd << 8;
11318
11319 if (inst.operands[1].isreg)
11320 {
11321 unsigned br = inst.operands[1].reg;
11322 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
11323 as_bad (_("bad register for mrs"));
11324
11325 inst.instruction |= br & (0xf << 16);
11326 inst.instruction |= (br & 0x300) >> 4;
11327 inst.instruction |= (br & SPSR_BIT) >> 2;
11328 }
11329 else
11330 {
11331 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11332
11333 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11334 {
11335 /* PR gas/12698: The constraint is only applied for m_profile.
11336 If the user has specified -march=all, we want to ignore it as
11337 we are building for any CPU type, including non-m variants. */
11338 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11339 constraint ((flags != 0) && m_profile, _("selected processor does "
11340 "not support requested special purpose register"));
11341 }
11342 else
11343 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11344 devices). */
11345 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
11346 _("'APSR', 'CPSR' or 'SPSR' expected"));
11347
11348 inst.instruction |= (flags & SPSR_BIT) >> 2;
11349 inst.instruction |= inst.operands[1].imm & 0xff;
11350 inst.instruction |= 0xf0000;
11351 }
11352 }
11353
11354 static void
11355 do_t_msr (void)
11356 {
11357 int flags;
11358 unsigned Rn;
11359
11360 if (do_vfp_nsyn_msr () == SUCCESS)
11361 return;
11362
11363 constraint (!inst.operands[1].isreg,
11364 _("Thumb encoding does not support an immediate here"));
11365
11366 if (inst.operands[0].isreg)
11367 flags = (int)(inst.operands[0].reg);
11368 else
11369 flags = inst.operands[0].imm;
11370
11371 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11372 {
11373 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11374
11375 /* PR gas/12698: The constraint is only applied for m_profile.
11376 If the user has specified -march=all, we want to ignore it as
11377 we are building for any CPU type, including non-m variants. */
11378 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11379 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11380 && (bits & ~(PSR_s | PSR_f)) != 0)
11381 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11382 && bits != PSR_f)) && m_profile,
11383 _("selected processor does not support requested special "
11384 "purpose register"));
11385 }
11386 else
11387 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11388 "requested special purpose register"));
11389
11390 Rn = inst.operands[1].reg;
11391 reject_bad_reg (Rn);
11392
11393 inst.instruction |= (flags & SPSR_BIT) >> 2;
11394 inst.instruction |= (flags & 0xf0000) >> 8;
11395 inst.instruction |= (flags & 0x300) >> 4;
11396 inst.instruction |= (flags & 0xff);
11397 inst.instruction |= Rn << 16;
11398 }
11399
11400 static void
11401 do_t_mul (void)
11402 {
11403 bfd_boolean narrow;
11404 unsigned Rd, Rn, Rm;
11405
11406 if (!inst.operands[2].present)
11407 inst.operands[2].reg = inst.operands[0].reg;
11408
11409 Rd = inst.operands[0].reg;
11410 Rn = inst.operands[1].reg;
11411 Rm = inst.operands[2].reg;
11412
11413 if (unified_syntax)
11414 {
11415 if (inst.size_req == 4
11416 || (Rd != Rn
11417 && Rd != Rm)
11418 || Rn > 7
11419 || Rm > 7)
11420 narrow = FALSE;
11421 else if (inst.instruction == T_MNEM_muls)
11422 narrow = !in_it_block ();
11423 else
11424 narrow = in_it_block ();
11425 }
11426 else
11427 {
11428 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
11429 constraint (Rn > 7 || Rm > 7,
11430 BAD_HIREG);
11431 narrow = TRUE;
11432 }
11433
11434 if (narrow)
11435 {
11436 /* 16-bit MULS/Conditional MUL. */
11437 inst.instruction = THUMB_OP16 (inst.instruction);
11438 inst.instruction |= Rd;
11439
11440 if (Rd == Rn)
11441 inst.instruction |= Rm << 3;
11442 else if (Rd == Rm)
11443 inst.instruction |= Rn << 3;
11444 else
11445 constraint (1, _("dest must overlap one source register"));
11446 }
11447 else
11448 {
11449 constraint (inst.instruction != T_MNEM_mul,
11450 _("Thumb-2 MUL must not set flags"));
11451 /* 32-bit MUL. */
11452 inst.instruction = THUMB_OP32 (inst.instruction);
11453 inst.instruction |= Rd << 8;
11454 inst.instruction |= Rn << 16;
11455 inst.instruction |= Rm << 0;
11456
11457 reject_bad_reg (Rd);
11458 reject_bad_reg (Rn);
11459 reject_bad_reg (Rm);
11460 }
11461 }
11462
11463 static void
11464 do_t_mull (void)
11465 {
11466 unsigned RdLo, RdHi, Rn, Rm;
11467
11468 RdLo = inst.operands[0].reg;
11469 RdHi = inst.operands[1].reg;
11470 Rn = inst.operands[2].reg;
11471 Rm = inst.operands[3].reg;
11472
11473 reject_bad_reg (RdLo);
11474 reject_bad_reg (RdHi);
11475 reject_bad_reg (Rn);
11476 reject_bad_reg (Rm);
11477
11478 inst.instruction |= RdLo << 12;
11479 inst.instruction |= RdHi << 8;
11480 inst.instruction |= Rn << 16;
11481 inst.instruction |= Rm;
11482
11483 if (RdLo == RdHi)
11484 as_tsktsk (_("rdhi and rdlo must be different"));
11485 }
11486
11487 static void
11488 do_t_nop (void)
11489 {
11490 set_it_insn_type (NEUTRAL_IT_INSN);
11491
11492 if (unified_syntax)
11493 {
11494 if (inst.size_req == 4 || inst.operands[0].imm > 15)
11495 {
11496 inst.instruction = THUMB_OP32 (inst.instruction);
11497 inst.instruction |= inst.operands[0].imm;
11498 }
11499 else
11500 {
11501 /* PR9722: Check for Thumb2 availability before
11502 generating a thumb2 nop instruction. */
11503 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
11504 {
11505 inst.instruction = THUMB_OP16 (inst.instruction);
11506 inst.instruction |= inst.operands[0].imm << 4;
11507 }
11508 else
11509 inst.instruction = 0x46c0;
11510 }
11511 }
11512 else
11513 {
11514 constraint (inst.operands[0].present,
11515 _("Thumb does not support NOP with hints"));
11516 inst.instruction = 0x46c0;
11517 }
11518 }
11519
11520 static void
11521 do_t_neg (void)
11522 {
11523 if (unified_syntax)
11524 {
11525 bfd_boolean narrow;
11526
11527 if (THUMB_SETS_FLAGS (inst.instruction))
11528 narrow = !in_it_block ();
11529 else
11530 narrow = in_it_block ();
11531 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11532 narrow = FALSE;
11533 if (inst.size_req == 4)
11534 narrow = FALSE;
11535
11536 if (!narrow)
11537 {
11538 inst.instruction = THUMB_OP32 (inst.instruction);
11539 inst.instruction |= inst.operands[0].reg << 8;
11540 inst.instruction |= inst.operands[1].reg << 16;
11541 }
11542 else
11543 {
11544 inst.instruction = THUMB_OP16 (inst.instruction);
11545 inst.instruction |= inst.operands[0].reg;
11546 inst.instruction |= inst.operands[1].reg << 3;
11547 }
11548 }
11549 else
11550 {
11551 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11552 BAD_HIREG);
11553 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11554
11555 inst.instruction = THUMB_OP16 (inst.instruction);
11556 inst.instruction |= inst.operands[0].reg;
11557 inst.instruction |= inst.operands[1].reg << 3;
11558 }
11559 }
11560
11561 static void
11562 do_t_orn (void)
11563 {
11564 unsigned Rd, Rn;
11565
11566 Rd = inst.operands[0].reg;
11567 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11568
11569 reject_bad_reg (Rd);
11570 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11571 reject_bad_reg (Rn);
11572
11573 inst.instruction |= Rd << 8;
11574 inst.instruction |= Rn << 16;
11575
11576 if (!inst.operands[2].isreg)
11577 {
11578 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11579 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11580 }
11581 else
11582 {
11583 unsigned Rm;
11584
11585 Rm = inst.operands[2].reg;
11586 reject_bad_reg (Rm);
11587
11588 constraint (inst.operands[2].shifted
11589 && inst.operands[2].immisreg,
11590 _("shift must be constant"));
11591 encode_thumb32_shifted_operand (2);
11592 }
11593 }
11594
11595 static void
11596 do_t_pkhbt (void)
11597 {
11598 unsigned Rd, Rn, Rm;
11599
11600 Rd = inst.operands[0].reg;
11601 Rn = inst.operands[1].reg;
11602 Rm = inst.operands[2].reg;
11603
11604 reject_bad_reg (Rd);
11605 reject_bad_reg (Rn);
11606 reject_bad_reg (Rm);
11607
11608 inst.instruction |= Rd << 8;
11609 inst.instruction |= Rn << 16;
11610 inst.instruction |= Rm;
11611 if (inst.operands[3].present)
11612 {
11613 unsigned int val = inst.reloc.exp.X_add_number;
11614 constraint (inst.reloc.exp.X_op != O_constant,
11615 _("expression too complex"));
11616 inst.instruction |= (val & 0x1c) << 10;
11617 inst.instruction |= (val & 0x03) << 6;
11618 }
11619 }
11620
11621 static void
11622 do_t_pkhtb (void)
11623 {
11624 if (!inst.operands[3].present)
11625 {
11626 unsigned Rtmp;
11627
11628 inst.instruction &= ~0x00000020;
11629
11630 /* PR 10168. Swap the Rm and Rn registers. */
11631 Rtmp = inst.operands[1].reg;
11632 inst.operands[1].reg = inst.operands[2].reg;
11633 inst.operands[2].reg = Rtmp;
11634 }
11635 do_t_pkhbt ();
11636 }
11637
11638 static void
11639 do_t_pld (void)
11640 {
11641 if (inst.operands[0].immisreg)
11642 reject_bad_reg (inst.operands[0].imm);
11643
11644 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11645 }
11646
11647 static void
11648 do_t_push_pop (void)
11649 {
11650 unsigned mask;
11651
11652 constraint (inst.operands[0].writeback,
11653 _("push/pop do not support {reglist}^"));
11654 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11655 _("expression too complex"));
11656
11657 mask = inst.operands[0].imm;
11658 if ((mask & ~0xff) == 0)
11659 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
11660 else if ((inst.instruction == T_MNEM_push
11661 && (mask & ~0xff) == 1 << REG_LR)
11662 || (inst.instruction == T_MNEM_pop
11663 && (mask & ~0xff) == 1 << REG_PC))
11664 {
11665 inst.instruction = THUMB_OP16 (inst.instruction);
11666 inst.instruction |= THUMB_PP_PC_LR;
11667 inst.instruction |= mask & 0xff;
11668 }
11669 else if (unified_syntax)
11670 {
11671 inst.instruction = THUMB_OP32 (inst.instruction);
11672 encode_thumb2_ldmstm (13, mask, TRUE);
11673 }
11674 else
11675 {
11676 inst.error = _("invalid register list to push/pop instruction");
11677 return;
11678 }
11679 }
11680
11681 static void
11682 do_t_rbit (void)
11683 {
11684 unsigned Rd, Rm;
11685
11686 Rd = inst.operands[0].reg;
11687 Rm = inst.operands[1].reg;
11688
11689 reject_bad_reg (Rd);
11690 reject_bad_reg (Rm);
11691
11692 inst.instruction |= Rd << 8;
11693 inst.instruction |= Rm << 16;
11694 inst.instruction |= Rm;
11695 }
11696
11697 static void
11698 do_t_rev (void)
11699 {
11700 unsigned Rd, Rm;
11701
11702 Rd = inst.operands[0].reg;
11703 Rm = inst.operands[1].reg;
11704
11705 reject_bad_reg (Rd);
11706 reject_bad_reg (Rm);
11707
11708 if (Rd <= 7 && Rm <= 7
11709 && inst.size_req != 4)
11710 {
11711 inst.instruction = THUMB_OP16 (inst.instruction);
11712 inst.instruction |= Rd;
11713 inst.instruction |= Rm << 3;
11714 }
11715 else if (unified_syntax)
11716 {
11717 inst.instruction = THUMB_OP32 (inst.instruction);
11718 inst.instruction |= Rd << 8;
11719 inst.instruction |= Rm << 16;
11720 inst.instruction |= Rm;
11721 }
11722 else
11723 inst.error = BAD_HIREG;
11724 }
11725
11726 static void
11727 do_t_rrx (void)
11728 {
11729 unsigned Rd, Rm;
11730
11731 Rd = inst.operands[0].reg;
11732 Rm = inst.operands[1].reg;
11733
11734 reject_bad_reg (Rd);
11735 reject_bad_reg (Rm);
11736
11737 inst.instruction |= Rd << 8;
11738 inst.instruction |= Rm;
11739 }
11740
11741 static void
11742 do_t_rsb (void)
11743 {
11744 unsigned Rd, Rs;
11745
11746 Rd = inst.operands[0].reg;
11747 Rs = (inst.operands[1].present
11748 ? inst.operands[1].reg /* Rd, Rs, foo */
11749 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11750
11751 reject_bad_reg (Rd);
11752 reject_bad_reg (Rs);
11753 if (inst.operands[2].isreg)
11754 reject_bad_reg (inst.operands[2].reg);
11755
11756 inst.instruction |= Rd << 8;
11757 inst.instruction |= Rs << 16;
11758 if (!inst.operands[2].isreg)
11759 {
11760 bfd_boolean narrow;
11761
11762 if ((inst.instruction & 0x00100000) != 0)
11763 narrow = !in_it_block ();
11764 else
11765 narrow = in_it_block ();
11766
11767 if (Rd > 7 || Rs > 7)
11768 narrow = FALSE;
11769
11770 if (inst.size_req == 4 || !unified_syntax)
11771 narrow = FALSE;
11772
11773 if (inst.reloc.exp.X_op != O_constant
11774 || inst.reloc.exp.X_add_number != 0)
11775 narrow = FALSE;
11776
11777 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11778 relaxation, but it doesn't seem worth the hassle. */
11779 if (narrow)
11780 {
11781 inst.reloc.type = BFD_RELOC_UNUSED;
11782 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11783 inst.instruction |= Rs << 3;
11784 inst.instruction |= Rd;
11785 }
11786 else
11787 {
11788 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11789 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11790 }
11791 }
11792 else
11793 encode_thumb32_shifted_operand (2);
11794 }
11795
11796 static void
11797 do_t_setend (void)
11798 {
11799 if (warn_on_deprecated
11800 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11801 as_warn (_("setend use is deprecated for ARMv8"));
11802
11803 set_it_insn_type (OUTSIDE_IT_INSN);
11804 if (inst.operands[0].imm)
11805 inst.instruction |= 0x8;
11806 }
11807
11808 static void
11809 do_t_shift (void)
11810 {
11811 if (!inst.operands[1].present)
11812 inst.operands[1].reg = inst.operands[0].reg;
11813
11814 if (unified_syntax)
11815 {
11816 bfd_boolean narrow;
11817 int shift_kind;
11818
11819 switch (inst.instruction)
11820 {
11821 case T_MNEM_asr:
11822 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11823 case T_MNEM_lsl:
11824 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11825 case T_MNEM_lsr:
11826 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11827 case T_MNEM_ror:
11828 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11829 default: abort ();
11830 }
11831
11832 if (THUMB_SETS_FLAGS (inst.instruction))
11833 narrow = !in_it_block ();
11834 else
11835 narrow = in_it_block ();
11836 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11837 narrow = FALSE;
11838 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11839 narrow = FALSE;
11840 if (inst.operands[2].isreg
11841 && (inst.operands[1].reg != inst.operands[0].reg
11842 || inst.operands[2].reg > 7))
11843 narrow = FALSE;
11844 if (inst.size_req == 4)
11845 narrow = FALSE;
11846
11847 reject_bad_reg (inst.operands[0].reg);
11848 reject_bad_reg (inst.operands[1].reg);
11849
11850 if (!narrow)
11851 {
11852 if (inst.operands[2].isreg)
11853 {
11854 reject_bad_reg (inst.operands[2].reg);
11855 inst.instruction = THUMB_OP32 (inst.instruction);
11856 inst.instruction |= inst.operands[0].reg << 8;
11857 inst.instruction |= inst.operands[1].reg << 16;
11858 inst.instruction |= inst.operands[2].reg;
11859
11860 /* PR 12854: Error on extraneous shifts. */
11861 constraint (inst.operands[2].shifted,
11862 _("extraneous shift as part of operand to shift insn"));
11863 }
11864 else
11865 {
11866 inst.operands[1].shifted = 1;
11867 inst.operands[1].shift_kind = shift_kind;
11868 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11869 ? T_MNEM_movs : T_MNEM_mov);
11870 inst.instruction |= inst.operands[0].reg << 8;
11871 encode_thumb32_shifted_operand (1);
11872 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11873 inst.reloc.type = BFD_RELOC_UNUSED;
11874 }
11875 }
11876 else
11877 {
11878 if (inst.operands[2].isreg)
11879 {
11880 switch (shift_kind)
11881 {
11882 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11883 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11884 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11885 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
11886 default: abort ();
11887 }
11888
11889 inst.instruction |= inst.operands[0].reg;
11890 inst.instruction |= inst.operands[2].reg << 3;
11891
11892 /* PR 12854: Error on extraneous shifts. */
11893 constraint (inst.operands[2].shifted,
11894 _("extraneous shift as part of operand to shift insn"));
11895 }
11896 else
11897 {
11898 switch (shift_kind)
11899 {
11900 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11901 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11902 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11903 default: abort ();
11904 }
11905 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11906 inst.instruction |= inst.operands[0].reg;
11907 inst.instruction |= inst.operands[1].reg << 3;
11908 }
11909 }
11910 }
11911 else
11912 {
11913 constraint (inst.operands[0].reg > 7
11914 || inst.operands[1].reg > 7, BAD_HIREG);
11915 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11916
11917 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11918 {
11919 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11920 constraint (inst.operands[0].reg != inst.operands[1].reg,
11921 _("source1 and dest must be same register"));
11922
11923 switch (inst.instruction)
11924 {
11925 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11926 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11927 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11928 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11929 default: abort ();
11930 }
11931
11932 inst.instruction |= inst.operands[0].reg;
11933 inst.instruction |= inst.operands[2].reg << 3;
11934
11935 /* PR 12854: Error on extraneous shifts. */
11936 constraint (inst.operands[2].shifted,
11937 _("extraneous shift as part of operand to shift insn"));
11938 }
11939 else
11940 {
11941 switch (inst.instruction)
11942 {
11943 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11944 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11945 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11946 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11947 default: abort ();
11948 }
11949 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11950 inst.instruction |= inst.operands[0].reg;
11951 inst.instruction |= inst.operands[1].reg << 3;
11952 }
11953 }
11954 }
11955
11956 static void
11957 do_t_simd (void)
11958 {
11959 unsigned Rd, Rn, Rm;
11960
11961 Rd = inst.operands[0].reg;
11962 Rn = inst.operands[1].reg;
11963 Rm = inst.operands[2].reg;
11964
11965 reject_bad_reg (Rd);
11966 reject_bad_reg (Rn);
11967 reject_bad_reg (Rm);
11968
11969 inst.instruction |= Rd << 8;
11970 inst.instruction |= Rn << 16;
11971 inst.instruction |= Rm;
11972 }
11973
11974 static void
11975 do_t_simd2 (void)
11976 {
11977 unsigned Rd, Rn, Rm;
11978
11979 Rd = inst.operands[0].reg;
11980 Rm = inst.operands[1].reg;
11981 Rn = inst.operands[2].reg;
11982
11983 reject_bad_reg (Rd);
11984 reject_bad_reg (Rn);
11985 reject_bad_reg (Rm);
11986
11987 inst.instruction |= Rd << 8;
11988 inst.instruction |= Rn << 16;
11989 inst.instruction |= Rm;
11990 }
11991
11992 static void
11993 do_t_smc (void)
11994 {
11995 unsigned int value = inst.reloc.exp.X_add_number;
11996 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
11997 _("SMC is not permitted on this architecture"));
11998 constraint (inst.reloc.exp.X_op != O_constant,
11999 _("expression too complex"));
12000 inst.reloc.type = BFD_RELOC_UNUSED;
12001 inst.instruction |= (value & 0xf000) >> 12;
12002 inst.instruction |= (value & 0x0ff0);
12003 inst.instruction |= (value & 0x000f) << 16;
12004 }
12005
12006 static void
12007 do_t_hvc (void)
12008 {
12009 unsigned int value = inst.reloc.exp.X_add_number;
12010
12011 inst.reloc.type = BFD_RELOC_UNUSED;
12012 inst.instruction |= (value & 0x0fff);
12013 inst.instruction |= (value & 0xf000) << 4;
12014 }
12015
12016 static void
12017 do_t_ssat_usat (int bias)
12018 {
12019 unsigned Rd, Rn;
12020
12021 Rd = inst.operands[0].reg;
12022 Rn = inst.operands[2].reg;
12023
12024 reject_bad_reg (Rd);
12025 reject_bad_reg (Rn);
12026
12027 inst.instruction |= Rd << 8;
12028 inst.instruction |= inst.operands[1].imm - bias;
12029 inst.instruction |= Rn << 16;
12030
12031 if (inst.operands[3].present)
12032 {
12033 offsetT shift_amount = inst.reloc.exp.X_add_number;
12034
12035 inst.reloc.type = BFD_RELOC_UNUSED;
12036
12037 constraint (inst.reloc.exp.X_op != O_constant,
12038 _("expression too complex"));
12039
12040 if (shift_amount != 0)
12041 {
12042 constraint (shift_amount > 31,
12043 _("shift expression is too large"));
12044
12045 if (inst.operands[3].shift_kind == SHIFT_ASR)
12046 inst.instruction |= 0x00200000; /* sh bit. */
12047
12048 inst.instruction |= (shift_amount & 0x1c) << 10;
12049 inst.instruction |= (shift_amount & 0x03) << 6;
12050 }
12051 }
12052 }
12053
12054 static void
12055 do_t_ssat (void)
12056 {
12057 do_t_ssat_usat (1);
12058 }
12059
12060 static void
12061 do_t_ssat16 (void)
12062 {
12063 unsigned Rd, Rn;
12064
12065 Rd = inst.operands[0].reg;
12066 Rn = inst.operands[2].reg;
12067
12068 reject_bad_reg (Rd);
12069 reject_bad_reg (Rn);
12070
12071 inst.instruction |= Rd << 8;
12072 inst.instruction |= inst.operands[1].imm - 1;
12073 inst.instruction |= Rn << 16;
12074 }
12075
12076 static void
12077 do_t_strex (void)
12078 {
12079 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
12080 || inst.operands[2].postind || inst.operands[2].writeback
12081 || inst.operands[2].immisreg || inst.operands[2].shifted
12082 || inst.operands[2].negative,
12083 BAD_ADDR_MODE);
12084
12085 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
12086
12087 inst.instruction |= inst.operands[0].reg << 8;
12088 inst.instruction |= inst.operands[1].reg << 12;
12089 inst.instruction |= inst.operands[2].reg << 16;
12090 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
12091 }
12092
12093 static void
12094 do_t_strexd (void)
12095 {
12096 if (!inst.operands[2].present)
12097 inst.operands[2].reg = inst.operands[1].reg + 1;
12098
12099 constraint (inst.operands[0].reg == inst.operands[1].reg
12100 || inst.operands[0].reg == inst.operands[2].reg
12101 || inst.operands[0].reg == inst.operands[3].reg,
12102 BAD_OVERLAP);
12103
12104 inst.instruction |= inst.operands[0].reg;
12105 inst.instruction |= inst.operands[1].reg << 12;
12106 inst.instruction |= inst.operands[2].reg << 8;
12107 inst.instruction |= inst.operands[3].reg << 16;
12108 }
12109
12110 static void
12111 do_t_sxtah (void)
12112 {
12113 unsigned Rd, Rn, Rm;
12114
12115 Rd = inst.operands[0].reg;
12116 Rn = inst.operands[1].reg;
12117 Rm = inst.operands[2].reg;
12118
12119 reject_bad_reg (Rd);
12120 reject_bad_reg (Rn);
12121 reject_bad_reg (Rm);
12122
12123 inst.instruction |= Rd << 8;
12124 inst.instruction |= Rn << 16;
12125 inst.instruction |= Rm;
12126 inst.instruction |= inst.operands[3].imm << 4;
12127 }
12128
12129 static void
12130 do_t_sxth (void)
12131 {
12132 unsigned Rd, Rm;
12133
12134 Rd = inst.operands[0].reg;
12135 Rm = inst.operands[1].reg;
12136
12137 reject_bad_reg (Rd);
12138 reject_bad_reg (Rm);
12139
12140 if (inst.instruction <= 0xffff
12141 && inst.size_req != 4
12142 && Rd <= 7 && Rm <= 7
12143 && (!inst.operands[2].present || inst.operands[2].imm == 0))
12144 {
12145 inst.instruction = THUMB_OP16 (inst.instruction);
12146 inst.instruction |= Rd;
12147 inst.instruction |= Rm << 3;
12148 }
12149 else if (unified_syntax)
12150 {
12151 if (inst.instruction <= 0xffff)
12152 inst.instruction = THUMB_OP32 (inst.instruction);
12153 inst.instruction |= Rd << 8;
12154 inst.instruction |= Rm;
12155 inst.instruction |= inst.operands[2].imm << 4;
12156 }
12157 else
12158 {
12159 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
12160 _("Thumb encoding does not support rotation"));
12161 constraint (1, BAD_HIREG);
12162 }
12163 }
12164
12165 static void
12166 do_t_swi (void)
12167 {
12168 /* We have to do the following check manually as ARM_EXT_OS only applies
12169 to ARM_EXT_V6M. */
12170 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
12171 {
12172 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
12173 /* This only applies to the v6m howver, not later architectures. */
12174 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
12175 as_bad (_("SVC is not permitted on this architecture"));
12176 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
12177 }
12178
12179 inst.reloc.type = BFD_RELOC_ARM_SWI;
12180 }
12181
12182 static void
12183 do_t_tb (void)
12184 {
12185 unsigned Rn, Rm;
12186 int half;
12187
12188 half = (inst.instruction & 0x10) != 0;
12189 set_it_insn_type_last ();
12190 constraint (inst.operands[0].immisreg,
12191 _("instruction requires register index"));
12192
12193 Rn = inst.operands[0].reg;
12194 Rm = inst.operands[0].imm;
12195
12196 constraint (Rn == REG_SP, BAD_SP);
12197 reject_bad_reg (Rm);
12198
12199 constraint (!half && inst.operands[0].shifted,
12200 _("instruction does not allow shifted index"));
12201 inst.instruction |= (Rn << 16) | Rm;
12202 }
12203
12204 static void
12205 do_t_usat (void)
12206 {
12207 do_t_ssat_usat (0);
12208 }
12209
12210 static void
12211 do_t_usat16 (void)
12212 {
12213 unsigned Rd, Rn;
12214
12215 Rd = inst.operands[0].reg;
12216 Rn = inst.operands[2].reg;
12217
12218 reject_bad_reg (Rd);
12219 reject_bad_reg (Rn);
12220
12221 inst.instruction |= Rd << 8;
12222 inst.instruction |= inst.operands[1].imm;
12223 inst.instruction |= Rn << 16;
12224 }
12225
12226 /* Neon instruction encoder helpers. */
12227
12228 /* Encodings for the different types for various Neon opcodes. */
12229
12230 /* An "invalid" code for the following tables. */
12231 #define N_INV -1u
12232
12233 struct neon_tab_entry
12234 {
12235 unsigned integer;
12236 unsigned float_or_poly;
12237 unsigned scalar_or_imm;
12238 };
12239
12240 /* Map overloaded Neon opcodes to their respective encodings. */
12241 #define NEON_ENC_TAB \
12242 X(vabd, 0x0000700, 0x1200d00, N_INV), \
12243 X(vmax, 0x0000600, 0x0000f00, N_INV), \
12244 X(vmin, 0x0000610, 0x0200f00, N_INV), \
12245 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
12246 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
12247 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
12248 X(vadd, 0x0000800, 0x0000d00, N_INV), \
12249 X(vsub, 0x1000800, 0x0200d00, N_INV), \
12250 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
12251 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
12252 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
12253 /* Register variants of the following two instructions are encoded as
12254 vcge / vcgt with the operands reversed. */ \
12255 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
12256 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
12257 X(vfma, N_INV, 0x0000c10, N_INV), \
12258 X(vfms, N_INV, 0x0200c10, N_INV), \
12259 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
12260 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
12261 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
12262 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
12263 X(vmlal, 0x0800800, N_INV, 0x0800240), \
12264 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
12265 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
12266 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
12267 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
12268 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
12269 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
12270 X(vshl, 0x0000400, N_INV, 0x0800510), \
12271 X(vqshl, 0x0000410, N_INV, 0x0800710), \
12272 X(vand, 0x0000110, N_INV, 0x0800030), \
12273 X(vbic, 0x0100110, N_INV, 0x0800030), \
12274 X(veor, 0x1000110, N_INV, N_INV), \
12275 X(vorn, 0x0300110, N_INV, 0x0800010), \
12276 X(vorr, 0x0200110, N_INV, 0x0800010), \
12277 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
12278 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
12279 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
12280 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
12281 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
12282 X(vst1, 0x0000000, 0x0800000, N_INV), \
12283 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
12284 X(vst2, 0x0000100, 0x0800100, N_INV), \
12285 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
12286 X(vst3, 0x0000200, 0x0800200, N_INV), \
12287 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
12288 X(vst4, 0x0000300, 0x0800300, N_INV), \
12289 X(vmovn, 0x1b20200, N_INV, N_INV), \
12290 X(vtrn, 0x1b20080, N_INV, N_INV), \
12291 X(vqmovn, 0x1b20200, N_INV, N_INV), \
12292 X(vqmovun, 0x1b20240, N_INV, N_INV), \
12293 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
12294 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
12295 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
12296 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
12297 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
12298 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
12299 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
12300 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
12301 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
12302
12303 enum neon_opc
12304 {
12305 #define X(OPC,I,F,S) N_MNEM_##OPC
12306 NEON_ENC_TAB
12307 #undef X
12308 };
12309
12310 static const struct neon_tab_entry neon_enc_tab[] =
12311 {
12312 #define X(OPC,I,F,S) { (I), (F), (S) }
12313 NEON_ENC_TAB
12314 #undef X
12315 };
12316
12317 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
12318 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12319 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12320 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12321 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12322 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12323 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12324 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12325 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12326 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12327 #define NEON_ENC_SINGLE_(X) \
12328 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
12329 #define NEON_ENC_DOUBLE_(X) \
12330 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
12331
12332 #define NEON_ENCODE(type, inst) \
12333 do \
12334 { \
12335 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
12336 inst.is_neon = 1; \
12337 } \
12338 while (0)
12339
12340 #define check_neon_suffixes \
12341 do \
12342 { \
12343 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12344 { \
12345 as_bad (_("invalid neon suffix for non neon instruction")); \
12346 return; \
12347 } \
12348 } \
12349 while (0)
12350
12351 /* Define shapes for instruction operands. The following mnemonic characters
12352 are used in this table:
12353
12354 F - VFP S<n> register
12355 D - Neon D<n> register
12356 Q - Neon Q<n> register
12357 I - Immediate
12358 S - Scalar
12359 R - ARM register
12360 L - D<n> register list
12361
12362 This table is used to generate various data:
12363 - enumerations of the form NS_DDR to be used as arguments to
12364 neon_select_shape.
12365 - a table classifying shapes into single, double, quad, mixed.
12366 - a table used to drive neon_select_shape. */
12367
12368 #define NEON_SHAPE_DEF \
12369 X(3, (D, D, D), DOUBLE), \
12370 X(3, (Q, Q, Q), QUAD), \
12371 X(3, (D, D, I), DOUBLE), \
12372 X(3, (Q, Q, I), QUAD), \
12373 X(3, (D, D, S), DOUBLE), \
12374 X(3, (Q, Q, S), QUAD), \
12375 X(2, (D, D), DOUBLE), \
12376 X(2, (Q, Q), QUAD), \
12377 X(2, (D, S), DOUBLE), \
12378 X(2, (Q, S), QUAD), \
12379 X(2, (D, R), DOUBLE), \
12380 X(2, (Q, R), QUAD), \
12381 X(2, (D, I), DOUBLE), \
12382 X(2, (Q, I), QUAD), \
12383 X(3, (D, L, D), DOUBLE), \
12384 X(2, (D, Q), MIXED), \
12385 X(2, (Q, D), MIXED), \
12386 X(3, (D, Q, I), MIXED), \
12387 X(3, (Q, D, I), MIXED), \
12388 X(3, (Q, D, D), MIXED), \
12389 X(3, (D, Q, Q), MIXED), \
12390 X(3, (Q, Q, D), MIXED), \
12391 X(3, (Q, D, S), MIXED), \
12392 X(3, (D, Q, S), MIXED), \
12393 X(4, (D, D, D, I), DOUBLE), \
12394 X(4, (Q, Q, Q, I), QUAD), \
12395 X(2, (F, F), SINGLE), \
12396 X(3, (F, F, F), SINGLE), \
12397 X(2, (F, I), SINGLE), \
12398 X(2, (F, D), MIXED), \
12399 X(2, (D, F), MIXED), \
12400 X(3, (F, F, I), MIXED), \
12401 X(4, (R, R, F, F), SINGLE), \
12402 X(4, (F, F, R, R), SINGLE), \
12403 X(3, (D, R, R), DOUBLE), \
12404 X(3, (R, R, D), DOUBLE), \
12405 X(2, (S, R), SINGLE), \
12406 X(2, (R, S), SINGLE), \
12407 X(2, (F, R), SINGLE), \
12408 X(2, (R, F), SINGLE)
12409
12410 #define S2(A,B) NS_##A##B
12411 #define S3(A,B,C) NS_##A##B##C
12412 #define S4(A,B,C,D) NS_##A##B##C##D
12413
12414 #define X(N, L, C) S##N L
12415
12416 enum neon_shape
12417 {
12418 NEON_SHAPE_DEF,
12419 NS_NULL
12420 };
12421
12422 #undef X
12423 #undef S2
12424 #undef S3
12425 #undef S4
12426
12427 enum neon_shape_class
12428 {
12429 SC_SINGLE,
12430 SC_DOUBLE,
12431 SC_QUAD,
12432 SC_MIXED
12433 };
12434
12435 #define X(N, L, C) SC_##C
12436
12437 static enum neon_shape_class neon_shape_class[] =
12438 {
12439 NEON_SHAPE_DEF
12440 };
12441
12442 #undef X
12443
12444 enum neon_shape_el
12445 {
12446 SE_F,
12447 SE_D,
12448 SE_Q,
12449 SE_I,
12450 SE_S,
12451 SE_R,
12452 SE_L
12453 };
12454
12455 /* Register widths of above. */
12456 static unsigned neon_shape_el_size[] =
12457 {
12458 32,
12459 64,
12460 128,
12461 0,
12462 32,
12463 32,
12464 0
12465 };
12466
12467 struct neon_shape_info
12468 {
12469 unsigned els;
12470 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12471 };
12472
12473 #define S2(A,B) { SE_##A, SE_##B }
12474 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12475 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12476
12477 #define X(N, L, C) { N, S##N L }
12478
12479 static struct neon_shape_info neon_shape_tab[] =
12480 {
12481 NEON_SHAPE_DEF
12482 };
12483
12484 #undef X
12485 #undef S2
12486 #undef S3
12487 #undef S4
12488
12489 /* Bit masks used in type checking given instructions.
12490 'N_EQK' means the type must be the same as (or based on in some way) the key
12491 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12492 set, various other bits can be set as well in order to modify the meaning of
12493 the type constraint. */
12494
12495 enum neon_type_mask
12496 {
12497 N_S8 = 0x0000001,
12498 N_S16 = 0x0000002,
12499 N_S32 = 0x0000004,
12500 N_S64 = 0x0000008,
12501 N_U8 = 0x0000010,
12502 N_U16 = 0x0000020,
12503 N_U32 = 0x0000040,
12504 N_U64 = 0x0000080,
12505 N_I8 = 0x0000100,
12506 N_I16 = 0x0000200,
12507 N_I32 = 0x0000400,
12508 N_I64 = 0x0000800,
12509 N_8 = 0x0001000,
12510 N_16 = 0x0002000,
12511 N_32 = 0x0004000,
12512 N_64 = 0x0008000,
12513 N_P8 = 0x0010000,
12514 N_P16 = 0x0020000,
12515 N_F16 = 0x0040000,
12516 N_F32 = 0x0080000,
12517 N_F64 = 0x0100000,
12518 N_KEY = 0x1000000, /* Key element (main type specifier). */
12519 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
12520 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
12521 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12522 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12523 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12524 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12525 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12526 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12527 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
12528 N_UTYP = 0,
12529 N_MAX_NONSPECIAL = N_F64
12530 };
12531
12532 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12533
12534 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12535 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12536 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12537 #define N_SUF_32 (N_SU_32 | N_F32)
12538 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12539 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12540
12541 /* Pass this as the first type argument to neon_check_type to ignore types
12542 altogether. */
12543 #define N_IGNORE_TYPE (N_KEY | N_EQK)
12544
12545 /* Select a "shape" for the current instruction (describing register types or
12546 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12547 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12548 function of operand parsing, so this function doesn't need to be called.
12549 Shapes should be listed in order of decreasing length. */
12550
12551 static enum neon_shape
12552 neon_select_shape (enum neon_shape shape, ...)
12553 {
12554 va_list ap;
12555 enum neon_shape first_shape = shape;
12556
12557 /* Fix missing optional operands. FIXME: we don't know at this point how
12558 many arguments we should have, so this makes the assumption that we have
12559 > 1. This is true of all current Neon opcodes, I think, but may not be
12560 true in the future. */
12561 if (!inst.operands[1].present)
12562 inst.operands[1] = inst.operands[0];
12563
12564 va_start (ap, shape);
12565
12566 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
12567 {
12568 unsigned j;
12569 int matches = 1;
12570
12571 for (j = 0; j < neon_shape_tab[shape].els; j++)
12572 {
12573 if (!inst.operands[j].present)
12574 {
12575 matches = 0;
12576 break;
12577 }
12578
12579 switch (neon_shape_tab[shape].el[j])
12580 {
12581 case SE_F:
12582 if (!(inst.operands[j].isreg
12583 && inst.operands[j].isvec
12584 && inst.operands[j].issingle
12585 && !inst.operands[j].isquad))
12586 matches = 0;
12587 break;
12588
12589 case SE_D:
12590 if (!(inst.operands[j].isreg
12591 && inst.operands[j].isvec
12592 && !inst.operands[j].isquad
12593 && !inst.operands[j].issingle))
12594 matches = 0;
12595 break;
12596
12597 case SE_R:
12598 if (!(inst.operands[j].isreg
12599 && !inst.operands[j].isvec))
12600 matches = 0;
12601 break;
12602
12603 case SE_Q:
12604 if (!(inst.operands[j].isreg
12605 && inst.operands[j].isvec
12606 && inst.operands[j].isquad
12607 && !inst.operands[j].issingle))
12608 matches = 0;
12609 break;
12610
12611 case SE_I:
12612 if (!(!inst.operands[j].isreg
12613 && !inst.operands[j].isscalar))
12614 matches = 0;
12615 break;
12616
12617 case SE_S:
12618 if (!(!inst.operands[j].isreg
12619 && inst.operands[j].isscalar))
12620 matches = 0;
12621 break;
12622
12623 case SE_L:
12624 break;
12625 }
12626 if (!matches)
12627 break;
12628 }
12629 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
12630 /* We've matched all the entries in the shape table, and we don't
12631 have any left over operands which have not been matched. */
12632 break;
12633 }
12634
12635 va_end (ap);
12636
12637 if (shape == NS_NULL && first_shape != NS_NULL)
12638 first_error (_("invalid instruction shape"));
12639
12640 return shape;
12641 }
12642
12643 /* True if SHAPE is predominantly a quadword operation (most of the time, this
12644 means the Q bit should be set). */
12645
12646 static int
12647 neon_quad (enum neon_shape shape)
12648 {
12649 return neon_shape_class[shape] == SC_QUAD;
12650 }
12651
12652 static void
12653 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12654 unsigned *g_size)
12655 {
12656 /* Allow modification to be made to types which are constrained to be
12657 based on the key element, based on bits set alongside N_EQK. */
12658 if ((typebits & N_EQK) != 0)
12659 {
12660 if ((typebits & N_HLF) != 0)
12661 *g_size /= 2;
12662 else if ((typebits & N_DBL) != 0)
12663 *g_size *= 2;
12664 if ((typebits & N_SGN) != 0)
12665 *g_type = NT_signed;
12666 else if ((typebits & N_UNS) != 0)
12667 *g_type = NT_unsigned;
12668 else if ((typebits & N_INT) != 0)
12669 *g_type = NT_integer;
12670 else if ((typebits & N_FLT) != 0)
12671 *g_type = NT_float;
12672 else if ((typebits & N_SIZ) != 0)
12673 *g_type = NT_untyped;
12674 }
12675 }
12676
12677 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12678 operand type, i.e. the single type specified in a Neon instruction when it
12679 is the only one given. */
12680
12681 static struct neon_type_el
12682 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12683 {
12684 struct neon_type_el dest = *key;
12685
12686 gas_assert ((thisarg & N_EQK) != 0);
12687
12688 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12689
12690 return dest;
12691 }
12692
12693 /* Convert Neon type and size into compact bitmask representation. */
12694
12695 static enum neon_type_mask
12696 type_chk_of_el_type (enum neon_el_type type, unsigned size)
12697 {
12698 switch (type)
12699 {
12700 case NT_untyped:
12701 switch (size)
12702 {
12703 case 8: return N_8;
12704 case 16: return N_16;
12705 case 32: return N_32;
12706 case 64: return N_64;
12707 default: ;
12708 }
12709 break;
12710
12711 case NT_integer:
12712 switch (size)
12713 {
12714 case 8: return N_I8;
12715 case 16: return N_I16;
12716 case 32: return N_I32;
12717 case 64: return N_I64;
12718 default: ;
12719 }
12720 break;
12721
12722 case NT_float:
12723 switch (size)
12724 {
12725 case 16: return N_F16;
12726 case 32: return N_F32;
12727 case 64: return N_F64;
12728 default: ;
12729 }
12730 break;
12731
12732 case NT_poly:
12733 switch (size)
12734 {
12735 case 8: return N_P8;
12736 case 16: return N_P16;
12737 default: ;
12738 }
12739 break;
12740
12741 case NT_signed:
12742 switch (size)
12743 {
12744 case 8: return N_S8;
12745 case 16: return N_S16;
12746 case 32: return N_S32;
12747 case 64: return N_S64;
12748 default: ;
12749 }
12750 break;
12751
12752 case NT_unsigned:
12753 switch (size)
12754 {
12755 case 8: return N_U8;
12756 case 16: return N_U16;
12757 case 32: return N_U32;
12758 case 64: return N_U64;
12759 default: ;
12760 }
12761 break;
12762
12763 default: ;
12764 }
12765
12766 return N_UTYP;
12767 }
12768
12769 /* Convert compact Neon bitmask type representation to a type and size. Only
12770 handles the case where a single bit is set in the mask. */
12771
12772 static int
12773 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12774 enum neon_type_mask mask)
12775 {
12776 if ((mask & N_EQK) != 0)
12777 return FAIL;
12778
12779 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12780 *size = 8;
12781 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
12782 *size = 16;
12783 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
12784 *size = 32;
12785 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
12786 *size = 64;
12787 else
12788 return FAIL;
12789
12790 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12791 *type = NT_signed;
12792 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
12793 *type = NT_unsigned;
12794 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
12795 *type = NT_integer;
12796 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
12797 *type = NT_untyped;
12798 else if ((mask & (N_P8 | N_P16)) != 0)
12799 *type = NT_poly;
12800 else if ((mask & (N_F32 | N_F64)) != 0)
12801 *type = NT_float;
12802 else
12803 return FAIL;
12804
12805 return SUCCESS;
12806 }
12807
12808 /* Modify a bitmask of allowed types. This is only needed for type
12809 relaxation. */
12810
12811 static unsigned
12812 modify_types_allowed (unsigned allowed, unsigned mods)
12813 {
12814 unsigned size;
12815 enum neon_el_type type;
12816 unsigned destmask;
12817 int i;
12818
12819 destmask = 0;
12820
12821 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12822 {
12823 if (el_type_of_type_chk (&type, &size,
12824 (enum neon_type_mask) (allowed & i)) == SUCCESS)
12825 {
12826 neon_modify_type_size (mods, &type, &size);
12827 destmask |= type_chk_of_el_type (type, size);
12828 }
12829 }
12830
12831 return destmask;
12832 }
12833
12834 /* Check type and return type classification.
12835 The manual states (paraphrase): If one datatype is given, it indicates the
12836 type given in:
12837 - the second operand, if there is one
12838 - the operand, if there is no second operand
12839 - the result, if there are no operands.
12840 This isn't quite good enough though, so we use a concept of a "key" datatype
12841 which is set on a per-instruction basis, which is the one which matters when
12842 only one data type is written.
12843 Note: this function has side-effects (e.g. filling in missing operands). All
12844 Neon instructions should call it before performing bit encoding. */
12845
12846 static struct neon_type_el
12847 neon_check_type (unsigned els, enum neon_shape ns, ...)
12848 {
12849 va_list ap;
12850 unsigned i, pass, key_el = 0;
12851 unsigned types[NEON_MAX_TYPE_ELS];
12852 enum neon_el_type k_type = NT_invtype;
12853 unsigned k_size = -1u;
12854 struct neon_type_el badtype = {NT_invtype, -1};
12855 unsigned key_allowed = 0;
12856
12857 /* Optional registers in Neon instructions are always (not) in operand 1.
12858 Fill in the missing operand here, if it was omitted. */
12859 if (els > 1 && !inst.operands[1].present)
12860 inst.operands[1] = inst.operands[0];
12861
12862 /* Suck up all the varargs. */
12863 va_start (ap, ns);
12864 for (i = 0; i < els; i++)
12865 {
12866 unsigned thisarg = va_arg (ap, unsigned);
12867 if (thisarg == N_IGNORE_TYPE)
12868 {
12869 va_end (ap);
12870 return badtype;
12871 }
12872 types[i] = thisarg;
12873 if ((thisarg & N_KEY) != 0)
12874 key_el = i;
12875 }
12876 va_end (ap);
12877
12878 if (inst.vectype.elems > 0)
12879 for (i = 0; i < els; i++)
12880 if (inst.operands[i].vectype.type != NT_invtype)
12881 {
12882 first_error (_("types specified in both the mnemonic and operands"));
12883 return badtype;
12884 }
12885
12886 /* Duplicate inst.vectype elements here as necessary.
12887 FIXME: No idea if this is exactly the same as the ARM assembler,
12888 particularly when an insn takes one register and one non-register
12889 operand. */
12890 if (inst.vectype.elems == 1 && els > 1)
12891 {
12892 unsigned j;
12893 inst.vectype.elems = els;
12894 inst.vectype.el[key_el] = inst.vectype.el[0];
12895 for (j = 0; j < els; j++)
12896 if (j != key_el)
12897 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12898 types[j]);
12899 }
12900 else if (inst.vectype.elems == 0 && els > 0)
12901 {
12902 unsigned j;
12903 /* No types were given after the mnemonic, so look for types specified
12904 after each operand. We allow some flexibility here; as long as the
12905 "key" operand has a type, we can infer the others. */
12906 for (j = 0; j < els; j++)
12907 if (inst.operands[j].vectype.type != NT_invtype)
12908 inst.vectype.el[j] = inst.operands[j].vectype;
12909
12910 if (inst.operands[key_el].vectype.type != NT_invtype)
12911 {
12912 for (j = 0; j < els; j++)
12913 if (inst.operands[j].vectype.type == NT_invtype)
12914 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12915 types[j]);
12916 }
12917 else
12918 {
12919 first_error (_("operand types can't be inferred"));
12920 return badtype;
12921 }
12922 }
12923 else if (inst.vectype.elems != els)
12924 {
12925 first_error (_("type specifier has the wrong number of parts"));
12926 return badtype;
12927 }
12928
12929 for (pass = 0; pass < 2; pass++)
12930 {
12931 for (i = 0; i < els; i++)
12932 {
12933 unsigned thisarg = types[i];
12934 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12935 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12936 enum neon_el_type g_type = inst.vectype.el[i].type;
12937 unsigned g_size = inst.vectype.el[i].size;
12938
12939 /* Decay more-specific signed & unsigned types to sign-insensitive
12940 integer types if sign-specific variants are unavailable. */
12941 if ((g_type == NT_signed || g_type == NT_unsigned)
12942 && (types_allowed & N_SU_ALL) == 0)
12943 g_type = NT_integer;
12944
12945 /* If only untyped args are allowed, decay any more specific types to
12946 them. Some instructions only care about signs for some element
12947 sizes, so handle that properly. */
12948 if ((g_size == 8 && (types_allowed & N_8) != 0)
12949 || (g_size == 16 && (types_allowed & N_16) != 0)
12950 || (g_size == 32 && (types_allowed & N_32) != 0)
12951 || (g_size == 64 && (types_allowed & N_64) != 0))
12952 g_type = NT_untyped;
12953
12954 if (pass == 0)
12955 {
12956 if ((thisarg & N_KEY) != 0)
12957 {
12958 k_type = g_type;
12959 k_size = g_size;
12960 key_allowed = thisarg & ~N_KEY;
12961 }
12962 }
12963 else
12964 {
12965 if ((thisarg & N_VFP) != 0)
12966 {
12967 enum neon_shape_el regshape;
12968 unsigned regwidth, match;
12969
12970 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12971 if (ns == NS_NULL)
12972 {
12973 first_error (_("invalid instruction shape"));
12974 return badtype;
12975 }
12976 regshape = neon_shape_tab[ns].el[i];
12977 regwidth = neon_shape_el_size[regshape];
12978
12979 /* In VFP mode, operands must match register widths. If we
12980 have a key operand, use its width, else use the width of
12981 the current operand. */
12982 if (k_size != -1u)
12983 match = k_size;
12984 else
12985 match = g_size;
12986
12987 if (regwidth != match)
12988 {
12989 first_error (_("operand size must match register width"));
12990 return badtype;
12991 }
12992 }
12993
12994 if ((thisarg & N_EQK) == 0)
12995 {
12996 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12997
12998 if ((given_type & types_allowed) == 0)
12999 {
13000 first_error (_("bad type in Neon instruction"));
13001 return badtype;
13002 }
13003 }
13004 else
13005 {
13006 enum neon_el_type mod_k_type = k_type;
13007 unsigned mod_k_size = k_size;
13008 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
13009 if (g_type != mod_k_type || g_size != mod_k_size)
13010 {
13011 first_error (_("inconsistent types in Neon instruction"));
13012 return badtype;
13013 }
13014 }
13015 }
13016 }
13017 }
13018
13019 return inst.vectype.el[key_el];
13020 }
13021
13022 /* Neon-style VFP instruction forwarding. */
13023
13024 /* Thumb VFP instructions have 0xE in the condition field. */
13025
13026 static void
13027 do_vfp_cond_or_thumb (void)
13028 {
13029 inst.is_neon = 1;
13030
13031 if (thumb_mode)
13032 inst.instruction |= 0xe0000000;
13033 else
13034 inst.instruction |= inst.cond << 28;
13035 }
13036
13037 /* Look up and encode a simple mnemonic, for use as a helper function for the
13038 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
13039 etc. It is assumed that operand parsing has already been done, and that the
13040 operands are in the form expected by the given opcode (this isn't necessarily
13041 the same as the form in which they were parsed, hence some massaging must
13042 take place before this function is called).
13043 Checks current arch version against that in the looked-up opcode. */
13044
13045 static void
13046 do_vfp_nsyn_opcode (const char *opname)
13047 {
13048 const struct asm_opcode *opcode;
13049
13050 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
13051
13052 if (!opcode)
13053 abort ();
13054
13055 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
13056 thumb_mode ? *opcode->tvariant : *opcode->avariant),
13057 _(BAD_FPU));
13058
13059 inst.is_neon = 1;
13060
13061 if (thumb_mode)
13062 {
13063 inst.instruction = opcode->tvalue;
13064 opcode->tencode ();
13065 }
13066 else
13067 {
13068 inst.instruction = (inst.cond << 28) | opcode->avalue;
13069 opcode->aencode ();
13070 }
13071 }
13072
13073 static void
13074 do_vfp_nsyn_add_sub (enum neon_shape rs)
13075 {
13076 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
13077
13078 if (rs == NS_FFF)
13079 {
13080 if (is_add)
13081 do_vfp_nsyn_opcode ("fadds");
13082 else
13083 do_vfp_nsyn_opcode ("fsubs");
13084 }
13085 else
13086 {
13087 if (is_add)
13088 do_vfp_nsyn_opcode ("faddd");
13089 else
13090 do_vfp_nsyn_opcode ("fsubd");
13091 }
13092 }
13093
13094 /* Check operand types to see if this is a VFP instruction, and if so call
13095 PFN (). */
13096
13097 static int
13098 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
13099 {
13100 enum neon_shape rs;
13101 struct neon_type_el et;
13102
13103 switch (args)
13104 {
13105 case 2:
13106 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13107 et = neon_check_type (2, rs,
13108 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13109 break;
13110
13111 case 3:
13112 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13113 et = neon_check_type (3, rs,
13114 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13115 break;
13116
13117 default:
13118 abort ();
13119 }
13120
13121 if (et.type != NT_invtype)
13122 {
13123 pfn (rs);
13124 return SUCCESS;
13125 }
13126
13127 inst.error = NULL;
13128 return FAIL;
13129 }
13130
13131 static void
13132 do_vfp_nsyn_mla_mls (enum neon_shape rs)
13133 {
13134 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
13135
13136 if (rs == NS_FFF)
13137 {
13138 if (is_mla)
13139 do_vfp_nsyn_opcode ("fmacs");
13140 else
13141 do_vfp_nsyn_opcode ("fnmacs");
13142 }
13143 else
13144 {
13145 if (is_mla)
13146 do_vfp_nsyn_opcode ("fmacd");
13147 else
13148 do_vfp_nsyn_opcode ("fnmacd");
13149 }
13150 }
13151
13152 static void
13153 do_vfp_nsyn_fma_fms (enum neon_shape rs)
13154 {
13155 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
13156
13157 if (rs == NS_FFF)
13158 {
13159 if (is_fma)
13160 do_vfp_nsyn_opcode ("ffmas");
13161 else
13162 do_vfp_nsyn_opcode ("ffnmas");
13163 }
13164 else
13165 {
13166 if (is_fma)
13167 do_vfp_nsyn_opcode ("ffmad");
13168 else
13169 do_vfp_nsyn_opcode ("ffnmad");
13170 }
13171 }
13172
13173 static void
13174 do_vfp_nsyn_mul (enum neon_shape rs)
13175 {
13176 if (rs == NS_FFF)
13177 do_vfp_nsyn_opcode ("fmuls");
13178 else
13179 do_vfp_nsyn_opcode ("fmuld");
13180 }
13181
13182 static void
13183 do_vfp_nsyn_abs_neg (enum neon_shape rs)
13184 {
13185 int is_neg = (inst.instruction & 0x80) != 0;
13186 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
13187
13188 if (rs == NS_FF)
13189 {
13190 if (is_neg)
13191 do_vfp_nsyn_opcode ("fnegs");
13192 else
13193 do_vfp_nsyn_opcode ("fabss");
13194 }
13195 else
13196 {
13197 if (is_neg)
13198 do_vfp_nsyn_opcode ("fnegd");
13199 else
13200 do_vfp_nsyn_opcode ("fabsd");
13201 }
13202 }
13203
13204 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
13205 insns belong to Neon, and are handled elsewhere. */
13206
13207 static void
13208 do_vfp_nsyn_ldm_stm (int is_dbmode)
13209 {
13210 int is_ldm = (inst.instruction & (1 << 20)) != 0;
13211 if (is_ldm)
13212 {
13213 if (is_dbmode)
13214 do_vfp_nsyn_opcode ("fldmdbs");
13215 else
13216 do_vfp_nsyn_opcode ("fldmias");
13217 }
13218 else
13219 {
13220 if (is_dbmode)
13221 do_vfp_nsyn_opcode ("fstmdbs");
13222 else
13223 do_vfp_nsyn_opcode ("fstmias");
13224 }
13225 }
13226
13227 static void
13228 do_vfp_nsyn_sqrt (void)
13229 {
13230 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13231 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13232
13233 if (rs == NS_FF)
13234 do_vfp_nsyn_opcode ("fsqrts");
13235 else
13236 do_vfp_nsyn_opcode ("fsqrtd");
13237 }
13238
13239 static void
13240 do_vfp_nsyn_div (void)
13241 {
13242 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13243 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13244 N_F32 | N_F64 | N_KEY | N_VFP);
13245
13246 if (rs == NS_FFF)
13247 do_vfp_nsyn_opcode ("fdivs");
13248 else
13249 do_vfp_nsyn_opcode ("fdivd");
13250 }
13251
13252 static void
13253 do_vfp_nsyn_nmul (void)
13254 {
13255 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13256 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13257 N_F32 | N_F64 | N_KEY | N_VFP);
13258
13259 if (rs == NS_FFF)
13260 {
13261 NEON_ENCODE (SINGLE, inst);
13262 do_vfp_sp_dyadic ();
13263 }
13264 else
13265 {
13266 NEON_ENCODE (DOUBLE, inst);
13267 do_vfp_dp_rd_rn_rm ();
13268 }
13269 do_vfp_cond_or_thumb ();
13270 }
13271
13272 static void
13273 do_vfp_nsyn_cmp (void)
13274 {
13275 if (inst.operands[1].isreg)
13276 {
13277 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13278 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13279
13280 if (rs == NS_FF)
13281 {
13282 NEON_ENCODE (SINGLE, inst);
13283 do_vfp_sp_monadic ();
13284 }
13285 else
13286 {
13287 NEON_ENCODE (DOUBLE, inst);
13288 do_vfp_dp_rd_rm ();
13289 }
13290 }
13291 else
13292 {
13293 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
13294 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
13295
13296 switch (inst.instruction & 0x0fffffff)
13297 {
13298 case N_MNEM_vcmp:
13299 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
13300 break;
13301 case N_MNEM_vcmpe:
13302 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
13303 break;
13304 default:
13305 abort ();
13306 }
13307
13308 if (rs == NS_FI)
13309 {
13310 NEON_ENCODE (SINGLE, inst);
13311 do_vfp_sp_compare_z ();
13312 }
13313 else
13314 {
13315 NEON_ENCODE (DOUBLE, inst);
13316 do_vfp_dp_rd ();
13317 }
13318 }
13319 do_vfp_cond_or_thumb ();
13320 }
13321
13322 static void
13323 nsyn_insert_sp (void)
13324 {
13325 inst.operands[1] = inst.operands[0];
13326 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
13327 inst.operands[0].reg = REG_SP;
13328 inst.operands[0].isreg = 1;
13329 inst.operands[0].writeback = 1;
13330 inst.operands[0].present = 1;
13331 }
13332
13333 static void
13334 do_vfp_nsyn_push (void)
13335 {
13336 nsyn_insert_sp ();
13337 if (inst.operands[1].issingle)
13338 do_vfp_nsyn_opcode ("fstmdbs");
13339 else
13340 do_vfp_nsyn_opcode ("fstmdbd");
13341 }
13342
13343 static void
13344 do_vfp_nsyn_pop (void)
13345 {
13346 nsyn_insert_sp ();
13347 if (inst.operands[1].issingle)
13348 do_vfp_nsyn_opcode ("fldmias");
13349 else
13350 do_vfp_nsyn_opcode ("fldmiad");
13351 }
13352
13353 /* Fix up Neon data-processing instructions, ORing in the correct bits for
13354 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13355
13356 static void
13357 neon_dp_fixup (struct arm_it* insn)
13358 {
13359 unsigned int i = insn->instruction;
13360 insn->is_neon = 1;
13361
13362 if (thumb_mode)
13363 {
13364 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13365 if (i & (1 << 24))
13366 i |= 1 << 28;
13367
13368 i &= ~(1 << 24);
13369
13370 i |= 0xef000000;
13371 }
13372 else
13373 i |= 0xf2000000;
13374
13375 insn->instruction = i;
13376 }
13377
13378 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
13379 (0, 1, 2, 3). */
13380
13381 static unsigned
13382 neon_logbits (unsigned x)
13383 {
13384 return ffs (x) - 4;
13385 }
13386
13387 #define LOW4(R) ((R) & 0xf)
13388 #define HI1(R) (((R) >> 4) & 1)
13389
13390 /* Encode insns with bit pattern:
13391
13392 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13393 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
13394
13395 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13396 different meaning for some instruction. */
13397
13398 static void
13399 neon_three_same (int isquad, int ubit, int size)
13400 {
13401 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13402 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13403 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13404 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13405 inst.instruction |= LOW4 (inst.operands[2].reg);
13406 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13407 inst.instruction |= (isquad != 0) << 6;
13408 inst.instruction |= (ubit != 0) << 24;
13409 if (size != -1)
13410 inst.instruction |= neon_logbits (size) << 20;
13411
13412 neon_dp_fixup (&inst);
13413 }
13414
13415 /* Encode instructions of the form:
13416
13417 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13418 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
13419
13420 Don't write size if SIZE == -1. */
13421
13422 static void
13423 neon_two_same (int qbit, int ubit, int size)
13424 {
13425 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13426 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13427 inst.instruction |= LOW4 (inst.operands[1].reg);
13428 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13429 inst.instruction |= (qbit != 0) << 6;
13430 inst.instruction |= (ubit != 0) << 24;
13431
13432 if (size != -1)
13433 inst.instruction |= neon_logbits (size) << 18;
13434
13435 neon_dp_fixup (&inst);
13436 }
13437
13438 /* Neon instruction encoders, in approximate order of appearance. */
13439
13440 static void
13441 do_neon_dyadic_i_su (void)
13442 {
13443 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13444 struct neon_type_el et = neon_check_type (3, rs,
13445 N_EQK, N_EQK, N_SU_32 | N_KEY);
13446 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13447 }
13448
13449 static void
13450 do_neon_dyadic_i64_su (void)
13451 {
13452 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13453 struct neon_type_el et = neon_check_type (3, rs,
13454 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13455 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13456 }
13457
13458 static void
13459 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13460 unsigned immbits)
13461 {
13462 unsigned size = et.size >> 3;
13463 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13464 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13465 inst.instruction |= LOW4 (inst.operands[1].reg);
13466 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13467 inst.instruction |= (isquad != 0) << 6;
13468 inst.instruction |= immbits << 16;
13469 inst.instruction |= (size >> 3) << 7;
13470 inst.instruction |= (size & 0x7) << 19;
13471 if (write_ubit)
13472 inst.instruction |= (uval != 0) << 24;
13473
13474 neon_dp_fixup (&inst);
13475 }
13476
13477 static void
13478 do_neon_shl_imm (void)
13479 {
13480 if (!inst.operands[2].isreg)
13481 {
13482 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13483 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
13484 NEON_ENCODE (IMMED, inst);
13485 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
13486 }
13487 else
13488 {
13489 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13490 struct neon_type_el et = neon_check_type (3, rs,
13491 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13492 unsigned int tmp;
13493
13494 /* VSHL/VQSHL 3-register variants have syntax such as:
13495 vshl.xx Dd, Dm, Dn
13496 whereas other 3-register operations encoded by neon_three_same have
13497 syntax like:
13498 vadd.xx Dd, Dn, Dm
13499 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13500 here. */
13501 tmp = inst.operands[2].reg;
13502 inst.operands[2].reg = inst.operands[1].reg;
13503 inst.operands[1].reg = tmp;
13504 NEON_ENCODE (INTEGER, inst);
13505 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13506 }
13507 }
13508
13509 static void
13510 do_neon_qshl_imm (void)
13511 {
13512 if (!inst.operands[2].isreg)
13513 {
13514 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13515 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13516
13517 NEON_ENCODE (IMMED, inst);
13518 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
13519 inst.operands[2].imm);
13520 }
13521 else
13522 {
13523 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13524 struct neon_type_el et = neon_check_type (3, rs,
13525 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13526 unsigned int tmp;
13527
13528 /* See note in do_neon_shl_imm. */
13529 tmp = inst.operands[2].reg;
13530 inst.operands[2].reg = inst.operands[1].reg;
13531 inst.operands[1].reg = tmp;
13532 NEON_ENCODE (INTEGER, inst);
13533 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13534 }
13535 }
13536
13537 static void
13538 do_neon_rshl (void)
13539 {
13540 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13541 struct neon_type_el et = neon_check_type (3, rs,
13542 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13543 unsigned int tmp;
13544
13545 tmp = inst.operands[2].reg;
13546 inst.operands[2].reg = inst.operands[1].reg;
13547 inst.operands[1].reg = tmp;
13548 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13549 }
13550
13551 static int
13552 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13553 {
13554 /* Handle .I8 pseudo-instructions. */
13555 if (size == 8)
13556 {
13557 /* Unfortunately, this will make everything apart from zero out-of-range.
13558 FIXME is this the intended semantics? There doesn't seem much point in
13559 accepting .I8 if so. */
13560 immediate |= immediate << 8;
13561 size = 16;
13562 }
13563
13564 if (size >= 32)
13565 {
13566 if (immediate == (immediate & 0x000000ff))
13567 {
13568 *immbits = immediate;
13569 return 0x1;
13570 }
13571 else if (immediate == (immediate & 0x0000ff00))
13572 {
13573 *immbits = immediate >> 8;
13574 return 0x3;
13575 }
13576 else if (immediate == (immediate & 0x00ff0000))
13577 {
13578 *immbits = immediate >> 16;
13579 return 0x5;
13580 }
13581 else if (immediate == (immediate & 0xff000000))
13582 {
13583 *immbits = immediate >> 24;
13584 return 0x7;
13585 }
13586 if ((immediate & 0xffff) != (immediate >> 16))
13587 goto bad_immediate;
13588 immediate &= 0xffff;
13589 }
13590
13591 if (immediate == (immediate & 0x000000ff))
13592 {
13593 *immbits = immediate;
13594 return 0x9;
13595 }
13596 else if (immediate == (immediate & 0x0000ff00))
13597 {
13598 *immbits = immediate >> 8;
13599 return 0xb;
13600 }
13601
13602 bad_immediate:
13603 first_error (_("immediate value out of range"));
13604 return FAIL;
13605 }
13606
13607 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13608 A, B, C, D. */
13609
13610 static int
13611 neon_bits_same_in_bytes (unsigned imm)
13612 {
13613 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13614 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13615 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13616 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13617 }
13618
13619 /* For immediate of above form, return 0bABCD. */
13620
13621 static unsigned
13622 neon_squash_bits (unsigned imm)
13623 {
13624 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13625 | ((imm & 0x01000000) >> 21);
13626 }
13627
13628 /* Compress quarter-float representation to 0b...000 abcdefgh. */
13629
13630 static unsigned
13631 neon_qfloat_bits (unsigned imm)
13632 {
13633 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
13634 }
13635
13636 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13637 the instruction. *OP is passed as the initial value of the op field, and
13638 may be set to a different value depending on the constant (i.e.
13639 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
13640 MVN). If the immediate looks like a repeated pattern then also
13641 try smaller element sizes. */
13642
13643 static int
13644 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13645 unsigned *immbits, int *op, int size,
13646 enum neon_el_type type)
13647 {
13648 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13649 float. */
13650 if (type == NT_float && !float_p)
13651 return FAIL;
13652
13653 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13654 {
13655 if (size != 32 || *op == 1)
13656 return FAIL;
13657 *immbits = neon_qfloat_bits (immlo);
13658 return 0xf;
13659 }
13660
13661 if (size == 64)
13662 {
13663 if (neon_bits_same_in_bytes (immhi)
13664 && neon_bits_same_in_bytes (immlo))
13665 {
13666 if (*op == 1)
13667 return FAIL;
13668 *immbits = (neon_squash_bits (immhi) << 4)
13669 | neon_squash_bits (immlo);
13670 *op = 1;
13671 return 0xe;
13672 }
13673
13674 if (immhi != immlo)
13675 return FAIL;
13676 }
13677
13678 if (size >= 32)
13679 {
13680 if (immlo == (immlo & 0x000000ff))
13681 {
13682 *immbits = immlo;
13683 return 0x0;
13684 }
13685 else if (immlo == (immlo & 0x0000ff00))
13686 {
13687 *immbits = immlo >> 8;
13688 return 0x2;
13689 }
13690 else if (immlo == (immlo & 0x00ff0000))
13691 {
13692 *immbits = immlo >> 16;
13693 return 0x4;
13694 }
13695 else if (immlo == (immlo & 0xff000000))
13696 {
13697 *immbits = immlo >> 24;
13698 return 0x6;
13699 }
13700 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13701 {
13702 *immbits = (immlo >> 8) & 0xff;
13703 return 0xc;
13704 }
13705 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13706 {
13707 *immbits = (immlo >> 16) & 0xff;
13708 return 0xd;
13709 }
13710
13711 if ((immlo & 0xffff) != (immlo >> 16))
13712 return FAIL;
13713 immlo &= 0xffff;
13714 }
13715
13716 if (size >= 16)
13717 {
13718 if (immlo == (immlo & 0x000000ff))
13719 {
13720 *immbits = immlo;
13721 return 0x8;
13722 }
13723 else if (immlo == (immlo & 0x0000ff00))
13724 {
13725 *immbits = immlo >> 8;
13726 return 0xa;
13727 }
13728
13729 if ((immlo & 0xff) != (immlo >> 8))
13730 return FAIL;
13731 immlo &= 0xff;
13732 }
13733
13734 if (immlo == (immlo & 0x000000ff))
13735 {
13736 /* Don't allow MVN with 8-bit immediate. */
13737 if (*op == 1)
13738 return FAIL;
13739 *immbits = immlo;
13740 return 0xe;
13741 }
13742
13743 return FAIL;
13744 }
13745
13746 /* Write immediate bits [7:0] to the following locations:
13747
13748 |28/24|23 19|18 16|15 4|3 0|
13749 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13750
13751 This function is used by VMOV/VMVN/VORR/VBIC. */
13752
13753 static void
13754 neon_write_immbits (unsigned immbits)
13755 {
13756 inst.instruction |= immbits & 0xf;
13757 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13758 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13759 }
13760
13761 /* Invert low-order SIZE bits of XHI:XLO. */
13762
13763 static void
13764 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13765 {
13766 unsigned immlo = xlo ? *xlo : 0;
13767 unsigned immhi = xhi ? *xhi : 0;
13768
13769 switch (size)
13770 {
13771 case 8:
13772 immlo = (~immlo) & 0xff;
13773 break;
13774
13775 case 16:
13776 immlo = (~immlo) & 0xffff;
13777 break;
13778
13779 case 64:
13780 immhi = (~immhi) & 0xffffffff;
13781 /* fall through. */
13782
13783 case 32:
13784 immlo = (~immlo) & 0xffffffff;
13785 break;
13786
13787 default:
13788 abort ();
13789 }
13790
13791 if (xlo)
13792 *xlo = immlo;
13793
13794 if (xhi)
13795 *xhi = immhi;
13796 }
13797
13798 static void
13799 do_neon_logic (void)
13800 {
13801 if (inst.operands[2].present && inst.operands[2].isreg)
13802 {
13803 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13804 neon_check_type (3, rs, N_IGNORE_TYPE);
13805 /* U bit and size field were set as part of the bitmask. */
13806 NEON_ENCODE (INTEGER, inst);
13807 neon_three_same (neon_quad (rs), 0, -1);
13808 }
13809 else
13810 {
13811 const int three_ops_form = (inst.operands[2].present
13812 && !inst.operands[2].isreg);
13813 const int immoperand = (three_ops_form ? 2 : 1);
13814 enum neon_shape rs = (three_ops_form
13815 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13816 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
13817 struct neon_type_el et = neon_check_type (2, rs,
13818 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13819 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
13820 unsigned immbits;
13821 int cmode;
13822
13823 if (et.type == NT_invtype)
13824 return;
13825
13826 if (three_ops_form)
13827 constraint (inst.operands[0].reg != inst.operands[1].reg,
13828 _("first and second operands shall be the same register"));
13829
13830 NEON_ENCODE (IMMED, inst);
13831
13832 immbits = inst.operands[immoperand].imm;
13833 if (et.size == 64)
13834 {
13835 /* .i64 is a pseudo-op, so the immediate must be a repeating
13836 pattern. */
13837 if (immbits != (inst.operands[immoperand].regisimm ?
13838 inst.operands[immoperand].reg : 0))
13839 {
13840 /* Set immbits to an invalid constant. */
13841 immbits = 0xdeadbeef;
13842 }
13843 }
13844
13845 switch (opcode)
13846 {
13847 case N_MNEM_vbic:
13848 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13849 break;
13850
13851 case N_MNEM_vorr:
13852 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13853 break;
13854
13855 case N_MNEM_vand:
13856 /* Pseudo-instruction for VBIC. */
13857 neon_invert_size (&immbits, 0, et.size);
13858 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13859 break;
13860
13861 case N_MNEM_vorn:
13862 /* Pseudo-instruction for VORR. */
13863 neon_invert_size (&immbits, 0, et.size);
13864 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13865 break;
13866
13867 default:
13868 abort ();
13869 }
13870
13871 if (cmode == FAIL)
13872 return;
13873
13874 inst.instruction |= neon_quad (rs) << 6;
13875 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13876 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13877 inst.instruction |= cmode << 8;
13878 neon_write_immbits (immbits);
13879
13880 neon_dp_fixup (&inst);
13881 }
13882 }
13883
13884 static void
13885 do_neon_bitfield (void)
13886 {
13887 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13888 neon_check_type (3, rs, N_IGNORE_TYPE);
13889 neon_three_same (neon_quad (rs), 0, -1);
13890 }
13891
13892 static void
13893 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13894 unsigned destbits)
13895 {
13896 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13897 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13898 types | N_KEY);
13899 if (et.type == NT_float)
13900 {
13901 NEON_ENCODE (FLOAT, inst);
13902 neon_three_same (neon_quad (rs), 0, -1);
13903 }
13904 else
13905 {
13906 NEON_ENCODE (INTEGER, inst);
13907 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
13908 }
13909 }
13910
13911 static void
13912 do_neon_dyadic_if_su (void)
13913 {
13914 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13915 }
13916
13917 static void
13918 do_neon_dyadic_if_su_d (void)
13919 {
13920 /* This version only allow D registers, but that constraint is enforced during
13921 operand parsing so we don't need to do anything extra here. */
13922 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13923 }
13924
13925 static void
13926 do_neon_dyadic_if_i_d (void)
13927 {
13928 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13929 affected if we specify unsigned args. */
13930 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13931 }
13932
13933 enum vfp_or_neon_is_neon_bits
13934 {
13935 NEON_CHECK_CC = 1,
13936 NEON_CHECK_ARCH = 2
13937 };
13938
13939 /* Call this function if an instruction which may have belonged to the VFP or
13940 Neon instruction sets, but turned out to be a Neon instruction (due to the
13941 operand types involved, etc.). We have to check and/or fix-up a couple of
13942 things:
13943
13944 - Make sure the user hasn't attempted to make a Neon instruction
13945 conditional.
13946 - Alter the value in the condition code field if necessary.
13947 - Make sure that the arch supports Neon instructions.
13948
13949 Which of these operations take place depends on bits from enum
13950 vfp_or_neon_is_neon_bits.
13951
13952 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13953 current instruction's condition is COND_ALWAYS, the condition field is
13954 changed to inst.uncond_value. This is necessary because instructions shared
13955 between VFP and Neon may be conditional for the VFP variants only, and the
13956 unconditional Neon version must have, e.g., 0xF in the condition field. */
13957
13958 static int
13959 vfp_or_neon_is_neon (unsigned check)
13960 {
13961 /* Conditions are always legal in Thumb mode (IT blocks). */
13962 if (!thumb_mode && (check & NEON_CHECK_CC))
13963 {
13964 if (inst.cond != COND_ALWAYS)
13965 {
13966 first_error (_(BAD_COND));
13967 return FAIL;
13968 }
13969 if (inst.uncond_value != -1)
13970 inst.instruction |= inst.uncond_value << 28;
13971 }
13972
13973 if ((check & NEON_CHECK_ARCH)
13974 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13975 {
13976 first_error (_(BAD_FPU));
13977 return FAIL;
13978 }
13979
13980 return SUCCESS;
13981 }
13982
13983 static void
13984 do_neon_addsub_if_i (void)
13985 {
13986 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13987 return;
13988
13989 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13990 return;
13991
13992 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13993 affected if we specify unsigned args. */
13994 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
13995 }
13996
13997 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13998 result to be:
13999 V<op> A,B (A is operand 0, B is operand 2)
14000 to mean:
14001 V<op> A,B,A
14002 not:
14003 V<op> A,B,B
14004 so handle that case specially. */
14005
14006 static void
14007 neon_exchange_operands (void)
14008 {
14009 void *scratch = alloca (sizeof (inst.operands[0]));
14010 if (inst.operands[1].present)
14011 {
14012 /* Swap operands[1] and operands[2]. */
14013 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
14014 inst.operands[1] = inst.operands[2];
14015 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
14016 }
14017 else
14018 {
14019 inst.operands[1] = inst.operands[2];
14020 inst.operands[2] = inst.operands[0];
14021 }
14022 }
14023
14024 static void
14025 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
14026 {
14027 if (inst.operands[2].isreg)
14028 {
14029 if (invert)
14030 neon_exchange_operands ();
14031 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
14032 }
14033 else
14034 {
14035 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14036 struct neon_type_el et = neon_check_type (2, rs,
14037 N_EQK | N_SIZ, immtypes | N_KEY);
14038
14039 NEON_ENCODE (IMMED, inst);
14040 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14041 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14042 inst.instruction |= LOW4 (inst.operands[1].reg);
14043 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14044 inst.instruction |= neon_quad (rs) << 6;
14045 inst.instruction |= (et.type == NT_float) << 10;
14046 inst.instruction |= neon_logbits (et.size) << 18;
14047
14048 neon_dp_fixup (&inst);
14049 }
14050 }
14051
14052 static void
14053 do_neon_cmp (void)
14054 {
14055 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
14056 }
14057
14058 static void
14059 do_neon_cmp_inv (void)
14060 {
14061 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
14062 }
14063
14064 static void
14065 do_neon_ceq (void)
14066 {
14067 neon_compare (N_IF_32, N_IF_32, FALSE);
14068 }
14069
14070 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
14071 scalars, which are encoded in 5 bits, M : Rm.
14072 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
14073 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
14074 index in M. */
14075
14076 static unsigned
14077 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
14078 {
14079 unsigned regno = NEON_SCALAR_REG (scalar);
14080 unsigned elno = NEON_SCALAR_INDEX (scalar);
14081
14082 switch (elsize)
14083 {
14084 case 16:
14085 if (regno > 7 || elno > 3)
14086 goto bad_scalar;
14087 return regno | (elno << 3);
14088
14089 case 32:
14090 if (regno > 15 || elno > 1)
14091 goto bad_scalar;
14092 return regno | (elno << 4);
14093
14094 default:
14095 bad_scalar:
14096 first_error (_("scalar out of range for multiply instruction"));
14097 }
14098
14099 return 0;
14100 }
14101
14102 /* Encode multiply / multiply-accumulate scalar instructions. */
14103
14104 static void
14105 neon_mul_mac (struct neon_type_el et, int ubit)
14106 {
14107 unsigned scalar;
14108
14109 /* Give a more helpful error message if we have an invalid type. */
14110 if (et.type == NT_invtype)
14111 return;
14112
14113 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
14114 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14115 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14116 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14117 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14118 inst.instruction |= LOW4 (scalar);
14119 inst.instruction |= HI1 (scalar) << 5;
14120 inst.instruction |= (et.type == NT_float) << 8;
14121 inst.instruction |= neon_logbits (et.size) << 20;
14122 inst.instruction |= (ubit != 0) << 24;
14123
14124 neon_dp_fixup (&inst);
14125 }
14126
14127 static void
14128 do_neon_mac_maybe_scalar (void)
14129 {
14130 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
14131 return;
14132
14133 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14134 return;
14135
14136 if (inst.operands[2].isscalar)
14137 {
14138 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14139 struct neon_type_el et = neon_check_type (3, rs,
14140 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
14141 NEON_ENCODE (SCALAR, inst);
14142 neon_mul_mac (et, neon_quad (rs));
14143 }
14144 else
14145 {
14146 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14147 affected if we specify unsigned args. */
14148 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14149 }
14150 }
14151
14152 static void
14153 do_neon_fmac (void)
14154 {
14155 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
14156 return;
14157
14158 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14159 return;
14160
14161 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14162 }
14163
14164 static void
14165 do_neon_tst (void)
14166 {
14167 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14168 struct neon_type_el et = neon_check_type (3, rs,
14169 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
14170 neon_three_same (neon_quad (rs), 0, et.size);
14171 }
14172
14173 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
14174 same types as the MAC equivalents. The polynomial type for this instruction
14175 is encoded the same as the integer type. */
14176
14177 static void
14178 do_neon_mul (void)
14179 {
14180 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
14181 return;
14182
14183 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14184 return;
14185
14186 if (inst.operands[2].isscalar)
14187 do_neon_mac_maybe_scalar ();
14188 else
14189 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
14190 }
14191
14192 static void
14193 do_neon_qdmulh (void)
14194 {
14195 if (inst.operands[2].isscalar)
14196 {
14197 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14198 struct neon_type_el et = neon_check_type (3, rs,
14199 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14200 NEON_ENCODE (SCALAR, inst);
14201 neon_mul_mac (et, neon_quad (rs));
14202 }
14203 else
14204 {
14205 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14206 struct neon_type_el et = neon_check_type (3, rs,
14207 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14208 NEON_ENCODE (INTEGER, inst);
14209 /* The U bit (rounding) comes from bit mask. */
14210 neon_three_same (neon_quad (rs), 0, et.size);
14211 }
14212 }
14213
14214 static void
14215 do_neon_fcmp_absolute (void)
14216 {
14217 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14218 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14219 /* Size field comes from bit mask. */
14220 neon_three_same (neon_quad (rs), 1, -1);
14221 }
14222
14223 static void
14224 do_neon_fcmp_absolute_inv (void)
14225 {
14226 neon_exchange_operands ();
14227 do_neon_fcmp_absolute ();
14228 }
14229
14230 static void
14231 do_neon_step (void)
14232 {
14233 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14234 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14235 neon_three_same (neon_quad (rs), 0, -1);
14236 }
14237
14238 static void
14239 do_neon_abs_neg (void)
14240 {
14241 enum neon_shape rs;
14242 struct neon_type_el et;
14243
14244 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
14245 return;
14246
14247 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14248 return;
14249
14250 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14251 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
14252
14253 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14254 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14255 inst.instruction |= LOW4 (inst.operands[1].reg);
14256 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14257 inst.instruction |= neon_quad (rs) << 6;
14258 inst.instruction |= (et.type == NT_float) << 10;
14259 inst.instruction |= neon_logbits (et.size) << 18;
14260
14261 neon_dp_fixup (&inst);
14262 }
14263
14264 static void
14265 do_neon_sli (void)
14266 {
14267 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14268 struct neon_type_el et = neon_check_type (2, rs,
14269 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14270 int imm = inst.operands[2].imm;
14271 constraint (imm < 0 || (unsigned)imm >= et.size,
14272 _("immediate out of range for insert"));
14273 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14274 }
14275
14276 static void
14277 do_neon_sri (void)
14278 {
14279 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14280 struct neon_type_el et = neon_check_type (2, rs,
14281 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14282 int imm = inst.operands[2].imm;
14283 constraint (imm < 1 || (unsigned)imm > et.size,
14284 _("immediate out of range for insert"));
14285 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
14286 }
14287
14288 static void
14289 do_neon_qshlu_imm (void)
14290 {
14291 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14292 struct neon_type_el et = neon_check_type (2, rs,
14293 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
14294 int imm = inst.operands[2].imm;
14295 constraint (imm < 0 || (unsigned)imm >= et.size,
14296 _("immediate out of range for shift"));
14297 /* Only encodes the 'U present' variant of the instruction.
14298 In this case, signed types have OP (bit 8) set to 0.
14299 Unsigned types have OP set to 1. */
14300 inst.instruction |= (et.type == NT_unsigned) << 8;
14301 /* The rest of the bits are the same as other immediate shifts. */
14302 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14303 }
14304
14305 static void
14306 do_neon_qmovn (void)
14307 {
14308 struct neon_type_el et = neon_check_type (2, NS_DQ,
14309 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14310 /* Saturating move where operands can be signed or unsigned, and the
14311 destination has the same signedness. */
14312 NEON_ENCODE (INTEGER, inst);
14313 if (et.type == NT_unsigned)
14314 inst.instruction |= 0xc0;
14315 else
14316 inst.instruction |= 0x80;
14317 neon_two_same (0, 1, et.size / 2);
14318 }
14319
14320 static void
14321 do_neon_qmovun (void)
14322 {
14323 struct neon_type_el et = neon_check_type (2, NS_DQ,
14324 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14325 /* Saturating move with unsigned results. Operands must be signed. */
14326 NEON_ENCODE (INTEGER, inst);
14327 neon_two_same (0, 1, et.size / 2);
14328 }
14329
14330 static void
14331 do_neon_rshift_sat_narrow (void)
14332 {
14333 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14334 or unsigned. If operands are unsigned, results must also be unsigned. */
14335 struct neon_type_el et = neon_check_type (2, NS_DQI,
14336 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14337 int imm = inst.operands[2].imm;
14338 /* This gets the bounds check, size encoding and immediate bits calculation
14339 right. */
14340 et.size /= 2;
14341
14342 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14343 VQMOVN.I<size> <Dd>, <Qm>. */
14344 if (imm == 0)
14345 {
14346 inst.operands[2].present = 0;
14347 inst.instruction = N_MNEM_vqmovn;
14348 do_neon_qmovn ();
14349 return;
14350 }
14351
14352 constraint (imm < 1 || (unsigned)imm > et.size,
14353 _("immediate out of range"));
14354 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
14355 }
14356
14357 static void
14358 do_neon_rshift_sat_narrow_u (void)
14359 {
14360 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14361 or unsigned. If operands are unsigned, results must also be unsigned. */
14362 struct neon_type_el et = neon_check_type (2, NS_DQI,
14363 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14364 int imm = inst.operands[2].imm;
14365 /* This gets the bounds check, size encoding and immediate bits calculation
14366 right. */
14367 et.size /= 2;
14368
14369 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14370 VQMOVUN.I<size> <Dd>, <Qm>. */
14371 if (imm == 0)
14372 {
14373 inst.operands[2].present = 0;
14374 inst.instruction = N_MNEM_vqmovun;
14375 do_neon_qmovun ();
14376 return;
14377 }
14378
14379 constraint (imm < 1 || (unsigned)imm > et.size,
14380 _("immediate out of range"));
14381 /* FIXME: The manual is kind of unclear about what value U should have in
14382 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14383 must be 1. */
14384 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
14385 }
14386
14387 static void
14388 do_neon_movn (void)
14389 {
14390 struct neon_type_el et = neon_check_type (2, NS_DQ,
14391 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14392 NEON_ENCODE (INTEGER, inst);
14393 neon_two_same (0, 1, et.size / 2);
14394 }
14395
14396 static void
14397 do_neon_rshift_narrow (void)
14398 {
14399 struct neon_type_el et = neon_check_type (2, NS_DQI,
14400 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14401 int imm = inst.operands[2].imm;
14402 /* This gets the bounds check, size encoding and immediate bits calculation
14403 right. */
14404 et.size /= 2;
14405
14406 /* If immediate is zero then we are a pseudo-instruction for
14407 VMOVN.I<size> <Dd>, <Qm> */
14408 if (imm == 0)
14409 {
14410 inst.operands[2].present = 0;
14411 inst.instruction = N_MNEM_vmovn;
14412 do_neon_movn ();
14413 return;
14414 }
14415
14416 constraint (imm < 1 || (unsigned)imm > et.size,
14417 _("immediate out of range for narrowing operation"));
14418 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14419 }
14420
14421 static void
14422 do_neon_shll (void)
14423 {
14424 /* FIXME: Type checking when lengthening. */
14425 struct neon_type_el et = neon_check_type (2, NS_QDI,
14426 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14427 unsigned imm = inst.operands[2].imm;
14428
14429 if (imm == et.size)
14430 {
14431 /* Maximum shift variant. */
14432 NEON_ENCODE (INTEGER, inst);
14433 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14434 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14435 inst.instruction |= LOW4 (inst.operands[1].reg);
14436 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14437 inst.instruction |= neon_logbits (et.size) << 18;
14438
14439 neon_dp_fixup (&inst);
14440 }
14441 else
14442 {
14443 /* A more-specific type check for non-max versions. */
14444 et = neon_check_type (2, NS_QDI,
14445 N_EQK | N_DBL, N_SU_32 | N_KEY);
14446 NEON_ENCODE (IMMED, inst);
14447 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14448 }
14449 }
14450
14451 /* Check the various types for the VCVT instruction, and return which version
14452 the current instruction is. */
14453
14454 static int
14455 neon_cvt_flavour (enum neon_shape rs)
14456 {
14457 #define CVT_VAR(C,X,Y) \
14458 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
14459 if (et.type != NT_invtype) \
14460 { \
14461 inst.error = NULL; \
14462 return (C); \
14463 }
14464 struct neon_type_el et;
14465 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14466 || rs == NS_FF) ? N_VFP : 0;
14467 /* The instruction versions which take an immediate take one register
14468 argument, which is extended to the width of the full register. Thus the
14469 "source" and "destination" registers must have the same width. Hack that
14470 here by making the size equal to the key (wider, in this case) operand. */
14471 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
14472
14473 CVT_VAR (0, N_S32, N_F32);
14474 CVT_VAR (1, N_U32, N_F32);
14475 CVT_VAR (2, N_F32, N_S32);
14476 CVT_VAR (3, N_F32, N_U32);
14477 /* Half-precision conversions. */
14478 CVT_VAR (4, N_F32, N_F16);
14479 CVT_VAR (5, N_F16, N_F32);
14480
14481 whole_reg = N_VFP;
14482
14483 /* VFP instructions. */
14484 CVT_VAR (6, N_F32, N_F64);
14485 CVT_VAR (7, N_F64, N_F32);
14486 CVT_VAR (8, N_S32, N_F64 | key);
14487 CVT_VAR (9, N_U32, N_F64 | key);
14488 CVT_VAR (10, N_F64 | key, N_S32);
14489 CVT_VAR (11, N_F64 | key, N_U32);
14490 /* VFP instructions with bitshift. */
14491 CVT_VAR (12, N_F32 | key, N_S16);
14492 CVT_VAR (13, N_F32 | key, N_U16);
14493 CVT_VAR (14, N_F64 | key, N_S16);
14494 CVT_VAR (15, N_F64 | key, N_U16);
14495 CVT_VAR (16, N_S16, N_F32 | key);
14496 CVT_VAR (17, N_U16, N_F32 | key);
14497 CVT_VAR (18, N_S16, N_F64 | key);
14498 CVT_VAR (19, N_U16, N_F64 | key);
14499
14500 return -1;
14501 #undef CVT_VAR
14502 }
14503
14504 /* Neon-syntax VFP conversions. */
14505
14506 static void
14507 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
14508 {
14509 const char *opname = 0;
14510
14511 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
14512 {
14513 /* Conversions with immediate bitshift. */
14514 const char *enc[] =
14515 {
14516 "ftosls",
14517 "ftouls",
14518 "fsltos",
14519 "fultos",
14520 NULL,
14521 NULL,
14522 NULL,
14523 NULL,
14524 "ftosld",
14525 "ftould",
14526 "fsltod",
14527 "fultod",
14528 "fshtos",
14529 "fuhtos",
14530 "fshtod",
14531 "fuhtod",
14532 "ftoshs",
14533 "ftouhs",
14534 "ftoshd",
14535 "ftouhd"
14536 };
14537
14538 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14539 {
14540 opname = enc[flavour];
14541 constraint (inst.operands[0].reg != inst.operands[1].reg,
14542 _("operands 0 and 1 must be the same register"));
14543 inst.operands[1] = inst.operands[2];
14544 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14545 }
14546 }
14547 else
14548 {
14549 /* Conversions without bitshift. */
14550 const char *enc[] =
14551 {
14552 "ftosis",
14553 "ftouis",
14554 "fsitos",
14555 "fuitos",
14556 "NULL",
14557 "NULL",
14558 "fcvtsd",
14559 "fcvtds",
14560 "ftosid",
14561 "ftouid",
14562 "fsitod",
14563 "fuitod"
14564 };
14565
14566 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14567 opname = enc[flavour];
14568 }
14569
14570 if (opname)
14571 do_vfp_nsyn_opcode (opname);
14572 }
14573
14574 static void
14575 do_vfp_nsyn_cvtz (void)
14576 {
14577 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14578 int flavour = neon_cvt_flavour (rs);
14579 const char *enc[] =
14580 {
14581 "ftosizs",
14582 "ftouizs",
14583 NULL,
14584 NULL,
14585 NULL,
14586 NULL,
14587 NULL,
14588 NULL,
14589 "ftosizd",
14590 "ftouizd"
14591 };
14592
14593 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14594 do_vfp_nsyn_opcode (enc[flavour]);
14595 }
14596
14597 static void
14598 do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
14599 {
14600 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
14601 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
14602 int flavour = neon_cvt_flavour (rs);
14603
14604 /* PR11109: Handle round-to-zero for VCVT conversions. */
14605 if (round_to_zero
14606 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14607 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
14608 && (rs == NS_FD || rs == NS_FF))
14609 {
14610 do_vfp_nsyn_cvtz ();
14611 return;
14612 }
14613
14614 /* VFP rather than Neon conversions. */
14615 if (flavour >= 6)
14616 {
14617 do_vfp_nsyn_cvt (rs, flavour);
14618 return;
14619 }
14620
14621 switch (rs)
14622 {
14623 case NS_DDI:
14624 case NS_QQI:
14625 {
14626 unsigned immbits;
14627 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14628
14629 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14630 return;
14631
14632 /* Fixed-point conversion with #0 immediate is encoded as an
14633 integer conversion. */
14634 if (inst.operands[2].present && inst.operands[2].imm == 0)
14635 goto int_encode;
14636 immbits = 32 - inst.operands[2].imm;
14637 NEON_ENCODE (IMMED, inst);
14638 if (flavour != -1)
14639 inst.instruction |= enctab[flavour];
14640 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14641 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14642 inst.instruction |= LOW4 (inst.operands[1].reg);
14643 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14644 inst.instruction |= neon_quad (rs) << 6;
14645 inst.instruction |= 1 << 21;
14646 inst.instruction |= immbits << 16;
14647
14648 neon_dp_fixup (&inst);
14649 }
14650 break;
14651
14652 case NS_DD:
14653 case NS_QQ:
14654 int_encode:
14655 {
14656 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14657
14658 NEON_ENCODE (INTEGER, inst);
14659
14660 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14661 return;
14662
14663 if (flavour != -1)
14664 inst.instruction |= enctab[flavour];
14665
14666 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14667 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14668 inst.instruction |= LOW4 (inst.operands[1].reg);
14669 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14670 inst.instruction |= neon_quad (rs) << 6;
14671 inst.instruction |= 2 << 18;
14672
14673 neon_dp_fixup (&inst);
14674 }
14675 break;
14676
14677 /* Half-precision conversions for Advanced SIMD -- neon. */
14678 case NS_QD:
14679 case NS_DQ:
14680
14681 if ((rs == NS_DQ)
14682 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14683 {
14684 as_bad (_("operand size must match register width"));
14685 break;
14686 }
14687
14688 if ((rs == NS_QD)
14689 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14690 {
14691 as_bad (_("operand size must match register width"));
14692 break;
14693 }
14694
14695 if (rs == NS_DQ)
14696 inst.instruction = 0x3b60600;
14697 else
14698 inst.instruction = 0x3b60700;
14699
14700 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14701 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14702 inst.instruction |= LOW4 (inst.operands[1].reg);
14703 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14704 neon_dp_fixup (&inst);
14705 break;
14706
14707 default:
14708 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14709 do_vfp_nsyn_cvt (rs, flavour);
14710 }
14711 }
14712
14713 static void
14714 do_neon_cvtr (void)
14715 {
14716 do_neon_cvt_1 (FALSE);
14717 }
14718
14719 static void
14720 do_neon_cvt (void)
14721 {
14722 do_neon_cvt_1 (TRUE);
14723 }
14724
14725 static void
14726 do_neon_cvtb (void)
14727 {
14728 inst.instruction = 0xeb20a40;
14729
14730 /* The sizes are attached to the mnemonic. */
14731 if (inst.vectype.el[0].type != NT_invtype
14732 && inst.vectype.el[0].size == 16)
14733 inst.instruction |= 0x00010000;
14734
14735 /* Programmer's syntax: the sizes are attached to the operands. */
14736 else if (inst.operands[0].vectype.type != NT_invtype
14737 && inst.operands[0].vectype.size == 16)
14738 inst.instruction |= 0x00010000;
14739
14740 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14741 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14742 do_vfp_cond_or_thumb ();
14743 }
14744
14745
14746 static void
14747 do_neon_cvtt (void)
14748 {
14749 do_neon_cvtb ();
14750 inst.instruction |= 0x80;
14751 }
14752
14753 static void
14754 neon_move_immediate (void)
14755 {
14756 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14757 struct neon_type_el et = neon_check_type (2, rs,
14758 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14759 unsigned immlo, immhi = 0, immbits;
14760 int op, cmode, float_p;
14761
14762 constraint (et.type == NT_invtype,
14763 _("operand size must be specified for immediate VMOV"));
14764
14765 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14766 op = (inst.instruction & (1 << 5)) != 0;
14767
14768 immlo = inst.operands[1].imm;
14769 if (inst.operands[1].regisimm)
14770 immhi = inst.operands[1].reg;
14771
14772 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14773 _("immediate has bits set outside the operand size"));
14774
14775 float_p = inst.operands[1].immisfloat;
14776
14777 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
14778 et.size, et.type)) == FAIL)
14779 {
14780 /* Invert relevant bits only. */
14781 neon_invert_size (&immlo, &immhi, et.size);
14782 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14783 with one or the other; those cases are caught by
14784 neon_cmode_for_move_imm. */
14785 op = !op;
14786 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14787 &op, et.size, et.type)) == FAIL)
14788 {
14789 first_error (_("immediate out of range"));
14790 return;
14791 }
14792 }
14793
14794 inst.instruction &= ~(1 << 5);
14795 inst.instruction |= op << 5;
14796
14797 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14798 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14799 inst.instruction |= neon_quad (rs) << 6;
14800 inst.instruction |= cmode << 8;
14801
14802 neon_write_immbits (immbits);
14803 }
14804
14805 static void
14806 do_neon_mvn (void)
14807 {
14808 if (inst.operands[1].isreg)
14809 {
14810 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14811
14812 NEON_ENCODE (INTEGER, inst);
14813 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14814 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14815 inst.instruction |= LOW4 (inst.operands[1].reg);
14816 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14817 inst.instruction |= neon_quad (rs) << 6;
14818 }
14819 else
14820 {
14821 NEON_ENCODE (IMMED, inst);
14822 neon_move_immediate ();
14823 }
14824
14825 neon_dp_fixup (&inst);
14826 }
14827
14828 /* Encode instructions of form:
14829
14830 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14831 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
14832
14833 static void
14834 neon_mixed_length (struct neon_type_el et, unsigned size)
14835 {
14836 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14837 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14838 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14839 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14840 inst.instruction |= LOW4 (inst.operands[2].reg);
14841 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14842 inst.instruction |= (et.type == NT_unsigned) << 24;
14843 inst.instruction |= neon_logbits (size) << 20;
14844
14845 neon_dp_fixup (&inst);
14846 }
14847
14848 static void
14849 do_neon_dyadic_long (void)
14850 {
14851 /* FIXME: Type checking for lengthening op. */
14852 struct neon_type_el et = neon_check_type (3, NS_QDD,
14853 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14854 neon_mixed_length (et, et.size);
14855 }
14856
14857 static void
14858 do_neon_abal (void)
14859 {
14860 struct neon_type_el et = neon_check_type (3, NS_QDD,
14861 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14862 neon_mixed_length (et, et.size);
14863 }
14864
14865 static void
14866 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14867 {
14868 if (inst.operands[2].isscalar)
14869 {
14870 struct neon_type_el et = neon_check_type (3, NS_QDS,
14871 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
14872 NEON_ENCODE (SCALAR, inst);
14873 neon_mul_mac (et, et.type == NT_unsigned);
14874 }
14875 else
14876 {
14877 struct neon_type_el et = neon_check_type (3, NS_QDD,
14878 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
14879 NEON_ENCODE (INTEGER, inst);
14880 neon_mixed_length (et, et.size);
14881 }
14882 }
14883
14884 static void
14885 do_neon_mac_maybe_scalar_long (void)
14886 {
14887 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14888 }
14889
14890 static void
14891 do_neon_dyadic_wide (void)
14892 {
14893 struct neon_type_el et = neon_check_type (3, NS_QQD,
14894 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14895 neon_mixed_length (et, et.size);
14896 }
14897
14898 static void
14899 do_neon_dyadic_narrow (void)
14900 {
14901 struct neon_type_el et = neon_check_type (3, NS_QDD,
14902 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
14903 /* Operand sign is unimportant, and the U bit is part of the opcode,
14904 so force the operand type to integer. */
14905 et.type = NT_integer;
14906 neon_mixed_length (et, et.size / 2);
14907 }
14908
14909 static void
14910 do_neon_mul_sat_scalar_long (void)
14911 {
14912 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14913 }
14914
14915 static void
14916 do_neon_vmull (void)
14917 {
14918 if (inst.operands[2].isscalar)
14919 do_neon_mac_maybe_scalar_long ();
14920 else
14921 {
14922 struct neon_type_el et = neon_check_type (3, NS_QDD,
14923 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14924 if (et.type == NT_poly)
14925 NEON_ENCODE (POLY, inst);
14926 else
14927 NEON_ENCODE (INTEGER, inst);
14928 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14929 zero. Should be OK as-is. */
14930 neon_mixed_length (et, et.size);
14931 }
14932 }
14933
14934 static void
14935 do_neon_ext (void)
14936 {
14937 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
14938 struct neon_type_el et = neon_check_type (3, rs,
14939 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14940 unsigned imm = (inst.operands[3].imm * et.size) / 8;
14941
14942 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14943 _("shift out of range"));
14944 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14945 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14946 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14947 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14948 inst.instruction |= LOW4 (inst.operands[2].reg);
14949 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14950 inst.instruction |= neon_quad (rs) << 6;
14951 inst.instruction |= imm << 8;
14952
14953 neon_dp_fixup (&inst);
14954 }
14955
14956 static void
14957 do_neon_rev (void)
14958 {
14959 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14960 struct neon_type_el et = neon_check_type (2, rs,
14961 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14962 unsigned op = (inst.instruction >> 7) & 3;
14963 /* N (width of reversed regions) is encoded as part of the bitmask. We
14964 extract it here to check the elements to be reversed are smaller.
14965 Otherwise we'd get a reserved instruction. */
14966 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
14967 gas_assert (elsize != 0);
14968 constraint (et.size >= elsize,
14969 _("elements must be smaller than reversal region"));
14970 neon_two_same (neon_quad (rs), 1, et.size);
14971 }
14972
14973 static void
14974 do_neon_dup (void)
14975 {
14976 if (inst.operands[1].isscalar)
14977 {
14978 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
14979 struct neon_type_el et = neon_check_type (2, rs,
14980 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14981 unsigned sizebits = et.size >> 3;
14982 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
14983 int logsize = neon_logbits (et.size);
14984 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
14985
14986 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14987 return;
14988
14989 NEON_ENCODE (SCALAR, inst);
14990 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14991 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14992 inst.instruction |= LOW4 (dm);
14993 inst.instruction |= HI1 (dm) << 5;
14994 inst.instruction |= neon_quad (rs) << 6;
14995 inst.instruction |= x << 17;
14996 inst.instruction |= sizebits << 16;
14997
14998 neon_dp_fixup (&inst);
14999 }
15000 else
15001 {
15002 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
15003 struct neon_type_el et = neon_check_type (2, rs,
15004 N_8 | N_16 | N_32 | N_KEY, N_EQK);
15005 /* Duplicate ARM register to lanes of vector. */
15006 NEON_ENCODE (ARMREG, inst);
15007 switch (et.size)
15008 {
15009 case 8: inst.instruction |= 0x400000; break;
15010 case 16: inst.instruction |= 0x000020; break;
15011 case 32: inst.instruction |= 0x000000; break;
15012 default: break;
15013 }
15014 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15015 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
15016 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
15017 inst.instruction |= neon_quad (rs) << 21;
15018 /* The encoding for this instruction is identical for the ARM and Thumb
15019 variants, except for the condition field. */
15020 do_vfp_cond_or_thumb ();
15021 }
15022 }
15023
15024 /* VMOV has particularly many variations. It can be one of:
15025 0. VMOV<c><q> <Qd>, <Qm>
15026 1. VMOV<c><q> <Dd>, <Dm>
15027 (Register operations, which are VORR with Rm = Rn.)
15028 2. VMOV<c><q>.<dt> <Qd>, #<imm>
15029 3. VMOV<c><q>.<dt> <Dd>, #<imm>
15030 (Immediate loads.)
15031 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
15032 (ARM register to scalar.)
15033 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
15034 (Two ARM registers to vector.)
15035 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
15036 (Scalar to ARM register.)
15037 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
15038 (Vector to two ARM registers.)
15039 8. VMOV.F32 <Sd>, <Sm>
15040 9. VMOV.F64 <Dd>, <Dm>
15041 (VFP register moves.)
15042 10. VMOV.F32 <Sd>, #imm
15043 11. VMOV.F64 <Dd>, #imm
15044 (VFP float immediate load.)
15045 12. VMOV <Rd>, <Sm>
15046 (VFP single to ARM reg.)
15047 13. VMOV <Sd>, <Rm>
15048 (ARM reg to VFP single.)
15049 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
15050 (Two ARM regs to two VFP singles.)
15051 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
15052 (Two VFP singles to two ARM regs.)
15053
15054 These cases can be disambiguated using neon_select_shape, except cases 1/9
15055 and 3/11 which depend on the operand type too.
15056
15057 All the encoded bits are hardcoded by this function.
15058
15059 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
15060 Cases 5, 7 may be used with VFPv2 and above.
15061
15062 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
15063 can specify a type where it doesn't make sense to, and is ignored). */
15064
15065 static void
15066 do_neon_mov (void)
15067 {
15068 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
15069 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
15070 NS_NULL);
15071 struct neon_type_el et;
15072 const char *ldconst = 0;
15073
15074 switch (rs)
15075 {
15076 case NS_DD: /* case 1/9. */
15077 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15078 /* It is not an error here if no type is given. */
15079 inst.error = NULL;
15080 if (et.type == NT_float && et.size == 64)
15081 {
15082 do_vfp_nsyn_opcode ("fcpyd");
15083 break;
15084 }
15085 /* fall through. */
15086
15087 case NS_QQ: /* case 0/1. */
15088 {
15089 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15090 return;
15091 /* The architecture manual I have doesn't explicitly state which
15092 value the U bit should have for register->register moves, but
15093 the equivalent VORR instruction has U = 0, so do that. */
15094 inst.instruction = 0x0200110;
15095 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15096 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15097 inst.instruction |= LOW4 (inst.operands[1].reg);
15098 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15099 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15100 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15101 inst.instruction |= neon_quad (rs) << 6;
15102
15103 neon_dp_fixup (&inst);
15104 }
15105 break;
15106
15107 case NS_DI: /* case 3/11. */
15108 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15109 inst.error = NULL;
15110 if (et.type == NT_float && et.size == 64)
15111 {
15112 /* case 11 (fconstd). */
15113 ldconst = "fconstd";
15114 goto encode_fconstd;
15115 }
15116 /* fall through. */
15117
15118 case NS_QI: /* case 2/3. */
15119 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15120 return;
15121 inst.instruction = 0x0800010;
15122 neon_move_immediate ();
15123 neon_dp_fixup (&inst);
15124 break;
15125
15126 case NS_SR: /* case 4. */
15127 {
15128 unsigned bcdebits = 0;
15129 int logsize;
15130 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
15131 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
15132
15133 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
15134 logsize = neon_logbits (et.size);
15135
15136 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15137 _(BAD_FPU));
15138 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15139 && et.size != 32, _(BAD_FPU));
15140 constraint (et.type == NT_invtype, _("bad type for scalar"));
15141 constraint (x >= 64 / et.size, _("scalar index out of range"));
15142
15143 switch (et.size)
15144 {
15145 case 8: bcdebits = 0x8; break;
15146 case 16: bcdebits = 0x1; break;
15147 case 32: bcdebits = 0x0; break;
15148 default: ;
15149 }
15150
15151 bcdebits |= x << logsize;
15152
15153 inst.instruction = 0xe000b10;
15154 do_vfp_cond_or_thumb ();
15155 inst.instruction |= LOW4 (dn) << 16;
15156 inst.instruction |= HI1 (dn) << 7;
15157 inst.instruction |= inst.operands[1].reg << 12;
15158 inst.instruction |= (bcdebits & 3) << 5;
15159 inst.instruction |= (bcdebits >> 2) << 21;
15160 }
15161 break;
15162
15163 case NS_DRR: /* case 5 (fmdrr). */
15164 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15165 _(BAD_FPU));
15166
15167 inst.instruction = 0xc400b10;
15168 do_vfp_cond_or_thumb ();
15169 inst.instruction |= LOW4 (inst.operands[0].reg);
15170 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
15171 inst.instruction |= inst.operands[1].reg << 12;
15172 inst.instruction |= inst.operands[2].reg << 16;
15173 break;
15174
15175 case NS_RS: /* case 6. */
15176 {
15177 unsigned logsize;
15178 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
15179 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
15180 unsigned abcdebits = 0;
15181
15182 et = neon_check_type (2, NS_NULL,
15183 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
15184 logsize = neon_logbits (et.size);
15185
15186 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15187 _(BAD_FPU));
15188 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15189 && et.size != 32, _(BAD_FPU));
15190 constraint (et.type == NT_invtype, _("bad type for scalar"));
15191 constraint (x >= 64 / et.size, _("scalar index out of range"));
15192
15193 switch (et.size)
15194 {
15195 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
15196 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
15197 case 32: abcdebits = 0x00; break;
15198 default: ;
15199 }
15200
15201 abcdebits |= x << logsize;
15202 inst.instruction = 0xe100b10;
15203 do_vfp_cond_or_thumb ();
15204 inst.instruction |= LOW4 (dn) << 16;
15205 inst.instruction |= HI1 (dn) << 7;
15206 inst.instruction |= inst.operands[0].reg << 12;
15207 inst.instruction |= (abcdebits & 3) << 5;
15208 inst.instruction |= (abcdebits >> 2) << 21;
15209 }
15210 break;
15211
15212 case NS_RRD: /* case 7 (fmrrd). */
15213 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15214 _(BAD_FPU));
15215
15216 inst.instruction = 0xc500b10;
15217 do_vfp_cond_or_thumb ();
15218 inst.instruction |= inst.operands[0].reg << 12;
15219 inst.instruction |= inst.operands[1].reg << 16;
15220 inst.instruction |= LOW4 (inst.operands[2].reg);
15221 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15222 break;
15223
15224 case NS_FF: /* case 8 (fcpys). */
15225 do_vfp_nsyn_opcode ("fcpys");
15226 break;
15227
15228 case NS_FI: /* case 10 (fconsts). */
15229 ldconst = "fconsts";
15230 encode_fconstd:
15231 if (is_quarter_float (inst.operands[1].imm))
15232 {
15233 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
15234 do_vfp_nsyn_opcode (ldconst);
15235 }
15236 else
15237 first_error (_("immediate out of range"));
15238 break;
15239
15240 case NS_RF: /* case 12 (fmrs). */
15241 do_vfp_nsyn_opcode ("fmrs");
15242 break;
15243
15244 case NS_FR: /* case 13 (fmsr). */
15245 do_vfp_nsyn_opcode ("fmsr");
15246 break;
15247
15248 /* The encoders for the fmrrs and fmsrr instructions expect three operands
15249 (one of which is a list), but we have parsed four. Do some fiddling to
15250 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
15251 expect. */
15252 case NS_RRFF: /* case 14 (fmrrs). */
15253 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
15254 _("VFP registers must be adjacent"));
15255 inst.operands[2].imm = 2;
15256 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15257 do_vfp_nsyn_opcode ("fmrrs");
15258 break;
15259
15260 case NS_FFRR: /* case 15 (fmsrr). */
15261 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
15262 _("VFP registers must be adjacent"));
15263 inst.operands[1] = inst.operands[2];
15264 inst.operands[2] = inst.operands[3];
15265 inst.operands[0].imm = 2;
15266 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15267 do_vfp_nsyn_opcode ("fmsrr");
15268 break;
15269
15270 default:
15271 abort ();
15272 }
15273 }
15274
15275 static void
15276 do_neon_rshift_round_imm (void)
15277 {
15278 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15279 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
15280 int imm = inst.operands[2].imm;
15281
15282 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
15283 if (imm == 0)
15284 {
15285 inst.operands[2].present = 0;
15286 do_neon_mov ();
15287 return;
15288 }
15289
15290 constraint (imm < 1 || (unsigned)imm > et.size,
15291 _("immediate out of range for shift"));
15292 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
15293 et.size - imm);
15294 }
15295
15296 static void
15297 do_neon_movl (void)
15298 {
15299 struct neon_type_el et = neon_check_type (2, NS_QD,
15300 N_EQK | N_DBL, N_SU_32 | N_KEY);
15301 unsigned sizebits = et.size >> 3;
15302 inst.instruction |= sizebits << 19;
15303 neon_two_same (0, et.type == NT_unsigned, -1);
15304 }
15305
15306 static void
15307 do_neon_trn (void)
15308 {
15309 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15310 struct neon_type_el et = neon_check_type (2, rs,
15311 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15312 NEON_ENCODE (INTEGER, inst);
15313 neon_two_same (neon_quad (rs), 1, et.size);
15314 }
15315
15316 static void
15317 do_neon_zip_uzp (void)
15318 {
15319 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15320 struct neon_type_el et = neon_check_type (2, rs,
15321 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15322 if (rs == NS_DD && et.size == 32)
15323 {
15324 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
15325 inst.instruction = N_MNEM_vtrn;
15326 do_neon_trn ();
15327 return;
15328 }
15329 neon_two_same (neon_quad (rs), 1, et.size);
15330 }
15331
15332 static void
15333 do_neon_sat_abs_neg (void)
15334 {
15335 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15336 struct neon_type_el et = neon_check_type (2, rs,
15337 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15338 neon_two_same (neon_quad (rs), 1, et.size);
15339 }
15340
15341 static void
15342 do_neon_pair_long (void)
15343 {
15344 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15345 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
15346 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15347 inst.instruction |= (et.type == NT_unsigned) << 7;
15348 neon_two_same (neon_quad (rs), 1, et.size);
15349 }
15350
15351 static void
15352 do_neon_recip_est (void)
15353 {
15354 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15355 struct neon_type_el et = neon_check_type (2, rs,
15356 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
15357 inst.instruction |= (et.type == NT_float) << 8;
15358 neon_two_same (neon_quad (rs), 1, et.size);
15359 }
15360
15361 static void
15362 do_neon_cls (void)
15363 {
15364 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15365 struct neon_type_el et = neon_check_type (2, rs,
15366 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15367 neon_two_same (neon_quad (rs), 1, et.size);
15368 }
15369
15370 static void
15371 do_neon_clz (void)
15372 {
15373 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15374 struct neon_type_el et = neon_check_type (2, rs,
15375 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
15376 neon_two_same (neon_quad (rs), 1, et.size);
15377 }
15378
15379 static void
15380 do_neon_cnt (void)
15381 {
15382 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15383 struct neon_type_el et = neon_check_type (2, rs,
15384 N_EQK | N_INT, N_8 | N_KEY);
15385 neon_two_same (neon_quad (rs), 1, et.size);
15386 }
15387
15388 static void
15389 do_neon_swp (void)
15390 {
15391 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15392 neon_two_same (neon_quad (rs), 1, -1);
15393 }
15394
15395 static void
15396 do_neon_tbl_tbx (void)
15397 {
15398 unsigned listlenbits;
15399 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
15400
15401 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
15402 {
15403 first_error (_("bad list length for table lookup"));
15404 return;
15405 }
15406
15407 listlenbits = inst.operands[1].imm - 1;
15408 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15409 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15410 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15411 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15412 inst.instruction |= LOW4 (inst.operands[2].reg);
15413 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15414 inst.instruction |= listlenbits << 8;
15415
15416 neon_dp_fixup (&inst);
15417 }
15418
15419 static void
15420 do_neon_ldm_stm (void)
15421 {
15422 /* P, U and L bits are part of bitmask. */
15423 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15424 unsigned offsetbits = inst.operands[1].imm * 2;
15425
15426 if (inst.operands[1].issingle)
15427 {
15428 do_vfp_nsyn_ldm_stm (is_dbmode);
15429 return;
15430 }
15431
15432 constraint (is_dbmode && !inst.operands[0].writeback,
15433 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15434
15435 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15436 _("register list must contain at least 1 and at most 16 "
15437 "registers"));
15438
15439 inst.instruction |= inst.operands[0].reg << 16;
15440 inst.instruction |= inst.operands[0].writeback << 21;
15441 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15442 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15443
15444 inst.instruction |= offsetbits;
15445
15446 do_vfp_cond_or_thumb ();
15447 }
15448
15449 static void
15450 do_neon_ldr_str (void)
15451 {
15452 int is_ldr = (inst.instruction & (1 << 20)) != 0;
15453
15454 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15455 And is UNPREDICTABLE in thumb mode. */
15456 if (!is_ldr
15457 && inst.operands[1].reg == REG_PC
15458 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
15459 {
15460 if (!thumb_mode && warn_on_deprecated)
15461 as_warn (_("Use of PC here is deprecated"));
15462 else
15463 inst.error = _("Use of PC here is UNPREDICTABLE");
15464 }
15465
15466 if (inst.operands[0].issingle)
15467 {
15468 if (is_ldr)
15469 do_vfp_nsyn_opcode ("flds");
15470 else
15471 do_vfp_nsyn_opcode ("fsts");
15472 }
15473 else
15474 {
15475 if (is_ldr)
15476 do_vfp_nsyn_opcode ("fldd");
15477 else
15478 do_vfp_nsyn_opcode ("fstd");
15479 }
15480 }
15481
15482 /* "interleave" version also handles non-interleaving register VLD1/VST1
15483 instructions. */
15484
15485 static void
15486 do_neon_ld_st_interleave (void)
15487 {
15488 struct neon_type_el et = neon_check_type (1, NS_NULL,
15489 N_8 | N_16 | N_32 | N_64);
15490 unsigned alignbits = 0;
15491 unsigned idx;
15492 /* The bits in this table go:
15493 0: register stride of one (0) or two (1)
15494 1,2: register list length, minus one (1, 2, 3, 4).
15495 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15496 We use -1 for invalid entries. */
15497 const int typetable[] =
15498 {
15499 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15500 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15501 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15502 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15503 };
15504 int typebits;
15505
15506 if (et.type == NT_invtype)
15507 return;
15508
15509 if (inst.operands[1].immisalign)
15510 switch (inst.operands[1].imm >> 8)
15511 {
15512 case 64: alignbits = 1; break;
15513 case 128:
15514 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15515 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15516 goto bad_alignment;
15517 alignbits = 2;
15518 break;
15519 case 256:
15520 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15521 goto bad_alignment;
15522 alignbits = 3;
15523 break;
15524 default:
15525 bad_alignment:
15526 first_error (_("bad alignment"));
15527 return;
15528 }
15529
15530 inst.instruction |= alignbits << 4;
15531 inst.instruction |= neon_logbits (et.size) << 6;
15532
15533 /* Bits [4:6] of the immediate in a list specifier encode register stride
15534 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15535 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15536 up the right value for "type" in a table based on this value and the given
15537 list style, then stick it back. */
15538 idx = ((inst.operands[0].imm >> 4) & 7)
15539 | (((inst.instruction >> 8) & 3) << 3);
15540
15541 typebits = typetable[idx];
15542
15543 constraint (typebits == -1, _("bad list type for instruction"));
15544
15545 inst.instruction &= ~0xf00;
15546 inst.instruction |= typebits << 8;
15547 }
15548
15549 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15550 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15551 otherwise. The variable arguments are a list of pairs of legal (size, align)
15552 values, terminated with -1. */
15553
15554 static int
15555 neon_alignment_bit (int size, int align, int *do_align, ...)
15556 {
15557 va_list ap;
15558 int result = FAIL, thissize, thisalign;
15559
15560 if (!inst.operands[1].immisalign)
15561 {
15562 *do_align = 0;
15563 return SUCCESS;
15564 }
15565
15566 va_start (ap, do_align);
15567
15568 do
15569 {
15570 thissize = va_arg (ap, int);
15571 if (thissize == -1)
15572 break;
15573 thisalign = va_arg (ap, int);
15574
15575 if (size == thissize && align == thisalign)
15576 result = SUCCESS;
15577 }
15578 while (result != SUCCESS);
15579
15580 va_end (ap);
15581
15582 if (result == SUCCESS)
15583 *do_align = 1;
15584 else
15585 first_error (_("unsupported alignment for instruction"));
15586
15587 return result;
15588 }
15589
15590 static void
15591 do_neon_ld_st_lane (void)
15592 {
15593 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15594 int align_good, do_align = 0;
15595 int logsize = neon_logbits (et.size);
15596 int align = inst.operands[1].imm >> 8;
15597 int n = (inst.instruction >> 8) & 3;
15598 int max_el = 64 / et.size;
15599
15600 if (et.type == NT_invtype)
15601 return;
15602
15603 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15604 _("bad list length"));
15605 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15606 _("scalar index out of range"));
15607 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15608 && et.size == 8,
15609 _("stride of 2 unavailable when element size is 8"));
15610
15611 switch (n)
15612 {
15613 case 0: /* VLD1 / VST1. */
15614 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15615 32, 32, -1);
15616 if (align_good == FAIL)
15617 return;
15618 if (do_align)
15619 {
15620 unsigned alignbits = 0;
15621 switch (et.size)
15622 {
15623 case 16: alignbits = 0x1; break;
15624 case 32: alignbits = 0x3; break;
15625 default: ;
15626 }
15627 inst.instruction |= alignbits << 4;
15628 }
15629 break;
15630
15631 case 1: /* VLD2 / VST2. */
15632 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15633 32, 64, -1);
15634 if (align_good == FAIL)
15635 return;
15636 if (do_align)
15637 inst.instruction |= 1 << 4;
15638 break;
15639
15640 case 2: /* VLD3 / VST3. */
15641 constraint (inst.operands[1].immisalign,
15642 _("can't use alignment with this instruction"));
15643 break;
15644
15645 case 3: /* VLD4 / VST4. */
15646 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15647 16, 64, 32, 64, 32, 128, -1);
15648 if (align_good == FAIL)
15649 return;
15650 if (do_align)
15651 {
15652 unsigned alignbits = 0;
15653 switch (et.size)
15654 {
15655 case 8: alignbits = 0x1; break;
15656 case 16: alignbits = 0x1; break;
15657 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15658 default: ;
15659 }
15660 inst.instruction |= alignbits << 4;
15661 }
15662 break;
15663
15664 default: ;
15665 }
15666
15667 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15668 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15669 inst.instruction |= 1 << (4 + logsize);
15670
15671 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15672 inst.instruction |= logsize << 10;
15673 }
15674
15675 /* Encode single n-element structure to all lanes VLD<n> instructions. */
15676
15677 static void
15678 do_neon_ld_dup (void)
15679 {
15680 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15681 int align_good, do_align = 0;
15682
15683 if (et.type == NT_invtype)
15684 return;
15685
15686 switch ((inst.instruction >> 8) & 3)
15687 {
15688 case 0: /* VLD1. */
15689 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
15690 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15691 &do_align, 16, 16, 32, 32, -1);
15692 if (align_good == FAIL)
15693 return;
15694 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15695 {
15696 case 1: break;
15697 case 2: inst.instruction |= 1 << 5; break;
15698 default: first_error (_("bad list length")); return;
15699 }
15700 inst.instruction |= neon_logbits (et.size) << 6;
15701 break;
15702
15703 case 1: /* VLD2. */
15704 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15705 &do_align, 8, 16, 16, 32, 32, 64, -1);
15706 if (align_good == FAIL)
15707 return;
15708 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15709 _("bad list length"));
15710 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15711 inst.instruction |= 1 << 5;
15712 inst.instruction |= neon_logbits (et.size) << 6;
15713 break;
15714
15715 case 2: /* VLD3. */
15716 constraint (inst.operands[1].immisalign,
15717 _("can't use alignment with this instruction"));
15718 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15719 _("bad list length"));
15720 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15721 inst.instruction |= 1 << 5;
15722 inst.instruction |= neon_logbits (et.size) << 6;
15723 break;
15724
15725 case 3: /* VLD4. */
15726 {
15727 int align = inst.operands[1].imm >> 8;
15728 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15729 16, 64, 32, 64, 32, 128, -1);
15730 if (align_good == FAIL)
15731 return;
15732 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15733 _("bad list length"));
15734 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15735 inst.instruction |= 1 << 5;
15736 if (et.size == 32 && align == 128)
15737 inst.instruction |= 0x3 << 6;
15738 else
15739 inst.instruction |= neon_logbits (et.size) << 6;
15740 }
15741 break;
15742
15743 default: ;
15744 }
15745
15746 inst.instruction |= do_align << 4;
15747 }
15748
15749 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15750 apart from bits [11:4]. */
15751
15752 static void
15753 do_neon_ldx_stx (void)
15754 {
15755 if (inst.operands[1].isreg)
15756 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15757
15758 switch (NEON_LANE (inst.operands[0].imm))
15759 {
15760 case NEON_INTERLEAVE_LANES:
15761 NEON_ENCODE (INTERLV, inst);
15762 do_neon_ld_st_interleave ();
15763 break;
15764
15765 case NEON_ALL_LANES:
15766 NEON_ENCODE (DUP, inst);
15767 do_neon_ld_dup ();
15768 break;
15769
15770 default:
15771 NEON_ENCODE (LANE, inst);
15772 do_neon_ld_st_lane ();
15773 }
15774
15775 /* L bit comes from bit mask. */
15776 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15777 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15778 inst.instruction |= inst.operands[1].reg << 16;
15779
15780 if (inst.operands[1].postind)
15781 {
15782 int postreg = inst.operands[1].imm & 0xf;
15783 constraint (!inst.operands[1].immisreg,
15784 _("post-index must be a register"));
15785 constraint (postreg == 0xd || postreg == 0xf,
15786 _("bad register for post-index"));
15787 inst.instruction |= postreg;
15788 }
15789 else if (inst.operands[1].writeback)
15790 {
15791 inst.instruction |= 0xd;
15792 }
15793 else
15794 inst.instruction |= 0xf;
15795
15796 if (thumb_mode)
15797 inst.instruction |= 0xf9000000;
15798 else
15799 inst.instruction |= 0xf4000000;
15800 }
15801 \f
15802 /* Overall per-instruction processing. */
15803
15804 /* We need to be able to fix up arbitrary expressions in some statements.
15805 This is so that we can handle symbols that are an arbitrary distance from
15806 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15807 which returns part of an address in a form which will be valid for
15808 a data instruction. We do this by pushing the expression into a symbol
15809 in the expr_section, and creating a fix for that. */
15810
15811 static void
15812 fix_new_arm (fragS * frag,
15813 int where,
15814 short int size,
15815 expressionS * exp,
15816 int pc_rel,
15817 int reloc)
15818 {
15819 fixS * new_fix;
15820
15821 switch (exp->X_op)
15822 {
15823 case O_constant:
15824 if (pc_rel)
15825 {
15826 /* Create an absolute valued symbol, so we have something to
15827 refer to in the object file. Unfortunately for us, gas's
15828 generic expression parsing will already have folded out
15829 any use of .set foo/.type foo %function that may have
15830 been used to set type information of the target location,
15831 that's being specified symbolically. We have to presume
15832 the user knows what they are doing. */
15833 char name[16 + 8];
15834 symbolS *symbol;
15835
15836 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
15837
15838 symbol = symbol_find_or_make (name);
15839 S_SET_SEGMENT (symbol, absolute_section);
15840 symbol_set_frag (symbol, &zero_address_frag);
15841 S_SET_VALUE (symbol, exp->X_add_number);
15842 exp->X_op = O_symbol;
15843 exp->X_add_symbol = symbol;
15844 exp->X_add_number = 0;
15845 }
15846 /* FALLTHROUGH */
15847 case O_symbol:
15848 case O_add:
15849 case O_subtract:
15850 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15851 (enum bfd_reloc_code_real) reloc);
15852 break;
15853
15854 default:
15855 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15856 pc_rel, (enum bfd_reloc_code_real) reloc);
15857 break;
15858 }
15859
15860 /* Mark whether the fix is to a THUMB instruction, or an ARM
15861 instruction. */
15862 new_fix->tc_fix_data = thumb_mode;
15863 }
15864
15865 /* Create a frg for an instruction requiring relaxation. */
15866 static void
15867 output_relax_insn (void)
15868 {
15869 char * to;
15870 symbolS *sym;
15871 int offset;
15872
15873 /* The size of the instruction is unknown, so tie the debug info to the
15874 start of the instruction. */
15875 dwarf2_emit_insn (0);
15876
15877 switch (inst.reloc.exp.X_op)
15878 {
15879 case O_symbol:
15880 sym = inst.reloc.exp.X_add_symbol;
15881 offset = inst.reloc.exp.X_add_number;
15882 break;
15883 case O_constant:
15884 sym = NULL;
15885 offset = inst.reloc.exp.X_add_number;
15886 break;
15887 default:
15888 sym = make_expr_symbol (&inst.reloc.exp);
15889 offset = 0;
15890 break;
15891 }
15892 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15893 inst.relax, sym, offset, NULL/*offset, opcode*/);
15894 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
15895 }
15896
15897 /* Write a 32-bit thumb instruction to buf. */
15898 static void
15899 put_thumb32_insn (char * buf, unsigned long insn)
15900 {
15901 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15902 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15903 }
15904
15905 static void
15906 output_inst (const char * str)
15907 {
15908 char * to = NULL;
15909
15910 if (inst.error)
15911 {
15912 as_bad ("%s -- `%s'", inst.error, str);
15913 return;
15914 }
15915 if (inst.relax)
15916 {
15917 output_relax_insn ();
15918 return;
15919 }
15920 if (inst.size == 0)
15921 return;
15922
15923 to = frag_more (inst.size);
15924 /* PR 9814: Record the thumb mode into the current frag so that we know
15925 what type of NOP padding to use, if necessary. We override any previous
15926 setting so that if the mode has changed then the NOPS that we use will
15927 match the encoding of the last instruction in the frag. */
15928 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
15929
15930 if (thumb_mode && (inst.size > THUMB_SIZE))
15931 {
15932 gas_assert (inst.size == (2 * THUMB_SIZE));
15933 put_thumb32_insn (to, inst.instruction);
15934 }
15935 else if (inst.size > INSN_SIZE)
15936 {
15937 gas_assert (inst.size == (2 * INSN_SIZE));
15938 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15939 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
15940 }
15941 else
15942 md_number_to_chars (to, inst.instruction, inst.size);
15943
15944 if (inst.reloc.type != BFD_RELOC_UNUSED)
15945 fix_new_arm (frag_now, to - frag_now->fr_literal,
15946 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15947 inst.reloc.type);
15948
15949 dwarf2_emit_insn (inst.size);
15950 }
15951
15952 static char *
15953 output_it_inst (int cond, int mask, char * to)
15954 {
15955 unsigned long instruction = 0xbf00;
15956
15957 mask &= 0xf;
15958 instruction |= mask;
15959 instruction |= cond << 4;
15960
15961 if (to == NULL)
15962 {
15963 to = frag_more (2);
15964 #ifdef OBJ_ELF
15965 dwarf2_emit_insn (2);
15966 #endif
15967 }
15968
15969 md_number_to_chars (to, instruction, 2);
15970
15971 return to;
15972 }
15973
15974 /* Tag values used in struct asm_opcode's tag field. */
15975 enum opcode_tag
15976 {
15977 OT_unconditional, /* Instruction cannot be conditionalized.
15978 The ARM condition field is still 0xE. */
15979 OT_unconditionalF, /* Instruction cannot be conditionalized
15980 and carries 0xF in its ARM condition field. */
15981 OT_csuffix, /* Instruction takes a conditional suffix. */
15982 OT_csuffixF, /* Some forms of the instruction take a conditional
15983 suffix, others place 0xF where the condition field
15984 would be. */
15985 OT_cinfix3, /* Instruction takes a conditional infix,
15986 beginning at character index 3. (In
15987 unified mode, it becomes a suffix.) */
15988 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15989 tsts, cmps, cmns, and teqs. */
15990 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15991 character index 3, even in unified mode. Used for
15992 legacy instructions where suffix and infix forms
15993 may be ambiguous. */
15994 OT_csuf_or_in3, /* Instruction takes either a conditional
15995 suffix or an infix at character index 3. */
15996 OT_odd_infix_unc, /* This is the unconditional variant of an
15997 instruction that takes a conditional infix
15998 at an unusual position. In unified mode,
15999 this variant will accept a suffix. */
16000 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
16001 are the conditional variants of instructions that
16002 take conditional infixes in unusual positions.
16003 The infix appears at character index
16004 (tag - OT_odd_infix_0). These are not accepted
16005 in unified mode. */
16006 };
16007
16008 /* Subroutine of md_assemble, responsible for looking up the primary
16009 opcode from the mnemonic the user wrote. STR points to the
16010 beginning of the mnemonic.
16011
16012 This is not simply a hash table lookup, because of conditional
16013 variants. Most instructions have conditional variants, which are
16014 expressed with a _conditional affix_ to the mnemonic. If we were
16015 to encode each conditional variant as a literal string in the opcode
16016 table, it would have approximately 20,000 entries.
16017
16018 Most mnemonics take this affix as a suffix, and in unified syntax,
16019 'most' is upgraded to 'all'. However, in the divided syntax, some
16020 instructions take the affix as an infix, notably the s-variants of
16021 the arithmetic instructions. Of those instructions, all but six
16022 have the infix appear after the third character of the mnemonic.
16023
16024 Accordingly, the algorithm for looking up primary opcodes given
16025 an identifier is:
16026
16027 1. Look up the identifier in the opcode table.
16028 If we find a match, go to step U.
16029
16030 2. Look up the last two characters of the identifier in the
16031 conditions table. If we find a match, look up the first N-2
16032 characters of the identifier in the opcode table. If we
16033 find a match, go to step CE.
16034
16035 3. Look up the fourth and fifth characters of the identifier in
16036 the conditions table. If we find a match, extract those
16037 characters from the identifier, and look up the remaining
16038 characters in the opcode table. If we find a match, go
16039 to step CM.
16040
16041 4. Fail.
16042
16043 U. Examine the tag field of the opcode structure, in case this is
16044 one of the six instructions with its conditional infix in an
16045 unusual place. If it is, the tag tells us where to find the
16046 infix; look it up in the conditions table and set inst.cond
16047 accordingly. Otherwise, this is an unconditional instruction.
16048 Again set inst.cond accordingly. Return the opcode structure.
16049
16050 CE. Examine the tag field to make sure this is an instruction that
16051 should receive a conditional suffix. If it is not, fail.
16052 Otherwise, set inst.cond from the suffix we already looked up,
16053 and return the opcode structure.
16054
16055 CM. Examine the tag field to make sure this is an instruction that
16056 should receive a conditional infix after the third character.
16057 If it is not, fail. Otherwise, undo the edits to the current
16058 line of input and proceed as for case CE. */
16059
16060 static const struct asm_opcode *
16061 opcode_lookup (char **str)
16062 {
16063 char *end, *base;
16064 char *affix;
16065 const struct asm_opcode *opcode;
16066 const struct asm_cond *cond;
16067 char save[2];
16068
16069 /* Scan up to the end of the mnemonic, which must end in white space,
16070 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
16071 for (base = end = *str; *end != '\0'; end++)
16072 if (*end == ' ' || *end == '.')
16073 break;
16074
16075 if (end == base)
16076 return NULL;
16077
16078 /* Handle a possible width suffix and/or Neon type suffix. */
16079 if (end[0] == '.')
16080 {
16081 int offset = 2;
16082
16083 /* The .w and .n suffixes are only valid if the unified syntax is in
16084 use. */
16085 if (unified_syntax && end[1] == 'w')
16086 inst.size_req = 4;
16087 else if (unified_syntax && end[1] == 'n')
16088 inst.size_req = 2;
16089 else
16090 offset = 0;
16091
16092 inst.vectype.elems = 0;
16093
16094 *str = end + offset;
16095
16096 if (end[offset] == '.')
16097 {
16098 /* See if we have a Neon type suffix (possible in either unified or
16099 non-unified ARM syntax mode). */
16100 if (parse_neon_type (&inst.vectype, str) == FAIL)
16101 return NULL;
16102 }
16103 else if (end[offset] != '\0' && end[offset] != ' ')
16104 return NULL;
16105 }
16106 else
16107 *str = end;
16108
16109 /* Look for unaffixed or special-case affixed mnemonic. */
16110 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16111 end - base);
16112 if (opcode)
16113 {
16114 /* step U */
16115 if (opcode->tag < OT_odd_infix_0)
16116 {
16117 inst.cond = COND_ALWAYS;
16118 return opcode;
16119 }
16120
16121 if (warn_on_deprecated && unified_syntax)
16122 as_warn (_("conditional infixes are deprecated in unified syntax"));
16123 affix = base + (opcode->tag - OT_odd_infix_0);
16124 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16125 gas_assert (cond);
16126
16127 inst.cond = cond->value;
16128 return opcode;
16129 }
16130
16131 /* Cannot have a conditional suffix on a mnemonic of less than two
16132 characters. */
16133 if (end - base < 3)
16134 return NULL;
16135
16136 /* Look for suffixed mnemonic. */
16137 affix = end - 2;
16138 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16139 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16140 affix - base);
16141 if (opcode && cond)
16142 {
16143 /* step CE */
16144 switch (opcode->tag)
16145 {
16146 case OT_cinfix3_legacy:
16147 /* Ignore conditional suffixes matched on infix only mnemonics. */
16148 break;
16149
16150 case OT_cinfix3:
16151 case OT_cinfix3_deprecated:
16152 case OT_odd_infix_unc:
16153 if (!unified_syntax)
16154 return 0;
16155 /* else fall through */
16156
16157 case OT_csuffix:
16158 case OT_csuffixF:
16159 case OT_csuf_or_in3:
16160 inst.cond = cond->value;
16161 return opcode;
16162
16163 case OT_unconditional:
16164 case OT_unconditionalF:
16165 if (thumb_mode)
16166 inst.cond = cond->value;
16167 else
16168 {
16169 /* Delayed diagnostic. */
16170 inst.error = BAD_COND;
16171 inst.cond = COND_ALWAYS;
16172 }
16173 return opcode;
16174
16175 default:
16176 return NULL;
16177 }
16178 }
16179
16180 /* Cannot have a usual-position infix on a mnemonic of less than
16181 six characters (five would be a suffix). */
16182 if (end - base < 6)
16183 return NULL;
16184
16185 /* Look for infixed mnemonic in the usual position. */
16186 affix = base + 3;
16187 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16188 if (!cond)
16189 return NULL;
16190
16191 memcpy (save, affix, 2);
16192 memmove (affix, affix + 2, (end - affix) - 2);
16193 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16194 (end - base) - 2);
16195 memmove (affix + 2, affix, (end - affix) - 2);
16196 memcpy (affix, save, 2);
16197
16198 if (opcode
16199 && (opcode->tag == OT_cinfix3
16200 || opcode->tag == OT_cinfix3_deprecated
16201 || opcode->tag == OT_csuf_or_in3
16202 || opcode->tag == OT_cinfix3_legacy))
16203 {
16204 /* Step CM. */
16205 if (warn_on_deprecated && unified_syntax
16206 && (opcode->tag == OT_cinfix3
16207 || opcode->tag == OT_cinfix3_deprecated))
16208 as_warn (_("conditional infixes are deprecated in unified syntax"));
16209
16210 inst.cond = cond->value;
16211 return opcode;
16212 }
16213
16214 return NULL;
16215 }
16216
16217 /* This function generates an initial IT instruction, leaving its block
16218 virtually open for the new instructions. Eventually,
16219 the mask will be updated by now_it_add_mask () each time
16220 a new instruction needs to be included in the IT block.
16221 Finally, the block is closed with close_automatic_it_block ().
16222 The block closure can be requested either from md_assemble (),
16223 a tencode (), or due to a label hook. */
16224
16225 static void
16226 new_automatic_it_block (int cond)
16227 {
16228 now_it.state = AUTOMATIC_IT_BLOCK;
16229 now_it.mask = 0x18;
16230 now_it.cc = cond;
16231 now_it.block_length = 1;
16232 mapping_state (MAP_THUMB);
16233 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
16234 now_it.warn_deprecated = FALSE;
16235 now_it.insn_cond = TRUE;
16236 }
16237
16238 /* Close an automatic IT block.
16239 See comments in new_automatic_it_block (). */
16240
16241 static void
16242 close_automatic_it_block (void)
16243 {
16244 now_it.mask = 0x10;
16245 now_it.block_length = 0;
16246 }
16247
16248 /* Update the mask of the current automatically-generated IT
16249 instruction. See comments in new_automatic_it_block (). */
16250
16251 static void
16252 now_it_add_mask (int cond)
16253 {
16254 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
16255 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
16256 | ((bitvalue) << (nbit)))
16257 const int resulting_bit = (cond & 1);
16258
16259 now_it.mask &= 0xf;
16260 now_it.mask = SET_BIT_VALUE (now_it.mask,
16261 resulting_bit,
16262 (5 - now_it.block_length));
16263 now_it.mask = SET_BIT_VALUE (now_it.mask,
16264 1,
16265 ((5 - now_it.block_length) - 1) );
16266 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
16267
16268 #undef CLEAR_BIT
16269 #undef SET_BIT_VALUE
16270 }
16271
16272 /* The IT blocks handling machinery is accessed through the these functions:
16273 it_fsm_pre_encode () from md_assemble ()
16274 set_it_insn_type () optional, from the tencode functions
16275 set_it_insn_type_last () ditto
16276 in_it_block () ditto
16277 it_fsm_post_encode () from md_assemble ()
16278 force_automatic_it_block_close () from label habdling functions
16279
16280 Rationale:
16281 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
16282 initializing the IT insn type with a generic initial value depending
16283 on the inst.condition.
16284 2) During the tencode function, two things may happen:
16285 a) The tencode function overrides the IT insn type by
16286 calling either set_it_insn_type (type) or set_it_insn_type_last ().
16287 b) The tencode function queries the IT block state by
16288 calling in_it_block () (i.e. to determine narrow/not narrow mode).
16289
16290 Both set_it_insn_type and in_it_block run the internal FSM state
16291 handling function (handle_it_state), because: a) setting the IT insn
16292 type may incur in an invalid state (exiting the function),
16293 and b) querying the state requires the FSM to be updated.
16294 Specifically we want to avoid creating an IT block for conditional
16295 branches, so it_fsm_pre_encode is actually a guess and we can't
16296 determine whether an IT block is required until the tencode () routine
16297 has decided what type of instruction this actually it.
16298 Because of this, if set_it_insn_type and in_it_block have to be used,
16299 set_it_insn_type has to be called first.
16300
16301 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
16302 determines the insn IT type depending on the inst.cond code.
16303 When a tencode () routine encodes an instruction that can be
16304 either outside an IT block, or, in the case of being inside, has to be
16305 the last one, set_it_insn_type_last () will determine the proper
16306 IT instruction type based on the inst.cond code. Otherwise,
16307 set_it_insn_type can be called for overriding that logic or
16308 for covering other cases.
16309
16310 Calling handle_it_state () may not transition the IT block state to
16311 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
16312 still queried. Instead, if the FSM determines that the state should
16313 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
16314 after the tencode () function: that's what it_fsm_post_encode () does.
16315
16316 Since in_it_block () calls the state handling function to get an
16317 updated state, an error may occur (due to invalid insns combination).
16318 In that case, inst.error is set.
16319 Therefore, inst.error has to be checked after the execution of
16320 the tencode () routine.
16321
16322 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
16323 any pending state change (if any) that didn't take place in
16324 handle_it_state () as explained above. */
16325
16326 static void
16327 it_fsm_pre_encode (void)
16328 {
16329 if (inst.cond != COND_ALWAYS)
16330 inst.it_insn_type = INSIDE_IT_INSN;
16331 else
16332 inst.it_insn_type = OUTSIDE_IT_INSN;
16333
16334 now_it.state_handled = 0;
16335 }
16336
16337 /* IT state FSM handling function. */
16338
16339 static int
16340 handle_it_state (void)
16341 {
16342 now_it.state_handled = 1;
16343 now_it.insn_cond = FALSE;
16344
16345 switch (now_it.state)
16346 {
16347 case OUTSIDE_IT_BLOCK:
16348 switch (inst.it_insn_type)
16349 {
16350 case OUTSIDE_IT_INSN:
16351 break;
16352
16353 case INSIDE_IT_INSN:
16354 case INSIDE_IT_LAST_INSN:
16355 if (thumb_mode == 0)
16356 {
16357 if (unified_syntax
16358 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
16359 as_tsktsk (_("Warning: conditional outside an IT block"\
16360 " for Thumb."));
16361 }
16362 else
16363 {
16364 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
16365 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
16366 {
16367 /* Automatically generate the IT instruction. */
16368 new_automatic_it_block (inst.cond);
16369 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
16370 close_automatic_it_block ();
16371 }
16372 else
16373 {
16374 inst.error = BAD_OUT_IT;
16375 return FAIL;
16376 }
16377 }
16378 break;
16379
16380 case IF_INSIDE_IT_LAST_INSN:
16381 case NEUTRAL_IT_INSN:
16382 break;
16383
16384 case IT_INSN:
16385 now_it.state = MANUAL_IT_BLOCK;
16386 now_it.block_length = 0;
16387 break;
16388 }
16389 break;
16390
16391 case AUTOMATIC_IT_BLOCK:
16392 /* Three things may happen now:
16393 a) We should increment current it block size;
16394 b) We should close current it block (closing insn or 4 insns);
16395 c) We should close current it block and start a new one (due
16396 to incompatible conditions or
16397 4 insns-length block reached). */
16398
16399 switch (inst.it_insn_type)
16400 {
16401 case OUTSIDE_IT_INSN:
16402 /* The closure of the block shall happen immediatelly,
16403 so any in_it_block () call reports the block as closed. */
16404 force_automatic_it_block_close ();
16405 break;
16406
16407 case INSIDE_IT_INSN:
16408 case INSIDE_IT_LAST_INSN:
16409 case IF_INSIDE_IT_LAST_INSN:
16410 now_it.block_length++;
16411
16412 if (now_it.block_length > 4
16413 || !now_it_compatible (inst.cond))
16414 {
16415 force_automatic_it_block_close ();
16416 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
16417 new_automatic_it_block (inst.cond);
16418 }
16419 else
16420 {
16421 now_it.insn_cond = TRUE;
16422 now_it_add_mask (inst.cond);
16423 }
16424
16425 if (now_it.state == AUTOMATIC_IT_BLOCK
16426 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
16427 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
16428 close_automatic_it_block ();
16429 break;
16430
16431 case NEUTRAL_IT_INSN:
16432 now_it.block_length++;
16433 now_it.insn_cond = TRUE;
16434
16435 if (now_it.block_length > 4)
16436 force_automatic_it_block_close ();
16437 else
16438 now_it_add_mask (now_it.cc & 1);
16439 break;
16440
16441 case IT_INSN:
16442 close_automatic_it_block ();
16443 now_it.state = MANUAL_IT_BLOCK;
16444 break;
16445 }
16446 break;
16447
16448 case MANUAL_IT_BLOCK:
16449 {
16450 /* Check conditional suffixes. */
16451 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
16452 int is_last;
16453 now_it.mask <<= 1;
16454 now_it.mask &= 0x1f;
16455 is_last = (now_it.mask == 0x10);
16456 now_it.insn_cond = TRUE;
16457
16458 switch (inst.it_insn_type)
16459 {
16460 case OUTSIDE_IT_INSN:
16461 inst.error = BAD_NOT_IT;
16462 return FAIL;
16463
16464 case INSIDE_IT_INSN:
16465 if (cond != inst.cond)
16466 {
16467 inst.error = BAD_IT_COND;
16468 return FAIL;
16469 }
16470 break;
16471
16472 case INSIDE_IT_LAST_INSN:
16473 case IF_INSIDE_IT_LAST_INSN:
16474 if (cond != inst.cond)
16475 {
16476 inst.error = BAD_IT_COND;
16477 return FAIL;
16478 }
16479 if (!is_last)
16480 {
16481 inst.error = BAD_BRANCH;
16482 return FAIL;
16483 }
16484 break;
16485
16486 case NEUTRAL_IT_INSN:
16487 /* The BKPT instruction is unconditional even in an IT block. */
16488 break;
16489
16490 case IT_INSN:
16491 inst.error = BAD_IT_IT;
16492 return FAIL;
16493 }
16494 }
16495 break;
16496 }
16497
16498 return SUCCESS;
16499 }
16500
16501 struct depr_insn_mask
16502 {
16503 unsigned long pattern;
16504 unsigned long mask;
16505 const char* description;
16506 };
16507
16508 /* List of 16-bit instruction patterns deprecated in an IT block in
16509 ARMv8. */
16510 static const struct depr_insn_mask depr_it_insns[] = {
16511 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
16512 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
16513 { 0xa000, 0xb800, N_("ADR") },
16514 { 0x4800, 0xf800, N_("Literal loads") },
16515 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
16516 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
16517 { 0, 0, NULL }
16518 };
16519
16520 static void
16521 it_fsm_post_encode (void)
16522 {
16523 int is_last;
16524
16525 if (!now_it.state_handled)
16526 handle_it_state ();
16527
16528 if (now_it.insn_cond
16529 && !now_it.warn_deprecated
16530 && warn_on_deprecated
16531 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
16532 {
16533 if (inst.instruction >= 0x10000)
16534 {
16535 as_warn (_("it blocks containing wide Thumb instructions are "
16536 "deprecated in ARMv8"));
16537 now_it.warn_deprecated = TRUE;
16538 }
16539 else
16540 {
16541 const struct depr_insn_mask *p = depr_it_insns;
16542
16543 while (p->mask != 0)
16544 {
16545 if ((inst.instruction & p->mask) == p->pattern)
16546 {
16547 as_warn (_("it blocks containing 16-bit Thumb intsructions "
16548 "of the following class are deprecated in ARMv8: "
16549 "%s"), p->description);
16550 now_it.warn_deprecated = TRUE;
16551 break;
16552 }
16553
16554 ++p;
16555 }
16556 }
16557
16558 if (now_it.block_length > 1)
16559 {
16560 as_warn (_("it blocks of more than one conditional instruction are "
16561 "deprecated in ARMv8"));
16562 now_it.warn_deprecated = TRUE;
16563 }
16564 }
16565
16566 is_last = (now_it.mask == 0x10);
16567 if (is_last)
16568 {
16569 now_it.state = OUTSIDE_IT_BLOCK;
16570 now_it.mask = 0;
16571 }
16572 }
16573
16574 static void
16575 force_automatic_it_block_close (void)
16576 {
16577 if (now_it.state == AUTOMATIC_IT_BLOCK)
16578 {
16579 close_automatic_it_block ();
16580 now_it.state = OUTSIDE_IT_BLOCK;
16581 now_it.mask = 0;
16582 }
16583 }
16584
16585 static int
16586 in_it_block (void)
16587 {
16588 if (!now_it.state_handled)
16589 handle_it_state ();
16590
16591 return now_it.state != OUTSIDE_IT_BLOCK;
16592 }
16593
16594 void
16595 md_assemble (char *str)
16596 {
16597 char *p = str;
16598 const struct asm_opcode * opcode;
16599
16600 /* Align the previous label if needed. */
16601 if (last_label_seen != NULL)
16602 {
16603 symbol_set_frag (last_label_seen, frag_now);
16604 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
16605 S_SET_SEGMENT (last_label_seen, now_seg);
16606 }
16607
16608 memset (&inst, '\0', sizeof (inst));
16609 inst.reloc.type = BFD_RELOC_UNUSED;
16610
16611 opcode = opcode_lookup (&p);
16612 if (!opcode)
16613 {
16614 /* It wasn't an instruction, but it might be a register alias of
16615 the form alias .req reg, or a Neon .dn/.qn directive. */
16616 if (! create_register_alias (str, p)
16617 && ! create_neon_reg_alias (str, p))
16618 as_bad (_("bad instruction `%s'"), str);
16619
16620 return;
16621 }
16622
16623 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
16624 as_warn (_("s suffix on comparison instruction is deprecated"));
16625
16626 /* The value which unconditional instructions should have in place of the
16627 condition field. */
16628 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
16629
16630 if (thumb_mode)
16631 {
16632 arm_feature_set variant;
16633
16634 variant = cpu_variant;
16635 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
16636 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
16637 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
16638 /* Check that this instruction is supported for this CPU. */
16639 if (!opcode->tvariant
16640 || (thumb_mode == 1
16641 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
16642 {
16643 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
16644 return;
16645 }
16646 if (inst.cond != COND_ALWAYS && !unified_syntax
16647 && opcode->tencode != do_t_branch)
16648 {
16649 as_bad (_("Thumb does not support conditional execution"));
16650 return;
16651 }
16652
16653 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
16654 {
16655 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
16656 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16657 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16658 {
16659 /* Two things are addressed here.
16660 1) Implicit require narrow instructions on Thumb-1.
16661 This avoids relaxation accidentally introducing Thumb-2
16662 instructions.
16663 2) Reject wide instructions in non Thumb-2 cores. */
16664 if (inst.size_req == 0)
16665 inst.size_req = 2;
16666 else if (inst.size_req == 4)
16667 {
16668 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
16669 return;
16670 }
16671 }
16672 }
16673
16674 inst.instruction = opcode->tvalue;
16675
16676 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
16677 {
16678 /* Prepare the it_insn_type for those encodings that don't set
16679 it. */
16680 it_fsm_pre_encode ();
16681
16682 opcode->tencode ();
16683
16684 it_fsm_post_encode ();
16685 }
16686
16687 if (!(inst.error || inst.relax))
16688 {
16689 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
16690 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16691 if (inst.size_req && inst.size_req != inst.size)
16692 {
16693 as_bad (_("cannot honor width suffix -- `%s'"), str);
16694 return;
16695 }
16696 }
16697
16698 /* Something has gone badly wrong if we try to relax a fixed size
16699 instruction. */
16700 gas_assert (inst.size_req == 0 || !inst.relax);
16701
16702 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16703 *opcode->tvariant);
16704 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
16705 set those bits when Thumb-2 32-bit instructions are seen. ie.
16706 anything other than bl/blx and v6-M instructions.
16707 This is overly pessimistic for relaxable instructions. */
16708 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16709 || inst.relax)
16710 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16711 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
16712 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16713 arm_ext_v6t2);
16714
16715 check_neon_suffixes;
16716
16717 if (!inst.error)
16718 {
16719 mapping_state (MAP_THUMB);
16720 }
16721 }
16722 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
16723 {
16724 bfd_boolean is_bx;
16725
16726 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16727 is_bx = (opcode->aencode == do_bx);
16728
16729 /* Check that this instruction is supported for this CPU. */
16730 if (!(is_bx && fix_v4bx)
16731 && !(opcode->avariant &&
16732 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
16733 {
16734 as_bad (_("selected processor does not support ARM mode `%s'"), str);
16735 return;
16736 }
16737 if (inst.size_req)
16738 {
16739 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16740 return;
16741 }
16742
16743 inst.instruction = opcode->avalue;
16744 if (opcode->tag == OT_unconditionalF)
16745 inst.instruction |= 0xF << 28;
16746 else
16747 inst.instruction |= inst.cond << 28;
16748 inst.size = INSN_SIZE;
16749 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
16750 {
16751 it_fsm_pre_encode ();
16752 opcode->aencode ();
16753 it_fsm_post_encode ();
16754 }
16755 /* Arm mode bx is marked as both v4T and v5 because it's still required
16756 on a hypothetical non-thumb v5 core. */
16757 if (is_bx)
16758 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
16759 else
16760 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16761 *opcode->avariant);
16762
16763 check_neon_suffixes;
16764
16765 if (!inst.error)
16766 {
16767 mapping_state (MAP_ARM);
16768 }
16769 }
16770 else
16771 {
16772 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16773 "-- `%s'"), str);
16774 return;
16775 }
16776 output_inst (str);
16777 }
16778
16779 static void
16780 check_it_blocks_finished (void)
16781 {
16782 #ifdef OBJ_ELF
16783 asection *sect;
16784
16785 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16786 if (seg_info (sect)->tc_segment_info_data.current_it.state
16787 == MANUAL_IT_BLOCK)
16788 {
16789 as_warn (_("section '%s' finished with an open IT block."),
16790 sect->name);
16791 }
16792 #else
16793 if (now_it.state == MANUAL_IT_BLOCK)
16794 as_warn (_("file finished with an open IT block."));
16795 #endif
16796 }
16797
16798 /* Various frobbings of labels and their addresses. */
16799
16800 void
16801 arm_start_line_hook (void)
16802 {
16803 last_label_seen = NULL;
16804 }
16805
16806 void
16807 arm_frob_label (symbolS * sym)
16808 {
16809 last_label_seen = sym;
16810
16811 ARM_SET_THUMB (sym, thumb_mode);
16812
16813 #if defined OBJ_COFF || defined OBJ_ELF
16814 ARM_SET_INTERWORK (sym, support_interwork);
16815 #endif
16816
16817 force_automatic_it_block_close ();
16818
16819 /* Note - do not allow local symbols (.Lxxx) to be labelled
16820 as Thumb functions. This is because these labels, whilst
16821 they exist inside Thumb code, are not the entry points for
16822 possible ARM->Thumb calls. Also, these labels can be used
16823 as part of a computed goto or switch statement. eg gcc
16824 can generate code that looks like this:
16825
16826 ldr r2, [pc, .Laaa]
16827 lsl r3, r3, #2
16828 ldr r2, [r3, r2]
16829 mov pc, r2
16830
16831 .Lbbb: .word .Lxxx
16832 .Lccc: .word .Lyyy
16833 ..etc...
16834 .Laaa: .word Lbbb
16835
16836 The first instruction loads the address of the jump table.
16837 The second instruction converts a table index into a byte offset.
16838 The third instruction gets the jump address out of the table.
16839 The fourth instruction performs the jump.
16840
16841 If the address stored at .Laaa is that of a symbol which has the
16842 Thumb_Func bit set, then the linker will arrange for this address
16843 to have the bottom bit set, which in turn would mean that the
16844 address computation performed by the third instruction would end
16845 up with the bottom bit set. Since the ARM is capable of unaligned
16846 word loads, the instruction would then load the incorrect address
16847 out of the jump table, and chaos would ensue. */
16848 if (label_is_thumb_function_name
16849 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16850 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
16851 {
16852 /* When the address of a Thumb function is taken the bottom
16853 bit of that address should be set. This will allow
16854 interworking between Arm and Thumb functions to work
16855 correctly. */
16856
16857 THUMB_SET_FUNC (sym, 1);
16858
16859 label_is_thumb_function_name = FALSE;
16860 }
16861
16862 dwarf2_emit_label (sym);
16863 }
16864
16865 bfd_boolean
16866 arm_data_in_code (void)
16867 {
16868 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
16869 {
16870 *input_line_pointer = '/';
16871 input_line_pointer += 5;
16872 *input_line_pointer = 0;
16873 return TRUE;
16874 }
16875
16876 return FALSE;
16877 }
16878
16879 char *
16880 arm_canonicalize_symbol_name (char * name)
16881 {
16882 int len;
16883
16884 if (thumb_mode && (len = strlen (name)) > 5
16885 && streq (name + len - 5, "/data"))
16886 *(name + len - 5) = 0;
16887
16888 return name;
16889 }
16890 \f
16891 /* Table of all register names defined by default. The user can
16892 define additional names with .req. Note that all register names
16893 should appear in both upper and lowercase variants. Some registers
16894 also have mixed-case names. */
16895
16896 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
16897 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
16898 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
16899 #define REGSET(p,t) \
16900 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16901 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16902 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16903 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
16904 #define REGSETH(p,t) \
16905 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16906 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16907 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16908 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16909 #define REGSET2(p,t) \
16910 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16911 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16912 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16913 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
16914 #define SPLRBANK(base,bank,t) \
16915 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16916 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16917 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16918 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16919 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16920 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
16921
16922 static const struct reg_entry reg_names[] =
16923 {
16924 /* ARM integer registers. */
16925 REGSET(r, RN), REGSET(R, RN),
16926
16927 /* ATPCS synonyms. */
16928 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16929 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16930 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
16931
16932 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16933 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16934 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
16935
16936 /* Well-known aliases. */
16937 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16938 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16939
16940 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16941 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16942
16943 /* Coprocessor numbers. */
16944 REGSET(p, CP), REGSET(P, CP),
16945
16946 /* Coprocessor register numbers. The "cr" variants are for backward
16947 compatibility. */
16948 REGSET(c, CN), REGSET(C, CN),
16949 REGSET(cr, CN), REGSET(CR, CN),
16950
16951 /* ARM banked registers. */
16952 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
16953 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
16954 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
16955 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
16956 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
16957 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
16958 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
16959
16960 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
16961 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
16962 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
16963 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
16964 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
16965 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
16966 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
16967 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
16968
16969 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
16970 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
16971 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
16972 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
16973 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
16974 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
16975 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
16976 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
16977 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
16978
16979 /* FPA registers. */
16980 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16981 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16982
16983 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16984 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16985
16986 /* VFP SP registers. */
16987 REGSET(s,VFS), REGSET(S,VFS),
16988 REGSETH(s,VFS), REGSETH(S,VFS),
16989
16990 /* VFP DP Registers. */
16991 REGSET(d,VFD), REGSET(D,VFD),
16992 /* Extra Neon DP registers. */
16993 REGSETH(d,VFD), REGSETH(D,VFD),
16994
16995 /* Neon QP registers. */
16996 REGSET2(q,NQ), REGSET2(Q,NQ),
16997
16998 /* VFP control registers. */
16999 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
17000 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
17001 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
17002 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
17003 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
17004 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
17005
17006 /* Maverick DSP coprocessor registers. */
17007 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
17008 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
17009
17010 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
17011 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
17012 REGDEF(dspsc,0,DSPSC),
17013
17014 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
17015 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
17016 REGDEF(DSPSC,0,DSPSC),
17017
17018 /* iWMMXt data registers - p0, c0-15. */
17019 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
17020
17021 /* iWMMXt control registers - p1, c0-3. */
17022 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
17023 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
17024 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
17025 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
17026
17027 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
17028 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
17029 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
17030 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
17031 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
17032
17033 /* XScale accumulator registers. */
17034 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
17035 };
17036 #undef REGDEF
17037 #undef REGNUM
17038 #undef REGSET
17039
17040 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
17041 within psr_required_here. */
17042 static const struct asm_psr psrs[] =
17043 {
17044 /* Backward compatibility notation. Note that "all" is no longer
17045 truly all possible PSR bits. */
17046 {"all", PSR_c | PSR_f},
17047 {"flg", PSR_f},
17048 {"ctl", PSR_c},
17049
17050 /* Individual flags. */
17051 {"f", PSR_f},
17052 {"c", PSR_c},
17053 {"x", PSR_x},
17054 {"s", PSR_s},
17055
17056 /* Combinations of flags. */
17057 {"fs", PSR_f | PSR_s},
17058 {"fx", PSR_f | PSR_x},
17059 {"fc", PSR_f | PSR_c},
17060 {"sf", PSR_s | PSR_f},
17061 {"sx", PSR_s | PSR_x},
17062 {"sc", PSR_s | PSR_c},
17063 {"xf", PSR_x | PSR_f},
17064 {"xs", PSR_x | PSR_s},
17065 {"xc", PSR_x | PSR_c},
17066 {"cf", PSR_c | PSR_f},
17067 {"cs", PSR_c | PSR_s},
17068 {"cx", PSR_c | PSR_x},
17069 {"fsx", PSR_f | PSR_s | PSR_x},
17070 {"fsc", PSR_f | PSR_s | PSR_c},
17071 {"fxs", PSR_f | PSR_x | PSR_s},
17072 {"fxc", PSR_f | PSR_x | PSR_c},
17073 {"fcs", PSR_f | PSR_c | PSR_s},
17074 {"fcx", PSR_f | PSR_c | PSR_x},
17075 {"sfx", PSR_s | PSR_f | PSR_x},
17076 {"sfc", PSR_s | PSR_f | PSR_c},
17077 {"sxf", PSR_s | PSR_x | PSR_f},
17078 {"sxc", PSR_s | PSR_x | PSR_c},
17079 {"scf", PSR_s | PSR_c | PSR_f},
17080 {"scx", PSR_s | PSR_c | PSR_x},
17081 {"xfs", PSR_x | PSR_f | PSR_s},
17082 {"xfc", PSR_x | PSR_f | PSR_c},
17083 {"xsf", PSR_x | PSR_s | PSR_f},
17084 {"xsc", PSR_x | PSR_s | PSR_c},
17085 {"xcf", PSR_x | PSR_c | PSR_f},
17086 {"xcs", PSR_x | PSR_c | PSR_s},
17087 {"cfs", PSR_c | PSR_f | PSR_s},
17088 {"cfx", PSR_c | PSR_f | PSR_x},
17089 {"csf", PSR_c | PSR_s | PSR_f},
17090 {"csx", PSR_c | PSR_s | PSR_x},
17091 {"cxf", PSR_c | PSR_x | PSR_f},
17092 {"cxs", PSR_c | PSR_x | PSR_s},
17093 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
17094 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
17095 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
17096 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
17097 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
17098 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
17099 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
17100 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
17101 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
17102 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
17103 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
17104 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
17105 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
17106 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
17107 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
17108 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
17109 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
17110 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
17111 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
17112 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
17113 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
17114 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
17115 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
17116 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
17117 };
17118
17119 /* Table of V7M psr names. */
17120 static const struct asm_psr v7m_psrs[] =
17121 {
17122 {"apsr", 0 }, {"APSR", 0 },
17123 {"iapsr", 1 }, {"IAPSR", 1 },
17124 {"eapsr", 2 }, {"EAPSR", 2 },
17125 {"psr", 3 }, {"PSR", 3 },
17126 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
17127 {"ipsr", 5 }, {"IPSR", 5 },
17128 {"epsr", 6 }, {"EPSR", 6 },
17129 {"iepsr", 7 }, {"IEPSR", 7 },
17130 {"msp", 8 }, {"MSP", 8 },
17131 {"psp", 9 }, {"PSP", 9 },
17132 {"primask", 16}, {"PRIMASK", 16},
17133 {"basepri", 17}, {"BASEPRI", 17},
17134 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
17135 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
17136 {"faultmask", 19}, {"FAULTMASK", 19},
17137 {"control", 20}, {"CONTROL", 20}
17138 };
17139
17140 /* Table of all shift-in-operand names. */
17141 static const struct asm_shift_name shift_names [] =
17142 {
17143 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
17144 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
17145 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
17146 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
17147 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
17148 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
17149 };
17150
17151 /* Table of all explicit relocation names. */
17152 #ifdef OBJ_ELF
17153 static struct reloc_entry reloc_names[] =
17154 {
17155 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
17156 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
17157 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
17158 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
17159 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
17160 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
17161 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
17162 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
17163 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
17164 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
17165 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
17166 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
17167 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
17168 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
17169 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
17170 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
17171 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
17172 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
17173 };
17174 #endif
17175
17176 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
17177 static const struct asm_cond conds[] =
17178 {
17179 {"eq", 0x0},
17180 {"ne", 0x1},
17181 {"cs", 0x2}, {"hs", 0x2},
17182 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
17183 {"mi", 0x4},
17184 {"pl", 0x5},
17185 {"vs", 0x6},
17186 {"vc", 0x7},
17187 {"hi", 0x8},
17188 {"ls", 0x9},
17189 {"ge", 0xa},
17190 {"lt", 0xb},
17191 {"gt", 0xc},
17192 {"le", 0xd},
17193 {"al", 0xe}
17194 };
17195
17196 #define UL_BARRIER(L,U,CODE,FEAT) \
17197 { L, CODE, ARM_FEATURE (FEAT, 0) }, \
17198 { U, CODE, ARM_FEATURE (FEAT, 0) }
17199
17200 static struct asm_barrier_opt barrier_opt_names[] =
17201 {
17202 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
17203 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
17204 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
17205 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
17206 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
17207 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
17208 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
17209 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
17210 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
17211 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
17212 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
17213 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
17214 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
17215 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
17216 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
17217 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
17218 };
17219
17220 #undef UL_BARRIER
17221
17222 /* Table of ARM-format instructions. */
17223
17224 /* Macros for gluing together operand strings. N.B. In all cases
17225 other than OPS0, the trailing OP_stop comes from default
17226 zero-initialization of the unspecified elements of the array. */
17227 #define OPS0() { OP_stop, }
17228 #define OPS1(a) { OP_##a, }
17229 #define OPS2(a,b) { OP_##a,OP_##b, }
17230 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
17231 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
17232 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
17233 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
17234
17235 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
17236 This is useful when mixing operands for ARM and THUMB, i.e. using the
17237 MIX_ARM_THUMB_OPERANDS macro.
17238 In order to use these macros, prefix the number of operands with _
17239 e.g. _3. */
17240 #define OPS_1(a) { a, }
17241 #define OPS_2(a,b) { a,b, }
17242 #define OPS_3(a,b,c) { a,b,c, }
17243 #define OPS_4(a,b,c,d) { a,b,c,d, }
17244 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
17245 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
17246
17247 /* These macros abstract out the exact format of the mnemonic table and
17248 save some repeated characters. */
17249
17250 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
17251 #define TxCE(mnem, op, top, nops, ops, ae, te) \
17252 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
17253 THUMB_VARIANT, do_##ae, do_##te }
17254
17255 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
17256 a T_MNEM_xyz enumerator. */
17257 #define TCE(mnem, aop, top, nops, ops, ae, te) \
17258 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
17259 #define tCE(mnem, aop, top, nops, ops, ae, te) \
17260 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17261
17262 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
17263 infix after the third character. */
17264 #define TxC3(mnem, op, top, nops, ops, ae, te) \
17265 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
17266 THUMB_VARIANT, do_##ae, do_##te }
17267 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
17268 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
17269 THUMB_VARIANT, do_##ae, do_##te }
17270 #define TC3(mnem, aop, top, nops, ops, ae, te) \
17271 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
17272 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
17273 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
17274 #define tC3(mnem, aop, top, nops, ops, ae, te) \
17275 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17276 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
17277 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17278
17279 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
17280 appear in the condition table. */
17281 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
17282 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
17283 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
17284
17285 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
17286 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
17287 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
17288 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
17289 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
17290 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
17291 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
17292 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
17293 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
17294 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
17295 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
17296 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
17297 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
17298 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
17299 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
17300 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
17301 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
17302 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
17303 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
17304 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
17305
17306 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
17307 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
17308 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
17309 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
17310
17311 /* Mnemonic that cannot be conditionalized. The ARM condition-code
17312 field is still 0xE. Many of the Thumb variants can be executed
17313 conditionally, so this is checked separately. */
17314 #define TUE(mnem, op, top, nops, ops, ae, te) \
17315 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
17316 THUMB_VARIANT, do_##ae, do_##te }
17317
17318 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
17319 condition code field. */
17320 #define TUF(mnem, op, top, nops, ops, ae, te) \
17321 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
17322 THUMB_VARIANT, do_##ae, do_##te }
17323
17324 /* ARM-only variants of all the above. */
17325 #define CE(mnem, op, nops, ops, ae) \
17326 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17327
17328 #define C3(mnem, op, nops, ops, ae) \
17329 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17330
17331 /* Legacy mnemonics that always have conditional infix after the third
17332 character. */
17333 #define CL(mnem, op, nops, ops, ae) \
17334 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17335 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17336
17337 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
17338 #define cCE(mnem, op, nops, ops, ae) \
17339 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17340
17341 /* Legacy coprocessor instructions where conditional infix and conditional
17342 suffix are ambiguous. For consistency this includes all FPA instructions,
17343 not just the potentially ambiguous ones. */
17344 #define cCL(mnem, op, nops, ops, ae) \
17345 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17346 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17347
17348 /* Coprocessor, takes either a suffix or a position-3 infix
17349 (for an FPA corner case). */
17350 #define C3E(mnem, op, nops, ops, ae) \
17351 { mnem, OPS##nops ops, OT_csuf_or_in3, \
17352 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17353
17354 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
17355 { m1 #m2 m3, OPS##nops ops, \
17356 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
17357 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17358
17359 #define CM(m1, m2, op, nops, ops, ae) \
17360 xCM_ (m1, , m2, op, nops, ops, ae), \
17361 xCM_ (m1, eq, m2, op, nops, ops, ae), \
17362 xCM_ (m1, ne, m2, op, nops, ops, ae), \
17363 xCM_ (m1, cs, m2, op, nops, ops, ae), \
17364 xCM_ (m1, hs, m2, op, nops, ops, ae), \
17365 xCM_ (m1, cc, m2, op, nops, ops, ae), \
17366 xCM_ (m1, ul, m2, op, nops, ops, ae), \
17367 xCM_ (m1, lo, m2, op, nops, ops, ae), \
17368 xCM_ (m1, mi, m2, op, nops, ops, ae), \
17369 xCM_ (m1, pl, m2, op, nops, ops, ae), \
17370 xCM_ (m1, vs, m2, op, nops, ops, ae), \
17371 xCM_ (m1, vc, m2, op, nops, ops, ae), \
17372 xCM_ (m1, hi, m2, op, nops, ops, ae), \
17373 xCM_ (m1, ls, m2, op, nops, ops, ae), \
17374 xCM_ (m1, ge, m2, op, nops, ops, ae), \
17375 xCM_ (m1, lt, m2, op, nops, ops, ae), \
17376 xCM_ (m1, gt, m2, op, nops, ops, ae), \
17377 xCM_ (m1, le, m2, op, nops, ops, ae), \
17378 xCM_ (m1, al, m2, op, nops, ops, ae)
17379
17380 #define UE(mnem, op, nops, ops, ae) \
17381 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17382
17383 #define UF(mnem, op, nops, ops, ae) \
17384 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17385
17386 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
17387 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
17388 use the same encoding function for each. */
17389 #define NUF(mnem, op, nops, ops, enc) \
17390 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
17391 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17392
17393 /* Neon data processing, version which indirects through neon_enc_tab for
17394 the various overloaded versions of opcodes. */
17395 #define nUF(mnem, op, nops, ops, enc) \
17396 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
17397 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17398
17399 /* Neon insn with conditional suffix for the ARM version, non-overloaded
17400 version. */
17401 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
17402 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
17403 THUMB_VARIANT, do_##enc, do_##enc }
17404
17405 #define NCE(mnem, op, nops, ops, enc) \
17406 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17407
17408 #define NCEF(mnem, op, nops, ops, enc) \
17409 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17410
17411 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
17412 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
17413 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
17414 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17415
17416 #define nCE(mnem, op, nops, ops, enc) \
17417 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17418
17419 #define nCEF(mnem, op, nops, ops, enc) \
17420 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17421
17422 #define do_0 0
17423
17424 static const struct asm_opcode insns[] =
17425 {
17426 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
17427 #define THUMB_VARIANT &arm_ext_v4t
17428 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
17429 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
17430 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
17431 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
17432 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
17433 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
17434 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
17435 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
17436 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
17437 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
17438 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
17439 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
17440 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
17441 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
17442 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
17443 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
17444
17445 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
17446 for setting PSR flag bits. They are obsolete in V6 and do not
17447 have Thumb equivalents. */
17448 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17449 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17450 CL("tstp", 110f000, 2, (RR, SH), cmp),
17451 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17452 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17453 CL("cmpp", 150f000, 2, (RR, SH), cmp),
17454 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17455 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17456 CL("cmnp", 170f000, 2, (RR, SH), cmp),
17457
17458 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
17459 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
17460 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
17461 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
17462
17463 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
17464 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17465 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
17466 OP_RRnpc),
17467 OP_ADDRGLDR),ldst, t_ldst),
17468 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17469
17470 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17471 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17472 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17473 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17474 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17475 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17476
17477 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
17478 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
17479 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
17480 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
17481
17482 /* Pseudo ops. */
17483 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
17484 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
17485 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
17486
17487 /* Thumb-compatibility pseudo ops. */
17488 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
17489 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
17490 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
17491 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
17492 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
17493 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
17494 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
17495 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
17496 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
17497 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
17498 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
17499 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
17500
17501 /* These may simplify to neg. */
17502 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
17503 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
17504
17505 #undef THUMB_VARIANT
17506 #define THUMB_VARIANT & arm_ext_v6
17507
17508 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
17509
17510 /* V1 instructions with no Thumb analogue prior to V6T2. */
17511 #undef THUMB_VARIANT
17512 #define THUMB_VARIANT & arm_ext_v6t2
17513
17514 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17515 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17516 CL("teqp", 130f000, 2, (RR, SH), cmp),
17517
17518 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17519 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17520 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
17521 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17522
17523 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17524 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17525
17526 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17527 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17528
17529 /* V1 instructions with no Thumb analogue at all. */
17530 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
17531 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
17532
17533 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
17534 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
17535 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
17536 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
17537 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
17538 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
17539 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
17540 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
17541
17542 #undef ARM_VARIANT
17543 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17544 #undef THUMB_VARIANT
17545 #define THUMB_VARIANT & arm_ext_v4t
17546
17547 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17548 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17549
17550 #undef THUMB_VARIANT
17551 #define THUMB_VARIANT & arm_ext_v6t2
17552
17553 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17554 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
17555
17556 /* Generic coprocessor instructions. */
17557 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17558 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17559 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17560 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17561 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17562 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17563 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
17564
17565 #undef ARM_VARIANT
17566 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17567
17568 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17569 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17570
17571 #undef ARM_VARIANT
17572 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17573 #undef THUMB_VARIANT
17574 #define THUMB_VARIANT & arm_ext_msr
17575
17576 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
17577 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
17578
17579 #undef ARM_VARIANT
17580 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
17581 #undef THUMB_VARIANT
17582 #define THUMB_VARIANT & arm_ext_v6t2
17583
17584 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17585 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17586 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17587 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17588 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17589 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17590 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17591 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17592
17593 #undef ARM_VARIANT
17594 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
17595 #undef THUMB_VARIANT
17596 #define THUMB_VARIANT & arm_ext_v4t
17597
17598 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17599 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17600 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17601 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17602 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17603 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17604
17605 #undef ARM_VARIANT
17606 #define ARM_VARIANT & arm_ext_v4t_5
17607
17608 /* ARM Architecture 4T. */
17609 /* Note: bx (and blx) are required on V5, even if the processor does
17610 not support Thumb. */
17611 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
17612
17613 #undef ARM_VARIANT
17614 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
17615 #undef THUMB_VARIANT
17616 #define THUMB_VARIANT & arm_ext_v5t
17617
17618 /* Note: blx has 2 variants; the .value coded here is for
17619 BLX(2). Only this variant has conditional execution. */
17620 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
17621 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
17622
17623 #undef THUMB_VARIANT
17624 #define THUMB_VARIANT & arm_ext_v6t2
17625
17626 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
17627 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17628 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17629 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17630 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17631 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17632 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17633 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17634
17635 #undef ARM_VARIANT
17636 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
17637 #undef THUMB_VARIANT
17638 #define THUMB_VARIANT &arm_ext_v5exp
17639
17640 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17641 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17642 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17643 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17644
17645 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17646 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17647
17648 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17649 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17650 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17651 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17652
17653 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17654 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17655 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17656 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17657
17658 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17659 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17660
17661 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17662 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17663 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17664 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17665
17666 #undef ARM_VARIANT
17667 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
17668 #undef THUMB_VARIANT
17669 #define THUMB_VARIANT &arm_ext_v6t2
17670
17671 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
17672 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17673 ldrd, t_ldstd),
17674 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17675 ADDRGLDRS), ldrd, t_ldstd),
17676
17677 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17678 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17679
17680 #undef ARM_VARIANT
17681 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17682
17683 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
17684
17685 #undef ARM_VARIANT
17686 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17687 #undef THUMB_VARIANT
17688 #define THUMB_VARIANT & arm_ext_v6
17689
17690 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17691 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17692 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17693 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17694 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17695 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17696 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17697 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17698 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17699 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
17700
17701 #undef THUMB_VARIANT
17702 #define THUMB_VARIANT & arm_ext_v6t2
17703
17704 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17705 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17706 strex, t_strex),
17707 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17708 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17709
17710 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17711 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
17712
17713 /* ARM V6 not included in V7M. */
17714 #undef THUMB_VARIANT
17715 #define THUMB_VARIANT & arm_ext_v6_notm
17716 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17717 UF(rfeib, 9900a00, 1, (RRw), rfe),
17718 UF(rfeda, 8100a00, 1, (RRw), rfe),
17719 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17720 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17721 UF(rfefa, 9900a00, 1, (RRw), rfe),
17722 UF(rfeea, 8100a00, 1, (RRw), rfe),
17723 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17724 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17725 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17726 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17727 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
17728
17729 /* ARM V6 not included in V7M (eg. integer SIMD). */
17730 #undef THUMB_VARIANT
17731 #define THUMB_VARIANT & arm_ext_v6_dsp
17732 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17733 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17734 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17735 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17736 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17737 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17738 /* Old name for QASX. */
17739 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17740 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17741 /* Old name for QSAX. */
17742 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17743 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17744 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17745 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17746 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17747 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17748 /* Old name for SASX. */
17749 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17750 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17751 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17752 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17753 /* Old name for SHASX. */
17754 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17755 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17756 /* Old name for SHSAX. */
17757 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17758 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17759 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17760 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17761 /* Old name for SSAX. */
17762 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17763 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17764 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17765 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17766 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17767 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17768 /* Old name for UASX. */
17769 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17770 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17771 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17772 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17773 /* Old name for UHASX. */
17774 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17775 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17776 /* Old name for UHSAX. */
17777 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17778 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17779 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17780 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17781 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17782 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17783 /* Old name for UQASX. */
17784 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17785 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17786 /* Old name for UQSAX. */
17787 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17788 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17789 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17790 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17791 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17792 /* Old name for USAX. */
17793 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17794 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17795 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17796 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17797 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17798 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17799 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17800 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17801 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17802 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17803 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17804 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17805 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17806 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17807 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17808 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17809 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17810 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17811 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17812 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17813 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17814 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17815 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17816 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17817 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17818 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17819 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17820 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17821 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17822 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
17823 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
17824 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17825 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17826 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
17827
17828 #undef ARM_VARIANT
17829 #define ARM_VARIANT & arm_ext_v6k
17830 #undef THUMB_VARIANT
17831 #define THUMB_VARIANT & arm_ext_v6k
17832
17833 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
17834 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
17835 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
17836 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
17837
17838 #undef THUMB_VARIANT
17839 #define THUMB_VARIANT & arm_ext_v6_notm
17840 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
17841 ldrexd, t_ldrexd),
17842 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
17843 RRnpcb), strexd, t_strexd),
17844
17845 #undef THUMB_VARIANT
17846 #define THUMB_VARIANT & arm_ext_v6t2
17847 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
17848 rd_rn, rd_rn),
17849 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
17850 rd_rn, rd_rn),
17851 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17852 strex, t_strexbh),
17853 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17854 strex, t_strexbh),
17855 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
17856
17857 #undef ARM_VARIANT
17858 #define ARM_VARIANT & arm_ext_sec
17859 #undef THUMB_VARIANT
17860 #define THUMB_VARIANT & arm_ext_sec
17861
17862 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
17863
17864 #undef ARM_VARIANT
17865 #define ARM_VARIANT & arm_ext_virt
17866 #undef THUMB_VARIANT
17867 #define THUMB_VARIANT & arm_ext_virt
17868
17869 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
17870 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
17871
17872 #undef ARM_VARIANT
17873 #define ARM_VARIANT & arm_ext_v6t2
17874 #undef THUMB_VARIANT
17875 #define THUMB_VARIANT & arm_ext_v6t2
17876
17877 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17878 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17879 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17880 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17881
17882 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17883 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17884 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17885 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
17886
17887 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17888 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17889 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17890 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17891
17892 /* Thumb-only instructions. */
17893 #undef ARM_VARIANT
17894 #define ARM_VARIANT NULL
17895 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17896 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
17897
17898 /* ARM does not really have an IT instruction, so always allow it.
17899 The opcode is copied from Thumb in order to allow warnings in
17900 -mimplicit-it=[never | arm] modes. */
17901 #undef ARM_VARIANT
17902 #define ARM_VARIANT & arm_ext_v1
17903
17904 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17905 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17906 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17907 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17908 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17909 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17910 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17911 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17912 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17913 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17914 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17915 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17916 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17917 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17918 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
17919 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
17920 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17921 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
17922
17923 /* Thumb2 only instructions. */
17924 #undef ARM_VARIANT
17925 #define ARM_VARIANT NULL
17926
17927 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17928 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17929 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
17930 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
17931 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
17932 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
17933
17934 /* Hardware division instructions. */
17935 #undef ARM_VARIANT
17936 #define ARM_VARIANT & arm_ext_adiv
17937 #undef THUMB_VARIANT
17938 #define THUMB_VARIANT & arm_ext_div
17939
17940 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
17941 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
17942
17943 /* ARM V6M/V7 instructions. */
17944 #undef ARM_VARIANT
17945 #define ARM_VARIANT & arm_ext_barrier
17946 #undef THUMB_VARIANT
17947 #define THUMB_VARIANT & arm_ext_barrier
17948
17949 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
17950 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
17951 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
17952
17953 /* ARM V7 instructions. */
17954 #undef ARM_VARIANT
17955 #define ARM_VARIANT & arm_ext_v7
17956 #undef THUMB_VARIANT
17957 #define THUMB_VARIANT & arm_ext_v7
17958
17959 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
17960 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
17961
17962 #undef ARM_VARIANT
17963 #define ARM_VARIANT & arm_ext_mp
17964 #undef THUMB_VARIANT
17965 #define THUMB_VARIANT & arm_ext_mp
17966
17967 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
17968
17969 #undef ARM_VARIANT
17970 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
17971
17972 cCE("wfs", e200110, 1, (RR), rd),
17973 cCE("rfs", e300110, 1, (RR), rd),
17974 cCE("wfc", e400110, 1, (RR), rd),
17975 cCE("rfc", e500110, 1, (RR), rd),
17976
17977 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
17978 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
17979 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
17980 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
17981
17982 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
17983 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
17984 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
17985 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
17986
17987 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
17988 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
17989 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
17990 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
17991 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
17992 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
17993 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
17994 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
17995 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
17996 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
17997 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
17998 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
17999
18000 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
18001 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
18002 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
18003 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
18004 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
18005 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
18006 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
18007 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
18008 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
18009 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
18010 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
18011 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
18012
18013 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
18014 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
18015 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
18016 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
18017 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
18018 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
18019 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
18020 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
18021 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
18022 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
18023 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
18024 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
18025
18026 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
18027 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
18028 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
18029 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
18030 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
18031 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
18032 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
18033 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
18034 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
18035 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
18036 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
18037 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
18038
18039 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
18040 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
18041 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
18042 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
18043 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
18044 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
18045 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
18046 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
18047 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
18048 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
18049 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
18050 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
18051
18052 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
18053 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
18054 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
18055 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
18056 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
18057 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
18058 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
18059 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
18060 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
18061 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
18062 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
18063 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
18064
18065 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
18066 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
18067 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
18068 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
18069 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
18070 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
18071 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
18072 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
18073 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
18074 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
18075 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
18076 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
18077
18078 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
18079 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
18080 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
18081 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
18082 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
18083 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
18084 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
18085 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
18086 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
18087 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
18088 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
18089 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
18090
18091 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
18092 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
18093 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
18094 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
18095 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
18096 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
18097 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
18098 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
18099 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
18100 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
18101 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
18102 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
18103
18104 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
18105 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
18106 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
18107 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
18108 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
18109 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
18110 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
18111 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
18112 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
18113 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
18114 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
18115 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
18116
18117 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
18118 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
18119 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
18120 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
18121 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
18122 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
18123 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
18124 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
18125 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
18126 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
18127 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
18128 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
18129
18130 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
18131 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
18132 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
18133 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
18134 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
18135 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
18136 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
18137 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
18138 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
18139 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
18140 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
18141 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
18142
18143 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
18144 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
18145 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
18146 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
18147 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
18148 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
18149 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
18150 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
18151 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
18152 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
18153 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
18154 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
18155
18156 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
18157 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
18158 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
18159 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
18160 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
18161 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
18162 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
18163 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
18164 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
18165 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
18166 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
18167 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
18168
18169 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
18170 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
18171 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
18172 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
18173 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
18174 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
18175 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
18176 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
18177 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
18178 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
18179 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
18180 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
18181
18182 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
18183 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
18184 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
18185 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
18186 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
18187 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
18188 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
18189 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
18190 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
18191 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
18192 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
18193 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
18194
18195 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
18196 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
18197 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
18198 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
18199 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
18200 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18201 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18202 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18203 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
18204 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
18205 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
18206 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
18207
18208 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
18209 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
18210 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
18211 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
18212 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
18213 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18214 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18215 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18216 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
18217 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
18218 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
18219 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
18220
18221 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
18222 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
18223 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
18224 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
18225 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
18226 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18227 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18228 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18229 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
18230 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
18231 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
18232 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
18233
18234 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
18235 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
18236 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
18237 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
18238 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
18239 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18240 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18241 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18242 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
18243 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
18244 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
18245 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
18246
18247 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
18248 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
18249 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
18250 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
18251 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
18252 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18253 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18254 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18255 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
18256 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
18257 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
18258 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
18259
18260 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
18261 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
18262 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
18263 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
18264 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
18265 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18266 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18267 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18268 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
18269 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
18270 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
18271 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
18272
18273 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
18274 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
18275 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
18276 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
18277 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
18278 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18279 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18280 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18281 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
18282 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
18283 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
18284 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
18285
18286 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
18287 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
18288 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
18289 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
18290 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
18291 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18292 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18293 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18294 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
18295 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
18296 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
18297 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
18298
18299 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
18300 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
18301 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
18302 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
18303 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
18304 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18305 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18306 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18307 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
18308 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
18309 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
18310 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
18311
18312 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
18313 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
18314 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
18315 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
18316 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
18317 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18318 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18319 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18320 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
18321 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
18322 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
18323 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
18324
18325 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18326 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18327 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18328 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18329 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18330 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18331 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18332 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18333 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18334 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18335 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18336 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18337
18338 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18339 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18340 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18341 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18342 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18343 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18344 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18345 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18346 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18347 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18348 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18349 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18350
18351 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18352 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18353 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18354 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18355 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18356 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18357 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18358 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18359 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18360 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18361 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18362 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18363
18364 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
18365 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
18366 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
18367 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
18368
18369 cCL("flts", e000110, 2, (RF, RR), rn_rd),
18370 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
18371 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
18372 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
18373 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
18374 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
18375 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
18376 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
18377 cCL("flte", e080110, 2, (RF, RR), rn_rd),
18378 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
18379 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
18380 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
18381
18382 /* The implementation of the FIX instruction is broken on some
18383 assemblers, in that it accepts a precision specifier as well as a
18384 rounding specifier, despite the fact that this is meaningless.
18385 To be more compatible, we accept it as well, though of course it
18386 does not set any bits. */
18387 cCE("fix", e100110, 2, (RR, RF), rd_rm),
18388 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
18389 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
18390 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
18391 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
18392 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
18393 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
18394 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
18395 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
18396 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
18397 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
18398 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
18399 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
18400
18401 /* Instructions that were new with the real FPA, call them V2. */
18402 #undef ARM_VARIANT
18403 #define ARM_VARIANT & fpu_fpa_ext_v2
18404
18405 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18406 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18407 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18408 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18409 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18410 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18411
18412 #undef ARM_VARIANT
18413 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
18414
18415 /* Moves and type conversions. */
18416 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
18417 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
18418 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
18419 cCE("fmstat", ef1fa10, 0, (), noargs),
18420 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
18421 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
18422 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
18423 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
18424 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
18425 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18426 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
18427 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18428 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
18429 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
18430
18431 /* Memory operations. */
18432 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18433 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18434 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18435 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18436 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18437 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18438 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18439 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18440 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18441 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18442 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18443 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18444 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18445 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18446 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18447 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18448 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18449 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18450
18451 /* Monadic operations. */
18452 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
18453 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
18454 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
18455
18456 /* Dyadic operations. */
18457 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18458 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18459 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18460 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18461 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18462 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18463 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18464 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18465 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18466
18467 /* Comparisons. */
18468 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
18469 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
18470 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
18471 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
18472
18473 /* Double precision load/store are still present on single precision
18474 implementations. */
18475 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18476 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18477 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18478 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18479 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18480 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18481 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18482 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18483 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18484 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18485
18486 #undef ARM_VARIANT
18487 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
18488
18489 /* Moves and type conversions. */
18490 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18491 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18492 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18493 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
18494 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
18495 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
18496 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
18497 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18498 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
18499 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18500 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18501 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18502 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18503
18504 /* Monadic operations. */
18505 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18506 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18507 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18508
18509 /* Dyadic operations. */
18510 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18511 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18512 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18513 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18514 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18515 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18516 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18517 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18518 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18519
18520 /* Comparisons. */
18521 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18522 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
18523 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18524 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
18525
18526 #undef ARM_VARIANT
18527 #define ARM_VARIANT & fpu_vfp_ext_v2
18528
18529 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
18530 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
18531 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
18532 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
18533
18534 /* Instructions which may belong to either the Neon or VFP instruction sets.
18535 Individual encoder functions perform additional architecture checks. */
18536 #undef ARM_VARIANT
18537 #define ARM_VARIANT & fpu_vfp_ext_v1xd
18538 #undef THUMB_VARIANT
18539 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
18540
18541 /* These mnemonics are unique to VFP. */
18542 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
18543 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
18544 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18545 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18546 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18547 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18548 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18549 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
18550 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
18551 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
18552
18553 /* Mnemonics shared by Neon and VFP. */
18554 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
18555 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18556 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18557
18558 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18559 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18560
18561 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18562 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18563
18564 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18565 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18566 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18567 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18568 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18569 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18570 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18571 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18572
18573 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
18574 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
18575 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
18576 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
18577
18578
18579 /* NOTE: All VMOV encoding is special-cased! */
18580 NCE(vmov, 0, 1, (VMOV), neon_mov),
18581 NCE(vmovq, 0, 1, (VMOV), neon_mov),
18582
18583 #undef THUMB_VARIANT
18584 #define THUMB_VARIANT & fpu_neon_ext_v1
18585 #undef ARM_VARIANT
18586 #define ARM_VARIANT & fpu_neon_ext_v1
18587
18588 /* Data processing with three registers of the same length. */
18589 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
18590 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
18591 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
18592 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18593 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18594 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18595 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18596 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18597 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18598 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
18599 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18600 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18601 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18602 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18603 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18604 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18605 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18606 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18607 /* If not immediate, fall back to neon_dyadic_i64_su.
18608 shl_imm should accept I8 I16 I32 I64,
18609 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
18610 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
18611 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
18612 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
18613 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
18614 /* Logic ops, types optional & ignored. */
18615 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18616 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18617 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18618 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18619 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18620 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18621 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18622 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18623 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
18624 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
18625 /* Bitfield ops, untyped. */
18626 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18627 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18628 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18629 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18630 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18631 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18632 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
18633 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18634 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18635 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18636 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18637 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18638 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18639 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
18640 back to neon_dyadic_if_su. */
18641 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18642 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18643 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18644 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18645 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18646 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18647 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18648 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18649 /* Comparison. Type I8 I16 I32 F32. */
18650 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
18651 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
18652 /* As above, D registers only. */
18653 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18654 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18655 /* Int and float variants, signedness unimportant. */
18656 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18657 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18658 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
18659 /* Add/sub take types I8 I16 I32 I64 F32. */
18660 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18661 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18662 /* vtst takes sizes 8, 16, 32. */
18663 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
18664 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18665 /* VMUL takes I8 I16 I32 F32 P8. */
18666 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
18667 /* VQD{R}MULH takes S16 S32. */
18668 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18669 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18670 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18671 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18672 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18673 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18674 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18675 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18676 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18677 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18678 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18679 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18680 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18681 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18682 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18683 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18684
18685 /* Two address, int/float. Types S8 S16 S32 F32. */
18686 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
18687 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18688
18689 /* Data processing with two registers and a shift amount. */
18690 /* Right shifts, and variants with rounding.
18691 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18692 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18693 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18694 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18695 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18696 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18697 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18698 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18699 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18700 /* Shift and insert. Sizes accepted 8 16 32 64. */
18701 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18702 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18703 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18704 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18705 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18706 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18707 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18708 /* Right shift immediate, saturating & narrowing, with rounding variants.
18709 Types accepted S16 S32 S64 U16 U32 U64. */
18710 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18711 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18712 /* As above, unsigned. Types accepted S16 S32 S64. */
18713 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18714 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18715 /* Right shift narrowing. Types accepted I16 I32 I64. */
18716 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18717 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18718 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
18719 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
18720 /* CVT with optional immediate for fixed-point variant. */
18721 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
18722
18723 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18724 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
18725
18726 /* Data processing, three registers of different lengths. */
18727 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18728 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18729 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18730 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18731 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18732 /* If not scalar, fall back to neon_dyadic_long.
18733 Vector types as above, scalar types S16 S32 U16 U32. */
18734 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18735 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18736 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18737 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18738 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18739 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18740 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18741 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18742 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18743 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18744 /* Saturating doubling multiplies. Types S16 S32. */
18745 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18746 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18747 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18748 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18749 S16 S32 U16 U32. */
18750 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
18751
18752 /* Extract. Size 8. */
18753 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
18754 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
18755
18756 /* Two registers, miscellaneous. */
18757 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18758 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
18759 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
18760 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
18761 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
18762 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
18763 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
18764 /* Vector replicate. Sizes 8 16 32. */
18765 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
18766 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
18767 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18768 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
18769 /* VMOVN. Types I16 I32 I64. */
18770 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
18771 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
18772 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
18773 /* VQMOVUN. Types S16 S32 S64. */
18774 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
18775 /* VZIP / VUZP. Sizes 8 16 32. */
18776 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
18777 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
18778 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
18779 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
18780 /* VQABS / VQNEG. Types S8 S16 S32. */
18781 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18782 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
18783 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18784 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
18785 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18786 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
18787 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
18788 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
18789 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
18790 /* Reciprocal estimates. Types U32 F32. */
18791 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
18792 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
18793 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
18794 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
18795 /* VCLS. Types S8 S16 S32. */
18796 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
18797 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
18798 /* VCLZ. Types I8 I16 I32. */
18799 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
18800 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
18801 /* VCNT. Size 8. */
18802 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
18803 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
18804 /* Two address, untyped. */
18805 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
18806 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
18807 /* VTRN. Sizes 8 16 32. */
18808 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
18809 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
18810
18811 /* Table lookup. Size 8. */
18812 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18813 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18814
18815 #undef THUMB_VARIANT
18816 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18817 #undef ARM_VARIANT
18818 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18819
18820 /* Neon element/structure load/store. */
18821 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18822 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18823 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18824 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18825 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18826 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18827 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18828 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18829
18830 #undef THUMB_VARIANT
18831 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
18832 #undef ARM_VARIANT
18833 #define ARM_VARIANT &fpu_vfp_ext_v3xd
18834 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
18835 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18836 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18837 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18838 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18839 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18840 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18841 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18842 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18843
18844 #undef THUMB_VARIANT
18845 #define THUMB_VARIANT & fpu_vfp_ext_v3
18846 #undef ARM_VARIANT
18847 #define ARM_VARIANT & fpu_vfp_ext_v3
18848
18849 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
18850 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18851 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18852 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18853 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18854 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18855 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18856 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18857 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18858
18859 #undef ARM_VARIANT
18860 #define ARM_VARIANT &fpu_vfp_ext_fma
18861 #undef THUMB_VARIANT
18862 #define THUMB_VARIANT &fpu_vfp_ext_fma
18863 /* Mnemonics shared by Neon and VFP. These are included in the
18864 VFP FMA variant; NEON and VFP FMA always includes the NEON
18865 FMA instructions. */
18866 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18867 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18868 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18869 the v form should always be used. */
18870 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18871 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18872 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18873 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18874 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18875 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18876
18877 #undef THUMB_VARIANT
18878 #undef ARM_VARIANT
18879 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
18880
18881 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18882 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18883 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18884 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18885 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18886 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18887 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
18888 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
18889
18890 #undef ARM_VARIANT
18891 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
18892
18893 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
18894 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
18895 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
18896 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
18897 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
18898 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
18899 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
18900 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
18901 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
18902 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18903 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18904 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18905 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18906 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18907 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18908 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18909 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18910 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18911 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
18912 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
18913 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18914 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18915 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18916 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18917 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18918 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18919 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
18920 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
18921 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
18922 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
18923 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
18924 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
18925 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
18926 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
18927 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
18928 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
18929 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
18930 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18931 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18932 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18933 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18934 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18935 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18936 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18937 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18938 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18939 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
18940 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18941 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18942 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18943 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18944 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18945 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18946 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18947 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18948 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18949 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18950 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18951 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18952 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18953 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18954 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18955 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18956 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18957 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18958 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18959 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18960 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18961 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18962 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18963 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18964 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18965 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18966 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18967 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18968 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18969 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18970 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18971 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18972 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18973 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18974 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18975 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18976 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18977 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18978 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18979 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18980 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18981 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
18982 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18983 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18984 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18985 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18986 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18987 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18988 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18989 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18990 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18991 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18992 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18993 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18994 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18995 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18996 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18997 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18998 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18999 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19000 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19001 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19002 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19003 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
19004 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19005 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19006 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19007 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19008 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19009 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19010 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19011 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19012 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19013 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19014 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19015 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19016 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19017 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19018 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19019 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19020 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19021 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19022 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19023 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19024 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
19025 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
19026 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19027 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19028 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19029 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19030 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19031 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19032 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19033 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19034 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19035 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
19036 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
19037 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
19038 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
19039 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
19040 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
19041 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19042 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19043 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19044 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
19045 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
19046 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
19047 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
19048 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
19049 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
19050 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19051 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19052 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19053 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19054 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
19055
19056 #undef ARM_VARIANT
19057 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
19058
19059 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
19060 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
19061 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
19062 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
19063 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
19064 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
19065 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19066 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19067 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19068 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19069 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19070 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19071 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19072 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19073 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19074 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19075 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19076 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19077 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19078 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19079 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
19080 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19081 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19082 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19083 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19084 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19085 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19086 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19087 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19088 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19089 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19090 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19091 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19092 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19093 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19094 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19095 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19096 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19097 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19098 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19099 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19100 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19101 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19102 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19103 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19104 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19105 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19106 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19107 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19108 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19109 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19110 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19111 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19112 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19113 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19114 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19115 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19116
19117 #undef ARM_VARIANT
19118 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
19119
19120 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19121 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19122 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19123 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19124 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19125 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19126 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19127 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19128 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
19129 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
19130 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
19131 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
19132 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
19133 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
19134 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
19135 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
19136 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
19137 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
19138 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
19139 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
19140 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
19141 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
19142 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
19143 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
19144 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
19145 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
19146 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
19147 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
19148 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
19149 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
19150 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
19151 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
19152 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
19153 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
19154 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
19155 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
19156 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
19157 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
19158 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
19159 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
19160 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
19161 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
19162 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
19163 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
19164 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
19165 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
19166 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
19167 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
19168 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
19169 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
19170 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
19171 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
19172 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
19173 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
19174 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
19175 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
19176 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
19177 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
19178 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
19179 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
19180 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
19181 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
19182 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
19183 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
19184 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19185 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19186 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19187 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19188 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19189 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19190 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19191 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19192 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19193 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19194 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
19195 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
19196 };
19197 #undef ARM_VARIANT
19198 #undef THUMB_VARIANT
19199 #undef TCE
19200 #undef TCM
19201 #undef TUE
19202 #undef TUF
19203 #undef TCC
19204 #undef cCE
19205 #undef cCL
19206 #undef C3E
19207 #undef CE
19208 #undef CM
19209 #undef UE
19210 #undef UF
19211 #undef UT
19212 #undef NUF
19213 #undef nUF
19214 #undef NCE
19215 #undef nCE
19216 #undef OPS0
19217 #undef OPS1
19218 #undef OPS2
19219 #undef OPS3
19220 #undef OPS4
19221 #undef OPS5
19222 #undef OPS6
19223 #undef do_0
19224 \f
19225 /* MD interface: bits in the object file. */
19226
19227 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
19228 for use in the a.out file, and stores them in the array pointed to by buf.
19229 This knows about the endian-ness of the target machine and does
19230 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
19231 2 (short) and 4 (long) Floating numbers are put out as a series of
19232 LITTLENUMS (shorts, here at least). */
19233
19234 void
19235 md_number_to_chars (char * buf, valueT val, int n)
19236 {
19237 if (target_big_endian)
19238 number_to_chars_bigendian (buf, val, n);
19239 else
19240 number_to_chars_littleendian (buf, val, n);
19241 }
19242
19243 static valueT
19244 md_chars_to_number (char * buf, int n)
19245 {
19246 valueT result = 0;
19247 unsigned char * where = (unsigned char *) buf;
19248
19249 if (target_big_endian)
19250 {
19251 while (n--)
19252 {
19253 result <<= 8;
19254 result |= (*where++ & 255);
19255 }
19256 }
19257 else
19258 {
19259 while (n--)
19260 {
19261 result <<= 8;
19262 result |= (where[n] & 255);
19263 }
19264 }
19265
19266 return result;
19267 }
19268
19269 /* MD interface: Sections. */
19270
19271 /* Calculate the maximum variable size (i.e., excluding fr_fix)
19272 that an rs_machine_dependent frag may reach. */
19273
19274 unsigned int
19275 arm_frag_max_var (fragS *fragp)
19276 {
19277 /* We only use rs_machine_dependent for variable-size Thumb instructions,
19278 which are either THUMB_SIZE (2) or INSN_SIZE (4).
19279
19280 Note that we generate relaxable instructions even for cases that don't
19281 really need it, like an immediate that's a trivial constant. So we're
19282 overestimating the instruction size for some of those cases. Rather
19283 than putting more intelligence here, it would probably be better to
19284 avoid generating a relaxation frag in the first place when it can be
19285 determined up front that a short instruction will suffice. */
19286
19287 gas_assert (fragp->fr_type == rs_machine_dependent);
19288 return INSN_SIZE;
19289 }
19290
19291 /* Estimate the size of a frag before relaxing. Assume everything fits in
19292 2 bytes. */
19293
19294 int
19295 md_estimate_size_before_relax (fragS * fragp,
19296 segT segtype ATTRIBUTE_UNUSED)
19297 {
19298 fragp->fr_var = 2;
19299 return 2;
19300 }
19301
19302 /* Convert a machine dependent frag. */
19303
19304 void
19305 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
19306 {
19307 unsigned long insn;
19308 unsigned long old_op;
19309 char *buf;
19310 expressionS exp;
19311 fixS *fixp;
19312 int reloc_type;
19313 int pc_rel;
19314 int opcode;
19315
19316 buf = fragp->fr_literal + fragp->fr_fix;
19317
19318 old_op = bfd_get_16(abfd, buf);
19319 if (fragp->fr_symbol)
19320 {
19321 exp.X_op = O_symbol;
19322 exp.X_add_symbol = fragp->fr_symbol;
19323 }
19324 else
19325 {
19326 exp.X_op = O_constant;
19327 }
19328 exp.X_add_number = fragp->fr_offset;
19329 opcode = fragp->fr_subtype;
19330 switch (opcode)
19331 {
19332 case T_MNEM_ldr_pc:
19333 case T_MNEM_ldr_pc2:
19334 case T_MNEM_ldr_sp:
19335 case T_MNEM_str_sp:
19336 case T_MNEM_ldr:
19337 case T_MNEM_ldrb:
19338 case T_MNEM_ldrh:
19339 case T_MNEM_str:
19340 case T_MNEM_strb:
19341 case T_MNEM_strh:
19342 if (fragp->fr_var == 4)
19343 {
19344 insn = THUMB_OP32 (opcode);
19345 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
19346 {
19347 insn |= (old_op & 0x700) << 4;
19348 }
19349 else
19350 {
19351 insn |= (old_op & 7) << 12;
19352 insn |= (old_op & 0x38) << 13;
19353 }
19354 insn |= 0x00000c00;
19355 put_thumb32_insn (buf, insn);
19356 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
19357 }
19358 else
19359 {
19360 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
19361 }
19362 pc_rel = (opcode == T_MNEM_ldr_pc2);
19363 break;
19364 case T_MNEM_adr:
19365 if (fragp->fr_var == 4)
19366 {
19367 insn = THUMB_OP32 (opcode);
19368 insn |= (old_op & 0xf0) << 4;
19369 put_thumb32_insn (buf, insn);
19370 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
19371 }
19372 else
19373 {
19374 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19375 exp.X_add_number -= 4;
19376 }
19377 pc_rel = 1;
19378 break;
19379 case T_MNEM_mov:
19380 case T_MNEM_movs:
19381 case T_MNEM_cmp:
19382 case T_MNEM_cmn:
19383 if (fragp->fr_var == 4)
19384 {
19385 int r0off = (opcode == T_MNEM_mov
19386 || opcode == T_MNEM_movs) ? 0 : 8;
19387 insn = THUMB_OP32 (opcode);
19388 insn = (insn & 0xe1ffffff) | 0x10000000;
19389 insn |= (old_op & 0x700) << r0off;
19390 put_thumb32_insn (buf, insn);
19391 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19392 }
19393 else
19394 {
19395 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
19396 }
19397 pc_rel = 0;
19398 break;
19399 case T_MNEM_b:
19400 if (fragp->fr_var == 4)
19401 {
19402 insn = THUMB_OP32(opcode);
19403 put_thumb32_insn (buf, insn);
19404 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
19405 }
19406 else
19407 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
19408 pc_rel = 1;
19409 break;
19410 case T_MNEM_bcond:
19411 if (fragp->fr_var == 4)
19412 {
19413 insn = THUMB_OP32(opcode);
19414 insn |= (old_op & 0xf00) << 14;
19415 put_thumb32_insn (buf, insn);
19416 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
19417 }
19418 else
19419 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
19420 pc_rel = 1;
19421 break;
19422 case T_MNEM_add_sp:
19423 case T_MNEM_add_pc:
19424 case T_MNEM_inc_sp:
19425 case T_MNEM_dec_sp:
19426 if (fragp->fr_var == 4)
19427 {
19428 /* ??? Choose between add and addw. */
19429 insn = THUMB_OP32 (opcode);
19430 insn |= (old_op & 0xf0) << 4;
19431 put_thumb32_insn (buf, insn);
19432 if (opcode == T_MNEM_add_pc)
19433 reloc_type = BFD_RELOC_ARM_T32_IMM12;
19434 else
19435 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19436 }
19437 else
19438 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19439 pc_rel = 0;
19440 break;
19441
19442 case T_MNEM_addi:
19443 case T_MNEM_addis:
19444 case T_MNEM_subi:
19445 case T_MNEM_subis:
19446 if (fragp->fr_var == 4)
19447 {
19448 insn = THUMB_OP32 (opcode);
19449 insn |= (old_op & 0xf0) << 4;
19450 insn |= (old_op & 0xf) << 16;
19451 put_thumb32_insn (buf, insn);
19452 if (insn & (1 << 20))
19453 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19454 else
19455 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19456 }
19457 else
19458 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19459 pc_rel = 0;
19460 break;
19461 default:
19462 abort ();
19463 }
19464 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
19465 (enum bfd_reloc_code_real) reloc_type);
19466 fixp->fx_file = fragp->fr_file;
19467 fixp->fx_line = fragp->fr_line;
19468 fragp->fr_fix += fragp->fr_var;
19469 }
19470
19471 /* Return the size of a relaxable immediate operand instruction.
19472 SHIFT and SIZE specify the form of the allowable immediate. */
19473 static int
19474 relax_immediate (fragS *fragp, int size, int shift)
19475 {
19476 offsetT offset;
19477 offsetT mask;
19478 offsetT low;
19479
19480 /* ??? Should be able to do better than this. */
19481 if (fragp->fr_symbol)
19482 return 4;
19483
19484 low = (1 << shift) - 1;
19485 mask = (1 << (shift + size)) - (1 << shift);
19486 offset = fragp->fr_offset;
19487 /* Force misaligned offsets to 32-bit variant. */
19488 if (offset & low)
19489 return 4;
19490 if (offset & ~mask)
19491 return 4;
19492 return 2;
19493 }
19494
19495 /* Get the address of a symbol during relaxation. */
19496 static addressT
19497 relaxed_symbol_addr (fragS *fragp, long stretch)
19498 {
19499 fragS *sym_frag;
19500 addressT addr;
19501 symbolS *sym;
19502
19503 sym = fragp->fr_symbol;
19504 sym_frag = symbol_get_frag (sym);
19505 know (S_GET_SEGMENT (sym) != absolute_section
19506 || sym_frag == &zero_address_frag);
19507 addr = S_GET_VALUE (sym) + fragp->fr_offset;
19508
19509 /* If frag has yet to be reached on this pass, assume it will
19510 move by STRETCH just as we did. If this is not so, it will
19511 be because some frag between grows, and that will force
19512 another pass. */
19513
19514 if (stretch != 0
19515 && sym_frag->relax_marker != fragp->relax_marker)
19516 {
19517 fragS *f;
19518
19519 /* Adjust stretch for any alignment frag. Note that if have
19520 been expanding the earlier code, the symbol may be
19521 defined in what appears to be an earlier frag. FIXME:
19522 This doesn't handle the fr_subtype field, which specifies
19523 a maximum number of bytes to skip when doing an
19524 alignment. */
19525 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
19526 {
19527 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
19528 {
19529 if (stretch < 0)
19530 stretch = - ((- stretch)
19531 & ~ ((1 << (int) f->fr_offset) - 1));
19532 else
19533 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
19534 if (stretch == 0)
19535 break;
19536 }
19537 }
19538 if (f != NULL)
19539 addr += stretch;
19540 }
19541
19542 return addr;
19543 }
19544
19545 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
19546 load. */
19547 static int
19548 relax_adr (fragS *fragp, asection *sec, long stretch)
19549 {
19550 addressT addr;
19551 offsetT val;
19552
19553 /* Assume worst case for symbols not known to be in the same section. */
19554 if (fragp->fr_symbol == NULL
19555 || !S_IS_DEFINED (fragp->fr_symbol)
19556 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19557 || S_IS_WEAK (fragp->fr_symbol))
19558 return 4;
19559
19560 val = relaxed_symbol_addr (fragp, stretch);
19561 addr = fragp->fr_address + fragp->fr_fix;
19562 addr = (addr + 4) & ~3;
19563 /* Force misaligned targets to 32-bit variant. */
19564 if (val & 3)
19565 return 4;
19566 val -= addr;
19567 if (val < 0 || val > 1020)
19568 return 4;
19569 return 2;
19570 }
19571
19572 /* Return the size of a relaxable add/sub immediate instruction. */
19573 static int
19574 relax_addsub (fragS *fragp, asection *sec)
19575 {
19576 char *buf;
19577 int op;
19578
19579 buf = fragp->fr_literal + fragp->fr_fix;
19580 op = bfd_get_16(sec->owner, buf);
19581 if ((op & 0xf) == ((op >> 4) & 0xf))
19582 return relax_immediate (fragp, 8, 0);
19583 else
19584 return relax_immediate (fragp, 3, 0);
19585 }
19586
19587
19588 /* Return the size of a relaxable branch instruction. BITS is the
19589 size of the offset field in the narrow instruction. */
19590
19591 static int
19592 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
19593 {
19594 addressT addr;
19595 offsetT val;
19596 offsetT limit;
19597
19598 /* Assume worst case for symbols not known to be in the same section. */
19599 if (!S_IS_DEFINED (fragp->fr_symbol)
19600 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19601 || S_IS_WEAK (fragp->fr_symbol))
19602 return 4;
19603
19604 #ifdef OBJ_ELF
19605 if (S_IS_DEFINED (fragp->fr_symbol)
19606 && ARM_IS_FUNC (fragp->fr_symbol))
19607 return 4;
19608
19609 /* PR 12532. Global symbols with default visibility might
19610 be preempted, so do not relax relocations to them. */
19611 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
19612 && (! S_IS_LOCAL (fragp->fr_symbol)))
19613 return 4;
19614 #endif
19615
19616 val = relaxed_symbol_addr (fragp, stretch);
19617 addr = fragp->fr_address + fragp->fr_fix + 4;
19618 val -= addr;
19619
19620 /* Offset is a signed value *2 */
19621 limit = 1 << bits;
19622 if (val >= limit || val < -limit)
19623 return 4;
19624 return 2;
19625 }
19626
19627
19628 /* Relax a machine dependent frag. This returns the amount by which
19629 the current size of the frag should change. */
19630
19631 int
19632 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
19633 {
19634 int oldsize;
19635 int newsize;
19636
19637 oldsize = fragp->fr_var;
19638 switch (fragp->fr_subtype)
19639 {
19640 case T_MNEM_ldr_pc2:
19641 newsize = relax_adr (fragp, sec, stretch);
19642 break;
19643 case T_MNEM_ldr_pc:
19644 case T_MNEM_ldr_sp:
19645 case T_MNEM_str_sp:
19646 newsize = relax_immediate (fragp, 8, 2);
19647 break;
19648 case T_MNEM_ldr:
19649 case T_MNEM_str:
19650 newsize = relax_immediate (fragp, 5, 2);
19651 break;
19652 case T_MNEM_ldrh:
19653 case T_MNEM_strh:
19654 newsize = relax_immediate (fragp, 5, 1);
19655 break;
19656 case T_MNEM_ldrb:
19657 case T_MNEM_strb:
19658 newsize = relax_immediate (fragp, 5, 0);
19659 break;
19660 case T_MNEM_adr:
19661 newsize = relax_adr (fragp, sec, stretch);
19662 break;
19663 case T_MNEM_mov:
19664 case T_MNEM_movs:
19665 case T_MNEM_cmp:
19666 case T_MNEM_cmn:
19667 newsize = relax_immediate (fragp, 8, 0);
19668 break;
19669 case T_MNEM_b:
19670 newsize = relax_branch (fragp, sec, 11, stretch);
19671 break;
19672 case T_MNEM_bcond:
19673 newsize = relax_branch (fragp, sec, 8, stretch);
19674 break;
19675 case T_MNEM_add_sp:
19676 case T_MNEM_add_pc:
19677 newsize = relax_immediate (fragp, 8, 2);
19678 break;
19679 case T_MNEM_inc_sp:
19680 case T_MNEM_dec_sp:
19681 newsize = relax_immediate (fragp, 7, 2);
19682 break;
19683 case T_MNEM_addi:
19684 case T_MNEM_addis:
19685 case T_MNEM_subi:
19686 case T_MNEM_subis:
19687 newsize = relax_addsub (fragp, sec);
19688 break;
19689 default:
19690 abort ();
19691 }
19692
19693 fragp->fr_var = newsize;
19694 /* Freeze wide instructions that are at or before the same location as
19695 in the previous pass. This avoids infinite loops.
19696 Don't freeze them unconditionally because targets may be artificially
19697 misaligned by the expansion of preceding frags. */
19698 if (stretch <= 0 && newsize > 2)
19699 {
19700 md_convert_frag (sec->owner, sec, fragp);
19701 frag_wane (fragp);
19702 }
19703
19704 return newsize - oldsize;
19705 }
19706
19707 /* Round up a section size to the appropriate boundary. */
19708
19709 valueT
19710 md_section_align (segT segment ATTRIBUTE_UNUSED,
19711 valueT size)
19712 {
19713 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19714 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19715 {
19716 /* For a.out, force the section size to be aligned. If we don't do
19717 this, BFD will align it for us, but it will not write out the
19718 final bytes of the section. This may be a bug in BFD, but it is
19719 easier to fix it here since that is how the other a.out targets
19720 work. */
19721 int align;
19722
19723 align = bfd_get_section_alignment (stdoutput, segment);
19724 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19725 }
19726 #endif
19727
19728 return size;
19729 }
19730
19731 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19732 of an rs_align_code fragment. */
19733
19734 void
19735 arm_handle_align (fragS * fragP)
19736 {
19737 static char const arm_noop[2][2][4] =
19738 {
19739 { /* ARMv1 */
19740 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19741 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19742 },
19743 { /* ARMv6k */
19744 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19745 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19746 },
19747 };
19748 static char const thumb_noop[2][2][2] =
19749 {
19750 { /* Thumb-1 */
19751 {0xc0, 0x46}, /* LE */
19752 {0x46, 0xc0}, /* BE */
19753 },
19754 { /* Thumb-2 */
19755 {0x00, 0xbf}, /* LE */
19756 {0xbf, 0x00} /* BE */
19757 }
19758 };
19759 static char const wide_thumb_noop[2][4] =
19760 { /* Wide Thumb-2 */
19761 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19762 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19763 };
19764
19765 unsigned bytes, fix, noop_size;
19766 char * p;
19767 const char * noop;
19768 const char *narrow_noop = NULL;
19769 #ifdef OBJ_ELF
19770 enum mstate state;
19771 #endif
19772
19773 if (fragP->fr_type != rs_align_code)
19774 return;
19775
19776 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
19777 p = fragP->fr_literal + fragP->fr_fix;
19778 fix = 0;
19779
19780 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
19781 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
19782
19783 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
19784
19785 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
19786 {
19787 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
19788 {
19789 narrow_noop = thumb_noop[1][target_big_endian];
19790 noop = wide_thumb_noop[target_big_endian];
19791 }
19792 else
19793 noop = thumb_noop[0][target_big_endian];
19794 noop_size = 2;
19795 #ifdef OBJ_ELF
19796 state = MAP_THUMB;
19797 #endif
19798 }
19799 else
19800 {
19801 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
19802 [target_big_endian];
19803 noop_size = 4;
19804 #ifdef OBJ_ELF
19805 state = MAP_ARM;
19806 #endif
19807 }
19808
19809 fragP->fr_var = noop_size;
19810
19811 if (bytes & (noop_size - 1))
19812 {
19813 fix = bytes & (noop_size - 1);
19814 #ifdef OBJ_ELF
19815 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
19816 #endif
19817 memset (p, 0, fix);
19818 p += fix;
19819 bytes -= fix;
19820 }
19821
19822 if (narrow_noop)
19823 {
19824 if (bytes & noop_size)
19825 {
19826 /* Insert a narrow noop. */
19827 memcpy (p, narrow_noop, noop_size);
19828 p += noop_size;
19829 bytes -= noop_size;
19830 fix += noop_size;
19831 }
19832
19833 /* Use wide noops for the remainder */
19834 noop_size = 4;
19835 }
19836
19837 while (bytes >= noop_size)
19838 {
19839 memcpy (p, noop, noop_size);
19840 p += noop_size;
19841 bytes -= noop_size;
19842 fix += noop_size;
19843 }
19844
19845 fragP->fr_fix += fix;
19846 }
19847
19848 /* Called from md_do_align. Used to create an alignment
19849 frag in a code section. */
19850
19851 void
19852 arm_frag_align_code (int n, int max)
19853 {
19854 char * p;
19855
19856 /* We assume that there will never be a requirement
19857 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
19858 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
19859 {
19860 char err_msg[128];
19861
19862 sprintf (err_msg,
19863 _("alignments greater than %d bytes not supported in .text sections."),
19864 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
19865 as_fatal ("%s", err_msg);
19866 }
19867
19868 p = frag_var (rs_align_code,
19869 MAX_MEM_FOR_RS_ALIGN_CODE,
19870 1,
19871 (relax_substateT) max,
19872 (symbolS *) NULL,
19873 (offsetT) n,
19874 (char *) NULL);
19875 *p = 0;
19876 }
19877
19878 /* Perform target specific initialisation of a frag.
19879 Note - despite the name this initialisation is not done when the frag
19880 is created, but only when its type is assigned. A frag can be created
19881 and used a long time before its type is set, so beware of assuming that
19882 this initialisationis performed first. */
19883
19884 #ifndef OBJ_ELF
19885 void
19886 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
19887 {
19888 /* Record whether this frag is in an ARM or a THUMB area. */
19889 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19890 }
19891
19892 #else /* OBJ_ELF is defined. */
19893 void
19894 arm_init_frag (fragS * fragP, int max_chars)
19895 {
19896 /* If the current ARM vs THUMB mode has not already
19897 been recorded into this frag then do so now. */
19898 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
19899 {
19900 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19901
19902 /* Record a mapping symbol for alignment frags. We will delete this
19903 later if the alignment ends up empty. */
19904 switch (fragP->fr_type)
19905 {
19906 case rs_align:
19907 case rs_align_test:
19908 case rs_fill:
19909 mapping_state_2 (MAP_DATA, max_chars);
19910 break;
19911 case rs_align_code:
19912 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
19913 break;
19914 default:
19915 break;
19916 }
19917 }
19918 }
19919
19920 /* When we change sections we need to issue a new mapping symbol. */
19921
19922 void
19923 arm_elf_change_section (void)
19924 {
19925 /* Link an unlinked unwind index table section to the .text section. */
19926 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
19927 && elf_linked_to_section (now_seg) == NULL)
19928 elf_linked_to_section (now_seg) = text_section;
19929 }
19930
19931 int
19932 arm_elf_section_type (const char * str, size_t len)
19933 {
19934 if (len == 5 && strncmp (str, "exidx", 5) == 0)
19935 return SHT_ARM_EXIDX;
19936
19937 return -1;
19938 }
19939 \f
19940 /* Code to deal with unwinding tables. */
19941
19942 static void add_unwind_adjustsp (offsetT);
19943
19944 /* Generate any deferred unwind frame offset. */
19945
19946 static void
19947 flush_pending_unwind (void)
19948 {
19949 offsetT offset;
19950
19951 offset = unwind.pending_offset;
19952 unwind.pending_offset = 0;
19953 if (offset != 0)
19954 add_unwind_adjustsp (offset);
19955 }
19956
19957 /* Add an opcode to this list for this function. Two-byte opcodes should
19958 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
19959 order. */
19960
19961 static void
19962 add_unwind_opcode (valueT op, int length)
19963 {
19964 /* Add any deferred stack adjustment. */
19965 if (unwind.pending_offset)
19966 flush_pending_unwind ();
19967
19968 unwind.sp_restored = 0;
19969
19970 if (unwind.opcode_count + length > unwind.opcode_alloc)
19971 {
19972 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
19973 if (unwind.opcodes)
19974 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
19975 unwind.opcode_alloc);
19976 else
19977 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
19978 }
19979 while (length > 0)
19980 {
19981 length--;
19982 unwind.opcodes[unwind.opcode_count] = op & 0xff;
19983 op >>= 8;
19984 unwind.opcode_count++;
19985 }
19986 }
19987
19988 /* Add unwind opcodes to adjust the stack pointer. */
19989
19990 static void
19991 add_unwind_adjustsp (offsetT offset)
19992 {
19993 valueT op;
19994
19995 if (offset > 0x200)
19996 {
19997 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
19998 char bytes[5];
19999 int n;
20000 valueT o;
20001
20002 /* Long form: 0xb2, uleb128. */
20003 /* This might not fit in a word so add the individual bytes,
20004 remembering the list is built in reverse order. */
20005 o = (valueT) ((offset - 0x204) >> 2);
20006 if (o == 0)
20007 add_unwind_opcode (0, 1);
20008
20009 /* Calculate the uleb128 encoding of the offset. */
20010 n = 0;
20011 while (o)
20012 {
20013 bytes[n] = o & 0x7f;
20014 o >>= 7;
20015 if (o)
20016 bytes[n] |= 0x80;
20017 n++;
20018 }
20019 /* Add the insn. */
20020 for (; n; n--)
20021 add_unwind_opcode (bytes[n - 1], 1);
20022 add_unwind_opcode (0xb2, 1);
20023 }
20024 else if (offset > 0x100)
20025 {
20026 /* Two short opcodes. */
20027 add_unwind_opcode (0x3f, 1);
20028 op = (offset - 0x104) >> 2;
20029 add_unwind_opcode (op, 1);
20030 }
20031 else if (offset > 0)
20032 {
20033 /* Short opcode. */
20034 op = (offset - 4) >> 2;
20035 add_unwind_opcode (op, 1);
20036 }
20037 else if (offset < 0)
20038 {
20039 offset = -offset;
20040 while (offset > 0x100)
20041 {
20042 add_unwind_opcode (0x7f, 1);
20043 offset -= 0x100;
20044 }
20045 op = ((offset - 4) >> 2) | 0x40;
20046 add_unwind_opcode (op, 1);
20047 }
20048 }
20049
20050 /* Finish the list of unwind opcodes for this function. */
20051 static void
20052 finish_unwind_opcodes (void)
20053 {
20054 valueT op;
20055
20056 if (unwind.fp_used)
20057 {
20058 /* Adjust sp as necessary. */
20059 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
20060 flush_pending_unwind ();
20061
20062 /* After restoring sp from the frame pointer. */
20063 op = 0x90 | unwind.fp_reg;
20064 add_unwind_opcode (op, 1);
20065 }
20066 else
20067 flush_pending_unwind ();
20068 }
20069
20070
20071 /* Start an exception table entry. If idx is nonzero this is an index table
20072 entry. */
20073
20074 static void
20075 start_unwind_section (const segT text_seg, int idx)
20076 {
20077 const char * text_name;
20078 const char * prefix;
20079 const char * prefix_once;
20080 const char * group_name;
20081 size_t prefix_len;
20082 size_t text_len;
20083 char * sec_name;
20084 size_t sec_name_len;
20085 int type;
20086 int flags;
20087 int linkonce;
20088
20089 if (idx)
20090 {
20091 prefix = ELF_STRING_ARM_unwind;
20092 prefix_once = ELF_STRING_ARM_unwind_once;
20093 type = SHT_ARM_EXIDX;
20094 }
20095 else
20096 {
20097 prefix = ELF_STRING_ARM_unwind_info;
20098 prefix_once = ELF_STRING_ARM_unwind_info_once;
20099 type = SHT_PROGBITS;
20100 }
20101
20102 text_name = segment_name (text_seg);
20103 if (streq (text_name, ".text"))
20104 text_name = "";
20105
20106 if (strncmp (text_name, ".gnu.linkonce.t.",
20107 strlen (".gnu.linkonce.t.")) == 0)
20108 {
20109 prefix = prefix_once;
20110 text_name += strlen (".gnu.linkonce.t.");
20111 }
20112
20113 prefix_len = strlen (prefix);
20114 text_len = strlen (text_name);
20115 sec_name_len = prefix_len + text_len;
20116 sec_name = (char *) xmalloc (sec_name_len + 1);
20117 memcpy (sec_name, prefix, prefix_len);
20118 memcpy (sec_name + prefix_len, text_name, text_len);
20119 sec_name[prefix_len + text_len] = '\0';
20120
20121 flags = SHF_ALLOC;
20122 linkonce = 0;
20123 group_name = 0;
20124
20125 /* Handle COMDAT group. */
20126 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
20127 {
20128 group_name = elf_group_name (text_seg);
20129 if (group_name == NULL)
20130 {
20131 as_bad (_("Group section `%s' has no group signature"),
20132 segment_name (text_seg));
20133 ignore_rest_of_line ();
20134 return;
20135 }
20136 flags |= SHF_GROUP;
20137 linkonce = 1;
20138 }
20139
20140 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
20141
20142 /* Set the section link for index tables. */
20143 if (idx)
20144 elf_linked_to_section (now_seg) = text_seg;
20145 }
20146
20147
20148 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
20149 personality routine data. Returns zero, or the index table value for
20150 and inline entry. */
20151
20152 static valueT
20153 create_unwind_entry (int have_data)
20154 {
20155 int size;
20156 addressT where;
20157 char *ptr;
20158 /* The current word of data. */
20159 valueT data;
20160 /* The number of bytes left in this word. */
20161 int n;
20162
20163 finish_unwind_opcodes ();
20164
20165 /* Remember the current text section. */
20166 unwind.saved_seg = now_seg;
20167 unwind.saved_subseg = now_subseg;
20168
20169 start_unwind_section (now_seg, 0);
20170
20171 if (unwind.personality_routine == NULL)
20172 {
20173 if (unwind.personality_index == -2)
20174 {
20175 if (have_data)
20176 as_bad (_("handlerdata in cantunwind frame"));
20177 return 1; /* EXIDX_CANTUNWIND. */
20178 }
20179
20180 /* Use a default personality routine if none is specified. */
20181 if (unwind.personality_index == -1)
20182 {
20183 if (unwind.opcode_count > 3)
20184 unwind.personality_index = 1;
20185 else
20186 unwind.personality_index = 0;
20187 }
20188
20189 /* Space for the personality routine entry. */
20190 if (unwind.personality_index == 0)
20191 {
20192 if (unwind.opcode_count > 3)
20193 as_bad (_("too many unwind opcodes for personality routine 0"));
20194
20195 if (!have_data)
20196 {
20197 /* All the data is inline in the index table. */
20198 data = 0x80;
20199 n = 3;
20200 while (unwind.opcode_count > 0)
20201 {
20202 unwind.opcode_count--;
20203 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20204 n--;
20205 }
20206
20207 /* Pad with "finish" opcodes. */
20208 while (n--)
20209 data = (data << 8) | 0xb0;
20210
20211 return data;
20212 }
20213 size = 0;
20214 }
20215 else
20216 /* We get two opcodes "free" in the first word. */
20217 size = unwind.opcode_count - 2;
20218 }
20219 else
20220 {
20221 gas_assert (unwind.personality_index == -1);
20222
20223 /* An extra byte is required for the opcode count. */
20224 size = unwind.opcode_count + 1;
20225 }
20226
20227 size = (size + 3) >> 2;
20228 if (size > 0xff)
20229 as_bad (_("too many unwind opcodes"));
20230
20231 frag_align (2, 0, 0);
20232 record_alignment (now_seg, 2);
20233 unwind.table_entry = expr_build_dot ();
20234
20235 /* Allocate the table entry. */
20236 ptr = frag_more ((size << 2) + 4);
20237 /* PR 13449: Zero the table entries in case some of them are not used. */
20238 memset (ptr, 0, (size << 2) + 4);
20239 where = frag_now_fix () - ((size << 2) + 4);
20240
20241 switch (unwind.personality_index)
20242 {
20243 case -1:
20244 /* ??? Should this be a PLT generating relocation? */
20245 /* Custom personality routine. */
20246 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
20247 BFD_RELOC_ARM_PREL31);
20248
20249 where += 4;
20250 ptr += 4;
20251
20252 /* Set the first byte to the number of additional words. */
20253 data = size > 0 ? size - 1 : 0;
20254 n = 3;
20255 break;
20256
20257 /* ABI defined personality routines. */
20258 case 0:
20259 /* Three opcodes bytes are packed into the first word. */
20260 data = 0x80;
20261 n = 3;
20262 break;
20263
20264 case 1:
20265 case 2:
20266 /* The size and first two opcode bytes go in the first word. */
20267 data = ((0x80 + unwind.personality_index) << 8) | size;
20268 n = 2;
20269 break;
20270
20271 default:
20272 /* Should never happen. */
20273 abort ();
20274 }
20275
20276 /* Pack the opcodes into words (MSB first), reversing the list at the same
20277 time. */
20278 while (unwind.opcode_count > 0)
20279 {
20280 if (n == 0)
20281 {
20282 md_number_to_chars (ptr, data, 4);
20283 ptr += 4;
20284 n = 4;
20285 data = 0;
20286 }
20287 unwind.opcode_count--;
20288 n--;
20289 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20290 }
20291
20292 /* Finish off the last word. */
20293 if (n < 4)
20294 {
20295 /* Pad with "finish" opcodes. */
20296 while (n--)
20297 data = (data << 8) | 0xb0;
20298
20299 md_number_to_chars (ptr, data, 4);
20300 }
20301
20302 if (!have_data)
20303 {
20304 /* Add an empty descriptor if there is no user-specified data. */
20305 ptr = frag_more (4);
20306 md_number_to_chars (ptr, 0, 4);
20307 }
20308
20309 return 0;
20310 }
20311
20312
20313 /* Initialize the DWARF-2 unwind information for this procedure. */
20314
20315 void
20316 tc_arm_frame_initial_instructions (void)
20317 {
20318 cfi_add_CFA_def_cfa (REG_SP, 0);
20319 }
20320 #endif /* OBJ_ELF */
20321
20322 /* Convert REGNAME to a DWARF-2 register number. */
20323
20324 int
20325 tc_arm_regname_to_dw2regnum (char *regname)
20326 {
20327 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
20328
20329 if (reg == FAIL)
20330 return -1;
20331
20332 return reg;
20333 }
20334
20335 #ifdef TE_PE
20336 void
20337 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
20338 {
20339 expressionS exp;
20340
20341 exp.X_op = O_secrel;
20342 exp.X_add_symbol = symbol;
20343 exp.X_add_number = 0;
20344 emit_expr (&exp, size);
20345 }
20346 #endif
20347
20348 /* MD interface: Symbol and relocation handling. */
20349
20350 /* Return the address within the segment that a PC-relative fixup is
20351 relative to. For ARM, PC-relative fixups applied to instructions
20352 are generally relative to the location of the fixup plus 8 bytes.
20353 Thumb branches are offset by 4, and Thumb loads relative to PC
20354 require special handling. */
20355
20356 long
20357 md_pcrel_from_section (fixS * fixP, segT seg)
20358 {
20359 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
20360
20361 /* If this is pc-relative and we are going to emit a relocation
20362 then we just want to put out any pipeline compensation that the linker
20363 will need. Otherwise we want to use the calculated base.
20364 For WinCE we skip the bias for externals as well, since this
20365 is how the MS ARM-CE assembler behaves and we want to be compatible. */
20366 if (fixP->fx_pcrel
20367 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
20368 || (arm_force_relocation (fixP)
20369 #ifdef TE_WINCE
20370 && !S_IS_EXTERNAL (fixP->fx_addsy)
20371 #endif
20372 )))
20373 base = 0;
20374
20375
20376 switch (fixP->fx_r_type)
20377 {
20378 /* PC relative addressing on the Thumb is slightly odd as the
20379 bottom two bits of the PC are forced to zero for the
20380 calculation. This happens *after* application of the
20381 pipeline offset. However, Thumb adrl already adjusts for
20382 this, so we need not do it again. */
20383 case BFD_RELOC_ARM_THUMB_ADD:
20384 return base & ~3;
20385
20386 case BFD_RELOC_ARM_THUMB_OFFSET:
20387 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20388 case BFD_RELOC_ARM_T32_ADD_PC12:
20389 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
20390 return (base + 4) & ~3;
20391
20392 /* Thumb branches are simply offset by +4. */
20393 case BFD_RELOC_THUMB_PCREL_BRANCH7:
20394 case BFD_RELOC_THUMB_PCREL_BRANCH9:
20395 case BFD_RELOC_THUMB_PCREL_BRANCH12:
20396 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20397 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20398 return base + 4;
20399
20400 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20401 if (fixP->fx_addsy
20402 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20403 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20404 && ARM_IS_FUNC (fixP->fx_addsy)
20405 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20406 base = fixP->fx_where + fixP->fx_frag->fr_address;
20407 return base + 4;
20408
20409 /* BLX is like branches above, but forces the low two bits of PC to
20410 zero. */
20411 case BFD_RELOC_THUMB_PCREL_BLX:
20412 if (fixP->fx_addsy
20413 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20414 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20415 && THUMB_IS_FUNC (fixP->fx_addsy)
20416 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20417 base = fixP->fx_where + fixP->fx_frag->fr_address;
20418 return (base + 4) & ~3;
20419
20420 /* ARM mode branches are offset by +8. However, the Windows CE
20421 loader expects the relocation not to take this into account. */
20422 case BFD_RELOC_ARM_PCREL_BLX:
20423 if (fixP->fx_addsy
20424 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20425 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20426 && ARM_IS_FUNC (fixP->fx_addsy)
20427 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20428 base = fixP->fx_where + fixP->fx_frag->fr_address;
20429 return base + 8;
20430
20431 case BFD_RELOC_ARM_PCREL_CALL:
20432 if (fixP->fx_addsy
20433 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20434 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20435 && THUMB_IS_FUNC (fixP->fx_addsy)
20436 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20437 base = fixP->fx_where + fixP->fx_frag->fr_address;
20438 return base + 8;
20439
20440 case BFD_RELOC_ARM_PCREL_BRANCH:
20441 case BFD_RELOC_ARM_PCREL_JUMP:
20442 case BFD_RELOC_ARM_PLT32:
20443 #ifdef TE_WINCE
20444 /* When handling fixups immediately, because we have already
20445 discovered the value of a symbol, or the address of the frag involved
20446 we must account for the offset by +8, as the OS loader will never see the reloc.
20447 see fixup_segment() in write.c
20448 The S_IS_EXTERNAL test handles the case of global symbols.
20449 Those need the calculated base, not just the pipe compensation the linker will need. */
20450 if (fixP->fx_pcrel
20451 && fixP->fx_addsy != NULL
20452 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20453 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
20454 return base + 8;
20455 return base;
20456 #else
20457 return base + 8;
20458 #endif
20459
20460
20461 /* ARM mode loads relative to PC are also offset by +8. Unlike
20462 branches, the Windows CE loader *does* expect the relocation
20463 to take this into account. */
20464 case BFD_RELOC_ARM_OFFSET_IMM:
20465 case BFD_RELOC_ARM_OFFSET_IMM8:
20466 case BFD_RELOC_ARM_HWLITERAL:
20467 case BFD_RELOC_ARM_LITERAL:
20468 case BFD_RELOC_ARM_CP_OFF_IMM:
20469 return base + 8;
20470
20471
20472 /* Other PC-relative relocations are un-offset. */
20473 default:
20474 return base;
20475 }
20476 }
20477
20478 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
20479 Otherwise we have no need to default values of symbols. */
20480
20481 symbolS *
20482 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
20483 {
20484 #ifdef OBJ_ELF
20485 if (name[0] == '_' && name[1] == 'G'
20486 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
20487 {
20488 if (!GOT_symbol)
20489 {
20490 if (symbol_find (name))
20491 as_bad (_("GOT already in the symbol table"));
20492
20493 GOT_symbol = symbol_new (name, undefined_section,
20494 (valueT) 0, & zero_address_frag);
20495 }
20496
20497 return GOT_symbol;
20498 }
20499 #endif
20500
20501 return NULL;
20502 }
20503
20504 /* Subroutine of md_apply_fix. Check to see if an immediate can be
20505 computed as two separate immediate values, added together. We
20506 already know that this value cannot be computed by just one ARM
20507 instruction. */
20508
20509 static unsigned int
20510 validate_immediate_twopart (unsigned int val,
20511 unsigned int * highpart)
20512 {
20513 unsigned int a;
20514 unsigned int i;
20515
20516 for (i = 0; i < 32; i += 2)
20517 if (((a = rotate_left (val, i)) & 0xff) != 0)
20518 {
20519 if (a & 0xff00)
20520 {
20521 if (a & ~ 0xffff)
20522 continue;
20523 * highpart = (a >> 8) | ((i + 24) << 7);
20524 }
20525 else if (a & 0xff0000)
20526 {
20527 if (a & 0xff000000)
20528 continue;
20529 * highpart = (a >> 16) | ((i + 16) << 7);
20530 }
20531 else
20532 {
20533 gas_assert (a & 0xff000000);
20534 * highpart = (a >> 24) | ((i + 8) << 7);
20535 }
20536
20537 return (a & 0xff) | (i << 7);
20538 }
20539
20540 return FAIL;
20541 }
20542
20543 static int
20544 validate_offset_imm (unsigned int val, int hwse)
20545 {
20546 if ((hwse && val > 255) || val > 4095)
20547 return FAIL;
20548 return val;
20549 }
20550
20551 /* Subroutine of md_apply_fix. Do those data_ops which can take a
20552 negative immediate constant by altering the instruction. A bit of
20553 a hack really.
20554 MOV <-> MVN
20555 AND <-> BIC
20556 ADC <-> SBC
20557 by inverting the second operand, and
20558 ADD <-> SUB
20559 CMP <-> CMN
20560 by negating the second operand. */
20561
20562 static int
20563 negate_data_op (unsigned long * instruction,
20564 unsigned long value)
20565 {
20566 int op, new_inst;
20567 unsigned long negated, inverted;
20568
20569 negated = encode_arm_immediate (-value);
20570 inverted = encode_arm_immediate (~value);
20571
20572 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
20573 switch (op)
20574 {
20575 /* First negates. */
20576 case OPCODE_SUB: /* ADD <-> SUB */
20577 new_inst = OPCODE_ADD;
20578 value = negated;
20579 break;
20580
20581 case OPCODE_ADD:
20582 new_inst = OPCODE_SUB;
20583 value = negated;
20584 break;
20585
20586 case OPCODE_CMP: /* CMP <-> CMN */
20587 new_inst = OPCODE_CMN;
20588 value = negated;
20589 break;
20590
20591 case OPCODE_CMN:
20592 new_inst = OPCODE_CMP;
20593 value = negated;
20594 break;
20595
20596 /* Now Inverted ops. */
20597 case OPCODE_MOV: /* MOV <-> MVN */
20598 new_inst = OPCODE_MVN;
20599 value = inverted;
20600 break;
20601
20602 case OPCODE_MVN:
20603 new_inst = OPCODE_MOV;
20604 value = inverted;
20605 break;
20606
20607 case OPCODE_AND: /* AND <-> BIC */
20608 new_inst = OPCODE_BIC;
20609 value = inverted;
20610 break;
20611
20612 case OPCODE_BIC:
20613 new_inst = OPCODE_AND;
20614 value = inverted;
20615 break;
20616
20617 case OPCODE_ADC: /* ADC <-> SBC */
20618 new_inst = OPCODE_SBC;
20619 value = inverted;
20620 break;
20621
20622 case OPCODE_SBC:
20623 new_inst = OPCODE_ADC;
20624 value = inverted;
20625 break;
20626
20627 /* We cannot do anything. */
20628 default:
20629 return FAIL;
20630 }
20631
20632 if (value == (unsigned) FAIL)
20633 return FAIL;
20634
20635 *instruction &= OPCODE_MASK;
20636 *instruction |= new_inst << DATA_OP_SHIFT;
20637 return value;
20638 }
20639
20640 /* Like negate_data_op, but for Thumb-2. */
20641
20642 static unsigned int
20643 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
20644 {
20645 int op, new_inst;
20646 int rd;
20647 unsigned int negated, inverted;
20648
20649 negated = encode_thumb32_immediate (-value);
20650 inverted = encode_thumb32_immediate (~value);
20651
20652 rd = (*instruction >> 8) & 0xf;
20653 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
20654 switch (op)
20655 {
20656 /* ADD <-> SUB. Includes CMP <-> CMN. */
20657 case T2_OPCODE_SUB:
20658 new_inst = T2_OPCODE_ADD;
20659 value = negated;
20660 break;
20661
20662 case T2_OPCODE_ADD:
20663 new_inst = T2_OPCODE_SUB;
20664 value = negated;
20665 break;
20666
20667 /* ORR <-> ORN. Includes MOV <-> MVN. */
20668 case T2_OPCODE_ORR:
20669 new_inst = T2_OPCODE_ORN;
20670 value = inverted;
20671 break;
20672
20673 case T2_OPCODE_ORN:
20674 new_inst = T2_OPCODE_ORR;
20675 value = inverted;
20676 break;
20677
20678 /* AND <-> BIC. TST has no inverted equivalent. */
20679 case T2_OPCODE_AND:
20680 new_inst = T2_OPCODE_BIC;
20681 if (rd == 15)
20682 value = FAIL;
20683 else
20684 value = inverted;
20685 break;
20686
20687 case T2_OPCODE_BIC:
20688 new_inst = T2_OPCODE_AND;
20689 value = inverted;
20690 break;
20691
20692 /* ADC <-> SBC */
20693 case T2_OPCODE_ADC:
20694 new_inst = T2_OPCODE_SBC;
20695 value = inverted;
20696 break;
20697
20698 case T2_OPCODE_SBC:
20699 new_inst = T2_OPCODE_ADC;
20700 value = inverted;
20701 break;
20702
20703 /* We cannot do anything. */
20704 default:
20705 return FAIL;
20706 }
20707
20708 if (value == (unsigned int)FAIL)
20709 return FAIL;
20710
20711 *instruction &= T2_OPCODE_MASK;
20712 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20713 return value;
20714 }
20715
20716 /* Read a 32-bit thumb instruction from buf. */
20717 static unsigned long
20718 get_thumb32_insn (char * buf)
20719 {
20720 unsigned long insn;
20721 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20722 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20723
20724 return insn;
20725 }
20726
20727
20728 /* We usually want to set the low bit on the address of thumb function
20729 symbols. In particular .word foo - . should have the low bit set.
20730 Generic code tries to fold the difference of two symbols to
20731 a constant. Prevent this and force a relocation when the first symbols
20732 is a thumb function. */
20733
20734 bfd_boolean
20735 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20736 {
20737 if (op == O_subtract
20738 && l->X_op == O_symbol
20739 && r->X_op == O_symbol
20740 && THUMB_IS_FUNC (l->X_add_symbol))
20741 {
20742 l->X_op = O_subtract;
20743 l->X_op_symbol = r->X_add_symbol;
20744 l->X_add_number -= r->X_add_number;
20745 return TRUE;
20746 }
20747
20748 /* Process as normal. */
20749 return FALSE;
20750 }
20751
20752 /* Encode Thumb2 unconditional branches and calls. The encoding
20753 for the 2 are identical for the immediate values. */
20754
20755 static void
20756 encode_thumb2_b_bl_offset (char * buf, offsetT value)
20757 {
20758 #define T2I1I2MASK ((1 << 13) | (1 << 11))
20759 offsetT newval;
20760 offsetT newval2;
20761 addressT S, I1, I2, lo, hi;
20762
20763 S = (value >> 24) & 0x01;
20764 I1 = (value >> 23) & 0x01;
20765 I2 = (value >> 22) & 0x01;
20766 hi = (value >> 12) & 0x3ff;
20767 lo = (value >> 1) & 0x7ff;
20768 newval = md_chars_to_number (buf, THUMB_SIZE);
20769 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20770 newval |= (S << 10) | hi;
20771 newval2 &= ~T2I1I2MASK;
20772 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
20773 md_number_to_chars (buf, newval, THUMB_SIZE);
20774 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20775 }
20776
20777 void
20778 md_apply_fix (fixS * fixP,
20779 valueT * valP,
20780 segT seg)
20781 {
20782 offsetT value = * valP;
20783 offsetT newval;
20784 unsigned int newimm;
20785 unsigned long temp;
20786 int sign;
20787 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
20788
20789 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
20790
20791 /* Note whether this will delete the relocation. */
20792
20793 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
20794 fixP->fx_done = 1;
20795
20796 /* On a 64-bit host, silently truncate 'value' to 32 bits for
20797 consistency with the behaviour on 32-bit hosts. Remember value
20798 for emit_reloc. */
20799 value &= 0xffffffff;
20800 value ^= 0x80000000;
20801 value -= 0x80000000;
20802
20803 *valP = value;
20804 fixP->fx_addnumber = value;
20805
20806 /* Same treatment for fixP->fx_offset. */
20807 fixP->fx_offset &= 0xffffffff;
20808 fixP->fx_offset ^= 0x80000000;
20809 fixP->fx_offset -= 0x80000000;
20810
20811 switch (fixP->fx_r_type)
20812 {
20813 case BFD_RELOC_NONE:
20814 /* This will need to go in the object file. */
20815 fixP->fx_done = 0;
20816 break;
20817
20818 case BFD_RELOC_ARM_IMMEDIATE:
20819 /* We claim that this fixup has been processed here,
20820 even if in fact we generate an error because we do
20821 not have a reloc for it, so tc_gen_reloc will reject it. */
20822 fixP->fx_done = 1;
20823
20824 if (fixP->fx_addsy)
20825 {
20826 const char *msg = 0;
20827
20828 if (! S_IS_DEFINED (fixP->fx_addsy))
20829 msg = _("undefined symbol %s used as an immediate value");
20830 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20831 msg = _("symbol %s is in a different section");
20832 else if (S_IS_WEAK (fixP->fx_addsy))
20833 msg = _("symbol %s is weak and may be overridden later");
20834
20835 if (msg)
20836 {
20837 as_bad_where (fixP->fx_file, fixP->fx_line,
20838 msg, S_GET_NAME (fixP->fx_addsy));
20839 break;
20840 }
20841 }
20842
20843 temp = md_chars_to_number (buf, INSN_SIZE);
20844
20845 /* If the offset is negative, we should use encoding A2 for ADR. */
20846 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
20847 newimm = negate_data_op (&temp, value);
20848 else
20849 {
20850 newimm = encode_arm_immediate (value);
20851
20852 /* If the instruction will fail, see if we can fix things up by
20853 changing the opcode. */
20854 if (newimm == (unsigned int) FAIL)
20855 newimm = negate_data_op (&temp, value);
20856 }
20857
20858 if (newimm == (unsigned int) FAIL)
20859 {
20860 as_bad_where (fixP->fx_file, fixP->fx_line,
20861 _("invalid constant (%lx) after fixup"),
20862 (unsigned long) value);
20863 break;
20864 }
20865
20866 newimm |= (temp & 0xfffff000);
20867 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20868 break;
20869
20870 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20871 {
20872 unsigned int highpart = 0;
20873 unsigned int newinsn = 0xe1a00000; /* nop. */
20874
20875 if (fixP->fx_addsy)
20876 {
20877 const char *msg = 0;
20878
20879 if (! S_IS_DEFINED (fixP->fx_addsy))
20880 msg = _("undefined symbol %s used as an immediate value");
20881 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20882 msg = _("symbol %s is in a different section");
20883 else if (S_IS_WEAK (fixP->fx_addsy))
20884 msg = _("symbol %s is weak and may be overridden later");
20885
20886 if (msg)
20887 {
20888 as_bad_where (fixP->fx_file, fixP->fx_line,
20889 msg, S_GET_NAME (fixP->fx_addsy));
20890 break;
20891 }
20892 }
20893
20894 newimm = encode_arm_immediate (value);
20895 temp = md_chars_to_number (buf, INSN_SIZE);
20896
20897 /* If the instruction will fail, see if we can fix things up by
20898 changing the opcode. */
20899 if (newimm == (unsigned int) FAIL
20900 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
20901 {
20902 /* No ? OK - try using two ADD instructions to generate
20903 the value. */
20904 newimm = validate_immediate_twopart (value, & highpart);
20905
20906 /* Yes - then make sure that the second instruction is
20907 also an add. */
20908 if (newimm != (unsigned int) FAIL)
20909 newinsn = temp;
20910 /* Still No ? Try using a negated value. */
20911 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
20912 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
20913 /* Otherwise - give up. */
20914 else
20915 {
20916 as_bad_where (fixP->fx_file, fixP->fx_line,
20917 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
20918 (long) value);
20919 break;
20920 }
20921
20922 /* Replace the first operand in the 2nd instruction (which
20923 is the PC) with the destination register. We have
20924 already added in the PC in the first instruction and we
20925 do not want to do it again. */
20926 newinsn &= ~ 0xf0000;
20927 newinsn |= ((newinsn & 0x0f000) << 4);
20928 }
20929
20930 newimm |= (temp & 0xfffff000);
20931 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20932
20933 highpart |= (newinsn & 0xfffff000);
20934 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
20935 }
20936 break;
20937
20938 case BFD_RELOC_ARM_OFFSET_IMM:
20939 if (!fixP->fx_done && seg->use_rela_p)
20940 value = 0;
20941
20942 case BFD_RELOC_ARM_LITERAL:
20943 sign = value > 0;
20944
20945 if (value < 0)
20946 value = - value;
20947
20948 if (validate_offset_imm (value, 0) == FAIL)
20949 {
20950 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
20951 as_bad_where (fixP->fx_file, fixP->fx_line,
20952 _("invalid literal constant: pool needs to be closer"));
20953 else
20954 as_bad_where (fixP->fx_file, fixP->fx_line,
20955 _("bad immediate value for offset (%ld)"),
20956 (long) value);
20957 break;
20958 }
20959
20960 newval = md_chars_to_number (buf, INSN_SIZE);
20961 if (value == 0)
20962 newval &= 0xfffff000;
20963 else
20964 {
20965 newval &= 0xff7ff000;
20966 newval |= value | (sign ? INDEX_UP : 0);
20967 }
20968 md_number_to_chars (buf, newval, INSN_SIZE);
20969 break;
20970
20971 case BFD_RELOC_ARM_OFFSET_IMM8:
20972 case BFD_RELOC_ARM_HWLITERAL:
20973 sign = value > 0;
20974
20975 if (value < 0)
20976 value = - value;
20977
20978 if (validate_offset_imm (value, 1) == FAIL)
20979 {
20980 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
20981 as_bad_where (fixP->fx_file, fixP->fx_line,
20982 _("invalid literal constant: pool needs to be closer"));
20983 else
20984 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
20985 (long) value);
20986 break;
20987 }
20988
20989 newval = md_chars_to_number (buf, INSN_SIZE);
20990 if (value == 0)
20991 newval &= 0xfffff0f0;
20992 else
20993 {
20994 newval &= 0xff7ff0f0;
20995 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
20996 }
20997 md_number_to_chars (buf, newval, INSN_SIZE);
20998 break;
20999
21000 case BFD_RELOC_ARM_T32_OFFSET_U8:
21001 if (value < 0 || value > 1020 || value % 4 != 0)
21002 as_bad_where (fixP->fx_file, fixP->fx_line,
21003 _("bad immediate value for offset (%ld)"), (long) value);
21004 value /= 4;
21005
21006 newval = md_chars_to_number (buf+2, THUMB_SIZE);
21007 newval |= value;
21008 md_number_to_chars (buf+2, newval, THUMB_SIZE);
21009 break;
21010
21011 case BFD_RELOC_ARM_T32_OFFSET_IMM:
21012 /* This is a complicated relocation used for all varieties of Thumb32
21013 load/store instruction with immediate offset:
21014
21015 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
21016 *4, optional writeback(W)
21017 (doubleword load/store)
21018
21019 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
21020 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
21021 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
21022 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
21023 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
21024
21025 Uppercase letters indicate bits that are already encoded at
21026 this point. Lowercase letters are our problem. For the
21027 second block of instructions, the secondary opcode nybble
21028 (bits 8..11) is present, and bit 23 is zero, even if this is
21029 a PC-relative operation. */
21030 newval = md_chars_to_number (buf, THUMB_SIZE);
21031 newval <<= 16;
21032 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
21033
21034 if ((newval & 0xf0000000) == 0xe0000000)
21035 {
21036 /* Doubleword load/store: 8-bit offset, scaled by 4. */
21037 if (value >= 0)
21038 newval |= (1 << 23);
21039 else
21040 value = -value;
21041 if (value % 4 != 0)
21042 {
21043 as_bad_where (fixP->fx_file, fixP->fx_line,
21044 _("offset not a multiple of 4"));
21045 break;
21046 }
21047 value /= 4;
21048 if (value > 0xff)
21049 {
21050 as_bad_where (fixP->fx_file, fixP->fx_line,
21051 _("offset out of range"));
21052 break;
21053 }
21054 newval &= ~0xff;
21055 }
21056 else if ((newval & 0x000f0000) == 0x000f0000)
21057 {
21058 /* PC-relative, 12-bit offset. */
21059 if (value >= 0)
21060 newval |= (1 << 23);
21061 else
21062 value = -value;
21063 if (value > 0xfff)
21064 {
21065 as_bad_where (fixP->fx_file, fixP->fx_line,
21066 _("offset out of range"));
21067 break;
21068 }
21069 newval &= ~0xfff;
21070 }
21071 else if ((newval & 0x00000100) == 0x00000100)
21072 {
21073 /* Writeback: 8-bit, +/- offset. */
21074 if (value >= 0)
21075 newval |= (1 << 9);
21076 else
21077 value = -value;
21078 if (value > 0xff)
21079 {
21080 as_bad_where (fixP->fx_file, fixP->fx_line,
21081 _("offset out of range"));
21082 break;
21083 }
21084 newval &= ~0xff;
21085 }
21086 else if ((newval & 0x00000f00) == 0x00000e00)
21087 {
21088 /* T-instruction: positive 8-bit offset. */
21089 if (value < 0 || value > 0xff)
21090 {
21091 as_bad_where (fixP->fx_file, fixP->fx_line,
21092 _("offset out of range"));
21093 break;
21094 }
21095 newval &= ~0xff;
21096 newval |= value;
21097 }
21098 else
21099 {
21100 /* Positive 12-bit or negative 8-bit offset. */
21101 int limit;
21102 if (value >= 0)
21103 {
21104 newval |= (1 << 23);
21105 limit = 0xfff;
21106 }
21107 else
21108 {
21109 value = -value;
21110 limit = 0xff;
21111 }
21112 if (value > limit)
21113 {
21114 as_bad_where (fixP->fx_file, fixP->fx_line,
21115 _("offset out of range"));
21116 break;
21117 }
21118 newval &= ~limit;
21119 }
21120
21121 newval |= value;
21122 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
21123 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
21124 break;
21125
21126 case BFD_RELOC_ARM_SHIFT_IMM:
21127 newval = md_chars_to_number (buf, INSN_SIZE);
21128 if (((unsigned long) value) > 32
21129 || (value == 32
21130 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
21131 {
21132 as_bad_where (fixP->fx_file, fixP->fx_line,
21133 _("shift expression is too large"));
21134 break;
21135 }
21136
21137 if (value == 0)
21138 /* Shifts of zero must be done as lsl. */
21139 newval &= ~0x60;
21140 else if (value == 32)
21141 value = 0;
21142 newval &= 0xfffff07f;
21143 newval |= (value & 0x1f) << 7;
21144 md_number_to_chars (buf, newval, INSN_SIZE);
21145 break;
21146
21147 case BFD_RELOC_ARM_T32_IMMEDIATE:
21148 case BFD_RELOC_ARM_T32_ADD_IMM:
21149 case BFD_RELOC_ARM_T32_IMM12:
21150 case BFD_RELOC_ARM_T32_ADD_PC12:
21151 /* We claim that this fixup has been processed here,
21152 even if in fact we generate an error because we do
21153 not have a reloc for it, so tc_gen_reloc will reject it. */
21154 fixP->fx_done = 1;
21155
21156 if (fixP->fx_addsy
21157 && ! S_IS_DEFINED (fixP->fx_addsy))
21158 {
21159 as_bad_where (fixP->fx_file, fixP->fx_line,
21160 _("undefined symbol %s used as an immediate value"),
21161 S_GET_NAME (fixP->fx_addsy));
21162 break;
21163 }
21164
21165 newval = md_chars_to_number (buf, THUMB_SIZE);
21166 newval <<= 16;
21167 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
21168
21169 newimm = FAIL;
21170 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21171 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
21172 {
21173 newimm = encode_thumb32_immediate (value);
21174 if (newimm == (unsigned int) FAIL)
21175 newimm = thumb32_negate_data_op (&newval, value);
21176 }
21177 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
21178 && newimm == (unsigned int) FAIL)
21179 {
21180 /* Turn add/sum into addw/subw. */
21181 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
21182 newval = (newval & 0xfeffffff) | 0x02000000;
21183 /* No flat 12-bit imm encoding for addsw/subsw. */
21184 if ((newval & 0x00100000) == 0)
21185 {
21186 /* 12 bit immediate for addw/subw. */
21187 if (value < 0)
21188 {
21189 value = -value;
21190 newval ^= 0x00a00000;
21191 }
21192 if (value > 0xfff)
21193 newimm = (unsigned int) FAIL;
21194 else
21195 newimm = value;
21196 }
21197 }
21198
21199 if (newimm == (unsigned int)FAIL)
21200 {
21201 as_bad_where (fixP->fx_file, fixP->fx_line,
21202 _("invalid constant (%lx) after fixup"),
21203 (unsigned long) value);
21204 break;
21205 }
21206
21207 newval |= (newimm & 0x800) << 15;
21208 newval |= (newimm & 0x700) << 4;
21209 newval |= (newimm & 0x0ff);
21210
21211 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
21212 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
21213 break;
21214
21215 case BFD_RELOC_ARM_SMC:
21216 if (((unsigned long) value) > 0xffff)
21217 as_bad_where (fixP->fx_file, fixP->fx_line,
21218 _("invalid smc expression"));
21219 newval = md_chars_to_number (buf, INSN_SIZE);
21220 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21221 md_number_to_chars (buf, newval, INSN_SIZE);
21222 break;
21223
21224 case BFD_RELOC_ARM_HVC:
21225 if (((unsigned long) value) > 0xffff)
21226 as_bad_where (fixP->fx_file, fixP->fx_line,
21227 _("invalid hvc expression"));
21228 newval = md_chars_to_number (buf, INSN_SIZE);
21229 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21230 md_number_to_chars (buf, newval, INSN_SIZE);
21231 break;
21232
21233 case BFD_RELOC_ARM_SWI:
21234 if (fixP->tc_fix_data != 0)
21235 {
21236 if (((unsigned long) value) > 0xff)
21237 as_bad_where (fixP->fx_file, fixP->fx_line,
21238 _("invalid swi expression"));
21239 newval = md_chars_to_number (buf, THUMB_SIZE);
21240 newval |= value;
21241 md_number_to_chars (buf, newval, THUMB_SIZE);
21242 }
21243 else
21244 {
21245 if (((unsigned long) value) > 0x00ffffff)
21246 as_bad_where (fixP->fx_file, fixP->fx_line,
21247 _("invalid swi expression"));
21248 newval = md_chars_to_number (buf, INSN_SIZE);
21249 newval |= value;
21250 md_number_to_chars (buf, newval, INSN_SIZE);
21251 }
21252 break;
21253
21254 case BFD_RELOC_ARM_MULTI:
21255 if (((unsigned long) value) > 0xffff)
21256 as_bad_where (fixP->fx_file, fixP->fx_line,
21257 _("invalid expression in load/store multiple"));
21258 newval = value | md_chars_to_number (buf, INSN_SIZE);
21259 md_number_to_chars (buf, newval, INSN_SIZE);
21260 break;
21261
21262 #ifdef OBJ_ELF
21263 case BFD_RELOC_ARM_PCREL_CALL:
21264
21265 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21266 && fixP->fx_addsy
21267 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21268 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21269 && THUMB_IS_FUNC (fixP->fx_addsy))
21270 /* Flip the bl to blx. This is a simple flip
21271 bit here because we generate PCREL_CALL for
21272 unconditional bls. */
21273 {
21274 newval = md_chars_to_number (buf, INSN_SIZE);
21275 newval = newval | 0x10000000;
21276 md_number_to_chars (buf, newval, INSN_SIZE);
21277 temp = 1;
21278 fixP->fx_done = 1;
21279 }
21280 else
21281 temp = 3;
21282 goto arm_branch_common;
21283
21284 case BFD_RELOC_ARM_PCREL_JUMP:
21285 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21286 && fixP->fx_addsy
21287 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21288 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21289 && THUMB_IS_FUNC (fixP->fx_addsy))
21290 {
21291 /* This would map to a bl<cond>, b<cond>,
21292 b<always> to a Thumb function. We
21293 need to force a relocation for this particular
21294 case. */
21295 newval = md_chars_to_number (buf, INSN_SIZE);
21296 fixP->fx_done = 0;
21297 }
21298
21299 case BFD_RELOC_ARM_PLT32:
21300 #endif
21301 case BFD_RELOC_ARM_PCREL_BRANCH:
21302 temp = 3;
21303 goto arm_branch_common;
21304
21305 case BFD_RELOC_ARM_PCREL_BLX:
21306
21307 temp = 1;
21308 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21309 && fixP->fx_addsy
21310 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21311 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21312 && ARM_IS_FUNC (fixP->fx_addsy))
21313 {
21314 /* Flip the blx to a bl and warn. */
21315 const char *name = S_GET_NAME (fixP->fx_addsy);
21316 newval = 0xeb000000;
21317 as_warn_where (fixP->fx_file, fixP->fx_line,
21318 _("blx to '%s' an ARM ISA state function changed to bl"),
21319 name);
21320 md_number_to_chars (buf, newval, INSN_SIZE);
21321 temp = 3;
21322 fixP->fx_done = 1;
21323 }
21324
21325 #ifdef OBJ_ELF
21326 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21327 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
21328 #endif
21329
21330 arm_branch_common:
21331 /* We are going to store value (shifted right by two) in the
21332 instruction, in a 24 bit, signed field. Bits 26 through 32 either
21333 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
21334 also be be clear. */
21335 if (value & temp)
21336 as_bad_where (fixP->fx_file, fixP->fx_line,
21337 _("misaligned branch destination"));
21338 if ((value & (offsetT)0xfe000000) != (offsetT)0
21339 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
21340 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21341
21342 if (fixP->fx_done || !seg->use_rela_p)
21343 {
21344 newval = md_chars_to_number (buf, INSN_SIZE);
21345 newval |= (value >> 2) & 0x00ffffff;
21346 /* Set the H bit on BLX instructions. */
21347 if (temp == 1)
21348 {
21349 if (value & 2)
21350 newval |= 0x01000000;
21351 else
21352 newval &= ~0x01000000;
21353 }
21354 md_number_to_chars (buf, newval, INSN_SIZE);
21355 }
21356 break;
21357
21358 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
21359 /* CBZ can only branch forward. */
21360
21361 /* Attempts to use CBZ to branch to the next instruction
21362 (which, strictly speaking, are prohibited) will be turned into
21363 no-ops.
21364
21365 FIXME: It may be better to remove the instruction completely and
21366 perform relaxation. */
21367 if (value == -2)
21368 {
21369 newval = md_chars_to_number (buf, THUMB_SIZE);
21370 newval = 0xbf00; /* NOP encoding T1 */
21371 md_number_to_chars (buf, newval, THUMB_SIZE);
21372 }
21373 else
21374 {
21375 if (value & ~0x7e)
21376 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21377
21378 if (fixP->fx_done || !seg->use_rela_p)
21379 {
21380 newval = md_chars_to_number (buf, THUMB_SIZE);
21381 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
21382 md_number_to_chars (buf, newval, THUMB_SIZE);
21383 }
21384 }
21385 break;
21386
21387 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
21388 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
21389 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21390
21391 if (fixP->fx_done || !seg->use_rela_p)
21392 {
21393 newval = md_chars_to_number (buf, THUMB_SIZE);
21394 newval |= (value & 0x1ff) >> 1;
21395 md_number_to_chars (buf, newval, THUMB_SIZE);
21396 }
21397 break;
21398
21399 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
21400 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
21401 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21402
21403 if (fixP->fx_done || !seg->use_rela_p)
21404 {
21405 newval = md_chars_to_number (buf, THUMB_SIZE);
21406 newval |= (value & 0xfff) >> 1;
21407 md_number_to_chars (buf, newval, THUMB_SIZE);
21408 }
21409 break;
21410
21411 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21412 if (fixP->fx_addsy
21413 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21414 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21415 && ARM_IS_FUNC (fixP->fx_addsy)
21416 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21417 {
21418 /* Force a relocation for a branch 20 bits wide. */
21419 fixP->fx_done = 0;
21420 }
21421 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
21422 as_bad_where (fixP->fx_file, fixP->fx_line,
21423 _("conditional branch out of range"));
21424
21425 if (fixP->fx_done || !seg->use_rela_p)
21426 {
21427 offsetT newval2;
21428 addressT S, J1, J2, lo, hi;
21429
21430 S = (value & 0x00100000) >> 20;
21431 J2 = (value & 0x00080000) >> 19;
21432 J1 = (value & 0x00040000) >> 18;
21433 hi = (value & 0x0003f000) >> 12;
21434 lo = (value & 0x00000ffe) >> 1;
21435
21436 newval = md_chars_to_number (buf, THUMB_SIZE);
21437 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21438 newval |= (S << 10) | hi;
21439 newval2 |= (J1 << 13) | (J2 << 11) | lo;
21440 md_number_to_chars (buf, newval, THUMB_SIZE);
21441 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21442 }
21443 break;
21444
21445 case BFD_RELOC_THUMB_PCREL_BLX:
21446 /* If there is a blx from a thumb state function to
21447 another thumb function flip this to a bl and warn
21448 about it. */
21449
21450 if (fixP->fx_addsy
21451 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21452 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21453 && THUMB_IS_FUNC (fixP->fx_addsy))
21454 {
21455 const char *name = S_GET_NAME (fixP->fx_addsy);
21456 as_warn_where (fixP->fx_file, fixP->fx_line,
21457 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
21458 name);
21459 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21460 newval = newval | 0x1000;
21461 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21462 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21463 fixP->fx_done = 1;
21464 }
21465
21466
21467 goto thumb_bl_common;
21468
21469 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21470 /* A bl from Thumb state ISA to an internal ARM state function
21471 is converted to a blx. */
21472 if (fixP->fx_addsy
21473 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21474 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21475 && ARM_IS_FUNC (fixP->fx_addsy)
21476 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21477 {
21478 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21479 newval = newval & ~0x1000;
21480 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21481 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
21482 fixP->fx_done = 1;
21483 }
21484
21485 thumb_bl_common:
21486
21487 #ifdef OBJ_ELF
21488 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
21489 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21490 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21491 #endif
21492
21493 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21494 /* For a BLX instruction, make sure that the relocation is rounded up
21495 to a word boundary. This follows the semantics of the instruction
21496 which specifies that bit 1 of the target address will come from bit
21497 1 of the base address. */
21498 value = (value + 1) & ~ 1;
21499
21500 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
21501 {
21502 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
21503 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21504 else if ((value & ~0x1ffffff)
21505 && ((value & ~0x1ffffff) != ~0x1ffffff))
21506 as_bad_where (fixP->fx_file, fixP->fx_line,
21507 _("Thumb2 branch out of range"));
21508 }
21509
21510 if (fixP->fx_done || !seg->use_rela_p)
21511 encode_thumb2_b_bl_offset (buf, value);
21512
21513 break;
21514
21515 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21516 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
21517 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21518
21519 if (fixP->fx_done || !seg->use_rela_p)
21520 encode_thumb2_b_bl_offset (buf, value);
21521
21522 break;
21523
21524 case BFD_RELOC_8:
21525 if (fixP->fx_done || !seg->use_rela_p)
21526 md_number_to_chars (buf, value, 1);
21527 break;
21528
21529 case BFD_RELOC_16:
21530 if (fixP->fx_done || !seg->use_rela_p)
21531 md_number_to_chars (buf, value, 2);
21532 break;
21533
21534 #ifdef OBJ_ELF
21535 case BFD_RELOC_ARM_TLS_CALL:
21536 case BFD_RELOC_ARM_THM_TLS_CALL:
21537 case BFD_RELOC_ARM_TLS_DESCSEQ:
21538 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21539 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21540 break;
21541
21542 case BFD_RELOC_ARM_TLS_GOTDESC:
21543 case BFD_RELOC_ARM_TLS_GD32:
21544 case BFD_RELOC_ARM_TLS_LE32:
21545 case BFD_RELOC_ARM_TLS_IE32:
21546 case BFD_RELOC_ARM_TLS_LDM32:
21547 case BFD_RELOC_ARM_TLS_LDO32:
21548 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21549 /* fall through */
21550
21551 case BFD_RELOC_ARM_GOT32:
21552 case BFD_RELOC_ARM_GOTOFF:
21553 if (fixP->fx_done || !seg->use_rela_p)
21554 md_number_to_chars (buf, 0, 4);
21555 break;
21556
21557 case BFD_RELOC_ARM_GOT_PREL:
21558 if (fixP->fx_done || !seg->use_rela_p)
21559 md_number_to_chars (buf, value, 4);
21560 break;
21561
21562 case BFD_RELOC_ARM_TARGET2:
21563 /* TARGET2 is not partial-inplace, so we need to write the
21564 addend here for REL targets, because it won't be written out
21565 during reloc processing later. */
21566 if (fixP->fx_done || !seg->use_rela_p)
21567 md_number_to_chars (buf, fixP->fx_offset, 4);
21568 break;
21569 #endif
21570
21571 case BFD_RELOC_RVA:
21572 case BFD_RELOC_32:
21573 case BFD_RELOC_ARM_TARGET1:
21574 case BFD_RELOC_ARM_ROSEGREL32:
21575 case BFD_RELOC_ARM_SBREL32:
21576 case BFD_RELOC_32_PCREL:
21577 #ifdef TE_PE
21578 case BFD_RELOC_32_SECREL:
21579 #endif
21580 if (fixP->fx_done || !seg->use_rela_p)
21581 #ifdef TE_WINCE
21582 /* For WinCE we only do this for pcrel fixups. */
21583 if (fixP->fx_done || fixP->fx_pcrel)
21584 #endif
21585 md_number_to_chars (buf, value, 4);
21586 break;
21587
21588 #ifdef OBJ_ELF
21589 case BFD_RELOC_ARM_PREL31:
21590 if (fixP->fx_done || !seg->use_rela_p)
21591 {
21592 newval = md_chars_to_number (buf, 4) & 0x80000000;
21593 if ((value ^ (value >> 1)) & 0x40000000)
21594 {
21595 as_bad_where (fixP->fx_file, fixP->fx_line,
21596 _("rel31 relocation overflow"));
21597 }
21598 newval |= value & 0x7fffffff;
21599 md_number_to_chars (buf, newval, 4);
21600 }
21601 break;
21602 #endif
21603
21604 case BFD_RELOC_ARM_CP_OFF_IMM:
21605 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
21606 if (value < -1023 || value > 1023 || (value & 3))
21607 as_bad_where (fixP->fx_file, fixP->fx_line,
21608 _("co-processor offset out of range"));
21609 cp_off_common:
21610 sign = value > 0;
21611 if (value < 0)
21612 value = -value;
21613 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21614 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21615 newval = md_chars_to_number (buf, INSN_SIZE);
21616 else
21617 newval = get_thumb32_insn (buf);
21618 if (value == 0)
21619 newval &= 0xffffff00;
21620 else
21621 {
21622 newval &= 0xff7fff00;
21623 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
21624 }
21625 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21626 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21627 md_number_to_chars (buf, newval, INSN_SIZE);
21628 else
21629 put_thumb32_insn (buf, newval);
21630 break;
21631
21632 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
21633 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
21634 if (value < -255 || value > 255)
21635 as_bad_where (fixP->fx_file, fixP->fx_line,
21636 _("co-processor offset out of range"));
21637 value *= 4;
21638 goto cp_off_common;
21639
21640 case BFD_RELOC_ARM_THUMB_OFFSET:
21641 newval = md_chars_to_number (buf, THUMB_SIZE);
21642 /* Exactly what ranges, and where the offset is inserted depends
21643 on the type of instruction, we can establish this from the
21644 top 4 bits. */
21645 switch (newval >> 12)
21646 {
21647 case 4: /* PC load. */
21648 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
21649 forced to zero for these loads; md_pcrel_from has already
21650 compensated for this. */
21651 if (value & 3)
21652 as_bad_where (fixP->fx_file, fixP->fx_line,
21653 _("invalid offset, target not word aligned (0x%08lX)"),
21654 (((unsigned long) fixP->fx_frag->fr_address
21655 + (unsigned long) fixP->fx_where) & ~3)
21656 + (unsigned long) value);
21657
21658 if (value & ~0x3fc)
21659 as_bad_where (fixP->fx_file, fixP->fx_line,
21660 _("invalid offset, value too big (0x%08lX)"),
21661 (long) value);
21662
21663 newval |= value >> 2;
21664 break;
21665
21666 case 9: /* SP load/store. */
21667 if (value & ~0x3fc)
21668 as_bad_where (fixP->fx_file, fixP->fx_line,
21669 _("invalid offset, value too big (0x%08lX)"),
21670 (long) value);
21671 newval |= value >> 2;
21672 break;
21673
21674 case 6: /* Word load/store. */
21675 if (value & ~0x7c)
21676 as_bad_where (fixP->fx_file, fixP->fx_line,
21677 _("invalid offset, value too big (0x%08lX)"),
21678 (long) value);
21679 newval |= value << 4; /* 6 - 2. */
21680 break;
21681
21682 case 7: /* Byte load/store. */
21683 if (value & ~0x1f)
21684 as_bad_where (fixP->fx_file, fixP->fx_line,
21685 _("invalid offset, value too big (0x%08lX)"),
21686 (long) value);
21687 newval |= value << 6;
21688 break;
21689
21690 case 8: /* Halfword load/store. */
21691 if (value & ~0x3e)
21692 as_bad_where (fixP->fx_file, fixP->fx_line,
21693 _("invalid offset, value too big (0x%08lX)"),
21694 (long) value);
21695 newval |= value << 5; /* 6 - 1. */
21696 break;
21697
21698 default:
21699 as_bad_where (fixP->fx_file, fixP->fx_line,
21700 "Unable to process relocation for thumb opcode: %lx",
21701 (unsigned long) newval);
21702 break;
21703 }
21704 md_number_to_chars (buf, newval, THUMB_SIZE);
21705 break;
21706
21707 case BFD_RELOC_ARM_THUMB_ADD:
21708 /* This is a complicated relocation, since we use it for all of
21709 the following immediate relocations:
21710
21711 3bit ADD/SUB
21712 8bit ADD/SUB
21713 9bit ADD/SUB SP word-aligned
21714 10bit ADD PC/SP word-aligned
21715
21716 The type of instruction being processed is encoded in the
21717 instruction field:
21718
21719 0x8000 SUB
21720 0x00F0 Rd
21721 0x000F Rs
21722 */
21723 newval = md_chars_to_number (buf, THUMB_SIZE);
21724 {
21725 int rd = (newval >> 4) & 0xf;
21726 int rs = newval & 0xf;
21727 int subtract = !!(newval & 0x8000);
21728
21729 /* Check for HI regs, only very restricted cases allowed:
21730 Adjusting SP, and using PC or SP to get an address. */
21731 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21732 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21733 as_bad_where (fixP->fx_file, fixP->fx_line,
21734 _("invalid Hi register with immediate"));
21735
21736 /* If value is negative, choose the opposite instruction. */
21737 if (value < 0)
21738 {
21739 value = -value;
21740 subtract = !subtract;
21741 if (value < 0)
21742 as_bad_where (fixP->fx_file, fixP->fx_line,
21743 _("immediate value out of range"));
21744 }
21745
21746 if (rd == REG_SP)
21747 {
21748 if (value & ~0x1fc)
21749 as_bad_where (fixP->fx_file, fixP->fx_line,
21750 _("invalid immediate for stack address calculation"));
21751 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
21752 newval |= value >> 2;
21753 }
21754 else if (rs == REG_PC || rs == REG_SP)
21755 {
21756 if (subtract || value & ~0x3fc)
21757 as_bad_where (fixP->fx_file, fixP->fx_line,
21758 _("invalid immediate for address calculation (value = 0x%08lX)"),
21759 (unsigned long) value);
21760 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
21761 newval |= rd << 8;
21762 newval |= value >> 2;
21763 }
21764 else if (rs == rd)
21765 {
21766 if (value & ~0xff)
21767 as_bad_where (fixP->fx_file, fixP->fx_line,
21768 _("immediate value out of range"));
21769 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
21770 newval |= (rd << 8) | value;
21771 }
21772 else
21773 {
21774 if (value & ~0x7)
21775 as_bad_where (fixP->fx_file, fixP->fx_line,
21776 _("immediate value out of range"));
21777 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
21778 newval |= rd | (rs << 3) | (value << 6);
21779 }
21780 }
21781 md_number_to_chars (buf, newval, THUMB_SIZE);
21782 break;
21783
21784 case BFD_RELOC_ARM_THUMB_IMM:
21785 newval = md_chars_to_number (buf, THUMB_SIZE);
21786 if (value < 0 || value > 255)
21787 as_bad_where (fixP->fx_file, fixP->fx_line,
21788 _("invalid immediate: %ld is out of range"),
21789 (long) value);
21790 newval |= value;
21791 md_number_to_chars (buf, newval, THUMB_SIZE);
21792 break;
21793
21794 case BFD_RELOC_ARM_THUMB_SHIFT:
21795 /* 5bit shift value (0..32). LSL cannot take 32. */
21796 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
21797 temp = newval & 0xf800;
21798 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
21799 as_bad_where (fixP->fx_file, fixP->fx_line,
21800 _("invalid shift value: %ld"), (long) value);
21801 /* Shifts of zero must be encoded as LSL. */
21802 if (value == 0)
21803 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
21804 /* Shifts of 32 are encoded as zero. */
21805 else if (value == 32)
21806 value = 0;
21807 newval |= value << 6;
21808 md_number_to_chars (buf, newval, THUMB_SIZE);
21809 break;
21810
21811 case BFD_RELOC_VTABLE_INHERIT:
21812 case BFD_RELOC_VTABLE_ENTRY:
21813 fixP->fx_done = 0;
21814 return;
21815
21816 case BFD_RELOC_ARM_MOVW:
21817 case BFD_RELOC_ARM_MOVT:
21818 case BFD_RELOC_ARM_THUMB_MOVW:
21819 case BFD_RELOC_ARM_THUMB_MOVT:
21820 if (fixP->fx_done || !seg->use_rela_p)
21821 {
21822 /* REL format relocations are limited to a 16-bit addend. */
21823 if (!fixP->fx_done)
21824 {
21825 if (value < -0x8000 || value > 0x7fff)
21826 as_bad_where (fixP->fx_file, fixP->fx_line,
21827 _("offset out of range"));
21828 }
21829 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21830 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21831 {
21832 value >>= 16;
21833 }
21834
21835 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21836 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21837 {
21838 newval = get_thumb32_insn (buf);
21839 newval &= 0xfbf08f00;
21840 newval |= (value & 0xf000) << 4;
21841 newval |= (value & 0x0800) << 15;
21842 newval |= (value & 0x0700) << 4;
21843 newval |= (value & 0x00ff);
21844 put_thumb32_insn (buf, newval);
21845 }
21846 else
21847 {
21848 newval = md_chars_to_number (buf, 4);
21849 newval &= 0xfff0f000;
21850 newval |= value & 0x0fff;
21851 newval |= (value & 0xf000) << 4;
21852 md_number_to_chars (buf, newval, 4);
21853 }
21854 }
21855 return;
21856
21857 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21858 case BFD_RELOC_ARM_ALU_PC_G0:
21859 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21860 case BFD_RELOC_ARM_ALU_PC_G1:
21861 case BFD_RELOC_ARM_ALU_PC_G2:
21862 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21863 case BFD_RELOC_ARM_ALU_SB_G0:
21864 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21865 case BFD_RELOC_ARM_ALU_SB_G1:
21866 case BFD_RELOC_ARM_ALU_SB_G2:
21867 gas_assert (!fixP->fx_done);
21868 if (!seg->use_rela_p)
21869 {
21870 bfd_vma insn;
21871 bfd_vma encoded_addend;
21872 bfd_vma addend_abs = abs (value);
21873
21874 /* Check that the absolute value of the addend can be
21875 expressed as an 8-bit constant plus a rotation. */
21876 encoded_addend = encode_arm_immediate (addend_abs);
21877 if (encoded_addend == (unsigned int) FAIL)
21878 as_bad_where (fixP->fx_file, fixP->fx_line,
21879 _("the offset 0x%08lX is not representable"),
21880 (unsigned long) addend_abs);
21881
21882 /* Extract the instruction. */
21883 insn = md_chars_to_number (buf, INSN_SIZE);
21884
21885 /* If the addend is positive, use an ADD instruction.
21886 Otherwise use a SUB. Take care not to destroy the S bit. */
21887 insn &= 0xff1fffff;
21888 if (value < 0)
21889 insn |= 1 << 22;
21890 else
21891 insn |= 1 << 23;
21892
21893 /* Place the encoded addend into the first 12 bits of the
21894 instruction. */
21895 insn &= 0xfffff000;
21896 insn |= encoded_addend;
21897
21898 /* Update the instruction. */
21899 md_number_to_chars (buf, insn, INSN_SIZE);
21900 }
21901 break;
21902
21903 case BFD_RELOC_ARM_LDR_PC_G0:
21904 case BFD_RELOC_ARM_LDR_PC_G1:
21905 case BFD_RELOC_ARM_LDR_PC_G2:
21906 case BFD_RELOC_ARM_LDR_SB_G0:
21907 case BFD_RELOC_ARM_LDR_SB_G1:
21908 case BFD_RELOC_ARM_LDR_SB_G2:
21909 gas_assert (!fixP->fx_done);
21910 if (!seg->use_rela_p)
21911 {
21912 bfd_vma insn;
21913 bfd_vma addend_abs = abs (value);
21914
21915 /* Check that the absolute value of the addend can be
21916 encoded in 12 bits. */
21917 if (addend_abs >= 0x1000)
21918 as_bad_where (fixP->fx_file, fixP->fx_line,
21919 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
21920 (unsigned long) addend_abs);
21921
21922 /* Extract the instruction. */
21923 insn = md_chars_to_number (buf, INSN_SIZE);
21924
21925 /* If the addend is negative, clear bit 23 of the instruction.
21926 Otherwise set it. */
21927 if (value < 0)
21928 insn &= ~(1 << 23);
21929 else
21930 insn |= 1 << 23;
21931
21932 /* Place the absolute value of the addend into the first 12 bits
21933 of the instruction. */
21934 insn &= 0xfffff000;
21935 insn |= addend_abs;
21936
21937 /* Update the instruction. */
21938 md_number_to_chars (buf, insn, INSN_SIZE);
21939 }
21940 break;
21941
21942 case BFD_RELOC_ARM_LDRS_PC_G0:
21943 case BFD_RELOC_ARM_LDRS_PC_G1:
21944 case BFD_RELOC_ARM_LDRS_PC_G2:
21945 case BFD_RELOC_ARM_LDRS_SB_G0:
21946 case BFD_RELOC_ARM_LDRS_SB_G1:
21947 case BFD_RELOC_ARM_LDRS_SB_G2:
21948 gas_assert (!fixP->fx_done);
21949 if (!seg->use_rela_p)
21950 {
21951 bfd_vma insn;
21952 bfd_vma addend_abs = abs (value);
21953
21954 /* Check that the absolute value of the addend can be
21955 encoded in 8 bits. */
21956 if (addend_abs >= 0x100)
21957 as_bad_where (fixP->fx_file, fixP->fx_line,
21958 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
21959 (unsigned long) addend_abs);
21960
21961 /* Extract the instruction. */
21962 insn = md_chars_to_number (buf, INSN_SIZE);
21963
21964 /* If the addend is negative, clear bit 23 of the instruction.
21965 Otherwise set it. */
21966 if (value < 0)
21967 insn &= ~(1 << 23);
21968 else
21969 insn |= 1 << 23;
21970
21971 /* Place the first four bits of the absolute value of the addend
21972 into the first 4 bits of the instruction, and the remaining
21973 four into bits 8 .. 11. */
21974 insn &= 0xfffff0f0;
21975 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
21976
21977 /* Update the instruction. */
21978 md_number_to_chars (buf, insn, INSN_SIZE);
21979 }
21980 break;
21981
21982 case BFD_RELOC_ARM_LDC_PC_G0:
21983 case BFD_RELOC_ARM_LDC_PC_G1:
21984 case BFD_RELOC_ARM_LDC_PC_G2:
21985 case BFD_RELOC_ARM_LDC_SB_G0:
21986 case BFD_RELOC_ARM_LDC_SB_G1:
21987 case BFD_RELOC_ARM_LDC_SB_G2:
21988 gas_assert (!fixP->fx_done);
21989 if (!seg->use_rela_p)
21990 {
21991 bfd_vma insn;
21992 bfd_vma addend_abs = abs (value);
21993
21994 /* Check that the absolute value of the addend is a multiple of
21995 four and, when divided by four, fits in 8 bits. */
21996 if (addend_abs & 0x3)
21997 as_bad_where (fixP->fx_file, fixP->fx_line,
21998 _("bad offset 0x%08lX (must be word-aligned)"),
21999 (unsigned long) addend_abs);
22000
22001 if ((addend_abs >> 2) > 0xff)
22002 as_bad_where (fixP->fx_file, fixP->fx_line,
22003 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
22004 (unsigned long) addend_abs);
22005
22006 /* Extract the instruction. */
22007 insn = md_chars_to_number (buf, INSN_SIZE);
22008
22009 /* If the addend is negative, clear bit 23 of the instruction.
22010 Otherwise set it. */
22011 if (value < 0)
22012 insn &= ~(1 << 23);
22013 else
22014 insn |= 1 << 23;
22015
22016 /* Place the addend (divided by four) into the first eight
22017 bits of the instruction. */
22018 insn &= 0xfffffff0;
22019 insn |= addend_abs >> 2;
22020
22021 /* Update the instruction. */
22022 md_number_to_chars (buf, insn, INSN_SIZE);
22023 }
22024 break;
22025
22026 case BFD_RELOC_ARM_V4BX:
22027 /* This will need to go in the object file. */
22028 fixP->fx_done = 0;
22029 break;
22030
22031 case BFD_RELOC_UNUSED:
22032 default:
22033 as_bad_where (fixP->fx_file, fixP->fx_line,
22034 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
22035 }
22036 }
22037
22038 /* Translate internal representation of relocation info to BFD target
22039 format. */
22040
22041 arelent *
22042 tc_gen_reloc (asection *section, fixS *fixp)
22043 {
22044 arelent * reloc;
22045 bfd_reloc_code_real_type code;
22046
22047 reloc = (arelent *) xmalloc (sizeof (arelent));
22048
22049 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
22050 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
22051 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
22052
22053 if (fixp->fx_pcrel)
22054 {
22055 if (section->use_rela_p)
22056 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
22057 else
22058 fixp->fx_offset = reloc->address;
22059 }
22060 reloc->addend = fixp->fx_offset;
22061
22062 switch (fixp->fx_r_type)
22063 {
22064 case BFD_RELOC_8:
22065 if (fixp->fx_pcrel)
22066 {
22067 code = BFD_RELOC_8_PCREL;
22068 break;
22069 }
22070
22071 case BFD_RELOC_16:
22072 if (fixp->fx_pcrel)
22073 {
22074 code = BFD_RELOC_16_PCREL;
22075 break;
22076 }
22077
22078 case BFD_RELOC_32:
22079 if (fixp->fx_pcrel)
22080 {
22081 code = BFD_RELOC_32_PCREL;
22082 break;
22083 }
22084
22085 case BFD_RELOC_ARM_MOVW:
22086 if (fixp->fx_pcrel)
22087 {
22088 code = BFD_RELOC_ARM_MOVW_PCREL;
22089 break;
22090 }
22091
22092 case BFD_RELOC_ARM_MOVT:
22093 if (fixp->fx_pcrel)
22094 {
22095 code = BFD_RELOC_ARM_MOVT_PCREL;
22096 break;
22097 }
22098
22099 case BFD_RELOC_ARM_THUMB_MOVW:
22100 if (fixp->fx_pcrel)
22101 {
22102 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
22103 break;
22104 }
22105
22106 case BFD_RELOC_ARM_THUMB_MOVT:
22107 if (fixp->fx_pcrel)
22108 {
22109 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
22110 break;
22111 }
22112
22113 case BFD_RELOC_NONE:
22114 case BFD_RELOC_ARM_PCREL_BRANCH:
22115 case BFD_RELOC_ARM_PCREL_BLX:
22116 case BFD_RELOC_RVA:
22117 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22118 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22119 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22120 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22121 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22122 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22123 case BFD_RELOC_VTABLE_ENTRY:
22124 case BFD_RELOC_VTABLE_INHERIT:
22125 #ifdef TE_PE
22126 case BFD_RELOC_32_SECREL:
22127 #endif
22128 code = fixp->fx_r_type;
22129 break;
22130
22131 case BFD_RELOC_THUMB_PCREL_BLX:
22132 #ifdef OBJ_ELF
22133 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
22134 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
22135 else
22136 #endif
22137 code = BFD_RELOC_THUMB_PCREL_BLX;
22138 break;
22139
22140 case BFD_RELOC_ARM_LITERAL:
22141 case BFD_RELOC_ARM_HWLITERAL:
22142 /* If this is called then the a literal has
22143 been referenced across a section boundary. */
22144 as_bad_where (fixp->fx_file, fixp->fx_line,
22145 _("literal referenced across section boundary"));
22146 return NULL;
22147
22148 #ifdef OBJ_ELF
22149 case BFD_RELOC_ARM_TLS_CALL:
22150 case BFD_RELOC_ARM_THM_TLS_CALL:
22151 case BFD_RELOC_ARM_TLS_DESCSEQ:
22152 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
22153 case BFD_RELOC_ARM_GOT32:
22154 case BFD_RELOC_ARM_GOTOFF:
22155 case BFD_RELOC_ARM_GOT_PREL:
22156 case BFD_RELOC_ARM_PLT32:
22157 case BFD_RELOC_ARM_TARGET1:
22158 case BFD_RELOC_ARM_ROSEGREL32:
22159 case BFD_RELOC_ARM_SBREL32:
22160 case BFD_RELOC_ARM_PREL31:
22161 case BFD_RELOC_ARM_TARGET2:
22162 case BFD_RELOC_ARM_TLS_LE32:
22163 case BFD_RELOC_ARM_TLS_LDO32:
22164 case BFD_RELOC_ARM_PCREL_CALL:
22165 case BFD_RELOC_ARM_PCREL_JUMP:
22166 case BFD_RELOC_ARM_ALU_PC_G0_NC:
22167 case BFD_RELOC_ARM_ALU_PC_G0:
22168 case BFD_RELOC_ARM_ALU_PC_G1_NC:
22169 case BFD_RELOC_ARM_ALU_PC_G1:
22170 case BFD_RELOC_ARM_ALU_PC_G2:
22171 case BFD_RELOC_ARM_LDR_PC_G0:
22172 case BFD_RELOC_ARM_LDR_PC_G1:
22173 case BFD_RELOC_ARM_LDR_PC_G2:
22174 case BFD_RELOC_ARM_LDRS_PC_G0:
22175 case BFD_RELOC_ARM_LDRS_PC_G1:
22176 case BFD_RELOC_ARM_LDRS_PC_G2:
22177 case BFD_RELOC_ARM_LDC_PC_G0:
22178 case BFD_RELOC_ARM_LDC_PC_G1:
22179 case BFD_RELOC_ARM_LDC_PC_G2:
22180 case BFD_RELOC_ARM_ALU_SB_G0_NC:
22181 case BFD_RELOC_ARM_ALU_SB_G0:
22182 case BFD_RELOC_ARM_ALU_SB_G1_NC:
22183 case BFD_RELOC_ARM_ALU_SB_G1:
22184 case BFD_RELOC_ARM_ALU_SB_G2:
22185 case BFD_RELOC_ARM_LDR_SB_G0:
22186 case BFD_RELOC_ARM_LDR_SB_G1:
22187 case BFD_RELOC_ARM_LDR_SB_G2:
22188 case BFD_RELOC_ARM_LDRS_SB_G0:
22189 case BFD_RELOC_ARM_LDRS_SB_G1:
22190 case BFD_RELOC_ARM_LDRS_SB_G2:
22191 case BFD_RELOC_ARM_LDC_SB_G0:
22192 case BFD_RELOC_ARM_LDC_SB_G1:
22193 case BFD_RELOC_ARM_LDC_SB_G2:
22194 case BFD_RELOC_ARM_V4BX:
22195 code = fixp->fx_r_type;
22196 break;
22197
22198 case BFD_RELOC_ARM_TLS_GOTDESC:
22199 case BFD_RELOC_ARM_TLS_GD32:
22200 case BFD_RELOC_ARM_TLS_IE32:
22201 case BFD_RELOC_ARM_TLS_LDM32:
22202 /* BFD will include the symbol's address in the addend.
22203 But we don't want that, so subtract it out again here. */
22204 if (!S_IS_COMMON (fixp->fx_addsy))
22205 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
22206 code = fixp->fx_r_type;
22207 break;
22208 #endif
22209
22210 case BFD_RELOC_ARM_IMMEDIATE:
22211 as_bad_where (fixp->fx_file, fixp->fx_line,
22212 _("internal relocation (type: IMMEDIATE) not fixed up"));
22213 return NULL;
22214
22215 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
22216 as_bad_where (fixp->fx_file, fixp->fx_line,
22217 _("ADRL used for a symbol not defined in the same file"));
22218 return NULL;
22219
22220 case BFD_RELOC_ARM_OFFSET_IMM:
22221 if (section->use_rela_p)
22222 {
22223 code = fixp->fx_r_type;
22224 break;
22225 }
22226
22227 if (fixp->fx_addsy != NULL
22228 && !S_IS_DEFINED (fixp->fx_addsy)
22229 && S_IS_LOCAL (fixp->fx_addsy))
22230 {
22231 as_bad_where (fixp->fx_file, fixp->fx_line,
22232 _("undefined local label `%s'"),
22233 S_GET_NAME (fixp->fx_addsy));
22234 return NULL;
22235 }
22236
22237 as_bad_where (fixp->fx_file, fixp->fx_line,
22238 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
22239 return NULL;
22240
22241 default:
22242 {
22243 char * type;
22244
22245 switch (fixp->fx_r_type)
22246 {
22247 case BFD_RELOC_NONE: type = "NONE"; break;
22248 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
22249 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
22250 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
22251 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
22252 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
22253 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
22254 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
22255 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
22256 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
22257 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
22258 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
22259 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
22260 default: type = _("<unknown>"); break;
22261 }
22262 as_bad_where (fixp->fx_file, fixp->fx_line,
22263 _("cannot represent %s relocation in this object file format"),
22264 type);
22265 return NULL;
22266 }
22267 }
22268
22269 #ifdef OBJ_ELF
22270 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
22271 && GOT_symbol
22272 && fixp->fx_addsy == GOT_symbol)
22273 {
22274 code = BFD_RELOC_ARM_GOTPC;
22275 reloc->addend = fixp->fx_offset = reloc->address;
22276 }
22277 #endif
22278
22279 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
22280
22281 if (reloc->howto == NULL)
22282 {
22283 as_bad_where (fixp->fx_file, fixp->fx_line,
22284 _("cannot represent %s relocation in this object file format"),
22285 bfd_get_reloc_code_name (code));
22286 return NULL;
22287 }
22288
22289 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
22290 vtable entry to be used in the relocation's section offset. */
22291 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22292 reloc->address = fixp->fx_offset;
22293
22294 return reloc;
22295 }
22296
22297 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
22298
22299 void
22300 cons_fix_new_arm (fragS * frag,
22301 int where,
22302 int size,
22303 expressionS * exp)
22304 {
22305 bfd_reloc_code_real_type type;
22306 int pcrel = 0;
22307
22308 /* Pick a reloc.
22309 FIXME: @@ Should look at CPU word size. */
22310 switch (size)
22311 {
22312 case 1:
22313 type = BFD_RELOC_8;
22314 break;
22315 case 2:
22316 type = BFD_RELOC_16;
22317 break;
22318 case 4:
22319 default:
22320 type = BFD_RELOC_32;
22321 break;
22322 case 8:
22323 type = BFD_RELOC_64;
22324 break;
22325 }
22326
22327 #ifdef TE_PE
22328 if (exp->X_op == O_secrel)
22329 {
22330 exp->X_op = O_symbol;
22331 type = BFD_RELOC_32_SECREL;
22332 }
22333 #endif
22334
22335 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
22336 }
22337
22338 #if defined (OBJ_COFF)
22339 void
22340 arm_validate_fix (fixS * fixP)
22341 {
22342 /* If the destination of the branch is a defined symbol which does not have
22343 the THUMB_FUNC attribute, then we must be calling a function which has
22344 the (interfacearm) attribute. We look for the Thumb entry point to that
22345 function and change the branch to refer to that function instead. */
22346 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
22347 && fixP->fx_addsy != NULL
22348 && S_IS_DEFINED (fixP->fx_addsy)
22349 && ! THUMB_IS_FUNC (fixP->fx_addsy))
22350 {
22351 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
22352 }
22353 }
22354 #endif
22355
22356
22357 int
22358 arm_force_relocation (struct fix * fixp)
22359 {
22360 #if defined (OBJ_COFF) && defined (TE_PE)
22361 if (fixp->fx_r_type == BFD_RELOC_RVA)
22362 return 1;
22363 #endif
22364
22365 /* In case we have a call or a branch to a function in ARM ISA mode from
22366 a thumb function or vice-versa force the relocation. These relocations
22367 are cleared off for some cores that might have blx and simple transformations
22368 are possible. */
22369
22370 #ifdef OBJ_ELF
22371 switch (fixp->fx_r_type)
22372 {
22373 case BFD_RELOC_ARM_PCREL_JUMP:
22374 case BFD_RELOC_ARM_PCREL_CALL:
22375 case BFD_RELOC_THUMB_PCREL_BLX:
22376 if (THUMB_IS_FUNC (fixp->fx_addsy))
22377 return 1;
22378 break;
22379
22380 case BFD_RELOC_ARM_PCREL_BLX:
22381 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22382 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22383 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22384 if (ARM_IS_FUNC (fixp->fx_addsy))
22385 return 1;
22386 break;
22387
22388 default:
22389 break;
22390 }
22391 #endif
22392
22393 /* Resolve these relocations even if the symbol is extern or weak.
22394 Technically this is probably wrong due to symbol preemption.
22395 In practice these relocations do not have enough range to be useful
22396 at dynamic link time, and some code (e.g. in the Linux kernel)
22397 expects these references to be resolved. */
22398 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
22399 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
22400 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
22401 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
22402 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22403 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
22404 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
22405 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
22406 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
22407 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
22408 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
22409 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
22410 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
22411 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
22412 return 0;
22413
22414 /* Always leave these relocations for the linker. */
22415 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22416 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22417 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22418 return 1;
22419
22420 /* Always generate relocations against function symbols. */
22421 if (fixp->fx_r_type == BFD_RELOC_32
22422 && fixp->fx_addsy
22423 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
22424 return 1;
22425
22426 return generic_force_reloc (fixp);
22427 }
22428
22429 #if defined (OBJ_ELF) || defined (OBJ_COFF)
22430 /* Relocations against function names must be left unadjusted,
22431 so that the linker can use this information to generate interworking
22432 stubs. The MIPS version of this function
22433 also prevents relocations that are mips-16 specific, but I do not
22434 know why it does this.
22435
22436 FIXME:
22437 There is one other problem that ought to be addressed here, but
22438 which currently is not: Taking the address of a label (rather
22439 than a function) and then later jumping to that address. Such
22440 addresses also ought to have their bottom bit set (assuming that
22441 they reside in Thumb code), but at the moment they will not. */
22442
22443 bfd_boolean
22444 arm_fix_adjustable (fixS * fixP)
22445 {
22446 if (fixP->fx_addsy == NULL)
22447 return 1;
22448
22449 /* Preserve relocations against symbols with function type. */
22450 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
22451 return FALSE;
22452
22453 if (THUMB_IS_FUNC (fixP->fx_addsy)
22454 && fixP->fx_subsy == NULL)
22455 return FALSE;
22456
22457 /* We need the symbol name for the VTABLE entries. */
22458 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
22459 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22460 return FALSE;
22461
22462 /* Don't allow symbols to be discarded on GOT related relocs. */
22463 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
22464 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
22465 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
22466 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
22467 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
22468 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
22469 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
22470 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
22471 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
22472 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
22473 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
22474 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
22475 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
22476 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
22477 return FALSE;
22478
22479 /* Similarly for group relocations. */
22480 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22481 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22482 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22483 return FALSE;
22484
22485 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
22486 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
22487 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22488 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
22489 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
22490 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22491 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
22492 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
22493 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
22494 return FALSE;
22495
22496 return TRUE;
22497 }
22498 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
22499
22500 #ifdef OBJ_ELF
22501
22502 const char *
22503 elf32_arm_target_format (void)
22504 {
22505 #ifdef TE_SYMBIAN
22506 return (target_big_endian
22507 ? "elf32-bigarm-symbian"
22508 : "elf32-littlearm-symbian");
22509 #elif defined (TE_VXWORKS)
22510 return (target_big_endian
22511 ? "elf32-bigarm-vxworks"
22512 : "elf32-littlearm-vxworks");
22513 #elif defined (TE_NACL)
22514 return (target_big_endian
22515 ? "elf32-bigarm-nacl"
22516 : "elf32-littlearm-nacl");
22517 #else
22518 if (target_big_endian)
22519 return "elf32-bigarm";
22520 else
22521 return "elf32-littlearm";
22522 #endif
22523 }
22524
22525 void
22526 armelf_frob_symbol (symbolS * symp,
22527 int * puntp)
22528 {
22529 elf_frob_symbol (symp, puntp);
22530 }
22531 #endif
22532
22533 /* MD interface: Finalization. */
22534
22535 void
22536 arm_cleanup (void)
22537 {
22538 literal_pool * pool;
22539
22540 /* Ensure that all the IT blocks are properly closed. */
22541 check_it_blocks_finished ();
22542
22543 for (pool = list_of_pools; pool; pool = pool->next)
22544 {
22545 /* Put it at the end of the relevant section. */
22546 subseg_set (pool->section, pool->sub_section);
22547 #ifdef OBJ_ELF
22548 arm_elf_change_section ();
22549 #endif
22550 s_ltorg (0);
22551 }
22552 }
22553
22554 #ifdef OBJ_ELF
22555 /* Remove any excess mapping symbols generated for alignment frags in
22556 SEC. We may have created a mapping symbol before a zero byte
22557 alignment; remove it if there's a mapping symbol after the
22558 alignment. */
22559 static void
22560 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
22561 void *dummy ATTRIBUTE_UNUSED)
22562 {
22563 segment_info_type *seginfo = seg_info (sec);
22564 fragS *fragp;
22565
22566 if (seginfo == NULL || seginfo->frchainP == NULL)
22567 return;
22568
22569 for (fragp = seginfo->frchainP->frch_root;
22570 fragp != NULL;
22571 fragp = fragp->fr_next)
22572 {
22573 symbolS *sym = fragp->tc_frag_data.last_map;
22574 fragS *next = fragp->fr_next;
22575
22576 /* Variable-sized frags have been converted to fixed size by
22577 this point. But if this was variable-sized to start with,
22578 there will be a fixed-size frag after it. So don't handle
22579 next == NULL. */
22580 if (sym == NULL || next == NULL)
22581 continue;
22582
22583 if (S_GET_VALUE (sym) < next->fr_address)
22584 /* Not at the end of this frag. */
22585 continue;
22586 know (S_GET_VALUE (sym) == next->fr_address);
22587
22588 do
22589 {
22590 if (next->tc_frag_data.first_map != NULL)
22591 {
22592 /* Next frag starts with a mapping symbol. Discard this
22593 one. */
22594 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22595 break;
22596 }
22597
22598 if (next->fr_next == NULL)
22599 {
22600 /* This mapping symbol is at the end of the section. Discard
22601 it. */
22602 know (next->fr_fix == 0 && next->fr_var == 0);
22603 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22604 break;
22605 }
22606
22607 /* As long as we have empty frags without any mapping symbols,
22608 keep looking. */
22609 /* If the next frag is non-empty and does not start with a
22610 mapping symbol, then this mapping symbol is required. */
22611 if (next->fr_address != next->fr_next->fr_address)
22612 break;
22613
22614 next = next->fr_next;
22615 }
22616 while (next != NULL);
22617 }
22618 }
22619 #endif
22620
22621 /* Adjust the symbol table. This marks Thumb symbols as distinct from
22622 ARM ones. */
22623
22624 void
22625 arm_adjust_symtab (void)
22626 {
22627 #ifdef OBJ_COFF
22628 symbolS * sym;
22629
22630 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22631 {
22632 if (ARM_IS_THUMB (sym))
22633 {
22634 if (THUMB_IS_FUNC (sym))
22635 {
22636 /* Mark the symbol as a Thumb function. */
22637 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
22638 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
22639 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
22640
22641 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
22642 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
22643 else
22644 as_bad (_("%s: unexpected function type: %d"),
22645 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
22646 }
22647 else switch (S_GET_STORAGE_CLASS (sym))
22648 {
22649 case C_EXT:
22650 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
22651 break;
22652 case C_STAT:
22653 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
22654 break;
22655 case C_LABEL:
22656 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
22657 break;
22658 default:
22659 /* Do nothing. */
22660 break;
22661 }
22662 }
22663
22664 if (ARM_IS_INTERWORK (sym))
22665 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
22666 }
22667 #endif
22668 #ifdef OBJ_ELF
22669 symbolS * sym;
22670 char bind;
22671
22672 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22673 {
22674 if (ARM_IS_THUMB (sym))
22675 {
22676 elf_symbol_type * elf_sym;
22677
22678 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
22679 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
22680
22681 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
22682 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
22683 {
22684 /* If it's a .thumb_func, declare it as so,
22685 otherwise tag label as .code 16. */
22686 if (THUMB_IS_FUNC (sym))
22687 elf_sym->internal_elf_sym.st_target_internal
22688 = ST_BRANCH_TO_THUMB;
22689 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
22690 elf_sym->internal_elf_sym.st_info =
22691 ELF_ST_INFO (bind, STT_ARM_16BIT);
22692 }
22693 }
22694 }
22695
22696 /* Remove any overlapping mapping symbols generated by alignment frags. */
22697 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
22698 /* Now do generic ELF adjustments. */
22699 elf_adjust_symtab ();
22700 #endif
22701 }
22702
22703 /* MD interface: Initialization. */
22704
22705 static void
22706 set_constant_flonums (void)
22707 {
22708 int i;
22709
22710 for (i = 0; i < NUM_FLOAT_VALS; i++)
22711 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
22712 abort ();
22713 }
22714
22715 /* Auto-select Thumb mode if it's the only available instruction set for the
22716 given architecture. */
22717
22718 static void
22719 autoselect_thumb_from_cpu_variant (void)
22720 {
22721 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22722 opcode_select (16);
22723 }
22724
22725 void
22726 md_begin (void)
22727 {
22728 unsigned mach;
22729 unsigned int i;
22730
22731 if ( (arm_ops_hsh = hash_new ()) == NULL
22732 || (arm_cond_hsh = hash_new ()) == NULL
22733 || (arm_shift_hsh = hash_new ()) == NULL
22734 || (arm_psr_hsh = hash_new ()) == NULL
22735 || (arm_v7m_psr_hsh = hash_new ()) == NULL
22736 || (arm_reg_hsh = hash_new ()) == NULL
22737 || (arm_reloc_hsh = hash_new ()) == NULL
22738 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
22739 as_fatal (_("virtual memory exhausted"));
22740
22741 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
22742 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
22743 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
22744 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
22745 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
22746 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
22747 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
22748 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
22749 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
22750 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
22751 (void *) (v7m_psrs + i));
22752 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
22753 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
22754 for (i = 0;
22755 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
22756 i++)
22757 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
22758 (void *) (barrier_opt_names + i));
22759 #ifdef OBJ_ELF
22760 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
22761 {
22762 struct reloc_entry * entry = reloc_names + i;
22763
22764 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
22765 /* This makes encode_branch() use the EABI versions of this relocation. */
22766 entry->reloc = BFD_RELOC_UNUSED;
22767
22768 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
22769 }
22770 #endif
22771
22772 set_constant_flonums ();
22773
22774 /* Set the cpu variant based on the command-line options. We prefer
22775 -mcpu= over -march= if both are set (as for GCC); and we prefer
22776 -mfpu= over any other way of setting the floating point unit.
22777 Use of legacy options with new options are faulted. */
22778 if (legacy_cpu)
22779 {
22780 if (mcpu_cpu_opt || march_cpu_opt)
22781 as_bad (_("use of old and new-style options to set CPU type"));
22782
22783 mcpu_cpu_opt = legacy_cpu;
22784 }
22785 else if (!mcpu_cpu_opt)
22786 mcpu_cpu_opt = march_cpu_opt;
22787
22788 if (legacy_fpu)
22789 {
22790 if (mfpu_opt)
22791 as_bad (_("use of old and new-style options to set FPU type"));
22792
22793 mfpu_opt = legacy_fpu;
22794 }
22795 else if (!mfpu_opt)
22796 {
22797 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22798 || defined (TE_NetBSD) || defined (TE_VXWORKS))
22799 /* Some environments specify a default FPU. If they don't, infer it
22800 from the processor. */
22801 if (mcpu_fpu_opt)
22802 mfpu_opt = mcpu_fpu_opt;
22803 else
22804 mfpu_opt = march_fpu_opt;
22805 #else
22806 mfpu_opt = &fpu_default;
22807 #endif
22808 }
22809
22810 if (!mfpu_opt)
22811 {
22812 if (mcpu_cpu_opt != NULL)
22813 mfpu_opt = &fpu_default;
22814 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
22815 mfpu_opt = &fpu_arch_vfp_v2;
22816 else
22817 mfpu_opt = &fpu_arch_fpa;
22818 }
22819
22820 #ifdef CPU_DEFAULT
22821 if (!mcpu_cpu_opt)
22822 {
22823 mcpu_cpu_opt = &cpu_default;
22824 selected_cpu = cpu_default;
22825 }
22826 #else
22827 if (mcpu_cpu_opt)
22828 selected_cpu = *mcpu_cpu_opt;
22829 else
22830 mcpu_cpu_opt = &arm_arch_any;
22831 #endif
22832
22833 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22834
22835 autoselect_thumb_from_cpu_variant ();
22836
22837 arm_arch_used = thumb_arch_used = arm_arch_none;
22838
22839 #if defined OBJ_COFF || defined OBJ_ELF
22840 {
22841 unsigned int flags = 0;
22842
22843 #if defined OBJ_ELF
22844 flags = meabi_flags;
22845
22846 switch (meabi_flags)
22847 {
22848 case EF_ARM_EABI_UNKNOWN:
22849 #endif
22850 /* Set the flags in the private structure. */
22851 if (uses_apcs_26) flags |= F_APCS26;
22852 if (support_interwork) flags |= F_INTERWORK;
22853 if (uses_apcs_float) flags |= F_APCS_FLOAT;
22854 if (pic_code) flags |= F_PIC;
22855 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
22856 flags |= F_SOFT_FLOAT;
22857
22858 switch (mfloat_abi_opt)
22859 {
22860 case ARM_FLOAT_ABI_SOFT:
22861 case ARM_FLOAT_ABI_SOFTFP:
22862 flags |= F_SOFT_FLOAT;
22863 break;
22864
22865 case ARM_FLOAT_ABI_HARD:
22866 if (flags & F_SOFT_FLOAT)
22867 as_bad (_("hard-float conflicts with specified fpu"));
22868 break;
22869 }
22870
22871 /* Using pure-endian doubles (even if soft-float). */
22872 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
22873 flags |= F_VFP_FLOAT;
22874
22875 #if defined OBJ_ELF
22876 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
22877 flags |= EF_ARM_MAVERICK_FLOAT;
22878 break;
22879
22880 case EF_ARM_EABI_VER4:
22881 case EF_ARM_EABI_VER5:
22882 /* No additional flags to set. */
22883 break;
22884
22885 default:
22886 abort ();
22887 }
22888 #endif
22889 bfd_set_private_flags (stdoutput, flags);
22890
22891 /* We have run out flags in the COFF header to encode the
22892 status of ATPCS support, so instead we create a dummy,
22893 empty, debug section called .arm.atpcs. */
22894 if (atpcs)
22895 {
22896 asection * sec;
22897
22898 sec = bfd_make_section (stdoutput, ".arm.atpcs");
22899
22900 if (sec != NULL)
22901 {
22902 bfd_set_section_flags
22903 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
22904 bfd_set_section_size (stdoutput, sec, 0);
22905 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
22906 }
22907 }
22908 }
22909 #endif
22910
22911 /* Record the CPU type as well. */
22912 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
22913 mach = bfd_mach_arm_iWMMXt2;
22914 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
22915 mach = bfd_mach_arm_iWMMXt;
22916 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
22917 mach = bfd_mach_arm_XScale;
22918 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
22919 mach = bfd_mach_arm_ep9312;
22920 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
22921 mach = bfd_mach_arm_5TE;
22922 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
22923 {
22924 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
22925 mach = bfd_mach_arm_5T;
22926 else
22927 mach = bfd_mach_arm_5;
22928 }
22929 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
22930 {
22931 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
22932 mach = bfd_mach_arm_4T;
22933 else
22934 mach = bfd_mach_arm_4;
22935 }
22936 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
22937 mach = bfd_mach_arm_3M;
22938 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
22939 mach = bfd_mach_arm_3;
22940 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
22941 mach = bfd_mach_arm_2a;
22942 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
22943 mach = bfd_mach_arm_2;
22944 else
22945 mach = bfd_mach_arm_unknown;
22946
22947 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
22948 }
22949
22950 /* Command line processing. */
22951
22952 /* md_parse_option
22953 Invocation line includes a switch not recognized by the base assembler.
22954 See if it's a processor-specific option.
22955
22956 This routine is somewhat complicated by the need for backwards
22957 compatibility (since older releases of gcc can't be changed).
22958 The new options try to make the interface as compatible as
22959 possible with GCC.
22960
22961 New options (supported) are:
22962
22963 -mcpu=<cpu name> Assemble for selected processor
22964 -march=<architecture name> Assemble for selected architecture
22965 -mfpu=<fpu architecture> Assemble for selected FPU.
22966 -EB/-mbig-endian Big-endian
22967 -EL/-mlittle-endian Little-endian
22968 -k Generate PIC code
22969 -mthumb Start in Thumb mode
22970 -mthumb-interwork Code supports ARM/Thumb interworking
22971
22972 -m[no-]warn-deprecated Warn about deprecated features
22973
22974 For now we will also provide support for:
22975
22976 -mapcs-32 32-bit Program counter
22977 -mapcs-26 26-bit Program counter
22978 -macps-float Floats passed in FP registers
22979 -mapcs-reentrant Reentrant code
22980 -matpcs
22981 (sometime these will probably be replaced with -mapcs=<list of options>
22982 and -matpcs=<list of options>)
22983
22984 The remaining options are only supported for back-wards compatibility.
22985 Cpu variants, the arm part is optional:
22986 -m[arm]1 Currently not supported.
22987 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
22988 -m[arm]3 Arm 3 processor
22989 -m[arm]6[xx], Arm 6 processors
22990 -m[arm]7[xx][t][[d]m] Arm 7 processors
22991 -m[arm]8[10] Arm 8 processors
22992 -m[arm]9[20][tdmi] Arm 9 processors
22993 -mstrongarm[110[0]] StrongARM processors
22994 -mxscale XScale processors
22995 -m[arm]v[2345[t[e]]] Arm architectures
22996 -mall All (except the ARM1)
22997 FP variants:
22998 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
22999 -mfpe-old (No float load/store multiples)
23000 -mvfpxd VFP Single precision
23001 -mvfp All VFP
23002 -mno-fpu Disable all floating point instructions
23003
23004 The following CPU names are recognized:
23005 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
23006 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
23007 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
23008 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
23009 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
23010 arm10t arm10e, arm1020t, arm1020e, arm10200e,
23011 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
23012
23013 */
23014
23015 const char * md_shortopts = "m:k";
23016
23017 #ifdef ARM_BI_ENDIAN
23018 #define OPTION_EB (OPTION_MD_BASE + 0)
23019 #define OPTION_EL (OPTION_MD_BASE + 1)
23020 #else
23021 #if TARGET_BYTES_BIG_ENDIAN
23022 #define OPTION_EB (OPTION_MD_BASE + 0)
23023 #else
23024 #define OPTION_EL (OPTION_MD_BASE + 1)
23025 #endif
23026 #endif
23027 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
23028
23029 struct option md_longopts[] =
23030 {
23031 #ifdef OPTION_EB
23032 {"EB", no_argument, NULL, OPTION_EB},
23033 #endif
23034 #ifdef OPTION_EL
23035 {"EL", no_argument, NULL, OPTION_EL},
23036 #endif
23037 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
23038 {NULL, no_argument, NULL, 0}
23039 };
23040
23041 size_t md_longopts_size = sizeof (md_longopts);
23042
23043 struct arm_option_table
23044 {
23045 char *option; /* Option name to match. */
23046 char *help; /* Help information. */
23047 int *var; /* Variable to change. */
23048 int value; /* What to change it to. */
23049 char *deprecated; /* If non-null, print this message. */
23050 };
23051
23052 struct arm_option_table arm_opts[] =
23053 {
23054 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
23055 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
23056 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
23057 &support_interwork, 1, NULL},
23058 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
23059 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
23060 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
23061 1, NULL},
23062 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
23063 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
23064 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
23065 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
23066 NULL},
23067
23068 /* These are recognized by the assembler, but have no affect on code. */
23069 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
23070 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
23071
23072 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
23073 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
23074 &warn_on_deprecated, 0, NULL},
23075 {NULL, NULL, NULL, 0, NULL}
23076 };
23077
23078 struct arm_legacy_option_table
23079 {
23080 char *option; /* Option name to match. */
23081 const arm_feature_set **var; /* Variable to change. */
23082 const arm_feature_set value; /* What to change it to. */
23083 char *deprecated; /* If non-null, print this message. */
23084 };
23085
23086 const struct arm_legacy_option_table arm_legacy_opts[] =
23087 {
23088 /* DON'T add any new processors to this list -- we want the whole list
23089 to go away... Add them to the processors table instead. */
23090 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23091 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23092 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23093 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23094 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23095 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23096 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23097 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23098 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23099 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23100 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23101 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23102 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23103 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23104 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23105 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23106 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23107 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23108 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23109 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23110 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23111 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23112 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23113 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23114 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23115 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23116 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23117 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23118 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23119 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23120 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23121 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23122 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23123 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23124 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23125 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23126 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23127 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23128 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23129 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23130 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23131 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23132 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23133 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23134 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23135 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23136 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23137 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23138 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23139 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23140 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23141 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23142 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23143 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23144 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23145 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23146 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23147 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23148 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23149 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23150 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23151 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23152 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23153 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23154 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23155 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23156 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23157 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23158 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
23159 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
23160 N_("use -mcpu=strongarm110")},
23161 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
23162 N_("use -mcpu=strongarm1100")},
23163 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
23164 N_("use -mcpu=strongarm1110")},
23165 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
23166 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
23167 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
23168
23169 /* Architecture variants -- don't add any more to this list either. */
23170 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23171 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23172 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23173 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23174 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23175 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23176 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23177 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23178 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23179 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23180 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23181 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23182 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23183 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23184 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23185 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23186 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
23187 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
23188
23189 /* Floating point variants -- don't add any more to this list either. */
23190 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
23191 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
23192 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
23193 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
23194 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
23195
23196 {NULL, NULL, ARM_ARCH_NONE, NULL}
23197 };
23198
23199 struct arm_cpu_option_table
23200 {
23201 char *name;
23202 size_t name_len;
23203 const arm_feature_set value;
23204 /* For some CPUs we assume an FPU unless the user explicitly sets
23205 -mfpu=... */
23206 const arm_feature_set default_fpu;
23207 /* The canonical name of the CPU, or NULL to use NAME converted to upper
23208 case. */
23209 const char *canonical_name;
23210 };
23211
23212 /* This list should, at a minimum, contain all the cpu names
23213 recognized by GCC. */
23214 #define ARM_CPU_OPT(N, V, DF, CN) { N, sizeof (N) - 1, V, DF, CN }
23215 static const struct arm_cpu_option_table arm_cpus[] =
23216 {
23217 ARM_CPU_OPT ("all", ARM_ANY, FPU_ARCH_FPA, NULL),
23218 ARM_CPU_OPT ("arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL),
23219 ARM_CPU_OPT ("arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL),
23220 ARM_CPU_OPT ("arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23221 ARM_CPU_OPT ("arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23222 ARM_CPU_OPT ("arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23223 ARM_CPU_OPT ("arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23224 ARM_CPU_OPT ("arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23225 ARM_CPU_OPT ("arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23226 ARM_CPU_OPT ("arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23227 ARM_CPU_OPT ("arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23228 ARM_CPU_OPT ("arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23229 ARM_CPU_OPT ("arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23230 ARM_CPU_OPT ("arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23231 ARM_CPU_OPT ("arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23232 ARM_CPU_OPT ("arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23233 ARM_CPU_OPT ("arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23234 ARM_CPU_OPT ("arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23235 ARM_CPU_OPT ("arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23236 ARM_CPU_OPT ("arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23237 ARM_CPU_OPT ("arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23238 ARM_CPU_OPT ("arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23239 ARM_CPU_OPT ("arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23240 ARM_CPU_OPT ("arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23241 ARM_CPU_OPT ("arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23242 ARM_CPU_OPT ("arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23243 ARM_CPU_OPT ("arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23244 ARM_CPU_OPT ("arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23245 ARM_CPU_OPT ("arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23246 ARM_CPU_OPT ("arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23247 ARM_CPU_OPT ("arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23248 ARM_CPU_OPT ("arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23249 ARM_CPU_OPT ("arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23250 ARM_CPU_OPT ("strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23251 ARM_CPU_OPT ("strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23252 ARM_CPU_OPT ("strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23253 ARM_CPU_OPT ("strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23254 ARM_CPU_OPT ("strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23255 ARM_CPU_OPT ("arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23256 ARM_CPU_OPT ("arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"),
23257 ARM_CPU_OPT ("arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23258 ARM_CPU_OPT ("arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23259 ARM_CPU_OPT ("arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23260 ARM_CPU_OPT ("arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23261 ARM_CPU_OPT ("fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23262 ARM_CPU_OPT ("fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23263 /* For V5 or later processors we default to using VFP; but the user
23264 should really set the FPU type explicitly. */
23265 ARM_CPU_OPT ("arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23266 ARM_CPU_OPT ("arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23267 ARM_CPU_OPT ("arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23268 ARM_CPU_OPT ("arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23269 ARM_CPU_OPT ("arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23270 ARM_CPU_OPT ("arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23271 ARM_CPU_OPT ("arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"),
23272 ARM_CPU_OPT ("arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23273 ARM_CPU_OPT ("arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23274 ARM_CPU_OPT ("arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"),
23275 ARM_CPU_OPT ("arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23276 ARM_CPU_OPT ("arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23277 ARM_CPU_OPT ("arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23278 ARM_CPU_OPT ("arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23279 ARM_CPU_OPT ("arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23280 ARM_CPU_OPT ("arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"),
23281 ARM_CPU_OPT ("arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23282 ARM_CPU_OPT ("arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23283 ARM_CPU_OPT ("arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23284 ARM_CPU_OPT ("arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2,
23285 "ARM1026EJ-S"),
23286 ARM_CPU_OPT ("arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23287 ARM_CPU_OPT ("fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23288 ARM_CPU_OPT ("fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23289 ARM_CPU_OPT ("fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23290 ARM_CPU_OPT ("fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23291 ARM_CPU_OPT ("fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23292 ARM_CPU_OPT ("arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"),
23293 ARM_CPU_OPT ("arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL),
23294 ARM_CPU_OPT ("arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2,
23295 "ARM1136JF-S"),
23296 ARM_CPU_OPT ("arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL),
23297 ARM_CPU_OPT ("mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"),
23298 ARM_CPU_OPT ("mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"),
23299 ARM_CPU_OPT ("arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL),
23300 ARM_CPU_OPT ("arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL),
23301 ARM_CPU_OPT ("arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL),
23302 ARM_CPU_OPT ("arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL),
23303 ARM_CPU_OPT ("cortex-a5", ARM_ARCH_V7A_MP_SEC,
23304 FPU_NONE, "Cortex-A5"),
23305 ARM_CPU_OPT ("cortex-a7", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23306 FPU_ARCH_NEON_VFP_V4,
23307 "Cortex-A7"),
23308 ARM_CPU_OPT ("cortex-a8", ARM_ARCH_V7A_SEC,
23309 ARM_FEATURE (0, FPU_VFP_V3
23310 | FPU_NEON_EXT_V1),
23311 "Cortex-A8"),
23312 ARM_CPU_OPT ("cortex-a9", ARM_ARCH_V7A_MP_SEC,
23313 ARM_FEATURE (0, FPU_VFP_V3
23314 | FPU_NEON_EXT_V1),
23315 "Cortex-A9"),
23316 ARM_CPU_OPT ("cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23317 FPU_ARCH_NEON_VFP_V4,
23318 "Cortex-A15"),
23319 ARM_CPU_OPT ("cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"),
23320 ARM_CPU_OPT ("cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
23321 "Cortex-R4F"),
23322 ARM_CPU_OPT ("cortex-r5", ARM_ARCH_V7R_IDIV,
23323 FPU_NONE, "Cortex-R5"),
23324 ARM_CPU_OPT ("cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"),
23325 ARM_CPU_OPT ("cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"),
23326 ARM_CPU_OPT ("cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"),
23327 ARM_CPU_OPT ("cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"),
23328 ARM_CPU_OPT ("cortex-m0plus", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0+"),
23329 /* ??? XSCALE is really an architecture. */
23330 ARM_CPU_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
23331 /* ??? iwmmxt is not a processor. */
23332 ARM_CPU_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL),
23333 ARM_CPU_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL),
23334 ARM_CPU_OPT ("i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
23335 /* Maverick */
23336 ARM_CPU_OPT ("ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
23337 FPU_ARCH_MAVERICK,
23338 "ARM920T"),
23339 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
23340 };
23341 #undef ARM_CPU_OPT
23342
23343 struct arm_arch_option_table
23344 {
23345 char *name;
23346 size_t name_len;
23347 const arm_feature_set value;
23348 const arm_feature_set default_fpu;
23349 };
23350
23351 /* This list should, at a minimum, contain all the architecture names
23352 recognized by GCC. */
23353 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
23354 static const struct arm_arch_option_table arm_archs[] =
23355 {
23356 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
23357 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
23358 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
23359 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
23360 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
23361 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
23362 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
23363 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
23364 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
23365 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
23366 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
23367 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
23368 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
23369 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
23370 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
23371 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
23372 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
23373 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
23374 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
23375 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
23376 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
23377 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP),
23378 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
23379 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
23380 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
23381 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP),
23382 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
23383 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
23384 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
23385 /* The official spelling of the ARMv7 profile variants is the dashed form.
23386 Accept the non-dashed form for compatibility with old toolchains. */
23387 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23388 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23389 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23390 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23391 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23392 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23393 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
23394 ARM_ARCH_OPT ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP),
23395 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
23396 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
23397 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
23398 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
23399 };
23400 #undef ARM_ARCH_OPT
23401
23402 /* ISA extensions in the co-processor and main instruction set space. */
23403 struct arm_option_extension_value_table
23404 {
23405 char *name;
23406 size_t name_len;
23407 const arm_feature_set value;
23408 const arm_feature_set allowed_archs;
23409 };
23410
23411 /* The following table must be in alphabetical order with a NULL last entry.
23412 */
23413 #define ARM_EXT_OPT(N, V, AA) { N, sizeof (N) - 1, V, AA }
23414 static const struct arm_option_extension_value_table arm_extensions[] =
23415 {
23416 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
23417 ARM_FEATURE (ARM_EXT_V8, 0)),
23418 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8,
23419 ARM_FEATURE (ARM_EXT_V8, 0)),
23420 ARM_EXT_OPT ("idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
23421 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
23422 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY),
23423 ARM_EXT_OPT ("iwmmxt2",
23424 ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY),
23425 ARM_EXT_OPT ("maverick",
23426 ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY),
23427 ARM_EXT_OPT ("mp", ARM_FEATURE (ARM_EXT_MP, 0),
23428 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
23429 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
23430 ARM_FEATURE (ARM_EXT_V8, 0)),
23431 ARM_EXT_OPT ("os", ARM_FEATURE (ARM_EXT_OS, 0),
23432 ARM_FEATURE (ARM_EXT_V6M, 0)),
23433 ARM_EXT_OPT ("sec", ARM_FEATURE (ARM_EXT_SEC, 0),
23434 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)),
23435 ARM_EXT_OPT ("virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV
23436 | ARM_EXT_DIV, 0),
23437 ARM_FEATURE (ARM_EXT_V7A, 0)),
23438 ARM_EXT_OPT ("xscale",ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY),
23439 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
23440 };
23441 #undef ARM_EXT_OPT
23442
23443 /* ISA floating-point and Advanced SIMD extensions. */
23444 struct arm_option_fpu_value_table
23445 {
23446 char *name;
23447 const arm_feature_set value;
23448 };
23449
23450 /* This list should, at a minimum, contain all the fpu names
23451 recognized by GCC. */
23452 static const struct arm_option_fpu_value_table arm_fpus[] =
23453 {
23454 {"softfpa", FPU_NONE},
23455 {"fpe", FPU_ARCH_FPE},
23456 {"fpe2", FPU_ARCH_FPE},
23457 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
23458 {"fpa", FPU_ARCH_FPA},
23459 {"fpa10", FPU_ARCH_FPA},
23460 {"fpa11", FPU_ARCH_FPA},
23461 {"arm7500fe", FPU_ARCH_FPA},
23462 {"softvfp", FPU_ARCH_VFP},
23463 {"softvfp+vfp", FPU_ARCH_VFP_V2},
23464 {"vfp", FPU_ARCH_VFP_V2},
23465 {"vfp9", FPU_ARCH_VFP_V2},
23466 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
23467 {"vfp10", FPU_ARCH_VFP_V2},
23468 {"vfp10-r0", FPU_ARCH_VFP_V1},
23469 {"vfpxd", FPU_ARCH_VFP_V1xD},
23470 {"vfpv2", FPU_ARCH_VFP_V2},
23471 {"vfpv3", FPU_ARCH_VFP_V3},
23472 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
23473 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
23474 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
23475 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
23476 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
23477 {"arm1020t", FPU_ARCH_VFP_V1},
23478 {"arm1020e", FPU_ARCH_VFP_V2},
23479 {"arm1136jfs", FPU_ARCH_VFP_V2},
23480 {"arm1136jf-s", FPU_ARCH_VFP_V2},
23481 {"maverick", FPU_ARCH_MAVERICK},
23482 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
23483 {"neon-fp16", FPU_ARCH_NEON_FP16},
23484 {"vfpv4", FPU_ARCH_VFP_V4},
23485 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
23486 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
23487 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
23488 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
23489 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
23490 {"crypto-neon-fp-armv8",
23491 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
23492 {NULL, ARM_ARCH_NONE}
23493 };
23494
23495 struct arm_option_value_table
23496 {
23497 char *name;
23498 long value;
23499 };
23500
23501 static const struct arm_option_value_table arm_float_abis[] =
23502 {
23503 {"hard", ARM_FLOAT_ABI_HARD},
23504 {"softfp", ARM_FLOAT_ABI_SOFTFP},
23505 {"soft", ARM_FLOAT_ABI_SOFT},
23506 {NULL, 0}
23507 };
23508
23509 #ifdef OBJ_ELF
23510 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
23511 static const struct arm_option_value_table arm_eabis[] =
23512 {
23513 {"gnu", EF_ARM_EABI_UNKNOWN},
23514 {"4", EF_ARM_EABI_VER4},
23515 {"5", EF_ARM_EABI_VER5},
23516 {NULL, 0}
23517 };
23518 #endif
23519
23520 struct arm_long_option_table
23521 {
23522 char * option; /* Substring to match. */
23523 char * help; /* Help information. */
23524 int (* func) (char * subopt); /* Function to decode sub-option. */
23525 char * deprecated; /* If non-null, print this message. */
23526 };
23527
23528 static bfd_boolean
23529 arm_parse_extension (char *str, const arm_feature_set **opt_p)
23530 {
23531 arm_feature_set *ext_set = (arm_feature_set *)
23532 xmalloc (sizeof (arm_feature_set));
23533
23534 /* We insist on extensions being specified in alphabetical order, and with
23535 extensions being added before being removed. We achieve this by having
23536 the global ARM_EXTENSIONS table in alphabetical order, and using the
23537 ADDING_VALUE variable to indicate whether we are adding an extension (1)
23538 or removing it (0) and only allowing it to change in the order
23539 -1 -> 1 -> 0. */
23540 const struct arm_option_extension_value_table * opt = NULL;
23541 int adding_value = -1;
23542
23543 /* Copy the feature set, so that we can modify it. */
23544 *ext_set = **opt_p;
23545 *opt_p = ext_set;
23546
23547 while (str != NULL && *str != 0)
23548 {
23549 char *ext;
23550 size_t len;
23551
23552 if (*str != '+')
23553 {
23554 as_bad (_("invalid architectural extension"));
23555 return FALSE;
23556 }
23557
23558 str++;
23559 ext = strchr (str, '+');
23560
23561 if (ext != NULL)
23562 len = ext - str;
23563 else
23564 len = strlen (str);
23565
23566 if (len >= 2 && strncmp (str, "no", 2) == 0)
23567 {
23568 if (adding_value != 0)
23569 {
23570 adding_value = 0;
23571 opt = arm_extensions;
23572 }
23573
23574 len -= 2;
23575 str += 2;
23576 }
23577 else if (len > 0)
23578 {
23579 if (adding_value == -1)
23580 {
23581 adding_value = 1;
23582 opt = arm_extensions;
23583 }
23584 else if (adding_value != 1)
23585 {
23586 as_bad (_("must specify extensions to add before specifying "
23587 "those to remove"));
23588 return FALSE;
23589 }
23590 }
23591
23592 if (len == 0)
23593 {
23594 as_bad (_("missing architectural extension"));
23595 return FALSE;
23596 }
23597
23598 gas_assert (adding_value != -1);
23599 gas_assert (opt != NULL);
23600
23601 /* Scan over the options table trying to find an exact match. */
23602 for (; opt->name != NULL; opt++)
23603 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23604 {
23605 /* Check we can apply the extension to this architecture. */
23606 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
23607 {
23608 as_bad (_("extension does not apply to the base architecture"));
23609 return FALSE;
23610 }
23611
23612 /* Add or remove the extension. */
23613 if (adding_value)
23614 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
23615 else
23616 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
23617
23618 break;
23619 }
23620
23621 if (opt->name == NULL)
23622 {
23623 /* Did we fail to find an extension because it wasn't specified in
23624 alphabetical order, or because it does not exist? */
23625
23626 for (opt = arm_extensions; opt->name != NULL; opt++)
23627 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23628 break;
23629
23630 if (opt->name == NULL)
23631 as_bad (_("unknown architectural extension `%s'"), str);
23632 else
23633 as_bad (_("architectural extensions must be specified in "
23634 "alphabetical order"));
23635
23636 return FALSE;
23637 }
23638 else
23639 {
23640 /* We should skip the extension we've just matched the next time
23641 round. */
23642 opt++;
23643 }
23644
23645 str = ext;
23646 };
23647
23648 return TRUE;
23649 }
23650
23651 static bfd_boolean
23652 arm_parse_cpu (char *str)
23653 {
23654 const struct arm_cpu_option_table *opt;
23655 char *ext = strchr (str, '+');
23656 size_t len;
23657
23658 if (ext != NULL)
23659 len = ext - str;
23660 else
23661 len = strlen (str);
23662
23663 if (len == 0)
23664 {
23665 as_bad (_("missing cpu name `%s'"), str);
23666 return FALSE;
23667 }
23668
23669 for (opt = arm_cpus; opt->name != NULL; opt++)
23670 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23671 {
23672 mcpu_cpu_opt = &opt->value;
23673 mcpu_fpu_opt = &opt->default_fpu;
23674 if (opt->canonical_name)
23675 strcpy (selected_cpu_name, opt->canonical_name);
23676 else
23677 {
23678 size_t i;
23679
23680 for (i = 0; i < len; i++)
23681 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23682 selected_cpu_name[i] = 0;
23683 }
23684
23685 if (ext != NULL)
23686 return arm_parse_extension (ext, &mcpu_cpu_opt);
23687
23688 return TRUE;
23689 }
23690
23691 as_bad (_("unknown cpu `%s'"), str);
23692 return FALSE;
23693 }
23694
23695 static bfd_boolean
23696 arm_parse_arch (char *str)
23697 {
23698 const struct arm_arch_option_table *opt;
23699 char *ext = strchr (str, '+');
23700 size_t len;
23701
23702 if (ext != NULL)
23703 len = ext - str;
23704 else
23705 len = strlen (str);
23706
23707 if (len == 0)
23708 {
23709 as_bad (_("missing architecture name `%s'"), str);
23710 return FALSE;
23711 }
23712
23713 for (opt = arm_archs; opt->name != NULL; opt++)
23714 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23715 {
23716 march_cpu_opt = &opt->value;
23717 march_fpu_opt = &opt->default_fpu;
23718 strcpy (selected_cpu_name, opt->name);
23719
23720 if (ext != NULL)
23721 return arm_parse_extension (ext, &march_cpu_opt);
23722
23723 return TRUE;
23724 }
23725
23726 as_bad (_("unknown architecture `%s'\n"), str);
23727 return FALSE;
23728 }
23729
23730 static bfd_boolean
23731 arm_parse_fpu (char * str)
23732 {
23733 const struct arm_option_fpu_value_table * opt;
23734
23735 for (opt = arm_fpus; opt->name != NULL; opt++)
23736 if (streq (opt->name, str))
23737 {
23738 mfpu_opt = &opt->value;
23739 return TRUE;
23740 }
23741
23742 as_bad (_("unknown floating point format `%s'\n"), str);
23743 return FALSE;
23744 }
23745
23746 static bfd_boolean
23747 arm_parse_float_abi (char * str)
23748 {
23749 const struct arm_option_value_table * opt;
23750
23751 for (opt = arm_float_abis; opt->name != NULL; opt++)
23752 if (streq (opt->name, str))
23753 {
23754 mfloat_abi_opt = opt->value;
23755 return TRUE;
23756 }
23757
23758 as_bad (_("unknown floating point abi `%s'\n"), str);
23759 return FALSE;
23760 }
23761
23762 #ifdef OBJ_ELF
23763 static bfd_boolean
23764 arm_parse_eabi (char * str)
23765 {
23766 const struct arm_option_value_table *opt;
23767
23768 for (opt = arm_eabis; opt->name != NULL; opt++)
23769 if (streq (opt->name, str))
23770 {
23771 meabi_flags = opt->value;
23772 return TRUE;
23773 }
23774 as_bad (_("unknown EABI `%s'\n"), str);
23775 return FALSE;
23776 }
23777 #endif
23778
23779 static bfd_boolean
23780 arm_parse_it_mode (char * str)
23781 {
23782 bfd_boolean ret = TRUE;
23783
23784 if (streq ("arm", str))
23785 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
23786 else if (streq ("thumb", str))
23787 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
23788 else if (streq ("always", str))
23789 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
23790 else if (streq ("never", str))
23791 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
23792 else
23793 {
23794 as_bad (_("unknown implicit IT mode `%s', should be "\
23795 "arm, thumb, always, or never."), str);
23796 ret = FALSE;
23797 }
23798
23799 return ret;
23800 }
23801
23802 struct arm_long_option_table arm_long_opts[] =
23803 {
23804 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23805 arm_parse_cpu, NULL},
23806 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23807 arm_parse_arch, NULL},
23808 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23809 arm_parse_fpu, NULL},
23810 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23811 arm_parse_float_abi, NULL},
23812 #ifdef OBJ_ELF
23813 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
23814 arm_parse_eabi, NULL},
23815 #endif
23816 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23817 arm_parse_it_mode, NULL},
23818 {NULL, NULL, 0, NULL}
23819 };
23820
23821 int
23822 md_parse_option (int c, char * arg)
23823 {
23824 struct arm_option_table *opt;
23825 const struct arm_legacy_option_table *fopt;
23826 struct arm_long_option_table *lopt;
23827
23828 switch (c)
23829 {
23830 #ifdef OPTION_EB
23831 case OPTION_EB:
23832 target_big_endian = 1;
23833 break;
23834 #endif
23835
23836 #ifdef OPTION_EL
23837 case OPTION_EL:
23838 target_big_endian = 0;
23839 break;
23840 #endif
23841
23842 case OPTION_FIX_V4BX:
23843 fix_v4bx = TRUE;
23844 break;
23845
23846 case 'a':
23847 /* Listing option. Just ignore these, we don't support additional
23848 ones. */
23849 return 0;
23850
23851 default:
23852 for (opt = arm_opts; opt->option != NULL; opt++)
23853 {
23854 if (c == opt->option[0]
23855 && ((arg == NULL && opt->option[1] == 0)
23856 || streq (arg, opt->option + 1)))
23857 {
23858 /* If the option is deprecated, tell the user. */
23859 if (warn_on_deprecated && opt->deprecated != NULL)
23860 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23861 arg ? arg : "", _(opt->deprecated));
23862
23863 if (opt->var != NULL)
23864 *opt->var = opt->value;
23865
23866 return 1;
23867 }
23868 }
23869
23870 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
23871 {
23872 if (c == fopt->option[0]
23873 && ((arg == NULL && fopt->option[1] == 0)
23874 || streq (arg, fopt->option + 1)))
23875 {
23876 /* If the option is deprecated, tell the user. */
23877 if (warn_on_deprecated && fopt->deprecated != NULL)
23878 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23879 arg ? arg : "", _(fopt->deprecated));
23880
23881 if (fopt->var != NULL)
23882 *fopt->var = &fopt->value;
23883
23884 return 1;
23885 }
23886 }
23887
23888 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23889 {
23890 /* These options are expected to have an argument. */
23891 if (c == lopt->option[0]
23892 && arg != NULL
23893 && strncmp (arg, lopt->option + 1,
23894 strlen (lopt->option + 1)) == 0)
23895 {
23896 /* If the option is deprecated, tell the user. */
23897 if (warn_on_deprecated && lopt->deprecated != NULL)
23898 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
23899 _(lopt->deprecated));
23900
23901 /* Call the sup-option parser. */
23902 return lopt->func (arg + strlen (lopt->option) - 1);
23903 }
23904 }
23905
23906 return 0;
23907 }
23908
23909 return 1;
23910 }
23911
23912 void
23913 md_show_usage (FILE * fp)
23914 {
23915 struct arm_option_table *opt;
23916 struct arm_long_option_table *lopt;
23917
23918 fprintf (fp, _(" ARM-specific assembler options:\n"));
23919
23920 for (opt = arm_opts; opt->option != NULL; opt++)
23921 if (opt->help != NULL)
23922 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
23923
23924 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23925 if (lopt->help != NULL)
23926 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
23927
23928 #ifdef OPTION_EB
23929 fprintf (fp, _("\
23930 -EB assemble code for a big-endian cpu\n"));
23931 #endif
23932
23933 #ifdef OPTION_EL
23934 fprintf (fp, _("\
23935 -EL assemble code for a little-endian cpu\n"));
23936 #endif
23937
23938 fprintf (fp, _("\
23939 --fix-v4bx Allow BX in ARMv4 code\n"));
23940 }
23941
23942
23943 #ifdef OBJ_ELF
23944 typedef struct
23945 {
23946 int val;
23947 arm_feature_set flags;
23948 } cpu_arch_ver_table;
23949
23950 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
23951 least features first. */
23952 static const cpu_arch_ver_table cpu_arch_ver[] =
23953 {
23954 {1, ARM_ARCH_V4},
23955 {2, ARM_ARCH_V4T},
23956 {3, ARM_ARCH_V5},
23957 {3, ARM_ARCH_V5T},
23958 {4, ARM_ARCH_V5TE},
23959 {5, ARM_ARCH_V5TEJ},
23960 {6, ARM_ARCH_V6},
23961 {9, ARM_ARCH_V6K},
23962 {7, ARM_ARCH_V6Z},
23963 {11, ARM_ARCH_V6M},
23964 {12, ARM_ARCH_V6SM},
23965 {8, ARM_ARCH_V6T2},
23966 {10, ARM_ARCH_V7A_IDIV_MP_SEC_VIRT},
23967 {10, ARM_ARCH_V7R},
23968 {10, ARM_ARCH_V7M},
23969 {14, ARM_ARCH_V8A},
23970 {0, ARM_ARCH_NONE}
23971 };
23972
23973 /* Set an attribute if it has not already been set by the user. */
23974 static void
23975 aeabi_set_attribute_int (int tag, int value)
23976 {
23977 if (tag < 1
23978 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23979 || !attributes_set_explicitly[tag])
23980 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
23981 }
23982
23983 static void
23984 aeabi_set_attribute_string (int tag, const char *value)
23985 {
23986 if (tag < 1
23987 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23988 || !attributes_set_explicitly[tag])
23989 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
23990 }
23991
23992 /* Set the public EABI object attributes. */
23993 static void
23994 aeabi_set_public_attributes (void)
23995 {
23996 int arch;
23997 char profile;
23998 int virt_sec = 0;
23999 int fp16_optional = 0;
24000 arm_feature_set flags;
24001 arm_feature_set tmp;
24002 const cpu_arch_ver_table *p;
24003
24004 /* Choose the architecture based on the capabilities of the requested cpu
24005 (if any) and/or the instructions actually used. */
24006 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
24007 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
24008 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
24009
24010 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
24011 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
24012
24013 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
24014 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
24015
24016 /* Allow the user to override the reported architecture. */
24017 if (object_arch)
24018 {
24019 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
24020 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
24021 }
24022
24023 /* We need to make sure that the attributes do not identify us as v6S-M
24024 when the only v6S-M feature in use is the Operating System Extensions. */
24025 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
24026 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
24027 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
24028
24029 tmp = flags;
24030 arch = 0;
24031 for (p = cpu_arch_ver; p->val; p++)
24032 {
24033 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
24034 {
24035 arch = p->val;
24036 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
24037 }
24038 }
24039
24040 /* The table lookup above finds the last architecture to contribute
24041 a new feature. Unfortunately, Tag13 is a subset of the union of
24042 v6T2 and v7-M, so it is never seen as contributing a new feature.
24043 We can not search for the last entry which is entirely used,
24044 because if no CPU is specified we build up only those flags
24045 actually used. Perhaps we should separate out the specified
24046 and implicit cases. Avoid taking this path for -march=all by
24047 checking for contradictory v7-A / v7-M features. */
24048 if (arch == 10
24049 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
24050 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
24051 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
24052 arch = 13;
24053
24054 /* Tag_CPU_name. */
24055 if (selected_cpu_name[0])
24056 {
24057 char *q;
24058
24059 q = selected_cpu_name;
24060 if (strncmp (q, "armv", 4) == 0)
24061 {
24062 int i;
24063
24064 q += 4;
24065 for (i = 0; q[i]; i++)
24066 q[i] = TOUPPER (q[i]);
24067 }
24068 aeabi_set_attribute_string (Tag_CPU_name, q);
24069 }
24070
24071 /* Tag_CPU_arch. */
24072 aeabi_set_attribute_int (Tag_CPU_arch, arch);
24073
24074 /* Tag_CPU_arch_profile. */
24075 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
24076 profile = 'A';
24077 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
24078 profile = 'R';
24079 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
24080 profile = 'M';
24081 else
24082 profile = '\0';
24083
24084 if (profile != '\0')
24085 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
24086
24087 /* Tag_ARM_ISA_use. */
24088 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
24089 || arch == 0)
24090 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
24091
24092 /* Tag_THUMB_ISA_use. */
24093 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
24094 || arch == 0)
24095 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
24096 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
24097
24098 /* Tag_VFP_arch. */
24099 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8))
24100 aeabi_set_attribute_int (Tag_VFP_arch, 7);
24101 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
24102 aeabi_set_attribute_int (Tag_VFP_arch,
24103 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
24104 ? 5 : 6);
24105 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
24106 {
24107 fp16_optional = 1;
24108 aeabi_set_attribute_int (Tag_VFP_arch, 3);
24109 }
24110 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
24111 {
24112 aeabi_set_attribute_int (Tag_VFP_arch, 4);
24113 fp16_optional = 1;
24114 }
24115 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
24116 aeabi_set_attribute_int (Tag_VFP_arch, 2);
24117 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
24118 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
24119 aeabi_set_attribute_int (Tag_VFP_arch, 1);
24120
24121 /* Tag_ABI_HardFP_use. */
24122 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
24123 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
24124 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
24125
24126 /* Tag_WMMX_arch. */
24127 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
24128 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
24129 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
24130 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
24131
24132 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
24133 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
24134 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
24135 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
24136 {
24137 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
24138 {
24139 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
24140 }
24141 else
24142 {
24143 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
24144 fp16_optional = 1;
24145 }
24146 }
24147
24148 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
24149 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
24150 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
24151
24152 /* Tag_DIV_use.
24153
24154 We set Tag_DIV_use to two when integer divide instructions have been used
24155 in ARM state, or when Thumb integer divide instructions have been used,
24156 but we have no architecture profile set, nor have we any ARM instructions.
24157
24158 For ARMv8 we set the tag to 0 as integer divide is implied by the base
24159 architecture.
24160
24161 For new architectures we will have to check these tests. */
24162 gas_assert (arch <= TAG_CPU_ARCH_V8);
24163 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8))
24164 aeabi_set_attribute_int (Tag_DIV_use, 0);
24165 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
24166 || (profile == '\0'
24167 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
24168 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
24169 aeabi_set_attribute_int (Tag_DIV_use, 2);
24170
24171 /* Tag_MP_extension_use. */
24172 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
24173 aeabi_set_attribute_int (Tag_MPextension_use, 1);
24174
24175 /* Tag Virtualization_use. */
24176 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
24177 virt_sec |= 1;
24178 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
24179 virt_sec |= 2;
24180 if (virt_sec != 0)
24181 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
24182 }
24183
24184 /* Add the default contents for the .ARM.attributes section. */
24185 void
24186 arm_md_end (void)
24187 {
24188 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
24189 return;
24190
24191 aeabi_set_public_attributes ();
24192 }
24193 #endif /* OBJ_ELF */
24194
24195
24196 /* Parse a .cpu directive. */
24197
24198 static void
24199 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
24200 {
24201 const struct arm_cpu_option_table *opt;
24202 char *name;
24203 char saved_char;
24204
24205 name = input_line_pointer;
24206 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24207 input_line_pointer++;
24208 saved_char = *input_line_pointer;
24209 *input_line_pointer = 0;
24210
24211 /* Skip the first "all" entry. */
24212 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
24213 if (streq (opt->name, name))
24214 {
24215 mcpu_cpu_opt = &opt->value;
24216 selected_cpu = opt->value;
24217 if (opt->canonical_name)
24218 strcpy (selected_cpu_name, opt->canonical_name);
24219 else
24220 {
24221 int i;
24222 for (i = 0; opt->name[i]; i++)
24223 selected_cpu_name[i] = TOUPPER (opt->name[i]);
24224
24225 selected_cpu_name[i] = 0;
24226 }
24227 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24228 *input_line_pointer = saved_char;
24229 demand_empty_rest_of_line ();
24230 return;
24231 }
24232 as_bad (_("unknown cpu `%s'"), name);
24233 *input_line_pointer = saved_char;
24234 ignore_rest_of_line ();
24235 }
24236
24237
24238 /* Parse a .arch directive. */
24239
24240 static void
24241 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
24242 {
24243 const struct arm_arch_option_table *opt;
24244 char saved_char;
24245 char *name;
24246
24247 name = input_line_pointer;
24248 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24249 input_line_pointer++;
24250 saved_char = *input_line_pointer;
24251 *input_line_pointer = 0;
24252
24253 /* Skip the first "all" entry. */
24254 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24255 if (streq (opt->name, name))
24256 {
24257 mcpu_cpu_opt = &opt->value;
24258 selected_cpu = opt->value;
24259 strcpy (selected_cpu_name, opt->name);
24260 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24261 *input_line_pointer = saved_char;
24262 demand_empty_rest_of_line ();
24263 return;
24264 }
24265
24266 as_bad (_("unknown architecture `%s'\n"), name);
24267 *input_line_pointer = saved_char;
24268 ignore_rest_of_line ();
24269 }
24270
24271
24272 /* Parse a .object_arch directive. */
24273
24274 static void
24275 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
24276 {
24277 const struct arm_arch_option_table *opt;
24278 char saved_char;
24279 char *name;
24280
24281 name = input_line_pointer;
24282 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24283 input_line_pointer++;
24284 saved_char = *input_line_pointer;
24285 *input_line_pointer = 0;
24286
24287 /* Skip the first "all" entry. */
24288 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24289 if (streq (opt->name, name))
24290 {
24291 object_arch = &opt->value;
24292 *input_line_pointer = saved_char;
24293 demand_empty_rest_of_line ();
24294 return;
24295 }
24296
24297 as_bad (_("unknown architecture `%s'\n"), name);
24298 *input_line_pointer = saved_char;
24299 ignore_rest_of_line ();
24300 }
24301
24302 /* Parse a .arch_extension directive. */
24303
24304 static void
24305 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
24306 {
24307 const struct arm_option_extension_value_table *opt;
24308 char saved_char;
24309 char *name;
24310 int adding_value = 1;
24311
24312 name = input_line_pointer;
24313 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24314 input_line_pointer++;
24315 saved_char = *input_line_pointer;
24316 *input_line_pointer = 0;
24317
24318 if (strlen (name) >= 2
24319 && strncmp (name, "no", 2) == 0)
24320 {
24321 adding_value = 0;
24322 name += 2;
24323 }
24324
24325 for (opt = arm_extensions; opt->name != NULL; opt++)
24326 if (streq (opt->name, name))
24327 {
24328 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
24329 {
24330 as_bad (_("architectural extension `%s' is not allowed for the "
24331 "current base architecture"), name);
24332 break;
24333 }
24334
24335 if (adding_value)
24336 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
24337 else
24338 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
24339
24340 mcpu_cpu_opt = &selected_cpu;
24341 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24342 *input_line_pointer = saved_char;
24343 demand_empty_rest_of_line ();
24344 return;
24345 }
24346
24347 if (opt->name == NULL)
24348 as_bad (_("unknown architecture `%s'\n"), name);
24349
24350 *input_line_pointer = saved_char;
24351 ignore_rest_of_line ();
24352 }
24353
24354 /* Parse a .fpu directive. */
24355
24356 static void
24357 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
24358 {
24359 const struct arm_option_fpu_value_table *opt;
24360 char saved_char;
24361 char *name;
24362
24363 name = input_line_pointer;
24364 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24365 input_line_pointer++;
24366 saved_char = *input_line_pointer;
24367 *input_line_pointer = 0;
24368
24369 for (opt = arm_fpus; opt->name != NULL; opt++)
24370 if (streq (opt->name, name))
24371 {
24372 mfpu_opt = &opt->value;
24373 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24374 *input_line_pointer = saved_char;
24375 demand_empty_rest_of_line ();
24376 return;
24377 }
24378
24379 as_bad (_("unknown floating point format `%s'\n"), name);
24380 *input_line_pointer = saved_char;
24381 ignore_rest_of_line ();
24382 }
24383
24384 /* Copy symbol information. */
24385
24386 void
24387 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
24388 {
24389 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
24390 }
24391
24392 #ifdef OBJ_ELF
24393 /* Given a symbolic attribute NAME, return the proper integer value.
24394 Returns -1 if the attribute is not known. */
24395
24396 int
24397 arm_convert_symbolic_attribute (const char *name)
24398 {
24399 static const struct
24400 {
24401 const char * name;
24402 const int tag;
24403 }
24404 attribute_table[] =
24405 {
24406 /* When you modify this table you should
24407 also modify the list in doc/c-arm.texi. */
24408 #define T(tag) {#tag, tag}
24409 T (Tag_CPU_raw_name),
24410 T (Tag_CPU_name),
24411 T (Tag_CPU_arch),
24412 T (Tag_CPU_arch_profile),
24413 T (Tag_ARM_ISA_use),
24414 T (Tag_THUMB_ISA_use),
24415 T (Tag_FP_arch),
24416 T (Tag_VFP_arch),
24417 T (Tag_WMMX_arch),
24418 T (Tag_Advanced_SIMD_arch),
24419 T (Tag_PCS_config),
24420 T (Tag_ABI_PCS_R9_use),
24421 T (Tag_ABI_PCS_RW_data),
24422 T (Tag_ABI_PCS_RO_data),
24423 T (Tag_ABI_PCS_GOT_use),
24424 T (Tag_ABI_PCS_wchar_t),
24425 T (Tag_ABI_FP_rounding),
24426 T (Tag_ABI_FP_denormal),
24427 T (Tag_ABI_FP_exceptions),
24428 T (Tag_ABI_FP_user_exceptions),
24429 T (Tag_ABI_FP_number_model),
24430 T (Tag_ABI_align_needed),
24431 T (Tag_ABI_align8_needed),
24432 T (Tag_ABI_align_preserved),
24433 T (Tag_ABI_align8_preserved),
24434 T (Tag_ABI_enum_size),
24435 T (Tag_ABI_HardFP_use),
24436 T (Tag_ABI_VFP_args),
24437 T (Tag_ABI_WMMX_args),
24438 T (Tag_ABI_optimization_goals),
24439 T (Tag_ABI_FP_optimization_goals),
24440 T (Tag_compatibility),
24441 T (Tag_CPU_unaligned_access),
24442 T (Tag_FP_HP_extension),
24443 T (Tag_VFP_HP_extension),
24444 T (Tag_ABI_FP_16bit_format),
24445 T (Tag_MPextension_use),
24446 T (Tag_DIV_use),
24447 T (Tag_nodefaults),
24448 T (Tag_also_compatible_with),
24449 T (Tag_conformance),
24450 T (Tag_T2EE_use),
24451 T (Tag_Virtualization_use),
24452 /* We deliberately do not include Tag_MPextension_use_legacy. */
24453 #undef T
24454 };
24455 unsigned int i;
24456
24457 if (name == NULL)
24458 return -1;
24459
24460 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
24461 if (streq (name, attribute_table[i].name))
24462 return attribute_table[i].tag;
24463
24464 return -1;
24465 }
24466
24467
24468 /* Apply sym value for relocations only in the case that
24469 they are for local symbols and you have the respective
24470 architectural feature for blx and simple switches. */
24471 int
24472 arm_apply_sym_value (struct fix * fixP)
24473 {
24474 if (fixP->fx_addsy
24475 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
24476 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
24477 {
24478 switch (fixP->fx_r_type)
24479 {
24480 case BFD_RELOC_ARM_PCREL_BLX:
24481 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24482 if (ARM_IS_FUNC (fixP->fx_addsy))
24483 return 1;
24484 break;
24485
24486 case BFD_RELOC_ARM_PCREL_CALL:
24487 case BFD_RELOC_THUMB_PCREL_BLX:
24488 if (THUMB_IS_FUNC (fixP->fx_addsy))
24489 return 1;
24490 break;
24491
24492 default:
24493 break;
24494 }
24495
24496 }
24497 return 0;
24498 }
24499 #endif /* OBJ_ELF */