gas/
[binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include <limits.h>
29 #include <stdarg.h>
30 #define NO_RELOC 0
31 #include "as.h"
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dwarf2dbg.h"
41 #include "dw2gencfi.h"
42 #endif
43
44 /* XXX Set this to 1 after the next binutils release. */
45 #define WARN_DEPRECATED 0
46
47 #ifdef OBJ_ELF
48 /* Must be at least the size of the largest unwind opcode (currently two). */
49 #define ARM_OPCODE_CHUNK_SIZE 8
50
51 /* This structure holds the unwinding state. */
52
53 static struct
54 {
55 symbolS * proc_start;
56 symbolS * table_entry;
57 symbolS * personality_routine;
58 int personality_index;
59 /* The segment containing the function. */
60 segT saved_seg;
61 subsegT saved_subseg;
62 /* Opcodes generated from this function. */
63 unsigned char * opcodes;
64 int opcode_count;
65 int opcode_alloc;
66 /* The number of bytes pushed to the stack. */
67 offsetT frame_size;
68 /* We don't add stack adjustment opcodes immediately so that we can merge
69 multiple adjustments. We can also omit the final adjustment
70 when using a frame pointer. */
71 offsetT pending_offset;
72 /* These two fields are set by both unwind_movsp and unwind_setfp. They
73 hold the reg+offset to use when restoring sp from a frame pointer. */
74 offsetT fp_offset;
75 int fp_reg;
76 /* Nonzero if an unwind_setfp directive has been seen. */
77 unsigned fp_used:1;
78 /* Nonzero if the last opcode restores sp from fp_reg. */
79 unsigned sp_restored:1;
80 } unwind;
81
82 /* Bit N indicates that an R_ARM_NONE relocation has been output for
83 __aeabi_unwind_cpp_prN already if set. This enables dependencies to be
84 emitted only once per section, to save unnecessary bloat. */
85 static unsigned int marked_pr_dependency = 0;
86
87 #endif /* OBJ_ELF */
88
89 /* Results from operand parsing worker functions. */
90
91 typedef enum
92 {
93 PARSE_OPERAND_SUCCESS,
94 PARSE_OPERAND_FAIL,
95 PARSE_OPERAND_FAIL_NO_BACKTRACK
96 } parse_operand_result;
97
98 enum arm_float_abi
99 {
100 ARM_FLOAT_ABI_HARD,
101 ARM_FLOAT_ABI_SOFTFP,
102 ARM_FLOAT_ABI_SOFT
103 };
104
105 /* Types of processor to assemble for. */
106 #ifndef CPU_DEFAULT
107 #if defined __XSCALE__
108 #define CPU_DEFAULT ARM_ARCH_XSCALE
109 #else
110 #if defined __thumb__
111 #define CPU_DEFAULT ARM_ARCH_V5T
112 #endif
113 #endif
114 #endif
115
116 #ifndef FPU_DEFAULT
117 # ifdef TE_LINUX
118 # define FPU_DEFAULT FPU_ARCH_FPA
119 # elif defined (TE_NetBSD)
120 # ifdef OBJ_ELF
121 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
122 # else
123 /* Legacy a.out format. */
124 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
125 # endif
126 # elif defined (TE_VXWORKS)
127 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
128 # else
129 /* For backwards compatibility, default to FPA. */
130 # define FPU_DEFAULT FPU_ARCH_FPA
131 # endif
132 #endif /* ifndef FPU_DEFAULT */
133
134 #define streq(a, b) (strcmp (a, b) == 0)
135
136 static arm_feature_set cpu_variant;
137 static arm_feature_set arm_arch_used;
138 static arm_feature_set thumb_arch_used;
139
140 /* Flags stored in private area of BFD structure. */
141 static int uses_apcs_26 = FALSE;
142 static int atpcs = FALSE;
143 static int support_interwork = FALSE;
144 static int uses_apcs_float = FALSE;
145 static int pic_code = FALSE;
146
147 /* Variables that we set while parsing command-line options. Once all
148 options have been read we re-process these values to set the real
149 assembly flags. */
150 static const arm_feature_set *legacy_cpu = NULL;
151 static const arm_feature_set *legacy_fpu = NULL;
152
153 static const arm_feature_set *mcpu_cpu_opt = NULL;
154 static const arm_feature_set *mcpu_fpu_opt = NULL;
155 static const arm_feature_set *march_cpu_opt = NULL;
156 static const arm_feature_set *march_fpu_opt = NULL;
157 static const arm_feature_set *mfpu_opt = NULL;
158
159 /* Constants for known architecture features. */
160 static const arm_feature_set fpu_default = FPU_DEFAULT;
161 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
162 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
163 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
164 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
165 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
166 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
167 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
168 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
169
170 #ifdef CPU_DEFAULT
171 static const arm_feature_set cpu_default = CPU_DEFAULT;
172 #endif
173
174 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
175 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
176 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
177 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
178 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
179 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
180 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
181 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
182 static const arm_feature_set arm_ext_v4t_5 =
183 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
184 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
185 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
186 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
187 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
188 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
189 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
190 static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
191 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
192 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
198
199 static const arm_feature_set arm_arch_any = ARM_ANY;
200 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
201 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
202 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
203
204 static const arm_feature_set arm_cext_iwmmxt =
205 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
206 static const arm_feature_set arm_cext_xscale =
207 ARM_FEATURE (0, ARM_CEXT_XSCALE);
208 static const arm_feature_set arm_cext_maverick =
209 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
210 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
211 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
212 static const arm_feature_set fpu_vfp_ext_v1xd =
213 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
214 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
215 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
216 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
217 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
218 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
219 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
220
221 static int mfloat_abi_opt = -1;
222 /* Record user cpu selection for object attributes. */
223 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
224 /* Must be long enough to hold any of the names in arm_cpus. */
225 static char selected_cpu_name[16];
226 #ifdef OBJ_ELF
227 # ifdef EABI_DEFAULT
228 static int meabi_flags = EABI_DEFAULT;
229 # else
230 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
231 # endif
232 #endif
233
234 #ifdef OBJ_ELF
235 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
236 symbolS * GOT_symbol;
237 #endif
238
239 /* 0: assemble for ARM,
240 1: assemble for Thumb,
241 2: assemble for Thumb even though target CPU does not support thumb
242 instructions. */
243 static int thumb_mode = 0;
244
245 /* If unified_syntax is true, we are processing the new unified
246 ARM/Thumb syntax. Important differences from the old ARM mode:
247
248 - Immediate operands do not require a # prefix.
249 - Conditional affixes always appear at the end of the
250 instruction. (For backward compatibility, those instructions
251 that formerly had them in the middle, continue to accept them
252 there.)
253 - The IT instruction may appear, and if it does is validated
254 against subsequent conditional affixes. It does not generate
255 machine code.
256
257 Important differences from the old Thumb mode:
258
259 - Immediate operands do not require a # prefix.
260 - Most of the V6T2 instructions are only available in unified mode.
261 - The .N and .W suffixes are recognized and honored (it is an error
262 if they cannot be honored).
263 - All instructions set the flags if and only if they have an 's' affix.
264 - Conditional affixes may be used. They are validated against
265 preceding IT instructions. Unlike ARM mode, you cannot use a
266 conditional affix except in the scope of an IT instruction. */
267
268 static bfd_boolean unified_syntax = FALSE;
269
270 enum neon_el_type
271 {
272 NT_invtype,
273 NT_untyped,
274 NT_integer,
275 NT_float,
276 NT_poly,
277 NT_signed,
278 NT_unsigned
279 };
280
281 struct neon_type_el
282 {
283 enum neon_el_type type;
284 unsigned size;
285 };
286
287 #define NEON_MAX_TYPE_ELS 4
288
289 struct neon_type
290 {
291 struct neon_type_el el[NEON_MAX_TYPE_ELS];
292 unsigned elems;
293 };
294
295 struct arm_it
296 {
297 const char * error;
298 unsigned long instruction;
299 int size;
300 int size_req;
301 int cond;
302 /* "uncond_value" is set to the value in place of the conditional field in
303 unconditional versions of the instruction, or -1 if nothing is
304 appropriate. */
305 int uncond_value;
306 struct neon_type vectype;
307 /* Set to the opcode if the instruction needs relaxation.
308 Zero if the instruction is not relaxed. */
309 unsigned long relax;
310 struct
311 {
312 bfd_reloc_code_real_type type;
313 expressionS exp;
314 int pc_rel;
315 } reloc;
316
317 struct
318 {
319 unsigned reg;
320 signed int imm;
321 struct neon_type_el vectype;
322 unsigned present : 1; /* Operand present. */
323 unsigned isreg : 1; /* Operand was a register. */
324 unsigned immisreg : 1; /* .imm field is a second register. */
325 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
326 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
327 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
328 instructions. This allows us to disambiguate ARM <-> vector insns. */
329 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
330 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
331 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
332 unsigned issingle : 1; /* Operand is VFP single-precision register. */
333 unsigned hasreloc : 1; /* Operand has relocation suffix. */
334 unsigned writeback : 1; /* Operand has trailing ! */
335 unsigned preind : 1; /* Preindexed address. */
336 unsigned postind : 1; /* Postindexed address. */
337 unsigned negative : 1; /* Index register was negated. */
338 unsigned shifted : 1; /* Shift applied to operation. */
339 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
340 } operands[6];
341 };
342
343 static struct arm_it inst;
344
345 #define NUM_FLOAT_VALS 8
346
347 const char * fp_const[] =
348 {
349 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
350 };
351
352 /* Number of littlenums required to hold an extended precision number. */
353 #define MAX_LITTLENUMS 6
354
355 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
356
357 #define FAIL (-1)
358 #define SUCCESS (0)
359
360 #define SUFF_S 1
361 #define SUFF_D 2
362 #define SUFF_E 3
363 #define SUFF_P 4
364
365 #define CP_T_X 0x00008000
366 #define CP_T_Y 0x00400000
367
368 #define CONDS_BIT 0x00100000
369 #define LOAD_BIT 0x00100000
370
371 #define DOUBLE_LOAD_FLAG 0x00000001
372
373 struct asm_cond
374 {
375 const char * template;
376 unsigned long value;
377 };
378
379 #define COND_ALWAYS 0xE
380
381 struct asm_psr
382 {
383 const char *template;
384 unsigned long field;
385 };
386
387 struct asm_barrier_opt
388 {
389 const char *template;
390 unsigned long value;
391 };
392
393 /* The bit that distinguishes CPSR and SPSR. */
394 #define SPSR_BIT (1 << 22)
395
396 /* The individual PSR flag bits. */
397 #define PSR_c (1 << 16)
398 #define PSR_x (1 << 17)
399 #define PSR_s (1 << 18)
400 #define PSR_f (1 << 19)
401
402 struct reloc_entry
403 {
404 char *name;
405 bfd_reloc_code_real_type reloc;
406 };
407
408 enum vfp_reg_pos
409 {
410 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
411 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
412 };
413
414 enum vfp_ldstm_type
415 {
416 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
417 };
418
419 /* Bits for DEFINED field in neon_typed_alias. */
420 #define NTA_HASTYPE 1
421 #define NTA_HASINDEX 2
422
423 struct neon_typed_alias
424 {
425 unsigned char defined;
426 unsigned char index;
427 struct neon_type_el eltype;
428 };
429
430 /* ARM register categories. This includes coprocessor numbers and various
431 architecture extensions' registers. */
432 enum arm_reg_type
433 {
434 REG_TYPE_RN,
435 REG_TYPE_CP,
436 REG_TYPE_CN,
437 REG_TYPE_FN,
438 REG_TYPE_VFS,
439 REG_TYPE_VFD,
440 REG_TYPE_NQ,
441 REG_TYPE_VFSD,
442 REG_TYPE_NDQ,
443 REG_TYPE_NSDQ,
444 REG_TYPE_VFC,
445 REG_TYPE_MVF,
446 REG_TYPE_MVD,
447 REG_TYPE_MVFX,
448 REG_TYPE_MVDX,
449 REG_TYPE_MVAX,
450 REG_TYPE_DSPSC,
451 REG_TYPE_MMXWR,
452 REG_TYPE_MMXWC,
453 REG_TYPE_MMXWCG,
454 REG_TYPE_XSCALE,
455 };
456
457 /* Structure for a hash table entry for a register.
458 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
459 information which states whether a vector type or index is specified (for a
460 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
461 struct reg_entry
462 {
463 const char *name;
464 unsigned char number;
465 unsigned char type;
466 unsigned char builtin;
467 struct neon_typed_alias *neon;
468 };
469
470 /* Diagnostics used when we don't get a register of the expected type. */
471 const char *const reg_expected_msgs[] =
472 {
473 N_("ARM register expected"),
474 N_("bad or missing co-processor number"),
475 N_("co-processor register expected"),
476 N_("FPA register expected"),
477 N_("VFP single precision register expected"),
478 N_("VFP/Neon double precision register expected"),
479 N_("Neon quad precision register expected"),
480 N_("VFP single or double precision register expected"),
481 N_("Neon double or quad precision register expected"),
482 N_("VFP single, double or Neon quad precision register expected"),
483 N_("VFP system register expected"),
484 N_("Maverick MVF register expected"),
485 N_("Maverick MVD register expected"),
486 N_("Maverick MVFX register expected"),
487 N_("Maverick MVDX register expected"),
488 N_("Maverick MVAX register expected"),
489 N_("Maverick DSPSC register expected"),
490 N_("iWMMXt data register expected"),
491 N_("iWMMXt control register expected"),
492 N_("iWMMXt scalar register expected"),
493 N_("XScale accumulator register expected"),
494 };
495
496 /* Some well known registers that we refer to directly elsewhere. */
497 #define REG_SP 13
498 #define REG_LR 14
499 #define REG_PC 15
500
501 /* ARM instructions take 4bytes in the object file, Thumb instructions
502 take 2: */
503 #define INSN_SIZE 4
504
505 struct asm_opcode
506 {
507 /* Basic string to match. */
508 const char *template;
509
510 /* Parameters to instruction. */
511 unsigned char operands[8];
512
513 /* Conditional tag - see opcode_lookup. */
514 unsigned int tag : 4;
515
516 /* Basic instruction code. */
517 unsigned int avalue : 28;
518
519 /* Thumb-format instruction code. */
520 unsigned int tvalue;
521
522 /* Which architecture variant provides this instruction. */
523 const arm_feature_set *avariant;
524 const arm_feature_set *tvariant;
525
526 /* Function to call to encode instruction in ARM format. */
527 void (* aencode) (void);
528
529 /* Function to call to encode instruction in Thumb format. */
530 void (* tencode) (void);
531 };
532
533 /* Defines for various bits that we will want to toggle. */
534 #define INST_IMMEDIATE 0x02000000
535 #define OFFSET_REG 0x02000000
536 #define HWOFFSET_IMM 0x00400000
537 #define SHIFT_BY_REG 0x00000010
538 #define PRE_INDEX 0x01000000
539 #define INDEX_UP 0x00800000
540 #define WRITE_BACK 0x00200000
541 #define LDM_TYPE_2_OR_3 0x00400000
542
543 #define LITERAL_MASK 0xf000f000
544 #define OPCODE_MASK 0xfe1fffff
545 #define V4_STR_BIT 0x00000020
546
547 #define DATA_OP_SHIFT 21
548
549 #define T2_OPCODE_MASK 0xfe1fffff
550 #define T2_DATA_OP_SHIFT 21
551
552 /* Codes to distinguish the arithmetic instructions. */
553 #define OPCODE_AND 0
554 #define OPCODE_EOR 1
555 #define OPCODE_SUB 2
556 #define OPCODE_RSB 3
557 #define OPCODE_ADD 4
558 #define OPCODE_ADC 5
559 #define OPCODE_SBC 6
560 #define OPCODE_RSC 7
561 #define OPCODE_TST 8
562 #define OPCODE_TEQ 9
563 #define OPCODE_CMP 10
564 #define OPCODE_CMN 11
565 #define OPCODE_ORR 12
566 #define OPCODE_MOV 13
567 #define OPCODE_BIC 14
568 #define OPCODE_MVN 15
569
570 #define T2_OPCODE_AND 0
571 #define T2_OPCODE_BIC 1
572 #define T2_OPCODE_ORR 2
573 #define T2_OPCODE_ORN 3
574 #define T2_OPCODE_EOR 4
575 #define T2_OPCODE_ADD 8
576 #define T2_OPCODE_ADC 10
577 #define T2_OPCODE_SBC 11
578 #define T2_OPCODE_SUB 13
579 #define T2_OPCODE_RSB 14
580
581 #define T_OPCODE_MUL 0x4340
582 #define T_OPCODE_TST 0x4200
583 #define T_OPCODE_CMN 0x42c0
584 #define T_OPCODE_NEG 0x4240
585 #define T_OPCODE_MVN 0x43c0
586
587 #define T_OPCODE_ADD_R3 0x1800
588 #define T_OPCODE_SUB_R3 0x1a00
589 #define T_OPCODE_ADD_HI 0x4400
590 #define T_OPCODE_ADD_ST 0xb000
591 #define T_OPCODE_SUB_ST 0xb080
592 #define T_OPCODE_ADD_SP 0xa800
593 #define T_OPCODE_ADD_PC 0xa000
594 #define T_OPCODE_ADD_I8 0x3000
595 #define T_OPCODE_SUB_I8 0x3800
596 #define T_OPCODE_ADD_I3 0x1c00
597 #define T_OPCODE_SUB_I3 0x1e00
598
599 #define T_OPCODE_ASR_R 0x4100
600 #define T_OPCODE_LSL_R 0x4080
601 #define T_OPCODE_LSR_R 0x40c0
602 #define T_OPCODE_ROR_R 0x41c0
603 #define T_OPCODE_ASR_I 0x1000
604 #define T_OPCODE_LSL_I 0x0000
605 #define T_OPCODE_LSR_I 0x0800
606
607 #define T_OPCODE_MOV_I8 0x2000
608 #define T_OPCODE_CMP_I8 0x2800
609 #define T_OPCODE_CMP_LR 0x4280
610 #define T_OPCODE_MOV_HR 0x4600
611 #define T_OPCODE_CMP_HR 0x4500
612
613 #define T_OPCODE_LDR_PC 0x4800
614 #define T_OPCODE_LDR_SP 0x9800
615 #define T_OPCODE_STR_SP 0x9000
616 #define T_OPCODE_LDR_IW 0x6800
617 #define T_OPCODE_STR_IW 0x6000
618 #define T_OPCODE_LDR_IH 0x8800
619 #define T_OPCODE_STR_IH 0x8000
620 #define T_OPCODE_LDR_IB 0x7800
621 #define T_OPCODE_STR_IB 0x7000
622 #define T_OPCODE_LDR_RW 0x5800
623 #define T_OPCODE_STR_RW 0x5000
624 #define T_OPCODE_LDR_RH 0x5a00
625 #define T_OPCODE_STR_RH 0x5200
626 #define T_OPCODE_LDR_RB 0x5c00
627 #define T_OPCODE_STR_RB 0x5400
628
629 #define T_OPCODE_PUSH 0xb400
630 #define T_OPCODE_POP 0xbc00
631
632 #define T_OPCODE_BRANCH 0xe000
633
634 #define THUMB_SIZE 2 /* Size of thumb instruction. */
635 #define THUMB_PP_PC_LR 0x0100
636 #define THUMB_LOAD_BIT 0x0800
637 #define THUMB2_LOAD_BIT 0x00100000
638
639 #define BAD_ARGS _("bad arguments to instruction")
640 #define BAD_PC _("r15 not allowed here")
641 #define BAD_COND _("instruction cannot be conditional")
642 #define BAD_OVERLAP _("registers may not be the same")
643 #define BAD_HIREG _("lo register required")
644 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
645 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
646 #define BAD_BRANCH _("branch must be last instruction in IT block")
647 #define BAD_NOT_IT _("instruction not allowed in IT block")
648 #define BAD_FPU _("selected FPU does not support instruction")
649
650 static struct hash_control *arm_ops_hsh;
651 static struct hash_control *arm_cond_hsh;
652 static struct hash_control *arm_shift_hsh;
653 static struct hash_control *arm_psr_hsh;
654 static struct hash_control *arm_v7m_psr_hsh;
655 static struct hash_control *arm_reg_hsh;
656 static struct hash_control *arm_reloc_hsh;
657 static struct hash_control *arm_barrier_opt_hsh;
658
659 /* Stuff needed to resolve the label ambiguity
660 As:
661 ...
662 label: <insn>
663 may differ from:
664 ...
665 label:
666 <insn>
667 */
668
669 symbolS * last_label_seen;
670 static int label_is_thumb_function_name = FALSE;
671 \f
672 /* Literal pool structure. Held on a per-section
673 and per-sub-section basis. */
674
675 #define MAX_LITERAL_POOL_SIZE 1024
676 typedef struct literal_pool
677 {
678 expressionS literals [MAX_LITERAL_POOL_SIZE];
679 unsigned int next_free_entry;
680 unsigned int id;
681 symbolS * symbol;
682 segT section;
683 subsegT sub_section;
684 struct literal_pool * next;
685 } literal_pool;
686
687 /* Pointer to a linked list of literal pools. */
688 literal_pool * list_of_pools = NULL;
689
690 /* State variables for IT block handling. */
691 static bfd_boolean current_it_mask = 0;
692 static int current_cc;
693
694 \f
695 /* Pure syntax. */
696
697 /* This array holds the chars that always start a comment. If the
698 pre-processor is disabled, these aren't very useful. */
699 const char comment_chars[] = "@";
700
701 /* This array holds the chars that only start a comment at the beginning of
702 a line. If the line seems to have the form '# 123 filename'
703 .line and .file directives will appear in the pre-processed output. */
704 /* Note that input_file.c hand checks for '#' at the beginning of the
705 first line of the input file. This is because the compiler outputs
706 #NO_APP at the beginning of its output. */
707 /* Also note that comments like this one will always work. */
708 const char line_comment_chars[] = "#";
709
710 const char line_separator_chars[] = ";";
711
712 /* Chars that can be used to separate mant
713 from exp in floating point numbers. */
714 const char EXP_CHARS[] = "eE";
715
716 /* Chars that mean this number is a floating point constant. */
717 /* As in 0f12.456 */
718 /* or 0d1.2345e12 */
719
720 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
721
722 /* Prefix characters that indicate the start of an immediate
723 value. */
724 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
725
726 /* Separator character handling. */
727
728 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
729
730 static inline int
731 skip_past_char (char ** str, char c)
732 {
733 if (**str == c)
734 {
735 (*str)++;
736 return SUCCESS;
737 }
738 else
739 return FAIL;
740 }
741 #define skip_past_comma(str) skip_past_char (str, ',')
742
743 /* Arithmetic expressions (possibly involving symbols). */
744
745 /* Return TRUE if anything in the expression is a bignum. */
746
747 static int
748 walk_no_bignums (symbolS * sp)
749 {
750 if (symbol_get_value_expression (sp)->X_op == O_big)
751 return 1;
752
753 if (symbol_get_value_expression (sp)->X_add_symbol)
754 {
755 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
756 || (symbol_get_value_expression (sp)->X_op_symbol
757 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
758 }
759
760 return 0;
761 }
762
763 static int in_my_get_expression = 0;
764
765 /* Third argument to my_get_expression. */
766 #define GE_NO_PREFIX 0
767 #define GE_IMM_PREFIX 1
768 #define GE_OPT_PREFIX 2
769 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
770 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
771 #define GE_OPT_PREFIX_BIG 3
772
773 static int
774 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
775 {
776 char * save_in;
777 segT seg;
778
779 /* In unified syntax, all prefixes are optional. */
780 if (unified_syntax)
781 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
782 : GE_OPT_PREFIX;
783
784 switch (prefix_mode)
785 {
786 case GE_NO_PREFIX: break;
787 case GE_IMM_PREFIX:
788 if (!is_immediate_prefix (**str))
789 {
790 inst.error = _("immediate expression requires a # prefix");
791 return FAIL;
792 }
793 (*str)++;
794 break;
795 case GE_OPT_PREFIX:
796 case GE_OPT_PREFIX_BIG:
797 if (is_immediate_prefix (**str))
798 (*str)++;
799 break;
800 default: abort ();
801 }
802
803 memset (ep, 0, sizeof (expressionS));
804
805 save_in = input_line_pointer;
806 input_line_pointer = *str;
807 in_my_get_expression = 1;
808 seg = expression (ep);
809 in_my_get_expression = 0;
810
811 if (ep->X_op == O_illegal)
812 {
813 /* We found a bad expression in md_operand(). */
814 *str = input_line_pointer;
815 input_line_pointer = save_in;
816 if (inst.error == NULL)
817 inst.error = _("bad expression");
818 return 1;
819 }
820
821 #ifdef OBJ_AOUT
822 if (seg != absolute_section
823 && seg != text_section
824 && seg != data_section
825 && seg != bss_section
826 && seg != undefined_section)
827 {
828 inst.error = _("bad segment");
829 *str = input_line_pointer;
830 input_line_pointer = save_in;
831 return 1;
832 }
833 #endif
834
835 /* Get rid of any bignums now, so that we don't generate an error for which
836 we can't establish a line number later on. Big numbers are never valid
837 in instructions, which is where this routine is always called. */
838 if (prefix_mode != GE_OPT_PREFIX_BIG
839 && (ep->X_op == O_big
840 || (ep->X_add_symbol
841 && (walk_no_bignums (ep->X_add_symbol)
842 || (ep->X_op_symbol
843 && walk_no_bignums (ep->X_op_symbol))))))
844 {
845 inst.error = _("invalid constant");
846 *str = input_line_pointer;
847 input_line_pointer = save_in;
848 return 1;
849 }
850
851 *str = input_line_pointer;
852 input_line_pointer = save_in;
853 return 0;
854 }
855
856 /* Turn a string in input_line_pointer into a floating point constant
857 of type TYPE, and store the appropriate bytes in *LITP. The number
858 of LITTLENUMS emitted is stored in *SIZEP. An error message is
859 returned, or NULL on OK.
860
861 Note that fp constants aren't represent in the normal way on the ARM.
862 In big endian mode, things are as expected. However, in little endian
863 mode fp constants are big-endian word-wise, and little-endian byte-wise
864 within the words. For example, (double) 1.1 in big endian mode is
865 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
866 the byte sequence 99 99 f1 3f 9a 99 99 99.
867
868 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
869
870 char *
871 md_atof (int type, char * litP, int * sizeP)
872 {
873 int prec;
874 LITTLENUM_TYPE words[MAX_LITTLENUMS];
875 char *t;
876 int i;
877
878 switch (type)
879 {
880 case 'f':
881 case 'F':
882 case 's':
883 case 'S':
884 prec = 2;
885 break;
886
887 case 'd':
888 case 'D':
889 case 'r':
890 case 'R':
891 prec = 4;
892 break;
893
894 case 'x':
895 case 'X':
896 prec = 6;
897 break;
898
899 case 'p':
900 case 'P':
901 prec = 6;
902 break;
903
904 default:
905 *sizeP = 0;
906 return _("bad call to MD_ATOF()");
907 }
908
909 t = atof_ieee (input_line_pointer, type, words);
910 if (t)
911 input_line_pointer = t;
912 *sizeP = prec * 2;
913
914 if (target_big_endian)
915 {
916 for (i = 0; i < prec; i++)
917 {
918 md_number_to_chars (litP, (valueT) words[i], 2);
919 litP += 2;
920 }
921 }
922 else
923 {
924 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
925 for (i = prec - 1; i >= 0; i--)
926 {
927 md_number_to_chars (litP, (valueT) words[i], 2);
928 litP += 2;
929 }
930 else
931 /* For a 4 byte float the order of elements in `words' is 1 0.
932 For an 8 byte float the order is 1 0 3 2. */
933 for (i = 0; i < prec; i += 2)
934 {
935 md_number_to_chars (litP, (valueT) words[i + 1], 2);
936 md_number_to_chars (litP + 2, (valueT) words[i], 2);
937 litP += 4;
938 }
939 }
940
941 return 0;
942 }
943
944 /* We handle all bad expressions here, so that we can report the faulty
945 instruction in the error message. */
946 void
947 md_operand (expressionS * expr)
948 {
949 if (in_my_get_expression)
950 expr->X_op = O_illegal;
951 }
952
953 /* Immediate values. */
954
955 /* Generic immediate-value read function for use in directives.
956 Accepts anything that 'expression' can fold to a constant.
957 *val receives the number. */
958 #ifdef OBJ_ELF
959 static int
960 immediate_for_directive (int *val)
961 {
962 expressionS exp;
963 exp.X_op = O_illegal;
964
965 if (is_immediate_prefix (*input_line_pointer))
966 {
967 input_line_pointer++;
968 expression (&exp);
969 }
970
971 if (exp.X_op != O_constant)
972 {
973 as_bad (_("expected #constant"));
974 ignore_rest_of_line ();
975 return FAIL;
976 }
977 *val = exp.X_add_number;
978 return SUCCESS;
979 }
980 #endif
981
982 /* Register parsing. */
983
984 /* Generic register parser. CCP points to what should be the
985 beginning of a register name. If it is indeed a valid register
986 name, advance CCP over it and return the reg_entry structure;
987 otherwise return NULL. Does not issue diagnostics. */
988
989 static struct reg_entry *
990 arm_reg_parse_multi (char **ccp)
991 {
992 char *start = *ccp;
993 char *p;
994 struct reg_entry *reg;
995
996 #ifdef REGISTER_PREFIX
997 if (*start != REGISTER_PREFIX)
998 return NULL;
999 start++;
1000 #endif
1001 #ifdef OPTIONAL_REGISTER_PREFIX
1002 if (*start == OPTIONAL_REGISTER_PREFIX)
1003 start++;
1004 #endif
1005
1006 p = start;
1007 if (!ISALPHA (*p) || !is_name_beginner (*p))
1008 return NULL;
1009
1010 do
1011 p++;
1012 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1013
1014 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1015
1016 if (!reg)
1017 return NULL;
1018
1019 *ccp = p;
1020 return reg;
1021 }
1022
1023 static int
1024 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1025 enum arm_reg_type type)
1026 {
1027 /* Alternative syntaxes are accepted for a few register classes. */
1028 switch (type)
1029 {
1030 case REG_TYPE_MVF:
1031 case REG_TYPE_MVD:
1032 case REG_TYPE_MVFX:
1033 case REG_TYPE_MVDX:
1034 /* Generic coprocessor register names are allowed for these. */
1035 if (reg && reg->type == REG_TYPE_CN)
1036 return reg->number;
1037 break;
1038
1039 case REG_TYPE_CP:
1040 /* For backward compatibility, a bare number is valid here. */
1041 {
1042 unsigned long processor = strtoul (start, ccp, 10);
1043 if (*ccp != start && processor <= 15)
1044 return processor;
1045 }
1046
1047 case REG_TYPE_MMXWC:
1048 /* WC includes WCG. ??? I'm not sure this is true for all
1049 instructions that take WC registers. */
1050 if (reg && reg->type == REG_TYPE_MMXWCG)
1051 return reg->number;
1052 break;
1053
1054 default:
1055 break;
1056 }
1057
1058 return FAIL;
1059 }
1060
1061 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1062 return value is the register number or FAIL. */
1063
1064 static int
1065 arm_reg_parse (char **ccp, enum arm_reg_type type)
1066 {
1067 char *start = *ccp;
1068 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1069 int ret;
1070
1071 /* Do not allow a scalar (reg+index) to parse as a register. */
1072 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1073 return FAIL;
1074
1075 if (reg && reg->type == type)
1076 return reg->number;
1077
1078 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1079 return ret;
1080
1081 *ccp = start;
1082 return FAIL;
1083 }
1084
1085 /* Parse a Neon type specifier. *STR should point at the leading '.'
1086 character. Does no verification at this stage that the type fits the opcode
1087 properly. E.g.,
1088
1089 .i32.i32.s16
1090 .s32.f32
1091 .u16
1092
1093 Can all be legally parsed by this function.
1094
1095 Fills in neon_type struct pointer with parsed information, and updates STR
1096 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1097 type, FAIL if not. */
1098
1099 static int
1100 parse_neon_type (struct neon_type *type, char **str)
1101 {
1102 char *ptr = *str;
1103
1104 if (type)
1105 type->elems = 0;
1106
1107 while (type->elems < NEON_MAX_TYPE_ELS)
1108 {
1109 enum neon_el_type thistype = NT_untyped;
1110 unsigned thissize = -1u;
1111
1112 if (*ptr != '.')
1113 break;
1114
1115 ptr++;
1116
1117 /* Just a size without an explicit type. */
1118 if (ISDIGIT (*ptr))
1119 goto parsesize;
1120
1121 switch (TOLOWER (*ptr))
1122 {
1123 case 'i': thistype = NT_integer; break;
1124 case 'f': thistype = NT_float; break;
1125 case 'p': thistype = NT_poly; break;
1126 case 's': thistype = NT_signed; break;
1127 case 'u': thistype = NT_unsigned; break;
1128 case 'd':
1129 thistype = NT_float;
1130 thissize = 64;
1131 ptr++;
1132 goto done;
1133 default:
1134 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1135 return FAIL;
1136 }
1137
1138 ptr++;
1139
1140 /* .f is an abbreviation for .f32. */
1141 if (thistype == NT_float && !ISDIGIT (*ptr))
1142 thissize = 32;
1143 else
1144 {
1145 parsesize:
1146 thissize = strtoul (ptr, &ptr, 10);
1147
1148 if (thissize != 8 && thissize != 16 && thissize != 32
1149 && thissize != 64)
1150 {
1151 as_bad (_("bad size %d in type specifier"), thissize);
1152 return FAIL;
1153 }
1154 }
1155
1156 done:
1157 if (type)
1158 {
1159 type->el[type->elems].type = thistype;
1160 type->el[type->elems].size = thissize;
1161 type->elems++;
1162 }
1163 }
1164
1165 /* Empty/missing type is not a successful parse. */
1166 if (type->elems == 0)
1167 return FAIL;
1168
1169 *str = ptr;
1170
1171 return SUCCESS;
1172 }
1173
1174 /* Errors may be set multiple times during parsing or bit encoding
1175 (particularly in the Neon bits), but usually the earliest error which is set
1176 will be the most meaningful. Avoid overwriting it with later (cascading)
1177 errors by calling this function. */
1178
1179 static void
1180 first_error (const char *err)
1181 {
1182 if (!inst.error)
1183 inst.error = err;
1184 }
1185
1186 /* Parse a single type, e.g. ".s32", leading period included. */
1187 static int
1188 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1189 {
1190 char *str = *ccp;
1191 struct neon_type optype;
1192
1193 if (*str == '.')
1194 {
1195 if (parse_neon_type (&optype, &str) == SUCCESS)
1196 {
1197 if (optype.elems == 1)
1198 *vectype = optype.el[0];
1199 else
1200 {
1201 first_error (_("only one type should be specified for operand"));
1202 return FAIL;
1203 }
1204 }
1205 else
1206 {
1207 first_error (_("vector type expected"));
1208 return FAIL;
1209 }
1210 }
1211 else
1212 return FAIL;
1213
1214 *ccp = str;
1215
1216 return SUCCESS;
1217 }
1218
1219 /* Special meanings for indices (which have a range of 0-7), which will fit into
1220 a 4-bit integer. */
1221
1222 #define NEON_ALL_LANES 15
1223 #define NEON_INTERLEAVE_LANES 14
1224
1225 /* Parse either a register or a scalar, with an optional type. Return the
1226 register number, and optionally fill in the actual type of the register
1227 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1228 type/index information in *TYPEINFO. */
1229
1230 static int
1231 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1232 enum arm_reg_type *rtype,
1233 struct neon_typed_alias *typeinfo)
1234 {
1235 char *str = *ccp;
1236 struct reg_entry *reg = arm_reg_parse_multi (&str);
1237 struct neon_typed_alias atype;
1238 struct neon_type_el parsetype;
1239
1240 atype.defined = 0;
1241 atype.index = -1;
1242 atype.eltype.type = NT_invtype;
1243 atype.eltype.size = -1;
1244
1245 /* Try alternate syntax for some types of register. Note these are mutually
1246 exclusive with the Neon syntax extensions. */
1247 if (reg == NULL)
1248 {
1249 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1250 if (altreg != FAIL)
1251 *ccp = str;
1252 if (typeinfo)
1253 *typeinfo = atype;
1254 return altreg;
1255 }
1256
1257 /* Undo polymorphism when a set of register types may be accepted. */
1258 if ((type == REG_TYPE_NDQ
1259 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1260 || (type == REG_TYPE_VFSD
1261 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1262 || (type == REG_TYPE_NSDQ
1263 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1264 || reg->type == REG_TYPE_NQ)))
1265 type = reg->type;
1266
1267 if (type != reg->type)
1268 return FAIL;
1269
1270 if (reg->neon)
1271 atype = *reg->neon;
1272
1273 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1274 {
1275 if ((atype.defined & NTA_HASTYPE) != 0)
1276 {
1277 first_error (_("can't redefine type for operand"));
1278 return FAIL;
1279 }
1280 atype.defined |= NTA_HASTYPE;
1281 atype.eltype = parsetype;
1282 }
1283
1284 if (skip_past_char (&str, '[') == SUCCESS)
1285 {
1286 if (type != REG_TYPE_VFD)
1287 {
1288 first_error (_("only D registers may be indexed"));
1289 return FAIL;
1290 }
1291
1292 if ((atype.defined & NTA_HASINDEX) != 0)
1293 {
1294 first_error (_("can't change index for operand"));
1295 return FAIL;
1296 }
1297
1298 atype.defined |= NTA_HASINDEX;
1299
1300 if (skip_past_char (&str, ']') == SUCCESS)
1301 atype.index = NEON_ALL_LANES;
1302 else
1303 {
1304 expressionS exp;
1305
1306 my_get_expression (&exp, &str, GE_NO_PREFIX);
1307
1308 if (exp.X_op != O_constant)
1309 {
1310 first_error (_("constant expression required"));
1311 return FAIL;
1312 }
1313
1314 if (skip_past_char (&str, ']') == FAIL)
1315 return FAIL;
1316
1317 atype.index = exp.X_add_number;
1318 }
1319 }
1320
1321 if (typeinfo)
1322 *typeinfo = atype;
1323
1324 if (rtype)
1325 *rtype = type;
1326
1327 *ccp = str;
1328
1329 return reg->number;
1330 }
1331
1332 /* Like arm_reg_parse, but allow allow the following extra features:
1333 - If RTYPE is non-zero, return the (possibly restricted) type of the
1334 register (e.g. Neon double or quad reg when either has been requested).
1335 - If this is a Neon vector type with additional type information, fill
1336 in the struct pointed to by VECTYPE (if non-NULL).
1337 This function will fault on encountering a scalar.
1338 */
1339
1340 static int
1341 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1342 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1343 {
1344 struct neon_typed_alias atype;
1345 char *str = *ccp;
1346 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1347
1348 if (reg == FAIL)
1349 return FAIL;
1350
1351 /* Do not allow a scalar (reg+index) to parse as a register. */
1352 if ((atype.defined & NTA_HASINDEX) != 0)
1353 {
1354 first_error (_("register operand expected, but got scalar"));
1355 return FAIL;
1356 }
1357
1358 if (vectype)
1359 *vectype = atype.eltype;
1360
1361 *ccp = str;
1362
1363 return reg;
1364 }
1365
1366 #define NEON_SCALAR_REG(X) ((X) >> 4)
1367 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1368
1369 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1370 have enough information to be able to do a good job bounds-checking. So, we
1371 just do easy checks here, and do further checks later. */
1372
1373 static int
1374 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1375 {
1376 int reg;
1377 char *str = *ccp;
1378 struct neon_typed_alias atype;
1379
1380 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1381
1382 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1383 return FAIL;
1384
1385 if (atype.index == NEON_ALL_LANES)
1386 {
1387 first_error (_("scalar must have an index"));
1388 return FAIL;
1389 }
1390 else if (atype.index >= 64 / elsize)
1391 {
1392 first_error (_("scalar index out of range"));
1393 return FAIL;
1394 }
1395
1396 if (type)
1397 *type = atype.eltype;
1398
1399 *ccp = str;
1400
1401 return reg * 16 + atype.index;
1402 }
1403
1404 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1405 static long
1406 parse_reg_list (char ** strp)
1407 {
1408 char * str = * strp;
1409 long range = 0;
1410 int another_range;
1411
1412 /* We come back here if we get ranges concatenated by '+' or '|'. */
1413 do
1414 {
1415 another_range = 0;
1416
1417 if (*str == '{')
1418 {
1419 int in_range = 0;
1420 int cur_reg = -1;
1421
1422 str++;
1423 do
1424 {
1425 int reg;
1426
1427 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1428 {
1429 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1430 return FAIL;
1431 }
1432
1433 if (in_range)
1434 {
1435 int i;
1436
1437 if (reg <= cur_reg)
1438 {
1439 first_error (_("bad range in register list"));
1440 return FAIL;
1441 }
1442
1443 for (i = cur_reg + 1; i < reg; i++)
1444 {
1445 if (range & (1 << i))
1446 as_tsktsk
1447 (_("Warning: duplicated register (r%d) in register list"),
1448 i);
1449 else
1450 range |= 1 << i;
1451 }
1452 in_range = 0;
1453 }
1454
1455 if (range & (1 << reg))
1456 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1457 reg);
1458 else if (reg <= cur_reg)
1459 as_tsktsk (_("Warning: register range not in ascending order"));
1460
1461 range |= 1 << reg;
1462 cur_reg = reg;
1463 }
1464 while (skip_past_comma (&str) != FAIL
1465 || (in_range = 1, *str++ == '-'));
1466 str--;
1467
1468 if (*str++ != '}')
1469 {
1470 first_error (_("missing `}'"));
1471 return FAIL;
1472 }
1473 }
1474 else
1475 {
1476 expressionS expr;
1477
1478 if (my_get_expression (&expr, &str, GE_NO_PREFIX))
1479 return FAIL;
1480
1481 if (expr.X_op == O_constant)
1482 {
1483 if (expr.X_add_number
1484 != (expr.X_add_number & 0x0000ffff))
1485 {
1486 inst.error = _("invalid register mask");
1487 return FAIL;
1488 }
1489
1490 if ((range & expr.X_add_number) != 0)
1491 {
1492 int regno = range & expr.X_add_number;
1493
1494 regno &= -regno;
1495 regno = (1 << regno) - 1;
1496 as_tsktsk
1497 (_("Warning: duplicated register (r%d) in register list"),
1498 regno);
1499 }
1500
1501 range |= expr.X_add_number;
1502 }
1503 else
1504 {
1505 if (inst.reloc.type != 0)
1506 {
1507 inst.error = _("expression too complex");
1508 return FAIL;
1509 }
1510
1511 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1512 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1513 inst.reloc.pc_rel = 0;
1514 }
1515 }
1516
1517 if (*str == '|' || *str == '+')
1518 {
1519 str++;
1520 another_range = 1;
1521 }
1522 }
1523 while (another_range);
1524
1525 *strp = str;
1526 return range;
1527 }
1528
1529 /* Types of registers in a list. */
1530
1531 enum reg_list_els
1532 {
1533 REGLIST_VFP_S,
1534 REGLIST_VFP_D,
1535 REGLIST_NEON_D
1536 };
1537
1538 /* Parse a VFP register list. If the string is invalid return FAIL.
1539 Otherwise return the number of registers, and set PBASE to the first
1540 register. Parses registers of type ETYPE.
1541 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1542 - Q registers can be used to specify pairs of D registers
1543 - { } can be omitted from around a singleton register list
1544 FIXME: This is not implemented, as it would require backtracking in
1545 some cases, e.g.:
1546 vtbl.8 d3,d4,d5
1547 This could be done (the meaning isn't really ambiguous), but doesn't
1548 fit in well with the current parsing framework.
1549 - 32 D registers may be used (also true for VFPv3).
1550 FIXME: Types are ignored in these register lists, which is probably a
1551 bug. */
1552
1553 static int
1554 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1555 {
1556 char *str = *ccp;
1557 int base_reg;
1558 int new_base;
1559 enum arm_reg_type regtype = 0;
1560 int max_regs = 0;
1561 int count = 0;
1562 int warned = 0;
1563 unsigned long mask = 0;
1564 int i;
1565
1566 if (*str != '{')
1567 {
1568 inst.error = _("expecting {");
1569 return FAIL;
1570 }
1571
1572 str++;
1573
1574 switch (etype)
1575 {
1576 case REGLIST_VFP_S:
1577 regtype = REG_TYPE_VFS;
1578 max_regs = 32;
1579 break;
1580
1581 case REGLIST_VFP_D:
1582 regtype = REG_TYPE_VFD;
1583 break;
1584
1585 case REGLIST_NEON_D:
1586 regtype = REG_TYPE_NDQ;
1587 break;
1588 }
1589
1590 if (etype != REGLIST_VFP_S)
1591 {
1592 /* VFPv3 allows 32 D registers. */
1593 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
1594 {
1595 max_regs = 32;
1596 if (thumb_mode)
1597 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1598 fpu_vfp_ext_v3);
1599 else
1600 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1601 fpu_vfp_ext_v3);
1602 }
1603 else
1604 max_regs = 16;
1605 }
1606
1607 base_reg = max_regs;
1608
1609 do
1610 {
1611 int setmask = 1, addregs = 1;
1612
1613 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1614
1615 if (new_base == FAIL)
1616 {
1617 first_error (_(reg_expected_msgs[regtype]));
1618 return FAIL;
1619 }
1620
1621 if (new_base >= max_regs)
1622 {
1623 first_error (_("register out of range in list"));
1624 return FAIL;
1625 }
1626
1627 /* Note: a value of 2 * n is returned for the register Q<n>. */
1628 if (regtype == REG_TYPE_NQ)
1629 {
1630 setmask = 3;
1631 addregs = 2;
1632 }
1633
1634 if (new_base < base_reg)
1635 base_reg = new_base;
1636
1637 if (mask & (setmask << new_base))
1638 {
1639 first_error (_("invalid register list"));
1640 return FAIL;
1641 }
1642
1643 if ((mask >> new_base) != 0 && ! warned)
1644 {
1645 as_tsktsk (_("register list not in ascending order"));
1646 warned = 1;
1647 }
1648
1649 mask |= setmask << new_base;
1650 count += addregs;
1651
1652 if (*str == '-') /* We have the start of a range expression */
1653 {
1654 int high_range;
1655
1656 str++;
1657
1658 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1659 == FAIL)
1660 {
1661 inst.error = gettext (reg_expected_msgs[regtype]);
1662 return FAIL;
1663 }
1664
1665 if (high_range >= max_regs)
1666 {
1667 first_error (_("register out of range in list"));
1668 return FAIL;
1669 }
1670
1671 if (regtype == REG_TYPE_NQ)
1672 high_range = high_range + 1;
1673
1674 if (high_range <= new_base)
1675 {
1676 inst.error = _("register range not in ascending order");
1677 return FAIL;
1678 }
1679
1680 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1681 {
1682 if (mask & (setmask << new_base))
1683 {
1684 inst.error = _("invalid register list");
1685 return FAIL;
1686 }
1687
1688 mask |= setmask << new_base;
1689 count += addregs;
1690 }
1691 }
1692 }
1693 while (skip_past_comma (&str) != FAIL);
1694
1695 str++;
1696
1697 /* Sanity check -- should have raised a parse error above. */
1698 if (count == 0 || count > max_regs)
1699 abort ();
1700
1701 *pbase = base_reg;
1702
1703 /* Final test -- the registers must be consecutive. */
1704 mask >>= base_reg;
1705 for (i = 0; i < count; i++)
1706 {
1707 if ((mask & (1u << i)) == 0)
1708 {
1709 inst.error = _("non-contiguous register range");
1710 return FAIL;
1711 }
1712 }
1713
1714 *ccp = str;
1715
1716 return count;
1717 }
1718
1719 /* True if two alias types are the same. */
1720
1721 static int
1722 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1723 {
1724 if (!a && !b)
1725 return 1;
1726
1727 if (!a || !b)
1728 return 0;
1729
1730 if (a->defined != b->defined)
1731 return 0;
1732
1733 if ((a->defined & NTA_HASTYPE) != 0
1734 && (a->eltype.type != b->eltype.type
1735 || a->eltype.size != b->eltype.size))
1736 return 0;
1737
1738 if ((a->defined & NTA_HASINDEX) != 0
1739 && (a->index != b->index))
1740 return 0;
1741
1742 return 1;
1743 }
1744
1745 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1746 The base register is put in *PBASE.
1747 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1748 the return value.
1749 The register stride (minus one) is put in bit 4 of the return value.
1750 Bits [6:5] encode the list length (minus one).
1751 The type of the list elements is put in *ELTYPE, if non-NULL. */
1752
1753 #define NEON_LANE(X) ((X) & 0xf)
1754 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1755 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1756
1757 static int
1758 parse_neon_el_struct_list (char **str, unsigned *pbase,
1759 struct neon_type_el *eltype)
1760 {
1761 char *ptr = *str;
1762 int base_reg = -1;
1763 int reg_incr = -1;
1764 int count = 0;
1765 int lane = -1;
1766 int leading_brace = 0;
1767 enum arm_reg_type rtype = REG_TYPE_NDQ;
1768 int addregs = 1;
1769 const char *const incr_error = "register stride must be 1 or 2";
1770 const char *const type_error = "mismatched element/structure types in list";
1771 struct neon_typed_alias firsttype;
1772
1773 if (skip_past_char (&ptr, '{') == SUCCESS)
1774 leading_brace = 1;
1775
1776 do
1777 {
1778 struct neon_typed_alias atype;
1779 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1780
1781 if (getreg == FAIL)
1782 {
1783 first_error (_(reg_expected_msgs[rtype]));
1784 return FAIL;
1785 }
1786
1787 if (base_reg == -1)
1788 {
1789 base_reg = getreg;
1790 if (rtype == REG_TYPE_NQ)
1791 {
1792 reg_incr = 1;
1793 addregs = 2;
1794 }
1795 firsttype = atype;
1796 }
1797 else if (reg_incr == -1)
1798 {
1799 reg_incr = getreg - base_reg;
1800 if (reg_incr < 1 || reg_incr > 2)
1801 {
1802 first_error (_(incr_error));
1803 return FAIL;
1804 }
1805 }
1806 else if (getreg != base_reg + reg_incr * count)
1807 {
1808 first_error (_(incr_error));
1809 return FAIL;
1810 }
1811
1812 if (!neon_alias_types_same (&atype, &firsttype))
1813 {
1814 first_error (_(type_error));
1815 return FAIL;
1816 }
1817
1818 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1819 modes. */
1820 if (ptr[0] == '-')
1821 {
1822 struct neon_typed_alias htype;
1823 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1824 if (lane == -1)
1825 lane = NEON_INTERLEAVE_LANES;
1826 else if (lane != NEON_INTERLEAVE_LANES)
1827 {
1828 first_error (_(type_error));
1829 return FAIL;
1830 }
1831 if (reg_incr == -1)
1832 reg_incr = 1;
1833 else if (reg_incr != 1)
1834 {
1835 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1836 return FAIL;
1837 }
1838 ptr++;
1839 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1840 if (hireg == FAIL)
1841 {
1842 first_error (_(reg_expected_msgs[rtype]));
1843 return FAIL;
1844 }
1845 if (!neon_alias_types_same (&htype, &firsttype))
1846 {
1847 first_error (_(type_error));
1848 return FAIL;
1849 }
1850 count += hireg + dregs - getreg;
1851 continue;
1852 }
1853
1854 /* If we're using Q registers, we can't use [] or [n] syntax. */
1855 if (rtype == REG_TYPE_NQ)
1856 {
1857 count += 2;
1858 continue;
1859 }
1860
1861 if ((atype.defined & NTA_HASINDEX) != 0)
1862 {
1863 if (lane == -1)
1864 lane = atype.index;
1865 else if (lane != atype.index)
1866 {
1867 first_error (_(type_error));
1868 return FAIL;
1869 }
1870 }
1871 else if (lane == -1)
1872 lane = NEON_INTERLEAVE_LANES;
1873 else if (lane != NEON_INTERLEAVE_LANES)
1874 {
1875 first_error (_(type_error));
1876 return FAIL;
1877 }
1878 count++;
1879 }
1880 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
1881
1882 /* No lane set by [x]. We must be interleaving structures. */
1883 if (lane == -1)
1884 lane = NEON_INTERLEAVE_LANES;
1885
1886 /* Sanity check. */
1887 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
1888 || (count > 1 && reg_incr == -1))
1889 {
1890 first_error (_("error parsing element/structure list"));
1891 return FAIL;
1892 }
1893
1894 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
1895 {
1896 first_error (_("expected }"));
1897 return FAIL;
1898 }
1899
1900 if (reg_incr == -1)
1901 reg_incr = 1;
1902
1903 if (eltype)
1904 *eltype = firsttype.eltype;
1905
1906 *pbase = base_reg;
1907 *str = ptr;
1908
1909 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
1910 }
1911
1912 /* Parse an explicit relocation suffix on an expression. This is
1913 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
1914 arm_reloc_hsh contains no entries, so this function can only
1915 succeed if there is no () after the word. Returns -1 on error,
1916 BFD_RELOC_UNUSED if there wasn't any suffix. */
1917 static int
1918 parse_reloc (char **str)
1919 {
1920 struct reloc_entry *r;
1921 char *p, *q;
1922
1923 if (**str != '(')
1924 return BFD_RELOC_UNUSED;
1925
1926 p = *str + 1;
1927 q = p;
1928
1929 while (*q && *q != ')' && *q != ',')
1930 q++;
1931 if (*q != ')')
1932 return -1;
1933
1934 if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
1935 return -1;
1936
1937 *str = q + 1;
1938 return r->reloc;
1939 }
1940
1941 /* Directives: register aliases. */
1942
1943 static struct reg_entry *
1944 insert_reg_alias (char *str, int number, int type)
1945 {
1946 struct reg_entry *new;
1947 const char *name;
1948
1949 if ((new = hash_find (arm_reg_hsh, str)) != 0)
1950 {
1951 if (new->builtin)
1952 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
1953
1954 /* Only warn about a redefinition if it's not defined as the
1955 same register. */
1956 else if (new->number != number || new->type != type)
1957 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1958
1959 return 0;
1960 }
1961
1962 name = xstrdup (str);
1963 new = xmalloc (sizeof (struct reg_entry));
1964
1965 new->name = name;
1966 new->number = number;
1967 new->type = type;
1968 new->builtin = FALSE;
1969 new->neon = NULL;
1970
1971 if (hash_insert (arm_reg_hsh, name, (PTR) new))
1972 abort ();
1973
1974 return new;
1975 }
1976
1977 static void
1978 insert_neon_reg_alias (char *str, int number, int type,
1979 struct neon_typed_alias *atype)
1980 {
1981 struct reg_entry *reg = insert_reg_alias (str, number, type);
1982
1983 if (!reg)
1984 {
1985 first_error (_("attempt to redefine typed alias"));
1986 return;
1987 }
1988
1989 if (atype)
1990 {
1991 reg->neon = xmalloc (sizeof (struct neon_typed_alias));
1992 *reg->neon = *atype;
1993 }
1994 }
1995
1996 /* Look for the .req directive. This is of the form:
1997
1998 new_register_name .req existing_register_name
1999
2000 If we find one, or if it looks sufficiently like one that we want to
2001 handle any error here, return non-zero. Otherwise return zero. */
2002
2003 static int
2004 create_register_alias (char * newname, char *p)
2005 {
2006 struct reg_entry *old;
2007 char *oldname, *nbuf;
2008 size_t nlen;
2009
2010 /* The input scrubber ensures that whitespace after the mnemonic is
2011 collapsed to single spaces. */
2012 oldname = p;
2013 if (strncmp (oldname, " .req ", 6) != 0)
2014 return 0;
2015
2016 oldname += 6;
2017 if (*oldname == '\0')
2018 return 0;
2019
2020 old = hash_find (arm_reg_hsh, oldname);
2021 if (!old)
2022 {
2023 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2024 return 1;
2025 }
2026
2027 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2028 the desired alias name, and p points to its end. If not, then
2029 the desired alias name is in the global original_case_string. */
2030 #ifdef TC_CASE_SENSITIVE
2031 nlen = p - newname;
2032 #else
2033 newname = original_case_string;
2034 nlen = strlen (newname);
2035 #endif
2036
2037 nbuf = alloca (nlen + 1);
2038 memcpy (nbuf, newname, nlen);
2039 nbuf[nlen] = '\0';
2040
2041 /* Create aliases under the new name as stated; an all-lowercase
2042 version of the new name; and an all-uppercase version of the new
2043 name. */
2044 insert_reg_alias (nbuf, old->number, old->type);
2045
2046 for (p = nbuf; *p; p++)
2047 *p = TOUPPER (*p);
2048
2049 if (strncmp (nbuf, newname, nlen))
2050 insert_reg_alias (nbuf, old->number, old->type);
2051
2052 for (p = nbuf; *p; p++)
2053 *p = TOLOWER (*p);
2054
2055 if (strncmp (nbuf, newname, nlen))
2056 insert_reg_alias (nbuf, old->number, old->type);
2057
2058 return 1;
2059 }
2060
2061 /* Create a Neon typed/indexed register alias using directives, e.g.:
2062 X .dn d5.s32[1]
2063 Y .qn 6.s16
2064 Z .dn d7
2065 T .dn Z[0]
2066 These typed registers can be used instead of the types specified after the
2067 Neon mnemonic, so long as all operands given have types. Types can also be
2068 specified directly, e.g.:
2069 vadd d0.s32, d1.s32, d2.s32
2070 */
2071
2072 static int
2073 create_neon_reg_alias (char *newname, char *p)
2074 {
2075 enum arm_reg_type basetype;
2076 struct reg_entry *basereg;
2077 struct reg_entry mybasereg;
2078 struct neon_type ntype;
2079 struct neon_typed_alias typeinfo;
2080 char *namebuf, *nameend;
2081 int namelen;
2082
2083 typeinfo.defined = 0;
2084 typeinfo.eltype.type = NT_invtype;
2085 typeinfo.eltype.size = -1;
2086 typeinfo.index = -1;
2087
2088 nameend = p;
2089
2090 if (strncmp (p, " .dn ", 5) == 0)
2091 basetype = REG_TYPE_VFD;
2092 else if (strncmp (p, " .qn ", 5) == 0)
2093 basetype = REG_TYPE_NQ;
2094 else
2095 return 0;
2096
2097 p += 5;
2098
2099 if (*p == '\0')
2100 return 0;
2101
2102 basereg = arm_reg_parse_multi (&p);
2103
2104 if (basereg && basereg->type != basetype)
2105 {
2106 as_bad (_("bad type for register"));
2107 return 0;
2108 }
2109
2110 if (basereg == NULL)
2111 {
2112 expressionS exp;
2113 /* Try parsing as an integer. */
2114 my_get_expression (&exp, &p, GE_NO_PREFIX);
2115 if (exp.X_op != O_constant)
2116 {
2117 as_bad (_("expression must be constant"));
2118 return 0;
2119 }
2120 basereg = &mybasereg;
2121 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2122 : exp.X_add_number;
2123 basereg->neon = 0;
2124 }
2125
2126 if (basereg->neon)
2127 typeinfo = *basereg->neon;
2128
2129 if (parse_neon_type (&ntype, &p) == SUCCESS)
2130 {
2131 /* We got a type. */
2132 if (typeinfo.defined & NTA_HASTYPE)
2133 {
2134 as_bad (_("can't redefine the type of a register alias"));
2135 return 0;
2136 }
2137
2138 typeinfo.defined |= NTA_HASTYPE;
2139 if (ntype.elems != 1)
2140 {
2141 as_bad (_("you must specify a single type only"));
2142 return 0;
2143 }
2144 typeinfo.eltype = ntype.el[0];
2145 }
2146
2147 if (skip_past_char (&p, '[') == SUCCESS)
2148 {
2149 expressionS exp;
2150 /* We got a scalar index. */
2151
2152 if (typeinfo.defined & NTA_HASINDEX)
2153 {
2154 as_bad (_("can't redefine the index of a scalar alias"));
2155 return 0;
2156 }
2157
2158 my_get_expression (&exp, &p, GE_NO_PREFIX);
2159
2160 if (exp.X_op != O_constant)
2161 {
2162 as_bad (_("scalar index must be constant"));
2163 return 0;
2164 }
2165
2166 typeinfo.defined |= NTA_HASINDEX;
2167 typeinfo.index = exp.X_add_number;
2168
2169 if (skip_past_char (&p, ']') == FAIL)
2170 {
2171 as_bad (_("expecting ]"));
2172 return 0;
2173 }
2174 }
2175
2176 namelen = nameend - newname;
2177 namebuf = alloca (namelen + 1);
2178 strncpy (namebuf, newname, namelen);
2179 namebuf[namelen] = '\0';
2180
2181 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2182 typeinfo.defined != 0 ? &typeinfo : NULL);
2183
2184 /* Insert name in all uppercase. */
2185 for (p = namebuf; *p; p++)
2186 *p = TOUPPER (*p);
2187
2188 if (strncmp (namebuf, newname, namelen))
2189 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2190 typeinfo.defined != 0 ? &typeinfo : NULL);
2191
2192 /* Insert name in all lowercase. */
2193 for (p = namebuf; *p; p++)
2194 *p = TOLOWER (*p);
2195
2196 if (strncmp (namebuf, newname, namelen))
2197 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2198 typeinfo.defined != 0 ? &typeinfo : NULL);
2199
2200 return 1;
2201 }
2202
2203 /* Should never be called, as .req goes between the alias and the
2204 register name, not at the beginning of the line. */
2205 static void
2206 s_req (int a ATTRIBUTE_UNUSED)
2207 {
2208 as_bad (_("invalid syntax for .req directive"));
2209 }
2210
2211 static void
2212 s_dn (int a ATTRIBUTE_UNUSED)
2213 {
2214 as_bad (_("invalid syntax for .dn directive"));
2215 }
2216
2217 static void
2218 s_qn (int a ATTRIBUTE_UNUSED)
2219 {
2220 as_bad (_("invalid syntax for .qn directive"));
2221 }
2222
2223 /* The .unreq directive deletes an alias which was previously defined
2224 by .req. For example:
2225
2226 my_alias .req r11
2227 .unreq my_alias */
2228
2229 static void
2230 s_unreq (int a ATTRIBUTE_UNUSED)
2231 {
2232 char * name;
2233 char saved_char;
2234
2235 name = input_line_pointer;
2236
2237 while (*input_line_pointer != 0
2238 && *input_line_pointer != ' '
2239 && *input_line_pointer != '\n')
2240 ++input_line_pointer;
2241
2242 saved_char = *input_line_pointer;
2243 *input_line_pointer = 0;
2244
2245 if (!*name)
2246 as_bad (_("invalid syntax for .unreq directive"));
2247 else
2248 {
2249 struct reg_entry *reg = hash_find (arm_reg_hsh, name);
2250
2251 if (!reg)
2252 as_bad (_("unknown register alias '%s'"), name);
2253 else if (reg->builtin)
2254 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2255 name);
2256 else
2257 {
2258 hash_delete (arm_reg_hsh, name);
2259 free ((char *) reg->name);
2260 if (reg->neon)
2261 free (reg->neon);
2262 free (reg);
2263 }
2264 }
2265
2266 *input_line_pointer = saved_char;
2267 demand_empty_rest_of_line ();
2268 }
2269
2270 /* Directives: Instruction set selection. */
2271
2272 #ifdef OBJ_ELF
2273 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2274 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2275 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2276 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2277
2278 static enum mstate mapstate = MAP_UNDEFINED;
2279
2280 static void
2281 mapping_state (enum mstate state)
2282 {
2283 symbolS * symbolP;
2284 const char * symname;
2285 int type;
2286
2287 if (mapstate == state)
2288 /* The mapping symbol has already been emitted.
2289 There is nothing else to do. */
2290 return;
2291
2292 mapstate = state;
2293
2294 switch (state)
2295 {
2296 case MAP_DATA:
2297 symname = "$d";
2298 type = BSF_NO_FLAGS;
2299 break;
2300 case MAP_ARM:
2301 symname = "$a";
2302 type = BSF_NO_FLAGS;
2303 break;
2304 case MAP_THUMB:
2305 symname = "$t";
2306 type = BSF_NO_FLAGS;
2307 break;
2308 case MAP_UNDEFINED:
2309 return;
2310 default:
2311 abort ();
2312 }
2313
2314 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2315
2316 symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now);
2317 symbol_table_insert (symbolP);
2318 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2319
2320 switch (state)
2321 {
2322 case MAP_ARM:
2323 THUMB_SET_FUNC (symbolP, 0);
2324 ARM_SET_THUMB (symbolP, 0);
2325 ARM_SET_INTERWORK (symbolP, support_interwork);
2326 break;
2327
2328 case MAP_THUMB:
2329 THUMB_SET_FUNC (symbolP, 1);
2330 ARM_SET_THUMB (symbolP, 1);
2331 ARM_SET_INTERWORK (symbolP, support_interwork);
2332 break;
2333
2334 case MAP_DATA:
2335 default:
2336 return;
2337 }
2338 }
2339 #else
2340 #define mapping_state(x) /* nothing */
2341 #endif
2342
2343 /* Find the real, Thumb encoded start of a Thumb function. */
2344
2345 static symbolS *
2346 find_real_start (symbolS * symbolP)
2347 {
2348 char * real_start;
2349 const char * name = S_GET_NAME (symbolP);
2350 symbolS * new_target;
2351
2352 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2353 #define STUB_NAME ".real_start_of"
2354
2355 if (name == NULL)
2356 abort ();
2357
2358 /* The compiler may generate BL instructions to local labels because
2359 it needs to perform a branch to a far away location. These labels
2360 do not have a corresponding ".real_start_of" label. We check
2361 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2362 the ".real_start_of" convention for nonlocal branches. */
2363 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2364 return symbolP;
2365
2366 real_start = ACONCAT ((STUB_NAME, name, NULL));
2367 new_target = symbol_find (real_start);
2368
2369 if (new_target == NULL)
2370 {
2371 as_warn ("Failed to find real start of function: %s\n", name);
2372 new_target = symbolP;
2373 }
2374
2375 return new_target;
2376 }
2377
2378 static void
2379 opcode_select (int width)
2380 {
2381 switch (width)
2382 {
2383 case 16:
2384 if (! thumb_mode)
2385 {
2386 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2387 as_bad (_("selected processor does not support THUMB opcodes"));
2388
2389 thumb_mode = 1;
2390 /* No need to force the alignment, since we will have been
2391 coming from ARM mode, which is word-aligned. */
2392 record_alignment (now_seg, 1);
2393 }
2394 mapping_state (MAP_THUMB);
2395 break;
2396
2397 case 32:
2398 if (thumb_mode)
2399 {
2400 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2401 as_bad (_("selected processor does not support ARM opcodes"));
2402
2403 thumb_mode = 0;
2404
2405 if (!need_pass_2)
2406 frag_align (2, 0, 0);
2407
2408 record_alignment (now_seg, 1);
2409 }
2410 mapping_state (MAP_ARM);
2411 break;
2412
2413 default:
2414 as_bad (_("invalid instruction size selected (%d)"), width);
2415 }
2416 }
2417
2418 static void
2419 s_arm (int ignore ATTRIBUTE_UNUSED)
2420 {
2421 opcode_select (32);
2422 demand_empty_rest_of_line ();
2423 }
2424
2425 static void
2426 s_thumb (int ignore ATTRIBUTE_UNUSED)
2427 {
2428 opcode_select (16);
2429 demand_empty_rest_of_line ();
2430 }
2431
2432 static void
2433 s_code (int unused ATTRIBUTE_UNUSED)
2434 {
2435 int temp;
2436
2437 temp = get_absolute_expression ();
2438 switch (temp)
2439 {
2440 case 16:
2441 case 32:
2442 opcode_select (temp);
2443 break;
2444
2445 default:
2446 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2447 }
2448 }
2449
2450 static void
2451 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2452 {
2453 /* If we are not already in thumb mode go into it, EVEN if
2454 the target processor does not support thumb instructions.
2455 This is used by gcc/config/arm/lib1funcs.asm for example
2456 to compile interworking support functions even if the
2457 target processor should not support interworking. */
2458 if (! thumb_mode)
2459 {
2460 thumb_mode = 2;
2461 record_alignment (now_seg, 1);
2462 }
2463
2464 demand_empty_rest_of_line ();
2465 }
2466
2467 static void
2468 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2469 {
2470 s_thumb (0);
2471
2472 /* The following label is the name/address of the start of a Thumb function.
2473 We need to know this for the interworking support. */
2474 label_is_thumb_function_name = TRUE;
2475 }
2476
2477 /* Perform a .set directive, but also mark the alias as
2478 being a thumb function. */
2479
2480 static void
2481 s_thumb_set (int equiv)
2482 {
2483 /* XXX the following is a duplicate of the code for s_set() in read.c
2484 We cannot just call that code as we need to get at the symbol that
2485 is created. */
2486 char * name;
2487 char delim;
2488 char * end_name;
2489 symbolS * symbolP;
2490
2491 /* Especial apologies for the random logic:
2492 This just grew, and could be parsed much more simply!
2493 Dean - in haste. */
2494 name = input_line_pointer;
2495 delim = get_symbol_end ();
2496 end_name = input_line_pointer;
2497 *end_name = delim;
2498
2499 if (*input_line_pointer != ',')
2500 {
2501 *end_name = 0;
2502 as_bad (_("expected comma after name \"%s\""), name);
2503 *end_name = delim;
2504 ignore_rest_of_line ();
2505 return;
2506 }
2507
2508 input_line_pointer++;
2509 *end_name = 0;
2510
2511 if (name[0] == '.' && name[1] == '\0')
2512 {
2513 /* XXX - this should not happen to .thumb_set. */
2514 abort ();
2515 }
2516
2517 if ((symbolP = symbol_find (name)) == NULL
2518 && (symbolP = md_undefined_symbol (name)) == NULL)
2519 {
2520 #ifndef NO_LISTING
2521 /* When doing symbol listings, play games with dummy fragments living
2522 outside the normal fragment chain to record the file and line info
2523 for this symbol. */
2524 if (listing & LISTING_SYMBOLS)
2525 {
2526 extern struct list_info_struct * listing_tail;
2527 fragS * dummy_frag = xmalloc (sizeof (fragS));
2528
2529 memset (dummy_frag, 0, sizeof (fragS));
2530 dummy_frag->fr_type = rs_fill;
2531 dummy_frag->line = listing_tail;
2532 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2533 dummy_frag->fr_symbol = symbolP;
2534 }
2535 else
2536 #endif
2537 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2538
2539 #ifdef OBJ_COFF
2540 /* "set" symbols are local unless otherwise specified. */
2541 SF_SET_LOCAL (symbolP);
2542 #endif /* OBJ_COFF */
2543 } /* Make a new symbol. */
2544
2545 symbol_table_insert (symbolP);
2546
2547 * end_name = delim;
2548
2549 if (equiv
2550 && S_IS_DEFINED (symbolP)
2551 && S_GET_SEGMENT (symbolP) != reg_section)
2552 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2553
2554 pseudo_set (symbolP);
2555
2556 demand_empty_rest_of_line ();
2557
2558 /* XXX Now we come to the Thumb specific bit of code. */
2559
2560 THUMB_SET_FUNC (symbolP, 1);
2561 ARM_SET_THUMB (symbolP, 1);
2562 #if defined OBJ_ELF || defined OBJ_COFF
2563 ARM_SET_INTERWORK (symbolP, support_interwork);
2564 #endif
2565 }
2566
2567 /* Directives: Mode selection. */
2568
2569 /* .syntax [unified|divided] - choose the new unified syntax
2570 (same for Arm and Thumb encoding, modulo slight differences in what
2571 can be represented) or the old divergent syntax for each mode. */
2572 static void
2573 s_syntax (int unused ATTRIBUTE_UNUSED)
2574 {
2575 char *name, delim;
2576
2577 name = input_line_pointer;
2578 delim = get_symbol_end ();
2579
2580 if (!strcasecmp (name, "unified"))
2581 unified_syntax = TRUE;
2582 else if (!strcasecmp (name, "divided"))
2583 unified_syntax = FALSE;
2584 else
2585 {
2586 as_bad (_("unrecognized syntax mode \"%s\""), name);
2587 return;
2588 }
2589 *input_line_pointer = delim;
2590 demand_empty_rest_of_line ();
2591 }
2592
2593 /* Directives: sectioning and alignment. */
2594
2595 /* Same as s_align_ptwo but align 0 => align 2. */
2596
2597 static void
2598 s_align (int unused ATTRIBUTE_UNUSED)
2599 {
2600 int temp;
2601 long temp_fill;
2602 long max_alignment = 15;
2603
2604 temp = get_absolute_expression ();
2605 if (temp > max_alignment)
2606 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2607 else if (temp < 0)
2608 {
2609 as_bad (_("alignment negative. 0 assumed."));
2610 temp = 0;
2611 }
2612
2613 if (*input_line_pointer == ',')
2614 {
2615 input_line_pointer++;
2616 temp_fill = get_absolute_expression ();
2617 }
2618 else
2619 temp_fill = 0;
2620
2621 if (!temp)
2622 temp = 2;
2623
2624 /* Only make a frag if we HAVE to. */
2625 if (temp && !need_pass_2)
2626 frag_align (temp, (int) temp_fill, 0);
2627 demand_empty_rest_of_line ();
2628
2629 record_alignment (now_seg, temp);
2630 }
2631
2632 static void
2633 s_bss (int ignore ATTRIBUTE_UNUSED)
2634 {
2635 /* We don't support putting frags in the BSS segment, we fake it by
2636 marking in_bss, then looking at s_skip for clues. */
2637 subseg_set (bss_section, 0);
2638 demand_empty_rest_of_line ();
2639 mapping_state (MAP_DATA);
2640 }
2641
2642 static void
2643 s_even (int ignore ATTRIBUTE_UNUSED)
2644 {
2645 /* Never make frag if expect extra pass. */
2646 if (!need_pass_2)
2647 frag_align (1, 0, 0);
2648
2649 record_alignment (now_seg, 1);
2650
2651 demand_empty_rest_of_line ();
2652 }
2653
2654 /* Directives: Literal pools. */
2655
2656 static literal_pool *
2657 find_literal_pool (void)
2658 {
2659 literal_pool * pool;
2660
2661 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2662 {
2663 if (pool->section == now_seg
2664 && pool->sub_section == now_subseg)
2665 break;
2666 }
2667
2668 return pool;
2669 }
2670
2671 static literal_pool *
2672 find_or_make_literal_pool (void)
2673 {
2674 /* Next literal pool ID number. */
2675 static unsigned int latest_pool_num = 1;
2676 literal_pool * pool;
2677
2678 pool = find_literal_pool ();
2679
2680 if (pool == NULL)
2681 {
2682 /* Create a new pool. */
2683 pool = xmalloc (sizeof (* pool));
2684 if (! pool)
2685 return NULL;
2686
2687 pool->next_free_entry = 0;
2688 pool->section = now_seg;
2689 pool->sub_section = now_subseg;
2690 pool->next = list_of_pools;
2691 pool->symbol = NULL;
2692
2693 /* Add it to the list. */
2694 list_of_pools = pool;
2695 }
2696
2697 /* New pools, and emptied pools, will have a NULL symbol. */
2698 if (pool->symbol == NULL)
2699 {
2700 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2701 (valueT) 0, &zero_address_frag);
2702 pool->id = latest_pool_num ++;
2703 }
2704
2705 /* Done. */
2706 return pool;
2707 }
2708
2709 /* Add the literal in the global 'inst'
2710 structure to the relevent literal pool. */
2711
2712 static int
2713 add_to_lit_pool (void)
2714 {
2715 literal_pool * pool;
2716 unsigned int entry;
2717
2718 pool = find_or_make_literal_pool ();
2719
2720 /* Check if this literal value is already in the pool. */
2721 for (entry = 0; entry < pool->next_free_entry; entry ++)
2722 {
2723 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2724 && (inst.reloc.exp.X_op == O_constant)
2725 && (pool->literals[entry].X_add_number
2726 == inst.reloc.exp.X_add_number)
2727 && (pool->literals[entry].X_unsigned
2728 == inst.reloc.exp.X_unsigned))
2729 break;
2730
2731 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2732 && (inst.reloc.exp.X_op == O_symbol)
2733 && (pool->literals[entry].X_add_number
2734 == inst.reloc.exp.X_add_number)
2735 && (pool->literals[entry].X_add_symbol
2736 == inst.reloc.exp.X_add_symbol)
2737 && (pool->literals[entry].X_op_symbol
2738 == inst.reloc.exp.X_op_symbol))
2739 break;
2740 }
2741
2742 /* Do we need to create a new entry? */
2743 if (entry == pool->next_free_entry)
2744 {
2745 if (entry >= MAX_LITERAL_POOL_SIZE)
2746 {
2747 inst.error = _("literal pool overflow");
2748 return FAIL;
2749 }
2750
2751 pool->literals[entry] = inst.reloc.exp;
2752 pool->next_free_entry += 1;
2753 }
2754
2755 inst.reloc.exp.X_op = O_symbol;
2756 inst.reloc.exp.X_add_number = ((int) entry) * 4;
2757 inst.reloc.exp.X_add_symbol = pool->symbol;
2758
2759 return SUCCESS;
2760 }
2761
2762 /* Can't use symbol_new here, so have to create a symbol and then at
2763 a later date assign it a value. Thats what these functions do. */
2764
2765 static void
2766 symbol_locate (symbolS * symbolP,
2767 const char * name, /* It is copied, the caller can modify. */
2768 segT segment, /* Segment identifier (SEG_<something>). */
2769 valueT valu, /* Symbol value. */
2770 fragS * frag) /* Associated fragment. */
2771 {
2772 unsigned int name_length;
2773 char * preserved_copy_of_name;
2774
2775 name_length = strlen (name) + 1; /* +1 for \0. */
2776 obstack_grow (&notes, name, name_length);
2777 preserved_copy_of_name = obstack_finish (&notes);
2778
2779 #ifdef tc_canonicalize_symbol_name
2780 preserved_copy_of_name =
2781 tc_canonicalize_symbol_name (preserved_copy_of_name);
2782 #endif
2783
2784 S_SET_NAME (symbolP, preserved_copy_of_name);
2785
2786 S_SET_SEGMENT (symbolP, segment);
2787 S_SET_VALUE (symbolP, valu);
2788 symbol_clear_list_pointers (symbolP);
2789
2790 symbol_set_frag (symbolP, frag);
2791
2792 /* Link to end of symbol chain. */
2793 {
2794 extern int symbol_table_frozen;
2795
2796 if (symbol_table_frozen)
2797 abort ();
2798 }
2799
2800 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
2801
2802 obj_symbol_new_hook (symbolP);
2803
2804 #ifdef tc_symbol_new_hook
2805 tc_symbol_new_hook (symbolP);
2806 #endif
2807
2808 #ifdef DEBUG_SYMS
2809 verify_symbol_chain (symbol_rootP, symbol_lastP);
2810 #endif /* DEBUG_SYMS */
2811 }
2812
2813
2814 static void
2815 s_ltorg (int ignored ATTRIBUTE_UNUSED)
2816 {
2817 unsigned int entry;
2818 literal_pool * pool;
2819 char sym_name[20];
2820
2821 pool = find_literal_pool ();
2822 if (pool == NULL
2823 || pool->symbol == NULL
2824 || pool->next_free_entry == 0)
2825 return;
2826
2827 mapping_state (MAP_DATA);
2828
2829 /* Align pool as you have word accesses.
2830 Only make a frag if we have to. */
2831 if (!need_pass_2)
2832 frag_align (2, 0, 0);
2833
2834 record_alignment (now_seg, 2);
2835
2836 sprintf (sym_name, "$$lit_\002%x", pool->id);
2837
2838 symbol_locate (pool->symbol, sym_name, now_seg,
2839 (valueT) frag_now_fix (), frag_now);
2840 symbol_table_insert (pool->symbol);
2841
2842 ARM_SET_THUMB (pool->symbol, thumb_mode);
2843
2844 #if defined OBJ_COFF || defined OBJ_ELF
2845 ARM_SET_INTERWORK (pool->symbol, support_interwork);
2846 #endif
2847
2848 for (entry = 0; entry < pool->next_free_entry; entry ++)
2849 /* First output the expression in the instruction to the pool. */
2850 emit_expr (&(pool->literals[entry]), 4); /* .word */
2851
2852 /* Mark the pool as empty. */
2853 pool->next_free_entry = 0;
2854 pool->symbol = NULL;
2855 }
2856
2857 #ifdef OBJ_ELF
2858 /* Forward declarations for functions below, in the MD interface
2859 section. */
2860 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
2861 static valueT create_unwind_entry (int);
2862 static void start_unwind_section (const segT, int);
2863 static void add_unwind_opcode (valueT, int);
2864 static void flush_pending_unwind (void);
2865
2866 /* Directives: Data. */
2867
2868 static void
2869 s_arm_elf_cons (int nbytes)
2870 {
2871 expressionS exp;
2872
2873 #ifdef md_flush_pending_output
2874 md_flush_pending_output ();
2875 #endif
2876
2877 if (is_it_end_of_statement ())
2878 {
2879 demand_empty_rest_of_line ();
2880 return;
2881 }
2882
2883 #ifdef md_cons_align
2884 md_cons_align (nbytes);
2885 #endif
2886
2887 mapping_state (MAP_DATA);
2888 do
2889 {
2890 int reloc;
2891 char *base = input_line_pointer;
2892
2893 expression (& exp);
2894
2895 if (exp.X_op != O_symbol)
2896 emit_expr (&exp, (unsigned int) nbytes);
2897 else
2898 {
2899 char *before_reloc = input_line_pointer;
2900 reloc = parse_reloc (&input_line_pointer);
2901 if (reloc == -1)
2902 {
2903 as_bad (_("unrecognized relocation suffix"));
2904 ignore_rest_of_line ();
2905 return;
2906 }
2907 else if (reloc == BFD_RELOC_UNUSED)
2908 emit_expr (&exp, (unsigned int) nbytes);
2909 else
2910 {
2911 reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
2912 int size = bfd_get_reloc_size (howto);
2913
2914 if (reloc == BFD_RELOC_ARM_PLT32)
2915 {
2916 as_bad (_("(plt) is only valid on branch targets"));
2917 reloc = BFD_RELOC_UNUSED;
2918 size = 0;
2919 }
2920
2921 if (size > nbytes)
2922 as_bad (_("%s relocations do not fit in %d bytes"),
2923 howto->name, nbytes);
2924 else
2925 {
2926 /* We've parsed an expression stopping at O_symbol.
2927 But there may be more expression left now that we
2928 have parsed the relocation marker. Parse it again.
2929 XXX Surely there is a cleaner way to do this. */
2930 char *p = input_line_pointer;
2931 int offset;
2932 char *save_buf = alloca (input_line_pointer - base);
2933 memcpy (save_buf, base, input_line_pointer - base);
2934 memmove (base + (input_line_pointer - before_reloc),
2935 base, before_reloc - base);
2936
2937 input_line_pointer = base + (input_line_pointer-before_reloc);
2938 expression (&exp);
2939 memcpy (base, save_buf, p - base);
2940
2941 offset = nbytes - size;
2942 p = frag_more ((int) nbytes);
2943 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
2944 size, &exp, 0, reloc);
2945 }
2946 }
2947 }
2948 }
2949 while (*input_line_pointer++ == ',');
2950
2951 /* Put terminator back into stream. */
2952 input_line_pointer --;
2953 demand_empty_rest_of_line ();
2954 }
2955
2956
2957 /* Parse a .rel31 directive. */
2958
2959 static void
2960 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
2961 {
2962 expressionS exp;
2963 char *p;
2964 valueT highbit;
2965
2966 highbit = 0;
2967 if (*input_line_pointer == '1')
2968 highbit = 0x80000000;
2969 else if (*input_line_pointer != '0')
2970 as_bad (_("expected 0 or 1"));
2971
2972 input_line_pointer++;
2973 if (*input_line_pointer != ',')
2974 as_bad (_("missing comma"));
2975 input_line_pointer++;
2976
2977 #ifdef md_flush_pending_output
2978 md_flush_pending_output ();
2979 #endif
2980
2981 #ifdef md_cons_align
2982 md_cons_align (4);
2983 #endif
2984
2985 mapping_state (MAP_DATA);
2986
2987 expression (&exp);
2988
2989 p = frag_more (4);
2990 md_number_to_chars (p, highbit, 4);
2991 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
2992 BFD_RELOC_ARM_PREL31);
2993
2994 demand_empty_rest_of_line ();
2995 }
2996
2997 /* Directives: AEABI stack-unwind tables. */
2998
2999 /* Parse an unwind_fnstart directive. Simply records the current location. */
3000
3001 static void
3002 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3003 {
3004 demand_empty_rest_of_line ();
3005 /* Mark the start of the function. */
3006 unwind.proc_start = expr_build_dot ();
3007
3008 /* Reset the rest of the unwind info. */
3009 unwind.opcode_count = 0;
3010 unwind.table_entry = NULL;
3011 unwind.personality_routine = NULL;
3012 unwind.personality_index = -1;
3013 unwind.frame_size = 0;
3014 unwind.fp_offset = 0;
3015 unwind.fp_reg = 13;
3016 unwind.fp_used = 0;
3017 unwind.sp_restored = 0;
3018 }
3019
3020
3021 /* Parse a handlerdata directive. Creates the exception handling table entry
3022 for the function. */
3023
3024 static void
3025 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3026 {
3027 demand_empty_rest_of_line ();
3028 if (unwind.table_entry)
3029 as_bad (_("dupicate .handlerdata directive"));
3030
3031 create_unwind_entry (1);
3032 }
3033
3034 /* Parse an unwind_fnend directive. Generates the index table entry. */
3035
3036 static void
3037 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3038 {
3039 long where;
3040 char *ptr;
3041 valueT val;
3042
3043 demand_empty_rest_of_line ();
3044
3045 /* Add eh table entry. */
3046 if (unwind.table_entry == NULL)
3047 val = create_unwind_entry (0);
3048 else
3049 val = 0;
3050
3051 /* Add index table entry. This is two words. */
3052 start_unwind_section (unwind.saved_seg, 1);
3053 frag_align (2, 0, 0);
3054 record_alignment (now_seg, 2);
3055
3056 ptr = frag_more (8);
3057 where = frag_now_fix () - 8;
3058
3059 /* Self relative offset of the function start. */
3060 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3061 BFD_RELOC_ARM_PREL31);
3062
3063 /* Indicate dependency on EHABI-defined personality routines to the
3064 linker, if it hasn't been done already. */
3065 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3066 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3067 {
3068 static const char *const name[] = {
3069 "__aeabi_unwind_cpp_pr0",
3070 "__aeabi_unwind_cpp_pr1",
3071 "__aeabi_unwind_cpp_pr2"
3072 };
3073 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3074 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3075 marked_pr_dependency |= 1 << unwind.personality_index;
3076 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3077 = marked_pr_dependency;
3078 }
3079
3080 if (val)
3081 /* Inline exception table entry. */
3082 md_number_to_chars (ptr + 4, val, 4);
3083 else
3084 /* Self relative offset of the table entry. */
3085 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3086 BFD_RELOC_ARM_PREL31);
3087
3088 /* Restore the original section. */
3089 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3090 }
3091
3092
3093 /* Parse an unwind_cantunwind directive. */
3094
3095 static void
3096 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3097 {
3098 demand_empty_rest_of_line ();
3099 if (unwind.personality_routine || unwind.personality_index != -1)
3100 as_bad (_("personality routine specified for cantunwind frame"));
3101
3102 unwind.personality_index = -2;
3103 }
3104
3105
3106 /* Parse a personalityindex directive. */
3107
3108 static void
3109 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3110 {
3111 expressionS exp;
3112
3113 if (unwind.personality_routine || unwind.personality_index != -1)
3114 as_bad (_("duplicate .personalityindex directive"));
3115
3116 expression (&exp);
3117
3118 if (exp.X_op != O_constant
3119 || exp.X_add_number < 0 || exp.X_add_number > 15)
3120 {
3121 as_bad (_("bad personality routine number"));
3122 ignore_rest_of_line ();
3123 return;
3124 }
3125
3126 unwind.personality_index = exp.X_add_number;
3127
3128 demand_empty_rest_of_line ();
3129 }
3130
3131
3132 /* Parse a personality directive. */
3133
3134 static void
3135 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3136 {
3137 char *name, *p, c;
3138
3139 if (unwind.personality_routine || unwind.personality_index != -1)
3140 as_bad (_("duplicate .personality directive"));
3141
3142 name = input_line_pointer;
3143 c = get_symbol_end ();
3144 p = input_line_pointer;
3145 unwind.personality_routine = symbol_find_or_make (name);
3146 *p = c;
3147 demand_empty_rest_of_line ();
3148 }
3149
3150
3151 /* Parse a directive saving core registers. */
3152
3153 static void
3154 s_arm_unwind_save_core (void)
3155 {
3156 valueT op;
3157 long range;
3158 int n;
3159
3160 range = parse_reg_list (&input_line_pointer);
3161 if (range == FAIL)
3162 {
3163 as_bad (_("expected register list"));
3164 ignore_rest_of_line ();
3165 return;
3166 }
3167
3168 demand_empty_rest_of_line ();
3169
3170 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3171 into .unwind_save {..., sp...}. We aren't bothered about the value of
3172 ip because it is clobbered by calls. */
3173 if (unwind.sp_restored && unwind.fp_reg == 12
3174 && (range & 0x3000) == 0x1000)
3175 {
3176 unwind.opcode_count--;
3177 unwind.sp_restored = 0;
3178 range = (range | 0x2000) & ~0x1000;
3179 unwind.pending_offset = 0;
3180 }
3181
3182 /* Pop r4-r15. */
3183 if (range & 0xfff0)
3184 {
3185 /* See if we can use the short opcodes. These pop a block of up to 8
3186 registers starting with r4, plus maybe r14. */
3187 for (n = 0; n < 8; n++)
3188 {
3189 /* Break at the first non-saved register. */
3190 if ((range & (1 << (n + 4))) == 0)
3191 break;
3192 }
3193 /* See if there are any other bits set. */
3194 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3195 {
3196 /* Use the long form. */
3197 op = 0x8000 | ((range >> 4) & 0xfff);
3198 add_unwind_opcode (op, 2);
3199 }
3200 else
3201 {
3202 /* Use the short form. */
3203 if (range & 0x4000)
3204 op = 0xa8; /* Pop r14. */
3205 else
3206 op = 0xa0; /* Do not pop r14. */
3207 op |= (n - 1);
3208 add_unwind_opcode (op, 1);
3209 }
3210 }
3211
3212 /* Pop r0-r3. */
3213 if (range & 0xf)
3214 {
3215 op = 0xb100 | (range & 0xf);
3216 add_unwind_opcode (op, 2);
3217 }
3218
3219 /* Record the number of bytes pushed. */
3220 for (n = 0; n < 16; n++)
3221 {
3222 if (range & (1 << n))
3223 unwind.frame_size += 4;
3224 }
3225 }
3226
3227
3228 /* Parse a directive saving FPA registers. */
3229
3230 static void
3231 s_arm_unwind_save_fpa (int reg)
3232 {
3233 expressionS exp;
3234 int num_regs;
3235 valueT op;
3236
3237 /* Get Number of registers to transfer. */
3238 if (skip_past_comma (&input_line_pointer) != FAIL)
3239 expression (&exp);
3240 else
3241 exp.X_op = O_illegal;
3242
3243 if (exp.X_op != O_constant)
3244 {
3245 as_bad (_("expected , <constant>"));
3246 ignore_rest_of_line ();
3247 return;
3248 }
3249
3250 num_regs = exp.X_add_number;
3251
3252 if (num_regs < 1 || num_regs > 4)
3253 {
3254 as_bad (_("number of registers must be in the range [1:4]"));
3255 ignore_rest_of_line ();
3256 return;
3257 }
3258
3259 demand_empty_rest_of_line ();
3260
3261 if (reg == 4)
3262 {
3263 /* Short form. */
3264 op = 0xb4 | (num_regs - 1);
3265 add_unwind_opcode (op, 1);
3266 }
3267 else
3268 {
3269 /* Long form. */
3270 op = 0xc800 | (reg << 4) | (num_regs - 1);
3271 add_unwind_opcode (op, 2);
3272 }
3273 unwind.frame_size += num_regs * 12;
3274 }
3275
3276
3277 /* Parse a directive saving VFP registers for ARMv6 and above. */
3278
3279 static void
3280 s_arm_unwind_save_vfp_armv6 (void)
3281 {
3282 int count;
3283 unsigned int start;
3284 valueT op;
3285 int num_vfpv3_regs = 0;
3286 int num_regs_below_16;
3287
3288 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3289 if (count == FAIL)
3290 {
3291 as_bad (_("expected register list"));
3292 ignore_rest_of_line ();
3293 return;
3294 }
3295
3296 demand_empty_rest_of_line ();
3297
3298 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3299 than FSTMX/FLDMX-style ones). */
3300
3301 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3302 if (start >= 16)
3303 num_vfpv3_regs = count;
3304 else if (start + count > 16)
3305 num_vfpv3_regs = start + count - 16;
3306
3307 if (num_vfpv3_regs > 0)
3308 {
3309 int start_offset = start > 16 ? start - 16 : 0;
3310 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3311 add_unwind_opcode (op, 2);
3312 }
3313
3314 /* Generate opcode for registers numbered in the range 0 .. 15. */
3315 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3316 assert (num_regs_below_16 + num_vfpv3_regs == count);
3317 if (num_regs_below_16 > 0)
3318 {
3319 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3320 add_unwind_opcode (op, 2);
3321 }
3322
3323 unwind.frame_size += count * 8;
3324 }
3325
3326
3327 /* Parse a directive saving VFP registers for pre-ARMv6. */
3328
3329 static void
3330 s_arm_unwind_save_vfp (void)
3331 {
3332 int count;
3333 unsigned int reg;
3334 valueT op;
3335
3336 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3337 if (count == FAIL)
3338 {
3339 as_bad (_("expected register list"));
3340 ignore_rest_of_line ();
3341 return;
3342 }
3343
3344 demand_empty_rest_of_line ();
3345
3346 if (reg == 8)
3347 {
3348 /* Short form. */
3349 op = 0xb8 | (count - 1);
3350 add_unwind_opcode (op, 1);
3351 }
3352 else
3353 {
3354 /* Long form. */
3355 op = 0xb300 | (reg << 4) | (count - 1);
3356 add_unwind_opcode (op, 2);
3357 }
3358 unwind.frame_size += count * 8 + 4;
3359 }
3360
3361
3362 /* Parse a directive saving iWMMXt data registers. */
3363
3364 static void
3365 s_arm_unwind_save_mmxwr (void)
3366 {
3367 int reg;
3368 int hi_reg;
3369 int i;
3370 unsigned mask = 0;
3371 valueT op;
3372
3373 if (*input_line_pointer == '{')
3374 input_line_pointer++;
3375
3376 do
3377 {
3378 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3379
3380 if (reg == FAIL)
3381 {
3382 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
3383 goto error;
3384 }
3385
3386 if (mask >> reg)
3387 as_tsktsk (_("register list not in ascending order"));
3388 mask |= 1 << reg;
3389
3390 if (*input_line_pointer == '-')
3391 {
3392 input_line_pointer++;
3393 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3394 if (hi_reg == FAIL)
3395 {
3396 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
3397 goto error;
3398 }
3399 else if (reg >= hi_reg)
3400 {
3401 as_bad (_("bad register range"));
3402 goto error;
3403 }
3404 for (; reg < hi_reg; reg++)
3405 mask |= 1 << reg;
3406 }
3407 }
3408 while (skip_past_comma (&input_line_pointer) != FAIL);
3409
3410 if (*input_line_pointer == '}')
3411 input_line_pointer++;
3412
3413 demand_empty_rest_of_line ();
3414
3415 /* Generate any deferred opcodes because we're going to be looking at
3416 the list. */
3417 flush_pending_unwind ();
3418
3419 for (i = 0; i < 16; i++)
3420 {
3421 if (mask & (1 << i))
3422 unwind.frame_size += 8;
3423 }
3424
3425 /* Attempt to combine with a previous opcode. We do this because gcc
3426 likes to output separate unwind directives for a single block of
3427 registers. */
3428 if (unwind.opcode_count > 0)
3429 {
3430 i = unwind.opcodes[unwind.opcode_count - 1];
3431 if ((i & 0xf8) == 0xc0)
3432 {
3433 i &= 7;
3434 /* Only merge if the blocks are contiguous. */
3435 if (i < 6)
3436 {
3437 if ((mask & 0xfe00) == (1 << 9))
3438 {
3439 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3440 unwind.opcode_count--;
3441 }
3442 }
3443 else if (i == 6 && unwind.opcode_count >= 2)
3444 {
3445 i = unwind.opcodes[unwind.opcode_count - 2];
3446 reg = i >> 4;
3447 i &= 0xf;
3448
3449 op = 0xffff << (reg - 1);
3450 if (reg > 0
3451 || ((mask & op) == (1u << (reg - 1))))
3452 {
3453 op = (1 << (reg + i + 1)) - 1;
3454 op &= ~((1 << reg) - 1);
3455 mask |= op;
3456 unwind.opcode_count -= 2;
3457 }
3458 }
3459 }
3460 }
3461
3462 hi_reg = 15;
3463 /* We want to generate opcodes in the order the registers have been
3464 saved, ie. descending order. */
3465 for (reg = 15; reg >= -1; reg--)
3466 {
3467 /* Save registers in blocks. */
3468 if (reg < 0
3469 || !(mask & (1 << reg)))
3470 {
3471 /* We found an unsaved reg. Generate opcodes to save the
3472 preceeding block. */
3473 if (reg != hi_reg)
3474 {
3475 if (reg == 9)
3476 {
3477 /* Short form. */
3478 op = 0xc0 | (hi_reg - 10);
3479 add_unwind_opcode (op, 1);
3480 }
3481 else
3482 {
3483 /* Long form. */
3484 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3485 add_unwind_opcode (op, 2);
3486 }
3487 }
3488 hi_reg = reg - 1;
3489 }
3490 }
3491
3492 return;
3493 error:
3494 ignore_rest_of_line ();
3495 }
3496
3497 static void
3498 s_arm_unwind_save_mmxwcg (void)
3499 {
3500 int reg;
3501 int hi_reg;
3502 unsigned mask = 0;
3503 valueT op;
3504
3505 if (*input_line_pointer == '{')
3506 input_line_pointer++;
3507
3508 do
3509 {
3510 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3511
3512 if (reg == FAIL)
3513 {
3514 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
3515 goto error;
3516 }
3517
3518 reg -= 8;
3519 if (mask >> reg)
3520 as_tsktsk (_("register list not in ascending order"));
3521 mask |= 1 << reg;
3522
3523 if (*input_line_pointer == '-')
3524 {
3525 input_line_pointer++;
3526 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3527 if (hi_reg == FAIL)
3528 {
3529 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
3530 goto error;
3531 }
3532 else if (reg >= hi_reg)
3533 {
3534 as_bad (_("bad register range"));
3535 goto error;
3536 }
3537 for (; reg < hi_reg; reg++)
3538 mask |= 1 << reg;
3539 }
3540 }
3541 while (skip_past_comma (&input_line_pointer) != FAIL);
3542
3543 if (*input_line_pointer == '}')
3544 input_line_pointer++;
3545
3546 demand_empty_rest_of_line ();
3547
3548 /* Generate any deferred opcodes because we're going to be looking at
3549 the list. */
3550 flush_pending_unwind ();
3551
3552 for (reg = 0; reg < 16; reg++)
3553 {
3554 if (mask & (1 << reg))
3555 unwind.frame_size += 4;
3556 }
3557 op = 0xc700 | mask;
3558 add_unwind_opcode (op, 2);
3559 return;
3560 error:
3561 ignore_rest_of_line ();
3562 }
3563
3564
3565 /* Parse an unwind_save directive.
3566 If the argument is non-zero, this is a .vsave directive. */
3567
3568 static void
3569 s_arm_unwind_save (int arch_v6)
3570 {
3571 char *peek;
3572 struct reg_entry *reg;
3573 bfd_boolean had_brace = FALSE;
3574
3575 /* Figure out what sort of save we have. */
3576 peek = input_line_pointer;
3577
3578 if (*peek == '{')
3579 {
3580 had_brace = TRUE;
3581 peek++;
3582 }
3583
3584 reg = arm_reg_parse_multi (&peek);
3585
3586 if (!reg)
3587 {
3588 as_bad (_("register expected"));
3589 ignore_rest_of_line ();
3590 return;
3591 }
3592
3593 switch (reg->type)
3594 {
3595 case REG_TYPE_FN:
3596 if (had_brace)
3597 {
3598 as_bad (_("FPA .unwind_save does not take a register list"));
3599 ignore_rest_of_line ();
3600 return;
3601 }
3602 s_arm_unwind_save_fpa (reg->number);
3603 return;
3604
3605 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
3606 case REG_TYPE_VFD:
3607 if (arch_v6)
3608 s_arm_unwind_save_vfp_armv6 ();
3609 else
3610 s_arm_unwind_save_vfp ();
3611 return;
3612 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
3613 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
3614
3615 default:
3616 as_bad (_(".unwind_save does not support this kind of register"));
3617 ignore_rest_of_line ();
3618 }
3619 }
3620
3621
3622 /* Parse an unwind_movsp directive. */
3623
3624 static void
3625 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
3626 {
3627 int reg;
3628 valueT op;
3629
3630 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3631 if (reg == FAIL)
3632 {
3633 as_bad (_(reg_expected_msgs[REG_TYPE_RN]));
3634 ignore_rest_of_line ();
3635 return;
3636 }
3637 demand_empty_rest_of_line ();
3638
3639 if (reg == REG_SP || reg == REG_PC)
3640 {
3641 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
3642 return;
3643 }
3644
3645 if (unwind.fp_reg != REG_SP)
3646 as_bad (_("unexpected .unwind_movsp directive"));
3647
3648 /* Generate opcode to restore the value. */
3649 op = 0x90 | reg;
3650 add_unwind_opcode (op, 1);
3651
3652 /* Record the information for later. */
3653 unwind.fp_reg = reg;
3654 unwind.fp_offset = unwind.frame_size;
3655 unwind.sp_restored = 1;
3656 }
3657
3658 /* Parse an unwind_pad directive. */
3659
3660 static void
3661 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
3662 {
3663 int offset;
3664
3665 if (immediate_for_directive (&offset) == FAIL)
3666 return;
3667
3668 if (offset & 3)
3669 {
3670 as_bad (_("stack increment must be multiple of 4"));
3671 ignore_rest_of_line ();
3672 return;
3673 }
3674
3675 /* Don't generate any opcodes, just record the details for later. */
3676 unwind.frame_size += offset;
3677 unwind.pending_offset += offset;
3678
3679 demand_empty_rest_of_line ();
3680 }
3681
3682 /* Parse an unwind_setfp directive. */
3683
3684 static void
3685 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
3686 {
3687 int sp_reg;
3688 int fp_reg;
3689 int offset;
3690
3691 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3692 if (skip_past_comma (&input_line_pointer) == FAIL)
3693 sp_reg = FAIL;
3694 else
3695 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3696
3697 if (fp_reg == FAIL || sp_reg == FAIL)
3698 {
3699 as_bad (_("expected <reg>, <reg>"));
3700 ignore_rest_of_line ();
3701 return;
3702 }
3703
3704 /* Optional constant. */
3705 if (skip_past_comma (&input_line_pointer) != FAIL)
3706 {
3707 if (immediate_for_directive (&offset) == FAIL)
3708 return;
3709 }
3710 else
3711 offset = 0;
3712
3713 demand_empty_rest_of_line ();
3714
3715 if (sp_reg != 13 && sp_reg != unwind.fp_reg)
3716 {
3717 as_bad (_("register must be either sp or set by a previous"
3718 "unwind_movsp directive"));
3719 return;
3720 }
3721
3722 /* Don't generate any opcodes, just record the information for later. */
3723 unwind.fp_reg = fp_reg;
3724 unwind.fp_used = 1;
3725 if (sp_reg == 13)
3726 unwind.fp_offset = unwind.frame_size - offset;
3727 else
3728 unwind.fp_offset -= offset;
3729 }
3730
3731 /* Parse an unwind_raw directive. */
3732
3733 static void
3734 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
3735 {
3736 expressionS exp;
3737 /* This is an arbitrary limit. */
3738 unsigned char op[16];
3739 int count;
3740
3741 expression (&exp);
3742 if (exp.X_op == O_constant
3743 && skip_past_comma (&input_line_pointer) != FAIL)
3744 {
3745 unwind.frame_size += exp.X_add_number;
3746 expression (&exp);
3747 }
3748 else
3749 exp.X_op = O_illegal;
3750
3751 if (exp.X_op != O_constant)
3752 {
3753 as_bad (_("expected <offset>, <opcode>"));
3754 ignore_rest_of_line ();
3755 return;
3756 }
3757
3758 count = 0;
3759
3760 /* Parse the opcode. */
3761 for (;;)
3762 {
3763 if (count >= 16)
3764 {
3765 as_bad (_("unwind opcode too long"));
3766 ignore_rest_of_line ();
3767 }
3768 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
3769 {
3770 as_bad (_("invalid unwind opcode"));
3771 ignore_rest_of_line ();
3772 return;
3773 }
3774 op[count++] = exp.X_add_number;
3775
3776 /* Parse the next byte. */
3777 if (skip_past_comma (&input_line_pointer) == FAIL)
3778 break;
3779
3780 expression (&exp);
3781 }
3782
3783 /* Add the opcode bytes in reverse order. */
3784 while (count--)
3785 add_unwind_opcode (op[count], 1);
3786
3787 demand_empty_rest_of_line ();
3788 }
3789
3790
3791 /* Parse a .eabi_attribute directive. */
3792
3793 static void
3794 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
3795 {
3796 expressionS exp;
3797 bfd_boolean is_string;
3798 int tag;
3799 unsigned int i = 0;
3800 char *s = NULL;
3801 char saved_char;
3802
3803 expression (& exp);
3804 if (exp.X_op != O_constant)
3805 goto bad;
3806
3807 tag = exp.X_add_number;
3808 if (tag == 4 || tag == 5 || tag == 32 || (tag > 32 && (tag & 1) != 0))
3809 is_string = 1;
3810 else
3811 is_string = 0;
3812
3813 if (skip_past_comma (&input_line_pointer) == FAIL)
3814 goto bad;
3815 if (tag == 32 || !is_string)
3816 {
3817 expression (& exp);
3818 if (exp.X_op != O_constant)
3819 {
3820 as_bad (_("expected numeric constant"));
3821 ignore_rest_of_line ();
3822 return;
3823 }
3824 i = exp.X_add_number;
3825 }
3826 if (tag == Tag_compatibility
3827 && skip_past_comma (&input_line_pointer) == FAIL)
3828 {
3829 as_bad (_("expected comma"));
3830 ignore_rest_of_line ();
3831 return;
3832 }
3833 if (is_string)
3834 {
3835 skip_whitespace(input_line_pointer);
3836 if (*input_line_pointer != '"')
3837 goto bad_string;
3838 input_line_pointer++;
3839 s = input_line_pointer;
3840 while (*input_line_pointer && *input_line_pointer != '"')
3841 input_line_pointer++;
3842 if (*input_line_pointer != '"')
3843 goto bad_string;
3844 saved_char = *input_line_pointer;
3845 *input_line_pointer = 0;
3846 }
3847 else
3848 {
3849 s = NULL;
3850 saved_char = 0;
3851 }
3852
3853 if (tag == Tag_compatibility)
3854 elf32_arm_add_eabi_attr_compat (stdoutput, i, s);
3855 else if (is_string)
3856 elf32_arm_add_eabi_attr_string (stdoutput, tag, s);
3857 else
3858 elf32_arm_add_eabi_attr_int (stdoutput, tag, i);
3859
3860 if (s)
3861 {
3862 *input_line_pointer = saved_char;
3863 input_line_pointer++;
3864 }
3865 demand_empty_rest_of_line ();
3866 return;
3867 bad_string:
3868 as_bad (_("bad string constant"));
3869 ignore_rest_of_line ();
3870 return;
3871 bad:
3872 as_bad (_("expected <tag> , <value>"));
3873 ignore_rest_of_line ();
3874 }
3875 #endif /* OBJ_ELF */
3876
3877 static void s_arm_arch (int);
3878 static void s_arm_cpu (int);
3879 static void s_arm_fpu (int);
3880
3881 /* This table describes all the machine specific pseudo-ops the assembler
3882 has to support. The fields are:
3883 pseudo-op name without dot
3884 function to call to execute this pseudo-op
3885 Integer arg to pass to the function. */
3886
3887 const pseudo_typeS md_pseudo_table[] =
3888 {
3889 /* Never called because '.req' does not start a line. */
3890 { "req", s_req, 0 },
3891 /* Following two are likewise never called. */
3892 { "dn", s_dn, 0 },
3893 { "qn", s_qn, 0 },
3894 { "unreq", s_unreq, 0 },
3895 { "bss", s_bss, 0 },
3896 { "align", s_align, 0 },
3897 { "arm", s_arm, 0 },
3898 { "thumb", s_thumb, 0 },
3899 { "code", s_code, 0 },
3900 { "force_thumb", s_force_thumb, 0 },
3901 { "thumb_func", s_thumb_func, 0 },
3902 { "thumb_set", s_thumb_set, 0 },
3903 { "even", s_even, 0 },
3904 { "ltorg", s_ltorg, 0 },
3905 { "pool", s_ltorg, 0 },
3906 { "syntax", s_syntax, 0 },
3907 { "cpu", s_arm_cpu, 0 },
3908 { "arch", s_arm_arch, 0 },
3909 { "fpu", s_arm_fpu, 0 },
3910 #ifdef OBJ_ELF
3911 { "word", s_arm_elf_cons, 4 },
3912 { "long", s_arm_elf_cons, 4 },
3913 { "rel31", s_arm_rel31, 0 },
3914 { "fnstart", s_arm_unwind_fnstart, 0 },
3915 { "fnend", s_arm_unwind_fnend, 0 },
3916 { "cantunwind", s_arm_unwind_cantunwind, 0 },
3917 { "personality", s_arm_unwind_personality, 0 },
3918 { "personalityindex", s_arm_unwind_personalityindex, 0 },
3919 { "handlerdata", s_arm_unwind_handlerdata, 0 },
3920 { "save", s_arm_unwind_save, 0 },
3921 { "vsave", s_arm_unwind_save, 1 },
3922 { "movsp", s_arm_unwind_movsp, 0 },
3923 { "pad", s_arm_unwind_pad, 0 },
3924 { "setfp", s_arm_unwind_setfp, 0 },
3925 { "unwind_raw", s_arm_unwind_raw, 0 },
3926 { "eabi_attribute", s_arm_eabi_attribute, 0 },
3927 #else
3928 { "word", cons, 4},
3929 #endif
3930 { "extend", float_cons, 'x' },
3931 { "ldouble", float_cons, 'x' },
3932 { "packed", float_cons, 'p' },
3933 { 0, 0, 0 }
3934 };
3935 \f
3936 /* Parser functions used exclusively in instruction operands. */
3937
3938 /* Generic immediate-value read function for use in insn parsing.
3939 STR points to the beginning of the immediate (the leading #);
3940 VAL receives the value; if the value is outside [MIN, MAX]
3941 issue an error. PREFIX_OPT is true if the immediate prefix is
3942 optional. */
3943
3944 static int
3945 parse_immediate (char **str, int *val, int min, int max,
3946 bfd_boolean prefix_opt)
3947 {
3948 expressionS exp;
3949 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
3950 if (exp.X_op != O_constant)
3951 {
3952 inst.error = _("constant expression required");
3953 return FAIL;
3954 }
3955
3956 if (exp.X_add_number < min || exp.X_add_number > max)
3957 {
3958 inst.error = _("immediate value out of range");
3959 return FAIL;
3960 }
3961
3962 *val = exp.X_add_number;
3963 return SUCCESS;
3964 }
3965
3966 /* Less-generic immediate-value read function with the possibility of loading a
3967 big (64-bit) immediate, as required by Neon VMOV and VMVN immediate
3968 instructions. Puts the result directly in inst.operands[i]. */
3969
3970 static int
3971 parse_big_immediate (char **str, int i)
3972 {
3973 expressionS exp;
3974 char *ptr = *str;
3975
3976 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
3977
3978 if (exp.X_op == O_constant)
3979 inst.operands[i].imm = exp.X_add_number;
3980 else if (exp.X_op == O_big
3981 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
3982 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
3983 {
3984 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
3985 /* Bignums have their least significant bits in
3986 generic_bignum[0]. Make sure we put 32 bits in imm and
3987 32 bits in reg, in a (hopefully) portable way. */
3988 assert (parts != 0);
3989 inst.operands[i].imm = 0;
3990 for (j = 0; j < parts; j++, idx++)
3991 inst.operands[i].imm |= generic_bignum[idx]
3992 << (LITTLENUM_NUMBER_OF_BITS * j);
3993 inst.operands[i].reg = 0;
3994 for (j = 0; j < parts; j++, idx++)
3995 inst.operands[i].reg |= generic_bignum[idx]
3996 << (LITTLENUM_NUMBER_OF_BITS * j);
3997 inst.operands[i].regisimm = 1;
3998 }
3999 else
4000 return FAIL;
4001
4002 *str = ptr;
4003
4004 return SUCCESS;
4005 }
4006
4007 /* Returns the pseudo-register number of an FPA immediate constant,
4008 or FAIL if there isn't a valid constant here. */
4009
4010 static int
4011 parse_fpa_immediate (char ** str)
4012 {
4013 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4014 char * save_in;
4015 expressionS exp;
4016 int i;
4017 int j;
4018
4019 /* First try and match exact strings, this is to guarantee
4020 that some formats will work even for cross assembly. */
4021
4022 for (i = 0; fp_const[i]; i++)
4023 {
4024 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4025 {
4026 char *start = *str;
4027
4028 *str += strlen (fp_const[i]);
4029 if (is_end_of_line[(unsigned char) **str])
4030 return i + 8;
4031 *str = start;
4032 }
4033 }
4034
4035 /* Just because we didn't get a match doesn't mean that the constant
4036 isn't valid, just that it is in a format that we don't
4037 automatically recognize. Try parsing it with the standard
4038 expression routines. */
4039
4040 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4041
4042 /* Look for a raw floating point number. */
4043 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4044 && is_end_of_line[(unsigned char) *save_in])
4045 {
4046 for (i = 0; i < NUM_FLOAT_VALS; i++)
4047 {
4048 for (j = 0; j < MAX_LITTLENUMS; j++)
4049 {
4050 if (words[j] != fp_values[i][j])
4051 break;
4052 }
4053
4054 if (j == MAX_LITTLENUMS)
4055 {
4056 *str = save_in;
4057 return i + 8;
4058 }
4059 }
4060 }
4061
4062 /* Try and parse a more complex expression, this will probably fail
4063 unless the code uses a floating point prefix (eg "0f"). */
4064 save_in = input_line_pointer;
4065 input_line_pointer = *str;
4066 if (expression (&exp) == absolute_section
4067 && exp.X_op == O_big
4068 && exp.X_add_number < 0)
4069 {
4070 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4071 Ditto for 15. */
4072 if (gen_to_words (words, 5, (long) 15) == 0)
4073 {
4074 for (i = 0; i < NUM_FLOAT_VALS; i++)
4075 {
4076 for (j = 0; j < MAX_LITTLENUMS; j++)
4077 {
4078 if (words[j] != fp_values[i][j])
4079 break;
4080 }
4081
4082 if (j == MAX_LITTLENUMS)
4083 {
4084 *str = input_line_pointer;
4085 input_line_pointer = save_in;
4086 return i + 8;
4087 }
4088 }
4089 }
4090 }
4091
4092 *str = input_line_pointer;
4093 input_line_pointer = save_in;
4094 inst.error = _("invalid FPA immediate expression");
4095 return FAIL;
4096 }
4097
4098 /* Returns 1 if a number has "quarter-precision" float format
4099 0baBbbbbbc defgh000 00000000 00000000. */
4100
4101 static int
4102 is_quarter_float (unsigned imm)
4103 {
4104 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4105 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4106 }
4107
4108 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4109 0baBbbbbbc defgh000 00000000 00000000.
4110 The minus-zero case needs special handling, since it can't be encoded in the
4111 "quarter-precision" float format, but can nonetheless be loaded as an integer
4112 constant. */
4113
4114 static unsigned
4115 parse_qfloat_immediate (char **ccp, int *immed)
4116 {
4117 char *str = *ccp;
4118 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4119
4120 skip_past_char (&str, '#');
4121
4122 if ((str = atof_ieee (str, 's', words)) != NULL)
4123 {
4124 unsigned fpword = 0;
4125 int i;
4126
4127 /* Our FP word must be 32 bits (single-precision FP). */
4128 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4129 {
4130 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4131 fpword |= words[i];
4132 }
4133
4134 if (is_quarter_float (fpword) || fpword == 0x80000000)
4135 *immed = fpword;
4136 else
4137 return FAIL;
4138
4139 *ccp = str;
4140
4141 return SUCCESS;
4142 }
4143
4144 return FAIL;
4145 }
4146
4147 /* Shift operands. */
4148 enum shift_kind
4149 {
4150 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4151 };
4152
4153 struct asm_shift_name
4154 {
4155 const char *name;
4156 enum shift_kind kind;
4157 };
4158
4159 /* Third argument to parse_shift. */
4160 enum parse_shift_mode
4161 {
4162 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4163 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4164 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4165 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4166 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4167 };
4168
4169 /* Parse a <shift> specifier on an ARM data processing instruction.
4170 This has three forms:
4171
4172 (LSL|LSR|ASL|ASR|ROR) Rs
4173 (LSL|LSR|ASL|ASR|ROR) #imm
4174 RRX
4175
4176 Note that ASL is assimilated to LSL in the instruction encoding, and
4177 RRX to ROR #0 (which cannot be written as such). */
4178
4179 static int
4180 parse_shift (char **str, int i, enum parse_shift_mode mode)
4181 {
4182 const struct asm_shift_name *shift_name;
4183 enum shift_kind shift;
4184 char *s = *str;
4185 char *p = s;
4186 int reg;
4187
4188 for (p = *str; ISALPHA (*p); p++)
4189 ;
4190
4191 if (p == *str)
4192 {
4193 inst.error = _("shift expression expected");
4194 return FAIL;
4195 }
4196
4197 shift_name = hash_find_n (arm_shift_hsh, *str, p - *str);
4198
4199 if (shift_name == NULL)
4200 {
4201 inst.error = _("shift expression expected");
4202 return FAIL;
4203 }
4204
4205 shift = shift_name->kind;
4206
4207 switch (mode)
4208 {
4209 case NO_SHIFT_RESTRICT:
4210 case SHIFT_IMMEDIATE: break;
4211
4212 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4213 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4214 {
4215 inst.error = _("'LSL' or 'ASR' required");
4216 return FAIL;
4217 }
4218 break;
4219
4220 case SHIFT_LSL_IMMEDIATE:
4221 if (shift != SHIFT_LSL)
4222 {
4223 inst.error = _("'LSL' required");
4224 return FAIL;
4225 }
4226 break;
4227
4228 case SHIFT_ASR_IMMEDIATE:
4229 if (shift != SHIFT_ASR)
4230 {
4231 inst.error = _("'ASR' required");
4232 return FAIL;
4233 }
4234 break;
4235
4236 default: abort ();
4237 }
4238
4239 if (shift != SHIFT_RRX)
4240 {
4241 /* Whitespace can appear here if the next thing is a bare digit. */
4242 skip_whitespace (p);
4243
4244 if (mode == NO_SHIFT_RESTRICT
4245 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4246 {
4247 inst.operands[i].imm = reg;
4248 inst.operands[i].immisreg = 1;
4249 }
4250 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4251 return FAIL;
4252 }
4253 inst.operands[i].shift_kind = shift;
4254 inst.operands[i].shifted = 1;
4255 *str = p;
4256 return SUCCESS;
4257 }
4258
4259 /* Parse a <shifter_operand> for an ARM data processing instruction:
4260
4261 #<immediate>
4262 #<immediate>, <rotate>
4263 <Rm>
4264 <Rm>, <shift>
4265
4266 where <shift> is defined by parse_shift above, and <rotate> is a
4267 multiple of 2 between 0 and 30. Validation of immediate operands
4268 is deferred to md_apply_fix. */
4269
4270 static int
4271 parse_shifter_operand (char **str, int i)
4272 {
4273 int value;
4274 expressionS expr;
4275
4276 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4277 {
4278 inst.operands[i].reg = value;
4279 inst.operands[i].isreg = 1;
4280
4281 /* parse_shift will override this if appropriate */
4282 inst.reloc.exp.X_op = O_constant;
4283 inst.reloc.exp.X_add_number = 0;
4284
4285 if (skip_past_comma (str) == FAIL)
4286 return SUCCESS;
4287
4288 /* Shift operation on register. */
4289 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4290 }
4291
4292 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4293 return FAIL;
4294
4295 if (skip_past_comma (str) == SUCCESS)
4296 {
4297 /* #x, y -- ie explicit rotation by Y. */
4298 if (my_get_expression (&expr, str, GE_NO_PREFIX))
4299 return FAIL;
4300
4301 if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4302 {
4303 inst.error = _("constant expression expected");
4304 return FAIL;
4305 }
4306
4307 value = expr.X_add_number;
4308 if (value < 0 || value > 30 || value % 2 != 0)
4309 {
4310 inst.error = _("invalid rotation");
4311 return FAIL;
4312 }
4313 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4314 {
4315 inst.error = _("invalid constant");
4316 return FAIL;
4317 }
4318
4319 /* Convert to decoded value. md_apply_fix will put it back. */
4320 inst.reloc.exp.X_add_number
4321 = (((inst.reloc.exp.X_add_number << (32 - value))
4322 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
4323 }
4324
4325 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4326 inst.reloc.pc_rel = 0;
4327 return SUCCESS;
4328 }
4329
4330 /* Group relocation information. Each entry in the table contains the
4331 textual name of the relocation as may appear in assembler source
4332 and must end with a colon.
4333 Along with this textual name are the relocation codes to be used if
4334 the corresponding instruction is an ALU instruction (ADD or SUB only),
4335 an LDR, an LDRS, or an LDC. */
4336
4337 struct group_reloc_table_entry
4338 {
4339 const char *name;
4340 int alu_code;
4341 int ldr_code;
4342 int ldrs_code;
4343 int ldc_code;
4344 };
4345
4346 typedef enum
4347 {
4348 /* Varieties of non-ALU group relocation. */
4349
4350 GROUP_LDR,
4351 GROUP_LDRS,
4352 GROUP_LDC
4353 } group_reloc_type;
4354
4355 static struct group_reloc_table_entry group_reloc_table[] =
4356 { /* Program counter relative: */
4357 { "pc_g0_nc",
4358 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4359 0, /* LDR */
4360 0, /* LDRS */
4361 0 }, /* LDC */
4362 { "pc_g0",
4363 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4364 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4365 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4366 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4367 { "pc_g1_nc",
4368 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4369 0, /* LDR */
4370 0, /* LDRS */
4371 0 }, /* LDC */
4372 { "pc_g1",
4373 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4374 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4375 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4376 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4377 { "pc_g2",
4378 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4379 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4380 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4381 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4382 /* Section base relative */
4383 { "sb_g0_nc",
4384 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4385 0, /* LDR */
4386 0, /* LDRS */
4387 0 }, /* LDC */
4388 { "sb_g0",
4389 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4390 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4391 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4392 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4393 { "sb_g1_nc",
4394 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4395 0, /* LDR */
4396 0, /* LDRS */
4397 0 }, /* LDC */
4398 { "sb_g1",
4399 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4400 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4401 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4402 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4403 { "sb_g2",
4404 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4405 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4406 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4407 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4408
4409 /* Given the address of a pointer pointing to the textual name of a group
4410 relocation as may appear in assembler source, attempt to find its details
4411 in group_reloc_table. The pointer will be updated to the character after
4412 the trailing colon. On failure, FAIL will be returned; SUCCESS
4413 otherwise. On success, *entry will be updated to point at the relevant
4414 group_reloc_table entry. */
4415
4416 static int
4417 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4418 {
4419 unsigned int i;
4420 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4421 {
4422 int length = strlen (group_reloc_table[i].name);
4423
4424 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0 &&
4425 (*str)[length] == ':')
4426 {
4427 *out = &group_reloc_table[i];
4428 *str += (length + 1);
4429 return SUCCESS;
4430 }
4431 }
4432
4433 return FAIL;
4434 }
4435
4436 /* Parse a <shifter_operand> for an ARM data processing instruction
4437 (as for parse_shifter_operand) where group relocations are allowed:
4438
4439 #<immediate>
4440 #<immediate>, <rotate>
4441 #:<group_reloc>:<expression>
4442 <Rm>
4443 <Rm>, <shift>
4444
4445 where <group_reloc> is one of the strings defined in group_reloc_table.
4446 The hashes are optional.
4447
4448 Everything else is as for parse_shifter_operand. */
4449
4450 static parse_operand_result
4451 parse_shifter_operand_group_reloc (char **str, int i)
4452 {
4453 /* Determine if we have the sequence of characters #: or just :
4454 coming next. If we do, then we check for a group relocation.
4455 If we don't, punt the whole lot to parse_shifter_operand. */
4456
4457 if (((*str)[0] == '#' && (*str)[1] == ':')
4458 || (*str)[0] == ':')
4459 {
4460 struct group_reloc_table_entry *entry;
4461
4462 if ((*str)[0] == '#')
4463 (*str) += 2;
4464 else
4465 (*str)++;
4466
4467 /* Try to parse a group relocation. Anything else is an error. */
4468 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4469 {
4470 inst.error = _("unknown group relocation");
4471 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4472 }
4473
4474 /* We now have the group relocation table entry corresponding to
4475 the name in the assembler source. Next, we parse the expression. */
4476 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4477 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4478
4479 /* Record the relocation type (always the ALU variant here). */
4480 inst.reloc.type = entry->alu_code;
4481 assert (inst.reloc.type != 0);
4482
4483 return PARSE_OPERAND_SUCCESS;
4484 }
4485 else
4486 return parse_shifter_operand (str, i) == SUCCESS
4487 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4488
4489 /* Never reached. */
4490 }
4491
4492 /* Parse all forms of an ARM address expression. Information is written
4493 to inst.operands[i] and/or inst.reloc.
4494
4495 Preindexed addressing (.preind=1):
4496
4497 [Rn, #offset] .reg=Rn .reloc.exp=offset
4498 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4499 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4500 .shift_kind=shift .reloc.exp=shift_imm
4501
4502 These three may have a trailing ! which causes .writeback to be set also.
4503
4504 Postindexed addressing (.postind=1, .writeback=1):
4505
4506 [Rn], #offset .reg=Rn .reloc.exp=offset
4507 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4508 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4509 .shift_kind=shift .reloc.exp=shift_imm
4510
4511 Unindexed addressing (.preind=0, .postind=0):
4512
4513 [Rn], {option} .reg=Rn .imm=option .immisreg=0
4514
4515 Other:
4516
4517 [Rn]{!} shorthand for [Rn,#0]{!}
4518 =immediate .isreg=0 .reloc.exp=immediate
4519 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
4520
4521 It is the caller's responsibility to check for addressing modes not
4522 supported by the instruction, and to set inst.reloc.type. */
4523
4524 static parse_operand_result
4525 parse_address_main (char **str, int i, int group_relocations,
4526 group_reloc_type group_type)
4527 {
4528 char *p = *str;
4529 int reg;
4530
4531 if (skip_past_char (&p, '[') == FAIL)
4532 {
4533 if (skip_past_char (&p, '=') == FAIL)
4534 {
4535 /* bare address - translate to PC-relative offset */
4536 inst.reloc.pc_rel = 1;
4537 inst.operands[i].reg = REG_PC;
4538 inst.operands[i].isreg = 1;
4539 inst.operands[i].preind = 1;
4540 }
4541 /* else a load-constant pseudo op, no special treatment needed here */
4542
4543 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4544 return PARSE_OPERAND_FAIL;
4545
4546 *str = p;
4547 return PARSE_OPERAND_SUCCESS;
4548 }
4549
4550 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
4551 {
4552 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4553 return PARSE_OPERAND_FAIL;
4554 }
4555 inst.operands[i].reg = reg;
4556 inst.operands[i].isreg = 1;
4557
4558 if (skip_past_comma (&p) == SUCCESS)
4559 {
4560 inst.operands[i].preind = 1;
4561
4562 if (*p == '+') p++;
4563 else if (*p == '-') p++, inst.operands[i].negative = 1;
4564
4565 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4566 {
4567 inst.operands[i].imm = reg;
4568 inst.operands[i].immisreg = 1;
4569
4570 if (skip_past_comma (&p) == SUCCESS)
4571 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4572 return PARSE_OPERAND_FAIL;
4573 }
4574 else if (skip_past_char (&p, ':') == SUCCESS)
4575 {
4576 /* FIXME: '@' should be used here, but it's filtered out by generic
4577 code before we get to see it here. This may be subject to
4578 change. */
4579 expressionS exp;
4580 my_get_expression (&exp, &p, GE_NO_PREFIX);
4581 if (exp.X_op != O_constant)
4582 {
4583 inst.error = _("alignment must be constant");
4584 return PARSE_OPERAND_FAIL;
4585 }
4586 inst.operands[i].imm = exp.X_add_number << 8;
4587 inst.operands[i].immisalign = 1;
4588 /* Alignments are not pre-indexes. */
4589 inst.operands[i].preind = 0;
4590 }
4591 else
4592 {
4593 if (inst.operands[i].negative)
4594 {
4595 inst.operands[i].negative = 0;
4596 p--;
4597 }
4598
4599 if (group_relocations &&
4600 ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4601
4602 {
4603 struct group_reloc_table_entry *entry;
4604
4605 /* Skip over the #: or : sequence. */
4606 if (*p == '#')
4607 p += 2;
4608 else
4609 p++;
4610
4611 /* Try to parse a group relocation. Anything else is an
4612 error. */
4613 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
4614 {
4615 inst.error = _("unknown group relocation");
4616 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4617 }
4618
4619 /* We now have the group relocation table entry corresponding to
4620 the name in the assembler source. Next, we parse the
4621 expression. */
4622 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4623 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4624
4625 /* Record the relocation type. */
4626 switch (group_type)
4627 {
4628 case GROUP_LDR:
4629 inst.reloc.type = entry->ldr_code;
4630 break;
4631
4632 case GROUP_LDRS:
4633 inst.reloc.type = entry->ldrs_code;
4634 break;
4635
4636 case GROUP_LDC:
4637 inst.reloc.type = entry->ldc_code;
4638 break;
4639
4640 default:
4641 assert (0);
4642 }
4643
4644 if (inst.reloc.type == 0)
4645 {
4646 inst.error = _("this group relocation is not allowed on this instruction");
4647 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4648 }
4649 }
4650 else
4651 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4652 return PARSE_OPERAND_FAIL;
4653 }
4654 }
4655
4656 if (skip_past_char (&p, ']') == FAIL)
4657 {
4658 inst.error = _("']' expected");
4659 return PARSE_OPERAND_FAIL;
4660 }
4661
4662 if (skip_past_char (&p, '!') == SUCCESS)
4663 inst.operands[i].writeback = 1;
4664
4665 else if (skip_past_comma (&p) == SUCCESS)
4666 {
4667 if (skip_past_char (&p, '{') == SUCCESS)
4668 {
4669 /* [Rn], {expr} - unindexed, with option */
4670 if (parse_immediate (&p, &inst.operands[i].imm,
4671 0, 255, TRUE) == FAIL)
4672 return PARSE_OPERAND_FAIL;
4673
4674 if (skip_past_char (&p, '}') == FAIL)
4675 {
4676 inst.error = _("'}' expected at end of 'option' field");
4677 return PARSE_OPERAND_FAIL;
4678 }
4679 if (inst.operands[i].preind)
4680 {
4681 inst.error = _("cannot combine index with option");
4682 return PARSE_OPERAND_FAIL;
4683 }
4684 *str = p;
4685 return PARSE_OPERAND_SUCCESS;
4686 }
4687 else
4688 {
4689 inst.operands[i].postind = 1;
4690 inst.operands[i].writeback = 1;
4691
4692 if (inst.operands[i].preind)
4693 {
4694 inst.error = _("cannot combine pre- and post-indexing");
4695 return PARSE_OPERAND_FAIL;
4696 }
4697
4698 if (*p == '+') p++;
4699 else if (*p == '-') p++, inst.operands[i].negative = 1;
4700
4701 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4702 {
4703 /* We might be using the immediate for alignment already. If we
4704 are, OR the register number into the low-order bits. */
4705 if (inst.operands[i].immisalign)
4706 inst.operands[i].imm |= reg;
4707 else
4708 inst.operands[i].imm = reg;
4709 inst.operands[i].immisreg = 1;
4710
4711 if (skip_past_comma (&p) == SUCCESS)
4712 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4713 return PARSE_OPERAND_FAIL;
4714 }
4715 else
4716 {
4717 if (inst.operands[i].negative)
4718 {
4719 inst.operands[i].negative = 0;
4720 p--;
4721 }
4722 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4723 return PARSE_OPERAND_FAIL;
4724 }
4725 }
4726 }
4727
4728 /* If at this point neither .preind nor .postind is set, we have a
4729 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
4730 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
4731 {
4732 inst.operands[i].preind = 1;
4733 inst.reloc.exp.X_op = O_constant;
4734 inst.reloc.exp.X_add_number = 0;
4735 }
4736 *str = p;
4737 return PARSE_OPERAND_SUCCESS;
4738 }
4739
4740 static int
4741 parse_address (char **str, int i)
4742 {
4743 return parse_address_main (str, i, 0, 0) == PARSE_OPERAND_SUCCESS
4744 ? SUCCESS : FAIL;
4745 }
4746
4747 static parse_operand_result
4748 parse_address_group_reloc (char **str, int i, group_reloc_type type)
4749 {
4750 return parse_address_main (str, i, 1, type);
4751 }
4752
4753 /* Parse an operand for a MOVW or MOVT instruction. */
4754 static int
4755 parse_half (char **str)
4756 {
4757 char * p;
4758
4759 p = *str;
4760 skip_past_char (&p, '#');
4761 if (strncasecmp (p, ":lower16:", 9) == 0)
4762 inst.reloc.type = BFD_RELOC_ARM_MOVW;
4763 else if (strncasecmp (p, ":upper16:", 9) == 0)
4764 inst.reloc.type = BFD_RELOC_ARM_MOVT;
4765
4766 if (inst.reloc.type != BFD_RELOC_UNUSED)
4767 {
4768 p += 9;
4769 skip_whitespace(p);
4770 }
4771
4772 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4773 return FAIL;
4774
4775 if (inst.reloc.type == BFD_RELOC_UNUSED)
4776 {
4777 if (inst.reloc.exp.X_op != O_constant)
4778 {
4779 inst.error = _("constant expression expected");
4780 return FAIL;
4781 }
4782 if (inst.reloc.exp.X_add_number < 0
4783 || inst.reloc.exp.X_add_number > 0xffff)
4784 {
4785 inst.error = _("immediate value out of range");
4786 return FAIL;
4787 }
4788 }
4789 *str = p;
4790 return SUCCESS;
4791 }
4792
4793 /* Miscellaneous. */
4794
4795 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
4796 or a bitmask suitable to be or-ed into the ARM msr instruction. */
4797 static int
4798 parse_psr (char **str)
4799 {
4800 char *p;
4801 unsigned long psr_field;
4802 const struct asm_psr *psr;
4803 char *start;
4804
4805 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
4806 feature for ease of use and backwards compatibility. */
4807 p = *str;
4808 if (strncasecmp (p, "SPSR", 4) == 0)
4809 psr_field = SPSR_BIT;
4810 else if (strncasecmp (p, "CPSR", 4) == 0)
4811 psr_field = 0;
4812 else
4813 {
4814 start = p;
4815 do
4816 p++;
4817 while (ISALNUM (*p) || *p == '_');
4818
4819 psr = hash_find_n (arm_v7m_psr_hsh, start, p - start);
4820 if (!psr)
4821 return FAIL;
4822
4823 *str = p;
4824 return psr->field;
4825 }
4826
4827 p += 4;
4828 if (*p == '_')
4829 {
4830 /* A suffix follows. */
4831 p++;
4832 start = p;
4833
4834 do
4835 p++;
4836 while (ISALNUM (*p) || *p == '_');
4837
4838 psr = hash_find_n (arm_psr_hsh, start, p - start);
4839 if (!psr)
4840 goto error;
4841
4842 psr_field |= psr->field;
4843 }
4844 else
4845 {
4846 if (ISALNUM (*p))
4847 goto error; /* Garbage after "[CS]PSR". */
4848
4849 psr_field |= (PSR_c | PSR_f);
4850 }
4851 *str = p;
4852 return psr_field;
4853
4854 error:
4855 inst.error = _("flag for {c}psr instruction expected");
4856 return FAIL;
4857 }
4858
4859 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
4860 value suitable for splatting into the AIF field of the instruction. */
4861
4862 static int
4863 parse_cps_flags (char **str)
4864 {
4865 int val = 0;
4866 int saw_a_flag = 0;
4867 char *s = *str;
4868
4869 for (;;)
4870 switch (*s++)
4871 {
4872 case '\0': case ',':
4873 goto done;
4874
4875 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
4876 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
4877 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
4878
4879 default:
4880 inst.error = _("unrecognized CPS flag");
4881 return FAIL;
4882 }
4883
4884 done:
4885 if (saw_a_flag == 0)
4886 {
4887 inst.error = _("missing CPS flags");
4888 return FAIL;
4889 }
4890
4891 *str = s - 1;
4892 return val;
4893 }
4894
4895 /* Parse an endian specifier ("BE" or "LE", case insensitive);
4896 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
4897
4898 static int
4899 parse_endian_specifier (char **str)
4900 {
4901 int little_endian;
4902 char *s = *str;
4903
4904 if (strncasecmp (s, "BE", 2))
4905 little_endian = 0;
4906 else if (strncasecmp (s, "LE", 2))
4907 little_endian = 1;
4908 else
4909 {
4910 inst.error = _("valid endian specifiers are be or le");
4911 return FAIL;
4912 }
4913
4914 if (ISALNUM (s[2]) || s[2] == '_')
4915 {
4916 inst.error = _("valid endian specifiers are be or le");
4917 return FAIL;
4918 }
4919
4920 *str = s + 2;
4921 return little_endian;
4922 }
4923
4924 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
4925 value suitable for poking into the rotate field of an sxt or sxta
4926 instruction, or FAIL on error. */
4927
4928 static int
4929 parse_ror (char **str)
4930 {
4931 int rot;
4932 char *s = *str;
4933
4934 if (strncasecmp (s, "ROR", 3) == 0)
4935 s += 3;
4936 else
4937 {
4938 inst.error = _("missing rotation field after comma");
4939 return FAIL;
4940 }
4941
4942 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
4943 return FAIL;
4944
4945 switch (rot)
4946 {
4947 case 0: *str = s; return 0x0;
4948 case 8: *str = s; return 0x1;
4949 case 16: *str = s; return 0x2;
4950 case 24: *str = s; return 0x3;
4951
4952 default:
4953 inst.error = _("rotation can only be 0, 8, 16, or 24");
4954 return FAIL;
4955 }
4956 }
4957
4958 /* Parse a conditional code (from conds[] below). The value returned is in the
4959 range 0 .. 14, or FAIL. */
4960 static int
4961 parse_cond (char **str)
4962 {
4963 char *p, *q;
4964 const struct asm_cond *c;
4965
4966 p = q = *str;
4967 while (ISALPHA (*q))
4968 q++;
4969
4970 c = hash_find_n (arm_cond_hsh, p, q - p);
4971 if (!c)
4972 {
4973 inst.error = _("condition required");
4974 return FAIL;
4975 }
4976
4977 *str = q;
4978 return c->value;
4979 }
4980
4981 /* Parse an option for a barrier instruction. Returns the encoding for the
4982 option, or FAIL. */
4983 static int
4984 parse_barrier (char **str)
4985 {
4986 char *p, *q;
4987 const struct asm_barrier_opt *o;
4988
4989 p = q = *str;
4990 while (ISALPHA (*q))
4991 q++;
4992
4993 o = hash_find_n (arm_barrier_opt_hsh, p, q - p);
4994 if (!o)
4995 return FAIL;
4996
4997 *str = q;
4998 return o->value;
4999 }
5000
5001 /* Parse the operands of a table branch instruction. Similar to a memory
5002 operand. */
5003 static int
5004 parse_tb (char **str)
5005 {
5006 char * p = *str;
5007 int reg;
5008
5009 if (skip_past_char (&p, '[') == FAIL)
5010 {
5011 inst.error = _("'[' expected");
5012 return FAIL;
5013 }
5014
5015 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5016 {
5017 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5018 return FAIL;
5019 }
5020 inst.operands[0].reg = reg;
5021
5022 if (skip_past_comma (&p) == FAIL)
5023 {
5024 inst.error = _("',' expected");
5025 return FAIL;
5026 }
5027
5028 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5029 {
5030 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5031 return FAIL;
5032 }
5033 inst.operands[0].imm = reg;
5034
5035 if (skip_past_comma (&p) == SUCCESS)
5036 {
5037 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5038 return FAIL;
5039 if (inst.reloc.exp.X_add_number != 1)
5040 {
5041 inst.error = _("invalid shift");
5042 return FAIL;
5043 }
5044 inst.operands[0].shifted = 1;
5045 }
5046
5047 if (skip_past_char (&p, ']') == FAIL)
5048 {
5049 inst.error = _("']' expected");
5050 return FAIL;
5051 }
5052 *str = p;
5053 return SUCCESS;
5054 }
5055
5056 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5057 information on the types the operands can take and how they are encoded.
5058 Up to four operands may be read; this function handles setting the
5059 ".present" field for each read operand itself.
5060 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5061 else returns FAIL. */
5062
5063 static int
5064 parse_neon_mov (char **str, int *which_operand)
5065 {
5066 int i = *which_operand, val;
5067 enum arm_reg_type rtype;
5068 char *ptr = *str;
5069 struct neon_type_el optype;
5070
5071 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5072 {
5073 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5074 inst.operands[i].reg = val;
5075 inst.operands[i].isscalar = 1;
5076 inst.operands[i].vectype = optype;
5077 inst.operands[i++].present = 1;
5078
5079 if (skip_past_comma (&ptr) == FAIL)
5080 goto wanted_comma;
5081
5082 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5083 goto wanted_arm;
5084
5085 inst.operands[i].reg = val;
5086 inst.operands[i].isreg = 1;
5087 inst.operands[i].present = 1;
5088 }
5089 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5090 != FAIL)
5091 {
5092 /* Cases 0, 1, 2, 3, 5 (D only). */
5093 if (skip_past_comma (&ptr) == FAIL)
5094 goto wanted_comma;
5095
5096 inst.operands[i].reg = val;
5097 inst.operands[i].isreg = 1;
5098 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5099 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5100 inst.operands[i].isvec = 1;
5101 inst.operands[i].vectype = optype;
5102 inst.operands[i++].present = 1;
5103
5104 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5105 {
5106 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5107 Case 13: VMOV <Sd>, <Rm> */
5108 inst.operands[i].reg = val;
5109 inst.operands[i].isreg = 1;
5110 inst.operands[i].present = 1;
5111
5112 if (rtype == REG_TYPE_NQ)
5113 {
5114 first_error (_("can't use Neon quad register here"));
5115 return FAIL;
5116 }
5117 else if (rtype != REG_TYPE_VFS)
5118 {
5119 i++;
5120 if (skip_past_comma (&ptr) == FAIL)
5121 goto wanted_comma;
5122 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5123 goto wanted_arm;
5124 inst.operands[i].reg = val;
5125 inst.operands[i].isreg = 1;
5126 inst.operands[i].present = 1;
5127 }
5128 }
5129 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5130 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5131 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5132 Case 10: VMOV.F32 <Sd>, #<imm>
5133 Case 11: VMOV.F64 <Dd>, #<imm> */
5134 ;
5135 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5136 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5137 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5138 ;
5139 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5140 &optype)) != FAIL)
5141 {
5142 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5143 Case 1: VMOV<c><q> <Dd>, <Dm>
5144 Case 8: VMOV.F32 <Sd>, <Sm>
5145 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5146
5147 inst.operands[i].reg = val;
5148 inst.operands[i].isreg = 1;
5149 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5150 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5151 inst.operands[i].isvec = 1;
5152 inst.operands[i].vectype = optype;
5153 inst.operands[i].present = 1;
5154
5155 if (skip_past_comma (&ptr) == SUCCESS)
5156 {
5157 /* Case 15. */
5158 i++;
5159
5160 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5161 goto wanted_arm;
5162
5163 inst.operands[i].reg = val;
5164 inst.operands[i].isreg = 1;
5165 inst.operands[i++].present = 1;
5166
5167 if (skip_past_comma (&ptr) == FAIL)
5168 goto wanted_comma;
5169
5170 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5171 goto wanted_arm;
5172
5173 inst.operands[i].reg = val;
5174 inst.operands[i].isreg = 1;
5175 inst.operands[i++].present = 1;
5176 }
5177 }
5178 else
5179 {
5180 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5181 return FAIL;
5182 }
5183 }
5184 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5185 {
5186 /* Cases 6, 7. */
5187 inst.operands[i].reg = val;
5188 inst.operands[i].isreg = 1;
5189 inst.operands[i++].present = 1;
5190
5191 if (skip_past_comma (&ptr) == FAIL)
5192 goto wanted_comma;
5193
5194 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5195 {
5196 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5197 inst.operands[i].reg = val;
5198 inst.operands[i].isscalar = 1;
5199 inst.operands[i].present = 1;
5200 inst.operands[i].vectype = optype;
5201 }
5202 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5203 {
5204 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5205 inst.operands[i].reg = val;
5206 inst.operands[i].isreg = 1;
5207 inst.operands[i++].present = 1;
5208
5209 if (skip_past_comma (&ptr) == FAIL)
5210 goto wanted_comma;
5211
5212 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5213 == FAIL)
5214 {
5215 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5216 return FAIL;
5217 }
5218
5219 inst.operands[i].reg = val;
5220 inst.operands[i].isreg = 1;
5221 inst.operands[i].isvec = 1;
5222 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5223 inst.operands[i].vectype = optype;
5224 inst.operands[i].present = 1;
5225
5226 if (rtype == REG_TYPE_VFS)
5227 {
5228 /* Case 14. */
5229 i++;
5230 if (skip_past_comma (&ptr) == FAIL)
5231 goto wanted_comma;
5232 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5233 &optype)) == FAIL)
5234 {
5235 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5236 return FAIL;
5237 }
5238 inst.operands[i].reg = val;
5239 inst.operands[i].isreg = 1;
5240 inst.operands[i].isvec = 1;
5241 inst.operands[i].issingle = 1;
5242 inst.operands[i].vectype = optype;
5243 inst.operands[i].present = 1;
5244 }
5245 }
5246 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5247 != FAIL)
5248 {
5249 /* Case 13. */
5250 inst.operands[i].reg = val;
5251 inst.operands[i].isreg = 1;
5252 inst.operands[i].isvec = 1;
5253 inst.operands[i].issingle = 1;
5254 inst.operands[i].vectype = optype;
5255 inst.operands[i++].present = 1;
5256 }
5257 }
5258 else
5259 {
5260 first_error (_("parse error"));
5261 return FAIL;
5262 }
5263
5264 /* Successfully parsed the operands. Update args. */
5265 *which_operand = i;
5266 *str = ptr;
5267 return SUCCESS;
5268
5269 wanted_comma:
5270 first_error (_("expected comma"));
5271 return FAIL;
5272
5273 wanted_arm:
5274 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5275 return FAIL;
5276 }
5277
5278 /* Matcher codes for parse_operands. */
5279 enum operand_parse_code
5280 {
5281 OP_stop, /* end of line */
5282
5283 OP_RR, /* ARM register */
5284 OP_RRnpc, /* ARM register, not r15 */
5285 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5286 OP_RRw, /* ARM register, not r15, optional trailing ! */
5287 OP_RCP, /* Coprocessor number */
5288 OP_RCN, /* Coprocessor register */
5289 OP_RF, /* FPA register */
5290 OP_RVS, /* VFP single precision register */
5291 OP_RVD, /* VFP double precision register (0..15) */
5292 OP_RND, /* Neon double precision register (0..31) */
5293 OP_RNQ, /* Neon quad precision register */
5294 OP_RVSD, /* VFP single or double precision register */
5295 OP_RNDQ, /* Neon double or quad precision register */
5296 OP_RNSDQ, /* Neon single, double or quad precision register */
5297 OP_RNSC, /* Neon scalar D[X] */
5298 OP_RVC, /* VFP control register */
5299 OP_RMF, /* Maverick F register */
5300 OP_RMD, /* Maverick D register */
5301 OP_RMFX, /* Maverick FX register */
5302 OP_RMDX, /* Maverick DX register */
5303 OP_RMAX, /* Maverick AX register */
5304 OP_RMDS, /* Maverick DSPSC register */
5305 OP_RIWR, /* iWMMXt wR register */
5306 OP_RIWC, /* iWMMXt wC register */
5307 OP_RIWG, /* iWMMXt wCG register */
5308 OP_RXA, /* XScale accumulator register */
5309
5310 OP_REGLST, /* ARM register list */
5311 OP_VRSLST, /* VFP single-precision register list */
5312 OP_VRDLST, /* VFP double-precision register list */
5313 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5314 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5315 OP_NSTRLST, /* Neon element/structure list */
5316
5317 OP_NILO, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */
5318 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
5319 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5320 OP_RR_RNSC, /* ARM reg or Neon scalar. */
5321 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5322 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5323 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5324 OP_VMOV, /* Neon VMOV operands. */
5325 OP_RNDQ_IMVNb,/* Neon D or Q reg, or immediate good for VMVN. */
5326 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
5327
5328 OP_I0, /* immediate zero */
5329 OP_I7, /* immediate value 0 .. 7 */
5330 OP_I15, /* 0 .. 15 */
5331 OP_I16, /* 1 .. 16 */
5332 OP_I16z, /* 0 .. 16 */
5333 OP_I31, /* 0 .. 31 */
5334 OP_I31w, /* 0 .. 31, optional trailing ! */
5335 OP_I32, /* 1 .. 32 */
5336 OP_I32z, /* 0 .. 32 */
5337 OP_I63, /* 0 .. 63 */
5338 OP_I63s, /* -64 .. 63 */
5339 OP_I64, /* 1 .. 64 */
5340 OP_I64z, /* 0 .. 64 */
5341 OP_I255, /* 0 .. 255 */
5342
5343 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5344 OP_I7b, /* 0 .. 7 */
5345 OP_I15b, /* 0 .. 15 */
5346 OP_I31b, /* 0 .. 31 */
5347
5348 OP_SH, /* shifter operand */
5349 OP_SHG, /* shifter operand with possible group relocation */
5350 OP_ADDR, /* Memory address expression (any mode) */
5351 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5352 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5353 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
5354 OP_EXP, /* arbitrary expression */
5355 OP_EXPi, /* same, with optional immediate prefix */
5356 OP_EXPr, /* same, with optional relocation suffix */
5357 OP_HALF, /* 0 .. 65535 or low/high reloc. */
5358
5359 OP_CPSF, /* CPS flags */
5360 OP_ENDI, /* Endianness specifier */
5361 OP_PSR, /* CPSR/SPSR mask for msr */
5362 OP_COND, /* conditional code */
5363 OP_TB, /* Table branch. */
5364
5365 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5366 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5367
5368 OP_RRnpc_I0, /* ARM register or literal 0 */
5369 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5370 OP_RR_EXi, /* ARM register or expression with imm prefix */
5371 OP_RF_IF, /* FPA register or immediate */
5372 OP_RIWR_RIWC, /* iWMMXt R or C reg */
5373
5374 /* Optional operands. */
5375 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5376 OP_oI31b, /* 0 .. 31 */
5377 OP_oI32b, /* 1 .. 32 */
5378 OP_oIffffb, /* 0 .. 65535 */
5379 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5380
5381 OP_oRR, /* ARM register */
5382 OP_oRRnpc, /* ARM register, not the PC */
5383 OP_oRND, /* Optional Neon double precision register */
5384 OP_oRNQ, /* Optional Neon quad precision register */
5385 OP_oRNDQ, /* Optional Neon double or quad precision register */
5386 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5387 OP_oSHll, /* LSL immediate */
5388 OP_oSHar, /* ASR immediate */
5389 OP_oSHllar, /* LSL or ASR immediate */
5390 OP_oROR, /* ROR 0/8/16/24 */
5391 OP_oBARRIER, /* Option argument for a barrier instruction. */
5392
5393 OP_FIRST_OPTIONAL = OP_oI7b
5394 };
5395
5396 /* Generic instruction operand parser. This does no encoding and no
5397 semantic validation; it merely squirrels values away in the inst
5398 structure. Returns SUCCESS or FAIL depending on whether the
5399 specified grammar matched. */
5400 static int
5401 parse_operands (char *str, const unsigned char *pattern)
5402 {
5403 unsigned const char *upat = pattern;
5404 char *backtrack_pos = 0;
5405 const char *backtrack_error = 0;
5406 int i, val, backtrack_index = 0;
5407 enum arm_reg_type rtype;
5408 parse_operand_result result;
5409
5410 #define po_char_or_fail(chr) do { \
5411 if (skip_past_char (&str, chr) == FAIL) \
5412 goto bad_args; \
5413 } while (0)
5414
5415 #define po_reg_or_fail(regtype) do { \
5416 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5417 &inst.operands[i].vectype); \
5418 if (val == FAIL) \
5419 { \
5420 first_error (_(reg_expected_msgs[regtype])); \
5421 goto failure; \
5422 } \
5423 inst.operands[i].reg = val; \
5424 inst.operands[i].isreg = 1; \
5425 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5426 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5427 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5428 || rtype == REG_TYPE_VFD \
5429 || rtype == REG_TYPE_NQ); \
5430 } while (0)
5431
5432 #define po_reg_or_goto(regtype, label) do { \
5433 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5434 &inst.operands[i].vectype); \
5435 if (val == FAIL) \
5436 goto label; \
5437 \
5438 inst.operands[i].reg = val; \
5439 inst.operands[i].isreg = 1; \
5440 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5441 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5442 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5443 || rtype == REG_TYPE_VFD \
5444 || rtype == REG_TYPE_NQ); \
5445 } while (0)
5446
5447 #define po_imm_or_fail(min, max, popt) do { \
5448 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5449 goto failure; \
5450 inst.operands[i].imm = val; \
5451 } while (0)
5452
5453 #define po_scalar_or_goto(elsz, label) do { \
5454 val = parse_scalar (&str, elsz, &inst.operands[i].vectype); \
5455 if (val == FAIL) \
5456 goto label; \
5457 inst.operands[i].reg = val; \
5458 inst.operands[i].isscalar = 1; \
5459 } while (0)
5460
5461 #define po_misc_or_fail(expr) do { \
5462 if (expr) \
5463 goto failure; \
5464 } while (0)
5465
5466 #define po_misc_or_fail_no_backtrack(expr) do { \
5467 result = expr; \
5468 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK)\
5469 backtrack_pos = 0; \
5470 if (result != PARSE_OPERAND_SUCCESS) \
5471 goto failure; \
5472 } while (0)
5473
5474 skip_whitespace (str);
5475
5476 for (i = 0; upat[i] != OP_stop; i++)
5477 {
5478 if (upat[i] >= OP_FIRST_OPTIONAL)
5479 {
5480 /* Remember where we are in case we need to backtrack. */
5481 assert (!backtrack_pos);
5482 backtrack_pos = str;
5483 backtrack_error = inst.error;
5484 backtrack_index = i;
5485 }
5486
5487 if (i > 0)
5488 po_char_or_fail (',');
5489
5490 switch (upat[i])
5491 {
5492 /* Registers */
5493 case OP_oRRnpc:
5494 case OP_RRnpc:
5495 case OP_oRR:
5496 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5497 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5498 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5499 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
5500 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
5501 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5502 case OP_oRND:
5503 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
5504 case OP_RVC: po_reg_or_fail (REG_TYPE_VFC); break;
5505 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
5506 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
5507 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
5508 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
5509 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
5510 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
5511 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
5512 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
5513 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
5514 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5515 case OP_oRNQ:
5516 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
5517 case OP_oRNDQ:
5518 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
5519 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
5520 case OP_oRNSDQ:
5521 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5522
5523 /* Neon scalar. Using an element size of 8 means that some invalid
5524 scalars are accepted here, so deal with those in later code. */
5525 case OP_RNSC: po_scalar_or_goto (8, failure); break;
5526
5527 /* WARNING: We can expand to two operands here. This has the potential
5528 to totally confuse the backtracking mechanism! It will be OK at
5529 least as long as we don't try to use optional args as well,
5530 though. */
5531 case OP_NILO:
5532 {
5533 po_reg_or_goto (REG_TYPE_NDQ, try_imm);
5534 i++;
5535 skip_past_comma (&str);
5536 po_reg_or_goto (REG_TYPE_NDQ, one_reg_only);
5537 break;
5538 one_reg_only:
5539 /* Optional register operand was omitted. Unfortunately, it's in
5540 operands[i-1] and we need it to be in inst.operands[i]. Fix that
5541 here (this is a bit grotty). */
5542 inst.operands[i] = inst.operands[i-1];
5543 inst.operands[i-1].present = 0;
5544 break;
5545 try_imm:
5546 /* Immediate gets verified properly later, so accept any now. */
5547 po_imm_or_fail (INT_MIN, INT_MAX, TRUE);
5548 }
5549 break;
5550
5551 case OP_RNDQ_I0:
5552 {
5553 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
5554 break;
5555 try_imm0:
5556 po_imm_or_fail (0, 0, TRUE);
5557 }
5558 break;
5559
5560 case OP_RVSD_I0:
5561 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
5562 break;
5563
5564 case OP_RR_RNSC:
5565 {
5566 po_scalar_or_goto (8, try_rr);
5567 break;
5568 try_rr:
5569 po_reg_or_fail (REG_TYPE_RN);
5570 }
5571 break;
5572
5573 case OP_RNSDQ_RNSC:
5574 {
5575 po_scalar_or_goto (8, try_nsdq);
5576 break;
5577 try_nsdq:
5578 po_reg_or_fail (REG_TYPE_NSDQ);
5579 }
5580 break;
5581
5582 case OP_RNDQ_RNSC:
5583 {
5584 po_scalar_or_goto (8, try_ndq);
5585 break;
5586 try_ndq:
5587 po_reg_or_fail (REG_TYPE_NDQ);
5588 }
5589 break;
5590
5591 case OP_RND_RNSC:
5592 {
5593 po_scalar_or_goto (8, try_vfd);
5594 break;
5595 try_vfd:
5596 po_reg_or_fail (REG_TYPE_VFD);
5597 }
5598 break;
5599
5600 case OP_VMOV:
5601 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
5602 not careful then bad things might happen. */
5603 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
5604 break;
5605
5606 case OP_RNDQ_IMVNb:
5607 {
5608 po_reg_or_goto (REG_TYPE_NDQ, try_mvnimm);
5609 break;
5610 try_mvnimm:
5611 /* There's a possibility of getting a 64-bit immediate here, so
5612 we need special handling. */
5613 if (parse_big_immediate (&str, i) == FAIL)
5614 {
5615 inst.error = _("immediate value is out of range");
5616 goto failure;
5617 }
5618 }
5619 break;
5620
5621 case OP_RNDQ_I63b:
5622 {
5623 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
5624 break;
5625 try_shimm:
5626 po_imm_or_fail (0, 63, TRUE);
5627 }
5628 break;
5629
5630 case OP_RRnpcb:
5631 po_char_or_fail ('[');
5632 po_reg_or_fail (REG_TYPE_RN);
5633 po_char_or_fail (']');
5634 break;
5635
5636 case OP_RRw:
5637 po_reg_or_fail (REG_TYPE_RN);
5638 if (skip_past_char (&str, '!') == SUCCESS)
5639 inst.operands[i].writeback = 1;
5640 break;
5641
5642 /* Immediates */
5643 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
5644 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
5645 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5646 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
5647 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
5648 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5649 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
5650 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5651 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
5652 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
5653 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
5654 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
5655
5656 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
5657 case OP_oI7b:
5658 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
5659 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
5660 case OP_oI31b:
5661 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5662 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
5663 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
5664
5665 /* Immediate variants */
5666 case OP_oI255c:
5667 po_char_or_fail ('{');
5668 po_imm_or_fail (0, 255, TRUE);
5669 po_char_or_fail ('}');
5670 break;
5671
5672 case OP_I31w:
5673 /* The expression parser chokes on a trailing !, so we have
5674 to find it first and zap it. */
5675 {
5676 char *s = str;
5677 while (*s && *s != ',')
5678 s++;
5679 if (s[-1] == '!')
5680 {
5681 s[-1] = '\0';
5682 inst.operands[i].writeback = 1;
5683 }
5684 po_imm_or_fail (0, 31, TRUE);
5685 if (str == s - 1)
5686 str = s;
5687 }
5688 break;
5689
5690 /* Expressions */
5691 case OP_EXPi: EXPi:
5692 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5693 GE_OPT_PREFIX));
5694 break;
5695
5696 case OP_EXP:
5697 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5698 GE_NO_PREFIX));
5699 break;
5700
5701 case OP_EXPr: EXPr:
5702 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5703 GE_NO_PREFIX));
5704 if (inst.reloc.exp.X_op == O_symbol)
5705 {
5706 val = parse_reloc (&str);
5707 if (val == -1)
5708 {
5709 inst.error = _("unrecognized relocation suffix");
5710 goto failure;
5711 }
5712 else if (val != BFD_RELOC_UNUSED)
5713 {
5714 inst.operands[i].imm = val;
5715 inst.operands[i].hasreloc = 1;
5716 }
5717 }
5718 break;
5719
5720 /* Operand for MOVW or MOVT. */
5721 case OP_HALF:
5722 po_misc_or_fail (parse_half (&str));
5723 break;
5724
5725 /* Register or expression */
5726 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
5727 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
5728
5729 /* Register or immediate */
5730 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
5731 I0: po_imm_or_fail (0, 0, FALSE); break;
5732
5733 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
5734 IF:
5735 if (!is_immediate_prefix (*str))
5736 goto bad_args;
5737 str++;
5738 val = parse_fpa_immediate (&str);
5739 if (val == FAIL)
5740 goto failure;
5741 /* FPA immediates are encoded as registers 8-15.
5742 parse_fpa_immediate has already applied the offset. */
5743 inst.operands[i].reg = val;
5744 inst.operands[i].isreg = 1;
5745 break;
5746
5747 /* Two kinds of register */
5748 case OP_RIWR_RIWC:
5749 {
5750 struct reg_entry *rege = arm_reg_parse_multi (&str);
5751 if (rege->type != REG_TYPE_MMXWR
5752 && rege->type != REG_TYPE_MMXWC
5753 && rege->type != REG_TYPE_MMXWCG)
5754 {
5755 inst.error = _("iWMMXt data or control register expected");
5756 goto failure;
5757 }
5758 inst.operands[i].reg = rege->number;
5759 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
5760 }
5761 break;
5762
5763 /* Misc */
5764 case OP_CPSF: val = parse_cps_flags (&str); break;
5765 case OP_ENDI: val = parse_endian_specifier (&str); break;
5766 case OP_oROR: val = parse_ror (&str); break;
5767 case OP_PSR: val = parse_psr (&str); break;
5768 case OP_COND: val = parse_cond (&str); break;
5769 case OP_oBARRIER:val = parse_barrier (&str); break;
5770
5771 case OP_RVC_PSR:
5772 po_reg_or_goto (REG_TYPE_VFC, try_psr);
5773 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
5774 break;
5775 try_psr:
5776 val = parse_psr (&str);
5777 break;
5778
5779 case OP_APSR_RR:
5780 po_reg_or_goto (REG_TYPE_RN, try_apsr);
5781 break;
5782 try_apsr:
5783 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
5784 instruction). */
5785 if (strncasecmp (str, "APSR_", 5) == 0)
5786 {
5787 unsigned found = 0;
5788 str += 5;
5789 while (found < 15)
5790 switch (*str++)
5791 {
5792 case 'c': found = (found & 1) ? 16 : found | 1; break;
5793 case 'n': found = (found & 2) ? 16 : found | 2; break;
5794 case 'z': found = (found & 4) ? 16 : found | 4; break;
5795 case 'v': found = (found & 8) ? 16 : found | 8; break;
5796 default: found = 16;
5797 }
5798 if (found != 15)
5799 goto failure;
5800 inst.operands[i].isvec = 1;
5801 }
5802 else
5803 goto failure;
5804 break;
5805
5806 case OP_TB:
5807 po_misc_or_fail (parse_tb (&str));
5808 break;
5809
5810 /* Register lists */
5811 case OP_REGLST:
5812 val = parse_reg_list (&str);
5813 if (*str == '^')
5814 {
5815 inst.operands[1].writeback = 1;
5816 str++;
5817 }
5818 break;
5819
5820 case OP_VRSLST:
5821 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
5822 break;
5823
5824 case OP_VRDLST:
5825 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
5826 break;
5827
5828 case OP_VRSDLST:
5829 /* Allow Q registers too. */
5830 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5831 REGLIST_NEON_D);
5832 if (val == FAIL)
5833 {
5834 inst.error = NULL;
5835 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5836 REGLIST_VFP_S);
5837 inst.operands[i].issingle = 1;
5838 }
5839 break;
5840
5841 case OP_NRDLST:
5842 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5843 REGLIST_NEON_D);
5844 break;
5845
5846 case OP_NSTRLST:
5847 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
5848 &inst.operands[i].vectype);
5849 break;
5850
5851 /* Addressing modes */
5852 case OP_ADDR:
5853 po_misc_or_fail (parse_address (&str, i));
5854 break;
5855
5856 case OP_ADDRGLDR:
5857 po_misc_or_fail_no_backtrack (
5858 parse_address_group_reloc (&str, i, GROUP_LDR));
5859 break;
5860
5861 case OP_ADDRGLDRS:
5862 po_misc_or_fail_no_backtrack (
5863 parse_address_group_reloc (&str, i, GROUP_LDRS));
5864 break;
5865
5866 case OP_ADDRGLDC:
5867 po_misc_or_fail_no_backtrack (
5868 parse_address_group_reloc (&str, i, GROUP_LDC));
5869 break;
5870
5871 case OP_SH:
5872 po_misc_or_fail (parse_shifter_operand (&str, i));
5873 break;
5874
5875 case OP_SHG:
5876 po_misc_or_fail_no_backtrack (
5877 parse_shifter_operand_group_reloc (&str, i));
5878 break;
5879
5880 case OP_oSHll:
5881 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
5882 break;
5883
5884 case OP_oSHar:
5885 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
5886 break;
5887
5888 case OP_oSHllar:
5889 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
5890 break;
5891
5892 default:
5893 as_fatal ("unhandled operand code %d", upat[i]);
5894 }
5895
5896 /* Various value-based sanity checks and shared operations. We
5897 do not signal immediate failures for the register constraints;
5898 this allows a syntax error to take precedence. */
5899 switch (upat[i])
5900 {
5901 case OP_oRRnpc:
5902 case OP_RRnpc:
5903 case OP_RRnpcb:
5904 case OP_RRw:
5905 case OP_RRnpc_I0:
5906 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
5907 inst.error = BAD_PC;
5908 break;
5909
5910 case OP_CPSF:
5911 case OP_ENDI:
5912 case OP_oROR:
5913 case OP_PSR:
5914 case OP_RVC_PSR:
5915 case OP_COND:
5916 case OP_oBARRIER:
5917 case OP_REGLST:
5918 case OP_VRSLST:
5919 case OP_VRDLST:
5920 case OP_VRSDLST:
5921 case OP_NRDLST:
5922 case OP_NSTRLST:
5923 if (val == FAIL)
5924 goto failure;
5925 inst.operands[i].imm = val;
5926 break;
5927
5928 default:
5929 break;
5930 }
5931
5932 /* If we get here, this operand was successfully parsed. */
5933 inst.operands[i].present = 1;
5934 continue;
5935
5936 bad_args:
5937 inst.error = BAD_ARGS;
5938
5939 failure:
5940 if (!backtrack_pos)
5941 {
5942 /* The parse routine should already have set inst.error, but set a
5943 defaut here just in case. */
5944 if (!inst.error)
5945 inst.error = _("syntax error");
5946 return FAIL;
5947 }
5948
5949 /* Do not backtrack over a trailing optional argument that
5950 absorbed some text. We will only fail again, with the
5951 'garbage following instruction' error message, which is
5952 probably less helpful than the current one. */
5953 if (backtrack_index == i && backtrack_pos != str
5954 && upat[i+1] == OP_stop)
5955 {
5956 if (!inst.error)
5957 inst.error = _("syntax error");
5958 return FAIL;
5959 }
5960
5961 /* Try again, skipping the optional argument at backtrack_pos. */
5962 str = backtrack_pos;
5963 inst.error = backtrack_error;
5964 inst.operands[backtrack_index].present = 0;
5965 i = backtrack_index;
5966 backtrack_pos = 0;
5967 }
5968
5969 /* Check that we have parsed all the arguments. */
5970 if (*str != '\0' && !inst.error)
5971 inst.error = _("garbage following instruction");
5972
5973 return inst.error ? FAIL : SUCCESS;
5974 }
5975
5976 #undef po_char_or_fail
5977 #undef po_reg_or_fail
5978 #undef po_reg_or_goto
5979 #undef po_imm_or_fail
5980 #undef po_scalar_or_fail
5981 \f
5982 /* Shorthand macro for instruction encoding functions issuing errors. */
5983 #define constraint(expr, err) do { \
5984 if (expr) \
5985 { \
5986 inst.error = err; \
5987 return; \
5988 } \
5989 } while (0)
5990
5991 /* Functions for operand encoding. ARM, then Thumb. */
5992
5993 #define rotate_left(v, n) (v << n | v >> (32 - n))
5994
5995 /* If VAL can be encoded in the immediate field of an ARM instruction,
5996 return the encoded form. Otherwise, return FAIL. */
5997
5998 static unsigned int
5999 encode_arm_immediate (unsigned int val)
6000 {
6001 unsigned int a, i;
6002
6003 for (i = 0; i < 32; i += 2)
6004 if ((a = rotate_left (val, i)) <= 0xff)
6005 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6006
6007 return FAIL;
6008 }
6009
6010 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6011 return the encoded form. Otherwise, return FAIL. */
6012 static unsigned int
6013 encode_thumb32_immediate (unsigned int val)
6014 {
6015 unsigned int a, i;
6016
6017 if (val <= 0xff)
6018 return val;
6019
6020 for (i = 1; i <= 24; i++)
6021 {
6022 a = val >> i;
6023 if ((val & ~(0xff << i)) == 0)
6024 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6025 }
6026
6027 a = val & 0xff;
6028 if (val == ((a << 16) | a))
6029 return 0x100 | a;
6030 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6031 return 0x300 | a;
6032
6033 a = val & 0xff00;
6034 if (val == ((a << 16) | a))
6035 return 0x200 | (a >> 8);
6036
6037 return FAIL;
6038 }
6039 /* Encode a VFP SP or DP register number into inst.instruction. */
6040
6041 static void
6042 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6043 {
6044 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6045 && reg > 15)
6046 {
6047 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
6048 {
6049 if (thumb_mode)
6050 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6051 fpu_vfp_ext_v3);
6052 else
6053 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6054 fpu_vfp_ext_v3);
6055 }
6056 else
6057 {
6058 first_error (_("D register out of range for selected VFP version"));
6059 return;
6060 }
6061 }
6062
6063 switch (pos)
6064 {
6065 case VFP_REG_Sd:
6066 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6067 break;
6068
6069 case VFP_REG_Sn:
6070 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6071 break;
6072
6073 case VFP_REG_Sm:
6074 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6075 break;
6076
6077 case VFP_REG_Dd:
6078 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6079 break;
6080
6081 case VFP_REG_Dn:
6082 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6083 break;
6084
6085 case VFP_REG_Dm:
6086 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6087 break;
6088
6089 default:
6090 abort ();
6091 }
6092 }
6093
6094 /* Encode a <shift> in an ARM-format instruction. The immediate,
6095 if any, is handled by md_apply_fix. */
6096 static void
6097 encode_arm_shift (int i)
6098 {
6099 if (inst.operands[i].shift_kind == SHIFT_RRX)
6100 inst.instruction |= SHIFT_ROR << 5;
6101 else
6102 {
6103 inst.instruction |= inst.operands[i].shift_kind << 5;
6104 if (inst.operands[i].immisreg)
6105 {
6106 inst.instruction |= SHIFT_BY_REG;
6107 inst.instruction |= inst.operands[i].imm << 8;
6108 }
6109 else
6110 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6111 }
6112 }
6113
6114 static void
6115 encode_arm_shifter_operand (int i)
6116 {
6117 if (inst.operands[i].isreg)
6118 {
6119 inst.instruction |= inst.operands[i].reg;
6120 encode_arm_shift (i);
6121 }
6122 else
6123 inst.instruction |= INST_IMMEDIATE;
6124 }
6125
6126 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6127 static void
6128 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
6129 {
6130 assert (inst.operands[i].isreg);
6131 inst.instruction |= inst.operands[i].reg << 16;
6132
6133 if (inst.operands[i].preind)
6134 {
6135 if (is_t)
6136 {
6137 inst.error = _("instruction does not accept preindexed addressing");
6138 return;
6139 }
6140 inst.instruction |= PRE_INDEX;
6141 if (inst.operands[i].writeback)
6142 inst.instruction |= WRITE_BACK;
6143
6144 }
6145 else if (inst.operands[i].postind)
6146 {
6147 assert (inst.operands[i].writeback);
6148 if (is_t)
6149 inst.instruction |= WRITE_BACK;
6150 }
6151 else /* unindexed - only for coprocessor */
6152 {
6153 inst.error = _("instruction does not accept unindexed addressing");
6154 return;
6155 }
6156
6157 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6158 && (((inst.instruction & 0x000f0000) >> 16)
6159 == ((inst.instruction & 0x0000f000) >> 12)))
6160 as_warn ((inst.instruction & LOAD_BIT)
6161 ? _("destination register same as write-back base")
6162 : _("source register same as write-back base"));
6163 }
6164
6165 /* inst.operands[i] was set up by parse_address. Encode it into an
6166 ARM-format mode 2 load or store instruction. If is_t is true,
6167 reject forms that cannot be used with a T instruction (i.e. not
6168 post-indexed). */
6169 static void
6170 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
6171 {
6172 encode_arm_addr_mode_common (i, is_t);
6173
6174 if (inst.operands[i].immisreg)
6175 {
6176 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6177 inst.instruction |= inst.operands[i].imm;
6178 if (!inst.operands[i].negative)
6179 inst.instruction |= INDEX_UP;
6180 if (inst.operands[i].shifted)
6181 {
6182 if (inst.operands[i].shift_kind == SHIFT_RRX)
6183 inst.instruction |= SHIFT_ROR << 5;
6184 else
6185 {
6186 inst.instruction |= inst.operands[i].shift_kind << 5;
6187 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6188 }
6189 }
6190 }
6191 else /* immediate offset in inst.reloc */
6192 {
6193 if (inst.reloc.type == BFD_RELOC_UNUSED)
6194 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
6195 }
6196 }
6197
6198 /* inst.operands[i] was set up by parse_address. Encode it into an
6199 ARM-format mode 3 load or store instruction. Reject forms that
6200 cannot be used with such instructions. If is_t is true, reject
6201 forms that cannot be used with a T instruction (i.e. not
6202 post-indexed). */
6203 static void
6204 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
6205 {
6206 if (inst.operands[i].immisreg && inst.operands[i].shifted)
6207 {
6208 inst.error = _("instruction does not accept scaled register index");
6209 return;
6210 }
6211
6212 encode_arm_addr_mode_common (i, is_t);
6213
6214 if (inst.operands[i].immisreg)
6215 {
6216 inst.instruction |= inst.operands[i].imm;
6217 if (!inst.operands[i].negative)
6218 inst.instruction |= INDEX_UP;
6219 }
6220 else /* immediate offset in inst.reloc */
6221 {
6222 inst.instruction |= HWOFFSET_IMM;
6223 if (inst.reloc.type == BFD_RELOC_UNUSED)
6224 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
6225 }
6226 }
6227
6228 /* inst.operands[i] was set up by parse_address. Encode it into an
6229 ARM-format instruction. Reject all forms which cannot be encoded
6230 into a coprocessor load/store instruction. If wb_ok is false,
6231 reject use of writeback; if unind_ok is false, reject use of
6232 unindexed addressing. If reloc_override is not 0, use it instead
6233 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6234 (in which case it is preserved). */
6235
6236 static int
6237 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
6238 {
6239 inst.instruction |= inst.operands[i].reg << 16;
6240
6241 assert (!(inst.operands[i].preind && inst.operands[i].postind));
6242
6243 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
6244 {
6245 assert (!inst.operands[i].writeback);
6246 if (!unind_ok)
6247 {
6248 inst.error = _("instruction does not support unindexed addressing");
6249 return FAIL;
6250 }
6251 inst.instruction |= inst.operands[i].imm;
6252 inst.instruction |= INDEX_UP;
6253 return SUCCESS;
6254 }
6255
6256 if (inst.operands[i].preind)
6257 inst.instruction |= PRE_INDEX;
6258
6259 if (inst.operands[i].writeback)
6260 {
6261 if (inst.operands[i].reg == REG_PC)
6262 {
6263 inst.error = _("pc may not be used with write-back");
6264 return FAIL;
6265 }
6266 if (!wb_ok)
6267 {
6268 inst.error = _("instruction does not support writeback");
6269 return FAIL;
6270 }
6271 inst.instruction |= WRITE_BACK;
6272 }
6273
6274 if (reloc_override)
6275 inst.reloc.type = reloc_override;
6276 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6277 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6278 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6279 {
6280 if (thumb_mode)
6281 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6282 else
6283 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6284 }
6285
6286 return SUCCESS;
6287 }
6288
6289 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
6290 Determine whether it can be performed with a move instruction; if
6291 it can, convert inst.instruction to that move instruction and
6292 return 1; if it can't, convert inst.instruction to a literal-pool
6293 load and return 0. If this is not a valid thing to do in the
6294 current context, set inst.error and return 1.
6295
6296 inst.operands[i] describes the destination register. */
6297
6298 static int
6299 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6300 {
6301 unsigned long tbit;
6302
6303 if (thumb_p)
6304 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6305 else
6306 tbit = LOAD_BIT;
6307
6308 if ((inst.instruction & tbit) == 0)
6309 {
6310 inst.error = _("invalid pseudo operation");
6311 return 1;
6312 }
6313 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
6314 {
6315 inst.error = _("constant expression expected");
6316 return 1;
6317 }
6318 if (inst.reloc.exp.X_op == O_constant)
6319 {
6320 if (thumb_p)
6321 {
6322 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
6323 {
6324 /* This can be done with a mov(1) instruction. */
6325 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6326 inst.instruction |= inst.reloc.exp.X_add_number;
6327 return 1;
6328 }
6329 }
6330 else
6331 {
6332 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6333 if (value != FAIL)
6334 {
6335 /* This can be done with a mov instruction. */
6336 inst.instruction &= LITERAL_MASK;
6337 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6338 inst.instruction |= value & 0xfff;
6339 return 1;
6340 }
6341
6342 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6343 if (value != FAIL)
6344 {
6345 /* This can be done with a mvn instruction. */
6346 inst.instruction &= LITERAL_MASK;
6347 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6348 inst.instruction |= value & 0xfff;
6349 return 1;
6350 }
6351 }
6352 }
6353
6354 if (add_to_lit_pool () == FAIL)
6355 {
6356 inst.error = _("literal pool insertion failed");
6357 return 1;
6358 }
6359 inst.operands[1].reg = REG_PC;
6360 inst.operands[1].isreg = 1;
6361 inst.operands[1].preind = 1;
6362 inst.reloc.pc_rel = 1;
6363 inst.reloc.type = (thumb_p
6364 ? BFD_RELOC_ARM_THUMB_OFFSET
6365 : (mode_3
6366 ? BFD_RELOC_ARM_HWLITERAL
6367 : BFD_RELOC_ARM_LITERAL));
6368 return 0;
6369 }
6370
6371 /* Functions for instruction encoding, sorted by subarchitecture.
6372 First some generics; their names are taken from the conventional
6373 bit positions for register arguments in ARM format instructions. */
6374
6375 static void
6376 do_noargs (void)
6377 {
6378 }
6379
6380 static void
6381 do_rd (void)
6382 {
6383 inst.instruction |= inst.operands[0].reg << 12;
6384 }
6385
6386 static void
6387 do_rd_rm (void)
6388 {
6389 inst.instruction |= inst.operands[0].reg << 12;
6390 inst.instruction |= inst.operands[1].reg;
6391 }
6392
6393 static void
6394 do_rd_rn (void)
6395 {
6396 inst.instruction |= inst.operands[0].reg << 12;
6397 inst.instruction |= inst.operands[1].reg << 16;
6398 }
6399
6400 static void
6401 do_rn_rd (void)
6402 {
6403 inst.instruction |= inst.operands[0].reg << 16;
6404 inst.instruction |= inst.operands[1].reg << 12;
6405 }
6406
6407 static void
6408 do_rd_rm_rn (void)
6409 {
6410 unsigned Rn = inst.operands[2].reg;
6411 /* Enforce restrictions on SWP instruction. */
6412 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6413 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6414 _("Rn must not overlap other operands"));
6415 inst.instruction |= inst.operands[0].reg << 12;
6416 inst.instruction |= inst.operands[1].reg;
6417 inst.instruction |= Rn << 16;
6418 }
6419
6420 static void
6421 do_rd_rn_rm (void)
6422 {
6423 inst.instruction |= inst.operands[0].reg << 12;
6424 inst.instruction |= inst.operands[1].reg << 16;
6425 inst.instruction |= inst.operands[2].reg;
6426 }
6427
6428 static void
6429 do_rm_rd_rn (void)
6430 {
6431 inst.instruction |= inst.operands[0].reg;
6432 inst.instruction |= inst.operands[1].reg << 12;
6433 inst.instruction |= inst.operands[2].reg << 16;
6434 }
6435
6436 static void
6437 do_imm0 (void)
6438 {
6439 inst.instruction |= inst.operands[0].imm;
6440 }
6441
6442 static void
6443 do_rd_cpaddr (void)
6444 {
6445 inst.instruction |= inst.operands[0].reg << 12;
6446 encode_arm_cp_address (1, TRUE, TRUE, 0);
6447 }
6448
6449 /* ARM instructions, in alphabetical order by function name (except
6450 that wrapper functions appear immediately after the function they
6451 wrap). */
6452
6453 /* This is a pseudo-op of the form "adr rd, label" to be converted
6454 into a relative address of the form "add rd, pc, #label-.-8". */
6455
6456 static void
6457 do_adr (void)
6458 {
6459 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
6460
6461 /* Frag hacking will turn this into a sub instruction if the offset turns
6462 out to be negative. */
6463 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
6464 inst.reloc.pc_rel = 1;
6465 inst.reloc.exp.X_add_number -= 8;
6466 }
6467
6468 /* This is a pseudo-op of the form "adrl rd, label" to be converted
6469 into a relative address of the form:
6470 add rd, pc, #low(label-.-8)"
6471 add rd, rd, #high(label-.-8)" */
6472
6473 static void
6474 do_adrl (void)
6475 {
6476 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
6477
6478 /* Frag hacking will turn this into a sub instruction if the offset turns
6479 out to be negative. */
6480 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
6481 inst.reloc.pc_rel = 1;
6482 inst.size = INSN_SIZE * 2;
6483 inst.reloc.exp.X_add_number -= 8;
6484 }
6485
6486 static void
6487 do_arit (void)
6488 {
6489 if (!inst.operands[1].present)
6490 inst.operands[1].reg = inst.operands[0].reg;
6491 inst.instruction |= inst.operands[0].reg << 12;
6492 inst.instruction |= inst.operands[1].reg << 16;
6493 encode_arm_shifter_operand (2);
6494 }
6495
6496 static void
6497 do_barrier (void)
6498 {
6499 if (inst.operands[0].present)
6500 {
6501 constraint ((inst.instruction & 0xf0) != 0x40
6502 && inst.operands[0].imm != 0xf,
6503 "bad barrier type");
6504 inst.instruction |= inst.operands[0].imm;
6505 }
6506 else
6507 inst.instruction |= 0xf;
6508 }
6509
6510 static void
6511 do_bfc (void)
6512 {
6513 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
6514 constraint (msb > 32, _("bit-field extends past end of register"));
6515 /* The instruction encoding stores the LSB and MSB,
6516 not the LSB and width. */
6517 inst.instruction |= inst.operands[0].reg << 12;
6518 inst.instruction |= inst.operands[1].imm << 7;
6519 inst.instruction |= (msb - 1) << 16;
6520 }
6521
6522 static void
6523 do_bfi (void)
6524 {
6525 unsigned int msb;
6526
6527 /* #0 in second position is alternative syntax for bfc, which is
6528 the same instruction but with REG_PC in the Rm field. */
6529 if (!inst.operands[1].isreg)
6530 inst.operands[1].reg = REG_PC;
6531
6532 msb = inst.operands[2].imm + inst.operands[3].imm;
6533 constraint (msb > 32, _("bit-field extends past end of register"));
6534 /* The instruction encoding stores the LSB and MSB,
6535 not the LSB and width. */
6536 inst.instruction |= inst.operands[0].reg << 12;
6537 inst.instruction |= inst.operands[1].reg;
6538 inst.instruction |= inst.operands[2].imm << 7;
6539 inst.instruction |= (msb - 1) << 16;
6540 }
6541
6542 static void
6543 do_bfx (void)
6544 {
6545 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
6546 _("bit-field extends past end of register"));
6547 inst.instruction |= inst.operands[0].reg << 12;
6548 inst.instruction |= inst.operands[1].reg;
6549 inst.instruction |= inst.operands[2].imm << 7;
6550 inst.instruction |= (inst.operands[3].imm - 1) << 16;
6551 }
6552
6553 /* ARM V5 breakpoint instruction (argument parse)
6554 BKPT <16 bit unsigned immediate>
6555 Instruction is not conditional.
6556 The bit pattern given in insns[] has the COND_ALWAYS condition,
6557 and it is an error if the caller tried to override that. */
6558
6559 static void
6560 do_bkpt (void)
6561 {
6562 /* Top 12 of 16 bits to bits 19:8. */
6563 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
6564
6565 /* Bottom 4 of 16 bits to bits 3:0. */
6566 inst.instruction |= inst.operands[0].imm & 0xf;
6567 }
6568
6569 static void
6570 encode_branch (int default_reloc)
6571 {
6572 if (inst.operands[0].hasreloc)
6573 {
6574 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
6575 _("the only suffix valid here is '(plt)'"));
6576 inst.reloc.type = BFD_RELOC_ARM_PLT32;
6577 }
6578 else
6579 {
6580 inst.reloc.type = default_reloc;
6581 }
6582 inst.reloc.pc_rel = 1;
6583 }
6584
6585 static void
6586 do_branch (void)
6587 {
6588 #ifdef OBJ_ELF
6589 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6590 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6591 else
6592 #endif
6593 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6594 }
6595
6596 static void
6597 do_bl (void)
6598 {
6599 #ifdef OBJ_ELF
6600 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6601 {
6602 if (inst.cond == COND_ALWAYS)
6603 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6604 else
6605 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6606 }
6607 else
6608 #endif
6609 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6610 }
6611
6612 /* ARM V5 branch-link-exchange instruction (argument parse)
6613 BLX <target_addr> ie BLX(1)
6614 BLX{<condition>} <Rm> ie BLX(2)
6615 Unfortunately, there are two different opcodes for this mnemonic.
6616 So, the insns[].value is not used, and the code here zaps values
6617 into inst.instruction.
6618 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
6619
6620 static void
6621 do_blx (void)
6622 {
6623 if (inst.operands[0].isreg)
6624 {
6625 /* Arg is a register; the opcode provided by insns[] is correct.
6626 It is not illegal to do "blx pc", just useless. */
6627 if (inst.operands[0].reg == REG_PC)
6628 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
6629
6630 inst.instruction |= inst.operands[0].reg;
6631 }
6632 else
6633 {
6634 /* Arg is an address; this instruction cannot be executed
6635 conditionally, and the opcode must be adjusted. */
6636 constraint (inst.cond != COND_ALWAYS, BAD_COND);
6637 inst.instruction = 0xfa000000;
6638 #ifdef OBJ_ELF
6639 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6640 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6641 else
6642 #endif
6643 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
6644 }
6645 }
6646
6647 static void
6648 do_bx (void)
6649 {
6650 if (inst.operands[0].reg == REG_PC)
6651 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
6652
6653 inst.instruction |= inst.operands[0].reg;
6654 }
6655
6656
6657 /* ARM v5TEJ. Jump to Jazelle code. */
6658
6659 static void
6660 do_bxj (void)
6661 {
6662 if (inst.operands[0].reg == REG_PC)
6663 as_tsktsk (_("use of r15 in bxj is not really useful"));
6664
6665 inst.instruction |= inst.operands[0].reg;
6666 }
6667
6668 /* Co-processor data operation:
6669 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
6670 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
6671 static void
6672 do_cdp (void)
6673 {
6674 inst.instruction |= inst.operands[0].reg << 8;
6675 inst.instruction |= inst.operands[1].imm << 20;
6676 inst.instruction |= inst.operands[2].reg << 12;
6677 inst.instruction |= inst.operands[3].reg << 16;
6678 inst.instruction |= inst.operands[4].reg;
6679 inst.instruction |= inst.operands[5].imm << 5;
6680 }
6681
6682 static void
6683 do_cmp (void)
6684 {
6685 inst.instruction |= inst.operands[0].reg << 16;
6686 encode_arm_shifter_operand (1);
6687 }
6688
6689 /* Transfer between coprocessor and ARM registers.
6690 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
6691 MRC2
6692 MCR{cond}
6693 MCR2
6694
6695 No special properties. */
6696
6697 static void
6698 do_co_reg (void)
6699 {
6700 inst.instruction |= inst.operands[0].reg << 8;
6701 inst.instruction |= inst.operands[1].imm << 21;
6702 inst.instruction |= inst.operands[2].reg << 12;
6703 inst.instruction |= inst.operands[3].reg << 16;
6704 inst.instruction |= inst.operands[4].reg;
6705 inst.instruction |= inst.operands[5].imm << 5;
6706 }
6707
6708 /* Transfer between coprocessor register and pair of ARM registers.
6709 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
6710 MCRR2
6711 MRRC{cond}
6712 MRRC2
6713
6714 Two XScale instructions are special cases of these:
6715
6716 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
6717 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
6718
6719 Result unpredicatable if Rd or Rn is R15. */
6720
6721 static void
6722 do_co_reg2c (void)
6723 {
6724 inst.instruction |= inst.operands[0].reg << 8;
6725 inst.instruction |= inst.operands[1].imm << 4;
6726 inst.instruction |= inst.operands[2].reg << 12;
6727 inst.instruction |= inst.operands[3].reg << 16;
6728 inst.instruction |= inst.operands[4].reg;
6729 }
6730
6731 static void
6732 do_cpsi (void)
6733 {
6734 inst.instruction |= inst.operands[0].imm << 6;
6735 inst.instruction |= inst.operands[1].imm;
6736 }
6737
6738 static void
6739 do_dbg (void)
6740 {
6741 inst.instruction |= inst.operands[0].imm;
6742 }
6743
6744 static void
6745 do_it (void)
6746 {
6747 /* There is no IT instruction in ARM mode. We
6748 process it but do not generate code for it. */
6749 inst.size = 0;
6750 }
6751
6752 static void
6753 do_ldmstm (void)
6754 {
6755 int base_reg = inst.operands[0].reg;
6756 int range = inst.operands[1].imm;
6757
6758 inst.instruction |= base_reg << 16;
6759 inst.instruction |= range;
6760
6761 if (inst.operands[1].writeback)
6762 inst.instruction |= LDM_TYPE_2_OR_3;
6763
6764 if (inst.operands[0].writeback)
6765 {
6766 inst.instruction |= WRITE_BACK;
6767 /* Check for unpredictable uses of writeback. */
6768 if (inst.instruction & LOAD_BIT)
6769 {
6770 /* Not allowed in LDM type 2. */
6771 if ((inst.instruction & LDM_TYPE_2_OR_3)
6772 && ((range & (1 << REG_PC)) == 0))
6773 as_warn (_("writeback of base register is UNPREDICTABLE"));
6774 /* Only allowed if base reg not in list for other types. */
6775 else if (range & (1 << base_reg))
6776 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
6777 }
6778 else /* STM. */
6779 {
6780 /* Not allowed for type 2. */
6781 if (inst.instruction & LDM_TYPE_2_OR_3)
6782 as_warn (_("writeback of base register is UNPREDICTABLE"));
6783 /* Only allowed if base reg not in list, or first in list. */
6784 else if ((range & (1 << base_reg))
6785 && (range & ((1 << base_reg) - 1)))
6786 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
6787 }
6788 }
6789 }
6790
6791 /* ARMv5TE load-consecutive (argument parse)
6792 Mode is like LDRH.
6793
6794 LDRccD R, mode
6795 STRccD R, mode. */
6796
6797 static void
6798 do_ldrd (void)
6799 {
6800 constraint (inst.operands[0].reg % 2 != 0,
6801 _("first destination register must be even"));
6802 constraint (inst.operands[1].present
6803 && inst.operands[1].reg != inst.operands[0].reg + 1,
6804 _("can only load two consecutive registers"));
6805 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
6806 constraint (!inst.operands[2].isreg, _("'[' expected"));
6807
6808 if (!inst.operands[1].present)
6809 inst.operands[1].reg = inst.operands[0].reg + 1;
6810
6811 if (inst.instruction & LOAD_BIT)
6812 {
6813 /* encode_arm_addr_mode_3 will diagnose overlap between the base
6814 register and the first register written; we have to diagnose
6815 overlap between the base and the second register written here. */
6816
6817 if (inst.operands[2].reg == inst.operands[1].reg
6818 && (inst.operands[2].writeback || inst.operands[2].postind))
6819 as_warn (_("base register written back, and overlaps "
6820 "second destination register"));
6821
6822 /* For an index-register load, the index register must not overlap the
6823 destination (even if not write-back). */
6824 else if (inst.operands[2].immisreg
6825 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
6826 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
6827 as_warn (_("index register overlaps destination register"));
6828 }
6829
6830 inst.instruction |= inst.operands[0].reg << 12;
6831 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
6832 }
6833
6834 static void
6835 do_ldrex (void)
6836 {
6837 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
6838 || inst.operands[1].postind || inst.operands[1].writeback
6839 || inst.operands[1].immisreg || inst.operands[1].shifted
6840 || inst.operands[1].negative
6841 /* This can arise if the programmer has written
6842 strex rN, rM, foo
6843 or if they have mistakenly used a register name as the last
6844 operand, eg:
6845 strex rN, rM, rX
6846 It is very difficult to distinguish between these two cases
6847 because "rX" might actually be a label. ie the register
6848 name has been occluded by a symbol of the same name. So we
6849 just generate a general 'bad addressing mode' type error
6850 message and leave it up to the programmer to discover the
6851 true cause and fix their mistake. */
6852 || (inst.operands[1].reg == REG_PC),
6853 BAD_ADDR_MODE);
6854
6855 constraint (inst.reloc.exp.X_op != O_constant
6856 || inst.reloc.exp.X_add_number != 0,
6857 _("offset must be zero in ARM encoding"));
6858
6859 inst.instruction |= inst.operands[0].reg << 12;
6860 inst.instruction |= inst.operands[1].reg << 16;
6861 inst.reloc.type = BFD_RELOC_UNUSED;
6862 }
6863
6864 static void
6865 do_ldrexd (void)
6866 {
6867 constraint (inst.operands[0].reg % 2 != 0,
6868 _("even register required"));
6869 constraint (inst.operands[1].present
6870 && inst.operands[1].reg != inst.operands[0].reg + 1,
6871 _("can only load two consecutive registers"));
6872 /* If op 1 were present and equal to PC, this function wouldn't
6873 have been called in the first place. */
6874 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
6875
6876 inst.instruction |= inst.operands[0].reg << 12;
6877 inst.instruction |= inst.operands[2].reg << 16;
6878 }
6879
6880 static void
6881 do_ldst (void)
6882 {
6883 inst.instruction |= inst.operands[0].reg << 12;
6884 if (!inst.operands[1].isreg)
6885 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
6886 return;
6887 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
6888 }
6889
6890 static void
6891 do_ldstt (void)
6892 {
6893 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
6894 reject [Rn,...]. */
6895 if (inst.operands[1].preind)
6896 {
6897 constraint (inst.reloc.exp.X_op != O_constant ||
6898 inst.reloc.exp.X_add_number != 0,
6899 _("this instruction requires a post-indexed address"));
6900
6901 inst.operands[1].preind = 0;
6902 inst.operands[1].postind = 1;
6903 inst.operands[1].writeback = 1;
6904 }
6905 inst.instruction |= inst.operands[0].reg << 12;
6906 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
6907 }
6908
6909 /* Halfword and signed-byte load/store operations. */
6910
6911 static void
6912 do_ldstv4 (void)
6913 {
6914 inst.instruction |= inst.operands[0].reg << 12;
6915 if (!inst.operands[1].isreg)
6916 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
6917 return;
6918 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
6919 }
6920
6921 static void
6922 do_ldsttv4 (void)
6923 {
6924 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
6925 reject [Rn,...]. */
6926 if (inst.operands[1].preind)
6927 {
6928 constraint (inst.reloc.exp.X_op != O_constant ||
6929 inst.reloc.exp.X_add_number != 0,
6930 _("this instruction requires a post-indexed address"));
6931
6932 inst.operands[1].preind = 0;
6933 inst.operands[1].postind = 1;
6934 inst.operands[1].writeback = 1;
6935 }
6936 inst.instruction |= inst.operands[0].reg << 12;
6937 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
6938 }
6939
6940 /* Co-processor register load/store.
6941 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
6942 static void
6943 do_lstc (void)
6944 {
6945 inst.instruction |= inst.operands[0].reg << 8;
6946 inst.instruction |= inst.operands[1].reg << 12;
6947 encode_arm_cp_address (2, TRUE, TRUE, 0);
6948 }
6949
6950 static void
6951 do_mlas (void)
6952 {
6953 /* This restriction does not apply to mls (nor to mla in v6, but
6954 that's hard to detect at present). */
6955 if (inst.operands[0].reg == inst.operands[1].reg
6956 && !(inst.instruction & 0x00400000))
6957 as_tsktsk (_("rd and rm should be different in mla"));
6958
6959 inst.instruction |= inst.operands[0].reg << 16;
6960 inst.instruction |= inst.operands[1].reg;
6961 inst.instruction |= inst.operands[2].reg << 8;
6962 inst.instruction |= inst.operands[3].reg << 12;
6963
6964 }
6965
6966 static void
6967 do_mov (void)
6968 {
6969 inst.instruction |= inst.operands[0].reg << 12;
6970 encode_arm_shifter_operand (1);
6971 }
6972
6973 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
6974 static void
6975 do_mov16 (void)
6976 {
6977 bfd_vma imm;
6978 bfd_boolean top;
6979
6980 top = (inst.instruction & 0x00400000) != 0;
6981 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
6982 _(":lower16: not allowed this instruction"));
6983 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
6984 _(":upper16: not allowed instruction"));
6985 inst.instruction |= inst.operands[0].reg << 12;
6986 if (inst.reloc.type == BFD_RELOC_UNUSED)
6987 {
6988 imm = inst.reloc.exp.X_add_number;
6989 /* The value is in two pieces: 0:11, 16:19. */
6990 inst.instruction |= (imm & 0x00000fff);
6991 inst.instruction |= (imm & 0x0000f000) << 4;
6992 }
6993 }
6994
6995 static void do_vfp_nsyn_opcode (const char *);
6996
6997 static int
6998 do_vfp_nsyn_mrs (void)
6999 {
7000 if (inst.operands[0].isvec)
7001 {
7002 if (inst.operands[1].reg != 1)
7003 first_error (_("operand 1 must be FPSCR"));
7004 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7005 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7006 do_vfp_nsyn_opcode ("fmstat");
7007 }
7008 else if (inst.operands[1].isvec)
7009 do_vfp_nsyn_opcode ("fmrx");
7010 else
7011 return FAIL;
7012
7013 return SUCCESS;
7014 }
7015
7016 static int
7017 do_vfp_nsyn_msr (void)
7018 {
7019 if (inst.operands[0].isvec)
7020 do_vfp_nsyn_opcode ("fmxr");
7021 else
7022 return FAIL;
7023
7024 return SUCCESS;
7025 }
7026
7027 static void
7028 do_mrs (void)
7029 {
7030 if (do_vfp_nsyn_mrs () == SUCCESS)
7031 return;
7032
7033 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7034 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7035 != (PSR_c|PSR_f),
7036 _("'CPSR' or 'SPSR' expected"));
7037 inst.instruction |= inst.operands[0].reg << 12;
7038 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7039 }
7040
7041 /* Two possible forms:
7042 "{C|S}PSR_<field>, Rm",
7043 "{C|S}PSR_f, #expression". */
7044
7045 static void
7046 do_msr (void)
7047 {
7048 if (do_vfp_nsyn_msr () == SUCCESS)
7049 return;
7050
7051 inst.instruction |= inst.operands[0].imm;
7052 if (inst.operands[1].isreg)
7053 inst.instruction |= inst.operands[1].reg;
7054 else
7055 {
7056 inst.instruction |= INST_IMMEDIATE;
7057 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7058 inst.reloc.pc_rel = 0;
7059 }
7060 }
7061
7062 static void
7063 do_mul (void)
7064 {
7065 if (!inst.operands[2].present)
7066 inst.operands[2].reg = inst.operands[0].reg;
7067 inst.instruction |= inst.operands[0].reg << 16;
7068 inst.instruction |= inst.operands[1].reg;
7069 inst.instruction |= inst.operands[2].reg << 8;
7070
7071 if (inst.operands[0].reg == inst.operands[1].reg)
7072 as_tsktsk (_("rd and rm should be different in mul"));
7073 }
7074
7075 /* Long Multiply Parser
7076 UMULL RdLo, RdHi, Rm, Rs
7077 SMULL RdLo, RdHi, Rm, Rs
7078 UMLAL RdLo, RdHi, Rm, Rs
7079 SMLAL RdLo, RdHi, Rm, Rs. */
7080
7081 static void
7082 do_mull (void)
7083 {
7084 inst.instruction |= inst.operands[0].reg << 12;
7085 inst.instruction |= inst.operands[1].reg << 16;
7086 inst.instruction |= inst.operands[2].reg;
7087 inst.instruction |= inst.operands[3].reg << 8;
7088
7089 /* rdhi, rdlo and rm must all be different. */
7090 if (inst.operands[0].reg == inst.operands[1].reg
7091 || inst.operands[0].reg == inst.operands[2].reg
7092 || inst.operands[1].reg == inst.operands[2].reg)
7093 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7094 }
7095
7096 static void
7097 do_nop (void)
7098 {
7099 if (inst.operands[0].present)
7100 {
7101 /* Architectural NOP hints are CPSR sets with no bits selected. */
7102 inst.instruction &= 0xf0000000;
7103 inst.instruction |= 0x0320f000 + inst.operands[0].imm;
7104 }
7105 }
7106
7107 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7108 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7109 Condition defaults to COND_ALWAYS.
7110 Error if Rd, Rn or Rm are R15. */
7111
7112 static void
7113 do_pkhbt (void)
7114 {
7115 inst.instruction |= inst.operands[0].reg << 12;
7116 inst.instruction |= inst.operands[1].reg << 16;
7117 inst.instruction |= inst.operands[2].reg;
7118 if (inst.operands[3].present)
7119 encode_arm_shift (3);
7120 }
7121
7122 /* ARM V6 PKHTB (Argument Parse). */
7123
7124 static void
7125 do_pkhtb (void)
7126 {
7127 if (!inst.operands[3].present)
7128 {
7129 /* If the shift specifier is omitted, turn the instruction
7130 into pkhbt rd, rm, rn. */
7131 inst.instruction &= 0xfff00010;
7132 inst.instruction |= inst.operands[0].reg << 12;
7133 inst.instruction |= inst.operands[1].reg;
7134 inst.instruction |= inst.operands[2].reg << 16;
7135 }
7136 else
7137 {
7138 inst.instruction |= inst.operands[0].reg << 12;
7139 inst.instruction |= inst.operands[1].reg << 16;
7140 inst.instruction |= inst.operands[2].reg;
7141 encode_arm_shift (3);
7142 }
7143 }
7144
7145 /* ARMv5TE: Preload-Cache
7146
7147 PLD <addr_mode>
7148
7149 Syntactically, like LDR with B=1, W=0, L=1. */
7150
7151 static void
7152 do_pld (void)
7153 {
7154 constraint (!inst.operands[0].isreg,
7155 _("'[' expected after PLD mnemonic"));
7156 constraint (inst.operands[0].postind,
7157 _("post-indexed expression used in preload instruction"));
7158 constraint (inst.operands[0].writeback,
7159 _("writeback used in preload instruction"));
7160 constraint (!inst.operands[0].preind,
7161 _("unindexed addressing used in preload instruction"));
7162 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7163 }
7164
7165 /* ARMv7: PLI <addr_mode> */
7166 static void
7167 do_pli (void)
7168 {
7169 constraint (!inst.operands[0].isreg,
7170 _("'[' expected after PLI mnemonic"));
7171 constraint (inst.operands[0].postind,
7172 _("post-indexed expression used in preload instruction"));
7173 constraint (inst.operands[0].writeback,
7174 _("writeback used in preload instruction"));
7175 constraint (!inst.operands[0].preind,
7176 _("unindexed addressing used in preload instruction"));
7177 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7178 inst.instruction &= ~PRE_INDEX;
7179 }
7180
7181 static void
7182 do_push_pop (void)
7183 {
7184 inst.operands[1] = inst.operands[0];
7185 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7186 inst.operands[0].isreg = 1;
7187 inst.operands[0].writeback = 1;
7188 inst.operands[0].reg = REG_SP;
7189 do_ldmstm ();
7190 }
7191
7192 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7193 word at the specified address and the following word
7194 respectively.
7195 Unconditionally executed.
7196 Error if Rn is R15. */
7197
7198 static void
7199 do_rfe (void)
7200 {
7201 inst.instruction |= inst.operands[0].reg << 16;
7202 if (inst.operands[0].writeback)
7203 inst.instruction |= WRITE_BACK;
7204 }
7205
7206 /* ARM V6 ssat (argument parse). */
7207
7208 static void
7209 do_ssat (void)
7210 {
7211 inst.instruction |= inst.operands[0].reg << 12;
7212 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7213 inst.instruction |= inst.operands[2].reg;
7214
7215 if (inst.operands[3].present)
7216 encode_arm_shift (3);
7217 }
7218
7219 /* ARM V6 usat (argument parse). */
7220
7221 static void
7222 do_usat (void)
7223 {
7224 inst.instruction |= inst.operands[0].reg << 12;
7225 inst.instruction |= inst.operands[1].imm << 16;
7226 inst.instruction |= inst.operands[2].reg;
7227
7228 if (inst.operands[3].present)
7229 encode_arm_shift (3);
7230 }
7231
7232 /* ARM V6 ssat16 (argument parse). */
7233
7234 static void
7235 do_ssat16 (void)
7236 {
7237 inst.instruction |= inst.operands[0].reg << 12;
7238 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7239 inst.instruction |= inst.operands[2].reg;
7240 }
7241
7242 static void
7243 do_usat16 (void)
7244 {
7245 inst.instruction |= inst.operands[0].reg << 12;
7246 inst.instruction |= inst.operands[1].imm << 16;
7247 inst.instruction |= inst.operands[2].reg;
7248 }
7249
7250 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7251 preserving the other bits.
7252
7253 setend <endian_specifier>, where <endian_specifier> is either
7254 BE or LE. */
7255
7256 static void
7257 do_setend (void)
7258 {
7259 if (inst.operands[0].imm)
7260 inst.instruction |= 0x200;
7261 }
7262
7263 static void
7264 do_shift (void)
7265 {
7266 unsigned int Rm = (inst.operands[1].present
7267 ? inst.operands[1].reg
7268 : inst.operands[0].reg);
7269
7270 inst.instruction |= inst.operands[0].reg << 12;
7271 inst.instruction |= Rm;
7272 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
7273 {
7274 inst.instruction |= inst.operands[2].reg << 8;
7275 inst.instruction |= SHIFT_BY_REG;
7276 }
7277 else
7278 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7279 }
7280
7281 static void
7282 do_smc (void)
7283 {
7284 inst.reloc.type = BFD_RELOC_ARM_SMC;
7285 inst.reloc.pc_rel = 0;
7286 }
7287
7288 static void
7289 do_swi (void)
7290 {
7291 inst.reloc.type = BFD_RELOC_ARM_SWI;
7292 inst.reloc.pc_rel = 0;
7293 }
7294
7295 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7296 SMLAxy{cond} Rd,Rm,Rs,Rn
7297 SMLAWy{cond} Rd,Rm,Rs,Rn
7298 Error if any register is R15. */
7299
7300 static void
7301 do_smla (void)
7302 {
7303 inst.instruction |= inst.operands[0].reg << 16;
7304 inst.instruction |= inst.operands[1].reg;
7305 inst.instruction |= inst.operands[2].reg << 8;
7306 inst.instruction |= inst.operands[3].reg << 12;
7307 }
7308
7309 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7310 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7311 Error if any register is R15.
7312 Warning if Rdlo == Rdhi. */
7313
7314 static void
7315 do_smlal (void)
7316 {
7317 inst.instruction |= inst.operands[0].reg << 12;
7318 inst.instruction |= inst.operands[1].reg << 16;
7319 inst.instruction |= inst.operands[2].reg;
7320 inst.instruction |= inst.operands[3].reg << 8;
7321
7322 if (inst.operands[0].reg == inst.operands[1].reg)
7323 as_tsktsk (_("rdhi and rdlo must be different"));
7324 }
7325
7326 /* ARM V5E (El Segundo) signed-multiply (argument parse)
7327 SMULxy{cond} Rd,Rm,Rs
7328 Error if any register is R15. */
7329
7330 static void
7331 do_smul (void)
7332 {
7333 inst.instruction |= inst.operands[0].reg << 16;
7334 inst.instruction |= inst.operands[1].reg;
7335 inst.instruction |= inst.operands[2].reg << 8;
7336 }
7337
7338 /* ARM V6 srs (argument parse). */
7339
7340 static void
7341 do_srs (void)
7342 {
7343 inst.instruction |= inst.operands[0].imm;
7344 if (inst.operands[0].writeback)
7345 inst.instruction |= WRITE_BACK;
7346 }
7347
7348 /* ARM V6 strex (argument parse). */
7349
7350 static void
7351 do_strex (void)
7352 {
7353 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
7354 || inst.operands[2].postind || inst.operands[2].writeback
7355 || inst.operands[2].immisreg || inst.operands[2].shifted
7356 || inst.operands[2].negative
7357 /* See comment in do_ldrex(). */
7358 || (inst.operands[2].reg == REG_PC),
7359 BAD_ADDR_MODE);
7360
7361 constraint (inst.operands[0].reg == inst.operands[1].reg
7362 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
7363
7364 constraint (inst.reloc.exp.X_op != O_constant
7365 || inst.reloc.exp.X_add_number != 0,
7366 _("offset must be zero in ARM encoding"));
7367
7368 inst.instruction |= inst.operands[0].reg << 12;
7369 inst.instruction |= inst.operands[1].reg;
7370 inst.instruction |= inst.operands[2].reg << 16;
7371 inst.reloc.type = BFD_RELOC_UNUSED;
7372 }
7373
7374 static void
7375 do_strexd (void)
7376 {
7377 constraint (inst.operands[1].reg % 2 != 0,
7378 _("even register required"));
7379 constraint (inst.operands[2].present
7380 && inst.operands[2].reg != inst.operands[1].reg + 1,
7381 _("can only store two consecutive registers"));
7382 /* If op 2 were present and equal to PC, this function wouldn't
7383 have been called in the first place. */
7384 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
7385
7386 constraint (inst.operands[0].reg == inst.operands[1].reg
7387 || inst.operands[0].reg == inst.operands[1].reg + 1
7388 || inst.operands[0].reg == inst.operands[3].reg,
7389 BAD_OVERLAP);
7390
7391 inst.instruction |= inst.operands[0].reg << 12;
7392 inst.instruction |= inst.operands[1].reg;
7393 inst.instruction |= inst.operands[3].reg << 16;
7394 }
7395
7396 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
7397 extends it to 32-bits, and adds the result to a value in another
7398 register. You can specify a rotation by 0, 8, 16, or 24 bits
7399 before extracting the 16-bit value.
7400 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
7401 Condition defaults to COND_ALWAYS.
7402 Error if any register uses R15. */
7403
7404 static void
7405 do_sxtah (void)
7406 {
7407 inst.instruction |= inst.operands[0].reg << 12;
7408 inst.instruction |= inst.operands[1].reg << 16;
7409 inst.instruction |= inst.operands[2].reg;
7410 inst.instruction |= inst.operands[3].imm << 10;
7411 }
7412
7413 /* ARM V6 SXTH.
7414
7415 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
7416 Condition defaults to COND_ALWAYS.
7417 Error if any register uses R15. */
7418
7419 static void
7420 do_sxth (void)
7421 {
7422 inst.instruction |= inst.operands[0].reg << 12;
7423 inst.instruction |= inst.operands[1].reg;
7424 inst.instruction |= inst.operands[2].imm << 10;
7425 }
7426 \f
7427 /* VFP instructions. In a logical order: SP variant first, monad
7428 before dyad, arithmetic then move then load/store. */
7429
7430 static void
7431 do_vfp_sp_monadic (void)
7432 {
7433 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7434 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
7435 }
7436
7437 static void
7438 do_vfp_sp_dyadic (void)
7439 {
7440 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7441 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7442 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
7443 }
7444
7445 static void
7446 do_vfp_sp_compare_z (void)
7447 {
7448 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7449 }
7450
7451 static void
7452 do_vfp_dp_sp_cvt (void)
7453 {
7454 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7455 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
7456 }
7457
7458 static void
7459 do_vfp_sp_dp_cvt (void)
7460 {
7461 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7462 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7463 }
7464
7465 static void
7466 do_vfp_reg_from_sp (void)
7467 {
7468 inst.instruction |= inst.operands[0].reg << 12;
7469 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7470 }
7471
7472 static void
7473 do_vfp_reg2_from_sp2 (void)
7474 {
7475 constraint (inst.operands[2].imm != 2,
7476 _("only two consecutive VFP SP registers allowed here"));
7477 inst.instruction |= inst.operands[0].reg << 12;
7478 inst.instruction |= inst.operands[1].reg << 16;
7479 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
7480 }
7481
7482 static void
7483 do_vfp_sp_from_reg (void)
7484 {
7485 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
7486 inst.instruction |= inst.operands[1].reg << 12;
7487 }
7488
7489 static void
7490 do_vfp_sp2_from_reg2 (void)
7491 {
7492 constraint (inst.operands[0].imm != 2,
7493 _("only two consecutive VFP SP registers allowed here"));
7494 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
7495 inst.instruction |= inst.operands[1].reg << 12;
7496 inst.instruction |= inst.operands[2].reg << 16;
7497 }
7498
7499 static void
7500 do_vfp_sp_ldst (void)
7501 {
7502 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7503 encode_arm_cp_address (1, FALSE, TRUE, 0);
7504 }
7505
7506 static void
7507 do_vfp_dp_ldst (void)
7508 {
7509 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7510 encode_arm_cp_address (1, FALSE, TRUE, 0);
7511 }
7512
7513
7514 static void
7515 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
7516 {
7517 if (inst.operands[0].writeback)
7518 inst.instruction |= WRITE_BACK;
7519 else
7520 constraint (ldstm_type != VFP_LDSTMIA,
7521 _("this addressing mode requires base-register writeback"));
7522 inst.instruction |= inst.operands[0].reg << 16;
7523 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
7524 inst.instruction |= inst.operands[1].imm;
7525 }
7526
7527 static void
7528 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
7529 {
7530 int count;
7531
7532 if (inst.operands[0].writeback)
7533 inst.instruction |= WRITE_BACK;
7534 else
7535 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
7536 _("this addressing mode requires base-register writeback"));
7537
7538 inst.instruction |= inst.operands[0].reg << 16;
7539 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7540
7541 count = inst.operands[1].imm << 1;
7542 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
7543 count += 1;
7544
7545 inst.instruction |= count;
7546 }
7547
7548 static void
7549 do_vfp_sp_ldstmia (void)
7550 {
7551 vfp_sp_ldstm (VFP_LDSTMIA);
7552 }
7553
7554 static void
7555 do_vfp_sp_ldstmdb (void)
7556 {
7557 vfp_sp_ldstm (VFP_LDSTMDB);
7558 }
7559
7560 static void
7561 do_vfp_dp_ldstmia (void)
7562 {
7563 vfp_dp_ldstm (VFP_LDSTMIA);
7564 }
7565
7566 static void
7567 do_vfp_dp_ldstmdb (void)
7568 {
7569 vfp_dp_ldstm (VFP_LDSTMDB);
7570 }
7571
7572 static void
7573 do_vfp_xp_ldstmia (void)
7574 {
7575 vfp_dp_ldstm (VFP_LDSTMIAX);
7576 }
7577
7578 static void
7579 do_vfp_xp_ldstmdb (void)
7580 {
7581 vfp_dp_ldstm (VFP_LDSTMDBX);
7582 }
7583
7584 static void
7585 do_vfp_dp_rd_rm (void)
7586 {
7587 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7588 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7589 }
7590
7591 static void
7592 do_vfp_dp_rn_rd (void)
7593 {
7594 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
7595 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7596 }
7597
7598 static void
7599 do_vfp_dp_rd_rn (void)
7600 {
7601 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7602 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7603 }
7604
7605 static void
7606 do_vfp_dp_rd_rn_rm (void)
7607 {
7608 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7609 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7610 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
7611 }
7612
7613 static void
7614 do_vfp_dp_rd (void)
7615 {
7616 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7617 }
7618
7619 static void
7620 do_vfp_dp_rm_rd_rn (void)
7621 {
7622 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
7623 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7624 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
7625 }
7626
7627 /* VFPv3 instructions. */
7628 static void
7629 do_vfp_sp_const (void)
7630 {
7631 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7632 inst.instruction |= (inst.operands[1].imm & 15) << 16;
7633 inst.instruction |= (inst.operands[1].imm >> 4);
7634 }
7635
7636 static void
7637 do_vfp_dp_const (void)
7638 {
7639 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7640 inst.instruction |= (inst.operands[1].imm & 15) << 16;
7641 inst.instruction |= (inst.operands[1].imm >> 4);
7642 }
7643
7644 static void
7645 vfp_conv (int srcsize)
7646 {
7647 unsigned immbits = srcsize - inst.operands[1].imm;
7648 inst.instruction |= (immbits & 1) << 5;
7649 inst.instruction |= (immbits >> 1);
7650 }
7651
7652 static void
7653 do_vfp_sp_conv_16 (void)
7654 {
7655 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7656 vfp_conv (16);
7657 }
7658
7659 static void
7660 do_vfp_dp_conv_16 (void)
7661 {
7662 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7663 vfp_conv (16);
7664 }
7665
7666 static void
7667 do_vfp_sp_conv_32 (void)
7668 {
7669 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7670 vfp_conv (32);
7671 }
7672
7673 static void
7674 do_vfp_dp_conv_32 (void)
7675 {
7676 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7677 vfp_conv (32);
7678 }
7679
7680 \f
7681 /* FPA instructions. Also in a logical order. */
7682
7683 static void
7684 do_fpa_cmp (void)
7685 {
7686 inst.instruction |= inst.operands[0].reg << 16;
7687 inst.instruction |= inst.operands[1].reg;
7688 }
7689
7690 static void
7691 do_fpa_ldmstm (void)
7692 {
7693 inst.instruction |= inst.operands[0].reg << 12;
7694 switch (inst.operands[1].imm)
7695 {
7696 case 1: inst.instruction |= CP_T_X; break;
7697 case 2: inst.instruction |= CP_T_Y; break;
7698 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
7699 case 4: break;
7700 default: abort ();
7701 }
7702
7703 if (inst.instruction & (PRE_INDEX | INDEX_UP))
7704 {
7705 /* The instruction specified "ea" or "fd", so we can only accept
7706 [Rn]{!}. The instruction does not really support stacking or
7707 unstacking, so we have to emulate these by setting appropriate
7708 bits and offsets. */
7709 constraint (inst.reloc.exp.X_op != O_constant
7710 || inst.reloc.exp.X_add_number != 0,
7711 _("this instruction does not support indexing"));
7712
7713 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
7714 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
7715
7716 if (!(inst.instruction & INDEX_UP))
7717 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
7718
7719 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
7720 {
7721 inst.operands[2].preind = 0;
7722 inst.operands[2].postind = 1;
7723 }
7724 }
7725
7726 encode_arm_cp_address (2, TRUE, TRUE, 0);
7727 }
7728
7729 \f
7730 /* iWMMXt instructions: strictly in alphabetical order. */
7731
7732 static void
7733 do_iwmmxt_tandorc (void)
7734 {
7735 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
7736 }
7737
7738 static void
7739 do_iwmmxt_textrc (void)
7740 {
7741 inst.instruction |= inst.operands[0].reg << 12;
7742 inst.instruction |= inst.operands[1].imm;
7743 }
7744
7745 static void
7746 do_iwmmxt_textrm (void)
7747 {
7748 inst.instruction |= inst.operands[0].reg << 12;
7749 inst.instruction |= inst.operands[1].reg << 16;
7750 inst.instruction |= inst.operands[2].imm;
7751 }
7752
7753 static void
7754 do_iwmmxt_tinsr (void)
7755 {
7756 inst.instruction |= inst.operands[0].reg << 16;
7757 inst.instruction |= inst.operands[1].reg << 12;
7758 inst.instruction |= inst.operands[2].imm;
7759 }
7760
7761 static void
7762 do_iwmmxt_tmia (void)
7763 {
7764 inst.instruction |= inst.operands[0].reg << 5;
7765 inst.instruction |= inst.operands[1].reg;
7766 inst.instruction |= inst.operands[2].reg << 12;
7767 }
7768
7769 static void
7770 do_iwmmxt_waligni (void)
7771 {
7772 inst.instruction |= inst.operands[0].reg << 12;
7773 inst.instruction |= inst.operands[1].reg << 16;
7774 inst.instruction |= inst.operands[2].reg;
7775 inst.instruction |= inst.operands[3].imm << 20;
7776 }
7777
7778 static void
7779 do_iwmmxt_wmov (void)
7780 {
7781 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
7782 inst.instruction |= inst.operands[0].reg << 12;
7783 inst.instruction |= inst.operands[1].reg << 16;
7784 inst.instruction |= inst.operands[1].reg;
7785 }
7786
7787 static void
7788 do_iwmmxt_wldstbh (void)
7789 {
7790 int reloc;
7791 inst.instruction |= inst.operands[0].reg << 12;
7792 if (thumb_mode)
7793 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
7794 else
7795 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
7796 encode_arm_cp_address (1, TRUE, FALSE, reloc);
7797 }
7798
7799 static void
7800 do_iwmmxt_wldstw (void)
7801 {
7802 /* RIWR_RIWC clears .isreg for a control register. */
7803 if (!inst.operands[0].isreg)
7804 {
7805 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7806 inst.instruction |= 0xf0000000;
7807 }
7808
7809 inst.instruction |= inst.operands[0].reg << 12;
7810 encode_arm_cp_address (1, TRUE, TRUE, 0);
7811 }
7812
7813 static void
7814 do_iwmmxt_wldstd (void)
7815 {
7816 inst.instruction |= inst.operands[0].reg << 12;
7817 encode_arm_cp_address (1, TRUE, FALSE, 0);
7818 }
7819
7820 static void
7821 do_iwmmxt_wshufh (void)
7822 {
7823 inst.instruction |= inst.operands[0].reg << 12;
7824 inst.instruction |= inst.operands[1].reg << 16;
7825 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
7826 inst.instruction |= (inst.operands[2].imm & 0x0f);
7827 }
7828
7829 static void
7830 do_iwmmxt_wzero (void)
7831 {
7832 /* WZERO reg is an alias for WANDN reg, reg, reg. */
7833 inst.instruction |= inst.operands[0].reg;
7834 inst.instruction |= inst.operands[0].reg << 12;
7835 inst.instruction |= inst.operands[0].reg << 16;
7836 }
7837 \f
7838 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
7839 operations first, then control, shift, and load/store. */
7840
7841 /* Insns like "foo X,Y,Z". */
7842
7843 static void
7844 do_mav_triple (void)
7845 {
7846 inst.instruction |= inst.operands[0].reg << 16;
7847 inst.instruction |= inst.operands[1].reg;
7848 inst.instruction |= inst.operands[2].reg << 12;
7849 }
7850
7851 /* Insns like "foo W,X,Y,Z".
7852 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
7853
7854 static void
7855 do_mav_quad (void)
7856 {
7857 inst.instruction |= inst.operands[0].reg << 5;
7858 inst.instruction |= inst.operands[1].reg << 12;
7859 inst.instruction |= inst.operands[2].reg << 16;
7860 inst.instruction |= inst.operands[3].reg;
7861 }
7862
7863 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
7864 static void
7865 do_mav_dspsc (void)
7866 {
7867 inst.instruction |= inst.operands[1].reg << 12;
7868 }
7869
7870 /* Maverick shift immediate instructions.
7871 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
7872 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
7873
7874 static void
7875 do_mav_shift (void)
7876 {
7877 int imm = inst.operands[2].imm;
7878
7879 inst.instruction |= inst.operands[0].reg << 12;
7880 inst.instruction |= inst.operands[1].reg << 16;
7881
7882 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
7883 Bits 5-7 of the insn should have bits 4-6 of the immediate.
7884 Bit 4 should be 0. */
7885 imm = (imm & 0xf) | ((imm & 0x70) << 1);
7886
7887 inst.instruction |= imm;
7888 }
7889 \f
7890 /* XScale instructions. Also sorted arithmetic before move. */
7891
7892 /* Xscale multiply-accumulate (argument parse)
7893 MIAcc acc0,Rm,Rs
7894 MIAPHcc acc0,Rm,Rs
7895 MIAxycc acc0,Rm,Rs. */
7896
7897 static void
7898 do_xsc_mia (void)
7899 {
7900 inst.instruction |= inst.operands[1].reg;
7901 inst.instruction |= inst.operands[2].reg << 12;
7902 }
7903
7904 /* Xscale move-accumulator-register (argument parse)
7905
7906 MARcc acc0,RdLo,RdHi. */
7907
7908 static void
7909 do_xsc_mar (void)
7910 {
7911 inst.instruction |= inst.operands[1].reg << 12;
7912 inst.instruction |= inst.operands[2].reg << 16;
7913 }
7914
7915 /* Xscale move-register-accumulator (argument parse)
7916
7917 MRAcc RdLo,RdHi,acc0. */
7918
7919 static void
7920 do_xsc_mra (void)
7921 {
7922 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
7923 inst.instruction |= inst.operands[0].reg << 12;
7924 inst.instruction |= inst.operands[1].reg << 16;
7925 }
7926 \f
7927 /* Encoding functions relevant only to Thumb. */
7928
7929 /* inst.operands[i] is a shifted-register operand; encode
7930 it into inst.instruction in the format used by Thumb32. */
7931
7932 static void
7933 encode_thumb32_shifted_operand (int i)
7934 {
7935 unsigned int value = inst.reloc.exp.X_add_number;
7936 unsigned int shift = inst.operands[i].shift_kind;
7937
7938 constraint (inst.operands[i].immisreg,
7939 _("shift by register not allowed in thumb mode"));
7940 inst.instruction |= inst.operands[i].reg;
7941 if (shift == SHIFT_RRX)
7942 inst.instruction |= SHIFT_ROR << 4;
7943 else
7944 {
7945 constraint (inst.reloc.exp.X_op != O_constant,
7946 _("expression too complex"));
7947
7948 constraint (value > 32
7949 || (value == 32 && (shift == SHIFT_LSL
7950 || shift == SHIFT_ROR)),
7951 _("shift expression is too large"));
7952
7953 if (value == 0)
7954 shift = SHIFT_LSL;
7955 else if (value == 32)
7956 value = 0;
7957
7958 inst.instruction |= shift << 4;
7959 inst.instruction |= (value & 0x1c) << 10;
7960 inst.instruction |= (value & 0x03) << 6;
7961 }
7962 }
7963
7964
7965 /* inst.operands[i] was set up by parse_address. Encode it into a
7966 Thumb32 format load or store instruction. Reject forms that cannot
7967 be used with such instructions. If is_t is true, reject forms that
7968 cannot be used with a T instruction; if is_d is true, reject forms
7969 that cannot be used with a D instruction. */
7970
7971 static void
7972 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
7973 {
7974 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7975
7976 constraint (!inst.operands[i].isreg,
7977 _("Instruction does not support =N addresses"));
7978
7979 inst.instruction |= inst.operands[i].reg << 16;
7980 if (inst.operands[i].immisreg)
7981 {
7982 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
7983 constraint (is_t || is_d, _("cannot use register index with this instruction"));
7984 constraint (inst.operands[i].negative,
7985 _("Thumb does not support negative register indexing"));
7986 constraint (inst.operands[i].postind,
7987 _("Thumb does not support register post-indexing"));
7988 constraint (inst.operands[i].writeback,
7989 _("Thumb does not support register indexing with writeback"));
7990 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
7991 _("Thumb supports only LSL in shifted register indexing"));
7992
7993 inst.instruction |= inst.operands[i].imm;
7994 if (inst.operands[i].shifted)
7995 {
7996 constraint (inst.reloc.exp.X_op != O_constant,
7997 _("expression too complex"));
7998 constraint (inst.reloc.exp.X_add_number < 0
7999 || inst.reloc.exp.X_add_number > 3,
8000 _("shift out of range"));
8001 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8002 }
8003 inst.reloc.type = BFD_RELOC_UNUSED;
8004 }
8005 else if (inst.operands[i].preind)
8006 {
8007 constraint (is_pc && inst.operands[i].writeback,
8008 _("cannot use writeback with PC-relative addressing"));
8009 constraint (is_t && inst.operands[i].writeback,
8010 _("cannot use writeback with this instruction"));
8011
8012 if (is_d)
8013 {
8014 inst.instruction |= 0x01000000;
8015 if (inst.operands[i].writeback)
8016 inst.instruction |= 0x00200000;
8017 }
8018 else
8019 {
8020 inst.instruction |= 0x00000c00;
8021 if (inst.operands[i].writeback)
8022 inst.instruction |= 0x00000100;
8023 }
8024 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8025 }
8026 else if (inst.operands[i].postind)
8027 {
8028 assert (inst.operands[i].writeback);
8029 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8030 constraint (is_t, _("cannot use post-indexing with this instruction"));
8031
8032 if (is_d)
8033 inst.instruction |= 0x00200000;
8034 else
8035 inst.instruction |= 0x00000900;
8036 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8037 }
8038 else /* unindexed - only for coprocessor */
8039 inst.error = _("instruction does not accept unindexed addressing");
8040 }
8041
8042 /* Table of Thumb instructions which exist in both 16- and 32-bit
8043 encodings (the latter only in post-V6T2 cores). The index is the
8044 value used in the insns table below. When there is more than one
8045 possible 16-bit encoding for the instruction, this table always
8046 holds variant (1).
8047 Also contains several pseudo-instructions used during relaxation. */
8048 #define T16_32_TAB \
8049 X(adc, 4140, eb400000), \
8050 X(adcs, 4140, eb500000), \
8051 X(add, 1c00, eb000000), \
8052 X(adds, 1c00, eb100000), \
8053 X(addi, 0000, f1000000), \
8054 X(addis, 0000, f1100000), \
8055 X(add_pc,000f, f20f0000), \
8056 X(add_sp,000d, f10d0000), \
8057 X(adr, 000f, f20f0000), \
8058 X(and, 4000, ea000000), \
8059 X(ands, 4000, ea100000), \
8060 X(asr, 1000, fa40f000), \
8061 X(asrs, 1000, fa50f000), \
8062 X(b, e000, f000b000), \
8063 X(bcond, d000, f0008000), \
8064 X(bic, 4380, ea200000), \
8065 X(bics, 4380, ea300000), \
8066 X(cmn, 42c0, eb100f00), \
8067 X(cmp, 2800, ebb00f00), \
8068 X(cpsie, b660, f3af8400), \
8069 X(cpsid, b670, f3af8600), \
8070 X(cpy, 4600, ea4f0000), \
8071 X(dec_sp,80dd, f1bd0d00), \
8072 X(eor, 4040, ea800000), \
8073 X(eors, 4040, ea900000), \
8074 X(inc_sp,00dd, f10d0d00), \
8075 X(ldmia, c800, e8900000), \
8076 X(ldr, 6800, f8500000), \
8077 X(ldrb, 7800, f8100000), \
8078 X(ldrh, 8800, f8300000), \
8079 X(ldrsb, 5600, f9100000), \
8080 X(ldrsh, 5e00, f9300000), \
8081 X(ldr_pc,4800, f85f0000), \
8082 X(ldr_pc2,4800, f85f0000), \
8083 X(ldr_sp,9800, f85d0000), \
8084 X(lsl, 0000, fa00f000), \
8085 X(lsls, 0000, fa10f000), \
8086 X(lsr, 0800, fa20f000), \
8087 X(lsrs, 0800, fa30f000), \
8088 X(mov, 2000, ea4f0000), \
8089 X(movs, 2000, ea5f0000), \
8090 X(mul, 4340, fb00f000), \
8091 X(muls, 4340, ffffffff), /* no 32b muls */ \
8092 X(mvn, 43c0, ea6f0000), \
8093 X(mvns, 43c0, ea7f0000), \
8094 X(neg, 4240, f1c00000), /* rsb #0 */ \
8095 X(negs, 4240, f1d00000), /* rsbs #0 */ \
8096 X(orr, 4300, ea400000), \
8097 X(orrs, 4300, ea500000), \
8098 X(pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8099 X(push, b400, e92d0000), /* stmdb sp!,... */ \
8100 X(rev, ba00, fa90f080), \
8101 X(rev16, ba40, fa90f090), \
8102 X(revsh, bac0, fa90f0b0), \
8103 X(ror, 41c0, fa60f000), \
8104 X(rors, 41c0, fa70f000), \
8105 X(sbc, 4180, eb600000), \
8106 X(sbcs, 4180, eb700000), \
8107 X(stmia, c000, e8800000), \
8108 X(str, 6000, f8400000), \
8109 X(strb, 7000, f8000000), \
8110 X(strh, 8000, f8200000), \
8111 X(str_sp,9000, f84d0000), \
8112 X(sub, 1e00, eba00000), \
8113 X(subs, 1e00, ebb00000), \
8114 X(subi, 8000, f1a00000), \
8115 X(subis, 8000, f1b00000), \
8116 X(sxtb, b240, fa4ff080), \
8117 X(sxth, b200, fa0ff080), \
8118 X(tst, 4200, ea100f00), \
8119 X(uxtb, b2c0, fa5ff080), \
8120 X(uxth, b280, fa1ff080), \
8121 X(nop, bf00, f3af8000), \
8122 X(yield, bf10, f3af8001), \
8123 X(wfe, bf20, f3af8002), \
8124 X(wfi, bf30, f3af8003), \
8125 X(sev, bf40, f3af9004), /* typo, 8004? */
8126
8127 /* To catch errors in encoding functions, the codes are all offset by
8128 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8129 as 16-bit instructions. */
8130 #define X(a,b,c) T_MNEM_##a
8131 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8132 #undef X
8133
8134 #define X(a,b,c) 0x##b
8135 static const unsigned short thumb_op16[] = { T16_32_TAB };
8136 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8137 #undef X
8138
8139 #define X(a,b,c) 0x##c
8140 static const unsigned int thumb_op32[] = { T16_32_TAB };
8141 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8142 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8143 #undef X
8144 #undef T16_32_TAB
8145
8146 /* Thumb instruction encoders, in alphabetical order. */
8147
8148 /* ADDW or SUBW. */
8149 static void
8150 do_t_add_sub_w (void)
8151 {
8152 int Rd, Rn;
8153
8154 Rd = inst.operands[0].reg;
8155 Rn = inst.operands[1].reg;
8156
8157 constraint (Rd == 15, _("PC not allowed as destination"));
8158 inst.instruction |= (Rn << 16) | (Rd << 8);
8159 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8160 }
8161
8162 /* Parse an add or subtract instruction. We get here with inst.instruction
8163 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8164
8165 static void
8166 do_t_add_sub (void)
8167 {
8168 int Rd, Rs, Rn;
8169
8170 Rd = inst.operands[0].reg;
8171 Rs = (inst.operands[1].present
8172 ? inst.operands[1].reg /* Rd, Rs, foo */
8173 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8174
8175 if (unified_syntax)
8176 {
8177 bfd_boolean flags;
8178 bfd_boolean narrow;
8179 int opcode;
8180
8181 flags = (inst.instruction == T_MNEM_adds
8182 || inst.instruction == T_MNEM_subs);
8183 if (flags)
8184 narrow = (current_it_mask == 0);
8185 else
8186 narrow = (current_it_mask != 0);
8187 if (!inst.operands[2].isreg)
8188 {
8189 opcode = 0;
8190 if (inst.size_req != 4)
8191 {
8192 int add;
8193
8194 add = (inst.instruction == T_MNEM_add
8195 || inst.instruction == T_MNEM_adds);
8196 /* Attempt to use a narrow opcode, with relaxation if
8197 appropriate. */
8198 if (Rd == REG_SP && Rs == REG_SP && !flags)
8199 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8200 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8201 opcode = T_MNEM_add_sp;
8202 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8203 opcode = T_MNEM_add_pc;
8204 else if (Rd <= 7 && Rs <= 7 && narrow)
8205 {
8206 if (flags)
8207 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8208 else
8209 opcode = add ? T_MNEM_addi : T_MNEM_subi;
8210 }
8211 if (opcode)
8212 {
8213 inst.instruction = THUMB_OP16(opcode);
8214 inst.instruction |= (Rd << 4) | Rs;
8215 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8216 if (inst.size_req != 2)
8217 inst.relax = opcode;
8218 }
8219 else
8220 constraint (inst.size_req == 2, BAD_HIREG);
8221 }
8222 if (inst.size_req == 4
8223 || (inst.size_req != 2 && !opcode))
8224 {
8225 /* ??? Convert large immediates to addw/subw. */
8226 inst.instruction = THUMB_OP32 (inst.instruction);
8227 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8228 inst.instruction |= inst.operands[0].reg << 8;
8229 inst.instruction |= inst.operands[1].reg << 16;
8230 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8231 }
8232 }
8233 else
8234 {
8235 Rn = inst.operands[2].reg;
8236 /* See if we can do this with a 16-bit instruction. */
8237 if (!inst.operands[2].shifted && inst.size_req != 4)
8238 {
8239 if (Rd > 7 || Rs > 7 || Rn > 7)
8240 narrow = FALSE;
8241
8242 if (narrow)
8243 {
8244 inst.instruction = ((inst.instruction == T_MNEM_adds
8245 || inst.instruction == T_MNEM_add)
8246 ? T_OPCODE_ADD_R3
8247 : T_OPCODE_SUB_R3);
8248 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8249 return;
8250 }
8251
8252 if (inst.instruction == T_MNEM_add)
8253 {
8254 if (Rd == Rs)
8255 {
8256 inst.instruction = T_OPCODE_ADD_HI;
8257 inst.instruction |= (Rd & 8) << 4;
8258 inst.instruction |= (Rd & 7);
8259 inst.instruction |= Rn << 3;
8260 return;
8261 }
8262 /* ... because addition is commutative! */
8263 else if (Rd == Rn)
8264 {
8265 inst.instruction = T_OPCODE_ADD_HI;
8266 inst.instruction |= (Rd & 8) << 4;
8267 inst.instruction |= (Rd & 7);
8268 inst.instruction |= Rs << 3;
8269 return;
8270 }
8271 }
8272 }
8273 /* If we get here, it can't be done in 16 bits. */
8274 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
8275 _("shift must be constant"));
8276 inst.instruction = THUMB_OP32 (inst.instruction);
8277 inst.instruction |= Rd << 8;
8278 inst.instruction |= Rs << 16;
8279 encode_thumb32_shifted_operand (2);
8280 }
8281 }
8282 else
8283 {
8284 constraint (inst.instruction == T_MNEM_adds
8285 || inst.instruction == T_MNEM_subs,
8286 BAD_THUMB32);
8287
8288 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
8289 {
8290 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
8291 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
8292 BAD_HIREG);
8293
8294 inst.instruction = (inst.instruction == T_MNEM_add
8295 ? 0x0000 : 0x8000);
8296 inst.instruction |= (Rd << 4) | Rs;
8297 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8298 return;
8299 }
8300
8301 Rn = inst.operands[2].reg;
8302 constraint (inst.operands[2].shifted, _("unshifted register required"));
8303
8304 /* We now have Rd, Rs, and Rn set to registers. */
8305 if (Rd > 7 || Rs > 7 || Rn > 7)
8306 {
8307 /* Can't do this for SUB. */
8308 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
8309 inst.instruction = T_OPCODE_ADD_HI;
8310 inst.instruction |= (Rd & 8) << 4;
8311 inst.instruction |= (Rd & 7);
8312 if (Rs == Rd)
8313 inst.instruction |= Rn << 3;
8314 else if (Rn == Rd)
8315 inst.instruction |= Rs << 3;
8316 else
8317 constraint (1, _("dest must overlap one source register"));
8318 }
8319 else
8320 {
8321 inst.instruction = (inst.instruction == T_MNEM_add
8322 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
8323 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8324 }
8325 }
8326 }
8327
8328 static void
8329 do_t_adr (void)
8330 {
8331 if (unified_syntax && inst.size_req == 0 && inst.operands[0].reg <= 7)
8332 {
8333 /* Defer to section relaxation. */
8334 inst.relax = inst.instruction;
8335 inst.instruction = THUMB_OP16 (inst.instruction);
8336 inst.instruction |= inst.operands[0].reg << 4;
8337 }
8338 else if (unified_syntax && inst.size_req != 2)
8339 {
8340 /* Generate a 32-bit opcode. */
8341 inst.instruction = THUMB_OP32 (inst.instruction);
8342 inst.instruction |= inst.operands[0].reg << 8;
8343 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
8344 inst.reloc.pc_rel = 1;
8345 }
8346 else
8347 {
8348 /* Generate a 16-bit opcode. */
8349 inst.instruction = THUMB_OP16 (inst.instruction);
8350 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8351 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
8352 inst.reloc.pc_rel = 1;
8353
8354 inst.instruction |= inst.operands[0].reg << 4;
8355 }
8356 }
8357
8358 /* Arithmetic instructions for which there is just one 16-bit
8359 instruction encoding, and it allows only two low registers.
8360 For maximal compatibility with ARM syntax, we allow three register
8361 operands even when Thumb-32 instructions are not available, as long
8362 as the first two are identical. For instance, both "sbc r0,r1" and
8363 "sbc r0,r0,r1" are allowed. */
8364 static void
8365 do_t_arit3 (void)
8366 {
8367 int Rd, Rs, Rn;
8368
8369 Rd = inst.operands[0].reg;
8370 Rs = (inst.operands[1].present
8371 ? inst.operands[1].reg /* Rd, Rs, foo */
8372 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8373 Rn = inst.operands[2].reg;
8374
8375 if (unified_syntax)
8376 {
8377 if (!inst.operands[2].isreg)
8378 {
8379 /* For an immediate, we always generate a 32-bit opcode;
8380 section relaxation will shrink it later if possible. */
8381 inst.instruction = THUMB_OP32 (inst.instruction);
8382 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8383 inst.instruction |= Rd << 8;
8384 inst.instruction |= Rs << 16;
8385 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8386 }
8387 else
8388 {
8389 bfd_boolean narrow;
8390
8391 /* See if we can do this with a 16-bit instruction. */
8392 if (THUMB_SETS_FLAGS (inst.instruction))
8393 narrow = current_it_mask == 0;
8394 else
8395 narrow = current_it_mask != 0;
8396
8397 if (Rd > 7 || Rn > 7 || Rs > 7)
8398 narrow = FALSE;
8399 if (inst.operands[2].shifted)
8400 narrow = FALSE;
8401 if (inst.size_req == 4)
8402 narrow = FALSE;
8403
8404 if (narrow
8405 && Rd == Rs)
8406 {
8407 inst.instruction = THUMB_OP16 (inst.instruction);
8408 inst.instruction |= Rd;
8409 inst.instruction |= Rn << 3;
8410 return;
8411 }
8412
8413 /* If we get here, it can't be done in 16 bits. */
8414 constraint (inst.operands[2].shifted
8415 && inst.operands[2].immisreg,
8416 _("shift must be constant"));
8417 inst.instruction = THUMB_OP32 (inst.instruction);
8418 inst.instruction |= Rd << 8;
8419 inst.instruction |= Rs << 16;
8420 encode_thumb32_shifted_operand (2);
8421 }
8422 }
8423 else
8424 {
8425 /* On its face this is a lie - the instruction does set the
8426 flags. However, the only supported mnemonic in this mode
8427 says it doesn't. */
8428 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
8429
8430 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8431 _("unshifted register required"));
8432 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8433 constraint (Rd != Rs,
8434 _("dest and source1 must be the same register"));
8435
8436 inst.instruction = THUMB_OP16 (inst.instruction);
8437 inst.instruction |= Rd;
8438 inst.instruction |= Rn << 3;
8439 }
8440 }
8441
8442 /* Similarly, but for instructions where the arithmetic operation is
8443 commutative, so we can allow either of them to be different from
8444 the destination operand in a 16-bit instruction. For instance, all
8445 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
8446 accepted. */
8447 static void
8448 do_t_arit3c (void)
8449 {
8450 int Rd, Rs, Rn;
8451
8452 Rd = inst.operands[0].reg;
8453 Rs = (inst.operands[1].present
8454 ? inst.operands[1].reg /* Rd, Rs, foo */
8455 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8456 Rn = inst.operands[2].reg;
8457
8458 if (unified_syntax)
8459 {
8460 if (!inst.operands[2].isreg)
8461 {
8462 /* For an immediate, we always generate a 32-bit opcode;
8463 section relaxation will shrink it later if possible. */
8464 inst.instruction = THUMB_OP32 (inst.instruction);
8465 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8466 inst.instruction |= Rd << 8;
8467 inst.instruction |= Rs << 16;
8468 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8469 }
8470 else
8471 {
8472 bfd_boolean narrow;
8473
8474 /* See if we can do this with a 16-bit instruction. */
8475 if (THUMB_SETS_FLAGS (inst.instruction))
8476 narrow = current_it_mask == 0;
8477 else
8478 narrow = current_it_mask != 0;
8479
8480 if (Rd > 7 || Rn > 7 || Rs > 7)
8481 narrow = FALSE;
8482 if (inst.operands[2].shifted)
8483 narrow = FALSE;
8484 if (inst.size_req == 4)
8485 narrow = FALSE;
8486
8487 if (narrow)
8488 {
8489 if (Rd == Rs)
8490 {
8491 inst.instruction = THUMB_OP16 (inst.instruction);
8492 inst.instruction |= Rd;
8493 inst.instruction |= Rn << 3;
8494 return;
8495 }
8496 if (Rd == Rn)
8497 {
8498 inst.instruction = THUMB_OP16 (inst.instruction);
8499 inst.instruction |= Rd;
8500 inst.instruction |= Rs << 3;
8501 return;
8502 }
8503 }
8504
8505 /* If we get here, it can't be done in 16 bits. */
8506 constraint (inst.operands[2].shifted
8507 && inst.operands[2].immisreg,
8508 _("shift must be constant"));
8509 inst.instruction = THUMB_OP32 (inst.instruction);
8510 inst.instruction |= Rd << 8;
8511 inst.instruction |= Rs << 16;
8512 encode_thumb32_shifted_operand (2);
8513 }
8514 }
8515 else
8516 {
8517 /* On its face this is a lie - the instruction does set the
8518 flags. However, the only supported mnemonic in this mode
8519 says it doesn't. */
8520 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
8521
8522 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8523 _("unshifted register required"));
8524 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8525
8526 inst.instruction = THUMB_OP16 (inst.instruction);
8527 inst.instruction |= Rd;
8528
8529 if (Rd == Rs)
8530 inst.instruction |= Rn << 3;
8531 else if (Rd == Rn)
8532 inst.instruction |= Rs << 3;
8533 else
8534 constraint (1, _("dest must overlap one source register"));
8535 }
8536 }
8537
8538 static void
8539 do_t_barrier (void)
8540 {
8541 if (inst.operands[0].present)
8542 {
8543 constraint ((inst.instruction & 0xf0) != 0x40
8544 && inst.operands[0].imm != 0xf,
8545 "bad barrier type");
8546 inst.instruction |= inst.operands[0].imm;
8547 }
8548 else
8549 inst.instruction |= 0xf;
8550 }
8551
8552 static void
8553 do_t_bfc (void)
8554 {
8555 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8556 constraint (msb > 32, _("bit-field extends past end of register"));
8557 /* The instruction encoding stores the LSB and MSB,
8558 not the LSB and width. */
8559 inst.instruction |= inst.operands[0].reg << 8;
8560 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
8561 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
8562 inst.instruction |= msb - 1;
8563 }
8564
8565 static void
8566 do_t_bfi (void)
8567 {
8568 unsigned int msb;
8569
8570 /* #0 in second position is alternative syntax for bfc, which is
8571 the same instruction but with REG_PC in the Rm field. */
8572 if (!inst.operands[1].isreg)
8573 inst.operands[1].reg = REG_PC;
8574
8575 msb = inst.operands[2].imm + inst.operands[3].imm;
8576 constraint (msb > 32, _("bit-field extends past end of register"));
8577 /* The instruction encoding stores the LSB and MSB,
8578 not the LSB and width. */
8579 inst.instruction |= inst.operands[0].reg << 8;
8580 inst.instruction |= inst.operands[1].reg << 16;
8581 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8582 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8583 inst.instruction |= msb - 1;
8584 }
8585
8586 static void
8587 do_t_bfx (void)
8588 {
8589 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8590 _("bit-field extends past end of register"));
8591 inst.instruction |= inst.operands[0].reg << 8;
8592 inst.instruction |= inst.operands[1].reg << 16;
8593 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8594 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8595 inst.instruction |= inst.operands[3].imm - 1;
8596 }
8597
8598 /* ARM V5 Thumb BLX (argument parse)
8599 BLX <target_addr> which is BLX(1)
8600 BLX <Rm> which is BLX(2)
8601 Unfortunately, there are two different opcodes for this mnemonic.
8602 So, the insns[].value is not used, and the code here zaps values
8603 into inst.instruction.
8604
8605 ??? How to take advantage of the additional two bits of displacement
8606 available in Thumb32 mode? Need new relocation? */
8607
8608 static void
8609 do_t_blx (void)
8610 {
8611 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8612 if (inst.operands[0].isreg)
8613 /* We have a register, so this is BLX(2). */
8614 inst.instruction |= inst.operands[0].reg << 3;
8615 else
8616 {
8617 /* No register. This must be BLX(1). */
8618 inst.instruction = 0xf000e800;
8619 #ifdef OBJ_ELF
8620 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8621 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
8622 else
8623 #endif
8624 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
8625 inst.reloc.pc_rel = 1;
8626 }
8627 }
8628
8629 static void
8630 do_t_branch (void)
8631 {
8632 int opcode;
8633 int cond;
8634
8635 if (current_it_mask)
8636 {
8637 /* Conditional branches inside IT blocks are encoded as unconditional
8638 branches. */
8639 cond = COND_ALWAYS;
8640 /* A branch must be the last instruction in an IT block. */
8641 constraint (current_it_mask != 0x10, BAD_BRANCH);
8642 }
8643 else
8644 cond = inst.cond;
8645
8646 if (cond != COND_ALWAYS)
8647 opcode = T_MNEM_bcond;
8648 else
8649 opcode = inst.instruction;
8650
8651 if (unified_syntax && inst.size_req == 4)
8652 {
8653 inst.instruction = THUMB_OP32(opcode);
8654 if (cond == COND_ALWAYS)
8655 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
8656 else
8657 {
8658 assert (cond != 0xF);
8659 inst.instruction |= cond << 22;
8660 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
8661 }
8662 }
8663 else
8664 {
8665 inst.instruction = THUMB_OP16(opcode);
8666 if (cond == COND_ALWAYS)
8667 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
8668 else
8669 {
8670 inst.instruction |= cond << 8;
8671 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
8672 }
8673 /* Allow section relaxation. */
8674 if (unified_syntax && inst.size_req != 2)
8675 inst.relax = opcode;
8676 }
8677
8678 inst.reloc.pc_rel = 1;
8679 }
8680
8681 static void
8682 do_t_bkpt (void)
8683 {
8684 constraint (inst.cond != COND_ALWAYS,
8685 _("instruction is always unconditional"));
8686 if (inst.operands[0].present)
8687 {
8688 constraint (inst.operands[0].imm > 255,
8689 _("immediate value out of range"));
8690 inst.instruction |= inst.operands[0].imm;
8691 }
8692 }
8693
8694 static void
8695 do_t_branch23 (void)
8696 {
8697 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8698 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
8699 inst.reloc.pc_rel = 1;
8700
8701 /* If the destination of the branch is a defined symbol which does not have
8702 the THUMB_FUNC attribute, then we must be calling a function which has
8703 the (interfacearm) attribute. We look for the Thumb entry point to that
8704 function and change the branch to refer to that function instead. */
8705 if ( inst.reloc.exp.X_op == O_symbol
8706 && inst.reloc.exp.X_add_symbol != NULL
8707 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8708 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
8709 inst.reloc.exp.X_add_symbol =
8710 find_real_start (inst.reloc.exp.X_add_symbol);
8711 }
8712
8713 static void
8714 do_t_bx (void)
8715 {
8716 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8717 inst.instruction |= inst.operands[0].reg << 3;
8718 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
8719 should cause the alignment to be checked once it is known. This is
8720 because BX PC only works if the instruction is word aligned. */
8721 }
8722
8723 static void
8724 do_t_bxj (void)
8725 {
8726 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8727 if (inst.operands[0].reg == REG_PC)
8728 as_tsktsk (_("use of r15 in bxj is not really useful"));
8729
8730 inst.instruction |= inst.operands[0].reg << 16;
8731 }
8732
8733 static void
8734 do_t_clz (void)
8735 {
8736 inst.instruction |= inst.operands[0].reg << 8;
8737 inst.instruction |= inst.operands[1].reg << 16;
8738 inst.instruction |= inst.operands[1].reg;
8739 }
8740
8741 static void
8742 do_t_cps (void)
8743 {
8744 constraint (current_it_mask, BAD_NOT_IT);
8745 inst.instruction |= inst.operands[0].imm;
8746 }
8747
8748 static void
8749 do_t_cpsi (void)
8750 {
8751 constraint (current_it_mask, BAD_NOT_IT);
8752 if (unified_syntax
8753 && (inst.operands[1].present || inst.size_req == 4)
8754 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
8755 {
8756 unsigned int imod = (inst.instruction & 0x0030) >> 4;
8757 inst.instruction = 0xf3af8000;
8758 inst.instruction |= imod << 9;
8759 inst.instruction |= inst.operands[0].imm << 5;
8760 if (inst.operands[1].present)
8761 inst.instruction |= 0x100 | inst.operands[1].imm;
8762 }
8763 else
8764 {
8765 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
8766 && (inst.operands[0].imm & 4),
8767 _("selected processor does not support 'A' form "
8768 "of this instruction"));
8769 constraint (inst.operands[1].present || inst.size_req == 4,
8770 _("Thumb does not support the 2-argument "
8771 "form of this instruction"));
8772 inst.instruction |= inst.operands[0].imm;
8773 }
8774 }
8775
8776 /* THUMB CPY instruction (argument parse). */
8777
8778 static void
8779 do_t_cpy (void)
8780 {
8781 if (inst.size_req == 4)
8782 {
8783 inst.instruction = THUMB_OP32 (T_MNEM_mov);
8784 inst.instruction |= inst.operands[0].reg << 8;
8785 inst.instruction |= inst.operands[1].reg;
8786 }
8787 else
8788 {
8789 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
8790 inst.instruction |= (inst.operands[0].reg & 0x7);
8791 inst.instruction |= inst.operands[1].reg << 3;
8792 }
8793 }
8794
8795 static void
8796 do_t_czb (void)
8797 {
8798 constraint (current_it_mask, BAD_NOT_IT);
8799 constraint (inst.operands[0].reg > 7, BAD_HIREG);
8800 inst.instruction |= inst.operands[0].reg;
8801 inst.reloc.pc_rel = 1;
8802 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
8803 }
8804
8805 static void
8806 do_t_dbg (void)
8807 {
8808 inst.instruction |= inst.operands[0].imm;
8809 }
8810
8811 static void
8812 do_t_div (void)
8813 {
8814 if (!inst.operands[1].present)
8815 inst.operands[1].reg = inst.operands[0].reg;
8816 inst.instruction |= inst.operands[0].reg << 8;
8817 inst.instruction |= inst.operands[1].reg << 16;
8818 inst.instruction |= inst.operands[2].reg;
8819 }
8820
8821 static void
8822 do_t_hint (void)
8823 {
8824 if (unified_syntax && inst.size_req == 4)
8825 inst.instruction = THUMB_OP32 (inst.instruction);
8826 else
8827 inst.instruction = THUMB_OP16 (inst.instruction);
8828 }
8829
8830 static void
8831 do_t_it (void)
8832 {
8833 unsigned int cond = inst.operands[0].imm;
8834
8835 constraint (current_it_mask, BAD_NOT_IT);
8836 current_it_mask = (inst.instruction & 0xf) | 0x10;
8837 current_cc = cond;
8838
8839 /* If the condition is a negative condition, invert the mask. */
8840 if ((cond & 0x1) == 0x0)
8841 {
8842 unsigned int mask = inst.instruction & 0x000f;
8843
8844 if ((mask & 0x7) == 0)
8845 /* no conversion needed */;
8846 else if ((mask & 0x3) == 0)
8847 mask ^= 0x8;
8848 else if ((mask & 0x1) == 0)
8849 mask ^= 0xC;
8850 else
8851 mask ^= 0xE;
8852
8853 inst.instruction &= 0xfff0;
8854 inst.instruction |= mask;
8855 }
8856
8857 inst.instruction |= cond << 4;
8858 }
8859
8860 static void
8861 do_t_ldmstm (void)
8862 {
8863 /* This really doesn't seem worth it. */
8864 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
8865 _("expression too complex"));
8866 constraint (inst.operands[1].writeback,
8867 _("Thumb load/store multiple does not support {reglist}^"));
8868
8869 if (unified_syntax)
8870 {
8871 /* See if we can use a 16-bit instruction. */
8872 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
8873 && inst.size_req != 4
8874 && inst.operands[0].reg <= 7
8875 && !(inst.operands[1].imm & ~0xff)
8876 && (inst.instruction == T_MNEM_stmia
8877 ? inst.operands[0].writeback
8878 : (inst.operands[0].writeback
8879 == !(inst.operands[1].imm & (1 << inst.operands[0].reg)))))
8880 {
8881 if (inst.instruction == T_MNEM_stmia
8882 && (inst.operands[1].imm & (1 << inst.operands[0].reg))
8883 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
8884 as_warn (_("value stored for r%d is UNPREDICTABLE"),
8885 inst.operands[0].reg);
8886
8887 inst.instruction = THUMB_OP16 (inst.instruction);
8888 inst.instruction |= inst.operands[0].reg << 8;
8889 inst.instruction |= inst.operands[1].imm;
8890 }
8891 else
8892 {
8893 if (inst.operands[1].imm & (1 << 13))
8894 as_warn (_("SP should not be in register list"));
8895 if (inst.instruction == T_MNEM_stmia)
8896 {
8897 if (inst.operands[1].imm & (1 << 15))
8898 as_warn (_("PC should not be in register list"));
8899 if (inst.operands[1].imm & (1 << inst.operands[0].reg))
8900 as_warn (_("value stored for r%d is UNPREDICTABLE"),
8901 inst.operands[0].reg);
8902 }
8903 else
8904 {
8905 if (inst.operands[1].imm & (1 << 14)
8906 && inst.operands[1].imm & (1 << 15))
8907 as_warn (_("LR and PC should not both be in register list"));
8908 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
8909 && inst.operands[0].writeback)
8910 as_warn (_("base register should not be in register list "
8911 "when written back"));
8912 }
8913 if (inst.instruction < 0xffff)
8914 inst.instruction = THUMB_OP32 (inst.instruction);
8915 inst.instruction |= inst.operands[0].reg << 16;
8916 inst.instruction |= inst.operands[1].imm;
8917 if (inst.operands[0].writeback)
8918 inst.instruction |= WRITE_BACK;
8919 }
8920 }
8921 else
8922 {
8923 constraint (inst.operands[0].reg > 7
8924 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
8925 if (inst.instruction == T_MNEM_stmia)
8926 {
8927 if (!inst.operands[0].writeback)
8928 as_warn (_("this instruction will write back the base register"));
8929 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
8930 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
8931 as_warn (_("value stored for r%d is UNPREDICTABLE"),
8932 inst.operands[0].reg);
8933 }
8934 else
8935 {
8936 if (!inst.operands[0].writeback
8937 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
8938 as_warn (_("this instruction will write back the base register"));
8939 else if (inst.operands[0].writeback
8940 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
8941 as_warn (_("this instruction will not write back the base register"));
8942 }
8943
8944 inst.instruction = THUMB_OP16 (inst.instruction);
8945 inst.instruction |= inst.operands[0].reg << 8;
8946 inst.instruction |= inst.operands[1].imm;
8947 }
8948 }
8949
8950 static void
8951 do_t_ldrex (void)
8952 {
8953 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8954 || inst.operands[1].postind || inst.operands[1].writeback
8955 || inst.operands[1].immisreg || inst.operands[1].shifted
8956 || inst.operands[1].negative,
8957 BAD_ADDR_MODE);
8958
8959 inst.instruction |= inst.operands[0].reg << 12;
8960 inst.instruction |= inst.operands[1].reg << 16;
8961 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
8962 }
8963
8964 static void
8965 do_t_ldrexd (void)
8966 {
8967 if (!inst.operands[1].present)
8968 {
8969 constraint (inst.operands[0].reg == REG_LR,
8970 _("r14 not allowed as first register "
8971 "when second register is omitted"));
8972 inst.operands[1].reg = inst.operands[0].reg + 1;
8973 }
8974 constraint (inst.operands[0].reg == inst.operands[1].reg,
8975 BAD_OVERLAP);
8976
8977 inst.instruction |= inst.operands[0].reg << 12;
8978 inst.instruction |= inst.operands[1].reg << 8;
8979 inst.instruction |= inst.operands[2].reg << 16;
8980 }
8981
8982 static void
8983 do_t_ldst (void)
8984 {
8985 unsigned long opcode;
8986 int Rn;
8987
8988 opcode = inst.instruction;
8989 if (unified_syntax)
8990 {
8991 if (!inst.operands[1].isreg)
8992 {
8993 if (opcode <= 0xffff)
8994 inst.instruction = THUMB_OP32 (opcode);
8995 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
8996 return;
8997 }
8998 if (inst.operands[1].isreg
8999 && !inst.operands[1].writeback
9000 && !inst.operands[1].shifted && !inst.operands[1].postind
9001 && !inst.operands[1].negative && inst.operands[0].reg <= 7
9002 && opcode <= 0xffff
9003 && inst.size_req != 4)
9004 {
9005 /* Insn may have a 16-bit form. */
9006 Rn = inst.operands[1].reg;
9007 if (inst.operands[1].immisreg)
9008 {
9009 inst.instruction = THUMB_OP16 (opcode);
9010 /* [Rn, Ri] */
9011 if (Rn <= 7 && inst.operands[1].imm <= 7)
9012 goto op16;
9013 }
9014 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9015 && opcode != T_MNEM_ldrsb)
9016 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9017 || (Rn == REG_SP && opcode == T_MNEM_str))
9018 {
9019 /* [Rn, #const] */
9020 if (Rn > 7)
9021 {
9022 if (Rn == REG_PC)
9023 {
9024 if (inst.reloc.pc_rel)
9025 opcode = T_MNEM_ldr_pc2;
9026 else
9027 opcode = T_MNEM_ldr_pc;
9028 }
9029 else
9030 {
9031 if (opcode == T_MNEM_ldr)
9032 opcode = T_MNEM_ldr_sp;
9033 else
9034 opcode = T_MNEM_str_sp;
9035 }
9036 inst.instruction = inst.operands[0].reg << 8;
9037 }
9038 else
9039 {
9040 inst.instruction = inst.operands[0].reg;
9041 inst.instruction |= inst.operands[1].reg << 3;
9042 }
9043 inst.instruction |= THUMB_OP16 (opcode);
9044 if (inst.size_req == 2)
9045 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9046 else
9047 inst.relax = opcode;
9048 return;
9049 }
9050 }
9051 /* Definitely a 32-bit variant. */
9052 inst.instruction = THUMB_OP32 (opcode);
9053 inst.instruction |= inst.operands[0].reg << 12;
9054 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
9055 return;
9056 }
9057
9058 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9059
9060 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
9061 {
9062 /* Only [Rn,Rm] is acceptable. */
9063 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
9064 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
9065 || inst.operands[1].postind || inst.operands[1].shifted
9066 || inst.operands[1].negative,
9067 _("Thumb does not support this addressing mode"));
9068 inst.instruction = THUMB_OP16 (inst.instruction);
9069 goto op16;
9070 }
9071
9072 inst.instruction = THUMB_OP16 (inst.instruction);
9073 if (!inst.operands[1].isreg)
9074 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9075 return;
9076
9077 constraint (!inst.operands[1].preind
9078 || inst.operands[1].shifted
9079 || inst.operands[1].writeback,
9080 _("Thumb does not support this addressing mode"));
9081 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
9082 {
9083 constraint (inst.instruction & 0x0600,
9084 _("byte or halfword not valid for base register"));
9085 constraint (inst.operands[1].reg == REG_PC
9086 && !(inst.instruction & THUMB_LOAD_BIT),
9087 _("r15 based store not allowed"));
9088 constraint (inst.operands[1].immisreg,
9089 _("invalid base register for register offset"));
9090
9091 if (inst.operands[1].reg == REG_PC)
9092 inst.instruction = T_OPCODE_LDR_PC;
9093 else if (inst.instruction & THUMB_LOAD_BIT)
9094 inst.instruction = T_OPCODE_LDR_SP;
9095 else
9096 inst.instruction = T_OPCODE_STR_SP;
9097
9098 inst.instruction |= inst.operands[0].reg << 8;
9099 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9100 return;
9101 }
9102
9103 constraint (inst.operands[1].reg > 7, BAD_HIREG);
9104 if (!inst.operands[1].immisreg)
9105 {
9106 /* Immediate offset. */
9107 inst.instruction |= inst.operands[0].reg;
9108 inst.instruction |= inst.operands[1].reg << 3;
9109 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9110 return;
9111 }
9112
9113 /* Register offset. */
9114 constraint (inst.operands[1].imm > 7, BAD_HIREG);
9115 constraint (inst.operands[1].negative,
9116 _("Thumb does not support this addressing mode"));
9117
9118 op16:
9119 switch (inst.instruction)
9120 {
9121 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
9122 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
9123 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
9124 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
9125 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
9126 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
9127 case 0x5600 /* ldrsb */:
9128 case 0x5e00 /* ldrsh */: break;
9129 default: abort ();
9130 }
9131
9132 inst.instruction |= inst.operands[0].reg;
9133 inst.instruction |= inst.operands[1].reg << 3;
9134 inst.instruction |= inst.operands[1].imm << 6;
9135 }
9136
9137 static void
9138 do_t_ldstd (void)
9139 {
9140 if (!inst.operands[1].present)
9141 {
9142 inst.operands[1].reg = inst.operands[0].reg + 1;
9143 constraint (inst.operands[0].reg == REG_LR,
9144 _("r14 not allowed here"));
9145 }
9146 inst.instruction |= inst.operands[0].reg << 12;
9147 inst.instruction |= inst.operands[1].reg << 8;
9148 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
9149
9150 }
9151
9152 static void
9153 do_t_ldstt (void)
9154 {
9155 inst.instruction |= inst.operands[0].reg << 12;
9156 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
9157 }
9158
9159 static void
9160 do_t_mla (void)
9161 {
9162 inst.instruction |= inst.operands[0].reg << 8;
9163 inst.instruction |= inst.operands[1].reg << 16;
9164 inst.instruction |= inst.operands[2].reg;
9165 inst.instruction |= inst.operands[3].reg << 12;
9166 }
9167
9168 static void
9169 do_t_mlal (void)
9170 {
9171 inst.instruction |= inst.operands[0].reg << 12;
9172 inst.instruction |= inst.operands[1].reg << 8;
9173 inst.instruction |= inst.operands[2].reg << 16;
9174 inst.instruction |= inst.operands[3].reg;
9175 }
9176
9177 static void
9178 do_t_mov_cmp (void)
9179 {
9180 if (unified_syntax)
9181 {
9182 int r0off = (inst.instruction == T_MNEM_mov
9183 || inst.instruction == T_MNEM_movs) ? 8 : 16;
9184 unsigned long opcode;
9185 bfd_boolean narrow;
9186 bfd_boolean low_regs;
9187
9188 low_regs = (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7);
9189 opcode = inst.instruction;
9190 if (current_it_mask)
9191 narrow = opcode != T_MNEM_movs;
9192 else
9193 narrow = opcode != T_MNEM_movs || low_regs;
9194 if (inst.size_req == 4
9195 || inst.operands[1].shifted)
9196 narrow = FALSE;
9197
9198 if (!inst.operands[1].isreg)
9199 {
9200 /* Immediate operand. */
9201 if (current_it_mask == 0 && opcode == T_MNEM_mov)
9202 narrow = 0;
9203 if (low_regs && narrow)
9204 {
9205 inst.instruction = THUMB_OP16 (opcode);
9206 inst.instruction |= inst.operands[0].reg << 8;
9207 if (inst.size_req == 2)
9208 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9209 else
9210 inst.relax = opcode;
9211 }
9212 else
9213 {
9214 inst.instruction = THUMB_OP32 (inst.instruction);
9215 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9216 inst.instruction |= inst.operands[0].reg << r0off;
9217 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9218 }
9219 }
9220 else if (!narrow)
9221 {
9222 inst.instruction = THUMB_OP32 (inst.instruction);
9223 inst.instruction |= inst.operands[0].reg << r0off;
9224 encode_thumb32_shifted_operand (1);
9225 }
9226 else
9227 switch (inst.instruction)
9228 {
9229 case T_MNEM_mov:
9230 inst.instruction = T_OPCODE_MOV_HR;
9231 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9232 inst.instruction |= (inst.operands[0].reg & 0x7);
9233 inst.instruction |= inst.operands[1].reg << 3;
9234 break;
9235
9236 case T_MNEM_movs:
9237 /* We know we have low registers at this point.
9238 Generate ADD Rd, Rs, #0. */
9239 inst.instruction = T_OPCODE_ADD_I3;
9240 inst.instruction |= inst.operands[0].reg;
9241 inst.instruction |= inst.operands[1].reg << 3;
9242 break;
9243
9244 case T_MNEM_cmp:
9245 if (low_regs)
9246 {
9247 inst.instruction = T_OPCODE_CMP_LR;
9248 inst.instruction |= inst.operands[0].reg;
9249 inst.instruction |= inst.operands[1].reg << 3;
9250 }
9251 else
9252 {
9253 inst.instruction = T_OPCODE_CMP_HR;
9254 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9255 inst.instruction |= (inst.operands[0].reg & 0x7);
9256 inst.instruction |= inst.operands[1].reg << 3;
9257 }
9258 break;
9259 }
9260 return;
9261 }
9262
9263 inst.instruction = THUMB_OP16 (inst.instruction);
9264 if (inst.operands[1].isreg)
9265 {
9266 if (inst.operands[0].reg < 8 && inst.operands[1].reg < 8)
9267 {
9268 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
9269 since a MOV instruction produces unpredictable results. */
9270 if (inst.instruction == T_OPCODE_MOV_I8)
9271 inst.instruction = T_OPCODE_ADD_I3;
9272 else
9273 inst.instruction = T_OPCODE_CMP_LR;
9274
9275 inst.instruction |= inst.operands[0].reg;
9276 inst.instruction |= inst.operands[1].reg << 3;
9277 }
9278 else
9279 {
9280 if (inst.instruction == T_OPCODE_MOV_I8)
9281 inst.instruction = T_OPCODE_MOV_HR;
9282 else
9283 inst.instruction = T_OPCODE_CMP_HR;
9284 do_t_cpy ();
9285 }
9286 }
9287 else
9288 {
9289 constraint (inst.operands[0].reg > 7,
9290 _("only lo regs allowed with immediate"));
9291 inst.instruction |= inst.operands[0].reg << 8;
9292 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9293 }
9294 }
9295
9296 static void
9297 do_t_mov16 (void)
9298 {
9299 bfd_vma imm;
9300 bfd_boolean top;
9301
9302 top = (inst.instruction & 0x00800000) != 0;
9303 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
9304 {
9305 constraint (top, _(":lower16: not allowed this instruction"));
9306 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
9307 }
9308 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
9309 {
9310 constraint (!top, _(":upper16: not allowed this instruction"));
9311 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
9312 }
9313
9314 inst.instruction |= inst.operands[0].reg << 8;
9315 if (inst.reloc.type == BFD_RELOC_UNUSED)
9316 {
9317 imm = inst.reloc.exp.X_add_number;
9318 inst.instruction |= (imm & 0xf000) << 4;
9319 inst.instruction |= (imm & 0x0800) << 15;
9320 inst.instruction |= (imm & 0x0700) << 4;
9321 inst.instruction |= (imm & 0x00ff);
9322 }
9323 }
9324
9325 static void
9326 do_t_mvn_tst (void)
9327 {
9328 if (unified_syntax)
9329 {
9330 int r0off = (inst.instruction == T_MNEM_mvn
9331 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
9332 bfd_boolean narrow;
9333
9334 if (inst.size_req == 4
9335 || inst.instruction > 0xffff
9336 || inst.operands[1].shifted
9337 || inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9338 narrow = FALSE;
9339 else if (inst.instruction == T_MNEM_cmn)
9340 narrow = TRUE;
9341 else if (THUMB_SETS_FLAGS (inst.instruction))
9342 narrow = (current_it_mask == 0);
9343 else
9344 narrow = (current_it_mask != 0);
9345
9346 if (!inst.operands[1].isreg)
9347 {
9348 /* For an immediate, we always generate a 32-bit opcode;
9349 section relaxation will shrink it later if possible. */
9350 if (inst.instruction < 0xffff)
9351 inst.instruction = THUMB_OP32 (inst.instruction);
9352 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9353 inst.instruction |= inst.operands[0].reg << r0off;
9354 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9355 }
9356 else
9357 {
9358 /* See if we can do this with a 16-bit instruction. */
9359 if (narrow)
9360 {
9361 inst.instruction = THUMB_OP16 (inst.instruction);
9362 inst.instruction |= inst.operands[0].reg;
9363 inst.instruction |= inst.operands[1].reg << 3;
9364 }
9365 else
9366 {
9367 constraint (inst.operands[1].shifted
9368 && inst.operands[1].immisreg,
9369 _("shift must be constant"));
9370 if (inst.instruction < 0xffff)
9371 inst.instruction = THUMB_OP32 (inst.instruction);
9372 inst.instruction |= inst.operands[0].reg << r0off;
9373 encode_thumb32_shifted_operand (1);
9374 }
9375 }
9376 }
9377 else
9378 {
9379 constraint (inst.instruction > 0xffff
9380 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
9381 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
9382 _("unshifted register required"));
9383 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9384 BAD_HIREG);
9385
9386 inst.instruction = THUMB_OP16 (inst.instruction);
9387 inst.instruction |= inst.operands[0].reg;
9388 inst.instruction |= inst.operands[1].reg << 3;
9389 }
9390 }
9391
9392 static void
9393 do_t_mrs (void)
9394 {
9395 int flags;
9396
9397 if (do_vfp_nsyn_mrs () == SUCCESS)
9398 return;
9399
9400 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
9401 if (flags == 0)
9402 {
9403 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
9404 _("selected processor does not support "
9405 "requested special purpose register"));
9406 }
9407 else
9408 {
9409 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9410 _("selected processor does not support "
9411 "requested special purpose register %x"));
9412 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9413 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
9414 _("'CPSR' or 'SPSR' expected"));
9415 }
9416
9417 inst.instruction |= inst.operands[0].reg << 8;
9418 inst.instruction |= (flags & SPSR_BIT) >> 2;
9419 inst.instruction |= inst.operands[1].imm & 0xff;
9420 }
9421
9422 static void
9423 do_t_msr (void)
9424 {
9425 int flags;
9426
9427 if (do_vfp_nsyn_msr () == SUCCESS)
9428 return;
9429
9430 constraint (!inst.operands[1].isreg,
9431 _("Thumb encoding does not support an immediate here"));
9432 flags = inst.operands[0].imm;
9433 if (flags & ~0xff)
9434 {
9435 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9436 _("selected processor does not support "
9437 "requested special purpose register"));
9438 }
9439 else
9440 {
9441 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
9442 _("selected processor does not support "
9443 "requested special purpose register"));
9444 flags |= PSR_f;
9445 }
9446 inst.instruction |= (flags & SPSR_BIT) >> 2;
9447 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
9448 inst.instruction |= (flags & 0xff);
9449 inst.instruction |= inst.operands[1].reg << 16;
9450 }
9451
9452 static void
9453 do_t_mul (void)
9454 {
9455 if (!inst.operands[2].present)
9456 inst.operands[2].reg = inst.operands[0].reg;
9457
9458 /* There is no 32-bit MULS and no 16-bit MUL. */
9459 if (unified_syntax && inst.instruction == T_MNEM_mul)
9460 {
9461 inst.instruction = THUMB_OP32 (inst.instruction);
9462 inst.instruction |= inst.operands[0].reg << 8;
9463 inst.instruction |= inst.operands[1].reg << 16;
9464 inst.instruction |= inst.operands[2].reg << 0;
9465 }
9466 else
9467 {
9468 constraint (!unified_syntax
9469 && inst.instruction == T_MNEM_muls, BAD_THUMB32);
9470 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9471 BAD_HIREG);
9472
9473 inst.instruction = THUMB_OP16 (inst.instruction);
9474 inst.instruction |= inst.operands[0].reg;
9475
9476 if (inst.operands[0].reg == inst.operands[1].reg)
9477 inst.instruction |= inst.operands[2].reg << 3;
9478 else if (inst.operands[0].reg == inst.operands[2].reg)
9479 inst.instruction |= inst.operands[1].reg << 3;
9480 else
9481 constraint (1, _("dest must overlap one source register"));
9482 }
9483 }
9484
9485 static void
9486 do_t_mull (void)
9487 {
9488 inst.instruction |= inst.operands[0].reg << 12;
9489 inst.instruction |= inst.operands[1].reg << 8;
9490 inst.instruction |= inst.operands[2].reg << 16;
9491 inst.instruction |= inst.operands[3].reg;
9492
9493 if (inst.operands[0].reg == inst.operands[1].reg)
9494 as_tsktsk (_("rdhi and rdlo must be different"));
9495 }
9496
9497 static void
9498 do_t_nop (void)
9499 {
9500 if (unified_syntax)
9501 {
9502 if (inst.size_req == 4 || inst.operands[0].imm > 15)
9503 {
9504 inst.instruction = THUMB_OP32 (inst.instruction);
9505 inst.instruction |= inst.operands[0].imm;
9506 }
9507 else
9508 {
9509 inst.instruction = THUMB_OP16 (inst.instruction);
9510 inst.instruction |= inst.operands[0].imm << 4;
9511 }
9512 }
9513 else
9514 {
9515 constraint (inst.operands[0].present,
9516 _("Thumb does not support NOP with hints"));
9517 inst.instruction = 0x46c0;
9518 }
9519 }
9520
9521 static void
9522 do_t_neg (void)
9523 {
9524 if (unified_syntax)
9525 {
9526 bfd_boolean narrow;
9527
9528 if (THUMB_SETS_FLAGS (inst.instruction))
9529 narrow = (current_it_mask == 0);
9530 else
9531 narrow = (current_it_mask != 0);
9532 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9533 narrow = FALSE;
9534 if (inst.size_req == 4)
9535 narrow = FALSE;
9536
9537 if (!narrow)
9538 {
9539 inst.instruction = THUMB_OP32 (inst.instruction);
9540 inst.instruction |= inst.operands[0].reg << 8;
9541 inst.instruction |= inst.operands[1].reg << 16;
9542 }
9543 else
9544 {
9545 inst.instruction = THUMB_OP16 (inst.instruction);
9546 inst.instruction |= inst.operands[0].reg;
9547 inst.instruction |= inst.operands[1].reg << 3;
9548 }
9549 }
9550 else
9551 {
9552 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9553 BAD_HIREG);
9554 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9555
9556 inst.instruction = THUMB_OP16 (inst.instruction);
9557 inst.instruction |= inst.operands[0].reg;
9558 inst.instruction |= inst.operands[1].reg << 3;
9559 }
9560 }
9561
9562 static void
9563 do_t_pkhbt (void)
9564 {
9565 inst.instruction |= inst.operands[0].reg << 8;
9566 inst.instruction |= inst.operands[1].reg << 16;
9567 inst.instruction |= inst.operands[2].reg;
9568 if (inst.operands[3].present)
9569 {
9570 unsigned int val = inst.reloc.exp.X_add_number;
9571 constraint (inst.reloc.exp.X_op != O_constant,
9572 _("expression too complex"));
9573 inst.instruction |= (val & 0x1c) << 10;
9574 inst.instruction |= (val & 0x03) << 6;
9575 }
9576 }
9577
9578 static void
9579 do_t_pkhtb (void)
9580 {
9581 if (!inst.operands[3].present)
9582 inst.instruction &= ~0x00000020;
9583 do_t_pkhbt ();
9584 }
9585
9586 static void
9587 do_t_pld (void)
9588 {
9589 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
9590 }
9591
9592 static void
9593 do_t_push_pop (void)
9594 {
9595 unsigned mask;
9596
9597 constraint (inst.operands[0].writeback,
9598 _("push/pop do not support {reglist}^"));
9599 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9600 _("expression too complex"));
9601
9602 mask = inst.operands[0].imm;
9603 if ((mask & ~0xff) == 0)
9604 inst.instruction = THUMB_OP16 (inst.instruction);
9605 else if ((inst.instruction == T_MNEM_push
9606 && (mask & ~0xff) == 1 << REG_LR)
9607 || (inst.instruction == T_MNEM_pop
9608 && (mask & ~0xff) == 1 << REG_PC))
9609 {
9610 inst.instruction = THUMB_OP16 (inst.instruction);
9611 inst.instruction |= THUMB_PP_PC_LR;
9612 mask &= 0xff;
9613 }
9614 else if (unified_syntax)
9615 {
9616 if (mask & (1 << 13))
9617 inst.error = _("SP not allowed in register list");
9618 if (inst.instruction == T_MNEM_push)
9619 {
9620 if (mask & (1 << 15))
9621 inst.error = _("PC not allowed in register list");
9622 }
9623 else
9624 {
9625 if (mask & (1 << 14)
9626 && mask & (1 << 15))
9627 inst.error = _("LR and PC should not both be in register list");
9628 }
9629 if ((mask & (mask - 1)) == 0)
9630 {
9631 /* Single register push/pop implemented as str/ldr. */
9632 if (inst.instruction == T_MNEM_push)
9633 inst.instruction = 0xf84d0d04; /* str reg, [sp, #-4]! */
9634 else
9635 inst.instruction = 0xf85d0b04; /* ldr reg, [sp], #4 */
9636 mask = ffs(mask) - 1;
9637 mask <<= 12;
9638 }
9639 else
9640 inst.instruction = THUMB_OP32 (inst.instruction);
9641 }
9642 else
9643 {
9644 inst.error = _("invalid register list to push/pop instruction");
9645 return;
9646 }
9647
9648 inst.instruction |= mask;
9649 }
9650
9651 static void
9652 do_t_rbit (void)
9653 {
9654 inst.instruction |= inst.operands[0].reg << 8;
9655 inst.instruction |= inst.operands[1].reg << 16;
9656 }
9657
9658 static void
9659 do_t_rev (void)
9660 {
9661 if (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
9662 && inst.size_req != 4)
9663 {
9664 inst.instruction = THUMB_OP16 (inst.instruction);
9665 inst.instruction |= inst.operands[0].reg;
9666 inst.instruction |= inst.operands[1].reg << 3;
9667 }
9668 else if (unified_syntax)
9669 {
9670 inst.instruction = THUMB_OP32 (inst.instruction);
9671 inst.instruction |= inst.operands[0].reg << 8;
9672 inst.instruction |= inst.operands[1].reg << 16;
9673 inst.instruction |= inst.operands[1].reg;
9674 }
9675 else
9676 inst.error = BAD_HIREG;
9677 }
9678
9679 static void
9680 do_t_rsb (void)
9681 {
9682 int Rd, Rs;
9683
9684 Rd = inst.operands[0].reg;
9685 Rs = (inst.operands[1].present
9686 ? inst.operands[1].reg /* Rd, Rs, foo */
9687 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9688
9689 inst.instruction |= Rd << 8;
9690 inst.instruction |= Rs << 16;
9691 if (!inst.operands[2].isreg)
9692 {
9693 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9694 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9695 }
9696 else
9697 encode_thumb32_shifted_operand (2);
9698 }
9699
9700 static void
9701 do_t_setend (void)
9702 {
9703 constraint (current_it_mask, BAD_NOT_IT);
9704 if (inst.operands[0].imm)
9705 inst.instruction |= 0x8;
9706 }
9707
9708 static void
9709 do_t_shift (void)
9710 {
9711 if (!inst.operands[1].present)
9712 inst.operands[1].reg = inst.operands[0].reg;
9713
9714 if (unified_syntax)
9715 {
9716 bfd_boolean narrow;
9717 int shift_kind;
9718
9719 switch (inst.instruction)
9720 {
9721 case T_MNEM_asr:
9722 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
9723 case T_MNEM_lsl:
9724 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
9725 case T_MNEM_lsr:
9726 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
9727 case T_MNEM_ror:
9728 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
9729 default: abort ();
9730 }
9731
9732 if (THUMB_SETS_FLAGS (inst.instruction))
9733 narrow = (current_it_mask == 0);
9734 else
9735 narrow = (current_it_mask != 0);
9736 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9737 narrow = FALSE;
9738 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
9739 narrow = FALSE;
9740 if (inst.operands[2].isreg
9741 && (inst.operands[1].reg != inst.operands[0].reg
9742 || inst.operands[2].reg > 7))
9743 narrow = FALSE;
9744 if (inst.size_req == 4)
9745 narrow = FALSE;
9746
9747 if (!narrow)
9748 {
9749 if (inst.operands[2].isreg)
9750 {
9751 inst.instruction = THUMB_OP32 (inst.instruction);
9752 inst.instruction |= inst.operands[0].reg << 8;
9753 inst.instruction |= inst.operands[1].reg << 16;
9754 inst.instruction |= inst.operands[2].reg;
9755 }
9756 else
9757 {
9758 inst.operands[1].shifted = 1;
9759 inst.operands[1].shift_kind = shift_kind;
9760 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
9761 ? T_MNEM_movs : T_MNEM_mov);
9762 inst.instruction |= inst.operands[0].reg << 8;
9763 encode_thumb32_shifted_operand (1);
9764 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
9765 inst.reloc.type = BFD_RELOC_UNUSED;
9766 }
9767 }
9768 else
9769 {
9770 if (inst.operands[2].isreg)
9771 {
9772 switch (shift_kind)
9773 {
9774 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
9775 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
9776 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
9777 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
9778 default: abort ();
9779 }
9780
9781 inst.instruction |= inst.operands[0].reg;
9782 inst.instruction |= inst.operands[2].reg << 3;
9783 }
9784 else
9785 {
9786 switch (shift_kind)
9787 {
9788 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
9789 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
9790 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
9791 default: abort ();
9792 }
9793 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
9794 inst.instruction |= inst.operands[0].reg;
9795 inst.instruction |= inst.operands[1].reg << 3;
9796 }
9797 }
9798 }
9799 else
9800 {
9801 constraint (inst.operands[0].reg > 7
9802 || inst.operands[1].reg > 7, BAD_HIREG);
9803 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9804
9805 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
9806 {
9807 constraint (inst.operands[2].reg > 7, BAD_HIREG);
9808 constraint (inst.operands[0].reg != inst.operands[1].reg,
9809 _("source1 and dest must be same register"));
9810
9811 switch (inst.instruction)
9812 {
9813 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
9814 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
9815 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
9816 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
9817 default: abort ();
9818 }
9819
9820 inst.instruction |= inst.operands[0].reg;
9821 inst.instruction |= inst.operands[2].reg << 3;
9822 }
9823 else
9824 {
9825 switch (inst.instruction)
9826 {
9827 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
9828 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
9829 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
9830 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
9831 default: abort ();
9832 }
9833 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
9834 inst.instruction |= inst.operands[0].reg;
9835 inst.instruction |= inst.operands[1].reg << 3;
9836 }
9837 }
9838 }
9839
9840 static void
9841 do_t_simd (void)
9842 {
9843 inst.instruction |= inst.operands[0].reg << 8;
9844 inst.instruction |= inst.operands[1].reg << 16;
9845 inst.instruction |= inst.operands[2].reg;
9846 }
9847
9848 static void
9849 do_t_smc (void)
9850 {
9851 unsigned int value = inst.reloc.exp.X_add_number;
9852 constraint (inst.reloc.exp.X_op != O_constant,
9853 _("expression too complex"));
9854 inst.reloc.type = BFD_RELOC_UNUSED;
9855 inst.instruction |= (value & 0xf000) >> 12;
9856 inst.instruction |= (value & 0x0ff0);
9857 inst.instruction |= (value & 0x000f) << 16;
9858 }
9859
9860 static void
9861 do_t_ssat (void)
9862 {
9863 inst.instruction |= inst.operands[0].reg << 8;
9864 inst.instruction |= inst.operands[1].imm - 1;
9865 inst.instruction |= inst.operands[2].reg << 16;
9866
9867 if (inst.operands[3].present)
9868 {
9869 constraint (inst.reloc.exp.X_op != O_constant,
9870 _("expression too complex"));
9871
9872 if (inst.reloc.exp.X_add_number != 0)
9873 {
9874 if (inst.operands[3].shift_kind == SHIFT_ASR)
9875 inst.instruction |= 0x00200000; /* sh bit */
9876 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
9877 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
9878 }
9879 inst.reloc.type = BFD_RELOC_UNUSED;
9880 }
9881 }
9882
9883 static void
9884 do_t_ssat16 (void)
9885 {
9886 inst.instruction |= inst.operands[0].reg << 8;
9887 inst.instruction |= inst.operands[1].imm - 1;
9888 inst.instruction |= inst.operands[2].reg << 16;
9889 }
9890
9891 static void
9892 do_t_strex (void)
9893 {
9894 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9895 || inst.operands[2].postind || inst.operands[2].writeback
9896 || inst.operands[2].immisreg || inst.operands[2].shifted
9897 || inst.operands[2].negative,
9898 BAD_ADDR_MODE);
9899
9900 inst.instruction |= inst.operands[0].reg << 8;
9901 inst.instruction |= inst.operands[1].reg << 12;
9902 inst.instruction |= inst.operands[2].reg << 16;
9903 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9904 }
9905
9906 static void
9907 do_t_strexd (void)
9908 {
9909 if (!inst.operands[2].present)
9910 inst.operands[2].reg = inst.operands[1].reg + 1;
9911
9912 constraint (inst.operands[0].reg == inst.operands[1].reg
9913 || inst.operands[0].reg == inst.operands[2].reg
9914 || inst.operands[0].reg == inst.operands[3].reg
9915 || inst.operands[1].reg == inst.operands[2].reg,
9916 BAD_OVERLAP);
9917
9918 inst.instruction |= inst.operands[0].reg;
9919 inst.instruction |= inst.operands[1].reg << 12;
9920 inst.instruction |= inst.operands[2].reg << 8;
9921 inst.instruction |= inst.operands[3].reg << 16;
9922 }
9923
9924 static void
9925 do_t_sxtah (void)
9926 {
9927 inst.instruction |= inst.operands[0].reg << 8;
9928 inst.instruction |= inst.operands[1].reg << 16;
9929 inst.instruction |= inst.operands[2].reg;
9930 inst.instruction |= inst.operands[3].imm << 4;
9931 }
9932
9933 static void
9934 do_t_sxth (void)
9935 {
9936 if (inst.instruction <= 0xffff && inst.size_req != 4
9937 && inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
9938 && (!inst.operands[2].present || inst.operands[2].imm == 0))
9939 {
9940 inst.instruction = THUMB_OP16 (inst.instruction);
9941 inst.instruction |= inst.operands[0].reg;
9942 inst.instruction |= inst.operands[1].reg << 3;
9943 }
9944 else if (unified_syntax)
9945 {
9946 if (inst.instruction <= 0xffff)
9947 inst.instruction = THUMB_OP32 (inst.instruction);
9948 inst.instruction |= inst.operands[0].reg << 8;
9949 inst.instruction |= inst.operands[1].reg;
9950 inst.instruction |= inst.operands[2].imm << 4;
9951 }
9952 else
9953 {
9954 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
9955 _("Thumb encoding does not support rotation"));
9956 constraint (1, BAD_HIREG);
9957 }
9958 }
9959
9960 static void
9961 do_t_swi (void)
9962 {
9963 inst.reloc.type = BFD_RELOC_ARM_SWI;
9964 }
9965
9966 static void
9967 do_t_tb (void)
9968 {
9969 int half;
9970
9971 half = (inst.instruction & 0x10) != 0;
9972 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
9973 constraint (inst.operands[0].immisreg,
9974 _("instruction requires register index"));
9975 constraint (inst.operands[0].imm == 15,
9976 _("PC is not a valid index register"));
9977 constraint (!half && inst.operands[0].shifted,
9978 _("instruction does not allow shifted index"));
9979 inst.instruction |= (inst.operands[0].reg << 16) | inst.operands[0].imm;
9980 }
9981
9982 static void
9983 do_t_usat (void)
9984 {
9985 inst.instruction |= inst.operands[0].reg << 8;
9986 inst.instruction |= inst.operands[1].imm;
9987 inst.instruction |= inst.operands[2].reg << 16;
9988
9989 if (inst.operands[3].present)
9990 {
9991 constraint (inst.reloc.exp.X_op != O_constant,
9992 _("expression too complex"));
9993 if (inst.reloc.exp.X_add_number != 0)
9994 {
9995 if (inst.operands[3].shift_kind == SHIFT_ASR)
9996 inst.instruction |= 0x00200000; /* sh bit */
9997
9998 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
9999 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
10000 }
10001 inst.reloc.type = BFD_RELOC_UNUSED;
10002 }
10003 }
10004
10005 static void
10006 do_t_usat16 (void)
10007 {
10008 inst.instruction |= inst.operands[0].reg << 8;
10009 inst.instruction |= inst.operands[1].imm;
10010 inst.instruction |= inst.operands[2].reg << 16;
10011 }
10012
10013 /* Neon instruction encoder helpers. */
10014
10015 /* Encodings for the different types for various Neon opcodes. */
10016
10017 /* An "invalid" code for the following tables. */
10018 #define N_INV -1u
10019
10020 struct neon_tab_entry
10021 {
10022 unsigned integer;
10023 unsigned float_or_poly;
10024 unsigned scalar_or_imm;
10025 };
10026
10027 /* Map overloaded Neon opcodes to their respective encodings. */
10028 #define NEON_ENC_TAB \
10029 X(vabd, 0x0000700, 0x1200d00, N_INV), \
10030 X(vmax, 0x0000600, 0x0000f00, N_INV), \
10031 X(vmin, 0x0000610, 0x0200f00, N_INV), \
10032 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
10033 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
10034 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
10035 X(vadd, 0x0000800, 0x0000d00, N_INV), \
10036 X(vsub, 0x1000800, 0x0200d00, N_INV), \
10037 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
10038 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
10039 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
10040 /* Register variants of the following two instructions are encoded as
10041 vcge / vcgt with the operands reversed. */ \
10042 X(vclt, 0x0000310, 0x1000e00, 0x1b10200), \
10043 X(vcle, 0x0000300, 0x1200e00, 0x1b10180), \
10044 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
10045 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
10046 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
10047 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
10048 X(vmlal, 0x0800800, N_INV, 0x0800240), \
10049 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
10050 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
10051 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
10052 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
10053 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
10054 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
10055 X(vshl, 0x0000400, N_INV, 0x0800510), \
10056 X(vqshl, 0x0000410, N_INV, 0x0800710), \
10057 X(vand, 0x0000110, N_INV, 0x0800030), \
10058 X(vbic, 0x0100110, N_INV, 0x0800030), \
10059 X(veor, 0x1000110, N_INV, N_INV), \
10060 X(vorn, 0x0300110, N_INV, 0x0800010), \
10061 X(vorr, 0x0200110, N_INV, 0x0800010), \
10062 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
10063 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
10064 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
10065 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
10066 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
10067 X(vst1, 0x0000000, 0x0800000, N_INV), \
10068 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
10069 X(vst2, 0x0000100, 0x0800100, N_INV), \
10070 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
10071 X(vst3, 0x0000200, 0x0800200, N_INV), \
10072 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
10073 X(vst4, 0x0000300, 0x0800300, N_INV), \
10074 X(vmovn, 0x1b20200, N_INV, N_INV), \
10075 X(vtrn, 0x1b20080, N_INV, N_INV), \
10076 X(vqmovn, 0x1b20200, N_INV, N_INV), \
10077 X(vqmovun, 0x1b20240, N_INV, N_INV), \
10078 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
10079 X(vnmla, 0xe000a40, 0xe000b40, N_INV), \
10080 X(vnmls, 0xe100a40, 0xe100b40, N_INV), \
10081 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
10082 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
10083 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
10084 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
10085
10086 enum neon_opc
10087 {
10088 #define X(OPC,I,F,S) N_MNEM_##OPC
10089 NEON_ENC_TAB
10090 #undef X
10091 };
10092
10093 static const struct neon_tab_entry neon_enc_tab[] =
10094 {
10095 #define X(OPC,I,F,S) { (I), (F), (S) }
10096 NEON_ENC_TAB
10097 #undef X
10098 };
10099
10100 #define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10101 #define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10102 #define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10103 #define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10104 #define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10105 #define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10106 #define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10107 #define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10108 #define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10109 #define NEON_ENC_SINGLE(X) \
10110 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
10111 #define NEON_ENC_DOUBLE(X) \
10112 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
10113
10114 /* Define shapes for instruction operands. The following mnemonic characters
10115 are used in this table:
10116
10117 F - VFP S<n> register
10118 D - Neon D<n> register
10119 Q - Neon Q<n> register
10120 I - Immediate
10121 S - Scalar
10122 R - ARM register
10123 L - D<n> register list
10124
10125 This table is used to generate various data:
10126 - enumerations of the form NS_DDR to be used as arguments to
10127 neon_select_shape.
10128 - a table classifying shapes into single, double, quad, mixed.
10129 - a table used to drive neon_select_shape.
10130 */
10131
10132 #define NEON_SHAPE_DEF \
10133 X(3, (D, D, D), DOUBLE), \
10134 X(3, (Q, Q, Q), QUAD), \
10135 X(3, (D, D, I), DOUBLE), \
10136 X(3, (Q, Q, I), QUAD), \
10137 X(3, (D, D, S), DOUBLE), \
10138 X(3, (Q, Q, S), QUAD), \
10139 X(2, (D, D), DOUBLE), \
10140 X(2, (Q, Q), QUAD), \
10141 X(2, (D, S), DOUBLE), \
10142 X(2, (Q, S), QUAD), \
10143 X(2, (D, R), DOUBLE), \
10144 X(2, (Q, R), QUAD), \
10145 X(2, (D, I), DOUBLE), \
10146 X(2, (Q, I), QUAD), \
10147 X(3, (D, L, D), DOUBLE), \
10148 X(2, (D, Q), MIXED), \
10149 X(2, (Q, D), MIXED), \
10150 X(3, (D, Q, I), MIXED), \
10151 X(3, (Q, D, I), MIXED), \
10152 X(3, (Q, D, D), MIXED), \
10153 X(3, (D, Q, Q), MIXED), \
10154 X(3, (Q, Q, D), MIXED), \
10155 X(3, (Q, D, S), MIXED), \
10156 X(3, (D, Q, S), MIXED), \
10157 X(4, (D, D, D, I), DOUBLE), \
10158 X(4, (Q, Q, Q, I), QUAD), \
10159 X(2, (F, F), SINGLE), \
10160 X(3, (F, F, F), SINGLE), \
10161 X(2, (F, I), SINGLE), \
10162 X(2, (F, D), MIXED), \
10163 X(2, (D, F), MIXED), \
10164 X(3, (F, F, I), MIXED), \
10165 X(4, (R, R, F, F), SINGLE), \
10166 X(4, (F, F, R, R), SINGLE), \
10167 X(3, (D, R, R), DOUBLE), \
10168 X(3, (R, R, D), DOUBLE), \
10169 X(2, (S, R), SINGLE), \
10170 X(2, (R, S), SINGLE), \
10171 X(2, (F, R), SINGLE), \
10172 X(2, (R, F), SINGLE)
10173
10174 #define S2(A,B) NS_##A##B
10175 #define S3(A,B,C) NS_##A##B##C
10176 #define S4(A,B,C,D) NS_##A##B##C##D
10177
10178 #define X(N, L, C) S##N L
10179
10180 enum neon_shape
10181 {
10182 NEON_SHAPE_DEF,
10183 NS_NULL
10184 };
10185
10186 #undef X
10187 #undef S2
10188 #undef S3
10189 #undef S4
10190
10191 enum neon_shape_class
10192 {
10193 SC_SINGLE,
10194 SC_DOUBLE,
10195 SC_QUAD,
10196 SC_MIXED
10197 };
10198
10199 #define X(N, L, C) SC_##C
10200
10201 static enum neon_shape_class neon_shape_class[] =
10202 {
10203 NEON_SHAPE_DEF
10204 };
10205
10206 #undef X
10207
10208 enum neon_shape_el
10209 {
10210 SE_F,
10211 SE_D,
10212 SE_Q,
10213 SE_I,
10214 SE_S,
10215 SE_R,
10216 SE_L
10217 };
10218
10219 /* Register widths of above. */
10220 static unsigned neon_shape_el_size[] =
10221 {
10222 32,
10223 64,
10224 128,
10225 0,
10226 32,
10227 32,
10228 0
10229 };
10230
10231 struct neon_shape_info
10232 {
10233 unsigned els;
10234 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
10235 };
10236
10237 #define S2(A,B) { SE_##A, SE_##B }
10238 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
10239 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
10240
10241 #define X(N, L, C) { N, S##N L }
10242
10243 static struct neon_shape_info neon_shape_tab[] =
10244 {
10245 NEON_SHAPE_DEF
10246 };
10247
10248 #undef X
10249 #undef S2
10250 #undef S3
10251 #undef S4
10252
10253 /* Bit masks used in type checking given instructions.
10254 'N_EQK' means the type must be the same as (or based on in some way) the key
10255 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
10256 set, various other bits can be set as well in order to modify the meaning of
10257 the type constraint. */
10258
10259 enum neon_type_mask
10260 {
10261 N_S8 = 0x000001,
10262 N_S16 = 0x000002,
10263 N_S32 = 0x000004,
10264 N_S64 = 0x000008,
10265 N_U8 = 0x000010,
10266 N_U16 = 0x000020,
10267 N_U32 = 0x000040,
10268 N_U64 = 0x000080,
10269 N_I8 = 0x000100,
10270 N_I16 = 0x000200,
10271 N_I32 = 0x000400,
10272 N_I64 = 0x000800,
10273 N_8 = 0x001000,
10274 N_16 = 0x002000,
10275 N_32 = 0x004000,
10276 N_64 = 0x008000,
10277 N_P8 = 0x010000,
10278 N_P16 = 0x020000,
10279 N_F32 = 0x040000,
10280 N_F64 = 0x080000,
10281 N_KEY = 0x100000, /* key element (main type specifier). */
10282 N_EQK = 0x200000, /* given operand has the same type & size as the key. */
10283 N_VFP = 0x400000, /* VFP mode: operand size must match register width. */
10284 N_DBL = 0x000001, /* if N_EQK, this operand is twice the size. */
10285 N_HLF = 0x000002, /* if N_EQK, this operand is half the size. */
10286 N_SGN = 0x000004, /* if N_EQK, this operand is forced to be signed. */
10287 N_UNS = 0x000008, /* if N_EQK, this operand is forced to be unsigned. */
10288 N_INT = 0x000010, /* if N_EQK, this operand is forced to be integer. */
10289 N_FLT = 0x000020, /* if N_EQK, this operand is forced to be float. */
10290 N_SIZ = 0x000040, /* if N_EQK, this operand is forced to be size-only. */
10291 N_UTYP = 0,
10292 N_MAX_NONSPECIAL = N_F64
10293 };
10294
10295 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
10296
10297 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
10298 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
10299 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
10300 #define N_SUF_32 (N_SU_32 | N_F32)
10301 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
10302 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
10303
10304 /* Pass this as the first type argument to neon_check_type to ignore types
10305 altogether. */
10306 #define N_IGNORE_TYPE (N_KEY | N_EQK)
10307
10308 /* Select a "shape" for the current instruction (describing register types or
10309 sizes) from a list of alternatives. Return NS_NULL if the current instruction
10310 doesn't fit. For non-polymorphic shapes, checking is usually done as a
10311 function of operand parsing, so this function doesn't need to be called.
10312 Shapes should be listed in order of decreasing length. */
10313
10314 static enum neon_shape
10315 neon_select_shape (enum neon_shape shape, ...)
10316 {
10317 va_list ap;
10318 enum neon_shape first_shape = shape;
10319
10320 /* Fix missing optional operands. FIXME: we don't know at this point how
10321 many arguments we should have, so this makes the assumption that we have
10322 > 1. This is true of all current Neon opcodes, I think, but may not be
10323 true in the future. */
10324 if (!inst.operands[1].present)
10325 inst.operands[1] = inst.operands[0];
10326
10327 va_start (ap, shape);
10328
10329 for (; shape != NS_NULL; shape = va_arg (ap, int))
10330 {
10331 unsigned j;
10332 int matches = 1;
10333
10334 for (j = 0; j < neon_shape_tab[shape].els; j++)
10335 {
10336 if (!inst.operands[j].present)
10337 {
10338 matches = 0;
10339 break;
10340 }
10341
10342 switch (neon_shape_tab[shape].el[j])
10343 {
10344 case SE_F:
10345 if (!(inst.operands[j].isreg
10346 && inst.operands[j].isvec
10347 && inst.operands[j].issingle
10348 && !inst.operands[j].isquad))
10349 matches = 0;
10350 break;
10351
10352 case SE_D:
10353 if (!(inst.operands[j].isreg
10354 && inst.operands[j].isvec
10355 && !inst.operands[j].isquad
10356 && !inst.operands[j].issingle))
10357 matches = 0;
10358 break;
10359
10360 case SE_R:
10361 if (!(inst.operands[j].isreg
10362 && !inst.operands[j].isvec))
10363 matches = 0;
10364 break;
10365
10366 case SE_Q:
10367 if (!(inst.operands[j].isreg
10368 && inst.operands[j].isvec
10369 && inst.operands[j].isquad
10370 && !inst.operands[j].issingle))
10371 matches = 0;
10372 break;
10373
10374 case SE_I:
10375 if (!(!inst.operands[j].isreg
10376 && !inst.operands[j].isscalar))
10377 matches = 0;
10378 break;
10379
10380 case SE_S:
10381 if (!(!inst.operands[j].isreg
10382 && inst.operands[j].isscalar))
10383 matches = 0;
10384 break;
10385
10386 case SE_L:
10387 break;
10388 }
10389 }
10390 if (matches)
10391 break;
10392 }
10393
10394 va_end (ap);
10395
10396 if (shape == NS_NULL && first_shape != NS_NULL)
10397 first_error (_("invalid instruction shape"));
10398
10399 return shape;
10400 }
10401
10402 /* True if SHAPE is predominantly a quadword operation (most of the time, this
10403 means the Q bit should be set). */
10404
10405 static int
10406 neon_quad (enum neon_shape shape)
10407 {
10408 return neon_shape_class[shape] == SC_QUAD;
10409 }
10410
10411 static void
10412 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
10413 unsigned *g_size)
10414 {
10415 /* Allow modification to be made to types which are constrained to be
10416 based on the key element, based on bits set alongside N_EQK. */
10417 if ((typebits & N_EQK) != 0)
10418 {
10419 if ((typebits & N_HLF) != 0)
10420 *g_size /= 2;
10421 else if ((typebits & N_DBL) != 0)
10422 *g_size *= 2;
10423 if ((typebits & N_SGN) != 0)
10424 *g_type = NT_signed;
10425 else if ((typebits & N_UNS) != 0)
10426 *g_type = NT_unsigned;
10427 else if ((typebits & N_INT) != 0)
10428 *g_type = NT_integer;
10429 else if ((typebits & N_FLT) != 0)
10430 *g_type = NT_float;
10431 else if ((typebits & N_SIZ) != 0)
10432 *g_type = NT_untyped;
10433 }
10434 }
10435
10436 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
10437 operand type, i.e. the single type specified in a Neon instruction when it
10438 is the only one given. */
10439
10440 static struct neon_type_el
10441 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
10442 {
10443 struct neon_type_el dest = *key;
10444
10445 assert ((thisarg & N_EQK) != 0);
10446
10447 neon_modify_type_size (thisarg, &dest.type, &dest.size);
10448
10449 return dest;
10450 }
10451
10452 /* Convert Neon type and size into compact bitmask representation. */
10453
10454 static enum neon_type_mask
10455 type_chk_of_el_type (enum neon_el_type type, unsigned size)
10456 {
10457 switch (type)
10458 {
10459 case NT_untyped:
10460 switch (size)
10461 {
10462 case 8: return N_8;
10463 case 16: return N_16;
10464 case 32: return N_32;
10465 case 64: return N_64;
10466 default: ;
10467 }
10468 break;
10469
10470 case NT_integer:
10471 switch (size)
10472 {
10473 case 8: return N_I8;
10474 case 16: return N_I16;
10475 case 32: return N_I32;
10476 case 64: return N_I64;
10477 default: ;
10478 }
10479 break;
10480
10481 case NT_float:
10482 switch (size)
10483 {
10484 case 32: return N_F32;
10485 case 64: return N_F64;
10486 default: ;
10487 }
10488 break;
10489
10490 case NT_poly:
10491 switch (size)
10492 {
10493 case 8: return N_P8;
10494 case 16: return N_P16;
10495 default: ;
10496 }
10497 break;
10498
10499 case NT_signed:
10500 switch (size)
10501 {
10502 case 8: return N_S8;
10503 case 16: return N_S16;
10504 case 32: return N_S32;
10505 case 64: return N_S64;
10506 default: ;
10507 }
10508 break;
10509
10510 case NT_unsigned:
10511 switch (size)
10512 {
10513 case 8: return N_U8;
10514 case 16: return N_U16;
10515 case 32: return N_U32;
10516 case 64: return N_U64;
10517 default: ;
10518 }
10519 break;
10520
10521 default: ;
10522 }
10523
10524 return N_UTYP;
10525 }
10526
10527 /* Convert compact Neon bitmask type representation to a type and size. Only
10528 handles the case where a single bit is set in the mask. */
10529
10530 static int
10531 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
10532 enum neon_type_mask mask)
10533 {
10534 if ((mask & N_EQK) != 0)
10535 return FAIL;
10536
10537 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
10538 *size = 8;
10539 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
10540 *size = 16;
10541 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
10542 *size = 32;
10543 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
10544 *size = 64;
10545 else
10546 return FAIL;
10547
10548 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
10549 *type = NT_signed;
10550 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
10551 *type = NT_unsigned;
10552 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
10553 *type = NT_integer;
10554 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
10555 *type = NT_untyped;
10556 else if ((mask & (N_P8 | N_P16)) != 0)
10557 *type = NT_poly;
10558 else if ((mask & (N_F32 | N_F64)) != 0)
10559 *type = NT_float;
10560 else
10561 return FAIL;
10562
10563 return SUCCESS;
10564 }
10565
10566 /* Modify a bitmask of allowed types. This is only needed for type
10567 relaxation. */
10568
10569 static unsigned
10570 modify_types_allowed (unsigned allowed, unsigned mods)
10571 {
10572 unsigned size;
10573 enum neon_el_type type;
10574 unsigned destmask;
10575 int i;
10576
10577 destmask = 0;
10578
10579 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
10580 {
10581 if (el_type_of_type_chk (&type, &size, allowed & i) == SUCCESS)
10582 {
10583 neon_modify_type_size (mods, &type, &size);
10584 destmask |= type_chk_of_el_type (type, size);
10585 }
10586 }
10587
10588 return destmask;
10589 }
10590
10591 /* Check type and return type classification.
10592 The manual states (paraphrase): If one datatype is given, it indicates the
10593 type given in:
10594 - the second operand, if there is one
10595 - the operand, if there is no second operand
10596 - the result, if there are no operands.
10597 This isn't quite good enough though, so we use a concept of a "key" datatype
10598 which is set on a per-instruction basis, which is the one which matters when
10599 only one data type is written.
10600 Note: this function has side-effects (e.g. filling in missing operands). All
10601 Neon instructions should call it before performing bit encoding. */
10602
10603 static struct neon_type_el
10604 neon_check_type (unsigned els, enum neon_shape ns, ...)
10605 {
10606 va_list ap;
10607 unsigned i, pass, key_el = 0;
10608 unsigned types[NEON_MAX_TYPE_ELS];
10609 enum neon_el_type k_type = NT_invtype;
10610 unsigned k_size = -1u;
10611 struct neon_type_el badtype = {NT_invtype, -1};
10612 unsigned key_allowed = 0;
10613
10614 /* Optional registers in Neon instructions are always (not) in operand 1.
10615 Fill in the missing operand here, if it was omitted. */
10616 if (els > 1 && !inst.operands[1].present)
10617 inst.operands[1] = inst.operands[0];
10618
10619 /* Suck up all the varargs. */
10620 va_start (ap, ns);
10621 for (i = 0; i < els; i++)
10622 {
10623 unsigned thisarg = va_arg (ap, unsigned);
10624 if (thisarg == N_IGNORE_TYPE)
10625 {
10626 va_end (ap);
10627 return badtype;
10628 }
10629 types[i] = thisarg;
10630 if ((thisarg & N_KEY) != 0)
10631 key_el = i;
10632 }
10633 va_end (ap);
10634
10635 if (inst.vectype.elems > 0)
10636 for (i = 0; i < els; i++)
10637 if (inst.operands[i].vectype.type != NT_invtype)
10638 {
10639 first_error (_("types specified in both the mnemonic and operands"));
10640 return badtype;
10641 }
10642
10643 /* Duplicate inst.vectype elements here as necessary.
10644 FIXME: No idea if this is exactly the same as the ARM assembler,
10645 particularly when an insn takes one register and one non-register
10646 operand. */
10647 if (inst.vectype.elems == 1 && els > 1)
10648 {
10649 unsigned j;
10650 inst.vectype.elems = els;
10651 inst.vectype.el[key_el] = inst.vectype.el[0];
10652 for (j = 0; j < els; j++)
10653 if (j != key_el)
10654 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
10655 types[j]);
10656 }
10657 else if (inst.vectype.elems == 0 && els > 0)
10658 {
10659 unsigned j;
10660 /* No types were given after the mnemonic, so look for types specified
10661 after each operand. We allow some flexibility here; as long as the
10662 "key" operand has a type, we can infer the others. */
10663 for (j = 0; j < els; j++)
10664 if (inst.operands[j].vectype.type != NT_invtype)
10665 inst.vectype.el[j] = inst.operands[j].vectype;
10666
10667 if (inst.operands[key_el].vectype.type != NT_invtype)
10668 {
10669 for (j = 0; j < els; j++)
10670 if (inst.operands[j].vectype.type == NT_invtype)
10671 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
10672 types[j]);
10673 }
10674 else
10675 {
10676 first_error (_("operand types can't be inferred"));
10677 return badtype;
10678 }
10679 }
10680 else if (inst.vectype.elems != els)
10681 {
10682 first_error (_("type specifier has the wrong number of parts"));
10683 return badtype;
10684 }
10685
10686 for (pass = 0; pass < 2; pass++)
10687 {
10688 for (i = 0; i < els; i++)
10689 {
10690 unsigned thisarg = types[i];
10691 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
10692 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
10693 enum neon_el_type g_type = inst.vectype.el[i].type;
10694 unsigned g_size = inst.vectype.el[i].size;
10695
10696 /* Decay more-specific signed & unsigned types to sign-insensitive
10697 integer types if sign-specific variants are unavailable. */
10698 if ((g_type == NT_signed || g_type == NT_unsigned)
10699 && (types_allowed & N_SU_ALL) == 0)
10700 g_type = NT_integer;
10701
10702 /* If only untyped args are allowed, decay any more specific types to
10703 them. Some instructions only care about signs for some element
10704 sizes, so handle that properly. */
10705 if ((g_size == 8 && (types_allowed & N_8) != 0)
10706 || (g_size == 16 && (types_allowed & N_16) != 0)
10707 || (g_size == 32 && (types_allowed & N_32) != 0)
10708 || (g_size == 64 && (types_allowed & N_64) != 0))
10709 g_type = NT_untyped;
10710
10711 if (pass == 0)
10712 {
10713 if ((thisarg & N_KEY) != 0)
10714 {
10715 k_type = g_type;
10716 k_size = g_size;
10717 key_allowed = thisarg & ~N_KEY;
10718 }
10719 }
10720 else
10721 {
10722 if ((thisarg & N_VFP) != 0)
10723 {
10724 enum neon_shape_el regshape = neon_shape_tab[ns].el[i];
10725 unsigned regwidth = neon_shape_el_size[regshape], match;
10726
10727 /* In VFP mode, operands must match register widths. If we
10728 have a key operand, use its width, else use the width of
10729 the current operand. */
10730 if (k_size != -1u)
10731 match = k_size;
10732 else
10733 match = g_size;
10734
10735 if (regwidth != match)
10736 {
10737 first_error (_("operand size must match register width"));
10738 return badtype;
10739 }
10740 }
10741
10742 if ((thisarg & N_EQK) == 0)
10743 {
10744 unsigned given_type = type_chk_of_el_type (g_type, g_size);
10745
10746 if ((given_type & types_allowed) == 0)
10747 {
10748 first_error (_("bad type in Neon instruction"));
10749 return badtype;
10750 }
10751 }
10752 else
10753 {
10754 enum neon_el_type mod_k_type = k_type;
10755 unsigned mod_k_size = k_size;
10756 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
10757 if (g_type != mod_k_type || g_size != mod_k_size)
10758 {
10759 first_error (_("inconsistent types in Neon instruction"));
10760 return badtype;
10761 }
10762 }
10763 }
10764 }
10765 }
10766
10767 return inst.vectype.el[key_el];
10768 }
10769
10770 /* Neon-style VFP instruction forwarding. */
10771
10772 /* Thumb VFP instructions have 0xE in the condition field. */
10773
10774 static void
10775 do_vfp_cond_or_thumb (void)
10776 {
10777 if (thumb_mode)
10778 inst.instruction |= 0xe0000000;
10779 else
10780 inst.instruction |= inst.cond << 28;
10781 }
10782
10783 /* Look up and encode a simple mnemonic, for use as a helper function for the
10784 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
10785 etc. It is assumed that operand parsing has already been done, and that the
10786 operands are in the form expected by the given opcode (this isn't necessarily
10787 the same as the form in which they were parsed, hence some massaging must
10788 take place before this function is called).
10789 Checks current arch version against that in the looked-up opcode. */
10790
10791 static void
10792 do_vfp_nsyn_opcode (const char *opname)
10793 {
10794 const struct asm_opcode *opcode;
10795
10796 opcode = hash_find (arm_ops_hsh, opname);
10797
10798 if (!opcode)
10799 abort ();
10800
10801 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
10802 thumb_mode ? *opcode->tvariant : *opcode->avariant),
10803 _(BAD_FPU));
10804
10805 if (thumb_mode)
10806 {
10807 inst.instruction = opcode->tvalue;
10808 opcode->tencode ();
10809 }
10810 else
10811 {
10812 inst.instruction = (inst.cond << 28) | opcode->avalue;
10813 opcode->aencode ();
10814 }
10815 }
10816
10817 static void
10818 do_vfp_nsyn_add_sub (enum neon_shape rs)
10819 {
10820 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
10821
10822 if (rs == NS_FFF)
10823 {
10824 if (is_add)
10825 do_vfp_nsyn_opcode ("fadds");
10826 else
10827 do_vfp_nsyn_opcode ("fsubs");
10828 }
10829 else
10830 {
10831 if (is_add)
10832 do_vfp_nsyn_opcode ("faddd");
10833 else
10834 do_vfp_nsyn_opcode ("fsubd");
10835 }
10836 }
10837
10838 /* Check operand types to see if this is a VFP instruction, and if so call
10839 PFN (). */
10840
10841 static int
10842 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
10843 {
10844 enum neon_shape rs;
10845 struct neon_type_el et;
10846
10847 switch (args)
10848 {
10849 case 2:
10850 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
10851 et = neon_check_type (2, rs,
10852 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
10853 break;
10854
10855 case 3:
10856 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
10857 et = neon_check_type (3, rs,
10858 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
10859 break;
10860
10861 default:
10862 abort ();
10863 }
10864
10865 if (et.type != NT_invtype)
10866 {
10867 pfn (rs);
10868 return SUCCESS;
10869 }
10870 else
10871 inst.error = NULL;
10872
10873 return FAIL;
10874 }
10875
10876 static void
10877 do_vfp_nsyn_mla_mls (enum neon_shape rs)
10878 {
10879 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
10880
10881 if (rs == NS_FFF)
10882 {
10883 if (is_mla)
10884 do_vfp_nsyn_opcode ("fmacs");
10885 else
10886 do_vfp_nsyn_opcode ("fmscs");
10887 }
10888 else
10889 {
10890 if (is_mla)
10891 do_vfp_nsyn_opcode ("fmacd");
10892 else
10893 do_vfp_nsyn_opcode ("fmscd");
10894 }
10895 }
10896
10897 static void
10898 do_vfp_nsyn_mul (enum neon_shape rs)
10899 {
10900 if (rs == NS_FFF)
10901 do_vfp_nsyn_opcode ("fmuls");
10902 else
10903 do_vfp_nsyn_opcode ("fmuld");
10904 }
10905
10906 static void
10907 do_vfp_nsyn_abs_neg (enum neon_shape rs)
10908 {
10909 int is_neg = (inst.instruction & 0x80) != 0;
10910 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
10911
10912 if (rs == NS_FF)
10913 {
10914 if (is_neg)
10915 do_vfp_nsyn_opcode ("fnegs");
10916 else
10917 do_vfp_nsyn_opcode ("fabss");
10918 }
10919 else
10920 {
10921 if (is_neg)
10922 do_vfp_nsyn_opcode ("fnegd");
10923 else
10924 do_vfp_nsyn_opcode ("fabsd");
10925 }
10926 }
10927
10928 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
10929 insns belong to Neon, and are handled elsewhere. */
10930
10931 static void
10932 do_vfp_nsyn_ldm_stm (int is_dbmode)
10933 {
10934 int is_ldm = (inst.instruction & (1 << 20)) != 0;
10935 if (is_ldm)
10936 {
10937 if (is_dbmode)
10938 do_vfp_nsyn_opcode ("fldmdbs");
10939 else
10940 do_vfp_nsyn_opcode ("fldmias");
10941 }
10942 else
10943 {
10944 if (is_dbmode)
10945 do_vfp_nsyn_opcode ("fstmdbs");
10946 else
10947 do_vfp_nsyn_opcode ("fstmias");
10948 }
10949 }
10950
10951 static void
10952 do_vfp_nsyn_sqrt (void)
10953 {
10954 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
10955 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
10956
10957 if (rs == NS_FF)
10958 do_vfp_nsyn_opcode ("fsqrts");
10959 else
10960 do_vfp_nsyn_opcode ("fsqrtd");
10961 }
10962
10963 static void
10964 do_vfp_nsyn_div (void)
10965 {
10966 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
10967 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
10968 N_F32 | N_F64 | N_KEY | N_VFP);
10969
10970 if (rs == NS_FFF)
10971 do_vfp_nsyn_opcode ("fdivs");
10972 else
10973 do_vfp_nsyn_opcode ("fdivd");
10974 }
10975
10976 static void
10977 do_vfp_nsyn_nmul (void)
10978 {
10979 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
10980 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
10981 N_F32 | N_F64 | N_KEY | N_VFP);
10982
10983 if (rs == NS_FFF)
10984 {
10985 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
10986 do_vfp_sp_dyadic ();
10987 }
10988 else
10989 {
10990 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
10991 do_vfp_dp_rd_rn_rm ();
10992 }
10993 do_vfp_cond_or_thumb ();
10994 }
10995
10996 static void
10997 do_vfp_nsyn_cmp (void)
10998 {
10999 if (inst.operands[1].isreg)
11000 {
11001 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11002 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11003
11004 if (rs == NS_FF)
11005 {
11006 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11007 do_vfp_sp_monadic ();
11008 }
11009 else
11010 {
11011 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11012 do_vfp_dp_rd_rm ();
11013 }
11014 }
11015 else
11016 {
11017 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
11018 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
11019
11020 switch (inst.instruction & 0x0fffffff)
11021 {
11022 case N_MNEM_vcmp:
11023 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
11024 break;
11025 case N_MNEM_vcmpe:
11026 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
11027 break;
11028 default:
11029 abort ();
11030 }
11031
11032 if (rs == NS_FI)
11033 {
11034 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11035 do_vfp_sp_compare_z ();
11036 }
11037 else
11038 {
11039 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11040 do_vfp_dp_rd ();
11041 }
11042 }
11043 do_vfp_cond_or_thumb ();
11044 }
11045
11046 static void
11047 nsyn_insert_sp (void)
11048 {
11049 inst.operands[1] = inst.operands[0];
11050 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
11051 inst.operands[0].reg = 13;
11052 inst.operands[0].isreg = 1;
11053 inst.operands[0].writeback = 1;
11054 inst.operands[0].present = 1;
11055 }
11056
11057 static void
11058 do_vfp_nsyn_push (void)
11059 {
11060 nsyn_insert_sp ();
11061 if (inst.operands[1].issingle)
11062 do_vfp_nsyn_opcode ("fstmdbs");
11063 else
11064 do_vfp_nsyn_opcode ("fstmdbd");
11065 }
11066
11067 static void
11068 do_vfp_nsyn_pop (void)
11069 {
11070 nsyn_insert_sp ();
11071 if (inst.operands[1].issingle)
11072 do_vfp_nsyn_opcode ("fldmdbs");
11073 else
11074 do_vfp_nsyn_opcode ("fldmdbd");
11075 }
11076
11077 /* Fix up Neon data-processing instructions, ORing in the correct bits for
11078 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
11079
11080 static unsigned
11081 neon_dp_fixup (unsigned i)
11082 {
11083 if (thumb_mode)
11084 {
11085 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
11086 if (i & (1 << 24))
11087 i |= 1 << 28;
11088
11089 i &= ~(1 << 24);
11090
11091 i |= 0xef000000;
11092 }
11093 else
11094 i |= 0xf2000000;
11095
11096 return i;
11097 }
11098
11099 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
11100 (0, 1, 2, 3). */
11101
11102 static unsigned
11103 neon_logbits (unsigned x)
11104 {
11105 return ffs (x) - 4;
11106 }
11107
11108 #define LOW4(R) ((R) & 0xf)
11109 #define HI1(R) (((R) >> 4) & 1)
11110
11111 /* Encode insns with bit pattern:
11112
11113 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
11114 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
11115
11116 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
11117 different meaning for some instruction. */
11118
11119 static void
11120 neon_three_same (int isquad, int ubit, int size)
11121 {
11122 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11123 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11124 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
11125 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
11126 inst.instruction |= LOW4 (inst.operands[2].reg);
11127 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
11128 inst.instruction |= (isquad != 0) << 6;
11129 inst.instruction |= (ubit != 0) << 24;
11130 if (size != -1)
11131 inst.instruction |= neon_logbits (size) << 20;
11132
11133 inst.instruction = neon_dp_fixup (inst.instruction);
11134 }
11135
11136 /* Encode instructions of the form:
11137
11138 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
11139 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
11140
11141 Don't write size if SIZE == -1. */
11142
11143 static void
11144 neon_two_same (int qbit, int ubit, int size)
11145 {
11146 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11147 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11148 inst.instruction |= LOW4 (inst.operands[1].reg);
11149 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11150 inst.instruction |= (qbit != 0) << 6;
11151 inst.instruction |= (ubit != 0) << 24;
11152
11153 if (size != -1)
11154 inst.instruction |= neon_logbits (size) << 18;
11155
11156 inst.instruction = neon_dp_fixup (inst.instruction);
11157 }
11158
11159 /* Neon instruction encoders, in approximate order of appearance. */
11160
11161 static void
11162 do_neon_dyadic_i_su (void)
11163 {
11164 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11165 struct neon_type_el et = neon_check_type (3, rs,
11166 N_EQK, N_EQK, N_SU_32 | N_KEY);
11167 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11168 }
11169
11170 static void
11171 do_neon_dyadic_i64_su (void)
11172 {
11173 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11174 struct neon_type_el et = neon_check_type (3, rs,
11175 N_EQK, N_EQK, N_SU_ALL | N_KEY);
11176 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11177 }
11178
11179 static void
11180 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
11181 unsigned immbits)
11182 {
11183 unsigned size = et.size >> 3;
11184 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11185 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11186 inst.instruction |= LOW4 (inst.operands[1].reg);
11187 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11188 inst.instruction |= (isquad != 0) << 6;
11189 inst.instruction |= immbits << 16;
11190 inst.instruction |= (size >> 3) << 7;
11191 inst.instruction |= (size & 0x7) << 19;
11192 if (write_ubit)
11193 inst.instruction |= (uval != 0) << 24;
11194
11195 inst.instruction = neon_dp_fixup (inst.instruction);
11196 }
11197
11198 static void
11199 do_neon_shl_imm (void)
11200 {
11201 if (!inst.operands[2].isreg)
11202 {
11203 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11204 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
11205 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11206 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
11207 }
11208 else
11209 {
11210 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11211 struct neon_type_el et = neon_check_type (3, rs,
11212 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
11213 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11214 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11215 }
11216 }
11217
11218 static void
11219 do_neon_qshl_imm (void)
11220 {
11221 if (!inst.operands[2].isreg)
11222 {
11223 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11224 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
11225 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11226 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
11227 inst.operands[2].imm);
11228 }
11229 else
11230 {
11231 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11232 struct neon_type_el et = neon_check_type (3, rs,
11233 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
11234 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11235 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11236 }
11237 }
11238
11239 static int
11240 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
11241 {
11242 /* Handle .I8 and .I64 as pseudo-instructions. */
11243 switch (size)
11244 {
11245 case 8:
11246 /* Unfortunately, this will make everything apart from zero out-of-range.
11247 FIXME is this the intended semantics? There doesn't seem much point in
11248 accepting .I8 if so. */
11249 immediate |= immediate << 8;
11250 size = 16;
11251 break;
11252 case 64:
11253 /* Similarly, anything other than zero will be replicated in bits [63:32],
11254 which probably isn't want we want if we specified .I64. */
11255 if (immediate != 0)
11256 goto bad_immediate;
11257 size = 32;
11258 break;
11259 default: ;
11260 }
11261
11262 if (immediate == (immediate & 0x000000ff))
11263 {
11264 *immbits = immediate;
11265 return (size == 16) ? 0x9 : 0x1;
11266 }
11267 else if (immediate == (immediate & 0x0000ff00))
11268 {
11269 *immbits = immediate >> 8;
11270 return (size == 16) ? 0xb : 0x3;
11271 }
11272 else if (immediate == (immediate & 0x00ff0000))
11273 {
11274 *immbits = immediate >> 16;
11275 return 0x5;
11276 }
11277 else if (immediate == (immediate & 0xff000000))
11278 {
11279 *immbits = immediate >> 24;
11280 return 0x7;
11281 }
11282
11283 bad_immediate:
11284 first_error (_("immediate value out of range"));
11285 return FAIL;
11286 }
11287
11288 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
11289 A, B, C, D. */
11290
11291 static int
11292 neon_bits_same_in_bytes (unsigned imm)
11293 {
11294 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
11295 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
11296 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
11297 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
11298 }
11299
11300 /* For immediate of above form, return 0bABCD. */
11301
11302 static unsigned
11303 neon_squash_bits (unsigned imm)
11304 {
11305 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
11306 | ((imm & 0x01000000) >> 21);
11307 }
11308
11309 /* Compress quarter-float representation to 0b...000 abcdefgh. */
11310
11311 static unsigned
11312 neon_qfloat_bits (unsigned imm)
11313 {
11314 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
11315 }
11316
11317 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
11318 the instruction. *OP is passed as the initial value of the op field, and
11319 may be set to a different value depending on the constant (i.e.
11320 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
11321 MVN). */
11322
11323 static int
11324 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, unsigned *immbits,
11325 int *op, int size, enum neon_el_type type)
11326 {
11327 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
11328 {
11329 if (size != 32 || *op == 1)
11330 return FAIL;
11331 *immbits = neon_qfloat_bits (immlo);
11332 return 0xf;
11333 }
11334 else if (size == 64 && neon_bits_same_in_bytes (immhi)
11335 && neon_bits_same_in_bytes (immlo))
11336 {
11337 /* Check this one first so we don't have to bother with immhi in later
11338 tests. */
11339 if (*op == 1)
11340 return FAIL;
11341 *immbits = (neon_squash_bits (immhi) << 4) | neon_squash_bits (immlo);
11342 *op = 1;
11343 return 0xe;
11344 }
11345 else if (immhi != 0)
11346 return FAIL;
11347 else if (immlo == (immlo & 0x000000ff))
11348 {
11349 /* 64-bit case was already handled. Don't allow MVN with 8-bit
11350 immediate. */
11351 if ((size != 8 && size != 16 && size != 32)
11352 || (size == 8 && *op == 1))
11353 return FAIL;
11354 *immbits = immlo;
11355 return (size == 8) ? 0xe : (size == 16) ? 0x8 : 0x0;
11356 }
11357 else if (immlo == (immlo & 0x0000ff00))
11358 {
11359 if (size != 16 && size != 32)
11360 return FAIL;
11361 *immbits = immlo >> 8;
11362 return (size == 16) ? 0xa : 0x2;
11363 }
11364 else if (immlo == (immlo & 0x00ff0000))
11365 {
11366 if (size != 32)
11367 return FAIL;
11368 *immbits = immlo >> 16;
11369 return 0x4;
11370 }
11371 else if (immlo == (immlo & 0xff000000))
11372 {
11373 if (size != 32)
11374 return FAIL;
11375 *immbits = immlo >> 24;
11376 return 0x6;
11377 }
11378 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
11379 {
11380 if (size != 32)
11381 return FAIL;
11382 *immbits = (immlo >> 8) & 0xff;
11383 return 0xc;
11384 }
11385 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
11386 {
11387 if (size != 32)
11388 return FAIL;
11389 *immbits = (immlo >> 16) & 0xff;
11390 return 0xd;
11391 }
11392
11393 return FAIL;
11394 }
11395
11396 /* Write immediate bits [7:0] to the following locations:
11397
11398 |28/24|23 19|18 16|15 4|3 0|
11399 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
11400
11401 This function is used by VMOV/VMVN/VORR/VBIC. */
11402
11403 static void
11404 neon_write_immbits (unsigned immbits)
11405 {
11406 inst.instruction |= immbits & 0xf;
11407 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
11408 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
11409 }
11410
11411 /* Invert low-order SIZE bits of XHI:XLO. */
11412
11413 static void
11414 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
11415 {
11416 unsigned immlo = xlo ? *xlo : 0;
11417 unsigned immhi = xhi ? *xhi : 0;
11418
11419 switch (size)
11420 {
11421 case 8:
11422 immlo = (~immlo) & 0xff;
11423 break;
11424
11425 case 16:
11426 immlo = (~immlo) & 0xffff;
11427 break;
11428
11429 case 64:
11430 immhi = (~immhi) & 0xffffffff;
11431 /* fall through. */
11432
11433 case 32:
11434 immlo = (~immlo) & 0xffffffff;
11435 break;
11436
11437 default:
11438 abort ();
11439 }
11440
11441 if (xlo)
11442 *xlo = immlo;
11443
11444 if (xhi)
11445 *xhi = immhi;
11446 }
11447
11448 static void
11449 do_neon_logic (void)
11450 {
11451 if (inst.operands[2].present && inst.operands[2].isreg)
11452 {
11453 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11454 neon_check_type (3, rs, N_IGNORE_TYPE);
11455 /* U bit and size field were set as part of the bitmask. */
11456 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11457 neon_three_same (neon_quad (rs), 0, -1);
11458 }
11459 else
11460 {
11461 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
11462 struct neon_type_el et = neon_check_type (2, rs,
11463 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
11464 enum neon_opc opcode = inst.instruction & 0x0fffffff;
11465 unsigned immbits;
11466 int cmode;
11467
11468 if (et.type == NT_invtype)
11469 return;
11470
11471 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11472
11473 switch (opcode)
11474 {
11475 case N_MNEM_vbic:
11476 cmode = neon_cmode_for_logic_imm (inst.operands[1].imm, &immbits,
11477 et.size);
11478 break;
11479
11480 case N_MNEM_vorr:
11481 cmode = neon_cmode_for_logic_imm (inst.operands[1].imm, &immbits,
11482 et.size);
11483 break;
11484
11485 case N_MNEM_vand:
11486 /* Pseudo-instruction for VBIC. */
11487 immbits = inst.operands[1].imm;
11488 neon_invert_size (&immbits, 0, et.size);
11489 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11490 break;
11491
11492 case N_MNEM_vorn:
11493 /* Pseudo-instruction for VORR. */
11494 immbits = inst.operands[1].imm;
11495 neon_invert_size (&immbits, 0, et.size);
11496 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11497 break;
11498
11499 default:
11500 abort ();
11501 }
11502
11503 if (cmode == FAIL)
11504 return;
11505
11506 inst.instruction |= neon_quad (rs) << 6;
11507 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11508 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11509 inst.instruction |= cmode << 8;
11510 neon_write_immbits (immbits);
11511
11512 inst.instruction = neon_dp_fixup (inst.instruction);
11513 }
11514 }
11515
11516 static void
11517 do_neon_bitfield (void)
11518 {
11519 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11520 neon_check_type (3, rs, N_IGNORE_TYPE);
11521 neon_three_same (neon_quad (rs), 0, -1);
11522 }
11523
11524 static void
11525 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
11526 unsigned destbits)
11527 {
11528 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11529 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
11530 types | N_KEY);
11531 if (et.type == NT_float)
11532 {
11533 inst.instruction = NEON_ENC_FLOAT (inst.instruction);
11534 neon_three_same (neon_quad (rs), 0, -1);
11535 }
11536 else
11537 {
11538 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11539 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
11540 }
11541 }
11542
11543 static void
11544 do_neon_dyadic_if_su (void)
11545 {
11546 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
11547 }
11548
11549 static void
11550 do_neon_dyadic_if_su_d (void)
11551 {
11552 /* This version only allow D registers, but that constraint is enforced during
11553 operand parsing so we don't need to do anything extra here. */
11554 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
11555 }
11556
11557 static void
11558 do_neon_dyadic_if_i (void)
11559 {
11560 neon_dyadic_misc (NT_unsigned, N_IF_32, 0);
11561 }
11562
11563 static void
11564 do_neon_dyadic_if_i_d (void)
11565 {
11566 neon_dyadic_misc (NT_unsigned, N_IF_32, 0);
11567 }
11568
11569 enum vfp_or_neon_is_neon_bits
11570 {
11571 NEON_CHECK_CC = 1,
11572 NEON_CHECK_ARCH = 2
11573 };
11574
11575 /* Call this function if an instruction which may have belonged to the VFP or
11576 Neon instruction sets, but turned out to be a Neon instruction (due to the
11577 operand types involved, etc.). We have to check and/or fix-up a couple of
11578 things:
11579
11580 - Make sure the user hasn't attempted to make a Neon instruction
11581 conditional.
11582 - Alter the value in the condition code field if necessary.
11583 - Make sure that the arch supports Neon instructions.
11584
11585 Which of these operations take place depends on bits from enum
11586 vfp_or_neon_is_neon_bits.
11587
11588 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
11589 current instruction's condition is COND_ALWAYS, the condition field is
11590 changed to inst.uncond_value. This is necessary because instructions shared
11591 between VFP and Neon may be conditional for the VFP variants only, and the
11592 unconditional Neon version must have, e.g., 0xF in the condition field. */
11593
11594 static int
11595 vfp_or_neon_is_neon (unsigned check)
11596 {
11597 /* Conditions are always legal in Thumb mode (IT blocks). */
11598 if (!thumb_mode && (check & NEON_CHECK_CC))
11599 {
11600 if (inst.cond != COND_ALWAYS)
11601 {
11602 first_error (_(BAD_COND));
11603 return FAIL;
11604 }
11605 if (inst.uncond_value != -1)
11606 inst.instruction |= inst.uncond_value << 28;
11607 }
11608
11609 if ((check & NEON_CHECK_ARCH)
11610 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
11611 {
11612 first_error (_(BAD_FPU));
11613 return FAIL;
11614 }
11615
11616 return SUCCESS;
11617 }
11618
11619 static void
11620 do_neon_addsub_if_i (void)
11621 {
11622 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
11623 return;
11624
11625 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
11626 return;
11627
11628 /* The "untyped" case can't happen. Do this to stop the "U" bit being
11629 affected if we specify unsigned args. */
11630 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
11631 }
11632
11633 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
11634 result to be:
11635 V<op> A,B (A is operand 0, B is operand 2)
11636 to mean:
11637 V<op> A,B,A
11638 not:
11639 V<op> A,B,B
11640 so handle that case specially. */
11641
11642 static void
11643 neon_exchange_operands (void)
11644 {
11645 void *scratch = alloca (sizeof (inst.operands[0]));
11646 if (inst.operands[1].present)
11647 {
11648 /* Swap operands[1] and operands[2]. */
11649 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
11650 inst.operands[1] = inst.operands[2];
11651 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
11652 }
11653 else
11654 {
11655 inst.operands[1] = inst.operands[2];
11656 inst.operands[2] = inst.operands[0];
11657 }
11658 }
11659
11660 static void
11661 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
11662 {
11663 if (inst.operands[2].isreg)
11664 {
11665 if (invert)
11666 neon_exchange_operands ();
11667 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
11668 }
11669 else
11670 {
11671 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11672 struct neon_type_el et = neon_check_type (2, rs,
11673 N_EQK | N_SIZ, immtypes | N_KEY);
11674
11675 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11676 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11677 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11678 inst.instruction |= LOW4 (inst.operands[1].reg);
11679 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11680 inst.instruction |= neon_quad (rs) << 6;
11681 inst.instruction |= (et.type == NT_float) << 10;
11682 inst.instruction |= neon_logbits (et.size) << 18;
11683
11684 inst.instruction = neon_dp_fixup (inst.instruction);
11685 }
11686 }
11687
11688 static void
11689 do_neon_cmp (void)
11690 {
11691 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
11692 }
11693
11694 static void
11695 do_neon_cmp_inv (void)
11696 {
11697 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
11698 }
11699
11700 static void
11701 do_neon_ceq (void)
11702 {
11703 neon_compare (N_IF_32, N_IF_32, FALSE);
11704 }
11705
11706 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
11707 scalars, which are encoded in 5 bits, M : Rm.
11708 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
11709 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
11710 index in M. */
11711
11712 static unsigned
11713 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
11714 {
11715 unsigned regno = NEON_SCALAR_REG (scalar);
11716 unsigned elno = NEON_SCALAR_INDEX (scalar);
11717
11718 switch (elsize)
11719 {
11720 case 16:
11721 if (regno > 7 || elno > 3)
11722 goto bad_scalar;
11723 return regno | (elno << 3);
11724
11725 case 32:
11726 if (regno > 15 || elno > 1)
11727 goto bad_scalar;
11728 return regno | (elno << 4);
11729
11730 default:
11731 bad_scalar:
11732 first_error (_("scalar out of range for multiply instruction"));
11733 }
11734
11735 return 0;
11736 }
11737
11738 /* Encode multiply / multiply-accumulate scalar instructions. */
11739
11740 static void
11741 neon_mul_mac (struct neon_type_el et, int ubit)
11742 {
11743 unsigned scalar;
11744
11745 /* Give a more helpful error message if we have an invalid type. */
11746 if (et.type == NT_invtype)
11747 return;
11748
11749 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
11750 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11751 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11752 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
11753 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
11754 inst.instruction |= LOW4 (scalar);
11755 inst.instruction |= HI1 (scalar) << 5;
11756 inst.instruction |= (et.type == NT_float) << 8;
11757 inst.instruction |= neon_logbits (et.size) << 20;
11758 inst.instruction |= (ubit != 0) << 24;
11759
11760 inst.instruction = neon_dp_fixup (inst.instruction);
11761 }
11762
11763 static void
11764 do_neon_mac_maybe_scalar (void)
11765 {
11766 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
11767 return;
11768
11769 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
11770 return;
11771
11772 if (inst.operands[2].isscalar)
11773 {
11774 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
11775 struct neon_type_el et = neon_check_type (3, rs,
11776 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
11777 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
11778 neon_mul_mac (et, neon_quad (rs));
11779 }
11780 else
11781 do_neon_dyadic_if_i ();
11782 }
11783
11784 static void
11785 do_neon_tst (void)
11786 {
11787 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11788 struct neon_type_el et = neon_check_type (3, rs,
11789 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
11790 neon_three_same (neon_quad (rs), 0, et.size);
11791 }
11792
11793 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
11794 same types as the MAC equivalents. The polynomial type for this instruction
11795 is encoded the same as the integer type. */
11796
11797 static void
11798 do_neon_mul (void)
11799 {
11800 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
11801 return;
11802
11803 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
11804 return;
11805
11806 if (inst.operands[2].isscalar)
11807 do_neon_mac_maybe_scalar ();
11808 else
11809 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
11810 }
11811
11812 static void
11813 do_neon_qdmulh (void)
11814 {
11815 if (inst.operands[2].isscalar)
11816 {
11817 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
11818 struct neon_type_el et = neon_check_type (3, rs,
11819 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
11820 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
11821 neon_mul_mac (et, neon_quad (rs));
11822 }
11823 else
11824 {
11825 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11826 struct neon_type_el et = neon_check_type (3, rs,
11827 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
11828 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11829 /* The U bit (rounding) comes from bit mask. */
11830 neon_three_same (neon_quad (rs), 0, et.size);
11831 }
11832 }
11833
11834 static void
11835 do_neon_fcmp_absolute (void)
11836 {
11837 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11838 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
11839 /* Size field comes from bit mask. */
11840 neon_three_same (neon_quad (rs), 1, -1);
11841 }
11842
11843 static void
11844 do_neon_fcmp_absolute_inv (void)
11845 {
11846 neon_exchange_operands ();
11847 do_neon_fcmp_absolute ();
11848 }
11849
11850 static void
11851 do_neon_step (void)
11852 {
11853 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11854 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
11855 neon_three_same (neon_quad (rs), 0, -1);
11856 }
11857
11858 static void
11859 do_neon_abs_neg (void)
11860 {
11861 enum neon_shape rs;
11862 struct neon_type_el et;
11863
11864 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
11865 return;
11866
11867 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
11868 return;
11869
11870 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
11871 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
11872
11873 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11874 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11875 inst.instruction |= LOW4 (inst.operands[1].reg);
11876 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11877 inst.instruction |= neon_quad (rs) << 6;
11878 inst.instruction |= (et.type == NT_float) << 10;
11879 inst.instruction |= neon_logbits (et.size) << 18;
11880
11881 inst.instruction = neon_dp_fixup (inst.instruction);
11882 }
11883
11884 static void
11885 do_neon_sli (void)
11886 {
11887 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11888 struct neon_type_el et = neon_check_type (2, rs,
11889 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
11890 int imm = inst.operands[2].imm;
11891 constraint (imm < 0 || (unsigned)imm >= et.size,
11892 _("immediate out of range for insert"));
11893 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
11894 }
11895
11896 static void
11897 do_neon_sri (void)
11898 {
11899 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11900 struct neon_type_el et = neon_check_type (2, rs,
11901 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
11902 int imm = inst.operands[2].imm;
11903 constraint (imm < 1 || (unsigned)imm > et.size,
11904 _("immediate out of range for insert"));
11905 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
11906 }
11907
11908 static void
11909 do_neon_qshlu_imm (void)
11910 {
11911 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11912 struct neon_type_el et = neon_check_type (2, rs,
11913 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
11914 int imm = inst.operands[2].imm;
11915 constraint (imm < 0 || (unsigned)imm >= et.size,
11916 _("immediate out of range for shift"));
11917 /* Only encodes the 'U present' variant of the instruction.
11918 In this case, signed types have OP (bit 8) set to 0.
11919 Unsigned types have OP set to 1. */
11920 inst.instruction |= (et.type == NT_unsigned) << 8;
11921 /* The rest of the bits are the same as other immediate shifts. */
11922 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
11923 }
11924
11925 static void
11926 do_neon_qmovn (void)
11927 {
11928 struct neon_type_el et = neon_check_type (2, NS_DQ,
11929 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
11930 /* Saturating move where operands can be signed or unsigned, and the
11931 destination has the same signedness. */
11932 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11933 if (et.type == NT_unsigned)
11934 inst.instruction |= 0xc0;
11935 else
11936 inst.instruction |= 0x80;
11937 neon_two_same (0, 1, et.size / 2);
11938 }
11939
11940 static void
11941 do_neon_qmovun (void)
11942 {
11943 struct neon_type_el et = neon_check_type (2, NS_DQ,
11944 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
11945 /* Saturating move with unsigned results. Operands must be signed. */
11946 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11947 neon_two_same (0, 1, et.size / 2);
11948 }
11949
11950 static void
11951 do_neon_rshift_sat_narrow (void)
11952 {
11953 /* FIXME: Types for narrowing. If operands are signed, results can be signed
11954 or unsigned. If operands are unsigned, results must also be unsigned. */
11955 struct neon_type_el et = neon_check_type (2, NS_DQI,
11956 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
11957 int imm = inst.operands[2].imm;
11958 /* This gets the bounds check, size encoding and immediate bits calculation
11959 right. */
11960 et.size /= 2;
11961
11962 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
11963 VQMOVN.I<size> <Dd>, <Qm>. */
11964 if (imm == 0)
11965 {
11966 inst.operands[2].present = 0;
11967 inst.instruction = N_MNEM_vqmovn;
11968 do_neon_qmovn ();
11969 return;
11970 }
11971
11972 constraint (imm < 1 || (unsigned)imm > et.size,
11973 _("immediate out of range"));
11974 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
11975 }
11976
11977 static void
11978 do_neon_rshift_sat_narrow_u (void)
11979 {
11980 /* FIXME: Types for narrowing. If operands are signed, results can be signed
11981 or unsigned. If operands are unsigned, results must also be unsigned. */
11982 struct neon_type_el et = neon_check_type (2, NS_DQI,
11983 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
11984 int imm = inst.operands[2].imm;
11985 /* This gets the bounds check, size encoding and immediate bits calculation
11986 right. */
11987 et.size /= 2;
11988
11989 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
11990 VQMOVUN.I<size> <Dd>, <Qm>. */
11991 if (imm == 0)
11992 {
11993 inst.operands[2].present = 0;
11994 inst.instruction = N_MNEM_vqmovun;
11995 do_neon_qmovun ();
11996 return;
11997 }
11998
11999 constraint (imm < 1 || (unsigned)imm > et.size,
12000 _("immediate out of range"));
12001 /* FIXME: The manual is kind of unclear about what value U should have in
12002 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
12003 must be 1. */
12004 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
12005 }
12006
12007 static void
12008 do_neon_movn (void)
12009 {
12010 struct neon_type_el et = neon_check_type (2, NS_DQ,
12011 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12012 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12013 neon_two_same (0, 1, et.size / 2);
12014 }
12015
12016 static void
12017 do_neon_rshift_narrow (void)
12018 {
12019 struct neon_type_el et = neon_check_type (2, NS_DQI,
12020 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12021 int imm = inst.operands[2].imm;
12022 /* This gets the bounds check, size encoding and immediate bits calculation
12023 right. */
12024 et.size /= 2;
12025
12026 /* If immediate is zero then we are a pseudo-instruction for
12027 VMOVN.I<size> <Dd>, <Qm> */
12028 if (imm == 0)
12029 {
12030 inst.operands[2].present = 0;
12031 inst.instruction = N_MNEM_vmovn;
12032 do_neon_movn ();
12033 return;
12034 }
12035
12036 constraint (imm < 1 || (unsigned)imm > et.size,
12037 _("immediate out of range for narrowing operation"));
12038 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
12039 }
12040
12041 static void
12042 do_neon_shll (void)
12043 {
12044 /* FIXME: Type checking when lengthening. */
12045 struct neon_type_el et = neon_check_type (2, NS_QDI,
12046 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
12047 unsigned imm = inst.operands[2].imm;
12048
12049 if (imm == et.size)
12050 {
12051 /* Maximum shift variant. */
12052 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12053 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12054 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12055 inst.instruction |= LOW4 (inst.operands[1].reg);
12056 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12057 inst.instruction |= neon_logbits (et.size) << 18;
12058
12059 inst.instruction = neon_dp_fixup (inst.instruction);
12060 }
12061 else
12062 {
12063 /* A more-specific type check for non-max versions. */
12064 et = neon_check_type (2, NS_QDI,
12065 N_EQK | N_DBL, N_SU_32 | N_KEY);
12066 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12067 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
12068 }
12069 }
12070
12071 /* Check the various types for the VCVT instruction, and return which version
12072 the current instruction is. */
12073
12074 static int
12075 neon_cvt_flavour (enum neon_shape rs)
12076 {
12077 #define CVT_VAR(C,X,Y) \
12078 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
12079 if (et.type != NT_invtype) \
12080 { \
12081 inst.error = NULL; \
12082 return (C); \
12083 }
12084 struct neon_type_el et;
12085 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
12086 || rs == NS_FF) ? N_VFP : 0;
12087 /* The instruction versions which take an immediate take one register
12088 argument, which is extended to the width of the full register. Thus the
12089 "source" and "destination" registers must have the same width. Hack that
12090 here by making the size equal to the key (wider, in this case) operand. */
12091 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
12092
12093 CVT_VAR (0, N_S32, N_F32);
12094 CVT_VAR (1, N_U32, N_F32);
12095 CVT_VAR (2, N_F32, N_S32);
12096 CVT_VAR (3, N_F32, N_U32);
12097
12098 whole_reg = N_VFP;
12099
12100 /* VFP instructions. */
12101 CVT_VAR (4, N_F32, N_F64);
12102 CVT_VAR (5, N_F64, N_F32);
12103 CVT_VAR (6, N_S32, N_F64 | key);
12104 CVT_VAR (7, N_U32, N_F64 | key);
12105 CVT_VAR (8, N_F64 | key, N_S32);
12106 CVT_VAR (9, N_F64 | key, N_U32);
12107 /* VFP instructions with bitshift. */
12108 CVT_VAR (10, N_F32 | key, N_S16);
12109 CVT_VAR (11, N_F32 | key, N_U16);
12110 CVT_VAR (12, N_F64 | key, N_S16);
12111 CVT_VAR (13, N_F64 | key, N_U16);
12112 CVT_VAR (14, N_S16, N_F32 | key);
12113 CVT_VAR (15, N_U16, N_F32 | key);
12114 CVT_VAR (16, N_S16, N_F64 | key);
12115 CVT_VAR (17, N_U16, N_F64 | key);
12116
12117 return -1;
12118 #undef CVT_VAR
12119 }
12120
12121 /* Neon-syntax VFP conversions. */
12122
12123 static void
12124 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
12125 {
12126 const char *opname = 0;
12127
12128 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
12129 {
12130 /* Conversions with immediate bitshift. */
12131 const char *enc[] =
12132 {
12133 "ftosls",
12134 "ftouls",
12135 "fsltos",
12136 "fultos",
12137 NULL,
12138 NULL,
12139 "ftosld",
12140 "ftould",
12141 "fsltod",
12142 "fultod",
12143 "fshtos",
12144 "fuhtos",
12145 "fshtod",
12146 "fuhtod",
12147 "ftoshs",
12148 "ftouhs",
12149 "ftoshd",
12150 "ftouhd"
12151 };
12152
12153 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12154 {
12155 opname = enc[flavour];
12156 constraint (inst.operands[0].reg != inst.operands[1].reg,
12157 _("operands 0 and 1 must be the same register"));
12158 inst.operands[1] = inst.operands[2];
12159 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
12160 }
12161 }
12162 else
12163 {
12164 /* Conversions without bitshift. */
12165 const char *enc[] =
12166 {
12167 "ftosis",
12168 "ftouis",
12169 "fsitos",
12170 "fuitos",
12171 "fcvtsd",
12172 "fcvtds",
12173 "ftosid",
12174 "ftouid",
12175 "fsitod",
12176 "fuitod"
12177 };
12178
12179 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12180 opname = enc[flavour];
12181 }
12182
12183 if (opname)
12184 do_vfp_nsyn_opcode (opname);
12185 }
12186
12187 static void
12188 do_vfp_nsyn_cvtz (void)
12189 {
12190 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
12191 int flavour = neon_cvt_flavour (rs);
12192 const char *enc[] =
12193 {
12194 "ftosizs",
12195 "ftouizs",
12196 NULL,
12197 NULL,
12198 NULL,
12199 NULL,
12200 "ftosizd",
12201 "ftouizd"
12202 };
12203
12204 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
12205 do_vfp_nsyn_opcode (enc[flavour]);
12206 }
12207
12208 static void
12209 do_neon_cvt (void)
12210 {
12211 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
12212 NS_FD, NS_DF, NS_FF, NS_NULL);
12213 int flavour = neon_cvt_flavour (rs);
12214
12215 /* VFP rather than Neon conversions. */
12216 if (flavour >= 4)
12217 {
12218 do_vfp_nsyn_cvt (rs, flavour);
12219 return;
12220 }
12221
12222 switch (rs)
12223 {
12224 case NS_DDI:
12225 case NS_QQI:
12226 {
12227 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12228 return;
12229
12230 /* Fixed-point conversion with #0 immediate is encoded as an
12231 integer conversion. */
12232 if (inst.operands[2].present && inst.operands[2].imm == 0)
12233 goto int_encode;
12234 unsigned immbits = 32 - inst.operands[2].imm;
12235 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
12236 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12237 if (flavour != -1)
12238 inst.instruction |= enctab[flavour];
12239 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12240 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12241 inst.instruction |= LOW4 (inst.operands[1].reg);
12242 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12243 inst.instruction |= neon_quad (rs) << 6;
12244 inst.instruction |= 1 << 21;
12245 inst.instruction |= immbits << 16;
12246
12247 inst.instruction = neon_dp_fixup (inst.instruction);
12248 }
12249 break;
12250
12251 case NS_DD:
12252 case NS_QQ:
12253 int_encode:
12254 {
12255 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
12256
12257 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12258
12259 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12260 return;
12261
12262 if (flavour != -1)
12263 inst.instruction |= enctab[flavour];
12264
12265 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12266 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12267 inst.instruction |= LOW4 (inst.operands[1].reg);
12268 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12269 inst.instruction |= neon_quad (rs) << 6;
12270 inst.instruction |= 2 << 18;
12271
12272 inst.instruction = neon_dp_fixup (inst.instruction);
12273 }
12274 break;
12275
12276 default:
12277 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
12278 do_vfp_nsyn_cvt (rs, flavour);
12279 }
12280 }
12281
12282 static void
12283 neon_move_immediate (void)
12284 {
12285 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
12286 struct neon_type_el et = neon_check_type (2, rs,
12287 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
12288 unsigned immlo, immhi = 0, immbits;
12289 int op, cmode;
12290
12291 constraint (et.type == NT_invtype,
12292 _("operand size must be specified for immediate VMOV"));
12293
12294 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
12295 op = (inst.instruction & (1 << 5)) != 0;
12296
12297 immlo = inst.operands[1].imm;
12298 if (inst.operands[1].regisimm)
12299 immhi = inst.operands[1].reg;
12300
12301 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
12302 _("immediate has bits set outside the operand size"));
12303
12304 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, &immbits, &op,
12305 et.size, et.type)) == FAIL)
12306 {
12307 /* Invert relevant bits only. */
12308 neon_invert_size (&immlo, &immhi, et.size);
12309 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
12310 with one or the other; those cases are caught by
12311 neon_cmode_for_move_imm. */
12312 op = !op;
12313 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, &immbits, &op,
12314 et.size, et.type)) == FAIL)
12315 {
12316 first_error (_("immediate out of range"));
12317 return;
12318 }
12319 }
12320
12321 inst.instruction &= ~(1 << 5);
12322 inst.instruction |= op << 5;
12323
12324 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12325 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12326 inst.instruction |= neon_quad (rs) << 6;
12327 inst.instruction |= cmode << 8;
12328
12329 neon_write_immbits (immbits);
12330 }
12331
12332 static void
12333 do_neon_mvn (void)
12334 {
12335 if (inst.operands[1].isreg)
12336 {
12337 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12338
12339 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12340 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12341 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12342 inst.instruction |= LOW4 (inst.operands[1].reg);
12343 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12344 inst.instruction |= neon_quad (rs) << 6;
12345 }
12346 else
12347 {
12348 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12349 neon_move_immediate ();
12350 }
12351
12352 inst.instruction = neon_dp_fixup (inst.instruction);
12353 }
12354
12355 /* Encode instructions of form:
12356
12357 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12358 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm |
12359
12360 */
12361
12362 static void
12363 neon_mixed_length (struct neon_type_el et, unsigned size)
12364 {
12365 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12366 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12367 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12368 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12369 inst.instruction |= LOW4 (inst.operands[2].reg);
12370 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12371 inst.instruction |= (et.type == NT_unsigned) << 24;
12372 inst.instruction |= neon_logbits (size) << 20;
12373
12374 inst.instruction = neon_dp_fixup (inst.instruction);
12375 }
12376
12377 static void
12378 do_neon_dyadic_long (void)
12379 {
12380 /* FIXME: Type checking for lengthening op. */
12381 struct neon_type_el et = neon_check_type (3, NS_QDD,
12382 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
12383 neon_mixed_length (et, et.size);
12384 }
12385
12386 static void
12387 do_neon_abal (void)
12388 {
12389 struct neon_type_el et = neon_check_type (3, NS_QDD,
12390 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
12391 neon_mixed_length (et, et.size);
12392 }
12393
12394 static void
12395 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
12396 {
12397 if (inst.operands[2].isscalar)
12398 {
12399 struct neon_type_el et = neon_check_type (3, NS_QDS,
12400 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
12401 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12402 neon_mul_mac (et, et.type == NT_unsigned);
12403 }
12404 else
12405 {
12406 struct neon_type_el et = neon_check_type (3, NS_QDD,
12407 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
12408 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12409 neon_mixed_length (et, et.size);
12410 }
12411 }
12412
12413 static void
12414 do_neon_mac_maybe_scalar_long (void)
12415 {
12416 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
12417 }
12418
12419 static void
12420 do_neon_dyadic_wide (void)
12421 {
12422 struct neon_type_el et = neon_check_type (3, NS_QQD,
12423 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
12424 neon_mixed_length (et, et.size);
12425 }
12426
12427 static void
12428 do_neon_dyadic_narrow (void)
12429 {
12430 struct neon_type_el et = neon_check_type (3, NS_QDD,
12431 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
12432 neon_mixed_length (et, et.size / 2);
12433 }
12434
12435 static void
12436 do_neon_mul_sat_scalar_long (void)
12437 {
12438 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
12439 }
12440
12441 static void
12442 do_neon_vmull (void)
12443 {
12444 if (inst.operands[2].isscalar)
12445 do_neon_mac_maybe_scalar_long ();
12446 else
12447 {
12448 struct neon_type_el et = neon_check_type (3, NS_QDD,
12449 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
12450 if (et.type == NT_poly)
12451 inst.instruction = NEON_ENC_POLY (inst.instruction);
12452 else
12453 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12454 /* For polynomial encoding, size field must be 0b00 and the U bit must be
12455 zero. Should be OK as-is. */
12456 neon_mixed_length (et, et.size);
12457 }
12458 }
12459
12460 static void
12461 do_neon_ext (void)
12462 {
12463 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
12464 struct neon_type_el et = neon_check_type (3, rs,
12465 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12466 unsigned imm = (inst.operands[3].imm * et.size) / 8;
12467 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12468 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12469 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12470 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12471 inst.instruction |= LOW4 (inst.operands[2].reg);
12472 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12473 inst.instruction |= neon_quad (rs) << 6;
12474 inst.instruction |= imm << 8;
12475
12476 inst.instruction = neon_dp_fixup (inst.instruction);
12477 }
12478
12479 static void
12480 do_neon_rev (void)
12481 {
12482 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12483 struct neon_type_el et = neon_check_type (2, rs,
12484 N_EQK, N_8 | N_16 | N_32 | N_KEY);
12485 unsigned op = (inst.instruction >> 7) & 3;
12486 /* N (width of reversed regions) is encoded as part of the bitmask. We
12487 extract it here to check the elements to be reversed are smaller.
12488 Otherwise we'd get a reserved instruction. */
12489 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
12490 assert (elsize != 0);
12491 constraint (et.size >= elsize,
12492 _("elements must be smaller than reversal region"));
12493 neon_two_same (neon_quad (rs), 1, et.size);
12494 }
12495
12496 static void
12497 do_neon_dup (void)
12498 {
12499 if (inst.operands[1].isscalar)
12500 {
12501 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
12502 struct neon_type_el et = neon_check_type (2, rs,
12503 N_EQK, N_8 | N_16 | N_32 | N_KEY);
12504 unsigned sizebits = et.size >> 3;
12505 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
12506 int logsize = neon_logbits (et.size);
12507 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
12508
12509 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
12510 return;
12511
12512 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12513 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12514 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12515 inst.instruction |= LOW4 (dm);
12516 inst.instruction |= HI1 (dm) << 5;
12517 inst.instruction |= neon_quad (rs) << 6;
12518 inst.instruction |= x << 17;
12519 inst.instruction |= sizebits << 16;
12520
12521 inst.instruction = neon_dp_fixup (inst.instruction);
12522 }
12523 else
12524 {
12525 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
12526 struct neon_type_el et = neon_check_type (2, rs,
12527 N_8 | N_16 | N_32 | N_KEY, N_EQK);
12528 /* Duplicate ARM register to lanes of vector. */
12529 inst.instruction = NEON_ENC_ARMREG (inst.instruction);
12530 switch (et.size)
12531 {
12532 case 8: inst.instruction |= 0x400000; break;
12533 case 16: inst.instruction |= 0x000020; break;
12534 case 32: inst.instruction |= 0x000000; break;
12535 default: break;
12536 }
12537 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
12538 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
12539 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
12540 inst.instruction |= neon_quad (rs) << 21;
12541 /* The encoding for this instruction is identical for the ARM and Thumb
12542 variants, except for the condition field. */
12543 do_vfp_cond_or_thumb ();
12544 }
12545 }
12546
12547 /* VMOV has particularly many variations. It can be one of:
12548 0. VMOV<c><q> <Qd>, <Qm>
12549 1. VMOV<c><q> <Dd>, <Dm>
12550 (Register operations, which are VORR with Rm = Rn.)
12551 2. VMOV<c><q>.<dt> <Qd>, #<imm>
12552 3. VMOV<c><q>.<dt> <Dd>, #<imm>
12553 (Immediate loads.)
12554 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
12555 (ARM register to scalar.)
12556 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
12557 (Two ARM registers to vector.)
12558 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
12559 (Scalar to ARM register.)
12560 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
12561 (Vector to two ARM registers.)
12562 8. VMOV.F32 <Sd>, <Sm>
12563 9. VMOV.F64 <Dd>, <Dm>
12564 (VFP register moves.)
12565 10. VMOV.F32 <Sd>, #imm
12566 11. VMOV.F64 <Dd>, #imm
12567 (VFP float immediate load.)
12568 12. VMOV <Rd>, <Sm>
12569 (VFP single to ARM reg.)
12570 13. VMOV <Sd>, <Rm>
12571 (ARM reg to VFP single.)
12572 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
12573 (Two ARM regs to two VFP singles.)
12574 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
12575 (Two VFP singles to two ARM regs.)
12576
12577 These cases can be disambiguated using neon_select_shape, except cases 1/9
12578 and 3/11 which depend on the operand type too.
12579
12580 All the encoded bits are hardcoded by this function.
12581
12582 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
12583 Cases 5, 7 may be used with VFPv2 and above.
12584
12585 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
12586 can specify a type where it doesn't make sense to, and is ignored).
12587 */
12588
12589 static void
12590 do_neon_mov (void)
12591 {
12592 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
12593 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
12594 NS_NULL);
12595 struct neon_type_el et;
12596 const char *ldconst = 0;
12597
12598 switch (rs)
12599 {
12600 case NS_DD: /* case 1/9. */
12601 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
12602 /* It is not an error here if no type is given. */
12603 inst.error = NULL;
12604 if (et.type == NT_float && et.size == 64)
12605 {
12606 do_vfp_nsyn_opcode ("fcpyd");
12607 break;
12608 }
12609 /* fall through. */
12610
12611 case NS_QQ: /* case 0/1. */
12612 {
12613 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12614 return;
12615 /* The architecture manual I have doesn't explicitly state which
12616 value the U bit should have for register->register moves, but
12617 the equivalent VORR instruction has U = 0, so do that. */
12618 inst.instruction = 0x0200110;
12619 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12620 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12621 inst.instruction |= LOW4 (inst.operands[1].reg);
12622 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12623 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12624 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12625 inst.instruction |= neon_quad (rs) << 6;
12626
12627 inst.instruction = neon_dp_fixup (inst.instruction);
12628 }
12629 break;
12630
12631 case NS_DI: /* case 3/11. */
12632 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
12633 inst.error = NULL;
12634 if (et.type == NT_float && et.size == 64)
12635 {
12636 /* case 11 (fconstd). */
12637 ldconst = "fconstd";
12638 goto encode_fconstd;
12639 }
12640 /* fall through. */
12641
12642 case NS_QI: /* case 2/3. */
12643 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12644 return;
12645 inst.instruction = 0x0800010;
12646 neon_move_immediate ();
12647 inst.instruction = neon_dp_fixup (inst.instruction);
12648 break;
12649
12650 case NS_SR: /* case 4. */
12651 {
12652 unsigned bcdebits = 0;
12653 struct neon_type_el et = neon_check_type (2, NS_NULL,
12654 N_8 | N_16 | N_32 | N_KEY, N_EQK);
12655 int logsize = neon_logbits (et.size);
12656 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
12657 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
12658
12659 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
12660 _(BAD_FPU));
12661 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
12662 && et.size != 32, _(BAD_FPU));
12663 constraint (et.type == NT_invtype, _("bad type for scalar"));
12664 constraint (x >= 64 / et.size, _("scalar index out of range"));
12665
12666 switch (et.size)
12667 {
12668 case 8: bcdebits = 0x8; break;
12669 case 16: bcdebits = 0x1; break;
12670 case 32: bcdebits = 0x0; break;
12671 default: ;
12672 }
12673
12674 bcdebits |= x << logsize;
12675
12676 inst.instruction = 0xe000b10;
12677 do_vfp_cond_or_thumb ();
12678 inst.instruction |= LOW4 (dn) << 16;
12679 inst.instruction |= HI1 (dn) << 7;
12680 inst.instruction |= inst.operands[1].reg << 12;
12681 inst.instruction |= (bcdebits & 3) << 5;
12682 inst.instruction |= (bcdebits >> 2) << 21;
12683 }
12684 break;
12685
12686 case NS_DRR: /* case 5 (fmdrr). */
12687 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
12688 _(BAD_FPU));
12689
12690 inst.instruction = 0xc400b10;
12691 do_vfp_cond_or_thumb ();
12692 inst.instruction |= LOW4 (inst.operands[0].reg);
12693 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
12694 inst.instruction |= inst.operands[1].reg << 12;
12695 inst.instruction |= inst.operands[2].reg << 16;
12696 break;
12697
12698 case NS_RS: /* case 6. */
12699 {
12700 struct neon_type_el et = neon_check_type (2, NS_NULL,
12701 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
12702 unsigned logsize = neon_logbits (et.size);
12703 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
12704 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
12705 unsigned abcdebits = 0;
12706
12707 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
12708 _(BAD_FPU));
12709 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
12710 && et.size != 32, _(BAD_FPU));
12711 constraint (et.type == NT_invtype, _("bad type for scalar"));
12712 constraint (x >= 64 / et.size, _("scalar index out of range"));
12713
12714 switch (et.size)
12715 {
12716 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
12717 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
12718 case 32: abcdebits = 0x00; break;
12719 default: ;
12720 }
12721
12722 abcdebits |= x << logsize;
12723 inst.instruction = 0xe100b10;
12724 do_vfp_cond_or_thumb ();
12725 inst.instruction |= LOW4 (dn) << 16;
12726 inst.instruction |= HI1 (dn) << 7;
12727 inst.instruction |= inst.operands[0].reg << 12;
12728 inst.instruction |= (abcdebits & 3) << 5;
12729 inst.instruction |= (abcdebits >> 2) << 21;
12730 }
12731 break;
12732
12733 case NS_RRD: /* case 7 (fmrrd). */
12734 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
12735 _(BAD_FPU));
12736
12737 inst.instruction = 0xc500b10;
12738 do_vfp_cond_or_thumb ();
12739 inst.instruction |= inst.operands[0].reg << 12;
12740 inst.instruction |= inst.operands[1].reg << 16;
12741 inst.instruction |= LOW4 (inst.operands[2].reg);
12742 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12743 break;
12744
12745 case NS_FF: /* case 8 (fcpys). */
12746 do_vfp_nsyn_opcode ("fcpys");
12747 break;
12748
12749 case NS_FI: /* case 10 (fconsts). */
12750 ldconst = "fconsts";
12751 encode_fconstd:
12752 if (is_quarter_float (inst.operands[1].imm))
12753 {
12754 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
12755 do_vfp_nsyn_opcode (ldconst);
12756 }
12757 else
12758 first_error (_("immediate out of range"));
12759 break;
12760
12761 case NS_RF: /* case 12 (fmrs). */
12762 do_vfp_nsyn_opcode ("fmrs");
12763 break;
12764
12765 case NS_FR: /* case 13 (fmsr). */
12766 do_vfp_nsyn_opcode ("fmsr");
12767 break;
12768
12769 /* The encoders for the fmrrs and fmsrr instructions expect three operands
12770 (one of which is a list), but we have parsed four. Do some fiddling to
12771 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
12772 expect. */
12773 case NS_RRFF: /* case 14 (fmrrs). */
12774 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
12775 _("VFP registers must be adjacent"));
12776 inst.operands[2].imm = 2;
12777 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
12778 do_vfp_nsyn_opcode ("fmrrs");
12779 break;
12780
12781 case NS_FFRR: /* case 15 (fmsrr). */
12782 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
12783 _("VFP registers must be adjacent"));
12784 inst.operands[1] = inst.operands[2];
12785 inst.operands[2] = inst.operands[3];
12786 inst.operands[0].imm = 2;
12787 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
12788 do_vfp_nsyn_opcode ("fmsrr");
12789 break;
12790
12791 default:
12792 abort ();
12793 }
12794 }
12795
12796 static void
12797 do_neon_rshift_round_imm (void)
12798 {
12799 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12800 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
12801 int imm = inst.operands[2].imm;
12802
12803 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
12804 if (imm == 0)
12805 {
12806 inst.operands[2].present = 0;
12807 do_neon_mov ();
12808 return;
12809 }
12810
12811 constraint (imm < 1 || (unsigned)imm > et.size,
12812 _("immediate out of range for shift"));
12813 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
12814 et.size - imm);
12815 }
12816
12817 static void
12818 do_neon_movl (void)
12819 {
12820 struct neon_type_el et = neon_check_type (2, NS_QD,
12821 N_EQK | N_DBL, N_SU_32 | N_KEY);
12822 unsigned sizebits = et.size >> 3;
12823 inst.instruction |= sizebits << 19;
12824 neon_two_same (0, et.type == NT_unsigned, -1);
12825 }
12826
12827 static void
12828 do_neon_trn (void)
12829 {
12830 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12831 struct neon_type_el et = neon_check_type (2, rs,
12832 N_EQK, N_8 | N_16 | N_32 | N_KEY);
12833 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12834 neon_two_same (neon_quad (rs), 1, et.size);
12835 }
12836
12837 static void
12838 do_neon_zip_uzp (void)
12839 {
12840 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12841 struct neon_type_el et = neon_check_type (2, rs,
12842 N_EQK, N_8 | N_16 | N_32 | N_KEY);
12843 if (rs == NS_DD && et.size == 32)
12844 {
12845 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
12846 inst.instruction = N_MNEM_vtrn;
12847 do_neon_trn ();
12848 return;
12849 }
12850 neon_two_same (neon_quad (rs), 1, et.size);
12851 }
12852
12853 static void
12854 do_neon_sat_abs_neg (void)
12855 {
12856 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12857 struct neon_type_el et = neon_check_type (2, rs,
12858 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
12859 neon_two_same (neon_quad (rs), 1, et.size);
12860 }
12861
12862 static void
12863 do_neon_pair_long (void)
12864 {
12865 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12866 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
12867 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
12868 inst.instruction |= (et.type == NT_unsigned) << 7;
12869 neon_two_same (neon_quad (rs), 1, et.size);
12870 }
12871
12872 static void
12873 do_neon_recip_est (void)
12874 {
12875 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12876 struct neon_type_el et = neon_check_type (2, rs,
12877 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
12878 inst.instruction |= (et.type == NT_float) << 8;
12879 neon_two_same (neon_quad (rs), 1, et.size);
12880 }
12881
12882 static void
12883 do_neon_cls (void)
12884 {
12885 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12886 struct neon_type_el et = neon_check_type (2, rs,
12887 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
12888 neon_two_same (neon_quad (rs), 1, et.size);
12889 }
12890
12891 static void
12892 do_neon_clz (void)
12893 {
12894 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12895 struct neon_type_el et = neon_check_type (2, rs,
12896 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
12897 neon_two_same (neon_quad (rs), 1, et.size);
12898 }
12899
12900 static void
12901 do_neon_cnt (void)
12902 {
12903 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12904 struct neon_type_el et = neon_check_type (2, rs,
12905 N_EQK | N_INT, N_8 | N_KEY);
12906 neon_two_same (neon_quad (rs), 1, et.size);
12907 }
12908
12909 static void
12910 do_neon_swp (void)
12911 {
12912 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12913 neon_two_same (neon_quad (rs), 1, -1);
12914 }
12915
12916 static void
12917 do_neon_tbl_tbx (void)
12918 {
12919 unsigned listlenbits;
12920 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
12921
12922 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
12923 {
12924 first_error (_("bad list length for table lookup"));
12925 return;
12926 }
12927
12928 listlenbits = inst.operands[1].imm - 1;
12929 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12930 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12931 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12932 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12933 inst.instruction |= LOW4 (inst.operands[2].reg);
12934 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12935 inst.instruction |= listlenbits << 8;
12936
12937 inst.instruction = neon_dp_fixup (inst.instruction);
12938 }
12939
12940 static void
12941 do_neon_ldm_stm (void)
12942 {
12943 /* P, U and L bits are part of bitmask. */
12944 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
12945 unsigned offsetbits = inst.operands[1].imm * 2;
12946
12947 if (inst.operands[1].issingle)
12948 {
12949 do_vfp_nsyn_ldm_stm (is_dbmode);
12950 return;
12951 }
12952
12953 constraint (is_dbmode && !inst.operands[0].writeback,
12954 _("writeback (!) must be used for VLDMDB and VSTMDB"));
12955
12956 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
12957 _("register list must contain at least 1 and at most 16 "
12958 "registers"));
12959
12960 inst.instruction |= inst.operands[0].reg << 16;
12961 inst.instruction |= inst.operands[0].writeback << 21;
12962 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
12963 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
12964
12965 inst.instruction |= offsetbits;
12966
12967 do_vfp_cond_or_thumb ();
12968 }
12969
12970 static void
12971 do_neon_ldr_str (void)
12972 {
12973 int is_ldr = (inst.instruction & (1 << 20)) != 0;
12974
12975 if (inst.operands[0].issingle)
12976 {
12977 if (is_ldr)
12978 do_vfp_nsyn_opcode ("flds");
12979 else
12980 do_vfp_nsyn_opcode ("fsts");
12981 }
12982 else
12983 {
12984 if (is_ldr)
12985 do_vfp_nsyn_opcode ("fldd");
12986 else
12987 do_vfp_nsyn_opcode ("fstd");
12988 }
12989 }
12990
12991 /* "interleave" version also handles non-interleaving register VLD1/VST1
12992 instructions. */
12993
12994 static void
12995 do_neon_ld_st_interleave (void)
12996 {
12997 struct neon_type_el et = neon_check_type (1, NS_NULL,
12998 N_8 | N_16 | N_32 | N_64);
12999 unsigned alignbits = 0;
13000 unsigned idx;
13001 /* The bits in this table go:
13002 0: register stride of one (0) or two (1)
13003 1,2: register list length, minus one (1, 2, 3, 4).
13004 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
13005 We use -1 for invalid entries. */
13006 const int typetable[] =
13007 {
13008 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
13009 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
13010 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
13011 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
13012 };
13013 int typebits;
13014
13015 if (et.type == NT_invtype)
13016 return;
13017
13018 if (inst.operands[1].immisalign)
13019 switch (inst.operands[1].imm >> 8)
13020 {
13021 case 64: alignbits = 1; break;
13022 case 128:
13023 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13024 goto bad_alignment;
13025 alignbits = 2;
13026 break;
13027 case 256:
13028 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13029 goto bad_alignment;
13030 alignbits = 3;
13031 break;
13032 default:
13033 bad_alignment:
13034 first_error (_("bad alignment"));
13035 return;
13036 }
13037
13038 inst.instruction |= alignbits << 4;
13039 inst.instruction |= neon_logbits (et.size) << 6;
13040
13041 /* Bits [4:6] of the immediate in a list specifier encode register stride
13042 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
13043 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
13044 up the right value for "type" in a table based on this value and the given
13045 list style, then stick it back. */
13046 idx = ((inst.operands[0].imm >> 4) & 7)
13047 | (((inst.instruction >> 8) & 3) << 3);
13048
13049 typebits = typetable[idx];
13050
13051 constraint (typebits == -1, _("bad list type for instruction"));
13052
13053 inst.instruction &= ~0xf00;
13054 inst.instruction |= typebits << 8;
13055 }
13056
13057 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
13058 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
13059 otherwise. The variable arguments are a list of pairs of legal (size, align)
13060 values, terminated with -1. */
13061
13062 static int
13063 neon_alignment_bit (int size, int align, int *do_align, ...)
13064 {
13065 va_list ap;
13066 int result = FAIL, thissize, thisalign;
13067
13068 if (!inst.operands[1].immisalign)
13069 {
13070 *do_align = 0;
13071 return SUCCESS;
13072 }
13073
13074 va_start (ap, do_align);
13075
13076 do
13077 {
13078 thissize = va_arg (ap, int);
13079 if (thissize == -1)
13080 break;
13081 thisalign = va_arg (ap, int);
13082
13083 if (size == thissize && align == thisalign)
13084 result = SUCCESS;
13085 }
13086 while (result != SUCCESS);
13087
13088 va_end (ap);
13089
13090 if (result == SUCCESS)
13091 *do_align = 1;
13092 else
13093 first_error (_("unsupported alignment for instruction"));
13094
13095 return result;
13096 }
13097
13098 static void
13099 do_neon_ld_st_lane (void)
13100 {
13101 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
13102 int align_good, do_align = 0;
13103 int logsize = neon_logbits (et.size);
13104 int align = inst.operands[1].imm >> 8;
13105 int n = (inst.instruction >> 8) & 3;
13106 int max_el = 64 / et.size;
13107
13108 if (et.type == NT_invtype)
13109 return;
13110
13111 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
13112 _("bad list length"));
13113 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
13114 _("scalar index out of range"));
13115 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
13116 && et.size == 8,
13117 _("stride of 2 unavailable when element size is 8"));
13118
13119 switch (n)
13120 {
13121 case 0: /* VLD1 / VST1. */
13122 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
13123 32, 32, -1);
13124 if (align_good == FAIL)
13125 return;
13126 if (do_align)
13127 {
13128 unsigned alignbits = 0;
13129 switch (et.size)
13130 {
13131 case 16: alignbits = 0x1; break;
13132 case 32: alignbits = 0x3; break;
13133 default: ;
13134 }
13135 inst.instruction |= alignbits << 4;
13136 }
13137 break;
13138
13139 case 1: /* VLD2 / VST2. */
13140 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
13141 32, 64, -1);
13142 if (align_good == FAIL)
13143 return;
13144 if (do_align)
13145 inst.instruction |= 1 << 4;
13146 break;
13147
13148 case 2: /* VLD3 / VST3. */
13149 constraint (inst.operands[1].immisalign,
13150 _("can't use alignment with this instruction"));
13151 break;
13152
13153 case 3: /* VLD4 / VST4. */
13154 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13155 16, 64, 32, 64, 32, 128, -1);
13156 if (align_good == FAIL)
13157 return;
13158 if (do_align)
13159 {
13160 unsigned alignbits = 0;
13161 switch (et.size)
13162 {
13163 case 8: alignbits = 0x1; break;
13164 case 16: alignbits = 0x1; break;
13165 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
13166 default: ;
13167 }
13168 inst.instruction |= alignbits << 4;
13169 }
13170 break;
13171
13172 default: ;
13173 }
13174
13175 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
13176 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13177 inst.instruction |= 1 << (4 + logsize);
13178
13179 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
13180 inst.instruction |= logsize << 10;
13181 }
13182
13183 /* Encode single n-element structure to all lanes VLD<n> instructions. */
13184
13185 static void
13186 do_neon_ld_dup (void)
13187 {
13188 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
13189 int align_good, do_align = 0;
13190
13191 if (et.type == NT_invtype)
13192 return;
13193
13194 switch ((inst.instruction >> 8) & 3)
13195 {
13196 case 0: /* VLD1. */
13197 assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
13198 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13199 &do_align, 16, 16, 32, 32, -1);
13200 if (align_good == FAIL)
13201 return;
13202 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
13203 {
13204 case 1: break;
13205 case 2: inst.instruction |= 1 << 5; break;
13206 default: first_error (_("bad list length")); return;
13207 }
13208 inst.instruction |= neon_logbits (et.size) << 6;
13209 break;
13210
13211 case 1: /* VLD2. */
13212 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13213 &do_align, 8, 16, 16, 32, 32, 64, -1);
13214 if (align_good == FAIL)
13215 return;
13216 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
13217 _("bad list length"));
13218 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13219 inst.instruction |= 1 << 5;
13220 inst.instruction |= neon_logbits (et.size) << 6;
13221 break;
13222
13223 case 2: /* VLD3. */
13224 constraint (inst.operands[1].immisalign,
13225 _("can't use alignment with this instruction"));
13226 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
13227 _("bad list length"));
13228 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13229 inst.instruction |= 1 << 5;
13230 inst.instruction |= neon_logbits (et.size) << 6;
13231 break;
13232
13233 case 3: /* VLD4. */
13234 {
13235 int align = inst.operands[1].imm >> 8;
13236 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13237 16, 64, 32, 64, 32, 128, -1);
13238 if (align_good == FAIL)
13239 return;
13240 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
13241 _("bad list length"));
13242 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13243 inst.instruction |= 1 << 5;
13244 if (et.size == 32 && align == 128)
13245 inst.instruction |= 0x3 << 6;
13246 else
13247 inst.instruction |= neon_logbits (et.size) << 6;
13248 }
13249 break;
13250
13251 default: ;
13252 }
13253
13254 inst.instruction |= do_align << 4;
13255 }
13256
13257 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
13258 apart from bits [11:4]. */
13259
13260 static void
13261 do_neon_ldx_stx (void)
13262 {
13263 switch (NEON_LANE (inst.operands[0].imm))
13264 {
13265 case NEON_INTERLEAVE_LANES:
13266 inst.instruction = NEON_ENC_INTERLV (inst.instruction);
13267 do_neon_ld_st_interleave ();
13268 break;
13269
13270 case NEON_ALL_LANES:
13271 inst.instruction = NEON_ENC_DUP (inst.instruction);
13272 do_neon_ld_dup ();
13273 break;
13274
13275 default:
13276 inst.instruction = NEON_ENC_LANE (inst.instruction);
13277 do_neon_ld_st_lane ();
13278 }
13279
13280 /* L bit comes from bit mask. */
13281 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13282 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13283 inst.instruction |= inst.operands[1].reg << 16;
13284
13285 if (inst.operands[1].postind)
13286 {
13287 int postreg = inst.operands[1].imm & 0xf;
13288 constraint (!inst.operands[1].immisreg,
13289 _("post-index must be a register"));
13290 constraint (postreg == 0xd || postreg == 0xf,
13291 _("bad register for post-index"));
13292 inst.instruction |= postreg;
13293 }
13294 else if (inst.operands[1].writeback)
13295 {
13296 inst.instruction |= 0xd;
13297 }
13298 else
13299 inst.instruction |= 0xf;
13300
13301 if (thumb_mode)
13302 inst.instruction |= 0xf9000000;
13303 else
13304 inst.instruction |= 0xf4000000;
13305 }
13306
13307 \f
13308 /* Overall per-instruction processing. */
13309
13310 /* We need to be able to fix up arbitrary expressions in some statements.
13311 This is so that we can handle symbols that are an arbitrary distance from
13312 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
13313 which returns part of an address in a form which will be valid for
13314 a data instruction. We do this by pushing the expression into a symbol
13315 in the expr_section, and creating a fix for that. */
13316
13317 static void
13318 fix_new_arm (fragS * frag,
13319 int where,
13320 short int size,
13321 expressionS * exp,
13322 int pc_rel,
13323 int reloc)
13324 {
13325 fixS * new_fix;
13326
13327 switch (exp->X_op)
13328 {
13329 case O_constant:
13330 case O_symbol:
13331 case O_add:
13332 case O_subtract:
13333 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
13334 break;
13335
13336 default:
13337 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
13338 pc_rel, reloc);
13339 break;
13340 }
13341
13342 /* Mark whether the fix is to a THUMB instruction, or an ARM
13343 instruction. */
13344 new_fix->tc_fix_data = thumb_mode;
13345 }
13346
13347 /* Create a frg for an instruction requiring relaxation. */
13348 static void
13349 output_relax_insn (void)
13350 {
13351 char * to;
13352 symbolS *sym;
13353 int offset;
13354
13355 #ifdef OBJ_ELF
13356 /* The size of the instruction is unknown, so tie the debug info to the
13357 start of the instruction. */
13358 dwarf2_emit_insn (0);
13359 #endif
13360
13361 switch (inst.reloc.exp.X_op)
13362 {
13363 case O_symbol:
13364 sym = inst.reloc.exp.X_add_symbol;
13365 offset = inst.reloc.exp.X_add_number;
13366 break;
13367 case O_constant:
13368 sym = NULL;
13369 offset = inst.reloc.exp.X_add_number;
13370 break;
13371 default:
13372 sym = make_expr_symbol (&inst.reloc.exp);
13373 offset = 0;
13374 break;
13375 }
13376 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
13377 inst.relax, sym, offset, NULL/*offset, opcode*/);
13378 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
13379 }
13380
13381 /* Write a 32-bit thumb instruction to buf. */
13382 static void
13383 put_thumb32_insn (char * buf, unsigned long insn)
13384 {
13385 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
13386 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
13387 }
13388
13389 static void
13390 output_inst (const char * str)
13391 {
13392 char * to = NULL;
13393
13394 if (inst.error)
13395 {
13396 as_bad ("%s -- `%s'", inst.error, str);
13397 return;
13398 }
13399 if (inst.relax) {
13400 output_relax_insn();
13401 return;
13402 }
13403 if (inst.size == 0)
13404 return;
13405
13406 to = frag_more (inst.size);
13407
13408 if (thumb_mode && (inst.size > THUMB_SIZE))
13409 {
13410 assert (inst.size == (2 * THUMB_SIZE));
13411 put_thumb32_insn (to, inst.instruction);
13412 }
13413 else if (inst.size > INSN_SIZE)
13414 {
13415 assert (inst.size == (2 * INSN_SIZE));
13416 md_number_to_chars (to, inst.instruction, INSN_SIZE);
13417 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
13418 }
13419 else
13420 md_number_to_chars (to, inst.instruction, inst.size);
13421
13422 if (inst.reloc.type != BFD_RELOC_UNUSED)
13423 fix_new_arm (frag_now, to - frag_now->fr_literal,
13424 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
13425 inst.reloc.type);
13426
13427 #ifdef OBJ_ELF
13428 dwarf2_emit_insn (inst.size);
13429 #endif
13430 }
13431
13432 /* Tag values used in struct asm_opcode's tag field. */
13433 enum opcode_tag
13434 {
13435 OT_unconditional, /* Instruction cannot be conditionalized.
13436 The ARM condition field is still 0xE. */
13437 OT_unconditionalF, /* Instruction cannot be conditionalized
13438 and carries 0xF in its ARM condition field. */
13439 OT_csuffix, /* Instruction takes a conditional suffix. */
13440 OT_csuffixF, /* Some forms of the instruction take a conditional
13441 suffix, others place 0xF where the condition field
13442 would be. */
13443 OT_cinfix3, /* Instruction takes a conditional infix,
13444 beginning at character index 3. (In
13445 unified mode, it becomes a suffix.) */
13446 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
13447 tsts, cmps, cmns, and teqs. */
13448 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
13449 character index 3, even in unified mode. Used for
13450 legacy instructions where suffix and infix forms
13451 may be ambiguous. */
13452 OT_csuf_or_in3, /* Instruction takes either a conditional
13453 suffix or an infix at character index 3. */
13454 OT_odd_infix_unc, /* This is the unconditional variant of an
13455 instruction that takes a conditional infix
13456 at an unusual position. In unified mode,
13457 this variant will accept a suffix. */
13458 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
13459 are the conditional variants of instructions that
13460 take conditional infixes in unusual positions.
13461 The infix appears at character index
13462 (tag - OT_odd_infix_0). These are not accepted
13463 in unified mode. */
13464 };
13465
13466 /* Subroutine of md_assemble, responsible for looking up the primary
13467 opcode from the mnemonic the user wrote. STR points to the
13468 beginning of the mnemonic.
13469
13470 This is not simply a hash table lookup, because of conditional
13471 variants. Most instructions have conditional variants, which are
13472 expressed with a _conditional affix_ to the mnemonic. If we were
13473 to encode each conditional variant as a literal string in the opcode
13474 table, it would have approximately 20,000 entries.
13475
13476 Most mnemonics take this affix as a suffix, and in unified syntax,
13477 'most' is upgraded to 'all'. However, in the divided syntax, some
13478 instructions take the affix as an infix, notably the s-variants of
13479 the arithmetic instructions. Of those instructions, all but six
13480 have the infix appear after the third character of the mnemonic.
13481
13482 Accordingly, the algorithm for looking up primary opcodes given
13483 an identifier is:
13484
13485 1. Look up the identifier in the opcode table.
13486 If we find a match, go to step U.
13487
13488 2. Look up the last two characters of the identifier in the
13489 conditions table. If we find a match, look up the first N-2
13490 characters of the identifier in the opcode table. If we
13491 find a match, go to step CE.
13492
13493 3. Look up the fourth and fifth characters of the identifier in
13494 the conditions table. If we find a match, extract those
13495 characters from the identifier, and look up the remaining
13496 characters in the opcode table. If we find a match, go
13497 to step CM.
13498
13499 4. Fail.
13500
13501 U. Examine the tag field of the opcode structure, in case this is
13502 one of the six instructions with its conditional infix in an
13503 unusual place. If it is, the tag tells us where to find the
13504 infix; look it up in the conditions table and set inst.cond
13505 accordingly. Otherwise, this is an unconditional instruction.
13506 Again set inst.cond accordingly. Return the opcode structure.
13507
13508 CE. Examine the tag field to make sure this is an instruction that
13509 should receive a conditional suffix. If it is not, fail.
13510 Otherwise, set inst.cond from the suffix we already looked up,
13511 and return the opcode structure.
13512
13513 CM. Examine the tag field to make sure this is an instruction that
13514 should receive a conditional infix after the third character.
13515 If it is not, fail. Otherwise, undo the edits to the current
13516 line of input and proceed as for case CE. */
13517
13518 static const struct asm_opcode *
13519 opcode_lookup (char **str)
13520 {
13521 char *end, *base;
13522 char *affix;
13523 const struct asm_opcode *opcode;
13524 const struct asm_cond *cond;
13525 char save[2];
13526
13527 /* Scan up to the end of the mnemonic, which must end in white space,
13528 '.' (in unified mode only), or end of string. */
13529 for (base = end = *str; *end != '\0'; end++)
13530 if (*end == ' ' || (unified_syntax && *end == '.'))
13531 break;
13532
13533 if (end == base)
13534 return 0;
13535
13536 /* Handle a possible width suffix and/or Neon type suffix. */
13537 if (end[0] == '.')
13538 {
13539 int offset = 2;
13540
13541 if (end[1] == 'w')
13542 inst.size_req = 4;
13543 else if (end[1] == 'n')
13544 inst.size_req = 2;
13545 else
13546 offset = 0;
13547
13548 inst.vectype.elems = 0;
13549
13550 *str = end + offset;
13551
13552 if (end[offset] == '.')
13553 {
13554 /* See if we have a Neon type suffix. */
13555 if (parse_neon_type (&inst.vectype, str) == FAIL)
13556 return 0;
13557 }
13558 else if (end[offset] != '\0' && end[offset] != ' ')
13559 return 0;
13560 }
13561 else
13562 *str = end;
13563
13564 /* Look for unaffixed or special-case affixed mnemonic. */
13565 opcode = hash_find_n (arm_ops_hsh, base, end - base);
13566 if (opcode)
13567 {
13568 /* step U */
13569 if (opcode->tag < OT_odd_infix_0)
13570 {
13571 inst.cond = COND_ALWAYS;
13572 return opcode;
13573 }
13574
13575 if (unified_syntax)
13576 as_warn (_("conditional infixes are deprecated in unified syntax"));
13577 affix = base + (opcode->tag - OT_odd_infix_0);
13578 cond = hash_find_n (arm_cond_hsh, affix, 2);
13579 assert (cond);
13580
13581 inst.cond = cond->value;
13582 return opcode;
13583 }
13584
13585 /* Cannot have a conditional suffix on a mnemonic of less than two
13586 characters. */
13587 if (end - base < 3)
13588 return 0;
13589
13590 /* Look for suffixed mnemonic. */
13591 affix = end - 2;
13592 cond = hash_find_n (arm_cond_hsh, affix, 2);
13593 opcode = hash_find_n (arm_ops_hsh, base, affix - base);
13594 if (opcode && cond)
13595 {
13596 /* step CE */
13597 switch (opcode->tag)
13598 {
13599 case OT_cinfix3_legacy:
13600 /* Ignore conditional suffixes matched on infix only mnemonics. */
13601 break;
13602
13603 case OT_cinfix3:
13604 case OT_cinfix3_deprecated:
13605 case OT_odd_infix_unc:
13606 if (!unified_syntax)
13607 return 0;
13608 /* else fall through */
13609
13610 case OT_csuffix:
13611 case OT_csuffixF:
13612 case OT_csuf_or_in3:
13613 inst.cond = cond->value;
13614 return opcode;
13615
13616 case OT_unconditional:
13617 case OT_unconditionalF:
13618 if (thumb_mode)
13619 {
13620 inst.cond = cond->value;
13621 }
13622 else
13623 {
13624 /* delayed diagnostic */
13625 inst.error = BAD_COND;
13626 inst.cond = COND_ALWAYS;
13627 }
13628 return opcode;
13629
13630 default:
13631 return 0;
13632 }
13633 }
13634
13635 /* Cannot have a usual-position infix on a mnemonic of less than
13636 six characters (five would be a suffix). */
13637 if (end - base < 6)
13638 return 0;
13639
13640 /* Look for infixed mnemonic in the usual position. */
13641 affix = base + 3;
13642 cond = hash_find_n (arm_cond_hsh, affix, 2);
13643 if (!cond)
13644 return 0;
13645
13646 memcpy (save, affix, 2);
13647 memmove (affix, affix + 2, (end - affix) - 2);
13648 opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2);
13649 memmove (affix + 2, affix, (end - affix) - 2);
13650 memcpy (affix, save, 2);
13651
13652 if (opcode
13653 && (opcode->tag == OT_cinfix3
13654 || opcode->tag == OT_cinfix3_deprecated
13655 || opcode->tag == OT_csuf_or_in3
13656 || opcode->tag == OT_cinfix3_legacy))
13657 {
13658 /* step CM */
13659 if (unified_syntax
13660 && (opcode->tag == OT_cinfix3
13661 || opcode->tag == OT_cinfix3_deprecated))
13662 as_warn (_("conditional infixes are deprecated in unified syntax"));
13663
13664 inst.cond = cond->value;
13665 return opcode;
13666 }
13667
13668 return 0;
13669 }
13670
13671 void
13672 md_assemble (char *str)
13673 {
13674 char *p = str;
13675 const struct asm_opcode * opcode;
13676
13677 /* Align the previous label if needed. */
13678 if (last_label_seen != NULL)
13679 {
13680 symbol_set_frag (last_label_seen, frag_now);
13681 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
13682 S_SET_SEGMENT (last_label_seen, now_seg);
13683 }
13684
13685 memset (&inst, '\0', sizeof (inst));
13686 inst.reloc.type = BFD_RELOC_UNUSED;
13687
13688 opcode = opcode_lookup (&p);
13689 if (!opcode)
13690 {
13691 /* It wasn't an instruction, but it might be a register alias of
13692 the form alias .req reg, or a Neon .dn/.qn directive. */
13693 if (!create_register_alias (str, p)
13694 && !create_neon_reg_alias (str, p))
13695 as_bad (_("bad instruction `%s'"), str);
13696
13697 return;
13698 }
13699
13700 if (opcode->tag == OT_cinfix3_deprecated)
13701 as_warn (_("s suffix on comparison instruction is deprecated"));
13702
13703 /* The value which unconditional instructions should have in place of the
13704 condition field. */
13705 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
13706
13707 if (thumb_mode)
13708 {
13709 arm_feature_set variant;
13710
13711 variant = cpu_variant;
13712 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
13713 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
13714 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
13715 /* Check that this instruction is supported for this CPU. */
13716 if (!opcode->tvariant
13717 || (thumb_mode == 1
13718 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
13719 {
13720 as_bad (_("selected processor does not support `%s'"), str);
13721 return;
13722 }
13723 if (inst.cond != COND_ALWAYS && !unified_syntax
13724 && opcode->tencode != do_t_branch)
13725 {
13726 as_bad (_("Thumb does not support conditional execution"));
13727 return;
13728 }
13729
13730 /* Check conditional suffixes. */
13731 if (current_it_mask)
13732 {
13733 int cond;
13734 cond = current_cc ^ ((current_it_mask >> 4) & 1) ^ 1;
13735 current_it_mask <<= 1;
13736 current_it_mask &= 0x1f;
13737 /* The BKPT instruction is unconditional even in an IT block. */
13738 if (!inst.error
13739 && cond != inst.cond && opcode->tencode != do_t_bkpt)
13740 {
13741 as_bad (_("incorrect condition in IT block"));
13742 return;
13743 }
13744 }
13745 else if (inst.cond != COND_ALWAYS && opcode->tencode != do_t_branch)
13746 {
13747 as_bad (_("thumb conditional instrunction not in IT block"));
13748 return;
13749 }
13750
13751 mapping_state (MAP_THUMB);
13752 inst.instruction = opcode->tvalue;
13753
13754 if (!parse_operands (p, opcode->operands))
13755 opcode->tencode ();
13756
13757 /* Clear current_it_mask at the end of an IT block. */
13758 if (current_it_mask == 0x10)
13759 current_it_mask = 0;
13760
13761 if (!(inst.error || inst.relax))
13762 {
13763 assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
13764 inst.size = (inst.instruction > 0xffff ? 4 : 2);
13765 if (inst.size_req && inst.size_req != inst.size)
13766 {
13767 as_bad (_("cannot honor width suffix -- `%s'"), str);
13768 return;
13769 }
13770 }
13771 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
13772 *opcode->tvariant);
13773 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
13774 set those bits when Thumb-2 32-bit instructions are seen. ie.
13775 anything other than bl/blx.
13776 This is overly pessimistic for relaxable instructions. */
13777 if ((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
13778 || inst.relax)
13779 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
13780 arm_ext_v6t2);
13781 }
13782 else
13783 {
13784 /* Check that this instruction is supported for this CPU. */
13785 if (!opcode->avariant ||
13786 !ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))
13787 {
13788 as_bad (_("selected processor does not support `%s'"), str);
13789 return;
13790 }
13791 if (inst.size_req)
13792 {
13793 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
13794 return;
13795 }
13796
13797 mapping_state (MAP_ARM);
13798 inst.instruction = opcode->avalue;
13799 if (opcode->tag == OT_unconditionalF)
13800 inst.instruction |= 0xF << 28;
13801 else
13802 inst.instruction |= inst.cond << 28;
13803 inst.size = INSN_SIZE;
13804 if (!parse_operands (p, opcode->operands))
13805 opcode->aencode ();
13806 /* Arm mode bx is marked as both v4T and v5 because it's still required
13807 on a hypothetical non-thumb v5 core. */
13808 if (ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v4t)
13809 || ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v5))
13810 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
13811 else
13812 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
13813 *opcode->avariant);
13814 }
13815 output_inst (str);
13816 }
13817
13818 /* Various frobbings of labels and their addresses. */
13819
13820 void
13821 arm_start_line_hook (void)
13822 {
13823 last_label_seen = NULL;
13824 }
13825
13826 void
13827 arm_frob_label (symbolS * sym)
13828 {
13829 last_label_seen = sym;
13830
13831 ARM_SET_THUMB (sym, thumb_mode);
13832
13833 #if defined OBJ_COFF || defined OBJ_ELF
13834 ARM_SET_INTERWORK (sym, support_interwork);
13835 #endif
13836
13837 /* Note - do not allow local symbols (.Lxxx) to be labeled
13838 as Thumb functions. This is because these labels, whilst
13839 they exist inside Thumb code, are not the entry points for
13840 possible ARM->Thumb calls. Also, these labels can be used
13841 as part of a computed goto or switch statement. eg gcc
13842 can generate code that looks like this:
13843
13844 ldr r2, [pc, .Laaa]
13845 lsl r3, r3, #2
13846 ldr r2, [r3, r2]
13847 mov pc, r2
13848
13849 .Lbbb: .word .Lxxx
13850 .Lccc: .word .Lyyy
13851 ..etc...
13852 .Laaa: .word Lbbb
13853
13854 The first instruction loads the address of the jump table.
13855 The second instruction converts a table index into a byte offset.
13856 The third instruction gets the jump address out of the table.
13857 The fourth instruction performs the jump.
13858
13859 If the address stored at .Laaa is that of a symbol which has the
13860 Thumb_Func bit set, then the linker will arrange for this address
13861 to have the bottom bit set, which in turn would mean that the
13862 address computation performed by the third instruction would end
13863 up with the bottom bit set. Since the ARM is capable of unaligned
13864 word loads, the instruction would then load the incorrect address
13865 out of the jump table, and chaos would ensue. */
13866 if (label_is_thumb_function_name
13867 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
13868 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
13869 {
13870 /* When the address of a Thumb function is taken the bottom
13871 bit of that address should be set. This will allow
13872 interworking between Arm and Thumb functions to work
13873 correctly. */
13874
13875 THUMB_SET_FUNC (sym, 1);
13876
13877 label_is_thumb_function_name = FALSE;
13878 }
13879
13880 #ifdef OBJ_ELF
13881 dwarf2_emit_label (sym);
13882 #endif
13883 }
13884
13885 int
13886 arm_data_in_code (void)
13887 {
13888 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
13889 {
13890 *input_line_pointer = '/';
13891 input_line_pointer += 5;
13892 *input_line_pointer = 0;
13893 return 1;
13894 }
13895
13896 return 0;
13897 }
13898
13899 char *
13900 arm_canonicalize_symbol_name (char * name)
13901 {
13902 int len;
13903
13904 if (thumb_mode && (len = strlen (name)) > 5
13905 && streq (name + len - 5, "/data"))
13906 *(name + len - 5) = 0;
13907
13908 return name;
13909 }
13910 \f
13911 /* Table of all register names defined by default. The user can
13912 define additional names with .req. Note that all register names
13913 should appear in both upper and lowercase variants. Some registers
13914 also have mixed-case names. */
13915
13916 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
13917 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
13918 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
13919 #define REGSET(p,t) \
13920 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
13921 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
13922 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
13923 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
13924 #define REGSETH(p,t) \
13925 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
13926 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
13927 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
13928 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
13929 #define REGSET2(p,t) \
13930 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
13931 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
13932 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
13933 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
13934
13935 static const struct reg_entry reg_names[] =
13936 {
13937 /* ARM integer registers. */
13938 REGSET(r, RN), REGSET(R, RN),
13939
13940 /* ATPCS synonyms. */
13941 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
13942 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
13943 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
13944
13945 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
13946 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
13947 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
13948
13949 /* Well-known aliases. */
13950 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
13951 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
13952
13953 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
13954 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
13955
13956 /* Coprocessor numbers. */
13957 REGSET(p, CP), REGSET(P, CP),
13958
13959 /* Coprocessor register numbers. The "cr" variants are for backward
13960 compatibility. */
13961 REGSET(c, CN), REGSET(C, CN),
13962 REGSET(cr, CN), REGSET(CR, CN),
13963
13964 /* FPA registers. */
13965 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
13966 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
13967
13968 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
13969 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
13970
13971 /* VFP SP registers. */
13972 REGSET(s,VFS), REGSET(S,VFS),
13973 REGSETH(s,VFS), REGSETH(S,VFS),
13974
13975 /* VFP DP Registers. */
13976 REGSET(d,VFD), REGSET(D,VFD),
13977 /* Extra Neon DP registers. */
13978 REGSETH(d,VFD), REGSETH(D,VFD),
13979
13980 /* Neon QP registers. */
13981 REGSET2(q,NQ), REGSET2(Q,NQ),
13982
13983 /* VFP control registers. */
13984 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
13985 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
13986
13987 /* Maverick DSP coprocessor registers. */
13988 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
13989 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
13990
13991 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
13992 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
13993 REGDEF(dspsc,0,DSPSC),
13994
13995 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
13996 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
13997 REGDEF(DSPSC,0,DSPSC),
13998
13999 /* iWMMXt data registers - p0, c0-15. */
14000 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
14001
14002 /* iWMMXt control registers - p1, c0-3. */
14003 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
14004 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
14005 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
14006 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
14007
14008 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
14009 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
14010 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
14011 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
14012 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
14013
14014 /* XScale accumulator registers. */
14015 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
14016 };
14017 #undef REGDEF
14018 #undef REGNUM
14019 #undef REGSET
14020
14021 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
14022 within psr_required_here. */
14023 static const struct asm_psr psrs[] =
14024 {
14025 /* Backward compatibility notation. Note that "all" is no longer
14026 truly all possible PSR bits. */
14027 {"all", PSR_c | PSR_f},
14028 {"flg", PSR_f},
14029 {"ctl", PSR_c},
14030
14031 /* Individual flags. */
14032 {"f", PSR_f},
14033 {"c", PSR_c},
14034 {"x", PSR_x},
14035 {"s", PSR_s},
14036 /* Combinations of flags. */
14037 {"fs", PSR_f | PSR_s},
14038 {"fx", PSR_f | PSR_x},
14039 {"fc", PSR_f | PSR_c},
14040 {"sf", PSR_s | PSR_f},
14041 {"sx", PSR_s | PSR_x},
14042 {"sc", PSR_s | PSR_c},
14043 {"xf", PSR_x | PSR_f},
14044 {"xs", PSR_x | PSR_s},
14045 {"xc", PSR_x | PSR_c},
14046 {"cf", PSR_c | PSR_f},
14047 {"cs", PSR_c | PSR_s},
14048 {"cx", PSR_c | PSR_x},
14049 {"fsx", PSR_f | PSR_s | PSR_x},
14050 {"fsc", PSR_f | PSR_s | PSR_c},
14051 {"fxs", PSR_f | PSR_x | PSR_s},
14052 {"fxc", PSR_f | PSR_x | PSR_c},
14053 {"fcs", PSR_f | PSR_c | PSR_s},
14054 {"fcx", PSR_f | PSR_c | PSR_x},
14055 {"sfx", PSR_s | PSR_f | PSR_x},
14056 {"sfc", PSR_s | PSR_f | PSR_c},
14057 {"sxf", PSR_s | PSR_x | PSR_f},
14058 {"sxc", PSR_s | PSR_x | PSR_c},
14059 {"scf", PSR_s | PSR_c | PSR_f},
14060 {"scx", PSR_s | PSR_c | PSR_x},
14061 {"xfs", PSR_x | PSR_f | PSR_s},
14062 {"xfc", PSR_x | PSR_f | PSR_c},
14063 {"xsf", PSR_x | PSR_s | PSR_f},
14064 {"xsc", PSR_x | PSR_s | PSR_c},
14065 {"xcf", PSR_x | PSR_c | PSR_f},
14066 {"xcs", PSR_x | PSR_c | PSR_s},
14067 {"cfs", PSR_c | PSR_f | PSR_s},
14068 {"cfx", PSR_c | PSR_f | PSR_x},
14069 {"csf", PSR_c | PSR_s | PSR_f},
14070 {"csx", PSR_c | PSR_s | PSR_x},
14071 {"cxf", PSR_c | PSR_x | PSR_f},
14072 {"cxs", PSR_c | PSR_x | PSR_s},
14073 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
14074 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
14075 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
14076 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
14077 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
14078 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
14079 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
14080 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
14081 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
14082 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
14083 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
14084 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
14085 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
14086 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
14087 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
14088 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
14089 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
14090 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
14091 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
14092 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
14093 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
14094 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
14095 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
14096 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
14097 };
14098
14099 /* Table of V7M psr names. */
14100 static const struct asm_psr v7m_psrs[] =
14101 {
14102 {"apsr", 0 },
14103 {"iapsr", 1 },
14104 {"eapsr", 2 },
14105 {"psr", 3 },
14106 {"ipsr", 5 },
14107 {"epsr", 6 },
14108 {"iepsr", 7 },
14109 {"msp", 8 },
14110 {"psp", 9 },
14111 {"primask", 16},
14112 {"basepri", 17},
14113 {"basepri_max", 18},
14114 {"faultmask", 19},
14115 {"control", 20}
14116 };
14117
14118 /* Table of all shift-in-operand names. */
14119 static const struct asm_shift_name shift_names [] =
14120 {
14121 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
14122 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
14123 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
14124 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
14125 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
14126 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
14127 };
14128
14129 /* Table of all explicit relocation names. */
14130 #ifdef OBJ_ELF
14131 static struct reloc_entry reloc_names[] =
14132 {
14133 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
14134 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
14135 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
14136 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
14137 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
14138 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
14139 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
14140 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
14141 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
14142 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
14143 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
14144 };
14145 #endif
14146
14147 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
14148 static const struct asm_cond conds[] =
14149 {
14150 {"eq", 0x0},
14151 {"ne", 0x1},
14152 {"cs", 0x2}, {"hs", 0x2},
14153 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
14154 {"mi", 0x4},
14155 {"pl", 0x5},
14156 {"vs", 0x6},
14157 {"vc", 0x7},
14158 {"hi", 0x8},
14159 {"ls", 0x9},
14160 {"ge", 0xa},
14161 {"lt", 0xb},
14162 {"gt", 0xc},
14163 {"le", 0xd},
14164 {"al", 0xe}
14165 };
14166
14167 static struct asm_barrier_opt barrier_opt_names[] =
14168 {
14169 { "sy", 0xf },
14170 { "un", 0x7 },
14171 { "st", 0xe },
14172 { "unst", 0x6 }
14173 };
14174
14175 /* Table of ARM-format instructions. */
14176
14177 /* Macros for gluing together operand strings. N.B. In all cases
14178 other than OPS0, the trailing OP_stop comes from default
14179 zero-initialization of the unspecified elements of the array. */
14180 #define OPS0() { OP_stop, }
14181 #define OPS1(a) { OP_##a, }
14182 #define OPS2(a,b) { OP_##a,OP_##b, }
14183 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
14184 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
14185 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
14186 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
14187
14188 /* These macros abstract out the exact format of the mnemonic table and
14189 save some repeated characters. */
14190
14191 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
14192 #define TxCE(mnem, op, top, nops, ops, ae, te) \
14193 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
14194 THUMB_VARIANT, do_##ae, do_##te }
14195
14196 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
14197 a T_MNEM_xyz enumerator. */
14198 #define TCE(mnem, aop, top, nops, ops, ae, te) \
14199 TxCE(mnem, aop, 0x##top, nops, ops, ae, te)
14200 #define tCE(mnem, aop, top, nops, ops, ae, te) \
14201 TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14202
14203 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
14204 infix after the third character. */
14205 #define TxC3(mnem, op, top, nops, ops, ae, te) \
14206 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
14207 THUMB_VARIANT, do_##ae, do_##te }
14208 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
14209 { #mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
14210 THUMB_VARIANT, do_##ae, do_##te }
14211 #define TC3(mnem, aop, top, nops, ops, ae, te) \
14212 TxC3(mnem, aop, 0x##top, nops, ops, ae, te)
14213 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
14214 TxC3w(mnem, aop, 0x##top, nops, ops, ae, te)
14215 #define tC3(mnem, aop, top, nops, ops, ae, te) \
14216 TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14217 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
14218 TxC3w(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14219
14220 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
14221 appear in the condition table. */
14222 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
14223 { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14224 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
14225
14226 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
14227 TxCM_(m1, , m2, op, top, nops, ops, ae, te), \
14228 TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \
14229 TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \
14230 TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \
14231 TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \
14232 TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \
14233 TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \
14234 TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \
14235 TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \
14236 TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \
14237 TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \
14238 TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \
14239 TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \
14240 TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \
14241 TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \
14242 TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \
14243 TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \
14244 TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \
14245 TxCM_(m1, al, m2, op, top, nops, ops, ae, te)
14246
14247 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
14248 TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te)
14249 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
14250 TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
14251
14252 /* Mnemonic that cannot be conditionalized. The ARM condition-code
14253 field is still 0xE. Many of the Thumb variants can be executed
14254 conditionally, so this is checked separately. */
14255 #define TUE(mnem, op, top, nops, ops, ae, te) \
14256 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
14257 THUMB_VARIANT, do_##ae, do_##te }
14258
14259 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
14260 condition code field. */
14261 #define TUF(mnem, op, top, nops, ops, ae, te) \
14262 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
14263 THUMB_VARIANT, do_##ae, do_##te }
14264
14265 /* ARM-only variants of all the above. */
14266 #define CE(mnem, op, nops, ops, ae) \
14267 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14268
14269 #define C3(mnem, op, nops, ops, ae) \
14270 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14271
14272 /* Legacy mnemonics that always have conditional infix after the third
14273 character. */
14274 #define CL(mnem, op, nops, ops, ae) \
14275 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14276 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14277
14278 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
14279 #define cCE(mnem, op, nops, ops, ae) \
14280 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14281
14282 /* Legacy coprocessor instructions where conditional infix and conditional
14283 suffix are ambiguous. For consistency this includes all FPA instructions,
14284 not just the potentially ambiguous ones. */
14285 #define cCL(mnem, op, nops, ops, ae) \
14286 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14287 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14288
14289 /* Coprocessor, takes either a suffix or a position-3 infix
14290 (for an FPA corner case). */
14291 #define C3E(mnem, op, nops, ops, ae) \
14292 { #mnem, OPS##nops ops, OT_csuf_or_in3, \
14293 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14294
14295 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
14296 { #m1 #m2 #m3, OPS##nops ops, \
14297 sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14298 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14299
14300 #define CM(m1, m2, op, nops, ops, ae) \
14301 xCM_(m1, , m2, op, nops, ops, ae), \
14302 xCM_(m1, eq, m2, op, nops, ops, ae), \
14303 xCM_(m1, ne, m2, op, nops, ops, ae), \
14304 xCM_(m1, cs, m2, op, nops, ops, ae), \
14305 xCM_(m1, hs, m2, op, nops, ops, ae), \
14306 xCM_(m1, cc, m2, op, nops, ops, ae), \
14307 xCM_(m1, ul, m2, op, nops, ops, ae), \
14308 xCM_(m1, lo, m2, op, nops, ops, ae), \
14309 xCM_(m1, mi, m2, op, nops, ops, ae), \
14310 xCM_(m1, pl, m2, op, nops, ops, ae), \
14311 xCM_(m1, vs, m2, op, nops, ops, ae), \
14312 xCM_(m1, vc, m2, op, nops, ops, ae), \
14313 xCM_(m1, hi, m2, op, nops, ops, ae), \
14314 xCM_(m1, ls, m2, op, nops, ops, ae), \
14315 xCM_(m1, ge, m2, op, nops, ops, ae), \
14316 xCM_(m1, lt, m2, op, nops, ops, ae), \
14317 xCM_(m1, gt, m2, op, nops, ops, ae), \
14318 xCM_(m1, le, m2, op, nops, ops, ae), \
14319 xCM_(m1, al, m2, op, nops, ops, ae)
14320
14321 #define UE(mnem, op, nops, ops, ae) \
14322 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14323
14324 #define UF(mnem, op, nops, ops, ae) \
14325 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14326
14327 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
14328 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
14329 use the same encoding function for each. */
14330 #define NUF(mnem, op, nops, ops, enc) \
14331 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
14332 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14333
14334 /* Neon data processing, version which indirects through neon_enc_tab for
14335 the various overloaded versions of opcodes. */
14336 #define nUF(mnem, op, nops, ops, enc) \
14337 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM_##op, N_MNEM_##op, \
14338 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14339
14340 /* Neon insn with conditional suffix for the ARM version, non-overloaded
14341 version. */
14342 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
14343 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
14344 THUMB_VARIANT, do_##enc, do_##enc }
14345
14346 #define NCE(mnem, op, nops, ops, enc) \
14347 NCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14348
14349 #define NCEF(mnem, op, nops, ops, enc) \
14350 NCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14351
14352 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
14353 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
14354 { #mnem, OPS##nops ops, tag, N_MNEM_##op, N_MNEM_##op, \
14355 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14356
14357 #define nCE(mnem, op, nops, ops, enc) \
14358 nCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14359
14360 #define nCEF(mnem, op, nops, ops, enc) \
14361 nCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14362
14363 #define do_0 0
14364
14365 /* Thumb-only, unconditional. */
14366 #define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te)
14367
14368 static const struct asm_opcode insns[] =
14369 {
14370 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
14371 #define THUMB_VARIANT &arm_ext_v4t
14372 tCE(and, 0000000, and, 3, (RR, oRR, SH), arit, t_arit3c),
14373 tC3(ands, 0100000, ands, 3, (RR, oRR, SH), arit, t_arit3c),
14374 tCE(eor, 0200000, eor, 3, (RR, oRR, SH), arit, t_arit3c),
14375 tC3(eors, 0300000, eors, 3, (RR, oRR, SH), arit, t_arit3c),
14376 tCE(sub, 0400000, sub, 3, (RR, oRR, SH), arit, t_add_sub),
14377 tC3(subs, 0500000, subs, 3, (RR, oRR, SH), arit, t_add_sub),
14378 tCE(add, 0800000, add, 3, (RR, oRR, SHG), arit, t_add_sub),
14379 tC3(adds, 0900000, adds, 3, (RR, oRR, SHG), arit, t_add_sub),
14380 tCE(adc, 0a00000, adc, 3, (RR, oRR, SH), arit, t_arit3c),
14381 tC3(adcs, 0b00000, adcs, 3, (RR, oRR, SH), arit, t_arit3c),
14382 tCE(sbc, 0c00000, sbc, 3, (RR, oRR, SH), arit, t_arit3),
14383 tC3(sbcs, 0d00000, sbcs, 3, (RR, oRR, SH), arit, t_arit3),
14384 tCE(orr, 1800000, orr, 3, (RR, oRR, SH), arit, t_arit3c),
14385 tC3(orrs, 1900000, orrs, 3, (RR, oRR, SH), arit, t_arit3c),
14386 tCE(bic, 1c00000, bic, 3, (RR, oRR, SH), arit, t_arit3),
14387 tC3(bics, 1d00000, bics, 3, (RR, oRR, SH), arit, t_arit3),
14388
14389 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
14390 for setting PSR flag bits. They are obsolete in V6 and do not
14391 have Thumb equivalents. */
14392 tCE(tst, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
14393 tC3w(tsts, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
14394 CL(tstp, 110f000, 2, (RR, SH), cmp),
14395 tCE(cmp, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
14396 tC3w(cmps, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
14397 CL(cmpp, 150f000, 2, (RR, SH), cmp),
14398 tCE(cmn, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
14399 tC3w(cmns, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
14400 CL(cmnp, 170f000, 2, (RR, SH), cmp),
14401
14402 tCE(mov, 1a00000, mov, 2, (RR, SH), mov, t_mov_cmp),
14403 tC3(movs, 1b00000, movs, 2, (RR, SH), mov, t_mov_cmp),
14404 tCE(mvn, 1e00000, mvn, 2, (RR, SH), mov, t_mvn_tst),
14405 tC3(mvns, 1f00000, mvns, 2, (RR, SH), mov, t_mvn_tst),
14406
14407 tCE(ldr, 4100000, ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
14408 tC3(ldrb, 4500000, ldrb, 2, (RR, ADDRGLDR),ldst, t_ldst),
14409 tCE(str, 4000000, str, 2, (RR, ADDRGLDR),ldst, t_ldst),
14410 tC3(strb, 4400000, strb, 2, (RR, ADDRGLDR),ldst, t_ldst),
14411
14412 tCE(stm, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14413 tC3(stmia, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14414 tC3(stmea, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14415 tCE(ldm, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14416 tC3(ldmia, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14417 tC3(ldmfd, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14418
14419 TCE(swi, f000000, df00, 1, (EXPi), swi, t_swi),
14420 TCE(svc, f000000, df00, 1, (EXPi), swi, t_swi),
14421 tCE(b, a000000, b, 1, (EXPr), branch, t_branch),
14422 TCE(bl, b000000, f000f800, 1, (EXPr), bl, t_branch23),
14423
14424 /* Pseudo ops. */
14425 tCE(adr, 28f0000, adr, 2, (RR, EXP), adr, t_adr),
14426 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
14427 tCE(nop, 1a00000, nop, 1, (oI255c), nop, t_nop),
14428
14429 /* Thumb-compatibility pseudo ops. */
14430 tCE(lsl, 1a00000, lsl, 3, (RR, oRR, SH), shift, t_shift),
14431 tC3(lsls, 1b00000, lsls, 3, (RR, oRR, SH), shift, t_shift),
14432 tCE(lsr, 1a00020, lsr, 3, (RR, oRR, SH), shift, t_shift),
14433 tC3(lsrs, 1b00020, lsrs, 3, (RR, oRR, SH), shift, t_shift),
14434 tCE(asr, 1a00040, asr, 3, (RR, oRR, SH), shift, t_shift),
14435 tC3(asrs, 1b00040, asrs, 3, (RR, oRR, SH), shift, t_shift),
14436 tCE(ror, 1a00060, ror, 3, (RR, oRR, SH), shift, t_shift),
14437 tC3(rors, 1b00060, rors, 3, (RR, oRR, SH), shift, t_shift),
14438 tCE(neg, 2600000, neg, 2, (RR, RR), rd_rn, t_neg),
14439 tC3(negs, 2700000, negs, 2, (RR, RR), rd_rn, t_neg),
14440 tCE(push, 92d0000, push, 1, (REGLST), push_pop, t_push_pop),
14441 tCE(pop, 8bd0000, pop, 1, (REGLST), push_pop, t_push_pop),
14442
14443 #undef THUMB_VARIANT
14444 #define THUMB_VARIANT &arm_ext_v6
14445 TCE(cpy, 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
14446
14447 /* V1 instructions with no Thumb analogue prior to V6T2. */
14448 #undef THUMB_VARIANT
14449 #define THUMB_VARIANT &arm_ext_v6t2
14450 TCE(rsb, 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
14451 TC3(rsbs, 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
14452 TCE(teq, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
14453 TC3w(teqs, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
14454 CL(teqp, 130f000, 2, (RR, SH), cmp),
14455
14456 TC3(ldrt, 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
14457 TC3(ldrbt, 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
14458 TC3(strt, 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
14459 TC3(strbt, 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
14460
14461 TC3(stmdb, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14462 TC3(stmfd, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14463
14464 TC3(ldmdb, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14465 TC3(ldmea, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14466
14467 /* V1 instructions with no Thumb analogue at all. */
14468 CE(rsc, 0e00000, 3, (RR, oRR, SH), arit),
14469 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
14470
14471 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
14472 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
14473 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
14474 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
14475 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
14476 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
14477 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
14478 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
14479
14480 #undef ARM_VARIANT
14481 #define ARM_VARIANT &arm_ext_v2 /* ARM 2 - multiplies. */
14482 #undef THUMB_VARIANT
14483 #define THUMB_VARIANT &arm_ext_v4t
14484 tCE(mul, 0000090, mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
14485 tC3(muls, 0100090, muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
14486
14487 #undef THUMB_VARIANT
14488 #define THUMB_VARIANT &arm_ext_v6t2
14489 TCE(mla, 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
14490 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
14491
14492 /* Generic coprocessor instructions. */
14493 TCE(cdp, e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
14494 TCE(ldc, c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14495 TC3(ldcl, c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14496 TCE(stc, c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14497 TC3(stcl, c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14498 TCE(mcr, e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
14499 TCE(mrc, e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
14500
14501 #undef ARM_VARIANT
14502 #define ARM_VARIANT &arm_ext_v2s /* ARM 3 - swp instructions. */
14503 CE(swp, 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
14504 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
14505
14506 #undef ARM_VARIANT
14507 #define ARM_VARIANT &arm_ext_v3 /* ARM 6 Status register instructions. */
14508 TCE(mrs, 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
14509 TCE(msr, 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
14510
14511 #undef ARM_VARIANT
14512 #define ARM_VARIANT &arm_ext_v3m /* ARM 7M long multiplies. */
14513 TCE(smull, 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
14514 CM(smull,s, 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
14515 TCE(umull, 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
14516 CM(umull,s, 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
14517 TCE(smlal, 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
14518 CM(smlal,s, 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
14519 TCE(umlal, 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
14520 CM(umlal,s, 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
14521
14522 #undef ARM_VARIANT
14523 #define ARM_VARIANT &arm_ext_v4 /* ARM Architecture 4. */
14524 #undef THUMB_VARIANT
14525 #define THUMB_VARIANT &arm_ext_v4t
14526 tC3(ldrh, 01000b0, ldrh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14527 tC3(strh, 00000b0, strh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14528 tC3(ldrsh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14529 tC3(ldrsb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14530 tCM(ld,sh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14531 tCM(ld,sb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14532
14533 #undef ARM_VARIANT
14534 #define ARM_VARIANT &arm_ext_v4t_5
14535 /* ARM Architecture 4T. */
14536 /* Note: bx (and blx) are required on V5, even if the processor does
14537 not support Thumb. */
14538 TCE(bx, 12fff10, 4700, 1, (RR), bx, t_bx),
14539
14540 #undef ARM_VARIANT
14541 #define ARM_VARIANT &arm_ext_v5 /* ARM Architecture 5T. */
14542 #undef THUMB_VARIANT
14543 #define THUMB_VARIANT &arm_ext_v5t
14544 /* Note: blx has 2 variants; the .value coded here is for
14545 BLX(2). Only this variant has conditional execution. */
14546 TCE(blx, 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
14547 TUE(bkpt, 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
14548
14549 #undef THUMB_VARIANT
14550 #define THUMB_VARIANT &arm_ext_v6t2
14551 TCE(clz, 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
14552 TUF(ldc2, c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14553 TUF(ldc2l, c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14554 TUF(stc2, c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14555 TUF(stc2l, c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14556 TUF(cdp2, e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
14557 TUF(mcr2, e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
14558 TUF(mrc2, e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
14559
14560 #undef ARM_VARIANT
14561 #define ARM_VARIANT &arm_ext_v5exp /* ARM Architecture 5TExP. */
14562 TCE(smlabb, 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14563 TCE(smlatb, 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14564 TCE(smlabt, 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14565 TCE(smlatt, 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14566
14567 TCE(smlawb, 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14568 TCE(smlawt, 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14569
14570 TCE(smlalbb, 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
14571 TCE(smlaltb, 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
14572 TCE(smlalbt, 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
14573 TCE(smlaltt, 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
14574
14575 TCE(smulbb, 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14576 TCE(smultb, 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14577 TCE(smulbt, 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14578 TCE(smultt, 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14579
14580 TCE(smulwb, 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14581 TCE(smulwt, 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14582
14583 TCE(qadd, 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
14584 TCE(qdadd, 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
14585 TCE(qsub, 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
14586 TCE(qdsub, 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
14587
14588 #undef ARM_VARIANT
14589 #define ARM_VARIANT &arm_ext_v5e /* ARM Architecture 5TE. */
14590 TUF(pld, 450f000, f810f000, 1, (ADDR), pld, t_pld),
14591 TC3(ldrd, 00000d0, e9500000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
14592 TC3(strd, 00000f0, e9400000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
14593
14594 TCE(mcrr, c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
14595 TCE(mrrc, c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
14596
14597 #undef ARM_VARIANT
14598 #define ARM_VARIANT &arm_ext_v5j /* ARM Architecture 5TEJ. */
14599 TCE(bxj, 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
14600
14601 #undef ARM_VARIANT
14602 #define ARM_VARIANT &arm_ext_v6 /* ARM V6. */
14603 #undef THUMB_VARIANT
14604 #define THUMB_VARIANT &arm_ext_v6
14605 TUF(cpsie, 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
14606 TUF(cpsid, 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
14607 tCE(rev, 6bf0f30, rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
14608 tCE(rev16, 6bf0fb0, rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
14609 tCE(revsh, 6ff0fb0, revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
14610 tCE(sxth, 6bf0070, sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14611 tCE(uxth, 6ff0070, uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14612 tCE(sxtb, 6af0070, sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14613 tCE(uxtb, 6ef0070, uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14614 TUF(setend, 1010000, b650, 1, (ENDI), setend, t_setend),
14615
14616 #undef THUMB_VARIANT
14617 #define THUMB_VARIANT &arm_ext_v6t2
14618 TCE(ldrex, 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
14619 TUF(mcrr2, c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
14620 TUF(mrrc2, c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
14621
14622 TCE(ssat, 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
14623 TCE(usat, 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
14624
14625 /* ARM V6 not included in V7M (eg. integer SIMD). */
14626 #undef THUMB_VARIANT
14627 #define THUMB_VARIANT &arm_ext_v6_notm
14628 TUF(cps, 1020000, f3af8100, 1, (I31b), imm0, t_cps),
14629 TCE(pkhbt, 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
14630 TCE(pkhtb, 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
14631 TCE(qadd16, 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14632 TCE(qadd8, 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14633 TCE(qaddsubx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14634 TCE(qsub16, 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14635 TCE(qsub8, 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14636 TCE(qsubaddx, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14637 TCE(sadd16, 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14638 TCE(sadd8, 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14639 TCE(saddsubx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14640 TCE(shadd16, 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14641 TCE(shadd8, 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14642 TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14643 TCE(shsub16, 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14644 TCE(shsub8, 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14645 TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14646 TCE(ssub16, 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14647 TCE(ssub8, 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14648 TCE(ssubaddx, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14649 TCE(uadd16, 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14650 TCE(uadd8, 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14651 TCE(uaddsubx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14652 TCE(uhadd16, 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14653 TCE(uhadd8, 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14654 TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14655 TCE(uhsub16, 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14656 TCE(uhsub8, 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14657 TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14658 TCE(uqadd16, 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14659 TCE(uqadd8, 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14660 TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14661 TCE(uqsub16, 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14662 TCE(uqsub8, 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14663 TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14664 TCE(usub16, 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14665 TCE(usub8, 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14666 TCE(usubaddx, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14667 TUF(rfeia, 8900a00, e990c000, 1, (RRw), rfe, rfe),
14668 UF(rfeib, 9900a00, 1, (RRw), rfe),
14669 UF(rfeda, 8100a00, 1, (RRw), rfe),
14670 TUF(rfedb, 9100a00, e810c000, 1, (RRw), rfe, rfe),
14671 TUF(rfefd, 8900a00, e990c000, 1, (RRw), rfe, rfe),
14672 UF(rfefa, 9900a00, 1, (RRw), rfe),
14673 UF(rfeea, 8100a00, 1, (RRw), rfe),
14674 TUF(rfeed, 9100a00, e810c000, 1, (RRw), rfe, rfe),
14675 TCE(sxtah, 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
14676 TCE(sxtab16, 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
14677 TCE(sxtab, 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
14678 TCE(sxtb16, 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14679 TCE(uxtah, 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
14680 TCE(uxtab16, 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
14681 TCE(uxtab, 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
14682 TCE(uxtb16, 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14683 TCE(sel, 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14684 TCE(smlad, 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14685 TCE(smladx, 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14686 TCE(smlald, 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
14687 TCE(smlaldx, 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
14688 TCE(smlsd, 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14689 TCE(smlsdx, 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14690 TCE(smlsld, 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
14691 TCE(smlsldx, 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
14692 TCE(smmla, 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14693 TCE(smmlar, 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14694 TCE(smmls, 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14695 TCE(smmlsr, 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14696 TCE(smmul, 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14697 TCE(smmulr, 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14698 TCE(smuad, 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14699 TCE(smuadx, 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14700 TCE(smusd, 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14701 TCE(smusdx, 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14702 TUF(srsia, 8cd0500, e980c000, 1, (I31w), srs, srs),
14703 UF(srsib, 9cd0500, 1, (I31w), srs),
14704 UF(srsda, 84d0500, 1, (I31w), srs),
14705 TUF(srsdb, 94d0500, e800c000, 1, (I31w), srs, srs),
14706 TCE(ssat16, 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
14707 TCE(strex, 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
14708 TCE(umaal, 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
14709 TCE(usad8, 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14710 TCE(usada8, 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14711 TCE(usat16, 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
14712
14713 #undef ARM_VARIANT
14714 #define ARM_VARIANT &arm_ext_v6k
14715 #undef THUMB_VARIANT
14716 #define THUMB_VARIANT &arm_ext_v6k
14717 tCE(yield, 320f001, yield, 0, (), noargs, t_hint),
14718 tCE(wfe, 320f002, wfe, 0, (), noargs, t_hint),
14719 tCE(wfi, 320f003, wfi, 0, (), noargs, t_hint),
14720 tCE(sev, 320f004, sev, 0, (), noargs, t_hint),
14721
14722 #undef THUMB_VARIANT
14723 #define THUMB_VARIANT &arm_ext_v6_notm
14724 TCE(ldrexd, 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
14725 TCE(strexd, 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
14726
14727 #undef THUMB_VARIANT
14728 #define THUMB_VARIANT &arm_ext_v6t2
14729 TCE(ldrexb, 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
14730 TCE(ldrexh, 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
14731 TCE(strexb, 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
14732 TCE(strexh, 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
14733 TUF(clrex, 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
14734
14735 #undef ARM_VARIANT
14736 #define ARM_VARIANT &arm_ext_v6z
14737 TCE(smc, 1600070, f7f08000, 1, (EXPi), smc, t_smc),
14738
14739 #undef ARM_VARIANT
14740 #define ARM_VARIANT &arm_ext_v6t2
14741 TCE(bfc, 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
14742 TCE(bfi, 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
14743 TCE(sbfx, 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
14744 TCE(ubfx, 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
14745
14746 TCE(mls, 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
14747 TCE(movw, 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
14748 TCE(movt, 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
14749 TCE(rbit, 3ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
14750
14751 TC3(ldrht, 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
14752 TC3(ldrsht, 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
14753 TC3(ldrsbt, 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
14754 TC3(strht, 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
14755
14756 UT(cbnz, b900, 2, (RR, EXP), t_czb),
14757 UT(cbz, b100, 2, (RR, EXP), t_czb),
14758 /* ARM does not really have an IT instruction. */
14759 TUE(it, 0, bf08, 1, (COND), it, t_it),
14760 TUE(itt, 0, bf0c, 1, (COND), it, t_it),
14761 TUE(ite, 0, bf04, 1, (COND), it, t_it),
14762 TUE(ittt, 0, bf0e, 1, (COND), it, t_it),
14763 TUE(itet, 0, bf06, 1, (COND), it, t_it),
14764 TUE(itte, 0, bf0a, 1, (COND), it, t_it),
14765 TUE(itee, 0, bf02, 1, (COND), it, t_it),
14766 TUE(itttt, 0, bf0f, 1, (COND), it, t_it),
14767 TUE(itett, 0, bf07, 1, (COND), it, t_it),
14768 TUE(ittet, 0, bf0b, 1, (COND), it, t_it),
14769 TUE(iteet, 0, bf03, 1, (COND), it, t_it),
14770 TUE(ittte, 0, bf0d, 1, (COND), it, t_it),
14771 TUE(itete, 0, bf05, 1, (COND), it, t_it),
14772 TUE(ittee, 0, bf09, 1, (COND), it, t_it),
14773 TUE(iteee, 0, bf01, 1, (COND), it, t_it),
14774
14775 /* Thumb2 only instructions. */
14776 #undef ARM_VARIANT
14777 #define ARM_VARIANT NULL
14778
14779 TCE(addw, 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
14780 TCE(subw, 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
14781 TCE(tbb, 0, e8d0f000, 1, (TB), 0, t_tb),
14782 TCE(tbh, 0, e8d0f010, 1, (TB), 0, t_tb),
14783
14784 /* Thumb-2 hardware division instructions (R and M profiles only). */
14785 #undef THUMB_VARIANT
14786 #define THUMB_VARIANT &arm_ext_div
14787 TCE(sdiv, 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
14788 TCE(udiv, 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
14789
14790 /* ARM V7 instructions. */
14791 #undef ARM_VARIANT
14792 #define ARM_VARIANT &arm_ext_v7
14793 #undef THUMB_VARIANT
14794 #define THUMB_VARIANT &arm_ext_v7
14795 TUF(pli, 450f000, f910f000, 1, (ADDR), pli, t_pld),
14796 TCE(dbg, 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
14797 TUF(dmb, 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
14798 TUF(dsb, 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
14799 TUF(isb, 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
14800
14801 #undef ARM_VARIANT
14802 #define ARM_VARIANT &fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
14803 cCE(wfs, e200110, 1, (RR), rd),
14804 cCE(rfs, e300110, 1, (RR), rd),
14805 cCE(wfc, e400110, 1, (RR), rd),
14806 cCE(rfc, e500110, 1, (RR), rd),
14807
14808 cCL(ldfs, c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
14809 cCL(ldfd, c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
14810 cCL(ldfe, c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
14811 cCL(ldfp, c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
14812
14813 cCL(stfs, c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
14814 cCL(stfd, c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
14815 cCL(stfe, c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
14816 cCL(stfp, c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
14817
14818 cCL(mvfs, e008100, 2, (RF, RF_IF), rd_rm),
14819 cCL(mvfsp, e008120, 2, (RF, RF_IF), rd_rm),
14820 cCL(mvfsm, e008140, 2, (RF, RF_IF), rd_rm),
14821 cCL(mvfsz, e008160, 2, (RF, RF_IF), rd_rm),
14822 cCL(mvfd, e008180, 2, (RF, RF_IF), rd_rm),
14823 cCL(mvfdp, e0081a0, 2, (RF, RF_IF), rd_rm),
14824 cCL(mvfdm, e0081c0, 2, (RF, RF_IF), rd_rm),
14825 cCL(mvfdz, e0081e0, 2, (RF, RF_IF), rd_rm),
14826 cCL(mvfe, e088100, 2, (RF, RF_IF), rd_rm),
14827 cCL(mvfep, e088120, 2, (RF, RF_IF), rd_rm),
14828 cCL(mvfem, e088140, 2, (RF, RF_IF), rd_rm),
14829 cCL(mvfez, e088160, 2, (RF, RF_IF), rd_rm),
14830
14831 cCL(mnfs, e108100, 2, (RF, RF_IF), rd_rm),
14832 cCL(mnfsp, e108120, 2, (RF, RF_IF), rd_rm),
14833 cCL(mnfsm, e108140, 2, (RF, RF_IF), rd_rm),
14834 cCL(mnfsz, e108160, 2, (RF, RF_IF), rd_rm),
14835 cCL(mnfd, e108180, 2, (RF, RF_IF), rd_rm),
14836 cCL(mnfdp, e1081a0, 2, (RF, RF_IF), rd_rm),
14837 cCL(mnfdm, e1081c0, 2, (RF, RF_IF), rd_rm),
14838 cCL(mnfdz, e1081e0, 2, (RF, RF_IF), rd_rm),
14839 cCL(mnfe, e188100, 2, (RF, RF_IF), rd_rm),
14840 cCL(mnfep, e188120, 2, (RF, RF_IF), rd_rm),
14841 cCL(mnfem, e188140, 2, (RF, RF_IF), rd_rm),
14842 cCL(mnfez, e188160, 2, (RF, RF_IF), rd_rm),
14843
14844 cCL(abss, e208100, 2, (RF, RF_IF), rd_rm),
14845 cCL(abssp, e208120, 2, (RF, RF_IF), rd_rm),
14846 cCL(abssm, e208140, 2, (RF, RF_IF), rd_rm),
14847 cCL(abssz, e208160, 2, (RF, RF_IF), rd_rm),
14848 cCL(absd, e208180, 2, (RF, RF_IF), rd_rm),
14849 cCL(absdp, e2081a0, 2, (RF, RF_IF), rd_rm),
14850 cCL(absdm, e2081c0, 2, (RF, RF_IF), rd_rm),
14851 cCL(absdz, e2081e0, 2, (RF, RF_IF), rd_rm),
14852 cCL(abse, e288100, 2, (RF, RF_IF), rd_rm),
14853 cCL(absep, e288120, 2, (RF, RF_IF), rd_rm),
14854 cCL(absem, e288140, 2, (RF, RF_IF), rd_rm),
14855 cCL(absez, e288160, 2, (RF, RF_IF), rd_rm),
14856
14857 cCL(rnds, e308100, 2, (RF, RF_IF), rd_rm),
14858 cCL(rndsp, e308120, 2, (RF, RF_IF), rd_rm),
14859 cCL(rndsm, e308140, 2, (RF, RF_IF), rd_rm),
14860 cCL(rndsz, e308160, 2, (RF, RF_IF), rd_rm),
14861 cCL(rndd, e308180, 2, (RF, RF_IF), rd_rm),
14862 cCL(rnddp, e3081a0, 2, (RF, RF_IF), rd_rm),
14863 cCL(rnddm, e3081c0, 2, (RF, RF_IF), rd_rm),
14864 cCL(rnddz, e3081e0, 2, (RF, RF_IF), rd_rm),
14865 cCL(rnde, e388100, 2, (RF, RF_IF), rd_rm),
14866 cCL(rndep, e388120, 2, (RF, RF_IF), rd_rm),
14867 cCL(rndem, e388140, 2, (RF, RF_IF), rd_rm),
14868 cCL(rndez, e388160, 2, (RF, RF_IF), rd_rm),
14869
14870 cCL(sqts, e408100, 2, (RF, RF_IF), rd_rm),
14871 cCL(sqtsp, e408120, 2, (RF, RF_IF), rd_rm),
14872 cCL(sqtsm, e408140, 2, (RF, RF_IF), rd_rm),
14873 cCL(sqtsz, e408160, 2, (RF, RF_IF), rd_rm),
14874 cCL(sqtd, e408180, 2, (RF, RF_IF), rd_rm),
14875 cCL(sqtdp, e4081a0, 2, (RF, RF_IF), rd_rm),
14876 cCL(sqtdm, e4081c0, 2, (RF, RF_IF), rd_rm),
14877 cCL(sqtdz, e4081e0, 2, (RF, RF_IF), rd_rm),
14878 cCL(sqte, e488100, 2, (RF, RF_IF), rd_rm),
14879 cCL(sqtep, e488120, 2, (RF, RF_IF), rd_rm),
14880 cCL(sqtem, e488140, 2, (RF, RF_IF), rd_rm),
14881 cCL(sqtez, e488160, 2, (RF, RF_IF), rd_rm),
14882
14883 cCL(logs, e508100, 2, (RF, RF_IF), rd_rm),
14884 cCL(logsp, e508120, 2, (RF, RF_IF), rd_rm),
14885 cCL(logsm, e508140, 2, (RF, RF_IF), rd_rm),
14886 cCL(logsz, e508160, 2, (RF, RF_IF), rd_rm),
14887 cCL(logd, e508180, 2, (RF, RF_IF), rd_rm),
14888 cCL(logdp, e5081a0, 2, (RF, RF_IF), rd_rm),
14889 cCL(logdm, e5081c0, 2, (RF, RF_IF), rd_rm),
14890 cCL(logdz, e5081e0, 2, (RF, RF_IF), rd_rm),
14891 cCL(loge, e588100, 2, (RF, RF_IF), rd_rm),
14892 cCL(logep, e588120, 2, (RF, RF_IF), rd_rm),
14893 cCL(logem, e588140, 2, (RF, RF_IF), rd_rm),
14894 cCL(logez, e588160, 2, (RF, RF_IF), rd_rm),
14895
14896 cCL(lgns, e608100, 2, (RF, RF_IF), rd_rm),
14897 cCL(lgnsp, e608120, 2, (RF, RF_IF), rd_rm),
14898 cCL(lgnsm, e608140, 2, (RF, RF_IF), rd_rm),
14899 cCL(lgnsz, e608160, 2, (RF, RF_IF), rd_rm),
14900 cCL(lgnd, e608180, 2, (RF, RF_IF), rd_rm),
14901 cCL(lgndp, e6081a0, 2, (RF, RF_IF), rd_rm),
14902 cCL(lgndm, e6081c0, 2, (RF, RF_IF), rd_rm),
14903 cCL(lgndz, e6081e0, 2, (RF, RF_IF), rd_rm),
14904 cCL(lgne, e688100, 2, (RF, RF_IF), rd_rm),
14905 cCL(lgnep, e688120, 2, (RF, RF_IF), rd_rm),
14906 cCL(lgnem, e688140, 2, (RF, RF_IF), rd_rm),
14907 cCL(lgnez, e688160, 2, (RF, RF_IF), rd_rm),
14908
14909 cCL(exps, e708100, 2, (RF, RF_IF), rd_rm),
14910 cCL(expsp, e708120, 2, (RF, RF_IF), rd_rm),
14911 cCL(expsm, e708140, 2, (RF, RF_IF), rd_rm),
14912 cCL(expsz, e708160, 2, (RF, RF_IF), rd_rm),
14913 cCL(expd, e708180, 2, (RF, RF_IF), rd_rm),
14914 cCL(expdp, e7081a0, 2, (RF, RF_IF), rd_rm),
14915 cCL(expdm, e7081c0, 2, (RF, RF_IF), rd_rm),
14916 cCL(expdz, e7081e0, 2, (RF, RF_IF), rd_rm),
14917 cCL(expe, e788100, 2, (RF, RF_IF), rd_rm),
14918 cCL(expep, e788120, 2, (RF, RF_IF), rd_rm),
14919 cCL(expem, e788140, 2, (RF, RF_IF), rd_rm),
14920 cCL(expdz, e788160, 2, (RF, RF_IF), rd_rm),
14921
14922 cCL(sins, e808100, 2, (RF, RF_IF), rd_rm),
14923 cCL(sinsp, e808120, 2, (RF, RF_IF), rd_rm),
14924 cCL(sinsm, e808140, 2, (RF, RF_IF), rd_rm),
14925 cCL(sinsz, e808160, 2, (RF, RF_IF), rd_rm),
14926 cCL(sind, e808180, 2, (RF, RF_IF), rd_rm),
14927 cCL(sindp, e8081a0, 2, (RF, RF_IF), rd_rm),
14928 cCL(sindm, e8081c0, 2, (RF, RF_IF), rd_rm),
14929 cCL(sindz, e8081e0, 2, (RF, RF_IF), rd_rm),
14930 cCL(sine, e888100, 2, (RF, RF_IF), rd_rm),
14931 cCL(sinep, e888120, 2, (RF, RF_IF), rd_rm),
14932 cCL(sinem, e888140, 2, (RF, RF_IF), rd_rm),
14933 cCL(sinez, e888160, 2, (RF, RF_IF), rd_rm),
14934
14935 cCL(coss, e908100, 2, (RF, RF_IF), rd_rm),
14936 cCL(cossp, e908120, 2, (RF, RF_IF), rd_rm),
14937 cCL(cossm, e908140, 2, (RF, RF_IF), rd_rm),
14938 cCL(cossz, e908160, 2, (RF, RF_IF), rd_rm),
14939 cCL(cosd, e908180, 2, (RF, RF_IF), rd_rm),
14940 cCL(cosdp, e9081a0, 2, (RF, RF_IF), rd_rm),
14941 cCL(cosdm, e9081c0, 2, (RF, RF_IF), rd_rm),
14942 cCL(cosdz, e9081e0, 2, (RF, RF_IF), rd_rm),
14943 cCL(cose, e988100, 2, (RF, RF_IF), rd_rm),
14944 cCL(cosep, e988120, 2, (RF, RF_IF), rd_rm),
14945 cCL(cosem, e988140, 2, (RF, RF_IF), rd_rm),
14946 cCL(cosez, e988160, 2, (RF, RF_IF), rd_rm),
14947
14948 cCL(tans, ea08100, 2, (RF, RF_IF), rd_rm),
14949 cCL(tansp, ea08120, 2, (RF, RF_IF), rd_rm),
14950 cCL(tansm, ea08140, 2, (RF, RF_IF), rd_rm),
14951 cCL(tansz, ea08160, 2, (RF, RF_IF), rd_rm),
14952 cCL(tand, ea08180, 2, (RF, RF_IF), rd_rm),
14953 cCL(tandp, ea081a0, 2, (RF, RF_IF), rd_rm),
14954 cCL(tandm, ea081c0, 2, (RF, RF_IF), rd_rm),
14955 cCL(tandz, ea081e0, 2, (RF, RF_IF), rd_rm),
14956 cCL(tane, ea88100, 2, (RF, RF_IF), rd_rm),
14957 cCL(tanep, ea88120, 2, (RF, RF_IF), rd_rm),
14958 cCL(tanem, ea88140, 2, (RF, RF_IF), rd_rm),
14959 cCL(tanez, ea88160, 2, (RF, RF_IF), rd_rm),
14960
14961 cCL(asns, eb08100, 2, (RF, RF_IF), rd_rm),
14962 cCL(asnsp, eb08120, 2, (RF, RF_IF), rd_rm),
14963 cCL(asnsm, eb08140, 2, (RF, RF_IF), rd_rm),
14964 cCL(asnsz, eb08160, 2, (RF, RF_IF), rd_rm),
14965 cCL(asnd, eb08180, 2, (RF, RF_IF), rd_rm),
14966 cCL(asndp, eb081a0, 2, (RF, RF_IF), rd_rm),
14967 cCL(asndm, eb081c0, 2, (RF, RF_IF), rd_rm),
14968 cCL(asndz, eb081e0, 2, (RF, RF_IF), rd_rm),
14969 cCL(asne, eb88100, 2, (RF, RF_IF), rd_rm),
14970 cCL(asnep, eb88120, 2, (RF, RF_IF), rd_rm),
14971 cCL(asnem, eb88140, 2, (RF, RF_IF), rd_rm),
14972 cCL(asnez, eb88160, 2, (RF, RF_IF), rd_rm),
14973
14974 cCL(acss, ec08100, 2, (RF, RF_IF), rd_rm),
14975 cCL(acssp, ec08120, 2, (RF, RF_IF), rd_rm),
14976 cCL(acssm, ec08140, 2, (RF, RF_IF), rd_rm),
14977 cCL(acssz, ec08160, 2, (RF, RF_IF), rd_rm),
14978 cCL(acsd, ec08180, 2, (RF, RF_IF), rd_rm),
14979 cCL(acsdp, ec081a0, 2, (RF, RF_IF), rd_rm),
14980 cCL(acsdm, ec081c0, 2, (RF, RF_IF), rd_rm),
14981 cCL(acsdz, ec081e0, 2, (RF, RF_IF), rd_rm),
14982 cCL(acse, ec88100, 2, (RF, RF_IF), rd_rm),
14983 cCL(acsep, ec88120, 2, (RF, RF_IF), rd_rm),
14984 cCL(acsem, ec88140, 2, (RF, RF_IF), rd_rm),
14985 cCL(acsez, ec88160, 2, (RF, RF_IF), rd_rm),
14986
14987 cCL(atns, ed08100, 2, (RF, RF_IF), rd_rm),
14988 cCL(atnsp, ed08120, 2, (RF, RF_IF), rd_rm),
14989 cCL(atnsm, ed08140, 2, (RF, RF_IF), rd_rm),
14990 cCL(atnsz, ed08160, 2, (RF, RF_IF), rd_rm),
14991 cCL(atnd, ed08180, 2, (RF, RF_IF), rd_rm),
14992 cCL(atndp, ed081a0, 2, (RF, RF_IF), rd_rm),
14993 cCL(atndm, ed081c0, 2, (RF, RF_IF), rd_rm),
14994 cCL(atndz, ed081e0, 2, (RF, RF_IF), rd_rm),
14995 cCL(atne, ed88100, 2, (RF, RF_IF), rd_rm),
14996 cCL(atnep, ed88120, 2, (RF, RF_IF), rd_rm),
14997 cCL(atnem, ed88140, 2, (RF, RF_IF), rd_rm),
14998 cCL(atnez, ed88160, 2, (RF, RF_IF), rd_rm),
14999
15000 cCL(urds, ee08100, 2, (RF, RF_IF), rd_rm),
15001 cCL(urdsp, ee08120, 2, (RF, RF_IF), rd_rm),
15002 cCL(urdsm, ee08140, 2, (RF, RF_IF), rd_rm),
15003 cCL(urdsz, ee08160, 2, (RF, RF_IF), rd_rm),
15004 cCL(urdd, ee08180, 2, (RF, RF_IF), rd_rm),
15005 cCL(urddp, ee081a0, 2, (RF, RF_IF), rd_rm),
15006 cCL(urddm, ee081c0, 2, (RF, RF_IF), rd_rm),
15007 cCL(urddz, ee081e0, 2, (RF, RF_IF), rd_rm),
15008 cCL(urde, ee88100, 2, (RF, RF_IF), rd_rm),
15009 cCL(urdep, ee88120, 2, (RF, RF_IF), rd_rm),
15010 cCL(urdem, ee88140, 2, (RF, RF_IF), rd_rm),
15011 cCL(urdez, ee88160, 2, (RF, RF_IF), rd_rm),
15012
15013 cCL(nrms, ef08100, 2, (RF, RF_IF), rd_rm),
15014 cCL(nrmsp, ef08120, 2, (RF, RF_IF), rd_rm),
15015 cCL(nrmsm, ef08140, 2, (RF, RF_IF), rd_rm),
15016 cCL(nrmsz, ef08160, 2, (RF, RF_IF), rd_rm),
15017 cCL(nrmd, ef08180, 2, (RF, RF_IF), rd_rm),
15018 cCL(nrmdp, ef081a0, 2, (RF, RF_IF), rd_rm),
15019 cCL(nrmdm, ef081c0, 2, (RF, RF_IF), rd_rm),
15020 cCL(nrmdz, ef081e0, 2, (RF, RF_IF), rd_rm),
15021 cCL(nrme, ef88100, 2, (RF, RF_IF), rd_rm),
15022 cCL(nrmep, ef88120, 2, (RF, RF_IF), rd_rm),
15023 cCL(nrmem, ef88140, 2, (RF, RF_IF), rd_rm),
15024 cCL(nrmez, ef88160, 2, (RF, RF_IF), rd_rm),
15025
15026 cCL(adfs, e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
15027 cCL(adfsp, e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
15028 cCL(adfsm, e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
15029 cCL(adfsz, e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
15030 cCL(adfd, e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
15031 cCL(adfdp, e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15032 cCL(adfdm, e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15033 cCL(adfdz, e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15034 cCL(adfe, e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
15035 cCL(adfep, e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
15036 cCL(adfem, e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
15037 cCL(adfez, e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
15038
15039 cCL(sufs, e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
15040 cCL(sufsp, e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
15041 cCL(sufsm, e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
15042 cCL(sufsz, e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
15043 cCL(sufd, e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
15044 cCL(sufdp, e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15045 cCL(sufdm, e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15046 cCL(sufdz, e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15047 cCL(sufe, e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
15048 cCL(sufep, e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
15049 cCL(sufem, e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
15050 cCL(sufez, e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
15051
15052 cCL(rsfs, e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
15053 cCL(rsfsp, e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
15054 cCL(rsfsm, e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
15055 cCL(rsfsz, e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
15056 cCL(rsfd, e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
15057 cCL(rsfdp, e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15058 cCL(rsfdm, e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15059 cCL(rsfdz, e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15060 cCL(rsfe, e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
15061 cCL(rsfep, e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
15062 cCL(rsfem, e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
15063 cCL(rsfez, e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
15064
15065 cCL(mufs, e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
15066 cCL(mufsp, e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
15067 cCL(mufsm, e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
15068 cCL(mufsz, e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
15069 cCL(mufd, e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
15070 cCL(mufdp, e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15071 cCL(mufdm, e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15072 cCL(mufdz, e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15073 cCL(mufe, e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
15074 cCL(mufep, e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
15075 cCL(mufem, e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
15076 cCL(mufez, e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
15077
15078 cCL(dvfs, e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
15079 cCL(dvfsp, e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
15080 cCL(dvfsm, e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
15081 cCL(dvfsz, e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
15082 cCL(dvfd, e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
15083 cCL(dvfdp, e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15084 cCL(dvfdm, e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15085 cCL(dvfdz, e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15086 cCL(dvfe, e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
15087 cCL(dvfep, e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
15088 cCL(dvfem, e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
15089 cCL(dvfez, e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
15090
15091 cCL(rdfs, e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
15092 cCL(rdfsp, e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
15093 cCL(rdfsm, e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
15094 cCL(rdfsz, e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
15095 cCL(rdfd, e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
15096 cCL(rdfdp, e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15097 cCL(rdfdm, e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15098 cCL(rdfdz, e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15099 cCL(rdfe, e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
15100 cCL(rdfep, e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
15101 cCL(rdfem, e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
15102 cCL(rdfez, e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
15103
15104 cCL(pows, e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
15105 cCL(powsp, e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
15106 cCL(powsm, e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
15107 cCL(powsz, e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
15108 cCL(powd, e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
15109 cCL(powdp, e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15110 cCL(powdm, e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15111 cCL(powdz, e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15112 cCL(powe, e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
15113 cCL(powep, e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
15114 cCL(powem, e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
15115 cCL(powez, e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
15116
15117 cCL(rpws, e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
15118 cCL(rpwsp, e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
15119 cCL(rpwsm, e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
15120 cCL(rpwsz, e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
15121 cCL(rpwd, e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
15122 cCL(rpwdp, e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15123 cCL(rpwdm, e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15124 cCL(rpwdz, e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15125 cCL(rpwe, e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
15126 cCL(rpwep, e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
15127 cCL(rpwem, e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
15128 cCL(rpwez, e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
15129
15130 cCL(rmfs, e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
15131 cCL(rmfsp, e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
15132 cCL(rmfsm, e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
15133 cCL(rmfsz, e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
15134 cCL(rmfd, e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
15135 cCL(rmfdp, e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15136 cCL(rmfdm, e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15137 cCL(rmfdz, e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15138 cCL(rmfe, e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
15139 cCL(rmfep, e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
15140 cCL(rmfem, e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
15141 cCL(rmfez, e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
15142
15143 cCL(fmls, e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
15144 cCL(fmlsp, e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
15145 cCL(fmlsm, e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
15146 cCL(fmlsz, e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
15147 cCL(fmld, e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
15148 cCL(fmldp, e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15149 cCL(fmldm, e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15150 cCL(fmldz, e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15151 cCL(fmle, e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
15152 cCL(fmlep, e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
15153 cCL(fmlem, e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
15154 cCL(fmlez, e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
15155
15156 cCL(fdvs, ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15157 cCL(fdvsp, ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15158 cCL(fdvsm, ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15159 cCL(fdvsz, ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15160 cCL(fdvd, ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15161 cCL(fdvdp, ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15162 cCL(fdvdm, ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15163 cCL(fdvdz, ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15164 cCL(fdve, ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15165 cCL(fdvep, ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15166 cCL(fdvem, ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15167 cCL(fdvez, ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15168
15169 cCL(frds, eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15170 cCL(frdsp, eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15171 cCL(frdsm, eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15172 cCL(frdsz, eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15173 cCL(frdd, eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15174 cCL(frddp, eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15175 cCL(frddm, eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15176 cCL(frddz, eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15177 cCL(frde, eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15178 cCL(frdep, eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15179 cCL(frdem, eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15180 cCL(frdez, eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15181
15182 cCL(pols, ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15183 cCL(polsp, ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15184 cCL(polsm, ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15185 cCL(polsz, ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15186 cCL(pold, ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15187 cCL(poldp, ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15188 cCL(poldm, ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15189 cCL(poldz, ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15190 cCL(pole, ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15191 cCL(polep, ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15192 cCL(polem, ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15193 cCL(polez, ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15194
15195 cCE(cmf, e90f110, 2, (RF, RF_IF), fpa_cmp),
15196 C3E(cmfe, ed0f110, 2, (RF, RF_IF), fpa_cmp),
15197 cCE(cnf, eb0f110, 2, (RF, RF_IF), fpa_cmp),
15198 C3E(cnfe, ef0f110, 2, (RF, RF_IF), fpa_cmp),
15199
15200 cCL(flts, e000110, 2, (RF, RR), rn_rd),
15201 cCL(fltsp, e000130, 2, (RF, RR), rn_rd),
15202 cCL(fltsm, e000150, 2, (RF, RR), rn_rd),
15203 cCL(fltsz, e000170, 2, (RF, RR), rn_rd),
15204 cCL(fltd, e000190, 2, (RF, RR), rn_rd),
15205 cCL(fltdp, e0001b0, 2, (RF, RR), rn_rd),
15206 cCL(fltdm, e0001d0, 2, (RF, RR), rn_rd),
15207 cCL(fltdz, e0001f0, 2, (RF, RR), rn_rd),
15208 cCL(flte, e080110, 2, (RF, RR), rn_rd),
15209 cCL(fltep, e080130, 2, (RF, RR), rn_rd),
15210 cCL(fltem, e080150, 2, (RF, RR), rn_rd),
15211 cCL(fltez, e080170, 2, (RF, RR), rn_rd),
15212
15213 /* The implementation of the FIX instruction is broken on some
15214 assemblers, in that it accepts a precision specifier as well as a
15215 rounding specifier, despite the fact that this is meaningless.
15216 To be more compatible, we accept it as well, though of course it
15217 does not set any bits. */
15218 cCE(fix, e100110, 2, (RR, RF), rd_rm),
15219 cCL(fixp, e100130, 2, (RR, RF), rd_rm),
15220 cCL(fixm, e100150, 2, (RR, RF), rd_rm),
15221 cCL(fixz, e100170, 2, (RR, RF), rd_rm),
15222 cCL(fixsp, e100130, 2, (RR, RF), rd_rm),
15223 cCL(fixsm, e100150, 2, (RR, RF), rd_rm),
15224 cCL(fixsz, e100170, 2, (RR, RF), rd_rm),
15225 cCL(fixdp, e100130, 2, (RR, RF), rd_rm),
15226 cCL(fixdm, e100150, 2, (RR, RF), rd_rm),
15227 cCL(fixdz, e100170, 2, (RR, RF), rd_rm),
15228 cCL(fixep, e100130, 2, (RR, RF), rd_rm),
15229 cCL(fixem, e100150, 2, (RR, RF), rd_rm),
15230 cCL(fixez, e100170, 2, (RR, RF), rd_rm),
15231
15232 /* Instructions that were new with the real FPA, call them V2. */
15233 #undef ARM_VARIANT
15234 #define ARM_VARIANT &fpu_fpa_ext_v2
15235 cCE(lfm, c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15236 cCL(lfmfd, c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15237 cCL(lfmea, d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15238 cCE(sfm, c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15239 cCL(sfmfd, d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15240 cCL(sfmea, c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15241
15242 #undef ARM_VARIANT
15243 #define ARM_VARIANT &fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
15244 /* Moves and type conversions. */
15245 cCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
15246 cCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
15247 cCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
15248 cCE(fmstat, ef1fa10, 0, (), noargs),
15249 cCE(fsitos, eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
15250 cCE(fuitos, eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
15251 cCE(ftosis, ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
15252 cCE(ftosizs, ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15253 cCE(ftouis, ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
15254 cCE(ftouizs, ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15255 cCE(fmrx, ef00a10, 2, (RR, RVC), rd_rn),
15256 cCE(fmxr, ee00a10, 2, (RVC, RR), rn_rd),
15257
15258 /* Memory operations. */
15259 cCE(flds, d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
15260 cCE(fsts, d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
15261 cCE(fldmias, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15262 cCE(fldmfds, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15263 cCE(fldmdbs, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15264 cCE(fldmeas, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15265 cCE(fldmiax, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15266 cCE(fldmfdx, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15267 cCE(fldmdbx, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15268 cCE(fldmeax, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15269 cCE(fstmias, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15270 cCE(fstmeas, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15271 cCE(fstmdbs, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15272 cCE(fstmfds, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15273 cCE(fstmiax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15274 cCE(fstmeax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15275 cCE(fstmdbx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15276 cCE(fstmfdx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15277
15278 /* Monadic operations. */
15279 cCE(fabss, eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
15280 cCE(fnegs, eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
15281 cCE(fsqrts, eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
15282
15283 /* Dyadic operations. */
15284 cCE(fadds, e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15285 cCE(fsubs, e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15286 cCE(fmuls, e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15287 cCE(fdivs, e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15288 cCE(fmacs, e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15289 cCE(fmscs, e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15290 cCE(fnmuls, e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15291 cCE(fnmacs, e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15292 cCE(fnmscs, e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15293
15294 /* Comparisons. */
15295 cCE(fcmps, eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
15296 cCE(fcmpzs, eb50a40, 1, (RVS), vfp_sp_compare_z),
15297 cCE(fcmpes, eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
15298 cCE(fcmpezs, eb50ac0, 1, (RVS), vfp_sp_compare_z),
15299
15300 #undef ARM_VARIANT
15301 #define ARM_VARIANT &fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
15302 /* Moves and type conversions. */
15303 cCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15304 cCE(fcvtds, eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15305 cCE(fcvtsd, eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15306 cCE(fmdhr, e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
15307 cCE(fmdlr, e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
15308 cCE(fmrdh, e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
15309 cCE(fmrdl, e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
15310 cCE(fsitod, eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15311 cCE(fuitod, eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
15312 cCE(ftosid, ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15313 cCE(ftosizd, ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15314 cCE(ftouid, ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15315 cCE(ftouizd, ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15316
15317 /* Memory operations. */
15318 cCE(fldd, d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
15319 cCE(fstd, d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
15320 cCE(fldmiad, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15321 cCE(fldmfdd, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15322 cCE(fldmdbd, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15323 cCE(fldmead, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15324 cCE(fstmiad, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15325 cCE(fstmead, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15326 cCE(fstmdbd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15327 cCE(fstmfdd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15328
15329 /* Monadic operations. */
15330 cCE(fabsd, eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15331 cCE(fnegd, eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15332 cCE(fsqrtd, eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15333
15334 /* Dyadic operations. */
15335 cCE(faddd, e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15336 cCE(fsubd, e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15337 cCE(fmuld, e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15338 cCE(fdivd, e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15339 cCE(fmacd, e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15340 cCE(fmscd, e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15341 cCE(fnmuld, e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15342 cCE(fnmacd, e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15343 cCE(fnmscd, e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15344
15345 /* Comparisons. */
15346 cCE(fcmpd, eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15347 cCE(fcmpzd, eb50b40, 1, (RVD), vfp_dp_rd),
15348 cCE(fcmped, eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15349 cCE(fcmpezd, eb50bc0, 1, (RVD), vfp_dp_rd),
15350
15351 #undef ARM_VARIANT
15352 #define ARM_VARIANT &fpu_vfp_ext_v2
15353 cCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
15354 cCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
15355 cCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
15356 cCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
15357
15358 /* Instructions which may belong to either the Neon or VFP instruction sets.
15359 Individual encoder functions perform additional architecture checks. */
15360 #undef ARM_VARIANT
15361 #define ARM_VARIANT &fpu_vfp_ext_v1xd
15362 #undef THUMB_VARIANT
15363 #define THUMB_VARIANT &fpu_vfp_ext_v1xd
15364 /* These mnemonics are unique to VFP. */
15365 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
15366 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
15367 nCE(vnmul, vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15368 nCE(vnmla, vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15369 nCE(vnmls, vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15370 nCE(vcmp, vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
15371 nCE(vcmpe, vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
15372 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
15373 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
15374 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
15375
15376 /* Mnemonics shared by Neon and VFP. */
15377 nCEF(vmul, vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
15378 nCEF(vmla, vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
15379 nCEF(vmls, vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
15380
15381 nCEF(vadd, vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
15382 nCEF(vsub, vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
15383
15384 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
15385 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
15386
15387 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15388 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15389 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15390 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15391 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15392 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15393 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
15394 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
15395
15396 nCEF(vcvt, vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
15397
15398 /* NOTE: All VMOV encoding is special-cased! */
15399 NCE(vmov, 0, 1, (VMOV), neon_mov),
15400 NCE(vmovq, 0, 1, (VMOV), neon_mov),
15401
15402 #undef THUMB_VARIANT
15403 #define THUMB_VARIANT &fpu_neon_ext_v1
15404 #undef ARM_VARIANT
15405 #define ARM_VARIANT &fpu_neon_ext_v1
15406 /* Data processing with three registers of the same length. */
15407 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
15408 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
15409 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
15410 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15411 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15412 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15413 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15414 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15415 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15416 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
15417 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15418 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
15419 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15420 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
15421 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15422 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
15423 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15424 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
15425 /* If not immediate, fall back to neon_dyadic_i64_su.
15426 shl_imm should accept I8 I16 I32 I64,
15427 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
15428 nUF(vshl, vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
15429 nUF(vshlq, vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
15430 nUF(vqshl, vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
15431 nUF(vqshlq, vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
15432 /* Logic ops, types optional & ignored. */
15433 nUF(vand, vand, 2, (RNDQ, NILO), neon_logic),
15434 nUF(vandq, vand, 2, (RNQ, NILO), neon_logic),
15435 nUF(vbic, vbic, 2, (RNDQ, NILO), neon_logic),
15436 nUF(vbicq, vbic, 2, (RNQ, NILO), neon_logic),
15437 nUF(vorr, vorr, 2, (RNDQ, NILO), neon_logic),
15438 nUF(vorrq, vorr, 2, (RNQ, NILO), neon_logic),
15439 nUF(vorn, vorn, 2, (RNDQ, NILO), neon_logic),
15440 nUF(vornq, vorn, 2, (RNQ, NILO), neon_logic),
15441 nUF(veor, veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
15442 nUF(veorq, veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
15443 /* Bitfield ops, untyped. */
15444 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15445 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15446 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15447 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15448 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15449 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15450 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
15451 nUF(vabd, vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15452 nUF(vabdq, vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15453 nUF(vmax, vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15454 nUF(vmaxq, vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15455 nUF(vmin, vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15456 nUF(vminq, vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15457 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
15458 back to neon_dyadic_if_su. */
15459 nUF(vcge, vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
15460 nUF(vcgeq, vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
15461 nUF(vcgt, vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
15462 nUF(vcgtq, vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
15463 nUF(vclt, vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
15464 nUF(vcltq, vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
15465 nUF(vcle, vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
15466 nUF(vcleq, vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
15467 /* Comparison. Type I8 I16 I32 F32. Non-immediate -> neon_dyadic_if_i. */
15468 nUF(vceq, vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
15469 nUF(vceqq, vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
15470 /* As above, D registers only. */
15471 nUF(vpmax, vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
15472 nUF(vpmin, vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
15473 /* Int and float variants, signedness unimportant. */
15474 /* If not scalar, fall back to neon_dyadic_if_i. */
15475 nUF(vmlaq, vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
15476 nUF(vmlsq, vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
15477 nUF(vpadd, vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
15478 /* Add/sub take types I8 I16 I32 I64 F32. */
15479 nUF(vaddq, vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
15480 nUF(vsubq, vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
15481 /* vtst takes sizes 8, 16, 32. */
15482 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
15483 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
15484 /* VMUL takes I8 I16 I32 F32 P8. */
15485 nUF(vmulq, vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
15486 /* VQD{R}MULH takes S16 S32. */
15487 nUF(vqdmulh, vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
15488 nUF(vqdmulhq, vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
15489 nUF(vqrdmulh, vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
15490 nUF(vqrdmulhq, vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
15491 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
15492 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
15493 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
15494 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
15495 NUF(vaclt, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
15496 NUF(vacltq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
15497 NUF(vacle, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
15498 NUF(vacleq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
15499 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
15500 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
15501 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
15502 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
15503
15504 /* Two address, int/float. Types S8 S16 S32 F32. */
15505 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
15506 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
15507
15508 /* Data processing with two registers and a shift amount. */
15509 /* Right shifts, and variants with rounding.
15510 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
15511 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
15512 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
15513 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
15514 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
15515 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
15516 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
15517 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
15518 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
15519 /* Shift and insert. Sizes accepted 8 16 32 64. */
15520 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
15521 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
15522 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
15523 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
15524 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
15525 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
15526 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
15527 /* Right shift immediate, saturating & narrowing, with rounding variants.
15528 Types accepted S16 S32 S64 U16 U32 U64. */
15529 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
15530 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
15531 /* As above, unsigned. Types accepted S16 S32 S64. */
15532 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
15533 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
15534 /* Right shift narrowing. Types accepted I16 I32 I64. */
15535 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
15536 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
15537 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
15538 nUF(vshll, vshll, 3, (RNQ, RND, I32), neon_shll),
15539 /* CVT with optional immediate for fixed-point variant. */
15540 nUF(vcvtq, vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
15541
15542 nUF(vmvn, vmvn, 2, (RNDQ, RNDQ_IMVNb), neon_mvn),
15543 nUF(vmvnq, vmvn, 2, (RNQ, RNDQ_IMVNb), neon_mvn),
15544
15545 /* Data processing, three registers of different lengths. */
15546 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
15547 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
15548 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
15549 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
15550 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
15551 /* If not scalar, fall back to neon_dyadic_long.
15552 Vector types as above, scalar types S16 S32 U16 U32. */
15553 nUF(vmlal, vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
15554 nUF(vmlsl, vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
15555 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
15556 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
15557 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
15558 /* Dyadic, narrowing insns. Types I16 I32 I64. */
15559 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
15560 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
15561 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
15562 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
15563 /* Saturating doubling multiplies. Types S16 S32. */
15564 nUF(vqdmlal, vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
15565 nUF(vqdmlsl, vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
15566 nUF(vqdmull, vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
15567 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
15568 S16 S32 U16 U32. */
15569 nUF(vmull, vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
15570
15571 /* Extract. Size 8. */
15572 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I7), neon_ext),
15573 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I7), neon_ext),
15574
15575 /* Two registers, miscellaneous. */
15576 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
15577 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
15578 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
15579 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
15580 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
15581 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
15582 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
15583 /* Vector replicate. Sizes 8 16 32. */
15584 nCE(vdup, vdup, 2, (RNDQ, RR_RNSC), neon_dup),
15585 nCE(vdupq, vdup, 2, (RNQ, RR_RNSC), neon_dup),
15586 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
15587 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
15588 /* VMOVN. Types I16 I32 I64. */
15589 nUF(vmovn, vmovn, 2, (RND, RNQ), neon_movn),
15590 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
15591 nUF(vqmovn, vqmovn, 2, (RND, RNQ), neon_qmovn),
15592 /* VQMOVUN. Types S16 S32 S64. */
15593 nUF(vqmovun, vqmovun, 2, (RND, RNQ), neon_qmovun),
15594 /* VZIP / VUZP. Sizes 8 16 32. */
15595 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
15596 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
15597 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
15598 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
15599 /* VQABS / VQNEG. Types S8 S16 S32. */
15600 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
15601 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
15602 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
15603 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
15604 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
15605 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
15606 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
15607 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
15608 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
15609 /* Reciprocal estimates. Types U32 F32. */
15610 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
15611 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
15612 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
15613 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
15614 /* VCLS. Types S8 S16 S32. */
15615 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
15616 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
15617 /* VCLZ. Types I8 I16 I32. */
15618 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
15619 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
15620 /* VCNT. Size 8. */
15621 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
15622 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
15623 /* Two address, untyped. */
15624 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
15625 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
15626 /* VTRN. Sizes 8 16 32. */
15627 nUF(vtrn, vtrn, 2, (RNDQ, RNDQ), neon_trn),
15628 nUF(vtrnq, vtrn, 2, (RNQ, RNQ), neon_trn),
15629
15630 /* Table lookup. Size 8. */
15631 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
15632 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
15633
15634 #undef THUMB_VARIANT
15635 #define THUMB_VARIANT &fpu_vfp_v3_or_neon_ext
15636 #undef ARM_VARIANT
15637 #define ARM_VARIANT &fpu_vfp_v3_or_neon_ext
15638 /* Neon element/structure load/store. */
15639 nUF(vld1, vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
15640 nUF(vst1, vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
15641 nUF(vld2, vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
15642 nUF(vst2, vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
15643 nUF(vld3, vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
15644 nUF(vst3, vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
15645 nUF(vld4, vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
15646 nUF(vst4, vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
15647
15648 #undef THUMB_VARIANT
15649 #define THUMB_VARIANT &fpu_vfp_ext_v3
15650 #undef ARM_VARIANT
15651 #define ARM_VARIANT &fpu_vfp_ext_v3
15652 cCE(fconsts, eb00a00, 2, (RVS, I255), vfp_sp_const),
15653 cCE(fconstd, eb00b00, 2, (RVD, I255), vfp_dp_const),
15654 cCE(fshtos, eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
15655 cCE(fshtod, eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
15656 cCE(fsltos, eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
15657 cCE(fsltod, eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
15658 cCE(fuhtos, ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
15659 cCE(fuhtod, ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
15660 cCE(fultos, ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
15661 cCE(fultod, ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
15662 cCE(ftoshs, ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
15663 cCE(ftoshd, ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
15664 cCE(ftosls, ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
15665 cCE(ftosld, ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
15666 cCE(ftouhs, ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
15667 cCE(ftouhd, ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
15668 cCE(ftouls, ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
15669 cCE(ftould, ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
15670
15671 #undef THUMB_VARIANT
15672 #undef ARM_VARIANT
15673 #define ARM_VARIANT &arm_cext_xscale /* Intel XScale extensions. */
15674 cCE(mia, e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
15675 cCE(miaph, e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
15676 cCE(miabb, e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
15677 cCE(miabt, e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
15678 cCE(miatb, e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
15679 cCE(miatt, e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
15680 cCE(mar, c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
15681 cCE(mra, c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
15682
15683 #undef ARM_VARIANT
15684 #define ARM_VARIANT &arm_cext_iwmmxt /* Intel Wireless MMX technology. */
15685 cCE(tandcb, e13f130, 1, (RR), iwmmxt_tandorc),
15686 cCE(tandch, e53f130, 1, (RR), iwmmxt_tandorc),
15687 cCE(tandcw, e93f130, 1, (RR), iwmmxt_tandorc),
15688 cCE(tbcstb, e400010, 2, (RIWR, RR), rn_rd),
15689 cCE(tbcsth, e400050, 2, (RIWR, RR), rn_rd),
15690 cCE(tbcstw, e400090, 2, (RIWR, RR), rn_rd),
15691 cCE(textrcb, e130170, 2, (RR, I7), iwmmxt_textrc),
15692 cCE(textrch, e530170, 2, (RR, I7), iwmmxt_textrc),
15693 cCE(textrcw, e930170, 2, (RR, I7), iwmmxt_textrc),
15694 cCE(textrmub, e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
15695 cCE(textrmuh, e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
15696 cCE(textrmuw, e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
15697 cCE(textrmsb, e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
15698 cCE(textrmsh, e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
15699 cCE(textrmsw, e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
15700 cCE(tinsrb, e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
15701 cCE(tinsrh, e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
15702 cCE(tinsrw, e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
15703 cCE(tmcr, e000110, 2, (RIWC, RR), rn_rd),
15704 cCE(tmcrr, c400000, 3, (RIWR, RR, RR), rm_rd_rn),
15705 cCE(tmia, e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
15706 cCE(tmiaph, e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
15707 cCE(tmiabb, e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
15708 cCE(tmiabt, e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
15709 cCE(tmiatb, e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
15710 cCE(tmiatt, e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
15711 cCE(tmovmskb, e100030, 2, (RR, RIWR), rd_rn),
15712 cCE(tmovmskh, e500030, 2, (RR, RIWR), rd_rn),
15713 cCE(tmovmskw, e900030, 2, (RR, RIWR), rd_rn),
15714 cCE(tmrc, e100110, 2, (RR, RIWC), rd_rn),
15715 cCE(tmrrc, c500000, 3, (RR, RR, RIWR), rd_rn_rm),
15716 cCE(torcb, e13f150, 1, (RR), iwmmxt_tandorc),
15717 cCE(torch, e53f150, 1, (RR), iwmmxt_tandorc),
15718 cCE(torcw, e93f150, 1, (RR), iwmmxt_tandorc),
15719 cCE(waccb, e0001c0, 2, (RIWR, RIWR), rd_rn),
15720 cCE(wacch, e4001c0, 2, (RIWR, RIWR), rd_rn),
15721 cCE(waccw, e8001c0, 2, (RIWR, RIWR), rd_rn),
15722 cCE(waddbss, e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15723 cCE(waddb, e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15724 cCE(waddbus, e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15725 cCE(waddhss, e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15726 cCE(waddh, e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15727 cCE(waddhus, e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15728 cCE(waddwss, eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15729 cCE(waddw, e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15730 cCE(waddwus, e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15731 cCE(waligni, e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
15732 cCE(walignr0, e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15733 cCE(walignr1, e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15734 cCE(walignr2, ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15735 cCE(walignr3, eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15736 cCE(wand, e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15737 cCE(wandn, e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15738 cCE(wavg2b, e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15739 cCE(wavg2br, e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15740 cCE(wavg2h, ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15741 cCE(wavg2hr, ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15742 cCE(wcmpeqb, e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15743 cCE(wcmpeqh, e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15744 cCE(wcmpeqw, e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15745 cCE(wcmpgtub, e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15746 cCE(wcmpgtuh, e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15747 cCE(wcmpgtuw, e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15748 cCE(wcmpgtsb, e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15749 cCE(wcmpgtsh, e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15750 cCE(wcmpgtsw, eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15751 cCE(wldrb, c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
15752 cCE(wldrh, c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
15753 cCE(wldrw, c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
15754 cCE(wldrd, c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
15755 cCE(wmacs, e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15756 cCE(wmacsz, e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15757 cCE(wmacu, e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15758 cCE(wmacuz, e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15759 cCE(wmadds, ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15760 cCE(wmaddu, e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15761 cCE(wmaxsb, e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15762 cCE(wmaxsh, e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15763 cCE(wmaxsw, ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15764 cCE(wmaxub, e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15765 cCE(wmaxuh, e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15766 cCE(wmaxuw, e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15767 cCE(wminsb, e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15768 cCE(wminsh, e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15769 cCE(wminsw, eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15770 cCE(wminub, e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15771 cCE(wminuh, e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15772 cCE(wminuw, e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15773 cCE(wmov, e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
15774 cCE(wmulsm, e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15775 cCE(wmulsl, e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15776 cCE(wmulum, e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15777 cCE(wmulul, e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15778 cCE(wor, e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15779 cCE(wpackhss, e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15780 cCE(wpackhus, e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15781 cCE(wpackwss, eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15782 cCE(wpackwus, e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15783 cCE(wpackdss, ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15784 cCE(wpackdus, ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15785 cCE(wrorh, e700040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15786 cCE(wrorhg, e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15787 cCE(wrorw, eb00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15788 cCE(wrorwg, eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15789 cCE(wrord, ef00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15790 cCE(wrordg, ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15791 cCE(wsadb, e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15792 cCE(wsadbz, e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15793 cCE(wsadh, e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15794 cCE(wsadhz, e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15795 cCE(wshufh, e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
15796 cCE(wsllh, e500040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15797 cCE(wsllhg, e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15798 cCE(wsllw, e900040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15799 cCE(wsllwg, e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15800 cCE(wslld, ed00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15801 cCE(wslldg, ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15802 cCE(wsrah, e400040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15803 cCE(wsrahg, e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15804 cCE(wsraw, e800040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15805 cCE(wsrawg, e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15806 cCE(wsrad, ec00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15807 cCE(wsradg, ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15808 cCE(wsrlh, e600040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15809 cCE(wsrlhg, e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15810 cCE(wsrlw, ea00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15811 cCE(wsrlwg, ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15812 cCE(wsrld, ee00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15813 cCE(wsrldg, ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15814 cCE(wstrb, c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
15815 cCE(wstrh, c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
15816 cCE(wstrw, c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
15817 cCE(wstrd, c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
15818 cCE(wsubbss, e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15819 cCE(wsubb, e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15820 cCE(wsubbus, e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15821 cCE(wsubhss, e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15822 cCE(wsubh, e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15823 cCE(wsubhus, e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15824 cCE(wsubwss, eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15825 cCE(wsubw, e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15826 cCE(wsubwus, e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15827 cCE(wunpckehub,e0000c0, 2, (RIWR, RIWR), rd_rn),
15828 cCE(wunpckehuh,e4000c0, 2, (RIWR, RIWR), rd_rn),
15829 cCE(wunpckehuw,e8000c0, 2, (RIWR, RIWR), rd_rn),
15830 cCE(wunpckehsb,e2000c0, 2, (RIWR, RIWR), rd_rn),
15831 cCE(wunpckehsh,e6000c0, 2, (RIWR, RIWR), rd_rn),
15832 cCE(wunpckehsw,ea000c0, 2, (RIWR, RIWR), rd_rn),
15833 cCE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15834 cCE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15835 cCE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15836 cCE(wunpckelub,e0000e0, 2, (RIWR, RIWR), rd_rn),
15837 cCE(wunpckeluh,e4000e0, 2, (RIWR, RIWR), rd_rn),
15838 cCE(wunpckeluw,e8000e0, 2, (RIWR, RIWR), rd_rn),
15839 cCE(wunpckelsb,e2000e0, 2, (RIWR, RIWR), rd_rn),
15840 cCE(wunpckelsh,e6000e0, 2, (RIWR, RIWR), rd_rn),
15841 cCE(wunpckelsw,ea000e0, 2, (RIWR, RIWR), rd_rn),
15842 cCE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15843 cCE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15844 cCE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15845 cCE(wxor, e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15846 cCE(wzero, e300000, 1, (RIWR), iwmmxt_wzero),
15847
15848 #undef ARM_VARIANT
15849 #define ARM_VARIANT &arm_cext_maverick /* Cirrus Maverick instructions. */
15850 cCE(cfldrs, c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
15851 cCE(cfldrd, c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
15852 cCE(cfldr32, c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
15853 cCE(cfldr64, c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
15854 cCE(cfstrs, c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
15855 cCE(cfstrd, c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
15856 cCE(cfstr32, c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
15857 cCE(cfstr64, c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
15858 cCE(cfmvsr, e000450, 2, (RMF, RR), rn_rd),
15859 cCE(cfmvrs, e100450, 2, (RR, RMF), rd_rn),
15860 cCE(cfmvdlr, e000410, 2, (RMD, RR), rn_rd),
15861 cCE(cfmvrdl, e100410, 2, (RR, RMD), rd_rn),
15862 cCE(cfmvdhr, e000430, 2, (RMD, RR), rn_rd),
15863 cCE(cfmvrdh, e100430, 2, (RR, RMD), rd_rn),
15864 cCE(cfmv64lr, e000510, 2, (RMDX, RR), rn_rd),
15865 cCE(cfmvr64l, e100510, 2, (RR, RMDX), rd_rn),
15866 cCE(cfmv64hr, e000530, 2, (RMDX, RR), rn_rd),
15867 cCE(cfmvr64h, e100530, 2, (RR, RMDX), rd_rn),
15868 cCE(cfmval32, e200440, 2, (RMAX, RMFX), rd_rn),
15869 cCE(cfmv32al, e100440, 2, (RMFX, RMAX), rd_rn),
15870 cCE(cfmvam32, e200460, 2, (RMAX, RMFX), rd_rn),
15871 cCE(cfmv32am, e100460, 2, (RMFX, RMAX), rd_rn),
15872 cCE(cfmvah32, e200480, 2, (RMAX, RMFX), rd_rn),
15873 cCE(cfmv32ah, e100480, 2, (RMFX, RMAX), rd_rn),
15874 cCE(cfmva32, e2004a0, 2, (RMAX, RMFX), rd_rn),
15875 cCE(cfmv32a, e1004a0, 2, (RMFX, RMAX), rd_rn),
15876 cCE(cfmva64, e2004c0, 2, (RMAX, RMDX), rd_rn),
15877 cCE(cfmv64a, e1004c0, 2, (RMDX, RMAX), rd_rn),
15878 cCE(cfmvsc32, e2004e0, 2, (RMDS, RMDX), mav_dspsc),
15879 cCE(cfmv32sc, e1004e0, 2, (RMDX, RMDS), rd),
15880 cCE(cfcpys, e000400, 2, (RMF, RMF), rd_rn),
15881 cCE(cfcpyd, e000420, 2, (RMD, RMD), rd_rn),
15882 cCE(cfcvtsd, e000460, 2, (RMD, RMF), rd_rn),
15883 cCE(cfcvtds, e000440, 2, (RMF, RMD), rd_rn),
15884 cCE(cfcvt32s, e000480, 2, (RMF, RMFX), rd_rn),
15885 cCE(cfcvt32d, e0004a0, 2, (RMD, RMFX), rd_rn),
15886 cCE(cfcvt64s, e0004c0, 2, (RMF, RMDX), rd_rn),
15887 cCE(cfcvt64d, e0004e0, 2, (RMD, RMDX), rd_rn),
15888 cCE(cfcvts32, e100580, 2, (RMFX, RMF), rd_rn),
15889 cCE(cfcvtd32, e1005a0, 2, (RMFX, RMD), rd_rn),
15890 cCE(cftruncs32,e1005c0, 2, (RMFX, RMF), rd_rn),
15891 cCE(cftruncd32,e1005e0, 2, (RMFX, RMD), rd_rn),
15892 cCE(cfrshl32, e000550, 3, (RMFX, RMFX, RR), mav_triple),
15893 cCE(cfrshl64, e000570, 3, (RMDX, RMDX, RR), mav_triple),
15894 cCE(cfsh32, e000500, 3, (RMFX, RMFX, I63s), mav_shift),
15895 cCE(cfsh64, e200500, 3, (RMDX, RMDX, I63s), mav_shift),
15896 cCE(cfcmps, e100490, 3, (RR, RMF, RMF), rd_rn_rm),
15897 cCE(cfcmpd, e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
15898 cCE(cfcmp32, e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
15899 cCE(cfcmp64, e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
15900 cCE(cfabss, e300400, 2, (RMF, RMF), rd_rn),
15901 cCE(cfabsd, e300420, 2, (RMD, RMD), rd_rn),
15902 cCE(cfnegs, e300440, 2, (RMF, RMF), rd_rn),
15903 cCE(cfnegd, e300460, 2, (RMD, RMD), rd_rn),
15904 cCE(cfadds, e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
15905 cCE(cfaddd, e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
15906 cCE(cfsubs, e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
15907 cCE(cfsubd, e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
15908 cCE(cfmuls, e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
15909 cCE(cfmuld, e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
15910 cCE(cfabs32, e300500, 2, (RMFX, RMFX), rd_rn),
15911 cCE(cfabs64, e300520, 2, (RMDX, RMDX), rd_rn),
15912 cCE(cfneg32, e300540, 2, (RMFX, RMFX), rd_rn),
15913 cCE(cfneg64, e300560, 2, (RMDX, RMDX), rd_rn),
15914 cCE(cfadd32, e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
15915 cCE(cfadd64, e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
15916 cCE(cfsub32, e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
15917 cCE(cfsub64, e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
15918 cCE(cfmul32, e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
15919 cCE(cfmul64, e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
15920 cCE(cfmac32, e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
15921 cCE(cfmsc32, e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
15922 cCE(cfmadd32, e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
15923 cCE(cfmsub32, e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
15924 cCE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
15925 cCE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
15926 };
15927 #undef ARM_VARIANT
15928 #undef THUMB_VARIANT
15929 #undef TCE
15930 #undef TCM
15931 #undef TUE
15932 #undef TUF
15933 #undef TCC
15934 #undef cCE
15935 #undef cCL
15936 #undef C3E
15937 #undef CE
15938 #undef CM
15939 #undef UE
15940 #undef UF
15941 #undef UT
15942 #undef NUF
15943 #undef nUF
15944 #undef NCE
15945 #undef nCE
15946 #undef OPS0
15947 #undef OPS1
15948 #undef OPS2
15949 #undef OPS3
15950 #undef OPS4
15951 #undef OPS5
15952 #undef OPS6
15953 #undef do_0
15954 \f
15955 /* MD interface: bits in the object file. */
15956
15957 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
15958 for use in the a.out file, and stores them in the array pointed to by buf.
15959 This knows about the endian-ness of the target machine and does
15960 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
15961 2 (short) and 4 (long) Floating numbers are put out as a series of
15962 LITTLENUMS (shorts, here at least). */
15963
15964 void
15965 md_number_to_chars (char * buf, valueT val, int n)
15966 {
15967 if (target_big_endian)
15968 number_to_chars_bigendian (buf, val, n);
15969 else
15970 number_to_chars_littleendian (buf, val, n);
15971 }
15972
15973 static valueT
15974 md_chars_to_number (char * buf, int n)
15975 {
15976 valueT result = 0;
15977 unsigned char * where = (unsigned char *) buf;
15978
15979 if (target_big_endian)
15980 {
15981 while (n--)
15982 {
15983 result <<= 8;
15984 result |= (*where++ & 255);
15985 }
15986 }
15987 else
15988 {
15989 while (n--)
15990 {
15991 result <<= 8;
15992 result |= (where[n] & 255);
15993 }
15994 }
15995
15996 return result;
15997 }
15998
15999 /* MD interface: Sections. */
16000
16001 /* Estimate the size of a frag before relaxing. Assume everything fits in
16002 2 bytes. */
16003
16004 int
16005 md_estimate_size_before_relax (fragS * fragp,
16006 segT segtype ATTRIBUTE_UNUSED)
16007 {
16008 fragp->fr_var = 2;
16009 return 2;
16010 }
16011
16012 /* Convert a machine dependent frag. */
16013
16014 void
16015 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
16016 {
16017 unsigned long insn;
16018 unsigned long old_op;
16019 char *buf;
16020 expressionS exp;
16021 fixS *fixp;
16022 int reloc_type;
16023 int pc_rel;
16024 int opcode;
16025
16026 buf = fragp->fr_literal + fragp->fr_fix;
16027
16028 old_op = bfd_get_16(abfd, buf);
16029 if (fragp->fr_symbol) {
16030 exp.X_op = O_symbol;
16031 exp.X_add_symbol = fragp->fr_symbol;
16032 } else {
16033 exp.X_op = O_constant;
16034 }
16035 exp.X_add_number = fragp->fr_offset;
16036 opcode = fragp->fr_subtype;
16037 switch (opcode)
16038 {
16039 case T_MNEM_ldr_pc:
16040 case T_MNEM_ldr_pc2:
16041 case T_MNEM_ldr_sp:
16042 case T_MNEM_str_sp:
16043 case T_MNEM_ldr:
16044 case T_MNEM_ldrb:
16045 case T_MNEM_ldrh:
16046 case T_MNEM_str:
16047 case T_MNEM_strb:
16048 case T_MNEM_strh:
16049 if (fragp->fr_var == 4)
16050 {
16051 insn = THUMB_OP32(opcode);
16052 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
16053 {
16054 insn |= (old_op & 0x700) << 4;
16055 }
16056 else
16057 {
16058 insn |= (old_op & 7) << 12;
16059 insn |= (old_op & 0x38) << 13;
16060 }
16061 insn |= 0x00000c00;
16062 put_thumb32_insn (buf, insn);
16063 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
16064 }
16065 else
16066 {
16067 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
16068 }
16069 pc_rel = (opcode == T_MNEM_ldr_pc2);
16070 break;
16071 case T_MNEM_adr:
16072 if (fragp->fr_var == 4)
16073 {
16074 insn = THUMB_OP32 (opcode);
16075 insn |= (old_op & 0xf0) << 4;
16076 put_thumb32_insn (buf, insn);
16077 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
16078 }
16079 else
16080 {
16081 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16082 exp.X_add_number -= 4;
16083 }
16084 pc_rel = 1;
16085 break;
16086 case T_MNEM_mov:
16087 case T_MNEM_movs:
16088 case T_MNEM_cmp:
16089 case T_MNEM_cmn:
16090 if (fragp->fr_var == 4)
16091 {
16092 int r0off = (opcode == T_MNEM_mov
16093 || opcode == T_MNEM_movs) ? 0 : 8;
16094 insn = THUMB_OP32 (opcode);
16095 insn = (insn & 0xe1ffffff) | 0x10000000;
16096 insn |= (old_op & 0x700) << r0off;
16097 put_thumb32_insn (buf, insn);
16098 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
16099 }
16100 else
16101 {
16102 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
16103 }
16104 pc_rel = 0;
16105 break;
16106 case T_MNEM_b:
16107 if (fragp->fr_var == 4)
16108 {
16109 insn = THUMB_OP32(opcode);
16110 put_thumb32_insn (buf, insn);
16111 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
16112 }
16113 else
16114 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
16115 pc_rel = 1;
16116 break;
16117 case T_MNEM_bcond:
16118 if (fragp->fr_var == 4)
16119 {
16120 insn = THUMB_OP32(opcode);
16121 insn |= (old_op & 0xf00) << 14;
16122 put_thumb32_insn (buf, insn);
16123 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
16124 }
16125 else
16126 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
16127 pc_rel = 1;
16128 break;
16129 case T_MNEM_add_sp:
16130 case T_MNEM_add_pc:
16131 case T_MNEM_inc_sp:
16132 case T_MNEM_dec_sp:
16133 if (fragp->fr_var == 4)
16134 {
16135 /* ??? Choose between add and addw. */
16136 insn = THUMB_OP32 (opcode);
16137 insn |= (old_op & 0xf0) << 4;
16138 put_thumb32_insn (buf, insn);
16139 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
16140 }
16141 else
16142 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16143 pc_rel = 0;
16144 break;
16145
16146 case T_MNEM_addi:
16147 case T_MNEM_addis:
16148 case T_MNEM_subi:
16149 case T_MNEM_subis:
16150 if (fragp->fr_var == 4)
16151 {
16152 insn = THUMB_OP32 (opcode);
16153 insn |= (old_op & 0xf0) << 4;
16154 insn |= (old_op & 0xf) << 16;
16155 put_thumb32_insn (buf, insn);
16156 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
16157 }
16158 else
16159 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16160 pc_rel = 0;
16161 break;
16162 default:
16163 abort();
16164 }
16165 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
16166 reloc_type);
16167 fixp->fx_file = fragp->fr_file;
16168 fixp->fx_line = fragp->fr_line;
16169 fragp->fr_fix += fragp->fr_var;
16170 }
16171
16172 /* Return the size of a relaxable immediate operand instruction.
16173 SHIFT and SIZE specify the form of the allowable immediate. */
16174 static int
16175 relax_immediate (fragS *fragp, int size, int shift)
16176 {
16177 offsetT offset;
16178 offsetT mask;
16179 offsetT low;
16180
16181 /* ??? Should be able to do better than this. */
16182 if (fragp->fr_symbol)
16183 return 4;
16184
16185 low = (1 << shift) - 1;
16186 mask = (1 << (shift + size)) - (1 << shift);
16187 offset = fragp->fr_offset;
16188 /* Force misaligned offsets to 32-bit variant. */
16189 if (offset & low)
16190 return -4;
16191 if (offset & ~mask)
16192 return 4;
16193 return 2;
16194 }
16195
16196 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
16197 load. */
16198 static int
16199 relax_adr (fragS *fragp, asection *sec)
16200 {
16201 addressT addr;
16202 offsetT val;
16203
16204 /* Assume worst case for symbols not known to be in the same section. */
16205 if (!S_IS_DEFINED(fragp->fr_symbol)
16206 || sec != S_GET_SEGMENT (fragp->fr_symbol))
16207 return 4;
16208
16209 val = S_GET_VALUE(fragp->fr_symbol) + fragp->fr_offset;
16210 addr = fragp->fr_address + fragp->fr_fix;
16211 addr = (addr + 4) & ~3;
16212 /* Fix the insn as the 4-byte version if the target address is not
16213 sufficiently aligned. This is prevents an infinite loop when two
16214 instructions have contradictory range/alignment requirements. */
16215 if (val & 3)
16216 return -4;
16217 val -= addr;
16218 if (val < 0 || val > 1020)
16219 return 4;
16220 return 2;
16221 }
16222
16223 /* Return the size of a relaxable add/sub immediate instruction. */
16224 static int
16225 relax_addsub (fragS *fragp, asection *sec)
16226 {
16227 char *buf;
16228 int op;
16229
16230 buf = fragp->fr_literal + fragp->fr_fix;
16231 op = bfd_get_16(sec->owner, buf);
16232 if ((op & 0xf) == ((op >> 4) & 0xf))
16233 return relax_immediate (fragp, 8, 0);
16234 else
16235 return relax_immediate (fragp, 3, 0);
16236 }
16237
16238
16239 /* Return the size of a relaxable branch instruction. BITS is the
16240 size of the offset field in the narrow instruction. */
16241
16242 static int
16243 relax_branch (fragS *fragp, asection *sec, int bits)
16244 {
16245 addressT addr;
16246 offsetT val;
16247 offsetT limit;
16248
16249 /* Assume worst case for symbols not known to be in the same section. */
16250 if (!S_IS_DEFINED(fragp->fr_symbol)
16251 || sec != S_GET_SEGMENT (fragp->fr_symbol))
16252 return 4;
16253
16254 val = S_GET_VALUE(fragp->fr_symbol) + fragp->fr_offset;
16255 addr = fragp->fr_address + fragp->fr_fix + 4;
16256 val -= addr;
16257
16258 /* Offset is a signed value *2 */
16259 limit = 1 << bits;
16260 if (val >= limit || val < -limit)
16261 return 4;
16262 return 2;
16263 }
16264
16265
16266 /* Relax a machine dependent frag. This returns the amount by which
16267 the current size of the frag should change. */
16268
16269 int
16270 arm_relax_frag (asection *sec, fragS *fragp, long stretch ATTRIBUTE_UNUSED)
16271 {
16272 int oldsize;
16273 int newsize;
16274
16275 oldsize = fragp->fr_var;
16276 switch (fragp->fr_subtype)
16277 {
16278 case T_MNEM_ldr_pc2:
16279 newsize = relax_adr(fragp, sec);
16280 break;
16281 case T_MNEM_ldr_pc:
16282 case T_MNEM_ldr_sp:
16283 case T_MNEM_str_sp:
16284 newsize = relax_immediate(fragp, 8, 2);
16285 break;
16286 case T_MNEM_ldr:
16287 case T_MNEM_str:
16288 newsize = relax_immediate(fragp, 5, 2);
16289 break;
16290 case T_MNEM_ldrh:
16291 case T_MNEM_strh:
16292 newsize = relax_immediate(fragp, 5, 1);
16293 break;
16294 case T_MNEM_ldrb:
16295 case T_MNEM_strb:
16296 newsize = relax_immediate(fragp, 5, 0);
16297 break;
16298 case T_MNEM_adr:
16299 newsize = relax_adr(fragp, sec);
16300 break;
16301 case T_MNEM_mov:
16302 case T_MNEM_movs:
16303 case T_MNEM_cmp:
16304 case T_MNEM_cmn:
16305 newsize = relax_immediate(fragp, 8, 0);
16306 break;
16307 case T_MNEM_b:
16308 newsize = relax_branch(fragp, sec, 11);
16309 break;
16310 case T_MNEM_bcond:
16311 newsize = relax_branch(fragp, sec, 8);
16312 break;
16313 case T_MNEM_add_sp:
16314 case T_MNEM_add_pc:
16315 newsize = relax_immediate (fragp, 8, 2);
16316 break;
16317 case T_MNEM_inc_sp:
16318 case T_MNEM_dec_sp:
16319 newsize = relax_immediate (fragp, 7, 2);
16320 break;
16321 case T_MNEM_addi:
16322 case T_MNEM_addis:
16323 case T_MNEM_subi:
16324 case T_MNEM_subis:
16325 newsize = relax_addsub (fragp, sec);
16326 break;
16327 default:
16328 abort();
16329 }
16330 if (newsize < 0)
16331 {
16332 fragp->fr_var = -newsize;
16333 md_convert_frag (sec->owner, sec, fragp);
16334 frag_wane(fragp);
16335 return -(newsize + oldsize);
16336 }
16337 fragp->fr_var = newsize;
16338 return newsize - oldsize;
16339 }
16340
16341 /* Round up a section size to the appropriate boundary. */
16342
16343 valueT
16344 md_section_align (segT segment ATTRIBUTE_UNUSED,
16345 valueT size)
16346 {
16347 #ifdef OBJ_ELF
16348 return size;
16349 #else
16350 /* Round all sects to multiple of 4. */
16351 return (size + 3) & ~3;
16352 #endif
16353 }
16354
16355 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
16356 of an rs_align_code fragment. */
16357
16358 void
16359 arm_handle_align (fragS * fragP)
16360 {
16361 static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 };
16362 static char const thumb_noop[2] = { 0xc0, 0x46 };
16363 static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 };
16364 static char const thumb_bigend_noop[2] = { 0x46, 0xc0 };
16365
16366 int bytes, fix, noop_size;
16367 char * p;
16368 const char * noop;
16369
16370 if (fragP->fr_type != rs_align_code)
16371 return;
16372
16373 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
16374 p = fragP->fr_literal + fragP->fr_fix;
16375 fix = 0;
16376
16377 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
16378 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
16379
16380 if (fragP->tc_frag_data)
16381 {
16382 if (target_big_endian)
16383 noop = thumb_bigend_noop;
16384 else
16385 noop = thumb_noop;
16386 noop_size = sizeof (thumb_noop);
16387 }
16388 else
16389 {
16390 if (target_big_endian)
16391 noop = arm_bigend_noop;
16392 else
16393 noop = arm_noop;
16394 noop_size = sizeof (arm_noop);
16395 }
16396
16397 if (bytes & (noop_size - 1))
16398 {
16399 fix = bytes & (noop_size - 1);
16400 memset (p, 0, fix);
16401 p += fix;
16402 bytes -= fix;
16403 }
16404
16405 while (bytes >= noop_size)
16406 {
16407 memcpy (p, noop, noop_size);
16408 p += noop_size;
16409 bytes -= noop_size;
16410 fix += noop_size;
16411 }
16412
16413 fragP->fr_fix += fix;
16414 fragP->fr_var = noop_size;
16415 }
16416
16417 /* Called from md_do_align. Used to create an alignment
16418 frag in a code section. */
16419
16420 void
16421 arm_frag_align_code (int n, int max)
16422 {
16423 char * p;
16424
16425 /* We assume that there will never be a requirement
16426 to support alignments greater than 32 bytes. */
16427 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
16428 as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
16429
16430 p = frag_var (rs_align_code,
16431 MAX_MEM_FOR_RS_ALIGN_CODE,
16432 1,
16433 (relax_substateT) max,
16434 (symbolS *) NULL,
16435 (offsetT) n,
16436 (char *) NULL);
16437 *p = 0;
16438 }
16439
16440 /* Perform target specific initialisation of a frag. */
16441
16442 void
16443 arm_init_frag (fragS * fragP)
16444 {
16445 /* Record whether this frag is in an ARM or a THUMB area. */
16446 fragP->tc_frag_data = thumb_mode;
16447 }
16448
16449 #ifdef OBJ_ELF
16450 /* When we change sections we need to issue a new mapping symbol. */
16451
16452 void
16453 arm_elf_change_section (void)
16454 {
16455 flagword flags;
16456 segment_info_type *seginfo;
16457
16458 /* Link an unlinked unwind index table section to the .text section. */
16459 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
16460 && elf_linked_to_section (now_seg) == NULL)
16461 elf_linked_to_section (now_seg) = text_section;
16462
16463 if (!SEG_NORMAL (now_seg))
16464 return;
16465
16466 flags = bfd_get_section_flags (stdoutput, now_seg);
16467
16468 /* We can ignore sections that only contain debug info. */
16469 if ((flags & SEC_ALLOC) == 0)
16470 return;
16471
16472 seginfo = seg_info (now_seg);
16473 mapstate = seginfo->tc_segment_info_data.mapstate;
16474 marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency;
16475 }
16476
16477 int
16478 arm_elf_section_type (const char * str, size_t len)
16479 {
16480 if (len == 5 && strncmp (str, "exidx", 5) == 0)
16481 return SHT_ARM_EXIDX;
16482
16483 return -1;
16484 }
16485 \f
16486 /* Code to deal with unwinding tables. */
16487
16488 static void add_unwind_adjustsp (offsetT);
16489
16490 /* Cenerate and deferred unwind frame offset. */
16491
16492 static void
16493 flush_pending_unwind (void)
16494 {
16495 offsetT offset;
16496
16497 offset = unwind.pending_offset;
16498 unwind.pending_offset = 0;
16499 if (offset != 0)
16500 add_unwind_adjustsp (offset);
16501 }
16502
16503 /* Add an opcode to this list for this function. Two-byte opcodes should
16504 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
16505 order. */
16506
16507 static void
16508 add_unwind_opcode (valueT op, int length)
16509 {
16510 /* Add any deferred stack adjustment. */
16511 if (unwind.pending_offset)
16512 flush_pending_unwind ();
16513
16514 unwind.sp_restored = 0;
16515
16516 if (unwind.opcode_count + length > unwind.opcode_alloc)
16517 {
16518 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
16519 if (unwind.opcodes)
16520 unwind.opcodes = xrealloc (unwind.opcodes,
16521 unwind.opcode_alloc);
16522 else
16523 unwind.opcodes = xmalloc (unwind.opcode_alloc);
16524 }
16525 while (length > 0)
16526 {
16527 length--;
16528 unwind.opcodes[unwind.opcode_count] = op & 0xff;
16529 op >>= 8;
16530 unwind.opcode_count++;
16531 }
16532 }
16533
16534 /* Add unwind opcodes to adjust the stack pointer. */
16535
16536 static void
16537 add_unwind_adjustsp (offsetT offset)
16538 {
16539 valueT op;
16540
16541 if (offset > 0x200)
16542 {
16543 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
16544 char bytes[5];
16545 int n;
16546 valueT o;
16547
16548 /* Long form: 0xb2, uleb128. */
16549 /* This might not fit in a word so add the individual bytes,
16550 remembering the list is built in reverse order. */
16551 o = (valueT) ((offset - 0x204) >> 2);
16552 if (o == 0)
16553 add_unwind_opcode (0, 1);
16554
16555 /* Calculate the uleb128 encoding of the offset. */
16556 n = 0;
16557 while (o)
16558 {
16559 bytes[n] = o & 0x7f;
16560 o >>= 7;
16561 if (o)
16562 bytes[n] |= 0x80;
16563 n++;
16564 }
16565 /* Add the insn. */
16566 for (; n; n--)
16567 add_unwind_opcode (bytes[n - 1], 1);
16568 add_unwind_opcode (0xb2, 1);
16569 }
16570 else if (offset > 0x100)
16571 {
16572 /* Two short opcodes. */
16573 add_unwind_opcode (0x3f, 1);
16574 op = (offset - 0x104) >> 2;
16575 add_unwind_opcode (op, 1);
16576 }
16577 else if (offset > 0)
16578 {
16579 /* Short opcode. */
16580 op = (offset - 4) >> 2;
16581 add_unwind_opcode (op, 1);
16582 }
16583 else if (offset < 0)
16584 {
16585 offset = -offset;
16586 while (offset > 0x100)
16587 {
16588 add_unwind_opcode (0x7f, 1);
16589 offset -= 0x100;
16590 }
16591 op = ((offset - 4) >> 2) | 0x40;
16592 add_unwind_opcode (op, 1);
16593 }
16594 }
16595
16596 /* Finish the list of unwind opcodes for this function. */
16597 static void
16598 finish_unwind_opcodes (void)
16599 {
16600 valueT op;
16601
16602 if (unwind.fp_used)
16603 {
16604 /* Adjust sp as necessary. */
16605 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
16606 flush_pending_unwind ();
16607
16608 /* After restoring sp from the frame pointer. */
16609 op = 0x90 | unwind.fp_reg;
16610 add_unwind_opcode (op, 1);
16611 }
16612 else
16613 flush_pending_unwind ();
16614 }
16615
16616
16617 /* Start an exception table entry. If idx is nonzero this is an index table
16618 entry. */
16619
16620 static void
16621 start_unwind_section (const segT text_seg, int idx)
16622 {
16623 const char * text_name;
16624 const char * prefix;
16625 const char * prefix_once;
16626 const char * group_name;
16627 size_t prefix_len;
16628 size_t text_len;
16629 char * sec_name;
16630 size_t sec_name_len;
16631 int type;
16632 int flags;
16633 int linkonce;
16634
16635 if (idx)
16636 {
16637 prefix = ELF_STRING_ARM_unwind;
16638 prefix_once = ELF_STRING_ARM_unwind_once;
16639 type = SHT_ARM_EXIDX;
16640 }
16641 else
16642 {
16643 prefix = ELF_STRING_ARM_unwind_info;
16644 prefix_once = ELF_STRING_ARM_unwind_info_once;
16645 type = SHT_PROGBITS;
16646 }
16647
16648 text_name = segment_name (text_seg);
16649 if (streq (text_name, ".text"))
16650 text_name = "";
16651
16652 if (strncmp (text_name, ".gnu.linkonce.t.",
16653 strlen (".gnu.linkonce.t.")) == 0)
16654 {
16655 prefix = prefix_once;
16656 text_name += strlen (".gnu.linkonce.t.");
16657 }
16658
16659 prefix_len = strlen (prefix);
16660 text_len = strlen (text_name);
16661 sec_name_len = prefix_len + text_len;
16662 sec_name = xmalloc (sec_name_len + 1);
16663 memcpy (sec_name, prefix, prefix_len);
16664 memcpy (sec_name + prefix_len, text_name, text_len);
16665 sec_name[prefix_len + text_len] = '\0';
16666
16667 flags = SHF_ALLOC;
16668 linkonce = 0;
16669 group_name = 0;
16670
16671 /* Handle COMDAT group. */
16672 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
16673 {
16674 group_name = elf_group_name (text_seg);
16675 if (group_name == NULL)
16676 {
16677 as_bad ("Group section `%s' has no group signature",
16678 segment_name (text_seg));
16679 ignore_rest_of_line ();
16680 return;
16681 }
16682 flags |= SHF_GROUP;
16683 linkonce = 1;
16684 }
16685
16686 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
16687
16688 /* Set the setion link for index tables. */
16689 if (idx)
16690 elf_linked_to_section (now_seg) = text_seg;
16691 }
16692
16693
16694 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
16695 personality routine data. Returns zero, or the index table value for
16696 and inline entry. */
16697
16698 static valueT
16699 create_unwind_entry (int have_data)
16700 {
16701 int size;
16702 addressT where;
16703 char *ptr;
16704 /* The current word of data. */
16705 valueT data;
16706 /* The number of bytes left in this word. */
16707 int n;
16708
16709 finish_unwind_opcodes ();
16710
16711 /* Remember the current text section. */
16712 unwind.saved_seg = now_seg;
16713 unwind.saved_subseg = now_subseg;
16714
16715 start_unwind_section (now_seg, 0);
16716
16717 if (unwind.personality_routine == NULL)
16718 {
16719 if (unwind.personality_index == -2)
16720 {
16721 if (have_data)
16722 as_bad (_("handerdata in cantunwind frame"));
16723 return 1; /* EXIDX_CANTUNWIND. */
16724 }
16725
16726 /* Use a default personality routine if none is specified. */
16727 if (unwind.personality_index == -1)
16728 {
16729 if (unwind.opcode_count > 3)
16730 unwind.personality_index = 1;
16731 else
16732 unwind.personality_index = 0;
16733 }
16734
16735 /* Space for the personality routine entry. */
16736 if (unwind.personality_index == 0)
16737 {
16738 if (unwind.opcode_count > 3)
16739 as_bad (_("too many unwind opcodes for personality routine 0"));
16740
16741 if (!have_data)
16742 {
16743 /* All the data is inline in the index table. */
16744 data = 0x80;
16745 n = 3;
16746 while (unwind.opcode_count > 0)
16747 {
16748 unwind.opcode_count--;
16749 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
16750 n--;
16751 }
16752
16753 /* Pad with "finish" opcodes. */
16754 while (n--)
16755 data = (data << 8) | 0xb0;
16756
16757 return data;
16758 }
16759 size = 0;
16760 }
16761 else
16762 /* We get two opcodes "free" in the first word. */
16763 size = unwind.opcode_count - 2;
16764 }
16765 else
16766 /* An extra byte is required for the opcode count. */
16767 size = unwind.opcode_count + 1;
16768
16769 size = (size + 3) >> 2;
16770 if (size > 0xff)
16771 as_bad (_("too many unwind opcodes"));
16772
16773 frag_align (2, 0, 0);
16774 record_alignment (now_seg, 2);
16775 unwind.table_entry = expr_build_dot ();
16776
16777 /* Allocate the table entry. */
16778 ptr = frag_more ((size << 2) + 4);
16779 where = frag_now_fix () - ((size << 2) + 4);
16780
16781 switch (unwind.personality_index)
16782 {
16783 case -1:
16784 /* ??? Should this be a PLT generating relocation? */
16785 /* Custom personality routine. */
16786 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
16787 BFD_RELOC_ARM_PREL31);
16788
16789 where += 4;
16790 ptr += 4;
16791
16792 /* Set the first byte to the number of additional words. */
16793 data = size - 1;
16794 n = 3;
16795 break;
16796
16797 /* ABI defined personality routines. */
16798 case 0:
16799 /* Three opcodes bytes are packed into the first word. */
16800 data = 0x80;
16801 n = 3;
16802 break;
16803
16804 case 1:
16805 case 2:
16806 /* The size and first two opcode bytes go in the first word. */
16807 data = ((0x80 + unwind.personality_index) << 8) | size;
16808 n = 2;
16809 break;
16810
16811 default:
16812 /* Should never happen. */
16813 abort ();
16814 }
16815
16816 /* Pack the opcodes into words (MSB first), reversing the list at the same
16817 time. */
16818 while (unwind.opcode_count > 0)
16819 {
16820 if (n == 0)
16821 {
16822 md_number_to_chars (ptr, data, 4);
16823 ptr += 4;
16824 n = 4;
16825 data = 0;
16826 }
16827 unwind.opcode_count--;
16828 n--;
16829 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
16830 }
16831
16832 /* Finish off the last word. */
16833 if (n < 4)
16834 {
16835 /* Pad with "finish" opcodes. */
16836 while (n--)
16837 data = (data << 8) | 0xb0;
16838
16839 md_number_to_chars (ptr, data, 4);
16840 }
16841
16842 if (!have_data)
16843 {
16844 /* Add an empty descriptor if there is no user-specified data. */
16845 ptr = frag_more (4);
16846 md_number_to_chars (ptr, 0, 4);
16847 }
16848
16849 return 0;
16850 }
16851
16852 /* Convert REGNAME to a DWARF-2 register number. */
16853
16854 int
16855 tc_arm_regname_to_dw2regnum (char *regname)
16856 {
16857 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
16858
16859 if (reg == FAIL)
16860 return -1;
16861
16862 return reg;
16863 }
16864
16865 /* Initialize the DWARF-2 unwind information for this procedure. */
16866
16867 void
16868 tc_arm_frame_initial_instructions (void)
16869 {
16870 cfi_add_CFA_def_cfa (REG_SP, 0);
16871 }
16872 #endif /* OBJ_ELF */
16873
16874
16875 /* MD interface: Symbol and relocation handling. */
16876
16877 /* Return the address within the segment that a PC-relative fixup is
16878 relative to. For ARM, PC-relative fixups applied to instructions
16879 are generally relative to the location of the fixup plus 8 bytes.
16880 Thumb branches are offset by 4, and Thumb loads relative to PC
16881 require special handling. */
16882
16883 long
16884 md_pcrel_from_section (fixS * fixP, segT seg)
16885 {
16886 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
16887
16888 /* If this is pc-relative and we are going to emit a relocation
16889 then we just want to put out any pipeline compensation that the linker
16890 will need. Otherwise we want to use the calculated base.
16891 For WinCE we skip the bias for externals as well, since this
16892 is how the MS ARM-CE assembler behaves and we want to be compatible. */
16893 if (fixP->fx_pcrel
16894 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
16895 || (arm_force_relocation (fixP)
16896 #ifdef TE_WINCE
16897 && !S_IS_EXTERNAL (fixP->fx_addsy)
16898 #endif
16899 )))
16900 base = 0;
16901
16902 switch (fixP->fx_r_type)
16903 {
16904 /* PC relative addressing on the Thumb is slightly odd as the
16905 bottom two bits of the PC are forced to zero for the
16906 calculation. This happens *after* application of the
16907 pipeline offset. However, Thumb adrl already adjusts for
16908 this, so we need not do it again. */
16909 case BFD_RELOC_ARM_THUMB_ADD:
16910 return base & ~3;
16911
16912 case BFD_RELOC_ARM_THUMB_OFFSET:
16913 case BFD_RELOC_ARM_T32_OFFSET_IMM:
16914 case BFD_RELOC_ARM_T32_ADD_PC12:
16915 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
16916 return (base + 4) & ~3;
16917
16918 /* Thumb branches are simply offset by +4. */
16919 case BFD_RELOC_THUMB_PCREL_BRANCH7:
16920 case BFD_RELOC_THUMB_PCREL_BRANCH9:
16921 case BFD_RELOC_THUMB_PCREL_BRANCH12:
16922 case BFD_RELOC_THUMB_PCREL_BRANCH20:
16923 case BFD_RELOC_THUMB_PCREL_BRANCH23:
16924 case BFD_RELOC_THUMB_PCREL_BRANCH25:
16925 case BFD_RELOC_THUMB_PCREL_BLX:
16926 return base + 4;
16927
16928 /* ARM mode branches are offset by +8. However, the Windows CE
16929 loader expects the relocation not to take this into account. */
16930 case BFD_RELOC_ARM_PCREL_BRANCH:
16931 case BFD_RELOC_ARM_PCREL_CALL:
16932 case BFD_RELOC_ARM_PCREL_JUMP:
16933 case BFD_RELOC_ARM_PCREL_BLX:
16934 case BFD_RELOC_ARM_PLT32:
16935 #ifdef TE_WINCE
16936 /* When handling fixups immediately, because we have already
16937 discovered the value of a symbol, or the address of the frag involved
16938 we must account for the offset by +8, as the OS loader will never see the reloc.
16939 see fixup_segment() in write.c
16940 The S_IS_EXTERNAL test handles the case of global symbols.
16941 Those need the calculated base, not just the pipe compensation the linker will need. */
16942 if (fixP->fx_pcrel
16943 && fixP->fx_addsy != NULL
16944 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
16945 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
16946 return base + 8;
16947 return base;
16948 #else
16949 return base + 8;
16950 #endif
16951
16952 /* ARM mode loads relative to PC are also offset by +8. Unlike
16953 branches, the Windows CE loader *does* expect the relocation
16954 to take this into account. */
16955 case BFD_RELOC_ARM_OFFSET_IMM:
16956 case BFD_RELOC_ARM_OFFSET_IMM8:
16957 case BFD_RELOC_ARM_HWLITERAL:
16958 case BFD_RELOC_ARM_LITERAL:
16959 case BFD_RELOC_ARM_CP_OFF_IMM:
16960 return base + 8;
16961
16962
16963 /* Other PC-relative relocations are un-offset. */
16964 default:
16965 return base;
16966 }
16967 }
16968
16969 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
16970 Otherwise we have no need to default values of symbols. */
16971
16972 symbolS *
16973 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
16974 {
16975 #ifdef OBJ_ELF
16976 if (name[0] == '_' && name[1] == 'G'
16977 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
16978 {
16979 if (!GOT_symbol)
16980 {
16981 if (symbol_find (name))
16982 as_bad ("GOT already in the symbol table");
16983
16984 GOT_symbol = symbol_new (name, undefined_section,
16985 (valueT) 0, & zero_address_frag);
16986 }
16987
16988 return GOT_symbol;
16989 }
16990 #endif
16991
16992 return 0;
16993 }
16994
16995 /* Subroutine of md_apply_fix. Check to see if an immediate can be
16996 computed as two separate immediate values, added together. We
16997 already know that this value cannot be computed by just one ARM
16998 instruction. */
16999
17000 static unsigned int
17001 validate_immediate_twopart (unsigned int val,
17002 unsigned int * highpart)
17003 {
17004 unsigned int a;
17005 unsigned int i;
17006
17007 for (i = 0; i < 32; i += 2)
17008 if (((a = rotate_left (val, i)) & 0xff) != 0)
17009 {
17010 if (a & 0xff00)
17011 {
17012 if (a & ~ 0xffff)
17013 continue;
17014 * highpart = (a >> 8) | ((i + 24) << 7);
17015 }
17016 else if (a & 0xff0000)
17017 {
17018 if (a & 0xff000000)
17019 continue;
17020 * highpart = (a >> 16) | ((i + 16) << 7);
17021 }
17022 else
17023 {
17024 assert (a & 0xff000000);
17025 * highpart = (a >> 24) | ((i + 8) << 7);
17026 }
17027
17028 return (a & 0xff) | (i << 7);
17029 }
17030
17031 return FAIL;
17032 }
17033
17034 static int
17035 validate_offset_imm (unsigned int val, int hwse)
17036 {
17037 if ((hwse && val > 255) || val > 4095)
17038 return FAIL;
17039 return val;
17040 }
17041
17042 /* Subroutine of md_apply_fix. Do those data_ops which can take a
17043 negative immediate constant by altering the instruction. A bit of
17044 a hack really.
17045 MOV <-> MVN
17046 AND <-> BIC
17047 ADC <-> SBC
17048 by inverting the second operand, and
17049 ADD <-> SUB
17050 CMP <-> CMN
17051 by negating the second operand. */
17052
17053 static int
17054 negate_data_op (unsigned long * instruction,
17055 unsigned long value)
17056 {
17057 int op, new_inst;
17058 unsigned long negated, inverted;
17059
17060 negated = encode_arm_immediate (-value);
17061 inverted = encode_arm_immediate (~value);
17062
17063 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
17064 switch (op)
17065 {
17066 /* First negates. */
17067 case OPCODE_SUB: /* ADD <-> SUB */
17068 new_inst = OPCODE_ADD;
17069 value = negated;
17070 break;
17071
17072 case OPCODE_ADD:
17073 new_inst = OPCODE_SUB;
17074 value = negated;
17075 break;
17076
17077 case OPCODE_CMP: /* CMP <-> CMN */
17078 new_inst = OPCODE_CMN;
17079 value = negated;
17080 break;
17081
17082 case OPCODE_CMN:
17083 new_inst = OPCODE_CMP;
17084 value = negated;
17085 break;
17086
17087 /* Now Inverted ops. */
17088 case OPCODE_MOV: /* MOV <-> MVN */
17089 new_inst = OPCODE_MVN;
17090 value = inverted;
17091 break;
17092
17093 case OPCODE_MVN:
17094 new_inst = OPCODE_MOV;
17095 value = inverted;
17096 break;
17097
17098 case OPCODE_AND: /* AND <-> BIC */
17099 new_inst = OPCODE_BIC;
17100 value = inverted;
17101 break;
17102
17103 case OPCODE_BIC:
17104 new_inst = OPCODE_AND;
17105 value = inverted;
17106 break;
17107
17108 case OPCODE_ADC: /* ADC <-> SBC */
17109 new_inst = OPCODE_SBC;
17110 value = inverted;
17111 break;
17112
17113 case OPCODE_SBC:
17114 new_inst = OPCODE_ADC;
17115 value = inverted;
17116 break;
17117
17118 /* We cannot do anything. */
17119 default:
17120 return FAIL;
17121 }
17122
17123 if (value == (unsigned) FAIL)
17124 return FAIL;
17125
17126 *instruction &= OPCODE_MASK;
17127 *instruction |= new_inst << DATA_OP_SHIFT;
17128 return value;
17129 }
17130
17131 /* Like negate_data_op, but for Thumb-2. */
17132
17133 static unsigned int
17134 thumb32_negate_data_op (offsetT *instruction, offsetT value)
17135 {
17136 int op, new_inst;
17137 int rd;
17138 offsetT negated, inverted;
17139
17140 negated = encode_thumb32_immediate (-value);
17141 inverted = encode_thumb32_immediate (~value);
17142
17143 rd = (*instruction >> 8) & 0xf;
17144 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
17145 switch (op)
17146 {
17147 /* ADD <-> SUB. Includes CMP <-> CMN. */
17148 case T2_OPCODE_SUB:
17149 new_inst = T2_OPCODE_ADD;
17150 value = negated;
17151 break;
17152
17153 case T2_OPCODE_ADD:
17154 new_inst = T2_OPCODE_SUB;
17155 value = negated;
17156 break;
17157
17158 /* ORR <-> ORN. Includes MOV <-> MVN. */
17159 case T2_OPCODE_ORR:
17160 new_inst = T2_OPCODE_ORN;
17161 value = inverted;
17162 break;
17163
17164 case T2_OPCODE_ORN:
17165 new_inst = T2_OPCODE_ORR;
17166 value = inverted;
17167 break;
17168
17169 /* AND <-> BIC. TST has no inverted equivalent. */
17170 case T2_OPCODE_AND:
17171 new_inst = T2_OPCODE_BIC;
17172 if (rd == 15)
17173 value = FAIL;
17174 else
17175 value = inverted;
17176 break;
17177
17178 case T2_OPCODE_BIC:
17179 new_inst = T2_OPCODE_AND;
17180 value = inverted;
17181 break;
17182
17183 /* ADC <-> SBC */
17184 case T2_OPCODE_ADC:
17185 new_inst = T2_OPCODE_SBC;
17186 value = inverted;
17187 break;
17188
17189 case T2_OPCODE_SBC:
17190 new_inst = T2_OPCODE_ADC;
17191 value = inverted;
17192 break;
17193
17194 /* We cannot do anything. */
17195 default:
17196 return FAIL;
17197 }
17198
17199 if (value == FAIL)
17200 return FAIL;
17201
17202 *instruction &= T2_OPCODE_MASK;
17203 *instruction |= new_inst << T2_DATA_OP_SHIFT;
17204 return value;
17205 }
17206
17207 /* Read a 32-bit thumb instruction from buf. */
17208 static unsigned long
17209 get_thumb32_insn (char * buf)
17210 {
17211 unsigned long insn;
17212 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
17213 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
17214
17215 return insn;
17216 }
17217
17218
17219 /* We usually want to set the low bit on the address of thumb function
17220 symbols. In particular .word foo - . should have the low bit set.
17221 Generic code tries to fold the difference of two symbols to
17222 a constant. Prevent this and force a relocation when the first symbols
17223 is a thumb function. */
17224 int
17225 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
17226 {
17227 if (op == O_subtract
17228 && l->X_op == O_symbol
17229 && r->X_op == O_symbol
17230 && THUMB_IS_FUNC (l->X_add_symbol))
17231 {
17232 l->X_op = O_subtract;
17233 l->X_op_symbol = r->X_add_symbol;
17234 l->X_add_number -= r->X_add_number;
17235 return 1;
17236 }
17237 /* Process as normal. */
17238 return 0;
17239 }
17240
17241 void
17242 md_apply_fix (fixS * fixP,
17243 valueT * valP,
17244 segT seg)
17245 {
17246 offsetT value = * valP;
17247 offsetT newval;
17248 unsigned int newimm;
17249 unsigned long temp;
17250 int sign;
17251 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
17252
17253 assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
17254
17255 /* Note whether this will delete the relocation. */
17256
17257 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
17258 fixP->fx_done = 1;
17259
17260 /* On a 64-bit host, silently truncate 'value' to 32 bits for
17261 consistency with the behavior on 32-bit hosts. Remember value
17262 for emit_reloc. */
17263 value &= 0xffffffff;
17264 value ^= 0x80000000;
17265 value -= 0x80000000;
17266
17267 *valP = value;
17268 fixP->fx_addnumber = value;
17269
17270 /* Same treatment for fixP->fx_offset. */
17271 fixP->fx_offset &= 0xffffffff;
17272 fixP->fx_offset ^= 0x80000000;
17273 fixP->fx_offset -= 0x80000000;
17274
17275 switch (fixP->fx_r_type)
17276 {
17277 case BFD_RELOC_NONE:
17278 /* This will need to go in the object file. */
17279 fixP->fx_done = 0;
17280 break;
17281
17282 case BFD_RELOC_ARM_IMMEDIATE:
17283 /* We claim that this fixup has been processed here,
17284 even if in fact we generate an error because we do
17285 not have a reloc for it, so tc_gen_reloc will reject it. */
17286 fixP->fx_done = 1;
17287
17288 if (fixP->fx_addsy
17289 && ! S_IS_DEFINED (fixP->fx_addsy))
17290 {
17291 as_bad_where (fixP->fx_file, fixP->fx_line,
17292 _("undefined symbol %s used as an immediate value"),
17293 S_GET_NAME (fixP->fx_addsy));
17294 break;
17295 }
17296
17297 newimm = encode_arm_immediate (value);
17298 temp = md_chars_to_number (buf, INSN_SIZE);
17299
17300 /* If the instruction will fail, see if we can fix things up by
17301 changing the opcode. */
17302 if (newimm == (unsigned int) FAIL
17303 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
17304 {
17305 as_bad_where (fixP->fx_file, fixP->fx_line,
17306 _("invalid constant (%lx) after fixup"),
17307 (unsigned long) value);
17308 break;
17309 }
17310
17311 newimm |= (temp & 0xfffff000);
17312 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
17313 break;
17314
17315 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
17316 {
17317 unsigned int highpart = 0;
17318 unsigned int newinsn = 0xe1a00000; /* nop. */
17319
17320 newimm = encode_arm_immediate (value);
17321 temp = md_chars_to_number (buf, INSN_SIZE);
17322
17323 /* If the instruction will fail, see if we can fix things up by
17324 changing the opcode. */
17325 if (newimm == (unsigned int) FAIL
17326 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
17327 {
17328 /* No ? OK - try using two ADD instructions to generate
17329 the value. */
17330 newimm = validate_immediate_twopart (value, & highpart);
17331
17332 /* Yes - then make sure that the second instruction is
17333 also an add. */
17334 if (newimm != (unsigned int) FAIL)
17335 newinsn = temp;
17336 /* Still No ? Try using a negated value. */
17337 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
17338 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
17339 /* Otherwise - give up. */
17340 else
17341 {
17342 as_bad_where (fixP->fx_file, fixP->fx_line,
17343 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
17344 (long) value);
17345 break;
17346 }
17347
17348 /* Replace the first operand in the 2nd instruction (which
17349 is the PC) with the destination register. We have
17350 already added in the PC in the first instruction and we
17351 do not want to do it again. */
17352 newinsn &= ~ 0xf0000;
17353 newinsn |= ((newinsn & 0x0f000) << 4);
17354 }
17355
17356 newimm |= (temp & 0xfffff000);
17357 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
17358
17359 highpart |= (newinsn & 0xfffff000);
17360 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
17361 }
17362 break;
17363
17364 case BFD_RELOC_ARM_OFFSET_IMM:
17365 if (!fixP->fx_done && seg->use_rela_p)
17366 value = 0;
17367
17368 case BFD_RELOC_ARM_LITERAL:
17369 sign = value >= 0;
17370
17371 if (value < 0)
17372 value = - value;
17373
17374 if (validate_offset_imm (value, 0) == FAIL)
17375 {
17376 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
17377 as_bad_where (fixP->fx_file, fixP->fx_line,
17378 _("invalid literal constant: pool needs to be closer"));
17379 else
17380 as_bad_where (fixP->fx_file, fixP->fx_line,
17381 _("bad immediate value for offset (%ld)"),
17382 (long) value);
17383 break;
17384 }
17385
17386 newval = md_chars_to_number (buf, INSN_SIZE);
17387 newval &= 0xff7ff000;
17388 newval |= value | (sign ? INDEX_UP : 0);
17389 md_number_to_chars (buf, newval, INSN_SIZE);
17390 break;
17391
17392 case BFD_RELOC_ARM_OFFSET_IMM8:
17393 case BFD_RELOC_ARM_HWLITERAL:
17394 sign = value >= 0;
17395
17396 if (value < 0)
17397 value = - value;
17398
17399 if (validate_offset_imm (value, 1) == FAIL)
17400 {
17401 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
17402 as_bad_where (fixP->fx_file, fixP->fx_line,
17403 _("invalid literal constant: pool needs to be closer"));
17404 else
17405 as_bad (_("bad immediate value for half-word offset (%ld)"),
17406 (long) value);
17407 break;
17408 }
17409
17410 newval = md_chars_to_number (buf, INSN_SIZE);
17411 newval &= 0xff7ff0f0;
17412 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
17413 md_number_to_chars (buf, newval, INSN_SIZE);
17414 break;
17415
17416 case BFD_RELOC_ARM_T32_OFFSET_U8:
17417 if (value < 0 || value > 1020 || value % 4 != 0)
17418 as_bad_where (fixP->fx_file, fixP->fx_line,
17419 _("bad immediate value for offset (%ld)"), (long) value);
17420 value /= 4;
17421
17422 newval = md_chars_to_number (buf+2, THUMB_SIZE);
17423 newval |= value;
17424 md_number_to_chars (buf+2, newval, THUMB_SIZE);
17425 break;
17426
17427 case BFD_RELOC_ARM_T32_OFFSET_IMM:
17428 /* This is a complicated relocation used for all varieties of Thumb32
17429 load/store instruction with immediate offset:
17430
17431 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
17432 *4, optional writeback(W)
17433 (doubleword load/store)
17434
17435 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
17436 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
17437 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
17438 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
17439 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
17440
17441 Uppercase letters indicate bits that are already encoded at
17442 this point. Lowercase letters are our problem. For the
17443 second block of instructions, the secondary opcode nybble
17444 (bits 8..11) is present, and bit 23 is zero, even if this is
17445 a PC-relative operation. */
17446 newval = md_chars_to_number (buf, THUMB_SIZE);
17447 newval <<= 16;
17448 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
17449
17450 if ((newval & 0xf0000000) == 0xe0000000)
17451 {
17452 /* Doubleword load/store: 8-bit offset, scaled by 4. */
17453 if (value >= 0)
17454 newval |= (1 << 23);
17455 else
17456 value = -value;
17457 if (value % 4 != 0)
17458 {
17459 as_bad_where (fixP->fx_file, fixP->fx_line,
17460 _("offset not a multiple of 4"));
17461 break;
17462 }
17463 value /= 4;
17464 if (value > 0xff)
17465 {
17466 as_bad_where (fixP->fx_file, fixP->fx_line,
17467 _("offset out of range"));
17468 break;
17469 }
17470 newval &= ~0xff;
17471 }
17472 else if ((newval & 0x000f0000) == 0x000f0000)
17473 {
17474 /* PC-relative, 12-bit offset. */
17475 if (value >= 0)
17476 newval |= (1 << 23);
17477 else
17478 value = -value;
17479 if (value > 0xfff)
17480 {
17481 as_bad_where (fixP->fx_file, fixP->fx_line,
17482 _("offset out of range"));
17483 break;
17484 }
17485 newval &= ~0xfff;
17486 }
17487 else if ((newval & 0x00000100) == 0x00000100)
17488 {
17489 /* Writeback: 8-bit, +/- offset. */
17490 if (value >= 0)
17491 newval |= (1 << 9);
17492 else
17493 value = -value;
17494 if (value > 0xff)
17495 {
17496 as_bad_where (fixP->fx_file, fixP->fx_line,
17497 _("offset out of range"));
17498 break;
17499 }
17500 newval &= ~0xff;
17501 }
17502 else if ((newval & 0x00000f00) == 0x00000e00)
17503 {
17504 /* T-instruction: positive 8-bit offset. */
17505 if (value < 0 || value > 0xff)
17506 {
17507 as_bad_where (fixP->fx_file, fixP->fx_line,
17508 _("offset out of range"));
17509 break;
17510 }
17511 newval &= ~0xff;
17512 newval |= value;
17513 }
17514 else
17515 {
17516 /* Positive 12-bit or negative 8-bit offset. */
17517 int limit;
17518 if (value >= 0)
17519 {
17520 newval |= (1 << 23);
17521 limit = 0xfff;
17522 }
17523 else
17524 {
17525 value = -value;
17526 limit = 0xff;
17527 }
17528 if (value > limit)
17529 {
17530 as_bad_where (fixP->fx_file, fixP->fx_line,
17531 _("offset out of range"));
17532 break;
17533 }
17534 newval &= ~limit;
17535 }
17536
17537 newval |= value;
17538 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
17539 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
17540 break;
17541
17542 case BFD_RELOC_ARM_SHIFT_IMM:
17543 newval = md_chars_to_number (buf, INSN_SIZE);
17544 if (((unsigned long) value) > 32
17545 || (value == 32
17546 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
17547 {
17548 as_bad_where (fixP->fx_file, fixP->fx_line,
17549 _("shift expression is too large"));
17550 break;
17551 }
17552
17553 if (value == 0)
17554 /* Shifts of zero must be done as lsl. */
17555 newval &= ~0x60;
17556 else if (value == 32)
17557 value = 0;
17558 newval &= 0xfffff07f;
17559 newval |= (value & 0x1f) << 7;
17560 md_number_to_chars (buf, newval, INSN_SIZE);
17561 break;
17562
17563 case BFD_RELOC_ARM_T32_IMMEDIATE:
17564 case BFD_RELOC_ARM_T32_IMM12:
17565 case BFD_RELOC_ARM_T32_ADD_PC12:
17566 /* We claim that this fixup has been processed here,
17567 even if in fact we generate an error because we do
17568 not have a reloc for it, so tc_gen_reloc will reject it. */
17569 fixP->fx_done = 1;
17570
17571 if (fixP->fx_addsy
17572 && ! S_IS_DEFINED (fixP->fx_addsy))
17573 {
17574 as_bad_where (fixP->fx_file, fixP->fx_line,
17575 _("undefined symbol %s used as an immediate value"),
17576 S_GET_NAME (fixP->fx_addsy));
17577 break;
17578 }
17579
17580 newval = md_chars_to_number (buf, THUMB_SIZE);
17581 newval <<= 16;
17582 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
17583
17584 /* FUTURE: Implement analogue of negate_data_op for T32. */
17585 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE)
17586 {
17587 newimm = encode_thumb32_immediate (value);
17588 if (newimm == (unsigned int) FAIL)
17589 newimm = thumb32_negate_data_op (&newval, value);
17590 }
17591 else
17592 {
17593 /* 12 bit immediate for addw/subw. */
17594 if (value < 0)
17595 {
17596 value = -value;
17597 newval ^= 0x00a00000;
17598 }
17599 if (value > 0xfff)
17600 newimm = (unsigned int) FAIL;
17601 else
17602 newimm = value;
17603 }
17604
17605 if (newimm == (unsigned int)FAIL)
17606 {
17607 as_bad_where (fixP->fx_file, fixP->fx_line,
17608 _("invalid constant (%lx) after fixup"),
17609 (unsigned long) value);
17610 break;
17611 }
17612
17613 newval |= (newimm & 0x800) << 15;
17614 newval |= (newimm & 0x700) << 4;
17615 newval |= (newimm & 0x0ff);
17616
17617 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
17618 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
17619 break;
17620
17621 case BFD_RELOC_ARM_SMC:
17622 if (((unsigned long) value) > 0xffff)
17623 as_bad_where (fixP->fx_file, fixP->fx_line,
17624 _("invalid smc expression"));
17625 newval = md_chars_to_number (buf, INSN_SIZE);
17626 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
17627 md_number_to_chars (buf, newval, INSN_SIZE);
17628 break;
17629
17630 case BFD_RELOC_ARM_SWI:
17631 if (fixP->tc_fix_data != 0)
17632 {
17633 if (((unsigned long) value) > 0xff)
17634 as_bad_where (fixP->fx_file, fixP->fx_line,
17635 _("invalid swi expression"));
17636 newval = md_chars_to_number (buf, THUMB_SIZE);
17637 newval |= value;
17638 md_number_to_chars (buf, newval, THUMB_SIZE);
17639 }
17640 else
17641 {
17642 if (((unsigned long) value) > 0x00ffffff)
17643 as_bad_where (fixP->fx_file, fixP->fx_line,
17644 _("invalid swi expression"));
17645 newval = md_chars_to_number (buf, INSN_SIZE);
17646 newval |= value;
17647 md_number_to_chars (buf, newval, INSN_SIZE);
17648 }
17649 break;
17650
17651 case BFD_RELOC_ARM_MULTI:
17652 if (((unsigned long) value) > 0xffff)
17653 as_bad_where (fixP->fx_file, fixP->fx_line,
17654 _("invalid expression in load/store multiple"));
17655 newval = value | md_chars_to_number (buf, INSN_SIZE);
17656 md_number_to_chars (buf, newval, INSN_SIZE);
17657 break;
17658
17659 #ifdef OBJ_ELF
17660 case BFD_RELOC_ARM_PCREL_CALL:
17661 newval = md_chars_to_number (buf, INSN_SIZE);
17662 if ((newval & 0xf0000000) == 0xf0000000)
17663 temp = 1;
17664 else
17665 temp = 3;
17666 goto arm_branch_common;
17667
17668 case BFD_RELOC_ARM_PCREL_JUMP:
17669 case BFD_RELOC_ARM_PLT32:
17670 #endif
17671 case BFD_RELOC_ARM_PCREL_BRANCH:
17672 temp = 3;
17673 goto arm_branch_common;
17674
17675 case BFD_RELOC_ARM_PCREL_BLX:
17676 temp = 1;
17677 arm_branch_common:
17678 /* We are going to store value (shifted right by two) in the
17679 instruction, in a 24 bit, signed field. Bits 26 through 32 either
17680 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
17681 also be be clear. */
17682 if (value & temp)
17683 as_bad_where (fixP->fx_file, fixP->fx_line,
17684 _("misaligned branch destination"));
17685 if ((value & (offsetT)0xfe000000) != (offsetT)0
17686 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
17687 as_bad_where (fixP->fx_file, fixP->fx_line,
17688 _("branch out of range"));
17689
17690 if (fixP->fx_done || !seg->use_rela_p)
17691 {
17692 newval = md_chars_to_number (buf, INSN_SIZE);
17693 newval |= (value >> 2) & 0x00ffffff;
17694 /* Set the H bit on BLX instructions. */
17695 if (temp == 1)
17696 {
17697 if (value & 2)
17698 newval |= 0x01000000;
17699 else
17700 newval &= ~0x01000000;
17701 }
17702 md_number_to_chars (buf, newval, INSN_SIZE);
17703 }
17704 break;
17705
17706 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CZB */
17707 /* CZB can only branch forward. */
17708 if (value & ~0x7e)
17709 as_bad_where (fixP->fx_file, fixP->fx_line,
17710 _("branch out of range"));
17711
17712 if (fixP->fx_done || !seg->use_rela_p)
17713 {
17714 newval = md_chars_to_number (buf, THUMB_SIZE);
17715 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
17716 md_number_to_chars (buf, newval, THUMB_SIZE);
17717 }
17718 break;
17719
17720 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
17721 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
17722 as_bad_where (fixP->fx_file, fixP->fx_line,
17723 _("branch out of range"));
17724
17725 if (fixP->fx_done || !seg->use_rela_p)
17726 {
17727 newval = md_chars_to_number (buf, THUMB_SIZE);
17728 newval |= (value & 0x1ff) >> 1;
17729 md_number_to_chars (buf, newval, THUMB_SIZE);
17730 }
17731 break;
17732
17733 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
17734 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
17735 as_bad_where (fixP->fx_file, fixP->fx_line,
17736 _("branch out of range"));
17737
17738 if (fixP->fx_done || !seg->use_rela_p)
17739 {
17740 newval = md_chars_to_number (buf, THUMB_SIZE);
17741 newval |= (value & 0xfff) >> 1;
17742 md_number_to_chars (buf, newval, THUMB_SIZE);
17743 }
17744 break;
17745
17746 case BFD_RELOC_THUMB_PCREL_BRANCH20:
17747 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
17748 as_bad_where (fixP->fx_file, fixP->fx_line,
17749 _("conditional branch out of range"));
17750
17751 if (fixP->fx_done || !seg->use_rela_p)
17752 {
17753 offsetT newval2;
17754 addressT S, J1, J2, lo, hi;
17755
17756 S = (value & 0x00100000) >> 20;
17757 J2 = (value & 0x00080000) >> 19;
17758 J1 = (value & 0x00040000) >> 18;
17759 hi = (value & 0x0003f000) >> 12;
17760 lo = (value & 0x00000ffe) >> 1;
17761
17762 newval = md_chars_to_number (buf, THUMB_SIZE);
17763 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
17764 newval |= (S << 10) | hi;
17765 newval2 |= (J1 << 13) | (J2 << 11) | lo;
17766 md_number_to_chars (buf, newval, THUMB_SIZE);
17767 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
17768 }
17769 break;
17770
17771 case BFD_RELOC_THUMB_PCREL_BLX:
17772 case BFD_RELOC_THUMB_PCREL_BRANCH23:
17773 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
17774 as_bad_where (fixP->fx_file, fixP->fx_line,
17775 _("branch out of range"));
17776
17777 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
17778 /* For a BLX instruction, make sure that the relocation is rounded up
17779 to a word boundary. This follows the semantics of the instruction
17780 which specifies that bit 1 of the target address will come from bit
17781 1 of the base address. */
17782 value = (value + 1) & ~ 1;
17783
17784 if (fixP->fx_done || !seg->use_rela_p)
17785 {
17786 offsetT newval2;
17787
17788 newval = md_chars_to_number (buf, THUMB_SIZE);
17789 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
17790 newval |= (value & 0x7fffff) >> 12;
17791 newval2 |= (value & 0xfff) >> 1;
17792 md_number_to_chars (buf, newval, THUMB_SIZE);
17793 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
17794 }
17795 break;
17796
17797 case BFD_RELOC_THUMB_PCREL_BRANCH25:
17798 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
17799 as_bad_where (fixP->fx_file, fixP->fx_line,
17800 _("branch out of range"));
17801
17802 if (fixP->fx_done || !seg->use_rela_p)
17803 {
17804 offsetT newval2;
17805 addressT S, I1, I2, lo, hi;
17806
17807 S = (value & 0x01000000) >> 24;
17808 I1 = (value & 0x00800000) >> 23;
17809 I2 = (value & 0x00400000) >> 22;
17810 hi = (value & 0x003ff000) >> 12;
17811 lo = (value & 0x00000ffe) >> 1;
17812
17813 I1 = !(I1 ^ S);
17814 I2 = !(I2 ^ S);
17815
17816 newval = md_chars_to_number (buf, THUMB_SIZE);
17817 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
17818 newval |= (S << 10) | hi;
17819 newval2 |= (I1 << 13) | (I2 << 11) | lo;
17820 md_number_to_chars (buf, newval, THUMB_SIZE);
17821 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
17822 }
17823 break;
17824
17825 case BFD_RELOC_8:
17826 if (fixP->fx_done || !seg->use_rela_p)
17827 md_number_to_chars (buf, value, 1);
17828 break;
17829
17830 case BFD_RELOC_16:
17831 if (fixP->fx_done || !seg->use_rela_p)
17832 md_number_to_chars (buf, value, 2);
17833 break;
17834
17835 #ifdef OBJ_ELF
17836 case BFD_RELOC_ARM_TLS_GD32:
17837 case BFD_RELOC_ARM_TLS_LE32:
17838 case BFD_RELOC_ARM_TLS_IE32:
17839 case BFD_RELOC_ARM_TLS_LDM32:
17840 case BFD_RELOC_ARM_TLS_LDO32:
17841 S_SET_THREAD_LOCAL (fixP->fx_addsy);
17842 /* fall through */
17843
17844 case BFD_RELOC_ARM_GOT32:
17845 case BFD_RELOC_ARM_GOTOFF:
17846 case BFD_RELOC_ARM_TARGET2:
17847 if (fixP->fx_done || !seg->use_rela_p)
17848 md_number_to_chars (buf, 0, 4);
17849 break;
17850 #endif
17851
17852 case BFD_RELOC_RVA:
17853 case BFD_RELOC_32:
17854 case BFD_RELOC_ARM_TARGET1:
17855 case BFD_RELOC_ARM_ROSEGREL32:
17856 case BFD_RELOC_ARM_SBREL32:
17857 case BFD_RELOC_32_PCREL:
17858 if (fixP->fx_done || !seg->use_rela_p)
17859 #ifdef TE_WINCE
17860 /* For WinCE we only do this for pcrel fixups. */
17861 if (fixP->fx_done || fixP->fx_pcrel)
17862 #endif
17863 md_number_to_chars (buf, value, 4);
17864 break;
17865
17866 #ifdef OBJ_ELF
17867 case BFD_RELOC_ARM_PREL31:
17868 if (fixP->fx_done || !seg->use_rela_p)
17869 {
17870 newval = md_chars_to_number (buf, 4) & 0x80000000;
17871 if ((value ^ (value >> 1)) & 0x40000000)
17872 {
17873 as_bad_where (fixP->fx_file, fixP->fx_line,
17874 _("rel31 relocation overflow"));
17875 }
17876 newval |= value & 0x7fffffff;
17877 md_number_to_chars (buf, newval, 4);
17878 }
17879 break;
17880 #endif
17881
17882 case BFD_RELOC_ARM_CP_OFF_IMM:
17883 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
17884 if (value < -1023 || value > 1023 || (value & 3))
17885 as_bad_where (fixP->fx_file, fixP->fx_line,
17886 _("co-processor offset out of range"));
17887 cp_off_common:
17888 sign = value >= 0;
17889 if (value < 0)
17890 value = -value;
17891 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
17892 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
17893 newval = md_chars_to_number (buf, INSN_SIZE);
17894 else
17895 newval = get_thumb32_insn (buf);
17896 newval &= 0xff7fff00;
17897 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
17898 if (value == 0)
17899 newval &= ~WRITE_BACK;
17900 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
17901 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
17902 md_number_to_chars (buf, newval, INSN_SIZE);
17903 else
17904 put_thumb32_insn (buf, newval);
17905 break;
17906
17907 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
17908 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
17909 if (value < -255 || value > 255)
17910 as_bad_where (fixP->fx_file, fixP->fx_line,
17911 _("co-processor offset out of range"));
17912 value *= 4;
17913 goto cp_off_common;
17914
17915 case BFD_RELOC_ARM_THUMB_OFFSET:
17916 newval = md_chars_to_number (buf, THUMB_SIZE);
17917 /* Exactly what ranges, and where the offset is inserted depends
17918 on the type of instruction, we can establish this from the
17919 top 4 bits. */
17920 switch (newval >> 12)
17921 {
17922 case 4: /* PC load. */
17923 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
17924 forced to zero for these loads; md_pcrel_from has already
17925 compensated for this. */
17926 if (value & 3)
17927 as_bad_where (fixP->fx_file, fixP->fx_line,
17928 _("invalid offset, target not word aligned (0x%08lX)"),
17929 (((unsigned long) fixP->fx_frag->fr_address
17930 + (unsigned long) fixP->fx_where) & ~3)
17931 + (unsigned long) value);
17932
17933 if (value & ~0x3fc)
17934 as_bad_where (fixP->fx_file, fixP->fx_line,
17935 _("invalid offset, value too big (0x%08lX)"),
17936 (long) value);
17937
17938 newval |= value >> 2;
17939 break;
17940
17941 case 9: /* SP load/store. */
17942 if (value & ~0x3fc)
17943 as_bad_where (fixP->fx_file, fixP->fx_line,
17944 _("invalid offset, value too big (0x%08lX)"),
17945 (long) value);
17946 newval |= value >> 2;
17947 break;
17948
17949 case 6: /* Word load/store. */
17950 if (value & ~0x7c)
17951 as_bad_where (fixP->fx_file, fixP->fx_line,
17952 _("invalid offset, value too big (0x%08lX)"),
17953 (long) value);
17954 newval |= value << 4; /* 6 - 2. */
17955 break;
17956
17957 case 7: /* Byte load/store. */
17958 if (value & ~0x1f)
17959 as_bad_where (fixP->fx_file, fixP->fx_line,
17960 _("invalid offset, value too big (0x%08lX)"),
17961 (long) value);
17962 newval |= value << 6;
17963 break;
17964
17965 case 8: /* Halfword load/store. */
17966 if (value & ~0x3e)
17967 as_bad_where (fixP->fx_file, fixP->fx_line,
17968 _("invalid offset, value too big (0x%08lX)"),
17969 (long) value);
17970 newval |= value << 5; /* 6 - 1. */
17971 break;
17972
17973 default:
17974 as_bad_where (fixP->fx_file, fixP->fx_line,
17975 "Unable to process relocation for thumb opcode: %lx",
17976 (unsigned long) newval);
17977 break;
17978 }
17979 md_number_to_chars (buf, newval, THUMB_SIZE);
17980 break;
17981
17982 case BFD_RELOC_ARM_THUMB_ADD:
17983 /* This is a complicated relocation, since we use it for all of
17984 the following immediate relocations:
17985
17986 3bit ADD/SUB
17987 8bit ADD/SUB
17988 9bit ADD/SUB SP word-aligned
17989 10bit ADD PC/SP word-aligned
17990
17991 The type of instruction being processed is encoded in the
17992 instruction field:
17993
17994 0x8000 SUB
17995 0x00F0 Rd
17996 0x000F Rs
17997 */
17998 newval = md_chars_to_number (buf, THUMB_SIZE);
17999 {
18000 int rd = (newval >> 4) & 0xf;
18001 int rs = newval & 0xf;
18002 int subtract = !!(newval & 0x8000);
18003
18004 /* Check for HI regs, only very restricted cases allowed:
18005 Adjusting SP, and using PC or SP to get an address. */
18006 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
18007 || (rs > 7 && rs != REG_SP && rs != REG_PC))
18008 as_bad_where (fixP->fx_file, fixP->fx_line,
18009 _("invalid Hi register with immediate"));
18010
18011 /* If value is negative, choose the opposite instruction. */
18012 if (value < 0)
18013 {
18014 value = -value;
18015 subtract = !subtract;
18016 if (value < 0)
18017 as_bad_where (fixP->fx_file, fixP->fx_line,
18018 _("immediate value out of range"));
18019 }
18020
18021 if (rd == REG_SP)
18022 {
18023 if (value & ~0x1fc)
18024 as_bad_where (fixP->fx_file, fixP->fx_line,
18025 _("invalid immediate for stack address calculation"));
18026 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
18027 newval |= value >> 2;
18028 }
18029 else if (rs == REG_PC || rs == REG_SP)
18030 {
18031 if (subtract || value & ~0x3fc)
18032 as_bad_where (fixP->fx_file, fixP->fx_line,
18033 _("invalid immediate for address calculation (value = 0x%08lX)"),
18034 (unsigned long) value);
18035 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
18036 newval |= rd << 8;
18037 newval |= value >> 2;
18038 }
18039 else if (rs == rd)
18040 {
18041 if (value & ~0xff)
18042 as_bad_where (fixP->fx_file, fixP->fx_line,
18043 _("immediate value out of range"));
18044 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
18045 newval |= (rd << 8) | value;
18046 }
18047 else
18048 {
18049 if (value & ~0x7)
18050 as_bad_where (fixP->fx_file, fixP->fx_line,
18051 _("immediate value out of range"));
18052 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
18053 newval |= rd | (rs << 3) | (value << 6);
18054 }
18055 }
18056 md_number_to_chars (buf, newval, THUMB_SIZE);
18057 break;
18058
18059 case BFD_RELOC_ARM_THUMB_IMM:
18060 newval = md_chars_to_number (buf, THUMB_SIZE);
18061 if (value < 0 || value > 255)
18062 as_bad_where (fixP->fx_file, fixP->fx_line,
18063 _("invalid immediate: %ld is too large"),
18064 (long) value);
18065 newval |= value;
18066 md_number_to_chars (buf, newval, THUMB_SIZE);
18067 break;
18068
18069 case BFD_RELOC_ARM_THUMB_SHIFT:
18070 /* 5bit shift value (0..32). LSL cannot take 32. */
18071 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
18072 temp = newval & 0xf800;
18073 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
18074 as_bad_where (fixP->fx_file, fixP->fx_line,
18075 _("invalid shift value: %ld"), (long) value);
18076 /* Shifts of zero must be encoded as LSL. */
18077 if (value == 0)
18078 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
18079 /* Shifts of 32 are encoded as zero. */
18080 else if (value == 32)
18081 value = 0;
18082 newval |= value << 6;
18083 md_number_to_chars (buf, newval, THUMB_SIZE);
18084 break;
18085
18086 case BFD_RELOC_VTABLE_INHERIT:
18087 case BFD_RELOC_VTABLE_ENTRY:
18088 fixP->fx_done = 0;
18089 return;
18090
18091 case BFD_RELOC_ARM_MOVW:
18092 case BFD_RELOC_ARM_MOVT:
18093 case BFD_RELOC_ARM_THUMB_MOVW:
18094 case BFD_RELOC_ARM_THUMB_MOVT:
18095 if (fixP->fx_done || !seg->use_rela_p)
18096 {
18097 /* REL format relocations are limited to a 16-bit addend. */
18098 if (!fixP->fx_done)
18099 {
18100 if (value < -0x1000 || value > 0xffff)
18101 as_bad_where (fixP->fx_file, fixP->fx_line,
18102 _("offset too big"));
18103 }
18104 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
18105 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18106 {
18107 value >>= 16;
18108 }
18109
18110 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
18111 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18112 {
18113 newval = get_thumb32_insn (buf);
18114 newval &= 0xfbf08f00;
18115 newval |= (value & 0xf000) << 4;
18116 newval |= (value & 0x0800) << 15;
18117 newval |= (value & 0x0700) << 4;
18118 newval |= (value & 0x00ff);
18119 put_thumb32_insn (buf, newval);
18120 }
18121 else
18122 {
18123 newval = md_chars_to_number (buf, 4);
18124 newval &= 0xfff0f000;
18125 newval |= value & 0x0fff;
18126 newval |= (value & 0xf000) << 4;
18127 md_number_to_chars (buf, newval, 4);
18128 }
18129 }
18130 return;
18131
18132 case BFD_RELOC_ARM_ALU_PC_G0_NC:
18133 case BFD_RELOC_ARM_ALU_PC_G0:
18134 case BFD_RELOC_ARM_ALU_PC_G1_NC:
18135 case BFD_RELOC_ARM_ALU_PC_G1:
18136 case BFD_RELOC_ARM_ALU_PC_G2:
18137 case BFD_RELOC_ARM_ALU_SB_G0_NC:
18138 case BFD_RELOC_ARM_ALU_SB_G0:
18139 case BFD_RELOC_ARM_ALU_SB_G1_NC:
18140 case BFD_RELOC_ARM_ALU_SB_G1:
18141 case BFD_RELOC_ARM_ALU_SB_G2:
18142 assert (!fixP->fx_done);
18143 if (!seg->use_rela_p)
18144 {
18145 bfd_vma insn;
18146 bfd_vma encoded_addend;
18147 bfd_vma addend_abs = abs (value);
18148
18149 /* Check that the absolute value of the addend can be
18150 expressed as an 8-bit constant plus a rotation. */
18151 encoded_addend = encode_arm_immediate (addend_abs);
18152 if (encoded_addend == (unsigned int) FAIL)
18153 as_bad_where (fixP->fx_file, fixP->fx_line,
18154 _("the offset 0x%08lX is not representable"),
18155 addend_abs);
18156
18157 /* Extract the instruction. */
18158 insn = md_chars_to_number (buf, INSN_SIZE);
18159
18160 /* If the addend is positive, use an ADD instruction.
18161 Otherwise use a SUB. Take care not to destroy the S bit. */
18162 insn &= 0xff1fffff;
18163 if (value < 0)
18164 insn |= 1 << 22;
18165 else
18166 insn |= 1 << 23;
18167
18168 /* Place the encoded addend into the first 12 bits of the
18169 instruction. */
18170 insn &= 0xfffff000;
18171 insn |= encoded_addend;
18172
18173 /* Update the instruction. */
18174 md_number_to_chars (buf, insn, INSN_SIZE);
18175 }
18176 break;
18177
18178 case BFD_RELOC_ARM_LDR_PC_G0:
18179 case BFD_RELOC_ARM_LDR_PC_G1:
18180 case BFD_RELOC_ARM_LDR_PC_G2:
18181 case BFD_RELOC_ARM_LDR_SB_G0:
18182 case BFD_RELOC_ARM_LDR_SB_G1:
18183 case BFD_RELOC_ARM_LDR_SB_G2:
18184 assert (!fixP->fx_done);
18185 if (!seg->use_rela_p)
18186 {
18187 bfd_vma insn;
18188 bfd_vma addend_abs = abs (value);
18189
18190 /* Check that the absolute value of the addend can be
18191 encoded in 12 bits. */
18192 if (addend_abs >= 0x1000)
18193 as_bad_where (fixP->fx_file, fixP->fx_line,
18194 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
18195 addend_abs);
18196
18197 /* Extract the instruction. */
18198 insn = md_chars_to_number (buf, INSN_SIZE);
18199
18200 /* If the addend is negative, clear bit 23 of the instruction.
18201 Otherwise set it. */
18202 if (value < 0)
18203 insn &= ~(1 << 23);
18204 else
18205 insn |= 1 << 23;
18206
18207 /* Place the absolute value of the addend into the first 12 bits
18208 of the instruction. */
18209 insn &= 0xfffff000;
18210 insn |= addend_abs;
18211
18212 /* Update the instruction. */
18213 md_number_to_chars (buf, insn, INSN_SIZE);
18214 }
18215 break;
18216
18217 case BFD_RELOC_ARM_LDRS_PC_G0:
18218 case BFD_RELOC_ARM_LDRS_PC_G1:
18219 case BFD_RELOC_ARM_LDRS_PC_G2:
18220 case BFD_RELOC_ARM_LDRS_SB_G0:
18221 case BFD_RELOC_ARM_LDRS_SB_G1:
18222 case BFD_RELOC_ARM_LDRS_SB_G2:
18223 assert (!fixP->fx_done);
18224 if (!seg->use_rela_p)
18225 {
18226 bfd_vma insn;
18227 bfd_vma addend_abs = abs (value);
18228
18229 /* Check that the absolute value of the addend can be
18230 encoded in 8 bits. */
18231 if (addend_abs >= 0x100)
18232 as_bad_where (fixP->fx_file, fixP->fx_line,
18233 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
18234 addend_abs);
18235
18236 /* Extract the instruction. */
18237 insn = md_chars_to_number (buf, INSN_SIZE);
18238
18239 /* If the addend is negative, clear bit 23 of the instruction.
18240 Otherwise set it. */
18241 if (value < 0)
18242 insn &= ~(1 << 23);
18243 else
18244 insn |= 1 << 23;
18245
18246 /* Place the first four bits of the absolute value of the addend
18247 into the first 4 bits of the instruction, and the remaining
18248 four into bits 8 .. 11. */
18249 insn &= 0xfffff0f0;
18250 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
18251
18252 /* Update the instruction. */
18253 md_number_to_chars (buf, insn, INSN_SIZE);
18254 }
18255 break;
18256
18257 case BFD_RELOC_ARM_LDC_PC_G0:
18258 case BFD_RELOC_ARM_LDC_PC_G1:
18259 case BFD_RELOC_ARM_LDC_PC_G2:
18260 case BFD_RELOC_ARM_LDC_SB_G0:
18261 case BFD_RELOC_ARM_LDC_SB_G1:
18262 case BFD_RELOC_ARM_LDC_SB_G2:
18263 assert (!fixP->fx_done);
18264 if (!seg->use_rela_p)
18265 {
18266 bfd_vma insn;
18267 bfd_vma addend_abs = abs (value);
18268
18269 /* Check that the absolute value of the addend is a multiple of
18270 four and, when divided by four, fits in 8 bits. */
18271 if (addend_abs & 0x3)
18272 as_bad_where (fixP->fx_file, fixP->fx_line,
18273 _("bad offset 0x%08lX (must be word-aligned)"),
18274 addend_abs);
18275
18276 if ((addend_abs >> 2) > 0xff)
18277 as_bad_where (fixP->fx_file, fixP->fx_line,
18278 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
18279 addend_abs);
18280
18281 /* Extract the instruction. */
18282 insn = md_chars_to_number (buf, INSN_SIZE);
18283
18284 /* If the addend is negative, clear bit 23 of the instruction.
18285 Otherwise set it. */
18286 if (value < 0)
18287 insn &= ~(1 << 23);
18288 else
18289 insn |= 1 << 23;
18290
18291 /* Place the addend (divided by four) into the first eight
18292 bits of the instruction. */
18293 insn &= 0xfffffff0;
18294 insn |= addend_abs >> 2;
18295
18296 /* Update the instruction. */
18297 md_number_to_chars (buf, insn, INSN_SIZE);
18298 }
18299 break;
18300
18301 case BFD_RELOC_UNUSED:
18302 default:
18303 as_bad_where (fixP->fx_file, fixP->fx_line,
18304 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
18305 }
18306 }
18307
18308 /* Translate internal representation of relocation info to BFD target
18309 format. */
18310
18311 arelent *
18312 tc_gen_reloc (asection *section, fixS *fixp)
18313 {
18314 arelent * reloc;
18315 bfd_reloc_code_real_type code;
18316
18317 reloc = xmalloc (sizeof (arelent));
18318
18319 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
18320 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
18321 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
18322
18323 if (fixp->fx_pcrel)
18324 {
18325 if (section->use_rela_p)
18326 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
18327 else
18328 fixp->fx_offset = reloc->address;
18329 }
18330 reloc->addend = fixp->fx_offset;
18331
18332 switch (fixp->fx_r_type)
18333 {
18334 case BFD_RELOC_8:
18335 if (fixp->fx_pcrel)
18336 {
18337 code = BFD_RELOC_8_PCREL;
18338 break;
18339 }
18340
18341 case BFD_RELOC_16:
18342 if (fixp->fx_pcrel)
18343 {
18344 code = BFD_RELOC_16_PCREL;
18345 break;
18346 }
18347
18348 case BFD_RELOC_32:
18349 if (fixp->fx_pcrel)
18350 {
18351 code = BFD_RELOC_32_PCREL;
18352 break;
18353 }
18354
18355 case BFD_RELOC_ARM_MOVW:
18356 if (fixp->fx_pcrel)
18357 {
18358 code = BFD_RELOC_ARM_MOVW_PCREL;
18359 break;
18360 }
18361
18362 case BFD_RELOC_ARM_MOVT:
18363 if (fixp->fx_pcrel)
18364 {
18365 code = BFD_RELOC_ARM_MOVT_PCREL;
18366 break;
18367 }
18368
18369 case BFD_RELOC_ARM_THUMB_MOVW:
18370 if (fixp->fx_pcrel)
18371 {
18372 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
18373 break;
18374 }
18375
18376 case BFD_RELOC_ARM_THUMB_MOVT:
18377 if (fixp->fx_pcrel)
18378 {
18379 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
18380 break;
18381 }
18382
18383 case BFD_RELOC_NONE:
18384 case BFD_RELOC_ARM_PCREL_BRANCH:
18385 case BFD_RELOC_ARM_PCREL_BLX:
18386 case BFD_RELOC_RVA:
18387 case BFD_RELOC_THUMB_PCREL_BRANCH7:
18388 case BFD_RELOC_THUMB_PCREL_BRANCH9:
18389 case BFD_RELOC_THUMB_PCREL_BRANCH12:
18390 case BFD_RELOC_THUMB_PCREL_BRANCH20:
18391 case BFD_RELOC_THUMB_PCREL_BRANCH23:
18392 case BFD_RELOC_THUMB_PCREL_BRANCH25:
18393 case BFD_RELOC_THUMB_PCREL_BLX:
18394 case BFD_RELOC_VTABLE_ENTRY:
18395 case BFD_RELOC_VTABLE_INHERIT:
18396 code = fixp->fx_r_type;
18397 break;
18398
18399 case BFD_RELOC_ARM_LITERAL:
18400 case BFD_RELOC_ARM_HWLITERAL:
18401 /* If this is called then the a literal has
18402 been referenced across a section boundary. */
18403 as_bad_where (fixp->fx_file, fixp->fx_line,
18404 _("literal referenced across section boundary"));
18405 return NULL;
18406
18407 #ifdef OBJ_ELF
18408 case BFD_RELOC_ARM_GOT32:
18409 case BFD_RELOC_ARM_GOTOFF:
18410 case BFD_RELOC_ARM_PLT32:
18411 case BFD_RELOC_ARM_TARGET1:
18412 case BFD_RELOC_ARM_ROSEGREL32:
18413 case BFD_RELOC_ARM_SBREL32:
18414 case BFD_RELOC_ARM_PREL31:
18415 case BFD_RELOC_ARM_TARGET2:
18416 case BFD_RELOC_ARM_TLS_LE32:
18417 case BFD_RELOC_ARM_TLS_LDO32:
18418 case BFD_RELOC_ARM_PCREL_CALL:
18419 case BFD_RELOC_ARM_PCREL_JUMP:
18420 case BFD_RELOC_ARM_ALU_PC_G0_NC:
18421 case BFD_RELOC_ARM_ALU_PC_G0:
18422 case BFD_RELOC_ARM_ALU_PC_G1_NC:
18423 case BFD_RELOC_ARM_ALU_PC_G1:
18424 case BFD_RELOC_ARM_ALU_PC_G2:
18425 case BFD_RELOC_ARM_LDR_PC_G0:
18426 case BFD_RELOC_ARM_LDR_PC_G1:
18427 case BFD_RELOC_ARM_LDR_PC_G2:
18428 case BFD_RELOC_ARM_LDRS_PC_G0:
18429 case BFD_RELOC_ARM_LDRS_PC_G1:
18430 case BFD_RELOC_ARM_LDRS_PC_G2:
18431 case BFD_RELOC_ARM_LDC_PC_G0:
18432 case BFD_RELOC_ARM_LDC_PC_G1:
18433 case BFD_RELOC_ARM_LDC_PC_G2:
18434 case BFD_RELOC_ARM_ALU_SB_G0_NC:
18435 case BFD_RELOC_ARM_ALU_SB_G0:
18436 case BFD_RELOC_ARM_ALU_SB_G1_NC:
18437 case BFD_RELOC_ARM_ALU_SB_G1:
18438 case BFD_RELOC_ARM_ALU_SB_G2:
18439 case BFD_RELOC_ARM_LDR_SB_G0:
18440 case BFD_RELOC_ARM_LDR_SB_G1:
18441 case BFD_RELOC_ARM_LDR_SB_G2:
18442 case BFD_RELOC_ARM_LDRS_SB_G0:
18443 case BFD_RELOC_ARM_LDRS_SB_G1:
18444 case BFD_RELOC_ARM_LDRS_SB_G2:
18445 case BFD_RELOC_ARM_LDC_SB_G0:
18446 case BFD_RELOC_ARM_LDC_SB_G1:
18447 case BFD_RELOC_ARM_LDC_SB_G2:
18448 code = fixp->fx_r_type;
18449 break;
18450
18451 case BFD_RELOC_ARM_TLS_GD32:
18452 case BFD_RELOC_ARM_TLS_IE32:
18453 case BFD_RELOC_ARM_TLS_LDM32:
18454 /* BFD will include the symbol's address in the addend.
18455 But we don't want that, so subtract it out again here. */
18456 if (!S_IS_COMMON (fixp->fx_addsy))
18457 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
18458 code = fixp->fx_r_type;
18459 break;
18460 #endif
18461
18462 case BFD_RELOC_ARM_IMMEDIATE:
18463 as_bad_where (fixp->fx_file, fixp->fx_line,
18464 _("internal relocation (type: IMMEDIATE) not fixed up"));
18465 return NULL;
18466
18467 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
18468 as_bad_where (fixp->fx_file, fixp->fx_line,
18469 _("ADRL used for a symbol not defined in the same file"));
18470 return NULL;
18471
18472 case BFD_RELOC_ARM_OFFSET_IMM:
18473 if (section->use_rela_p)
18474 {
18475 code = fixp->fx_r_type;
18476 break;
18477 }
18478
18479 if (fixp->fx_addsy != NULL
18480 && !S_IS_DEFINED (fixp->fx_addsy)
18481 && S_IS_LOCAL (fixp->fx_addsy))
18482 {
18483 as_bad_where (fixp->fx_file, fixp->fx_line,
18484 _("undefined local label `%s'"),
18485 S_GET_NAME (fixp->fx_addsy));
18486 return NULL;
18487 }
18488
18489 as_bad_where (fixp->fx_file, fixp->fx_line,
18490 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
18491 return NULL;
18492
18493 default:
18494 {
18495 char * type;
18496
18497 switch (fixp->fx_r_type)
18498 {
18499 case BFD_RELOC_NONE: type = "NONE"; break;
18500 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
18501 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
18502 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
18503 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
18504 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
18505 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
18506 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
18507 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
18508 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
18509 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
18510 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
18511 default: type = _("<unknown>"); break;
18512 }
18513 as_bad_where (fixp->fx_file, fixp->fx_line,
18514 _("cannot represent %s relocation in this object file format"),
18515 type);
18516 return NULL;
18517 }
18518 }
18519
18520 #ifdef OBJ_ELF
18521 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
18522 && GOT_symbol
18523 && fixp->fx_addsy == GOT_symbol)
18524 {
18525 code = BFD_RELOC_ARM_GOTPC;
18526 reloc->addend = fixp->fx_offset = reloc->address;
18527 }
18528 #endif
18529
18530 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
18531
18532 if (reloc->howto == NULL)
18533 {
18534 as_bad_where (fixp->fx_file, fixp->fx_line,
18535 _("cannot represent %s relocation in this object file format"),
18536 bfd_get_reloc_code_name (code));
18537 return NULL;
18538 }
18539
18540 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
18541 vtable entry to be used in the relocation's section offset. */
18542 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
18543 reloc->address = fixp->fx_offset;
18544
18545 return reloc;
18546 }
18547
18548 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
18549
18550 void
18551 cons_fix_new_arm (fragS * frag,
18552 int where,
18553 int size,
18554 expressionS * exp)
18555 {
18556 bfd_reloc_code_real_type type;
18557 int pcrel = 0;
18558
18559 /* Pick a reloc.
18560 FIXME: @@ Should look at CPU word size. */
18561 switch (size)
18562 {
18563 case 1:
18564 type = BFD_RELOC_8;
18565 break;
18566 case 2:
18567 type = BFD_RELOC_16;
18568 break;
18569 case 4:
18570 default:
18571 type = BFD_RELOC_32;
18572 break;
18573 case 8:
18574 type = BFD_RELOC_64;
18575 break;
18576 }
18577
18578 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
18579 }
18580
18581 #if defined OBJ_COFF || defined OBJ_ELF
18582 void
18583 arm_validate_fix (fixS * fixP)
18584 {
18585 /* If the destination of the branch is a defined symbol which does not have
18586 the THUMB_FUNC attribute, then we must be calling a function which has
18587 the (interfacearm) attribute. We look for the Thumb entry point to that
18588 function and change the branch to refer to that function instead. */
18589 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
18590 && fixP->fx_addsy != NULL
18591 && S_IS_DEFINED (fixP->fx_addsy)
18592 && ! THUMB_IS_FUNC (fixP->fx_addsy))
18593 {
18594 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
18595 }
18596 }
18597 #endif
18598
18599 int
18600 arm_force_relocation (struct fix * fixp)
18601 {
18602 #if defined (OBJ_COFF) && defined (TE_PE)
18603 if (fixp->fx_r_type == BFD_RELOC_RVA)
18604 return 1;
18605 #endif
18606
18607 /* Resolve these relocations even if the symbol is extern or weak. */
18608 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
18609 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
18610 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
18611 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
18612 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
18613 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
18614 return 0;
18615
18616 /* Always leave these relocations for the linker. */
18617 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
18618 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
18619 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
18620 return 1;
18621
18622 return generic_force_reloc (fixp);
18623 }
18624
18625 #ifdef OBJ_COFF
18626 bfd_boolean
18627 arm_fix_adjustable (fixS * fixP)
18628 {
18629 /* This is a little hack to help the gas/arm/adrl.s test. It prevents
18630 local labels from being added to the output symbol table when they
18631 are used with the ADRL pseudo op. The ADRL relocation should always
18632 be resolved before the binbary is emitted, so it is safe to say that
18633 it is adjustable. */
18634 if (fixP->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE)
18635 return 1;
18636
18637 /* This is a hack for the gas/all/redef2.s test. This test causes symbols
18638 to be cloned, and without this test relocs would still be generated
18639 against the original, pre-cloned symbol. Such symbols would not appear
18640 in the symbol table however, and so a valid reloc could not be
18641 generated. So check to see if the fixup is against a symbol which has
18642 been removed from the symbol chain, and if it is, then allow it to be
18643 adjusted into a reloc against a section symbol. */
18644 if (fixP->fx_addsy != NULL
18645 && ! S_IS_LOCAL (fixP->fx_addsy)
18646 && symbol_next (fixP->fx_addsy) == NULL
18647 && symbol_next (fixP->fx_addsy) == symbol_previous (fixP->fx_addsy))
18648 return 1;
18649
18650 return 0;
18651 }
18652 #endif
18653
18654 #ifdef OBJ_ELF
18655 /* Relocations against function names must be left unadjusted,
18656 so that the linker can use this information to generate interworking
18657 stubs. The MIPS version of this function
18658 also prevents relocations that are mips-16 specific, but I do not
18659 know why it does this.
18660
18661 FIXME:
18662 There is one other problem that ought to be addressed here, but
18663 which currently is not: Taking the address of a label (rather
18664 than a function) and then later jumping to that address. Such
18665 addresses also ought to have their bottom bit set (assuming that
18666 they reside in Thumb code), but at the moment they will not. */
18667
18668 bfd_boolean
18669 arm_fix_adjustable (fixS * fixP)
18670 {
18671 if (fixP->fx_addsy == NULL)
18672 return 1;
18673
18674 /* Preserve relocations against symbols with function type. */
18675 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
18676 return 0;
18677
18678 if (THUMB_IS_FUNC (fixP->fx_addsy)
18679 && fixP->fx_subsy == NULL)
18680 return 0;
18681
18682 /* We need the symbol name for the VTABLE entries. */
18683 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
18684 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
18685 return 0;
18686
18687 /* Don't allow symbols to be discarded on GOT related relocs. */
18688 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
18689 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
18690 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
18691 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
18692 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
18693 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
18694 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
18695 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
18696 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
18697 return 0;
18698
18699 /* Similarly for group relocations. */
18700 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
18701 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
18702 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
18703 return 0;
18704
18705 return 1;
18706 }
18707
18708 const char *
18709 elf32_arm_target_format (void)
18710 {
18711 #ifdef TE_SYMBIAN
18712 return (target_big_endian
18713 ? "elf32-bigarm-symbian"
18714 : "elf32-littlearm-symbian");
18715 #elif defined (TE_VXWORKS)
18716 return (target_big_endian
18717 ? "elf32-bigarm-vxworks"
18718 : "elf32-littlearm-vxworks");
18719 #else
18720 if (target_big_endian)
18721 return "elf32-bigarm";
18722 else
18723 return "elf32-littlearm";
18724 #endif
18725 }
18726
18727 void
18728 armelf_frob_symbol (symbolS * symp,
18729 int * puntp)
18730 {
18731 elf_frob_symbol (symp, puntp);
18732 }
18733 #endif
18734
18735 /* MD interface: Finalization. */
18736
18737 /* A good place to do this, although this was probably not intended
18738 for this kind of use. We need to dump the literal pool before
18739 references are made to a null symbol pointer. */
18740
18741 void
18742 arm_cleanup (void)
18743 {
18744 literal_pool * pool;
18745
18746 for (pool = list_of_pools; pool; pool = pool->next)
18747 {
18748 /* Put it at the end of the relevent section. */
18749 subseg_set (pool->section, pool->sub_section);
18750 #ifdef OBJ_ELF
18751 arm_elf_change_section ();
18752 #endif
18753 s_ltorg (0);
18754 }
18755 }
18756
18757 /* Adjust the symbol table. This marks Thumb symbols as distinct from
18758 ARM ones. */
18759
18760 void
18761 arm_adjust_symtab (void)
18762 {
18763 #ifdef OBJ_COFF
18764 symbolS * sym;
18765
18766 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
18767 {
18768 if (ARM_IS_THUMB (sym))
18769 {
18770 if (THUMB_IS_FUNC (sym))
18771 {
18772 /* Mark the symbol as a Thumb function. */
18773 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
18774 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
18775 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
18776
18777 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
18778 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
18779 else
18780 as_bad (_("%s: unexpected function type: %d"),
18781 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
18782 }
18783 else switch (S_GET_STORAGE_CLASS (sym))
18784 {
18785 case C_EXT:
18786 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
18787 break;
18788 case C_STAT:
18789 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
18790 break;
18791 case C_LABEL:
18792 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
18793 break;
18794 default:
18795 /* Do nothing. */
18796 break;
18797 }
18798 }
18799
18800 if (ARM_IS_INTERWORK (sym))
18801 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
18802 }
18803 #endif
18804 #ifdef OBJ_ELF
18805 symbolS * sym;
18806 char bind;
18807
18808 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
18809 {
18810 if (ARM_IS_THUMB (sym))
18811 {
18812 elf_symbol_type * elf_sym;
18813
18814 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
18815 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
18816
18817 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
18818 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
18819 {
18820 /* If it's a .thumb_func, declare it as so,
18821 otherwise tag label as .code 16. */
18822 if (THUMB_IS_FUNC (sym))
18823 elf_sym->internal_elf_sym.st_info =
18824 ELF_ST_INFO (bind, STT_ARM_TFUNC);
18825 else
18826 elf_sym->internal_elf_sym.st_info =
18827 ELF_ST_INFO (bind, STT_ARM_16BIT);
18828 }
18829 }
18830 }
18831 #endif
18832 }
18833
18834 /* MD interface: Initialization. */
18835
18836 static void
18837 set_constant_flonums (void)
18838 {
18839 int i;
18840
18841 for (i = 0; i < NUM_FLOAT_VALS; i++)
18842 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
18843 abort ();
18844 }
18845
18846 void
18847 md_begin (void)
18848 {
18849 unsigned mach;
18850 unsigned int i;
18851
18852 if ( (arm_ops_hsh = hash_new ()) == NULL
18853 || (arm_cond_hsh = hash_new ()) == NULL
18854 || (arm_shift_hsh = hash_new ()) == NULL
18855 || (arm_psr_hsh = hash_new ()) == NULL
18856 || (arm_v7m_psr_hsh = hash_new ()) == NULL
18857 || (arm_reg_hsh = hash_new ()) == NULL
18858 || (arm_reloc_hsh = hash_new ()) == NULL
18859 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
18860 as_fatal (_("virtual memory exhausted"));
18861
18862 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
18863 hash_insert (arm_ops_hsh, insns[i].template, (PTR) (insns + i));
18864 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
18865 hash_insert (arm_cond_hsh, conds[i].template, (PTR) (conds + i));
18866 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
18867 hash_insert (arm_shift_hsh, shift_names[i].name, (PTR) (shift_names + i));
18868 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
18869 hash_insert (arm_psr_hsh, psrs[i].template, (PTR) (psrs + i));
18870 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
18871 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template, (PTR) (v7m_psrs + i));
18872 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
18873 hash_insert (arm_reg_hsh, reg_names[i].name, (PTR) (reg_names + i));
18874 for (i = 0;
18875 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
18876 i++)
18877 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template,
18878 (PTR) (barrier_opt_names + i));
18879 #ifdef OBJ_ELF
18880 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
18881 hash_insert (arm_reloc_hsh, reloc_names[i].name, (PTR) (reloc_names + i));
18882 #endif
18883
18884 set_constant_flonums ();
18885
18886 /* Set the cpu variant based on the command-line options. We prefer
18887 -mcpu= over -march= if both are set (as for GCC); and we prefer
18888 -mfpu= over any other way of setting the floating point unit.
18889 Use of legacy options with new options are faulted. */
18890 if (legacy_cpu)
18891 {
18892 if (mcpu_cpu_opt || march_cpu_opt)
18893 as_bad (_("use of old and new-style options to set CPU type"));
18894
18895 mcpu_cpu_opt = legacy_cpu;
18896 }
18897 else if (!mcpu_cpu_opt)
18898 mcpu_cpu_opt = march_cpu_opt;
18899
18900 if (legacy_fpu)
18901 {
18902 if (mfpu_opt)
18903 as_bad (_("use of old and new-style options to set FPU type"));
18904
18905 mfpu_opt = legacy_fpu;
18906 }
18907 else if (!mfpu_opt)
18908 {
18909 #if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS))
18910 /* Some environments specify a default FPU. If they don't, infer it
18911 from the processor. */
18912 if (mcpu_fpu_opt)
18913 mfpu_opt = mcpu_fpu_opt;
18914 else
18915 mfpu_opt = march_fpu_opt;
18916 #else
18917 mfpu_opt = &fpu_default;
18918 #endif
18919 }
18920
18921 if (!mfpu_opt)
18922 {
18923 if (!mcpu_cpu_opt)
18924 mfpu_opt = &fpu_default;
18925 else if (ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
18926 mfpu_opt = &fpu_arch_vfp_v2;
18927 else
18928 mfpu_opt = &fpu_arch_fpa;
18929 }
18930
18931 #ifdef CPU_DEFAULT
18932 if (!mcpu_cpu_opt)
18933 {
18934 mcpu_cpu_opt = &cpu_default;
18935 selected_cpu = cpu_default;
18936 }
18937 #else
18938 if (mcpu_cpu_opt)
18939 selected_cpu = *mcpu_cpu_opt;
18940 else
18941 mcpu_cpu_opt = &arm_arch_any;
18942 #endif
18943
18944 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
18945
18946 arm_arch_used = thumb_arch_used = arm_arch_none;
18947
18948 #if defined OBJ_COFF || defined OBJ_ELF
18949 {
18950 unsigned int flags = 0;
18951
18952 #if defined OBJ_ELF
18953 flags = meabi_flags;
18954
18955 switch (meabi_flags)
18956 {
18957 case EF_ARM_EABI_UNKNOWN:
18958 #endif
18959 /* Set the flags in the private structure. */
18960 if (uses_apcs_26) flags |= F_APCS26;
18961 if (support_interwork) flags |= F_INTERWORK;
18962 if (uses_apcs_float) flags |= F_APCS_FLOAT;
18963 if (pic_code) flags |= F_PIC;
18964 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
18965 flags |= F_SOFT_FLOAT;
18966
18967 switch (mfloat_abi_opt)
18968 {
18969 case ARM_FLOAT_ABI_SOFT:
18970 case ARM_FLOAT_ABI_SOFTFP:
18971 flags |= F_SOFT_FLOAT;
18972 break;
18973
18974 case ARM_FLOAT_ABI_HARD:
18975 if (flags & F_SOFT_FLOAT)
18976 as_bad (_("hard-float conflicts with specified fpu"));
18977 break;
18978 }
18979
18980 /* Using pure-endian doubles (even if soft-float). */
18981 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
18982 flags |= F_VFP_FLOAT;
18983
18984 #if defined OBJ_ELF
18985 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
18986 flags |= EF_ARM_MAVERICK_FLOAT;
18987 break;
18988
18989 case EF_ARM_EABI_VER4:
18990 case EF_ARM_EABI_VER5:
18991 /* No additional flags to set. */
18992 break;
18993
18994 default:
18995 abort ();
18996 }
18997 #endif
18998 bfd_set_private_flags (stdoutput, flags);
18999
19000 /* We have run out flags in the COFF header to encode the
19001 status of ATPCS support, so instead we create a dummy,
19002 empty, debug section called .arm.atpcs. */
19003 if (atpcs)
19004 {
19005 asection * sec;
19006
19007 sec = bfd_make_section (stdoutput, ".arm.atpcs");
19008
19009 if (sec != NULL)
19010 {
19011 bfd_set_section_flags
19012 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
19013 bfd_set_section_size (stdoutput, sec, 0);
19014 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
19015 }
19016 }
19017 }
19018 #endif
19019
19020 /* Record the CPU type as well. */
19021 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
19022 mach = bfd_mach_arm_iWMMXt;
19023 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
19024 mach = bfd_mach_arm_XScale;
19025 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
19026 mach = bfd_mach_arm_ep9312;
19027 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
19028 mach = bfd_mach_arm_5TE;
19029 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
19030 {
19031 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
19032 mach = bfd_mach_arm_5T;
19033 else
19034 mach = bfd_mach_arm_5;
19035 }
19036 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
19037 {
19038 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
19039 mach = bfd_mach_arm_4T;
19040 else
19041 mach = bfd_mach_arm_4;
19042 }
19043 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
19044 mach = bfd_mach_arm_3M;
19045 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
19046 mach = bfd_mach_arm_3;
19047 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
19048 mach = bfd_mach_arm_2a;
19049 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
19050 mach = bfd_mach_arm_2;
19051 else
19052 mach = bfd_mach_arm_unknown;
19053
19054 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
19055 }
19056
19057 /* Command line processing. */
19058
19059 /* md_parse_option
19060 Invocation line includes a switch not recognized by the base assembler.
19061 See if it's a processor-specific option.
19062
19063 This routine is somewhat complicated by the need for backwards
19064 compatibility (since older releases of gcc can't be changed).
19065 The new options try to make the interface as compatible as
19066 possible with GCC.
19067
19068 New options (supported) are:
19069
19070 -mcpu=<cpu name> Assemble for selected processor
19071 -march=<architecture name> Assemble for selected architecture
19072 -mfpu=<fpu architecture> Assemble for selected FPU.
19073 -EB/-mbig-endian Big-endian
19074 -EL/-mlittle-endian Little-endian
19075 -k Generate PIC code
19076 -mthumb Start in Thumb mode
19077 -mthumb-interwork Code supports ARM/Thumb interworking
19078
19079 For now we will also provide support for:
19080
19081 -mapcs-32 32-bit Program counter
19082 -mapcs-26 26-bit Program counter
19083 -macps-float Floats passed in FP registers
19084 -mapcs-reentrant Reentrant code
19085 -matpcs
19086 (sometime these will probably be replaced with -mapcs=<list of options>
19087 and -matpcs=<list of options>)
19088
19089 The remaining options are only supported for back-wards compatibility.
19090 Cpu variants, the arm part is optional:
19091 -m[arm]1 Currently not supported.
19092 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
19093 -m[arm]3 Arm 3 processor
19094 -m[arm]6[xx], Arm 6 processors
19095 -m[arm]7[xx][t][[d]m] Arm 7 processors
19096 -m[arm]8[10] Arm 8 processors
19097 -m[arm]9[20][tdmi] Arm 9 processors
19098 -mstrongarm[110[0]] StrongARM processors
19099 -mxscale XScale processors
19100 -m[arm]v[2345[t[e]]] Arm architectures
19101 -mall All (except the ARM1)
19102 FP variants:
19103 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
19104 -mfpe-old (No float load/store multiples)
19105 -mvfpxd VFP Single precision
19106 -mvfp All VFP
19107 -mno-fpu Disable all floating point instructions
19108
19109 The following CPU names are recognized:
19110 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
19111 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
19112 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
19113 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
19114 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
19115 arm10t arm10e, arm1020t, arm1020e, arm10200e,
19116 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
19117
19118 */
19119
19120 const char * md_shortopts = "m:k";
19121
19122 #ifdef ARM_BI_ENDIAN
19123 #define OPTION_EB (OPTION_MD_BASE + 0)
19124 #define OPTION_EL (OPTION_MD_BASE + 1)
19125 #else
19126 #if TARGET_BYTES_BIG_ENDIAN
19127 #define OPTION_EB (OPTION_MD_BASE + 0)
19128 #else
19129 #define OPTION_EL (OPTION_MD_BASE + 1)
19130 #endif
19131 #endif
19132
19133 struct option md_longopts[] =
19134 {
19135 #ifdef OPTION_EB
19136 {"EB", no_argument, NULL, OPTION_EB},
19137 #endif
19138 #ifdef OPTION_EL
19139 {"EL", no_argument, NULL, OPTION_EL},
19140 #endif
19141 {NULL, no_argument, NULL, 0}
19142 };
19143
19144 size_t md_longopts_size = sizeof (md_longopts);
19145
19146 struct arm_option_table
19147 {
19148 char *option; /* Option name to match. */
19149 char *help; /* Help information. */
19150 int *var; /* Variable to change. */
19151 int value; /* What to change it to. */
19152 char *deprecated; /* If non-null, print this message. */
19153 };
19154
19155 struct arm_option_table arm_opts[] =
19156 {
19157 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
19158 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
19159 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
19160 &support_interwork, 1, NULL},
19161 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
19162 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
19163 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
19164 1, NULL},
19165 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
19166 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
19167 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
19168 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
19169 NULL},
19170
19171 /* These are recognized by the assembler, but have no affect on code. */
19172 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
19173 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
19174 {NULL, NULL, NULL, 0, NULL}
19175 };
19176
19177 struct arm_legacy_option_table
19178 {
19179 char *option; /* Option name to match. */
19180 const arm_feature_set **var; /* Variable to change. */
19181 const arm_feature_set value; /* What to change it to. */
19182 char *deprecated; /* If non-null, print this message. */
19183 };
19184
19185 const struct arm_legacy_option_table arm_legacy_opts[] =
19186 {
19187 /* DON'T add any new processors to this list -- we want the whole list
19188 to go away... Add them to the processors table instead. */
19189 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
19190 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
19191 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
19192 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
19193 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
19194 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
19195 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
19196 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
19197 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
19198 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
19199 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
19200 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
19201 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
19202 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
19203 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
19204 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
19205 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
19206 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
19207 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
19208 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
19209 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
19210 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
19211 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
19212 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
19213 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
19214 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
19215 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
19216 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
19217 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
19218 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
19219 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
19220 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
19221 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
19222 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
19223 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
19224 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
19225 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
19226 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
19227 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
19228 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
19229 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
19230 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
19231 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
19232 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
19233 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
19234 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
19235 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19236 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19237 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19238 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19239 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
19240 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
19241 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
19242 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
19243 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
19244 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
19245 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
19246 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
19247 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
19248 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
19249 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
19250 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
19251 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
19252 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
19253 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
19254 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
19255 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
19256 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
19257 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
19258 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
19259 N_("use -mcpu=strongarm110")},
19260 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
19261 N_("use -mcpu=strongarm1100")},
19262 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
19263 N_("use -mcpu=strongarm1110")},
19264 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
19265 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
19266 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
19267
19268 /* Architecture variants -- don't add any more to this list either. */
19269 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
19270 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
19271 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
19272 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
19273 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
19274 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
19275 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
19276 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
19277 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
19278 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
19279 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
19280 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
19281 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
19282 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
19283 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
19284 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
19285 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
19286 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
19287
19288 /* Floating point variants -- don't add any more to this list either. */
19289 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
19290 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
19291 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
19292 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
19293 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
19294
19295 {NULL, NULL, ARM_ARCH_NONE, NULL}
19296 };
19297
19298 struct arm_cpu_option_table
19299 {
19300 char *name;
19301 const arm_feature_set value;
19302 /* For some CPUs we assume an FPU unless the user explicitly sets
19303 -mfpu=... */
19304 const arm_feature_set default_fpu;
19305 /* The canonical name of the CPU, or NULL to use NAME converted to upper
19306 case. */
19307 const char *canonical_name;
19308 };
19309
19310 /* This list should, at a minimum, contain all the cpu names
19311 recognized by GCC. */
19312 static const struct arm_cpu_option_table arm_cpus[] =
19313 {
19314 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
19315 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
19316 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
19317 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
19318 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
19319 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19320 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19321 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19322 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19323 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19324 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19325 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
19326 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19327 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
19328 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19329 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
19330 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19331 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19332 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19333 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19334 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19335 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19336 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19337 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19338 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19339 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19340 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19341 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19342 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19343 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19344 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19345 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19346 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19347 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19348 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19349 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19350 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19351 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19352 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19353 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
19354 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19355 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19356 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19357 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19358 /* For V5 or later processors we default to using VFP; but the user
19359 should really set the FPU type explicitly. */
19360 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
19361 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19362 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
19363 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
19364 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
19365 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
19366 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
19367 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19368 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
19369 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
19370 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19371 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19372 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
19373 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
19374 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19375 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
19376 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
19377 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19378 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19379 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
19380 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
19381 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
19382 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
19383 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
19384 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
19385 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
19386 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
19387 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
19388 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
19389 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
19390 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
19391 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3
19392 | FPU_NEON_EXT_V1),
19393 NULL},
19394 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
19395 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
19396 /* ??? XSCALE is really an architecture. */
19397 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
19398 /* ??? iwmmxt is not a processor. */
19399 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
19400 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
19401 /* Maverick */
19402 {"ep9312", ARM_FEATURE(ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
19403 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
19404 };
19405
19406 struct arm_arch_option_table
19407 {
19408 char *name;
19409 const arm_feature_set value;
19410 const arm_feature_set default_fpu;
19411 };
19412
19413 /* This list should, at a minimum, contain all the architecture names
19414 recognized by GCC. */
19415 static const struct arm_arch_option_table arm_archs[] =
19416 {
19417 {"all", ARM_ANY, FPU_ARCH_FPA},
19418 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
19419 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
19420 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
19421 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
19422 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
19423 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
19424 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
19425 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
19426 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
19427 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
19428 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
19429 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
19430 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
19431 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
19432 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
19433 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
19434 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
19435 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
19436 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
19437 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
19438 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
19439 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
19440 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
19441 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
19442 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
19443 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
19444 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
19445 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
19446 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
19447 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
19448 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
19449 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
19450 };
19451
19452 /* ISA extensions in the co-processor space. */
19453 struct arm_option_cpu_value_table
19454 {
19455 char *name;
19456 const arm_feature_set value;
19457 };
19458
19459 static const struct arm_option_cpu_value_table arm_extensions[] =
19460 {
19461 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
19462 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
19463 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
19464 {NULL, ARM_ARCH_NONE}
19465 };
19466
19467 /* This list should, at a minimum, contain all the fpu names
19468 recognized by GCC. */
19469 static const struct arm_option_cpu_value_table arm_fpus[] =
19470 {
19471 {"softfpa", FPU_NONE},
19472 {"fpe", FPU_ARCH_FPE},
19473 {"fpe2", FPU_ARCH_FPE},
19474 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
19475 {"fpa", FPU_ARCH_FPA},
19476 {"fpa10", FPU_ARCH_FPA},
19477 {"fpa11", FPU_ARCH_FPA},
19478 {"arm7500fe", FPU_ARCH_FPA},
19479 {"softvfp", FPU_ARCH_VFP},
19480 {"softvfp+vfp", FPU_ARCH_VFP_V2},
19481 {"vfp", FPU_ARCH_VFP_V2},
19482 {"vfp9", FPU_ARCH_VFP_V2},
19483 {"vfp3", FPU_ARCH_VFP_V3},
19484 {"vfp10", FPU_ARCH_VFP_V2},
19485 {"vfp10-r0", FPU_ARCH_VFP_V1},
19486 {"vfpxd", FPU_ARCH_VFP_V1xD},
19487 {"arm1020t", FPU_ARCH_VFP_V1},
19488 {"arm1020e", FPU_ARCH_VFP_V2},
19489 {"arm1136jfs", FPU_ARCH_VFP_V2},
19490 {"arm1136jf-s", FPU_ARCH_VFP_V2},
19491 {"maverick", FPU_ARCH_MAVERICK},
19492 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
19493 {NULL, ARM_ARCH_NONE}
19494 };
19495
19496 struct arm_option_value_table
19497 {
19498 char *name;
19499 long value;
19500 };
19501
19502 static const struct arm_option_value_table arm_float_abis[] =
19503 {
19504 {"hard", ARM_FLOAT_ABI_HARD},
19505 {"softfp", ARM_FLOAT_ABI_SOFTFP},
19506 {"soft", ARM_FLOAT_ABI_SOFT},
19507 {NULL, 0}
19508 };
19509
19510 #ifdef OBJ_ELF
19511 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
19512 static const struct arm_option_value_table arm_eabis[] =
19513 {
19514 {"gnu", EF_ARM_EABI_UNKNOWN},
19515 {"4", EF_ARM_EABI_VER4},
19516 {"5", EF_ARM_EABI_VER5},
19517 {NULL, 0}
19518 };
19519 #endif
19520
19521 struct arm_long_option_table
19522 {
19523 char * option; /* Substring to match. */
19524 char * help; /* Help information. */
19525 int (* func) (char * subopt); /* Function to decode sub-option. */
19526 char * deprecated; /* If non-null, print this message. */
19527 };
19528
19529 static int
19530 arm_parse_extension (char * str, const arm_feature_set **opt_p)
19531 {
19532 arm_feature_set *ext_set = xmalloc (sizeof (arm_feature_set));
19533
19534 /* Copy the feature set, so that we can modify it. */
19535 *ext_set = **opt_p;
19536 *opt_p = ext_set;
19537
19538 while (str != NULL && *str != 0)
19539 {
19540 const struct arm_option_cpu_value_table * opt;
19541 char * ext;
19542 int optlen;
19543
19544 if (*str != '+')
19545 {
19546 as_bad (_("invalid architectural extension"));
19547 return 0;
19548 }
19549
19550 str++;
19551 ext = strchr (str, '+');
19552
19553 if (ext != NULL)
19554 optlen = ext - str;
19555 else
19556 optlen = strlen (str);
19557
19558 if (optlen == 0)
19559 {
19560 as_bad (_("missing architectural extension"));
19561 return 0;
19562 }
19563
19564 for (opt = arm_extensions; opt->name != NULL; opt++)
19565 if (strncmp (opt->name, str, optlen) == 0)
19566 {
19567 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
19568 break;
19569 }
19570
19571 if (opt->name == NULL)
19572 {
19573 as_bad (_("unknown architectural extnsion `%s'"), str);
19574 return 0;
19575 }
19576
19577 str = ext;
19578 };
19579
19580 return 1;
19581 }
19582
19583 static int
19584 arm_parse_cpu (char * str)
19585 {
19586 const struct arm_cpu_option_table * opt;
19587 char * ext = strchr (str, '+');
19588 int optlen;
19589
19590 if (ext != NULL)
19591 optlen = ext - str;
19592 else
19593 optlen = strlen (str);
19594
19595 if (optlen == 0)
19596 {
19597 as_bad (_("missing cpu name `%s'"), str);
19598 return 0;
19599 }
19600
19601 for (opt = arm_cpus; opt->name != NULL; opt++)
19602 if (strncmp (opt->name, str, optlen) == 0)
19603 {
19604 mcpu_cpu_opt = &opt->value;
19605 mcpu_fpu_opt = &opt->default_fpu;
19606 if (opt->canonical_name)
19607 strcpy(selected_cpu_name, opt->canonical_name);
19608 else
19609 {
19610 int i;
19611 for (i = 0; i < optlen; i++)
19612 selected_cpu_name[i] = TOUPPER (opt->name[i]);
19613 selected_cpu_name[i] = 0;
19614 }
19615
19616 if (ext != NULL)
19617 return arm_parse_extension (ext, &mcpu_cpu_opt);
19618
19619 return 1;
19620 }
19621
19622 as_bad (_("unknown cpu `%s'"), str);
19623 return 0;
19624 }
19625
19626 static int
19627 arm_parse_arch (char * str)
19628 {
19629 const struct arm_arch_option_table *opt;
19630 char *ext = strchr (str, '+');
19631 int optlen;
19632
19633 if (ext != NULL)
19634 optlen = ext - str;
19635 else
19636 optlen = strlen (str);
19637
19638 if (optlen == 0)
19639 {
19640 as_bad (_("missing architecture name `%s'"), str);
19641 return 0;
19642 }
19643
19644 for (opt = arm_archs; opt->name != NULL; opt++)
19645 if (streq (opt->name, str))
19646 {
19647 march_cpu_opt = &opt->value;
19648 march_fpu_opt = &opt->default_fpu;
19649 strcpy(selected_cpu_name, opt->name);
19650
19651 if (ext != NULL)
19652 return arm_parse_extension (ext, &march_cpu_opt);
19653
19654 return 1;
19655 }
19656
19657 as_bad (_("unknown architecture `%s'\n"), str);
19658 return 0;
19659 }
19660
19661 static int
19662 arm_parse_fpu (char * str)
19663 {
19664 const struct arm_option_cpu_value_table * opt;
19665
19666 for (opt = arm_fpus; opt->name != NULL; opt++)
19667 if (streq (opt->name, str))
19668 {
19669 mfpu_opt = &opt->value;
19670 return 1;
19671 }
19672
19673 as_bad (_("unknown floating point format `%s'\n"), str);
19674 return 0;
19675 }
19676
19677 static int
19678 arm_parse_float_abi (char * str)
19679 {
19680 const struct arm_option_value_table * opt;
19681
19682 for (opt = arm_float_abis; opt->name != NULL; opt++)
19683 if (streq (opt->name, str))
19684 {
19685 mfloat_abi_opt = opt->value;
19686 return 1;
19687 }
19688
19689 as_bad (_("unknown floating point abi `%s'\n"), str);
19690 return 0;
19691 }
19692
19693 #ifdef OBJ_ELF
19694 static int
19695 arm_parse_eabi (char * str)
19696 {
19697 const struct arm_option_value_table *opt;
19698
19699 for (opt = arm_eabis; opt->name != NULL; opt++)
19700 if (streq (opt->name, str))
19701 {
19702 meabi_flags = opt->value;
19703 return 1;
19704 }
19705 as_bad (_("unknown EABI `%s'\n"), str);
19706 return 0;
19707 }
19708 #endif
19709
19710 struct arm_long_option_table arm_long_opts[] =
19711 {
19712 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
19713 arm_parse_cpu, NULL},
19714 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
19715 arm_parse_arch, NULL},
19716 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
19717 arm_parse_fpu, NULL},
19718 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
19719 arm_parse_float_abi, NULL},
19720 #ifdef OBJ_ELF
19721 {"meabi=", N_("<ver>\t assemble for eabi version <ver>"),
19722 arm_parse_eabi, NULL},
19723 #endif
19724 {NULL, NULL, 0, NULL}
19725 };
19726
19727 int
19728 md_parse_option (int c, char * arg)
19729 {
19730 struct arm_option_table *opt;
19731 const struct arm_legacy_option_table *fopt;
19732 struct arm_long_option_table *lopt;
19733
19734 switch (c)
19735 {
19736 #ifdef OPTION_EB
19737 case OPTION_EB:
19738 target_big_endian = 1;
19739 break;
19740 #endif
19741
19742 #ifdef OPTION_EL
19743 case OPTION_EL:
19744 target_big_endian = 0;
19745 break;
19746 #endif
19747
19748 case 'a':
19749 /* Listing option. Just ignore these, we don't support additional
19750 ones. */
19751 return 0;
19752
19753 default:
19754 for (opt = arm_opts; opt->option != NULL; opt++)
19755 {
19756 if (c == opt->option[0]
19757 && ((arg == NULL && opt->option[1] == 0)
19758 || streq (arg, opt->option + 1)))
19759 {
19760 #if WARN_DEPRECATED
19761 /* If the option is deprecated, tell the user. */
19762 if (opt->deprecated != NULL)
19763 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
19764 arg ? arg : "", _(opt->deprecated));
19765 #endif
19766
19767 if (opt->var != NULL)
19768 *opt->var = opt->value;
19769
19770 return 1;
19771 }
19772 }
19773
19774 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
19775 {
19776 if (c == fopt->option[0]
19777 && ((arg == NULL && fopt->option[1] == 0)
19778 || streq (arg, fopt->option + 1)))
19779 {
19780 #if WARN_DEPRECATED
19781 /* If the option is deprecated, tell the user. */
19782 if (fopt->deprecated != NULL)
19783 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
19784 arg ? arg : "", _(fopt->deprecated));
19785 #endif
19786
19787 if (fopt->var != NULL)
19788 *fopt->var = &fopt->value;
19789
19790 return 1;
19791 }
19792 }
19793
19794 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
19795 {
19796 /* These options are expected to have an argument. */
19797 if (c == lopt->option[0]
19798 && arg != NULL
19799 && strncmp (arg, lopt->option + 1,
19800 strlen (lopt->option + 1)) == 0)
19801 {
19802 #if WARN_DEPRECATED
19803 /* If the option is deprecated, tell the user. */
19804 if (lopt->deprecated != NULL)
19805 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
19806 _(lopt->deprecated));
19807 #endif
19808
19809 /* Call the sup-option parser. */
19810 return lopt->func (arg + strlen (lopt->option) - 1);
19811 }
19812 }
19813
19814 return 0;
19815 }
19816
19817 return 1;
19818 }
19819
19820 void
19821 md_show_usage (FILE * fp)
19822 {
19823 struct arm_option_table *opt;
19824 struct arm_long_option_table *lopt;
19825
19826 fprintf (fp, _(" ARM-specific assembler options:\n"));
19827
19828 for (opt = arm_opts; opt->option != NULL; opt++)
19829 if (opt->help != NULL)
19830 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
19831
19832 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
19833 if (lopt->help != NULL)
19834 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
19835
19836 #ifdef OPTION_EB
19837 fprintf (fp, _("\
19838 -EB assemble code for a big-endian cpu\n"));
19839 #endif
19840
19841 #ifdef OPTION_EL
19842 fprintf (fp, _("\
19843 -EL assemble code for a little-endian cpu\n"));
19844 #endif
19845 }
19846
19847
19848 #ifdef OBJ_ELF
19849 typedef struct
19850 {
19851 int val;
19852 arm_feature_set flags;
19853 } cpu_arch_ver_table;
19854
19855 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
19856 least features first. */
19857 static const cpu_arch_ver_table cpu_arch_ver[] =
19858 {
19859 {1, ARM_ARCH_V4},
19860 {2, ARM_ARCH_V4T},
19861 {3, ARM_ARCH_V5},
19862 {4, ARM_ARCH_V5TE},
19863 {5, ARM_ARCH_V5TEJ},
19864 {6, ARM_ARCH_V6},
19865 {7, ARM_ARCH_V6Z},
19866 {8, ARM_ARCH_V6K},
19867 {9, ARM_ARCH_V6T2},
19868 {10, ARM_ARCH_V7A},
19869 {10, ARM_ARCH_V7R},
19870 {10, ARM_ARCH_V7M},
19871 {0, ARM_ARCH_NONE}
19872 };
19873
19874 /* Set the public EABI object attributes. */
19875 static void
19876 aeabi_set_public_attributes (void)
19877 {
19878 int arch;
19879 arm_feature_set flags;
19880 arm_feature_set tmp;
19881 const cpu_arch_ver_table *p;
19882
19883 /* Choose the architecture based on the capabilities of the requested cpu
19884 (if any) and/or the instructions actually used. */
19885 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
19886 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
19887 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
19888
19889 tmp = flags;
19890 arch = 0;
19891 for (p = cpu_arch_ver; p->val; p++)
19892 {
19893 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
19894 {
19895 arch = p->val;
19896 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
19897 }
19898 }
19899
19900 /* Tag_CPU_name. */
19901 if (selected_cpu_name[0])
19902 {
19903 char *p;
19904
19905 p = selected_cpu_name;
19906 if (strncmp(p, "armv", 4) == 0)
19907 {
19908 int i;
19909
19910 p += 4;
19911 for (i = 0; p[i]; i++)
19912 p[i] = TOUPPER (p[i]);
19913 }
19914 elf32_arm_add_eabi_attr_string (stdoutput, 5, p);
19915 }
19916 /* Tag_CPU_arch. */
19917 elf32_arm_add_eabi_attr_int (stdoutput, 6, arch);
19918 /* Tag_CPU_arch_profile. */
19919 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
19920 elf32_arm_add_eabi_attr_int (stdoutput, 7, 'A');
19921 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
19922 elf32_arm_add_eabi_attr_int (stdoutput, 7, 'R');
19923 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m))
19924 elf32_arm_add_eabi_attr_int (stdoutput, 7, 'M');
19925 /* Tag_ARM_ISA_use. */
19926 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_full))
19927 elf32_arm_add_eabi_attr_int (stdoutput, 8, 1);
19928 /* Tag_THUMB_ISA_use. */
19929 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_full))
19930 elf32_arm_add_eabi_attr_int (stdoutput, 9,
19931 ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2) ? 2 : 1);
19932 /* Tag_VFP_arch. */
19933 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v3)
19934 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v3))
19935 elf32_arm_add_eabi_attr_int (stdoutput, 10, 3);
19936 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v2)
19937 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v2))
19938 elf32_arm_add_eabi_attr_int (stdoutput, 10, 2);
19939 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1)
19940 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1)
19941 || ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1xd)
19942 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1xd))
19943 elf32_arm_add_eabi_attr_int (stdoutput, 10, 1);
19944 /* Tag_WMMX_arch. */
19945 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_cext_iwmmxt)
19946 || ARM_CPU_HAS_FEATURE (arm_arch_used, arm_cext_iwmmxt))
19947 elf32_arm_add_eabi_attr_int (stdoutput, 11, 1);
19948 /* Tag_NEON_arch. */
19949 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_neon_ext_v1)
19950 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_neon_ext_v1))
19951 elf32_arm_add_eabi_attr_int (stdoutput, 12, 1);
19952 }
19953
19954 /* Add the .ARM.attributes section. */
19955 void
19956 arm_md_end (void)
19957 {
19958 segT s;
19959 char *p;
19960 addressT addr;
19961 offsetT size;
19962
19963 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
19964 return;
19965
19966 aeabi_set_public_attributes ();
19967 size = elf32_arm_eabi_attr_size (stdoutput);
19968 s = subseg_new (".ARM.attributes", 0);
19969 bfd_set_section_flags (stdoutput, s, SEC_READONLY | SEC_DATA);
19970 addr = frag_now_fix ();
19971 p = frag_more (size);
19972 elf32_arm_set_eabi_attr_contents (stdoutput, (bfd_byte *)p, size);
19973 }
19974 #endif /* OBJ_ELF */
19975
19976
19977 /* Parse a .cpu directive. */
19978
19979 static void
19980 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
19981 {
19982 const struct arm_cpu_option_table *opt;
19983 char *name;
19984 char saved_char;
19985
19986 name = input_line_pointer;
19987 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
19988 input_line_pointer++;
19989 saved_char = *input_line_pointer;
19990 *input_line_pointer = 0;
19991
19992 /* Skip the first "all" entry. */
19993 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
19994 if (streq (opt->name, name))
19995 {
19996 mcpu_cpu_opt = &opt->value;
19997 selected_cpu = opt->value;
19998 if (opt->canonical_name)
19999 strcpy(selected_cpu_name, opt->canonical_name);
20000 else
20001 {
20002 int i;
20003 for (i = 0; opt->name[i]; i++)
20004 selected_cpu_name[i] = TOUPPER (opt->name[i]);
20005 selected_cpu_name[i] = 0;
20006 }
20007 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
20008 *input_line_pointer = saved_char;
20009 demand_empty_rest_of_line ();
20010 return;
20011 }
20012 as_bad (_("unknown cpu `%s'"), name);
20013 *input_line_pointer = saved_char;
20014 ignore_rest_of_line ();
20015 }
20016
20017
20018 /* Parse a .arch directive. */
20019
20020 static void
20021 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
20022 {
20023 const struct arm_arch_option_table *opt;
20024 char saved_char;
20025 char *name;
20026
20027 name = input_line_pointer;
20028 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20029 input_line_pointer++;
20030 saved_char = *input_line_pointer;
20031 *input_line_pointer = 0;
20032
20033 /* Skip the first "all" entry. */
20034 for (opt = arm_archs + 1; opt->name != NULL; opt++)
20035 if (streq (opt->name, name))
20036 {
20037 mcpu_cpu_opt = &opt->value;
20038 selected_cpu = opt->value;
20039 strcpy(selected_cpu_name, opt->name);
20040 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
20041 *input_line_pointer = saved_char;
20042 demand_empty_rest_of_line ();
20043 return;
20044 }
20045
20046 as_bad (_("unknown architecture `%s'\n"), name);
20047 *input_line_pointer = saved_char;
20048 ignore_rest_of_line ();
20049 }
20050
20051
20052 /* Parse a .fpu directive. */
20053
20054 static void
20055 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
20056 {
20057 const struct arm_option_cpu_value_table *opt;
20058 char saved_char;
20059 char *name;
20060
20061 name = input_line_pointer;
20062 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20063 input_line_pointer++;
20064 saved_char = *input_line_pointer;
20065 *input_line_pointer = 0;
20066
20067 for (opt = arm_fpus; opt->name != NULL; opt++)
20068 if (streq (opt->name, name))
20069 {
20070 mfpu_opt = &opt->value;
20071 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
20072 *input_line_pointer = saved_char;
20073 demand_empty_rest_of_line ();
20074 return;
20075 }
20076
20077 as_bad (_("unknown floating point format `%s'\n"), name);
20078 *input_line_pointer = saved_char;
20079 ignore_rest_of_line ();
20080 }
20081