* config/tc-d10v.c (write_2_short): Don't skip dummy fixups, so
[binutils-gdb.git] / gas / config / tc-d10v.c
1 /* tc-d10v.c -- Assembler code for the Mitsubishi D10V
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <stdio.h>
23 #include "as.h"
24 #include "safe-ctype.h"
25 #include "subsegs.h"
26 #include "opcode/d10v.h"
27 #include "elf/ppc.h"
28 //#include "read.h"
29
30 const char comment_chars[] = ";";
31 const char line_comment_chars[] = "#";
32 const char line_separator_chars[] = "";
33 const char *md_shortopts = "O";
34 const char EXP_CHARS[] = "eE";
35 const char FLT_CHARS[] = "dD";
36
37 int Optimizing = 0;
38
39 #define AT_WORD_P(X) ((X)->X_op == O_right_shift \
40 && (X)->X_op_symbol != NULL \
41 && symbol_constant_p ((X)->X_op_symbol) \
42 && S_GET_VALUE ((X)->X_op_symbol) == AT_WORD_RIGHT_SHIFT)
43 #define AT_WORD_RIGHT_SHIFT 2
44
45 /* Fixups. */
46 #define MAX_INSN_FIXUPS (5)
47 struct d10v_fixup
48 {
49 expressionS exp;
50 int operand;
51 int pcrel;
52 int size;
53 bfd_reloc_code_real_type reloc;
54 };
55
56 typedef struct _fixups
57 {
58 int fc;
59 struct d10v_fixup fix[MAX_INSN_FIXUPS];
60 struct _fixups *next;
61 } Fixups;
62
63 static Fixups FixUps[2];
64 static Fixups *fixups;
65
66 static int do_not_ignore_hash = 0;
67
68 typedef int packing_type;
69 #define PACK_UNSPEC (0) /* Packing order not specified. */
70 #define PACK_PARALLEL (1) /* "||" */
71 #define PACK_LEFT_RIGHT (2) /* "->" */
72 #define PACK_RIGHT_LEFT (3) /* "<-" */
73 static packing_type etype = PACK_UNSPEC; /* Used by d10v_cleanup. */
74
75 /* True if instruction swapping warnings should be inhibited.
76 --nowarnswap. */
77 static boolean flag_warn_suppress_instructionswap;
78
79 /* True if instruction packing should be performed when --gstabs is specified.
80 --gstabs-packing, --no-gstabs-packing. */
81 static boolean flag_allow_gstabs_packing = 1;
82
83 /* Local functions. */
84 static int reg_name_search PARAMS ((char *name));
85 static int register_name PARAMS ((expressionS *expressionP));
86 static int check_range PARAMS ((unsigned long num, int bits, int flags));
87 static int postfix PARAMS ((char *p));
88 static bfd_reloc_code_real_type get_reloc PARAMS ((struct d10v_operand *op));
89 static int get_operands PARAMS ((expressionS exp[]));
90 static struct d10v_opcode *find_opcode PARAMS ((struct d10v_opcode *opcode, expressionS ops[]));
91 static unsigned long build_insn PARAMS ((struct d10v_opcode *opcode, expressionS *opers, unsigned long insn));
92 static void write_long PARAMS ((unsigned long insn, Fixups *fx));
93 static void write_1_short PARAMS ((struct d10v_opcode *opcode, unsigned long insn, Fixups *fx));
94 static int write_2_short PARAMS ((struct d10v_opcode *opcode1, unsigned long insn1,
95 struct d10v_opcode *opcode2, unsigned long insn2, packing_type exec_type, Fixups *fx));
96 static unsigned long do_assemble PARAMS ((char *str, struct d10v_opcode **opcode));
97 static unsigned long d10v_insert_operand PARAMS (( unsigned long insn, int op_type,
98 offsetT value, int left, fixS *fix));
99 static int parallel_ok PARAMS ((struct d10v_opcode *opcode1, unsigned long insn1,
100 struct d10v_opcode *opcode2, unsigned long insn2,
101 packing_type exec_type));
102 static symbolS * find_symbol_matching_register PARAMS ((expressionS *));
103
104 struct option md_longopts[] =
105 {
106 #define OPTION_NOWARNSWAP (OPTION_MD_BASE)
107 {"nowarnswap", no_argument, NULL, OPTION_NOWARNSWAP},
108 #define OPTION_GSTABSPACKING (OPTION_MD_BASE + 1)
109 {"gstabspacking", no_argument, NULL, OPTION_GSTABSPACKING},
110 {"gstabs-packing", no_argument, NULL, OPTION_GSTABSPACKING},
111 #define OPTION_NOGSTABSPACKING (OPTION_MD_BASE + 2)
112 {"nogstabspacking", no_argument, NULL, OPTION_NOGSTABSPACKING},
113 {"no-gstabs-packing", no_argument, NULL, OPTION_NOGSTABSPACKING},
114 {NULL, no_argument, NULL, 0}
115 };
116
117 size_t md_longopts_size = sizeof (md_longopts);
118
119 static void d10v_dot_word PARAMS ((int));
120
121 /* The target specific pseudo-ops which we support. */
122 const pseudo_typeS md_pseudo_table[] =
123 {
124 { "word", d10v_dot_word, 2 },
125 { NULL, NULL, 0 }
126 };
127
128 /* Opcode hash table. */
129 static struct hash_control *d10v_hash;
130
131 /* Do a binary search of the d10v_predefined_registers array to see if
132 NAME is a valid regiter name. Return the register number from the
133 array on success, or -1 on failure. */
134
135 static int
136 reg_name_search (name)
137 char *name;
138 {
139 int middle, low, high;
140 int cmp;
141
142 low = 0;
143 high = d10v_reg_name_cnt () - 1;
144
145 do
146 {
147 middle = (low + high) / 2;
148 cmp = strcasecmp (name, d10v_predefined_registers[middle].name);
149 if (cmp < 0)
150 high = middle - 1;
151 else if (cmp > 0)
152 low = middle + 1;
153 else
154 return d10v_predefined_registers[middle].value;
155 }
156 while (low <= high);
157 return -1;
158 }
159
160 /* Check the string at input_line_pointer
161 to see if it is a valid register name. */
162
163 static int
164 register_name (expressionP)
165 expressionS *expressionP;
166 {
167 int reg_number;
168 char c, *p = input_line_pointer;
169
170 while (*p
171 && *p != '\n' && *p != '\r' && *p != ',' && *p != ' ' && *p != ')')
172 p++;
173
174 c = *p;
175 if (c)
176 *p++ = 0;
177
178 /* Look to see if it's in the register table. */
179 reg_number = reg_name_search (input_line_pointer);
180 if (reg_number >= 0)
181 {
182 expressionP->X_op = O_register;
183 /* Temporarily store a pointer to the string here. */
184 expressionP->X_op_symbol = (symbolS *) input_line_pointer;
185 expressionP->X_add_number = reg_number;
186 input_line_pointer = p;
187 return 1;
188 }
189 if (c)
190 *(p - 1) = c;
191 return 0;
192 }
193
194 static int
195 check_range (num, bits, flags)
196 unsigned long num;
197 int bits;
198 int flags;
199 {
200 long min, max;
201 int retval = 0;
202
203 /* Don't bother checking 16-bit values. */
204 if (bits == 16)
205 return 0;
206
207 if (flags & OPERAND_SHIFT)
208 {
209 /* All special shift operands are unsigned and <= 16.
210 We allow 0 for now. */
211 if (num > 16)
212 return 1;
213 else
214 return 0;
215 }
216
217 if (flags & OPERAND_SIGNED)
218 {
219 /* Signed 3-bit integers are restricted to the (-2, 3) range. */
220 if (flags & RESTRICTED_NUM3)
221 {
222 if ((long) num < -2 || (long) num > 3)
223 retval = 1;
224 }
225 else
226 {
227 max = (1 << (bits - 1)) - 1;
228 min = - (1 << (bits - 1));
229 if (((long) num > max) || ((long) num < min))
230 retval = 1;
231 }
232 }
233 else
234 {
235 max = (1 << bits) - 1;
236 min = 0;
237 if (((long) num > max) || ((long) num < min))
238 retval = 1;
239 }
240 return retval;
241 }
242
243 void
244 md_show_usage (stream)
245 FILE *stream;
246 {
247 fprintf (stream, _("D10V options:\n\
248 -O Optimize. Will do some operations in parallel.\n\
249 --gstabs-packing Pack adjacent short instructions together even\n\
250 when --gstabs is specified. On by default.\n\
251 --no-gstabs-packing If --gstabs is specified, do not pack adjacent\n\
252 instructions together.\n"));
253 }
254
255 int
256 md_parse_option (c, arg)
257 int c;
258 char *arg ATTRIBUTE_UNUSED;
259 {
260 switch (c)
261 {
262 case 'O':
263 /* Optimize. Will attempt to parallelize operations. */
264 Optimizing = 1;
265 break;
266 case OPTION_NOWARNSWAP:
267 flag_warn_suppress_instructionswap = 1;
268 break;
269 case OPTION_GSTABSPACKING:
270 flag_allow_gstabs_packing = 1;
271 break;
272 case OPTION_NOGSTABSPACKING:
273 flag_allow_gstabs_packing = 0;
274 break;
275 default:
276 return 0;
277 }
278 return 1;
279 }
280
281 symbolS *
282 md_undefined_symbol (name)
283 char *name ATTRIBUTE_UNUSED;
284 {
285 return 0;
286 }
287
288 /* Turn a string in input_line_pointer into a floating point constant
289 of type TYPE, and store the appropriate bytes in *LITP. The number
290 of LITTLENUMS emitted is stored in *SIZEP. An error message is
291 returned, or NULL on OK. */
292
293 char *
294 md_atof (type, litP, sizeP)
295 int type;
296 char *litP;
297 int *sizeP;
298 {
299 int prec;
300 LITTLENUM_TYPE words[4];
301 char *t;
302 int i;
303
304 switch (type)
305 {
306 case 'f':
307 prec = 2;
308 break;
309 case 'd':
310 prec = 4;
311 break;
312 default:
313 *sizeP = 0;
314 return _("bad call to md_atof");
315 }
316
317 t = atof_ieee (input_line_pointer, type, words);
318 if (t)
319 input_line_pointer = t;
320
321 *sizeP = prec * 2;
322
323 for (i = 0; i < prec; i++)
324 {
325 md_number_to_chars (litP, (valueT) words[i], 2);
326 litP += 2;
327 }
328 return NULL;
329 }
330
331 void
332 md_convert_frag (abfd, sec, fragP)
333 bfd *abfd ATTRIBUTE_UNUSED;
334 asection *sec ATTRIBUTE_UNUSED;
335 fragS *fragP ATTRIBUTE_UNUSED;
336 {
337 abort ();
338 }
339
340 valueT
341 md_section_align (seg, addr)
342 asection *seg;
343 valueT addr;
344 {
345 int align = bfd_get_section_alignment (stdoutput, seg);
346 return ((addr + (1 << align) - 1) & (-1 << align));
347 }
348
349 void
350 md_begin ()
351 {
352 char *prev_name = "";
353 struct d10v_opcode *opcode;
354 d10v_hash = hash_new ();
355
356 /* Insert unique names into hash table. The D10v instruction set
357 has many identical opcode names that have different opcodes based
358 on the operands. This hash table then provides a quick index to
359 the first opcode with a particular name in the opcode table. */
360
361 for (opcode = (struct d10v_opcode *) d10v_opcodes; opcode->name; opcode++)
362 {
363 if (strcmp (prev_name, opcode->name))
364 {
365 prev_name = (char *) opcode->name;
366 hash_insert (d10v_hash, opcode->name, (char *) opcode);
367 }
368 }
369
370 fixups = &FixUps[0];
371 FixUps[0].next = &FixUps[1];
372 FixUps[1].next = &FixUps[0];
373 }
374
375 /* Remove the postincrement or postdecrement operator ( '+' or '-' )
376 from an expression. */
377
378 static int
379 postfix (p)
380 char *p;
381 {
382 while (*p != '-' && *p != '+')
383 {
384 if (*p == 0 || *p == '\n' || *p == '\r')
385 break;
386 p++;
387 }
388
389 if (*p == '-')
390 {
391 *p = ' ';
392 return (-1);
393 }
394 if (*p == '+')
395 {
396 *p = ' ';
397 return (1);
398 }
399
400 return (0);
401 }
402
403 static bfd_reloc_code_real_type
404 get_reloc (op)
405 struct d10v_operand *op;
406 {
407 int bits = op->bits;
408
409 if (bits <= 4)
410 return (0);
411
412 if (op->flags & OPERAND_ADDR)
413 {
414 if (bits == 8)
415 return (BFD_RELOC_D10V_10_PCREL_R);
416 else
417 return (BFD_RELOC_D10V_18_PCREL);
418 }
419
420 return (BFD_RELOC_16);
421 }
422
423 /* Parse a string of operands. Return an array of expressions. */
424
425 static int
426 get_operands (exp)
427 expressionS exp[];
428 {
429 char *p = input_line_pointer;
430 int numops = 0;
431 int post = 0;
432 int uses_at = 0;
433
434 while (*p)
435 {
436 while (*p == ' ' || *p == '\t' || *p == ',')
437 p++;
438 if (*p == 0 || *p == '\n' || *p == '\r')
439 break;
440
441 if (*p == '@')
442 {
443 uses_at = 1;
444
445 p++;
446 exp[numops].X_op = O_absent;
447 if (*p == '(')
448 {
449 p++;
450 exp[numops].X_add_number = OPERAND_ATPAR;
451 }
452 else if (*p == '-')
453 {
454 p++;
455 exp[numops].X_add_number = OPERAND_ATMINUS;
456 }
457 else
458 {
459 exp[numops].X_add_number = OPERAND_ATSIGN;
460 if (*p == '+')
461 {
462 exp[++numops].X_add_number = OPERAND_PLUS;
463 ++p;
464 }
465 post = postfix (p);
466 }
467 numops++;
468 continue;
469 }
470
471 if (*p == ')')
472 {
473 /* Just skip the trailing paren. */
474 p++;
475 continue;
476 }
477
478 input_line_pointer = p;
479
480 /* Check to see if it might be a register name. */
481 if (!register_name (&exp[numops]))
482 {
483 /* Parse as an expression. */
484 if (uses_at)
485 {
486 /* Any expression that involves the indirect addressing
487 cannot also involve immediate addressing. Therefore
488 the use of the hash character is illegal. */
489 int save = do_not_ignore_hash;
490 do_not_ignore_hash = 1;
491
492 expression (&exp[numops]);
493
494 do_not_ignore_hash = save;
495 }
496 else
497 expression (&exp[numops]);
498 }
499
500 if (strncasecmp (input_line_pointer, "@word", 5) == 0)
501 {
502 input_line_pointer += 5;
503 if (exp[numops].X_op == O_register)
504 {
505 /* If it looked like a register name but was followed by
506 "@word" then it was really a symbol, so change it to
507 one. */
508 exp[numops].X_op = O_symbol;
509 exp[numops].X_add_symbol =
510 symbol_find_or_make ((char *) exp[numops].X_op_symbol);
511 }
512
513 /* Check for identifier@word+constant. */
514 if (*input_line_pointer == '-' || *input_line_pointer == '+')
515 {
516 expressionS new_exp;
517 expression (&new_exp);
518 exp[numops].X_add_number = new_exp.X_add_number;
519 }
520
521 /* Convert expr into a right shift by AT_WORD_RIGHT_SHIFT. */
522 {
523 expressionS new_exp;
524 memset (&new_exp, 0, sizeof new_exp);
525 new_exp.X_add_number = AT_WORD_RIGHT_SHIFT;
526 new_exp.X_op = O_constant;
527 new_exp.X_unsigned = 1;
528 exp[numops].X_op_symbol = make_expr_symbol (&new_exp);
529 exp[numops].X_op = O_right_shift;
530 }
531
532 know (AT_WORD_P (&exp[numops]));
533 }
534
535 if (exp[numops].X_op == O_illegal)
536 as_bad (_("illegal operand"));
537 else if (exp[numops].X_op == O_absent)
538 as_bad (_("missing operand"));
539
540 numops++;
541 p = input_line_pointer;
542 }
543
544 switch (post)
545 {
546 case -1: /* Postdecrement mode. */
547 exp[numops].X_op = O_absent;
548 exp[numops++].X_add_number = OPERAND_MINUS;
549 break;
550 case 1: /* Postincrement mode. */
551 exp[numops].X_op = O_absent;
552 exp[numops++].X_add_number = OPERAND_PLUS;
553 break;
554 }
555
556 exp[numops].X_op = 0;
557 return (numops);
558 }
559
560 static unsigned long
561 d10v_insert_operand (insn, op_type, value, left, fix)
562 unsigned long insn;
563 int op_type;
564 offsetT value;
565 int left;
566 fixS *fix;
567 {
568 int shift, bits;
569
570 shift = d10v_operands[op_type].shift;
571 if (left)
572 shift += 15;
573
574 bits = d10v_operands[op_type].bits;
575
576 /* Truncate to the proper number of bits. */
577 if (check_range (value, bits, d10v_operands[op_type].flags))
578 as_bad_where (fix->fx_file, fix->fx_line,
579 _("operand out of range: %d"), value);
580
581 value &= 0x7FFFFFFF >> (31 - bits);
582 insn |= (value << shift);
583
584 return insn;
585 }
586
587 /* Take a pointer to the opcode entry in the opcode table and the
588 array of operand expressions. Return the instruction. */
589
590 static unsigned long
591 build_insn (opcode, opers, insn)
592 struct d10v_opcode *opcode;
593 expressionS *opers;
594 unsigned long insn;
595 {
596 int i, bits, shift, flags, format;
597 unsigned long number;
598
599 /* The insn argument is only used for the DIVS kludge. */
600 if (insn)
601 format = LONG_R;
602 else
603 {
604 insn = opcode->opcode;
605 format = opcode->format;
606 }
607
608 for (i = 0; opcode->operands[i]; i++)
609 {
610 flags = d10v_operands[opcode->operands[i]].flags;
611 bits = d10v_operands[opcode->operands[i]].bits;
612 shift = d10v_operands[opcode->operands[i]].shift;
613 number = opers[i].X_add_number;
614
615 if (flags & OPERAND_REG)
616 {
617 number &= REGISTER_MASK;
618 if (format == LONG_L)
619 shift += 15;
620 }
621
622 if (opers[i].X_op != O_register && opers[i].X_op != O_constant)
623 {
624 /* Now create a fixup. */
625
626 if (fixups->fc >= MAX_INSN_FIXUPS)
627 as_fatal (_("too many fixups"));
628
629 if (AT_WORD_P (&opers[i]))
630 {
631 /* Reconize XXX>>1+N aka XXX@word+N as special (AT_WORD). */
632 fixups->fix[fixups->fc].reloc = BFD_RELOC_D10V_18;
633 opers[i].X_op = O_symbol;
634 opers[i].X_op_symbol = NULL; /* Should free it. */
635 /* number is left shifted by AT_WORD_RIGHT_SHIFT so
636 that, it is aligned with the symbol's value. Later,
637 BFD_RELOC_D10V_18 will right shift (symbol_value +
638 X_add_number). */
639 number <<= AT_WORD_RIGHT_SHIFT;
640 opers[i].X_add_number = number;
641 }
642 else
643 fixups->fix[fixups->fc].reloc =
644 get_reloc ((struct d10v_operand *) &d10v_operands[opcode->operands[i]]);
645
646 if (fixups->fix[fixups->fc].reloc == BFD_RELOC_16 ||
647 fixups->fix[fixups->fc].reloc == BFD_RELOC_D10V_18)
648 fixups->fix[fixups->fc].size = 2;
649 else
650 fixups->fix[fixups->fc].size = 4;
651
652 fixups->fix[fixups->fc].exp = opers[i];
653 fixups->fix[fixups->fc].operand = opcode->operands[i];
654 fixups->fix[fixups->fc].pcrel =
655 (flags & OPERAND_ADDR) ? true : false;
656 (fixups->fc)++;
657 }
658
659 /* Truncate to the proper number of bits. */
660 if ((opers[i].X_op == O_constant) && check_range (number, bits, flags))
661 as_bad (_("operand out of range: %d"), number);
662 number &= 0x7FFFFFFF >> (31 - bits);
663 insn = insn | (number << shift);
664 }
665
666 /* kludge: for DIVS, we need to put the operands in twice */
667 /* on the second pass, format is changed to LONG_R to force
668 the second set of operands to not be shifted over 15. */
669 if ((opcode->opcode == OPCODE_DIVS) && (format == LONG_L))
670 insn = build_insn (opcode, opers, insn);
671
672 return insn;
673 }
674
675 /* Write out a long form instruction. */
676
677 static void
678 write_long (insn, fx)
679 unsigned long insn;
680 Fixups *fx;
681 {
682 int i, where;
683 char *f = frag_more (4);
684
685 insn |= FM11;
686 number_to_chars_bigendian (f, insn, 4);
687
688 for (i = 0; i < fx->fc; i++)
689 {
690 if (fx->fix[i].reloc)
691 {
692 where = f - frag_now->fr_literal;
693 if (fx->fix[i].size == 2)
694 where += 2;
695
696 if (fx->fix[i].reloc == BFD_RELOC_D10V_18)
697 fx->fix[i].operand |= 4096;
698
699 fix_new_exp (frag_now,
700 where,
701 fx->fix[i].size,
702 &(fx->fix[i].exp),
703 fx->fix[i].pcrel,
704 fx->fix[i].operand|2048);
705 }
706 }
707 fx->fc = 0;
708 }
709
710 /* Write out a short form instruction by itself. */
711
712 static void
713 write_1_short (opcode, insn, fx)
714 struct d10v_opcode *opcode;
715 unsigned long insn;
716 Fixups *fx;
717 {
718 char *f = frag_more (4);
719 int i, where;
720
721 if (opcode->exec_type & PARONLY)
722 as_fatal (_("Instruction must be executed in parallel with another instruction."));
723
724 /* The other container needs to be NOP. */
725 /* According to 4.3.1: for FM=00, sub-instructions performed only
726 by IU cannot be encoded in L-container. */
727 if (opcode->unit == IU)
728 insn |= FM00 | (NOP << 15); /* Right container. */
729 else
730 insn = FM00 | (insn << 15) | NOP; /* Left container. */
731
732 number_to_chars_bigendian (f, insn, 4);
733 for (i = 0; i < fx->fc; i++)
734 {
735 if (fx->fix[i].reloc)
736 {
737 where = f - frag_now->fr_literal;
738 if (fx->fix[i].size == 2)
739 where += 2;
740
741 if (fx->fix[i].reloc == BFD_RELOC_D10V_18)
742 fx->fix[i].operand |= 4096;
743
744 /* If it's an R reloc, we may have to switch it to L. */
745 if ((fx->fix[i].reloc == BFD_RELOC_D10V_10_PCREL_R)
746 && (opcode->unit != IU))
747 fx->fix[i].operand |= 1024;
748
749 fix_new_exp (frag_now,
750 where,
751 fx->fix[i].size,
752 &(fx->fix[i].exp),
753 fx->fix[i].pcrel,
754 fx->fix[i].operand|2048);
755 }
756 }
757 fx->fc = 0;
758 }
759
760 /* Expects two short instructions.
761 If possible, writes out both as a single packed instruction.
762 Otherwise, writes out the first one, packed with a NOP.
763 Returns number of instructions not written out. */
764
765 static int
766 write_2_short (opcode1, insn1, opcode2, insn2, exec_type, fx)
767 struct d10v_opcode *opcode1, *opcode2;
768 unsigned long insn1, insn2;
769 packing_type exec_type;
770 Fixups *fx;
771 {
772 unsigned long insn;
773 char *f;
774 int i, j, where;
775
776 if ((exec_type != PACK_PARALLEL)
777 && ((opcode1->exec_type & PARONLY) || (opcode2->exec_type & PARONLY)))
778 as_fatal (_("Instruction must be executed in parallel"));
779
780 if ((opcode1->format & LONG_OPCODE) || (opcode2->format & LONG_OPCODE))
781 as_fatal (_("Long instructions may not be combined."));
782
783 switch (exec_type)
784 {
785 case PACK_UNSPEC: /* Order not specified. */
786 if (opcode1->exec_type & ALONE)
787 {
788 /* Case of a short branch on a separate GAS line.
789 Pack with NOP. */
790 write_1_short (opcode1, insn1, fx->next);
791 return 1;
792 }
793 if (Optimizing
794 && parallel_ok (opcode1, insn1, opcode2, insn2, exec_type))
795 {
796 /* Parallel. */
797 if (opcode1->unit == IU)
798 insn = FM00 | (insn2 << 15) | insn1;
799 else if (opcode2->unit == MU)
800 insn = FM00 | (insn2 << 15) | insn1;
801 else
802 insn = FM00 | (insn1 << 15) | insn2;
803 }
804 else if (opcode1->unit == IU)
805 /* Reverse sequential with IU opcode1 on right and done first. */
806 insn = FM10 | (insn2 << 15) | insn1;
807 else
808 /* Sequential with non-IU opcode1 on left and done first. */
809 insn = FM01 | (insn1 << 15) | insn2;
810 break;
811
812 case PACK_PARALLEL:
813 if (opcode1->exec_type & SEQ || opcode2->exec_type & SEQ)
814 as_fatal
815 (_("One of these instructions may not be executed in parallel."));
816 if (opcode1->unit == IU)
817 {
818 if (opcode2->unit == IU)
819 as_fatal (_("Two IU instructions may not be executed in parallel"));
820 if (!flag_warn_suppress_instructionswap)
821 as_warn (_("Swapping instruction order"));
822 insn = FM00 | (insn2 << 15) | insn1;
823 }
824 else if (opcode2->unit == MU)
825 {
826 if (opcode1->unit == MU)
827 as_fatal (_("Two MU instructions may not be executed in parallel"));
828 if (!flag_warn_suppress_instructionswap)
829 as_warn (_("Swapping instruction order"));
830 insn = FM00 | (insn2 << 15) | insn1;
831 }
832 else
833 insn = FM00 | (insn1 << 15) | insn2;
834 break;
835
836 case PACK_LEFT_RIGHT:
837 if (opcode1->unit != IU)
838 insn = FM01 | (insn1 << 15) | insn2;
839 else if (opcode2->unit == MU || opcode2->unit == EITHER)
840 {
841 if (!flag_warn_suppress_instructionswap)
842 as_warn (_("Swapping instruction order"));
843 insn = FM10 | (insn2 << 15) | insn1;
844 }
845 else
846 as_fatal (_("IU instruction may not be in the left container"));
847 if (opcode1->exec_type & ALONE)
848 as_warn (_("Instruction in R container is squashed by flow control instruction in L container."));
849 break;
850
851 case PACK_RIGHT_LEFT:
852 if (opcode2->unit != MU)
853 insn = FM10 | (insn1 << 15) | insn2;
854 else if (opcode1->unit == IU || opcode1->unit == EITHER)
855 {
856 if (!flag_warn_suppress_instructionswap)
857 as_warn (_("Swapping instruction order"));
858 insn = FM01 | (insn2 << 15) | insn1;
859 }
860 else
861 as_fatal (_("MU instruction may not be in the right container"));
862 if (opcode2->exec_type & ALONE)
863 as_warn (_("Instruction in R container is squashed by flow control instruction in L container."));
864 break;
865
866 default:
867 as_fatal (_("unknown execution type passed to write_2_short()"));
868 }
869
870 f = frag_more (4);
871 number_to_chars_bigendian (f, insn, 4);
872
873 /* Process fixup chains. fx refers to insn2 when j == 0, and to
874 insn1 when j == 1. Yes, it's reversed. */
875
876 for (j = 0; j < 2; j++)
877 {
878 for (i = 0; i < fx->fc; i++)
879 {
880 if (fx->fix[i].reloc)
881 {
882 where = f - frag_now->fr_literal;
883 if (fx->fix[i].size == 2)
884 where += 2;
885
886 if (fx->fix[i].reloc == BFD_RELOC_D10V_10_PCREL_R
887 /* A BFD_RELOC_D10V_10_PCREL_R relocation applied to
888 the instruction in the L container has to be
889 adjusted to BDF_RELOC_D10V_10_PCREL_L. When
890 j==0, we're processing insn2's operands, so we
891 want to mark the operand if insn2 is *not* in the
892 R container. When j==1, we're processing insn1's
893 operands, so we want to mark the operand if insn2
894 *is* in the R container. Note that, if two
895 instructions are identical, we're never going to
896 swap them, so the test is safe. */
897 && j == ((insn & 0x7fff) == insn2))
898 fx->fix[i].operand |= 1024;
899
900 if (fx->fix[i].reloc == BFD_RELOC_D10V_18)
901 fx->fix[i].operand |= 4096;
902
903 fix_new_exp (frag_now,
904 where,
905 fx->fix[i].size,
906 &(fx->fix[i].exp),
907 fx->fix[i].pcrel,
908 fx->fix[i].operand|2048);
909 }
910 }
911 fx->fc = 0;
912 fx = fx->next;
913 }
914 return (0);
915 }
916
917 /* Check 2 instructions and determine if they can be safely
918 executed in parallel. Return 1 if they can be. */
919
920 static int
921 parallel_ok (op1, insn1, op2, insn2, exec_type)
922 struct d10v_opcode *op1, *op2;
923 unsigned long insn1, insn2;
924 packing_type exec_type;
925 {
926 int i, j, flags, mask, shift, regno;
927 unsigned long ins, mod[2], used[2];
928 struct d10v_opcode *op;
929
930 if ((op1->exec_type & SEQ) != 0 || (op2->exec_type & SEQ) != 0
931 || (op1->exec_type & PAR) == 0 || (op2->exec_type & PAR) == 0
932 || (op1->unit == BOTH) || (op2->unit == BOTH)
933 || (op1->unit == IU && op2->unit == IU)
934 || (op1->unit == MU && op2->unit == MU))
935 return 0;
936
937 /* If this is auto parallization, and either instruction is a branch,
938 don't parallel. */
939 if (exec_type == PACK_UNSPEC
940 && (op1->exec_type & ALONE || op2->exec_type & ALONE))
941 return 0;
942
943 /* The idea here is to create two sets of bitmasks (mod and used)
944 which indicate which registers are modified or used by each
945 instruction. The operation can only be done in parallel if
946 instruction 1 and instruction 2 modify different registers, and
947 the first instruction does not modify registers that the second
948 is using (The second instruction can modify registers that the
949 first is using as they are only written back after the first
950 instruction has completed). Accesses to control registers, PSW,
951 and memory are treated as accesses to a single register. So if
952 both instructions write memory or if the first instruction writes
953 memory and the second reads, then they cannot be done in
954 parallel. Likewise, if the first instruction mucks with the psw
955 and the second reads the PSW (which includes C, F0, and F1), then
956 they cannot operate safely in parallel. */
957
958 /* The bitmasks (mod and used) look like this (bit 31 = MSB). */
959 /* r0-r15 0-15 */
960 /* a0-a1 16-17 */
961 /* cr (not psw) 18 */
962 /* psw 19 */
963 /* mem 20 */
964
965 for (j = 0; j < 2; j++)
966 {
967 if (j == 0)
968 {
969 op = op1;
970 ins = insn1;
971 }
972 else
973 {
974 op = op2;
975 ins = insn2;
976 }
977 mod[j] = used[j] = 0;
978 if (op->exec_type & BRANCH_LINK)
979 mod[j] |= 1 << 13;
980
981 for (i = 0; op->operands[i]; i++)
982 {
983 flags = d10v_operands[op->operands[i]].flags;
984 shift = d10v_operands[op->operands[i]].shift;
985 mask = 0x7FFFFFFF >> (31 - d10v_operands[op->operands[i]].bits);
986 if (flags & OPERAND_REG)
987 {
988 regno = (ins >> shift) & mask;
989 if (flags & (OPERAND_ACC0 | OPERAND_ACC1))
990 regno += 16;
991 else if (flags & OPERAND_CONTROL) /* mvtc or mvfc. */
992 {
993 if (regno == 0)
994 regno = 19;
995 else
996 regno = 18;
997 }
998 else if (flags & (OPERAND_FFLAG | OPERAND_CFLAG))
999 regno = 19;
1000
1001 if (flags & OPERAND_DEST)
1002 {
1003 mod[j] |= 1 << regno;
1004 if (flags & OPERAND_EVEN)
1005 mod[j] |= 1 << (regno + 1);
1006 }
1007 else
1008 {
1009 used[j] |= 1 << regno;
1010 if (flags & OPERAND_EVEN)
1011 used[j] |= 1 << (regno + 1);
1012
1013 /* Auto inc/dec also modifies the register. */
1014 if (op->operands[i + 1] != 0
1015 && (d10v_operands[op->operands[i + 1]].flags
1016 & (OPERAND_PLUS | OPERAND_MINUS)) != 0)
1017 mod[j] |= 1 << regno;
1018 }
1019 }
1020 else if (flags & OPERAND_ATMINUS)
1021 {
1022 /* SP implicitly used/modified. */
1023 mod[j] |= 1 << 15;
1024 used[j] |= 1 << 15;
1025 }
1026 }
1027 if (op->exec_type & RMEM)
1028 used[j] |= 1 << 20;
1029 else if (op->exec_type & WMEM)
1030 mod[j] |= 1 << 20;
1031 else if (op->exec_type & RF0)
1032 used[j] |= 1 << 19;
1033 else if (op->exec_type & WF0)
1034 mod[j] |= 1 << 19;
1035 else if (op->exec_type & WCAR)
1036 mod[j] |= 1 << 19;
1037 }
1038 if ((mod[0] & mod[1]) == 0 && (mod[0] & used[1]) == 0)
1039 return 1;
1040 return 0;
1041 }
1042
1043 /* This is the main entry point for the machine-dependent assembler.
1044 STR points to a machine-dependent instruction. This function is
1045 supposed to emit the frags/bytes it assembles to. For the D10V, it
1046 mostly handles the special VLIW parsing and packing and leaves the
1047 difficult stuff to do_assemble(). */
1048
1049 static unsigned long prev_insn;
1050 static struct d10v_opcode *prev_opcode = 0;
1051 static subsegT prev_subseg;
1052 static segT prev_seg = 0;;
1053
1054 void
1055 md_assemble (str)
1056 char *str;
1057 {
1058 /* etype is saved extype. For multi-line instructions. */
1059
1060 packing_type extype = PACK_UNSPEC; /* Parallel, etc. */
1061
1062 struct d10v_opcode *opcode;
1063 unsigned long insn;
1064 char *str2;
1065
1066 if (etype == PACK_UNSPEC)
1067 {
1068 /* Look for the special multiple instruction separators. */
1069 str2 = strstr (str, "||");
1070 if (str2)
1071 extype = PACK_PARALLEL;
1072 else
1073 {
1074 str2 = strstr (str, "->");
1075 if (str2)
1076 extype = PACK_LEFT_RIGHT;
1077 else
1078 {
1079 str2 = strstr (str, "<-");
1080 if (str2)
1081 extype = PACK_RIGHT_LEFT;
1082 }
1083 }
1084 /* STR2 points to the separator, if there is one. */
1085 if (str2)
1086 {
1087 *str2 = 0;
1088
1089 /* If two instructions are present and we already have one saved,
1090 then first write out the saved one. */
1091 d10v_cleanup ();
1092
1093 /* Assemble first instruction and save it. */
1094 prev_insn = do_assemble (str, &prev_opcode);
1095 prev_seg = now_seg;
1096 prev_subseg = now_subseg;
1097 if (prev_insn == (unsigned long) -1)
1098 as_fatal (_("can't find opcode "));
1099 fixups = fixups->next;
1100 str = str2 + 2;
1101 }
1102 }
1103
1104 insn = do_assemble (str, &opcode);
1105 if (insn == (unsigned long) -1)
1106 {
1107 if (extype != PACK_UNSPEC)
1108 {
1109 etype = extype;
1110 return;
1111 }
1112 as_fatal (_("can't find opcode "));
1113 }
1114
1115 if (etype != PACK_UNSPEC)
1116 {
1117 extype = etype;
1118 etype = PACK_UNSPEC;
1119 }
1120
1121 /* If this is a long instruction, write it and any previous short
1122 instruction. */
1123 if (opcode->format & LONG_OPCODE)
1124 {
1125 if (extype != PACK_UNSPEC)
1126 as_fatal (_("Unable to mix instructions as specified"));
1127 d10v_cleanup ();
1128 write_long (insn, fixups);
1129 prev_opcode = NULL;
1130 return;
1131 }
1132
1133 if (prev_opcode
1134 && prev_seg
1135 && ((prev_seg != now_seg) || (prev_subseg != now_subseg)))
1136 d10v_cleanup ();
1137
1138 if (prev_opcode
1139 && (write_2_short (prev_opcode, prev_insn, opcode, insn, extype, fixups) == 0))
1140 {
1141 /* No instructions saved. */
1142 prev_opcode = NULL;
1143 }
1144 else
1145 {
1146 if (extype != PACK_UNSPEC)
1147 as_fatal (_("Unable to mix instructions as specified"));
1148 /* Save last instruction so it may be packed on next pass. */
1149 prev_opcode = opcode;
1150 prev_insn = insn;
1151 prev_seg = now_seg;
1152 prev_subseg = now_subseg;
1153 fixups = fixups->next;
1154 }
1155 }
1156
1157 /* Assemble a single instruction.
1158 Return an opcode, or -1 (an invalid opcode) on error. */
1159
1160 static unsigned long
1161 do_assemble (str, opcode)
1162 char *str;
1163 struct d10v_opcode **opcode;
1164 {
1165 unsigned char *op_start, *save;
1166 unsigned char *op_end;
1167 char name[20];
1168 int nlen = 0;
1169 expressionS myops[6];
1170 unsigned long insn;
1171
1172 /* Drop leading whitespace. */
1173 while (*str == ' ')
1174 str++;
1175
1176 /* Find the opcode end. */
1177 for (op_start = op_end = (unsigned char *) (str);
1178 *op_end
1179 && nlen < 20
1180 && !is_end_of_line[*op_end] && *op_end != ' ';
1181 op_end++)
1182 {
1183 name[nlen] = TOLOWER (op_start[nlen]);
1184 nlen++;
1185 }
1186 name[nlen] = 0;
1187
1188 if (nlen == 0)
1189 return -1;
1190
1191 /* Find the first opcode with the proper name. */
1192 *opcode = (struct d10v_opcode *) hash_find (d10v_hash, name);
1193 if (*opcode == NULL)
1194 as_fatal (_("unknown opcode: %s"), name);
1195
1196 save = input_line_pointer;
1197 input_line_pointer = op_end;
1198 *opcode = find_opcode (*opcode, myops);
1199 if (*opcode == 0)
1200 return -1;
1201 input_line_pointer = save;
1202
1203 insn = build_insn ((*opcode), myops, 0);
1204 return (insn);
1205 }
1206
1207 /* Find the symbol which has the same name as the register in EXP. */
1208
1209 static symbolS *
1210 find_symbol_matching_register (exp)
1211 expressionS *exp;
1212 {
1213 int i;
1214
1215 if (exp->X_op != O_register)
1216 return NULL;
1217
1218 /* Find the name of the register. */
1219 for (i = d10v_reg_name_cnt (); i--;)
1220 if (d10v_predefined_registers[i].value == exp->X_add_number)
1221 break;
1222
1223 if (i < 0)
1224 abort ();
1225
1226 /* Now see if a symbol has been defined with the same name. */
1227 return symbol_find (d10v_predefined_registers[i].name);
1228 }
1229
1230 /* Get a pointer to an entry in the opcode table.
1231 The function must look at all opcodes with the same name and use
1232 the operands to choose the correct opcode. */
1233
1234 static struct d10v_opcode *
1235 find_opcode (opcode, myops)
1236 struct d10v_opcode *opcode;
1237 expressionS myops[];
1238 {
1239 int i, match;
1240 struct d10v_opcode *next_opcode;
1241
1242 /* Get all the operands and save them as expressions. */
1243 get_operands (myops);
1244
1245 /* Now see if the operand is a fake. If so, find the correct size
1246 instruction, if possible. */
1247 if (opcode->format == OPCODE_FAKE)
1248 {
1249 int opnum = opcode->operands[0];
1250 int flags;
1251
1252 if (myops[opnum].X_op == O_register)
1253 {
1254 myops[opnum].X_op = O_symbol;
1255 myops[opnum].X_add_symbol =
1256 symbol_find_or_make ((char *) myops[opnum].X_op_symbol);
1257 myops[opnum].X_add_number = 0;
1258 myops[opnum].X_op_symbol = NULL;
1259 }
1260
1261 next_opcode = opcode + 1;
1262
1263 /* If the first operand is supposed to be a register, make sure
1264 we got a valid one. */
1265 flags = d10v_operands[next_opcode->operands[0]].flags;
1266 if (flags & OPERAND_REG)
1267 {
1268 int X_op = myops[0].X_op;
1269 int num = myops[0].X_add_number;
1270
1271 if (X_op != O_register
1272 || (num & ~flags
1273 & (OPERAND_GPR | OPERAND_ACC0 | OPERAND_ACC1
1274 | OPERAND_FFLAG | OPERAND_CFLAG | OPERAND_CONTROL))
1275 || ((flags & OPERAND_SP) && ! (num & OPERAND_SP)))
1276 {
1277 as_bad (_("bad opcode or operands"));
1278 return 0;
1279 }
1280 }
1281
1282 if (myops[opnum].X_op == O_constant
1283 || (myops[opnum].X_op == O_symbol
1284 && S_IS_DEFINED (myops[opnum].X_add_symbol)
1285 && (S_GET_SEGMENT (myops[opnum].X_add_symbol) == now_seg)))
1286 {
1287 for (i = 0; opcode->operands[i + 1]; i++)
1288 {
1289 int bits = d10v_operands[next_opcode->operands[opnum]].bits;
1290 int flags = d10v_operands[next_opcode->operands[opnum]].flags;
1291 if (flags & OPERAND_ADDR)
1292 bits += 2;
1293
1294 if (myops[opnum].X_op == O_constant)
1295 {
1296 if (!check_range (myops[opnum].X_add_number, bits, flags))
1297 return next_opcode;
1298 }
1299 else
1300 {
1301 fragS *sym_frag;
1302 fragS *f;
1303 unsigned long current_position;
1304 unsigned long symbol_position;
1305 unsigned long value;
1306 boolean found_symbol;
1307
1308 /* Calculate the address of the current instruction
1309 and the address of the symbol. Do this by summing
1310 the offsets of previous frags until we reach the
1311 frag containing the symbol, and the current frag. */
1312 sym_frag = symbol_get_frag (myops[opnum].X_add_symbol);
1313 found_symbol = false;
1314
1315 current_position =
1316 obstack_next_free (&frchain_now->frch_obstack)
1317 - frag_now->fr_literal;
1318 symbol_position = S_GET_VALUE (myops[opnum].X_add_symbol);
1319
1320 for (f = frchain_now->frch_root; f; f = f->fr_next)
1321 {
1322 current_position += f->fr_fix + f->fr_offset;
1323
1324 if (f == sym_frag)
1325 found_symbol = true;
1326
1327 if (! found_symbol)
1328 symbol_position += f->fr_fix + f->fr_offset;
1329 }
1330
1331 value = symbol_position;
1332
1333 if (flags & OPERAND_ADDR)
1334 value -= current_position;
1335
1336 if (AT_WORD_P (&myops[opnum]))
1337 {
1338 if (bits > 4)
1339 {
1340 bits += 2;
1341 if (!check_range (value, bits, flags))
1342 return next_opcode;
1343 }
1344 }
1345 else if (!check_range (value, bits, flags))
1346 return next_opcode;
1347 }
1348 next_opcode++;
1349 }
1350 as_fatal (_("value out of range"));
1351 }
1352 else
1353 {
1354 /* Not a constant, so use a long instruction. */
1355 return opcode + 2;
1356 }
1357 }
1358 else
1359 {
1360 match = 0;
1361 /* Now search the opcode table table for one with operands
1362 that matches what we've got. */
1363 while (!match)
1364 {
1365 match = 1;
1366 for (i = 0; opcode->operands[i]; i++)
1367 {
1368 int flags = d10v_operands[opcode->operands[i]].flags;
1369 int X_op = myops[i].X_op;
1370 int num = myops[i].X_add_number;
1371
1372 if (X_op == 0)
1373 {
1374 match = 0;
1375 break;
1376 }
1377
1378 if (flags & OPERAND_REG)
1379 {
1380 if ((X_op != O_register)
1381 || (num & ~flags
1382 & (OPERAND_GPR | OPERAND_ACC0 | OPERAND_ACC1
1383 | OPERAND_FFLAG | OPERAND_CFLAG
1384 | OPERAND_CONTROL))
1385 || ((flags & OPERAND_SP) && ! (num & OPERAND_SP)))
1386 {
1387 match = 0;
1388 break;
1389 }
1390 }
1391
1392 if (((flags & OPERAND_MINUS) && ((X_op != O_absent) || (num != OPERAND_MINUS))) ||
1393 ((flags & OPERAND_PLUS) && ((X_op != O_absent) || (num != OPERAND_PLUS))) ||
1394 ((flags & OPERAND_ATMINUS) && ((X_op != O_absent) || (num != OPERAND_ATMINUS))) ||
1395 ((flags & OPERAND_ATPAR) && ((X_op != O_absent) || (num != OPERAND_ATPAR))) ||
1396 ((flags & OPERAND_ATSIGN) && ((X_op != O_absent) || ((num != OPERAND_ATSIGN) && (num != OPERAND_ATPAR)))))
1397 {
1398 match = 0;
1399 break;
1400 }
1401
1402 /* Unfortunatly, for the indirect operand in
1403 instructions such as ``ldb r1, @(c,r14)'' this
1404 function can be passed X_op == O_register (because
1405 'c' is a valid register name). However we cannot
1406 just ignore the case when X_op == O_register but
1407 flags & OPERAND_REG is null, so we check to see if a
1408 symbol of the same name as the register exists. If
1409 the symbol does exist, then the parser was unable to
1410 distinguish the two cases and we fix things here.
1411 (Ref: PR14826) */
1412
1413 if (!(flags & OPERAND_REG) && (X_op == O_register))
1414 {
1415 symbolS *sym = find_symbol_matching_register (&myops[i]);
1416
1417 if (sym != NULL)
1418 {
1419 myops[i].X_op = X_op = O_symbol;
1420 myops[i].X_add_symbol = sym;
1421 }
1422 else
1423 as_bad
1424 (_("illegal operand - register name found where none expected"));
1425 }
1426 }
1427
1428 /* We're only done if the operands matched so far AND there
1429 are no more to check. */
1430 if (match && myops[i].X_op == 0)
1431 break;
1432 else
1433 match = 0;
1434
1435 next_opcode = opcode + 1;
1436
1437 if (next_opcode->opcode == 0)
1438 break;
1439
1440 if (strcmp (next_opcode->name, opcode->name))
1441 break;
1442
1443 opcode = next_opcode;
1444 }
1445 }
1446
1447 if (!match)
1448 {
1449 as_bad (_("bad opcode or operands"));
1450 return (0);
1451 }
1452
1453 /* Check that all registers that are required to be even are.
1454 Also, if any operands were marked as registers, but were really symbols,
1455 fix that here. */
1456 for (i = 0; opcode->operands[i]; i++)
1457 {
1458 if ((d10v_operands[opcode->operands[i]].flags & OPERAND_EVEN) &&
1459 (myops[i].X_add_number & 1))
1460 as_fatal (_("Register number must be EVEN"));
1461 if ((d10v_operands[opcode->operands[i]].flags & OPERAND_NOSP)
1462 && (myops[i].X_add_number & OPERAND_SP))
1463 as_bad (_("Unsupported use of sp"));
1464 if (myops[i].X_op == O_register)
1465 {
1466 if (!(d10v_operands[opcode->operands[i]].flags & OPERAND_REG))
1467 {
1468 myops[i].X_op = O_symbol;
1469 myops[i].X_add_symbol =
1470 symbol_find_or_make ((char *) myops[i].X_op_symbol);
1471 myops[i].X_add_number = 0;
1472 myops[i].X_op_symbol = NULL;
1473 }
1474 }
1475 }
1476 return opcode;
1477 }
1478
1479 /* If while processing a fixup, a reloc really needs to be created.
1480 Then it is done here. */
1481
1482 arelent *
1483 tc_gen_reloc (seg, fixp)
1484 asection *seg ATTRIBUTE_UNUSED;
1485 fixS *fixp;
1486 {
1487 arelent *reloc;
1488 reloc = (arelent *) xmalloc (sizeof (arelent));
1489 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
1490 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
1491 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
1492 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
1493 if (reloc->howto == (reloc_howto_type *) NULL)
1494 {
1495 as_bad_where (fixp->fx_file, fixp->fx_line,
1496 _("reloc %d not supported by object file format"),
1497 (int) fixp->fx_r_type);
1498 return NULL;
1499 }
1500
1501 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1502 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1503 reloc->address = fixp->fx_offset;
1504
1505 reloc->addend = fixp->fx_addnumber;
1506
1507 return reloc;
1508 }
1509
1510 int
1511 md_estimate_size_before_relax (fragp, seg)
1512 fragS *fragp ATTRIBUTE_UNUSED;
1513 asection *seg ATTRIBUTE_UNUSED;
1514 {
1515 abort ();
1516 return 0;
1517 }
1518
1519 long
1520 md_pcrel_from_section (fixp, sec)
1521 fixS *fixp;
1522 segT sec;
1523 {
1524 if (fixp->fx_addsy != (symbolS *) NULL
1525 && (!S_IS_DEFINED (fixp->fx_addsy)
1526 || (S_GET_SEGMENT (fixp->fx_addsy) != sec)))
1527 return 0;
1528 return fixp->fx_frag->fr_address + fixp->fx_where;
1529 }
1530
1531 void
1532 md_apply_fix3 (fixP, valP, seg)
1533 fixS *fixP;
1534 valueT * valP;
1535 segT seg ATTRIBUTE_UNUSED;
1536 {
1537 char *where;
1538 unsigned long insn;
1539 long value = * (long *) valP;
1540 int op_type;
1541 int left = 0;
1542
1543 if (fixP->fx_addsy == (symbolS *) NULL)
1544 fixP->fx_done = 1;
1545
1546 else if (fixP->fx_pcrel)
1547 ;
1548
1549 else
1550 {
1551 value = fixP->fx_offset;
1552
1553 if (fixP->fx_subsy != (symbolS *) NULL)
1554 {
1555 if (S_GET_SEGMENT (fixP->fx_subsy) == absolute_section)
1556 value -= S_GET_VALUE (fixP->fx_subsy);
1557 else
1558 {
1559 /* We don't actually support subtracting a symbol. */
1560 as_bad_where (fixP->fx_file, fixP->fx_line,
1561 _("expression too complex"));
1562 }
1563 }
1564 }
1565
1566 op_type = fixP->fx_r_type;
1567 if (op_type & 2048)
1568 {
1569 op_type -= 2048;
1570 if (op_type & 1024)
1571 {
1572 op_type -= 1024;
1573 fixP->fx_r_type = BFD_RELOC_D10V_10_PCREL_L;
1574 left = 1;
1575 }
1576 else if (op_type & 4096)
1577 {
1578 op_type -= 4096;
1579 fixP->fx_r_type = BFD_RELOC_D10V_18;
1580 }
1581 else
1582 fixP->fx_r_type =
1583 get_reloc ((struct d10v_operand *) &d10v_operands[op_type]);
1584 }
1585
1586 /* Fetch the instruction, insert the fully resolved operand
1587 value, and stuff the instruction back again. */
1588 where = fixP->fx_frag->fr_literal + fixP->fx_where;
1589 insn = bfd_getb32 ((unsigned char *) where);
1590
1591 switch (fixP->fx_r_type)
1592 {
1593 case BFD_RELOC_D10V_10_PCREL_L:
1594 case BFD_RELOC_D10V_10_PCREL_R:
1595 case BFD_RELOC_D10V_18_PCREL:
1596 case BFD_RELOC_D10V_18:
1597 /* Instruction addresses are always right-shifted by 2. */
1598 value >>= AT_WORD_RIGHT_SHIFT;
1599 if (fixP->fx_size == 2)
1600 bfd_putb16 ((bfd_vma) value, (unsigned char *) where);
1601 else
1602 {
1603 struct d10v_opcode *rep, *repi;
1604
1605 rep = (struct d10v_opcode *) hash_find (d10v_hash, "rep");
1606 repi = (struct d10v_opcode *) hash_find (d10v_hash, "repi");
1607 if ((insn & FM11) == FM11
1608 && ( (repi != NULL && (insn & repi->mask) == (unsigned) repi->opcode)
1609 || (rep != NULL && (insn & rep->mask) == (unsigned) rep->opcode))
1610 && value < 4)
1611 as_fatal
1612 (_("line %d: rep or repi must include at least 4 instructions"),
1613 fixP->fx_line);
1614 insn =
1615 d10v_insert_operand (insn, op_type, (offsetT) value, left, fixP);
1616 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1617 }
1618 break;
1619 case BFD_RELOC_32:
1620 bfd_putb32 ((bfd_vma) value, (unsigned char *) where);
1621 break;
1622 case BFD_RELOC_16:
1623 bfd_putb16 ((bfd_vma) value, (unsigned char *) where);
1624 break;
1625
1626 case BFD_RELOC_VTABLE_INHERIT:
1627 case BFD_RELOC_VTABLE_ENTRY:
1628 fixP->fx_done = 0;
1629 return;
1630
1631 default:
1632 as_fatal (_("line %d: unknown relocation type: 0x%x"),
1633 fixP->fx_line, fixP->fx_r_type);
1634 }
1635 }
1636
1637 /* d10v_cleanup() is called after the assembler has finished parsing
1638 the input file, when a label is read from the input file, or when a
1639 stab directive is output. Because the D10V assembler sometimes
1640 saves short instructions to see if it can package them with the
1641 next instruction, there may be a short instruction that still needs
1642 to be written.
1643
1644 NOTE: accesses a global, etype.
1645 NOTE: invoked by various macros such as md_cleanup: see. */
1646
1647 int
1648 d10v_cleanup ()
1649 {
1650 segT seg;
1651 subsegT subseg;
1652
1653 /* If cleanup was invoked because the assembler encountered, e.g., a
1654 user label, we write out the pending instruction, if any. If it
1655 was invoked because the assembler is outputting a piece of line
1656 debugging information, though, we write out the pending
1657 instruction only if the --no-gstabs-packing command line switch
1658 has been specified. */
1659 if (prev_opcode
1660 && etype == PACK_UNSPEC
1661 && (! outputting_stabs_line_debug || ! flag_allow_gstabs_packing))
1662 {
1663 seg = now_seg;
1664 subseg = now_subseg;
1665
1666 if (prev_seg)
1667 subseg_set (prev_seg, prev_subseg);
1668
1669 write_1_short (prev_opcode, prev_insn, fixups->next);
1670
1671 subseg_set (seg, subseg);
1672 prev_opcode = NULL;
1673 }
1674 return 1;
1675 }
1676
1677 /* Like normal .word, except support @word. */
1678 /* Clobbers input_line_pointer, checks end-of-line. */
1679
1680 static void
1681 d10v_dot_word (dummy)
1682 int dummy ATTRIBUTE_UNUSED;
1683 {
1684 expressionS exp;
1685 char *p;
1686
1687 if (is_it_end_of_statement ())
1688 {
1689 demand_empty_rest_of_line ();
1690 return;
1691 }
1692
1693 do
1694 {
1695 expression (&exp);
1696 if (!strncasecmp (input_line_pointer, "@word", 5))
1697 {
1698 exp.X_add_number = 0;
1699 input_line_pointer += 5;
1700
1701 p = frag_more (2);
1702 fix_new_exp (frag_now, p - frag_now->fr_literal, 2,
1703 &exp, 0, BFD_RELOC_D10V_18);
1704 }
1705 else
1706 emit_expr (&exp, 2);
1707 }
1708 while (*input_line_pointer++ == ',');
1709
1710 input_line_pointer--; /* Put terminator back into stream. */
1711 demand_empty_rest_of_line ();
1712 }
1713
1714 /* Mitsubishi asked that we support some old syntax that apparently
1715 had immediate operands starting with '#'. This is in some of their
1716 sample code but is not documented (although it appears in some
1717 examples in their assembler manual). For now, we'll solve this
1718 compatibility problem by simply ignoring any '#' at the beginning
1719 of an operand. */
1720
1721 /* Operands that begin with '#' should fall through to here. */
1722 /* From expr.c. */
1723
1724 void
1725 md_operand (expressionP)
1726 expressionS *expressionP;
1727 {
1728 if (*input_line_pointer == '#' && ! do_not_ignore_hash)
1729 {
1730 input_line_pointer++;
1731 expression (expressionP);
1732 }
1733 }
1734
1735 boolean
1736 d10v_fix_adjustable (fixP)
1737 fixS *fixP;
1738 {
1739 if (fixP->fx_addsy == NULL)
1740 return 1;
1741
1742 /* Prevent all adjustments to global symbols. */
1743 if (S_IS_EXTERN (fixP->fx_addsy))
1744 return 0;
1745 if (S_IS_WEAK (fixP->fx_addsy))
1746 return 0;
1747
1748 /* We need the symbol name for the VTABLE entries. */
1749 if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1750 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1751 return 0;
1752
1753 return 1;
1754 }
1755
1756 int
1757 d10v_force_relocation (fixp)
1758 fixS *fixp;
1759 {
1760 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1761 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1762 return 1;
1763
1764 return 0;
1765 }