* config/tc-hppa.c: Disable multiple $CODE$ subspace code. It
[binutils-gdb.git] / gas / config / tc-hppa.c
1 /* tc-hppa.c -- Assemble for the PA
2 Copyright (C) 1989 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 1, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* HP PA-RISC support was contributed by the Center for Software Science
22 at the University of Utah. */
23
24 #include <stdio.h>
25 #include <ctype.h>
26
27 #include "as.h"
28 #include "subsegs.h"
29
30 #include "../bfd/libhppa.h"
31 #include "../bfd/libbfd.h"
32
33 /* Be careful, this file includes data *declarations*. */
34 #include "opcode/hppa.h"
35
36 /* A "convient" place to put object file dependencies which do
37 not need to be seen outside of tc-hppa.c. */
38 #ifdef OBJ_ELF
39 /* Names of various debugging spaces/subspaces. */
40 #define GDB_DEBUG_SPACE_NAME ".stab"
41 #define GDB_STRINGS_SUBSPACE_NAME ".stabstr"
42 #define GDB_SYMBOLS_SUBSPACE_NAME ".stab"
43 #define UNWIND_SECTION_NAME ".hppa_unwind"
44 /* Nonzero if CODE is a fixup code needing further processing. */
45
46 /* Object file formats specify relocation types. */
47 typedef elf32_hppa_reloc_type reloc_type;
48
49 /* Object file formats specify BFD symbol types. */
50 typedef elf_symbol_type obj_symbol_type;
51
52 /* How to generate a relocation. */
53 #define hppa_gen_reloc_type hppa_elf_gen_reloc_type
54
55 /* ELF objects can have versions, but apparently do not have anywhere
56 to store a copyright string. */
57 #define obj_version obj_elf_version
58 #define obj_copyright obj_elf_version
59
60 /* Use space aliases. */
61 #define USE_ALIASES 1
62
63 /* Some local functions only used by ELF. */
64 static void pa_build_symextn_section PARAMS ((void));
65 static void hppa_tc_make_symextn_section PARAMS ((void));
66 #endif
67
68 #ifdef OBJ_SOM
69 /* Names of various debugging spaces/subspaces. */
70 #define GDB_DEBUG_SPACE_NAME "$GDB_DEBUG$"
71 #define GDB_STRINGS_SUBSPACE_NAME "$GDB_STRINGS$"
72 #define GDB_SYMBOLS_SUBSPACE_NAME "$GDB_SYMBOLS$"
73 #define UNWIND_SECTION_NAME "$UNWIND$"
74
75 /* Object file formats specify relocation types. */
76 typedef int reloc_type;
77
78 /* SOM objects can have both a version string and a copyright string. */
79 #define obj_version obj_som_version
80 #define obj_copyright obj_som_copyright
81
82 /* Do not use space aliases. */
83 #define USE_ALIASES 0
84
85 /* How to generate a relocation. */
86 #define hppa_gen_reloc_type hppa_som_gen_reloc_type
87
88 /* Object file formats specify BFD symbol types. */
89 typedef som_symbol_type obj_symbol_type;
90 #endif
91
92 /* Various structures and types used internally in tc-hppa.c. */
93
94 /* Unwind table and descriptor. FIXME: Sync this with GDB version. */
95
96 struct unwind_desc
97 {
98 unsigned int cannot_unwind:1;
99 unsigned int millicode:1;
100 unsigned int millicode_save_rest:1;
101 unsigned int region_desc:2;
102 unsigned int save_sr:2;
103 unsigned int entry_fr:4;
104 unsigned int entry_gr:5;
105 unsigned int args_stored:1;
106 unsigned int call_fr:5;
107 unsigned int call_gr:5;
108 unsigned int save_sp:1;
109 unsigned int save_rp:1;
110 unsigned int save_rp_in_frame:1;
111 unsigned int extn_ptr_defined:1;
112 unsigned int cleanup_defined:1;
113
114 unsigned int hpe_interrupt_marker:1;
115 unsigned int hpux_interrupt_marker:1;
116 unsigned int reserved:3;
117 unsigned int frame_size:27;
118 };
119
120 struct unwind_table
121 {
122 /* Starting and ending offsets of the region described by
123 descriptor. */
124 unsigned int start_offset;
125 unsigned int end_offset;
126 struct unwind_desc descriptor;
127 };
128
129 /* This structure is used by the .callinfo, .enter, .leave pseudo-ops to
130 control the entry and exit code they generate. It is also used in
131 creation of the correct stack unwind descriptors.
132
133 NOTE: GAS does not support .enter and .leave for the generation of
134 prologues and epilogues. FIXME.
135
136 The fields in structure roughly correspond to the arguments available on the
137 .callinfo pseudo-op. */
138
139 struct call_info
140 {
141 /* The unwind descriptor being built. */
142 struct unwind_table ci_unwind;
143
144 /* Name of this function. */
145 symbolS *start_symbol;
146
147 /* (temporary) symbol used to mark the end of this function. */
148 symbolS *end_symbol;
149
150 /* Next entry in the chain. */
151 struct call_info *ci_next;
152 };
153
154 /* Operand formats for FP instructions. Note not all FP instructions
155 allow all four formats to be used (for example fmpysub only allows
156 SGL and DBL). */
157 typedef enum
158 {
159 SGL, DBL, ILLEGAL_FMT, QUAD
160 }
161 fp_operand_format;
162
163 /* This fully describes the symbol types which may be attached to
164 an EXPORT or IMPORT directive. Only SOM uses this formation
165 (ELF has no need for it). */
166 typedef enum
167 {
168 SYMBOL_TYPE_UNKNOWN,
169 SYMBOL_TYPE_ABSOLUTE,
170 SYMBOL_TYPE_CODE,
171 SYMBOL_TYPE_DATA,
172 SYMBOL_TYPE_ENTRY,
173 SYMBOL_TYPE_MILLICODE,
174 SYMBOL_TYPE_PLABEL,
175 SYMBOL_TYPE_PRI_PROG,
176 SYMBOL_TYPE_SEC_PROG,
177 }
178 pa_symbol_type;
179
180 /* This structure contains information needed to assemble
181 individual instructions. */
182 struct pa_it
183 {
184 /* Holds the opcode after parsing by pa_ip. */
185 unsigned long opcode;
186
187 /* Holds an expression associated with the current instruction. */
188 expressionS exp;
189
190 /* Does this instruction use PC-relative addressing. */
191 int pcrel;
192
193 /* Floating point formats for operand1 and operand2. */
194 fp_operand_format fpof1;
195 fp_operand_format fpof2;
196
197 /* Holds the field selector for this instruction
198 (for example L%, LR%, etc). */
199 long field_selector;
200
201 /* Holds any argument relocation bits associated with this
202 instruction. (instruction should be some sort of call). */
203 long arg_reloc;
204
205 /* The format specification for this instruction. */
206 int format;
207
208 /* The relocation (if any) associated with this instruction. */
209 reloc_type reloc;
210 };
211
212 /* PA-89 floating point registers are arranged like this:
213
214
215 +--------------+--------------+
216 | 0 or 16L | 16 or 16R |
217 +--------------+--------------+
218 | 1 or 17L | 17 or 17R |
219 +--------------+--------------+
220 | | |
221
222 . . .
223 . . .
224 . . .
225
226 | | |
227 +--------------+--------------+
228 | 14 or 30L | 30 or 30R |
229 +--------------+--------------+
230 | 15 or 31L | 31 or 31R |
231 +--------------+--------------+
232
233
234 The following is a version of pa_parse_number that
235 handles the L/R notation and returns the correct
236 value to put into the instruction register field.
237 The correct value to put into the instruction is
238 encoded in the structure 'pa_89_fp_reg_struct'. */
239
240 struct pa_89_fp_reg_struct
241 {
242 /* The register number. */
243 char number_part;
244
245 /* L/R selector. */
246 char l_r_select;
247 };
248
249 /* Additional information needed to build argument relocation stubs. */
250 struct call_desc
251 {
252 /* The argument relocation specification. */
253 unsigned int arg_reloc;
254
255 /* Number of arguments. */
256 unsigned int arg_count;
257 };
258
259 /* This structure defines an entry in the subspace dictionary
260 chain. */
261
262 struct subspace_dictionary_chain
263 {
264 /* Nonzero if this space has been defined by the user code. */
265 unsigned int ssd_defined;
266
267 /* Name of this subspace. */
268 char *ssd_name;
269
270 /* GAS segment and subsegment associated with this subspace. */
271 asection *ssd_seg;
272 int ssd_subseg;
273
274 /* Next space in the subspace dictionary chain. */
275 struct subspace_dictionary_chain *ssd_next;
276 };
277
278 typedef struct subspace_dictionary_chain ssd_chain_struct;
279
280 /* This structure defines an entry in the subspace dictionary
281 chain. */
282
283 struct space_dictionary_chain
284 {
285 /* Nonzero if this space has been defined by the user code or
286 as a default space. */
287 unsigned int sd_defined;
288
289 /* Nonzero if this spaces has been defined by the user code. */
290 unsigned int sd_user_defined;
291
292 /* The space number (or index). */
293 unsigned int sd_spnum;
294
295 /* The name of this subspace. */
296 char *sd_name;
297
298 /* GAS segment to which this subspace corresponds. */
299 asection *sd_seg;
300
301 /* Current subsegment number being used. */
302 int sd_last_subseg;
303
304 /* The chain of subspaces contained within this space. */
305 ssd_chain_struct *sd_subspaces;
306
307 /* The next entry in the space dictionary chain. */
308 struct space_dictionary_chain *sd_next;
309 };
310
311 typedef struct space_dictionary_chain sd_chain_struct;
312
313 /* Structure for previous label tracking. Needed so that alignments,
314 callinfo declarations, etc can be easily attached to a particular
315 label. */
316 typedef struct label_symbol_struct
317 {
318 struct symbol *lss_label;
319 sd_chain_struct *lss_space;
320 struct label_symbol_struct *lss_next;
321 }
322 label_symbol_struct;
323
324 /* This structure defines attributes of the default subspace
325 dictionary entries. */
326
327 struct default_subspace_dict
328 {
329 /* Name of the subspace. */
330 char *name;
331
332 /* FIXME. Is this still needed? */
333 char defined;
334
335 /* Nonzero if this subspace is loadable. */
336 char loadable;
337
338 /* Nonzero if this subspace contains only code. */
339 char code_only;
340
341 /* Nonzero if this is a common subspace. */
342 char common;
343
344 /* Nonzero if this is a common subspace which allows symbols
345 to be multiply defined. */
346 char dup_common;
347
348 /* Nonzero if this subspace should be zero filled. */
349 char zero;
350
351 /* Sort key for this subspace. */
352 unsigned char sort;
353
354 /* Access control bits for this subspace. Can represent RWX access
355 as well as privilege level changes for gateways. */
356 int access;
357
358 /* Index of containing space. */
359 int space_index;
360
361 /* Alignment (in bytes) of this subspace. */
362 int alignment;
363
364 /* Quadrant within space where this subspace should be loaded. */
365 int quadrant;
366
367 /* An index into the default spaces array. */
368 int def_space_index;
369
370 /* An alias for this section (or NULL if no alias exists). */
371 char *alias;
372
373 /* Subsegment associated with this subspace. */
374 subsegT subsegment;
375 };
376
377 /* This structure defines attributes of the default space
378 dictionary entries. */
379
380 struct default_space_dict
381 {
382 /* Name of the space. */
383 char *name;
384
385 /* Space number. It is possible to identify spaces within
386 assembly code numerically! */
387 int spnum;
388
389 /* Nonzero if this space is loadable. */
390 char loadable;
391
392 /* Nonzero if this space is "defined". FIXME is still needed */
393 char defined;
394
395 /* Nonzero if this space can not be shared. */
396 char private;
397
398 /* Sort key for this space. */
399 unsigned char sort;
400
401 /* Segment associated with this space. */
402 asection *segment;
403
404 /* An alias for this section (or NULL if no alias exists). */
405 char *alias;
406 };
407
408 /* Extra information needed to perform fixups (relocations) on the PA. */
409 struct hppa_fix_struct
410 {
411 /* The field selector. */
412 enum hppa_reloc_field_selector_type fx_r_field;
413
414 /* Type of fixup. */
415 int fx_r_type;
416
417 /* Format of fixup. */
418 int fx_r_format;
419
420 /* Argument relocation bits. */
421 long fx_arg_reloc;
422
423 /* The unwind descriptor associated with this fixup. */
424 char fx_unwind[8];
425
426 /* The segment this fixup appears in. */
427 segT segment;
428 };
429
430 /* Structure to hold information about predefined registers. */
431
432 struct pd_reg
433 {
434 char *name;
435 int value;
436 };
437
438 /* This structure defines the mapping from a FP condition string
439 to a condition number which can be recorded in an instruction. */
440 struct fp_cond_map
441 {
442 char *string;
443 int cond;
444 };
445
446 /* This structure defines a mapping from a field selector
447 string to a field selector type. */
448 struct selector_entry
449 {
450 char *prefix;
451 int field_selector;
452 };
453
454 /* Prototypes for functions local to tc-hppa.c. */
455
456 static fp_operand_format pa_parse_fp_format PARAMS ((char **s));
457 static void pa_cons PARAMS ((int));
458 static void pa_data PARAMS ((int));
459 static void pa_float_cons PARAMS ((int));
460 static void pa_fill PARAMS ((int));
461 static void pa_lcomm PARAMS ((int));
462 static void pa_lsym PARAMS ((int));
463 static void pa_stringer PARAMS ((int));
464 static void pa_text PARAMS ((int));
465 static void pa_version PARAMS ((int));
466 static int pa_parse_fp_cmp_cond PARAMS ((char **));
467 static int get_expression PARAMS ((char *));
468 static int pa_get_absolute_expression PARAMS ((struct pa_it *, char **));
469 static int evaluate_absolute PARAMS ((struct pa_it *));
470 static unsigned int pa_build_arg_reloc PARAMS ((char *));
471 static unsigned int pa_align_arg_reloc PARAMS ((unsigned int, unsigned int));
472 static int pa_parse_nullif PARAMS ((char **));
473 static int pa_parse_nonneg_cmpsub_cmpltr PARAMS ((char **, int));
474 static int pa_parse_neg_cmpsub_cmpltr PARAMS ((char **, int));
475 static int pa_parse_neg_add_cmpltr PARAMS ((char **, int));
476 static int pa_parse_nonneg_add_cmpltr PARAMS ((char **, int));
477 static void pa_block PARAMS ((int));
478 static void pa_call PARAMS ((int));
479 static void pa_call_args PARAMS ((struct call_desc *));
480 static void pa_callinfo PARAMS ((int));
481 static void pa_code PARAMS ((int));
482 static void pa_comm PARAMS ((int));
483 static void pa_copyright PARAMS ((int));
484 static void pa_end PARAMS ((int));
485 static void pa_enter PARAMS ((int));
486 static void pa_entry PARAMS ((int));
487 static void pa_equ PARAMS ((int));
488 static void pa_exit PARAMS ((int));
489 static void pa_export PARAMS ((int));
490 static void pa_type_args PARAMS ((symbolS *, int));
491 static void pa_import PARAMS ((int));
492 static void pa_label PARAMS ((int));
493 static void pa_leave PARAMS ((int));
494 static void pa_origin PARAMS ((int));
495 static void pa_proc PARAMS ((int));
496 static void pa_procend PARAMS ((int));
497 static void pa_space PARAMS ((int));
498 static void pa_spnum PARAMS ((int));
499 static void pa_subspace PARAMS ((int));
500 static void pa_param PARAMS ((int));
501 static void pa_undefine_label PARAMS ((void));
502 static int need_89_opcode PARAMS ((struct pa_it *,
503 struct pa_89_fp_reg_struct *));
504 static int pa_parse_number PARAMS ((char **, struct pa_89_fp_reg_struct *));
505 static label_symbol_struct *pa_get_label PARAMS ((void));
506 static sd_chain_struct *create_new_space PARAMS ((char *, int, char,
507 char, char, char,
508 asection *, int));
509 static ssd_chain_struct *create_new_subspace PARAMS ((sd_chain_struct *,
510 char *, char, char,
511 char, char, char,
512 char, int, int, int,
513 int, asection *));
514 static ssd_chain_struct *update_subspace PARAMS ((sd_chain_struct *,
515 char *, char, char, char,
516 char, char, char, int,
517 int, int, int,
518 asection *));
519 static sd_chain_struct *is_defined_space PARAMS ((char *));
520 static ssd_chain_struct *is_defined_subspace PARAMS ((char *));
521 static sd_chain_struct *pa_segment_to_space PARAMS ((asection *));
522 static ssd_chain_struct *pa_subsegment_to_subspace PARAMS ((asection *,
523 subsegT));
524 static sd_chain_struct *pa_find_space_by_number PARAMS ((int));
525 static unsigned int pa_subspace_start PARAMS ((sd_chain_struct *, int));
526 static void pa_ip PARAMS ((char *));
527 static void fix_new_hppa PARAMS ((fragS *, int, short int, symbolS *,
528 long, expressionS *, int,
529 bfd_reloc_code_real_type,
530 enum hppa_reloc_field_selector_type,
531 int, long, char *));
532 static int is_end_of_statement PARAMS ((void));
533 static int reg_name_search PARAMS ((char *));
534 static int pa_chk_field_selector PARAMS ((char **));
535 static int is_same_frag PARAMS ((fragS *, fragS *));
536 static void pa_build_unwind_subspace PARAMS ((struct call_info *));
537 static void process_exit PARAMS ((void));
538 static sd_chain_struct *pa_parse_space_stmt PARAMS ((char *, int));
539 static int log2 PARAMS ((int));
540 static int pa_next_subseg PARAMS ((sd_chain_struct *));
541 static unsigned int pa_stringer_aux PARAMS ((char *));
542 static void pa_spaces_begin PARAMS ((void));
543 static void hppa_elf_mark_end_of_function PARAMS ((void));
544
545 /* File and gloally scoped variable declarations. */
546
547 /* Root and final entry in the space chain. */
548 static sd_chain_struct *space_dict_root;
549 static sd_chain_struct *space_dict_last;
550
551 /* The current space and subspace. */
552 static sd_chain_struct *current_space;
553 static ssd_chain_struct *current_subspace;
554
555 /* Root of the call_info chain. */
556 static struct call_info *call_info_root;
557
558 /* The last call_info (for functions) structure
559 seen so it can be associated with fixups and
560 function labels. */
561 static struct call_info *last_call_info;
562
563 /* The last call description (for actual calls). */
564 static struct call_desc last_call_desc;
565
566 /* Relaxation isn't supported for the PA yet. */
567 const relax_typeS md_relax_table[] =
568 {0};
569
570 /* Jumps are always the same size -- one instruction. */
571 int md_short_jump_size = 4;
572 int md_long_jump_size = 4;
573
574 /* handle of the OPCODE hash table */
575 static struct hash_control *op_hash = NULL;
576
577 /* This array holds the chars that always start a comment. If the
578 pre-processor is disabled, these aren't very useful. */
579 const char comment_chars[] = ";";
580
581 /* Table of pseudo ops for the PA. FIXME -- how many of these
582 are now redundant with the overall GAS and the object file
583 dependent tables? */
584 const pseudo_typeS md_pseudo_table[] =
585 {
586 /* align pseudo-ops on the PA specify the actual alignment requested,
587 not the log2 of the requested alignment. */
588 {"align", s_align_bytes, 8},
589 {"ALIGN", s_align_bytes, 8},
590 {"block", pa_block, 1},
591 {"BLOCK", pa_block, 1},
592 {"blockz", pa_block, 0},
593 {"BLOCKZ", pa_block, 0},
594 {"byte", pa_cons, 1},
595 {"BYTE", pa_cons, 1},
596 {"call", pa_call, 0},
597 {"CALL", pa_call, 0},
598 {"callinfo", pa_callinfo, 0},
599 {"CALLINFO", pa_callinfo, 0},
600 {"code", pa_code, 0},
601 {"CODE", pa_code, 0},
602 {"comm", pa_comm, 0},
603 {"COMM", pa_comm, 0},
604 {"copyright", pa_copyright, 0},
605 {"COPYRIGHT", pa_copyright, 0},
606 {"data", pa_data, 0},
607 {"DATA", pa_data, 0},
608 {"double", pa_float_cons, 'd'},
609 {"DOUBLE", pa_float_cons, 'd'},
610 {"end", pa_end, 0},
611 {"END", pa_end, 0},
612 {"enter", pa_enter, 0},
613 {"ENTER", pa_enter, 0},
614 {"entry", pa_entry, 0},
615 {"ENTRY", pa_entry, 0},
616 {"equ", pa_equ, 0},
617 {"EQU", pa_equ, 0},
618 {"exit", pa_exit, 0},
619 {"EXIT", pa_exit, 0},
620 {"export", pa_export, 0},
621 {"EXPORT", pa_export, 0},
622 {"fill", pa_fill, 0},
623 {"FILL", pa_fill, 0},
624 {"float", pa_float_cons, 'f'},
625 {"FLOAT", pa_float_cons, 'f'},
626 {"half", pa_cons, 2},
627 {"HALF", pa_cons, 2},
628 {"import", pa_import, 0},
629 {"IMPORT", pa_import, 0},
630 {"int", pa_cons, 4},
631 {"INT", pa_cons, 4},
632 {"label", pa_label, 0},
633 {"LABEL", pa_label, 0},
634 {"lcomm", pa_lcomm, 0},
635 {"LCOMM", pa_lcomm, 0},
636 {"leave", pa_leave, 0},
637 {"LEAVE", pa_leave, 0},
638 {"long", pa_cons, 4},
639 {"LONG", pa_cons, 4},
640 {"lsym", pa_lsym, 0},
641 {"LSYM", pa_lsym, 0},
642 {"octa", pa_cons, 16},
643 {"OCTA", pa_cons, 16},
644 {"org", pa_origin, 0},
645 {"ORG", pa_origin, 0},
646 {"origin", pa_origin, 0},
647 {"ORIGIN", pa_origin, 0},
648 {"param", pa_param, 0},
649 {"PARAM", pa_param, 0},
650 {"proc", pa_proc, 0},
651 {"PROC", pa_proc, 0},
652 {"procend", pa_procend, 0},
653 {"PROCEND", pa_procend, 0},
654 {"quad", pa_cons, 8},
655 {"QUAD", pa_cons, 8},
656 {"reg", pa_equ, 1},
657 {"REG", pa_equ, 1},
658 {"short", pa_cons, 2},
659 {"SHORT", pa_cons, 2},
660 {"single", pa_float_cons, 'f'},
661 {"SINGLE", pa_float_cons, 'f'},
662 {"space", pa_space, 0},
663 {"SPACE", pa_space, 0},
664 {"spnum", pa_spnum, 0},
665 {"SPNUM", pa_spnum, 0},
666 {"string", pa_stringer, 0},
667 {"STRING", pa_stringer, 0},
668 {"stringz", pa_stringer, 1},
669 {"STRINGZ", pa_stringer, 1},
670 {"subspa", pa_subspace, 0},
671 {"SUBSPA", pa_subspace, 0},
672 {"text", pa_text, 0},
673 {"TEXT", pa_text, 0},
674 {"version", pa_version, 0},
675 {"VERSION", pa_version, 0},
676 {"word", pa_cons, 4},
677 {"WORD", pa_cons, 4},
678 {NULL, 0, 0}
679 };
680
681 /* This array holds the chars that only start a comment at the beginning of
682 a line. If the line seems to have the form '# 123 filename'
683 .line and .file directives will appear in the pre-processed output.
684
685 Note that input_file.c hand checks for '#' at the beginning of the
686 first line of the input file. This is because the compiler outputs
687 #NO_APP at the beginning of its output.
688
689 Also note that '/*' will always start a comment. */
690 const char line_comment_chars[] = "#";
691
692 /* This array holds the characters which act as line separators. */
693 const char line_separator_chars[] = "!";
694
695 /* Chars that can be used to separate mant from exp in floating point nums. */
696 const char EXP_CHARS[] = "eE";
697
698 /* Chars that mean this number is a floating point constant.
699 As in 0f12.456 or 0d1.2345e12.
700
701 Be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
702 changed in read.c. Ideally it shouldn't hae to know abou it at
703 all, but nothing is ideal around here. */
704 const char FLT_CHARS[] = "rRsSfFdDxXpP";
705
706 static struct pa_it the_insn;
707
708 /* Points to the end of an expression just parsed by get_expressoin
709 and friends. FIXME. This shouldn't be handled with a file-global
710 variable. */
711 static char *expr_end;
712
713 /* Nonzero if a .callinfo appeared within the current procedure. */
714 static int callinfo_found;
715
716 /* Nonzero if the assembler is currently within a .entry/.exit pair. */
717 static int within_entry_exit;
718
719 /* Nonzero if the assembler is currently within a procedure definition. */
720 static int within_procedure;
721
722 /* Handle on strucutre which keep track of the last symbol
723 seen in each subspace. */
724 static label_symbol_struct *label_symbols_rootp = NULL;
725
726 /* Holds the last field selector. */
727 static int hppa_field_selector;
728
729 /* A dummy bfd symbol so that all relocations have symbols of some kind. */
730 static symbolS *dummy_symbol;
731
732 /* Nonzero if errors are to be printed. */
733 static int print_errors = 1;
734
735 /* List of registers that are pre-defined:
736
737 Each general register has one predefined name of the form
738 %r<REGNUM> which has the value <REGNUM>.
739
740 Space and control registers are handled in a similar manner,
741 but use %sr<REGNUM> and %cr<REGNUM> as their predefined names.
742
743 Likewise for the floating point registers, but of the form
744 %fr<REGNUM>. Floating point registers have additional predefined
745 names with 'L' and 'R' suffixes (e.g. %fr19L, %fr19R) which
746 again have the value <REGNUM>.
747
748 Many registers also have synonyms:
749
750 %r26 - %r23 have %arg0 - %arg3 as synonyms
751 %r28 - %r29 have %ret0 - %ret1 as synonyms
752 %r30 has %sp as a synonym
753 %r27 has %dp as a synonym
754 %r2 has %rp as a synonym
755
756 Almost every control register has a synonym; they are not listed
757 here for brevity.
758
759 The table is sorted. Suitable for searching by a binary search. */
760
761 static const struct pd_reg pre_defined_registers[] =
762 {
763 {"%arg0", 26},
764 {"%arg1", 25},
765 {"%arg2", 24},
766 {"%arg3", 23},
767 {"%cr0", 0},
768 {"%cr10", 10},
769 {"%cr11", 11},
770 {"%cr12", 12},
771 {"%cr13", 13},
772 {"%cr14", 14},
773 {"%cr15", 15},
774 {"%cr16", 16},
775 {"%cr17", 17},
776 {"%cr18", 18},
777 {"%cr19", 19},
778 {"%cr20", 20},
779 {"%cr21", 21},
780 {"%cr22", 22},
781 {"%cr23", 23},
782 {"%cr24", 24},
783 {"%cr25", 25},
784 {"%cr26", 26},
785 {"%cr27", 27},
786 {"%cr28", 28},
787 {"%cr29", 29},
788 {"%cr30", 30},
789 {"%cr31", 31},
790 {"%cr8", 8},
791 {"%cr9", 9},
792 {"%dp", 27},
793 {"%eiem", 15},
794 {"%eirr", 23},
795 {"%fr0", 0},
796 {"%fr0l", 0},
797 {"%fr0r", 0},
798 {"%fr1", 1},
799 {"%fr10", 10},
800 {"%fr10l", 10},
801 {"%fr10r", 10},
802 {"%fr11", 11},
803 {"%fr11l", 11},
804 {"%fr11r", 11},
805 {"%fr12", 12},
806 {"%fr12l", 12},
807 {"%fr12r", 12},
808 {"%fr13", 13},
809 {"%fr13l", 13},
810 {"%fr13r", 13},
811 {"%fr14", 14},
812 {"%fr14l", 14},
813 {"%fr14r", 14},
814 {"%fr15", 15},
815 {"%fr15l", 15},
816 {"%fr15r", 15},
817 {"%fr16", 16},
818 {"%fr16l", 16},
819 {"%fr16r", 16},
820 {"%fr17", 17},
821 {"%fr17l", 17},
822 {"%fr17r", 17},
823 {"%fr18", 18},
824 {"%fr18l", 18},
825 {"%fr18r", 18},
826 {"%fr19", 19},
827 {"%fr19l", 19},
828 {"%fr19r", 19},
829 {"%fr1l", 1},
830 {"%fr1r", 1},
831 {"%fr2", 2},
832 {"%fr20", 20},
833 {"%fr20l", 20},
834 {"%fr20r", 20},
835 {"%fr21", 21},
836 {"%fr21l", 21},
837 {"%fr21r", 21},
838 {"%fr22", 22},
839 {"%fr22l", 22},
840 {"%fr22r", 22},
841 {"%fr23", 23},
842 {"%fr23l", 23},
843 {"%fr23r", 23},
844 {"%fr24", 24},
845 {"%fr24l", 24},
846 {"%fr24r", 24},
847 {"%fr25", 25},
848 {"%fr25l", 25},
849 {"%fr25r", 25},
850 {"%fr26", 26},
851 {"%fr26l", 26},
852 {"%fr26r", 26},
853 {"%fr27", 27},
854 {"%fr27l", 27},
855 {"%fr27r", 27},
856 {"%fr28", 28},
857 {"%fr28l", 28},
858 {"%fr28r", 28},
859 {"%fr29", 29},
860 {"%fr29l", 29},
861 {"%fr29r", 29},
862 {"%fr2l", 2},
863 {"%fr2r", 2},
864 {"%fr3", 3},
865 {"%fr30", 30},
866 {"%fr30l", 30},
867 {"%fr30r", 30},
868 {"%fr31", 31},
869 {"%fr31l", 31},
870 {"%fr31r", 31},
871 {"%fr3l", 3},
872 {"%fr3r", 3},
873 {"%fr4", 4},
874 {"%fr4l", 4},
875 {"%fr4r", 4},
876 {"%fr5", 5},
877 {"%fr5l", 5},
878 {"%fr5r", 5},
879 {"%fr6", 6},
880 {"%fr6l", 6},
881 {"%fr6r", 6},
882 {"%fr7", 7},
883 {"%fr7l", 7},
884 {"%fr7r", 7},
885 {"%fr8", 8},
886 {"%fr8l", 8},
887 {"%fr8r", 8},
888 {"%fr9", 9},
889 {"%fr9l", 9},
890 {"%fr9r", 9},
891 {"%hta", 25},
892 {"%iir", 19},
893 {"%ior", 21},
894 {"%ipsw", 22},
895 {"%isr", 20},
896 {"%itmr", 16},
897 {"%iva", 14},
898 {"%pcoq", 18},
899 {"%pcsq", 17},
900 {"%pidr1", 8},
901 {"%pidr2", 9},
902 {"%pidr3", 12},
903 {"%pidr4", 13},
904 {"%ppda", 24},
905 {"%r0", 0},
906 {"%r1", 1},
907 {"%r10", 10},
908 {"%r11", 11},
909 {"%r12", 12},
910 {"%r13", 13},
911 {"%r14", 14},
912 {"%r15", 15},
913 {"%r16", 16},
914 {"%r17", 17},
915 {"%r18", 18},
916 {"%r19", 19},
917 {"%r2", 2},
918 {"%r20", 20},
919 {"%r21", 21},
920 {"%r22", 22},
921 {"%r23", 23},
922 {"%r24", 24},
923 {"%r25", 25},
924 {"%r26", 26},
925 {"%r27", 27},
926 {"%r28", 28},
927 {"%r29", 29},
928 {"%r3", 3},
929 {"%r30", 30},
930 {"%r31", 31},
931 {"%r4", 4},
932 {"%r5", 5},
933 {"%r6", 6},
934 {"%r7", 7},
935 {"%r8", 8},
936 {"%r9", 9},
937 {"%rctr", 0},
938 {"%ret0", 28},
939 {"%ret1", 29},
940 {"%rp", 2},
941 {"%sar", 11},
942 {"%sp", 30},
943 {"%sr0", 0},
944 {"%sr1", 1},
945 {"%sr2", 2},
946 {"%sr3", 3},
947 {"%sr4", 4},
948 {"%sr5", 5},
949 {"%sr6", 6},
950 {"%sr7", 7},
951 {"%tr0", 24},
952 {"%tr1", 25},
953 {"%tr2", 26},
954 {"%tr3", 27},
955 {"%tr4", 28},
956 {"%tr5", 29},
957 {"%tr6", 30},
958 {"%tr7", 31}
959 };
960
961 /* This table is sorted by order of the length of the string. This is
962 so we check for <> before we check for <. If we had a <> and checked
963 for < first, we would get a false match. */
964 static const struct fp_cond_map fp_cond_map[] =
965 {
966 {"false?", 0},
967 {"false", 1},
968 {"true?", 30},
969 {"true", 31},
970 {"!<=>", 3},
971 {"!?>=", 8},
972 {"!?<=", 16},
973 {"!<>", 7},
974 {"!>=", 11},
975 {"!?>", 12},
976 {"?<=", 14},
977 {"!<=", 19},
978 {"!?<", 20},
979 {"?>=", 22},
980 {"!?=", 24},
981 {"!=t", 27},
982 {"<=>", 29},
983 {"=t", 5},
984 {"?=", 6},
985 {"?<", 10},
986 {"<=", 13},
987 {"!>", 15},
988 {"?>", 18},
989 {">=", 21},
990 {"!<", 23},
991 {"<>", 25},
992 {"!=", 26},
993 {"!?", 28},
994 {"?", 2},
995 {"=", 4},
996 {"<", 9},
997 {">", 17}
998 };
999
1000 static const struct selector_entry selector_table[] =
1001 {
1002 {"f", e_fsel},
1003 {"l", e_lsel},
1004 {"ld", e_ldsel},
1005 {"lp", e_lpsel},
1006 {"lr", e_lrsel},
1007 {"ls", e_lssel},
1008 {"lt", e_ltsel},
1009 {"p", e_psel},
1010 {"r", e_rsel},
1011 {"rd", e_rdsel},
1012 {"rp", e_rpsel},
1013 {"rr", e_rrsel},
1014 {"rs", e_rssel},
1015 {"rt", e_rtsel},
1016 {"t", e_tsel},
1017 };
1018
1019 /* default space and subspace dictionaries */
1020
1021 #define GDB_SYMBOLS GDB_SYMBOLS_SUBSPACE_NAME
1022 #define GDB_STRINGS GDB_STRINGS_SUBSPACE_NAME
1023
1024 /* pre-defined subsegments (subspaces) for the HPPA. */
1025 #define SUBSEG_CODE 0
1026 #define SUBSEG_DATA 0
1027 #define SUBSEG_LIT 1
1028 #define SUBSEG_BSS 2
1029 #define SUBSEG_UNWIND 3
1030 #define SUBSEG_GDB_STRINGS 0
1031 #define SUBSEG_GDB_SYMBOLS 1
1032
1033 static struct default_subspace_dict pa_def_subspaces[] =
1034 {
1035 {"$CODE$", 1, 1, 1, 0, 0, 0, 24, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_CODE},
1036 {"$DATA$", 1, 1, 0, 0, 0, 0, 24, 0x1f, 1, 8, 1, 1, ".data", SUBSEG_DATA},
1037 {"$LIT$", 1, 1, 0, 0, 0, 0, 16, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_LIT},
1038 {"$BSS$", 1, 1, 0, 0, 0, 1, 80, 0x1f, 1, 8, 1, 1, ".bss", SUBSEG_BSS},
1039 #ifdef OBJ_ELF
1040 {"$UNWIND$", 1, 1, 0, 0, 0, 0, 64, 0x2c, 0, 4, 0, 0, ".hppa_unwind", SUBSEG_UNWIND},
1041 #endif
1042 {NULL, 0, 1, 0, 0, 0, 0, 255, 0x1f, 0, 4, 0, 0, 0}
1043 };
1044
1045 static struct default_space_dict pa_def_spaces[] =
1046 {
1047 {"$TEXT$", 0, 1, 1, 0, 8, ASEC_NULL, ".text"},
1048 {"$PRIVATE$", 1, 1, 1, 1, 16, ASEC_NULL, ".data"},
1049 {NULL, 0, 0, 0, 0, 0, ASEC_NULL, NULL}
1050 };
1051
1052 /* Misc local definitions used by the assembler. */
1053
1054 /* Return nonzero if the string pointed to by S potentially represents
1055 a right or left half of a FP register */
1056 #define IS_R_SELECT(S) (*(S) == 'R' || *(S) == 'r')
1057 #define IS_L_SELECT(S) (*(S) == 'L' || *(S) == 'l')
1058
1059 /* These macros are used to maintain spaces/subspaces. */
1060 #define SPACE_DEFINED(space_chain) (space_chain)->sd_defined
1061 #define SPACE_USER_DEFINED(space_chain) (space_chain)->sd_user_defined
1062 #define SPACE_SPNUM(space_chain) (space_chain)->sd_spnum
1063 #define SPACE_NAME(space_chain) (space_chain)->sd_name
1064
1065 #define SUBSPACE_DEFINED(ss_chain) (ss_chain)->ssd_defined
1066 #define SUBSPACE_NAME(ss_chain) (ss_chain)->ssd_name
1067
1068 /* Insert FIELD into OPCODE starting at bit START. Continue pa_ip
1069 main loop after insertion. */
1070
1071 #define INSERT_FIELD_AND_CONTINUE(OPCODE, FIELD, START) \
1072 { \
1073 ((OPCODE) |= (FIELD) << (START)); \
1074 continue; \
1075 }
1076
1077 /* Simple range checking for FIELD againt HIGH and LOW bounds.
1078 IGNORE is used to suppress the error message. */
1079
1080 #define CHECK_FIELD(FIELD, HIGH, LOW, IGNORE) \
1081 { \
1082 if ((FIELD) > (HIGH) || (FIELD) < (LOW)) \
1083 { \
1084 if (! IGNORE) \
1085 as_bad ("Field out of range [%d..%d] (%d).", (LOW), (HIGH), \
1086 (int) (FIELD));\
1087 break; \
1088 } \
1089 }
1090
1091 #define is_DP_relative(exp) \
1092 ((exp).X_op == O_subtract \
1093 && strcmp((exp).X_op_symbol->bsym->name, "$global$") == 0)
1094
1095 #define is_PC_relative(exp) \
1096 ((exp).X_op == O_subtract \
1097 && strcmp((exp).X_op_symbol->bsym->name, "$PIC_pcrel$0") == 0)
1098
1099 #define is_complex(exp) \
1100 ((exp).X_op != O_constant && (exp).X_op != O_symbol)
1101
1102 /* Actual functions to implement the PA specific code for the assembler. */
1103
1104 /* Returns a pointer to the label_symbol_struct for the current space.
1105 or NULL if no label_symbol_struct exists for the current space. */
1106
1107 static label_symbol_struct *
1108 pa_get_label ()
1109 {
1110 label_symbol_struct *label_chain;
1111 sd_chain_struct *space_chain = current_space;
1112
1113 for (label_chain = label_symbols_rootp;
1114 label_chain;
1115 label_chain = label_chain->lss_next)
1116 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1117 return label_chain;
1118
1119 return NULL;
1120 }
1121
1122 /* Defines a label for the current space. If one is already defined,
1123 this function will replace it with the new label. */
1124
1125 void
1126 pa_define_label (symbol)
1127 symbolS *symbol;
1128 {
1129 label_symbol_struct *label_chain = pa_get_label ();
1130 sd_chain_struct *space_chain = current_space;
1131
1132 if (label_chain)
1133 label_chain->lss_label = symbol;
1134 else
1135 {
1136 /* Create a new label entry and add it to the head of the chain. */
1137 label_chain
1138 = (label_symbol_struct *) xmalloc (sizeof (label_symbol_struct));
1139 label_chain->lss_label = symbol;
1140 label_chain->lss_space = space_chain;
1141 label_chain->lss_next = NULL;
1142
1143 if (label_symbols_rootp)
1144 label_chain->lss_next = label_symbols_rootp;
1145
1146 label_symbols_rootp = label_chain;
1147 }
1148 }
1149
1150 /* Removes a label definition for the current space.
1151 If there is no label_symbol_struct entry, then no action is taken. */
1152
1153 static void
1154 pa_undefine_label ()
1155 {
1156 label_symbol_struct *label_chain;
1157 label_symbol_struct *prev_label_chain = NULL;
1158 sd_chain_struct *space_chain = current_space;
1159
1160 for (label_chain = label_symbols_rootp;
1161 label_chain;
1162 label_chain = label_chain->lss_next)
1163 {
1164 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1165 {
1166 /* Remove the label from the chain and free its memory. */
1167 if (prev_label_chain)
1168 prev_label_chain->lss_next = label_chain->lss_next;
1169 else
1170 label_symbols_rootp = label_chain->lss_next;
1171
1172 free (label_chain);
1173 break;
1174 }
1175 prev_label_chain = label_chain;
1176 }
1177 }
1178
1179
1180 /* An HPPA-specific version of fix_new. This is required because the HPPA
1181 code needs to keep track of some extra stuff. Each call to fix_new_hppa
1182 results in the creation of an instance of an hppa_fix_struct. An
1183 hppa_fix_struct stores the extra information along with a pointer to the
1184 original fixS. This is attached to the original fixup via the
1185 tc_fix_data field. */
1186
1187 static void
1188 fix_new_hppa (frag, where, size, add_symbol, offset, exp, pcrel,
1189 r_type, r_field, r_format, arg_reloc, unwind_desc)
1190 fragS *frag;
1191 int where;
1192 short int size;
1193 symbolS *add_symbol;
1194 long offset;
1195 expressionS *exp;
1196 int pcrel;
1197 bfd_reloc_code_real_type r_type;
1198 enum hppa_reloc_field_selector_type r_field;
1199 int r_format;
1200 long arg_reloc;
1201 char *unwind_desc;
1202 {
1203 fixS *new_fix;
1204
1205 struct hppa_fix_struct *hppa_fix = (struct hppa_fix_struct *)
1206 obstack_alloc (&notes, sizeof (struct hppa_fix_struct));
1207
1208 if (exp != NULL)
1209 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
1210 else
1211 new_fix = fix_new (frag, where, size, add_symbol, offset, pcrel, r_type);
1212 new_fix->tc_fix_data = hppa_fix;
1213 hppa_fix->fx_r_type = r_type;
1214 hppa_fix->fx_r_field = r_field;
1215 hppa_fix->fx_r_format = r_format;
1216 hppa_fix->fx_arg_reloc = arg_reloc;
1217 hppa_fix->segment = now_seg;
1218 if (unwind_desc)
1219 {
1220 bcopy (unwind_desc, hppa_fix->fx_unwind, 8);
1221
1222 /* If necessary call BFD backend function to attach the
1223 unwind bits to the target dependent parts of a BFD symbol.
1224 Yuk. */
1225 #ifdef obj_attach_unwind_info
1226 obj_attach_unwind_info (add_symbol->bsym, unwind_desc);
1227 #endif
1228 }
1229
1230 /* foo-$global$ is used to access non-automatic storage. $global$
1231 is really just a marker and has served its purpose, so eliminate
1232 it now so as not to confuse write.c. */
1233 if (new_fix->fx_subsy
1234 && !strcmp (S_GET_NAME (new_fix->fx_subsy), "$global$"))
1235 new_fix->fx_subsy = NULL;
1236 }
1237
1238 /* Parse a .byte, .word, .long expression for the HPPA. Called by
1239 cons via the TC_PARSE_CONS_EXPRESSION macro. */
1240
1241 void
1242 parse_cons_expression_hppa (exp)
1243 expressionS *exp;
1244 {
1245 hppa_field_selector = pa_chk_field_selector (&input_line_pointer);
1246 expression (exp);
1247 }
1248
1249 /* This fix_new is called by cons via TC_CONS_FIX_NEW.
1250 hppa_field_selector is set by the parse_cons_expression_hppa. */
1251
1252 void
1253 cons_fix_new_hppa (frag, where, size, exp)
1254 fragS *frag;
1255 int where;
1256 int size;
1257 expressionS *exp;
1258 {
1259 unsigned int rel_type;
1260
1261 if (is_DP_relative (*exp))
1262 rel_type = R_HPPA_GOTOFF;
1263 else if (is_complex (*exp))
1264 rel_type = R_HPPA_COMPLEX;
1265 else
1266 rel_type = R_HPPA;
1267
1268 if (hppa_field_selector != e_psel && hppa_field_selector != e_fsel)
1269 as_warn ("Invalid field selector. Assuming F%%.");
1270
1271 fix_new_hppa (frag, where, size,
1272 (symbolS *) NULL, (offsetT) 0, exp, 0, rel_type,
1273 hppa_field_selector, 32, 0, (char *) 0);
1274
1275 /* Reset field selector to its default state. */
1276 hppa_field_selector = 0;
1277 }
1278
1279 /* This function is called once, at assembler startup time. It should
1280 set up all the tables, etc. that the MD part of the assembler will need. */
1281
1282 void
1283 md_begin ()
1284 {
1285 const char *retval = NULL;
1286 int lose = 0;
1287 unsigned int i = 0;
1288
1289 last_call_info = NULL;
1290 call_info_root = NULL;
1291
1292 /* Folding of text and data segments fails miserably on the PA.
1293 Warn user and disable "-R" option. */
1294 if (flagseen['R'])
1295 {
1296 as_warn ("-R option not supported on this target.");
1297 flag_readonly_data_in_text = 0;
1298 flagseen['R'] = 0;
1299 }
1300
1301 pa_spaces_begin ();
1302
1303 op_hash = hash_new ();
1304
1305 while (i < NUMOPCODES)
1306 {
1307 const char *name = pa_opcodes[i].name;
1308 retval = hash_insert (op_hash, name, (struct pa_opcode *) &pa_opcodes[i]);
1309 if (retval != NULL && *retval != '\0')
1310 {
1311 as_fatal ("Internal error: can't hash `%s': %s\n", name, retval);
1312 lose = 1;
1313 }
1314 do
1315 {
1316 if ((pa_opcodes[i].match & pa_opcodes[i].mask)
1317 != pa_opcodes[i].match)
1318 {
1319 fprintf (stderr, "internal error: losing opcode: `%s' \"%s\"\n",
1320 pa_opcodes[i].name, pa_opcodes[i].args);
1321 lose = 1;
1322 }
1323 ++i;
1324 }
1325 while (i < NUMOPCODES && !strcmp (pa_opcodes[i].name, name));
1326 }
1327
1328 if (lose)
1329 as_fatal ("Broken assembler. No assembly attempted.");
1330
1331 /* SOM will change text_section. To make sure we never put
1332 anything into the old one switch to the new one now. */
1333 subseg_set (text_section, 0);
1334
1335 dummy_symbol = symbol_find_or_make ("L$dummy");
1336 S_SET_SEGMENT (dummy_symbol, text_section);
1337 }
1338
1339 /* Assemble a single instruction storing it into a frag. */
1340 void
1341 md_assemble (str)
1342 char *str;
1343 {
1344 char *to;
1345
1346 /* The had better be something to assemble. */
1347 assert (str);
1348
1349 /* If we are within a procedure definition, make sure we've
1350 defined a label for the procedure; handle case where the
1351 label was defined after the .PROC directive.
1352
1353 Note there's not need to diddle with the segment or fragment
1354 for the label symbol in this case. We have already switched
1355 into the new $CODE$ subspace at this point. */
1356 if (within_procedure && last_call_info->start_symbol == NULL)
1357 {
1358 label_symbol_struct *label_symbol = pa_get_label ();
1359
1360 if (label_symbol)
1361 {
1362 if (label_symbol->lss_label)
1363 {
1364 last_call_info->start_symbol = label_symbol->lss_label;
1365 label_symbol->lss_label->bsym->flags |= BSF_FUNCTION;
1366 #ifdef OBJ_SOM
1367 /* Also handle allocation of a fixup to hold the unwind
1368 information when the label appears after the proc/procend. */
1369 if (within_entry_exit)
1370 {
1371 char *where = frag_more (0);
1372
1373 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
1374 last_call_info->start_symbol, (offsetT) 0, NULL,
1375 0, R_HPPA_ENTRY, e_fsel, 0, 0,
1376 (char *) &last_call_info->ci_unwind.descriptor);
1377 }
1378 #endif
1379 }
1380 else
1381 as_bad ("Missing function name for .PROC (corrupted label chain)");
1382 }
1383 else
1384 as_bad ("Missing function name for .PROC");
1385 }
1386
1387 /* Assemble the instruction. Results are saved into "the_insn". */
1388 pa_ip (str);
1389
1390 /* Get somewhere to put the assembled instrution. */
1391 to = frag_more (4);
1392
1393 /* Output the opcode. */
1394 md_number_to_chars (to, the_insn.opcode, 4);
1395
1396 /* If necessary output more stuff. */
1397 if (the_insn.reloc != R_HPPA_NONE)
1398 fix_new_hppa (frag_now, (to - frag_now->fr_literal), 4, NULL,
1399 (offsetT) 0, &the_insn.exp, the_insn.pcrel,
1400 the_insn.reloc, the_insn.field_selector,
1401 the_insn.format, the_insn.arg_reloc, NULL);
1402 }
1403
1404 /* Do the real work for assembling a single instruction. Store results
1405 into the global "the_insn" variable. */
1406
1407 static void
1408 pa_ip (str)
1409 char *str;
1410 {
1411 char *error_message = "";
1412 char *s, c, *argstart, *name, *save_s;
1413 const char *args;
1414 int match = FALSE;
1415 int comma = 0;
1416 int cmpltr, nullif, flag, cond, num;
1417 unsigned long opcode;
1418 struct pa_opcode *insn;
1419
1420 /* Skip to something interesting. */
1421 for (s = str; isupper (*s) || islower (*s) || (*s >= '0' && *s <= '3'); ++s)
1422 ;
1423
1424 switch (*s)
1425 {
1426
1427 case '\0':
1428 break;
1429
1430 case ',':
1431 comma = 1;
1432
1433 /*FALLTHROUGH */
1434
1435 case ' ':
1436 *s++ = '\0';
1437 break;
1438
1439 default:
1440 as_bad ("Unknown opcode: `%s'", str);
1441 exit (1);
1442 }
1443
1444 save_s = str;
1445
1446 /* Convert everything into lower case. */
1447 while (*save_s)
1448 {
1449 if (isupper (*save_s))
1450 *save_s = tolower (*save_s);
1451 save_s++;
1452 }
1453
1454 /* Look up the opcode in the has table. */
1455 if ((insn = (struct pa_opcode *) hash_find (op_hash, str)) == NULL)
1456 {
1457 as_bad ("Unknown opcode: `%s'", str);
1458 return;
1459 }
1460
1461 if (comma)
1462 {
1463 *--s = ',';
1464 }
1465
1466 /* Mark the location where arguments for the instruction start, then
1467 start processing them. */
1468 argstart = s;
1469 for (;;)
1470 {
1471 /* Do some initialization. */
1472 opcode = insn->match;
1473 bzero (&the_insn, sizeof (the_insn));
1474
1475 the_insn.reloc = R_HPPA_NONE;
1476
1477 /* Build the opcode, checking as we go to make
1478 sure that the operands match. */
1479 for (args = insn->args;; ++args)
1480 {
1481 switch (*args)
1482 {
1483
1484 /* End of arguments. */
1485 case '\0':
1486 if (*s == '\0')
1487 match = TRUE;
1488 break;
1489
1490 case '+':
1491 if (*s == '+')
1492 {
1493 ++s;
1494 continue;
1495 }
1496 if (*s == '-')
1497 continue;
1498 break;
1499
1500 /* These must match exactly. */
1501 case '(':
1502 case ')':
1503 case ',':
1504 case ' ':
1505 if (*s++ == *args)
1506 continue;
1507 break;
1508
1509 /* Handle a 5 bit register or control register field at 10. */
1510 case 'b':
1511 case '^':
1512 num = pa_parse_number (&s, 0);
1513 CHECK_FIELD (num, 31, 0, 0);
1514 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
1515
1516 /* Handle a 5 bit register field at 15. */
1517 case 'x':
1518 num = pa_parse_number (&s, 0);
1519 CHECK_FIELD (num, 31, 0, 0);
1520 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1521
1522 /* Handle a 5 bit register field at 31. */
1523 case 'y':
1524 case 't':
1525 num = pa_parse_number (&s, 0);
1526 CHECK_FIELD (num, 31, 0, 0);
1527 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1528
1529 /* Handle a 5 bit field length at 31. */
1530 case 'T':
1531 num = pa_get_absolute_expression (&the_insn, &s);
1532 s = expr_end;
1533 CHECK_FIELD (num, 32, 1, 0);
1534 INSERT_FIELD_AND_CONTINUE (opcode, 32 - num, 0);
1535
1536 /* Handle a 5 bit immediate at 15. */
1537 case '5':
1538 num = pa_get_absolute_expression (&the_insn, &s);
1539 s = expr_end;
1540 CHECK_FIELD (num, 15, -16, 0);
1541 low_sign_unext (num, 5, &num);
1542 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1543
1544 /* Handle a 5 bit immediate at 31. */
1545 case 'V':
1546 num = pa_get_absolute_expression (&the_insn, &s);
1547 s = expr_end;
1548 CHECK_FIELD (num, 15, -16, 0)
1549 low_sign_unext (num, 5, &num);
1550 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1551
1552 /* Handle an unsigned 5 bit immediate at 31. */
1553 case 'r':
1554 num = pa_get_absolute_expression (&the_insn, &s);
1555 s = expr_end;
1556 CHECK_FIELD (num, 31, 0, 0);
1557 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1558
1559 /* Handle an unsigned 5 bit immediate at 15. */
1560 case 'R':
1561 num = pa_get_absolute_expression (&the_insn, &s);
1562 s = expr_end;
1563 CHECK_FIELD (num, 31, 0, 0);
1564 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1565
1566 /* Handle a 2 bit space identifier at 17. */
1567 case 's':
1568 num = pa_parse_number (&s, 0);
1569 CHECK_FIELD (num, 3, 0, 1);
1570 INSERT_FIELD_AND_CONTINUE (opcode, num, 14);
1571
1572 /* Handle a 3 bit space identifier at 18. */
1573 case 'S':
1574 num = pa_parse_number (&s, 0);
1575 CHECK_FIELD (num, 7, 0, 1);
1576 dis_assemble_3 (num, &num);
1577 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
1578
1579 /* Handle a completer for an indexing load or store. */
1580 case 'c':
1581 {
1582 int uu = 0;
1583 int m = 0;
1584 int i = 0;
1585 while (*s == ',' && i < 2)
1586 {
1587 s++;
1588 if (strncasecmp (s, "sm", 2) == 0)
1589 {
1590 uu = 1;
1591 m = 1;
1592 s++;
1593 i++;
1594 }
1595 else if (strncasecmp (s, "m", 1) == 0)
1596 m = 1;
1597 else if (strncasecmp (s, "s", 1) == 0)
1598 uu = 1;
1599 else
1600 as_bad ("Invalid Indexed Load Completer.");
1601 s++;
1602 i++;
1603 }
1604 if (i > 2)
1605 as_bad ("Invalid Indexed Load Completer Syntax.");
1606 opcode |= m << 5;
1607 INSERT_FIELD_AND_CONTINUE (opcode, uu, 13);
1608 }
1609
1610 /* Handle a short load/store completer. */
1611 case 'C':
1612 {
1613 int a = 0;
1614 int m = 0;
1615 if (*s == ',')
1616 {
1617 s++;
1618 if (strncasecmp (s, "ma", 2) == 0)
1619 {
1620 a = 0;
1621 m = 1;
1622 }
1623 else if (strncasecmp (s, "mb", 2) == 0)
1624 {
1625 a = 1;
1626 m = 1;
1627 }
1628 else
1629 as_bad ("Invalid Short Load/Store Completer.");
1630 s += 2;
1631 }
1632 opcode |= m << 5;
1633 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1634 }
1635
1636 /* Handle a stbys completer. */
1637 case 'Y':
1638 {
1639 int a = 0;
1640 int m = 0;
1641 int i = 0;
1642 while (*s == ',' && i < 2)
1643 {
1644 s++;
1645 if (strncasecmp (s, "m", 1) == 0)
1646 m = 1;
1647 else if (strncasecmp (s, "b", 1) == 0)
1648 a = 0;
1649 else if (strncasecmp (s, "e", 1) == 0)
1650 a = 1;
1651 else
1652 as_bad ("Invalid Store Bytes Short Completer");
1653 s++;
1654 i++;
1655 }
1656 if (i > 2)
1657 as_bad ("Invalid Store Bytes Short Completer");
1658 opcode |= m << 5;
1659 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1660 }
1661
1662 /* Handle a non-negated compare/stubtract condition. */
1663 case '<':
1664 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
1665 if (cmpltr < 0)
1666 {
1667 as_bad ("Invalid Compare/Subtract Condition: %c", *s);
1668 cmpltr = 0;
1669 }
1670 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1671
1672 /* Handle a negated or non-negated compare/subtract condition. */
1673 case '?':
1674 save_s = s;
1675 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
1676 if (cmpltr < 0)
1677 {
1678 s = save_s;
1679 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 1);
1680 if (cmpltr < 0)
1681 {
1682 as_bad ("Invalid Compare/Subtract Condition.");
1683 cmpltr = 0;
1684 }
1685 else
1686 {
1687 /* Negated condition requires an opcode change. */
1688 opcode |= 1 << 27;
1689 }
1690 }
1691 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1692
1693 /* Handle a negated or non-negated add condition. */
1694 case '!':
1695 save_s = s;
1696 cmpltr = pa_parse_nonneg_add_cmpltr (&s, 1);
1697 if (cmpltr < 0)
1698 {
1699 s = save_s;
1700 cmpltr = pa_parse_neg_add_cmpltr (&s, 1);
1701 if (cmpltr < 0)
1702 {
1703 as_bad ("Invalid Compare/Subtract Condition");
1704 cmpltr = 0;
1705 }
1706 else
1707 {
1708 /* Negated condition requires an opcode change. */
1709 opcode |= 1 << 27;
1710 }
1711 }
1712 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1713
1714 /* Handle a compare/subtract condition. */
1715 case 'a':
1716 cmpltr = 0;
1717 flag = 0;
1718 save_s = s;
1719 if (*s == ',')
1720 {
1721 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 0);
1722 if (cmpltr < 0)
1723 {
1724 flag = 1;
1725 s = save_s;
1726 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 0);
1727 if (cmpltr < 0)
1728 {
1729 as_bad ("Invalid Compare/Subtract Condition");
1730 }
1731 }
1732 }
1733 opcode |= cmpltr << 13;
1734 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1735
1736 /* Handle a non-negated add condition. */
1737 case 'd':
1738 cmpltr = 0;
1739 nullif = 0;
1740 flag = 0;
1741 if (*s == ',')
1742 {
1743 s++;
1744 name = s;
1745 while (*s != ',' && *s != ' ' && *s != '\t')
1746 s += 1;
1747 c = *s;
1748 *s = 0x00;
1749 if (strcmp (name, "=") == 0)
1750 cmpltr = 1;
1751 else if (strcmp (name, "<") == 0)
1752 cmpltr = 2;
1753 else if (strcmp (name, "<=") == 0)
1754 cmpltr = 3;
1755 else if (strcasecmp (name, "nuv") == 0)
1756 cmpltr = 4;
1757 else if (strcasecmp (name, "znv") == 0)
1758 cmpltr = 5;
1759 else if (strcasecmp (name, "sv") == 0)
1760 cmpltr = 6;
1761 else if (strcasecmp (name, "od") == 0)
1762 cmpltr = 7;
1763 else if (strcasecmp (name, "n") == 0)
1764 nullif = 1;
1765 else if (strcasecmp (name, "tr") == 0)
1766 {
1767 cmpltr = 0;
1768 flag = 1;
1769 }
1770 else if (strcmp (name, "<>") == 0)
1771 {
1772 cmpltr = 1;
1773 flag = 1;
1774 }
1775 else if (strcmp (name, ">=") == 0)
1776 {
1777 cmpltr = 2;
1778 flag = 1;
1779 }
1780 else if (strcmp (name, ">") == 0)
1781 {
1782 cmpltr = 3;
1783 flag = 1;
1784 }
1785 else if (strcasecmp (name, "uv") == 0)
1786 {
1787 cmpltr = 4;
1788 flag = 1;
1789 }
1790 else if (strcasecmp (name, "vnz") == 0)
1791 {
1792 cmpltr = 5;
1793 flag = 1;
1794 }
1795 else if (strcasecmp (name, "nsv") == 0)
1796 {
1797 cmpltr = 6;
1798 flag = 1;
1799 }
1800 else if (strcasecmp (name, "ev") == 0)
1801 {
1802 cmpltr = 7;
1803 flag = 1;
1804 }
1805 else
1806 as_bad ("Invalid Add Condition: %s", name);
1807 *s = c;
1808 }
1809 nullif = pa_parse_nullif (&s);
1810 opcode |= nullif << 1;
1811 opcode |= cmpltr << 13;
1812 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1813
1814 /* HANDLE a logical instruction condition. */
1815 case '&':
1816 cmpltr = 0;
1817 flag = 0;
1818 if (*s == ',')
1819 {
1820 s++;
1821 name = s;
1822 while (*s != ',' && *s != ' ' && *s != '\t')
1823 s += 1;
1824 c = *s;
1825 *s = 0x00;
1826 if (strcmp (name, "=") == 0)
1827 cmpltr = 1;
1828 else if (strcmp (name, "<") == 0)
1829 cmpltr = 2;
1830 else if (strcmp (name, "<=") == 0)
1831 cmpltr = 3;
1832 else if (strcasecmp (name, "od") == 0)
1833 cmpltr = 7;
1834 else if (strcasecmp (name, "tr") == 0)
1835 {
1836 cmpltr = 0;
1837 flag = 1;
1838 }
1839 else if (strcmp (name, "<>") == 0)
1840 {
1841 cmpltr = 1;
1842 flag = 1;
1843 }
1844 else if (strcmp (name, ">=") == 0)
1845 {
1846 cmpltr = 2;
1847 flag = 1;
1848 }
1849 else if (strcmp (name, ">") == 0)
1850 {
1851 cmpltr = 3;
1852 flag = 1;
1853 }
1854 else if (strcasecmp (name, "ev") == 0)
1855 {
1856 cmpltr = 7;
1857 flag = 1;
1858 }
1859 else
1860 as_bad ("Invalid Logical Instruction Condition.");
1861 *s = c;
1862 }
1863 opcode |= cmpltr << 13;
1864 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1865
1866 /* Handle a unit instruction condition. */
1867 case 'U':
1868 cmpltr = 0;
1869 flag = 0;
1870 if (*s == ',')
1871 {
1872 s++;
1873 if (strncasecmp (s, "sbz", 3) == 0)
1874 {
1875 cmpltr = 2;
1876 s += 3;
1877 }
1878 else if (strncasecmp (s, "shz", 3) == 0)
1879 {
1880 cmpltr = 3;
1881 s += 3;
1882 }
1883 else if (strncasecmp (s, "sdc", 3) == 0)
1884 {
1885 cmpltr = 4;
1886 s += 3;
1887 }
1888 else if (strncasecmp (s, "sbc", 3) == 0)
1889 {
1890 cmpltr = 6;
1891 s += 3;
1892 }
1893 else if (strncasecmp (s, "shc", 3) == 0)
1894 {
1895 cmpltr = 7;
1896 s += 3;
1897 }
1898 else if (strncasecmp (s, "tr", 2) == 0)
1899 {
1900 cmpltr = 0;
1901 flag = 1;
1902 s += 2;
1903 }
1904 else if (strncasecmp (s, "nbz", 3) == 0)
1905 {
1906 cmpltr = 2;
1907 flag = 1;
1908 s += 3;
1909 }
1910 else if (strncasecmp (s, "nhz", 3) == 0)
1911 {
1912 cmpltr = 3;
1913 flag = 1;
1914 s += 3;
1915 }
1916 else if (strncasecmp (s, "ndc", 3) == 0)
1917 {
1918 cmpltr = 4;
1919 flag = 1;
1920 s += 3;
1921 }
1922 else if (strncasecmp (s, "nbc", 3) == 0)
1923 {
1924 cmpltr = 6;
1925 flag = 1;
1926 s += 3;
1927 }
1928 else if (strncasecmp (s, "nhc", 3) == 0)
1929 {
1930 cmpltr = 7;
1931 flag = 1;
1932 s += 3;
1933 }
1934 else
1935 as_bad ("Invalid Logical Instruction Condition.");
1936 }
1937 opcode |= cmpltr << 13;
1938 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1939
1940 /* Handle a shift/extract/deposit condition. */
1941 case '|':
1942 case '>':
1943 cmpltr = 0;
1944 if (*s == ',')
1945 {
1946 save_s = s++;
1947 name = s;
1948 while (*s != ',' && *s != ' ' && *s != '\t')
1949 s += 1;
1950 c = *s;
1951 *s = 0x00;
1952 if (strcmp (name, "=") == 0)
1953 cmpltr = 1;
1954 else if (strcmp (name, "<") == 0)
1955 cmpltr = 2;
1956 else if (strcasecmp (name, "od") == 0)
1957 cmpltr = 3;
1958 else if (strcasecmp (name, "tr") == 0)
1959 cmpltr = 4;
1960 else if (strcmp (name, "<>") == 0)
1961 cmpltr = 5;
1962 else if (strcmp (name, ">=") == 0)
1963 cmpltr = 6;
1964 else if (strcasecmp (name, "ev") == 0)
1965 cmpltr = 7;
1966 /* Handle movb,n. Put things back the way they were.
1967 This includes moving s back to where it started. */
1968 else if (strcasecmp (name, "n") == 0 && *args == '|')
1969 {
1970 *s = c;
1971 s = save_s;
1972 continue;
1973 }
1974 else
1975 as_bad ("Invalid Shift/Extract/Deposit Condition.");
1976 *s = c;
1977 }
1978 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1979
1980 /* Handle bvb and bb conditions. */
1981 case '~':
1982 cmpltr = 0;
1983 if (*s == ',')
1984 {
1985 s++;
1986 if (strncmp (s, "<", 1) == 0)
1987 {
1988 cmpltr = 2;
1989 s++;
1990 }
1991 else if (strncmp (s, ">=", 2) == 0)
1992 {
1993 cmpltr = 6;
1994 s += 2;
1995 }
1996 else
1997 as_bad ("Invalid Bit Branch Condition: %c", *s);
1998 }
1999 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
2000
2001 /* Handle a system control completer. */
2002 case 'Z':
2003 if (*s == ',' && (*(s + 1) == 'm' || *(s + 1) == 'M'))
2004 {
2005 flag = 1;
2006 s += 2;
2007 }
2008 else
2009 flag = 0;
2010
2011 INSERT_FIELD_AND_CONTINUE (opcode, flag, 5);
2012
2013 /* Handle a nullification completer for branch instructions. */
2014 case 'n':
2015 nullif = pa_parse_nullif (&s);
2016 INSERT_FIELD_AND_CONTINUE (opcode, nullif, 1);
2017
2018 /* Handle a nullification completer for copr and spop insns. */
2019 case 'N':
2020 nullif = pa_parse_nullif (&s);
2021 INSERT_FIELD_AND_CONTINUE (opcode, nullif, 5);
2022
2023 /* Handle a 11 bit immediate at 31. */
2024 case 'i':
2025 the_insn.field_selector = pa_chk_field_selector (&s);
2026 get_expression (s);
2027 s = expr_end;
2028 if (the_insn.exp.X_op == O_constant)
2029 {
2030 num = evaluate_absolute (&the_insn);
2031 CHECK_FIELD (num, 1023, -1024, 0);
2032 low_sign_unext (num, 11, &num);
2033 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2034 }
2035 else
2036 {
2037 if (is_DP_relative (the_insn.exp))
2038 the_insn.reloc = R_HPPA_GOTOFF;
2039 else if (is_PC_relative (the_insn.exp))
2040 the_insn.reloc = R_HPPA_PCREL_CALL;
2041 else if (is_complex (the_insn.exp))
2042 the_insn.reloc = R_HPPA_COMPLEX;
2043 else
2044 the_insn.reloc = R_HPPA;
2045 the_insn.format = 11;
2046 continue;
2047 }
2048
2049 /* Handle a 14 bit immediate at 31. */
2050 case 'j':
2051 the_insn.field_selector = pa_chk_field_selector (&s);
2052 get_expression (s);
2053 s = expr_end;
2054 if (the_insn.exp.X_op == O_constant)
2055 {
2056 num = evaluate_absolute (&the_insn);
2057 CHECK_FIELD (num, 8191, -8192, 0);
2058 low_sign_unext (num, 14, &num);
2059 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2060 }
2061 else
2062 {
2063 if (is_DP_relative (the_insn.exp))
2064 the_insn.reloc = R_HPPA_GOTOFF;
2065 else if (is_PC_relative (the_insn.exp))
2066 the_insn.reloc = R_HPPA_PCREL_CALL;
2067 else if (is_complex (the_insn.exp))
2068 the_insn.reloc = R_HPPA_COMPLEX;
2069 else
2070 the_insn.reloc = R_HPPA;
2071 the_insn.format = 14;
2072 continue;
2073 }
2074
2075 /* Handle a 21 bit immediate at 31. */
2076 case 'k':
2077 the_insn.field_selector = pa_chk_field_selector (&s);
2078 get_expression (s);
2079 s = expr_end;
2080 if (the_insn.exp.X_op == O_constant)
2081 {
2082 num = evaluate_absolute (&the_insn);
2083 CHECK_FIELD (num >> 11, 1048575, -1048576, 0);
2084 dis_assemble_21 (num, &num);
2085 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2086 }
2087 else
2088 {
2089 if (is_DP_relative (the_insn.exp))
2090 the_insn.reloc = R_HPPA_GOTOFF;
2091 else if (is_PC_relative (the_insn.exp))
2092 the_insn.reloc = R_HPPA_PCREL_CALL;
2093 else if (is_complex (the_insn.exp))
2094 the_insn.reloc = R_HPPA_COMPLEX;
2095 else
2096 the_insn.reloc = R_HPPA;
2097 the_insn.format = 21;
2098 continue;
2099 }
2100
2101 /* Handle a 12 bit branch displacement. */
2102 case 'w':
2103 the_insn.field_selector = pa_chk_field_selector (&s);
2104 get_expression (s);
2105 s = expr_end;
2106 the_insn.pcrel = 1;
2107 if (!strcmp (S_GET_NAME (the_insn.exp.X_add_symbol), "L$0\001"))
2108 {
2109 unsigned int w1, w, result;
2110
2111 num = evaluate_absolute (&the_insn);
2112 if (num % 4)
2113 {
2114 as_bad ("Branch to unaligned address");
2115 break;
2116 }
2117 CHECK_FIELD (num, 8191, -8192, 0);
2118 sign_unext ((num - 8) >> 2, 12, &result);
2119 dis_assemble_12 (result, &w1, &w);
2120 INSERT_FIELD_AND_CONTINUE (opcode, ((w1 << 2) | w), 0);
2121 }
2122 else
2123 {
2124 if (is_complex (the_insn.exp))
2125 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2126 else
2127 the_insn.reloc = R_HPPA_PCREL_CALL;
2128 the_insn.format = 12;
2129 the_insn.arg_reloc = last_call_desc.arg_reloc;
2130 bzero (&last_call_desc, sizeof (struct call_desc));
2131 s = expr_end;
2132 continue;
2133 }
2134
2135 /* Handle a 17 bit branch displacement. */
2136 case 'W':
2137 the_insn.field_selector = pa_chk_field_selector (&s);
2138 get_expression (s);
2139 s = expr_end;
2140 the_insn.pcrel = 1;
2141 if (!the_insn.exp.X_add_symbol
2142 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2143 "L$0\001"))
2144 {
2145 unsigned int w2, w1, w, result;
2146
2147 num = evaluate_absolute (&the_insn);
2148 if (num % 4)
2149 {
2150 as_bad ("Branch to unaligned address");
2151 break;
2152 }
2153 CHECK_FIELD (num, 262143, -262144, 0);
2154
2155 if (the_insn.exp.X_add_symbol)
2156 num -= 8;
2157
2158 sign_unext (num >> 2, 17, &result);
2159 dis_assemble_17 (result, &w1, &w2, &w);
2160 INSERT_FIELD_AND_CONTINUE (opcode,
2161 ((w2 << 2) | (w1 << 16) | w), 0);
2162 }
2163 else
2164 {
2165 if (is_complex (the_insn.exp))
2166 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2167 else
2168 the_insn.reloc = R_HPPA_PCREL_CALL;
2169 the_insn.format = 17;
2170 the_insn.arg_reloc = last_call_desc.arg_reloc;
2171 bzero (&last_call_desc, sizeof (struct call_desc));
2172 continue;
2173 }
2174
2175 /* Handle an absolute 17 bit branch target. */
2176 case 'z':
2177 the_insn.field_selector = pa_chk_field_selector (&s);
2178 get_expression (s);
2179 s = expr_end;
2180 the_insn.pcrel = 0;
2181 if (!the_insn.exp.X_add_symbol
2182 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2183 "L$0\001"))
2184 {
2185 unsigned int w2, w1, w, result;
2186
2187 num = evaluate_absolute (&the_insn);
2188 if (num % 4)
2189 {
2190 as_bad ("Branch to unaligned address");
2191 break;
2192 }
2193 CHECK_FIELD (num, 262143, -262144, 0);
2194
2195 if (the_insn.exp.X_add_symbol)
2196 num -= 8;
2197
2198 sign_unext (num >> 2, 17, &result);
2199 dis_assemble_17 (result, &w1, &w2, &w);
2200 INSERT_FIELD_AND_CONTINUE (opcode,
2201 ((w2 << 2) | (w1 << 16) | w), 0);
2202 }
2203 else
2204 {
2205 if (is_complex (the_insn.exp))
2206 the_insn.reloc = R_HPPA_COMPLEX_ABS_CALL;
2207 else
2208 the_insn.reloc = R_HPPA_ABS_CALL;
2209 the_insn.format = 17;
2210 continue;
2211 }
2212
2213 /* Handle a 5 bit shift count at 26. */
2214 case 'p':
2215 num = pa_get_absolute_expression (&the_insn, &s);
2216 s = expr_end;
2217 CHECK_FIELD (num, 31, 0, 0);
2218 INSERT_FIELD_AND_CONTINUE (opcode, 31 - num, 5);
2219
2220 /* Handle a 5 bit bit position at 26. */
2221 case 'P':
2222 num = pa_get_absolute_expression (&the_insn, &s);
2223 s = expr_end;
2224 CHECK_FIELD (num, 31, 0, 0);
2225 INSERT_FIELD_AND_CONTINUE (opcode, num, 5);
2226
2227 /* Handle a 5 bit immediate at 10. */
2228 case 'Q':
2229 num = pa_get_absolute_expression (&the_insn, &s);
2230 s = expr_end;
2231 CHECK_FIELD (num, 31, 0, 0);
2232 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
2233
2234 /* Handle a 13 bit immediate at 18. */
2235 case 'A':
2236 num = pa_get_absolute_expression (&the_insn, &s);
2237 s = expr_end;
2238 CHECK_FIELD (num, 4095, -4096, 0);
2239 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
2240
2241 /* Handle a 26 bit immediate at 31. */
2242 case 'D':
2243 num = pa_get_absolute_expression (&the_insn, &s);
2244 s = expr_end;
2245 CHECK_FIELD (num, 671108864, 0, 0);
2246 INSERT_FIELD_AND_CONTINUE (opcode, num, 1);
2247
2248 /* Handle a 3 bit SFU identifier at 25. */
2249 case 'f':
2250 if (*s++ != ',')
2251 as_bad ("Invalid SFU identifier");
2252 num = pa_get_absolute_expression (&the_insn, &s);
2253 s = expr_end;
2254 CHECK_FIELD (num, 7, 0, 0);
2255 INSERT_FIELD_AND_CONTINUE (opcode, num, 6);
2256
2257 /* Handle a 20 bit SOP field for spop0. */
2258 case 'O':
2259 num = pa_get_absolute_expression (&the_insn, &s);
2260 s = expr_end;
2261 CHECK_FIELD (num, 1048575, 0, 0);
2262 num = (num & 0x1f) | ((num & 0x000fffe0) << 6);
2263 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2264
2265 /* Handle a 15bit SOP field for spop1. */
2266 case 'o':
2267 num = pa_get_absolute_expression (&the_insn, &s);
2268 s = expr_end;
2269 CHECK_FIELD (num, 32767, 0, 0);
2270 INSERT_FIELD_AND_CONTINUE (opcode, num, 11);
2271
2272 /* Handle a 10bit SOP field for spop3. */
2273 case '0':
2274 num = pa_get_absolute_expression (&the_insn, &s);
2275 s = expr_end;
2276 CHECK_FIELD (num, 1023, 0, 0);
2277 num = (num & 0x1f) | ((num & 0x000003e0) << 6);
2278 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2279
2280 /* Handle a 15 bit SOP field for spop2. */
2281 case '1':
2282 num = pa_get_absolute_expression (&the_insn, &s);
2283 s = expr_end;
2284 CHECK_FIELD (num, 32767, 0, 0);
2285 num = (num & 0x1f) | ((num & 0x00007fe0) << 6);
2286 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2287
2288 /* Handle a 3-bit co-processor ID field. */
2289 case 'u':
2290 if (*s++ != ',')
2291 as_bad ("Invalid COPR identifier");
2292 num = pa_get_absolute_expression (&the_insn, &s);
2293 s = expr_end;
2294 CHECK_FIELD (num, 7, 0, 0);
2295 INSERT_FIELD_AND_CONTINUE (opcode, num, 6);
2296
2297 /* Handle a 22bit SOP field for copr. */
2298 case '2':
2299 num = pa_get_absolute_expression (&the_insn, &s);
2300 s = expr_end;
2301 CHECK_FIELD (num, 4194303, 0, 0);
2302 num = (num & 0x1f) | ((num & 0x003fffe0) << 4);
2303 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2304
2305 /* Handle a source FP operand format completer. */
2306 case 'F':
2307 flag = pa_parse_fp_format (&s);
2308 the_insn.fpof1 = flag;
2309 INSERT_FIELD_AND_CONTINUE (opcode, flag, 11);
2310
2311 /* Handle a destination FP operand format completer. */
2312 case 'G':
2313 /* pa_parse_format needs the ',' prefix. */
2314 s--;
2315 flag = pa_parse_fp_format (&s);
2316 the_insn.fpof2 = flag;
2317 INSERT_FIELD_AND_CONTINUE (opcode, flag, 13);
2318
2319 /* Handle FP compare conditions. */
2320 case 'M':
2321 cond = pa_parse_fp_cmp_cond (&s);
2322 INSERT_FIELD_AND_CONTINUE (opcode, cond, 0);
2323
2324 /* Handle L/R register halves like 't'. */
2325 case 'v':
2326 {
2327 struct pa_89_fp_reg_struct result;
2328
2329 pa_parse_number (&s, &result);
2330 CHECK_FIELD (result.number_part, 31, 0, 0);
2331 opcode |= result.number_part;
2332
2333 /* 0x30 opcodes are FP arithmetic operation opcodes
2334 and need to be turned into 0x38 opcodes. This
2335 is not necessary for loads/stores. */
2336 if (need_89_opcode (&the_insn, &result)
2337 && ((opcode & 0xfc000000) == 0x30000000))
2338 opcode |= 1 << 27;
2339
2340 INSERT_FIELD_AND_CONTINUE (opcode, result.l_r_select & 1, 6);
2341 }
2342
2343 /* Handle L/R register halves like 'b'. */
2344 case 'E':
2345 {
2346 struct pa_89_fp_reg_struct result;
2347
2348 pa_parse_number (&s, &result);
2349 CHECK_FIELD (result.number_part, 31, 0, 0);
2350 opcode |= result.number_part << 21;
2351 if (need_89_opcode (&the_insn, &result))
2352 {
2353 opcode |= (result.l_r_select & 1) << 7;
2354 opcode |= 1 << 27;
2355 }
2356 continue;
2357 }
2358
2359 /* Handle L/R register halves like 'x'. */
2360 case 'X':
2361 {
2362 struct pa_89_fp_reg_struct result;
2363
2364 pa_parse_number (&s, &result);
2365 CHECK_FIELD (result.number_part, 31, 0, 0);
2366 opcode |= (result.number_part & 0x1f) << 16;
2367 if (need_89_opcode (&the_insn, &result))
2368 {
2369 opcode |= (result.l_r_select & 1) << 12;
2370 opcode |= 1 << 27;
2371 }
2372 continue;
2373 }
2374
2375 /* Handle a 5 bit register field at 10. */
2376 case '4':
2377 {
2378 struct pa_89_fp_reg_struct result;
2379
2380 pa_parse_number (&s, &result);
2381 CHECK_FIELD (result.number_part, 31, 0, 0);
2382 if (the_insn.fpof1 == SGL)
2383 {
2384 result.number_part &= 0xF;
2385 result.number_part |= (result.l_r_select & 1) << 4;
2386 }
2387 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 21);
2388 }
2389
2390 /* Handle a 5 bit register field at 15. */
2391 case '6':
2392 {
2393 struct pa_89_fp_reg_struct result;
2394
2395 pa_parse_number (&s, &result);
2396 CHECK_FIELD (result.number_part, 31, 0, 0);
2397 if (the_insn.fpof1 == SGL)
2398 {
2399 result.number_part &= 0xF;
2400 result.number_part |= (result.l_r_select & 1) << 4;
2401 }
2402 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 16);
2403 }
2404
2405 /* Handle a 5 bit register field at 31. */
2406 case '7':
2407 {
2408 struct pa_89_fp_reg_struct result;
2409
2410 pa_parse_number (&s, &result);
2411 CHECK_FIELD (result.number_part, 31, 0, 0);
2412 if (the_insn.fpof1 == SGL)
2413 {
2414 result.number_part &= 0xF;
2415 result.number_part |= (result.l_r_select & 1) << 4;
2416 }
2417 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 0);
2418 }
2419
2420 /* Handle a 5 bit register field at 20. */
2421 case '8':
2422 {
2423 struct pa_89_fp_reg_struct result;
2424
2425 pa_parse_number (&s, &result);
2426 CHECK_FIELD (result.number_part, 31, 0, 0);
2427 if (the_insn.fpof1 == SGL)
2428 {
2429 result.number_part &= 0xF;
2430 result.number_part |= (result.l_r_select & 1) << 4;
2431 }
2432 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 11);
2433 }
2434
2435 /* Handle a 5 bit register field at 25. */
2436 case '9':
2437 {
2438 struct pa_89_fp_reg_struct result;
2439
2440 pa_parse_number (&s, &result);
2441 CHECK_FIELD (result.number_part, 31, 0, 0);
2442 if (the_insn.fpof1 == SGL)
2443 {
2444 result.number_part &= 0xF;
2445 result.number_part |= (result.l_r_select & 1) << 4;
2446 }
2447 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 6);
2448 }
2449
2450 /* Handle a floating point operand format at 26.
2451 Only allows single and double precision. */
2452 case 'H':
2453 flag = pa_parse_fp_format (&s);
2454 switch (flag)
2455 {
2456 case SGL:
2457 opcode |= 0x20;
2458 case DBL:
2459 the_insn.fpof1 = flag;
2460 continue;
2461
2462 case QUAD:
2463 case ILLEGAL_FMT:
2464 default:
2465 as_bad ("Invalid Floating Point Operand Format.");
2466 }
2467 break;
2468
2469 default:
2470 abort ();
2471 }
2472 break;
2473 }
2474
2475 /* Check if the args matched. */
2476 if (match == FALSE)
2477 {
2478 if (&insn[1] - pa_opcodes < NUMOPCODES
2479 && !strcmp (insn->name, insn[1].name))
2480 {
2481 ++insn;
2482 s = argstart;
2483 continue;
2484 }
2485 else
2486 {
2487 as_bad ("Invalid operands %s", error_message);
2488 return;
2489 }
2490 }
2491 break;
2492 }
2493
2494 the_insn.opcode = opcode;
2495 }
2496
2497 /* Turn a string in input_line_pointer into a floating point constant of type
2498 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
2499 emitted is stored in *sizeP . An error message or NULL is returned. */
2500
2501 #define MAX_LITTLENUMS 6
2502
2503 char *
2504 md_atof (type, litP, sizeP)
2505 char type;
2506 char *litP;
2507 int *sizeP;
2508 {
2509 int prec;
2510 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2511 LITTLENUM_TYPE *wordP;
2512 char *t;
2513
2514 switch (type)
2515 {
2516
2517 case 'f':
2518 case 'F':
2519 case 's':
2520 case 'S':
2521 prec = 2;
2522 break;
2523
2524 case 'd':
2525 case 'D':
2526 case 'r':
2527 case 'R':
2528 prec = 4;
2529 break;
2530
2531 case 'x':
2532 case 'X':
2533 prec = 6;
2534 break;
2535
2536 case 'p':
2537 case 'P':
2538 prec = 6;
2539 break;
2540
2541 default:
2542 *sizeP = 0;
2543 return "Bad call to MD_ATOF()";
2544 }
2545 t = atof_ieee (input_line_pointer, type, words);
2546 if (t)
2547 input_line_pointer = t;
2548 *sizeP = prec * sizeof (LITTLENUM_TYPE);
2549 for (wordP = words; prec--;)
2550 {
2551 md_number_to_chars (litP, (valueT) (*wordP++), sizeof (LITTLENUM_TYPE));
2552 litP += sizeof (LITTLENUM_TYPE);
2553 }
2554 return NULL;
2555 }
2556
2557 /* Write out big-endian. */
2558
2559 void
2560 md_number_to_chars (buf, val, n)
2561 char *buf;
2562 valueT val;
2563 int n;
2564 {
2565 number_to_chars_bigendian (buf, val, n);
2566 }
2567
2568 /* Translate internal representation of relocation info to BFD target
2569 format. */
2570
2571 arelent **
2572 tc_gen_reloc (section, fixp)
2573 asection *section;
2574 fixS *fixp;
2575 {
2576 arelent *reloc;
2577 struct hppa_fix_struct *hppa_fixp = fixp->tc_fix_data;
2578 bfd_reloc_code_real_type code;
2579 static int unwind_reloc_fixp_cnt = 0;
2580 static arelent *unwind_reloc_entryP = NULL;
2581 static arelent *no_relocs = NULL;
2582 arelent **relocs;
2583 bfd_reloc_code_real_type **codes;
2584 int n_relocs;
2585 int i;
2586
2587 if (fixp->fx_addsy == 0)
2588 return &no_relocs;
2589 assert (hppa_fixp != 0);
2590 assert (section != 0);
2591
2592 #ifdef OBJ_ELF
2593 /* Yuk. I would really like to push all this ELF specific unwind
2594 crud into BFD and the linker. That's how SOM does it -- and
2595 if we could make ELF emulate that then we could share more code
2596 in GAS (and potentially a gnu-linker later).
2597
2598 Unwind section relocations are handled in a special way.
2599 The relocations for the .unwind section are originally
2600 built in the usual way. That is, for each unwind table
2601 entry there are two relocations: one for the beginning of
2602 the function and one for the end.
2603
2604 The first time we enter this function we create a
2605 relocation of the type R_HPPA_UNWIND_ENTRIES. The addend
2606 of the relocation is initialized to 0. Each additional
2607 pair of times this function is called for the unwind
2608 section represents an additional unwind table entry. Thus,
2609 the addend of the relocation should end up to be the number
2610 of unwind table entries. */
2611 if (strcmp (UNWIND_SECTION_NAME, section->name) == 0)
2612 {
2613 if (unwind_reloc_entryP == NULL)
2614 {
2615 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
2616 sizeof (arelent));
2617 assert (reloc != 0);
2618 unwind_reloc_entryP = reloc;
2619 unwind_reloc_fixp_cnt++;
2620 unwind_reloc_entryP->address
2621 = fixp->fx_frag->fr_address + fixp->fx_where;
2622 /* A pointer to any function will do. We only
2623 need one to tell us what section the unwind
2624 relocations are for. */
2625 unwind_reloc_entryP->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2626 hppa_fixp->fx_r_type = code = R_HPPA_UNWIND_ENTRIES;
2627 fixp->fx_r_type = R_HPPA_UNWIND;
2628 unwind_reloc_entryP->howto = bfd_reloc_type_lookup (stdoutput, code);
2629 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
2630 relocs = (arelent **) bfd_alloc_by_size_t (stdoutput,
2631 sizeof (arelent *) * 2);
2632 assert (relocs != 0);
2633 relocs[0] = unwind_reloc_entryP;
2634 relocs[1] = NULL;
2635 return relocs;
2636 }
2637 unwind_reloc_fixp_cnt++;
2638 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
2639
2640 return &no_relocs;
2641 }
2642 #endif
2643
2644 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent));
2645 assert (reloc != 0);
2646
2647 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2648 codes = hppa_gen_reloc_type (stdoutput,
2649 fixp->fx_r_type,
2650 hppa_fixp->fx_r_format,
2651 hppa_fixp->fx_r_field);
2652
2653 for (n_relocs = 0; codes[n_relocs]; n_relocs++)
2654 ;
2655
2656 relocs = (arelent **)
2657 bfd_alloc_by_size_t (stdoutput, sizeof (arelent *) * n_relocs + 1);
2658 assert (relocs != 0);
2659
2660 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
2661 sizeof (arelent) * n_relocs);
2662 if (n_relocs > 0)
2663 assert (reloc != 0);
2664
2665 for (i = 0; i < n_relocs; i++)
2666 relocs[i] = &reloc[i];
2667
2668 relocs[n_relocs] = NULL;
2669
2670 #ifdef OBJ_ELF
2671 switch (fixp->fx_r_type)
2672 {
2673 case R_HPPA_COMPLEX:
2674 case R_HPPA_COMPLEX_PCREL_CALL:
2675 case R_HPPA_COMPLEX_ABS_CALL:
2676 assert (n_relocs == 5);
2677
2678 for (i = 0; i < n_relocs; i++)
2679 {
2680 reloc[i].sym_ptr_ptr = NULL;
2681 reloc[i].address = 0;
2682 reloc[i].addend = 0;
2683 reloc[i].howto = bfd_reloc_type_lookup (stdoutput, *codes[i]);
2684 assert (reloc[i].howto && *codes[i] == reloc[i].howto->type);
2685 }
2686
2687 reloc[0].sym_ptr_ptr = &fixp->fx_addsy->bsym;
2688 reloc[1].sym_ptr_ptr = &fixp->fx_subsy->bsym;
2689 reloc[4].address = fixp->fx_frag->fr_address + fixp->fx_where;
2690
2691 if (fixp->fx_r_type == R_HPPA_COMPLEX)
2692 reloc[3].addend = fixp->fx_addnumber;
2693 else if (fixp->fx_r_type == R_HPPA_COMPLEX_PCREL_CALL ||
2694 fixp->fx_r_type == R_HPPA_COMPLEX_ABS_CALL)
2695 reloc[1].addend = fixp->fx_addnumber;
2696
2697 break;
2698
2699 default:
2700 assert (n_relocs == 1);
2701
2702 code = *codes[0];
2703
2704 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2705 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
2706 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
2707 reloc->addend = 0; /* default */
2708
2709 assert (reloc->howto && code == reloc->howto->type);
2710
2711 /* Now, do any processing that is dependent on the relocation type. */
2712 switch (code)
2713 {
2714 case R_HPPA_PLABEL_32:
2715 case R_HPPA_PLABEL_11:
2716 case R_HPPA_PLABEL_14:
2717 case R_HPPA_PLABEL_L21:
2718 case R_HPPA_PLABEL_R11:
2719 case R_HPPA_PLABEL_R14:
2720 /* For plabel relocations, the addend of the
2721 relocation should be either 0 (no static link) or 2
2722 (static link required).
2723
2724 FIXME: We always assume no static link! */
2725 reloc->addend = 0;
2726 break;
2727
2728 case R_HPPA_ABS_CALL_11:
2729 case R_HPPA_ABS_CALL_14:
2730 case R_HPPA_ABS_CALL_17:
2731 case R_HPPA_ABS_CALL_L21:
2732 case R_HPPA_ABS_CALL_R11:
2733 case R_HPPA_ABS_CALL_R14:
2734 case R_HPPA_ABS_CALL_R17:
2735 case R_HPPA_ABS_CALL_LS21:
2736 case R_HPPA_ABS_CALL_RS11:
2737 case R_HPPA_ABS_CALL_RS14:
2738 case R_HPPA_ABS_CALL_RS17:
2739 case R_HPPA_ABS_CALL_LD21:
2740 case R_HPPA_ABS_CALL_RD11:
2741 case R_HPPA_ABS_CALL_RD14:
2742 case R_HPPA_ABS_CALL_RD17:
2743 case R_HPPA_ABS_CALL_LR21:
2744 case R_HPPA_ABS_CALL_RR14:
2745 case R_HPPA_ABS_CALL_RR17:
2746
2747 case R_HPPA_PCREL_CALL_11:
2748 case R_HPPA_PCREL_CALL_14:
2749 case R_HPPA_PCREL_CALL_17:
2750 case R_HPPA_PCREL_CALL_L21:
2751 case R_HPPA_PCREL_CALL_R11:
2752 case R_HPPA_PCREL_CALL_R14:
2753 case R_HPPA_PCREL_CALL_R17:
2754 case R_HPPA_PCREL_CALL_LS21:
2755 case R_HPPA_PCREL_CALL_RS11:
2756 case R_HPPA_PCREL_CALL_RS14:
2757 case R_HPPA_PCREL_CALL_RS17:
2758 case R_HPPA_PCREL_CALL_LD21:
2759 case R_HPPA_PCREL_CALL_RD11:
2760 case R_HPPA_PCREL_CALL_RD14:
2761 case R_HPPA_PCREL_CALL_RD17:
2762 case R_HPPA_PCREL_CALL_LR21:
2763 case R_HPPA_PCREL_CALL_RR14:
2764 case R_HPPA_PCREL_CALL_RR17:
2765 /* The constant is stored in the instruction. */
2766 reloc->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
2767 break;
2768 default:
2769 reloc->addend = fixp->fx_addnumber;
2770 break;
2771 }
2772 break;
2773 }
2774 #else /* OBJ_SOM */
2775
2776 /* Walk over reach relocation returned by the BFD backend. */
2777 for (i = 0; i < n_relocs; i++)
2778 {
2779 code = *codes[i];
2780
2781 relocs[i]->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2782 relocs[i]->howto = bfd_reloc_type_lookup (stdoutput, code);
2783 relocs[i]->address = fixp->fx_frag->fr_address + fixp->fx_where;
2784
2785 switch (code)
2786 {
2787 case R_PCREL_CALL:
2788 case R_ABS_CALL:
2789 relocs[i]->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
2790 break;
2791
2792 case R_DATA_PLABEL:
2793 case R_CODE_PLABEL:
2794 /* For plabel relocations, the addend of the
2795 relocation should be either 0 (no static link) or 2
2796 (static link required).
2797
2798 FIXME: We always assume no static link! */
2799 relocs[i]->addend = 0;
2800 break;
2801
2802 case R_N_MODE:
2803 case R_S_MODE:
2804 case R_D_MODE:
2805 case R_R_MODE:
2806 case R_EXIT:
2807 case R_FSEL:
2808 case R_LSEL:
2809 case R_RSEL:
2810 /* There is no symbol or addend associated with these fixups. */
2811 relocs[i]->sym_ptr_ptr = &dummy_symbol->bsym;
2812 relocs[i]->addend = 0;
2813 break;
2814
2815 default:
2816 relocs[i]->addend = fixp->fx_addnumber;
2817 break;
2818 }
2819 }
2820 #endif
2821
2822 return relocs;
2823 }
2824
2825 /* Process any machine dependent frag types. */
2826
2827 void
2828 md_convert_frag (abfd, sec, fragP)
2829 register bfd *abfd;
2830 register asection *sec;
2831 register fragS *fragP;
2832 {
2833 unsigned int address;
2834
2835 if (fragP->fr_type == rs_machine_dependent)
2836 {
2837 switch ((int) fragP->fr_subtype)
2838 {
2839 case 0:
2840 fragP->fr_type = rs_fill;
2841 know (fragP->fr_var == 1);
2842 know (fragP->fr_next);
2843 address = fragP->fr_address + fragP->fr_fix;
2844 if (address % fragP->fr_offset)
2845 {
2846 fragP->fr_offset =
2847 fragP->fr_next->fr_address
2848 - fragP->fr_address
2849 - fragP->fr_fix;
2850 }
2851 else
2852 fragP->fr_offset = 0;
2853 break;
2854 }
2855 }
2856 }
2857
2858 /* Round up a section size to the appropriate boundary. */
2859
2860 valueT
2861 md_section_align (segment, size)
2862 asection *segment;
2863 valueT size;
2864 {
2865 int align = bfd_get_section_alignment (stdoutput, segment);
2866 int align2 = (1 << align) - 1;
2867
2868 return (size + align2) & ~align2;
2869 }
2870
2871 /* Create a short jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2872 void
2873 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
2874 char *ptr;
2875 addressT from_addr, to_addr;
2876 fragS *frag;
2877 symbolS *to_symbol;
2878 {
2879 fprintf (stderr, "pa_create_short_jmp\n");
2880 abort ();
2881 }
2882
2883 /* Create a long jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2884 void
2885 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
2886 char *ptr;
2887 addressT from_addr, to_addr;
2888 fragS *frag;
2889 symbolS *to_symbol;
2890 {
2891 fprintf (stderr, "pa_create_long_jump\n");
2892 abort ();
2893 }
2894
2895 /* Return the approximate size of a frag before relaxation has occurred. */
2896 int
2897 md_estimate_size_before_relax (fragP, segment)
2898 register fragS *fragP;
2899 asection *segment;
2900 {
2901 int size;
2902
2903 size = 0;
2904
2905 while ((fragP->fr_fix + size) % fragP->fr_offset)
2906 size++;
2907
2908 return size;
2909 }
2910
2911 /* Parse machine dependent options. There are none on the PA. */
2912 int
2913 md_parse_option (argP, cntP, vecP)
2914 char **argP;
2915 int *cntP;
2916 char ***vecP;
2917 {
2918 return 1;
2919 }
2920
2921 /* We have no need to default values of symbols. */
2922
2923 symbolS *
2924 md_undefined_symbol (name)
2925 char *name;
2926 {
2927 return 0;
2928 }
2929
2930 /* Parse an operand that is machine-specific.
2931 We just return without modifying the expression as we have nothing
2932 to do on the PA. */
2933
2934 void
2935 md_operand (expressionP)
2936 expressionS *expressionP;
2937 {
2938 }
2939
2940 /* Apply a fixup to an instruction. */
2941
2942 int
2943 md_apply_fix (fixP, valp)
2944 fixS *fixP;
2945 valueT *valp;
2946 {
2947 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
2948 struct hppa_fix_struct *hppa_fixP = fixP->tc_fix_data;
2949 long new_val, result;
2950 unsigned int w1, w2, w;
2951 valueT val = *valp;
2952
2953 /* SOM uses R_HPPA_ENTRY and R_HPPA_EXIT relocations which can
2954 never be "applied" (they are just markers). */
2955 #ifdef OBJ_SOM
2956 if (fixP->fx_r_type == R_HPPA_ENTRY
2957 || fixP->fx_r_type == R_HPPA_EXIT)
2958 return 1;
2959 #endif
2960
2961 /* There should have been an HPPA specific fixup associated
2962 with the GAS fixup. */
2963 if (hppa_fixP)
2964 {
2965 unsigned long buf_wd = bfd_get_32 (stdoutput, buf);
2966 unsigned char fmt = bfd_hppa_insn2fmt (buf_wd);
2967
2968 if (fixP->fx_r_type == R_HPPA_NONE)
2969 fmt = 0;
2970
2971 /* Remember this value for emit_reloc. FIXME, is this braindamage
2972 documented anywhere!?! */
2973 fixP->fx_addnumber = val;
2974
2975 /* Check if this is an undefined symbol. No relocation can
2976 possibly be performed in this case.
2977
2978 Also avoid doing anything for pc-relative fixups in which the
2979 fixup is in a different space than the symbol it references. */
2980 if ((fixP->fx_addsy && fixP->fx_addsy->bsym->section == &bfd_und_section)
2981 || (fixP->fx_subsy
2982 && fixP->fx_subsy->bsym->section == &bfd_und_section)
2983 || (fixP->fx_pcrel
2984 && fixP->fx_addsy
2985 && S_GET_SEGMENT (fixP->fx_addsy) != hppa_fixP->segment)
2986 || (fixP->fx_pcrel
2987 && fixP->fx_subsy
2988 && S_GET_SEGMENT (fixP->fx_subsy) != hppa_fixP->segment))
2989 return 1;
2990
2991 /* PLABEL field selectors should not be passed to hppa_field_adjust. */
2992 if (fmt != 0 && hppa_fixP->fx_r_field != R_HPPA_PSEL
2993 && hppa_fixP->fx_r_field != R_HPPA_LPSEL
2994 && hppa_fixP->fx_r_field != R_HPPA_RPSEL
2995 && hppa_fixP->fx_r_field != R_HPPA_TSEL
2996 && hppa_fixP->fx_r_field != R_HPPA_LTSEL
2997 && hppa_fixP->fx_r_field != R_HPPA_RTSEL)
2998 new_val = hppa_field_adjust (val, 0, hppa_fixP->fx_r_field);
2999 else
3000 new_val = 0;
3001
3002 switch (fmt)
3003 {
3004 /* Handle all opcodes with the 'j' operand type. */
3005 case 14:
3006 CHECK_FIELD (new_val, 8191, -8192, 0);
3007
3008 /* Mask off 14 bits to be changed. */
3009 bfd_put_32 (stdoutput,
3010 bfd_get_32 (stdoutput, buf) & 0xffffc000,
3011 buf);
3012 low_sign_unext (new_val, 14, &result);
3013 break;
3014
3015 /* Handle all opcodes with the 'k' operand type. */
3016 case 21:
3017 CHECK_FIELD (new_val, 2097152, 0, 0);
3018
3019 /* Mask off 21 bits to be changed. */
3020 bfd_put_32 (stdoutput,
3021 bfd_get_32 (stdoutput, buf) & 0xffe00000,
3022 buf);
3023 dis_assemble_21 (new_val, &result);
3024 break;
3025
3026 /* Handle all the opcodes with the 'i' operand type. */
3027 case 11:
3028 CHECK_FIELD (new_val, 1023, -1023, 0);
3029
3030 /* Mask off 11 bits to be changed. */
3031 bfd_put_32 (stdoutput,
3032 bfd_get_32 (stdoutput, buf) & 0xffff800,
3033 buf);
3034 low_sign_unext (new_val, 11, &result);
3035 break;
3036
3037 /* Handle all the opcodes with the 'w' operand type. */
3038 case 12:
3039 CHECK_FIELD (new_val, 8191, -8192, 0)
3040
3041 /* Mask off 11 bits to be changed. */
3042 sign_unext ((new_val - 8) >> 2, 12, &result);
3043 bfd_put_32 (stdoutput,
3044 bfd_get_32 (stdoutput, buf) & 0xffffe002,
3045 buf);
3046
3047 dis_assemble_12 (result, &w1, &w);
3048 result = ((w1 << 2) | w);
3049 break;
3050
3051 /* Handle some of the opcodes with the 'W' operand type. */
3052 case 17:
3053
3054 #define stub_needed(CALLER, CALLEE) \
3055 ((CALLEE) && (CALLER) && ((CALLEE) != (CALLER)))
3056 /* It is necessary to force PC-relative calls/jumps to have a
3057 relocation entry if they're going to need either a argument
3058 relocation or long call stub. FIXME. Can't we need the same
3059 for absolute calls? */
3060 if (fixP->fx_addsy
3061 && (stub_needed (((obj_symbol_type *)
3062 fixP->fx_addsy->bsym)->tc_data.hppa_arg_reloc,
3063 hppa_fixP->fx_arg_reloc)))
3064 return 1;
3065 #undef stub_needed
3066
3067 CHECK_FIELD (new_val, 262143, -262144, 0);
3068
3069 /* Mask off 17 bits to be changed. */
3070 bfd_put_32 (stdoutput,
3071 bfd_get_32 (stdoutput, buf) & 0xffe0e002,
3072 buf);
3073 sign_unext ((new_val - 8) >> 2, 17, &result);
3074 dis_assemble_17 (result, &w1, &w2, &w);
3075 result = ((w2 << 2) | (w1 << 16) | w);
3076 break;
3077
3078 case 32:
3079 #ifdef OBJ_ELF
3080 /* These are ELF specific relocations. ELF unfortunately
3081 handles unwinds in a completely different manner. */
3082 if (hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRY
3083 || hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRIES)
3084 result = fixP->fx_addnumber;
3085 else
3086 #endif
3087 {
3088 result = 0;
3089 fixP->fx_addnumber = fixP->fx_offset;
3090 /* If we have a real relocation, then we want zero to
3091 be stored in the object file. If no relocation is going
3092 to be emitted, then we need to store new_val into the
3093 object file. */
3094 if (fixP->fx_addsy)
3095 bfd_put_32 (stdoutput, 0, buf);
3096 else
3097 bfd_put_32 (stdoutput, new_val, buf);
3098 return 1;
3099 }
3100 break;
3101
3102 case 0:
3103 return 1;
3104
3105 default:
3106 as_bad ("Unknown relocation encountered in md_apply_fix.");
3107 return 1;
3108 }
3109
3110 /* Insert the relocation. */
3111 bfd_put_32 (stdoutput, bfd_get_32 (stdoutput, buf) | result, buf);
3112 return 1;
3113 }
3114 else
3115 {
3116 printf ("no hppa_fixup entry for this fixup (fixP = 0x%x, type = 0x%x)\n",
3117 (unsigned int) fixP, fixP->fx_r_type);
3118 return 0;
3119 }
3120 }
3121
3122 /* Exactly what point is a PC-relative offset relative TO?
3123 On the PA, they're relative to the address of the offset. */
3124
3125 long
3126 md_pcrel_from (fixP)
3127 fixS *fixP;
3128 {
3129 return fixP->fx_where + fixP->fx_frag->fr_address;
3130 }
3131
3132 /* Return nonzero if the input line pointer is at the end of
3133 a statement. */
3134
3135 static int
3136 is_end_of_statement ()
3137 {
3138 return ((*input_line_pointer == '\n')
3139 || (*input_line_pointer == ';')
3140 || (*input_line_pointer == '!'));
3141 }
3142
3143 /* Read a number from S. The number might come in one of many forms,
3144 the most common will be a hex or decimal constant, but it could be
3145 a pre-defined register (Yuk!), or an absolute symbol.
3146
3147 Return a number or -1 for failure.
3148
3149 When parsing PA-89 FP register numbers RESULT will be
3150 the address of a structure to return information about
3151 L/R half of FP registers, store results there as appropriate.
3152
3153 pa_parse_number can not handle negative constants and will fail
3154 horribly if it is passed such a constant. */
3155
3156 static int
3157 pa_parse_number (s, result)
3158 char **s;
3159 struct pa_89_fp_reg_struct *result;
3160 {
3161 int num;
3162 char *name;
3163 char c;
3164 symbolS *sym;
3165 int status;
3166 char *p = *s;
3167
3168 /* Skip whitespace before the number. */
3169 while (*p == ' ' || *p == '\t')
3170 p = p + 1;
3171
3172 /* Store info in RESULT if requested by caller. */
3173 if (result)
3174 {
3175 result->number_part = -1;
3176 result->l_r_select = -1;
3177 }
3178 num = -1;
3179
3180 if (isdigit (*p))
3181 {
3182 /* Looks like a number. */
3183 num = 0;
3184
3185 if (*p == '0' && (*(p + 1) == 'x' || *(p + 1) == 'X'))
3186 {
3187 /* The number is specified in hex. */
3188 p += 2;
3189 while (isdigit (*p) || ((*p >= 'a') && (*p <= 'f'))
3190 || ((*p >= 'A') && (*p <= 'F')))
3191 {
3192 if (isdigit (*p))
3193 num = num * 16 + *p - '0';
3194 else if (*p >= 'a' && *p <= 'f')
3195 num = num * 16 + *p - 'a' + 10;
3196 else
3197 num = num * 16 + *p - 'A' + 10;
3198 ++p;
3199 }
3200 }
3201 else
3202 {
3203 /* The number is specified in decimal. */
3204 while (isdigit (*p))
3205 {
3206 num = num * 10 + *p - '0';
3207 ++p;
3208 }
3209 }
3210
3211 /* Store info in RESULT if requested by the caller. */
3212 if (result)
3213 {
3214 result->number_part = num;
3215
3216 if (IS_R_SELECT (p))
3217 {
3218 result->l_r_select = 1;
3219 ++p;
3220 }
3221 else if (IS_L_SELECT (p))
3222 {
3223 result->l_r_select = 0;
3224 ++p;
3225 }
3226 else
3227 result->l_r_select = 0;
3228 }
3229 }
3230 else if (*p == '%')
3231 {
3232 /* The number might be a predefined register. */
3233 num = 0;
3234 name = p;
3235 p++;
3236 c = *p;
3237 /* Tege hack: Special case for general registers as the general
3238 code makes a binary search with case translation, and is VERY
3239 slow. */
3240 if (c == 'r')
3241 {
3242 p++;
3243 if (*p == 'e' && *(p + 1) == 't'
3244 && (*(p + 2) == '0' || *(p + 2) == '1'))
3245 {
3246 p += 2;
3247 num = *p - '0' + 28;
3248 p++;
3249 }
3250 else if (*p == 'p')
3251 {
3252 num = 2;
3253 p++;
3254 }
3255 else if (!isdigit (*p))
3256 {
3257 if (print_errors)
3258 as_bad ("Undefined register: '%s'.", name);
3259 num = -1;
3260 }
3261 else
3262 {
3263 do
3264 num = num * 10 + *p++ - '0';
3265 while (isdigit (*p));
3266 }
3267 }
3268 else
3269 {
3270 /* Do a normal register search. */
3271 while (is_part_of_name (c))
3272 {
3273 p = p + 1;
3274 c = *p;
3275 }
3276 *p = 0;
3277 status = reg_name_search (name);
3278 if (status >= 0)
3279 num = status;
3280 else
3281 {
3282 if (print_errors)
3283 as_bad ("Undefined register: '%s'.", name);
3284 num = -1;
3285 }
3286 *p = c;
3287 }
3288
3289 /* Store info in RESULT if requested by caller. */
3290 if (result)
3291 {
3292 result->number_part = num;
3293 if (IS_R_SELECT (p - 1))
3294 result->l_r_select = 1;
3295 else if (IS_L_SELECT (p - 1))
3296 result->l_r_select = 0;
3297 else
3298 result->l_r_select = 0;
3299 }
3300 }
3301 else
3302 {
3303 /* And finally, it could be a symbol in the absolute section which
3304 is effectively a constant. */
3305 num = 0;
3306 name = p;
3307 c = *p;
3308 while (is_part_of_name (c))
3309 {
3310 p = p + 1;
3311 c = *p;
3312 }
3313 *p = 0;
3314 if ((sym = symbol_find (name)) != NULL)
3315 {
3316 if (S_GET_SEGMENT (sym) == &bfd_abs_section)
3317 num = S_GET_VALUE (sym);
3318 else
3319 {
3320 if (print_errors)
3321 as_bad ("Non-absolute symbol: '%s'.", name);
3322 num = -1;
3323 }
3324 }
3325 else
3326 {
3327 /* There is where we'd come for an undefined symbol
3328 or for an empty string. For an empty string we
3329 will return zero. That's a concession made for
3330 compatability with the braindamaged HP assemblers. */
3331 if (*name == 0)
3332 num = 0;
3333 else
3334 {
3335 if (print_errors)
3336 as_bad ("Undefined absolute constant: '%s'.", name);
3337 num = -1;
3338 }
3339 }
3340 *p = c;
3341
3342 /* Store info in RESULT if requested by caller. */
3343 if (result)
3344 {
3345 result->number_part = num;
3346 if (IS_R_SELECT (p - 1))
3347 result->l_r_select = 1;
3348 else if (IS_L_SELECT (p - 1))
3349 result->l_r_select = 0;
3350 else
3351 result->l_r_select = 0;
3352 }
3353 }
3354
3355 *s = p;
3356 return num;
3357 }
3358
3359 #define REG_NAME_CNT (sizeof(pre_defined_registers) / sizeof(struct pd_reg))
3360
3361 /* Given NAME, find the register number associated with that name, return
3362 the integer value associated with the given name or -1 on failure. */
3363
3364 static int
3365 reg_name_search (name)
3366 char *name;
3367 {
3368 int middle, low, high;
3369 int cmp;
3370
3371 low = 0;
3372 high = REG_NAME_CNT - 1;
3373
3374 do
3375 {
3376 middle = (low + high) / 2;
3377 cmp = strcasecmp (name, pre_defined_registers[middle].name);
3378 if (cmp < 0)
3379 high = middle - 1;
3380 else if (cmp > 0)
3381 low = middle + 1;
3382 else
3383 return pre_defined_registers[middle].value;
3384 }
3385 while (low <= high);
3386
3387 return -1;
3388 }
3389
3390
3391 /* Return nonzero if the given INSN and L/R information will require
3392 a new PA-89 opcode. */
3393
3394 static int
3395 need_89_opcode (insn, result)
3396 struct pa_it *insn;
3397 struct pa_89_fp_reg_struct *result;
3398 {
3399 if (result->l_r_select == 1 && !(insn->fpof1 == DBL && insn->fpof2 == DBL))
3400 return TRUE;
3401 else
3402 return FALSE;
3403 }
3404
3405 /* Parse a condition for a fcmp instruction. Return the numerical
3406 code associated with the condition. */
3407
3408 static int
3409 pa_parse_fp_cmp_cond (s)
3410 char **s;
3411 {
3412 int cond, i;
3413
3414 cond = 0;
3415
3416 for (i = 0; i < 32; i++)
3417 {
3418 if (strncasecmp (*s, fp_cond_map[i].string,
3419 strlen (fp_cond_map[i].string)) == 0)
3420 {
3421 cond = fp_cond_map[i].cond;
3422 *s += strlen (fp_cond_map[i].string);
3423 while (**s == ' ' || **s == '\t')
3424 *s = *s + 1;
3425 return cond;
3426 }
3427 }
3428
3429 as_bad ("Invalid FP Compare Condition: %c", **s);
3430 return 0;
3431 }
3432
3433 /* Parse an FP operand format completer returning the completer
3434 type. */
3435
3436 static fp_operand_format
3437 pa_parse_fp_format (s)
3438 char **s;
3439 {
3440 int format;
3441
3442 format = SGL;
3443 if (**s == ',')
3444 {
3445 *s += 1;
3446 if (strncasecmp (*s, "sgl", 3) == 0)
3447 {
3448 format = SGL;
3449 *s += 4;
3450 }
3451 else if (strncasecmp (*s, "dbl", 3) == 0)
3452 {
3453 format = DBL;
3454 *s += 4;
3455 }
3456 else if (strncasecmp (*s, "quad", 4) == 0)
3457 {
3458 format = QUAD;
3459 *s += 5;
3460 }
3461 else
3462 {
3463 format = ILLEGAL_FMT;
3464 as_bad ("Invalid FP Operand Format: %3s", *s);
3465 }
3466 }
3467
3468 return format;
3469 }
3470
3471 /* Convert from a selector string into a selector type. */
3472
3473 static int
3474 pa_chk_field_selector (str)
3475 char **str;
3476 {
3477 int middle, low, high;
3478 int cmp;
3479 char name[3];
3480
3481 /* Read past any whitespace. */
3482 /* FIXME: should we read past newlines and formfeeds??? */
3483 while (**str == ' ' || **str == '\t' || **str == '\n' || **str == '\f')
3484 *str = *str + 1;
3485
3486 if ((*str)[1] == '\'' || (*str)[1] == '%')
3487 name[0] = tolower ((*str)[0]),
3488 name[1] = 0;
3489 else if ((*str)[2] == '\'' || (*str)[2] == '%')
3490 name[0] = tolower ((*str)[0]),
3491 name[1] = tolower ((*str)[1]),
3492 name[2] = 0;
3493 else
3494 return e_fsel;
3495
3496 low = 0;
3497 high = sizeof (selector_table) / sizeof (struct selector_entry) - 1;
3498
3499 do
3500 {
3501 middle = (low + high) / 2;
3502 cmp = strcmp (name, selector_table[middle].prefix);
3503 if (cmp < 0)
3504 high = middle - 1;
3505 else if (cmp > 0)
3506 low = middle + 1;
3507 else
3508 {
3509 *str += strlen (name) + 1;
3510 return selector_table[middle].field_selector;
3511 }
3512 }
3513 while (low <= high);
3514
3515 return e_fsel;
3516 }
3517
3518 /* Mark (via expr_end) the end of an expression (I think). FIXME. */
3519
3520 static int
3521 get_expression (str)
3522 char *str;
3523 {
3524 char *save_in;
3525 asection *seg;
3526
3527 save_in = input_line_pointer;
3528 input_line_pointer = str;
3529 seg = expression (&the_insn.exp);
3530 if (!(seg == absolute_section
3531 || seg == undefined_section
3532 || SEG_NORMAL (seg)))
3533 {
3534 as_warn ("Bad segment in expression.");
3535 expr_end = input_line_pointer;
3536 input_line_pointer = save_in;
3537 return 1;
3538 }
3539 expr_end = input_line_pointer;
3540 input_line_pointer = save_in;
3541 return 0;
3542 }
3543
3544 /* Mark (via expr_end) the end of an absolute expression. FIXME. */
3545 static int
3546 pa_get_absolute_expression (insn, strp)
3547 struct pa_it *insn;
3548 char **strp;
3549 {
3550 char *save_in;
3551
3552 insn->field_selector = pa_chk_field_selector (strp);
3553 save_in = input_line_pointer;
3554 input_line_pointer = *strp;
3555 expression (&insn->exp);
3556 if (insn->exp.X_op != O_constant)
3557 {
3558 as_bad ("Bad segment (should be absolute).");
3559 expr_end = input_line_pointer;
3560 input_line_pointer = save_in;
3561 return 0;
3562 }
3563 expr_end = input_line_pointer;
3564 input_line_pointer = save_in;
3565 return evaluate_absolute (insn);
3566 }
3567
3568 /* Evaluate an absolute expression EXP which may be modified by
3569 the selector FIELD_SELECTOR. Return the value of the expression. */
3570 static int
3571 evaluate_absolute (insn)
3572 struct pa_it *insn;
3573 {
3574 int value;
3575 expressionS exp;
3576 int field_selector = insn->field_selector;
3577
3578 exp = insn->exp;
3579 value = exp.X_add_number;
3580
3581 switch (field_selector)
3582 {
3583 /* No change. */
3584 case e_fsel:
3585 break;
3586
3587 /* If bit 21 is on then add 0x800 and arithmetic shift right 11 bits. */
3588 case e_lssel:
3589 if (value & 0x00000400)
3590 value += 0x800;
3591 value = (value & 0xfffff800) >> 11;
3592 break;
3593
3594 /* Sign extend from bit 21. */
3595 case e_rssel:
3596 if (value & 0x00000400)
3597 value |= 0xfffff800;
3598 else
3599 value &= 0x7ff;
3600 break;
3601
3602 /* Arithmetic shift right 11 bits. */
3603 case e_lsel:
3604 value = (value & 0xfffff800) >> 11;
3605 break;
3606
3607 /* Set bits 0-20 to zero. */
3608 case e_rsel:
3609 value = value & 0x7ff;
3610 break;
3611
3612 /* Add 0x800 and arithmetic shift right 11 bits. */
3613 case e_ldsel:
3614 value += 0x800;
3615 value = (value & 0xfffff800) >> 11;
3616 break;
3617
3618 /* Set bitgs 0-21 to one. */
3619 case e_rdsel:
3620 value |= 0xfffff800;
3621 break;
3622
3623 #define RSEL_ROUND(c) (((c) + 0x1000) & ~0x1fff)
3624 case e_rrsel:
3625 value = (RSEL_ROUND (value) & 0x7ff) + (value - RSEL_ROUND (value));
3626 break;
3627
3628 case e_lrsel:
3629 value = (RSEL_ROUND (value) >> 11) & 0x1fffff;
3630 break;
3631 #undef RSEL_ROUND
3632
3633 default:
3634 BAD_CASE (field_selector);
3635 break;
3636 }
3637 return value;
3638 }
3639
3640 /* Given an argument location specification return the associated
3641 argument location number. */
3642
3643 static unsigned int
3644 pa_build_arg_reloc (type_name)
3645 char *type_name;
3646 {
3647
3648 if (strncasecmp (type_name, "no", 2) == 0)
3649 return 0;
3650 if (strncasecmp (type_name, "gr", 2) == 0)
3651 return 1;
3652 else if (strncasecmp (type_name, "fr", 2) == 0)
3653 return 2;
3654 else if (strncasecmp (type_name, "fu", 2) == 0)
3655 return 3;
3656 else
3657 as_bad ("Invalid argument location: %s\n", type_name);
3658
3659 return 0;
3660 }
3661
3662 /* Encode and return an argument relocation specification for
3663 the given register in the location specified by arg_reloc. */
3664
3665 static unsigned int
3666 pa_align_arg_reloc (reg, arg_reloc)
3667 unsigned int reg;
3668 unsigned int arg_reloc;
3669 {
3670 unsigned int new_reloc;
3671
3672 new_reloc = arg_reloc;
3673 switch (reg)
3674 {
3675 case 0:
3676 new_reloc <<= 8;
3677 break;
3678 case 1:
3679 new_reloc <<= 6;
3680 break;
3681 case 2:
3682 new_reloc <<= 4;
3683 break;
3684 case 3:
3685 new_reloc <<= 2;
3686 break;
3687 default:
3688 as_bad ("Invalid argument description: %d", reg);
3689 }
3690
3691 return new_reloc;
3692 }
3693
3694 /* Parse a PA nullification completer (,n). Return nonzero if the
3695 completer was found; return zero if no completer was found. */
3696
3697 static int
3698 pa_parse_nullif (s)
3699 char **s;
3700 {
3701 int nullif;
3702
3703 nullif = 0;
3704 if (**s == ',')
3705 {
3706 *s = *s + 1;
3707 if (strncasecmp (*s, "n", 1) == 0)
3708 nullif = 1;
3709 else
3710 {
3711 as_bad ("Invalid Nullification: (%c)", **s);
3712 nullif = 0;
3713 }
3714 *s = *s + 1;
3715 }
3716
3717 return nullif;
3718 }
3719
3720 /* Parse a non-negated compare/subtract completer returning the
3721 number (for encoding in instrutions) of the given completer.
3722
3723 ISBRANCH specifies whether or not this is parsing a condition
3724 completer for a branch (vs a nullification completer for a
3725 computational instruction. */
3726
3727 static int
3728 pa_parse_nonneg_cmpsub_cmpltr (s, isbranch)
3729 char **s;
3730 int isbranch;
3731 {
3732 int cmpltr;
3733 char *name = *s + 1;
3734 char c;
3735 char *save_s = *s;
3736
3737 cmpltr = 0;
3738 if (**s == ',')
3739 {
3740 *s += 1;
3741 while (**s != ',' && **s != ' ' && **s != '\t')
3742 *s += 1;
3743 c = **s;
3744 **s = 0x00;
3745 if (strcmp (name, "=") == 0)
3746 {
3747 cmpltr = 1;
3748 }
3749 else if (strcmp (name, "<") == 0)
3750 {
3751 cmpltr = 2;
3752 }
3753 else if (strcmp (name, "<=") == 0)
3754 {
3755 cmpltr = 3;
3756 }
3757 else if (strcmp (name, "<<") == 0)
3758 {
3759 cmpltr = 4;
3760 }
3761 else if (strcmp (name, "<<=") == 0)
3762 {
3763 cmpltr = 5;
3764 }
3765 else if (strcasecmp (name, "sv") == 0)
3766 {
3767 cmpltr = 6;
3768 }
3769 else if (strcasecmp (name, "od") == 0)
3770 {
3771 cmpltr = 7;
3772 }
3773 /* If we have something like addb,n then there is no condition
3774 completer. */
3775 else if (strcasecmp (name, "n") == 0 && isbranch)
3776 {
3777 cmpltr = 0;
3778 }
3779 else
3780 {
3781 cmpltr = -1;
3782 }
3783 **s = c;
3784 }
3785
3786 /* Reset pointers if this was really a ,n for a branch instruction. */
3787 if (cmpltr == 0 && *name == 'n' && isbranch)
3788 *s = save_s;
3789
3790 return cmpltr;
3791 }
3792
3793 /* Parse a negated compare/subtract completer returning the
3794 number (for encoding in instrutions) of the given completer.
3795
3796 ISBRANCH specifies whether or not this is parsing a condition
3797 completer for a branch (vs a nullification completer for a
3798 computational instruction. */
3799
3800 static int
3801 pa_parse_neg_cmpsub_cmpltr (s, isbranch)
3802 char **s;
3803 int isbranch;
3804 {
3805 int cmpltr;
3806 char *name = *s + 1;
3807 char c;
3808 char *save_s = *s;
3809
3810 cmpltr = 0;
3811 if (**s == ',')
3812 {
3813 *s += 1;
3814 while (**s != ',' && **s != ' ' && **s != '\t')
3815 *s += 1;
3816 c = **s;
3817 **s = 0x00;
3818 if (strcasecmp (name, "tr") == 0)
3819 {
3820 cmpltr = 0;
3821 }
3822 else if (strcmp (name, "<>") == 0)
3823 {
3824 cmpltr = 1;
3825 }
3826 else if (strcmp (name, ">=") == 0)
3827 {
3828 cmpltr = 2;
3829 }
3830 else if (strcmp (name, ">") == 0)
3831 {
3832 cmpltr = 3;
3833 }
3834 else if (strcmp (name, ">>=") == 0)
3835 {
3836 cmpltr = 4;
3837 }
3838 else if (strcmp (name, ">>") == 0)
3839 {
3840 cmpltr = 5;
3841 }
3842 else if (strcasecmp (name, "nsv") == 0)
3843 {
3844 cmpltr = 6;
3845 }
3846 else if (strcasecmp (name, "ev") == 0)
3847 {
3848 cmpltr = 7;
3849 }
3850 /* If we have something like addb,n then there is no condition
3851 completer. */
3852 else if (strcasecmp (name, "n") == 0 && isbranch)
3853 {
3854 cmpltr = 0;
3855 }
3856 else
3857 {
3858 cmpltr = -1;
3859 }
3860 **s = c;
3861 }
3862
3863 /* Reset pointers if this was really a ,n for a branch instruction. */
3864 if (cmpltr == 0 && *name == 'n' && isbranch)
3865 *s = save_s;
3866
3867 return cmpltr;
3868 }
3869
3870 /* Parse a non-negated addition completer returning the number
3871 (for encoding in instrutions) of the given completer.
3872
3873 ISBRANCH specifies whether or not this is parsing a condition
3874 completer for a branch (vs a nullification completer for a
3875 computational instruction. */
3876
3877 static int
3878 pa_parse_nonneg_add_cmpltr (s, isbranch)
3879 char **s;
3880 int isbranch;
3881 {
3882 int cmpltr;
3883 char *name = *s + 1;
3884 char c;
3885 char *save_s = *s;
3886
3887 cmpltr = 0;
3888 if (**s == ',')
3889 {
3890 *s += 1;
3891 while (**s != ',' && **s != ' ' && **s != '\t')
3892 *s += 1;
3893 c = **s;
3894 **s = 0x00;
3895 if (strcmp (name, "=") == 0)
3896 {
3897 cmpltr = 1;
3898 }
3899 else if (strcmp (name, "<") == 0)
3900 {
3901 cmpltr = 2;
3902 }
3903 else if (strcmp (name, "<=") == 0)
3904 {
3905 cmpltr = 3;
3906 }
3907 else if (strcasecmp (name, "nuv") == 0)
3908 {
3909 cmpltr = 4;
3910 }
3911 else if (strcasecmp (name, "znv") == 0)
3912 {
3913 cmpltr = 5;
3914 }
3915 else if (strcasecmp (name, "sv") == 0)
3916 {
3917 cmpltr = 6;
3918 }
3919 else if (strcasecmp (name, "od") == 0)
3920 {
3921 cmpltr = 7;
3922 }
3923 /* If we have something like addb,n then there is no condition
3924 completer. */
3925 else if (strcasecmp (name, "n") == 0 && isbranch)
3926 {
3927 cmpltr = 0;
3928 }
3929 else
3930 {
3931 cmpltr = -1;
3932 }
3933 **s = c;
3934 }
3935
3936 /* Reset pointers if this was really a ,n for a branch instruction. */
3937 if (cmpltr == 0 && *name == 'n' && isbranch)
3938 *s = save_s;
3939
3940 return cmpltr;
3941 }
3942
3943 /* Parse a negated addition completer returning the number
3944 (for encoding in instrutions) of the given completer.
3945
3946 ISBRANCH specifies whether or not this is parsing a condition
3947 completer for a branch (vs a nullification completer for a
3948 computational instruction. */
3949
3950 static int
3951 pa_parse_neg_add_cmpltr (s, isbranch)
3952 char **s;
3953 int isbranch;
3954 {
3955 int cmpltr;
3956 char *name = *s + 1;
3957 char c;
3958 char *save_s = *s;
3959
3960 cmpltr = 0;
3961 if (**s == ',')
3962 {
3963 *s += 1;
3964 while (**s != ',' && **s != ' ' && **s != '\t')
3965 *s += 1;
3966 c = **s;
3967 **s = 0x00;
3968 if (strcasecmp (name, "tr") == 0)
3969 {
3970 cmpltr = 0;
3971 }
3972 else if (strcmp (name, "<>") == 0)
3973 {
3974 cmpltr = 1;
3975 }
3976 else if (strcmp (name, ">=") == 0)
3977 {
3978 cmpltr = 2;
3979 }
3980 else if (strcmp (name, ">") == 0)
3981 {
3982 cmpltr = 3;
3983 }
3984 else if (strcasecmp (name, "uv") == 0)
3985 {
3986 cmpltr = 4;
3987 }
3988 else if (strcasecmp (name, "vnz") == 0)
3989 {
3990 cmpltr = 5;
3991 }
3992 else if (strcasecmp (name, "nsv") == 0)
3993 {
3994 cmpltr = 6;
3995 }
3996 else if (strcasecmp (name, "ev") == 0)
3997 {
3998 cmpltr = 7;
3999 }
4000 /* If we have something like addb,n then there is no condition
4001 completer. */
4002 else if (strcasecmp (name, "n") == 0 && isbranch)
4003 {
4004 cmpltr = 0;
4005 }
4006 else
4007 {
4008 cmpltr = -1;
4009 }
4010 **s = c;
4011 }
4012
4013 /* Reset pointers if this was really a ,n for a branch instruction. */
4014 if (cmpltr == 0 && *name == 'n' && isbranch)
4015 *s = save_s;
4016
4017 return cmpltr;
4018 }
4019
4020 /* Handle a .BLOCK type pseudo-op. */
4021
4022 static void
4023 pa_block (z)
4024 int z;
4025 {
4026 char *p;
4027 long int temp_fill;
4028 unsigned int temp_size;
4029 int i;
4030
4031 temp_size = get_absolute_expression ();
4032
4033 /* Always fill with zeros, that's what the HP assembler does. */
4034 temp_fill = 0;
4035
4036 p = frag_var (rs_fill, (int) temp_size, (int) temp_size,
4037 (relax_substateT) 0, (symbolS *) 0, 1, NULL);
4038 bzero (p, temp_size);
4039
4040 /* Convert 2 bytes at a time. */
4041
4042 for (i = 0; i < temp_size; i += 2)
4043 {
4044 md_number_to_chars (p + i,
4045 (valueT) temp_fill,
4046 (int) ((temp_size - i) > 2 ? 2 : (temp_size - i)));
4047 }
4048
4049 pa_undefine_label ();
4050 demand_empty_rest_of_line ();
4051 }
4052
4053 /* Handle a .CALL pseudo-op. This involves storing away information
4054 about where arguments are to be found so the linker can detect
4055 (and correct) argument location mismatches between caller and callee. */
4056
4057 static void
4058 pa_call (unused)
4059 int unused;
4060 {
4061 pa_call_args (&last_call_desc);
4062 demand_empty_rest_of_line ();
4063 }
4064
4065 /* Do the dirty work of building a call descriptor which describes
4066 where the caller placed arguments to a function call. */
4067
4068 static void
4069 pa_call_args (call_desc)
4070 struct call_desc *call_desc;
4071 {
4072 char *name, c, *p;
4073 unsigned int temp, arg_reloc;
4074
4075 while (!is_end_of_statement ())
4076 {
4077 name = input_line_pointer;
4078 c = get_symbol_end ();
4079 /* Process a source argument. */
4080 if ((strncasecmp (name, "argw", 4) == 0))
4081 {
4082 temp = atoi (name + 4);
4083 p = input_line_pointer;
4084 *p = c;
4085 input_line_pointer++;
4086 name = input_line_pointer;
4087 c = get_symbol_end ();
4088 arg_reloc = pa_build_arg_reloc (name);
4089 call_desc->arg_reloc |= pa_align_arg_reloc (temp, arg_reloc);
4090 }
4091 /* Process a return value. */
4092 else if ((strncasecmp (name, "rtnval", 6) == 0))
4093 {
4094 p = input_line_pointer;
4095 *p = c;
4096 input_line_pointer++;
4097 name = input_line_pointer;
4098 c = get_symbol_end ();
4099 arg_reloc = pa_build_arg_reloc (name);
4100 call_desc->arg_reloc |= (arg_reloc & 0x3);
4101 }
4102 else
4103 {
4104 as_bad ("Invalid .CALL argument: %s", name);
4105 }
4106 p = input_line_pointer;
4107 *p = c;
4108 if (!is_end_of_statement ())
4109 input_line_pointer++;
4110 }
4111 }
4112
4113 /* Return TRUE if FRAG1 and FRAG2 are the same. */
4114
4115 static int
4116 is_same_frag (frag1, frag2)
4117 fragS *frag1;
4118 fragS *frag2;
4119 {
4120
4121 if (frag1 == NULL)
4122 return (FALSE);
4123 else if (frag2 == NULL)
4124 return (FALSE);
4125 else if (frag1 == frag2)
4126 return (TRUE);
4127 else if (frag2->fr_type == rs_fill && frag2->fr_fix == 0)
4128 return (is_same_frag (frag1, frag2->fr_next));
4129 else
4130 return (FALSE);
4131 }
4132
4133 #ifdef OBJ_ELF
4134 /* Build an entry in the UNWIND subspace from the given function
4135 attributes in CALL_INFO. This is not needed for SOM as using
4136 R_ENTRY and R_EXIT relocations allow the linker to handle building
4137 of the unwind spaces. */
4138
4139 static void
4140 pa_build_unwind_subspace (call_info)
4141 struct call_info *call_info;
4142 {
4143 char *unwind;
4144 asection *seg, *save_seg;
4145 subsegT subseg, save_subseg;
4146 int i;
4147 char c, *p;
4148
4149 /* Get into the right seg/subseg. This may involve creating
4150 the seg the first time through. Make sure to have the
4151 old seg/subseg so that we can reset things when we are done. */
4152 subseg = SUBSEG_UNWIND;
4153 seg = bfd_get_section_by_name (stdoutput, UNWIND_SECTION_NAME);
4154 if (seg == ASEC_NULL)
4155 {
4156 seg = bfd_make_section_old_way (stdoutput, UNWIND_SECTION_NAME);
4157 bfd_set_section_flags (stdoutput, seg,
4158 SEC_READONLY | SEC_HAS_CONTENTS
4159 | SEC_LOAD | SEC_RELOC);
4160 }
4161
4162 save_seg = now_seg;
4163 save_subseg = now_subseg;
4164 subseg_set (seg, subseg);
4165
4166
4167 /* Get some space to hold relocation information for the unwind
4168 descriptor. */
4169 p = frag_more (4);
4170
4171 /* Relocation info. for start offset of the function. */
4172 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4173 call_info->start_symbol, (offsetT) 0,
4174 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4175 (char *) 0);
4176
4177 p = frag_more (4);
4178
4179 /* Relocation info. for end offset of the function. */
4180 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4181 call_info->end_symbol, (offsetT) 0,
4182 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4183 (char *) 0);
4184
4185 /* Dump it. */
4186 unwind = (char *) &call_info->ci_unwind;
4187 for (i = 8; i < sizeof (struct unwind_table); i++)
4188 {
4189 c = *(unwind + i);
4190 {
4191 FRAG_APPEND_1_CHAR (c);
4192 }
4193 }
4194
4195 /* Return back to the original segment/subsegment. */
4196 subseg_set (save_seg, save_subseg);
4197 }
4198 #endif
4199
4200 /* Process a .CALLINFO pseudo-op. This information is used later
4201 to build unwind descriptors and maybe one day to support
4202 .ENTER and .LEAVE. */
4203
4204 static void
4205 pa_callinfo (unused)
4206 int unused;
4207 {
4208 char *name, c, *p;
4209 int temp;
4210
4211 /* .CALLINFO must appear within a procedure definition. */
4212 if (!within_procedure)
4213 as_bad (".callinfo is not within a procedure definition");
4214
4215 /* Mark the fact that we found the .CALLINFO for the
4216 current procedure. */
4217 callinfo_found = TRUE;
4218
4219 /* Iterate over the .CALLINFO arguments. */
4220 while (!is_end_of_statement ())
4221 {
4222 name = input_line_pointer;
4223 c = get_symbol_end ();
4224 /* Frame size specification. */
4225 if ((strncasecmp (name, "frame", 5) == 0))
4226 {
4227 p = input_line_pointer;
4228 *p = c;
4229 input_line_pointer++;
4230 temp = get_absolute_expression ();
4231 if ((temp & 0x3) != 0)
4232 {
4233 as_bad ("FRAME parameter must be a multiple of 8: %d\n", temp);
4234 temp = 0;
4235 }
4236
4237 /* callinfo is in bytes and unwind_desc is in 8 byte units. */
4238 last_call_info->ci_unwind.descriptor.frame_size = temp / 8;
4239
4240 }
4241 /* Entry register (GR, GR and SR) specifications. */
4242 else if ((strncasecmp (name, "entry_gr", 8) == 0))
4243 {
4244 p = input_line_pointer;
4245 *p = c;
4246 input_line_pointer++;
4247 temp = get_absolute_expression ();
4248 /* The HP assembler accepts 19 as the high bound for ENTRY_GR
4249 even though %r19 is caller saved. I think this is a bug in
4250 the HP assembler, and we are not going to emulate it. */
4251 if (temp < 3 || temp > 18)
4252 as_bad ("Value for ENTRY_GR must be in the range 3..18\n");
4253 last_call_info->ci_unwind.descriptor.entry_gr = temp - 2;
4254 }
4255 else if ((strncasecmp (name, "entry_fr", 8) == 0))
4256 {
4257 p = input_line_pointer;
4258 *p = c;
4259 input_line_pointer++;
4260 temp = get_absolute_expression ();
4261 /* Similarly the HP assembler takes 31 as the high bound even
4262 though %fr21 is the last callee saved floating point register. */
4263 if (temp < 12 || temp > 21)
4264 as_bad ("Value for ENTRY_FR must be in the range 12..21\n");
4265 last_call_info->ci_unwind.descriptor.entry_fr = temp - 11;
4266 }
4267 else if ((strncasecmp (name, "entry_sr", 8) == 0))
4268 {
4269 p = input_line_pointer;
4270 *p = c;
4271 input_line_pointer++;
4272 temp = get_absolute_expression ();
4273 if (temp != 3)
4274 as_bad ("Value for ENTRY_SR must be 3\n");
4275 }
4276 /* Note whether or not this function performs any calls. */
4277 else if ((strncasecmp (name, "calls", 5) == 0) ||
4278 (strncasecmp (name, "caller", 6) == 0))
4279 {
4280 p = input_line_pointer;
4281 *p = c;
4282 }
4283 else if ((strncasecmp (name, "no_calls", 8) == 0))
4284 {
4285 p = input_line_pointer;
4286 *p = c;
4287 }
4288 /* Should RP be saved into the stack. */
4289 else if ((strncasecmp (name, "save_rp", 7) == 0))
4290 {
4291 p = input_line_pointer;
4292 *p = c;
4293 last_call_info->ci_unwind.descriptor.save_rp = 1;
4294 }
4295 /* Likewise for SP. */
4296 else if ((strncasecmp (name, "save_sp", 7) == 0))
4297 {
4298 p = input_line_pointer;
4299 *p = c;
4300 last_call_info->ci_unwind.descriptor.save_sp = 1;
4301 }
4302 /* Is this an unwindable procedure. If so mark it so
4303 in the unwind descriptor. */
4304 else if ((strncasecmp (name, "no_unwind", 9) == 0))
4305 {
4306 p = input_line_pointer;
4307 *p = c;
4308 last_call_info->ci_unwind.descriptor.cannot_unwind = 1;
4309 }
4310 /* Is this an interrupt routine. If so mark it in the
4311 unwind descriptor. */
4312 else if ((strncasecmp (name, "hpux_int", 7) == 0))
4313 {
4314 p = input_line_pointer;
4315 *p = c;
4316 last_call_info->ci_unwind.descriptor.hpux_interrupt_marker = 1;
4317 }
4318 else
4319 {
4320 as_bad ("Invalid .CALLINFO argument: %s", name);
4321 }
4322 if (!is_end_of_statement ())
4323 input_line_pointer++;
4324 }
4325
4326 demand_empty_rest_of_line ();
4327 }
4328
4329 /* Switch into the code subspace. */
4330
4331 static void
4332 pa_code (unused)
4333 int unused;
4334 {
4335 sd_chain_struct *sdchain;
4336
4337 /* First time through it might be necessary to create the
4338 $TEXT$ space. */
4339 if ((sdchain = is_defined_space ("$TEXT$")) == NULL)
4340 {
4341 sdchain = create_new_space (pa_def_spaces[0].name,
4342 pa_def_spaces[0].spnum,
4343 pa_def_spaces[0].loadable,
4344 pa_def_spaces[0].defined,
4345 pa_def_spaces[0].private,
4346 pa_def_spaces[0].sort,
4347 pa_def_spaces[0].segment, 0);
4348 }
4349
4350 SPACE_DEFINED (sdchain) = 1;
4351 subseg_set (text_section, SUBSEG_CODE);
4352 demand_empty_rest_of_line ();
4353 }
4354
4355 /* This is different than the standard GAS s_comm(). On HP9000/800 machines,
4356 the .comm pseudo-op has the following symtax:
4357
4358 <label> .comm <length>
4359
4360 where <label> is optional and is a symbol whose address will be the start of
4361 a block of memory <length> bytes long. <length> must be an absolute
4362 expression. <length> bytes will be allocated in the current space
4363 and subspace. */
4364
4365 static void
4366 pa_comm (unused)
4367 int unused;
4368 {
4369 unsigned int size;
4370 symbolS *symbol;
4371 label_symbol_struct *label_symbol = pa_get_label ();
4372
4373 if (label_symbol)
4374 symbol = label_symbol->lss_label;
4375 else
4376 symbol = NULL;
4377
4378 SKIP_WHITESPACE ();
4379 size = get_absolute_expression ();
4380
4381 if (symbol)
4382 {
4383 /* It is incorrect to check S_IS_DEFINED at this point as
4384 the symbol will *always* be defined. FIXME. How to
4385 correctly determine when this label really as been
4386 defined before. */
4387 if (S_GET_VALUE (symbol))
4388 {
4389 if (S_GET_VALUE (symbol) != size)
4390 {
4391 as_warn ("Length of .comm \"%s\" is already %d. Not changed.",
4392 S_GET_NAME (symbol), S_GET_VALUE (symbol));
4393 return;
4394 }
4395 }
4396 else
4397 {
4398 S_SET_VALUE (symbol, size);
4399 S_SET_SEGMENT (symbol, &bfd_und_section);
4400 S_SET_EXTERNAL (symbol);
4401 }
4402 }
4403 demand_empty_rest_of_line ();
4404 }
4405
4406 /* Process a .END pseudo-op. */
4407
4408 static void
4409 pa_end (unused)
4410 int unused;
4411 {
4412 demand_empty_rest_of_line ();
4413 }
4414
4415 /* Process a .ENTER pseudo-op. This is not supported. */
4416 static void
4417 pa_enter (unused)
4418 int unused;
4419 {
4420 abort ();
4421 }
4422
4423 /* Process a .ENTRY pseudo-op. .ENTRY marks the beginning of the
4424 procesure. */
4425 static void
4426 pa_entry (unused)
4427 int unused;
4428 {
4429 if (!within_procedure)
4430 as_bad ("Misplaced .entry. Ignored.");
4431 else
4432 {
4433 if (!callinfo_found)
4434 as_bad ("Missing .callinfo.");
4435 }
4436 demand_empty_rest_of_line ();
4437 within_entry_exit = TRUE;
4438
4439 #ifdef OBJ_SOM
4440 /* SOM defers building of unwind descriptors until the link phase.
4441 The assembler is responsible for creating an R_ENTRY relocation
4442 to mark the beginning of a region and hold the unwind bits, and
4443 for creating an R_EXIT relocation to mark the end of the region.
4444
4445 FIXME. ELF should be using the same conventions! The problem
4446 is an unwind requires too much relocation space. Hmmm. Maybe
4447 if we split the unwind bits up between the relocations which
4448 denote the entry and exit points. */
4449 if (last_call_info->start_symbol != NULL)
4450 {
4451 char *where = frag_more (0);
4452
4453 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
4454 last_call_info->start_symbol, (offsetT) 0, NULL,
4455 0, R_HPPA_ENTRY, e_fsel, 0, 0,
4456 (char *) &last_call_info->ci_unwind.descriptor);
4457 }
4458 #endif
4459 }
4460
4461 /* Handle a .EQU pseudo-op. */
4462
4463 static void
4464 pa_equ (reg)
4465 int reg;
4466 {
4467 label_symbol_struct *label_symbol = pa_get_label ();
4468 symbolS *symbol;
4469
4470 if (label_symbol)
4471 {
4472 symbol = label_symbol->lss_label;
4473 S_SET_VALUE (symbol, (unsigned int) get_absolute_expression ());
4474 S_SET_SEGMENT (symbol, &bfd_abs_section);
4475 }
4476 else
4477 {
4478 if (reg)
4479 as_bad (".REG must use a label");
4480 else
4481 as_bad (".EQU must use a label");
4482 }
4483
4484 pa_undefine_label ();
4485 demand_empty_rest_of_line ();
4486 }
4487
4488 /* Helper function. Does processing for the end of a function. This
4489 usually involves creating some relocations or building special
4490 symbols to mark the end of the function. */
4491
4492 static void
4493 process_exit ()
4494 {
4495 char *where;
4496
4497 where = frag_more (0);
4498
4499 #ifdef OBJ_ELF
4500 /* Mark the end of the function, stuff away the location of the frag
4501 for the end of the function, and finally call pa_build_unwind_subspace
4502 to add an entry in the unwind table. */
4503 hppa_elf_mark_end_of_function ();
4504 pa_build_unwind_subspace (last_call_info);
4505 #else
4506 /* SOM defers building of unwind descriptors until the link phase.
4507 The assembler is responsible for creating an R_ENTRY relocation
4508 to mark the beginning of a region and hold the unwind bits, and
4509 for creating an R_EXIT relocation to mark the end of the region.
4510
4511 FIXME. ELF should be using the same conventions! The problem
4512 is an unwind requires too much relocation space. Hmmm. Maybe
4513 if we split the unwind bits up between the relocations which
4514 denote the entry and exit points. */
4515 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
4516 last_call_info->start_symbol, (offsetT) 0,
4517 NULL, 0, R_HPPA_EXIT, e_fsel, 0, 0, NULL);
4518 #endif
4519 }
4520
4521 /* Process a .EXIT pseudo-op. */
4522
4523 static void
4524 pa_exit (unused)
4525 int unused;
4526 {
4527 if (!within_procedure)
4528 as_bad (".EXIT must appear within a procedure");
4529 else
4530 {
4531 if (!callinfo_found)
4532 as_bad ("Missing .callinfo");
4533 else
4534 {
4535 if (!within_entry_exit)
4536 as_bad ("No .ENTRY for this .EXIT");
4537 else
4538 {
4539 within_entry_exit = FALSE;
4540 process_exit ();
4541 }
4542 }
4543 }
4544 demand_empty_rest_of_line ();
4545 }
4546
4547 /* Process a .EXPORT directive. This makes functions external
4548 and provides information such as argument relocation entries
4549 to callers. */
4550
4551 static void
4552 pa_export (unused)
4553 int unused;
4554 {
4555 char *name, c, *p;
4556 symbolS *symbol;
4557
4558 name = input_line_pointer;
4559 c = get_symbol_end ();
4560 /* Make sure the given symbol exists. */
4561 if ((symbol = symbol_find_or_make (name)) == NULL)
4562 {
4563 as_bad ("Cannot define export symbol: %s\n", name);
4564 p = input_line_pointer;
4565 *p = c;
4566 input_line_pointer++;
4567 }
4568 else
4569 {
4570 /* OK. Set the external bits and process argument relocations. */
4571 S_SET_EXTERNAL (symbol);
4572 p = input_line_pointer;
4573 *p = c;
4574 if (!is_end_of_statement ())
4575 {
4576 input_line_pointer++;
4577 pa_type_args (symbol, 1);
4578 #ifdef OBJ_ELF
4579 pa_build_symextn_section ();
4580 #endif
4581 }
4582 }
4583
4584 demand_empty_rest_of_line ();
4585 }
4586
4587 /* Helper function to process arguments to a .EXPORT pseudo-op. */
4588
4589 static void
4590 pa_type_args (symbolP, is_export)
4591 symbolS *symbolP;
4592 int is_export;
4593 {
4594 char *name, c, *p;
4595 unsigned int temp, arg_reloc;
4596 pa_symbol_type type = SYMBOL_TYPE_UNKNOWN;
4597 obj_symbol_type *symbol = (obj_symbol_type *) symbolP->bsym;
4598
4599 if (strncasecmp (input_line_pointer, "absolute", 8) == 0)
4600
4601 {
4602 input_line_pointer += 8;
4603 symbolP->bsym->flags &= ~BSF_FUNCTION;
4604 S_SET_SEGMENT (symbolP, &bfd_abs_section);
4605 type = SYMBOL_TYPE_ABSOLUTE;
4606 }
4607 else if (strncasecmp (input_line_pointer, "code", 4) == 0)
4608 {
4609 input_line_pointer += 4;
4610 /* IMPORTing/EXPORTing CODE types for functions is meaningless for SOM,
4611 instead one should be IMPORTing/EXPORTing ENTRY types.
4612
4613 Complain if one tries to EXPORT a CODE type since that's never
4614 done. Both GCC and HP C still try to IMPORT CODE types, so
4615 silently fix them to be ENTRY types. */
4616 if (symbolP->bsym->flags & BSF_FUNCTION)
4617 {
4618 if (is_export)
4619 as_tsktsk ("Using ENTRY rather than CODE in export directive for %s", symbolP->bsym->name);
4620
4621 symbolP->bsym->flags |= BSF_FUNCTION;
4622 type = SYMBOL_TYPE_ENTRY;
4623 }
4624 else
4625 {
4626 symbolP->bsym->flags &= ~BSF_FUNCTION;
4627 type = SYMBOL_TYPE_CODE;
4628 }
4629 }
4630 else if (strncasecmp (input_line_pointer, "data", 4) == 0)
4631 {
4632 input_line_pointer += 4;
4633 symbolP->bsym->flags &= ~BSF_FUNCTION;
4634 type = SYMBOL_TYPE_DATA;
4635 }
4636 else if ((strncasecmp (input_line_pointer, "entry", 5) == 0))
4637 {
4638 input_line_pointer += 5;
4639 symbolP->bsym->flags |= BSF_FUNCTION;
4640 type = SYMBOL_TYPE_ENTRY;
4641 }
4642 else if (strncasecmp (input_line_pointer, "millicode", 9) == 0)
4643 {
4644 input_line_pointer += 9;
4645 symbolP->bsym->flags |= BSF_FUNCTION;
4646 type = SYMBOL_TYPE_MILLICODE;
4647 }
4648 else if (strncasecmp (input_line_pointer, "plabel", 6) == 0)
4649 {
4650 input_line_pointer += 6;
4651 symbolP->bsym->flags &= ~BSF_FUNCTION;
4652 type = SYMBOL_TYPE_PLABEL;
4653 }
4654 else if (strncasecmp (input_line_pointer, "pri_prog", 8) == 0)
4655 {
4656 input_line_pointer += 8;
4657 symbolP->bsym->flags |= BSF_FUNCTION;
4658 type = SYMBOL_TYPE_PRI_PROG;
4659 }
4660 else if (strncasecmp (input_line_pointer, "sec_prog", 8) == 0)
4661 {
4662 input_line_pointer += 8;
4663 symbolP->bsym->flags |= BSF_FUNCTION;
4664 type = SYMBOL_TYPE_SEC_PROG;
4665 }
4666
4667 /* SOM requires much more information about symbol types
4668 than BFD understands. This is how we get this information
4669 to the SOM BFD backend. */
4670 #ifdef obj_set_symbol_type
4671 obj_set_symbol_type (symbolP->bsym, (int) type);
4672 #endif
4673
4674 /* Now that the type of the exported symbol has been handled,
4675 handle any argument relocation information. */
4676 while (!is_end_of_statement ())
4677 {
4678 if (*input_line_pointer == ',')
4679 input_line_pointer++;
4680 name = input_line_pointer;
4681 c = get_symbol_end ();
4682 /* Argument sources. */
4683 if ((strncasecmp (name, "argw", 4) == 0))
4684 {
4685 p = input_line_pointer;
4686 *p = c;
4687 input_line_pointer++;
4688 temp = atoi (name + 4);
4689 name = input_line_pointer;
4690 c = get_symbol_end ();
4691 arg_reloc = pa_align_arg_reloc (temp, pa_build_arg_reloc (name));
4692 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
4693 *input_line_pointer = c;
4694 }
4695 /* The return value. */
4696 else if ((strncasecmp (name, "rtnval", 6)) == 0)
4697 {
4698 p = input_line_pointer;
4699 *p = c;
4700 input_line_pointer++;
4701 name = input_line_pointer;
4702 c = get_symbol_end ();
4703 arg_reloc = pa_build_arg_reloc (name);
4704 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
4705 *input_line_pointer = c;
4706 }
4707 /* Privelege level. */
4708 else if ((strncasecmp (name, "priv_lev", 8)) == 0)
4709 {
4710 p = input_line_pointer;
4711 *p = c;
4712 input_line_pointer++;
4713 temp = atoi (input_line_pointer);
4714 c = get_symbol_end ();
4715 *input_line_pointer = c;
4716 }
4717 else
4718 {
4719 as_bad ("Undefined .EXPORT/.IMPORT argument (ignored): %s", name);
4720 p = input_line_pointer;
4721 *p = c;
4722 }
4723 if (!is_end_of_statement ())
4724 input_line_pointer++;
4725 }
4726 }
4727
4728 /* Handle an .IMPORT pseudo-op. Any symbol referenced in a given
4729 assembly file must either be defined in the assembly file, or
4730 explicitly IMPORTED from another. */
4731
4732 static void
4733 pa_import (unused)
4734 int unused;
4735 {
4736 char *name, c, *p;
4737 symbolS *symbol;
4738
4739 name = input_line_pointer;
4740 c = get_symbol_end ();
4741
4742 symbol = symbol_find_or_make (name);
4743 p = input_line_pointer;
4744 *p = c;
4745
4746 if (!is_end_of_statement ())
4747 {
4748 input_line_pointer++;
4749 pa_type_args (symbol, 0);
4750 }
4751 else
4752 {
4753 /* Sigh. To be compatable with the HP assembler and to help
4754 poorly written assembly code, we assign a type based on
4755 the the current segment. Note only BSF_FUNCTION really
4756 matters, we do not need to set the full SYMBOL_TYPE_* info here. */
4757 if (now_seg == text_section)
4758 symbol->bsym->flags |= BSF_FUNCTION;
4759
4760 /* If the section is undefined, then the symbol is undefined
4761 Since this is an import, leave the section undefined. */
4762 S_SET_SEGMENT (symbol, &bfd_und_section);
4763 }
4764
4765 demand_empty_rest_of_line ();
4766 }
4767
4768 /* Handle a .LABEL pseudo-op. */
4769
4770 static void
4771 pa_label (unused)
4772 int unused;
4773 {
4774 char *name, c, *p;
4775
4776 name = input_line_pointer;
4777 c = get_symbol_end ();
4778
4779 if (strlen (name) > 0)
4780 {
4781 colon (name);
4782 p = input_line_pointer;
4783 *p = c;
4784 }
4785 else
4786 {
4787 as_warn ("Missing label name on .LABEL");
4788 }
4789
4790 if (!is_end_of_statement ())
4791 {
4792 as_warn ("extra .LABEL arguments ignored.");
4793 ignore_rest_of_line ();
4794 }
4795 demand_empty_rest_of_line ();
4796 }
4797
4798 /* Handle a .LEAVE pseudo-op. This is not supported yet. */
4799
4800 static void
4801 pa_leave (unused)
4802 int unused;
4803 {
4804 abort ();
4805 }
4806
4807 /* Handle a .ORIGIN pseudo-op. */
4808
4809 static void
4810 pa_origin (unused)
4811 int unused;
4812 {
4813 s_org (0);
4814 pa_undefine_label ();
4815 }
4816
4817 /* Handle a .PARAM pseudo-op. This is much like a .EXPORT, except it
4818 is for static functions. FIXME. Should share more code with .EXPORT. */
4819
4820 static void
4821 pa_param (unused)
4822 int unused;
4823 {
4824 char *name, c, *p;
4825 symbolS *symbol;
4826
4827 name = input_line_pointer;
4828 c = get_symbol_end ();
4829
4830 if ((symbol = symbol_find_or_make (name)) == NULL)
4831 {
4832 as_bad ("Cannot define static symbol: %s\n", name);
4833 p = input_line_pointer;
4834 *p = c;
4835 input_line_pointer++;
4836 }
4837 else
4838 {
4839 S_CLEAR_EXTERNAL (symbol);
4840 p = input_line_pointer;
4841 *p = c;
4842 if (!is_end_of_statement ())
4843 {
4844 input_line_pointer++;
4845 pa_type_args (symbol, 0);
4846 }
4847 }
4848
4849 demand_empty_rest_of_line ();
4850 }
4851
4852 /* Handle a .PROC pseudo-op. It is used to mark the beginning
4853 of a procedure from a syntatical point of view. */
4854
4855 static void
4856 pa_proc (unused)
4857 int unused;
4858 {
4859 struct call_info *call_info;
4860 segT seg;
4861
4862 if (within_procedure)
4863 as_fatal ("Nested procedures");
4864
4865 /* Reset global variables for new procedure. */
4866 callinfo_found = FALSE;
4867 within_procedure = TRUE;
4868
4869 #if 0
4870 Enabling this code creates severe problems with GDB. It appears as if
4871 inserting linker stubs between functions within a single .o makes GDB
4872 blow chunks.
4873
4874 /* Create a new CODE subspace for each procedure if we are not
4875 using space/subspace aliases. */
4876 if (!USE_ALIASES && call_info_root != NULL)
4877 {
4878 /* Force creation of a new $CODE$ subspace; inherit attributes from
4879 the first $CODE$ subspace. */
4880 seg = subseg_force_new ("$CODE$", 0);
4881
4882 /* Now set the flags. */
4883 bfd_set_section_flags (stdoutput, seg,
4884 bfd_get_section_flags (abfd, text_section));
4885
4886 /* Record any alignment request for this section. */
4887 record_alignment (seg,
4888 bfd_get_section_alignment (stdoutput, text_section));
4889
4890 /* Change the "text_section" to be our new $CODE$ subspace. */
4891 text_section = seg;
4892 subseg_set (text_section, 0);
4893
4894 #ifdef obj_set_subsection_attributes
4895 /* Need a way to inherit the the access bits, sort key and quadrant
4896 from the first $CODE$ subspace. FIXME. */
4897 obj_set_subsection_attributes (seg, current_space->sd_seg, 0x2c, 24, 0);
4898 #endif
4899 }
4900 #endif
4901
4902 /* Create another call_info structure. */
4903 call_info = (struct call_info *) xmalloc (sizeof (struct call_info));
4904
4905 if (!call_info)
4906 as_fatal ("Cannot allocate unwind descriptor\n");
4907
4908 bzero (call_info, sizeof (struct call_info));
4909
4910 call_info->ci_next = NULL;
4911
4912 if (call_info_root == NULL)
4913 {
4914 call_info_root = call_info;
4915 last_call_info = call_info;
4916 }
4917 else
4918 {
4919 last_call_info->ci_next = call_info;
4920 last_call_info = call_info;
4921 }
4922
4923 /* set up defaults on call_info structure */
4924
4925 call_info->ci_unwind.descriptor.cannot_unwind = 0;
4926 call_info->ci_unwind.descriptor.region_desc = 1;
4927 call_info->ci_unwind.descriptor.hpux_interrupt_marker = 0;
4928
4929 /* If we got a .PROC pseudo-op, we know that the function is defined
4930 locally. Make sure it gets into the symbol table. */
4931 {
4932 label_symbol_struct *label_symbol = pa_get_label ();
4933
4934 if (label_symbol)
4935 {
4936 if (label_symbol->lss_label)
4937 {
4938 last_call_info->start_symbol = label_symbol->lss_label;
4939 label_symbol->lss_label->bsym->flags |= BSF_FUNCTION;
4940 #if 0
4941 if (! USE_ALIASES)
4942 {
4943 /* The label was defined in a different segment. Fix that
4944 along with the value and associated fragment. */
4945 S_SET_SEGMENT (last_call_info->start_symbol, now_seg);
4946 S_SET_VALUE (last_call_info->start_symbol,
4947 ((char*)obstack_next_free (&frags)
4948 - frag_now->fr_literal));
4949 last_call_info->start_symbol->sy_frag = frag_now;
4950 }
4951 #endif
4952 }
4953 else
4954 as_bad ("Missing function name for .PROC (corrupted label chain)");
4955 }
4956 else
4957 last_call_info->start_symbol = NULL;
4958 }
4959
4960 demand_empty_rest_of_line ();
4961 }
4962
4963 /* Process the syntatical end of a procedure. Make sure all the
4964 appropriate pseudo-ops were found within the procedure. */
4965
4966 static void
4967 pa_procend (unused)
4968 int unused;
4969 {
4970
4971 if (!within_procedure)
4972 as_bad ("misplaced .procend");
4973
4974 if (!callinfo_found)
4975 as_bad ("Missing .callinfo for this procedure");
4976
4977 if (within_entry_exit)
4978 as_bad ("Missing .EXIT for a .ENTRY");
4979
4980 #ifdef OBJ_ELF
4981 /* ELF needs to mark the end of each function so that it can compute
4982 the size of the function (apparently its needed in the symbol table. */
4983 hppa_elf_mark_end_of_function ();
4984 #endif
4985
4986 within_procedure = FALSE;
4987 demand_empty_rest_of_line ();
4988 pa_undefine_label ();
4989 }
4990
4991 /* Parse the parameters to a .SPACE directive; if CREATE_FLAG is nonzero,
4992 then create a new space entry to hold the information specified
4993 by the parameters to the .SPACE directive. */
4994
4995 static sd_chain_struct *
4996 pa_parse_space_stmt (space_name, create_flag)
4997 char *space_name;
4998 int create_flag;
4999 {
5000 char *name, *ptemp, c;
5001 char loadable, defined, private, sort;
5002 int spnum;
5003 asection *seg = NULL;
5004 sd_chain_struct *space;
5005
5006 /* load default values */
5007 spnum = 0;
5008 sort = 0;
5009 loadable = TRUE;
5010 defined = TRUE;
5011 private = FALSE;
5012 if (strcmp (space_name, "$TEXT$") == 0)
5013 {
5014 seg = pa_def_spaces[0].segment;
5015 sort = pa_def_spaces[0].sort;
5016 }
5017 else if (strcmp (space_name, "$PRIVATE$") == 0)
5018 {
5019 seg = pa_def_spaces[1].segment;
5020 sort = pa_def_spaces[1].sort;
5021 }
5022
5023 if (!is_end_of_statement ())
5024 {
5025 print_errors = FALSE;
5026 ptemp = input_line_pointer + 1;
5027 /* First see if the space was specified as a number rather than
5028 as a name. According to the PA assembly manual the rest of
5029 the line should be ignored. */
5030 if ((spnum = pa_parse_number (&ptemp, 0)) >= 0)
5031 input_line_pointer = ptemp;
5032 else
5033 {
5034 while (!is_end_of_statement ())
5035 {
5036 input_line_pointer++;
5037 name = input_line_pointer;
5038 c = get_symbol_end ();
5039 if ((strncasecmp (name, "spnum", 5) == 0))
5040 {
5041 *input_line_pointer = c;
5042 input_line_pointer++;
5043 spnum = get_absolute_expression ();
5044 }
5045 else if ((strncasecmp (name, "sort", 4) == 0))
5046 {
5047 *input_line_pointer = c;
5048 input_line_pointer++;
5049 sort = get_absolute_expression ();
5050 }
5051 else if ((strncasecmp (name, "unloadable", 10) == 0))
5052 {
5053 *input_line_pointer = c;
5054 loadable = FALSE;
5055 }
5056 else if ((strncasecmp (name, "notdefined", 10) == 0))
5057 {
5058 *input_line_pointer = c;
5059 defined = FALSE;
5060 }
5061 else if ((strncasecmp (name, "private", 7) == 0))
5062 {
5063 *input_line_pointer = c;
5064 private = TRUE;
5065 }
5066 else
5067 {
5068 as_bad ("Invalid .SPACE argument");
5069 *input_line_pointer = c;
5070 if (!is_end_of_statement ())
5071 input_line_pointer++;
5072 }
5073 }
5074 }
5075 print_errors = TRUE;
5076 }
5077
5078 if (create_flag && seg == NULL)
5079 seg = subseg_new (space_name, 0);
5080
5081 /* If create_flag is nonzero, then create the new space with
5082 the attributes computed above. Else set the values in
5083 an already existing space -- this can only happen for
5084 the first occurence of a built-in space. */
5085 if (create_flag)
5086 space = create_new_space (space_name, spnum, loadable, defined,
5087 private, sort, seg, 1);
5088 else
5089 {
5090 space = is_defined_space (space_name);
5091 SPACE_SPNUM (space) = spnum;
5092 SPACE_DEFINED (space) = defined & 1;
5093 SPACE_USER_DEFINED (space) = 1;
5094 space->sd_seg = seg;
5095 }
5096
5097 #ifdef obj_set_section_attributes
5098 obj_set_section_attributes (seg, defined, private, sort, spnum);
5099 #endif
5100
5101 return space;
5102 }
5103
5104 /* Handle a .SPACE pseudo-op; this switches the current space to the
5105 given space, creating the new space if necessary. */
5106
5107 static void
5108 pa_space (unused)
5109 int unused;
5110 {
5111 char *name, c, *space_name, *save_s;
5112 int temp;
5113 sd_chain_struct *sd_chain;
5114
5115 if (within_procedure)
5116 {
5117 as_bad ("Can\'t change spaces within a procedure definition. Ignored");
5118 ignore_rest_of_line ();
5119 }
5120 else
5121 {
5122 /* Check for some of the predefined spaces. FIXME: most of the code
5123 below is repeated several times, can we extract the common parts
5124 and place them into a subroutine or something similar? */
5125 /* FIXME Is this (and the next IF stmt) really right?
5126 What if INPUT_LINE_POINTER points to "$TEXT$FOO"? */
5127 if (strncmp (input_line_pointer, "$TEXT$", 6) == 0)
5128 {
5129 input_line_pointer += 6;
5130 sd_chain = is_defined_space ("$TEXT$");
5131 if (sd_chain == NULL)
5132 sd_chain = pa_parse_space_stmt ("$TEXT$", 1);
5133 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5134 sd_chain = pa_parse_space_stmt ("$TEXT$", 0);
5135
5136 current_space = sd_chain;
5137 subseg_set (text_section, sd_chain->sd_last_subseg);
5138 current_subspace
5139 = pa_subsegment_to_subspace (text_section,
5140 sd_chain->sd_last_subseg);
5141 demand_empty_rest_of_line ();
5142 return;
5143 }
5144 if (strncmp (input_line_pointer, "$PRIVATE$", 9) == 0)
5145 {
5146 input_line_pointer += 9;
5147 sd_chain = is_defined_space ("$PRIVATE$");
5148 if (sd_chain == NULL)
5149 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 1);
5150 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5151 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 0);
5152
5153 current_space = sd_chain;
5154 subseg_set (data_section, sd_chain->sd_last_subseg);
5155 current_subspace
5156 = pa_subsegment_to_subspace (data_section,
5157 sd_chain->sd_last_subseg);
5158 demand_empty_rest_of_line ();
5159 return;
5160 }
5161 if (!strncasecmp (input_line_pointer,
5162 GDB_DEBUG_SPACE_NAME,
5163 strlen (GDB_DEBUG_SPACE_NAME)))
5164 {
5165 input_line_pointer += strlen (GDB_DEBUG_SPACE_NAME);
5166 sd_chain = is_defined_space (GDB_DEBUG_SPACE_NAME);
5167 if (sd_chain == NULL)
5168 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 1);
5169 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5170 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 0);
5171
5172 current_space = sd_chain;
5173
5174 {
5175 asection *gdb_section
5176 = bfd_make_section_old_way (stdoutput, GDB_DEBUG_SPACE_NAME);
5177
5178 subseg_set (gdb_section, sd_chain->sd_last_subseg);
5179 current_subspace
5180 = pa_subsegment_to_subspace (gdb_section,
5181 sd_chain->sd_last_subseg);
5182 }
5183 demand_empty_rest_of_line ();
5184 return;
5185 }
5186
5187 /* It could be a space specified by number. */
5188 print_errors = 0;
5189 save_s = input_line_pointer;
5190 if ((temp = pa_parse_number (&input_line_pointer, 0)) >= 0)
5191 {
5192 if (sd_chain = pa_find_space_by_number (temp))
5193 {
5194 current_space = sd_chain;
5195
5196 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
5197 current_subspace
5198 = pa_subsegment_to_subspace (sd_chain->sd_seg,
5199 sd_chain->sd_last_subseg);
5200 demand_empty_rest_of_line ();
5201 return;
5202 }
5203 }
5204
5205 /* Not a number, attempt to create a new space. */
5206 print_errors = 1;
5207 input_line_pointer = save_s;
5208 name = input_line_pointer;
5209 c = get_symbol_end ();
5210 space_name = xmalloc (strlen (name) + 1);
5211 strcpy (space_name, name);
5212 *input_line_pointer = c;
5213
5214 sd_chain = pa_parse_space_stmt (space_name, 1);
5215 current_space = sd_chain;
5216
5217 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
5218 current_subspace = pa_subsegment_to_subspace (sd_chain->sd_seg,
5219 sd_chain->sd_last_subseg);
5220 demand_empty_rest_of_line ();
5221 }
5222 }
5223
5224 /* Switch to a new space. (I think). FIXME. */
5225
5226 static void
5227 pa_spnum (unused)
5228 int unused;
5229 {
5230 char *name;
5231 char c;
5232 char *p;
5233 sd_chain_struct *space;
5234
5235 name = input_line_pointer;
5236 c = get_symbol_end ();
5237 space = is_defined_space (name);
5238 if (space)
5239 {
5240 p = frag_more (4);
5241 md_number_to_chars (p, SPACE_SPNUM (space), 4);
5242 }
5243 else
5244 as_warn ("Undefined space: '%s' Assuming space number = 0.", name);
5245
5246 *input_line_pointer = c;
5247 demand_empty_rest_of_line ();
5248 }
5249
5250 /* If VALUE is an exact power of two between zero and 2^31, then
5251 return log2 (VALUE). Else return -1. */
5252
5253 static int
5254 log2 (value)
5255 int value;
5256 {
5257 int shift = 0;
5258
5259 while ((1 << shift) != value && shift < 32)
5260 shift++;
5261
5262 if (shift >= 32)
5263 return -1;
5264 else
5265 return shift;
5266 }
5267
5268 /* Handle a .SUBSPACE pseudo-op; this switches the current subspace to the
5269 given subspace, creating the new subspace if necessary.
5270
5271 FIXME. Should mirror pa_space more closely, in particular how
5272 they're broken up into subroutines. */
5273
5274 static void
5275 pa_subspace (unused)
5276 int unused;
5277 {
5278 char *name, *ss_name, *alias, c;
5279 char loadable, code_only, common, dup_common, zero, sort;
5280 int i, access, space_index, alignment, quadrant, applicable, flags;
5281 sd_chain_struct *space;
5282 ssd_chain_struct *ssd;
5283 asection *section;
5284
5285 if (within_procedure)
5286 {
5287 as_bad ("Can\'t change subspaces within a procedure definition. Ignored");
5288 ignore_rest_of_line ();
5289 }
5290 else
5291 {
5292 name = input_line_pointer;
5293 c = get_symbol_end ();
5294 ss_name = xmalloc (strlen (name) + 1);
5295 strcpy (ss_name, name);
5296 *input_line_pointer = c;
5297
5298 /* Load default values. */
5299 sort = 0;
5300 access = 0x7f;
5301 loadable = 1;
5302 common = 0;
5303 dup_common = 0;
5304 code_only = 0;
5305 zero = 0;
5306 space_index = ~0;
5307 alignment = 0;
5308 quadrant = 0;
5309 alias = NULL;
5310
5311 space = current_space;
5312 ssd = is_defined_subspace (ss_name);
5313 /* Allow user to override the builtin attributes of subspaces. But
5314 only allow the attributes to be changed once! */
5315 if (ssd && SUBSPACE_DEFINED (ssd))
5316 {
5317 subseg_set (ssd->ssd_seg, ssd->ssd_subseg);
5318 if (!is_end_of_statement ())
5319 as_warn ("Parameters of an existing subspace can\'t be modified");
5320 demand_empty_rest_of_line ();
5321 return;
5322 }
5323 else
5324 {
5325 /* A new subspace. Load default values if it matches one of
5326 the builtin subspaces. */
5327 i = 0;
5328 while (pa_def_subspaces[i].name)
5329 {
5330 if (strcasecmp (pa_def_subspaces[i].name, ss_name) == 0)
5331 {
5332 loadable = pa_def_subspaces[i].loadable;
5333 common = pa_def_subspaces[i].common;
5334 dup_common = pa_def_subspaces[i].dup_common;
5335 code_only = pa_def_subspaces[i].code_only;
5336 zero = pa_def_subspaces[i].zero;
5337 space_index = pa_def_subspaces[i].space_index;
5338 alignment = pa_def_subspaces[i].alignment;
5339 quadrant = pa_def_subspaces[i].quadrant;
5340 access = pa_def_subspaces[i].access;
5341 sort = pa_def_subspaces[i].sort;
5342 if (USE_ALIASES && pa_def_subspaces[i].alias)
5343 alias = pa_def_subspaces[i].alias;
5344 break;
5345 }
5346 i++;
5347 }
5348 }
5349
5350 /* We should be working with a new subspace now. Fill in
5351 any information as specified by the user. */
5352 if (!is_end_of_statement ())
5353 {
5354 input_line_pointer++;
5355 while (!is_end_of_statement ())
5356 {
5357 name = input_line_pointer;
5358 c = get_symbol_end ();
5359 if ((strncasecmp (name, "quad", 4) == 0))
5360 {
5361 *input_line_pointer = c;
5362 input_line_pointer++;
5363 quadrant = get_absolute_expression ();
5364 }
5365 else if ((strncasecmp (name, "align", 5) == 0))
5366 {
5367 *input_line_pointer = c;
5368 input_line_pointer++;
5369 alignment = get_absolute_expression ();
5370 if (log2 (alignment) == -1)
5371 {
5372 as_bad ("Alignment must be a power of 2");
5373 alignment = 1;
5374 }
5375 }
5376 else if ((strncasecmp (name, "access", 6) == 0))
5377 {
5378 *input_line_pointer = c;
5379 input_line_pointer++;
5380 access = get_absolute_expression ();
5381 }
5382 else if ((strncasecmp (name, "sort", 4) == 0))
5383 {
5384 *input_line_pointer = c;
5385 input_line_pointer++;
5386 sort = get_absolute_expression ();
5387 }
5388 else if ((strncasecmp (name, "code_only", 9) == 0))
5389 {
5390 *input_line_pointer = c;
5391 code_only = 1;
5392 }
5393 else if ((strncasecmp (name, "unloadable", 10) == 0))
5394 {
5395 *input_line_pointer = c;
5396 loadable = 0;
5397 }
5398 else if ((strncasecmp (name, "common", 6) == 0))
5399 {
5400 *input_line_pointer = c;
5401 common = 1;
5402 }
5403 else if ((strncasecmp (name, "dup_comm", 8) == 0))
5404 {
5405 *input_line_pointer = c;
5406 dup_common = 1;
5407 }
5408 else if ((strncasecmp (name, "zero", 4) == 0))
5409 {
5410 *input_line_pointer = c;
5411 zero = 1;
5412 }
5413 else if ((strncasecmp (name, "first", 5) == 0))
5414 as_bad ("FIRST not supported as a .SUBSPACE argument");
5415 else
5416 as_bad ("Invalid .SUBSPACE argument");
5417 if (!is_end_of_statement ())
5418 input_line_pointer++;
5419 }
5420 }
5421
5422 /* Compute a reasonable set of BFD flags based on the information
5423 in the .subspace directive. */
5424 applicable = bfd_applicable_section_flags (stdoutput);
5425 flags = 0;
5426 if (loadable)
5427 flags |= (SEC_ALLOC | SEC_LOAD);
5428 if (code_only)
5429 flags |= SEC_CODE;
5430 if (common || dup_common)
5431 flags |= SEC_IS_COMMON;
5432
5433 /* This is a zero-filled subspace (eg BSS). */
5434 if (zero)
5435 flags &= ~SEC_LOAD;
5436
5437 flags |= SEC_RELOC | SEC_HAS_CONTENTS;
5438 applicable &= flags;
5439
5440 /* If this is an existing subspace, then we want to use the
5441 segment already associated with the subspace.
5442
5443 FIXME NOW! ELF BFD doesn't appear to be ready to deal with
5444 lots of sections. It might be a problem in the PA ELF
5445 code, I do not know yet. For now avoid creating anything
5446 but the "standard" sections for ELF. */
5447 if (ssd)
5448 section = ssd->ssd_seg;
5449 else if (alias)
5450 section = subseg_new (alias, 0);
5451 else if (!alias && USE_ALIASES)
5452 {
5453 as_warn ("Ignoring subspace decl due to ELF BFD bugs.");
5454 demand_empty_rest_of_line ();
5455 return;
5456 }
5457 else
5458 section = subseg_new (ss_name, 0);
5459
5460 /* Now set the flags. */
5461 bfd_set_section_flags (stdoutput, section, applicable);
5462
5463 /* Record any alignment request for this section. */
5464 record_alignment (section, log2 (alignment));
5465
5466 /* Set the starting offset for this section. */
5467 bfd_set_section_vma (stdoutput, section,
5468 pa_subspace_start (space, quadrant));
5469
5470 /* Now that all the flags are set, update an existing subspace,
5471 or create a new one. */
5472 if (ssd)
5473
5474 current_subspace = update_subspace (space, ss_name, loadable,
5475 code_only, common, dup_common,
5476 sort, zero, access, space_index,
5477 alignment, quadrant,
5478 section);
5479 else
5480 current_subspace = create_new_subspace (space, ss_name, loadable,
5481 code_only, common,
5482 dup_common, zero, sort,
5483 access, space_index,
5484 alignment, quadrant, section);
5485
5486 demand_empty_rest_of_line ();
5487 current_subspace->ssd_seg = section;
5488 subseg_set (current_subspace->ssd_seg, current_subspace->ssd_subseg);
5489 }
5490 SUBSPACE_DEFINED (current_subspace) = 1;
5491 }
5492
5493
5494 /* Create default space and subspace dictionaries. */
5495
5496 static void
5497 pa_spaces_begin ()
5498 {
5499 int i;
5500
5501 space_dict_root = NULL;
5502 space_dict_last = NULL;
5503
5504 i = 0;
5505 while (pa_def_spaces[i].name)
5506 {
5507 char *name;
5508
5509 /* Pick the right name to use for the new section. */
5510 if (pa_def_spaces[i].alias && USE_ALIASES)
5511 name = pa_def_spaces[i].alias;
5512 else
5513 name = pa_def_spaces[i].name;
5514
5515 pa_def_spaces[i].segment = subseg_new (name, 0);
5516 create_new_space (pa_def_spaces[i].name, pa_def_spaces[i].spnum,
5517 pa_def_spaces[i].loadable, pa_def_spaces[i].defined,
5518 pa_def_spaces[i].private, pa_def_spaces[i].sort,
5519 pa_def_spaces[i].segment, 0);
5520 i++;
5521 }
5522
5523 i = 0;
5524 while (pa_def_subspaces[i].name)
5525 {
5526 char *name;
5527 int applicable, subsegment;
5528 asection *segment = NULL;
5529 sd_chain_struct *space;
5530
5531 /* Pick the right name for the new section and pick the right
5532 subsegment number. */
5533 if (pa_def_subspaces[i].alias && USE_ALIASES)
5534 {
5535 name = pa_def_subspaces[i].alias;
5536 subsegment = pa_def_subspaces[i].subsegment;
5537 }
5538 else
5539 {
5540 name = pa_def_subspaces[i].name;
5541 subsegment = 0;
5542 }
5543
5544 /* Create the new section. */
5545 segment = subseg_new (name, subsegment);
5546
5547
5548 /* For SOM we want to replace the standard .text, .data, and .bss
5549 sections with our own. */
5550 if (!strcmp (pa_def_subspaces[i].name, "$CODE$") && !USE_ALIASES)
5551 {
5552 text_section = segment;
5553 applicable = bfd_applicable_section_flags (stdoutput);
5554 bfd_set_section_flags (stdoutput, text_section,
5555 applicable & (SEC_ALLOC | SEC_LOAD
5556 | SEC_RELOC | SEC_CODE
5557 | SEC_READONLY
5558 | SEC_HAS_CONTENTS));
5559 }
5560 else if (!strcmp (pa_def_subspaces[i].name, "$DATA$") && !USE_ALIASES)
5561 {
5562 data_section = segment;
5563 applicable = bfd_applicable_section_flags (stdoutput);
5564 bfd_set_section_flags (stdoutput, data_section,
5565 applicable & (SEC_ALLOC | SEC_LOAD
5566 | SEC_RELOC
5567 | SEC_HAS_CONTENTS));
5568
5569
5570 }
5571 else if (!strcmp (pa_def_subspaces[i].name, "$BSS$") && !USE_ALIASES)
5572 {
5573 bss_section = segment;
5574 applicable = bfd_applicable_section_flags (stdoutput);
5575 bfd_set_section_flags (stdoutput, bss_section,
5576 applicable & SEC_ALLOC);
5577 }
5578
5579 /* Find the space associated with this subspace. */
5580 space = pa_segment_to_space (pa_def_spaces[pa_def_subspaces[i].
5581 def_space_index].segment);
5582 if (space == NULL)
5583 {
5584 as_fatal ("Internal error: Unable to find containing space for %s.",
5585 pa_def_subspaces[i].name);
5586 }
5587
5588 create_new_subspace (space, name,
5589 pa_def_subspaces[i].loadable,
5590 pa_def_subspaces[i].code_only,
5591 pa_def_subspaces[i].common,
5592 pa_def_subspaces[i].dup_common,
5593 pa_def_subspaces[i].zero,
5594 pa_def_subspaces[i].sort,
5595 pa_def_subspaces[i].access,
5596 pa_def_subspaces[i].space_index,
5597 pa_def_subspaces[i].alignment,
5598 pa_def_subspaces[i].quadrant,
5599 segment);
5600 i++;
5601 }
5602 }
5603
5604
5605
5606 /* Create a new space NAME, with the appropriate flags as defined
5607 by the given parameters. */
5608
5609 static sd_chain_struct *
5610 create_new_space (name, spnum, loadable, defined, private,
5611 sort, seg, user_defined)
5612 char *name;
5613 int spnum;
5614 char loadable;
5615 char defined;
5616 char private;
5617 char sort;
5618 asection *seg;
5619 int user_defined;
5620 {
5621 sd_chain_struct *chain_entry;
5622
5623 chain_entry = (sd_chain_struct *) xmalloc (sizeof (sd_chain_struct));
5624 if (!chain_entry)
5625 as_fatal ("Out of memory: could not allocate new space chain entry: %s\n",
5626 name);
5627
5628 SPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5629 strcpy (SPACE_NAME (chain_entry), name);
5630 SPACE_DEFINED (chain_entry) = defined;
5631 SPACE_USER_DEFINED (chain_entry) = user_defined;
5632 SPACE_SPNUM (chain_entry) = spnum;
5633
5634 chain_entry->sd_seg = seg;
5635 chain_entry->sd_last_subseg = -1;
5636 chain_entry->sd_next = NULL;
5637
5638 /* Find spot for the new space based on its sort key. */
5639 if (!space_dict_last)
5640 space_dict_last = chain_entry;
5641
5642 if (space_dict_root == NULL)
5643 space_dict_root = chain_entry;
5644 else
5645 {
5646 sd_chain_struct *chain_pointer;
5647 sd_chain_struct *prev_chain_pointer;
5648
5649 chain_pointer = space_dict_root;
5650 prev_chain_pointer = NULL;
5651
5652 while (chain_pointer)
5653 {
5654 prev_chain_pointer = chain_pointer;
5655 chain_pointer = chain_pointer->sd_next;
5656 }
5657
5658 /* At this point we've found the correct place to add the new
5659 entry. So add it and update the linked lists as appropriate. */
5660 if (prev_chain_pointer)
5661 {
5662 chain_entry->sd_next = chain_pointer;
5663 prev_chain_pointer->sd_next = chain_entry;
5664 }
5665 else
5666 {
5667 space_dict_root = chain_entry;
5668 chain_entry->sd_next = chain_pointer;
5669 }
5670
5671 if (chain_entry->sd_next == NULL)
5672 space_dict_last = chain_entry;
5673 }
5674
5675 /* This is here to catch predefined spaces which do not get
5676 modified by the user's input. Another call is found at
5677 the bottom of pa_parse_space_stmt to handle cases where
5678 the user modifies a predefined space. */
5679 #ifdef obj_set_section_attributes
5680 obj_set_section_attributes (seg, defined, private, sort, spnum);
5681 #endif
5682
5683 return chain_entry;
5684 }
5685
5686 /* Create a new subspace NAME, with the appropriate flags as defined
5687 by the given parameters.
5688
5689 Add the new subspace to the subspace dictionary chain in numerical
5690 order as defined by the SORT entries. */
5691
5692 static ssd_chain_struct *
5693 create_new_subspace (space, name, loadable, code_only, common,
5694 dup_common, is_zero, sort, access, space_index,
5695 alignment, quadrant, seg)
5696 sd_chain_struct *space;
5697 char *name;
5698 char loadable, code_only, common, dup_common, is_zero;
5699 char sort;
5700 int access;
5701 int space_index;
5702 int alignment;
5703 int quadrant;
5704 asection *seg;
5705 {
5706 ssd_chain_struct *chain_entry;
5707
5708 chain_entry = (ssd_chain_struct *) xmalloc (sizeof (ssd_chain_struct));
5709 if (!chain_entry)
5710 as_fatal ("Out of memory: could not allocate new subspace chain entry: %s\n", name);
5711
5712 SUBSPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5713 strcpy (SUBSPACE_NAME (chain_entry), name);
5714
5715 /* Initialize subspace_defined. When we hit a .subspace directive
5716 we'll set it to 1 which "locks-in" the subspace attributes. */
5717 SUBSPACE_DEFINED (chain_entry) = 0;
5718
5719 chain_entry->ssd_subseg = USE_ALIASES ? pa_next_subseg (space) : 0;
5720 chain_entry->ssd_seg = seg;
5721 chain_entry->ssd_next = NULL;
5722
5723 /* Find spot for the new subspace based on its sort key. */
5724 if (space->sd_subspaces == NULL)
5725 space->sd_subspaces = chain_entry;
5726 else
5727 {
5728 ssd_chain_struct *chain_pointer;
5729 ssd_chain_struct *prev_chain_pointer;
5730
5731 chain_pointer = space->sd_subspaces;
5732 prev_chain_pointer = NULL;
5733
5734 while (chain_pointer)
5735 {
5736 prev_chain_pointer = chain_pointer;
5737 chain_pointer = chain_pointer->ssd_next;
5738 }
5739
5740 /* Now we have somewhere to put the new entry. Insert it and update
5741 the links. */
5742 if (prev_chain_pointer)
5743 {
5744 chain_entry->ssd_next = chain_pointer;
5745 prev_chain_pointer->ssd_next = chain_entry;
5746 }
5747 else
5748 {
5749 space->sd_subspaces = chain_entry;
5750 chain_entry->ssd_next = chain_pointer;
5751 }
5752 }
5753
5754 #ifdef obj_set_subsection_attributes
5755 obj_set_subsection_attributes (seg, space->sd_seg, access,
5756 sort, quadrant);
5757 #endif
5758
5759 return chain_entry;
5760 }
5761
5762 /* Update the information for the given subspace based upon the
5763 various arguments. Return the modified subspace chain entry. */
5764
5765 static ssd_chain_struct *
5766 update_subspace (space, name, loadable, code_only, common, dup_common, sort,
5767 zero, access, space_index, alignment, quadrant, section)
5768 sd_chain_struct *space;
5769 char *name;
5770 char loadable;
5771 char code_only;
5772 char common;
5773 char dup_common;
5774 char zero;
5775 char sort;
5776 int access;
5777 int space_index;
5778 int alignment;
5779 int quadrant;
5780 asection *section;
5781 {
5782 ssd_chain_struct *chain_entry;
5783
5784 chain_entry = is_defined_subspace (name);
5785
5786 #ifdef obj_set_subsection_attributes
5787 obj_set_subsection_attributes (section, space->sd_seg, access,
5788 sort, quadrant);
5789 #endif
5790
5791 return chain_entry;
5792 }
5793
5794 /* Return the space chain entry for the space with the name NAME or
5795 NULL if no such space exists. */
5796
5797 static sd_chain_struct *
5798 is_defined_space (name)
5799 char *name;
5800 {
5801 sd_chain_struct *chain_pointer;
5802
5803 for (chain_pointer = space_dict_root;
5804 chain_pointer;
5805 chain_pointer = chain_pointer->sd_next)
5806 {
5807 if (strcmp (SPACE_NAME (chain_pointer), name) == 0)
5808 return chain_pointer;
5809 }
5810
5811 /* No mapping from segment to space was found. Return NULL. */
5812 return NULL;
5813 }
5814
5815 /* Find and return the space associated with the given seg. If no mapping
5816 from the given seg to a space is found, then return NULL.
5817
5818 Unlike subspaces, the number of spaces is not expected to grow much,
5819 so a linear exhaustive search is OK here. */
5820
5821 static sd_chain_struct *
5822 pa_segment_to_space (seg)
5823 asection *seg;
5824 {
5825 sd_chain_struct *space_chain;
5826
5827 /* Walk through each space looking for the correct mapping. */
5828 for (space_chain = space_dict_root;
5829 space_chain;
5830 space_chain = space_chain->sd_next)
5831 {
5832 if (space_chain->sd_seg == seg)
5833 return space_chain;
5834 }
5835
5836 /* Mapping was not found. Return NULL. */
5837 return NULL;
5838 }
5839
5840 /* Return the space chain entry for the subspace with the name NAME or
5841 NULL if no such subspace exists.
5842
5843 Uses a linear search through all the spaces and subspaces, this may
5844 not be appropriate if we ever being placing each function in its
5845 own subspace. */
5846
5847 static ssd_chain_struct *
5848 is_defined_subspace (name)
5849 char *name;
5850 {
5851 sd_chain_struct *space_chain;
5852 ssd_chain_struct *subspace_chain;
5853
5854 /* Walk through each space. */
5855 for (space_chain = space_dict_root;
5856 space_chain;
5857 space_chain = space_chain->sd_next)
5858 {
5859 /* Walk through each subspace looking for a name which matches. */
5860 for (subspace_chain = space_chain->sd_subspaces;
5861 subspace_chain;
5862 subspace_chain = subspace_chain->ssd_next)
5863 if (strcmp (SUBSPACE_NAME (subspace_chain), name) == 0)
5864 return subspace_chain;
5865 }
5866
5867 /* Subspace wasn't found. Return NULL. */
5868 return NULL;
5869 }
5870
5871 /* Find and return the subspace associated with the given seg. If no
5872 mapping from the given seg to a subspace is found, then return NULL.
5873
5874 If we ever put each procedure/function within its own subspace
5875 (to make life easier on the compiler and linker), then this will have
5876 to become more efficient. */
5877
5878 static ssd_chain_struct *
5879 pa_subsegment_to_subspace (seg, subseg)
5880 asection *seg;
5881 subsegT subseg;
5882 {
5883 sd_chain_struct *space_chain;
5884 ssd_chain_struct *subspace_chain;
5885
5886 /* Walk through each space. */
5887 for (space_chain = space_dict_root;
5888 space_chain;
5889 space_chain = space_chain->sd_next)
5890 {
5891 if (space_chain->sd_seg == seg)
5892 {
5893 /* Walk through each subspace within each space looking for
5894 the correct mapping. */
5895 for (subspace_chain = space_chain->sd_subspaces;
5896 subspace_chain;
5897 subspace_chain = subspace_chain->ssd_next)
5898 if (subspace_chain->ssd_subseg == (int) subseg)
5899 return subspace_chain;
5900 }
5901 }
5902
5903 /* No mapping from subsegment to subspace found. Return NULL. */
5904 return NULL;
5905 }
5906
5907 /* Given a number, try and find a space with the name number.
5908
5909 Return a pointer to a space dictionary chain entry for the space
5910 that was found or NULL on failure. */
5911
5912 static sd_chain_struct *
5913 pa_find_space_by_number (number)
5914 int number;
5915 {
5916 sd_chain_struct *space_chain;
5917
5918 for (space_chain = space_dict_root;
5919 space_chain;
5920 space_chain = space_chain->sd_next)
5921 {
5922 if (SPACE_SPNUM (space_chain) == number)
5923 return space_chain;
5924 }
5925
5926 /* No appropriate space found. Return NULL. */
5927 return NULL;
5928 }
5929
5930 /* Return the starting address for the given subspace. If the starting
5931 address is unknown then return zero. */
5932
5933 static unsigned int
5934 pa_subspace_start (space, quadrant)
5935 sd_chain_struct *space;
5936 int quadrant;
5937 {
5938 /* FIXME. Assumes everyone puts read/write data at 0x4000000, this
5939 is not correct for the PA OSF1 port. */
5940 if ((strcmp (SPACE_NAME (space), "$PRIVATE$") == 0) && quadrant == 1)
5941 return 0x40000000;
5942 else if (space->sd_seg == data_section && quadrant == 1)
5943 return 0x40000000;
5944 else
5945 return 0;
5946 }
5947
5948 /* FIXME. Needs documentation. */
5949 static int
5950 pa_next_subseg (space)
5951 sd_chain_struct *space;
5952 {
5953
5954 space->sd_last_subseg++;
5955 return space->sd_last_subseg;
5956 }
5957
5958 /* Helper function for pa_stringer. Used to find the end of
5959 a string. */
5960
5961 static unsigned int
5962 pa_stringer_aux (s)
5963 char *s;
5964 {
5965 unsigned int c = *s & CHAR_MASK;
5966 switch (c)
5967 {
5968 case '\"':
5969 c = NOT_A_CHAR;
5970 break;
5971 default:
5972 break;
5973 }
5974 return c;
5975 }
5976
5977 /* Handle a .STRING type pseudo-op. */
5978
5979 static void
5980 pa_stringer (append_zero)
5981 int append_zero;
5982 {
5983 char *s, num_buf[4];
5984 unsigned int c;
5985 int i;
5986
5987 /* Preprocess the string to handle PA-specific escape sequences.
5988 For example, \xDD where DD is a hexidecimal number should be
5989 changed to \OOO where OOO is an octal number. */
5990
5991 /* Skip the opening quote. */
5992 s = input_line_pointer + 1;
5993
5994 while (is_a_char (c = pa_stringer_aux (s++)))
5995 {
5996 if (c == '\\')
5997 {
5998 c = *s;
5999 switch (c)
6000 {
6001 /* Handle \x<num>. */
6002 case 'x':
6003 {
6004 unsigned int number;
6005 int num_digit;
6006 char dg;
6007 char *s_start = s;
6008
6009 /* Get pas the 'x'. */
6010 s++;
6011 for (num_digit = 0, number = 0, dg = *s;
6012 num_digit < 2
6013 && (isdigit (dg) || (dg >= 'a' && dg <= 'f')
6014 || (dg >= 'A' && dg <= 'F'));
6015 num_digit++)
6016 {
6017 if (isdigit (dg))
6018 number = number * 16 + dg - '0';
6019 else if (dg >= 'a' && dg <= 'f')
6020 number = number * 16 + dg - 'a' + 10;
6021 else
6022 number = number * 16 + dg - 'A' + 10;
6023
6024 s++;
6025 dg = *s;
6026 }
6027 if (num_digit > 0)
6028 {
6029 switch (num_digit)
6030 {
6031 case 1:
6032 sprintf (num_buf, "%02o", number);
6033 break;
6034 case 2:
6035 sprintf (num_buf, "%03o", number);
6036 break;
6037 }
6038 for (i = 0; i <= num_digit; i++)
6039 s_start[i] = num_buf[i];
6040 }
6041 break;
6042 }
6043 /* This might be a "\"", skip over the escaped char. */
6044 default:
6045 s++;
6046 break;
6047 }
6048 }
6049 }
6050 stringer (append_zero);
6051 pa_undefine_label ();
6052 }
6053
6054 /* Handle a .VERSION pseudo-op. */
6055
6056 static void
6057 pa_version (unused)
6058 int unused;
6059 {
6060 obj_version (0);
6061 pa_undefine_label ();
6062 }
6063
6064 /* Handle a .COPYRIGHT pseudo-op. */
6065
6066 static void
6067 pa_copyright (unused)
6068 int unused;
6069 {
6070 obj_copyright (0);
6071 pa_undefine_label ();
6072 }
6073
6074 /* Just like a normal cons, but when finished we have to undefine
6075 the latest space label. */
6076
6077 static void
6078 pa_cons (nbytes)
6079 int nbytes;
6080 {
6081 cons (nbytes);
6082 pa_undefine_label ();
6083 }
6084
6085 /* Switch to the data space. As usual delete our label. */
6086
6087 static void
6088 pa_data (unused)
6089 int unused;
6090 {
6091 s_data (0);
6092 pa_undefine_label ();
6093 }
6094
6095 /* Like float_cons, but we need to undefine our label. */
6096
6097 static void
6098 pa_float_cons (float_type)
6099 int float_type;
6100 {
6101 float_cons (float_type);
6102 pa_undefine_label ();
6103 }
6104
6105 /* Like s_fill, but delete our label when finished. */
6106
6107 static void
6108 pa_fill (unused)
6109 int unused;
6110 {
6111 s_fill (0);
6112 pa_undefine_label ();
6113 }
6114
6115 /* Like lcomm, but delete our label when finished. */
6116
6117 static void
6118 pa_lcomm (needs_align)
6119 int needs_align;
6120 {
6121 s_lcomm (needs_align);
6122 pa_undefine_label ();
6123 }
6124
6125 /* Like lsym, but delete our label when finished. */
6126
6127 static void
6128 pa_lsym (unused)
6129 int unused;
6130 {
6131 s_lsym (0);
6132 pa_undefine_label ();
6133 }
6134
6135 /* Switch to the text space. Like s_text, but delete our
6136 label when finished. */
6137 static void
6138 pa_text (unused)
6139 int unused;
6140 {
6141 s_text (0);
6142 pa_undefine_label ();
6143 }
6144
6145 /* On the PA relocations which involve function symbols must not be
6146 adjusted. This so that the linker can know when/how to create argument
6147 relocation stubs for indirect calls and calls to static functions.
6148
6149 FIXME. Also reject R_HPPA relocations which are 32 bits
6150 wide. Helps with code lables in arrays for SOM. (SOM BFD code
6151 needs to generate relocations to push the addend and symbol value
6152 onto the stack, add them, then pop the value off the stack and
6153 use it in a relocation -- yuk. */
6154
6155 int
6156 hppa_fix_adjustable (fixp)
6157 fixS *fixp;
6158 {
6159 struct hppa_fix_struct *hppa_fix;
6160
6161 hppa_fix = fixp->tc_fix_data;
6162
6163 if (fixp->fx_r_type == R_HPPA && hppa_fix->fx_r_format == 32)
6164 return 0;
6165
6166 if (fixp->fx_addsy == 0
6167 || (fixp->fx_addsy->bsym->flags & BSF_FUNCTION) == 0)
6168 return 1;
6169
6170 return 0;
6171 }
6172
6173 /* Return nonzero if the fixup in FIXP will require a relocation,
6174 even it if appears that the fixup could be completely handled
6175 within GAS. */
6176
6177 int
6178 hppa_force_relocation (fixp)
6179 fixS *fixp;
6180 {
6181 struct hppa_fix_struct *hppa_fixp = fixp->tc_fix_data;
6182
6183 #ifdef OBJ_SOM
6184 if (fixp->fx_r_type == R_HPPA_ENTRY || fixp->fx_r_type == R_HPPA_EXIT)
6185 return 1;
6186 #endif
6187
6188 #define stub_needed(CALLER, CALLEE) \
6189 ((CALLEE) && (CALLER) && ((CALLEE) != (CALLER)))
6190
6191 /* It is necessary to force PC-relative calls/jumps to have a relocation
6192 entry if they're going to need either a argument relocation or long
6193 call stub. FIXME. Can't we need the same for absolute calls? */
6194 if (fixp->fx_pcrel && fixp->fx_addsy
6195 && (stub_needed (((obj_symbol_type *)
6196 fixp->fx_addsy->bsym)->tc_data.hppa_arg_reloc,
6197 hppa_fixp->fx_arg_reloc)))
6198 return 1;
6199
6200 #undef stub_needed
6201
6202 /* No need (yet) to force another relocations to be emitted. */
6203 return 0;
6204 }
6205
6206 /* Now for some ELF specific code. FIXME. */
6207 #ifdef OBJ_ELF
6208 static symext_chainS *symext_rootP;
6209 static symext_chainS *symext_lastP;
6210
6211 /* Mark the end of a function so that it's possible to compute
6212 the size of the function in hppa_elf_final_processing. */
6213
6214 static void
6215 hppa_elf_mark_end_of_function ()
6216 {
6217 /* ELF does not have EXIT relocations. All we do is create a
6218 temporary symbol marking the end of the function. */
6219 char *name = (char *)
6220 xmalloc (strlen ("L$\001end_") +
6221 strlen (S_GET_NAME (last_call_info->start_symbol)) + 1);
6222
6223 if (name)
6224 {
6225 symbolS *symbolP;
6226
6227 strcpy (name, "L$\001end_");
6228 strcat (name, S_GET_NAME (last_call_info->start_symbol));
6229
6230 /* If we have a .exit followed by a .procend, then the
6231 symbol will have already been defined. */
6232 symbolP = symbol_find (name);
6233 if (symbolP)
6234 {
6235 /* The symbol has already been defined! This can
6236 happen if we have a .exit followed by a .procend.
6237
6238 This is *not* an error. All we want to do is free
6239 the memory we just allocated for the name and continue. */
6240 xfree (name);
6241 }
6242 else
6243 {
6244 /* symbol value should be the offset of the
6245 last instruction of the function */
6246 symbolP = symbol_new (name, now_seg,
6247 (valueT) (obstack_next_free (&frags)
6248 - frag_now->fr_literal - 4),
6249 frag_now);
6250
6251 assert (symbolP);
6252 symbolP->bsym->flags = BSF_LOCAL;
6253 symbol_table_insert (symbolP);
6254 }
6255
6256 if (symbolP)
6257 last_call_info->end_symbol = symbolP;
6258 else
6259 as_bad ("Symbol '%s' could not be created.", name);
6260
6261 }
6262 else
6263 as_bad ("No memory for symbol name.");
6264
6265 }
6266
6267 /* Do any symbol processing requested by the target-cpu or target-format. */
6268
6269 void
6270 hppa_tc_symbol (abfd, symbolP, sym_idx)
6271 bfd *abfd;
6272 elf_symbol_type *symbolP;
6273 int sym_idx;
6274 {
6275 symext_chainS *symextP;
6276 unsigned int arg_reloc;
6277
6278 /* Only functions can have argument relocations. */
6279 if (!(symbolP->symbol.flags & BSF_FUNCTION))
6280 return;
6281
6282 arg_reloc = symbolP->tc_data.hppa_arg_reloc;
6283
6284 /* If there are no argument relocation bits, then no relocation is
6285 necessary. Do not add this to the symextn section. */
6286 if (arg_reloc == 0)
6287 return;
6288
6289 symextP = (symext_chainS *) bfd_alloc (abfd, sizeof (symext_chainS) * 2);
6290
6291 symextP[0].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX, sym_idx);
6292 symextP[0].next = &symextP[1];
6293
6294 symextP[1].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_ARG_RELOC, arg_reloc);
6295 symextP[1].next = NULL;
6296
6297 if (symext_rootP == NULL)
6298 {
6299 symext_rootP = &symextP[0];
6300 symext_lastP = &symextP[1];
6301 }
6302 else
6303 {
6304 symext_lastP->next = &symextP[0];
6305 symext_lastP = &symextP[1];
6306 }
6307 }
6308
6309 /* Make sections needed by the target cpu and/or target format. */
6310 void
6311 hppa_tc_make_sections (abfd)
6312 bfd *abfd;
6313 {
6314 symext_chainS *symextP;
6315 segT save_seg = now_seg;
6316 subsegT save_subseg = now_subseg;
6317
6318 /* Build the symbol extension section. */
6319 hppa_tc_make_symextn_section ();
6320
6321 /* Force some calculation to occur. */
6322 bfd_set_section_contents (stdoutput, stdoutput->sections, "", 0, 0);
6323
6324 hppa_elf_stub_finish (abfd);
6325
6326 /* If no symbols for the symbol extension section, then stop now. */
6327 if (symext_rootP == NULL)
6328 return;
6329
6330 /* Switch to the symbol extension section. */
6331 subseg_new (SYMEXTN_SECTION_NAME, 0);
6332
6333 frag_wane (frag_now);
6334 frag_new (0);
6335
6336 for (symextP = symext_rootP; symextP; symextP = symextP->next)
6337 {
6338 char *ptr;
6339 int *symtab_map = elf_sym_extra (abfd);
6340 int idx;
6341
6342 /* First, patch the symbol extension record to reflect the true
6343 symbol table index. */
6344
6345 if (ELF32_HPPA_SX_TYPE (symextP->entry) == HPPA_SXT_SYMNDX)
6346 {
6347 idx = ELF32_HPPA_SX_VAL (symextP->entry) - 1;
6348 symextP->entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX,
6349 symtab_map[idx]);
6350 }
6351
6352 ptr = frag_more (sizeof (symextP->entry));
6353 md_number_to_chars (ptr, symextP->entry, sizeof (symextP->entry));
6354 }
6355
6356 frag_now->fr_fix = obstack_next_free (&frags) - frag_now->fr_literal;
6357 frag_wane (frag_now);
6358
6359 /* Switch back to the original segment. */
6360 subseg_set (save_seg, save_subseg);
6361 }
6362
6363 /* Make the symbol extension section. */
6364
6365 static void
6366 hppa_tc_make_symextn_section ()
6367 {
6368 if (symext_rootP)
6369 {
6370 symext_chainS *symextP;
6371 int n;
6372 unsigned int size;
6373 segT symextn_sec;
6374 segT save_seg = now_seg;
6375 subsegT save_subseg = now_subseg;
6376
6377 for (n = 0, symextP = symext_rootP; symextP; symextP = symextP->next, ++n)
6378 ;
6379
6380 size = sizeof (symext_entryS) * n;
6381
6382 symextn_sec = subseg_new (SYMEXTN_SECTION_NAME, 0);
6383
6384 bfd_set_section_flags (stdoutput, symextn_sec,
6385 SEC_LOAD | SEC_HAS_CONTENTS | SEC_DATA);
6386 bfd_set_section_size (stdoutput, symextn_sec, size);
6387
6388 /* Now, switch back to the original segment. */
6389 subseg_set (save_seg, save_subseg);
6390 }
6391 }
6392
6393 /* Build the symbol extension section. */
6394
6395 static void
6396 pa_build_symextn_section ()
6397 {
6398 segT seg;
6399 asection *save_seg = now_seg;
6400 subsegT subseg = (subsegT) 0;
6401 subsegT save_subseg = now_subseg;
6402
6403 seg = subseg_new (".hppa_symextn", subseg);
6404 bfd_set_section_flags (stdoutput,
6405 seg,
6406 SEC_HAS_CONTENTS | SEC_READONLY
6407 | SEC_ALLOC | SEC_LOAD);
6408
6409 subseg_set (save_seg, save_subseg);
6410 }
6411
6412 /* For ELF, this function serves one purpose: to setup the st_size
6413 field of STT_FUNC symbols. To do this, we need to scan the
6414 call_info structure list, determining st_size in by taking the
6415 difference in the address of the beginning/end marker symbols. */
6416
6417 void
6418 elf_hppa_final_processing ()
6419 {
6420 struct call_info *call_info_pointer;
6421
6422 for (call_info_pointer = call_info_root;
6423 call_info_pointer;
6424 call_info_pointer = call_info_pointer->ci_next)
6425 {
6426 elf_symbol_type *esym
6427 = (elf_symbol_type *) call_info_pointer->start_symbol->bsym;
6428 esym->internal_elf_sym.st_size =
6429 S_GET_VALUE (call_info_pointer->end_symbol)
6430 - S_GET_VALUE (call_info_pointer->start_symbol) + 4;
6431 }
6432 }
6433 #endif