* config/tc-hppa.c (tc_gen_reloc, SOM version): Handle relocation
[binutils-gdb.git] / gas / config / tc-hppa.c
1 /* tc-hppa.c -- Assemble for the PA
2 Copyright (C) 1989 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 1, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* HP PA-RISC support was contributed by the Center for Software Science
22 at the University of Utah. */
23
24 #include <stdio.h>
25 #include <ctype.h>
26
27 #include "as.h"
28 #include "subsegs.h"
29
30 #include "../bfd/libhppa.h"
31 #include "../bfd/libbfd.h"
32
33 /* Be careful, this file includes data *declarations*. */
34 #include "opcode/hppa.h"
35
36 /* A "convient" place to put object file dependencies which do
37 not need to be seen outside of tc-hppa.c. */
38 #ifdef OBJ_ELF
39 /* Names of various debugging spaces/subspaces. */
40 #define GDB_DEBUG_SPACE_NAME ".stab"
41 #define GDB_STRINGS_SUBSPACE_NAME ".stabstr"
42 #define GDB_SYMBOLS_SUBSPACE_NAME ".stab"
43 #define UNWIND_SECTION_NAME ".hppa_unwind"
44 /* Nonzero if CODE is a fixup code needing further processing. */
45
46 /* Object file formats specify relocation types. */
47 typedef elf32_hppa_reloc_type reloc_type;
48
49 /* Object file formats specify BFD symbol types. */
50 typedef elf_symbol_type obj_symbol_type;
51
52 /* How to generate a relocation. */
53 #define hppa_gen_reloc_type hppa_elf_gen_reloc_type
54
55 /* Who knows. */
56 #define obj_version obj_elf_version
57
58 /* Use space aliases. */
59 #define USE_ALIASES 1
60
61 /* Some local functions only used by ELF. */
62 static void pa_build_symextn_section PARAMS ((void));
63 static void hppa_tc_make_symextn_section PARAMS ((void));
64 #endif
65
66 #ifdef OBJ_SOM
67 /* Names of various debugging spaces/subspaces. */
68 #define GDB_DEBUG_SPACE_NAME "$GDB_DEBUG$"
69 #define GDB_STRINGS_SUBSPACE_NAME "$GDB_STRINGS$"
70 #define GDB_SYMBOLS_SUBSPACE_NAME "$GDB_SYMBOLS$"
71 #define UNWIND_SECTION_NAME "$UNWIND$"
72
73 /* Object file formats specify relocation types. */
74 typedef int reloc_type;
75
76 /* Who knows. */
77 #define obj_version obj_som_version
78
79 /* Do not use space aliases. */
80 #define USE_ALIASES 0
81
82 /* How to generate a relocation. */
83 #define hppa_gen_reloc_type hppa_som_gen_reloc_type
84
85 /* Object file formats specify BFD symbol types. */
86 typedef som_symbol_type obj_symbol_type;
87 #endif
88
89 /* Various structures and types used internally in tc-hppa.c. */
90
91 /* Unwind table and descriptor. FIXME: Sync this with GDB version. */
92
93 struct unwind_desc
94 {
95 unsigned int cannot_unwind:1;
96 unsigned int millicode:1;
97 unsigned int millicode_save_rest:1;
98 unsigned int region_desc:2;
99 unsigned int save_sr:2;
100 unsigned int entry_fr:4;
101 unsigned int entry_gr:5;
102 unsigned int args_stored:1;
103 unsigned int call_fr:5;
104 unsigned int call_gr:5;
105 unsigned int save_sp:1;
106 unsigned int save_rp:1;
107 unsigned int save_rp_in_frame:1;
108 unsigned int extn_ptr_defined:1;
109 unsigned int cleanup_defined:1;
110
111 unsigned int hpe_interrupt_marker:1;
112 unsigned int hpux_interrupt_marker:1;
113 unsigned int reserved:3;
114 unsigned int frame_size:27;
115 };
116
117 struct unwind_table
118 {
119 /* Starting and ending offsets of the region described by
120 descriptor. */
121 unsigned int start_offset;
122 unsigned int end_offset;
123 struct unwind_desc descriptor;
124 };
125
126 /* This structure is used by the .callinfo, .enter, .leave pseudo-ops to
127 control the entry and exit code they generate. It is also used in
128 creation of the correct stack unwind descriptors.
129
130 NOTE: GAS does not support .enter and .leave for the generation of
131 prologues and epilogues. FIXME.
132
133 The fields in structure roughly correspond to the arguments available on the
134 .callinfo pseudo-op. */
135
136 struct call_info
137 {
138 /* Should sr3 be saved in the prologue? */
139 int entry_sr;
140
141 /* Does this function make calls? */
142 int makes_calls;
143
144 /* The unwind descriptor being built. */
145 struct unwind_table ci_unwind;
146
147 /* Name of this function. */
148 symbolS *start_symbol;
149
150 /* (temporary) symbol used to mark the end of this function. */
151 symbolS *end_symbol;
152
153 /* frags associated with start and end of this function. */
154 fragS *start_frag;
155 fragS *end_frag;
156
157 /* frags for starting/ending offset of this descriptor. */
158 fragS *start_offset_frag;
159 fragS *end_offset_frag;
160
161 /* The location within {start,end}_offset_frag to find the
162 {start,end}_offset. */
163 int start_frag_where;
164 int end_frag_where;
165
166 /* Fixups (relocations) for start_offset and end_offset. */
167 fixS *start_fix;
168 fixS *end_fix;
169
170 /* Next entry in the chain. */
171 struct call_info *ci_next;
172 };
173
174 /* Operand formats for FP instructions. Note not all FP instructions
175 allow all four formats to be used (for example fmpysub only allows
176 SGL and DBL). */
177 typedef enum
178 {
179 SGL, DBL, ILLEGAL_FMT, QUAD
180 }
181 fp_operand_format;
182
183 /* This fully describes the symbol types which may be attached to
184 an EXPORT or IMPORT directive. Only SOM uses this formation
185 (ELF has no need for it). */
186 typedef enum
187 {
188 SYMBOL_TYPE_UNKNOWN,
189 SYMBOL_TYPE_ABSOLUTE,
190 SYMBOL_TYPE_CODE,
191 SYMBOL_TYPE_DATA,
192 SYMBOL_TYPE_ENTRY,
193 SYMBOL_TYPE_MILLICODE,
194 SYMBOL_TYPE_PLABEL,
195 SYMBOL_TYPE_PRI_PROG,
196 SYMBOL_TYPE_SEC_PROG,
197 }
198 pa_symbol_type;
199
200 /* This structure contains information needed to assemble
201 individual instructions. */
202 struct pa_it
203 {
204 /* Holds the opcode after parsing by pa_ip. */
205 unsigned long opcode;
206
207 /* Holds an expression associated with the current instruction. */
208 expressionS exp;
209
210 /* Does this instruction use PC-relative addressing. */
211 int pcrel;
212
213 /* Floating point formats for operand1 and operand2. */
214 fp_operand_format fpof1;
215 fp_operand_format fpof2;
216
217 /* Holds the field selector for this instruction
218 (for example L%, LR%, etc). */
219 long field_selector;
220
221 /* Holds any argument relocation bits associated with this
222 instruction. (instruction should be some sort of call). */
223 long arg_reloc;
224
225 /* The format specification for this instruction. */
226 int format;
227
228 /* The relocation (if any) associated with this instruction. */
229 reloc_type reloc;
230 };
231
232 /* PA-89 floating point registers are arranged like this:
233
234
235 +--------------+--------------+
236 | 0 or 16L | 16 or 16R |
237 +--------------+--------------+
238 | 1 or 17L | 17 or 17R |
239 +--------------+--------------+
240 | | |
241
242 . . .
243 . . .
244 . . .
245
246 | | |
247 +--------------+--------------+
248 | 14 or 30L | 30 or 30R |
249 +--------------+--------------+
250 | 15 or 31L | 31 or 31R |
251 +--------------+--------------+
252
253
254 The following is a version of pa_parse_number that
255 handles the L/R notation and returns the correct
256 value to put into the instruction register field.
257 The correct value to put into the instruction is
258 encoded in the structure 'pa_89_fp_reg_struct'. */
259
260 struct pa_89_fp_reg_struct
261 {
262 /* The register number. */
263 char number_part;
264
265 /* L/R selector. */
266 char l_r_select;
267 };
268
269 /* Additional information needed to build argument relocation stubs. */
270 struct call_desc
271 {
272 /* The argument relocation specification. */
273 unsigned int arg_reloc;
274
275 /* Number of arguments. */
276 unsigned int arg_count;
277 };
278
279 /* This structure defines an entry in the subspace dictionary
280 chain. */
281
282 struct subspace_dictionary_chain
283 {
284 /* Index of containing space. */
285 unsigned long ssd_space_index;
286
287 /* Nonzero if this space has been defined by the user code. */
288 unsigned int ssd_defined;
289
290 /* Which quadrant within the space this subspace should be loaded into. */
291 unsigned char ssd_quadrant;
292
293 /* Alignment (in bytes) for this subspace. */
294 unsigned long ssd_alignment;
295
296 /* Access control bits to determine read/write/execute permissions
297 as well as gateway privilege promotions. */
298 unsigned char ssd_access_control_bits;
299
300 /* A sorting key so that it is possible to specify ordering of
301 subspaces within a space. */
302 unsigned char ssd_sort_key;
303
304 /* Nonzero of this space should be zero filled. */
305 unsigned long ssd_zero;
306
307 /* Nonzero if this is a common subspace. */
308 unsigned char ssd_common;
309
310 /* Nonzero if this is a common subspace which allows symbols to be
311 multiply defined. */
312 unsigned char ssd_dup_common;
313
314 /* Nonzero if this subspace is loadable. Note loadable subspaces
315 must be contained within loadable spaces; unloadable subspaces
316 must be contained in unloadable spaces. */
317 unsigned char ssd_loadable;
318
319 /* Nonzero if this subspace contains only code. */
320 unsigned char ssd_code_only;
321
322 /* Starting offset of this subspace. */
323 unsigned long ssd_subspace_start;
324
325 /* Length of this subspace. */
326 unsigned long ssd_subspace_length;
327
328 /* Name of this subspace. */
329 char *ssd_name;
330
331 /* GAS segment and subsegment associated with this subspace. */
332 asection *ssd_seg;
333 int ssd_subseg;
334
335 /* Index of this subspace within the subspace dictionary of the object
336 file. Not used until object file is written. */
337 int object_file_index;
338
339 /* The size of the last alignment request for this subspace. */
340 int ssd_last_align;
341
342 /* Next space in the subspace dictionary chain. */
343 struct subspace_dictionary_chain *ssd_next;
344 };
345
346 typedef struct subspace_dictionary_chain ssd_chain_struct;
347
348 /* This structure defines an entry in the subspace dictionary
349 chain. */
350
351 struct space_dictionary_chain
352 {
353
354 /* Holds the index into the string table of the name of this
355 space. */
356 unsigned int sd_name_index;
357
358 /* Nonzero if the space is loadable. */
359 unsigned int sd_loadable;
360
361 /* Nonzero if this space has been defined by the user code or
362 as a default space. */
363 unsigned int sd_defined;
364
365 /* Nonzero if this spaces has been defined by the user code. */
366 unsigned int sd_user_defined;
367
368 /* Nonzero if this space is not sharable. */
369 unsigned int sd_private;
370
371 /* The space number (or index). */
372 unsigned int sd_spnum;
373
374 /* The sort key for this space. May be used to determine how to lay
375 out the spaces within the object file. */
376 unsigned char sd_sort_key;
377
378 /* The name of this subspace. */
379 char *sd_name;
380
381 /* GAS segment to which this subspace corresponds. */
382 asection *sd_seg;
383
384 /* Current subsegment number being used. */
385 int sd_last_subseg;
386
387 /* The chain of subspaces contained within this space. */
388 ssd_chain_struct *sd_subspaces;
389
390 /* The next entry in the space dictionary chain. */
391 struct space_dictionary_chain *sd_next;
392 };
393
394 typedef struct space_dictionary_chain sd_chain_struct;
395
396 /* Structure for previous label tracking. Needed so that alignments,
397 callinfo declarations, etc can be easily attached to a particular
398 label. */
399 typedef struct label_symbol_struct
400 {
401 struct symbol *lss_label;
402 sd_chain_struct *lss_space;
403 struct label_symbol_struct *lss_next;
404 }
405 label_symbol_struct;
406
407 /* This structure defines attributes of the default subspace
408 dictionary entries. */
409
410 struct default_subspace_dict
411 {
412 /* Name of the subspace. */
413 char *name;
414
415 /* FIXME. Is this still needed? */
416 char defined;
417
418 /* Nonzero if this subspace is loadable. */
419 char loadable;
420
421 /* Nonzero if this subspace contains only code. */
422 char code_only;
423
424 /* Nonzero if this is a common subspace. */
425 char common;
426
427 /* Nonzero if this is a common subspace which allows symbols
428 to be multiply defined. */
429 char dup_common;
430
431 /* Nonzero if this subspace should be zero filled. */
432 char zero;
433
434 /* Sort key for this subspace. */
435 unsigned char sort;
436
437 /* Access control bits for this subspace. Can represent RWX access
438 as well as privilege level changes for gateways. */
439 int access;
440
441 /* Index of containing space. */
442 int space_index;
443
444 /* Alignment (in bytes) of this subspace. */
445 int alignment;
446
447 /* Quadrant within space where this subspace should be loaded. */
448 int quadrant;
449
450 /* An index into the default spaces array. */
451 int def_space_index;
452
453 /* An alias for this section (or NULL if no alias exists). */
454 char *alias;
455
456 /* Subsegment associated with this subspace. */
457 subsegT subsegment;
458 };
459
460 /* This structure defines attributes of the default space
461 dictionary entries. */
462
463 struct default_space_dict
464 {
465 /* Name of the space. */
466 char *name;
467
468 /* Space number. It is possible to identify spaces within
469 assembly code numerically! */
470 int spnum;
471
472 /* Nonzero if this space is loadable. */
473 char loadable;
474
475 /* Nonzero if this space is "defined". FIXME is still needed */
476 char defined;
477
478 /* Nonzero if this space can not be shared. */
479 char private;
480
481 /* Sort key for this space. */
482 unsigned char sort;
483
484 /* Segment associated with this space. */
485 asection *segment;
486
487 /* An alias for this section (or NULL if no alias exists). */
488 char *alias;
489 };
490
491 /* Extra information needed to perform fixups (relocations) on the PA. */
492 struct hppa_fix_struct
493 {
494 /* The field selector. */
495 enum hppa_reloc_field_selector_type fx_r_field;
496
497 /* Type of fixup. */
498 int fx_r_type;
499
500 /* Format of fixup. */
501 int fx_r_format;
502
503 /* Argument relocation bits. */
504 long fx_arg_reloc;
505
506 /* The unwind descriptor associated with this fixup. */
507 char fx_unwind[8];
508 };
509
510 /* Structure to hold information about predefined registers. */
511
512 struct pd_reg
513 {
514 char *name;
515 int value;
516 };
517
518 /* This structure defines the mapping from a FP condition string
519 to a condition number which can be recorded in an instruction. */
520 struct fp_cond_map
521 {
522 char *string;
523 int cond;
524 };
525
526 /* This structure defines a mapping from a field selector
527 string to a field selector type. */
528 struct selector_entry
529 {
530 char *prefix;
531 int field_selector;
532 };
533
534 /* Prototypes for functions local to tc-hppa.c. */
535
536 static fp_operand_format pa_parse_fp_format PARAMS ((char **s));
537 static void pa_cons PARAMS ((int));
538 static void pa_data PARAMS ((int));
539 static void pa_desc PARAMS ((int));
540 static void pa_float_cons PARAMS ((int));
541 static void pa_fill PARAMS ((int));
542 static void pa_lcomm PARAMS ((int));
543 static void pa_lsym PARAMS ((int));
544 static void pa_stringer PARAMS ((int));
545 static void pa_text PARAMS ((int));
546 static void pa_version PARAMS ((int));
547 static int pa_parse_fp_cmp_cond PARAMS ((char **));
548 static int get_expression PARAMS ((char *));
549 static int pa_get_absolute_expression PARAMS ((struct pa_it *, char **));
550 static int evaluate_absolute PARAMS ((struct pa_it *));
551 static unsigned int pa_build_arg_reloc PARAMS ((char *));
552 static unsigned int pa_align_arg_reloc PARAMS ((unsigned int, unsigned int));
553 static int pa_parse_nullif PARAMS ((char **));
554 static int pa_parse_nonneg_cmpsub_cmpltr PARAMS ((char **, int));
555 static int pa_parse_neg_cmpsub_cmpltr PARAMS ((char **, int));
556 static int pa_parse_neg_add_cmpltr PARAMS ((char **, int));
557 static int pa_parse_nonneg_add_cmpltr PARAMS ((char **, int));
558 static void pa_block PARAMS ((int));
559 static void pa_call PARAMS ((int));
560 static void pa_call_args PARAMS ((struct call_desc *));
561 static void pa_callinfo PARAMS ((int));
562 static void pa_code PARAMS ((int));
563 static void pa_comm PARAMS ((int));
564 static void pa_copyright PARAMS ((int));
565 static void pa_end PARAMS ((int));
566 static void pa_enter PARAMS ((int));
567 static void pa_entry PARAMS ((int));
568 static void pa_equ PARAMS ((int));
569 static void pa_exit PARAMS ((int));
570 static void pa_export PARAMS ((int));
571 static void pa_type_args PARAMS ((symbolS *, int));
572 static void pa_import PARAMS ((int));
573 static void pa_label PARAMS ((int));
574 static void pa_leave PARAMS ((int));
575 static void pa_origin PARAMS ((int));
576 static void pa_proc PARAMS ((int));
577 static void pa_procend PARAMS ((int));
578 static void pa_space PARAMS ((int));
579 static void pa_spnum PARAMS ((int));
580 static void pa_subspace PARAMS ((int));
581 static void pa_param PARAMS ((int));
582 static void pa_undefine_label PARAMS ((void));
583 static int need_89_opcode PARAMS ((struct pa_it *,
584 struct pa_89_fp_reg_struct *));
585 static int pa_parse_number PARAMS ((char **, struct pa_89_fp_reg_struct *));
586 static label_symbol_struct *pa_get_label PARAMS ((void));
587 static sd_chain_struct *create_new_space PARAMS ((char *, int, char,
588 char, char, char,
589 asection *, int));
590 static ssd_chain_struct *create_new_subspace PARAMS ((sd_chain_struct *,
591 char *, char, char,
592 char, char, char,
593 char, int, int, int,
594 int, asection *));
595 static ssd_chain_struct *update_subspace PARAMS ((sd_chain_struct *,
596 char *, char, char, char,
597 char, char, char, int,
598 int, int, int,
599 asection *));
600 static sd_chain_struct *is_defined_space PARAMS ((char *));
601 static ssd_chain_struct *is_defined_subspace PARAMS ((char *));
602 static sd_chain_struct *pa_segment_to_space PARAMS ((asection *));
603 static ssd_chain_struct *pa_subsegment_to_subspace PARAMS ((asection *,
604 subsegT));
605 static sd_chain_struct *pa_find_space_by_number PARAMS ((int));
606 static unsigned int pa_subspace_start PARAMS ((sd_chain_struct *, int));
607 static void pa_ip PARAMS ((char *));
608 static void fix_new_hppa PARAMS ((fragS *, int, short int, symbolS *,
609 long, expressionS *, int,
610 bfd_reloc_code_real_type,
611 enum hppa_reloc_field_selector_type,
612 int, long, char *));
613 static int is_end_of_statement PARAMS ((void));
614 static int reg_name_search PARAMS ((char *));
615 static int pa_chk_field_selector PARAMS ((char **));
616 static int is_same_frag PARAMS ((fragS *, fragS *));
617 static void pa_build_unwind_subspace PARAMS ((struct call_info *));
618 static void process_exit PARAMS ((void));
619 static sd_chain_struct *pa_parse_space_stmt PARAMS ((char *, int));
620 static int log2 PARAMS ((int));
621 static int pa_next_subseg PARAMS ((sd_chain_struct *));
622 static unsigned int pa_stringer_aux PARAMS ((char *));
623 static void pa_spaces_begin PARAMS ((void));
624 static void hppa_elf_mark_end_of_function PARAMS ((void));
625
626 /* File and gloally scoped variable declarations. */
627
628 /* Root and final entry in the space chain. */
629 static sd_chain_struct *space_dict_root;
630 static sd_chain_struct *space_dict_last;
631
632 /* The current space and subspace. */
633 static sd_chain_struct *current_space;
634 static ssd_chain_struct *current_subspace;
635
636 /* Root of the call_info chain. */
637 static struct call_info *call_info_root;
638
639 /* The last call_info (for functions) structure
640 seen so it can be associated with fixups and
641 function labels. */
642 static struct call_info *last_call_info;
643
644 /* The last call description (for actual calls). */
645 static struct call_desc last_call_desc;
646
647 /* Relaxation isn't supported for the PA yet. */
648 const relax_typeS md_relax_table[] =
649 {0};
650
651 /* Jumps are always the same size -- one instruction. */
652 int md_short_jump_size = 4;
653 int md_long_jump_size = 4;
654
655 /* handle of the OPCODE hash table */
656 static struct hash_control *op_hash = NULL;
657
658 /* This array holds the chars that always start a comment. If the
659 pre-processor is disabled, these aren't very useful. */
660 const char comment_chars[] = ";";
661
662 /* Table of pseudo ops for the PA. FIXME -- how many of these
663 are now redundant with the overall GAS and the object file
664 dependent tables? */
665 const pseudo_typeS md_pseudo_table[] =
666 {
667 /* align pseudo-ops on the PA specify the actual alignment requested,
668 not the log2 of the requested alignment. */
669 {"align", s_align_bytes, 8},
670 {"ALIGN", s_align_bytes, 8},
671 {"block", pa_block, 1},
672 {"BLOCK", pa_block, 1},
673 {"blockz", pa_block, 0},
674 {"BLOCKZ", pa_block, 0},
675 {"byte", pa_cons, 1},
676 {"BYTE", pa_cons, 1},
677 {"call", pa_call, 0},
678 {"CALL", pa_call, 0},
679 {"callinfo", pa_callinfo, 0},
680 {"CALLINFO", pa_callinfo, 0},
681 {"code", pa_code, 0},
682 {"CODE", pa_code, 0},
683 {"comm", pa_comm, 0},
684 {"COMM", pa_comm, 0},
685 {"copyright", pa_copyright, 0},
686 {"COPYRIGHT", pa_copyright, 0},
687 {"data", pa_data, 0},
688 {"DATA", pa_data, 0},
689 {"desc", pa_desc, 0},
690 {"DESC", pa_desc, 0},
691 {"double", pa_float_cons, 'd'},
692 {"DOUBLE", pa_float_cons, 'd'},
693 {"end", pa_end, 0},
694 {"END", pa_end, 0},
695 {"enter", pa_enter, 0},
696 {"ENTER", pa_enter, 0},
697 {"entry", pa_entry, 0},
698 {"ENTRY", pa_entry, 0},
699 {"equ", pa_equ, 0},
700 {"EQU", pa_equ, 0},
701 {"exit", pa_exit, 0},
702 {"EXIT", pa_exit, 0},
703 {"export", pa_export, 0},
704 {"EXPORT", pa_export, 0},
705 {"fill", pa_fill, 0},
706 {"FILL", pa_fill, 0},
707 {"float", pa_float_cons, 'f'},
708 {"FLOAT", pa_float_cons, 'f'},
709 {"half", pa_cons, 2},
710 {"HALF", pa_cons, 2},
711 {"import", pa_import, 0},
712 {"IMPORT", pa_import, 0},
713 {"int", pa_cons, 4},
714 {"INT", pa_cons, 4},
715 {"label", pa_label, 0},
716 {"LABEL", pa_label, 0},
717 {"lcomm", pa_lcomm, 0},
718 {"LCOMM", pa_lcomm, 0},
719 {"leave", pa_leave, 0},
720 {"LEAVE", pa_leave, 0},
721 {"long", pa_cons, 4},
722 {"LONG", pa_cons, 4},
723 {"lsym", pa_lsym, 0},
724 {"LSYM", pa_lsym, 0},
725 {"octa", pa_cons, 16},
726 {"OCTA", pa_cons, 16},
727 {"org", pa_origin, 0},
728 {"ORG", pa_origin, 0},
729 {"origin", pa_origin, 0},
730 {"ORIGIN", pa_origin, 0},
731 {"param", pa_param, 0},
732 {"PARAM", pa_param, 0},
733 {"proc", pa_proc, 0},
734 {"PROC", pa_proc, 0},
735 {"procend", pa_procend, 0},
736 {"PROCEND", pa_procend, 0},
737 {"quad", pa_cons, 8},
738 {"QUAD", pa_cons, 8},
739 {"reg", pa_equ, 1},
740 {"REG", pa_equ, 1},
741 {"short", pa_cons, 2},
742 {"SHORT", pa_cons, 2},
743 {"single", pa_float_cons, 'f'},
744 {"SINGLE", pa_float_cons, 'f'},
745 {"space", pa_space, 0},
746 {"SPACE", pa_space, 0},
747 {"spnum", pa_spnum, 0},
748 {"SPNUM", pa_spnum, 0},
749 {"string", pa_stringer, 0},
750 {"STRING", pa_stringer, 0},
751 {"stringz", pa_stringer, 1},
752 {"STRINGZ", pa_stringer, 1},
753 {"subspa", pa_subspace, 0},
754 {"SUBSPA", pa_subspace, 0},
755 {"text", pa_text, 0},
756 {"TEXT", pa_text, 0},
757 {"version", pa_version, 0},
758 {"VERSION", pa_version, 0},
759 {"word", pa_cons, 4},
760 {"WORD", pa_cons, 4},
761 {NULL, 0, 0}
762 };
763
764 /* This array holds the chars that only start a comment at the beginning of
765 a line. If the line seems to have the form '# 123 filename'
766 .line and .file directives will appear in the pre-processed output.
767
768 Note that input_file.c hand checks for '#' at the beginning of the
769 first line of the input file. This is because the compiler outputs
770 #NO_APP at the beginning of its output.
771
772 Also note that '/*' will always start a comment. */
773 const char line_comment_chars[] = "#";
774
775 /* This array holds the characters which act as line separators. */
776 const char line_separator_chars[] = "!";
777
778 /* Chars that can be used to separate mant from exp in floating point nums. */
779 const char EXP_CHARS[] = "eE";
780
781 /* Chars that mean this number is a floating point constant.
782 As in 0f12.456 or 0d1.2345e12.
783
784 Be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
785 changed in read.c. Ideally it shouldn't hae to know abou it at
786 all, but nothing is ideal around here. */
787 const char FLT_CHARS[] = "rRsSfFdDxXpP";
788
789 static struct pa_it the_insn;
790
791 /* Points to the end of an expression just parsed by get_expressoin
792 and friends. FIXME. This shouldn't be handled with a file-global
793 variable. */
794 static char *expr_end;
795
796 /* Nonzero if a .callinfo appeared within the current procedure. */
797 static int callinfo_found;
798
799 /* Nonzero if the assembler is currently within a .entry/.exit pair. */
800 static int within_entry_exit;
801
802 /* Nonzero if the assembler is currently within a procedure definition. */
803 static int within_procedure;
804
805 /* Handle on strucutre which keep track of the last symbol
806 seen in each subspace. */
807 static label_symbol_struct *label_symbols_rootp = NULL;
808
809 /* Holds the last field selector. */
810 static int hppa_field_selector;
811
812 /* Nonzero if errors are to be printed. */
813 static int print_errors = 1;
814
815 /* List of registers that are pre-defined:
816
817 Each general register has one predefined name of the form
818 %r<REGNUM> which has the value <REGNUM>.
819
820 Space and control registers are handled in a similar manner,
821 but use %sr<REGNUM> and %cr<REGNUM> as their predefined names.
822
823 Likewise for the floating point registers, but of the form
824 %fr<REGNUM>. Floating point registers have additional predefined
825 names with 'L' and 'R' suffixes (e.g. %fr19L, %fr19R) which
826 again have the value <REGNUM>.
827
828 Many registers also have synonyms:
829
830 %r26 - %r23 have %arg0 - %arg3 as synonyms
831 %r28 - %r29 have %ret0 - %ret1 as synonyms
832 %r30 has %sp as a synonym
833 %r27 has %dp as a synonym
834 %r2 has %rp as a synonym
835
836 Almost every control register has a synonym; they are not listed
837 here for brevity.
838
839 The table is sorted. Suitable for searching by a binary search. */
840
841 static const struct pd_reg pre_defined_registers[] =
842 {
843 {"%arg0", 26},
844 {"%arg1", 25},
845 {"%arg2", 24},
846 {"%arg3", 23},
847 {"%cr0", 0},
848 {"%cr10", 10},
849 {"%cr11", 11},
850 {"%cr12", 12},
851 {"%cr13", 13},
852 {"%cr14", 14},
853 {"%cr15", 15},
854 {"%cr16", 16},
855 {"%cr17", 17},
856 {"%cr18", 18},
857 {"%cr19", 19},
858 {"%cr20", 20},
859 {"%cr21", 21},
860 {"%cr22", 22},
861 {"%cr23", 23},
862 {"%cr24", 24},
863 {"%cr25", 25},
864 {"%cr26", 26},
865 {"%cr27", 27},
866 {"%cr28", 28},
867 {"%cr29", 29},
868 {"%cr30", 30},
869 {"%cr31", 31},
870 {"%cr8", 8},
871 {"%cr9", 9},
872 {"%dp", 27},
873 {"%eiem", 15},
874 {"%eirr", 23},
875 {"%fr0", 0},
876 {"%fr0L", 0},
877 {"%fr0R", 0},
878 {"%fr1", 1},
879 {"%fr10", 10},
880 {"%fr10L", 10},
881 {"%fr10R", 10},
882 {"%fr11", 11},
883 {"%fr11L", 11},
884 {"%fr11R", 11},
885 {"%fr12", 12},
886 {"%fr12L", 12},
887 {"%fr12R", 12},
888 {"%fr13", 13},
889 {"%fr13L", 13},
890 {"%fr13R", 13},
891 {"%fr14", 14},
892 {"%fr14L", 14},
893 {"%fr14R", 14},
894 {"%fr15", 15},
895 {"%fr15L", 15},
896 {"%fr15R", 15},
897 {"%fr16", 16},
898 {"%fr16L", 16},
899 {"%fr16R", 16},
900 {"%fr17", 17},
901 {"%fr17L", 17},
902 {"%fr17R", 17},
903 {"%fr18", 18},
904 {"%fr18L", 18},
905 {"%fr18R", 18},
906 {"%fr19", 19},
907 {"%fr19L", 19},
908 {"%fr19R", 19},
909 {"%fr1L", 1},
910 {"%fr1R", 1},
911 {"%fr2", 2},
912 {"%fr20", 20},
913 {"%fr20L", 20},
914 {"%fr20R", 20},
915 {"%fr21", 21},
916 {"%fr21L", 21},
917 {"%fr21R", 21},
918 {"%fr22", 22},
919 {"%fr22L", 22},
920 {"%fr22R", 22},
921 {"%fr23", 23},
922 {"%fr23L", 23},
923 {"%fr23R", 23},
924 {"%fr24", 24},
925 {"%fr24L", 24},
926 {"%fr24R", 24},
927 {"%fr25", 25},
928 {"%fr25L", 25},
929 {"%fr25R", 25},
930 {"%fr26", 26},
931 {"%fr26L", 26},
932 {"%fr26R", 26},
933 {"%fr27", 27},
934 {"%fr27L", 27},
935 {"%fr27R", 27},
936 {"%fr28", 28},
937 {"%fr28L", 28},
938 {"%fr28R", 28},
939 {"%fr29", 29},
940 {"%fr29L", 29},
941 {"%fr29R", 29},
942 {"%fr2L", 2},
943 {"%fr2R", 2},
944 {"%fr3", 3},
945 {"%fr30", 30},
946 {"%fr30L", 30},
947 {"%fr30R", 30},
948 {"%fr31", 31},
949 {"%fr31L", 31},
950 {"%fr31R", 31},
951 {"%fr3L", 3},
952 {"%fr3R", 3},
953 {"%fr4", 4},
954 {"%fr4L", 4},
955 {"%fr4R", 4},
956 {"%fr5", 5},
957 {"%fr5L", 5},
958 {"%fr5R", 5},
959 {"%fr6", 6},
960 {"%fr6L", 6},
961 {"%fr6R", 6},
962 {"%fr7", 7},
963 {"%fr7L", 7},
964 {"%fr7R", 7},
965 {"%fr8", 8},
966 {"%fr8L", 8},
967 {"%fr8R", 8},
968 {"%fr9", 9},
969 {"%fr9L", 9},
970 {"%fr9R", 9},
971 {"%hta", 25},
972 {"%iir", 19},
973 {"%ior", 21},
974 {"%ipsw", 22},
975 {"%isr", 20},
976 {"%itmr", 16},
977 {"%iva", 14},
978 {"%pcoq", 18},
979 {"%pcsq", 17},
980 {"%pidr1", 8},
981 {"%pidr2", 9},
982 {"%pidr3", 12},
983 {"%pidr4", 13},
984 {"%ppda", 24},
985 {"%r0", 0},
986 {"%r1", 1},
987 {"%r10", 10},
988 {"%r11", 11},
989 {"%r12", 12},
990 {"%r13", 13},
991 {"%r14", 14},
992 {"%r15", 15},
993 {"%r16", 16},
994 {"%r17", 17},
995 {"%r18", 18},
996 {"%r19", 19},
997 {"%r2", 2},
998 {"%r20", 20},
999 {"%r21", 21},
1000 {"%r22", 22},
1001 {"%r23", 23},
1002 {"%r24", 24},
1003 {"%r25", 25},
1004 {"%r26", 26},
1005 {"%r27", 27},
1006 {"%r28", 28},
1007 {"%r29", 29},
1008 {"%r3", 3},
1009 {"%r30", 30},
1010 {"%r31", 31},
1011 {"%r4", 4},
1012 {"%r4L", 4},
1013 {"%r4R", 4},
1014 {"%r5", 5},
1015 {"%r5L", 5},
1016 {"%r5R", 5},
1017 {"%r6", 6},
1018 {"%r6L", 6},
1019 {"%r6R", 6},
1020 {"%r7", 7},
1021 {"%r7L", 7},
1022 {"%r7R", 7},
1023 {"%r8", 8},
1024 {"%r8L", 8},
1025 {"%r8R", 8},
1026 {"%r9", 9},
1027 {"%r9L", 9},
1028 {"%r9R", 9},
1029 {"%rctr", 0},
1030 {"%ret0", 28},
1031 {"%ret1", 29},
1032 {"%rp", 2},
1033 {"%sar", 11},
1034 {"%sp", 30},
1035 {"%sr0", 0},
1036 {"%sr1", 1},
1037 {"%sr2", 2},
1038 {"%sr3", 3},
1039 {"%sr4", 4},
1040 {"%sr5", 5},
1041 {"%sr6", 6},
1042 {"%sr7", 7},
1043 {"%tr0", 24},
1044 {"%tr1", 25},
1045 {"%tr2", 26},
1046 {"%tr3", 27},
1047 {"%tr4", 28},
1048 {"%tr5", 29},
1049 {"%tr6", 30},
1050 {"%tr7", 31}
1051 };
1052
1053 /* This table is sorted by order of the length of the string. This is
1054 so we check for <> before we check for <. If we had a <> and checked
1055 for < first, we would get a false match. */
1056 static const struct fp_cond_map fp_cond_map[] =
1057 {
1058 {"false?", 0},
1059 {"false", 1},
1060 {"true?", 30},
1061 {"true", 31},
1062 {"!<=>", 3},
1063 {"!?>=", 8},
1064 {"!?<=", 16},
1065 {"!<>", 7},
1066 {"!>=", 11},
1067 {"!?>", 12},
1068 {"?<=", 14},
1069 {"!<=", 19},
1070 {"!?<", 20},
1071 {"?>=", 22},
1072 {"!?=", 24},
1073 {"!=t", 27},
1074 {"<=>", 29},
1075 {"=t", 5},
1076 {"?=", 6},
1077 {"?<", 10},
1078 {"<=", 13},
1079 {"!>", 15},
1080 {"?>", 18},
1081 {">=", 21},
1082 {"!<", 23},
1083 {"<>", 25},
1084 {"!=", 26},
1085 {"!?", 28},
1086 {"?", 2},
1087 {"=", 4},
1088 {"<", 9},
1089 {">", 17}
1090 };
1091
1092 static const struct selector_entry selector_table[] =
1093 {
1094 {"F'", e_fsel},
1095 {"F%", e_fsel},
1096 {"LS'", e_lssel},
1097 {"LS%", e_lssel},
1098 {"RS'", e_rssel},
1099 {"RS%", e_rssel},
1100 {"L'", e_lsel},
1101 {"L%", e_lsel},
1102 {"R'", e_rsel},
1103 {"R%", e_rsel},
1104 {"LD'", e_ldsel},
1105 {"LD%", e_ldsel},
1106 {"RD'", e_rdsel},
1107 {"RD%", e_rdsel},
1108 {"LR'", e_lrsel},
1109 {"LR%", e_lrsel},
1110 {"RR'", e_rrsel},
1111 {"RR%", e_rrsel},
1112 {"P'", e_psel},
1113 {"P%", e_psel},
1114 {"RP'", e_rpsel},
1115 {"RP%", e_rpsel},
1116 {"LP'", e_lpsel},
1117 {"LP%", e_lpsel},
1118 {"T'", e_tsel},
1119 {"T%", e_tsel},
1120 {"RT'", e_rtsel},
1121 {"RT%", e_rtsel},
1122 {"LT'", e_ltsel},
1123 {"LT%", e_ltsel},
1124 {NULL, e_fsel}
1125 };
1126
1127 /* default space and subspace dictionaries */
1128
1129 #define GDB_SYMBOLS GDB_SYMBOLS_SUBSPACE_NAME
1130 #define GDB_STRINGS GDB_STRINGS_SUBSPACE_NAME
1131
1132 /* pre-defined subsegments (subspaces) for the HPPA. */
1133 #define SUBSEG_CODE 0
1134 #define SUBSEG_DATA 0
1135 #define SUBSEG_LIT 1
1136 #define SUBSEG_BSS 2
1137 #define SUBSEG_UNWIND 3
1138 #define SUBSEG_GDB_STRINGS 0
1139 #define SUBSEG_GDB_SYMBOLS 1
1140
1141 static struct default_subspace_dict pa_def_subspaces[] =
1142 {
1143 {"$CODE$", 1, 1, 1, 0, 0, 0, 24, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_CODE},
1144 {"$DATA$", 1, 1, 0, 0, 0, 0, 24, 0x1f, 1, 8, 1, 1, ".data", SUBSEG_DATA},
1145 {"$LIT$", 1, 1, 0, 0, 0, 0, 16, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_LIT},
1146 {"$BSS$", 1, 1, 0, 0, 0, 1, 80, 0x1f, 1, 8, 1, 1, ".bss", SUBSEG_BSS},
1147 #ifdef OBJ_ELF
1148 {"$UNWIND$", 1, 1, 0, 0, 0, 0, 64, 0x2c, 0, 4, 0, 0, ".hppa_unwind", SUBSEG_UNWIND},
1149 #endif
1150 {NULL, 0, 1, 0, 0, 0, 0, 255, 0x1f, 0, 4, 0, 0, 0}
1151 };
1152
1153 static struct default_space_dict pa_def_spaces[] =
1154 {
1155 {"$TEXT$", 0, 1, 1, 0, 8, ASEC_NULL, ".text"},
1156 {"$PRIVATE$", 1, 1, 1, 1, 16, ASEC_NULL, ".data"},
1157 {NULL, 0, 0, 0, 0, 0, ASEC_NULL, NULL}
1158 };
1159
1160 /* Misc local definitions used by the assembler. */
1161
1162 /* Return nonzero if the string pointed to by S potentially represents
1163 a right or left half of a FP register */
1164 #define IS_R_SELECT(S) (*(S) == 'R' || *(S) == 'r')
1165 #define IS_L_SELECT(S) (*(S) == 'L' || *(S) == 'l')
1166
1167 /* These macros are used to maintain spaces/subspaces. */
1168 #define SPACE_DEFINED(space_chain) (space_chain)->sd_defined
1169 #define SPACE_USER_DEFINED(space_chain) (space_chain)->sd_user_defined
1170 #define SPACE_PRIVATE(space_chain) (space_chain)->sd_private
1171 #define SPACE_LOADABLE(space_chain) (space_chain)->sd_loadable
1172 #define SPACE_SPNUM(space_chain) (space_chain)->sd_spnum
1173 #define SPACE_SORT(space_chain) (space_chain)->sd_sort_key
1174 #define SPACE_NAME(space_chain) (space_chain)->sd_name
1175 #define SPACE_NAME_INDEX(space_chain) (space_chain)->sd_name_index
1176
1177 #define SUBSPACE_SPACE_INDEX(ss_chain) (ss_chain)->ssd_space_index
1178 #define SUBSPACE_DEFINED(ss_chain) (ss_chain)->ssd_defined
1179 #define SUBSPACE_QUADRANT(ss_chain) (ss_chain)->ssd_quadrant
1180 #define SUBSPACE_ALIGN(ss_chain) (ss_chain)->ssd_alignment
1181 #define SUBSPACE_ACCESS(ss_chain) (ss_chain)->ssd_access_control_bits
1182 #define SUBSPACE_SORT(ss_chain) (ss_chain)->ssd_sort_key
1183 #define SUBSPACE_COMMON(ss_chain) (ss_chain)->ssd_common
1184 #define SUBSPACE_ZERO(ss_chain) (ss_chain)->ssd_zero
1185 #define SUBSPACE_DUP_COMM(ss_chain) (ss_chain)->ssd_dup_common
1186 #define SUBSPACE_CODE_ONLY(ss_chain) (ss_chain)->ssd_code_only
1187 #define SUBSPACE_LOADABLE(ss_chain) (ss_chain)->ssd_loadable
1188 #define SUBSPACE_SUBSPACE_START(ss_chain) (ss_chain)->ssd_subspace_start
1189 #define SUBSPACE_SUBSPACE_LENGTH(ss_chain) (ss_chain)->ssd_subspace_length
1190 #define SUBSPACE_NAME(ss_chain) (ss_chain)->ssd_name
1191
1192 /* Insert FIELD into OPCODE starting at bit START. Continue pa_ip
1193 main loop after insertion. */
1194
1195 #define INSERT_FIELD_AND_CONTINUE(OPCODE, FIELD, START) \
1196 { \
1197 ((OPCODE) |= (FIELD) << (START)); \
1198 continue; \
1199 }
1200
1201 /* Simple range checking for FIELD againt HIGH and LOW bounds.
1202 IGNORE is used to suppress the error message. */
1203
1204 #define CHECK_FIELD(FIELD, HIGH, LOW, IGNORE) \
1205 { \
1206 if ((FIELD) > (HIGH) || (FIELD) < (LOW)) \
1207 { \
1208 if (! IGNORE) \
1209 as_bad ("Field out of range [%d..%d] (%d).", (LOW), (HIGH), \
1210 (int) (FIELD));\
1211 break; \
1212 } \
1213 }
1214
1215 #define is_DP_relative(exp) \
1216 ((exp).X_op == O_subtract \
1217 && strcmp((exp).X_op_symbol->bsym->name, "$global$") == 0)
1218
1219 #define is_PC_relative(exp) \
1220 ((exp).X_op == O_subtract \
1221 && strcmp((exp).X_op_symbol->bsym->name, "$PIC_pcrel$0") == 0)
1222
1223 #define is_complex(exp) \
1224 ((exp).X_op != O_constant && (exp).X_op != O_symbol)
1225
1226 /* Actual functions to implement the PA specific code for the assembler. */
1227
1228 /* Returns a pointer to the label_symbol_struct for the current space.
1229 or NULL if no label_symbol_struct exists for the current space. */
1230
1231 static label_symbol_struct *
1232 pa_get_label ()
1233 {
1234 label_symbol_struct *label_chain;
1235 sd_chain_struct *space_chain = current_space;
1236
1237 for (label_chain = label_symbols_rootp;
1238 label_chain;
1239 label_chain = label_chain->lss_next)
1240 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1241 return label_chain;
1242
1243 return NULL;
1244 }
1245
1246 /* Defines a label for the current space. If one is already defined,
1247 this function will replace it with the new label. */
1248
1249 void
1250 pa_define_label (symbol)
1251 symbolS *symbol;
1252 {
1253 label_symbol_struct *label_chain = pa_get_label ();
1254 sd_chain_struct *space_chain = current_space;
1255
1256 if (label_chain)
1257 label_chain->lss_label = symbol;
1258 else
1259 {
1260 /* Create a new label entry and add it to the head of the chain. */
1261 label_chain
1262 = (label_symbol_struct *) xmalloc (sizeof (label_symbol_struct));
1263 label_chain->lss_label = symbol;
1264 label_chain->lss_space = space_chain;
1265 label_chain->lss_next = NULL;
1266
1267 if (label_symbols_rootp)
1268 label_chain->lss_next = label_symbols_rootp;
1269
1270 label_symbols_rootp = label_chain;
1271 }
1272 }
1273
1274 /* Removes a label definition for the current space.
1275 If there is no label_symbol_struct entry, then no action is taken. */
1276
1277 static void
1278 pa_undefine_label ()
1279 {
1280 label_symbol_struct *label_chain;
1281 label_symbol_struct *prev_label_chain = NULL;
1282 sd_chain_struct *space_chain = current_space;
1283
1284 for (label_chain = label_symbols_rootp;
1285 label_chain;
1286 label_chain = label_chain->lss_next)
1287 {
1288 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1289 {
1290 /* Remove the label from the chain and free its memory. */
1291 if (prev_label_chain)
1292 prev_label_chain->lss_next = label_chain->lss_next;
1293 else
1294 label_symbols_rootp = label_chain->lss_next;
1295
1296 free (label_chain);
1297 break;
1298 }
1299 prev_label_chain = label_chain;
1300 }
1301 }
1302
1303
1304 /* An HPPA-specific version of fix_new. This is required because the HPPA
1305 code needs to keep track of some extra stuff. Each call to fix_new_hppa
1306 results in the creation of an instance of an hppa_fix_struct. An
1307 hppa_fix_struct stores the extra information along with a pointer to the
1308 original fixS. This is attached to the original fixup via the
1309 tc_fix_data field. */
1310
1311 static void
1312 fix_new_hppa (frag, where, size, add_symbol, offset, exp, pcrel,
1313 r_type, r_field, r_format, arg_reloc, unwind_desc)
1314 fragS *frag;
1315 int where;
1316 short int size;
1317 symbolS *add_symbol;
1318 long offset;
1319 expressionS *exp;
1320 int pcrel;
1321 bfd_reloc_code_real_type r_type;
1322 enum hppa_reloc_field_selector_type r_field;
1323 int r_format;
1324 long arg_reloc;
1325 char *unwind_desc;
1326 {
1327 fixS *new_fix;
1328
1329 struct hppa_fix_struct *hppa_fix = (struct hppa_fix_struct *)
1330 obstack_alloc (&notes, sizeof (struct hppa_fix_struct));
1331
1332 if (exp != NULL)
1333 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
1334 else
1335 new_fix = fix_new (frag, where, size, add_symbol, offset, pcrel, r_type);
1336 new_fix->tc_fix_data = hppa_fix;
1337 hppa_fix->fx_r_type = r_type;
1338 hppa_fix->fx_r_field = r_field;
1339 hppa_fix->fx_r_format = r_format;
1340 hppa_fix->fx_arg_reloc = arg_reloc;
1341 if (unwind_desc)
1342 {
1343 bcopy (unwind_desc, hppa_fix->fx_unwind, 8);
1344
1345 /* If necessary call BFD backend function to attach the
1346 unwind bits to the target dependent parts of a BFD symbol.
1347 Yuk. */
1348 #ifdef obj_attach_unwind_info
1349 obj_attach_unwind_info (add_symbol->bsym, unwind_desc);
1350 #endif
1351 }
1352
1353 /* foo-$global$ is used to access non-automatic storage. $global$
1354 is really just a marker and has served its purpose, so eliminate
1355 it now so as not to confuse write.c. */
1356 if (new_fix->fx_subsy
1357 && !strcmp (S_GET_NAME (new_fix->fx_subsy), "$global$"))
1358 new_fix->fx_subsy = NULL;
1359 }
1360
1361 /* Parse a .byte, .word, .long expression for the HPPA. Called by
1362 cons via the TC_PARSE_CONS_EXPRESSION macro. */
1363
1364 void
1365 parse_cons_expression_hppa (exp)
1366 expressionS *exp;
1367 {
1368 hppa_field_selector = pa_chk_field_selector (&input_line_pointer);
1369 expression (exp);
1370 }
1371
1372 /* This fix_new is called by cons via TC_CONS_FIX_NEW.
1373 hppa_field_selector is set by the parse_cons_expression_hppa. */
1374
1375 void
1376 cons_fix_new_hppa (frag, where, size, exp)
1377 fragS *frag;
1378 int where;
1379 int size;
1380 expressionS *exp;
1381 {
1382 unsigned int reloc_type;
1383
1384 if (is_DP_relative (*exp))
1385 reloc_type = R_HPPA_GOTOFF;
1386 else if (is_complex (*exp))
1387 reloc_type = R_HPPA_COMPLEX;
1388 else
1389 reloc_type = R_HPPA;
1390
1391 if (hppa_field_selector != e_psel && hppa_field_selector != e_fsel)
1392 as_warn ("Invalid field selector. Assuming F%%.");
1393
1394 fix_new_hppa (frag, where, size,
1395 (symbolS *) NULL, (offsetT) 0, exp, 0, reloc_type,
1396 hppa_field_selector, 32, 0, (char *) 0);
1397
1398 /* Reset field selector to its default state. */
1399 hppa_field_selector = 0;
1400 }
1401
1402 /* This function is called once, at assembler startup time. It should
1403 set up all the tables, etc. that the MD part of the assembler will need. */
1404
1405 void
1406 md_begin ()
1407 {
1408 const char *retval = NULL;
1409 int lose = 0;
1410 unsigned int i = 0;
1411
1412 last_call_info = NULL;
1413 call_info_root = NULL;
1414
1415 /* Folding of text and data segments fails miserably on the PA.
1416 Warn user and disable "-R" option. */
1417 if (flagseen['R'])
1418 {
1419 as_warn ("-R option not supported on this target.");
1420 flag_readonly_data_in_text = 0;
1421 flagseen['R'] = 0;
1422 }
1423
1424 pa_spaces_begin ();
1425
1426 op_hash = hash_new ();
1427 if (op_hash == NULL)
1428 as_fatal ("Virtual memory exhausted");
1429
1430 while (i < NUMOPCODES)
1431 {
1432 const char *name = pa_opcodes[i].name;
1433 retval = hash_insert (op_hash, name, (struct pa_opcode *) &pa_opcodes[i]);
1434 if (retval != NULL && *retval != '\0')
1435 {
1436 as_fatal ("Internal error: can't hash `%s': %s\n", name, retval);
1437 lose = 1;
1438 }
1439 do
1440 {
1441 if ((pa_opcodes[i].match & pa_opcodes[i].mask)
1442 != pa_opcodes[i].match)
1443 {
1444 fprintf (stderr, "internal error: losing opcode: `%s' \"%s\"\n",
1445 pa_opcodes[i].name, pa_opcodes[i].args);
1446 lose = 1;
1447 }
1448 ++i;
1449 }
1450 while (i < NUMOPCODES && !strcmp (pa_opcodes[i].name, name));
1451 }
1452
1453 if (lose)
1454 as_fatal ("Broken assembler. No assembly attempted.");
1455
1456 /* SOM will change text_section. To make sure we never put
1457 anything into the old one switch to the new one now. */
1458 subseg_set (text_section, 0);
1459 }
1460
1461 /* Called at the end of assembling a source file. Nothing to do
1462 at this point on the PA. */
1463
1464 void
1465 md_end ()
1466 {
1467 return;
1468 }
1469
1470 /* Assemble a single instruction storing it into a frag. */
1471 void
1472 md_assemble (str)
1473 char *str;
1474 {
1475 char *to;
1476
1477 /* The had better be something to assemble. */
1478 assert (str);
1479
1480 /* Assemble the instruction. Results are saved into "the_insn". */
1481 pa_ip (str);
1482
1483 /* Get somewhere to put the assembled instrution. */
1484 to = frag_more (4);
1485
1486 /* Output the opcode. */
1487 md_number_to_chars (to, the_insn.opcode, 4);
1488
1489 /* If necessary output more stuff. */
1490 if (the_insn.reloc != R_HPPA_NONE)
1491 fix_new_hppa (frag_now, (to - frag_now->fr_literal), 4, NULL,
1492 (offsetT) 0, &the_insn.exp, the_insn.pcrel,
1493 the_insn.reloc, the_insn.field_selector,
1494 the_insn.format, the_insn.arg_reloc, NULL);
1495
1496 }
1497
1498 /* Do the real work for assembling a single instruction. Store results
1499 into the global "the_insn" variable.
1500
1501 FIXME: Should define and use some functions/macros to handle
1502 various common insertions of information into the opcode. */
1503
1504 static void
1505 pa_ip (str)
1506 char *str;
1507 {
1508 char *error_message = "";
1509 char *s, c, *argstart, *name, *save_s;
1510 const char *args;
1511 int match = FALSE;
1512 int comma = 0;
1513 int cmpltr, nullif, flag, cond, num;
1514 unsigned long opcode;
1515 struct pa_opcode *insn;
1516
1517 /* Skip to something interesting. */
1518 for (s = str; isupper (*s) || islower (*s) || (*s >= '0' && *s <= '3'); ++s)
1519 ;
1520
1521 switch (*s)
1522 {
1523
1524 case '\0':
1525 break;
1526
1527 case ',':
1528 comma = 1;
1529
1530 /*FALLTHROUGH */
1531
1532 case ' ':
1533 *s++ = '\0';
1534 break;
1535
1536 default:
1537 as_bad ("Unknown opcode: `%s'", str);
1538 exit (1);
1539 }
1540
1541 save_s = str;
1542
1543 /* Convert everything into lower case. */
1544 while (*save_s)
1545 {
1546 if (isupper (*save_s))
1547 *save_s = tolower (*save_s);
1548 save_s++;
1549 }
1550
1551 /* Look up the opcode in the has table. */
1552 if ((insn = (struct pa_opcode *) hash_find (op_hash, str)) == NULL)
1553 {
1554 as_bad ("Unknown opcode: `%s'", str);
1555 return;
1556 }
1557
1558 if (comma)
1559 {
1560 *--s = ',';
1561 }
1562
1563 /* Mark the location where arguments for the instruction start, then
1564 start processing them. */
1565 argstart = s;
1566 for (;;)
1567 {
1568 /* Do some initialization. */
1569 opcode = insn->match;
1570 bzero (&the_insn, sizeof (the_insn));
1571
1572 the_insn.reloc = R_HPPA_NONE;
1573
1574 /* Build the opcode, checking as we go to make
1575 sure that the operands match. */
1576 for (args = insn->args;; ++args)
1577 {
1578 switch (*args)
1579 {
1580
1581 /* End of arguments. */
1582 case '\0':
1583 if (*s == '\0')
1584 match = TRUE;
1585 break;
1586
1587 case '+':
1588 if (*s == '+')
1589 {
1590 ++s;
1591 continue;
1592 }
1593 if (*s == '-')
1594 continue;
1595 break;
1596
1597 /* These must match exactly. */
1598 case '(':
1599 case ')':
1600 case ',':
1601 case ' ':
1602 if (*s++ == *args)
1603 continue;
1604 break;
1605
1606 /* Handle a 5 bit register or control register field at 10. */
1607 case 'b':
1608 case '^':
1609 num = pa_parse_number (&s, 0);
1610 CHECK_FIELD (num, 31, 0, 0);
1611 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
1612
1613 /* Handle a 5 bit register field at 15. */
1614 case 'x':
1615 num = pa_parse_number (&s, 0);
1616 CHECK_FIELD (num, 31, 0, 0);
1617 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1618
1619 /* Handle a 5 bit register field at 31. */
1620 case 'y':
1621 case 't':
1622 num = pa_parse_number (&s, 0);
1623 CHECK_FIELD (num, 31, 0, 0);
1624 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1625
1626 /* Handle a 5 bit field length at 31. */
1627 case 'T':
1628 num = pa_get_absolute_expression (&the_insn, &s);
1629 s = expr_end;
1630 CHECK_FIELD (num, 32, 1, 0);
1631 INSERT_FIELD_AND_CONTINUE (opcode, 32 - num, 0);
1632
1633 /* Handle a 5 bit immediate at 15. */
1634 case '5':
1635 num = pa_get_absolute_expression (&the_insn, &s);
1636 s = expr_end;
1637 CHECK_FIELD (num, 15, -16, 0);
1638 low_sign_unext (num, 5, &num);
1639 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1640
1641 /* Handle a 5 bit immediate at 31. */
1642 case 'V':
1643 num = pa_get_absolute_expression (&the_insn, &s);
1644 s = expr_end;
1645 CHECK_FIELD (num, 15, -16, 0)
1646 low_sign_unext (num, 5, &num);
1647 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1648
1649 /* Handle an unsigned 5 bit immediate at 31. */
1650 case 'r':
1651 num = pa_get_absolute_expression (&the_insn, &s);
1652 s = expr_end;
1653 CHECK_FIELD (num, 31, 0, 0);
1654 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1655
1656 /* Handle an unsigned 5 bit immediate at 15. */
1657 case 'R':
1658 num = pa_get_absolute_expression (&the_insn, &s);
1659 s = expr_end;
1660 CHECK_FIELD (num, 31, 0, 0);
1661 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1662
1663 /* Handle a 2 bit space identifier at 17. */
1664 case 's':
1665 num = pa_parse_number (&s, 0);
1666 CHECK_FIELD (num, 3, 0, 1);
1667 INSERT_FIELD_AND_CONTINUE (opcode, num, 14);
1668
1669 /* Handle a 3 bit space identifier at 18. */
1670 case 'S':
1671 num = pa_parse_number (&s, 0);
1672 CHECK_FIELD (num, 7, 0, 1);
1673 dis_assemble_3 (num, &num);
1674 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
1675
1676 /* Handle a completer for an indexing load or store. */
1677 case 'c':
1678 {
1679 int uu = 0;
1680 int m = 0;
1681 int i = 0;
1682 while (*s == ',' && i < 2)
1683 {
1684 s++;
1685 if (strncasecmp (s, "sm", 2) == 0)
1686 {
1687 uu = 1;
1688 m = 1;
1689 s++;
1690 i++;
1691 }
1692 else if (strncasecmp (s, "m", 1) == 0)
1693 m = 1;
1694 else if (strncasecmp (s, "s", 1) == 0)
1695 uu = 1;
1696 else
1697 as_bad ("Invalid Indexed Load Completer.");
1698 s++;
1699 i++;
1700 }
1701 if (i > 2)
1702 as_bad ("Invalid Indexed Load Completer Syntax.");
1703 opcode |= m << 5;
1704 INSERT_FIELD_AND_CONTINUE (opcode, uu, 13);
1705 }
1706
1707 /* Handle a short load/store completer. */
1708 case 'C':
1709 {
1710 int a = 0;
1711 int m = 0;
1712 if (*s == ',')
1713 {
1714 s++;
1715 if (strncasecmp (s, "ma", 2) == 0)
1716 {
1717 a = 0;
1718 m = 1;
1719 }
1720 else if (strncasecmp (s, "mb", 2) == 0)
1721 {
1722 a = 1;
1723 m = 1;
1724 }
1725 else
1726 as_bad ("Invalid Short Load/Store Completer.");
1727 s += 2;
1728 }
1729 opcode |= m << 5;
1730 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1731 }
1732
1733 /* Handle a stbys completer. */
1734 case 'Y':
1735 {
1736 int a = 0;
1737 int m = 0;
1738 int i = 0;
1739 while (*s == ',' && i < 2)
1740 {
1741 s++;
1742 if (strncasecmp (s, "m", 1) == 0)
1743 m = 1;
1744 else if (strncasecmp (s, "b", 1) == 0)
1745 a = 0;
1746 else if (strncasecmp (s, "e", 1) == 0)
1747 a = 1;
1748 else
1749 as_bad ("Invalid Store Bytes Short Completer");
1750 s++;
1751 i++;
1752 }
1753 if (i > 2)
1754 as_bad ("Invalid Store Bytes Short Completer");
1755 opcode |= m << 5;
1756 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1757 }
1758
1759 /* Handle a non-negated compare/stubtract condition. */
1760 case '<':
1761 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
1762 if (cmpltr < 0)
1763 {
1764 as_bad ("Invalid Compare/Subtract Condition: %c", *s);
1765 cmpltr = 0;
1766 }
1767 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1768
1769 /* Handle a negated or non-negated compare/subtract condition. */
1770 case '?':
1771 save_s = s;
1772 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
1773 if (cmpltr < 0)
1774 {
1775 s = save_s;
1776 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 1);
1777 if (cmpltr < 0)
1778 {
1779 as_bad ("Invalid Compare/Subtract Condition.");
1780 cmpltr = 0;
1781 }
1782 else
1783 {
1784 /* Negated condition requires an opcode change. */
1785 opcode |= 1 << 27;
1786 }
1787 }
1788 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1789
1790 /* Handle a negated or non-negated add condition. */
1791 case '!':
1792 save_s = s;
1793 cmpltr = pa_parse_nonneg_add_cmpltr (&s, 1);
1794 if (cmpltr < 0)
1795 {
1796 s = save_s;
1797 cmpltr = pa_parse_neg_add_cmpltr (&s, 1);
1798 if (cmpltr < 0)
1799 {
1800 as_bad ("Invalid Compare/Subtract Condition");
1801 cmpltr = 0;
1802 }
1803 else
1804 {
1805 /* Negated condition requires an opcode change. */
1806 opcode |= 1 << 27;
1807 }
1808 }
1809 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1810
1811 /* Handle a compare/subtract condition. */
1812 case 'a':
1813 cmpltr = 0;
1814 flag = 0;
1815 save_s = s;
1816 if (*s == ',')
1817 {
1818 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 0);
1819 if (cmpltr < 0)
1820 {
1821 flag = 1;
1822 s = save_s;
1823 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 0);
1824 if (cmpltr < 0)
1825 {
1826 as_bad ("Invalid Compare/Subtract Condition");
1827 }
1828 }
1829 }
1830 opcode |= cmpltr << 13;
1831 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1832
1833 /* Handle a non-negated add condition. */
1834 case 'd':
1835 cmpltr = 0;
1836 nullif = 0;
1837 flag = 0;
1838 if (*s == ',')
1839 {
1840 s++;
1841 name = s;
1842 while (*s != ',' && *s != ' ' && *s != '\t')
1843 s += 1;
1844 c = *s;
1845 *s = 0x00;
1846 if (strcmp (name, "=") == 0)
1847 cmpltr = 1;
1848 else if (strcmp (name, "<") == 0)
1849 cmpltr = 2;
1850 else if (strcmp (name, "<=") == 0)
1851 cmpltr = 3;
1852 else if (strcasecmp (name, "nuv") == 0)
1853 cmpltr = 4;
1854 else if (strcasecmp (name, "znv") == 0)
1855 cmpltr = 5;
1856 else if (strcasecmp (name, "sv") == 0)
1857 cmpltr = 6;
1858 else if (strcasecmp (name, "od") == 0)
1859 cmpltr = 7;
1860 else if (strcasecmp (name, "n") == 0)
1861 nullif = 1;
1862 else if (strcasecmp (name, "tr") == 0)
1863 {
1864 cmpltr = 0;
1865 flag = 1;
1866 }
1867 else if (strcasecmp (name, "<>") == 0)
1868 {
1869 cmpltr = 1;
1870 flag = 1;
1871 }
1872 else if (strcasecmp (name, ">=") == 0)
1873 {
1874 cmpltr = 2;
1875 flag = 1;
1876 }
1877 else if (strcasecmp (name, ">") == 0)
1878 {
1879 cmpltr = 3;
1880 flag = 1;
1881 }
1882 else if (strcasecmp (name, "uv") == 0)
1883 {
1884 cmpltr = 4;
1885 flag = 1;
1886 }
1887 else if (strcasecmp (name, "vnz") == 0)
1888 {
1889 cmpltr = 5;
1890 flag = 1;
1891 }
1892 else if (strcasecmp (name, "nsv") == 0)
1893 {
1894 cmpltr = 6;
1895 flag = 1;
1896 }
1897 else if (strcasecmp (name, "ev") == 0)
1898 {
1899 cmpltr = 7;
1900 flag = 1;
1901 }
1902 else
1903 as_bad ("Invalid Add Condition: %s", name);
1904 *s = c;
1905 }
1906 nullif = pa_parse_nullif (&s);
1907 opcode |= nullif << 1;
1908 opcode |= cmpltr << 13;
1909 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1910
1911 /* HANDLE a logical instruction condition. */
1912 case '&':
1913 cmpltr = 0;
1914 flag = 0;
1915 if (*s == ',')
1916 {
1917 s++;
1918 name = s;
1919 while (*s != ',' && *s != ' ' && *s != '\t')
1920 s += 1;
1921 c = *s;
1922 *s = 0x00;
1923 if (strcmp (name, "=") == 0)
1924 cmpltr = 1;
1925 else if (strcmp (name, "<") == 0)
1926 cmpltr = 2;
1927 else if (strcmp (name, "<=") == 0)
1928 cmpltr = 3;
1929 else if (strcasecmp (name, "od") == 0)
1930 cmpltr = 7;
1931 else if (strcasecmp (name, "tr") == 0)
1932 {
1933 cmpltr = 0;
1934 flag = 1;
1935 }
1936 else if (strcmp (name, "<>") == 0)
1937 {
1938 cmpltr = 1;
1939 flag = 1;
1940 }
1941 else if (strcmp (name, ">=") == 0)
1942 {
1943 cmpltr = 2;
1944 flag = 1;
1945 }
1946 else if (strcmp (name, ">") == 0)
1947 {
1948 cmpltr = 3;
1949 flag = 1;
1950 }
1951 else if (strcasecmp (name, "ev") == 0)
1952 {
1953 cmpltr = 7;
1954 flag = 1;
1955 }
1956 else
1957 as_bad ("Invalid Logical Instruction Condition.");
1958 *s = c;
1959 }
1960 opcode |= cmpltr << 13;
1961 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1962
1963 /* Handle a unit instruction condition. */
1964 case 'U':
1965 cmpltr = 0;
1966 flag = 0;
1967 if (*s == ',')
1968 {
1969 s++;
1970 if (strncasecmp (s, "sbz", 3) == 0)
1971 {
1972 cmpltr = 2;
1973 s += 3;
1974 }
1975 else if (strncasecmp (s, "shz", 3) == 0)
1976 {
1977 cmpltr = 3;
1978 s += 3;
1979 }
1980 else if (strncasecmp (s, "sdc", 3) == 0)
1981 {
1982 cmpltr = 4;
1983 s += 3;
1984 }
1985 else if (strncasecmp (s, "sbc", 3) == 0)
1986 {
1987 cmpltr = 6;
1988 s += 3;
1989 }
1990 else if (strncasecmp (s, "shc", 3) == 0)
1991 {
1992 cmpltr = 7;
1993 s += 3;
1994 }
1995 else if (strncasecmp (s, "tr", 2) == 0)
1996 {
1997 cmpltr = 0;
1998 flag = 1;
1999 s += 2;
2000 }
2001 else if (strncasecmp (s, "nbz", 3) == 0)
2002 {
2003 cmpltr = 2;
2004 flag = 1;
2005 s += 3;
2006 }
2007 else if (strncasecmp (s, "nhz", 3) == 0)
2008 {
2009 cmpltr = 3;
2010 flag = 1;
2011 s += 3;
2012 }
2013 else if (strncasecmp (s, "ndc", 3) == 0)
2014 {
2015 cmpltr = 4;
2016 flag = 1;
2017 s += 3;
2018 }
2019 else if (strncasecmp (s, "nbc", 3) == 0)
2020 {
2021 cmpltr = 6;
2022 flag = 1;
2023 s += 3;
2024 }
2025 else if (strncasecmp (s, "nhc", 3) == 0)
2026 {
2027 cmpltr = 7;
2028 flag = 1;
2029 s += 3;
2030 }
2031 else
2032 as_bad ("Invalid Logical Instruction Condition.");
2033 }
2034 opcode |= cmpltr << 13;
2035 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
2036
2037 /* Handle a shift/extract/deposit condition. */
2038 case '|':
2039 case '>':
2040 cmpltr = 0;
2041 if (*s == ',')
2042 {
2043 save_s = s++;
2044 name = s;
2045 while (*s != ',' && *s != ' ' && *s != '\t')
2046 s += 1;
2047 c = *s;
2048 *s = 0x00;
2049 if (strcmp (name, "=") == 0)
2050 cmpltr = 1;
2051 else if (strcmp (name, "<") == 0)
2052 cmpltr = 2;
2053 else if (strcasecmp (name, "od") == 0)
2054 cmpltr = 3;
2055 else if (strcasecmp (name, "tr") == 0)
2056 cmpltr = 4;
2057 else if (strcmp (name, "<>") == 0)
2058 cmpltr = 5;
2059 else if (strcmp (name, ">=") == 0)
2060 cmpltr = 6;
2061 else if (strcasecmp (name, "ev") == 0)
2062 cmpltr = 7;
2063 /* Handle movb,n. Put things back the way they were.
2064 This includes moving s back to where it started. */
2065 else if (strcasecmp (name, "n") == 0 && *args == '|')
2066 {
2067 *s = c;
2068 s = save_s;
2069 continue;
2070 }
2071 else
2072 as_bad ("Invalid Shift/Extract/Deposit Condition.");
2073 *s = c;
2074 }
2075 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
2076
2077 /* Handle bvb and bb conditions. */
2078 case '~':
2079 cmpltr = 0;
2080 if (*s == ',')
2081 {
2082 s++;
2083 if (strncmp (s, "<", 1) == 0)
2084 {
2085 cmpltr = 2;
2086 s++;
2087 }
2088 else if (strncmp (s, ">=", 2) == 0)
2089 {
2090 cmpltr = 6;
2091 s += 2;
2092 }
2093 else
2094 as_bad ("Invalid Bit Branch Condition: %c", *s);
2095 }
2096 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
2097
2098 /* Handle a system control completer. */
2099 case 'Z':
2100 if (*s == ',' && (*(s + 1) == 'm' || *(s + 1) == 'M'))
2101 {
2102 flag = 1;
2103 s += 2;
2104 }
2105 else
2106 flag = 0;
2107
2108 INSERT_FIELD_AND_CONTINUE (opcode, flag, 5);
2109
2110 /* Handle a nullification completer for branch instructions. */
2111 case 'n':
2112 nullif = pa_parse_nullif (&s);
2113 INSERT_FIELD_AND_CONTINUE (opcode, nullif, 1);
2114
2115 /* Handle a 11 bit immediate at 31. */
2116 case 'i':
2117 the_insn.field_selector = pa_chk_field_selector (&s);
2118 get_expression (s);
2119 s = expr_end;
2120 if (the_insn.exp.X_op == O_constant)
2121 {
2122 num = evaluate_absolute (&the_insn);
2123 CHECK_FIELD (num, 1023, -1024, 0);
2124 low_sign_unext (num, 11, &num);
2125 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2126 }
2127 else
2128 {
2129 if (is_DP_relative (the_insn.exp))
2130 the_insn.reloc = R_HPPA_GOTOFF;
2131 else if (is_PC_relative (the_insn.exp))
2132 the_insn.reloc = R_HPPA_PCREL_CALL;
2133 else if (is_complex (the_insn.exp))
2134 the_insn.reloc = R_HPPA_COMPLEX;
2135 else
2136 the_insn.reloc = R_HPPA;
2137 the_insn.format = 11;
2138 continue;
2139 }
2140
2141 /* Handle a 14 bit immediate at 31. */
2142 case 'j':
2143 the_insn.field_selector = pa_chk_field_selector (&s);
2144 get_expression (s);
2145 s = expr_end;
2146 if (the_insn.exp.X_op == O_constant)
2147 {
2148 num = evaluate_absolute (&the_insn);
2149 CHECK_FIELD (num, 8191, -8192, 0);
2150 low_sign_unext (num, 14, &num);
2151 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2152 }
2153 else
2154 {
2155 if (is_DP_relative (the_insn.exp))
2156 the_insn.reloc = R_HPPA_GOTOFF;
2157 else if (is_PC_relative (the_insn.exp))
2158 the_insn.reloc = R_HPPA_PCREL_CALL;
2159 else if (is_complex (the_insn.exp))
2160 the_insn.reloc = R_HPPA_COMPLEX;
2161 else
2162 the_insn.reloc = R_HPPA;
2163 the_insn.format = 14;
2164 continue;
2165 }
2166
2167 /* Handle a 21 bit immediate at 31. */
2168 case 'k':
2169 the_insn.field_selector = pa_chk_field_selector (&s);
2170 get_expression (s);
2171 s = expr_end;
2172 if (the_insn.exp.X_op == O_constant)
2173 {
2174 num = evaluate_absolute (&the_insn);
2175 CHECK_FIELD (num >> 11, 1048575, -1048576, 0);
2176 dis_assemble_21 (num, &num);
2177 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2178 }
2179 else
2180 {
2181 if (is_DP_relative (the_insn.exp))
2182 the_insn.reloc = R_HPPA_GOTOFF;
2183 else if (is_PC_relative (the_insn.exp))
2184 the_insn.reloc = R_HPPA_PCREL_CALL;
2185 else if (is_complex (the_insn.exp))
2186 the_insn.reloc = R_HPPA_COMPLEX;
2187 else
2188 the_insn.reloc = R_HPPA;
2189 the_insn.format = 21;
2190 continue;
2191 }
2192
2193 /* Handle a 12 bit branch displacement. */
2194 case 'w':
2195 the_insn.field_selector = pa_chk_field_selector (&s);
2196 get_expression (s);
2197 s = expr_end;
2198 the_insn.pcrel = 1;
2199 if (!strcmp (S_GET_NAME (the_insn.exp.X_add_symbol), "L$0\001"))
2200 {
2201 unsigned int w1, w, result;
2202
2203 num = evaluate_absolute (&the_insn);
2204 if (num % 4)
2205 {
2206 as_bad ("Branch to unaligned address");
2207 break;
2208 }
2209 CHECK_FIELD (num, 8191, -8192, 0);
2210 sign_unext ((num - 8) >> 2, 12, &result);
2211 dis_assemble_12 (result, &w1, &w);
2212 INSERT_FIELD_AND_CONTINUE (opcode, ((w1 << 2) | w), 0);
2213 }
2214 else
2215 {
2216 if (is_complex (the_insn.exp))
2217 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2218 else
2219 the_insn.reloc = R_HPPA_PCREL_CALL;
2220 the_insn.format = 12;
2221 the_insn.arg_reloc = last_call_desc.arg_reloc;
2222 bzero (&last_call_desc, sizeof (struct call_desc));
2223 s = expr_end;
2224 continue;
2225 }
2226
2227 /* Handle a 17 bit branch displacement. */
2228 case 'W':
2229 the_insn.field_selector = pa_chk_field_selector (&s);
2230 get_expression (s);
2231 s = expr_end;
2232 the_insn.pcrel = 1;
2233 if (!the_insn.exp.X_add_symbol
2234 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2235 "L$0\001"))
2236 {
2237 unsigned int w2, w1, w, result;
2238
2239 num = evaluate_absolute (&the_insn);
2240 if (num % 4)
2241 {
2242 as_bad ("Branch to unaligned address");
2243 break;
2244 }
2245 CHECK_FIELD (num, 262143, -262144, 0);
2246
2247 if (the_insn.exp.X_add_symbol)
2248 num -= 8;
2249
2250 sign_unext (num >> 2, 17, &result);
2251 dis_assemble_17 (result, &w1, &w2, &w);
2252 INSERT_FIELD_AND_CONTINUE (opcode,
2253 ((w2 << 2) | (w1 << 16) | w), 0);
2254 }
2255 else
2256 {
2257 if (is_complex (the_insn.exp))
2258 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2259 else
2260 the_insn.reloc = R_HPPA_PCREL_CALL;
2261 the_insn.format = 17;
2262 the_insn.arg_reloc = last_call_desc.arg_reloc;
2263 bzero (&last_call_desc, sizeof (struct call_desc));
2264 continue;
2265 }
2266
2267 /* Handle an absolute 17 bit branch target. */
2268 case 'z':
2269 the_insn.field_selector = pa_chk_field_selector (&s);
2270 get_expression (s);
2271 s = expr_end;
2272 the_insn.pcrel = 0;
2273 if (!the_insn.exp.X_add_symbol
2274 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2275 "L$0\001"))
2276 {
2277 unsigned int w2, w1, w, result;
2278
2279 num = evaluate_absolute (&the_insn);
2280 if (num % 4)
2281 {
2282 as_bad ("Branch to unaligned address");
2283 break;
2284 }
2285 CHECK_FIELD (num, 262143, -262144, 0);
2286
2287 if (the_insn.exp.X_add_symbol)
2288 num -= 8;
2289
2290 sign_unext (num >> 2, 17, &result);
2291 dis_assemble_17 (result, &w1, &w2, &w);
2292 INSERT_FIELD_AND_CONTINUE (opcode,
2293 ((w2 << 2) | (w1 << 16) | w), 0);
2294 }
2295 else
2296 {
2297 if (is_complex (the_insn.exp))
2298 the_insn.reloc = R_HPPA_COMPLEX_ABS_CALL;
2299 else
2300 the_insn.reloc = R_HPPA_ABS_CALL;
2301 the_insn.format = 17;
2302 continue;
2303 }
2304
2305 /* Handle a 5 bit shift count at 26. */
2306 case 'p':
2307 num = pa_get_absolute_expression (&the_insn, &s);
2308 s = expr_end;
2309 CHECK_FIELD (num, 31, 0, 0);
2310 INSERT_FIELD_AND_CONTINUE (opcode, 31 - num, 5);
2311
2312 /* Handle a 5 bit bit position at 26. */
2313 case 'P':
2314 num = pa_get_absolute_expression (&the_insn, &s);
2315 s = expr_end;
2316 CHECK_FIELD (num, 31, 0, 0);
2317 INSERT_FIELD_AND_CONTINUE (opcode, num, 5);
2318
2319 /* Handle a 5 bit immediate at 10. */
2320 case 'Q':
2321 num = pa_get_absolute_expression (&the_insn, &s);
2322 s = expr_end;
2323 CHECK_FIELD (num, 31, 0, 0);
2324 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
2325
2326 /* Handle a 13 bit immediate at 18. */
2327 case 'A':
2328 num = pa_get_absolute_expression (&the_insn, &s);
2329 s = expr_end;
2330 CHECK_FIELD (num, 4095, -4096, 0);
2331 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
2332
2333 /* Handle a 26 bit immediate at 31. */
2334 case 'D':
2335 num = pa_get_absolute_expression (&the_insn, &s);
2336 s = expr_end;
2337 CHECK_FIELD (num, 671108864, 0, 0);
2338 INSERT_FIELD_AND_CONTINUE (opcode, num, 1);
2339
2340 /* Handle a 3 bit SFU identifier at 25. */
2341 case 'f':
2342 num = pa_get_absolute_expression (&the_insn, &s);
2343 s = expr_end;
2344 CHECK_FIELD (num, 7, 0, 0);
2345 INSERT_FIELD_AND_CONTINUE (opcode, num, 6);
2346
2347 /* We don't support any of these. FIXME. */
2348 case 'O':
2349 get_expression (s);
2350 s = expr_end;
2351 abort ();
2352 continue;
2353
2354 /* Handle a source FP operand format completer. */
2355 case 'F':
2356 flag = pa_parse_fp_format (&s);
2357 the_insn.fpof1 = flag;
2358 INSERT_FIELD_AND_CONTINUE (opcode, flag, 11);
2359
2360 /* Handle a destination FP operand format completer. */
2361 case 'G':
2362 /* pa_parse_format needs the ',' prefix. */
2363 s--;
2364 flag = pa_parse_fp_format (&s);
2365 the_insn.fpof2 = flag;
2366 INSERT_FIELD_AND_CONTINUE (opcode, flag, 13);
2367
2368 /* Handle FP compare conditions. */
2369 case 'M':
2370 cond = pa_parse_fp_cmp_cond (&s);
2371 INSERT_FIELD_AND_CONTINUE (opcode, cond, 0);
2372
2373 /* Handle L/R register halves like 't'. */
2374 case 'v':
2375 {
2376 struct pa_89_fp_reg_struct result;
2377
2378 pa_parse_number (&s, &result);
2379 CHECK_FIELD (result.number_part, 31, 0, 0);
2380 opcode |= result.number_part;
2381
2382 /* 0x30 opcodes are FP arithmetic operation opcodes
2383 and need to be turned into 0x38 opcodes. This
2384 is not necessary for loads/stores. */
2385 if (need_89_opcode (&the_insn, &result)
2386 && ((opcode & 0xfc000000) == 0x30000000))
2387 opcode |= 1 << 27;
2388
2389 INSERT_FIELD_AND_CONTINUE (opcode, result.l_r_select & 1, 6);
2390 }
2391
2392 /* Handle L/R register halves like 'b'. */
2393 case 'E':
2394 {
2395 struct pa_89_fp_reg_struct result;
2396
2397 pa_parse_number (&s, &result);
2398 CHECK_FIELD (result.number_part, 31, 0, 0);
2399 opcode |= result.number_part << 21;
2400 if (need_89_opcode (&the_insn, &result))
2401 {
2402 opcode |= (result.l_r_select & 1) << 7;
2403 opcode |= 1 << 27;
2404 }
2405 continue;
2406 }
2407
2408 /* Handle L/R register halves like 'x'. */
2409 case 'X':
2410 {
2411 struct pa_89_fp_reg_struct result;
2412
2413 pa_parse_number (&s, &result);
2414 CHECK_FIELD (result.number_part, 31, 0, 0);
2415 opcode |= (result.number_part & 0x1f) << 16;
2416 if (need_89_opcode (&the_insn, &result))
2417 {
2418 opcode |= (result.l_r_select & 1) << 12;
2419 opcode |= 1 << 27;
2420 }
2421 continue;
2422 }
2423
2424 /* Handle a 5 bit register field at 10. */
2425 case '4':
2426 {
2427 struct pa_89_fp_reg_struct result;
2428
2429 pa_parse_number (&s, &result);
2430 CHECK_FIELD (result.number_part, 31, 0, 0);
2431 if (the_insn.fpof1 == SGL)
2432 {
2433 result.number_part &= 0xF;
2434 result.number_part |= (result.l_r_select & 1) << 4;
2435 }
2436 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 21);
2437 }
2438
2439 /* Handle a 5 bit register field at 15. */
2440 case '6':
2441 {
2442 struct pa_89_fp_reg_struct result;
2443
2444 pa_parse_number (&s, &result);
2445 CHECK_FIELD (result.number_part, 31, 0, 0);
2446 if (the_insn.fpof1 == SGL)
2447 {
2448 result.number_part &= 0xF;
2449 result.number_part |= (result.l_r_select & 1) << 4;
2450 }
2451 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 16);
2452 }
2453
2454 /* Handle a 5 bit register field at 31. */
2455 case '7':
2456 {
2457 struct pa_89_fp_reg_struct result;
2458
2459 pa_parse_number (&s, &result);
2460 CHECK_FIELD (result.number_part, 31, 0, 0);
2461 if (the_insn.fpof1 == SGL)
2462 {
2463 result.number_part &= 0xF;
2464 result.number_part |= (result.l_r_select & 1) << 4;
2465 }
2466 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 0);
2467 }
2468
2469 /* Handle a 5 bit register field at 20. */
2470 case '8':
2471 {
2472 struct pa_89_fp_reg_struct result;
2473
2474 pa_parse_number (&s, &result);
2475 CHECK_FIELD (result.number_part, 31, 0, 0);
2476 if (the_insn.fpof1 == SGL)
2477 {
2478 result.number_part &= 0xF;
2479 result.number_part |= (result.l_r_select & 1) << 4;
2480 }
2481 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 11);
2482 }
2483
2484 /* Handle a 5 bit register field at 25. */
2485 case '9':
2486 {
2487 struct pa_89_fp_reg_struct result;
2488
2489 pa_parse_number (&s, &result);
2490 CHECK_FIELD (result.number_part, 31, 0, 0);
2491 if (the_insn.fpof1 == SGL)
2492 {
2493 result.number_part &= 0xF;
2494 result.number_part |= (result.l_r_select & 1) << 4;
2495 }
2496 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 6);
2497 }
2498
2499 /* Handle a floating point operand format at 26.
2500 Only allows single and double precision. */
2501 case 'H':
2502 flag = pa_parse_fp_format (&s);
2503 switch (flag)
2504 {
2505 case SGL:
2506 opcode |= 0x20;
2507 case DBL:
2508 the_insn.fpof1 = flag;
2509 continue;
2510
2511 case QUAD:
2512 case ILLEGAL_FMT:
2513 default:
2514 as_bad ("Invalid Floating Point Operand Format.");
2515 }
2516 break;
2517
2518 default:
2519 abort ();
2520 }
2521 break;
2522 }
2523
2524 /* Check if the args matched. */
2525 if (match == FALSE)
2526 {
2527 if (&insn[1] - pa_opcodes < NUMOPCODES
2528 && !strcmp (insn->name, insn[1].name))
2529 {
2530 ++insn;
2531 s = argstart;
2532 continue;
2533 }
2534 else
2535 {
2536 as_bad ("Invalid operands %s", error_message);
2537 return;
2538 }
2539 }
2540 break;
2541 }
2542
2543 the_insn.opcode = opcode;
2544 return;
2545 }
2546
2547 /* Turn a string in input_line_pointer into a floating point constant of type
2548 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
2549 emitted is stored in *sizeP . An error message or NULL is returned. */
2550
2551 #define MAX_LITTLENUMS 6
2552
2553 char *
2554 md_atof (type, litP, sizeP)
2555 char type;
2556 char *litP;
2557 int *sizeP;
2558 {
2559 int prec;
2560 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2561 LITTLENUM_TYPE *wordP;
2562 char *t;
2563
2564 switch (type)
2565 {
2566
2567 case 'f':
2568 case 'F':
2569 case 's':
2570 case 'S':
2571 prec = 2;
2572 break;
2573
2574 case 'd':
2575 case 'D':
2576 case 'r':
2577 case 'R':
2578 prec = 4;
2579 break;
2580
2581 case 'x':
2582 case 'X':
2583 prec = 6;
2584 break;
2585
2586 case 'p':
2587 case 'P':
2588 prec = 6;
2589 break;
2590
2591 default:
2592 *sizeP = 0;
2593 return "Bad call to MD_ATOF()";
2594 }
2595 t = atof_ieee (input_line_pointer, type, words);
2596 if (t)
2597 input_line_pointer = t;
2598 *sizeP = prec * sizeof (LITTLENUM_TYPE);
2599 for (wordP = words; prec--;)
2600 {
2601 md_number_to_chars (litP, (valueT) (*wordP++), sizeof (LITTLENUM_TYPE));
2602 litP += sizeof (LITTLENUM_TYPE);
2603 }
2604 return NULL;
2605 }
2606
2607 /* Write out big-endian. */
2608
2609 void
2610 md_number_to_chars (buf, val, n)
2611 char *buf;
2612 valueT val;
2613 int n;
2614 {
2615 number_to_chars_bigendian (buf, val, n);
2616 }
2617
2618 /* Translate internal representation of relocation info to BFD target
2619 format. */
2620
2621 arelent **
2622 tc_gen_reloc (section, fixp)
2623 asection *section;
2624 fixS *fixp;
2625 {
2626 arelent *reloc;
2627 struct hppa_fix_struct *hppa_fixp = fixp->tc_fix_data;
2628 bfd_reloc_code_real_type code;
2629 static int unwind_reloc_fixp_cnt = 0;
2630 static arelent *unwind_reloc_entryP = NULL;
2631 static arelent *no_relocs = NULL;
2632 arelent **relocs;
2633 bfd_reloc_code_real_type **codes;
2634 int n_relocs;
2635 int i;
2636
2637 if (fixp->fx_addsy == 0)
2638 return &no_relocs;
2639 assert (hppa_fixp != 0);
2640 assert (section != 0);
2641
2642 #ifdef OBJ_ELF
2643 /* Yuk. I would really like to push all this ELF specific unwind
2644 crud into BFD and the linker. That's how SOM does it -- and
2645 if we could make ELF emulate that then we could share more code
2646 in GAS (and potentially a gnu-linker later).
2647
2648 Unwind section relocations are handled in a special way.
2649 The relocations for the .unwind section are originally
2650 built in the usual way. That is, for each unwind table
2651 entry there are two relocations: one for the beginning of
2652 the function and one for the end.
2653
2654 The first time we enter this function we create a
2655 relocation of the type R_HPPA_UNWIND_ENTRIES. The addend
2656 of the relocation is initialized to 0. Each additional
2657 pair of times this function is called for the unwind
2658 section represents an additional unwind table entry. Thus,
2659 the addend of the relocation should end up to be the number
2660 of unwind table entries. */
2661 if (strcmp (UNWIND_SECTION_NAME, section->name) == 0)
2662 {
2663 if (unwind_reloc_entryP == NULL)
2664 {
2665 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
2666 sizeof (arelent));
2667 assert (reloc != 0);
2668 unwind_reloc_entryP = reloc;
2669 unwind_reloc_fixp_cnt++;
2670 unwind_reloc_entryP->address
2671 = fixp->fx_frag->fr_address + fixp->fx_where;
2672 /* A pointer to any function will do. We only
2673 need one to tell us what section the unwind
2674 relocations are for. */
2675 unwind_reloc_entryP->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2676 hppa_fixp->fx_r_type = code = R_HPPA_UNWIND_ENTRIES;
2677 fixp->fx_r_type = R_HPPA_UNWIND;
2678 unwind_reloc_entryP->howto = bfd_reloc_type_lookup (stdoutput, code);
2679 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
2680 relocs = (arelent **) bfd_alloc_by_size_t (stdoutput,
2681 sizeof (arelent *) * 2);
2682 assert (relocs != 0);
2683 relocs[0] = unwind_reloc_entryP;
2684 relocs[1] = NULL;
2685 return relocs;
2686 }
2687 unwind_reloc_fixp_cnt++;
2688 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
2689
2690 return &no_relocs;
2691 }
2692 #endif
2693
2694 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent));
2695 assert (reloc != 0);
2696
2697 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2698 codes = hppa_gen_reloc_type (stdoutput,
2699 fixp->fx_r_type,
2700 hppa_fixp->fx_r_format,
2701 hppa_fixp->fx_r_field);
2702
2703 for (n_relocs = 0; codes[n_relocs]; n_relocs++)
2704 ;
2705
2706 relocs = (arelent **)
2707 bfd_alloc_by_size_t (stdoutput, sizeof (arelent *) * n_relocs + 1);
2708 assert (relocs != 0);
2709
2710 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
2711 sizeof (arelent) * n_relocs);
2712 if (n_relocs > 0)
2713 assert (reloc != 0);
2714
2715 for (i = 0; i < n_relocs; i++)
2716 relocs[i] = &reloc[i];
2717
2718 relocs[n_relocs] = NULL;
2719
2720 #ifdef OBJ_ELF
2721 switch (fixp->fx_r_type)
2722 {
2723 case R_HPPA_COMPLEX:
2724 case R_HPPA_COMPLEX_PCREL_CALL:
2725 case R_HPPA_COMPLEX_ABS_CALL:
2726 assert (n_relocs == 5);
2727
2728 for (i = 0; i < n_relocs; i++)
2729 {
2730 reloc[i].sym_ptr_ptr = NULL;
2731 reloc[i].address = 0;
2732 reloc[i].addend = 0;
2733 reloc[i].howto = bfd_reloc_type_lookup (stdoutput, *codes[i]);
2734 assert (reloc[i].howto && *codes[i] == reloc[i].howto->type);
2735 }
2736
2737 reloc[0].sym_ptr_ptr = &fixp->fx_addsy->bsym;
2738 reloc[1].sym_ptr_ptr = &fixp->fx_subsy->bsym;
2739 reloc[4].address = fixp->fx_frag->fr_address + fixp->fx_where;
2740
2741 if (fixp->fx_r_type == R_HPPA_COMPLEX)
2742 reloc[3].addend = fixp->fx_addnumber;
2743 else if (fixp->fx_r_type == R_HPPA_COMPLEX_PCREL_CALL ||
2744 fixp->fx_r_type == R_HPPA_COMPLEX_ABS_CALL)
2745 reloc[1].addend = fixp->fx_addnumber;
2746
2747 break;
2748
2749 default:
2750 assert (n_relocs == 1);
2751
2752 code = *codes[0];
2753
2754 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2755 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
2756 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
2757 reloc->addend = 0; /* default */
2758
2759 assert (reloc->howto && code == reloc->howto->type);
2760
2761 /* Now, do any processing that is dependent on the relocation type. */
2762 switch (code)
2763 {
2764 case R_HPPA_PLABEL_32:
2765 case R_HPPA_PLABEL_11:
2766 case R_HPPA_PLABEL_14:
2767 case R_HPPA_PLABEL_L21:
2768 case R_HPPA_PLABEL_R11:
2769 case R_HPPA_PLABEL_R14:
2770 /* For plabel relocations, the addend of the
2771 relocation should be either 0 (no static link) or 2
2772 (static link required).
2773
2774 FIXME: We always assume no static link! */
2775 reloc->addend = 0;
2776 break;
2777
2778 case R_HPPA_ABS_CALL_11:
2779 case R_HPPA_ABS_CALL_14:
2780 case R_HPPA_ABS_CALL_17:
2781 case R_HPPA_ABS_CALL_L21:
2782 case R_HPPA_ABS_CALL_R11:
2783 case R_HPPA_ABS_CALL_R14:
2784 case R_HPPA_ABS_CALL_R17:
2785 case R_HPPA_ABS_CALL_LS21:
2786 case R_HPPA_ABS_CALL_RS11:
2787 case R_HPPA_ABS_CALL_RS14:
2788 case R_HPPA_ABS_CALL_RS17:
2789 case R_HPPA_ABS_CALL_LD21:
2790 case R_HPPA_ABS_CALL_RD11:
2791 case R_HPPA_ABS_CALL_RD14:
2792 case R_HPPA_ABS_CALL_RD17:
2793 case R_HPPA_ABS_CALL_LR21:
2794 case R_HPPA_ABS_CALL_RR14:
2795 case R_HPPA_ABS_CALL_RR17:
2796
2797 case R_HPPA_PCREL_CALL_11:
2798 case R_HPPA_PCREL_CALL_14:
2799 case R_HPPA_PCREL_CALL_17:
2800 case R_HPPA_PCREL_CALL_L21:
2801 case R_HPPA_PCREL_CALL_R11:
2802 case R_HPPA_PCREL_CALL_R14:
2803 case R_HPPA_PCREL_CALL_R17:
2804 case R_HPPA_PCREL_CALL_LS21:
2805 case R_HPPA_PCREL_CALL_RS11:
2806 case R_HPPA_PCREL_CALL_RS14:
2807 case R_HPPA_PCREL_CALL_RS17:
2808 case R_HPPA_PCREL_CALL_LD21:
2809 case R_HPPA_PCREL_CALL_RD11:
2810 case R_HPPA_PCREL_CALL_RD14:
2811 case R_HPPA_PCREL_CALL_RD17:
2812 case R_HPPA_PCREL_CALL_LR21:
2813 case R_HPPA_PCREL_CALL_RR14:
2814 case R_HPPA_PCREL_CALL_RR17:
2815 /* The constant is stored in the instruction. */
2816 reloc->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
2817 break;
2818 default:
2819 reloc->addend = fixp->fx_addnumber;
2820 break;
2821 }
2822 break;
2823 }
2824 #else /* OBJ_SOM */
2825
2826 /* Walk over reach relocation returned by the BFD backend. */
2827 for (i = 0; i < n_relocs; i++)
2828 {
2829 code = *codes[i];
2830
2831 relocs[i]->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2832 relocs[i]->howto = bfd_reloc_type_lookup (stdoutput, code);
2833 relocs[i]->address = fixp->fx_frag->fr_address + fixp->fx_where;
2834
2835 switch (code)
2836 {
2837 case R_PCREL_CALL:
2838 case R_ABS_CALL:
2839 relocs[i]->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
2840 break;
2841
2842 case R_DATA_PLABEL:
2843 case R_CODE_PLABEL:
2844 /* For plabel relocations, the addend of the
2845 relocation should be either 0 (no static link) or 2
2846 (static link required).
2847
2848 FIXME: We always assume no static link! */
2849 relocs[i]->addend = 0;
2850 break;
2851
2852 case R_N_MODE:
2853 case R_S_MODE:
2854 case R_D_MODE:
2855 case R_R_MODE:
2856 /* There is no symbol or addend associated with these fixups. */
2857 relocs[i]->sym_ptr_ptr = 0;
2858 relocs[i]->addend = 0;
2859 break;
2860
2861 default:
2862 relocs[i]->addend = fixp->fx_addnumber;
2863 break;
2864 }
2865 }
2866 #endif
2867
2868 return relocs;
2869 }
2870
2871 /* Process any machine dependent frag types. */
2872
2873 void
2874 md_convert_frag (abfd, sec, fragP)
2875 register bfd *abfd;
2876 register asection *sec;
2877 register fragS *fragP;
2878 {
2879 unsigned int address;
2880
2881 if (fragP->fr_type == rs_machine_dependent)
2882 {
2883 switch ((int) fragP->fr_subtype)
2884 {
2885 case 0:
2886 fragP->fr_type = rs_fill;
2887 know (fragP->fr_var == 1);
2888 know (fragP->fr_next);
2889 address = fragP->fr_address + fragP->fr_fix;
2890 if (address % fragP->fr_offset)
2891 {
2892 fragP->fr_offset =
2893 fragP->fr_next->fr_address
2894 - fragP->fr_address
2895 - fragP->fr_fix;
2896 }
2897 else
2898 fragP->fr_offset = 0;
2899 break;
2900 }
2901 }
2902 }
2903
2904 /* Round up a section size to the appropriate boundary. */
2905
2906 valueT
2907 md_section_align (segment, size)
2908 asection *segment;
2909 valueT size;
2910 {
2911 int align = bfd_get_section_alignment (stdoutput, segment);
2912 int align2 = (1 << align) - 1;
2913
2914 return (size + align2) & ~align2;
2915
2916 }
2917
2918 /* Create a short jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2919 void
2920 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
2921 char *ptr;
2922 addressT from_addr, to_addr;
2923 fragS *frag;
2924 symbolS *to_symbol;
2925 {
2926 fprintf (stderr, "pa_create_short_jmp\n");
2927 abort ();
2928 }
2929
2930 /* Create a long jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2931 void
2932 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
2933 char *ptr;
2934 addressT from_addr, to_addr;
2935 fragS *frag;
2936 symbolS *to_symbol;
2937 {
2938 fprintf (stderr, "pa_create_long_jump\n");
2939 abort ();
2940 }
2941
2942 /* Return the approximate size of a frag before relaxation has occurred. */
2943 int
2944 md_estimate_size_before_relax (fragP, segment)
2945 register fragS *fragP;
2946 asection *segment;
2947 {
2948 int size;
2949
2950 size = 0;
2951
2952 while ((fragP->fr_fix + size) % fragP->fr_offset)
2953 size++;
2954
2955 return size;
2956 }
2957
2958 /* Parse machine dependent options. There are none on the PA. */
2959 int
2960 md_parse_option (argP, cntP, vecP)
2961 char **argP;
2962 int *cntP;
2963 char ***vecP;
2964 {
2965 return 1;
2966 }
2967
2968 /* We have no need to default values of symbols. */
2969
2970 symbolS *
2971 md_undefined_symbol (name)
2972 char *name;
2973 {
2974 return 0;
2975 }
2976
2977 /* Parse an operand that is machine-specific.
2978 We just return without modifying the expression as we have nothing
2979 to do on the PA. */
2980
2981 void
2982 md_operand (expressionP)
2983 expressionS *expressionP;
2984 {
2985 }
2986
2987 /* Apply a fixup to an instruction. */
2988
2989 int
2990 md_apply_fix (fixP, valp)
2991 fixS *fixP;
2992 valueT *valp;
2993 {
2994 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
2995 struct hppa_fix_struct *hppa_fixP = fixP->tc_fix_data;
2996 long new_val, result;
2997 unsigned int w1, w2, w;
2998 valueT val = *valp;
2999
3000 /* SOM uses R_HPPA_ENTRY and R_HPPA_EXIT relocations which can
3001 never be "applied" (they are just markers). */
3002 #ifdef OBJ_SOM
3003 if (fixP->fx_r_type == R_HPPA_ENTRY
3004 || fixP->fx_r_type == R_HPPA_EXIT)
3005 return 1;
3006 #endif
3007
3008 /* There should have been an HPPA specific fixup associated
3009 with the GAS fixup. */
3010 if (hppa_fixP)
3011 {
3012 unsigned long buf_wd = bfd_get_32 (stdoutput, buf);
3013 unsigned char fmt = bfd_hppa_insn2fmt (buf_wd);
3014
3015 if (fixP->fx_r_type == R_HPPA_NONE)
3016 fmt = 0;
3017
3018 /* Remember this value for emit_reloc. FIXME, is this braindamage
3019 documented anywhere!?! */
3020 fixP->fx_addnumber = val;
3021
3022 /* Check if this is an undefined symbol. No relocation can
3023 possibly be performed in this case. */
3024 if ((fixP->fx_addsy && fixP->fx_addsy->bsym->section == &bfd_und_section)
3025 || (fixP->fx_subsy
3026 && fixP->fx_subsy->bsym->section == &bfd_und_section))
3027 return 1;
3028
3029 /* PLABEL field selectors should not be passed to hppa_field_adjust. */
3030 if (fmt != 0 && hppa_fixP->fx_r_field != R_HPPA_PSEL
3031 && hppa_fixP->fx_r_field != R_HPPA_LPSEL
3032 && hppa_fixP->fx_r_field != R_HPPA_RPSEL)
3033 new_val = hppa_field_adjust (val, 0, hppa_fixP->fx_r_field);
3034 else
3035 new_val = 0;
3036
3037 switch (fmt)
3038 {
3039 /* Handle all opcodes with the 'j' operand type. */
3040 case 14:
3041 CHECK_FIELD (new_val, 8191, -8192, 0);
3042
3043 /* Mask off 14 bits to be changed. */
3044 bfd_put_32 (stdoutput,
3045 bfd_get_32 (stdoutput, buf) & 0xffffc000,
3046 buf);
3047 low_sign_unext (new_val, 14, &result);
3048 break;
3049
3050 /* Handle all opcodes with the 'k' operand type. */
3051 case 21:
3052 CHECK_FIELD (new_val, 2097152, 0, 0);
3053
3054 /* Mask off 21 bits to be changed. */
3055 bfd_put_32 (stdoutput,
3056 bfd_get_32 (stdoutput, buf) & 0xffe00000,
3057 buf);
3058 dis_assemble_21 (new_val, &result);
3059 break;
3060
3061 /* Handle all the opcodes with the 'i' operand type. */
3062 case 11:
3063 CHECK_FIELD (new_val, 1023, -1023, 0);
3064
3065 /* Mask off 11 bits to be changed. */
3066 bfd_put_32 (stdoutput,
3067 bfd_get_32 (stdoutput, buf) & 0xffff800,
3068 buf);
3069 low_sign_unext (new_val, 11, &result);
3070 break;
3071
3072 /* Handle all the opcodes with the 'w' operand type. */
3073 case 12:
3074 CHECK_FIELD (new_val, 8191, -8192, 0)
3075
3076 /* Mask off 11 bits to be changed. */
3077 sign_unext ((new_val - 8) >> 2, 12, &result);
3078 bfd_put_32 (stdoutput,
3079 bfd_get_32 (stdoutput, buf) & 0xffffe002,
3080 buf);
3081
3082 dis_assemble_12 (result, &w1, &w);
3083 result = ((w1 << 2) | w);
3084 break;
3085
3086 /* Handle some of the opcodes with the 'W' operand type. */
3087 case 17:
3088
3089 #define stub_needed(CALLER, CALLEE) \
3090 ((CALLEE) && (CALLER) && ((CALLEE) != (CALLER)))
3091 /* It is necessary to force PC-relative calls/jumps to have a
3092 relocation entry if they're going to need either a argument
3093 relocation or long call stub. FIXME. Can't we need the same
3094 for absolute calls? */
3095 if (fixP->fx_addsy
3096 && (stub_needed (((obj_symbol_type *)
3097 fixP->fx_addsy->bsym)->tc_data.hppa_arg_reloc,
3098 hppa_fixP->fx_arg_reloc)))
3099 return 1;
3100 #undef stub_needed
3101
3102 CHECK_FIELD (new_val, 262143, -262144, 0);
3103
3104 /* Mask off 17 bits to be changed. */
3105 bfd_put_32 (stdoutput,
3106 bfd_get_32 (stdoutput, buf) & 0xffe0e002,
3107 buf);
3108 sign_unext ((new_val - 8) >> 2, 17, &result);
3109 dis_assemble_17 (result, &w1, &w2, &w);
3110 result = ((w2 << 2) | (w1 << 16) | w);
3111 break;
3112
3113 case 32:
3114 #ifdef OBJ_ELF
3115 /* These are ELF specific relocations. ELF unfortunately
3116 handles unwinds in a completely different manner. */
3117 if (hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRY
3118 || hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRIES)
3119 result = fixP->fx_addnumber;
3120 else
3121 #endif
3122 {
3123 result = 0;
3124 fixP->fx_addnumber = fixP->fx_offset;
3125 bfd_put_32 (stdoutput, 0, buf);
3126 return 1;
3127 }
3128 break;
3129
3130 case 0:
3131 return 1;
3132
3133 default:
3134 as_bad ("Unknown relocation encountered in md_apply_fix.");
3135 return 1;
3136 }
3137
3138 /* Insert the relocation. */
3139 bfd_put_32 (stdoutput, bfd_get_32 (stdoutput, buf) | result, buf);
3140 return 1;
3141 }
3142 else
3143 {
3144 printf ("no hppa_fixup entry for this fixup (fixP = 0x%x, type = 0x%x)\n",
3145 (unsigned int) fixP, fixP->fx_r_type);
3146 return 0;
3147 }
3148 }
3149
3150 /* Exactly what point is a PC-relative offset relative TO?
3151 On the PA, they're relative to the address of the offset. */
3152
3153 long
3154 md_pcrel_from (fixP)
3155 fixS *fixP;
3156 {
3157 return fixP->fx_where + fixP->fx_frag->fr_address;
3158 }
3159
3160 /* Return nonzero if the input line pointer is at the end of
3161 a statement. */
3162
3163 static int
3164 is_end_of_statement ()
3165 {
3166 return ((*input_line_pointer == '\n')
3167 || (*input_line_pointer == ';')
3168 || (*input_line_pointer == '!'));
3169 }
3170
3171 /* Read a number from S. The number might come in one of many forms,
3172 the most common will be a hex or decimal constant, but it could be
3173 a pre-defined register (Yuk!), or an absolute symbol.
3174
3175 Return a number or -1 for failure.
3176
3177 When parsing PA-89 FP register numbers RESULT will be
3178 the address of a structure to return information about
3179 L/R half of FP registers, store results there as appropriate.
3180
3181 pa_parse_number can not handle negative constants and will fail
3182 horribly if it is passed such a constant. */
3183
3184 static int
3185 pa_parse_number (s, result)
3186 char **s;
3187 struct pa_89_fp_reg_struct *result;
3188 {
3189 int num;
3190 char *name;
3191 char c;
3192 symbolS *sym;
3193 int status;
3194 char *p = *s;
3195
3196 /* Skip whitespace before the number. */
3197 while (*p == ' ' || *p == '\t')
3198 p = p + 1;
3199
3200 /* Store info in RESULT if requested by caller. */
3201 if (result)
3202 {
3203 result->number_part = -1;
3204 result->l_r_select = -1;
3205 }
3206 num = -1;
3207
3208 if (isdigit (*p))
3209 {
3210 /* Looks like a number. */
3211 num = 0;
3212
3213 if (*p == '0' && (*(p + 1) == 'x' || *(p + 1) == 'X'))
3214 {
3215 /* The number is specified in hex. */
3216 p += 2;
3217 while (isdigit (*p) || ((*p >= 'a') && (*p <= 'f'))
3218 || ((*p >= 'A') && (*p <= 'F')))
3219 {
3220 if (isdigit (*p))
3221 num = num * 16 + *p - '0';
3222 else if (*p >= 'a' && *p <= 'f')
3223 num = num * 16 + *p - 'a' + 10;
3224 else
3225 num = num * 16 + *p - 'A' + 10;
3226 ++p;
3227 }
3228 }
3229 else
3230 {
3231 /* The number is specified in decimal. */
3232 while (isdigit (*p))
3233 {
3234 num = num * 10 + *p - '0';
3235 ++p;
3236 }
3237 }
3238
3239 /* Store info in RESULT if requested by the caller. */
3240 if (result)
3241 {
3242 result->number_part = num;
3243
3244 if (IS_R_SELECT (p))
3245 {
3246 result->l_r_select = 1;
3247 ++p;
3248 }
3249 else if (IS_L_SELECT (p))
3250 {
3251 result->l_r_select = 0;
3252 ++p;
3253 }
3254 else
3255 result->l_r_select = 0;
3256 }
3257 }
3258 else if (*p == '%')
3259 {
3260 /* The number might be a predefined register. */
3261 num = 0;
3262 name = p;
3263 p++;
3264 c = *p;
3265 /* Tege hack: Special case for general registers as the general
3266 code makes a binary search with case translation, and is VERY
3267 slow. */
3268 if (c == 'r')
3269 {
3270 p++;
3271 if (*p == 'e' && *(p + 1) == 't'
3272 && (*(p + 2) == '0' || *(p + 2) == '1'))
3273 {
3274 p += 2;
3275 num = *p - '0' + 28;
3276 p++;
3277 }
3278 else if (*p == 'p')
3279 {
3280 num = 2;
3281 p++;
3282 }
3283 else if (!isdigit (*p))
3284 {
3285 if (print_errors)
3286 as_bad ("Undefined register: '%s'.", name);
3287 num = -1;
3288 }
3289 else
3290 {
3291 do
3292 num = num * 10 + *p++ - '0';
3293 while (isdigit (*p));
3294 }
3295 }
3296 else
3297 {
3298 /* Do a normal register search. */
3299 while (is_part_of_name (c))
3300 {
3301 p = p + 1;
3302 c = *p;
3303 }
3304 *p = 0;
3305 status = reg_name_search (name);
3306 if (status >= 0)
3307 num = status;
3308 else
3309 {
3310 if (print_errors)
3311 as_bad ("Undefined register: '%s'.", name);
3312 num = -1;
3313 }
3314 *p = c;
3315 }
3316
3317 /* Store info in RESULT if requested by caller. */
3318 if (result)
3319 {
3320 result->number_part = num;
3321 if (IS_R_SELECT (p - 1))
3322 result->l_r_select = 1;
3323 else if (IS_L_SELECT (p - 1))
3324 result->l_r_select = 0;
3325 else
3326 result->l_r_select = 0;
3327 }
3328 }
3329 else
3330 {
3331 /* And finally, it could be a symbol in the absolute section which
3332 is effectively a constant. */
3333 num = 0;
3334 name = p;
3335 c = *p;
3336 while (is_part_of_name (c))
3337 {
3338 p = p + 1;
3339 c = *p;
3340 }
3341 *p = 0;
3342 if ((sym = symbol_find (name)) != NULL)
3343 {
3344 if (S_GET_SEGMENT (sym) == &bfd_abs_section)
3345 num = S_GET_VALUE (sym);
3346 else
3347 {
3348 if (print_errors)
3349 as_bad ("Non-absolute symbol: '%s'.", name);
3350 num = -1;
3351 }
3352 }
3353 else
3354 {
3355 /* There is where we'd come for an undefined symbol
3356 or for an empty string. For an empty string we
3357 will return zero. That's a concession made for
3358 compatability with the braindamaged HP assemblers. */
3359 if (*name == 0)
3360 num = 0;
3361 else
3362 {
3363 if (print_errors)
3364 as_bad ("Undefined absolute constant: '%s'.", name);
3365 num = -1;
3366 }
3367 }
3368 *p = c;
3369
3370 /* Store info in RESULT if requested by caller. */
3371 if (result)
3372 {
3373 result->number_part = num;
3374 if (IS_R_SELECT (p - 1))
3375 result->l_r_select = 1;
3376 else if (IS_L_SELECT (p - 1))
3377 result->l_r_select = 0;
3378 else
3379 result->l_r_select = 0;
3380 }
3381 }
3382
3383 *s = p;
3384 return num;
3385 }
3386
3387 #define REG_NAME_CNT (sizeof(pre_defined_registers) / sizeof(struct pd_reg))
3388
3389 /* Given NAME, find the register number associated with that name, return
3390 the integer value associated with the given name or -1 on failure. */
3391
3392 static int
3393 reg_name_search (name)
3394 char *name;
3395 {
3396 int middle, low, high;
3397
3398 low = 0;
3399 high = REG_NAME_CNT - 1;
3400
3401 do
3402 {
3403 middle = (low + high) / 2;
3404 if (strcasecmp (name, pre_defined_registers[middle].name) < 0)
3405 high = middle - 1;
3406 else
3407 low = middle + 1;
3408 }
3409 while (!((strcasecmp (name, pre_defined_registers[middle].name) == 0) ||
3410 (low > high)));
3411
3412 if (strcasecmp (name, pre_defined_registers[middle].name) == 0)
3413 return (pre_defined_registers[middle].value);
3414 else
3415 return (-1);
3416 }
3417
3418
3419 /* Return nonzero if the given INSN and L/R information will require
3420 a new PA-89 opcode. */
3421
3422 static int
3423 need_89_opcode (insn, result)
3424 struct pa_it *insn;
3425 struct pa_89_fp_reg_struct *result;
3426 {
3427 if (result->l_r_select == 1 && !(insn->fpof1 == DBL && insn->fpof2 == DBL))
3428 return TRUE;
3429 else
3430 return FALSE;
3431 }
3432
3433 /* Parse a condition for a fcmp instruction. Return the numerical
3434 code associated with the condition. */
3435
3436 static int
3437 pa_parse_fp_cmp_cond (s)
3438 char **s;
3439 {
3440 int cond, i;
3441
3442 cond = 0;
3443
3444 for (i = 0; i < 32; i++)
3445 {
3446 if (strncasecmp (*s, fp_cond_map[i].string,
3447 strlen (fp_cond_map[i].string)) == 0)
3448 {
3449 cond = fp_cond_map[i].cond;
3450 *s += strlen (fp_cond_map[i].string);
3451 while (**s == ' ' || **s == '\t')
3452 *s = *s + 1;
3453 return cond;
3454 }
3455 }
3456
3457 as_bad ("Invalid FP Compare Condition: %c", **s);
3458 return 0;
3459 }
3460
3461 /* Parse an FP operand format completer returning the completer
3462 type. */
3463
3464 static fp_operand_format
3465 pa_parse_fp_format (s)
3466 char **s;
3467 {
3468 int format;
3469
3470 format = SGL;
3471 if (**s == ',')
3472 {
3473 *s += 1;
3474 if (strncasecmp (*s, "sgl", 3) == 0)
3475 {
3476 format = SGL;
3477 *s += 4;
3478 }
3479 else if (strncasecmp (*s, "dbl", 3) == 0)
3480 {
3481 format = DBL;
3482 *s += 4;
3483 }
3484 else if (strncasecmp (*s, "quad", 4) == 0)
3485 {
3486 format = QUAD;
3487 *s += 5;
3488 }
3489 else
3490 {
3491 format = ILLEGAL_FMT;
3492 as_bad ("Invalid FP Operand Format: %3s", *s);
3493 }
3494 }
3495
3496 return format;
3497 }
3498
3499 /* Convert from a selector string into a selector type. */
3500
3501 static int
3502 pa_chk_field_selector (str)
3503 char **str;
3504 {
3505 int selector;
3506 const struct selector_entry *tablep;
3507
3508 selector = e_fsel;
3509
3510 /* Read past any whitespace. */
3511 while (**str == ' ' || **str == '\t' || **str == '\n' || **str == '\f')
3512 *str = *str + 1;
3513
3514 /* Yuk. Looks like a linear search through the table. With the
3515 frequence of some selectors it might make sense to sort the
3516 table by usage. */
3517 for (tablep = selector_table; tablep->prefix; tablep++)
3518 {
3519 if (strncasecmp (tablep->prefix, *str, strlen (tablep->prefix)) == 0)
3520 {
3521 *str += strlen (tablep->prefix);
3522 selector = tablep->field_selector;
3523 break;
3524 }
3525 }
3526 return selector;
3527 }
3528
3529 /* Mark (via expr_end) the end of an expression (I think). FIXME. */
3530
3531 static int
3532 get_expression (str)
3533 char *str;
3534 {
3535 char *save_in;
3536 asection *seg;
3537
3538 save_in = input_line_pointer;
3539 input_line_pointer = str;
3540 seg = expression (&the_insn.exp);
3541 if (!(seg == absolute_section
3542 || seg == undefined_section
3543 || SEG_NORMAL (seg)))
3544 {
3545 as_warn ("Bad segment in expression.");
3546 expr_end = input_line_pointer;
3547 input_line_pointer = save_in;
3548 return 1;
3549 }
3550 expr_end = input_line_pointer;
3551 input_line_pointer = save_in;
3552 return 0;
3553 }
3554
3555 /* Mark (via expr_end) the end of an absolute expression. FIXME. */
3556 static int
3557 pa_get_absolute_expression (insn, strp)
3558 struct pa_it *insn;
3559 char **strp;
3560 {
3561 char *save_in;
3562
3563 insn->field_selector = pa_chk_field_selector (strp);
3564 save_in = input_line_pointer;
3565 input_line_pointer = *strp;
3566 expression (&insn->exp);
3567 if (insn->exp.X_op != O_constant)
3568 {
3569 as_bad ("Bad segment (should be absolute).");
3570 expr_end = input_line_pointer;
3571 input_line_pointer = save_in;
3572 return 0;
3573 }
3574 expr_end = input_line_pointer;
3575 input_line_pointer = save_in;
3576 return evaluate_absolute (insn);
3577 }
3578
3579 /* Evaluate an absolute expression EXP which may be modified by
3580 the selector FIELD_SELECTOR. Return the value of the expression. */
3581 static int
3582 evaluate_absolute (insn)
3583 struct pa_it *insn;
3584 {
3585 int value;
3586 expressionS exp;
3587 int field_selector = insn->field_selector;
3588
3589 exp = insn->exp;
3590 value = exp.X_add_number;
3591
3592 switch (field_selector)
3593 {
3594 /* No change. */
3595 case e_fsel:
3596 break;
3597
3598 /* If bit 21 is on then add 0x800 and arithmetic shift right 11 bits. */
3599 case e_lssel:
3600 if (value & 0x00000400)
3601 value += 0x800;
3602 value = (value & 0xfffff800) >> 11;
3603 break;
3604
3605 /* Sign extend from bit 21. */
3606 case e_rssel:
3607 if (value & 0x00000400)
3608 value |= 0xfffff800;
3609 else
3610 value &= 0x7ff;
3611 break;
3612
3613 /* Arithmetic shift right 11 bits. */
3614 case e_lsel:
3615 value = (value & 0xfffff800) >> 11;
3616 break;
3617
3618 /* Set bits 0-20 to zero. */
3619 case e_rsel:
3620 value = value & 0x7ff;
3621 break;
3622
3623 /* Add 0x800 and arithmetic shift right 11 bits. */
3624 case e_ldsel:
3625 value += 0x800;
3626 value = (value & 0xfffff800) >> 11;
3627 break;
3628
3629 /* Set bitgs 0-21 to one. */
3630 case e_rdsel:
3631 value |= 0xfffff800;
3632 break;
3633
3634 #define RSEL_ROUND(c) (((c) + 0x1000) & ~0x1fff)
3635 case e_rrsel:
3636 value = (RSEL_ROUND (value) & 0x7ff) + (value - RSEL_ROUND (value));
3637 break;
3638
3639 case e_lrsel:
3640 value = (RSEL_ROUND (value) >> 11) & 0x1fffff;
3641 break;
3642 #undef RSEL_ROUND
3643
3644 default:
3645 BAD_CASE (field_selector);
3646 break;
3647 }
3648 return value;
3649 }
3650
3651 /* Given an argument location specification return the associated
3652 argument location number. */
3653
3654 static unsigned int
3655 pa_build_arg_reloc (type_name)
3656 char *type_name;
3657 {
3658
3659 if (strncasecmp (type_name, "no", 2) == 0)
3660 return 0;
3661 if (strncasecmp (type_name, "gr", 2) == 0)
3662 return 1;
3663 else if (strncasecmp (type_name, "fr", 2) == 0)
3664 return 2;
3665 else if (strncasecmp (type_name, "fu", 2) == 0)
3666 return 3;
3667 else
3668 as_bad ("Invalid argument location: %s\n", type_name);
3669
3670 return 0;
3671 }
3672
3673 /* Encode and return an argument relocation specification for
3674 the given register in the location specified by arg_reloc. */
3675
3676 static unsigned int
3677 pa_align_arg_reloc (reg, arg_reloc)
3678 unsigned int reg;
3679 unsigned int arg_reloc;
3680 {
3681 unsigned int new_reloc;
3682
3683 new_reloc = arg_reloc;
3684 switch (reg)
3685 {
3686 case 0:
3687 new_reloc <<= 8;
3688 break;
3689 case 1:
3690 new_reloc <<= 6;
3691 break;
3692 case 2:
3693 new_reloc <<= 4;
3694 break;
3695 case 3:
3696 new_reloc <<= 2;
3697 break;
3698 default:
3699 as_bad ("Invalid argument description: %d", reg);
3700 }
3701
3702 return new_reloc;
3703 }
3704
3705 /* Parse a PA nullification completer (,n). Return nonzero if the
3706 completer was found; return zero if no completer was found. */
3707
3708 static int
3709 pa_parse_nullif (s)
3710 char **s;
3711 {
3712 int nullif;
3713
3714 nullif = 0;
3715 if (**s == ',')
3716 {
3717 *s = *s + 1;
3718 if (strncasecmp (*s, "n", 1) == 0)
3719 nullif = 1;
3720 else
3721 {
3722 as_bad ("Invalid Nullification: (%c)", **s);
3723 nullif = 0;
3724 }
3725 *s = *s + 1;
3726 }
3727
3728 return nullif;
3729 }
3730
3731 /* Parse a non-negated compare/subtract completer returning the
3732 number (for encoding in instrutions) of the given completer.
3733
3734 ISBRANCH specifies whether or not this is parsing a condition
3735 completer for a branch (vs a nullification completer for a
3736 computational instruction. */
3737
3738 static int
3739 pa_parse_nonneg_cmpsub_cmpltr (s, isbranch)
3740 char **s;
3741 int isbranch;
3742 {
3743 int cmpltr;
3744 char *name = *s + 1;
3745 char c;
3746 char *save_s = *s;
3747
3748 cmpltr = 0;
3749 if (**s == ',')
3750 {
3751 *s += 1;
3752 while (**s != ',' && **s != ' ' && **s != '\t')
3753 *s += 1;
3754 c = **s;
3755 **s = 0x00;
3756 if (strcmp (name, "=") == 0)
3757 {
3758 cmpltr = 1;
3759 }
3760 else if (strcmp (name, "<") == 0)
3761 {
3762 cmpltr = 2;
3763 }
3764 else if (strcmp (name, "<=") == 0)
3765 {
3766 cmpltr = 3;
3767 }
3768 else if (strcmp (name, "<<") == 0)
3769 {
3770 cmpltr = 4;
3771 }
3772 else if (strcmp (name, "<<=") == 0)
3773 {
3774 cmpltr = 5;
3775 }
3776 else if (strcasecmp (name, "sv") == 0)
3777 {
3778 cmpltr = 6;
3779 }
3780 else if (strcasecmp (name, "od") == 0)
3781 {
3782 cmpltr = 7;
3783 }
3784 /* If we have something like addb,n then there is no condition
3785 completer. */
3786 else if (strcasecmp (name, "n") == 0 && isbranch)
3787 {
3788 cmpltr = 0;
3789 }
3790 else
3791 {
3792 cmpltr = -1;
3793 }
3794 **s = c;
3795 }
3796
3797 /* Reset pointers if this was really a ,n for a branch instruction. */
3798 if (cmpltr == 0 && *name == 'n' && isbranch)
3799 *s = save_s;
3800
3801 return cmpltr;
3802 }
3803
3804 /* Parse a negated compare/subtract completer returning the
3805 number (for encoding in instrutions) of the given completer.
3806
3807 ISBRANCH specifies whether or not this is parsing a condition
3808 completer for a branch (vs a nullification completer for a
3809 computational instruction. */
3810
3811 static int
3812 pa_parse_neg_cmpsub_cmpltr (s, isbranch)
3813 char **s;
3814 int isbranch;
3815 {
3816 int cmpltr;
3817 char *name = *s + 1;
3818 char c;
3819 char *save_s = *s;
3820
3821 cmpltr = 0;
3822 if (**s == ',')
3823 {
3824 *s += 1;
3825 while (**s != ',' && **s != ' ' && **s != '\t')
3826 *s += 1;
3827 c = **s;
3828 **s = 0x00;
3829 if (strcasecmp (name, "tr") == 0)
3830 {
3831 cmpltr = 0;
3832 }
3833 else if (strcmp (name, "<>") == 0)
3834 {
3835 cmpltr = 1;
3836 }
3837 else if (strcmp (name, ">=") == 0)
3838 {
3839 cmpltr = 2;
3840 }
3841 else if (strcmp (name, ">") == 0)
3842 {
3843 cmpltr = 3;
3844 }
3845 else if (strcmp (name, ">>=") == 0)
3846 {
3847 cmpltr = 4;
3848 }
3849 else if (strcmp (name, ">>") == 0)
3850 {
3851 cmpltr = 5;
3852 }
3853 else if (strcasecmp (name, "nsv") == 0)
3854 {
3855 cmpltr = 6;
3856 }
3857 else if (strcasecmp (name, "ev") == 0)
3858 {
3859 cmpltr = 7;
3860 }
3861 /* If we have something like addb,n then there is no condition
3862 completer. */
3863 else if (strcasecmp (name, "n") == 0 && isbranch)
3864 {
3865 cmpltr = 0;
3866 }
3867 else
3868 {
3869 cmpltr = -1;
3870 }
3871 **s = c;
3872 }
3873
3874 /* Reset pointers if this was really a ,n for a branch instruction. */
3875 if (cmpltr == 0 && *name == 'n' && isbranch)
3876 *s = save_s;
3877
3878 return cmpltr;
3879 }
3880
3881 /* Parse a non-negated addition completer returning the number
3882 (for encoding in instrutions) of the given completer.
3883
3884 ISBRANCH specifies whether or not this is parsing a condition
3885 completer for a branch (vs a nullification completer for a
3886 computational instruction. */
3887
3888 static int
3889 pa_parse_nonneg_add_cmpltr (s, isbranch)
3890 char **s;
3891 int isbranch;
3892 {
3893 int cmpltr;
3894 char *name = *s + 1;
3895 char c;
3896 char *save_s = *s;
3897
3898 cmpltr = 0;
3899 if (**s == ',')
3900 {
3901 *s += 1;
3902 while (**s != ',' && **s != ' ' && **s != '\t')
3903 *s += 1;
3904 c = **s;
3905 **s = 0x00;
3906 if (strcmp (name, "=") == 0)
3907 {
3908 cmpltr = 1;
3909 }
3910 else if (strcmp (name, "<") == 0)
3911 {
3912 cmpltr = 2;
3913 }
3914 else if (strcmp (name, "<=") == 0)
3915 {
3916 cmpltr = 3;
3917 }
3918 else if (strcasecmp (name, "nuv") == 0)
3919 {
3920 cmpltr = 4;
3921 }
3922 else if (strcasecmp (name, "znv") == 0)
3923 {
3924 cmpltr = 5;
3925 }
3926 else if (strcasecmp (name, "sv") == 0)
3927 {
3928 cmpltr = 6;
3929 }
3930 else if (strcasecmp (name, "od") == 0)
3931 {
3932 cmpltr = 7;
3933 }
3934 /* If we have something like addb,n then there is no condition
3935 completer. */
3936 else if (strcasecmp (name, "n") == 0 && isbranch)
3937 {
3938 cmpltr = 0;
3939 }
3940 else
3941 {
3942 cmpltr = -1;
3943 }
3944 **s = c;
3945 }
3946
3947 /* Reset pointers if this was really a ,n for a branch instruction. */
3948 if (cmpltr == 0 && *name == 'n' && isbranch)
3949 *s = save_s;
3950
3951 return cmpltr;
3952 }
3953
3954 /* Parse a negated addition completer returning the number
3955 (for encoding in instrutions) of the given completer.
3956
3957 ISBRANCH specifies whether or not this is parsing a condition
3958 completer for a branch (vs a nullification completer for a
3959 computational instruction. */
3960
3961 static int
3962 pa_parse_neg_add_cmpltr (s, isbranch)
3963 char **s;
3964 int isbranch;
3965 {
3966 int cmpltr;
3967 char *name = *s + 1;
3968 char c;
3969 char *save_s = *s;
3970
3971 cmpltr = 0;
3972 if (**s == ',')
3973 {
3974 *s += 1;
3975 while (**s != ',' && **s != ' ' && **s != '\t')
3976 *s += 1;
3977 c = **s;
3978 **s = 0x00;
3979 if (strcasecmp (name, "tr") == 0)
3980 {
3981 cmpltr = 0;
3982 }
3983 else if (strcmp (name, "<>") == 0)
3984 {
3985 cmpltr = 1;
3986 }
3987 else if (strcmp (name, ">=") == 0)
3988 {
3989 cmpltr = 2;
3990 }
3991 else if (strcmp (name, ">") == 0)
3992 {
3993 cmpltr = 3;
3994 }
3995 else if (strcmp (name, "uv") == 0)
3996 {
3997 cmpltr = 4;
3998 }
3999 else if (strcmp (name, "vnz") == 0)
4000 {
4001 cmpltr = 5;
4002 }
4003 else if (strcasecmp (name, "nsv") == 0)
4004 {
4005 cmpltr = 6;
4006 }
4007 else if (strcasecmp (name, "ev") == 0)
4008 {
4009 cmpltr = 7;
4010 }
4011 /* If we have something like addb,n then there is no condition
4012 completer. */
4013 else if (strcasecmp (name, "n") == 0 && isbranch)
4014 {
4015 cmpltr = 0;
4016 }
4017 else
4018 {
4019 cmpltr = -1;
4020 }
4021 **s = c;
4022 }
4023
4024 /* Reset pointers if this was really a ,n for a branch instruction. */
4025 if (cmpltr == 0 && *name == 'n' && isbranch)
4026 *s = save_s;
4027
4028 return cmpltr;
4029 }
4030
4031 /* Handle a .BLOCK type pseudo-op. */
4032
4033 static void
4034 pa_block (z)
4035 int z;
4036 {
4037 char *p;
4038 long int temp_fill;
4039 unsigned int temp_size;
4040 int i;
4041
4042 temp_size = get_absolute_expression ();
4043
4044 /* Always fill with zeros, that's what the HP assembler does. */
4045 temp_fill = 0;
4046
4047 p = frag_var (rs_fill, (int) temp_size, (int) temp_size,
4048 (relax_substateT) 0, (symbolS *) 0, 1, NULL);
4049 bzero (p, temp_size);
4050
4051 /* Convert 2 bytes at a time. */
4052
4053 for (i = 0; i < temp_size; i += 2)
4054 {
4055 md_number_to_chars (p + i,
4056 (valueT) temp_fill,
4057 (int) ((temp_size - i) > 2 ? 2 : (temp_size - i)));
4058 }
4059
4060 pa_undefine_label ();
4061 demand_empty_rest_of_line ();
4062 return;
4063 }
4064
4065 /* Handle a .CALL pseudo-op. This involves storing away information
4066 about where arguments are to be found so the linker can detect
4067 (and correct) argument location mismatches between caller and callee. */
4068
4069 static void
4070 pa_call (unused)
4071 int unused;
4072 {
4073 pa_call_args (&last_call_desc);
4074 demand_empty_rest_of_line ();
4075 return;
4076 }
4077
4078 /* Do the dirty work of building a call descriptor which describes
4079 where the caller placed arguments to a function call. */
4080
4081 static void
4082 pa_call_args (call_desc)
4083 struct call_desc *call_desc;
4084 {
4085 char *name, c, *p;
4086 unsigned int temp, arg_reloc;
4087
4088 while (!is_end_of_statement ())
4089 {
4090 name = input_line_pointer;
4091 c = get_symbol_end ();
4092 /* Process a source argument. */
4093 if ((strncasecmp (name, "argw", 4) == 0))
4094 {
4095 temp = atoi (name + 4);
4096 p = input_line_pointer;
4097 *p = c;
4098 input_line_pointer++;
4099 name = input_line_pointer;
4100 c = get_symbol_end ();
4101 arg_reloc = pa_build_arg_reloc (name);
4102 call_desc->arg_reloc |= pa_align_arg_reloc (temp, arg_reloc);
4103 }
4104 /* Process a return value. */
4105 else if ((strncasecmp (name, "rtnval", 6) == 0))
4106 {
4107 p = input_line_pointer;
4108 *p = c;
4109 input_line_pointer++;
4110 name = input_line_pointer;
4111 c = get_symbol_end ();
4112 arg_reloc = pa_build_arg_reloc (name);
4113 call_desc->arg_reloc |= (arg_reloc & 0x3);
4114 }
4115 else
4116 {
4117 as_bad ("Invalid .CALL argument: %s", name);
4118 }
4119 p = input_line_pointer;
4120 *p = c;
4121 if (!is_end_of_statement ())
4122 input_line_pointer++;
4123 }
4124 }
4125
4126 /* Return TRUE if FRAG1 and FRAG2 are the same. */
4127
4128 static int
4129 is_same_frag (frag1, frag2)
4130 fragS *frag1;
4131 fragS *frag2;
4132 {
4133
4134 if (frag1 == NULL)
4135 return (FALSE);
4136 else if (frag2 == NULL)
4137 return (FALSE);
4138 else if (frag1 == frag2)
4139 return (TRUE);
4140 else if (frag2->fr_type == rs_fill && frag2->fr_fix == 0)
4141 return (is_same_frag (frag1, frag2->fr_next));
4142 else
4143 return (FALSE);
4144 }
4145
4146 #ifdef OBJ_ELF
4147 /* Build an entry in the UNWIND subspace from the given function
4148 attributes in CALL_INFO. This is not needed for SOM as using
4149 R_ENTRY and R_EXIT relocations allow the linker to handle building
4150 of the unwind spaces. */
4151
4152 static void
4153 pa_build_unwind_subspace (call_info)
4154 struct call_info *call_info;
4155 {
4156 char *unwind;
4157 asection *seg, *save_seg;
4158 subsegT subseg, save_subseg;
4159 int i;
4160 char c, *p;
4161
4162 /* Get into the right seg/subseg. This may involve creating
4163 the seg the first time through. Make sure to have the
4164 old seg/subseg so that we can reset things when we are done. */
4165 subseg = SUBSEG_UNWIND;
4166 seg = bfd_get_section_by_name (stdoutput, UNWIND_SECTION_NAME);
4167 if (seg == ASEC_NULL)
4168 {
4169 seg = bfd_make_section_old_way (stdoutput, UNWIND_SECTION_NAME);
4170 bfd_set_section_flags (stdoutput, seg,
4171 SEC_READONLY | SEC_HAS_CONTENTS
4172 | SEC_LOAD | SEC_RELOC);
4173 }
4174
4175 save_seg = now_seg;
4176 save_subseg = now_subseg;
4177 subseg_set (seg, subseg);
4178
4179
4180 /* Get some space to hold relocation information for the unwind
4181 descriptor. */
4182 p = frag_more (4);
4183 call_info->start_offset_frag = frag_now;
4184 call_info->start_frag_where = p - frag_now->fr_literal;
4185
4186 /* Relocation info. for start offset of the function. */
4187 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4188 call_info->start_symbol, (offsetT) 0,
4189 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4190 (char *) 0);
4191
4192 /* We need to search for the first relocation involving the start_symbol of
4193 this call_info descriptor. */
4194 {
4195 fixS *fixP;
4196
4197 call_info->start_fix = seg_info (now_seg)->fix_root;
4198 for (fixP = call_info->start_fix; fixP; fixP = fixP->fx_next)
4199 {
4200 if (fixP->fx_addsy == call_info->start_symbol
4201 || fixP->fx_subsy == call_info->start_symbol)
4202 {
4203 call_info->start_fix = fixP;
4204 break;
4205 }
4206 }
4207 }
4208
4209 p = frag_more (4);
4210 call_info->end_offset_frag = frag_now;
4211 call_info->end_frag_where = p - frag_now->fr_literal;
4212
4213 /* Relocation info. for end offset of the function. */
4214 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4215 call_info->end_symbol, (offsetT) 0,
4216 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4217 (char *) 0);
4218
4219 /* We need to search for the first relocation involving the end_symbol of
4220 this call_info descriptor. */
4221 {
4222 fixS *fixP;
4223
4224 call_info->end_fix = seg_info (now_seg)->fix_root; /* the default */
4225 for (fixP = call_info->end_fix; fixP; fixP = fixP->fx_next)
4226 {
4227 if (fixP->fx_addsy == call_info->end_symbol
4228 || fixP->fx_subsy == call_info->end_symbol)
4229 {
4230 call_info->end_fix = fixP;
4231 break;
4232 }
4233 }
4234 }
4235
4236 /* Dump it. */
4237 unwind = (char *) &call_info->ci_unwind;
4238 for (i = 8; i < sizeof (struct unwind_table); i++)
4239 {
4240 c = *(unwind + i);
4241 {
4242 FRAG_APPEND_1_CHAR (c);
4243 }
4244 }
4245
4246 /* Return back to the original segment/subsegment. */
4247 subseg_set (save_seg, save_subseg);
4248 }
4249 #endif
4250
4251 /* Process a .CALLINFO pseudo-op. This information is used later
4252 to build unwind descriptors and maybe one day to support
4253 .ENTER and .LEAVE. */
4254
4255 static void
4256 pa_callinfo (unused)
4257 int unused;
4258 {
4259 char *name, c, *p;
4260 int temp;
4261
4262 /* .CALLINFO must appear within a procedure definition. */
4263 if (!within_procedure)
4264 as_bad (".callinfo is not within a procedure definition");
4265
4266 /* Mark the fact that we found the .CALLINFO for the
4267 current procedure. */
4268 callinfo_found = TRUE;
4269
4270 /* Iterate over the .CALLINFO arguments. */
4271 while (!is_end_of_statement ())
4272 {
4273 name = input_line_pointer;
4274 c = get_symbol_end ();
4275 /* Frame size specification. */
4276 if ((strncasecmp (name, "frame", 5) == 0))
4277 {
4278 p = input_line_pointer;
4279 *p = c;
4280 input_line_pointer++;
4281 temp = get_absolute_expression ();
4282 if ((temp & 0x3) != 0)
4283 {
4284 as_bad ("FRAME parameter must be a multiple of 8: %d\n", temp);
4285 temp = 0;
4286 }
4287
4288 /* callinfo is in bytes and unwind_desc is in 8 byte units. */
4289 last_call_info->ci_unwind.descriptor.frame_size = temp / 8;
4290
4291 }
4292 /* Entry register (GR, GR and SR) specifications. */
4293 else if ((strncasecmp (name, "entry_gr", 8) == 0))
4294 {
4295 p = input_line_pointer;
4296 *p = c;
4297 input_line_pointer++;
4298 temp = get_absolute_expression ();
4299 /* The HP assembler accepts 19 as the high bound for ENTRY_GR
4300 even though %r19 is caller saved. I think this is a bug in
4301 the HP assembler, and we are not going to emulate it. */
4302 if (temp < 3 || temp > 18)
4303 as_bad ("Value for ENTRY_GR must be in the range 3..18\n");
4304 last_call_info->ci_unwind.descriptor.entry_gr = temp - 2;
4305 }
4306 else if ((strncasecmp (name, "entry_fr", 8) == 0))
4307 {
4308 p = input_line_pointer;
4309 *p = c;
4310 input_line_pointer++;
4311 temp = get_absolute_expression ();
4312 /* Similarly the HP assembler takes 31 as the high bound even
4313 though %fr21 is the last callee saved floating point register. */
4314 if (temp < 12 || temp > 21)
4315 as_bad ("Value for ENTRY_FR must be in the range 12..21\n");
4316 last_call_info->ci_unwind.descriptor.entry_fr = temp - 11;
4317 }
4318 else if ((strncasecmp (name, "entry_sr", 8) == 0))
4319 {
4320 p = input_line_pointer;
4321 *p = c;
4322 input_line_pointer++;
4323 temp = get_absolute_expression ();
4324 if (temp != 3)
4325 as_bad ("Value for ENTRY_SR must be 3\n");
4326 last_call_info->entry_sr = temp - 2;
4327 }
4328 /* Note whether or not this function performs any calls. */
4329 else if ((strncasecmp (name, "calls", 5) == 0) ||
4330 (strncasecmp (name, "caller", 6) == 0))
4331 {
4332 p = input_line_pointer;
4333 *p = c;
4334 last_call_info->makes_calls = 1;
4335 }
4336 else if ((strncasecmp (name, "no_calls", 8) == 0))
4337 {
4338 p = input_line_pointer;
4339 *p = c;
4340 last_call_info->makes_calls = 0;
4341 }
4342 /* Should RP be saved into the stack. */
4343 else if ((strncasecmp (name, "save_rp", 7) == 0))
4344 {
4345 p = input_line_pointer;
4346 *p = c;
4347 last_call_info->ci_unwind.descriptor.save_rp = 1;
4348 }
4349 /* Likewise for SP. */
4350 else if ((strncasecmp (name, "save_sp", 7) == 0))
4351 {
4352 p = input_line_pointer;
4353 *p = c;
4354 last_call_info->ci_unwind.descriptor.save_sp = 1;
4355 }
4356 /* Is this an unwindable procedure. If so mark it so
4357 in the unwind descriptor. */
4358 else if ((strncasecmp (name, "no_unwind", 9) == 0))
4359 {
4360 p = input_line_pointer;
4361 *p = c;
4362 last_call_info->ci_unwind.descriptor.cannot_unwind = 1;
4363 }
4364 /* Is this an interrupt routine. If so mark it in the
4365 unwind descriptor. */
4366 else if ((strncasecmp (name, "hpux_int", 7) == 0))
4367 {
4368 p = input_line_pointer;
4369 *p = c;
4370 last_call_info->ci_unwind.descriptor.hpux_interrupt_marker = 1;
4371 }
4372 else
4373 {
4374 as_bad ("Invalid .CALLINFO argument: %s", name);
4375 }
4376 if (!is_end_of_statement ())
4377 input_line_pointer++;
4378 }
4379
4380 demand_empty_rest_of_line ();
4381 return;
4382 }
4383
4384 /* Switch into the code subspace. */
4385
4386 static void
4387 pa_code (unused)
4388 int unused;
4389 {
4390 sd_chain_struct *sdchain;
4391
4392 /* First time through it might be necessary to create the
4393 $TEXT$ space. */
4394 if ((sdchain = is_defined_space ("$TEXT$")) == NULL)
4395 {
4396 sdchain = create_new_space (pa_def_spaces[0].name,
4397 pa_def_spaces[0].spnum,
4398 pa_def_spaces[0].loadable,
4399 pa_def_spaces[0].defined,
4400 pa_def_spaces[0].private,
4401 pa_def_spaces[0].sort,
4402 pa_def_spaces[0].segment, 0);
4403 }
4404
4405 SPACE_DEFINED (sdchain) = 1;
4406 subseg_set (text_section, SUBSEG_CODE);
4407 demand_empty_rest_of_line ();
4408 return;
4409 }
4410
4411 /* This is different than the standard GAS s_comm(). On HP9000/800 machines,
4412 the .comm pseudo-op has the following symtax:
4413
4414 <label> .comm <length>
4415
4416 where <label> is optional and is a symbol whose address will be the start of
4417 a block of memory <length> bytes long. <length> must be an absolute
4418 expression. <length> bytes will be allocated in the current space
4419 and subspace. */
4420
4421 static void
4422 pa_comm (unused)
4423 int unused;
4424 {
4425 unsigned int size;
4426 symbolS *symbol;
4427 label_symbol_struct *label_symbol = pa_get_label ();
4428
4429 if (label_symbol)
4430 symbol = label_symbol->lss_label;
4431 else
4432 symbol = NULL;
4433
4434 SKIP_WHITESPACE ();
4435 size = get_absolute_expression ();
4436
4437 if (symbol)
4438 {
4439 /* It is incorrect to check S_IS_DEFINED at this point as
4440 the symbol will *always* be defined. FIXME. How to
4441 correctly determine when this label really as been
4442 defined before. */
4443 if (S_GET_VALUE (symbol))
4444 {
4445 if (S_GET_VALUE (symbol) != size)
4446 {
4447 as_warn ("Length of .comm \"%s\" is already %d. Not changed.",
4448 S_GET_NAME (symbol), S_GET_VALUE (symbol));
4449 return;
4450 }
4451 }
4452 else
4453 {
4454 S_SET_VALUE (symbol, size);
4455 S_SET_SEGMENT (symbol, &bfd_und_section);
4456 S_SET_EXTERNAL (symbol);
4457 }
4458 }
4459 demand_empty_rest_of_line ();
4460 }
4461
4462 /* Process a .COPYRIGHT pseudo-op. */
4463
4464 static void
4465 pa_copyright (unused)
4466 int unused;
4467 {
4468 char *name;
4469 char c;
4470
4471 SKIP_WHITESPACE ();
4472 if (*input_line_pointer == '\"')
4473 {
4474 ++input_line_pointer;
4475 name = input_line_pointer;
4476 while ((c = next_char_of_string ()) >= 0)
4477 ;
4478 c = *input_line_pointer;
4479 *input_line_pointer = '\0';
4480 *(input_line_pointer - 1) = '\0';
4481 {
4482 /* FIXME. Not supported */
4483 abort ();
4484 }
4485 *input_line_pointer = c;
4486 }
4487 else
4488 {
4489 as_bad ("Expected \"-ed string");
4490 }
4491 pa_undefine_label ();
4492 demand_empty_rest_of_line ();
4493 }
4494
4495 /* Process a .END pseudo-op. */
4496
4497 static void
4498 pa_end (unused)
4499 int unused;
4500 {
4501 demand_empty_rest_of_line ();
4502 return;
4503 }
4504
4505 /* Process a .ENTER pseudo-op. This is not supported. */
4506 static void
4507 pa_enter (unused)
4508 int unused;
4509 {
4510 abort ();
4511 return;
4512 }
4513
4514 /* Process a .ENTRY pseudo-op. .ENTRY marks the beginning of the
4515 procesure. */
4516 static void
4517 pa_entry (unused)
4518 int unused;
4519 {
4520 if (!within_procedure)
4521 as_bad ("Misplaced .entry. Ignored.");
4522 else
4523 {
4524 if (!callinfo_found)
4525 as_bad ("Missing .callinfo.");
4526
4527 last_call_info->start_frag = frag_now;
4528 }
4529 demand_empty_rest_of_line ();
4530 within_entry_exit = TRUE;
4531
4532 /* Go back to the last symbol and turn on the BSF_FUNCTION flag.
4533 It will not be on if no .EXPORT pseudo-op exists (static function). */
4534 last_call_info->start_symbol->bsym->flags |= BSF_FUNCTION;
4535
4536 #ifdef OBJ_SOM
4537 /* SOM defers building of unwind descriptors until the link phase.
4538 The assembler is responsible for creating an R_ENTRY relocation
4539 to mark the beginning of a region and hold the unwind bits, and
4540 for creating an R_EXIT relocation to mark the end of the region.
4541
4542 FIXME. ELF should be using the same conventions! The problem
4543 is an unwind requires too much relocation space. Hmmm. Maybe
4544 if we split the unwind bits up between the relocations which
4545 denote the entry and exit points. */
4546 {
4547 char *where = frag_more (0);
4548
4549 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
4550 last_call_info->start_symbol, (offsetT) 0, NULL,
4551 0, R_HPPA_ENTRY, e_fsel, 0, 0,
4552 (char *) &last_call_info->ci_unwind.descriptor);
4553 }
4554 #endif
4555
4556 return;
4557 }
4558
4559 /* Handle a .EQU pseudo-op. */
4560
4561 static void
4562 pa_equ (reg)
4563 int reg;
4564 {
4565 label_symbol_struct *label_symbol = pa_get_label ();
4566 symbolS *symbol;
4567
4568 if (label_symbol)
4569 {
4570 symbol = label_symbol->lss_label;
4571 S_SET_VALUE (symbol, (unsigned int) get_absolute_expression ());
4572 S_SET_SEGMENT (symbol, &bfd_abs_section);
4573 }
4574 else
4575 {
4576 if (reg)
4577 as_bad (".REG must use a label");
4578 else
4579 as_bad (".EQU must use a label");
4580 }
4581
4582 pa_undefine_label ();
4583 demand_empty_rest_of_line ();
4584 return;
4585 }
4586
4587 /* Helper function. Does processing for the end of a function. This
4588 usually involves creating some relocations or building special
4589 symbols to mark the end of the function. */
4590
4591 static void
4592 process_exit ()
4593 {
4594 char *where;
4595
4596 where = frag_more (0);
4597
4598 #ifdef OBJ_ELF
4599 /* Mark the end of the function, stuff away the location of the frag
4600 for the end of the function, and finally call pa_build_unwind_subspace
4601 to add an entry in the unwind table. */
4602 hppa_elf_mark_end_of_function ();
4603 last_call_info->end_frag = frag_now;
4604 pa_build_unwind_subspace (last_call_info);
4605 #else
4606 /* SOM defers building of unwind descriptors until the link phase.
4607 The assembler is responsible for creating an R_ENTRY relocation
4608 to mark the beginning of a region and hold the unwind bits, and
4609 for creating an R_EXIT relocation to mark the end of the region.
4610
4611 FIXME. ELF should be using the same conventions! The problem
4612 is an unwind requires too much relocation space. Hmmm. Maybe
4613 if we split the unwind bits up between the relocations which
4614 denote the entry and exit points. */
4615 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
4616 last_call_info->start_symbol, (offsetT) 0,
4617 NULL, 0, R_HPPA_EXIT, e_fsel, 0, 0, NULL);
4618 #endif
4619
4620 }
4621
4622 /* Process a .EXIT pseudo-op. */
4623
4624 static void
4625 pa_exit (unused)
4626 int unused;
4627 {
4628 if (!within_procedure)
4629 as_bad (".EXIT must appear within a procedure");
4630 else
4631 {
4632 if (!callinfo_found)
4633 as_bad ("Missing .callinfo");
4634 else
4635 {
4636 if (!within_entry_exit)
4637 as_bad ("No .ENTRY for this .EXIT");
4638 else
4639 {
4640 within_entry_exit = FALSE;
4641 process_exit ();
4642 }
4643 }
4644 }
4645 demand_empty_rest_of_line ();
4646 return;
4647 }
4648
4649 /* Process a .EXPORT directive. This makes functions external
4650 and provides information such as argument relocation entries
4651 to callers. */
4652
4653 static void
4654 pa_export (unused)
4655 int unused;
4656 {
4657 char *name, c, *p;
4658 symbolS *symbol;
4659
4660 name = input_line_pointer;
4661 c = get_symbol_end ();
4662 /* Make sure the given symbol exists. */
4663 if ((symbol = symbol_find_or_make (name)) == NULL)
4664 {
4665 as_bad ("Cannot define export symbol: %s\n", name);
4666 p = input_line_pointer;
4667 *p = c;
4668 input_line_pointer++;
4669 }
4670 else
4671 {
4672 /* OK. Set the external bits and process argument relocations. */
4673 S_SET_EXTERNAL (symbol);
4674 p = input_line_pointer;
4675 *p = c;
4676 if (!is_end_of_statement ())
4677 {
4678 input_line_pointer++;
4679 pa_type_args (symbol, 1);
4680 #ifdef OBJ_ELF
4681 pa_build_symextn_section ();
4682 #endif
4683 }
4684 }
4685
4686 demand_empty_rest_of_line ();
4687 return;
4688 }
4689
4690 /* Helper function to process arguments to a .EXPORT pseudo-op. */
4691
4692 static void
4693 pa_type_args (symbolP, is_export)
4694 symbolS *symbolP;
4695 int is_export;
4696 {
4697 char *name, c, *p;
4698 unsigned int temp, arg_reloc;
4699 pa_symbol_type type = SYMBOL_TYPE_UNKNOWN;
4700 obj_symbol_type *symbol = (obj_symbol_type *) symbolP->bsym;
4701
4702 if (strncasecmp (input_line_pointer, "absolute", 8) == 0)
4703
4704 {
4705 input_line_pointer += 8;
4706 symbolP->bsym->flags &= ~BSF_FUNCTION;
4707 S_SET_SEGMENT (symbolP, &bfd_abs_section);
4708 type = SYMBOL_TYPE_ABSOLUTE;
4709 }
4710 else if (strncasecmp (input_line_pointer, "code", 4) == 0)
4711 {
4712 input_line_pointer += 4;
4713 /* IMPORTing/EXPORTing CODE types for functions is meaningless for SOM,
4714 instead one should be IMPORTing/EXPORTing ENTRY types.
4715
4716 Complain if one tries to EXPORT a CODE type since that's never
4717 done. Both GCC and HP C still try to IMPORT CODE types, so
4718 silently fix them to be ENTRY types. */
4719 if (symbolP->bsym->flags & BSF_FUNCTION)
4720 {
4721 if (is_export)
4722 as_tsktsk ("Using ENTRY rather than CODE in export directive for %s", symbolP->bsym->name);
4723
4724 symbolP->bsym->flags |= BSF_FUNCTION;
4725 type = SYMBOL_TYPE_ENTRY;
4726 }
4727 else
4728 {
4729 symbolP->bsym->flags &= ~BSF_FUNCTION;
4730 type = SYMBOL_TYPE_CODE;
4731 }
4732 }
4733 else if (strncasecmp (input_line_pointer, "data", 4) == 0)
4734 {
4735 input_line_pointer += 4;
4736 symbolP->bsym->flags &= ~BSF_FUNCTION;
4737 type = SYMBOL_TYPE_DATA;
4738 }
4739 else if ((strncasecmp (input_line_pointer, "entry", 5) == 0))
4740 {
4741 input_line_pointer += 5;
4742 symbolP->bsym->flags |= BSF_FUNCTION;
4743 type = SYMBOL_TYPE_ENTRY;
4744 }
4745 else if (strncasecmp (input_line_pointer, "millicode", 9) == 0)
4746 {
4747 input_line_pointer += 9;
4748 symbolP->bsym->flags |= BSF_FUNCTION;
4749 type = SYMBOL_TYPE_MILLICODE;
4750 }
4751 else if (strncasecmp (input_line_pointer, "plabel", 6) == 0)
4752 {
4753 input_line_pointer += 6;
4754 symbolP->bsym->flags &= ~BSF_FUNCTION;
4755 type = SYMBOL_TYPE_PLABEL;
4756 }
4757 else if (strncasecmp (input_line_pointer, "pri_prog", 8) == 0)
4758 {
4759 input_line_pointer += 8;
4760 symbolP->bsym->flags |= BSF_FUNCTION;
4761 type = SYMBOL_TYPE_PRI_PROG;
4762 }
4763 else if (strncasecmp (input_line_pointer, "sec_prog", 8) == 0)
4764 {
4765 input_line_pointer += 8;
4766 symbolP->bsym->flags |= BSF_FUNCTION;
4767 type = SYMBOL_TYPE_SEC_PROG;
4768 }
4769
4770 /* SOM requires much more information about symbol types
4771 than BFD understands. This is how we get this information
4772 to the SOM BFD backend. */
4773 #ifdef obj_set_symbol_type
4774 obj_set_symbol_type (symbolP->bsym, (int) type);
4775 #endif
4776
4777 /* Now that the type of the exported symbol has been handled,
4778 handle any argument relocation information. */
4779 while (!is_end_of_statement ())
4780 {
4781 if (*input_line_pointer == ',')
4782 input_line_pointer++;
4783 name = input_line_pointer;
4784 c = get_symbol_end ();
4785 /* Argument sources. */
4786 if ((strncasecmp (name, "argw", 4) == 0))
4787 {
4788 p = input_line_pointer;
4789 *p = c;
4790 input_line_pointer++;
4791 temp = atoi (name + 4);
4792 name = input_line_pointer;
4793 c = get_symbol_end ();
4794 arg_reloc = pa_align_arg_reloc (temp, pa_build_arg_reloc (name));
4795 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
4796 *input_line_pointer = c;
4797 }
4798 /* The return value. */
4799 else if ((strncasecmp (name, "rtnval", 6)) == 0)
4800 {
4801 p = input_line_pointer;
4802 *p = c;
4803 input_line_pointer++;
4804 name = input_line_pointer;
4805 c = get_symbol_end ();
4806 arg_reloc = pa_build_arg_reloc (name);
4807 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
4808 *input_line_pointer = c;
4809 }
4810 /* Privelege level. */
4811 else if ((strncasecmp (name, "priv_lev", 8)) == 0)
4812 {
4813 p = input_line_pointer;
4814 *p = c;
4815 input_line_pointer++;
4816 temp = atoi (input_line_pointer);
4817 c = get_symbol_end ();
4818 *input_line_pointer = c;
4819 }
4820 else
4821 {
4822 as_bad ("Undefined .EXPORT/.IMPORT argument (ignored): %s", name);
4823 p = input_line_pointer;
4824 *p = c;
4825 }
4826 if (!is_end_of_statement ())
4827 input_line_pointer++;
4828 }
4829 }
4830
4831 /* Handle an .IMPORT pseudo-op. Any symbol referenced in a given
4832 assembly file must either be defined in the assembly file, or
4833 explicitly IMPORTED from another. */
4834
4835 static void
4836 pa_import (unused)
4837 int unused;
4838 {
4839 char *name, c, *p;
4840 symbolS *symbol;
4841
4842 name = input_line_pointer;
4843 c = get_symbol_end ();
4844
4845 symbol = symbol_find_or_make (name);
4846 p = input_line_pointer;
4847 *p = c;
4848
4849 if (!is_end_of_statement ())
4850 {
4851 input_line_pointer++;
4852 pa_type_args (symbol, 0);
4853 }
4854 else
4855 {
4856 /* Sigh. To be compatable with the HP assembler and to help
4857 poorly written assembly code, we assign a type based on
4858 the the current segment. Note only BSF_FUNCTION really
4859 matters, we do not need to set the full SYMBOL_TYPE_* info here. */
4860 if (now_seg == text_section)
4861 symbol->bsym->flags |= BSF_FUNCTION;
4862
4863 /* If the section is undefined, then the symbol is undefined
4864 Since this is an import, leave the section undefined. */
4865 S_SET_SEGMENT (symbol, &bfd_und_section);
4866 }
4867
4868 demand_empty_rest_of_line ();
4869 return;
4870 }
4871
4872 /* Handle a .LABEL pseudo-op. */
4873
4874 static void
4875 pa_label (unused)
4876 int unused;
4877 {
4878 char *name, c, *p;
4879
4880 name = input_line_pointer;
4881 c = get_symbol_end ();
4882
4883 if (strlen (name) > 0)
4884 {
4885 colon (name);
4886 p = input_line_pointer;
4887 *p = c;
4888 }
4889 else
4890 {
4891 as_warn ("Missing label name on .LABEL");
4892 }
4893
4894 if (!is_end_of_statement ())
4895 {
4896 as_warn ("extra .LABEL arguments ignored.");
4897 ignore_rest_of_line ();
4898 }
4899 demand_empty_rest_of_line ();
4900 return;
4901 }
4902
4903 /* Handle a .LEAVE pseudo-op. This is not supported yet. */
4904
4905 static void
4906 pa_leave (unused)
4907 int unused;
4908 {
4909 abort ();
4910 }
4911
4912 /* Handle a .ORIGIN pseudo-op. */
4913
4914 static void
4915 pa_origin (unused)
4916 int unused;
4917 {
4918 s_org (0);
4919 pa_undefine_label ();
4920 return;
4921 }
4922
4923 /* Handle a .PARAM pseudo-op. This is much like a .EXPORT, except it
4924 is for static functions. FIXME. Should share more code with .EXPORT. */
4925
4926 static void
4927 pa_param (unused)
4928 int unused;
4929 {
4930 char *name, c, *p;
4931 symbolS *symbol;
4932
4933 name = input_line_pointer;
4934 c = get_symbol_end ();
4935
4936 if ((symbol = symbol_find_or_make (name)) == NULL)
4937 {
4938 as_bad ("Cannot define static symbol: %s\n", name);
4939 p = input_line_pointer;
4940 *p = c;
4941 input_line_pointer++;
4942 }
4943 else
4944 {
4945 S_CLEAR_EXTERNAL (symbol);
4946 p = input_line_pointer;
4947 *p = c;
4948 if (!is_end_of_statement ())
4949 {
4950 input_line_pointer++;
4951 pa_type_args (symbol, 0);
4952 }
4953 }
4954
4955 demand_empty_rest_of_line ();
4956 return;
4957 }
4958
4959 /* Handle a .PROC pseudo-op. It is used to mark the beginning
4960 of a procedure from a syntatical point of view. */
4961
4962 static void
4963 pa_proc (unused)
4964 int unused;
4965 {
4966 struct call_info *call_info;
4967
4968 if (within_procedure)
4969 as_fatal ("Nested procedures");
4970
4971 /* Reset global variables for new procedure. */
4972 callinfo_found = FALSE;
4973 within_procedure = TRUE;
4974
4975 /* Create another call_info structure. */
4976 call_info = (struct call_info *) xmalloc (sizeof (struct call_info));
4977
4978 if (!call_info)
4979 as_fatal ("Cannot allocate unwind descriptor\n");
4980
4981 bzero (call_info, sizeof (struct call_info));
4982
4983 call_info->ci_next = NULL;
4984
4985 if (call_info_root == NULL)
4986 {
4987 call_info_root = call_info;
4988 last_call_info = call_info;
4989 }
4990 else
4991 {
4992 last_call_info->ci_next = call_info;
4993 last_call_info = call_info;
4994 }
4995
4996 /* set up defaults on call_info structure */
4997
4998 call_info->ci_unwind.descriptor.cannot_unwind = 0;
4999 call_info->ci_unwind.descriptor.region_desc = 1;
5000 call_info->ci_unwind.descriptor.hpux_interrupt_marker = 0;
5001 call_info->entry_sr = ~0;
5002 call_info->makes_calls = 1;
5003
5004 /* If we got a .PROC pseudo-op, we know that the function is defined
5005 locally. Make sure it gets into the symbol table. */
5006 {
5007 label_symbol_struct *label_symbol = pa_get_label ();
5008
5009 if (label_symbol)
5010 {
5011 if (label_symbol->lss_label)
5012 {
5013 last_call_info->start_symbol = label_symbol->lss_label;
5014 label_symbol->lss_label->bsym->flags |= BSF_FUNCTION;
5015 }
5016 else
5017 as_bad ("Missing function name for .PROC (corrupted label)");
5018 }
5019 else
5020 as_bad ("Missing function name for .PROC");
5021 }
5022
5023 demand_empty_rest_of_line ();
5024 return;
5025 }
5026
5027 /* Process the syntatical end of a procedure. Make sure all the
5028 appropriate pseudo-ops were found within the procedure. */
5029
5030 static void
5031 pa_procend (unused)
5032 int unused;
5033 {
5034
5035 if (!within_procedure)
5036 as_bad ("misplaced .procend");
5037
5038 if (!callinfo_found)
5039 as_bad ("Missing .callinfo for this procedure");
5040
5041 if (within_entry_exit)
5042 as_bad ("Missing .EXIT for a .ENTRY");
5043
5044 #ifdef OBJ_ELF
5045 /* ELF needs to mark the end of each function so that it can compute
5046 the size of the function (apparently its needed in the symbol table. */
5047 hppa_elf_mark_end_of_function ();
5048 #endif
5049
5050 within_procedure = FALSE;
5051 demand_empty_rest_of_line ();
5052 return;
5053 }
5054
5055 /* Parse the parameters to a .SPACE directive; if CREATE_FLAG is nonzero,
5056 then create a new space entry to hold the information specified
5057 by the parameters to the .SPACE directive. */
5058
5059 static sd_chain_struct *
5060 pa_parse_space_stmt (space_name, create_flag)
5061 char *space_name;
5062 int create_flag;
5063 {
5064 char *name, *ptemp, c;
5065 char loadable, defined, private, sort;
5066 int spnum;
5067 asection *seg = NULL;
5068 sd_chain_struct *space;
5069
5070 /* load default values */
5071 spnum = 0;
5072 sort = 0;
5073 loadable = TRUE;
5074 defined = TRUE;
5075 private = FALSE;
5076 if (strcasecmp (space_name, "$TEXT$") == 0)
5077 {
5078 seg = pa_def_spaces[0].segment;
5079 sort = pa_def_spaces[0].sort;
5080 }
5081 else if (strcasecmp (space_name, "$PRIVATE$") == 0)
5082 {
5083 seg = pa_def_spaces[1].segment;
5084 sort = pa_def_spaces[1].sort;
5085 }
5086
5087 if (!is_end_of_statement ())
5088 {
5089 print_errors = FALSE;
5090 ptemp = input_line_pointer + 1;
5091 /* First see if the space was specified as a number rather than
5092 as a name. According to the PA assembly manual the rest of
5093 the line should be ignored. */
5094 if ((spnum = pa_parse_number (&ptemp, 0)) >= 0)
5095 input_line_pointer = ptemp;
5096 else
5097 {
5098 while (!is_end_of_statement ())
5099 {
5100 input_line_pointer++;
5101 name = input_line_pointer;
5102 c = get_symbol_end ();
5103 if ((strncasecmp (name, "SPNUM", 5) == 0))
5104 {
5105 *input_line_pointer = c;
5106 input_line_pointer++;
5107 spnum = get_absolute_expression ();
5108 }
5109 else if ((strncasecmp (name, "SORT", 4) == 0))
5110 {
5111 *input_line_pointer = c;
5112 input_line_pointer++;
5113 sort = get_absolute_expression ();
5114 }
5115 else if ((strncasecmp (name, "UNLOADABLE", 10) == 0))
5116 {
5117 *input_line_pointer = c;
5118 loadable = FALSE;
5119 }
5120 else if ((strncasecmp (name, "NOTDEFINED", 10) == 0))
5121 {
5122 *input_line_pointer = c;
5123 defined = FALSE;
5124 }
5125 else if ((strncasecmp (name, "PRIVATE", 7) == 0))
5126 {
5127 *input_line_pointer = c;
5128 private = TRUE;
5129 }
5130 else
5131 {
5132 as_bad ("Invalid .SPACE argument");
5133 *input_line_pointer = c;
5134 if (!is_end_of_statement ())
5135 input_line_pointer++;
5136 }
5137 }
5138 }
5139 print_errors = TRUE;
5140 }
5141
5142 if (create_flag && seg == NULL)
5143 seg = subseg_new (space_name, 0);
5144
5145 /* If create_flag is nonzero, then create the new space with
5146 the attributes computed above. Else set the values in
5147 an already existing space -- this can only happen for
5148 the first occurence of a built-in space. */
5149 if (create_flag)
5150 space = create_new_space (space_name, spnum, loadable, defined,
5151 private, sort, seg, 1);
5152 else
5153 {
5154 space = is_defined_space (space_name);
5155 SPACE_SPNUM (space) = spnum;
5156 SPACE_LOADABLE (space) = loadable & 1;
5157 SPACE_DEFINED (space) = defined & 1;
5158 SPACE_USER_DEFINED (space) = 1;
5159 SPACE_PRIVATE (space) = private & 1;
5160 SPACE_SORT (space) = sort & 0xff;
5161 space->sd_seg = seg;
5162 }
5163
5164 #ifdef obj_set_section_attributes
5165 obj_set_section_attributes (seg, defined, private, sort, spnum);
5166 #endif
5167
5168 return space;
5169 }
5170
5171 /* Handle a .SPACE pseudo-op; this switches the current space to the
5172 given space, creating the new space if necessary. */
5173
5174 static void
5175 pa_space (unused)
5176 int unused;
5177 {
5178 char *name, c, *space_name, *save_s;
5179 int temp;
5180 sd_chain_struct *sd_chain;
5181
5182 if (within_procedure)
5183 {
5184 as_bad ("Can\'t change spaces within a procedure definition. Ignored");
5185 ignore_rest_of_line ();
5186 }
5187 else
5188 {
5189 /* Check for some of the predefined spaces. FIXME: most of the code
5190 below is repeated several times, can we extract the common parts
5191 and place them into a subroutine or something similar? */
5192 if (strncasecmp (input_line_pointer, "$text$", 6) == 0)
5193 {
5194 input_line_pointer += 6;
5195 sd_chain = is_defined_space ("$TEXT$");
5196 if (sd_chain == NULL)
5197 sd_chain = pa_parse_space_stmt ("$TEXT$", 1);
5198 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5199 sd_chain = pa_parse_space_stmt ("$TEXT$", 0);
5200
5201 current_space = sd_chain;
5202 subseg_set (text_section, sd_chain->sd_last_subseg);
5203 current_subspace
5204 = pa_subsegment_to_subspace (text_section,
5205 sd_chain->sd_last_subseg);
5206 demand_empty_rest_of_line ();
5207 return;
5208 }
5209 if (strncasecmp (input_line_pointer, "$private$", 9) == 0)
5210 {
5211 input_line_pointer += 9;
5212 sd_chain = is_defined_space ("$PRIVATE$");
5213 if (sd_chain == NULL)
5214 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 1);
5215 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5216 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 0);
5217
5218 current_space = sd_chain;
5219 subseg_set (data_section, sd_chain->sd_last_subseg);
5220 current_subspace
5221 = pa_subsegment_to_subspace (data_section,
5222 sd_chain->sd_last_subseg);
5223 demand_empty_rest_of_line ();
5224 return;
5225 }
5226 if (!strncasecmp (input_line_pointer,
5227 GDB_DEBUG_SPACE_NAME,
5228 strlen (GDB_DEBUG_SPACE_NAME)))
5229 {
5230 input_line_pointer += strlen (GDB_DEBUG_SPACE_NAME);
5231 sd_chain = is_defined_space (GDB_DEBUG_SPACE_NAME);
5232 if (sd_chain == NULL)
5233 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 1);
5234 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5235 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 0);
5236
5237 current_space = sd_chain;
5238
5239 {
5240 asection *gdb_section
5241 = bfd_make_section_old_way (stdoutput, GDB_DEBUG_SPACE_NAME);
5242
5243 subseg_set (gdb_section, sd_chain->sd_last_subseg);
5244 current_subspace
5245 = pa_subsegment_to_subspace (gdb_section,
5246 sd_chain->sd_last_subseg);
5247 }
5248 demand_empty_rest_of_line ();
5249 return;
5250 }
5251
5252 /* It could be a space specified by number. */
5253 print_errors = 0;
5254 save_s = input_line_pointer;
5255 if ((temp = pa_parse_number (&input_line_pointer, 0)) >= 0)
5256 {
5257 if (sd_chain = pa_find_space_by_number (temp))
5258 {
5259 current_space = sd_chain;
5260
5261 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
5262 current_subspace
5263 = pa_subsegment_to_subspace (sd_chain->sd_seg,
5264 sd_chain->sd_last_subseg);
5265 demand_empty_rest_of_line ();
5266 return;
5267 }
5268 }
5269
5270 /* Not a number, attempt to create a new space. */
5271 print_errors = 1;
5272 input_line_pointer = save_s;
5273 name = input_line_pointer;
5274 c = get_symbol_end ();
5275 space_name = xmalloc (strlen (name) + 1);
5276 strcpy (space_name, name);
5277 *input_line_pointer = c;
5278
5279 sd_chain = pa_parse_space_stmt (space_name, 1);
5280 current_space = sd_chain;
5281
5282 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
5283 current_subspace = pa_subsegment_to_subspace (sd_chain->sd_seg,
5284 sd_chain->sd_last_subseg);
5285 demand_empty_rest_of_line ();
5286 }
5287 return;
5288 }
5289
5290 /* Switch to a new space. (I think). FIXME. */
5291
5292 static void
5293 pa_spnum (unused)
5294 int unused;
5295 {
5296 char *name;
5297 char c;
5298 char *p;
5299 sd_chain_struct *space;
5300
5301 name = input_line_pointer;
5302 c = get_symbol_end ();
5303 space = is_defined_space (name);
5304 if (space)
5305 {
5306 p = frag_more (4);
5307 md_number_to_chars (p, SPACE_SPNUM (space), 4);
5308 }
5309 else
5310 as_warn ("Undefined space: '%s' Assuming space number = 0.", name);
5311
5312 *input_line_pointer = c;
5313 demand_empty_rest_of_line ();
5314 return;
5315 }
5316
5317 /* If VALUE is an exact power of two between zero and 2^31, then
5318 return log2 (VALUE). Else return -1. */
5319
5320 static int
5321 log2 (value)
5322 int value;
5323 {
5324 int shift = 0;
5325
5326 while ((1 << shift) != value && shift < 32)
5327 shift++;
5328
5329 if (shift >= 32)
5330 return -1;
5331 else
5332 return shift;
5333 }
5334
5335 /* Handle a .SUBSPACE pseudo-op; this switches the current subspace to the
5336 given subspace, creating the new subspace if necessary.
5337
5338 FIXME. Should mirror pa_space more closely, in particular how
5339 they're broken up into subroutines. */
5340
5341 static void
5342 pa_subspace (unused)
5343 int unused;
5344 {
5345 char *name, *ss_name, *alias, c;
5346 char loadable, code_only, common, dup_common, zero, sort;
5347 int i, access, space_index, alignment, quadrant, applicable, flags;
5348 sd_chain_struct *space;
5349 ssd_chain_struct *ssd;
5350 asection *section;
5351
5352 if (within_procedure)
5353 {
5354 as_bad ("Can\'t change subspaces within a procedure definition. Ignored");
5355 ignore_rest_of_line ();
5356 }
5357 else
5358 {
5359 name = input_line_pointer;
5360 c = get_symbol_end ();
5361 ss_name = xmalloc (strlen (name) + 1);
5362 strcpy (ss_name, name);
5363 *input_line_pointer = c;
5364
5365 /* Load default values. */
5366 sort = 0;
5367 access = 0x7f;
5368 loadable = 1;
5369 common = 0;
5370 dup_common = 0;
5371 code_only = 0;
5372 zero = 0;
5373 space_index = ~0;
5374 alignment = 0;
5375 quadrant = 0;
5376 alias = NULL;
5377
5378 space = current_space;
5379 ssd = is_defined_subspace (ss_name);
5380 /* Allow user to override the builtin attributes of subspaces. But
5381 only allow the attributes to be changed once! */
5382 if (ssd && SUBSPACE_DEFINED (ssd))
5383 {
5384 subseg_set (ssd->ssd_seg, ssd->ssd_subseg);
5385 if (!is_end_of_statement ())
5386 as_warn ("Parameters of an existing subspace can\'t be modified");
5387 demand_empty_rest_of_line ();
5388 return;
5389 }
5390 else
5391 {
5392 /* A new subspace. Load default values if it matches one of
5393 the builtin subspaces. */
5394 i = 0;
5395 while (pa_def_subspaces[i].name)
5396 {
5397 if (strcasecmp (pa_def_subspaces[i].name, ss_name) == 0)
5398 {
5399 loadable = pa_def_subspaces[i].loadable;
5400 common = pa_def_subspaces[i].common;
5401 dup_common = pa_def_subspaces[i].dup_common;
5402 code_only = pa_def_subspaces[i].code_only;
5403 zero = pa_def_subspaces[i].zero;
5404 space_index = pa_def_subspaces[i].space_index;
5405 alignment = pa_def_subspaces[i].alignment;
5406 quadrant = pa_def_subspaces[i].quadrant;
5407 access = pa_def_subspaces[i].access;
5408 sort = pa_def_subspaces[i].sort;
5409 if (USE_ALIASES && pa_def_subspaces[i].alias)
5410 alias = pa_def_subspaces[i].alias;
5411 break;
5412 }
5413 i++;
5414 }
5415 }
5416
5417 /* We should be working with a new subspace now. Fill in
5418 any information as specified by the user. */
5419 if (!is_end_of_statement ())
5420 {
5421 input_line_pointer++;
5422 while (!is_end_of_statement ())
5423 {
5424 name = input_line_pointer;
5425 c = get_symbol_end ();
5426 if ((strncasecmp (name, "QUAD", 4) == 0))
5427 {
5428 *input_line_pointer = c;
5429 input_line_pointer++;
5430 quadrant = get_absolute_expression ();
5431 }
5432 else if ((strncasecmp (name, "ALIGN", 5) == 0))
5433 {
5434 *input_line_pointer = c;
5435 input_line_pointer++;
5436 alignment = get_absolute_expression ();
5437 if (log2 (alignment) == -1)
5438 {
5439 as_bad ("Alignment must be a power of 2");
5440 alignment = 1;
5441 }
5442 }
5443 else if ((strncasecmp (name, "ACCESS", 6) == 0))
5444 {
5445 *input_line_pointer = c;
5446 input_line_pointer++;
5447 access = get_absolute_expression ();
5448 }
5449 else if ((strncasecmp (name, "SORT", 4) == 0))
5450 {
5451 *input_line_pointer = c;
5452 input_line_pointer++;
5453 sort = get_absolute_expression ();
5454 }
5455 else if ((strncasecmp (name, "CODE_ONLY", 9) == 0))
5456 {
5457 *input_line_pointer = c;
5458 code_only = 1;
5459 }
5460 else if ((strncasecmp (name, "UNLOADABLE", 10) == 0))
5461 {
5462 *input_line_pointer = c;
5463 loadable = 0;
5464 }
5465 else if ((strncasecmp (name, "COMMON", 6) == 0))
5466 {
5467 *input_line_pointer = c;
5468 common = 1;
5469 }
5470 else if ((strncasecmp (name, "DUP_COMM", 8) == 0))
5471 {
5472 *input_line_pointer = c;
5473 dup_common = 1;
5474 }
5475 else if ((strncasecmp (name, "ZERO", 4) == 0))
5476 {
5477 *input_line_pointer = c;
5478 zero = 1;
5479 }
5480 else if ((strncasecmp (name, "FIRST", 5) == 0))
5481 as_bad ("FIRST not supported as a .SUBSPACE argument");
5482 else
5483 as_bad ("Invalid .SUBSPACE argument");
5484 if (!is_end_of_statement ())
5485 input_line_pointer++;
5486 }
5487 }
5488
5489 /* Compute a reasonable set of BFD flags based on the information
5490 in the .subspace directive. */
5491 applicable = bfd_applicable_section_flags (stdoutput);
5492 flags = 0;
5493 if (loadable)
5494 flags |= (SEC_ALLOC | SEC_LOAD);
5495 if (code_only)
5496 flags |= SEC_CODE;
5497 if (common || dup_common)
5498 flags |= SEC_IS_COMMON;
5499
5500 /* This is a zero-filled subspace (eg BSS). */
5501 if (zero)
5502 flags &= ~SEC_LOAD;
5503
5504 flags |= SEC_RELOC | SEC_HAS_CONTENTS;
5505 applicable &= flags;
5506
5507 /* If this is an existing subspace, then we want to use the
5508 segment already associated with the subspace.
5509
5510 FIXME NOW! ELF BFD doesn't appear to be ready to deal with
5511 lots of sections. It might be a problem in the PA ELF
5512 code, I do not know yet. For now avoid creating anything
5513 but the "standard" sections for ELF. */
5514 if (ssd)
5515 section = ssd->ssd_seg;
5516 else if (alias)
5517 section = subseg_new (alias, 0);
5518 else if (!alias && USE_ALIASES)
5519 {
5520 as_warn ("Ignoring subspace decl due to ELF BFD bugs.");
5521 demand_empty_rest_of_line ();
5522 return;
5523 }
5524 else
5525 section = subseg_new (ss_name, 0);
5526
5527 /* Now set the flags. */
5528 bfd_set_section_flags (stdoutput, section, applicable);
5529
5530 /* Record any alignment request for this section. */
5531 record_alignment (section, log2 (alignment));
5532
5533 /* Set the starting offset for this section. */
5534 bfd_set_section_vma (stdoutput, section,
5535 pa_subspace_start (space, quadrant));
5536
5537 /* Now that all the flags are set, update an existing subspace,
5538 or create a new one. */
5539 if (ssd)
5540
5541 current_subspace = update_subspace (space, ss_name, loadable,
5542 code_only, common, dup_common,
5543 sort, zero, access, space_index,
5544 alignment, quadrant,
5545 section);
5546 else
5547 current_subspace = create_new_subspace (space, ss_name, loadable,
5548 code_only, common,
5549 dup_common, zero, sort,
5550 access, space_index,
5551 alignment, quadrant, section);
5552
5553 demand_empty_rest_of_line ();
5554 current_subspace->ssd_seg = section;
5555 subseg_set (current_subspace->ssd_seg, current_subspace->ssd_subseg);
5556 }
5557 SUBSPACE_DEFINED (current_subspace) = 1;
5558 return;
5559 }
5560
5561
5562 /* Create default space and subspace dictionaries. */
5563
5564 static void
5565 pa_spaces_begin ()
5566 {
5567 int i;
5568
5569 space_dict_root = NULL;
5570 space_dict_last = NULL;
5571
5572 i = 0;
5573 while (pa_def_spaces[i].name)
5574 {
5575 char *name;
5576
5577 /* Pick the right name to use for the new section. */
5578 if (pa_def_spaces[i].alias && USE_ALIASES)
5579 name = pa_def_spaces[i].alias;
5580 else
5581 name = pa_def_spaces[i].name;
5582
5583 pa_def_spaces[i].segment = subseg_new (name, 0);
5584 create_new_space (pa_def_spaces[i].name, pa_def_spaces[i].spnum,
5585 pa_def_spaces[i].loadable, pa_def_spaces[i].defined,
5586 pa_def_spaces[i].private, pa_def_spaces[i].sort,
5587 pa_def_spaces[i].segment, 0);
5588 i++;
5589 }
5590
5591 i = 0;
5592 while (pa_def_subspaces[i].name)
5593 {
5594 char *name;
5595 int applicable, subsegment;
5596 asection *segment = NULL;
5597 sd_chain_struct *space;
5598
5599 /* Pick the right name for the new section and pick the right
5600 subsegment number. */
5601 if (pa_def_subspaces[i].alias && USE_ALIASES)
5602 {
5603 name = pa_def_subspaces[i].alias;
5604 subsegment = pa_def_subspaces[i].subsegment;
5605 }
5606 else
5607 {
5608 name = pa_def_subspaces[i].name;
5609 subsegment = 0;
5610 }
5611
5612 /* Create the new section. */
5613 segment = subseg_new (name, subsegment);
5614
5615
5616 /* For SOM we want to replace the standard .text, .data, and .bss
5617 sections with our own. */
5618 if (!strcmp (pa_def_subspaces[i].name, "$CODE$") && !USE_ALIASES)
5619 {
5620 text_section = segment;
5621 applicable = bfd_applicable_section_flags (stdoutput);
5622 bfd_set_section_flags (stdoutput, text_section,
5623 applicable & (SEC_ALLOC | SEC_LOAD
5624 | SEC_RELOC | SEC_CODE
5625 | SEC_READONLY
5626 | SEC_HAS_CONTENTS));
5627 }
5628 else if (!strcmp (pa_def_subspaces[i].name, "$DATA$") && !USE_ALIASES)
5629 {
5630 data_section = segment;
5631 applicable = bfd_applicable_section_flags (stdoutput);
5632 bfd_set_section_flags (stdoutput, data_section,
5633 applicable & (SEC_ALLOC | SEC_LOAD
5634 | SEC_RELOC
5635 | SEC_HAS_CONTENTS));
5636
5637
5638 }
5639 else if (!strcmp (pa_def_subspaces[i].name, "$BSS$") && !USE_ALIASES)
5640 {
5641 bss_section = segment;
5642 applicable = bfd_applicable_section_flags (stdoutput);
5643 bfd_set_section_flags (stdoutput, bss_section,
5644 applicable & SEC_ALLOC);
5645 }
5646
5647 /* Find the space associated with this subspace. */
5648 space = pa_segment_to_space (pa_def_spaces[pa_def_subspaces[i].
5649 def_space_index].segment);
5650 if (space == NULL)
5651 {
5652 as_fatal ("Internal error: Unable to find containing space for %s.",
5653 pa_def_subspaces[i].name);
5654 }
5655
5656 create_new_subspace (space, name,
5657 pa_def_subspaces[i].loadable,
5658 pa_def_subspaces[i].code_only,
5659 pa_def_subspaces[i].common,
5660 pa_def_subspaces[i].dup_common,
5661 pa_def_subspaces[i].zero,
5662 pa_def_subspaces[i].sort,
5663 pa_def_subspaces[i].access,
5664 pa_def_subspaces[i].space_index,
5665 pa_def_subspaces[i].alignment,
5666 pa_def_subspaces[i].quadrant,
5667 segment);
5668 i++;
5669 }
5670 }
5671
5672
5673
5674 /* Create a new space NAME, with the appropriate flags as defined
5675 by the given parameters.
5676
5677 Add the new space to the space dictionary chain in numerical
5678 order as defined by the SORT entries. */
5679
5680 static sd_chain_struct *
5681 create_new_space (name, spnum, loadable, defined, private,
5682 sort, seg, user_defined)
5683 char *name;
5684 int spnum;
5685 char loadable;
5686 char defined;
5687 char private;
5688 char sort;
5689 asection *seg;
5690 int user_defined;
5691 {
5692 sd_chain_struct *chain_entry;
5693
5694 chain_entry = (sd_chain_struct *) xmalloc (sizeof (sd_chain_struct));
5695 if (!chain_entry)
5696 as_fatal ("Out of memory: could not allocate new space chain entry: %s\n",
5697 name);
5698
5699 SPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5700 strcpy (SPACE_NAME (chain_entry), name);
5701 SPACE_NAME_INDEX (chain_entry) = 0;
5702 SPACE_LOADABLE (chain_entry) = loadable;
5703 SPACE_DEFINED (chain_entry) = defined;
5704 SPACE_USER_DEFINED (chain_entry) = user_defined;
5705 SPACE_PRIVATE (chain_entry) = private;
5706 SPACE_SPNUM (chain_entry) = spnum;
5707 SPACE_SORT (chain_entry) = sort;
5708
5709 chain_entry->sd_seg = seg;
5710 chain_entry->sd_last_subseg = -1;
5711 chain_entry->sd_next = NULL;
5712
5713 /* Find spot for the new space based on its sort key. */
5714 if (!space_dict_last)
5715 space_dict_last = chain_entry;
5716
5717 if (space_dict_root == NULL)
5718 space_dict_root = chain_entry;
5719 else
5720 {
5721 sd_chain_struct *chain_pointer;
5722 sd_chain_struct *prev_chain_pointer;
5723
5724 chain_pointer = space_dict_root;
5725 prev_chain_pointer = NULL;
5726
5727 while (chain_pointer)
5728 {
5729 if (SPACE_SORT (chain_pointer) <= SPACE_SORT (chain_entry))
5730 {
5731 prev_chain_pointer = chain_pointer;
5732 chain_pointer = chain_pointer->sd_next;
5733 }
5734 else
5735 break;
5736 }
5737
5738 /* At this point we've found the correct place to add the new
5739 entry. So add it and update the linked lists as appropriate. */
5740 if (prev_chain_pointer)
5741 {
5742 chain_entry->sd_next = chain_pointer;
5743 prev_chain_pointer->sd_next = chain_entry;
5744 }
5745 else
5746 {
5747 space_dict_root = chain_entry;
5748 chain_entry->sd_next = chain_pointer;
5749 }
5750
5751 if (chain_entry->sd_next == NULL)
5752 space_dict_last = chain_entry;
5753 }
5754
5755 /* This is here to catch predefined spaces which do not get
5756 modified by the user's input. Another call is found at
5757 the bottom of pa_parse_space_stmt to handle cases where
5758 the user modifies a predefined space. */
5759 #ifdef obj_set_section_attributes
5760 obj_set_section_attributes (seg, defined, private, sort, spnum);
5761 #endif
5762
5763 return chain_entry;
5764 }
5765
5766 /* Create a new subspace NAME, with the appropriate flags as defined
5767 by the given parameters.
5768
5769 Add the new subspace to the subspace dictionary chain in numerical
5770 order as defined by the SORT entries. */
5771
5772 static ssd_chain_struct *
5773 create_new_subspace (space, name, loadable, code_only, common,
5774 dup_common, is_zero, sort, access, space_index,
5775 alignment, quadrant, seg)
5776 sd_chain_struct *space;
5777 char *name;
5778 char loadable, code_only, common, dup_common, is_zero;
5779 char sort;
5780 int access;
5781 int space_index;
5782 int alignment;
5783 int quadrant;
5784 asection *seg;
5785 {
5786 ssd_chain_struct *chain_entry;
5787
5788 chain_entry = (ssd_chain_struct *) xmalloc (sizeof (ssd_chain_struct));
5789 if (!chain_entry)
5790 as_fatal ("Out of memory: could not allocate new subspace chain entry: %s\n", name);
5791
5792 SUBSPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5793 strcpy (SUBSPACE_NAME (chain_entry), name);
5794
5795 SUBSPACE_ACCESS (chain_entry) = access;
5796 SUBSPACE_LOADABLE (chain_entry) = loadable;
5797 SUBSPACE_COMMON (chain_entry) = common;
5798 SUBSPACE_DUP_COMM (chain_entry) = dup_common;
5799 SUBSPACE_SORT (chain_entry) = sort;
5800 SUBSPACE_CODE_ONLY (chain_entry) = code_only;
5801 SUBSPACE_ALIGN (chain_entry) = alignment;
5802 SUBSPACE_QUADRANT (chain_entry) = quadrant;
5803 SUBSPACE_SUBSPACE_START (chain_entry) = pa_subspace_start (space, quadrant);
5804 SUBSPACE_SPACE_INDEX (chain_entry) = space_index;
5805 SUBSPACE_ZERO (chain_entry) = is_zero;
5806
5807 /* Initialize subspace_defined. When we hit a .subspace directive
5808 we'll set it to 1 which "locks-in" the subspace attributes. */
5809 SUBSPACE_DEFINED (chain_entry) = 0;
5810
5811 chain_entry->ssd_subseg = USE_ALIASES ? pa_next_subseg (space) : 0;
5812 chain_entry->ssd_seg = seg;
5813 chain_entry->ssd_last_align = 1;
5814 chain_entry->ssd_next = NULL;
5815
5816 /* Find spot for the new subspace based on its sort key. */
5817 if (space->sd_subspaces == NULL)
5818 space->sd_subspaces = chain_entry;
5819 else
5820 {
5821 ssd_chain_struct *chain_pointer;
5822 ssd_chain_struct *prev_chain_pointer;
5823
5824 chain_pointer = space->sd_subspaces;
5825 prev_chain_pointer = NULL;
5826
5827 while (chain_pointer)
5828 {
5829 if (SUBSPACE_SORT (chain_pointer) <= SUBSPACE_SORT (chain_entry))
5830 {
5831 prev_chain_pointer = chain_pointer;
5832 chain_pointer = chain_pointer->ssd_next;
5833 }
5834 else
5835 break;
5836
5837 }
5838
5839 /* Now we have somewhere to put the new entry. Insert it and update
5840 the links. */
5841 if (prev_chain_pointer)
5842 {
5843 chain_entry->ssd_next = chain_pointer;
5844 prev_chain_pointer->ssd_next = chain_entry;
5845 }
5846 else
5847 {
5848 space->sd_subspaces = chain_entry;
5849 chain_entry->ssd_next = chain_pointer;
5850 }
5851 }
5852
5853 #ifdef obj_set_subsection_attributes
5854 obj_set_subsection_attributes (seg, space->sd_seg, access,
5855 sort, quadrant);
5856 #endif
5857
5858 return chain_entry;
5859
5860 }
5861
5862 /* Update the information for the given subspace based upon the
5863 various arguments. Return the modified subspace chain entry. */
5864
5865 static ssd_chain_struct *
5866 update_subspace (space, name, loadable, code_only, common, dup_common, sort,
5867 zero, access, space_index, alignment, quadrant, section)
5868 sd_chain_struct *space;
5869 char *name;
5870 char loadable;
5871 char code_only;
5872 char common;
5873 char dup_common;
5874 char zero;
5875 char sort;
5876 int access;
5877 int space_index;
5878 int alignment;
5879 int quadrant;
5880 asection *section;
5881 {
5882 ssd_chain_struct *chain_entry;
5883
5884 if ((chain_entry = is_defined_subspace (name)))
5885 {
5886 SUBSPACE_ACCESS (chain_entry) = access;
5887 SUBSPACE_LOADABLE (chain_entry) = loadable;
5888 SUBSPACE_COMMON (chain_entry) = common;
5889 SUBSPACE_DUP_COMM (chain_entry) = dup_common;
5890 SUBSPACE_CODE_ONLY (chain_entry) = 1;
5891 SUBSPACE_SORT (chain_entry) = sort;
5892 SUBSPACE_ALIGN (chain_entry) = alignment;
5893 SUBSPACE_QUADRANT (chain_entry) = quadrant;
5894 SUBSPACE_SPACE_INDEX (chain_entry) = space_index;
5895 SUBSPACE_ZERO (chain_entry) = zero;
5896 }
5897 else
5898 chain_entry = NULL;
5899
5900 #ifdef obj_set_subsection_attributes
5901 obj_set_subsection_attributes (section, space->sd_seg, access,
5902 sort, quadrant);
5903 #endif
5904
5905 return chain_entry;
5906
5907 }
5908
5909 /* Return the space chain entry for the space with the name NAME or
5910 NULL if no such space exists. */
5911
5912 static sd_chain_struct *
5913 is_defined_space (name)
5914 char *name;
5915 {
5916 sd_chain_struct *chain_pointer;
5917
5918 for (chain_pointer = space_dict_root;
5919 chain_pointer;
5920 chain_pointer = chain_pointer->sd_next)
5921 {
5922 if (strcmp (SPACE_NAME (chain_pointer), name) == 0)
5923 return chain_pointer;
5924 }
5925
5926 /* No mapping from segment to space was found. Return NULL. */
5927 return NULL;
5928 }
5929
5930 /* Find and return the space associated with the given seg. If no mapping
5931 from the given seg to a space is found, then return NULL.
5932
5933 Unlike subspaces, the number of spaces is not expected to grow much,
5934 so a linear exhaustive search is OK here. */
5935
5936 static sd_chain_struct *
5937 pa_segment_to_space (seg)
5938 asection *seg;
5939 {
5940 sd_chain_struct *space_chain;
5941
5942 /* Walk through each space looking for the correct mapping. */
5943 for (space_chain = space_dict_root;
5944 space_chain;
5945 space_chain = space_chain->sd_next)
5946 {
5947 if (space_chain->sd_seg == seg)
5948 return space_chain;
5949 }
5950
5951 /* Mapping was not found. Return NULL. */
5952 return NULL;
5953 }
5954
5955 /* Return the space chain entry for the subspace with the name NAME or
5956 NULL if no such subspace exists.
5957
5958 Uses a linear search through all the spaces and subspaces, this may
5959 not be appropriate if we ever being placing each function in its
5960 own subspace. */
5961
5962 static ssd_chain_struct *
5963 is_defined_subspace (name)
5964 char *name;
5965 {
5966 sd_chain_struct *space_chain;
5967 ssd_chain_struct *subspace_chain;
5968
5969 /* Walk through each space. */
5970 for (space_chain = space_dict_root;
5971 space_chain;
5972 space_chain = space_chain->sd_next)
5973 {
5974 /* Walk through each subspace looking for a name which matches. */
5975 for (subspace_chain = space_chain->sd_subspaces;
5976 subspace_chain;
5977 subspace_chain = subspace_chain->ssd_next)
5978 if (strcmp (SUBSPACE_NAME (subspace_chain), name) == 0)
5979 return subspace_chain;
5980 }
5981
5982 /* Subspace wasn't found. Return NULL. */
5983 return NULL;
5984 }
5985
5986 /* Find and return the subspace associated with the given seg. If no
5987 mapping from the given seg to a subspace is found, then return NULL.
5988
5989 If we ever put each procedure/function within its own subspace
5990 (to make life easier on the compiler and linker), then this will have
5991 to become more efficient. */
5992
5993 static ssd_chain_struct *
5994 pa_subsegment_to_subspace (seg, subseg)
5995 asection *seg;
5996 subsegT subseg;
5997 {
5998 sd_chain_struct *space_chain;
5999 ssd_chain_struct *subspace_chain;
6000
6001 /* Walk through each space. */
6002 for (space_chain = space_dict_root;
6003 space_chain;
6004 space_chain = space_chain->sd_next)
6005 {
6006 if (space_chain->sd_seg == seg)
6007 {
6008 /* Walk through each subspace within each space looking for
6009 the correct mapping. */
6010 for (subspace_chain = space_chain->sd_subspaces;
6011 subspace_chain;
6012 subspace_chain = subspace_chain->ssd_next)
6013 if (subspace_chain->ssd_subseg == (int) subseg)
6014 return subspace_chain;
6015 }
6016 }
6017
6018 /* No mapping from subsegment to subspace found. Return NULL. */
6019 return NULL;
6020 }
6021
6022 /* Given a number, try and find a space with the name number.
6023
6024 Return a pointer to a space dictionary chain entry for the space
6025 that was found or NULL on failure. */
6026
6027 static sd_chain_struct *
6028 pa_find_space_by_number (number)
6029 int number;
6030 {
6031 sd_chain_struct *space_chain;
6032
6033 for (space_chain = space_dict_root;
6034 space_chain;
6035 space_chain = space_chain->sd_next)
6036 {
6037 if (SPACE_SPNUM (space_chain) == number)
6038 return space_chain;
6039 }
6040
6041 /* No appropriate space found. Return NULL. */
6042 return NULL;
6043 }
6044
6045 /* Return the starting address for the given subspace. If the starting
6046 address is unknown then return zero. */
6047
6048 static unsigned int
6049 pa_subspace_start (space, quadrant)
6050 sd_chain_struct *space;
6051 int quadrant;
6052 {
6053 /* FIXME. Assumes everyone puts read/write data at 0x4000000, this
6054 is not correct for the PA OSF1 port. */
6055 if ((strcasecmp (SPACE_NAME (space), "$PRIVATE$") == 0) && quadrant == 1)
6056 return 0x40000000;
6057 else if (space->sd_seg == data_section && quadrant == 1)
6058 return 0x40000000;
6059 else
6060 return 0;
6061 }
6062
6063 /* FIXME. Needs documentation. */
6064 static int
6065 pa_next_subseg (space)
6066 sd_chain_struct *space;
6067 {
6068
6069 space->sd_last_subseg++;
6070 return space->sd_last_subseg;
6071 }
6072
6073 /* Helper function for pa_stringer. Used to find the end of
6074 a string. */
6075
6076 static unsigned int
6077 pa_stringer_aux (s)
6078 char *s;
6079 {
6080 unsigned int c = *s & CHAR_MASK;
6081 switch (c)
6082 {
6083 case '\"':
6084 c = NOT_A_CHAR;
6085 break;
6086 default:
6087 break;
6088 }
6089 return c;
6090 }
6091
6092 /* Handle a .STRING type pseudo-op. */
6093
6094 static void
6095 pa_stringer (append_zero)
6096 int append_zero;
6097 {
6098 char *s, num_buf[4];
6099 unsigned int c;
6100 int i;
6101
6102 /* Preprocess the string to handle PA-specific escape sequences.
6103 For example, \xDD where DD is a hexidecimal number should be
6104 changed to \OOO where OOO is an octal number. */
6105
6106 /* Skip the opening quote. */
6107 s = input_line_pointer + 1;
6108
6109 while (is_a_char (c = pa_stringer_aux (s++)))
6110 {
6111 if (c == '\\')
6112 {
6113 c = *s;
6114 switch (c)
6115 {
6116 /* Handle \x<num>. */
6117 case 'x':
6118 {
6119 unsigned int number;
6120 int num_digit;
6121 char dg;
6122 char *s_start = s;
6123
6124 /* Get pas the 'x'. */
6125 s++;
6126 for (num_digit = 0, number = 0, dg = *s;
6127 num_digit < 2
6128 && (isdigit (dg) || (dg >= 'a' && dg <= 'f')
6129 || (dg >= 'A' && dg <= 'F'));
6130 num_digit++)
6131 {
6132 if (isdigit (dg))
6133 number = number * 16 + dg - '0';
6134 else if (dg >= 'a' && dg <= 'f')
6135 number = number * 16 + dg - 'a' + 10;
6136 else
6137 number = number * 16 + dg - 'A' + 10;
6138
6139 s++;
6140 dg = *s;
6141 }
6142 if (num_digit > 0)
6143 {
6144 switch (num_digit)
6145 {
6146 case 1:
6147 sprintf (num_buf, "%02o", number);
6148 break;
6149 case 2:
6150 sprintf (num_buf, "%03o", number);
6151 break;
6152 }
6153 for (i = 0; i <= num_digit; i++)
6154 s_start[i] = num_buf[i];
6155 }
6156 break;
6157 }
6158 /* This might be a "\"", skip over the escaped char. */
6159 default:
6160 s++;
6161 break;
6162 }
6163 }
6164 }
6165 stringer (append_zero);
6166 pa_undefine_label ();
6167 }
6168
6169 /* Handle a .VERSION pseudo-op. */
6170
6171 static void
6172 pa_version (unused)
6173 int unused;
6174 {
6175 obj_version (0);
6176 pa_undefine_label ();
6177 }
6178
6179 /* Just like a normal cons, but when finished we have to undefine
6180 the latest space label. */
6181
6182 static void
6183 pa_cons (nbytes)
6184 int nbytes;
6185 {
6186 cons (nbytes);
6187 pa_undefine_label ();
6188 }
6189
6190 /* Switch to the data space. As usual delete our label. */
6191
6192 static void
6193 pa_data (unused)
6194 int unused;
6195 {
6196 s_data (0);
6197 pa_undefine_label ();
6198 }
6199
6200 /* FIXME. What's the purpose of this pseudo-op? */
6201
6202 static void
6203 pa_desc (unused)
6204 int unused;
6205 {
6206 pa_undefine_label ();
6207 }
6208
6209 /* Like float_cons, but we need to undefine our label. */
6210
6211 static void
6212 pa_float_cons (float_type)
6213 int float_type;
6214 {
6215 float_cons (float_type);
6216 pa_undefine_label ();
6217 }
6218
6219 /* Like s_fill, but delete our label when finished. */
6220
6221 static void
6222 pa_fill (unused)
6223 int unused;
6224 {
6225 s_fill (0);
6226 pa_undefine_label ();
6227 }
6228
6229 /* Like lcomm, but delete our label when finished. */
6230
6231 static void
6232 pa_lcomm (needs_align)
6233 int needs_align;
6234 {
6235 s_lcomm (needs_align);
6236 pa_undefine_label ();
6237 }
6238
6239 /* Like lsym, but delete our label when finished. */
6240
6241 static void
6242 pa_lsym (unused)
6243 int unused;
6244 {
6245 s_lsym (0);
6246 pa_undefine_label ();
6247 }
6248
6249 /* Switch to the text space. Like s_text, but delete our
6250 label when finished. */
6251 static void
6252 pa_text (unused)
6253 int unused;
6254 {
6255 s_text (0);
6256 pa_undefine_label ();
6257 }
6258
6259 /* On the PA relocations which involve function symbols must not be
6260 adjusted. This so that the linker can know when/how to create argument
6261 relocation stubs for indirect calls and calls to static functions.
6262
6263 FIXME. Also reject R_HPPA relocations which are 32 bits
6264 wide. Helps with code lables in arrays for SOM. (SOM BFD code
6265 needs to generate relocations to push the addend and symbol value
6266 onto the stack, add them, then pop the value off the stack and
6267 use it in a relocation -- yuk. */
6268
6269 int
6270 hppa_fix_adjustable (fixp)
6271 fixS *fixp;
6272 {
6273 struct hppa_fix_struct *hppa_fix;
6274
6275 hppa_fix = fixp->tc_fix_data;
6276
6277 if (fixp->fx_r_type == R_HPPA && hppa_fix->fx_r_format == 32)
6278 return 0;
6279
6280 if (fixp->fx_addsy == 0
6281 || (fixp->fx_addsy->bsym->flags & BSF_FUNCTION) == 0)
6282 return 1;
6283
6284 return 0;
6285 }
6286
6287 /* Return nonzero if the fixup in FIXP will require a relocation,
6288 even it if appears that the fixup could be completely handled
6289 within GAS. */
6290
6291 int
6292 hppa_force_relocation (fixp)
6293 fixS *fixp;
6294 {
6295 struct hppa_fix_struct *hppa_fixp = fixp->tc_fix_data;
6296
6297 #ifdef OBJ_SOM
6298 if (fixp->fx_r_type == R_HPPA_ENTRY || fixp->fx_r_type == R_HPPA_EXIT)
6299 return 1;
6300 #endif
6301
6302 #define stub_needed(CALLER, CALLEE) \
6303 ((CALLEE) && (CALLER) && ((CALLEE) != (CALLER)))
6304
6305 /* It is necessary to force PC-relative calls/jumps to have a relocation
6306 entry if they're going to need either a argument relocation or long
6307 call stub. FIXME. Can't we need the same for absolute calls? */
6308 if (fixp->fx_pcrel && fixp->fx_addsy
6309 && (stub_needed (((obj_symbol_type *)
6310 fixp->fx_addsy->bsym)->tc_data.hppa_arg_reloc,
6311 hppa_fixp->fx_arg_reloc)))
6312 return 1;
6313
6314 #undef stub_needed
6315
6316 /* No need (yet) to force another relocations to be emitted. */
6317 return 0;
6318 }
6319
6320 /* Now for some ELF specific code. FIXME. */
6321 #ifdef OBJ_ELF
6322 static symext_chainS *symext_rootP;
6323 static symext_chainS *symext_lastP;
6324
6325 /* Mark the end of a function so that it's possible to compute
6326 the size of the function in hppa_elf_final_processing. */
6327
6328 static void
6329 hppa_elf_mark_end_of_function ()
6330 {
6331 /* ELF does not have EXIT relocations. All we do is create a
6332 temporary symbol marking the end of the function. */
6333 char *name = (char *)
6334 xmalloc (strlen ("L$\001end_") +
6335 strlen (S_GET_NAME (last_call_info->start_symbol)) + 1);
6336
6337 if (name)
6338 {
6339 symbolS *symbolP;
6340
6341 strcpy (name, "L$\001end_");
6342 strcat (name, S_GET_NAME (last_call_info->start_symbol));
6343
6344 /* If we have a .exit followed by a .procend, then the
6345 symbol will have already been defined. */
6346 symbolP = symbol_find (name);
6347 if (symbolP)
6348 {
6349 /* The symbol has already been defined! This can
6350 happen if we have a .exit followed by a .procend.
6351
6352 This is *not* an error. All we want to do is free
6353 the memory we just allocated for the name and continue. */
6354 xfree (name);
6355 }
6356 else
6357 {
6358 /* symbol value should be the offset of the
6359 last instruction of the function */
6360 symbolP = symbol_new (name, now_seg,
6361 (valueT) (obstack_next_free (&frags)
6362 - frag_now->fr_literal - 4),
6363 frag_now);
6364
6365 assert (symbolP);
6366 symbolP->bsym->flags = BSF_LOCAL;
6367 symbol_table_insert (symbolP);
6368 }
6369
6370 if (symbolP)
6371 last_call_info->end_symbol = symbolP;
6372 else
6373 as_bad ("Symbol '%s' could not be created.", name);
6374
6375 }
6376 else
6377 as_bad ("No memory for symbol name.");
6378
6379 /* Stuff away the location of the frag for the end of the function,
6380 and call pa_build_unwind_subspace to add an entry in the unwind
6381 table. */
6382 last_call_info->end_frag = frag_now;
6383 }
6384
6385 /* Do any symbol processing requested by the target-cpu or target-format. */
6386
6387 void
6388 hppa_tc_symbol (abfd, symbolP, sym_idx)
6389 bfd *abfd;
6390 elf_symbol_type *symbolP;
6391 int sym_idx;
6392 {
6393 symext_chainS *symextP;
6394 unsigned int arg_reloc;
6395
6396 /* Only functions can have argument relocations. */
6397 if (!(symbolP->symbol.flags & BSF_FUNCTION))
6398 return;
6399
6400 arg_reloc = symbolP->tc_data.hppa_arg_reloc;
6401
6402 /* If there are no argument relocation bits, then no relocation is
6403 necessary. Do not add this to the symextn section. */
6404 if (arg_reloc == 0)
6405 return;
6406
6407 symextP = (symext_chainS *) bfd_alloc (abfd, sizeof (symext_chainS) * 2);
6408
6409 symextP[0].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX, sym_idx);
6410 symextP[0].next = &symextP[1];
6411
6412 symextP[1].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_ARG_RELOC, arg_reloc);
6413 symextP[1].next = NULL;
6414
6415 if (symext_rootP == NULL)
6416 {
6417 symext_rootP = &symextP[0];
6418 symext_lastP = &symextP[1];
6419 }
6420 else
6421 {
6422 symext_lastP->next = &symextP[0];
6423 symext_lastP = &symextP[1];
6424 }
6425 }
6426
6427 /* Make sections needed by the target cpu and/or target format. */
6428 void
6429 hppa_tc_make_sections (abfd)
6430 bfd *abfd;
6431 {
6432 symext_chainS *symextP;
6433 int size, n;
6434 asection *symextn_sec;
6435 segT save_seg = now_seg;
6436 subsegT save_subseg = now_subseg;
6437
6438 /* Build the symbol extension section. */
6439 hppa_tc_make_symextn_section ();
6440
6441 /* Force some calculation to occur. */
6442 bfd_set_section_contents (stdoutput, stdoutput->sections, "", 0, 0);
6443
6444 hppa_elf_stub_finish (abfd);
6445
6446 /* If no symbols for the symbol extension section, then stop now. */
6447 if (symext_rootP == NULL)
6448 return;
6449
6450 /* Count the number of symbols for the symbol extension section. */
6451 for (n = 0, symextP = symext_rootP; symextP; symextP = symextP->next, ++n)
6452 ;
6453
6454 size = sizeof (symext_entryS) * n;
6455
6456 /* Switch to the symbol extension section. */
6457 symextn_sec = subseg_new (SYMEXTN_SECTION_NAME, 0);
6458
6459 frag_wane (frag_now);
6460 frag_new (0);
6461
6462 for (symextP = symext_rootP; symextP; symextP = symextP->next)
6463 {
6464 char *ptr;
6465 int *symtab_map = elf_sym_extra (abfd);
6466 int idx;
6467
6468 /* First, patch the symbol extension record to reflect the true
6469 symbol table index. */
6470
6471 if (ELF32_HPPA_SX_TYPE (symextP->entry) == HPPA_SXT_SYMNDX)
6472 {
6473 idx = ELF32_HPPA_SX_VAL (symextP->entry) - 1;
6474 symextP->entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX,
6475 symtab_map[idx]);
6476 }
6477
6478 ptr = frag_more (sizeof (symextP->entry));
6479 md_number_to_chars (ptr, symextP->entry, sizeof (symextP->entry));
6480 }
6481
6482 frag_now->fr_fix = obstack_next_free (&frags) - frag_now->fr_literal;
6483 frag_wane (frag_now);
6484
6485 /* Switch back to the original segment. */
6486 subseg_set (save_seg, save_subseg);
6487
6488 return;
6489 }
6490
6491 /* Make the symbol extension section. */
6492
6493 static void
6494 hppa_tc_make_symextn_section ()
6495 {
6496 if (symext_rootP)
6497 {
6498 symext_chainS *symextP;
6499 int n;
6500 unsigned int size;
6501 segT symextn_sec;
6502 segT save_seg = now_seg;
6503 subsegT save_subseg = now_subseg;
6504
6505 for (n = 0, symextP = symext_rootP; symextP; symextP = symextP->next, ++n)
6506 ;
6507
6508 size = sizeof (symext_entryS) * n;
6509
6510 symextn_sec = subseg_new (SYMEXTN_SECTION_NAME, 0);
6511
6512 bfd_set_section_flags (stdoutput, symextn_sec,
6513 SEC_LOAD | SEC_HAS_CONTENTS | SEC_DATA);
6514 bfd_set_section_size (stdoutput, symextn_sec, size);
6515
6516 /* Now, switch back to the original segment. */
6517 subseg_set (save_seg, save_subseg);
6518 }
6519 }
6520
6521 /* Build the symbol extension section. */
6522
6523 static void
6524 pa_build_symextn_section ()
6525 {
6526 segT seg;
6527 asection *save_seg = now_seg;
6528 subsegT subseg = (subsegT) 0;
6529 subsegT save_subseg = now_subseg;
6530
6531 seg = subseg_new (".hppa_symextn", subseg);
6532 bfd_set_section_flags (stdoutput,
6533 seg,
6534 SEC_HAS_CONTENTS | SEC_READONLY
6535 | SEC_ALLOC | SEC_LOAD);
6536
6537 subseg_set (save_seg, save_subseg);
6538
6539 }
6540
6541 /* For ELF, this function serves one purpose: to setup the st_size
6542 field of STT_FUNC symbols. To do this, we need to scan the
6543 call_info structure list, determining st_size in one of two possible
6544 ways:
6545
6546 1. call_info->start_frag->fr_fix has the size of the fragment.
6547 This approach assumes that the function was built into a
6548 single fragment. This works for most cases, but might fail.
6549 For example, if there was a segment change in the middle of
6550 the function.
6551
6552 2. The st_size field is the difference in the addresses of the
6553 call_info->start_frag->fr_address field and the fr_address
6554 field of the next fragment with fr_type == rs_fill and
6555 fr_fix != 0. */
6556
6557 void
6558 elf_hppa_final_processing ()
6559 {
6560 struct call_info *call_info_pointer;
6561
6562 for (call_info_pointer = call_info_root;
6563 call_info_pointer;
6564 call_info_pointer = call_info_pointer->ci_next)
6565 {
6566 elf_symbol_type *esym
6567 = (elf_symbol_type *) call_info_pointer->start_symbol->bsym;
6568 esym->internal_elf_sym.st_size =
6569 S_GET_VALUE (call_info_pointer->end_symbol)
6570 - S_GET_VALUE (call_info_pointer->start_symbol) + 4;
6571 }
6572 }
6573 #endif