* config/tc-hppa.c (pa_ip): Explicitly check for comma before 'u'
[binutils-gdb.git] / gas / config / tc-hppa.c
1 /* tc-hppa.c -- Assemble for the PA
2 Copyright (C) 1989 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 1, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* HP PA-RISC support was contributed by the Center for Software Science
22 at the University of Utah. */
23
24 #include <stdio.h>
25 #include <ctype.h>
26
27 #include "as.h"
28 #include "subsegs.h"
29
30 #include "../bfd/libhppa.h"
31 #include "../bfd/libbfd.h"
32
33 /* Be careful, this file includes data *declarations*. */
34 #include "opcode/hppa.h"
35
36 /* A "convient" place to put object file dependencies which do
37 not need to be seen outside of tc-hppa.c. */
38 #ifdef OBJ_ELF
39 /* Names of various debugging spaces/subspaces. */
40 #define GDB_DEBUG_SPACE_NAME ".stab"
41 #define GDB_STRINGS_SUBSPACE_NAME ".stabstr"
42 #define GDB_SYMBOLS_SUBSPACE_NAME ".stab"
43 #define UNWIND_SECTION_NAME ".hppa_unwind"
44 /* Nonzero if CODE is a fixup code needing further processing. */
45
46 /* Object file formats specify relocation types. */
47 typedef elf32_hppa_reloc_type reloc_type;
48
49 /* Object file formats specify BFD symbol types. */
50 typedef elf_symbol_type obj_symbol_type;
51
52 /* How to generate a relocation. */
53 #define hppa_gen_reloc_type hppa_elf_gen_reloc_type
54
55 /* ELF objects can have versions, but apparently do not have anywhere
56 to store a copyright string. */
57 #define obj_version obj_elf_version
58 #define obj_copyright obj_elf_version
59
60 /* Use space aliases. */
61 #define USE_ALIASES 1
62
63 /* Some local functions only used by ELF. */
64 static void pa_build_symextn_section PARAMS ((void));
65 static void hppa_tc_make_symextn_section PARAMS ((void));
66 #endif
67
68 #ifdef OBJ_SOM
69 /* Names of various debugging spaces/subspaces. */
70 #define GDB_DEBUG_SPACE_NAME "$GDB_DEBUG$"
71 #define GDB_STRINGS_SUBSPACE_NAME "$GDB_STRINGS$"
72 #define GDB_SYMBOLS_SUBSPACE_NAME "$GDB_SYMBOLS$"
73 #define UNWIND_SECTION_NAME "$UNWIND$"
74
75 /* Object file formats specify relocation types. */
76 typedef int reloc_type;
77
78 /* SOM objects can have both a version string and a copyright string. */
79 #define obj_version obj_som_version
80 #define obj_copyright obj_som_copyright
81
82 /* Do not use space aliases. */
83 #define USE_ALIASES 0
84
85 /* How to generate a relocation. */
86 #define hppa_gen_reloc_type hppa_som_gen_reloc_type
87
88 /* Object file formats specify BFD symbol types. */
89 typedef som_symbol_type obj_symbol_type;
90 #endif
91
92 /* Various structures and types used internally in tc-hppa.c. */
93
94 /* Unwind table and descriptor. FIXME: Sync this with GDB version. */
95
96 struct unwind_desc
97 {
98 unsigned int cannot_unwind:1;
99 unsigned int millicode:1;
100 unsigned int millicode_save_rest:1;
101 unsigned int region_desc:2;
102 unsigned int save_sr:2;
103 unsigned int entry_fr:4;
104 unsigned int entry_gr:5;
105 unsigned int args_stored:1;
106 unsigned int call_fr:5;
107 unsigned int call_gr:5;
108 unsigned int save_sp:1;
109 unsigned int save_rp:1;
110 unsigned int save_rp_in_frame:1;
111 unsigned int extn_ptr_defined:1;
112 unsigned int cleanup_defined:1;
113
114 unsigned int hpe_interrupt_marker:1;
115 unsigned int hpux_interrupt_marker:1;
116 unsigned int reserved:3;
117 unsigned int frame_size:27;
118 };
119
120 struct unwind_table
121 {
122 /* Starting and ending offsets of the region described by
123 descriptor. */
124 unsigned int start_offset;
125 unsigned int end_offset;
126 struct unwind_desc descriptor;
127 };
128
129 /* This structure is used by the .callinfo, .enter, .leave pseudo-ops to
130 control the entry and exit code they generate. It is also used in
131 creation of the correct stack unwind descriptors.
132
133 NOTE: GAS does not support .enter and .leave for the generation of
134 prologues and epilogues. FIXME.
135
136 The fields in structure roughly correspond to the arguments available on the
137 .callinfo pseudo-op. */
138
139 struct call_info
140 {
141 /* The unwind descriptor being built. */
142 struct unwind_table ci_unwind;
143
144 /* Name of this function. */
145 symbolS *start_symbol;
146
147 /* (temporary) symbol used to mark the end of this function. */
148 symbolS *end_symbol;
149
150 /* Next entry in the chain. */
151 struct call_info *ci_next;
152 };
153
154 /* Operand formats for FP instructions. Note not all FP instructions
155 allow all four formats to be used (for example fmpysub only allows
156 SGL and DBL). */
157 typedef enum
158 {
159 SGL, DBL, ILLEGAL_FMT, QUAD
160 }
161 fp_operand_format;
162
163 /* This fully describes the symbol types which may be attached to
164 an EXPORT or IMPORT directive. Only SOM uses this formation
165 (ELF has no need for it). */
166 typedef enum
167 {
168 SYMBOL_TYPE_UNKNOWN,
169 SYMBOL_TYPE_ABSOLUTE,
170 SYMBOL_TYPE_CODE,
171 SYMBOL_TYPE_DATA,
172 SYMBOL_TYPE_ENTRY,
173 SYMBOL_TYPE_MILLICODE,
174 SYMBOL_TYPE_PLABEL,
175 SYMBOL_TYPE_PRI_PROG,
176 SYMBOL_TYPE_SEC_PROG,
177 }
178 pa_symbol_type;
179
180 /* This structure contains information needed to assemble
181 individual instructions. */
182 struct pa_it
183 {
184 /* Holds the opcode after parsing by pa_ip. */
185 unsigned long opcode;
186
187 /* Holds an expression associated with the current instruction. */
188 expressionS exp;
189
190 /* Does this instruction use PC-relative addressing. */
191 int pcrel;
192
193 /* Floating point formats for operand1 and operand2. */
194 fp_operand_format fpof1;
195 fp_operand_format fpof2;
196
197 /* Holds the field selector for this instruction
198 (for example L%, LR%, etc). */
199 long field_selector;
200
201 /* Holds any argument relocation bits associated with this
202 instruction. (instruction should be some sort of call). */
203 long arg_reloc;
204
205 /* The format specification for this instruction. */
206 int format;
207
208 /* The relocation (if any) associated with this instruction. */
209 reloc_type reloc;
210 };
211
212 /* PA-89 floating point registers are arranged like this:
213
214
215 +--------------+--------------+
216 | 0 or 16L | 16 or 16R |
217 +--------------+--------------+
218 | 1 or 17L | 17 or 17R |
219 +--------------+--------------+
220 | | |
221
222 . . .
223 . . .
224 . . .
225
226 | | |
227 +--------------+--------------+
228 | 14 or 30L | 30 or 30R |
229 +--------------+--------------+
230 | 15 or 31L | 31 or 31R |
231 +--------------+--------------+
232
233
234 The following is a version of pa_parse_number that
235 handles the L/R notation and returns the correct
236 value to put into the instruction register field.
237 The correct value to put into the instruction is
238 encoded in the structure 'pa_89_fp_reg_struct'. */
239
240 struct pa_89_fp_reg_struct
241 {
242 /* The register number. */
243 char number_part;
244
245 /* L/R selector. */
246 char l_r_select;
247 };
248
249 /* Additional information needed to build argument relocation stubs. */
250 struct call_desc
251 {
252 /* The argument relocation specification. */
253 unsigned int arg_reloc;
254
255 /* Number of arguments. */
256 unsigned int arg_count;
257 };
258
259 /* This structure defines an entry in the subspace dictionary
260 chain. */
261
262 struct subspace_dictionary_chain
263 {
264 /* Nonzero if this space has been defined by the user code. */
265 unsigned int ssd_defined;
266
267 /* Name of this subspace. */
268 char *ssd_name;
269
270 /* GAS segment and subsegment associated with this subspace. */
271 asection *ssd_seg;
272 int ssd_subseg;
273
274 /* Next space in the subspace dictionary chain. */
275 struct subspace_dictionary_chain *ssd_next;
276 };
277
278 typedef struct subspace_dictionary_chain ssd_chain_struct;
279
280 /* This structure defines an entry in the subspace dictionary
281 chain. */
282
283 struct space_dictionary_chain
284 {
285 /* Nonzero if this space has been defined by the user code or
286 as a default space. */
287 unsigned int sd_defined;
288
289 /* Nonzero if this spaces has been defined by the user code. */
290 unsigned int sd_user_defined;
291
292 /* The space number (or index). */
293 unsigned int sd_spnum;
294
295 /* The name of this subspace. */
296 char *sd_name;
297
298 /* GAS segment to which this subspace corresponds. */
299 asection *sd_seg;
300
301 /* Current subsegment number being used. */
302 int sd_last_subseg;
303
304 /* The chain of subspaces contained within this space. */
305 ssd_chain_struct *sd_subspaces;
306
307 /* The next entry in the space dictionary chain. */
308 struct space_dictionary_chain *sd_next;
309 };
310
311 typedef struct space_dictionary_chain sd_chain_struct;
312
313 /* Structure for previous label tracking. Needed so that alignments,
314 callinfo declarations, etc can be easily attached to a particular
315 label. */
316 typedef struct label_symbol_struct
317 {
318 struct symbol *lss_label;
319 sd_chain_struct *lss_space;
320 struct label_symbol_struct *lss_next;
321 }
322 label_symbol_struct;
323
324 /* This structure defines attributes of the default subspace
325 dictionary entries. */
326
327 struct default_subspace_dict
328 {
329 /* Name of the subspace. */
330 char *name;
331
332 /* FIXME. Is this still needed? */
333 char defined;
334
335 /* Nonzero if this subspace is loadable. */
336 char loadable;
337
338 /* Nonzero if this subspace contains only code. */
339 char code_only;
340
341 /* Nonzero if this is a common subspace. */
342 char common;
343
344 /* Nonzero if this is a common subspace which allows symbols
345 to be multiply defined. */
346 char dup_common;
347
348 /* Nonzero if this subspace should be zero filled. */
349 char zero;
350
351 /* Sort key for this subspace. */
352 unsigned char sort;
353
354 /* Access control bits for this subspace. Can represent RWX access
355 as well as privilege level changes for gateways. */
356 int access;
357
358 /* Index of containing space. */
359 int space_index;
360
361 /* Alignment (in bytes) of this subspace. */
362 int alignment;
363
364 /* Quadrant within space where this subspace should be loaded. */
365 int quadrant;
366
367 /* An index into the default spaces array. */
368 int def_space_index;
369
370 /* An alias for this section (or NULL if no alias exists). */
371 char *alias;
372
373 /* Subsegment associated with this subspace. */
374 subsegT subsegment;
375 };
376
377 /* This structure defines attributes of the default space
378 dictionary entries. */
379
380 struct default_space_dict
381 {
382 /* Name of the space. */
383 char *name;
384
385 /* Space number. It is possible to identify spaces within
386 assembly code numerically! */
387 int spnum;
388
389 /* Nonzero if this space is loadable. */
390 char loadable;
391
392 /* Nonzero if this space is "defined". FIXME is still needed */
393 char defined;
394
395 /* Nonzero if this space can not be shared. */
396 char private;
397
398 /* Sort key for this space. */
399 unsigned char sort;
400
401 /* Segment associated with this space. */
402 asection *segment;
403
404 /* An alias for this section (or NULL if no alias exists). */
405 char *alias;
406 };
407
408 /* Extra information needed to perform fixups (relocations) on the PA. */
409 struct hppa_fix_struct
410 {
411 /* The field selector. */
412 enum hppa_reloc_field_selector_type fx_r_field;
413
414 /* Type of fixup. */
415 int fx_r_type;
416
417 /* Format of fixup. */
418 int fx_r_format;
419
420 /* Argument relocation bits. */
421 long fx_arg_reloc;
422
423 /* The unwind descriptor associated with this fixup. */
424 char fx_unwind[8];
425
426 /* The segment this fixup appears in. */
427 segT segment;
428 };
429
430 /* Structure to hold information about predefined registers. */
431
432 struct pd_reg
433 {
434 char *name;
435 int value;
436 };
437
438 /* This structure defines the mapping from a FP condition string
439 to a condition number which can be recorded in an instruction. */
440 struct fp_cond_map
441 {
442 char *string;
443 int cond;
444 };
445
446 /* This structure defines a mapping from a field selector
447 string to a field selector type. */
448 struct selector_entry
449 {
450 char *prefix;
451 int field_selector;
452 };
453
454 /* Prototypes for functions local to tc-hppa.c. */
455
456 static fp_operand_format pa_parse_fp_format PARAMS ((char **s));
457 static void pa_cons PARAMS ((int));
458 static void pa_data PARAMS ((int));
459 static void pa_float_cons PARAMS ((int));
460 static void pa_fill PARAMS ((int));
461 static void pa_lcomm PARAMS ((int));
462 static void pa_lsym PARAMS ((int));
463 static void pa_stringer PARAMS ((int));
464 static void pa_text PARAMS ((int));
465 static void pa_version PARAMS ((int));
466 static int pa_parse_fp_cmp_cond PARAMS ((char **));
467 static int get_expression PARAMS ((char *));
468 static int pa_get_absolute_expression PARAMS ((struct pa_it *, char **));
469 static int evaluate_absolute PARAMS ((struct pa_it *));
470 static unsigned int pa_build_arg_reloc PARAMS ((char *));
471 static unsigned int pa_align_arg_reloc PARAMS ((unsigned int, unsigned int));
472 static int pa_parse_nullif PARAMS ((char **));
473 static int pa_parse_nonneg_cmpsub_cmpltr PARAMS ((char **, int));
474 static int pa_parse_neg_cmpsub_cmpltr PARAMS ((char **, int));
475 static int pa_parse_neg_add_cmpltr PARAMS ((char **, int));
476 static int pa_parse_nonneg_add_cmpltr PARAMS ((char **, int));
477 static void pa_block PARAMS ((int));
478 static void pa_call PARAMS ((int));
479 static void pa_call_args PARAMS ((struct call_desc *));
480 static void pa_callinfo PARAMS ((int));
481 static void pa_code PARAMS ((int));
482 static void pa_comm PARAMS ((int));
483 static void pa_copyright PARAMS ((int));
484 static void pa_end PARAMS ((int));
485 static void pa_enter PARAMS ((int));
486 static void pa_entry PARAMS ((int));
487 static void pa_equ PARAMS ((int));
488 static void pa_exit PARAMS ((int));
489 static void pa_export PARAMS ((int));
490 static void pa_type_args PARAMS ((symbolS *, int));
491 static void pa_import PARAMS ((int));
492 static void pa_label PARAMS ((int));
493 static void pa_leave PARAMS ((int));
494 static void pa_origin PARAMS ((int));
495 static void pa_proc PARAMS ((int));
496 static void pa_procend PARAMS ((int));
497 static void pa_space PARAMS ((int));
498 static void pa_spnum PARAMS ((int));
499 static void pa_subspace PARAMS ((int));
500 static void pa_param PARAMS ((int));
501 static void pa_undefine_label PARAMS ((void));
502 static int need_89_opcode PARAMS ((struct pa_it *,
503 struct pa_89_fp_reg_struct *));
504 static int pa_parse_number PARAMS ((char **, struct pa_89_fp_reg_struct *));
505 static label_symbol_struct *pa_get_label PARAMS ((void));
506 static sd_chain_struct *create_new_space PARAMS ((char *, int, char,
507 char, char, char,
508 asection *, int));
509 static ssd_chain_struct *create_new_subspace PARAMS ((sd_chain_struct *,
510 char *, char, char,
511 char, char, char,
512 char, int, int, int,
513 int, asection *));
514 static ssd_chain_struct *update_subspace PARAMS ((sd_chain_struct *,
515 char *, char, char, char,
516 char, char, char, int,
517 int, int, int,
518 asection *));
519 static sd_chain_struct *is_defined_space PARAMS ((char *));
520 static ssd_chain_struct *is_defined_subspace PARAMS ((char *));
521 static sd_chain_struct *pa_segment_to_space PARAMS ((asection *));
522 static ssd_chain_struct *pa_subsegment_to_subspace PARAMS ((asection *,
523 subsegT));
524 static sd_chain_struct *pa_find_space_by_number PARAMS ((int));
525 static unsigned int pa_subspace_start PARAMS ((sd_chain_struct *, int));
526 static void pa_ip PARAMS ((char *));
527 static void fix_new_hppa PARAMS ((fragS *, int, short int, symbolS *,
528 long, expressionS *, int,
529 bfd_reloc_code_real_type,
530 enum hppa_reloc_field_selector_type,
531 int, long, char *));
532 static int is_end_of_statement PARAMS ((void));
533 static int reg_name_search PARAMS ((char *));
534 static int pa_chk_field_selector PARAMS ((char **));
535 static int is_same_frag PARAMS ((fragS *, fragS *));
536 static void pa_build_unwind_subspace PARAMS ((struct call_info *));
537 static void process_exit PARAMS ((void));
538 static sd_chain_struct *pa_parse_space_stmt PARAMS ((char *, int));
539 static int log2 PARAMS ((int));
540 static int pa_next_subseg PARAMS ((sd_chain_struct *));
541 static unsigned int pa_stringer_aux PARAMS ((char *));
542 static void pa_spaces_begin PARAMS ((void));
543 static void hppa_elf_mark_end_of_function PARAMS ((void));
544
545 /* File and gloally scoped variable declarations. */
546
547 /* Root and final entry in the space chain. */
548 static sd_chain_struct *space_dict_root;
549 static sd_chain_struct *space_dict_last;
550
551 /* The current space and subspace. */
552 static sd_chain_struct *current_space;
553 static ssd_chain_struct *current_subspace;
554
555 /* Root of the call_info chain. */
556 static struct call_info *call_info_root;
557
558 /* The last call_info (for functions) structure
559 seen so it can be associated with fixups and
560 function labels. */
561 static struct call_info *last_call_info;
562
563 /* The last call description (for actual calls). */
564 static struct call_desc last_call_desc;
565
566 /* Relaxation isn't supported for the PA yet. */
567 const relax_typeS md_relax_table[] =
568 {0};
569
570 /* Jumps are always the same size -- one instruction. */
571 int md_short_jump_size = 4;
572 int md_long_jump_size = 4;
573
574 /* handle of the OPCODE hash table */
575 static struct hash_control *op_hash = NULL;
576
577 /* This array holds the chars that always start a comment. If the
578 pre-processor is disabled, these aren't very useful. */
579 const char comment_chars[] = ";";
580
581 /* Table of pseudo ops for the PA. FIXME -- how many of these
582 are now redundant with the overall GAS and the object file
583 dependent tables? */
584 const pseudo_typeS md_pseudo_table[] =
585 {
586 /* align pseudo-ops on the PA specify the actual alignment requested,
587 not the log2 of the requested alignment. */
588 {"align", s_align_bytes, 8},
589 {"ALIGN", s_align_bytes, 8},
590 {"block", pa_block, 1},
591 {"BLOCK", pa_block, 1},
592 {"blockz", pa_block, 0},
593 {"BLOCKZ", pa_block, 0},
594 {"byte", pa_cons, 1},
595 {"BYTE", pa_cons, 1},
596 {"call", pa_call, 0},
597 {"CALL", pa_call, 0},
598 {"callinfo", pa_callinfo, 0},
599 {"CALLINFO", pa_callinfo, 0},
600 {"code", pa_code, 0},
601 {"CODE", pa_code, 0},
602 {"comm", pa_comm, 0},
603 {"COMM", pa_comm, 0},
604 {"copyright", pa_copyright, 0},
605 {"COPYRIGHT", pa_copyright, 0},
606 {"data", pa_data, 0},
607 {"DATA", pa_data, 0},
608 {"double", pa_float_cons, 'd'},
609 {"DOUBLE", pa_float_cons, 'd'},
610 {"end", pa_end, 0},
611 {"END", pa_end, 0},
612 {"enter", pa_enter, 0},
613 {"ENTER", pa_enter, 0},
614 {"entry", pa_entry, 0},
615 {"ENTRY", pa_entry, 0},
616 {"equ", pa_equ, 0},
617 {"EQU", pa_equ, 0},
618 {"exit", pa_exit, 0},
619 {"EXIT", pa_exit, 0},
620 {"export", pa_export, 0},
621 {"EXPORT", pa_export, 0},
622 {"fill", pa_fill, 0},
623 {"FILL", pa_fill, 0},
624 {"float", pa_float_cons, 'f'},
625 {"FLOAT", pa_float_cons, 'f'},
626 {"half", pa_cons, 2},
627 {"HALF", pa_cons, 2},
628 {"import", pa_import, 0},
629 {"IMPORT", pa_import, 0},
630 {"int", pa_cons, 4},
631 {"INT", pa_cons, 4},
632 {"label", pa_label, 0},
633 {"LABEL", pa_label, 0},
634 {"lcomm", pa_lcomm, 0},
635 {"LCOMM", pa_lcomm, 0},
636 {"leave", pa_leave, 0},
637 {"LEAVE", pa_leave, 0},
638 {"long", pa_cons, 4},
639 {"LONG", pa_cons, 4},
640 {"lsym", pa_lsym, 0},
641 {"LSYM", pa_lsym, 0},
642 {"octa", pa_cons, 16},
643 {"OCTA", pa_cons, 16},
644 {"org", pa_origin, 0},
645 {"ORG", pa_origin, 0},
646 {"origin", pa_origin, 0},
647 {"ORIGIN", pa_origin, 0},
648 {"param", pa_param, 0},
649 {"PARAM", pa_param, 0},
650 {"proc", pa_proc, 0},
651 {"PROC", pa_proc, 0},
652 {"procend", pa_procend, 0},
653 {"PROCEND", pa_procend, 0},
654 {"quad", pa_cons, 8},
655 {"QUAD", pa_cons, 8},
656 {"reg", pa_equ, 1},
657 {"REG", pa_equ, 1},
658 {"short", pa_cons, 2},
659 {"SHORT", pa_cons, 2},
660 {"single", pa_float_cons, 'f'},
661 {"SINGLE", pa_float_cons, 'f'},
662 {"space", pa_space, 0},
663 {"SPACE", pa_space, 0},
664 {"spnum", pa_spnum, 0},
665 {"SPNUM", pa_spnum, 0},
666 {"string", pa_stringer, 0},
667 {"STRING", pa_stringer, 0},
668 {"stringz", pa_stringer, 1},
669 {"STRINGZ", pa_stringer, 1},
670 {"subspa", pa_subspace, 0},
671 {"SUBSPA", pa_subspace, 0},
672 {"text", pa_text, 0},
673 {"TEXT", pa_text, 0},
674 {"version", pa_version, 0},
675 {"VERSION", pa_version, 0},
676 {"word", pa_cons, 4},
677 {"WORD", pa_cons, 4},
678 {NULL, 0, 0}
679 };
680
681 /* This array holds the chars that only start a comment at the beginning of
682 a line. If the line seems to have the form '# 123 filename'
683 .line and .file directives will appear in the pre-processed output.
684
685 Note that input_file.c hand checks for '#' at the beginning of the
686 first line of the input file. This is because the compiler outputs
687 #NO_APP at the beginning of its output.
688
689 Also note that '/*' will always start a comment. */
690 const char line_comment_chars[] = "#";
691
692 /* This array holds the characters which act as line separators. */
693 const char line_separator_chars[] = "!";
694
695 /* Chars that can be used to separate mant from exp in floating point nums. */
696 const char EXP_CHARS[] = "eE";
697
698 /* Chars that mean this number is a floating point constant.
699 As in 0f12.456 or 0d1.2345e12.
700
701 Be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
702 changed in read.c. Ideally it shouldn't hae to know abou it at
703 all, but nothing is ideal around here. */
704 const char FLT_CHARS[] = "rRsSfFdDxXpP";
705
706 static struct pa_it the_insn;
707
708 /* Points to the end of an expression just parsed by get_expressoin
709 and friends. FIXME. This shouldn't be handled with a file-global
710 variable. */
711 static char *expr_end;
712
713 /* Nonzero if a .callinfo appeared within the current procedure. */
714 static int callinfo_found;
715
716 /* Nonzero if the assembler is currently within a .entry/.exit pair. */
717 static int within_entry_exit;
718
719 /* Nonzero if the assembler is currently within a procedure definition. */
720 static int within_procedure;
721
722 /* Handle on strucutre which keep track of the last symbol
723 seen in each subspace. */
724 static label_symbol_struct *label_symbols_rootp = NULL;
725
726 /* Holds the last field selector. */
727 static int hppa_field_selector;
728
729 /* A dummy bfd symbol so that all relocations have symbols of some kind. */
730 static symbolS *dummy_symbol;
731
732 /* Nonzero if errors are to be printed. */
733 static int print_errors = 1;
734
735 /* List of registers that are pre-defined:
736
737 Each general register has one predefined name of the form
738 %r<REGNUM> which has the value <REGNUM>.
739
740 Space and control registers are handled in a similar manner,
741 but use %sr<REGNUM> and %cr<REGNUM> as their predefined names.
742
743 Likewise for the floating point registers, but of the form
744 %fr<REGNUM>. Floating point registers have additional predefined
745 names with 'L' and 'R' suffixes (e.g. %fr19L, %fr19R) which
746 again have the value <REGNUM>.
747
748 Many registers also have synonyms:
749
750 %r26 - %r23 have %arg0 - %arg3 as synonyms
751 %r28 - %r29 have %ret0 - %ret1 as synonyms
752 %r30 has %sp as a synonym
753 %r27 has %dp as a synonym
754 %r2 has %rp as a synonym
755
756 Almost every control register has a synonym; they are not listed
757 here for brevity.
758
759 The table is sorted. Suitable for searching by a binary search. */
760
761 static const struct pd_reg pre_defined_registers[] =
762 {
763 {"%arg0", 26},
764 {"%arg1", 25},
765 {"%arg2", 24},
766 {"%arg3", 23},
767 {"%cr0", 0},
768 {"%cr10", 10},
769 {"%cr11", 11},
770 {"%cr12", 12},
771 {"%cr13", 13},
772 {"%cr14", 14},
773 {"%cr15", 15},
774 {"%cr16", 16},
775 {"%cr17", 17},
776 {"%cr18", 18},
777 {"%cr19", 19},
778 {"%cr20", 20},
779 {"%cr21", 21},
780 {"%cr22", 22},
781 {"%cr23", 23},
782 {"%cr24", 24},
783 {"%cr25", 25},
784 {"%cr26", 26},
785 {"%cr27", 27},
786 {"%cr28", 28},
787 {"%cr29", 29},
788 {"%cr30", 30},
789 {"%cr31", 31},
790 {"%cr8", 8},
791 {"%cr9", 9},
792 {"%dp", 27},
793 {"%eiem", 15},
794 {"%eirr", 23},
795 {"%fr0", 0},
796 {"%fr0l", 0},
797 {"%fr0r", 0},
798 {"%fr1", 1},
799 {"%fr10", 10},
800 {"%fr10l", 10},
801 {"%fr10r", 10},
802 {"%fr11", 11},
803 {"%fr11l", 11},
804 {"%fr11r", 11},
805 {"%fr12", 12},
806 {"%fr12l", 12},
807 {"%fr12r", 12},
808 {"%fr13", 13},
809 {"%fr13l", 13},
810 {"%fr13r", 13},
811 {"%fr14", 14},
812 {"%fr14l", 14},
813 {"%fr14r", 14},
814 {"%fr15", 15},
815 {"%fr15l", 15},
816 {"%fr15r", 15},
817 {"%fr16", 16},
818 {"%fr16l", 16},
819 {"%fr16r", 16},
820 {"%fr17", 17},
821 {"%fr17l", 17},
822 {"%fr17r", 17},
823 {"%fr18", 18},
824 {"%fr18l", 18},
825 {"%fr18r", 18},
826 {"%fr19", 19},
827 {"%fr19l", 19},
828 {"%fr19r", 19},
829 {"%fr1l", 1},
830 {"%fr1r", 1},
831 {"%fr2", 2},
832 {"%fr20", 20},
833 {"%fr20l", 20},
834 {"%fr20r", 20},
835 {"%fr21", 21},
836 {"%fr21l", 21},
837 {"%fr21r", 21},
838 {"%fr22", 22},
839 {"%fr22l", 22},
840 {"%fr22r", 22},
841 {"%fr23", 23},
842 {"%fr23l", 23},
843 {"%fr23r", 23},
844 {"%fr24", 24},
845 {"%fr24l", 24},
846 {"%fr24r", 24},
847 {"%fr25", 25},
848 {"%fr25l", 25},
849 {"%fr25r", 25},
850 {"%fr26", 26},
851 {"%fr26l", 26},
852 {"%fr26r", 26},
853 {"%fr27", 27},
854 {"%fr27l", 27},
855 {"%fr27r", 27},
856 {"%fr28", 28},
857 {"%fr28l", 28},
858 {"%fr28r", 28},
859 {"%fr29", 29},
860 {"%fr29l", 29},
861 {"%fr29r", 29},
862 {"%fr2l", 2},
863 {"%fr2r", 2},
864 {"%fr3", 3},
865 {"%fr30", 30},
866 {"%fr30l", 30},
867 {"%fr30r", 30},
868 {"%fr31", 31},
869 {"%fr31l", 31},
870 {"%fr31r", 31},
871 {"%fr3l", 3},
872 {"%fr3r", 3},
873 {"%fr4", 4},
874 {"%fr4l", 4},
875 {"%fr4r", 4},
876 {"%fr5", 5},
877 {"%fr5l", 5},
878 {"%fr5r", 5},
879 {"%fr6", 6},
880 {"%fr6l", 6},
881 {"%fr6r", 6},
882 {"%fr7", 7},
883 {"%fr7l", 7},
884 {"%fr7r", 7},
885 {"%fr8", 8},
886 {"%fr8l", 8},
887 {"%fr8r", 8},
888 {"%fr9", 9},
889 {"%fr9l", 9},
890 {"%fr9r", 9},
891 {"%hta", 25},
892 {"%iir", 19},
893 {"%ior", 21},
894 {"%ipsw", 22},
895 {"%isr", 20},
896 {"%itmr", 16},
897 {"%iva", 14},
898 {"%pcoq", 18},
899 {"%pcsq", 17},
900 {"%pidr1", 8},
901 {"%pidr2", 9},
902 {"%pidr3", 12},
903 {"%pidr4", 13},
904 {"%ppda", 24},
905 {"%r0", 0},
906 {"%r1", 1},
907 {"%r10", 10},
908 {"%r11", 11},
909 {"%r12", 12},
910 {"%r13", 13},
911 {"%r14", 14},
912 {"%r15", 15},
913 {"%r16", 16},
914 {"%r17", 17},
915 {"%r18", 18},
916 {"%r19", 19},
917 {"%r2", 2},
918 {"%r20", 20},
919 {"%r21", 21},
920 {"%r22", 22},
921 {"%r23", 23},
922 {"%r24", 24},
923 {"%r25", 25},
924 {"%r26", 26},
925 {"%r27", 27},
926 {"%r28", 28},
927 {"%r29", 29},
928 {"%r3", 3},
929 {"%r30", 30},
930 {"%r31", 31},
931 {"%r4", 4},
932 {"%r5", 5},
933 {"%r6", 6},
934 {"%r7", 7},
935 {"%r8", 8},
936 {"%r9", 9},
937 {"%rctr", 0},
938 {"%ret0", 28},
939 {"%ret1", 29},
940 {"%rp", 2},
941 {"%sar", 11},
942 {"%sp", 30},
943 {"%sr0", 0},
944 {"%sr1", 1},
945 {"%sr2", 2},
946 {"%sr3", 3},
947 {"%sr4", 4},
948 {"%sr5", 5},
949 {"%sr6", 6},
950 {"%sr7", 7},
951 {"%tr0", 24},
952 {"%tr1", 25},
953 {"%tr2", 26},
954 {"%tr3", 27},
955 {"%tr4", 28},
956 {"%tr5", 29},
957 {"%tr6", 30},
958 {"%tr7", 31}
959 };
960
961 /* This table is sorted by order of the length of the string. This is
962 so we check for <> before we check for <. If we had a <> and checked
963 for < first, we would get a false match. */
964 static const struct fp_cond_map fp_cond_map[] =
965 {
966 {"false?", 0},
967 {"false", 1},
968 {"true?", 30},
969 {"true", 31},
970 {"!<=>", 3},
971 {"!?>=", 8},
972 {"!?<=", 16},
973 {"!<>", 7},
974 {"!>=", 11},
975 {"!?>", 12},
976 {"?<=", 14},
977 {"!<=", 19},
978 {"!?<", 20},
979 {"?>=", 22},
980 {"!?=", 24},
981 {"!=t", 27},
982 {"<=>", 29},
983 {"=t", 5},
984 {"?=", 6},
985 {"?<", 10},
986 {"<=", 13},
987 {"!>", 15},
988 {"?>", 18},
989 {">=", 21},
990 {"!<", 23},
991 {"<>", 25},
992 {"!=", 26},
993 {"!?", 28},
994 {"?", 2},
995 {"=", 4},
996 {"<", 9},
997 {">", 17}
998 };
999
1000 static const struct selector_entry selector_table[] =
1001 {
1002 {"f", e_fsel},
1003 {"l", e_lsel},
1004 {"ld", e_ldsel},
1005 {"lp", e_lpsel},
1006 {"lr", e_lrsel},
1007 {"ls", e_lssel},
1008 {"lt", e_ltsel},
1009 {"p", e_psel},
1010 {"r", e_rsel},
1011 {"rd", e_rdsel},
1012 {"rp", e_rpsel},
1013 {"rr", e_rrsel},
1014 {"rs", e_rssel},
1015 {"rt", e_rtsel},
1016 {"t", e_tsel},
1017 };
1018
1019 /* default space and subspace dictionaries */
1020
1021 #define GDB_SYMBOLS GDB_SYMBOLS_SUBSPACE_NAME
1022 #define GDB_STRINGS GDB_STRINGS_SUBSPACE_NAME
1023
1024 /* pre-defined subsegments (subspaces) for the HPPA. */
1025 #define SUBSEG_CODE 0
1026 #define SUBSEG_DATA 0
1027 #define SUBSEG_LIT 1
1028 #define SUBSEG_BSS 2
1029 #define SUBSEG_UNWIND 3
1030 #define SUBSEG_GDB_STRINGS 0
1031 #define SUBSEG_GDB_SYMBOLS 1
1032
1033 static struct default_subspace_dict pa_def_subspaces[] =
1034 {
1035 {"$CODE$", 1, 1, 1, 0, 0, 0, 24, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_CODE},
1036 {"$DATA$", 1, 1, 0, 0, 0, 0, 24, 0x1f, 1, 8, 1, 1, ".data", SUBSEG_DATA},
1037 {"$LIT$", 1, 1, 0, 0, 0, 0, 16, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_LIT},
1038 {"$BSS$", 1, 1, 0, 0, 0, 1, 80, 0x1f, 1, 8, 1, 1, ".bss", SUBSEG_BSS},
1039 #ifdef OBJ_ELF
1040 {"$UNWIND$", 1, 1, 0, 0, 0, 0, 64, 0x2c, 0, 4, 0, 0, ".hppa_unwind", SUBSEG_UNWIND},
1041 #endif
1042 {NULL, 0, 1, 0, 0, 0, 0, 255, 0x1f, 0, 4, 0, 0, 0}
1043 };
1044
1045 static struct default_space_dict pa_def_spaces[] =
1046 {
1047 {"$TEXT$", 0, 1, 1, 0, 8, ASEC_NULL, ".text"},
1048 {"$PRIVATE$", 1, 1, 1, 1, 16, ASEC_NULL, ".data"},
1049 {NULL, 0, 0, 0, 0, 0, ASEC_NULL, NULL}
1050 };
1051
1052 /* Misc local definitions used by the assembler. */
1053
1054 /* Return nonzero if the string pointed to by S potentially represents
1055 a right or left half of a FP register */
1056 #define IS_R_SELECT(S) (*(S) == 'R' || *(S) == 'r')
1057 #define IS_L_SELECT(S) (*(S) == 'L' || *(S) == 'l')
1058
1059 /* These macros are used to maintain spaces/subspaces. */
1060 #define SPACE_DEFINED(space_chain) (space_chain)->sd_defined
1061 #define SPACE_USER_DEFINED(space_chain) (space_chain)->sd_user_defined
1062 #define SPACE_SPNUM(space_chain) (space_chain)->sd_spnum
1063 #define SPACE_NAME(space_chain) (space_chain)->sd_name
1064
1065 #define SUBSPACE_DEFINED(ss_chain) (ss_chain)->ssd_defined
1066 #define SUBSPACE_NAME(ss_chain) (ss_chain)->ssd_name
1067
1068 /* Insert FIELD into OPCODE starting at bit START. Continue pa_ip
1069 main loop after insertion. */
1070
1071 #define INSERT_FIELD_AND_CONTINUE(OPCODE, FIELD, START) \
1072 { \
1073 ((OPCODE) |= (FIELD) << (START)); \
1074 continue; \
1075 }
1076
1077 /* Simple range checking for FIELD againt HIGH and LOW bounds.
1078 IGNORE is used to suppress the error message. */
1079
1080 #define CHECK_FIELD(FIELD, HIGH, LOW, IGNORE) \
1081 { \
1082 if ((FIELD) > (HIGH) || (FIELD) < (LOW)) \
1083 { \
1084 if (! IGNORE) \
1085 as_bad ("Field out of range [%d..%d] (%d).", (LOW), (HIGH), \
1086 (int) (FIELD));\
1087 break; \
1088 } \
1089 }
1090
1091 #define is_DP_relative(exp) \
1092 ((exp).X_op == O_subtract \
1093 && strcmp((exp).X_op_symbol->bsym->name, "$global$") == 0)
1094
1095 #define is_PC_relative(exp) \
1096 ((exp).X_op == O_subtract \
1097 && strcmp((exp).X_op_symbol->bsym->name, "$PIC_pcrel$0") == 0)
1098
1099 #define is_complex(exp) \
1100 ((exp).X_op != O_constant && (exp).X_op != O_symbol)
1101
1102 /* Actual functions to implement the PA specific code for the assembler. */
1103
1104 /* Returns a pointer to the label_symbol_struct for the current space.
1105 or NULL if no label_symbol_struct exists for the current space. */
1106
1107 static label_symbol_struct *
1108 pa_get_label ()
1109 {
1110 label_symbol_struct *label_chain;
1111 sd_chain_struct *space_chain = current_space;
1112
1113 for (label_chain = label_symbols_rootp;
1114 label_chain;
1115 label_chain = label_chain->lss_next)
1116 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1117 return label_chain;
1118
1119 return NULL;
1120 }
1121
1122 /* Defines a label for the current space. If one is already defined,
1123 this function will replace it with the new label. */
1124
1125 void
1126 pa_define_label (symbol)
1127 symbolS *symbol;
1128 {
1129 label_symbol_struct *label_chain = pa_get_label ();
1130 sd_chain_struct *space_chain = current_space;
1131
1132 if (label_chain)
1133 label_chain->lss_label = symbol;
1134 else
1135 {
1136 /* Create a new label entry and add it to the head of the chain. */
1137 label_chain
1138 = (label_symbol_struct *) xmalloc (sizeof (label_symbol_struct));
1139 label_chain->lss_label = symbol;
1140 label_chain->lss_space = space_chain;
1141 label_chain->lss_next = NULL;
1142
1143 if (label_symbols_rootp)
1144 label_chain->lss_next = label_symbols_rootp;
1145
1146 label_symbols_rootp = label_chain;
1147 }
1148 }
1149
1150 /* Removes a label definition for the current space.
1151 If there is no label_symbol_struct entry, then no action is taken. */
1152
1153 static void
1154 pa_undefine_label ()
1155 {
1156 label_symbol_struct *label_chain;
1157 label_symbol_struct *prev_label_chain = NULL;
1158 sd_chain_struct *space_chain = current_space;
1159
1160 for (label_chain = label_symbols_rootp;
1161 label_chain;
1162 label_chain = label_chain->lss_next)
1163 {
1164 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1165 {
1166 /* Remove the label from the chain and free its memory. */
1167 if (prev_label_chain)
1168 prev_label_chain->lss_next = label_chain->lss_next;
1169 else
1170 label_symbols_rootp = label_chain->lss_next;
1171
1172 free (label_chain);
1173 break;
1174 }
1175 prev_label_chain = label_chain;
1176 }
1177 }
1178
1179
1180 /* An HPPA-specific version of fix_new. This is required because the HPPA
1181 code needs to keep track of some extra stuff. Each call to fix_new_hppa
1182 results in the creation of an instance of an hppa_fix_struct. An
1183 hppa_fix_struct stores the extra information along with a pointer to the
1184 original fixS. This is attached to the original fixup via the
1185 tc_fix_data field. */
1186
1187 static void
1188 fix_new_hppa (frag, where, size, add_symbol, offset, exp, pcrel,
1189 r_type, r_field, r_format, arg_reloc, unwind_desc)
1190 fragS *frag;
1191 int where;
1192 short int size;
1193 symbolS *add_symbol;
1194 long offset;
1195 expressionS *exp;
1196 int pcrel;
1197 bfd_reloc_code_real_type r_type;
1198 enum hppa_reloc_field_selector_type r_field;
1199 int r_format;
1200 long arg_reloc;
1201 char *unwind_desc;
1202 {
1203 fixS *new_fix;
1204
1205 struct hppa_fix_struct *hppa_fix = (struct hppa_fix_struct *)
1206 obstack_alloc (&notes, sizeof (struct hppa_fix_struct));
1207
1208 if (exp != NULL)
1209 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
1210 else
1211 new_fix = fix_new (frag, where, size, add_symbol, offset, pcrel, r_type);
1212 new_fix->tc_fix_data = hppa_fix;
1213 hppa_fix->fx_r_type = r_type;
1214 hppa_fix->fx_r_field = r_field;
1215 hppa_fix->fx_r_format = r_format;
1216 hppa_fix->fx_arg_reloc = arg_reloc;
1217 hppa_fix->segment = now_seg;
1218 if (unwind_desc)
1219 {
1220 bcopy (unwind_desc, hppa_fix->fx_unwind, 8);
1221
1222 /* If necessary call BFD backend function to attach the
1223 unwind bits to the target dependent parts of a BFD symbol.
1224 Yuk. */
1225 #ifdef obj_attach_unwind_info
1226 obj_attach_unwind_info (add_symbol->bsym, unwind_desc);
1227 #endif
1228 }
1229
1230 /* foo-$global$ is used to access non-automatic storage. $global$
1231 is really just a marker and has served its purpose, so eliminate
1232 it now so as not to confuse write.c. */
1233 if (new_fix->fx_subsy
1234 && !strcmp (S_GET_NAME (new_fix->fx_subsy), "$global$"))
1235 new_fix->fx_subsy = NULL;
1236 }
1237
1238 /* Parse a .byte, .word, .long expression for the HPPA. Called by
1239 cons via the TC_PARSE_CONS_EXPRESSION macro. */
1240
1241 void
1242 parse_cons_expression_hppa (exp)
1243 expressionS *exp;
1244 {
1245 hppa_field_selector = pa_chk_field_selector (&input_line_pointer);
1246 expression (exp);
1247 }
1248
1249 /* This fix_new is called by cons via TC_CONS_FIX_NEW.
1250 hppa_field_selector is set by the parse_cons_expression_hppa. */
1251
1252 void
1253 cons_fix_new_hppa (frag, where, size, exp)
1254 fragS *frag;
1255 int where;
1256 int size;
1257 expressionS *exp;
1258 {
1259 unsigned int rel_type;
1260
1261 if (is_DP_relative (*exp))
1262 rel_type = R_HPPA_GOTOFF;
1263 else if (is_complex (*exp))
1264 rel_type = R_HPPA_COMPLEX;
1265 else
1266 rel_type = R_HPPA;
1267
1268 if (hppa_field_selector != e_psel && hppa_field_selector != e_fsel)
1269 as_warn ("Invalid field selector. Assuming F%%.");
1270
1271 fix_new_hppa (frag, where, size,
1272 (symbolS *) NULL, (offsetT) 0, exp, 0, rel_type,
1273 hppa_field_selector, 32, 0, (char *) 0);
1274
1275 /* Reset field selector to its default state. */
1276 hppa_field_selector = 0;
1277 }
1278
1279 /* This function is called once, at assembler startup time. It should
1280 set up all the tables, etc. that the MD part of the assembler will need. */
1281
1282 void
1283 md_begin ()
1284 {
1285 const char *retval = NULL;
1286 int lose = 0;
1287 unsigned int i = 0;
1288
1289 last_call_info = NULL;
1290 call_info_root = NULL;
1291
1292 /* Folding of text and data segments fails miserably on the PA.
1293 Warn user and disable "-R" option. */
1294 if (flagseen['R'])
1295 {
1296 as_warn ("-R option not supported on this target.");
1297 flag_readonly_data_in_text = 0;
1298 flagseen['R'] = 0;
1299 }
1300
1301 pa_spaces_begin ();
1302
1303 op_hash = hash_new ();
1304
1305 while (i < NUMOPCODES)
1306 {
1307 const char *name = pa_opcodes[i].name;
1308 retval = hash_insert (op_hash, name, (struct pa_opcode *) &pa_opcodes[i]);
1309 if (retval != NULL && *retval != '\0')
1310 {
1311 as_fatal ("Internal error: can't hash `%s': %s\n", name, retval);
1312 lose = 1;
1313 }
1314 do
1315 {
1316 if ((pa_opcodes[i].match & pa_opcodes[i].mask)
1317 != pa_opcodes[i].match)
1318 {
1319 fprintf (stderr, "internal error: losing opcode: `%s' \"%s\"\n",
1320 pa_opcodes[i].name, pa_opcodes[i].args);
1321 lose = 1;
1322 }
1323 ++i;
1324 }
1325 while (i < NUMOPCODES && !strcmp (pa_opcodes[i].name, name));
1326 }
1327
1328 if (lose)
1329 as_fatal ("Broken assembler. No assembly attempted.");
1330
1331 /* SOM will change text_section. To make sure we never put
1332 anything into the old one switch to the new one now. */
1333 subseg_set (text_section, 0);
1334
1335 dummy_symbol = symbol_find_or_make ("L$dummy");
1336 S_SET_SEGMENT (dummy_symbol, text_section);
1337 }
1338
1339 /* Assemble a single instruction storing it into a frag. */
1340 void
1341 md_assemble (str)
1342 char *str;
1343 {
1344 char *to;
1345
1346 /* The had better be something to assemble. */
1347 assert (str);
1348
1349 /* If we are within a procedure definition, make sure we've
1350 defined a label for the procedure; handle case where the
1351 label was defined after the .PROC directive.
1352
1353 Note there's not need to diddle with the segment or fragment
1354 for the label symbol in this case. We have already switched
1355 into the new $CODE$ subspace at this point. */
1356 if (within_procedure && last_call_info->start_symbol == NULL)
1357 {
1358 label_symbol_struct *label_symbol = pa_get_label ();
1359
1360 if (label_symbol)
1361 {
1362 if (label_symbol->lss_label)
1363 {
1364 last_call_info->start_symbol = label_symbol->lss_label;
1365 label_symbol->lss_label->bsym->flags |= BSF_FUNCTION;
1366 #ifdef OBJ_SOM
1367 /* Also handle allocation of a fixup to hold the unwind
1368 information when the label appears after the proc/procend. */
1369 if (within_entry_exit)
1370 {
1371 char *where = frag_more (0);
1372
1373 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
1374 last_call_info->start_symbol, (offsetT) 0, NULL,
1375 0, R_HPPA_ENTRY, e_fsel, 0, 0,
1376 (char *) &last_call_info->ci_unwind.descriptor);
1377 }
1378 #endif
1379 }
1380 else
1381 as_bad ("Missing function name for .PROC (corrupted label chain)");
1382 }
1383 else
1384 as_bad ("Missing function name for .PROC");
1385 }
1386
1387 /* Assemble the instruction. Results are saved into "the_insn". */
1388 pa_ip (str);
1389
1390 /* Get somewhere to put the assembled instrution. */
1391 to = frag_more (4);
1392
1393 /* Output the opcode. */
1394 md_number_to_chars (to, the_insn.opcode, 4);
1395
1396 /* If necessary output more stuff. */
1397 if (the_insn.reloc != R_HPPA_NONE)
1398 fix_new_hppa (frag_now, (to - frag_now->fr_literal), 4, NULL,
1399 (offsetT) 0, &the_insn.exp, the_insn.pcrel,
1400 the_insn.reloc, the_insn.field_selector,
1401 the_insn.format, the_insn.arg_reloc, NULL);
1402 }
1403
1404 /* Do the real work for assembling a single instruction. Store results
1405 into the global "the_insn" variable. */
1406
1407 static void
1408 pa_ip (str)
1409 char *str;
1410 {
1411 char *error_message = "";
1412 char *s, c, *argstart, *name, *save_s;
1413 const char *args;
1414 int match = FALSE;
1415 int comma = 0;
1416 int cmpltr, nullif, flag, cond, num;
1417 unsigned long opcode;
1418 struct pa_opcode *insn;
1419
1420 /* Skip to something interesting. */
1421 for (s = str; isupper (*s) || islower (*s) || (*s >= '0' && *s <= '3'); ++s)
1422 ;
1423
1424 switch (*s)
1425 {
1426
1427 case '\0':
1428 break;
1429
1430 case ',':
1431 comma = 1;
1432
1433 /*FALLTHROUGH */
1434
1435 case ' ':
1436 *s++ = '\0';
1437 break;
1438
1439 default:
1440 as_bad ("Unknown opcode: `%s'", str);
1441 exit (1);
1442 }
1443
1444 save_s = str;
1445
1446 /* Convert everything into lower case. */
1447 while (*save_s)
1448 {
1449 if (isupper (*save_s))
1450 *save_s = tolower (*save_s);
1451 save_s++;
1452 }
1453
1454 /* Look up the opcode in the has table. */
1455 if ((insn = (struct pa_opcode *) hash_find (op_hash, str)) == NULL)
1456 {
1457 as_bad ("Unknown opcode: `%s'", str);
1458 return;
1459 }
1460
1461 if (comma)
1462 {
1463 *--s = ',';
1464 }
1465
1466 /* Mark the location where arguments for the instruction start, then
1467 start processing them. */
1468 argstart = s;
1469 for (;;)
1470 {
1471 /* Do some initialization. */
1472 opcode = insn->match;
1473 bzero (&the_insn, sizeof (the_insn));
1474
1475 the_insn.reloc = R_HPPA_NONE;
1476
1477 /* Build the opcode, checking as we go to make
1478 sure that the operands match. */
1479 for (args = insn->args;; ++args)
1480 {
1481 switch (*args)
1482 {
1483
1484 /* End of arguments. */
1485 case '\0':
1486 if (*s == '\0')
1487 match = TRUE;
1488 break;
1489
1490 case '+':
1491 if (*s == '+')
1492 {
1493 ++s;
1494 continue;
1495 }
1496 if (*s == '-')
1497 continue;
1498 break;
1499
1500 /* These must match exactly. */
1501 case '(':
1502 case ')':
1503 case ',':
1504 case ' ':
1505 if (*s++ == *args)
1506 continue;
1507 break;
1508
1509 /* Handle a 5 bit register or control register field at 10. */
1510 case 'b':
1511 case '^':
1512 num = pa_parse_number (&s, 0);
1513 CHECK_FIELD (num, 31, 0, 0);
1514 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
1515
1516 /* Handle a 5 bit register field at 15. */
1517 case 'x':
1518 num = pa_parse_number (&s, 0);
1519 CHECK_FIELD (num, 31, 0, 0);
1520 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1521
1522 /* Handle a 5 bit register field at 31. */
1523 case 'y':
1524 case 't':
1525 num = pa_parse_number (&s, 0);
1526 CHECK_FIELD (num, 31, 0, 0);
1527 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1528
1529 /* Handle a 5 bit field length at 31. */
1530 case 'T':
1531 num = pa_get_absolute_expression (&the_insn, &s);
1532 s = expr_end;
1533 CHECK_FIELD (num, 32, 1, 0);
1534 INSERT_FIELD_AND_CONTINUE (opcode, 32 - num, 0);
1535
1536 /* Handle a 5 bit immediate at 15. */
1537 case '5':
1538 num = pa_get_absolute_expression (&the_insn, &s);
1539 s = expr_end;
1540 CHECK_FIELD (num, 15, -16, 0);
1541 low_sign_unext (num, 5, &num);
1542 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1543
1544 /* Handle a 5 bit immediate at 31. */
1545 case 'V':
1546 num = pa_get_absolute_expression (&the_insn, &s);
1547 s = expr_end;
1548 CHECK_FIELD (num, 15, -16, 0)
1549 low_sign_unext (num, 5, &num);
1550 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1551
1552 /* Handle an unsigned 5 bit immediate at 31. */
1553 case 'r':
1554 num = pa_get_absolute_expression (&the_insn, &s);
1555 s = expr_end;
1556 CHECK_FIELD (num, 31, 0, 0);
1557 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1558
1559 /* Handle an unsigned 5 bit immediate at 15. */
1560 case 'R':
1561 num = pa_get_absolute_expression (&the_insn, &s);
1562 s = expr_end;
1563 CHECK_FIELD (num, 31, 0, 0);
1564 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1565
1566 /* Handle a 2 bit space identifier at 17. */
1567 case 's':
1568 num = pa_parse_number (&s, 0);
1569 CHECK_FIELD (num, 3, 0, 1);
1570 INSERT_FIELD_AND_CONTINUE (opcode, num, 14);
1571
1572 /* Handle a 3 bit space identifier at 18. */
1573 case 'S':
1574 num = pa_parse_number (&s, 0);
1575 CHECK_FIELD (num, 7, 0, 1);
1576 dis_assemble_3 (num, &num);
1577 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
1578
1579 /* Handle a completer for an indexing load or store. */
1580 case 'c':
1581 {
1582 int uu = 0;
1583 int m = 0;
1584 int i = 0;
1585 while (*s == ',' && i < 2)
1586 {
1587 s++;
1588 if (strncasecmp (s, "sm", 2) == 0)
1589 {
1590 uu = 1;
1591 m = 1;
1592 s++;
1593 i++;
1594 }
1595 else if (strncasecmp (s, "m", 1) == 0)
1596 m = 1;
1597 else if (strncasecmp (s, "s", 1) == 0)
1598 uu = 1;
1599 else
1600 as_bad ("Invalid Indexed Load Completer.");
1601 s++;
1602 i++;
1603 }
1604 if (i > 2)
1605 as_bad ("Invalid Indexed Load Completer Syntax.");
1606 opcode |= m << 5;
1607 INSERT_FIELD_AND_CONTINUE (opcode, uu, 13);
1608 }
1609
1610 /* Handle a short load/store completer. */
1611 case 'C':
1612 {
1613 int a = 0;
1614 int m = 0;
1615 if (*s == ',')
1616 {
1617 s++;
1618 if (strncasecmp (s, "ma", 2) == 0)
1619 {
1620 a = 0;
1621 m = 1;
1622 }
1623 else if (strncasecmp (s, "mb", 2) == 0)
1624 {
1625 a = 1;
1626 m = 1;
1627 }
1628 else
1629 as_bad ("Invalid Short Load/Store Completer.");
1630 s += 2;
1631 }
1632 opcode |= m << 5;
1633 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1634 }
1635
1636 /* Handle a stbys completer. */
1637 case 'Y':
1638 {
1639 int a = 0;
1640 int m = 0;
1641 int i = 0;
1642 while (*s == ',' && i < 2)
1643 {
1644 s++;
1645 if (strncasecmp (s, "m", 1) == 0)
1646 m = 1;
1647 else if (strncasecmp (s, "b", 1) == 0)
1648 a = 0;
1649 else if (strncasecmp (s, "e", 1) == 0)
1650 a = 1;
1651 else
1652 as_bad ("Invalid Store Bytes Short Completer");
1653 s++;
1654 i++;
1655 }
1656 if (i > 2)
1657 as_bad ("Invalid Store Bytes Short Completer");
1658 opcode |= m << 5;
1659 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1660 }
1661
1662 /* Handle a non-negated compare/stubtract condition. */
1663 case '<':
1664 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
1665 if (cmpltr < 0)
1666 {
1667 as_bad ("Invalid Compare/Subtract Condition: %c", *s);
1668 cmpltr = 0;
1669 }
1670 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1671
1672 /* Handle a negated or non-negated compare/subtract condition. */
1673 case '?':
1674 save_s = s;
1675 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
1676 if (cmpltr < 0)
1677 {
1678 s = save_s;
1679 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 1);
1680 if (cmpltr < 0)
1681 {
1682 as_bad ("Invalid Compare/Subtract Condition.");
1683 cmpltr = 0;
1684 }
1685 else
1686 {
1687 /* Negated condition requires an opcode change. */
1688 opcode |= 1 << 27;
1689 }
1690 }
1691 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1692
1693 /* Handle a negated or non-negated add condition. */
1694 case '!':
1695 save_s = s;
1696 cmpltr = pa_parse_nonneg_add_cmpltr (&s, 1);
1697 if (cmpltr < 0)
1698 {
1699 s = save_s;
1700 cmpltr = pa_parse_neg_add_cmpltr (&s, 1);
1701 if (cmpltr < 0)
1702 {
1703 as_bad ("Invalid Compare/Subtract Condition");
1704 cmpltr = 0;
1705 }
1706 else
1707 {
1708 /* Negated condition requires an opcode change. */
1709 opcode |= 1 << 27;
1710 }
1711 }
1712 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1713
1714 /* Handle a compare/subtract condition. */
1715 case 'a':
1716 cmpltr = 0;
1717 flag = 0;
1718 save_s = s;
1719 if (*s == ',')
1720 {
1721 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 0);
1722 if (cmpltr < 0)
1723 {
1724 flag = 1;
1725 s = save_s;
1726 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 0);
1727 if (cmpltr < 0)
1728 {
1729 as_bad ("Invalid Compare/Subtract Condition");
1730 }
1731 }
1732 }
1733 opcode |= cmpltr << 13;
1734 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1735
1736 /* Handle a non-negated add condition. */
1737 case 'd':
1738 cmpltr = 0;
1739 nullif = 0;
1740 flag = 0;
1741 if (*s == ',')
1742 {
1743 s++;
1744 name = s;
1745 while (*s != ',' && *s != ' ' && *s != '\t')
1746 s += 1;
1747 c = *s;
1748 *s = 0x00;
1749 if (strcmp (name, "=") == 0)
1750 cmpltr = 1;
1751 else if (strcmp (name, "<") == 0)
1752 cmpltr = 2;
1753 else if (strcmp (name, "<=") == 0)
1754 cmpltr = 3;
1755 else if (strcasecmp (name, "nuv") == 0)
1756 cmpltr = 4;
1757 else if (strcasecmp (name, "znv") == 0)
1758 cmpltr = 5;
1759 else if (strcasecmp (name, "sv") == 0)
1760 cmpltr = 6;
1761 else if (strcasecmp (name, "od") == 0)
1762 cmpltr = 7;
1763 else if (strcasecmp (name, "n") == 0)
1764 nullif = 1;
1765 else if (strcasecmp (name, "tr") == 0)
1766 {
1767 cmpltr = 0;
1768 flag = 1;
1769 }
1770 else if (strcmp (name, "<>") == 0)
1771 {
1772 cmpltr = 1;
1773 flag = 1;
1774 }
1775 else if (strcmp (name, ">=") == 0)
1776 {
1777 cmpltr = 2;
1778 flag = 1;
1779 }
1780 else if (strcmp (name, ">") == 0)
1781 {
1782 cmpltr = 3;
1783 flag = 1;
1784 }
1785 else if (strcasecmp (name, "uv") == 0)
1786 {
1787 cmpltr = 4;
1788 flag = 1;
1789 }
1790 else if (strcasecmp (name, "vnz") == 0)
1791 {
1792 cmpltr = 5;
1793 flag = 1;
1794 }
1795 else if (strcasecmp (name, "nsv") == 0)
1796 {
1797 cmpltr = 6;
1798 flag = 1;
1799 }
1800 else if (strcasecmp (name, "ev") == 0)
1801 {
1802 cmpltr = 7;
1803 flag = 1;
1804 }
1805 else
1806 as_bad ("Invalid Add Condition: %s", name);
1807 *s = c;
1808 }
1809 nullif = pa_parse_nullif (&s);
1810 opcode |= nullif << 1;
1811 opcode |= cmpltr << 13;
1812 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1813
1814 /* HANDLE a logical instruction condition. */
1815 case '&':
1816 cmpltr = 0;
1817 flag = 0;
1818 if (*s == ',')
1819 {
1820 s++;
1821 name = s;
1822 while (*s != ',' && *s != ' ' && *s != '\t')
1823 s += 1;
1824 c = *s;
1825 *s = 0x00;
1826 if (strcmp (name, "=") == 0)
1827 cmpltr = 1;
1828 else if (strcmp (name, "<") == 0)
1829 cmpltr = 2;
1830 else if (strcmp (name, "<=") == 0)
1831 cmpltr = 3;
1832 else if (strcasecmp (name, "od") == 0)
1833 cmpltr = 7;
1834 else if (strcasecmp (name, "tr") == 0)
1835 {
1836 cmpltr = 0;
1837 flag = 1;
1838 }
1839 else if (strcmp (name, "<>") == 0)
1840 {
1841 cmpltr = 1;
1842 flag = 1;
1843 }
1844 else if (strcmp (name, ">=") == 0)
1845 {
1846 cmpltr = 2;
1847 flag = 1;
1848 }
1849 else if (strcmp (name, ">") == 0)
1850 {
1851 cmpltr = 3;
1852 flag = 1;
1853 }
1854 else if (strcasecmp (name, "ev") == 0)
1855 {
1856 cmpltr = 7;
1857 flag = 1;
1858 }
1859 else
1860 as_bad ("Invalid Logical Instruction Condition.");
1861 *s = c;
1862 }
1863 opcode |= cmpltr << 13;
1864 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1865
1866 /* Handle a unit instruction condition. */
1867 case 'U':
1868 cmpltr = 0;
1869 flag = 0;
1870 if (*s == ',')
1871 {
1872 s++;
1873 if (strncasecmp (s, "sbz", 3) == 0)
1874 {
1875 cmpltr = 2;
1876 s += 3;
1877 }
1878 else if (strncasecmp (s, "shz", 3) == 0)
1879 {
1880 cmpltr = 3;
1881 s += 3;
1882 }
1883 else if (strncasecmp (s, "sdc", 3) == 0)
1884 {
1885 cmpltr = 4;
1886 s += 3;
1887 }
1888 else if (strncasecmp (s, "sbc", 3) == 0)
1889 {
1890 cmpltr = 6;
1891 s += 3;
1892 }
1893 else if (strncasecmp (s, "shc", 3) == 0)
1894 {
1895 cmpltr = 7;
1896 s += 3;
1897 }
1898 else if (strncasecmp (s, "tr", 2) == 0)
1899 {
1900 cmpltr = 0;
1901 flag = 1;
1902 s += 2;
1903 }
1904 else if (strncasecmp (s, "nbz", 3) == 0)
1905 {
1906 cmpltr = 2;
1907 flag = 1;
1908 s += 3;
1909 }
1910 else if (strncasecmp (s, "nhz", 3) == 0)
1911 {
1912 cmpltr = 3;
1913 flag = 1;
1914 s += 3;
1915 }
1916 else if (strncasecmp (s, "ndc", 3) == 0)
1917 {
1918 cmpltr = 4;
1919 flag = 1;
1920 s += 3;
1921 }
1922 else if (strncasecmp (s, "nbc", 3) == 0)
1923 {
1924 cmpltr = 6;
1925 flag = 1;
1926 s += 3;
1927 }
1928 else if (strncasecmp (s, "nhc", 3) == 0)
1929 {
1930 cmpltr = 7;
1931 flag = 1;
1932 s += 3;
1933 }
1934 else
1935 as_bad ("Invalid Logical Instruction Condition.");
1936 }
1937 opcode |= cmpltr << 13;
1938 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1939
1940 /* Handle a shift/extract/deposit condition. */
1941 case '|':
1942 case '>':
1943 cmpltr = 0;
1944 if (*s == ',')
1945 {
1946 save_s = s++;
1947 name = s;
1948 while (*s != ',' && *s != ' ' && *s != '\t')
1949 s += 1;
1950 c = *s;
1951 *s = 0x00;
1952 if (strcmp (name, "=") == 0)
1953 cmpltr = 1;
1954 else if (strcmp (name, "<") == 0)
1955 cmpltr = 2;
1956 else if (strcasecmp (name, "od") == 0)
1957 cmpltr = 3;
1958 else if (strcasecmp (name, "tr") == 0)
1959 cmpltr = 4;
1960 else if (strcmp (name, "<>") == 0)
1961 cmpltr = 5;
1962 else if (strcmp (name, ">=") == 0)
1963 cmpltr = 6;
1964 else if (strcasecmp (name, "ev") == 0)
1965 cmpltr = 7;
1966 /* Handle movb,n. Put things back the way they were.
1967 This includes moving s back to where it started. */
1968 else if (strcasecmp (name, "n") == 0 && *args == '|')
1969 {
1970 *s = c;
1971 s = save_s;
1972 continue;
1973 }
1974 else
1975 as_bad ("Invalid Shift/Extract/Deposit Condition.");
1976 *s = c;
1977 }
1978 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1979
1980 /* Handle bvb and bb conditions. */
1981 case '~':
1982 cmpltr = 0;
1983 if (*s == ',')
1984 {
1985 s++;
1986 if (strncmp (s, "<", 1) == 0)
1987 {
1988 cmpltr = 2;
1989 s++;
1990 }
1991 else if (strncmp (s, ">=", 2) == 0)
1992 {
1993 cmpltr = 6;
1994 s += 2;
1995 }
1996 else
1997 as_bad ("Invalid Bit Branch Condition: %c", *s);
1998 }
1999 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
2000
2001 /* Handle a system control completer. */
2002 case 'Z':
2003 if (*s == ',' && (*(s + 1) == 'm' || *(s + 1) == 'M'))
2004 {
2005 flag = 1;
2006 s += 2;
2007 }
2008 else
2009 flag = 0;
2010
2011 INSERT_FIELD_AND_CONTINUE (opcode, flag, 5);
2012
2013 /* Handle a nullification completer for branch instructions. */
2014 case 'n':
2015 nullif = pa_parse_nullif (&s);
2016 INSERT_FIELD_AND_CONTINUE (opcode, nullif, 1);
2017
2018 /* Handle a nullification completer for copr and spop insns. */
2019 case 'N':
2020 nullif = pa_parse_nullif (&s);
2021 INSERT_FIELD_AND_CONTINUE (opcode, nullif, 5);
2022
2023 /* Handle a 11 bit immediate at 31. */
2024 case 'i':
2025 the_insn.field_selector = pa_chk_field_selector (&s);
2026 get_expression (s);
2027 s = expr_end;
2028 if (the_insn.exp.X_op == O_constant)
2029 {
2030 num = evaluate_absolute (&the_insn);
2031 CHECK_FIELD (num, 1023, -1024, 0);
2032 low_sign_unext (num, 11, &num);
2033 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2034 }
2035 else
2036 {
2037 if (is_DP_relative (the_insn.exp))
2038 the_insn.reloc = R_HPPA_GOTOFF;
2039 else if (is_PC_relative (the_insn.exp))
2040 the_insn.reloc = R_HPPA_PCREL_CALL;
2041 else if (is_complex (the_insn.exp))
2042 the_insn.reloc = R_HPPA_COMPLEX;
2043 else
2044 the_insn.reloc = R_HPPA;
2045 the_insn.format = 11;
2046 continue;
2047 }
2048
2049 /* Handle a 14 bit immediate at 31. */
2050 case 'j':
2051 the_insn.field_selector = pa_chk_field_selector (&s);
2052 get_expression (s);
2053 s = expr_end;
2054 if (the_insn.exp.X_op == O_constant)
2055 {
2056 num = evaluate_absolute (&the_insn);
2057 CHECK_FIELD (num, 8191, -8192, 0);
2058 low_sign_unext (num, 14, &num);
2059 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2060 }
2061 else
2062 {
2063 if (is_DP_relative (the_insn.exp))
2064 the_insn.reloc = R_HPPA_GOTOFF;
2065 else if (is_PC_relative (the_insn.exp))
2066 the_insn.reloc = R_HPPA_PCREL_CALL;
2067 else if (is_complex (the_insn.exp))
2068 the_insn.reloc = R_HPPA_COMPLEX;
2069 else
2070 the_insn.reloc = R_HPPA;
2071 the_insn.format = 14;
2072 continue;
2073 }
2074
2075 /* Handle a 21 bit immediate at 31. */
2076 case 'k':
2077 the_insn.field_selector = pa_chk_field_selector (&s);
2078 get_expression (s);
2079 s = expr_end;
2080 if (the_insn.exp.X_op == O_constant)
2081 {
2082 num = evaluate_absolute (&the_insn);
2083 CHECK_FIELD (num >> 11, 1048575, -1048576, 0);
2084 dis_assemble_21 (num, &num);
2085 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2086 }
2087 else
2088 {
2089 if (is_DP_relative (the_insn.exp))
2090 the_insn.reloc = R_HPPA_GOTOFF;
2091 else if (is_PC_relative (the_insn.exp))
2092 the_insn.reloc = R_HPPA_PCREL_CALL;
2093 else if (is_complex (the_insn.exp))
2094 the_insn.reloc = R_HPPA_COMPLEX;
2095 else
2096 the_insn.reloc = R_HPPA;
2097 the_insn.format = 21;
2098 continue;
2099 }
2100
2101 /* Handle a 12 bit branch displacement. */
2102 case 'w':
2103 the_insn.field_selector = pa_chk_field_selector (&s);
2104 get_expression (s);
2105 s = expr_end;
2106 the_insn.pcrel = 1;
2107 if (!strcmp (S_GET_NAME (the_insn.exp.X_add_symbol), "L$0\001"))
2108 {
2109 unsigned int w1, w, result;
2110
2111 num = evaluate_absolute (&the_insn);
2112 if (num % 4)
2113 {
2114 as_bad ("Branch to unaligned address");
2115 break;
2116 }
2117 CHECK_FIELD (num, 8191, -8192, 0);
2118 sign_unext ((num - 8) >> 2, 12, &result);
2119 dis_assemble_12 (result, &w1, &w);
2120 INSERT_FIELD_AND_CONTINUE (opcode, ((w1 << 2) | w), 0);
2121 }
2122 else
2123 {
2124 if (is_complex (the_insn.exp))
2125 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2126 else
2127 the_insn.reloc = R_HPPA_PCREL_CALL;
2128 the_insn.format = 12;
2129 the_insn.arg_reloc = last_call_desc.arg_reloc;
2130 bzero (&last_call_desc, sizeof (struct call_desc));
2131 s = expr_end;
2132 continue;
2133 }
2134
2135 /* Handle a 17 bit branch displacement. */
2136 case 'W':
2137 the_insn.field_selector = pa_chk_field_selector (&s);
2138 get_expression (s);
2139 s = expr_end;
2140 the_insn.pcrel = 1;
2141 if (!the_insn.exp.X_add_symbol
2142 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2143 "L$0\001"))
2144 {
2145 unsigned int w2, w1, w, result;
2146
2147 num = evaluate_absolute (&the_insn);
2148 if (num % 4)
2149 {
2150 as_bad ("Branch to unaligned address");
2151 break;
2152 }
2153 CHECK_FIELD (num, 262143, -262144, 0);
2154
2155 if (the_insn.exp.X_add_symbol)
2156 num -= 8;
2157
2158 sign_unext (num >> 2, 17, &result);
2159 dis_assemble_17 (result, &w1, &w2, &w);
2160 INSERT_FIELD_AND_CONTINUE (opcode,
2161 ((w2 << 2) | (w1 << 16) | w), 0);
2162 }
2163 else
2164 {
2165 if (is_complex (the_insn.exp))
2166 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2167 else
2168 the_insn.reloc = R_HPPA_PCREL_CALL;
2169 the_insn.format = 17;
2170 the_insn.arg_reloc = last_call_desc.arg_reloc;
2171 bzero (&last_call_desc, sizeof (struct call_desc));
2172 continue;
2173 }
2174
2175 /* Handle an absolute 17 bit branch target. */
2176 case 'z':
2177 the_insn.field_selector = pa_chk_field_selector (&s);
2178 get_expression (s);
2179 s = expr_end;
2180 the_insn.pcrel = 0;
2181 if (!the_insn.exp.X_add_symbol
2182 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2183 "L$0\001"))
2184 {
2185 unsigned int w2, w1, w, result;
2186
2187 num = evaluate_absolute (&the_insn);
2188 if (num % 4)
2189 {
2190 as_bad ("Branch to unaligned address");
2191 break;
2192 }
2193 CHECK_FIELD (num, 262143, -262144, 0);
2194
2195 if (the_insn.exp.X_add_symbol)
2196 num -= 8;
2197
2198 sign_unext (num >> 2, 17, &result);
2199 dis_assemble_17 (result, &w1, &w2, &w);
2200 INSERT_FIELD_AND_CONTINUE (opcode,
2201 ((w2 << 2) | (w1 << 16) | w), 0);
2202 }
2203 else
2204 {
2205 if (is_complex (the_insn.exp))
2206 the_insn.reloc = R_HPPA_COMPLEX_ABS_CALL;
2207 else
2208 the_insn.reloc = R_HPPA_ABS_CALL;
2209 the_insn.format = 17;
2210 continue;
2211 }
2212
2213 /* Handle a 5 bit shift count at 26. */
2214 case 'p':
2215 num = pa_get_absolute_expression (&the_insn, &s);
2216 s = expr_end;
2217 CHECK_FIELD (num, 31, 0, 0);
2218 INSERT_FIELD_AND_CONTINUE (opcode, 31 - num, 5);
2219
2220 /* Handle a 5 bit bit position at 26. */
2221 case 'P':
2222 num = pa_get_absolute_expression (&the_insn, &s);
2223 s = expr_end;
2224 CHECK_FIELD (num, 31, 0, 0);
2225 INSERT_FIELD_AND_CONTINUE (opcode, num, 5);
2226
2227 /* Handle a 5 bit immediate at 10. */
2228 case 'Q':
2229 num = pa_get_absolute_expression (&the_insn, &s);
2230 s = expr_end;
2231 CHECK_FIELD (num, 31, 0, 0);
2232 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
2233
2234 /* Handle a 13 bit immediate at 18. */
2235 case 'A':
2236 num = pa_get_absolute_expression (&the_insn, &s);
2237 s = expr_end;
2238 CHECK_FIELD (num, 4095, -4096, 0);
2239 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
2240
2241 /* Handle a 26 bit immediate at 31. */
2242 case 'D':
2243 num = pa_get_absolute_expression (&the_insn, &s);
2244 s = expr_end;
2245 CHECK_FIELD (num, 671108864, 0, 0);
2246 INSERT_FIELD_AND_CONTINUE (opcode, num, 1);
2247
2248 /* Handle a 3 bit SFU identifier at 25. */
2249 case 'f':
2250 if (*s++ != ',')
2251 as_bad ("Invalid SFU identifier");
2252 num = pa_get_absolute_expression (&the_insn, &s);
2253 s = expr_end;
2254 CHECK_FIELD (num, 7, 0, 0);
2255 INSERT_FIELD_AND_CONTINUE (opcode, num, 6);
2256
2257 /* Handle a 20 bit SOP field for spop0. */
2258 case 'O':
2259 num = pa_get_absolute_expression (&the_insn, &s);
2260 s = expr_end;
2261 CHECK_FIELD (num, 1048575, 0, 0);
2262 num = (num & 0x1f) | ((num & 0x000fffe0) << 6);
2263 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2264
2265 /* Handle a 15bit SOP field for spop1. */
2266 case 'o':
2267 num = pa_get_absolute_expression (&the_insn, &s);
2268 s = expr_end;
2269 CHECK_FIELD (num, 32767, 0, 0);
2270 INSERT_FIELD_AND_CONTINUE (opcode, num, 11);
2271
2272 /* Handle a 10bit SOP field for spop3. */
2273 case '0':
2274 num = pa_get_absolute_expression (&the_insn, &s);
2275 s = expr_end;
2276 CHECK_FIELD (num, 1023, 0, 0);
2277 num = (num & 0x1f) | ((num & 0x000003e0) << 6);
2278 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2279
2280 /* Handle a 15 bit SOP field for spop2. */
2281 case '1':
2282 num = pa_get_absolute_expression (&the_insn, &s);
2283 s = expr_end;
2284 CHECK_FIELD (num, 32767, 0, 0);
2285 num = (num & 0x1f) | ((num & 0x00007fe0) << 6);
2286 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2287
2288 /* Handle a 3-bit co-processor ID field. */
2289 case 'u':
2290 if (*s++ != ',')
2291 as_bad ("Invalid COPR identifier");
2292 num = pa_get_absolute_expression (&the_insn, &s);
2293 s = expr_end;
2294 CHECK_FIELD (num, 7, 0, 0);
2295 INSERT_FIELD_AND_CONTINUE (opcode, num, 6);
2296
2297 /* Handle a 22bit SOP field for copr. */
2298 case '2':
2299 num = pa_get_absolute_expression (&the_insn, &s);
2300 s = expr_end;
2301 CHECK_FIELD (num, 4194303, 0, 0);
2302 num = (num & 0x1f) | ((num & 0x003fffe0) << 4);
2303 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2304
2305 /* Handle a source FP operand format completer. */
2306 case 'F':
2307 flag = pa_parse_fp_format (&s);
2308 the_insn.fpof1 = flag;
2309 INSERT_FIELD_AND_CONTINUE (opcode, flag, 11);
2310
2311 /* Handle a destination FP operand format completer. */
2312 case 'G':
2313 /* pa_parse_format needs the ',' prefix. */
2314 s--;
2315 flag = pa_parse_fp_format (&s);
2316 the_insn.fpof2 = flag;
2317 INSERT_FIELD_AND_CONTINUE (opcode, flag, 13);
2318
2319 /* Handle FP compare conditions. */
2320 case 'M':
2321 cond = pa_parse_fp_cmp_cond (&s);
2322 INSERT_FIELD_AND_CONTINUE (opcode, cond, 0);
2323
2324 /* Handle L/R register halves like 't'. */
2325 case 'v':
2326 {
2327 struct pa_89_fp_reg_struct result;
2328
2329 pa_parse_number (&s, &result);
2330 CHECK_FIELD (result.number_part, 31, 0, 0);
2331 opcode |= result.number_part;
2332
2333 /* 0x30 opcodes are FP arithmetic operation opcodes
2334 and need to be turned into 0x38 opcodes. This
2335 is not necessary for loads/stores. */
2336 if (need_89_opcode (&the_insn, &result)
2337 && ((opcode & 0xfc000000) == 0x30000000))
2338 opcode |= 1 << 27;
2339
2340 INSERT_FIELD_AND_CONTINUE (opcode, result.l_r_select & 1, 6);
2341 }
2342
2343 /* Handle L/R register halves like 'b'. */
2344 case 'E':
2345 {
2346 struct pa_89_fp_reg_struct result;
2347
2348 pa_parse_number (&s, &result);
2349 CHECK_FIELD (result.number_part, 31, 0, 0);
2350 opcode |= result.number_part << 21;
2351 if (need_89_opcode (&the_insn, &result))
2352 {
2353 opcode |= (result.l_r_select & 1) << 7;
2354 opcode |= 1 << 27;
2355 }
2356 continue;
2357 }
2358
2359 /* Handle L/R register halves like 'x'. */
2360 case 'X':
2361 {
2362 struct pa_89_fp_reg_struct result;
2363
2364 pa_parse_number (&s, &result);
2365 CHECK_FIELD (result.number_part, 31, 0, 0);
2366 opcode |= (result.number_part & 0x1f) << 16;
2367 if (need_89_opcode (&the_insn, &result))
2368 {
2369 opcode |= (result.l_r_select & 1) << 12;
2370 opcode |= 1 << 27;
2371 }
2372 continue;
2373 }
2374
2375 /* Handle a 5 bit register field at 10. */
2376 case '4':
2377 {
2378 struct pa_89_fp_reg_struct result;
2379
2380 pa_parse_number (&s, &result);
2381 CHECK_FIELD (result.number_part, 31, 0, 0);
2382 if (the_insn.fpof1 == SGL)
2383 {
2384 result.number_part &= 0xF;
2385 result.number_part |= (result.l_r_select & 1) << 4;
2386 }
2387 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 21);
2388 }
2389
2390 /* Handle a 5 bit register field at 15. */
2391 case '6':
2392 {
2393 struct pa_89_fp_reg_struct result;
2394
2395 pa_parse_number (&s, &result);
2396 CHECK_FIELD (result.number_part, 31, 0, 0);
2397 if (the_insn.fpof1 == SGL)
2398 {
2399 result.number_part &= 0xF;
2400 result.number_part |= (result.l_r_select & 1) << 4;
2401 }
2402 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 16);
2403 }
2404
2405 /* Handle a 5 bit register field at 31. */
2406 case '7':
2407 {
2408 struct pa_89_fp_reg_struct result;
2409
2410 pa_parse_number (&s, &result);
2411 CHECK_FIELD (result.number_part, 31, 0, 0);
2412 if (the_insn.fpof1 == SGL)
2413 {
2414 result.number_part &= 0xF;
2415 result.number_part |= (result.l_r_select & 1) << 4;
2416 }
2417 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 0);
2418 }
2419
2420 /* Handle a 5 bit register field at 20. */
2421 case '8':
2422 {
2423 struct pa_89_fp_reg_struct result;
2424
2425 pa_parse_number (&s, &result);
2426 CHECK_FIELD (result.number_part, 31, 0, 0);
2427 if (the_insn.fpof1 == SGL)
2428 {
2429 result.number_part &= 0xF;
2430 result.number_part |= (result.l_r_select & 1) << 4;
2431 }
2432 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 11);
2433 }
2434
2435 /* Handle a 5 bit register field at 25. */
2436 case '9':
2437 {
2438 struct pa_89_fp_reg_struct result;
2439
2440 pa_parse_number (&s, &result);
2441 CHECK_FIELD (result.number_part, 31, 0, 0);
2442 if (the_insn.fpof1 == SGL)
2443 {
2444 result.number_part &= 0xF;
2445 result.number_part |= (result.l_r_select & 1) << 4;
2446 }
2447 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 6);
2448 }
2449
2450 /* Handle a floating point operand format at 26.
2451 Only allows single and double precision. */
2452 case 'H':
2453 flag = pa_parse_fp_format (&s);
2454 switch (flag)
2455 {
2456 case SGL:
2457 opcode |= 0x20;
2458 case DBL:
2459 the_insn.fpof1 = flag;
2460 continue;
2461
2462 case QUAD:
2463 case ILLEGAL_FMT:
2464 default:
2465 as_bad ("Invalid Floating Point Operand Format.");
2466 }
2467 break;
2468
2469 default:
2470 abort ();
2471 }
2472 break;
2473 }
2474
2475 /* Check if the args matched. */
2476 if (match == FALSE)
2477 {
2478 if (&insn[1] - pa_opcodes < NUMOPCODES
2479 && !strcmp (insn->name, insn[1].name))
2480 {
2481 ++insn;
2482 s = argstart;
2483 continue;
2484 }
2485 else
2486 {
2487 as_bad ("Invalid operands %s", error_message);
2488 return;
2489 }
2490 }
2491 break;
2492 }
2493
2494 the_insn.opcode = opcode;
2495 }
2496
2497 /* Turn a string in input_line_pointer into a floating point constant of type
2498 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
2499 emitted is stored in *sizeP . An error message or NULL is returned. */
2500
2501 #define MAX_LITTLENUMS 6
2502
2503 char *
2504 md_atof (type, litP, sizeP)
2505 char type;
2506 char *litP;
2507 int *sizeP;
2508 {
2509 int prec;
2510 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2511 LITTLENUM_TYPE *wordP;
2512 char *t;
2513
2514 switch (type)
2515 {
2516
2517 case 'f':
2518 case 'F':
2519 case 's':
2520 case 'S':
2521 prec = 2;
2522 break;
2523
2524 case 'd':
2525 case 'D':
2526 case 'r':
2527 case 'R':
2528 prec = 4;
2529 break;
2530
2531 case 'x':
2532 case 'X':
2533 prec = 6;
2534 break;
2535
2536 case 'p':
2537 case 'P':
2538 prec = 6;
2539 break;
2540
2541 default:
2542 *sizeP = 0;
2543 return "Bad call to MD_ATOF()";
2544 }
2545 t = atof_ieee (input_line_pointer, type, words);
2546 if (t)
2547 input_line_pointer = t;
2548 *sizeP = prec * sizeof (LITTLENUM_TYPE);
2549 for (wordP = words; prec--;)
2550 {
2551 md_number_to_chars (litP, (valueT) (*wordP++), sizeof (LITTLENUM_TYPE));
2552 litP += sizeof (LITTLENUM_TYPE);
2553 }
2554 return NULL;
2555 }
2556
2557 /* Write out big-endian. */
2558
2559 void
2560 md_number_to_chars (buf, val, n)
2561 char *buf;
2562 valueT val;
2563 int n;
2564 {
2565 number_to_chars_bigendian (buf, val, n);
2566 }
2567
2568 /* Translate internal representation of relocation info to BFD target
2569 format. */
2570
2571 arelent **
2572 tc_gen_reloc (section, fixp)
2573 asection *section;
2574 fixS *fixp;
2575 {
2576 arelent *reloc;
2577 struct hppa_fix_struct *hppa_fixp = fixp->tc_fix_data;
2578 bfd_reloc_code_real_type code;
2579 static int unwind_reloc_fixp_cnt = 0;
2580 static arelent *unwind_reloc_entryP = NULL;
2581 static arelent *no_relocs = NULL;
2582 arelent **relocs;
2583 bfd_reloc_code_real_type **codes;
2584 int n_relocs;
2585 int i;
2586
2587 if (fixp->fx_addsy == 0)
2588 return &no_relocs;
2589 assert (hppa_fixp != 0);
2590 assert (section != 0);
2591
2592 #ifdef OBJ_ELF
2593 /* Yuk. I would really like to push all this ELF specific unwind
2594 crud into BFD and the linker. That's how SOM does it -- and
2595 if we could make ELF emulate that then we could share more code
2596 in GAS (and potentially a gnu-linker later).
2597
2598 Unwind section relocations are handled in a special way.
2599 The relocations for the .unwind section are originally
2600 built in the usual way. That is, for each unwind table
2601 entry there are two relocations: one for the beginning of
2602 the function and one for the end.
2603
2604 The first time we enter this function we create a
2605 relocation of the type R_HPPA_UNWIND_ENTRIES. The addend
2606 of the relocation is initialized to 0. Each additional
2607 pair of times this function is called for the unwind
2608 section represents an additional unwind table entry. Thus,
2609 the addend of the relocation should end up to be the number
2610 of unwind table entries. */
2611 if (strcmp (UNWIND_SECTION_NAME, section->name) == 0)
2612 {
2613 if (unwind_reloc_entryP == NULL)
2614 {
2615 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
2616 sizeof (arelent));
2617 assert (reloc != 0);
2618 unwind_reloc_entryP = reloc;
2619 unwind_reloc_fixp_cnt++;
2620 unwind_reloc_entryP->address
2621 = fixp->fx_frag->fr_address + fixp->fx_where;
2622 /* A pointer to any function will do. We only
2623 need one to tell us what section the unwind
2624 relocations are for. */
2625 unwind_reloc_entryP->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2626 hppa_fixp->fx_r_type = code = R_HPPA_UNWIND_ENTRIES;
2627 fixp->fx_r_type = R_HPPA_UNWIND;
2628 unwind_reloc_entryP->howto = bfd_reloc_type_lookup (stdoutput, code);
2629 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
2630 relocs = (arelent **) bfd_alloc_by_size_t (stdoutput,
2631 sizeof (arelent *) * 2);
2632 assert (relocs != 0);
2633 relocs[0] = unwind_reloc_entryP;
2634 relocs[1] = NULL;
2635 return relocs;
2636 }
2637 unwind_reloc_fixp_cnt++;
2638 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
2639
2640 return &no_relocs;
2641 }
2642 #endif
2643
2644 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent));
2645 assert (reloc != 0);
2646
2647 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2648 codes = hppa_gen_reloc_type (stdoutput,
2649 fixp->fx_r_type,
2650 hppa_fixp->fx_r_format,
2651 hppa_fixp->fx_r_field);
2652
2653 for (n_relocs = 0; codes[n_relocs]; n_relocs++)
2654 ;
2655
2656 relocs = (arelent **)
2657 bfd_alloc_by_size_t (stdoutput, sizeof (arelent *) * n_relocs + 1);
2658 assert (relocs != 0);
2659
2660 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
2661 sizeof (arelent) * n_relocs);
2662 if (n_relocs > 0)
2663 assert (reloc != 0);
2664
2665 for (i = 0; i < n_relocs; i++)
2666 relocs[i] = &reloc[i];
2667
2668 relocs[n_relocs] = NULL;
2669
2670 #ifdef OBJ_ELF
2671 switch (fixp->fx_r_type)
2672 {
2673 case R_HPPA_COMPLEX:
2674 case R_HPPA_COMPLEX_PCREL_CALL:
2675 case R_HPPA_COMPLEX_ABS_CALL:
2676 assert (n_relocs == 5);
2677
2678 for (i = 0; i < n_relocs; i++)
2679 {
2680 reloc[i].sym_ptr_ptr = NULL;
2681 reloc[i].address = 0;
2682 reloc[i].addend = 0;
2683 reloc[i].howto = bfd_reloc_type_lookup (stdoutput, *codes[i]);
2684 assert (reloc[i].howto && *codes[i] == reloc[i].howto->type);
2685 }
2686
2687 reloc[0].sym_ptr_ptr = &fixp->fx_addsy->bsym;
2688 reloc[1].sym_ptr_ptr = &fixp->fx_subsy->bsym;
2689 reloc[4].address = fixp->fx_frag->fr_address + fixp->fx_where;
2690
2691 if (fixp->fx_r_type == R_HPPA_COMPLEX)
2692 reloc[3].addend = fixp->fx_addnumber;
2693 else if (fixp->fx_r_type == R_HPPA_COMPLEX_PCREL_CALL ||
2694 fixp->fx_r_type == R_HPPA_COMPLEX_ABS_CALL)
2695 reloc[1].addend = fixp->fx_addnumber;
2696
2697 break;
2698
2699 default:
2700 assert (n_relocs == 1);
2701
2702 code = *codes[0];
2703
2704 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2705 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
2706 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
2707 reloc->addend = 0; /* default */
2708
2709 assert (reloc->howto && code == reloc->howto->type);
2710
2711 /* Now, do any processing that is dependent on the relocation type. */
2712 switch (code)
2713 {
2714 case R_HPPA_PLABEL_32:
2715 case R_HPPA_PLABEL_11:
2716 case R_HPPA_PLABEL_14:
2717 case R_HPPA_PLABEL_L21:
2718 case R_HPPA_PLABEL_R11:
2719 case R_HPPA_PLABEL_R14:
2720 /* For plabel relocations, the addend of the
2721 relocation should be either 0 (no static link) or 2
2722 (static link required).
2723
2724 FIXME: We always assume no static link! */
2725 reloc->addend = 0;
2726 break;
2727
2728 case R_HPPA_ABS_CALL_11:
2729 case R_HPPA_ABS_CALL_14:
2730 case R_HPPA_ABS_CALL_17:
2731 case R_HPPA_ABS_CALL_L21:
2732 case R_HPPA_ABS_CALL_R11:
2733 case R_HPPA_ABS_CALL_R14:
2734 case R_HPPA_ABS_CALL_R17:
2735 case R_HPPA_ABS_CALL_LS21:
2736 case R_HPPA_ABS_CALL_RS11:
2737 case R_HPPA_ABS_CALL_RS14:
2738 case R_HPPA_ABS_CALL_RS17:
2739 case R_HPPA_ABS_CALL_LD21:
2740 case R_HPPA_ABS_CALL_RD11:
2741 case R_HPPA_ABS_CALL_RD14:
2742 case R_HPPA_ABS_CALL_RD17:
2743 case R_HPPA_ABS_CALL_LR21:
2744 case R_HPPA_ABS_CALL_RR14:
2745 case R_HPPA_ABS_CALL_RR17:
2746
2747 case R_HPPA_PCREL_CALL_11:
2748 case R_HPPA_PCREL_CALL_14:
2749 case R_HPPA_PCREL_CALL_17:
2750 case R_HPPA_PCREL_CALL_L21:
2751 case R_HPPA_PCREL_CALL_R11:
2752 case R_HPPA_PCREL_CALL_R14:
2753 case R_HPPA_PCREL_CALL_R17:
2754 case R_HPPA_PCREL_CALL_LS21:
2755 case R_HPPA_PCREL_CALL_RS11:
2756 case R_HPPA_PCREL_CALL_RS14:
2757 case R_HPPA_PCREL_CALL_RS17:
2758 case R_HPPA_PCREL_CALL_LD21:
2759 case R_HPPA_PCREL_CALL_RD11:
2760 case R_HPPA_PCREL_CALL_RD14:
2761 case R_HPPA_PCREL_CALL_RD17:
2762 case R_HPPA_PCREL_CALL_LR21:
2763 case R_HPPA_PCREL_CALL_RR14:
2764 case R_HPPA_PCREL_CALL_RR17:
2765 /* The constant is stored in the instruction. */
2766 reloc->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
2767 break;
2768 default:
2769 reloc->addend = fixp->fx_addnumber;
2770 break;
2771 }
2772 break;
2773 }
2774 #else /* OBJ_SOM */
2775
2776 /* Walk over reach relocation returned by the BFD backend. */
2777 for (i = 0; i < n_relocs; i++)
2778 {
2779 code = *codes[i];
2780
2781 relocs[i]->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2782 relocs[i]->howto = bfd_reloc_type_lookup (stdoutput, code);
2783 relocs[i]->address = fixp->fx_frag->fr_address + fixp->fx_where;
2784
2785 switch (code)
2786 {
2787 case R_PCREL_CALL:
2788 case R_ABS_CALL:
2789 relocs[i]->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
2790 break;
2791
2792 case R_DATA_PLABEL:
2793 case R_CODE_PLABEL:
2794 /* For plabel relocations, the addend of the
2795 relocation should be either 0 (no static link) or 2
2796 (static link required).
2797
2798 FIXME: We always assume no static link! */
2799 relocs[i]->addend = 0;
2800 break;
2801
2802 case R_N_MODE:
2803 case R_S_MODE:
2804 case R_D_MODE:
2805 case R_R_MODE:
2806 case R_EXIT:
2807 case R_FSEL:
2808 case R_LSEL:
2809 case R_RSEL:
2810 /* There is no symbol or addend associated with these fixups. */
2811 relocs[i]->sym_ptr_ptr = &dummy_symbol->bsym;
2812 relocs[i]->addend = 0;
2813 break;
2814
2815 default:
2816 relocs[i]->addend = fixp->fx_addnumber;
2817 break;
2818 }
2819 }
2820 #endif
2821
2822 return relocs;
2823 }
2824
2825 /* Process any machine dependent frag types. */
2826
2827 void
2828 md_convert_frag (abfd, sec, fragP)
2829 register bfd *abfd;
2830 register asection *sec;
2831 register fragS *fragP;
2832 {
2833 unsigned int address;
2834
2835 if (fragP->fr_type == rs_machine_dependent)
2836 {
2837 switch ((int) fragP->fr_subtype)
2838 {
2839 case 0:
2840 fragP->fr_type = rs_fill;
2841 know (fragP->fr_var == 1);
2842 know (fragP->fr_next);
2843 address = fragP->fr_address + fragP->fr_fix;
2844 if (address % fragP->fr_offset)
2845 {
2846 fragP->fr_offset =
2847 fragP->fr_next->fr_address
2848 - fragP->fr_address
2849 - fragP->fr_fix;
2850 }
2851 else
2852 fragP->fr_offset = 0;
2853 break;
2854 }
2855 }
2856 }
2857
2858 /* Round up a section size to the appropriate boundary. */
2859
2860 valueT
2861 md_section_align (segment, size)
2862 asection *segment;
2863 valueT size;
2864 {
2865 int align = bfd_get_section_alignment (stdoutput, segment);
2866 int align2 = (1 << align) - 1;
2867
2868 return (size + align2) & ~align2;
2869 }
2870
2871 /* Create a short jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2872 void
2873 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
2874 char *ptr;
2875 addressT from_addr, to_addr;
2876 fragS *frag;
2877 symbolS *to_symbol;
2878 {
2879 fprintf (stderr, "pa_create_short_jmp\n");
2880 abort ();
2881 }
2882
2883 /* Create a long jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2884 void
2885 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
2886 char *ptr;
2887 addressT from_addr, to_addr;
2888 fragS *frag;
2889 symbolS *to_symbol;
2890 {
2891 fprintf (stderr, "pa_create_long_jump\n");
2892 abort ();
2893 }
2894
2895 /* Return the approximate size of a frag before relaxation has occurred. */
2896 int
2897 md_estimate_size_before_relax (fragP, segment)
2898 register fragS *fragP;
2899 asection *segment;
2900 {
2901 int size;
2902
2903 size = 0;
2904
2905 while ((fragP->fr_fix + size) % fragP->fr_offset)
2906 size++;
2907
2908 return size;
2909 }
2910
2911 /* Parse machine dependent options. There are none on the PA. */
2912 int
2913 md_parse_option (argP, cntP, vecP)
2914 char **argP;
2915 int *cntP;
2916 char ***vecP;
2917 {
2918 return 1;
2919 }
2920
2921 /* We have no need to default values of symbols. */
2922
2923 symbolS *
2924 md_undefined_symbol (name)
2925 char *name;
2926 {
2927 return 0;
2928 }
2929
2930 /* Parse an operand that is machine-specific.
2931 We just return without modifying the expression as we have nothing
2932 to do on the PA. */
2933
2934 void
2935 md_operand (expressionP)
2936 expressionS *expressionP;
2937 {
2938 }
2939
2940 /* Apply a fixup to an instruction. */
2941
2942 int
2943 md_apply_fix (fixP, valp)
2944 fixS *fixP;
2945 valueT *valp;
2946 {
2947 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
2948 struct hppa_fix_struct *hppa_fixP = fixP->tc_fix_data;
2949 long new_val, result;
2950 unsigned int w1, w2, w;
2951 valueT val = *valp;
2952
2953 /* SOM uses R_HPPA_ENTRY and R_HPPA_EXIT relocations which can
2954 never be "applied" (they are just markers). */
2955 #ifdef OBJ_SOM
2956 if (fixP->fx_r_type == R_HPPA_ENTRY
2957 || fixP->fx_r_type == R_HPPA_EXIT)
2958 return 1;
2959 #endif
2960
2961 /* There should have been an HPPA specific fixup associated
2962 with the GAS fixup. */
2963 if (hppa_fixP)
2964 {
2965 unsigned long buf_wd = bfd_get_32 (stdoutput, buf);
2966 unsigned char fmt = bfd_hppa_insn2fmt (buf_wd);
2967
2968 if (fixP->fx_r_type == R_HPPA_NONE)
2969 fmt = 0;
2970
2971 /* Remember this value for emit_reloc. FIXME, is this braindamage
2972 documented anywhere!?! */
2973 fixP->fx_addnumber = val;
2974
2975 /* Check if this is an undefined symbol. No relocation can
2976 possibly be performed in this case.
2977
2978 Also avoid doing anything for pc-relative fixups in which the
2979 fixup is in a different space than the symbol it references. */
2980 if ((fixP->fx_addsy && fixP->fx_addsy->bsym->section == &bfd_und_section)
2981 || (fixP->fx_subsy
2982 && fixP->fx_subsy->bsym->section == &bfd_und_section)
2983 || (fixP->fx_pcrel
2984 && fixP->fx_addsy
2985 && S_GET_SEGMENT (fixP->fx_addsy) != hppa_fixP->segment)
2986 || (fixP->fx_pcrel
2987 && fixP->fx_subsy
2988 && S_GET_SEGMENT (fixP->fx_subsy) != hppa_fixP->segment))
2989 return 1;
2990
2991 /* PLABEL field selectors should not be passed to hppa_field_adjust. */
2992 if (fmt != 0 && hppa_fixP->fx_r_field != R_HPPA_PSEL
2993 && hppa_fixP->fx_r_field != R_HPPA_LPSEL
2994 && hppa_fixP->fx_r_field != R_HPPA_RPSEL
2995 && hppa_fixP->fx_r_field != R_HPPA_TSEL
2996 && hppa_fixP->fx_r_field != R_HPPA_LTSEL
2997 && hppa_fixP->fx_r_field != R_HPPA_RTSEL)
2998 new_val = hppa_field_adjust (val, 0, hppa_fixP->fx_r_field);
2999 else
3000 new_val = 0;
3001
3002 switch (fmt)
3003 {
3004 /* Handle all opcodes with the 'j' operand type. */
3005 case 14:
3006 CHECK_FIELD (new_val, 8191, -8192, 0);
3007
3008 /* Mask off 14 bits to be changed. */
3009 bfd_put_32 (stdoutput,
3010 bfd_get_32 (stdoutput, buf) & 0xffffc000,
3011 buf);
3012 low_sign_unext (new_val, 14, &result);
3013 break;
3014
3015 /* Handle all opcodes with the 'k' operand type. */
3016 case 21:
3017 CHECK_FIELD (new_val, 2097152, 0, 0);
3018
3019 /* Mask off 21 bits to be changed. */
3020 bfd_put_32 (stdoutput,
3021 bfd_get_32 (stdoutput, buf) & 0xffe00000,
3022 buf);
3023 dis_assemble_21 (new_val, &result);
3024 break;
3025
3026 /* Handle all the opcodes with the 'i' operand type. */
3027 case 11:
3028 CHECK_FIELD (new_val, 1023, -1023, 0);
3029
3030 /* Mask off 11 bits to be changed. */
3031 bfd_put_32 (stdoutput,
3032 bfd_get_32 (stdoutput, buf) & 0xffff800,
3033 buf);
3034 low_sign_unext (new_val, 11, &result);
3035 break;
3036
3037 /* Handle all the opcodes with the 'w' operand type. */
3038 case 12:
3039 CHECK_FIELD (new_val, 8191, -8192, 0)
3040
3041 /* Mask off 11 bits to be changed. */
3042 sign_unext ((new_val - 8) >> 2, 12, &result);
3043 bfd_put_32 (stdoutput,
3044 bfd_get_32 (stdoutput, buf) & 0xffffe002,
3045 buf);
3046
3047 dis_assemble_12 (result, &w1, &w);
3048 result = ((w1 << 2) | w);
3049 break;
3050
3051 /* Handle some of the opcodes with the 'W' operand type. */
3052 case 17:
3053
3054 #define stub_needed(CALLER, CALLEE) \
3055 ((CALLEE) && (CALLER) && ((CALLEE) != (CALLER)))
3056 /* It is necessary to force PC-relative calls/jumps to have a
3057 relocation entry if they're going to need either a argument
3058 relocation or long call stub. FIXME. Can't we need the same
3059 for absolute calls? */
3060 if (fixP->fx_addsy
3061 && (stub_needed (((obj_symbol_type *)
3062 fixP->fx_addsy->bsym)->tc_data.hppa_arg_reloc,
3063 hppa_fixP->fx_arg_reloc)))
3064 return 1;
3065 #undef stub_needed
3066
3067 CHECK_FIELD (new_val, 262143, -262144, 0);
3068
3069 /* Mask off 17 bits to be changed. */
3070 bfd_put_32 (stdoutput,
3071 bfd_get_32 (stdoutput, buf) & 0xffe0e002,
3072 buf);
3073 sign_unext ((new_val - 8) >> 2, 17, &result);
3074 dis_assemble_17 (result, &w1, &w2, &w);
3075 result = ((w2 << 2) | (w1 << 16) | w);
3076 break;
3077
3078 case 32:
3079 #ifdef OBJ_ELF
3080 /* These are ELF specific relocations. ELF unfortunately
3081 handles unwinds in a completely different manner. */
3082 if (hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRY
3083 || hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRIES)
3084 result = fixP->fx_addnumber;
3085 else
3086 #endif
3087 {
3088 result = 0;
3089 fixP->fx_addnumber = fixP->fx_offset;
3090 /* If we have a real relocation, then we want zero to
3091 be stored in the object file. If no relocation is going
3092 to be emitted, then we need to store new_val into the
3093 object file. */
3094 if (fixP->fx_addsy)
3095 bfd_put_32 (stdoutput, 0, buf);
3096 else
3097 bfd_put_32 (stdoutput, new_val, buf);
3098 return 1;
3099 }
3100 break;
3101
3102 case 0:
3103 return 1;
3104
3105 default:
3106 as_bad ("Unknown relocation encountered in md_apply_fix.");
3107 return 1;
3108 }
3109
3110 /* Insert the relocation. */
3111 bfd_put_32 (stdoutput, bfd_get_32 (stdoutput, buf) | result, buf);
3112 return 1;
3113 }
3114 else
3115 {
3116 printf ("no hppa_fixup entry for this fixup (fixP = 0x%x, type = 0x%x)\n",
3117 (unsigned int) fixP, fixP->fx_r_type);
3118 return 0;
3119 }
3120 }
3121
3122 /* Exactly what point is a PC-relative offset relative TO?
3123 On the PA, they're relative to the address of the offset. */
3124
3125 long
3126 md_pcrel_from (fixP)
3127 fixS *fixP;
3128 {
3129 return fixP->fx_where + fixP->fx_frag->fr_address;
3130 }
3131
3132 /* Return nonzero if the input line pointer is at the end of
3133 a statement. */
3134
3135 static int
3136 is_end_of_statement ()
3137 {
3138 return ((*input_line_pointer == '\n')
3139 || (*input_line_pointer == ';')
3140 || (*input_line_pointer == '!'));
3141 }
3142
3143 /* Read a number from S. The number might come in one of many forms,
3144 the most common will be a hex or decimal constant, but it could be
3145 a pre-defined register (Yuk!), or an absolute symbol.
3146
3147 Return a number or -1 for failure.
3148
3149 When parsing PA-89 FP register numbers RESULT will be
3150 the address of a structure to return information about
3151 L/R half of FP registers, store results there as appropriate.
3152
3153 pa_parse_number can not handle negative constants and will fail
3154 horribly if it is passed such a constant. */
3155
3156 static int
3157 pa_parse_number (s, result)
3158 char **s;
3159 struct pa_89_fp_reg_struct *result;
3160 {
3161 int num;
3162 char *name;
3163 char c;
3164 symbolS *sym;
3165 int status;
3166 char *p = *s;
3167
3168 /* Skip whitespace before the number. */
3169 while (*p == ' ' || *p == '\t')
3170 p = p + 1;
3171
3172 /* Store info in RESULT if requested by caller. */
3173 if (result)
3174 {
3175 result->number_part = -1;
3176 result->l_r_select = -1;
3177 }
3178 num = -1;
3179
3180 if (isdigit (*p))
3181 {
3182 /* Looks like a number. */
3183 num = 0;
3184
3185 if (*p == '0' && (*(p + 1) == 'x' || *(p + 1) == 'X'))
3186 {
3187 /* The number is specified in hex. */
3188 p += 2;
3189 while (isdigit (*p) || ((*p >= 'a') && (*p <= 'f'))
3190 || ((*p >= 'A') && (*p <= 'F')))
3191 {
3192 if (isdigit (*p))
3193 num = num * 16 + *p - '0';
3194 else if (*p >= 'a' && *p <= 'f')
3195 num = num * 16 + *p - 'a' + 10;
3196 else
3197 num = num * 16 + *p - 'A' + 10;
3198 ++p;
3199 }
3200 }
3201 else
3202 {
3203 /* The number is specified in decimal. */
3204 while (isdigit (*p))
3205 {
3206 num = num * 10 + *p - '0';
3207 ++p;
3208 }
3209 }
3210
3211 /* Store info in RESULT if requested by the caller. */
3212 if (result)
3213 {
3214 result->number_part = num;
3215
3216 if (IS_R_SELECT (p))
3217 {
3218 result->l_r_select = 1;
3219 ++p;
3220 }
3221 else if (IS_L_SELECT (p))
3222 {
3223 result->l_r_select = 0;
3224 ++p;
3225 }
3226 else
3227 result->l_r_select = 0;
3228 }
3229 }
3230 else if (*p == '%')
3231 {
3232 /* The number might be a predefined register. */
3233 num = 0;
3234 name = p;
3235 p++;
3236 c = *p;
3237 /* Tege hack: Special case for general registers as the general
3238 code makes a binary search with case translation, and is VERY
3239 slow. */
3240 if (c == 'r')
3241 {
3242 p++;
3243 if (*p == 'e' && *(p + 1) == 't'
3244 && (*(p + 2) == '0' || *(p + 2) == '1'))
3245 {
3246 p += 2;
3247 num = *p - '0' + 28;
3248 p++;
3249 }
3250 else if (*p == 'p')
3251 {
3252 num = 2;
3253 p++;
3254 }
3255 else if (!isdigit (*p))
3256 {
3257 if (print_errors)
3258 as_bad ("Undefined register: '%s'.", name);
3259 num = -1;
3260 }
3261 else
3262 {
3263 do
3264 num = num * 10 + *p++ - '0';
3265 while (isdigit (*p));
3266 }
3267 }
3268 else
3269 {
3270 /* Do a normal register search. */
3271 while (is_part_of_name (c))
3272 {
3273 p = p + 1;
3274 c = *p;
3275 }
3276 *p = 0;
3277 status = reg_name_search (name);
3278 if (status >= 0)
3279 num = status;
3280 else
3281 {
3282 if (print_errors)
3283 as_bad ("Undefined register: '%s'.", name);
3284 num = -1;
3285 }
3286 *p = c;
3287 }
3288
3289 /* Store info in RESULT if requested by caller. */
3290 if (result)
3291 {
3292 result->number_part = num;
3293 if (IS_R_SELECT (p - 1))
3294 result->l_r_select = 1;
3295 else if (IS_L_SELECT (p - 1))
3296 result->l_r_select = 0;
3297 else
3298 result->l_r_select = 0;
3299 }
3300 }
3301 else
3302 {
3303 /* And finally, it could be a symbol in the absolute section which
3304 is effectively a constant. */
3305 num = 0;
3306 name = p;
3307 c = *p;
3308 while (is_part_of_name (c))
3309 {
3310 p = p + 1;
3311 c = *p;
3312 }
3313 *p = 0;
3314 if ((sym = symbol_find (name)) != NULL)
3315 {
3316 if (S_GET_SEGMENT (sym) == &bfd_abs_section)
3317 num = S_GET_VALUE (sym);
3318 else
3319 {
3320 if (print_errors)
3321 as_bad ("Non-absolute symbol: '%s'.", name);
3322 num = -1;
3323 }
3324 }
3325 else
3326 {
3327 /* There is where we'd come for an undefined symbol
3328 or for an empty string. For an empty string we
3329 will return zero. That's a concession made for
3330 compatability with the braindamaged HP assemblers. */
3331 if (*name == 0)
3332 num = 0;
3333 else
3334 {
3335 if (print_errors)
3336 as_bad ("Undefined absolute constant: '%s'.", name);
3337 num = -1;
3338 }
3339 }
3340 *p = c;
3341
3342 /* Store info in RESULT if requested by caller. */
3343 if (result)
3344 {
3345 result->number_part = num;
3346 if (IS_R_SELECT (p - 1))
3347 result->l_r_select = 1;
3348 else if (IS_L_SELECT (p - 1))
3349 result->l_r_select = 0;
3350 else
3351 result->l_r_select = 0;
3352 }
3353 }
3354
3355 *s = p;
3356 return num;
3357 }
3358
3359 #define REG_NAME_CNT (sizeof(pre_defined_registers) / sizeof(struct pd_reg))
3360
3361 /* Given NAME, find the register number associated with that name, return
3362 the integer value associated with the given name or -1 on failure. */
3363
3364 static int
3365 reg_name_search (name)
3366 char *name;
3367 {
3368 int middle, low, high;
3369 int cmp;
3370
3371 low = 0;
3372 high = REG_NAME_CNT - 1;
3373
3374 do
3375 {
3376 middle = (low + high) / 2;
3377 cmp = strcasecmp (name, pre_defined_registers[middle].name);
3378 if (cmp < 0)
3379 high = middle - 1;
3380 else if (cmp > 0)
3381 low = middle + 1;
3382 else
3383 return pre_defined_registers[middle].value;
3384 }
3385 while (low <= high);
3386
3387 return -1;
3388 }
3389
3390
3391 /* Return nonzero if the given INSN and L/R information will require
3392 a new PA-89 opcode. */
3393
3394 static int
3395 need_89_opcode (insn, result)
3396 struct pa_it *insn;
3397 struct pa_89_fp_reg_struct *result;
3398 {
3399 if (result->l_r_select == 1 && !(insn->fpof1 == DBL && insn->fpof2 == DBL))
3400 return TRUE;
3401 else
3402 return FALSE;
3403 }
3404
3405 /* Parse a condition for a fcmp instruction. Return the numerical
3406 code associated with the condition. */
3407
3408 static int
3409 pa_parse_fp_cmp_cond (s)
3410 char **s;
3411 {
3412 int cond, i;
3413
3414 cond = 0;
3415
3416 for (i = 0; i < 32; i++)
3417 {
3418 if (strncasecmp (*s, fp_cond_map[i].string,
3419 strlen (fp_cond_map[i].string)) == 0)
3420 {
3421 cond = fp_cond_map[i].cond;
3422 *s += strlen (fp_cond_map[i].string);
3423 while (**s == ' ' || **s == '\t')
3424 *s = *s + 1;
3425 return cond;
3426 }
3427 }
3428
3429 as_bad ("Invalid FP Compare Condition: %c", **s);
3430 return 0;
3431 }
3432
3433 /* Parse an FP operand format completer returning the completer
3434 type. */
3435
3436 static fp_operand_format
3437 pa_parse_fp_format (s)
3438 char **s;
3439 {
3440 int format;
3441
3442 format = SGL;
3443 if (**s == ',')
3444 {
3445 *s += 1;
3446 if (strncasecmp (*s, "sgl", 3) == 0)
3447 {
3448 format = SGL;
3449 *s += 4;
3450 }
3451 else if (strncasecmp (*s, "dbl", 3) == 0)
3452 {
3453 format = DBL;
3454 *s += 4;
3455 }
3456 else if (strncasecmp (*s, "quad", 4) == 0)
3457 {
3458 format = QUAD;
3459 *s += 5;
3460 }
3461 else
3462 {
3463 format = ILLEGAL_FMT;
3464 as_bad ("Invalid FP Operand Format: %3s", *s);
3465 }
3466 }
3467
3468 return format;
3469 }
3470
3471 /* Convert from a selector string into a selector type. */
3472
3473 static int
3474 pa_chk_field_selector (str)
3475 char **str;
3476 {
3477 int middle, low, high;
3478 int cmp;
3479 char name[3];
3480
3481 /* Read past any whitespace. */
3482 /* FIXME: should we read past newlines and formfeeds??? */
3483 while (**str == ' ' || **str == '\t' || **str == '\n' || **str == '\f')
3484 *str = *str + 1;
3485
3486 if ((*str)[1] == '\'' || (*str)[1] == '%')
3487 name[0] = tolower ((*str)[0]),
3488 name[1] = 0;
3489 else if ((*str)[2] == '\'' || (*str)[2] == '%')
3490 name[0] = tolower ((*str)[0]),
3491 name[1] = tolower ((*str)[1]),
3492 name[2] = 0;
3493 else
3494 return e_fsel;
3495
3496 low = 0;
3497 high = sizeof (selector_table) / sizeof (struct selector_entry) - 1;
3498
3499 do
3500 {
3501 middle = (low + high) / 2;
3502 cmp = strcmp (name, selector_table[middle].prefix);
3503 if (cmp < 0)
3504 high = middle - 1;
3505 else if (cmp > 0)
3506 low = middle + 1;
3507 else
3508 {
3509 *str += strlen (name) + 1;
3510 return selector_table[middle].field_selector;
3511 }
3512 }
3513 while (low <= high);
3514
3515 return e_fsel;
3516 }
3517
3518 /* Mark (via expr_end) the end of an expression (I think). FIXME. */
3519
3520 static int
3521 get_expression (str)
3522 char *str;
3523 {
3524 char *save_in;
3525 asection *seg;
3526
3527 save_in = input_line_pointer;
3528 input_line_pointer = str;
3529 seg = expression (&the_insn.exp);
3530 if (!(seg == absolute_section
3531 || seg == undefined_section
3532 || SEG_NORMAL (seg)))
3533 {
3534 as_warn ("Bad segment in expression.");
3535 expr_end = input_line_pointer;
3536 input_line_pointer = save_in;
3537 return 1;
3538 }
3539 expr_end = input_line_pointer;
3540 input_line_pointer = save_in;
3541 return 0;
3542 }
3543
3544 /* Mark (via expr_end) the end of an absolute expression. FIXME. */
3545 static int
3546 pa_get_absolute_expression (insn, strp)
3547 struct pa_it *insn;
3548 char **strp;
3549 {
3550 char *save_in;
3551
3552 insn->field_selector = pa_chk_field_selector (strp);
3553 save_in = input_line_pointer;
3554 input_line_pointer = *strp;
3555 expression (&insn->exp);
3556 if (insn->exp.X_op != O_constant)
3557 {
3558 as_bad ("Bad segment (should be absolute).");
3559 expr_end = input_line_pointer;
3560 input_line_pointer = save_in;
3561 return 0;
3562 }
3563 expr_end = input_line_pointer;
3564 input_line_pointer = save_in;
3565 return evaluate_absolute (insn);
3566 }
3567
3568 /* Evaluate an absolute expression EXP which may be modified by
3569 the selector FIELD_SELECTOR. Return the value of the expression. */
3570 static int
3571 evaluate_absolute (insn)
3572 struct pa_it *insn;
3573 {
3574 int value;
3575 expressionS exp;
3576 int field_selector = insn->field_selector;
3577
3578 exp = insn->exp;
3579 value = exp.X_add_number;
3580
3581 switch (field_selector)
3582 {
3583 /* No change. */
3584 case e_fsel:
3585 break;
3586
3587 /* If bit 21 is on then add 0x800 and arithmetic shift right 11 bits. */
3588 case e_lssel:
3589 if (value & 0x00000400)
3590 value += 0x800;
3591 value = (value & 0xfffff800) >> 11;
3592 break;
3593
3594 /* Sign extend from bit 21. */
3595 case e_rssel:
3596 if (value & 0x00000400)
3597 value |= 0xfffff800;
3598 else
3599 value &= 0x7ff;
3600 break;
3601
3602 /* Arithmetic shift right 11 bits. */
3603 case e_lsel:
3604 value = (value & 0xfffff800) >> 11;
3605 break;
3606
3607 /* Set bits 0-20 to zero. */
3608 case e_rsel:
3609 value = value & 0x7ff;
3610 break;
3611
3612 /* Add 0x800 and arithmetic shift right 11 bits. */
3613 case e_ldsel:
3614 value += 0x800;
3615 value = (value & 0xfffff800) >> 11;
3616 break;
3617
3618 /* Set bitgs 0-21 to one. */
3619 case e_rdsel:
3620 value |= 0xfffff800;
3621 break;
3622
3623 #define RSEL_ROUND(c) (((c) + 0x1000) & ~0x1fff)
3624 case e_rrsel:
3625 value = (RSEL_ROUND (value) & 0x7ff) + (value - RSEL_ROUND (value));
3626 break;
3627
3628 case e_lrsel:
3629 value = (RSEL_ROUND (value) >> 11) & 0x1fffff;
3630 break;
3631 #undef RSEL_ROUND
3632
3633 default:
3634 BAD_CASE (field_selector);
3635 break;
3636 }
3637 return value;
3638 }
3639
3640 /* Given an argument location specification return the associated
3641 argument location number. */
3642
3643 static unsigned int
3644 pa_build_arg_reloc (type_name)
3645 char *type_name;
3646 {
3647
3648 if (strncasecmp (type_name, "no", 2) == 0)
3649 return 0;
3650 if (strncasecmp (type_name, "gr", 2) == 0)
3651 return 1;
3652 else if (strncasecmp (type_name, "fr", 2) == 0)
3653 return 2;
3654 else if (strncasecmp (type_name, "fu", 2) == 0)
3655 return 3;
3656 else
3657 as_bad ("Invalid argument location: %s\n", type_name);
3658
3659 return 0;
3660 }
3661
3662 /* Encode and return an argument relocation specification for
3663 the given register in the location specified by arg_reloc. */
3664
3665 static unsigned int
3666 pa_align_arg_reloc (reg, arg_reloc)
3667 unsigned int reg;
3668 unsigned int arg_reloc;
3669 {
3670 unsigned int new_reloc;
3671
3672 new_reloc = arg_reloc;
3673 switch (reg)
3674 {
3675 case 0:
3676 new_reloc <<= 8;
3677 break;
3678 case 1:
3679 new_reloc <<= 6;
3680 break;
3681 case 2:
3682 new_reloc <<= 4;
3683 break;
3684 case 3:
3685 new_reloc <<= 2;
3686 break;
3687 default:
3688 as_bad ("Invalid argument description: %d", reg);
3689 }
3690
3691 return new_reloc;
3692 }
3693
3694 /* Parse a PA nullification completer (,n). Return nonzero if the
3695 completer was found; return zero if no completer was found. */
3696
3697 static int
3698 pa_parse_nullif (s)
3699 char **s;
3700 {
3701 int nullif;
3702
3703 nullif = 0;
3704 if (**s == ',')
3705 {
3706 *s = *s + 1;
3707 if (strncasecmp (*s, "n", 1) == 0)
3708 nullif = 1;
3709 else
3710 {
3711 as_bad ("Invalid Nullification: (%c)", **s);
3712 nullif = 0;
3713 }
3714 *s = *s + 1;
3715 }
3716
3717 return nullif;
3718 }
3719
3720 /* Parse a non-negated compare/subtract completer returning the
3721 number (for encoding in instrutions) of the given completer.
3722
3723 ISBRANCH specifies whether or not this is parsing a condition
3724 completer for a branch (vs a nullification completer for a
3725 computational instruction. */
3726
3727 static int
3728 pa_parse_nonneg_cmpsub_cmpltr (s, isbranch)
3729 char **s;
3730 int isbranch;
3731 {
3732 int cmpltr;
3733 char *name = *s + 1;
3734 char c;
3735 char *save_s = *s;
3736
3737 cmpltr = 0;
3738 if (**s == ',')
3739 {
3740 *s += 1;
3741 while (**s != ',' && **s != ' ' && **s != '\t')
3742 *s += 1;
3743 c = **s;
3744 **s = 0x00;
3745 if (strcmp (name, "=") == 0)
3746 {
3747 cmpltr = 1;
3748 }
3749 else if (strcmp (name, "<") == 0)
3750 {
3751 cmpltr = 2;
3752 }
3753 else if (strcmp (name, "<=") == 0)
3754 {
3755 cmpltr = 3;
3756 }
3757 else if (strcmp (name, "<<") == 0)
3758 {
3759 cmpltr = 4;
3760 }
3761 else if (strcmp (name, "<<=") == 0)
3762 {
3763 cmpltr = 5;
3764 }
3765 else if (strcasecmp (name, "sv") == 0)
3766 {
3767 cmpltr = 6;
3768 }
3769 else if (strcasecmp (name, "od") == 0)
3770 {
3771 cmpltr = 7;
3772 }
3773 /* If we have something like addb,n then there is no condition
3774 completer. */
3775 else if (strcasecmp (name, "n") == 0 && isbranch)
3776 {
3777 cmpltr = 0;
3778 }
3779 else
3780 {
3781 cmpltr = -1;
3782 }
3783 **s = c;
3784 }
3785
3786 /* Reset pointers if this was really a ,n for a branch instruction. */
3787 if (cmpltr == 0 && *name == 'n' && isbranch)
3788 *s = save_s;
3789
3790 return cmpltr;
3791 }
3792
3793 /* Parse a negated compare/subtract completer returning the
3794 number (for encoding in instrutions) of the given completer.
3795
3796 ISBRANCH specifies whether or not this is parsing a condition
3797 completer for a branch (vs a nullification completer for a
3798 computational instruction. */
3799
3800 static int
3801 pa_parse_neg_cmpsub_cmpltr (s, isbranch)
3802 char **s;
3803 int isbranch;
3804 {
3805 int cmpltr;
3806 char *name = *s + 1;
3807 char c;
3808 char *save_s = *s;
3809
3810 cmpltr = 0;
3811 if (**s == ',')
3812 {
3813 *s += 1;
3814 while (**s != ',' && **s != ' ' && **s != '\t')
3815 *s += 1;
3816 c = **s;
3817 **s = 0x00;
3818 if (strcasecmp (name, "tr") == 0)
3819 {
3820 cmpltr = 0;
3821 }
3822 else if (strcmp (name, "<>") == 0)
3823 {
3824 cmpltr = 1;
3825 }
3826 else if (strcmp (name, ">=") == 0)
3827 {
3828 cmpltr = 2;
3829 }
3830 else if (strcmp (name, ">") == 0)
3831 {
3832 cmpltr = 3;
3833 }
3834 else if (strcmp (name, ">>=") == 0)
3835 {
3836 cmpltr = 4;
3837 }
3838 else if (strcmp (name, ">>") == 0)
3839 {
3840 cmpltr = 5;
3841 }
3842 else if (strcasecmp (name, "nsv") == 0)
3843 {
3844 cmpltr = 6;
3845 }
3846 else if (strcasecmp (name, "ev") == 0)
3847 {
3848 cmpltr = 7;
3849 }
3850 /* If we have something like addb,n then there is no condition
3851 completer. */
3852 else if (strcasecmp (name, "n") == 0 && isbranch)
3853 {
3854 cmpltr = 0;
3855 }
3856 else
3857 {
3858 cmpltr = -1;
3859 }
3860 **s = c;
3861 }
3862
3863 /* Reset pointers if this was really a ,n for a branch instruction. */
3864 if (cmpltr == 0 && *name == 'n' && isbranch)
3865 *s = save_s;
3866
3867 return cmpltr;
3868 }
3869
3870 /* Parse a non-negated addition completer returning the number
3871 (for encoding in instrutions) of the given completer.
3872
3873 ISBRANCH specifies whether or not this is parsing a condition
3874 completer for a branch (vs a nullification completer for a
3875 computational instruction. */
3876
3877 static int
3878 pa_parse_nonneg_add_cmpltr (s, isbranch)
3879 char **s;
3880 int isbranch;
3881 {
3882 int cmpltr;
3883 char *name = *s + 1;
3884 char c;
3885 char *save_s = *s;
3886
3887 cmpltr = 0;
3888 if (**s == ',')
3889 {
3890 *s += 1;
3891 while (**s != ',' && **s != ' ' && **s != '\t')
3892 *s += 1;
3893 c = **s;
3894 **s = 0x00;
3895 if (strcmp (name, "=") == 0)
3896 {
3897 cmpltr = 1;
3898 }
3899 else if (strcmp (name, "<") == 0)
3900 {
3901 cmpltr = 2;
3902 }
3903 else if (strcmp (name, "<=") == 0)
3904 {
3905 cmpltr = 3;
3906 }
3907 else if (strcasecmp (name, "nuv") == 0)
3908 {
3909 cmpltr = 4;
3910 }
3911 else if (strcasecmp (name, "znv") == 0)
3912 {
3913 cmpltr = 5;
3914 }
3915 else if (strcasecmp (name, "sv") == 0)
3916 {
3917 cmpltr = 6;
3918 }
3919 else if (strcasecmp (name, "od") == 0)
3920 {
3921 cmpltr = 7;
3922 }
3923 /* If we have something like addb,n then there is no condition
3924 completer. */
3925 else if (strcasecmp (name, "n") == 0 && isbranch)
3926 {
3927 cmpltr = 0;
3928 }
3929 else
3930 {
3931 cmpltr = -1;
3932 }
3933 **s = c;
3934 }
3935
3936 /* Reset pointers if this was really a ,n for a branch instruction. */
3937 if (cmpltr == 0 && *name == 'n' && isbranch)
3938 *s = save_s;
3939
3940 return cmpltr;
3941 }
3942
3943 /* Parse a negated addition completer returning the number
3944 (for encoding in instrutions) of the given completer.
3945
3946 ISBRANCH specifies whether or not this is parsing a condition
3947 completer for a branch (vs a nullification completer for a
3948 computational instruction. */
3949
3950 static int
3951 pa_parse_neg_add_cmpltr (s, isbranch)
3952 char **s;
3953 int isbranch;
3954 {
3955 int cmpltr;
3956 char *name = *s + 1;
3957 char c;
3958 char *save_s = *s;
3959
3960 cmpltr = 0;
3961 if (**s == ',')
3962 {
3963 *s += 1;
3964 while (**s != ',' && **s != ' ' && **s != '\t')
3965 *s += 1;
3966 c = **s;
3967 **s = 0x00;
3968 if (strcasecmp (name, "tr") == 0)
3969 {
3970 cmpltr = 0;
3971 }
3972 else if (strcmp (name, "<>") == 0)
3973 {
3974 cmpltr = 1;
3975 }
3976 else if (strcmp (name, ">=") == 0)
3977 {
3978 cmpltr = 2;
3979 }
3980 else if (strcmp (name, ">") == 0)
3981 {
3982 cmpltr = 3;
3983 }
3984 else if (strcasecmp (name, "uv") == 0)
3985 {
3986 cmpltr = 4;
3987 }
3988 else if (strcasecmp (name, "vnz") == 0)
3989 {
3990 cmpltr = 5;
3991 }
3992 else if (strcasecmp (name, "nsv") == 0)
3993 {
3994 cmpltr = 6;
3995 }
3996 else if (strcasecmp (name, "ev") == 0)
3997 {
3998 cmpltr = 7;
3999 }
4000 /* If we have something like addb,n then there is no condition
4001 completer. */
4002 else if (strcasecmp (name, "n") == 0 && isbranch)
4003 {
4004 cmpltr = 0;
4005 }
4006 else
4007 {
4008 cmpltr = -1;
4009 }
4010 **s = c;
4011 }
4012
4013 /* Reset pointers if this was really a ,n for a branch instruction. */
4014 if (cmpltr == 0 && *name == 'n' && isbranch)
4015 *s = save_s;
4016
4017 return cmpltr;
4018 }
4019
4020 /* Handle a .BLOCK type pseudo-op. */
4021
4022 static void
4023 pa_block (z)
4024 int z;
4025 {
4026 char *p;
4027 long int temp_fill;
4028 unsigned int temp_size;
4029 int i;
4030
4031 temp_size = get_absolute_expression ();
4032
4033 /* Always fill with zeros, that's what the HP assembler does. */
4034 temp_fill = 0;
4035
4036 p = frag_var (rs_fill, (int) temp_size, (int) temp_size,
4037 (relax_substateT) 0, (symbolS *) 0, 1, NULL);
4038 bzero (p, temp_size);
4039
4040 /* Convert 2 bytes at a time. */
4041
4042 for (i = 0; i < temp_size; i += 2)
4043 {
4044 md_number_to_chars (p + i,
4045 (valueT) temp_fill,
4046 (int) ((temp_size - i) > 2 ? 2 : (temp_size - i)));
4047 }
4048
4049 pa_undefine_label ();
4050 demand_empty_rest_of_line ();
4051 }
4052
4053 /* Handle a .CALL pseudo-op. This involves storing away information
4054 about where arguments are to be found so the linker can detect
4055 (and correct) argument location mismatches between caller and callee. */
4056
4057 static void
4058 pa_call (unused)
4059 int unused;
4060 {
4061 pa_call_args (&last_call_desc);
4062 demand_empty_rest_of_line ();
4063 }
4064
4065 /* Do the dirty work of building a call descriptor which describes
4066 where the caller placed arguments to a function call. */
4067
4068 static void
4069 pa_call_args (call_desc)
4070 struct call_desc *call_desc;
4071 {
4072 char *name, c, *p;
4073 unsigned int temp, arg_reloc;
4074
4075 while (!is_end_of_statement ())
4076 {
4077 name = input_line_pointer;
4078 c = get_symbol_end ();
4079 /* Process a source argument. */
4080 if ((strncasecmp (name, "argw", 4) == 0))
4081 {
4082 temp = atoi (name + 4);
4083 p = input_line_pointer;
4084 *p = c;
4085 input_line_pointer++;
4086 name = input_line_pointer;
4087 c = get_symbol_end ();
4088 arg_reloc = pa_build_arg_reloc (name);
4089 call_desc->arg_reloc |= pa_align_arg_reloc (temp, arg_reloc);
4090 }
4091 /* Process a return value. */
4092 else if ((strncasecmp (name, "rtnval", 6) == 0))
4093 {
4094 p = input_line_pointer;
4095 *p = c;
4096 input_line_pointer++;
4097 name = input_line_pointer;
4098 c = get_symbol_end ();
4099 arg_reloc = pa_build_arg_reloc (name);
4100 call_desc->arg_reloc |= (arg_reloc & 0x3);
4101 }
4102 else
4103 {
4104 as_bad ("Invalid .CALL argument: %s", name);
4105 }
4106 p = input_line_pointer;
4107 *p = c;
4108 if (!is_end_of_statement ())
4109 input_line_pointer++;
4110 }
4111 }
4112
4113 /* Return TRUE if FRAG1 and FRAG2 are the same. */
4114
4115 static int
4116 is_same_frag (frag1, frag2)
4117 fragS *frag1;
4118 fragS *frag2;
4119 {
4120
4121 if (frag1 == NULL)
4122 return (FALSE);
4123 else if (frag2 == NULL)
4124 return (FALSE);
4125 else if (frag1 == frag2)
4126 return (TRUE);
4127 else if (frag2->fr_type == rs_fill && frag2->fr_fix == 0)
4128 return (is_same_frag (frag1, frag2->fr_next));
4129 else
4130 return (FALSE);
4131 }
4132
4133 #ifdef OBJ_ELF
4134 /* Build an entry in the UNWIND subspace from the given function
4135 attributes in CALL_INFO. This is not needed for SOM as using
4136 R_ENTRY and R_EXIT relocations allow the linker to handle building
4137 of the unwind spaces. */
4138
4139 static void
4140 pa_build_unwind_subspace (call_info)
4141 struct call_info *call_info;
4142 {
4143 char *unwind;
4144 asection *seg, *save_seg;
4145 subsegT subseg, save_subseg;
4146 int i;
4147 char c, *p;
4148
4149 /* Get into the right seg/subseg. This may involve creating
4150 the seg the first time through. Make sure to have the
4151 old seg/subseg so that we can reset things when we are done. */
4152 subseg = SUBSEG_UNWIND;
4153 seg = bfd_get_section_by_name (stdoutput, UNWIND_SECTION_NAME);
4154 if (seg == ASEC_NULL)
4155 {
4156 seg = bfd_make_section_old_way (stdoutput, UNWIND_SECTION_NAME);
4157 bfd_set_section_flags (stdoutput, seg,
4158 SEC_READONLY | SEC_HAS_CONTENTS
4159 | SEC_LOAD | SEC_RELOC);
4160 }
4161
4162 save_seg = now_seg;
4163 save_subseg = now_subseg;
4164 subseg_set (seg, subseg);
4165
4166
4167 /* Get some space to hold relocation information for the unwind
4168 descriptor. */
4169 p = frag_more (4);
4170
4171 /* Relocation info. for start offset of the function. */
4172 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4173 call_info->start_symbol, (offsetT) 0,
4174 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4175 (char *) 0);
4176
4177 p = frag_more (4);
4178
4179 /* Relocation info. for end offset of the function. */
4180 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4181 call_info->end_symbol, (offsetT) 0,
4182 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4183 (char *) 0);
4184
4185 /* Dump it. */
4186 unwind = (char *) &call_info->ci_unwind;
4187 for (i = 8; i < sizeof (struct unwind_table); i++)
4188 {
4189 c = *(unwind + i);
4190 {
4191 FRAG_APPEND_1_CHAR (c);
4192 }
4193 }
4194
4195 /* Return back to the original segment/subsegment. */
4196 subseg_set (save_seg, save_subseg);
4197 }
4198 #endif
4199
4200 /* Process a .CALLINFO pseudo-op. This information is used later
4201 to build unwind descriptors and maybe one day to support
4202 .ENTER and .LEAVE. */
4203
4204 static void
4205 pa_callinfo (unused)
4206 int unused;
4207 {
4208 char *name, c, *p;
4209 int temp;
4210
4211 /* .CALLINFO must appear within a procedure definition. */
4212 if (!within_procedure)
4213 as_bad (".callinfo is not within a procedure definition");
4214
4215 /* Mark the fact that we found the .CALLINFO for the
4216 current procedure. */
4217 callinfo_found = TRUE;
4218
4219 /* Iterate over the .CALLINFO arguments. */
4220 while (!is_end_of_statement ())
4221 {
4222 name = input_line_pointer;
4223 c = get_symbol_end ();
4224 /* Frame size specification. */
4225 if ((strncasecmp (name, "frame", 5) == 0))
4226 {
4227 p = input_line_pointer;
4228 *p = c;
4229 input_line_pointer++;
4230 temp = get_absolute_expression ();
4231 if ((temp & 0x3) != 0)
4232 {
4233 as_bad ("FRAME parameter must be a multiple of 8: %d\n", temp);
4234 temp = 0;
4235 }
4236
4237 /* callinfo is in bytes and unwind_desc is in 8 byte units. */
4238 last_call_info->ci_unwind.descriptor.frame_size = temp / 8;
4239
4240 }
4241 /* Entry register (GR, GR and SR) specifications. */
4242 else if ((strncasecmp (name, "entry_gr", 8) == 0))
4243 {
4244 p = input_line_pointer;
4245 *p = c;
4246 input_line_pointer++;
4247 temp = get_absolute_expression ();
4248 /* The HP assembler accepts 19 as the high bound for ENTRY_GR
4249 even though %r19 is caller saved. I think this is a bug in
4250 the HP assembler, and we are not going to emulate it. */
4251 if (temp < 3 || temp > 18)
4252 as_bad ("Value for ENTRY_GR must be in the range 3..18\n");
4253 last_call_info->ci_unwind.descriptor.entry_gr = temp - 2;
4254 }
4255 else if ((strncasecmp (name, "entry_fr", 8) == 0))
4256 {
4257 p = input_line_pointer;
4258 *p = c;
4259 input_line_pointer++;
4260 temp = get_absolute_expression ();
4261 /* Similarly the HP assembler takes 31 as the high bound even
4262 though %fr21 is the last callee saved floating point register. */
4263 if (temp < 12 || temp > 21)
4264 as_bad ("Value for ENTRY_FR must be in the range 12..21\n");
4265 last_call_info->ci_unwind.descriptor.entry_fr = temp - 11;
4266 }
4267 else if ((strncasecmp (name, "entry_sr", 8) == 0))
4268 {
4269 p = input_line_pointer;
4270 *p = c;
4271 input_line_pointer++;
4272 temp = get_absolute_expression ();
4273 if (temp != 3)
4274 as_bad ("Value for ENTRY_SR must be 3\n");
4275 }
4276 /* Note whether or not this function performs any calls. */
4277 else if ((strncasecmp (name, "calls", 5) == 0) ||
4278 (strncasecmp (name, "caller", 6) == 0))
4279 {
4280 p = input_line_pointer;
4281 *p = c;
4282 }
4283 else if ((strncasecmp (name, "no_calls", 8) == 0))
4284 {
4285 p = input_line_pointer;
4286 *p = c;
4287 }
4288 /* Should RP be saved into the stack. */
4289 else if ((strncasecmp (name, "save_rp", 7) == 0))
4290 {
4291 p = input_line_pointer;
4292 *p = c;
4293 last_call_info->ci_unwind.descriptor.save_rp = 1;
4294 }
4295 /* Likewise for SP. */
4296 else if ((strncasecmp (name, "save_sp", 7) == 0))
4297 {
4298 p = input_line_pointer;
4299 *p = c;
4300 last_call_info->ci_unwind.descriptor.save_sp = 1;
4301 }
4302 /* Is this an unwindable procedure. If so mark it so
4303 in the unwind descriptor. */
4304 else if ((strncasecmp (name, "no_unwind", 9) == 0))
4305 {
4306 p = input_line_pointer;
4307 *p = c;
4308 last_call_info->ci_unwind.descriptor.cannot_unwind = 1;
4309 }
4310 /* Is this an interrupt routine. If so mark it in the
4311 unwind descriptor. */
4312 else if ((strncasecmp (name, "hpux_int", 7) == 0))
4313 {
4314 p = input_line_pointer;
4315 *p = c;
4316 last_call_info->ci_unwind.descriptor.hpux_interrupt_marker = 1;
4317 }
4318 else
4319 {
4320 as_bad ("Invalid .CALLINFO argument: %s", name);
4321 }
4322 if (!is_end_of_statement ())
4323 input_line_pointer++;
4324 }
4325
4326 demand_empty_rest_of_line ();
4327 }
4328
4329 /* Switch into the code subspace. */
4330
4331 static void
4332 pa_code (unused)
4333 int unused;
4334 {
4335 sd_chain_struct *sdchain;
4336
4337 /* First time through it might be necessary to create the
4338 $TEXT$ space. */
4339 if ((sdchain = is_defined_space ("$TEXT$")) == NULL)
4340 {
4341 sdchain = create_new_space (pa_def_spaces[0].name,
4342 pa_def_spaces[0].spnum,
4343 pa_def_spaces[0].loadable,
4344 pa_def_spaces[0].defined,
4345 pa_def_spaces[0].private,
4346 pa_def_spaces[0].sort,
4347 pa_def_spaces[0].segment, 0);
4348 }
4349
4350 SPACE_DEFINED (sdchain) = 1;
4351 subseg_set (text_section, SUBSEG_CODE);
4352 demand_empty_rest_of_line ();
4353 }
4354
4355 /* This is different than the standard GAS s_comm(). On HP9000/800 machines,
4356 the .comm pseudo-op has the following symtax:
4357
4358 <label> .comm <length>
4359
4360 where <label> is optional and is a symbol whose address will be the start of
4361 a block of memory <length> bytes long. <length> must be an absolute
4362 expression. <length> bytes will be allocated in the current space
4363 and subspace. */
4364
4365 static void
4366 pa_comm (unused)
4367 int unused;
4368 {
4369 unsigned int size;
4370 symbolS *symbol;
4371 label_symbol_struct *label_symbol = pa_get_label ();
4372
4373 if (label_symbol)
4374 symbol = label_symbol->lss_label;
4375 else
4376 symbol = NULL;
4377
4378 SKIP_WHITESPACE ();
4379 size = get_absolute_expression ();
4380
4381 if (symbol)
4382 {
4383 /* It is incorrect to check S_IS_DEFINED at this point as
4384 the symbol will *always* be defined. FIXME. How to
4385 correctly determine when this label really as been
4386 defined before. */
4387 if (S_GET_VALUE (symbol))
4388 {
4389 if (S_GET_VALUE (symbol) != size)
4390 {
4391 as_warn ("Length of .comm \"%s\" is already %d. Not changed.",
4392 S_GET_NAME (symbol), S_GET_VALUE (symbol));
4393 return;
4394 }
4395 }
4396 else
4397 {
4398 S_SET_VALUE (symbol, size);
4399 S_SET_SEGMENT (symbol, &bfd_und_section);
4400 S_SET_EXTERNAL (symbol);
4401 }
4402 }
4403 demand_empty_rest_of_line ();
4404 }
4405
4406 /* Process a .END pseudo-op. */
4407
4408 static void
4409 pa_end (unused)
4410 int unused;
4411 {
4412 demand_empty_rest_of_line ();
4413 }
4414
4415 /* Process a .ENTER pseudo-op. This is not supported. */
4416 static void
4417 pa_enter (unused)
4418 int unused;
4419 {
4420 abort ();
4421 }
4422
4423 /* Process a .ENTRY pseudo-op. .ENTRY marks the beginning of the
4424 procesure. */
4425 static void
4426 pa_entry (unused)
4427 int unused;
4428 {
4429 if (!within_procedure)
4430 as_bad ("Misplaced .entry. Ignored.");
4431 else
4432 {
4433 if (!callinfo_found)
4434 as_bad ("Missing .callinfo.");
4435 }
4436 demand_empty_rest_of_line ();
4437 within_entry_exit = TRUE;
4438
4439 #ifdef OBJ_SOM
4440 /* SOM defers building of unwind descriptors until the link phase.
4441 The assembler is responsible for creating an R_ENTRY relocation
4442 to mark the beginning of a region and hold the unwind bits, and
4443 for creating an R_EXIT relocation to mark the end of the region.
4444
4445 FIXME. ELF should be using the same conventions! The problem
4446 is an unwind requires too much relocation space. Hmmm. Maybe
4447 if we split the unwind bits up between the relocations which
4448 denote the entry and exit points. */
4449 if (last_call_info->start_symbol != NULL)
4450 {
4451 char *where = frag_more (0);
4452
4453 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
4454 last_call_info->start_symbol, (offsetT) 0, NULL,
4455 0, R_HPPA_ENTRY, e_fsel, 0, 0,
4456 (char *) &last_call_info->ci_unwind.descriptor);
4457 }
4458 #endif
4459 }
4460
4461 /* Handle a .EQU pseudo-op. */
4462
4463 static void
4464 pa_equ (reg)
4465 int reg;
4466 {
4467 label_symbol_struct *label_symbol = pa_get_label ();
4468 symbolS *symbol;
4469
4470 if (label_symbol)
4471 {
4472 symbol = label_symbol->lss_label;
4473 S_SET_VALUE (symbol, (unsigned int) get_absolute_expression ());
4474 S_SET_SEGMENT (symbol, &bfd_abs_section);
4475 }
4476 else
4477 {
4478 if (reg)
4479 as_bad (".REG must use a label");
4480 else
4481 as_bad (".EQU must use a label");
4482 }
4483
4484 pa_undefine_label ();
4485 demand_empty_rest_of_line ();
4486 }
4487
4488 /* Helper function. Does processing for the end of a function. This
4489 usually involves creating some relocations or building special
4490 symbols to mark the end of the function. */
4491
4492 static void
4493 process_exit ()
4494 {
4495 char *where;
4496
4497 where = frag_more (0);
4498
4499 #ifdef OBJ_ELF
4500 /* Mark the end of the function, stuff away the location of the frag
4501 for the end of the function, and finally call pa_build_unwind_subspace
4502 to add an entry in the unwind table. */
4503 hppa_elf_mark_end_of_function ();
4504 pa_build_unwind_subspace (last_call_info);
4505 #else
4506 /* SOM defers building of unwind descriptors until the link phase.
4507 The assembler is responsible for creating an R_ENTRY relocation
4508 to mark the beginning of a region and hold the unwind bits, and
4509 for creating an R_EXIT relocation to mark the end of the region.
4510
4511 FIXME. ELF should be using the same conventions! The problem
4512 is an unwind requires too much relocation space. Hmmm. Maybe
4513 if we split the unwind bits up between the relocations which
4514 denote the entry and exit points. */
4515 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
4516 last_call_info->start_symbol, (offsetT) 0,
4517 NULL, 0, R_HPPA_EXIT, e_fsel, 0, 0, NULL);
4518 #endif
4519 }
4520
4521 /* Process a .EXIT pseudo-op. */
4522
4523 static void
4524 pa_exit (unused)
4525 int unused;
4526 {
4527 if (!within_procedure)
4528 as_bad (".EXIT must appear within a procedure");
4529 else
4530 {
4531 if (!callinfo_found)
4532 as_bad ("Missing .callinfo");
4533 else
4534 {
4535 if (!within_entry_exit)
4536 as_bad ("No .ENTRY for this .EXIT");
4537 else
4538 {
4539 within_entry_exit = FALSE;
4540 process_exit ();
4541 }
4542 }
4543 }
4544 demand_empty_rest_of_line ();
4545 }
4546
4547 /* Process a .EXPORT directive. This makes functions external
4548 and provides information such as argument relocation entries
4549 to callers. */
4550
4551 static void
4552 pa_export (unused)
4553 int unused;
4554 {
4555 char *name, c, *p;
4556 symbolS *symbol;
4557
4558 name = input_line_pointer;
4559 c = get_symbol_end ();
4560 /* Make sure the given symbol exists. */
4561 if ((symbol = symbol_find_or_make (name)) == NULL)
4562 {
4563 as_bad ("Cannot define export symbol: %s\n", name);
4564 p = input_line_pointer;
4565 *p = c;
4566 input_line_pointer++;
4567 }
4568 else
4569 {
4570 /* OK. Set the external bits and process argument relocations. */
4571 S_SET_EXTERNAL (symbol);
4572 p = input_line_pointer;
4573 *p = c;
4574 if (!is_end_of_statement ())
4575 {
4576 input_line_pointer++;
4577 pa_type_args (symbol, 1);
4578 #ifdef OBJ_ELF
4579 pa_build_symextn_section ();
4580 #endif
4581 }
4582 }
4583
4584 demand_empty_rest_of_line ();
4585 }
4586
4587 /* Helper function to process arguments to a .EXPORT pseudo-op. */
4588
4589 static void
4590 pa_type_args (symbolP, is_export)
4591 symbolS *symbolP;
4592 int is_export;
4593 {
4594 char *name, c, *p;
4595 unsigned int temp, arg_reloc;
4596 pa_symbol_type type = SYMBOL_TYPE_UNKNOWN;
4597 obj_symbol_type *symbol = (obj_symbol_type *) symbolP->bsym;
4598
4599 if (strncasecmp (input_line_pointer, "absolute", 8) == 0)
4600
4601 {
4602 input_line_pointer += 8;
4603 symbolP->bsym->flags &= ~BSF_FUNCTION;
4604 S_SET_SEGMENT (symbolP, &bfd_abs_section);
4605 type = SYMBOL_TYPE_ABSOLUTE;
4606 }
4607 else if (strncasecmp (input_line_pointer, "code", 4) == 0)
4608 {
4609 input_line_pointer += 4;
4610 /* IMPORTing/EXPORTing CODE types for functions is meaningless for SOM,
4611 instead one should be IMPORTing/EXPORTing ENTRY types.
4612
4613 Complain if one tries to EXPORT a CODE type since that's never
4614 done. Both GCC and HP C still try to IMPORT CODE types, so
4615 silently fix them to be ENTRY types. */
4616 if (symbolP->bsym->flags & BSF_FUNCTION)
4617 {
4618 if (is_export)
4619 as_tsktsk ("Using ENTRY rather than CODE in export directive for %s", symbolP->bsym->name);
4620
4621 symbolP->bsym->flags |= BSF_FUNCTION;
4622 type = SYMBOL_TYPE_ENTRY;
4623 }
4624 else
4625 {
4626 symbolP->bsym->flags &= ~BSF_FUNCTION;
4627 type = SYMBOL_TYPE_CODE;
4628 }
4629 }
4630 else if (strncasecmp (input_line_pointer, "data", 4) == 0)
4631 {
4632 input_line_pointer += 4;
4633 symbolP->bsym->flags &= ~BSF_FUNCTION;
4634 type = SYMBOL_TYPE_DATA;
4635 }
4636 else if ((strncasecmp (input_line_pointer, "entry", 5) == 0))
4637 {
4638 input_line_pointer += 5;
4639 symbolP->bsym->flags |= BSF_FUNCTION;
4640 type = SYMBOL_TYPE_ENTRY;
4641 }
4642 else if (strncasecmp (input_line_pointer, "millicode", 9) == 0)
4643 {
4644 input_line_pointer += 9;
4645 symbolP->bsym->flags |= BSF_FUNCTION;
4646 type = SYMBOL_TYPE_MILLICODE;
4647 }
4648 else if (strncasecmp (input_line_pointer, "plabel", 6) == 0)
4649 {
4650 input_line_pointer += 6;
4651 symbolP->bsym->flags &= ~BSF_FUNCTION;
4652 type = SYMBOL_TYPE_PLABEL;
4653 }
4654 else if (strncasecmp (input_line_pointer, "pri_prog", 8) == 0)
4655 {
4656 input_line_pointer += 8;
4657 symbolP->bsym->flags |= BSF_FUNCTION;
4658 type = SYMBOL_TYPE_PRI_PROG;
4659 }
4660 else if (strncasecmp (input_line_pointer, "sec_prog", 8) == 0)
4661 {
4662 input_line_pointer += 8;
4663 symbolP->bsym->flags |= BSF_FUNCTION;
4664 type = SYMBOL_TYPE_SEC_PROG;
4665 }
4666
4667 /* SOM requires much more information about symbol types
4668 than BFD understands. This is how we get this information
4669 to the SOM BFD backend. */
4670 #ifdef obj_set_symbol_type
4671 obj_set_symbol_type (symbolP->bsym, (int) type);
4672 #endif
4673
4674 /* Now that the type of the exported symbol has been handled,
4675 handle any argument relocation information. */
4676 while (!is_end_of_statement ())
4677 {
4678 if (*input_line_pointer == ',')
4679 input_line_pointer++;
4680 name = input_line_pointer;
4681 c = get_symbol_end ();
4682 /* Argument sources. */
4683 if ((strncasecmp (name, "argw", 4) == 0))
4684 {
4685 p = input_line_pointer;
4686 *p = c;
4687 input_line_pointer++;
4688 temp = atoi (name + 4);
4689 name = input_line_pointer;
4690 c = get_symbol_end ();
4691 arg_reloc = pa_align_arg_reloc (temp, pa_build_arg_reloc (name));
4692 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
4693 *input_line_pointer = c;
4694 }
4695 /* The return value. */
4696 else if ((strncasecmp (name, "rtnval", 6)) == 0)
4697 {
4698 p = input_line_pointer;
4699 *p = c;
4700 input_line_pointer++;
4701 name = input_line_pointer;
4702 c = get_symbol_end ();
4703 arg_reloc = pa_build_arg_reloc (name);
4704 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
4705 *input_line_pointer = c;
4706 }
4707 /* Privelege level. */
4708 else if ((strncasecmp (name, "priv_lev", 8)) == 0)
4709 {
4710 p = input_line_pointer;
4711 *p = c;
4712 input_line_pointer++;
4713 temp = atoi (input_line_pointer);
4714 c = get_symbol_end ();
4715 *input_line_pointer = c;
4716 }
4717 else
4718 {
4719 as_bad ("Undefined .EXPORT/.IMPORT argument (ignored): %s", name);
4720 p = input_line_pointer;
4721 *p = c;
4722 }
4723 if (!is_end_of_statement ())
4724 input_line_pointer++;
4725 }
4726 }
4727
4728 /* Handle an .IMPORT pseudo-op. Any symbol referenced in a given
4729 assembly file must either be defined in the assembly file, or
4730 explicitly IMPORTED from another. */
4731
4732 static void
4733 pa_import (unused)
4734 int unused;
4735 {
4736 char *name, c, *p;
4737 symbolS *symbol;
4738
4739 name = input_line_pointer;
4740 c = get_symbol_end ();
4741
4742 symbol = symbol_find_or_make (name);
4743 p = input_line_pointer;
4744 *p = c;
4745
4746 if (!is_end_of_statement ())
4747 {
4748 input_line_pointer++;
4749 pa_type_args (symbol, 0);
4750 }
4751 else
4752 {
4753 /* Sigh. To be compatable with the HP assembler and to help
4754 poorly written assembly code, we assign a type based on
4755 the the current segment. Note only BSF_FUNCTION really
4756 matters, we do not need to set the full SYMBOL_TYPE_* info here. */
4757 if (now_seg == text_section)
4758 symbol->bsym->flags |= BSF_FUNCTION;
4759
4760 /* If the section is undefined, then the symbol is undefined
4761 Since this is an import, leave the section undefined. */
4762 S_SET_SEGMENT (symbol, &bfd_und_section);
4763 }
4764
4765 demand_empty_rest_of_line ();
4766 }
4767
4768 /* Handle a .LABEL pseudo-op. */
4769
4770 static void
4771 pa_label (unused)
4772 int unused;
4773 {
4774 char *name, c, *p;
4775
4776 name = input_line_pointer;
4777 c = get_symbol_end ();
4778
4779 if (strlen (name) > 0)
4780 {
4781 colon (name);
4782 p = input_line_pointer;
4783 *p = c;
4784 }
4785 else
4786 {
4787 as_warn ("Missing label name on .LABEL");
4788 }
4789
4790 if (!is_end_of_statement ())
4791 {
4792 as_warn ("extra .LABEL arguments ignored.");
4793 ignore_rest_of_line ();
4794 }
4795 demand_empty_rest_of_line ();
4796 }
4797
4798 /* Handle a .LEAVE pseudo-op. This is not supported yet. */
4799
4800 static void
4801 pa_leave (unused)
4802 int unused;
4803 {
4804 abort ();
4805 }
4806
4807 /* Handle a .ORIGIN pseudo-op. */
4808
4809 static void
4810 pa_origin (unused)
4811 int unused;
4812 {
4813 s_org (0);
4814 pa_undefine_label ();
4815 }
4816
4817 /* Handle a .PARAM pseudo-op. This is much like a .EXPORT, except it
4818 is for static functions. FIXME. Should share more code with .EXPORT. */
4819
4820 static void
4821 pa_param (unused)
4822 int unused;
4823 {
4824 char *name, c, *p;
4825 symbolS *symbol;
4826
4827 name = input_line_pointer;
4828 c = get_symbol_end ();
4829
4830 if ((symbol = symbol_find_or_make (name)) == NULL)
4831 {
4832 as_bad ("Cannot define static symbol: %s\n", name);
4833 p = input_line_pointer;
4834 *p = c;
4835 input_line_pointer++;
4836 }
4837 else
4838 {
4839 S_CLEAR_EXTERNAL (symbol);
4840 p = input_line_pointer;
4841 *p = c;
4842 if (!is_end_of_statement ())
4843 {
4844 input_line_pointer++;
4845 pa_type_args (symbol, 0);
4846 }
4847 }
4848
4849 demand_empty_rest_of_line ();
4850 }
4851
4852 /* Handle a .PROC pseudo-op. It is used to mark the beginning
4853 of a procedure from a syntatical point of view. */
4854
4855 static void
4856 pa_proc (unused)
4857 int unused;
4858 {
4859 struct call_info *call_info;
4860 segT seg;
4861
4862 if (within_procedure)
4863 as_fatal ("Nested procedures");
4864
4865 /* Reset global variables for new procedure. */
4866 callinfo_found = FALSE;
4867 within_procedure = TRUE;
4868
4869 /* Create a new CODE subspace for each procedure if we are not
4870 using space/subspace aliases. */
4871 if (!USE_ALIASES && call_info_root != NULL)
4872 {
4873 /* Force creation of a new $CODE$ subspace; inherit attributes from
4874 the first $CODE$ subspace. */
4875 seg = subseg_force_new ("$CODE$", 0);
4876
4877 /* Now set the flags. */
4878 bfd_set_section_flags (stdoutput, seg,
4879 bfd_get_section_flags (abfd, text_section));
4880
4881 /* Record any alignment request for this section. */
4882 record_alignment (seg,
4883 bfd_get_section_alignment (stdoutput, text_section));
4884
4885 /* Change the "text_section" to be our new $CODE$ subspace. */
4886 text_section = seg;
4887 subseg_set (text_section, 0);
4888
4889 #ifdef obj_set_subsection_attributes
4890 /* Need a way to inherit the the access bits, sort key and quadrant
4891 from the first $CODE$ subspace. FIXME. */
4892 obj_set_subsection_attributes (seg, current_space->sd_seg, 0x2c, 24, 0);
4893 #endif
4894 }
4895
4896 /* Create another call_info structure. */
4897 call_info = (struct call_info *) xmalloc (sizeof (struct call_info));
4898
4899 if (!call_info)
4900 as_fatal ("Cannot allocate unwind descriptor\n");
4901
4902 bzero (call_info, sizeof (struct call_info));
4903
4904 call_info->ci_next = NULL;
4905
4906 if (call_info_root == NULL)
4907 {
4908 call_info_root = call_info;
4909 last_call_info = call_info;
4910 }
4911 else
4912 {
4913 last_call_info->ci_next = call_info;
4914 last_call_info = call_info;
4915 }
4916
4917 /* set up defaults on call_info structure */
4918
4919 call_info->ci_unwind.descriptor.cannot_unwind = 0;
4920 call_info->ci_unwind.descriptor.region_desc = 1;
4921 call_info->ci_unwind.descriptor.hpux_interrupt_marker = 0;
4922
4923 /* If we got a .PROC pseudo-op, we know that the function is defined
4924 locally. Make sure it gets into the symbol table. */
4925 {
4926 label_symbol_struct *label_symbol = pa_get_label ();
4927
4928 if (label_symbol)
4929 {
4930 if (label_symbol->lss_label)
4931 {
4932 last_call_info->start_symbol = label_symbol->lss_label;
4933 label_symbol->lss_label->bsym->flags |= BSF_FUNCTION;
4934 if (! USE_ALIASES)
4935 {
4936 /* The label was defined in a different segment. Fix that
4937 along with the value and associated fragment. */
4938 S_SET_SEGMENT (last_call_info->start_symbol, now_seg);
4939 S_SET_VALUE (last_call_info->start_symbol,
4940 ((char*)obstack_next_free (&frags)
4941 - frag_now->fr_literal));
4942 last_call_info->start_symbol->sy_frag = frag_now;
4943 }
4944 }
4945 else
4946 as_bad ("Missing function name for .PROC (corrupted label chain)");
4947 }
4948 else
4949 last_call_info->start_symbol = NULL;
4950 }
4951
4952 demand_empty_rest_of_line ();
4953 }
4954
4955 /* Process the syntatical end of a procedure. Make sure all the
4956 appropriate pseudo-ops were found within the procedure. */
4957
4958 static void
4959 pa_procend (unused)
4960 int unused;
4961 {
4962
4963 if (!within_procedure)
4964 as_bad ("misplaced .procend");
4965
4966 if (!callinfo_found)
4967 as_bad ("Missing .callinfo for this procedure");
4968
4969 if (within_entry_exit)
4970 as_bad ("Missing .EXIT for a .ENTRY");
4971
4972 #ifdef OBJ_ELF
4973 /* ELF needs to mark the end of each function so that it can compute
4974 the size of the function (apparently its needed in the symbol table. */
4975 hppa_elf_mark_end_of_function ();
4976 #endif
4977
4978 within_procedure = FALSE;
4979 demand_empty_rest_of_line ();
4980 pa_undefine_label ();
4981 }
4982
4983 /* Parse the parameters to a .SPACE directive; if CREATE_FLAG is nonzero,
4984 then create a new space entry to hold the information specified
4985 by the parameters to the .SPACE directive. */
4986
4987 static sd_chain_struct *
4988 pa_parse_space_stmt (space_name, create_flag)
4989 char *space_name;
4990 int create_flag;
4991 {
4992 char *name, *ptemp, c;
4993 char loadable, defined, private, sort;
4994 int spnum;
4995 asection *seg = NULL;
4996 sd_chain_struct *space;
4997
4998 /* load default values */
4999 spnum = 0;
5000 sort = 0;
5001 loadable = TRUE;
5002 defined = TRUE;
5003 private = FALSE;
5004 if (strcmp (space_name, "$TEXT$") == 0)
5005 {
5006 seg = pa_def_spaces[0].segment;
5007 sort = pa_def_spaces[0].sort;
5008 }
5009 else if (strcmp (space_name, "$PRIVATE$") == 0)
5010 {
5011 seg = pa_def_spaces[1].segment;
5012 sort = pa_def_spaces[1].sort;
5013 }
5014
5015 if (!is_end_of_statement ())
5016 {
5017 print_errors = FALSE;
5018 ptemp = input_line_pointer + 1;
5019 /* First see if the space was specified as a number rather than
5020 as a name. According to the PA assembly manual the rest of
5021 the line should be ignored. */
5022 if ((spnum = pa_parse_number (&ptemp, 0)) >= 0)
5023 input_line_pointer = ptemp;
5024 else
5025 {
5026 while (!is_end_of_statement ())
5027 {
5028 input_line_pointer++;
5029 name = input_line_pointer;
5030 c = get_symbol_end ();
5031 if ((strncasecmp (name, "spnum", 5) == 0))
5032 {
5033 *input_line_pointer = c;
5034 input_line_pointer++;
5035 spnum = get_absolute_expression ();
5036 }
5037 else if ((strncasecmp (name, "sort", 4) == 0))
5038 {
5039 *input_line_pointer = c;
5040 input_line_pointer++;
5041 sort = get_absolute_expression ();
5042 }
5043 else if ((strncasecmp (name, "unloadable", 10) == 0))
5044 {
5045 *input_line_pointer = c;
5046 loadable = FALSE;
5047 }
5048 else if ((strncasecmp (name, "notdefined", 10) == 0))
5049 {
5050 *input_line_pointer = c;
5051 defined = FALSE;
5052 }
5053 else if ((strncasecmp (name, "private", 7) == 0))
5054 {
5055 *input_line_pointer = c;
5056 private = TRUE;
5057 }
5058 else
5059 {
5060 as_bad ("Invalid .SPACE argument");
5061 *input_line_pointer = c;
5062 if (!is_end_of_statement ())
5063 input_line_pointer++;
5064 }
5065 }
5066 }
5067 print_errors = TRUE;
5068 }
5069
5070 if (create_flag && seg == NULL)
5071 seg = subseg_new (space_name, 0);
5072
5073 /* If create_flag is nonzero, then create the new space with
5074 the attributes computed above. Else set the values in
5075 an already existing space -- this can only happen for
5076 the first occurence of a built-in space. */
5077 if (create_flag)
5078 space = create_new_space (space_name, spnum, loadable, defined,
5079 private, sort, seg, 1);
5080 else
5081 {
5082 space = is_defined_space (space_name);
5083 SPACE_SPNUM (space) = spnum;
5084 SPACE_DEFINED (space) = defined & 1;
5085 SPACE_USER_DEFINED (space) = 1;
5086 space->sd_seg = seg;
5087 }
5088
5089 #ifdef obj_set_section_attributes
5090 obj_set_section_attributes (seg, defined, private, sort, spnum);
5091 #endif
5092
5093 return space;
5094 }
5095
5096 /* Handle a .SPACE pseudo-op; this switches the current space to the
5097 given space, creating the new space if necessary. */
5098
5099 static void
5100 pa_space (unused)
5101 int unused;
5102 {
5103 char *name, c, *space_name, *save_s;
5104 int temp;
5105 sd_chain_struct *sd_chain;
5106
5107 if (within_procedure)
5108 {
5109 as_bad ("Can\'t change spaces within a procedure definition. Ignored");
5110 ignore_rest_of_line ();
5111 }
5112 else
5113 {
5114 /* Check for some of the predefined spaces. FIXME: most of the code
5115 below is repeated several times, can we extract the common parts
5116 and place them into a subroutine or something similar? */
5117 /* FIXME Is this (and the next IF stmt) really right?
5118 What if INPUT_LINE_POINTER points to "$TEXT$FOO"? */
5119 if (strncmp (input_line_pointer, "$TEXT$", 6) == 0)
5120 {
5121 input_line_pointer += 6;
5122 sd_chain = is_defined_space ("$TEXT$");
5123 if (sd_chain == NULL)
5124 sd_chain = pa_parse_space_stmt ("$TEXT$", 1);
5125 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5126 sd_chain = pa_parse_space_stmt ("$TEXT$", 0);
5127
5128 current_space = sd_chain;
5129 subseg_set (text_section, sd_chain->sd_last_subseg);
5130 current_subspace
5131 = pa_subsegment_to_subspace (text_section,
5132 sd_chain->sd_last_subseg);
5133 demand_empty_rest_of_line ();
5134 return;
5135 }
5136 if (strncmp (input_line_pointer, "$PRIVATE$", 9) == 0)
5137 {
5138 input_line_pointer += 9;
5139 sd_chain = is_defined_space ("$PRIVATE$");
5140 if (sd_chain == NULL)
5141 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 1);
5142 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5143 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 0);
5144
5145 current_space = sd_chain;
5146 subseg_set (data_section, sd_chain->sd_last_subseg);
5147 current_subspace
5148 = pa_subsegment_to_subspace (data_section,
5149 sd_chain->sd_last_subseg);
5150 demand_empty_rest_of_line ();
5151 return;
5152 }
5153 if (!strncasecmp (input_line_pointer,
5154 GDB_DEBUG_SPACE_NAME,
5155 strlen (GDB_DEBUG_SPACE_NAME)))
5156 {
5157 input_line_pointer += strlen (GDB_DEBUG_SPACE_NAME);
5158 sd_chain = is_defined_space (GDB_DEBUG_SPACE_NAME);
5159 if (sd_chain == NULL)
5160 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 1);
5161 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5162 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 0);
5163
5164 current_space = sd_chain;
5165
5166 {
5167 asection *gdb_section
5168 = bfd_make_section_old_way (stdoutput, GDB_DEBUG_SPACE_NAME);
5169
5170 subseg_set (gdb_section, sd_chain->sd_last_subseg);
5171 current_subspace
5172 = pa_subsegment_to_subspace (gdb_section,
5173 sd_chain->sd_last_subseg);
5174 }
5175 demand_empty_rest_of_line ();
5176 return;
5177 }
5178
5179 /* It could be a space specified by number. */
5180 print_errors = 0;
5181 save_s = input_line_pointer;
5182 if ((temp = pa_parse_number (&input_line_pointer, 0)) >= 0)
5183 {
5184 if (sd_chain = pa_find_space_by_number (temp))
5185 {
5186 current_space = sd_chain;
5187
5188 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
5189 current_subspace
5190 = pa_subsegment_to_subspace (sd_chain->sd_seg,
5191 sd_chain->sd_last_subseg);
5192 demand_empty_rest_of_line ();
5193 return;
5194 }
5195 }
5196
5197 /* Not a number, attempt to create a new space. */
5198 print_errors = 1;
5199 input_line_pointer = save_s;
5200 name = input_line_pointer;
5201 c = get_symbol_end ();
5202 space_name = xmalloc (strlen (name) + 1);
5203 strcpy (space_name, name);
5204 *input_line_pointer = c;
5205
5206 sd_chain = pa_parse_space_stmt (space_name, 1);
5207 current_space = sd_chain;
5208
5209 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
5210 current_subspace = pa_subsegment_to_subspace (sd_chain->sd_seg,
5211 sd_chain->sd_last_subseg);
5212 demand_empty_rest_of_line ();
5213 }
5214 }
5215
5216 /* Switch to a new space. (I think). FIXME. */
5217
5218 static void
5219 pa_spnum (unused)
5220 int unused;
5221 {
5222 char *name;
5223 char c;
5224 char *p;
5225 sd_chain_struct *space;
5226
5227 name = input_line_pointer;
5228 c = get_symbol_end ();
5229 space = is_defined_space (name);
5230 if (space)
5231 {
5232 p = frag_more (4);
5233 md_number_to_chars (p, SPACE_SPNUM (space), 4);
5234 }
5235 else
5236 as_warn ("Undefined space: '%s' Assuming space number = 0.", name);
5237
5238 *input_line_pointer = c;
5239 demand_empty_rest_of_line ();
5240 }
5241
5242 /* If VALUE is an exact power of two between zero and 2^31, then
5243 return log2 (VALUE). Else return -1. */
5244
5245 static int
5246 log2 (value)
5247 int value;
5248 {
5249 int shift = 0;
5250
5251 while ((1 << shift) != value && shift < 32)
5252 shift++;
5253
5254 if (shift >= 32)
5255 return -1;
5256 else
5257 return shift;
5258 }
5259
5260 /* Handle a .SUBSPACE pseudo-op; this switches the current subspace to the
5261 given subspace, creating the new subspace if necessary.
5262
5263 FIXME. Should mirror pa_space more closely, in particular how
5264 they're broken up into subroutines. */
5265
5266 static void
5267 pa_subspace (unused)
5268 int unused;
5269 {
5270 char *name, *ss_name, *alias, c;
5271 char loadable, code_only, common, dup_common, zero, sort;
5272 int i, access, space_index, alignment, quadrant, applicable, flags;
5273 sd_chain_struct *space;
5274 ssd_chain_struct *ssd;
5275 asection *section;
5276
5277 if (within_procedure)
5278 {
5279 as_bad ("Can\'t change subspaces within a procedure definition. Ignored");
5280 ignore_rest_of_line ();
5281 }
5282 else
5283 {
5284 name = input_line_pointer;
5285 c = get_symbol_end ();
5286 ss_name = xmalloc (strlen (name) + 1);
5287 strcpy (ss_name, name);
5288 *input_line_pointer = c;
5289
5290 /* Load default values. */
5291 sort = 0;
5292 access = 0x7f;
5293 loadable = 1;
5294 common = 0;
5295 dup_common = 0;
5296 code_only = 0;
5297 zero = 0;
5298 space_index = ~0;
5299 alignment = 0;
5300 quadrant = 0;
5301 alias = NULL;
5302
5303 space = current_space;
5304 ssd = is_defined_subspace (ss_name);
5305 /* Allow user to override the builtin attributes of subspaces. But
5306 only allow the attributes to be changed once! */
5307 if (ssd && SUBSPACE_DEFINED (ssd))
5308 {
5309 subseg_set (ssd->ssd_seg, ssd->ssd_subseg);
5310 if (!is_end_of_statement ())
5311 as_warn ("Parameters of an existing subspace can\'t be modified");
5312 demand_empty_rest_of_line ();
5313 return;
5314 }
5315 else
5316 {
5317 /* A new subspace. Load default values if it matches one of
5318 the builtin subspaces. */
5319 i = 0;
5320 while (pa_def_subspaces[i].name)
5321 {
5322 if (strcasecmp (pa_def_subspaces[i].name, ss_name) == 0)
5323 {
5324 loadable = pa_def_subspaces[i].loadable;
5325 common = pa_def_subspaces[i].common;
5326 dup_common = pa_def_subspaces[i].dup_common;
5327 code_only = pa_def_subspaces[i].code_only;
5328 zero = pa_def_subspaces[i].zero;
5329 space_index = pa_def_subspaces[i].space_index;
5330 alignment = pa_def_subspaces[i].alignment;
5331 quadrant = pa_def_subspaces[i].quadrant;
5332 access = pa_def_subspaces[i].access;
5333 sort = pa_def_subspaces[i].sort;
5334 if (USE_ALIASES && pa_def_subspaces[i].alias)
5335 alias = pa_def_subspaces[i].alias;
5336 break;
5337 }
5338 i++;
5339 }
5340 }
5341
5342 /* We should be working with a new subspace now. Fill in
5343 any information as specified by the user. */
5344 if (!is_end_of_statement ())
5345 {
5346 input_line_pointer++;
5347 while (!is_end_of_statement ())
5348 {
5349 name = input_line_pointer;
5350 c = get_symbol_end ();
5351 if ((strncasecmp (name, "quad", 4) == 0))
5352 {
5353 *input_line_pointer = c;
5354 input_line_pointer++;
5355 quadrant = get_absolute_expression ();
5356 }
5357 else if ((strncasecmp (name, "align", 5) == 0))
5358 {
5359 *input_line_pointer = c;
5360 input_line_pointer++;
5361 alignment = get_absolute_expression ();
5362 if (log2 (alignment) == -1)
5363 {
5364 as_bad ("Alignment must be a power of 2");
5365 alignment = 1;
5366 }
5367 }
5368 else if ((strncasecmp (name, "access", 6) == 0))
5369 {
5370 *input_line_pointer = c;
5371 input_line_pointer++;
5372 access = get_absolute_expression ();
5373 }
5374 else if ((strncasecmp (name, "sort", 4) == 0))
5375 {
5376 *input_line_pointer = c;
5377 input_line_pointer++;
5378 sort = get_absolute_expression ();
5379 }
5380 else if ((strncasecmp (name, "code_only", 9) == 0))
5381 {
5382 *input_line_pointer = c;
5383 code_only = 1;
5384 }
5385 else if ((strncasecmp (name, "unloadable", 10) == 0))
5386 {
5387 *input_line_pointer = c;
5388 loadable = 0;
5389 }
5390 else if ((strncasecmp (name, "common", 6) == 0))
5391 {
5392 *input_line_pointer = c;
5393 common = 1;
5394 }
5395 else if ((strncasecmp (name, "dup_comm", 8) == 0))
5396 {
5397 *input_line_pointer = c;
5398 dup_common = 1;
5399 }
5400 else if ((strncasecmp (name, "zero", 4) == 0))
5401 {
5402 *input_line_pointer = c;
5403 zero = 1;
5404 }
5405 else if ((strncasecmp (name, "first", 5) == 0))
5406 as_bad ("FIRST not supported as a .SUBSPACE argument");
5407 else
5408 as_bad ("Invalid .SUBSPACE argument");
5409 if (!is_end_of_statement ())
5410 input_line_pointer++;
5411 }
5412 }
5413
5414 /* Compute a reasonable set of BFD flags based on the information
5415 in the .subspace directive. */
5416 applicable = bfd_applicable_section_flags (stdoutput);
5417 flags = 0;
5418 if (loadable)
5419 flags |= (SEC_ALLOC | SEC_LOAD);
5420 if (code_only)
5421 flags |= SEC_CODE;
5422 if (common || dup_common)
5423 flags |= SEC_IS_COMMON;
5424
5425 /* This is a zero-filled subspace (eg BSS). */
5426 if (zero)
5427 flags &= ~SEC_LOAD;
5428
5429 flags |= SEC_RELOC | SEC_HAS_CONTENTS;
5430 applicable &= flags;
5431
5432 /* If this is an existing subspace, then we want to use the
5433 segment already associated with the subspace.
5434
5435 FIXME NOW! ELF BFD doesn't appear to be ready to deal with
5436 lots of sections. It might be a problem in the PA ELF
5437 code, I do not know yet. For now avoid creating anything
5438 but the "standard" sections for ELF. */
5439 if (ssd)
5440 section = ssd->ssd_seg;
5441 else if (alias)
5442 section = subseg_new (alias, 0);
5443 else if (!alias && USE_ALIASES)
5444 {
5445 as_warn ("Ignoring subspace decl due to ELF BFD bugs.");
5446 demand_empty_rest_of_line ();
5447 return;
5448 }
5449 else
5450 section = subseg_new (ss_name, 0);
5451
5452 /* Now set the flags. */
5453 bfd_set_section_flags (stdoutput, section, applicable);
5454
5455 /* Record any alignment request for this section. */
5456 record_alignment (section, log2 (alignment));
5457
5458 /* Set the starting offset for this section. */
5459 bfd_set_section_vma (stdoutput, section,
5460 pa_subspace_start (space, quadrant));
5461
5462 /* Now that all the flags are set, update an existing subspace,
5463 or create a new one. */
5464 if (ssd)
5465
5466 current_subspace = update_subspace (space, ss_name, loadable,
5467 code_only, common, dup_common,
5468 sort, zero, access, space_index,
5469 alignment, quadrant,
5470 section);
5471 else
5472 current_subspace = create_new_subspace (space, ss_name, loadable,
5473 code_only, common,
5474 dup_common, zero, sort,
5475 access, space_index,
5476 alignment, quadrant, section);
5477
5478 demand_empty_rest_of_line ();
5479 current_subspace->ssd_seg = section;
5480 subseg_set (current_subspace->ssd_seg, current_subspace->ssd_subseg);
5481 }
5482 SUBSPACE_DEFINED (current_subspace) = 1;
5483 }
5484
5485
5486 /* Create default space and subspace dictionaries. */
5487
5488 static void
5489 pa_spaces_begin ()
5490 {
5491 int i;
5492
5493 space_dict_root = NULL;
5494 space_dict_last = NULL;
5495
5496 i = 0;
5497 while (pa_def_spaces[i].name)
5498 {
5499 char *name;
5500
5501 /* Pick the right name to use for the new section. */
5502 if (pa_def_spaces[i].alias && USE_ALIASES)
5503 name = pa_def_spaces[i].alias;
5504 else
5505 name = pa_def_spaces[i].name;
5506
5507 pa_def_spaces[i].segment = subseg_new (name, 0);
5508 create_new_space (pa_def_spaces[i].name, pa_def_spaces[i].spnum,
5509 pa_def_spaces[i].loadable, pa_def_spaces[i].defined,
5510 pa_def_spaces[i].private, pa_def_spaces[i].sort,
5511 pa_def_spaces[i].segment, 0);
5512 i++;
5513 }
5514
5515 i = 0;
5516 while (pa_def_subspaces[i].name)
5517 {
5518 char *name;
5519 int applicable, subsegment;
5520 asection *segment = NULL;
5521 sd_chain_struct *space;
5522
5523 /* Pick the right name for the new section and pick the right
5524 subsegment number. */
5525 if (pa_def_subspaces[i].alias && USE_ALIASES)
5526 {
5527 name = pa_def_subspaces[i].alias;
5528 subsegment = pa_def_subspaces[i].subsegment;
5529 }
5530 else
5531 {
5532 name = pa_def_subspaces[i].name;
5533 subsegment = 0;
5534 }
5535
5536 /* Create the new section. */
5537 segment = subseg_new (name, subsegment);
5538
5539
5540 /* For SOM we want to replace the standard .text, .data, and .bss
5541 sections with our own. */
5542 if (!strcmp (pa_def_subspaces[i].name, "$CODE$") && !USE_ALIASES)
5543 {
5544 text_section = segment;
5545 applicable = bfd_applicable_section_flags (stdoutput);
5546 bfd_set_section_flags (stdoutput, text_section,
5547 applicable & (SEC_ALLOC | SEC_LOAD
5548 | SEC_RELOC | SEC_CODE
5549 | SEC_READONLY
5550 | SEC_HAS_CONTENTS));
5551 }
5552 else if (!strcmp (pa_def_subspaces[i].name, "$DATA$") && !USE_ALIASES)
5553 {
5554 data_section = segment;
5555 applicable = bfd_applicable_section_flags (stdoutput);
5556 bfd_set_section_flags (stdoutput, data_section,
5557 applicable & (SEC_ALLOC | SEC_LOAD
5558 | SEC_RELOC
5559 | SEC_HAS_CONTENTS));
5560
5561
5562 }
5563 else if (!strcmp (pa_def_subspaces[i].name, "$BSS$") && !USE_ALIASES)
5564 {
5565 bss_section = segment;
5566 applicable = bfd_applicable_section_flags (stdoutput);
5567 bfd_set_section_flags (stdoutput, bss_section,
5568 applicable & SEC_ALLOC);
5569 }
5570
5571 /* Find the space associated with this subspace. */
5572 space = pa_segment_to_space (pa_def_spaces[pa_def_subspaces[i].
5573 def_space_index].segment);
5574 if (space == NULL)
5575 {
5576 as_fatal ("Internal error: Unable to find containing space for %s.",
5577 pa_def_subspaces[i].name);
5578 }
5579
5580 create_new_subspace (space, name,
5581 pa_def_subspaces[i].loadable,
5582 pa_def_subspaces[i].code_only,
5583 pa_def_subspaces[i].common,
5584 pa_def_subspaces[i].dup_common,
5585 pa_def_subspaces[i].zero,
5586 pa_def_subspaces[i].sort,
5587 pa_def_subspaces[i].access,
5588 pa_def_subspaces[i].space_index,
5589 pa_def_subspaces[i].alignment,
5590 pa_def_subspaces[i].quadrant,
5591 segment);
5592 i++;
5593 }
5594 }
5595
5596
5597
5598 /* Create a new space NAME, with the appropriate flags as defined
5599 by the given parameters. */
5600
5601 static sd_chain_struct *
5602 create_new_space (name, spnum, loadable, defined, private,
5603 sort, seg, user_defined)
5604 char *name;
5605 int spnum;
5606 char loadable;
5607 char defined;
5608 char private;
5609 char sort;
5610 asection *seg;
5611 int user_defined;
5612 {
5613 sd_chain_struct *chain_entry;
5614
5615 chain_entry = (sd_chain_struct *) xmalloc (sizeof (sd_chain_struct));
5616 if (!chain_entry)
5617 as_fatal ("Out of memory: could not allocate new space chain entry: %s\n",
5618 name);
5619
5620 SPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5621 strcpy (SPACE_NAME (chain_entry), name);
5622 SPACE_DEFINED (chain_entry) = defined;
5623 SPACE_USER_DEFINED (chain_entry) = user_defined;
5624 SPACE_SPNUM (chain_entry) = spnum;
5625
5626 chain_entry->sd_seg = seg;
5627 chain_entry->sd_last_subseg = -1;
5628 chain_entry->sd_next = NULL;
5629
5630 /* Find spot for the new space based on its sort key. */
5631 if (!space_dict_last)
5632 space_dict_last = chain_entry;
5633
5634 if (space_dict_root == NULL)
5635 space_dict_root = chain_entry;
5636 else
5637 {
5638 sd_chain_struct *chain_pointer;
5639 sd_chain_struct *prev_chain_pointer;
5640
5641 chain_pointer = space_dict_root;
5642 prev_chain_pointer = NULL;
5643
5644 while (chain_pointer)
5645 {
5646 prev_chain_pointer = chain_pointer;
5647 chain_pointer = chain_pointer->sd_next;
5648 }
5649
5650 /* At this point we've found the correct place to add the new
5651 entry. So add it and update the linked lists as appropriate. */
5652 if (prev_chain_pointer)
5653 {
5654 chain_entry->sd_next = chain_pointer;
5655 prev_chain_pointer->sd_next = chain_entry;
5656 }
5657 else
5658 {
5659 space_dict_root = chain_entry;
5660 chain_entry->sd_next = chain_pointer;
5661 }
5662
5663 if (chain_entry->sd_next == NULL)
5664 space_dict_last = chain_entry;
5665 }
5666
5667 /* This is here to catch predefined spaces which do not get
5668 modified by the user's input. Another call is found at
5669 the bottom of pa_parse_space_stmt to handle cases where
5670 the user modifies a predefined space. */
5671 #ifdef obj_set_section_attributes
5672 obj_set_section_attributes (seg, defined, private, sort, spnum);
5673 #endif
5674
5675 return chain_entry;
5676 }
5677
5678 /* Create a new subspace NAME, with the appropriate flags as defined
5679 by the given parameters.
5680
5681 Add the new subspace to the subspace dictionary chain in numerical
5682 order as defined by the SORT entries. */
5683
5684 static ssd_chain_struct *
5685 create_new_subspace (space, name, loadable, code_only, common,
5686 dup_common, is_zero, sort, access, space_index,
5687 alignment, quadrant, seg)
5688 sd_chain_struct *space;
5689 char *name;
5690 char loadable, code_only, common, dup_common, is_zero;
5691 char sort;
5692 int access;
5693 int space_index;
5694 int alignment;
5695 int quadrant;
5696 asection *seg;
5697 {
5698 ssd_chain_struct *chain_entry;
5699
5700 chain_entry = (ssd_chain_struct *) xmalloc (sizeof (ssd_chain_struct));
5701 if (!chain_entry)
5702 as_fatal ("Out of memory: could not allocate new subspace chain entry: %s\n", name);
5703
5704 SUBSPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5705 strcpy (SUBSPACE_NAME (chain_entry), name);
5706
5707 /* Initialize subspace_defined. When we hit a .subspace directive
5708 we'll set it to 1 which "locks-in" the subspace attributes. */
5709 SUBSPACE_DEFINED (chain_entry) = 0;
5710
5711 chain_entry->ssd_subseg = USE_ALIASES ? pa_next_subseg (space) : 0;
5712 chain_entry->ssd_seg = seg;
5713 chain_entry->ssd_next = NULL;
5714
5715 /* Find spot for the new subspace based on its sort key. */
5716 if (space->sd_subspaces == NULL)
5717 space->sd_subspaces = chain_entry;
5718 else
5719 {
5720 ssd_chain_struct *chain_pointer;
5721 ssd_chain_struct *prev_chain_pointer;
5722
5723 chain_pointer = space->sd_subspaces;
5724 prev_chain_pointer = NULL;
5725
5726 while (chain_pointer)
5727 {
5728 prev_chain_pointer = chain_pointer;
5729 chain_pointer = chain_pointer->ssd_next;
5730 }
5731
5732 /* Now we have somewhere to put the new entry. Insert it and update
5733 the links. */
5734 if (prev_chain_pointer)
5735 {
5736 chain_entry->ssd_next = chain_pointer;
5737 prev_chain_pointer->ssd_next = chain_entry;
5738 }
5739 else
5740 {
5741 space->sd_subspaces = chain_entry;
5742 chain_entry->ssd_next = chain_pointer;
5743 }
5744 }
5745
5746 #ifdef obj_set_subsection_attributes
5747 obj_set_subsection_attributes (seg, space->sd_seg, access,
5748 sort, quadrant);
5749 #endif
5750
5751 return chain_entry;
5752 }
5753
5754 /* Update the information for the given subspace based upon the
5755 various arguments. Return the modified subspace chain entry. */
5756
5757 static ssd_chain_struct *
5758 update_subspace (space, name, loadable, code_only, common, dup_common, sort,
5759 zero, access, space_index, alignment, quadrant, section)
5760 sd_chain_struct *space;
5761 char *name;
5762 char loadable;
5763 char code_only;
5764 char common;
5765 char dup_common;
5766 char zero;
5767 char sort;
5768 int access;
5769 int space_index;
5770 int alignment;
5771 int quadrant;
5772 asection *section;
5773 {
5774 ssd_chain_struct *chain_entry;
5775
5776 chain_entry = is_defined_subspace (name);
5777
5778 #ifdef obj_set_subsection_attributes
5779 obj_set_subsection_attributes (section, space->sd_seg, access,
5780 sort, quadrant);
5781 #endif
5782
5783 return chain_entry;
5784 }
5785
5786 /* Return the space chain entry for the space with the name NAME or
5787 NULL if no such space exists. */
5788
5789 static sd_chain_struct *
5790 is_defined_space (name)
5791 char *name;
5792 {
5793 sd_chain_struct *chain_pointer;
5794
5795 for (chain_pointer = space_dict_root;
5796 chain_pointer;
5797 chain_pointer = chain_pointer->sd_next)
5798 {
5799 if (strcmp (SPACE_NAME (chain_pointer), name) == 0)
5800 return chain_pointer;
5801 }
5802
5803 /* No mapping from segment to space was found. Return NULL. */
5804 return NULL;
5805 }
5806
5807 /* Find and return the space associated with the given seg. If no mapping
5808 from the given seg to a space is found, then return NULL.
5809
5810 Unlike subspaces, the number of spaces is not expected to grow much,
5811 so a linear exhaustive search is OK here. */
5812
5813 static sd_chain_struct *
5814 pa_segment_to_space (seg)
5815 asection *seg;
5816 {
5817 sd_chain_struct *space_chain;
5818
5819 /* Walk through each space looking for the correct mapping. */
5820 for (space_chain = space_dict_root;
5821 space_chain;
5822 space_chain = space_chain->sd_next)
5823 {
5824 if (space_chain->sd_seg == seg)
5825 return space_chain;
5826 }
5827
5828 /* Mapping was not found. Return NULL. */
5829 return NULL;
5830 }
5831
5832 /* Return the space chain entry for the subspace with the name NAME or
5833 NULL if no such subspace exists.
5834
5835 Uses a linear search through all the spaces and subspaces, this may
5836 not be appropriate if we ever being placing each function in its
5837 own subspace. */
5838
5839 static ssd_chain_struct *
5840 is_defined_subspace (name)
5841 char *name;
5842 {
5843 sd_chain_struct *space_chain;
5844 ssd_chain_struct *subspace_chain;
5845
5846 /* Walk through each space. */
5847 for (space_chain = space_dict_root;
5848 space_chain;
5849 space_chain = space_chain->sd_next)
5850 {
5851 /* Walk through each subspace looking for a name which matches. */
5852 for (subspace_chain = space_chain->sd_subspaces;
5853 subspace_chain;
5854 subspace_chain = subspace_chain->ssd_next)
5855 if (strcmp (SUBSPACE_NAME (subspace_chain), name) == 0)
5856 return subspace_chain;
5857 }
5858
5859 /* Subspace wasn't found. Return NULL. */
5860 return NULL;
5861 }
5862
5863 /* Find and return the subspace associated with the given seg. If no
5864 mapping from the given seg to a subspace is found, then return NULL.
5865
5866 If we ever put each procedure/function within its own subspace
5867 (to make life easier on the compiler and linker), then this will have
5868 to become more efficient. */
5869
5870 static ssd_chain_struct *
5871 pa_subsegment_to_subspace (seg, subseg)
5872 asection *seg;
5873 subsegT subseg;
5874 {
5875 sd_chain_struct *space_chain;
5876 ssd_chain_struct *subspace_chain;
5877
5878 /* Walk through each space. */
5879 for (space_chain = space_dict_root;
5880 space_chain;
5881 space_chain = space_chain->sd_next)
5882 {
5883 if (space_chain->sd_seg == seg)
5884 {
5885 /* Walk through each subspace within each space looking for
5886 the correct mapping. */
5887 for (subspace_chain = space_chain->sd_subspaces;
5888 subspace_chain;
5889 subspace_chain = subspace_chain->ssd_next)
5890 if (subspace_chain->ssd_subseg == (int) subseg)
5891 return subspace_chain;
5892 }
5893 }
5894
5895 /* No mapping from subsegment to subspace found. Return NULL. */
5896 return NULL;
5897 }
5898
5899 /* Given a number, try and find a space with the name number.
5900
5901 Return a pointer to a space dictionary chain entry for the space
5902 that was found or NULL on failure. */
5903
5904 static sd_chain_struct *
5905 pa_find_space_by_number (number)
5906 int number;
5907 {
5908 sd_chain_struct *space_chain;
5909
5910 for (space_chain = space_dict_root;
5911 space_chain;
5912 space_chain = space_chain->sd_next)
5913 {
5914 if (SPACE_SPNUM (space_chain) == number)
5915 return space_chain;
5916 }
5917
5918 /* No appropriate space found. Return NULL. */
5919 return NULL;
5920 }
5921
5922 /* Return the starting address for the given subspace. If the starting
5923 address is unknown then return zero. */
5924
5925 static unsigned int
5926 pa_subspace_start (space, quadrant)
5927 sd_chain_struct *space;
5928 int quadrant;
5929 {
5930 /* FIXME. Assumes everyone puts read/write data at 0x4000000, this
5931 is not correct for the PA OSF1 port. */
5932 if ((strcmp (SPACE_NAME (space), "$PRIVATE$") == 0) && quadrant == 1)
5933 return 0x40000000;
5934 else if (space->sd_seg == data_section && quadrant == 1)
5935 return 0x40000000;
5936 else
5937 return 0;
5938 }
5939
5940 /* FIXME. Needs documentation. */
5941 static int
5942 pa_next_subseg (space)
5943 sd_chain_struct *space;
5944 {
5945
5946 space->sd_last_subseg++;
5947 return space->sd_last_subseg;
5948 }
5949
5950 /* Helper function for pa_stringer. Used to find the end of
5951 a string. */
5952
5953 static unsigned int
5954 pa_stringer_aux (s)
5955 char *s;
5956 {
5957 unsigned int c = *s & CHAR_MASK;
5958 switch (c)
5959 {
5960 case '\"':
5961 c = NOT_A_CHAR;
5962 break;
5963 default:
5964 break;
5965 }
5966 return c;
5967 }
5968
5969 /* Handle a .STRING type pseudo-op. */
5970
5971 static void
5972 pa_stringer (append_zero)
5973 int append_zero;
5974 {
5975 char *s, num_buf[4];
5976 unsigned int c;
5977 int i;
5978
5979 /* Preprocess the string to handle PA-specific escape sequences.
5980 For example, \xDD where DD is a hexidecimal number should be
5981 changed to \OOO where OOO is an octal number. */
5982
5983 /* Skip the opening quote. */
5984 s = input_line_pointer + 1;
5985
5986 while (is_a_char (c = pa_stringer_aux (s++)))
5987 {
5988 if (c == '\\')
5989 {
5990 c = *s;
5991 switch (c)
5992 {
5993 /* Handle \x<num>. */
5994 case 'x':
5995 {
5996 unsigned int number;
5997 int num_digit;
5998 char dg;
5999 char *s_start = s;
6000
6001 /* Get pas the 'x'. */
6002 s++;
6003 for (num_digit = 0, number = 0, dg = *s;
6004 num_digit < 2
6005 && (isdigit (dg) || (dg >= 'a' && dg <= 'f')
6006 || (dg >= 'A' && dg <= 'F'));
6007 num_digit++)
6008 {
6009 if (isdigit (dg))
6010 number = number * 16 + dg - '0';
6011 else if (dg >= 'a' && dg <= 'f')
6012 number = number * 16 + dg - 'a' + 10;
6013 else
6014 number = number * 16 + dg - 'A' + 10;
6015
6016 s++;
6017 dg = *s;
6018 }
6019 if (num_digit > 0)
6020 {
6021 switch (num_digit)
6022 {
6023 case 1:
6024 sprintf (num_buf, "%02o", number);
6025 break;
6026 case 2:
6027 sprintf (num_buf, "%03o", number);
6028 break;
6029 }
6030 for (i = 0; i <= num_digit; i++)
6031 s_start[i] = num_buf[i];
6032 }
6033 break;
6034 }
6035 /* This might be a "\"", skip over the escaped char. */
6036 default:
6037 s++;
6038 break;
6039 }
6040 }
6041 }
6042 stringer (append_zero);
6043 pa_undefine_label ();
6044 }
6045
6046 /* Handle a .VERSION pseudo-op. */
6047
6048 static void
6049 pa_version (unused)
6050 int unused;
6051 {
6052 obj_version (0);
6053 pa_undefine_label ();
6054 }
6055
6056 /* Handle a .COPYRIGHT pseudo-op. */
6057
6058 static void
6059 pa_copyright (unused)
6060 int unused;
6061 {
6062 obj_copyright (0);
6063 pa_undefine_label ();
6064 }
6065
6066 /* Just like a normal cons, but when finished we have to undefine
6067 the latest space label. */
6068
6069 static void
6070 pa_cons (nbytes)
6071 int nbytes;
6072 {
6073 cons (nbytes);
6074 pa_undefine_label ();
6075 }
6076
6077 /* Switch to the data space. As usual delete our label. */
6078
6079 static void
6080 pa_data (unused)
6081 int unused;
6082 {
6083 s_data (0);
6084 pa_undefine_label ();
6085 }
6086
6087 /* Like float_cons, but we need to undefine our label. */
6088
6089 static void
6090 pa_float_cons (float_type)
6091 int float_type;
6092 {
6093 float_cons (float_type);
6094 pa_undefine_label ();
6095 }
6096
6097 /* Like s_fill, but delete our label when finished. */
6098
6099 static void
6100 pa_fill (unused)
6101 int unused;
6102 {
6103 s_fill (0);
6104 pa_undefine_label ();
6105 }
6106
6107 /* Like lcomm, but delete our label when finished. */
6108
6109 static void
6110 pa_lcomm (needs_align)
6111 int needs_align;
6112 {
6113 s_lcomm (needs_align);
6114 pa_undefine_label ();
6115 }
6116
6117 /* Like lsym, but delete our label when finished. */
6118
6119 static void
6120 pa_lsym (unused)
6121 int unused;
6122 {
6123 s_lsym (0);
6124 pa_undefine_label ();
6125 }
6126
6127 /* Switch to the text space. Like s_text, but delete our
6128 label when finished. */
6129 static void
6130 pa_text (unused)
6131 int unused;
6132 {
6133 s_text (0);
6134 pa_undefine_label ();
6135 }
6136
6137 /* On the PA relocations which involve function symbols must not be
6138 adjusted. This so that the linker can know when/how to create argument
6139 relocation stubs for indirect calls and calls to static functions.
6140
6141 FIXME. Also reject R_HPPA relocations which are 32 bits
6142 wide. Helps with code lables in arrays for SOM. (SOM BFD code
6143 needs to generate relocations to push the addend and symbol value
6144 onto the stack, add them, then pop the value off the stack and
6145 use it in a relocation -- yuk. */
6146
6147 int
6148 hppa_fix_adjustable (fixp)
6149 fixS *fixp;
6150 {
6151 struct hppa_fix_struct *hppa_fix;
6152
6153 hppa_fix = fixp->tc_fix_data;
6154
6155 if (fixp->fx_r_type == R_HPPA && hppa_fix->fx_r_format == 32)
6156 return 0;
6157
6158 if (fixp->fx_addsy == 0
6159 || (fixp->fx_addsy->bsym->flags & BSF_FUNCTION) == 0)
6160 return 1;
6161
6162 return 0;
6163 }
6164
6165 /* Return nonzero if the fixup in FIXP will require a relocation,
6166 even it if appears that the fixup could be completely handled
6167 within GAS. */
6168
6169 int
6170 hppa_force_relocation (fixp)
6171 fixS *fixp;
6172 {
6173 struct hppa_fix_struct *hppa_fixp = fixp->tc_fix_data;
6174
6175 #ifdef OBJ_SOM
6176 if (fixp->fx_r_type == R_HPPA_ENTRY || fixp->fx_r_type == R_HPPA_EXIT)
6177 return 1;
6178 #endif
6179
6180 #define stub_needed(CALLER, CALLEE) \
6181 ((CALLEE) && (CALLER) && ((CALLEE) != (CALLER)))
6182
6183 /* It is necessary to force PC-relative calls/jumps to have a relocation
6184 entry if they're going to need either a argument relocation or long
6185 call stub. FIXME. Can't we need the same for absolute calls? */
6186 if (fixp->fx_pcrel && fixp->fx_addsy
6187 && (stub_needed (((obj_symbol_type *)
6188 fixp->fx_addsy->bsym)->tc_data.hppa_arg_reloc,
6189 hppa_fixp->fx_arg_reloc)))
6190 return 1;
6191
6192 #undef stub_needed
6193
6194 /* No need (yet) to force another relocations to be emitted. */
6195 return 0;
6196 }
6197
6198 /* Now for some ELF specific code. FIXME. */
6199 #ifdef OBJ_ELF
6200 static symext_chainS *symext_rootP;
6201 static symext_chainS *symext_lastP;
6202
6203 /* Mark the end of a function so that it's possible to compute
6204 the size of the function in hppa_elf_final_processing. */
6205
6206 static void
6207 hppa_elf_mark_end_of_function ()
6208 {
6209 /* ELF does not have EXIT relocations. All we do is create a
6210 temporary symbol marking the end of the function. */
6211 char *name = (char *)
6212 xmalloc (strlen ("L$\001end_") +
6213 strlen (S_GET_NAME (last_call_info->start_symbol)) + 1);
6214
6215 if (name)
6216 {
6217 symbolS *symbolP;
6218
6219 strcpy (name, "L$\001end_");
6220 strcat (name, S_GET_NAME (last_call_info->start_symbol));
6221
6222 /* If we have a .exit followed by a .procend, then the
6223 symbol will have already been defined. */
6224 symbolP = symbol_find (name);
6225 if (symbolP)
6226 {
6227 /* The symbol has already been defined! This can
6228 happen if we have a .exit followed by a .procend.
6229
6230 This is *not* an error. All we want to do is free
6231 the memory we just allocated for the name and continue. */
6232 xfree (name);
6233 }
6234 else
6235 {
6236 /* symbol value should be the offset of the
6237 last instruction of the function */
6238 symbolP = symbol_new (name, now_seg,
6239 (valueT) (obstack_next_free (&frags)
6240 - frag_now->fr_literal - 4),
6241 frag_now);
6242
6243 assert (symbolP);
6244 symbolP->bsym->flags = BSF_LOCAL;
6245 symbol_table_insert (symbolP);
6246 }
6247
6248 if (symbolP)
6249 last_call_info->end_symbol = symbolP;
6250 else
6251 as_bad ("Symbol '%s' could not be created.", name);
6252
6253 }
6254 else
6255 as_bad ("No memory for symbol name.");
6256
6257 }
6258
6259 /* Do any symbol processing requested by the target-cpu or target-format. */
6260
6261 void
6262 hppa_tc_symbol (abfd, symbolP, sym_idx)
6263 bfd *abfd;
6264 elf_symbol_type *symbolP;
6265 int sym_idx;
6266 {
6267 symext_chainS *symextP;
6268 unsigned int arg_reloc;
6269
6270 /* Only functions can have argument relocations. */
6271 if (!(symbolP->symbol.flags & BSF_FUNCTION))
6272 return;
6273
6274 arg_reloc = symbolP->tc_data.hppa_arg_reloc;
6275
6276 /* If there are no argument relocation bits, then no relocation is
6277 necessary. Do not add this to the symextn section. */
6278 if (arg_reloc == 0)
6279 return;
6280
6281 symextP = (symext_chainS *) bfd_alloc (abfd, sizeof (symext_chainS) * 2);
6282
6283 symextP[0].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX, sym_idx);
6284 symextP[0].next = &symextP[1];
6285
6286 symextP[1].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_ARG_RELOC, arg_reloc);
6287 symextP[1].next = NULL;
6288
6289 if (symext_rootP == NULL)
6290 {
6291 symext_rootP = &symextP[0];
6292 symext_lastP = &symextP[1];
6293 }
6294 else
6295 {
6296 symext_lastP->next = &symextP[0];
6297 symext_lastP = &symextP[1];
6298 }
6299 }
6300
6301 /* Make sections needed by the target cpu and/or target format. */
6302 void
6303 hppa_tc_make_sections (abfd)
6304 bfd *abfd;
6305 {
6306 symext_chainS *symextP;
6307 segT save_seg = now_seg;
6308 subsegT save_subseg = now_subseg;
6309
6310 /* Build the symbol extension section. */
6311 hppa_tc_make_symextn_section ();
6312
6313 /* Force some calculation to occur. */
6314 bfd_set_section_contents (stdoutput, stdoutput->sections, "", 0, 0);
6315
6316 hppa_elf_stub_finish (abfd);
6317
6318 /* If no symbols for the symbol extension section, then stop now. */
6319 if (symext_rootP == NULL)
6320 return;
6321
6322 /* Switch to the symbol extension section. */
6323 subseg_new (SYMEXTN_SECTION_NAME, 0);
6324
6325 frag_wane (frag_now);
6326 frag_new (0);
6327
6328 for (symextP = symext_rootP; symextP; symextP = symextP->next)
6329 {
6330 char *ptr;
6331 int *symtab_map = elf_sym_extra (abfd);
6332 int idx;
6333
6334 /* First, patch the symbol extension record to reflect the true
6335 symbol table index. */
6336
6337 if (ELF32_HPPA_SX_TYPE (symextP->entry) == HPPA_SXT_SYMNDX)
6338 {
6339 idx = ELF32_HPPA_SX_VAL (symextP->entry) - 1;
6340 symextP->entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX,
6341 symtab_map[idx]);
6342 }
6343
6344 ptr = frag_more (sizeof (symextP->entry));
6345 md_number_to_chars (ptr, symextP->entry, sizeof (symextP->entry));
6346 }
6347
6348 frag_now->fr_fix = obstack_next_free (&frags) - frag_now->fr_literal;
6349 frag_wane (frag_now);
6350
6351 /* Switch back to the original segment. */
6352 subseg_set (save_seg, save_subseg);
6353 }
6354
6355 /* Make the symbol extension section. */
6356
6357 static void
6358 hppa_tc_make_symextn_section ()
6359 {
6360 if (symext_rootP)
6361 {
6362 symext_chainS *symextP;
6363 int n;
6364 unsigned int size;
6365 segT symextn_sec;
6366 segT save_seg = now_seg;
6367 subsegT save_subseg = now_subseg;
6368
6369 for (n = 0, symextP = symext_rootP; symextP; symextP = symextP->next, ++n)
6370 ;
6371
6372 size = sizeof (symext_entryS) * n;
6373
6374 symextn_sec = subseg_new (SYMEXTN_SECTION_NAME, 0);
6375
6376 bfd_set_section_flags (stdoutput, symextn_sec,
6377 SEC_LOAD | SEC_HAS_CONTENTS | SEC_DATA);
6378 bfd_set_section_size (stdoutput, symextn_sec, size);
6379
6380 /* Now, switch back to the original segment. */
6381 subseg_set (save_seg, save_subseg);
6382 }
6383 }
6384
6385 /* Build the symbol extension section. */
6386
6387 static void
6388 pa_build_symextn_section ()
6389 {
6390 segT seg;
6391 asection *save_seg = now_seg;
6392 subsegT subseg = (subsegT) 0;
6393 subsegT save_subseg = now_subseg;
6394
6395 seg = subseg_new (".hppa_symextn", subseg);
6396 bfd_set_section_flags (stdoutput,
6397 seg,
6398 SEC_HAS_CONTENTS | SEC_READONLY
6399 | SEC_ALLOC | SEC_LOAD);
6400
6401 subseg_set (save_seg, save_subseg);
6402 }
6403
6404 /* For ELF, this function serves one purpose: to setup the st_size
6405 field of STT_FUNC symbols. To do this, we need to scan the
6406 call_info structure list, determining st_size in by taking the
6407 difference in the address of the beginning/end marker symbols. */
6408
6409 void
6410 elf_hppa_final_processing ()
6411 {
6412 struct call_info *call_info_pointer;
6413
6414 for (call_info_pointer = call_info_root;
6415 call_info_pointer;
6416 call_info_pointer = call_info_pointer->ci_next)
6417 {
6418 elf_symbol_type *esym
6419 = (elf_symbol_type *) call_info_pointer->start_symbol->bsym;
6420 esym->internal_elf_sym.st_size =
6421 S_GET_VALUE (call_info_pointer->end_symbol)
6422 - S_GET_VALUE (call_info_pointer->start_symbol) + 4;
6423 }
6424 }
6425 #endif