* config/tc-hppa.c (md_apply_fix): Delete old wrapper function.
[binutils-gdb.git] / gas / config / tc-hppa.c
1 /* tc-hppa.c -- Assemble for the PA
2 Copyright (C) 1989 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 1, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* HP PA-RISC support was contributed by the Center for Software Science
22 at the University of Utah. */
23
24 #include <stdio.h>
25 #include <ctype.h>
26
27 #include "as.h"
28 #include "subsegs.h"
29
30 #include "../bfd/libhppa.h"
31 #include "../bfd/libbfd.h"
32
33 /* Be careful, this file includes data *declarations*. */
34 #include "opcode/hppa.h"
35
36 /* A "convient" place to put object file dependencies which do
37 not need to be seen outside of tc-hppa.c. */
38 #ifdef OBJ_ELF
39 /* Names of various debugging spaces/subspaces. */
40 #define GDB_DEBUG_SPACE_NAME ".stab"
41 #define GDB_STRINGS_SUBSPACE_NAME ".stabstr"
42 #define GDB_SYMBOLS_SUBSPACE_NAME ".stab"
43 #define UNWIND_SECTION_NAME ".hppa_unwind"
44 /* Nonzero if CODE is a fixup code needing further processing. */
45
46 /* Object file formats specify relocation types. */
47 typedef elf32_hppa_reloc_type reloc_type;
48
49 /* Object file formats specify BFD symbol types. */
50 typedef elf_symbol_type obj_symbol_type;
51
52 /* How to generate a relocation. */
53 #define hppa_gen_reloc_type hppa_elf_gen_reloc_type
54
55 /* Who knows. */
56 #define obj_version obj_elf_version
57
58 /* Use space aliases. */
59 #define USE_ALIASES 1
60
61 /* Some local functions only used by ELF. */
62 static void pa_build_symextn_section PARAMS ((void));
63 static void hppa_tc_make_symextn_section PARAMS ((void));
64 #endif
65
66 #ifdef OBJ_SOM
67 /* Names of various debugging spaces/subspaces. */
68 #define GDB_DEBUG_SPACE_NAME "$GDB_DEBUG$"
69 #define GDB_STRINGS_SUBSPACE_NAME "$GDB_STRINGS$"
70 #define GDB_SYMBOLS_SUBSPACE_NAME "$GDB_SYMBOLS$"
71 #define UNWIND_SECTION_NAME "$UNWIND$"
72
73 /* Object file formats specify relocation types. */
74 typedef int reloc_type;
75
76 /* Who knows. */
77 #define obj_version obj_som_version
78
79 /* Do not use space aliases. */
80 #define USE_ALIASES 0
81
82 /* How to generate a relocation. */
83 #define hppa_gen_reloc_type hppa_som_gen_reloc_type
84
85 /* Object file formats specify BFD symbol types. */
86 typedef som_symbol_type obj_symbol_type;
87 #endif
88
89 /* Various structures and types used internally in tc-hppa.c. */
90
91 /* Unwind table and descriptor. FIXME: Sync this with GDB version. */
92
93 struct unwind_desc
94 {
95 unsigned int cannot_unwind:1;
96 unsigned int millicode:1;
97 unsigned int millicode_save_rest:1;
98 unsigned int region_desc:2;
99 unsigned int save_sr:2;
100 unsigned int entry_fr:4;
101 unsigned int entry_gr:5;
102 unsigned int args_stored:1;
103 unsigned int call_fr:5;
104 unsigned int call_gr:5;
105 unsigned int save_sp:1;
106 unsigned int save_rp:1;
107 unsigned int save_rp_in_frame:1;
108 unsigned int extn_ptr_defined:1;
109 unsigned int cleanup_defined:1;
110
111 unsigned int hpe_interrupt_marker:1;
112 unsigned int hpux_interrupt_marker:1;
113 unsigned int reserved:3;
114 unsigned int frame_size:27;
115 };
116
117 struct unwind_table
118 {
119 /* Starting and ending offsets of the region described by
120 descriptor. */
121 unsigned int start_offset;
122 unsigned int end_offset;
123 struct unwind_desc descriptor;
124 };
125
126 /* This structure is used by the .callinfo, .enter, .leave pseudo-ops to
127 control the entry and exit code they generate. It is also used in
128 creation of the correct stack unwind descriptors.
129
130 NOTE: GAS does not support .enter and .leave for the generation of
131 prologues and epilogues. FIXME.
132
133 The fields in structure roughly correspond to the arguments available on the
134 .callinfo pseudo-op. */
135
136 struct call_info
137 {
138 /* Should sr3 be saved in the prologue? */
139 int entry_sr;
140
141 /* Does this function make calls? */
142 int makes_calls;
143
144 /* The unwind descriptor being built. */
145 struct unwind_table ci_unwind;
146
147 /* Name of this function. */
148 symbolS *start_symbol;
149
150 /* (temporary) symbol used to mark the end of this function. */
151 symbolS *end_symbol;
152
153 /* frags associated with start and end of this function. */
154 fragS *start_frag;
155 fragS *end_frag;
156
157 /* frags for starting/ending offset of this descriptor. */
158 fragS *start_offset_frag;
159 fragS *end_offset_frag;
160
161 /* The location within {start,end}_offset_frag to find the
162 {start,end}_offset. */
163 int start_frag_where;
164 int end_frag_where;
165
166 /* Fixups (relocations) for start_offset and end_offset. */
167 fixS *start_fix;
168 fixS *end_fix;
169
170 /* Next entry in the chain. */
171 struct call_info *ci_next;
172 };
173
174 /* Operand formats for FP instructions. Note not all FP instructions
175 allow all four formats to be used (for example fmpysub only allows
176 SGL and DBL). */
177 typedef enum
178 {
179 SGL, DBL, ILLEGAL_FMT, QUAD
180 }
181 fp_operand_format;
182
183 /* This fully describes the symbol types which may be attached to
184 an EXPORT or IMPORT directive. Only SOM uses this formation
185 (ELF has no need for it). */
186 typedef enum
187 {
188 SYMBOL_TYPE_UNKNOWN,
189 SYMBOL_TYPE_ABSOLUTE,
190 SYMBOL_TYPE_CODE,
191 SYMBOL_TYPE_DATA,
192 SYMBOL_TYPE_ENTRY,
193 SYMBOL_TYPE_MILLICODE,
194 SYMBOL_TYPE_PLABEL,
195 SYMBOL_TYPE_PRI_PROG,
196 SYMBOL_TYPE_SEC_PROG,
197 }
198 pa_symbol_type;
199
200 /* This structure contains information needed to assemble
201 individual instructions. */
202 struct pa_it
203 {
204 /* Holds the opcode after parsing by pa_ip. */
205 unsigned long opcode;
206
207 /* Holds an expression associated with the current instruction. */
208 expressionS exp;
209
210 /* Does this instruction use PC-relative addressing. */
211 int pcrel;
212
213 /* Floating point formats for operand1 and operand2. */
214 fp_operand_format fpof1;
215 fp_operand_format fpof2;
216
217 /* Holds the field selector for this instruction
218 (for example L%, LR%, etc). */
219 long field_selector;
220
221 /* Holds any argument relocation bits associated with this
222 instruction. (instruction should be some sort of call). */
223 long arg_reloc;
224
225 /* The format specification for this instruction. */
226 int format;
227
228 /* The relocation (if any) associated with this instruction. */
229 reloc_type reloc;
230 };
231
232 /* PA-89 floating point registers are arranged like this:
233
234
235 +--------------+--------------+
236 | 0 or 16L | 16 or 16R |
237 +--------------+--------------+
238 | 1 or 17L | 17 or 17R |
239 +--------------+--------------+
240 | | |
241
242 . . .
243 . . .
244 . . .
245
246 | | |
247 +--------------+--------------+
248 | 14 or 30L | 30 or 30R |
249 +--------------+--------------+
250 | 15 or 31L | 31 or 31R |
251 +--------------+--------------+
252
253
254 The following is a version of pa_parse_number that
255 handles the L/R notation and returns the correct
256 value to put into the instruction register field.
257 The correct value to put into the instruction is
258 encoded in the structure 'pa_89_fp_reg_struct'. */
259
260 struct pa_89_fp_reg_struct
261 {
262 /* The register number. */
263 char number_part;
264
265 /* L/R selector. */
266 char l_r_select;
267 };
268
269 /* Additional information needed to build argument relocation stubs. */
270 struct call_desc
271 {
272 /* The argument relocation specification. */
273 unsigned int arg_reloc;
274
275 /* Number of arguments. */
276 unsigned int arg_count;
277 };
278
279 /* This structure defines an entry in the subspace dictionary
280 chain. */
281
282 struct subspace_dictionary_chain
283 {
284 /* Index of containing space. */
285 unsigned long ssd_space_index;
286
287 /* Nonzero if this space has been defined by the user code. */
288 unsigned int ssd_defined;
289
290 /* Which quadrant within the space this subspace should be loaded into. */
291 unsigned char ssd_quadrant;
292
293 /* Alignment (in bytes) for this subspace. */
294 unsigned long ssd_alignment;
295
296 /* Access control bits to determine read/write/execute permissions
297 as well as gateway privilege promotions. */
298 unsigned char ssd_access_control_bits;
299
300 /* A sorting key so that it is possible to specify ordering of
301 subspaces within a space. */
302 unsigned char ssd_sort_key;
303
304 /* Nonzero of this space should be zero filled. */
305 unsigned long ssd_zero;
306
307 /* Nonzero if this is a common subspace. */
308 unsigned char ssd_common;
309
310 /* Nonzero if this is a common subspace which allows symbols to be
311 multiply defined. */
312 unsigned char ssd_dup_common;
313
314 /* Nonzero if this subspace is loadable. Note loadable subspaces
315 must be contained within loadable spaces; unloadable subspaces
316 must be contained in unloadable spaces. */
317 unsigned char ssd_loadable;
318
319 /* Nonzero if this subspace contains only code. */
320 unsigned char ssd_code_only;
321
322 /* Starting offset of this subspace. */
323 unsigned long ssd_subspace_start;
324
325 /* Length of this subspace. */
326 unsigned long ssd_subspace_length;
327
328 /* Name of this subspace. */
329 char *ssd_name;
330
331 /* GAS segment and subsegment associated with this subspace. */
332 asection *ssd_seg;
333 int ssd_subseg;
334
335 /* Index of this subspace within the subspace dictionary of the object
336 file. Not used until object file is written. */
337 int object_file_index;
338
339 /* The size of the last alignment request for this subspace. */
340 int ssd_last_align;
341
342 /* Next space in the subspace dictionary chain. */
343 struct subspace_dictionary_chain *ssd_next;
344 };
345
346 typedef struct subspace_dictionary_chain ssd_chain_struct;
347
348 /* This structure defines an entry in the subspace dictionary
349 chain. */
350
351 struct space_dictionary_chain
352 {
353
354 /* Holds the index into the string table of the name of this
355 space. */
356 unsigned int sd_name_index;
357
358 /* Nonzero if the space is loadable. */
359 unsigned int sd_loadable;
360
361 /* Nonzero if this space has been defined by the user code or
362 as a default space. */
363 unsigned int sd_defined;
364
365 /* Nonzero if this spaces has been defined by the user code. */
366 unsigned int sd_user_defined;
367
368 /* Nonzero if this space is not sharable. */
369 unsigned int sd_private;
370
371 /* The space number (or index). */
372 unsigned int sd_spnum;
373
374 /* The sort key for this space. May be used to determine how to lay
375 out the spaces within the object file. */
376 unsigned char sd_sort_key;
377
378 /* The name of this subspace. */
379 char *sd_name;
380
381 /* GAS segment to which this subspace corresponds. */
382 asection *sd_seg;
383
384 /* Current subsegment number being used. */
385 int sd_last_subseg;
386
387 /* The chain of subspaces contained within this space. */
388 ssd_chain_struct *sd_subspaces;
389
390 /* The next entry in the space dictionary chain. */
391 struct space_dictionary_chain *sd_next;
392 };
393
394 typedef struct space_dictionary_chain sd_chain_struct;
395
396 /* Structure for previous label tracking. Needed so that alignments,
397 callinfo declarations, etc can be easily attached to a particular
398 label. */
399 typedef struct label_symbol_struct
400 {
401 struct symbol *lss_label;
402 sd_chain_struct *lss_space;
403 struct label_symbol_struct *lss_next;
404 }
405 label_symbol_struct;
406
407 /* This structure defines attributes of the default subspace
408 dictionary entries. */
409
410 struct default_subspace_dict
411 {
412 /* Name of the subspace. */
413 char *name;
414
415 /* FIXME. Is this still needed? */
416 char defined;
417
418 /* Nonzero if this subspace is loadable. */
419 char loadable;
420
421 /* Nonzero if this subspace contains only code. */
422 char code_only;
423
424 /* Nonzero if this is a common subspace. */
425 char common;
426
427 /* Nonzero if this is a common subspace which allows symbols
428 to be multiply defined. */
429 char dup_common;
430
431 /* Nonzero if this subspace should be zero filled. */
432 char zero;
433
434 /* Sort key for this subspace. */
435 unsigned char sort;
436
437 /* Access control bits for this subspace. Can represent RWX access
438 as well as privilege level changes for gateways. */
439 int access;
440
441 /* Index of containing space. */
442 int space_index;
443
444 /* Alignment (in bytes) of this subspace. */
445 int alignment;
446
447 /* Quadrant within space where this subspace should be loaded. */
448 int quadrant;
449
450 /* An index into the default spaces array. */
451 int def_space_index;
452
453 /* An alias for this section (or NULL if no alias exists). */
454 char *alias;
455
456 /* Subsegment associated with this subspace. */
457 subsegT subsegment;
458 };
459
460 /* This structure defines attributes of the default space
461 dictionary entries. */
462
463 struct default_space_dict
464 {
465 /* Name of the space. */
466 char *name;
467
468 /* Space number. It is possible to identify spaces within
469 assembly code numerically! */
470 int spnum;
471
472 /* Nonzero if this space is loadable. */
473 char loadable;
474
475 /* Nonzero if this space is "defined". FIXME is still needed */
476 char defined;
477
478 /* Nonzero if this space can not be shared. */
479 char private;
480
481 /* Sort key for this space. */
482 unsigned char sort;
483
484 /* Segment associated with this space. */
485 asection *segment;
486
487 /* An alias for this section (or NULL if no alias exists). */
488 char *alias;
489 };
490
491 /* Extra information needed to perform fixups (relocations) on the PA. */
492 struct hppa_fix_struct
493 {
494 /* The field selector. */
495 enum hppa_reloc_field_selector_type fx_r_field;
496
497 /* Type of fixup. */
498 int fx_r_type;
499
500 /* Format of fixup. */
501 int fx_r_format;
502
503 /* Argument relocation bits. */
504 long fx_arg_reloc;
505
506 /* The unwind descriptor associated with this fixup. */
507 char fx_unwind[8];
508 };
509
510 /* Structure to hold information about predefined registers. */
511
512 struct pd_reg
513 {
514 char *name;
515 int value;
516 };
517
518 /* This structure defines the mapping from a FP condition string
519 to a condition number which can be recorded in an instruction. */
520 struct fp_cond_map
521 {
522 char *string;
523 int cond;
524 };
525
526 /* This structure defines a mapping from a field selector
527 string to a field selector type. */
528 struct selector_entry
529 {
530 char *prefix;
531 int field_selector;
532 };
533
534 /* Prototypes for functions local to tc-hppa.c. */
535
536 static fp_operand_format pa_parse_fp_format PARAMS ((char **s));
537 static void pa_cons PARAMS ((int));
538 static void pa_data PARAMS ((int));
539 static void pa_desc PARAMS ((int));
540 static void pa_float_cons PARAMS ((int));
541 static void pa_fill PARAMS ((int));
542 static void pa_lcomm PARAMS ((int));
543 static void pa_lsym PARAMS ((int));
544 static void pa_stringer PARAMS ((int));
545 static void pa_text PARAMS ((int));
546 static void pa_version PARAMS ((int));
547 static int pa_parse_fp_cmp_cond PARAMS ((char **));
548 static int get_expression PARAMS ((char *));
549 static int pa_get_absolute_expression PARAMS ((struct pa_it *, char **));
550 static int evaluate_absolute PARAMS ((struct pa_it *));
551 static unsigned int pa_build_arg_reloc PARAMS ((char *));
552 static unsigned int pa_align_arg_reloc PARAMS ((unsigned int, unsigned int));
553 static int pa_parse_nullif PARAMS ((char **));
554 static int pa_parse_nonneg_cmpsub_cmpltr PARAMS ((char **, int));
555 static int pa_parse_neg_cmpsub_cmpltr PARAMS ((char **, int));
556 static int pa_parse_neg_add_cmpltr PARAMS ((char **, int));
557 static int pa_parse_nonneg_add_cmpltr PARAMS ((char **, int));
558 static void pa_block PARAMS ((int));
559 static void pa_call PARAMS ((int));
560 static void pa_call_args PARAMS ((struct call_desc *));
561 static void pa_callinfo PARAMS ((int));
562 static void pa_code PARAMS ((int));
563 static void pa_comm PARAMS ((int));
564 static void pa_copyright PARAMS ((int));
565 static void pa_end PARAMS ((int));
566 static void pa_enter PARAMS ((int));
567 static void pa_entry PARAMS ((int));
568 static void pa_equ PARAMS ((int));
569 static void pa_exit PARAMS ((int));
570 static void pa_export PARAMS ((int));
571 static void pa_type_args PARAMS ((symbolS *, int));
572 static void pa_import PARAMS ((int));
573 static void pa_label PARAMS ((int));
574 static void pa_leave PARAMS ((int));
575 static void pa_origin PARAMS ((int));
576 static void pa_proc PARAMS ((int));
577 static void pa_procend PARAMS ((int));
578 static void pa_space PARAMS ((int));
579 static void pa_spnum PARAMS ((int));
580 static void pa_subspace PARAMS ((int));
581 static void pa_param PARAMS ((int));
582 static void pa_undefine_label PARAMS ((void));
583 static int need_89_opcode PARAMS ((struct pa_it *,
584 struct pa_89_fp_reg_struct *));
585 static int pa_parse_number PARAMS ((char **, struct pa_89_fp_reg_struct *));
586 static label_symbol_struct *pa_get_label PARAMS ((void));
587 static sd_chain_struct *create_new_space PARAMS ((char *, int, char,
588 char, char, char,
589 asection *, int));
590 static ssd_chain_struct *create_new_subspace PARAMS ((sd_chain_struct *,
591 char *, char, char,
592 char, char, char,
593 char, int, int, int,
594 int, asection *));
595 static ssd_chain_struct *update_subspace PARAMS ((sd_chain_struct *,
596 char *, char, char, char,
597 char, char, char, int,
598 int, int, int,
599 asection *));
600 static sd_chain_struct *is_defined_space PARAMS ((char *));
601 static ssd_chain_struct *is_defined_subspace PARAMS ((char *));
602 static sd_chain_struct *pa_segment_to_space PARAMS ((asection *));
603 static ssd_chain_struct *pa_subsegment_to_subspace PARAMS ((asection *,
604 subsegT));
605 static sd_chain_struct *pa_find_space_by_number PARAMS ((int));
606 static unsigned int pa_subspace_start PARAMS ((sd_chain_struct *, int));
607 static void pa_ip PARAMS ((char *));
608 static void fix_new_hppa PARAMS ((fragS *, int, short int, symbolS *,
609 long, expressionS *, int,
610 bfd_reloc_code_real_type,
611 enum hppa_reloc_field_selector_type,
612 int, long, char *));
613 static int is_end_of_statement PARAMS ((void));
614 static int reg_name_search PARAMS ((char *));
615 static int pa_chk_field_selector PARAMS ((char **));
616 static int is_same_frag PARAMS ((fragS *, fragS *));
617 static void pa_build_unwind_subspace PARAMS ((struct call_info *));
618 static void process_exit PARAMS ((void));
619 static sd_chain_struct *pa_parse_space_stmt PARAMS ((char *, int));
620 static int log2 PARAMS ((int));
621 static int pa_next_subseg PARAMS ((sd_chain_struct *));
622 static unsigned int pa_stringer_aux PARAMS ((char *));
623 static void pa_spaces_begin PARAMS ((void));
624 static void hppa_elf_mark_end_of_function PARAMS ((void));
625
626 /* File and gloally scoped variable declarations. */
627
628 /* Root and final entry in the space chain. */
629 static sd_chain_struct *space_dict_root;
630 static sd_chain_struct *space_dict_last;
631
632 /* The current space and subspace. */
633 static sd_chain_struct *current_space;
634 static ssd_chain_struct *current_subspace;
635
636 /* Root of the call_info chain. */
637 static struct call_info *call_info_root;
638
639 /* The last call_info (for functions) structure
640 seen so it can be associated with fixups and
641 function labels. */
642 static struct call_info *last_call_info;
643
644 /* The last call description (for actual calls). */
645 static struct call_desc last_call_desc;
646
647 /* Relaxation isn't supported for the PA yet. */
648 const relax_typeS md_relax_table[] =
649 {0};
650
651 /* Jumps are always the same size -- one instruction. */
652 int md_short_jump_size = 4;
653 int md_long_jump_size = 4;
654
655 /* handle of the OPCODE hash table */
656 static struct hash_control *op_hash = NULL;
657
658 /* This array holds the chars that always start a comment. If the
659 pre-processor is disabled, these aren't very useful. */
660 const char comment_chars[] = ";";
661
662 /* Table of pseudo ops for the PA. FIXME -- how many of these
663 are now redundant with the overall GAS and the object file
664 dependent tables? */
665 const pseudo_typeS md_pseudo_table[] =
666 {
667 /* align pseudo-ops on the PA specify the actual alignment requested,
668 not the log2 of the requested alignment. */
669 {"align", s_align_bytes, 8},
670 {"ALIGN", s_align_bytes, 8},
671 {"block", pa_block, 1},
672 {"BLOCK", pa_block, 1},
673 {"blockz", pa_block, 0},
674 {"BLOCKZ", pa_block, 0},
675 {"byte", pa_cons, 1},
676 {"BYTE", pa_cons, 1},
677 {"call", pa_call, 0},
678 {"CALL", pa_call, 0},
679 {"callinfo", pa_callinfo, 0},
680 {"CALLINFO", pa_callinfo, 0},
681 {"code", pa_code, 0},
682 {"CODE", pa_code, 0},
683 {"comm", pa_comm, 0},
684 {"COMM", pa_comm, 0},
685 {"copyright", pa_copyright, 0},
686 {"COPYRIGHT", pa_copyright, 0},
687 {"data", pa_data, 0},
688 {"DATA", pa_data, 0},
689 {"desc", pa_desc, 0},
690 {"DESC", pa_desc, 0},
691 {"double", pa_float_cons, 'd'},
692 {"DOUBLE", pa_float_cons, 'd'},
693 {"end", pa_end, 0},
694 {"END", pa_end, 0},
695 {"enter", pa_enter, 0},
696 {"ENTER", pa_enter, 0},
697 {"entry", pa_entry, 0},
698 {"ENTRY", pa_entry, 0},
699 {"equ", pa_equ, 0},
700 {"EQU", pa_equ, 0},
701 {"exit", pa_exit, 0},
702 {"EXIT", pa_exit, 0},
703 {"export", pa_export, 0},
704 {"EXPORT", pa_export, 0},
705 {"fill", pa_fill, 0},
706 {"FILL", pa_fill, 0},
707 {"float", pa_float_cons, 'f'},
708 {"FLOAT", pa_float_cons, 'f'},
709 {"half", pa_cons, 2},
710 {"HALF", pa_cons, 2},
711 {"import", pa_import, 0},
712 {"IMPORT", pa_import, 0},
713 {"int", pa_cons, 4},
714 {"INT", pa_cons, 4},
715 {"label", pa_label, 0},
716 {"LABEL", pa_label, 0},
717 {"lcomm", pa_lcomm, 0},
718 {"LCOMM", pa_lcomm, 0},
719 {"leave", pa_leave, 0},
720 {"LEAVE", pa_leave, 0},
721 {"long", pa_cons, 4},
722 {"LONG", pa_cons, 4},
723 {"lsym", pa_lsym, 0},
724 {"LSYM", pa_lsym, 0},
725 {"octa", pa_cons, 16},
726 {"OCTA", pa_cons, 16},
727 {"org", pa_origin, 0},
728 {"ORG", pa_origin, 0},
729 {"origin", pa_origin, 0},
730 {"ORIGIN", pa_origin, 0},
731 {"param", pa_param, 0},
732 {"PARAM", pa_param, 0},
733 {"proc", pa_proc, 0},
734 {"PROC", pa_proc, 0},
735 {"procend", pa_procend, 0},
736 {"PROCEND", pa_procend, 0},
737 {"quad", pa_cons, 8},
738 {"QUAD", pa_cons, 8},
739 {"reg", pa_equ, 1},
740 {"REG", pa_equ, 1},
741 {"short", pa_cons, 2},
742 {"SHORT", pa_cons, 2},
743 {"single", pa_float_cons, 'f'},
744 {"SINGLE", pa_float_cons, 'f'},
745 {"space", pa_space, 0},
746 {"SPACE", pa_space, 0},
747 {"spnum", pa_spnum, 0},
748 {"SPNUM", pa_spnum, 0},
749 {"string", pa_stringer, 0},
750 {"STRING", pa_stringer, 0},
751 {"stringz", pa_stringer, 1},
752 {"STRINGZ", pa_stringer, 1},
753 {"subspa", pa_subspace, 0},
754 {"SUBSPA", pa_subspace, 0},
755 {"text", pa_text, 0},
756 {"TEXT", pa_text, 0},
757 {"version", pa_version, 0},
758 {"VERSION", pa_version, 0},
759 {"word", pa_cons, 4},
760 {"WORD", pa_cons, 4},
761 {NULL, 0, 0}
762 };
763
764 /* This array holds the chars that only start a comment at the beginning of
765 a line. If the line seems to have the form '# 123 filename'
766 .line and .file directives will appear in the pre-processed output.
767
768 Note that input_file.c hand checks for '#' at the beginning of the
769 first line of the input file. This is because the compiler outputs
770 #NO_APP at the beginning of its output.
771
772 Also note that '/*' will always start a comment. */
773 const char line_comment_chars[] = "#";
774
775 /* This array holds the characters which act as line separators. */
776 const char line_separator_chars[] = "!";
777
778 /* Chars that can be used to separate mant from exp in floating point nums. */
779 const char EXP_CHARS[] = "eE";
780
781 /* Chars that mean this number is a floating point constant.
782 As in 0f12.456 or 0d1.2345e12.
783
784 Be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
785 changed in read.c. Ideally it shouldn't hae to know abou it at
786 all, but nothing is ideal around here. */
787 const char FLT_CHARS[] = "rRsSfFdDxXpP";
788
789 static struct pa_it the_insn;
790
791 /* Points to the end of an expression just parsed by get_expressoin
792 and friends. FIXME. This shouldn't be handled with a file-global
793 variable. */
794 static char *expr_end;
795
796 /* Nonzero if a .callinfo appeared within the current procedure. */
797 static int callinfo_found;
798
799 /* Nonzero if the assembler is currently within a .entry/.exit pair. */
800 static int within_entry_exit;
801
802 /* Nonzero if the assembler is currently within a procedure definition. */
803 static int within_procedure;
804
805 /* Handle on strucutre which keep track of the last symbol
806 seen in each subspace. */
807 static label_symbol_struct *label_symbols_rootp = NULL;
808
809 /* Holds the last field selector. */
810 static int hppa_field_selector;
811
812 /* Nonzero if errors are to be printed. */
813 static int print_errors = 1;
814
815 /* List of registers that are pre-defined:
816
817 Each general register has one predefined name of the form
818 %r<REGNUM> which has the value <REGNUM>.
819
820 Space and control registers are handled in a similar manner,
821 but use %sr<REGNUM> and %cr<REGNUM> as their predefined names.
822
823 Likewise for the floating point registers, but of the form
824 %fr<REGNUM>. Floating point registers have additional predefined
825 names with 'L' and 'R' suffixes (e.g. %fr19L, %fr19R) which
826 again have the value <REGNUM>.
827
828 Many registers also have synonyms:
829
830 %r26 - %r23 have %arg0 - %arg3 as synonyms
831 %r28 - %r29 have %ret0 - %ret1 as synonyms
832 %r30 has %sp as a synonym
833 %r27 has %dp as a synonym
834 %r2 has %rp as a synonym
835
836 Almost every control register has a synonym; they are not listed
837 here for brevity.
838
839 The table is sorted. Suitable for searching by a binary search. */
840
841 static const struct pd_reg pre_defined_registers[] =
842 {
843 {"%arg0", 26},
844 {"%arg1", 25},
845 {"%arg2", 24},
846 {"%arg3", 23},
847 {"%cr0", 0},
848 {"%cr10", 10},
849 {"%cr11", 11},
850 {"%cr12", 12},
851 {"%cr13", 13},
852 {"%cr14", 14},
853 {"%cr15", 15},
854 {"%cr16", 16},
855 {"%cr17", 17},
856 {"%cr18", 18},
857 {"%cr19", 19},
858 {"%cr20", 20},
859 {"%cr21", 21},
860 {"%cr22", 22},
861 {"%cr23", 23},
862 {"%cr24", 24},
863 {"%cr25", 25},
864 {"%cr26", 26},
865 {"%cr27", 27},
866 {"%cr28", 28},
867 {"%cr29", 29},
868 {"%cr30", 30},
869 {"%cr31", 31},
870 {"%cr8", 8},
871 {"%cr9", 9},
872 {"%dp", 27},
873 {"%eiem", 15},
874 {"%eirr", 23},
875 {"%fr0", 0},
876 {"%fr0L", 0},
877 {"%fr0R", 0},
878 {"%fr1", 1},
879 {"%fr10", 10},
880 {"%fr10L", 10},
881 {"%fr10R", 10},
882 {"%fr11", 11},
883 {"%fr11L", 11},
884 {"%fr11R", 11},
885 {"%fr12", 12},
886 {"%fr12L", 12},
887 {"%fr12R", 12},
888 {"%fr13", 13},
889 {"%fr13L", 13},
890 {"%fr13R", 13},
891 {"%fr14", 14},
892 {"%fr14L", 14},
893 {"%fr14R", 14},
894 {"%fr15", 15},
895 {"%fr15L", 15},
896 {"%fr15R", 15},
897 {"%fr16", 16},
898 {"%fr16L", 16},
899 {"%fr16R", 16},
900 {"%fr17", 17},
901 {"%fr17L", 17},
902 {"%fr17R", 17},
903 {"%fr18", 18},
904 {"%fr18L", 18},
905 {"%fr18R", 18},
906 {"%fr19", 19},
907 {"%fr19L", 19},
908 {"%fr19R", 19},
909 {"%fr1L", 1},
910 {"%fr1R", 1},
911 {"%fr2", 2},
912 {"%fr20", 20},
913 {"%fr20L", 20},
914 {"%fr20R", 20},
915 {"%fr21", 21},
916 {"%fr21L", 21},
917 {"%fr21R", 21},
918 {"%fr22", 22},
919 {"%fr22L", 22},
920 {"%fr22R", 22},
921 {"%fr23", 23},
922 {"%fr23L", 23},
923 {"%fr23R", 23},
924 {"%fr24", 24},
925 {"%fr24L", 24},
926 {"%fr24R", 24},
927 {"%fr25", 25},
928 {"%fr25L", 25},
929 {"%fr25R", 25},
930 {"%fr26", 26},
931 {"%fr26L", 26},
932 {"%fr26R", 26},
933 {"%fr27", 27},
934 {"%fr27L", 27},
935 {"%fr27R", 27},
936 {"%fr28", 28},
937 {"%fr28L", 28},
938 {"%fr28R", 28},
939 {"%fr29", 29},
940 {"%fr29L", 29},
941 {"%fr29R", 29},
942 {"%fr2L", 2},
943 {"%fr2R", 2},
944 {"%fr3", 3},
945 {"%fr30", 30},
946 {"%fr30L", 30},
947 {"%fr30R", 30},
948 {"%fr31", 31},
949 {"%fr31L", 31},
950 {"%fr31R", 31},
951 {"%fr3L", 3},
952 {"%fr3R", 3},
953 {"%fr4", 4},
954 {"%fr4L", 4},
955 {"%fr4R", 4},
956 {"%fr5", 5},
957 {"%fr5L", 5},
958 {"%fr5R", 5},
959 {"%fr6", 6},
960 {"%fr6L", 6},
961 {"%fr6R", 6},
962 {"%fr7", 7},
963 {"%fr7L", 7},
964 {"%fr7R", 7},
965 {"%fr8", 8},
966 {"%fr8L", 8},
967 {"%fr8R", 8},
968 {"%fr9", 9},
969 {"%fr9L", 9},
970 {"%fr9R", 9},
971 {"%hta", 25},
972 {"%iir", 19},
973 {"%ior", 21},
974 {"%ipsw", 22},
975 {"%isr", 20},
976 {"%itmr", 16},
977 {"%iva", 14},
978 {"%pcoq", 18},
979 {"%pcsq", 17},
980 {"%pidr1", 8},
981 {"%pidr2", 9},
982 {"%pidr3", 12},
983 {"%pidr4", 13},
984 {"%ppda", 24},
985 {"%r0", 0},
986 {"%r1", 1},
987 {"%r10", 10},
988 {"%r11", 11},
989 {"%r12", 12},
990 {"%r13", 13},
991 {"%r14", 14},
992 {"%r15", 15},
993 {"%r16", 16},
994 {"%r17", 17},
995 {"%r18", 18},
996 {"%r19", 19},
997 {"%r2", 2},
998 {"%r20", 20},
999 {"%r21", 21},
1000 {"%r22", 22},
1001 {"%r23", 23},
1002 {"%r24", 24},
1003 {"%r25", 25},
1004 {"%r26", 26},
1005 {"%r27", 27},
1006 {"%r28", 28},
1007 {"%r29", 29},
1008 {"%r3", 3},
1009 {"%r30", 30},
1010 {"%r31", 31},
1011 {"%r4", 4},
1012 {"%r4L", 4},
1013 {"%r4R", 4},
1014 {"%r5", 5},
1015 {"%r5L", 5},
1016 {"%r5R", 5},
1017 {"%r6", 6},
1018 {"%r6L", 6},
1019 {"%r6R", 6},
1020 {"%r7", 7},
1021 {"%r7L", 7},
1022 {"%r7R", 7},
1023 {"%r8", 8},
1024 {"%r8L", 8},
1025 {"%r8R", 8},
1026 {"%r9", 9},
1027 {"%r9L", 9},
1028 {"%r9R", 9},
1029 {"%rctr", 0},
1030 {"%ret0", 28},
1031 {"%ret1", 29},
1032 {"%rp", 2},
1033 {"%sar", 11},
1034 {"%sp", 30},
1035 {"%sr0", 0},
1036 {"%sr1", 1},
1037 {"%sr2", 2},
1038 {"%sr3", 3},
1039 {"%sr4", 4},
1040 {"%sr5", 5},
1041 {"%sr6", 6},
1042 {"%sr7", 7},
1043 {"%tr0", 24},
1044 {"%tr1", 25},
1045 {"%tr2", 26},
1046 {"%tr3", 27},
1047 {"%tr4", 28},
1048 {"%tr5", 29},
1049 {"%tr6", 30},
1050 {"%tr7", 31}
1051 };
1052
1053 /* This table is sorted by order of the length of the string. This is
1054 so we check for <> before we check for <. If we had a <> and checked
1055 for < first, we would get a false match. */
1056 static const struct fp_cond_map fp_cond_map[] =
1057 {
1058 {"false?", 0},
1059 {"false", 1},
1060 {"true?", 30},
1061 {"true", 31},
1062 {"!<=>", 3},
1063 {"!?>=", 8},
1064 {"!?<=", 16},
1065 {"!<>", 7},
1066 {"!>=", 11},
1067 {"!?>", 12},
1068 {"?<=", 14},
1069 {"!<=", 19},
1070 {"!?<", 20},
1071 {"?>=", 22},
1072 {"!?=", 24},
1073 {"!=t", 27},
1074 {"<=>", 29},
1075 {"=t", 5},
1076 {"?=", 6},
1077 {"?<", 10},
1078 {"<=", 13},
1079 {"!>", 15},
1080 {"?>", 18},
1081 {">=", 21},
1082 {"!<", 23},
1083 {"<>", 25},
1084 {"!=", 26},
1085 {"!?", 28},
1086 {"?", 2},
1087 {"=", 4},
1088 {"<", 9},
1089 {">", 17}
1090 };
1091
1092 static const struct selector_entry selector_table[] =
1093 {
1094 {"F'", e_fsel},
1095 {"F%", e_fsel},
1096 {"LS'", e_lssel},
1097 {"LS%", e_lssel},
1098 {"RS'", e_rssel},
1099 {"RS%", e_rssel},
1100 {"L'", e_lsel},
1101 {"L%", e_lsel},
1102 {"R'", e_rsel},
1103 {"R%", e_rsel},
1104 {"LD'", e_ldsel},
1105 {"LD%", e_ldsel},
1106 {"RD'", e_rdsel},
1107 {"RD%", e_rdsel},
1108 {"LR'", e_lrsel},
1109 {"LR%", e_lrsel},
1110 {"RR'", e_rrsel},
1111 {"RR%", e_rrsel},
1112 {"P'", e_psel},
1113 {"P%", e_psel},
1114 {"RP'", e_rpsel},
1115 {"RP%", e_rpsel},
1116 {"LP'", e_lpsel},
1117 {"LP%", e_lpsel},
1118 {"T'", e_tsel},
1119 {"T%", e_tsel},
1120 {"RT'", e_rtsel},
1121 {"RT%", e_rtsel},
1122 {"LT'", e_ltsel},
1123 {"LT%", e_ltsel},
1124 {NULL, e_fsel}
1125 };
1126
1127 /* default space and subspace dictionaries */
1128
1129 #define GDB_SYMBOLS GDB_SYMBOLS_SUBSPACE_NAME
1130 #define GDB_STRINGS GDB_STRINGS_SUBSPACE_NAME
1131
1132 /* pre-defined subsegments (subspaces) for the HPPA. */
1133 #define SUBSEG_CODE 0
1134 #define SUBSEG_DATA 0
1135 #define SUBSEG_LIT 1
1136 #define SUBSEG_BSS 2
1137 #define SUBSEG_UNWIND 3
1138 #define SUBSEG_GDB_STRINGS 0
1139 #define SUBSEG_GDB_SYMBOLS 1
1140
1141 static struct default_subspace_dict pa_def_subspaces[] =
1142 {
1143 {"$CODE$", 1, 1, 1, 0, 0, 0, 24, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_CODE},
1144 {"$DATA$", 1, 1, 0, 0, 0, 0, 24, 0x1f, 1, 8, 1, 1, ".data", SUBSEG_DATA},
1145 {"$LIT$", 1, 1, 0, 0, 0, 0, 16, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_LIT},
1146 {"$BSS$", 1, 1, 0, 0, 0, 1, 80, 0x1f, 1, 8, 1, 1, ".bss", SUBSEG_BSS},
1147 #ifdef OBJ_ELF
1148 {"$UNWIND$", 1, 1, 0, 0, 0, 0, 64, 0x2c, 0, 4, 0, 0, ".hppa_unwind", SUBSEG_UNWIND},
1149 #endif
1150 {NULL, 0, 1, 0, 0, 0, 0, 255, 0x1f, 0, 4, 0, 0, 0}
1151 };
1152
1153 static struct default_space_dict pa_def_spaces[] =
1154 {
1155 {"$TEXT$", 0, 1, 1, 0, 8, ASEC_NULL, ".text"},
1156 {"$PRIVATE$", 1, 1, 1, 1, 16, ASEC_NULL, ".data"},
1157 {NULL, 0, 0, 0, 0, 0, ASEC_NULL, NULL}
1158 };
1159
1160 /* Misc local definitions used by the assembler. */
1161
1162 /* Return nonzero if the string pointed to by S potentially represents
1163 a right or left half of a FP register */
1164 #define IS_R_SELECT(S) (*(S) == 'R' || *(S) == 'r')
1165 #define IS_L_SELECT(S) (*(S) == 'L' || *(S) == 'l')
1166
1167 /* These macros are used to maintain spaces/subspaces. */
1168 #define SPACE_DEFINED(space_chain) (space_chain)->sd_defined
1169 #define SPACE_USER_DEFINED(space_chain) (space_chain)->sd_user_defined
1170 #define SPACE_PRIVATE(space_chain) (space_chain)->sd_private
1171 #define SPACE_LOADABLE(space_chain) (space_chain)->sd_loadable
1172 #define SPACE_SPNUM(space_chain) (space_chain)->sd_spnum
1173 #define SPACE_SORT(space_chain) (space_chain)->sd_sort_key
1174 #define SPACE_NAME(space_chain) (space_chain)->sd_name
1175 #define SPACE_NAME_INDEX(space_chain) (space_chain)->sd_name_index
1176
1177 #define SUBSPACE_SPACE_INDEX(ss_chain) (ss_chain)->ssd_space_index
1178 #define SUBSPACE_DEFINED(ss_chain) (ss_chain)->ssd_defined
1179 #define SUBSPACE_QUADRANT(ss_chain) (ss_chain)->ssd_quadrant
1180 #define SUBSPACE_ALIGN(ss_chain) (ss_chain)->ssd_alignment
1181 #define SUBSPACE_ACCESS(ss_chain) (ss_chain)->ssd_access_control_bits
1182 #define SUBSPACE_SORT(ss_chain) (ss_chain)->ssd_sort_key
1183 #define SUBSPACE_COMMON(ss_chain) (ss_chain)->ssd_common
1184 #define SUBSPACE_ZERO(ss_chain) (ss_chain)->ssd_zero
1185 #define SUBSPACE_DUP_COMM(ss_chain) (ss_chain)->ssd_dup_common
1186 #define SUBSPACE_CODE_ONLY(ss_chain) (ss_chain)->ssd_code_only
1187 #define SUBSPACE_LOADABLE(ss_chain) (ss_chain)->ssd_loadable
1188 #define SUBSPACE_SUBSPACE_START(ss_chain) (ss_chain)->ssd_subspace_start
1189 #define SUBSPACE_SUBSPACE_LENGTH(ss_chain) (ss_chain)->ssd_subspace_length
1190 #define SUBSPACE_NAME(ss_chain) (ss_chain)->ssd_name
1191
1192 /* Insert FIELD into OPCODE starting at bit START. Continue pa_ip
1193 main loop after insertion. */
1194
1195 #define INSERT_FIELD_AND_CONTINUE(OPCODE, FIELD, START) \
1196 { \
1197 ((OPCODE) |= (FIELD) << (START)); \
1198 continue; \
1199 }
1200
1201 /* Simple range checking for FIELD againt HIGH and LOW bounds.
1202 IGNORE is used to suppress the error message. */
1203
1204 #define CHECK_FIELD(FIELD, HIGH, LOW, IGNORE) \
1205 { \
1206 if ((FIELD) > (HIGH) || (FIELD) < (LOW)) \
1207 { \
1208 if (! IGNORE) \
1209 as_bad ("Field out of range [%d..%d] (%d).", (LOW), (HIGH), \
1210 (int) (FIELD));\
1211 break; \
1212 } \
1213 }
1214
1215 #define is_DP_relative(exp) \
1216 ((exp).X_op == O_subtract \
1217 && strcmp((exp).X_op_symbol->bsym->name, "$global$") == 0)
1218
1219 #define is_PC_relative(exp) \
1220 ((exp).X_op == O_subtract \
1221 && strcmp((exp).X_op_symbol->bsym->name, "$PIC_pcrel$0") == 0)
1222
1223 #define is_complex(exp) \
1224 ((exp).X_op != O_constant && (exp).X_op != O_symbol)
1225
1226 /* Actual functions to implement the PA specific code for the assembler. */
1227
1228 /* Returns a pointer to the label_symbol_struct for the current space.
1229 or NULL if no label_symbol_struct exists for the current space. */
1230
1231 static label_symbol_struct *
1232 pa_get_label ()
1233 {
1234 label_symbol_struct *label_chain;
1235 sd_chain_struct *space_chain = current_space;
1236
1237 for (label_chain = label_symbols_rootp;
1238 label_chain;
1239 label_chain = label_chain->lss_next)
1240 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1241 return label_chain;
1242
1243 return NULL;
1244 }
1245
1246 /* Defines a label for the current space. If one is already defined,
1247 this function will replace it with the new label. */
1248
1249 void
1250 pa_define_label (symbol)
1251 symbolS *symbol;
1252 {
1253 label_symbol_struct *label_chain = pa_get_label ();
1254 sd_chain_struct *space_chain = current_space;
1255
1256 if (label_chain)
1257 label_chain->lss_label = symbol;
1258 else
1259 {
1260 /* Create a new label entry and add it to the head of the chain. */
1261 label_chain
1262 = (label_symbol_struct *) xmalloc (sizeof (label_symbol_struct));
1263 label_chain->lss_label = symbol;
1264 label_chain->lss_space = space_chain;
1265 label_chain->lss_next = NULL;
1266
1267 if (label_symbols_rootp)
1268 label_chain->lss_next = label_symbols_rootp;
1269
1270 label_symbols_rootp = label_chain;
1271 }
1272 }
1273
1274 /* Removes a label definition for the current space.
1275 If there is no label_symbol_struct entry, then no action is taken. */
1276
1277 static void
1278 pa_undefine_label ()
1279 {
1280 label_symbol_struct *label_chain;
1281 label_symbol_struct *prev_label_chain = NULL;
1282 sd_chain_struct *space_chain = current_space;
1283
1284 for (label_chain = label_symbols_rootp;
1285 label_chain;
1286 label_chain = label_chain->lss_next)
1287 {
1288 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1289 {
1290 /* Remove the label from the chain and free its memory. */
1291 if (prev_label_chain)
1292 prev_label_chain->lss_next = label_chain->lss_next;
1293 else
1294 label_symbols_rootp = label_chain->lss_next;
1295
1296 free (label_chain);
1297 break;
1298 }
1299 prev_label_chain = label_chain;
1300 }
1301 }
1302
1303
1304 /* An HPPA-specific version of fix_new. This is required because the HPPA
1305 code needs to keep track of some extra stuff. Each call to fix_new_hppa
1306 results in the creation of an instance of an hppa_fix_struct. An
1307 hppa_fix_struct stores the extra information along with a pointer to the
1308 original fixS. This is attached to the original fixup via the
1309 tc_fix_data field. */
1310
1311 static void
1312 fix_new_hppa (frag, where, size, add_symbol, offset, exp, pcrel,
1313 r_type, r_field, r_format, arg_reloc, unwind_desc)
1314 fragS *frag;
1315 int where;
1316 short int size;
1317 symbolS *add_symbol;
1318 long offset;
1319 expressionS *exp;
1320 int pcrel;
1321 bfd_reloc_code_real_type r_type;
1322 enum hppa_reloc_field_selector_type r_field;
1323 int r_format;
1324 long arg_reloc;
1325 char *unwind_desc;
1326 {
1327 fixS *new_fix;
1328
1329 struct hppa_fix_struct *hppa_fix = (struct hppa_fix_struct *)
1330 obstack_alloc (&notes, sizeof (struct hppa_fix_struct));
1331
1332 if (exp != NULL)
1333 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
1334 else
1335 new_fix = fix_new (frag, where, size, add_symbol, offset, pcrel, r_type);
1336 new_fix->tc_fix_data = hppa_fix;
1337 hppa_fix->fx_r_type = r_type;
1338 hppa_fix->fx_r_field = r_field;
1339 hppa_fix->fx_r_format = r_format;
1340 hppa_fix->fx_arg_reloc = arg_reloc;
1341 if (unwind_desc)
1342 {
1343 bcopy (unwind_desc, hppa_fix->fx_unwind, 8);
1344
1345 /* If necessary call BFD backend function to attach the
1346 unwind bits to the target dependent parts of a BFD symbol.
1347 Yuk. */
1348 #ifdef obj_attach_unwind_info
1349 obj_attach_unwind_info (add_symbol->bsym, unwind_desc);
1350 #endif
1351 }
1352
1353 /* foo-$global$ is used to access non-automatic storage. $global$
1354 is really just a marker and has served its purpose, so eliminate
1355 it now so as not to confuse write.c. */
1356 if (new_fix->fx_subsy
1357 && !strcmp (S_GET_NAME (new_fix->fx_subsy), "$global$"))
1358 new_fix->fx_subsy = NULL;
1359 }
1360
1361 /* Parse a .byte, .word, .long expression for the HPPA. Called by
1362 cons via the TC_PARSE_CONS_EXPRESSION macro. */
1363
1364 void
1365 parse_cons_expression_hppa (exp)
1366 expressionS *exp;
1367 {
1368 hppa_field_selector = pa_chk_field_selector (&input_line_pointer);
1369 expression (exp);
1370 }
1371
1372 /* This fix_new is called by cons via TC_CONS_FIX_NEW.
1373 hppa_field_selector is set by the parse_cons_expression_hppa. */
1374
1375 void
1376 cons_fix_new_hppa (frag, where, size, exp)
1377 fragS *frag;
1378 int where;
1379 int size;
1380 expressionS *exp;
1381 {
1382 unsigned int reloc_type;
1383
1384 if (is_DP_relative (*exp))
1385 reloc_type = R_HPPA_GOTOFF;
1386 else if (is_complex (*exp))
1387 reloc_type = R_HPPA_COMPLEX;
1388 else
1389 reloc_type = R_HPPA;
1390
1391 if (hppa_field_selector != e_psel && hppa_field_selector != e_fsel)
1392 as_warn ("Invalid field selector. Assuming F%%.");
1393
1394 fix_new_hppa (frag, where, size,
1395 (symbolS *) NULL, (offsetT) 0, exp, 0, reloc_type,
1396 hppa_field_selector, 32, 0, (char *) 0);
1397
1398 /* Reset field selector to its default state. */
1399 hppa_field_selector = 0;
1400 }
1401
1402 /* This function is called once, at assembler startup time. It should
1403 set up all the tables, etc. that the MD part of the assembler will need. */
1404
1405 void
1406 md_begin ()
1407 {
1408 const char *retval = NULL;
1409 int lose = 0;
1410 unsigned int i = 0;
1411
1412 last_call_info = NULL;
1413 call_info_root = NULL;
1414
1415 /* Folding of text and data segments fails miserably on the PA.
1416 Warn user and disable "-R" option. */
1417 if (flagseen['R'])
1418 {
1419 as_warn ("-R option not supported on this target.");
1420 flag_readonly_data_in_text = 0;
1421 flagseen['R'] = 0;
1422 }
1423
1424 pa_spaces_begin ();
1425
1426 op_hash = hash_new ();
1427 if (op_hash == NULL)
1428 as_fatal ("Virtual memory exhausted");
1429
1430 while (i < NUMOPCODES)
1431 {
1432 const char *name = pa_opcodes[i].name;
1433 retval = hash_insert (op_hash, name, (struct pa_opcode *) &pa_opcodes[i]);
1434 if (retval != NULL && *retval != '\0')
1435 {
1436 as_fatal ("Internal error: can't hash `%s': %s\n", name, retval);
1437 lose = 1;
1438 }
1439 do
1440 {
1441 if ((pa_opcodes[i].match & pa_opcodes[i].mask)
1442 != pa_opcodes[i].match)
1443 {
1444 fprintf (stderr, "internal error: losing opcode: `%s' \"%s\"\n",
1445 pa_opcodes[i].name, pa_opcodes[i].args);
1446 lose = 1;
1447 }
1448 ++i;
1449 }
1450 while (i < NUMOPCODES && !strcmp (pa_opcodes[i].name, name));
1451 }
1452
1453 if (lose)
1454 as_fatal ("Broken assembler. No assembly attempted.");
1455
1456 /* SOM will change text_section. To make sure we never put
1457 anything into the old one switch to the new one now. */
1458 subseg_set (text_section, 0);
1459 }
1460
1461 /* Called at the end of assembling a source file. Nothing to do
1462 at this point on the PA. */
1463
1464 void
1465 md_end ()
1466 {
1467 return;
1468 }
1469
1470 /* Assemble a single instruction storing it into a frag. */
1471 void
1472 md_assemble (str)
1473 char *str;
1474 {
1475 char *to;
1476
1477 /* The had better be something to assemble. */
1478 assert (str);
1479
1480 /* Assemble the instruction. Results are saved into "the_insn". */
1481 pa_ip (str);
1482
1483 /* Get somewhere to put the assembled instrution. */
1484 to = frag_more (4);
1485
1486 /* Output the opcode. */
1487 md_number_to_chars (to, the_insn.opcode, 4);
1488
1489 /* If necessary output more stuff. */
1490 if (the_insn.reloc != R_HPPA_NONE)
1491 fix_new_hppa (frag_now, (to - frag_now->fr_literal), 4, NULL,
1492 (offsetT) 0, &the_insn.exp, the_insn.pcrel,
1493 the_insn.reloc, the_insn.field_selector,
1494 the_insn.format, the_insn.arg_reloc, NULL);
1495
1496 }
1497
1498 /* Do the real work for assembling a single instruction. Store results
1499 into the global "the_insn" variable.
1500
1501 FIXME: Should define and use some functions/macros to handle
1502 various common insertions of information into the opcode. */
1503
1504 static void
1505 pa_ip (str)
1506 char *str;
1507 {
1508 char *error_message = "";
1509 char *s, c, *argstart, *name, *save_s;
1510 const char *args;
1511 int match = FALSE;
1512 int comma = 0;
1513 int cmpltr, nullif, flag, cond, num;
1514 unsigned long opcode;
1515 struct pa_opcode *insn;
1516
1517 /* Skip to something interesting. */
1518 for (s = str; isupper (*s) || islower (*s) || (*s >= '0' && *s <= '3'); ++s)
1519 ;
1520
1521 switch (*s)
1522 {
1523
1524 case '\0':
1525 break;
1526
1527 case ',':
1528 comma = 1;
1529
1530 /*FALLTHROUGH */
1531
1532 case ' ':
1533 *s++ = '\0';
1534 break;
1535
1536 default:
1537 as_bad ("Unknown opcode: `%s'", str);
1538 exit (1);
1539 }
1540
1541 save_s = str;
1542
1543 /* Convert everything into lower case. */
1544 while (*save_s)
1545 {
1546 if (isupper (*save_s))
1547 *save_s = tolower (*save_s);
1548 save_s++;
1549 }
1550
1551 /* Look up the opcode in the has table. */
1552 if ((insn = (struct pa_opcode *) hash_find (op_hash, str)) == NULL)
1553 {
1554 as_bad ("Unknown opcode: `%s'", str);
1555 return;
1556 }
1557
1558 if (comma)
1559 {
1560 *--s = ',';
1561 }
1562
1563 /* Mark the location where arguments for the instruction start, then
1564 start processing them. */
1565 argstart = s;
1566 for (;;)
1567 {
1568 /* Do some initialization. */
1569 opcode = insn->match;
1570 bzero (&the_insn, sizeof (the_insn));
1571
1572 the_insn.reloc = R_HPPA_NONE;
1573
1574 /* Build the opcode, checking as we go to make
1575 sure that the operands match. */
1576 for (args = insn->args;; ++args)
1577 {
1578 switch (*args)
1579 {
1580
1581 /* End of arguments. */
1582 case '\0':
1583 if (*s == '\0')
1584 match = TRUE;
1585 break;
1586
1587 case '+':
1588 if (*s == '+')
1589 {
1590 ++s;
1591 continue;
1592 }
1593 if (*s == '-')
1594 continue;
1595 break;
1596
1597 /* These must match exactly. */
1598 case '(':
1599 case ')':
1600 case ',':
1601 case ' ':
1602 if (*s++ == *args)
1603 continue;
1604 break;
1605
1606 /* Handle a 5 bit register or control register field at 10. */
1607 case 'b':
1608 case '^':
1609 num = pa_parse_number (&s, 0);
1610 CHECK_FIELD (num, 31, 0, 0);
1611 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
1612
1613 /* Handle a 5 bit register field at 15. */
1614 case 'x':
1615 num = pa_parse_number (&s, 0);
1616 CHECK_FIELD (num, 31, 0, 0);
1617 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1618
1619 /* Handle a 5 bit register field at 31. */
1620 case 'y':
1621 case 't':
1622 num = pa_parse_number (&s, 0);
1623 CHECK_FIELD (num, 31, 0, 0);
1624 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1625
1626 /* Handle a 5 bit field length at 31. */
1627 case 'T':
1628 num = pa_get_absolute_expression (&the_insn, &s);
1629 s = expr_end;
1630 CHECK_FIELD (num, 32, 1, 0);
1631 INSERT_FIELD_AND_CONTINUE (opcode, 32 - num, 0);
1632
1633 /* Handle a 5 bit immediate at 15. */
1634 case '5':
1635 num = pa_get_absolute_expression (&the_insn, &s);
1636 s = expr_end;
1637 CHECK_FIELD (num, 15, -16, 0);
1638 low_sign_unext (num, 5, &num);
1639 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1640
1641 /* Handle a 5 bit immediate at 31. */
1642 case 'V':
1643 num = pa_get_absolute_expression (&the_insn, &s);
1644 s = expr_end;
1645 CHECK_FIELD (num, 15, -16, 0)
1646 low_sign_unext (num, 5, &num);
1647 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1648
1649 /* Handle an unsigned 5 bit immediate at 31. */
1650 case 'r':
1651 num = pa_get_absolute_expression (&the_insn, &s);
1652 s = expr_end;
1653 CHECK_FIELD (num, 31, 0, 0);
1654 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1655
1656 /* Handle an unsigned 5 bit immediate at 15. */
1657 case 'R':
1658 num = pa_get_absolute_expression (&the_insn, &s);
1659 s = expr_end;
1660 CHECK_FIELD (num, 31, 0, 0);
1661 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1662
1663 /* Handle a 2 bit space identifier at 17. */
1664 case 's':
1665 num = pa_parse_number (&s, 0);
1666 CHECK_FIELD (num, 3, 0, 1);
1667 INSERT_FIELD_AND_CONTINUE (opcode, num, 14);
1668
1669 /* Handle a 3 bit space identifier at 18. */
1670 case 'S':
1671 num = pa_parse_number (&s, 0);
1672 CHECK_FIELD (num, 7, 0, 1);
1673 dis_assemble_3 (num, &num);
1674 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
1675
1676 /* Handle a completer for an indexing load or store. */
1677 case 'c':
1678 {
1679 int uu = 0;
1680 int m = 0;
1681 int i = 0;
1682 while (*s == ',' && i < 2)
1683 {
1684 s++;
1685 if (strncasecmp (s, "sm", 2) == 0)
1686 {
1687 uu = 1;
1688 m = 1;
1689 s++;
1690 i++;
1691 }
1692 else if (strncasecmp (s, "m", 1) == 0)
1693 m = 1;
1694 else if (strncasecmp (s, "s", 1) == 0)
1695 uu = 1;
1696 else
1697 as_bad ("Invalid Indexed Load Completer.");
1698 s++;
1699 i++;
1700 }
1701 if (i > 2)
1702 as_bad ("Invalid Indexed Load Completer Syntax.");
1703 opcode |= m << 5;
1704 INSERT_FIELD_AND_CONTINUE (opcode, uu, 13);
1705 }
1706
1707 /* Handle a short load/store completer. */
1708 case 'C':
1709 {
1710 int a = 0;
1711 int m = 0;
1712 if (*s == ',')
1713 {
1714 s++;
1715 if (strncasecmp (s, "ma", 2) == 0)
1716 {
1717 a = 0;
1718 m = 1;
1719 }
1720 else if (strncasecmp (s, "mb", 2) == 0)
1721 {
1722 a = 1;
1723 m = 1;
1724 }
1725 else
1726 as_bad ("Invalid Short Load/Store Completer.");
1727 s += 2;
1728 }
1729 opcode |= m << 5;
1730 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1731 }
1732
1733 /* Handle a stbys completer. */
1734 case 'Y':
1735 {
1736 int a = 0;
1737 int m = 0;
1738 int i = 0;
1739 while (*s == ',' && i < 2)
1740 {
1741 s++;
1742 if (strncasecmp (s, "m", 1) == 0)
1743 m = 1;
1744 else if (strncasecmp (s, "b", 1) == 0)
1745 a = 0;
1746 else if (strncasecmp (s, "e", 1) == 0)
1747 a = 1;
1748 else
1749 as_bad ("Invalid Store Bytes Short Completer");
1750 s++;
1751 i++;
1752 }
1753 if (i > 2)
1754 as_bad ("Invalid Store Bytes Short Completer");
1755 opcode |= m << 5;
1756 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1757 }
1758
1759 /* Handle a non-negated compare/stubtract condition. */
1760 case '<':
1761 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
1762 if (cmpltr < 0)
1763 {
1764 as_bad ("Invalid Compare/Subtract Condition: %c", *s);
1765 cmpltr = 0;
1766 }
1767 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1768
1769 /* Handle a negated or non-negated compare/subtract condition. */
1770 case '?':
1771 save_s = s;
1772 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
1773 if (cmpltr < 0)
1774 {
1775 s = save_s;
1776 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 1);
1777 if (cmpltr < 0)
1778 {
1779 as_bad ("Invalid Compare/Subtract Condition.");
1780 cmpltr = 0;
1781 }
1782 else
1783 {
1784 /* Negated condition requires an opcode change. */
1785 opcode |= 1 << 27;
1786 }
1787 }
1788 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1789
1790 /* Handle a negated or non-negated add condition. */
1791 case '!':
1792 save_s = s;
1793 cmpltr = pa_parse_nonneg_add_cmpltr (&s, 1);
1794 if (cmpltr < 0)
1795 {
1796 s = save_s;
1797 cmpltr = pa_parse_neg_add_cmpltr (&s, 1);
1798 if (cmpltr < 0)
1799 {
1800 as_bad ("Invalid Compare/Subtract Condition");
1801 cmpltr = 0;
1802 }
1803 else
1804 {
1805 /* Negated condition requires an opcode change. */
1806 opcode |= 1 << 27;
1807 }
1808 }
1809 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1810
1811 /* Handle a compare/subtract condition. */
1812 case 'a':
1813 cmpltr = 0;
1814 flag = 0;
1815 save_s = s;
1816 if (*s == ',')
1817 {
1818 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 0);
1819 if (cmpltr < 0)
1820 {
1821 flag = 1;
1822 s = save_s;
1823 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 0);
1824 if (cmpltr < 0)
1825 {
1826 as_bad ("Invalid Compare/Subtract Condition");
1827 }
1828 }
1829 }
1830 opcode |= cmpltr << 13;
1831 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1832
1833 /* Handle a non-negated add condition. */
1834 case 'd':
1835 cmpltr = 0;
1836 nullif = 0;
1837 flag = 0;
1838 if (*s == ',')
1839 {
1840 s++;
1841 name = s;
1842 while (*s != ',' && *s != ' ' && *s != '\t')
1843 s += 1;
1844 c = *s;
1845 *s = 0x00;
1846 if (strcmp (name, "=") == 0)
1847 cmpltr = 1;
1848 else if (strcmp (name, "<") == 0)
1849 cmpltr = 2;
1850 else if (strcmp (name, "<=") == 0)
1851 cmpltr = 3;
1852 else if (strcasecmp (name, "nuv") == 0)
1853 cmpltr = 4;
1854 else if (strcasecmp (name, "znv") == 0)
1855 cmpltr = 5;
1856 else if (strcasecmp (name, "sv") == 0)
1857 cmpltr = 6;
1858 else if (strcasecmp (name, "od") == 0)
1859 cmpltr = 7;
1860 else if (strcasecmp (name, "n") == 0)
1861 nullif = 1;
1862 else if (strcasecmp (name, "tr") == 0)
1863 {
1864 cmpltr = 0;
1865 flag = 1;
1866 }
1867 else if (strcasecmp (name, "<>") == 0)
1868 {
1869 cmpltr = 1;
1870 flag = 1;
1871 }
1872 else if (strcasecmp (name, ">=") == 0)
1873 {
1874 cmpltr = 2;
1875 flag = 1;
1876 }
1877 else if (strcasecmp (name, ">") == 0)
1878 {
1879 cmpltr = 3;
1880 flag = 1;
1881 }
1882 else if (strcasecmp (name, "uv") == 0)
1883 {
1884 cmpltr = 4;
1885 flag = 1;
1886 }
1887 else if (strcasecmp (name, "vnz") == 0)
1888 {
1889 cmpltr = 5;
1890 flag = 1;
1891 }
1892 else if (strcasecmp (name, "nsv") == 0)
1893 {
1894 cmpltr = 6;
1895 flag = 1;
1896 }
1897 else if (strcasecmp (name, "ev") == 0)
1898 {
1899 cmpltr = 7;
1900 flag = 1;
1901 }
1902 else
1903 as_bad ("Invalid Add Condition: %s", name);
1904 *s = c;
1905 }
1906 nullif = pa_parse_nullif (&s);
1907 opcode |= nullif << 1;
1908 opcode |= cmpltr << 13;
1909 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1910
1911 /* HANDLE a logical instruction condition. */
1912 case '&':
1913 cmpltr = 0;
1914 flag = 0;
1915 if (*s == ',')
1916 {
1917 s++;
1918 name = s;
1919 while (*s != ',' && *s != ' ' && *s != '\t')
1920 s += 1;
1921 c = *s;
1922 *s = 0x00;
1923 if (strcmp (name, "=") == 0)
1924 cmpltr = 1;
1925 else if (strcmp (name, "<") == 0)
1926 cmpltr = 2;
1927 else if (strcmp (name, "<=") == 0)
1928 cmpltr = 3;
1929 else if (strcasecmp (name, "od") == 0)
1930 cmpltr = 7;
1931 else if (strcasecmp (name, "tr") == 0)
1932 {
1933 cmpltr = 0;
1934 flag = 1;
1935 }
1936 else if (strcmp (name, "<>") == 0)
1937 {
1938 cmpltr = 1;
1939 flag = 1;
1940 }
1941 else if (strcmp (name, ">=") == 0)
1942 {
1943 cmpltr = 2;
1944 flag = 1;
1945 }
1946 else if (strcmp (name, ">") == 0)
1947 {
1948 cmpltr = 3;
1949 flag = 1;
1950 }
1951 else if (strcasecmp (name, "ev") == 0)
1952 {
1953 cmpltr = 7;
1954 flag = 1;
1955 }
1956 else
1957 as_bad ("Invalid Logical Instruction Condition.");
1958 *s = c;
1959 }
1960 opcode |= cmpltr << 13;
1961 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1962
1963 /* Handle a unit instruction condition. */
1964 case 'U':
1965 cmpltr = 0;
1966 flag = 0;
1967 if (*s == ',')
1968 {
1969 s++;
1970 if (strncasecmp (s, "sbz", 3) == 0)
1971 {
1972 cmpltr = 2;
1973 s += 3;
1974 }
1975 else if (strncasecmp (s, "shz", 3) == 0)
1976 {
1977 cmpltr = 3;
1978 s += 3;
1979 }
1980 else if (strncasecmp (s, "sdc", 3) == 0)
1981 {
1982 cmpltr = 4;
1983 s += 3;
1984 }
1985 else if (strncasecmp (s, "sbc", 3) == 0)
1986 {
1987 cmpltr = 6;
1988 s += 3;
1989 }
1990 else if (strncasecmp (s, "shc", 3) == 0)
1991 {
1992 cmpltr = 7;
1993 s += 3;
1994 }
1995 else if (strncasecmp (s, "tr", 2) == 0)
1996 {
1997 cmpltr = 0;
1998 flag = 1;
1999 s += 2;
2000 }
2001 else if (strncasecmp (s, "nbz", 3) == 0)
2002 {
2003 cmpltr = 2;
2004 flag = 1;
2005 s += 3;
2006 }
2007 else if (strncasecmp (s, "nhz", 3) == 0)
2008 {
2009 cmpltr = 3;
2010 flag = 1;
2011 s += 3;
2012 }
2013 else if (strncasecmp (s, "ndc", 3) == 0)
2014 {
2015 cmpltr = 4;
2016 flag = 1;
2017 s += 3;
2018 }
2019 else if (strncasecmp (s, "nbc", 3) == 0)
2020 {
2021 cmpltr = 6;
2022 flag = 1;
2023 s += 3;
2024 }
2025 else if (strncasecmp (s, "nhc", 3) == 0)
2026 {
2027 cmpltr = 7;
2028 flag = 1;
2029 s += 3;
2030 }
2031 else
2032 as_bad ("Invalid Logical Instruction Condition.");
2033 }
2034 opcode |= cmpltr << 13;
2035 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
2036
2037 /* Handle a shift/extract/deposit condition. */
2038 case '|':
2039 case '>':
2040 cmpltr = 0;
2041 if (*s == ',')
2042 {
2043 save_s = s++;
2044 name = s;
2045 while (*s != ',' && *s != ' ' && *s != '\t')
2046 s += 1;
2047 c = *s;
2048 *s = 0x00;
2049 if (strcmp (name, "=") == 0)
2050 cmpltr = 1;
2051 else if (strcmp (name, "<") == 0)
2052 cmpltr = 2;
2053 else if (strcasecmp (name, "od") == 0)
2054 cmpltr = 3;
2055 else if (strcasecmp (name, "tr") == 0)
2056 cmpltr = 4;
2057 else if (strcmp (name, "<>") == 0)
2058 cmpltr = 5;
2059 else if (strcmp (name, ">=") == 0)
2060 cmpltr = 6;
2061 else if (strcasecmp (name, "ev") == 0)
2062 cmpltr = 7;
2063 /* Handle movb,n. Put things back the way they were.
2064 This includes moving s back to where it started. */
2065 else if (strcasecmp (name, "n") == 0 && *args == '|')
2066 {
2067 *s = c;
2068 s = save_s;
2069 continue;
2070 }
2071 else
2072 as_bad ("Invalid Shift/Extract/Deposit Condition.");
2073 *s = c;
2074 }
2075 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
2076
2077 /* Handle bvb and bb conditions. */
2078 case '~':
2079 cmpltr = 0;
2080 if (*s == ',')
2081 {
2082 s++;
2083 if (strncmp (s, "<", 1) == 0)
2084 {
2085 cmpltr = 2;
2086 s++;
2087 }
2088 else if (strncmp (s, ">=", 2) == 0)
2089 {
2090 cmpltr = 6;
2091 s += 2;
2092 }
2093 else
2094 as_bad ("Invalid Bit Branch Condition: %c", *s);
2095 }
2096 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
2097
2098 /* Handle a system control completer. */
2099 case 'Z':
2100 if (*s == ',' && (*(s + 1) == 'm' || *(s + 1) == 'M'))
2101 {
2102 flag = 1;
2103 s += 2;
2104 }
2105 else
2106 flag = 0;
2107
2108 INSERT_FIELD_AND_CONTINUE (opcode, flag, 5);
2109
2110 /* Handle a nullification completer for branch instructions. */
2111 case 'n':
2112 nullif = pa_parse_nullif (&s);
2113 INSERT_FIELD_AND_CONTINUE (opcode, nullif, 1);
2114
2115 /* Handle a 11 bit immediate at 31. */
2116 case 'i':
2117 the_insn.field_selector = pa_chk_field_selector (&s);
2118 get_expression (s);
2119 s = expr_end;
2120 if (the_insn.exp.X_op == O_constant)
2121 {
2122 num = evaluate_absolute (&the_insn);
2123 CHECK_FIELD (num, 1023, -1024, 0);
2124 low_sign_unext (num, 11, &num);
2125 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2126 }
2127 else
2128 {
2129 if (is_DP_relative (the_insn.exp))
2130 the_insn.reloc = R_HPPA_GOTOFF;
2131 else if (is_PC_relative (the_insn.exp))
2132 the_insn.reloc = R_HPPA_PCREL_CALL;
2133 else if (is_complex (the_insn.exp))
2134 the_insn.reloc = R_HPPA_COMPLEX;
2135 else
2136 the_insn.reloc = R_HPPA;
2137 the_insn.format = 11;
2138 continue;
2139 }
2140
2141 /* Handle a 14 bit immediate at 31. */
2142 case 'j':
2143 the_insn.field_selector = pa_chk_field_selector (&s);
2144 get_expression (s);
2145 s = expr_end;
2146 if (the_insn.exp.X_op == O_constant)
2147 {
2148 num = evaluate_absolute (&the_insn);
2149 CHECK_FIELD (num, 8191, -8192, 0);
2150 low_sign_unext (num, 14, &num);
2151 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2152 }
2153 else
2154 {
2155 if (is_DP_relative (the_insn.exp))
2156 the_insn.reloc = R_HPPA_GOTOFF;
2157 else if (is_PC_relative (the_insn.exp))
2158 the_insn.reloc = R_HPPA_PCREL_CALL;
2159 else if (is_complex (the_insn.exp))
2160 the_insn.reloc = R_HPPA_COMPLEX;
2161 else
2162 the_insn.reloc = R_HPPA;
2163 the_insn.format = 14;
2164 continue;
2165 }
2166
2167 /* Handle a 21 bit immediate at 31. */
2168 case 'k':
2169 the_insn.field_selector = pa_chk_field_selector (&s);
2170 get_expression (s);
2171 s = expr_end;
2172 if (the_insn.exp.X_op == O_constant)
2173 {
2174 num = evaluate_absolute (&the_insn);
2175 CHECK_FIELD (num >> 11, 1048575, -1048576, 0);
2176 dis_assemble_21 (num, &num);
2177 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2178 }
2179 else
2180 {
2181 if (is_DP_relative (the_insn.exp))
2182 the_insn.reloc = R_HPPA_GOTOFF;
2183 else if (is_PC_relative (the_insn.exp))
2184 the_insn.reloc = R_HPPA_PCREL_CALL;
2185 else if (is_complex (the_insn.exp))
2186 the_insn.reloc = R_HPPA_COMPLEX;
2187 else
2188 the_insn.reloc = R_HPPA;
2189 the_insn.format = 21;
2190 continue;
2191 }
2192
2193 /* Handle a 12 bit branch displacement. */
2194 case 'w':
2195 the_insn.field_selector = pa_chk_field_selector (&s);
2196 get_expression (s);
2197 s = expr_end;
2198 the_insn.pcrel = 1;
2199 if (!strcmp (S_GET_NAME (the_insn.exp.X_add_symbol), "L$0\001"))
2200 {
2201 unsigned int w1, w, result;
2202
2203 num = evaluate_absolute (&the_insn);
2204 if (num % 4)
2205 {
2206 as_bad ("Branch to unaligned address");
2207 break;
2208 }
2209 CHECK_FIELD (num, 8191, -8192, 0);
2210 sign_unext ((num - 8) >> 2, 12, &result);
2211 dis_assemble_12 (result, &w1, &w);
2212 INSERT_FIELD_AND_CONTINUE (opcode, ((w1 << 2) | w), 0);
2213 }
2214 else
2215 {
2216 if (is_complex (the_insn.exp))
2217 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2218 else
2219 the_insn.reloc = R_HPPA_PCREL_CALL;
2220 the_insn.format = 12;
2221 the_insn.arg_reloc = last_call_desc.arg_reloc;
2222 bzero (&last_call_desc, sizeof (struct call_desc));
2223 s = expr_end;
2224 continue;
2225 }
2226
2227 /* Handle a 17 bit branch displacement. */
2228 case 'W':
2229 the_insn.field_selector = pa_chk_field_selector (&s);
2230 get_expression (s);
2231 s = expr_end;
2232 the_insn.pcrel = 1;
2233 if (!the_insn.exp.X_add_symbol
2234 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2235 "L$0\001"))
2236 {
2237 unsigned int w2, w1, w, result;
2238
2239 num = evaluate_absolute (&the_insn);
2240 if (num % 4)
2241 {
2242 as_bad ("Branch to unaligned address");
2243 break;
2244 }
2245 CHECK_FIELD (num, 262143, -262144, 0);
2246
2247 if (the_insn.exp.X_add_symbol)
2248 num -= 8;
2249
2250 sign_unext (num >> 2, 17, &result);
2251 dis_assemble_17 (result, &w1, &w2, &w);
2252 INSERT_FIELD_AND_CONTINUE (opcode,
2253 ((w2 << 2) | (w1 << 16) | w), 0);
2254 }
2255 else
2256 {
2257 if (is_complex (the_insn.exp))
2258 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2259 else
2260 the_insn.reloc = R_HPPA_PCREL_CALL;
2261 the_insn.format = 17;
2262 the_insn.arg_reloc = last_call_desc.arg_reloc;
2263 bzero (&last_call_desc, sizeof (struct call_desc));
2264 continue;
2265 }
2266
2267 /* Handle an absolute 17 bit branch target. */
2268 case 'z':
2269 the_insn.field_selector = pa_chk_field_selector (&s);
2270 get_expression (s);
2271 s = expr_end;
2272 the_insn.pcrel = 0;
2273 if (!the_insn.exp.X_add_symbol
2274 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2275 "L$0\001"))
2276 {
2277 unsigned int w2, w1, w, result;
2278
2279 num = evaluate_absolute (&the_insn);
2280 if (num % 4)
2281 {
2282 as_bad ("Branch to unaligned address");
2283 break;
2284 }
2285 CHECK_FIELD (num, 262143, -262144, 0);
2286
2287 if (the_insn.exp.X_add_symbol)
2288 num -= 8;
2289
2290 sign_unext (num >> 2, 17, &result);
2291 dis_assemble_17 (result, &w1, &w2, &w);
2292 INSERT_FIELD_AND_CONTINUE (opcode,
2293 ((w2 << 2) | (w1 << 16) | w), 0);
2294 }
2295 else
2296 {
2297 if (is_complex (the_insn.exp))
2298 the_insn.reloc = R_HPPA_COMPLEX_ABS_CALL;
2299 else
2300 the_insn.reloc = R_HPPA_ABS_CALL;
2301 the_insn.format = 17;
2302 continue;
2303 }
2304
2305 /* Handle a 5 bit shift count at 26. */
2306 case 'p':
2307 num = pa_get_absolute_expression (&the_insn, &s);
2308 s = expr_end;
2309 CHECK_FIELD (num, 31, 0, 0);
2310 INSERT_FIELD_AND_CONTINUE (opcode, 31 - num, 5);
2311
2312 /* Handle a 5 bit bit position at 26. */
2313 case 'P':
2314 num = pa_get_absolute_expression (&the_insn, &s);
2315 s = expr_end;
2316 CHECK_FIELD (num, 31, 0, 0);
2317 INSERT_FIELD_AND_CONTINUE (opcode, num, 5);
2318
2319 /* Handle a 5 bit immediate at 10. */
2320 case 'Q':
2321 num = pa_get_absolute_expression (&the_insn, &s);
2322 s = expr_end;
2323 CHECK_FIELD (num, 31, 0, 0);
2324 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
2325
2326 /* Handle a 13 bit immediate at 18. */
2327 case 'A':
2328 num = pa_get_absolute_expression (&the_insn, &s);
2329 s = expr_end;
2330 CHECK_FIELD (num, 4095, -4096, 0);
2331 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
2332
2333 /* Handle a 26 bit immediate at 31. */
2334 case 'D':
2335 num = pa_get_absolute_expression (&the_insn, &s);
2336 s = expr_end;
2337 CHECK_FIELD (num, 671108864, 0, 0);
2338 INSERT_FIELD_AND_CONTINUE (opcode, num, 1);
2339
2340 /* Handle a 3 bit SFU identifier at 25. */
2341 case 'f':
2342 num = pa_get_absolute_expression (&the_insn, &s);
2343 s = expr_end;
2344 CHECK_FIELD (num, 7, 0, 0);
2345 INSERT_FIELD_AND_CONTINUE (opcode, num, 6);
2346
2347 /* We don't support any of these. FIXME. */
2348 case 'O':
2349 get_expression (s);
2350 s = expr_end;
2351 abort ();
2352 continue;
2353
2354 /* Handle a source FP operand format completer. */
2355 case 'F':
2356 flag = pa_parse_fp_format (&s);
2357 the_insn.fpof1 = flag;
2358 INSERT_FIELD_AND_CONTINUE (opcode, flag, 11);
2359
2360 /* Handle a destination FP operand format completer. */
2361 case 'G':
2362 /* pa_parse_format needs the ',' prefix. */
2363 s--;
2364 flag = pa_parse_fp_format (&s);
2365 the_insn.fpof2 = flag;
2366 INSERT_FIELD_AND_CONTINUE (opcode, flag, 13);
2367
2368 /* Handle FP compare conditions. */
2369 case 'M':
2370 cond = pa_parse_fp_cmp_cond (&s);
2371 INSERT_FIELD_AND_CONTINUE (opcode, cond, 0);
2372
2373 /* Handle L/R register halves like 't'. */
2374 case 'v':
2375 {
2376 struct pa_89_fp_reg_struct result;
2377
2378 pa_parse_number (&s, &result);
2379 CHECK_FIELD (result.number_part, 31, 0, 0);
2380 opcode |= result.number_part;
2381
2382 /* 0x30 opcodes are FP arithmetic operation opcodes
2383 and need to be turned into 0x38 opcodes. This
2384 is not necessary for loads/stores. */
2385 if (need_89_opcode (&the_insn, &result)
2386 && ((opcode & 0xfc000000) == 0x30000000))
2387 opcode |= 1 << 27;
2388
2389 INSERT_FIELD_AND_CONTINUE (opcode, result.l_r_select & 1, 6);
2390 }
2391
2392 /* Handle L/R register halves like 'b'. */
2393 case 'E':
2394 {
2395 struct pa_89_fp_reg_struct result;
2396
2397 pa_parse_number (&s, &result);
2398 CHECK_FIELD (result.number_part, 31, 0, 0);
2399 opcode |= result.number_part << 21;
2400 if (need_89_opcode (&the_insn, &result))
2401 {
2402 opcode |= (result.l_r_select & 1) << 7;
2403 opcode |= 1 << 27;
2404 }
2405 continue;
2406 }
2407
2408 /* Handle L/R register halves like 'x'. */
2409 case 'X':
2410 {
2411 struct pa_89_fp_reg_struct result;
2412
2413 pa_parse_number (&s, &result);
2414 CHECK_FIELD (result.number_part, 31, 0, 0);
2415 opcode |= (result.number_part & 0x1f) << 16;
2416 if (need_89_opcode (&the_insn, &result))
2417 {
2418 opcode |= (result.l_r_select & 1) << 12;
2419 opcode |= 1 << 27;
2420 }
2421 continue;
2422 }
2423
2424 /* Handle a 5 bit register field at 10. */
2425 case '4':
2426 {
2427 struct pa_89_fp_reg_struct result;
2428
2429 pa_parse_number (&s, &result);
2430 CHECK_FIELD (result.number_part, 31, 0, 0);
2431 if (the_insn.fpof1 == SGL)
2432 {
2433 result.number_part &= 0xF;
2434 result.number_part |= (result.l_r_select & 1) << 4;
2435 }
2436 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 21);
2437 }
2438
2439 /* Handle a 5 bit register field at 15. */
2440 case '6':
2441 {
2442 struct pa_89_fp_reg_struct result;
2443
2444 pa_parse_number (&s, &result);
2445 CHECK_FIELD (result.number_part, 31, 0, 0);
2446 if (the_insn.fpof1 == SGL)
2447 {
2448 result.number_part &= 0xF;
2449 result.number_part |= (result.l_r_select & 1) << 4;
2450 }
2451 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 16);
2452 }
2453
2454 /* Handle a 5 bit register field at 31. */
2455 case '7':
2456 {
2457 struct pa_89_fp_reg_struct result;
2458
2459 pa_parse_number (&s, &result);
2460 CHECK_FIELD (result.number_part, 31, 0, 0);
2461 if (the_insn.fpof1 == SGL)
2462 {
2463 result.number_part &= 0xF;
2464 result.number_part |= (result.l_r_select & 1) << 4;
2465 }
2466 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 0);
2467 }
2468
2469 /* Handle a 5 bit register field at 20. */
2470 case '8':
2471 {
2472 struct pa_89_fp_reg_struct result;
2473
2474 pa_parse_number (&s, &result);
2475 CHECK_FIELD (result.number_part, 31, 0, 0);
2476 if (the_insn.fpof1 == SGL)
2477 {
2478 result.number_part &= 0xF;
2479 result.number_part |= (result.l_r_select & 1) << 4;
2480 }
2481 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 11);
2482 }
2483
2484 /* Handle a 5 bit register field at 25. */
2485 case '9':
2486 {
2487 struct pa_89_fp_reg_struct result;
2488
2489 pa_parse_number (&s, &result);
2490 CHECK_FIELD (result.number_part, 31, 0, 0);
2491 if (the_insn.fpof1 == SGL)
2492 {
2493 result.number_part &= 0xF;
2494 result.number_part |= (result.l_r_select & 1) << 4;
2495 }
2496 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 6);
2497 }
2498
2499 /* Handle a floating point operand format at 26.
2500 Only allows single and double precision. */
2501 case 'H':
2502 flag = pa_parse_fp_format (&s);
2503 switch (flag)
2504 {
2505 case SGL:
2506 opcode |= 0x20;
2507 case DBL:
2508 the_insn.fpof1 = flag;
2509 continue;
2510
2511 case QUAD:
2512 case ILLEGAL_FMT:
2513 default:
2514 as_bad ("Invalid Floating Point Operand Format.");
2515 }
2516 break;
2517
2518 default:
2519 abort ();
2520 }
2521 break;
2522 }
2523
2524 /* Check if the args matched. */
2525 if (match == FALSE)
2526 {
2527 if (&insn[1] - pa_opcodes < NUMOPCODES
2528 && !strcmp (insn->name, insn[1].name))
2529 {
2530 ++insn;
2531 s = argstart;
2532 continue;
2533 }
2534 else
2535 {
2536 as_bad ("Invalid operands %s", error_message);
2537 return;
2538 }
2539 }
2540 break;
2541 }
2542
2543 the_insn.opcode = opcode;
2544 return;
2545 }
2546
2547 /* Turn a string in input_line_pointer into a floating point constant of type
2548 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
2549 emitted is stored in *sizeP . An error message or NULL is returned. */
2550
2551 #define MAX_LITTLENUMS 6
2552
2553 char *
2554 md_atof (type, litP, sizeP)
2555 char type;
2556 char *litP;
2557 int *sizeP;
2558 {
2559 int prec;
2560 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2561 LITTLENUM_TYPE *wordP;
2562 char *t;
2563
2564 switch (type)
2565 {
2566
2567 case 'f':
2568 case 'F':
2569 case 's':
2570 case 'S':
2571 prec = 2;
2572 break;
2573
2574 case 'd':
2575 case 'D':
2576 case 'r':
2577 case 'R':
2578 prec = 4;
2579 break;
2580
2581 case 'x':
2582 case 'X':
2583 prec = 6;
2584 break;
2585
2586 case 'p':
2587 case 'P':
2588 prec = 6;
2589 break;
2590
2591 default:
2592 *sizeP = 0;
2593 return "Bad call to MD_ATOF()";
2594 }
2595 t = atof_ieee (input_line_pointer, type, words);
2596 if (t)
2597 input_line_pointer = t;
2598 *sizeP = prec * sizeof (LITTLENUM_TYPE);
2599 for (wordP = words; prec--;)
2600 {
2601 md_number_to_chars (litP, (valueT) (*wordP++), sizeof (LITTLENUM_TYPE));
2602 litP += sizeof (LITTLENUM_TYPE);
2603 }
2604 return NULL;
2605 }
2606
2607 /* Write out big-endian. */
2608
2609 void
2610 md_number_to_chars (buf, val, n)
2611 char *buf;
2612 valueT val;
2613 int n;
2614 {
2615 number_to_chars_bigendian (buf, val, n);
2616 }
2617
2618 /* Translate internal representation of relocation info to BFD target
2619 format. */
2620
2621 arelent **
2622 tc_gen_reloc (section, fixp)
2623 asection *section;
2624 fixS *fixp;
2625 {
2626 arelent *reloc;
2627 struct hppa_fix_struct *hppa_fixp = fixp->tc_fix_data;
2628 bfd_reloc_code_real_type code;
2629 static int unwind_reloc_fixp_cnt = 0;
2630 static arelent *unwind_reloc_entryP = NULL;
2631 static arelent *no_relocs = NULL;
2632 arelent **relocs;
2633 bfd_reloc_code_real_type **codes;
2634 int n_relocs;
2635 int i;
2636
2637 if (fixp->fx_addsy == 0)
2638 return &no_relocs;
2639 assert (hppa_fixp != 0);
2640 assert (section != 0);
2641
2642 #ifdef OBJ_ELF
2643 /* Yuk. I would really like to push all this ELF specific unwind
2644 crud into BFD and the linker. That's how SOM does it -- and
2645 if we could make ELF emulate that then we could share more code
2646 in GAS (and potentially a gnu-linker later).
2647
2648 Unwind section relocations are handled in a special way.
2649 The relocations for the .unwind section are originally
2650 built in the usual way. That is, for each unwind table
2651 entry there are two relocations: one for the beginning of
2652 the function and one for the end.
2653
2654 The first time we enter this function we create a
2655 relocation of the type R_HPPA_UNWIND_ENTRIES. The addend
2656 of the relocation is initialized to 0. Each additional
2657 pair of times this function is called for the unwind
2658 section represents an additional unwind table entry. Thus,
2659 the addend of the relocation should end up to be the number
2660 of unwind table entries. */
2661 if (strcmp (UNWIND_SECTION_NAME, section->name) == 0)
2662 {
2663 if (unwind_reloc_entryP == NULL)
2664 {
2665 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
2666 sizeof (arelent));
2667 assert (reloc != 0);
2668 unwind_reloc_entryP = reloc;
2669 unwind_reloc_fixp_cnt++;
2670 unwind_reloc_entryP->address
2671 = fixp->fx_frag->fr_address + fixp->fx_where;
2672 /* A pointer to any function will do. We only
2673 need one to tell us what section the unwind
2674 relocations are for. */
2675 unwind_reloc_entryP->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2676 hppa_fixp->fx_r_type = code = R_HPPA_UNWIND_ENTRIES;
2677 fixp->fx_r_type = R_HPPA_UNWIND;
2678 unwind_reloc_entryP->howto = bfd_reloc_type_lookup (stdoutput, code);
2679 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
2680 relocs = (arelent **) bfd_alloc_by_size_t (stdoutput,
2681 sizeof (arelent *) * 2);
2682 assert (relocs != 0);
2683 relocs[0] = unwind_reloc_entryP;
2684 relocs[1] = NULL;
2685 return relocs;
2686 }
2687 unwind_reloc_fixp_cnt++;
2688 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
2689
2690 return &no_relocs;
2691 }
2692 #endif
2693
2694 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent));
2695 assert (reloc != 0);
2696
2697 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2698 codes = hppa_gen_reloc_type (stdoutput,
2699 fixp->fx_r_type,
2700 hppa_fixp->fx_r_format,
2701 hppa_fixp->fx_r_field);
2702
2703 for (n_relocs = 0; codes[n_relocs]; n_relocs++)
2704 ;
2705
2706 relocs = (arelent **)
2707 bfd_alloc_by_size_t (stdoutput, sizeof (arelent *) * n_relocs + 1);
2708 assert (relocs != 0);
2709
2710 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
2711 sizeof (arelent) * n_relocs);
2712 if (n_relocs > 0)
2713 assert (reloc != 0);
2714
2715 for (i = 0; i < n_relocs; i++)
2716 relocs[i] = &reloc[i];
2717
2718 relocs[n_relocs] = NULL;
2719
2720 #ifdef OBJ_ELF
2721 switch (fixp->fx_r_type)
2722 {
2723 case R_HPPA_COMPLEX:
2724 case R_HPPA_COMPLEX_PCREL_CALL:
2725 case R_HPPA_COMPLEX_ABS_CALL:
2726 assert (n_relocs == 5);
2727
2728 for (i = 0; i < n_relocs; i++)
2729 {
2730 reloc[i].sym_ptr_ptr = NULL;
2731 reloc[i].address = 0;
2732 reloc[i].addend = 0;
2733 reloc[i].howto = bfd_reloc_type_lookup (stdoutput, *codes[i]);
2734 assert (reloc[i].howto && *codes[i] == reloc[i].howto->type);
2735 }
2736
2737 reloc[0].sym_ptr_ptr = &fixp->fx_addsy->bsym;
2738 reloc[1].sym_ptr_ptr = &fixp->fx_subsy->bsym;
2739 reloc[4].address = fixp->fx_frag->fr_address + fixp->fx_where;
2740
2741 if (fixp->fx_r_type == R_HPPA_COMPLEX)
2742 reloc[3].addend = fixp->fx_addnumber;
2743 else if (fixp->fx_r_type == R_HPPA_COMPLEX_PCREL_CALL ||
2744 fixp->fx_r_type == R_HPPA_COMPLEX_ABS_CALL)
2745 reloc[1].addend = fixp->fx_addnumber;
2746
2747 break;
2748
2749 default:
2750 assert (n_relocs == 1);
2751
2752 code = *codes[0];
2753
2754 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2755 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
2756 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
2757 reloc->addend = 0; /* default */
2758
2759 assert (reloc->howto && code == reloc->howto->type);
2760
2761 /* Now, do any processing that is dependent on the relocation type. */
2762 switch (code)
2763 {
2764 case R_HPPA_PLABEL_32:
2765 case R_HPPA_PLABEL_11:
2766 case R_HPPA_PLABEL_14:
2767 case R_HPPA_PLABEL_L21:
2768 case R_HPPA_PLABEL_R11:
2769 case R_HPPA_PLABEL_R14:
2770 /* For plabel relocations, the addend of the
2771 relocation should be either 0 (no static link) or 2
2772 (static link required).
2773
2774 FIXME: assume that fx_addnumber contains this
2775 information */
2776 reloc->addend = fixp->fx_addnumber;
2777 break;
2778
2779 case R_HPPA_ABS_CALL_11:
2780 case R_HPPA_ABS_CALL_14:
2781 case R_HPPA_ABS_CALL_17:
2782 case R_HPPA_ABS_CALL_L21:
2783 case R_HPPA_ABS_CALL_R11:
2784 case R_HPPA_ABS_CALL_R14:
2785 case R_HPPA_ABS_CALL_R17:
2786 case R_HPPA_ABS_CALL_LS21:
2787 case R_HPPA_ABS_CALL_RS11:
2788 case R_HPPA_ABS_CALL_RS14:
2789 case R_HPPA_ABS_CALL_RS17:
2790 case R_HPPA_ABS_CALL_LD21:
2791 case R_HPPA_ABS_CALL_RD11:
2792 case R_HPPA_ABS_CALL_RD14:
2793 case R_HPPA_ABS_CALL_RD17:
2794 case R_HPPA_ABS_CALL_LR21:
2795 case R_HPPA_ABS_CALL_RR14:
2796 case R_HPPA_ABS_CALL_RR17:
2797
2798 case R_HPPA_PCREL_CALL_11:
2799 case R_HPPA_PCREL_CALL_14:
2800 case R_HPPA_PCREL_CALL_17:
2801 case R_HPPA_PCREL_CALL_L21:
2802 case R_HPPA_PCREL_CALL_R11:
2803 case R_HPPA_PCREL_CALL_R14:
2804 case R_HPPA_PCREL_CALL_R17:
2805 case R_HPPA_PCREL_CALL_LS21:
2806 case R_HPPA_PCREL_CALL_RS11:
2807 case R_HPPA_PCREL_CALL_RS14:
2808 case R_HPPA_PCREL_CALL_RS17:
2809 case R_HPPA_PCREL_CALL_LD21:
2810 case R_HPPA_PCREL_CALL_RD11:
2811 case R_HPPA_PCREL_CALL_RD14:
2812 case R_HPPA_PCREL_CALL_RD17:
2813 case R_HPPA_PCREL_CALL_LR21:
2814 case R_HPPA_PCREL_CALL_RR14:
2815 case R_HPPA_PCREL_CALL_RR17:
2816 /* The constant is stored in the instruction. */
2817 reloc->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
2818 break;
2819 default:
2820 reloc->addend = fixp->fx_addnumber;
2821 break;
2822 }
2823 break;
2824 }
2825 #else /* OBJ_SOM */
2826
2827 /* Preliminary relocation handling for SOM. Needs to handle
2828 COMPLEX relocations (yes, I've seen them occur) and it will
2829 need to handle R_ENTRY/R_EXIT relocations in the very near future
2830 (for generating unwinds). */
2831 switch (fixp->fx_r_type)
2832 {
2833 case R_HPPA_COMPLEX:
2834 case R_HPPA_COMPLEX_PCREL_CALL:
2835 case R_HPPA_COMPLEX_ABS_CALL:
2836 abort ();
2837 break;
2838 default:
2839 assert (n_relocs == 1);
2840
2841 code = *codes[0];
2842
2843 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2844 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
2845 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
2846
2847 switch (code)
2848 {
2849 case R_PCREL_CALL:
2850 case R_ABS_CALL:
2851 reloc->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
2852 break;
2853
2854 case R_DATA_PLABEL:
2855 case R_CODE_PLABEL:
2856 /* For plabel relocations, the addend of the
2857 relocation should be either 0 (no static link) or 2
2858 (static link required).
2859
2860 FIXME: We always assume no static link! */
2861 reloc->addend = 0;
2862 break;
2863
2864 default:
2865 reloc->addend = fixp->fx_addnumber;
2866 break;
2867 }
2868 break;
2869 }
2870 #endif
2871
2872 return relocs;
2873 }
2874
2875 /* Process any machine dependent frag types. */
2876
2877 void
2878 md_convert_frag (abfd, sec, fragP)
2879 register bfd *abfd;
2880 register asection *sec;
2881 register fragS *fragP;
2882 {
2883 unsigned int address;
2884
2885 if (fragP->fr_type == rs_machine_dependent)
2886 {
2887 switch ((int) fragP->fr_subtype)
2888 {
2889 case 0:
2890 fragP->fr_type = rs_fill;
2891 know (fragP->fr_var == 1);
2892 know (fragP->fr_next);
2893 address = fragP->fr_address + fragP->fr_fix;
2894 if (address % fragP->fr_offset)
2895 {
2896 fragP->fr_offset =
2897 fragP->fr_next->fr_address
2898 - fragP->fr_address
2899 - fragP->fr_fix;
2900 }
2901 else
2902 fragP->fr_offset = 0;
2903 break;
2904 }
2905 }
2906 }
2907
2908 /* Round up a section size to the appropriate boundary. */
2909
2910 valueT
2911 md_section_align (segment, size)
2912 asection *segment;
2913 valueT size;
2914 {
2915 int align = bfd_get_section_alignment (stdoutput, segment);
2916 int align2 = (1 << align) - 1;
2917
2918 return (size + align2) & ~align2;
2919
2920 }
2921
2922 /* Create a short jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2923 void
2924 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
2925 char *ptr;
2926 addressT from_addr, to_addr;
2927 fragS *frag;
2928 symbolS *to_symbol;
2929 {
2930 fprintf (stderr, "pa_create_short_jmp\n");
2931 abort ();
2932 }
2933
2934 /* Create a long jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2935 void
2936 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
2937 char *ptr;
2938 addressT from_addr, to_addr;
2939 fragS *frag;
2940 symbolS *to_symbol;
2941 {
2942 fprintf (stderr, "pa_create_long_jump\n");
2943 abort ();
2944 }
2945
2946 /* Return the approximate size of a frag before relaxation has occurred. */
2947 int
2948 md_estimate_size_before_relax (fragP, segment)
2949 register fragS *fragP;
2950 asection *segment;
2951 {
2952 int size;
2953
2954 size = 0;
2955
2956 while ((fragP->fr_fix + size) % fragP->fr_offset)
2957 size++;
2958
2959 return size;
2960 }
2961
2962 /* Parse machine dependent options. There are none on the PA. */
2963 int
2964 md_parse_option (argP, cntP, vecP)
2965 char **argP;
2966 int *cntP;
2967 char ***vecP;
2968 {
2969 return 1;
2970 }
2971
2972 /* We have no need to default values of symbols. */
2973
2974 symbolS *
2975 md_undefined_symbol (name)
2976 char *name;
2977 {
2978 return 0;
2979 }
2980
2981 /* Parse an operand that is machine-specific.
2982 We just return without modifying the expression as we have nothing
2983 to do on the PA. */
2984
2985 void
2986 md_operand (expressionP)
2987 expressionS *expressionP;
2988 {
2989 }
2990
2991 /* Apply a fixup to an instruction. */
2992
2993 int
2994 md_apply_fix (fixP, valp)
2995 fixS *fixP;
2996 valueT *valp;
2997 {
2998 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
2999 struct hppa_fix_struct *hppa_fixP = fixP->tc_fix_data;
3000 long new_val, result;
3001 unsigned int w1, w2, w;
3002 valueT val = *valp;
3003
3004 /* SOM uses R_HPPA_ENTRY and R_HPPA_EXIT relocations which can
3005 never be "applied" (they are just markers). */
3006 #ifdef OBJ_SOM
3007 if (fixP->fx_r_type == R_HPPA_ENTRY
3008 || fixP->fx_r_type == R_HPPA_EXIT)
3009 return 1;
3010 #endif
3011
3012 /* There should have been an HPPA specific fixup associated
3013 with the GAS fixup. */
3014 if (hppa_fixP)
3015 {
3016 unsigned long buf_wd = bfd_get_32 (stdoutput, buf);
3017 unsigned char fmt = bfd_hppa_insn2fmt (buf_wd);
3018
3019 if (fixP->fx_r_type == R_HPPA_NONE)
3020 fmt = 0;
3021
3022 /* Remember this value for emit_reloc. FIXME, is this braindamage
3023 documented anywhere!?! */
3024 fixP->fx_addnumber = val;
3025
3026 /* Check if this is an undefined symbol. No relocation can
3027 possibly be performed in this case. */
3028 if ((fixP->fx_addsy && fixP->fx_addsy->bsym->section == &bfd_und_section)
3029 || (fixP->fx_subsy
3030 && fixP->fx_subsy->bsym->section == &bfd_und_section))
3031 return 1;
3032
3033 /* PLABEL field selectors should not be passed to hppa_field_adjust. */
3034 if (fmt != 0 && hppa_fixP->fx_r_field != R_HPPA_PSEL
3035 && hppa_fixP->fx_r_field != R_HPPA_LPSEL
3036 && hppa_fixP->fx_r_field != R_HPPA_RPSEL)
3037 new_val = hppa_field_adjust (val, 0, hppa_fixP->fx_r_field);
3038 else
3039 new_val = 0;
3040
3041 switch (fmt)
3042 {
3043 /* Handle all opcodes with the 'j' operand type. */
3044 case 14:
3045 CHECK_FIELD (new_val, 8191, -8192, 0);
3046
3047 /* Mask off 14 bits to be changed. */
3048 bfd_put_32 (stdoutput,
3049 bfd_get_32 (stdoutput, buf) & 0xffffc000,
3050 buf);
3051 low_sign_unext (new_val, 14, &result);
3052 break;
3053
3054 /* Handle all opcodes with the 'k' operand type. */
3055 case 21:
3056 CHECK_FIELD (new_val, 2097152, 0, 0);
3057
3058 /* Mask off 21 bits to be changed. */
3059 bfd_put_32 (stdoutput,
3060 bfd_get_32 (stdoutput, buf) & 0xffe00000,
3061 buf);
3062 dis_assemble_21 (new_val, &result);
3063 break;
3064
3065 /* Handle all the opcodes with the 'i' operand type. */
3066 case 11:
3067 CHECK_FIELD (new_val, 1023, -1023, 0);
3068
3069 /* Mask off 11 bits to be changed. */
3070 bfd_put_32 (stdoutput,
3071 bfd_get_32 (stdoutput, buf) & 0xffff800,
3072 buf);
3073 low_sign_unext (new_val, 11, &result);
3074 break;
3075
3076 /* Handle all the opcodes with the 'w' operand type. */
3077 case 12:
3078 CHECK_FIELD (new_val, 8191, -8192, 0)
3079
3080 /* Mask off 11 bits to be changed. */
3081 sign_unext ((new_val - 8) >> 2, 12, &result);
3082 bfd_put_32 (stdoutput,
3083 bfd_get_32 (stdoutput, buf) & 0xffffe002,
3084 buf);
3085
3086 dis_assemble_12 (result, &w1, &w);
3087 result = ((w1 << 2) | w);
3088 break;
3089
3090 /* Handle some of the opcodes with the 'W' operand type. */
3091 case 17:
3092
3093 #define stub_needed(CALLER, CALLEE) \
3094 ((CALLEE) && (CALLER) && ((CALLEE) != (CALLER)))
3095 /* It is necessary to force PC-relative calls/jumps to have a
3096 relocation entry if they're going to need either a argument
3097 relocation or long call stub. FIXME. Can't we need the same
3098 for absolute calls? */
3099 if (fixP->fx_addsy
3100 && (stub_needed (((obj_symbol_type *)
3101 fixP->fx_addsy->bsym)->tc_data.hppa_arg_reloc,
3102 hppa_fixP->fx_arg_reloc)))
3103 return 1;
3104 #undef stub_needed
3105
3106 CHECK_FIELD (new_val, 262143, -262144, 0);
3107
3108 /* Mask off 17 bits to be changed. */
3109 bfd_put_32 (stdoutput,
3110 bfd_get_32 (stdoutput, buf) & 0xffe0e002,
3111 buf);
3112 sign_unext ((new_val - 8) >> 2, 17, &result);
3113 dis_assemble_17 (result, &w1, &w2, &w);
3114 result = ((w2 << 2) | (w1 << 16) | w);
3115 break;
3116
3117 case 32:
3118 #ifdef OBJ_ELF
3119 /* These are ELF specific relocations. ELF unfortunately
3120 handles unwinds in a completely different manner. */
3121 if (hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRY
3122 || hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRIES)
3123 result = fixP->fx_addnumber;
3124 else
3125 #endif
3126 {
3127 result = 0;
3128 fixP->fx_addnumber = fixP->fx_offset;
3129 bfd_put_32 (stdoutput, 0, buf);
3130 return 1;
3131 }
3132 break;
3133
3134 case 0:
3135 return 1;
3136
3137 default:
3138 as_bad ("Unknown relocation encountered in md_apply_fix.");
3139 return 1;
3140 }
3141
3142 /* Insert the relocation. */
3143 bfd_put_32 (stdoutput, bfd_get_32 (stdoutput, buf) | result, buf);
3144 return 1;
3145 }
3146 else
3147 {
3148 printf ("no hppa_fixup entry for this fixup (fixP = 0x%x, type = 0x%x)\n",
3149 (unsigned int) fixP, fixP->fx_r_type);
3150 return 0;
3151 }
3152 }
3153
3154 /* Exactly what point is a PC-relative offset relative TO?
3155 On the PA, they're relative to the address of the offset. */
3156
3157 long
3158 md_pcrel_from (fixP)
3159 fixS *fixP;
3160 {
3161 return fixP->fx_where + fixP->fx_frag->fr_address;
3162 }
3163
3164 /* Return nonzero if the input line pointer is at the end of
3165 a statement. */
3166
3167 static int
3168 is_end_of_statement ()
3169 {
3170 return ((*input_line_pointer == '\n')
3171 || (*input_line_pointer == ';')
3172 || (*input_line_pointer == '!'));
3173 }
3174
3175 /* Read a number from S. The number might come in one of many forms,
3176 the most common will be a hex or decimal constant, but it could be
3177 a pre-defined register (Yuk!), or an absolute symbol.
3178
3179 Return a number or -1 for failure.
3180
3181 When parsing PA-89 FP register numbers RESULT will be
3182 the address of a structure to return information about
3183 L/R half of FP registers, store results there as appropriate.
3184
3185 pa_parse_number can not handle negative constants and will fail
3186 horribly if it is passed such a constant. */
3187
3188 static int
3189 pa_parse_number (s, result)
3190 char **s;
3191 struct pa_89_fp_reg_struct *result;
3192 {
3193 int num;
3194 char *name;
3195 char c;
3196 symbolS *sym;
3197 int status;
3198 char *p = *s;
3199
3200 /* Skip whitespace before the number. */
3201 while (*p == ' ' || *p == '\t')
3202 p = p + 1;
3203
3204 /* Store info in RESULT if requested by caller. */
3205 if (result)
3206 {
3207 result->number_part = -1;
3208 result->l_r_select = -1;
3209 }
3210 num = -1;
3211
3212 if (isdigit (*p))
3213 {
3214 /* Looks like a number. */
3215 num = 0;
3216
3217 if (*p == '0' && (*(p + 1) == 'x' || *(p + 1) == 'X'))
3218 {
3219 /* The number is specified in hex. */
3220 p += 2;
3221 while (isdigit (*p) || ((*p >= 'a') && (*p <= 'f'))
3222 || ((*p >= 'A') && (*p <= 'F')))
3223 {
3224 if (isdigit (*p))
3225 num = num * 16 + *p - '0';
3226 else if (*p >= 'a' && *p <= 'f')
3227 num = num * 16 + *p - 'a' + 10;
3228 else
3229 num = num * 16 + *p - 'A' + 10;
3230 ++p;
3231 }
3232 }
3233 else
3234 {
3235 /* The number is specified in decimal. */
3236 while (isdigit (*p))
3237 {
3238 num = num * 10 + *p - '0';
3239 ++p;
3240 }
3241 }
3242
3243 /* Store info in RESULT if requested by the caller. */
3244 if (result)
3245 {
3246 result->number_part = num;
3247
3248 if (IS_R_SELECT (p))
3249 {
3250 result->l_r_select = 1;
3251 ++p;
3252 }
3253 else if (IS_L_SELECT (p))
3254 {
3255 result->l_r_select = 0;
3256 ++p;
3257 }
3258 else
3259 result->l_r_select = 0;
3260 }
3261 }
3262 else if (*p == '%')
3263 {
3264 /* The number might be a predefined register. */
3265 num = 0;
3266 name = p;
3267 p++;
3268 c = *p;
3269 /* Tege hack: Special case for general registers as the general
3270 code makes a binary search with case translation, and is VERY
3271 slow. */
3272 if (c == 'r')
3273 {
3274 p++;
3275 if (*p == 'e' && *(p + 1) == 't'
3276 && (*(p + 2) == '0' || *(p + 2) == '1'))
3277 {
3278 p += 2;
3279 num = *p - '0' + 28;
3280 p++;
3281 }
3282 else if (*p == 'p')
3283 {
3284 num = 2;
3285 p++;
3286 }
3287 else if (!isdigit (*p))
3288 {
3289 if (print_errors)
3290 as_bad ("Undefined register: '%s'.", name);
3291 num = -1;
3292 }
3293 else
3294 {
3295 do
3296 num = num * 10 + *p++ - '0';
3297 while (isdigit (*p));
3298 }
3299 }
3300 else
3301 {
3302 /* Do a normal register search. */
3303 while (is_part_of_name (c))
3304 {
3305 p = p + 1;
3306 c = *p;
3307 }
3308 *p = 0;
3309 status = reg_name_search (name);
3310 if (status >= 0)
3311 num = status;
3312 else
3313 {
3314 if (print_errors)
3315 as_bad ("Undefined register: '%s'.", name);
3316 num = -1;
3317 }
3318 *p = c;
3319 }
3320
3321 /* Store info in RESULT if requested by caller. */
3322 if (result)
3323 {
3324 result->number_part = num;
3325 if (IS_R_SELECT (p - 1))
3326 result->l_r_select = 1;
3327 else if (IS_L_SELECT (p - 1))
3328 result->l_r_select = 0;
3329 else
3330 result->l_r_select = 0;
3331 }
3332 }
3333 else
3334 {
3335 /* And finally, it could be a symbol in the absolute section which
3336 is effectively a constant. */
3337 num = 0;
3338 name = p;
3339 c = *p;
3340 while (is_part_of_name (c))
3341 {
3342 p = p + 1;
3343 c = *p;
3344 }
3345 *p = 0;
3346 if ((sym = symbol_find (name)) != NULL)
3347 {
3348 if (S_GET_SEGMENT (sym) == &bfd_abs_section)
3349 num = S_GET_VALUE (sym);
3350 else
3351 {
3352 if (print_errors)
3353 as_bad ("Non-absolute symbol: '%s'.", name);
3354 num = -1;
3355 }
3356 }
3357 else
3358 {
3359 /* There is where we'd come for an undefined symbol
3360 or for an empty string. For an empty string we
3361 will return zero. That's a concession made for
3362 compatability with the braindamaged HP assemblers. */
3363 if (*name == 0)
3364 num = 0;
3365 else
3366 {
3367 if (print_errors)
3368 as_bad ("Undefined absolute constant: '%s'.", name);
3369 num = -1;
3370 }
3371 }
3372 *p = c;
3373
3374 /* Store info in RESULT if requested by caller. */
3375 if (result)
3376 {
3377 result->number_part = num;
3378 if (IS_R_SELECT (p - 1))
3379 result->l_r_select = 1;
3380 else if (IS_L_SELECT (p - 1))
3381 result->l_r_select = 0;
3382 else
3383 result->l_r_select = 0;
3384 }
3385 }
3386
3387 *s = p;
3388 return num;
3389 }
3390
3391 #define REG_NAME_CNT (sizeof(pre_defined_registers) / sizeof(struct pd_reg))
3392
3393 /* Given NAME, find the register number associated with that name, return
3394 the integer value associated with the given name or -1 on failure. */
3395
3396 static int
3397 reg_name_search (name)
3398 char *name;
3399 {
3400 int middle, low, high;
3401
3402 low = 0;
3403 high = REG_NAME_CNT - 1;
3404
3405 do
3406 {
3407 middle = (low + high) / 2;
3408 if (strcasecmp (name, pre_defined_registers[middle].name) < 0)
3409 high = middle - 1;
3410 else
3411 low = middle + 1;
3412 }
3413 while (!((strcasecmp (name, pre_defined_registers[middle].name) == 0) ||
3414 (low > high)));
3415
3416 if (strcasecmp (name, pre_defined_registers[middle].name) == 0)
3417 return (pre_defined_registers[middle].value);
3418 else
3419 return (-1);
3420 }
3421
3422
3423 /* Return nonzero if the given INSN and L/R information will require
3424 a new PA-89 opcode. */
3425
3426 static int
3427 need_89_opcode (insn, result)
3428 struct pa_it *insn;
3429 struct pa_89_fp_reg_struct *result;
3430 {
3431 if (result->l_r_select == 1 && !(insn->fpof1 == DBL && insn->fpof2 == DBL))
3432 return TRUE;
3433 else
3434 return FALSE;
3435 }
3436
3437 /* Parse a condition for a fcmp instruction. Return the numerical
3438 code associated with the condition. */
3439
3440 static int
3441 pa_parse_fp_cmp_cond (s)
3442 char **s;
3443 {
3444 int cond, i;
3445
3446 cond = 0;
3447
3448 for (i = 0; i < 32; i++)
3449 {
3450 if (strncasecmp (*s, fp_cond_map[i].string,
3451 strlen (fp_cond_map[i].string)) == 0)
3452 {
3453 cond = fp_cond_map[i].cond;
3454 *s += strlen (fp_cond_map[i].string);
3455 while (**s == ' ' || **s == '\t')
3456 *s = *s + 1;
3457 return cond;
3458 }
3459 }
3460
3461 as_bad ("Invalid FP Compare Condition: %c", **s);
3462 return 0;
3463 }
3464
3465 /* Parse an FP operand format completer returning the completer
3466 type. */
3467
3468 static fp_operand_format
3469 pa_parse_fp_format (s)
3470 char **s;
3471 {
3472 int format;
3473
3474 format = SGL;
3475 if (**s == ',')
3476 {
3477 *s += 1;
3478 if (strncasecmp (*s, "sgl", 3) == 0)
3479 {
3480 format = SGL;
3481 *s += 4;
3482 }
3483 else if (strncasecmp (*s, "dbl", 3) == 0)
3484 {
3485 format = DBL;
3486 *s += 4;
3487 }
3488 else if (strncasecmp (*s, "quad", 4) == 0)
3489 {
3490 format = QUAD;
3491 *s += 5;
3492 }
3493 else
3494 {
3495 format = ILLEGAL_FMT;
3496 as_bad ("Invalid FP Operand Format: %3s", *s);
3497 }
3498 }
3499
3500 return format;
3501 }
3502
3503 /* Convert from a selector string into a selector type. */
3504
3505 static int
3506 pa_chk_field_selector (str)
3507 char **str;
3508 {
3509 int selector;
3510 const struct selector_entry *tablep;
3511
3512 selector = e_fsel;
3513
3514 /* Read past any whitespace. */
3515 while (**str == ' ' || **str == '\t' || **str == '\n' || **str == '\f')
3516 *str = *str + 1;
3517
3518 /* Yuk. Looks like a linear search through the table. With the
3519 frequence of some selectors it might make sense to sort the
3520 table by usage. */
3521 for (tablep = selector_table; tablep->prefix; tablep++)
3522 {
3523 if (strncasecmp (tablep->prefix, *str, strlen (tablep->prefix)) == 0)
3524 {
3525 *str += strlen (tablep->prefix);
3526 selector = tablep->field_selector;
3527 break;
3528 }
3529 }
3530 return selector;
3531 }
3532
3533 /* Mark (via expr_end) the end of an expression (I think). FIXME. */
3534
3535 static int
3536 get_expression (str)
3537 char *str;
3538 {
3539 char *save_in;
3540 asection *seg;
3541
3542 save_in = input_line_pointer;
3543 input_line_pointer = str;
3544 seg = expression (&the_insn.exp);
3545 if (!(seg == absolute_section
3546 || seg == undefined_section
3547 || SEG_NORMAL (seg)))
3548 {
3549 as_warn ("Bad segment in expression.");
3550 expr_end = input_line_pointer;
3551 input_line_pointer = save_in;
3552 return 1;
3553 }
3554 expr_end = input_line_pointer;
3555 input_line_pointer = save_in;
3556 return 0;
3557 }
3558
3559 /* Mark (via expr_end) the end of an absolute expression. FIXME. */
3560 static int
3561 pa_get_absolute_expression (insn, strp)
3562 struct pa_it *insn;
3563 char **strp;
3564 {
3565 char *save_in;
3566
3567 insn->field_selector = pa_chk_field_selector (strp);
3568 save_in = input_line_pointer;
3569 input_line_pointer = *strp;
3570 expression (&insn->exp);
3571 if (insn->exp.X_op != O_constant)
3572 {
3573 as_bad ("Bad segment (should be absolute).");
3574 expr_end = input_line_pointer;
3575 input_line_pointer = save_in;
3576 return 0;
3577 }
3578 expr_end = input_line_pointer;
3579 input_line_pointer = save_in;
3580 return evaluate_absolute (insn);
3581 }
3582
3583 /* Evaluate an absolute expression EXP which may be modified by
3584 the selector FIELD_SELECTOR. Return the value of the expression. */
3585 static int
3586 evaluate_absolute (insn)
3587 struct pa_it *insn;
3588 {
3589 int value;
3590 expressionS exp;
3591 int field_selector = insn->field_selector;
3592
3593 exp = insn->exp;
3594 value = exp.X_add_number;
3595
3596 switch (field_selector)
3597 {
3598 /* No change. */
3599 case e_fsel:
3600 break;
3601
3602 /* If bit 21 is on then add 0x800 and arithmetic shift right 11 bits. */
3603 case e_lssel:
3604 if (value & 0x00000400)
3605 value += 0x800;
3606 value = (value & 0xfffff800) >> 11;
3607 break;
3608
3609 /* Sign extend from bit 21. */
3610 case e_rssel:
3611 if (value & 0x00000400)
3612 value |= 0xfffff800;
3613 else
3614 value &= 0x7ff;
3615 break;
3616
3617 /* Arithmetic shift right 11 bits. */
3618 case e_lsel:
3619 value = (value & 0xfffff800) >> 11;
3620 break;
3621
3622 /* Set bits 0-20 to zero. */
3623 case e_rsel:
3624 value = value & 0x7ff;
3625 break;
3626
3627 /* Add 0x800 and arithmetic shift right 11 bits. */
3628 case e_ldsel:
3629 value += 0x800;
3630
3631
3632 value = (value & 0xfffff800) >> 11;
3633 break;
3634
3635 /* Set bitgs 0-21 to one. */
3636 case e_rdsel:
3637 value |= 0xfffff800;
3638 break;
3639
3640 /* This had better get fixed. It looks like we're quickly moving
3641 to LR/RR. FIXME. */
3642 case e_rrsel:
3643 case e_lrsel:
3644 abort ();
3645
3646 default:
3647 BAD_CASE (field_selector);
3648 break;
3649 }
3650 return value;
3651 }
3652
3653 /* Given an argument location specification return the associated
3654 argument location number. */
3655
3656 static unsigned int
3657 pa_build_arg_reloc (type_name)
3658 char *type_name;
3659 {
3660
3661 if (strncasecmp (type_name, "no", 2) == 0)
3662 return 0;
3663 if (strncasecmp (type_name, "gr", 2) == 0)
3664 return 1;
3665 else if (strncasecmp (type_name, "fr", 2) == 0)
3666 return 2;
3667 else if (strncasecmp (type_name, "fu", 2) == 0)
3668 return 3;
3669 else
3670 as_bad ("Invalid argument location: %s\n", type_name);
3671
3672 return 0;
3673 }
3674
3675 /* Encode and return an argument relocation specification for
3676 the given register in the location specified by arg_reloc. */
3677
3678 static unsigned int
3679 pa_align_arg_reloc (reg, arg_reloc)
3680 unsigned int reg;
3681 unsigned int arg_reloc;
3682 {
3683 unsigned int new_reloc;
3684
3685 new_reloc = arg_reloc;
3686 switch (reg)
3687 {
3688 case 0:
3689 new_reloc <<= 8;
3690 break;
3691 case 1:
3692 new_reloc <<= 6;
3693 break;
3694 case 2:
3695 new_reloc <<= 4;
3696 break;
3697 case 3:
3698 new_reloc <<= 2;
3699 break;
3700 default:
3701 as_bad ("Invalid argument description: %d", reg);
3702 }
3703
3704 return new_reloc;
3705 }
3706
3707 /* Parse a PA nullification completer (,n). Return nonzero if the
3708 completer was found; return zero if no completer was found. */
3709
3710 static int
3711 pa_parse_nullif (s)
3712 char **s;
3713 {
3714 int nullif;
3715
3716 nullif = 0;
3717 if (**s == ',')
3718 {
3719 *s = *s + 1;
3720 if (strncasecmp (*s, "n", 1) == 0)
3721 nullif = 1;
3722 else
3723 {
3724 as_bad ("Invalid Nullification: (%c)", **s);
3725 nullif = 0;
3726 }
3727 *s = *s + 1;
3728 }
3729
3730 return nullif;
3731 }
3732
3733 /* Parse a non-negated compare/subtract completer returning the
3734 number (for encoding in instrutions) of the given completer.
3735
3736 ISBRANCH specifies whether or not this is parsing a condition
3737 completer for a branch (vs a nullification completer for a
3738 computational instruction. */
3739
3740 static int
3741 pa_parse_nonneg_cmpsub_cmpltr (s, isbranch)
3742 char **s;
3743 int isbranch;
3744 {
3745 int cmpltr;
3746 char *name = *s + 1;
3747 char c;
3748 char *save_s = *s;
3749
3750 cmpltr = 0;
3751 if (**s == ',')
3752 {
3753 *s += 1;
3754 while (**s != ',' && **s != ' ' && **s != '\t')
3755 *s += 1;
3756 c = **s;
3757 **s = 0x00;
3758 if (strcmp (name, "=") == 0)
3759 {
3760 cmpltr = 1;
3761 }
3762 else if (strcmp (name, "<") == 0)
3763 {
3764 cmpltr = 2;
3765 }
3766 else if (strcmp (name, "<=") == 0)
3767 {
3768 cmpltr = 3;
3769 }
3770 else if (strcmp (name, "<<") == 0)
3771 {
3772 cmpltr = 4;
3773 }
3774 else if (strcmp (name, "<<=") == 0)
3775 {
3776 cmpltr = 5;
3777 }
3778 else if (strcasecmp (name, "sv") == 0)
3779 {
3780 cmpltr = 6;
3781 }
3782 else if (strcasecmp (name, "od") == 0)
3783 {
3784 cmpltr = 7;
3785 }
3786 /* If we have something like addb,n then there is no condition
3787 completer. */
3788 else if (strcasecmp (name, "n") == 0 && isbranch)
3789 {
3790 cmpltr = 0;
3791 }
3792 else
3793 {
3794 cmpltr = -1;
3795 }
3796 **s = c;
3797 }
3798
3799 /* Reset pointers if this was really a ,n for a branch instruction. */
3800 if (cmpltr == 0 && *name == 'n' && isbranch)
3801 *s = save_s;
3802
3803 return cmpltr;
3804 }
3805
3806 /* Parse a negated compare/subtract completer returning the
3807 number (for encoding in instrutions) of the given completer.
3808
3809 ISBRANCH specifies whether or not this is parsing a condition
3810 completer for a branch (vs a nullification completer for a
3811 computational instruction. */
3812
3813 static int
3814 pa_parse_neg_cmpsub_cmpltr (s, isbranch)
3815 char **s;
3816 int isbranch;
3817 {
3818 int cmpltr;
3819 char *name = *s + 1;
3820 char c;
3821 char *save_s = *s;
3822
3823 cmpltr = 0;
3824 if (**s == ',')
3825 {
3826 *s += 1;
3827 while (**s != ',' && **s != ' ' && **s != '\t')
3828 *s += 1;
3829 c = **s;
3830 **s = 0x00;
3831 if (strcasecmp (name, "tr") == 0)
3832 {
3833 cmpltr = 0;
3834 }
3835 else if (strcmp (name, "<>") == 0)
3836 {
3837 cmpltr = 1;
3838 }
3839 else if (strcmp (name, ">=") == 0)
3840 {
3841 cmpltr = 2;
3842 }
3843 else if (strcmp (name, ">") == 0)
3844 {
3845 cmpltr = 3;
3846 }
3847 else if (strcmp (name, ">>=") == 0)
3848 {
3849 cmpltr = 4;
3850 }
3851 else if (strcmp (name, ">>") == 0)
3852 {
3853 cmpltr = 5;
3854 }
3855 else if (strcasecmp (name, "nsv") == 0)
3856 {
3857 cmpltr = 6;
3858 }
3859 else if (strcasecmp (name, "ev") == 0)
3860 {
3861 cmpltr = 7;
3862 }
3863 /* If we have something like addb,n then there is no condition
3864 completer. */
3865 else if (strcasecmp (name, "n") == 0 && isbranch)
3866 {
3867 cmpltr = 0;
3868 }
3869 else
3870 {
3871 cmpltr = -1;
3872 }
3873 **s = c;
3874 }
3875
3876 /* Reset pointers if this was really a ,n for a branch instruction. */
3877 if (cmpltr == 0 && *name == 'n' && isbranch)
3878 *s = save_s;
3879
3880 return cmpltr;
3881 }
3882
3883 /* Parse a non-negated addition completer returning the number
3884 (for encoding in instrutions) of the given completer.
3885
3886 ISBRANCH specifies whether or not this is parsing a condition
3887 completer for a branch (vs a nullification completer for a
3888 computational instruction. */
3889
3890 static int
3891 pa_parse_nonneg_add_cmpltr (s, isbranch)
3892 char **s;
3893 int isbranch;
3894 {
3895 int cmpltr;
3896 char *name = *s + 1;
3897 char c;
3898 char *save_s = *s;
3899
3900 cmpltr = 0;
3901 if (**s == ',')
3902 {
3903 *s += 1;
3904 while (**s != ',' && **s != ' ' && **s != '\t')
3905 *s += 1;
3906 c = **s;
3907 **s = 0x00;
3908 if (strcmp (name, "=") == 0)
3909 {
3910 cmpltr = 1;
3911 }
3912 else if (strcmp (name, "<") == 0)
3913 {
3914 cmpltr = 2;
3915 }
3916 else if (strcmp (name, "<=") == 0)
3917 {
3918 cmpltr = 3;
3919 }
3920 else if (strcasecmp (name, "nuv") == 0)
3921 {
3922 cmpltr = 4;
3923 }
3924 else if (strcasecmp (name, "znv") == 0)
3925 {
3926 cmpltr = 5;
3927 }
3928 else if (strcasecmp (name, "sv") == 0)
3929 {
3930 cmpltr = 6;
3931 }
3932 else if (strcasecmp (name, "od") == 0)
3933 {
3934 cmpltr = 7;
3935 }
3936 /* If we have something like addb,n then there is no condition
3937 completer. */
3938 else if (strcasecmp (name, "n") == 0 && isbranch)
3939 {
3940 cmpltr = 0;
3941 }
3942 else
3943 {
3944 cmpltr = -1;
3945 }
3946 **s = c;
3947 }
3948
3949 /* Reset pointers if this was really a ,n for a branch instruction. */
3950 if (cmpltr == 0 && *name == 'n' && isbranch)
3951 *s = save_s;
3952
3953 return cmpltr;
3954 }
3955
3956 /* Parse a negated addition completer returning the number
3957 (for encoding in instrutions) of the given completer.
3958
3959 ISBRANCH specifies whether or not this is parsing a condition
3960 completer for a branch (vs a nullification completer for a
3961 computational instruction. */
3962
3963 static int
3964 pa_parse_neg_add_cmpltr (s, isbranch)
3965 char **s;
3966 int isbranch;
3967 {
3968 int cmpltr;
3969 char *name = *s + 1;
3970 char c;
3971 char *save_s = *s;
3972
3973 cmpltr = 0;
3974 if (**s == ',')
3975 {
3976 *s += 1;
3977 while (**s != ',' && **s != ' ' && **s != '\t')
3978 *s += 1;
3979 c = **s;
3980 **s = 0x00;
3981 if (strcasecmp (name, "tr") == 0)
3982 {
3983 cmpltr = 0;
3984 }
3985 else if (strcmp (name, "<>") == 0)
3986 {
3987 cmpltr = 1;
3988 }
3989 else if (strcmp (name, ">=") == 0)
3990 {
3991 cmpltr = 2;
3992 }
3993 else if (strcmp (name, ">") == 0)
3994 {
3995 cmpltr = 3;
3996 }
3997 else if (strcmp (name, "uv") == 0)
3998 {
3999 cmpltr = 4;
4000 }
4001 else if (strcmp (name, "vnz") == 0)
4002 {
4003 cmpltr = 5;
4004 }
4005 else if (strcasecmp (name, "nsv") == 0)
4006 {
4007 cmpltr = 6;
4008 }
4009 else if (strcasecmp (name, "ev") == 0)
4010 {
4011 cmpltr = 7;
4012 }
4013 /* If we have something like addb,n then there is no condition
4014 completer. */
4015 else if (strcasecmp (name, "n") == 0 && isbranch)
4016 {
4017 cmpltr = 0;
4018 }
4019 else
4020 {
4021 cmpltr = -1;
4022 }
4023 **s = c;
4024 }
4025
4026 /* Reset pointers if this was really a ,n for a branch instruction. */
4027 if (cmpltr == 0 && *name == 'n' && isbranch)
4028 *s = save_s;
4029
4030 return cmpltr;
4031 }
4032
4033 /* Handle a .BLOCK type pseudo-op. */
4034
4035 static void
4036 pa_block (z)
4037 int z;
4038 {
4039 char *p;
4040 long int temp_fill;
4041 unsigned int temp_size;
4042 int i;
4043
4044 temp_size = get_absolute_expression ();
4045
4046 /* Always fill with zeros, that's what the HP assembler does. */
4047 temp_fill = 0;
4048
4049 p = frag_var (rs_fill, (int) temp_size, (int) temp_size,
4050 (relax_substateT) 0, (symbolS *) 0, 1, NULL);
4051 bzero (p, temp_size);
4052
4053 /* Convert 2 bytes at a time. */
4054
4055 for (i = 0; i < temp_size; i += 2)
4056 {
4057 md_number_to_chars (p + i,
4058 (valueT) temp_fill,
4059 (int) ((temp_size - i) > 2 ? 2 : (temp_size - i)));
4060 }
4061
4062 pa_undefine_label ();
4063 demand_empty_rest_of_line ();
4064 return;
4065 }
4066
4067 /* Handle a .CALL pseudo-op. This involves storing away information
4068 about where arguments are to be found so the linker can detect
4069 (and correct) argument location mismatches between caller and callee. */
4070
4071 static void
4072 pa_call (unused)
4073 int unused;
4074 {
4075 pa_call_args (&last_call_desc);
4076 demand_empty_rest_of_line ();
4077 return;
4078 }
4079
4080 /* Do the dirty work of building a call descriptor which describes
4081 where the caller placed arguments to a function call. */
4082
4083 static void
4084 pa_call_args (call_desc)
4085 struct call_desc *call_desc;
4086 {
4087 char *name, c, *p;
4088 unsigned int temp, arg_reloc;
4089
4090 while (!is_end_of_statement ())
4091 {
4092 name = input_line_pointer;
4093 c = get_symbol_end ();
4094 /* Process a source argument. */
4095 if ((strncasecmp (name, "argw", 4) == 0))
4096 {
4097 temp = atoi (name + 4);
4098 p = input_line_pointer;
4099 *p = c;
4100 input_line_pointer++;
4101 name = input_line_pointer;
4102 c = get_symbol_end ();
4103 arg_reloc = pa_build_arg_reloc (name);
4104 call_desc->arg_reloc |= pa_align_arg_reloc (temp, arg_reloc);
4105 }
4106 /* Process a return value. */
4107 else if ((strncasecmp (name, "rtnval", 6) == 0))
4108 {
4109 p = input_line_pointer;
4110 *p = c;
4111 input_line_pointer++;
4112 name = input_line_pointer;
4113 c = get_symbol_end ();
4114 arg_reloc = pa_build_arg_reloc (name);
4115 call_desc->arg_reloc |= (arg_reloc & 0x3);
4116 }
4117 else
4118 {
4119 as_bad ("Invalid .CALL argument: %s", name);
4120 }
4121 p = input_line_pointer;
4122 *p = c;
4123 if (!is_end_of_statement ())
4124 input_line_pointer++;
4125 }
4126 }
4127
4128 /* Return TRUE if FRAG1 and FRAG2 are the same. */
4129
4130 static int
4131 is_same_frag (frag1, frag2)
4132 fragS *frag1;
4133 fragS *frag2;
4134 {
4135
4136 if (frag1 == NULL)
4137 return (FALSE);
4138 else if (frag2 == NULL)
4139 return (FALSE);
4140 else if (frag1 == frag2)
4141 return (TRUE);
4142 else if (frag2->fr_type == rs_fill && frag2->fr_fix == 0)
4143 return (is_same_frag (frag1, frag2->fr_next));
4144 else
4145 return (FALSE);
4146 }
4147
4148 #ifdef OBJ_ELF
4149 /* Build an entry in the UNWIND subspace from the given function
4150 attributes in CALL_INFO. This is not needed for SOM as using
4151 R_ENTRY and R_EXIT relocations allow the linker to handle building
4152 of the unwind spaces. */
4153
4154 static void
4155 pa_build_unwind_subspace (call_info)
4156 struct call_info *call_info;
4157 {
4158 char *unwind;
4159 asection *seg, *save_seg;
4160 subsegT subseg, save_subseg;
4161 int i;
4162 char c, *p;
4163
4164 /* Get into the right seg/subseg. This may involve creating
4165 the seg the first time through. Make sure to have the
4166 old seg/subseg so that we can reset things when we are done. */
4167 subseg = SUBSEG_UNWIND;
4168 seg = bfd_get_section_by_name (stdoutput, UNWIND_SECTION_NAME);
4169 if (seg == ASEC_NULL)
4170 {
4171 seg = bfd_make_section_old_way (stdoutput, UNWIND_SECTION_NAME);
4172 bfd_set_section_flags (stdoutput, seg,
4173 SEC_READONLY | SEC_HAS_CONTENTS
4174 | SEC_LOAD | SEC_RELOC);
4175 }
4176
4177 save_seg = now_seg;
4178 save_subseg = now_subseg;
4179 subseg_set (seg, subseg);
4180
4181
4182 /* Get some space to hold relocation information for the unwind
4183 descriptor. */
4184 p = frag_more (4);
4185 call_info->start_offset_frag = frag_now;
4186 call_info->start_frag_where = p - frag_now->fr_literal;
4187
4188 /* Relocation info. for start offset of the function. */
4189 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4190 call_info->start_symbol, (offsetT) 0,
4191 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4192 (char *) 0);
4193
4194 /* We need to search for the first relocation involving the start_symbol of
4195 this call_info descriptor. */
4196 {
4197 fixS *fixP;
4198
4199 call_info->start_fix = seg_info (now_seg)->fix_root;
4200 for (fixP = call_info->start_fix; fixP; fixP = fixP->fx_next)
4201 {
4202 if (fixP->fx_addsy == call_info->start_symbol
4203 || fixP->fx_subsy == call_info->start_symbol)
4204 {
4205 call_info->start_fix = fixP;
4206 break;
4207 }
4208 }
4209 }
4210
4211 p = frag_more (4);
4212 call_info->end_offset_frag = frag_now;
4213 call_info->end_frag_where = p - frag_now->fr_literal;
4214
4215 /* Relocation info. for end offset of the function. */
4216 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4217 call_info->end_symbol, (offsetT) 0,
4218 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4219 (char *) 0);
4220
4221 /* We need to search for the first relocation involving the end_symbol of
4222 this call_info descriptor. */
4223 {
4224 fixS *fixP;
4225
4226 call_info->end_fix = seg_info (now_seg)->fix_root; /* the default */
4227 for (fixP = call_info->end_fix; fixP; fixP = fixP->fx_next)
4228 {
4229 if (fixP->fx_addsy == call_info->end_symbol
4230 || fixP->fx_subsy == call_info->end_symbol)
4231 {
4232 call_info->end_fix = fixP;
4233 break;
4234 }
4235 }
4236 }
4237
4238 /* Dump it. */
4239 unwind = (char *) &call_info->ci_unwind;
4240 for (i = 8; i < sizeof (struct unwind_table); i++)
4241 {
4242 c = *(unwind + i);
4243 {
4244 FRAG_APPEND_1_CHAR (c);
4245 }
4246 }
4247
4248 /* Return back to the original segment/subsegment. */
4249 subseg_set (save_seg, save_subseg);
4250 }
4251 #endif
4252
4253 /* Process a .CALLINFO pseudo-op. This information is used later
4254 to build unwind descriptors and maybe one day to support
4255 .ENTER and .LEAVE. */
4256
4257 static void
4258 pa_callinfo (unused)
4259 int unused;
4260 {
4261 char *name, c, *p;
4262 int temp;
4263
4264 /* .CALLINFO must appear within a procedure definition. */
4265 if (!within_procedure)
4266 as_bad (".callinfo is not within a procedure definition");
4267
4268 /* Mark the fact that we found the .CALLINFO for the
4269 current procedure. */
4270 callinfo_found = TRUE;
4271
4272 /* Iterate over the .CALLINFO arguments. */
4273 while (!is_end_of_statement ())
4274 {
4275 name = input_line_pointer;
4276 c = get_symbol_end ();
4277 /* Frame size specification. */
4278 if ((strncasecmp (name, "frame", 5) == 0))
4279 {
4280 p = input_line_pointer;
4281 *p = c;
4282 input_line_pointer++;
4283 temp = get_absolute_expression ();
4284 if ((temp & 0x3) != 0)
4285 {
4286 as_bad ("FRAME parameter must be a multiple of 8: %d\n", temp);
4287 temp = 0;
4288 }
4289
4290 /* callinfo is in bytes and unwind_desc is in 8 byte units. */
4291 last_call_info->ci_unwind.descriptor.frame_size = temp / 8;
4292
4293 }
4294 /* Entry register (GR, GR and SR) specifications. */
4295 else if ((strncasecmp (name, "entry_gr", 8) == 0))
4296 {
4297 p = input_line_pointer;
4298 *p = c;
4299 input_line_pointer++;
4300 temp = get_absolute_expression ();
4301 /* The HP assembler accepts 19 as the high bound for ENTRY_GR
4302 even though %r19 is caller saved. I think this is a bug in
4303 the HP assembler, and we are not going to emulate it. */
4304 if (temp < 3 || temp > 18)
4305 as_bad ("Value for ENTRY_GR must be in the range 3..18\n");
4306 last_call_info->ci_unwind.descriptor.entry_gr = temp - 2;
4307 }
4308 else if ((strncasecmp (name, "entry_fr", 8) == 0))
4309 {
4310 p = input_line_pointer;
4311 *p = c;
4312 input_line_pointer++;
4313 temp = get_absolute_expression ();
4314 /* Similarly the HP assembler takes 31 as the high bound even
4315 though %fr21 is the last callee saved floating point register. */
4316 if (temp < 12 || temp > 21)
4317 as_bad ("Value for ENTRY_FR must be in the range 12..21\n");
4318 last_call_info->ci_unwind.descriptor.entry_fr = temp - 11;
4319 }
4320 else if ((strncasecmp (name, "entry_sr", 8) == 0))
4321 {
4322 p = input_line_pointer;
4323 *p = c;
4324 input_line_pointer++;
4325 temp = get_absolute_expression ();
4326 if (temp != 3)
4327 as_bad ("Value for ENTRY_SR must be 3\n");
4328 last_call_info->entry_sr = temp - 2;
4329 }
4330 /* Note whether or not this function performs any calls. */
4331 else if ((strncasecmp (name, "calls", 5) == 0) ||
4332 (strncasecmp (name, "caller", 6) == 0))
4333 {
4334 p = input_line_pointer;
4335 *p = c;
4336 last_call_info->makes_calls = 1;
4337 }
4338 else if ((strncasecmp (name, "no_calls", 8) == 0))
4339 {
4340 p = input_line_pointer;
4341 *p = c;
4342 last_call_info->makes_calls = 0;
4343 }
4344 /* Should RP be saved into the stack. */
4345 else if ((strncasecmp (name, "save_rp", 7) == 0))
4346 {
4347 p = input_line_pointer;
4348 *p = c;
4349 last_call_info->ci_unwind.descriptor.save_rp = 1;
4350 }
4351 /* Likewise for SP. */
4352 else if ((strncasecmp (name, "save_sp", 7) == 0))
4353 {
4354 p = input_line_pointer;
4355 *p = c;
4356 last_call_info->ci_unwind.descriptor.save_sp = 1;
4357 }
4358 /* Is this an unwindable procedure. If so mark it so
4359 in the unwind descriptor. */
4360 else if ((strncasecmp (name, "no_unwind", 9) == 0))
4361 {
4362 p = input_line_pointer;
4363 *p = c;
4364 last_call_info->ci_unwind.descriptor.cannot_unwind = 1;
4365 }
4366 /* Is this an interrupt routine. If so mark it in the
4367 unwind descriptor. */
4368 else if ((strncasecmp (name, "hpux_int", 7) == 0))
4369 {
4370 p = input_line_pointer;
4371 *p = c;
4372 last_call_info->ci_unwind.descriptor.hpux_interrupt_marker = 1;
4373 }
4374 else
4375 {
4376 as_bad ("Invalid .CALLINFO argument: %s", name);
4377 }
4378 if (!is_end_of_statement ())
4379 input_line_pointer++;
4380 }
4381
4382 demand_empty_rest_of_line ();
4383 return;
4384 }
4385
4386 /* Switch into the code subspace. */
4387
4388 static void
4389 pa_code (unused)
4390 int unused;
4391 {
4392 sd_chain_struct *sdchain;
4393
4394 /* First time through it might be necessary to create the
4395 $TEXT$ space. */
4396 if ((sdchain = is_defined_space ("$TEXT$")) == NULL)
4397 {
4398 sdchain = create_new_space (pa_def_spaces[0].name,
4399 pa_def_spaces[0].spnum,
4400 pa_def_spaces[0].loadable,
4401 pa_def_spaces[0].defined,
4402 pa_def_spaces[0].private,
4403 pa_def_spaces[0].sort,
4404 pa_def_spaces[0].segment, 0);
4405 }
4406
4407 SPACE_DEFINED (sdchain) = 1;
4408 subseg_set (text_section, SUBSEG_CODE);
4409 demand_empty_rest_of_line ();
4410 return;
4411 }
4412
4413 /* This is different than the standard GAS s_comm(). On HP9000/800 machines,
4414 the .comm pseudo-op has the following symtax:
4415
4416 <label> .comm <length>
4417
4418 where <label> is optional and is a symbol whose address will be the start of
4419 a block of memory <length> bytes long. <length> must be an absolute
4420 expression. <length> bytes will be allocated in the current space
4421 and subspace. */
4422
4423 static void
4424 pa_comm (unused)
4425 int unused;
4426 {
4427 unsigned int size;
4428 symbolS *symbol;
4429 label_symbol_struct *label_symbol = pa_get_label ();
4430
4431 if (label_symbol)
4432 symbol = label_symbol->lss_label;
4433 else
4434 symbol = NULL;
4435
4436 SKIP_WHITESPACE ();
4437 size = get_absolute_expression ();
4438
4439 if (symbol)
4440 {
4441 /* It is incorrect to check S_IS_DEFINED at this point as
4442 the symbol will *always* be defined. FIXME. How to
4443 correctly determine when this label really as been
4444 defined before. */
4445 if (S_GET_VALUE (symbol))
4446 {
4447 if (S_GET_VALUE (symbol) != size)
4448 {
4449 as_warn ("Length of .comm \"%s\" is already %d. Not changed.",
4450 S_GET_NAME (symbol), S_GET_VALUE (symbol));
4451 return;
4452 }
4453 }
4454 else
4455 {
4456 S_SET_VALUE (symbol, size);
4457 S_SET_SEGMENT (symbol, &bfd_und_section);
4458 S_SET_EXTERNAL (symbol);
4459 }
4460 }
4461 demand_empty_rest_of_line ();
4462 }
4463
4464 /* Process a .COPYRIGHT pseudo-op. */
4465
4466 static void
4467 pa_copyright (unused)
4468 int unused;
4469 {
4470 char *name;
4471 char c;
4472
4473 SKIP_WHITESPACE ();
4474 if (*input_line_pointer == '\"')
4475 {
4476 ++input_line_pointer;
4477 name = input_line_pointer;
4478 while ((c = next_char_of_string ()) >= 0)
4479 ;
4480 c = *input_line_pointer;
4481 *input_line_pointer = '\0';
4482 *(input_line_pointer - 1) = '\0';
4483 {
4484 /* FIXME. Not supported */
4485 abort ();
4486 }
4487 *input_line_pointer = c;
4488 }
4489 else
4490 {
4491 as_bad ("Expected \"-ed string");
4492 }
4493 pa_undefine_label ();
4494 demand_empty_rest_of_line ();
4495 }
4496
4497 /* Process a .END pseudo-op. */
4498
4499 static void
4500 pa_end (unused)
4501 int unused;
4502 {
4503 demand_empty_rest_of_line ();
4504 return;
4505 }
4506
4507 /* Process a .ENTER pseudo-op. This is not supported. */
4508 static void
4509 pa_enter (unused)
4510 int unused;
4511 {
4512 abort ();
4513 return;
4514 }
4515
4516 /* Process a .ENTRY pseudo-op. .ENTRY marks the beginning of the
4517 procesure. */
4518 static void
4519 pa_entry (unused)
4520 int unused;
4521 {
4522 if (!within_procedure)
4523 as_bad ("Misplaced .entry. Ignored.");
4524 else
4525 {
4526 if (!callinfo_found)
4527 as_bad ("Missing .callinfo.");
4528
4529 last_call_info->start_frag = frag_now;
4530 }
4531 demand_empty_rest_of_line ();
4532 within_entry_exit = TRUE;
4533
4534 /* Go back to the last symbol and turn on the BSF_FUNCTION flag.
4535 It will not be on if no .EXPORT pseudo-op exists (static function). */
4536 last_call_info->start_symbol->bsym->flags |= BSF_FUNCTION;
4537
4538 #ifdef OBJ_SOM
4539 /* SOM defers building of unwind descriptors until the link phase.
4540 The assembler is responsible for creating an R_ENTRY relocation
4541 to mark the beginning of a region and hold the unwind bits, and
4542 for creating an R_EXIT relocation to mark the end of the region.
4543
4544 FIXME. ELF should be using the same conventions! The problem
4545 is an unwind requires too much relocation space. Hmmm. Maybe
4546 if we split the unwind bits up between the relocations which
4547 denote the entry and exit points. */
4548 {
4549 char *where = frag_more (0);
4550
4551 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
4552 last_call_info->start_symbol, (offsetT) 0, NULL,
4553 0, R_HPPA_ENTRY, e_fsel, 0, 0,
4554 (char *) &last_call_info->ci_unwind.descriptor);
4555 }
4556 #endif
4557
4558 return;
4559 }
4560
4561 /* Handle a .EQU pseudo-op. */
4562
4563 static void
4564 pa_equ (reg)
4565 int reg;
4566 {
4567 label_symbol_struct *label_symbol = pa_get_label ();
4568 symbolS *symbol;
4569
4570 if (label_symbol)
4571 {
4572 symbol = label_symbol->lss_label;
4573 S_SET_VALUE (symbol, (unsigned int) get_absolute_expression ());
4574 S_SET_SEGMENT (symbol, &bfd_abs_section);
4575 }
4576 else
4577 {
4578 if (reg)
4579 as_bad (".REG must use a label");
4580 else
4581 as_bad (".EQU must use a label");
4582 }
4583
4584 pa_undefine_label ();
4585 demand_empty_rest_of_line ();
4586 return;
4587 }
4588
4589 /* Helper function. Does processing for the end of a function. This
4590 usually involves creating some relocations or building special
4591 symbols to mark the end of the function. */
4592
4593 static void
4594 process_exit ()
4595 {
4596 char *where;
4597
4598 where = frag_more (0);
4599
4600 #ifdef OBJ_ELF
4601 /* Mark the end of the function, stuff away the location of the frag
4602 for the end of the function, and finally call pa_build_unwind_subspace
4603 to add an entry in the unwind table. */
4604 hppa_elf_mark_end_of_function ();
4605 last_call_info->end_frag = frag_now;
4606 pa_build_unwind_subspace (last_call_info);
4607 #else
4608 /* SOM defers building of unwind descriptors until the link phase.
4609 The assembler is responsible for creating an R_ENTRY relocation
4610 to mark the beginning of a region and hold the unwind bits, and
4611 for creating an R_EXIT relocation to mark the end of the region.
4612
4613 FIXME. ELF should be using the same conventions! The problem
4614 is an unwind requires too much relocation space. Hmmm. Maybe
4615 if we split the unwind bits up between the relocations which
4616 denote the entry and exit points. */
4617 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
4618 last_call_info->start_symbol, (offsetT) 0,
4619 NULL, 0, R_HPPA_EXIT, e_fsel, 0, 0, NULL);
4620 #endif
4621
4622 }
4623
4624 /* Process a .EXIT pseudo-op. */
4625
4626 static void
4627 pa_exit (unused)
4628 int unused;
4629 {
4630 if (!within_procedure)
4631 as_bad (".EXIT must appear within a procedure");
4632 else
4633 {
4634 if (!callinfo_found)
4635 as_bad ("Missing .callinfo");
4636 else
4637 {
4638 if (!within_entry_exit)
4639 as_bad ("No .ENTRY for this .EXIT");
4640 else
4641 {
4642 within_entry_exit = FALSE;
4643 process_exit ();
4644 }
4645 }
4646 }
4647 demand_empty_rest_of_line ();
4648 return;
4649 }
4650
4651 /* Process a .EXPORT directive. This makes functions external
4652 and provides information such as argument relocation entries
4653 to callers. */
4654
4655 static void
4656 pa_export (unused)
4657 int unused;
4658 {
4659 char *name, c, *p;
4660 symbolS *symbol;
4661
4662 name = input_line_pointer;
4663 c = get_symbol_end ();
4664 /* Make sure the given symbol exists. */
4665 if ((symbol = symbol_find_or_make (name)) == NULL)
4666 {
4667 as_bad ("Cannot define export symbol: %s\n", name);
4668 p = input_line_pointer;
4669 *p = c;
4670 input_line_pointer++;
4671 }
4672 else
4673 {
4674 /* OK. Set the external bits and process argument relocations. */
4675 S_SET_EXTERNAL (symbol);
4676 p = input_line_pointer;
4677 *p = c;
4678 if (!is_end_of_statement ())
4679 {
4680 input_line_pointer++;
4681 pa_type_args (symbol, 1);
4682 #ifdef OBJ_ELF
4683 pa_build_symextn_section ();
4684 #endif
4685 }
4686 }
4687
4688 demand_empty_rest_of_line ();
4689 return;
4690 }
4691
4692 /* Helper function to process arguments to a .EXPORT pseudo-op. */
4693
4694 static void
4695 pa_type_args (symbolP, is_export)
4696 symbolS *symbolP;
4697 int is_export;
4698 {
4699 char *name, c, *p;
4700 unsigned int temp, arg_reloc;
4701 pa_symbol_type type = SYMBOL_TYPE_UNKNOWN;
4702 obj_symbol_type *symbol = (obj_symbol_type *) symbolP->bsym;
4703
4704 if (strncasecmp (input_line_pointer, "absolute", 8) == 0)
4705
4706 {
4707 input_line_pointer += 8;
4708 symbolP->bsym->flags &= ~BSF_FUNCTION;
4709 S_SET_SEGMENT (symbolP, &bfd_abs_section);
4710 type = SYMBOL_TYPE_ABSOLUTE;
4711 }
4712 else if (strncasecmp (input_line_pointer, "code", 4) == 0)
4713 {
4714 input_line_pointer += 4;
4715 /* IMPORTing/EXPORTing CODE types for functions is meaningless for SOM,
4716 instead one should be IMPORTing/EXPORTing ENTRY types.
4717
4718 Complain if one tries to EXPORT a CODE type since that's never
4719 done. Both GCC and HP C still try to IMPORT CODE types, so
4720 silently fix them to be ENTRY types. */
4721 if (symbolP->bsym->flags & BSF_FUNCTION)
4722 {
4723 if (is_export)
4724 as_tsktsk ("Using ENTRY rather than CODE in export directive for %s", symbolP->bsym->name);
4725
4726 symbolP->bsym->flags |= BSF_FUNCTION;
4727 type = SYMBOL_TYPE_ENTRY;
4728 }
4729 else
4730 {
4731 symbolP->bsym->flags &= ~BSF_FUNCTION;
4732 type = SYMBOL_TYPE_CODE;
4733 }
4734 }
4735 else if (strncasecmp (input_line_pointer, "data", 4) == 0)
4736 {
4737 input_line_pointer += 4;
4738 symbolP->bsym->flags &= ~BSF_FUNCTION;
4739 type = SYMBOL_TYPE_DATA;
4740 }
4741 else if ((strncasecmp (input_line_pointer, "entry", 5) == 0))
4742 {
4743 input_line_pointer += 5;
4744 symbolP->bsym->flags |= BSF_FUNCTION;
4745 type = SYMBOL_TYPE_ENTRY;
4746 }
4747 else if (strncasecmp (input_line_pointer, "millicode", 9) == 0)
4748 {
4749 input_line_pointer += 9;
4750 symbolP->bsym->flags |= BSF_FUNCTION;
4751 type = SYMBOL_TYPE_MILLICODE;
4752 }
4753 else if (strncasecmp (input_line_pointer, "plabel", 6) == 0)
4754 {
4755 input_line_pointer += 6;
4756 symbolP->bsym->flags &= ~BSF_FUNCTION;
4757 type = SYMBOL_TYPE_PLABEL;
4758 }
4759 else if (strncasecmp (input_line_pointer, "pri_prog", 8) == 0)
4760 {
4761 input_line_pointer += 8;
4762 symbolP->bsym->flags |= BSF_FUNCTION;
4763 type = SYMBOL_TYPE_PRI_PROG;
4764 }
4765 else if (strncasecmp (input_line_pointer, "sec_prog", 8) == 0)
4766 {
4767 input_line_pointer += 8;
4768 symbolP->bsym->flags |= BSF_FUNCTION;
4769 type = SYMBOL_TYPE_SEC_PROG;
4770 }
4771
4772 /* SOM requires much more information about symbol types
4773 than BFD understands. This is how we get this information
4774 to the SOM BFD backend. */
4775 #ifdef obj_set_symbol_type
4776 obj_set_symbol_type (symbolP->bsym, (int) type);
4777 #endif
4778
4779 /* Now that the type of the exported symbol has been handled,
4780 handle any argument relocation information. */
4781 while (!is_end_of_statement ())
4782 {
4783 if (*input_line_pointer == ',')
4784 input_line_pointer++;
4785 name = input_line_pointer;
4786 c = get_symbol_end ();
4787 /* Argument sources. */
4788 if ((strncasecmp (name, "argw", 4) == 0))
4789 {
4790 p = input_line_pointer;
4791 *p = c;
4792 input_line_pointer++;
4793 temp = atoi (name + 4);
4794 name = input_line_pointer;
4795 c = get_symbol_end ();
4796 arg_reloc = pa_align_arg_reloc (temp, pa_build_arg_reloc (name));
4797 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
4798 *input_line_pointer = c;
4799 }
4800 /* The return value. */
4801 else if ((strncasecmp (name, "rtnval", 6)) == 0)
4802 {
4803 p = input_line_pointer;
4804 *p = c;
4805 input_line_pointer++;
4806 name = input_line_pointer;
4807 c = get_symbol_end ();
4808 arg_reloc = pa_build_arg_reloc (name);
4809 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
4810 *input_line_pointer = c;
4811 }
4812 /* Privelege level. */
4813 else if ((strncasecmp (name, "priv_lev", 8)) == 0)
4814 {
4815 p = input_line_pointer;
4816 *p = c;
4817 input_line_pointer++;
4818 temp = atoi (input_line_pointer);
4819 c = get_symbol_end ();
4820 *input_line_pointer = c;
4821 }
4822 else
4823 {
4824 as_bad ("Undefined .EXPORT/.IMPORT argument (ignored): %s", name);
4825 p = input_line_pointer;
4826 *p = c;
4827 }
4828 if (!is_end_of_statement ())
4829 input_line_pointer++;
4830 }
4831 }
4832
4833 /* Handle an .IMPORT pseudo-op. Any symbol referenced in a given
4834 assembly file must either be defined in the assembly file, or
4835 explicitly IMPORTED from another. */
4836
4837 static void
4838 pa_import (unused)
4839 int unused;
4840 {
4841 char *name, c, *p;
4842 symbolS *symbol;
4843
4844 name = input_line_pointer;
4845 c = get_symbol_end ();
4846
4847 symbol = symbol_find_or_make (name);
4848 p = input_line_pointer;
4849 *p = c;
4850
4851 if (!is_end_of_statement ())
4852 {
4853 input_line_pointer++;
4854 pa_type_args (symbol, 0);
4855 }
4856 else
4857 {
4858 /* Sigh. To be compatable with the HP assembler and to help
4859 poorly written assembly code, we assign a type based on
4860 the the current segment. Note only BSF_FUNCTION really
4861 matters, we do not need to set the full SYMBOL_TYPE_* info here. */
4862 if (now_seg == text_section)
4863 symbol->bsym->flags |= BSF_FUNCTION;
4864
4865 /* If the section is undefined, then the symbol is undefined
4866 Since this is an import, leave the section undefined. */
4867 S_SET_SEGMENT (symbol, &bfd_und_section);
4868 }
4869
4870 demand_empty_rest_of_line ();
4871 return;
4872 }
4873
4874 /* Handle a .LABEL pseudo-op. */
4875
4876 static void
4877 pa_label (unused)
4878 int unused;
4879 {
4880 char *name, c, *p;
4881
4882 name = input_line_pointer;
4883 c = get_symbol_end ();
4884
4885 if (strlen (name) > 0)
4886 {
4887 colon (name);
4888 p = input_line_pointer;
4889 *p = c;
4890 }
4891 else
4892 {
4893 as_warn ("Missing label name on .LABEL");
4894 }
4895
4896 if (!is_end_of_statement ())
4897 {
4898 as_warn ("extra .LABEL arguments ignored.");
4899 ignore_rest_of_line ();
4900 }
4901 demand_empty_rest_of_line ();
4902 return;
4903 }
4904
4905 /* Handle a .LEAVE pseudo-op. This is not supported yet. */
4906
4907 static void
4908 pa_leave (unused)
4909 int unused;
4910 {
4911 abort ();
4912 }
4913
4914 /* Handle a .ORIGIN pseudo-op. */
4915
4916 static void
4917 pa_origin (unused)
4918 int unused;
4919 {
4920 s_org (0);
4921 pa_undefine_label ();
4922 return;
4923 }
4924
4925 /* Handle a .PARAM pseudo-op. This is much like a .EXPORT, except it
4926 is for static functions. FIXME. Should share more code with .EXPORT. */
4927
4928 static void
4929 pa_param (unused)
4930 int unused;
4931 {
4932 char *name, c, *p;
4933 symbolS *symbol;
4934
4935 name = input_line_pointer;
4936 c = get_symbol_end ();
4937
4938 if ((symbol = symbol_find_or_make (name)) == NULL)
4939 {
4940 as_bad ("Cannot define static symbol: %s\n", name);
4941 p = input_line_pointer;
4942 *p = c;
4943 input_line_pointer++;
4944 }
4945 else
4946 {
4947 S_CLEAR_EXTERNAL (symbol);
4948 p = input_line_pointer;
4949 *p = c;
4950 if (!is_end_of_statement ())
4951 {
4952 input_line_pointer++;
4953 pa_type_args (symbol, 0);
4954 }
4955 }
4956
4957 demand_empty_rest_of_line ();
4958 return;
4959 }
4960
4961 /* Handle a .PROC pseudo-op. It is used to mark the beginning
4962 of a procedure from a syntatical point of view. */
4963
4964 static void
4965 pa_proc (unused)
4966 int unused;
4967 {
4968 struct call_info *call_info;
4969
4970 if (within_procedure)
4971 as_fatal ("Nested procedures");
4972
4973 /* Reset global variables for new procedure. */
4974 callinfo_found = FALSE;
4975 within_procedure = TRUE;
4976
4977 /* Create another call_info structure. */
4978 call_info = (struct call_info *) xmalloc (sizeof (struct call_info));
4979
4980 if (!call_info)
4981 as_fatal ("Cannot allocate unwind descriptor\n");
4982
4983 bzero (call_info, sizeof (struct call_info));
4984
4985 call_info->ci_next = NULL;
4986
4987 if (call_info_root == NULL)
4988 {
4989 call_info_root = call_info;
4990 last_call_info = call_info;
4991 }
4992 else
4993 {
4994 last_call_info->ci_next = call_info;
4995 last_call_info = call_info;
4996 }
4997
4998 /* set up defaults on call_info structure */
4999
5000 call_info->ci_unwind.descriptor.cannot_unwind = 0;
5001 call_info->ci_unwind.descriptor.region_desc = 1;
5002 call_info->ci_unwind.descriptor.hpux_interrupt_marker = 0;
5003 call_info->entry_sr = ~0;
5004 call_info->makes_calls = 1;
5005
5006 /* If we got a .PROC pseudo-op, we know that the function is defined
5007 locally. Make sure it gets into the symbol table. */
5008 {
5009 label_symbol_struct *label_symbol = pa_get_label ();
5010
5011 if (label_symbol)
5012 {
5013 if (label_symbol->lss_label)
5014 {
5015 last_call_info->start_symbol = label_symbol->lss_label;
5016 label_symbol->lss_label->bsym->flags |= BSF_FUNCTION;
5017 }
5018 else
5019 as_bad ("Missing function name for .PROC (corrupted label)");
5020 }
5021 else
5022 as_bad ("Missing function name for .PROC");
5023 }
5024
5025 demand_empty_rest_of_line ();
5026 return;
5027 }
5028
5029 /* Process the syntatical end of a procedure. Make sure all the
5030 appropriate pseudo-ops were found within the procedure. */
5031
5032 static void
5033 pa_procend (unused)
5034 int unused;
5035 {
5036
5037 if (!within_procedure)
5038 as_bad ("misplaced .procend");
5039
5040 if (!callinfo_found)
5041 as_bad ("Missing .callinfo for this procedure");
5042
5043 if (within_entry_exit)
5044 as_bad ("Missing .EXIT for a .ENTRY");
5045
5046 #ifdef OBJ_ELF
5047 /* ELF needs to mark the end of each function so that it can compute
5048 the size of the function (apparently its needed in the symbol table. */
5049 hppa_elf_mark_end_of_function ();
5050 #endif
5051
5052 within_procedure = FALSE;
5053 demand_empty_rest_of_line ();
5054 return;
5055 }
5056
5057 /* Parse the parameters to a .SPACE directive; if CREATE_FLAG is nonzero,
5058 then create a new space entry to hold the information specified
5059 by the parameters to the .SPACE directive. */
5060
5061 static sd_chain_struct *
5062 pa_parse_space_stmt (space_name, create_flag)
5063 char *space_name;
5064 int create_flag;
5065 {
5066 char *name, *ptemp, c;
5067 char loadable, defined, private, sort;
5068 int spnum;
5069 asection *seg = NULL;
5070 sd_chain_struct *space;
5071
5072 /* load default values */
5073 spnum = 0;
5074 sort = 0;
5075 loadable = TRUE;
5076 defined = TRUE;
5077 private = FALSE;
5078 if (strcasecmp (space_name, "$TEXT$") == 0)
5079 {
5080 seg = pa_def_spaces[0].segment;
5081 sort = pa_def_spaces[0].sort;
5082 }
5083 else if (strcasecmp (space_name, "$PRIVATE$") == 0)
5084 {
5085 seg = pa_def_spaces[1].segment;
5086 sort = pa_def_spaces[1].sort;
5087 }
5088
5089 if (!is_end_of_statement ())
5090 {
5091 print_errors = FALSE;
5092 ptemp = input_line_pointer + 1;
5093 /* First see if the space was specified as a number rather than
5094 as a name. According to the PA assembly manual the rest of
5095 the line should be ignored. */
5096 if ((spnum = pa_parse_number (&ptemp, 0)) >= 0)
5097 input_line_pointer = ptemp;
5098 else
5099 {
5100 while (!is_end_of_statement ())
5101 {
5102 input_line_pointer++;
5103 name = input_line_pointer;
5104 c = get_symbol_end ();
5105 if ((strncasecmp (name, "SPNUM", 5) == 0))
5106 {
5107 *input_line_pointer = c;
5108 input_line_pointer++;
5109 spnum = get_absolute_expression ();
5110 }
5111 else if ((strncasecmp (name, "SORT", 4) == 0))
5112 {
5113 *input_line_pointer = c;
5114 input_line_pointer++;
5115 sort = get_absolute_expression ();
5116 }
5117 else if ((strncasecmp (name, "UNLOADABLE", 10) == 0))
5118 {
5119 *input_line_pointer = c;
5120 loadable = FALSE;
5121 }
5122 else if ((strncasecmp (name, "NOTDEFINED", 10) == 0))
5123 {
5124 *input_line_pointer = c;
5125 defined = FALSE;
5126 }
5127 else if ((strncasecmp (name, "PRIVATE", 7) == 0))
5128 {
5129 *input_line_pointer = c;
5130 private = TRUE;
5131 }
5132 else
5133 {
5134 as_bad ("Invalid .SPACE argument");
5135 *input_line_pointer = c;
5136 if (!is_end_of_statement ())
5137 input_line_pointer++;
5138 }
5139 }
5140 }
5141 print_errors = TRUE;
5142 }
5143
5144 if (create_flag && seg == NULL)
5145 seg = subseg_new (space_name, 0);
5146
5147 /* If create_flag is nonzero, then create the new space with
5148 the attributes computed above. Else set the values in
5149 an already existing space -- this can only happen for
5150 the first occurence of a built-in space. */
5151 if (create_flag)
5152 space = create_new_space (space_name, spnum, loadable, defined,
5153 private, sort, seg, 1);
5154 else
5155 {
5156 space = is_defined_space (space_name);
5157 SPACE_SPNUM (space) = spnum;
5158 SPACE_LOADABLE (space) = loadable & 1;
5159 SPACE_DEFINED (space) = defined & 1;
5160 SPACE_USER_DEFINED (space) = 1;
5161 SPACE_PRIVATE (space) = private & 1;
5162 SPACE_SORT (space) = sort & 0xff;
5163 space->sd_seg = seg;
5164 }
5165
5166 #ifdef obj_set_section_attributes
5167 obj_set_section_attributes (seg, defined, private, sort, spnum);
5168 #endif
5169
5170 return space;
5171 }
5172
5173 /* Handle a .SPACE pseudo-op; this switches the current space to the
5174 given space, creating the new space if necessary. */
5175
5176 static void
5177 pa_space (unused)
5178 int unused;
5179 {
5180 char *name, c, *space_name, *save_s;
5181 int temp;
5182 sd_chain_struct *sd_chain;
5183
5184 if (within_procedure)
5185 {
5186 as_bad ("Can\'t change spaces within a procedure definition. Ignored");
5187 ignore_rest_of_line ();
5188 }
5189 else
5190 {
5191 /* Check for some of the predefined spaces. FIXME: most of the code
5192 below is repeated several times, can we extract the common parts
5193 and place them into a subroutine or something similar? */
5194 if (strncasecmp (input_line_pointer, "$text$", 6) == 0)
5195 {
5196 input_line_pointer += 6;
5197 sd_chain = is_defined_space ("$TEXT$");
5198 if (sd_chain == NULL)
5199 sd_chain = pa_parse_space_stmt ("$TEXT$", 1);
5200 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5201 sd_chain = pa_parse_space_stmt ("$TEXT$", 0);
5202
5203 current_space = sd_chain;
5204 subseg_set (text_section, sd_chain->sd_last_subseg);
5205 current_subspace
5206 = pa_subsegment_to_subspace (text_section,
5207 sd_chain->sd_last_subseg);
5208 demand_empty_rest_of_line ();
5209 return;
5210 }
5211 if (strncasecmp (input_line_pointer, "$private$", 9) == 0)
5212 {
5213 input_line_pointer += 9;
5214 sd_chain = is_defined_space ("$PRIVATE$");
5215 if (sd_chain == NULL)
5216 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 1);
5217 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5218 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 0);
5219
5220 current_space = sd_chain;
5221 subseg_set (data_section, sd_chain->sd_last_subseg);
5222 current_subspace
5223 = pa_subsegment_to_subspace (data_section,
5224 sd_chain->sd_last_subseg);
5225 demand_empty_rest_of_line ();
5226 return;
5227 }
5228 if (!strncasecmp (input_line_pointer,
5229 GDB_DEBUG_SPACE_NAME,
5230 strlen (GDB_DEBUG_SPACE_NAME)))
5231 {
5232 input_line_pointer += strlen (GDB_DEBUG_SPACE_NAME);
5233 sd_chain = is_defined_space (GDB_DEBUG_SPACE_NAME);
5234 if (sd_chain == NULL)
5235 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 1);
5236 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5237 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 0);
5238
5239 current_space = sd_chain;
5240
5241 {
5242 asection *gdb_section
5243 = bfd_make_section_old_way (stdoutput, GDB_DEBUG_SPACE_NAME);
5244
5245 subseg_set (gdb_section, sd_chain->sd_last_subseg);
5246 current_subspace
5247 = pa_subsegment_to_subspace (gdb_section,
5248 sd_chain->sd_last_subseg);
5249 }
5250 demand_empty_rest_of_line ();
5251 return;
5252 }
5253
5254 /* It could be a space specified by number. */
5255 print_errors = 0;
5256 save_s = input_line_pointer;
5257 if ((temp = pa_parse_number (&input_line_pointer, 0)) >= 0)
5258 {
5259 if (sd_chain = pa_find_space_by_number (temp))
5260 {
5261 current_space = sd_chain;
5262
5263 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
5264 current_subspace
5265 = pa_subsegment_to_subspace (sd_chain->sd_seg,
5266 sd_chain->sd_last_subseg);
5267 demand_empty_rest_of_line ();
5268 return;
5269 }
5270 }
5271
5272 /* Not a number, attempt to create a new space. */
5273 print_errors = 1;
5274 input_line_pointer = save_s;
5275 name = input_line_pointer;
5276 c = get_symbol_end ();
5277 space_name = xmalloc (strlen (name) + 1);
5278 strcpy (space_name, name);
5279 *input_line_pointer = c;
5280
5281 sd_chain = pa_parse_space_stmt (space_name, 1);
5282 current_space = sd_chain;
5283
5284 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
5285 current_subspace = pa_subsegment_to_subspace (sd_chain->sd_seg,
5286 sd_chain->sd_last_subseg);
5287 demand_empty_rest_of_line ();
5288 }
5289 return;
5290 }
5291
5292 /* Switch to a new space. (I think). FIXME. */
5293
5294 static void
5295 pa_spnum (unused)
5296 int unused;
5297 {
5298 char *name;
5299 char c;
5300 char *p;
5301 sd_chain_struct *space;
5302
5303 name = input_line_pointer;
5304 c = get_symbol_end ();
5305 space = is_defined_space (name);
5306 if (space)
5307 {
5308 p = frag_more (4);
5309 md_number_to_chars (p, SPACE_SPNUM (space), 4);
5310 }
5311 else
5312 as_warn ("Undefined space: '%s' Assuming space number = 0.", name);
5313
5314 *input_line_pointer = c;
5315 demand_empty_rest_of_line ();
5316 return;
5317 }
5318
5319 /* If VALUE is an exact power of two between zero and 2^31, then
5320 return log2 (VALUE). Else return -1. */
5321
5322 static int
5323 log2 (value)
5324 int value;
5325 {
5326 int shift = 0;
5327
5328 while ((1 << shift) != value && shift < 32)
5329 shift++;
5330
5331 if (shift >= 32)
5332 return -1;
5333 else
5334 return shift;
5335 }
5336
5337 /* Handle a .SUBSPACE pseudo-op; this switches the current subspace to the
5338 given subspace, creating the new subspace if necessary.
5339
5340 FIXME. Should mirror pa_space more closely, in particular how
5341 they're broken up into subroutines. */
5342
5343 static void
5344 pa_subspace (unused)
5345 int unused;
5346 {
5347 char *name, *ss_name, *alias, c;
5348 char loadable, code_only, common, dup_common, zero, sort;
5349 int i, access, space_index, alignment, quadrant, applicable, flags;
5350 sd_chain_struct *space;
5351 ssd_chain_struct *ssd;
5352 asection *section;
5353
5354 if (within_procedure)
5355 {
5356 as_bad ("Can\'t change subspaces within a procedure definition. Ignored");
5357 ignore_rest_of_line ();
5358 }
5359 else
5360 {
5361 name = input_line_pointer;
5362 c = get_symbol_end ();
5363 ss_name = xmalloc (strlen (name) + 1);
5364 strcpy (ss_name, name);
5365 *input_line_pointer = c;
5366
5367 /* Load default values. */
5368 sort = 0;
5369 access = 0x7f;
5370 loadable = 1;
5371 common = 0;
5372 dup_common = 0;
5373 code_only = 0;
5374 zero = 0;
5375 space_index = ~0;
5376 alignment = 0;
5377 quadrant = 0;
5378 alias = NULL;
5379
5380 space = current_space;
5381 ssd = is_defined_subspace (ss_name);
5382 /* Allow user to override the builtin attributes of subspaces. But
5383 only allow the attributes to be changed once! */
5384 if (ssd && SUBSPACE_DEFINED (ssd))
5385 {
5386 subseg_set (ssd->ssd_seg, ssd->ssd_subseg);
5387 if (!is_end_of_statement ())
5388 as_warn ("Parameters of an existing subspace can\'t be modified");
5389 demand_empty_rest_of_line ();
5390 return;
5391 }
5392 else
5393 {
5394 /* A new subspace. Load default values if it matches one of
5395 the builtin subspaces. */
5396 i = 0;
5397 while (pa_def_subspaces[i].name)
5398 {
5399 if (strcasecmp (pa_def_subspaces[i].name, ss_name) == 0)
5400 {
5401 loadable = pa_def_subspaces[i].loadable;
5402 common = pa_def_subspaces[i].common;
5403 dup_common = pa_def_subspaces[i].dup_common;
5404 code_only = pa_def_subspaces[i].code_only;
5405 zero = pa_def_subspaces[i].zero;
5406 space_index = pa_def_subspaces[i].space_index;
5407 alignment = pa_def_subspaces[i].alignment;
5408 quadrant = pa_def_subspaces[i].quadrant;
5409 access = pa_def_subspaces[i].access;
5410 sort = pa_def_subspaces[i].sort;
5411 if (USE_ALIASES && pa_def_subspaces[i].alias)
5412 alias = pa_def_subspaces[i].alias;
5413 break;
5414 }
5415 i++;
5416 }
5417 }
5418
5419 /* We should be working with a new subspace now. Fill in
5420 any information as specified by the user. */
5421 if (!is_end_of_statement ())
5422 {
5423 input_line_pointer++;
5424 while (!is_end_of_statement ())
5425 {
5426 name = input_line_pointer;
5427 c = get_symbol_end ();
5428 if ((strncasecmp (name, "QUAD", 4) == 0))
5429 {
5430 *input_line_pointer = c;
5431 input_line_pointer++;
5432 quadrant = get_absolute_expression ();
5433 }
5434 else if ((strncasecmp (name, "ALIGN", 5) == 0))
5435 {
5436 *input_line_pointer = c;
5437 input_line_pointer++;
5438 alignment = get_absolute_expression ();
5439 if (log2 (alignment) == -1)
5440 {
5441 as_bad ("Alignment must be a power of 2");
5442 alignment = 1;
5443 }
5444 }
5445 else if ((strncasecmp (name, "ACCESS", 6) == 0))
5446 {
5447 *input_line_pointer = c;
5448 input_line_pointer++;
5449 access = get_absolute_expression ();
5450 }
5451 else if ((strncasecmp (name, "SORT", 4) == 0))
5452 {
5453 *input_line_pointer = c;
5454 input_line_pointer++;
5455 sort = get_absolute_expression ();
5456 }
5457 else if ((strncasecmp (name, "CODE_ONLY", 9) == 0))
5458 {
5459 *input_line_pointer = c;
5460 code_only = 1;
5461 }
5462 else if ((strncasecmp (name, "UNLOADABLE", 10) == 0))
5463 {
5464 *input_line_pointer = c;
5465 loadable = 0;
5466 }
5467 else if ((strncasecmp (name, "COMMON", 6) == 0))
5468 {
5469 *input_line_pointer = c;
5470 common = 1;
5471 }
5472 else if ((strncasecmp (name, "DUP_COMM", 8) == 0))
5473 {
5474 *input_line_pointer = c;
5475 dup_common = 1;
5476 }
5477 else if ((strncasecmp (name, "ZERO", 4) == 0))
5478 {
5479 *input_line_pointer = c;
5480 zero = 1;
5481 }
5482 else if ((strncasecmp (name, "FIRST", 5) == 0))
5483 as_bad ("FIRST not supported as a .SUBSPACE argument");
5484 else
5485 as_bad ("Invalid .SUBSPACE argument");
5486 if (!is_end_of_statement ())
5487 input_line_pointer++;
5488 }
5489 }
5490
5491 /* Compute a reasonable set of BFD flags based on the information
5492 in the .subspace directive. */
5493 applicable = bfd_applicable_section_flags (stdoutput);
5494 flags = 0;
5495 if (loadable)
5496 flags |= (SEC_ALLOC | SEC_LOAD);
5497 if (code_only)
5498 flags |= SEC_CODE;
5499 if (common || dup_common)
5500 flags |= SEC_IS_COMMON;
5501
5502 /* This is a zero-filled subspace (eg BSS). */
5503 if (zero)
5504 flags &= ~SEC_LOAD;
5505
5506 flags |= SEC_RELOC | SEC_HAS_CONTENTS;
5507 applicable &= flags;
5508
5509 /* If this is an existing subspace, then we want to use the
5510 segment already associated with the subspace.
5511
5512 FIXME NOW! ELF BFD doesn't appear to be ready to deal with
5513 lots of sections. It might be a problem in the PA ELF
5514 code, I do not know yet. For now avoid creating anything
5515 but the "standard" sections for ELF. */
5516 if (ssd)
5517 section = ssd->ssd_seg;
5518 else if (alias)
5519 section = subseg_new (alias, 0);
5520 else if (!alias && USE_ALIASES)
5521 {
5522 as_warn ("Ignoring subspace decl due to ELF BFD bugs.");
5523 demand_empty_rest_of_line ();
5524 return;
5525 }
5526 else
5527 section = subseg_new (ss_name, 0);
5528
5529 /* Now set the flags. */
5530 bfd_set_section_flags (stdoutput, section, applicable);
5531
5532 /* Record any alignment request for this section. */
5533 record_alignment (section, log2 (alignment));
5534
5535 /* Set the starting offset for this section. */
5536 bfd_set_section_vma (stdoutput, section,
5537 pa_subspace_start (space, quadrant));
5538
5539 /* Now that all the flags are set, update an existing subspace,
5540 or create a new one. */
5541 if (ssd)
5542
5543 current_subspace = update_subspace (space, ss_name, loadable,
5544 code_only, common, dup_common,
5545 sort, zero, access, space_index,
5546 alignment, quadrant,
5547 section);
5548 else
5549 current_subspace = create_new_subspace (space, ss_name, loadable,
5550 code_only, common,
5551 dup_common, zero, sort,
5552 access, space_index,
5553 alignment, quadrant, section);
5554
5555 demand_empty_rest_of_line ();
5556 current_subspace->ssd_seg = section;
5557 subseg_set (current_subspace->ssd_seg, current_subspace->ssd_subseg);
5558 }
5559 SUBSPACE_DEFINED (current_subspace) = 1;
5560 return;
5561 }
5562
5563
5564 /* Create default space and subspace dictionaries. */
5565
5566 static void
5567 pa_spaces_begin ()
5568 {
5569 int i;
5570
5571 space_dict_root = NULL;
5572 space_dict_last = NULL;
5573
5574 i = 0;
5575 while (pa_def_spaces[i].name)
5576 {
5577 char *name;
5578
5579 /* Pick the right name to use for the new section. */
5580 if (pa_def_spaces[i].alias && USE_ALIASES)
5581 name = pa_def_spaces[i].alias;
5582 else
5583 name = pa_def_spaces[i].name;
5584
5585 pa_def_spaces[i].segment = subseg_new (name, 0);
5586 create_new_space (pa_def_spaces[i].name, pa_def_spaces[i].spnum,
5587 pa_def_spaces[i].loadable, pa_def_spaces[i].defined,
5588 pa_def_spaces[i].private, pa_def_spaces[i].sort,
5589 pa_def_spaces[i].segment, 0);
5590 i++;
5591 }
5592
5593 i = 0;
5594 while (pa_def_subspaces[i].name)
5595 {
5596 char *name;
5597 int applicable, subsegment;
5598 asection *segment = NULL;
5599 sd_chain_struct *space;
5600
5601 /* Pick the right name for the new section and pick the right
5602 subsegment number. */
5603 if (pa_def_subspaces[i].alias && USE_ALIASES)
5604 {
5605 name = pa_def_subspaces[i].alias;
5606 subsegment = pa_def_subspaces[i].subsegment;
5607 }
5608 else
5609 {
5610 name = pa_def_subspaces[i].name;
5611 subsegment = 0;
5612 }
5613
5614 /* Create the new section. */
5615 segment = subseg_new (name, subsegment);
5616
5617
5618 /* For SOM we want to replace the standard .text, .data, and .bss
5619 sections with our own. */
5620 if (!strcmp (pa_def_subspaces[i].name, "$CODE$") && !USE_ALIASES)
5621 {
5622 text_section = segment;
5623 applicable = bfd_applicable_section_flags (stdoutput);
5624 bfd_set_section_flags (stdoutput, text_section,
5625 applicable & (SEC_ALLOC | SEC_LOAD
5626 | SEC_RELOC | SEC_CODE
5627 | SEC_READONLY
5628 | SEC_HAS_CONTENTS));
5629 }
5630 else if (!strcmp (pa_def_subspaces[i].name, "$DATA$") && !USE_ALIASES)
5631 {
5632 data_section = segment;
5633 applicable = bfd_applicable_section_flags (stdoutput);
5634 bfd_set_section_flags (stdoutput, data_section,
5635 applicable & (SEC_ALLOC | SEC_LOAD
5636 | SEC_RELOC
5637 | SEC_HAS_CONTENTS));
5638
5639
5640 }
5641 else if (!strcmp (pa_def_subspaces[i].name, "$BSS$") && !USE_ALIASES)
5642 {
5643 bss_section = segment;
5644 applicable = bfd_applicable_section_flags (stdoutput);
5645 bfd_set_section_flags (stdoutput, bss_section,
5646 applicable & SEC_ALLOC);
5647 }
5648
5649 /* Find the space associated with this subspace. */
5650 space = pa_segment_to_space (pa_def_spaces[pa_def_subspaces[i].
5651 def_space_index].segment);
5652 if (space == NULL)
5653 {
5654 as_fatal ("Internal error: Unable to find containing space for %s.",
5655 pa_def_subspaces[i].name);
5656 }
5657
5658 create_new_subspace (space, name,
5659 pa_def_subspaces[i].loadable,
5660 pa_def_subspaces[i].code_only,
5661 pa_def_subspaces[i].common,
5662 pa_def_subspaces[i].dup_common,
5663 pa_def_subspaces[i].zero,
5664 pa_def_subspaces[i].sort,
5665 pa_def_subspaces[i].access,
5666 pa_def_subspaces[i].space_index,
5667 pa_def_subspaces[i].alignment,
5668 pa_def_subspaces[i].quadrant,
5669 segment);
5670 i++;
5671 }
5672 }
5673
5674
5675
5676 /* Create a new space NAME, with the appropriate flags as defined
5677 by the given parameters.
5678
5679 Add the new space to the space dictionary chain in numerical
5680 order as defined by the SORT entries. */
5681
5682 static sd_chain_struct *
5683 create_new_space (name, spnum, loadable, defined, private,
5684 sort, seg, user_defined)
5685 char *name;
5686 int spnum;
5687 char loadable;
5688 char defined;
5689 char private;
5690 char sort;
5691 asection *seg;
5692 int user_defined;
5693 {
5694 sd_chain_struct *chain_entry;
5695
5696 chain_entry = (sd_chain_struct *) xmalloc (sizeof (sd_chain_struct));
5697 if (!chain_entry)
5698 as_fatal ("Out of memory: could not allocate new space chain entry: %s\n",
5699 name);
5700
5701 SPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5702 strcpy (SPACE_NAME (chain_entry), name);
5703 SPACE_NAME_INDEX (chain_entry) = 0;
5704 SPACE_LOADABLE (chain_entry) = loadable;
5705 SPACE_DEFINED (chain_entry) = defined;
5706 SPACE_USER_DEFINED (chain_entry) = user_defined;
5707 SPACE_PRIVATE (chain_entry) = private;
5708 SPACE_SPNUM (chain_entry) = spnum;
5709 SPACE_SORT (chain_entry) = sort;
5710
5711 chain_entry->sd_seg = seg;
5712 chain_entry->sd_last_subseg = -1;
5713 chain_entry->sd_next = NULL;
5714
5715 /* Find spot for the new space based on its sort key. */
5716 if (!space_dict_last)
5717 space_dict_last = chain_entry;
5718
5719 if (space_dict_root == NULL)
5720 space_dict_root = chain_entry;
5721 else
5722 {
5723 sd_chain_struct *chain_pointer;
5724 sd_chain_struct *prev_chain_pointer;
5725
5726 chain_pointer = space_dict_root;
5727 prev_chain_pointer = NULL;
5728
5729 while (chain_pointer)
5730 {
5731 if (SPACE_SORT (chain_pointer) <= SPACE_SORT (chain_entry))
5732 {
5733 prev_chain_pointer = chain_pointer;
5734 chain_pointer = chain_pointer->sd_next;
5735 }
5736 else
5737 break;
5738 }
5739
5740 /* At this point we've found the correct place to add the new
5741 entry. So add it and update the linked lists as appropriate. */
5742 if (prev_chain_pointer)
5743 {
5744 chain_entry->sd_next = chain_pointer;
5745 prev_chain_pointer->sd_next = chain_entry;
5746 }
5747 else
5748 {
5749 space_dict_root = chain_entry;
5750 chain_entry->sd_next = chain_pointer;
5751 }
5752
5753 if (chain_entry->sd_next == NULL)
5754 space_dict_last = chain_entry;
5755 }
5756
5757 /* This is here to catch predefined spaces which do not get
5758 modified by the user's input. Another call is found at
5759 the bottom of pa_parse_space_stmt to handle cases where
5760 the user modifies a predefined space. */
5761 #ifdef obj_set_section_attributes
5762 obj_set_section_attributes (seg, defined, private, sort, spnum);
5763 #endif
5764
5765 return chain_entry;
5766 }
5767
5768 /* Create a new subspace NAME, with the appropriate flags as defined
5769 by the given parameters.
5770
5771 Add the new subspace to the subspace dictionary chain in numerical
5772 order as defined by the SORT entries. */
5773
5774 static ssd_chain_struct *
5775 create_new_subspace (space, name, loadable, code_only, common,
5776 dup_common, is_zero, sort, access, space_index,
5777 alignment, quadrant, seg)
5778 sd_chain_struct *space;
5779 char *name;
5780 char loadable, code_only, common, dup_common, is_zero;
5781 char sort;
5782 int access;
5783 int space_index;
5784 int alignment;
5785 int quadrant;
5786 asection *seg;
5787 {
5788 ssd_chain_struct *chain_entry;
5789
5790 chain_entry = (ssd_chain_struct *) xmalloc (sizeof (ssd_chain_struct));
5791 if (!chain_entry)
5792 as_fatal ("Out of memory: could not allocate new subspace chain entry: %s\n", name);
5793
5794 SUBSPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5795 strcpy (SUBSPACE_NAME (chain_entry), name);
5796
5797 SUBSPACE_ACCESS (chain_entry) = access;
5798 SUBSPACE_LOADABLE (chain_entry) = loadable;
5799 SUBSPACE_COMMON (chain_entry) = common;
5800 SUBSPACE_DUP_COMM (chain_entry) = dup_common;
5801 SUBSPACE_SORT (chain_entry) = sort;
5802 SUBSPACE_CODE_ONLY (chain_entry) = code_only;
5803 SUBSPACE_ALIGN (chain_entry) = alignment;
5804 SUBSPACE_QUADRANT (chain_entry) = quadrant;
5805 SUBSPACE_SUBSPACE_START (chain_entry) = pa_subspace_start (space, quadrant);
5806 SUBSPACE_SPACE_INDEX (chain_entry) = space_index;
5807 SUBSPACE_ZERO (chain_entry) = is_zero;
5808
5809 /* Initialize subspace_defined. When we hit a .subspace directive
5810 we'll set it to 1 which "locks-in" the subspace attributes. */
5811 SUBSPACE_DEFINED (chain_entry) = 0;
5812
5813 chain_entry->ssd_subseg = USE_ALIASES ? pa_next_subseg (space) : 0;
5814 chain_entry->ssd_seg = seg;
5815 chain_entry->ssd_last_align = 1;
5816 chain_entry->ssd_next = NULL;
5817
5818 /* Find spot for the new subspace based on its sort key. */
5819 if (space->sd_subspaces == NULL)
5820 space->sd_subspaces = chain_entry;
5821 else
5822 {
5823 ssd_chain_struct *chain_pointer;
5824 ssd_chain_struct *prev_chain_pointer;
5825
5826 chain_pointer = space->sd_subspaces;
5827 prev_chain_pointer = NULL;
5828
5829 while (chain_pointer)
5830 {
5831 if (SUBSPACE_SORT (chain_pointer) <= SUBSPACE_SORT (chain_entry))
5832 {
5833 prev_chain_pointer = chain_pointer;
5834 chain_pointer = chain_pointer->ssd_next;
5835 }
5836 else
5837 break;
5838
5839 }
5840
5841 /* Now we have somewhere to put the new entry. Insert it and update
5842 the links. */
5843 if (prev_chain_pointer)
5844 {
5845 chain_entry->ssd_next = chain_pointer;
5846 prev_chain_pointer->ssd_next = chain_entry;
5847 }
5848 else
5849 {
5850 space->sd_subspaces = chain_entry;
5851 chain_entry->ssd_next = chain_pointer;
5852 }
5853 }
5854
5855 #ifdef obj_set_subsection_attributes
5856 obj_set_subsection_attributes (seg, space->sd_seg, access,
5857 sort, quadrant);
5858 #endif
5859
5860 return chain_entry;
5861
5862 }
5863
5864 /* Update the information for the given subspace based upon the
5865 various arguments. Return the modified subspace chain entry. */
5866
5867 static ssd_chain_struct *
5868 update_subspace (space, name, loadable, code_only, common, dup_common, sort,
5869 zero, access, space_index, alignment, quadrant, section)
5870 sd_chain_struct *space;
5871 char *name;
5872 char loadable;
5873 char code_only;
5874 char common;
5875 char dup_common;
5876 char zero;
5877 char sort;
5878 int access;
5879 int space_index;
5880 int alignment;
5881 int quadrant;
5882 asection *section;
5883 {
5884 ssd_chain_struct *chain_entry;
5885
5886 if ((chain_entry = is_defined_subspace (name)))
5887 {
5888 SUBSPACE_ACCESS (chain_entry) = access;
5889 SUBSPACE_LOADABLE (chain_entry) = loadable;
5890 SUBSPACE_COMMON (chain_entry) = common;
5891 SUBSPACE_DUP_COMM (chain_entry) = dup_common;
5892 SUBSPACE_CODE_ONLY (chain_entry) = 1;
5893 SUBSPACE_SORT (chain_entry) = sort;
5894 SUBSPACE_ALIGN (chain_entry) = alignment;
5895 SUBSPACE_QUADRANT (chain_entry) = quadrant;
5896 SUBSPACE_SPACE_INDEX (chain_entry) = space_index;
5897 SUBSPACE_ZERO (chain_entry) = zero;
5898 }
5899 else
5900 chain_entry = NULL;
5901
5902 #ifdef obj_set_subsection_attributes
5903 obj_set_subsection_attributes (section, space->sd_seg, access,
5904 sort, quadrant);
5905 #endif
5906
5907 return chain_entry;
5908
5909 }
5910
5911 /* Return the space chain entry for the space with the name NAME or
5912 NULL if no such space exists. */
5913
5914 static sd_chain_struct *
5915 is_defined_space (name)
5916 char *name;
5917 {
5918 sd_chain_struct *chain_pointer;
5919
5920 for (chain_pointer = space_dict_root;
5921 chain_pointer;
5922 chain_pointer = chain_pointer->sd_next)
5923 {
5924 if (strcmp (SPACE_NAME (chain_pointer), name) == 0)
5925 return chain_pointer;
5926 }
5927
5928 /* No mapping from segment to space was found. Return NULL. */
5929 return NULL;
5930 }
5931
5932 /* Find and return the space associated with the given seg. If no mapping
5933 from the given seg to a space is found, then return NULL.
5934
5935 Unlike subspaces, the number of spaces is not expected to grow much,
5936 so a linear exhaustive search is OK here. */
5937
5938 static sd_chain_struct *
5939 pa_segment_to_space (seg)
5940 asection *seg;
5941 {
5942 sd_chain_struct *space_chain;
5943
5944 /* Walk through each space looking for the correct mapping. */
5945 for (space_chain = space_dict_root;
5946 space_chain;
5947 space_chain = space_chain->sd_next)
5948 {
5949 if (space_chain->sd_seg == seg)
5950 return space_chain;
5951 }
5952
5953 /* Mapping was not found. Return NULL. */
5954 return NULL;
5955 }
5956
5957 /* Return the space chain entry for the subspace with the name NAME or
5958 NULL if no such subspace exists.
5959
5960 Uses a linear search through all the spaces and subspaces, this may
5961 not be appropriate if we ever being placing each function in its
5962 own subspace. */
5963
5964 static ssd_chain_struct *
5965 is_defined_subspace (name)
5966 char *name;
5967 {
5968 sd_chain_struct *space_chain;
5969 ssd_chain_struct *subspace_chain;
5970
5971 /* Walk through each space. */
5972 for (space_chain = space_dict_root;
5973 space_chain;
5974 space_chain = space_chain->sd_next)
5975 {
5976 /* Walk through each subspace looking for a name which matches. */
5977 for (subspace_chain = space_chain->sd_subspaces;
5978 subspace_chain;
5979 subspace_chain = subspace_chain->ssd_next)
5980 if (strcmp (SUBSPACE_NAME (subspace_chain), name) == 0)
5981 return subspace_chain;
5982 }
5983
5984 /* Subspace wasn't found. Return NULL. */
5985 return NULL;
5986 }
5987
5988 /* Find and return the subspace associated with the given seg. If no
5989 mapping from the given seg to a subspace is found, then return NULL.
5990
5991 If we ever put each procedure/function within its own subspace
5992 (to make life easier on the compiler and linker), then this will have
5993 to become more efficient. */
5994
5995 static ssd_chain_struct *
5996 pa_subsegment_to_subspace (seg, subseg)
5997 asection *seg;
5998 subsegT subseg;
5999 {
6000 sd_chain_struct *space_chain;
6001 ssd_chain_struct *subspace_chain;
6002
6003 /* Walk through each space. */
6004 for (space_chain = space_dict_root;
6005 space_chain;
6006 space_chain = space_chain->sd_next)
6007 {
6008 if (space_chain->sd_seg == seg)
6009 {
6010 /* Walk through each subspace within each space looking for
6011 the correct mapping. */
6012 for (subspace_chain = space_chain->sd_subspaces;
6013 subspace_chain;
6014 subspace_chain = subspace_chain->ssd_next)
6015 if (subspace_chain->ssd_subseg == (int) subseg)
6016 return subspace_chain;
6017 }
6018 }
6019
6020 /* No mapping from subsegment to subspace found. Return NULL. */
6021 return NULL;
6022 }
6023
6024 /* Given a number, try and find a space with the name number.
6025
6026 Return a pointer to a space dictionary chain entry for the space
6027 that was found or NULL on failure. */
6028
6029 static sd_chain_struct *
6030 pa_find_space_by_number (number)
6031 int number;
6032 {
6033 sd_chain_struct *space_chain;
6034
6035 for (space_chain = space_dict_root;
6036 space_chain;
6037 space_chain = space_chain->sd_next)
6038 {
6039 if (SPACE_SPNUM (space_chain) == number)
6040 return space_chain;
6041 }
6042
6043 /* No appropriate space found. Return NULL. */
6044 return NULL;
6045 }
6046
6047 /* Return the starting address for the given subspace. If the starting
6048 address is unknown then return zero. */
6049
6050 static unsigned int
6051 pa_subspace_start (space, quadrant)
6052 sd_chain_struct *space;
6053 int quadrant;
6054 {
6055 /* FIXME. Assumes everyone puts read/write data at 0x4000000, this
6056 is not correct for the PA OSF1 port. */
6057 if ((strcasecmp (SPACE_NAME (space), "$PRIVATE$") == 0) && quadrant == 1)
6058 return 0x40000000;
6059 else if (space->sd_seg == data_section && quadrant == 1)
6060 return 0x40000000;
6061 else
6062 return 0;
6063 }
6064
6065 /* FIXME. Needs documentation. */
6066 static int
6067 pa_next_subseg (space)
6068 sd_chain_struct *space;
6069 {
6070
6071 space->sd_last_subseg++;
6072 return space->sd_last_subseg;
6073 }
6074
6075 /* Helper function for pa_stringer. Used to find the end of
6076 a string. */
6077
6078 static unsigned int
6079 pa_stringer_aux (s)
6080 char *s;
6081 {
6082 unsigned int c = *s & CHAR_MASK;
6083 switch (c)
6084 {
6085 case '\"':
6086 c = NOT_A_CHAR;
6087 break;
6088 default:
6089 break;
6090 }
6091 return c;
6092 }
6093
6094 /* Handle a .STRING type pseudo-op. */
6095
6096 static void
6097 pa_stringer (append_zero)
6098 int append_zero;
6099 {
6100 char *s, num_buf[4];
6101 unsigned int c;
6102 int i;
6103
6104 /* Preprocess the string to handle PA-specific escape sequences.
6105 For example, \xDD where DD is a hexidecimal number should be
6106 changed to \OOO where OOO is an octal number. */
6107
6108 /* Skip the opening quote. */
6109 s = input_line_pointer + 1;
6110
6111 while (is_a_char (c = pa_stringer_aux (s++)))
6112 {
6113 if (c == '\\')
6114 {
6115 c = *s;
6116 switch (c)
6117 {
6118 /* Handle \x<num>. */
6119 case 'x':
6120 {
6121 unsigned int number;
6122 int num_digit;
6123 char dg;
6124 char *s_start = s;
6125
6126 /* Get pas the 'x'. */
6127 s++;
6128 for (num_digit = 0, number = 0, dg = *s;
6129 num_digit < 2
6130 && (isdigit (dg) || (dg >= 'a' && dg <= 'f')
6131 || (dg >= 'A' && dg <= 'F'));
6132 num_digit++)
6133 {
6134 if (isdigit (dg))
6135 number = number * 16 + dg - '0';
6136 else if (dg >= 'a' && dg <= 'f')
6137 number = number * 16 + dg - 'a' + 10;
6138 else
6139 number = number * 16 + dg - 'A' + 10;
6140
6141 s++;
6142 dg = *s;
6143 }
6144 if (num_digit > 0)
6145 {
6146 switch (num_digit)
6147 {
6148 case 1:
6149 sprintf (num_buf, "%02o", number);
6150 break;
6151 case 2:
6152 sprintf (num_buf, "%03o", number);
6153 break;
6154 }
6155 for (i = 0; i <= num_digit; i++)
6156 s_start[i] = num_buf[i];
6157 }
6158 break;
6159 }
6160 /* This might be a "\"", skip over the escaped char. */
6161 default:
6162 s++;
6163 break;
6164 }
6165 }
6166 }
6167 stringer (append_zero);
6168 pa_undefine_label ();
6169 }
6170
6171 /* Handle a .VERSION pseudo-op. */
6172
6173 static void
6174 pa_version (unused)
6175 int unused;
6176 {
6177 obj_version (0);
6178 pa_undefine_label ();
6179 }
6180
6181 /* Just like a normal cons, but when finished we have to undefine
6182 the latest space label. */
6183
6184 static void
6185 pa_cons (nbytes)
6186 int nbytes;
6187 {
6188 cons (nbytes);
6189 pa_undefine_label ();
6190 }
6191
6192 /* Switch to the data space. As usual delete our label. */
6193
6194 static void
6195 pa_data (unused)
6196 int unused;
6197 {
6198 s_data (0);
6199 pa_undefine_label ();
6200 }
6201
6202 /* FIXME. What's the purpose of this pseudo-op? */
6203
6204 static void
6205 pa_desc (unused)
6206 int unused;
6207 {
6208 pa_undefine_label ();
6209 }
6210
6211 /* Like float_cons, but we need to undefine our label. */
6212
6213 static void
6214 pa_float_cons (float_type)
6215 int float_type;
6216 {
6217 float_cons (float_type);
6218 pa_undefine_label ();
6219 }
6220
6221 /* Like s_fill, but delete our label when finished. */
6222
6223 static void
6224 pa_fill (unused)
6225 int unused;
6226 {
6227 s_fill (0);
6228 pa_undefine_label ();
6229 }
6230
6231 /* Like lcomm, but delete our label when finished. */
6232
6233 static void
6234 pa_lcomm (needs_align)
6235 int needs_align;
6236 {
6237 s_lcomm (needs_align);
6238 pa_undefine_label ();
6239 }
6240
6241 /* Like lsym, but delete our label when finished. */
6242
6243 static void
6244 pa_lsym (unused)
6245 int unused;
6246 {
6247 s_lsym (0);
6248 pa_undefine_label ();
6249 }
6250
6251 /* Switch to the text space. Like s_text, but delete our
6252 label when finished. */
6253 static void
6254 pa_text (unused)
6255 int unused;
6256 {
6257 s_text (0);
6258 pa_undefine_label ();
6259 }
6260
6261 /* On the PA relocations which involve function symbols must not be
6262 adjusted. This so that the linker can know when/how to create argument
6263 relocation stubs for indirect calls and calls to static functions.
6264
6265 FIXME. Also reject R_HPPA relocations which are 32 bits
6266 wide. Helps with code lables in arrays for SOM. (SOM BFD code
6267 needs to generate relocations to push the addend and symbol value
6268 onto the stack, add them, then pop the value off the stack and
6269 use it in a relocation -- yuk. */
6270
6271 int
6272 hppa_fix_adjustable (fixp)
6273 fixS *fixp;
6274 {
6275 struct hppa_fix_struct *hppa_fix;
6276
6277 hppa_fix = fixp->tc_fix_data;
6278
6279 if (fixp->fx_r_type == R_HPPA && hppa_fix->fx_r_format == 32)
6280 return 0;
6281
6282 if (fixp->fx_addsy == 0
6283 || (fixp->fx_addsy->bsym->flags & BSF_FUNCTION) == 0)
6284 return 1;
6285
6286 return 0;
6287 }
6288
6289 /* Return nonzero if the fixup in FIXP will require a relocation,
6290 even it if appears that the fixup could be completely handled
6291 within GAS. */
6292
6293 int
6294 hppa_force_relocation (fixp)
6295 fixS *fixp;
6296 {
6297 struct hppa_fix_struct *hppa_fixp = fixp->tc_fix_data;
6298
6299 #ifdef OBJ_SOM
6300 if (fixp->fx_r_type == R_HPPA_ENTRY || fixp->fx_r_type == R_HPPA_EXIT)
6301 return 1;
6302 #endif
6303
6304 #define stub_needed(CALLER, CALLEE) \
6305 ((CALLEE) && (CALLER) && ((CALLEE) != (CALLER)))
6306
6307 /* It is necessary to force PC-relative calls/jumps to have a relocation
6308 entry if they're going to need either a argument relocation or long
6309 call stub. FIXME. Can't we need the same for absolute calls? */
6310 if (fixp->fx_pcrel && fixp->fx_addsy
6311 && (stub_needed (((obj_symbol_type *)
6312 fixp->fx_addsy->bsym)->tc_data.hppa_arg_reloc,
6313 hppa_fixp->fx_arg_reloc)))
6314 return 1;
6315
6316 #undef stub_needed
6317
6318 /* No need (yet) to force another relocations to be emitted. */
6319 return 0;
6320 }
6321
6322 /* Now for some ELF specific code. FIXME. */
6323 #ifdef OBJ_ELF
6324 static symext_chainS *symext_rootP;
6325 static symext_chainS *symext_lastP;
6326
6327 /* Mark the end of a function so that it's possible to compute
6328 the size of the function in hppa_elf_final_processing. */
6329
6330 static void
6331 hppa_elf_mark_end_of_function ()
6332 {
6333 /* ELF does not have EXIT relocations. All we do is create a
6334 temporary symbol marking the end of the function. */
6335 char *name = (char *)
6336 xmalloc (strlen ("L$\001end_") +
6337 strlen (S_GET_NAME (last_call_info->start_symbol)) + 1);
6338
6339 if (name)
6340 {
6341 symbolS *symbolP;
6342
6343 strcpy (name, "L$\001end_");
6344 strcat (name, S_GET_NAME (last_call_info->start_symbol));
6345
6346 /* If we have a .exit followed by a .procend, then the
6347 symbol will have already been defined. */
6348 symbolP = symbol_find (name);
6349 if (symbolP)
6350 {
6351 /* The symbol has already been defined! This can
6352 happen if we have a .exit followed by a .procend.
6353
6354 This is *not* an error. All we want to do is free
6355 the memory we just allocated for the name and continue. */
6356 xfree (name);
6357 }
6358 else
6359 {
6360 /* symbol value should be the offset of the
6361 last instruction of the function */
6362 symbolP = symbol_new (name, now_seg,
6363 (valueT) (obstack_next_free (&frags)
6364 - frag_now->fr_literal - 4),
6365 frag_now);
6366
6367 assert (symbolP);
6368 symbolP->bsym->flags = BSF_LOCAL;
6369 symbol_table_insert (symbolP);
6370 }
6371
6372 if (symbolP)
6373 last_call_info->end_symbol = symbolP;
6374 else
6375 as_bad ("Symbol '%s' could not be created.", name);
6376
6377 }
6378 else
6379 as_bad ("No memory for symbol name.");
6380
6381 /* Stuff away the location of the frag for the end of the function,
6382 and call pa_build_unwind_subspace to add an entry in the unwind
6383 table. */
6384 last_call_info->end_frag = frag_now;
6385 }
6386
6387 /* Do any symbol processing requested by the target-cpu or target-format. */
6388
6389 void
6390 hppa_tc_symbol (abfd, symbolP, sym_idx)
6391 bfd *abfd;
6392 elf_symbol_type *symbolP;
6393 int sym_idx;
6394 {
6395 symext_chainS *symextP;
6396 unsigned int arg_reloc;
6397
6398 /* Only functions can have argument relocations. */
6399 if (!(symbolP->symbol.flags & BSF_FUNCTION))
6400 return;
6401
6402 arg_reloc = symbolP->tc_data.hppa_arg_reloc;
6403
6404 /* If there are no argument relocation bits, then no relocation is
6405 necessary. Do not add this to the symextn section. */
6406 if (arg_reloc == 0)
6407 return;
6408
6409 symextP = (symext_chainS *) bfd_alloc (abfd, sizeof (symext_chainS) * 2);
6410
6411 symextP[0].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX, sym_idx);
6412 symextP[0].next = &symextP[1];
6413
6414 symextP[1].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_ARG_RELOC, arg_reloc);
6415 symextP[1].next = NULL;
6416
6417 if (symext_rootP == NULL)
6418 {
6419 symext_rootP = &symextP[0];
6420 symext_lastP = &symextP[1];
6421 }
6422 else
6423 {
6424 symext_lastP->next = &symextP[0];
6425 symext_lastP = &symextP[1];
6426 }
6427 }
6428
6429 /* Make sections needed by the target cpu and/or target format. */
6430 void
6431 hppa_tc_make_sections (abfd)
6432 bfd *abfd;
6433 {
6434 symext_chainS *symextP;
6435 int size, n;
6436 asection *symextn_sec;
6437 segT save_seg = now_seg;
6438 subsegT save_subseg = now_subseg;
6439
6440 /* Build the symbol extension section. */
6441 hppa_tc_make_symextn_section ();
6442
6443 /* Force some calculation to occur. */
6444 bfd_set_section_contents (stdoutput, stdoutput->sections, "", 0, 0);
6445
6446 hppa_elf_stub_finish (abfd);
6447
6448 /* If no symbols for the symbol extension section, then stop now. */
6449 if (symext_rootP == NULL)
6450 return;
6451
6452 /* Count the number of symbols for the symbol extension section. */
6453 for (n = 0, symextP = symext_rootP; symextP; symextP = symextP->next, ++n)
6454 ;
6455
6456 size = sizeof (symext_entryS) * n;
6457
6458 /* Switch to the symbol extension section. */
6459 symextn_sec = subseg_new (SYMEXTN_SECTION_NAME, 0);
6460
6461 frag_wane (frag_now);
6462 frag_new (0);
6463
6464 for (symextP = symext_rootP; symextP; symextP = symextP->next)
6465 {
6466 char *ptr;
6467 int *symtab_map = elf_sym_extra (abfd);
6468 int idx;
6469
6470 /* First, patch the symbol extension record to reflect the true
6471 symbol table index. */
6472
6473 if (ELF32_HPPA_SX_TYPE (symextP->entry) == HPPA_SXT_SYMNDX)
6474 {
6475 idx = ELF32_HPPA_SX_VAL (symextP->entry) - 1;
6476 symextP->entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX,
6477 symtab_map[idx]);
6478 }
6479
6480 ptr = frag_more (sizeof (symextP->entry));
6481 md_number_to_chars (ptr, symextP->entry, sizeof (symextP->entry));
6482 }
6483
6484 frag_now->fr_fix = obstack_next_free (&frags) - frag_now->fr_literal;
6485 frag_wane (frag_now);
6486
6487 /* Switch back to the original segment. */
6488 subseg_set (save_seg, save_subseg);
6489
6490 return;
6491 }
6492
6493 /* Make the symbol extension section. */
6494
6495 static void
6496 hppa_tc_make_symextn_section ()
6497 {
6498 if (symext_rootP)
6499 {
6500 symext_chainS *symextP;
6501 int n;
6502 unsigned int size;
6503 segT symextn_sec;
6504 segT save_seg = now_seg;
6505 subsegT save_subseg = now_subseg;
6506
6507 for (n = 0, symextP = symext_rootP; symextP; symextP = symextP->next, ++n)
6508 ;
6509
6510 size = sizeof (symext_entryS) * n;
6511
6512 symextn_sec = subseg_new (SYMEXTN_SECTION_NAME, 0);
6513
6514 bfd_set_section_flags (stdoutput, symextn_sec,
6515 SEC_LOAD | SEC_HAS_CONTENTS | SEC_DATA);
6516 bfd_set_section_size (stdoutput, symextn_sec, size);
6517
6518 /* Now, switch back to the original segment. */
6519 subseg_set (save_seg, save_subseg);
6520 }
6521 }
6522
6523 /* Build the symbol extension section. */
6524
6525 static void
6526 pa_build_symextn_section ()
6527 {
6528 segT seg;
6529 asection *save_seg = now_seg;
6530 subsegT subseg = (subsegT) 0;
6531 subsegT save_subseg = now_subseg;
6532
6533 seg = subseg_new (".hppa_symextn", subseg);
6534 bfd_set_section_flags (stdoutput,
6535 seg,
6536 SEC_HAS_CONTENTS | SEC_READONLY
6537 | SEC_ALLOC | SEC_LOAD);
6538
6539 subseg_set (save_seg, save_subseg);
6540
6541 }
6542
6543 /* For ELF, this function serves one purpose: to setup the st_size
6544 field of STT_FUNC symbols. To do this, we need to scan the
6545 call_info structure list, determining st_size in one of two possible
6546 ways:
6547
6548 1. call_info->start_frag->fr_fix has the size of the fragment.
6549 This approach assumes that the function was built into a
6550 single fragment. This works for most cases, but might fail.
6551 For example, if there was a segment change in the middle of
6552 the function.
6553
6554 2. The st_size field is the difference in the addresses of the
6555 call_info->start_frag->fr_address field and the fr_address
6556 field of the next fragment with fr_type == rs_fill and
6557 fr_fix != 0. */
6558
6559 void
6560 elf_hppa_final_processing ()
6561 {
6562 struct call_info *call_info_pointer;
6563
6564 for (call_info_pointer = call_info_root;
6565 call_info_pointer;
6566 call_info_pointer = call_info_pointer->ci_next)
6567 {
6568 elf_symbol_type *esym
6569 = (elf_symbol_type *) call_info_pointer->start_symbol->bsym;
6570 esym->internal_elf_sym.st_size =
6571 S_GET_VALUE (call_info_pointer->end_symbol)
6572 - S_GET_VALUE (call_info_pointer->start_symbol) + 4;
6573 }
6574 }
6575 #endif