* config/tc-hppa.c (evaluate_absolute): Support e_rrsel and
[binutils-gdb.git] / gas / config / tc-hppa.c
1 /* tc-hppa.c -- Assemble for the PA
2 Copyright (C) 1989 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 1, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* HP PA-RISC support was contributed by the Center for Software Science
22 at the University of Utah. */
23
24 #include <stdio.h>
25 #include <ctype.h>
26
27 #include "as.h"
28 #include "subsegs.h"
29
30 #include "../bfd/libhppa.h"
31 #include "../bfd/libbfd.h"
32
33 /* Be careful, this file includes data *declarations*. */
34 #include "opcode/hppa.h"
35
36 /* A "convient" place to put object file dependencies which do
37 not need to be seen outside of tc-hppa.c. */
38 #ifdef OBJ_ELF
39 /* Names of various debugging spaces/subspaces. */
40 #define GDB_DEBUG_SPACE_NAME ".stab"
41 #define GDB_STRINGS_SUBSPACE_NAME ".stabstr"
42 #define GDB_SYMBOLS_SUBSPACE_NAME ".stab"
43 #define UNWIND_SECTION_NAME ".hppa_unwind"
44 /* Nonzero if CODE is a fixup code needing further processing. */
45
46 /* Object file formats specify relocation types. */
47 typedef elf32_hppa_reloc_type reloc_type;
48
49 /* Object file formats specify BFD symbol types. */
50 typedef elf_symbol_type obj_symbol_type;
51
52 /* How to generate a relocation. */
53 #define hppa_gen_reloc_type hppa_elf_gen_reloc_type
54
55 /* Who knows. */
56 #define obj_version obj_elf_version
57
58 /* Use space aliases. */
59 #define USE_ALIASES 1
60
61 /* Some local functions only used by ELF. */
62 static void pa_build_symextn_section PARAMS ((void));
63 static void hppa_tc_make_symextn_section PARAMS ((void));
64 #endif
65
66 #ifdef OBJ_SOM
67 /* Names of various debugging spaces/subspaces. */
68 #define GDB_DEBUG_SPACE_NAME "$GDB_DEBUG$"
69 #define GDB_STRINGS_SUBSPACE_NAME "$GDB_STRINGS$"
70 #define GDB_SYMBOLS_SUBSPACE_NAME "$GDB_SYMBOLS$"
71 #define UNWIND_SECTION_NAME "$UNWIND$"
72
73 /* Object file formats specify relocation types. */
74 typedef int reloc_type;
75
76 /* Who knows. */
77 #define obj_version obj_som_version
78
79 /* Do not use space aliases. */
80 #define USE_ALIASES 0
81
82 /* How to generate a relocation. */
83 #define hppa_gen_reloc_type hppa_som_gen_reloc_type
84
85 /* Object file formats specify BFD symbol types. */
86 typedef som_symbol_type obj_symbol_type;
87 #endif
88
89 /* Various structures and types used internally in tc-hppa.c. */
90
91 /* Unwind table and descriptor. FIXME: Sync this with GDB version. */
92
93 struct unwind_desc
94 {
95 unsigned int cannot_unwind:1;
96 unsigned int millicode:1;
97 unsigned int millicode_save_rest:1;
98 unsigned int region_desc:2;
99 unsigned int save_sr:2;
100 unsigned int entry_fr:4;
101 unsigned int entry_gr:5;
102 unsigned int args_stored:1;
103 unsigned int call_fr:5;
104 unsigned int call_gr:5;
105 unsigned int save_sp:1;
106 unsigned int save_rp:1;
107 unsigned int save_rp_in_frame:1;
108 unsigned int extn_ptr_defined:1;
109 unsigned int cleanup_defined:1;
110
111 unsigned int hpe_interrupt_marker:1;
112 unsigned int hpux_interrupt_marker:1;
113 unsigned int reserved:3;
114 unsigned int frame_size:27;
115 };
116
117 struct unwind_table
118 {
119 /* Starting and ending offsets of the region described by
120 descriptor. */
121 unsigned int start_offset;
122 unsigned int end_offset;
123 struct unwind_desc descriptor;
124 };
125
126 /* This structure is used by the .callinfo, .enter, .leave pseudo-ops to
127 control the entry and exit code they generate. It is also used in
128 creation of the correct stack unwind descriptors.
129
130 NOTE: GAS does not support .enter and .leave for the generation of
131 prologues and epilogues. FIXME.
132
133 The fields in structure roughly correspond to the arguments available on the
134 .callinfo pseudo-op. */
135
136 struct call_info
137 {
138 /* Should sr3 be saved in the prologue? */
139 int entry_sr;
140
141 /* Does this function make calls? */
142 int makes_calls;
143
144 /* The unwind descriptor being built. */
145 struct unwind_table ci_unwind;
146
147 /* Name of this function. */
148 symbolS *start_symbol;
149
150 /* (temporary) symbol used to mark the end of this function. */
151 symbolS *end_symbol;
152
153 /* frags associated with start and end of this function. */
154 fragS *start_frag;
155 fragS *end_frag;
156
157 /* frags for starting/ending offset of this descriptor. */
158 fragS *start_offset_frag;
159 fragS *end_offset_frag;
160
161 /* The location within {start,end}_offset_frag to find the
162 {start,end}_offset. */
163 int start_frag_where;
164 int end_frag_where;
165
166 /* Fixups (relocations) for start_offset and end_offset. */
167 fixS *start_fix;
168 fixS *end_fix;
169
170 /* Next entry in the chain. */
171 struct call_info *ci_next;
172 };
173
174 /* Operand formats for FP instructions. Note not all FP instructions
175 allow all four formats to be used (for example fmpysub only allows
176 SGL and DBL). */
177 typedef enum
178 {
179 SGL, DBL, ILLEGAL_FMT, QUAD
180 }
181 fp_operand_format;
182
183 /* This fully describes the symbol types which may be attached to
184 an EXPORT or IMPORT directive. Only SOM uses this formation
185 (ELF has no need for it). */
186 typedef enum
187 {
188 SYMBOL_TYPE_UNKNOWN,
189 SYMBOL_TYPE_ABSOLUTE,
190 SYMBOL_TYPE_CODE,
191 SYMBOL_TYPE_DATA,
192 SYMBOL_TYPE_ENTRY,
193 SYMBOL_TYPE_MILLICODE,
194 SYMBOL_TYPE_PLABEL,
195 SYMBOL_TYPE_PRI_PROG,
196 SYMBOL_TYPE_SEC_PROG,
197 }
198 pa_symbol_type;
199
200 /* This structure contains information needed to assemble
201 individual instructions. */
202 struct pa_it
203 {
204 /* Holds the opcode after parsing by pa_ip. */
205 unsigned long opcode;
206
207 /* Holds an expression associated with the current instruction. */
208 expressionS exp;
209
210 /* Does this instruction use PC-relative addressing. */
211 int pcrel;
212
213 /* Floating point formats for operand1 and operand2. */
214 fp_operand_format fpof1;
215 fp_operand_format fpof2;
216
217 /* Holds the field selector for this instruction
218 (for example L%, LR%, etc). */
219 long field_selector;
220
221 /* Holds any argument relocation bits associated with this
222 instruction. (instruction should be some sort of call). */
223 long arg_reloc;
224
225 /* The format specification for this instruction. */
226 int format;
227
228 /* The relocation (if any) associated with this instruction. */
229 reloc_type reloc;
230 };
231
232 /* PA-89 floating point registers are arranged like this:
233
234
235 +--------------+--------------+
236 | 0 or 16L | 16 or 16R |
237 +--------------+--------------+
238 | 1 or 17L | 17 or 17R |
239 +--------------+--------------+
240 | | |
241
242 . . .
243 . . .
244 . . .
245
246 | | |
247 +--------------+--------------+
248 | 14 or 30L | 30 or 30R |
249 +--------------+--------------+
250 | 15 or 31L | 31 or 31R |
251 +--------------+--------------+
252
253
254 The following is a version of pa_parse_number that
255 handles the L/R notation and returns the correct
256 value to put into the instruction register field.
257 The correct value to put into the instruction is
258 encoded in the structure 'pa_89_fp_reg_struct'. */
259
260 struct pa_89_fp_reg_struct
261 {
262 /* The register number. */
263 char number_part;
264
265 /* L/R selector. */
266 char l_r_select;
267 };
268
269 /* Additional information needed to build argument relocation stubs. */
270 struct call_desc
271 {
272 /* The argument relocation specification. */
273 unsigned int arg_reloc;
274
275 /* Number of arguments. */
276 unsigned int arg_count;
277 };
278
279 /* This structure defines an entry in the subspace dictionary
280 chain. */
281
282 struct subspace_dictionary_chain
283 {
284 /* Index of containing space. */
285 unsigned long ssd_space_index;
286
287 /* Nonzero if this space has been defined by the user code. */
288 unsigned int ssd_defined;
289
290 /* Which quadrant within the space this subspace should be loaded into. */
291 unsigned char ssd_quadrant;
292
293 /* Alignment (in bytes) for this subspace. */
294 unsigned long ssd_alignment;
295
296 /* Access control bits to determine read/write/execute permissions
297 as well as gateway privilege promotions. */
298 unsigned char ssd_access_control_bits;
299
300 /* A sorting key so that it is possible to specify ordering of
301 subspaces within a space. */
302 unsigned char ssd_sort_key;
303
304 /* Nonzero of this space should be zero filled. */
305 unsigned long ssd_zero;
306
307 /* Nonzero if this is a common subspace. */
308 unsigned char ssd_common;
309
310 /* Nonzero if this is a common subspace which allows symbols to be
311 multiply defined. */
312 unsigned char ssd_dup_common;
313
314 /* Nonzero if this subspace is loadable. Note loadable subspaces
315 must be contained within loadable spaces; unloadable subspaces
316 must be contained in unloadable spaces. */
317 unsigned char ssd_loadable;
318
319 /* Nonzero if this subspace contains only code. */
320 unsigned char ssd_code_only;
321
322 /* Starting offset of this subspace. */
323 unsigned long ssd_subspace_start;
324
325 /* Length of this subspace. */
326 unsigned long ssd_subspace_length;
327
328 /* Name of this subspace. */
329 char *ssd_name;
330
331 /* GAS segment and subsegment associated with this subspace. */
332 asection *ssd_seg;
333 int ssd_subseg;
334
335 /* Index of this subspace within the subspace dictionary of the object
336 file. Not used until object file is written. */
337 int object_file_index;
338
339 /* The size of the last alignment request for this subspace. */
340 int ssd_last_align;
341
342 /* Next space in the subspace dictionary chain. */
343 struct subspace_dictionary_chain *ssd_next;
344 };
345
346 typedef struct subspace_dictionary_chain ssd_chain_struct;
347
348 /* This structure defines an entry in the subspace dictionary
349 chain. */
350
351 struct space_dictionary_chain
352 {
353
354 /* Holds the index into the string table of the name of this
355 space. */
356 unsigned int sd_name_index;
357
358 /* Nonzero if the space is loadable. */
359 unsigned int sd_loadable;
360
361 /* Nonzero if this space has been defined by the user code or
362 as a default space. */
363 unsigned int sd_defined;
364
365 /* Nonzero if this spaces has been defined by the user code. */
366 unsigned int sd_user_defined;
367
368 /* Nonzero if this space is not sharable. */
369 unsigned int sd_private;
370
371 /* The space number (or index). */
372 unsigned int sd_spnum;
373
374 /* The sort key for this space. May be used to determine how to lay
375 out the spaces within the object file. */
376 unsigned char sd_sort_key;
377
378 /* The name of this subspace. */
379 char *sd_name;
380
381 /* GAS segment to which this subspace corresponds. */
382 asection *sd_seg;
383
384 /* Current subsegment number being used. */
385 int sd_last_subseg;
386
387 /* The chain of subspaces contained within this space. */
388 ssd_chain_struct *sd_subspaces;
389
390 /* The next entry in the space dictionary chain. */
391 struct space_dictionary_chain *sd_next;
392 };
393
394 typedef struct space_dictionary_chain sd_chain_struct;
395
396 /* Structure for previous label tracking. Needed so that alignments,
397 callinfo declarations, etc can be easily attached to a particular
398 label. */
399 typedef struct label_symbol_struct
400 {
401 struct symbol *lss_label;
402 sd_chain_struct *lss_space;
403 struct label_symbol_struct *lss_next;
404 }
405 label_symbol_struct;
406
407 /* This structure defines attributes of the default subspace
408 dictionary entries. */
409
410 struct default_subspace_dict
411 {
412 /* Name of the subspace. */
413 char *name;
414
415 /* FIXME. Is this still needed? */
416 char defined;
417
418 /* Nonzero if this subspace is loadable. */
419 char loadable;
420
421 /* Nonzero if this subspace contains only code. */
422 char code_only;
423
424 /* Nonzero if this is a common subspace. */
425 char common;
426
427 /* Nonzero if this is a common subspace which allows symbols
428 to be multiply defined. */
429 char dup_common;
430
431 /* Nonzero if this subspace should be zero filled. */
432 char zero;
433
434 /* Sort key for this subspace. */
435 unsigned char sort;
436
437 /* Access control bits for this subspace. Can represent RWX access
438 as well as privilege level changes for gateways. */
439 int access;
440
441 /* Index of containing space. */
442 int space_index;
443
444 /* Alignment (in bytes) of this subspace. */
445 int alignment;
446
447 /* Quadrant within space where this subspace should be loaded. */
448 int quadrant;
449
450 /* An index into the default spaces array. */
451 int def_space_index;
452
453 /* An alias for this section (or NULL if no alias exists). */
454 char *alias;
455
456 /* Subsegment associated with this subspace. */
457 subsegT subsegment;
458 };
459
460 /* This structure defines attributes of the default space
461 dictionary entries. */
462
463 struct default_space_dict
464 {
465 /* Name of the space. */
466 char *name;
467
468 /* Space number. It is possible to identify spaces within
469 assembly code numerically! */
470 int spnum;
471
472 /* Nonzero if this space is loadable. */
473 char loadable;
474
475 /* Nonzero if this space is "defined". FIXME is still needed */
476 char defined;
477
478 /* Nonzero if this space can not be shared. */
479 char private;
480
481 /* Sort key for this space. */
482 unsigned char sort;
483
484 /* Segment associated with this space. */
485 asection *segment;
486
487 /* An alias for this section (or NULL if no alias exists). */
488 char *alias;
489 };
490
491 /* Extra information needed to perform fixups (relocations) on the PA. */
492 struct hppa_fix_struct
493 {
494 /* The field selector. */
495 enum hppa_reloc_field_selector_type fx_r_field;
496
497 /* Type of fixup. */
498 int fx_r_type;
499
500 /* Format of fixup. */
501 int fx_r_format;
502
503 /* Argument relocation bits. */
504 long fx_arg_reloc;
505
506 /* The unwind descriptor associated with this fixup. */
507 char fx_unwind[8];
508 };
509
510 /* Structure to hold information about predefined registers. */
511
512 struct pd_reg
513 {
514 char *name;
515 int value;
516 };
517
518 /* This structure defines the mapping from a FP condition string
519 to a condition number which can be recorded in an instruction. */
520 struct fp_cond_map
521 {
522 char *string;
523 int cond;
524 };
525
526 /* This structure defines a mapping from a field selector
527 string to a field selector type. */
528 struct selector_entry
529 {
530 char *prefix;
531 int field_selector;
532 };
533
534 /* Prototypes for functions local to tc-hppa.c. */
535
536 static fp_operand_format pa_parse_fp_format PARAMS ((char **s));
537 static void pa_cons PARAMS ((int));
538 static void pa_data PARAMS ((int));
539 static void pa_desc PARAMS ((int));
540 static void pa_float_cons PARAMS ((int));
541 static void pa_fill PARAMS ((int));
542 static void pa_lcomm PARAMS ((int));
543 static void pa_lsym PARAMS ((int));
544 static void pa_stringer PARAMS ((int));
545 static void pa_text PARAMS ((int));
546 static void pa_version PARAMS ((int));
547 static int pa_parse_fp_cmp_cond PARAMS ((char **));
548 static int get_expression PARAMS ((char *));
549 static int pa_get_absolute_expression PARAMS ((struct pa_it *, char **));
550 static int evaluate_absolute PARAMS ((struct pa_it *));
551 static unsigned int pa_build_arg_reloc PARAMS ((char *));
552 static unsigned int pa_align_arg_reloc PARAMS ((unsigned int, unsigned int));
553 static int pa_parse_nullif PARAMS ((char **));
554 static int pa_parse_nonneg_cmpsub_cmpltr PARAMS ((char **, int));
555 static int pa_parse_neg_cmpsub_cmpltr PARAMS ((char **, int));
556 static int pa_parse_neg_add_cmpltr PARAMS ((char **, int));
557 static int pa_parse_nonneg_add_cmpltr PARAMS ((char **, int));
558 static void pa_block PARAMS ((int));
559 static void pa_call PARAMS ((int));
560 static void pa_call_args PARAMS ((struct call_desc *));
561 static void pa_callinfo PARAMS ((int));
562 static void pa_code PARAMS ((int));
563 static void pa_comm PARAMS ((int));
564 static void pa_copyright PARAMS ((int));
565 static void pa_end PARAMS ((int));
566 static void pa_enter PARAMS ((int));
567 static void pa_entry PARAMS ((int));
568 static void pa_equ PARAMS ((int));
569 static void pa_exit PARAMS ((int));
570 static void pa_export PARAMS ((int));
571 static void pa_type_args PARAMS ((symbolS *, int));
572 static void pa_import PARAMS ((int));
573 static void pa_label PARAMS ((int));
574 static void pa_leave PARAMS ((int));
575 static void pa_origin PARAMS ((int));
576 static void pa_proc PARAMS ((int));
577 static void pa_procend PARAMS ((int));
578 static void pa_space PARAMS ((int));
579 static void pa_spnum PARAMS ((int));
580 static void pa_subspace PARAMS ((int));
581 static void pa_param PARAMS ((int));
582 static void pa_undefine_label PARAMS ((void));
583 static int need_89_opcode PARAMS ((struct pa_it *,
584 struct pa_89_fp_reg_struct *));
585 static int pa_parse_number PARAMS ((char **, struct pa_89_fp_reg_struct *));
586 static label_symbol_struct *pa_get_label PARAMS ((void));
587 static sd_chain_struct *create_new_space PARAMS ((char *, int, char,
588 char, char, char,
589 asection *, int));
590 static ssd_chain_struct *create_new_subspace PARAMS ((sd_chain_struct *,
591 char *, char, char,
592 char, char, char,
593 char, int, int, int,
594 int, asection *));
595 static ssd_chain_struct *update_subspace PARAMS ((sd_chain_struct *,
596 char *, char, char, char,
597 char, char, char, int,
598 int, int, int,
599 asection *));
600 static sd_chain_struct *is_defined_space PARAMS ((char *));
601 static ssd_chain_struct *is_defined_subspace PARAMS ((char *));
602 static sd_chain_struct *pa_segment_to_space PARAMS ((asection *));
603 static ssd_chain_struct *pa_subsegment_to_subspace PARAMS ((asection *,
604 subsegT));
605 static sd_chain_struct *pa_find_space_by_number PARAMS ((int));
606 static unsigned int pa_subspace_start PARAMS ((sd_chain_struct *, int));
607 static void pa_ip PARAMS ((char *));
608 static void fix_new_hppa PARAMS ((fragS *, int, short int, symbolS *,
609 long, expressionS *, int,
610 bfd_reloc_code_real_type,
611 enum hppa_reloc_field_selector_type,
612 int, long, char *));
613 static int is_end_of_statement PARAMS ((void));
614 static int reg_name_search PARAMS ((char *));
615 static int pa_chk_field_selector PARAMS ((char **));
616 static int is_same_frag PARAMS ((fragS *, fragS *));
617 static void pa_build_unwind_subspace PARAMS ((struct call_info *));
618 static void process_exit PARAMS ((void));
619 static sd_chain_struct *pa_parse_space_stmt PARAMS ((char *, int));
620 static int log2 PARAMS ((int));
621 static int pa_next_subseg PARAMS ((sd_chain_struct *));
622 static unsigned int pa_stringer_aux PARAMS ((char *));
623 static void pa_spaces_begin PARAMS ((void));
624 static void hppa_elf_mark_end_of_function PARAMS ((void));
625
626 /* File and gloally scoped variable declarations. */
627
628 /* Root and final entry in the space chain. */
629 static sd_chain_struct *space_dict_root;
630 static sd_chain_struct *space_dict_last;
631
632 /* The current space and subspace. */
633 static sd_chain_struct *current_space;
634 static ssd_chain_struct *current_subspace;
635
636 /* Root of the call_info chain. */
637 static struct call_info *call_info_root;
638
639 /* The last call_info (for functions) structure
640 seen so it can be associated with fixups and
641 function labels. */
642 static struct call_info *last_call_info;
643
644 /* The last call description (for actual calls). */
645 static struct call_desc last_call_desc;
646
647 /* Relaxation isn't supported for the PA yet. */
648 const relax_typeS md_relax_table[] =
649 {0};
650
651 /* Jumps are always the same size -- one instruction. */
652 int md_short_jump_size = 4;
653 int md_long_jump_size = 4;
654
655 /* handle of the OPCODE hash table */
656 static struct hash_control *op_hash = NULL;
657
658 /* This array holds the chars that always start a comment. If the
659 pre-processor is disabled, these aren't very useful. */
660 const char comment_chars[] = ";";
661
662 /* Table of pseudo ops for the PA. FIXME -- how many of these
663 are now redundant with the overall GAS and the object file
664 dependent tables? */
665 const pseudo_typeS md_pseudo_table[] =
666 {
667 /* align pseudo-ops on the PA specify the actual alignment requested,
668 not the log2 of the requested alignment. */
669 {"align", s_align_bytes, 8},
670 {"ALIGN", s_align_bytes, 8},
671 {"block", pa_block, 1},
672 {"BLOCK", pa_block, 1},
673 {"blockz", pa_block, 0},
674 {"BLOCKZ", pa_block, 0},
675 {"byte", pa_cons, 1},
676 {"BYTE", pa_cons, 1},
677 {"call", pa_call, 0},
678 {"CALL", pa_call, 0},
679 {"callinfo", pa_callinfo, 0},
680 {"CALLINFO", pa_callinfo, 0},
681 {"code", pa_code, 0},
682 {"CODE", pa_code, 0},
683 {"comm", pa_comm, 0},
684 {"COMM", pa_comm, 0},
685 {"copyright", pa_copyright, 0},
686 {"COPYRIGHT", pa_copyright, 0},
687 {"data", pa_data, 0},
688 {"DATA", pa_data, 0},
689 {"desc", pa_desc, 0},
690 {"DESC", pa_desc, 0},
691 {"double", pa_float_cons, 'd'},
692 {"DOUBLE", pa_float_cons, 'd'},
693 {"end", pa_end, 0},
694 {"END", pa_end, 0},
695 {"enter", pa_enter, 0},
696 {"ENTER", pa_enter, 0},
697 {"entry", pa_entry, 0},
698 {"ENTRY", pa_entry, 0},
699 {"equ", pa_equ, 0},
700 {"EQU", pa_equ, 0},
701 {"exit", pa_exit, 0},
702 {"EXIT", pa_exit, 0},
703 {"export", pa_export, 0},
704 {"EXPORT", pa_export, 0},
705 {"fill", pa_fill, 0},
706 {"FILL", pa_fill, 0},
707 {"float", pa_float_cons, 'f'},
708 {"FLOAT", pa_float_cons, 'f'},
709 {"half", pa_cons, 2},
710 {"HALF", pa_cons, 2},
711 {"import", pa_import, 0},
712 {"IMPORT", pa_import, 0},
713 {"int", pa_cons, 4},
714 {"INT", pa_cons, 4},
715 {"label", pa_label, 0},
716 {"LABEL", pa_label, 0},
717 {"lcomm", pa_lcomm, 0},
718 {"LCOMM", pa_lcomm, 0},
719 {"leave", pa_leave, 0},
720 {"LEAVE", pa_leave, 0},
721 {"long", pa_cons, 4},
722 {"LONG", pa_cons, 4},
723 {"lsym", pa_lsym, 0},
724 {"LSYM", pa_lsym, 0},
725 {"octa", pa_cons, 16},
726 {"OCTA", pa_cons, 16},
727 {"org", pa_origin, 0},
728 {"ORG", pa_origin, 0},
729 {"origin", pa_origin, 0},
730 {"ORIGIN", pa_origin, 0},
731 {"param", pa_param, 0},
732 {"PARAM", pa_param, 0},
733 {"proc", pa_proc, 0},
734 {"PROC", pa_proc, 0},
735 {"procend", pa_procend, 0},
736 {"PROCEND", pa_procend, 0},
737 {"quad", pa_cons, 8},
738 {"QUAD", pa_cons, 8},
739 {"reg", pa_equ, 1},
740 {"REG", pa_equ, 1},
741 {"short", pa_cons, 2},
742 {"SHORT", pa_cons, 2},
743 {"single", pa_float_cons, 'f'},
744 {"SINGLE", pa_float_cons, 'f'},
745 {"space", pa_space, 0},
746 {"SPACE", pa_space, 0},
747 {"spnum", pa_spnum, 0},
748 {"SPNUM", pa_spnum, 0},
749 {"string", pa_stringer, 0},
750 {"STRING", pa_stringer, 0},
751 {"stringz", pa_stringer, 1},
752 {"STRINGZ", pa_stringer, 1},
753 {"subspa", pa_subspace, 0},
754 {"SUBSPA", pa_subspace, 0},
755 {"text", pa_text, 0},
756 {"TEXT", pa_text, 0},
757 {"version", pa_version, 0},
758 {"VERSION", pa_version, 0},
759 {"word", pa_cons, 4},
760 {"WORD", pa_cons, 4},
761 {NULL, 0, 0}
762 };
763
764 /* This array holds the chars that only start a comment at the beginning of
765 a line. If the line seems to have the form '# 123 filename'
766 .line and .file directives will appear in the pre-processed output.
767
768 Note that input_file.c hand checks for '#' at the beginning of the
769 first line of the input file. This is because the compiler outputs
770 #NO_APP at the beginning of its output.
771
772 Also note that '/*' will always start a comment. */
773 const char line_comment_chars[] = "#";
774
775 /* This array holds the characters which act as line separators. */
776 const char line_separator_chars[] = "!";
777
778 /* Chars that can be used to separate mant from exp in floating point nums. */
779 const char EXP_CHARS[] = "eE";
780
781 /* Chars that mean this number is a floating point constant.
782 As in 0f12.456 or 0d1.2345e12.
783
784 Be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
785 changed in read.c. Ideally it shouldn't hae to know abou it at
786 all, but nothing is ideal around here. */
787 const char FLT_CHARS[] = "rRsSfFdDxXpP";
788
789 static struct pa_it the_insn;
790
791 /* Points to the end of an expression just parsed by get_expressoin
792 and friends. FIXME. This shouldn't be handled with a file-global
793 variable. */
794 static char *expr_end;
795
796 /* Nonzero if a .callinfo appeared within the current procedure. */
797 static int callinfo_found;
798
799 /* Nonzero if the assembler is currently within a .entry/.exit pair. */
800 static int within_entry_exit;
801
802 /* Nonzero if the assembler is currently within a procedure definition. */
803 static int within_procedure;
804
805 /* Handle on strucutre which keep track of the last symbol
806 seen in each subspace. */
807 static label_symbol_struct *label_symbols_rootp = NULL;
808
809 /* Holds the last field selector. */
810 static int hppa_field_selector;
811
812 /* Nonzero if errors are to be printed. */
813 static int print_errors = 1;
814
815 /* List of registers that are pre-defined:
816
817 Each general register has one predefined name of the form
818 %r<REGNUM> which has the value <REGNUM>.
819
820 Space and control registers are handled in a similar manner,
821 but use %sr<REGNUM> and %cr<REGNUM> as their predefined names.
822
823 Likewise for the floating point registers, but of the form
824 %fr<REGNUM>. Floating point registers have additional predefined
825 names with 'L' and 'R' suffixes (e.g. %fr19L, %fr19R) which
826 again have the value <REGNUM>.
827
828 Many registers also have synonyms:
829
830 %r26 - %r23 have %arg0 - %arg3 as synonyms
831 %r28 - %r29 have %ret0 - %ret1 as synonyms
832 %r30 has %sp as a synonym
833 %r27 has %dp as a synonym
834 %r2 has %rp as a synonym
835
836 Almost every control register has a synonym; they are not listed
837 here for brevity.
838
839 The table is sorted. Suitable for searching by a binary search. */
840
841 static const struct pd_reg pre_defined_registers[] =
842 {
843 {"%arg0", 26},
844 {"%arg1", 25},
845 {"%arg2", 24},
846 {"%arg3", 23},
847 {"%cr0", 0},
848 {"%cr10", 10},
849 {"%cr11", 11},
850 {"%cr12", 12},
851 {"%cr13", 13},
852 {"%cr14", 14},
853 {"%cr15", 15},
854 {"%cr16", 16},
855 {"%cr17", 17},
856 {"%cr18", 18},
857 {"%cr19", 19},
858 {"%cr20", 20},
859 {"%cr21", 21},
860 {"%cr22", 22},
861 {"%cr23", 23},
862 {"%cr24", 24},
863 {"%cr25", 25},
864 {"%cr26", 26},
865 {"%cr27", 27},
866 {"%cr28", 28},
867 {"%cr29", 29},
868 {"%cr30", 30},
869 {"%cr31", 31},
870 {"%cr8", 8},
871 {"%cr9", 9},
872 {"%dp", 27},
873 {"%eiem", 15},
874 {"%eirr", 23},
875 {"%fr0", 0},
876 {"%fr0L", 0},
877 {"%fr0R", 0},
878 {"%fr1", 1},
879 {"%fr10", 10},
880 {"%fr10L", 10},
881 {"%fr10R", 10},
882 {"%fr11", 11},
883 {"%fr11L", 11},
884 {"%fr11R", 11},
885 {"%fr12", 12},
886 {"%fr12L", 12},
887 {"%fr12R", 12},
888 {"%fr13", 13},
889 {"%fr13L", 13},
890 {"%fr13R", 13},
891 {"%fr14", 14},
892 {"%fr14L", 14},
893 {"%fr14R", 14},
894 {"%fr15", 15},
895 {"%fr15L", 15},
896 {"%fr15R", 15},
897 {"%fr16", 16},
898 {"%fr16L", 16},
899 {"%fr16R", 16},
900 {"%fr17", 17},
901 {"%fr17L", 17},
902 {"%fr17R", 17},
903 {"%fr18", 18},
904 {"%fr18L", 18},
905 {"%fr18R", 18},
906 {"%fr19", 19},
907 {"%fr19L", 19},
908 {"%fr19R", 19},
909 {"%fr1L", 1},
910 {"%fr1R", 1},
911 {"%fr2", 2},
912 {"%fr20", 20},
913 {"%fr20L", 20},
914 {"%fr20R", 20},
915 {"%fr21", 21},
916 {"%fr21L", 21},
917 {"%fr21R", 21},
918 {"%fr22", 22},
919 {"%fr22L", 22},
920 {"%fr22R", 22},
921 {"%fr23", 23},
922 {"%fr23L", 23},
923 {"%fr23R", 23},
924 {"%fr24", 24},
925 {"%fr24L", 24},
926 {"%fr24R", 24},
927 {"%fr25", 25},
928 {"%fr25L", 25},
929 {"%fr25R", 25},
930 {"%fr26", 26},
931 {"%fr26L", 26},
932 {"%fr26R", 26},
933 {"%fr27", 27},
934 {"%fr27L", 27},
935 {"%fr27R", 27},
936 {"%fr28", 28},
937 {"%fr28L", 28},
938 {"%fr28R", 28},
939 {"%fr29", 29},
940 {"%fr29L", 29},
941 {"%fr29R", 29},
942 {"%fr2L", 2},
943 {"%fr2R", 2},
944 {"%fr3", 3},
945 {"%fr30", 30},
946 {"%fr30L", 30},
947 {"%fr30R", 30},
948 {"%fr31", 31},
949 {"%fr31L", 31},
950 {"%fr31R", 31},
951 {"%fr3L", 3},
952 {"%fr3R", 3},
953 {"%fr4", 4},
954 {"%fr4L", 4},
955 {"%fr4R", 4},
956 {"%fr5", 5},
957 {"%fr5L", 5},
958 {"%fr5R", 5},
959 {"%fr6", 6},
960 {"%fr6L", 6},
961 {"%fr6R", 6},
962 {"%fr7", 7},
963 {"%fr7L", 7},
964 {"%fr7R", 7},
965 {"%fr8", 8},
966 {"%fr8L", 8},
967 {"%fr8R", 8},
968 {"%fr9", 9},
969 {"%fr9L", 9},
970 {"%fr9R", 9},
971 {"%hta", 25},
972 {"%iir", 19},
973 {"%ior", 21},
974 {"%ipsw", 22},
975 {"%isr", 20},
976 {"%itmr", 16},
977 {"%iva", 14},
978 {"%pcoq", 18},
979 {"%pcsq", 17},
980 {"%pidr1", 8},
981 {"%pidr2", 9},
982 {"%pidr3", 12},
983 {"%pidr4", 13},
984 {"%ppda", 24},
985 {"%r0", 0},
986 {"%r1", 1},
987 {"%r10", 10},
988 {"%r11", 11},
989 {"%r12", 12},
990 {"%r13", 13},
991 {"%r14", 14},
992 {"%r15", 15},
993 {"%r16", 16},
994 {"%r17", 17},
995 {"%r18", 18},
996 {"%r19", 19},
997 {"%r2", 2},
998 {"%r20", 20},
999 {"%r21", 21},
1000 {"%r22", 22},
1001 {"%r23", 23},
1002 {"%r24", 24},
1003 {"%r25", 25},
1004 {"%r26", 26},
1005 {"%r27", 27},
1006 {"%r28", 28},
1007 {"%r29", 29},
1008 {"%r3", 3},
1009 {"%r30", 30},
1010 {"%r31", 31},
1011 {"%r4", 4},
1012 {"%r4L", 4},
1013 {"%r4R", 4},
1014 {"%r5", 5},
1015 {"%r5L", 5},
1016 {"%r5R", 5},
1017 {"%r6", 6},
1018 {"%r6L", 6},
1019 {"%r6R", 6},
1020 {"%r7", 7},
1021 {"%r7L", 7},
1022 {"%r7R", 7},
1023 {"%r8", 8},
1024 {"%r8L", 8},
1025 {"%r8R", 8},
1026 {"%r9", 9},
1027 {"%r9L", 9},
1028 {"%r9R", 9},
1029 {"%rctr", 0},
1030 {"%ret0", 28},
1031 {"%ret1", 29},
1032 {"%rp", 2},
1033 {"%sar", 11},
1034 {"%sp", 30},
1035 {"%sr0", 0},
1036 {"%sr1", 1},
1037 {"%sr2", 2},
1038 {"%sr3", 3},
1039 {"%sr4", 4},
1040 {"%sr5", 5},
1041 {"%sr6", 6},
1042 {"%sr7", 7},
1043 {"%tr0", 24},
1044 {"%tr1", 25},
1045 {"%tr2", 26},
1046 {"%tr3", 27},
1047 {"%tr4", 28},
1048 {"%tr5", 29},
1049 {"%tr6", 30},
1050 {"%tr7", 31}
1051 };
1052
1053 /* This table is sorted by order of the length of the string. This is
1054 so we check for <> before we check for <. If we had a <> and checked
1055 for < first, we would get a false match. */
1056 static const struct fp_cond_map fp_cond_map[] =
1057 {
1058 {"false?", 0},
1059 {"false", 1},
1060 {"true?", 30},
1061 {"true", 31},
1062 {"!<=>", 3},
1063 {"!?>=", 8},
1064 {"!?<=", 16},
1065 {"!<>", 7},
1066 {"!>=", 11},
1067 {"!?>", 12},
1068 {"?<=", 14},
1069 {"!<=", 19},
1070 {"!?<", 20},
1071 {"?>=", 22},
1072 {"!?=", 24},
1073 {"!=t", 27},
1074 {"<=>", 29},
1075 {"=t", 5},
1076 {"?=", 6},
1077 {"?<", 10},
1078 {"<=", 13},
1079 {"!>", 15},
1080 {"?>", 18},
1081 {">=", 21},
1082 {"!<", 23},
1083 {"<>", 25},
1084 {"!=", 26},
1085 {"!?", 28},
1086 {"?", 2},
1087 {"=", 4},
1088 {"<", 9},
1089 {">", 17}
1090 };
1091
1092 static const struct selector_entry selector_table[] =
1093 {
1094 {"F'", e_fsel},
1095 {"F%", e_fsel},
1096 {"LS'", e_lssel},
1097 {"LS%", e_lssel},
1098 {"RS'", e_rssel},
1099 {"RS%", e_rssel},
1100 {"L'", e_lsel},
1101 {"L%", e_lsel},
1102 {"R'", e_rsel},
1103 {"R%", e_rsel},
1104 {"LD'", e_ldsel},
1105 {"LD%", e_ldsel},
1106 {"RD'", e_rdsel},
1107 {"RD%", e_rdsel},
1108 {"LR'", e_lrsel},
1109 {"LR%", e_lrsel},
1110 {"RR'", e_rrsel},
1111 {"RR%", e_rrsel},
1112 {"P'", e_psel},
1113 {"P%", e_psel},
1114 {"RP'", e_rpsel},
1115 {"RP%", e_rpsel},
1116 {"LP'", e_lpsel},
1117 {"LP%", e_lpsel},
1118 {"T'", e_tsel},
1119 {"T%", e_tsel},
1120 {"RT'", e_rtsel},
1121 {"RT%", e_rtsel},
1122 {"LT'", e_ltsel},
1123 {"LT%", e_ltsel},
1124 {NULL, e_fsel}
1125 };
1126
1127 /* default space and subspace dictionaries */
1128
1129 #define GDB_SYMBOLS GDB_SYMBOLS_SUBSPACE_NAME
1130 #define GDB_STRINGS GDB_STRINGS_SUBSPACE_NAME
1131
1132 /* pre-defined subsegments (subspaces) for the HPPA. */
1133 #define SUBSEG_CODE 0
1134 #define SUBSEG_DATA 0
1135 #define SUBSEG_LIT 1
1136 #define SUBSEG_BSS 2
1137 #define SUBSEG_UNWIND 3
1138 #define SUBSEG_GDB_STRINGS 0
1139 #define SUBSEG_GDB_SYMBOLS 1
1140
1141 static struct default_subspace_dict pa_def_subspaces[] =
1142 {
1143 {"$CODE$", 1, 1, 1, 0, 0, 0, 24, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_CODE},
1144 {"$DATA$", 1, 1, 0, 0, 0, 0, 24, 0x1f, 1, 8, 1, 1, ".data", SUBSEG_DATA},
1145 {"$LIT$", 1, 1, 0, 0, 0, 0, 16, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_LIT},
1146 {"$BSS$", 1, 1, 0, 0, 0, 1, 80, 0x1f, 1, 8, 1, 1, ".bss", SUBSEG_BSS},
1147 #ifdef OBJ_ELF
1148 {"$UNWIND$", 1, 1, 0, 0, 0, 0, 64, 0x2c, 0, 4, 0, 0, ".hppa_unwind", SUBSEG_UNWIND},
1149 #endif
1150 {NULL, 0, 1, 0, 0, 0, 0, 255, 0x1f, 0, 4, 0, 0, 0}
1151 };
1152
1153 static struct default_space_dict pa_def_spaces[] =
1154 {
1155 {"$TEXT$", 0, 1, 1, 0, 8, ASEC_NULL, ".text"},
1156 {"$PRIVATE$", 1, 1, 1, 1, 16, ASEC_NULL, ".data"},
1157 {NULL, 0, 0, 0, 0, 0, ASEC_NULL, NULL}
1158 };
1159
1160 /* Misc local definitions used by the assembler. */
1161
1162 /* Return nonzero if the string pointed to by S potentially represents
1163 a right or left half of a FP register */
1164 #define IS_R_SELECT(S) (*(S) == 'R' || *(S) == 'r')
1165 #define IS_L_SELECT(S) (*(S) == 'L' || *(S) == 'l')
1166
1167 /* These macros are used to maintain spaces/subspaces. */
1168 #define SPACE_DEFINED(space_chain) (space_chain)->sd_defined
1169 #define SPACE_USER_DEFINED(space_chain) (space_chain)->sd_user_defined
1170 #define SPACE_PRIVATE(space_chain) (space_chain)->sd_private
1171 #define SPACE_LOADABLE(space_chain) (space_chain)->sd_loadable
1172 #define SPACE_SPNUM(space_chain) (space_chain)->sd_spnum
1173 #define SPACE_SORT(space_chain) (space_chain)->sd_sort_key
1174 #define SPACE_NAME(space_chain) (space_chain)->sd_name
1175 #define SPACE_NAME_INDEX(space_chain) (space_chain)->sd_name_index
1176
1177 #define SUBSPACE_SPACE_INDEX(ss_chain) (ss_chain)->ssd_space_index
1178 #define SUBSPACE_DEFINED(ss_chain) (ss_chain)->ssd_defined
1179 #define SUBSPACE_QUADRANT(ss_chain) (ss_chain)->ssd_quadrant
1180 #define SUBSPACE_ALIGN(ss_chain) (ss_chain)->ssd_alignment
1181 #define SUBSPACE_ACCESS(ss_chain) (ss_chain)->ssd_access_control_bits
1182 #define SUBSPACE_SORT(ss_chain) (ss_chain)->ssd_sort_key
1183 #define SUBSPACE_COMMON(ss_chain) (ss_chain)->ssd_common
1184 #define SUBSPACE_ZERO(ss_chain) (ss_chain)->ssd_zero
1185 #define SUBSPACE_DUP_COMM(ss_chain) (ss_chain)->ssd_dup_common
1186 #define SUBSPACE_CODE_ONLY(ss_chain) (ss_chain)->ssd_code_only
1187 #define SUBSPACE_LOADABLE(ss_chain) (ss_chain)->ssd_loadable
1188 #define SUBSPACE_SUBSPACE_START(ss_chain) (ss_chain)->ssd_subspace_start
1189 #define SUBSPACE_SUBSPACE_LENGTH(ss_chain) (ss_chain)->ssd_subspace_length
1190 #define SUBSPACE_NAME(ss_chain) (ss_chain)->ssd_name
1191
1192 /* Insert FIELD into OPCODE starting at bit START. Continue pa_ip
1193 main loop after insertion. */
1194
1195 #define INSERT_FIELD_AND_CONTINUE(OPCODE, FIELD, START) \
1196 { \
1197 ((OPCODE) |= (FIELD) << (START)); \
1198 continue; \
1199 }
1200
1201 /* Simple range checking for FIELD againt HIGH and LOW bounds.
1202 IGNORE is used to suppress the error message. */
1203
1204 #define CHECK_FIELD(FIELD, HIGH, LOW, IGNORE) \
1205 { \
1206 if ((FIELD) > (HIGH) || (FIELD) < (LOW)) \
1207 { \
1208 if (! IGNORE) \
1209 as_bad ("Field out of range [%d..%d] (%d).", (LOW), (HIGH), \
1210 (int) (FIELD));\
1211 break; \
1212 } \
1213 }
1214
1215 #define is_DP_relative(exp) \
1216 ((exp).X_op == O_subtract \
1217 && strcmp((exp).X_op_symbol->bsym->name, "$global$") == 0)
1218
1219 #define is_PC_relative(exp) \
1220 ((exp).X_op == O_subtract \
1221 && strcmp((exp).X_op_symbol->bsym->name, "$PIC_pcrel$0") == 0)
1222
1223 #define is_complex(exp) \
1224 ((exp).X_op != O_constant && (exp).X_op != O_symbol)
1225
1226 /* Actual functions to implement the PA specific code for the assembler. */
1227
1228 /* Returns a pointer to the label_symbol_struct for the current space.
1229 or NULL if no label_symbol_struct exists for the current space. */
1230
1231 static label_symbol_struct *
1232 pa_get_label ()
1233 {
1234 label_symbol_struct *label_chain;
1235 sd_chain_struct *space_chain = current_space;
1236
1237 for (label_chain = label_symbols_rootp;
1238 label_chain;
1239 label_chain = label_chain->lss_next)
1240 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1241 return label_chain;
1242
1243 return NULL;
1244 }
1245
1246 /* Defines a label for the current space. If one is already defined,
1247 this function will replace it with the new label. */
1248
1249 void
1250 pa_define_label (symbol)
1251 symbolS *symbol;
1252 {
1253 label_symbol_struct *label_chain = pa_get_label ();
1254 sd_chain_struct *space_chain = current_space;
1255
1256 if (label_chain)
1257 label_chain->lss_label = symbol;
1258 else
1259 {
1260 /* Create a new label entry and add it to the head of the chain. */
1261 label_chain
1262 = (label_symbol_struct *) xmalloc (sizeof (label_symbol_struct));
1263 label_chain->lss_label = symbol;
1264 label_chain->lss_space = space_chain;
1265 label_chain->lss_next = NULL;
1266
1267 if (label_symbols_rootp)
1268 label_chain->lss_next = label_symbols_rootp;
1269
1270 label_symbols_rootp = label_chain;
1271 }
1272 }
1273
1274 /* Removes a label definition for the current space.
1275 If there is no label_symbol_struct entry, then no action is taken. */
1276
1277 static void
1278 pa_undefine_label ()
1279 {
1280 label_symbol_struct *label_chain;
1281 label_symbol_struct *prev_label_chain = NULL;
1282 sd_chain_struct *space_chain = current_space;
1283
1284 for (label_chain = label_symbols_rootp;
1285 label_chain;
1286 label_chain = label_chain->lss_next)
1287 {
1288 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1289 {
1290 /* Remove the label from the chain and free its memory. */
1291 if (prev_label_chain)
1292 prev_label_chain->lss_next = label_chain->lss_next;
1293 else
1294 label_symbols_rootp = label_chain->lss_next;
1295
1296 free (label_chain);
1297 break;
1298 }
1299 prev_label_chain = label_chain;
1300 }
1301 }
1302
1303
1304 /* An HPPA-specific version of fix_new. This is required because the HPPA
1305 code needs to keep track of some extra stuff. Each call to fix_new_hppa
1306 results in the creation of an instance of an hppa_fix_struct. An
1307 hppa_fix_struct stores the extra information along with a pointer to the
1308 original fixS. This is attached to the original fixup via the
1309 tc_fix_data field. */
1310
1311 static void
1312 fix_new_hppa (frag, where, size, add_symbol, offset, exp, pcrel,
1313 r_type, r_field, r_format, arg_reloc, unwind_desc)
1314 fragS *frag;
1315 int where;
1316 short int size;
1317 symbolS *add_symbol;
1318 long offset;
1319 expressionS *exp;
1320 int pcrel;
1321 bfd_reloc_code_real_type r_type;
1322 enum hppa_reloc_field_selector_type r_field;
1323 int r_format;
1324 long arg_reloc;
1325 char *unwind_desc;
1326 {
1327 fixS *new_fix;
1328
1329 struct hppa_fix_struct *hppa_fix = (struct hppa_fix_struct *)
1330 obstack_alloc (&notes, sizeof (struct hppa_fix_struct));
1331
1332 if (exp != NULL)
1333 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
1334 else
1335 new_fix = fix_new (frag, where, size, add_symbol, offset, pcrel, r_type);
1336 new_fix->tc_fix_data = hppa_fix;
1337 hppa_fix->fx_r_type = r_type;
1338 hppa_fix->fx_r_field = r_field;
1339 hppa_fix->fx_r_format = r_format;
1340 hppa_fix->fx_arg_reloc = arg_reloc;
1341 if (unwind_desc)
1342 {
1343 bcopy (unwind_desc, hppa_fix->fx_unwind, 8);
1344
1345 /* If necessary call BFD backend function to attach the
1346 unwind bits to the target dependent parts of a BFD symbol.
1347 Yuk. */
1348 #ifdef obj_attach_unwind_info
1349 obj_attach_unwind_info (add_symbol->bsym, unwind_desc);
1350 #endif
1351 }
1352
1353 /* foo-$global$ is used to access non-automatic storage. $global$
1354 is really just a marker and has served its purpose, so eliminate
1355 it now so as not to confuse write.c. */
1356 if (new_fix->fx_subsy
1357 && !strcmp (S_GET_NAME (new_fix->fx_subsy), "$global$"))
1358 new_fix->fx_subsy = NULL;
1359 }
1360
1361 /* Parse a .byte, .word, .long expression for the HPPA. Called by
1362 cons via the TC_PARSE_CONS_EXPRESSION macro. */
1363
1364 void
1365 parse_cons_expression_hppa (exp)
1366 expressionS *exp;
1367 {
1368 hppa_field_selector = pa_chk_field_selector (&input_line_pointer);
1369 expression (exp);
1370 }
1371
1372 /* This fix_new is called by cons via TC_CONS_FIX_NEW.
1373 hppa_field_selector is set by the parse_cons_expression_hppa. */
1374
1375 void
1376 cons_fix_new_hppa (frag, where, size, exp)
1377 fragS *frag;
1378 int where;
1379 int size;
1380 expressionS *exp;
1381 {
1382 unsigned int reloc_type;
1383
1384 if (is_DP_relative (*exp))
1385 reloc_type = R_HPPA_GOTOFF;
1386 else if (is_complex (*exp))
1387 reloc_type = R_HPPA_COMPLEX;
1388 else
1389 reloc_type = R_HPPA;
1390
1391 if (hppa_field_selector != e_psel && hppa_field_selector != e_fsel)
1392 as_warn ("Invalid field selector. Assuming F%%.");
1393
1394 fix_new_hppa (frag, where, size,
1395 (symbolS *) NULL, (offsetT) 0, exp, 0, reloc_type,
1396 hppa_field_selector, 32, 0, (char *) 0);
1397
1398 /* Reset field selector to its default state. */
1399 hppa_field_selector = 0;
1400 }
1401
1402 /* This function is called once, at assembler startup time. It should
1403 set up all the tables, etc. that the MD part of the assembler will need. */
1404
1405 void
1406 md_begin ()
1407 {
1408 const char *retval = NULL;
1409 int lose = 0;
1410 unsigned int i = 0;
1411
1412 last_call_info = NULL;
1413 call_info_root = NULL;
1414
1415 /* Folding of text and data segments fails miserably on the PA.
1416 Warn user and disable "-R" option. */
1417 if (flagseen['R'])
1418 {
1419 as_warn ("-R option not supported on this target.");
1420 flag_readonly_data_in_text = 0;
1421 flagseen['R'] = 0;
1422 }
1423
1424 pa_spaces_begin ();
1425
1426 op_hash = hash_new ();
1427 if (op_hash == NULL)
1428 as_fatal ("Virtual memory exhausted");
1429
1430 while (i < NUMOPCODES)
1431 {
1432 const char *name = pa_opcodes[i].name;
1433 retval = hash_insert (op_hash, name, (struct pa_opcode *) &pa_opcodes[i]);
1434 if (retval != NULL && *retval != '\0')
1435 {
1436 as_fatal ("Internal error: can't hash `%s': %s\n", name, retval);
1437 lose = 1;
1438 }
1439 do
1440 {
1441 if ((pa_opcodes[i].match & pa_opcodes[i].mask)
1442 != pa_opcodes[i].match)
1443 {
1444 fprintf (stderr, "internal error: losing opcode: `%s' \"%s\"\n",
1445 pa_opcodes[i].name, pa_opcodes[i].args);
1446 lose = 1;
1447 }
1448 ++i;
1449 }
1450 while (i < NUMOPCODES && !strcmp (pa_opcodes[i].name, name));
1451 }
1452
1453 if (lose)
1454 as_fatal ("Broken assembler. No assembly attempted.");
1455
1456 /* SOM will change text_section. To make sure we never put
1457 anything into the old one switch to the new one now. */
1458 subseg_set (text_section, 0);
1459 }
1460
1461 /* Called at the end of assembling a source file. Nothing to do
1462 at this point on the PA. */
1463
1464 void
1465 md_end ()
1466 {
1467 return;
1468 }
1469
1470 /* Assemble a single instruction storing it into a frag. */
1471 void
1472 md_assemble (str)
1473 char *str;
1474 {
1475 char *to;
1476
1477 /* The had better be something to assemble. */
1478 assert (str);
1479
1480 /* Assemble the instruction. Results are saved into "the_insn". */
1481 pa_ip (str);
1482
1483 /* Get somewhere to put the assembled instrution. */
1484 to = frag_more (4);
1485
1486 /* Output the opcode. */
1487 md_number_to_chars (to, the_insn.opcode, 4);
1488
1489 /* If necessary output more stuff. */
1490 if (the_insn.reloc != R_HPPA_NONE)
1491 fix_new_hppa (frag_now, (to - frag_now->fr_literal), 4, NULL,
1492 (offsetT) 0, &the_insn.exp, the_insn.pcrel,
1493 the_insn.reloc, the_insn.field_selector,
1494 the_insn.format, the_insn.arg_reloc, NULL);
1495
1496 }
1497
1498 /* Do the real work for assembling a single instruction. Store results
1499 into the global "the_insn" variable.
1500
1501 FIXME: Should define and use some functions/macros to handle
1502 various common insertions of information into the opcode. */
1503
1504 static void
1505 pa_ip (str)
1506 char *str;
1507 {
1508 char *error_message = "";
1509 char *s, c, *argstart, *name, *save_s;
1510 const char *args;
1511 int match = FALSE;
1512 int comma = 0;
1513 int cmpltr, nullif, flag, cond, num;
1514 unsigned long opcode;
1515 struct pa_opcode *insn;
1516
1517 /* Skip to something interesting. */
1518 for (s = str; isupper (*s) || islower (*s) || (*s >= '0' && *s <= '3'); ++s)
1519 ;
1520
1521 switch (*s)
1522 {
1523
1524 case '\0':
1525 break;
1526
1527 case ',':
1528 comma = 1;
1529
1530 /*FALLTHROUGH */
1531
1532 case ' ':
1533 *s++ = '\0';
1534 break;
1535
1536 default:
1537 as_bad ("Unknown opcode: `%s'", str);
1538 exit (1);
1539 }
1540
1541 save_s = str;
1542
1543 /* Convert everything into lower case. */
1544 while (*save_s)
1545 {
1546 if (isupper (*save_s))
1547 *save_s = tolower (*save_s);
1548 save_s++;
1549 }
1550
1551 /* Look up the opcode in the has table. */
1552 if ((insn = (struct pa_opcode *) hash_find (op_hash, str)) == NULL)
1553 {
1554 as_bad ("Unknown opcode: `%s'", str);
1555 return;
1556 }
1557
1558 if (comma)
1559 {
1560 *--s = ',';
1561 }
1562
1563 /* Mark the location where arguments for the instruction start, then
1564 start processing them. */
1565 argstart = s;
1566 for (;;)
1567 {
1568 /* Do some initialization. */
1569 opcode = insn->match;
1570 bzero (&the_insn, sizeof (the_insn));
1571
1572 the_insn.reloc = R_HPPA_NONE;
1573
1574 /* Build the opcode, checking as we go to make
1575 sure that the operands match. */
1576 for (args = insn->args;; ++args)
1577 {
1578 switch (*args)
1579 {
1580
1581 /* End of arguments. */
1582 case '\0':
1583 if (*s == '\0')
1584 match = TRUE;
1585 break;
1586
1587 case '+':
1588 if (*s == '+')
1589 {
1590 ++s;
1591 continue;
1592 }
1593 if (*s == '-')
1594 continue;
1595 break;
1596
1597 /* These must match exactly. */
1598 case '(':
1599 case ')':
1600 case ',':
1601 case ' ':
1602 if (*s++ == *args)
1603 continue;
1604 break;
1605
1606 /* Handle a 5 bit register or control register field at 10. */
1607 case 'b':
1608 case '^':
1609 num = pa_parse_number (&s, 0);
1610 CHECK_FIELD (num, 31, 0, 0);
1611 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
1612
1613 /* Handle a 5 bit register field at 15. */
1614 case 'x':
1615 num = pa_parse_number (&s, 0);
1616 CHECK_FIELD (num, 31, 0, 0);
1617 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1618
1619 /* Handle a 5 bit register field at 31. */
1620 case 'y':
1621 case 't':
1622 num = pa_parse_number (&s, 0);
1623 CHECK_FIELD (num, 31, 0, 0);
1624 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1625
1626 /* Handle a 5 bit field length at 31. */
1627 case 'T':
1628 num = pa_get_absolute_expression (&the_insn, &s);
1629 s = expr_end;
1630 CHECK_FIELD (num, 32, 1, 0);
1631 INSERT_FIELD_AND_CONTINUE (opcode, 32 - num, 0);
1632
1633 /* Handle a 5 bit immediate at 15. */
1634 case '5':
1635 num = pa_get_absolute_expression (&the_insn, &s);
1636 s = expr_end;
1637 CHECK_FIELD (num, 15, -16, 0);
1638 low_sign_unext (num, 5, &num);
1639 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1640
1641 /* Handle a 5 bit immediate at 31. */
1642 case 'V':
1643 num = pa_get_absolute_expression (&the_insn, &s);
1644 s = expr_end;
1645 CHECK_FIELD (num, 15, -16, 0)
1646 low_sign_unext (num, 5, &num);
1647 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1648
1649 /* Handle an unsigned 5 bit immediate at 31. */
1650 case 'r':
1651 num = pa_get_absolute_expression (&the_insn, &s);
1652 s = expr_end;
1653 CHECK_FIELD (num, 31, 0, 0);
1654 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1655
1656 /* Handle an unsigned 5 bit immediate at 15. */
1657 case 'R':
1658 num = pa_get_absolute_expression (&the_insn, &s);
1659 s = expr_end;
1660 CHECK_FIELD (num, 31, 0, 0);
1661 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1662
1663 /* Handle a 2 bit space identifier at 17. */
1664 case 's':
1665 num = pa_parse_number (&s, 0);
1666 CHECK_FIELD (num, 3, 0, 1);
1667 INSERT_FIELD_AND_CONTINUE (opcode, num, 14);
1668
1669 /* Handle a 3 bit space identifier at 18. */
1670 case 'S':
1671 num = pa_parse_number (&s, 0);
1672 CHECK_FIELD (num, 7, 0, 1);
1673 dis_assemble_3 (num, &num);
1674 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
1675
1676 /* Handle a completer for an indexing load or store. */
1677 case 'c':
1678 {
1679 int uu = 0;
1680 int m = 0;
1681 int i = 0;
1682 while (*s == ',' && i < 2)
1683 {
1684 s++;
1685 if (strncasecmp (s, "sm", 2) == 0)
1686 {
1687 uu = 1;
1688 m = 1;
1689 s++;
1690 i++;
1691 }
1692 else if (strncasecmp (s, "m", 1) == 0)
1693 m = 1;
1694 else if (strncasecmp (s, "s", 1) == 0)
1695 uu = 1;
1696 else
1697 as_bad ("Invalid Indexed Load Completer.");
1698 s++;
1699 i++;
1700 }
1701 if (i > 2)
1702 as_bad ("Invalid Indexed Load Completer Syntax.");
1703 opcode |= m << 5;
1704 INSERT_FIELD_AND_CONTINUE (opcode, uu, 13);
1705 }
1706
1707 /* Handle a short load/store completer. */
1708 case 'C':
1709 {
1710 int a = 0;
1711 int m = 0;
1712 if (*s == ',')
1713 {
1714 s++;
1715 if (strncasecmp (s, "ma", 2) == 0)
1716 {
1717 a = 0;
1718 m = 1;
1719 }
1720 else if (strncasecmp (s, "mb", 2) == 0)
1721 {
1722 a = 1;
1723 m = 1;
1724 }
1725 else
1726 as_bad ("Invalid Short Load/Store Completer.");
1727 s += 2;
1728 }
1729 opcode |= m << 5;
1730 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1731 }
1732
1733 /* Handle a stbys completer. */
1734 case 'Y':
1735 {
1736 int a = 0;
1737 int m = 0;
1738 int i = 0;
1739 while (*s == ',' && i < 2)
1740 {
1741 s++;
1742 if (strncasecmp (s, "m", 1) == 0)
1743 m = 1;
1744 else if (strncasecmp (s, "b", 1) == 0)
1745 a = 0;
1746 else if (strncasecmp (s, "e", 1) == 0)
1747 a = 1;
1748 else
1749 as_bad ("Invalid Store Bytes Short Completer");
1750 s++;
1751 i++;
1752 }
1753 if (i > 2)
1754 as_bad ("Invalid Store Bytes Short Completer");
1755 opcode |= m << 5;
1756 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1757 }
1758
1759 /* Handle a non-negated compare/stubtract condition. */
1760 case '<':
1761 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
1762 if (cmpltr < 0)
1763 {
1764 as_bad ("Invalid Compare/Subtract Condition: %c", *s);
1765 cmpltr = 0;
1766 }
1767 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1768
1769 /* Handle a negated or non-negated compare/subtract condition. */
1770 case '?':
1771 save_s = s;
1772 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
1773 if (cmpltr < 0)
1774 {
1775 s = save_s;
1776 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 1);
1777 if (cmpltr < 0)
1778 {
1779 as_bad ("Invalid Compare/Subtract Condition.");
1780 cmpltr = 0;
1781 }
1782 else
1783 {
1784 /* Negated condition requires an opcode change. */
1785 opcode |= 1 << 27;
1786 }
1787 }
1788 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1789
1790 /* Handle a negated or non-negated add condition. */
1791 case '!':
1792 save_s = s;
1793 cmpltr = pa_parse_nonneg_add_cmpltr (&s, 1);
1794 if (cmpltr < 0)
1795 {
1796 s = save_s;
1797 cmpltr = pa_parse_neg_add_cmpltr (&s, 1);
1798 if (cmpltr < 0)
1799 {
1800 as_bad ("Invalid Compare/Subtract Condition");
1801 cmpltr = 0;
1802 }
1803 else
1804 {
1805 /* Negated condition requires an opcode change. */
1806 opcode |= 1 << 27;
1807 }
1808 }
1809 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1810
1811 /* Handle a compare/subtract condition. */
1812 case 'a':
1813 cmpltr = 0;
1814 flag = 0;
1815 save_s = s;
1816 if (*s == ',')
1817 {
1818 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 0);
1819 if (cmpltr < 0)
1820 {
1821 flag = 1;
1822 s = save_s;
1823 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 0);
1824 if (cmpltr < 0)
1825 {
1826 as_bad ("Invalid Compare/Subtract Condition");
1827 }
1828 }
1829 }
1830 opcode |= cmpltr << 13;
1831 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1832
1833 /* Handle a non-negated add condition. */
1834 case 'd':
1835 cmpltr = 0;
1836 nullif = 0;
1837 flag = 0;
1838 if (*s == ',')
1839 {
1840 s++;
1841 name = s;
1842 while (*s != ',' && *s != ' ' && *s != '\t')
1843 s += 1;
1844 c = *s;
1845 *s = 0x00;
1846 if (strcmp (name, "=") == 0)
1847 cmpltr = 1;
1848 else if (strcmp (name, "<") == 0)
1849 cmpltr = 2;
1850 else if (strcmp (name, "<=") == 0)
1851 cmpltr = 3;
1852 else if (strcasecmp (name, "nuv") == 0)
1853 cmpltr = 4;
1854 else if (strcasecmp (name, "znv") == 0)
1855 cmpltr = 5;
1856 else if (strcasecmp (name, "sv") == 0)
1857 cmpltr = 6;
1858 else if (strcasecmp (name, "od") == 0)
1859 cmpltr = 7;
1860 else if (strcasecmp (name, "n") == 0)
1861 nullif = 1;
1862 else if (strcasecmp (name, "tr") == 0)
1863 {
1864 cmpltr = 0;
1865 flag = 1;
1866 }
1867 else if (strcasecmp (name, "<>") == 0)
1868 {
1869 cmpltr = 1;
1870 flag = 1;
1871 }
1872 else if (strcasecmp (name, ">=") == 0)
1873 {
1874 cmpltr = 2;
1875 flag = 1;
1876 }
1877 else if (strcasecmp (name, ">") == 0)
1878 {
1879 cmpltr = 3;
1880 flag = 1;
1881 }
1882 else if (strcasecmp (name, "uv") == 0)
1883 {
1884 cmpltr = 4;
1885 flag = 1;
1886 }
1887 else if (strcasecmp (name, "vnz") == 0)
1888 {
1889 cmpltr = 5;
1890 flag = 1;
1891 }
1892 else if (strcasecmp (name, "nsv") == 0)
1893 {
1894 cmpltr = 6;
1895 flag = 1;
1896 }
1897 else if (strcasecmp (name, "ev") == 0)
1898 {
1899 cmpltr = 7;
1900 flag = 1;
1901 }
1902 else
1903 as_bad ("Invalid Add Condition: %s", name);
1904 *s = c;
1905 }
1906 nullif = pa_parse_nullif (&s);
1907 opcode |= nullif << 1;
1908 opcode |= cmpltr << 13;
1909 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1910
1911 /* HANDLE a logical instruction condition. */
1912 case '&':
1913 cmpltr = 0;
1914 flag = 0;
1915 if (*s == ',')
1916 {
1917 s++;
1918 name = s;
1919 while (*s != ',' && *s != ' ' && *s != '\t')
1920 s += 1;
1921 c = *s;
1922 *s = 0x00;
1923 if (strcmp (name, "=") == 0)
1924 cmpltr = 1;
1925 else if (strcmp (name, "<") == 0)
1926 cmpltr = 2;
1927 else if (strcmp (name, "<=") == 0)
1928 cmpltr = 3;
1929 else if (strcasecmp (name, "od") == 0)
1930 cmpltr = 7;
1931 else if (strcasecmp (name, "tr") == 0)
1932 {
1933 cmpltr = 0;
1934 flag = 1;
1935 }
1936 else if (strcmp (name, "<>") == 0)
1937 {
1938 cmpltr = 1;
1939 flag = 1;
1940 }
1941 else if (strcmp (name, ">=") == 0)
1942 {
1943 cmpltr = 2;
1944 flag = 1;
1945 }
1946 else if (strcmp (name, ">") == 0)
1947 {
1948 cmpltr = 3;
1949 flag = 1;
1950 }
1951 else if (strcasecmp (name, "ev") == 0)
1952 {
1953 cmpltr = 7;
1954 flag = 1;
1955 }
1956 else
1957 as_bad ("Invalid Logical Instruction Condition.");
1958 *s = c;
1959 }
1960 opcode |= cmpltr << 13;
1961 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1962
1963 /* Handle a unit instruction condition. */
1964 case 'U':
1965 cmpltr = 0;
1966 flag = 0;
1967 if (*s == ',')
1968 {
1969 s++;
1970 if (strncasecmp (s, "sbz", 3) == 0)
1971 {
1972 cmpltr = 2;
1973 s += 3;
1974 }
1975 else if (strncasecmp (s, "shz", 3) == 0)
1976 {
1977 cmpltr = 3;
1978 s += 3;
1979 }
1980 else if (strncasecmp (s, "sdc", 3) == 0)
1981 {
1982 cmpltr = 4;
1983 s += 3;
1984 }
1985 else if (strncasecmp (s, "sbc", 3) == 0)
1986 {
1987 cmpltr = 6;
1988 s += 3;
1989 }
1990 else if (strncasecmp (s, "shc", 3) == 0)
1991 {
1992 cmpltr = 7;
1993 s += 3;
1994 }
1995 else if (strncasecmp (s, "tr", 2) == 0)
1996 {
1997 cmpltr = 0;
1998 flag = 1;
1999 s += 2;
2000 }
2001 else if (strncasecmp (s, "nbz", 3) == 0)
2002 {
2003 cmpltr = 2;
2004 flag = 1;
2005 s += 3;
2006 }
2007 else if (strncasecmp (s, "nhz", 3) == 0)
2008 {
2009 cmpltr = 3;
2010 flag = 1;
2011 s += 3;
2012 }
2013 else if (strncasecmp (s, "ndc", 3) == 0)
2014 {
2015 cmpltr = 4;
2016 flag = 1;
2017 s += 3;
2018 }
2019 else if (strncasecmp (s, "nbc", 3) == 0)
2020 {
2021 cmpltr = 6;
2022 flag = 1;
2023 s += 3;
2024 }
2025 else if (strncasecmp (s, "nhc", 3) == 0)
2026 {
2027 cmpltr = 7;
2028 flag = 1;
2029 s += 3;
2030 }
2031 else
2032 as_bad ("Invalid Logical Instruction Condition.");
2033 }
2034 opcode |= cmpltr << 13;
2035 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
2036
2037 /* Handle a shift/extract/deposit condition. */
2038 case '|':
2039 case '>':
2040 cmpltr = 0;
2041 if (*s == ',')
2042 {
2043 save_s = s++;
2044 name = s;
2045 while (*s != ',' && *s != ' ' && *s != '\t')
2046 s += 1;
2047 c = *s;
2048 *s = 0x00;
2049 if (strcmp (name, "=") == 0)
2050 cmpltr = 1;
2051 else if (strcmp (name, "<") == 0)
2052 cmpltr = 2;
2053 else if (strcasecmp (name, "od") == 0)
2054 cmpltr = 3;
2055 else if (strcasecmp (name, "tr") == 0)
2056 cmpltr = 4;
2057 else if (strcmp (name, "<>") == 0)
2058 cmpltr = 5;
2059 else if (strcmp (name, ">=") == 0)
2060 cmpltr = 6;
2061 else if (strcasecmp (name, "ev") == 0)
2062 cmpltr = 7;
2063 /* Handle movb,n. Put things back the way they were.
2064 This includes moving s back to where it started. */
2065 else if (strcasecmp (name, "n") == 0 && *args == '|')
2066 {
2067 *s = c;
2068 s = save_s;
2069 continue;
2070 }
2071 else
2072 as_bad ("Invalid Shift/Extract/Deposit Condition.");
2073 *s = c;
2074 }
2075 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
2076
2077 /* Handle bvb and bb conditions. */
2078 case '~':
2079 cmpltr = 0;
2080 if (*s == ',')
2081 {
2082 s++;
2083 if (strncmp (s, "<", 1) == 0)
2084 {
2085 cmpltr = 2;
2086 s++;
2087 }
2088 else if (strncmp (s, ">=", 2) == 0)
2089 {
2090 cmpltr = 6;
2091 s += 2;
2092 }
2093 else
2094 as_bad ("Invalid Bit Branch Condition: %c", *s);
2095 }
2096 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
2097
2098 /* Handle a system control completer. */
2099 case 'Z':
2100 if (*s == ',' && (*(s + 1) == 'm' || *(s + 1) == 'M'))
2101 {
2102 flag = 1;
2103 s += 2;
2104 }
2105 else
2106 flag = 0;
2107
2108 INSERT_FIELD_AND_CONTINUE (opcode, flag, 5);
2109
2110 /* Handle a nullification completer for branch instructions. */
2111 case 'n':
2112 nullif = pa_parse_nullif (&s);
2113 INSERT_FIELD_AND_CONTINUE (opcode, nullif, 1);
2114
2115 /* Handle a 11 bit immediate at 31. */
2116 case 'i':
2117 the_insn.field_selector = pa_chk_field_selector (&s);
2118 get_expression (s);
2119 s = expr_end;
2120 if (the_insn.exp.X_op == O_constant)
2121 {
2122 num = evaluate_absolute (&the_insn);
2123 CHECK_FIELD (num, 1023, -1024, 0);
2124 low_sign_unext (num, 11, &num);
2125 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2126 }
2127 else
2128 {
2129 if (is_DP_relative (the_insn.exp))
2130 the_insn.reloc = R_HPPA_GOTOFF;
2131 else if (is_PC_relative (the_insn.exp))
2132 the_insn.reloc = R_HPPA_PCREL_CALL;
2133 else if (is_complex (the_insn.exp))
2134 the_insn.reloc = R_HPPA_COMPLEX;
2135 else
2136 the_insn.reloc = R_HPPA;
2137 the_insn.format = 11;
2138 continue;
2139 }
2140
2141 /* Handle a 14 bit immediate at 31. */
2142 case 'j':
2143 the_insn.field_selector = pa_chk_field_selector (&s);
2144 get_expression (s);
2145 s = expr_end;
2146 if (the_insn.exp.X_op == O_constant)
2147 {
2148 num = evaluate_absolute (&the_insn);
2149 CHECK_FIELD (num, 8191, -8192, 0);
2150 low_sign_unext (num, 14, &num);
2151 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2152 }
2153 else
2154 {
2155 if (is_DP_relative (the_insn.exp))
2156 the_insn.reloc = R_HPPA_GOTOFF;
2157 else if (is_PC_relative (the_insn.exp))
2158 the_insn.reloc = R_HPPA_PCREL_CALL;
2159 else if (is_complex (the_insn.exp))
2160 the_insn.reloc = R_HPPA_COMPLEX;
2161 else
2162 the_insn.reloc = R_HPPA;
2163 the_insn.format = 14;
2164 continue;
2165 }
2166
2167 /* Handle a 21 bit immediate at 31. */
2168 case 'k':
2169 the_insn.field_selector = pa_chk_field_selector (&s);
2170 get_expression (s);
2171 s = expr_end;
2172 if (the_insn.exp.X_op == O_constant)
2173 {
2174 num = evaluate_absolute (&the_insn);
2175 CHECK_FIELD (num >> 11, 1048575, -1048576, 0);
2176 dis_assemble_21 (num, &num);
2177 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2178 }
2179 else
2180 {
2181 if (is_DP_relative (the_insn.exp))
2182 the_insn.reloc = R_HPPA_GOTOFF;
2183 else if (is_PC_relative (the_insn.exp))
2184 the_insn.reloc = R_HPPA_PCREL_CALL;
2185 else if (is_complex (the_insn.exp))
2186 the_insn.reloc = R_HPPA_COMPLEX;
2187 else
2188 the_insn.reloc = R_HPPA;
2189 the_insn.format = 21;
2190 continue;
2191 }
2192
2193 /* Handle a 12 bit branch displacement. */
2194 case 'w':
2195 the_insn.field_selector = pa_chk_field_selector (&s);
2196 get_expression (s);
2197 s = expr_end;
2198 the_insn.pcrel = 1;
2199 if (!strcmp (S_GET_NAME (the_insn.exp.X_add_symbol), "L$0\001"))
2200 {
2201 unsigned int w1, w, result;
2202
2203 num = evaluate_absolute (&the_insn);
2204 if (num % 4)
2205 {
2206 as_bad ("Branch to unaligned address");
2207 break;
2208 }
2209 CHECK_FIELD (num, 8191, -8192, 0);
2210 sign_unext ((num - 8) >> 2, 12, &result);
2211 dis_assemble_12 (result, &w1, &w);
2212 INSERT_FIELD_AND_CONTINUE (opcode, ((w1 << 2) | w), 0);
2213 }
2214 else
2215 {
2216 if (is_complex (the_insn.exp))
2217 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2218 else
2219 the_insn.reloc = R_HPPA_PCREL_CALL;
2220 the_insn.format = 12;
2221 the_insn.arg_reloc = last_call_desc.arg_reloc;
2222 bzero (&last_call_desc, sizeof (struct call_desc));
2223 s = expr_end;
2224 continue;
2225 }
2226
2227 /* Handle a 17 bit branch displacement. */
2228 case 'W':
2229 the_insn.field_selector = pa_chk_field_selector (&s);
2230 get_expression (s);
2231 s = expr_end;
2232 the_insn.pcrel = 1;
2233 if (!the_insn.exp.X_add_symbol
2234 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2235 "L$0\001"))
2236 {
2237 unsigned int w2, w1, w, result;
2238
2239 num = evaluate_absolute (&the_insn);
2240 if (num % 4)
2241 {
2242 as_bad ("Branch to unaligned address");
2243 break;
2244 }
2245 CHECK_FIELD (num, 262143, -262144, 0);
2246
2247 if (the_insn.exp.X_add_symbol)
2248 num -= 8;
2249
2250 sign_unext (num >> 2, 17, &result);
2251 dis_assemble_17 (result, &w1, &w2, &w);
2252 INSERT_FIELD_AND_CONTINUE (opcode,
2253 ((w2 << 2) | (w1 << 16) | w), 0);
2254 }
2255 else
2256 {
2257 if (is_complex (the_insn.exp))
2258 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2259 else
2260 the_insn.reloc = R_HPPA_PCREL_CALL;
2261 the_insn.format = 17;
2262 the_insn.arg_reloc = last_call_desc.arg_reloc;
2263 bzero (&last_call_desc, sizeof (struct call_desc));
2264 continue;
2265 }
2266
2267 /* Handle an absolute 17 bit branch target. */
2268 case 'z':
2269 the_insn.field_selector = pa_chk_field_selector (&s);
2270 get_expression (s);
2271 s = expr_end;
2272 the_insn.pcrel = 0;
2273 if (!the_insn.exp.X_add_symbol
2274 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2275 "L$0\001"))
2276 {
2277 unsigned int w2, w1, w, result;
2278
2279 num = evaluate_absolute (&the_insn);
2280 if (num % 4)
2281 {
2282 as_bad ("Branch to unaligned address");
2283 break;
2284 }
2285 CHECK_FIELD (num, 262143, -262144, 0);
2286
2287 if (the_insn.exp.X_add_symbol)
2288 num -= 8;
2289
2290 sign_unext (num >> 2, 17, &result);
2291 dis_assemble_17 (result, &w1, &w2, &w);
2292 INSERT_FIELD_AND_CONTINUE (opcode,
2293 ((w2 << 2) | (w1 << 16) | w), 0);
2294 }
2295 else
2296 {
2297 if (is_complex (the_insn.exp))
2298 the_insn.reloc = R_HPPA_COMPLEX_ABS_CALL;
2299 else
2300 the_insn.reloc = R_HPPA_ABS_CALL;
2301 the_insn.format = 17;
2302 continue;
2303 }
2304
2305 /* Handle a 5 bit shift count at 26. */
2306 case 'p':
2307 num = pa_get_absolute_expression (&the_insn, &s);
2308 s = expr_end;
2309 CHECK_FIELD (num, 31, 0, 0);
2310 INSERT_FIELD_AND_CONTINUE (opcode, 31 - num, 5);
2311
2312 /* Handle a 5 bit bit position at 26. */
2313 case 'P':
2314 num = pa_get_absolute_expression (&the_insn, &s);
2315 s = expr_end;
2316 CHECK_FIELD (num, 31, 0, 0);
2317 INSERT_FIELD_AND_CONTINUE (opcode, num, 5);
2318
2319 /* Handle a 5 bit immediate at 10. */
2320 case 'Q':
2321 num = pa_get_absolute_expression (&the_insn, &s);
2322 s = expr_end;
2323 CHECK_FIELD (num, 31, 0, 0);
2324 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
2325
2326 /* Handle a 13 bit immediate at 18. */
2327 case 'A':
2328 num = pa_get_absolute_expression (&the_insn, &s);
2329 s = expr_end;
2330 CHECK_FIELD (num, 4095, -4096, 0);
2331 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
2332
2333 /* Handle a 26 bit immediate at 31. */
2334 case 'D':
2335 num = pa_get_absolute_expression (&the_insn, &s);
2336 s = expr_end;
2337 CHECK_FIELD (num, 671108864, 0, 0);
2338 INSERT_FIELD_AND_CONTINUE (opcode, num, 1);
2339
2340 /* Handle a 3 bit SFU identifier at 25. */
2341 case 'f':
2342 num = pa_get_absolute_expression (&the_insn, &s);
2343 s = expr_end;
2344 CHECK_FIELD (num, 7, 0, 0);
2345 INSERT_FIELD_AND_CONTINUE (opcode, num, 6);
2346
2347 /* We don't support any of these. FIXME. */
2348 case 'O':
2349 get_expression (s);
2350 s = expr_end;
2351 abort ();
2352 continue;
2353
2354 /* Handle a source FP operand format completer. */
2355 case 'F':
2356 flag = pa_parse_fp_format (&s);
2357 the_insn.fpof1 = flag;
2358 INSERT_FIELD_AND_CONTINUE (opcode, flag, 11);
2359
2360 /* Handle a destination FP operand format completer. */
2361 case 'G':
2362 /* pa_parse_format needs the ',' prefix. */
2363 s--;
2364 flag = pa_parse_fp_format (&s);
2365 the_insn.fpof2 = flag;
2366 INSERT_FIELD_AND_CONTINUE (opcode, flag, 13);
2367
2368 /* Handle FP compare conditions. */
2369 case 'M':
2370 cond = pa_parse_fp_cmp_cond (&s);
2371 INSERT_FIELD_AND_CONTINUE (opcode, cond, 0);
2372
2373 /* Handle L/R register halves like 't'. */
2374 case 'v':
2375 {
2376 struct pa_89_fp_reg_struct result;
2377
2378 pa_parse_number (&s, &result);
2379 CHECK_FIELD (result.number_part, 31, 0, 0);
2380 opcode |= result.number_part;
2381
2382 /* 0x30 opcodes are FP arithmetic operation opcodes
2383 and need to be turned into 0x38 opcodes. This
2384 is not necessary for loads/stores. */
2385 if (need_89_opcode (&the_insn, &result)
2386 && ((opcode & 0xfc000000) == 0x30000000))
2387 opcode |= 1 << 27;
2388
2389 INSERT_FIELD_AND_CONTINUE (opcode, result.l_r_select & 1, 6);
2390 }
2391
2392 /* Handle L/R register halves like 'b'. */
2393 case 'E':
2394 {
2395 struct pa_89_fp_reg_struct result;
2396
2397 pa_parse_number (&s, &result);
2398 CHECK_FIELD (result.number_part, 31, 0, 0);
2399 opcode |= result.number_part << 21;
2400 if (need_89_opcode (&the_insn, &result))
2401 {
2402 opcode |= (result.l_r_select & 1) << 7;
2403 opcode |= 1 << 27;
2404 }
2405 continue;
2406 }
2407
2408 /* Handle L/R register halves like 'x'. */
2409 case 'X':
2410 {
2411 struct pa_89_fp_reg_struct result;
2412
2413 pa_parse_number (&s, &result);
2414 CHECK_FIELD (result.number_part, 31, 0, 0);
2415 opcode |= (result.number_part & 0x1f) << 16;
2416 if (need_89_opcode (&the_insn, &result))
2417 {
2418 opcode |= (result.l_r_select & 1) << 12;
2419 opcode |= 1 << 27;
2420 }
2421 continue;
2422 }
2423
2424 /* Handle a 5 bit register field at 10. */
2425 case '4':
2426 {
2427 struct pa_89_fp_reg_struct result;
2428
2429 pa_parse_number (&s, &result);
2430 CHECK_FIELD (result.number_part, 31, 0, 0);
2431 if (the_insn.fpof1 == SGL)
2432 {
2433 result.number_part &= 0xF;
2434 result.number_part |= (result.l_r_select & 1) << 4;
2435 }
2436 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 21);
2437 }
2438
2439 /* Handle a 5 bit register field at 15. */
2440 case '6':
2441 {
2442 struct pa_89_fp_reg_struct result;
2443
2444 pa_parse_number (&s, &result);
2445 CHECK_FIELD (result.number_part, 31, 0, 0);
2446 if (the_insn.fpof1 == SGL)
2447 {
2448 result.number_part &= 0xF;
2449 result.number_part |= (result.l_r_select & 1) << 4;
2450 }
2451 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 16);
2452 }
2453
2454 /* Handle a 5 bit register field at 31. */
2455 case '7':
2456 {
2457 struct pa_89_fp_reg_struct result;
2458
2459 pa_parse_number (&s, &result);
2460 CHECK_FIELD (result.number_part, 31, 0, 0);
2461 if (the_insn.fpof1 == SGL)
2462 {
2463 result.number_part &= 0xF;
2464 result.number_part |= (result.l_r_select & 1) << 4;
2465 }
2466 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 0);
2467 }
2468
2469 /* Handle a 5 bit register field at 20. */
2470 case '8':
2471 {
2472 struct pa_89_fp_reg_struct result;
2473
2474 pa_parse_number (&s, &result);
2475 CHECK_FIELD (result.number_part, 31, 0, 0);
2476 if (the_insn.fpof1 == SGL)
2477 {
2478 result.number_part &= 0xF;
2479 result.number_part |= (result.l_r_select & 1) << 4;
2480 }
2481 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 11);
2482 }
2483
2484 /* Handle a 5 bit register field at 25. */
2485 case '9':
2486 {
2487 struct pa_89_fp_reg_struct result;
2488
2489 pa_parse_number (&s, &result);
2490 CHECK_FIELD (result.number_part, 31, 0, 0);
2491 if (the_insn.fpof1 == SGL)
2492 {
2493 result.number_part &= 0xF;
2494 result.number_part |= (result.l_r_select & 1) << 4;
2495 }
2496 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 6);
2497 }
2498
2499 /* Handle a floating point operand format at 26.
2500 Only allows single and double precision. */
2501 case 'H':
2502 flag = pa_parse_fp_format (&s);
2503 switch (flag)
2504 {
2505 case SGL:
2506 opcode |= 0x20;
2507 case DBL:
2508 the_insn.fpof1 = flag;
2509 continue;
2510
2511 case QUAD:
2512 case ILLEGAL_FMT:
2513 default:
2514 as_bad ("Invalid Floating Point Operand Format.");
2515 }
2516 break;
2517
2518 default:
2519 abort ();
2520 }
2521 break;
2522 }
2523
2524 /* Check if the args matched. */
2525 if (match == FALSE)
2526 {
2527 if (&insn[1] - pa_opcodes < NUMOPCODES
2528 && !strcmp (insn->name, insn[1].name))
2529 {
2530 ++insn;
2531 s = argstart;
2532 continue;
2533 }
2534 else
2535 {
2536 as_bad ("Invalid operands %s", error_message);
2537 return;
2538 }
2539 }
2540 break;
2541 }
2542
2543 the_insn.opcode = opcode;
2544 return;
2545 }
2546
2547 /* Turn a string in input_line_pointer into a floating point constant of type
2548 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
2549 emitted is stored in *sizeP . An error message or NULL is returned. */
2550
2551 #define MAX_LITTLENUMS 6
2552
2553 char *
2554 md_atof (type, litP, sizeP)
2555 char type;
2556 char *litP;
2557 int *sizeP;
2558 {
2559 int prec;
2560 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2561 LITTLENUM_TYPE *wordP;
2562 char *t;
2563
2564 switch (type)
2565 {
2566
2567 case 'f':
2568 case 'F':
2569 case 's':
2570 case 'S':
2571 prec = 2;
2572 break;
2573
2574 case 'd':
2575 case 'D':
2576 case 'r':
2577 case 'R':
2578 prec = 4;
2579 break;
2580
2581 case 'x':
2582 case 'X':
2583 prec = 6;
2584 break;
2585
2586 case 'p':
2587 case 'P':
2588 prec = 6;
2589 break;
2590
2591 default:
2592 *sizeP = 0;
2593 return "Bad call to MD_ATOF()";
2594 }
2595 t = atof_ieee (input_line_pointer, type, words);
2596 if (t)
2597 input_line_pointer = t;
2598 *sizeP = prec * sizeof (LITTLENUM_TYPE);
2599 for (wordP = words; prec--;)
2600 {
2601 md_number_to_chars (litP, (valueT) (*wordP++), sizeof (LITTLENUM_TYPE));
2602 litP += sizeof (LITTLENUM_TYPE);
2603 }
2604 return NULL;
2605 }
2606
2607 /* Write out big-endian. */
2608
2609 void
2610 md_number_to_chars (buf, val, n)
2611 char *buf;
2612 valueT val;
2613 int n;
2614 {
2615 number_to_chars_bigendian (buf, val, n);
2616 }
2617
2618 /* Translate internal representation of relocation info to BFD target
2619 format. */
2620
2621 arelent **
2622 tc_gen_reloc (section, fixp)
2623 asection *section;
2624 fixS *fixp;
2625 {
2626 arelent *reloc;
2627 struct hppa_fix_struct *hppa_fixp = fixp->tc_fix_data;
2628 bfd_reloc_code_real_type code;
2629 static int unwind_reloc_fixp_cnt = 0;
2630 static arelent *unwind_reloc_entryP = NULL;
2631 static arelent *no_relocs = NULL;
2632 arelent **relocs;
2633 bfd_reloc_code_real_type **codes;
2634 int n_relocs;
2635 int i;
2636
2637 if (fixp->fx_addsy == 0)
2638 return &no_relocs;
2639 assert (hppa_fixp != 0);
2640 assert (section != 0);
2641
2642 #ifdef OBJ_ELF
2643 /* Yuk. I would really like to push all this ELF specific unwind
2644 crud into BFD and the linker. That's how SOM does it -- and
2645 if we could make ELF emulate that then we could share more code
2646 in GAS (and potentially a gnu-linker later).
2647
2648 Unwind section relocations are handled in a special way.
2649 The relocations for the .unwind section are originally
2650 built in the usual way. That is, for each unwind table
2651 entry there are two relocations: one for the beginning of
2652 the function and one for the end.
2653
2654 The first time we enter this function we create a
2655 relocation of the type R_HPPA_UNWIND_ENTRIES. The addend
2656 of the relocation is initialized to 0. Each additional
2657 pair of times this function is called for the unwind
2658 section represents an additional unwind table entry. Thus,
2659 the addend of the relocation should end up to be the number
2660 of unwind table entries. */
2661 if (strcmp (UNWIND_SECTION_NAME, section->name) == 0)
2662 {
2663 if (unwind_reloc_entryP == NULL)
2664 {
2665 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
2666 sizeof (arelent));
2667 assert (reloc != 0);
2668 unwind_reloc_entryP = reloc;
2669 unwind_reloc_fixp_cnt++;
2670 unwind_reloc_entryP->address
2671 = fixp->fx_frag->fr_address + fixp->fx_where;
2672 /* A pointer to any function will do. We only
2673 need one to tell us what section the unwind
2674 relocations are for. */
2675 unwind_reloc_entryP->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2676 hppa_fixp->fx_r_type = code = R_HPPA_UNWIND_ENTRIES;
2677 fixp->fx_r_type = R_HPPA_UNWIND;
2678 unwind_reloc_entryP->howto = bfd_reloc_type_lookup (stdoutput, code);
2679 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
2680 relocs = (arelent **) bfd_alloc_by_size_t (stdoutput,
2681 sizeof (arelent *) * 2);
2682 assert (relocs != 0);
2683 relocs[0] = unwind_reloc_entryP;
2684 relocs[1] = NULL;
2685 return relocs;
2686 }
2687 unwind_reloc_fixp_cnt++;
2688 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
2689
2690 return &no_relocs;
2691 }
2692 #endif
2693
2694 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent));
2695 assert (reloc != 0);
2696
2697 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2698 codes = hppa_gen_reloc_type (stdoutput,
2699 fixp->fx_r_type,
2700 hppa_fixp->fx_r_format,
2701 hppa_fixp->fx_r_field);
2702
2703 for (n_relocs = 0; codes[n_relocs]; n_relocs++)
2704 ;
2705
2706 relocs = (arelent **)
2707 bfd_alloc_by_size_t (stdoutput, sizeof (arelent *) * n_relocs + 1);
2708 assert (relocs != 0);
2709
2710 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
2711 sizeof (arelent) * n_relocs);
2712 if (n_relocs > 0)
2713 assert (reloc != 0);
2714
2715 for (i = 0; i < n_relocs; i++)
2716 relocs[i] = &reloc[i];
2717
2718 relocs[n_relocs] = NULL;
2719
2720 #ifdef OBJ_ELF
2721 switch (fixp->fx_r_type)
2722 {
2723 case R_HPPA_COMPLEX:
2724 case R_HPPA_COMPLEX_PCREL_CALL:
2725 case R_HPPA_COMPLEX_ABS_CALL:
2726 assert (n_relocs == 5);
2727
2728 for (i = 0; i < n_relocs; i++)
2729 {
2730 reloc[i].sym_ptr_ptr = NULL;
2731 reloc[i].address = 0;
2732 reloc[i].addend = 0;
2733 reloc[i].howto = bfd_reloc_type_lookup (stdoutput, *codes[i]);
2734 assert (reloc[i].howto && *codes[i] == reloc[i].howto->type);
2735 }
2736
2737 reloc[0].sym_ptr_ptr = &fixp->fx_addsy->bsym;
2738 reloc[1].sym_ptr_ptr = &fixp->fx_subsy->bsym;
2739 reloc[4].address = fixp->fx_frag->fr_address + fixp->fx_where;
2740
2741 if (fixp->fx_r_type == R_HPPA_COMPLEX)
2742 reloc[3].addend = fixp->fx_addnumber;
2743 else if (fixp->fx_r_type == R_HPPA_COMPLEX_PCREL_CALL ||
2744 fixp->fx_r_type == R_HPPA_COMPLEX_ABS_CALL)
2745 reloc[1].addend = fixp->fx_addnumber;
2746
2747 break;
2748
2749 default:
2750 assert (n_relocs == 1);
2751
2752 code = *codes[0];
2753
2754 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2755 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
2756 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
2757 reloc->addend = 0; /* default */
2758
2759 assert (reloc->howto && code == reloc->howto->type);
2760
2761 /* Now, do any processing that is dependent on the relocation type. */
2762 switch (code)
2763 {
2764 case R_HPPA_PLABEL_32:
2765 case R_HPPA_PLABEL_11:
2766 case R_HPPA_PLABEL_14:
2767 case R_HPPA_PLABEL_L21:
2768 case R_HPPA_PLABEL_R11:
2769 case R_HPPA_PLABEL_R14:
2770 /* For plabel relocations, the addend of the
2771 relocation should be either 0 (no static link) or 2
2772 (static link required).
2773
2774 FIXME: We always assume no static link! */
2775 reloc->addend = 0;
2776 break;
2777
2778 case R_HPPA_ABS_CALL_11:
2779 case R_HPPA_ABS_CALL_14:
2780 case R_HPPA_ABS_CALL_17:
2781 case R_HPPA_ABS_CALL_L21:
2782 case R_HPPA_ABS_CALL_R11:
2783 case R_HPPA_ABS_CALL_R14:
2784 case R_HPPA_ABS_CALL_R17:
2785 case R_HPPA_ABS_CALL_LS21:
2786 case R_HPPA_ABS_CALL_RS11:
2787 case R_HPPA_ABS_CALL_RS14:
2788 case R_HPPA_ABS_CALL_RS17:
2789 case R_HPPA_ABS_CALL_LD21:
2790 case R_HPPA_ABS_CALL_RD11:
2791 case R_HPPA_ABS_CALL_RD14:
2792 case R_HPPA_ABS_CALL_RD17:
2793 case R_HPPA_ABS_CALL_LR21:
2794 case R_HPPA_ABS_CALL_RR14:
2795 case R_HPPA_ABS_CALL_RR17:
2796
2797 case R_HPPA_PCREL_CALL_11:
2798 case R_HPPA_PCREL_CALL_14:
2799 case R_HPPA_PCREL_CALL_17:
2800 case R_HPPA_PCREL_CALL_L21:
2801 case R_HPPA_PCREL_CALL_R11:
2802 case R_HPPA_PCREL_CALL_R14:
2803 case R_HPPA_PCREL_CALL_R17:
2804 case R_HPPA_PCREL_CALL_LS21:
2805 case R_HPPA_PCREL_CALL_RS11:
2806 case R_HPPA_PCREL_CALL_RS14:
2807 case R_HPPA_PCREL_CALL_RS17:
2808 case R_HPPA_PCREL_CALL_LD21:
2809 case R_HPPA_PCREL_CALL_RD11:
2810 case R_HPPA_PCREL_CALL_RD14:
2811 case R_HPPA_PCREL_CALL_RD17:
2812 case R_HPPA_PCREL_CALL_LR21:
2813 case R_HPPA_PCREL_CALL_RR14:
2814 case R_HPPA_PCREL_CALL_RR17:
2815 /* The constant is stored in the instruction. */
2816 reloc->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
2817 break;
2818 default:
2819 reloc->addend = fixp->fx_addnumber;
2820 break;
2821 }
2822 break;
2823 }
2824 #else /* OBJ_SOM */
2825
2826 /* Preliminary relocation handling for SOM. Needs to handle
2827 COMPLEX relocations (yes, I've seen them occur) and it will
2828 need to handle R_ENTRY/R_EXIT relocations in the very near future
2829 (for generating unwinds). */
2830 switch (fixp->fx_r_type)
2831 {
2832 case R_HPPA_COMPLEX:
2833 case R_HPPA_COMPLEX_PCREL_CALL:
2834 case R_HPPA_COMPLEX_ABS_CALL:
2835 abort ();
2836 break;
2837 default:
2838 assert (n_relocs == 1);
2839
2840 code = *codes[0];
2841
2842 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2843 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
2844 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
2845
2846 switch (code)
2847 {
2848 case R_PCREL_CALL:
2849 case R_ABS_CALL:
2850 reloc->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
2851 break;
2852
2853 case R_DATA_PLABEL:
2854 case R_CODE_PLABEL:
2855 /* For plabel relocations, the addend of the
2856 relocation should be either 0 (no static link) or 2
2857 (static link required).
2858
2859 FIXME: We always assume no static link! */
2860 reloc->addend = 0;
2861 break;
2862
2863 default:
2864 reloc->addend = fixp->fx_addnumber;
2865 break;
2866 }
2867 break;
2868 }
2869 #endif
2870
2871 return relocs;
2872 }
2873
2874 /* Process any machine dependent frag types. */
2875
2876 void
2877 md_convert_frag (abfd, sec, fragP)
2878 register bfd *abfd;
2879 register asection *sec;
2880 register fragS *fragP;
2881 {
2882 unsigned int address;
2883
2884 if (fragP->fr_type == rs_machine_dependent)
2885 {
2886 switch ((int) fragP->fr_subtype)
2887 {
2888 case 0:
2889 fragP->fr_type = rs_fill;
2890 know (fragP->fr_var == 1);
2891 know (fragP->fr_next);
2892 address = fragP->fr_address + fragP->fr_fix;
2893 if (address % fragP->fr_offset)
2894 {
2895 fragP->fr_offset =
2896 fragP->fr_next->fr_address
2897 - fragP->fr_address
2898 - fragP->fr_fix;
2899 }
2900 else
2901 fragP->fr_offset = 0;
2902 break;
2903 }
2904 }
2905 }
2906
2907 /* Round up a section size to the appropriate boundary. */
2908
2909 valueT
2910 md_section_align (segment, size)
2911 asection *segment;
2912 valueT size;
2913 {
2914 int align = bfd_get_section_alignment (stdoutput, segment);
2915 int align2 = (1 << align) - 1;
2916
2917 return (size + align2) & ~align2;
2918
2919 }
2920
2921 /* Create a short jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2922 void
2923 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
2924 char *ptr;
2925 addressT from_addr, to_addr;
2926 fragS *frag;
2927 symbolS *to_symbol;
2928 {
2929 fprintf (stderr, "pa_create_short_jmp\n");
2930 abort ();
2931 }
2932
2933 /* Create a long jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2934 void
2935 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
2936 char *ptr;
2937 addressT from_addr, to_addr;
2938 fragS *frag;
2939 symbolS *to_symbol;
2940 {
2941 fprintf (stderr, "pa_create_long_jump\n");
2942 abort ();
2943 }
2944
2945 /* Return the approximate size of a frag before relaxation has occurred. */
2946 int
2947 md_estimate_size_before_relax (fragP, segment)
2948 register fragS *fragP;
2949 asection *segment;
2950 {
2951 int size;
2952
2953 size = 0;
2954
2955 while ((fragP->fr_fix + size) % fragP->fr_offset)
2956 size++;
2957
2958 return size;
2959 }
2960
2961 /* Parse machine dependent options. There are none on the PA. */
2962 int
2963 md_parse_option (argP, cntP, vecP)
2964 char **argP;
2965 int *cntP;
2966 char ***vecP;
2967 {
2968 return 1;
2969 }
2970
2971 /* We have no need to default values of symbols. */
2972
2973 symbolS *
2974 md_undefined_symbol (name)
2975 char *name;
2976 {
2977 return 0;
2978 }
2979
2980 /* Parse an operand that is machine-specific.
2981 We just return without modifying the expression as we have nothing
2982 to do on the PA. */
2983
2984 void
2985 md_operand (expressionP)
2986 expressionS *expressionP;
2987 {
2988 }
2989
2990 /* Apply a fixup to an instruction. */
2991
2992 int
2993 md_apply_fix (fixP, valp)
2994 fixS *fixP;
2995 valueT *valp;
2996 {
2997 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
2998 struct hppa_fix_struct *hppa_fixP = fixP->tc_fix_data;
2999 long new_val, result;
3000 unsigned int w1, w2, w;
3001 valueT val = *valp;
3002
3003 /* SOM uses R_HPPA_ENTRY and R_HPPA_EXIT relocations which can
3004 never be "applied" (they are just markers). */
3005 #ifdef OBJ_SOM
3006 if (fixP->fx_r_type == R_HPPA_ENTRY
3007 || fixP->fx_r_type == R_HPPA_EXIT)
3008 return 1;
3009 #endif
3010
3011 /* There should have been an HPPA specific fixup associated
3012 with the GAS fixup. */
3013 if (hppa_fixP)
3014 {
3015 unsigned long buf_wd = bfd_get_32 (stdoutput, buf);
3016 unsigned char fmt = bfd_hppa_insn2fmt (buf_wd);
3017
3018 if (fixP->fx_r_type == R_HPPA_NONE)
3019 fmt = 0;
3020
3021 /* Remember this value for emit_reloc. FIXME, is this braindamage
3022 documented anywhere!?! */
3023 fixP->fx_addnumber = val;
3024
3025 /* Check if this is an undefined symbol. No relocation can
3026 possibly be performed in this case. */
3027 if ((fixP->fx_addsy && fixP->fx_addsy->bsym->section == &bfd_und_section)
3028 || (fixP->fx_subsy
3029 && fixP->fx_subsy->bsym->section == &bfd_und_section))
3030 return 1;
3031
3032 /* PLABEL field selectors should not be passed to hppa_field_adjust. */
3033 if (fmt != 0 && hppa_fixP->fx_r_field != R_HPPA_PSEL
3034 && hppa_fixP->fx_r_field != R_HPPA_LPSEL
3035 && hppa_fixP->fx_r_field != R_HPPA_RPSEL)
3036 new_val = hppa_field_adjust (val, 0, hppa_fixP->fx_r_field);
3037 else
3038 new_val = 0;
3039
3040 switch (fmt)
3041 {
3042 /* Handle all opcodes with the 'j' operand type. */
3043 case 14:
3044 CHECK_FIELD (new_val, 8191, -8192, 0);
3045
3046 /* Mask off 14 bits to be changed. */
3047 bfd_put_32 (stdoutput,
3048 bfd_get_32 (stdoutput, buf) & 0xffffc000,
3049 buf);
3050 low_sign_unext (new_val, 14, &result);
3051 break;
3052
3053 /* Handle all opcodes with the 'k' operand type. */
3054 case 21:
3055 CHECK_FIELD (new_val, 2097152, 0, 0);
3056
3057 /* Mask off 21 bits to be changed. */
3058 bfd_put_32 (stdoutput,
3059 bfd_get_32 (stdoutput, buf) & 0xffe00000,
3060 buf);
3061 dis_assemble_21 (new_val, &result);
3062 break;
3063
3064 /* Handle all the opcodes with the 'i' operand type. */
3065 case 11:
3066 CHECK_FIELD (new_val, 1023, -1023, 0);
3067
3068 /* Mask off 11 bits to be changed. */
3069 bfd_put_32 (stdoutput,
3070 bfd_get_32 (stdoutput, buf) & 0xffff800,
3071 buf);
3072 low_sign_unext (new_val, 11, &result);
3073 break;
3074
3075 /* Handle all the opcodes with the 'w' operand type. */
3076 case 12:
3077 CHECK_FIELD (new_val, 8191, -8192, 0)
3078
3079 /* Mask off 11 bits to be changed. */
3080 sign_unext ((new_val - 8) >> 2, 12, &result);
3081 bfd_put_32 (stdoutput,
3082 bfd_get_32 (stdoutput, buf) & 0xffffe002,
3083 buf);
3084
3085 dis_assemble_12 (result, &w1, &w);
3086 result = ((w1 << 2) | w);
3087 break;
3088
3089 /* Handle some of the opcodes with the 'W' operand type. */
3090 case 17:
3091
3092 #define stub_needed(CALLER, CALLEE) \
3093 ((CALLEE) && (CALLER) && ((CALLEE) != (CALLER)))
3094 /* It is necessary to force PC-relative calls/jumps to have a
3095 relocation entry if they're going to need either a argument
3096 relocation or long call stub. FIXME. Can't we need the same
3097 for absolute calls? */
3098 if (fixP->fx_addsy
3099 && (stub_needed (((obj_symbol_type *)
3100 fixP->fx_addsy->bsym)->tc_data.hppa_arg_reloc,
3101 hppa_fixP->fx_arg_reloc)))
3102 return 1;
3103 #undef stub_needed
3104
3105 CHECK_FIELD (new_val, 262143, -262144, 0);
3106
3107 /* Mask off 17 bits to be changed. */
3108 bfd_put_32 (stdoutput,
3109 bfd_get_32 (stdoutput, buf) & 0xffe0e002,
3110 buf);
3111 sign_unext ((new_val - 8) >> 2, 17, &result);
3112 dis_assemble_17 (result, &w1, &w2, &w);
3113 result = ((w2 << 2) | (w1 << 16) | w);
3114 break;
3115
3116 case 32:
3117 #ifdef OBJ_ELF
3118 /* These are ELF specific relocations. ELF unfortunately
3119 handles unwinds in a completely different manner. */
3120 if (hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRY
3121 || hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRIES)
3122 result = fixP->fx_addnumber;
3123 else
3124 #endif
3125 {
3126 result = 0;
3127 fixP->fx_addnumber = fixP->fx_offset;
3128 bfd_put_32 (stdoutput, 0, buf);
3129 return 1;
3130 }
3131 break;
3132
3133 case 0:
3134 return 1;
3135
3136 default:
3137 as_bad ("Unknown relocation encountered in md_apply_fix.");
3138 return 1;
3139 }
3140
3141 /* Insert the relocation. */
3142 bfd_put_32 (stdoutput, bfd_get_32 (stdoutput, buf) | result, buf);
3143 return 1;
3144 }
3145 else
3146 {
3147 printf ("no hppa_fixup entry for this fixup (fixP = 0x%x, type = 0x%x)\n",
3148 (unsigned int) fixP, fixP->fx_r_type);
3149 return 0;
3150 }
3151 }
3152
3153 /* Exactly what point is a PC-relative offset relative TO?
3154 On the PA, they're relative to the address of the offset. */
3155
3156 long
3157 md_pcrel_from (fixP)
3158 fixS *fixP;
3159 {
3160 return fixP->fx_where + fixP->fx_frag->fr_address;
3161 }
3162
3163 /* Return nonzero if the input line pointer is at the end of
3164 a statement. */
3165
3166 static int
3167 is_end_of_statement ()
3168 {
3169 return ((*input_line_pointer == '\n')
3170 || (*input_line_pointer == ';')
3171 || (*input_line_pointer == '!'));
3172 }
3173
3174 /* Read a number from S. The number might come in one of many forms,
3175 the most common will be a hex or decimal constant, but it could be
3176 a pre-defined register (Yuk!), or an absolute symbol.
3177
3178 Return a number or -1 for failure.
3179
3180 When parsing PA-89 FP register numbers RESULT will be
3181 the address of a structure to return information about
3182 L/R half of FP registers, store results there as appropriate.
3183
3184 pa_parse_number can not handle negative constants and will fail
3185 horribly if it is passed such a constant. */
3186
3187 static int
3188 pa_parse_number (s, result)
3189 char **s;
3190 struct pa_89_fp_reg_struct *result;
3191 {
3192 int num;
3193 char *name;
3194 char c;
3195 symbolS *sym;
3196 int status;
3197 char *p = *s;
3198
3199 /* Skip whitespace before the number. */
3200 while (*p == ' ' || *p == '\t')
3201 p = p + 1;
3202
3203 /* Store info in RESULT if requested by caller. */
3204 if (result)
3205 {
3206 result->number_part = -1;
3207 result->l_r_select = -1;
3208 }
3209 num = -1;
3210
3211 if (isdigit (*p))
3212 {
3213 /* Looks like a number. */
3214 num = 0;
3215
3216 if (*p == '0' && (*(p + 1) == 'x' || *(p + 1) == 'X'))
3217 {
3218 /* The number is specified in hex. */
3219 p += 2;
3220 while (isdigit (*p) || ((*p >= 'a') && (*p <= 'f'))
3221 || ((*p >= 'A') && (*p <= 'F')))
3222 {
3223 if (isdigit (*p))
3224 num = num * 16 + *p - '0';
3225 else if (*p >= 'a' && *p <= 'f')
3226 num = num * 16 + *p - 'a' + 10;
3227 else
3228 num = num * 16 + *p - 'A' + 10;
3229 ++p;
3230 }
3231 }
3232 else
3233 {
3234 /* The number is specified in decimal. */
3235 while (isdigit (*p))
3236 {
3237 num = num * 10 + *p - '0';
3238 ++p;
3239 }
3240 }
3241
3242 /* Store info in RESULT if requested by the caller. */
3243 if (result)
3244 {
3245 result->number_part = num;
3246
3247 if (IS_R_SELECT (p))
3248 {
3249 result->l_r_select = 1;
3250 ++p;
3251 }
3252 else if (IS_L_SELECT (p))
3253 {
3254 result->l_r_select = 0;
3255 ++p;
3256 }
3257 else
3258 result->l_r_select = 0;
3259 }
3260 }
3261 else if (*p == '%')
3262 {
3263 /* The number might be a predefined register. */
3264 num = 0;
3265 name = p;
3266 p++;
3267 c = *p;
3268 /* Tege hack: Special case for general registers as the general
3269 code makes a binary search with case translation, and is VERY
3270 slow. */
3271 if (c == 'r')
3272 {
3273 p++;
3274 if (*p == 'e' && *(p + 1) == 't'
3275 && (*(p + 2) == '0' || *(p + 2) == '1'))
3276 {
3277 p += 2;
3278 num = *p - '0' + 28;
3279 p++;
3280 }
3281 else if (*p == 'p')
3282 {
3283 num = 2;
3284 p++;
3285 }
3286 else if (!isdigit (*p))
3287 {
3288 if (print_errors)
3289 as_bad ("Undefined register: '%s'.", name);
3290 num = -1;
3291 }
3292 else
3293 {
3294 do
3295 num = num * 10 + *p++ - '0';
3296 while (isdigit (*p));
3297 }
3298 }
3299 else
3300 {
3301 /* Do a normal register search. */
3302 while (is_part_of_name (c))
3303 {
3304 p = p + 1;
3305 c = *p;
3306 }
3307 *p = 0;
3308 status = reg_name_search (name);
3309 if (status >= 0)
3310 num = status;
3311 else
3312 {
3313 if (print_errors)
3314 as_bad ("Undefined register: '%s'.", name);
3315 num = -1;
3316 }
3317 *p = c;
3318 }
3319
3320 /* Store info in RESULT if requested by caller. */
3321 if (result)
3322 {
3323 result->number_part = num;
3324 if (IS_R_SELECT (p - 1))
3325 result->l_r_select = 1;
3326 else if (IS_L_SELECT (p - 1))
3327 result->l_r_select = 0;
3328 else
3329 result->l_r_select = 0;
3330 }
3331 }
3332 else
3333 {
3334 /* And finally, it could be a symbol in the absolute section which
3335 is effectively a constant. */
3336 num = 0;
3337 name = p;
3338 c = *p;
3339 while (is_part_of_name (c))
3340 {
3341 p = p + 1;
3342 c = *p;
3343 }
3344 *p = 0;
3345 if ((sym = symbol_find (name)) != NULL)
3346 {
3347 if (S_GET_SEGMENT (sym) == &bfd_abs_section)
3348 num = S_GET_VALUE (sym);
3349 else
3350 {
3351 if (print_errors)
3352 as_bad ("Non-absolute symbol: '%s'.", name);
3353 num = -1;
3354 }
3355 }
3356 else
3357 {
3358 /* There is where we'd come for an undefined symbol
3359 or for an empty string. For an empty string we
3360 will return zero. That's a concession made for
3361 compatability with the braindamaged HP assemblers. */
3362 if (*name == 0)
3363 num = 0;
3364 else
3365 {
3366 if (print_errors)
3367 as_bad ("Undefined absolute constant: '%s'.", name);
3368 num = -1;
3369 }
3370 }
3371 *p = c;
3372
3373 /* Store info in RESULT if requested by caller. */
3374 if (result)
3375 {
3376 result->number_part = num;
3377 if (IS_R_SELECT (p - 1))
3378 result->l_r_select = 1;
3379 else if (IS_L_SELECT (p - 1))
3380 result->l_r_select = 0;
3381 else
3382 result->l_r_select = 0;
3383 }
3384 }
3385
3386 *s = p;
3387 return num;
3388 }
3389
3390 #define REG_NAME_CNT (sizeof(pre_defined_registers) / sizeof(struct pd_reg))
3391
3392 /* Given NAME, find the register number associated with that name, return
3393 the integer value associated with the given name or -1 on failure. */
3394
3395 static int
3396 reg_name_search (name)
3397 char *name;
3398 {
3399 int middle, low, high;
3400
3401 low = 0;
3402 high = REG_NAME_CNT - 1;
3403
3404 do
3405 {
3406 middle = (low + high) / 2;
3407 if (strcasecmp (name, pre_defined_registers[middle].name) < 0)
3408 high = middle - 1;
3409 else
3410 low = middle + 1;
3411 }
3412 while (!((strcasecmp (name, pre_defined_registers[middle].name) == 0) ||
3413 (low > high)));
3414
3415 if (strcasecmp (name, pre_defined_registers[middle].name) == 0)
3416 return (pre_defined_registers[middle].value);
3417 else
3418 return (-1);
3419 }
3420
3421
3422 /* Return nonzero if the given INSN and L/R information will require
3423 a new PA-89 opcode. */
3424
3425 static int
3426 need_89_opcode (insn, result)
3427 struct pa_it *insn;
3428 struct pa_89_fp_reg_struct *result;
3429 {
3430 if (result->l_r_select == 1 && !(insn->fpof1 == DBL && insn->fpof2 == DBL))
3431 return TRUE;
3432 else
3433 return FALSE;
3434 }
3435
3436 /* Parse a condition for a fcmp instruction. Return the numerical
3437 code associated with the condition. */
3438
3439 static int
3440 pa_parse_fp_cmp_cond (s)
3441 char **s;
3442 {
3443 int cond, i;
3444
3445 cond = 0;
3446
3447 for (i = 0; i < 32; i++)
3448 {
3449 if (strncasecmp (*s, fp_cond_map[i].string,
3450 strlen (fp_cond_map[i].string)) == 0)
3451 {
3452 cond = fp_cond_map[i].cond;
3453 *s += strlen (fp_cond_map[i].string);
3454 while (**s == ' ' || **s == '\t')
3455 *s = *s + 1;
3456 return cond;
3457 }
3458 }
3459
3460 as_bad ("Invalid FP Compare Condition: %c", **s);
3461 return 0;
3462 }
3463
3464 /* Parse an FP operand format completer returning the completer
3465 type. */
3466
3467 static fp_operand_format
3468 pa_parse_fp_format (s)
3469 char **s;
3470 {
3471 int format;
3472
3473 format = SGL;
3474 if (**s == ',')
3475 {
3476 *s += 1;
3477 if (strncasecmp (*s, "sgl", 3) == 0)
3478 {
3479 format = SGL;
3480 *s += 4;
3481 }
3482 else if (strncasecmp (*s, "dbl", 3) == 0)
3483 {
3484 format = DBL;
3485 *s += 4;
3486 }
3487 else if (strncasecmp (*s, "quad", 4) == 0)
3488 {
3489 format = QUAD;
3490 *s += 5;
3491 }
3492 else
3493 {
3494 format = ILLEGAL_FMT;
3495 as_bad ("Invalid FP Operand Format: %3s", *s);
3496 }
3497 }
3498
3499 return format;
3500 }
3501
3502 /* Convert from a selector string into a selector type. */
3503
3504 static int
3505 pa_chk_field_selector (str)
3506 char **str;
3507 {
3508 int selector;
3509 const struct selector_entry *tablep;
3510
3511 selector = e_fsel;
3512
3513 /* Read past any whitespace. */
3514 while (**str == ' ' || **str == '\t' || **str == '\n' || **str == '\f')
3515 *str = *str + 1;
3516
3517 /* Yuk. Looks like a linear search through the table. With the
3518 frequence of some selectors it might make sense to sort the
3519 table by usage. */
3520 for (tablep = selector_table; tablep->prefix; tablep++)
3521 {
3522 if (strncasecmp (tablep->prefix, *str, strlen (tablep->prefix)) == 0)
3523 {
3524 *str += strlen (tablep->prefix);
3525 selector = tablep->field_selector;
3526 break;
3527 }
3528 }
3529 return selector;
3530 }
3531
3532 /* Mark (via expr_end) the end of an expression (I think). FIXME. */
3533
3534 static int
3535 get_expression (str)
3536 char *str;
3537 {
3538 char *save_in;
3539 asection *seg;
3540
3541 save_in = input_line_pointer;
3542 input_line_pointer = str;
3543 seg = expression (&the_insn.exp);
3544 if (!(seg == absolute_section
3545 || seg == undefined_section
3546 || SEG_NORMAL (seg)))
3547 {
3548 as_warn ("Bad segment in expression.");
3549 expr_end = input_line_pointer;
3550 input_line_pointer = save_in;
3551 return 1;
3552 }
3553 expr_end = input_line_pointer;
3554 input_line_pointer = save_in;
3555 return 0;
3556 }
3557
3558 /* Mark (via expr_end) the end of an absolute expression. FIXME. */
3559 static int
3560 pa_get_absolute_expression (insn, strp)
3561 struct pa_it *insn;
3562 char **strp;
3563 {
3564 char *save_in;
3565
3566 insn->field_selector = pa_chk_field_selector (strp);
3567 save_in = input_line_pointer;
3568 input_line_pointer = *strp;
3569 expression (&insn->exp);
3570 if (insn->exp.X_op != O_constant)
3571 {
3572 as_bad ("Bad segment (should be absolute).");
3573 expr_end = input_line_pointer;
3574 input_line_pointer = save_in;
3575 return 0;
3576 }
3577 expr_end = input_line_pointer;
3578 input_line_pointer = save_in;
3579 return evaluate_absolute (insn);
3580 }
3581
3582 /* Evaluate an absolute expression EXP which may be modified by
3583 the selector FIELD_SELECTOR. Return the value of the expression. */
3584 static int
3585 evaluate_absolute (insn)
3586 struct pa_it *insn;
3587 {
3588 int value;
3589 expressionS exp;
3590 int field_selector = insn->field_selector;
3591
3592 exp = insn->exp;
3593 value = exp.X_add_number;
3594
3595 switch (field_selector)
3596 {
3597 /* No change. */
3598 case e_fsel:
3599 break;
3600
3601 /* If bit 21 is on then add 0x800 and arithmetic shift right 11 bits. */
3602 case e_lssel:
3603 if (value & 0x00000400)
3604 value += 0x800;
3605 value = (value & 0xfffff800) >> 11;
3606 break;
3607
3608 /* Sign extend from bit 21. */
3609 case e_rssel:
3610 if (value & 0x00000400)
3611 value |= 0xfffff800;
3612 else
3613 value &= 0x7ff;
3614 break;
3615
3616 /* Arithmetic shift right 11 bits. */
3617 case e_lsel:
3618 value = (value & 0xfffff800) >> 11;
3619 break;
3620
3621 /* Set bits 0-20 to zero. */
3622 case e_rsel:
3623 value = value & 0x7ff;
3624 break;
3625
3626 /* Add 0x800 and arithmetic shift right 11 bits. */
3627 case e_ldsel:
3628 value += 0x800;
3629 value = (value & 0xfffff800) >> 11;
3630 break;
3631
3632 /* Set bitgs 0-21 to one. */
3633 case e_rdsel:
3634 value |= 0xfffff800;
3635 break;
3636
3637 #define RSEL_ROUND(c) (((c) + 0x1000) & ~0x1fff)
3638 case e_rrsel:
3639 value = (RSEL_ROUND (value) & 0x7ff) + (value - RSEL_ROUND (value));
3640 break;
3641
3642 case e_lrsel:
3643 value = (RSEL_ROUND (value) >> 11) & 0x1fffff;
3644 break;
3645 #undef RSEL_ROUND
3646
3647 default:
3648 BAD_CASE (field_selector);
3649 break;
3650 }
3651 return value;
3652 }
3653
3654 /* Given an argument location specification return the associated
3655 argument location number. */
3656
3657 static unsigned int
3658 pa_build_arg_reloc (type_name)
3659 char *type_name;
3660 {
3661
3662 if (strncasecmp (type_name, "no", 2) == 0)
3663 return 0;
3664 if (strncasecmp (type_name, "gr", 2) == 0)
3665 return 1;
3666 else if (strncasecmp (type_name, "fr", 2) == 0)
3667 return 2;
3668 else if (strncasecmp (type_name, "fu", 2) == 0)
3669 return 3;
3670 else
3671 as_bad ("Invalid argument location: %s\n", type_name);
3672
3673 return 0;
3674 }
3675
3676 /* Encode and return an argument relocation specification for
3677 the given register in the location specified by arg_reloc. */
3678
3679 static unsigned int
3680 pa_align_arg_reloc (reg, arg_reloc)
3681 unsigned int reg;
3682 unsigned int arg_reloc;
3683 {
3684 unsigned int new_reloc;
3685
3686 new_reloc = arg_reloc;
3687 switch (reg)
3688 {
3689 case 0:
3690 new_reloc <<= 8;
3691 break;
3692 case 1:
3693 new_reloc <<= 6;
3694 break;
3695 case 2:
3696 new_reloc <<= 4;
3697 break;
3698 case 3:
3699 new_reloc <<= 2;
3700 break;
3701 default:
3702 as_bad ("Invalid argument description: %d", reg);
3703 }
3704
3705 return new_reloc;
3706 }
3707
3708 /* Parse a PA nullification completer (,n). Return nonzero if the
3709 completer was found; return zero if no completer was found. */
3710
3711 static int
3712 pa_parse_nullif (s)
3713 char **s;
3714 {
3715 int nullif;
3716
3717 nullif = 0;
3718 if (**s == ',')
3719 {
3720 *s = *s + 1;
3721 if (strncasecmp (*s, "n", 1) == 0)
3722 nullif = 1;
3723 else
3724 {
3725 as_bad ("Invalid Nullification: (%c)", **s);
3726 nullif = 0;
3727 }
3728 *s = *s + 1;
3729 }
3730
3731 return nullif;
3732 }
3733
3734 /* Parse a non-negated compare/subtract completer returning the
3735 number (for encoding in instrutions) of the given completer.
3736
3737 ISBRANCH specifies whether or not this is parsing a condition
3738 completer for a branch (vs a nullification completer for a
3739 computational instruction. */
3740
3741 static int
3742 pa_parse_nonneg_cmpsub_cmpltr (s, isbranch)
3743 char **s;
3744 int isbranch;
3745 {
3746 int cmpltr;
3747 char *name = *s + 1;
3748 char c;
3749 char *save_s = *s;
3750
3751 cmpltr = 0;
3752 if (**s == ',')
3753 {
3754 *s += 1;
3755 while (**s != ',' && **s != ' ' && **s != '\t')
3756 *s += 1;
3757 c = **s;
3758 **s = 0x00;
3759 if (strcmp (name, "=") == 0)
3760 {
3761 cmpltr = 1;
3762 }
3763 else if (strcmp (name, "<") == 0)
3764 {
3765 cmpltr = 2;
3766 }
3767 else if (strcmp (name, "<=") == 0)
3768 {
3769 cmpltr = 3;
3770 }
3771 else if (strcmp (name, "<<") == 0)
3772 {
3773 cmpltr = 4;
3774 }
3775 else if (strcmp (name, "<<=") == 0)
3776 {
3777 cmpltr = 5;
3778 }
3779 else if (strcasecmp (name, "sv") == 0)
3780 {
3781 cmpltr = 6;
3782 }
3783 else if (strcasecmp (name, "od") == 0)
3784 {
3785 cmpltr = 7;
3786 }
3787 /* If we have something like addb,n then there is no condition
3788 completer. */
3789 else if (strcasecmp (name, "n") == 0 && isbranch)
3790 {
3791 cmpltr = 0;
3792 }
3793 else
3794 {
3795 cmpltr = -1;
3796 }
3797 **s = c;
3798 }
3799
3800 /* Reset pointers if this was really a ,n for a branch instruction. */
3801 if (cmpltr == 0 && *name == 'n' && isbranch)
3802 *s = save_s;
3803
3804 return cmpltr;
3805 }
3806
3807 /* Parse a negated compare/subtract completer returning the
3808 number (for encoding in instrutions) of the given completer.
3809
3810 ISBRANCH specifies whether or not this is parsing a condition
3811 completer for a branch (vs a nullification completer for a
3812 computational instruction. */
3813
3814 static int
3815 pa_parse_neg_cmpsub_cmpltr (s, isbranch)
3816 char **s;
3817 int isbranch;
3818 {
3819 int cmpltr;
3820 char *name = *s + 1;
3821 char c;
3822 char *save_s = *s;
3823
3824 cmpltr = 0;
3825 if (**s == ',')
3826 {
3827 *s += 1;
3828 while (**s != ',' && **s != ' ' && **s != '\t')
3829 *s += 1;
3830 c = **s;
3831 **s = 0x00;
3832 if (strcasecmp (name, "tr") == 0)
3833 {
3834 cmpltr = 0;
3835 }
3836 else if (strcmp (name, "<>") == 0)
3837 {
3838 cmpltr = 1;
3839 }
3840 else if (strcmp (name, ">=") == 0)
3841 {
3842 cmpltr = 2;
3843 }
3844 else if (strcmp (name, ">") == 0)
3845 {
3846 cmpltr = 3;
3847 }
3848 else if (strcmp (name, ">>=") == 0)
3849 {
3850 cmpltr = 4;
3851 }
3852 else if (strcmp (name, ">>") == 0)
3853 {
3854 cmpltr = 5;
3855 }
3856 else if (strcasecmp (name, "nsv") == 0)
3857 {
3858 cmpltr = 6;
3859 }
3860 else if (strcasecmp (name, "ev") == 0)
3861 {
3862 cmpltr = 7;
3863 }
3864 /* If we have something like addb,n then there is no condition
3865 completer. */
3866 else if (strcasecmp (name, "n") == 0 && isbranch)
3867 {
3868 cmpltr = 0;
3869 }
3870 else
3871 {
3872 cmpltr = -1;
3873 }
3874 **s = c;
3875 }
3876
3877 /* Reset pointers if this was really a ,n for a branch instruction. */
3878 if (cmpltr == 0 && *name == 'n' && isbranch)
3879 *s = save_s;
3880
3881 return cmpltr;
3882 }
3883
3884 /* Parse a non-negated addition completer returning the number
3885 (for encoding in instrutions) of the given completer.
3886
3887 ISBRANCH specifies whether or not this is parsing a condition
3888 completer for a branch (vs a nullification completer for a
3889 computational instruction. */
3890
3891 static int
3892 pa_parse_nonneg_add_cmpltr (s, isbranch)
3893 char **s;
3894 int isbranch;
3895 {
3896 int cmpltr;
3897 char *name = *s + 1;
3898 char c;
3899 char *save_s = *s;
3900
3901 cmpltr = 0;
3902 if (**s == ',')
3903 {
3904 *s += 1;
3905 while (**s != ',' && **s != ' ' && **s != '\t')
3906 *s += 1;
3907 c = **s;
3908 **s = 0x00;
3909 if (strcmp (name, "=") == 0)
3910 {
3911 cmpltr = 1;
3912 }
3913 else if (strcmp (name, "<") == 0)
3914 {
3915 cmpltr = 2;
3916 }
3917 else if (strcmp (name, "<=") == 0)
3918 {
3919 cmpltr = 3;
3920 }
3921 else if (strcasecmp (name, "nuv") == 0)
3922 {
3923 cmpltr = 4;
3924 }
3925 else if (strcasecmp (name, "znv") == 0)
3926 {
3927 cmpltr = 5;
3928 }
3929 else if (strcasecmp (name, "sv") == 0)
3930 {
3931 cmpltr = 6;
3932 }
3933 else if (strcasecmp (name, "od") == 0)
3934 {
3935 cmpltr = 7;
3936 }
3937 /* If we have something like addb,n then there is no condition
3938 completer. */
3939 else if (strcasecmp (name, "n") == 0 && isbranch)
3940 {
3941 cmpltr = 0;
3942 }
3943 else
3944 {
3945 cmpltr = -1;
3946 }
3947 **s = c;
3948 }
3949
3950 /* Reset pointers if this was really a ,n for a branch instruction. */
3951 if (cmpltr == 0 && *name == 'n' && isbranch)
3952 *s = save_s;
3953
3954 return cmpltr;
3955 }
3956
3957 /* Parse a negated addition completer returning the number
3958 (for encoding in instrutions) of the given completer.
3959
3960 ISBRANCH specifies whether or not this is parsing a condition
3961 completer for a branch (vs a nullification completer for a
3962 computational instruction. */
3963
3964 static int
3965 pa_parse_neg_add_cmpltr (s, isbranch)
3966 char **s;
3967 int isbranch;
3968 {
3969 int cmpltr;
3970 char *name = *s + 1;
3971 char c;
3972 char *save_s = *s;
3973
3974 cmpltr = 0;
3975 if (**s == ',')
3976 {
3977 *s += 1;
3978 while (**s != ',' && **s != ' ' && **s != '\t')
3979 *s += 1;
3980 c = **s;
3981 **s = 0x00;
3982 if (strcasecmp (name, "tr") == 0)
3983 {
3984 cmpltr = 0;
3985 }
3986 else if (strcmp (name, "<>") == 0)
3987 {
3988 cmpltr = 1;
3989 }
3990 else if (strcmp (name, ">=") == 0)
3991 {
3992 cmpltr = 2;
3993 }
3994 else if (strcmp (name, ">") == 0)
3995 {
3996 cmpltr = 3;
3997 }
3998 else if (strcmp (name, "uv") == 0)
3999 {
4000 cmpltr = 4;
4001 }
4002 else if (strcmp (name, "vnz") == 0)
4003 {
4004 cmpltr = 5;
4005 }
4006 else if (strcasecmp (name, "nsv") == 0)
4007 {
4008 cmpltr = 6;
4009 }
4010 else if (strcasecmp (name, "ev") == 0)
4011 {
4012 cmpltr = 7;
4013 }
4014 /* If we have something like addb,n then there is no condition
4015 completer. */
4016 else if (strcasecmp (name, "n") == 0 && isbranch)
4017 {
4018 cmpltr = 0;
4019 }
4020 else
4021 {
4022 cmpltr = -1;
4023 }
4024 **s = c;
4025 }
4026
4027 /* Reset pointers if this was really a ,n for a branch instruction. */
4028 if (cmpltr == 0 && *name == 'n' && isbranch)
4029 *s = save_s;
4030
4031 return cmpltr;
4032 }
4033
4034 /* Handle a .BLOCK type pseudo-op. */
4035
4036 static void
4037 pa_block (z)
4038 int z;
4039 {
4040 char *p;
4041 long int temp_fill;
4042 unsigned int temp_size;
4043 int i;
4044
4045 temp_size = get_absolute_expression ();
4046
4047 /* Always fill with zeros, that's what the HP assembler does. */
4048 temp_fill = 0;
4049
4050 p = frag_var (rs_fill, (int) temp_size, (int) temp_size,
4051 (relax_substateT) 0, (symbolS *) 0, 1, NULL);
4052 bzero (p, temp_size);
4053
4054 /* Convert 2 bytes at a time. */
4055
4056 for (i = 0; i < temp_size; i += 2)
4057 {
4058 md_number_to_chars (p + i,
4059 (valueT) temp_fill,
4060 (int) ((temp_size - i) > 2 ? 2 : (temp_size - i)));
4061 }
4062
4063 pa_undefine_label ();
4064 demand_empty_rest_of_line ();
4065 return;
4066 }
4067
4068 /* Handle a .CALL pseudo-op. This involves storing away information
4069 about where arguments are to be found so the linker can detect
4070 (and correct) argument location mismatches between caller and callee. */
4071
4072 static void
4073 pa_call (unused)
4074 int unused;
4075 {
4076 pa_call_args (&last_call_desc);
4077 demand_empty_rest_of_line ();
4078 return;
4079 }
4080
4081 /* Do the dirty work of building a call descriptor which describes
4082 where the caller placed arguments to a function call. */
4083
4084 static void
4085 pa_call_args (call_desc)
4086 struct call_desc *call_desc;
4087 {
4088 char *name, c, *p;
4089 unsigned int temp, arg_reloc;
4090
4091 while (!is_end_of_statement ())
4092 {
4093 name = input_line_pointer;
4094 c = get_symbol_end ();
4095 /* Process a source argument. */
4096 if ((strncasecmp (name, "argw", 4) == 0))
4097 {
4098 temp = atoi (name + 4);
4099 p = input_line_pointer;
4100 *p = c;
4101 input_line_pointer++;
4102 name = input_line_pointer;
4103 c = get_symbol_end ();
4104 arg_reloc = pa_build_arg_reloc (name);
4105 call_desc->arg_reloc |= pa_align_arg_reloc (temp, arg_reloc);
4106 }
4107 /* Process a return value. */
4108 else if ((strncasecmp (name, "rtnval", 6) == 0))
4109 {
4110 p = input_line_pointer;
4111 *p = c;
4112 input_line_pointer++;
4113 name = input_line_pointer;
4114 c = get_symbol_end ();
4115 arg_reloc = pa_build_arg_reloc (name);
4116 call_desc->arg_reloc |= (arg_reloc & 0x3);
4117 }
4118 else
4119 {
4120 as_bad ("Invalid .CALL argument: %s", name);
4121 }
4122 p = input_line_pointer;
4123 *p = c;
4124 if (!is_end_of_statement ())
4125 input_line_pointer++;
4126 }
4127 }
4128
4129 /* Return TRUE if FRAG1 and FRAG2 are the same. */
4130
4131 static int
4132 is_same_frag (frag1, frag2)
4133 fragS *frag1;
4134 fragS *frag2;
4135 {
4136
4137 if (frag1 == NULL)
4138 return (FALSE);
4139 else if (frag2 == NULL)
4140 return (FALSE);
4141 else if (frag1 == frag2)
4142 return (TRUE);
4143 else if (frag2->fr_type == rs_fill && frag2->fr_fix == 0)
4144 return (is_same_frag (frag1, frag2->fr_next));
4145 else
4146 return (FALSE);
4147 }
4148
4149 #ifdef OBJ_ELF
4150 /* Build an entry in the UNWIND subspace from the given function
4151 attributes in CALL_INFO. This is not needed for SOM as using
4152 R_ENTRY and R_EXIT relocations allow the linker to handle building
4153 of the unwind spaces. */
4154
4155 static void
4156 pa_build_unwind_subspace (call_info)
4157 struct call_info *call_info;
4158 {
4159 char *unwind;
4160 asection *seg, *save_seg;
4161 subsegT subseg, save_subseg;
4162 int i;
4163 char c, *p;
4164
4165 /* Get into the right seg/subseg. This may involve creating
4166 the seg the first time through. Make sure to have the
4167 old seg/subseg so that we can reset things when we are done. */
4168 subseg = SUBSEG_UNWIND;
4169 seg = bfd_get_section_by_name (stdoutput, UNWIND_SECTION_NAME);
4170 if (seg == ASEC_NULL)
4171 {
4172 seg = bfd_make_section_old_way (stdoutput, UNWIND_SECTION_NAME);
4173 bfd_set_section_flags (stdoutput, seg,
4174 SEC_READONLY | SEC_HAS_CONTENTS
4175 | SEC_LOAD | SEC_RELOC);
4176 }
4177
4178 save_seg = now_seg;
4179 save_subseg = now_subseg;
4180 subseg_set (seg, subseg);
4181
4182
4183 /* Get some space to hold relocation information for the unwind
4184 descriptor. */
4185 p = frag_more (4);
4186 call_info->start_offset_frag = frag_now;
4187 call_info->start_frag_where = p - frag_now->fr_literal;
4188
4189 /* Relocation info. for start offset of the function. */
4190 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4191 call_info->start_symbol, (offsetT) 0,
4192 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4193 (char *) 0);
4194
4195 /* We need to search for the first relocation involving the start_symbol of
4196 this call_info descriptor. */
4197 {
4198 fixS *fixP;
4199
4200 call_info->start_fix = seg_info (now_seg)->fix_root;
4201 for (fixP = call_info->start_fix; fixP; fixP = fixP->fx_next)
4202 {
4203 if (fixP->fx_addsy == call_info->start_symbol
4204 || fixP->fx_subsy == call_info->start_symbol)
4205 {
4206 call_info->start_fix = fixP;
4207 break;
4208 }
4209 }
4210 }
4211
4212 p = frag_more (4);
4213 call_info->end_offset_frag = frag_now;
4214 call_info->end_frag_where = p - frag_now->fr_literal;
4215
4216 /* Relocation info. for end offset of the function. */
4217 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4218 call_info->end_symbol, (offsetT) 0,
4219 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4220 (char *) 0);
4221
4222 /* We need to search for the first relocation involving the end_symbol of
4223 this call_info descriptor. */
4224 {
4225 fixS *fixP;
4226
4227 call_info->end_fix = seg_info (now_seg)->fix_root; /* the default */
4228 for (fixP = call_info->end_fix; fixP; fixP = fixP->fx_next)
4229 {
4230 if (fixP->fx_addsy == call_info->end_symbol
4231 || fixP->fx_subsy == call_info->end_symbol)
4232 {
4233 call_info->end_fix = fixP;
4234 break;
4235 }
4236 }
4237 }
4238
4239 /* Dump it. */
4240 unwind = (char *) &call_info->ci_unwind;
4241 for (i = 8; i < sizeof (struct unwind_table); i++)
4242 {
4243 c = *(unwind + i);
4244 {
4245 FRAG_APPEND_1_CHAR (c);
4246 }
4247 }
4248
4249 /* Return back to the original segment/subsegment. */
4250 subseg_set (save_seg, save_subseg);
4251 }
4252 #endif
4253
4254 /* Process a .CALLINFO pseudo-op. This information is used later
4255 to build unwind descriptors and maybe one day to support
4256 .ENTER and .LEAVE. */
4257
4258 static void
4259 pa_callinfo (unused)
4260 int unused;
4261 {
4262 char *name, c, *p;
4263 int temp;
4264
4265 /* .CALLINFO must appear within a procedure definition. */
4266 if (!within_procedure)
4267 as_bad (".callinfo is not within a procedure definition");
4268
4269 /* Mark the fact that we found the .CALLINFO for the
4270 current procedure. */
4271 callinfo_found = TRUE;
4272
4273 /* Iterate over the .CALLINFO arguments. */
4274 while (!is_end_of_statement ())
4275 {
4276 name = input_line_pointer;
4277 c = get_symbol_end ();
4278 /* Frame size specification. */
4279 if ((strncasecmp (name, "frame", 5) == 0))
4280 {
4281 p = input_line_pointer;
4282 *p = c;
4283 input_line_pointer++;
4284 temp = get_absolute_expression ();
4285 if ((temp & 0x3) != 0)
4286 {
4287 as_bad ("FRAME parameter must be a multiple of 8: %d\n", temp);
4288 temp = 0;
4289 }
4290
4291 /* callinfo is in bytes and unwind_desc is in 8 byte units. */
4292 last_call_info->ci_unwind.descriptor.frame_size = temp / 8;
4293
4294 }
4295 /* Entry register (GR, GR and SR) specifications. */
4296 else if ((strncasecmp (name, "entry_gr", 8) == 0))
4297 {
4298 p = input_line_pointer;
4299 *p = c;
4300 input_line_pointer++;
4301 temp = get_absolute_expression ();
4302 /* The HP assembler accepts 19 as the high bound for ENTRY_GR
4303 even though %r19 is caller saved. I think this is a bug in
4304 the HP assembler, and we are not going to emulate it. */
4305 if (temp < 3 || temp > 18)
4306 as_bad ("Value for ENTRY_GR must be in the range 3..18\n");
4307 last_call_info->ci_unwind.descriptor.entry_gr = temp - 2;
4308 }
4309 else if ((strncasecmp (name, "entry_fr", 8) == 0))
4310 {
4311 p = input_line_pointer;
4312 *p = c;
4313 input_line_pointer++;
4314 temp = get_absolute_expression ();
4315 /* Similarly the HP assembler takes 31 as the high bound even
4316 though %fr21 is the last callee saved floating point register. */
4317 if (temp < 12 || temp > 21)
4318 as_bad ("Value for ENTRY_FR must be in the range 12..21\n");
4319 last_call_info->ci_unwind.descriptor.entry_fr = temp - 11;
4320 }
4321 else if ((strncasecmp (name, "entry_sr", 8) == 0))
4322 {
4323 p = input_line_pointer;
4324 *p = c;
4325 input_line_pointer++;
4326 temp = get_absolute_expression ();
4327 if (temp != 3)
4328 as_bad ("Value for ENTRY_SR must be 3\n");
4329 last_call_info->entry_sr = temp - 2;
4330 }
4331 /* Note whether or not this function performs any calls. */
4332 else if ((strncasecmp (name, "calls", 5) == 0) ||
4333 (strncasecmp (name, "caller", 6) == 0))
4334 {
4335 p = input_line_pointer;
4336 *p = c;
4337 last_call_info->makes_calls = 1;
4338 }
4339 else if ((strncasecmp (name, "no_calls", 8) == 0))
4340 {
4341 p = input_line_pointer;
4342 *p = c;
4343 last_call_info->makes_calls = 0;
4344 }
4345 /* Should RP be saved into the stack. */
4346 else if ((strncasecmp (name, "save_rp", 7) == 0))
4347 {
4348 p = input_line_pointer;
4349 *p = c;
4350 last_call_info->ci_unwind.descriptor.save_rp = 1;
4351 }
4352 /* Likewise for SP. */
4353 else if ((strncasecmp (name, "save_sp", 7) == 0))
4354 {
4355 p = input_line_pointer;
4356 *p = c;
4357 last_call_info->ci_unwind.descriptor.save_sp = 1;
4358 }
4359 /* Is this an unwindable procedure. If so mark it so
4360 in the unwind descriptor. */
4361 else if ((strncasecmp (name, "no_unwind", 9) == 0))
4362 {
4363 p = input_line_pointer;
4364 *p = c;
4365 last_call_info->ci_unwind.descriptor.cannot_unwind = 1;
4366 }
4367 /* Is this an interrupt routine. If so mark it in the
4368 unwind descriptor. */
4369 else if ((strncasecmp (name, "hpux_int", 7) == 0))
4370 {
4371 p = input_line_pointer;
4372 *p = c;
4373 last_call_info->ci_unwind.descriptor.hpux_interrupt_marker = 1;
4374 }
4375 else
4376 {
4377 as_bad ("Invalid .CALLINFO argument: %s", name);
4378 }
4379 if (!is_end_of_statement ())
4380 input_line_pointer++;
4381 }
4382
4383 demand_empty_rest_of_line ();
4384 return;
4385 }
4386
4387 /* Switch into the code subspace. */
4388
4389 static void
4390 pa_code (unused)
4391 int unused;
4392 {
4393 sd_chain_struct *sdchain;
4394
4395 /* First time through it might be necessary to create the
4396 $TEXT$ space. */
4397 if ((sdchain = is_defined_space ("$TEXT$")) == NULL)
4398 {
4399 sdchain = create_new_space (pa_def_spaces[0].name,
4400 pa_def_spaces[0].spnum,
4401 pa_def_spaces[0].loadable,
4402 pa_def_spaces[0].defined,
4403 pa_def_spaces[0].private,
4404 pa_def_spaces[0].sort,
4405 pa_def_spaces[0].segment, 0);
4406 }
4407
4408 SPACE_DEFINED (sdchain) = 1;
4409 subseg_set (text_section, SUBSEG_CODE);
4410 demand_empty_rest_of_line ();
4411 return;
4412 }
4413
4414 /* This is different than the standard GAS s_comm(). On HP9000/800 machines,
4415 the .comm pseudo-op has the following symtax:
4416
4417 <label> .comm <length>
4418
4419 where <label> is optional and is a symbol whose address will be the start of
4420 a block of memory <length> bytes long. <length> must be an absolute
4421 expression. <length> bytes will be allocated in the current space
4422 and subspace. */
4423
4424 static void
4425 pa_comm (unused)
4426 int unused;
4427 {
4428 unsigned int size;
4429 symbolS *symbol;
4430 label_symbol_struct *label_symbol = pa_get_label ();
4431
4432 if (label_symbol)
4433 symbol = label_symbol->lss_label;
4434 else
4435 symbol = NULL;
4436
4437 SKIP_WHITESPACE ();
4438 size = get_absolute_expression ();
4439
4440 if (symbol)
4441 {
4442 /* It is incorrect to check S_IS_DEFINED at this point as
4443 the symbol will *always* be defined. FIXME. How to
4444 correctly determine when this label really as been
4445 defined before. */
4446 if (S_GET_VALUE (symbol))
4447 {
4448 if (S_GET_VALUE (symbol) != size)
4449 {
4450 as_warn ("Length of .comm \"%s\" is already %d. Not changed.",
4451 S_GET_NAME (symbol), S_GET_VALUE (symbol));
4452 return;
4453 }
4454 }
4455 else
4456 {
4457 S_SET_VALUE (symbol, size);
4458 S_SET_SEGMENT (symbol, &bfd_und_section);
4459 S_SET_EXTERNAL (symbol);
4460 }
4461 }
4462 demand_empty_rest_of_line ();
4463 }
4464
4465 /* Process a .COPYRIGHT pseudo-op. */
4466
4467 static void
4468 pa_copyright (unused)
4469 int unused;
4470 {
4471 char *name;
4472 char c;
4473
4474 SKIP_WHITESPACE ();
4475 if (*input_line_pointer == '\"')
4476 {
4477 ++input_line_pointer;
4478 name = input_line_pointer;
4479 while ((c = next_char_of_string ()) >= 0)
4480 ;
4481 c = *input_line_pointer;
4482 *input_line_pointer = '\0';
4483 *(input_line_pointer - 1) = '\0';
4484 {
4485 /* FIXME. Not supported */
4486 abort ();
4487 }
4488 *input_line_pointer = c;
4489 }
4490 else
4491 {
4492 as_bad ("Expected \"-ed string");
4493 }
4494 pa_undefine_label ();
4495 demand_empty_rest_of_line ();
4496 }
4497
4498 /* Process a .END pseudo-op. */
4499
4500 static void
4501 pa_end (unused)
4502 int unused;
4503 {
4504 demand_empty_rest_of_line ();
4505 return;
4506 }
4507
4508 /* Process a .ENTER pseudo-op. This is not supported. */
4509 static void
4510 pa_enter (unused)
4511 int unused;
4512 {
4513 abort ();
4514 return;
4515 }
4516
4517 /* Process a .ENTRY pseudo-op. .ENTRY marks the beginning of the
4518 procesure. */
4519 static void
4520 pa_entry (unused)
4521 int unused;
4522 {
4523 if (!within_procedure)
4524 as_bad ("Misplaced .entry. Ignored.");
4525 else
4526 {
4527 if (!callinfo_found)
4528 as_bad ("Missing .callinfo.");
4529
4530 last_call_info->start_frag = frag_now;
4531 }
4532 demand_empty_rest_of_line ();
4533 within_entry_exit = TRUE;
4534
4535 /* Go back to the last symbol and turn on the BSF_FUNCTION flag.
4536 It will not be on if no .EXPORT pseudo-op exists (static function). */
4537 last_call_info->start_symbol->bsym->flags |= BSF_FUNCTION;
4538
4539 #ifdef OBJ_SOM
4540 /* SOM defers building of unwind descriptors until the link phase.
4541 The assembler is responsible for creating an R_ENTRY relocation
4542 to mark the beginning of a region and hold the unwind bits, and
4543 for creating an R_EXIT relocation to mark the end of the region.
4544
4545 FIXME. ELF should be using the same conventions! The problem
4546 is an unwind requires too much relocation space. Hmmm. Maybe
4547 if we split the unwind bits up between the relocations which
4548 denote the entry and exit points. */
4549 {
4550 char *where = frag_more (0);
4551
4552 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
4553 last_call_info->start_symbol, (offsetT) 0, NULL,
4554 0, R_HPPA_ENTRY, e_fsel, 0, 0,
4555 (char *) &last_call_info->ci_unwind.descriptor);
4556 }
4557 #endif
4558
4559 return;
4560 }
4561
4562 /* Handle a .EQU pseudo-op. */
4563
4564 static void
4565 pa_equ (reg)
4566 int reg;
4567 {
4568 label_symbol_struct *label_symbol = pa_get_label ();
4569 symbolS *symbol;
4570
4571 if (label_symbol)
4572 {
4573 symbol = label_symbol->lss_label;
4574 S_SET_VALUE (symbol, (unsigned int) get_absolute_expression ());
4575 S_SET_SEGMENT (symbol, &bfd_abs_section);
4576 }
4577 else
4578 {
4579 if (reg)
4580 as_bad (".REG must use a label");
4581 else
4582 as_bad (".EQU must use a label");
4583 }
4584
4585 pa_undefine_label ();
4586 demand_empty_rest_of_line ();
4587 return;
4588 }
4589
4590 /* Helper function. Does processing for the end of a function. This
4591 usually involves creating some relocations or building special
4592 symbols to mark the end of the function. */
4593
4594 static void
4595 process_exit ()
4596 {
4597 char *where;
4598
4599 where = frag_more (0);
4600
4601 #ifdef OBJ_ELF
4602 /* Mark the end of the function, stuff away the location of the frag
4603 for the end of the function, and finally call pa_build_unwind_subspace
4604 to add an entry in the unwind table. */
4605 hppa_elf_mark_end_of_function ();
4606 last_call_info->end_frag = frag_now;
4607 pa_build_unwind_subspace (last_call_info);
4608 #else
4609 /* SOM defers building of unwind descriptors until the link phase.
4610 The assembler is responsible for creating an R_ENTRY relocation
4611 to mark the beginning of a region and hold the unwind bits, and
4612 for creating an R_EXIT relocation to mark the end of the region.
4613
4614 FIXME. ELF should be using the same conventions! The problem
4615 is an unwind requires too much relocation space. Hmmm. Maybe
4616 if we split the unwind bits up between the relocations which
4617 denote the entry and exit points. */
4618 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
4619 last_call_info->start_symbol, (offsetT) 0,
4620 NULL, 0, R_HPPA_EXIT, e_fsel, 0, 0, NULL);
4621 #endif
4622
4623 }
4624
4625 /* Process a .EXIT pseudo-op. */
4626
4627 static void
4628 pa_exit (unused)
4629 int unused;
4630 {
4631 if (!within_procedure)
4632 as_bad (".EXIT must appear within a procedure");
4633 else
4634 {
4635 if (!callinfo_found)
4636 as_bad ("Missing .callinfo");
4637 else
4638 {
4639 if (!within_entry_exit)
4640 as_bad ("No .ENTRY for this .EXIT");
4641 else
4642 {
4643 within_entry_exit = FALSE;
4644 process_exit ();
4645 }
4646 }
4647 }
4648 demand_empty_rest_of_line ();
4649 return;
4650 }
4651
4652 /* Process a .EXPORT directive. This makes functions external
4653 and provides information such as argument relocation entries
4654 to callers. */
4655
4656 static void
4657 pa_export (unused)
4658 int unused;
4659 {
4660 char *name, c, *p;
4661 symbolS *symbol;
4662
4663 name = input_line_pointer;
4664 c = get_symbol_end ();
4665 /* Make sure the given symbol exists. */
4666 if ((symbol = symbol_find_or_make (name)) == NULL)
4667 {
4668 as_bad ("Cannot define export symbol: %s\n", name);
4669 p = input_line_pointer;
4670 *p = c;
4671 input_line_pointer++;
4672 }
4673 else
4674 {
4675 /* OK. Set the external bits and process argument relocations. */
4676 S_SET_EXTERNAL (symbol);
4677 p = input_line_pointer;
4678 *p = c;
4679 if (!is_end_of_statement ())
4680 {
4681 input_line_pointer++;
4682 pa_type_args (symbol, 1);
4683 #ifdef OBJ_ELF
4684 pa_build_symextn_section ();
4685 #endif
4686 }
4687 }
4688
4689 demand_empty_rest_of_line ();
4690 return;
4691 }
4692
4693 /* Helper function to process arguments to a .EXPORT pseudo-op. */
4694
4695 static void
4696 pa_type_args (symbolP, is_export)
4697 symbolS *symbolP;
4698 int is_export;
4699 {
4700 char *name, c, *p;
4701 unsigned int temp, arg_reloc;
4702 pa_symbol_type type = SYMBOL_TYPE_UNKNOWN;
4703 obj_symbol_type *symbol = (obj_symbol_type *) symbolP->bsym;
4704
4705 if (strncasecmp (input_line_pointer, "absolute", 8) == 0)
4706
4707 {
4708 input_line_pointer += 8;
4709 symbolP->bsym->flags &= ~BSF_FUNCTION;
4710 S_SET_SEGMENT (symbolP, &bfd_abs_section);
4711 type = SYMBOL_TYPE_ABSOLUTE;
4712 }
4713 else if (strncasecmp (input_line_pointer, "code", 4) == 0)
4714 {
4715 input_line_pointer += 4;
4716 /* IMPORTing/EXPORTing CODE types for functions is meaningless for SOM,
4717 instead one should be IMPORTing/EXPORTing ENTRY types.
4718
4719 Complain if one tries to EXPORT a CODE type since that's never
4720 done. Both GCC and HP C still try to IMPORT CODE types, so
4721 silently fix them to be ENTRY types. */
4722 if (symbolP->bsym->flags & BSF_FUNCTION)
4723 {
4724 if (is_export)
4725 as_tsktsk ("Using ENTRY rather than CODE in export directive for %s", symbolP->bsym->name);
4726
4727 symbolP->bsym->flags |= BSF_FUNCTION;
4728 type = SYMBOL_TYPE_ENTRY;
4729 }
4730 else
4731 {
4732 symbolP->bsym->flags &= ~BSF_FUNCTION;
4733 type = SYMBOL_TYPE_CODE;
4734 }
4735 }
4736 else if (strncasecmp (input_line_pointer, "data", 4) == 0)
4737 {
4738 input_line_pointer += 4;
4739 symbolP->bsym->flags &= ~BSF_FUNCTION;
4740 type = SYMBOL_TYPE_DATA;
4741 }
4742 else if ((strncasecmp (input_line_pointer, "entry", 5) == 0))
4743 {
4744 input_line_pointer += 5;
4745 symbolP->bsym->flags |= BSF_FUNCTION;
4746 type = SYMBOL_TYPE_ENTRY;
4747 }
4748 else if (strncasecmp (input_line_pointer, "millicode", 9) == 0)
4749 {
4750 input_line_pointer += 9;
4751 symbolP->bsym->flags |= BSF_FUNCTION;
4752 type = SYMBOL_TYPE_MILLICODE;
4753 }
4754 else if (strncasecmp (input_line_pointer, "plabel", 6) == 0)
4755 {
4756 input_line_pointer += 6;
4757 symbolP->bsym->flags &= ~BSF_FUNCTION;
4758 type = SYMBOL_TYPE_PLABEL;
4759 }
4760 else if (strncasecmp (input_line_pointer, "pri_prog", 8) == 0)
4761 {
4762 input_line_pointer += 8;
4763 symbolP->bsym->flags |= BSF_FUNCTION;
4764 type = SYMBOL_TYPE_PRI_PROG;
4765 }
4766 else if (strncasecmp (input_line_pointer, "sec_prog", 8) == 0)
4767 {
4768 input_line_pointer += 8;
4769 symbolP->bsym->flags |= BSF_FUNCTION;
4770 type = SYMBOL_TYPE_SEC_PROG;
4771 }
4772
4773 /* SOM requires much more information about symbol types
4774 than BFD understands. This is how we get this information
4775 to the SOM BFD backend. */
4776 #ifdef obj_set_symbol_type
4777 obj_set_symbol_type (symbolP->bsym, (int) type);
4778 #endif
4779
4780 /* Now that the type of the exported symbol has been handled,
4781 handle any argument relocation information. */
4782 while (!is_end_of_statement ())
4783 {
4784 if (*input_line_pointer == ',')
4785 input_line_pointer++;
4786 name = input_line_pointer;
4787 c = get_symbol_end ();
4788 /* Argument sources. */
4789 if ((strncasecmp (name, "argw", 4) == 0))
4790 {
4791 p = input_line_pointer;
4792 *p = c;
4793 input_line_pointer++;
4794 temp = atoi (name + 4);
4795 name = input_line_pointer;
4796 c = get_symbol_end ();
4797 arg_reloc = pa_align_arg_reloc (temp, pa_build_arg_reloc (name));
4798 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
4799 *input_line_pointer = c;
4800 }
4801 /* The return value. */
4802 else if ((strncasecmp (name, "rtnval", 6)) == 0)
4803 {
4804 p = input_line_pointer;
4805 *p = c;
4806 input_line_pointer++;
4807 name = input_line_pointer;
4808 c = get_symbol_end ();
4809 arg_reloc = pa_build_arg_reloc (name);
4810 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
4811 *input_line_pointer = c;
4812 }
4813 /* Privelege level. */
4814 else if ((strncasecmp (name, "priv_lev", 8)) == 0)
4815 {
4816 p = input_line_pointer;
4817 *p = c;
4818 input_line_pointer++;
4819 temp = atoi (input_line_pointer);
4820 c = get_symbol_end ();
4821 *input_line_pointer = c;
4822 }
4823 else
4824 {
4825 as_bad ("Undefined .EXPORT/.IMPORT argument (ignored): %s", name);
4826 p = input_line_pointer;
4827 *p = c;
4828 }
4829 if (!is_end_of_statement ())
4830 input_line_pointer++;
4831 }
4832 }
4833
4834 /* Handle an .IMPORT pseudo-op. Any symbol referenced in a given
4835 assembly file must either be defined in the assembly file, or
4836 explicitly IMPORTED from another. */
4837
4838 static void
4839 pa_import (unused)
4840 int unused;
4841 {
4842 char *name, c, *p;
4843 symbolS *symbol;
4844
4845 name = input_line_pointer;
4846 c = get_symbol_end ();
4847
4848 symbol = symbol_find_or_make (name);
4849 p = input_line_pointer;
4850 *p = c;
4851
4852 if (!is_end_of_statement ())
4853 {
4854 input_line_pointer++;
4855 pa_type_args (symbol, 0);
4856 }
4857 else
4858 {
4859 /* Sigh. To be compatable with the HP assembler and to help
4860 poorly written assembly code, we assign a type based on
4861 the the current segment. Note only BSF_FUNCTION really
4862 matters, we do not need to set the full SYMBOL_TYPE_* info here. */
4863 if (now_seg == text_section)
4864 symbol->bsym->flags |= BSF_FUNCTION;
4865
4866 /* If the section is undefined, then the symbol is undefined
4867 Since this is an import, leave the section undefined. */
4868 S_SET_SEGMENT (symbol, &bfd_und_section);
4869 }
4870
4871 demand_empty_rest_of_line ();
4872 return;
4873 }
4874
4875 /* Handle a .LABEL pseudo-op. */
4876
4877 static void
4878 pa_label (unused)
4879 int unused;
4880 {
4881 char *name, c, *p;
4882
4883 name = input_line_pointer;
4884 c = get_symbol_end ();
4885
4886 if (strlen (name) > 0)
4887 {
4888 colon (name);
4889 p = input_line_pointer;
4890 *p = c;
4891 }
4892 else
4893 {
4894 as_warn ("Missing label name on .LABEL");
4895 }
4896
4897 if (!is_end_of_statement ())
4898 {
4899 as_warn ("extra .LABEL arguments ignored.");
4900 ignore_rest_of_line ();
4901 }
4902 demand_empty_rest_of_line ();
4903 return;
4904 }
4905
4906 /* Handle a .LEAVE pseudo-op. This is not supported yet. */
4907
4908 static void
4909 pa_leave (unused)
4910 int unused;
4911 {
4912 abort ();
4913 }
4914
4915 /* Handle a .ORIGIN pseudo-op. */
4916
4917 static void
4918 pa_origin (unused)
4919 int unused;
4920 {
4921 s_org (0);
4922 pa_undefine_label ();
4923 return;
4924 }
4925
4926 /* Handle a .PARAM pseudo-op. This is much like a .EXPORT, except it
4927 is for static functions. FIXME. Should share more code with .EXPORT. */
4928
4929 static void
4930 pa_param (unused)
4931 int unused;
4932 {
4933 char *name, c, *p;
4934 symbolS *symbol;
4935
4936 name = input_line_pointer;
4937 c = get_symbol_end ();
4938
4939 if ((symbol = symbol_find_or_make (name)) == NULL)
4940 {
4941 as_bad ("Cannot define static symbol: %s\n", name);
4942 p = input_line_pointer;
4943 *p = c;
4944 input_line_pointer++;
4945 }
4946 else
4947 {
4948 S_CLEAR_EXTERNAL (symbol);
4949 p = input_line_pointer;
4950 *p = c;
4951 if (!is_end_of_statement ())
4952 {
4953 input_line_pointer++;
4954 pa_type_args (symbol, 0);
4955 }
4956 }
4957
4958 demand_empty_rest_of_line ();
4959 return;
4960 }
4961
4962 /* Handle a .PROC pseudo-op. It is used to mark the beginning
4963 of a procedure from a syntatical point of view. */
4964
4965 static void
4966 pa_proc (unused)
4967 int unused;
4968 {
4969 struct call_info *call_info;
4970
4971 if (within_procedure)
4972 as_fatal ("Nested procedures");
4973
4974 /* Reset global variables for new procedure. */
4975 callinfo_found = FALSE;
4976 within_procedure = TRUE;
4977
4978 /* Create another call_info structure. */
4979 call_info = (struct call_info *) xmalloc (sizeof (struct call_info));
4980
4981 if (!call_info)
4982 as_fatal ("Cannot allocate unwind descriptor\n");
4983
4984 bzero (call_info, sizeof (struct call_info));
4985
4986 call_info->ci_next = NULL;
4987
4988 if (call_info_root == NULL)
4989 {
4990 call_info_root = call_info;
4991 last_call_info = call_info;
4992 }
4993 else
4994 {
4995 last_call_info->ci_next = call_info;
4996 last_call_info = call_info;
4997 }
4998
4999 /* set up defaults on call_info structure */
5000
5001 call_info->ci_unwind.descriptor.cannot_unwind = 0;
5002 call_info->ci_unwind.descriptor.region_desc = 1;
5003 call_info->ci_unwind.descriptor.hpux_interrupt_marker = 0;
5004 call_info->entry_sr = ~0;
5005 call_info->makes_calls = 1;
5006
5007 /* If we got a .PROC pseudo-op, we know that the function is defined
5008 locally. Make sure it gets into the symbol table. */
5009 {
5010 label_symbol_struct *label_symbol = pa_get_label ();
5011
5012 if (label_symbol)
5013 {
5014 if (label_symbol->lss_label)
5015 {
5016 last_call_info->start_symbol = label_symbol->lss_label;
5017 label_symbol->lss_label->bsym->flags |= BSF_FUNCTION;
5018 }
5019 else
5020 as_bad ("Missing function name for .PROC (corrupted label)");
5021 }
5022 else
5023 as_bad ("Missing function name for .PROC");
5024 }
5025
5026 demand_empty_rest_of_line ();
5027 return;
5028 }
5029
5030 /* Process the syntatical end of a procedure. Make sure all the
5031 appropriate pseudo-ops were found within the procedure. */
5032
5033 static void
5034 pa_procend (unused)
5035 int unused;
5036 {
5037
5038 if (!within_procedure)
5039 as_bad ("misplaced .procend");
5040
5041 if (!callinfo_found)
5042 as_bad ("Missing .callinfo for this procedure");
5043
5044 if (within_entry_exit)
5045 as_bad ("Missing .EXIT for a .ENTRY");
5046
5047 #ifdef OBJ_ELF
5048 /* ELF needs to mark the end of each function so that it can compute
5049 the size of the function (apparently its needed in the symbol table. */
5050 hppa_elf_mark_end_of_function ();
5051 #endif
5052
5053 within_procedure = FALSE;
5054 demand_empty_rest_of_line ();
5055 return;
5056 }
5057
5058 /* Parse the parameters to a .SPACE directive; if CREATE_FLAG is nonzero,
5059 then create a new space entry to hold the information specified
5060 by the parameters to the .SPACE directive. */
5061
5062 static sd_chain_struct *
5063 pa_parse_space_stmt (space_name, create_flag)
5064 char *space_name;
5065 int create_flag;
5066 {
5067 char *name, *ptemp, c;
5068 char loadable, defined, private, sort;
5069 int spnum;
5070 asection *seg = NULL;
5071 sd_chain_struct *space;
5072
5073 /* load default values */
5074 spnum = 0;
5075 sort = 0;
5076 loadable = TRUE;
5077 defined = TRUE;
5078 private = FALSE;
5079 if (strcasecmp (space_name, "$TEXT$") == 0)
5080 {
5081 seg = pa_def_spaces[0].segment;
5082 sort = pa_def_spaces[0].sort;
5083 }
5084 else if (strcasecmp (space_name, "$PRIVATE$") == 0)
5085 {
5086 seg = pa_def_spaces[1].segment;
5087 sort = pa_def_spaces[1].sort;
5088 }
5089
5090 if (!is_end_of_statement ())
5091 {
5092 print_errors = FALSE;
5093 ptemp = input_line_pointer + 1;
5094 /* First see if the space was specified as a number rather than
5095 as a name. According to the PA assembly manual the rest of
5096 the line should be ignored. */
5097 if ((spnum = pa_parse_number (&ptemp, 0)) >= 0)
5098 input_line_pointer = ptemp;
5099 else
5100 {
5101 while (!is_end_of_statement ())
5102 {
5103 input_line_pointer++;
5104 name = input_line_pointer;
5105 c = get_symbol_end ();
5106 if ((strncasecmp (name, "SPNUM", 5) == 0))
5107 {
5108 *input_line_pointer = c;
5109 input_line_pointer++;
5110 spnum = get_absolute_expression ();
5111 }
5112 else if ((strncasecmp (name, "SORT", 4) == 0))
5113 {
5114 *input_line_pointer = c;
5115 input_line_pointer++;
5116 sort = get_absolute_expression ();
5117 }
5118 else if ((strncasecmp (name, "UNLOADABLE", 10) == 0))
5119 {
5120 *input_line_pointer = c;
5121 loadable = FALSE;
5122 }
5123 else if ((strncasecmp (name, "NOTDEFINED", 10) == 0))
5124 {
5125 *input_line_pointer = c;
5126 defined = FALSE;
5127 }
5128 else if ((strncasecmp (name, "PRIVATE", 7) == 0))
5129 {
5130 *input_line_pointer = c;
5131 private = TRUE;
5132 }
5133 else
5134 {
5135 as_bad ("Invalid .SPACE argument");
5136 *input_line_pointer = c;
5137 if (!is_end_of_statement ())
5138 input_line_pointer++;
5139 }
5140 }
5141 }
5142 print_errors = TRUE;
5143 }
5144
5145 if (create_flag && seg == NULL)
5146 seg = subseg_new (space_name, 0);
5147
5148 /* If create_flag is nonzero, then create the new space with
5149 the attributes computed above. Else set the values in
5150 an already existing space -- this can only happen for
5151 the first occurence of a built-in space. */
5152 if (create_flag)
5153 space = create_new_space (space_name, spnum, loadable, defined,
5154 private, sort, seg, 1);
5155 else
5156 {
5157 space = is_defined_space (space_name);
5158 SPACE_SPNUM (space) = spnum;
5159 SPACE_LOADABLE (space) = loadable & 1;
5160 SPACE_DEFINED (space) = defined & 1;
5161 SPACE_USER_DEFINED (space) = 1;
5162 SPACE_PRIVATE (space) = private & 1;
5163 SPACE_SORT (space) = sort & 0xff;
5164 space->sd_seg = seg;
5165 }
5166
5167 #ifdef obj_set_section_attributes
5168 obj_set_section_attributes (seg, defined, private, sort, spnum);
5169 #endif
5170
5171 return space;
5172 }
5173
5174 /* Handle a .SPACE pseudo-op; this switches the current space to the
5175 given space, creating the new space if necessary. */
5176
5177 static void
5178 pa_space (unused)
5179 int unused;
5180 {
5181 char *name, c, *space_name, *save_s;
5182 int temp;
5183 sd_chain_struct *sd_chain;
5184
5185 if (within_procedure)
5186 {
5187 as_bad ("Can\'t change spaces within a procedure definition. Ignored");
5188 ignore_rest_of_line ();
5189 }
5190 else
5191 {
5192 /* Check for some of the predefined spaces. FIXME: most of the code
5193 below is repeated several times, can we extract the common parts
5194 and place them into a subroutine or something similar? */
5195 if (strncasecmp (input_line_pointer, "$text$", 6) == 0)
5196 {
5197 input_line_pointer += 6;
5198 sd_chain = is_defined_space ("$TEXT$");
5199 if (sd_chain == NULL)
5200 sd_chain = pa_parse_space_stmt ("$TEXT$", 1);
5201 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5202 sd_chain = pa_parse_space_stmt ("$TEXT$", 0);
5203
5204 current_space = sd_chain;
5205 subseg_set (text_section, sd_chain->sd_last_subseg);
5206 current_subspace
5207 = pa_subsegment_to_subspace (text_section,
5208 sd_chain->sd_last_subseg);
5209 demand_empty_rest_of_line ();
5210 return;
5211 }
5212 if (strncasecmp (input_line_pointer, "$private$", 9) == 0)
5213 {
5214 input_line_pointer += 9;
5215 sd_chain = is_defined_space ("$PRIVATE$");
5216 if (sd_chain == NULL)
5217 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 1);
5218 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5219 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 0);
5220
5221 current_space = sd_chain;
5222 subseg_set (data_section, sd_chain->sd_last_subseg);
5223 current_subspace
5224 = pa_subsegment_to_subspace (data_section,
5225 sd_chain->sd_last_subseg);
5226 demand_empty_rest_of_line ();
5227 return;
5228 }
5229 if (!strncasecmp (input_line_pointer,
5230 GDB_DEBUG_SPACE_NAME,
5231 strlen (GDB_DEBUG_SPACE_NAME)))
5232 {
5233 input_line_pointer += strlen (GDB_DEBUG_SPACE_NAME);
5234 sd_chain = is_defined_space (GDB_DEBUG_SPACE_NAME);
5235 if (sd_chain == NULL)
5236 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 1);
5237 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5238 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 0);
5239
5240 current_space = sd_chain;
5241
5242 {
5243 asection *gdb_section
5244 = bfd_make_section_old_way (stdoutput, GDB_DEBUG_SPACE_NAME);
5245
5246 subseg_set (gdb_section, sd_chain->sd_last_subseg);
5247 current_subspace
5248 = pa_subsegment_to_subspace (gdb_section,
5249 sd_chain->sd_last_subseg);
5250 }
5251 demand_empty_rest_of_line ();
5252 return;
5253 }
5254
5255 /* It could be a space specified by number. */
5256 print_errors = 0;
5257 save_s = input_line_pointer;
5258 if ((temp = pa_parse_number (&input_line_pointer, 0)) >= 0)
5259 {
5260 if (sd_chain = pa_find_space_by_number (temp))
5261 {
5262 current_space = sd_chain;
5263
5264 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
5265 current_subspace
5266 = pa_subsegment_to_subspace (sd_chain->sd_seg,
5267 sd_chain->sd_last_subseg);
5268 demand_empty_rest_of_line ();
5269 return;
5270 }
5271 }
5272
5273 /* Not a number, attempt to create a new space. */
5274 print_errors = 1;
5275 input_line_pointer = save_s;
5276 name = input_line_pointer;
5277 c = get_symbol_end ();
5278 space_name = xmalloc (strlen (name) + 1);
5279 strcpy (space_name, name);
5280 *input_line_pointer = c;
5281
5282 sd_chain = pa_parse_space_stmt (space_name, 1);
5283 current_space = sd_chain;
5284
5285 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
5286 current_subspace = pa_subsegment_to_subspace (sd_chain->sd_seg,
5287 sd_chain->sd_last_subseg);
5288 demand_empty_rest_of_line ();
5289 }
5290 return;
5291 }
5292
5293 /* Switch to a new space. (I think). FIXME. */
5294
5295 static void
5296 pa_spnum (unused)
5297 int unused;
5298 {
5299 char *name;
5300 char c;
5301 char *p;
5302 sd_chain_struct *space;
5303
5304 name = input_line_pointer;
5305 c = get_symbol_end ();
5306 space = is_defined_space (name);
5307 if (space)
5308 {
5309 p = frag_more (4);
5310 md_number_to_chars (p, SPACE_SPNUM (space), 4);
5311 }
5312 else
5313 as_warn ("Undefined space: '%s' Assuming space number = 0.", name);
5314
5315 *input_line_pointer = c;
5316 demand_empty_rest_of_line ();
5317 return;
5318 }
5319
5320 /* If VALUE is an exact power of two between zero and 2^31, then
5321 return log2 (VALUE). Else return -1. */
5322
5323 static int
5324 log2 (value)
5325 int value;
5326 {
5327 int shift = 0;
5328
5329 while ((1 << shift) != value && shift < 32)
5330 shift++;
5331
5332 if (shift >= 32)
5333 return -1;
5334 else
5335 return shift;
5336 }
5337
5338 /* Handle a .SUBSPACE pseudo-op; this switches the current subspace to the
5339 given subspace, creating the new subspace if necessary.
5340
5341 FIXME. Should mirror pa_space more closely, in particular how
5342 they're broken up into subroutines. */
5343
5344 static void
5345 pa_subspace (unused)
5346 int unused;
5347 {
5348 char *name, *ss_name, *alias, c;
5349 char loadable, code_only, common, dup_common, zero, sort;
5350 int i, access, space_index, alignment, quadrant, applicable, flags;
5351 sd_chain_struct *space;
5352 ssd_chain_struct *ssd;
5353 asection *section;
5354
5355 if (within_procedure)
5356 {
5357 as_bad ("Can\'t change subspaces within a procedure definition. Ignored");
5358 ignore_rest_of_line ();
5359 }
5360 else
5361 {
5362 name = input_line_pointer;
5363 c = get_symbol_end ();
5364 ss_name = xmalloc (strlen (name) + 1);
5365 strcpy (ss_name, name);
5366 *input_line_pointer = c;
5367
5368 /* Load default values. */
5369 sort = 0;
5370 access = 0x7f;
5371 loadable = 1;
5372 common = 0;
5373 dup_common = 0;
5374 code_only = 0;
5375 zero = 0;
5376 space_index = ~0;
5377 alignment = 0;
5378 quadrant = 0;
5379 alias = NULL;
5380
5381 space = current_space;
5382 ssd = is_defined_subspace (ss_name);
5383 /* Allow user to override the builtin attributes of subspaces. But
5384 only allow the attributes to be changed once! */
5385 if (ssd && SUBSPACE_DEFINED (ssd))
5386 {
5387 subseg_set (ssd->ssd_seg, ssd->ssd_subseg);
5388 if (!is_end_of_statement ())
5389 as_warn ("Parameters of an existing subspace can\'t be modified");
5390 demand_empty_rest_of_line ();
5391 return;
5392 }
5393 else
5394 {
5395 /* A new subspace. Load default values if it matches one of
5396 the builtin subspaces. */
5397 i = 0;
5398 while (pa_def_subspaces[i].name)
5399 {
5400 if (strcasecmp (pa_def_subspaces[i].name, ss_name) == 0)
5401 {
5402 loadable = pa_def_subspaces[i].loadable;
5403 common = pa_def_subspaces[i].common;
5404 dup_common = pa_def_subspaces[i].dup_common;
5405 code_only = pa_def_subspaces[i].code_only;
5406 zero = pa_def_subspaces[i].zero;
5407 space_index = pa_def_subspaces[i].space_index;
5408 alignment = pa_def_subspaces[i].alignment;
5409 quadrant = pa_def_subspaces[i].quadrant;
5410 access = pa_def_subspaces[i].access;
5411 sort = pa_def_subspaces[i].sort;
5412 if (USE_ALIASES && pa_def_subspaces[i].alias)
5413 alias = pa_def_subspaces[i].alias;
5414 break;
5415 }
5416 i++;
5417 }
5418 }
5419
5420 /* We should be working with a new subspace now. Fill in
5421 any information as specified by the user. */
5422 if (!is_end_of_statement ())
5423 {
5424 input_line_pointer++;
5425 while (!is_end_of_statement ())
5426 {
5427 name = input_line_pointer;
5428 c = get_symbol_end ();
5429 if ((strncasecmp (name, "QUAD", 4) == 0))
5430 {
5431 *input_line_pointer = c;
5432 input_line_pointer++;
5433 quadrant = get_absolute_expression ();
5434 }
5435 else if ((strncasecmp (name, "ALIGN", 5) == 0))
5436 {
5437 *input_line_pointer = c;
5438 input_line_pointer++;
5439 alignment = get_absolute_expression ();
5440 if (log2 (alignment) == -1)
5441 {
5442 as_bad ("Alignment must be a power of 2");
5443 alignment = 1;
5444 }
5445 }
5446 else if ((strncasecmp (name, "ACCESS", 6) == 0))
5447 {
5448 *input_line_pointer = c;
5449 input_line_pointer++;
5450 access = get_absolute_expression ();
5451 }
5452 else if ((strncasecmp (name, "SORT", 4) == 0))
5453 {
5454 *input_line_pointer = c;
5455 input_line_pointer++;
5456 sort = get_absolute_expression ();
5457 }
5458 else if ((strncasecmp (name, "CODE_ONLY", 9) == 0))
5459 {
5460 *input_line_pointer = c;
5461 code_only = 1;
5462 }
5463 else if ((strncasecmp (name, "UNLOADABLE", 10) == 0))
5464 {
5465 *input_line_pointer = c;
5466 loadable = 0;
5467 }
5468 else if ((strncasecmp (name, "COMMON", 6) == 0))
5469 {
5470 *input_line_pointer = c;
5471 common = 1;
5472 }
5473 else if ((strncasecmp (name, "DUP_COMM", 8) == 0))
5474 {
5475 *input_line_pointer = c;
5476 dup_common = 1;
5477 }
5478 else if ((strncasecmp (name, "ZERO", 4) == 0))
5479 {
5480 *input_line_pointer = c;
5481 zero = 1;
5482 }
5483 else if ((strncasecmp (name, "FIRST", 5) == 0))
5484 as_bad ("FIRST not supported as a .SUBSPACE argument");
5485 else
5486 as_bad ("Invalid .SUBSPACE argument");
5487 if (!is_end_of_statement ())
5488 input_line_pointer++;
5489 }
5490 }
5491
5492 /* Compute a reasonable set of BFD flags based on the information
5493 in the .subspace directive. */
5494 applicable = bfd_applicable_section_flags (stdoutput);
5495 flags = 0;
5496 if (loadable)
5497 flags |= (SEC_ALLOC | SEC_LOAD);
5498 if (code_only)
5499 flags |= SEC_CODE;
5500 if (common || dup_common)
5501 flags |= SEC_IS_COMMON;
5502
5503 /* This is a zero-filled subspace (eg BSS). */
5504 if (zero)
5505 flags &= ~SEC_LOAD;
5506
5507 flags |= SEC_RELOC | SEC_HAS_CONTENTS;
5508 applicable &= flags;
5509
5510 /* If this is an existing subspace, then we want to use the
5511 segment already associated with the subspace.
5512
5513 FIXME NOW! ELF BFD doesn't appear to be ready to deal with
5514 lots of sections. It might be a problem in the PA ELF
5515 code, I do not know yet. For now avoid creating anything
5516 but the "standard" sections for ELF. */
5517 if (ssd)
5518 section = ssd->ssd_seg;
5519 else if (alias)
5520 section = subseg_new (alias, 0);
5521 else if (!alias && USE_ALIASES)
5522 {
5523 as_warn ("Ignoring subspace decl due to ELF BFD bugs.");
5524 demand_empty_rest_of_line ();
5525 return;
5526 }
5527 else
5528 section = subseg_new (ss_name, 0);
5529
5530 /* Now set the flags. */
5531 bfd_set_section_flags (stdoutput, section, applicable);
5532
5533 /* Record any alignment request for this section. */
5534 record_alignment (section, log2 (alignment));
5535
5536 /* Set the starting offset for this section. */
5537 bfd_set_section_vma (stdoutput, section,
5538 pa_subspace_start (space, quadrant));
5539
5540 /* Now that all the flags are set, update an existing subspace,
5541 or create a new one. */
5542 if (ssd)
5543
5544 current_subspace = update_subspace (space, ss_name, loadable,
5545 code_only, common, dup_common,
5546 sort, zero, access, space_index,
5547 alignment, quadrant,
5548 section);
5549 else
5550 current_subspace = create_new_subspace (space, ss_name, loadable,
5551 code_only, common,
5552 dup_common, zero, sort,
5553 access, space_index,
5554 alignment, quadrant, section);
5555
5556 demand_empty_rest_of_line ();
5557 current_subspace->ssd_seg = section;
5558 subseg_set (current_subspace->ssd_seg, current_subspace->ssd_subseg);
5559 }
5560 SUBSPACE_DEFINED (current_subspace) = 1;
5561 return;
5562 }
5563
5564
5565 /* Create default space and subspace dictionaries. */
5566
5567 static void
5568 pa_spaces_begin ()
5569 {
5570 int i;
5571
5572 space_dict_root = NULL;
5573 space_dict_last = NULL;
5574
5575 i = 0;
5576 while (pa_def_spaces[i].name)
5577 {
5578 char *name;
5579
5580 /* Pick the right name to use for the new section. */
5581 if (pa_def_spaces[i].alias && USE_ALIASES)
5582 name = pa_def_spaces[i].alias;
5583 else
5584 name = pa_def_spaces[i].name;
5585
5586 pa_def_spaces[i].segment = subseg_new (name, 0);
5587 create_new_space (pa_def_spaces[i].name, pa_def_spaces[i].spnum,
5588 pa_def_spaces[i].loadable, pa_def_spaces[i].defined,
5589 pa_def_spaces[i].private, pa_def_spaces[i].sort,
5590 pa_def_spaces[i].segment, 0);
5591 i++;
5592 }
5593
5594 i = 0;
5595 while (pa_def_subspaces[i].name)
5596 {
5597 char *name;
5598 int applicable, subsegment;
5599 asection *segment = NULL;
5600 sd_chain_struct *space;
5601
5602 /* Pick the right name for the new section and pick the right
5603 subsegment number. */
5604 if (pa_def_subspaces[i].alias && USE_ALIASES)
5605 {
5606 name = pa_def_subspaces[i].alias;
5607 subsegment = pa_def_subspaces[i].subsegment;
5608 }
5609 else
5610 {
5611 name = pa_def_subspaces[i].name;
5612 subsegment = 0;
5613 }
5614
5615 /* Create the new section. */
5616 segment = subseg_new (name, subsegment);
5617
5618
5619 /* For SOM we want to replace the standard .text, .data, and .bss
5620 sections with our own. */
5621 if (!strcmp (pa_def_subspaces[i].name, "$CODE$") && !USE_ALIASES)
5622 {
5623 text_section = segment;
5624 applicable = bfd_applicable_section_flags (stdoutput);
5625 bfd_set_section_flags (stdoutput, text_section,
5626 applicable & (SEC_ALLOC | SEC_LOAD
5627 | SEC_RELOC | SEC_CODE
5628 | SEC_READONLY
5629 | SEC_HAS_CONTENTS));
5630 }
5631 else if (!strcmp (pa_def_subspaces[i].name, "$DATA$") && !USE_ALIASES)
5632 {
5633 data_section = segment;
5634 applicable = bfd_applicable_section_flags (stdoutput);
5635 bfd_set_section_flags (stdoutput, data_section,
5636 applicable & (SEC_ALLOC | SEC_LOAD
5637 | SEC_RELOC
5638 | SEC_HAS_CONTENTS));
5639
5640
5641 }
5642 else if (!strcmp (pa_def_subspaces[i].name, "$BSS$") && !USE_ALIASES)
5643 {
5644 bss_section = segment;
5645 applicable = bfd_applicable_section_flags (stdoutput);
5646 bfd_set_section_flags (stdoutput, bss_section,
5647 applicable & SEC_ALLOC);
5648 }
5649
5650 /* Find the space associated with this subspace. */
5651 space = pa_segment_to_space (pa_def_spaces[pa_def_subspaces[i].
5652 def_space_index].segment);
5653 if (space == NULL)
5654 {
5655 as_fatal ("Internal error: Unable to find containing space for %s.",
5656 pa_def_subspaces[i].name);
5657 }
5658
5659 create_new_subspace (space, name,
5660 pa_def_subspaces[i].loadable,
5661 pa_def_subspaces[i].code_only,
5662 pa_def_subspaces[i].common,
5663 pa_def_subspaces[i].dup_common,
5664 pa_def_subspaces[i].zero,
5665 pa_def_subspaces[i].sort,
5666 pa_def_subspaces[i].access,
5667 pa_def_subspaces[i].space_index,
5668 pa_def_subspaces[i].alignment,
5669 pa_def_subspaces[i].quadrant,
5670 segment);
5671 i++;
5672 }
5673 }
5674
5675
5676
5677 /* Create a new space NAME, with the appropriate flags as defined
5678 by the given parameters.
5679
5680 Add the new space to the space dictionary chain in numerical
5681 order as defined by the SORT entries. */
5682
5683 static sd_chain_struct *
5684 create_new_space (name, spnum, loadable, defined, private,
5685 sort, seg, user_defined)
5686 char *name;
5687 int spnum;
5688 char loadable;
5689 char defined;
5690 char private;
5691 char sort;
5692 asection *seg;
5693 int user_defined;
5694 {
5695 sd_chain_struct *chain_entry;
5696
5697 chain_entry = (sd_chain_struct *) xmalloc (sizeof (sd_chain_struct));
5698 if (!chain_entry)
5699 as_fatal ("Out of memory: could not allocate new space chain entry: %s\n",
5700 name);
5701
5702 SPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5703 strcpy (SPACE_NAME (chain_entry), name);
5704 SPACE_NAME_INDEX (chain_entry) = 0;
5705 SPACE_LOADABLE (chain_entry) = loadable;
5706 SPACE_DEFINED (chain_entry) = defined;
5707 SPACE_USER_DEFINED (chain_entry) = user_defined;
5708 SPACE_PRIVATE (chain_entry) = private;
5709 SPACE_SPNUM (chain_entry) = spnum;
5710 SPACE_SORT (chain_entry) = sort;
5711
5712 chain_entry->sd_seg = seg;
5713 chain_entry->sd_last_subseg = -1;
5714 chain_entry->sd_next = NULL;
5715
5716 /* Find spot for the new space based on its sort key. */
5717 if (!space_dict_last)
5718 space_dict_last = chain_entry;
5719
5720 if (space_dict_root == NULL)
5721 space_dict_root = chain_entry;
5722 else
5723 {
5724 sd_chain_struct *chain_pointer;
5725 sd_chain_struct *prev_chain_pointer;
5726
5727 chain_pointer = space_dict_root;
5728 prev_chain_pointer = NULL;
5729
5730 while (chain_pointer)
5731 {
5732 if (SPACE_SORT (chain_pointer) <= SPACE_SORT (chain_entry))
5733 {
5734 prev_chain_pointer = chain_pointer;
5735 chain_pointer = chain_pointer->sd_next;
5736 }
5737 else
5738 break;
5739 }
5740
5741 /* At this point we've found the correct place to add the new
5742 entry. So add it and update the linked lists as appropriate. */
5743 if (prev_chain_pointer)
5744 {
5745 chain_entry->sd_next = chain_pointer;
5746 prev_chain_pointer->sd_next = chain_entry;
5747 }
5748 else
5749 {
5750 space_dict_root = chain_entry;
5751 chain_entry->sd_next = chain_pointer;
5752 }
5753
5754 if (chain_entry->sd_next == NULL)
5755 space_dict_last = chain_entry;
5756 }
5757
5758 /* This is here to catch predefined spaces which do not get
5759 modified by the user's input. Another call is found at
5760 the bottom of pa_parse_space_stmt to handle cases where
5761 the user modifies a predefined space. */
5762 #ifdef obj_set_section_attributes
5763 obj_set_section_attributes (seg, defined, private, sort, spnum);
5764 #endif
5765
5766 return chain_entry;
5767 }
5768
5769 /* Create a new subspace NAME, with the appropriate flags as defined
5770 by the given parameters.
5771
5772 Add the new subspace to the subspace dictionary chain in numerical
5773 order as defined by the SORT entries. */
5774
5775 static ssd_chain_struct *
5776 create_new_subspace (space, name, loadable, code_only, common,
5777 dup_common, is_zero, sort, access, space_index,
5778 alignment, quadrant, seg)
5779 sd_chain_struct *space;
5780 char *name;
5781 char loadable, code_only, common, dup_common, is_zero;
5782 char sort;
5783 int access;
5784 int space_index;
5785 int alignment;
5786 int quadrant;
5787 asection *seg;
5788 {
5789 ssd_chain_struct *chain_entry;
5790
5791 chain_entry = (ssd_chain_struct *) xmalloc (sizeof (ssd_chain_struct));
5792 if (!chain_entry)
5793 as_fatal ("Out of memory: could not allocate new subspace chain entry: %s\n", name);
5794
5795 SUBSPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5796 strcpy (SUBSPACE_NAME (chain_entry), name);
5797
5798 SUBSPACE_ACCESS (chain_entry) = access;
5799 SUBSPACE_LOADABLE (chain_entry) = loadable;
5800 SUBSPACE_COMMON (chain_entry) = common;
5801 SUBSPACE_DUP_COMM (chain_entry) = dup_common;
5802 SUBSPACE_SORT (chain_entry) = sort;
5803 SUBSPACE_CODE_ONLY (chain_entry) = code_only;
5804 SUBSPACE_ALIGN (chain_entry) = alignment;
5805 SUBSPACE_QUADRANT (chain_entry) = quadrant;
5806 SUBSPACE_SUBSPACE_START (chain_entry) = pa_subspace_start (space, quadrant);
5807 SUBSPACE_SPACE_INDEX (chain_entry) = space_index;
5808 SUBSPACE_ZERO (chain_entry) = is_zero;
5809
5810 /* Initialize subspace_defined. When we hit a .subspace directive
5811 we'll set it to 1 which "locks-in" the subspace attributes. */
5812 SUBSPACE_DEFINED (chain_entry) = 0;
5813
5814 chain_entry->ssd_subseg = USE_ALIASES ? pa_next_subseg (space) : 0;
5815 chain_entry->ssd_seg = seg;
5816 chain_entry->ssd_last_align = 1;
5817 chain_entry->ssd_next = NULL;
5818
5819 /* Find spot for the new subspace based on its sort key. */
5820 if (space->sd_subspaces == NULL)
5821 space->sd_subspaces = chain_entry;
5822 else
5823 {
5824 ssd_chain_struct *chain_pointer;
5825 ssd_chain_struct *prev_chain_pointer;
5826
5827 chain_pointer = space->sd_subspaces;
5828 prev_chain_pointer = NULL;
5829
5830 while (chain_pointer)
5831 {
5832 if (SUBSPACE_SORT (chain_pointer) <= SUBSPACE_SORT (chain_entry))
5833 {
5834 prev_chain_pointer = chain_pointer;
5835 chain_pointer = chain_pointer->ssd_next;
5836 }
5837 else
5838 break;
5839
5840 }
5841
5842 /* Now we have somewhere to put the new entry. Insert it and update
5843 the links. */
5844 if (prev_chain_pointer)
5845 {
5846 chain_entry->ssd_next = chain_pointer;
5847 prev_chain_pointer->ssd_next = chain_entry;
5848 }
5849 else
5850 {
5851 space->sd_subspaces = chain_entry;
5852 chain_entry->ssd_next = chain_pointer;
5853 }
5854 }
5855
5856 #ifdef obj_set_subsection_attributes
5857 obj_set_subsection_attributes (seg, space->sd_seg, access,
5858 sort, quadrant);
5859 #endif
5860
5861 return chain_entry;
5862
5863 }
5864
5865 /* Update the information for the given subspace based upon the
5866 various arguments. Return the modified subspace chain entry. */
5867
5868 static ssd_chain_struct *
5869 update_subspace (space, name, loadable, code_only, common, dup_common, sort,
5870 zero, access, space_index, alignment, quadrant, section)
5871 sd_chain_struct *space;
5872 char *name;
5873 char loadable;
5874 char code_only;
5875 char common;
5876 char dup_common;
5877 char zero;
5878 char sort;
5879 int access;
5880 int space_index;
5881 int alignment;
5882 int quadrant;
5883 asection *section;
5884 {
5885 ssd_chain_struct *chain_entry;
5886
5887 if ((chain_entry = is_defined_subspace (name)))
5888 {
5889 SUBSPACE_ACCESS (chain_entry) = access;
5890 SUBSPACE_LOADABLE (chain_entry) = loadable;
5891 SUBSPACE_COMMON (chain_entry) = common;
5892 SUBSPACE_DUP_COMM (chain_entry) = dup_common;
5893 SUBSPACE_CODE_ONLY (chain_entry) = 1;
5894 SUBSPACE_SORT (chain_entry) = sort;
5895 SUBSPACE_ALIGN (chain_entry) = alignment;
5896 SUBSPACE_QUADRANT (chain_entry) = quadrant;
5897 SUBSPACE_SPACE_INDEX (chain_entry) = space_index;
5898 SUBSPACE_ZERO (chain_entry) = zero;
5899 }
5900 else
5901 chain_entry = NULL;
5902
5903 #ifdef obj_set_subsection_attributes
5904 obj_set_subsection_attributes (section, space->sd_seg, access,
5905 sort, quadrant);
5906 #endif
5907
5908 return chain_entry;
5909
5910 }
5911
5912 /* Return the space chain entry for the space with the name NAME or
5913 NULL if no such space exists. */
5914
5915 static sd_chain_struct *
5916 is_defined_space (name)
5917 char *name;
5918 {
5919 sd_chain_struct *chain_pointer;
5920
5921 for (chain_pointer = space_dict_root;
5922 chain_pointer;
5923 chain_pointer = chain_pointer->sd_next)
5924 {
5925 if (strcmp (SPACE_NAME (chain_pointer), name) == 0)
5926 return chain_pointer;
5927 }
5928
5929 /* No mapping from segment to space was found. Return NULL. */
5930 return NULL;
5931 }
5932
5933 /* Find and return the space associated with the given seg. If no mapping
5934 from the given seg to a space is found, then return NULL.
5935
5936 Unlike subspaces, the number of spaces is not expected to grow much,
5937 so a linear exhaustive search is OK here. */
5938
5939 static sd_chain_struct *
5940 pa_segment_to_space (seg)
5941 asection *seg;
5942 {
5943 sd_chain_struct *space_chain;
5944
5945 /* Walk through each space looking for the correct mapping. */
5946 for (space_chain = space_dict_root;
5947 space_chain;
5948 space_chain = space_chain->sd_next)
5949 {
5950 if (space_chain->sd_seg == seg)
5951 return space_chain;
5952 }
5953
5954 /* Mapping was not found. Return NULL. */
5955 return NULL;
5956 }
5957
5958 /* Return the space chain entry for the subspace with the name NAME or
5959 NULL if no such subspace exists.
5960
5961 Uses a linear search through all the spaces and subspaces, this may
5962 not be appropriate if we ever being placing each function in its
5963 own subspace. */
5964
5965 static ssd_chain_struct *
5966 is_defined_subspace (name)
5967 char *name;
5968 {
5969 sd_chain_struct *space_chain;
5970 ssd_chain_struct *subspace_chain;
5971
5972 /* Walk through each space. */
5973 for (space_chain = space_dict_root;
5974 space_chain;
5975 space_chain = space_chain->sd_next)
5976 {
5977 /* Walk through each subspace looking for a name which matches. */
5978 for (subspace_chain = space_chain->sd_subspaces;
5979 subspace_chain;
5980 subspace_chain = subspace_chain->ssd_next)
5981 if (strcmp (SUBSPACE_NAME (subspace_chain), name) == 0)
5982 return subspace_chain;
5983 }
5984
5985 /* Subspace wasn't found. Return NULL. */
5986 return NULL;
5987 }
5988
5989 /* Find and return the subspace associated with the given seg. If no
5990 mapping from the given seg to a subspace is found, then return NULL.
5991
5992 If we ever put each procedure/function within its own subspace
5993 (to make life easier on the compiler and linker), then this will have
5994 to become more efficient. */
5995
5996 static ssd_chain_struct *
5997 pa_subsegment_to_subspace (seg, subseg)
5998 asection *seg;
5999 subsegT subseg;
6000 {
6001 sd_chain_struct *space_chain;
6002 ssd_chain_struct *subspace_chain;
6003
6004 /* Walk through each space. */
6005 for (space_chain = space_dict_root;
6006 space_chain;
6007 space_chain = space_chain->sd_next)
6008 {
6009 if (space_chain->sd_seg == seg)
6010 {
6011 /* Walk through each subspace within each space looking for
6012 the correct mapping. */
6013 for (subspace_chain = space_chain->sd_subspaces;
6014 subspace_chain;
6015 subspace_chain = subspace_chain->ssd_next)
6016 if (subspace_chain->ssd_subseg == (int) subseg)
6017 return subspace_chain;
6018 }
6019 }
6020
6021 /* No mapping from subsegment to subspace found. Return NULL. */
6022 return NULL;
6023 }
6024
6025 /* Given a number, try and find a space with the name number.
6026
6027 Return a pointer to a space dictionary chain entry for the space
6028 that was found or NULL on failure. */
6029
6030 static sd_chain_struct *
6031 pa_find_space_by_number (number)
6032 int number;
6033 {
6034 sd_chain_struct *space_chain;
6035
6036 for (space_chain = space_dict_root;
6037 space_chain;
6038 space_chain = space_chain->sd_next)
6039 {
6040 if (SPACE_SPNUM (space_chain) == number)
6041 return space_chain;
6042 }
6043
6044 /* No appropriate space found. Return NULL. */
6045 return NULL;
6046 }
6047
6048 /* Return the starting address for the given subspace. If the starting
6049 address is unknown then return zero. */
6050
6051 static unsigned int
6052 pa_subspace_start (space, quadrant)
6053 sd_chain_struct *space;
6054 int quadrant;
6055 {
6056 /* FIXME. Assumes everyone puts read/write data at 0x4000000, this
6057 is not correct for the PA OSF1 port. */
6058 if ((strcasecmp (SPACE_NAME (space), "$PRIVATE$") == 0) && quadrant == 1)
6059 return 0x40000000;
6060 else if (space->sd_seg == data_section && quadrant == 1)
6061 return 0x40000000;
6062 else
6063 return 0;
6064 }
6065
6066 /* FIXME. Needs documentation. */
6067 static int
6068 pa_next_subseg (space)
6069 sd_chain_struct *space;
6070 {
6071
6072 space->sd_last_subseg++;
6073 return space->sd_last_subseg;
6074 }
6075
6076 /* Helper function for pa_stringer. Used to find the end of
6077 a string. */
6078
6079 static unsigned int
6080 pa_stringer_aux (s)
6081 char *s;
6082 {
6083 unsigned int c = *s & CHAR_MASK;
6084 switch (c)
6085 {
6086 case '\"':
6087 c = NOT_A_CHAR;
6088 break;
6089 default:
6090 break;
6091 }
6092 return c;
6093 }
6094
6095 /* Handle a .STRING type pseudo-op. */
6096
6097 static void
6098 pa_stringer (append_zero)
6099 int append_zero;
6100 {
6101 char *s, num_buf[4];
6102 unsigned int c;
6103 int i;
6104
6105 /* Preprocess the string to handle PA-specific escape sequences.
6106 For example, \xDD where DD is a hexidecimal number should be
6107 changed to \OOO where OOO is an octal number. */
6108
6109 /* Skip the opening quote. */
6110 s = input_line_pointer + 1;
6111
6112 while (is_a_char (c = pa_stringer_aux (s++)))
6113 {
6114 if (c == '\\')
6115 {
6116 c = *s;
6117 switch (c)
6118 {
6119 /* Handle \x<num>. */
6120 case 'x':
6121 {
6122 unsigned int number;
6123 int num_digit;
6124 char dg;
6125 char *s_start = s;
6126
6127 /* Get pas the 'x'. */
6128 s++;
6129 for (num_digit = 0, number = 0, dg = *s;
6130 num_digit < 2
6131 && (isdigit (dg) || (dg >= 'a' && dg <= 'f')
6132 || (dg >= 'A' && dg <= 'F'));
6133 num_digit++)
6134 {
6135 if (isdigit (dg))
6136 number = number * 16 + dg - '0';
6137 else if (dg >= 'a' && dg <= 'f')
6138 number = number * 16 + dg - 'a' + 10;
6139 else
6140 number = number * 16 + dg - 'A' + 10;
6141
6142 s++;
6143 dg = *s;
6144 }
6145 if (num_digit > 0)
6146 {
6147 switch (num_digit)
6148 {
6149 case 1:
6150 sprintf (num_buf, "%02o", number);
6151 break;
6152 case 2:
6153 sprintf (num_buf, "%03o", number);
6154 break;
6155 }
6156 for (i = 0; i <= num_digit; i++)
6157 s_start[i] = num_buf[i];
6158 }
6159 break;
6160 }
6161 /* This might be a "\"", skip over the escaped char. */
6162 default:
6163 s++;
6164 break;
6165 }
6166 }
6167 }
6168 stringer (append_zero);
6169 pa_undefine_label ();
6170 }
6171
6172 /* Handle a .VERSION pseudo-op. */
6173
6174 static void
6175 pa_version (unused)
6176 int unused;
6177 {
6178 obj_version (0);
6179 pa_undefine_label ();
6180 }
6181
6182 /* Just like a normal cons, but when finished we have to undefine
6183 the latest space label. */
6184
6185 static void
6186 pa_cons (nbytes)
6187 int nbytes;
6188 {
6189 cons (nbytes);
6190 pa_undefine_label ();
6191 }
6192
6193 /* Switch to the data space. As usual delete our label. */
6194
6195 static void
6196 pa_data (unused)
6197 int unused;
6198 {
6199 s_data (0);
6200 pa_undefine_label ();
6201 }
6202
6203 /* FIXME. What's the purpose of this pseudo-op? */
6204
6205 static void
6206 pa_desc (unused)
6207 int unused;
6208 {
6209 pa_undefine_label ();
6210 }
6211
6212 /* Like float_cons, but we need to undefine our label. */
6213
6214 static void
6215 pa_float_cons (float_type)
6216 int float_type;
6217 {
6218 float_cons (float_type);
6219 pa_undefine_label ();
6220 }
6221
6222 /* Like s_fill, but delete our label when finished. */
6223
6224 static void
6225 pa_fill (unused)
6226 int unused;
6227 {
6228 s_fill (0);
6229 pa_undefine_label ();
6230 }
6231
6232 /* Like lcomm, but delete our label when finished. */
6233
6234 static void
6235 pa_lcomm (needs_align)
6236 int needs_align;
6237 {
6238 s_lcomm (needs_align);
6239 pa_undefine_label ();
6240 }
6241
6242 /* Like lsym, but delete our label when finished. */
6243
6244 static void
6245 pa_lsym (unused)
6246 int unused;
6247 {
6248 s_lsym (0);
6249 pa_undefine_label ();
6250 }
6251
6252 /* Switch to the text space. Like s_text, but delete our
6253 label when finished. */
6254 static void
6255 pa_text (unused)
6256 int unused;
6257 {
6258 s_text (0);
6259 pa_undefine_label ();
6260 }
6261
6262 /* On the PA relocations which involve function symbols must not be
6263 adjusted. This so that the linker can know when/how to create argument
6264 relocation stubs for indirect calls and calls to static functions.
6265
6266 FIXME. Also reject R_HPPA relocations which are 32 bits
6267 wide. Helps with code lables in arrays for SOM. (SOM BFD code
6268 needs to generate relocations to push the addend and symbol value
6269 onto the stack, add them, then pop the value off the stack and
6270 use it in a relocation -- yuk. */
6271
6272 int
6273 hppa_fix_adjustable (fixp)
6274 fixS *fixp;
6275 {
6276 struct hppa_fix_struct *hppa_fix;
6277
6278 hppa_fix = fixp->tc_fix_data;
6279
6280 if (fixp->fx_r_type == R_HPPA && hppa_fix->fx_r_format == 32)
6281 return 0;
6282
6283 if (fixp->fx_addsy == 0
6284 || (fixp->fx_addsy->bsym->flags & BSF_FUNCTION) == 0)
6285 return 1;
6286
6287 return 0;
6288 }
6289
6290 /* Return nonzero if the fixup in FIXP will require a relocation,
6291 even it if appears that the fixup could be completely handled
6292 within GAS. */
6293
6294 int
6295 hppa_force_relocation (fixp)
6296 fixS *fixp;
6297 {
6298 struct hppa_fix_struct *hppa_fixp = fixp->tc_fix_data;
6299
6300 #ifdef OBJ_SOM
6301 if (fixp->fx_r_type == R_HPPA_ENTRY || fixp->fx_r_type == R_HPPA_EXIT)
6302 return 1;
6303 #endif
6304
6305 #define stub_needed(CALLER, CALLEE) \
6306 ((CALLEE) && (CALLER) && ((CALLEE) != (CALLER)))
6307
6308 /* It is necessary to force PC-relative calls/jumps to have a relocation
6309 entry if they're going to need either a argument relocation or long
6310 call stub. FIXME. Can't we need the same for absolute calls? */
6311 if (fixp->fx_pcrel && fixp->fx_addsy
6312 && (stub_needed (((obj_symbol_type *)
6313 fixp->fx_addsy->bsym)->tc_data.hppa_arg_reloc,
6314 hppa_fixp->fx_arg_reloc)))
6315 return 1;
6316
6317 #undef stub_needed
6318
6319 /* No need (yet) to force another relocations to be emitted. */
6320 return 0;
6321 }
6322
6323 /* Now for some ELF specific code. FIXME. */
6324 #ifdef OBJ_ELF
6325 static symext_chainS *symext_rootP;
6326 static symext_chainS *symext_lastP;
6327
6328 /* Mark the end of a function so that it's possible to compute
6329 the size of the function in hppa_elf_final_processing. */
6330
6331 static void
6332 hppa_elf_mark_end_of_function ()
6333 {
6334 /* ELF does not have EXIT relocations. All we do is create a
6335 temporary symbol marking the end of the function. */
6336 char *name = (char *)
6337 xmalloc (strlen ("L$\001end_") +
6338 strlen (S_GET_NAME (last_call_info->start_symbol)) + 1);
6339
6340 if (name)
6341 {
6342 symbolS *symbolP;
6343
6344 strcpy (name, "L$\001end_");
6345 strcat (name, S_GET_NAME (last_call_info->start_symbol));
6346
6347 /* If we have a .exit followed by a .procend, then the
6348 symbol will have already been defined. */
6349 symbolP = symbol_find (name);
6350 if (symbolP)
6351 {
6352 /* The symbol has already been defined! This can
6353 happen if we have a .exit followed by a .procend.
6354
6355 This is *not* an error. All we want to do is free
6356 the memory we just allocated for the name and continue. */
6357 xfree (name);
6358 }
6359 else
6360 {
6361 /* symbol value should be the offset of the
6362 last instruction of the function */
6363 symbolP = symbol_new (name, now_seg,
6364 (valueT) (obstack_next_free (&frags)
6365 - frag_now->fr_literal - 4),
6366 frag_now);
6367
6368 assert (symbolP);
6369 symbolP->bsym->flags = BSF_LOCAL;
6370 symbol_table_insert (symbolP);
6371 }
6372
6373 if (symbolP)
6374 last_call_info->end_symbol = symbolP;
6375 else
6376 as_bad ("Symbol '%s' could not be created.", name);
6377
6378 }
6379 else
6380 as_bad ("No memory for symbol name.");
6381
6382 /* Stuff away the location of the frag for the end of the function,
6383 and call pa_build_unwind_subspace to add an entry in the unwind
6384 table. */
6385 last_call_info->end_frag = frag_now;
6386 }
6387
6388 /* Do any symbol processing requested by the target-cpu or target-format. */
6389
6390 void
6391 hppa_tc_symbol (abfd, symbolP, sym_idx)
6392 bfd *abfd;
6393 elf_symbol_type *symbolP;
6394 int sym_idx;
6395 {
6396 symext_chainS *symextP;
6397 unsigned int arg_reloc;
6398
6399 /* Only functions can have argument relocations. */
6400 if (!(symbolP->symbol.flags & BSF_FUNCTION))
6401 return;
6402
6403 arg_reloc = symbolP->tc_data.hppa_arg_reloc;
6404
6405 /* If there are no argument relocation bits, then no relocation is
6406 necessary. Do not add this to the symextn section. */
6407 if (arg_reloc == 0)
6408 return;
6409
6410 symextP = (symext_chainS *) bfd_alloc (abfd, sizeof (symext_chainS) * 2);
6411
6412 symextP[0].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX, sym_idx);
6413 symextP[0].next = &symextP[1];
6414
6415 symextP[1].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_ARG_RELOC, arg_reloc);
6416 symextP[1].next = NULL;
6417
6418 if (symext_rootP == NULL)
6419 {
6420 symext_rootP = &symextP[0];
6421 symext_lastP = &symextP[1];
6422 }
6423 else
6424 {
6425 symext_lastP->next = &symextP[0];
6426 symext_lastP = &symextP[1];
6427 }
6428 }
6429
6430 /* Make sections needed by the target cpu and/or target format. */
6431 void
6432 hppa_tc_make_sections (abfd)
6433 bfd *abfd;
6434 {
6435 symext_chainS *symextP;
6436 int size, n;
6437 asection *symextn_sec;
6438 segT save_seg = now_seg;
6439 subsegT save_subseg = now_subseg;
6440
6441 /* Build the symbol extension section. */
6442 hppa_tc_make_symextn_section ();
6443
6444 /* Force some calculation to occur. */
6445 bfd_set_section_contents (stdoutput, stdoutput->sections, "", 0, 0);
6446
6447 hppa_elf_stub_finish (abfd);
6448
6449 /* If no symbols for the symbol extension section, then stop now. */
6450 if (symext_rootP == NULL)
6451 return;
6452
6453 /* Count the number of symbols for the symbol extension section. */
6454 for (n = 0, symextP = symext_rootP; symextP; symextP = symextP->next, ++n)
6455 ;
6456
6457 size = sizeof (symext_entryS) * n;
6458
6459 /* Switch to the symbol extension section. */
6460 symextn_sec = subseg_new (SYMEXTN_SECTION_NAME, 0);
6461
6462 frag_wane (frag_now);
6463 frag_new (0);
6464
6465 for (symextP = symext_rootP; symextP; symextP = symextP->next)
6466 {
6467 char *ptr;
6468 int *symtab_map = elf_sym_extra (abfd);
6469 int idx;
6470
6471 /* First, patch the symbol extension record to reflect the true
6472 symbol table index. */
6473
6474 if (ELF32_HPPA_SX_TYPE (symextP->entry) == HPPA_SXT_SYMNDX)
6475 {
6476 idx = ELF32_HPPA_SX_VAL (symextP->entry) - 1;
6477 symextP->entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX,
6478 symtab_map[idx]);
6479 }
6480
6481 ptr = frag_more (sizeof (symextP->entry));
6482 md_number_to_chars (ptr, symextP->entry, sizeof (symextP->entry));
6483 }
6484
6485 frag_now->fr_fix = obstack_next_free (&frags) - frag_now->fr_literal;
6486 frag_wane (frag_now);
6487
6488 /* Switch back to the original segment. */
6489 subseg_set (save_seg, save_subseg);
6490
6491 return;
6492 }
6493
6494 /* Make the symbol extension section. */
6495
6496 static void
6497 hppa_tc_make_symextn_section ()
6498 {
6499 if (symext_rootP)
6500 {
6501 symext_chainS *symextP;
6502 int n;
6503 unsigned int size;
6504 segT symextn_sec;
6505 segT save_seg = now_seg;
6506 subsegT save_subseg = now_subseg;
6507
6508 for (n = 0, symextP = symext_rootP; symextP; symextP = symextP->next, ++n)
6509 ;
6510
6511 size = sizeof (symext_entryS) * n;
6512
6513 symextn_sec = subseg_new (SYMEXTN_SECTION_NAME, 0);
6514
6515 bfd_set_section_flags (stdoutput, symextn_sec,
6516 SEC_LOAD | SEC_HAS_CONTENTS | SEC_DATA);
6517 bfd_set_section_size (stdoutput, symextn_sec, size);
6518
6519 /* Now, switch back to the original segment. */
6520 subseg_set (save_seg, save_subseg);
6521 }
6522 }
6523
6524 /* Build the symbol extension section. */
6525
6526 static void
6527 pa_build_symextn_section ()
6528 {
6529 segT seg;
6530 asection *save_seg = now_seg;
6531 subsegT subseg = (subsegT) 0;
6532 subsegT save_subseg = now_subseg;
6533
6534 seg = subseg_new (".hppa_symextn", subseg);
6535 bfd_set_section_flags (stdoutput,
6536 seg,
6537 SEC_HAS_CONTENTS | SEC_READONLY
6538 | SEC_ALLOC | SEC_LOAD);
6539
6540 subseg_set (save_seg, save_subseg);
6541
6542 }
6543
6544 /* For ELF, this function serves one purpose: to setup the st_size
6545 field of STT_FUNC symbols. To do this, we need to scan the
6546 call_info structure list, determining st_size in one of two possible
6547 ways:
6548
6549 1. call_info->start_frag->fr_fix has the size of the fragment.
6550 This approach assumes that the function was built into a
6551 single fragment. This works for most cases, but might fail.
6552 For example, if there was a segment change in the middle of
6553 the function.
6554
6555 2. The st_size field is the difference in the addresses of the
6556 call_info->start_frag->fr_address field and the fr_address
6557 field of the next fragment with fr_type == rs_fill and
6558 fr_fix != 0. */
6559
6560 void
6561 elf_hppa_final_processing ()
6562 {
6563 struct call_info *call_info_pointer;
6564
6565 for (call_info_pointer = call_info_root;
6566 call_info_pointer;
6567 call_info_pointer = call_info_pointer->ci_next)
6568 {
6569 elf_symbol_type *esym
6570 = (elf_symbol_type *) call_info_pointer->start_symbol->bsym;
6571 esym->internal_elf_sym.st_size =
6572 S_GET_VALUE (call_info_pointer->end_symbol)
6573 - S_GET_VALUE (call_info_pointer->start_symbol) + 4;
6574 }
6575 }
6576 #endif