* config/obj-som.c (som_frob_file): Call adjust_code_sections
[binutils-gdb.git] / gas / config / tc-hppa.c
1 /* tc-hppa.c -- Assemble for the PA
2 Copyright (C) 1989 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 1, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* HP PA-RISC support was contributed by the Center for Software Science
22 at the University of Utah. */
23
24 #include <stdio.h>
25 #include <ctype.h>
26
27 #include "as.h"
28 #include "subsegs.h"
29
30 #include "../bfd/libhppa.h"
31 #include "../bfd/libbfd.h"
32
33 /* Be careful, this file includes data *declarations*. */
34 #include "opcode/hppa.h"
35
36 /* A "convient" place to put object file dependencies which do
37 not need to be seen outside of tc-hppa.c. */
38 #ifdef OBJ_ELF
39 /* Names of various debugging spaces/subspaces. */
40 #define GDB_DEBUG_SPACE_NAME ".stab"
41 #define GDB_STRINGS_SUBSPACE_NAME ".stabstr"
42 #define GDB_SYMBOLS_SUBSPACE_NAME ".stab"
43 #define UNWIND_SECTION_NAME ".hppa_unwind"
44 /* Nonzero if CODE is a fixup code needing further processing. */
45
46 /* Object file formats specify relocation types. */
47 typedef elf32_hppa_reloc_type reloc_type;
48
49 /* Object file formats specify BFD symbol types. */
50 typedef elf_symbol_type obj_symbol_type;
51
52 /* How to generate a relocation. */
53 #define hppa_gen_reloc_type hppa_elf_gen_reloc_type
54
55 /* ELF objects can have versions, but apparently do not have anywhere
56 to store a copyright string. */
57 #define obj_version obj_elf_version
58 #define obj_copyright obj_elf_version
59
60 /* Use space aliases. */
61 #define USE_ALIASES 1
62
63 /* Some local functions only used by ELF. */
64 static void pa_build_symextn_section PARAMS ((void));
65 static void hppa_tc_make_symextn_section PARAMS ((void));
66 #endif
67
68 #ifdef OBJ_SOM
69 /* Names of various debugging spaces/subspaces. */
70 #define GDB_DEBUG_SPACE_NAME "$GDB_DEBUG$"
71 #define GDB_STRINGS_SUBSPACE_NAME "$GDB_STRINGS$"
72 #define GDB_SYMBOLS_SUBSPACE_NAME "$GDB_SYMBOLS$"
73 #define UNWIND_SECTION_NAME "$UNWIND$"
74
75 /* Object file formats specify relocation types. */
76 typedef int reloc_type;
77
78 /* SOM objects can have both a version string and a copyright string. */
79 #define obj_version obj_som_version
80 #define obj_copyright obj_som_copyright
81
82 /* Do not use space aliases. */
83 #define USE_ALIASES 0
84
85 /* How to generate a relocation. */
86 #define hppa_gen_reloc_type hppa_som_gen_reloc_type
87
88 /* Object file formats specify BFD symbol types. */
89 typedef som_symbol_type obj_symbol_type;
90 #endif
91
92 /* Various structures and types used internally in tc-hppa.c. */
93
94 /* Unwind table and descriptor. FIXME: Sync this with GDB version. */
95
96 struct unwind_desc
97 {
98 unsigned int cannot_unwind:1;
99 unsigned int millicode:1;
100 unsigned int millicode_save_rest:1;
101 unsigned int region_desc:2;
102 unsigned int save_sr:2;
103 unsigned int entry_fr:4;
104 unsigned int entry_gr:5;
105 unsigned int args_stored:1;
106 unsigned int call_fr:5;
107 unsigned int call_gr:5;
108 unsigned int save_sp:1;
109 unsigned int save_rp:1;
110 unsigned int save_rp_in_frame:1;
111 unsigned int extn_ptr_defined:1;
112 unsigned int cleanup_defined:1;
113
114 unsigned int hpe_interrupt_marker:1;
115 unsigned int hpux_interrupt_marker:1;
116 unsigned int reserved:3;
117 unsigned int frame_size:27;
118 };
119
120 struct unwind_table
121 {
122 /* Starting and ending offsets of the region described by
123 descriptor. */
124 unsigned int start_offset;
125 unsigned int end_offset;
126 struct unwind_desc descriptor;
127 };
128
129 /* This structure is used by the .callinfo, .enter, .leave pseudo-ops to
130 control the entry and exit code they generate. It is also used in
131 creation of the correct stack unwind descriptors.
132
133 NOTE: GAS does not support .enter and .leave for the generation of
134 prologues and epilogues. FIXME.
135
136 The fields in structure roughly correspond to the arguments available on the
137 .callinfo pseudo-op. */
138
139 struct call_info
140 {
141 /* The unwind descriptor being built. */
142 struct unwind_table ci_unwind;
143
144 /* Name of this function. */
145 symbolS *start_symbol;
146
147 /* (temporary) symbol used to mark the end of this function. */
148 symbolS *end_symbol;
149
150 /* Next entry in the chain. */
151 struct call_info *ci_next;
152 };
153
154 /* Operand formats for FP instructions. Note not all FP instructions
155 allow all four formats to be used (for example fmpysub only allows
156 SGL and DBL). */
157 typedef enum
158 {
159 SGL, DBL, ILLEGAL_FMT, QUAD
160 }
161 fp_operand_format;
162
163 /* This fully describes the symbol types which may be attached to
164 an EXPORT or IMPORT directive. Only SOM uses this formation
165 (ELF has no need for it). */
166 typedef enum
167 {
168 SYMBOL_TYPE_UNKNOWN,
169 SYMBOL_TYPE_ABSOLUTE,
170 SYMBOL_TYPE_CODE,
171 SYMBOL_TYPE_DATA,
172 SYMBOL_TYPE_ENTRY,
173 SYMBOL_TYPE_MILLICODE,
174 SYMBOL_TYPE_PLABEL,
175 SYMBOL_TYPE_PRI_PROG,
176 SYMBOL_TYPE_SEC_PROG,
177 }
178 pa_symbol_type;
179
180 /* This structure contains information needed to assemble
181 individual instructions. */
182 struct pa_it
183 {
184 /* Holds the opcode after parsing by pa_ip. */
185 unsigned long opcode;
186
187 /* Holds an expression associated with the current instruction. */
188 expressionS exp;
189
190 /* Does this instruction use PC-relative addressing. */
191 int pcrel;
192
193 /* Floating point formats for operand1 and operand2. */
194 fp_operand_format fpof1;
195 fp_operand_format fpof2;
196
197 /* Holds the field selector for this instruction
198 (for example L%, LR%, etc). */
199 long field_selector;
200
201 /* Holds any argument relocation bits associated with this
202 instruction. (instruction should be some sort of call). */
203 long arg_reloc;
204
205 /* The format specification for this instruction. */
206 int format;
207
208 /* The relocation (if any) associated with this instruction. */
209 reloc_type reloc;
210 };
211
212 /* PA-89 floating point registers are arranged like this:
213
214
215 +--------------+--------------+
216 | 0 or 16L | 16 or 16R |
217 +--------------+--------------+
218 | 1 or 17L | 17 or 17R |
219 +--------------+--------------+
220 | | |
221
222 . . .
223 . . .
224 . . .
225
226 | | |
227 +--------------+--------------+
228 | 14 or 30L | 30 or 30R |
229 +--------------+--------------+
230 | 15 or 31L | 31 or 31R |
231 +--------------+--------------+
232
233
234 The following is a version of pa_parse_number that
235 handles the L/R notation and returns the correct
236 value to put into the instruction register field.
237 The correct value to put into the instruction is
238 encoded in the structure 'pa_89_fp_reg_struct'. */
239
240 struct pa_89_fp_reg_struct
241 {
242 /* The register number. */
243 char number_part;
244
245 /* L/R selector. */
246 char l_r_select;
247 };
248
249 /* Additional information needed to build argument relocation stubs. */
250 struct call_desc
251 {
252 /* The argument relocation specification. */
253 unsigned int arg_reloc;
254
255 /* Number of arguments. */
256 unsigned int arg_count;
257 };
258
259 /* This structure defines an entry in the subspace dictionary
260 chain. */
261
262 struct subspace_dictionary_chain
263 {
264 /* Nonzero if this space has been defined by the user code. */
265 unsigned int ssd_defined;
266
267 /* Name of this subspace. */
268 char *ssd_name;
269
270 /* GAS segment and subsegment associated with this subspace. */
271 asection *ssd_seg;
272 int ssd_subseg;
273
274 /* Next space in the subspace dictionary chain. */
275 struct subspace_dictionary_chain *ssd_next;
276 };
277
278 typedef struct subspace_dictionary_chain ssd_chain_struct;
279
280 /* This structure defines an entry in the subspace dictionary
281 chain. */
282
283 struct space_dictionary_chain
284 {
285 /* Nonzero if this space has been defined by the user code or
286 as a default space. */
287 unsigned int sd_defined;
288
289 /* Nonzero if this spaces has been defined by the user code. */
290 unsigned int sd_user_defined;
291
292 /* The space number (or index). */
293 unsigned int sd_spnum;
294
295 /* The name of this subspace. */
296 char *sd_name;
297
298 /* GAS segment to which this subspace corresponds. */
299 asection *sd_seg;
300
301 /* Current subsegment number being used. */
302 int sd_last_subseg;
303
304 /* The chain of subspaces contained within this space. */
305 ssd_chain_struct *sd_subspaces;
306
307 /* The next entry in the space dictionary chain. */
308 struct space_dictionary_chain *sd_next;
309 };
310
311 typedef struct space_dictionary_chain sd_chain_struct;
312
313 /* Structure for previous label tracking. Needed so that alignments,
314 callinfo declarations, etc can be easily attached to a particular
315 label. */
316 typedef struct label_symbol_struct
317 {
318 struct symbol *lss_label;
319 sd_chain_struct *lss_space;
320 struct label_symbol_struct *lss_next;
321 }
322 label_symbol_struct;
323
324 /* This structure defines attributes of the default subspace
325 dictionary entries. */
326
327 struct default_subspace_dict
328 {
329 /* Name of the subspace. */
330 char *name;
331
332 /* FIXME. Is this still needed? */
333 char defined;
334
335 /* Nonzero if this subspace is loadable. */
336 char loadable;
337
338 /* Nonzero if this subspace contains only code. */
339 char code_only;
340
341 /* Nonzero if this is a common subspace. */
342 char common;
343
344 /* Nonzero if this is a common subspace which allows symbols
345 to be multiply defined. */
346 char dup_common;
347
348 /* Nonzero if this subspace should be zero filled. */
349 char zero;
350
351 /* Sort key for this subspace. */
352 unsigned char sort;
353
354 /* Access control bits for this subspace. Can represent RWX access
355 as well as privilege level changes for gateways. */
356 int access;
357
358 /* Index of containing space. */
359 int space_index;
360
361 /* Alignment (in bytes) of this subspace. */
362 int alignment;
363
364 /* Quadrant within space where this subspace should be loaded. */
365 int quadrant;
366
367 /* An index into the default spaces array. */
368 int def_space_index;
369
370 /* An alias for this section (or NULL if no alias exists). */
371 char *alias;
372
373 /* Subsegment associated with this subspace. */
374 subsegT subsegment;
375 };
376
377 /* This structure defines attributes of the default space
378 dictionary entries. */
379
380 struct default_space_dict
381 {
382 /* Name of the space. */
383 char *name;
384
385 /* Space number. It is possible to identify spaces within
386 assembly code numerically! */
387 int spnum;
388
389 /* Nonzero if this space is loadable. */
390 char loadable;
391
392 /* Nonzero if this space is "defined". FIXME is still needed */
393 char defined;
394
395 /* Nonzero if this space can not be shared. */
396 char private;
397
398 /* Sort key for this space. */
399 unsigned char sort;
400
401 /* Segment associated with this space. */
402 asection *segment;
403
404 /* An alias for this section (or NULL if no alias exists). */
405 char *alias;
406 };
407
408 /* Extra information needed to perform fixups (relocations) on the PA. */
409 struct hppa_fix_struct
410 {
411 /* The field selector. */
412 enum hppa_reloc_field_selector_type fx_r_field;
413
414 /* Type of fixup. */
415 int fx_r_type;
416
417 /* Format of fixup. */
418 int fx_r_format;
419
420 /* Argument relocation bits. */
421 long fx_arg_reloc;
422
423 /* The unwind descriptor associated with this fixup. */
424 char fx_unwind[8];
425
426 /* The segment this fixup appears in. */
427 segT segment;
428 };
429
430 /* Structure to hold information about predefined registers. */
431
432 struct pd_reg
433 {
434 char *name;
435 int value;
436 };
437
438 /* This structure defines the mapping from a FP condition string
439 to a condition number which can be recorded in an instruction. */
440 struct fp_cond_map
441 {
442 char *string;
443 int cond;
444 };
445
446 /* This structure defines a mapping from a field selector
447 string to a field selector type. */
448 struct selector_entry
449 {
450 char *prefix;
451 int field_selector;
452 };
453
454 /* Prototypes for functions local to tc-hppa.c. */
455
456 static fp_operand_format pa_parse_fp_format PARAMS ((char **s));
457 static void pa_cons PARAMS ((int));
458 static void pa_data PARAMS ((int));
459 static void pa_float_cons PARAMS ((int));
460 static void pa_fill PARAMS ((int));
461 static void pa_lcomm PARAMS ((int));
462 static void pa_lsym PARAMS ((int));
463 static void pa_stringer PARAMS ((int));
464 static void pa_text PARAMS ((int));
465 static void pa_version PARAMS ((int));
466 static int pa_parse_fp_cmp_cond PARAMS ((char **));
467 static int get_expression PARAMS ((char *));
468 static int pa_get_absolute_expression PARAMS ((struct pa_it *, char **));
469 static int evaluate_absolute PARAMS ((struct pa_it *));
470 static unsigned int pa_build_arg_reloc PARAMS ((char *));
471 static unsigned int pa_align_arg_reloc PARAMS ((unsigned int, unsigned int));
472 static int pa_parse_nullif PARAMS ((char **));
473 static int pa_parse_nonneg_cmpsub_cmpltr PARAMS ((char **, int));
474 static int pa_parse_neg_cmpsub_cmpltr PARAMS ((char **, int));
475 static int pa_parse_neg_add_cmpltr PARAMS ((char **, int));
476 static int pa_parse_nonneg_add_cmpltr PARAMS ((char **, int));
477 static void pa_block PARAMS ((int));
478 static void pa_call PARAMS ((int));
479 static void pa_call_args PARAMS ((struct call_desc *));
480 static void pa_callinfo PARAMS ((int));
481 static void pa_code PARAMS ((int));
482 static void pa_comm PARAMS ((int));
483 static void pa_copyright PARAMS ((int));
484 static void pa_end PARAMS ((int));
485 static void pa_enter PARAMS ((int));
486 static void pa_entry PARAMS ((int));
487 static void pa_equ PARAMS ((int));
488 static void pa_exit PARAMS ((int));
489 static void pa_export PARAMS ((int));
490 static void pa_type_args PARAMS ((symbolS *, int));
491 static void pa_import PARAMS ((int));
492 static void pa_label PARAMS ((int));
493 static void pa_leave PARAMS ((int));
494 static void pa_origin PARAMS ((int));
495 static void pa_proc PARAMS ((int));
496 static void pa_procend PARAMS ((int));
497 static void pa_space PARAMS ((int));
498 static void pa_spnum PARAMS ((int));
499 static void pa_subspace PARAMS ((int));
500 static void pa_param PARAMS ((int));
501 static void pa_undefine_label PARAMS ((void));
502 static int need_89_opcode PARAMS ((struct pa_it *,
503 struct pa_89_fp_reg_struct *));
504 static int pa_parse_number PARAMS ((char **, struct pa_89_fp_reg_struct *));
505 static label_symbol_struct *pa_get_label PARAMS ((void));
506 static sd_chain_struct *create_new_space PARAMS ((char *, int, char,
507 char, char, char,
508 asection *, int));
509 static ssd_chain_struct *create_new_subspace PARAMS ((sd_chain_struct *,
510 char *, char, char,
511 char, char, char,
512 char, int, int, int,
513 int, asection *));
514 static ssd_chain_struct *update_subspace PARAMS ((sd_chain_struct *,
515 char *, char, char, char,
516 char, char, char, int,
517 int, int, int,
518 asection *));
519 static sd_chain_struct *is_defined_space PARAMS ((char *));
520 static ssd_chain_struct *is_defined_subspace PARAMS ((char *));
521 static sd_chain_struct *pa_segment_to_space PARAMS ((asection *));
522 static ssd_chain_struct *pa_subsegment_to_subspace PARAMS ((asection *,
523 subsegT));
524 static sd_chain_struct *pa_find_space_by_number PARAMS ((int));
525 static unsigned int pa_subspace_start PARAMS ((sd_chain_struct *, int));
526 static void pa_ip PARAMS ((char *));
527 static void fix_new_hppa PARAMS ((fragS *, int, short int, symbolS *,
528 long, expressionS *, int,
529 bfd_reloc_code_real_type,
530 enum hppa_reloc_field_selector_type,
531 int, long, char *));
532 static int is_end_of_statement PARAMS ((void));
533 static int reg_name_search PARAMS ((char *));
534 static int pa_chk_field_selector PARAMS ((char **));
535 static int is_same_frag PARAMS ((fragS *, fragS *));
536 static void pa_build_unwind_subspace PARAMS ((struct call_info *));
537 static void process_exit PARAMS ((void));
538 static sd_chain_struct *pa_parse_space_stmt PARAMS ((char *, int));
539 static int log2 PARAMS ((int));
540 static int pa_next_subseg PARAMS ((sd_chain_struct *));
541 static unsigned int pa_stringer_aux PARAMS ((char *));
542 static void pa_spaces_begin PARAMS ((void));
543 static void hppa_elf_mark_end_of_function PARAMS ((void));
544
545 /* File and gloally scoped variable declarations. */
546
547 /* Root and final entry in the space chain. */
548 static sd_chain_struct *space_dict_root;
549 static sd_chain_struct *space_dict_last;
550
551 /* The current space and subspace. */
552 static sd_chain_struct *current_space;
553 static ssd_chain_struct *current_subspace;
554
555 /* Root of the call_info chain. */
556 static struct call_info *call_info_root;
557
558 /* The last call_info (for functions) structure
559 seen so it can be associated with fixups and
560 function labels. */
561 static struct call_info *last_call_info;
562
563 /* The last call description (for actual calls). */
564 static struct call_desc last_call_desc;
565
566 /* Relaxation isn't supported for the PA yet. */
567 const relax_typeS md_relax_table[] =
568 {0};
569
570 /* Jumps are always the same size -- one instruction. */
571 int md_short_jump_size = 4;
572 int md_long_jump_size = 4;
573
574 /* handle of the OPCODE hash table */
575 static struct hash_control *op_hash = NULL;
576
577 /* This array holds the chars that always start a comment. If the
578 pre-processor is disabled, these aren't very useful. */
579 const char comment_chars[] = ";";
580
581 /* Table of pseudo ops for the PA. FIXME -- how many of these
582 are now redundant with the overall GAS and the object file
583 dependent tables? */
584 const pseudo_typeS md_pseudo_table[] =
585 {
586 /* align pseudo-ops on the PA specify the actual alignment requested,
587 not the log2 of the requested alignment. */
588 {"align", s_align_bytes, 8},
589 {"ALIGN", s_align_bytes, 8},
590 {"block", pa_block, 1},
591 {"BLOCK", pa_block, 1},
592 {"blockz", pa_block, 0},
593 {"BLOCKZ", pa_block, 0},
594 {"byte", pa_cons, 1},
595 {"BYTE", pa_cons, 1},
596 {"call", pa_call, 0},
597 {"CALL", pa_call, 0},
598 {"callinfo", pa_callinfo, 0},
599 {"CALLINFO", pa_callinfo, 0},
600 {"code", pa_code, 0},
601 {"CODE", pa_code, 0},
602 {"comm", pa_comm, 0},
603 {"COMM", pa_comm, 0},
604 {"copyright", pa_copyright, 0},
605 {"COPYRIGHT", pa_copyright, 0},
606 {"data", pa_data, 0},
607 {"DATA", pa_data, 0},
608 {"double", pa_float_cons, 'd'},
609 {"DOUBLE", pa_float_cons, 'd'},
610 {"end", pa_end, 0},
611 {"END", pa_end, 0},
612 {"enter", pa_enter, 0},
613 {"ENTER", pa_enter, 0},
614 {"entry", pa_entry, 0},
615 {"ENTRY", pa_entry, 0},
616 {"equ", pa_equ, 0},
617 {"EQU", pa_equ, 0},
618 {"exit", pa_exit, 0},
619 {"EXIT", pa_exit, 0},
620 {"export", pa_export, 0},
621 {"EXPORT", pa_export, 0},
622 {"fill", pa_fill, 0},
623 {"FILL", pa_fill, 0},
624 {"float", pa_float_cons, 'f'},
625 {"FLOAT", pa_float_cons, 'f'},
626 {"half", pa_cons, 2},
627 {"HALF", pa_cons, 2},
628 {"import", pa_import, 0},
629 {"IMPORT", pa_import, 0},
630 {"int", pa_cons, 4},
631 {"INT", pa_cons, 4},
632 {"label", pa_label, 0},
633 {"LABEL", pa_label, 0},
634 {"lcomm", pa_lcomm, 0},
635 {"LCOMM", pa_lcomm, 0},
636 {"leave", pa_leave, 0},
637 {"LEAVE", pa_leave, 0},
638 {"long", pa_cons, 4},
639 {"LONG", pa_cons, 4},
640 {"lsym", pa_lsym, 0},
641 {"LSYM", pa_lsym, 0},
642 {"octa", pa_cons, 16},
643 {"OCTA", pa_cons, 16},
644 {"org", pa_origin, 0},
645 {"ORG", pa_origin, 0},
646 {"origin", pa_origin, 0},
647 {"ORIGIN", pa_origin, 0},
648 {"param", pa_param, 0},
649 {"PARAM", pa_param, 0},
650 {"proc", pa_proc, 0},
651 {"PROC", pa_proc, 0},
652 {"procend", pa_procend, 0},
653 {"PROCEND", pa_procend, 0},
654 {"quad", pa_cons, 8},
655 {"QUAD", pa_cons, 8},
656 {"reg", pa_equ, 1},
657 {"REG", pa_equ, 1},
658 {"short", pa_cons, 2},
659 {"SHORT", pa_cons, 2},
660 {"single", pa_float_cons, 'f'},
661 {"SINGLE", pa_float_cons, 'f'},
662 {"space", pa_space, 0},
663 {"SPACE", pa_space, 0},
664 {"spnum", pa_spnum, 0},
665 {"SPNUM", pa_spnum, 0},
666 {"string", pa_stringer, 0},
667 {"STRING", pa_stringer, 0},
668 {"stringz", pa_stringer, 1},
669 {"STRINGZ", pa_stringer, 1},
670 {"subspa", pa_subspace, 0},
671 {"SUBSPA", pa_subspace, 0},
672 {"text", pa_text, 0},
673 {"TEXT", pa_text, 0},
674 {"version", pa_version, 0},
675 {"VERSION", pa_version, 0},
676 {"word", pa_cons, 4},
677 {"WORD", pa_cons, 4},
678 {NULL, 0, 0}
679 };
680
681 /* This array holds the chars that only start a comment at the beginning of
682 a line. If the line seems to have the form '# 123 filename'
683 .line and .file directives will appear in the pre-processed output.
684
685 Note that input_file.c hand checks for '#' at the beginning of the
686 first line of the input file. This is because the compiler outputs
687 #NO_APP at the beginning of its output.
688
689 Also note that '/*' will always start a comment. */
690 const char line_comment_chars[] = "#";
691
692 /* This array holds the characters which act as line separators. */
693 const char line_separator_chars[] = "!";
694
695 /* Chars that can be used to separate mant from exp in floating point nums. */
696 const char EXP_CHARS[] = "eE";
697
698 /* Chars that mean this number is a floating point constant.
699 As in 0f12.456 or 0d1.2345e12.
700
701 Be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
702 changed in read.c. Ideally it shouldn't hae to know abou it at
703 all, but nothing is ideal around here. */
704 const char FLT_CHARS[] = "rRsSfFdDxXpP";
705
706 static struct pa_it the_insn;
707
708 /* Points to the end of an expression just parsed by get_expressoin
709 and friends. FIXME. This shouldn't be handled with a file-global
710 variable. */
711 static char *expr_end;
712
713 /* Nonzero if a .callinfo appeared within the current procedure. */
714 static int callinfo_found;
715
716 /* Nonzero if the assembler is currently within a .entry/.exit pair. */
717 static int within_entry_exit;
718
719 /* Nonzero if the assembler is currently within a procedure definition. */
720 static int within_procedure;
721
722 /* Handle on strucutre which keep track of the last symbol
723 seen in each subspace. */
724 static label_symbol_struct *label_symbols_rootp = NULL;
725
726 /* Holds the last field selector. */
727 static int hppa_field_selector;
728
729 /* A dummy bfd symbol so that all relocations have symbols of some kind. */
730 static symbolS *dummy_symbol;
731
732 /* Nonzero if errors are to be printed. */
733 static int print_errors = 1;
734
735 /* List of registers that are pre-defined:
736
737 Each general register has one predefined name of the form
738 %r<REGNUM> which has the value <REGNUM>.
739
740 Space and control registers are handled in a similar manner,
741 but use %sr<REGNUM> and %cr<REGNUM> as their predefined names.
742
743 Likewise for the floating point registers, but of the form
744 %fr<REGNUM>. Floating point registers have additional predefined
745 names with 'L' and 'R' suffixes (e.g. %fr19L, %fr19R) which
746 again have the value <REGNUM>.
747
748 Many registers also have synonyms:
749
750 %r26 - %r23 have %arg0 - %arg3 as synonyms
751 %r28 - %r29 have %ret0 - %ret1 as synonyms
752 %r30 has %sp as a synonym
753 %r27 has %dp as a synonym
754 %r2 has %rp as a synonym
755
756 Almost every control register has a synonym; they are not listed
757 here for brevity.
758
759 The table is sorted. Suitable for searching by a binary search. */
760
761 static const struct pd_reg pre_defined_registers[] =
762 {
763 {"%arg0", 26},
764 {"%arg1", 25},
765 {"%arg2", 24},
766 {"%arg3", 23},
767 {"%cr0", 0},
768 {"%cr10", 10},
769 {"%cr11", 11},
770 {"%cr12", 12},
771 {"%cr13", 13},
772 {"%cr14", 14},
773 {"%cr15", 15},
774 {"%cr16", 16},
775 {"%cr17", 17},
776 {"%cr18", 18},
777 {"%cr19", 19},
778 {"%cr20", 20},
779 {"%cr21", 21},
780 {"%cr22", 22},
781 {"%cr23", 23},
782 {"%cr24", 24},
783 {"%cr25", 25},
784 {"%cr26", 26},
785 {"%cr27", 27},
786 {"%cr28", 28},
787 {"%cr29", 29},
788 {"%cr30", 30},
789 {"%cr31", 31},
790 {"%cr8", 8},
791 {"%cr9", 9},
792 {"%dp", 27},
793 {"%eiem", 15},
794 {"%eirr", 23},
795 {"%fr0", 0},
796 {"%fr0l", 0},
797 {"%fr0r", 0},
798 {"%fr1", 1},
799 {"%fr10", 10},
800 {"%fr10l", 10},
801 {"%fr10r", 10},
802 {"%fr11", 11},
803 {"%fr11l", 11},
804 {"%fr11r", 11},
805 {"%fr12", 12},
806 {"%fr12l", 12},
807 {"%fr12r", 12},
808 {"%fr13", 13},
809 {"%fr13l", 13},
810 {"%fr13r", 13},
811 {"%fr14", 14},
812 {"%fr14l", 14},
813 {"%fr14r", 14},
814 {"%fr15", 15},
815 {"%fr15l", 15},
816 {"%fr15r", 15},
817 {"%fr16", 16},
818 {"%fr16l", 16},
819 {"%fr16r", 16},
820 {"%fr17", 17},
821 {"%fr17l", 17},
822 {"%fr17r", 17},
823 {"%fr18", 18},
824 {"%fr18l", 18},
825 {"%fr18r", 18},
826 {"%fr19", 19},
827 {"%fr19l", 19},
828 {"%fr19r", 19},
829 {"%fr1l", 1},
830 {"%fr1r", 1},
831 {"%fr2", 2},
832 {"%fr20", 20},
833 {"%fr20l", 20},
834 {"%fr20r", 20},
835 {"%fr21", 21},
836 {"%fr21l", 21},
837 {"%fr21r", 21},
838 {"%fr22", 22},
839 {"%fr22l", 22},
840 {"%fr22r", 22},
841 {"%fr23", 23},
842 {"%fr23l", 23},
843 {"%fr23r", 23},
844 {"%fr24", 24},
845 {"%fr24l", 24},
846 {"%fr24r", 24},
847 {"%fr25", 25},
848 {"%fr25l", 25},
849 {"%fr25r", 25},
850 {"%fr26", 26},
851 {"%fr26l", 26},
852 {"%fr26r", 26},
853 {"%fr27", 27},
854 {"%fr27l", 27},
855 {"%fr27r", 27},
856 {"%fr28", 28},
857 {"%fr28l", 28},
858 {"%fr28r", 28},
859 {"%fr29", 29},
860 {"%fr29l", 29},
861 {"%fr29r", 29},
862 {"%fr2l", 2},
863 {"%fr2r", 2},
864 {"%fr3", 3},
865 {"%fr30", 30},
866 {"%fr30l", 30},
867 {"%fr30r", 30},
868 {"%fr31", 31},
869 {"%fr31l", 31},
870 {"%fr31r", 31},
871 {"%fr3l", 3},
872 {"%fr3r", 3},
873 {"%fr4", 4},
874 {"%fr4l", 4},
875 {"%fr4r", 4},
876 {"%fr5", 5},
877 {"%fr5l", 5},
878 {"%fr5r", 5},
879 {"%fr6", 6},
880 {"%fr6l", 6},
881 {"%fr6r", 6},
882 {"%fr7", 7},
883 {"%fr7l", 7},
884 {"%fr7r", 7},
885 {"%fr8", 8},
886 {"%fr8l", 8},
887 {"%fr8r", 8},
888 {"%fr9", 9},
889 {"%fr9l", 9},
890 {"%fr9r", 9},
891 {"%hta", 25},
892 {"%iir", 19},
893 {"%ior", 21},
894 {"%ipsw", 22},
895 {"%isr", 20},
896 {"%itmr", 16},
897 {"%iva", 14},
898 {"%pcoq", 18},
899 {"%pcsq", 17},
900 {"%pidr1", 8},
901 {"%pidr2", 9},
902 {"%pidr3", 12},
903 {"%pidr4", 13},
904 {"%ppda", 24},
905 {"%r0", 0},
906 {"%r1", 1},
907 {"%r10", 10},
908 {"%r11", 11},
909 {"%r12", 12},
910 {"%r13", 13},
911 {"%r14", 14},
912 {"%r15", 15},
913 {"%r16", 16},
914 {"%r17", 17},
915 {"%r18", 18},
916 {"%r19", 19},
917 {"%r2", 2},
918 {"%r20", 20},
919 {"%r21", 21},
920 {"%r22", 22},
921 {"%r23", 23},
922 {"%r24", 24},
923 {"%r25", 25},
924 {"%r26", 26},
925 {"%r27", 27},
926 {"%r28", 28},
927 {"%r29", 29},
928 {"%r3", 3},
929 {"%r30", 30},
930 {"%r31", 31},
931 {"%r4", 4},
932 {"%r5", 5},
933 {"%r6", 6},
934 {"%r7", 7},
935 {"%r8", 8},
936 {"%r9", 9},
937 {"%rctr", 0},
938 {"%ret0", 28},
939 {"%ret1", 29},
940 {"%rp", 2},
941 {"%sar", 11},
942 {"%sp", 30},
943 {"%sr0", 0},
944 {"%sr1", 1},
945 {"%sr2", 2},
946 {"%sr3", 3},
947 {"%sr4", 4},
948 {"%sr5", 5},
949 {"%sr6", 6},
950 {"%sr7", 7},
951 {"%tr0", 24},
952 {"%tr1", 25},
953 {"%tr2", 26},
954 {"%tr3", 27},
955 {"%tr4", 28},
956 {"%tr5", 29},
957 {"%tr6", 30},
958 {"%tr7", 31}
959 };
960
961 /* This table is sorted by order of the length of the string. This is
962 so we check for <> before we check for <. If we had a <> and checked
963 for < first, we would get a false match. */
964 static const struct fp_cond_map fp_cond_map[] =
965 {
966 {"false?", 0},
967 {"false", 1},
968 {"true?", 30},
969 {"true", 31},
970 {"!<=>", 3},
971 {"!?>=", 8},
972 {"!?<=", 16},
973 {"!<>", 7},
974 {"!>=", 11},
975 {"!?>", 12},
976 {"?<=", 14},
977 {"!<=", 19},
978 {"!?<", 20},
979 {"?>=", 22},
980 {"!?=", 24},
981 {"!=t", 27},
982 {"<=>", 29},
983 {"=t", 5},
984 {"?=", 6},
985 {"?<", 10},
986 {"<=", 13},
987 {"!>", 15},
988 {"?>", 18},
989 {">=", 21},
990 {"!<", 23},
991 {"<>", 25},
992 {"!=", 26},
993 {"!?", 28},
994 {"?", 2},
995 {"=", 4},
996 {"<", 9},
997 {">", 17}
998 };
999
1000 static const struct selector_entry selector_table[] =
1001 {
1002 {"f", e_fsel},
1003 {"l", e_lsel},
1004 {"ld", e_ldsel},
1005 {"lp", e_lpsel},
1006 {"lr", e_lrsel},
1007 {"ls", e_lssel},
1008 {"lt", e_ltsel},
1009 {"p", e_psel},
1010 {"r", e_rsel},
1011 {"rd", e_rdsel},
1012 {"rp", e_rpsel},
1013 {"rr", e_rrsel},
1014 {"rs", e_rssel},
1015 {"rt", e_rtsel},
1016 {"t", e_tsel},
1017 };
1018
1019 /* default space and subspace dictionaries */
1020
1021 #define GDB_SYMBOLS GDB_SYMBOLS_SUBSPACE_NAME
1022 #define GDB_STRINGS GDB_STRINGS_SUBSPACE_NAME
1023
1024 /* pre-defined subsegments (subspaces) for the HPPA. */
1025 #define SUBSEG_CODE 0
1026 #define SUBSEG_DATA 0
1027 #define SUBSEG_LIT 1
1028 #define SUBSEG_BSS 2
1029 #define SUBSEG_UNWIND 3
1030 #define SUBSEG_GDB_STRINGS 0
1031 #define SUBSEG_GDB_SYMBOLS 1
1032
1033 static struct default_subspace_dict pa_def_subspaces[] =
1034 {
1035 {"$CODE$", 1, 1, 1, 0, 0, 0, 24, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_CODE},
1036 {"$DATA$", 1, 1, 0, 0, 0, 0, 24, 0x1f, 1, 8, 1, 1, ".data", SUBSEG_DATA},
1037 {"$LIT$", 1, 1, 0, 0, 0, 0, 16, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_LIT},
1038 {"$BSS$", 1, 1, 0, 0, 0, 1, 80, 0x1f, 1, 8, 1, 1, ".bss", SUBSEG_BSS},
1039 #ifdef OBJ_ELF
1040 {"$UNWIND$", 1, 1, 0, 0, 0, 0, 64, 0x2c, 0, 4, 0, 0, ".hppa_unwind", SUBSEG_UNWIND},
1041 #endif
1042 {NULL, 0, 1, 0, 0, 0, 0, 255, 0x1f, 0, 4, 0, 0, 0}
1043 };
1044
1045 static struct default_space_dict pa_def_spaces[] =
1046 {
1047 {"$TEXT$", 0, 1, 1, 0, 8, ASEC_NULL, ".text"},
1048 {"$PRIVATE$", 1, 1, 1, 1, 16, ASEC_NULL, ".data"},
1049 {NULL, 0, 0, 0, 0, 0, ASEC_NULL, NULL}
1050 };
1051
1052 /* Misc local definitions used by the assembler. */
1053
1054 /* Return nonzero if the string pointed to by S potentially represents
1055 a right or left half of a FP register */
1056 #define IS_R_SELECT(S) (*(S) == 'R' || *(S) == 'r')
1057 #define IS_L_SELECT(S) (*(S) == 'L' || *(S) == 'l')
1058
1059 /* These macros are used to maintain spaces/subspaces. */
1060 #define SPACE_DEFINED(space_chain) (space_chain)->sd_defined
1061 #define SPACE_USER_DEFINED(space_chain) (space_chain)->sd_user_defined
1062 #define SPACE_SPNUM(space_chain) (space_chain)->sd_spnum
1063 #define SPACE_NAME(space_chain) (space_chain)->sd_name
1064
1065 #define SUBSPACE_DEFINED(ss_chain) (ss_chain)->ssd_defined
1066 #define SUBSPACE_NAME(ss_chain) (ss_chain)->ssd_name
1067
1068 /* Insert FIELD into OPCODE starting at bit START. Continue pa_ip
1069 main loop after insertion. */
1070
1071 #define INSERT_FIELD_AND_CONTINUE(OPCODE, FIELD, START) \
1072 { \
1073 ((OPCODE) |= (FIELD) << (START)); \
1074 continue; \
1075 }
1076
1077 /* Simple range checking for FIELD againt HIGH and LOW bounds.
1078 IGNORE is used to suppress the error message. */
1079
1080 #define CHECK_FIELD(FIELD, HIGH, LOW, IGNORE) \
1081 { \
1082 if ((FIELD) > (HIGH) || (FIELD) < (LOW)) \
1083 { \
1084 if (! IGNORE) \
1085 as_bad ("Field out of range [%d..%d] (%d).", (LOW), (HIGH), \
1086 (int) (FIELD));\
1087 break; \
1088 } \
1089 }
1090
1091 #define is_DP_relative(exp) \
1092 ((exp).X_op == O_subtract \
1093 && strcmp((exp).X_op_symbol->bsym->name, "$global$") == 0)
1094
1095 #define is_PC_relative(exp) \
1096 ((exp).X_op == O_subtract \
1097 && strcmp((exp).X_op_symbol->bsym->name, "$PIC_pcrel$0") == 0)
1098
1099 #define is_complex(exp) \
1100 ((exp).X_op != O_constant && (exp).X_op != O_symbol)
1101
1102 /* Actual functions to implement the PA specific code for the assembler. */
1103
1104 /* Returns a pointer to the label_symbol_struct for the current space.
1105 or NULL if no label_symbol_struct exists for the current space. */
1106
1107 static label_symbol_struct *
1108 pa_get_label ()
1109 {
1110 label_symbol_struct *label_chain;
1111 sd_chain_struct *space_chain = current_space;
1112
1113 for (label_chain = label_symbols_rootp;
1114 label_chain;
1115 label_chain = label_chain->lss_next)
1116 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1117 return label_chain;
1118
1119 return NULL;
1120 }
1121
1122 /* Defines a label for the current space. If one is already defined,
1123 this function will replace it with the new label. */
1124
1125 void
1126 pa_define_label (symbol)
1127 symbolS *symbol;
1128 {
1129 label_symbol_struct *label_chain = pa_get_label ();
1130 sd_chain_struct *space_chain = current_space;
1131
1132 if (label_chain)
1133 label_chain->lss_label = symbol;
1134 else
1135 {
1136 /* Create a new label entry and add it to the head of the chain. */
1137 label_chain
1138 = (label_symbol_struct *) xmalloc (sizeof (label_symbol_struct));
1139 label_chain->lss_label = symbol;
1140 label_chain->lss_space = space_chain;
1141 label_chain->lss_next = NULL;
1142
1143 if (label_symbols_rootp)
1144 label_chain->lss_next = label_symbols_rootp;
1145
1146 label_symbols_rootp = label_chain;
1147 }
1148 }
1149
1150 /* Removes a label definition for the current space.
1151 If there is no label_symbol_struct entry, then no action is taken. */
1152
1153 static void
1154 pa_undefine_label ()
1155 {
1156 label_symbol_struct *label_chain;
1157 label_symbol_struct *prev_label_chain = NULL;
1158 sd_chain_struct *space_chain = current_space;
1159
1160 for (label_chain = label_symbols_rootp;
1161 label_chain;
1162 label_chain = label_chain->lss_next)
1163 {
1164 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1165 {
1166 /* Remove the label from the chain and free its memory. */
1167 if (prev_label_chain)
1168 prev_label_chain->lss_next = label_chain->lss_next;
1169 else
1170 label_symbols_rootp = label_chain->lss_next;
1171
1172 free (label_chain);
1173 break;
1174 }
1175 prev_label_chain = label_chain;
1176 }
1177 }
1178
1179
1180 /* An HPPA-specific version of fix_new. This is required because the HPPA
1181 code needs to keep track of some extra stuff. Each call to fix_new_hppa
1182 results in the creation of an instance of an hppa_fix_struct. An
1183 hppa_fix_struct stores the extra information along with a pointer to the
1184 original fixS. This is attached to the original fixup via the
1185 tc_fix_data field. */
1186
1187 static void
1188 fix_new_hppa (frag, where, size, add_symbol, offset, exp, pcrel,
1189 r_type, r_field, r_format, arg_reloc, unwind_desc)
1190 fragS *frag;
1191 int where;
1192 short int size;
1193 symbolS *add_symbol;
1194 long offset;
1195 expressionS *exp;
1196 int pcrel;
1197 bfd_reloc_code_real_type r_type;
1198 enum hppa_reloc_field_selector_type r_field;
1199 int r_format;
1200 long arg_reloc;
1201 char *unwind_desc;
1202 {
1203 fixS *new_fix;
1204
1205 struct hppa_fix_struct *hppa_fix = (struct hppa_fix_struct *)
1206 obstack_alloc (&notes, sizeof (struct hppa_fix_struct));
1207
1208 if (exp != NULL)
1209 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
1210 else
1211 new_fix = fix_new (frag, where, size, add_symbol, offset, pcrel, r_type);
1212 new_fix->tc_fix_data = hppa_fix;
1213 hppa_fix->fx_r_type = r_type;
1214 hppa_fix->fx_r_field = r_field;
1215 hppa_fix->fx_r_format = r_format;
1216 hppa_fix->fx_arg_reloc = arg_reloc;
1217 hppa_fix->segment = now_seg;
1218 if (unwind_desc)
1219 {
1220 bcopy (unwind_desc, hppa_fix->fx_unwind, 8);
1221
1222 /* If necessary call BFD backend function to attach the
1223 unwind bits to the target dependent parts of a BFD symbol.
1224 Yuk. */
1225 #ifdef obj_attach_unwind_info
1226 obj_attach_unwind_info (add_symbol->bsym, unwind_desc);
1227 #endif
1228 }
1229
1230 /* foo-$global$ is used to access non-automatic storage. $global$
1231 is really just a marker and has served its purpose, so eliminate
1232 it now so as not to confuse write.c. */
1233 if (new_fix->fx_subsy
1234 && !strcmp (S_GET_NAME (new_fix->fx_subsy), "$global$"))
1235 new_fix->fx_subsy = NULL;
1236 }
1237
1238 /* Parse a .byte, .word, .long expression for the HPPA. Called by
1239 cons via the TC_PARSE_CONS_EXPRESSION macro. */
1240
1241 void
1242 parse_cons_expression_hppa (exp)
1243 expressionS *exp;
1244 {
1245 hppa_field_selector = pa_chk_field_selector (&input_line_pointer);
1246 expression (exp);
1247 }
1248
1249 /* This fix_new is called by cons via TC_CONS_FIX_NEW.
1250 hppa_field_selector is set by the parse_cons_expression_hppa. */
1251
1252 void
1253 cons_fix_new_hppa (frag, where, size, exp)
1254 fragS *frag;
1255 int where;
1256 int size;
1257 expressionS *exp;
1258 {
1259 unsigned int rel_type;
1260
1261 if (is_DP_relative (*exp))
1262 rel_type = R_HPPA_GOTOFF;
1263 else if (is_complex (*exp))
1264 rel_type = R_HPPA_COMPLEX;
1265 else
1266 rel_type = R_HPPA;
1267
1268 if (hppa_field_selector != e_psel && hppa_field_selector != e_fsel)
1269 as_warn ("Invalid field selector. Assuming F%%.");
1270
1271 fix_new_hppa (frag, where, size,
1272 (symbolS *) NULL, (offsetT) 0, exp, 0, rel_type,
1273 hppa_field_selector, 32, 0, (char *) 0);
1274
1275 /* Reset field selector to its default state. */
1276 hppa_field_selector = 0;
1277 }
1278
1279 /* This function is called once, at assembler startup time. It should
1280 set up all the tables, etc. that the MD part of the assembler will need. */
1281
1282 void
1283 md_begin ()
1284 {
1285 const char *retval = NULL;
1286 int lose = 0;
1287 unsigned int i = 0;
1288
1289 last_call_info = NULL;
1290 call_info_root = NULL;
1291
1292 /* Folding of text and data segments fails miserably on the PA.
1293 Warn user and disable "-R" option. */
1294 if (flagseen['R'])
1295 {
1296 as_warn ("-R option not supported on this target.");
1297 flag_readonly_data_in_text = 0;
1298 flagseen['R'] = 0;
1299 }
1300
1301 pa_spaces_begin ();
1302
1303 op_hash = hash_new ();
1304
1305 while (i < NUMOPCODES)
1306 {
1307 const char *name = pa_opcodes[i].name;
1308 retval = hash_insert (op_hash, name, (struct pa_opcode *) &pa_opcodes[i]);
1309 if (retval != NULL && *retval != '\0')
1310 {
1311 as_fatal ("Internal error: can't hash `%s': %s\n", name, retval);
1312 lose = 1;
1313 }
1314 do
1315 {
1316 if ((pa_opcodes[i].match & pa_opcodes[i].mask)
1317 != pa_opcodes[i].match)
1318 {
1319 fprintf (stderr, "internal error: losing opcode: `%s' \"%s\"\n",
1320 pa_opcodes[i].name, pa_opcodes[i].args);
1321 lose = 1;
1322 }
1323 ++i;
1324 }
1325 while (i < NUMOPCODES && !strcmp (pa_opcodes[i].name, name));
1326 }
1327
1328 if (lose)
1329 as_fatal ("Broken assembler. No assembly attempted.");
1330
1331 /* SOM will change text_section. To make sure we never put
1332 anything into the old one switch to the new one now. */
1333 subseg_set (text_section, 0);
1334
1335 dummy_symbol = symbol_find_or_make ("L$dummy");
1336 S_SET_SEGMENT (dummy_symbol, text_section);
1337 }
1338
1339 /* Assemble a single instruction storing it into a frag. */
1340 void
1341 md_assemble (str)
1342 char *str;
1343 {
1344 char *to;
1345
1346 /* The had better be something to assemble. */
1347 assert (str);
1348
1349 /* If we are within a procedure definition, make sure we've
1350 defined a label for the procedure; handle case where the
1351 label was defined after the .PROC directive.
1352
1353 Note there's not need to diddle with the segment or fragment
1354 for the label symbol in this case. We have already switched
1355 into the new $CODE$ subspace at this point. */
1356 if (within_procedure && last_call_info->start_symbol == NULL)
1357 {
1358 label_symbol_struct *label_symbol = pa_get_label ();
1359
1360 if (label_symbol)
1361 {
1362 if (label_symbol->lss_label)
1363 {
1364 last_call_info->start_symbol = label_symbol->lss_label;
1365 label_symbol->lss_label->bsym->flags |= BSF_FUNCTION;
1366 #ifdef OBJ_SOM
1367 /* Also handle allocation of a fixup to hold the unwind
1368 information when the label appears after the proc/procend. */
1369 if (within_entry_exit)
1370 {
1371 char *where = frag_more (0);
1372
1373 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
1374 last_call_info->start_symbol, (offsetT) 0, NULL,
1375 0, R_HPPA_ENTRY, e_fsel, 0, 0,
1376 (char *) &last_call_info->ci_unwind.descriptor);
1377 }
1378 #endif
1379 }
1380 else
1381 as_bad ("Missing function name for .PROC (corrupted label chain)");
1382 }
1383 else
1384 as_bad ("Missing function name for .PROC");
1385 }
1386
1387 /* Assemble the instruction. Results are saved into "the_insn". */
1388 pa_ip (str);
1389
1390 /* Get somewhere to put the assembled instrution. */
1391 to = frag_more (4);
1392
1393 /* Output the opcode. */
1394 md_number_to_chars (to, the_insn.opcode, 4);
1395
1396 /* If necessary output more stuff. */
1397 if (the_insn.reloc != R_HPPA_NONE)
1398 fix_new_hppa (frag_now, (to - frag_now->fr_literal), 4, NULL,
1399 (offsetT) 0, &the_insn.exp, the_insn.pcrel,
1400 the_insn.reloc, the_insn.field_selector,
1401 the_insn.format, the_insn.arg_reloc, NULL);
1402 }
1403
1404 /* Do the real work for assembling a single instruction. Store results
1405 into the global "the_insn" variable. */
1406
1407 static void
1408 pa_ip (str)
1409 char *str;
1410 {
1411 char *error_message = "";
1412 char *s, c, *argstart, *name, *save_s;
1413 const char *args;
1414 int match = FALSE;
1415 int comma = 0;
1416 int cmpltr, nullif, flag, cond, num;
1417 unsigned long opcode;
1418 struct pa_opcode *insn;
1419
1420 /* Skip to something interesting. */
1421 for (s = str; isupper (*s) || islower (*s) || (*s >= '0' && *s <= '3'); ++s)
1422 ;
1423
1424 switch (*s)
1425 {
1426
1427 case '\0':
1428 break;
1429
1430 case ',':
1431 comma = 1;
1432
1433 /*FALLTHROUGH */
1434
1435 case ' ':
1436 *s++ = '\0';
1437 break;
1438
1439 default:
1440 as_bad ("Unknown opcode: `%s'", str);
1441 exit (1);
1442 }
1443
1444 save_s = str;
1445
1446 /* Convert everything into lower case. */
1447 while (*save_s)
1448 {
1449 if (isupper (*save_s))
1450 *save_s = tolower (*save_s);
1451 save_s++;
1452 }
1453
1454 /* Look up the opcode in the has table. */
1455 if ((insn = (struct pa_opcode *) hash_find (op_hash, str)) == NULL)
1456 {
1457 as_bad ("Unknown opcode: `%s'", str);
1458 return;
1459 }
1460
1461 if (comma)
1462 {
1463 *--s = ',';
1464 }
1465
1466 /* Mark the location where arguments for the instruction start, then
1467 start processing them. */
1468 argstart = s;
1469 for (;;)
1470 {
1471 /* Do some initialization. */
1472 opcode = insn->match;
1473 bzero (&the_insn, sizeof (the_insn));
1474
1475 the_insn.reloc = R_HPPA_NONE;
1476
1477 /* Build the opcode, checking as we go to make
1478 sure that the operands match. */
1479 for (args = insn->args;; ++args)
1480 {
1481 switch (*args)
1482 {
1483
1484 /* End of arguments. */
1485 case '\0':
1486 if (*s == '\0')
1487 match = TRUE;
1488 break;
1489
1490 case '+':
1491 if (*s == '+')
1492 {
1493 ++s;
1494 continue;
1495 }
1496 if (*s == '-')
1497 continue;
1498 break;
1499
1500 /* These must match exactly. */
1501 case '(':
1502 case ')':
1503 case ',':
1504 case ' ':
1505 if (*s++ == *args)
1506 continue;
1507 break;
1508
1509 /* Handle a 5 bit register or control register field at 10. */
1510 case 'b':
1511 case '^':
1512 num = pa_parse_number (&s, 0);
1513 CHECK_FIELD (num, 31, 0, 0);
1514 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
1515
1516 /* Handle a 5 bit register field at 15. */
1517 case 'x':
1518 num = pa_parse_number (&s, 0);
1519 CHECK_FIELD (num, 31, 0, 0);
1520 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1521
1522 /* Handle a 5 bit register field at 31. */
1523 case 'y':
1524 case 't':
1525 num = pa_parse_number (&s, 0);
1526 CHECK_FIELD (num, 31, 0, 0);
1527 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1528
1529 /* Handle a 5 bit field length at 31. */
1530 case 'T':
1531 num = pa_get_absolute_expression (&the_insn, &s);
1532 s = expr_end;
1533 CHECK_FIELD (num, 32, 1, 0);
1534 INSERT_FIELD_AND_CONTINUE (opcode, 32 - num, 0);
1535
1536 /* Handle a 5 bit immediate at 15. */
1537 case '5':
1538 num = pa_get_absolute_expression (&the_insn, &s);
1539 s = expr_end;
1540 CHECK_FIELD (num, 15, -16, 0);
1541 low_sign_unext (num, 5, &num);
1542 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1543
1544 /* Handle a 5 bit immediate at 31. */
1545 case 'V':
1546 num = pa_get_absolute_expression (&the_insn, &s);
1547 s = expr_end;
1548 CHECK_FIELD (num, 15, -16, 0)
1549 low_sign_unext (num, 5, &num);
1550 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1551
1552 /* Handle an unsigned 5 bit immediate at 31. */
1553 case 'r':
1554 num = pa_get_absolute_expression (&the_insn, &s);
1555 s = expr_end;
1556 CHECK_FIELD (num, 31, 0, 0);
1557 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1558
1559 /* Handle an unsigned 5 bit immediate at 15. */
1560 case 'R':
1561 num = pa_get_absolute_expression (&the_insn, &s);
1562 s = expr_end;
1563 CHECK_FIELD (num, 31, 0, 0);
1564 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1565
1566 /* Handle a 2 bit space identifier at 17. */
1567 case 's':
1568 num = pa_parse_number (&s, 0);
1569 CHECK_FIELD (num, 3, 0, 1);
1570 INSERT_FIELD_AND_CONTINUE (opcode, num, 14);
1571
1572 /* Handle a 3 bit space identifier at 18. */
1573 case 'S':
1574 num = pa_parse_number (&s, 0);
1575 CHECK_FIELD (num, 7, 0, 1);
1576 dis_assemble_3 (num, &num);
1577 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
1578
1579 /* Handle a completer for an indexing load or store. */
1580 case 'c':
1581 {
1582 int uu = 0;
1583 int m = 0;
1584 int i = 0;
1585 while (*s == ',' && i < 2)
1586 {
1587 s++;
1588 if (strncasecmp (s, "sm", 2) == 0)
1589 {
1590 uu = 1;
1591 m = 1;
1592 s++;
1593 i++;
1594 }
1595 else if (strncasecmp (s, "m", 1) == 0)
1596 m = 1;
1597 else if (strncasecmp (s, "s", 1) == 0)
1598 uu = 1;
1599 else
1600 as_bad ("Invalid Indexed Load Completer.");
1601 s++;
1602 i++;
1603 }
1604 if (i > 2)
1605 as_bad ("Invalid Indexed Load Completer Syntax.");
1606 opcode |= m << 5;
1607 INSERT_FIELD_AND_CONTINUE (opcode, uu, 13);
1608 }
1609
1610 /* Handle a short load/store completer. */
1611 case 'C':
1612 {
1613 int a = 0;
1614 int m = 0;
1615 if (*s == ',')
1616 {
1617 s++;
1618 if (strncasecmp (s, "ma", 2) == 0)
1619 {
1620 a = 0;
1621 m = 1;
1622 }
1623 else if (strncasecmp (s, "mb", 2) == 0)
1624 {
1625 a = 1;
1626 m = 1;
1627 }
1628 else
1629 as_bad ("Invalid Short Load/Store Completer.");
1630 s += 2;
1631 }
1632 opcode |= m << 5;
1633 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1634 }
1635
1636 /* Handle a stbys completer. */
1637 case 'Y':
1638 {
1639 int a = 0;
1640 int m = 0;
1641 int i = 0;
1642 while (*s == ',' && i < 2)
1643 {
1644 s++;
1645 if (strncasecmp (s, "m", 1) == 0)
1646 m = 1;
1647 else if (strncasecmp (s, "b", 1) == 0)
1648 a = 0;
1649 else if (strncasecmp (s, "e", 1) == 0)
1650 a = 1;
1651 else
1652 as_bad ("Invalid Store Bytes Short Completer");
1653 s++;
1654 i++;
1655 }
1656 if (i > 2)
1657 as_bad ("Invalid Store Bytes Short Completer");
1658 opcode |= m << 5;
1659 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1660 }
1661
1662 /* Handle a non-negated compare/stubtract condition. */
1663 case '<':
1664 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
1665 if (cmpltr < 0)
1666 {
1667 as_bad ("Invalid Compare/Subtract Condition: %c", *s);
1668 cmpltr = 0;
1669 }
1670 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1671
1672 /* Handle a negated or non-negated compare/subtract condition. */
1673 case '?':
1674 save_s = s;
1675 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
1676 if (cmpltr < 0)
1677 {
1678 s = save_s;
1679 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 1);
1680 if (cmpltr < 0)
1681 {
1682 as_bad ("Invalid Compare/Subtract Condition.");
1683 cmpltr = 0;
1684 }
1685 else
1686 {
1687 /* Negated condition requires an opcode change. */
1688 opcode |= 1 << 27;
1689 }
1690 }
1691 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1692
1693 /* Handle a negated or non-negated add condition. */
1694 case '!':
1695 save_s = s;
1696 cmpltr = pa_parse_nonneg_add_cmpltr (&s, 1);
1697 if (cmpltr < 0)
1698 {
1699 s = save_s;
1700 cmpltr = pa_parse_neg_add_cmpltr (&s, 1);
1701 if (cmpltr < 0)
1702 {
1703 as_bad ("Invalid Compare/Subtract Condition");
1704 cmpltr = 0;
1705 }
1706 else
1707 {
1708 /* Negated condition requires an opcode change. */
1709 opcode |= 1 << 27;
1710 }
1711 }
1712 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1713
1714 /* Handle a compare/subtract condition. */
1715 case 'a':
1716 cmpltr = 0;
1717 flag = 0;
1718 save_s = s;
1719 if (*s == ',')
1720 {
1721 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 0);
1722 if (cmpltr < 0)
1723 {
1724 flag = 1;
1725 s = save_s;
1726 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 0);
1727 if (cmpltr < 0)
1728 {
1729 as_bad ("Invalid Compare/Subtract Condition");
1730 }
1731 }
1732 }
1733 opcode |= cmpltr << 13;
1734 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1735
1736 /* Handle a non-negated add condition. */
1737 case 'd':
1738 cmpltr = 0;
1739 nullif = 0;
1740 flag = 0;
1741 if (*s == ',')
1742 {
1743 s++;
1744 name = s;
1745 while (*s != ',' && *s != ' ' && *s != '\t')
1746 s += 1;
1747 c = *s;
1748 *s = 0x00;
1749 if (strcmp (name, "=") == 0)
1750 cmpltr = 1;
1751 else if (strcmp (name, "<") == 0)
1752 cmpltr = 2;
1753 else if (strcmp (name, "<=") == 0)
1754 cmpltr = 3;
1755 else if (strcasecmp (name, "nuv") == 0)
1756 cmpltr = 4;
1757 else if (strcasecmp (name, "znv") == 0)
1758 cmpltr = 5;
1759 else if (strcasecmp (name, "sv") == 0)
1760 cmpltr = 6;
1761 else if (strcasecmp (name, "od") == 0)
1762 cmpltr = 7;
1763 else if (strcasecmp (name, "n") == 0)
1764 nullif = 1;
1765 else if (strcasecmp (name, "tr") == 0)
1766 {
1767 cmpltr = 0;
1768 flag = 1;
1769 }
1770 else if (strcmp (name, "<>") == 0)
1771 {
1772 cmpltr = 1;
1773 flag = 1;
1774 }
1775 else if (strcmp (name, ">=") == 0)
1776 {
1777 cmpltr = 2;
1778 flag = 1;
1779 }
1780 else if (strcmp (name, ">") == 0)
1781 {
1782 cmpltr = 3;
1783 flag = 1;
1784 }
1785 else if (strcasecmp (name, "uv") == 0)
1786 {
1787 cmpltr = 4;
1788 flag = 1;
1789 }
1790 else if (strcasecmp (name, "vnz") == 0)
1791 {
1792 cmpltr = 5;
1793 flag = 1;
1794 }
1795 else if (strcasecmp (name, "nsv") == 0)
1796 {
1797 cmpltr = 6;
1798 flag = 1;
1799 }
1800 else if (strcasecmp (name, "ev") == 0)
1801 {
1802 cmpltr = 7;
1803 flag = 1;
1804 }
1805 else
1806 as_bad ("Invalid Add Condition: %s", name);
1807 *s = c;
1808 }
1809 nullif = pa_parse_nullif (&s);
1810 opcode |= nullif << 1;
1811 opcode |= cmpltr << 13;
1812 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1813
1814 /* HANDLE a logical instruction condition. */
1815 case '&':
1816 cmpltr = 0;
1817 flag = 0;
1818 if (*s == ',')
1819 {
1820 s++;
1821 name = s;
1822 while (*s != ',' && *s != ' ' && *s != '\t')
1823 s += 1;
1824 c = *s;
1825 *s = 0x00;
1826 if (strcmp (name, "=") == 0)
1827 cmpltr = 1;
1828 else if (strcmp (name, "<") == 0)
1829 cmpltr = 2;
1830 else if (strcmp (name, "<=") == 0)
1831 cmpltr = 3;
1832 else if (strcasecmp (name, "od") == 0)
1833 cmpltr = 7;
1834 else if (strcasecmp (name, "tr") == 0)
1835 {
1836 cmpltr = 0;
1837 flag = 1;
1838 }
1839 else if (strcmp (name, "<>") == 0)
1840 {
1841 cmpltr = 1;
1842 flag = 1;
1843 }
1844 else if (strcmp (name, ">=") == 0)
1845 {
1846 cmpltr = 2;
1847 flag = 1;
1848 }
1849 else if (strcmp (name, ">") == 0)
1850 {
1851 cmpltr = 3;
1852 flag = 1;
1853 }
1854 else if (strcasecmp (name, "ev") == 0)
1855 {
1856 cmpltr = 7;
1857 flag = 1;
1858 }
1859 else
1860 as_bad ("Invalid Logical Instruction Condition.");
1861 *s = c;
1862 }
1863 opcode |= cmpltr << 13;
1864 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1865
1866 /* Handle a unit instruction condition. */
1867 case 'U':
1868 cmpltr = 0;
1869 flag = 0;
1870 if (*s == ',')
1871 {
1872 s++;
1873 if (strncasecmp (s, "sbz", 3) == 0)
1874 {
1875 cmpltr = 2;
1876 s += 3;
1877 }
1878 else if (strncasecmp (s, "shz", 3) == 0)
1879 {
1880 cmpltr = 3;
1881 s += 3;
1882 }
1883 else if (strncasecmp (s, "sdc", 3) == 0)
1884 {
1885 cmpltr = 4;
1886 s += 3;
1887 }
1888 else if (strncasecmp (s, "sbc", 3) == 0)
1889 {
1890 cmpltr = 6;
1891 s += 3;
1892 }
1893 else if (strncasecmp (s, "shc", 3) == 0)
1894 {
1895 cmpltr = 7;
1896 s += 3;
1897 }
1898 else if (strncasecmp (s, "tr", 2) == 0)
1899 {
1900 cmpltr = 0;
1901 flag = 1;
1902 s += 2;
1903 }
1904 else if (strncasecmp (s, "nbz", 3) == 0)
1905 {
1906 cmpltr = 2;
1907 flag = 1;
1908 s += 3;
1909 }
1910 else if (strncasecmp (s, "nhz", 3) == 0)
1911 {
1912 cmpltr = 3;
1913 flag = 1;
1914 s += 3;
1915 }
1916 else if (strncasecmp (s, "ndc", 3) == 0)
1917 {
1918 cmpltr = 4;
1919 flag = 1;
1920 s += 3;
1921 }
1922 else if (strncasecmp (s, "nbc", 3) == 0)
1923 {
1924 cmpltr = 6;
1925 flag = 1;
1926 s += 3;
1927 }
1928 else if (strncasecmp (s, "nhc", 3) == 0)
1929 {
1930 cmpltr = 7;
1931 flag = 1;
1932 s += 3;
1933 }
1934 else
1935 as_bad ("Invalid Logical Instruction Condition.");
1936 }
1937 opcode |= cmpltr << 13;
1938 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1939
1940 /* Handle a shift/extract/deposit condition. */
1941 case '|':
1942 case '>':
1943 cmpltr = 0;
1944 if (*s == ',')
1945 {
1946 save_s = s++;
1947 name = s;
1948 while (*s != ',' && *s != ' ' && *s != '\t')
1949 s += 1;
1950 c = *s;
1951 *s = 0x00;
1952 if (strcmp (name, "=") == 0)
1953 cmpltr = 1;
1954 else if (strcmp (name, "<") == 0)
1955 cmpltr = 2;
1956 else if (strcasecmp (name, "od") == 0)
1957 cmpltr = 3;
1958 else if (strcasecmp (name, "tr") == 0)
1959 cmpltr = 4;
1960 else if (strcmp (name, "<>") == 0)
1961 cmpltr = 5;
1962 else if (strcmp (name, ">=") == 0)
1963 cmpltr = 6;
1964 else if (strcasecmp (name, "ev") == 0)
1965 cmpltr = 7;
1966 /* Handle movb,n. Put things back the way they were.
1967 This includes moving s back to where it started. */
1968 else if (strcasecmp (name, "n") == 0 && *args == '|')
1969 {
1970 *s = c;
1971 s = save_s;
1972 continue;
1973 }
1974 else
1975 as_bad ("Invalid Shift/Extract/Deposit Condition.");
1976 *s = c;
1977 }
1978 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1979
1980 /* Handle bvb and bb conditions. */
1981 case '~':
1982 cmpltr = 0;
1983 if (*s == ',')
1984 {
1985 s++;
1986 if (strncmp (s, "<", 1) == 0)
1987 {
1988 cmpltr = 2;
1989 s++;
1990 }
1991 else if (strncmp (s, ">=", 2) == 0)
1992 {
1993 cmpltr = 6;
1994 s += 2;
1995 }
1996 else
1997 as_bad ("Invalid Bit Branch Condition: %c", *s);
1998 }
1999 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
2000
2001 /* Handle a system control completer. */
2002 case 'Z':
2003 if (*s == ',' && (*(s + 1) == 'm' || *(s + 1) == 'M'))
2004 {
2005 flag = 1;
2006 s += 2;
2007 }
2008 else
2009 flag = 0;
2010
2011 INSERT_FIELD_AND_CONTINUE (opcode, flag, 5);
2012
2013 /* Handle a nullification completer for branch instructions. */
2014 case 'n':
2015 nullif = pa_parse_nullif (&s);
2016 INSERT_FIELD_AND_CONTINUE (opcode, nullif, 1);
2017
2018 /* Handle a 11 bit immediate at 31. */
2019 case 'i':
2020 the_insn.field_selector = pa_chk_field_selector (&s);
2021 get_expression (s);
2022 s = expr_end;
2023 if (the_insn.exp.X_op == O_constant)
2024 {
2025 num = evaluate_absolute (&the_insn);
2026 CHECK_FIELD (num, 1023, -1024, 0);
2027 low_sign_unext (num, 11, &num);
2028 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2029 }
2030 else
2031 {
2032 if (is_DP_relative (the_insn.exp))
2033 the_insn.reloc = R_HPPA_GOTOFF;
2034 else if (is_PC_relative (the_insn.exp))
2035 the_insn.reloc = R_HPPA_PCREL_CALL;
2036 else if (is_complex (the_insn.exp))
2037 the_insn.reloc = R_HPPA_COMPLEX;
2038 else
2039 the_insn.reloc = R_HPPA;
2040 the_insn.format = 11;
2041 continue;
2042 }
2043
2044 /* Handle a 14 bit immediate at 31. */
2045 case 'j':
2046 the_insn.field_selector = pa_chk_field_selector (&s);
2047 get_expression (s);
2048 s = expr_end;
2049 if (the_insn.exp.X_op == O_constant)
2050 {
2051 num = evaluate_absolute (&the_insn);
2052 CHECK_FIELD (num, 8191, -8192, 0);
2053 low_sign_unext (num, 14, &num);
2054 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2055 }
2056 else
2057 {
2058 if (is_DP_relative (the_insn.exp))
2059 the_insn.reloc = R_HPPA_GOTOFF;
2060 else if (is_PC_relative (the_insn.exp))
2061 the_insn.reloc = R_HPPA_PCREL_CALL;
2062 else if (is_complex (the_insn.exp))
2063 the_insn.reloc = R_HPPA_COMPLEX;
2064 else
2065 the_insn.reloc = R_HPPA;
2066 the_insn.format = 14;
2067 continue;
2068 }
2069
2070 /* Handle a 21 bit immediate at 31. */
2071 case 'k':
2072 the_insn.field_selector = pa_chk_field_selector (&s);
2073 get_expression (s);
2074 s = expr_end;
2075 if (the_insn.exp.X_op == O_constant)
2076 {
2077 num = evaluate_absolute (&the_insn);
2078 CHECK_FIELD (num >> 11, 1048575, -1048576, 0);
2079 dis_assemble_21 (num, &num);
2080 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2081 }
2082 else
2083 {
2084 if (is_DP_relative (the_insn.exp))
2085 the_insn.reloc = R_HPPA_GOTOFF;
2086 else if (is_PC_relative (the_insn.exp))
2087 the_insn.reloc = R_HPPA_PCREL_CALL;
2088 else if (is_complex (the_insn.exp))
2089 the_insn.reloc = R_HPPA_COMPLEX;
2090 else
2091 the_insn.reloc = R_HPPA;
2092 the_insn.format = 21;
2093 continue;
2094 }
2095
2096 /* Handle a 12 bit branch displacement. */
2097 case 'w':
2098 the_insn.field_selector = pa_chk_field_selector (&s);
2099 get_expression (s);
2100 s = expr_end;
2101 the_insn.pcrel = 1;
2102 if (!strcmp (S_GET_NAME (the_insn.exp.X_add_symbol), "L$0\001"))
2103 {
2104 unsigned int w1, w, result;
2105
2106 num = evaluate_absolute (&the_insn);
2107 if (num % 4)
2108 {
2109 as_bad ("Branch to unaligned address");
2110 break;
2111 }
2112 CHECK_FIELD (num, 8191, -8192, 0);
2113 sign_unext ((num - 8) >> 2, 12, &result);
2114 dis_assemble_12 (result, &w1, &w);
2115 INSERT_FIELD_AND_CONTINUE (opcode, ((w1 << 2) | w), 0);
2116 }
2117 else
2118 {
2119 if (is_complex (the_insn.exp))
2120 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2121 else
2122 the_insn.reloc = R_HPPA_PCREL_CALL;
2123 the_insn.format = 12;
2124 the_insn.arg_reloc = last_call_desc.arg_reloc;
2125 bzero (&last_call_desc, sizeof (struct call_desc));
2126 s = expr_end;
2127 continue;
2128 }
2129
2130 /* Handle a 17 bit branch displacement. */
2131 case 'W':
2132 the_insn.field_selector = pa_chk_field_selector (&s);
2133 get_expression (s);
2134 s = expr_end;
2135 the_insn.pcrel = 1;
2136 if (!the_insn.exp.X_add_symbol
2137 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2138 "L$0\001"))
2139 {
2140 unsigned int w2, w1, w, result;
2141
2142 num = evaluate_absolute (&the_insn);
2143 if (num % 4)
2144 {
2145 as_bad ("Branch to unaligned address");
2146 break;
2147 }
2148 CHECK_FIELD (num, 262143, -262144, 0);
2149
2150 if (the_insn.exp.X_add_symbol)
2151 num -= 8;
2152
2153 sign_unext (num >> 2, 17, &result);
2154 dis_assemble_17 (result, &w1, &w2, &w);
2155 INSERT_FIELD_AND_CONTINUE (opcode,
2156 ((w2 << 2) | (w1 << 16) | w), 0);
2157 }
2158 else
2159 {
2160 if (is_complex (the_insn.exp))
2161 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2162 else
2163 the_insn.reloc = R_HPPA_PCREL_CALL;
2164 the_insn.format = 17;
2165 the_insn.arg_reloc = last_call_desc.arg_reloc;
2166 bzero (&last_call_desc, sizeof (struct call_desc));
2167 continue;
2168 }
2169
2170 /* Handle an absolute 17 bit branch target. */
2171 case 'z':
2172 the_insn.field_selector = pa_chk_field_selector (&s);
2173 get_expression (s);
2174 s = expr_end;
2175 the_insn.pcrel = 0;
2176 if (!the_insn.exp.X_add_symbol
2177 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2178 "L$0\001"))
2179 {
2180 unsigned int w2, w1, w, result;
2181
2182 num = evaluate_absolute (&the_insn);
2183 if (num % 4)
2184 {
2185 as_bad ("Branch to unaligned address");
2186 break;
2187 }
2188 CHECK_FIELD (num, 262143, -262144, 0);
2189
2190 if (the_insn.exp.X_add_symbol)
2191 num -= 8;
2192
2193 sign_unext (num >> 2, 17, &result);
2194 dis_assemble_17 (result, &w1, &w2, &w);
2195 INSERT_FIELD_AND_CONTINUE (opcode,
2196 ((w2 << 2) | (w1 << 16) | w), 0);
2197 }
2198 else
2199 {
2200 if (is_complex (the_insn.exp))
2201 the_insn.reloc = R_HPPA_COMPLEX_ABS_CALL;
2202 else
2203 the_insn.reloc = R_HPPA_ABS_CALL;
2204 the_insn.format = 17;
2205 continue;
2206 }
2207
2208 /* Handle a 5 bit shift count at 26. */
2209 case 'p':
2210 num = pa_get_absolute_expression (&the_insn, &s);
2211 s = expr_end;
2212 CHECK_FIELD (num, 31, 0, 0);
2213 INSERT_FIELD_AND_CONTINUE (opcode, 31 - num, 5);
2214
2215 /* Handle a 5 bit bit position at 26. */
2216 case 'P':
2217 num = pa_get_absolute_expression (&the_insn, &s);
2218 s = expr_end;
2219 CHECK_FIELD (num, 31, 0, 0);
2220 INSERT_FIELD_AND_CONTINUE (opcode, num, 5);
2221
2222 /* Handle a 5 bit immediate at 10. */
2223 case 'Q':
2224 num = pa_get_absolute_expression (&the_insn, &s);
2225 s = expr_end;
2226 CHECK_FIELD (num, 31, 0, 0);
2227 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
2228
2229 /* Handle a 13 bit immediate at 18. */
2230 case 'A':
2231 num = pa_get_absolute_expression (&the_insn, &s);
2232 s = expr_end;
2233 CHECK_FIELD (num, 4095, -4096, 0);
2234 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
2235
2236 /* Handle a 26 bit immediate at 31. */
2237 case 'D':
2238 num = pa_get_absolute_expression (&the_insn, &s);
2239 s = expr_end;
2240 CHECK_FIELD (num, 671108864, 0, 0);
2241 INSERT_FIELD_AND_CONTINUE (opcode, num, 1);
2242
2243 /* Handle a 3 bit SFU identifier at 25. */
2244 case 'f':
2245 num = pa_get_absolute_expression (&the_insn, &s);
2246 s = expr_end;
2247 CHECK_FIELD (num, 7, 0, 0);
2248 INSERT_FIELD_AND_CONTINUE (opcode, num, 6);
2249
2250 /* We don't support any of these. FIXME. */
2251 case 'O':
2252 get_expression (s);
2253 s = expr_end;
2254 abort ();
2255 continue;
2256
2257 /* Handle a source FP operand format completer. */
2258 case 'F':
2259 flag = pa_parse_fp_format (&s);
2260 the_insn.fpof1 = flag;
2261 INSERT_FIELD_AND_CONTINUE (opcode, flag, 11);
2262
2263 /* Handle a destination FP operand format completer. */
2264 case 'G':
2265 /* pa_parse_format needs the ',' prefix. */
2266 s--;
2267 flag = pa_parse_fp_format (&s);
2268 the_insn.fpof2 = flag;
2269 INSERT_FIELD_AND_CONTINUE (opcode, flag, 13);
2270
2271 /* Handle FP compare conditions. */
2272 case 'M':
2273 cond = pa_parse_fp_cmp_cond (&s);
2274 INSERT_FIELD_AND_CONTINUE (opcode, cond, 0);
2275
2276 /* Handle L/R register halves like 't'. */
2277 case 'v':
2278 {
2279 struct pa_89_fp_reg_struct result;
2280
2281 pa_parse_number (&s, &result);
2282 CHECK_FIELD (result.number_part, 31, 0, 0);
2283 opcode |= result.number_part;
2284
2285 /* 0x30 opcodes are FP arithmetic operation opcodes
2286 and need to be turned into 0x38 opcodes. This
2287 is not necessary for loads/stores. */
2288 if (need_89_opcode (&the_insn, &result)
2289 && ((opcode & 0xfc000000) == 0x30000000))
2290 opcode |= 1 << 27;
2291
2292 INSERT_FIELD_AND_CONTINUE (opcode, result.l_r_select & 1, 6);
2293 }
2294
2295 /* Handle L/R register halves like 'b'. */
2296 case 'E':
2297 {
2298 struct pa_89_fp_reg_struct result;
2299
2300 pa_parse_number (&s, &result);
2301 CHECK_FIELD (result.number_part, 31, 0, 0);
2302 opcode |= result.number_part << 21;
2303 if (need_89_opcode (&the_insn, &result))
2304 {
2305 opcode |= (result.l_r_select & 1) << 7;
2306 opcode |= 1 << 27;
2307 }
2308 continue;
2309 }
2310
2311 /* Handle L/R register halves like 'x'. */
2312 case 'X':
2313 {
2314 struct pa_89_fp_reg_struct result;
2315
2316 pa_parse_number (&s, &result);
2317 CHECK_FIELD (result.number_part, 31, 0, 0);
2318 opcode |= (result.number_part & 0x1f) << 16;
2319 if (need_89_opcode (&the_insn, &result))
2320 {
2321 opcode |= (result.l_r_select & 1) << 12;
2322 opcode |= 1 << 27;
2323 }
2324 continue;
2325 }
2326
2327 /* Handle a 5 bit register field at 10. */
2328 case '4':
2329 {
2330 struct pa_89_fp_reg_struct result;
2331
2332 pa_parse_number (&s, &result);
2333 CHECK_FIELD (result.number_part, 31, 0, 0);
2334 if (the_insn.fpof1 == SGL)
2335 {
2336 result.number_part &= 0xF;
2337 result.number_part |= (result.l_r_select & 1) << 4;
2338 }
2339 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 21);
2340 }
2341
2342 /* Handle a 5 bit register field at 15. */
2343 case '6':
2344 {
2345 struct pa_89_fp_reg_struct result;
2346
2347 pa_parse_number (&s, &result);
2348 CHECK_FIELD (result.number_part, 31, 0, 0);
2349 if (the_insn.fpof1 == SGL)
2350 {
2351 result.number_part &= 0xF;
2352 result.number_part |= (result.l_r_select & 1) << 4;
2353 }
2354 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 16);
2355 }
2356
2357 /* Handle a 5 bit register field at 31. */
2358 case '7':
2359 {
2360 struct pa_89_fp_reg_struct result;
2361
2362 pa_parse_number (&s, &result);
2363 CHECK_FIELD (result.number_part, 31, 0, 0);
2364 if (the_insn.fpof1 == SGL)
2365 {
2366 result.number_part &= 0xF;
2367 result.number_part |= (result.l_r_select & 1) << 4;
2368 }
2369 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 0);
2370 }
2371
2372 /* Handle a 5 bit register field at 20. */
2373 case '8':
2374 {
2375 struct pa_89_fp_reg_struct result;
2376
2377 pa_parse_number (&s, &result);
2378 CHECK_FIELD (result.number_part, 31, 0, 0);
2379 if (the_insn.fpof1 == SGL)
2380 {
2381 result.number_part &= 0xF;
2382 result.number_part |= (result.l_r_select & 1) << 4;
2383 }
2384 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 11);
2385 }
2386
2387 /* Handle a 5 bit register field at 25. */
2388 case '9':
2389 {
2390 struct pa_89_fp_reg_struct result;
2391
2392 pa_parse_number (&s, &result);
2393 CHECK_FIELD (result.number_part, 31, 0, 0);
2394 if (the_insn.fpof1 == SGL)
2395 {
2396 result.number_part &= 0xF;
2397 result.number_part |= (result.l_r_select & 1) << 4;
2398 }
2399 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 6);
2400 }
2401
2402 /* Handle a floating point operand format at 26.
2403 Only allows single and double precision. */
2404 case 'H':
2405 flag = pa_parse_fp_format (&s);
2406 switch (flag)
2407 {
2408 case SGL:
2409 opcode |= 0x20;
2410 case DBL:
2411 the_insn.fpof1 = flag;
2412 continue;
2413
2414 case QUAD:
2415 case ILLEGAL_FMT:
2416 default:
2417 as_bad ("Invalid Floating Point Operand Format.");
2418 }
2419 break;
2420
2421 default:
2422 abort ();
2423 }
2424 break;
2425 }
2426
2427 /* Check if the args matched. */
2428 if (match == FALSE)
2429 {
2430 if (&insn[1] - pa_opcodes < NUMOPCODES
2431 && !strcmp (insn->name, insn[1].name))
2432 {
2433 ++insn;
2434 s = argstart;
2435 continue;
2436 }
2437 else
2438 {
2439 as_bad ("Invalid operands %s", error_message);
2440 return;
2441 }
2442 }
2443 break;
2444 }
2445
2446 the_insn.opcode = opcode;
2447 }
2448
2449 /* Turn a string in input_line_pointer into a floating point constant of type
2450 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
2451 emitted is stored in *sizeP . An error message or NULL is returned. */
2452
2453 #define MAX_LITTLENUMS 6
2454
2455 char *
2456 md_atof (type, litP, sizeP)
2457 char type;
2458 char *litP;
2459 int *sizeP;
2460 {
2461 int prec;
2462 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2463 LITTLENUM_TYPE *wordP;
2464 char *t;
2465
2466 switch (type)
2467 {
2468
2469 case 'f':
2470 case 'F':
2471 case 's':
2472 case 'S':
2473 prec = 2;
2474 break;
2475
2476 case 'd':
2477 case 'D':
2478 case 'r':
2479 case 'R':
2480 prec = 4;
2481 break;
2482
2483 case 'x':
2484 case 'X':
2485 prec = 6;
2486 break;
2487
2488 case 'p':
2489 case 'P':
2490 prec = 6;
2491 break;
2492
2493 default:
2494 *sizeP = 0;
2495 return "Bad call to MD_ATOF()";
2496 }
2497 t = atof_ieee (input_line_pointer, type, words);
2498 if (t)
2499 input_line_pointer = t;
2500 *sizeP = prec * sizeof (LITTLENUM_TYPE);
2501 for (wordP = words; prec--;)
2502 {
2503 md_number_to_chars (litP, (valueT) (*wordP++), sizeof (LITTLENUM_TYPE));
2504 litP += sizeof (LITTLENUM_TYPE);
2505 }
2506 return NULL;
2507 }
2508
2509 /* Write out big-endian. */
2510
2511 void
2512 md_number_to_chars (buf, val, n)
2513 char *buf;
2514 valueT val;
2515 int n;
2516 {
2517 number_to_chars_bigendian (buf, val, n);
2518 }
2519
2520 /* Translate internal representation of relocation info to BFD target
2521 format. */
2522
2523 arelent **
2524 tc_gen_reloc (section, fixp)
2525 asection *section;
2526 fixS *fixp;
2527 {
2528 arelent *reloc;
2529 struct hppa_fix_struct *hppa_fixp = fixp->tc_fix_data;
2530 bfd_reloc_code_real_type code;
2531 static int unwind_reloc_fixp_cnt = 0;
2532 static arelent *unwind_reloc_entryP = NULL;
2533 static arelent *no_relocs = NULL;
2534 arelent **relocs;
2535 bfd_reloc_code_real_type **codes;
2536 int n_relocs;
2537 int i;
2538
2539 if (fixp->fx_addsy == 0)
2540 return &no_relocs;
2541 assert (hppa_fixp != 0);
2542 assert (section != 0);
2543
2544 #ifdef OBJ_ELF
2545 /* Yuk. I would really like to push all this ELF specific unwind
2546 crud into BFD and the linker. That's how SOM does it -- and
2547 if we could make ELF emulate that then we could share more code
2548 in GAS (and potentially a gnu-linker later).
2549
2550 Unwind section relocations are handled in a special way.
2551 The relocations for the .unwind section are originally
2552 built in the usual way. That is, for each unwind table
2553 entry there are two relocations: one for the beginning of
2554 the function and one for the end.
2555
2556 The first time we enter this function we create a
2557 relocation of the type R_HPPA_UNWIND_ENTRIES. The addend
2558 of the relocation is initialized to 0. Each additional
2559 pair of times this function is called for the unwind
2560 section represents an additional unwind table entry. Thus,
2561 the addend of the relocation should end up to be the number
2562 of unwind table entries. */
2563 if (strcmp (UNWIND_SECTION_NAME, section->name) == 0)
2564 {
2565 if (unwind_reloc_entryP == NULL)
2566 {
2567 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
2568 sizeof (arelent));
2569 assert (reloc != 0);
2570 unwind_reloc_entryP = reloc;
2571 unwind_reloc_fixp_cnt++;
2572 unwind_reloc_entryP->address
2573 = fixp->fx_frag->fr_address + fixp->fx_where;
2574 /* A pointer to any function will do. We only
2575 need one to tell us what section the unwind
2576 relocations are for. */
2577 unwind_reloc_entryP->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2578 hppa_fixp->fx_r_type = code = R_HPPA_UNWIND_ENTRIES;
2579 fixp->fx_r_type = R_HPPA_UNWIND;
2580 unwind_reloc_entryP->howto = bfd_reloc_type_lookup (stdoutput, code);
2581 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
2582 relocs = (arelent **) bfd_alloc_by_size_t (stdoutput,
2583 sizeof (arelent *) * 2);
2584 assert (relocs != 0);
2585 relocs[0] = unwind_reloc_entryP;
2586 relocs[1] = NULL;
2587 return relocs;
2588 }
2589 unwind_reloc_fixp_cnt++;
2590 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
2591
2592 return &no_relocs;
2593 }
2594 #endif
2595
2596 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent));
2597 assert (reloc != 0);
2598
2599 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2600 codes = hppa_gen_reloc_type (stdoutput,
2601 fixp->fx_r_type,
2602 hppa_fixp->fx_r_format,
2603 hppa_fixp->fx_r_field);
2604
2605 for (n_relocs = 0; codes[n_relocs]; n_relocs++)
2606 ;
2607
2608 relocs = (arelent **)
2609 bfd_alloc_by_size_t (stdoutput, sizeof (arelent *) * n_relocs + 1);
2610 assert (relocs != 0);
2611
2612 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
2613 sizeof (arelent) * n_relocs);
2614 if (n_relocs > 0)
2615 assert (reloc != 0);
2616
2617 for (i = 0; i < n_relocs; i++)
2618 relocs[i] = &reloc[i];
2619
2620 relocs[n_relocs] = NULL;
2621
2622 #ifdef OBJ_ELF
2623 switch (fixp->fx_r_type)
2624 {
2625 case R_HPPA_COMPLEX:
2626 case R_HPPA_COMPLEX_PCREL_CALL:
2627 case R_HPPA_COMPLEX_ABS_CALL:
2628 assert (n_relocs == 5);
2629
2630 for (i = 0; i < n_relocs; i++)
2631 {
2632 reloc[i].sym_ptr_ptr = NULL;
2633 reloc[i].address = 0;
2634 reloc[i].addend = 0;
2635 reloc[i].howto = bfd_reloc_type_lookup (stdoutput, *codes[i]);
2636 assert (reloc[i].howto && *codes[i] == reloc[i].howto->type);
2637 }
2638
2639 reloc[0].sym_ptr_ptr = &fixp->fx_addsy->bsym;
2640 reloc[1].sym_ptr_ptr = &fixp->fx_subsy->bsym;
2641 reloc[4].address = fixp->fx_frag->fr_address + fixp->fx_where;
2642
2643 if (fixp->fx_r_type == R_HPPA_COMPLEX)
2644 reloc[3].addend = fixp->fx_addnumber;
2645 else if (fixp->fx_r_type == R_HPPA_COMPLEX_PCREL_CALL ||
2646 fixp->fx_r_type == R_HPPA_COMPLEX_ABS_CALL)
2647 reloc[1].addend = fixp->fx_addnumber;
2648
2649 break;
2650
2651 default:
2652 assert (n_relocs == 1);
2653
2654 code = *codes[0];
2655
2656 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2657 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
2658 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
2659 reloc->addend = 0; /* default */
2660
2661 assert (reloc->howto && code == reloc->howto->type);
2662
2663 /* Now, do any processing that is dependent on the relocation type. */
2664 switch (code)
2665 {
2666 case R_HPPA_PLABEL_32:
2667 case R_HPPA_PLABEL_11:
2668 case R_HPPA_PLABEL_14:
2669 case R_HPPA_PLABEL_L21:
2670 case R_HPPA_PLABEL_R11:
2671 case R_HPPA_PLABEL_R14:
2672 /* For plabel relocations, the addend of the
2673 relocation should be either 0 (no static link) or 2
2674 (static link required).
2675
2676 FIXME: We always assume no static link! */
2677 reloc->addend = 0;
2678 break;
2679
2680 case R_HPPA_ABS_CALL_11:
2681 case R_HPPA_ABS_CALL_14:
2682 case R_HPPA_ABS_CALL_17:
2683 case R_HPPA_ABS_CALL_L21:
2684 case R_HPPA_ABS_CALL_R11:
2685 case R_HPPA_ABS_CALL_R14:
2686 case R_HPPA_ABS_CALL_R17:
2687 case R_HPPA_ABS_CALL_LS21:
2688 case R_HPPA_ABS_CALL_RS11:
2689 case R_HPPA_ABS_CALL_RS14:
2690 case R_HPPA_ABS_CALL_RS17:
2691 case R_HPPA_ABS_CALL_LD21:
2692 case R_HPPA_ABS_CALL_RD11:
2693 case R_HPPA_ABS_CALL_RD14:
2694 case R_HPPA_ABS_CALL_RD17:
2695 case R_HPPA_ABS_CALL_LR21:
2696 case R_HPPA_ABS_CALL_RR14:
2697 case R_HPPA_ABS_CALL_RR17:
2698
2699 case R_HPPA_PCREL_CALL_11:
2700 case R_HPPA_PCREL_CALL_14:
2701 case R_HPPA_PCREL_CALL_17:
2702 case R_HPPA_PCREL_CALL_L21:
2703 case R_HPPA_PCREL_CALL_R11:
2704 case R_HPPA_PCREL_CALL_R14:
2705 case R_HPPA_PCREL_CALL_R17:
2706 case R_HPPA_PCREL_CALL_LS21:
2707 case R_HPPA_PCREL_CALL_RS11:
2708 case R_HPPA_PCREL_CALL_RS14:
2709 case R_HPPA_PCREL_CALL_RS17:
2710 case R_HPPA_PCREL_CALL_LD21:
2711 case R_HPPA_PCREL_CALL_RD11:
2712 case R_HPPA_PCREL_CALL_RD14:
2713 case R_HPPA_PCREL_CALL_RD17:
2714 case R_HPPA_PCREL_CALL_LR21:
2715 case R_HPPA_PCREL_CALL_RR14:
2716 case R_HPPA_PCREL_CALL_RR17:
2717 /* The constant is stored in the instruction. */
2718 reloc->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
2719 break;
2720 default:
2721 reloc->addend = fixp->fx_addnumber;
2722 break;
2723 }
2724 break;
2725 }
2726 #else /* OBJ_SOM */
2727
2728 /* Walk over reach relocation returned by the BFD backend. */
2729 for (i = 0; i < n_relocs; i++)
2730 {
2731 code = *codes[i];
2732
2733 relocs[i]->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2734 relocs[i]->howto = bfd_reloc_type_lookup (stdoutput, code);
2735 relocs[i]->address = fixp->fx_frag->fr_address + fixp->fx_where;
2736
2737 switch (code)
2738 {
2739 case R_PCREL_CALL:
2740 case R_ABS_CALL:
2741 relocs[i]->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
2742 break;
2743
2744 case R_DATA_PLABEL:
2745 case R_CODE_PLABEL:
2746 /* For plabel relocations, the addend of the
2747 relocation should be either 0 (no static link) or 2
2748 (static link required).
2749
2750 FIXME: We always assume no static link! */
2751 relocs[i]->addend = 0;
2752 break;
2753
2754 case R_N_MODE:
2755 case R_S_MODE:
2756 case R_D_MODE:
2757 case R_R_MODE:
2758 case R_EXIT:
2759 case R_FSEL:
2760 case R_LSEL:
2761 case R_RSEL:
2762 /* There is no symbol or addend associated with these fixups. */
2763 relocs[i]->sym_ptr_ptr = &dummy_symbol->bsym;
2764 relocs[i]->addend = 0;
2765 break;
2766
2767 default:
2768 relocs[i]->addend = fixp->fx_addnumber;
2769 break;
2770 }
2771 }
2772 #endif
2773
2774 return relocs;
2775 }
2776
2777 /* Process any machine dependent frag types. */
2778
2779 void
2780 md_convert_frag (abfd, sec, fragP)
2781 register bfd *abfd;
2782 register asection *sec;
2783 register fragS *fragP;
2784 {
2785 unsigned int address;
2786
2787 if (fragP->fr_type == rs_machine_dependent)
2788 {
2789 switch ((int) fragP->fr_subtype)
2790 {
2791 case 0:
2792 fragP->fr_type = rs_fill;
2793 know (fragP->fr_var == 1);
2794 know (fragP->fr_next);
2795 address = fragP->fr_address + fragP->fr_fix;
2796 if (address % fragP->fr_offset)
2797 {
2798 fragP->fr_offset =
2799 fragP->fr_next->fr_address
2800 - fragP->fr_address
2801 - fragP->fr_fix;
2802 }
2803 else
2804 fragP->fr_offset = 0;
2805 break;
2806 }
2807 }
2808 }
2809
2810 /* Round up a section size to the appropriate boundary. */
2811
2812 valueT
2813 md_section_align (segment, size)
2814 asection *segment;
2815 valueT size;
2816 {
2817 int align = bfd_get_section_alignment (stdoutput, segment);
2818 int align2 = (1 << align) - 1;
2819
2820 return (size + align2) & ~align2;
2821 }
2822
2823 /* Create a short jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2824 void
2825 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
2826 char *ptr;
2827 addressT from_addr, to_addr;
2828 fragS *frag;
2829 symbolS *to_symbol;
2830 {
2831 fprintf (stderr, "pa_create_short_jmp\n");
2832 abort ();
2833 }
2834
2835 /* Create a long jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2836 void
2837 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
2838 char *ptr;
2839 addressT from_addr, to_addr;
2840 fragS *frag;
2841 symbolS *to_symbol;
2842 {
2843 fprintf (stderr, "pa_create_long_jump\n");
2844 abort ();
2845 }
2846
2847 /* Return the approximate size of a frag before relaxation has occurred. */
2848 int
2849 md_estimate_size_before_relax (fragP, segment)
2850 register fragS *fragP;
2851 asection *segment;
2852 {
2853 int size;
2854
2855 size = 0;
2856
2857 while ((fragP->fr_fix + size) % fragP->fr_offset)
2858 size++;
2859
2860 return size;
2861 }
2862
2863 /* Parse machine dependent options. There are none on the PA. */
2864 int
2865 md_parse_option (argP, cntP, vecP)
2866 char **argP;
2867 int *cntP;
2868 char ***vecP;
2869 {
2870 return 1;
2871 }
2872
2873 /* We have no need to default values of symbols. */
2874
2875 symbolS *
2876 md_undefined_symbol (name)
2877 char *name;
2878 {
2879 return 0;
2880 }
2881
2882 /* Parse an operand that is machine-specific.
2883 We just return without modifying the expression as we have nothing
2884 to do on the PA. */
2885
2886 void
2887 md_operand (expressionP)
2888 expressionS *expressionP;
2889 {
2890 }
2891
2892 /* Apply a fixup to an instruction. */
2893
2894 int
2895 md_apply_fix (fixP, valp)
2896 fixS *fixP;
2897 valueT *valp;
2898 {
2899 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
2900 struct hppa_fix_struct *hppa_fixP = fixP->tc_fix_data;
2901 long new_val, result;
2902 unsigned int w1, w2, w;
2903 valueT val = *valp;
2904
2905 /* SOM uses R_HPPA_ENTRY and R_HPPA_EXIT relocations which can
2906 never be "applied" (they are just markers). */
2907 #ifdef OBJ_SOM
2908 if (fixP->fx_r_type == R_HPPA_ENTRY
2909 || fixP->fx_r_type == R_HPPA_EXIT)
2910 return 1;
2911 #endif
2912
2913 /* There should have been an HPPA specific fixup associated
2914 with the GAS fixup. */
2915 if (hppa_fixP)
2916 {
2917 unsigned long buf_wd = bfd_get_32 (stdoutput, buf);
2918 unsigned char fmt = bfd_hppa_insn2fmt (buf_wd);
2919
2920 if (fixP->fx_r_type == R_HPPA_NONE)
2921 fmt = 0;
2922
2923 /* Remember this value for emit_reloc. FIXME, is this braindamage
2924 documented anywhere!?! */
2925 fixP->fx_addnumber = val;
2926
2927 /* Check if this is an undefined symbol. No relocation can
2928 possibly be performed in this case.
2929
2930 Also avoid doing anything for pc-relative fixups in which the
2931 fixup is in a different space than the symbol it references. */
2932 if ((fixP->fx_addsy && fixP->fx_addsy->bsym->section == &bfd_und_section)
2933 || (fixP->fx_subsy
2934 && fixP->fx_subsy->bsym->section == &bfd_und_section)
2935 || (fixP->fx_pcrel
2936 && fixP->fx_addsy
2937 && S_GET_SEGMENT (fixP->fx_addsy) != hppa_fixP->segment)
2938 || (fixP->fx_pcrel
2939 && fixP->fx_subsy
2940 && S_GET_SEGMENT (fixP->fx_subsy) != hppa_fixP->segment))
2941 return 1;
2942
2943 /* PLABEL field selectors should not be passed to hppa_field_adjust. */
2944 if (fmt != 0 && hppa_fixP->fx_r_field != R_HPPA_PSEL
2945 && hppa_fixP->fx_r_field != R_HPPA_LPSEL
2946 && hppa_fixP->fx_r_field != R_HPPA_RPSEL
2947 && hppa_fixP->fx_r_field != R_HPPA_TSEL
2948 && hppa_fixP->fx_r_field != R_HPPA_LTSEL
2949 && hppa_fixP->fx_r_field != R_HPPA_RTSEL)
2950 new_val = hppa_field_adjust (val, 0, hppa_fixP->fx_r_field);
2951 else
2952 new_val = 0;
2953
2954 switch (fmt)
2955 {
2956 /* Handle all opcodes with the 'j' operand type. */
2957 case 14:
2958 CHECK_FIELD (new_val, 8191, -8192, 0);
2959
2960 /* Mask off 14 bits to be changed. */
2961 bfd_put_32 (stdoutput,
2962 bfd_get_32 (stdoutput, buf) & 0xffffc000,
2963 buf);
2964 low_sign_unext (new_val, 14, &result);
2965 break;
2966
2967 /* Handle all opcodes with the 'k' operand type. */
2968 case 21:
2969 CHECK_FIELD (new_val, 2097152, 0, 0);
2970
2971 /* Mask off 21 bits to be changed. */
2972 bfd_put_32 (stdoutput,
2973 bfd_get_32 (stdoutput, buf) & 0xffe00000,
2974 buf);
2975 dis_assemble_21 (new_val, &result);
2976 break;
2977
2978 /* Handle all the opcodes with the 'i' operand type. */
2979 case 11:
2980 CHECK_FIELD (new_val, 1023, -1023, 0);
2981
2982 /* Mask off 11 bits to be changed. */
2983 bfd_put_32 (stdoutput,
2984 bfd_get_32 (stdoutput, buf) & 0xffff800,
2985 buf);
2986 low_sign_unext (new_val, 11, &result);
2987 break;
2988
2989 /* Handle all the opcodes with the 'w' operand type. */
2990 case 12:
2991 CHECK_FIELD (new_val, 8191, -8192, 0)
2992
2993 /* Mask off 11 bits to be changed. */
2994 sign_unext ((new_val - 8) >> 2, 12, &result);
2995 bfd_put_32 (stdoutput,
2996 bfd_get_32 (stdoutput, buf) & 0xffffe002,
2997 buf);
2998
2999 dis_assemble_12 (result, &w1, &w);
3000 result = ((w1 << 2) | w);
3001 break;
3002
3003 /* Handle some of the opcodes with the 'W' operand type. */
3004 case 17:
3005
3006 #define stub_needed(CALLER, CALLEE) \
3007 ((CALLEE) && (CALLER) && ((CALLEE) != (CALLER)))
3008 /* It is necessary to force PC-relative calls/jumps to have a
3009 relocation entry if they're going to need either a argument
3010 relocation or long call stub. FIXME. Can't we need the same
3011 for absolute calls? */
3012 if (fixP->fx_addsy
3013 && (stub_needed (((obj_symbol_type *)
3014 fixP->fx_addsy->bsym)->tc_data.hppa_arg_reloc,
3015 hppa_fixP->fx_arg_reloc)))
3016 return 1;
3017 #undef stub_needed
3018
3019 CHECK_FIELD (new_val, 262143, -262144, 0);
3020
3021 /* Mask off 17 bits to be changed. */
3022 bfd_put_32 (stdoutput,
3023 bfd_get_32 (stdoutput, buf) & 0xffe0e002,
3024 buf);
3025 sign_unext ((new_val - 8) >> 2, 17, &result);
3026 dis_assemble_17 (result, &w1, &w2, &w);
3027 result = ((w2 << 2) | (w1 << 16) | w);
3028 break;
3029
3030 case 32:
3031 #ifdef OBJ_ELF
3032 /* These are ELF specific relocations. ELF unfortunately
3033 handles unwinds in a completely different manner. */
3034 if (hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRY
3035 || hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRIES)
3036 result = fixP->fx_addnumber;
3037 else
3038 #endif
3039 {
3040 result = 0;
3041 fixP->fx_addnumber = fixP->fx_offset;
3042 /* If we have a real relocation, then we want zero to
3043 be stored in the object file. If no relocation is going
3044 to be emitted, then we need to store new_val into the
3045 object file. */
3046 if (fixP->fx_addsy)
3047 bfd_put_32 (stdoutput, 0, buf);
3048 else
3049 bfd_put_32 (stdoutput, new_val, buf);
3050 return 1;
3051 }
3052 break;
3053
3054 case 0:
3055 return 1;
3056
3057 default:
3058 as_bad ("Unknown relocation encountered in md_apply_fix.");
3059 return 1;
3060 }
3061
3062 /* Insert the relocation. */
3063 bfd_put_32 (stdoutput, bfd_get_32 (stdoutput, buf) | result, buf);
3064 return 1;
3065 }
3066 else
3067 {
3068 printf ("no hppa_fixup entry for this fixup (fixP = 0x%x, type = 0x%x)\n",
3069 (unsigned int) fixP, fixP->fx_r_type);
3070 return 0;
3071 }
3072 }
3073
3074 /* Exactly what point is a PC-relative offset relative TO?
3075 On the PA, they're relative to the address of the offset. */
3076
3077 long
3078 md_pcrel_from (fixP)
3079 fixS *fixP;
3080 {
3081 return fixP->fx_where + fixP->fx_frag->fr_address;
3082 }
3083
3084 /* Return nonzero if the input line pointer is at the end of
3085 a statement. */
3086
3087 static int
3088 is_end_of_statement ()
3089 {
3090 return ((*input_line_pointer == '\n')
3091 || (*input_line_pointer == ';')
3092 || (*input_line_pointer == '!'));
3093 }
3094
3095 /* Read a number from S. The number might come in one of many forms,
3096 the most common will be a hex or decimal constant, but it could be
3097 a pre-defined register (Yuk!), or an absolute symbol.
3098
3099 Return a number or -1 for failure.
3100
3101 When parsing PA-89 FP register numbers RESULT will be
3102 the address of a structure to return information about
3103 L/R half of FP registers, store results there as appropriate.
3104
3105 pa_parse_number can not handle negative constants and will fail
3106 horribly if it is passed such a constant. */
3107
3108 static int
3109 pa_parse_number (s, result)
3110 char **s;
3111 struct pa_89_fp_reg_struct *result;
3112 {
3113 int num;
3114 char *name;
3115 char c;
3116 symbolS *sym;
3117 int status;
3118 char *p = *s;
3119
3120 /* Skip whitespace before the number. */
3121 while (*p == ' ' || *p == '\t')
3122 p = p + 1;
3123
3124 /* Store info in RESULT if requested by caller. */
3125 if (result)
3126 {
3127 result->number_part = -1;
3128 result->l_r_select = -1;
3129 }
3130 num = -1;
3131
3132 if (isdigit (*p))
3133 {
3134 /* Looks like a number. */
3135 num = 0;
3136
3137 if (*p == '0' && (*(p + 1) == 'x' || *(p + 1) == 'X'))
3138 {
3139 /* The number is specified in hex. */
3140 p += 2;
3141 while (isdigit (*p) || ((*p >= 'a') && (*p <= 'f'))
3142 || ((*p >= 'A') && (*p <= 'F')))
3143 {
3144 if (isdigit (*p))
3145 num = num * 16 + *p - '0';
3146 else if (*p >= 'a' && *p <= 'f')
3147 num = num * 16 + *p - 'a' + 10;
3148 else
3149 num = num * 16 + *p - 'A' + 10;
3150 ++p;
3151 }
3152 }
3153 else
3154 {
3155 /* The number is specified in decimal. */
3156 while (isdigit (*p))
3157 {
3158 num = num * 10 + *p - '0';
3159 ++p;
3160 }
3161 }
3162
3163 /* Store info in RESULT if requested by the caller. */
3164 if (result)
3165 {
3166 result->number_part = num;
3167
3168 if (IS_R_SELECT (p))
3169 {
3170 result->l_r_select = 1;
3171 ++p;
3172 }
3173 else if (IS_L_SELECT (p))
3174 {
3175 result->l_r_select = 0;
3176 ++p;
3177 }
3178 else
3179 result->l_r_select = 0;
3180 }
3181 }
3182 else if (*p == '%')
3183 {
3184 /* The number might be a predefined register. */
3185 num = 0;
3186 name = p;
3187 p++;
3188 c = *p;
3189 /* Tege hack: Special case for general registers as the general
3190 code makes a binary search with case translation, and is VERY
3191 slow. */
3192 if (c == 'r')
3193 {
3194 p++;
3195 if (*p == 'e' && *(p + 1) == 't'
3196 && (*(p + 2) == '0' || *(p + 2) == '1'))
3197 {
3198 p += 2;
3199 num = *p - '0' + 28;
3200 p++;
3201 }
3202 else if (*p == 'p')
3203 {
3204 num = 2;
3205 p++;
3206 }
3207 else if (!isdigit (*p))
3208 {
3209 if (print_errors)
3210 as_bad ("Undefined register: '%s'.", name);
3211 num = -1;
3212 }
3213 else
3214 {
3215 do
3216 num = num * 10 + *p++ - '0';
3217 while (isdigit (*p));
3218 }
3219 }
3220 else
3221 {
3222 /* Do a normal register search. */
3223 while (is_part_of_name (c))
3224 {
3225 p = p + 1;
3226 c = *p;
3227 }
3228 *p = 0;
3229 status = reg_name_search (name);
3230 if (status >= 0)
3231 num = status;
3232 else
3233 {
3234 if (print_errors)
3235 as_bad ("Undefined register: '%s'.", name);
3236 num = -1;
3237 }
3238 *p = c;
3239 }
3240
3241 /* Store info in RESULT if requested by caller. */
3242 if (result)
3243 {
3244 result->number_part = num;
3245 if (IS_R_SELECT (p - 1))
3246 result->l_r_select = 1;
3247 else if (IS_L_SELECT (p - 1))
3248 result->l_r_select = 0;
3249 else
3250 result->l_r_select = 0;
3251 }
3252 }
3253 else
3254 {
3255 /* And finally, it could be a symbol in the absolute section which
3256 is effectively a constant. */
3257 num = 0;
3258 name = p;
3259 c = *p;
3260 while (is_part_of_name (c))
3261 {
3262 p = p + 1;
3263 c = *p;
3264 }
3265 *p = 0;
3266 if ((sym = symbol_find (name)) != NULL)
3267 {
3268 if (S_GET_SEGMENT (sym) == &bfd_abs_section)
3269 num = S_GET_VALUE (sym);
3270 else
3271 {
3272 if (print_errors)
3273 as_bad ("Non-absolute symbol: '%s'.", name);
3274 num = -1;
3275 }
3276 }
3277 else
3278 {
3279 /* There is where we'd come for an undefined symbol
3280 or for an empty string. For an empty string we
3281 will return zero. That's a concession made for
3282 compatability with the braindamaged HP assemblers. */
3283 if (*name == 0)
3284 num = 0;
3285 else
3286 {
3287 if (print_errors)
3288 as_bad ("Undefined absolute constant: '%s'.", name);
3289 num = -1;
3290 }
3291 }
3292 *p = c;
3293
3294 /* Store info in RESULT if requested by caller. */
3295 if (result)
3296 {
3297 result->number_part = num;
3298 if (IS_R_SELECT (p - 1))
3299 result->l_r_select = 1;
3300 else if (IS_L_SELECT (p - 1))
3301 result->l_r_select = 0;
3302 else
3303 result->l_r_select = 0;
3304 }
3305 }
3306
3307 *s = p;
3308 return num;
3309 }
3310
3311 #define REG_NAME_CNT (sizeof(pre_defined_registers) / sizeof(struct pd_reg))
3312
3313 /* Given NAME, find the register number associated with that name, return
3314 the integer value associated with the given name or -1 on failure. */
3315
3316 static int
3317 reg_name_search (name)
3318 char *name;
3319 {
3320 int middle, low, high;
3321 int cmp;
3322
3323 low = 0;
3324 high = REG_NAME_CNT - 1;
3325
3326 do
3327 {
3328 middle = (low + high) / 2;
3329 cmp = strcasecmp (name, pre_defined_registers[middle].name);
3330 if (cmp < 0)
3331 high = middle - 1;
3332 else if (cmp > 0)
3333 low = middle + 1;
3334 else
3335 return pre_defined_registers[middle].value;
3336 }
3337 while (low <= high);
3338
3339 return -1;
3340 }
3341
3342
3343 /* Return nonzero if the given INSN and L/R information will require
3344 a new PA-89 opcode. */
3345
3346 static int
3347 need_89_opcode (insn, result)
3348 struct pa_it *insn;
3349 struct pa_89_fp_reg_struct *result;
3350 {
3351 if (result->l_r_select == 1 && !(insn->fpof1 == DBL && insn->fpof2 == DBL))
3352 return TRUE;
3353 else
3354 return FALSE;
3355 }
3356
3357 /* Parse a condition for a fcmp instruction. Return the numerical
3358 code associated with the condition. */
3359
3360 static int
3361 pa_parse_fp_cmp_cond (s)
3362 char **s;
3363 {
3364 int cond, i;
3365
3366 cond = 0;
3367
3368 for (i = 0; i < 32; i++)
3369 {
3370 if (strncasecmp (*s, fp_cond_map[i].string,
3371 strlen (fp_cond_map[i].string)) == 0)
3372 {
3373 cond = fp_cond_map[i].cond;
3374 *s += strlen (fp_cond_map[i].string);
3375 while (**s == ' ' || **s == '\t')
3376 *s = *s + 1;
3377 return cond;
3378 }
3379 }
3380
3381 as_bad ("Invalid FP Compare Condition: %c", **s);
3382 return 0;
3383 }
3384
3385 /* Parse an FP operand format completer returning the completer
3386 type. */
3387
3388 static fp_operand_format
3389 pa_parse_fp_format (s)
3390 char **s;
3391 {
3392 int format;
3393
3394 format = SGL;
3395 if (**s == ',')
3396 {
3397 *s += 1;
3398 if (strncasecmp (*s, "sgl", 3) == 0)
3399 {
3400 format = SGL;
3401 *s += 4;
3402 }
3403 else if (strncasecmp (*s, "dbl", 3) == 0)
3404 {
3405 format = DBL;
3406 *s += 4;
3407 }
3408 else if (strncasecmp (*s, "quad", 4) == 0)
3409 {
3410 format = QUAD;
3411 *s += 5;
3412 }
3413 else
3414 {
3415 format = ILLEGAL_FMT;
3416 as_bad ("Invalid FP Operand Format: %3s", *s);
3417 }
3418 }
3419
3420 return format;
3421 }
3422
3423 /* Convert from a selector string into a selector type. */
3424
3425 static int
3426 pa_chk_field_selector (str)
3427 char **str;
3428 {
3429 int middle, low, high;
3430 int cmp;
3431 char name[3];
3432
3433 /* Read past any whitespace. */
3434 /* FIXME: should we read past newlines and formfeeds??? */
3435 while (**str == ' ' || **str == '\t' || **str == '\n' || **str == '\f')
3436 *str = *str + 1;
3437
3438 if ((*str)[1] == '\'' || (*str)[1] == '%')
3439 name[0] = tolower ((*str)[0]),
3440 name[1] = 0;
3441 else if ((*str)[2] == '\'' || (*str)[2] == '%')
3442 name[0] = tolower ((*str)[0]),
3443 name[1] = tolower ((*str)[1]),
3444 name[2] = 0;
3445 else
3446 return e_fsel;
3447
3448 low = 0;
3449 high = sizeof (selector_table) / sizeof (struct selector_entry) - 1;
3450
3451 do
3452 {
3453 middle = (low + high) / 2;
3454 cmp = strcmp (name, selector_table[middle].prefix);
3455 if (cmp < 0)
3456 high = middle - 1;
3457 else if (cmp > 0)
3458 low = middle + 1;
3459 else
3460 {
3461 *str += strlen (name) + 1;
3462 return selector_table[middle].field_selector;
3463 }
3464 }
3465 while (low <= high);
3466
3467 return e_fsel;
3468 }
3469
3470 /* Mark (via expr_end) the end of an expression (I think). FIXME. */
3471
3472 static int
3473 get_expression (str)
3474 char *str;
3475 {
3476 char *save_in;
3477 asection *seg;
3478
3479 save_in = input_line_pointer;
3480 input_line_pointer = str;
3481 seg = expression (&the_insn.exp);
3482 if (!(seg == absolute_section
3483 || seg == undefined_section
3484 || SEG_NORMAL (seg)))
3485 {
3486 as_warn ("Bad segment in expression.");
3487 expr_end = input_line_pointer;
3488 input_line_pointer = save_in;
3489 return 1;
3490 }
3491 expr_end = input_line_pointer;
3492 input_line_pointer = save_in;
3493 return 0;
3494 }
3495
3496 /* Mark (via expr_end) the end of an absolute expression. FIXME. */
3497 static int
3498 pa_get_absolute_expression (insn, strp)
3499 struct pa_it *insn;
3500 char **strp;
3501 {
3502 char *save_in;
3503
3504 insn->field_selector = pa_chk_field_selector (strp);
3505 save_in = input_line_pointer;
3506 input_line_pointer = *strp;
3507 expression (&insn->exp);
3508 if (insn->exp.X_op != O_constant)
3509 {
3510 as_bad ("Bad segment (should be absolute).");
3511 expr_end = input_line_pointer;
3512 input_line_pointer = save_in;
3513 return 0;
3514 }
3515 expr_end = input_line_pointer;
3516 input_line_pointer = save_in;
3517 return evaluate_absolute (insn);
3518 }
3519
3520 /* Evaluate an absolute expression EXP which may be modified by
3521 the selector FIELD_SELECTOR. Return the value of the expression. */
3522 static int
3523 evaluate_absolute (insn)
3524 struct pa_it *insn;
3525 {
3526 int value;
3527 expressionS exp;
3528 int field_selector = insn->field_selector;
3529
3530 exp = insn->exp;
3531 value = exp.X_add_number;
3532
3533 switch (field_selector)
3534 {
3535 /* No change. */
3536 case e_fsel:
3537 break;
3538
3539 /* If bit 21 is on then add 0x800 and arithmetic shift right 11 bits. */
3540 case e_lssel:
3541 if (value & 0x00000400)
3542 value += 0x800;
3543 value = (value & 0xfffff800) >> 11;
3544 break;
3545
3546 /* Sign extend from bit 21. */
3547 case e_rssel:
3548 if (value & 0x00000400)
3549 value |= 0xfffff800;
3550 else
3551 value &= 0x7ff;
3552 break;
3553
3554 /* Arithmetic shift right 11 bits. */
3555 case e_lsel:
3556 value = (value & 0xfffff800) >> 11;
3557 break;
3558
3559 /* Set bits 0-20 to zero. */
3560 case e_rsel:
3561 value = value & 0x7ff;
3562 break;
3563
3564 /* Add 0x800 and arithmetic shift right 11 bits. */
3565 case e_ldsel:
3566 value += 0x800;
3567 value = (value & 0xfffff800) >> 11;
3568 break;
3569
3570 /* Set bitgs 0-21 to one. */
3571 case e_rdsel:
3572 value |= 0xfffff800;
3573 break;
3574
3575 #define RSEL_ROUND(c) (((c) + 0x1000) & ~0x1fff)
3576 case e_rrsel:
3577 value = (RSEL_ROUND (value) & 0x7ff) + (value - RSEL_ROUND (value));
3578 break;
3579
3580 case e_lrsel:
3581 value = (RSEL_ROUND (value) >> 11) & 0x1fffff;
3582 break;
3583 #undef RSEL_ROUND
3584
3585 default:
3586 BAD_CASE (field_selector);
3587 break;
3588 }
3589 return value;
3590 }
3591
3592 /* Given an argument location specification return the associated
3593 argument location number. */
3594
3595 static unsigned int
3596 pa_build_arg_reloc (type_name)
3597 char *type_name;
3598 {
3599
3600 if (strncasecmp (type_name, "no", 2) == 0)
3601 return 0;
3602 if (strncasecmp (type_name, "gr", 2) == 0)
3603 return 1;
3604 else if (strncasecmp (type_name, "fr", 2) == 0)
3605 return 2;
3606 else if (strncasecmp (type_name, "fu", 2) == 0)
3607 return 3;
3608 else
3609 as_bad ("Invalid argument location: %s\n", type_name);
3610
3611 return 0;
3612 }
3613
3614 /* Encode and return an argument relocation specification for
3615 the given register in the location specified by arg_reloc. */
3616
3617 static unsigned int
3618 pa_align_arg_reloc (reg, arg_reloc)
3619 unsigned int reg;
3620 unsigned int arg_reloc;
3621 {
3622 unsigned int new_reloc;
3623
3624 new_reloc = arg_reloc;
3625 switch (reg)
3626 {
3627 case 0:
3628 new_reloc <<= 8;
3629 break;
3630 case 1:
3631 new_reloc <<= 6;
3632 break;
3633 case 2:
3634 new_reloc <<= 4;
3635 break;
3636 case 3:
3637 new_reloc <<= 2;
3638 break;
3639 default:
3640 as_bad ("Invalid argument description: %d", reg);
3641 }
3642
3643 return new_reloc;
3644 }
3645
3646 /* Parse a PA nullification completer (,n). Return nonzero if the
3647 completer was found; return zero if no completer was found. */
3648
3649 static int
3650 pa_parse_nullif (s)
3651 char **s;
3652 {
3653 int nullif;
3654
3655 nullif = 0;
3656 if (**s == ',')
3657 {
3658 *s = *s + 1;
3659 if (strncasecmp (*s, "n", 1) == 0)
3660 nullif = 1;
3661 else
3662 {
3663 as_bad ("Invalid Nullification: (%c)", **s);
3664 nullif = 0;
3665 }
3666 *s = *s + 1;
3667 }
3668
3669 return nullif;
3670 }
3671
3672 /* Parse a non-negated compare/subtract completer returning the
3673 number (for encoding in instrutions) of the given completer.
3674
3675 ISBRANCH specifies whether or not this is parsing a condition
3676 completer for a branch (vs a nullification completer for a
3677 computational instruction. */
3678
3679 static int
3680 pa_parse_nonneg_cmpsub_cmpltr (s, isbranch)
3681 char **s;
3682 int isbranch;
3683 {
3684 int cmpltr;
3685 char *name = *s + 1;
3686 char c;
3687 char *save_s = *s;
3688
3689 cmpltr = 0;
3690 if (**s == ',')
3691 {
3692 *s += 1;
3693 while (**s != ',' && **s != ' ' && **s != '\t')
3694 *s += 1;
3695 c = **s;
3696 **s = 0x00;
3697 if (strcmp (name, "=") == 0)
3698 {
3699 cmpltr = 1;
3700 }
3701 else if (strcmp (name, "<") == 0)
3702 {
3703 cmpltr = 2;
3704 }
3705 else if (strcmp (name, "<=") == 0)
3706 {
3707 cmpltr = 3;
3708 }
3709 else if (strcmp (name, "<<") == 0)
3710 {
3711 cmpltr = 4;
3712 }
3713 else if (strcmp (name, "<<=") == 0)
3714 {
3715 cmpltr = 5;
3716 }
3717 else if (strcasecmp (name, "sv") == 0)
3718 {
3719 cmpltr = 6;
3720 }
3721 else if (strcasecmp (name, "od") == 0)
3722 {
3723 cmpltr = 7;
3724 }
3725 /* If we have something like addb,n then there is no condition
3726 completer. */
3727 else if (strcasecmp (name, "n") == 0 && isbranch)
3728 {
3729 cmpltr = 0;
3730 }
3731 else
3732 {
3733 cmpltr = -1;
3734 }
3735 **s = c;
3736 }
3737
3738 /* Reset pointers if this was really a ,n for a branch instruction. */
3739 if (cmpltr == 0 && *name == 'n' && isbranch)
3740 *s = save_s;
3741
3742 return cmpltr;
3743 }
3744
3745 /* Parse a negated compare/subtract completer returning the
3746 number (for encoding in instrutions) of the given completer.
3747
3748 ISBRANCH specifies whether or not this is parsing a condition
3749 completer for a branch (vs a nullification completer for a
3750 computational instruction. */
3751
3752 static int
3753 pa_parse_neg_cmpsub_cmpltr (s, isbranch)
3754 char **s;
3755 int isbranch;
3756 {
3757 int cmpltr;
3758 char *name = *s + 1;
3759 char c;
3760 char *save_s = *s;
3761
3762 cmpltr = 0;
3763 if (**s == ',')
3764 {
3765 *s += 1;
3766 while (**s != ',' && **s != ' ' && **s != '\t')
3767 *s += 1;
3768 c = **s;
3769 **s = 0x00;
3770 if (strcasecmp (name, "tr") == 0)
3771 {
3772 cmpltr = 0;
3773 }
3774 else if (strcmp (name, "<>") == 0)
3775 {
3776 cmpltr = 1;
3777 }
3778 else if (strcmp (name, ">=") == 0)
3779 {
3780 cmpltr = 2;
3781 }
3782 else if (strcmp (name, ">") == 0)
3783 {
3784 cmpltr = 3;
3785 }
3786 else if (strcmp (name, ">>=") == 0)
3787 {
3788 cmpltr = 4;
3789 }
3790 else if (strcmp (name, ">>") == 0)
3791 {
3792 cmpltr = 5;
3793 }
3794 else if (strcasecmp (name, "nsv") == 0)
3795 {
3796 cmpltr = 6;
3797 }
3798 else if (strcasecmp (name, "ev") == 0)
3799 {
3800 cmpltr = 7;
3801 }
3802 /* If we have something like addb,n then there is no condition
3803 completer. */
3804 else if (strcasecmp (name, "n") == 0 && isbranch)
3805 {
3806 cmpltr = 0;
3807 }
3808 else
3809 {
3810 cmpltr = -1;
3811 }
3812 **s = c;
3813 }
3814
3815 /* Reset pointers if this was really a ,n for a branch instruction. */
3816 if (cmpltr == 0 && *name == 'n' && isbranch)
3817 *s = save_s;
3818
3819 return cmpltr;
3820 }
3821
3822 /* Parse a non-negated addition completer returning the number
3823 (for encoding in instrutions) of the given completer.
3824
3825 ISBRANCH specifies whether or not this is parsing a condition
3826 completer for a branch (vs a nullification completer for a
3827 computational instruction. */
3828
3829 static int
3830 pa_parse_nonneg_add_cmpltr (s, isbranch)
3831 char **s;
3832 int isbranch;
3833 {
3834 int cmpltr;
3835 char *name = *s + 1;
3836 char c;
3837 char *save_s = *s;
3838
3839 cmpltr = 0;
3840 if (**s == ',')
3841 {
3842 *s += 1;
3843 while (**s != ',' && **s != ' ' && **s != '\t')
3844 *s += 1;
3845 c = **s;
3846 **s = 0x00;
3847 if (strcmp (name, "=") == 0)
3848 {
3849 cmpltr = 1;
3850 }
3851 else if (strcmp (name, "<") == 0)
3852 {
3853 cmpltr = 2;
3854 }
3855 else if (strcmp (name, "<=") == 0)
3856 {
3857 cmpltr = 3;
3858 }
3859 else if (strcasecmp (name, "nuv") == 0)
3860 {
3861 cmpltr = 4;
3862 }
3863 else if (strcasecmp (name, "znv") == 0)
3864 {
3865 cmpltr = 5;
3866 }
3867 else if (strcasecmp (name, "sv") == 0)
3868 {
3869 cmpltr = 6;
3870 }
3871 else if (strcasecmp (name, "od") == 0)
3872 {
3873 cmpltr = 7;
3874 }
3875 /* If we have something like addb,n then there is no condition
3876 completer. */
3877 else if (strcasecmp (name, "n") == 0 && isbranch)
3878 {
3879 cmpltr = 0;
3880 }
3881 else
3882 {
3883 cmpltr = -1;
3884 }
3885 **s = c;
3886 }
3887
3888 /* Reset pointers if this was really a ,n for a branch instruction. */
3889 if (cmpltr == 0 && *name == 'n' && isbranch)
3890 *s = save_s;
3891
3892 return cmpltr;
3893 }
3894
3895 /* Parse a negated addition completer returning the number
3896 (for encoding in instrutions) of the given completer.
3897
3898 ISBRANCH specifies whether or not this is parsing a condition
3899 completer for a branch (vs a nullification completer for a
3900 computational instruction. */
3901
3902 static int
3903 pa_parse_neg_add_cmpltr (s, isbranch)
3904 char **s;
3905 int isbranch;
3906 {
3907 int cmpltr;
3908 char *name = *s + 1;
3909 char c;
3910 char *save_s = *s;
3911
3912 cmpltr = 0;
3913 if (**s == ',')
3914 {
3915 *s += 1;
3916 while (**s != ',' && **s != ' ' && **s != '\t')
3917 *s += 1;
3918 c = **s;
3919 **s = 0x00;
3920 if (strcasecmp (name, "tr") == 0)
3921 {
3922 cmpltr = 0;
3923 }
3924 else if (strcmp (name, "<>") == 0)
3925 {
3926 cmpltr = 1;
3927 }
3928 else if (strcmp (name, ">=") == 0)
3929 {
3930 cmpltr = 2;
3931 }
3932 else if (strcmp (name, ">") == 0)
3933 {
3934 cmpltr = 3;
3935 }
3936 else if (strcasecmp (name, "uv") == 0)
3937 {
3938 cmpltr = 4;
3939 }
3940 else if (strcasecmp (name, "vnz") == 0)
3941 {
3942 cmpltr = 5;
3943 }
3944 else if (strcasecmp (name, "nsv") == 0)
3945 {
3946 cmpltr = 6;
3947 }
3948 else if (strcasecmp (name, "ev") == 0)
3949 {
3950 cmpltr = 7;
3951 }
3952 /* If we have something like addb,n then there is no condition
3953 completer. */
3954 else if (strcasecmp (name, "n") == 0 && isbranch)
3955 {
3956 cmpltr = 0;
3957 }
3958 else
3959 {
3960 cmpltr = -1;
3961 }
3962 **s = c;
3963 }
3964
3965 /* Reset pointers if this was really a ,n for a branch instruction. */
3966 if (cmpltr == 0 && *name == 'n' && isbranch)
3967 *s = save_s;
3968
3969 return cmpltr;
3970 }
3971
3972 /* Handle a .BLOCK type pseudo-op. */
3973
3974 static void
3975 pa_block (z)
3976 int z;
3977 {
3978 char *p;
3979 long int temp_fill;
3980 unsigned int temp_size;
3981 int i;
3982
3983 temp_size = get_absolute_expression ();
3984
3985 /* Always fill with zeros, that's what the HP assembler does. */
3986 temp_fill = 0;
3987
3988 p = frag_var (rs_fill, (int) temp_size, (int) temp_size,
3989 (relax_substateT) 0, (symbolS *) 0, 1, NULL);
3990 bzero (p, temp_size);
3991
3992 /* Convert 2 bytes at a time. */
3993
3994 for (i = 0; i < temp_size; i += 2)
3995 {
3996 md_number_to_chars (p + i,
3997 (valueT) temp_fill,
3998 (int) ((temp_size - i) > 2 ? 2 : (temp_size - i)));
3999 }
4000
4001 pa_undefine_label ();
4002 demand_empty_rest_of_line ();
4003 }
4004
4005 /* Handle a .CALL pseudo-op. This involves storing away information
4006 about where arguments are to be found so the linker can detect
4007 (and correct) argument location mismatches between caller and callee. */
4008
4009 static void
4010 pa_call (unused)
4011 int unused;
4012 {
4013 pa_call_args (&last_call_desc);
4014 demand_empty_rest_of_line ();
4015 }
4016
4017 /* Do the dirty work of building a call descriptor which describes
4018 where the caller placed arguments to a function call. */
4019
4020 static void
4021 pa_call_args (call_desc)
4022 struct call_desc *call_desc;
4023 {
4024 char *name, c, *p;
4025 unsigned int temp, arg_reloc;
4026
4027 while (!is_end_of_statement ())
4028 {
4029 name = input_line_pointer;
4030 c = get_symbol_end ();
4031 /* Process a source argument. */
4032 if ((strncasecmp (name, "argw", 4) == 0))
4033 {
4034 temp = atoi (name + 4);
4035 p = input_line_pointer;
4036 *p = c;
4037 input_line_pointer++;
4038 name = input_line_pointer;
4039 c = get_symbol_end ();
4040 arg_reloc = pa_build_arg_reloc (name);
4041 call_desc->arg_reloc |= pa_align_arg_reloc (temp, arg_reloc);
4042 }
4043 /* Process a return value. */
4044 else if ((strncasecmp (name, "rtnval", 6) == 0))
4045 {
4046 p = input_line_pointer;
4047 *p = c;
4048 input_line_pointer++;
4049 name = input_line_pointer;
4050 c = get_symbol_end ();
4051 arg_reloc = pa_build_arg_reloc (name);
4052 call_desc->arg_reloc |= (arg_reloc & 0x3);
4053 }
4054 else
4055 {
4056 as_bad ("Invalid .CALL argument: %s", name);
4057 }
4058 p = input_line_pointer;
4059 *p = c;
4060 if (!is_end_of_statement ())
4061 input_line_pointer++;
4062 }
4063 }
4064
4065 /* Return TRUE if FRAG1 and FRAG2 are the same. */
4066
4067 static int
4068 is_same_frag (frag1, frag2)
4069 fragS *frag1;
4070 fragS *frag2;
4071 {
4072
4073 if (frag1 == NULL)
4074 return (FALSE);
4075 else if (frag2 == NULL)
4076 return (FALSE);
4077 else if (frag1 == frag2)
4078 return (TRUE);
4079 else if (frag2->fr_type == rs_fill && frag2->fr_fix == 0)
4080 return (is_same_frag (frag1, frag2->fr_next));
4081 else
4082 return (FALSE);
4083 }
4084
4085 #ifdef OBJ_ELF
4086 /* Build an entry in the UNWIND subspace from the given function
4087 attributes in CALL_INFO. This is not needed for SOM as using
4088 R_ENTRY and R_EXIT relocations allow the linker to handle building
4089 of the unwind spaces. */
4090
4091 static void
4092 pa_build_unwind_subspace (call_info)
4093 struct call_info *call_info;
4094 {
4095 char *unwind;
4096 asection *seg, *save_seg;
4097 subsegT subseg, save_subseg;
4098 int i;
4099 char c, *p;
4100
4101 /* Get into the right seg/subseg. This may involve creating
4102 the seg the first time through. Make sure to have the
4103 old seg/subseg so that we can reset things when we are done. */
4104 subseg = SUBSEG_UNWIND;
4105 seg = bfd_get_section_by_name (stdoutput, UNWIND_SECTION_NAME);
4106 if (seg == ASEC_NULL)
4107 {
4108 seg = bfd_make_section_old_way (stdoutput, UNWIND_SECTION_NAME);
4109 bfd_set_section_flags (stdoutput, seg,
4110 SEC_READONLY | SEC_HAS_CONTENTS
4111 | SEC_LOAD | SEC_RELOC);
4112 }
4113
4114 save_seg = now_seg;
4115 save_subseg = now_subseg;
4116 subseg_set (seg, subseg);
4117
4118
4119 /* Get some space to hold relocation information for the unwind
4120 descriptor. */
4121 p = frag_more (4);
4122
4123 /* Relocation info. for start offset of the function. */
4124 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4125 call_info->start_symbol, (offsetT) 0,
4126 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4127 (char *) 0);
4128
4129 p = frag_more (4);
4130
4131 /* Relocation info. for end offset of the function. */
4132 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4133 call_info->end_symbol, (offsetT) 0,
4134 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4135 (char *) 0);
4136
4137 /* Dump it. */
4138 unwind = (char *) &call_info->ci_unwind;
4139 for (i = 8; i < sizeof (struct unwind_table); i++)
4140 {
4141 c = *(unwind + i);
4142 {
4143 FRAG_APPEND_1_CHAR (c);
4144 }
4145 }
4146
4147 /* Return back to the original segment/subsegment. */
4148 subseg_set (save_seg, save_subseg);
4149 }
4150 #endif
4151
4152 /* Process a .CALLINFO pseudo-op. This information is used later
4153 to build unwind descriptors and maybe one day to support
4154 .ENTER and .LEAVE. */
4155
4156 static void
4157 pa_callinfo (unused)
4158 int unused;
4159 {
4160 char *name, c, *p;
4161 int temp;
4162
4163 /* .CALLINFO must appear within a procedure definition. */
4164 if (!within_procedure)
4165 as_bad (".callinfo is not within a procedure definition");
4166
4167 /* Mark the fact that we found the .CALLINFO for the
4168 current procedure. */
4169 callinfo_found = TRUE;
4170
4171 /* Iterate over the .CALLINFO arguments. */
4172 while (!is_end_of_statement ())
4173 {
4174 name = input_line_pointer;
4175 c = get_symbol_end ();
4176 /* Frame size specification. */
4177 if ((strncasecmp (name, "frame", 5) == 0))
4178 {
4179 p = input_line_pointer;
4180 *p = c;
4181 input_line_pointer++;
4182 temp = get_absolute_expression ();
4183 if ((temp & 0x3) != 0)
4184 {
4185 as_bad ("FRAME parameter must be a multiple of 8: %d\n", temp);
4186 temp = 0;
4187 }
4188
4189 /* callinfo is in bytes and unwind_desc is in 8 byte units. */
4190 last_call_info->ci_unwind.descriptor.frame_size = temp / 8;
4191
4192 }
4193 /* Entry register (GR, GR and SR) specifications. */
4194 else if ((strncasecmp (name, "entry_gr", 8) == 0))
4195 {
4196 p = input_line_pointer;
4197 *p = c;
4198 input_line_pointer++;
4199 temp = get_absolute_expression ();
4200 /* The HP assembler accepts 19 as the high bound for ENTRY_GR
4201 even though %r19 is caller saved. I think this is a bug in
4202 the HP assembler, and we are not going to emulate it. */
4203 if (temp < 3 || temp > 18)
4204 as_bad ("Value for ENTRY_GR must be in the range 3..18\n");
4205 last_call_info->ci_unwind.descriptor.entry_gr = temp - 2;
4206 }
4207 else if ((strncasecmp (name, "entry_fr", 8) == 0))
4208 {
4209 p = input_line_pointer;
4210 *p = c;
4211 input_line_pointer++;
4212 temp = get_absolute_expression ();
4213 /* Similarly the HP assembler takes 31 as the high bound even
4214 though %fr21 is the last callee saved floating point register. */
4215 if (temp < 12 || temp > 21)
4216 as_bad ("Value for ENTRY_FR must be in the range 12..21\n");
4217 last_call_info->ci_unwind.descriptor.entry_fr = temp - 11;
4218 }
4219 else if ((strncasecmp (name, "entry_sr", 8) == 0))
4220 {
4221 p = input_line_pointer;
4222 *p = c;
4223 input_line_pointer++;
4224 temp = get_absolute_expression ();
4225 if (temp != 3)
4226 as_bad ("Value for ENTRY_SR must be 3\n");
4227 }
4228 /* Note whether or not this function performs any calls. */
4229 else if ((strncasecmp (name, "calls", 5) == 0) ||
4230 (strncasecmp (name, "caller", 6) == 0))
4231 {
4232 p = input_line_pointer;
4233 *p = c;
4234 }
4235 else if ((strncasecmp (name, "no_calls", 8) == 0))
4236 {
4237 p = input_line_pointer;
4238 *p = c;
4239 }
4240 /* Should RP be saved into the stack. */
4241 else if ((strncasecmp (name, "save_rp", 7) == 0))
4242 {
4243 p = input_line_pointer;
4244 *p = c;
4245 last_call_info->ci_unwind.descriptor.save_rp = 1;
4246 }
4247 /* Likewise for SP. */
4248 else if ((strncasecmp (name, "save_sp", 7) == 0))
4249 {
4250 p = input_line_pointer;
4251 *p = c;
4252 last_call_info->ci_unwind.descriptor.save_sp = 1;
4253 }
4254 /* Is this an unwindable procedure. If so mark it so
4255 in the unwind descriptor. */
4256 else if ((strncasecmp (name, "no_unwind", 9) == 0))
4257 {
4258 p = input_line_pointer;
4259 *p = c;
4260 last_call_info->ci_unwind.descriptor.cannot_unwind = 1;
4261 }
4262 /* Is this an interrupt routine. If so mark it in the
4263 unwind descriptor. */
4264 else if ((strncasecmp (name, "hpux_int", 7) == 0))
4265 {
4266 p = input_line_pointer;
4267 *p = c;
4268 last_call_info->ci_unwind.descriptor.hpux_interrupt_marker = 1;
4269 }
4270 else
4271 {
4272 as_bad ("Invalid .CALLINFO argument: %s", name);
4273 }
4274 if (!is_end_of_statement ())
4275 input_line_pointer++;
4276 }
4277
4278 demand_empty_rest_of_line ();
4279 }
4280
4281 /* Switch into the code subspace. */
4282
4283 static void
4284 pa_code (unused)
4285 int unused;
4286 {
4287 sd_chain_struct *sdchain;
4288
4289 /* First time through it might be necessary to create the
4290 $TEXT$ space. */
4291 if ((sdchain = is_defined_space ("$TEXT$")) == NULL)
4292 {
4293 sdchain = create_new_space (pa_def_spaces[0].name,
4294 pa_def_spaces[0].spnum,
4295 pa_def_spaces[0].loadable,
4296 pa_def_spaces[0].defined,
4297 pa_def_spaces[0].private,
4298 pa_def_spaces[0].sort,
4299 pa_def_spaces[0].segment, 0);
4300 }
4301
4302 SPACE_DEFINED (sdchain) = 1;
4303 subseg_set (text_section, SUBSEG_CODE);
4304 demand_empty_rest_of_line ();
4305 }
4306
4307 /* This is different than the standard GAS s_comm(). On HP9000/800 machines,
4308 the .comm pseudo-op has the following symtax:
4309
4310 <label> .comm <length>
4311
4312 where <label> is optional and is a symbol whose address will be the start of
4313 a block of memory <length> bytes long. <length> must be an absolute
4314 expression. <length> bytes will be allocated in the current space
4315 and subspace. */
4316
4317 static void
4318 pa_comm (unused)
4319 int unused;
4320 {
4321 unsigned int size;
4322 symbolS *symbol;
4323 label_symbol_struct *label_symbol = pa_get_label ();
4324
4325 if (label_symbol)
4326 symbol = label_symbol->lss_label;
4327 else
4328 symbol = NULL;
4329
4330 SKIP_WHITESPACE ();
4331 size = get_absolute_expression ();
4332
4333 if (symbol)
4334 {
4335 /* It is incorrect to check S_IS_DEFINED at this point as
4336 the symbol will *always* be defined. FIXME. How to
4337 correctly determine when this label really as been
4338 defined before. */
4339 if (S_GET_VALUE (symbol))
4340 {
4341 if (S_GET_VALUE (symbol) != size)
4342 {
4343 as_warn ("Length of .comm \"%s\" is already %d. Not changed.",
4344 S_GET_NAME (symbol), S_GET_VALUE (symbol));
4345 return;
4346 }
4347 }
4348 else
4349 {
4350 S_SET_VALUE (symbol, size);
4351 S_SET_SEGMENT (symbol, &bfd_und_section);
4352 S_SET_EXTERNAL (symbol);
4353 }
4354 }
4355 demand_empty_rest_of_line ();
4356 }
4357
4358 /* Process a .END pseudo-op. */
4359
4360 static void
4361 pa_end (unused)
4362 int unused;
4363 {
4364 demand_empty_rest_of_line ();
4365 }
4366
4367 /* Process a .ENTER pseudo-op. This is not supported. */
4368 static void
4369 pa_enter (unused)
4370 int unused;
4371 {
4372 abort ();
4373 }
4374
4375 /* Process a .ENTRY pseudo-op. .ENTRY marks the beginning of the
4376 procesure. */
4377 static void
4378 pa_entry (unused)
4379 int unused;
4380 {
4381 if (!within_procedure)
4382 as_bad ("Misplaced .entry. Ignored.");
4383 else
4384 {
4385 if (!callinfo_found)
4386 as_bad ("Missing .callinfo.");
4387 }
4388 demand_empty_rest_of_line ();
4389 within_entry_exit = TRUE;
4390
4391 #ifdef OBJ_SOM
4392 /* SOM defers building of unwind descriptors until the link phase.
4393 The assembler is responsible for creating an R_ENTRY relocation
4394 to mark the beginning of a region and hold the unwind bits, and
4395 for creating an R_EXIT relocation to mark the end of the region.
4396
4397 FIXME. ELF should be using the same conventions! The problem
4398 is an unwind requires too much relocation space. Hmmm. Maybe
4399 if we split the unwind bits up between the relocations which
4400 denote the entry and exit points. */
4401 if (last_call_info->start_symbol != NULL)
4402 {
4403 char *where = frag_more (0);
4404
4405 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
4406 last_call_info->start_symbol, (offsetT) 0, NULL,
4407 0, R_HPPA_ENTRY, e_fsel, 0, 0,
4408 (char *) &last_call_info->ci_unwind.descriptor);
4409 }
4410 #endif
4411 }
4412
4413 /* Handle a .EQU pseudo-op. */
4414
4415 static void
4416 pa_equ (reg)
4417 int reg;
4418 {
4419 label_symbol_struct *label_symbol = pa_get_label ();
4420 symbolS *symbol;
4421
4422 if (label_symbol)
4423 {
4424 symbol = label_symbol->lss_label;
4425 S_SET_VALUE (symbol, (unsigned int) get_absolute_expression ());
4426 S_SET_SEGMENT (symbol, &bfd_abs_section);
4427 }
4428 else
4429 {
4430 if (reg)
4431 as_bad (".REG must use a label");
4432 else
4433 as_bad (".EQU must use a label");
4434 }
4435
4436 pa_undefine_label ();
4437 demand_empty_rest_of_line ();
4438 }
4439
4440 /* Helper function. Does processing for the end of a function. This
4441 usually involves creating some relocations or building special
4442 symbols to mark the end of the function. */
4443
4444 static void
4445 process_exit ()
4446 {
4447 char *where;
4448
4449 where = frag_more (0);
4450
4451 #ifdef OBJ_ELF
4452 /* Mark the end of the function, stuff away the location of the frag
4453 for the end of the function, and finally call pa_build_unwind_subspace
4454 to add an entry in the unwind table. */
4455 hppa_elf_mark_end_of_function ();
4456 pa_build_unwind_subspace (last_call_info);
4457 #else
4458 /* SOM defers building of unwind descriptors until the link phase.
4459 The assembler is responsible for creating an R_ENTRY relocation
4460 to mark the beginning of a region and hold the unwind bits, and
4461 for creating an R_EXIT relocation to mark the end of the region.
4462
4463 FIXME. ELF should be using the same conventions! The problem
4464 is an unwind requires too much relocation space. Hmmm. Maybe
4465 if we split the unwind bits up between the relocations which
4466 denote the entry and exit points. */
4467 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
4468 last_call_info->start_symbol, (offsetT) 0,
4469 NULL, 0, R_HPPA_EXIT, e_fsel, 0, 0, NULL);
4470 #endif
4471 }
4472
4473 /* Process a .EXIT pseudo-op. */
4474
4475 static void
4476 pa_exit (unused)
4477 int unused;
4478 {
4479 if (!within_procedure)
4480 as_bad (".EXIT must appear within a procedure");
4481 else
4482 {
4483 if (!callinfo_found)
4484 as_bad ("Missing .callinfo");
4485 else
4486 {
4487 if (!within_entry_exit)
4488 as_bad ("No .ENTRY for this .EXIT");
4489 else
4490 {
4491 within_entry_exit = FALSE;
4492 process_exit ();
4493 }
4494 }
4495 }
4496 demand_empty_rest_of_line ();
4497 }
4498
4499 /* Process a .EXPORT directive. This makes functions external
4500 and provides information such as argument relocation entries
4501 to callers. */
4502
4503 static void
4504 pa_export (unused)
4505 int unused;
4506 {
4507 char *name, c, *p;
4508 symbolS *symbol;
4509
4510 name = input_line_pointer;
4511 c = get_symbol_end ();
4512 /* Make sure the given symbol exists. */
4513 if ((symbol = symbol_find_or_make (name)) == NULL)
4514 {
4515 as_bad ("Cannot define export symbol: %s\n", name);
4516 p = input_line_pointer;
4517 *p = c;
4518 input_line_pointer++;
4519 }
4520 else
4521 {
4522 /* OK. Set the external bits and process argument relocations. */
4523 S_SET_EXTERNAL (symbol);
4524 p = input_line_pointer;
4525 *p = c;
4526 if (!is_end_of_statement ())
4527 {
4528 input_line_pointer++;
4529 pa_type_args (symbol, 1);
4530 #ifdef OBJ_ELF
4531 pa_build_symextn_section ();
4532 #endif
4533 }
4534 }
4535
4536 demand_empty_rest_of_line ();
4537 }
4538
4539 /* Helper function to process arguments to a .EXPORT pseudo-op. */
4540
4541 static void
4542 pa_type_args (symbolP, is_export)
4543 symbolS *symbolP;
4544 int is_export;
4545 {
4546 char *name, c, *p;
4547 unsigned int temp, arg_reloc;
4548 pa_symbol_type type = SYMBOL_TYPE_UNKNOWN;
4549 obj_symbol_type *symbol = (obj_symbol_type *) symbolP->bsym;
4550
4551 if (strncasecmp (input_line_pointer, "absolute", 8) == 0)
4552
4553 {
4554 input_line_pointer += 8;
4555 symbolP->bsym->flags &= ~BSF_FUNCTION;
4556 S_SET_SEGMENT (symbolP, &bfd_abs_section);
4557 type = SYMBOL_TYPE_ABSOLUTE;
4558 }
4559 else if (strncasecmp (input_line_pointer, "code", 4) == 0)
4560 {
4561 input_line_pointer += 4;
4562 /* IMPORTing/EXPORTing CODE types for functions is meaningless for SOM,
4563 instead one should be IMPORTing/EXPORTing ENTRY types.
4564
4565 Complain if one tries to EXPORT a CODE type since that's never
4566 done. Both GCC and HP C still try to IMPORT CODE types, so
4567 silently fix them to be ENTRY types. */
4568 if (symbolP->bsym->flags & BSF_FUNCTION)
4569 {
4570 if (is_export)
4571 as_tsktsk ("Using ENTRY rather than CODE in export directive for %s", symbolP->bsym->name);
4572
4573 symbolP->bsym->flags |= BSF_FUNCTION;
4574 type = SYMBOL_TYPE_ENTRY;
4575 }
4576 else
4577 {
4578 symbolP->bsym->flags &= ~BSF_FUNCTION;
4579 type = SYMBOL_TYPE_CODE;
4580 }
4581 }
4582 else if (strncasecmp (input_line_pointer, "data", 4) == 0)
4583 {
4584 input_line_pointer += 4;
4585 symbolP->bsym->flags &= ~BSF_FUNCTION;
4586 type = SYMBOL_TYPE_DATA;
4587 }
4588 else if ((strncasecmp (input_line_pointer, "entry", 5) == 0))
4589 {
4590 input_line_pointer += 5;
4591 symbolP->bsym->flags |= BSF_FUNCTION;
4592 type = SYMBOL_TYPE_ENTRY;
4593 }
4594 else if (strncasecmp (input_line_pointer, "millicode", 9) == 0)
4595 {
4596 input_line_pointer += 9;
4597 symbolP->bsym->flags |= BSF_FUNCTION;
4598 type = SYMBOL_TYPE_MILLICODE;
4599 }
4600 else if (strncasecmp (input_line_pointer, "plabel", 6) == 0)
4601 {
4602 input_line_pointer += 6;
4603 symbolP->bsym->flags &= ~BSF_FUNCTION;
4604 type = SYMBOL_TYPE_PLABEL;
4605 }
4606 else if (strncasecmp (input_line_pointer, "pri_prog", 8) == 0)
4607 {
4608 input_line_pointer += 8;
4609 symbolP->bsym->flags |= BSF_FUNCTION;
4610 type = SYMBOL_TYPE_PRI_PROG;
4611 }
4612 else if (strncasecmp (input_line_pointer, "sec_prog", 8) == 0)
4613 {
4614 input_line_pointer += 8;
4615 symbolP->bsym->flags |= BSF_FUNCTION;
4616 type = SYMBOL_TYPE_SEC_PROG;
4617 }
4618
4619 /* SOM requires much more information about symbol types
4620 than BFD understands. This is how we get this information
4621 to the SOM BFD backend. */
4622 #ifdef obj_set_symbol_type
4623 obj_set_symbol_type (symbolP->bsym, (int) type);
4624 #endif
4625
4626 /* Now that the type of the exported symbol has been handled,
4627 handle any argument relocation information. */
4628 while (!is_end_of_statement ())
4629 {
4630 if (*input_line_pointer == ',')
4631 input_line_pointer++;
4632 name = input_line_pointer;
4633 c = get_symbol_end ();
4634 /* Argument sources. */
4635 if ((strncasecmp (name, "argw", 4) == 0))
4636 {
4637 p = input_line_pointer;
4638 *p = c;
4639 input_line_pointer++;
4640 temp = atoi (name + 4);
4641 name = input_line_pointer;
4642 c = get_symbol_end ();
4643 arg_reloc = pa_align_arg_reloc (temp, pa_build_arg_reloc (name));
4644 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
4645 *input_line_pointer = c;
4646 }
4647 /* The return value. */
4648 else if ((strncasecmp (name, "rtnval", 6)) == 0)
4649 {
4650 p = input_line_pointer;
4651 *p = c;
4652 input_line_pointer++;
4653 name = input_line_pointer;
4654 c = get_symbol_end ();
4655 arg_reloc = pa_build_arg_reloc (name);
4656 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
4657 *input_line_pointer = c;
4658 }
4659 /* Privelege level. */
4660 else if ((strncasecmp (name, "priv_lev", 8)) == 0)
4661 {
4662 p = input_line_pointer;
4663 *p = c;
4664 input_line_pointer++;
4665 temp = atoi (input_line_pointer);
4666 c = get_symbol_end ();
4667 *input_line_pointer = c;
4668 }
4669 else
4670 {
4671 as_bad ("Undefined .EXPORT/.IMPORT argument (ignored): %s", name);
4672 p = input_line_pointer;
4673 *p = c;
4674 }
4675 if (!is_end_of_statement ())
4676 input_line_pointer++;
4677 }
4678 }
4679
4680 /* Handle an .IMPORT pseudo-op. Any symbol referenced in a given
4681 assembly file must either be defined in the assembly file, or
4682 explicitly IMPORTED from another. */
4683
4684 static void
4685 pa_import (unused)
4686 int unused;
4687 {
4688 char *name, c, *p;
4689 symbolS *symbol;
4690
4691 name = input_line_pointer;
4692 c = get_symbol_end ();
4693
4694 symbol = symbol_find_or_make (name);
4695 p = input_line_pointer;
4696 *p = c;
4697
4698 if (!is_end_of_statement ())
4699 {
4700 input_line_pointer++;
4701 pa_type_args (symbol, 0);
4702 }
4703 else
4704 {
4705 /* Sigh. To be compatable with the HP assembler and to help
4706 poorly written assembly code, we assign a type based on
4707 the the current segment. Note only BSF_FUNCTION really
4708 matters, we do not need to set the full SYMBOL_TYPE_* info here. */
4709 if (now_seg == text_section)
4710 symbol->bsym->flags |= BSF_FUNCTION;
4711
4712 /* If the section is undefined, then the symbol is undefined
4713 Since this is an import, leave the section undefined. */
4714 S_SET_SEGMENT (symbol, &bfd_und_section);
4715 }
4716
4717 demand_empty_rest_of_line ();
4718 }
4719
4720 /* Handle a .LABEL pseudo-op. */
4721
4722 static void
4723 pa_label (unused)
4724 int unused;
4725 {
4726 char *name, c, *p;
4727
4728 name = input_line_pointer;
4729 c = get_symbol_end ();
4730
4731 if (strlen (name) > 0)
4732 {
4733 colon (name);
4734 p = input_line_pointer;
4735 *p = c;
4736 }
4737 else
4738 {
4739 as_warn ("Missing label name on .LABEL");
4740 }
4741
4742 if (!is_end_of_statement ())
4743 {
4744 as_warn ("extra .LABEL arguments ignored.");
4745 ignore_rest_of_line ();
4746 }
4747 demand_empty_rest_of_line ();
4748 }
4749
4750 /* Handle a .LEAVE pseudo-op. This is not supported yet. */
4751
4752 static void
4753 pa_leave (unused)
4754 int unused;
4755 {
4756 abort ();
4757 }
4758
4759 /* Handle a .ORIGIN pseudo-op. */
4760
4761 static void
4762 pa_origin (unused)
4763 int unused;
4764 {
4765 s_org (0);
4766 pa_undefine_label ();
4767 }
4768
4769 /* Handle a .PARAM pseudo-op. This is much like a .EXPORT, except it
4770 is for static functions. FIXME. Should share more code with .EXPORT. */
4771
4772 static void
4773 pa_param (unused)
4774 int unused;
4775 {
4776 char *name, c, *p;
4777 symbolS *symbol;
4778
4779 name = input_line_pointer;
4780 c = get_symbol_end ();
4781
4782 if ((symbol = symbol_find_or_make (name)) == NULL)
4783 {
4784 as_bad ("Cannot define static symbol: %s\n", name);
4785 p = input_line_pointer;
4786 *p = c;
4787 input_line_pointer++;
4788 }
4789 else
4790 {
4791 S_CLEAR_EXTERNAL (symbol);
4792 p = input_line_pointer;
4793 *p = c;
4794 if (!is_end_of_statement ())
4795 {
4796 input_line_pointer++;
4797 pa_type_args (symbol, 0);
4798 }
4799 }
4800
4801 demand_empty_rest_of_line ();
4802 }
4803
4804 /* Handle a .PROC pseudo-op. It is used to mark the beginning
4805 of a procedure from a syntatical point of view. */
4806
4807 static void
4808 pa_proc (unused)
4809 int unused;
4810 {
4811 struct call_info *call_info;
4812 segT seg;
4813
4814 if (within_procedure)
4815 as_fatal ("Nested procedures");
4816
4817 /* Reset global variables for new procedure. */
4818 callinfo_found = FALSE;
4819 within_procedure = TRUE;
4820
4821 /* Create a new CODE subspace for each procedure if we are not
4822 using space/subspace aliases. */
4823 if (!USE_ALIASES && call_info_root != NULL)
4824 {
4825 /* Force creation of a new $CODE$ subspace; inherit attributes from
4826 the first $CODE$ subspace. */
4827 seg = subseg_force_new ("$CODE$", 0);
4828
4829 /* Now set the flags. */
4830 bfd_set_section_flags (stdoutput, seg,
4831 bfd_get_section_flags (abfd, text_section));
4832
4833 /* Record any alignment request for this section. */
4834 record_alignment (seg,
4835 bfd_get_section_alignment (stdoutput, text_section));
4836
4837 /* Change the "text_section" to be our new $CODE$ subspace. */
4838 text_section = seg;
4839 subseg_set (text_section, 0);
4840
4841 #ifdef obj_set_subsection_attributes
4842 /* Need a way to inherit the the access bits, sort key and quadrant
4843 from the first $CODE$ subspace. FIXME. */
4844 obj_set_subsection_attributes (seg, current_space->sd_seg, 0x2c, 24, 0);
4845 #endif
4846 }
4847
4848 /* Create another call_info structure. */
4849 call_info = (struct call_info *) xmalloc (sizeof (struct call_info));
4850
4851 if (!call_info)
4852 as_fatal ("Cannot allocate unwind descriptor\n");
4853
4854 bzero (call_info, sizeof (struct call_info));
4855
4856 call_info->ci_next = NULL;
4857
4858 if (call_info_root == NULL)
4859 {
4860 call_info_root = call_info;
4861 last_call_info = call_info;
4862 }
4863 else
4864 {
4865 last_call_info->ci_next = call_info;
4866 last_call_info = call_info;
4867 }
4868
4869 /* set up defaults on call_info structure */
4870
4871 call_info->ci_unwind.descriptor.cannot_unwind = 0;
4872 call_info->ci_unwind.descriptor.region_desc = 1;
4873 call_info->ci_unwind.descriptor.hpux_interrupt_marker = 0;
4874
4875 /* If we got a .PROC pseudo-op, we know that the function is defined
4876 locally. Make sure it gets into the symbol table. */
4877 {
4878 label_symbol_struct *label_symbol = pa_get_label ();
4879
4880 if (label_symbol)
4881 {
4882 if (label_symbol->lss_label)
4883 {
4884 last_call_info->start_symbol = label_symbol->lss_label;
4885 label_symbol->lss_label->bsym->flags |= BSF_FUNCTION;
4886 if (! USE_ALIASES)
4887 {
4888 /* The label was defined in a different segment. Fix that
4889 along with the value and associated fragment. */
4890 S_SET_SEGMENT (last_call_info->start_symbol, now_seg);
4891 S_SET_VALUE (last_call_info->start_symbol,
4892 ((char*)obstack_next_free (&frags)
4893 - frag_now->fr_literal));
4894 last_call_info->start_symbol->sy_frag = frag_now;
4895 }
4896 }
4897 else
4898 as_bad ("Missing function name for .PROC (corrupted label chain)");
4899 }
4900 else
4901 last_call_info->start_symbol = NULL;
4902 }
4903
4904 demand_empty_rest_of_line ();
4905 }
4906
4907 /* Process the syntatical end of a procedure. Make sure all the
4908 appropriate pseudo-ops were found within the procedure. */
4909
4910 static void
4911 pa_procend (unused)
4912 int unused;
4913 {
4914
4915 if (!within_procedure)
4916 as_bad ("misplaced .procend");
4917
4918 if (!callinfo_found)
4919 as_bad ("Missing .callinfo for this procedure");
4920
4921 if (within_entry_exit)
4922 as_bad ("Missing .EXIT for a .ENTRY");
4923
4924 #ifdef OBJ_ELF
4925 /* ELF needs to mark the end of each function so that it can compute
4926 the size of the function (apparently its needed in the symbol table. */
4927 hppa_elf_mark_end_of_function ();
4928 #endif
4929
4930 within_procedure = FALSE;
4931 demand_empty_rest_of_line ();
4932 pa_undefine_label ();
4933 }
4934
4935 /* Parse the parameters to a .SPACE directive; if CREATE_FLAG is nonzero,
4936 then create a new space entry to hold the information specified
4937 by the parameters to the .SPACE directive. */
4938
4939 static sd_chain_struct *
4940 pa_parse_space_stmt (space_name, create_flag)
4941 char *space_name;
4942 int create_flag;
4943 {
4944 char *name, *ptemp, c;
4945 char loadable, defined, private, sort;
4946 int spnum;
4947 asection *seg = NULL;
4948 sd_chain_struct *space;
4949
4950 /* load default values */
4951 spnum = 0;
4952 sort = 0;
4953 loadable = TRUE;
4954 defined = TRUE;
4955 private = FALSE;
4956 if (strcmp (space_name, "$TEXT$") == 0)
4957 {
4958 seg = pa_def_spaces[0].segment;
4959 sort = pa_def_spaces[0].sort;
4960 }
4961 else if (strcmp (space_name, "$PRIVATE$") == 0)
4962 {
4963 seg = pa_def_spaces[1].segment;
4964 sort = pa_def_spaces[1].sort;
4965 }
4966
4967 if (!is_end_of_statement ())
4968 {
4969 print_errors = FALSE;
4970 ptemp = input_line_pointer + 1;
4971 /* First see if the space was specified as a number rather than
4972 as a name. According to the PA assembly manual the rest of
4973 the line should be ignored. */
4974 if ((spnum = pa_parse_number (&ptemp, 0)) >= 0)
4975 input_line_pointer = ptemp;
4976 else
4977 {
4978 while (!is_end_of_statement ())
4979 {
4980 input_line_pointer++;
4981 name = input_line_pointer;
4982 c = get_symbol_end ();
4983 if ((strncasecmp (name, "spnum", 5) == 0))
4984 {
4985 *input_line_pointer = c;
4986 input_line_pointer++;
4987 spnum = get_absolute_expression ();
4988 }
4989 else if ((strncasecmp (name, "sort", 4) == 0))
4990 {
4991 *input_line_pointer = c;
4992 input_line_pointer++;
4993 sort = get_absolute_expression ();
4994 }
4995 else if ((strncasecmp (name, "unloadable", 10) == 0))
4996 {
4997 *input_line_pointer = c;
4998 loadable = FALSE;
4999 }
5000 else if ((strncasecmp (name, "notdefined", 10) == 0))
5001 {
5002 *input_line_pointer = c;
5003 defined = FALSE;
5004 }
5005 else if ((strncasecmp (name, "private", 7) == 0))
5006 {
5007 *input_line_pointer = c;
5008 private = TRUE;
5009 }
5010 else
5011 {
5012 as_bad ("Invalid .SPACE argument");
5013 *input_line_pointer = c;
5014 if (!is_end_of_statement ())
5015 input_line_pointer++;
5016 }
5017 }
5018 }
5019 print_errors = TRUE;
5020 }
5021
5022 if (create_flag && seg == NULL)
5023 seg = subseg_new (space_name, 0);
5024
5025 /* If create_flag is nonzero, then create the new space with
5026 the attributes computed above. Else set the values in
5027 an already existing space -- this can only happen for
5028 the first occurence of a built-in space. */
5029 if (create_flag)
5030 space = create_new_space (space_name, spnum, loadable, defined,
5031 private, sort, seg, 1);
5032 else
5033 {
5034 space = is_defined_space (space_name);
5035 SPACE_SPNUM (space) = spnum;
5036 SPACE_DEFINED (space) = defined & 1;
5037 SPACE_USER_DEFINED (space) = 1;
5038 space->sd_seg = seg;
5039 }
5040
5041 #ifdef obj_set_section_attributes
5042 obj_set_section_attributes (seg, defined, private, sort, spnum);
5043 #endif
5044
5045 return space;
5046 }
5047
5048 /* Handle a .SPACE pseudo-op; this switches the current space to the
5049 given space, creating the new space if necessary. */
5050
5051 static void
5052 pa_space (unused)
5053 int unused;
5054 {
5055 char *name, c, *space_name, *save_s;
5056 int temp;
5057 sd_chain_struct *sd_chain;
5058
5059 if (within_procedure)
5060 {
5061 as_bad ("Can\'t change spaces within a procedure definition. Ignored");
5062 ignore_rest_of_line ();
5063 }
5064 else
5065 {
5066 /* Check for some of the predefined spaces. FIXME: most of the code
5067 below is repeated several times, can we extract the common parts
5068 and place them into a subroutine or something similar? */
5069 /* FIXME Is this (and the next IF stmt) really right?
5070 What if INPUT_LINE_POINTER points to "$TEXT$FOO"? */
5071 if (strncmp (input_line_pointer, "$TEXT$", 6) == 0)
5072 {
5073 input_line_pointer += 6;
5074 sd_chain = is_defined_space ("$TEXT$");
5075 if (sd_chain == NULL)
5076 sd_chain = pa_parse_space_stmt ("$TEXT$", 1);
5077 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5078 sd_chain = pa_parse_space_stmt ("$TEXT$", 0);
5079
5080 current_space = sd_chain;
5081 subseg_set (text_section, sd_chain->sd_last_subseg);
5082 current_subspace
5083 = pa_subsegment_to_subspace (text_section,
5084 sd_chain->sd_last_subseg);
5085 demand_empty_rest_of_line ();
5086 return;
5087 }
5088 if (strncmp (input_line_pointer, "$PRIVATE$", 9) == 0)
5089 {
5090 input_line_pointer += 9;
5091 sd_chain = is_defined_space ("$PRIVATE$");
5092 if (sd_chain == NULL)
5093 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 1);
5094 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5095 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 0);
5096
5097 current_space = sd_chain;
5098 subseg_set (data_section, sd_chain->sd_last_subseg);
5099 current_subspace
5100 = pa_subsegment_to_subspace (data_section,
5101 sd_chain->sd_last_subseg);
5102 demand_empty_rest_of_line ();
5103 return;
5104 }
5105 if (!strncasecmp (input_line_pointer,
5106 GDB_DEBUG_SPACE_NAME,
5107 strlen (GDB_DEBUG_SPACE_NAME)))
5108 {
5109 input_line_pointer += strlen (GDB_DEBUG_SPACE_NAME);
5110 sd_chain = is_defined_space (GDB_DEBUG_SPACE_NAME);
5111 if (sd_chain == NULL)
5112 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 1);
5113 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5114 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 0);
5115
5116 current_space = sd_chain;
5117
5118 {
5119 asection *gdb_section
5120 = bfd_make_section_old_way (stdoutput, GDB_DEBUG_SPACE_NAME);
5121
5122 subseg_set (gdb_section, sd_chain->sd_last_subseg);
5123 current_subspace
5124 = pa_subsegment_to_subspace (gdb_section,
5125 sd_chain->sd_last_subseg);
5126 }
5127 demand_empty_rest_of_line ();
5128 return;
5129 }
5130
5131 /* It could be a space specified by number. */
5132 print_errors = 0;
5133 save_s = input_line_pointer;
5134 if ((temp = pa_parse_number (&input_line_pointer, 0)) >= 0)
5135 {
5136 if (sd_chain = pa_find_space_by_number (temp))
5137 {
5138 current_space = sd_chain;
5139
5140 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
5141 current_subspace
5142 = pa_subsegment_to_subspace (sd_chain->sd_seg,
5143 sd_chain->sd_last_subseg);
5144 demand_empty_rest_of_line ();
5145 return;
5146 }
5147 }
5148
5149 /* Not a number, attempt to create a new space. */
5150 print_errors = 1;
5151 input_line_pointer = save_s;
5152 name = input_line_pointer;
5153 c = get_symbol_end ();
5154 space_name = xmalloc (strlen (name) + 1);
5155 strcpy (space_name, name);
5156 *input_line_pointer = c;
5157
5158 sd_chain = pa_parse_space_stmt (space_name, 1);
5159 current_space = sd_chain;
5160
5161 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
5162 current_subspace = pa_subsegment_to_subspace (sd_chain->sd_seg,
5163 sd_chain->sd_last_subseg);
5164 demand_empty_rest_of_line ();
5165 }
5166 }
5167
5168 /* Switch to a new space. (I think). FIXME. */
5169
5170 static void
5171 pa_spnum (unused)
5172 int unused;
5173 {
5174 char *name;
5175 char c;
5176 char *p;
5177 sd_chain_struct *space;
5178
5179 name = input_line_pointer;
5180 c = get_symbol_end ();
5181 space = is_defined_space (name);
5182 if (space)
5183 {
5184 p = frag_more (4);
5185 md_number_to_chars (p, SPACE_SPNUM (space), 4);
5186 }
5187 else
5188 as_warn ("Undefined space: '%s' Assuming space number = 0.", name);
5189
5190 *input_line_pointer = c;
5191 demand_empty_rest_of_line ();
5192 }
5193
5194 /* If VALUE is an exact power of two between zero and 2^31, then
5195 return log2 (VALUE). Else return -1. */
5196
5197 static int
5198 log2 (value)
5199 int value;
5200 {
5201 int shift = 0;
5202
5203 while ((1 << shift) != value && shift < 32)
5204 shift++;
5205
5206 if (shift >= 32)
5207 return -1;
5208 else
5209 return shift;
5210 }
5211
5212 /* Handle a .SUBSPACE pseudo-op; this switches the current subspace to the
5213 given subspace, creating the new subspace if necessary.
5214
5215 FIXME. Should mirror pa_space more closely, in particular how
5216 they're broken up into subroutines. */
5217
5218 static void
5219 pa_subspace (unused)
5220 int unused;
5221 {
5222 char *name, *ss_name, *alias, c;
5223 char loadable, code_only, common, dup_common, zero, sort;
5224 int i, access, space_index, alignment, quadrant, applicable, flags;
5225 sd_chain_struct *space;
5226 ssd_chain_struct *ssd;
5227 asection *section;
5228
5229 if (within_procedure)
5230 {
5231 as_bad ("Can\'t change subspaces within a procedure definition. Ignored");
5232 ignore_rest_of_line ();
5233 }
5234 else
5235 {
5236 name = input_line_pointer;
5237 c = get_symbol_end ();
5238 ss_name = xmalloc (strlen (name) + 1);
5239 strcpy (ss_name, name);
5240 *input_line_pointer = c;
5241
5242 /* Load default values. */
5243 sort = 0;
5244 access = 0x7f;
5245 loadable = 1;
5246 common = 0;
5247 dup_common = 0;
5248 code_only = 0;
5249 zero = 0;
5250 space_index = ~0;
5251 alignment = 0;
5252 quadrant = 0;
5253 alias = NULL;
5254
5255 space = current_space;
5256 ssd = is_defined_subspace (ss_name);
5257 /* Allow user to override the builtin attributes of subspaces. But
5258 only allow the attributes to be changed once! */
5259 if (ssd && SUBSPACE_DEFINED (ssd))
5260 {
5261 subseg_set (ssd->ssd_seg, ssd->ssd_subseg);
5262 if (!is_end_of_statement ())
5263 as_warn ("Parameters of an existing subspace can\'t be modified");
5264 demand_empty_rest_of_line ();
5265 return;
5266 }
5267 else
5268 {
5269 /* A new subspace. Load default values if it matches one of
5270 the builtin subspaces. */
5271 i = 0;
5272 while (pa_def_subspaces[i].name)
5273 {
5274 if (strcasecmp (pa_def_subspaces[i].name, ss_name) == 0)
5275 {
5276 loadable = pa_def_subspaces[i].loadable;
5277 common = pa_def_subspaces[i].common;
5278 dup_common = pa_def_subspaces[i].dup_common;
5279 code_only = pa_def_subspaces[i].code_only;
5280 zero = pa_def_subspaces[i].zero;
5281 space_index = pa_def_subspaces[i].space_index;
5282 alignment = pa_def_subspaces[i].alignment;
5283 quadrant = pa_def_subspaces[i].quadrant;
5284 access = pa_def_subspaces[i].access;
5285 sort = pa_def_subspaces[i].sort;
5286 if (USE_ALIASES && pa_def_subspaces[i].alias)
5287 alias = pa_def_subspaces[i].alias;
5288 break;
5289 }
5290 i++;
5291 }
5292 }
5293
5294 /* We should be working with a new subspace now. Fill in
5295 any information as specified by the user. */
5296 if (!is_end_of_statement ())
5297 {
5298 input_line_pointer++;
5299 while (!is_end_of_statement ())
5300 {
5301 name = input_line_pointer;
5302 c = get_symbol_end ();
5303 if ((strncasecmp (name, "quad", 4) == 0))
5304 {
5305 *input_line_pointer = c;
5306 input_line_pointer++;
5307 quadrant = get_absolute_expression ();
5308 }
5309 else if ((strncasecmp (name, "align", 5) == 0))
5310 {
5311 *input_line_pointer = c;
5312 input_line_pointer++;
5313 alignment = get_absolute_expression ();
5314 if (log2 (alignment) == -1)
5315 {
5316 as_bad ("Alignment must be a power of 2");
5317 alignment = 1;
5318 }
5319 }
5320 else if ((strncasecmp (name, "access", 6) == 0))
5321 {
5322 *input_line_pointer = c;
5323 input_line_pointer++;
5324 access = get_absolute_expression ();
5325 }
5326 else if ((strncasecmp (name, "sort", 4) == 0))
5327 {
5328 *input_line_pointer = c;
5329 input_line_pointer++;
5330 sort = get_absolute_expression ();
5331 }
5332 else if ((strncasecmp (name, "code_only", 9) == 0))
5333 {
5334 *input_line_pointer = c;
5335 code_only = 1;
5336 }
5337 else if ((strncasecmp (name, "unloadable", 10) == 0))
5338 {
5339 *input_line_pointer = c;
5340 loadable = 0;
5341 }
5342 else if ((strncasecmp (name, "common", 6) == 0))
5343 {
5344 *input_line_pointer = c;
5345 common = 1;
5346 }
5347 else if ((strncasecmp (name, "dup_comm", 8) == 0))
5348 {
5349 *input_line_pointer = c;
5350 dup_common = 1;
5351 }
5352 else if ((strncasecmp (name, "zero", 4) == 0))
5353 {
5354 *input_line_pointer = c;
5355 zero = 1;
5356 }
5357 else if ((strncasecmp (name, "first", 5) == 0))
5358 as_bad ("FIRST not supported as a .SUBSPACE argument");
5359 else
5360 as_bad ("Invalid .SUBSPACE argument");
5361 if (!is_end_of_statement ())
5362 input_line_pointer++;
5363 }
5364 }
5365
5366 /* Compute a reasonable set of BFD flags based on the information
5367 in the .subspace directive. */
5368 applicable = bfd_applicable_section_flags (stdoutput);
5369 flags = 0;
5370 if (loadable)
5371 flags |= (SEC_ALLOC | SEC_LOAD);
5372 if (code_only)
5373 flags |= SEC_CODE;
5374 if (common || dup_common)
5375 flags |= SEC_IS_COMMON;
5376
5377 /* This is a zero-filled subspace (eg BSS). */
5378 if (zero)
5379 flags &= ~SEC_LOAD;
5380
5381 flags |= SEC_RELOC | SEC_HAS_CONTENTS;
5382 applicable &= flags;
5383
5384 /* If this is an existing subspace, then we want to use the
5385 segment already associated with the subspace.
5386
5387 FIXME NOW! ELF BFD doesn't appear to be ready to deal with
5388 lots of sections. It might be a problem in the PA ELF
5389 code, I do not know yet. For now avoid creating anything
5390 but the "standard" sections for ELF. */
5391 if (ssd)
5392 section = ssd->ssd_seg;
5393 else if (alias)
5394 section = subseg_new (alias, 0);
5395 else if (!alias && USE_ALIASES)
5396 {
5397 as_warn ("Ignoring subspace decl due to ELF BFD bugs.");
5398 demand_empty_rest_of_line ();
5399 return;
5400 }
5401 else
5402 section = subseg_new (ss_name, 0);
5403
5404 /* Now set the flags. */
5405 bfd_set_section_flags (stdoutput, section, applicable);
5406
5407 /* Record any alignment request for this section. */
5408 record_alignment (section, log2 (alignment));
5409
5410 /* Set the starting offset for this section. */
5411 bfd_set_section_vma (stdoutput, section,
5412 pa_subspace_start (space, quadrant));
5413
5414 /* Now that all the flags are set, update an existing subspace,
5415 or create a new one. */
5416 if (ssd)
5417
5418 current_subspace = update_subspace (space, ss_name, loadable,
5419 code_only, common, dup_common,
5420 sort, zero, access, space_index,
5421 alignment, quadrant,
5422 section);
5423 else
5424 current_subspace = create_new_subspace (space, ss_name, loadable,
5425 code_only, common,
5426 dup_common, zero, sort,
5427 access, space_index,
5428 alignment, quadrant, section);
5429
5430 demand_empty_rest_of_line ();
5431 current_subspace->ssd_seg = section;
5432 subseg_set (current_subspace->ssd_seg, current_subspace->ssd_subseg);
5433 }
5434 SUBSPACE_DEFINED (current_subspace) = 1;
5435 }
5436
5437
5438 /* Create default space and subspace dictionaries. */
5439
5440 static void
5441 pa_spaces_begin ()
5442 {
5443 int i;
5444
5445 space_dict_root = NULL;
5446 space_dict_last = NULL;
5447
5448 i = 0;
5449 while (pa_def_spaces[i].name)
5450 {
5451 char *name;
5452
5453 /* Pick the right name to use for the new section. */
5454 if (pa_def_spaces[i].alias && USE_ALIASES)
5455 name = pa_def_spaces[i].alias;
5456 else
5457 name = pa_def_spaces[i].name;
5458
5459 pa_def_spaces[i].segment = subseg_new (name, 0);
5460 create_new_space (pa_def_spaces[i].name, pa_def_spaces[i].spnum,
5461 pa_def_spaces[i].loadable, pa_def_spaces[i].defined,
5462 pa_def_spaces[i].private, pa_def_spaces[i].sort,
5463 pa_def_spaces[i].segment, 0);
5464 i++;
5465 }
5466
5467 i = 0;
5468 while (pa_def_subspaces[i].name)
5469 {
5470 char *name;
5471 int applicable, subsegment;
5472 asection *segment = NULL;
5473 sd_chain_struct *space;
5474
5475 /* Pick the right name for the new section and pick the right
5476 subsegment number. */
5477 if (pa_def_subspaces[i].alias && USE_ALIASES)
5478 {
5479 name = pa_def_subspaces[i].alias;
5480 subsegment = pa_def_subspaces[i].subsegment;
5481 }
5482 else
5483 {
5484 name = pa_def_subspaces[i].name;
5485 subsegment = 0;
5486 }
5487
5488 /* Create the new section. */
5489 segment = subseg_new (name, subsegment);
5490
5491
5492 /* For SOM we want to replace the standard .text, .data, and .bss
5493 sections with our own. */
5494 if (!strcmp (pa_def_subspaces[i].name, "$CODE$") && !USE_ALIASES)
5495 {
5496 text_section = segment;
5497 applicable = bfd_applicable_section_flags (stdoutput);
5498 bfd_set_section_flags (stdoutput, text_section,
5499 applicable & (SEC_ALLOC | SEC_LOAD
5500 | SEC_RELOC | SEC_CODE
5501 | SEC_READONLY
5502 | SEC_HAS_CONTENTS));
5503 }
5504 else if (!strcmp (pa_def_subspaces[i].name, "$DATA$") && !USE_ALIASES)
5505 {
5506 data_section = segment;
5507 applicable = bfd_applicable_section_flags (stdoutput);
5508 bfd_set_section_flags (stdoutput, data_section,
5509 applicable & (SEC_ALLOC | SEC_LOAD
5510 | SEC_RELOC
5511 | SEC_HAS_CONTENTS));
5512
5513
5514 }
5515 else if (!strcmp (pa_def_subspaces[i].name, "$BSS$") && !USE_ALIASES)
5516 {
5517 bss_section = segment;
5518 applicable = bfd_applicable_section_flags (stdoutput);
5519 bfd_set_section_flags (stdoutput, bss_section,
5520 applicable & SEC_ALLOC);
5521 }
5522
5523 /* Find the space associated with this subspace. */
5524 space = pa_segment_to_space (pa_def_spaces[pa_def_subspaces[i].
5525 def_space_index].segment);
5526 if (space == NULL)
5527 {
5528 as_fatal ("Internal error: Unable to find containing space for %s.",
5529 pa_def_subspaces[i].name);
5530 }
5531
5532 create_new_subspace (space, name,
5533 pa_def_subspaces[i].loadable,
5534 pa_def_subspaces[i].code_only,
5535 pa_def_subspaces[i].common,
5536 pa_def_subspaces[i].dup_common,
5537 pa_def_subspaces[i].zero,
5538 pa_def_subspaces[i].sort,
5539 pa_def_subspaces[i].access,
5540 pa_def_subspaces[i].space_index,
5541 pa_def_subspaces[i].alignment,
5542 pa_def_subspaces[i].quadrant,
5543 segment);
5544 i++;
5545 }
5546 }
5547
5548
5549
5550 /* Create a new space NAME, with the appropriate flags as defined
5551 by the given parameters. */
5552
5553 static sd_chain_struct *
5554 create_new_space (name, spnum, loadable, defined, private,
5555 sort, seg, user_defined)
5556 char *name;
5557 int spnum;
5558 char loadable;
5559 char defined;
5560 char private;
5561 char sort;
5562 asection *seg;
5563 int user_defined;
5564 {
5565 sd_chain_struct *chain_entry;
5566
5567 chain_entry = (sd_chain_struct *) xmalloc (sizeof (sd_chain_struct));
5568 if (!chain_entry)
5569 as_fatal ("Out of memory: could not allocate new space chain entry: %s\n",
5570 name);
5571
5572 SPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5573 strcpy (SPACE_NAME (chain_entry), name);
5574 SPACE_DEFINED (chain_entry) = defined;
5575 SPACE_USER_DEFINED (chain_entry) = user_defined;
5576 SPACE_SPNUM (chain_entry) = spnum;
5577
5578 chain_entry->sd_seg = seg;
5579 chain_entry->sd_last_subseg = -1;
5580 chain_entry->sd_next = NULL;
5581
5582 /* Find spot for the new space based on its sort key. */
5583 if (!space_dict_last)
5584 space_dict_last = chain_entry;
5585
5586 if (space_dict_root == NULL)
5587 space_dict_root = chain_entry;
5588 else
5589 {
5590 sd_chain_struct *chain_pointer;
5591 sd_chain_struct *prev_chain_pointer;
5592
5593 chain_pointer = space_dict_root;
5594 prev_chain_pointer = NULL;
5595
5596 while (chain_pointer)
5597 {
5598 prev_chain_pointer = chain_pointer;
5599 chain_pointer = chain_pointer->sd_next;
5600 }
5601
5602 /* At this point we've found the correct place to add the new
5603 entry. So add it and update the linked lists as appropriate. */
5604 if (prev_chain_pointer)
5605 {
5606 chain_entry->sd_next = chain_pointer;
5607 prev_chain_pointer->sd_next = chain_entry;
5608 }
5609 else
5610 {
5611 space_dict_root = chain_entry;
5612 chain_entry->sd_next = chain_pointer;
5613 }
5614
5615 if (chain_entry->sd_next == NULL)
5616 space_dict_last = chain_entry;
5617 }
5618
5619 /* This is here to catch predefined spaces which do not get
5620 modified by the user's input. Another call is found at
5621 the bottom of pa_parse_space_stmt to handle cases where
5622 the user modifies a predefined space. */
5623 #ifdef obj_set_section_attributes
5624 obj_set_section_attributes (seg, defined, private, sort, spnum);
5625 #endif
5626
5627 return chain_entry;
5628 }
5629
5630 /* Create a new subspace NAME, with the appropriate flags as defined
5631 by the given parameters.
5632
5633 Add the new subspace to the subspace dictionary chain in numerical
5634 order as defined by the SORT entries. */
5635
5636 static ssd_chain_struct *
5637 create_new_subspace (space, name, loadable, code_only, common,
5638 dup_common, is_zero, sort, access, space_index,
5639 alignment, quadrant, seg)
5640 sd_chain_struct *space;
5641 char *name;
5642 char loadable, code_only, common, dup_common, is_zero;
5643 char sort;
5644 int access;
5645 int space_index;
5646 int alignment;
5647 int quadrant;
5648 asection *seg;
5649 {
5650 ssd_chain_struct *chain_entry;
5651
5652 chain_entry = (ssd_chain_struct *) xmalloc (sizeof (ssd_chain_struct));
5653 if (!chain_entry)
5654 as_fatal ("Out of memory: could not allocate new subspace chain entry: %s\n", name);
5655
5656 SUBSPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5657 strcpy (SUBSPACE_NAME (chain_entry), name);
5658
5659 /* Initialize subspace_defined. When we hit a .subspace directive
5660 we'll set it to 1 which "locks-in" the subspace attributes. */
5661 SUBSPACE_DEFINED (chain_entry) = 0;
5662
5663 chain_entry->ssd_subseg = USE_ALIASES ? pa_next_subseg (space) : 0;
5664 chain_entry->ssd_seg = seg;
5665 chain_entry->ssd_next = NULL;
5666
5667 /* Find spot for the new subspace based on its sort key. */
5668 if (space->sd_subspaces == NULL)
5669 space->sd_subspaces = chain_entry;
5670 else
5671 {
5672 ssd_chain_struct *chain_pointer;
5673 ssd_chain_struct *prev_chain_pointer;
5674
5675 chain_pointer = space->sd_subspaces;
5676 prev_chain_pointer = NULL;
5677
5678 while (chain_pointer)
5679 {
5680 prev_chain_pointer = chain_pointer;
5681 chain_pointer = chain_pointer->ssd_next;
5682 }
5683
5684 /* Now we have somewhere to put the new entry. Insert it and update
5685 the links. */
5686 if (prev_chain_pointer)
5687 {
5688 chain_entry->ssd_next = chain_pointer;
5689 prev_chain_pointer->ssd_next = chain_entry;
5690 }
5691 else
5692 {
5693 space->sd_subspaces = chain_entry;
5694 chain_entry->ssd_next = chain_pointer;
5695 }
5696 }
5697
5698 #ifdef obj_set_subsection_attributes
5699 obj_set_subsection_attributes (seg, space->sd_seg, access,
5700 sort, quadrant);
5701 #endif
5702
5703 return chain_entry;
5704 }
5705
5706 /* Update the information for the given subspace based upon the
5707 various arguments. Return the modified subspace chain entry. */
5708
5709 static ssd_chain_struct *
5710 update_subspace (space, name, loadable, code_only, common, dup_common, sort,
5711 zero, access, space_index, alignment, quadrant, section)
5712 sd_chain_struct *space;
5713 char *name;
5714 char loadable;
5715 char code_only;
5716 char common;
5717 char dup_common;
5718 char zero;
5719 char sort;
5720 int access;
5721 int space_index;
5722 int alignment;
5723 int quadrant;
5724 asection *section;
5725 {
5726 ssd_chain_struct *chain_entry;
5727
5728 chain_entry = is_defined_subspace (name);
5729
5730 #ifdef obj_set_subsection_attributes
5731 obj_set_subsection_attributes (section, space->sd_seg, access,
5732 sort, quadrant);
5733 #endif
5734
5735 return chain_entry;
5736 }
5737
5738 /* Return the space chain entry for the space with the name NAME or
5739 NULL if no such space exists. */
5740
5741 static sd_chain_struct *
5742 is_defined_space (name)
5743 char *name;
5744 {
5745 sd_chain_struct *chain_pointer;
5746
5747 for (chain_pointer = space_dict_root;
5748 chain_pointer;
5749 chain_pointer = chain_pointer->sd_next)
5750 {
5751 if (strcmp (SPACE_NAME (chain_pointer), name) == 0)
5752 return chain_pointer;
5753 }
5754
5755 /* No mapping from segment to space was found. Return NULL. */
5756 return NULL;
5757 }
5758
5759 /* Find and return the space associated with the given seg. If no mapping
5760 from the given seg to a space is found, then return NULL.
5761
5762 Unlike subspaces, the number of spaces is not expected to grow much,
5763 so a linear exhaustive search is OK here. */
5764
5765 static sd_chain_struct *
5766 pa_segment_to_space (seg)
5767 asection *seg;
5768 {
5769 sd_chain_struct *space_chain;
5770
5771 /* Walk through each space looking for the correct mapping. */
5772 for (space_chain = space_dict_root;
5773 space_chain;
5774 space_chain = space_chain->sd_next)
5775 {
5776 if (space_chain->sd_seg == seg)
5777 return space_chain;
5778 }
5779
5780 /* Mapping was not found. Return NULL. */
5781 return NULL;
5782 }
5783
5784 /* Return the space chain entry for the subspace with the name NAME or
5785 NULL if no such subspace exists.
5786
5787 Uses a linear search through all the spaces and subspaces, this may
5788 not be appropriate if we ever being placing each function in its
5789 own subspace. */
5790
5791 static ssd_chain_struct *
5792 is_defined_subspace (name)
5793 char *name;
5794 {
5795 sd_chain_struct *space_chain;
5796 ssd_chain_struct *subspace_chain;
5797
5798 /* Walk through each space. */
5799 for (space_chain = space_dict_root;
5800 space_chain;
5801 space_chain = space_chain->sd_next)
5802 {
5803 /* Walk through each subspace looking for a name which matches. */
5804 for (subspace_chain = space_chain->sd_subspaces;
5805 subspace_chain;
5806 subspace_chain = subspace_chain->ssd_next)
5807 if (strcmp (SUBSPACE_NAME (subspace_chain), name) == 0)
5808 return subspace_chain;
5809 }
5810
5811 /* Subspace wasn't found. Return NULL. */
5812 return NULL;
5813 }
5814
5815 /* Find and return the subspace associated with the given seg. If no
5816 mapping from the given seg to a subspace is found, then return NULL.
5817
5818 If we ever put each procedure/function within its own subspace
5819 (to make life easier on the compiler and linker), then this will have
5820 to become more efficient. */
5821
5822 static ssd_chain_struct *
5823 pa_subsegment_to_subspace (seg, subseg)
5824 asection *seg;
5825 subsegT subseg;
5826 {
5827 sd_chain_struct *space_chain;
5828 ssd_chain_struct *subspace_chain;
5829
5830 /* Walk through each space. */
5831 for (space_chain = space_dict_root;
5832 space_chain;
5833 space_chain = space_chain->sd_next)
5834 {
5835 if (space_chain->sd_seg == seg)
5836 {
5837 /* Walk through each subspace within each space looking for
5838 the correct mapping. */
5839 for (subspace_chain = space_chain->sd_subspaces;
5840 subspace_chain;
5841 subspace_chain = subspace_chain->ssd_next)
5842 if (subspace_chain->ssd_subseg == (int) subseg)
5843 return subspace_chain;
5844 }
5845 }
5846
5847 /* No mapping from subsegment to subspace found. Return NULL. */
5848 return NULL;
5849 }
5850
5851 /* Given a number, try and find a space with the name number.
5852
5853 Return a pointer to a space dictionary chain entry for the space
5854 that was found or NULL on failure. */
5855
5856 static sd_chain_struct *
5857 pa_find_space_by_number (number)
5858 int number;
5859 {
5860 sd_chain_struct *space_chain;
5861
5862 for (space_chain = space_dict_root;
5863 space_chain;
5864 space_chain = space_chain->sd_next)
5865 {
5866 if (SPACE_SPNUM (space_chain) == number)
5867 return space_chain;
5868 }
5869
5870 /* No appropriate space found. Return NULL. */
5871 return NULL;
5872 }
5873
5874 /* Return the starting address for the given subspace. If the starting
5875 address is unknown then return zero. */
5876
5877 static unsigned int
5878 pa_subspace_start (space, quadrant)
5879 sd_chain_struct *space;
5880 int quadrant;
5881 {
5882 /* FIXME. Assumes everyone puts read/write data at 0x4000000, this
5883 is not correct for the PA OSF1 port. */
5884 if ((strcmp (SPACE_NAME (space), "$PRIVATE$") == 0) && quadrant == 1)
5885 return 0x40000000;
5886 else if (space->sd_seg == data_section && quadrant == 1)
5887 return 0x40000000;
5888 else
5889 return 0;
5890 }
5891
5892 /* FIXME. Needs documentation. */
5893 static int
5894 pa_next_subseg (space)
5895 sd_chain_struct *space;
5896 {
5897
5898 space->sd_last_subseg++;
5899 return space->sd_last_subseg;
5900 }
5901
5902 /* Helper function for pa_stringer. Used to find the end of
5903 a string. */
5904
5905 static unsigned int
5906 pa_stringer_aux (s)
5907 char *s;
5908 {
5909 unsigned int c = *s & CHAR_MASK;
5910 switch (c)
5911 {
5912 case '\"':
5913 c = NOT_A_CHAR;
5914 break;
5915 default:
5916 break;
5917 }
5918 return c;
5919 }
5920
5921 /* Handle a .STRING type pseudo-op. */
5922
5923 static void
5924 pa_stringer (append_zero)
5925 int append_zero;
5926 {
5927 char *s, num_buf[4];
5928 unsigned int c;
5929 int i;
5930
5931 /* Preprocess the string to handle PA-specific escape sequences.
5932 For example, \xDD where DD is a hexidecimal number should be
5933 changed to \OOO where OOO is an octal number. */
5934
5935 /* Skip the opening quote. */
5936 s = input_line_pointer + 1;
5937
5938 while (is_a_char (c = pa_stringer_aux (s++)))
5939 {
5940 if (c == '\\')
5941 {
5942 c = *s;
5943 switch (c)
5944 {
5945 /* Handle \x<num>. */
5946 case 'x':
5947 {
5948 unsigned int number;
5949 int num_digit;
5950 char dg;
5951 char *s_start = s;
5952
5953 /* Get pas the 'x'. */
5954 s++;
5955 for (num_digit = 0, number = 0, dg = *s;
5956 num_digit < 2
5957 && (isdigit (dg) || (dg >= 'a' && dg <= 'f')
5958 || (dg >= 'A' && dg <= 'F'));
5959 num_digit++)
5960 {
5961 if (isdigit (dg))
5962 number = number * 16 + dg - '0';
5963 else if (dg >= 'a' && dg <= 'f')
5964 number = number * 16 + dg - 'a' + 10;
5965 else
5966 number = number * 16 + dg - 'A' + 10;
5967
5968 s++;
5969 dg = *s;
5970 }
5971 if (num_digit > 0)
5972 {
5973 switch (num_digit)
5974 {
5975 case 1:
5976 sprintf (num_buf, "%02o", number);
5977 break;
5978 case 2:
5979 sprintf (num_buf, "%03o", number);
5980 break;
5981 }
5982 for (i = 0; i <= num_digit; i++)
5983 s_start[i] = num_buf[i];
5984 }
5985 break;
5986 }
5987 /* This might be a "\"", skip over the escaped char. */
5988 default:
5989 s++;
5990 break;
5991 }
5992 }
5993 }
5994 stringer (append_zero);
5995 pa_undefine_label ();
5996 }
5997
5998 /* Handle a .VERSION pseudo-op. */
5999
6000 static void
6001 pa_version (unused)
6002 int unused;
6003 {
6004 obj_version (0);
6005 pa_undefine_label ();
6006 }
6007
6008 /* Handle a .COPYRIGHT pseudo-op. */
6009
6010 static void
6011 pa_copyright (unused)
6012 int unused;
6013 {
6014 obj_copyright (0);
6015 pa_undefine_label ();
6016 }
6017
6018 /* Just like a normal cons, but when finished we have to undefine
6019 the latest space label. */
6020
6021 static void
6022 pa_cons (nbytes)
6023 int nbytes;
6024 {
6025 cons (nbytes);
6026 pa_undefine_label ();
6027 }
6028
6029 /* Switch to the data space. As usual delete our label. */
6030
6031 static void
6032 pa_data (unused)
6033 int unused;
6034 {
6035 s_data (0);
6036 pa_undefine_label ();
6037 }
6038
6039 /* Like float_cons, but we need to undefine our label. */
6040
6041 static void
6042 pa_float_cons (float_type)
6043 int float_type;
6044 {
6045 float_cons (float_type);
6046 pa_undefine_label ();
6047 }
6048
6049 /* Like s_fill, but delete our label when finished. */
6050
6051 static void
6052 pa_fill (unused)
6053 int unused;
6054 {
6055 s_fill (0);
6056 pa_undefine_label ();
6057 }
6058
6059 /* Like lcomm, but delete our label when finished. */
6060
6061 static void
6062 pa_lcomm (needs_align)
6063 int needs_align;
6064 {
6065 s_lcomm (needs_align);
6066 pa_undefine_label ();
6067 }
6068
6069 /* Like lsym, but delete our label when finished. */
6070
6071 static void
6072 pa_lsym (unused)
6073 int unused;
6074 {
6075 s_lsym (0);
6076 pa_undefine_label ();
6077 }
6078
6079 /* Switch to the text space. Like s_text, but delete our
6080 label when finished. */
6081 static void
6082 pa_text (unused)
6083 int unused;
6084 {
6085 s_text (0);
6086 pa_undefine_label ();
6087 }
6088
6089 /* On the PA relocations which involve function symbols must not be
6090 adjusted. This so that the linker can know when/how to create argument
6091 relocation stubs for indirect calls and calls to static functions.
6092
6093 FIXME. Also reject R_HPPA relocations which are 32 bits
6094 wide. Helps with code lables in arrays for SOM. (SOM BFD code
6095 needs to generate relocations to push the addend and symbol value
6096 onto the stack, add them, then pop the value off the stack and
6097 use it in a relocation -- yuk. */
6098
6099 int
6100 hppa_fix_adjustable (fixp)
6101 fixS *fixp;
6102 {
6103 struct hppa_fix_struct *hppa_fix;
6104
6105 hppa_fix = fixp->tc_fix_data;
6106
6107 if (fixp->fx_r_type == R_HPPA && hppa_fix->fx_r_format == 32)
6108 return 0;
6109
6110 if (fixp->fx_addsy == 0
6111 || (fixp->fx_addsy->bsym->flags & BSF_FUNCTION) == 0)
6112 return 1;
6113
6114 return 0;
6115 }
6116
6117 /* Return nonzero if the fixup in FIXP will require a relocation,
6118 even it if appears that the fixup could be completely handled
6119 within GAS. */
6120
6121 int
6122 hppa_force_relocation (fixp)
6123 fixS *fixp;
6124 {
6125 struct hppa_fix_struct *hppa_fixp = fixp->tc_fix_data;
6126
6127 #ifdef OBJ_SOM
6128 if (fixp->fx_r_type == R_HPPA_ENTRY || fixp->fx_r_type == R_HPPA_EXIT)
6129 return 1;
6130 #endif
6131
6132 #define stub_needed(CALLER, CALLEE) \
6133 ((CALLEE) && (CALLER) && ((CALLEE) != (CALLER)))
6134
6135 /* It is necessary to force PC-relative calls/jumps to have a relocation
6136 entry if they're going to need either a argument relocation or long
6137 call stub. FIXME. Can't we need the same for absolute calls? */
6138 if (fixp->fx_pcrel && fixp->fx_addsy
6139 && (stub_needed (((obj_symbol_type *)
6140 fixp->fx_addsy->bsym)->tc_data.hppa_arg_reloc,
6141 hppa_fixp->fx_arg_reloc)))
6142 return 1;
6143
6144 #undef stub_needed
6145
6146 /* No need (yet) to force another relocations to be emitted. */
6147 return 0;
6148 }
6149
6150 /* Now for some ELF specific code. FIXME. */
6151 #ifdef OBJ_ELF
6152 static symext_chainS *symext_rootP;
6153 static symext_chainS *symext_lastP;
6154
6155 /* Mark the end of a function so that it's possible to compute
6156 the size of the function in hppa_elf_final_processing. */
6157
6158 static void
6159 hppa_elf_mark_end_of_function ()
6160 {
6161 /* ELF does not have EXIT relocations. All we do is create a
6162 temporary symbol marking the end of the function. */
6163 char *name = (char *)
6164 xmalloc (strlen ("L$\001end_") +
6165 strlen (S_GET_NAME (last_call_info->start_symbol)) + 1);
6166
6167 if (name)
6168 {
6169 symbolS *symbolP;
6170
6171 strcpy (name, "L$\001end_");
6172 strcat (name, S_GET_NAME (last_call_info->start_symbol));
6173
6174 /* If we have a .exit followed by a .procend, then the
6175 symbol will have already been defined. */
6176 symbolP = symbol_find (name);
6177 if (symbolP)
6178 {
6179 /* The symbol has already been defined! This can
6180 happen if we have a .exit followed by a .procend.
6181
6182 This is *not* an error. All we want to do is free
6183 the memory we just allocated for the name and continue. */
6184 xfree (name);
6185 }
6186 else
6187 {
6188 /* symbol value should be the offset of the
6189 last instruction of the function */
6190 symbolP = symbol_new (name, now_seg,
6191 (valueT) (obstack_next_free (&frags)
6192 - frag_now->fr_literal - 4),
6193 frag_now);
6194
6195 assert (symbolP);
6196 symbolP->bsym->flags = BSF_LOCAL;
6197 symbol_table_insert (symbolP);
6198 }
6199
6200 if (symbolP)
6201 last_call_info->end_symbol = symbolP;
6202 else
6203 as_bad ("Symbol '%s' could not be created.", name);
6204
6205 }
6206 else
6207 as_bad ("No memory for symbol name.");
6208
6209 }
6210
6211 /* Do any symbol processing requested by the target-cpu or target-format. */
6212
6213 void
6214 hppa_tc_symbol (abfd, symbolP, sym_idx)
6215 bfd *abfd;
6216 elf_symbol_type *symbolP;
6217 int sym_idx;
6218 {
6219 symext_chainS *symextP;
6220 unsigned int arg_reloc;
6221
6222 /* Only functions can have argument relocations. */
6223 if (!(symbolP->symbol.flags & BSF_FUNCTION))
6224 return;
6225
6226 arg_reloc = symbolP->tc_data.hppa_arg_reloc;
6227
6228 /* If there are no argument relocation bits, then no relocation is
6229 necessary. Do not add this to the symextn section. */
6230 if (arg_reloc == 0)
6231 return;
6232
6233 symextP = (symext_chainS *) bfd_alloc (abfd, sizeof (symext_chainS) * 2);
6234
6235 symextP[0].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX, sym_idx);
6236 symextP[0].next = &symextP[1];
6237
6238 symextP[1].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_ARG_RELOC, arg_reloc);
6239 symextP[1].next = NULL;
6240
6241 if (symext_rootP == NULL)
6242 {
6243 symext_rootP = &symextP[0];
6244 symext_lastP = &symextP[1];
6245 }
6246 else
6247 {
6248 symext_lastP->next = &symextP[0];
6249 symext_lastP = &symextP[1];
6250 }
6251 }
6252
6253 /* Make sections needed by the target cpu and/or target format. */
6254 void
6255 hppa_tc_make_sections (abfd)
6256 bfd *abfd;
6257 {
6258 symext_chainS *symextP;
6259 segT save_seg = now_seg;
6260 subsegT save_subseg = now_subseg;
6261
6262 /* Build the symbol extension section. */
6263 hppa_tc_make_symextn_section ();
6264
6265 /* Force some calculation to occur. */
6266 bfd_set_section_contents (stdoutput, stdoutput->sections, "", 0, 0);
6267
6268 hppa_elf_stub_finish (abfd);
6269
6270 /* If no symbols for the symbol extension section, then stop now. */
6271 if (symext_rootP == NULL)
6272 return;
6273
6274 /* Switch to the symbol extension section. */
6275 subseg_new (SYMEXTN_SECTION_NAME, 0);
6276
6277 frag_wane (frag_now);
6278 frag_new (0);
6279
6280 for (symextP = symext_rootP; symextP; symextP = symextP->next)
6281 {
6282 char *ptr;
6283 int *symtab_map = elf_sym_extra (abfd);
6284 int idx;
6285
6286 /* First, patch the symbol extension record to reflect the true
6287 symbol table index. */
6288
6289 if (ELF32_HPPA_SX_TYPE (symextP->entry) == HPPA_SXT_SYMNDX)
6290 {
6291 idx = ELF32_HPPA_SX_VAL (symextP->entry) - 1;
6292 symextP->entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX,
6293 symtab_map[idx]);
6294 }
6295
6296 ptr = frag_more (sizeof (symextP->entry));
6297 md_number_to_chars (ptr, symextP->entry, sizeof (symextP->entry));
6298 }
6299
6300 frag_now->fr_fix = obstack_next_free (&frags) - frag_now->fr_literal;
6301 frag_wane (frag_now);
6302
6303 /* Switch back to the original segment. */
6304 subseg_set (save_seg, save_subseg);
6305 }
6306
6307 /* Make the symbol extension section. */
6308
6309 static void
6310 hppa_tc_make_symextn_section ()
6311 {
6312 if (symext_rootP)
6313 {
6314 symext_chainS *symextP;
6315 int n;
6316 unsigned int size;
6317 segT symextn_sec;
6318 segT save_seg = now_seg;
6319 subsegT save_subseg = now_subseg;
6320
6321 for (n = 0, symextP = symext_rootP; symextP; symextP = symextP->next, ++n)
6322 ;
6323
6324 size = sizeof (symext_entryS) * n;
6325
6326 symextn_sec = subseg_new (SYMEXTN_SECTION_NAME, 0);
6327
6328 bfd_set_section_flags (stdoutput, symextn_sec,
6329 SEC_LOAD | SEC_HAS_CONTENTS | SEC_DATA);
6330 bfd_set_section_size (stdoutput, symextn_sec, size);
6331
6332 /* Now, switch back to the original segment. */
6333 subseg_set (save_seg, save_subseg);
6334 }
6335 }
6336
6337 /* Build the symbol extension section. */
6338
6339 static void
6340 pa_build_symextn_section ()
6341 {
6342 segT seg;
6343 asection *save_seg = now_seg;
6344 subsegT subseg = (subsegT) 0;
6345 subsegT save_subseg = now_subseg;
6346
6347 seg = subseg_new (".hppa_symextn", subseg);
6348 bfd_set_section_flags (stdoutput,
6349 seg,
6350 SEC_HAS_CONTENTS | SEC_READONLY
6351 | SEC_ALLOC | SEC_LOAD);
6352
6353 subseg_set (save_seg, save_subseg);
6354 }
6355
6356 /* For ELF, this function serves one purpose: to setup the st_size
6357 field of STT_FUNC symbols. To do this, we need to scan the
6358 call_info structure list, determining st_size in by taking the
6359 difference in the address of the beginning/end marker symbols. */
6360
6361 void
6362 elf_hppa_final_processing ()
6363 {
6364 struct call_info *call_info_pointer;
6365
6366 for (call_info_pointer = call_info_root;
6367 call_info_pointer;
6368 call_info_pointer = call_info_pointer->ci_next)
6369 {
6370 elf_symbol_type *esym
6371 = (elf_symbol_type *) call_info_pointer->start_symbol->bsym;
6372 esym->internal_elf_sym.st_size =
6373 S_GET_VALUE (call_info_pointer->end_symbol)
6374 - S_GET_VALUE (call_info_pointer->start_symbol) + 4;
6375 }
6376 }
6377 #endif