* config/obj-som.[ch] (obj_read_begin_hook): Remove last change.
[binutils-gdb.git] / gas / config / tc-hppa.c
1 /* tc-hppa.c -- Assemble for the PA
2 Copyright (C) 1989 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 1, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* HP PA-RISC support was contributed by the Center for Software Science
22 at the University of Utah. */
23
24 #include <stdio.h>
25 #include <ctype.h>
26
27 #include "as.h"
28 #include "subsegs.h"
29
30 #include "../bfd/libhppa.h"
31 #include "../bfd/libbfd.h"
32
33 /* Be careful, this file includes data *declarations*. */
34 #include "opcode/hppa.h"
35
36 /* A "convient" place to put object file dependencies which do
37 not need to be seen outside of tc-hppa.c. */
38 #ifdef OBJ_ELF
39 /* Names of various debugging spaces/subspaces. */
40 #define GDB_DEBUG_SPACE_NAME ".stab"
41 #define GDB_STRINGS_SUBSPACE_NAME ".stabstr"
42 #define GDB_SYMBOLS_SUBSPACE_NAME ".stab"
43 #define UNWIND_SECTION_NAME ".hppa_unwind"
44 /* Nonzero if CODE is a fixup code needing further processing. */
45
46 /* Object file formats specify relocation types. */
47 typedef elf32_hppa_reloc_type reloc_type;
48
49 /* Object file formats specify BFD symbol types. */
50 typedef elf_symbol_type obj_symbol_type;
51
52 /* How to generate a relocation. */
53 #define hppa_gen_reloc_type hppa_elf_gen_reloc_type
54
55 /* ELF objects can have versions, but apparently do not have anywhere
56 to store a copyright string. */
57 #define obj_version obj_elf_version
58 #define obj_copyright obj_elf_version
59
60 /* Use space aliases. */
61 #define USE_ALIASES 1
62
63 /* Some local functions only used by ELF. */
64 static void pa_build_symextn_section PARAMS ((void));
65 static void hppa_tc_make_symextn_section PARAMS ((void));
66 #endif
67
68 #ifdef OBJ_SOM
69 /* Names of various debugging spaces/subspaces. */
70 #define GDB_DEBUG_SPACE_NAME "$GDB_DEBUG$"
71 #define GDB_STRINGS_SUBSPACE_NAME "$GDB_STRINGS$"
72 #define GDB_SYMBOLS_SUBSPACE_NAME "$GDB_SYMBOLS$"
73 #define UNWIND_SECTION_NAME "$UNWIND$"
74
75 /* Object file formats specify relocation types. */
76 typedef int reloc_type;
77
78 /* SOM objects can have both a version string and a copyright string. */
79 #define obj_version obj_som_version
80 #define obj_copyright obj_som_copyright
81
82 /* Do not use space aliases. */
83 #define USE_ALIASES 0
84
85 /* How to generate a relocation. */
86 #define hppa_gen_reloc_type hppa_som_gen_reloc_type
87
88 /* Object file formats specify BFD symbol types. */
89 typedef som_symbol_type obj_symbol_type;
90 #endif
91
92 /* Various structures and types used internally in tc-hppa.c. */
93
94 /* Unwind table and descriptor. FIXME: Sync this with GDB version. */
95
96 struct unwind_desc
97 {
98 unsigned int cannot_unwind:1;
99 unsigned int millicode:1;
100 unsigned int millicode_save_rest:1;
101 unsigned int region_desc:2;
102 unsigned int save_sr:2;
103 unsigned int entry_fr:4;
104 unsigned int entry_gr:5;
105 unsigned int args_stored:1;
106 unsigned int call_fr:5;
107 unsigned int call_gr:5;
108 unsigned int save_sp:1;
109 unsigned int save_rp:1;
110 unsigned int save_rp_in_frame:1;
111 unsigned int extn_ptr_defined:1;
112 unsigned int cleanup_defined:1;
113
114 unsigned int hpe_interrupt_marker:1;
115 unsigned int hpux_interrupt_marker:1;
116 unsigned int reserved:3;
117 unsigned int frame_size:27;
118 };
119
120 struct unwind_table
121 {
122 /* Starting and ending offsets of the region described by
123 descriptor. */
124 unsigned int start_offset;
125 unsigned int end_offset;
126 struct unwind_desc descriptor;
127 };
128
129 /* This structure is used by the .callinfo, .enter, .leave pseudo-ops to
130 control the entry and exit code they generate. It is also used in
131 creation of the correct stack unwind descriptors.
132
133 NOTE: GAS does not support .enter and .leave for the generation of
134 prologues and epilogues. FIXME.
135
136 The fields in structure roughly correspond to the arguments available on the
137 .callinfo pseudo-op. */
138
139 struct call_info
140 {
141 /* The unwind descriptor being built. */
142 struct unwind_table ci_unwind;
143
144 /* Name of this function. */
145 symbolS *start_symbol;
146
147 /* (temporary) symbol used to mark the end of this function. */
148 symbolS *end_symbol;
149
150 /* Next entry in the chain. */
151 struct call_info *ci_next;
152 };
153
154 /* Operand formats for FP instructions. Note not all FP instructions
155 allow all four formats to be used (for example fmpysub only allows
156 SGL and DBL). */
157 typedef enum
158 {
159 SGL, DBL, ILLEGAL_FMT, QUAD
160 }
161 fp_operand_format;
162
163 /* This fully describes the symbol types which may be attached to
164 an EXPORT or IMPORT directive. Only SOM uses this formation
165 (ELF has no need for it). */
166 typedef enum
167 {
168 SYMBOL_TYPE_UNKNOWN,
169 SYMBOL_TYPE_ABSOLUTE,
170 SYMBOL_TYPE_CODE,
171 SYMBOL_TYPE_DATA,
172 SYMBOL_TYPE_ENTRY,
173 SYMBOL_TYPE_MILLICODE,
174 SYMBOL_TYPE_PLABEL,
175 SYMBOL_TYPE_PRI_PROG,
176 SYMBOL_TYPE_SEC_PROG,
177 }
178 pa_symbol_type;
179
180 /* This structure contains information needed to assemble
181 individual instructions. */
182 struct pa_it
183 {
184 /* Holds the opcode after parsing by pa_ip. */
185 unsigned long opcode;
186
187 /* Holds an expression associated with the current instruction. */
188 expressionS exp;
189
190 /* Does this instruction use PC-relative addressing. */
191 int pcrel;
192
193 /* Floating point formats for operand1 and operand2. */
194 fp_operand_format fpof1;
195 fp_operand_format fpof2;
196
197 /* Holds the field selector for this instruction
198 (for example L%, LR%, etc). */
199 long field_selector;
200
201 /* Holds any argument relocation bits associated with this
202 instruction. (instruction should be some sort of call). */
203 long arg_reloc;
204
205 /* The format specification for this instruction. */
206 int format;
207
208 /* The relocation (if any) associated with this instruction. */
209 reloc_type reloc;
210 };
211
212 /* PA-89 floating point registers are arranged like this:
213
214
215 +--------------+--------------+
216 | 0 or 16L | 16 or 16R |
217 +--------------+--------------+
218 | 1 or 17L | 17 or 17R |
219 +--------------+--------------+
220 | | |
221
222 . . .
223 . . .
224 . . .
225
226 | | |
227 +--------------+--------------+
228 | 14 or 30L | 30 or 30R |
229 +--------------+--------------+
230 | 15 or 31L | 31 or 31R |
231 +--------------+--------------+
232
233
234 The following is a version of pa_parse_number that
235 handles the L/R notation and returns the correct
236 value to put into the instruction register field.
237 The correct value to put into the instruction is
238 encoded in the structure 'pa_89_fp_reg_struct'. */
239
240 struct pa_89_fp_reg_struct
241 {
242 /* The register number. */
243 char number_part;
244
245 /* L/R selector. */
246 char l_r_select;
247 };
248
249 /* Additional information needed to build argument relocation stubs. */
250 struct call_desc
251 {
252 /* The argument relocation specification. */
253 unsigned int arg_reloc;
254
255 /* Number of arguments. */
256 unsigned int arg_count;
257 };
258
259 /* This structure defines an entry in the subspace dictionary
260 chain. */
261
262 struct subspace_dictionary_chain
263 {
264 /* Nonzero if this space has been defined by the user code. */
265 unsigned int ssd_defined;
266
267 /* Name of this subspace. */
268 char *ssd_name;
269
270 /* GAS segment and subsegment associated with this subspace. */
271 asection *ssd_seg;
272 int ssd_subseg;
273
274 /* Next space in the subspace dictionary chain. */
275 struct subspace_dictionary_chain *ssd_next;
276 };
277
278 typedef struct subspace_dictionary_chain ssd_chain_struct;
279
280 /* This structure defines an entry in the subspace dictionary
281 chain. */
282
283 struct space_dictionary_chain
284 {
285 /* Nonzero if this space has been defined by the user code or
286 as a default space. */
287 unsigned int sd_defined;
288
289 /* Nonzero if this spaces has been defined by the user code. */
290 unsigned int sd_user_defined;
291
292 /* The space number (or index). */
293 unsigned int sd_spnum;
294
295 /* The name of this subspace. */
296 char *sd_name;
297
298 /* GAS segment to which this subspace corresponds. */
299 asection *sd_seg;
300
301 /* Current subsegment number being used. */
302 int sd_last_subseg;
303
304 /* The chain of subspaces contained within this space. */
305 ssd_chain_struct *sd_subspaces;
306
307 /* The next entry in the space dictionary chain. */
308 struct space_dictionary_chain *sd_next;
309 };
310
311 typedef struct space_dictionary_chain sd_chain_struct;
312
313 /* Structure for previous label tracking. Needed so that alignments,
314 callinfo declarations, etc can be easily attached to a particular
315 label. */
316 typedef struct label_symbol_struct
317 {
318 struct symbol *lss_label;
319 sd_chain_struct *lss_space;
320 struct label_symbol_struct *lss_next;
321 }
322 label_symbol_struct;
323
324 /* This structure defines attributes of the default subspace
325 dictionary entries. */
326
327 struct default_subspace_dict
328 {
329 /* Name of the subspace. */
330 char *name;
331
332 /* FIXME. Is this still needed? */
333 char defined;
334
335 /* Nonzero if this subspace is loadable. */
336 char loadable;
337
338 /* Nonzero if this subspace contains only code. */
339 char code_only;
340
341 /* Nonzero if this is a common subspace. */
342 char common;
343
344 /* Nonzero if this is a common subspace which allows symbols
345 to be multiply defined. */
346 char dup_common;
347
348 /* Nonzero if this subspace should be zero filled. */
349 char zero;
350
351 /* Sort key for this subspace. */
352 unsigned char sort;
353
354 /* Access control bits for this subspace. Can represent RWX access
355 as well as privilege level changes for gateways. */
356 int access;
357
358 /* Index of containing space. */
359 int space_index;
360
361 /* Alignment (in bytes) of this subspace. */
362 int alignment;
363
364 /* Quadrant within space where this subspace should be loaded. */
365 int quadrant;
366
367 /* An index into the default spaces array. */
368 int def_space_index;
369
370 /* An alias for this section (or NULL if no alias exists). */
371 char *alias;
372
373 /* Subsegment associated with this subspace. */
374 subsegT subsegment;
375 };
376
377 /* This structure defines attributes of the default space
378 dictionary entries. */
379
380 struct default_space_dict
381 {
382 /* Name of the space. */
383 char *name;
384
385 /* Space number. It is possible to identify spaces within
386 assembly code numerically! */
387 int spnum;
388
389 /* Nonzero if this space is loadable. */
390 char loadable;
391
392 /* Nonzero if this space is "defined". FIXME is still needed */
393 char defined;
394
395 /* Nonzero if this space can not be shared. */
396 char private;
397
398 /* Sort key for this space. */
399 unsigned char sort;
400
401 /* Segment associated with this space. */
402 asection *segment;
403
404 /* An alias for this section (or NULL if no alias exists). */
405 char *alias;
406 };
407
408 /* Extra information needed to perform fixups (relocations) on the PA. */
409 struct hppa_fix_struct
410 {
411 /* The field selector. */
412 enum hppa_reloc_field_selector_type fx_r_field;
413
414 /* Type of fixup. */
415 int fx_r_type;
416
417 /* Format of fixup. */
418 int fx_r_format;
419
420 /* Argument relocation bits. */
421 long fx_arg_reloc;
422
423 /* The unwind descriptor associated with this fixup. */
424 char fx_unwind[8];
425 };
426
427 /* Structure to hold information about predefined registers. */
428
429 struct pd_reg
430 {
431 char *name;
432 int value;
433 };
434
435 /* This structure defines the mapping from a FP condition string
436 to a condition number which can be recorded in an instruction. */
437 struct fp_cond_map
438 {
439 char *string;
440 int cond;
441 };
442
443 /* This structure defines a mapping from a field selector
444 string to a field selector type. */
445 struct selector_entry
446 {
447 char *prefix;
448 int field_selector;
449 };
450
451 /* Prototypes for functions local to tc-hppa.c. */
452
453 static fp_operand_format pa_parse_fp_format PARAMS ((char **s));
454 static void pa_cons PARAMS ((int));
455 static void pa_data PARAMS ((int));
456 static void pa_float_cons PARAMS ((int));
457 static void pa_fill PARAMS ((int));
458 static void pa_lcomm PARAMS ((int));
459 static void pa_lsym PARAMS ((int));
460 static void pa_stringer PARAMS ((int));
461 static void pa_text PARAMS ((int));
462 static void pa_version PARAMS ((int));
463 static int pa_parse_fp_cmp_cond PARAMS ((char **));
464 static int get_expression PARAMS ((char *));
465 static int pa_get_absolute_expression PARAMS ((struct pa_it *, char **));
466 static int evaluate_absolute PARAMS ((struct pa_it *));
467 static unsigned int pa_build_arg_reloc PARAMS ((char *));
468 static unsigned int pa_align_arg_reloc PARAMS ((unsigned int, unsigned int));
469 static int pa_parse_nullif PARAMS ((char **));
470 static int pa_parse_nonneg_cmpsub_cmpltr PARAMS ((char **, int));
471 static int pa_parse_neg_cmpsub_cmpltr PARAMS ((char **, int));
472 static int pa_parse_neg_add_cmpltr PARAMS ((char **, int));
473 static int pa_parse_nonneg_add_cmpltr PARAMS ((char **, int));
474 static void pa_block PARAMS ((int));
475 static void pa_call PARAMS ((int));
476 static void pa_call_args PARAMS ((struct call_desc *));
477 static void pa_callinfo PARAMS ((int));
478 static void pa_code PARAMS ((int));
479 static void pa_comm PARAMS ((int));
480 static void pa_copyright PARAMS ((int));
481 static void pa_end PARAMS ((int));
482 static void pa_enter PARAMS ((int));
483 static void pa_entry PARAMS ((int));
484 static void pa_equ PARAMS ((int));
485 static void pa_exit PARAMS ((int));
486 static void pa_export PARAMS ((int));
487 static void pa_type_args PARAMS ((symbolS *, int));
488 static void pa_import PARAMS ((int));
489 static void pa_label PARAMS ((int));
490 static void pa_leave PARAMS ((int));
491 static void pa_origin PARAMS ((int));
492 static void pa_proc PARAMS ((int));
493 static void pa_procend PARAMS ((int));
494 static void pa_space PARAMS ((int));
495 static void pa_spnum PARAMS ((int));
496 static void pa_subspace PARAMS ((int));
497 static void pa_param PARAMS ((int));
498 static void pa_undefine_label PARAMS ((void));
499 static int need_89_opcode PARAMS ((struct pa_it *,
500 struct pa_89_fp_reg_struct *));
501 static int pa_parse_number PARAMS ((char **, struct pa_89_fp_reg_struct *));
502 static label_symbol_struct *pa_get_label PARAMS ((void));
503 static sd_chain_struct *create_new_space PARAMS ((char *, int, char,
504 char, char, char,
505 asection *, int));
506 static ssd_chain_struct *create_new_subspace PARAMS ((sd_chain_struct *,
507 char *, char, char,
508 char, char, char,
509 char, int, int, int,
510 int, asection *));
511 static ssd_chain_struct *update_subspace PARAMS ((sd_chain_struct *,
512 char *, char, char, char,
513 char, char, char, int,
514 int, int, int,
515 asection *));
516 static sd_chain_struct *is_defined_space PARAMS ((char *));
517 static ssd_chain_struct *is_defined_subspace PARAMS ((char *));
518 static sd_chain_struct *pa_segment_to_space PARAMS ((asection *));
519 static ssd_chain_struct *pa_subsegment_to_subspace PARAMS ((asection *,
520 subsegT));
521 static sd_chain_struct *pa_find_space_by_number PARAMS ((int));
522 static unsigned int pa_subspace_start PARAMS ((sd_chain_struct *, int));
523 static void pa_ip PARAMS ((char *));
524 static void fix_new_hppa PARAMS ((fragS *, int, short int, symbolS *,
525 long, expressionS *, int,
526 bfd_reloc_code_real_type,
527 enum hppa_reloc_field_selector_type,
528 int, long, char *));
529 static int is_end_of_statement PARAMS ((void));
530 static int reg_name_search PARAMS ((char *));
531 static int pa_chk_field_selector PARAMS ((char **));
532 static int is_same_frag PARAMS ((fragS *, fragS *));
533 static void pa_build_unwind_subspace PARAMS ((struct call_info *));
534 static void process_exit PARAMS ((void));
535 static sd_chain_struct *pa_parse_space_stmt PARAMS ((char *, int));
536 static int log2 PARAMS ((int));
537 static int pa_next_subseg PARAMS ((sd_chain_struct *));
538 static unsigned int pa_stringer_aux PARAMS ((char *));
539 static void pa_spaces_begin PARAMS ((void));
540 static void hppa_elf_mark_end_of_function PARAMS ((void));
541
542 /* File and gloally scoped variable declarations. */
543
544 /* Root and final entry in the space chain. */
545 static sd_chain_struct *space_dict_root;
546 static sd_chain_struct *space_dict_last;
547
548 /* The current space and subspace. */
549 static sd_chain_struct *current_space;
550 static ssd_chain_struct *current_subspace;
551
552 /* Root of the call_info chain. */
553 static struct call_info *call_info_root;
554
555 /* The last call_info (for functions) structure
556 seen so it can be associated with fixups and
557 function labels. */
558 static struct call_info *last_call_info;
559
560 /* The last call description (for actual calls). */
561 static struct call_desc last_call_desc;
562
563 /* Relaxation isn't supported for the PA yet. */
564 const relax_typeS md_relax_table[] =
565 {0};
566
567 /* Jumps are always the same size -- one instruction. */
568 int md_short_jump_size = 4;
569 int md_long_jump_size = 4;
570
571 /* handle of the OPCODE hash table */
572 static struct hash_control *op_hash = NULL;
573
574 /* This array holds the chars that always start a comment. If the
575 pre-processor is disabled, these aren't very useful. */
576 const char comment_chars[] = ";";
577
578 /* Table of pseudo ops for the PA. FIXME -- how many of these
579 are now redundant with the overall GAS and the object file
580 dependent tables? */
581 const pseudo_typeS md_pseudo_table[] =
582 {
583 /* align pseudo-ops on the PA specify the actual alignment requested,
584 not the log2 of the requested alignment. */
585 {"align", s_align_bytes, 8},
586 {"ALIGN", s_align_bytes, 8},
587 {"block", pa_block, 1},
588 {"BLOCK", pa_block, 1},
589 {"blockz", pa_block, 0},
590 {"BLOCKZ", pa_block, 0},
591 {"byte", pa_cons, 1},
592 {"BYTE", pa_cons, 1},
593 {"call", pa_call, 0},
594 {"CALL", pa_call, 0},
595 {"callinfo", pa_callinfo, 0},
596 {"CALLINFO", pa_callinfo, 0},
597 {"code", pa_code, 0},
598 {"CODE", pa_code, 0},
599 {"comm", pa_comm, 0},
600 {"COMM", pa_comm, 0},
601 {"copyright", pa_copyright, 0},
602 {"COPYRIGHT", pa_copyright, 0},
603 {"data", pa_data, 0},
604 {"DATA", pa_data, 0},
605 {"double", pa_float_cons, 'd'},
606 {"DOUBLE", pa_float_cons, 'd'},
607 {"end", pa_end, 0},
608 {"END", pa_end, 0},
609 {"enter", pa_enter, 0},
610 {"ENTER", pa_enter, 0},
611 {"entry", pa_entry, 0},
612 {"ENTRY", pa_entry, 0},
613 {"equ", pa_equ, 0},
614 {"EQU", pa_equ, 0},
615 {"exit", pa_exit, 0},
616 {"EXIT", pa_exit, 0},
617 {"export", pa_export, 0},
618 {"EXPORT", pa_export, 0},
619 {"fill", pa_fill, 0},
620 {"FILL", pa_fill, 0},
621 {"float", pa_float_cons, 'f'},
622 {"FLOAT", pa_float_cons, 'f'},
623 {"half", pa_cons, 2},
624 {"HALF", pa_cons, 2},
625 {"import", pa_import, 0},
626 {"IMPORT", pa_import, 0},
627 {"int", pa_cons, 4},
628 {"INT", pa_cons, 4},
629 {"label", pa_label, 0},
630 {"LABEL", pa_label, 0},
631 {"lcomm", pa_lcomm, 0},
632 {"LCOMM", pa_lcomm, 0},
633 {"leave", pa_leave, 0},
634 {"LEAVE", pa_leave, 0},
635 {"long", pa_cons, 4},
636 {"LONG", pa_cons, 4},
637 {"lsym", pa_lsym, 0},
638 {"LSYM", pa_lsym, 0},
639 {"octa", pa_cons, 16},
640 {"OCTA", pa_cons, 16},
641 {"org", pa_origin, 0},
642 {"ORG", pa_origin, 0},
643 {"origin", pa_origin, 0},
644 {"ORIGIN", pa_origin, 0},
645 {"param", pa_param, 0},
646 {"PARAM", pa_param, 0},
647 {"proc", pa_proc, 0},
648 {"PROC", pa_proc, 0},
649 {"procend", pa_procend, 0},
650 {"PROCEND", pa_procend, 0},
651 {"quad", pa_cons, 8},
652 {"QUAD", pa_cons, 8},
653 {"reg", pa_equ, 1},
654 {"REG", pa_equ, 1},
655 {"short", pa_cons, 2},
656 {"SHORT", pa_cons, 2},
657 {"single", pa_float_cons, 'f'},
658 {"SINGLE", pa_float_cons, 'f'},
659 {"space", pa_space, 0},
660 {"SPACE", pa_space, 0},
661 {"spnum", pa_spnum, 0},
662 {"SPNUM", pa_spnum, 0},
663 {"string", pa_stringer, 0},
664 {"STRING", pa_stringer, 0},
665 {"stringz", pa_stringer, 1},
666 {"STRINGZ", pa_stringer, 1},
667 {"subspa", pa_subspace, 0},
668 {"SUBSPA", pa_subspace, 0},
669 {"text", pa_text, 0},
670 {"TEXT", pa_text, 0},
671 {"version", pa_version, 0},
672 {"VERSION", pa_version, 0},
673 {"word", pa_cons, 4},
674 {"WORD", pa_cons, 4},
675 {NULL, 0, 0}
676 };
677
678 /* This array holds the chars that only start a comment at the beginning of
679 a line. If the line seems to have the form '# 123 filename'
680 .line and .file directives will appear in the pre-processed output.
681
682 Note that input_file.c hand checks for '#' at the beginning of the
683 first line of the input file. This is because the compiler outputs
684 #NO_APP at the beginning of its output.
685
686 Also note that '/*' will always start a comment. */
687 const char line_comment_chars[] = "#";
688
689 /* This array holds the characters which act as line separators. */
690 const char line_separator_chars[] = "!";
691
692 /* Chars that can be used to separate mant from exp in floating point nums. */
693 const char EXP_CHARS[] = "eE";
694
695 /* Chars that mean this number is a floating point constant.
696 As in 0f12.456 or 0d1.2345e12.
697
698 Be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
699 changed in read.c. Ideally it shouldn't hae to know abou it at
700 all, but nothing is ideal around here. */
701 const char FLT_CHARS[] = "rRsSfFdDxXpP";
702
703 static struct pa_it the_insn;
704
705 /* Points to the end of an expression just parsed by get_expressoin
706 and friends. FIXME. This shouldn't be handled with a file-global
707 variable. */
708 static char *expr_end;
709
710 /* Nonzero if a .callinfo appeared within the current procedure. */
711 static int callinfo_found;
712
713 /* Nonzero if the assembler is currently within a .entry/.exit pair. */
714 static int within_entry_exit;
715
716 /* Nonzero if the assembler is currently within a procedure definition. */
717 static int within_procedure;
718
719 /* Handle on strucutre which keep track of the last symbol
720 seen in each subspace. */
721 static label_symbol_struct *label_symbols_rootp = NULL;
722
723 /* Holds the last field selector. */
724 static int hppa_field_selector;
725
726 /* Nonzero if errors are to be printed. */
727 static int print_errors = 1;
728
729 /* List of registers that are pre-defined:
730
731 Each general register has one predefined name of the form
732 %r<REGNUM> which has the value <REGNUM>.
733
734 Space and control registers are handled in a similar manner,
735 but use %sr<REGNUM> and %cr<REGNUM> as their predefined names.
736
737 Likewise for the floating point registers, but of the form
738 %fr<REGNUM>. Floating point registers have additional predefined
739 names with 'L' and 'R' suffixes (e.g. %fr19L, %fr19R) which
740 again have the value <REGNUM>.
741
742 Many registers also have synonyms:
743
744 %r26 - %r23 have %arg0 - %arg3 as synonyms
745 %r28 - %r29 have %ret0 - %ret1 as synonyms
746 %r30 has %sp as a synonym
747 %r27 has %dp as a synonym
748 %r2 has %rp as a synonym
749
750 Almost every control register has a synonym; they are not listed
751 here for brevity.
752
753 The table is sorted. Suitable for searching by a binary search. */
754
755 static const struct pd_reg pre_defined_registers[] =
756 {
757 {"%arg0", 26},
758 {"%arg1", 25},
759 {"%arg2", 24},
760 {"%arg3", 23},
761 {"%cr0", 0},
762 {"%cr10", 10},
763 {"%cr11", 11},
764 {"%cr12", 12},
765 {"%cr13", 13},
766 {"%cr14", 14},
767 {"%cr15", 15},
768 {"%cr16", 16},
769 {"%cr17", 17},
770 {"%cr18", 18},
771 {"%cr19", 19},
772 {"%cr20", 20},
773 {"%cr21", 21},
774 {"%cr22", 22},
775 {"%cr23", 23},
776 {"%cr24", 24},
777 {"%cr25", 25},
778 {"%cr26", 26},
779 {"%cr27", 27},
780 {"%cr28", 28},
781 {"%cr29", 29},
782 {"%cr30", 30},
783 {"%cr31", 31},
784 {"%cr8", 8},
785 {"%cr9", 9},
786 {"%dp", 27},
787 {"%eiem", 15},
788 {"%eirr", 23},
789 {"%fr0", 0},
790 {"%fr0L", 0},
791 {"%fr0R", 0},
792 {"%fr1", 1},
793 {"%fr10", 10},
794 {"%fr10L", 10},
795 {"%fr10R", 10},
796 {"%fr11", 11},
797 {"%fr11L", 11},
798 {"%fr11R", 11},
799 {"%fr12", 12},
800 {"%fr12L", 12},
801 {"%fr12R", 12},
802 {"%fr13", 13},
803 {"%fr13L", 13},
804 {"%fr13R", 13},
805 {"%fr14", 14},
806 {"%fr14L", 14},
807 {"%fr14R", 14},
808 {"%fr15", 15},
809 {"%fr15L", 15},
810 {"%fr15R", 15},
811 {"%fr16", 16},
812 {"%fr16L", 16},
813 {"%fr16R", 16},
814 {"%fr17", 17},
815 {"%fr17L", 17},
816 {"%fr17R", 17},
817 {"%fr18", 18},
818 {"%fr18L", 18},
819 {"%fr18R", 18},
820 {"%fr19", 19},
821 {"%fr19L", 19},
822 {"%fr19R", 19},
823 {"%fr1L", 1},
824 {"%fr1R", 1},
825 {"%fr2", 2},
826 {"%fr20", 20},
827 {"%fr20L", 20},
828 {"%fr20R", 20},
829 {"%fr21", 21},
830 {"%fr21L", 21},
831 {"%fr21R", 21},
832 {"%fr22", 22},
833 {"%fr22L", 22},
834 {"%fr22R", 22},
835 {"%fr23", 23},
836 {"%fr23L", 23},
837 {"%fr23R", 23},
838 {"%fr24", 24},
839 {"%fr24L", 24},
840 {"%fr24R", 24},
841 {"%fr25", 25},
842 {"%fr25L", 25},
843 {"%fr25R", 25},
844 {"%fr26", 26},
845 {"%fr26L", 26},
846 {"%fr26R", 26},
847 {"%fr27", 27},
848 {"%fr27L", 27},
849 {"%fr27R", 27},
850 {"%fr28", 28},
851 {"%fr28L", 28},
852 {"%fr28R", 28},
853 {"%fr29", 29},
854 {"%fr29L", 29},
855 {"%fr29R", 29},
856 {"%fr2L", 2},
857 {"%fr2R", 2},
858 {"%fr3", 3},
859 {"%fr30", 30},
860 {"%fr30L", 30},
861 {"%fr30R", 30},
862 {"%fr31", 31},
863 {"%fr31L", 31},
864 {"%fr31R", 31},
865 {"%fr3L", 3},
866 {"%fr3R", 3},
867 {"%fr4", 4},
868 {"%fr4L", 4},
869 {"%fr4R", 4},
870 {"%fr5", 5},
871 {"%fr5L", 5},
872 {"%fr5R", 5},
873 {"%fr6", 6},
874 {"%fr6L", 6},
875 {"%fr6R", 6},
876 {"%fr7", 7},
877 {"%fr7L", 7},
878 {"%fr7R", 7},
879 {"%fr8", 8},
880 {"%fr8L", 8},
881 {"%fr8R", 8},
882 {"%fr9", 9},
883 {"%fr9L", 9},
884 {"%fr9R", 9},
885 {"%hta", 25},
886 {"%iir", 19},
887 {"%ior", 21},
888 {"%ipsw", 22},
889 {"%isr", 20},
890 {"%itmr", 16},
891 {"%iva", 14},
892 {"%pcoq", 18},
893 {"%pcsq", 17},
894 {"%pidr1", 8},
895 {"%pidr2", 9},
896 {"%pidr3", 12},
897 {"%pidr4", 13},
898 {"%ppda", 24},
899 {"%r0", 0},
900 {"%r1", 1},
901 {"%r10", 10},
902 {"%r11", 11},
903 {"%r12", 12},
904 {"%r13", 13},
905 {"%r14", 14},
906 {"%r15", 15},
907 {"%r16", 16},
908 {"%r17", 17},
909 {"%r18", 18},
910 {"%r19", 19},
911 {"%r2", 2},
912 {"%r20", 20},
913 {"%r21", 21},
914 {"%r22", 22},
915 {"%r23", 23},
916 {"%r24", 24},
917 {"%r25", 25},
918 {"%r26", 26},
919 {"%r27", 27},
920 {"%r28", 28},
921 {"%r29", 29},
922 {"%r3", 3},
923 {"%r30", 30},
924 {"%r31", 31},
925 {"%r4", 4},
926 {"%r4L", 4},
927 {"%r4R", 4},
928 {"%r5", 5},
929 {"%r5L", 5},
930 {"%r5R", 5},
931 {"%r6", 6},
932 {"%r6L", 6},
933 {"%r6R", 6},
934 {"%r7", 7},
935 {"%r7L", 7},
936 {"%r7R", 7},
937 {"%r8", 8},
938 {"%r8L", 8},
939 {"%r8R", 8},
940 {"%r9", 9},
941 {"%r9L", 9},
942 {"%r9R", 9},
943 {"%rctr", 0},
944 {"%ret0", 28},
945 {"%ret1", 29},
946 {"%rp", 2},
947 {"%sar", 11},
948 {"%sp", 30},
949 {"%sr0", 0},
950 {"%sr1", 1},
951 {"%sr2", 2},
952 {"%sr3", 3},
953 {"%sr4", 4},
954 {"%sr5", 5},
955 {"%sr6", 6},
956 {"%sr7", 7},
957 {"%tr0", 24},
958 {"%tr1", 25},
959 {"%tr2", 26},
960 {"%tr3", 27},
961 {"%tr4", 28},
962 {"%tr5", 29},
963 {"%tr6", 30},
964 {"%tr7", 31}
965 };
966
967 /* This table is sorted by order of the length of the string. This is
968 so we check for <> before we check for <. If we had a <> and checked
969 for < first, we would get a false match. */
970 static const struct fp_cond_map fp_cond_map[] =
971 {
972 {"false?", 0},
973 {"false", 1},
974 {"true?", 30},
975 {"true", 31},
976 {"!<=>", 3},
977 {"!?>=", 8},
978 {"!?<=", 16},
979 {"!<>", 7},
980 {"!>=", 11},
981 {"!?>", 12},
982 {"?<=", 14},
983 {"!<=", 19},
984 {"!?<", 20},
985 {"?>=", 22},
986 {"!?=", 24},
987 {"!=t", 27},
988 {"<=>", 29},
989 {"=t", 5},
990 {"?=", 6},
991 {"?<", 10},
992 {"<=", 13},
993 {"!>", 15},
994 {"?>", 18},
995 {">=", 21},
996 {"!<", 23},
997 {"<>", 25},
998 {"!=", 26},
999 {"!?", 28},
1000 {"?", 2},
1001 {"=", 4},
1002 {"<", 9},
1003 {">", 17}
1004 };
1005
1006 static const struct selector_entry selector_table[] =
1007 {
1008 {"F'", e_fsel},
1009 {"F%", e_fsel},
1010 {"LS'", e_lssel},
1011 {"LS%", e_lssel},
1012 {"RS'", e_rssel},
1013 {"RS%", e_rssel},
1014 {"L'", e_lsel},
1015 {"L%", e_lsel},
1016 {"R'", e_rsel},
1017 {"R%", e_rsel},
1018 {"LD'", e_ldsel},
1019 {"LD%", e_ldsel},
1020 {"RD'", e_rdsel},
1021 {"RD%", e_rdsel},
1022 {"LR'", e_lrsel},
1023 {"LR%", e_lrsel},
1024 {"RR'", e_rrsel},
1025 {"RR%", e_rrsel},
1026 {"P'", e_psel},
1027 {"P%", e_psel},
1028 {"RP'", e_rpsel},
1029 {"RP%", e_rpsel},
1030 {"LP'", e_lpsel},
1031 {"LP%", e_lpsel},
1032 {"T'", e_tsel},
1033 {"T%", e_tsel},
1034 {"RT'", e_rtsel},
1035 {"RT%", e_rtsel},
1036 {"LT'", e_ltsel},
1037 {"LT%", e_ltsel},
1038 {NULL, e_fsel}
1039 };
1040
1041 /* default space and subspace dictionaries */
1042
1043 #define GDB_SYMBOLS GDB_SYMBOLS_SUBSPACE_NAME
1044 #define GDB_STRINGS GDB_STRINGS_SUBSPACE_NAME
1045
1046 /* pre-defined subsegments (subspaces) for the HPPA. */
1047 #define SUBSEG_CODE 0
1048 #define SUBSEG_DATA 0
1049 #define SUBSEG_LIT 1
1050 #define SUBSEG_BSS 2
1051 #define SUBSEG_UNWIND 3
1052 #define SUBSEG_GDB_STRINGS 0
1053 #define SUBSEG_GDB_SYMBOLS 1
1054
1055 static struct default_subspace_dict pa_def_subspaces[] =
1056 {
1057 {"$CODE$", 1, 1, 1, 0, 0, 0, 24, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_CODE},
1058 {"$DATA$", 1, 1, 0, 0, 0, 0, 24, 0x1f, 1, 8, 1, 1, ".data", SUBSEG_DATA},
1059 {"$LIT$", 1, 1, 0, 0, 0, 0, 16, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_LIT},
1060 {"$BSS$", 1, 1, 0, 0, 0, 1, 80, 0x1f, 1, 8, 1, 1, ".bss", SUBSEG_BSS},
1061 #ifdef OBJ_ELF
1062 {"$UNWIND$", 1, 1, 0, 0, 0, 0, 64, 0x2c, 0, 4, 0, 0, ".hppa_unwind", SUBSEG_UNWIND},
1063 #endif
1064 {NULL, 0, 1, 0, 0, 0, 0, 255, 0x1f, 0, 4, 0, 0, 0}
1065 };
1066
1067 static struct default_space_dict pa_def_spaces[] =
1068 {
1069 {"$TEXT$", 0, 1, 1, 0, 8, ASEC_NULL, ".text"},
1070 {"$PRIVATE$", 1, 1, 1, 1, 16, ASEC_NULL, ".data"},
1071 {NULL, 0, 0, 0, 0, 0, ASEC_NULL, NULL}
1072 };
1073
1074 /* Misc local definitions used by the assembler. */
1075
1076 /* Return nonzero if the string pointed to by S potentially represents
1077 a right or left half of a FP register */
1078 #define IS_R_SELECT(S) (*(S) == 'R' || *(S) == 'r')
1079 #define IS_L_SELECT(S) (*(S) == 'L' || *(S) == 'l')
1080
1081 /* These macros are used to maintain spaces/subspaces. */
1082 #define SPACE_DEFINED(space_chain) (space_chain)->sd_defined
1083 #define SPACE_USER_DEFINED(space_chain) (space_chain)->sd_user_defined
1084 #define SPACE_SPNUM(space_chain) (space_chain)->sd_spnum
1085 #define SPACE_NAME(space_chain) (space_chain)->sd_name
1086
1087 #define SUBSPACE_DEFINED(ss_chain) (ss_chain)->ssd_defined
1088 #define SUBSPACE_NAME(ss_chain) (ss_chain)->ssd_name
1089
1090 /* Insert FIELD into OPCODE starting at bit START. Continue pa_ip
1091 main loop after insertion. */
1092
1093 #define INSERT_FIELD_AND_CONTINUE(OPCODE, FIELD, START) \
1094 { \
1095 ((OPCODE) |= (FIELD) << (START)); \
1096 continue; \
1097 }
1098
1099 /* Simple range checking for FIELD againt HIGH and LOW bounds.
1100 IGNORE is used to suppress the error message. */
1101
1102 #define CHECK_FIELD(FIELD, HIGH, LOW, IGNORE) \
1103 { \
1104 if ((FIELD) > (HIGH) || (FIELD) < (LOW)) \
1105 { \
1106 if (! IGNORE) \
1107 as_bad ("Field out of range [%d..%d] (%d).", (LOW), (HIGH), \
1108 (int) (FIELD));\
1109 break; \
1110 } \
1111 }
1112
1113 #define is_DP_relative(exp) \
1114 ((exp).X_op == O_subtract \
1115 && strcmp((exp).X_op_symbol->bsym->name, "$global$") == 0)
1116
1117 #define is_PC_relative(exp) \
1118 ((exp).X_op == O_subtract \
1119 && strcmp((exp).X_op_symbol->bsym->name, "$PIC_pcrel$0") == 0)
1120
1121 #define is_complex(exp) \
1122 ((exp).X_op != O_constant && (exp).X_op != O_symbol)
1123
1124 /* Actual functions to implement the PA specific code for the assembler. */
1125
1126 /* Returns a pointer to the label_symbol_struct for the current space.
1127 or NULL if no label_symbol_struct exists for the current space. */
1128
1129 static label_symbol_struct *
1130 pa_get_label ()
1131 {
1132 label_symbol_struct *label_chain;
1133 sd_chain_struct *space_chain = current_space;
1134
1135 for (label_chain = label_symbols_rootp;
1136 label_chain;
1137 label_chain = label_chain->lss_next)
1138 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1139 return label_chain;
1140
1141 return NULL;
1142 }
1143
1144 /* Defines a label for the current space. If one is already defined,
1145 this function will replace it with the new label. */
1146
1147 void
1148 pa_define_label (symbol)
1149 symbolS *symbol;
1150 {
1151 label_symbol_struct *label_chain = pa_get_label ();
1152 sd_chain_struct *space_chain = current_space;
1153
1154 if (label_chain)
1155 label_chain->lss_label = symbol;
1156 else
1157 {
1158 /* Create a new label entry and add it to the head of the chain. */
1159 label_chain
1160 = (label_symbol_struct *) xmalloc (sizeof (label_symbol_struct));
1161 label_chain->lss_label = symbol;
1162 label_chain->lss_space = space_chain;
1163 label_chain->lss_next = NULL;
1164
1165 if (label_symbols_rootp)
1166 label_chain->lss_next = label_symbols_rootp;
1167
1168 label_symbols_rootp = label_chain;
1169 }
1170 }
1171
1172 /* Removes a label definition for the current space.
1173 If there is no label_symbol_struct entry, then no action is taken. */
1174
1175 static void
1176 pa_undefine_label ()
1177 {
1178 label_symbol_struct *label_chain;
1179 label_symbol_struct *prev_label_chain = NULL;
1180 sd_chain_struct *space_chain = current_space;
1181
1182 for (label_chain = label_symbols_rootp;
1183 label_chain;
1184 label_chain = label_chain->lss_next)
1185 {
1186 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1187 {
1188 /* Remove the label from the chain and free its memory. */
1189 if (prev_label_chain)
1190 prev_label_chain->lss_next = label_chain->lss_next;
1191 else
1192 label_symbols_rootp = label_chain->lss_next;
1193
1194 free (label_chain);
1195 break;
1196 }
1197 prev_label_chain = label_chain;
1198 }
1199 }
1200
1201
1202 /* An HPPA-specific version of fix_new. This is required because the HPPA
1203 code needs to keep track of some extra stuff. Each call to fix_new_hppa
1204 results in the creation of an instance of an hppa_fix_struct. An
1205 hppa_fix_struct stores the extra information along with a pointer to the
1206 original fixS. This is attached to the original fixup via the
1207 tc_fix_data field. */
1208
1209 static void
1210 fix_new_hppa (frag, where, size, add_symbol, offset, exp, pcrel,
1211 r_type, r_field, r_format, arg_reloc, unwind_desc)
1212 fragS *frag;
1213 int where;
1214 short int size;
1215 symbolS *add_symbol;
1216 long offset;
1217 expressionS *exp;
1218 int pcrel;
1219 bfd_reloc_code_real_type r_type;
1220 enum hppa_reloc_field_selector_type r_field;
1221 int r_format;
1222 long arg_reloc;
1223 char *unwind_desc;
1224 {
1225 fixS *new_fix;
1226
1227 struct hppa_fix_struct *hppa_fix = (struct hppa_fix_struct *)
1228 obstack_alloc (&notes, sizeof (struct hppa_fix_struct));
1229
1230 if (exp != NULL)
1231 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
1232 else
1233 new_fix = fix_new (frag, where, size, add_symbol, offset, pcrel, r_type);
1234 new_fix->tc_fix_data = hppa_fix;
1235 hppa_fix->fx_r_type = r_type;
1236 hppa_fix->fx_r_field = r_field;
1237 hppa_fix->fx_r_format = r_format;
1238 hppa_fix->fx_arg_reloc = arg_reloc;
1239 if (unwind_desc)
1240 {
1241 bcopy (unwind_desc, hppa_fix->fx_unwind, 8);
1242
1243 /* If necessary call BFD backend function to attach the
1244 unwind bits to the target dependent parts of a BFD symbol.
1245 Yuk. */
1246 #ifdef obj_attach_unwind_info
1247 obj_attach_unwind_info (add_symbol->bsym, unwind_desc);
1248 #endif
1249 }
1250
1251 /* foo-$global$ is used to access non-automatic storage. $global$
1252 is really just a marker and has served its purpose, so eliminate
1253 it now so as not to confuse write.c. */
1254 if (new_fix->fx_subsy
1255 && !strcmp (S_GET_NAME (new_fix->fx_subsy), "$global$"))
1256 new_fix->fx_subsy = NULL;
1257 }
1258
1259 /* Parse a .byte, .word, .long expression for the HPPA. Called by
1260 cons via the TC_PARSE_CONS_EXPRESSION macro. */
1261
1262 void
1263 parse_cons_expression_hppa (exp)
1264 expressionS *exp;
1265 {
1266 hppa_field_selector = pa_chk_field_selector (&input_line_pointer);
1267 expression (exp);
1268 }
1269
1270 /* This fix_new is called by cons via TC_CONS_FIX_NEW.
1271 hppa_field_selector is set by the parse_cons_expression_hppa. */
1272
1273 void
1274 cons_fix_new_hppa (frag, where, size, exp)
1275 fragS *frag;
1276 int where;
1277 int size;
1278 expressionS *exp;
1279 {
1280 unsigned int reloc_type;
1281
1282 if (is_DP_relative (*exp))
1283 reloc_type = R_HPPA_GOTOFF;
1284 else if (is_complex (*exp))
1285 reloc_type = R_HPPA_COMPLEX;
1286 else
1287 reloc_type = R_HPPA;
1288
1289 if (hppa_field_selector != e_psel && hppa_field_selector != e_fsel)
1290 as_warn ("Invalid field selector. Assuming F%%.");
1291
1292 fix_new_hppa (frag, where, size,
1293 (symbolS *) NULL, (offsetT) 0, exp, 0, reloc_type,
1294 hppa_field_selector, 32, 0, (char *) 0);
1295
1296 /* Reset field selector to its default state. */
1297 hppa_field_selector = 0;
1298 }
1299
1300 /* This function is called once, at assembler startup time. It should
1301 set up all the tables, etc. that the MD part of the assembler will need. */
1302
1303 void
1304 md_begin ()
1305 {
1306 const char *retval = NULL;
1307 int lose = 0;
1308 unsigned int i = 0;
1309
1310 last_call_info = NULL;
1311 call_info_root = NULL;
1312
1313 /* Folding of text and data segments fails miserably on the PA.
1314 Warn user and disable "-R" option. */
1315 if (flagseen['R'])
1316 {
1317 as_warn ("-R option not supported on this target.");
1318 flag_readonly_data_in_text = 0;
1319 flagseen['R'] = 0;
1320 }
1321
1322 pa_spaces_begin ();
1323
1324 op_hash = hash_new ();
1325 if (op_hash == NULL)
1326 as_fatal ("Virtual memory exhausted");
1327
1328 while (i < NUMOPCODES)
1329 {
1330 const char *name = pa_opcodes[i].name;
1331 retval = hash_insert (op_hash, name, (struct pa_opcode *) &pa_opcodes[i]);
1332 if (retval != NULL && *retval != '\0')
1333 {
1334 as_fatal ("Internal error: can't hash `%s': %s\n", name, retval);
1335 lose = 1;
1336 }
1337 do
1338 {
1339 if ((pa_opcodes[i].match & pa_opcodes[i].mask)
1340 != pa_opcodes[i].match)
1341 {
1342 fprintf (stderr, "internal error: losing opcode: `%s' \"%s\"\n",
1343 pa_opcodes[i].name, pa_opcodes[i].args);
1344 lose = 1;
1345 }
1346 ++i;
1347 }
1348 while (i < NUMOPCODES && !strcmp (pa_opcodes[i].name, name));
1349 }
1350
1351 if (lose)
1352 as_fatal ("Broken assembler. No assembly attempted.");
1353
1354 /* SOM will change text_section. To make sure we never put
1355 anything into the old one switch to the new one now. */
1356 subseg_set (text_section, 0);
1357 }
1358
1359 /* Called at the end of assembling a source file. Nothing to do
1360 at this point on the PA. */
1361
1362 void
1363 md_end ()
1364 {
1365 return;
1366 }
1367
1368 /* Assemble a single instruction storing it into a frag. */
1369 void
1370 md_assemble (str)
1371 char *str;
1372 {
1373 char *to;
1374
1375 /* The had better be something to assemble. */
1376 assert (str);
1377
1378 /* Assemble the instruction. Results are saved into "the_insn". */
1379 pa_ip (str);
1380
1381 /* Get somewhere to put the assembled instrution. */
1382 to = frag_more (4);
1383
1384 /* Output the opcode. */
1385 md_number_to_chars (to, the_insn.opcode, 4);
1386
1387 /* If necessary output more stuff. */
1388 if (the_insn.reloc != R_HPPA_NONE)
1389 fix_new_hppa (frag_now, (to - frag_now->fr_literal), 4, NULL,
1390 (offsetT) 0, &the_insn.exp, the_insn.pcrel,
1391 the_insn.reloc, the_insn.field_selector,
1392 the_insn.format, the_insn.arg_reloc, NULL);
1393
1394 }
1395
1396 /* Do the real work for assembling a single instruction. Store results
1397 into the global "the_insn" variable. */
1398
1399 static void
1400 pa_ip (str)
1401 char *str;
1402 {
1403 char *error_message = "";
1404 char *s, c, *argstart, *name, *save_s;
1405 const char *args;
1406 int match = FALSE;
1407 int comma = 0;
1408 int cmpltr, nullif, flag, cond, num;
1409 unsigned long opcode;
1410 struct pa_opcode *insn;
1411
1412 /* Skip to something interesting. */
1413 for (s = str; isupper (*s) || islower (*s) || (*s >= '0' && *s <= '3'); ++s)
1414 ;
1415
1416 switch (*s)
1417 {
1418
1419 case '\0':
1420 break;
1421
1422 case ',':
1423 comma = 1;
1424
1425 /*FALLTHROUGH */
1426
1427 case ' ':
1428 *s++ = '\0';
1429 break;
1430
1431 default:
1432 as_bad ("Unknown opcode: `%s'", str);
1433 exit (1);
1434 }
1435
1436 save_s = str;
1437
1438 /* Convert everything into lower case. */
1439 while (*save_s)
1440 {
1441 if (isupper (*save_s))
1442 *save_s = tolower (*save_s);
1443 save_s++;
1444 }
1445
1446 /* Look up the opcode in the has table. */
1447 if ((insn = (struct pa_opcode *) hash_find (op_hash, str)) == NULL)
1448 {
1449 as_bad ("Unknown opcode: `%s'", str);
1450 return;
1451 }
1452
1453 if (comma)
1454 {
1455 *--s = ',';
1456 }
1457
1458 /* Mark the location where arguments for the instruction start, then
1459 start processing them. */
1460 argstart = s;
1461 for (;;)
1462 {
1463 /* Do some initialization. */
1464 opcode = insn->match;
1465 bzero (&the_insn, sizeof (the_insn));
1466
1467 the_insn.reloc = R_HPPA_NONE;
1468
1469 /* Build the opcode, checking as we go to make
1470 sure that the operands match. */
1471 for (args = insn->args;; ++args)
1472 {
1473 switch (*args)
1474 {
1475
1476 /* End of arguments. */
1477 case '\0':
1478 if (*s == '\0')
1479 match = TRUE;
1480 break;
1481
1482 case '+':
1483 if (*s == '+')
1484 {
1485 ++s;
1486 continue;
1487 }
1488 if (*s == '-')
1489 continue;
1490 break;
1491
1492 /* These must match exactly. */
1493 case '(':
1494 case ')':
1495 case ',':
1496 case ' ':
1497 if (*s++ == *args)
1498 continue;
1499 break;
1500
1501 /* Handle a 5 bit register or control register field at 10. */
1502 case 'b':
1503 case '^':
1504 num = pa_parse_number (&s, 0);
1505 CHECK_FIELD (num, 31, 0, 0);
1506 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
1507
1508 /* Handle a 5 bit register field at 15. */
1509 case 'x':
1510 num = pa_parse_number (&s, 0);
1511 CHECK_FIELD (num, 31, 0, 0);
1512 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1513
1514 /* Handle a 5 bit register field at 31. */
1515 case 'y':
1516 case 't':
1517 num = pa_parse_number (&s, 0);
1518 CHECK_FIELD (num, 31, 0, 0);
1519 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1520
1521 /* Handle a 5 bit field length at 31. */
1522 case 'T':
1523 num = pa_get_absolute_expression (&the_insn, &s);
1524 s = expr_end;
1525 CHECK_FIELD (num, 32, 1, 0);
1526 INSERT_FIELD_AND_CONTINUE (opcode, 32 - num, 0);
1527
1528 /* Handle a 5 bit immediate at 15. */
1529 case '5':
1530 num = pa_get_absolute_expression (&the_insn, &s);
1531 s = expr_end;
1532 CHECK_FIELD (num, 15, -16, 0);
1533 low_sign_unext (num, 5, &num);
1534 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1535
1536 /* Handle a 5 bit immediate at 31. */
1537 case 'V':
1538 num = pa_get_absolute_expression (&the_insn, &s);
1539 s = expr_end;
1540 CHECK_FIELD (num, 15, -16, 0)
1541 low_sign_unext (num, 5, &num);
1542 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1543
1544 /* Handle an unsigned 5 bit immediate at 31. */
1545 case 'r':
1546 num = pa_get_absolute_expression (&the_insn, &s);
1547 s = expr_end;
1548 CHECK_FIELD (num, 31, 0, 0);
1549 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1550
1551 /* Handle an unsigned 5 bit immediate at 15. */
1552 case 'R':
1553 num = pa_get_absolute_expression (&the_insn, &s);
1554 s = expr_end;
1555 CHECK_FIELD (num, 31, 0, 0);
1556 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1557
1558 /* Handle a 2 bit space identifier at 17. */
1559 case 's':
1560 num = pa_parse_number (&s, 0);
1561 CHECK_FIELD (num, 3, 0, 1);
1562 INSERT_FIELD_AND_CONTINUE (opcode, num, 14);
1563
1564 /* Handle a 3 bit space identifier at 18. */
1565 case 'S':
1566 num = pa_parse_number (&s, 0);
1567 CHECK_FIELD (num, 7, 0, 1);
1568 dis_assemble_3 (num, &num);
1569 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
1570
1571 /* Handle a completer for an indexing load or store. */
1572 case 'c':
1573 {
1574 int uu = 0;
1575 int m = 0;
1576 int i = 0;
1577 while (*s == ',' && i < 2)
1578 {
1579 s++;
1580 if (strncasecmp (s, "sm", 2) == 0)
1581 {
1582 uu = 1;
1583 m = 1;
1584 s++;
1585 i++;
1586 }
1587 else if (strncasecmp (s, "m", 1) == 0)
1588 m = 1;
1589 else if (strncasecmp (s, "s", 1) == 0)
1590 uu = 1;
1591 else
1592 as_bad ("Invalid Indexed Load Completer.");
1593 s++;
1594 i++;
1595 }
1596 if (i > 2)
1597 as_bad ("Invalid Indexed Load Completer Syntax.");
1598 opcode |= m << 5;
1599 INSERT_FIELD_AND_CONTINUE (opcode, uu, 13);
1600 }
1601
1602 /* Handle a short load/store completer. */
1603 case 'C':
1604 {
1605 int a = 0;
1606 int m = 0;
1607 if (*s == ',')
1608 {
1609 s++;
1610 if (strncasecmp (s, "ma", 2) == 0)
1611 {
1612 a = 0;
1613 m = 1;
1614 }
1615 else if (strncasecmp (s, "mb", 2) == 0)
1616 {
1617 a = 1;
1618 m = 1;
1619 }
1620 else
1621 as_bad ("Invalid Short Load/Store Completer.");
1622 s += 2;
1623 }
1624 opcode |= m << 5;
1625 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1626 }
1627
1628 /* Handle a stbys completer. */
1629 case 'Y':
1630 {
1631 int a = 0;
1632 int m = 0;
1633 int i = 0;
1634 while (*s == ',' && i < 2)
1635 {
1636 s++;
1637 if (strncasecmp (s, "m", 1) == 0)
1638 m = 1;
1639 else if (strncasecmp (s, "b", 1) == 0)
1640 a = 0;
1641 else if (strncasecmp (s, "e", 1) == 0)
1642 a = 1;
1643 else
1644 as_bad ("Invalid Store Bytes Short Completer");
1645 s++;
1646 i++;
1647 }
1648 if (i > 2)
1649 as_bad ("Invalid Store Bytes Short Completer");
1650 opcode |= m << 5;
1651 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1652 }
1653
1654 /* Handle a non-negated compare/stubtract condition. */
1655 case '<':
1656 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
1657 if (cmpltr < 0)
1658 {
1659 as_bad ("Invalid Compare/Subtract Condition: %c", *s);
1660 cmpltr = 0;
1661 }
1662 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1663
1664 /* Handle a negated or non-negated compare/subtract condition. */
1665 case '?':
1666 save_s = s;
1667 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
1668 if (cmpltr < 0)
1669 {
1670 s = save_s;
1671 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 1);
1672 if (cmpltr < 0)
1673 {
1674 as_bad ("Invalid Compare/Subtract Condition.");
1675 cmpltr = 0;
1676 }
1677 else
1678 {
1679 /* Negated condition requires an opcode change. */
1680 opcode |= 1 << 27;
1681 }
1682 }
1683 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1684
1685 /* Handle a negated or non-negated add condition. */
1686 case '!':
1687 save_s = s;
1688 cmpltr = pa_parse_nonneg_add_cmpltr (&s, 1);
1689 if (cmpltr < 0)
1690 {
1691 s = save_s;
1692 cmpltr = pa_parse_neg_add_cmpltr (&s, 1);
1693 if (cmpltr < 0)
1694 {
1695 as_bad ("Invalid Compare/Subtract Condition");
1696 cmpltr = 0;
1697 }
1698 else
1699 {
1700 /* Negated condition requires an opcode change. */
1701 opcode |= 1 << 27;
1702 }
1703 }
1704 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1705
1706 /* Handle a compare/subtract condition. */
1707 case 'a':
1708 cmpltr = 0;
1709 flag = 0;
1710 save_s = s;
1711 if (*s == ',')
1712 {
1713 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 0);
1714 if (cmpltr < 0)
1715 {
1716 flag = 1;
1717 s = save_s;
1718 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 0);
1719 if (cmpltr < 0)
1720 {
1721 as_bad ("Invalid Compare/Subtract Condition");
1722 }
1723 }
1724 }
1725 opcode |= cmpltr << 13;
1726 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1727
1728 /* Handle a non-negated add condition. */
1729 case 'd':
1730 cmpltr = 0;
1731 nullif = 0;
1732 flag = 0;
1733 if (*s == ',')
1734 {
1735 s++;
1736 name = s;
1737 while (*s != ',' && *s != ' ' && *s != '\t')
1738 s += 1;
1739 c = *s;
1740 *s = 0x00;
1741 if (strcmp (name, "=") == 0)
1742 cmpltr = 1;
1743 else if (strcmp (name, "<") == 0)
1744 cmpltr = 2;
1745 else if (strcmp (name, "<=") == 0)
1746 cmpltr = 3;
1747 else if (strcasecmp (name, "nuv") == 0)
1748 cmpltr = 4;
1749 else if (strcasecmp (name, "znv") == 0)
1750 cmpltr = 5;
1751 else if (strcasecmp (name, "sv") == 0)
1752 cmpltr = 6;
1753 else if (strcasecmp (name, "od") == 0)
1754 cmpltr = 7;
1755 else if (strcasecmp (name, "n") == 0)
1756 nullif = 1;
1757 else if (strcasecmp (name, "tr") == 0)
1758 {
1759 cmpltr = 0;
1760 flag = 1;
1761 }
1762 else if (strcasecmp (name, "<>") == 0)
1763 {
1764 cmpltr = 1;
1765 flag = 1;
1766 }
1767 else if (strcasecmp (name, ">=") == 0)
1768 {
1769 cmpltr = 2;
1770 flag = 1;
1771 }
1772 else if (strcasecmp (name, ">") == 0)
1773 {
1774 cmpltr = 3;
1775 flag = 1;
1776 }
1777 else if (strcasecmp (name, "uv") == 0)
1778 {
1779 cmpltr = 4;
1780 flag = 1;
1781 }
1782 else if (strcasecmp (name, "vnz") == 0)
1783 {
1784 cmpltr = 5;
1785 flag = 1;
1786 }
1787 else if (strcasecmp (name, "nsv") == 0)
1788 {
1789 cmpltr = 6;
1790 flag = 1;
1791 }
1792 else if (strcasecmp (name, "ev") == 0)
1793 {
1794 cmpltr = 7;
1795 flag = 1;
1796 }
1797 else
1798 as_bad ("Invalid Add Condition: %s", name);
1799 *s = c;
1800 }
1801 nullif = pa_parse_nullif (&s);
1802 opcode |= nullif << 1;
1803 opcode |= cmpltr << 13;
1804 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1805
1806 /* HANDLE a logical instruction condition. */
1807 case '&':
1808 cmpltr = 0;
1809 flag = 0;
1810 if (*s == ',')
1811 {
1812 s++;
1813 name = s;
1814 while (*s != ',' && *s != ' ' && *s != '\t')
1815 s += 1;
1816 c = *s;
1817 *s = 0x00;
1818 if (strcmp (name, "=") == 0)
1819 cmpltr = 1;
1820 else if (strcmp (name, "<") == 0)
1821 cmpltr = 2;
1822 else if (strcmp (name, "<=") == 0)
1823 cmpltr = 3;
1824 else if (strcasecmp (name, "od") == 0)
1825 cmpltr = 7;
1826 else if (strcasecmp (name, "tr") == 0)
1827 {
1828 cmpltr = 0;
1829 flag = 1;
1830 }
1831 else if (strcmp (name, "<>") == 0)
1832 {
1833 cmpltr = 1;
1834 flag = 1;
1835 }
1836 else if (strcmp (name, ">=") == 0)
1837 {
1838 cmpltr = 2;
1839 flag = 1;
1840 }
1841 else if (strcmp (name, ">") == 0)
1842 {
1843 cmpltr = 3;
1844 flag = 1;
1845 }
1846 else if (strcasecmp (name, "ev") == 0)
1847 {
1848 cmpltr = 7;
1849 flag = 1;
1850 }
1851 else
1852 as_bad ("Invalid Logical Instruction Condition.");
1853 *s = c;
1854 }
1855 opcode |= cmpltr << 13;
1856 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1857
1858 /* Handle a unit instruction condition. */
1859 case 'U':
1860 cmpltr = 0;
1861 flag = 0;
1862 if (*s == ',')
1863 {
1864 s++;
1865 if (strncasecmp (s, "sbz", 3) == 0)
1866 {
1867 cmpltr = 2;
1868 s += 3;
1869 }
1870 else if (strncasecmp (s, "shz", 3) == 0)
1871 {
1872 cmpltr = 3;
1873 s += 3;
1874 }
1875 else if (strncasecmp (s, "sdc", 3) == 0)
1876 {
1877 cmpltr = 4;
1878 s += 3;
1879 }
1880 else if (strncasecmp (s, "sbc", 3) == 0)
1881 {
1882 cmpltr = 6;
1883 s += 3;
1884 }
1885 else if (strncasecmp (s, "shc", 3) == 0)
1886 {
1887 cmpltr = 7;
1888 s += 3;
1889 }
1890 else if (strncasecmp (s, "tr", 2) == 0)
1891 {
1892 cmpltr = 0;
1893 flag = 1;
1894 s += 2;
1895 }
1896 else if (strncasecmp (s, "nbz", 3) == 0)
1897 {
1898 cmpltr = 2;
1899 flag = 1;
1900 s += 3;
1901 }
1902 else if (strncasecmp (s, "nhz", 3) == 0)
1903 {
1904 cmpltr = 3;
1905 flag = 1;
1906 s += 3;
1907 }
1908 else if (strncasecmp (s, "ndc", 3) == 0)
1909 {
1910 cmpltr = 4;
1911 flag = 1;
1912 s += 3;
1913 }
1914 else if (strncasecmp (s, "nbc", 3) == 0)
1915 {
1916 cmpltr = 6;
1917 flag = 1;
1918 s += 3;
1919 }
1920 else if (strncasecmp (s, "nhc", 3) == 0)
1921 {
1922 cmpltr = 7;
1923 flag = 1;
1924 s += 3;
1925 }
1926 else
1927 as_bad ("Invalid Logical Instruction Condition.");
1928 }
1929 opcode |= cmpltr << 13;
1930 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1931
1932 /* Handle a shift/extract/deposit condition. */
1933 case '|':
1934 case '>':
1935 cmpltr = 0;
1936 if (*s == ',')
1937 {
1938 save_s = s++;
1939 name = s;
1940 while (*s != ',' && *s != ' ' && *s != '\t')
1941 s += 1;
1942 c = *s;
1943 *s = 0x00;
1944 if (strcmp (name, "=") == 0)
1945 cmpltr = 1;
1946 else if (strcmp (name, "<") == 0)
1947 cmpltr = 2;
1948 else if (strcasecmp (name, "od") == 0)
1949 cmpltr = 3;
1950 else if (strcasecmp (name, "tr") == 0)
1951 cmpltr = 4;
1952 else if (strcmp (name, "<>") == 0)
1953 cmpltr = 5;
1954 else if (strcmp (name, ">=") == 0)
1955 cmpltr = 6;
1956 else if (strcasecmp (name, "ev") == 0)
1957 cmpltr = 7;
1958 /* Handle movb,n. Put things back the way they were.
1959 This includes moving s back to where it started. */
1960 else if (strcasecmp (name, "n") == 0 && *args == '|')
1961 {
1962 *s = c;
1963 s = save_s;
1964 continue;
1965 }
1966 else
1967 as_bad ("Invalid Shift/Extract/Deposit Condition.");
1968 *s = c;
1969 }
1970 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1971
1972 /* Handle bvb and bb conditions. */
1973 case '~':
1974 cmpltr = 0;
1975 if (*s == ',')
1976 {
1977 s++;
1978 if (strncmp (s, "<", 1) == 0)
1979 {
1980 cmpltr = 2;
1981 s++;
1982 }
1983 else if (strncmp (s, ">=", 2) == 0)
1984 {
1985 cmpltr = 6;
1986 s += 2;
1987 }
1988 else
1989 as_bad ("Invalid Bit Branch Condition: %c", *s);
1990 }
1991 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1992
1993 /* Handle a system control completer. */
1994 case 'Z':
1995 if (*s == ',' && (*(s + 1) == 'm' || *(s + 1) == 'M'))
1996 {
1997 flag = 1;
1998 s += 2;
1999 }
2000 else
2001 flag = 0;
2002
2003 INSERT_FIELD_AND_CONTINUE (opcode, flag, 5);
2004
2005 /* Handle a nullification completer for branch instructions. */
2006 case 'n':
2007 nullif = pa_parse_nullif (&s);
2008 INSERT_FIELD_AND_CONTINUE (opcode, nullif, 1);
2009
2010 /* Handle a 11 bit immediate at 31. */
2011 case 'i':
2012 the_insn.field_selector = pa_chk_field_selector (&s);
2013 get_expression (s);
2014 s = expr_end;
2015 if (the_insn.exp.X_op == O_constant)
2016 {
2017 num = evaluate_absolute (&the_insn);
2018 CHECK_FIELD (num, 1023, -1024, 0);
2019 low_sign_unext (num, 11, &num);
2020 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2021 }
2022 else
2023 {
2024 if (is_DP_relative (the_insn.exp))
2025 the_insn.reloc = R_HPPA_GOTOFF;
2026 else if (is_PC_relative (the_insn.exp))
2027 the_insn.reloc = R_HPPA_PCREL_CALL;
2028 else if (is_complex (the_insn.exp))
2029 the_insn.reloc = R_HPPA_COMPLEX;
2030 else
2031 the_insn.reloc = R_HPPA;
2032 the_insn.format = 11;
2033 continue;
2034 }
2035
2036 /* Handle a 14 bit immediate at 31. */
2037 case 'j':
2038 the_insn.field_selector = pa_chk_field_selector (&s);
2039 get_expression (s);
2040 s = expr_end;
2041 if (the_insn.exp.X_op == O_constant)
2042 {
2043 num = evaluate_absolute (&the_insn);
2044 CHECK_FIELD (num, 8191, -8192, 0);
2045 low_sign_unext (num, 14, &num);
2046 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2047 }
2048 else
2049 {
2050 if (is_DP_relative (the_insn.exp))
2051 the_insn.reloc = R_HPPA_GOTOFF;
2052 else if (is_PC_relative (the_insn.exp))
2053 the_insn.reloc = R_HPPA_PCREL_CALL;
2054 else if (is_complex (the_insn.exp))
2055 the_insn.reloc = R_HPPA_COMPLEX;
2056 else
2057 the_insn.reloc = R_HPPA;
2058 the_insn.format = 14;
2059 continue;
2060 }
2061
2062 /* Handle a 21 bit immediate at 31. */
2063 case 'k':
2064 the_insn.field_selector = pa_chk_field_selector (&s);
2065 get_expression (s);
2066 s = expr_end;
2067 if (the_insn.exp.X_op == O_constant)
2068 {
2069 num = evaluate_absolute (&the_insn);
2070 CHECK_FIELD (num >> 11, 1048575, -1048576, 0);
2071 dis_assemble_21 (num, &num);
2072 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2073 }
2074 else
2075 {
2076 if (is_DP_relative (the_insn.exp))
2077 the_insn.reloc = R_HPPA_GOTOFF;
2078 else if (is_PC_relative (the_insn.exp))
2079 the_insn.reloc = R_HPPA_PCREL_CALL;
2080 else if (is_complex (the_insn.exp))
2081 the_insn.reloc = R_HPPA_COMPLEX;
2082 else
2083 the_insn.reloc = R_HPPA;
2084 the_insn.format = 21;
2085 continue;
2086 }
2087
2088 /* Handle a 12 bit branch displacement. */
2089 case 'w':
2090 the_insn.field_selector = pa_chk_field_selector (&s);
2091 get_expression (s);
2092 s = expr_end;
2093 the_insn.pcrel = 1;
2094 if (!strcmp (S_GET_NAME (the_insn.exp.X_add_symbol), "L$0\001"))
2095 {
2096 unsigned int w1, w, result;
2097
2098 num = evaluate_absolute (&the_insn);
2099 if (num % 4)
2100 {
2101 as_bad ("Branch to unaligned address");
2102 break;
2103 }
2104 CHECK_FIELD (num, 8191, -8192, 0);
2105 sign_unext ((num - 8) >> 2, 12, &result);
2106 dis_assemble_12 (result, &w1, &w);
2107 INSERT_FIELD_AND_CONTINUE (opcode, ((w1 << 2) | w), 0);
2108 }
2109 else
2110 {
2111 if (is_complex (the_insn.exp))
2112 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2113 else
2114 the_insn.reloc = R_HPPA_PCREL_CALL;
2115 the_insn.format = 12;
2116 the_insn.arg_reloc = last_call_desc.arg_reloc;
2117 bzero (&last_call_desc, sizeof (struct call_desc));
2118 s = expr_end;
2119 continue;
2120 }
2121
2122 /* Handle a 17 bit branch displacement. */
2123 case 'W':
2124 the_insn.field_selector = pa_chk_field_selector (&s);
2125 get_expression (s);
2126 s = expr_end;
2127 the_insn.pcrel = 1;
2128 if (!the_insn.exp.X_add_symbol
2129 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2130 "L$0\001"))
2131 {
2132 unsigned int w2, w1, w, result;
2133
2134 num = evaluate_absolute (&the_insn);
2135 if (num % 4)
2136 {
2137 as_bad ("Branch to unaligned address");
2138 break;
2139 }
2140 CHECK_FIELD (num, 262143, -262144, 0);
2141
2142 if (the_insn.exp.X_add_symbol)
2143 num -= 8;
2144
2145 sign_unext (num >> 2, 17, &result);
2146 dis_assemble_17 (result, &w1, &w2, &w);
2147 INSERT_FIELD_AND_CONTINUE (opcode,
2148 ((w2 << 2) | (w1 << 16) | w), 0);
2149 }
2150 else
2151 {
2152 if (is_complex (the_insn.exp))
2153 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2154 else
2155 the_insn.reloc = R_HPPA_PCREL_CALL;
2156 the_insn.format = 17;
2157 the_insn.arg_reloc = last_call_desc.arg_reloc;
2158 bzero (&last_call_desc, sizeof (struct call_desc));
2159 continue;
2160 }
2161
2162 /* Handle an absolute 17 bit branch target. */
2163 case 'z':
2164 the_insn.field_selector = pa_chk_field_selector (&s);
2165 get_expression (s);
2166 s = expr_end;
2167 the_insn.pcrel = 0;
2168 if (!the_insn.exp.X_add_symbol
2169 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2170 "L$0\001"))
2171 {
2172 unsigned int w2, w1, w, result;
2173
2174 num = evaluate_absolute (&the_insn);
2175 if (num % 4)
2176 {
2177 as_bad ("Branch to unaligned address");
2178 break;
2179 }
2180 CHECK_FIELD (num, 262143, -262144, 0);
2181
2182 if (the_insn.exp.X_add_symbol)
2183 num -= 8;
2184
2185 sign_unext (num >> 2, 17, &result);
2186 dis_assemble_17 (result, &w1, &w2, &w);
2187 INSERT_FIELD_AND_CONTINUE (opcode,
2188 ((w2 << 2) | (w1 << 16) | w), 0);
2189 }
2190 else
2191 {
2192 if (is_complex (the_insn.exp))
2193 the_insn.reloc = R_HPPA_COMPLEX_ABS_CALL;
2194 else
2195 the_insn.reloc = R_HPPA_ABS_CALL;
2196 the_insn.format = 17;
2197 continue;
2198 }
2199
2200 /* Handle a 5 bit shift count at 26. */
2201 case 'p':
2202 num = pa_get_absolute_expression (&the_insn, &s);
2203 s = expr_end;
2204 CHECK_FIELD (num, 31, 0, 0);
2205 INSERT_FIELD_AND_CONTINUE (opcode, 31 - num, 5);
2206
2207 /* Handle a 5 bit bit position at 26. */
2208 case 'P':
2209 num = pa_get_absolute_expression (&the_insn, &s);
2210 s = expr_end;
2211 CHECK_FIELD (num, 31, 0, 0);
2212 INSERT_FIELD_AND_CONTINUE (opcode, num, 5);
2213
2214 /* Handle a 5 bit immediate at 10. */
2215 case 'Q':
2216 num = pa_get_absolute_expression (&the_insn, &s);
2217 s = expr_end;
2218 CHECK_FIELD (num, 31, 0, 0);
2219 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
2220
2221 /* Handle a 13 bit immediate at 18. */
2222 case 'A':
2223 num = pa_get_absolute_expression (&the_insn, &s);
2224 s = expr_end;
2225 CHECK_FIELD (num, 4095, -4096, 0);
2226 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
2227
2228 /* Handle a 26 bit immediate at 31. */
2229 case 'D':
2230 num = pa_get_absolute_expression (&the_insn, &s);
2231 s = expr_end;
2232 CHECK_FIELD (num, 671108864, 0, 0);
2233 INSERT_FIELD_AND_CONTINUE (opcode, num, 1);
2234
2235 /* Handle a 3 bit SFU identifier at 25. */
2236 case 'f':
2237 num = pa_get_absolute_expression (&the_insn, &s);
2238 s = expr_end;
2239 CHECK_FIELD (num, 7, 0, 0);
2240 INSERT_FIELD_AND_CONTINUE (opcode, num, 6);
2241
2242 /* We don't support any of these. FIXME. */
2243 case 'O':
2244 get_expression (s);
2245 s = expr_end;
2246 abort ();
2247 continue;
2248
2249 /* Handle a source FP operand format completer. */
2250 case 'F':
2251 flag = pa_parse_fp_format (&s);
2252 the_insn.fpof1 = flag;
2253 INSERT_FIELD_AND_CONTINUE (opcode, flag, 11);
2254
2255 /* Handle a destination FP operand format completer. */
2256 case 'G':
2257 /* pa_parse_format needs the ',' prefix. */
2258 s--;
2259 flag = pa_parse_fp_format (&s);
2260 the_insn.fpof2 = flag;
2261 INSERT_FIELD_AND_CONTINUE (opcode, flag, 13);
2262
2263 /* Handle FP compare conditions. */
2264 case 'M':
2265 cond = pa_parse_fp_cmp_cond (&s);
2266 INSERT_FIELD_AND_CONTINUE (opcode, cond, 0);
2267
2268 /* Handle L/R register halves like 't'. */
2269 case 'v':
2270 {
2271 struct pa_89_fp_reg_struct result;
2272
2273 pa_parse_number (&s, &result);
2274 CHECK_FIELD (result.number_part, 31, 0, 0);
2275 opcode |= result.number_part;
2276
2277 /* 0x30 opcodes are FP arithmetic operation opcodes
2278 and need to be turned into 0x38 opcodes. This
2279 is not necessary for loads/stores. */
2280 if (need_89_opcode (&the_insn, &result)
2281 && ((opcode & 0xfc000000) == 0x30000000))
2282 opcode |= 1 << 27;
2283
2284 INSERT_FIELD_AND_CONTINUE (opcode, result.l_r_select & 1, 6);
2285 }
2286
2287 /* Handle L/R register halves like 'b'. */
2288 case 'E':
2289 {
2290 struct pa_89_fp_reg_struct result;
2291
2292 pa_parse_number (&s, &result);
2293 CHECK_FIELD (result.number_part, 31, 0, 0);
2294 opcode |= result.number_part << 21;
2295 if (need_89_opcode (&the_insn, &result))
2296 {
2297 opcode |= (result.l_r_select & 1) << 7;
2298 opcode |= 1 << 27;
2299 }
2300 continue;
2301 }
2302
2303 /* Handle L/R register halves like 'x'. */
2304 case 'X':
2305 {
2306 struct pa_89_fp_reg_struct result;
2307
2308 pa_parse_number (&s, &result);
2309 CHECK_FIELD (result.number_part, 31, 0, 0);
2310 opcode |= (result.number_part & 0x1f) << 16;
2311 if (need_89_opcode (&the_insn, &result))
2312 {
2313 opcode |= (result.l_r_select & 1) << 12;
2314 opcode |= 1 << 27;
2315 }
2316 continue;
2317 }
2318
2319 /* Handle a 5 bit register field at 10. */
2320 case '4':
2321 {
2322 struct pa_89_fp_reg_struct result;
2323
2324 pa_parse_number (&s, &result);
2325 CHECK_FIELD (result.number_part, 31, 0, 0);
2326 if (the_insn.fpof1 == SGL)
2327 {
2328 result.number_part &= 0xF;
2329 result.number_part |= (result.l_r_select & 1) << 4;
2330 }
2331 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 21);
2332 }
2333
2334 /* Handle a 5 bit register field at 15. */
2335 case '6':
2336 {
2337 struct pa_89_fp_reg_struct result;
2338
2339 pa_parse_number (&s, &result);
2340 CHECK_FIELD (result.number_part, 31, 0, 0);
2341 if (the_insn.fpof1 == SGL)
2342 {
2343 result.number_part &= 0xF;
2344 result.number_part |= (result.l_r_select & 1) << 4;
2345 }
2346 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 16);
2347 }
2348
2349 /* Handle a 5 bit register field at 31. */
2350 case '7':
2351 {
2352 struct pa_89_fp_reg_struct result;
2353
2354 pa_parse_number (&s, &result);
2355 CHECK_FIELD (result.number_part, 31, 0, 0);
2356 if (the_insn.fpof1 == SGL)
2357 {
2358 result.number_part &= 0xF;
2359 result.number_part |= (result.l_r_select & 1) << 4;
2360 }
2361 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 0);
2362 }
2363
2364 /* Handle a 5 bit register field at 20. */
2365 case '8':
2366 {
2367 struct pa_89_fp_reg_struct result;
2368
2369 pa_parse_number (&s, &result);
2370 CHECK_FIELD (result.number_part, 31, 0, 0);
2371 if (the_insn.fpof1 == SGL)
2372 {
2373 result.number_part &= 0xF;
2374 result.number_part |= (result.l_r_select & 1) << 4;
2375 }
2376 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 11);
2377 }
2378
2379 /* Handle a 5 bit register field at 25. */
2380 case '9':
2381 {
2382 struct pa_89_fp_reg_struct result;
2383
2384 pa_parse_number (&s, &result);
2385 CHECK_FIELD (result.number_part, 31, 0, 0);
2386 if (the_insn.fpof1 == SGL)
2387 {
2388 result.number_part &= 0xF;
2389 result.number_part |= (result.l_r_select & 1) << 4;
2390 }
2391 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 6);
2392 }
2393
2394 /* Handle a floating point operand format at 26.
2395 Only allows single and double precision. */
2396 case 'H':
2397 flag = pa_parse_fp_format (&s);
2398 switch (flag)
2399 {
2400 case SGL:
2401 opcode |= 0x20;
2402 case DBL:
2403 the_insn.fpof1 = flag;
2404 continue;
2405
2406 case QUAD:
2407 case ILLEGAL_FMT:
2408 default:
2409 as_bad ("Invalid Floating Point Operand Format.");
2410 }
2411 break;
2412
2413 default:
2414 abort ();
2415 }
2416 break;
2417 }
2418
2419 /* Check if the args matched. */
2420 if (match == FALSE)
2421 {
2422 if (&insn[1] - pa_opcodes < NUMOPCODES
2423 && !strcmp (insn->name, insn[1].name))
2424 {
2425 ++insn;
2426 s = argstart;
2427 continue;
2428 }
2429 else
2430 {
2431 as_bad ("Invalid operands %s", error_message);
2432 return;
2433 }
2434 }
2435 break;
2436 }
2437
2438 the_insn.opcode = opcode;
2439 return;
2440 }
2441
2442 /* Turn a string in input_line_pointer into a floating point constant of type
2443 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
2444 emitted is stored in *sizeP . An error message or NULL is returned. */
2445
2446 #define MAX_LITTLENUMS 6
2447
2448 char *
2449 md_atof (type, litP, sizeP)
2450 char type;
2451 char *litP;
2452 int *sizeP;
2453 {
2454 int prec;
2455 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2456 LITTLENUM_TYPE *wordP;
2457 char *t;
2458
2459 switch (type)
2460 {
2461
2462 case 'f':
2463 case 'F':
2464 case 's':
2465 case 'S':
2466 prec = 2;
2467 break;
2468
2469 case 'd':
2470 case 'D':
2471 case 'r':
2472 case 'R':
2473 prec = 4;
2474 break;
2475
2476 case 'x':
2477 case 'X':
2478 prec = 6;
2479 break;
2480
2481 case 'p':
2482 case 'P':
2483 prec = 6;
2484 break;
2485
2486 default:
2487 *sizeP = 0;
2488 return "Bad call to MD_ATOF()";
2489 }
2490 t = atof_ieee (input_line_pointer, type, words);
2491 if (t)
2492 input_line_pointer = t;
2493 *sizeP = prec * sizeof (LITTLENUM_TYPE);
2494 for (wordP = words; prec--;)
2495 {
2496 md_number_to_chars (litP, (valueT) (*wordP++), sizeof (LITTLENUM_TYPE));
2497 litP += sizeof (LITTLENUM_TYPE);
2498 }
2499 return NULL;
2500 }
2501
2502 /* Write out big-endian. */
2503
2504 void
2505 md_number_to_chars (buf, val, n)
2506 char *buf;
2507 valueT val;
2508 int n;
2509 {
2510 number_to_chars_bigendian (buf, val, n);
2511 }
2512
2513 /* Translate internal representation of relocation info to BFD target
2514 format. */
2515
2516 arelent **
2517 tc_gen_reloc (section, fixp)
2518 asection *section;
2519 fixS *fixp;
2520 {
2521 arelent *reloc;
2522 struct hppa_fix_struct *hppa_fixp = fixp->tc_fix_data;
2523 bfd_reloc_code_real_type code;
2524 static int unwind_reloc_fixp_cnt = 0;
2525 static arelent *unwind_reloc_entryP = NULL;
2526 static arelent *no_relocs = NULL;
2527 arelent **relocs;
2528 bfd_reloc_code_real_type **codes;
2529 int n_relocs;
2530 int i;
2531
2532 if (fixp->fx_addsy == 0)
2533 return &no_relocs;
2534 assert (hppa_fixp != 0);
2535 assert (section != 0);
2536
2537 #ifdef OBJ_ELF
2538 /* Yuk. I would really like to push all this ELF specific unwind
2539 crud into BFD and the linker. That's how SOM does it -- and
2540 if we could make ELF emulate that then we could share more code
2541 in GAS (and potentially a gnu-linker later).
2542
2543 Unwind section relocations are handled in a special way.
2544 The relocations for the .unwind section are originally
2545 built in the usual way. That is, for each unwind table
2546 entry there are two relocations: one for the beginning of
2547 the function and one for the end.
2548
2549 The first time we enter this function we create a
2550 relocation of the type R_HPPA_UNWIND_ENTRIES. The addend
2551 of the relocation is initialized to 0. Each additional
2552 pair of times this function is called for the unwind
2553 section represents an additional unwind table entry. Thus,
2554 the addend of the relocation should end up to be the number
2555 of unwind table entries. */
2556 if (strcmp (UNWIND_SECTION_NAME, section->name) == 0)
2557 {
2558 if (unwind_reloc_entryP == NULL)
2559 {
2560 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
2561 sizeof (arelent));
2562 assert (reloc != 0);
2563 unwind_reloc_entryP = reloc;
2564 unwind_reloc_fixp_cnt++;
2565 unwind_reloc_entryP->address
2566 = fixp->fx_frag->fr_address + fixp->fx_where;
2567 /* A pointer to any function will do. We only
2568 need one to tell us what section the unwind
2569 relocations are for. */
2570 unwind_reloc_entryP->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2571 hppa_fixp->fx_r_type = code = R_HPPA_UNWIND_ENTRIES;
2572 fixp->fx_r_type = R_HPPA_UNWIND;
2573 unwind_reloc_entryP->howto = bfd_reloc_type_lookup (stdoutput, code);
2574 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
2575 relocs = (arelent **) bfd_alloc_by_size_t (stdoutput,
2576 sizeof (arelent *) * 2);
2577 assert (relocs != 0);
2578 relocs[0] = unwind_reloc_entryP;
2579 relocs[1] = NULL;
2580 return relocs;
2581 }
2582 unwind_reloc_fixp_cnt++;
2583 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
2584
2585 return &no_relocs;
2586 }
2587 #endif
2588
2589 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent));
2590 assert (reloc != 0);
2591
2592 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2593 codes = hppa_gen_reloc_type (stdoutput,
2594 fixp->fx_r_type,
2595 hppa_fixp->fx_r_format,
2596 hppa_fixp->fx_r_field);
2597
2598 for (n_relocs = 0; codes[n_relocs]; n_relocs++)
2599 ;
2600
2601 relocs = (arelent **)
2602 bfd_alloc_by_size_t (stdoutput, sizeof (arelent *) * n_relocs + 1);
2603 assert (relocs != 0);
2604
2605 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
2606 sizeof (arelent) * n_relocs);
2607 if (n_relocs > 0)
2608 assert (reloc != 0);
2609
2610 for (i = 0; i < n_relocs; i++)
2611 relocs[i] = &reloc[i];
2612
2613 relocs[n_relocs] = NULL;
2614
2615 #ifdef OBJ_ELF
2616 switch (fixp->fx_r_type)
2617 {
2618 case R_HPPA_COMPLEX:
2619 case R_HPPA_COMPLEX_PCREL_CALL:
2620 case R_HPPA_COMPLEX_ABS_CALL:
2621 assert (n_relocs == 5);
2622
2623 for (i = 0; i < n_relocs; i++)
2624 {
2625 reloc[i].sym_ptr_ptr = NULL;
2626 reloc[i].address = 0;
2627 reloc[i].addend = 0;
2628 reloc[i].howto = bfd_reloc_type_lookup (stdoutput, *codes[i]);
2629 assert (reloc[i].howto && *codes[i] == reloc[i].howto->type);
2630 }
2631
2632 reloc[0].sym_ptr_ptr = &fixp->fx_addsy->bsym;
2633 reloc[1].sym_ptr_ptr = &fixp->fx_subsy->bsym;
2634 reloc[4].address = fixp->fx_frag->fr_address + fixp->fx_where;
2635
2636 if (fixp->fx_r_type == R_HPPA_COMPLEX)
2637 reloc[3].addend = fixp->fx_addnumber;
2638 else if (fixp->fx_r_type == R_HPPA_COMPLEX_PCREL_CALL ||
2639 fixp->fx_r_type == R_HPPA_COMPLEX_ABS_CALL)
2640 reloc[1].addend = fixp->fx_addnumber;
2641
2642 break;
2643
2644 default:
2645 assert (n_relocs == 1);
2646
2647 code = *codes[0];
2648
2649 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2650 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
2651 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
2652 reloc->addend = 0; /* default */
2653
2654 assert (reloc->howto && code == reloc->howto->type);
2655
2656 /* Now, do any processing that is dependent on the relocation type. */
2657 switch (code)
2658 {
2659 case R_HPPA_PLABEL_32:
2660 case R_HPPA_PLABEL_11:
2661 case R_HPPA_PLABEL_14:
2662 case R_HPPA_PLABEL_L21:
2663 case R_HPPA_PLABEL_R11:
2664 case R_HPPA_PLABEL_R14:
2665 /* For plabel relocations, the addend of the
2666 relocation should be either 0 (no static link) or 2
2667 (static link required).
2668
2669 FIXME: We always assume no static link! */
2670 reloc->addend = 0;
2671 break;
2672
2673 case R_HPPA_ABS_CALL_11:
2674 case R_HPPA_ABS_CALL_14:
2675 case R_HPPA_ABS_CALL_17:
2676 case R_HPPA_ABS_CALL_L21:
2677 case R_HPPA_ABS_CALL_R11:
2678 case R_HPPA_ABS_CALL_R14:
2679 case R_HPPA_ABS_CALL_R17:
2680 case R_HPPA_ABS_CALL_LS21:
2681 case R_HPPA_ABS_CALL_RS11:
2682 case R_HPPA_ABS_CALL_RS14:
2683 case R_HPPA_ABS_CALL_RS17:
2684 case R_HPPA_ABS_CALL_LD21:
2685 case R_HPPA_ABS_CALL_RD11:
2686 case R_HPPA_ABS_CALL_RD14:
2687 case R_HPPA_ABS_CALL_RD17:
2688 case R_HPPA_ABS_CALL_LR21:
2689 case R_HPPA_ABS_CALL_RR14:
2690 case R_HPPA_ABS_CALL_RR17:
2691
2692 case R_HPPA_PCREL_CALL_11:
2693 case R_HPPA_PCREL_CALL_14:
2694 case R_HPPA_PCREL_CALL_17:
2695 case R_HPPA_PCREL_CALL_L21:
2696 case R_HPPA_PCREL_CALL_R11:
2697 case R_HPPA_PCREL_CALL_R14:
2698 case R_HPPA_PCREL_CALL_R17:
2699 case R_HPPA_PCREL_CALL_LS21:
2700 case R_HPPA_PCREL_CALL_RS11:
2701 case R_HPPA_PCREL_CALL_RS14:
2702 case R_HPPA_PCREL_CALL_RS17:
2703 case R_HPPA_PCREL_CALL_LD21:
2704 case R_HPPA_PCREL_CALL_RD11:
2705 case R_HPPA_PCREL_CALL_RD14:
2706 case R_HPPA_PCREL_CALL_RD17:
2707 case R_HPPA_PCREL_CALL_LR21:
2708 case R_HPPA_PCREL_CALL_RR14:
2709 case R_HPPA_PCREL_CALL_RR17:
2710 /* The constant is stored in the instruction. */
2711 reloc->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
2712 break;
2713 default:
2714 reloc->addend = fixp->fx_addnumber;
2715 break;
2716 }
2717 break;
2718 }
2719 #else /* OBJ_SOM */
2720
2721 /* Walk over reach relocation returned by the BFD backend. */
2722 for (i = 0; i < n_relocs; i++)
2723 {
2724 code = *codes[i];
2725
2726 relocs[i]->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2727 relocs[i]->howto = bfd_reloc_type_lookup (stdoutput, code);
2728 relocs[i]->address = fixp->fx_frag->fr_address + fixp->fx_where;
2729
2730 switch (code)
2731 {
2732 case R_PCREL_CALL:
2733 case R_ABS_CALL:
2734 relocs[i]->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
2735 break;
2736
2737 case R_DATA_PLABEL:
2738 case R_CODE_PLABEL:
2739 /* For plabel relocations, the addend of the
2740 relocation should be either 0 (no static link) or 2
2741 (static link required).
2742
2743 FIXME: We always assume no static link! */
2744 relocs[i]->addend = 0;
2745 break;
2746
2747 case R_N_MODE:
2748 case R_S_MODE:
2749 case R_D_MODE:
2750 case R_R_MODE:
2751 /* There is no symbol or addend associated with these fixups. */
2752 relocs[i]->sym_ptr_ptr = 0;
2753 relocs[i]->addend = 0;
2754 break;
2755
2756 default:
2757 relocs[i]->addend = fixp->fx_addnumber;
2758 break;
2759 }
2760 }
2761 #endif
2762
2763 return relocs;
2764 }
2765
2766 /* Process any machine dependent frag types. */
2767
2768 void
2769 md_convert_frag (abfd, sec, fragP)
2770 register bfd *abfd;
2771 register asection *sec;
2772 register fragS *fragP;
2773 {
2774 unsigned int address;
2775
2776 if (fragP->fr_type == rs_machine_dependent)
2777 {
2778 switch ((int) fragP->fr_subtype)
2779 {
2780 case 0:
2781 fragP->fr_type = rs_fill;
2782 know (fragP->fr_var == 1);
2783 know (fragP->fr_next);
2784 address = fragP->fr_address + fragP->fr_fix;
2785 if (address % fragP->fr_offset)
2786 {
2787 fragP->fr_offset =
2788 fragP->fr_next->fr_address
2789 - fragP->fr_address
2790 - fragP->fr_fix;
2791 }
2792 else
2793 fragP->fr_offset = 0;
2794 break;
2795 }
2796 }
2797 }
2798
2799 /* Round up a section size to the appropriate boundary. */
2800
2801 valueT
2802 md_section_align (segment, size)
2803 asection *segment;
2804 valueT size;
2805 {
2806 int align = bfd_get_section_alignment (stdoutput, segment);
2807 int align2 = (1 << align) - 1;
2808
2809 return (size + align2) & ~align2;
2810
2811 }
2812
2813 /* Create a short jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2814 void
2815 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
2816 char *ptr;
2817 addressT from_addr, to_addr;
2818 fragS *frag;
2819 symbolS *to_symbol;
2820 {
2821 fprintf (stderr, "pa_create_short_jmp\n");
2822 abort ();
2823 }
2824
2825 /* Create a long jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2826 void
2827 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
2828 char *ptr;
2829 addressT from_addr, to_addr;
2830 fragS *frag;
2831 symbolS *to_symbol;
2832 {
2833 fprintf (stderr, "pa_create_long_jump\n");
2834 abort ();
2835 }
2836
2837 /* Return the approximate size of a frag before relaxation has occurred. */
2838 int
2839 md_estimate_size_before_relax (fragP, segment)
2840 register fragS *fragP;
2841 asection *segment;
2842 {
2843 int size;
2844
2845 size = 0;
2846
2847 while ((fragP->fr_fix + size) % fragP->fr_offset)
2848 size++;
2849
2850 return size;
2851 }
2852
2853 /* Parse machine dependent options. There are none on the PA. */
2854 int
2855 md_parse_option (argP, cntP, vecP)
2856 char **argP;
2857 int *cntP;
2858 char ***vecP;
2859 {
2860 return 1;
2861 }
2862
2863 /* We have no need to default values of symbols. */
2864
2865 symbolS *
2866 md_undefined_symbol (name)
2867 char *name;
2868 {
2869 return 0;
2870 }
2871
2872 /* Parse an operand that is machine-specific.
2873 We just return without modifying the expression as we have nothing
2874 to do on the PA. */
2875
2876 void
2877 md_operand (expressionP)
2878 expressionS *expressionP;
2879 {
2880 }
2881
2882 /* Apply a fixup to an instruction. */
2883
2884 int
2885 md_apply_fix (fixP, valp)
2886 fixS *fixP;
2887 valueT *valp;
2888 {
2889 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
2890 struct hppa_fix_struct *hppa_fixP = fixP->tc_fix_data;
2891 long new_val, result;
2892 unsigned int w1, w2, w;
2893 valueT val = *valp;
2894
2895 /* SOM uses R_HPPA_ENTRY and R_HPPA_EXIT relocations which can
2896 never be "applied" (they are just markers). */
2897 #ifdef OBJ_SOM
2898 if (fixP->fx_r_type == R_HPPA_ENTRY
2899 || fixP->fx_r_type == R_HPPA_EXIT)
2900 return 1;
2901 #endif
2902
2903 /* There should have been an HPPA specific fixup associated
2904 with the GAS fixup. */
2905 if (hppa_fixP)
2906 {
2907 unsigned long buf_wd = bfd_get_32 (stdoutput, buf);
2908 unsigned char fmt = bfd_hppa_insn2fmt (buf_wd);
2909
2910 if (fixP->fx_r_type == R_HPPA_NONE)
2911 fmt = 0;
2912
2913 /* Remember this value for emit_reloc. FIXME, is this braindamage
2914 documented anywhere!?! */
2915 fixP->fx_addnumber = val;
2916
2917 /* Check if this is an undefined symbol. No relocation can
2918 possibly be performed in this case. */
2919 if ((fixP->fx_addsy && fixP->fx_addsy->bsym->section == &bfd_und_section)
2920 || (fixP->fx_subsy
2921 && fixP->fx_subsy->bsym->section == &bfd_und_section))
2922 return 1;
2923
2924 /* PLABEL field selectors should not be passed to hppa_field_adjust. */
2925 if (fmt != 0 && hppa_fixP->fx_r_field != R_HPPA_PSEL
2926 && hppa_fixP->fx_r_field != R_HPPA_LPSEL
2927 && hppa_fixP->fx_r_field != R_HPPA_RPSEL)
2928 new_val = hppa_field_adjust (val, 0, hppa_fixP->fx_r_field);
2929 else
2930 new_val = 0;
2931
2932 switch (fmt)
2933 {
2934 /* Handle all opcodes with the 'j' operand type. */
2935 case 14:
2936 CHECK_FIELD (new_val, 8191, -8192, 0);
2937
2938 /* Mask off 14 bits to be changed. */
2939 bfd_put_32 (stdoutput,
2940 bfd_get_32 (stdoutput, buf) & 0xffffc000,
2941 buf);
2942 low_sign_unext (new_val, 14, &result);
2943 break;
2944
2945 /* Handle all opcodes with the 'k' operand type. */
2946 case 21:
2947 CHECK_FIELD (new_val, 2097152, 0, 0);
2948
2949 /* Mask off 21 bits to be changed. */
2950 bfd_put_32 (stdoutput,
2951 bfd_get_32 (stdoutput, buf) & 0xffe00000,
2952 buf);
2953 dis_assemble_21 (new_val, &result);
2954 break;
2955
2956 /* Handle all the opcodes with the 'i' operand type. */
2957 case 11:
2958 CHECK_FIELD (new_val, 1023, -1023, 0);
2959
2960 /* Mask off 11 bits to be changed. */
2961 bfd_put_32 (stdoutput,
2962 bfd_get_32 (stdoutput, buf) & 0xffff800,
2963 buf);
2964 low_sign_unext (new_val, 11, &result);
2965 break;
2966
2967 /* Handle all the opcodes with the 'w' operand type. */
2968 case 12:
2969 CHECK_FIELD (new_val, 8191, -8192, 0)
2970
2971 /* Mask off 11 bits to be changed. */
2972 sign_unext ((new_val - 8) >> 2, 12, &result);
2973 bfd_put_32 (stdoutput,
2974 bfd_get_32 (stdoutput, buf) & 0xffffe002,
2975 buf);
2976
2977 dis_assemble_12 (result, &w1, &w);
2978 result = ((w1 << 2) | w);
2979 break;
2980
2981 /* Handle some of the opcodes with the 'W' operand type. */
2982 case 17:
2983
2984 #define stub_needed(CALLER, CALLEE) \
2985 ((CALLEE) && (CALLER) && ((CALLEE) != (CALLER)))
2986 /* It is necessary to force PC-relative calls/jumps to have a
2987 relocation entry if they're going to need either a argument
2988 relocation or long call stub. FIXME. Can't we need the same
2989 for absolute calls? */
2990 if (fixP->fx_addsy
2991 && (stub_needed (((obj_symbol_type *)
2992 fixP->fx_addsy->bsym)->tc_data.hppa_arg_reloc,
2993 hppa_fixP->fx_arg_reloc)))
2994 return 1;
2995 #undef stub_needed
2996
2997 CHECK_FIELD (new_val, 262143, -262144, 0);
2998
2999 /* Mask off 17 bits to be changed. */
3000 bfd_put_32 (stdoutput,
3001 bfd_get_32 (stdoutput, buf) & 0xffe0e002,
3002 buf);
3003 sign_unext ((new_val - 8) >> 2, 17, &result);
3004 dis_assemble_17 (result, &w1, &w2, &w);
3005 result = ((w2 << 2) | (w1 << 16) | w);
3006 break;
3007
3008 case 32:
3009 #ifdef OBJ_ELF
3010 /* These are ELF specific relocations. ELF unfortunately
3011 handles unwinds in a completely different manner. */
3012 if (hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRY
3013 || hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRIES)
3014 result = fixP->fx_addnumber;
3015 else
3016 #endif
3017 {
3018 result = 0;
3019 fixP->fx_addnumber = fixP->fx_offset;
3020 bfd_put_32 (stdoutput, 0, buf);
3021 return 1;
3022 }
3023 break;
3024
3025 case 0:
3026 return 1;
3027
3028 default:
3029 as_bad ("Unknown relocation encountered in md_apply_fix.");
3030 return 1;
3031 }
3032
3033 /* Insert the relocation. */
3034 bfd_put_32 (stdoutput, bfd_get_32 (stdoutput, buf) | result, buf);
3035 return 1;
3036 }
3037 else
3038 {
3039 printf ("no hppa_fixup entry for this fixup (fixP = 0x%x, type = 0x%x)\n",
3040 (unsigned int) fixP, fixP->fx_r_type);
3041 return 0;
3042 }
3043 }
3044
3045 /* Exactly what point is a PC-relative offset relative TO?
3046 On the PA, they're relative to the address of the offset. */
3047
3048 long
3049 md_pcrel_from (fixP)
3050 fixS *fixP;
3051 {
3052 return fixP->fx_where + fixP->fx_frag->fr_address;
3053 }
3054
3055 /* Return nonzero if the input line pointer is at the end of
3056 a statement. */
3057
3058 static int
3059 is_end_of_statement ()
3060 {
3061 return ((*input_line_pointer == '\n')
3062 || (*input_line_pointer == ';')
3063 || (*input_line_pointer == '!'));
3064 }
3065
3066 /* Read a number from S. The number might come in one of many forms,
3067 the most common will be a hex or decimal constant, but it could be
3068 a pre-defined register (Yuk!), or an absolute symbol.
3069
3070 Return a number or -1 for failure.
3071
3072 When parsing PA-89 FP register numbers RESULT will be
3073 the address of a structure to return information about
3074 L/R half of FP registers, store results there as appropriate.
3075
3076 pa_parse_number can not handle negative constants and will fail
3077 horribly if it is passed such a constant. */
3078
3079 static int
3080 pa_parse_number (s, result)
3081 char **s;
3082 struct pa_89_fp_reg_struct *result;
3083 {
3084 int num;
3085 char *name;
3086 char c;
3087 symbolS *sym;
3088 int status;
3089 char *p = *s;
3090
3091 /* Skip whitespace before the number. */
3092 while (*p == ' ' || *p == '\t')
3093 p = p + 1;
3094
3095 /* Store info in RESULT if requested by caller. */
3096 if (result)
3097 {
3098 result->number_part = -1;
3099 result->l_r_select = -1;
3100 }
3101 num = -1;
3102
3103 if (isdigit (*p))
3104 {
3105 /* Looks like a number. */
3106 num = 0;
3107
3108 if (*p == '0' && (*(p + 1) == 'x' || *(p + 1) == 'X'))
3109 {
3110 /* The number is specified in hex. */
3111 p += 2;
3112 while (isdigit (*p) || ((*p >= 'a') && (*p <= 'f'))
3113 || ((*p >= 'A') && (*p <= 'F')))
3114 {
3115 if (isdigit (*p))
3116 num = num * 16 + *p - '0';
3117 else if (*p >= 'a' && *p <= 'f')
3118 num = num * 16 + *p - 'a' + 10;
3119 else
3120 num = num * 16 + *p - 'A' + 10;
3121 ++p;
3122 }
3123 }
3124 else
3125 {
3126 /* The number is specified in decimal. */
3127 while (isdigit (*p))
3128 {
3129 num = num * 10 + *p - '0';
3130 ++p;
3131 }
3132 }
3133
3134 /* Store info in RESULT if requested by the caller. */
3135 if (result)
3136 {
3137 result->number_part = num;
3138
3139 if (IS_R_SELECT (p))
3140 {
3141 result->l_r_select = 1;
3142 ++p;
3143 }
3144 else if (IS_L_SELECT (p))
3145 {
3146 result->l_r_select = 0;
3147 ++p;
3148 }
3149 else
3150 result->l_r_select = 0;
3151 }
3152 }
3153 else if (*p == '%')
3154 {
3155 /* The number might be a predefined register. */
3156 num = 0;
3157 name = p;
3158 p++;
3159 c = *p;
3160 /* Tege hack: Special case for general registers as the general
3161 code makes a binary search with case translation, and is VERY
3162 slow. */
3163 if (c == 'r')
3164 {
3165 p++;
3166 if (*p == 'e' && *(p + 1) == 't'
3167 && (*(p + 2) == '0' || *(p + 2) == '1'))
3168 {
3169 p += 2;
3170 num = *p - '0' + 28;
3171 p++;
3172 }
3173 else if (*p == 'p')
3174 {
3175 num = 2;
3176 p++;
3177 }
3178 else if (!isdigit (*p))
3179 {
3180 if (print_errors)
3181 as_bad ("Undefined register: '%s'.", name);
3182 num = -1;
3183 }
3184 else
3185 {
3186 do
3187 num = num * 10 + *p++ - '0';
3188 while (isdigit (*p));
3189 }
3190 }
3191 else
3192 {
3193 /* Do a normal register search. */
3194 while (is_part_of_name (c))
3195 {
3196 p = p + 1;
3197 c = *p;
3198 }
3199 *p = 0;
3200 status = reg_name_search (name);
3201 if (status >= 0)
3202 num = status;
3203 else
3204 {
3205 if (print_errors)
3206 as_bad ("Undefined register: '%s'.", name);
3207 num = -1;
3208 }
3209 *p = c;
3210 }
3211
3212 /* Store info in RESULT if requested by caller. */
3213 if (result)
3214 {
3215 result->number_part = num;
3216 if (IS_R_SELECT (p - 1))
3217 result->l_r_select = 1;
3218 else if (IS_L_SELECT (p - 1))
3219 result->l_r_select = 0;
3220 else
3221 result->l_r_select = 0;
3222 }
3223 }
3224 else
3225 {
3226 /* And finally, it could be a symbol in the absolute section which
3227 is effectively a constant. */
3228 num = 0;
3229 name = p;
3230 c = *p;
3231 while (is_part_of_name (c))
3232 {
3233 p = p + 1;
3234 c = *p;
3235 }
3236 *p = 0;
3237 if ((sym = symbol_find (name)) != NULL)
3238 {
3239 if (S_GET_SEGMENT (sym) == &bfd_abs_section)
3240 num = S_GET_VALUE (sym);
3241 else
3242 {
3243 if (print_errors)
3244 as_bad ("Non-absolute symbol: '%s'.", name);
3245 num = -1;
3246 }
3247 }
3248 else
3249 {
3250 /* There is where we'd come for an undefined symbol
3251 or for an empty string. For an empty string we
3252 will return zero. That's a concession made for
3253 compatability with the braindamaged HP assemblers. */
3254 if (*name == 0)
3255 num = 0;
3256 else
3257 {
3258 if (print_errors)
3259 as_bad ("Undefined absolute constant: '%s'.", name);
3260 num = -1;
3261 }
3262 }
3263 *p = c;
3264
3265 /* Store info in RESULT if requested by caller. */
3266 if (result)
3267 {
3268 result->number_part = num;
3269 if (IS_R_SELECT (p - 1))
3270 result->l_r_select = 1;
3271 else if (IS_L_SELECT (p - 1))
3272 result->l_r_select = 0;
3273 else
3274 result->l_r_select = 0;
3275 }
3276 }
3277
3278 *s = p;
3279 return num;
3280 }
3281
3282 #define REG_NAME_CNT (sizeof(pre_defined_registers) / sizeof(struct pd_reg))
3283
3284 /* Given NAME, find the register number associated with that name, return
3285 the integer value associated with the given name or -1 on failure. */
3286
3287 static int
3288 reg_name_search (name)
3289 char *name;
3290 {
3291 int middle, low, high;
3292
3293 low = 0;
3294 high = REG_NAME_CNT - 1;
3295
3296 do
3297 {
3298 middle = (low + high) / 2;
3299 if (strcasecmp (name, pre_defined_registers[middle].name) < 0)
3300 high = middle - 1;
3301 else
3302 low = middle + 1;
3303 }
3304 while (!((strcasecmp (name, pre_defined_registers[middle].name) == 0) ||
3305 (low > high)));
3306
3307 if (strcasecmp (name, pre_defined_registers[middle].name) == 0)
3308 return (pre_defined_registers[middle].value);
3309 else
3310 return (-1);
3311 }
3312
3313
3314 /* Return nonzero if the given INSN and L/R information will require
3315 a new PA-89 opcode. */
3316
3317 static int
3318 need_89_opcode (insn, result)
3319 struct pa_it *insn;
3320 struct pa_89_fp_reg_struct *result;
3321 {
3322 if (result->l_r_select == 1 && !(insn->fpof1 == DBL && insn->fpof2 == DBL))
3323 return TRUE;
3324 else
3325 return FALSE;
3326 }
3327
3328 /* Parse a condition for a fcmp instruction. Return the numerical
3329 code associated with the condition. */
3330
3331 static int
3332 pa_parse_fp_cmp_cond (s)
3333 char **s;
3334 {
3335 int cond, i;
3336
3337 cond = 0;
3338
3339 for (i = 0; i < 32; i++)
3340 {
3341 if (strncasecmp (*s, fp_cond_map[i].string,
3342 strlen (fp_cond_map[i].string)) == 0)
3343 {
3344 cond = fp_cond_map[i].cond;
3345 *s += strlen (fp_cond_map[i].string);
3346 while (**s == ' ' || **s == '\t')
3347 *s = *s + 1;
3348 return cond;
3349 }
3350 }
3351
3352 as_bad ("Invalid FP Compare Condition: %c", **s);
3353 return 0;
3354 }
3355
3356 /* Parse an FP operand format completer returning the completer
3357 type. */
3358
3359 static fp_operand_format
3360 pa_parse_fp_format (s)
3361 char **s;
3362 {
3363 int format;
3364
3365 format = SGL;
3366 if (**s == ',')
3367 {
3368 *s += 1;
3369 if (strncasecmp (*s, "sgl", 3) == 0)
3370 {
3371 format = SGL;
3372 *s += 4;
3373 }
3374 else if (strncasecmp (*s, "dbl", 3) == 0)
3375 {
3376 format = DBL;
3377 *s += 4;
3378 }
3379 else if (strncasecmp (*s, "quad", 4) == 0)
3380 {
3381 format = QUAD;
3382 *s += 5;
3383 }
3384 else
3385 {
3386 format = ILLEGAL_FMT;
3387 as_bad ("Invalid FP Operand Format: %3s", *s);
3388 }
3389 }
3390
3391 return format;
3392 }
3393
3394 /* Convert from a selector string into a selector type. */
3395
3396 static int
3397 pa_chk_field_selector (str)
3398 char **str;
3399 {
3400 int selector;
3401 const struct selector_entry *tablep;
3402
3403 selector = e_fsel;
3404
3405 /* Read past any whitespace. */
3406 while (**str == ' ' || **str == '\t' || **str == '\n' || **str == '\f')
3407 *str = *str + 1;
3408
3409 /* Yuk. Looks like a linear search through the table. With the
3410 frequence of some selectors it might make sense to sort the
3411 table by usage. */
3412 for (tablep = selector_table; tablep->prefix; tablep++)
3413 {
3414 if (strncasecmp (tablep->prefix, *str, strlen (tablep->prefix)) == 0)
3415 {
3416 *str += strlen (tablep->prefix);
3417 selector = tablep->field_selector;
3418 break;
3419 }
3420 }
3421 return selector;
3422 }
3423
3424 /* Mark (via expr_end) the end of an expression (I think). FIXME. */
3425
3426 static int
3427 get_expression (str)
3428 char *str;
3429 {
3430 char *save_in;
3431 asection *seg;
3432
3433 save_in = input_line_pointer;
3434 input_line_pointer = str;
3435 seg = expression (&the_insn.exp);
3436 if (!(seg == absolute_section
3437 || seg == undefined_section
3438 || SEG_NORMAL (seg)))
3439 {
3440 as_warn ("Bad segment in expression.");
3441 expr_end = input_line_pointer;
3442 input_line_pointer = save_in;
3443 return 1;
3444 }
3445 expr_end = input_line_pointer;
3446 input_line_pointer = save_in;
3447 return 0;
3448 }
3449
3450 /* Mark (via expr_end) the end of an absolute expression. FIXME. */
3451 static int
3452 pa_get_absolute_expression (insn, strp)
3453 struct pa_it *insn;
3454 char **strp;
3455 {
3456 char *save_in;
3457
3458 insn->field_selector = pa_chk_field_selector (strp);
3459 save_in = input_line_pointer;
3460 input_line_pointer = *strp;
3461 expression (&insn->exp);
3462 if (insn->exp.X_op != O_constant)
3463 {
3464 as_bad ("Bad segment (should be absolute).");
3465 expr_end = input_line_pointer;
3466 input_line_pointer = save_in;
3467 return 0;
3468 }
3469 expr_end = input_line_pointer;
3470 input_line_pointer = save_in;
3471 return evaluate_absolute (insn);
3472 }
3473
3474 /* Evaluate an absolute expression EXP which may be modified by
3475 the selector FIELD_SELECTOR. Return the value of the expression. */
3476 static int
3477 evaluate_absolute (insn)
3478 struct pa_it *insn;
3479 {
3480 int value;
3481 expressionS exp;
3482 int field_selector = insn->field_selector;
3483
3484 exp = insn->exp;
3485 value = exp.X_add_number;
3486
3487 switch (field_selector)
3488 {
3489 /* No change. */
3490 case e_fsel:
3491 break;
3492
3493 /* If bit 21 is on then add 0x800 and arithmetic shift right 11 bits. */
3494 case e_lssel:
3495 if (value & 0x00000400)
3496 value += 0x800;
3497 value = (value & 0xfffff800) >> 11;
3498 break;
3499
3500 /* Sign extend from bit 21. */
3501 case e_rssel:
3502 if (value & 0x00000400)
3503 value |= 0xfffff800;
3504 else
3505 value &= 0x7ff;
3506 break;
3507
3508 /* Arithmetic shift right 11 bits. */
3509 case e_lsel:
3510 value = (value & 0xfffff800) >> 11;
3511 break;
3512
3513 /* Set bits 0-20 to zero. */
3514 case e_rsel:
3515 value = value & 0x7ff;
3516 break;
3517
3518 /* Add 0x800 and arithmetic shift right 11 bits. */
3519 case e_ldsel:
3520 value += 0x800;
3521 value = (value & 0xfffff800) >> 11;
3522 break;
3523
3524 /* Set bitgs 0-21 to one. */
3525 case e_rdsel:
3526 value |= 0xfffff800;
3527 break;
3528
3529 #define RSEL_ROUND(c) (((c) + 0x1000) & ~0x1fff)
3530 case e_rrsel:
3531 value = (RSEL_ROUND (value) & 0x7ff) + (value - RSEL_ROUND (value));
3532 break;
3533
3534 case e_lrsel:
3535 value = (RSEL_ROUND (value) >> 11) & 0x1fffff;
3536 break;
3537 #undef RSEL_ROUND
3538
3539 default:
3540 BAD_CASE (field_selector);
3541 break;
3542 }
3543 return value;
3544 }
3545
3546 /* Given an argument location specification return the associated
3547 argument location number. */
3548
3549 static unsigned int
3550 pa_build_arg_reloc (type_name)
3551 char *type_name;
3552 {
3553
3554 if (strncasecmp (type_name, "no", 2) == 0)
3555 return 0;
3556 if (strncasecmp (type_name, "gr", 2) == 0)
3557 return 1;
3558 else if (strncasecmp (type_name, "fr", 2) == 0)
3559 return 2;
3560 else if (strncasecmp (type_name, "fu", 2) == 0)
3561 return 3;
3562 else
3563 as_bad ("Invalid argument location: %s\n", type_name);
3564
3565 return 0;
3566 }
3567
3568 /* Encode and return an argument relocation specification for
3569 the given register in the location specified by arg_reloc. */
3570
3571 static unsigned int
3572 pa_align_arg_reloc (reg, arg_reloc)
3573 unsigned int reg;
3574 unsigned int arg_reloc;
3575 {
3576 unsigned int new_reloc;
3577
3578 new_reloc = arg_reloc;
3579 switch (reg)
3580 {
3581 case 0:
3582 new_reloc <<= 8;
3583 break;
3584 case 1:
3585 new_reloc <<= 6;
3586 break;
3587 case 2:
3588 new_reloc <<= 4;
3589 break;
3590 case 3:
3591 new_reloc <<= 2;
3592 break;
3593 default:
3594 as_bad ("Invalid argument description: %d", reg);
3595 }
3596
3597 return new_reloc;
3598 }
3599
3600 /* Parse a PA nullification completer (,n). Return nonzero if the
3601 completer was found; return zero if no completer was found. */
3602
3603 static int
3604 pa_parse_nullif (s)
3605 char **s;
3606 {
3607 int nullif;
3608
3609 nullif = 0;
3610 if (**s == ',')
3611 {
3612 *s = *s + 1;
3613 if (strncasecmp (*s, "n", 1) == 0)
3614 nullif = 1;
3615 else
3616 {
3617 as_bad ("Invalid Nullification: (%c)", **s);
3618 nullif = 0;
3619 }
3620 *s = *s + 1;
3621 }
3622
3623 return nullif;
3624 }
3625
3626 /* Parse a non-negated compare/subtract completer returning the
3627 number (for encoding in instrutions) of the given completer.
3628
3629 ISBRANCH specifies whether or not this is parsing a condition
3630 completer for a branch (vs a nullification completer for a
3631 computational instruction. */
3632
3633 static int
3634 pa_parse_nonneg_cmpsub_cmpltr (s, isbranch)
3635 char **s;
3636 int isbranch;
3637 {
3638 int cmpltr;
3639 char *name = *s + 1;
3640 char c;
3641 char *save_s = *s;
3642
3643 cmpltr = 0;
3644 if (**s == ',')
3645 {
3646 *s += 1;
3647 while (**s != ',' && **s != ' ' && **s != '\t')
3648 *s += 1;
3649 c = **s;
3650 **s = 0x00;
3651 if (strcmp (name, "=") == 0)
3652 {
3653 cmpltr = 1;
3654 }
3655 else if (strcmp (name, "<") == 0)
3656 {
3657 cmpltr = 2;
3658 }
3659 else if (strcmp (name, "<=") == 0)
3660 {
3661 cmpltr = 3;
3662 }
3663 else if (strcmp (name, "<<") == 0)
3664 {
3665 cmpltr = 4;
3666 }
3667 else if (strcmp (name, "<<=") == 0)
3668 {
3669 cmpltr = 5;
3670 }
3671 else if (strcasecmp (name, "sv") == 0)
3672 {
3673 cmpltr = 6;
3674 }
3675 else if (strcasecmp (name, "od") == 0)
3676 {
3677 cmpltr = 7;
3678 }
3679 /* If we have something like addb,n then there is no condition
3680 completer. */
3681 else if (strcasecmp (name, "n") == 0 && isbranch)
3682 {
3683 cmpltr = 0;
3684 }
3685 else
3686 {
3687 cmpltr = -1;
3688 }
3689 **s = c;
3690 }
3691
3692 /* Reset pointers if this was really a ,n for a branch instruction. */
3693 if (cmpltr == 0 && *name == 'n' && isbranch)
3694 *s = save_s;
3695
3696 return cmpltr;
3697 }
3698
3699 /* Parse a negated compare/subtract completer returning the
3700 number (for encoding in instrutions) of the given completer.
3701
3702 ISBRANCH specifies whether or not this is parsing a condition
3703 completer for a branch (vs a nullification completer for a
3704 computational instruction. */
3705
3706 static int
3707 pa_parse_neg_cmpsub_cmpltr (s, isbranch)
3708 char **s;
3709 int isbranch;
3710 {
3711 int cmpltr;
3712 char *name = *s + 1;
3713 char c;
3714 char *save_s = *s;
3715
3716 cmpltr = 0;
3717 if (**s == ',')
3718 {
3719 *s += 1;
3720 while (**s != ',' && **s != ' ' && **s != '\t')
3721 *s += 1;
3722 c = **s;
3723 **s = 0x00;
3724 if (strcasecmp (name, "tr") == 0)
3725 {
3726 cmpltr = 0;
3727 }
3728 else if (strcmp (name, "<>") == 0)
3729 {
3730 cmpltr = 1;
3731 }
3732 else if (strcmp (name, ">=") == 0)
3733 {
3734 cmpltr = 2;
3735 }
3736 else if (strcmp (name, ">") == 0)
3737 {
3738 cmpltr = 3;
3739 }
3740 else if (strcmp (name, ">>=") == 0)
3741 {
3742 cmpltr = 4;
3743 }
3744 else if (strcmp (name, ">>") == 0)
3745 {
3746 cmpltr = 5;
3747 }
3748 else if (strcasecmp (name, "nsv") == 0)
3749 {
3750 cmpltr = 6;
3751 }
3752 else if (strcasecmp (name, "ev") == 0)
3753 {
3754 cmpltr = 7;
3755 }
3756 /* If we have something like addb,n then there is no condition
3757 completer. */
3758 else if (strcasecmp (name, "n") == 0 && isbranch)
3759 {
3760 cmpltr = 0;
3761 }
3762 else
3763 {
3764 cmpltr = -1;
3765 }
3766 **s = c;
3767 }
3768
3769 /* Reset pointers if this was really a ,n for a branch instruction. */
3770 if (cmpltr == 0 && *name == 'n' && isbranch)
3771 *s = save_s;
3772
3773 return cmpltr;
3774 }
3775
3776 /* Parse a non-negated addition completer returning the number
3777 (for encoding in instrutions) of the given completer.
3778
3779 ISBRANCH specifies whether or not this is parsing a condition
3780 completer for a branch (vs a nullification completer for a
3781 computational instruction. */
3782
3783 static int
3784 pa_parse_nonneg_add_cmpltr (s, isbranch)
3785 char **s;
3786 int isbranch;
3787 {
3788 int cmpltr;
3789 char *name = *s + 1;
3790 char c;
3791 char *save_s = *s;
3792
3793 cmpltr = 0;
3794 if (**s == ',')
3795 {
3796 *s += 1;
3797 while (**s != ',' && **s != ' ' && **s != '\t')
3798 *s += 1;
3799 c = **s;
3800 **s = 0x00;
3801 if (strcmp (name, "=") == 0)
3802 {
3803 cmpltr = 1;
3804 }
3805 else if (strcmp (name, "<") == 0)
3806 {
3807 cmpltr = 2;
3808 }
3809 else if (strcmp (name, "<=") == 0)
3810 {
3811 cmpltr = 3;
3812 }
3813 else if (strcasecmp (name, "nuv") == 0)
3814 {
3815 cmpltr = 4;
3816 }
3817 else if (strcasecmp (name, "znv") == 0)
3818 {
3819 cmpltr = 5;
3820 }
3821 else if (strcasecmp (name, "sv") == 0)
3822 {
3823 cmpltr = 6;
3824 }
3825 else if (strcasecmp (name, "od") == 0)
3826 {
3827 cmpltr = 7;
3828 }
3829 /* If we have something like addb,n then there is no condition
3830 completer. */
3831 else if (strcasecmp (name, "n") == 0 && isbranch)
3832 {
3833 cmpltr = 0;
3834 }
3835 else
3836 {
3837 cmpltr = -1;
3838 }
3839 **s = c;
3840 }
3841
3842 /* Reset pointers if this was really a ,n for a branch instruction. */
3843 if (cmpltr == 0 && *name == 'n' && isbranch)
3844 *s = save_s;
3845
3846 return cmpltr;
3847 }
3848
3849 /* Parse a negated addition completer returning the number
3850 (for encoding in instrutions) of the given completer.
3851
3852 ISBRANCH specifies whether or not this is parsing a condition
3853 completer for a branch (vs a nullification completer for a
3854 computational instruction. */
3855
3856 static int
3857 pa_parse_neg_add_cmpltr (s, isbranch)
3858 char **s;
3859 int isbranch;
3860 {
3861 int cmpltr;
3862 char *name = *s + 1;
3863 char c;
3864 char *save_s = *s;
3865
3866 cmpltr = 0;
3867 if (**s == ',')
3868 {
3869 *s += 1;
3870 while (**s != ',' && **s != ' ' && **s != '\t')
3871 *s += 1;
3872 c = **s;
3873 **s = 0x00;
3874 if (strcasecmp (name, "tr") == 0)
3875 {
3876 cmpltr = 0;
3877 }
3878 else if (strcmp (name, "<>") == 0)
3879 {
3880 cmpltr = 1;
3881 }
3882 else if (strcmp (name, ">=") == 0)
3883 {
3884 cmpltr = 2;
3885 }
3886 else if (strcmp (name, ">") == 0)
3887 {
3888 cmpltr = 3;
3889 }
3890 else if (strcmp (name, "uv") == 0)
3891 {
3892 cmpltr = 4;
3893 }
3894 else if (strcmp (name, "vnz") == 0)
3895 {
3896 cmpltr = 5;
3897 }
3898 else if (strcasecmp (name, "nsv") == 0)
3899 {
3900 cmpltr = 6;
3901 }
3902 else if (strcasecmp (name, "ev") == 0)
3903 {
3904 cmpltr = 7;
3905 }
3906 /* If we have something like addb,n then there is no condition
3907 completer. */
3908 else if (strcasecmp (name, "n") == 0 && isbranch)
3909 {
3910 cmpltr = 0;
3911 }
3912 else
3913 {
3914 cmpltr = -1;
3915 }
3916 **s = c;
3917 }
3918
3919 /* Reset pointers if this was really a ,n for a branch instruction. */
3920 if (cmpltr == 0 && *name == 'n' && isbranch)
3921 *s = save_s;
3922
3923 return cmpltr;
3924 }
3925
3926 /* Handle a .BLOCK type pseudo-op. */
3927
3928 static void
3929 pa_block (z)
3930 int z;
3931 {
3932 char *p;
3933 long int temp_fill;
3934 unsigned int temp_size;
3935 int i;
3936
3937 temp_size = get_absolute_expression ();
3938
3939 /* Always fill with zeros, that's what the HP assembler does. */
3940 temp_fill = 0;
3941
3942 p = frag_var (rs_fill, (int) temp_size, (int) temp_size,
3943 (relax_substateT) 0, (symbolS *) 0, 1, NULL);
3944 bzero (p, temp_size);
3945
3946 /* Convert 2 bytes at a time. */
3947
3948 for (i = 0; i < temp_size; i += 2)
3949 {
3950 md_number_to_chars (p + i,
3951 (valueT) temp_fill,
3952 (int) ((temp_size - i) > 2 ? 2 : (temp_size - i)));
3953 }
3954
3955 pa_undefine_label ();
3956 demand_empty_rest_of_line ();
3957 return;
3958 }
3959
3960 /* Handle a .CALL pseudo-op. This involves storing away information
3961 about where arguments are to be found so the linker can detect
3962 (and correct) argument location mismatches between caller and callee. */
3963
3964 static void
3965 pa_call (unused)
3966 int unused;
3967 {
3968 pa_call_args (&last_call_desc);
3969 demand_empty_rest_of_line ();
3970 return;
3971 }
3972
3973 /* Do the dirty work of building a call descriptor which describes
3974 where the caller placed arguments to a function call. */
3975
3976 static void
3977 pa_call_args (call_desc)
3978 struct call_desc *call_desc;
3979 {
3980 char *name, c, *p;
3981 unsigned int temp, arg_reloc;
3982
3983 while (!is_end_of_statement ())
3984 {
3985 name = input_line_pointer;
3986 c = get_symbol_end ();
3987 /* Process a source argument. */
3988 if ((strncasecmp (name, "argw", 4) == 0))
3989 {
3990 temp = atoi (name + 4);
3991 p = input_line_pointer;
3992 *p = c;
3993 input_line_pointer++;
3994 name = input_line_pointer;
3995 c = get_symbol_end ();
3996 arg_reloc = pa_build_arg_reloc (name);
3997 call_desc->arg_reloc |= pa_align_arg_reloc (temp, arg_reloc);
3998 }
3999 /* Process a return value. */
4000 else if ((strncasecmp (name, "rtnval", 6) == 0))
4001 {
4002 p = input_line_pointer;
4003 *p = c;
4004 input_line_pointer++;
4005 name = input_line_pointer;
4006 c = get_symbol_end ();
4007 arg_reloc = pa_build_arg_reloc (name);
4008 call_desc->arg_reloc |= (arg_reloc & 0x3);
4009 }
4010 else
4011 {
4012 as_bad ("Invalid .CALL argument: %s", name);
4013 }
4014 p = input_line_pointer;
4015 *p = c;
4016 if (!is_end_of_statement ())
4017 input_line_pointer++;
4018 }
4019 }
4020
4021 /* Return TRUE if FRAG1 and FRAG2 are the same. */
4022
4023 static int
4024 is_same_frag (frag1, frag2)
4025 fragS *frag1;
4026 fragS *frag2;
4027 {
4028
4029 if (frag1 == NULL)
4030 return (FALSE);
4031 else if (frag2 == NULL)
4032 return (FALSE);
4033 else if (frag1 == frag2)
4034 return (TRUE);
4035 else if (frag2->fr_type == rs_fill && frag2->fr_fix == 0)
4036 return (is_same_frag (frag1, frag2->fr_next));
4037 else
4038 return (FALSE);
4039 }
4040
4041 #ifdef OBJ_ELF
4042 /* Build an entry in the UNWIND subspace from the given function
4043 attributes in CALL_INFO. This is not needed for SOM as using
4044 R_ENTRY and R_EXIT relocations allow the linker to handle building
4045 of the unwind spaces. */
4046
4047 static void
4048 pa_build_unwind_subspace (call_info)
4049 struct call_info *call_info;
4050 {
4051 char *unwind;
4052 asection *seg, *save_seg;
4053 subsegT subseg, save_subseg;
4054 int i;
4055 char c, *p;
4056
4057 /* Get into the right seg/subseg. This may involve creating
4058 the seg the first time through. Make sure to have the
4059 old seg/subseg so that we can reset things when we are done. */
4060 subseg = SUBSEG_UNWIND;
4061 seg = bfd_get_section_by_name (stdoutput, UNWIND_SECTION_NAME);
4062 if (seg == ASEC_NULL)
4063 {
4064 seg = bfd_make_section_old_way (stdoutput, UNWIND_SECTION_NAME);
4065 bfd_set_section_flags (stdoutput, seg,
4066 SEC_READONLY | SEC_HAS_CONTENTS
4067 | SEC_LOAD | SEC_RELOC);
4068 }
4069
4070 save_seg = now_seg;
4071 save_subseg = now_subseg;
4072 subseg_set (seg, subseg);
4073
4074
4075 /* Get some space to hold relocation information for the unwind
4076 descriptor. */
4077 p = frag_more (4);
4078
4079 /* Relocation info. for start offset of the function. */
4080 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4081 call_info->start_symbol, (offsetT) 0,
4082 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4083 (char *) 0);
4084
4085 p = frag_more (4);
4086
4087 /* Relocation info. for end offset of the function. */
4088 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4089 call_info->end_symbol, (offsetT) 0,
4090 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4091 (char *) 0);
4092
4093 /* Dump it. */
4094 unwind = (char *) &call_info->ci_unwind;
4095 for (i = 8; i < sizeof (struct unwind_table); i++)
4096 {
4097 c = *(unwind + i);
4098 {
4099 FRAG_APPEND_1_CHAR (c);
4100 }
4101 }
4102
4103 /* Return back to the original segment/subsegment. */
4104 subseg_set (save_seg, save_subseg);
4105 }
4106 #endif
4107
4108 /* Process a .CALLINFO pseudo-op. This information is used later
4109 to build unwind descriptors and maybe one day to support
4110 .ENTER and .LEAVE. */
4111
4112 static void
4113 pa_callinfo (unused)
4114 int unused;
4115 {
4116 char *name, c, *p;
4117 int temp;
4118
4119 /* .CALLINFO must appear within a procedure definition. */
4120 if (!within_procedure)
4121 as_bad (".callinfo is not within a procedure definition");
4122
4123 /* Mark the fact that we found the .CALLINFO for the
4124 current procedure. */
4125 callinfo_found = TRUE;
4126
4127 /* Iterate over the .CALLINFO arguments. */
4128 while (!is_end_of_statement ())
4129 {
4130 name = input_line_pointer;
4131 c = get_symbol_end ();
4132 /* Frame size specification. */
4133 if ((strncasecmp (name, "frame", 5) == 0))
4134 {
4135 p = input_line_pointer;
4136 *p = c;
4137 input_line_pointer++;
4138 temp = get_absolute_expression ();
4139 if ((temp & 0x3) != 0)
4140 {
4141 as_bad ("FRAME parameter must be a multiple of 8: %d\n", temp);
4142 temp = 0;
4143 }
4144
4145 /* callinfo is in bytes and unwind_desc is in 8 byte units. */
4146 last_call_info->ci_unwind.descriptor.frame_size = temp / 8;
4147
4148 }
4149 /* Entry register (GR, GR and SR) specifications. */
4150 else if ((strncasecmp (name, "entry_gr", 8) == 0))
4151 {
4152 p = input_line_pointer;
4153 *p = c;
4154 input_line_pointer++;
4155 temp = get_absolute_expression ();
4156 /* The HP assembler accepts 19 as the high bound for ENTRY_GR
4157 even though %r19 is caller saved. I think this is a bug in
4158 the HP assembler, and we are not going to emulate it. */
4159 if (temp < 3 || temp > 18)
4160 as_bad ("Value for ENTRY_GR must be in the range 3..18\n");
4161 last_call_info->ci_unwind.descriptor.entry_gr = temp - 2;
4162 }
4163 else if ((strncasecmp (name, "entry_fr", 8) == 0))
4164 {
4165 p = input_line_pointer;
4166 *p = c;
4167 input_line_pointer++;
4168 temp = get_absolute_expression ();
4169 /* Similarly the HP assembler takes 31 as the high bound even
4170 though %fr21 is the last callee saved floating point register. */
4171 if (temp < 12 || temp > 21)
4172 as_bad ("Value for ENTRY_FR must be in the range 12..21\n");
4173 last_call_info->ci_unwind.descriptor.entry_fr = temp - 11;
4174 }
4175 else if ((strncasecmp (name, "entry_sr", 8) == 0))
4176 {
4177 p = input_line_pointer;
4178 *p = c;
4179 input_line_pointer++;
4180 temp = get_absolute_expression ();
4181 if (temp != 3)
4182 as_bad ("Value for ENTRY_SR must be 3\n");
4183 }
4184 /* Note whether or not this function performs any calls. */
4185 else if ((strncasecmp (name, "calls", 5) == 0) ||
4186 (strncasecmp (name, "caller", 6) == 0))
4187 {
4188 p = input_line_pointer;
4189 *p = c;
4190 }
4191 else if ((strncasecmp (name, "no_calls", 8) == 0))
4192 {
4193 p = input_line_pointer;
4194 *p = c;
4195 }
4196 /* Should RP be saved into the stack. */
4197 else if ((strncasecmp (name, "save_rp", 7) == 0))
4198 {
4199 p = input_line_pointer;
4200 *p = c;
4201 last_call_info->ci_unwind.descriptor.save_rp = 1;
4202 }
4203 /* Likewise for SP. */
4204 else if ((strncasecmp (name, "save_sp", 7) == 0))
4205 {
4206 p = input_line_pointer;
4207 *p = c;
4208 last_call_info->ci_unwind.descriptor.save_sp = 1;
4209 }
4210 /* Is this an unwindable procedure. If so mark it so
4211 in the unwind descriptor. */
4212 else if ((strncasecmp (name, "no_unwind", 9) == 0))
4213 {
4214 p = input_line_pointer;
4215 *p = c;
4216 last_call_info->ci_unwind.descriptor.cannot_unwind = 1;
4217 }
4218 /* Is this an interrupt routine. If so mark it in the
4219 unwind descriptor. */
4220 else if ((strncasecmp (name, "hpux_int", 7) == 0))
4221 {
4222 p = input_line_pointer;
4223 *p = c;
4224 last_call_info->ci_unwind.descriptor.hpux_interrupt_marker = 1;
4225 }
4226 else
4227 {
4228 as_bad ("Invalid .CALLINFO argument: %s", name);
4229 }
4230 if (!is_end_of_statement ())
4231 input_line_pointer++;
4232 }
4233
4234 demand_empty_rest_of_line ();
4235 return;
4236 }
4237
4238 /* Switch into the code subspace. */
4239
4240 static void
4241 pa_code (unused)
4242 int unused;
4243 {
4244 sd_chain_struct *sdchain;
4245
4246 /* First time through it might be necessary to create the
4247 $TEXT$ space. */
4248 if ((sdchain = is_defined_space ("$TEXT$")) == NULL)
4249 {
4250 sdchain = create_new_space (pa_def_spaces[0].name,
4251 pa_def_spaces[0].spnum,
4252 pa_def_spaces[0].loadable,
4253 pa_def_spaces[0].defined,
4254 pa_def_spaces[0].private,
4255 pa_def_spaces[0].sort,
4256 pa_def_spaces[0].segment, 0);
4257 }
4258
4259 SPACE_DEFINED (sdchain) = 1;
4260 subseg_set (text_section, SUBSEG_CODE);
4261 demand_empty_rest_of_line ();
4262 return;
4263 }
4264
4265 /* This is different than the standard GAS s_comm(). On HP9000/800 machines,
4266 the .comm pseudo-op has the following symtax:
4267
4268 <label> .comm <length>
4269
4270 where <label> is optional and is a symbol whose address will be the start of
4271 a block of memory <length> bytes long. <length> must be an absolute
4272 expression. <length> bytes will be allocated in the current space
4273 and subspace. */
4274
4275 static void
4276 pa_comm (unused)
4277 int unused;
4278 {
4279 unsigned int size;
4280 symbolS *symbol;
4281 label_symbol_struct *label_symbol = pa_get_label ();
4282
4283 if (label_symbol)
4284 symbol = label_symbol->lss_label;
4285 else
4286 symbol = NULL;
4287
4288 SKIP_WHITESPACE ();
4289 size = get_absolute_expression ();
4290
4291 if (symbol)
4292 {
4293 /* It is incorrect to check S_IS_DEFINED at this point as
4294 the symbol will *always* be defined. FIXME. How to
4295 correctly determine when this label really as been
4296 defined before. */
4297 if (S_GET_VALUE (symbol))
4298 {
4299 if (S_GET_VALUE (symbol) != size)
4300 {
4301 as_warn ("Length of .comm \"%s\" is already %d. Not changed.",
4302 S_GET_NAME (symbol), S_GET_VALUE (symbol));
4303 return;
4304 }
4305 }
4306 else
4307 {
4308 S_SET_VALUE (symbol, size);
4309 S_SET_SEGMENT (symbol, &bfd_und_section);
4310 S_SET_EXTERNAL (symbol);
4311 }
4312 }
4313 demand_empty_rest_of_line ();
4314 }
4315
4316 /* Process a .END pseudo-op. */
4317
4318 static void
4319 pa_end (unused)
4320 int unused;
4321 {
4322 demand_empty_rest_of_line ();
4323 return;
4324 }
4325
4326 /* Process a .ENTER pseudo-op. This is not supported. */
4327 static void
4328 pa_enter (unused)
4329 int unused;
4330 {
4331 abort ();
4332 return;
4333 }
4334
4335 /* Process a .ENTRY pseudo-op. .ENTRY marks the beginning of the
4336 procesure. */
4337 static void
4338 pa_entry (unused)
4339 int unused;
4340 {
4341 if (!within_procedure)
4342 as_bad ("Misplaced .entry. Ignored.");
4343 else
4344 {
4345 if (!callinfo_found)
4346 as_bad ("Missing .callinfo.");
4347 }
4348 demand_empty_rest_of_line ();
4349 within_entry_exit = TRUE;
4350
4351 /* Go back to the last symbol and turn on the BSF_FUNCTION flag.
4352 It will not be on if no .EXPORT pseudo-op exists (static function). */
4353 last_call_info->start_symbol->bsym->flags |= BSF_FUNCTION;
4354
4355 #ifdef OBJ_SOM
4356 /* SOM defers building of unwind descriptors until the link phase.
4357 The assembler is responsible for creating an R_ENTRY relocation
4358 to mark the beginning of a region and hold the unwind bits, and
4359 for creating an R_EXIT relocation to mark the end of the region.
4360
4361 FIXME. ELF should be using the same conventions! The problem
4362 is an unwind requires too much relocation space. Hmmm. Maybe
4363 if we split the unwind bits up between the relocations which
4364 denote the entry and exit points. */
4365 {
4366 char *where = frag_more (0);
4367
4368 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
4369 last_call_info->start_symbol, (offsetT) 0, NULL,
4370 0, R_HPPA_ENTRY, e_fsel, 0, 0,
4371 (char *) &last_call_info->ci_unwind.descriptor);
4372 }
4373 #endif
4374
4375 return;
4376 }
4377
4378 /* Handle a .EQU pseudo-op. */
4379
4380 static void
4381 pa_equ (reg)
4382 int reg;
4383 {
4384 label_symbol_struct *label_symbol = pa_get_label ();
4385 symbolS *symbol;
4386
4387 if (label_symbol)
4388 {
4389 symbol = label_symbol->lss_label;
4390 S_SET_VALUE (symbol, (unsigned int) get_absolute_expression ());
4391 S_SET_SEGMENT (symbol, &bfd_abs_section);
4392 }
4393 else
4394 {
4395 if (reg)
4396 as_bad (".REG must use a label");
4397 else
4398 as_bad (".EQU must use a label");
4399 }
4400
4401 pa_undefine_label ();
4402 demand_empty_rest_of_line ();
4403 return;
4404 }
4405
4406 /* Helper function. Does processing for the end of a function. This
4407 usually involves creating some relocations or building special
4408 symbols to mark the end of the function. */
4409
4410 static void
4411 process_exit ()
4412 {
4413 char *where;
4414
4415 where = frag_more (0);
4416
4417 #ifdef OBJ_ELF
4418 /* Mark the end of the function, stuff away the location of the frag
4419 for the end of the function, and finally call pa_build_unwind_subspace
4420 to add an entry in the unwind table. */
4421 hppa_elf_mark_end_of_function ();
4422 pa_build_unwind_subspace (last_call_info);
4423 #else
4424 /* SOM defers building of unwind descriptors until the link phase.
4425 The assembler is responsible for creating an R_ENTRY relocation
4426 to mark the beginning of a region and hold the unwind bits, and
4427 for creating an R_EXIT relocation to mark the end of the region.
4428
4429 FIXME. ELF should be using the same conventions! The problem
4430 is an unwind requires too much relocation space. Hmmm. Maybe
4431 if we split the unwind bits up between the relocations which
4432 denote the entry and exit points. */
4433 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
4434 last_call_info->start_symbol, (offsetT) 0,
4435 NULL, 0, R_HPPA_EXIT, e_fsel, 0, 0, NULL);
4436 #endif
4437
4438 }
4439
4440 /* Process a .EXIT pseudo-op. */
4441
4442 static void
4443 pa_exit (unused)
4444 int unused;
4445 {
4446 if (!within_procedure)
4447 as_bad (".EXIT must appear within a procedure");
4448 else
4449 {
4450 if (!callinfo_found)
4451 as_bad ("Missing .callinfo");
4452 else
4453 {
4454 if (!within_entry_exit)
4455 as_bad ("No .ENTRY for this .EXIT");
4456 else
4457 {
4458 within_entry_exit = FALSE;
4459 process_exit ();
4460 }
4461 }
4462 }
4463 demand_empty_rest_of_line ();
4464 return;
4465 }
4466
4467 /* Process a .EXPORT directive. This makes functions external
4468 and provides information such as argument relocation entries
4469 to callers. */
4470
4471 static void
4472 pa_export (unused)
4473 int unused;
4474 {
4475 char *name, c, *p;
4476 symbolS *symbol;
4477
4478 name = input_line_pointer;
4479 c = get_symbol_end ();
4480 /* Make sure the given symbol exists. */
4481 if ((symbol = symbol_find_or_make (name)) == NULL)
4482 {
4483 as_bad ("Cannot define export symbol: %s\n", name);
4484 p = input_line_pointer;
4485 *p = c;
4486 input_line_pointer++;
4487 }
4488 else
4489 {
4490 /* OK. Set the external bits and process argument relocations. */
4491 S_SET_EXTERNAL (symbol);
4492 p = input_line_pointer;
4493 *p = c;
4494 if (!is_end_of_statement ())
4495 {
4496 input_line_pointer++;
4497 pa_type_args (symbol, 1);
4498 #ifdef OBJ_ELF
4499 pa_build_symextn_section ();
4500 #endif
4501 }
4502 }
4503
4504 demand_empty_rest_of_line ();
4505 return;
4506 }
4507
4508 /* Helper function to process arguments to a .EXPORT pseudo-op. */
4509
4510 static void
4511 pa_type_args (symbolP, is_export)
4512 symbolS *symbolP;
4513 int is_export;
4514 {
4515 char *name, c, *p;
4516 unsigned int temp, arg_reloc;
4517 pa_symbol_type type = SYMBOL_TYPE_UNKNOWN;
4518 obj_symbol_type *symbol = (obj_symbol_type *) symbolP->bsym;
4519
4520 if (strncasecmp (input_line_pointer, "absolute", 8) == 0)
4521
4522 {
4523 input_line_pointer += 8;
4524 symbolP->bsym->flags &= ~BSF_FUNCTION;
4525 S_SET_SEGMENT (symbolP, &bfd_abs_section);
4526 type = SYMBOL_TYPE_ABSOLUTE;
4527 }
4528 else if (strncasecmp (input_line_pointer, "code", 4) == 0)
4529 {
4530 input_line_pointer += 4;
4531 /* IMPORTing/EXPORTing CODE types for functions is meaningless for SOM,
4532 instead one should be IMPORTing/EXPORTing ENTRY types.
4533
4534 Complain if one tries to EXPORT a CODE type since that's never
4535 done. Both GCC and HP C still try to IMPORT CODE types, so
4536 silently fix them to be ENTRY types. */
4537 if (symbolP->bsym->flags & BSF_FUNCTION)
4538 {
4539 if (is_export)
4540 as_tsktsk ("Using ENTRY rather than CODE in export directive for %s", symbolP->bsym->name);
4541
4542 symbolP->bsym->flags |= BSF_FUNCTION;
4543 type = SYMBOL_TYPE_ENTRY;
4544 }
4545 else
4546 {
4547 symbolP->bsym->flags &= ~BSF_FUNCTION;
4548 type = SYMBOL_TYPE_CODE;
4549 }
4550 }
4551 else if (strncasecmp (input_line_pointer, "data", 4) == 0)
4552 {
4553 input_line_pointer += 4;
4554 symbolP->bsym->flags &= ~BSF_FUNCTION;
4555 type = SYMBOL_TYPE_DATA;
4556 }
4557 else if ((strncasecmp (input_line_pointer, "entry", 5) == 0))
4558 {
4559 input_line_pointer += 5;
4560 symbolP->bsym->flags |= BSF_FUNCTION;
4561 type = SYMBOL_TYPE_ENTRY;
4562 }
4563 else if (strncasecmp (input_line_pointer, "millicode", 9) == 0)
4564 {
4565 input_line_pointer += 9;
4566 symbolP->bsym->flags |= BSF_FUNCTION;
4567 type = SYMBOL_TYPE_MILLICODE;
4568 }
4569 else if (strncasecmp (input_line_pointer, "plabel", 6) == 0)
4570 {
4571 input_line_pointer += 6;
4572 symbolP->bsym->flags &= ~BSF_FUNCTION;
4573 type = SYMBOL_TYPE_PLABEL;
4574 }
4575 else if (strncasecmp (input_line_pointer, "pri_prog", 8) == 0)
4576 {
4577 input_line_pointer += 8;
4578 symbolP->bsym->flags |= BSF_FUNCTION;
4579 type = SYMBOL_TYPE_PRI_PROG;
4580 }
4581 else if (strncasecmp (input_line_pointer, "sec_prog", 8) == 0)
4582 {
4583 input_line_pointer += 8;
4584 symbolP->bsym->flags |= BSF_FUNCTION;
4585 type = SYMBOL_TYPE_SEC_PROG;
4586 }
4587
4588 /* SOM requires much more information about symbol types
4589 than BFD understands. This is how we get this information
4590 to the SOM BFD backend. */
4591 #ifdef obj_set_symbol_type
4592 obj_set_symbol_type (symbolP->bsym, (int) type);
4593 #endif
4594
4595 /* Now that the type of the exported symbol has been handled,
4596 handle any argument relocation information. */
4597 while (!is_end_of_statement ())
4598 {
4599 if (*input_line_pointer == ',')
4600 input_line_pointer++;
4601 name = input_line_pointer;
4602 c = get_symbol_end ();
4603 /* Argument sources. */
4604 if ((strncasecmp (name, "argw", 4) == 0))
4605 {
4606 p = input_line_pointer;
4607 *p = c;
4608 input_line_pointer++;
4609 temp = atoi (name + 4);
4610 name = input_line_pointer;
4611 c = get_symbol_end ();
4612 arg_reloc = pa_align_arg_reloc (temp, pa_build_arg_reloc (name));
4613 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
4614 *input_line_pointer = c;
4615 }
4616 /* The return value. */
4617 else if ((strncasecmp (name, "rtnval", 6)) == 0)
4618 {
4619 p = input_line_pointer;
4620 *p = c;
4621 input_line_pointer++;
4622 name = input_line_pointer;
4623 c = get_symbol_end ();
4624 arg_reloc = pa_build_arg_reloc (name);
4625 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
4626 *input_line_pointer = c;
4627 }
4628 /* Privelege level. */
4629 else if ((strncasecmp (name, "priv_lev", 8)) == 0)
4630 {
4631 p = input_line_pointer;
4632 *p = c;
4633 input_line_pointer++;
4634 temp = atoi (input_line_pointer);
4635 c = get_symbol_end ();
4636 *input_line_pointer = c;
4637 }
4638 else
4639 {
4640 as_bad ("Undefined .EXPORT/.IMPORT argument (ignored): %s", name);
4641 p = input_line_pointer;
4642 *p = c;
4643 }
4644 if (!is_end_of_statement ())
4645 input_line_pointer++;
4646 }
4647 }
4648
4649 /* Handle an .IMPORT pseudo-op. Any symbol referenced in a given
4650 assembly file must either be defined in the assembly file, or
4651 explicitly IMPORTED from another. */
4652
4653 static void
4654 pa_import (unused)
4655 int unused;
4656 {
4657 char *name, c, *p;
4658 symbolS *symbol;
4659
4660 name = input_line_pointer;
4661 c = get_symbol_end ();
4662
4663 symbol = symbol_find_or_make (name);
4664 p = input_line_pointer;
4665 *p = c;
4666
4667 if (!is_end_of_statement ())
4668 {
4669 input_line_pointer++;
4670 pa_type_args (symbol, 0);
4671 }
4672 else
4673 {
4674 /* Sigh. To be compatable with the HP assembler and to help
4675 poorly written assembly code, we assign a type based on
4676 the the current segment. Note only BSF_FUNCTION really
4677 matters, we do not need to set the full SYMBOL_TYPE_* info here. */
4678 if (now_seg == text_section)
4679 symbol->bsym->flags |= BSF_FUNCTION;
4680
4681 /* If the section is undefined, then the symbol is undefined
4682 Since this is an import, leave the section undefined. */
4683 S_SET_SEGMENT (symbol, &bfd_und_section);
4684 }
4685
4686 demand_empty_rest_of_line ();
4687 return;
4688 }
4689
4690 /* Handle a .LABEL pseudo-op. */
4691
4692 static void
4693 pa_label (unused)
4694 int unused;
4695 {
4696 char *name, c, *p;
4697
4698 name = input_line_pointer;
4699 c = get_symbol_end ();
4700
4701 if (strlen (name) > 0)
4702 {
4703 colon (name);
4704 p = input_line_pointer;
4705 *p = c;
4706 }
4707 else
4708 {
4709 as_warn ("Missing label name on .LABEL");
4710 }
4711
4712 if (!is_end_of_statement ())
4713 {
4714 as_warn ("extra .LABEL arguments ignored.");
4715 ignore_rest_of_line ();
4716 }
4717 demand_empty_rest_of_line ();
4718 return;
4719 }
4720
4721 /* Handle a .LEAVE pseudo-op. This is not supported yet. */
4722
4723 static void
4724 pa_leave (unused)
4725 int unused;
4726 {
4727 abort ();
4728 }
4729
4730 /* Handle a .ORIGIN pseudo-op. */
4731
4732 static void
4733 pa_origin (unused)
4734 int unused;
4735 {
4736 s_org (0);
4737 pa_undefine_label ();
4738 return;
4739 }
4740
4741 /* Handle a .PARAM pseudo-op. This is much like a .EXPORT, except it
4742 is for static functions. FIXME. Should share more code with .EXPORT. */
4743
4744 static void
4745 pa_param (unused)
4746 int unused;
4747 {
4748 char *name, c, *p;
4749 symbolS *symbol;
4750
4751 name = input_line_pointer;
4752 c = get_symbol_end ();
4753
4754 if ((symbol = symbol_find_or_make (name)) == NULL)
4755 {
4756 as_bad ("Cannot define static symbol: %s\n", name);
4757 p = input_line_pointer;
4758 *p = c;
4759 input_line_pointer++;
4760 }
4761 else
4762 {
4763 S_CLEAR_EXTERNAL (symbol);
4764 p = input_line_pointer;
4765 *p = c;
4766 if (!is_end_of_statement ())
4767 {
4768 input_line_pointer++;
4769 pa_type_args (symbol, 0);
4770 }
4771 }
4772
4773 demand_empty_rest_of_line ();
4774 return;
4775 }
4776
4777 /* Handle a .PROC pseudo-op. It is used to mark the beginning
4778 of a procedure from a syntatical point of view. */
4779
4780 static void
4781 pa_proc (unused)
4782 int unused;
4783 {
4784 struct call_info *call_info;
4785
4786 if (within_procedure)
4787 as_fatal ("Nested procedures");
4788
4789 /* Reset global variables for new procedure. */
4790 callinfo_found = FALSE;
4791 within_procedure = TRUE;
4792
4793 /* Create another call_info structure. */
4794 call_info = (struct call_info *) xmalloc (sizeof (struct call_info));
4795
4796 if (!call_info)
4797 as_fatal ("Cannot allocate unwind descriptor\n");
4798
4799 bzero (call_info, sizeof (struct call_info));
4800
4801 call_info->ci_next = NULL;
4802
4803 if (call_info_root == NULL)
4804 {
4805 call_info_root = call_info;
4806 last_call_info = call_info;
4807 }
4808 else
4809 {
4810 last_call_info->ci_next = call_info;
4811 last_call_info = call_info;
4812 }
4813
4814 /* set up defaults on call_info structure */
4815
4816 call_info->ci_unwind.descriptor.cannot_unwind = 0;
4817 call_info->ci_unwind.descriptor.region_desc = 1;
4818 call_info->ci_unwind.descriptor.hpux_interrupt_marker = 0;
4819
4820 /* If we got a .PROC pseudo-op, we know that the function is defined
4821 locally. Make sure it gets into the symbol table. */
4822 {
4823 label_symbol_struct *label_symbol = pa_get_label ();
4824
4825 if (label_symbol)
4826 {
4827 if (label_symbol->lss_label)
4828 {
4829 last_call_info->start_symbol = label_symbol->lss_label;
4830 label_symbol->lss_label->bsym->flags |= BSF_FUNCTION;
4831 }
4832 else
4833 as_bad ("Missing function name for .PROC (corrupted label)");
4834 }
4835 else
4836 as_bad ("Missing function name for .PROC");
4837 }
4838
4839 demand_empty_rest_of_line ();
4840 return;
4841 }
4842
4843 /* Process the syntatical end of a procedure. Make sure all the
4844 appropriate pseudo-ops were found within the procedure. */
4845
4846 static void
4847 pa_procend (unused)
4848 int unused;
4849 {
4850
4851 if (!within_procedure)
4852 as_bad ("misplaced .procend");
4853
4854 if (!callinfo_found)
4855 as_bad ("Missing .callinfo for this procedure");
4856
4857 if (within_entry_exit)
4858 as_bad ("Missing .EXIT for a .ENTRY");
4859
4860 #ifdef OBJ_ELF
4861 /* ELF needs to mark the end of each function so that it can compute
4862 the size of the function (apparently its needed in the symbol table. */
4863 hppa_elf_mark_end_of_function ();
4864 #endif
4865
4866 within_procedure = FALSE;
4867 demand_empty_rest_of_line ();
4868 return;
4869 }
4870
4871 /* Parse the parameters to a .SPACE directive; if CREATE_FLAG is nonzero,
4872 then create a new space entry to hold the information specified
4873 by the parameters to the .SPACE directive. */
4874
4875 static sd_chain_struct *
4876 pa_parse_space_stmt (space_name, create_flag)
4877 char *space_name;
4878 int create_flag;
4879 {
4880 char *name, *ptemp, c;
4881 char loadable, defined, private, sort;
4882 int spnum;
4883 asection *seg = NULL;
4884 sd_chain_struct *space;
4885
4886 /* load default values */
4887 spnum = 0;
4888 sort = 0;
4889 loadable = TRUE;
4890 defined = TRUE;
4891 private = FALSE;
4892 if (strcasecmp (space_name, "$TEXT$") == 0)
4893 {
4894 seg = pa_def_spaces[0].segment;
4895 sort = pa_def_spaces[0].sort;
4896 }
4897 else if (strcasecmp (space_name, "$PRIVATE$") == 0)
4898 {
4899 seg = pa_def_spaces[1].segment;
4900 sort = pa_def_spaces[1].sort;
4901 }
4902
4903 if (!is_end_of_statement ())
4904 {
4905 print_errors = FALSE;
4906 ptemp = input_line_pointer + 1;
4907 /* First see if the space was specified as a number rather than
4908 as a name. According to the PA assembly manual the rest of
4909 the line should be ignored. */
4910 if ((spnum = pa_parse_number (&ptemp, 0)) >= 0)
4911 input_line_pointer = ptemp;
4912 else
4913 {
4914 while (!is_end_of_statement ())
4915 {
4916 input_line_pointer++;
4917 name = input_line_pointer;
4918 c = get_symbol_end ();
4919 if ((strncasecmp (name, "SPNUM", 5) == 0))
4920 {
4921 *input_line_pointer = c;
4922 input_line_pointer++;
4923 spnum = get_absolute_expression ();
4924 }
4925 else if ((strncasecmp (name, "SORT", 4) == 0))
4926 {
4927 *input_line_pointer = c;
4928 input_line_pointer++;
4929 sort = get_absolute_expression ();
4930 }
4931 else if ((strncasecmp (name, "UNLOADABLE", 10) == 0))
4932 {
4933 *input_line_pointer = c;
4934 loadable = FALSE;
4935 }
4936 else if ((strncasecmp (name, "NOTDEFINED", 10) == 0))
4937 {
4938 *input_line_pointer = c;
4939 defined = FALSE;
4940 }
4941 else if ((strncasecmp (name, "PRIVATE", 7) == 0))
4942 {
4943 *input_line_pointer = c;
4944 private = TRUE;
4945 }
4946 else
4947 {
4948 as_bad ("Invalid .SPACE argument");
4949 *input_line_pointer = c;
4950 if (!is_end_of_statement ())
4951 input_line_pointer++;
4952 }
4953 }
4954 }
4955 print_errors = TRUE;
4956 }
4957
4958 if (create_flag && seg == NULL)
4959 seg = subseg_new (space_name, 0);
4960
4961 /* If create_flag is nonzero, then create the new space with
4962 the attributes computed above. Else set the values in
4963 an already existing space -- this can only happen for
4964 the first occurence of a built-in space. */
4965 if (create_flag)
4966 space = create_new_space (space_name, spnum, loadable, defined,
4967 private, sort, seg, 1);
4968 else
4969 {
4970 space = is_defined_space (space_name);
4971 SPACE_SPNUM (space) = spnum;
4972 SPACE_DEFINED (space) = defined & 1;
4973 SPACE_USER_DEFINED (space) = 1;
4974 space->sd_seg = seg;
4975 }
4976
4977 #ifdef obj_set_section_attributes
4978 obj_set_section_attributes (seg, defined, private, sort, spnum);
4979 #endif
4980
4981 return space;
4982 }
4983
4984 /* Handle a .SPACE pseudo-op; this switches the current space to the
4985 given space, creating the new space if necessary. */
4986
4987 static void
4988 pa_space (unused)
4989 int unused;
4990 {
4991 char *name, c, *space_name, *save_s;
4992 int temp;
4993 sd_chain_struct *sd_chain;
4994
4995 if (within_procedure)
4996 {
4997 as_bad ("Can\'t change spaces within a procedure definition. Ignored");
4998 ignore_rest_of_line ();
4999 }
5000 else
5001 {
5002 /* Check for some of the predefined spaces. FIXME: most of the code
5003 below is repeated several times, can we extract the common parts
5004 and place them into a subroutine or something similar? */
5005 if (strncasecmp (input_line_pointer, "$text$", 6) == 0)
5006 {
5007 input_line_pointer += 6;
5008 sd_chain = is_defined_space ("$TEXT$");
5009 if (sd_chain == NULL)
5010 sd_chain = pa_parse_space_stmt ("$TEXT$", 1);
5011 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5012 sd_chain = pa_parse_space_stmt ("$TEXT$", 0);
5013
5014 current_space = sd_chain;
5015 subseg_set (text_section, sd_chain->sd_last_subseg);
5016 current_subspace
5017 = pa_subsegment_to_subspace (text_section,
5018 sd_chain->sd_last_subseg);
5019 demand_empty_rest_of_line ();
5020 return;
5021 }
5022 if (strncasecmp (input_line_pointer, "$private$", 9) == 0)
5023 {
5024 input_line_pointer += 9;
5025 sd_chain = is_defined_space ("$PRIVATE$");
5026 if (sd_chain == NULL)
5027 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 1);
5028 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5029 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 0);
5030
5031 current_space = sd_chain;
5032 subseg_set (data_section, sd_chain->sd_last_subseg);
5033 current_subspace
5034 = pa_subsegment_to_subspace (data_section,
5035 sd_chain->sd_last_subseg);
5036 demand_empty_rest_of_line ();
5037 return;
5038 }
5039 if (!strncasecmp (input_line_pointer,
5040 GDB_DEBUG_SPACE_NAME,
5041 strlen (GDB_DEBUG_SPACE_NAME)))
5042 {
5043 input_line_pointer += strlen (GDB_DEBUG_SPACE_NAME);
5044 sd_chain = is_defined_space (GDB_DEBUG_SPACE_NAME);
5045 if (sd_chain == NULL)
5046 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 1);
5047 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5048 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 0);
5049
5050 current_space = sd_chain;
5051
5052 {
5053 asection *gdb_section
5054 = bfd_make_section_old_way (stdoutput, GDB_DEBUG_SPACE_NAME);
5055
5056 subseg_set (gdb_section, sd_chain->sd_last_subseg);
5057 current_subspace
5058 = pa_subsegment_to_subspace (gdb_section,
5059 sd_chain->sd_last_subseg);
5060 }
5061 demand_empty_rest_of_line ();
5062 return;
5063 }
5064
5065 /* It could be a space specified by number. */
5066 print_errors = 0;
5067 save_s = input_line_pointer;
5068 if ((temp = pa_parse_number (&input_line_pointer, 0)) >= 0)
5069 {
5070 if (sd_chain = pa_find_space_by_number (temp))
5071 {
5072 current_space = sd_chain;
5073
5074 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
5075 current_subspace
5076 = pa_subsegment_to_subspace (sd_chain->sd_seg,
5077 sd_chain->sd_last_subseg);
5078 demand_empty_rest_of_line ();
5079 return;
5080 }
5081 }
5082
5083 /* Not a number, attempt to create a new space. */
5084 print_errors = 1;
5085 input_line_pointer = save_s;
5086 name = input_line_pointer;
5087 c = get_symbol_end ();
5088 space_name = xmalloc (strlen (name) + 1);
5089 strcpy (space_name, name);
5090 *input_line_pointer = c;
5091
5092 sd_chain = pa_parse_space_stmt (space_name, 1);
5093 current_space = sd_chain;
5094
5095 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
5096 current_subspace = pa_subsegment_to_subspace (sd_chain->sd_seg,
5097 sd_chain->sd_last_subseg);
5098 demand_empty_rest_of_line ();
5099 }
5100 return;
5101 }
5102
5103 /* Switch to a new space. (I think). FIXME. */
5104
5105 static void
5106 pa_spnum (unused)
5107 int unused;
5108 {
5109 char *name;
5110 char c;
5111 char *p;
5112 sd_chain_struct *space;
5113
5114 name = input_line_pointer;
5115 c = get_symbol_end ();
5116 space = is_defined_space (name);
5117 if (space)
5118 {
5119 p = frag_more (4);
5120 md_number_to_chars (p, SPACE_SPNUM (space), 4);
5121 }
5122 else
5123 as_warn ("Undefined space: '%s' Assuming space number = 0.", name);
5124
5125 *input_line_pointer = c;
5126 demand_empty_rest_of_line ();
5127 return;
5128 }
5129
5130 /* If VALUE is an exact power of two between zero and 2^31, then
5131 return log2 (VALUE). Else return -1. */
5132
5133 static int
5134 log2 (value)
5135 int value;
5136 {
5137 int shift = 0;
5138
5139 while ((1 << shift) != value && shift < 32)
5140 shift++;
5141
5142 if (shift >= 32)
5143 return -1;
5144 else
5145 return shift;
5146 }
5147
5148 /* Handle a .SUBSPACE pseudo-op; this switches the current subspace to the
5149 given subspace, creating the new subspace if necessary.
5150
5151 FIXME. Should mirror pa_space more closely, in particular how
5152 they're broken up into subroutines. */
5153
5154 static void
5155 pa_subspace (unused)
5156 int unused;
5157 {
5158 char *name, *ss_name, *alias, c;
5159 char loadable, code_only, common, dup_common, zero, sort;
5160 int i, access, space_index, alignment, quadrant, applicable, flags;
5161 sd_chain_struct *space;
5162 ssd_chain_struct *ssd;
5163 asection *section;
5164
5165 if (within_procedure)
5166 {
5167 as_bad ("Can\'t change subspaces within a procedure definition. Ignored");
5168 ignore_rest_of_line ();
5169 }
5170 else
5171 {
5172 name = input_line_pointer;
5173 c = get_symbol_end ();
5174 ss_name = xmalloc (strlen (name) + 1);
5175 strcpy (ss_name, name);
5176 *input_line_pointer = c;
5177
5178 /* Load default values. */
5179 sort = 0;
5180 access = 0x7f;
5181 loadable = 1;
5182 common = 0;
5183 dup_common = 0;
5184 code_only = 0;
5185 zero = 0;
5186 space_index = ~0;
5187 alignment = 0;
5188 quadrant = 0;
5189 alias = NULL;
5190
5191 space = current_space;
5192 ssd = is_defined_subspace (ss_name);
5193 /* Allow user to override the builtin attributes of subspaces. But
5194 only allow the attributes to be changed once! */
5195 if (ssd && SUBSPACE_DEFINED (ssd))
5196 {
5197 subseg_set (ssd->ssd_seg, ssd->ssd_subseg);
5198 if (!is_end_of_statement ())
5199 as_warn ("Parameters of an existing subspace can\'t be modified");
5200 demand_empty_rest_of_line ();
5201 return;
5202 }
5203 else
5204 {
5205 /* A new subspace. Load default values if it matches one of
5206 the builtin subspaces. */
5207 i = 0;
5208 while (pa_def_subspaces[i].name)
5209 {
5210 if (strcasecmp (pa_def_subspaces[i].name, ss_name) == 0)
5211 {
5212 loadable = pa_def_subspaces[i].loadable;
5213 common = pa_def_subspaces[i].common;
5214 dup_common = pa_def_subspaces[i].dup_common;
5215 code_only = pa_def_subspaces[i].code_only;
5216 zero = pa_def_subspaces[i].zero;
5217 space_index = pa_def_subspaces[i].space_index;
5218 alignment = pa_def_subspaces[i].alignment;
5219 quadrant = pa_def_subspaces[i].quadrant;
5220 access = pa_def_subspaces[i].access;
5221 sort = pa_def_subspaces[i].sort;
5222 if (USE_ALIASES && pa_def_subspaces[i].alias)
5223 alias = pa_def_subspaces[i].alias;
5224 break;
5225 }
5226 i++;
5227 }
5228 }
5229
5230 /* We should be working with a new subspace now. Fill in
5231 any information as specified by the user. */
5232 if (!is_end_of_statement ())
5233 {
5234 input_line_pointer++;
5235 while (!is_end_of_statement ())
5236 {
5237 name = input_line_pointer;
5238 c = get_symbol_end ();
5239 if ((strncasecmp (name, "QUAD", 4) == 0))
5240 {
5241 *input_line_pointer = c;
5242 input_line_pointer++;
5243 quadrant = get_absolute_expression ();
5244 }
5245 else if ((strncasecmp (name, "ALIGN", 5) == 0))
5246 {
5247 *input_line_pointer = c;
5248 input_line_pointer++;
5249 alignment = get_absolute_expression ();
5250 if (log2 (alignment) == -1)
5251 {
5252 as_bad ("Alignment must be a power of 2");
5253 alignment = 1;
5254 }
5255 }
5256 else if ((strncasecmp (name, "ACCESS", 6) == 0))
5257 {
5258 *input_line_pointer = c;
5259 input_line_pointer++;
5260 access = get_absolute_expression ();
5261 }
5262 else if ((strncasecmp (name, "SORT", 4) == 0))
5263 {
5264 *input_line_pointer = c;
5265 input_line_pointer++;
5266 sort = get_absolute_expression ();
5267 }
5268 else if ((strncasecmp (name, "CODE_ONLY", 9) == 0))
5269 {
5270 *input_line_pointer = c;
5271 code_only = 1;
5272 }
5273 else if ((strncasecmp (name, "UNLOADABLE", 10) == 0))
5274 {
5275 *input_line_pointer = c;
5276 loadable = 0;
5277 }
5278 else if ((strncasecmp (name, "COMMON", 6) == 0))
5279 {
5280 *input_line_pointer = c;
5281 common = 1;
5282 }
5283 else if ((strncasecmp (name, "DUP_COMM", 8) == 0))
5284 {
5285 *input_line_pointer = c;
5286 dup_common = 1;
5287 }
5288 else if ((strncasecmp (name, "ZERO", 4) == 0))
5289 {
5290 *input_line_pointer = c;
5291 zero = 1;
5292 }
5293 else if ((strncasecmp (name, "FIRST", 5) == 0))
5294 as_bad ("FIRST not supported as a .SUBSPACE argument");
5295 else
5296 as_bad ("Invalid .SUBSPACE argument");
5297 if (!is_end_of_statement ())
5298 input_line_pointer++;
5299 }
5300 }
5301
5302 /* Compute a reasonable set of BFD flags based on the information
5303 in the .subspace directive. */
5304 applicable = bfd_applicable_section_flags (stdoutput);
5305 flags = 0;
5306 if (loadable)
5307 flags |= (SEC_ALLOC | SEC_LOAD);
5308 if (code_only)
5309 flags |= SEC_CODE;
5310 if (common || dup_common)
5311 flags |= SEC_IS_COMMON;
5312
5313 /* This is a zero-filled subspace (eg BSS). */
5314 if (zero)
5315 flags &= ~SEC_LOAD;
5316
5317 flags |= SEC_RELOC | SEC_HAS_CONTENTS;
5318 applicable &= flags;
5319
5320 /* If this is an existing subspace, then we want to use the
5321 segment already associated with the subspace.
5322
5323 FIXME NOW! ELF BFD doesn't appear to be ready to deal with
5324 lots of sections. It might be a problem in the PA ELF
5325 code, I do not know yet. For now avoid creating anything
5326 but the "standard" sections for ELF. */
5327 if (ssd)
5328 section = ssd->ssd_seg;
5329 else if (alias)
5330 section = subseg_new (alias, 0);
5331 else if (!alias && USE_ALIASES)
5332 {
5333 as_warn ("Ignoring subspace decl due to ELF BFD bugs.");
5334 demand_empty_rest_of_line ();
5335 return;
5336 }
5337 else
5338 section = subseg_new (ss_name, 0);
5339
5340 /* Now set the flags. */
5341 bfd_set_section_flags (stdoutput, section, applicable);
5342
5343 /* Record any alignment request for this section. */
5344 record_alignment (section, log2 (alignment));
5345
5346 /* Set the starting offset for this section. */
5347 bfd_set_section_vma (stdoutput, section,
5348 pa_subspace_start (space, quadrant));
5349
5350 /* Now that all the flags are set, update an existing subspace,
5351 or create a new one. */
5352 if (ssd)
5353
5354 current_subspace = update_subspace (space, ss_name, loadable,
5355 code_only, common, dup_common,
5356 sort, zero, access, space_index,
5357 alignment, quadrant,
5358 section);
5359 else
5360 current_subspace = create_new_subspace (space, ss_name, loadable,
5361 code_only, common,
5362 dup_common, zero, sort,
5363 access, space_index,
5364 alignment, quadrant, section);
5365
5366 demand_empty_rest_of_line ();
5367 current_subspace->ssd_seg = section;
5368 subseg_set (current_subspace->ssd_seg, current_subspace->ssd_subseg);
5369 }
5370 SUBSPACE_DEFINED (current_subspace) = 1;
5371 return;
5372 }
5373
5374
5375 /* Create default space and subspace dictionaries. */
5376
5377 static void
5378 pa_spaces_begin ()
5379 {
5380 int i;
5381
5382 space_dict_root = NULL;
5383 space_dict_last = NULL;
5384
5385 i = 0;
5386 while (pa_def_spaces[i].name)
5387 {
5388 char *name;
5389
5390 /* Pick the right name to use for the new section. */
5391 if (pa_def_spaces[i].alias && USE_ALIASES)
5392 name = pa_def_spaces[i].alias;
5393 else
5394 name = pa_def_spaces[i].name;
5395
5396 pa_def_spaces[i].segment = subseg_new (name, 0);
5397 create_new_space (pa_def_spaces[i].name, pa_def_spaces[i].spnum,
5398 pa_def_spaces[i].loadable, pa_def_spaces[i].defined,
5399 pa_def_spaces[i].private, pa_def_spaces[i].sort,
5400 pa_def_spaces[i].segment, 0);
5401 i++;
5402 }
5403
5404 i = 0;
5405 while (pa_def_subspaces[i].name)
5406 {
5407 char *name;
5408 int applicable, subsegment;
5409 asection *segment = NULL;
5410 sd_chain_struct *space;
5411
5412 /* Pick the right name for the new section and pick the right
5413 subsegment number. */
5414 if (pa_def_subspaces[i].alias && USE_ALIASES)
5415 {
5416 name = pa_def_subspaces[i].alias;
5417 subsegment = pa_def_subspaces[i].subsegment;
5418 }
5419 else
5420 {
5421 name = pa_def_subspaces[i].name;
5422 subsegment = 0;
5423 }
5424
5425 /* Create the new section. */
5426 segment = subseg_new (name, subsegment);
5427
5428
5429 /* For SOM we want to replace the standard .text, .data, and .bss
5430 sections with our own. */
5431 if (!strcmp (pa_def_subspaces[i].name, "$CODE$") && !USE_ALIASES)
5432 {
5433 text_section = segment;
5434 applicable = bfd_applicable_section_flags (stdoutput);
5435 bfd_set_section_flags (stdoutput, text_section,
5436 applicable & (SEC_ALLOC | SEC_LOAD
5437 | SEC_RELOC | SEC_CODE
5438 | SEC_READONLY
5439 | SEC_HAS_CONTENTS));
5440 }
5441 else if (!strcmp (pa_def_subspaces[i].name, "$DATA$") && !USE_ALIASES)
5442 {
5443 data_section = segment;
5444 applicable = bfd_applicable_section_flags (stdoutput);
5445 bfd_set_section_flags (stdoutput, data_section,
5446 applicable & (SEC_ALLOC | SEC_LOAD
5447 | SEC_RELOC
5448 | SEC_HAS_CONTENTS));
5449
5450
5451 }
5452 else if (!strcmp (pa_def_subspaces[i].name, "$BSS$") && !USE_ALIASES)
5453 {
5454 bss_section = segment;
5455 applicable = bfd_applicable_section_flags (stdoutput);
5456 bfd_set_section_flags (stdoutput, bss_section,
5457 applicable & SEC_ALLOC);
5458 }
5459
5460 /* Find the space associated with this subspace. */
5461 space = pa_segment_to_space (pa_def_spaces[pa_def_subspaces[i].
5462 def_space_index].segment);
5463 if (space == NULL)
5464 {
5465 as_fatal ("Internal error: Unable to find containing space for %s.",
5466 pa_def_subspaces[i].name);
5467 }
5468
5469 create_new_subspace (space, name,
5470 pa_def_subspaces[i].loadable,
5471 pa_def_subspaces[i].code_only,
5472 pa_def_subspaces[i].common,
5473 pa_def_subspaces[i].dup_common,
5474 pa_def_subspaces[i].zero,
5475 pa_def_subspaces[i].sort,
5476 pa_def_subspaces[i].access,
5477 pa_def_subspaces[i].space_index,
5478 pa_def_subspaces[i].alignment,
5479 pa_def_subspaces[i].quadrant,
5480 segment);
5481 i++;
5482 }
5483 }
5484
5485
5486
5487 /* Create a new space NAME, with the appropriate flags as defined
5488 by the given parameters. */
5489
5490 static sd_chain_struct *
5491 create_new_space (name, spnum, loadable, defined, private,
5492 sort, seg, user_defined)
5493 char *name;
5494 int spnum;
5495 char loadable;
5496 char defined;
5497 char private;
5498 char sort;
5499 asection *seg;
5500 int user_defined;
5501 {
5502 sd_chain_struct *chain_entry;
5503
5504 chain_entry = (sd_chain_struct *) xmalloc (sizeof (sd_chain_struct));
5505 if (!chain_entry)
5506 as_fatal ("Out of memory: could not allocate new space chain entry: %s\n",
5507 name);
5508
5509 SPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5510 strcpy (SPACE_NAME (chain_entry), name);
5511 SPACE_DEFINED (chain_entry) = defined;
5512 SPACE_USER_DEFINED (chain_entry) = user_defined;
5513 SPACE_SPNUM (chain_entry) = spnum;
5514
5515 chain_entry->sd_seg = seg;
5516 chain_entry->sd_last_subseg = -1;
5517 chain_entry->sd_next = NULL;
5518
5519 /* Find spot for the new space based on its sort key. */
5520 if (!space_dict_last)
5521 space_dict_last = chain_entry;
5522
5523 if (space_dict_root == NULL)
5524 space_dict_root = chain_entry;
5525 else
5526 {
5527 sd_chain_struct *chain_pointer;
5528 sd_chain_struct *prev_chain_pointer;
5529
5530 chain_pointer = space_dict_root;
5531 prev_chain_pointer = NULL;
5532
5533 while (chain_pointer)
5534 {
5535 prev_chain_pointer = chain_pointer;
5536 chain_pointer = chain_pointer->sd_next;
5537 }
5538
5539 /* At this point we've found the correct place to add the new
5540 entry. So add it and update the linked lists as appropriate. */
5541 if (prev_chain_pointer)
5542 {
5543 chain_entry->sd_next = chain_pointer;
5544 prev_chain_pointer->sd_next = chain_entry;
5545 }
5546 else
5547 {
5548 space_dict_root = chain_entry;
5549 chain_entry->sd_next = chain_pointer;
5550 }
5551
5552 if (chain_entry->sd_next == NULL)
5553 space_dict_last = chain_entry;
5554 }
5555
5556 /* This is here to catch predefined spaces which do not get
5557 modified by the user's input. Another call is found at
5558 the bottom of pa_parse_space_stmt to handle cases where
5559 the user modifies a predefined space. */
5560 #ifdef obj_set_section_attributes
5561 obj_set_section_attributes (seg, defined, private, sort, spnum);
5562 #endif
5563
5564 return chain_entry;
5565 }
5566
5567 /* Create a new subspace NAME, with the appropriate flags as defined
5568 by the given parameters.
5569
5570 Add the new subspace to the subspace dictionary chain in numerical
5571 order as defined by the SORT entries. */
5572
5573 static ssd_chain_struct *
5574 create_new_subspace (space, name, loadable, code_only, common,
5575 dup_common, is_zero, sort, access, space_index,
5576 alignment, quadrant, seg)
5577 sd_chain_struct *space;
5578 char *name;
5579 char loadable, code_only, common, dup_common, is_zero;
5580 char sort;
5581 int access;
5582 int space_index;
5583 int alignment;
5584 int quadrant;
5585 asection *seg;
5586 {
5587 ssd_chain_struct *chain_entry;
5588
5589 chain_entry = (ssd_chain_struct *) xmalloc (sizeof (ssd_chain_struct));
5590 if (!chain_entry)
5591 as_fatal ("Out of memory: could not allocate new subspace chain entry: %s\n", name);
5592
5593 SUBSPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5594 strcpy (SUBSPACE_NAME (chain_entry), name);
5595
5596 /* Initialize subspace_defined. When we hit a .subspace directive
5597 we'll set it to 1 which "locks-in" the subspace attributes. */
5598 SUBSPACE_DEFINED (chain_entry) = 0;
5599
5600 chain_entry->ssd_subseg = USE_ALIASES ? pa_next_subseg (space) : 0;
5601 chain_entry->ssd_seg = seg;
5602 chain_entry->ssd_next = NULL;
5603
5604 /* Find spot for the new subspace based on its sort key. */
5605 if (space->sd_subspaces == NULL)
5606 space->sd_subspaces = chain_entry;
5607 else
5608 {
5609 ssd_chain_struct *chain_pointer;
5610 ssd_chain_struct *prev_chain_pointer;
5611
5612 chain_pointer = space->sd_subspaces;
5613 prev_chain_pointer = NULL;
5614
5615 while (chain_pointer)
5616 {
5617 prev_chain_pointer = chain_pointer;
5618 chain_pointer = chain_pointer->ssd_next;
5619 }
5620
5621 /* Now we have somewhere to put the new entry. Insert it and update
5622 the links. */
5623 if (prev_chain_pointer)
5624 {
5625 chain_entry->ssd_next = chain_pointer;
5626 prev_chain_pointer->ssd_next = chain_entry;
5627 }
5628 else
5629 {
5630 space->sd_subspaces = chain_entry;
5631 chain_entry->ssd_next = chain_pointer;
5632 }
5633 }
5634
5635 #ifdef obj_set_subsection_attributes
5636 obj_set_subsection_attributes (seg, space->sd_seg, access,
5637 sort, quadrant);
5638 #endif
5639
5640 return chain_entry;
5641
5642 }
5643
5644 /* Update the information for the given subspace based upon the
5645 various arguments. Return the modified subspace chain entry. */
5646
5647 static ssd_chain_struct *
5648 update_subspace (space, name, loadable, code_only, common, dup_common, sort,
5649 zero, access, space_index, alignment, quadrant, section)
5650 sd_chain_struct *space;
5651 char *name;
5652 char loadable;
5653 char code_only;
5654 char common;
5655 char dup_common;
5656 char zero;
5657 char sort;
5658 int access;
5659 int space_index;
5660 int alignment;
5661 int quadrant;
5662 asection *section;
5663 {
5664 ssd_chain_struct *chain_entry;
5665
5666 chain_entry = is_defined_subspace (name);
5667
5668 #ifdef obj_set_subsection_attributes
5669 obj_set_subsection_attributes (section, space->sd_seg, access,
5670 sort, quadrant);
5671 #endif
5672
5673 return chain_entry;
5674
5675 }
5676
5677 /* Return the space chain entry for the space with the name NAME or
5678 NULL if no such space exists. */
5679
5680 static sd_chain_struct *
5681 is_defined_space (name)
5682 char *name;
5683 {
5684 sd_chain_struct *chain_pointer;
5685
5686 for (chain_pointer = space_dict_root;
5687 chain_pointer;
5688 chain_pointer = chain_pointer->sd_next)
5689 {
5690 if (strcmp (SPACE_NAME (chain_pointer), name) == 0)
5691 return chain_pointer;
5692 }
5693
5694 /* No mapping from segment to space was found. Return NULL. */
5695 return NULL;
5696 }
5697
5698 /* Find and return the space associated with the given seg. If no mapping
5699 from the given seg to a space is found, then return NULL.
5700
5701 Unlike subspaces, the number of spaces is not expected to grow much,
5702 so a linear exhaustive search is OK here. */
5703
5704 static sd_chain_struct *
5705 pa_segment_to_space (seg)
5706 asection *seg;
5707 {
5708 sd_chain_struct *space_chain;
5709
5710 /* Walk through each space looking for the correct mapping. */
5711 for (space_chain = space_dict_root;
5712 space_chain;
5713 space_chain = space_chain->sd_next)
5714 {
5715 if (space_chain->sd_seg == seg)
5716 return space_chain;
5717 }
5718
5719 /* Mapping was not found. Return NULL. */
5720 return NULL;
5721 }
5722
5723 /* Return the space chain entry for the subspace with the name NAME or
5724 NULL if no such subspace exists.
5725
5726 Uses a linear search through all the spaces and subspaces, this may
5727 not be appropriate if we ever being placing each function in its
5728 own subspace. */
5729
5730 static ssd_chain_struct *
5731 is_defined_subspace (name)
5732 char *name;
5733 {
5734 sd_chain_struct *space_chain;
5735 ssd_chain_struct *subspace_chain;
5736
5737 /* Walk through each space. */
5738 for (space_chain = space_dict_root;
5739 space_chain;
5740 space_chain = space_chain->sd_next)
5741 {
5742 /* Walk through each subspace looking for a name which matches. */
5743 for (subspace_chain = space_chain->sd_subspaces;
5744 subspace_chain;
5745 subspace_chain = subspace_chain->ssd_next)
5746 if (strcmp (SUBSPACE_NAME (subspace_chain), name) == 0)
5747 return subspace_chain;
5748 }
5749
5750 /* Subspace wasn't found. Return NULL. */
5751 return NULL;
5752 }
5753
5754 /* Find and return the subspace associated with the given seg. If no
5755 mapping from the given seg to a subspace is found, then return NULL.
5756
5757 If we ever put each procedure/function within its own subspace
5758 (to make life easier on the compiler and linker), then this will have
5759 to become more efficient. */
5760
5761 static ssd_chain_struct *
5762 pa_subsegment_to_subspace (seg, subseg)
5763 asection *seg;
5764 subsegT subseg;
5765 {
5766 sd_chain_struct *space_chain;
5767 ssd_chain_struct *subspace_chain;
5768
5769 /* Walk through each space. */
5770 for (space_chain = space_dict_root;
5771 space_chain;
5772 space_chain = space_chain->sd_next)
5773 {
5774 if (space_chain->sd_seg == seg)
5775 {
5776 /* Walk through each subspace within each space looking for
5777 the correct mapping. */
5778 for (subspace_chain = space_chain->sd_subspaces;
5779 subspace_chain;
5780 subspace_chain = subspace_chain->ssd_next)
5781 if (subspace_chain->ssd_subseg == (int) subseg)
5782 return subspace_chain;
5783 }
5784 }
5785
5786 /* No mapping from subsegment to subspace found. Return NULL. */
5787 return NULL;
5788 }
5789
5790 /* Given a number, try and find a space with the name number.
5791
5792 Return a pointer to a space dictionary chain entry for the space
5793 that was found or NULL on failure. */
5794
5795 static sd_chain_struct *
5796 pa_find_space_by_number (number)
5797 int number;
5798 {
5799 sd_chain_struct *space_chain;
5800
5801 for (space_chain = space_dict_root;
5802 space_chain;
5803 space_chain = space_chain->sd_next)
5804 {
5805 if (SPACE_SPNUM (space_chain) == number)
5806 return space_chain;
5807 }
5808
5809 /* No appropriate space found. Return NULL. */
5810 return NULL;
5811 }
5812
5813 /* Return the starting address for the given subspace. If the starting
5814 address is unknown then return zero. */
5815
5816 static unsigned int
5817 pa_subspace_start (space, quadrant)
5818 sd_chain_struct *space;
5819 int quadrant;
5820 {
5821 /* FIXME. Assumes everyone puts read/write data at 0x4000000, this
5822 is not correct for the PA OSF1 port. */
5823 if ((strcasecmp (SPACE_NAME (space), "$PRIVATE$") == 0) && quadrant == 1)
5824 return 0x40000000;
5825 else if (space->sd_seg == data_section && quadrant == 1)
5826 return 0x40000000;
5827 else
5828 return 0;
5829 }
5830
5831 /* FIXME. Needs documentation. */
5832 static int
5833 pa_next_subseg (space)
5834 sd_chain_struct *space;
5835 {
5836
5837 space->sd_last_subseg++;
5838 return space->sd_last_subseg;
5839 }
5840
5841 /* Helper function for pa_stringer. Used to find the end of
5842 a string. */
5843
5844 static unsigned int
5845 pa_stringer_aux (s)
5846 char *s;
5847 {
5848 unsigned int c = *s & CHAR_MASK;
5849 switch (c)
5850 {
5851 case '\"':
5852 c = NOT_A_CHAR;
5853 break;
5854 default:
5855 break;
5856 }
5857 return c;
5858 }
5859
5860 /* Handle a .STRING type pseudo-op. */
5861
5862 static void
5863 pa_stringer (append_zero)
5864 int append_zero;
5865 {
5866 char *s, num_buf[4];
5867 unsigned int c;
5868 int i;
5869
5870 /* Preprocess the string to handle PA-specific escape sequences.
5871 For example, \xDD where DD is a hexidecimal number should be
5872 changed to \OOO where OOO is an octal number. */
5873
5874 /* Skip the opening quote. */
5875 s = input_line_pointer + 1;
5876
5877 while (is_a_char (c = pa_stringer_aux (s++)))
5878 {
5879 if (c == '\\')
5880 {
5881 c = *s;
5882 switch (c)
5883 {
5884 /* Handle \x<num>. */
5885 case 'x':
5886 {
5887 unsigned int number;
5888 int num_digit;
5889 char dg;
5890 char *s_start = s;
5891
5892 /* Get pas the 'x'. */
5893 s++;
5894 for (num_digit = 0, number = 0, dg = *s;
5895 num_digit < 2
5896 && (isdigit (dg) || (dg >= 'a' && dg <= 'f')
5897 || (dg >= 'A' && dg <= 'F'));
5898 num_digit++)
5899 {
5900 if (isdigit (dg))
5901 number = number * 16 + dg - '0';
5902 else if (dg >= 'a' && dg <= 'f')
5903 number = number * 16 + dg - 'a' + 10;
5904 else
5905 number = number * 16 + dg - 'A' + 10;
5906
5907 s++;
5908 dg = *s;
5909 }
5910 if (num_digit > 0)
5911 {
5912 switch (num_digit)
5913 {
5914 case 1:
5915 sprintf (num_buf, "%02o", number);
5916 break;
5917 case 2:
5918 sprintf (num_buf, "%03o", number);
5919 break;
5920 }
5921 for (i = 0; i <= num_digit; i++)
5922 s_start[i] = num_buf[i];
5923 }
5924 break;
5925 }
5926 /* This might be a "\"", skip over the escaped char. */
5927 default:
5928 s++;
5929 break;
5930 }
5931 }
5932 }
5933 stringer (append_zero);
5934 pa_undefine_label ();
5935 }
5936
5937 /* Handle a .VERSION pseudo-op. */
5938
5939 static void
5940 pa_version (unused)
5941 int unused;
5942 {
5943 obj_version (0);
5944 pa_undefine_label ();
5945 }
5946
5947 /* Handle a .COPYRIGHT pseudo-op. */
5948
5949 static void
5950 pa_copyright (unused)
5951 int unused;
5952 {
5953 obj_copyright (0);
5954 pa_undefine_label ();
5955 }
5956
5957 /* Just like a normal cons, but when finished we have to undefine
5958 the latest space label. */
5959
5960 static void
5961 pa_cons (nbytes)
5962 int nbytes;
5963 {
5964 cons (nbytes);
5965 pa_undefine_label ();
5966 }
5967
5968 /* Switch to the data space. As usual delete our label. */
5969
5970 static void
5971 pa_data (unused)
5972 int unused;
5973 {
5974 s_data (0);
5975 pa_undefine_label ();
5976 }
5977
5978 /* Like float_cons, but we need to undefine our label. */
5979
5980 static void
5981 pa_float_cons (float_type)
5982 int float_type;
5983 {
5984 float_cons (float_type);
5985 pa_undefine_label ();
5986 }
5987
5988 /* Like s_fill, but delete our label when finished. */
5989
5990 static void
5991 pa_fill (unused)
5992 int unused;
5993 {
5994 s_fill (0);
5995 pa_undefine_label ();
5996 }
5997
5998 /* Like lcomm, but delete our label when finished. */
5999
6000 static void
6001 pa_lcomm (needs_align)
6002 int needs_align;
6003 {
6004 s_lcomm (needs_align);
6005 pa_undefine_label ();
6006 }
6007
6008 /* Like lsym, but delete our label when finished. */
6009
6010 static void
6011 pa_lsym (unused)
6012 int unused;
6013 {
6014 s_lsym (0);
6015 pa_undefine_label ();
6016 }
6017
6018 /* Switch to the text space. Like s_text, but delete our
6019 label when finished. */
6020 static void
6021 pa_text (unused)
6022 int unused;
6023 {
6024 s_text (0);
6025 pa_undefine_label ();
6026 }
6027
6028 /* On the PA relocations which involve function symbols must not be
6029 adjusted. This so that the linker can know when/how to create argument
6030 relocation stubs for indirect calls and calls to static functions.
6031
6032 FIXME. Also reject R_HPPA relocations which are 32 bits
6033 wide. Helps with code lables in arrays for SOM. (SOM BFD code
6034 needs to generate relocations to push the addend and symbol value
6035 onto the stack, add them, then pop the value off the stack and
6036 use it in a relocation -- yuk. */
6037
6038 int
6039 hppa_fix_adjustable (fixp)
6040 fixS *fixp;
6041 {
6042 struct hppa_fix_struct *hppa_fix;
6043
6044 hppa_fix = fixp->tc_fix_data;
6045
6046 if (fixp->fx_r_type == R_HPPA && hppa_fix->fx_r_format == 32)
6047 return 0;
6048
6049 if (fixp->fx_addsy == 0
6050 || (fixp->fx_addsy->bsym->flags & BSF_FUNCTION) == 0)
6051 return 1;
6052
6053 return 0;
6054 }
6055
6056 /* Return nonzero if the fixup in FIXP will require a relocation,
6057 even it if appears that the fixup could be completely handled
6058 within GAS. */
6059
6060 int
6061 hppa_force_relocation (fixp)
6062 fixS *fixp;
6063 {
6064 struct hppa_fix_struct *hppa_fixp = fixp->tc_fix_data;
6065
6066 #ifdef OBJ_SOM
6067 if (fixp->fx_r_type == R_HPPA_ENTRY || fixp->fx_r_type == R_HPPA_EXIT)
6068 return 1;
6069 #endif
6070
6071 #define stub_needed(CALLER, CALLEE) \
6072 ((CALLEE) && (CALLER) && ((CALLEE) != (CALLER)))
6073
6074 /* It is necessary to force PC-relative calls/jumps to have a relocation
6075 entry if they're going to need either a argument relocation or long
6076 call stub. FIXME. Can't we need the same for absolute calls? */
6077 if (fixp->fx_pcrel && fixp->fx_addsy
6078 && (stub_needed (((obj_symbol_type *)
6079 fixp->fx_addsy->bsym)->tc_data.hppa_arg_reloc,
6080 hppa_fixp->fx_arg_reloc)))
6081 return 1;
6082
6083 #undef stub_needed
6084
6085 /* No need (yet) to force another relocations to be emitted. */
6086 return 0;
6087 }
6088
6089 /* Now for some ELF specific code. FIXME. */
6090 #ifdef OBJ_ELF
6091 static symext_chainS *symext_rootP;
6092 static symext_chainS *symext_lastP;
6093
6094 /* Mark the end of a function so that it's possible to compute
6095 the size of the function in hppa_elf_final_processing. */
6096
6097 static void
6098 hppa_elf_mark_end_of_function ()
6099 {
6100 /* ELF does not have EXIT relocations. All we do is create a
6101 temporary symbol marking the end of the function. */
6102 char *name = (char *)
6103 xmalloc (strlen ("L$\001end_") +
6104 strlen (S_GET_NAME (last_call_info->start_symbol)) + 1);
6105
6106 if (name)
6107 {
6108 symbolS *symbolP;
6109
6110 strcpy (name, "L$\001end_");
6111 strcat (name, S_GET_NAME (last_call_info->start_symbol));
6112
6113 /* If we have a .exit followed by a .procend, then the
6114 symbol will have already been defined. */
6115 symbolP = symbol_find (name);
6116 if (symbolP)
6117 {
6118 /* The symbol has already been defined! This can
6119 happen if we have a .exit followed by a .procend.
6120
6121 This is *not* an error. All we want to do is free
6122 the memory we just allocated for the name and continue. */
6123 xfree (name);
6124 }
6125 else
6126 {
6127 /* symbol value should be the offset of the
6128 last instruction of the function */
6129 symbolP = symbol_new (name, now_seg,
6130 (valueT) (obstack_next_free (&frags)
6131 - frag_now->fr_literal - 4),
6132 frag_now);
6133
6134 assert (symbolP);
6135 symbolP->bsym->flags = BSF_LOCAL;
6136 symbol_table_insert (symbolP);
6137 }
6138
6139 if (symbolP)
6140 last_call_info->end_symbol = symbolP;
6141 else
6142 as_bad ("Symbol '%s' could not be created.", name);
6143
6144 }
6145 else
6146 as_bad ("No memory for symbol name.");
6147
6148 }
6149
6150 /* Do any symbol processing requested by the target-cpu or target-format. */
6151
6152 void
6153 hppa_tc_symbol (abfd, symbolP, sym_idx)
6154 bfd *abfd;
6155 elf_symbol_type *symbolP;
6156 int sym_idx;
6157 {
6158 symext_chainS *symextP;
6159 unsigned int arg_reloc;
6160
6161 /* Only functions can have argument relocations. */
6162 if (!(symbolP->symbol.flags & BSF_FUNCTION))
6163 return;
6164
6165 arg_reloc = symbolP->tc_data.hppa_arg_reloc;
6166
6167 /* If there are no argument relocation bits, then no relocation is
6168 necessary. Do not add this to the symextn section. */
6169 if (arg_reloc == 0)
6170 return;
6171
6172 symextP = (symext_chainS *) bfd_alloc (abfd, sizeof (symext_chainS) * 2);
6173
6174 symextP[0].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX, sym_idx);
6175 symextP[0].next = &symextP[1];
6176
6177 symextP[1].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_ARG_RELOC, arg_reloc);
6178 symextP[1].next = NULL;
6179
6180 if (symext_rootP == NULL)
6181 {
6182 symext_rootP = &symextP[0];
6183 symext_lastP = &symextP[1];
6184 }
6185 else
6186 {
6187 symext_lastP->next = &symextP[0];
6188 symext_lastP = &symextP[1];
6189 }
6190 }
6191
6192 /* Make sections needed by the target cpu and/or target format. */
6193 void
6194 hppa_tc_make_sections (abfd)
6195 bfd *abfd;
6196 {
6197 symext_chainS *symextP;
6198 segT save_seg = now_seg;
6199 subsegT save_subseg = now_subseg;
6200
6201 /* Build the symbol extension section. */
6202 hppa_tc_make_symextn_section ();
6203
6204 /* Force some calculation to occur. */
6205 bfd_set_section_contents (stdoutput, stdoutput->sections, "", 0, 0);
6206
6207 hppa_elf_stub_finish (abfd);
6208
6209 /* If no symbols for the symbol extension section, then stop now. */
6210 if (symext_rootP == NULL)
6211 return;
6212
6213 /* Switch to the symbol extension section. */
6214 subseg_new (SYMEXTN_SECTION_NAME, 0);
6215
6216 frag_wane (frag_now);
6217 frag_new (0);
6218
6219 for (symextP = symext_rootP; symextP; symextP = symextP->next)
6220 {
6221 char *ptr;
6222 int *symtab_map = elf_sym_extra (abfd);
6223 int idx;
6224
6225 /* First, patch the symbol extension record to reflect the true
6226 symbol table index. */
6227
6228 if (ELF32_HPPA_SX_TYPE (symextP->entry) == HPPA_SXT_SYMNDX)
6229 {
6230 idx = ELF32_HPPA_SX_VAL (symextP->entry) - 1;
6231 symextP->entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX,
6232 symtab_map[idx]);
6233 }
6234
6235 ptr = frag_more (sizeof (symextP->entry));
6236 md_number_to_chars (ptr, symextP->entry, sizeof (symextP->entry));
6237 }
6238
6239 frag_now->fr_fix = obstack_next_free (&frags) - frag_now->fr_literal;
6240 frag_wane (frag_now);
6241
6242 /* Switch back to the original segment. */
6243 subseg_set (save_seg, save_subseg);
6244
6245 return;
6246 }
6247
6248 /* Make the symbol extension section. */
6249
6250 static void
6251 hppa_tc_make_symextn_section ()
6252 {
6253 if (symext_rootP)
6254 {
6255 symext_chainS *symextP;
6256 int n;
6257 unsigned int size;
6258 segT symextn_sec;
6259 segT save_seg = now_seg;
6260 subsegT save_subseg = now_subseg;
6261
6262 for (n = 0, symextP = symext_rootP; symextP; symextP = symextP->next, ++n)
6263 ;
6264
6265 size = sizeof (symext_entryS) * n;
6266
6267 symextn_sec = subseg_new (SYMEXTN_SECTION_NAME, 0);
6268
6269 bfd_set_section_flags (stdoutput, symextn_sec,
6270 SEC_LOAD | SEC_HAS_CONTENTS | SEC_DATA);
6271 bfd_set_section_size (stdoutput, symextn_sec, size);
6272
6273 /* Now, switch back to the original segment. */
6274 subseg_set (save_seg, save_subseg);
6275 }
6276 }
6277
6278 /* Build the symbol extension section. */
6279
6280 static void
6281 pa_build_symextn_section ()
6282 {
6283 segT seg;
6284 asection *save_seg = now_seg;
6285 subsegT subseg = (subsegT) 0;
6286 subsegT save_subseg = now_subseg;
6287
6288 seg = subseg_new (".hppa_symextn", subseg);
6289 bfd_set_section_flags (stdoutput,
6290 seg,
6291 SEC_HAS_CONTENTS | SEC_READONLY
6292 | SEC_ALLOC | SEC_LOAD);
6293
6294 subseg_set (save_seg, save_subseg);
6295
6296 }
6297
6298 /* For ELF, this function serves one purpose: to setup the st_size
6299 field of STT_FUNC symbols. To do this, we need to scan the
6300 call_info structure list, determining st_size in by taking the
6301 difference in the address of the beginning/end marker symbols. */
6302
6303 void
6304 elf_hppa_final_processing ()
6305 {
6306 struct call_info *call_info_pointer;
6307
6308 for (call_info_pointer = call_info_root;
6309 call_info_pointer;
6310 call_info_pointer = call_info_pointer->ci_next)
6311 {
6312 elf_symbol_type *esym
6313 = (elf_symbol_type *) call_info_pointer->start_symbol->bsym;
6314 esym->internal_elf_sym.st_size =
6315 S_GET_VALUE (call_info_pointer->end_symbol)
6316 - S_GET_VALUE (call_info_pointer->start_symbol) + 4;
6317 }
6318 }
6319 #endif