* config/tc-hppa.c (tc_gen_reloc): Set addend for relocation
[binutils-gdb.git] / gas / config / tc-hppa.c
1 /* tc-hppa.c -- Assemble for the PA
2 Copyright (C) 1989 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 1, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* HP PA-RISC support was contributed by the Center for Software Science
22 at the University of Utah. */
23
24 #include <stdio.h>
25 #include <ctype.h>
26
27 #include "as.h"
28 #include "subsegs.h"
29
30 #include "../bfd/libhppa.h"
31 #include "../bfd/libbfd.h"
32
33 /* Be careful, this file includes data *declarations*. */
34 #include "opcode/hppa.h"
35
36 /* A "convient" place to put object file dependencies which do
37 not need to be seen outside of tc-hppa.c. */
38 #ifdef OBJ_ELF
39 /* Names of various debugging spaces/subspaces. */
40 #define GDB_DEBUG_SPACE_NAME ".stab"
41 #define GDB_STRINGS_SUBSPACE_NAME ".stabstr"
42 #define GDB_SYMBOLS_SUBSPACE_NAME ".stab"
43 #define UNWIND_SECTION_NAME ".hppa_unwind"
44 /* Nonzero if CODE is a fixup code needing further processing. */
45
46 /* Object file formats specify relocation types. */
47 typedef elf32_hppa_reloc_type reloc_type;
48
49 /* Object file formats specify BFD symbol types. */
50 typedef elf_symbol_type obj_symbol_type;
51
52 /* How to generate a relocation. */
53 #define hppa_gen_reloc_type hppa_elf_gen_reloc_type
54
55 /* ELF objects can have versions, but apparently do not have anywhere
56 to store a copyright string. */
57 #define obj_version obj_elf_version
58 #define obj_copyright obj_elf_version
59
60 /* Use space aliases. */
61 #define USE_ALIASES 1
62 #endif
63
64 #ifdef OBJ_SOM
65 /* Names of various debugging spaces/subspaces. */
66 #define GDB_DEBUG_SPACE_NAME "$GDB_DEBUG$"
67 #define GDB_STRINGS_SUBSPACE_NAME "$GDB_STRINGS$"
68 #define GDB_SYMBOLS_SUBSPACE_NAME "$GDB_SYMBOLS$"
69 #define UNWIND_SECTION_NAME "$UNWIND$"
70
71 /* Object file formats specify relocation types. */
72 typedef int reloc_type;
73
74 /* SOM objects can have both a version string and a copyright string. */
75 #define obj_version obj_som_version
76 #define obj_copyright obj_som_copyright
77
78 /* Do not use space aliases. */
79 #define USE_ALIASES 0
80
81 /* How to generate a relocation. */
82 #define hppa_gen_reloc_type hppa_som_gen_reloc_type
83
84 /* Object file formats specify BFD symbol types. */
85 typedef som_symbol_type obj_symbol_type;
86 #endif
87
88 /* Various structures and types used internally in tc-hppa.c. */
89
90 /* Unwind table and descriptor. FIXME: Sync this with GDB version. */
91
92 struct unwind_desc
93 {
94 unsigned int cannot_unwind:1;
95 unsigned int millicode:1;
96 unsigned int millicode_save_rest:1;
97 unsigned int region_desc:2;
98 unsigned int save_sr:2;
99 unsigned int entry_fr:4;
100 unsigned int entry_gr:5;
101 unsigned int args_stored:1;
102 unsigned int call_fr:5;
103 unsigned int call_gr:5;
104 unsigned int save_sp:1;
105 unsigned int save_rp:1;
106 unsigned int save_rp_in_frame:1;
107 unsigned int extn_ptr_defined:1;
108 unsigned int cleanup_defined:1;
109
110 unsigned int hpe_interrupt_marker:1;
111 unsigned int hpux_interrupt_marker:1;
112 unsigned int reserved:3;
113 unsigned int frame_size:27;
114 };
115
116 struct unwind_table
117 {
118 /* Starting and ending offsets of the region described by
119 descriptor. */
120 unsigned int start_offset;
121 unsigned int end_offset;
122 struct unwind_desc descriptor;
123 };
124
125 /* This structure is used by the .callinfo, .enter, .leave pseudo-ops to
126 control the entry and exit code they generate. It is also used in
127 creation of the correct stack unwind descriptors.
128
129 NOTE: GAS does not support .enter and .leave for the generation of
130 prologues and epilogues. FIXME.
131
132 The fields in structure roughly correspond to the arguments available on the
133 .callinfo pseudo-op. */
134
135 struct call_info
136 {
137 /* The unwind descriptor being built. */
138 struct unwind_table ci_unwind;
139
140 /* Name of this function. */
141 symbolS *start_symbol;
142
143 /* (temporary) symbol used to mark the end of this function. */
144 symbolS *end_symbol;
145
146 /* Next entry in the chain. */
147 struct call_info *ci_next;
148 };
149
150 /* Operand formats for FP instructions. Note not all FP instructions
151 allow all four formats to be used (for example fmpysub only allows
152 SGL and DBL). */
153 typedef enum
154 {
155 SGL, DBL, ILLEGAL_FMT, QUAD
156 }
157 fp_operand_format;
158
159 /* This fully describes the symbol types which may be attached to
160 an EXPORT or IMPORT directive. Only SOM uses this formation
161 (ELF has no need for it). */
162 typedef enum
163 {
164 SYMBOL_TYPE_UNKNOWN,
165 SYMBOL_TYPE_ABSOLUTE,
166 SYMBOL_TYPE_CODE,
167 SYMBOL_TYPE_DATA,
168 SYMBOL_TYPE_ENTRY,
169 SYMBOL_TYPE_MILLICODE,
170 SYMBOL_TYPE_PLABEL,
171 SYMBOL_TYPE_PRI_PROG,
172 SYMBOL_TYPE_SEC_PROG,
173 }
174 pa_symbol_type;
175
176 /* This structure contains information needed to assemble
177 individual instructions. */
178 struct pa_it
179 {
180 /* Holds the opcode after parsing by pa_ip. */
181 unsigned long opcode;
182
183 /* Holds an expression associated with the current instruction. */
184 expressionS exp;
185
186 /* Does this instruction use PC-relative addressing. */
187 int pcrel;
188
189 /* Floating point formats for operand1 and operand2. */
190 fp_operand_format fpof1;
191 fp_operand_format fpof2;
192
193 /* Holds the field selector for this instruction
194 (for example L%, LR%, etc). */
195 long field_selector;
196
197 /* Holds any argument relocation bits associated with this
198 instruction. (instruction should be some sort of call). */
199 long arg_reloc;
200
201 /* The format specification for this instruction. */
202 int format;
203
204 /* The relocation (if any) associated with this instruction. */
205 reloc_type reloc;
206 };
207
208 /* PA-89 floating point registers are arranged like this:
209
210
211 +--------------+--------------+
212 | 0 or 16L | 16 or 16R |
213 +--------------+--------------+
214 | 1 or 17L | 17 or 17R |
215 +--------------+--------------+
216 | | |
217
218 . . .
219 . . .
220 . . .
221
222 | | |
223 +--------------+--------------+
224 | 14 or 30L | 30 or 30R |
225 +--------------+--------------+
226 | 15 or 31L | 31 or 31R |
227 +--------------+--------------+
228
229
230 The following is a version of pa_parse_number that
231 handles the L/R notation and returns the correct
232 value to put into the instruction register field.
233 The correct value to put into the instruction is
234 encoded in the structure 'pa_89_fp_reg_struct'. */
235
236 struct pa_89_fp_reg_struct
237 {
238 /* The register number. */
239 char number_part;
240
241 /* L/R selector. */
242 char l_r_select;
243 };
244
245 /* Additional information needed to build argument relocation stubs. */
246 struct call_desc
247 {
248 /* The argument relocation specification. */
249 unsigned int arg_reloc;
250
251 /* Number of arguments. */
252 unsigned int arg_count;
253 };
254
255 /* This structure defines an entry in the subspace dictionary
256 chain. */
257
258 struct subspace_dictionary_chain
259 {
260 /* Nonzero if this space has been defined by the user code. */
261 unsigned int ssd_defined;
262
263 /* Name of this subspace. */
264 char *ssd_name;
265
266 /* GAS segment and subsegment associated with this subspace. */
267 asection *ssd_seg;
268 int ssd_subseg;
269
270 /* Next space in the subspace dictionary chain. */
271 struct subspace_dictionary_chain *ssd_next;
272 };
273
274 typedef struct subspace_dictionary_chain ssd_chain_struct;
275
276 /* This structure defines an entry in the subspace dictionary
277 chain. */
278
279 struct space_dictionary_chain
280 {
281 /* Nonzero if this space has been defined by the user code or
282 as a default space. */
283 unsigned int sd_defined;
284
285 /* Nonzero if this spaces has been defined by the user code. */
286 unsigned int sd_user_defined;
287
288 /* The space number (or index). */
289 unsigned int sd_spnum;
290
291 /* The name of this subspace. */
292 char *sd_name;
293
294 /* GAS segment to which this subspace corresponds. */
295 asection *sd_seg;
296
297 /* Current subsegment number being used. */
298 int sd_last_subseg;
299
300 /* The chain of subspaces contained within this space. */
301 ssd_chain_struct *sd_subspaces;
302
303 /* The next entry in the space dictionary chain. */
304 struct space_dictionary_chain *sd_next;
305 };
306
307 typedef struct space_dictionary_chain sd_chain_struct;
308
309 /* Structure for previous label tracking. Needed so that alignments,
310 callinfo declarations, etc can be easily attached to a particular
311 label. */
312 typedef struct label_symbol_struct
313 {
314 struct symbol *lss_label;
315 sd_chain_struct *lss_space;
316 struct label_symbol_struct *lss_next;
317 }
318 label_symbol_struct;
319
320 /* This structure defines attributes of the default subspace
321 dictionary entries. */
322
323 struct default_subspace_dict
324 {
325 /* Name of the subspace. */
326 char *name;
327
328 /* FIXME. Is this still needed? */
329 char defined;
330
331 /* Nonzero if this subspace is loadable. */
332 char loadable;
333
334 /* Nonzero if this subspace contains only code. */
335 char code_only;
336
337 /* Nonzero if this is a common subspace. */
338 char common;
339
340 /* Nonzero if this is a common subspace which allows symbols
341 to be multiply defined. */
342 char dup_common;
343
344 /* Nonzero if this subspace should be zero filled. */
345 char zero;
346
347 /* Sort key for this subspace. */
348 unsigned char sort;
349
350 /* Access control bits for this subspace. Can represent RWX access
351 as well as privilege level changes for gateways. */
352 int access;
353
354 /* Index of containing space. */
355 int space_index;
356
357 /* Alignment (in bytes) of this subspace. */
358 int alignment;
359
360 /* Quadrant within space where this subspace should be loaded. */
361 int quadrant;
362
363 /* An index into the default spaces array. */
364 int def_space_index;
365
366 /* An alias for this section (or NULL if no alias exists). */
367 char *alias;
368
369 /* Subsegment associated with this subspace. */
370 subsegT subsegment;
371 };
372
373 /* This structure defines attributes of the default space
374 dictionary entries. */
375
376 struct default_space_dict
377 {
378 /* Name of the space. */
379 char *name;
380
381 /* Space number. It is possible to identify spaces within
382 assembly code numerically! */
383 int spnum;
384
385 /* Nonzero if this space is loadable. */
386 char loadable;
387
388 /* Nonzero if this space is "defined". FIXME is still needed */
389 char defined;
390
391 /* Nonzero if this space can not be shared. */
392 char private;
393
394 /* Sort key for this space. */
395 unsigned char sort;
396
397 /* Segment associated with this space. */
398 asection *segment;
399
400 /* An alias for this section (or NULL if no alias exists). */
401 char *alias;
402 };
403
404 /* Extra information needed to perform fixups (relocations) on the PA. */
405 struct hppa_fix_struct
406 {
407 /* The field selector. */
408 enum hppa_reloc_field_selector_type fx_r_field;
409
410 /* Type of fixup. */
411 int fx_r_type;
412
413 /* Format of fixup. */
414 int fx_r_format;
415
416 /* Argument relocation bits. */
417 long fx_arg_reloc;
418
419 /* The unwind descriptor associated with this fixup. */
420 char fx_unwind[8];
421
422 /* The segment this fixup appears in. */
423 segT segment;
424 };
425
426 /* Structure to hold information about predefined registers. */
427
428 struct pd_reg
429 {
430 char *name;
431 int value;
432 };
433
434 /* This structure defines the mapping from a FP condition string
435 to a condition number which can be recorded in an instruction. */
436 struct fp_cond_map
437 {
438 char *string;
439 int cond;
440 };
441
442 /* This structure defines a mapping from a field selector
443 string to a field selector type. */
444 struct selector_entry
445 {
446 char *prefix;
447 int field_selector;
448 };
449
450 /* Prototypes for functions local to tc-hppa.c. */
451
452 static fp_operand_format pa_parse_fp_format PARAMS ((char **s));
453 static void pa_cons PARAMS ((int));
454 static void pa_data PARAMS ((int));
455 static void pa_float_cons PARAMS ((int));
456 static void pa_fill PARAMS ((int));
457 static void pa_lcomm PARAMS ((int));
458 static void pa_lsym PARAMS ((int));
459 static void pa_stringer PARAMS ((int));
460 static void pa_text PARAMS ((int));
461 static void pa_version PARAMS ((int));
462 static int pa_parse_fp_cmp_cond PARAMS ((char **));
463 static int get_expression PARAMS ((char *));
464 static int pa_get_absolute_expression PARAMS ((struct pa_it *, char **));
465 static int evaluate_absolute PARAMS ((struct pa_it *));
466 static unsigned int pa_build_arg_reloc PARAMS ((char *));
467 static unsigned int pa_align_arg_reloc PARAMS ((unsigned int, unsigned int));
468 static int pa_parse_nullif PARAMS ((char **));
469 static int pa_parse_nonneg_cmpsub_cmpltr PARAMS ((char **, int));
470 static int pa_parse_neg_cmpsub_cmpltr PARAMS ((char **, int));
471 static int pa_parse_neg_add_cmpltr PARAMS ((char **, int));
472 static int pa_parse_nonneg_add_cmpltr PARAMS ((char **, int));
473 static void pa_block PARAMS ((int));
474 static void pa_call PARAMS ((int));
475 static void pa_call_args PARAMS ((struct call_desc *));
476 static void pa_callinfo PARAMS ((int));
477 static void pa_code PARAMS ((int));
478 static void pa_comm PARAMS ((int));
479 static void pa_copyright PARAMS ((int));
480 static void pa_end PARAMS ((int));
481 static void pa_enter PARAMS ((int));
482 static void pa_entry PARAMS ((int));
483 static void pa_equ PARAMS ((int));
484 static void pa_exit PARAMS ((int));
485 static void pa_export PARAMS ((int));
486 static void pa_type_args PARAMS ((symbolS *, int));
487 static void pa_import PARAMS ((int));
488 static void pa_label PARAMS ((int));
489 static void pa_leave PARAMS ((int));
490 static void pa_origin PARAMS ((int));
491 static void pa_proc PARAMS ((int));
492 static void pa_procend PARAMS ((int));
493 static void pa_space PARAMS ((int));
494 static void pa_spnum PARAMS ((int));
495 static void pa_subspace PARAMS ((int));
496 static void pa_param PARAMS ((int));
497 static void pa_undefine_label PARAMS ((void));
498 static int need_89_opcode PARAMS ((struct pa_it *,
499 struct pa_89_fp_reg_struct *));
500 static int pa_parse_number PARAMS ((char **, struct pa_89_fp_reg_struct *));
501 static label_symbol_struct *pa_get_label PARAMS ((void));
502 static sd_chain_struct *create_new_space PARAMS ((char *, int, int,
503 int, int, int,
504 asection *, int));
505 static ssd_chain_struct *create_new_subspace PARAMS ((sd_chain_struct *,
506 char *, int, int,
507 int, int, int,
508 int, int, int, int,
509 int, asection *));
510 static ssd_chain_struct *update_subspace PARAMS ((sd_chain_struct *,
511 char *, int, int, int,
512 int, int, int, int,
513 int, int, int,
514 asection *));
515 static sd_chain_struct *is_defined_space PARAMS ((char *));
516 static ssd_chain_struct *is_defined_subspace PARAMS ((char *));
517 static sd_chain_struct *pa_segment_to_space PARAMS ((asection *));
518 static ssd_chain_struct *pa_subsegment_to_subspace PARAMS ((asection *,
519 subsegT));
520 static sd_chain_struct *pa_find_space_by_number PARAMS ((int));
521 static unsigned int pa_subspace_start PARAMS ((sd_chain_struct *, int));
522 static void pa_ip PARAMS ((char *));
523 static void fix_new_hppa PARAMS ((fragS *, int, int, symbolS *,
524 long, expressionS *, int,
525 bfd_reloc_code_real_type,
526 enum hppa_reloc_field_selector_type,
527 int, long, char *));
528 static int is_end_of_statement PARAMS ((void));
529 static int reg_name_search PARAMS ((char *));
530 static int pa_chk_field_selector PARAMS ((char **));
531 static int is_same_frag PARAMS ((fragS *, fragS *));
532 static void pa_build_unwind_subspace PARAMS ((struct call_info *));
533 static void process_exit PARAMS ((void));
534 static sd_chain_struct *pa_parse_space_stmt PARAMS ((char *, int));
535 static int log2 PARAMS ((int));
536 static int pa_next_subseg PARAMS ((sd_chain_struct *));
537 static unsigned int pa_stringer_aux PARAMS ((char *));
538 static void pa_spaces_begin PARAMS ((void));
539 static void hppa_elf_mark_end_of_function PARAMS ((void));
540
541 /* File and gloally scoped variable declarations. */
542
543 /* Root and final entry in the space chain. */
544 static sd_chain_struct *space_dict_root;
545 static sd_chain_struct *space_dict_last;
546
547 /* The current space and subspace. */
548 static sd_chain_struct *current_space;
549 static ssd_chain_struct *current_subspace;
550
551 /* Root of the call_info chain. */
552 static struct call_info *call_info_root;
553
554 /* The last call_info (for functions) structure
555 seen so it can be associated with fixups and
556 function labels. */
557 static struct call_info *last_call_info;
558
559 /* The last call description (for actual calls). */
560 static struct call_desc last_call_desc;
561
562 /* Relaxation isn't supported for the PA yet. */
563 const relax_typeS md_relax_table[] =
564 {0};
565
566 /* Jumps are always the same size -- one instruction. */
567 int md_short_jump_size = 4;
568 int md_long_jump_size = 4;
569
570 /* handle of the OPCODE hash table */
571 static struct hash_control *op_hash = NULL;
572
573 /* This array holds the chars that always start a comment. If the
574 pre-processor is disabled, these aren't very useful. */
575 const char comment_chars[] = ";";
576
577 /* Table of pseudo ops for the PA. FIXME -- how many of these
578 are now redundant with the overall GAS and the object file
579 dependent tables? */
580 const pseudo_typeS md_pseudo_table[] =
581 {
582 /* align pseudo-ops on the PA specify the actual alignment requested,
583 not the log2 of the requested alignment. */
584 {"align", s_align_bytes, 8},
585 {"ALIGN", s_align_bytes, 8},
586 {"block", pa_block, 1},
587 {"BLOCK", pa_block, 1},
588 {"blockz", pa_block, 0},
589 {"BLOCKZ", pa_block, 0},
590 {"byte", pa_cons, 1},
591 {"BYTE", pa_cons, 1},
592 {"call", pa_call, 0},
593 {"CALL", pa_call, 0},
594 {"callinfo", pa_callinfo, 0},
595 {"CALLINFO", pa_callinfo, 0},
596 {"code", pa_code, 0},
597 {"CODE", pa_code, 0},
598 {"comm", pa_comm, 0},
599 {"COMM", pa_comm, 0},
600 {"copyright", pa_copyright, 0},
601 {"COPYRIGHT", pa_copyright, 0},
602 {"data", pa_data, 0},
603 {"DATA", pa_data, 0},
604 {"double", pa_float_cons, 'd'},
605 {"DOUBLE", pa_float_cons, 'd'},
606 {"end", pa_end, 0},
607 {"END", pa_end, 0},
608 {"enter", pa_enter, 0},
609 {"ENTER", pa_enter, 0},
610 {"entry", pa_entry, 0},
611 {"ENTRY", pa_entry, 0},
612 {"equ", pa_equ, 0},
613 {"EQU", pa_equ, 0},
614 {"exit", pa_exit, 0},
615 {"EXIT", pa_exit, 0},
616 {"export", pa_export, 0},
617 {"EXPORT", pa_export, 0},
618 {"fill", pa_fill, 0},
619 {"FILL", pa_fill, 0},
620 {"float", pa_float_cons, 'f'},
621 {"FLOAT", pa_float_cons, 'f'},
622 {"half", pa_cons, 2},
623 {"HALF", pa_cons, 2},
624 {"import", pa_import, 0},
625 {"IMPORT", pa_import, 0},
626 {"int", pa_cons, 4},
627 {"INT", pa_cons, 4},
628 {"label", pa_label, 0},
629 {"LABEL", pa_label, 0},
630 {"lcomm", pa_lcomm, 0},
631 {"LCOMM", pa_lcomm, 0},
632 {"leave", pa_leave, 0},
633 {"LEAVE", pa_leave, 0},
634 {"long", pa_cons, 4},
635 {"LONG", pa_cons, 4},
636 {"lsym", pa_lsym, 0},
637 {"LSYM", pa_lsym, 0},
638 {"octa", pa_cons, 16},
639 {"OCTA", pa_cons, 16},
640 {"org", pa_origin, 0},
641 {"ORG", pa_origin, 0},
642 {"origin", pa_origin, 0},
643 {"ORIGIN", pa_origin, 0},
644 {"param", pa_param, 0},
645 {"PARAM", pa_param, 0},
646 {"proc", pa_proc, 0},
647 {"PROC", pa_proc, 0},
648 {"procend", pa_procend, 0},
649 {"PROCEND", pa_procend, 0},
650 {"quad", pa_cons, 8},
651 {"QUAD", pa_cons, 8},
652 {"reg", pa_equ, 1},
653 {"REG", pa_equ, 1},
654 {"short", pa_cons, 2},
655 {"SHORT", pa_cons, 2},
656 {"single", pa_float_cons, 'f'},
657 {"SINGLE", pa_float_cons, 'f'},
658 {"space", pa_space, 0},
659 {"SPACE", pa_space, 0},
660 {"spnum", pa_spnum, 0},
661 {"SPNUM", pa_spnum, 0},
662 {"string", pa_stringer, 0},
663 {"STRING", pa_stringer, 0},
664 {"stringz", pa_stringer, 1},
665 {"STRINGZ", pa_stringer, 1},
666 {"subspa", pa_subspace, 0},
667 {"SUBSPA", pa_subspace, 0},
668 {"text", pa_text, 0},
669 {"TEXT", pa_text, 0},
670 {"version", pa_version, 0},
671 {"VERSION", pa_version, 0},
672 {"word", pa_cons, 4},
673 {"WORD", pa_cons, 4},
674 {NULL, 0, 0}
675 };
676
677 /* This array holds the chars that only start a comment at the beginning of
678 a line. If the line seems to have the form '# 123 filename'
679 .line and .file directives will appear in the pre-processed output.
680
681 Note that input_file.c hand checks for '#' at the beginning of the
682 first line of the input file. This is because the compiler outputs
683 #NO_APP at the beginning of its output.
684
685 Also note that '/*' will always start a comment. */
686 const char line_comment_chars[] = "#";
687
688 /* This array holds the characters which act as line separators. */
689 const char line_separator_chars[] = "!";
690
691 /* Chars that can be used to separate mant from exp in floating point nums. */
692 const char EXP_CHARS[] = "eE";
693
694 /* Chars that mean this number is a floating point constant.
695 As in 0f12.456 or 0d1.2345e12.
696
697 Be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
698 changed in read.c. Ideally it shouldn't hae to know abou it at
699 all, but nothing is ideal around here. */
700 const char FLT_CHARS[] = "rRsSfFdDxXpP";
701
702 static struct pa_it the_insn;
703
704 /* Points to the end of an expression just parsed by get_expressoin
705 and friends. FIXME. This shouldn't be handled with a file-global
706 variable. */
707 static char *expr_end;
708
709 /* Nonzero if a .callinfo appeared within the current procedure. */
710 static int callinfo_found;
711
712 /* Nonzero if the assembler is currently within a .entry/.exit pair. */
713 static int within_entry_exit;
714
715 /* Nonzero if the assembler is currently within a procedure definition. */
716 static int within_procedure;
717
718 /* Handle on strucutre which keep track of the last symbol
719 seen in each subspace. */
720 static label_symbol_struct *label_symbols_rootp = NULL;
721
722 /* Holds the last field selector. */
723 static int hppa_field_selector;
724
725 /* A dummy bfd symbol so that all relocations have symbols of some kind. */
726 static symbolS *dummy_symbol;
727
728 /* Nonzero if errors are to be printed. */
729 static int print_errors = 1;
730
731 /* List of registers that are pre-defined:
732
733 Each general register has one predefined name of the form
734 %r<REGNUM> which has the value <REGNUM>.
735
736 Space and control registers are handled in a similar manner,
737 but use %sr<REGNUM> and %cr<REGNUM> as their predefined names.
738
739 Likewise for the floating point registers, but of the form
740 %fr<REGNUM>. Floating point registers have additional predefined
741 names with 'L' and 'R' suffixes (e.g. %fr19L, %fr19R) which
742 again have the value <REGNUM>.
743
744 Many registers also have synonyms:
745
746 %r26 - %r23 have %arg0 - %arg3 as synonyms
747 %r28 - %r29 have %ret0 - %ret1 as synonyms
748 %r30 has %sp as a synonym
749 %r27 has %dp as a synonym
750 %r2 has %rp as a synonym
751
752 Almost every control register has a synonym; they are not listed
753 here for brevity.
754
755 The table is sorted. Suitable for searching by a binary search. */
756
757 static const struct pd_reg pre_defined_registers[] =
758 {
759 {"%arg0", 26},
760 {"%arg1", 25},
761 {"%arg2", 24},
762 {"%arg3", 23},
763 {"%cr0", 0},
764 {"%cr10", 10},
765 {"%cr11", 11},
766 {"%cr12", 12},
767 {"%cr13", 13},
768 {"%cr14", 14},
769 {"%cr15", 15},
770 {"%cr16", 16},
771 {"%cr17", 17},
772 {"%cr18", 18},
773 {"%cr19", 19},
774 {"%cr20", 20},
775 {"%cr21", 21},
776 {"%cr22", 22},
777 {"%cr23", 23},
778 {"%cr24", 24},
779 {"%cr25", 25},
780 {"%cr26", 26},
781 {"%cr27", 27},
782 {"%cr28", 28},
783 {"%cr29", 29},
784 {"%cr30", 30},
785 {"%cr31", 31},
786 {"%cr8", 8},
787 {"%cr9", 9},
788 {"%dp", 27},
789 {"%eiem", 15},
790 {"%eirr", 23},
791 {"%fr0", 0},
792 {"%fr0l", 0},
793 {"%fr0r", 0},
794 {"%fr1", 1},
795 {"%fr10", 10},
796 {"%fr10l", 10},
797 {"%fr10r", 10},
798 {"%fr11", 11},
799 {"%fr11l", 11},
800 {"%fr11r", 11},
801 {"%fr12", 12},
802 {"%fr12l", 12},
803 {"%fr12r", 12},
804 {"%fr13", 13},
805 {"%fr13l", 13},
806 {"%fr13r", 13},
807 {"%fr14", 14},
808 {"%fr14l", 14},
809 {"%fr14r", 14},
810 {"%fr15", 15},
811 {"%fr15l", 15},
812 {"%fr15r", 15},
813 {"%fr16", 16},
814 {"%fr16l", 16},
815 {"%fr16r", 16},
816 {"%fr17", 17},
817 {"%fr17l", 17},
818 {"%fr17r", 17},
819 {"%fr18", 18},
820 {"%fr18l", 18},
821 {"%fr18r", 18},
822 {"%fr19", 19},
823 {"%fr19l", 19},
824 {"%fr19r", 19},
825 {"%fr1l", 1},
826 {"%fr1r", 1},
827 {"%fr2", 2},
828 {"%fr20", 20},
829 {"%fr20l", 20},
830 {"%fr20r", 20},
831 {"%fr21", 21},
832 {"%fr21l", 21},
833 {"%fr21r", 21},
834 {"%fr22", 22},
835 {"%fr22l", 22},
836 {"%fr22r", 22},
837 {"%fr23", 23},
838 {"%fr23l", 23},
839 {"%fr23r", 23},
840 {"%fr24", 24},
841 {"%fr24l", 24},
842 {"%fr24r", 24},
843 {"%fr25", 25},
844 {"%fr25l", 25},
845 {"%fr25r", 25},
846 {"%fr26", 26},
847 {"%fr26l", 26},
848 {"%fr26r", 26},
849 {"%fr27", 27},
850 {"%fr27l", 27},
851 {"%fr27r", 27},
852 {"%fr28", 28},
853 {"%fr28l", 28},
854 {"%fr28r", 28},
855 {"%fr29", 29},
856 {"%fr29l", 29},
857 {"%fr29r", 29},
858 {"%fr2l", 2},
859 {"%fr2r", 2},
860 {"%fr3", 3},
861 {"%fr30", 30},
862 {"%fr30l", 30},
863 {"%fr30r", 30},
864 {"%fr31", 31},
865 {"%fr31l", 31},
866 {"%fr31r", 31},
867 {"%fr3l", 3},
868 {"%fr3r", 3},
869 {"%fr4", 4},
870 {"%fr4l", 4},
871 {"%fr4r", 4},
872 {"%fr5", 5},
873 {"%fr5l", 5},
874 {"%fr5r", 5},
875 {"%fr6", 6},
876 {"%fr6l", 6},
877 {"%fr6r", 6},
878 {"%fr7", 7},
879 {"%fr7l", 7},
880 {"%fr7r", 7},
881 {"%fr8", 8},
882 {"%fr8l", 8},
883 {"%fr8r", 8},
884 {"%fr9", 9},
885 {"%fr9l", 9},
886 {"%fr9r", 9},
887 {"%hta", 25},
888 {"%iir", 19},
889 {"%ior", 21},
890 {"%ipsw", 22},
891 {"%isr", 20},
892 {"%itmr", 16},
893 {"%iva", 14},
894 {"%pcoq", 18},
895 {"%pcsq", 17},
896 {"%pidr1", 8},
897 {"%pidr2", 9},
898 {"%pidr3", 12},
899 {"%pidr4", 13},
900 {"%ppda", 24},
901 {"%r0", 0},
902 {"%r1", 1},
903 {"%r10", 10},
904 {"%r11", 11},
905 {"%r12", 12},
906 {"%r13", 13},
907 {"%r14", 14},
908 {"%r15", 15},
909 {"%r16", 16},
910 {"%r17", 17},
911 {"%r18", 18},
912 {"%r19", 19},
913 {"%r2", 2},
914 {"%r20", 20},
915 {"%r21", 21},
916 {"%r22", 22},
917 {"%r23", 23},
918 {"%r24", 24},
919 {"%r25", 25},
920 {"%r26", 26},
921 {"%r27", 27},
922 {"%r28", 28},
923 {"%r29", 29},
924 {"%r3", 3},
925 {"%r30", 30},
926 {"%r31", 31},
927 {"%r4", 4},
928 {"%r5", 5},
929 {"%r6", 6},
930 {"%r7", 7},
931 {"%r8", 8},
932 {"%r9", 9},
933 {"%rctr", 0},
934 {"%ret0", 28},
935 {"%ret1", 29},
936 {"%rp", 2},
937 {"%sar", 11},
938 {"%sp", 30},
939 {"%sr0", 0},
940 {"%sr1", 1},
941 {"%sr2", 2},
942 {"%sr3", 3},
943 {"%sr4", 4},
944 {"%sr5", 5},
945 {"%sr6", 6},
946 {"%sr7", 7},
947 {"%tr0", 24},
948 {"%tr1", 25},
949 {"%tr2", 26},
950 {"%tr3", 27},
951 {"%tr4", 28},
952 {"%tr5", 29},
953 {"%tr6", 30},
954 {"%tr7", 31}
955 };
956
957 /* This table is sorted by order of the length of the string. This is
958 so we check for <> before we check for <. If we had a <> and checked
959 for < first, we would get a false match. */
960 static const struct fp_cond_map fp_cond_map[] =
961 {
962 {"false?", 0},
963 {"false", 1},
964 {"true?", 30},
965 {"true", 31},
966 {"!<=>", 3},
967 {"!?>=", 8},
968 {"!?<=", 16},
969 {"!<>", 7},
970 {"!>=", 11},
971 {"!?>", 12},
972 {"?<=", 14},
973 {"!<=", 19},
974 {"!?<", 20},
975 {"?>=", 22},
976 {"!?=", 24},
977 {"!=t", 27},
978 {"<=>", 29},
979 {"=t", 5},
980 {"?=", 6},
981 {"?<", 10},
982 {"<=", 13},
983 {"!>", 15},
984 {"?>", 18},
985 {">=", 21},
986 {"!<", 23},
987 {"<>", 25},
988 {"!=", 26},
989 {"!?", 28},
990 {"?", 2},
991 {"=", 4},
992 {"<", 9},
993 {">", 17}
994 };
995
996 static const struct selector_entry selector_table[] =
997 {
998 {"f", e_fsel},
999 {"l", e_lsel},
1000 {"ld", e_ldsel},
1001 {"lp", e_lpsel},
1002 {"lr", e_lrsel},
1003 {"ls", e_lssel},
1004 {"lt", e_ltsel},
1005 {"p", e_psel},
1006 {"r", e_rsel},
1007 {"rd", e_rdsel},
1008 {"rp", e_rpsel},
1009 {"rr", e_rrsel},
1010 {"rs", e_rssel},
1011 {"rt", e_rtsel},
1012 {"t", e_tsel},
1013 };
1014
1015 /* default space and subspace dictionaries */
1016
1017 #define GDB_SYMBOLS GDB_SYMBOLS_SUBSPACE_NAME
1018 #define GDB_STRINGS GDB_STRINGS_SUBSPACE_NAME
1019
1020 /* pre-defined subsegments (subspaces) for the HPPA. */
1021 #define SUBSEG_CODE 0
1022 #define SUBSEG_DATA 0
1023 #define SUBSEG_LIT 1
1024 #define SUBSEG_BSS 2
1025 #define SUBSEG_UNWIND 3
1026 #define SUBSEG_GDB_STRINGS 0
1027 #define SUBSEG_GDB_SYMBOLS 1
1028
1029 static struct default_subspace_dict pa_def_subspaces[] =
1030 {
1031 {"$CODE$", 1, 1, 1, 0, 0, 0, 24, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_CODE},
1032 {"$DATA$", 1, 1, 0, 0, 0, 0, 24, 0x1f, 1, 8, 1, 1, ".data", SUBSEG_DATA},
1033 {"$LIT$", 1, 1, 0, 0, 0, 0, 16, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_LIT},
1034 {"$BSS$", 1, 1, 0, 0, 0, 1, 80, 0x1f, 1, 8, 1, 1, ".bss", SUBSEG_BSS},
1035 #ifdef OBJ_ELF
1036 {"$UNWIND$", 1, 1, 0, 0, 0, 0, 64, 0x2c, 0, 4, 0, 0, ".hppa_unwind", SUBSEG_UNWIND},
1037 #endif
1038 {NULL, 0, 1, 0, 0, 0, 0, 255, 0x1f, 0, 4, 0, 0, 0}
1039 };
1040
1041 static struct default_space_dict pa_def_spaces[] =
1042 {
1043 {"$TEXT$", 0, 1, 1, 0, 8, ASEC_NULL, ".text"},
1044 {"$PRIVATE$", 1, 1, 1, 1, 16, ASEC_NULL, ".data"},
1045 {NULL, 0, 0, 0, 0, 0, ASEC_NULL, NULL}
1046 };
1047
1048 /* Misc local definitions used by the assembler. */
1049
1050 /* Return nonzero if the string pointed to by S potentially represents
1051 a right or left half of a FP register */
1052 #define IS_R_SELECT(S) (*(S) == 'R' || *(S) == 'r')
1053 #define IS_L_SELECT(S) (*(S) == 'L' || *(S) == 'l')
1054
1055 /* These macros are used to maintain spaces/subspaces. */
1056 #define SPACE_DEFINED(space_chain) (space_chain)->sd_defined
1057 #define SPACE_USER_DEFINED(space_chain) (space_chain)->sd_user_defined
1058 #define SPACE_SPNUM(space_chain) (space_chain)->sd_spnum
1059 #define SPACE_NAME(space_chain) (space_chain)->sd_name
1060
1061 #define SUBSPACE_DEFINED(ss_chain) (ss_chain)->ssd_defined
1062 #define SUBSPACE_NAME(ss_chain) (ss_chain)->ssd_name
1063
1064 /* Insert FIELD into OPCODE starting at bit START. Continue pa_ip
1065 main loop after insertion. */
1066
1067 #define INSERT_FIELD_AND_CONTINUE(OPCODE, FIELD, START) \
1068 { \
1069 ((OPCODE) |= (FIELD) << (START)); \
1070 continue; \
1071 }
1072
1073 /* Simple range checking for FIELD againt HIGH and LOW bounds.
1074 IGNORE is used to suppress the error message. */
1075
1076 #define CHECK_FIELD(FIELD, HIGH, LOW, IGNORE) \
1077 { \
1078 if ((FIELD) > (HIGH) || (FIELD) < (LOW)) \
1079 { \
1080 if (! IGNORE) \
1081 as_bad ("Field out of range [%d..%d] (%d).", (LOW), (HIGH), \
1082 (int) (FIELD));\
1083 break; \
1084 } \
1085 }
1086
1087 #define is_DP_relative(exp) \
1088 ((exp).X_op == O_subtract \
1089 && strcmp((exp).X_op_symbol->bsym->name, "$global$") == 0)
1090
1091 #define is_PC_relative(exp) \
1092 ((exp).X_op == O_subtract \
1093 && strcmp((exp).X_op_symbol->bsym->name, "$PIC_pcrel$0") == 0)
1094
1095 #define is_complex(exp) \
1096 ((exp).X_op != O_constant && (exp).X_op != O_symbol)
1097
1098 /* Actual functions to implement the PA specific code for the assembler. */
1099
1100 /* Returns a pointer to the label_symbol_struct for the current space.
1101 or NULL if no label_symbol_struct exists for the current space. */
1102
1103 static label_symbol_struct *
1104 pa_get_label ()
1105 {
1106 label_symbol_struct *label_chain;
1107 sd_chain_struct *space_chain = current_space;
1108
1109 for (label_chain = label_symbols_rootp;
1110 label_chain;
1111 label_chain = label_chain->lss_next)
1112 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1113 return label_chain;
1114
1115 return NULL;
1116 }
1117
1118 /* Defines a label for the current space. If one is already defined,
1119 this function will replace it with the new label. */
1120
1121 void
1122 pa_define_label (symbol)
1123 symbolS *symbol;
1124 {
1125 label_symbol_struct *label_chain = pa_get_label ();
1126 sd_chain_struct *space_chain = current_space;
1127
1128 if (label_chain)
1129 label_chain->lss_label = symbol;
1130 else
1131 {
1132 /* Create a new label entry and add it to the head of the chain. */
1133 label_chain
1134 = (label_symbol_struct *) xmalloc (sizeof (label_symbol_struct));
1135 label_chain->lss_label = symbol;
1136 label_chain->lss_space = space_chain;
1137 label_chain->lss_next = NULL;
1138
1139 if (label_symbols_rootp)
1140 label_chain->lss_next = label_symbols_rootp;
1141
1142 label_symbols_rootp = label_chain;
1143 }
1144 }
1145
1146 /* Removes a label definition for the current space.
1147 If there is no label_symbol_struct entry, then no action is taken. */
1148
1149 static void
1150 pa_undefine_label ()
1151 {
1152 label_symbol_struct *label_chain;
1153 label_symbol_struct *prev_label_chain = NULL;
1154 sd_chain_struct *space_chain = current_space;
1155
1156 for (label_chain = label_symbols_rootp;
1157 label_chain;
1158 label_chain = label_chain->lss_next)
1159 {
1160 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1161 {
1162 /* Remove the label from the chain and free its memory. */
1163 if (prev_label_chain)
1164 prev_label_chain->lss_next = label_chain->lss_next;
1165 else
1166 label_symbols_rootp = label_chain->lss_next;
1167
1168 free (label_chain);
1169 break;
1170 }
1171 prev_label_chain = label_chain;
1172 }
1173 }
1174
1175
1176 /* An HPPA-specific version of fix_new. This is required because the HPPA
1177 code needs to keep track of some extra stuff. Each call to fix_new_hppa
1178 results in the creation of an instance of an hppa_fix_struct. An
1179 hppa_fix_struct stores the extra information along with a pointer to the
1180 original fixS. This is attached to the original fixup via the
1181 tc_fix_data field. */
1182
1183 static void
1184 fix_new_hppa (frag, where, size, add_symbol, offset, exp, pcrel,
1185 r_type, r_field, r_format, arg_reloc, unwind_desc)
1186 fragS *frag;
1187 int where;
1188 int size;
1189 symbolS *add_symbol;
1190 long offset;
1191 expressionS *exp;
1192 int pcrel;
1193 bfd_reloc_code_real_type r_type;
1194 enum hppa_reloc_field_selector_type r_field;
1195 int r_format;
1196 long arg_reloc;
1197 char *unwind_desc;
1198 {
1199 fixS *new_fix;
1200
1201 struct hppa_fix_struct *hppa_fix = (struct hppa_fix_struct *)
1202 obstack_alloc (&notes, sizeof (struct hppa_fix_struct));
1203
1204 if (exp != NULL)
1205 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
1206 else
1207 new_fix = fix_new (frag, where, size, add_symbol, offset, pcrel, r_type);
1208 new_fix->tc_fix_data = (void *) hppa_fix;
1209 hppa_fix->fx_r_type = r_type;
1210 hppa_fix->fx_r_field = r_field;
1211 hppa_fix->fx_r_format = r_format;
1212 hppa_fix->fx_arg_reloc = arg_reloc;
1213 hppa_fix->segment = now_seg;
1214 if (unwind_desc)
1215 {
1216 bcopy (unwind_desc, hppa_fix->fx_unwind, 8);
1217
1218 /* If necessary call BFD backend function to attach the
1219 unwind bits to the target dependent parts of a BFD symbol.
1220 Yuk. */
1221 #ifdef obj_attach_unwind_info
1222 obj_attach_unwind_info (add_symbol->bsym, unwind_desc);
1223 #endif
1224 }
1225
1226 /* foo-$global$ is used to access non-automatic storage. $global$
1227 is really just a marker and has served its purpose, so eliminate
1228 it now so as not to confuse write.c. */
1229 if (new_fix->fx_subsy
1230 && !strcmp (S_GET_NAME (new_fix->fx_subsy), "$global$"))
1231 new_fix->fx_subsy = NULL;
1232 }
1233
1234 /* Parse a .byte, .word, .long expression for the HPPA. Called by
1235 cons via the TC_PARSE_CONS_EXPRESSION macro. */
1236
1237 void
1238 parse_cons_expression_hppa (exp)
1239 expressionS *exp;
1240 {
1241 hppa_field_selector = pa_chk_field_selector (&input_line_pointer);
1242 expression (exp);
1243 }
1244
1245 /* This fix_new is called by cons via TC_CONS_FIX_NEW.
1246 hppa_field_selector is set by the parse_cons_expression_hppa. */
1247
1248 void
1249 cons_fix_new_hppa (frag, where, size, exp)
1250 fragS *frag;
1251 int where;
1252 int size;
1253 expressionS *exp;
1254 {
1255 unsigned int rel_type;
1256
1257 if (is_DP_relative (*exp))
1258 rel_type = R_HPPA_GOTOFF;
1259 else if (is_complex (*exp))
1260 rel_type = R_HPPA_COMPLEX;
1261 else
1262 rel_type = R_HPPA;
1263
1264 if (hppa_field_selector != e_psel && hppa_field_selector != e_fsel)
1265 as_warn ("Invalid field selector. Assuming F%%.");
1266
1267 fix_new_hppa (frag, where, size,
1268 (symbolS *) NULL, (offsetT) 0, exp, 0, rel_type,
1269 hppa_field_selector, 32, 0, (char *) 0);
1270
1271 /* Reset field selector to its default state. */
1272 hppa_field_selector = 0;
1273 }
1274
1275 /* This function is called once, at assembler startup time. It should
1276 set up all the tables, etc. that the MD part of the assembler will need. */
1277
1278 void
1279 md_begin ()
1280 {
1281 const char *retval = NULL;
1282 int lose = 0;
1283 unsigned int i = 0;
1284
1285 last_call_info = NULL;
1286 call_info_root = NULL;
1287
1288 /* Folding of text and data segments fails miserably on the PA.
1289 Warn user and disable "-R" option. */
1290 if (flagseen['R'])
1291 {
1292 as_warn ("-R option not supported on this target.");
1293 flag_readonly_data_in_text = 0;
1294 flagseen['R'] = 0;
1295 }
1296
1297 pa_spaces_begin ();
1298
1299 op_hash = hash_new ();
1300
1301 while (i < NUMOPCODES)
1302 {
1303 const char *name = pa_opcodes[i].name;
1304 retval = hash_insert (op_hash, name, (struct pa_opcode *) &pa_opcodes[i]);
1305 if (retval != NULL && *retval != '\0')
1306 {
1307 as_fatal ("Internal error: can't hash `%s': %s\n", name, retval);
1308 lose = 1;
1309 }
1310 do
1311 {
1312 if ((pa_opcodes[i].match & pa_opcodes[i].mask)
1313 != pa_opcodes[i].match)
1314 {
1315 fprintf (stderr, "internal error: losing opcode: `%s' \"%s\"\n",
1316 pa_opcodes[i].name, pa_opcodes[i].args);
1317 lose = 1;
1318 }
1319 ++i;
1320 }
1321 while (i < NUMOPCODES && !strcmp (pa_opcodes[i].name, name));
1322 }
1323
1324 if (lose)
1325 as_fatal ("Broken assembler. No assembly attempted.");
1326
1327 /* SOM will change text_section. To make sure we never put
1328 anything into the old one switch to the new one now. */
1329 subseg_set (text_section, 0);
1330
1331 dummy_symbol = symbol_find_or_make ("L$dummy");
1332 S_SET_SEGMENT (dummy_symbol, text_section);
1333 }
1334
1335 /* Assemble a single instruction storing it into a frag. */
1336 void
1337 md_assemble (str)
1338 char *str;
1339 {
1340 char *to;
1341
1342 /* The had better be something to assemble. */
1343 assert (str);
1344
1345 /* If we are within a procedure definition, make sure we've
1346 defined a label for the procedure; handle case where the
1347 label was defined after the .PROC directive.
1348
1349 Note there's not need to diddle with the segment or fragment
1350 for the label symbol in this case. We have already switched
1351 into the new $CODE$ subspace at this point. */
1352 if (within_procedure && last_call_info->start_symbol == NULL)
1353 {
1354 label_symbol_struct *label_symbol = pa_get_label ();
1355
1356 if (label_symbol)
1357 {
1358 if (label_symbol->lss_label)
1359 {
1360 last_call_info->start_symbol = label_symbol->lss_label;
1361 label_symbol->lss_label->bsym->flags |= BSF_FUNCTION;
1362 #ifdef OBJ_SOM
1363 /* Also handle allocation of a fixup to hold the unwind
1364 information when the label appears after the proc/procend. */
1365 if (within_entry_exit)
1366 {
1367 char *where = frag_more (0);
1368
1369 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
1370 last_call_info->start_symbol, (offsetT) 0, NULL,
1371 0, R_HPPA_ENTRY, e_fsel, 0, 0,
1372 (char *) &last_call_info->ci_unwind.descriptor);
1373 }
1374 #endif
1375 }
1376 else
1377 as_bad ("Missing function name for .PROC (corrupted label chain)");
1378 }
1379 else
1380 as_bad ("Missing function name for .PROC");
1381 }
1382
1383 /* Assemble the instruction. Results are saved into "the_insn". */
1384 pa_ip (str);
1385
1386 /* Get somewhere to put the assembled instrution. */
1387 to = frag_more (4);
1388
1389 /* Output the opcode. */
1390 md_number_to_chars (to, the_insn.opcode, 4);
1391
1392 /* If necessary output more stuff. */
1393 if (the_insn.reloc != R_HPPA_NONE)
1394 fix_new_hppa (frag_now, (to - frag_now->fr_literal), 4, NULL,
1395 (offsetT) 0, &the_insn.exp, the_insn.pcrel,
1396 the_insn.reloc, the_insn.field_selector,
1397 the_insn.format, the_insn.arg_reloc, NULL);
1398 }
1399
1400 /* Do the real work for assembling a single instruction. Store results
1401 into the global "the_insn" variable. */
1402
1403 static void
1404 pa_ip (str)
1405 char *str;
1406 {
1407 char *error_message = "";
1408 char *s, c, *argstart, *name, *save_s;
1409 const char *args;
1410 int match = FALSE;
1411 int comma = 0;
1412 int cmpltr, nullif, flag, cond, num;
1413 unsigned long opcode;
1414 struct pa_opcode *insn;
1415
1416 /* Skip to something interesting. */
1417 for (s = str; isupper (*s) || islower (*s) || (*s >= '0' && *s <= '3'); ++s)
1418 ;
1419
1420 switch (*s)
1421 {
1422
1423 case '\0':
1424 break;
1425
1426 case ',':
1427 comma = 1;
1428
1429 /*FALLTHROUGH */
1430
1431 case ' ':
1432 *s++ = '\0';
1433 break;
1434
1435 default:
1436 as_bad ("Unknown opcode: `%s'", str);
1437 exit (1);
1438 }
1439
1440 save_s = str;
1441
1442 /* Convert everything into lower case. */
1443 while (*save_s)
1444 {
1445 if (isupper (*save_s))
1446 *save_s = tolower (*save_s);
1447 save_s++;
1448 }
1449
1450 /* Look up the opcode in the has table. */
1451 if ((insn = (struct pa_opcode *) hash_find (op_hash, str)) == NULL)
1452 {
1453 as_bad ("Unknown opcode: `%s'", str);
1454 return;
1455 }
1456
1457 if (comma)
1458 {
1459 *--s = ',';
1460 }
1461
1462 /* Mark the location where arguments for the instruction start, then
1463 start processing them. */
1464 argstart = s;
1465 for (;;)
1466 {
1467 /* Do some initialization. */
1468 opcode = insn->match;
1469 bzero (&the_insn, sizeof (the_insn));
1470
1471 the_insn.reloc = R_HPPA_NONE;
1472
1473 /* Build the opcode, checking as we go to make
1474 sure that the operands match. */
1475 for (args = insn->args;; ++args)
1476 {
1477 switch (*args)
1478 {
1479
1480 /* End of arguments. */
1481 case '\0':
1482 if (*s == '\0')
1483 match = TRUE;
1484 break;
1485
1486 case '+':
1487 if (*s == '+')
1488 {
1489 ++s;
1490 continue;
1491 }
1492 if (*s == '-')
1493 continue;
1494 break;
1495
1496 /* These must match exactly. */
1497 case '(':
1498 case ')':
1499 case ',':
1500 case ' ':
1501 if (*s++ == *args)
1502 continue;
1503 break;
1504
1505 /* Handle a 5 bit register or control register field at 10. */
1506 case 'b':
1507 case '^':
1508 num = pa_parse_number (&s, 0);
1509 CHECK_FIELD (num, 31, 0, 0);
1510 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
1511
1512 /* Handle a 5 bit register field at 15. */
1513 case 'x':
1514 num = pa_parse_number (&s, 0);
1515 CHECK_FIELD (num, 31, 0, 0);
1516 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1517
1518 /* Handle a 5 bit register field at 31. */
1519 case 'y':
1520 case 't':
1521 num = pa_parse_number (&s, 0);
1522 CHECK_FIELD (num, 31, 0, 0);
1523 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1524
1525 /* Handle a 5 bit field length at 31. */
1526 case 'T':
1527 num = pa_get_absolute_expression (&the_insn, &s);
1528 s = expr_end;
1529 CHECK_FIELD (num, 32, 1, 0);
1530 INSERT_FIELD_AND_CONTINUE (opcode, 32 - num, 0);
1531
1532 /* Handle a 5 bit immediate at 15. */
1533 case '5':
1534 num = pa_get_absolute_expression (&the_insn, &s);
1535 s = expr_end;
1536 CHECK_FIELD (num, 15, -16, 0);
1537 low_sign_unext (num, 5, &num);
1538 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1539
1540 /* Handle a 5 bit immediate at 31. */
1541 case 'V':
1542 num = pa_get_absolute_expression (&the_insn, &s);
1543 s = expr_end;
1544 CHECK_FIELD (num, 15, -16, 0)
1545 low_sign_unext (num, 5, &num);
1546 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1547
1548 /* Handle an unsigned 5 bit immediate at 31. */
1549 case 'r':
1550 num = pa_get_absolute_expression (&the_insn, &s);
1551 s = expr_end;
1552 CHECK_FIELD (num, 31, 0, 0);
1553 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1554
1555 /* Handle an unsigned 5 bit immediate at 15. */
1556 case 'R':
1557 num = pa_get_absolute_expression (&the_insn, &s);
1558 s = expr_end;
1559 CHECK_FIELD (num, 31, 0, 0);
1560 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1561
1562 /* Handle a 2 bit space identifier at 17. */
1563 case 's':
1564 num = pa_parse_number (&s, 0);
1565 CHECK_FIELD (num, 3, 0, 1);
1566 INSERT_FIELD_AND_CONTINUE (opcode, num, 14);
1567
1568 /* Handle a 3 bit space identifier at 18. */
1569 case 'S':
1570 num = pa_parse_number (&s, 0);
1571 CHECK_FIELD (num, 7, 0, 1);
1572 dis_assemble_3 (num, &num);
1573 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
1574
1575 /* Handle a completer for an indexing load or store. */
1576 case 'c':
1577 {
1578 int uu = 0;
1579 int m = 0;
1580 int i = 0;
1581 while (*s == ',' && i < 2)
1582 {
1583 s++;
1584 if (strncasecmp (s, "sm", 2) == 0)
1585 {
1586 uu = 1;
1587 m = 1;
1588 s++;
1589 i++;
1590 }
1591 else if (strncasecmp (s, "m", 1) == 0)
1592 m = 1;
1593 else if (strncasecmp (s, "s", 1) == 0)
1594 uu = 1;
1595 else
1596 as_bad ("Invalid Indexed Load Completer.");
1597 s++;
1598 i++;
1599 }
1600 if (i > 2)
1601 as_bad ("Invalid Indexed Load Completer Syntax.");
1602 opcode |= m << 5;
1603 INSERT_FIELD_AND_CONTINUE (opcode, uu, 13);
1604 }
1605
1606 /* Handle a short load/store completer. */
1607 case 'C':
1608 {
1609 int a = 0;
1610 int m = 0;
1611 if (*s == ',')
1612 {
1613 s++;
1614 if (strncasecmp (s, "ma", 2) == 0)
1615 {
1616 a = 0;
1617 m = 1;
1618 }
1619 else if (strncasecmp (s, "mb", 2) == 0)
1620 {
1621 a = 1;
1622 m = 1;
1623 }
1624 else
1625 as_bad ("Invalid Short Load/Store Completer.");
1626 s += 2;
1627 }
1628 opcode |= m << 5;
1629 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1630 }
1631
1632 /* Handle a stbys completer. */
1633 case 'Y':
1634 {
1635 int a = 0;
1636 int m = 0;
1637 int i = 0;
1638 while (*s == ',' && i < 2)
1639 {
1640 s++;
1641 if (strncasecmp (s, "m", 1) == 0)
1642 m = 1;
1643 else if (strncasecmp (s, "b", 1) == 0)
1644 a = 0;
1645 else if (strncasecmp (s, "e", 1) == 0)
1646 a = 1;
1647 else
1648 as_bad ("Invalid Store Bytes Short Completer");
1649 s++;
1650 i++;
1651 }
1652 if (i > 2)
1653 as_bad ("Invalid Store Bytes Short Completer");
1654 opcode |= m << 5;
1655 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1656 }
1657
1658 /* Handle a non-negated compare/stubtract condition. */
1659 case '<':
1660 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
1661 if (cmpltr < 0)
1662 {
1663 as_bad ("Invalid Compare/Subtract Condition: %c", *s);
1664 cmpltr = 0;
1665 }
1666 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1667
1668 /* Handle a negated or non-negated compare/subtract condition. */
1669 case '?':
1670 save_s = s;
1671 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
1672 if (cmpltr < 0)
1673 {
1674 s = save_s;
1675 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 1);
1676 if (cmpltr < 0)
1677 {
1678 as_bad ("Invalid Compare/Subtract Condition.");
1679 cmpltr = 0;
1680 }
1681 else
1682 {
1683 /* Negated condition requires an opcode change. */
1684 opcode |= 1 << 27;
1685 }
1686 }
1687 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1688
1689 /* Handle non-negated add condition. */
1690 case '!':
1691 cmpltr = pa_parse_nonneg_add_cmpltr (&s, 1);
1692 if (cmpltr < 0)
1693 {
1694 as_bad ("Invalid Compare/Subtract Condition: %c", *s);
1695 cmpltr = 0;
1696 }
1697 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1698
1699 /* Handle a negated or non-negated add condition. */
1700 case '@':
1701 save_s = s;
1702 cmpltr = pa_parse_nonneg_add_cmpltr (&s, 1);
1703 if (cmpltr < 0)
1704 {
1705 s = save_s;
1706 cmpltr = pa_parse_neg_add_cmpltr (&s, 1);
1707 if (cmpltr < 0)
1708 {
1709 as_bad ("Invalid Compare/Subtract Condition");
1710 cmpltr = 0;
1711 }
1712 else
1713 {
1714 /* Negated condition requires an opcode change. */
1715 opcode |= 1 << 27;
1716 }
1717 }
1718 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1719
1720 /* Handle a compare/subtract condition. */
1721 case 'a':
1722 cmpltr = 0;
1723 flag = 0;
1724 save_s = s;
1725 if (*s == ',')
1726 {
1727 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 0);
1728 if (cmpltr < 0)
1729 {
1730 flag = 1;
1731 s = save_s;
1732 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 0);
1733 if (cmpltr < 0)
1734 {
1735 as_bad ("Invalid Compare/Subtract Condition");
1736 }
1737 }
1738 }
1739 opcode |= cmpltr << 13;
1740 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1741
1742 /* Handle a non-negated add condition. */
1743 case 'd':
1744 cmpltr = 0;
1745 nullif = 0;
1746 flag = 0;
1747 if (*s == ',')
1748 {
1749 s++;
1750 name = s;
1751 while (*s != ',' && *s != ' ' && *s != '\t')
1752 s += 1;
1753 c = *s;
1754 *s = 0x00;
1755 if (strcmp (name, "=") == 0)
1756 cmpltr = 1;
1757 else if (strcmp (name, "<") == 0)
1758 cmpltr = 2;
1759 else if (strcmp (name, "<=") == 0)
1760 cmpltr = 3;
1761 else if (strcasecmp (name, "nuv") == 0)
1762 cmpltr = 4;
1763 else if (strcasecmp (name, "znv") == 0)
1764 cmpltr = 5;
1765 else if (strcasecmp (name, "sv") == 0)
1766 cmpltr = 6;
1767 else if (strcasecmp (name, "od") == 0)
1768 cmpltr = 7;
1769 else if (strcasecmp (name, "n") == 0)
1770 nullif = 1;
1771 else if (strcasecmp (name, "tr") == 0)
1772 {
1773 cmpltr = 0;
1774 flag = 1;
1775 }
1776 else if (strcmp (name, "<>") == 0)
1777 {
1778 cmpltr = 1;
1779 flag = 1;
1780 }
1781 else if (strcmp (name, ">=") == 0)
1782 {
1783 cmpltr = 2;
1784 flag = 1;
1785 }
1786 else if (strcmp (name, ">") == 0)
1787 {
1788 cmpltr = 3;
1789 flag = 1;
1790 }
1791 else if (strcasecmp (name, "uv") == 0)
1792 {
1793 cmpltr = 4;
1794 flag = 1;
1795 }
1796 else if (strcasecmp (name, "vnz") == 0)
1797 {
1798 cmpltr = 5;
1799 flag = 1;
1800 }
1801 else if (strcasecmp (name, "nsv") == 0)
1802 {
1803 cmpltr = 6;
1804 flag = 1;
1805 }
1806 else if (strcasecmp (name, "ev") == 0)
1807 {
1808 cmpltr = 7;
1809 flag = 1;
1810 }
1811 else
1812 as_bad ("Invalid Add Condition: %s", name);
1813 *s = c;
1814 }
1815 nullif = pa_parse_nullif (&s);
1816 opcode |= nullif << 1;
1817 opcode |= cmpltr << 13;
1818 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1819
1820 /* HANDLE a logical instruction condition. */
1821 case '&':
1822 cmpltr = 0;
1823 flag = 0;
1824 if (*s == ',')
1825 {
1826 s++;
1827 name = s;
1828 while (*s != ',' && *s != ' ' && *s != '\t')
1829 s += 1;
1830 c = *s;
1831 *s = 0x00;
1832 if (strcmp (name, "=") == 0)
1833 cmpltr = 1;
1834 else if (strcmp (name, "<") == 0)
1835 cmpltr = 2;
1836 else if (strcmp (name, "<=") == 0)
1837 cmpltr = 3;
1838 else if (strcasecmp (name, "od") == 0)
1839 cmpltr = 7;
1840 else if (strcasecmp (name, "tr") == 0)
1841 {
1842 cmpltr = 0;
1843 flag = 1;
1844 }
1845 else if (strcmp (name, "<>") == 0)
1846 {
1847 cmpltr = 1;
1848 flag = 1;
1849 }
1850 else if (strcmp (name, ">=") == 0)
1851 {
1852 cmpltr = 2;
1853 flag = 1;
1854 }
1855 else if (strcmp (name, ">") == 0)
1856 {
1857 cmpltr = 3;
1858 flag = 1;
1859 }
1860 else if (strcasecmp (name, "ev") == 0)
1861 {
1862 cmpltr = 7;
1863 flag = 1;
1864 }
1865 else
1866 as_bad ("Invalid Logical Instruction Condition.");
1867 *s = c;
1868 }
1869 opcode |= cmpltr << 13;
1870 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1871
1872 /* Handle a unit instruction condition. */
1873 case 'U':
1874 cmpltr = 0;
1875 flag = 0;
1876 if (*s == ',')
1877 {
1878 s++;
1879 if (strncasecmp (s, "sbz", 3) == 0)
1880 {
1881 cmpltr = 2;
1882 s += 3;
1883 }
1884 else if (strncasecmp (s, "shz", 3) == 0)
1885 {
1886 cmpltr = 3;
1887 s += 3;
1888 }
1889 else if (strncasecmp (s, "sdc", 3) == 0)
1890 {
1891 cmpltr = 4;
1892 s += 3;
1893 }
1894 else if (strncasecmp (s, "sbc", 3) == 0)
1895 {
1896 cmpltr = 6;
1897 s += 3;
1898 }
1899 else if (strncasecmp (s, "shc", 3) == 0)
1900 {
1901 cmpltr = 7;
1902 s += 3;
1903 }
1904 else if (strncasecmp (s, "tr", 2) == 0)
1905 {
1906 cmpltr = 0;
1907 flag = 1;
1908 s += 2;
1909 }
1910 else if (strncasecmp (s, "nbz", 3) == 0)
1911 {
1912 cmpltr = 2;
1913 flag = 1;
1914 s += 3;
1915 }
1916 else if (strncasecmp (s, "nhz", 3) == 0)
1917 {
1918 cmpltr = 3;
1919 flag = 1;
1920 s += 3;
1921 }
1922 else if (strncasecmp (s, "ndc", 3) == 0)
1923 {
1924 cmpltr = 4;
1925 flag = 1;
1926 s += 3;
1927 }
1928 else if (strncasecmp (s, "nbc", 3) == 0)
1929 {
1930 cmpltr = 6;
1931 flag = 1;
1932 s += 3;
1933 }
1934 else if (strncasecmp (s, "nhc", 3) == 0)
1935 {
1936 cmpltr = 7;
1937 flag = 1;
1938 s += 3;
1939 }
1940 else
1941 as_bad ("Invalid Logical Instruction Condition.");
1942 }
1943 opcode |= cmpltr << 13;
1944 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1945
1946 /* Handle a shift/extract/deposit condition. */
1947 case '|':
1948 case '>':
1949 cmpltr = 0;
1950 if (*s == ',')
1951 {
1952 save_s = s++;
1953 name = s;
1954 while (*s != ',' && *s != ' ' && *s != '\t')
1955 s += 1;
1956 c = *s;
1957 *s = 0x00;
1958 if (strcmp (name, "=") == 0)
1959 cmpltr = 1;
1960 else if (strcmp (name, "<") == 0)
1961 cmpltr = 2;
1962 else if (strcasecmp (name, "od") == 0)
1963 cmpltr = 3;
1964 else if (strcasecmp (name, "tr") == 0)
1965 cmpltr = 4;
1966 else if (strcmp (name, "<>") == 0)
1967 cmpltr = 5;
1968 else if (strcmp (name, ">=") == 0)
1969 cmpltr = 6;
1970 else if (strcasecmp (name, "ev") == 0)
1971 cmpltr = 7;
1972 /* Handle movb,n. Put things back the way they were.
1973 This includes moving s back to where it started. */
1974 else if (strcasecmp (name, "n") == 0 && *args == '|')
1975 {
1976 *s = c;
1977 s = save_s;
1978 continue;
1979 }
1980 else
1981 as_bad ("Invalid Shift/Extract/Deposit Condition.");
1982 *s = c;
1983 }
1984 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1985
1986 /* Handle bvb and bb conditions. */
1987 case '~':
1988 cmpltr = 0;
1989 if (*s == ',')
1990 {
1991 s++;
1992 if (strncmp (s, "<", 1) == 0)
1993 {
1994 cmpltr = 2;
1995 s++;
1996 }
1997 else if (strncmp (s, ">=", 2) == 0)
1998 {
1999 cmpltr = 6;
2000 s += 2;
2001 }
2002 else
2003 as_bad ("Invalid Bit Branch Condition: %c", *s);
2004 }
2005 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
2006
2007 /* Handle a system control completer. */
2008 case 'Z':
2009 if (*s == ',' && (*(s + 1) == 'm' || *(s + 1) == 'M'))
2010 {
2011 flag = 1;
2012 s += 2;
2013 }
2014 else
2015 flag = 0;
2016
2017 INSERT_FIELD_AND_CONTINUE (opcode, flag, 5);
2018
2019 /* Handle a nullification completer for branch instructions. */
2020 case 'n':
2021 nullif = pa_parse_nullif (&s);
2022 INSERT_FIELD_AND_CONTINUE (opcode, nullif, 1);
2023
2024 /* Handle a nullification completer for copr and spop insns. */
2025 case 'N':
2026 nullif = pa_parse_nullif (&s);
2027 INSERT_FIELD_AND_CONTINUE (opcode, nullif, 5);
2028
2029 /* Handle a 11 bit immediate at 31. */
2030 case 'i':
2031 the_insn.field_selector = pa_chk_field_selector (&s);
2032 get_expression (s);
2033 s = expr_end;
2034 if (the_insn.exp.X_op == O_constant)
2035 {
2036 num = evaluate_absolute (&the_insn);
2037 CHECK_FIELD (num, 1023, -1024, 0);
2038 low_sign_unext (num, 11, &num);
2039 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2040 }
2041 else
2042 {
2043 if (is_DP_relative (the_insn.exp))
2044 the_insn.reloc = R_HPPA_GOTOFF;
2045 else if (is_PC_relative (the_insn.exp))
2046 the_insn.reloc = R_HPPA_PCREL_CALL;
2047 else if (is_complex (the_insn.exp))
2048 the_insn.reloc = R_HPPA_COMPLEX;
2049 else
2050 the_insn.reloc = R_HPPA;
2051 the_insn.format = 11;
2052 continue;
2053 }
2054
2055 /* Handle a 14 bit immediate at 31. */
2056 case 'j':
2057 the_insn.field_selector = pa_chk_field_selector (&s);
2058 get_expression (s);
2059 s = expr_end;
2060 if (the_insn.exp.X_op == O_constant)
2061 {
2062 num = evaluate_absolute (&the_insn);
2063 CHECK_FIELD (num, 8191, -8192, 0);
2064 low_sign_unext (num, 14, &num);
2065 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2066 }
2067 else
2068 {
2069 if (is_DP_relative (the_insn.exp))
2070 the_insn.reloc = R_HPPA_GOTOFF;
2071 else if (is_PC_relative (the_insn.exp))
2072 the_insn.reloc = R_HPPA_PCREL_CALL;
2073 else if (is_complex (the_insn.exp))
2074 the_insn.reloc = R_HPPA_COMPLEX;
2075 else
2076 the_insn.reloc = R_HPPA;
2077 the_insn.format = 14;
2078 continue;
2079 }
2080
2081 /* Handle a 21 bit immediate at 31. */
2082 case 'k':
2083 the_insn.field_selector = pa_chk_field_selector (&s);
2084 get_expression (s);
2085 s = expr_end;
2086 if (the_insn.exp.X_op == O_constant)
2087 {
2088 num = evaluate_absolute (&the_insn);
2089 CHECK_FIELD (num >> 11, 1048575, -1048576, 0);
2090 dis_assemble_21 (num, &num);
2091 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2092 }
2093 else
2094 {
2095 if (is_DP_relative (the_insn.exp))
2096 the_insn.reloc = R_HPPA_GOTOFF;
2097 else if (is_PC_relative (the_insn.exp))
2098 the_insn.reloc = R_HPPA_PCREL_CALL;
2099 else if (is_complex (the_insn.exp))
2100 the_insn.reloc = R_HPPA_COMPLEX;
2101 else
2102 the_insn.reloc = R_HPPA;
2103 the_insn.format = 21;
2104 continue;
2105 }
2106
2107 /* Handle a 12 bit branch displacement. */
2108 case 'w':
2109 the_insn.field_selector = pa_chk_field_selector (&s);
2110 get_expression (s);
2111 s = expr_end;
2112 the_insn.pcrel = 1;
2113 if (!strcmp (S_GET_NAME (the_insn.exp.X_add_symbol), "L$0\001"))
2114 {
2115 unsigned int w1, w, result;
2116
2117 num = evaluate_absolute (&the_insn);
2118 if (num % 4)
2119 {
2120 as_bad ("Branch to unaligned address");
2121 break;
2122 }
2123 CHECK_FIELD (num, 8191, -8192, 0);
2124 sign_unext ((num - 8) >> 2, 12, &result);
2125 dis_assemble_12 (result, &w1, &w);
2126 INSERT_FIELD_AND_CONTINUE (opcode, ((w1 << 2) | w), 0);
2127 }
2128 else
2129 {
2130 if (is_complex (the_insn.exp))
2131 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2132 else
2133 the_insn.reloc = R_HPPA_PCREL_CALL;
2134 the_insn.format = 12;
2135 the_insn.arg_reloc = last_call_desc.arg_reloc;
2136 bzero (&last_call_desc, sizeof (struct call_desc));
2137 s = expr_end;
2138 continue;
2139 }
2140
2141 /* Handle a 17 bit branch displacement. */
2142 case 'W':
2143 the_insn.field_selector = pa_chk_field_selector (&s);
2144 get_expression (s);
2145 s = expr_end;
2146 the_insn.pcrel = 1;
2147 if (!the_insn.exp.X_add_symbol
2148 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2149 "L$0\001"))
2150 {
2151 unsigned int w2, w1, w, result;
2152
2153 num = evaluate_absolute (&the_insn);
2154 if (num % 4)
2155 {
2156 as_bad ("Branch to unaligned address");
2157 break;
2158 }
2159 CHECK_FIELD (num, 262143, -262144, 0);
2160
2161 if (the_insn.exp.X_add_symbol)
2162 num -= 8;
2163
2164 sign_unext (num >> 2, 17, &result);
2165 dis_assemble_17 (result, &w1, &w2, &w);
2166 INSERT_FIELD_AND_CONTINUE (opcode,
2167 ((w2 << 2) | (w1 << 16) | w), 0);
2168 }
2169 else
2170 {
2171 if (is_complex (the_insn.exp))
2172 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2173 else
2174 the_insn.reloc = R_HPPA_PCREL_CALL;
2175 the_insn.format = 17;
2176 the_insn.arg_reloc = last_call_desc.arg_reloc;
2177 bzero (&last_call_desc, sizeof (struct call_desc));
2178 continue;
2179 }
2180
2181 /* Handle an absolute 17 bit branch target. */
2182 case 'z':
2183 the_insn.field_selector = pa_chk_field_selector (&s);
2184 get_expression (s);
2185 s = expr_end;
2186 the_insn.pcrel = 0;
2187 if (!the_insn.exp.X_add_symbol
2188 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2189 "L$0\001"))
2190 {
2191 unsigned int w2, w1, w, result;
2192
2193 num = evaluate_absolute (&the_insn);
2194 if (num % 4)
2195 {
2196 as_bad ("Branch to unaligned address");
2197 break;
2198 }
2199 CHECK_FIELD (num, 262143, -262144, 0);
2200
2201 if (the_insn.exp.X_add_symbol)
2202 num -= 8;
2203
2204 sign_unext (num >> 2, 17, &result);
2205 dis_assemble_17 (result, &w1, &w2, &w);
2206 INSERT_FIELD_AND_CONTINUE (opcode,
2207 ((w2 << 2) | (w1 << 16) | w), 0);
2208 }
2209 else
2210 {
2211 if (is_complex (the_insn.exp))
2212 the_insn.reloc = R_HPPA_COMPLEX_ABS_CALL;
2213 else
2214 the_insn.reloc = R_HPPA_ABS_CALL;
2215 the_insn.format = 17;
2216 continue;
2217 }
2218
2219 /* Handle a 5 bit shift count at 26. */
2220 case 'p':
2221 num = pa_get_absolute_expression (&the_insn, &s);
2222 s = expr_end;
2223 CHECK_FIELD (num, 31, 0, 0);
2224 INSERT_FIELD_AND_CONTINUE (opcode, 31 - num, 5);
2225
2226 /* Handle a 5 bit bit position at 26. */
2227 case 'P':
2228 num = pa_get_absolute_expression (&the_insn, &s);
2229 s = expr_end;
2230 CHECK_FIELD (num, 31, 0, 0);
2231 INSERT_FIELD_AND_CONTINUE (opcode, num, 5);
2232
2233 /* Handle a 5 bit immediate at 10. */
2234 case 'Q':
2235 num = pa_get_absolute_expression (&the_insn, &s);
2236 s = expr_end;
2237 CHECK_FIELD (num, 31, 0, 0);
2238 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
2239
2240 /* Handle a 13 bit immediate at 18. */
2241 case 'A':
2242 num = pa_get_absolute_expression (&the_insn, &s);
2243 s = expr_end;
2244 CHECK_FIELD (num, 4095, -4096, 0);
2245 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
2246
2247 /* Handle a 26 bit immediate at 31. */
2248 case 'D':
2249 num = pa_get_absolute_expression (&the_insn, &s);
2250 s = expr_end;
2251 CHECK_FIELD (num, 671108864, 0, 0);
2252 INSERT_FIELD_AND_CONTINUE (opcode, num, 1);
2253
2254 /* Handle a 3 bit SFU identifier at 25. */
2255 case 'f':
2256 if (*s++ != ',')
2257 as_bad ("Invalid SFU identifier");
2258 num = pa_get_absolute_expression (&the_insn, &s);
2259 s = expr_end;
2260 CHECK_FIELD (num, 7, 0, 0);
2261 INSERT_FIELD_AND_CONTINUE (opcode, num, 6);
2262
2263 /* Handle a 20 bit SOP field for spop0. */
2264 case 'O':
2265 num = pa_get_absolute_expression (&the_insn, &s);
2266 s = expr_end;
2267 CHECK_FIELD (num, 1048575, 0, 0);
2268 num = (num & 0x1f) | ((num & 0x000fffe0) << 6);
2269 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2270
2271 /* Handle a 15bit SOP field for spop1. */
2272 case 'o':
2273 num = pa_get_absolute_expression (&the_insn, &s);
2274 s = expr_end;
2275 CHECK_FIELD (num, 32767, 0, 0);
2276 INSERT_FIELD_AND_CONTINUE (opcode, num, 11);
2277
2278 /* Handle a 10bit SOP field for spop3. */
2279 case '0':
2280 num = pa_get_absolute_expression (&the_insn, &s);
2281 s = expr_end;
2282 CHECK_FIELD (num, 1023, 0, 0);
2283 num = (num & 0x1f) | ((num & 0x000003e0) << 6);
2284 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2285
2286 /* Handle a 15 bit SOP field for spop2. */
2287 case '1':
2288 num = pa_get_absolute_expression (&the_insn, &s);
2289 s = expr_end;
2290 CHECK_FIELD (num, 32767, 0, 0);
2291 num = (num & 0x1f) | ((num & 0x00007fe0) << 6);
2292 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2293
2294 /* Handle a 3-bit co-processor ID field. */
2295 case 'u':
2296 if (*s++ != ',')
2297 as_bad ("Invalid COPR identifier");
2298 num = pa_get_absolute_expression (&the_insn, &s);
2299 s = expr_end;
2300 CHECK_FIELD (num, 7, 0, 0);
2301 INSERT_FIELD_AND_CONTINUE (opcode, num, 6);
2302
2303 /* Handle a 22bit SOP field for copr. */
2304 case '2':
2305 num = pa_get_absolute_expression (&the_insn, &s);
2306 s = expr_end;
2307 CHECK_FIELD (num, 4194303, 0, 0);
2308 num = (num & 0x1f) | ((num & 0x003fffe0) << 4);
2309 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2310
2311 /* Handle a source FP operand format completer. */
2312 case 'F':
2313 flag = pa_parse_fp_format (&s);
2314 the_insn.fpof1 = flag;
2315 INSERT_FIELD_AND_CONTINUE (opcode, flag, 11);
2316
2317 /* Handle a destination FP operand format completer. */
2318 case 'G':
2319 /* pa_parse_format needs the ',' prefix. */
2320 s--;
2321 flag = pa_parse_fp_format (&s);
2322 the_insn.fpof2 = flag;
2323 INSERT_FIELD_AND_CONTINUE (opcode, flag, 13);
2324
2325 /* Handle FP compare conditions. */
2326 case 'M':
2327 cond = pa_parse_fp_cmp_cond (&s);
2328 INSERT_FIELD_AND_CONTINUE (opcode, cond, 0);
2329
2330 /* Handle L/R register halves like 't'. */
2331 case 'v':
2332 {
2333 struct pa_89_fp_reg_struct result;
2334
2335 pa_parse_number (&s, &result);
2336 CHECK_FIELD (result.number_part, 31, 0, 0);
2337 opcode |= result.number_part;
2338
2339 /* 0x30 opcodes are FP arithmetic operation opcodes
2340 and need to be turned into 0x38 opcodes. This
2341 is not necessary for loads/stores. */
2342 if (need_89_opcode (&the_insn, &result)
2343 && ((opcode & 0xfc000000) == 0x30000000))
2344 opcode |= 1 << 27;
2345
2346 INSERT_FIELD_AND_CONTINUE (opcode, result.l_r_select & 1, 6);
2347 }
2348
2349 /* Handle L/R register halves like 'b'. */
2350 case 'E':
2351 {
2352 struct pa_89_fp_reg_struct result;
2353
2354 pa_parse_number (&s, &result);
2355 CHECK_FIELD (result.number_part, 31, 0, 0);
2356 opcode |= result.number_part << 21;
2357 if (need_89_opcode (&the_insn, &result))
2358 {
2359 opcode |= (result.l_r_select & 1) << 7;
2360 opcode |= 1 << 27;
2361 }
2362 continue;
2363 }
2364
2365 /* Handle L/R register halves like 'x'. */
2366 case 'X':
2367 {
2368 struct pa_89_fp_reg_struct result;
2369
2370 pa_parse_number (&s, &result);
2371 CHECK_FIELD (result.number_part, 31, 0, 0);
2372 opcode |= (result.number_part & 0x1f) << 16;
2373 if (need_89_opcode (&the_insn, &result))
2374 {
2375 opcode |= (result.l_r_select & 1) << 12;
2376 opcode |= 1 << 27;
2377 }
2378 continue;
2379 }
2380
2381 /* Handle a 5 bit register field at 10. */
2382 case '4':
2383 {
2384 struct pa_89_fp_reg_struct result;
2385
2386 pa_parse_number (&s, &result);
2387 CHECK_FIELD (result.number_part, 31, 0, 0);
2388 if (the_insn.fpof1 == SGL)
2389 {
2390 result.number_part &= 0xF;
2391 result.number_part |= (result.l_r_select & 1) << 4;
2392 }
2393 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 21);
2394 }
2395
2396 /* Handle a 5 bit register field at 15. */
2397 case '6':
2398 {
2399 struct pa_89_fp_reg_struct result;
2400
2401 pa_parse_number (&s, &result);
2402 CHECK_FIELD (result.number_part, 31, 0, 0);
2403 if (the_insn.fpof1 == SGL)
2404 {
2405 result.number_part &= 0xF;
2406 result.number_part |= (result.l_r_select & 1) << 4;
2407 }
2408 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 16);
2409 }
2410
2411 /* Handle a 5 bit register field at 31. */
2412 case '7':
2413 {
2414 struct pa_89_fp_reg_struct result;
2415
2416 pa_parse_number (&s, &result);
2417 CHECK_FIELD (result.number_part, 31, 0, 0);
2418 if (the_insn.fpof1 == SGL)
2419 {
2420 result.number_part &= 0xF;
2421 result.number_part |= (result.l_r_select & 1) << 4;
2422 }
2423 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 0);
2424 }
2425
2426 /* Handle a 5 bit register field at 20. */
2427 case '8':
2428 {
2429 struct pa_89_fp_reg_struct result;
2430
2431 pa_parse_number (&s, &result);
2432 CHECK_FIELD (result.number_part, 31, 0, 0);
2433 if (the_insn.fpof1 == SGL)
2434 {
2435 result.number_part &= 0xF;
2436 result.number_part |= (result.l_r_select & 1) << 4;
2437 }
2438 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 11);
2439 }
2440
2441 /* Handle a 5 bit register field at 25. */
2442 case '9':
2443 {
2444 struct pa_89_fp_reg_struct result;
2445
2446 pa_parse_number (&s, &result);
2447 CHECK_FIELD (result.number_part, 31, 0, 0);
2448 if (the_insn.fpof1 == SGL)
2449 {
2450 result.number_part &= 0xF;
2451 result.number_part |= (result.l_r_select & 1) << 4;
2452 }
2453 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 6);
2454 }
2455
2456 /* Handle a floating point operand format at 26.
2457 Only allows single and double precision. */
2458 case 'H':
2459 flag = pa_parse_fp_format (&s);
2460 switch (flag)
2461 {
2462 case SGL:
2463 opcode |= 0x20;
2464 case DBL:
2465 the_insn.fpof1 = flag;
2466 continue;
2467
2468 case QUAD:
2469 case ILLEGAL_FMT:
2470 default:
2471 as_bad ("Invalid Floating Point Operand Format.");
2472 }
2473 break;
2474
2475 default:
2476 abort ();
2477 }
2478 break;
2479 }
2480
2481 /* Check if the args matched. */
2482 if (match == FALSE)
2483 {
2484 if (&insn[1] - pa_opcodes < NUMOPCODES
2485 && !strcmp (insn->name, insn[1].name))
2486 {
2487 ++insn;
2488 s = argstart;
2489 continue;
2490 }
2491 else
2492 {
2493 as_bad ("Invalid operands %s", error_message);
2494 return;
2495 }
2496 }
2497 break;
2498 }
2499
2500 the_insn.opcode = opcode;
2501 }
2502
2503 /* Turn a string in input_line_pointer into a floating point constant of type
2504 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
2505 emitted is stored in *sizeP . An error message or NULL is returned. */
2506
2507 #define MAX_LITTLENUMS 6
2508
2509 char *
2510 md_atof (type, litP, sizeP)
2511 char type;
2512 char *litP;
2513 int *sizeP;
2514 {
2515 int prec;
2516 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2517 LITTLENUM_TYPE *wordP;
2518 char *t;
2519
2520 switch (type)
2521 {
2522
2523 case 'f':
2524 case 'F':
2525 case 's':
2526 case 'S':
2527 prec = 2;
2528 break;
2529
2530 case 'd':
2531 case 'D':
2532 case 'r':
2533 case 'R':
2534 prec = 4;
2535 break;
2536
2537 case 'x':
2538 case 'X':
2539 prec = 6;
2540 break;
2541
2542 case 'p':
2543 case 'P':
2544 prec = 6;
2545 break;
2546
2547 default:
2548 *sizeP = 0;
2549 return "Bad call to MD_ATOF()";
2550 }
2551 t = atof_ieee (input_line_pointer, type, words);
2552 if (t)
2553 input_line_pointer = t;
2554 *sizeP = prec * sizeof (LITTLENUM_TYPE);
2555 for (wordP = words; prec--;)
2556 {
2557 md_number_to_chars (litP, (valueT) (*wordP++), sizeof (LITTLENUM_TYPE));
2558 litP += sizeof (LITTLENUM_TYPE);
2559 }
2560 return NULL;
2561 }
2562
2563 /* Write out big-endian. */
2564
2565 void
2566 md_number_to_chars (buf, val, n)
2567 char *buf;
2568 valueT val;
2569 int n;
2570 {
2571 number_to_chars_bigendian (buf, val, n);
2572 }
2573
2574 /* Translate internal representation of relocation info to BFD target
2575 format. */
2576
2577 arelent **
2578 tc_gen_reloc (section, fixp)
2579 asection *section;
2580 fixS *fixp;
2581 {
2582 arelent *reloc;
2583 struct hppa_fix_struct *hppa_fixp;
2584 bfd_reloc_code_real_type code;
2585 static int unwind_reloc_fixp_cnt = 0;
2586 static arelent *unwind_reloc_entryP = NULL;
2587 static arelent *no_relocs = NULL;
2588 arelent **relocs;
2589 bfd_reloc_code_real_type **codes;
2590 int n_relocs;
2591 int i;
2592
2593 hppa_fixp = (struct hppa_fix_struct *) fixp->tc_fix_data;
2594 if (fixp->fx_addsy == 0)
2595 return &no_relocs;
2596 assert (hppa_fixp != 0);
2597 assert (section != 0);
2598
2599 #ifdef OBJ_ELF
2600 /* Yuk. I would really like to push all this ELF specific unwind
2601 crud into BFD and the linker. That's how SOM does it -- and
2602 if we could make ELF emulate that then we could share more code
2603 in GAS (and potentially a gnu-linker later).
2604
2605 Unwind section relocations are handled in a special way.
2606 The relocations for the .unwind section are originally
2607 built in the usual way. That is, for each unwind table
2608 entry there are two relocations: one for the beginning of
2609 the function and one for the end.
2610
2611 The first time we enter this function we create a
2612 relocation of the type R_HPPA_UNWIND_ENTRIES. The addend
2613 of the relocation is initialized to 0. Each additional
2614 pair of times this function is called for the unwind
2615 section represents an additional unwind table entry. Thus,
2616 the addend of the relocation should end up to be the number
2617 of unwind table entries. */
2618 if (strcmp (UNWIND_SECTION_NAME, section->name) == 0)
2619 {
2620 if (unwind_reloc_entryP == NULL)
2621 {
2622 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
2623 sizeof (arelent));
2624 assert (reloc != 0);
2625 unwind_reloc_entryP = reloc;
2626 unwind_reloc_fixp_cnt++;
2627 unwind_reloc_entryP->address
2628 = fixp->fx_frag->fr_address + fixp->fx_where;
2629 /* A pointer to any function will do. We only
2630 need one to tell us what section the unwind
2631 relocations are for. */
2632 unwind_reloc_entryP->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2633 hppa_fixp->fx_r_type = code = R_HPPA_UNWIND_ENTRIES;
2634 fixp->fx_r_type = R_HPPA_UNWIND;
2635 unwind_reloc_entryP->howto = bfd_reloc_type_lookup (stdoutput, code);
2636 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
2637 relocs = (arelent **) bfd_alloc_by_size_t (stdoutput,
2638 sizeof (arelent *) * 2);
2639 assert (relocs != 0);
2640 relocs[0] = unwind_reloc_entryP;
2641 relocs[1] = NULL;
2642 return relocs;
2643 }
2644 unwind_reloc_fixp_cnt++;
2645 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
2646
2647 return &no_relocs;
2648 }
2649 #endif
2650
2651 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent));
2652 assert (reloc != 0);
2653
2654 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2655 codes = hppa_gen_reloc_type (stdoutput,
2656 fixp->fx_r_type,
2657 hppa_fixp->fx_r_format,
2658 hppa_fixp->fx_r_field);
2659
2660 for (n_relocs = 0; codes[n_relocs]; n_relocs++)
2661 ;
2662
2663 relocs = (arelent **)
2664 bfd_alloc_by_size_t (stdoutput, sizeof (arelent *) * n_relocs + 1);
2665 assert (relocs != 0);
2666
2667 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
2668 sizeof (arelent) * n_relocs);
2669 if (n_relocs > 0)
2670 assert (reloc != 0);
2671
2672 for (i = 0; i < n_relocs; i++)
2673 relocs[i] = &reloc[i];
2674
2675 relocs[n_relocs] = NULL;
2676
2677 #ifdef OBJ_ELF
2678 switch (fixp->fx_r_type)
2679 {
2680 case R_HPPA_COMPLEX:
2681 case R_HPPA_COMPLEX_PCREL_CALL:
2682 case R_HPPA_COMPLEX_ABS_CALL:
2683 assert (n_relocs == 5);
2684
2685 for (i = 0; i < n_relocs; i++)
2686 {
2687 reloc[i].sym_ptr_ptr = NULL;
2688 reloc[i].address = 0;
2689 reloc[i].addend = 0;
2690 reloc[i].howto = bfd_reloc_type_lookup (stdoutput, *codes[i]);
2691 assert (reloc[i].howto && *codes[i] == reloc[i].howto->type);
2692 }
2693
2694 reloc[0].sym_ptr_ptr = &fixp->fx_addsy->bsym;
2695 reloc[1].sym_ptr_ptr = &fixp->fx_subsy->bsym;
2696 reloc[4].address = fixp->fx_frag->fr_address + fixp->fx_where;
2697
2698 if (fixp->fx_r_type == R_HPPA_COMPLEX)
2699 reloc[3].addend = fixp->fx_addnumber;
2700 else if (fixp->fx_r_type == R_HPPA_COMPLEX_PCREL_CALL ||
2701 fixp->fx_r_type == R_HPPA_COMPLEX_ABS_CALL)
2702 reloc[1].addend = fixp->fx_addnumber;
2703
2704 break;
2705
2706 default:
2707 assert (n_relocs == 1);
2708
2709 code = *codes[0];
2710
2711 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2712 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
2713 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
2714 reloc->addend = 0; /* default */
2715
2716 assert (reloc->howto && code == reloc->howto->type);
2717
2718 /* Now, do any processing that is dependent on the relocation type. */
2719 switch (code)
2720 {
2721 case R_HPPA_PLABEL_32:
2722 case R_HPPA_PLABEL_11:
2723 case R_HPPA_PLABEL_14:
2724 case R_HPPA_PLABEL_L21:
2725 case R_HPPA_PLABEL_R11:
2726 case R_HPPA_PLABEL_R14:
2727 /* For plabel relocations, the addend of the
2728 relocation should be either 0 (no static link) or 2
2729 (static link required).
2730
2731 FIXME: We always assume no static link! */
2732 reloc->addend = 0;
2733 break;
2734
2735 case R_HPPA_ABS_CALL_11:
2736 case R_HPPA_ABS_CALL_14:
2737 case R_HPPA_ABS_CALL_17:
2738 case R_HPPA_ABS_CALL_L21:
2739 case R_HPPA_ABS_CALL_R11:
2740 case R_HPPA_ABS_CALL_R14:
2741 case R_HPPA_ABS_CALL_R17:
2742 case R_HPPA_ABS_CALL_LS21:
2743 case R_HPPA_ABS_CALL_RS11:
2744 case R_HPPA_ABS_CALL_RS14:
2745 case R_HPPA_ABS_CALL_RS17:
2746 case R_HPPA_ABS_CALL_LD21:
2747 case R_HPPA_ABS_CALL_RD11:
2748 case R_HPPA_ABS_CALL_RD14:
2749 case R_HPPA_ABS_CALL_RD17:
2750 case R_HPPA_ABS_CALL_LR21:
2751 case R_HPPA_ABS_CALL_RR14:
2752 case R_HPPA_ABS_CALL_RR17:
2753
2754 case R_HPPA_PCREL_CALL_11:
2755 case R_HPPA_PCREL_CALL_14:
2756 case R_HPPA_PCREL_CALL_17:
2757 case R_HPPA_PCREL_CALL_L21:
2758 case R_HPPA_PCREL_CALL_R11:
2759 case R_HPPA_PCREL_CALL_R14:
2760 case R_HPPA_PCREL_CALL_R17:
2761 case R_HPPA_PCREL_CALL_LS21:
2762 case R_HPPA_PCREL_CALL_RS11:
2763 case R_HPPA_PCREL_CALL_RS14:
2764 case R_HPPA_PCREL_CALL_RS17:
2765 case R_HPPA_PCREL_CALL_LD21:
2766 case R_HPPA_PCREL_CALL_RD11:
2767 case R_HPPA_PCREL_CALL_RD14:
2768 case R_HPPA_PCREL_CALL_RD17:
2769 case R_HPPA_PCREL_CALL_LR21:
2770 case R_HPPA_PCREL_CALL_RR14:
2771 case R_HPPA_PCREL_CALL_RR17:
2772 /* The constant is stored in the instruction. */
2773 reloc->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
2774 break;
2775 default:
2776 if (fixp->fx_addsy && fixp->fx_addsy->bsym->flags & BSF_FUNCTION)
2777 relocs[i]->addend = 0;
2778 else
2779 relocs[i]->addend = fixp->fx_addnumber;
2780 break;
2781 break;
2782 }
2783 break;
2784 }
2785 #else /* OBJ_SOM */
2786
2787 /* Walk over reach relocation returned by the BFD backend. */
2788 for (i = 0; i < n_relocs; i++)
2789 {
2790 code = *codes[i];
2791
2792 relocs[i]->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2793 relocs[i]->howto = bfd_reloc_type_lookup (stdoutput, code);
2794 relocs[i]->address = fixp->fx_frag->fr_address + fixp->fx_where;
2795
2796 switch (code)
2797 {
2798 case R_PCREL_CALL:
2799 case R_ABS_CALL:
2800 relocs[i]->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
2801 break;
2802
2803 case R_DATA_PLABEL:
2804 case R_CODE_PLABEL:
2805 /* For plabel relocations, the addend of the
2806 relocation should be either 0 (no static link) or 2
2807 (static link required).
2808
2809 FIXME: We always assume no static link! */
2810 relocs[i]->addend = 0;
2811 break;
2812
2813 case R_N_MODE:
2814 case R_S_MODE:
2815 case R_D_MODE:
2816 case R_R_MODE:
2817 case R_EXIT:
2818 case R_FSEL:
2819 case R_LSEL:
2820 case R_RSEL:
2821 /* There is no symbol or addend associated with these fixups. */
2822 relocs[i]->sym_ptr_ptr = &dummy_symbol->bsym;
2823 relocs[i]->addend = 0;
2824 break;
2825
2826 default:
2827 if (fixp->fx_addsy && fixp->fx_addsy->bsym->flags & BSF_FUNCTION)
2828 relocs[i]->addend = 0;
2829 else
2830 relocs[i]->addend = fixp->fx_addnumber;
2831 break;
2832 }
2833 }
2834 #endif
2835
2836 return relocs;
2837 }
2838
2839 /* Process any machine dependent frag types. */
2840
2841 void
2842 md_convert_frag (abfd, sec, fragP)
2843 register bfd *abfd;
2844 register asection *sec;
2845 register fragS *fragP;
2846 {
2847 unsigned int address;
2848
2849 if (fragP->fr_type == rs_machine_dependent)
2850 {
2851 switch ((int) fragP->fr_subtype)
2852 {
2853 case 0:
2854 fragP->fr_type = rs_fill;
2855 know (fragP->fr_var == 1);
2856 know (fragP->fr_next);
2857 address = fragP->fr_address + fragP->fr_fix;
2858 if (address % fragP->fr_offset)
2859 {
2860 fragP->fr_offset =
2861 fragP->fr_next->fr_address
2862 - fragP->fr_address
2863 - fragP->fr_fix;
2864 }
2865 else
2866 fragP->fr_offset = 0;
2867 break;
2868 }
2869 }
2870 }
2871
2872 /* Round up a section size to the appropriate boundary. */
2873
2874 valueT
2875 md_section_align (segment, size)
2876 asection *segment;
2877 valueT size;
2878 {
2879 int align = bfd_get_section_alignment (stdoutput, segment);
2880 int align2 = (1 << align) - 1;
2881
2882 return (size + align2) & ~align2;
2883 }
2884
2885 /* Create a short jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2886 void
2887 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
2888 char *ptr;
2889 addressT from_addr, to_addr;
2890 fragS *frag;
2891 symbolS *to_symbol;
2892 {
2893 fprintf (stderr, "pa_create_short_jmp\n");
2894 abort ();
2895 }
2896
2897 /* Create a long jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2898 void
2899 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
2900 char *ptr;
2901 addressT from_addr, to_addr;
2902 fragS *frag;
2903 symbolS *to_symbol;
2904 {
2905 fprintf (stderr, "pa_create_long_jump\n");
2906 abort ();
2907 }
2908
2909 /* Return the approximate size of a frag before relaxation has occurred. */
2910 int
2911 md_estimate_size_before_relax (fragP, segment)
2912 register fragS *fragP;
2913 asection *segment;
2914 {
2915 int size;
2916
2917 size = 0;
2918
2919 while ((fragP->fr_fix + size) % fragP->fr_offset)
2920 size++;
2921
2922 return size;
2923 }
2924
2925 /* Parse machine dependent options. There are none on the PA. */
2926 int
2927 md_parse_option (argP, cntP, vecP)
2928 char **argP;
2929 int *cntP;
2930 char ***vecP;
2931 {
2932 return 1;
2933 }
2934
2935 /* We have no need to default values of symbols. */
2936
2937 symbolS *
2938 md_undefined_symbol (name)
2939 char *name;
2940 {
2941 return 0;
2942 }
2943
2944 /* Parse an operand that is machine-specific.
2945 We just return without modifying the expression as we have nothing
2946 to do on the PA. */
2947
2948 void
2949 md_operand (expressionP)
2950 expressionS *expressionP;
2951 {
2952 }
2953
2954 /* Apply a fixup to an instruction. */
2955
2956 int
2957 md_apply_fix (fixP, valp)
2958 fixS *fixP;
2959 valueT *valp;
2960 {
2961 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
2962 struct hppa_fix_struct *hppa_fixP;
2963 long new_val, result;
2964 unsigned int w1, w2, w;
2965 valueT val = *valp;
2966
2967 hppa_fixP = (struct hppa_fix_struct *) fixP->tc_fix_data;
2968 /* SOM uses R_HPPA_ENTRY and R_HPPA_EXIT relocations which can
2969 never be "applied" (they are just markers). */
2970 #ifdef OBJ_SOM
2971 if (fixP->fx_r_type == R_HPPA_ENTRY
2972 || fixP->fx_r_type == R_HPPA_EXIT)
2973 return 1;
2974 #endif
2975
2976 /* There should have been an HPPA specific fixup associated
2977 with the GAS fixup. */
2978 if (hppa_fixP)
2979 {
2980 unsigned long buf_wd = bfd_get_32 (stdoutput, buf);
2981 unsigned char fmt = bfd_hppa_insn2fmt (buf_wd);
2982
2983 if (fixP->fx_r_type == R_HPPA_NONE)
2984 fmt = 0;
2985
2986 /* Remember this value for emit_reloc. FIXME, is this braindamage
2987 documented anywhere!?! */
2988 fixP->fx_addnumber = val;
2989
2990 /* Check if this is an undefined symbol. No relocation can
2991 possibly be performed in this case.
2992
2993 Also avoid doing anything for pc-relative fixups in which the
2994 fixup is in a different space than the symbol it references. */
2995 if ((fixP->fx_addsy && fixP->fx_addsy->bsym->section == &bfd_und_section)
2996 || (fixP->fx_subsy
2997 && fixP->fx_subsy->bsym->section == &bfd_und_section)
2998 || (fixP->fx_pcrel
2999 && fixP->fx_addsy
3000 && S_GET_SEGMENT (fixP->fx_addsy) != hppa_fixP->segment)
3001 || (fixP->fx_pcrel
3002 && fixP->fx_subsy
3003 && S_GET_SEGMENT (fixP->fx_subsy) != hppa_fixP->segment))
3004 return 1;
3005
3006 /* PLABEL field selectors should not be passed to hppa_field_adjust. */
3007 if (fmt != 0 && hppa_fixP->fx_r_field != R_HPPA_PSEL
3008 && hppa_fixP->fx_r_field != R_HPPA_LPSEL
3009 && hppa_fixP->fx_r_field != R_HPPA_RPSEL
3010 && hppa_fixP->fx_r_field != R_HPPA_TSEL
3011 && hppa_fixP->fx_r_field != R_HPPA_LTSEL
3012 && hppa_fixP->fx_r_field != R_HPPA_RTSEL
3013 && !(fixP->fx_addsy && fixP->fx_addsy->bsym->flags & BSF_FUNCTION))
3014 new_val = hppa_field_adjust (val, 0, hppa_fixP->fx_r_field);
3015 else
3016 new_val = 0;
3017
3018 switch (fmt)
3019 {
3020 /* Handle all opcodes with the 'j' operand type. */
3021 case 14:
3022 CHECK_FIELD (new_val, 8191, -8192, 0);
3023
3024 /* Mask off 14 bits to be changed. */
3025 bfd_put_32 (stdoutput,
3026 bfd_get_32 (stdoutput, buf) & 0xffffc000,
3027 buf);
3028 low_sign_unext (new_val, 14, &result);
3029 break;
3030
3031 /* Handle all opcodes with the 'k' operand type. */
3032 case 21:
3033 CHECK_FIELD (new_val, 2097152, 0, 0);
3034
3035 /* Mask off 21 bits to be changed. */
3036 bfd_put_32 (stdoutput,
3037 bfd_get_32 (stdoutput, buf) & 0xffe00000,
3038 buf);
3039 dis_assemble_21 (new_val, &result);
3040 break;
3041
3042 /* Handle all the opcodes with the 'i' operand type. */
3043 case 11:
3044 CHECK_FIELD (new_val, 1023, -1023, 0);
3045
3046 /* Mask off 11 bits to be changed. */
3047 bfd_put_32 (stdoutput,
3048 bfd_get_32 (stdoutput, buf) & 0xffff800,
3049 buf);
3050 low_sign_unext (new_val, 11, &result);
3051 break;
3052
3053 /* Handle all the opcodes with the 'w' operand type. */
3054 case 12:
3055 CHECK_FIELD (new_val, 8191, -8192, 0)
3056
3057 /* Mask off 11 bits to be changed. */
3058 sign_unext ((new_val - 8) >> 2, 12, &result);
3059 bfd_put_32 (stdoutput,
3060 bfd_get_32 (stdoutput, buf) & 0xffffe002,
3061 buf);
3062
3063 dis_assemble_12 (result, &w1, &w);
3064 result = ((w1 << 2) | w);
3065 break;
3066
3067 /* Handle some of the opcodes with the 'W' operand type. */
3068 case 17:
3069
3070 #define stub_needed(CALLER, CALLEE) \
3071 ((CALLEE) && (CALLER) && ((CALLEE) != (CALLER)))
3072 /* It is necessary to force PC-relative calls/jumps to have a
3073 relocation entry if they're going to need either a argument
3074 relocation or long call stub. FIXME. Can't we need the same
3075 for absolute calls? */
3076 if (fixP->fx_addsy
3077 && (stub_needed (((obj_symbol_type *)
3078 fixP->fx_addsy->bsym)->tc_data.hppa_arg_reloc,
3079 hppa_fixP->fx_arg_reloc)))
3080 return 1;
3081 #undef stub_needed
3082
3083 CHECK_FIELD (new_val, 262143, -262144, 0);
3084
3085 /* Mask off 17 bits to be changed. */
3086 bfd_put_32 (stdoutput,
3087 bfd_get_32 (stdoutput, buf) & 0xffe0e002,
3088 buf);
3089 sign_unext ((new_val - 8) >> 2, 17, &result);
3090 dis_assemble_17 (result, &w1, &w2, &w);
3091 result = ((w2 << 2) | (w1 << 16) | w);
3092 break;
3093
3094 case 32:
3095 #ifdef OBJ_ELF
3096 /* These are ELF specific relocations. ELF unfortunately
3097 handles unwinds in a completely different manner. */
3098 if (hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRY
3099 || hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRIES)
3100 result = fixP->fx_addnumber;
3101 else
3102 #endif
3103 {
3104 result = 0;
3105 fixP->fx_addnumber = fixP->fx_offset;
3106 /* If we have a real relocation, then we want zero to
3107 be stored in the object file. If no relocation is going
3108 to be emitted, then we need to store new_val into the
3109 object file. */
3110 if (fixP->fx_addsy)
3111 bfd_put_32 (stdoutput, 0, buf);
3112 else
3113 bfd_put_32 (stdoutput, new_val, buf);
3114 return 1;
3115 }
3116 break;
3117
3118 case 0:
3119 return 1;
3120
3121 default:
3122 as_bad ("Unknown relocation encountered in md_apply_fix.");
3123 return 1;
3124 }
3125
3126 /* Insert the relocation. */
3127 bfd_put_32 (stdoutput, bfd_get_32 (stdoutput, buf) | result, buf);
3128 return 1;
3129 }
3130 else
3131 {
3132 printf ("no hppa_fixup entry for this fixup (fixP = 0x%x, type = 0x%x)\n",
3133 (unsigned int) fixP, fixP->fx_r_type);
3134 return 0;
3135 }
3136 }
3137
3138 /* Exactly what point is a PC-relative offset relative TO?
3139 On the PA, they're relative to the address of the offset. */
3140
3141 long
3142 md_pcrel_from (fixP)
3143 fixS *fixP;
3144 {
3145 return fixP->fx_where + fixP->fx_frag->fr_address;
3146 }
3147
3148 /* Return nonzero if the input line pointer is at the end of
3149 a statement. */
3150
3151 static int
3152 is_end_of_statement ()
3153 {
3154 return ((*input_line_pointer == '\n')
3155 || (*input_line_pointer == ';')
3156 || (*input_line_pointer == '!'));
3157 }
3158
3159 /* Read a number from S. The number might come in one of many forms,
3160 the most common will be a hex or decimal constant, but it could be
3161 a pre-defined register (Yuk!), or an absolute symbol.
3162
3163 Return a number or -1 for failure.
3164
3165 When parsing PA-89 FP register numbers RESULT will be
3166 the address of a structure to return information about
3167 L/R half of FP registers, store results there as appropriate.
3168
3169 pa_parse_number can not handle negative constants and will fail
3170 horribly if it is passed such a constant. */
3171
3172 static int
3173 pa_parse_number (s, result)
3174 char **s;
3175 struct pa_89_fp_reg_struct *result;
3176 {
3177 int num;
3178 char *name;
3179 char c;
3180 symbolS *sym;
3181 int status;
3182 char *p = *s;
3183
3184 /* Skip whitespace before the number. */
3185 while (*p == ' ' || *p == '\t')
3186 p = p + 1;
3187
3188 /* Store info in RESULT if requested by caller. */
3189 if (result)
3190 {
3191 result->number_part = -1;
3192 result->l_r_select = -1;
3193 }
3194 num = -1;
3195
3196 if (isdigit (*p))
3197 {
3198 /* Looks like a number. */
3199 num = 0;
3200
3201 if (*p == '0' && (*(p + 1) == 'x' || *(p + 1) == 'X'))
3202 {
3203 /* The number is specified in hex. */
3204 p += 2;
3205 while (isdigit (*p) || ((*p >= 'a') && (*p <= 'f'))
3206 || ((*p >= 'A') && (*p <= 'F')))
3207 {
3208 if (isdigit (*p))
3209 num = num * 16 + *p - '0';
3210 else if (*p >= 'a' && *p <= 'f')
3211 num = num * 16 + *p - 'a' + 10;
3212 else
3213 num = num * 16 + *p - 'A' + 10;
3214 ++p;
3215 }
3216 }
3217 else
3218 {
3219 /* The number is specified in decimal. */
3220 while (isdigit (*p))
3221 {
3222 num = num * 10 + *p - '0';
3223 ++p;
3224 }
3225 }
3226
3227 /* Store info in RESULT if requested by the caller. */
3228 if (result)
3229 {
3230 result->number_part = num;
3231
3232 if (IS_R_SELECT (p))
3233 {
3234 result->l_r_select = 1;
3235 ++p;
3236 }
3237 else if (IS_L_SELECT (p))
3238 {
3239 result->l_r_select = 0;
3240 ++p;
3241 }
3242 else
3243 result->l_r_select = 0;
3244 }
3245 }
3246 else if (*p == '%')
3247 {
3248 /* The number might be a predefined register. */
3249 num = 0;
3250 name = p;
3251 p++;
3252 c = *p;
3253 /* Tege hack: Special case for general registers as the general
3254 code makes a binary search with case translation, and is VERY
3255 slow. */
3256 if (c == 'r')
3257 {
3258 p++;
3259 if (*p == 'e' && *(p + 1) == 't'
3260 && (*(p + 2) == '0' || *(p + 2) == '1'))
3261 {
3262 p += 2;
3263 num = *p - '0' + 28;
3264 p++;
3265 }
3266 else if (*p == 'p')
3267 {
3268 num = 2;
3269 p++;
3270 }
3271 else if (!isdigit (*p))
3272 {
3273 if (print_errors)
3274 as_bad ("Undefined register: '%s'.", name);
3275 num = -1;
3276 }
3277 else
3278 {
3279 do
3280 num = num * 10 + *p++ - '0';
3281 while (isdigit (*p));
3282 }
3283 }
3284 else
3285 {
3286 /* Do a normal register search. */
3287 while (is_part_of_name (c))
3288 {
3289 p = p + 1;
3290 c = *p;
3291 }
3292 *p = 0;
3293 status = reg_name_search (name);
3294 if (status >= 0)
3295 num = status;
3296 else
3297 {
3298 if (print_errors)
3299 as_bad ("Undefined register: '%s'.", name);
3300 num = -1;
3301 }
3302 *p = c;
3303 }
3304
3305 /* Store info in RESULT if requested by caller. */
3306 if (result)
3307 {
3308 result->number_part = num;
3309 if (IS_R_SELECT (p - 1))
3310 result->l_r_select = 1;
3311 else if (IS_L_SELECT (p - 1))
3312 result->l_r_select = 0;
3313 else
3314 result->l_r_select = 0;
3315 }
3316 }
3317 else
3318 {
3319 /* And finally, it could be a symbol in the absolute section which
3320 is effectively a constant. */
3321 num = 0;
3322 name = p;
3323 c = *p;
3324 while (is_part_of_name (c))
3325 {
3326 p = p + 1;
3327 c = *p;
3328 }
3329 *p = 0;
3330 if ((sym = symbol_find (name)) != NULL)
3331 {
3332 if (S_GET_SEGMENT (sym) == &bfd_abs_section)
3333 num = S_GET_VALUE (sym);
3334 else
3335 {
3336 if (print_errors)
3337 as_bad ("Non-absolute symbol: '%s'.", name);
3338 num = -1;
3339 }
3340 }
3341 else
3342 {
3343 /* There is where we'd come for an undefined symbol
3344 or for an empty string. For an empty string we
3345 will return zero. That's a concession made for
3346 compatability with the braindamaged HP assemblers. */
3347 if (*name == 0)
3348 num = 0;
3349 else
3350 {
3351 if (print_errors)
3352 as_bad ("Undefined absolute constant: '%s'.", name);
3353 num = -1;
3354 }
3355 }
3356 *p = c;
3357
3358 /* Store info in RESULT if requested by caller. */
3359 if (result)
3360 {
3361 result->number_part = num;
3362 if (IS_R_SELECT (p - 1))
3363 result->l_r_select = 1;
3364 else if (IS_L_SELECT (p - 1))
3365 result->l_r_select = 0;
3366 else
3367 result->l_r_select = 0;
3368 }
3369 }
3370
3371 *s = p;
3372 return num;
3373 }
3374
3375 #define REG_NAME_CNT (sizeof(pre_defined_registers) / sizeof(struct pd_reg))
3376
3377 /* Given NAME, find the register number associated with that name, return
3378 the integer value associated with the given name or -1 on failure. */
3379
3380 static int
3381 reg_name_search (name)
3382 char *name;
3383 {
3384 int middle, low, high;
3385 int cmp;
3386
3387 low = 0;
3388 high = REG_NAME_CNT - 1;
3389
3390 do
3391 {
3392 middle = (low + high) / 2;
3393 cmp = strcasecmp (name, pre_defined_registers[middle].name);
3394 if (cmp < 0)
3395 high = middle - 1;
3396 else if (cmp > 0)
3397 low = middle + 1;
3398 else
3399 return pre_defined_registers[middle].value;
3400 }
3401 while (low <= high);
3402
3403 return -1;
3404 }
3405
3406
3407 /* Return nonzero if the given INSN and L/R information will require
3408 a new PA-89 opcode. */
3409
3410 static int
3411 need_89_opcode (insn, result)
3412 struct pa_it *insn;
3413 struct pa_89_fp_reg_struct *result;
3414 {
3415 if (result->l_r_select == 1 && !(insn->fpof1 == DBL && insn->fpof2 == DBL))
3416 return TRUE;
3417 else
3418 return FALSE;
3419 }
3420
3421 /* Parse a condition for a fcmp instruction. Return the numerical
3422 code associated with the condition. */
3423
3424 static int
3425 pa_parse_fp_cmp_cond (s)
3426 char **s;
3427 {
3428 int cond, i;
3429
3430 cond = 0;
3431
3432 for (i = 0; i < 32; i++)
3433 {
3434 if (strncasecmp (*s, fp_cond_map[i].string,
3435 strlen (fp_cond_map[i].string)) == 0)
3436 {
3437 cond = fp_cond_map[i].cond;
3438 *s += strlen (fp_cond_map[i].string);
3439 while (**s == ' ' || **s == '\t')
3440 *s = *s + 1;
3441 return cond;
3442 }
3443 }
3444
3445 as_bad ("Invalid FP Compare Condition: %c", **s);
3446 return 0;
3447 }
3448
3449 /* Parse an FP operand format completer returning the completer
3450 type. */
3451
3452 static fp_operand_format
3453 pa_parse_fp_format (s)
3454 char **s;
3455 {
3456 int format;
3457
3458 format = SGL;
3459 if (**s == ',')
3460 {
3461 *s += 1;
3462 if (strncasecmp (*s, "sgl", 3) == 0)
3463 {
3464 format = SGL;
3465 *s += 4;
3466 }
3467 else if (strncasecmp (*s, "dbl", 3) == 0)
3468 {
3469 format = DBL;
3470 *s += 4;
3471 }
3472 else if (strncasecmp (*s, "quad", 4) == 0)
3473 {
3474 format = QUAD;
3475 *s += 5;
3476 }
3477 else
3478 {
3479 format = ILLEGAL_FMT;
3480 as_bad ("Invalid FP Operand Format: %3s", *s);
3481 }
3482 }
3483
3484 return format;
3485 }
3486
3487 /* Convert from a selector string into a selector type. */
3488
3489 static int
3490 pa_chk_field_selector (str)
3491 char **str;
3492 {
3493 int middle, low, high;
3494 int cmp;
3495 char name[3];
3496
3497 /* Read past any whitespace. */
3498 /* FIXME: should we read past newlines and formfeeds??? */
3499 while (**str == ' ' || **str == '\t' || **str == '\n' || **str == '\f')
3500 *str = *str + 1;
3501
3502 if ((*str)[1] == '\'' || (*str)[1] == '%')
3503 name[0] = tolower ((*str)[0]),
3504 name[1] = 0;
3505 else if ((*str)[2] == '\'' || (*str)[2] == '%')
3506 name[0] = tolower ((*str)[0]),
3507 name[1] = tolower ((*str)[1]),
3508 name[2] = 0;
3509 else
3510 return e_fsel;
3511
3512 low = 0;
3513 high = sizeof (selector_table) / sizeof (struct selector_entry) - 1;
3514
3515 do
3516 {
3517 middle = (low + high) / 2;
3518 cmp = strcmp (name, selector_table[middle].prefix);
3519 if (cmp < 0)
3520 high = middle - 1;
3521 else if (cmp > 0)
3522 low = middle + 1;
3523 else
3524 {
3525 *str += strlen (name) + 1;
3526 return selector_table[middle].field_selector;
3527 }
3528 }
3529 while (low <= high);
3530
3531 return e_fsel;
3532 }
3533
3534 /* Mark (via expr_end) the end of an expression (I think). FIXME. */
3535
3536 static int
3537 get_expression (str)
3538 char *str;
3539 {
3540 char *save_in;
3541 asection *seg;
3542
3543 save_in = input_line_pointer;
3544 input_line_pointer = str;
3545 seg = expression (&the_insn.exp);
3546 if (!(seg == absolute_section
3547 || seg == undefined_section
3548 || SEG_NORMAL (seg)))
3549 {
3550 as_warn ("Bad segment in expression.");
3551 expr_end = input_line_pointer;
3552 input_line_pointer = save_in;
3553 return 1;
3554 }
3555 expr_end = input_line_pointer;
3556 input_line_pointer = save_in;
3557 return 0;
3558 }
3559
3560 /* Mark (via expr_end) the end of an absolute expression. FIXME. */
3561 static int
3562 pa_get_absolute_expression (insn, strp)
3563 struct pa_it *insn;
3564 char **strp;
3565 {
3566 char *save_in;
3567
3568 insn->field_selector = pa_chk_field_selector (strp);
3569 save_in = input_line_pointer;
3570 input_line_pointer = *strp;
3571 expression (&insn->exp);
3572 if (insn->exp.X_op != O_constant)
3573 {
3574 as_bad ("Bad segment (should be absolute).");
3575 expr_end = input_line_pointer;
3576 input_line_pointer = save_in;
3577 return 0;
3578 }
3579 expr_end = input_line_pointer;
3580 input_line_pointer = save_in;
3581 return evaluate_absolute (insn);
3582 }
3583
3584 /* Evaluate an absolute expression EXP which may be modified by
3585 the selector FIELD_SELECTOR. Return the value of the expression. */
3586 static int
3587 evaluate_absolute (insn)
3588 struct pa_it *insn;
3589 {
3590 int value;
3591 expressionS exp;
3592 int field_selector = insn->field_selector;
3593
3594 exp = insn->exp;
3595 value = exp.X_add_number;
3596
3597 switch (field_selector)
3598 {
3599 /* No change. */
3600 case e_fsel:
3601 break;
3602
3603 /* If bit 21 is on then add 0x800 and arithmetic shift right 11 bits. */
3604 case e_lssel:
3605 if (value & 0x00000400)
3606 value += 0x800;
3607 value = (value & 0xfffff800) >> 11;
3608 break;
3609
3610 /* Sign extend from bit 21. */
3611 case e_rssel:
3612 if (value & 0x00000400)
3613 value |= 0xfffff800;
3614 else
3615 value &= 0x7ff;
3616 break;
3617
3618 /* Arithmetic shift right 11 bits. */
3619 case e_lsel:
3620 value = (value & 0xfffff800) >> 11;
3621 break;
3622
3623 /* Set bits 0-20 to zero. */
3624 case e_rsel:
3625 value = value & 0x7ff;
3626 break;
3627
3628 /* Add 0x800 and arithmetic shift right 11 bits. */
3629 case e_ldsel:
3630 value += 0x800;
3631 value = (value & 0xfffff800) >> 11;
3632 break;
3633
3634 /* Set bitgs 0-21 to one. */
3635 case e_rdsel:
3636 value |= 0xfffff800;
3637 break;
3638
3639 #define RSEL_ROUND(c) (((c) + 0x1000) & ~0x1fff)
3640 case e_rrsel:
3641 value = (RSEL_ROUND (value) & 0x7ff) + (value - RSEL_ROUND (value));
3642 break;
3643
3644 case e_lrsel:
3645 value = (RSEL_ROUND (value) >> 11) & 0x1fffff;
3646 break;
3647 #undef RSEL_ROUND
3648
3649 default:
3650 BAD_CASE (field_selector);
3651 break;
3652 }
3653 return value;
3654 }
3655
3656 /* Given an argument location specification return the associated
3657 argument location number. */
3658
3659 static unsigned int
3660 pa_build_arg_reloc (type_name)
3661 char *type_name;
3662 {
3663
3664 if (strncasecmp (type_name, "no", 2) == 0)
3665 return 0;
3666 if (strncasecmp (type_name, "gr", 2) == 0)
3667 return 1;
3668 else if (strncasecmp (type_name, "fr", 2) == 0)
3669 return 2;
3670 else if (strncasecmp (type_name, "fu", 2) == 0)
3671 return 3;
3672 else
3673 as_bad ("Invalid argument location: %s\n", type_name);
3674
3675 return 0;
3676 }
3677
3678 /* Encode and return an argument relocation specification for
3679 the given register in the location specified by arg_reloc. */
3680
3681 static unsigned int
3682 pa_align_arg_reloc (reg, arg_reloc)
3683 unsigned int reg;
3684 unsigned int arg_reloc;
3685 {
3686 unsigned int new_reloc;
3687
3688 new_reloc = arg_reloc;
3689 switch (reg)
3690 {
3691 case 0:
3692 new_reloc <<= 8;
3693 break;
3694 case 1:
3695 new_reloc <<= 6;
3696 break;
3697 case 2:
3698 new_reloc <<= 4;
3699 break;
3700 case 3:
3701 new_reloc <<= 2;
3702 break;
3703 default:
3704 as_bad ("Invalid argument description: %d", reg);
3705 }
3706
3707 return new_reloc;
3708 }
3709
3710 /* Parse a PA nullification completer (,n). Return nonzero if the
3711 completer was found; return zero if no completer was found. */
3712
3713 static int
3714 pa_parse_nullif (s)
3715 char **s;
3716 {
3717 int nullif;
3718
3719 nullif = 0;
3720 if (**s == ',')
3721 {
3722 *s = *s + 1;
3723 if (strncasecmp (*s, "n", 1) == 0)
3724 nullif = 1;
3725 else
3726 {
3727 as_bad ("Invalid Nullification: (%c)", **s);
3728 nullif = 0;
3729 }
3730 *s = *s + 1;
3731 }
3732
3733 return nullif;
3734 }
3735
3736 /* Parse a non-negated compare/subtract completer returning the
3737 number (for encoding in instrutions) of the given completer.
3738
3739 ISBRANCH specifies whether or not this is parsing a condition
3740 completer for a branch (vs a nullification completer for a
3741 computational instruction. */
3742
3743 static int
3744 pa_parse_nonneg_cmpsub_cmpltr (s, isbranch)
3745 char **s;
3746 int isbranch;
3747 {
3748 int cmpltr;
3749 char *name = *s + 1;
3750 char c;
3751 char *save_s = *s;
3752
3753 cmpltr = 0;
3754 if (**s == ',')
3755 {
3756 *s += 1;
3757 while (**s != ',' && **s != ' ' && **s != '\t')
3758 *s += 1;
3759 c = **s;
3760 **s = 0x00;
3761 if (strcmp (name, "=") == 0)
3762 {
3763 cmpltr = 1;
3764 }
3765 else if (strcmp (name, "<") == 0)
3766 {
3767 cmpltr = 2;
3768 }
3769 else if (strcmp (name, "<=") == 0)
3770 {
3771 cmpltr = 3;
3772 }
3773 else if (strcmp (name, "<<") == 0)
3774 {
3775 cmpltr = 4;
3776 }
3777 else if (strcmp (name, "<<=") == 0)
3778 {
3779 cmpltr = 5;
3780 }
3781 else if (strcasecmp (name, "sv") == 0)
3782 {
3783 cmpltr = 6;
3784 }
3785 else if (strcasecmp (name, "od") == 0)
3786 {
3787 cmpltr = 7;
3788 }
3789 /* If we have something like addb,n then there is no condition
3790 completer. */
3791 else if (strcasecmp (name, "n") == 0 && isbranch)
3792 {
3793 cmpltr = 0;
3794 }
3795 else
3796 {
3797 cmpltr = -1;
3798 }
3799 **s = c;
3800 }
3801
3802 /* Reset pointers if this was really a ,n for a branch instruction. */
3803 if (cmpltr == 0 && *name == 'n' && isbranch)
3804 *s = save_s;
3805
3806 return cmpltr;
3807 }
3808
3809 /* Parse a negated compare/subtract completer returning the
3810 number (for encoding in instrutions) of the given completer.
3811
3812 ISBRANCH specifies whether or not this is parsing a condition
3813 completer for a branch (vs a nullification completer for a
3814 computational instruction. */
3815
3816 static int
3817 pa_parse_neg_cmpsub_cmpltr (s, isbranch)
3818 char **s;
3819 int isbranch;
3820 {
3821 int cmpltr;
3822 char *name = *s + 1;
3823 char c;
3824 char *save_s = *s;
3825
3826 cmpltr = 0;
3827 if (**s == ',')
3828 {
3829 *s += 1;
3830 while (**s != ',' && **s != ' ' && **s != '\t')
3831 *s += 1;
3832 c = **s;
3833 **s = 0x00;
3834 if (strcasecmp (name, "tr") == 0)
3835 {
3836 cmpltr = 0;
3837 }
3838 else if (strcmp (name, "<>") == 0)
3839 {
3840 cmpltr = 1;
3841 }
3842 else if (strcmp (name, ">=") == 0)
3843 {
3844 cmpltr = 2;
3845 }
3846 else if (strcmp (name, ">") == 0)
3847 {
3848 cmpltr = 3;
3849 }
3850 else if (strcmp (name, ">>=") == 0)
3851 {
3852 cmpltr = 4;
3853 }
3854 else if (strcmp (name, ">>") == 0)
3855 {
3856 cmpltr = 5;
3857 }
3858 else if (strcasecmp (name, "nsv") == 0)
3859 {
3860 cmpltr = 6;
3861 }
3862 else if (strcasecmp (name, "ev") == 0)
3863 {
3864 cmpltr = 7;
3865 }
3866 /* If we have something like addb,n then there is no condition
3867 completer. */
3868 else if (strcasecmp (name, "n") == 0 && isbranch)
3869 {
3870 cmpltr = 0;
3871 }
3872 else
3873 {
3874 cmpltr = -1;
3875 }
3876 **s = c;
3877 }
3878
3879 /* Reset pointers if this was really a ,n for a branch instruction. */
3880 if (cmpltr == 0 && *name == 'n' && isbranch)
3881 *s = save_s;
3882
3883 return cmpltr;
3884 }
3885
3886 /* Parse a non-negated addition completer returning the number
3887 (for encoding in instrutions) of the given completer.
3888
3889 ISBRANCH specifies whether or not this is parsing a condition
3890 completer for a branch (vs a nullification completer for a
3891 computational instruction. */
3892
3893 static int
3894 pa_parse_nonneg_add_cmpltr (s, isbranch)
3895 char **s;
3896 int isbranch;
3897 {
3898 int cmpltr;
3899 char *name = *s + 1;
3900 char c;
3901 char *save_s = *s;
3902
3903 cmpltr = 0;
3904 if (**s == ',')
3905 {
3906 *s += 1;
3907 while (**s != ',' && **s != ' ' && **s != '\t')
3908 *s += 1;
3909 c = **s;
3910 **s = 0x00;
3911 if (strcmp (name, "=") == 0)
3912 {
3913 cmpltr = 1;
3914 }
3915 else if (strcmp (name, "<") == 0)
3916 {
3917 cmpltr = 2;
3918 }
3919 else if (strcmp (name, "<=") == 0)
3920 {
3921 cmpltr = 3;
3922 }
3923 else if (strcasecmp (name, "nuv") == 0)
3924 {
3925 cmpltr = 4;
3926 }
3927 else if (strcasecmp (name, "znv") == 0)
3928 {
3929 cmpltr = 5;
3930 }
3931 else if (strcasecmp (name, "sv") == 0)
3932 {
3933 cmpltr = 6;
3934 }
3935 else if (strcasecmp (name, "od") == 0)
3936 {
3937 cmpltr = 7;
3938 }
3939 /* If we have something like addb,n then there is no condition
3940 completer. */
3941 else if (strcasecmp (name, "n") == 0 && isbranch)
3942 {
3943 cmpltr = 0;
3944 }
3945 else
3946 {
3947 cmpltr = -1;
3948 }
3949 **s = c;
3950 }
3951
3952 /* Reset pointers if this was really a ,n for a branch instruction. */
3953 if (cmpltr == 0 && *name == 'n' && isbranch)
3954 *s = save_s;
3955
3956 return cmpltr;
3957 }
3958
3959 /* Parse a negated addition completer returning the number
3960 (for encoding in instrutions) of the given completer.
3961
3962 ISBRANCH specifies whether or not this is parsing a condition
3963 completer for a branch (vs a nullification completer for a
3964 computational instruction. */
3965
3966 static int
3967 pa_parse_neg_add_cmpltr (s, isbranch)
3968 char **s;
3969 int isbranch;
3970 {
3971 int cmpltr;
3972 char *name = *s + 1;
3973 char c;
3974 char *save_s = *s;
3975
3976 cmpltr = 0;
3977 if (**s == ',')
3978 {
3979 *s += 1;
3980 while (**s != ',' && **s != ' ' && **s != '\t')
3981 *s += 1;
3982 c = **s;
3983 **s = 0x00;
3984 if (strcasecmp (name, "tr") == 0)
3985 {
3986 cmpltr = 0;
3987 }
3988 else if (strcmp (name, "<>") == 0)
3989 {
3990 cmpltr = 1;
3991 }
3992 else if (strcmp (name, ">=") == 0)
3993 {
3994 cmpltr = 2;
3995 }
3996 else if (strcmp (name, ">") == 0)
3997 {
3998 cmpltr = 3;
3999 }
4000 else if (strcasecmp (name, "uv") == 0)
4001 {
4002 cmpltr = 4;
4003 }
4004 else if (strcasecmp (name, "vnz") == 0)
4005 {
4006 cmpltr = 5;
4007 }
4008 else if (strcasecmp (name, "nsv") == 0)
4009 {
4010 cmpltr = 6;
4011 }
4012 else if (strcasecmp (name, "ev") == 0)
4013 {
4014 cmpltr = 7;
4015 }
4016 /* If we have something like addb,n then there is no condition
4017 completer. */
4018 else if (strcasecmp (name, "n") == 0 && isbranch)
4019 {
4020 cmpltr = 0;
4021 }
4022 else
4023 {
4024 cmpltr = -1;
4025 }
4026 **s = c;
4027 }
4028
4029 /* Reset pointers if this was really a ,n for a branch instruction. */
4030 if (cmpltr == 0 && *name == 'n' && isbranch)
4031 *s = save_s;
4032
4033 return cmpltr;
4034 }
4035
4036 /* Handle a .BLOCK type pseudo-op. */
4037
4038 static void
4039 pa_block (z)
4040 int z;
4041 {
4042 char *p;
4043 long int temp_fill;
4044 unsigned int temp_size;
4045 int i;
4046
4047 temp_size = get_absolute_expression ();
4048
4049 /* Always fill with zeros, that's what the HP assembler does. */
4050 temp_fill = 0;
4051
4052 p = frag_var (rs_fill, (int) temp_size, (int) temp_size,
4053 (relax_substateT) 0, (symbolS *) 0, 1, NULL);
4054 bzero (p, temp_size);
4055
4056 /* Convert 2 bytes at a time. */
4057
4058 for (i = 0; i < temp_size; i += 2)
4059 {
4060 md_number_to_chars (p + i,
4061 (valueT) temp_fill,
4062 (int) ((temp_size - i) > 2 ? 2 : (temp_size - i)));
4063 }
4064
4065 pa_undefine_label ();
4066 demand_empty_rest_of_line ();
4067 }
4068
4069 /* Handle a .CALL pseudo-op. This involves storing away information
4070 about where arguments are to be found so the linker can detect
4071 (and correct) argument location mismatches between caller and callee. */
4072
4073 static void
4074 pa_call (unused)
4075 int unused;
4076 {
4077 pa_call_args (&last_call_desc);
4078 demand_empty_rest_of_line ();
4079 }
4080
4081 /* Do the dirty work of building a call descriptor which describes
4082 where the caller placed arguments to a function call. */
4083
4084 static void
4085 pa_call_args (call_desc)
4086 struct call_desc *call_desc;
4087 {
4088 char *name, c, *p;
4089 unsigned int temp, arg_reloc;
4090
4091 while (!is_end_of_statement ())
4092 {
4093 name = input_line_pointer;
4094 c = get_symbol_end ();
4095 /* Process a source argument. */
4096 if ((strncasecmp (name, "argw", 4) == 0))
4097 {
4098 temp = atoi (name + 4);
4099 p = input_line_pointer;
4100 *p = c;
4101 input_line_pointer++;
4102 name = input_line_pointer;
4103 c = get_symbol_end ();
4104 arg_reloc = pa_build_arg_reloc (name);
4105 call_desc->arg_reloc |= pa_align_arg_reloc (temp, arg_reloc);
4106 }
4107 /* Process a return value. */
4108 else if ((strncasecmp (name, "rtnval", 6) == 0))
4109 {
4110 p = input_line_pointer;
4111 *p = c;
4112 input_line_pointer++;
4113 name = input_line_pointer;
4114 c = get_symbol_end ();
4115 arg_reloc = pa_build_arg_reloc (name);
4116 call_desc->arg_reloc |= (arg_reloc & 0x3);
4117 }
4118 else
4119 {
4120 as_bad ("Invalid .CALL argument: %s", name);
4121 }
4122 p = input_line_pointer;
4123 *p = c;
4124 if (!is_end_of_statement ())
4125 input_line_pointer++;
4126 }
4127 }
4128
4129 /* Return TRUE if FRAG1 and FRAG2 are the same. */
4130
4131 static int
4132 is_same_frag (frag1, frag2)
4133 fragS *frag1;
4134 fragS *frag2;
4135 {
4136
4137 if (frag1 == NULL)
4138 return (FALSE);
4139 else if (frag2 == NULL)
4140 return (FALSE);
4141 else if (frag1 == frag2)
4142 return (TRUE);
4143 else if (frag2->fr_type == rs_fill && frag2->fr_fix == 0)
4144 return (is_same_frag (frag1, frag2->fr_next));
4145 else
4146 return (FALSE);
4147 }
4148
4149 #ifdef OBJ_ELF
4150 /* Build an entry in the UNWIND subspace from the given function
4151 attributes in CALL_INFO. This is not needed for SOM as using
4152 R_ENTRY and R_EXIT relocations allow the linker to handle building
4153 of the unwind spaces. */
4154
4155 static void
4156 pa_build_unwind_subspace (call_info)
4157 struct call_info *call_info;
4158 {
4159 char *unwind;
4160 asection *seg, *save_seg;
4161 subsegT subseg, save_subseg;
4162 int i;
4163 char c, *p;
4164
4165 /* Get into the right seg/subseg. This may involve creating
4166 the seg the first time through. Make sure to have the
4167 old seg/subseg so that we can reset things when we are done. */
4168 subseg = SUBSEG_UNWIND;
4169 seg = bfd_get_section_by_name (stdoutput, UNWIND_SECTION_NAME);
4170 if (seg == ASEC_NULL)
4171 {
4172 seg = bfd_make_section_old_way (stdoutput, UNWIND_SECTION_NAME);
4173 bfd_set_section_flags (stdoutput, seg,
4174 SEC_READONLY | SEC_HAS_CONTENTS
4175 | SEC_LOAD | SEC_RELOC);
4176 }
4177
4178 save_seg = now_seg;
4179 save_subseg = now_subseg;
4180 subseg_set (seg, subseg);
4181
4182
4183 /* Get some space to hold relocation information for the unwind
4184 descriptor. */
4185 p = frag_more (4);
4186
4187 /* Relocation info. for start offset of the function. */
4188 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4189 call_info->start_symbol, (offsetT) 0,
4190 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4191 (char *) 0);
4192
4193 p = frag_more (4);
4194
4195 /* Relocation info. for end offset of the function. */
4196 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4197 call_info->end_symbol, (offsetT) 0,
4198 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4199 (char *) 0);
4200
4201 /* Dump it. */
4202 unwind = (char *) &call_info->ci_unwind;
4203 for (i = 8; i < sizeof (struct unwind_table); i++)
4204 {
4205 c = *(unwind + i);
4206 {
4207 FRAG_APPEND_1_CHAR (c);
4208 }
4209 }
4210
4211 /* Return back to the original segment/subsegment. */
4212 subseg_set (save_seg, save_subseg);
4213 }
4214 #endif
4215
4216 /* Process a .CALLINFO pseudo-op. This information is used later
4217 to build unwind descriptors and maybe one day to support
4218 .ENTER and .LEAVE. */
4219
4220 static void
4221 pa_callinfo (unused)
4222 int unused;
4223 {
4224 char *name, c, *p;
4225 int temp;
4226
4227 /* .CALLINFO must appear within a procedure definition. */
4228 if (!within_procedure)
4229 as_bad (".callinfo is not within a procedure definition");
4230
4231 /* Mark the fact that we found the .CALLINFO for the
4232 current procedure. */
4233 callinfo_found = TRUE;
4234
4235 /* Iterate over the .CALLINFO arguments. */
4236 while (!is_end_of_statement ())
4237 {
4238 name = input_line_pointer;
4239 c = get_symbol_end ();
4240 /* Frame size specification. */
4241 if ((strncasecmp (name, "frame", 5) == 0))
4242 {
4243 p = input_line_pointer;
4244 *p = c;
4245 input_line_pointer++;
4246 temp = get_absolute_expression ();
4247 if ((temp & 0x3) != 0)
4248 {
4249 as_bad ("FRAME parameter must be a multiple of 8: %d\n", temp);
4250 temp = 0;
4251 }
4252
4253 /* callinfo is in bytes and unwind_desc is in 8 byte units. */
4254 last_call_info->ci_unwind.descriptor.frame_size = temp / 8;
4255
4256 }
4257 /* Entry register (GR, GR and SR) specifications. */
4258 else if ((strncasecmp (name, "entry_gr", 8) == 0))
4259 {
4260 p = input_line_pointer;
4261 *p = c;
4262 input_line_pointer++;
4263 temp = get_absolute_expression ();
4264 /* The HP assembler accepts 19 as the high bound for ENTRY_GR
4265 even though %r19 is caller saved. I think this is a bug in
4266 the HP assembler, and we are not going to emulate it. */
4267 if (temp < 3 || temp > 18)
4268 as_bad ("Value for ENTRY_GR must be in the range 3..18\n");
4269 last_call_info->ci_unwind.descriptor.entry_gr = temp - 2;
4270 }
4271 else if ((strncasecmp (name, "entry_fr", 8) == 0))
4272 {
4273 p = input_line_pointer;
4274 *p = c;
4275 input_line_pointer++;
4276 temp = get_absolute_expression ();
4277 /* Similarly the HP assembler takes 31 as the high bound even
4278 though %fr21 is the last callee saved floating point register. */
4279 if (temp < 12 || temp > 21)
4280 as_bad ("Value for ENTRY_FR must be in the range 12..21\n");
4281 last_call_info->ci_unwind.descriptor.entry_fr = temp - 11;
4282 }
4283 else if ((strncasecmp (name, "entry_sr", 8) == 0))
4284 {
4285 p = input_line_pointer;
4286 *p = c;
4287 input_line_pointer++;
4288 temp = get_absolute_expression ();
4289 if (temp != 3)
4290 as_bad ("Value for ENTRY_SR must be 3\n");
4291 }
4292 /* Note whether or not this function performs any calls. */
4293 else if ((strncasecmp (name, "calls", 5) == 0) ||
4294 (strncasecmp (name, "caller", 6) == 0))
4295 {
4296 p = input_line_pointer;
4297 *p = c;
4298 }
4299 else if ((strncasecmp (name, "no_calls", 8) == 0))
4300 {
4301 p = input_line_pointer;
4302 *p = c;
4303 }
4304 /* Should RP be saved into the stack. */
4305 else if ((strncasecmp (name, "save_rp", 7) == 0))
4306 {
4307 p = input_line_pointer;
4308 *p = c;
4309 last_call_info->ci_unwind.descriptor.save_rp = 1;
4310 }
4311 /* Likewise for SP. */
4312 else if ((strncasecmp (name, "save_sp", 7) == 0))
4313 {
4314 p = input_line_pointer;
4315 *p = c;
4316 last_call_info->ci_unwind.descriptor.save_sp = 1;
4317 }
4318 /* Is this an unwindable procedure. If so mark it so
4319 in the unwind descriptor. */
4320 else if ((strncasecmp (name, "no_unwind", 9) == 0))
4321 {
4322 p = input_line_pointer;
4323 *p = c;
4324 last_call_info->ci_unwind.descriptor.cannot_unwind = 1;
4325 }
4326 /* Is this an interrupt routine. If so mark it in the
4327 unwind descriptor. */
4328 else if ((strncasecmp (name, "hpux_int", 7) == 0))
4329 {
4330 p = input_line_pointer;
4331 *p = c;
4332 last_call_info->ci_unwind.descriptor.hpux_interrupt_marker = 1;
4333 }
4334 /* Is this a millicode routine. "millicode" isn't in my
4335 assembler manual, but my copy is old. The HP assembler
4336 accepts it, and there's a place in the unwind descriptor
4337 to drop the information, so we'll accept it too. */
4338 else if ((strncasecmp (name, "millicode", 9) == 0))
4339 {
4340 p = input_line_pointer;
4341 *p = c;
4342 last_call_info->ci_unwind.descriptor.millicode = 1;
4343 }
4344 else
4345 {
4346 as_bad ("Invalid .CALLINFO argument: %s", name);
4347 *input_line_pointer = c;
4348 }
4349 if (!is_end_of_statement ())
4350 input_line_pointer++;
4351 }
4352
4353 demand_empty_rest_of_line ();
4354 }
4355
4356 /* Switch into the code subspace. */
4357
4358 static void
4359 pa_code (unused)
4360 int unused;
4361 {
4362 sd_chain_struct *sdchain;
4363
4364 /* First time through it might be necessary to create the
4365 $TEXT$ space. */
4366 if ((sdchain = is_defined_space ("$TEXT$")) == NULL)
4367 {
4368 sdchain = create_new_space (pa_def_spaces[0].name,
4369 pa_def_spaces[0].spnum,
4370 pa_def_spaces[0].loadable,
4371 pa_def_spaces[0].defined,
4372 pa_def_spaces[0].private,
4373 pa_def_spaces[0].sort,
4374 pa_def_spaces[0].segment, 0);
4375 }
4376
4377 SPACE_DEFINED (sdchain) = 1;
4378 subseg_set (text_section, SUBSEG_CODE);
4379 demand_empty_rest_of_line ();
4380 }
4381
4382 /* This is different than the standard GAS s_comm(). On HP9000/800 machines,
4383 the .comm pseudo-op has the following symtax:
4384
4385 <label> .comm <length>
4386
4387 where <label> is optional and is a symbol whose address will be the start of
4388 a block of memory <length> bytes long. <length> must be an absolute
4389 expression. <length> bytes will be allocated in the current space
4390 and subspace. */
4391
4392 static void
4393 pa_comm (unused)
4394 int unused;
4395 {
4396 unsigned int size;
4397 symbolS *symbol;
4398 label_symbol_struct *label_symbol = pa_get_label ();
4399
4400 if (label_symbol)
4401 symbol = label_symbol->lss_label;
4402 else
4403 symbol = NULL;
4404
4405 SKIP_WHITESPACE ();
4406 size = get_absolute_expression ();
4407
4408 if (symbol)
4409 {
4410 /* It is incorrect to check S_IS_DEFINED at this point as
4411 the symbol will *always* be defined. FIXME. How to
4412 correctly determine when this label really as been
4413 defined before. */
4414 if (S_GET_VALUE (symbol))
4415 {
4416 if (S_GET_VALUE (symbol) != size)
4417 {
4418 as_warn ("Length of .comm \"%s\" is already %d. Not changed.",
4419 S_GET_NAME (symbol), S_GET_VALUE (symbol));
4420 return;
4421 }
4422 }
4423 else
4424 {
4425 S_SET_VALUE (symbol, size);
4426 S_SET_SEGMENT (symbol, &bfd_und_section);
4427 S_SET_EXTERNAL (symbol);
4428 }
4429 }
4430 demand_empty_rest_of_line ();
4431 }
4432
4433 /* Process a .END pseudo-op. */
4434
4435 static void
4436 pa_end (unused)
4437 int unused;
4438 {
4439 demand_empty_rest_of_line ();
4440 }
4441
4442 /* Process a .ENTER pseudo-op. This is not supported. */
4443 static void
4444 pa_enter (unused)
4445 int unused;
4446 {
4447 abort ();
4448 }
4449
4450 /* Process a .ENTRY pseudo-op. .ENTRY marks the beginning of the
4451 procesure. */
4452 static void
4453 pa_entry (unused)
4454 int unused;
4455 {
4456 if (!within_procedure)
4457 as_bad ("Misplaced .entry. Ignored.");
4458 else
4459 {
4460 if (!callinfo_found)
4461 as_bad ("Missing .callinfo.");
4462 }
4463 demand_empty_rest_of_line ();
4464 within_entry_exit = TRUE;
4465
4466 #ifdef OBJ_SOM
4467 /* SOM defers building of unwind descriptors until the link phase.
4468 The assembler is responsible for creating an R_ENTRY relocation
4469 to mark the beginning of a region and hold the unwind bits, and
4470 for creating an R_EXIT relocation to mark the end of the region.
4471
4472 FIXME. ELF should be using the same conventions! The problem
4473 is an unwind requires too much relocation space. Hmmm. Maybe
4474 if we split the unwind bits up between the relocations which
4475 denote the entry and exit points. */
4476 if (last_call_info->start_symbol != NULL)
4477 {
4478 char *where = frag_more (0);
4479
4480 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
4481 last_call_info->start_symbol, (offsetT) 0, NULL,
4482 0, R_HPPA_ENTRY, e_fsel, 0, 0,
4483 (char *) &last_call_info->ci_unwind.descriptor);
4484 }
4485 #endif
4486 }
4487
4488 /* Handle a .EQU pseudo-op. */
4489
4490 static void
4491 pa_equ (reg)
4492 int reg;
4493 {
4494 label_symbol_struct *label_symbol = pa_get_label ();
4495 symbolS *symbol;
4496
4497 if (label_symbol)
4498 {
4499 symbol = label_symbol->lss_label;
4500 if (reg)
4501 S_SET_VALUE (symbol, pa_parse_number (&input_line_pointer, 0));
4502 else
4503 S_SET_VALUE (symbol, (unsigned int) get_absolute_expression ());
4504 S_SET_SEGMENT (symbol, &bfd_abs_section);
4505 }
4506 else
4507 {
4508 if (reg)
4509 as_bad (".REG must use a label");
4510 else
4511 as_bad (".EQU must use a label");
4512 }
4513
4514 pa_undefine_label ();
4515 demand_empty_rest_of_line ();
4516 }
4517
4518 /* Helper function. Does processing for the end of a function. This
4519 usually involves creating some relocations or building special
4520 symbols to mark the end of the function. */
4521
4522 static void
4523 process_exit ()
4524 {
4525 char *where;
4526
4527 where = frag_more (0);
4528
4529 #ifdef OBJ_ELF
4530 /* Mark the end of the function, stuff away the location of the frag
4531 for the end of the function, and finally call pa_build_unwind_subspace
4532 to add an entry in the unwind table. */
4533 hppa_elf_mark_end_of_function ();
4534 pa_build_unwind_subspace (last_call_info);
4535 #else
4536 /* SOM defers building of unwind descriptors until the link phase.
4537 The assembler is responsible for creating an R_ENTRY relocation
4538 to mark the beginning of a region and hold the unwind bits, and
4539 for creating an R_EXIT relocation to mark the end of the region.
4540
4541 FIXME. ELF should be using the same conventions! The problem
4542 is an unwind requires too much relocation space. Hmmm. Maybe
4543 if we split the unwind bits up between the relocations which
4544 denote the entry and exit points. */
4545 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
4546 last_call_info->start_symbol, (offsetT) 0,
4547 NULL, 0, R_HPPA_EXIT, e_fsel, 0, 0, NULL);
4548 #endif
4549 }
4550
4551 /* Process a .EXIT pseudo-op. */
4552
4553 static void
4554 pa_exit (unused)
4555 int unused;
4556 {
4557 if (!within_procedure)
4558 as_bad (".EXIT must appear within a procedure");
4559 else
4560 {
4561 if (!callinfo_found)
4562 as_bad ("Missing .callinfo");
4563 else
4564 {
4565 if (!within_entry_exit)
4566 as_bad ("No .ENTRY for this .EXIT");
4567 else
4568 {
4569 within_entry_exit = FALSE;
4570 process_exit ();
4571 }
4572 }
4573 }
4574 demand_empty_rest_of_line ();
4575 }
4576
4577 /* Process a .EXPORT directive. This makes functions external
4578 and provides information such as argument relocation entries
4579 to callers. */
4580
4581 static void
4582 pa_export (unused)
4583 int unused;
4584 {
4585 char *name, c, *p;
4586 symbolS *symbol;
4587
4588 name = input_line_pointer;
4589 c = get_symbol_end ();
4590 /* Make sure the given symbol exists. */
4591 if ((symbol = symbol_find_or_make (name)) == NULL)
4592 {
4593 as_bad ("Cannot define export symbol: %s\n", name);
4594 p = input_line_pointer;
4595 *p = c;
4596 input_line_pointer++;
4597 }
4598 else
4599 {
4600 /* OK. Set the external bits and process argument relocations. */
4601 S_SET_EXTERNAL (symbol);
4602 p = input_line_pointer;
4603 *p = c;
4604 if (!is_end_of_statement ())
4605 {
4606 input_line_pointer++;
4607 pa_type_args (symbol, 1);
4608 }
4609 }
4610
4611 demand_empty_rest_of_line ();
4612 }
4613
4614 /* Helper function to process arguments to a .EXPORT pseudo-op. */
4615
4616 static void
4617 pa_type_args (symbolP, is_export)
4618 symbolS *symbolP;
4619 int is_export;
4620 {
4621 char *name, c, *p;
4622 unsigned int temp, arg_reloc;
4623 pa_symbol_type type = SYMBOL_TYPE_UNKNOWN;
4624 obj_symbol_type *symbol = (obj_symbol_type *) symbolP->bsym;
4625
4626 if (strncasecmp (input_line_pointer, "absolute", 8) == 0)
4627
4628 {
4629 input_line_pointer += 8;
4630 symbolP->bsym->flags &= ~BSF_FUNCTION;
4631 S_SET_SEGMENT (symbolP, &bfd_abs_section);
4632 type = SYMBOL_TYPE_ABSOLUTE;
4633 }
4634 else if (strncasecmp (input_line_pointer, "code", 4) == 0)
4635 {
4636 input_line_pointer += 4;
4637 /* IMPORTing/EXPORTing CODE types for functions is meaningless for SOM,
4638 instead one should be IMPORTing/EXPORTing ENTRY types.
4639
4640 Complain if one tries to EXPORT a CODE type since that's never
4641 done. Both GCC and HP C still try to IMPORT CODE types, so
4642 silently fix them to be ENTRY types. */
4643 if (symbolP->bsym->flags & BSF_FUNCTION)
4644 {
4645 if (is_export)
4646 as_tsktsk ("Using ENTRY rather than CODE in export directive for %s", symbolP->bsym->name);
4647
4648 symbolP->bsym->flags |= BSF_FUNCTION;
4649 type = SYMBOL_TYPE_ENTRY;
4650 }
4651 else
4652 {
4653 symbolP->bsym->flags &= ~BSF_FUNCTION;
4654 type = SYMBOL_TYPE_CODE;
4655 }
4656 }
4657 else if (strncasecmp (input_line_pointer, "data", 4) == 0)
4658 {
4659 input_line_pointer += 4;
4660 symbolP->bsym->flags &= ~BSF_FUNCTION;
4661 type = SYMBOL_TYPE_DATA;
4662 }
4663 else if ((strncasecmp (input_line_pointer, "entry", 5) == 0))
4664 {
4665 input_line_pointer += 5;
4666 symbolP->bsym->flags |= BSF_FUNCTION;
4667 type = SYMBOL_TYPE_ENTRY;
4668 }
4669 else if (strncasecmp (input_line_pointer, "millicode", 9) == 0)
4670 {
4671 input_line_pointer += 9;
4672 symbolP->bsym->flags |= BSF_FUNCTION;
4673 type = SYMBOL_TYPE_MILLICODE;
4674 }
4675 else if (strncasecmp (input_line_pointer, "plabel", 6) == 0)
4676 {
4677 input_line_pointer += 6;
4678 symbolP->bsym->flags &= ~BSF_FUNCTION;
4679 type = SYMBOL_TYPE_PLABEL;
4680 }
4681 else if (strncasecmp (input_line_pointer, "pri_prog", 8) == 0)
4682 {
4683 input_line_pointer += 8;
4684 symbolP->bsym->flags |= BSF_FUNCTION;
4685 type = SYMBOL_TYPE_PRI_PROG;
4686 }
4687 else if (strncasecmp (input_line_pointer, "sec_prog", 8) == 0)
4688 {
4689 input_line_pointer += 8;
4690 symbolP->bsym->flags |= BSF_FUNCTION;
4691 type = SYMBOL_TYPE_SEC_PROG;
4692 }
4693
4694 /* SOM requires much more information about symbol types
4695 than BFD understands. This is how we get this information
4696 to the SOM BFD backend. */
4697 #ifdef obj_set_symbol_type
4698 obj_set_symbol_type (symbolP->bsym, (int) type);
4699 #endif
4700
4701 /* Now that the type of the exported symbol has been handled,
4702 handle any argument relocation information. */
4703 while (!is_end_of_statement ())
4704 {
4705 if (*input_line_pointer == ',')
4706 input_line_pointer++;
4707 name = input_line_pointer;
4708 c = get_symbol_end ();
4709 /* Argument sources. */
4710 if ((strncasecmp (name, "argw", 4) == 0))
4711 {
4712 p = input_line_pointer;
4713 *p = c;
4714 input_line_pointer++;
4715 temp = atoi (name + 4);
4716 name = input_line_pointer;
4717 c = get_symbol_end ();
4718 arg_reloc = pa_align_arg_reloc (temp, pa_build_arg_reloc (name));
4719 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
4720 *input_line_pointer = c;
4721 }
4722 /* The return value. */
4723 else if ((strncasecmp (name, "rtnval", 6)) == 0)
4724 {
4725 p = input_line_pointer;
4726 *p = c;
4727 input_line_pointer++;
4728 name = input_line_pointer;
4729 c = get_symbol_end ();
4730 arg_reloc = pa_build_arg_reloc (name);
4731 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
4732 *input_line_pointer = c;
4733 }
4734 /* Privelege level. */
4735 else if ((strncasecmp (name, "priv_lev", 8)) == 0)
4736 {
4737 p = input_line_pointer;
4738 *p = c;
4739 input_line_pointer++;
4740 temp = atoi (input_line_pointer);
4741 c = get_symbol_end ();
4742 *input_line_pointer = c;
4743 }
4744 else
4745 {
4746 as_bad ("Undefined .EXPORT/.IMPORT argument (ignored): %s", name);
4747 p = input_line_pointer;
4748 *p = c;
4749 }
4750 if (!is_end_of_statement ())
4751 input_line_pointer++;
4752 }
4753 }
4754
4755 /* Handle an .IMPORT pseudo-op. Any symbol referenced in a given
4756 assembly file must either be defined in the assembly file, or
4757 explicitly IMPORTED from another. */
4758
4759 static void
4760 pa_import (unused)
4761 int unused;
4762 {
4763 char *name, c, *p;
4764 symbolS *symbol;
4765
4766 name = input_line_pointer;
4767 c = get_symbol_end ();
4768
4769 symbol = symbol_find (name);
4770 /* Ugh. We might be importing a symbol defined earlier in the file,
4771 in which case all the code below will really screw things up
4772 (set the wrong segment, symbol flags & type, etc). */
4773 if (symbol == NULL || !S_IS_DEFINED (symbol))
4774 {
4775 symbol = symbol_find_or_make (name);
4776 p = input_line_pointer;
4777 *p = c;
4778
4779 if (!is_end_of_statement ())
4780 {
4781 input_line_pointer++;
4782 pa_type_args (symbol, 0);
4783 }
4784 else
4785 {
4786 /* Sigh. To be compatable with the HP assembler and to help
4787 poorly written assembly code, we assign a type based on
4788 the the current segment. Note only BSF_FUNCTION really
4789 matters, we do not need to set the full SYMBOL_TYPE_* info. */
4790 if (now_seg == text_section)
4791 symbol->bsym->flags |= BSF_FUNCTION;
4792
4793 /* If the section is undefined, then the symbol is undefined
4794 Since this is an import, leave the section undefined. */
4795 S_SET_SEGMENT (symbol, &bfd_und_section);
4796 }
4797 }
4798 else
4799 {
4800 /* The symbol was already defined. Just eat everything up to
4801 the end of the current statement. */
4802 while (!is_end_of_statement ())
4803 input_line_pointer++;
4804 }
4805
4806 demand_empty_rest_of_line ();
4807 }
4808
4809 /* Handle a .LABEL pseudo-op. */
4810
4811 static void
4812 pa_label (unused)
4813 int unused;
4814 {
4815 char *name, c, *p;
4816
4817 name = input_line_pointer;
4818 c = get_symbol_end ();
4819
4820 if (strlen (name) > 0)
4821 {
4822 colon (name);
4823 p = input_line_pointer;
4824 *p = c;
4825 }
4826 else
4827 {
4828 as_warn ("Missing label name on .LABEL");
4829 }
4830
4831 if (!is_end_of_statement ())
4832 {
4833 as_warn ("extra .LABEL arguments ignored.");
4834 ignore_rest_of_line ();
4835 }
4836 demand_empty_rest_of_line ();
4837 }
4838
4839 /* Handle a .LEAVE pseudo-op. This is not supported yet. */
4840
4841 static void
4842 pa_leave (unused)
4843 int unused;
4844 {
4845 abort ();
4846 }
4847
4848 /* Handle a .ORIGIN pseudo-op. */
4849
4850 static void
4851 pa_origin (unused)
4852 int unused;
4853 {
4854 s_org (0);
4855 pa_undefine_label ();
4856 }
4857
4858 /* Handle a .PARAM pseudo-op. This is much like a .EXPORT, except it
4859 is for static functions. FIXME. Should share more code with .EXPORT. */
4860
4861 static void
4862 pa_param (unused)
4863 int unused;
4864 {
4865 char *name, c, *p;
4866 symbolS *symbol;
4867
4868 name = input_line_pointer;
4869 c = get_symbol_end ();
4870
4871 if ((symbol = symbol_find_or_make (name)) == NULL)
4872 {
4873 as_bad ("Cannot define static symbol: %s\n", name);
4874 p = input_line_pointer;
4875 *p = c;
4876 input_line_pointer++;
4877 }
4878 else
4879 {
4880 S_CLEAR_EXTERNAL (symbol);
4881 p = input_line_pointer;
4882 *p = c;
4883 if (!is_end_of_statement ())
4884 {
4885 input_line_pointer++;
4886 pa_type_args (symbol, 0);
4887 }
4888 }
4889
4890 demand_empty_rest_of_line ();
4891 }
4892
4893 /* Handle a .PROC pseudo-op. It is used to mark the beginning
4894 of a procedure from a syntatical point of view. */
4895
4896 static void
4897 pa_proc (unused)
4898 int unused;
4899 {
4900 struct call_info *call_info;
4901 segT seg;
4902
4903 if (within_procedure)
4904 as_fatal ("Nested procedures");
4905
4906 /* Reset global variables for new procedure. */
4907 callinfo_found = FALSE;
4908 within_procedure = TRUE;
4909
4910 #if 0
4911 Enabling this code creates severe problems with GDB. It appears as if
4912 inserting linker stubs between functions within a single .o makes GDB
4913 blow chunks.
4914
4915 /* Create a new CODE subspace for each procedure if we are not
4916 using space/subspace aliases. */
4917 if (!USE_ALIASES && call_info_root != NULL)
4918 {
4919 /* Force creation of a new $CODE$ subspace; inherit attributes from
4920 the first $CODE$ subspace. */
4921 seg = subseg_force_new ("$CODE$", 0);
4922
4923 /* Now set the flags. */
4924 bfd_set_section_flags (stdoutput, seg,
4925 bfd_get_section_flags (abfd, text_section));
4926
4927 /* Record any alignment request for this section. */
4928 record_alignment (seg,
4929 bfd_get_section_alignment (stdoutput, text_section));
4930
4931 /* Change the "text_section" to be our new $CODE$ subspace. */
4932 text_section = seg;
4933 subseg_set (text_section, 0);
4934
4935 #ifdef obj_set_subsection_attributes
4936 /* Need a way to inherit the the access bits, sort key and quadrant
4937 from the first $CODE$ subspace. FIXME. */
4938 obj_set_subsection_attributes (seg, current_space->sd_seg, 0x2c, 24, 0);
4939 #endif
4940 }
4941 #endif
4942
4943 /* Create another call_info structure. */
4944 call_info = (struct call_info *) xmalloc (sizeof (struct call_info));
4945
4946 if (!call_info)
4947 as_fatal ("Cannot allocate unwind descriptor\n");
4948
4949 bzero (call_info, sizeof (struct call_info));
4950
4951 call_info->ci_next = NULL;
4952
4953 if (call_info_root == NULL)
4954 {
4955 call_info_root = call_info;
4956 last_call_info = call_info;
4957 }
4958 else
4959 {
4960 last_call_info->ci_next = call_info;
4961 last_call_info = call_info;
4962 }
4963
4964 /* set up defaults on call_info structure */
4965
4966 call_info->ci_unwind.descriptor.cannot_unwind = 0;
4967 call_info->ci_unwind.descriptor.region_desc = 1;
4968 call_info->ci_unwind.descriptor.hpux_interrupt_marker = 0;
4969
4970 /* If we got a .PROC pseudo-op, we know that the function is defined
4971 locally. Make sure it gets into the symbol table. */
4972 {
4973 label_symbol_struct *label_symbol = pa_get_label ();
4974
4975 if (label_symbol)
4976 {
4977 if (label_symbol->lss_label)
4978 {
4979 last_call_info->start_symbol = label_symbol->lss_label;
4980 label_symbol->lss_label->bsym->flags |= BSF_FUNCTION;
4981 #if 0
4982 if (! USE_ALIASES)
4983 {
4984 /* The label was defined in a different segment. Fix that
4985 along with the value and associated fragment. */
4986 S_SET_SEGMENT (last_call_info->start_symbol, now_seg);
4987 S_SET_VALUE (last_call_info->start_symbol,
4988 ((char*)obstack_next_free (&frags)
4989 - frag_now->fr_literal));
4990 last_call_info->start_symbol->sy_frag = frag_now;
4991 }
4992 #endif
4993 }
4994 else
4995 as_bad ("Missing function name for .PROC (corrupted label chain)");
4996 }
4997 else
4998 last_call_info->start_symbol = NULL;
4999 }
5000
5001 demand_empty_rest_of_line ();
5002 }
5003
5004 /* Process the syntatical end of a procedure. Make sure all the
5005 appropriate pseudo-ops were found within the procedure. */
5006
5007 static void
5008 pa_procend (unused)
5009 int unused;
5010 {
5011
5012 if (!within_procedure)
5013 as_bad ("misplaced .procend");
5014
5015 if (!callinfo_found)
5016 as_bad ("Missing .callinfo for this procedure");
5017
5018 if (within_entry_exit)
5019 as_bad ("Missing .EXIT for a .ENTRY");
5020
5021 #ifdef OBJ_ELF
5022 /* ELF needs to mark the end of each function so that it can compute
5023 the size of the function (apparently its needed in the symbol table. */
5024 hppa_elf_mark_end_of_function ();
5025 #endif
5026
5027 within_procedure = FALSE;
5028 demand_empty_rest_of_line ();
5029 pa_undefine_label ();
5030 }
5031
5032 /* Parse the parameters to a .SPACE directive; if CREATE_FLAG is nonzero,
5033 then create a new space entry to hold the information specified
5034 by the parameters to the .SPACE directive. */
5035
5036 static sd_chain_struct *
5037 pa_parse_space_stmt (space_name, create_flag)
5038 char *space_name;
5039 int create_flag;
5040 {
5041 char *name, *ptemp, c;
5042 char loadable, defined, private, sort;
5043 int spnum;
5044 asection *seg = NULL;
5045 sd_chain_struct *space;
5046
5047 /* load default values */
5048 spnum = 0;
5049 sort = 0;
5050 loadable = TRUE;
5051 defined = TRUE;
5052 private = FALSE;
5053 if (strcmp (space_name, "$TEXT$") == 0)
5054 {
5055 seg = pa_def_spaces[0].segment;
5056 sort = pa_def_spaces[0].sort;
5057 }
5058 else if (strcmp (space_name, "$PRIVATE$") == 0)
5059 {
5060 seg = pa_def_spaces[1].segment;
5061 sort = pa_def_spaces[1].sort;
5062 }
5063
5064 if (!is_end_of_statement ())
5065 {
5066 print_errors = FALSE;
5067 ptemp = input_line_pointer + 1;
5068 /* First see if the space was specified as a number rather than
5069 as a name. According to the PA assembly manual the rest of
5070 the line should be ignored. */
5071 if ((spnum = pa_parse_number (&ptemp, 0)) >= 0)
5072 input_line_pointer = ptemp;
5073 else
5074 {
5075 while (!is_end_of_statement ())
5076 {
5077 input_line_pointer++;
5078 name = input_line_pointer;
5079 c = get_symbol_end ();
5080 if ((strncasecmp (name, "spnum", 5) == 0))
5081 {
5082 *input_line_pointer = c;
5083 input_line_pointer++;
5084 spnum = get_absolute_expression ();
5085 }
5086 else if ((strncasecmp (name, "sort", 4) == 0))
5087 {
5088 *input_line_pointer = c;
5089 input_line_pointer++;
5090 sort = get_absolute_expression ();
5091 }
5092 else if ((strncasecmp (name, "unloadable", 10) == 0))
5093 {
5094 *input_line_pointer = c;
5095 loadable = FALSE;
5096 }
5097 else if ((strncasecmp (name, "notdefined", 10) == 0))
5098 {
5099 *input_line_pointer = c;
5100 defined = FALSE;
5101 }
5102 else if ((strncasecmp (name, "private", 7) == 0))
5103 {
5104 *input_line_pointer = c;
5105 private = TRUE;
5106 }
5107 else
5108 {
5109 as_bad ("Invalid .SPACE argument");
5110 *input_line_pointer = c;
5111 if (!is_end_of_statement ())
5112 input_line_pointer++;
5113 }
5114 }
5115 }
5116 print_errors = TRUE;
5117 }
5118
5119 if (create_flag && seg == NULL)
5120 seg = subseg_new (space_name, 0);
5121
5122 /* If create_flag is nonzero, then create the new space with
5123 the attributes computed above. Else set the values in
5124 an already existing space -- this can only happen for
5125 the first occurence of a built-in space. */
5126 if (create_flag)
5127 space = create_new_space (space_name, spnum, loadable, defined,
5128 private, sort, seg, 1);
5129 else
5130 {
5131 space = is_defined_space (space_name);
5132 SPACE_SPNUM (space) = spnum;
5133 SPACE_DEFINED (space) = defined & 1;
5134 SPACE_USER_DEFINED (space) = 1;
5135 space->sd_seg = seg;
5136 }
5137
5138 #ifdef obj_set_section_attributes
5139 obj_set_section_attributes (seg, defined, private, sort, spnum);
5140 #endif
5141
5142 return space;
5143 }
5144
5145 /* Handle a .SPACE pseudo-op; this switches the current space to the
5146 given space, creating the new space if necessary. */
5147
5148 static void
5149 pa_space (unused)
5150 int unused;
5151 {
5152 char *name, c, *space_name, *save_s;
5153 int temp;
5154 sd_chain_struct *sd_chain;
5155
5156 if (within_procedure)
5157 {
5158 as_bad ("Can\'t change spaces within a procedure definition. Ignored");
5159 ignore_rest_of_line ();
5160 }
5161 else
5162 {
5163 /* Check for some of the predefined spaces. FIXME: most of the code
5164 below is repeated several times, can we extract the common parts
5165 and place them into a subroutine or something similar? */
5166 /* FIXME Is this (and the next IF stmt) really right?
5167 What if INPUT_LINE_POINTER points to "$TEXT$FOO"? */
5168 if (strncmp (input_line_pointer, "$TEXT$", 6) == 0)
5169 {
5170 input_line_pointer += 6;
5171 sd_chain = is_defined_space ("$TEXT$");
5172 if (sd_chain == NULL)
5173 sd_chain = pa_parse_space_stmt ("$TEXT$", 1);
5174 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5175 sd_chain = pa_parse_space_stmt ("$TEXT$", 0);
5176
5177 current_space = sd_chain;
5178 subseg_set (text_section, sd_chain->sd_last_subseg);
5179 current_subspace
5180 = pa_subsegment_to_subspace (text_section,
5181 sd_chain->sd_last_subseg);
5182 demand_empty_rest_of_line ();
5183 return;
5184 }
5185 if (strncmp (input_line_pointer, "$PRIVATE$", 9) == 0)
5186 {
5187 input_line_pointer += 9;
5188 sd_chain = is_defined_space ("$PRIVATE$");
5189 if (sd_chain == NULL)
5190 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 1);
5191 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5192 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 0);
5193
5194 current_space = sd_chain;
5195 subseg_set (data_section, sd_chain->sd_last_subseg);
5196 current_subspace
5197 = pa_subsegment_to_subspace (data_section,
5198 sd_chain->sd_last_subseg);
5199 demand_empty_rest_of_line ();
5200 return;
5201 }
5202 if (!strncasecmp (input_line_pointer,
5203 GDB_DEBUG_SPACE_NAME,
5204 strlen (GDB_DEBUG_SPACE_NAME)))
5205 {
5206 input_line_pointer += strlen (GDB_DEBUG_SPACE_NAME);
5207 sd_chain = is_defined_space (GDB_DEBUG_SPACE_NAME);
5208 if (sd_chain == NULL)
5209 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 1);
5210 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5211 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 0);
5212
5213 current_space = sd_chain;
5214
5215 {
5216 asection *gdb_section
5217 = bfd_make_section_old_way (stdoutput, GDB_DEBUG_SPACE_NAME);
5218
5219 subseg_set (gdb_section, sd_chain->sd_last_subseg);
5220 current_subspace
5221 = pa_subsegment_to_subspace (gdb_section,
5222 sd_chain->sd_last_subseg);
5223 }
5224 demand_empty_rest_of_line ();
5225 return;
5226 }
5227
5228 /* It could be a space specified by number. */
5229 print_errors = 0;
5230 save_s = input_line_pointer;
5231 if ((temp = pa_parse_number (&input_line_pointer, 0)) >= 0)
5232 {
5233 if (sd_chain = pa_find_space_by_number (temp))
5234 {
5235 current_space = sd_chain;
5236
5237 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
5238 current_subspace
5239 = pa_subsegment_to_subspace (sd_chain->sd_seg,
5240 sd_chain->sd_last_subseg);
5241 demand_empty_rest_of_line ();
5242 return;
5243 }
5244 }
5245
5246 /* Not a number, attempt to create a new space. */
5247 print_errors = 1;
5248 input_line_pointer = save_s;
5249 name = input_line_pointer;
5250 c = get_symbol_end ();
5251 space_name = xmalloc (strlen (name) + 1);
5252 strcpy (space_name, name);
5253 *input_line_pointer = c;
5254
5255 sd_chain = pa_parse_space_stmt (space_name, 1);
5256 current_space = sd_chain;
5257
5258 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
5259 current_subspace = pa_subsegment_to_subspace (sd_chain->sd_seg,
5260 sd_chain->sd_last_subseg);
5261 demand_empty_rest_of_line ();
5262 }
5263 }
5264
5265 /* Switch to a new space. (I think). FIXME. */
5266
5267 static void
5268 pa_spnum (unused)
5269 int unused;
5270 {
5271 char *name;
5272 char c;
5273 char *p;
5274 sd_chain_struct *space;
5275
5276 name = input_line_pointer;
5277 c = get_symbol_end ();
5278 space = is_defined_space (name);
5279 if (space)
5280 {
5281 p = frag_more (4);
5282 md_number_to_chars (p, SPACE_SPNUM (space), 4);
5283 }
5284 else
5285 as_warn ("Undefined space: '%s' Assuming space number = 0.", name);
5286
5287 *input_line_pointer = c;
5288 demand_empty_rest_of_line ();
5289 }
5290
5291 /* If VALUE is an exact power of two between zero and 2^31, then
5292 return log2 (VALUE). Else return -1. */
5293
5294 static int
5295 log2 (value)
5296 int value;
5297 {
5298 int shift = 0;
5299
5300 while ((1 << shift) != value && shift < 32)
5301 shift++;
5302
5303 if (shift >= 32)
5304 return -1;
5305 else
5306 return shift;
5307 }
5308
5309 /* Handle a .SUBSPACE pseudo-op; this switches the current subspace to the
5310 given subspace, creating the new subspace if necessary.
5311
5312 FIXME. Should mirror pa_space more closely, in particular how
5313 they're broken up into subroutines. */
5314
5315 static void
5316 pa_subspace (unused)
5317 int unused;
5318 {
5319 char *name, *ss_name, *alias, c;
5320 char loadable, code_only, common, dup_common, zero, sort;
5321 int i, access, space_index, alignment, quadrant, applicable, flags;
5322 sd_chain_struct *space;
5323 ssd_chain_struct *ssd;
5324 asection *section;
5325
5326 if (within_procedure)
5327 {
5328 as_bad ("Can\'t change subspaces within a procedure definition. Ignored");
5329 ignore_rest_of_line ();
5330 }
5331 else
5332 {
5333 name = input_line_pointer;
5334 c = get_symbol_end ();
5335 ss_name = xmalloc (strlen (name) + 1);
5336 strcpy (ss_name, name);
5337 *input_line_pointer = c;
5338
5339 /* Load default values. */
5340 sort = 0;
5341 access = 0x7f;
5342 loadable = 1;
5343 common = 0;
5344 dup_common = 0;
5345 code_only = 0;
5346 zero = 0;
5347 space_index = ~0;
5348 alignment = 0;
5349 quadrant = 0;
5350 alias = NULL;
5351
5352 space = current_space;
5353 ssd = is_defined_subspace (ss_name);
5354 /* Allow user to override the builtin attributes of subspaces. But
5355 only allow the attributes to be changed once! */
5356 if (ssd && SUBSPACE_DEFINED (ssd))
5357 {
5358 subseg_set (ssd->ssd_seg, ssd->ssd_subseg);
5359 if (!is_end_of_statement ())
5360 as_warn ("Parameters of an existing subspace can\'t be modified");
5361 demand_empty_rest_of_line ();
5362 return;
5363 }
5364 else
5365 {
5366 /* A new subspace. Load default values if it matches one of
5367 the builtin subspaces. */
5368 i = 0;
5369 while (pa_def_subspaces[i].name)
5370 {
5371 if (strcasecmp (pa_def_subspaces[i].name, ss_name) == 0)
5372 {
5373 loadable = pa_def_subspaces[i].loadable;
5374 common = pa_def_subspaces[i].common;
5375 dup_common = pa_def_subspaces[i].dup_common;
5376 code_only = pa_def_subspaces[i].code_only;
5377 zero = pa_def_subspaces[i].zero;
5378 space_index = pa_def_subspaces[i].space_index;
5379 alignment = pa_def_subspaces[i].alignment;
5380 quadrant = pa_def_subspaces[i].quadrant;
5381 access = pa_def_subspaces[i].access;
5382 sort = pa_def_subspaces[i].sort;
5383 if (USE_ALIASES && pa_def_subspaces[i].alias)
5384 alias = pa_def_subspaces[i].alias;
5385 break;
5386 }
5387 i++;
5388 }
5389 }
5390
5391 /* We should be working with a new subspace now. Fill in
5392 any information as specified by the user. */
5393 if (!is_end_of_statement ())
5394 {
5395 input_line_pointer++;
5396 while (!is_end_of_statement ())
5397 {
5398 name = input_line_pointer;
5399 c = get_symbol_end ();
5400 if ((strncasecmp (name, "quad", 4) == 0))
5401 {
5402 *input_line_pointer = c;
5403 input_line_pointer++;
5404 quadrant = get_absolute_expression ();
5405 }
5406 else if ((strncasecmp (name, "align", 5) == 0))
5407 {
5408 *input_line_pointer = c;
5409 input_line_pointer++;
5410 alignment = get_absolute_expression ();
5411 if (log2 (alignment) == -1)
5412 {
5413 as_bad ("Alignment must be a power of 2");
5414 alignment = 1;
5415 }
5416 }
5417 else if ((strncasecmp (name, "access", 6) == 0))
5418 {
5419 *input_line_pointer = c;
5420 input_line_pointer++;
5421 access = get_absolute_expression ();
5422 }
5423 else if ((strncasecmp (name, "sort", 4) == 0))
5424 {
5425 *input_line_pointer = c;
5426 input_line_pointer++;
5427 sort = get_absolute_expression ();
5428 }
5429 else if ((strncasecmp (name, "code_only", 9) == 0))
5430 {
5431 *input_line_pointer = c;
5432 code_only = 1;
5433 }
5434 else if ((strncasecmp (name, "unloadable", 10) == 0))
5435 {
5436 *input_line_pointer = c;
5437 loadable = 0;
5438 }
5439 else if ((strncasecmp (name, "common", 6) == 0))
5440 {
5441 *input_line_pointer = c;
5442 common = 1;
5443 }
5444 else if ((strncasecmp (name, "dup_comm", 8) == 0))
5445 {
5446 *input_line_pointer = c;
5447 dup_common = 1;
5448 }
5449 else if ((strncasecmp (name, "zero", 4) == 0))
5450 {
5451 *input_line_pointer = c;
5452 zero = 1;
5453 }
5454 else if ((strncasecmp (name, "first", 5) == 0))
5455 as_bad ("FIRST not supported as a .SUBSPACE argument");
5456 else
5457 as_bad ("Invalid .SUBSPACE argument");
5458 if (!is_end_of_statement ())
5459 input_line_pointer++;
5460 }
5461 }
5462
5463 /* Compute a reasonable set of BFD flags based on the information
5464 in the .subspace directive. */
5465 applicable = bfd_applicable_section_flags (stdoutput);
5466 flags = 0;
5467 if (loadable)
5468 flags |= (SEC_ALLOC | SEC_LOAD);
5469 if (code_only)
5470 flags |= SEC_CODE;
5471 if (common || dup_common)
5472 flags |= SEC_IS_COMMON;
5473
5474 /* This is a zero-filled subspace (eg BSS). */
5475 if (zero)
5476 flags &= ~SEC_LOAD;
5477
5478 flags |= SEC_RELOC | SEC_HAS_CONTENTS;
5479 applicable &= flags;
5480
5481 /* If this is an existing subspace, then we want to use the
5482 segment already associated with the subspace.
5483
5484 FIXME NOW! ELF BFD doesn't appear to be ready to deal with
5485 lots of sections. It might be a problem in the PA ELF
5486 code, I do not know yet. For now avoid creating anything
5487 but the "standard" sections for ELF. */
5488 if (ssd)
5489 section = ssd->ssd_seg;
5490 else if (alias)
5491 section = subseg_new (alias, 0);
5492 else if (!alias && USE_ALIASES)
5493 {
5494 as_warn ("Ignoring subspace decl due to ELF BFD bugs.");
5495 demand_empty_rest_of_line ();
5496 return;
5497 }
5498 else
5499 section = subseg_new (ss_name, 0);
5500
5501 /* Now set the flags. */
5502 bfd_set_section_flags (stdoutput, section, applicable);
5503
5504 /* Record any alignment request for this section. */
5505 record_alignment (section, log2 (alignment));
5506
5507 /* Set the starting offset for this section. */
5508 bfd_set_section_vma (stdoutput, section,
5509 pa_subspace_start (space, quadrant));
5510
5511 /* Now that all the flags are set, update an existing subspace,
5512 or create a new one. */
5513 if (ssd)
5514
5515 current_subspace = update_subspace (space, ss_name, loadable,
5516 code_only, common, dup_common,
5517 sort, zero, access, space_index,
5518 alignment, quadrant,
5519 section);
5520 else
5521 current_subspace = create_new_subspace (space, ss_name, loadable,
5522 code_only, common,
5523 dup_common, zero, sort,
5524 access, space_index,
5525 alignment, quadrant, section);
5526
5527 demand_empty_rest_of_line ();
5528 current_subspace->ssd_seg = section;
5529 subseg_set (current_subspace->ssd_seg, current_subspace->ssd_subseg);
5530 }
5531 SUBSPACE_DEFINED (current_subspace) = 1;
5532 }
5533
5534
5535 /* Create default space and subspace dictionaries. */
5536
5537 static void
5538 pa_spaces_begin ()
5539 {
5540 int i;
5541
5542 space_dict_root = NULL;
5543 space_dict_last = NULL;
5544
5545 i = 0;
5546 while (pa_def_spaces[i].name)
5547 {
5548 char *name;
5549
5550 /* Pick the right name to use for the new section. */
5551 if (pa_def_spaces[i].alias && USE_ALIASES)
5552 name = pa_def_spaces[i].alias;
5553 else
5554 name = pa_def_spaces[i].name;
5555
5556 pa_def_spaces[i].segment = subseg_new (name, 0);
5557 create_new_space (pa_def_spaces[i].name, pa_def_spaces[i].spnum,
5558 pa_def_spaces[i].loadable, pa_def_spaces[i].defined,
5559 pa_def_spaces[i].private, pa_def_spaces[i].sort,
5560 pa_def_spaces[i].segment, 0);
5561 i++;
5562 }
5563
5564 i = 0;
5565 while (pa_def_subspaces[i].name)
5566 {
5567 char *name;
5568 int applicable, subsegment;
5569 asection *segment = NULL;
5570 sd_chain_struct *space;
5571
5572 /* Pick the right name for the new section and pick the right
5573 subsegment number. */
5574 if (pa_def_subspaces[i].alias && USE_ALIASES)
5575 {
5576 name = pa_def_subspaces[i].alias;
5577 subsegment = pa_def_subspaces[i].subsegment;
5578 }
5579 else
5580 {
5581 name = pa_def_subspaces[i].name;
5582 subsegment = 0;
5583 }
5584
5585 /* Create the new section. */
5586 segment = subseg_new (name, subsegment);
5587
5588
5589 /* For SOM we want to replace the standard .text, .data, and .bss
5590 sections with our own. */
5591 if (!strcmp (pa_def_subspaces[i].name, "$CODE$") && !USE_ALIASES)
5592 {
5593 text_section = segment;
5594 applicable = bfd_applicable_section_flags (stdoutput);
5595 bfd_set_section_flags (stdoutput, text_section,
5596 applicable & (SEC_ALLOC | SEC_LOAD
5597 | SEC_RELOC | SEC_CODE
5598 | SEC_READONLY
5599 | SEC_HAS_CONTENTS));
5600 }
5601 else if (!strcmp (pa_def_subspaces[i].name, "$DATA$") && !USE_ALIASES)
5602 {
5603 data_section = segment;
5604 applicable = bfd_applicable_section_flags (stdoutput);
5605 bfd_set_section_flags (stdoutput, data_section,
5606 applicable & (SEC_ALLOC | SEC_LOAD
5607 | SEC_RELOC
5608 | SEC_HAS_CONTENTS));
5609
5610
5611 }
5612 else if (!strcmp (pa_def_subspaces[i].name, "$BSS$") && !USE_ALIASES)
5613 {
5614 bss_section = segment;
5615 applicable = bfd_applicable_section_flags (stdoutput);
5616 bfd_set_section_flags (stdoutput, bss_section,
5617 applicable & SEC_ALLOC);
5618 }
5619
5620 /* Find the space associated with this subspace. */
5621 space = pa_segment_to_space (pa_def_spaces[pa_def_subspaces[i].
5622 def_space_index].segment);
5623 if (space == NULL)
5624 {
5625 as_fatal ("Internal error: Unable to find containing space for %s.",
5626 pa_def_subspaces[i].name);
5627 }
5628
5629 create_new_subspace (space, name,
5630 pa_def_subspaces[i].loadable,
5631 pa_def_subspaces[i].code_only,
5632 pa_def_subspaces[i].common,
5633 pa_def_subspaces[i].dup_common,
5634 pa_def_subspaces[i].zero,
5635 pa_def_subspaces[i].sort,
5636 pa_def_subspaces[i].access,
5637 pa_def_subspaces[i].space_index,
5638 pa_def_subspaces[i].alignment,
5639 pa_def_subspaces[i].quadrant,
5640 segment);
5641 i++;
5642 }
5643 }
5644
5645
5646
5647 /* Create a new space NAME, with the appropriate flags as defined
5648 by the given parameters. */
5649
5650 static sd_chain_struct *
5651 create_new_space (name, spnum, loadable, defined, private,
5652 sort, seg, user_defined)
5653 char *name;
5654 int spnum;
5655 int loadable;
5656 int defined;
5657 int private;
5658 int sort;
5659 asection *seg;
5660 int user_defined;
5661 {
5662 sd_chain_struct *chain_entry;
5663
5664 chain_entry = (sd_chain_struct *) xmalloc (sizeof (sd_chain_struct));
5665 if (!chain_entry)
5666 as_fatal ("Out of memory: could not allocate new space chain entry: %s\n",
5667 name);
5668
5669 SPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5670 strcpy (SPACE_NAME (chain_entry), name);
5671 SPACE_DEFINED (chain_entry) = defined;
5672 SPACE_USER_DEFINED (chain_entry) = user_defined;
5673 SPACE_SPNUM (chain_entry) = spnum;
5674
5675 chain_entry->sd_seg = seg;
5676 chain_entry->sd_last_subseg = -1;
5677 chain_entry->sd_next = NULL;
5678
5679 /* Find spot for the new space based on its sort key. */
5680 if (!space_dict_last)
5681 space_dict_last = chain_entry;
5682
5683 if (space_dict_root == NULL)
5684 space_dict_root = chain_entry;
5685 else
5686 {
5687 sd_chain_struct *chain_pointer;
5688 sd_chain_struct *prev_chain_pointer;
5689
5690 chain_pointer = space_dict_root;
5691 prev_chain_pointer = NULL;
5692
5693 while (chain_pointer)
5694 {
5695 prev_chain_pointer = chain_pointer;
5696 chain_pointer = chain_pointer->sd_next;
5697 }
5698
5699 /* At this point we've found the correct place to add the new
5700 entry. So add it and update the linked lists as appropriate. */
5701 if (prev_chain_pointer)
5702 {
5703 chain_entry->sd_next = chain_pointer;
5704 prev_chain_pointer->sd_next = chain_entry;
5705 }
5706 else
5707 {
5708 space_dict_root = chain_entry;
5709 chain_entry->sd_next = chain_pointer;
5710 }
5711
5712 if (chain_entry->sd_next == NULL)
5713 space_dict_last = chain_entry;
5714 }
5715
5716 /* This is here to catch predefined spaces which do not get
5717 modified by the user's input. Another call is found at
5718 the bottom of pa_parse_space_stmt to handle cases where
5719 the user modifies a predefined space. */
5720 #ifdef obj_set_section_attributes
5721 obj_set_section_attributes (seg, defined, private, sort, spnum);
5722 #endif
5723
5724 return chain_entry;
5725 }
5726
5727 /* Create a new subspace NAME, with the appropriate flags as defined
5728 by the given parameters.
5729
5730 Add the new subspace to the subspace dictionary chain in numerical
5731 order as defined by the SORT entries. */
5732
5733 static ssd_chain_struct *
5734 create_new_subspace (space, name, loadable, code_only, common,
5735 dup_common, is_zero, sort, access, space_index,
5736 alignment, quadrant, seg)
5737 sd_chain_struct *space;
5738 char *name;
5739 int loadable, code_only, common, dup_common, is_zero;
5740 int sort;
5741 int access;
5742 int space_index;
5743 int alignment;
5744 int quadrant;
5745 asection *seg;
5746 {
5747 ssd_chain_struct *chain_entry;
5748
5749 chain_entry = (ssd_chain_struct *) xmalloc (sizeof (ssd_chain_struct));
5750 if (!chain_entry)
5751 as_fatal ("Out of memory: could not allocate new subspace chain entry: %s\n", name);
5752
5753 SUBSPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5754 strcpy (SUBSPACE_NAME (chain_entry), name);
5755
5756 /* Initialize subspace_defined. When we hit a .subspace directive
5757 we'll set it to 1 which "locks-in" the subspace attributes. */
5758 SUBSPACE_DEFINED (chain_entry) = 0;
5759
5760 chain_entry->ssd_subseg = USE_ALIASES ? pa_next_subseg (space) : 0;
5761 chain_entry->ssd_seg = seg;
5762 chain_entry->ssd_next = NULL;
5763
5764 /* Find spot for the new subspace based on its sort key. */
5765 if (space->sd_subspaces == NULL)
5766 space->sd_subspaces = chain_entry;
5767 else
5768 {
5769 ssd_chain_struct *chain_pointer;
5770 ssd_chain_struct *prev_chain_pointer;
5771
5772 chain_pointer = space->sd_subspaces;
5773 prev_chain_pointer = NULL;
5774
5775 while (chain_pointer)
5776 {
5777 prev_chain_pointer = chain_pointer;
5778 chain_pointer = chain_pointer->ssd_next;
5779 }
5780
5781 /* Now we have somewhere to put the new entry. Insert it and update
5782 the links. */
5783 if (prev_chain_pointer)
5784 {
5785 chain_entry->ssd_next = chain_pointer;
5786 prev_chain_pointer->ssd_next = chain_entry;
5787 }
5788 else
5789 {
5790 space->sd_subspaces = chain_entry;
5791 chain_entry->ssd_next = chain_pointer;
5792 }
5793 }
5794
5795 #ifdef obj_set_subsection_attributes
5796 obj_set_subsection_attributes (seg, space->sd_seg, access,
5797 sort, quadrant);
5798 #endif
5799
5800 return chain_entry;
5801 }
5802
5803 /* Update the information for the given subspace based upon the
5804 various arguments. Return the modified subspace chain entry. */
5805
5806 static ssd_chain_struct *
5807 update_subspace (space, name, loadable, code_only, common, dup_common, sort,
5808 zero, access, space_index, alignment, quadrant, section)
5809 sd_chain_struct *space;
5810 char *name;
5811 int loadable;
5812 int code_only;
5813 int common;
5814 int dup_common;
5815 int zero;
5816 int sort;
5817 int access;
5818 int space_index;
5819 int alignment;
5820 int quadrant;
5821 asection *section;
5822 {
5823 ssd_chain_struct *chain_entry;
5824
5825 chain_entry = is_defined_subspace (name);
5826
5827 #ifdef obj_set_subsection_attributes
5828 obj_set_subsection_attributes (section, space->sd_seg, access,
5829 sort, quadrant);
5830 #endif
5831
5832 return chain_entry;
5833 }
5834
5835 /* Return the space chain entry for the space with the name NAME or
5836 NULL if no such space exists. */
5837
5838 static sd_chain_struct *
5839 is_defined_space (name)
5840 char *name;
5841 {
5842 sd_chain_struct *chain_pointer;
5843
5844 for (chain_pointer = space_dict_root;
5845 chain_pointer;
5846 chain_pointer = chain_pointer->sd_next)
5847 {
5848 if (strcmp (SPACE_NAME (chain_pointer), name) == 0)
5849 return chain_pointer;
5850 }
5851
5852 /* No mapping from segment to space was found. Return NULL. */
5853 return NULL;
5854 }
5855
5856 /* Find and return the space associated with the given seg. If no mapping
5857 from the given seg to a space is found, then return NULL.
5858
5859 Unlike subspaces, the number of spaces is not expected to grow much,
5860 so a linear exhaustive search is OK here. */
5861
5862 static sd_chain_struct *
5863 pa_segment_to_space (seg)
5864 asection *seg;
5865 {
5866 sd_chain_struct *space_chain;
5867
5868 /* Walk through each space looking for the correct mapping. */
5869 for (space_chain = space_dict_root;
5870 space_chain;
5871 space_chain = space_chain->sd_next)
5872 {
5873 if (space_chain->sd_seg == seg)
5874 return space_chain;
5875 }
5876
5877 /* Mapping was not found. Return NULL. */
5878 return NULL;
5879 }
5880
5881 /* Return the space chain entry for the subspace with the name NAME or
5882 NULL if no such subspace exists.
5883
5884 Uses a linear search through all the spaces and subspaces, this may
5885 not be appropriate if we ever being placing each function in its
5886 own subspace. */
5887
5888 static ssd_chain_struct *
5889 is_defined_subspace (name)
5890 char *name;
5891 {
5892 sd_chain_struct *space_chain;
5893 ssd_chain_struct *subspace_chain;
5894
5895 /* Walk through each space. */
5896 for (space_chain = space_dict_root;
5897 space_chain;
5898 space_chain = space_chain->sd_next)
5899 {
5900 /* Walk through each subspace looking for a name which matches. */
5901 for (subspace_chain = space_chain->sd_subspaces;
5902 subspace_chain;
5903 subspace_chain = subspace_chain->ssd_next)
5904 if (strcmp (SUBSPACE_NAME (subspace_chain), name) == 0)
5905 return subspace_chain;
5906 }
5907
5908 /* Subspace wasn't found. Return NULL. */
5909 return NULL;
5910 }
5911
5912 /* Find and return the subspace associated with the given seg. If no
5913 mapping from the given seg to a subspace is found, then return NULL.
5914
5915 If we ever put each procedure/function within its own subspace
5916 (to make life easier on the compiler and linker), then this will have
5917 to become more efficient. */
5918
5919 static ssd_chain_struct *
5920 pa_subsegment_to_subspace (seg, subseg)
5921 asection *seg;
5922 subsegT subseg;
5923 {
5924 sd_chain_struct *space_chain;
5925 ssd_chain_struct *subspace_chain;
5926
5927 /* Walk through each space. */
5928 for (space_chain = space_dict_root;
5929 space_chain;
5930 space_chain = space_chain->sd_next)
5931 {
5932 if (space_chain->sd_seg == seg)
5933 {
5934 /* Walk through each subspace within each space looking for
5935 the correct mapping. */
5936 for (subspace_chain = space_chain->sd_subspaces;
5937 subspace_chain;
5938 subspace_chain = subspace_chain->ssd_next)
5939 if (subspace_chain->ssd_subseg == (int) subseg)
5940 return subspace_chain;
5941 }
5942 }
5943
5944 /* No mapping from subsegment to subspace found. Return NULL. */
5945 return NULL;
5946 }
5947
5948 /* Given a number, try and find a space with the name number.
5949
5950 Return a pointer to a space dictionary chain entry for the space
5951 that was found or NULL on failure. */
5952
5953 static sd_chain_struct *
5954 pa_find_space_by_number (number)
5955 int number;
5956 {
5957 sd_chain_struct *space_chain;
5958
5959 for (space_chain = space_dict_root;
5960 space_chain;
5961 space_chain = space_chain->sd_next)
5962 {
5963 if (SPACE_SPNUM (space_chain) == number)
5964 return space_chain;
5965 }
5966
5967 /* No appropriate space found. Return NULL. */
5968 return NULL;
5969 }
5970
5971 /* Return the starting address for the given subspace. If the starting
5972 address is unknown then return zero. */
5973
5974 static unsigned int
5975 pa_subspace_start (space, quadrant)
5976 sd_chain_struct *space;
5977 int quadrant;
5978 {
5979 /* FIXME. Assumes everyone puts read/write data at 0x4000000, this
5980 is not correct for the PA OSF1 port. */
5981 if ((strcmp (SPACE_NAME (space), "$PRIVATE$") == 0) && quadrant == 1)
5982 return 0x40000000;
5983 else if (space->sd_seg == data_section && quadrant == 1)
5984 return 0x40000000;
5985 else
5986 return 0;
5987 }
5988
5989 /* FIXME. Needs documentation. */
5990 static int
5991 pa_next_subseg (space)
5992 sd_chain_struct *space;
5993 {
5994
5995 space->sd_last_subseg++;
5996 return space->sd_last_subseg;
5997 }
5998
5999 /* Helper function for pa_stringer. Used to find the end of
6000 a string. */
6001
6002 static unsigned int
6003 pa_stringer_aux (s)
6004 char *s;
6005 {
6006 unsigned int c = *s & CHAR_MASK;
6007 switch (c)
6008 {
6009 case '\"':
6010 c = NOT_A_CHAR;
6011 break;
6012 default:
6013 break;
6014 }
6015 return c;
6016 }
6017
6018 /* Handle a .STRING type pseudo-op. */
6019
6020 static void
6021 pa_stringer (append_zero)
6022 int append_zero;
6023 {
6024 char *s, num_buf[4];
6025 unsigned int c;
6026 int i;
6027
6028 /* Preprocess the string to handle PA-specific escape sequences.
6029 For example, \xDD where DD is a hexidecimal number should be
6030 changed to \OOO where OOO is an octal number. */
6031
6032 /* Skip the opening quote. */
6033 s = input_line_pointer + 1;
6034
6035 while (is_a_char (c = pa_stringer_aux (s++)))
6036 {
6037 if (c == '\\')
6038 {
6039 c = *s;
6040 switch (c)
6041 {
6042 /* Handle \x<num>. */
6043 case 'x':
6044 {
6045 unsigned int number;
6046 int num_digit;
6047 char dg;
6048 char *s_start = s;
6049
6050 /* Get pas the 'x'. */
6051 s++;
6052 for (num_digit = 0, number = 0, dg = *s;
6053 num_digit < 2
6054 && (isdigit (dg) || (dg >= 'a' && dg <= 'f')
6055 || (dg >= 'A' && dg <= 'F'));
6056 num_digit++)
6057 {
6058 if (isdigit (dg))
6059 number = number * 16 + dg - '0';
6060 else if (dg >= 'a' && dg <= 'f')
6061 number = number * 16 + dg - 'a' + 10;
6062 else
6063 number = number * 16 + dg - 'A' + 10;
6064
6065 s++;
6066 dg = *s;
6067 }
6068 if (num_digit > 0)
6069 {
6070 switch (num_digit)
6071 {
6072 case 1:
6073 sprintf (num_buf, "%02o", number);
6074 break;
6075 case 2:
6076 sprintf (num_buf, "%03o", number);
6077 break;
6078 }
6079 for (i = 0; i <= num_digit; i++)
6080 s_start[i] = num_buf[i];
6081 }
6082 break;
6083 }
6084 /* This might be a "\"", skip over the escaped char. */
6085 default:
6086 s++;
6087 break;
6088 }
6089 }
6090 }
6091 stringer (append_zero);
6092 pa_undefine_label ();
6093 }
6094
6095 /* Handle a .VERSION pseudo-op. */
6096
6097 static void
6098 pa_version (unused)
6099 int unused;
6100 {
6101 obj_version (0);
6102 pa_undefine_label ();
6103 }
6104
6105 /* Handle a .COPYRIGHT pseudo-op. */
6106
6107 static void
6108 pa_copyright (unused)
6109 int unused;
6110 {
6111 obj_copyright (0);
6112 pa_undefine_label ();
6113 }
6114
6115 /* Just like a normal cons, but when finished we have to undefine
6116 the latest space label. */
6117
6118 static void
6119 pa_cons (nbytes)
6120 int nbytes;
6121 {
6122 cons (nbytes);
6123 pa_undefine_label ();
6124 }
6125
6126 /* Switch to the data space. As usual delete our label. */
6127
6128 static void
6129 pa_data (unused)
6130 int unused;
6131 {
6132 s_data (0);
6133 pa_undefine_label ();
6134 }
6135
6136 /* Like float_cons, but we need to undefine our label. */
6137
6138 static void
6139 pa_float_cons (float_type)
6140 int float_type;
6141 {
6142 float_cons (float_type);
6143 pa_undefine_label ();
6144 }
6145
6146 /* Like s_fill, but delete our label when finished. */
6147
6148 static void
6149 pa_fill (unused)
6150 int unused;
6151 {
6152 s_fill (0);
6153 pa_undefine_label ();
6154 }
6155
6156 /* Like lcomm, but delete our label when finished. */
6157
6158 static void
6159 pa_lcomm (needs_align)
6160 int needs_align;
6161 {
6162 s_lcomm (needs_align);
6163 pa_undefine_label ();
6164 }
6165
6166 /* Like lsym, but delete our label when finished. */
6167
6168 static void
6169 pa_lsym (unused)
6170 int unused;
6171 {
6172 s_lsym (0);
6173 pa_undefine_label ();
6174 }
6175
6176 /* Switch to the text space. Like s_text, but delete our
6177 label when finished. */
6178 static void
6179 pa_text (unused)
6180 int unused;
6181 {
6182 s_text (0);
6183 pa_undefine_label ();
6184 }
6185
6186 /* On the PA relocations which involve function symbols must not be
6187 adjusted. This so that the linker can know when/how to create argument
6188 relocation stubs for indirect calls and calls to static functions.
6189
6190 FIXME. Also reject R_HPPA relocations which are 32 bits
6191 wide. Helps with code lables in arrays for SOM. (SOM BFD code
6192 needs to generate relocations to push the addend and symbol value
6193 onto the stack, add them, then pop the value off the stack and
6194 use it in a relocation -- yuk. */
6195
6196 int
6197 hppa_fix_adjustable (fixp)
6198 fixS *fixp;
6199 {
6200 struct hppa_fix_struct *hppa_fix;
6201
6202 hppa_fix = (struct hppa_fix_struct *) fixp->tc_fix_data;
6203
6204 if (fixp->fx_r_type == R_HPPA && hppa_fix->fx_r_format == 32)
6205 return 0;
6206
6207 if (fixp->fx_addsy == 0
6208 || (fixp->fx_addsy->bsym->flags & BSF_FUNCTION) == 0)
6209 return 1;
6210
6211 return 0;
6212 }
6213
6214 /* Return nonzero if the fixup in FIXP will require a relocation,
6215 even it if appears that the fixup could be completely handled
6216 within GAS. */
6217
6218 int
6219 hppa_force_relocation (fixp)
6220 fixS *fixp;
6221 {
6222 struct hppa_fix_struct *hppa_fixp;
6223
6224 hppa_fixp = (struct hppa_fix_struct *) fixp->tc_fix_data;
6225 #ifdef OBJ_SOM
6226 if (fixp->fx_r_type == R_HPPA_ENTRY || fixp->fx_r_type == R_HPPA_EXIT)
6227 return 1;
6228 #endif
6229
6230 #define stub_needed(CALLER, CALLEE) \
6231 ((CALLEE) && (CALLER) && ((CALLEE) != (CALLER)))
6232
6233 /* It is necessary to force PC-relative calls/jumps to have a relocation
6234 entry if they're going to need either a argument relocation or long
6235 call stub. FIXME. Can't we need the same for absolute calls? */
6236 if (fixp->fx_pcrel && fixp->fx_addsy
6237 && (stub_needed (((obj_symbol_type *)
6238 fixp->fx_addsy->bsym)->tc_data.hppa_arg_reloc,
6239 hppa_fixp->fx_arg_reloc)))
6240 return 1;
6241
6242 #undef stub_needed
6243
6244 /* No need (yet) to force another relocations to be emitted. */
6245 return 0;
6246 }
6247
6248 /* Now for some ELF specific code. FIXME. */
6249 #ifdef OBJ_ELF
6250 static symext_chainS *symext_rootP;
6251 static symext_chainS *symext_lastP;
6252
6253 /* Mark the end of a function so that it's possible to compute
6254 the size of the function in hppa_elf_final_processing. */
6255
6256 static void
6257 hppa_elf_mark_end_of_function ()
6258 {
6259 /* ELF does not have EXIT relocations. All we do is create a
6260 temporary symbol marking the end of the function. */
6261 char *name = (char *)
6262 xmalloc (strlen ("L$\001end_") +
6263 strlen (S_GET_NAME (last_call_info->start_symbol)) + 1);
6264
6265 if (name)
6266 {
6267 symbolS *symbolP;
6268
6269 strcpy (name, "L$\001end_");
6270 strcat (name, S_GET_NAME (last_call_info->start_symbol));
6271
6272 /* If we have a .exit followed by a .procend, then the
6273 symbol will have already been defined. */
6274 symbolP = symbol_find (name);
6275 if (symbolP)
6276 {
6277 /* The symbol has already been defined! This can
6278 happen if we have a .exit followed by a .procend.
6279
6280 This is *not* an error. All we want to do is free
6281 the memory we just allocated for the name and continue. */
6282 xfree (name);
6283 }
6284 else
6285 {
6286 /* symbol value should be the offset of the
6287 last instruction of the function */
6288 symbolP = symbol_new (name, now_seg,
6289 (valueT) (obstack_next_free (&frags)
6290 - frag_now->fr_literal - 4),
6291 frag_now);
6292
6293 assert (symbolP);
6294 symbolP->bsym->flags = BSF_LOCAL;
6295 symbol_table_insert (symbolP);
6296 }
6297
6298 if (symbolP)
6299 last_call_info->end_symbol = symbolP;
6300 else
6301 as_bad ("Symbol '%s' could not be created.", name);
6302
6303 }
6304 else
6305 as_bad ("No memory for symbol name.");
6306
6307 }
6308
6309 /* Do any symbol processing requested by the target-cpu or target-format. */
6310
6311 void
6312 hppa_tc_symbol (abfd, symbolP, sym_idx)
6313 bfd *abfd;
6314 elf_symbol_type *symbolP;
6315 int sym_idx;
6316 {
6317 /* Just call the ELF BFD routine. */
6318 elf_hppa_tc_symbol (abfd, symbolP, sym_idx, &symext_rootP, &symext_lastP);
6319 }
6320
6321 /* Make sections needed by the target cpu and/or target format. */
6322 void
6323 hppa_tc_make_sections (abfd)
6324 bfd *abfd;
6325 {
6326 /* Just call the ELF BFD routine. */
6327 elf_hppa_tc_make_sections (abfd, symext_rootP);
6328 }
6329
6330 /* For ELF, this function serves one purpose: to setup the st_size
6331 field of STT_FUNC symbols. To do this, we need to scan the
6332 call_info structure list, determining st_size in by taking the
6333 difference in the address of the beginning/end marker symbols. */
6334
6335 void
6336 elf_hppa_final_processing ()
6337 {
6338 struct call_info *call_info_pointer;
6339
6340 for (call_info_pointer = call_info_root;
6341 call_info_pointer;
6342 call_info_pointer = call_info_pointer->ci_next)
6343 {
6344 elf_symbol_type *esym
6345 = (elf_symbol_type *) call_info_pointer->start_symbol->bsym;
6346 esym->internal_elf_sym.st_size =
6347 S_GET_VALUE (call_info_pointer->end_symbol)
6348 - S_GET_VALUE (call_info_pointer->start_symbol) + 4;
6349 }
6350 }
6351 #endif