* config/tc-hppa.c (hppa_tc_symbol): Call PA ELF BFD version.
[binutils-gdb.git] / gas / config / tc-hppa.c
1 /* tc-hppa.c -- Assemble for the PA
2 Copyright (C) 1989 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 1, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* HP PA-RISC support was contributed by the Center for Software Science
22 at the University of Utah. */
23
24 #include <stdio.h>
25 #include <ctype.h>
26
27 #include "as.h"
28 #include "subsegs.h"
29
30 #include "../bfd/libhppa.h"
31 #include "../bfd/libbfd.h"
32
33 /* Be careful, this file includes data *declarations*. */
34 #include "opcode/hppa.h"
35
36 /* A "convient" place to put object file dependencies which do
37 not need to be seen outside of tc-hppa.c. */
38 #ifdef OBJ_ELF
39 /* Names of various debugging spaces/subspaces. */
40 #define GDB_DEBUG_SPACE_NAME ".stab"
41 #define GDB_STRINGS_SUBSPACE_NAME ".stabstr"
42 #define GDB_SYMBOLS_SUBSPACE_NAME ".stab"
43 #define UNWIND_SECTION_NAME ".hppa_unwind"
44 /* Nonzero if CODE is a fixup code needing further processing. */
45
46 /* Object file formats specify relocation types. */
47 typedef elf32_hppa_reloc_type reloc_type;
48
49 /* Object file formats specify BFD symbol types. */
50 typedef elf_symbol_type obj_symbol_type;
51
52 /* How to generate a relocation. */
53 #define hppa_gen_reloc_type hppa_elf_gen_reloc_type
54
55 /* ELF objects can have versions, but apparently do not have anywhere
56 to store a copyright string. */
57 #define obj_version obj_elf_version
58 #define obj_copyright obj_elf_version
59
60 /* Use space aliases. */
61 #define USE_ALIASES 1
62 #endif
63
64 #ifdef OBJ_SOM
65 /* Names of various debugging spaces/subspaces. */
66 #define GDB_DEBUG_SPACE_NAME "$GDB_DEBUG$"
67 #define GDB_STRINGS_SUBSPACE_NAME "$GDB_STRINGS$"
68 #define GDB_SYMBOLS_SUBSPACE_NAME "$GDB_SYMBOLS$"
69 #define UNWIND_SECTION_NAME "$UNWIND$"
70
71 /* Object file formats specify relocation types. */
72 typedef int reloc_type;
73
74 /* SOM objects can have both a version string and a copyright string. */
75 #define obj_version obj_som_version
76 #define obj_copyright obj_som_copyright
77
78 /* Do not use space aliases. */
79 #define USE_ALIASES 0
80
81 /* How to generate a relocation. */
82 #define hppa_gen_reloc_type hppa_som_gen_reloc_type
83
84 /* Object file formats specify BFD symbol types. */
85 typedef som_symbol_type obj_symbol_type;
86 #endif
87
88 /* Various structures and types used internally in tc-hppa.c. */
89
90 /* Unwind table and descriptor. FIXME: Sync this with GDB version. */
91
92 struct unwind_desc
93 {
94 unsigned int cannot_unwind:1;
95 unsigned int millicode:1;
96 unsigned int millicode_save_rest:1;
97 unsigned int region_desc:2;
98 unsigned int save_sr:2;
99 unsigned int entry_fr:4;
100 unsigned int entry_gr:5;
101 unsigned int args_stored:1;
102 unsigned int call_fr:5;
103 unsigned int call_gr:5;
104 unsigned int save_sp:1;
105 unsigned int save_rp:1;
106 unsigned int save_rp_in_frame:1;
107 unsigned int extn_ptr_defined:1;
108 unsigned int cleanup_defined:1;
109
110 unsigned int hpe_interrupt_marker:1;
111 unsigned int hpux_interrupt_marker:1;
112 unsigned int reserved:3;
113 unsigned int frame_size:27;
114 };
115
116 struct unwind_table
117 {
118 /* Starting and ending offsets of the region described by
119 descriptor. */
120 unsigned int start_offset;
121 unsigned int end_offset;
122 struct unwind_desc descriptor;
123 };
124
125 /* This structure is used by the .callinfo, .enter, .leave pseudo-ops to
126 control the entry and exit code they generate. It is also used in
127 creation of the correct stack unwind descriptors.
128
129 NOTE: GAS does not support .enter and .leave for the generation of
130 prologues and epilogues. FIXME.
131
132 The fields in structure roughly correspond to the arguments available on the
133 .callinfo pseudo-op. */
134
135 struct call_info
136 {
137 /* The unwind descriptor being built. */
138 struct unwind_table ci_unwind;
139
140 /* Name of this function. */
141 symbolS *start_symbol;
142
143 /* (temporary) symbol used to mark the end of this function. */
144 symbolS *end_symbol;
145
146 /* Next entry in the chain. */
147 struct call_info *ci_next;
148 };
149
150 /* Operand formats for FP instructions. Note not all FP instructions
151 allow all four formats to be used (for example fmpysub only allows
152 SGL and DBL). */
153 typedef enum
154 {
155 SGL, DBL, ILLEGAL_FMT, QUAD
156 }
157 fp_operand_format;
158
159 /* This fully describes the symbol types which may be attached to
160 an EXPORT or IMPORT directive. Only SOM uses this formation
161 (ELF has no need for it). */
162 typedef enum
163 {
164 SYMBOL_TYPE_UNKNOWN,
165 SYMBOL_TYPE_ABSOLUTE,
166 SYMBOL_TYPE_CODE,
167 SYMBOL_TYPE_DATA,
168 SYMBOL_TYPE_ENTRY,
169 SYMBOL_TYPE_MILLICODE,
170 SYMBOL_TYPE_PLABEL,
171 SYMBOL_TYPE_PRI_PROG,
172 SYMBOL_TYPE_SEC_PROG,
173 }
174 pa_symbol_type;
175
176 /* This structure contains information needed to assemble
177 individual instructions. */
178 struct pa_it
179 {
180 /* Holds the opcode after parsing by pa_ip. */
181 unsigned long opcode;
182
183 /* Holds an expression associated with the current instruction. */
184 expressionS exp;
185
186 /* Does this instruction use PC-relative addressing. */
187 int pcrel;
188
189 /* Floating point formats for operand1 and operand2. */
190 fp_operand_format fpof1;
191 fp_operand_format fpof2;
192
193 /* Holds the field selector for this instruction
194 (for example L%, LR%, etc). */
195 long field_selector;
196
197 /* Holds any argument relocation bits associated with this
198 instruction. (instruction should be some sort of call). */
199 long arg_reloc;
200
201 /* The format specification for this instruction. */
202 int format;
203
204 /* The relocation (if any) associated with this instruction. */
205 reloc_type reloc;
206 };
207
208 /* PA-89 floating point registers are arranged like this:
209
210
211 +--------------+--------------+
212 | 0 or 16L | 16 or 16R |
213 +--------------+--------------+
214 | 1 or 17L | 17 or 17R |
215 +--------------+--------------+
216 | | |
217
218 . . .
219 . . .
220 . . .
221
222 | | |
223 +--------------+--------------+
224 | 14 or 30L | 30 or 30R |
225 +--------------+--------------+
226 | 15 or 31L | 31 or 31R |
227 +--------------+--------------+
228
229
230 The following is a version of pa_parse_number that
231 handles the L/R notation and returns the correct
232 value to put into the instruction register field.
233 The correct value to put into the instruction is
234 encoded in the structure 'pa_89_fp_reg_struct'. */
235
236 struct pa_89_fp_reg_struct
237 {
238 /* The register number. */
239 char number_part;
240
241 /* L/R selector. */
242 char l_r_select;
243 };
244
245 /* Additional information needed to build argument relocation stubs. */
246 struct call_desc
247 {
248 /* The argument relocation specification. */
249 unsigned int arg_reloc;
250
251 /* Number of arguments. */
252 unsigned int arg_count;
253 };
254
255 /* This structure defines an entry in the subspace dictionary
256 chain. */
257
258 struct subspace_dictionary_chain
259 {
260 /* Nonzero if this space has been defined by the user code. */
261 unsigned int ssd_defined;
262
263 /* Name of this subspace. */
264 char *ssd_name;
265
266 /* GAS segment and subsegment associated with this subspace. */
267 asection *ssd_seg;
268 int ssd_subseg;
269
270 /* Next space in the subspace dictionary chain. */
271 struct subspace_dictionary_chain *ssd_next;
272 };
273
274 typedef struct subspace_dictionary_chain ssd_chain_struct;
275
276 /* This structure defines an entry in the subspace dictionary
277 chain. */
278
279 struct space_dictionary_chain
280 {
281 /* Nonzero if this space has been defined by the user code or
282 as a default space. */
283 unsigned int sd_defined;
284
285 /* Nonzero if this spaces has been defined by the user code. */
286 unsigned int sd_user_defined;
287
288 /* The space number (or index). */
289 unsigned int sd_spnum;
290
291 /* The name of this subspace. */
292 char *sd_name;
293
294 /* GAS segment to which this subspace corresponds. */
295 asection *sd_seg;
296
297 /* Current subsegment number being used. */
298 int sd_last_subseg;
299
300 /* The chain of subspaces contained within this space. */
301 ssd_chain_struct *sd_subspaces;
302
303 /* The next entry in the space dictionary chain. */
304 struct space_dictionary_chain *sd_next;
305 };
306
307 typedef struct space_dictionary_chain sd_chain_struct;
308
309 /* Structure for previous label tracking. Needed so that alignments,
310 callinfo declarations, etc can be easily attached to a particular
311 label. */
312 typedef struct label_symbol_struct
313 {
314 struct symbol *lss_label;
315 sd_chain_struct *lss_space;
316 struct label_symbol_struct *lss_next;
317 }
318 label_symbol_struct;
319
320 /* This structure defines attributes of the default subspace
321 dictionary entries. */
322
323 struct default_subspace_dict
324 {
325 /* Name of the subspace. */
326 char *name;
327
328 /* FIXME. Is this still needed? */
329 char defined;
330
331 /* Nonzero if this subspace is loadable. */
332 char loadable;
333
334 /* Nonzero if this subspace contains only code. */
335 char code_only;
336
337 /* Nonzero if this is a common subspace. */
338 char common;
339
340 /* Nonzero if this is a common subspace which allows symbols
341 to be multiply defined. */
342 char dup_common;
343
344 /* Nonzero if this subspace should be zero filled. */
345 char zero;
346
347 /* Sort key for this subspace. */
348 unsigned char sort;
349
350 /* Access control bits for this subspace. Can represent RWX access
351 as well as privilege level changes for gateways. */
352 int access;
353
354 /* Index of containing space. */
355 int space_index;
356
357 /* Alignment (in bytes) of this subspace. */
358 int alignment;
359
360 /* Quadrant within space where this subspace should be loaded. */
361 int quadrant;
362
363 /* An index into the default spaces array. */
364 int def_space_index;
365
366 /* An alias for this section (or NULL if no alias exists). */
367 char *alias;
368
369 /* Subsegment associated with this subspace. */
370 subsegT subsegment;
371 };
372
373 /* This structure defines attributes of the default space
374 dictionary entries. */
375
376 struct default_space_dict
377 {
378 /* Name of the space. */
379 char *name;
380
381 /* Space number. It is possible to identify spaces within
382 assembly code numerically! */
383 int spnum;
384
385 /* Nonzero if this space is loadable. */
386 char loadable;
387
388 /* Nonzero if this space is "defined". FIXME is still needed */
389 char defined;
390
391 /* Nonzero if this space can not be shared. */
392 char private;
393
394 /* Sort key for this space. */
395 unsigned char sort;
396
397 /* Segment associated with this space. */
398 asection *segment;
399
400 /* An alias for this section (or NULL if no alias exists). */
401 char *alias;
402 };
403
404 /* Extra information needed to perform fixups (relocations) on the PA. */
405 struct hppa_fix_struct
406 {
407 /* The field selector. */
408 enum hppa_reloc_field_selector_type fx_r_field;
409
410 /* Type of fixup. */
411 int fx_r_type;
412
413 /* Format of fixup. */
414 int fx_r_format;
415
416 /* Argument relocation bits. */
417 long fx_arg_reloc;
418
419 /* The unwind descriptor associated with this fixup. */
420 char fx_unwind[8];
421
422 /* The segment this fixup appears in. */
423 segT segment;
424 };
425
426 /* Structure to hold information about predefined registers. */
427
428 struct pd_reg
429 {
430 char *name;
431 int value;
432 };
433
434 /* This structure defines the mapping from a FP condition string
435 to a condition number which can be recorded in an instruction. */
436 struct fp_cond_map
437 {
438 char *string;
439 int cond;
440 };
441
442 /* This structure defines a mapping from a field selector
443 string to a field selector type. */
444 struct selector_entry
445 {
446 char *prefix;
447 int field_selector;
448 };
449
450 /* Prototypes for functions local to tc-hppa.c. */
451
452 static fp_operand_format pa_parse_fp_format PARAMS ((char **s));
453 static void pa_cons PARAMS ((int));
454 static void pa_data PARAMS ((int));
455 static void pa_float_cons PARAMS ((int));
456 static void pa_fill PARAMS ((int));
457 static void pa_lcomm PARAMS ((int));
458 static void pa_lsym PARAMS ((int));
459 static void pa_stringer PARAMS ((int));
460 static void pa_text PARAMS ((int));
461 static void pa_version PARAMS ((int));
462 static int pa_parse_fp_cmp_cond PARAMS ((char **));
463 static int get_expression PARAMS ((char *));
464 static int pa_get_absolute_expression PARAMS ((struct pa_it *, char **));
465 static int evaluate_absolute PARAMS ((struct pa_it *));
466 static unsigned int pa_build_arg_reloc PARAMS ((char *));
467 static unsigned int pa_align_arg_reloc PARAMS ((unsigned int, unsigned int));
468 static int pa_parse_nullif PARAMS ((char **));
469 static int pa_parse_nonneg_cmpsub_cmpltr PARAMS ((char **, int));
470 static int pa_parse_neg_cmpsub_cmpltr PARAMS ((char **, int));
471 static int pa_parse_neg_add_cmpltr PARAMS ((char **, int));
472 static int pa_parse_nonneg_add_cmpltr PARAMS ((char **, int));
473 static void pa_block PARAMS ((int));
474 static void pa_call PARAMS ((int));
475 static void pa_call_args PARAMS ((struct call_desc *));
476 static void pa_callinfo PARAMS ((int));
477 static void pa_code PARAMS ((int));
478 static void pa_comm PARAMS ((int));
479 static void pa_copyright PARAMS ((int));
480 static void pa_end PARAMS ((int));
481 static void pa_enter PARAMS ((int));
482 static void pa_entry PARAMS ((int));
483 static void pa_equ PARAMS ((int));
484 static void pa_exit PARAMS ((int));
485 static void pa_export PARAMS ((int));
486 static void pa_type_args PARAMS ((symbolS *, int));
487 static void pa_import PARAMS ((int));
488 static void pa_label PARAMS ((int));
489 static void pa_leave PARAMS ((int));
490 static void pa_origin PARAMS ((int));
491 static void pa_proc PARAMS ((int));
492 static void pa_procend PARAMS ((int));
493 static void pa_space PARAMS ((int));
494 static void pa_spnum PARAMS ((int));
495 static void pa_subspace PARAMS ((int));
496 static void pa_param PARAMS ((int));
497 static void pa_undefine_label PARAMS ((void));
498 static int need_89_opcode PARAMS ((struct pa_it *,
499 struct pa_89_fp_reg_struct *));
500 static int pa_parse_number PARAMS ((char **, struct pa_89_fp_reg_struct *));
501 static label_symbol_struct *pa_get_label PARAMS ((void));
502 static sd_chain_struct *create_new_space PARAMS ((char *, int, char,
503 char, char, char,
504 asection *, int));
505 static ssd_chain_struct *create_new_subspace PARAMS ((sd_chain_struct *,
506 char *, char, char,
507 char, char, char,
508 char, int, int, int,
509 int, asection *));
510 static ssd_chain_struct *update_subspace PARAMS ((sd_chain_struct *,
511 char *, char, char, char,
512 char, char, char, int,
513 int, int, int,
514 asection *));
515 static sd_chain_struct *is_defined_space PARAMS ((char *));
516 static ssd_chain_struct *is_defined_subspace PARAMS ((char *));
517 static sd_chain_struct *pa_segment_to_space PARAMS ((asection *));
518 static ssd_chain_struct *pa_subsegment_to_subspace PARAMS ((asection *,
519 subsegT));
520 static sd_chain_struct *pa_find_space_by_number PARAMS ((int));
521 static unsigned int pa_subspace_start PARAMS ((sd_chain_struct *, int));
522 static void pa_ip PARAMS ((char *));
523 static void fix_new_hppa PARAMS ((fragS *, int, short int, symbolS *,
524 long, expressionS *, int,
525 bfd_reloc_code_real_type,
526 enum hppa_reloc_field_selector_type,
527 int, long, char *));
528 static int is_end_of_statement PARAMS ((void));
529 static int reg_name_search PARAMS ((char *));
530 static int pa_chk_field_selector PARAMS ((char **));
531 static int is_same_frag PARAMS ((fragS *, fragS *));
532 static void pa_build_unwind_subspace PARAMS ((struct call_info *));
533 static void process_exit PARAMS ((void));
534 static sd_chain_struct *pa_parse_space_stmt PARAMS ((char *, int));
535 static int log2 PARAMS ((int));
536 static int pa_next_subseg PARAMS ((sd_chain_struct *));
537 static unsigned int pa_stringer_aux PARAMS ((char *));
538 static void pa_spaces_begin PARAMS ((void));
539 static void hppa_elf_mark_end_of_function PARAMS ((void));
540
541 /* File and gloally scoped variable declarations. */
542
543 /* Root and final entry in the space chain. */
544 static sd_chain_struct *space_dict_root;
545 static sd_chain_struct *space_dict_last;
546
547 /* The current space and subspace. */
548 static sd_chain_struct *current_space;
549 static ssd_chain_struct *current_subspace;
550
551 /* Root of the call_info chain. */
552 static struct call_info *call_info_root;
553
554 /* The last call_info (for functions) structure
555 seen so it can be associated with fixups and
556 function labels. */
557 static struct call_info *last_call_info;
558
559 /* The last call description (for actual calls). */
560 static struct call_desc last_call_desc;
561
562 /* Relaxation isn't supported for the PA yet. */
563 const relax_typeS md_relax_table[] =
564 {0};
565
566 /* Jumps are always the same size -- one instruction. */
567 int md_short_jump_size = 4;
568 int md_long_jump_size = 4;
569
570 /* handle of the OPCODE hash table */
571 static struct hash_control *op_hash = NULL;
572
573 /* This array holds the chars that always start a comment. If the
574 pre-processor is disabled, these aren't very useful. */
575 const char comment_chars[] = ";";
576
577 /* Table of pseudo ops for the PA. FIXME -- how many of these
578 are now redundant with the overall GAS and the object file
579 dependent tables? */
580 const pseudo_typeS md_pseudo_table[] =
581 {
582 /* align pseudo-ops on the PA specify the actual alignment requested,
583 not the log2 of the requested alignment. */
584 {"align", s_align_bytes, 8},
585 {"ALIGN", s_align_bytes, 8},
586 {"block", pa_block, 1},
587 {"BLOCK", pa_block, 1},
588 {"blockz", pa_block, 0},
589 {"BLOCKZ", pa_block, 0},
590 {"byte", pa_cons, 1},
591 {"BYTE", pa_cons, 1},
592 {"call", pa_call, 0},
593 {"CALL", pa_call, 0},
594 {"callinfo", pa_callinfo, 0},
595 {"CALLINFO", pa_callinfo, 0},
596 {"code", pa_code, 0},
597 {"CODE", pa_code, 0},
598 {"comm", pa_comm, 0},
599 {"COMM", pa_comm, 0},
600 {"copyright", pa_copyright, 0},
601 {"COPYRIGHT", pa_copyright, 0},
602 {"data", pa_data, 0},
603 {"DATA", pa_data, 0},
604 {"double", pa_float_cons, 'd'},
605 {"DOUBLE", pa_float_cons, 'd'},
606 {"end", pa_end, 0},
607 {"END", pa_end, 0},
608 {"enter", pa_enter, 0},
609 {"ENTER", pa_enter, 0},
610 {"entry", pa_entry, 0},
611 {"ENTRY", pa_entry, 0},
612 {"equ", pa_equ, 0},
613 {"EQU", pa_equ, 0},
614 {"exit", pa_exit, 0},
615 {"EXIT", pa_exit, 0},
616 {"export", pa_export, 0},
617 {"EXPORT", pa_export, 0},
618 {"fill", pa_fill, 0},
619 {"FILL", pa_fill, 0},
620 {"float", pa_float_cons, 'f'},
621 {"FLOAT", pa_float_cons, 'f'},
622 {"half", pa_cons, 2},
623 {"HALF", pa_cons, 2},
624 {"import", pa_import, 0},
625 {"IMPORT", pa_import, 0},
626 {"int", pa_cons, 4},
627 {"INT", pa_cons, 4},
628 {"label", pa_label, 0},
629 {"LABEL", pa_label, 0},
630 {"lcomm", pa_lcomm, 0},
631 {"LCOMM", pa_lcomm, 0},
632 {"leave", pa_leave, 0},
633 {"LEAVE", pa_leave, 0},
634 {"long", pa_cons, 4},
635 {"LONG", pa_cons, 4},
636 {"lsym", pa_lsym, 0},
637 {"LSYM", pa_lsym, 0},
638 {"octa", pa_cons, 16},
639 {"OCTA", pa_cons, 16},
640 {"org", pa_origin, 0},
641 {"ORG", pa_origin, 0},
642 {"origin", pa_origin, 0},
643 {"ORIGIN", pa_origin, 0},
644 {"param", pa_param, 0},
645 {"PARAM", pa_param, 0},
646 {"proc", pa_proc, 0},
647 {"PROC", pa_proc, 0},
648 {"procend", pa_procend, 0},
649 {"PROCEND", pa_procend, 0},
650 {"quad", pa_cons, 8},
651 {"QUAD", pa_cons, 8},
652 {"reg", pa_equ, 1},
653 {"REG", pa_equ, 1},
654 {"short", pa_cons, 2},
655 {"SHORT", pa_cons, 2},
656 {"single", pa_float_cons, 'f'},
657 {"SINGLE", pa_float_cons, 'f'},
658 {"space", pa_space, 0},
659 {"SPACE", pa_space, 0},
660 {"spnum", pa_spnum, 0},
661 {"SPNUM", pa_spnum, 0},
662 {"string", pa_stringer, 0},
663 {"STRING", pa_stringer, 0},
664 {"stringz", pa_stringer, 1},
665 {"STRINGZ", pa_stringer, 1},
666 {"subspa", pa_subspace, 0},
667 {"SUBSPA", pa_subspace, 0},
668 {"text", pa_text, 0},
669 {"TEXT", pa_text, 0},
670 {"version", pa_version, 0},
671 {"VERSION", pa_version, 0},
672 {"word", pa_cons, 4},
673 {"WORD", pa_cons, 4},
674 {NULL, 0, 0}
675 };
676
677 /* This array holds the chars that only start a comment at the beginning of
678 a line. If the line seems to have the form '# 123 filename'
679 .line and .file directives will appear in the pre-processed output.
680
681 Note that input_file.c hand checks for '#' at the beginning of the
682 first line of the input file. This is because the compiler outputs
683 #NO_APP at the beginning of its output.
684
685 Also note that '/*' will always start a comment. */
686 const char line_comment_chars[] = "#";
687
688 /* This array holds the characters which act as line separators. */
689 const char line_separator_chars[] = "!";
690
691 /* Chars that can be used to separate mant from exp in floating point nums. */
692 const char EXP_CHARS[] = "eE";
693
694 /* Chars that mean this number is a floating point constant.
695 As in 0f12.456 or 0d1.2345e12.
696
697 Be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
698 changed in read.c. Ideally it shouldn't hae to know abou it at
699 all, but nothing is ideal around here. */
700 const char FLT_CHARS[] = "rRsSfFdDxXpP";
701
702 static struct pa_it the_insn;
703
704 /* Points to the end of an expression just parsed by get_expressoin
705 and friends. FIXME. This shouldn't be handled with a file-global
706 variable. */
707 static char *expr_end;
708
709 /* Nonzero if a .callinfo appeared within the current procedure. */
710 static int callinfo_found;
711
712 /* Nonzero if the assembler is currently within a .entry/.exit pair. */
713 static int within_entry_exit;
714
715 /* Nonzero if the assembler is currently within a procedure definition. */
716 static int within_procedure;
717
718 /* Handle on strucutre which keep track of the last symbol
719 seen in each subspace. */
720 static label_symbol_struct *label_symbols_rootp = NULL;
721
722 /* Holds the last field selector. */
723 static int hppa_field_selector;
724
725 /* A dummy bfd symbol so that all relocations have symbols of some kind. */
726 static symbolS *dummy_symbol;
727
728 /* Nonzero if errors are to be printed. */
729 static int print_errors = 1;
730
731 /* List of registers that are pre-defined:
732
733 Each general register has one predefined name of the form
734 %r<REGNUM> which has the value <REGNUM>.
735
736 Space and control registers are handled in a similar manner,
737 but use %sr<REGNUM> and %cr<REGNUM> as their predefined names.
738
739 Likewise for the floating point registers, but of the form
740 %fr<REGNUM>. Floating point registers have additional predefined
741 names with 'L' and 'R' suffixes (e.g. %fr19L, %fr19R) which
742 again have the value <REGNUM>.
743
744 Many registers also have synonyms:
745
746 %r26 - %r23 have %arg0 - %arg3 as synonyms
747 %r28 - %r29 have %ret0 - %ret1 as synonyms
748 %r30 has %sp as a synonym
749 %r27 has %dp as a synonym
750 %r2 has %rp as a synonym
751
752 Almost every control register has a synonym; they are not listed
753 here for brevity.
754
755 The table is sorted. Suitable for searching by a binary search. */
756
757 static const struct pd_reg pre_defined_registers[] =
758 {
759 {"%arg0", 26},
760 {"%arg1", 25},
761 {"%arg2", 24},
762 {"%arg3", 23},
763 {"%cr0", 0},
764 {"%cr10", 10},
765 {"%cr11", 11},
766 {"%cr12", 12},
767 {"%cr13", 13},
768 {"%cr14", 14},
769 {"%cr15", 15},
770 {"%cr16", 16},
771 {"%cr17", 17},
772 {"%cr18", 18},
773 {"%cr19", 19},
774 {"%cr20", 20},
775 {"%cr21", 21},
776 {"%cr22", 22},
777 {"%cr23", 23},
778 {"%cr24", 24},
779 {"%cr25", 25},
780 {"%cr26", 26},
781 {"%cr27", 27},
782 {"%cr28", 28},
783 {"%cr29", 29},
784 {"%cr30", 30},
785 {"%cr31", 31},
786 {"%cr8", 8},
787 {"%cr9", 9},
788 {"%dp", 27},
789 {"%eiem", 15},
790 {"%eirr", 23},
791 {"%fr0", 0},
792 {"%fr0l", 0},
793 {"%fr0r", 0},
794 {"%fr1", 1},
795 {"%fr10", 10},
796 {"%fr10l", 10},
797 {"%fr10r", 10},
798 {"%fr11", 11},
799 {"%fr11l", 11},
800 {"%fr11r", 11},
801 {"%fr12", 12},
802 {"%fr12l", 12},
803 {"%fr12r", 12},
804 {"%fr13", 13},
805 {"%fr13l", 13},
806 {"%fr13r", 13},
807 {"%fr14", 14},
808 {"%fr14l", 14},
809 {"%fr14r", 14},
810 {"%fr15", 15},
811 {"%fr15l", 15},
812 {"%fr15r", 15},
813 {"%fr16", 16},
814 {"%fr16l", 16},
815 {"%fr16r", 16},
816 {"%fr17", 17},
817 {"%fr17l", 17},
818 {"%fr17r", 17},
819 {"%fr18", 18},
820 {"%fr18l", 18},
821 {"%fr18r", 18},
822 {"%fr19", 19},
823 {"%fr19l", 19},
824 {"%fr19r", 19},
825 {"%fr1l", 1},
826 {"%fr1r", 1},
827 {"%fr2", 2},
828 {"%fr20", 20},
829 {"%fr20l", 20},
830 {"%fr20r", 20},
831 {"%fr21", 21},
832 {"%fr21l", 21},
833 {"%fr21r", 21},
834 {"%fr22", 22},
835 {"%fr22l", 22},
836 {"%fr22r", 22},
837 {"%fr23", 23},
838 {"%fr23l", 23},
839 {"%fr23r", 23},
840 {"%fr24", 24},
841 {"%fr24l", 24},
842 {"%fr24r", 24},
843 {"%fr25", 25},
844 {"%fr25l", 25},
845 {"%fr25r", 25},
846 {"%fr26", 26},
847 {"%fr26l", 26},
848 {"%fr26r", 26},
849 {"%fr27", 27},
850 {"%fr27l", 27},
851 {"%fr27r", 27},
852 {"%fr28", 28},
853 {"%fr28l", 28},
854 {"%fr28r", 28},
855 {"%fr29", 29},
856 {"%fr29l", 29},
857 {"%fr29r", 29},
858 {"%fr2l", 2},
859 {"%fr2r", 2},
860 {"%fr3", 3},
861 {"%fr30", 30},
862 {"%fr30l", 30},
863 {"%fr30r", 30},
864 {"%fr31", 31},
865 {"%fr31l", 31},
866 {"%fr31r", 31},
867 {"%fr3l", 3},
868 {"%fr3r", 3},
869 {"%fr4", 4},
870 {"%fr4l", 4},
871 {"%fr4r", 4},
872 {"%fr5", 5},
873 {"%fr5l", 5},
874 {"%fr5r", 5},
875 {"%fr6", 6},
876 {"%fr6l", 6},
877 {"%fr6r", 6},
878 {"%fr7", 7},
879 {"%fr7l", 7},
880 {"%fr7r", 7},
881 {"%fr8", 8},
882 {"%fr8l", 8},
883 {"%fr8r", 8},
884 {"%fr9", 9},
885 {"%fr9l", 9},
886 {"%fr9r", 9},
887 {"%hta", 25},
888 {"%iir", 19},
889 {"%ior", 21},
890 {"%ipsw", 22},
891 {"%isr", 20},
892 {"%itmr", 16},
893 {"%iva", 14},
894 {"%pcoq", 18},
895 {"%pcsq", 17},
896 {"%pidr1", 8},
897 {"%pidr2", 9},
898 {"%pidr3", 12},
899 {"%pidr4", 13},
900 {"%ppda", 24},
901 {"%r0", 0},
902 {"%r1", 1},
903 {"%r10", 10},
904 {"%r11", 11},
905 {"%r12", 12},
906 {"%r13", 13},
907 {"%r14", 14},
908 {"%r15", 15},
909 {"%r16", 16},
910 {"%r17", 17},
911 {"%r18", 18},
912 {"%r19", 19},
913 {"%r2", 2},
914 {"%r20", 20},
915 {"%r21", 21},
916 {"%r22", 22},
917 {"%r23", 23},
918 {"%r24", 24},
919 {"%r25", 25},
920 {"%r26", 26},
921 {"%r27", 27},
922 {"%r28", 28},
923 {"%r29", 29},
924 {"%r3", 3},
925 {"%r30", 30},
926 {"%r31", 31},
927 {"%r4", 4},
928 {"%r5", 5},
929 {"%r6", 6},
930 {"%r7", 7},
931 {"%r8", 8},
932 {"%r9", 9},
933 {"%rctr", 0},
934 {"%ret0", 28},
935 {"%ret1", 29},
936 {"%rp", 2},
937 {"%sar", 11},
938 {"%sp", 30},
939 {"%sr0", 0},
940 {"%sr1", 1},
941 {"%sr2", 2},
942 {"%sr3", 3},
943 {"%sr4", 4},
944 {"%sr5", 5},
945 {"%sr6", 6},
946 {"%sr7", 7},
947 {"%tr0", 24},
948 {"%tr1", 25},
949 {"%tr2", 26},
950 {"%tr3", 27},
951 {"%tr4", 28},
952 {"%tr5", 29},
953 {"%tr6", 30},
954 {"%tr7", 31}
955 };
956
957 /* This table is sorted by order of the length of the string. This is
958 so we check for <> before we check for <. If we had a <> and checked
959 for < first, we would get a false match. */
960 static const struct fp_cond_map fp_cond_map[] =
961 {
962 {"false?", 0},
963 {"false", 1},
964 {"true?", 30},
965 {"true", 31},
966 {"!<=>", 3},
967 {"!?>=", 8},
968 {"!?<=", 16},
969 {"!<>", 7},
970 {"!>=", 11},
971 {"!?>", 12},
972 {"?<=", 14},
973 {"!<=", 19},
974 {"!?<", 20},
975 {"?>=", 22},
976 {"!?=", 24},
977 {"!=t", 27},
978 {"<=>", 29},
979 {"=t", 5},
980 {"?=", 6},
981 {"?<", 10},
982 {"<=", 13},
983 {"!>", 15},
984 {"?>", 18},
985 {">=", 21},
986 {"!<", 23},
987 {"<>", 25},
988 {"!=", 26},
989 {"!?", 28},
990 {"?", 2},
991 {"=", 4},
992 {"<", 9},
993 {">", 17}
994 };
995
996 static const struct selector_entry selector_table[] =
997 {
998 {"f", e_fsel},
999 {"l", e_lsel},
1000 {"ld", e_ldsel},
1001 {"lp", e_lpsel},
1002 {"lr", e_lrsel},
1003 {"ls", e_lssel},
1004 {"lt", e_ltsel},
1005 {"p", e_psel},
1006 {"r", e_rsel},
1007 {"rd", e_rdsel},
1008 {"rp", e_rpsel},
1009 {"rr", e_rrsel},
1010 {"rs", e_rssel},
1011 {"rt", e_rtsel},
1012 {"t", e_tsel},
1013 };
1014
1015 /* default space and subspace dictionaries */
1016
1017 #define GDB_SYMBOLS GDB_SYMBOLS_SUBSPACE_NAME
1018 #define GDB_STRINGS GDB_STRINGS_SUBSPACE_NAME
1019
1020 /* pre-defined subsegments (subspaces) for the HPPA. */
1021 #define SUBSEG_CODE 0
1022 #define SUBSEG_DATA 0
1023 #define SUBSEG_LIT 1
1024 #define SUBSEG_BSS 2
1025 #define SUBSEG_UNWIND 3
1026 #define SUBSEG_GDB_STRINGS 0
1027 #define SUBSEG_GDB_SYMBOLS 1
1028
1029 static struct default_subspace_dict pa_def_subspaces[] =
1030 {
1031 {"$CODE$", 1, 1, 1, 0, 0, 0, 24, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_CODE},
1032 {"$DATA$", 1, 1, 0, 0, 0, 0, 24, 0x1f, 1, 8, 1, 1, ".data", SUBSEG_DATA},
1033 {"$LIT$", 1, 1, 0, 0, 0, 0, 16, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_LIT},
1034 {"$BSS$", 1, 1, 0, 0, 0, 1, 80, 0x1f, 1, 8, 1, 1, ".bss", SUBSEG_BSS},
1035 #ifdef OBJ_ELF
1036 {"$UNWIND$", 1, 1, 0, 0, 0, 0, 64, 0x2c, 0, 4, 0, 0, ".hppa_unwind", SUBSEG_UNWIND},
1037 #endif
1038 {NULL, 0, 1, 0, 0, 0, 0, 255, 0x1f, 0, 4, 0, 0, 0}
1039 };
1040
1041 static struct default_space_dict pa_def_spaces[] =
1042 {
1043 {"$TEXT$", 0, 1, 1, 0, 8, ASEC_NULL, ".text"},
1044 {"$PRIVATE$", 1, 1, 1, 1, 16, ASEC_NULL, ".data"},
1045 {NULL, 0, 0, 0, 0, 0, ASEC_NULL, NULL}
1046 };
1047
1048 /* Misc local definitions used by the assembler. */
1049
1050 /* Return nonzero if the string pointed to by S potentially represents
1051 a right or left half of a FP register */
1052 #define IS_R_SELECT(S) (*(S) == 'R' || *(S) == 'r')
1053 #define IS_L_SELECT(S) (*(S) == 'L' || *(S) == 'l')
1054
1055 /* These macros are used to maintain spaces/subspaces. */
1056 #define SPACE_DEFINED(space_chain) (space_chain)->sd_defined
1057 #define SPACE_USER_DEFINED(space_chain) (space_chain)->sd_user_defined
1058 #define SPACE_SPNUM(space_chain) (space_chain)->sd_spnum
1059 #define SPACE_NAME(space_chain) (space_chain)->sd_name
1060
1061 #define SUBSPACE_DEFINED(ss_chain) (ss_chain)->ssd_defined
1062 #define SUBSPACE_NAME(ss_chain) (ss_chain)->ssd_name
1063
1064 /* Insert FIELD into OPCODE starting at bit START. Continue pa_ip
1065 main loop after insertion. */
1066
1067 #define INSERT_FIELD_AND_CONTINUE(OPCODE, FIELD, START) \
1068 { \
1069 ((OPCODE) |= (FIELD) << (START)); \
1070 continue; \
1071 }
1072
1073 /* Simple range checking for FIELD againt HIGH and LOW bounds.
1074 IGNORE is used to suppress the error message. */
1075
1076 #define CHECK_FIELD(FIELD, HIGH, LOW, IGNORE) \
1077 { \
1078 if ((FIELD) > (HIGH) || (FIELD) < (LOW)) \
1079 { \
1080 if (! IGNORE) \
1081 as_bad ("Field out of range [%d..%d] (%d).", (LOW), (HIGH), \
1082 (int) (FIELD));\
1083 break; \
1084 } \
1085 }
1086
1087 #define is_DP_relative(exp) \
1088 ((exp).X_op == O_subtract \
1089 && strcmp((exp).X_op_symbol->bsym->name, "$global$") == 0)
1090
1091 #define is_PC_relative(exp) \
1092 ((exp).X_op == O_subtract \
1093 && strcmp((exp).X_op_symbol->bsym->name, "$PIC_pcrel$0") == 0)
1094
1095 #define is_complex(exp) \
1096 ((exp).X_op != O_constant && (exp).X_op != O_symbol)
1097
1098 /* Actual functions to implement the PA specific code for the assembler. */
1099
1100 /* Returns a pointer to the label_symbol_struct for the current space.
1101 or NULL if no label_symbol_struct exists for the current space. */
1102
1103 static label_symbol_struct *
1104 pa_get_label ()
1105 {
1106 label_symbol_struct *label_chain;
1107 sd_chain_struct *space_chain = current_space;
1108
1109 for (label_chain = label_symbols_rootp;
1110 label_chain;
1111 label_chain = label_chain->lss_next)
1112 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1113 return label_chain;
1114
1115 return NULL;
1116 }
1117
1118 /* Defines a label for the current space. If one is already defined,
1119 this function will replace it with the new label. */
1120
1121 void
1122 pa_define_label (symbol)
1123 symbolS *symbol;
1124 {
1125 label_symbol_struct *label_chain = pa_get_label ();
1126 sd_chain_struct *space_chain = current_space;
1127
1128 if (label_chain)
1129 label_chain->lss_label = symbol;
1130 else
1131 {
1132 /* Create a new label entry and add it to the head of the chain. */
1133 label_chain
1134 = (label_symbol_struct *) xmalloc (sizeof (label_symbol_struct));
1135 label_chain->lss_label = symbol;
1136 label_chain->lss_space = space_chain;
1137 label_chain->lss_next = NULL;
1138
1139 if (label_symbols_rootp)
1140 label_chain->lss_next = label_symbols_rootp;
1141
1142 label_symbols_rootp = label_chain;
1143 }
1144 }
1145
1146 /* Removes a label definition for the current space.
1147 If there is no label_symbol_struct entry, then no action is taken. */
1148
1149 static void
1150 pa_undefine_label ()
1151 {
1152 label_symbol_struct *label_chain;
1153 label_symbol_struct *prev_label_chain = NULL;
1154 sd_chain_struct *space_chain = current_space;
1155
1156 for (label_chain = label_symbols_rootp;
1157 label_chain;
1158 label_chain = label_chain->lss_next)
1159 {
1160 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1161 {
1162 /* Remove the label from the chain and free its memory. */
1163 if (prev_label_chain)
1164 prev_label_chain->lss_next = label_chain->lss_next;
1165 else
1166 label_symbols_rootp = label_chain->lss_next;
1167
1168 free (label_chain);
1169 break;
1170 }
1171 prev_label_chain = label_chain;
1172 }
1173 }
1174
1175
1176 /* An HPPA-specific version of fix_new. This is required because the HPPA
1177 code needs to keep track of some extra stuff. Each call to fix_new_hppa
1178 results in the creation of an instance of an hppa_fix_struct. An
1179 hppa_fix_struct stores the extra information along with a pointer to the
1180 original fixS. This is attached to the original fixup via the
1181 tc_fix_data field. */
1182
1183 static void
1184 fix_new_hppa (frag, where, size, add_symbol, offset, exp, pcrel,
1185 r_type, r_field, r_format, arg_reloc, unwind_desc)
1186 fragS *frag;
1187 int where;
1188 short int size;
1189 symbolS *add_symbol;
1190 long offset;
1191 expressionS *exp;
1192 int pcrel;
1193 bfd_reloc_code_real_type r_type;
1194 enum hppa_reloc_field_selector_type r_field;
1195 int r_format;
1196 long arg_reloc;
1197 char *unwind_desc;
1198 {
1199 fixS *new_fix;
1200
1201 struct hppa_fix_struct *hppa_fix = (struct hppa_fix_struct *)
1202 obstack_alloc (&notes, sizeof (struct hppa_fix_struct));
1203
1204 if (exp != NULL)
1205 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
1206 else
1207 new_fix = fix_new (frag, where, size, add_symbol, offset, pcrel, r_type);
1208 new_fix->tc_fix_data = hppa_fix;
1209 hppa_fix->fx_r_type = r_type;
1210 hppa_fix->fx_r_field = r_field;
1211 hppa_fix->fx_r_format = r_format;
1212 hppa_fix->fx_arg_reloc = arg_reloc;
1213 hppa_fix->segment = now_seg;
1214 if (unwind_desc)
1215 {
1216 bcopy (unwind_desc, hppa_fix->fx_unwind, 8);
1217
1218 /* If necessary call BFD backend function to attach the
1219 unwind bits to the target dependent parts of a BFD symbol.
1220 Yuk. */
1221 #ifdef obj_attach_unwind_info
1222 obj_attach_unwind_info (add_symbol->bsym, unwind_desc);
1223 #endif
1224 }
1225
1226 /* foo-$global$ is used to access non-automatic storage. $global$
1227 is really just a marker and has served its purpose, so eliminate
1228 it now so as not to confuse write.c. */
1229 if (new_fix->fx_subsy
1230 && !strcmp (S_GET_NAME (new_fix->fx_subsy), "$global$"))
1231 new_fix->fx_subsy = NULL;
1232 }
1233
1234 /* Parse a .byte, .word, .long expression for the HPPA. Called by
1235 cons via the TC_PARSE_CONS_EXPRESSION macro. */
1236
1237 void
1238 parse_cons_expression_hppa (exp)
1239 expressionS *exp;
1240 {
1241 hppa_field_selector = pa_chk_field_selector (&input_line_pointer);
1242 expression (exp);
1243 }
1244
1245 /* This fix_new is called by cons via TC_CONS_FIX_NEW.
1246 hppa_field_selector is set by the parse_cons_expression_hppa. */
1247
1248 void
1249 cons_fix_new_hppa (frag, where, size, exp)
1250 fragS *frag;
1251 int where;
1252 int size;
1253 expressionS *exp;
1254 {
1255 unsigned int rel_type;
1256
1257 if (is_DP_relative (*exp))
1258 rel_type = R_HPPA_GOTOFF;
1259 else if (is_complex (*exp))
1260 rel_type = R_HPPA_COMPLEX;
1261 else
1262 rel_type = R_HPPA;
1263
1264 if (hppa_field_selector != e_psel && hppa_field_selector != e_fsel)
1265 as_warn ("Invalid field selector. Assuming F%%.");
1266
1267 fix_new_hppa (frag, where, size,
1268 (symbolS *) NULL, (offsetT) 0, exp, 0, rel_type,
1269 hppa_field_selector, 32, 0, (char *) 0);
1270
1271 /* Reset field selector to its default state. */
1272 hppa_field_selector = 0;
1273 }
1274
1275 /* This function is called once, at assembler startup time. It should
1276 set up all the tables, etc. that the MD part of the assembler will need. */
1277
1278 void
1279 md_begin ()
1280 {
1281 const char *retval = NULL;
1282 int lose = 0;
1283 unsigned int i = 0;
1284
1285 last_call_info = NULL;
1286 call_info_root = NULL;
1287
1288 /* Folding of text and data segments fails miserably on the PA.
1289 Warn user and disable "-R" option. */
1290 if (flagseen['R'])
1291 {
1292 as_warn ("-R option not supported on this target.");
1293 flag_readonly_data_in_text = 0;
1294 flagseen['R'] = 0;
1295 }
1296
1297 pa_spaces_begin ();
1298
1299 op_hash = hash_new ();
1300
1301 while (i < NUMOPCODES)
1302 {
1303 const char *name = pa_opcodes[i].name;
1304 retval = hash_insert (op_hash, name, (struct pa_opcode *) &pa_opcodes[i]);
1305 if (retval != NULL && *retval != '\0')
1306 {
1307 as_fatal ("Internal error: can't hash `%s': %s\n", name, retval);
1308 lose = 1;
1309 }
1310 do
1311 {
1312 if ((pa_opcodes[i].match & pa_opcodes[i].mask)
1313 != pa_opcodes[i].match)
1314 {
1315 fprintf (stderr, "internal error: losing opcode: `%s' \"%s\"\n",
1316 pa_opcodes[i].name, pa_opcodes[i].args);
1317 lose = 1;
1318 }
1319 ++i;
1320 }
1321 while (i < NUMOPCODES && !strcmp (pa_opcodes[i].name, name));
1322 }
1323
1324 if (lose)
1325 as_fatal ("Broken assembler. No assembly attempted.");
1326
1327 /* SOM will change text_section. To make sure we never put
1328 anything into the old one switch to the new one now. */
1329 subseg_set (text_section, 0);
1330
1331 dummy_symbol = symbol_find_or_make ("L$dummy");
1332 S_SET_SEGMENT (dummy_symbol, text_section);
1333 }
1334
1335 /* Assemble a single instruction storing it into a frag. */
1336 void
1337 md_assemble (str)
1338 char *str;
1339 {
1340 char *to;
1341
1342 /* The had better be something to assemble. */
1343 assert (str);
1344
1345 /* If we are within a procedure definition, make sure we've
1346 defined a label for the procedure; handle case where the
1347 label was defined after the .PROC directive.
1348
1349 Note there's not need to diddle with the segment or fragment
1350 for the label symbol in this case. We have already switched
1351 into the new $CODE$ subspace at this point. */
1352 if (within_procedure && last_call_info->start_symbol == NULL)
1353 {
1354 label_symbol_struct *label_symbol = pa_get_label ();
1355
1356 if (label_symbol)
1357 {
1358 if (label_symbol->lss_label)
1359 {
1360 last_call_info->start_symbol = label_symbol->lss_label;
1361 label_symbol->lss_label->bsym->flags |= BSF_FUNCTION;
1362 #ifdef OBJ_SOM
1363 /* Also handle allocation of a fixup to hold the unwind
1364 information when the label appears after the proc/procend. */
1365 if (within_entry_exit)
1366 {
1367 char *where = frag_more (0);
1368
1369 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
1370 last_call_info->start_symbol, (offsetT) 0, NULL,
1371 0, R_HPPA_ENTRY, e_fsel, 0, 0,
1372 (char *) &last_call_info->ci_unwind.descriptor);
1373 }
1374 #endif
1375 }
1376 else
1377 as_bad ("Missing function name for .PROC (corrupted label chain)");
1378 }
1379 else
1380 as_bad ("Missing function name for .PROC");
1381 }
1382
1383 /* Assemble the instruction. Results are saved into "the_insn". */
1384 pa_ip (str);
1385
1386 /* Get somewhere to put the assembled instrution. */
1387 to = frag_more (4);
1388
1389 /* Output the opcode. */
1390 md_number_to_chars (to, the_insn.opcode, 4);
1391
1392 /* If necessary output more stuff. */
1393 if (the_insn.reloc != R_HPPA_NONE)
1394 fix_new_hppa (frag_now, (to - frag_now->fr_literal), 4, NULL,
1395 (offsetT) 0, &the_insn.exp, the_insn.pcrel,
1396 the_insn.reloc, the_insn.field_selector,
1397 the_insn.format, the_insn.arg_reloc, NULL);
1398 }
1399
1400 /* Do the real work for assembling a single instruction. Store results
1401 into the global "the_insn" variable. */
1402
1403 static void
1404 pa_ip (str)
1405 char *str;
1406 {
1407 char *error_message = "";
1408 char *s, c, *argstart, *name, *save_s;
1409 const char *args;
1410 int match = FALSE;
1411 int comma = 0;
1412 int cmpltr, nullif, flag, cond, num;
1413 unsigned long opcode;
1414 struct pa_opcode *insn;
1415
1416 /* Skip to something interesting. */
1417 for (s = str; isupper (*s) || islower (*s) || (*s >= '0' && *s <= '3'); ++s)
1418 ;
1419
1420 switch (*s)
1421 {
1422
1423 case '\0':
1424 break;
1425
1426 case ',':
1427 comma = 1;
1428
1429 /*FALLTHROUGH */
1430
1431 case ' ':
1432 *s++ = '\0';
1433 break;
1434
1435 default:
1436 as_bad ("Unknown opcode: `%s'", str);
1437 exit (1);
1438 }
1439
1440 save_s = str;
1441
1442 /* Convert everything into lower case. */
1443 while (*save_s)
1444 {
1445 if (isupper (*save_s))
1446 *save_s = tolower (*save_s);
1447 save_s++;
1448 }
1449
1450 /* Look up the opcode in the has table. */
1451 if ((insn = (struct pa_opcode *) hash_find (op_hash, str)) == NULL)
1452 {
1453 as_bad ("Unknown opcode: `%s'", str);
1454 return;
1455 }
1456
1457 if (comma)
1458 {
1459 *--s = ',';
1460 }
1461
1462 /* Mark the location where arguments for the instruction start, then
1463 start processing them. */
1464 argstart = s;
1465 for (;;)
1466 {
1467 /* Do some initialization. */
1468 opcode = insn->match;
1469 bzero (&the_insn, sizeof (the_insn));
1470
1471 the_insn.reloc = R_HPPA_NONE;
1472
1473 /* Build the opcode, checking as we go to make
1474 sure that the operands match. */
1475 for (args = insn->args;; ++args)
1476 {
1477 switch (*args)
1478 {
1479
1480 /* End of arguments. */
1481 case '\0':
1482 if (*s == '\0')
1483 match = TRUE;
1484 break;
1485
1486 case '+':
1487 if (*s == '+')
1488 {
1489 ++s;
1490 continue;
1491 }
1492 if (*s == '-')
1493 continue;
1494 break;
1495
1496 /* These must match exactly. */
1497 case '(':
1498 case ')':
1499 case ',':
1500 case ' ':
1501 if (*s++ == *args)
1502 continue;
1503 break;
1504
1505 /* Handle a 5 bit register or control register field at 10. */
1506 case 'b':
1507 case '^':
1508 num = pa_parse_number (&s, 0);
1509 CHECK_FIELD (num, 31, 0, 0);
1510 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
1511
1512 /* Handle a 5 bit register field at 15. */
1513 case 'x':
1514 num = pa_parse_number (&s, 0);
1515 CHECK_FIELD (num, 31, 0, 0);
1516 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1517
1518 /* Handle a 5 bit register field at 31. */
1519 case 'y':
1520 case 't':
1521 num = pa_parse_number (&s, 0);
1522 CHECK_FIELD (num, 31, 0, 0);
1523 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1524
1525 /* Handle a 5 bit field length at 31. */
1526 case 'T':
1527 num = pa_get_absolute_expression (&the_insn, &s);
1528 s = expr_end;
1529 CHECK_FIELD (num, 32, 1, 0);
1530 INSERT_FIELD_AND_CONTINUE (opcode, 32 - num, 0);
1531
1532 /* Handle a 5 bit immediate at 15. */
1533 case '5':
1534 num = pa_get_absolute_expression (&the_insn, &s);
1535 s = expr_end;
1536 CHECK_FIELD (num, 15, -16, 0);
1537 low_sign_unext (num, 5, &num);
1538 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1539
1540 /* Handle a 5 bit immediate at 31. */
1541 case 'V':
1542 num = pa_get_absolute_expression (&the_insn, &s);
1543 s = expr_end;
1544 CHECK_FIELD (num, 15, -16, 0)
1545 low_sign_unext (num, 5, &num);
1546 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1547
1548 /* Handle an unsigned 5 bit immediate at 31. */
1549 case 'r':
1550 num = pa_get_absolute_expression (&the_insn, &s);
1551 s = expr_end;
1552 CHECK_FIELD (num, 31, 0, 0);
1553 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1554
1555 /* Handle an unsigned 5 bit immediate at 15. */
1556 case 'R':
1557 num = pa_get_absolute_expression (&the_insn, &s);
1558 s = expr_end;
1559 CHECK_FIELD (num, 31, 0, 0);
1560 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1561
1562 /* Handle a 2 bit space identifier at 17. */
1563 case 's':
1564 num = pa_parse_number (&s, 0);
1565 CHECK_FIELD (num, 3, 0, 1);
1566 INSERT_FIELD_AND_CONTINUE (opcode, num, 14);
1567
1568 /* Handle a 3 bit space identifier at 18. */
1569 case 'S':
1570 num = pa_parse_number (&s, 0);
1571 CHECK_FIELD (num, 7, 0, 1);
1572 dis_assemble_3 (num, &num);
1573 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
1574
1575 /* Handle a completer for an indexing load or store. */
1576 case 'c':
1577 {
1578 int uu = 0;
1579 int m = 0;
1580 int i = 0;
1581 while (*s == ',' && i < 2)
1582 {
1583 s++;
1584 if (strncasecmp (s, "sm", 2) == 0)
1585 {
1586 uu = 1;
1587 m = 1;
1588 s++;
1589 i++;
1590 }
1591 else if (strncasecmp (s, "m", 1) == 0)
1592 m = 1;
1593 else if (strncasecmp (s, "s", 1) == 0)
1594 uu = 1;
1595 else
1596 as_bad ("Invalid Indexed Load Completer.");
1597 s++;
1598 i++;
1599 }
1600 if (i > 2)
1601 as_bad ("Invalid Indexed Load Completer Syntax.");
1602 opcode |= m << 5;
1603 INSERT_FIELD_AND_CONTINUE (opcode, uu, 13);
1604 }
1605
1606 /* Handle a short load/store completer. */
1607 case 'C':
1608 {
1609 int a = 0;
1610 int m = 0;
1611 if (*s == ',')
1612 {
1613 s++;
1614 if (strncasecmp (s, "ma", 2) == 0)
1615 {
1616 a = 0;
1617 m = 1;
1618 }
1619 else if (strncasecmp (s, "mb", 2) == 0)
1620 {
1621 a = 1;
1622 m = 1;
1623 }
1624 else
1625 as_bad ("Invalid Short Load/Store Completer.");
1626 s += 2;
1627 }
1628 opcode |= m << 5;
1629 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1630 }
1631
1632 /* Handle a stbys completer. */
1633 case 'Y':
1634 {
1635 int a = 0;
1636 int m = 0;
1637 int i = 0;
1638 while (*s == ',' && i < 2)
1639 {
1640 s++;
1641 if (strncasecmp (s, "m", 1) == 0)
1642 m = 1;
1643 else if (strncasecmp (s, "b", 1) == 0)
1644 a = 0;
1645 else if (strncasecmp (s, "e", 1) == 0)
1646 a = 1;
1647 else
1648 as_bad ("Invalid Store Bytes Short Completer");
1649 s++;
1650 i++;
1651 }
1652 if (i > 2)
1653 as_bad ("Invalid Store Bytes Short Completer");
1654 opcode |= m << 5;
1655 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1656 }
1657
1658 /* Handle a non-negated compare/stubtract condition. */
1659 case '<':
1660 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
1661 if (cmpltr < 0)
1662 {
1663 as_bad ("Invalid Compare/Subtract Condition: %c", *s);
1664 cmpltr = 0;
1665 }
1666 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1667
1668 /* Handle a negated or non-negated compare/subtract condition. */
1669 case '?':
1670 save_s = s;
1671 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
1672 if (cmpltr < 0)
1673 {
1674 s = save_s;
1675 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 1);
1676 if (cmpltr < 0)
1677 {
1678 as_bad ("Invalid Compare/Subtract Condition.");
1679 cmpltr = 0;
1680 }
1681 else
1682 {
1683 /* Negated condition requires an opcode change. */
1684 opcode |= 1 << 27;
1685 }
1686 }
1687 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1688
1689 /* Handle non-negated add condition. */
1690 case '!':
1691 cmpltr = pa_parse_nonneg_add_cmpltr (&s, 1);
1692 if (cmpltr < 0)
1693 {
1694 as_bad ("Invalid Compare/Subtract Condition: %c", *s);
1695 cmpltr = 0;
1696 }
1697 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1698
1699 /* Handle a negated or non-negated add condition. */
1700 case '@':
1701 save_s = s;
1702 cmpltr = pa_parse_nonneg_add_cmpltr (&s, 1);
1703 if (cmpltr < 0)
1704 {
1705 s = save_s;
1706 cmpltr = pa_parse_neg_add_cmpltr (&s, 1);
1707 if (cmpltr < 0)
1708 {
1709 as_bad ("Invalid Compare/Subtract Condition");
1710 cmpltr = 0;
1711 }
1712 else
1713 {
1714 /* Negated condition requires an opcode change. */
1715 opcode |= 1 << 27;
1716 }
1717 }
1718 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1719
1720 /* Handle a compare/subtract condition. */
1721 case 'a':
1722 cmpltr = 0;
1723 flag = 0;
1724 save_s = s;
1725 if (*s == ',')
1726 {
1727 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 0);
1728 if (cmpltr < 0)
1729 {
1730 flag = 1;
1731 s = save_s;
1732 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 0);
1733 if (cmpltr < 0)
1734 {
1735 as_bad ("Invalid Compare/Subtract Condition");
1736 }
1737 }
1738 }
1739 opcode |= cmpltr << 13;
1740 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1741
1742 /* Handle a non-negated add condition. */
1743 case 'd':
1744 cmpltr = 0;
1745 nullif = 0;
1746 flag = 0;
1747 if (*s == ',')
1748 {
1749 s++;
1750 name = s;
1751 while (*s != ',' && *s != ' ' && *s != '\t')
1752 s += 1;
1753 c = *s;
1754 *s = 0x00;
1755 if (strcmp (name, "=") == 0)
1756 cmpltr = 1;
1757 else if (strcmp (name, "<") == 0)
1758 cmpltr = 2;
1759 else if (strcmp (name, "<=") == 0)
1760 cmpltr = 3;
1761 else if (strcasecmp (name, "nuv") == 0)
1762 cmpltr = 4;
1763 else if (strcasecmp (name, "znv") == 0)
1764 cmpltr = 5;
1765 else if (strcasecmp (name, "sv") == 0)
1766 cmpltr = 6;
1767 else if (strcasecmp (name, "od") == 0)
1768 cmpltr = 7;
1769 else if (strcasecmp (name, "n") == 0)
1770 nullif = 1;
1771 else if (strcasecmp (name, "tr") == 0)
1772 {
1773 cmpltr = 0;
1774 flag = 1;
1775 }
1776 else if (strcmp (name, "<>") == 0)
1777 {
1778 cmpltr = 1;
1779 flag = 1;
1780 }
1781 else if (strcmp (name, ">=") == 0)
1782 {
1783 cmpltr = 2;
1784 flag = 1;
1785 }
1786 else if (strcmp (name, ">") == 0)
1787 {
1788 cmpltr = 3;
1789 flag = 1;
1790 }
1791 else if (strcasecmp (name, "uv") == 0)
1792 {
1793 cmpltr = 4;
1794 flag = 1;
1795 }
1796 else if (strcasecmp (name, "vnz") == 0)
1797 {
1798 cmpltr = 5;
1799 flag = 1;
1800 }
1801 else if (strcasecmp (name, "nsv") == 0)
1802 {
1803 cmpltr = 6;
1804 flag = 1;
1805 }
1806 else if (strcasecmp (name, "ev") == 0)
1807 {
1808 cmpltr = 7;
1809 flag = 1;
1810 }
1811 else
1812 as_bad ("Invalid Add Condition: %s", name);
1813 *s = c;
1814 }
1815 nullif = pa_parse_nullif (&s);
1816 opcode |= nullif << 1;
1817 opcode |= cmpltr << 13;
1818 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1819
1820 /* HANDLE a logical instruction condition. */
1821 case '&':
1822 cmpltr = 0;
1823 flag = 0;
1824 if (*s == ',')
1825 {
1826 s++;
1827 name = s;
1828 while (*s != ',' && *s != ' ' && *s != '\t')
1829 s += 1;
1830 c = *s;
1831 *s = 0x00;
1832 if (strcmp (name, "=") == 0)
1833 cmpltr = 1;
1834 else if (strcmp (name, "<") == 0)
1835 cmpltr = 2;
1836 else if (strcmp (name, "<=") == 0)
1837 cmpltr = 3;
1838 else if (strcasecmp (name, "od") == 0)
1839 cmpltr = 7;
1840 else if (strcasecmp (name, "tr") == 0)
1841 {
1842 cmpltr = 0;
1843 flag = 1;
1844 }
1845 else if (strcmp (name, "<>") == 0)
1846 {
1847 cmpltr = 1;
1848 flag = 1;
1849 }
1850 else if (strcmp (name, ">=") == 0)
1851 {
1852 cmpltr = 2;
1853 flag = 1;
1854 }
1855 else if (strcmp (name, ">") == 0)
1856 {
1857 cmpltr = 3;
1858 flag = 1;
1859 }
1860 else if (strcasecmp (name, "ev") == 0)
1861 {
1862 cmpltr = 7;
1863 flag = 1;
1864 }
1865 else
1866 as_bad ("Invalid Logical Instruction Condition.");
1867 *s = c;
1868 }
1869 opcode |= cmpltr << 13;
1870 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1871
1872 /* Handle a unit instruction condition. */
1873 case 'U':
1874 cmpltr = 0;
1875 flag = 0;
1876 if (*s == ',')
1877 {
1878 s++;
1879 if (strncasecmp (s, "sbz", 3) == 0)
1880 {
1881 cmpltr = 2;
1882 s += 3;
1883 }
1884 else if (strncasecmp (s, "shz", 3) == 0)
1885 {
1886 cmpltr = 3;
1887 s += 3;
1888 }
1889 else if (strncasecmp (s, "sdc", 3) == 0)
1890 {
1891 cmpltr = 4;
1892 s += 3;
1893 }
1894 else if (strncasecmp (s, "sbc", 3) == 0)
1895 {
1896 cmpltr = 6;
1897 s += 3;
1898 }
1899 else if (strncasecmp (s, "shc", 3) == 0)
1900 {
1901 cmpltr = 7;
1902 s += 3;
1903 }
1904 else if (strncasecmp (s, "tr", 2) == 0)
1905 {
1906 cmpltr = 0;
1907 flag = 1;
1908 s += 2;
1909 }
1910 else if (strncasecmp (s, "nbz", 3) == 0)
1911 {
1912 cmpltr = 2;
1913 flag = 1;
1914 s += 3;
1915 }
1916 else if (strncasecmp (s, "nhz", 3) == 0)
1917 {
1918 cmpltr = 3;
1919 flag = 1;
1920 s += 3;
1921 }
1922 else if (strncasecmp (s, "ndc", 3) == 0)
1923 {
1924 cmpltr = 4;
1925 flag = 1;
1926 s += 3;
1927 }
1928 else if (strncasecmp (s, "nbc", 3) == 0)
1929 {
1930 cmpltr = 6;
1931 flag = 1;
1932 s += 3;
1933 }
1934 else if (strncasecmp (s, "nhc", 3) == 0)
1935 {
1936 cmpltr = 7;
1937 flag = 1;
1938 s += 3;
1939 }
1940 else
1941 as_bad ("Invalid Logical Instruction Condition.");
1942 }
1943 opcode |= cmpltr << 13;
1944 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1945
1946 /* Handle a shift/extract/deposit condition. */
1947 case '|':
1948 case '>':
1949 cmpltr = 0;
1950 if (*s == ',')
1951 {
1952 save_s = s++;
1953 name = s;
1954 while (*s != ',' && *s != ' ' && *s != '\t')
1955 s += 1;
1956 c = *s;
1957 *s = 0x00;
1958 if (strcmp (name, "=") == 0)
1959 cmpltr = 1;
1960 else if (strcmp (name, "<") == 0)
1961 cmpltr = 2;
1962 else if (strcasecmp (name, "od") == 0)
1963 cmpltr = 3;
1964 else if (strcasecmp (name, "tr") == 0)
1965 cmpltr = 4;
1966 else if (strcmp (name, "<>") == 0)
1967 cmpltr = 5;
1968 else if (strcmp (name, ">=") == 0)
1969 cmpltr = 6;
1970 else if (strcasecmp (name, "ev") == 0)
1971 cmpltr = 7;
1972 /* Handle movb,n. Put things back the way they were.
1973 This includes moving s back to where it started. */
1974 else if (strcasecmp (name, "n") == 0 && *args == '|')
1975 {
1976 *s = c;
1977 s = save_s;
1978 continue;
1979 }
1980 else
1981 as_bad ("Invalid Shift/Extract/Deposit Condition.");
1982 *s = c;
1983 }
1984 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1985
1986 /* Handle bvb and bb conditions. */
1987 case '~':
1988 cmpltr = 0;
1989 if (*s == ',')
1990 {
1991 s++;
1992 if (strncmp (s, "<", 1) == 0)
1993 {
1994 cmpltr = 2;
1995 s++;
1996 }
1997 else if (strncmp (s, ">=", 2) == 0)
1998 {
1999 cmpltr = 6;
2000 s += 2;
2001 }
2002 else
2003 as_bad ("Invalid Bit Branch Condition: %c", *s);
2004 }
2005 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
2006
2007 /* Handle a system control completer. */
2008 case 'Z':
2009 if (*s == ',' && (*(s + 1) == 'm' || *(s + 1) == 'M'))
2010 {
2011 flag = 1;
2012 s += 2;
2013 }
2014 else
2015 flag = 0;
2016
2017 INSERT_FIELD_AND_CONTINUE (opcode, flag, 5);
2018
2019 /* Handle a nullification completer for branch instructions. */
2020 case 'n':
2021 nullif = pa_parse_nullif (&s);
2022 INSERT_FIELD_AND_CONTINUE (opcode, nullif, 1);
2023
2024 /* Handle a nullification completer for copr and spop insns. */
2025 case 'N':
2026 nullif = pa_parse_nullif (&s);
2027 INSERT_FIELD_AND_CONTINUE (opcode, nullif, 5);
2028
2029 /* Handle a 11 bit immediate at 31. */
2030 case 'i':
2031 the_insn.field_selector = pa_chk_field_selector (&s);
2032 get_expression (s);
2033 s = expr_end;
2034 if (the_insn.exp.X_op == O_constant)
2035 {
2036 num = evaluate_absolute (&the_insn);
2037 CHECK_FIELD (num, 1023, -1024, 0);
2038 low_sign_unext (num, 11, &num);
2039 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2040 }
2041 else
2042 {
2043 if (is_DP_relative (the_insn.exp))
2044 the_insn.reloc = R_HPPA_GOTOFF;
2045 else if (is_PC_relative (the_insn.exp))
2046 the_insn.reloc = R_HPPA_PCREL_CALL;
2047 else if (is_complex (the_insn.exp))
2048 the_insn.reloc = R_HPPA_COMPLEX;
2049 else
2050 the_insn.reloc = R_HPPA;
2051 the_insn.format = 11;
2052 continue;
2053 }
2054
2055 /* Handle a 14 bit immediate at 31. */
2056 case 'j':
2057 the_insn.field_selector = pa_chk_field_selector (&s);
2058 get_expression (s);
2059 s = expr_end;
2060 if (the_insn.exp.X_op == O_constant)
2061 {
2062 num = evaluate_absolute (&the_insn);
2063 CHECK_FIELD (num, 8191, -8192, 0);
2064 low_sign_unext (num, 14, &num);
2065 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2066 }
2067 else
2068 {
2069 if (is_DP_relative (the_insn.exp))
2070 the_insn.reloc = R_HPPA_GOTOFF;
2071 else if (is_PC_relative (the_insn.exp))
2072 the_insn.reloc = R_HPPA_PCREL_CALL;
2073 else if (is_complex (the_insn.exp))
2074 the_insn.reloc = R_HPPA_COMPLEX;
2075 else
2076 the_insn.reloc = R_HPPA;
2077 the_insn.format = 14;
2078 continue;
2079 }
2080
2081 /* Handle a 21 bit immediate at 31. */
2082 case 'k':
2083 the_insn.field_selector = pa_chk_field_selector (&s);
2084 get_expression (s);
2085 s = expr_end;
2086 if (the_insn.exp.X_op == O_constant)
2087 {
2088 num = evaluate_absolute (&the_insn);
2089 CHECK_FIELD (num >> 11, 1048575, -1048576, 0);
2090 dis_assemble_21 (num, &num);
2091 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2092 }
2093 else
2094 {
2095 if (is_DP_relative (the_insn.exp))
2096 the_insn.reloc = R_HPPA_GOTOFF;
2097 else if (is_PC_relative (the_insn.exp))
2098 the_insn.reloc = R_HPPA_PCREL_CALL;
2099 else if (is_complex (the_insn.exp))
2100 the_insn.reloc = R_HPPA_COMPLEX;
2101 else
2102 the_insn.reloc = R_HPPA;
2103 the_insn.format = 21;
2104 continue;
2105 }
2106
2107 /* Handle a 12 bit branch displacement. */
2108 case 'w':
2109 the_insn.field_selector = pa_chk_field_selector (&s);
2110 get_expression (s);
2111 s = expr_end;
2112 the_insn.pcrel = 1;
2113 if (!strcmp (S_GET_NAME (the_insn.exp.X_add_symbol), "L$0\001"))
2114 {
2115 unsigned int w1, w, result;
2116
2117 num = evaluate_absolute (&the_insn);
2118 if (num % 4)
2119 {
2120 as_bad ("Branch to unaligned address");
2121 break;
2122 }
2123 CHECK_FIELD (num, 8191, -8192, 0);
2124 sign_unext ((num - 8) >> 2, 12, &result);
2125 dis_assemble_12 (result, &w1, &w);
2126 INSERT_FIELD_AND_CONTINUE (opcode, ((w1 << 2) | w), 0);
2127 }
2128 else
2129 {
2130 if (is_complex (the_insn.exp))
2131 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2132 else
2133 the_insn.reloc = R_HPPA_PCREL_CALL;
2134 the_insn.format = 12;
2135 the_insn.arg_reloc = last_call_desc.arg_reloc;
2136 bzero (&last_call_desc, sizeof (struct call_desc));
2137 s = expr_end;
2138 continue;
2139 }
2140
2141 /* Handle a 17 bit branch displacement. */
2142 case 'W':
2143 the_insn.field_selector = pa_chk_field_selector (&s);
2144 get_expression (s);
2145 s = expr_end;
2146 the_insn.pcrel = 1;
2147 if (!the_insn.exp.X_add_symbol
2148 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2149 "L$0\001"))
2150 {
2151 unsigned int w2, w1, w, result;
2152
2153 num = evaluate_absolute (&the_insn);
2154 if (num % 4)
2155 {
2156 as_bad ("Branch to unaligned address");
2157 break;
2158 }
2159 CHECK_FIELD (num, 262143, -262144, 0);
2160
2161 if (the_insn.exp.X_add_symbol)
2162 num -= 8;
2163
2164 sign_unext (num >> 2, 17, &result);
2165 dis_assemble_17 (result, &w1, &w2, &w);
2166 INSERT_FIELD_AND_CONTINUE (opcode,
2167 ((w2 << 2) | (w1 << 16) | w), 0);
2168 }
2169 else
2170 {
2171 if (is_complex (the_insn.exp))
2172 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2173 else
2174 the_insn.reloc = R_HPPA_PCREL_CALL;
2175 the_insn.format = 17;
2176 the_insn.arg_reloc = last_call_desc.arg_reloc;
2177 bzero (&last_call_desc, sizeof (struct call_desc));
2178 continue;
2179 }
2180
2181 /* Handle an absolute 17 bit branch target. */
2182 case 'z':
2183 the_insn.field_selector = pa_chk_field_selector (&s);
2184 get_expression (s);
2185 s = expr_end;
2186 the_insn.pcrel = 0;
2187 if (!the_insn.exp.X_add_symbol
2188 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2189 "L$0\001"))
2190 {
2191 unsigned int w2, w1, w, result;
2192
2193 num = evaluate_absolute (&the_insn);
2194 if (num % 4)
2195 {
2196 as_bad ("Branch to unaligned address");
2197 break;
2198 }
2199 CHECK_FIELD (num, 262143, -262144, 0);
2200
2201 if (the_insn.exp.X_add_symbol)
2202 num -= 8;
2203
2204 sign_unext (num >> 2, 17, &result);
2205 dis_assemble_17 (result, &w1, &w2, &w);
2206 INSERT_FIELD_AND_CONTINUE (opcode,
2207 ((w2 << 2) | (w1 << 16) | w), 0);
2208 }
2209 else
2210 {
2211 if (is_complex (the_insn.exp))
2212 the_insn.reloc = R_HPPA_COMPLEX_ABS_CALL;
2213 else
2214 the_insn.reloc = R_HPPA_ABS_CALL;
2215 the_insn.format = 17;
2216 continue;
2217 }
2218
2219 /* Handle a 5 bit shift count at 26. */
2220 case 'p':
2221 num = pa_get_absolute_expression (&the_insn, &s);
2222 s = expr_end;
2223 CHECK_FIELD (num, 31, 0, 0);
2224 INSERT_FIELD_AND_CONTINUE (opcode, 31 - num, 5);
2225
2226 /* Handle a 5 bit bit position at 26. */
2227 case 'P':
2228 num = pa_get_absolute_expression (&the_insn, &s);
2229 s = expr_end;
2230 CHECK_FIELD (num, 31, 0, 0);
2231 INSERT_FIELD_AND_CONTINUE (opcode, num, 5);
2232
2233 /* Handle a 5 bit immediate at 10. */
2234 case 'Q':
2235 num = pa_get_absolute_expression (&the_insn, &s);
2236 s = expr_end;
2237 CHECK_FIELD (num, 31, 0, 0);
2238 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
2239
2240 /* Handle a 13 bit immediate at 18. */
2241 case 'A':
2242 num = pa_get_absolute_expression (&the_insn, &s);
2243 s = expr_end;
2244 CHECK_FIELD (num, 4095, -4096, 0);
2245 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
2246
2247 /* Handle a 26 bit immediate at 31. */
2248 case 'D':
2249 num = pa_get_absolute_expression (&the_insn, &s);
2250 s = expr_end;
2251 CHECK_FIELD (num, 671108864, 0, 0);
2252 INSERT_FIELD_AND_CONTINUE (opcode, num, 1);
2253
2254 /* Handle a 3 bit SFU identifier at 25. */
2255 case 'f':
2256 if (*s++ != ',')
2257 as_bad ("Invalid SFU identifier");
2258 num = pa_get_absolute_expression (&the_insn, &s);
2259 s = expr_end;
2260 CHECK_FIELD (num, 7, 0, 0);
2261 INSERT_FIELD_AND_CONTINUE (opcode, num, 6);
2262
2263 /* Handle a 20 bit SOP field for spop0. */
2264 case 'O':
2265 num = pa_get_absolute_expression (&the_insn, &s);
2266 s = expr_end;
2267 CHECK_FIELD (num, 1048575, 0, 0);
2268 num = (num & 0x1f) | ((num & 0x000fffe0) << 6);
2269 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2270
2271 /* Handle a 15bit SOP field for spop1. */
2272 case 'o':
2273 num = pa_get_absolute_expression (&the_insn, &s);
2274 s = expr_end;
2275 CHECK_FIELD (num, 32767, 0, 0);
2276 INSERT_FIELD_AND_CONTINUE (opcode, num, 11);
2277
2278 /* Handle a 10bit SOP field for spop3. */
2279 case '0':
2280 num = pa_get_absolute_expression (&the_insn, &s);
2281 s = expr_end;
2282 CHECK_FIELD (num, 1023, 0, 0);
2283 num = (num & 0x1f) | ((num & 0x000003e0) << 6);
2284 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2285
2286 /* Handle a 15 bit SOP field for spop2. */
2287 case '1':
2288 num = pa_get_absolute_expression (&the_insn, &s);
2289 s = expr_end;
2290 CHECK_FIELD (num, 32767, 0, 0);
2291 num = (num & 0x1f) | ((num & 0x00007fe0) << 6);
2292 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2293
2294 /* Handle a 3-bit co-processor ID field. */
2295 case 'u':
2296 if (*s++ != ',')
2297 as_bad ("Invalid COPR identifier");
2298 num = pa_get_absolute_expression (&the_insn, &s);
2299 s = expr_end;
2300 CHECK_FIELD (num, 7, 0, 0);
2301 INSERT_FIELD_AND_CONTINUE (opcode, num, 6);
2302
2303 /* Handle a 22bit SOP field for copr. */
2304 case '2':
2305 num = pa_get_absolute_expression (&the_insn, &s);
2306 s = expr_end;
2307 CHECK_FIELD (num, 4194303, 0, 0);
2308 num = (num & 0x1f) | ((num & 0x003fffe0) << 4);
2309 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2310
2311 /* Handle a source FP operand format completer. */
2312 case 'F':
2313 flag = pa_parse_fp_format (&s);
2314 the_insn.fpof1 = flag;
2315 INSERT_FIELD_AND_CONTINUE (opcode, flag, 11);
2316
2317 /* Handle a destination FP operand format completer. */
2318 case 'G':
2319 /* pa_parse_format needs the ',' prefix. */
2320 s--;
2321 flag = pa_parse_fp_format (&s);
2322 the_insn.fpof2 = flag;
2323 INSERT_FIELD_AND_CONTINUE (opcode, flag, 13);
2324
2325 /* Handle FP compare conditions. */
2326 case 'M':
2327 cond = pa_parse_fp_cmp_cond (&s);
2328 INSERT_FIELD_AND_CONTINUE (opcode, cond, 0);
2329
2330 /* Handle L/R register halves like 't'. */
2331 case 'v':
2332 {
2333 struct pa_89_fp_reg_struct result;
2334
2335 pa_parse_number (&s, &result);
2336 CHECK_FIELD (result.number_part, 31, 0, 0);
2337 opcode |= result.number_part;
2338
2339 /* 0x30 opcodes are FP arithmetic operation opcodes
2340 and need to be turned into 0x38 opcodes. This
2341 is not necessary for loads/stores. */
2342 if (need_89_opcode (&the_insn, &result)
2343 && ((opcode & 0xfc000000) == 0x30000000))
2344 opcode |= 1 << 27;
2345
2346 INSERT_FIELD_AND_CONTINUE (opcode, result.l_r_select & 1, 6);
2347 }
2348
2349 /* Handle L/R register halves like 'b'. */
2350 case 'E':
2351 {
2352 struct pa_89_fp_reg_struct result;
2353
2354 pa_parse_number (&s, &result);
2355 CHECK_FIELD (result.number_part, 31, 0, 0);
2356 opcode |= result.number_part << 21;
2357 if (need_89_opcode (&the_insn, &result))
2358 {
2359 opcode |= (result.l_r_select & 1) << 7;
2360 opcode |= 1 << 27;
2361 }
2362 continue;
2363 }
2364
2365 /* Handle L/R register halves like 'x'. */
2366 case 'X':
2367 {
2368 struct pa_89_fp_reg_struct result;
2369
2370 pa_parse_number (&s, &result);
2371 CHECK_FIELD (result.number_part, 31, 0, 0);
2372 opcode |= (result.number_part & 0x1f) << 16;
2373 if (need_89_opcode (&the_insn, &result))
2374 {
2375 opcode |= (result.l_r_select & 1) << 12;
2376 opcode |= 1 << 27;
2377 }
2378 continue;
2379 }
2380
2381 /* Handle a 5 bit register field at 10. */
2382 case '4':
2383 {
2384 struct pa_89_fp_reg_struct result;
2385
2386 pa_parse_number (&s, &result);
2387 CHECK_FIELD (result.number_part, 31, 0, 0);
2388 if (the_insn.fpof1 == SGL)
2389 {
2390 result.number_part &= 0xF;
2391 result.number_part |= (result.l_r_select & 1) << 4;
2392 }
2393 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 21);
2394 }
2395
2396 /* Handle a 5 bit register field at 15. */
2397 case '6':
2398 {
2399 struct pa_89_fp_reg_struct result;
2400
2401 pa_parse_number (&s, &result);
2402 CHECK_FIELD (result.number_part, 31, 0, 0);
2403 if (the_insn.fpof1 == SGL)
2404 {
2405 result.number_part &= 0xF;
2406 result.number_part |= (result.l_r_select & 1) << 4;
2407 }
2408 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 16);
2409 }
2410
2411 /* Handle a 5 bit register field at 31. */
2412 case '7':
2413 {
2414 struct pa_89_fp_reg_struct result;
2415
2416 pa_parse_number (&s, &result);
2417 CHECK_FIELD (result.number_part, 31, 0, 0);
2418 if (the_insn.fpof1 == SGL)
2419 {
2420 result.number_part &= 0xF;
2421 result.number_part |= (result.l_r_select & 1) << 4;
2422 }
2423 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 0);
2424 }
2425
2426 /* Handle a 5 bit register field at 20. */
2427 case '8':
2428 {
2429 struct pa_89_fp_reg_struct result;
2430
2431 pa_parse_number (&s, &result);
2432 CHECK_FIELD (result.number_part, 31, 0, 0);
2433 if (the_insn.fpof1 == SGL)
2434 {
2435 result.number_part &= 0xF;
2436 result.number_part |= (result.l_r_select & 1) << 4;
2437 }
2438 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 11);
2439 }
2440
2441 /* Handle a 5 bit register field at 25. */
2442 case '9':
2443 {
2444 struct pa_89_fp_reg_struct result;
2445
2446 pa_parse_number (&s, &result);
2447 CHECK_FIELD (result.number_part, 31, 0, 0);
2448 if (the_insn.fpof1 == SGL)
2449 {
2450 result.number_part &= 0xF;
2451 result.number_part |= (result.l_r_select & 1) << 4;
2452 }
2453 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 6);
2454 }
2455
2456 /* Handle a floating point operand format at 26.
2457 Only allows single and double precision. */
2458 case 'H':
2459 flag = pa_parse_fp_format (&s);
2460 switch (flag)
2461 {
2462 case SGL:
2463 opcode |= 0x20;
2464 case DBL:
2465 the_insn.fpof1 = flag;
2466 continue;
2467
2468 case QUAD:
2469 case ILLEGAL_FMT:
2470 default:
2471 as_bad ("Invalid Floating Point Operand Format.");
2472 }
2473 break;
2474
2475 default:
2476 abort ();
2477 }
2478 break;
2479 }
2480
2481 /* Check if the args matched. */
2482 if (match == FALSE)
2483 {
2484 if (&insn[1] - pa_opcodes < NUMOPCODES
2485 && !strcmp (insn->name, insn[1].name))
2486 {
2487 ++insn;
2488 s = argstart;
2489 continue;
2490 }
2491 else
2492 {
2493 as_bad ("Invalid operands %s", error_message);
2494 return;
2495 }
2496 }
2497 break;
2498 }
2499
2500 the_insn.opcode = opcode;
2501 }
2502
2503 /* Turn a string in input_line_pointer into a floating point constant of type
2504 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
2505 emitted is stored in *sizeP . An error message or NULL is returned. */
2506
2507 #define MAX_LITTLENUMS 6
2508
2509 char *
2510 md_atof (type, litP, sizeP)
2511 char type;
2512 char *litP;
2513 int *sizeP;
2514 {
2515 int prec;
2516 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2517 LITTLENUM_TYPE *wordP;
2518 char *t;
2519
2520 switch (type)
2521 {
2522
2523 case 'f':
2524 case 'F':
2525 case 's':
2526 case 'S':
2527 prec = 2;
2528 break;
2529
2530 case 'd':
2531 case 'D':
2532 case 'r':
2533 case 'R':
2534 prec = 4;
2535 break;
2536
2537 case 'x':
2538 case 'X':
2539 prec = 6;
2540 break;
2541
2542 case 'p':
2543 case 'P':
2544 prec = 6;
2545 break;
2546
2547 default:
2548 *sizeP = 0;
2549 return "Bad call to MD_ATOF()";
2550 }
2551 t = atof_ieee (input_line_pointer, type, words);
2552 if (t)
2553 input_line_pointer = t;
2554 *sizeP = prec * sizeof (LITTLENUM_TYPE);
2555 for (wordP = words; prec--;)
2556 {
2557 md_number_to_chars (litP, (valueT) (*wordP++), sizeof (LITTLENUM_TYPE));
2558 litP += sizeof (LITTLENUM_TYPE);
2559 }
2560 return NULL;
2561 }
2562
2563 /* Write out big-endian. */
2564
2565 void
2566 md_number_to_chars (buf, val, n)
2567 char *buf;
2568 valueT val;
2569 int n;
2570 {
2571 number_to_chars_bigendian (buf, val, n);
2572 }
2573
2574 /* Translate internal representation of relocation info to BFD target
2575 format. */
2576
2577 arelent **
2578 tc_gen_reloc (section, fixp)
2579 asection *section;
2580 fixS *fixp;
2581 {
2582 arelent *reloc;
2583 struct hppa_fix_struct *hppa_fixp = fixp->tc_fix_data;
2584 bfd_reloc_code_real_type code;
2585 static int unwind_reloc_fixp_cnt = 0;
2586 static arelent *unwind_reloc_entryP = NULL;
2587 static arelent *no_relocs = NULL;
2588 arelent **relocs;
2589 bfd_reloc_code_real_type **codes;
2590 int n_relocs;
2591 int i;
2592
2593 if (fixp->fx_addsy == 0)
2594 return &no_relocs;
2595 assert (hppa_fixp != 0);
2596 assert (section != 0);
2597
2598 #ifdef OBJ_ELF
2599 /* Yuk. I would really like to push all this ELF specific unwind
2600 crud into BFD and the linker. That's how SOM does it -- and
2601 if we could make ELF emulate that then we could share more code
2602 in GAS (and potentially a gnu-linker later).
2603
2604 Unwind section relocations are handled in a special way.
2605 The relocations for the .unwind section are originally
2606 built in the usual way. That is, for each unwind table
2607 entry there are two relocations: one for the beginning of
2608 the function and one for the end.
2609
2610 The first time we enter this function we create a
2611 relocation of the type R_HPPA_UNWIND_ENTRIES. The addend
2612 of the relocation is initialized to 0. Each additional
2613 pair of times this function is called for the unwind
2614 section represents an additional unwind table entry. Thus,
2615 the addend of the relocation should end up to be the number
2616 of unwind table entries. */
2617 if (strcmp (UNWIND_SECTION_NAME, section->name) == 0)
2618 {
2619 if (unwind_reloc_entryP == NULL)
2620 {
2621 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
2622 sizeof (arelent));
2623 assert (reloc != 0);
2624 unwind_reloc_entryP = reloc;
2625 unwind_reloc_fixp_cnt++;
2626 unwind_reloc_entryP->address
2627 = fixp->fx_frag->fr_address + fixp->fx_where;
2628 /* A pointer to any function will do. We only
2629 need one to tell us what section the unwind
2630 relocations are for. */
2631 unwind_reloc_entryP->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2632 hppa_fixp->fx_r_type = code = R_HPPA_UNWIND_ENTRIES;
2633 fixp->fx_r_type = R_HPPA_UNWIND;
2634 unwind_reloc_entryP->howto = bfd_reloc_type_lookup (stdoutput, code);
2635 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
2636 relocs = (arelent **) bfd_alloc_by_size_t (stdoutput,
2637 sizeof (arelent *) * 2);
2638 assert (relocs != 0);
2639 relocs[0] = unwind_reloc_entryP;
2640 relocs[1] = NULL;
2641 return relocs;
2642 }
2643 unwind_reloc_fixp_cnt++;
2644 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
2645
2646 return &no_relocs;
2647 }
2648 #endif
2649
2650 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent));
2651 assert (reloc != 0);
2652
2653 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2654 codes = hppa_gen_reloc_type (stdoutput,
2655 fixp->fx_r_type,
2656 hppa_fixp->fx_r_format,
2657 hppa_fixp->fx_r_field);
2658
2659 for (n_relocs = 0; codes[n_relocs]; n_relocs++)
2660 ;
2661
2662 relocs = (arelent **)
2663 bfd_alloc_by_size_t (stdoutput, sizeof (arelent *) * n_relocs + 1);
2664 assert (relocs != 0);
2665
2666 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
2667 sizeof (arelent) * n_relocs);
2668 if (n_relocs > 0)
2669 assert (reloc != 0);
2670
2671 for (i = 0; i < n_relocs; i++)
2672 relocs[i] = &reloc[i];
2673
2674 relocs[n_relocs] = NULL;
2675
2676 #ifdef OBJ_ELF
2677 switch (fixp->fx_r_type)
2678 {
2679 case R_HPPA_COMPLEX:
2680 case R_HPPA_COMPLEX_PCREL_CALL:
2681 case R_HPPA_COMPLEX_ABS_CALL:
2682 assert (n_relocs == 5);
2683
2684 for (i = 0; i < n_relocs; i++)
2685 {
2686 reloc[i].sym_ptr_ptr = NULL;
2687 reloc[i].address = 0;
2688 reloc[i].addend = 0;
2689 reloc[i].howto = bfd_reloc_type_lookup (stdoutput, *codes[i]);
2690 assert (reloc[i].howto && *codes[i] == reloc[i].howto->type);
2691 }
2692
2693 reloc[0].sym_ptr_ptr = &fixp->fx_addsy->bsym;
2694 reloc[1].sym_ptr_ptr = &fixp->fx_subsy->bsym;
2695 reloc[4].address = fixp->fx_frag->fr_address + fixp->fx_where;
2696
2697 if (fixp->fx_r_type == R_HPPA_COMPLEX)
2698 reloc[3].addend = fixp->fx_addnumber;
2699 else if (fixp->fx_r_type == R_HPPA_COMPLEX_PCREL_CALL ||
2700 fixp->fx_r_type == R_HPPA_COMPLEX_ABS_CALL)
2701 reloc[1].addend = fixp->fx_addnumber;
2702
2703 break;
2704
2705 default:
2706 assert (n_relocs == 1);
2707
2708 code = *codes[0];
2709
2710 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2711 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
2712 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
2713 reloc->addend = 0; /* default */
2714
2715 assert (reloc->howto && code == reloc->howto->type);
2716
2717 /* Now, do any processing that is dependent on the relocation type. */
2718 switch (code)
2719 {
2720 case R_HPPA_PLABEL_32:
2721 case R_HPPA_PLABEL_11:
2722 case R_HPPA_PLABEL_14:
2723 case R_HPPA_PLABEL_L21:
2724 case R_HPPA_PLABEL_R11:
2725 case R_HPPA_PLABEL_R14:
2726 /* For plabel relocations, the addend of the
2727 relocation should be either 0 (no static link) or 2
2728 (static link required).
2729
2730 FIXME: We always assume no static link! */
2731 reloc->addend = 0;
2732 break;
2733
2734 case R_HPPA_ABS_CALL_11:
2735 case R_HPPA_ABS_CALL_14:
2736 case R_HPPA_ABS_CALL_17:
2737 case R_HPPA_ABS_CALL_L21:
2738 case R_HPPA_ABS_CALL_R11:
2739 case R_HPPA_ABS_CALL_R14:
2740 case R_HPPA_ABS_CALL_R17:
2741 case R_HPPA_ABS_CALL_LS21:
2742 case R_HPPA_ABS_CALL_RS11:
2743 case R_HPPA_ABS_CALL_RS14:
2744 case R_HPPA_ABS_CALL_RS17:
2745 case R_HPPA_ABS_CALL_LD21:
2746 case R_HPPA_ABS_CALL_RD11:
2747 case R_HPPA_ABS_CALL_RD14:
2748 case R_HPPA_ABS_CALL_RD17:
2749 case R_HPPA_ABS_CALL_LR21:
2750 case R_HPPA_ABS_CALL_RR14:
2751 case R_HPPA_ABS_CALL_RR17:
2752
2753 case R_HPPA_PCREL_CALL_11:
2754 case R_HPPA_PCREL_CALL_14:
2755 case R_HPPA_PCREL_CALL_17:
2756 case R_HPPA_PCREL_CALL_L21:
2757 case R_HPPA_PCREL_CALL_R11:
2758 case R_HPPA_PCREL_CALL_R14:
2759 case R_HPPA_PCREL_CALL_R17:
2760 case R_HPPA_PCREL_CALL_LS21:
2761 case R_HPPA_PCREL_CALL_RS11:
2762 case R_HPPA_PCREL_CALL_RS14:
2763 case R_HPPA_PCREL_CALL_RS17:
2764 case R_HPPA_PCREL_CALL_LD21:
2765 case R_HPPA_PCREL_CALL_RD11:
2766 case R_HPPA_PCREL_CALL_RD14:
2767 case R_HPPA_PCREL_CALL_RD17:
2768 case R_HPPA_PCREL_CALL_LR21:
2769 case R_HPPA_PCREL_CALL_RR14:
2770 case R_HPPA_PCREL_CALL_RR17:
2771 /* The constant is stored in the instruction. */
2772 reloc->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
2773 break;
2774 default:
2775 reloc->addend = fixp->fx_addnumber;
2776 break;
2777 }
2778 break;
2779 }
2780 #else /* OBJ_SOM */
2781
2782 /* Walk over reach relocation returned by the BFD backend. */
2783 for (i = 0; i < n_relocs; i++)
2784 {
2785 code = *codes[i];
2786
2787 relocs[i]->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2788 relocs[i]->howto = bfd_reloc_type_lookup (stdoutput, code);
2789 relocs[i]->address = fixp->fx_frag->fr_address + fixp->fx_where;
2790
2791 switch (code)
2792 {
2793 case R_PCREL_CALL:
2794 case R_ABS_CALL:
2795 relocs[i]->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
2796 break;
2797
2798 case R_DATA_PLABEL:
2799 case R_CODE_PLABEL:
2800 /* For plabel relocations, the addend of the
2801 relocation should be either 0 (no static link) or 2
2802 (static link required).
2803
2804 FIXME: We always assume no static link! */
2805 relocs[i]->addend = 0;
2806 break;
2807
2808 case R_N_MODE:
2809 case R_S_MODE:
2810 case R_D_MODE:
2811 case R_R_MODE:
2812 case R_EXIT:
2813 case R_FSEL:
2814 case R_LSEL:
2815 case R_RSEL:
2816 /* There is no symbol or addend associated with these fixups. */
2817 relocs[i]->sym_ptr_ptr = &dummy_symbol->bsym;
2818 relocs[i]->addend = 0;
2819 break;
2820
2821 default:
2822 relocs[i]->addend = fixp->fx_addnumber;
2823 break;
2824 }
2825 }
2826 #endif
2827
2828 return relocs;
2829 }
2830
2831 /* Process any machine dependent frag types. */
2832
2833 void
2834 md_convert_frag (abfd, sec, fragP)
2835 register bfd *abfd;
2836 register asection *sec;
2837 register fragS *fragP;
2838 {
2839 unsigned int address;
2840
2841 if (fragP->fr_type == rs_machine_dependent)
2842 {
2843 switch ((int) fragP->fr_subtype)
2844 {
2845 case 0:
2846 fragP->fr_type = rs_fill;
2847 know (fragP->fr_var == 1);
2848 know (fragP->fr_next);
2849 address = fragP->fr_address + fragP->fr_fix;
2850 if (address % fragP->fr_offset)
2851 {
2852 fragP->fr_offset =
2853 fragP->fr_next->fr_address
2854 - fragP->fr_address
2855 - fragP->fr_fix;
2856 }
2857 else
2858 fragP->fr_offset = 0;
2859 break;
2860 }
2861 }
2862 }
2863
2864 /* Round up a section size to the appropriate boundary. */
2865
2866 valueT
2867 md_section_align (segment, size)
2868 asection *segment;
2869 valueT size;
2870 {
2871 int align = bfd_get_section_alignment (stdoutput, segment);
2872 int align2 = (1 << align) - 1;
2873
2874 return (size + align2) & ~align2;
2875 }
2876
2877 /* Create a short jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2878 void
2879 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
2880 char *ptr;
2881 addressT from_addr, to_addr;
2882 fragS *frag;
2883 symbolS *to_symbol;
2884 {
2885 fprintf (stderr, "pa_create_short_jmp\n");
2886 abort ();
2887 }
2888
2889 /* Create a long jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2890 void
2891 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
2892 char *ptr;
2893 addressT from_addr, to_addr;
2894 fragS *frag;
2895 symbolS *to_symbol;
2896 {
2897 fprintf (stderr, "pa_create_long_jump\n");
2898 abort ();
2899 }
2900
2901 /* Return the approximate size of a frag before relaxation has occurred. */
2902 int
2903 md_estimate_size_before_relax (fragP, segment)
2904 register fragS *fragP;
2905 asection *segment;
2906 {
2907 int size;
2908
2909 size = 0;
2910
2911 while ((fragP->fr_fix + size) % fragP->fr_offset)
2912 size++;
2913
2914 return size;
2915 }
2916
2917 /* Parse machine dependent options. There are none on the PA. */
2918 int
2919 md_parse_option (argP, cntP, vecP)
2920 char **argP;
2921 int *cntP;
2922 char ***vecP;
2923 {
2924 return 1;
2925 }
2926
2927 /* We have no need to default values of symbols. */
2928
2929 symbolS *
2930 md_undefined_symbol (name)
2931 char *name;
2932 {
2933 return 0;
2934 }
2935
2936 /* Parse an operand that is machine-specific.
2937 We just return without modifying the expression as we have nothing
2938 to do on the PA. */
2939
2940 void
2941 md_operand (expressionP)
2942 expressionS *expressionP;
2943 {
2944 }
2945
2946 /* Apply a fixup to an instruction. */
2947
2948 int
2949 md_apply_fix (fixP, valp)
2950 fixS *fixP;
2951 valueT *valp;
2952 {
2953 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
2954 struct hppa_fix_struct *hppa_fixP = fixP->tc_fix_data;
2955 long new_val, result;
2956 unsigned int w1, w2, w;
2957 valueT val = *valp;
2958
2959 /* SOM uses R_HPPA_ENTRY and R_HPPA_EXIT relocations which can
2960 never be "applied" (they are just markers). */
2961 #ifdef OBJ_SOM
2962 if (fixP->fx_r_type == R_HPPA_ENTRY
2963 || fixP->fx_r_type == R_HPPA_EXIT)
2964 return 1;
2965 #endif
2966
2967 /* There should have been an HPPA specific fixup associated
2968 with the GAS fixup. */
2969 if (hppa_fixP)
2970 {
2971 unsigned long buf_wd = bfd_get_32 (stdoutput, buf);
2972 unsigned char fmt = bfd_hppa_insn2fmt (buf_wd);
2973
2974 if (fixP->fx_r_type == R_HPPA_NONE)
2975 fmt = 0;
2976
2977 /* Remember this value for emit_reloc. FIXME, is this braindamage
2978 documented anywhere!?! */
2979 fixP->fx_addnumber = val;
2980
2981 /* Check if this is an undefined symbol. No relocation can
2982 possibly be performed in this case.
2983
2984 Also avoid doing anything for pc-relative fixups in which the
2985 fixup is in a different space than the symbol it references. */
2986 if ((fixP->fx_addsy && fixP->fx_addsy->bsym->section == &bfd_und_section)
2987 || (fixP->fx_subsy
2988 && fixP->fx_subsy->bsym->section == &bfd_und_section)
2989 || (fixP->fx_pcrel
2990 && fixP->fx_addsy
2991 && S_GET_SEGMENT (fixP->fx_addsy) != hppa_fixP->segment)
2992 || (fixP->fx_pcrel
2993 && fixP->fx_subsy
2994 && S_GET_SEGMENT (fixP->fx_subsy) != hppa_fixP->segment))
2995 return 1;
2996
2997 /* PLABEL field selectors should not be passed to hppa_field_adjust. */
2998 if (fmt != 0 && hppa_fixP->fx_r_field != R_HPPA_PSEL
2999 && hppa_fixP->fx_r_field != R_HPPA_LPSEL
3000 && hppa_fixP->fx_r_field != R_HPPA_RPSEL
3001 && hppa_fixP->fx_r_field != R_HPPA_TSEL
3002 && hppa_fixP->fx_r_field != R_HPPA_LTSEL
3003 && hppa_fixP->fx_r_field != R_HPPA_RTSEL)
3004 new_val = hppa_field_adjust (val, 0, hppa_fixP->fx_r_field);
3005 else
3006 new_val = 0;
3007
3008 switch (fmt)
3009 {
3010 /* Handle all opcodes with the 'j' operand type. */
3011 case 14:
3012 CHECK_FIELD (new_val, 8191, -8192, 0);
3013
3014 /* Mask off 14 bits to be changed. */
3015 bfd_put_32 (stdoutput,
3016 bfd_get_32 (stdoutput, buf) & 0xffffc000,
3017 buf);
3018 low_sign_unext (new_val, 14, &result);
3019 break;
3020
3021 /* Handle all opcodes with the 'k' operand type. */
3022 case 21:
3023 CHECK_FIELD (new_val, 2097152, 0, 0);
3024
3025 /* Mask off 21 bits to be changed. */
3026 bfd_put_32 (stdoutput,
3027 bfd_get_32 (stdoutput, buf) & 0xffe00000,
3028 buf);
3029 dis_assemble_21 (new_val, &result);
3030 break;
3031
3032 /* Handle all the opcodes with the 'i' operand type. */
3033 case 11:
3034 CHECK_FIELD (new_val, 1023, -1023, 0);
3035
3036 /* Mask off 11 bits to be changed. */
3037 bfd_put_32 (stdoutput,
3038 bfd_get_32 (stdoutput, buf) & 0xffff800,
3039 buf);
3040 low_sign_unext (new_val, 11, &result);
3041 break;
3042
3043 /* Handle all the opcodes with the 'w' operand type. */
3044 case 12:
3045 CHECK_FIELD (new_val, 8191, -8192, 0)
3046
3047 /* Mask off 11 bits to be changed. */
3048 sign_unext ((new_val - 8) >> 2, 12, &result);
3049 bfd_put_32 (stdoutput,
3050 bfd_get_32 (stdoutput, buf) & 0xffffe002,
3051 buf);
3052
3053 dis_assemble_12 (result, &w1, &w);
3054 result = ((w1 << 2) | w);
3055 break;
3056
3057 /* Handle some of the opcodes with the 'W' operand type. */
3058 case 17:
3059
3060 #define stub_needed(CALLER, CALLEE) \
3061 ((CALLEE) && (CALLER) && ((CALLEE) != (CALLER)))
3062 /* It is necessary to force PC-relative calls/jumps to have a
3063 relocation entry if they're going to need either a argument
3064 relocation or long call stub. FIXME. Can't we need the same
3065 for absolute calls? */
3066 if (fixP->fx_addsy
3067 && (stub_needed (((obj_symbol_type *)
3068 fixP->fx_addsy->bsym)->tc_data.hppa_arg_reloc,
3069 hppa_fixP->fx_arg_reloc)))
3070 return 1;
3071 #undef stub_needed
3072
3073 CHECK_FIELD (new_val, 262143, -262144, 0);
3074
3075 /* Mask off 17 bits to be changed. */
3076 bfd_put_32 (stdoutput,
3077 bfd_get_32 (stdoutput, buf) & 0xffe0e002,
3078 buf);
3079 sign_unext ((new_val - 8) >> 2, 17, &result);
3080 dis_assemble_17 (result, &w1, &w2, &w);
3081 result = ((w2 << 2) | (w1 << 16) | w);
3082 break;
3083
3084 case 32:
3085 #ifdef OBJ_ELF
3086 /* These are ELF specific relocations. ELF unfortunately
3087 handles unwinds in a completely different manner. */
3088 if (hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRY
3089 || hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRIES)
3090 result = fixP->fx_addnumber;
3091 else
3092 #endif
3093 {
3094 result = 0;
3095 fixP->fx_addnumber = fixP->fx_offset;
3096 /* If we have a real relocation, then we want zero to
3097 be stored in the object file. If no relocation is going
3098 to be emitted, then we need to store new_val into the
3099 object file. */
3100 if (fixP->fx_addsy)
3101 bfd_put_32 (stdoutput, 0, buf);
3102 else
3103 bfd_put_32 (stdoutput, new_val, buf);
3104 return 1;
3105 }
3106 break;
3107
3108 case 0:
3109 return 1;
3110
3111 default:
3112 as_bad ("Unknown relocation encountered in md_apply_fix.");
3113 return 1;
3114 }
3115
3116 /* Insert the relocation. */
3117 bfd_put_32 (stdoutput, bfd_get_32 (stdoutput, buf) | result, buf);
3118 return 1;
3119 }
3120 else
3121 {
3122 printf ("no hppa_fixup entry for this fixup (fixP = 0x%x, type = 0x%x)\n",
3123 (unsigned int) fixP, fixP->fx_r_type);
3124 return 0;
3125 }
3126 }
3127
3128 /* Exactly what point is a PC-relative offset relative TO?
3129 On the PA, they're relative to the address of the offset. */
3130
3131 long
3132 md_pcrel_from (fixP)
3133 fixS *fixP;
3134 {
3135 return fixP->fx_where + fixP->fx_frag->fr_address;
3136 }
3137
3138 /* Return nonzero if the input line pointer is at the end of
3139 a statement. */
3140
3141 static int
3142 is_end_of_statement ()
3143 {
3144 return ((*input_line_pointer == '\n')
3145 || (*input_line_pointer == ';')
3146 || (*input_line_pointer == '!'));
3147 }
3148
3149 /* Read a number from S. The number might come in one of many forms,
3150 the most common will be a hex or decimal constant, but it could be
3151 a pre-defined register (Yuk!), or an absolute symbol.
3152
3153 Return a number or -1 for failure.
3154
3155 When parsing PA-89 FP register numbers RESULT will be
3156 the address of a structure to return information about
3157 L/R half of FP registers, store results there as appropriate.
3158
3159 pa_parse_number can not handle negative constants and will fail
3160 horribly if it is passed such a constant. */
3161
3162 static int
3163 pa_parse_number (s, result)
3164 char **s;
3165 struct pa_89_fp_reg_struct *result;
3166 {
3167 int num;
3168 char *name;
3169 char c;
3170 symbolS *sym;
3171 int status;
3172 char *p = *s;
3173
3174 /* Skip whitespace before the number. */
3175 while (*p == ' ' || *p == '\t')
3176 p = p + 1;
3177
3178 /* Store info in RESULT if requested by caller. */
3179 if (result)
3180 {
3181 result->number_part = -1;
3182 result->l_r_select = -1;
3183 }
3184 num = -1;
3185
3186 if (isdigit (*p))
3187 {
3188 /* Looks like a number. */
3189 num = 0;
3190
3191 if (*p == '0' && (*(p + 1) == 'x' || *(p + 1) == 'X'))
3192 {
3193 /* The number is specified in hex. */
3194 p += 2;
3195 while (isdigit (*p) || ((*p >= 'a') && (*p <= 'f'))
3196 || ((*p >= 'A') && (*p <= 'F')))
3197 {
3198 if (isdigit (*p))
3199 num = num * 16 + *p - '0';
3200 else if (*p >= 'a' && *p <= 'f')
3201 num = num * 16 + *p - 'a' + 10;
3202 else
3203 num = num * 16 + *p - 'A' + 10;
3204 ++p;
3205 }
3206 }
3207 else
3208 {
3209 /* The number is specified in decimal. */
3210 while (isdigit (*p))
3211 {
3212 num = num * 10 + *p - '0';
3213 ++p;
3214 }
3215 }
3216
3217 /* Store info in RESULT if requested by the caller. */
3218 if (result)
3219 {
3220 result->number_part = num;
3221
3222 if (IS_R_SELECT (p))
3223 {
3224 result->l_r_select = 1;
3225 ++p;
3226 }
3227 else if (IS_L_SELECT (p))
3228 {
3229 result->l_r_select = 0;
3230 ++p;
3231 }
3232 else
3233 result->l_r_select = 0;
3234 }
3235 }
3236 else if (*p == '%')
3237 {
3238 /* The number might be a predefined register. */
3239 num = 0;
3240 name = p;
3241 p++;
3242 c = *p;
3243 /* Tege hack: Special case for general registers as the general
3244 code makes a binary search with case translation, and is VERY
3245 slow. */
3246 if (c == 'r')
3247 {
3248 p++;
3249 if (*p == 'e' && *(p + 1) == 't'
3250 && (*(p + 2) == '0' || *(p + 2) == '1'))
3251 {
3252 p += 2;
3253 num = *p - '0' + 28;
3254 p++;
3255 }
3256 else if (*p == 'p')
3257 {
3258 num = 2;
3259 p++;
3260 }
3261 else if (!isdigit (*p))
3262 {
3263 if (print_errors)
3264 as_bad ("Undefined register: '%s'.", name);
3265 num = -1;
3266 }
3267 else
3268 {
3269 do
3270 num = num * 10 + *p++ - '0';
3271 while (isdigit (*p));
3272 }
3273 }
3274 else
3275 {
3276 /* Do a normal register search. */
3277 while (is_part_of_name (c))
3278 {
3279 p = p + 1;
3280 c = *p;
3281 }
3282 *p = 0;
3283 status = reg_name_search (name);
3284 if (status >= 0)
3285 num = status;
3286 else
3287 {
3288 if (print_errors)
3289 as_bad ("Undefined register: '%s'.", name);
3290 num = -1;
3291 }
3292 *p = c;
3293 }
3294
3295 /* Store info in RESULT if requested by caller. */
3296 if (result)
3297 {
3298 result->number_part = num;
3299 if (IS_R_SELECT (p - 1))
3300 result->l_r_select = 1;
3301 else if (IS_L_SELECT (p - 1))
3302 result->l_r_select = 0;
3303 else
3304 result->l_r_select = 0;
3305 }
3306 }
3307 else
3308 {
3309 /* And finally, it could be a symbol in the absolute section which
3310 is effectively a constant. */
3311 num = 0;
3312 name = p;
3313 c = *p;
3314 while (is_part_of_name (c))
3315 {
3316 p = p + 1;
3317 c = *p;
3318 }
3319 *p = 0;
3320 if ((sym = symbol_find (name)) != NULL)
3321 {
3322 if (S_GET_SEGMENT (sym) == &bfd_abs_section)
3323 num = S_GET_VALUE (sym);
3324 else
3325 {
3326 if (print_errors)
3327 as_bad ("Non-absolute symbol: '%s'.", name);
3328 num = -1;
3329 }
3330 }
3331 else
3332 {
3333 /* There is where we'd come for an undefined symbol
3334 or for an empty string. For an empty string we
3335 will return zero. That's a concession made for
3336 compatability with the braindamaged HP assemblers. */
3337 if (*name == 0)
3338 num = 0;
3339 else
3340 {
3341 if (print_errors)
3342 as_bad ("Undefined absolute constant: '%s'.", name);
3343 num = -1;
3344 }
3345 }
3346 *p = c;
3347
3348 /* Store info in RESULT if requested by caller. */
3349 if (result)
3350 {
3351 result->number_part = num;
3352 if (IS_R_SELECT (p - 1))
3353 result->l_r_select = 1;
3354 else if (IS_L_SELECT (p - 1))
3355 result->l_r_select = 0;
3356 else
3357 result->l_r_select = 0;
3358 }
3359 }
3360
3361 *s = p;
3362 return num;
3363 }
3364
3365 #define REG_NAME_CNT (sizeof(pre_defined_registers) / sizeof(struct pd_reg))
3366
3367 /* Given NAME, find the register number associated with that name, return
3368 the integer value associated with the given name or -1 on failure. */
3369
3370 static int
3371 reg_name_search (name)
3372 char *name;
3373 {
3374 int middle, low, high;
3375 int cmp;
3376
3377 low = 0;
3378 high = REG_NAME_CNT - 1;
3379
3380 do
3381 {
3382 middle = (low + high) / 2;
3383 cmp = strcasecmp (name, pre_defined_registers[middle].name);
3384 if (cmp < 0)
3385 high = middle - 1;
3386 else if (cmp > 0)
3387 low = middle + 1;
3388 else
3389 return pre_defined_registers[middle].value;
3390 }
3391 while (low <= high);
3392
3393 return -1;
3394 }
3395
3396
3397 /* Return nonzero if the given INSN and L/R information will require
3398 a new PA-89 opcode. */
3399
3400 static int
3401 need_89_opcode (insn, result)
3402 struct pa_it *insn;
3403 struct pa_89_fp_reg_struct *result;
3404 {
3405 if (result->l_r_select == 1 && !(insn->fpof1 == DBL && insn->fpof2 == DBL))
3406 return TRUE;
3407 else
3408 return FALSE;
3409 }
3410
3411 /* Parse a condition for a fcmp instruction. Return the numerical
3412 code associated with the condition. */
3413
3414 static int
3415 pa_parse_fp_cmp_cond (s)
3416 char **s;
3417 {
3418 int cond, i;
3419
3420 cond = 0;
3421
3422 for (i = 0; i < 32; i++)
3423 {
3424 if (strncasecmp (*s, fp_cond_map[i].string,
3425 strlen (fp_cond_map[i].string)) == 0)
3426 {
3427 cond = fp_cond_map[i].cond;
3428 *s += strlen (fp_cond_map[i].string);
3429 while (**s == ' ' || **s == '\t')
3430 *s = *s + 1;
3431 return cond;
3432 }
3433 }
3434
3435 as_bad ("Invalid FP Compare Condition: %c", **s);
3436 return 0;
3437 }
3438
3439 /* Parse an FP operand format completer returning the completer
3440 type. */
3441
3442 static fp_operand_format
3443 pa_parse_fp_format (s)
3444 char **s;
3445 {
3446 int format;
3447
3448 format = SGL;
3449 if (**s == ',')
3450 {
3451 *s += 1;
3452 if (strncasecmp (*s, "sgl", 3) == 0)
3453 {
3454 format = SGL;
3455 *s += 4;
3456 }
3457 else if (strncasecmp (*s, "dbl", 3) == 0)
3458 {
3459 format = DBL;
3460 *s += 4;
3461 }
3462 else if (strncasecmp (*s, "quad", 4) == 0)
3463 {
3464 format = QUAD;
3465 *s += 5;
3466 }
3467 else
3468 {
3469 format = ILLEGAL_FMT;
3470 as_bad ("Invalid FP Operand Format: %3s", *s);
3471 }
3472 }
3473
3474 return format;
3475 }
3476
3477 /* Convert from a selector string into a selector type. */
3478
3479 static int
3480 pa_chk_field_selector (str)
3481 char **str;
3482 {
3483 int middle, low, high;
3484 int cmp;
3485 char name[3];
3486
3487 /* Read past any whitespace. */
3488 /* FIXME: should we read past newlines and formfeeds??? */
3489 while (**str == ' ' || **str == '\t' || **str == '\n' || **str == '\f')
3490 *str = *str + 1;
3491
3492 if ((*str)[1] == '\'' || (*str)[1] == '%')
3493 name[0] = tolower ((*str)[0]),
3494 name[1] = 0;
3495 else if ((*str)[2] == '\'' || (*str)[2] == '%')
3496 name[0] = tolower ((*str)[0]),
3497 name[1] = tolower ((*str)[1]),
3498 name[2] = 0;
3499 else
3500 return e_fsel;
3501
3502 low = 0;
3503 high = sizeof (selector_table) / sizeof (struct selector_entry) - 1;
3504
3505 do
3506 {
3507 middle = (low + high) / 2;
3508 cmp = strcmp (name, selector_table[middle].prefix);
3509 if (cmp < 0)
3510 high = middle - 1;
3511 else if (cmp > 0)
3512 low = middle + 1;
3513 else
3514 {
3515 *str += strlen (name) + 1;
3516 return selector_table[middle].field_selector;
3517 }
3518 }
3519 while (low <= high);
3520
3521 return e_fsel;
3522 }
3523
3524 /* Mark (via expr_end) the end of an expression (I think). FIXME. */
3525
3526 static int
3527 get_expression (str)
3528 char *str;
3529 {
3530 char *save_in;
3531 asection *seg;
3532
3533 save_in = input_line_pointer;
3534 input_line_pointer = str;
3535 seg = expression (&the_insn.exp);
3536 if (!(seg == absolute_section
3537 || seg == undefined_section
3538 || SEG_NORMAL (seg)))
3539 {
3540 as_warn ("Bad segment in expression.");
3541 expr_end = input_line_pointer;
3542 input_line_pointer = save_in;
3543 return 1;
3544 }
3545 expr_end = input_line_pointer;
3546 input_line_pointer = save_in;
3547 return 0;
3548 }
3549
3550 /* Mark (via expr_end) the end of an absolute expression. FIXME. */
3551 static int
3552 pa_get_absolute_expression (insn, strp)
3553 struct pa_it *insn;
3554 char **strp;
3555 {
3556 char *save_in;
3557
3558 insn->field_selector = pa_chk_field_selector (strp);
3559 save_in = input_line_pointer;
3560 input_line_pointer = *strp;
3561 expression (&insn->exp);
3562 if (insn->exp.X_op != O_constant)
3563 {
3564 as_bad ("Bad segment (should be absolute).");
3565 expr_end = input_line_pointer;
3566 input_line_pointer = save_in;
3567 return 0;
3568 }
3569 expr_end = input_line_pointer;
3570 input_line_pointer = save_in;
3571 return evaluate_absolute (insn);
3572 }
3573
3574 /* Evaluate an absolute expression EXP which may be modified by
3575 the selector FIELD_SELECTOR. Return the value of the expression. */
3576 static int
3577 evaluate_absolute (insn)
3578 struct pa_it *insn;
3579 {
3580 int value;
3581 expressionS exp;
3582 int field_selector = insn->field_selector;
3583
3584 exp = insn->exp;
3585 value = exp.X_add_number;
3586
3587 switch (field_selector)
3588 {
3589 /* No change. */
3590 case e_fsel:
3591 break;
3592
3593 /* If bit 21 is on then add 0x800 and arithmetic shift right 11 bits. */
3594 case e_lssel:
3595 if (value & 0x00000400)
3596 value += 0x800;
3597 value = (value & 0xfffff800) >> 11;
3598 break;
3599
3600 /* Sign extend from bit 21. */
3601 case e_rssel:
3602 if (value & 0x00000400)
3603 value |= 0xfffff800;
3604 else
3605 value &= 0x7ff;
3606 break;
3607
3608 /* Arithmetic shift right 11 bits. */
3609 case e_lsel:
3610 value = (value & 0xfffff800) >> 11;
3611 break;
3612
3613 /* Set bits 0-20 to zero. */
3614 case e_rsel:
3615 value = value & 0x7ff;
3616 break;
3617
3618 /* Add 0x800 and arithmetic shift right 11 bits. */
3619 case e_ldsel:
3620 value += 0x800;
3621 value = (value & 0xfffff800) >> 11;
3622 break;
3623
3624 /* Set bitgs 0-21 to one. */
3625 case e_rdsel:
3626 value |= 0xfffff800;
3627 break;
3628
3629 #define RSEL_ROUND(c) (((c) + 0x1000) & ~0x1fff)
3630 case e_rrsel:
3631 value = (RSEL_ROUND (value) & 0x7ff) + (value - RSEL_ROUND (value));
3632 break;
3633
3634 case e_lrsel:
3635 value = (RSEL_ROUND (value) >> 11) & 0x1fffff;
3636 break;
3637 #undef RSEL_ROUND
3638
3639 default:
3640 BAD_CASE (field_selector);
3641 break;
3642 }
3643 return value;
3644 }
3645
3646 /* Given an argument location specification return the associated
3647 argument location number. */
3648
3649 static unsigned int
3650 pa_build_arg_reloc (type_name)
3651 char *type_name;
3652 {
3653
3654 if (strncasecmp (type_name, "no", 2) == 0)
3655 return 0;
3656 if (strncasecmp (type_name, "gr", 2) == 0)
3657 return 1;
3658 else if (strncasecmp (type_name, "fr", 2) == 0)
3659 return 2;
3660 else if (strncasecmp (type_name, "fu", 2) == 0)
3661 return 3;
3662 else
3663 as_bad ("Invalid argument location: %s\n", type_name);
3664
3665 return 0;
3666 }
3667
3668 /* Encode and return an argument relocation specification for
3669 the given register in the location specified by arg_reloc. */
3670
3671 static unsigned int
3672 pa_align_arg_reloc (reg, arg_reloc)
3673 unsigned int reg;
3674 unsigned int arg_reloc;
3675 {
3676 unsigned int new_reloc;
3677
3678 new_reloc = arg_reloc;
3679 switch (reg)
3680 {
3681 case 0:
3682 new_reloc <<= 8;
3683 break;
3684 case 1:
3685 new_reloc <<= 6;
3686 break;
3687 case 2:
3688 new_reloc <<= 4;
3689 break;
3690 case 3:
3691 new_reloc <<= 2;
3692 break;
3693 default:
3694 as_bad ("Invalid argument description: %d", reg);
3695 }
3696
3697 return new_reloc;
3698 }
3699
3700 /* Parse a PA nullification completer (,n). Return nonzero if the
3701 completer was found; return zero if no completer was found. */
3702
3703 static int
3704 pa_parse_nullif (s)
3705 char **s;
3706 {
3707 int nullif;
3708
3709 nullif = 0;
3710 if (**s == ',')
3711 {
3712 *s = *s + 1;
3713 if (strncasecmp (*s, "n", 1) == 0)
3714 nullif = 1;
3715 else
3716 {
3717 as_bad ("Invalid Nullification: (%c)", **s);
3718 nullif = 0;
3719 }
3720 *s = *s + 1;
3721 }
3722
3723 return nullif;
3724 }
3725
3726 /* Parse a non-negated compare/subtract completer returning the
3727 number (for encoding in instrutions) of the given completer.
3728
3729 ISBRANCH specifies whether or not this is parsing a condition
3730 completer for a branch (vs a nullification completer for a
3731 computational instruction. */
3732
3733 static int
3734 pa_parse_nonneg_cmpsub_cmpltr (s, isbranch)
3735 char **s;
3736 int isbranch;
3737 {
3738 int cmpltr;
3739 char *name = *s + 1;
3740 char c;
3741 char *save_s = *s;
3742
3743 cmpltr = 0;
3744 if (**s == ',')
3745 {
3746 *s += 1;
3747 while (**s != ',' && **s != ' ' && **s != '\t')
3748 *s += 1;
3749 c = **s;
3750 **s = 0x00;
3751 if (strcmp (name, "=") == 0)
3752 {
3753 cmpltr = 1;
3754 }
3755 else if (strcmp (name, "<") == 0)
3756 {
3757 cmpltr = 2;
3758 }
3759 else if (strcmp (name, "<=") == 0)
3760 {
3761 cmpltr = 3;
3762 }
3763 else if (strcmp (name, "<<") == 0)
3764 {
3765 cmpltr = 4;
3766 }
3767 else if (strcmp (name, "<<=") == 0)
3768 {
3769 cmpltr = 5;
3770 }
3771 else if (strcasecmp (name, "sv") == 0)
3772 {
3773 cmpltr = 6;
3774 }
3775 else if (strcasecmp (name, "od") == 0)
3776 {
3777 cmpltr = 7;
3778 }
3779 /* If we have something like addb,n then there is no condition
3780 completer. */
3781 else if (strcasecmp (name, "n") == 0 && isbranch)
3782 {
3783 cmpltr = 0;
3784 }
3785 else
3786 {
3787 cmpltr = -1;
3788 }
3789 **s = c;
3790 }
3791
3792 /* Reset pointers if this was really a ,n for a branch instruction. */
3793 if (cmpltr == 0 && *name == 'n' && isbranch)
3794 *s = save_s;
3795
3796 return cmpltr;
3797 }
3798
3799 /* Parse a negated compare/subtract completer returning the
3800 number (for encoding in instrutions) of the given completer.
3801
3802 ISBRANCH specifies whether or not this is parsing a condition
3803 completer for a branch (vs a nullification completer for a
3804 computational instruction. */
3805
3806 static int
3807 pa_parse_neg_cmpsub_cmpltr (s, isbranch)
3808 char **s;
3809 int isbranch;
3810 {
3811 int cmpltr;
3812 char *name = *s + 1;
3813 char c;
3814 char *save_s = *s;
3815
3816 cmpltr = 0;
3817 if (**s == ',')
3818 {
3819 *s += 1;
3820 while (**s != ',' && **s != ' ' && **s != '\t')
3821 *s += 1;
3822 c = **s;
3823 **s = 0x00;
3824 if (strcasecmp (name, "tr") == 0)
3825 {
3826 cmpltr = 0;
3827 }
3828 else if (strcmp (name, "<>") == 0)
3829 {
3830 cmpltr = 1;
3831 }
3832 else if (strcmp (name, ">=") == 0)
3833 {
3834 cmpltr = 2;
3835 }
3836 else if (strcmp (name, ">") == 0)
3837 {
3838 cmpltr = 3;
3839 }
3840 else if (strcmp (name, ">>=") == 0)
3841 {
3842 cmpltr = 4;
3843 }
3844 else if (strcmp (name, ">>") == 0)
3845 {
3846 cmpltr = 5;
3847 }
3848 else if (strcasecmp (name, "nsv") == 0)
3849 {
3850 cmpltr = 6;
3851 }
3852 else if (strcasecmp (name, "ev") == 0)
3853 {
3854 cmpltr = 7;
3855 }
3856 /* If we have something like addb,n then there is no condition
3857 completer. */
3858 else if (strcasecmp (name, "n") == 0 && isbranch)
3859 {
3860 cmpltr = 0;
3861 }
3862 else
3863 {
3864 cmpltr = -1;
3865 }
3866 **s = c;
3867 }
3868
3869 /* Reset pointers if this was really a ,n for a branch instruction. */
3870 if (cmpltr == 0 && *name == 'n' && isbranch)
3871 *s = save_s;
3872
3873 return cmpltr;
3874 }
3875
3876 /* Parse a non-negated addition completer returning the number
3877 (for encoding in instrutions) of the given completer.
3878
3879 ISBRANCH specifies whether or not this is parsing a condition
3880 completer for a branch (vs a nullification completer for a
3881 computational instruction. */
3882
3883 static int
3884 pa_parse_nonneg_add_cmpltr (s, isbranch)
3885 char **s;
3886 int isbranch;
3887 {
3888 int cmpltr;
3889 char *name = *s + 1;
3890 char c;
3891 char *save_s = *s;
3892
3893 cmpltr = 0;
3894 if (**s == ',')
3895 {
3896 *s += 1;
3897 while (**s != ',' && **s != ' ' && **s != '\t')
3898 *s += 1;
3899 c = **s;
3900 **s = 0x00;
3901 if (strcmp (name, "=") == 0)
3902 {
3903 cmpltr = 1;
3904 }
3905 else if (strcmp (name, "<") == 0)
3906 {
3907 cmpltr = 2;
3908 }
3909 else if (strcmp (name, "<=") == 0)
3910 {
3911 cmpltr = 3;
3912 }
3913 else if (strcasecmp (name, "nuv") == 0)
3914 {
3915 cmpltr = 4;
3916 }
3917 else if (strcasecmp (name, "znv") == 0)
3918 {
3919 cmpltr = 5;
3920 }
3921 else if (strcasecmp (name, "sv") == 0)
3922 {
3923 cmpltr = 6;
3924 }
3925 else if (strcasecmp (name, "od") == 0)
3926 {
3927 cmpltr = 7;
3928 }
3929 /* If we have something like addb,n then there is no condition
3930 completer. */
3931 else if (strcasecmp (name, "n") == 0 && isbranch)
3932 {
3933 cmpltr = 0;
3934 }
3935 else
3936 {
3937 cmpltr = -1;
3938 }
3939 **s = c;
3940 }
3941
3942 /* Reset pointers if this was really a ,n for a branch instruction. */
3943 if (cmpltr == 0 && *name == 'n' && isbranch)
3944 *s = save_s;
3945
3946 return cmpltr;
3947 }
3948
3949 /* Parse a negated addition completer returning the number
3950 (for encoding in instrutions) of the given completer.
3951
3952 ISBRANCH specifies whether or not this is parsing a condition
3953 completer for a branch (vs a nullification completer for a
3954 computational instruction. */
3955
3956 static int
3957 pa_parse_neg_add_cmpltr (s, isbranch)
3958 char **s;
3959 int isbranch;
3960 {
3961 int cmpltr;
3962 char *name = *s + 1;
3963 char c;
3964 char *save_s = *s;
3965
3966 cmpltr = 0;
3967 if (**s == ',')
3968 {
3969 *s += 1;
3970 while (**s != ',' && **s != ' ' && **s != '\t')
3971 *s += 1;
3972 c = **s;
3973 **s = 0x00;
3974 if (strcasecmp (name, "tr") == 0)
3975 {
3976 cmpltr = 0;
3977 }
3978 else if (strcmp (name, "<>") == 0)
3979 {
3980 cmpltr = 1;
3981 }
3982 else if (strcmp (name, ">=") == 0)
3983 {
3984 cmpltr = 2;
3985 }
3986 else if (strcmp (name, ">") == 0)
3987 {
3988 cmpltr = 3;
3989 }
3990 else if (strcasecmp (name, "uv") == 0)
3991 {
3992 cmpltr = 4;
3993 }
3994 else if (strcasecmp (name, "vnz") == 0)
3995 {
3996 cmpltr = 5;
3997 }
3998 else if (strcasecmp (name, "nsv") == 0)
3999 {
4000 cmpltr = 6;
4001 }
4002 else if (strcasecmp (name, "ev") == 0)
4003 {
4004 cmpltr = 7;
4005 }
4006 /* If we have something like addb,n then there is no condition
4007 completer. */
4008 else if (strcasecmp (name, "n") == 0 && isbranch)
4009 {
4010 cmpltr = 0;
4011 }
4012 else
4013 {
4014 cmpltr = -1;
4015 }
4016 **s = c;
4017 }
4018
4019 /* Reset pointers if this was really a ,n for a branch instruction. */
4020 if (cmpltr == 0 && *name == 'n' && isbranch)
4021 *s = save_s;
4022
4023 return cmpltr;
4024 }
4025
4026 /* Handle a .BLOCK type pseudo-op. */
4027
4028 static void
4029 pa_block (z)
4030 int z;
4031 {
4032 char *p;
4033 long int temp_fill;
4034 unsigned int temp_size;
4035 int i;
4036
4037 temp_size = get_absolute_expression ();
4038
4039 /* Always fill with zeros, that's what the HP assembler does. */
4040 temp_fill = 0;
4041
4042 p = frag_var (rs_fill, (int) temp_size, (int) temp_size,
4043 (relax_substateT) 0, (symbolS *) 0, 1, NULL);
4044 bzero (p, temp_size);
4045
4046 /* Convert 2 bytes at a time. */
4047
4048 for (i = 0; i < temp_size; i += 2)
4049 {
4050 md_number_to_chars (p + i,
4051 (valueT) temp_fill,
4052 (int) ((temp_size - i) > 2 ? 2 : (temp_size - i)));
4053 }
4054
4055 pa_undefine_label ();
4056 demand_empty_rest_of_line ();
4057 }
4058
4059 /* Handle a .CALL pseudo-op. This involves storing away information
4060 about where arguments are to be found so the linker can detect
4061 (and correct) argument location mismatches between caller and callee. */
4062
4063 static void
4064 pa_call (unused)
4065 int unused;
4066 {
4067 pa_call_args (&last_call_desc);
4068 demand_empty_rest_of_line ();
4069 }
4070
4071 /* Do the dirty work of building a call descriptor which describes
4072 where the caller placed arguments to a function call. */
4073
4074 static void
4075 pa_call_args (call_desc)
4076 struct call_desc *call_desc;
4077 {
4078 char *name, c, *p;
4079 unsigned int temp, arg_reloc;
4080
4081 while (!is_end_of_statement ())
4082 {
4083 name = input_line_pointer;
4084 c = get_symbol_end ();
4085 /* Process a source argument. */
4086 if ((strncasecmp (name, "argw", 4) == 0))
4087 {
4088 temp = atoi (name + 4);
4089 p = input_line_pointer;
4090 *p = c;
4091 input_line_pointer++;
4092 name = input_line_pointer;
4093 c = get_symbol_end ();
4094 arg_reloc = pa_build_arg_reloc (name);
4095 call_desc->arg_reloc |= pa_align_arg_reloc (temp, arg_reloc);
4096 }
4097 /* Process a return value. */
4098 else if ((strncasecmp (name, "rtnval", 6) == 0))
4099 {
4100 p = input_line_pointer;
4101 *p = c;
4102 input_line_pointer++;
4103 name = input_line_pointer;
4104 c = get_symbol_end ();
4105 arg_reloc = pa_build_arg_reloc (name);
4106 call_desc->arg_reloc |= (arg_reloc & 0x3);
4107 }
4108 else
4109 {
4110 as_bad ("Invalid .CALL argument: %s", name);
4111 }
4112 p = input_line_pointer;
4113 *p = c;
4114 if (!is_end_of_statement ())
4115 input_line_pointer++;
4116 }
4117 }
4118
4119 /* Return TRUE if FRAG1 and FRAG2 are the same. */
4120
4121 static int
4122 is_same_frag (frag1, frag2)
4123 fragS *frag1;
4124 fragS *frag2;
4125 {
4126
4127 if (frag1 == NULL)
4128 return (FALSE);
4129 else if (frag2 == NULL)
4130 return (FALSE);
4131 else if (frag1 == frag2)
4132 return (TRUE);
4133 else if (frag2->fr_type == rs_fill && frag2->fr_fix == 0)
4134 return (is_same_frag (frag1, frag2->fr_next));
4135 else
4136 return (FALSE);
4137 }
4138
4139 #ifdef OBJ_ELF
4140 /* Build an entry in the UNWIND subspace from the given function
4141 attributes in CALL_INFO. This is not needed for SOM as using
4142 R_ENTRY and R_EXIT relocations allow the linker to handle building
4143 of the unwind spaces. */
4144
4145 static void
4146 pa_build_unwind_subspace (call_info)
4147 struct call_info *call_info;
4148 {
4149 char *unwind;
4150 asection *seg, *save_seg;
4151 subsegT subseg, save_subseg;
4152 int i;
4153 char c, *p;
4154
4155 /* Get into the right seg/subseg. This may involve creating
4156 the seg the first time through. Make sure to have the
4157 old seg/subseg so that we can reset things when we are done. */
4158 subseg = SUBSEG_UNWIND;
4159 seg = bfd_get_section_by_name (stdoutput, UNWIND_SECTION_NAME);
4160 if (seg == ASEC_NULL)
4161 {
4162 seg = bfd_make_section_old_way (stdoutput, UNWIND_SECTION_NAME);
4163 bfd_set_section_flags (stdoutput, seg,
4164 SEC_READONLY | SEC_HAS_CONTENTS
4165 | SEC_LOAD | SEC_RELOC);
4166 }
4167
4168 save_seg = now_seg;
4169 save_subseg = now_subseg;
4170 subseg_set (seg, subseg);
4171
4172
4173 /* Get some space to hold relocation information for the unwind
4174 descriptor. */
4175 p = frag_more (4);
4176
4177 /* Relocation info. for start offset of the function. */
4178 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4179 call_info->start_symbol, (offsetT) 0,
4180 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4181 (char *) 0);
4182
4183 p = frag_more (4);
4184
4185 /* Relocation info. for end offset of the function. */
4186 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4187 call_info->end_symbol, (offsetT) 0,
4188 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4189 (char *) 0);
4190
4191 /* Dump it. */
4192 unwind = (char *) &call_info->ci_unwind;
4193 for (i = 8; i < sizeof (struct unwind_table); i++)
4194 {
4195 c = *(unwind + i);
4196 {
4197 FRAG_APPEND_1_CHAR (c);
4198 }
4199 }
4200
4201 /* Return back to the original segment/subsegment. */
4202 subseg_set (save_seg, save_subseg);
4203 }
4204 #endif
4205
4206 /* Process a .CALLINFO pseudo-op. This information is used later
4207 to build unwind descriptors and maybe one day to support
4208 .ENTER and .LEAVE. */
4209
4210 static void
4211 pa_callinfo (unused)
4212 int unused;
4213 {
4214 char *name, c, *p;
4215 int temp;
4216
4217 /* .CALLINFO must appear within a procedure definition. */
4218 if (!within_procedure)
4219 as_bad (".callinfo is not within a procedure definition");
4220
4221 /* Mark the fact that we found the .CALLINFO for the
4222 current procedure. */
4223 callinfo_found = TRUE;
4224
4225 /* Iterate over the .CALLINFO arguments. */
4226 while (!is_end_of_statement ())
4227 {
4228 name = input_line_pointer;
4229 c = get_symbol_end ();
4230 /* Frame size specification. */
4231 if ((strncasecmp (name, "frame", 5) == 0))
4232 {
4233 p = input_line_pointer;
4234 *p = c;
4235 input_line_pointer++;
4236 temp = get_absolute_expression ();
4237 if ((temp & 0x3) != 0)
4238 {
4239 as_bad ("FRAME parameter must be a multiple of 8: %d\n", temp);
4240 temp = 0;
4241 }
4242
4243 /* callinfo is in bytes and unwind_desc is in 8 byte units. */
4244 last_call_info->ci_unwind.descriptor.frame_size = temp / 8;
4245
4246 }
4247 /* Entry register (GR, GR and SR) specifications. */
4248 else if ((strncasecmp (name, "entry_gr", 8) == 0))
4249 {
4250 p = input_line_pointer;
4251 *p = c;
4252 input_line_pointer++;
4253 temp = get_absolute_expression ();
4254 /* The HP assembler accepts 19 as the high bound for ENTRY_GR
4255 even though %r19 is caller saved. I think this is a bug in
4256 the HP assembler, and we are not going to emulate it. */
4257 if (temp < 3 || temp > 18)
4258 as_bad ("Value for ENTRY_GR must be in the range 3..18\n");
4259 last_call_info->ci_unwind.descriptor.entry_gr = temp - 2;
4260 }
4261 else if ((strncasecmp (name, "entry_fr", 8) == 0))
4262 {
4263 p = input_line_pointer;
4264 *p = c;
4265 input_line_pointer++;
4266 temp = get_absolute_expression ();
4267 /* Similarly the HP assembler takes 31 as the high bound even
4268 though %fr21 is the last callee saved floating point register. */
4269 if (temp < 12 || temp > 21)
4270 as_bad ("Value for ENTRY_FR must be in the range 12..21\n");
4271 last_call_info->ci_unwind.descriptor.entry_fr = temp - 11;
4272 }
4273 else if ((strncasecmp (name, "entry_sr", 8) == 0))
4274 {
4275 p = input_line_pointer;
4276 *p = c;
4277 input_line_pointer++;
4278 temp = get_absolute_expression ();
4279 if (temp != 3)
4280 as_bad ("Value for ENTRY_SR must be 3\n");
4281 }
4282 /* Note whether or not this function performs any calls. */
4283 else if ((strncasecmp (name, "calls", 5) == 0) ||
4284 (strncasecmp (name, "caller", 6) == 0))
4285 {
4286 p = input_line_pointer;
4287 *p = c;
4288 }
4289 else if ((strncasecmp (name, "no_calls", 8) == 0))
4290 {
4291 p = input_line_pointer;
4292 *p = c;
4293 }
4294 /* Should RP be saved into the stack. */
4295 else if ((strncasecmp (name, "save_rp", 7) == 0))
4296 {
4297 p = input_line_pointer;
4298 *p = c;
4299 last_call_info->ci_unwind.descriptor.save_rp = 1;
4300 }
4301 /* Likewise for SP. */
4302 else if ((strncasecmp (name, "save_sp", 7) == 0))
4303 {
4304 p = input_line_pointer;
4305 *p = c;
4306 last_call_info->ci_unwind.descriptor.save_sp = 1;
4307 }
4308 /* Is this an unwindable procedure. If so mark it so
4309 in the unwind descriptor. */
4310 else if ((strncasecmp (name, "no_unwind", 9) == 0))
4311 {
4312 p = input_line_pointer;
4313 *p = c;
4314 last_call_info->ci_unwind.descriptor.cannot_unwind = 1;
4315 }
4316 /* Is this an interrupt routine. If so mark it in the
4317 unwind descriptor. */
4318 else if ((strncasecmp (name, "hpux_int", 7) == 0))
4319 {
4320 p = input_line_pointer;
4321 *p = c;
4322 last_call_info->ci_unwind.descriptor.hpux_interrupt_marker = 1;
4323 }
4324 else
4325 {
4326 as_bad ("Invalid .CALLINFO argument: %s", name);
4327 }
4328 if (!is_end_of_statement ())
4329 input_line_pointer++;
4330 }
4331
4332 demand_empty_rest_of_line ();
4333 }
4334
4335 /* Switch into the code subspace. */
4336
4337 static void
4338 pa_code (unused)
4339 int unused;
4340 {
4341 sd_chain_struct *sdchain;
4342
4343 /* First time through it might be necessary to create the
4344 $TEXT$ space. */
4345 if ((sdchain = is_defined_space ("$TEXT$")) == NULL)
4346 {
4347 sdchain = create_new_space (pa_def_spaces[0].name,
4348 pa_def_spaces[0].spnum,
4349 pa_def_spaces[0].loadable,
4350 pa_def_spaces[0].defined,
4351 pa_def_spaces[0].private,
4352 pa_def_spaces[0].sort,
4353 pa_def_spaces[0].segment, 0);
4354 }
4355
4356 SPACE_DEFINED (sdchain) = 1;
4357 subseg_set (text_section, SUBSEG_CODE);
4358 demand_empty_rest_of_line ();
4359 }
4360
4361 /* This is different than the standard GAS s_comm(). On HP9000/800 machines,
4362 the .comm pseudo-op has the following symtax:
4363
4364 <label> .comm <length>
4365
4366 where <label> is optional and is a symbol whose address will be the start of
4367 a block of memory <length> bytes long. <length> must be an absolute
4368 expression. <length> bytes will be allocated in the current space
4369 and subspace. */
4370
4371 static void
4372 pa_comm (unused)
4373 int unused;
4374 {
4375 unsigned int size;
4376 symbolS *symbol;
4377 label_symbol_struct *label_symbol = pa_get_label ();
4378
4379 if (label_symbol)
4380 symbol = label_symbol->lss_label;
4381 else
4382 symbol = NULL;
4383
4384 SKIP_WHITESPACE ();
4385 size = get_absolute_expression ();
4386
4387 if (symbol)
4388 {
4389 /* It is incorrect to check S_IS_DEFINED at this point as
4390 the symbol will *always* be defined. FIXME. How to
4391 correctly determine when this label really as been
4392 defined before. */
4393 if (S_GET_VALUE (symbol))
4394 {
4395 if (S_GET_VALUE (symbol) != size)
4396 {
4397 as_warn ("Length of .comm \"%s\" is already %d. Not changed.",
4398 S_GET_NAME (symbol), S_GET_VALUE (symbol));
4399 return;
4400 }
4401 }
4402 else
4403 {
4404 S_SET_VALUE (symbol, size);
4405 S_SET_SEGMENT (symbol, &bfd_und_section);
4406 S_SET_EXTERNAL (symbol);
4407 }
4408 }
4409 demand_empty_rest_of_line ();
4410 }
4411
4412 /* Process a .END pseudo-op. */
4413
4414 static void
4415 pa_end (unused)
4416 int unused;
4417 {
4418 demand_empty_rest_of_line ();
4419 }
4420
4421 /* Process a .ENTER pseudo-op. This is not supported. */
4422 static void
4423 pa_enter (unused)
4424 int unused;
4425 {
4426 abort ();
4427 }
4428
4429 /* Process a .ENTRY pseudo-op. .ENTRY marks the beginning of the
4430 procesure. */
4431 static void
4432 pa_entry (unused)
4433 int unused;
4434 {
4435 if (!within_procedure)
4436 as_bad ("Misplaced .entry. Ignored.");
4437 else
4438 {
4439 if (!callinfo_found)
4440 as_bad ("Missing .callinfo.");
4441 }
4442 demand_empty_rest_of_line ();
4443 within_entry_exit = TRUE;
4444
4445 #ifdef OBJ_SOM
4446 /* SOM defers building of unwind descriptors until the link phase.
4447 The assembler is responsible for creating an R_ENTRY relocation
4448 to mark the beginning of a region and hold the unwind bits, and
4449 for creating an R_EXIT relocation to mark the end of the region.
4450
4451 FIXME. ELF should be using the same conventions! The problem
4452 is an unwind requires too much relocation space. Hmmm. Maybe
4453 if we split the unwind bits up between the relocations which
4454 denote the entry and exit points. */
4455 if (last_call_info->start_symbol != NULL)
4456 {
4457 char *where = frag_more (0);
4458
4459 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
4460 last_call_info->start_symbol, (offsetT) 0, NULL,
4461 0, R_HPPA_ENTRY, e_fsel, 0, 0,
4462 (char *) &last_call_info->ci_unwind.descriptor);
4463 }
4464 #endif
4465 }
4466
4467 /* Handle a .EQU pseudo-op. */
4468
4469 static void
4470 pa_equ (reg)
4471 int reg;
4472 {
4473 label_symbol_struct *label_symbol = pa_get_label ();
4474 symbolS *symbol;
4475
4476 if (label_symbol)
4477 {
4478 symbol = label_symbol->lss_label;
4479 S_SET_VALUE (symbol, (unsigned int) get_absolute_expression ());
4480 S_SET_SEGMENT (symbol, &bfd_abs_section);
4481 }
4482 else
4483 {
4484 if (reg)
4485 as_bad (".REG must use a label");
4486 else
4487 as_bad (".EQU must use a label");
4488 }
4489
4490 pa_undefine_label ();
4491 demand_empty_rest_of_line ();
4492 }
4493
4494 /* Helper function. Does processing for the end of a function. This
4495 usually involves creating some relocations or building special
4496 symbols to mark the end of the function. */
4497
4498 static void
4499 process_exit ()
4500 {
4501 char *where;
4502
4503 where = frag_more (0);
4504
4505 #ifdef OBJ_ELF
4506 /* Mark the end of the function, stuff away the location of the frag
4507 for the end of the function, and finally call pa_build_unwind_subspace
4508 to add an entry in the unwind table. */
4509 hppa_elf_mark_end_of_function ();
4510 pa_build_unwind_subspace (last_call_info);
4511 #else
4512 /* SOM defers building of unwind descriptors until the link phase.
4513 The assembler is responsible for creating an R_ENTRY relocation
4514 to mark the beginning of a region and hold the unwind bits, and
4515 for creating an R_EXIT relocation to mark the end of the region.
4516
4517 FIXME. ELF should be using the same conventions! The problem
4518 is an unwind requires too much relocation space. Hmmm. Maybe
4519 if we split the unwind bits up between the relocations which
4520 denote the entry and exit points. */
4521 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
4522 last_call_info->start_symbol, (offsetT) 0,
4523 NULL, 0, R_HPPA_EXIT, e_fsel, 0, 0, NULL);
4524 #endif
4525 }
4526
4527 /* Process a .EXIT pseudo-op. */
4528
4529 static void
4530 pa_exit (unused)
4531 int unused;
4532 {
4533 if (!within_procedure)
4534 as_bad (".EXIT must appear within a procedure");
4535 else
4536 {
4537 if (!callinfo_found)
4538 as_bad ("Missing .callinfo");
4539 else
4540 {
4541 if (!within_entry_exit)
4542 as_bad ("No .ENTRY for this .EXIT");
4543 else
4544 {
4545 within_entry_exit = FALSE;
4546 process_exit ();
4547 }
4548 }
4549 }
4550 demand_empty_rest_of_line ();
4551 }
4552
4553 /* Process a .EXPORT directive. This makes functions external
4554 and provides information such as argument relocation entries
4555 to callers. */
4556
4557 static void
4558 pa_export (unused)
4559 int unused;
4560 {
4561 char *name, c, *p;
4562 symbolS *symbol;
4563
4564 name = input_line_pointer;
4565 c = get_symbol_end ();
4566 /* Make sure the given symbol exists. */
4567 if ((symbol = symbol_find_or_make (name)) == NULL)
4568 {
4569 as_bad ("Cannot define export symbol: %s\n", name);
4570 p = input_line_pointer;
4571 *p = c;
4572 input_line_pointer++;
4573 }
4574 else
4575 {
4576 /* OK. Set the external bits and process argument relocations. */
4577 S_SET_EXTERNAL (symbol);
4578 p = input_line_pointer;
4579 *p = c;
4580 if (!is_end_of_statement ())
4581 {
4582 input_line_pointer++;
4583 pa_type_args (symbol, 1);
4584 }
4585 }
4586
4587 demand_empty_rest_of_line ();
4588 }
4589
4590 /* Helper function to process arguments to a .EXPORT pseudo-op. */
4591
4592 static void
4593 pa_type_args (symbolP, is_export)
4594 symbolS *symbolP;
4595 int is_export;
4596 {
4597 char *name, c, *p;
4598 unsigned int temp, arg_reloc;
4599 pa_symbol_type type = SYMBOL_TYPE_UNKNOWN;
4600 obj_symbol_type *symbol = (obj_symbol_type *) symbolP->bsym;
4601
4602 if (strncasecmp (input_line_pointer, "absolute", 8) == 0)
4603
4604 {
4605 input_line_pointer += 8;
4606 symbolP->bsym->flags &= ~BSF_FUNCTION;
4607 S_SET_SEGMENT (symbolP, &bfd_abs_section);
4608 type = SYMBOL_TYPE_ABSOLUTE;
4609 }
4610 else if (strncasecmp (input_line_pointer, "code", 4) == 0)
4611 {
4612 input_line_pointer += 4;
4613 /* IMPORTing/EXPORTing CODE types for functions is meaningless for SOM,
4614 instead one should be IMPORTing/EXPORTing ENTRY types.
4615
4616 Complain if one tries to EXPORT a CODE type since that's never
4617 done. Both GCC and HP C still try to IMPORT CODE types, so
4618 silently fix them to be ENTRY types. */
4619 if (symbolP->bsym->flags & BSF_FUNCTION)
4620 {
4621 if (is_export)
4622 as_tsktsk ("Using ENTRY rather than CODE in export directive for %s", symbolP->bsym->name);
4623
4624 symbolP->bsym->flags |= BSF_FUNCTION;
4625 type = SYMBOL_TYPE_ENTRY;
4626 }
4627 else
4628 {
4629 symbolP->bsym->flags &= ~BSF_FUNCTION;
4630 type = SYMBOL_TYPE_CODE;
4631 }
4632 }
4633 else if (strncasecmp (input_line_pointer, "data", 4) == 0)
4634 {
4635 input_line_pointer += 4;
4636 symbolP->bsym->flags &= ~BSF_FUNCTION;
4637 type = SYMBOL_TYPE_DATA;
4638 }
4639 else if ((strncasecmp (input_line_pointer, "entry", 5) == 0))
4640 {
4641 input_line_pointer += 5;
4642 symbolP->bsym->flags |= BSF_FUNCTION;
4643 type = SYMBOL_TYPE_ENTRY;
4644 }
4645 else if (strncasecmp (input_line_pointer, "millicode", 9) == 0)
4646 {
4647 input_line_pointer += 9;
4648 symbolP->bsym->flags |= BSF_FUNCTION;
4649 type = SYMBOL_TYPE_MILLICODE;
4650 }
4651 else if (strncasecmp (input_line_pointer, "plabel", 6) == 0)
4652 {
4653 input_line_pointer += 6;
4654 symbolP->bsym->flags &= ~BSF_FUNCTION;
4655 type = SYMBOL_TYPE_PLABEL;
4656 }
4657 else if (strncasecmp (input_line_pointer, "pri_prog", 8) == 0)
4658 {
4659 input_line_pointer += 8;
4660 symbolP->bsym->flags |= BSF_FUNCTION;
4661 type = SYMBOL_TYPE_PRI_PROG;
4662 }
4663 else if (strncasecmp (input_line_pointer, "sec_prog", 8) == 0)
4664 {
4665 input_line_pointer += 8;
4666 symbolP->bsym->flags |= BSF_FUNCTION;
4667 type = SYMBOL_TYPE_SEC_PROG;
4668 }
4669
4670 /* SOM requires much more information about symbol types
4671 than BFD understands. This is how we get this information
4672 to the SOM BFD backend. */
4673 #ifdef obj_set_symbol_type
4674 obj_set_symbol_type (symbolP->bsym, (int) type);
4675 #endif
4676
4677 /* Now that the type of the exported symbol has been handled,
4678 handle any argument relocation information. */
4679 while (!is_end_of_statement ())
4680 {
4681 if (*input_line_pointer == ',')
4682 input_line_pointer++;
4683 name = input_line_pointer;
4684 c = get_symbol_end ();
4685 /* Argument sources. */
4686 if ((strncasecmp (name, "argw", 4) == 0))
4687 {
4688 p = input_line_pointer;
4689 *p = c;
4690 input_line_pointer++;
4691 temp = atoi (name + 4);
4692 name = input_line_pointer;
4693 c = get_symbol_end ();
4694 arg_reloc = pa_align_arg_reloc (temp, pa_build_arg_reloc (name));
4695 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
4696 *input_line_pointer = c;
4697 }
4698 /* The return value. */
4699 else if ((strncasecmp (name, "rtnval", 6)) == 0)
4700 {
4701 p = input_line_pointer;
4702 *p = c;
4703 input_line_pointer++;
4704 name = input_line_pointer;
4705 c = get_symbol_end ();
4706 arg_reloc = pa_build_arg_reloc (name);
4707 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
4708 *input_line_pointer = c;
4709 }
4710 /* Privelege level. */
4711 else if ((strncasecmp (name, "priv_lev", 8)) == 0)
4712 {
4713 p = input_line_pointer;
4714 *p = c;
4715 input_line_pointer++;
4716 temp = atoi (input_line_pointer);
4717 c = get_symbol_end ();
4718 *input_line_pointer = c;
4719 }
4720 else
4721 {
4722 as_bad ("Undefined .EXPORT/.IMPORT argument (ignored): %s", name);
4723 p = input_line_pointer;
4724 *p = c;
4725 }
4726 if (!is_end_of_statement ())
4727 input_line_pointer++;
4728 }
4729 }
4730
4731 /* Handle an .IMPORT pseudo-op. Any symbol referenced in a given
4732 assembly file must either be defined in the assembly file, or
4733 explicitly IMPORTED from another. */
4734
4735 static void
4736 pa_import (unused)
4737 int unused;
4738 {
4739 char *name, c, *p;
4740 symbolS *symbol;
4741
4742 name = input_line_pointer;
4743 c = get_symbol_end ();
4744
4745 symbol = symbol_find_or_make (name);
4746 p = input_line_pointer;
4747 *p = c;
4748
4749 if (!is_end_of_statement ())
4750 {
4751 input_line_pointer++;
4752 pa_type_args (symbol, 0);
4753 }
4754 else
4755 {
4756 /* Sigh. To be compatable with the HP assembler and to help
4757 poorly written assembly code, we assign a type based on
4758 the the current segment. Note only BSF_FUNCTION really
4759 matters, we do not need to set the full SYMBOL_TYPE_* info here. */
4760 if (now_seg == text_section)
4761 symbol->bsym->flags |= BSF_FUNCTION;
4762
4763 /* If the section is undefined, then the symbol is undefined
4764 Since this is an import, leave the section undefined. */
4765 S_SET_SEGMENT (symbol, &bfd_und_section);
4766 }
4767
4768 demand_empty_rest_of_line ();
4769 }
4770
4771 /* Handle a .LABEL pseudo-op. */
4772
4773 static void
4774 pa_label (unused)
4775 int unused;
4776 {
4777 char *name, c, *p;
4778
4779 name = input_line_pointer;
4780 c = get_symbol_end ();
4781
4782 if (strlen (name) > 0)
4783 {
4784 colon (name);
4785 p = input_line_pointer;
4786 *p = c;
4787 }
4788 else
4789 {
4790 as_warn ("Missing label name on .LABEL");
4791 }
4792
4793 if (!is_end_of_statement ())
4794 {
4795 as_warn ("extra .LABEL arguments ignored.");
4796 ignore_rest_of_line ();
4797 }
4798 demand_empty_rest_of_line ();
4799 }
4800
4801 /* Handle a .LEAVE pseudo-op. This is not supported yet. */
4802
4803 static void
4804 pa_leave (unused)
4805 int unused;
4806 {
4807 abort ();
4808 }
4809
4810 /* Handle a .ORIGIN pseudo-op. */
4811
4812 static void
4813 pa_origin (unused)
4814 int unused;
4815 {
4816 s_org (0);
4817 pa_undefine_label ();
4818 }
4819
4820 /* Handle a .PARAM pseudo-op. This is much like a .EXPORT, except it
4821 is for static functions. FIXME. Should share more code with .EXPORT. */
4822
4823 static void
4824 pa_param (unused)
4825 int unused;
4826 {
4827 char *name, c, *p;
4828 symbolS *symbol;
4829
4830 name = input_line_pointer;
4831 c = get_symbol_end ();
4832
4833 if ((symbol = symbol_find_or_make (name)) == NULL)
4834 {
4835 as_bad ("Cannot define static symbol: %s\n", name);
4836 p = input_line_pointer;
4837 *p = c;
4838 input_line_pointer++;
4839 }
4840 else
4841 {
4842 S_CLEAR_EXTERNAL (symbol);
4843 p = input_line_pointer;
4844 *p = c;
4845 if (!is_end_of_statement ())
4846 {
4847 input_line_pointer++;
4848 pa_type_args (symbol, 0);
4849 }
4850 }
4851
4852 demand_empty_rest_of_line ();
4853 }
4854
4855 /* Handle a .PROC pseudo-op. It is used to mark the beginning
4856 of a procedure from a syntatical point of view. */
4857
4858 static void
4859 pa_proc (unused)
4860 int unused;
4861 {
4862 struct call_info *call_info;
4863 segT seg;
4864
4865 if (within_procedure)
4866 as_fatal ("Nested procedures");
4867
4868 /* Reset global variables for new procedure. */
4869 callinfo_found = FALSE;
4870 within_procedure = TRUE;
4871
4872 #if 0
4873 Enabling this code creates severe problems with GDB. It appears as if
4874 inserting linker stubs between functions within a single .o makes GDB
4875 blow chunks.
4876
4877 /* Create a new CODE subspace for each procedure if we are not
4878 using space/subspace aliases. */
4879 if (!USE_ALIASES && call_info_root != NULL)
4880 {
4881 /* Force creation of a new $CODE$ subspace; inherit attributes from
4882 the first $CODE$ subspace. */
4883 seg = subseg_force_new ("$CODE$", 0);
4884
4885 /* Now set the flags. */
4886 bfd_set_section_flags (stdoutput, seg,
4887 bfd_get_section_flags (abfd, text_section));
4888
4889 /* Record any alignment request for this section. */
4890 record_alignment (seg,
4891 bfd_get_section_alignment (stdoutput, text_section));
4892
4893 /* Change the "text_section" to be our new $CODE$ subspace. */
4894 text_section = seg;
4895 subseg_set (text_section, 0);
4896
4897 #ifdef obj_set_subsection_attributes
4898 /* Need a way to inherit the the access bits, sort key and quadrant
4899 from the first $CODE$ subspace. FIXME. */
4900 obj_set_subsection_attributes (seg, current_space->sd_seg, 0x2c, 24, 0);
4901 #endif
4902 }
4903 #endif
4904
4905 /* Create another call_info structure. */
4906 call_info = (struct call_info *) xmalloc (sizeof (struct call_info));
4907
4908 if (!call_info)
4909 as_fatal ("Cannot allocate unwind descriptor\n");
4910
4911 bzero (call_info, sizeof (struct call_info));
4912
4913 call_info->ci_next = NULL;
4914
4915 if (call_info_root == NULL)
4916 {
4917 call_info_root = call_info;
4918 last_call_info = call_info;
4919 }
4920 else
4921 {
4922 last_call_info->ci_next = call_info;
4923 last_call_info = call_info;
4924 }
4925
4926 /* set up defaults on call_info structure */
4927
4928 call_info->ci_unwind.descriptor.cannot_unwind = 0;
4929 call_info->ci_unwind.descriptor.region_desc = 1;
4930 call_info->ci_unwind.descriptor.hpux_interrupt_marker = 0;
4931
4932 /* If we got a .PROC pseudo-op, we know that the function is defined
4933 locally. Make sure it gets into the symbol table. */
4934 {
4935 label_symbol_struct *label_symbol = pa_get_label ();
4936
4937 if (label_symbol)
4938 {
4939 if (label_symbol->lss_label)
4940 {
4941 last_call_info->start_symbol = label_symbol->lss_label;
4942 label_symbol->lss_label->bsym->flags |= BSF_FUNCTION;
4943 #if 0
4944 if (! USE_ALIASES)
4945 {
4946 /* The label was defined in a different segment. Fix that
4947 along with the value and associated fragment. */
4948 S_SET_SEGMENT (last_call_info->start_symbol, now_seg);
4949 S_SET_VALUE (last_call_info->start_symbol,
4950 ((char*)obstack_next_free (&frags)
4951 - frag_now->fr_literal));
4952 last_call_info->start_symbol->sy_frag = frag_now;
4953 }
4954 #endif
4955 }
4956 else
4957 as_bad ("Missing function name for .PROC (corrupted label chain)");
4958 }
4959 else
4960 last_call_info->start_symbol = NULL;
4961 }
4962
4963 demand_empty_rest_of_line ();
4964 }
4965
4966 /* Process the syntatical end of a procedure. Make sure all the
4967 appropriate pseudo-ops were found within the procedure. */
4968
4969 static void
4970 pa_procend (unused)
4971 int unused;
4972 {
4973
4974 if (!within_procedure)
4975 as_bad ("misplaced .procend");
4976
4977 if (!callinfo_found)
4978 as_bad ("Missing .callinfo for this procedure");
4979
4980 if (within_entry_exit)
4981 as_bad ("Missing .EXIT for a .ENTRY");
4982
4983 #ifdef OBJ_ELF
4984 /* ELF needs to mark the end of each function so that it can compute
4985 the size of the function (apparently its needed in the symbol table. */
4986 hppa_elf_mark_end_of_function ();
4987 #endif
4988
4989 within_procedure = FALSE;
4990 demand_empty_rest_of_line ();
4991 pa_undefine_label ();
4992 }
4993
4994 /* Parse the parameters to a .SPACE directive; if CREATE_FLAG is nonzero,
4995 then create a new space entry to hold the information specified
4996 by the parameters to the .SPACE directive. */
4997
4998 static sd_chain_struct *
4999 pa_parse_space_stmt (space_name, create_flag)
5000 char *space_name;
5001 int create_flag;
5002 {
5003 char *name, *ptemp, c;
5004 char loadable, defined, private, sort;
5005 int spnum;
5006 asection *seg = NULL;
5007 sd_chain_struct *space;
5008
5009 /* load default values */
5010 spnum = 0;
5011 sort = 0;
5012 loadable = TRUE;
5013 defined = TRUE;
5014 private = FALSE;
5015 if (strcmp (space_name, "$TEXT$") == 0)
5016 {
5017 seg = pa_def_spaces[0].segment;
5018 sort = pa_def_spaces[0].sort;
5019 }
5020 else if (strcmp (space_name, "$PRIVATE$") == 0)
5021 {
5022 seg = pa_def_spaces[1].segment;
5023 sort = pa_def_spaces[1].sort;
5024 }
5025
5026 if (!is_end_of_statement ())
5027 {
5028 print_errors = FALSE;
5029 ptemp = input_line_pointer + 1;
5030 /* First see if the space was specified as a number rather than
5031 as a name. According to the PA assembly manual the rest of
5032 the line should be ignored. */
5033 if ((spnum = pa_parse_number (&ptemp, 0)) >= 0)
5034 input_line_pointer = ptemp;
5035 else
5036 {
5037 while (!is_end_of_statement ())
5038 {
5039 input_line_pointer++;
5040 name = input_line_pointer;
5041 c = get_symbol_end ();
5042 if ((strncasecmp (name, "spnum", 5) == 0))
5043 {
5044 *input_line_pointer = c;
5045 input_line_pointer++;
5046 spnum = get_absolute_expression ();
5047 }
5048 else if ((strncasecmp (name, "sort", 4) == 0))
5049 {
5050 *input_line_pointer = c;
5051 input_line_pointer++;
5052 sort = get_absolute_expression ();
5053 }
5054 else if ((strncasecmp (name, "unloadable", 10) == 0))
5055 {
5056 *input_line_pointer = c;
5057 loadable = FALSE;
5058 }
5059 else if ((strncasecmp (name, "notdefined", 10) == 0))
5060 {
5061 *input_line_pointer = c;
5062 defined = FALSE;
5063 }
5064 else if ((strncasecmp (name, "private", 7) == 0))
5065 {
5066 *input_line_pointer = c;
5067 private = TRUE;
5068 }
5069 else
5070 {
5071 as_bad ("Invalid .SPACE argument");
5072 *input_line_pointer = c;
5073 if (!is_end_of_statement ())
5074 input_line_pointer++;
5075 }
5076 }
5077 }
5078 print_errors = TRUE;
5079 }
5080
5081 if (create_flag && seg == NULL)
5082 seg = subseg_new (space_name, 0);
5083
5084 /* If create_flag is nonzero, then create the new space with
5085 the attributes computed above. Else set the values in
5086 an already existing space -- this can only happen for
5087 the first occurence of a built-in space. */
5088 if (create_flag)
5089 space = create_new_space (space_name, spnum, loadable, defined,
5090 private, sort, seg, 1);
5091 else
5092 {
5093 space = is_defined_space (space_name);
5094 SPACE_SPNUM (space) = spnum;
5095 SPACE_DEFINED (space) = defined & 1;
5096 SPACE_USER_DEFINED (space) = 1;
5097 space->sd_seg = seg;
5098 }
5099
5100 #ifdef obj_set_section_attributes
5101 obj_set_section_attributes (seg, defined, private, sort, spnum);
5102 #endif
5103
5104 return space;
5105 }
5106
5107 /* Handle a .SPACE pseudo-op; this switches the current space to the
5108 given space, creating the new space if necessary. */
5109
5110 static void
5111 pa_space (unused)
5112 int unused;
5113 {
5114 char *name, c, *space_name, *save_s;
5115 int temp;
5116 sd_chain_struct *sd_chain;
5117
5118 if (within_procedure)
5119 {
5120 as_bad ("Can\'t change spaces within a procedure definition. Ignored");
5121 ignore_rest_of_line ();
5122 }
5123 else
5124 {
5125 /* Check for some of the predefined spaces. FIXME: most of the code
5126 below is repeated several times, can we extract the common parts
5127 and place them into a subroutine or something similar? */
5128 /* FIXME Is this (and the next IF stmt) really right?
5129 What if INPUT_LINE_POINTER points to "$TEXT$FOO"? */
5130 if (strncmp (input_line_pointer, "$TEXT$", 6) == 0)
5131 {
5132 input_line_pointer += 6;
5133 sd_chain = is_defined_space ("$TEXT$");
5134 if (sd_chain == NULL)
5135 sd_chain = pa_parse_space_stmt ("$TEXT$", 1);
5136 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5137 sd_chain = pa_parse_space_stmt ("$TEXT$", 0);
5138
5139 current_space = sd_chain;
5140 subseg_set (text_section, sd_chain->sd_last_subseg);
5141 current_subspace
5142 = pa_subsegment_to_subspace (text_section,
5143 sd_chain->sd_last_subseg);
5144 demand_empty_rest_of_line ();
5145 return;
5146 }
5147 if (strncmp (input_line_pointer, "$PRIVATE$", 9) == 0)
5148 {
5149 input_line_pointer += 9;
5150 sd_chain = is_defined_space ("$PRIVATE$");
5151 if (sd_chain == NULL)
5152 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 1);
5153 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5154 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 0);
5155
5156 current_space = sd_chain;
5157 subseg_set (data_section, sd_chain->sd_last_subseg);
5158 current_subspace
5159 = pa_subsegment_to_subspace (data_section,
5160 sd_chain->sd_last_subseg);
5161 demand_empty_rest_of_line ();
5162 return;
5163 }
5164 if (!strncasecmp (input_line_pointer,
5165 GDB_DEBUG_SPACE_NAME,
5166 strlen (GDB_DEBUG_SPACE_NAME)))
5167 {
5168 input_line_pointer += strlen (GDB_DEBUG_SPACE_NAME);
5169 sd_chain = is_defined_space (GDB_DEBUG_SPACE_NAME);
5170 if (sd_chain == NULL)
5171 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 1);
5172 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5173 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 0);
5174
5175 current_space = sd_chain;
5176
5177 {
5178 asection *gdb_section
5179 = bfd_make_section_old_way (stdoutput, GDB_DEBUG_SPACE_NAME);
5180
5181 subseg_set (gdb_section, sd_chain->sd_last_subseg);
5182 current_subspace
5183 = pa_subsegment_to_subspace (gdb_section,
5184 sd_chain->sd_last_subseg);
5185 }
5186 demand_empty_rest_of_line ();
5187 return;
5188 }
5189
5190 /* It could be a space specified by number. */
5191 print_errors = 0;
5192 save_s = input_line_pointer;
5193 if ((temp = pa_parse_number (&input_line_pointer, 0)) >= 0)
5194 {
5195 if (sd_chain = pa_find_space_by_number (temp))
5196 {
5197 current_space = sd_chain;
5198
5199 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
5200 current_subspace
5201 = pa_subsegment_to_subspace (sd_chain->sd_seg,
5202 sd_chain->sd_last_subseg);
5203 demand_empty_rest_of_line ();
5204 return;
5205 }
5206 }
5207
5208 /* Not a number, attempt to create a new space. */
5209 print_errors = 1;
5210 input_line_pointer = save_s;
5211 name = input_line_pointer;
5212 c = get_symbol_end ();
5213 space_name = xmalloc (strlen (name) + 1);
5214 strcpy (space_name, name);
5215 *input_line_pointer = c;
5216
5217 sd_chain = pa_parse_space_stmt (space_name, 1);
5218 current_space = sd_chain;
5219
5220 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
5221 current_subspace = pa_subsegment_to_subspace (sd_chain->sd_seg,
5222 sd_chain->sd_last_subseg);
5223 demand_empty_rest_of_line ();
5224 }
5225 }
5226
5227 /* Switch to a new space. (I think). FIXME. */
5228
5229 static void
5230 pa_spnum (unused)
5231 int unused;
5232 {
5233 char *name;
5234 char c;
5235 char *p;
5236 sd_chain_struct *space;
5237
5238 name = input_line_pointer;
5239 c = get_symbol_end ();
5240 space = is_defined_space (name);
5241 if (space)
5242 {
5243 p = frag_more (4);
5244 md_number_to_chars (p, SPACE_SPNUM (space), 4);
5245 }
5246 else
5247 as_warn ("Undefined space: '%s' Assuming space number = 0.", name);
5248
5249 *input_line_pointer = c;
5250 demand_empty_rest_of_line ();
5251 }
5252
5253 /* If VALUE is an exact power of two between zero and 2^31, then
5254 return log2 (VALUE). Else return -1. */
5255
5256 static int
5257 log2 (value)
5258 int value;
5259 {
5260 int shift = 0;
5261
5262 while ((1 << shift) != value && shift < 32)
5263 shift++;
5264
5265 if (shift >= 32)
5266 return -1;
5267 else
5268 return shift;
5269 }
5270
5271 /* Handle a .SUBSPACE pseudo-op; this switches the current subspace to the
5272 given subspace, creating the new subspace if necessary.
5273
5274 FIXME. Should mirror pa_space more closely, in particular how
5275 they're broken up into subroutines. */
5276
5277 static void
5278 pa_subspace (unused)
5279 int unused;
5280 {
5281 char *name, *ss_name, *alias, c;
5282 char loadable, code_only, common, dup_common, zero, sort;
5283 int i, access, space_index, alignment, quadrant, applicable, flags;
5284 sd_chain_struct *space;
5285 ssd_chain_struct *ssd;
5286 asection *section;
5287
5288 if (within_procedure)
5289 {
5290 as_bad ("Can\'t change subspaces within a procedure definition. Ignored");
5291 ignore_rest_of_line ();
5292 }
5293 else
5294 {
5295 name = input_line_pointer;
5296 c = get_symbol_end ();
5297 ss_name = xmalloc (strlen (name) + 1);
5298 strcpy (ss_name, name);
5299 *input_line_pointer = c;
5300
5301 /* Load default values. */
5302 sort = 0;
5303 access = 0x7f;
5304 loadable = 1;
5305 common = 0;
5306 dup_common = 0;
5307 code_only = 0;
5308 zero = 0;
5309 space_index = ~0;
5310 alignment = 0;
5311 quadrant = 0;
5312 alias = NULL;
5313
5314 space = current_space;
5315 ssd = is_defined_subspace (ss_name);
5316 /* Allow user to override the builtin attributes of subspaces. But
5317 only allow the attributes to be changed once! */
5318 if (ssd && SUBSPACE_DEFINED (ssd))
5319 {
5320 subseg_set (ssd->ssd_seg, ssd->ssd_subseg);
5321 if (!is_end_of_statement ())
5322 as_warn ("Parameters of an existing subspace can\'t be modified");
5323 demand_empty_rest_of_line ();
5324 return;
5325 }
5326 else
5327 {
5328 /* A new subspace. Load default values if it matches one of
5329 the builtin subspaces. */
5330 i = 0;
5331 while (pa_def_subspaces[i].name)
5332 {
5333 if (strcasecmp (pa_def_subspaces[i].name, ss_name) == 0)
5334 {
5335 loadable = pa_def_subspaces[i].loadable;
5336 common = pa_def_subspaces[i].common;
5337 dup_common = pa_def_subspaces[i].dup_common;
5338 code_only = pa_def_subspaces[i].code_only;
5339 zero = pa_def_subspaces[i].zero;
5340 space_index = pa_def_subspaces[i].space_index;
5341 alignment = pa_def_subspaces[i].alignment;
5342 quadrant = pa_def_subspaces[i].quadrant;
5343 access = pa_def_subspaces[i].access;
5344 sort = pa_def_subspaces[i].sort;
5345 if (USE_ALIASES && pa_def_subspaces[i].alias)
5346 alias = pa_def_subspaces[i].alias;
5347 break;
5348 }
5349 i++;
5350 }
5351 }
5352
5353 /* We should be working with a new subspace now. Fill in
5354 any information as specified by the user. */
5355 if (!is_end_of_statement ())
5356 {
5357 input_line_pointer++;
5358 while (!is_end_of_statement ())
5359 {
5360 name = input_line_pointer;
5361 c = get_symbol_end ();
5362 if ((strncasecmp (name, "quad", 4) == 0))
5363 {
5364 *input_line_pointer = c;
5365 input_line_pointer++;
5366 quadrant = get_absolute_expression ();
5367 }
5368 else if ((strncasecmp (name, "align", 5) == 0))
5369 {
5370 *input_line_pointer = c;
5371 input_line_pointer++;
5372 alignment = get_absolute_expression ();
5373 if (log2 (alignment) == -1)
5374 {
5375 as_bad ("Alignment must be a power of 2");
5376 alignment = 1;
5377 }
5378 }
5379 else if ((strncasecmp (name, "access", 6) == 0))
5380 {
5381 *input_line_pointer = c;
5382 input_line_pointer++;
5383 access = get_absolute_expression ();
5384 }
5385 else if ((strncasecmp (name, "sort", 4) == 0))
5386 {
5387 *input_line_pointer = c;
5388 input_line_pointer++;
5389 sort = get_absolute_expression ();
5390 }
5391 else if ((strncasecmp (name, "code_only", 9) == 0))
5392 {
5393 *input_line_pointer = c;
5394 code_only = 1;
5395 }
5396 else if ((strncasecmp (name, "unloadable", 10) == 0))
5397 {
5398 *input_line_pointer = c;
5399 loadable = 0;
5400 }
5401 else if ((strncasecmp (name, "common", 6) == 0))
5402 {
5403 *input_line_pointer = c;
5404 common = 1;
5405 }
5406 else if ((strncasecmp (name, "dup_comm", 8) == 0))
5407 {
5408 *input_line_pointer = c;
5409 dup_common = 1;
5410 }
5411 else if ((strncasecmp (name, "zero", 4) == 0))
5412 {
5413 *input_line_pointer = c;
5414 zero = 1;
5415 }
5416 else if ((strncasecmp (name, "first", 5) == 0))
5417 as_bad ("FIRST not supported as a .SUBSPACE argument");
5418 else
5419 as_bad ("Invalid .SUBSPACE argument");
5420 if (!is_end_of_statement ())
5421 input_line_pointer++;
5422 }
5423 }
5424
5425 /* Compute a reasonable set of BFD flags based on the information
5426 in the .subspace directive. */
5427 applicable = bfd_applicable_section_flags (stdoutput);
5428 flags = 0;
5429 if (loadable)
5430 flags |= (SEC_ALLOC | SEC_LOAD);
5431 if (code_only)
5432 flags |= SEC_CODE;
5433 if (common || dup_common)
5434 flags |= SEC_IS_COMMON;
5435
5436 /* This is a zero-filled subspace (eg BSS). */
5437 if (zero)
5438 flags &= ~SEC_LOAD;
5439
5440 flags |= SEC_RELOC | SEC_HAS_CONTENTS;
5441 applicable &= flags;
5442
5443 /* If this is an existing subspace, then we want to use the
5444 segment already associated with the subspace.
5445
5446 FIXME NOW! ELF BFD doesn't appear to be ready to deal with
5447 lots of sections. It might be a problem in the PA ELF
5448 code, I do not know yet. For now avoid creating anything
5449 but the "standard" sections for ELF. */
5450 if (ssd)
5451 section = ssd->ssd_seg;
5452 else if (alias)
5453 section = subseg_new (alias, 0);
5454 else if (!alias && USE_ALIASES)
5455 {
5456 as_warn ("Ignoring subspace decl due to ELF BFD bugs.");
5457 demand_empty_rest_of_line ();
5458 return;
5459 }
5460 else
5461 section = subseg_new (ss_name, 0);
5462
5463 /* Now set the flags. */
5464 bfd_set_section_flags (stdoutput, section, applicable);
5465
5466 /* Record any alignment request for this section. */
5467 record_alignment (section, log2 (alignment));
5468
5469 /* Set the starting offset for this section. */
5470 bfd_set_section_vma (stdoutput, section,
5471 pa_subspace_start (space, quadrant));
5472
5473 /* Now that all the flags are set, update an existing subspace,
5474 or create a new one. */
5475 if (ssd)
5476
5477 current_subspace = update_subspace (space, ss_name, loadable,
5478 code_only, common, dup_common,
5479 sort, zero, access, space_index,
5480 alignment, quadrant,
5481 section);
5482 else
5483 current_subspace = create_new_subspace (space, ss_name, loadable,
5484 code_only, common,
5485 dup_common, zero, sort,
5486 access, space_index,
5487 alignment, quadrant, section);
5488
5489 demand_empty_rest_of_line ();
5490 current_subspace->ssd_seg = section;
5491 subseg_set (current_subspace->ssd_seg, current_subspace->ssd_subseg);
5492 }
5493 SUBSPACE_DEFINED (current_subspace) = 1;
5494 }
5495
5496
5497 /* Create default space and subspace dictionaries. */
5498
5499 static void
5500 pa_spaces_begin ()
5501 {
5502 int i;
5503
5504 space_dict_root = NULL;
5505 space_dict_last = NULL;
5506
5507 i = 0;
5508 while (pa_def_spaces[i].name)
5509 {
5510 char *name;
5511
5512 /* Pick the right name to use for the new section. */
5513 if (pa_def_spaces[i].alias && USE_ALIASES)
5514 name = pa_def_spaces[i].alias;
5515 else
5516 name = pa_def_spaces[i].name;
5517
5518 pa_def_spaces[i].segment = subseg_new (name, 0);
5519 create_new_space (pa_def_spaces[i].name, pa_def_spaces[i].spnum,
5520 pa_def_spaces[i].loadable, pa_def_spaces[i].defined,
5521 pa_def_spaces[i].private, pa_def_spaces[i].sort,
5522 pa_def_spaces[i].segment, 0);
5523 i++;
5524 }
5525
5526 i = 0;
5527 while (pa_def_subspaces[i].name)
5528 {
5529 char *name;
5530 int applicable, subsegment;
5531 asection *segment = NULL;
5532 sd_chain_struct *space;
5533
5534 /* Pick the right name for the new section and pick the right
5535 subsegment number. */
5536 if (pa_def_subspaces[i].alias && USE_ALIASES)
5537 {
5538 name = pa_def_subspaces[i].alias;
5539 subsegment = pa_def_subspaces[i].subsegment;
5540 }
5541 else
5542 {
5543 name = pa_def_subspaces[i].name;
5544 subsegment = 0;
5545 }
5546
5547 /* Create the new section. */
5548 segment = subseg_new (name, subsegment);
5549
5550
5551 /* For SOM we want to replace the standard .text, .data, and .bss
5552 sections with our own. */
5553 if (!strcmp (pa_def_subspaces[i].name, "$CODE$") && !USE_ALIASES)
5554 {
5555 text_section = segment;
5556 applicable = bfd_applicable_section_flags (stdoutput);
5557 bfd_set_section_flags (stdoutput, text_section,
5558 applicable & (SEC_ALLOC | SEC_LOAD
5559 | SEC_RELOC | SEC_CODE
5560 | SEC_READONLY
5561 | SEC_HAS_CONTENTS));
5562 }
5563 else if (!strcmp (pa_def_subspaces[i].name, "$DATA$") && !USE_ALIASES)
5564 {
5565 data_section = segment;
5566 applicable = bfd_applicable_section_flags (stdoutput);
5567 bfd_set_section_flags (stdoutput, data_section,
5568 applicable & (SEC_ALLOC | SEC_LOAD
5569 | SEC_RELOC
5570 | SEC_HAS_CONTENTS));
5571
5572
5573 }
5574 else if (!strcmp (pa_def_subspaces[i].name, "$BSS$") && !USE_ALIASES)
5575 {
5576 bss_section = segment;
5577 applicable = bfd_applicable_section_flags (stdoutput);
5578 bfd_set_section_flags (stdoutput, bss_section,
5579 applicable & SEC_ALLOC);
5580 }
5581
5582 /* Find the space associated with this subspace. */
5583 space = pa_segment_to_space (pa_def_spaces[pa_def_subspaces[i].
5584 def_space_index].segment);
5585 if (space == NULL)
5586 {
5587 as_fatal ("Internal error: Unable to find containing space for %s.",
5588 pa_def_subspaces[i].name);
5589 }
5590
5591 create_new_subspace (space, name,
5592 pa_def_subspaces[i].loadable,
5593 pa_def_subspaces[i].code_only,
5594 pa_def_subspaces[i].common,
5595 pa_def_subspaces[i].dup_common,
5596 pa_def_subspaces[i].zero,
5597 pa_def_subspaces[i].sort,
5598 pa_def_subspaces[i].access,
5599 pa_def_subspaces[i].space_index,
5600 pa_def_subspaces[i].alignment,
5601 pa_def_subspaces[i].quadrant,
5602 segment);
5603 i++;
5604 }
5605 }
5606
5607
5608
5609 /* Create a new space NAME, with the appropriate flags as defined
5610 by the given parameters. */
5611
5612 static sd_chain_struct *
5613 create_new_space (name, spnum, loadable, defined, private,
5614 sort, seg, user_defined)
5615 char *name;
5616 int spnum;
5617 char loadable;
5618 char defined;
5619 char private;
5620 char sort;
5621 asection *seg;
5622 int user_defined;
5623 {
5624 sd_chain_struct *chain_entry;
5625
5626 chain_entry = (sd_chain_struct *) xmalloc (sizeof (sd_chain_struct));
5627 if (!chain_entry)
5628 as_fatal ("Out of memory: could not allocate new space chain entry: %s\n",
5629 name);
5630
5631 SPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5632 strcpy (SPACE_NAME (chain_entry), name);
5633 SPACE_DEFINED (chain_entry) = defined;
5634 SPACE_USER_DEFINED (chain_entry) = user_defined;
5635 SPACE_SPNUM (chain_entry) = spnum;
5636
5637 chain_entry->sd_seg = seg;
5638 chain_entry->sd_last_subseg = -1;
5639 chain_entry->sd_next = NULL;
5640
5641 /* Find spot for the new space based on its sort key. */
5642 if (!space_dict_last)
5643 space_dict_last = chain_entry;
5644
5645 if (space_dict_root == NULL)
5646 space_dict_root = chain_entry;
5647 else
5648 {
5649 sd_chain_struct *chain_pointer;
5650 sd_chain_struct *prev_chain_pointer;
5651
5652 chain_pointer = space_dict_root;
5653 prev_chain_pointer = NULL;
5654
5655 while (chain_pointer)
5656 {
5657 prev_chain_pointer = chain_pointer;
5658 chain_pointer = chain_pointer->sd_next;
5659 }
5660
5661 /* At this point we've found the correct place to add the new
5662 entry. So add it and update the linked lists as appropriate. */
5663 if (prev_chain_pointer)
5664 {
5665 chain_entry->sd_next = chain_pointer;
5666 prev_chain_pointer->sd_next = chain_entry;
5667 }
5668 else
5669 {
5670 space_dict_root = chain_entry;
5671 chain_entry->sd_next = chain_pointer;
5672 }
5673
5674 if (chain_entry->sd_next == NULL)
5675 space_dict_last = chain_entry;
5676 }
5677
5678 /* This is here to catch predefined spaces which do not get
5679 modified by the user's input. Another call is found at
5680 the bottom of pa_parse_space_stmt to handle cases where
5681 the user modifies a predefined space. */
5682 #ifdef obj_set_section_attributes
5683 obj_set_section_attributes (seg, defined, private, sort, spnum);
5684 #endif
5685
5686 return chain_entry;
5687 }
5688
5689 /* Create a new subspace NAME, with the appropriate flags as defined
5690 by the given parameters.
5691
5692 Add the new subspace to the subspace dictionary chain in numerical
5693 order as defined by the SORT entries. */
5694
5695 static ssd_chain_struct *
5696 create_new_subspace (space, name, loadable, code_only, common,
5697 dup_common, is_zero, sort, access, space_index,
5698 alignment, quadrant, seg)
5699 sd_chain_struct *space;
5700 char *name;
5701 char loadable, code_only, common, dup_common, is_zero;
5702 char sort;
5703 int access;
5704 int space_index;
5705 int alignment;
5706 int quadrant;
5707 asection *seg;
5708 {
5709 ssd_chain_struct *chain_entry;
5710
5711 chain_entry = (ssd_chain_struct *) xmalloc (sizeof (ssd_chain_struct));
5712 if (!chain_entry)
5713 as_fatal ("Out of memory: could not allocate new subspace chain entry: %s\n", name);
5714
5715 SUBSPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5716 strcpy (SUBSPACE_NAME (chain_entry), name);
5717
5718 /* Initialize subspace_defined. When we hit a .subspace directive
5719 we'll set it to 1 which "locks-in" the subspace attributes. */
5720 SUBSPACE_DEFINED (chain_entry) = 0;
5721
5722 chain_entry->ssd_subseg = USE_ALIASES ? pa_next_subseg (space) : 0;
5723 chain_entry->ssd_seg = seg;
5724 chain_entry->ssd_next = NULL;
5725
5726 /* Find spot for the new subspace based on its sort key. */
5727 if (space->sd_subspaces == NULL)
5728 space->sd_subspaces = chain_entry;
5729 else
5730 {
5731 ssd_chain_struct *chain_pointer;
5732 ssd_chain_struct *prev_chain_pointer;
5733
5734 chain_pointer = space->sd_subspaces;
5735 prev_chain_pointer = NULL;
5736
5737 while (chain_pointer)
5738 {
5739 prev_chain_pointer = chain_pointer;
5740 chain_pointer = chain_pointer->ssd_next;
5741 }
5742
5743 /* Now we have somewhere to put the new entry. Insert it and update
5744 the links. */
5745 if (prev_chain_pointer)
5746 {
5747 chain_entry->ssd_next = chain_pointer;
5748 prev_chain_pointer->ssd_next = chain_entry;
5749 }
5750 else
5751 {
5752 space->sd_subspaces = chain_entry;
5753 chain_entry->ssd_next = chain_pointer;
5754 }
5755 }
5756
5757 #ifdef obj_set_subsection_attributes
5758 obj_set_subsection_attributes (seg, space->sd_seg, access,
5759 sort, quadrant);
5760 #endif
5761
5762 return chain_entry;
5763 }
5764
5765 /* Update the information for the given subspace based upon the
5766 various arguments. Return the modified subspace chain entry. */
5767
5768 static ssd_chain_struct *
5769 update_subspace (space, name, loadable, code_only, common, dup_common, sort,
5770 zero, access, space_index, alignment, quadrant, section)
5771 sd_chain_struct *space;
5772 char *name;
5773 char loadable;
5774 char code_only;
5775 char common;
5776 char dup_common;
5777 char zero;
5778 char sort;
5779 int access;
5780 int space_index;
5781 int alignment;
5782 int quadrant;
5783 asection *section;
5784 {
5785 ssd_chain_struct *chain_entry;
5786
5787 chain_entry = is_defined_subspace (name);
5788
5789 #ifdef obj_set_subsection_attributes
5790 obj_set_subsection_attributes (section, space->sd_seg, access,
5791 sort, quadrant);
5792 #endif
5793
5794 return chain_entry;
5795 }
5796
5797 /* Return the space chain entry for the space with the name NAME or
5798 NULL if no such space exists. */
5799
5800 static sd_chain_struct *
5801 is_defined_space (name)
5802 char *name;
5803 {
5804 sd_chain_struct *chain_pointer;
5805
5806 for (chain_pointer = space_dict_root;
5807 chain_pointer;
5808 chain_pointer = chain_pointer->sd_next)
5809 {
5810 if (strcmp (SPACE_NAME (chain_pointer), name) == 0)
5811 return chain_pointer;
5812 }
5813
5814 /* No mapping from segment to space was found. Return NULL. */
5815 return NULL;
5816 }
5817
5818 /* Find and return the space associated with the given seg. If no mapping
5819 from the given seg to a space is found, then return NULL.
5820
5821 Unlike subspaces, the number of spaces is not expected to grow much,
5822 so a linear exhaustive search is OK here. */
5823
5824 static sd_chain_struct *
5825 pa_segment_to_space (seg)
5826 asection *seg;
5827 {
5828 sd_chain_struct *space_chain;
5829
5830 /* Walk through each space looking for the correct mapping. */
5831 for (space_chain = space_dict_root;
5832 space_chain;
5833 space_chain = space_chain->sd_next)
5834 {
5835 if (space_chain->sd_seg == seg)
5836 return space_chain;
5837 }
5838
5839 /* Mapping was not found. Return NULL. */
5840 return NULL;
5841 }
5842
5843 /* Return the space chain entry for the subspace with the name NAME or
5844 NULL if no such subspace exists.
5845
5846 Uses a linear search through all the spaces and subspaces, this may
5847 not be appropriate if we ever being placing each function in its
5848 own subspace. */
5849
5850 static ssd_chain_struct *
5851 is_defined_subspace (name)
5852 char *name;
5853 {
5854 sd_chain_struct *space_chain;
5855 ssd_chain_struct *subspace_chain;
5856
5857 /* Walk through each space. */
5858 for (space_chain = space_dict_root;
5859 space_chain;
5860 space_chain = space_chain->sd_next)
5861 {
5862 /* Walk through each subspace looking for a name which matches. */
5863 for (subspace_chain = space_chain->sd_subspaces;
5864 subspace_chain;
5865 subspace_chain = subspace_chain->ssd_next)
5866 if (strcmp (SUBSPACE_NAME (subspace_chain), name) == 0)
5867 return subspace_chain;
5868 }
5869
5870 /* Subspace wasn't found. Return NULL. */
5871 return NULL;
5872 }
5873
5874 /* Find and return the subspace associated with the given seg. If no
5875 mapping from the given seg to a subspace is found, then return NULL.
5876
5877 If we ever put each procedure/function within its own subspace
5878 (to make life easier on the compiler and linker), then this will have
5879 to become more efficient. */
5880
5881 static ssd_chain_struct *
5882 pa_subsegment_to_subspace (seg, subseg)
5883 asection *seg;
5884 subsegT subseg;
5885 {
5886 sd_chain_struct *space_chain;
5887 ssd_chain_struct *subspace_chain;
5888
5889 /* Walk through each space. */
5890 for (space_chain = space_dict_root;
5891 space_chain;
5892 space_chain = space_chain->sd_next)
5893 {
5894 if (space_chain->sd_seg == seg)
5895 {
5896 /* Walk through each subspace within each space looking for
5897 the correct mapping. */
5898 for (subspace_chain = space_chain->sd_subspaces;
5899 subspace_chain;
5900 subspace_chain = subspace_chain->ssd_next)
5901 if (subspace_chain->ssd_subseg == (int) subseg)
5902 return subspace_chain;
5903 }
5904 }
5905
5906 /* No mapping from subsegment to subspace found. Return NULL. */
5907 return NULL;
5908 }
5909
5910 /* Given a number, try and find a space with the name number.
5911
5912 Return a pointer to a space dictionary chain entry for the space
5913 that was found or NULL on failure. */
5914
5915 static sd_chain_struct *
5916 pa_find_space_by_number (number)
5917 int number;
5918 {
5919 sd_chain_struct *space_chain;
5920
5921 for (space_chain = space_dict_root;
5922 space_chain;
5923 space_chain = space_chain->sd_next)
5924 {
5925 if (SPACE_SPNUM (space_chain) == number)
5926 return space_chain;
5927 }
5928
5929 /* No appropriate space found. Return NULL. */
5930 return NULL;
5931 }
5932
5933 /* Return the starting address for the given subspace. If the starting
5934 address is unknown then return zero. */
5935
5936 static unsigned int
5937 pa_subspace_start (space, quadrant)
5938 sd_chain_struct *space;
5939 int quadrant;
5940 {
5941 /* FIXME. Assumes everyone puts read/write data at 0x4000000, this
5942 is not correct for the PA OSF1 port. */
5943 if ((strcmp (SPACE_NAME (space), "$PRIVATE$") == 0) && quadrant == 1)
5944 return 0x40000000;
5945 else if (space->sd_seg == data_section && quadrant == 1)
5946 return 0x40000000;
5947 else
5948 return 0;
5949 }
5950
5951 /* FIXME. Needs documentation. */
5952 static int
5953 pa_next_subseg (space)
5954 sd_chain_struct *space;
5955 {
5956
5957 space->sd_last_subseg++;
5958 return space->sd_last_subseg;
5959 }
5960
5961 /* Helper function for pa_stringer. Used to find the end of
5962 a string. */
5963
5964 static unsigned int
5965 pa_stringer_aux (s)
5966 char *s;
5967 {
5968 unsigned int c = *s & CHAR_MASK;
5969 switch (c)
5970 {
5971 case '\"':
5972 c = NOT_A_CHAR;
5973 break;
5974 default:
5975 break;
5976 }
5977 return c;
5978 }
5979
5980 /* Handle a .STRING type pseudo-op. */
5981
5982 static void
5983 pa_stringer (append_zero)
5984 int append_zero;
5985 {
5986 char *s, num_buf[4];
5987 unsigned int c;
5988 int i;
5989
5990 /* Preprocess the string to handle PA-specific escape sequences.
5991 For example, \xDD where DD is a hexidecimal number should be
5992 changed to \OOO where OOO is an octal number. */
5993
5994 /* Skip the opening quote. */
5995 s = input_line_pointer + 1;
5996
5997 while (is_a_char (c = pa_stringer_aux (s++)))
5998 {
5999 if (c == '\\')
6000 {
6001 c = *s;
6002 switch (c)
6003 {
6004 /* Handle \x<num>. */
6005 case 'x':
6006 {
6007 unsigned int number;
6008 int num_digit;
6009 char dg;
6010 char *s_start = s;
6011
6012 /* Get pas the 'x'. */
6013 s++;
6014 for (num_digit = 0, number = 0, dg = *s;
6015 num_digit < 2
6016 && (isdigit (dg) || (dg >= 'a' && dg <= 'f')
6017 || (dg >= 'A' && dg <= 'F'));
6018 num_digit++)
6019 {
6020 if (isdigit (dg))
6021 number = number * 16 + dg - '0';
6022 else if (dg >= 'a' && dg <= 'f')
6023 number = number * 16 + dg - 'a' + 10;
6024 else
6025 number = number * 16 + dg - 'A' + 10;
6026
6027 s++;
6028 dg = *s;
6029 }
6030 if (num_digit > 0)
6031 {
6032 switch (num_digit)
6033 {
6034 case 1:
6035 sprintf (num_buf, "%02o", number);
6036 break;
6037 case 2:
6038 sprintf (num_buf, "%03o", number);
6039 break;
6040 }
6041 for (i = 0; i <= num_digit; i++)
6042 s_start[i] = num_buf[i];
6043 }
6044 break;
6045 }
6046 /* This might be a "\"", skip over the escaped char. */
6047 default:
6048 s++;
6049 break;
6050 }
6051 }
6052 }
6053 stringer (append_zero);
6054 pa_undefine_label ();
6055 }
6056
6057 /* Handle a .VERSION pseudo-op. */
6058
6059 static void
6060 pa_version (unused)
6061 int unused;
6062 {
6063 obj_version (0);
6064 pa_undefine_label ();
6065 }
6066
6067 /* Handle a .COPYRIGHT pseudo-op. */
6068
6069 static void
6070 pa_copyright (unused)
6071 int unused;
6072 {
6073 obj_copyright (0);
6074 pa_undefine_label ();
6075 }
6076
6077 /* Just like a normal cons, but when finished we have to undefine
6078 the latest space label. */
6079
6080 static void
6081 pa_cons (nbytes)
6082 int nbytes;
6083 {
6084 cons (nbytes);
6085 pa_undefine_label ();
6086 }
6087
6088 /* Switch to the data space. As usual delete our label. */
6089
6090 static void
6091 pa_data (unused)
6092 int unused;
6093 {
6094 s_data (0);
6095 pa_undefine_label ();
6096 }
6097
6098 /* Like float_cons, but we need to undefine our label. */
6099
6100 static void
6101 pa_float_cons (float_type)
6102 int float_type;
6103 {
6104 float_cons (float_type);
6105 pa_undefine_label ();
6106 }
6107
6108 /* Like s_fill, but delete our label when finished. */
6109
6110 static void
6111 pa_fill (unused)
6112 int unused;
6113 {
6114 s_fill (0);
6115 pa_undefine_label ();
6116 }
6117
6118 /* Like lcomm, but delete our label when finished. */
6119
6120 static void
6121 pa_lcomm (needs_align)
6122 int needs_align;
6123 {
6124 s_lcomm (needs_align);
6125 pa_undefine_label ();
6126 }
6127
6128 /* Like lsym, but delete our label when finished. */
6129
6130 static void
6131 pa_lsym (unused)
6132 int unused;
6133 {
6134 s_lsym (0);
6135 pa_undefine_label ();
6136 }
6137
6138 /* Switch to the text space. Like s_text, but delete our
6139 label when finished. */
6140 static void
6141 pa_text (unused)
6142 int unused;
6143 {
6144 s_text (0);
6145 pa_undefine_label ();
6146 }
6147
6148 /* On the PA relocations which involve function symbols must not be
6149 adjusted. This so that the linker can know when/how to create argument
6150 relocation stubs for indirect calls and calls to static functions.
6151
6152 FIXME. Also reject R_HPPA relocations which are 32 bits
6153 wide. Helps with code lables in arrays for SOM. (SOM BFD code
6154 needs to generate relocations to push the addend and symbol value
6155 onto the stack, add them, then pop the value off the stack and
6156 use it in a relocation -- yuk. */
6157
6158 int
6159 hppa_fix_adjustable (fixp)
6160 fixS *fixp;
6161 {
6162 struct hppa_fix_struct *hppa_fix;
6163
6164 hppa_fix = fixp->tc_fix_data;
6165
6166 if (fixp->fx_r_type == R_HPPA && hppa_fix->fx_r_format == 32)
6167 return 0;
6168
6169 if (fixp->fx_addsy == 0
6170 || (fixp->fx_addsy->bsym->flags & BSF_FUNCTION) == 0)
6171 return 1;
6172
6173 return 0;
6174 }
6175
6176 /* Return nonzero if the fixup in FIXP will require a relocation,
6177 even it if appears that the fixup could be completely handled
6178 within GAS. */
6179
6180 int
6181 hppa_force_relocation (fixp)
6182 fixS *fixp;
6183 {
6184 struct hppa_fix_struct *hppa_fixp = fixp->tc_fix_data;
6185
6186 #ifdef OBJ_SOM
6187 if (fixp->fx_r_type == R_HPPA_ENTRY || fixp->fx_r_type == R_HPPA_EXIT)
6188 return 1;
6189 #endif
6190
6191 #define stub_needed(CALLER, CALLEE) \
6192 ((CALLEE) && (CALLER) && ((CALLEE) != (CALLER)))
6193
6194 /* It is necessary to force PC-relative calls/jumps to have a relocation
6195 entry if they're going to need either a argument relocation or long
6196 call stub. FIXME. Can't we need the same for absolute calls? */
6197 if (fixp->fx_pcrel && fixp->fx_addsy
6198 && (stub_needed (((obj_symbol_type *)
6199 fixp->fx_addsy->bsym)->tc_data.hppa_arg_reloc,
6200 hppa_fixp->fx_arg_reloc)))
6201 return 1;
6202
6203 #undef stub_needed
6204
6205 /* No need (yet) to force another relocations to be emitted. */
6206 return 0;
6207 }
6208
6209 /* Now for some ELF specific code. FIXME. */
6210 #ifdef OBJ_ELF
6211 static symext_chainS *symext_rootP;
6212 static symext_chainS *symext_lastP;
6213
6214 /* Mark the end of a function so that it's possible to compute
6215 the size of the function in hppa_elf_final_processing. */
6216
6217 static void
6218 hppa_elf_mark_end_of_function ()
6219 {
6220 /* ELF does not have EXIT relocations. All we do is create a
6221 temporary symbol marking the end of the function. */
6222 char *name = (char *)
6223 xmalloc (strlen ("L$\001end_") +
6224 strlen (S_GET_NAME (last_call_info->start_symbol)) + 1);
6225
6226 if (name)
6227 {
6228 symbolS *symbolP;
6229
6230 strcpy (name, "L$\001end_");
6231 strcat (name, S_GET_NAME (last_call_info->start_symbol));
6232
6233 /* If we have a .exit followed by a .procend, then the
6234 symbol will have already been defined. */
6235 symbolP = symbol_find (name);
6236 if (symbolP)
6237 {
6238 /* The symbol has already been defined! This can
6239 happen if we have a .exit followed by a .procend.
6240
6241 This is *not* an error. All we want to do is free
6242 the memory we just allocated for the name and continue. */
6243 xfree (name);
6244 }
6245 else
6246 {
6247 /* symbol value should be the offset of the
6248 last instruction of the function */
6249 symbolP = symbol_new (name, now_seg,
6250 (valueT) (obstack_next_free (&frags)
6251 - frag_now->fr_literal - 4),
6252 frag_now);
6253
6254 assert (symbolP);
6255 symbolP->bsym->flags = BSF_LOCAL;
6256 symbol_table_insert (symbolP);
6257 }
6258
6259 if (symbolP)
6260 last_call_info->end_symbol = symbolP;
6261 else
6262 as_bad ("Symbol '%s' could not be created.", name);
6263
6264 }
6265 else
6266 as_bad ("No memory for symbol name.");
6267
6268 }
6269
6270 /* Do any symbol processing requested by the target-cpu or target-format. */
6271
6272 void
6273 hppa_tc_symbol (abfd, symbolP, sym_idx)
6274 bfd *abfd;
6275 elf_symbol_type *symbolP;
6276 int sym_idx;
6277 {
6278 /* Just call the ELF BFD routine. */
6279 elf_hppa_tc_symbol (abfd, symbolP, sym_idx, &symext_rootP, &symext_lastP);
6280 }
6281
6282 /* Make sections needed by the target cpu and/or target format. */
6283 void
6284 hppa_tc_make_sections (abfd)
6285 bfd *abfd;
6286 {
6287 /* Just call the ELF BFD routine. */
6288 elf_hppa_tc_make_sections (abfd, symext_rootP);
6289 }
6290
6291 /* For ELF, this function serves one purpose: to setup the st_size
6292 field of STT_FUNC symbols. To do this, we need to scan the
6293 call_info structure list, determining st_size in by taking the
6294 difference in the address of the beginning/end marker symbols. */
6295
6296 void
6297 elf_hppa_final_processing ()
6298 {
6299 struct call_info *call_info_pointer;
6300
6301 for (call_info_pointer = call_info_root;
6302 call_info_pointer;
6303 call_info_pointer = call_info_pointer->ci_next)
6304 {
6305 elf_symbol_type *esym
6306 = (elf_symbol_type *) call_info_pointer->start_symbol->bsym;
6307 esym->internal_elf_sym.st_size =
6308 S_GET_VALUE (call_info_pointer->end_symbol)
6309 - S_GET_VALUE (call_info_pointer->start_symbol) + 4;
6310 }
6311 }
6312 #endif