6aeb827a19af7c65213406cf9d7cb9024e741420
[binutils-gdb.git] / gas / config / tc-i386.c
1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
29
30 #include "as.h"
31 #include "safe-ctype.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "opcode/i386.h"
36 #include "elf/x86-64.h"
37
38 #ifndef REGISTER_WARNINGS
39 #define REGISTER_WARNINGS 1
40 #endif
41
42 #ifndef INFER_ADDR_PREFIX
43 #define INFER_ADDR_PREFIX 1
44 #endif
45
46 #ifndef SCALE1_WHEN_NO_INDEX
47 /* Specifying a scale factor besides 1 when there is no index is
48 futile. eg. `mov (%ebx,2),%al' does exactly the same as
49 `mov (%ebx),%al'. To slavishly follow what the programmer
50 specified, set SCALE1_WHEN_NO_INDEX to 0. */
51 #define SCALE1_WHEN_NO_INDEX 1
52 #endif
53
54 #ifndef DEFAULT_ARCH
55 #define DEFAULT_ARCH "i386"
56 #endif
57
58 #ifndef INLINE
59 #if __GNUC__ >= 2
60 #define INLINE __inline__
61 #else
62 #define INLINE
63 #endif
64 #endif
65
66 static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
67 static INLINE int fits_in_signed_byte PARAMS ((offsetT));
68 static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
69 static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
70 static INLINE int fits_in_signed_word PARAMS ((offsetT));
71 static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
72 static INLINE int fits_in_signed_long PARAMS ((offsetT));
73 static int smallest_imm_type PARAMS ((offsetT));
74 static offsetT offset_in_range PARAMS ((offsetT, int));
75 static int add_prefix PARAMS ((unsigned int));
76 static void set_code_flag PARAMS ((int));
77 static void set_16bit_gcc_code_flag PARAMS ((int));
78 static void set_intel_syntax PARAMS ((int));
79 static void set_cpu_arch PARAMS ((int));
80 #ifdef TE_PE
81 static void pe_directive_secrel PARAMS ((int));
82 #endif
83 static char *output_invalid PARAMS ((int c));
84 static int i386_operand PARAMS ((char *operand_string));
85 static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
86 static const reg_entry *parse_register PARAMS ((char *reg_string,
87 char **end_op));
88 static char *parse_insn PARAMS ((char *, char *));
89 static char *parse_operands PARAMS ((char *, const char *));
90 static void swap_operands PARAMS ((void));
91 static void optimize_imm PARAMS ((void));
92 static void optimize_disp PARAMS ((void));
93 static int match_template PARAMS ((void));
94 static int check_string PARAMS ((void));
95 static int process_suffix PARAMS ((void));
96 static int check_byte_reg PARAMS ((void));
97 static int check_long_reg PARAMS ((void));
98 static int check_qword_reg PARAMS ((void));
99 static int check_word_reg PARAMS ((void));
100 static int finalize_imm PARAMS ((void));
101 static int process_operands PARAMS ((void));
102 static const seg_entry *build_modrm_byte PARAMS ((void));
103 static void output_insn PARAMS ((void));
104 static void output_branch PARAMS ((void));
105 static void output_jump PARAMS ((void));
106 static void output_interseg_jump PARAMS ((void));
107 static void output_imm PARAMS ((fragS *insn_start_frag,
108 offsetT insn_start_off));
109 static void output_disp PARAMS ((fragS *insn_start_frag,
110 offsetT insn_start_off));
111 #ifndef I386COFF
112 static void s_bss PARAMS ((int));
113 #endif
114
115 static const char *default_arch = DEFAULT_ARCH;
116
117 /* 'md_assemble ()' gathers together information and puts it into a
118 i386_insn. */
119
120 union i386_op
121 {
122 expressionS *disps;
123 expressionS *imms;
124 const reg_entry *regs;
125 };
126
127 struct _i386_insn
128 {
129 /* TM holds the template for the insn were currently assembling. */
130 template tm;
131
132 /* SUFFIX holds the instruction mnemonic suffix if given.
133 (e.g. 'l' for 'movl') */
134 char suffix;
135
136 /* OPERANDS gives the number of given operands. */
137 unsigned int operands;
138
139 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
140 of given register, displacement, memory operands and immediate
141 operands. */
142 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
143
144 /* TYPES [i] is the type (see above #defines) which tells us how to
145 use OP[i] for the corresponding operand. */
146 unsigned int types[MAX_OPERANDS];
147
148 /* Displacement expression, immediate expression, or register for each
149 operand. */
150 union i386_op op[MAX_OPERANDS];
151
152 /* Flags for operands. */
153 unsigned int flags[MAX_OPERANDS];
154 #define Operand_PCrel 1
155
156 /* Relocation type for operand */
157 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
158
159 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
160 the base index byte below. */
161 const reg_entry *base_reg;
162 const reg_entry *index_reg;
163 unsigned int log2_scale_factor;
164
165 /* SEG gives the seg_entries of this insn. They are zero unless
166 explicit segment overrides are given. */
167 const seg_entry *seg[2];
168
169 /* PREFIX holds all the given prefix opcodes (usually null).
170 PREFIXES is the number of prefix opcodes. */
171 unsigned int prefixes;
172 unsigned char prefix[MAX_PREFIXES];
173
174 /* RM and SIB are the modrm byte and the sib byte where the
175 addressing modes of this insn are encoded. */
176
177 modrm_byte rm;
178 rex_byte rex;
179 sib_byte sib;
180 };
181
182 typedef struct _i386_insn i386_insn;
183
184 /* List of chars besides those in app.c:symbol_chars that can start an
185 operand. Used to prevent the scrubber eating vital white-space. */
186 const char extra_symbol_chars[] = "*%-(["
187 #ifdef LEX_AT
188 "@"
189 #endif
190 #ifdef LEX_QM
191 "?"
192 #endif
193 ;
194
195 #if (defined (TE_I386AIX) \
196 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
197 && !defined (TE_LINUX) \
198 && !defined (TE_NETWARE) \
199 && !defined (TE_FreeBSD) \
200 && !defined (TE_NetBSD)))
201 /* This array holds the chars that always start a comment. If the
202 pre-processor is disabled, these aren't very useful. */
203 const char comment_chars[] = "#/";
204 #define PREFIX_SEPARATOR '\\'
205
206 /* This array holds the chars that only start a comment at the beginning of
207 a line. If the line seems to have the form '# 123 filename'
208 .line and .file directives will appear in the pre-processed output.
209 Note that input_file.c hand checks for '#' at the beginning of the
210 first line of the input file. This is because the compiler outputs
211 #NO_APP at the beginning of its output.
212 Also note that comments started like this one will always work if
213 '/' isn't otherwise defined. */
214 const char line_comment_chars[] = "#";
215
216 #else
217 /* Putting '/' here makes it impossible to use the divide operator.
218 However, we need it for compatibility with SVR4 systems. */
219 const char comment_chars[] = "#";
220 #define PREFIX_SEPARATOR '/'
221
222 const char line_comment_chars[] = "/#";
223 #endif
224
225 const char line_separator_chars[] = ";";
226
227 /* Chars that can be used to separate mant from exp in floating point
228 nums. */
229 const char EXP_CHARS[] = "eE";
230
231 /* Chars that mean this number is a floating point constant
232 As in 0f12.456
233 or 0d1.2345e12. */
234 const char FLT_CHARS[] = "fFdDxX";
235
236 /* Tables for lexical analysis. */
237 static char mnemonic_chars[256];
238 static char register_chars[256];
239 static char operand_chars[256];
240 static char identifier_chars[256];
241 static char digit_chars[256];
242
243 /* Lexical macros. */
244 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
245 #define is_operand_char(x) (operand_chars[(unsigned char) x])
246 #define is_register_char(x) (register_chars[(unsigned char) x])
247 #define is_space_char(x) ((x) == ' ')
248 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
249 #define is_digit_char(x) (digit_chars[(unsigned char) x])
250
251 /* All non-digit non-letter characters that may occur in an operand. */
252 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
253
254 /* md_assemble() always leaves the strings it's passed unaltered. To
255 effect this we maintain a stack of saved characters that we've smashed
256 with '\0's (indicating end of strings for various sub-fields of the
257 assembler instruction). */
258 static char save_stack[32];
259 static char *save_stack_p;
260 #define END_STRING_AND_SAVE(s) \
261 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
262 #define RESTORE_END_STRING(s) \
263 do { *(s) = *--save_stack_p; } while (0)
264
265 /* The instruction we're assembling. */
266 static i386_insn i;
267
268 /* Possible templates for current insn. */
269 static const templates *current_templates;
270
271 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
272 static expressionS disp_expressions[2], im_expressions[2];
273
274 /* Current operand we are working on. */
275 static int this_operand;
276
277 /* We support four different modes. FLAG_CODE variable is used to distinguish
278 these. */
279
280 enum flag_code {
281 CODE_32BIT,
282 CODE_16BIT,
283 CODE_64BIT };
284 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
285
286 static enum flag_code flag_code;
287 static int use_rela_relocations = 0;
288
289 /* The names used to print error messages. */
290 static const char *flag_code_names[] =
291 {
292 "32",
293 "16",
294 "64"
295 };
296
297 /* 1 for intel syntax,
298 0 if att syntax. */
299 static int intel_syntax = 0;
300
301 /* 1 if register prefix % not required. */
302 static int allow_naked_reg = 0;
303
304 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
305 leave, push, and pop instructions so that gcc has the same stack
306 frame as in 32 bit mode. */
307 static char stackop_size = '\0';
308
309 /* Non-zero to optimize code alignment. */
310 int optimize_align_code = 1;
311
312 /* Non-zero to quieten some warnings. */
313 static int quiet_warnings = 0;
314
315 /* CPU name. */
316 static const char *cpu_arch_name = NULL;
317 static const char *cpu_sub_arch_name = NULL;
318
319 /* CPU feature flags. */
320 static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
321
322 /* If set, conditional jumps are not automatically promoted to handle
323 larger than a byte offset. */
324 static unsigned int no_cond_jump_promotion = 0;
325
326 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
327 symbolS *GOT_symbol;
328
329 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
330 unsigned int x86_dwarf2_return_column;
331
332 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
333 int x86_cie_data_alignment;
334
335 /* Interface to relax_segment.
336 There are 3 major relax states for 386 jump insns because the
337 different types of jumps add different sizes to frags when we're
338 figuring out what sort of jump to choose to reach a given label. */
339
340 /* Types. */
341 #define UNCOND_JUMP 0
342 #define COND_JUMP 1
343 #define COND_JUMP86 2
344
345 /* Sizes. */
346 #define CODE16 1
347 #define SMALL 0
348 #define SMALL16 (SMALL | CODE16)
349 #define BIG 2
350 #define BIG16 (BIG | CODE16)
351
352 #ifndef INLINE
353 #ifdef __GNUC__
354 #define INLINE __inline__
355 #else
356 #define INLINE
357 #endif
358 #endif
359
360 #define ENCODE_RELAX_STATE(type, size) \
361 ((relax_substateT) (((type) << 2) | (size)))
362 #define TYPE_FROM_RELAX_STATE(s) \
363 ((s) >> 2)
364 #define DISP_SIZE_FROM_RELAX_STATE(s) \
365 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
366
367 /* This table is used by relax_frag to promote short jumps to long
368 ones where necessary. SMALL (short) jumps may be promoted to BIG
369 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
370 don't allow a short jump in a 32 bit code segment to be promoted to
371 a 16 bit offset jump because it's slower (requires data size
372 prefix), and doesn't work, unless the destination is in the bottom
373 64k of the code segment (The top 16 bits of eip are zeroed). */
374
375 const relax_typeS md_relax_table[] =
376 {
377 /* The fields are:
378 1) most positive reach of this state,
379 2) most negative reach of this state,
380 3) how many bytes this mode will have in the variable part of the frag
381 4) which index into the table to try if we can't fit into this one. */
382
383 /* UNCOND_JUMP states. */
384 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
385 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
386 /* dword jmp adds 4 bytes to frag:
387 0 extra opcode bytes, 4 displacement bytes. */
388 {0, 0, 4, 0},
389 /* word jmp adds 2 byte2 to frag:
390 0 extra opcode bytes, 2 displacement bytes. */
391 {0, 0, 2, 0},
392
393 /* COND_JUMP states. */
394 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
395 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
396 /* dword conditionals adds 5 bytes to frag:
397 1 extra opcode byte, 4 displacement bytes. */
398 {0, 0, 5, 0},
399 /* word conditionals add 3 bytes to frag:
400 1 extra opcode byte, 2 displacement bytes. */
401 {0, 0, 3, 0},
402
403 /* COND_JUMP86 states. */
404 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
405 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
406 /* dword conditionals adds 5 bytes to frag:
407 1 extra opcode byte, 4 displacement bytes. */
408 {0, 0, 5, 0},
409 /* word conditionals add 4 bytes to frag:
410 1 displacement byte and a 3 byte long branch insn. */
411 {0, 0, 4, 0}
412 };
413
414 static const arch_entry cpu_arch[] = {
415 {"i8086", Cpu086 },
416 {"i186", Cpu086|Cpu186 },
417 {"i286", Cpu086|Cpu186|Cpu286 },
418 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
419 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
420 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586 },
421 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686 },
422 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586 },
423 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686 },
424 {"pentiumii", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX },
425 {"pentiumiii",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuMMX2|CpuSSE },
426 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2|CpuSSE|CpuSSE2 },
427 {"prescott", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuPNI },
428 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX },
429 {"k6_2", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
430 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA },
431 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2 },
432 {".mmx", CpuMMX },
433 {".sse", CpuMMX|CpuMMX2|CpuSSE },
434 {".sse2", CpuMMX|CpuMMX2|CpuSSE|CpuSSE2 },
435 {".3dnow", CpuMMX|Cpu3dnow },
436 {".3dnowa", CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA },
437 {".padlock", CpuPadLock },
438 {NULL, 0 }
439 };
440
441 const pseudo_typeS md_pseudo_table[] =
442 {
443 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
444 {"align", s_align_bytes, 0},
445 #else
446 {"align", s_align_ptwo, 0},
447 #endif
448 {"arch", set_cpu_arch, 0},
449 #ifndef I386COFF
450 {"bss", s_bss, 0},
451 #endif
452 {"ffloat", float_cons, 'f'},
453 {"dfloat", float_cons, 'd'},
454 {"tfloat", float_cons, 'x'},
455 {"value", cons, 2},
456 {"noopt", s_ignore, 0},
457 {"optim", s_ignore, 0},
458 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
459 {"code16", set_code_flag, CODE_16BIT},
460 {"code32", set_code_flag, CODE_32BIT},
461 {"code64", set_code_flag, CODE_64BIT},
462 {"intel_syntax", set_intel_syntax, 1},
463 {"att_syntax", set_intel_syntax, 0},
464 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
465 {"loc", dwarf2_directive_loc, 0},
466 #ifdef TE_PE
467 {"secrel32", pe_directive_secrel, 0},
468 #endif
469 {0, 0, 0}
470 };
471
472 /* For interface with expression (). */
473 extern char *input_line_pointer;
474
475 /* Hash table for instruction mnemonic lookup. */
476 static struct hash_control *op_hash;
477
478 /* Hash table for register lookup. */
479 static struct hash_control *reg_hash;
480 \f
481 void
482 i386_align_code (fragP, count)
483 fragS *fragP;
484 int count;
485 {
486 /* Various efficient no-op patterns for aligning code labels.
487 Note: Don't try to assemble the instructions in the comments.
488 0L and 0w are not legal. */
489 static const char f32_1[] =
490 {0x90}; /* nop */
491 static const char f32_2[] =
492 {0x89,0xf6}; /* movl %esi,%esi */
493 static const char f32_3[] =
494 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
495 static const char f32_4[] =
496 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
497 static const char f32_5[] =
498 {0x90, /* nop */
499 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
500 static const char f32_6[] =
501 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
502 static const char f32_7[] =
503 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
504 static const char f32_8[] =
505 {0x90, /* nop */
506 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
507 static const char f32_9[] =
508 {0x89,0xf6, /* movl %esi,%esi */
509 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
510 static const char f32_10[] =
511 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
512 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
513 static const char f32_11[] =
514 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
515 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
516 static const char f32_12[] =
517 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
518 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
519 static const char f32_13[] =
520 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
521 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
522 static const char f32_14[] =
523 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
524 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
525 static const char f32_15[] =
526 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
527 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
528 static const char f16_3[] =
529 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
530 static const char f16_4[] =
531 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
532 static const char f16_5[] =
533 {0x90, /* nop */
534 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
535 static const char f16_6[] =
536 {0x89,0xf6, /* mov %si,%si */
537 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
538 static const char f16_7[] =
539 {0x8d,0x74,0x00, /* lea 0(%si),%si */
540 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
541 static const char f16_8[] =
542 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
543 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
544 static const char *const f32_patt[] = {
545 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
546 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
547 };
548 static const char *const f16_patt[] = {
549 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
550 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
551 };
552
553 if (count <= 0 || count > 15)
554 return;
555
556 /* The recommended way to pad 64bit code is to use NOPs preceded by
557 maximally four 0x66 prefixes. Balance the size of nops. */
558 if (flag_code == CODE_64BIT)
559 {
560 int i;
561 int nnops = (count + 3) / 4;
562 int len = count / nnops;
563 int remains = count - nnops * len;
564 int pos = 0;
565
566 for (i = 0; i < remains; i++)
567 {
568 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
569 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
570 pos += len + 1;
571 }
572 for (; i < nnops; i++)
573 {
574 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
575 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
576 pos += len;
577 }
578 }
579 else
580 if (flag_code == CODE_16BIT)
581 {
582 memcpy (fragP->fr_literal + fragP->fr_fix,
583 f16_patt[count - 1], count);
584 if (count > 8)
585 /* Adjust jump offset. */
586 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
587 }
588 else
589 memcpy (fragP->fr_literal + fragP->fr_fix,
590 f32_patt[count - 1], count);
591 fragP->fr_var = count;
592 }
593
594 static INLINE unsigned int
595 mode_from_disp_size (t)
596 unsigned int t;
597 {
598 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
599 }
600
601 static INLINE int
602 fits_in_signed_byte (num)
603 offsetT num;
604 {
605 return (num >= -128) && (num <= 127);
606 }
607
608 static INLINE int
609 fits_in_unsigned_byte (num)
610 offsetT num;
611 {
612 return (num & 0xff) == num;
613 }
614
615 static INLINE int
616 fits_in_unsigned_word (num)
617 offsetT num;
618 {
619 return (num & 0xffff) == num;
620 }
621
622 static INLINE int
623 fits_in_signed_word (num)
624 offsetT num;
625 {
626 return (-32768 <= num) && (num <= 32767);
627 }
628 static INLINE int
629 fits_in_signed_long (num)
630 offsetT num ATTRIBUTE_UNUSED;
631 {
632 #ifndef BFD64
633 return 1;
634 #else
635 return (!(((offsetT) -1 << 31) & num)
636 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
637 #endif
638 } /* fits_in_signed_long() */
639 static INLINE int
640 fits_in_unsigned_long (num)
641 offsetT num ATTRIBUTE_UNUSED;
642 {
643 #ifndef BFD64
644 return 1;
645 #else
646 return (num & (((offsetT) 2 << 31) - 1)) == num;
647 #endif
648 } /* fits_in_unsigned_long() */
649
650 static int
651 smallest_imm_type (num)
652 offsetT num;
653 {
654 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
655 {
656 /* This code is disabled on the 486 because all the Imm1 forms
657 in the opcode table are slower on the i486. They're the
658 versions with the implicitly specified single-position
659 displacement, which has another syntax if you really want to
660 use that form. */
661 if (num == 1)
662 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
663 }
664 return (fits_in_signed_byte (num)
665 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
666 : fits_in_unsigned_byte (num)
667 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
668 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
669 ? (Imm16 | Imm32 | Imm32S | Imm64)
670 : fits_in_signed_long (num)
671 ? (Imm32 | Imm32S | Imm64)
672 : fits_in_unsigned_long (num)
673 ? (Imm32 | Imm64)
674 : Imm64);
675 }
676
677 static offsetT
678 offset_in_range (val, size)
679 offsetT val;
680 int size;
681 {
682 addressT mask;
683
684 switch (size)
685 {
686 case 1: mask = ((addressT) 1 << 8) - 1; break;
687 case 2: mask = ((addressT) 1 << 16) - 1; break;
688 case 4: mask = ((addressT) 2 << 31) - 1; break;
689 #ifdef BFD64
690 case 8: mask = ((addressT) 2 << 63) - 1; break;
691 #endif
692 default: abort ();
693 }
694
695 /* If BFD64, sign extend val. */
696 if (!use_rela_relocations)
697 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
698 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
699
700 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
701 {
702 char buf1[40], buf2[40];
703
704 sprint_value (buf1, val);
705 sprint_value (buf2, val & mask);
706 as_warn (_("%s shortened to %s"), buf1, buf2);
707 }
708 return val & mask;
709 }
710
711 /* Returns 0 if attempting to add a prefix where one from the same
712 class already exists, 1 if non rep/repne added, 2 if rep/repne
713 added. */
714 static int
715 add_prefix (prefix)
716 unsigned int prefix;
717 {
718 int ret = 1;
719 int q;
720
721 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
722 && flag_code == CODE_64BIT)
723 q = REX_PREFIX;
724 else
725 switch (prefix)
726 {
727 default:
728 abort ();
729
730 case CS_PREFIX_OPCODE:
731 case DS_PREFIX_OPCODE:
732 case ES_PREFIX_OPCODE:
733 case FS_PREFIX_OPCODE:
734 case GS_PREFIX_OPCODE:
735 case SS_PREFIX_OPCODE:
736 q = SEG_PREFIX;
737 break;
738
739 case REPNE_PREFIX_OPCODE:
740 case REPE_PREFIX_OPCODE:
741 ret = 2;
742 /* fall thru */
743 case LOCK_PREFIX_OPCODE:
744 q = LOCKREP_PREFIX;
745 break;
746
747 case FWAIT_OPCODE:
748 q = WAIT_PREFIX;
749 break;
750
751 case ADDR_PREFIX_OPCODE:
752 q = ADDR_PREFIX;
753 break;
754
755 case DATA_PREFIX_OPCODE:
756 q = DATA_PREFIX;
757 break;
758 }
759
760 if (i.prefix[q] != 0)
761 {
762 as_bad (_("same type of prefix used twice"));
763 return 0;
764 }
765
766 i.prefixes += 1;
767 i.prefix[q] = prefix;
768 return ret;
769 }
770
771 static void
772 set_code_flag (value)
773 int value;
774 {
775 flag_code = value;
776 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
777 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
778 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
779 {
780 as_bad (_("64bit mode not supported on this CPU."));
781 }
782 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
783 {
784 as_bad (_("32bit mode not supported on this CPU."));
785 }
786 stackop_size = '\0';
787 }
788
789 static void
790 set_16bit_gcc_code_flag (new_code_flag)
791 int new_code_flag;
792 {
793 flag_code = new_code_flag;
794 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
795 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
796 stackop_size = LONG_MNEM_SUFFIX;
797 }
798
799 static void
800 set_intel_syntax (syntax_flag)
801 int syntax_flag;
802 {
803 /* Find out if register prefixing is specified. */
804 int ask_naked_reg = 0;
805
806 SKIP_WHITESPACE ();
807 if (!is_end_of_line[(unsigned char) *input_line_pointer])
808 {
809 char *string = input_line_pointer;
810 int e = get_symbol_end ();
811
812 if (strcmp (string, "prefix") == 0)
813 ask_naked_reg = 1;
814 else if (strcmp (string, "noprefix") == 0)
815 ask_naked_reg = -1;
816 else
817 as_bad (_("bad argument to syntax directive."));
818 *input_line_pointer = e;
819 }
820 demand_empty_rest_of_line ();
821
822 intel_syntax = syntax_flag;
823
824 if (ask_naked_reg == 0)
825 allow_naked_reg = (intel_syntax
826 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
827 else
828 allow_naked_reg = (ask_naked_reg < 0);
829
830 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
831 identifier_chars['$'] = intel_syntax ? '$' : 0;
832 }
833
834 static void
835 set_cpu_arch (dummy)
836 int dummy ATTRIBUTE_UNUSED;
837 {
838 SKIP_WHITESPACE ();
839
840 if (!is_end_of_line[(unsigned char) *input_line_pointer])
841 {
842 char *string = input_line_pointer;
843 int e = get_symbol_end ();
844 int i;
845
846 for (i = 0; cpu_arch[i].name; i++)
847 {
848 if (strcmp (string, cpu_arch[i].name) == 0)
849 {
850 if (*string != '.')
851 {
852 cpu_arch_name = cpu_arch[i].name;
853 cpu_sub_arch_name = NULL;
854 cpu_arch_flags = (cpu_arch[i].flags
855 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
856 break;
857 }
858 if ((cpu_arch_flags | cpu_arch[i].flags) != cpu_arch_flags)
859 {
860 cpu_sub_arch_name = cpu_arch[i].name;
861 cpu_arch_flags |= cpu_arch[i].flags;
862 }
863 *input_line_pointer = e;
864 demand_empty_rest_of_line ();
865 return;
866 }
867 }
868 if (!cpu_arch[i].name)
869 as_bad (_("no such architecture: `%s'"), string);
870
871 *input_line_pointer = e;
872 }
873 else
874 as_bad (_("missing cpu architecture"));
875
876 no_cond_jump_promotion = 0;
877 if (*input_line_pointer == ','
878 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
879 {
880 char *string = ++input_line_pointer;
881 int e = get_symbol_end ();
882
883 if (strcmp (string, "nojumps") == 0)
884 no_cond_jump_promotion = 1;
885 else if (strcmp (string, "jumps") == 0)
886 ;
887 else
888 as_bad (_("no such architecture modifier: `%s'"), string);
889
890 *input_line_pointer = e;
891 }
892
893 demand_empty_rest_of_line ();
894 }
895
896 unsigned long
897 i386_mach ()
898 {
899 if (!strcmp (default_arch, "x86_64"))
900 return bfd_mach_x86_64;
901 else if (!strcmp (default_arch, "i386"))
902 return bfd_mach_i386_i386;
903 else
904 as_fatal (_("Unknown architecture"));
905 }
906 \f
907 void
908 md_begin ()
909 {
910 const char *hash_err;
911
912 /* Initialize op_hash hash table. */
913 op_hash = hash_new ();
914
915 {
916 const template *optab;
917 templates *core_optab;
918
919 /* Setup for loop. */
920 optab = i386_optab;
921 core_optab = (templates *) xmalloc (sizeof (templates));
922 core_optab->start = optab;
923
924 while (1)
925 {
926 ++optab;
927 if (optab->name == NULL
928 || strcmp (optab->name, (optab - 1)->name) != 0)
929 {
930 /* different name --> ship out current template list;
931 add to hash table; & begin anew. */
932 core_optab->end = optab;
933 hash_err = hash_insert (op_hash,
934 (optab - 1)->name,
935 (PTR) core_optab);
936 if (hash_err)
937 {
938 as_fatal (_("Internal Error: Can't hash %s: %s"),
939 (optab - 1)->name,
940 hash_err);
941 }
942 if (optab->name == NULL)
943 break;
944 core_optab = (templates *) xmalloc (sizeof (templates));
945 core_optab->start = optab;
946 }
947 }
948 }
949
950 /* Initialize reg_hash hash table. */
951 reg_hash = hash_new ();
952 {
953 const reg_entry *regtab;
954
955 for (regtab = i386_regtab;
956 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
957 regtab++)
958 {
959 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
960 if (hash_err)
961 as_fatal (_("Internal Error: Can't hash %s: %s"),
962 regtab->reg_name,
963 hash_err);
964 }
965 }
966
967 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
968 {
969 int c;
970 char *p;
971
972 for (c = 0; c < 256; c++)
973 {
974 if (ISDIGIT (c))
975 {
976 digit_chars[c] = c;
977 mnemonic_chars[c] = c;
978 register_chars[c] = c;
979 operand_chars[c] = c;
980 }
981 else if (ISLOWER (c))
982 {
983 mnemonic_chars[c] = c;
984 register_chars[c] = c;
985 operand_chars[c] = c;
986 }
987 else if (ISUPPER (c))
988 {
989 mnemonic_chars[c] = TOLOWER (c);
990 register_chars[c] = mnemonic_chars[c];
991 operand_chars[c] = c;
992 }
993
994 if (ISALPHA (c) || ISDIGIT (c))
995 identifier_chars[c] = c;
996 else if (c >= 128)
997 {
998 identifier_chars[c] = c;
999 operand_chars[c] = c;
1000 }
1001 }
1002
1003 #ifdef LEX_AT
1004 identifier_chars['@'] = '@';
1005 #endif
1006 #ifdef LEX_QM
1007 identifier_chars['?'] = '?';
1008 operand_chars['?'] = '?';
1009 #endif
1010 digit_chars['-'] = '-';
1011 identifier_chars['_'] = '_';
1012 identifier_chars['.'] = '.';
1013
1014 for (p = operand_special_chars; *p != '\0'; p++)
1015 operand_chars[(unsigned char) *p] = *p;
1016 }
1017
1018 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1019 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
1020 {
1021 record_alignment (text_section, 2);
1022 record_alignment (data_section, 2);
1023 record_alignment (bss_section, 2);
1024 }
1025 #endif
1026
1027 if (flag_code == CODE_64BIT)
1028 {
1029 x86_dwarf2_return_column = 16;
1030 x86_cie_data_alignment = -8;
1031 }
1032 else
1033 {
1034 x86_dwarf2_return_column = 8;
1035 x86_cie_data_alignment = -4;
1036 }
1037 }
1038
1039 void
1040 i386_print_statistics (file)
1041 FILE *file;
1042 {
1043 hash_print_statistics (file, "i386 opcode", op_hash);
1044 hash_print_statistics (file, "i386 register", reg_hash);
1045 }
1046 \f
1047 #ifdef DEBUG386
1048
1049 /* Debugging routines for md_assemble. */
1050 static void pi PARAMS ((char *, i386_insn *));
1051 static void pte PARAMS ((template *));
1052 static void pt PARAMS ((unsigned int));
1053 static void pe PARAMS ((expressionS *));
1054 static void ps PARAMS ((symbolS *));
1055
1056 static void
1057 pi (line, x)
1058 char *line;
1059 i386_insn *x;
1060 {
1061 unsigned int i;
1062
1063 fprintf (stdout, "%s: template ", line);
1064 pte (&x->tm);
1065 fprintf (stdout, " address: base %s index %s scale %x\n",
1066 x->base_reg ? x->base_reg->reg_name : "none",
1067 x->index_reg ? x->index_reg->reg_name : "none",
1068 x->log2_scale_factor);
1069 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
1070 x->rm.mode, x->rm.reg, x->rm.regmem);
1071 fprintf (stdout, " sib: base %x index %x scale %x\n",
1072 x->sib.base, x->sib.index, x->sib.scale);
1073 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
1074 (x->rex & REX_MODE64) != 0,
1075 (x->rex & REX_EXTX) != 0,
1076 (x->rex & REX_EXTY) != 0,
1077 (x->rex & REX_EXTZ) != 0);
1078 for (i = 0; i < x->operands; i++)
1079 {
1080 fprintf (stdout, " #%d: ", i + 1);
1081 pt (x->types[i]);
1082 fprintf (stdout, "\n");
1083 if (x->types[i]
1084 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
1085 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1086 if (x->types[i] & Imm)
1087 pe (x->op[i].imms);
1088 if (x->types[i] & Disp)
1089 pe (x->op[i].disps);
1090 }
1091 }
1092
1093 static void
1094 pte (t)
1095 template *t;
1096 {
1097 unsigned int i;
1098 fprintf (stdout, " %d operands ", t->operands);
1099 fprintf (stdout, "opcode %x ", t->base_opcode);
1100 if (t->extension_opcode != None)
1101 fprintf (stdout, "ext %x ", t->extension_opcode);
1102 if (t->opcode_modifier & D)
1103 fprintf (stdout, "D");
1104 if (t->opcode_modifier & W)
1105 fprintf (stdout, "W");
1106 fprintf (stdout, "\n");
1107 for (i = 0; i < t->operands; i++)
1108 {
1109 fprintf (stdout, " #%d type ", i + 1);
1110 pt (t->operand_types[i]);
1111 fprintf (stdout, "\n");
1112 }
1113 }
1114
1115 static void
1116 pe (e)
1117 expressionS *e;
1118 {
1119 fprintf (stdout, " operation %d\n", e->X_op);
1120 fprintf (stdout, " add_number %ld (%lx)\n",
1121 (long) e->X_add_number, (long) e->X_add_number);
1122 if (e->X_add_symbol)
1123 {
1124 fprintf (stdout, " add_symbol ");
1125 ps (e->X_add_symbol);
1126 fprintf (stdout, "\n");
1127 }
1128 if (e->X_op_symbol)
1129 {
1130 fprintf (stdout, " op_symbol ");
1131 ps (e->X_op_symbol);
1132 fprintf (stdout, "\n");
1133 }
1134 }
1135
1136 static void
1137 ps (s)
1138 symbolS *s;
1139 {
1140 fprintf (stdout, "%s type %s%s",
1141 S_GET_NAME (s),
1142 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1143 segment_name (S_GET_SEGMENT (s)));
1144 }
1145
1146 struct type_name
1147 {
1148 unsigned int mask;
1149 char *tname;
1150 }
1151
1152 static const type_names[] =
1153 {
1154 { Reg8, "r8" },
1155 { Reg16, "r16" },
1156 { Reg32, "r32" },
1157 { Reg64, "r64" },
1158 { Imm8, "i8" },
1159 { Imm8S, "i8s" },
1160 { Imm16, "i16" },
1161 { Imm32, "i32" },
1162 { Imm32S, "i32s" },
1163 { Imm64, "i64" },
1164 { Imm1, "i1" },
1165 { BaseIndex, "BaseIndex" },
1166 { Disp8, "d8" },
1167 { Disp16, "d16" },
1168 { Disp32, "d32" },
1169 { Disp32S, "d32s" },
1170 { Disp64, "d64" },
1171 { InOutPortReg, "InOutPortReg" },
1172 { ShiftCount, "ShiftCount" },
1173 { Control, "control reg" },
1174 { Test, "test reg" },
1175 { Debug, "debug reg" },
1176 { FloatReg, "FReg" },
1177 { FloatAcc, "FAcc" },
1178 { SReg2, "SReg2" },
1179 { SReg3, "SReg3" },
1180 { Acc, "Acc" },
1181 { JumpAbsolute, "Jump Absolute" },
1182 { RegMMX, "rMMX" },
1183 { RegXMM, "rXMM" },
1184 { EsSeg, "es" },
1185 { 0, "" }
1186 };
1187
1188 static void
1189 pt (t)
1190 unsigned int t;
1191 {
1192 const struct type_name *ty;
1193
1194 for (ty = type_names; ty->mask; ty++)
1195 if (t & ty->mask)
1196 fprintf (stdout, "%s, ", ty->tname);
1197 fflush (stdout);
1198 }
1199
1200 #endif /* DEBUG386 */
1201 \f
1202 static bfd_reloc_code_real_type reloc
1203 PARAMS ((int, int, int, bfd_reloc_code_real_type));
1204
1205 static bfd_reloc_code_real_type
1206 reloc (size, pcrel, sign, other)
1207 int size;
1208 int pcrel;
1209 int sign;
1210 bfd_reloc_code_real_type other;
1211 {
1212 if (other != NO_RELOC)
1213 return other;
1214
1215 if (pcrel)
1216 {
1217 if (!sign)
1218 as_bad (_("There are no unsigned pc-relative relocations"));
1219 switch (size)
1220 {
1221 case 1: return BFD_RELOC_8_PCREL;
1222 case 2: return BFD_RELOC_16_PCREL;
1223 case 4: return BFD_RELOC_32_PCREL;
1224 }
1225 as_bad (_("can not do %d byte pc-relative relocation"), size);
1226 }
1227 else
1228 {
1229 if (sign)
1230 switch (size)
1231 {
1232 case 4: return BFD_RELOC_X86_64_32S;
1233 }
1234 else
1235 switch (size)
1236 {
1237 case 1: return BFD_RELOC_8;
1238 case 2: return BFD_RELOC_16;
1239 case 4: return BFD_RELOC_32;
1240 case 8: return BFD_RELOC_64;
1241 }
1242 as_bad (_("can not do %s %d byte relocation"),
1243 sign ? "signed" : "unsigned", size);
1244 }
1245
1246 abort ();
1247 return BFD_RELOC_NONE;
1248 }
1249
1250 /* Here we decide which fixups can be adjusted to make them relative to
1251 the beginning of the section instead of the symbol. Basically we need
1252 to make sure that the dynamic relocations are done correctly, so in
1253 some cases we force the original symbol to be used. */
1254
1255 int
1256 tc_i386_fix_adjustable (fixP)
1257 fixS *fixP ATTRIBUTE_UNUSED;
1258 {
1259 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1260 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
1261 return 1;
1262
1263 /* Don't adjust pc-relative references to merge sections in 64-bit
1264 mode. */
1265 if (use_rela_relocations
1266 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1267 && fixP->fx_pcrel)
1268 return 0;
1269
1270 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1271 and changed later by validate_fix. */
1272 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1273 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1274 return 0;
1275
1276 /* adjust_reloc_syms doesn't know about the GOT. */
1277 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1278 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1279 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1280 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1281 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1282 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1283 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
1284 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1285 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
1286 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1287 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
1288 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1289 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1290 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1291 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1292 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1293 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1294 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1295 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
1296 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1297 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1298 return 0;
1299 #endif
1300 return 1;
1301 }
1302
1303 static int intel_float_operand PARAMS ((const char *mnemonic));
1304
1305 static int
1306 intel_float_operand (mnemonic)
1307 const char *mnemonic;
1308 {
1309 /* Note that the value returned is meaningful only for opcodes with (memory)
1310 operands, hence the code here is free to improperly handle opcodes that
1311 have no operands (for better performance and smaller code). */
1312
1313 if (mnemonic[0] != 'f')
1314 return 0; /* non-math */
1315
1316 switch (mnemonic[1])
1317 {
1318 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
1319 the fs segment override prefix not currently handled because no
1320 call path can make opcodes without operands get here */
1321 case 'i':
1322 return 2 /* integer op */;
1323 case 'l':
1324 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
1325 return 3; /* fldcw/fldenv */
1326 break;
1327 case 'n':
1328 if (mnemonic[2] != 'o' /* fnop */)
1329 return 3; /* non-waiting control op */
1330 break;
1331 case 'r':
1332 if (mnemonic[2] == 's')
1333 return 3; /* frstor/frstpm */
1334 break;
1335 case 's':
1336 if (mnemonic[2] == 'a')
1337 return 3; /* fsave */
1338 if (mnemonic[2] == 't')
1339 {
1340 switch (mnemonic[3])
1341 {
1342 case 'c': /* fstcw */
1343 case 'd': /* fstdw */
1344 case 'e': /* fstenv */
1345 case 's': /* fsts[gw] */
1346 return 3;
1347 }
1348 }
1349 break;
1350 case 'x':
1351 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
1352 return 0; /* fxsave/fxrstor are not really math ops */
1353 break;
1354 }
1355
1356 return 1;
1357 }
1358
1359 /* This is the guts of the machine-dependent assembler. LINE points to a
1360 machine dependent instruction. This function is supposed to emit
1361 the frags/bytes it assembles to. */
1362
1363 void
1364 md_assemble (line)
1365 char *line;
1366 {
1367 int j;
1368 char mnemonic[MAX_MNEM_SIZE];
1369
1370 /* Initialize globals. */
1371 memset (&i, '\0', sizeof (i));
1372 for (j = 0; j < MAX_OPERANDS; j++)
1373 i.reloc[j] = NO_RELOC;
1374 memset (disp_expressions, '\0', sizeof (disp_expressions));
1375 memset (im_expressions, '\0', sizeof (im_expressions));
1376 save_stack_p = save_stack;
1377
1378 /* First parse an instruction mnemonic & call i386_operand for the operands.
1379 We assume that the scrubber has arranged it so that line[0] is the valid
1380 start of a (possibly prefixed) mnemonic. */
1381
1382 line = parse_insn (line, mnemonic);
1383 if (line == NULL)
1384 return;
1385
1386 line = parse_operands (line, mnemonic);
1387 if (line == NULL)
1388 return;
1389
1390 /* Now we've parsed the mnemonic into a set of templates, and have the
1391 operands at hand. */
1392
1393 /* All intel opcodes have reversed operands except for "bound" and
1394 "enter". We also don't reverse intersegment "jmp" and "call"
1395 instructions with 2 immediate operands so that the immediate segment
1396 precedes the offset, as it does when in AT&T mode. "enter" and the
1397 intersegment "jmp" and "call" instructions are the only ones that
1398 have two immediate operands. */
1399 if (intel_syntax && i.operands > 1
1400 && (strcmp (mnemonic, "bound") != 0)
1401 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1402 swap_operands ();
1403
1404 if (i.imm_operands)
1405 optimize_imm ();
1406
1407 if (i.disp_operands)
1408 optimize_disp ();
1409
1410 /* Next, we find a template that matches the given insn,
1411 making sure the overlap of the given operands types is consistent
1412 with the template operand types. */
1413
1414 if (!match_template ())
1415 return;
1416
1417 if (intel_syntax)
1418 {
1419 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1420 if (SYSV386_COMPAT
1421 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1422 i.tm.base_opcode ^= FloatR;
1423
1424 /* Zap movzx and movsx suffix. The suffix may have been set from
1425 "word ptr" or "byte ptr" on the source operand, but we'll use
1426 the suffix later to choose the destination register. */
1427 if ((i.tm.base_opcode & ~9) == 0x0fb6)
1428 {
1429 if (i.reg_operands < 2
1430 && !i.suffix
1431 && (~i.tm.opcode_modifier
1432 & (No_bSuf
1433 | No_wSuf
1434 | No_lSuf
1435 | No_sSuf
1436 | No_xSuf
1437 | No_qSuf)))
1438 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
1439
1440 i.suffix = 0;
1441 }
1442 }
1443
1444 if (i.tm.opcode_modifier & FWait)
1445 if (!add_prefix (FWAIT_OPCODE))
1446 return;
1447
1448 /* Check string instruction segment overrides. */
1449 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1450 {
1451 if (!check_string ())
1452 return;
1453 }
1454
1455 if (!process_suffix ())
1456 return;
1457
1458 /* Make still unresolved immediate matches conform to size of immediate
1459 given in i.suffix. */
1460 if (!finalize_imm ())
1461 return;
1462
1463 if (i.types[0] & Imm1)
1464 i.imm_operands = 0; /* kludge for shift insns. */
1465 if (i.types[0] & ImplicitRegister)
1466 i.reg_operands--;
1467 if (i.types[1] & ImplicitRegister)
1468 i.reg_operands--;
1469 if (i.types[2] & ImplicitRegister)
1470 i.reg_operands--;
1471
1472 if (i.tm.opcode_modifier & ImmExt)
1473 {
1474 expressionS *exp;
1475
1476 if ((i.tm.cpu_flags & CpuPNI) && i.operands > 0)
1477 {
1478 /* These Intel Prescott New Instructions have the fixed
1479 operands with an opcode suffix which is coded in the same
1480 place as an 8-bit immediate field would be. Here we check
1481 those operands and remove them afterwards. */
1482 unsigned int x;
1483
1484 for (x = 0; x < i.operands; x++)
1485 if (i.op[x].regs->reg_num != x)
1486 as_bad (_("can't use register '%%%s' as operand %d in '%s'."),
1487 i.op[x].regs->reg_name, x + 1, i.tm.name);
1488 i.operands = 0;
1489 }
1490
1491 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1492 opcode suffix which is coded in the same place as an 8-bit
1493 immediate field would be. Here we fake an 8-bit immediate
1494 operand from the opcode suffix stored in tm.extension_opcode. */
1495
1496 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
1497
1498 exp = &im_expressions[i.imm_operands++];
1499 i.op[i.operands].imms = exp;
1500 i.types[i.operands++] = Imm8;
1501 exp->X_op = O_constant;
1502 exp->X_add_number = i.tm.extension_opcode;
1503 i.tm.extension_opcode = None;
1504 }
1505
1506 /* For insns with operands there are more diddles to do to the opcode. */
1507 if (i.operands)
1508 {
1509 if (!process_operands ())
1510 return;
1511 }
1512 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1513 {
1514 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1515 as_warn (_("translating to `%sp'"), i.tm.name);
1516 }
1517
1518 /* Handle conversion of 'int $3' --> special int3 insn. */
1519 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1520 {
1521 i.tm.base_opcode = INT3_OPCODE;
1522 i.imm_operands = 0;
1523 }
1524
1525 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1526 && i.op[0].disps->X_op == O_constant)
1527 {
1528 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1529 the absolute address given by the constant. Since ix86 jumps and
1530 calls are pc relative, we need to generate a reloc. */
1531 i.op[0].disps->X_add_symbol = &abs_symbol;
1532 i.op[0].disps->X_op = O_symbol;
1533 }
1534
1535 if ((i.tm.opcode_modifier & Rex64) != 0)
1536 i.rex |= REX_MODE64;
1537
1538 /* For 8 bit registers we need an empty rex prefix. Also if the
1539 instruction already has a prefix, we need to convert old
1540 registers to new ones. */
1541
1542 if (((i.types[0] & Reg8) != 0
1543 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1544 || ((i.types[1] & Reg8) != 0
1545 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1546 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1547 && i.rex != 0))
1548 {
1549 int x;
1550
1551 i.rex |= REX_OPCODE;
1552 for (x = 0; x < 2; x++)
1553 {
1554 /* Look for 8 bit operand that uses old registers. */
1555 if ((i.types[x] & Reg8) != 0
1556 && (i.op[x].regs->reg_flags & RegRex64) == 0)
1557 {
1558 /* In case it is "hi" register, give up. */
1559 if (i.op[x].regs->reg_num > 3)
1560 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix."),
1561 i.op[x].regs->reg_name);
1562
1563 /* Otherwise it is equivalent to the extended register.
1564 Since the encoding doesn't change this is merely
1565 cosmetic cleanup for debug output. */
1566
1567 i.op[x].regs = i.op[x].regs + 8;
1568 }
1569 }
1570 }
1571
1572 if (i.rex != 0)
1573 add_prefix (REX_OPCODE | i.rex);
1574
1575 /* We are ready to output the insn. */
1576 output_insn ();
1577 }
1578
1579 static char *
1580 parse_insn (line, mnemonic)
1581 char *line;
1582 char *mnemonic;
1583 {
1584 char *l = line;
1585 char *token_start = l;
1586 char *mnem_p;
1587 int supported;
1588 const template *t;
1589
1590 /* Non-zero if we found a prefix only acceptable with string insns. */
1591 const char *expecting_string_instruction = NULL;
1592
1593 while (1)
1594 {
1595 mnem_p = mnemonic;
1596 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1597 {
1598 mnem_p++;
1599 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
1600 {
1601 as_bad (_("no such instruction: `%s'"), token_start);
1602 return NULL;
1603 }
1604 l++;
1605 }
1606 if (!is_space_char (*l)
1607 && *l != END_OF_INSN
1608 && *l != PREFIX_SEPARATOR
1609 && *l != ',')
1610 {
1611 as_bad (_("invalid character %s in mnemonic"),
1612 output_invalid (*l));
1613 return NULL;
1614 }
1615 if (token_start == l)
1616 {
1617 if (*l == PREFIX_SEPARATOR)
1618 as_bad (_("expecting prefix; got nothing"));
1619 else
1620 as_bad (_("expecting mnemonic; got nothing"));
1621 return NULL;
1622 }
1623
1624 /* Look up instruction (or prefix) via hash table. */
1625 current_templates = hash_find (op_hash, mnemonic);
1626
1627 if (*l != END_OF_INSN
1628 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1629 && current_templates
1630 && (current_templates->start->opcode_modifier & IsPrefix))
1631 {
1632 /* If we are in 16-bit mode, do not allow addr16 or data16.
1633 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1634 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1635 && flag_code != CODE_64BIT
1636 && (((current_templates->start->opcode_modifier & Size32) != 0)
1637 ^ (flag_code == CODE_16BIT)))
1638 {
1639 as_bad (_("redundant %s prefix"),
1640 current_templates->start->name);
1641 return NULL;
1642 }
1643 /* Add prefix, checking for repeated prefixes. */
1644 switch (add_prefix (current_templates->start->base_opcode))
1645 {
1646 case 0:
1647 return NULL;
1648 case 2:
1649 expecting_string_instruction = current_templates->start->name;
1650 break;
1651 }
1652 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1653 token_start = ++l;
1654 }
1655 else
1656 break;
1657 }
1658
1659 if (!current_templates)
1660 {
1661 /* See if we can get a match by trimming off a suffix. */
1662 switch (mnem_p[-1])
1663 {
1664 case WORD_MNEM_SUFFIX:
1665 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
1666 i.suffix = SHORT_MNEM_SUFFIX;
1667 else
1668 case BYTE_MNEM_SUFFIX:
1669 case QWORD_MNEM_SUFFIX:
1670 i.suffix = mnem_p[-1];
1671 mnem_p[-1] = '\0';
1672 current_templates = hash_find (op_hash, mnemonic);
1673 break;
1674 case SHORT_MNEM_SUFFIX:
1675 case LONG_MNEM_SUFFIX:
1676 if (!intel_syntax)
1677 {
1678 i.suffix = mnem_p[-1];
1679 mnem_p[-1] = '\0';
1680 current_templates = hash_find (op_hash, mnemonic);
1681 }
1682 break;
1683
1684 /* Intel Syntax. */
1685 case 'd':
1686 if (intel_syntax)
1687 {
1688 if (intel_float_operand (mnemonic) == 1)
1689 i.suffix = SHORT_MNEM_SUFFIX;
1690 else
1691 i.suffix = LONG_MNEM_SUFFIX;
1692 mnem_p[-1] = '\0';
1693 current_templates = hash_find (op_hash, mnemonic);
1694 }
1695 break;
1696 }
1697 if (!current_templates)
1698 {
1699 as_bad (_("no such instruction: `%s'"), token_start);
1700 return NULL;
1701 }
1702 }
1703
1704 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1705 {
1706 /* Check for a branch hint. We allow ",pt" and ",pn" for
1707 predict taken and predict not taken respectively.
1708 I'm not sure that branch hints actually do anything on loop
1709 and jcxz insns (JumpByte) for current Pentium4 chips. They
1710 may work in the future and it doesn't hurt to accept them
1711 now. */
1712 if (l[0] == ',' && l[1] == 'p')
1713 {
1714 if (l[2] == 't')
1715 {
1716 if (!add_prefix (DS_PREFIX_OPCODE))
1717 return NULL;
1718 l += 3;
1719 }
1720 else if (l[2] == 'n')
1721 {
1722 if (!add_prefix (CS_PREFIX_OPCODE))
1723 return NULL;
1724 l += 3;
1725 }
1726 }
1727 }
1728 /* Any other comma loses. */
1729 if (*l == ',')
1730 {
1731 as_bad (_("invalid character %s in mnemonic"),
1732 output_invalid (*l));
1733 return NULL;
1734 }
1735
1736 /* Check if instruction is supported on specified architecture. */
1737 supported = 0;
1738 for (t = current_templates->start; t < current_templates->end; ++t)
1739 {
1740 if (!((t->cpu_flags & ~(Cpu64 | CpuNo64))
1741 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64))))
1742 supported |= 1;
1743 if (!(t->cpu_flags & (flag_code == CODE_64BIT ? CpuNo64 : Cpu64)))
1744 supported |= 2;
1745 }
1746 if (!(supported & 2))
1747 {
1748 as_bad (flag_code == CODE_64BIT
1749 ? _("`%s' is not supported in 64-bit mode")
1750 : _("`%s' is only supported in 64-bit mode"),
1751 current_templates->start->name);
1752 return NULL;
1753 }
1754 if (!(supported & 1))
1755 {
1756 as_warn (_("`%s' is not supported on `%s%s'"),
1757 current_templates->start->name,
1758 cpu_arch_name,
1759 cpu_sub_arch_name ? cpu_sub_arch_name : "");
1760 }
1761 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1762 {
1763 as_warn (_("use .code16 to ensure correct addressing mode"));
1764 }
1765
1766 /* Check for rep/repne without a string instruction. */
1767 if (expecting_string_instruction
1768 && !(current_templates->start->opcode_modifier & IsString))
1769 {
1770 as_bad (_("expecting string instruction after `%s'"),
1771 expecting_string_instruction);
1772 return NULL;
1773 }
1774
1775 return l;
1776 }
1777
1778 static char *
1779 parse_operands (l, mnemonic)
1780 char *l;
1781 const char *mnemonic;
1782 {
1783 char *token_start;
1784
1785 /* 1 if operand is pending after ','. */
1786 unsigned int expecting_operand = 0;
1787
1788 /* Non-zero if operand parens not balanced. */
1789 unsigned int paren_not_balanced;
1790
1791 while (*l != END_OF_INSN)
1792 {
1793 /* Skip optional white space before operand. */
1794 if (is_space_char (*l))
1795 ++l;
1796 if (!is_operand_char (*l) && *l != END_OF_INSN)
1797 {
1798 as_bad (_("invalid character %s before operand %d"),
1799 output_invalid (*l),
1800 i.operands + 1);
1801 return NULL;
1802 }
1803 token_start = l; /* after white space */
1804 paren_not_balanced = 0;
1805 while (paren_not_balanced || *l != ',')
1806 {
1807 if (*l == END_OF_INSN)
1808 {
1809 if (paren_not_balanced)
1810 {
1811 if (!intel_syntax)
1812 as_bad (_("unbalanced parenthesis in operand %d."),
1813 i.operands + 1);
1814 else
1815 as_bad (_("unbalanced brackets in operand %d."),
1816 i.operands + 1);
1817 return NULL;
1818 }
1819 else
1820 break; /* we are done */
1821 }
1822 else if (!is_operand_char (*l) && !is_space_char (*l))
1823 {
1824 as_bad (_("invalid character %s in operand %d"),
1825 output_invalid (*l),
1826 i.operands + 1);
1827 return NULL;
1828 }
1829 if (!intel_syntax)
1830 {
1831 if (*l == '(')
1832 ++paren_not_balanced;
1833 if (*l == ')')
1834 --paren_not_balanced;
1835 }
1836 else
1837 {
1838 if (*l == '[')
1839 ++paren_not_balanced;
1840 if (*l == ']')
1841 --paren_not_balanced;
1842 }
1843 l++;
1844 }
1845 if (l != token_start)
1846 { /* Yes, we've read in another operand. */
1847 unsigned int operand_ok;
1848 this_operand = i.operands++;
1849 if (i.operands > MAX_OPERANDS)
1850 {
1851 as_bad (_("spurious operands; (%d operands/instruction max)"),
1852 MAX_OPERANDS);
1853 return NULL;
1854 }
1855 /* Now parse operand adding info to 'i' as we go along. */
1856 END_STRING_AND_SAVE (l);
1857
1858 if (intel_syntax)
1859 operand_ok =
1860 i386_intel_operand (token_start,
1861 intel_float_operand (mnemonic));
1862 else
1863 operand_ok = i386_operand (token_start);
1864
1865 RESTORE_END_STRING (l);
1866 if (!operand_ok)
1867 return NULL;
1868 }
1869 else
1870 {
1871 if (expecting_operand)
1872 {
1873 expecting_operand_after_comma:
1874 as_bad (_("expecting operand after ','; got nothing"));
1875 return NULL;
1876 }
1877 if (*l == ',')
1878 {
1879 as_bad (_("expecting operand before ','; got nothing"));
1880 return NULL;
1881 }
1882 }
1883
1884 /* Now *l must be either ',' or END_OF_INSN. */
1885 if (*l == ',')
1886 {
1887 if (*++l == END_OF_INSN)
1888 {
1889 /* Just skip it, if it's \n complain. */
1890 goto expecting_operand_after_comma;
1891 }
1892 expecting_operand = 1;
1893 }
1894 }
1895 return l;
1896 }
1897
1898 static void
1899 swap_operands ()
1900 {
1901 union i386_op temp_op;
1902 unsigned int temp_type;
1903 enum bfd_reloc_code_real temp_reloc;
1904 int xchg1 = 0;
1905 int xchg2 = 0;
1906
1907 if (i.operands == 2)
1908 {
1909 xchg1 = 0;
1910 xchg2 = 1;
1911 }
1912 else if (i.operands == 3)
1913 {
1914 xchg1 = 0;
1915 xchg2 = 2;
1916 }
1917 temp_type = i.types[xchg2];
1918 i.types[xchg2] = i.types[xchg1];
1919 i.types[xchg1] = temp_type;
1920 temp_op = i.op[xchg2];
1921 i.op[xchg2] = i.op[xchg1];
1922 i.op[xchg1] = temp_op;
1923 temp_reloc = i.reloc[xchg2];
1924 i.reloc[xchg2] = i.reloc[xchg1];
1925 i.reloc[xchg1] = temp_reloc;
1926
1927 if (i.mem_operands == 2)
1928 {
1929 const seg_entry *temp_seg;
1930 temp_seg = i.seg[0];
1931 i.seg[0] = i.seg[1];
1932 i.seg[1] = temp_seg;
1933 }
1934 }
1935
1936 /* Try to ensure constant immediates are represented in the smallest
1937 opcode possible. */
1938 static void
1939 optimize_imm ()
1940 {
1941 char guess_suffix = 0;
1942 int op;
1943
1944 if (i.suffix)
1945 guess_suffix = i.suffix;
1946 else if (i.reg_operands)
1947 {
1948 /* Figure out a suffix from the last register operand specified.
1949 We can't do this properly yet, ie. excluding InOutPortReg,
1950 but the following works for instructions with immediates.
1951 In any case, we can't set i.suffix yet. */
1952 for (op = i.operands; --op >= 0;)
1953 if (i.types[op] & Reg)
1954 {
1955 if (i.types[op] & Reg8)
1956 guess_suffix = BYTE_MNEM_SUFFIX;
1957 else if (i.types[op] & Reg16)
1958 guess_suffix = WORD_MNEM_SUFFIX;
1959 else if (i.types[op] & Reg32)
1960 guess_suffix = LONG_MNEM_SUFFIX;
1961 else if (i.types[op] & Reg64)
1962 guess_suffix = QWORD_MNEM_SUFFIX;
1963 break;
1964 }
1965 }
1966 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1967 guess_suffix = WORD_MNEM_SUFFIX;
1968
1969 for (op = i.operands; --op >= 0;)
1970 if (i.types[op] & Imm)
1971 {
1972 switch (i.op[op].imms->X_op)
1973 {
1974 case O_constant:
1975 /* If a suffix is given, this operand may be shortened. */
1976 switch (guess_suffix)
1977 {
1978 case LONG_MNEM_SUFFIX:
1979 i.types[op] |= Imm32 | Imm64;
1980 break;
1981 case WORD_MNEM_SUFFIX:
1982 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1983 break;
1984 case BYTE_MNEM_SUFFIX:
1985 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1986 break;
1987 }
1988
1989 /* If this operand is at most 16 bits, convert it
1990 to a signed 16 bit number before trying to see
1991 whether it will fit in an even smaller size.
1992 This allows a 16-bit operand such as $0xffe0 to
1993 be recognised as within Imm8S range. */
1994 if ((i.types[op] & Imm16)
1995 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
1996 {
1997 i.op[op].imms->X_add_number =
1998 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1999 }
2000 if ((i.types[op] & Imm32)
2001 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
2002 == 0))
2003 {
2004 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
2005 ^ ((offsetT) 1 << 31))
2006 - ((offsetT) 1 << 31));
2007 }
2008 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
2009
2010 /* We must avoid matching of Imm32 templates when 64bit
2011 only immediate is available. */
2012 if (guess_suffix == QWORD_MNEM_SUFFIX)
2013 i.types[op] &= ~Imm32;
2014 break;
2015
2016 case O_absent:
2017 case O_register:
2018 abort ();
2019
2020 /* Symbols and expressions. */
2021 default:
2022 /* Convert symbolic operand to proper sizes for matching. */
2023 switch (guess_suffix)
2024 {
2025 case QWORD_MNEM_SUFFIX:
2026 i.types[op] = Imm64 | Imm32S;
2027 break;
2028 case LONG_MNEM_SUFFIX:
2029 i.types[op] = Imm32;
2030 break;
2031 case WORD_MNEM_SUFFIX:
2032 i.types[op] = Imm16;
2033 break;
2034 case BYTE_MNEM_SUFFIX:
2035 i.types[op] = Imm8 | Imm8S;
2036 break;
2037 }
2038 break;
2039 }
2040 }
2041 }
2042
2043 /* Try to use the smallest displacement type too. */
2044 static void
2045 optimize_disp ()
2046 {
2047 int op;
2048
2049 for (op = i.operands; --op >= 0;)
2050 if ((i.types[op] & Disp) && i.op[op].disps->X_op == O_constant)
2051 {
2052 offsetT disp = i.op[op].disps->X_add_number;
2053
2054 if (i.types[op] & Disp16)
2055 {
2056 /* We know this operand is at most 16 bits, so
2057 convert to a signed 16 bit number before trying
2058 to see whether it will fit in an even smaller
2059 size. */
2060
2061 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
2062 }
2063 else if (i.types[op] & Disp32)
2064 {
2065 /* We know this operand is at most 32 bits, so convert to a
2066 signed 32 bit number before trying to see whether it will
2067 fit in an even smaller size. */
2068 disp &= (((offsetT) 2 << 31) - 1);
2069 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
2070 }
2071 if (flag_code == CODE_64BIT)
2072 {
2073 if (fits_in_signed_long (disp))
2074 i.types[op] |= Disp32S;
2075 if (fits_in_unsigned_long (disp))
2076 i.types[op] |= Disp32;
2077 }
2078 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2079 && fits_in_signed_byte (disp))
2080 i.types[op] |= Disp8;
2081 }
2082 }
2083
2084 static int
2085 match_template ()
2086 {
2087 /* Points to template once we've found it. */
2088 const template *t;
2089 unsigned int overlap0, overlap1, overlap2;
2090 unsigned int found_reverse_match;
2091 int suffix_check;
2092
2093 #define MATCH(overlap, given, template) \
2094 ((overlap & ~JumpAbsolute) \
2095 && (((given) & (BaseIndex | JumpAbsolute)) \
2096 == ((overlap) & (BaseIndex | JumpAbsolute))))
2097
2098 /* If given types r0 and r1 are registers they must be of the same type
2099 unless the expected operand type register overlap is null.
2100 Note that Acc in a template matches every size of reg. */
2101 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2102 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2103 || ((g0) & Reg) == ((g1) & Reg) \
2104 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2105
2106 overlap0 = 0;
2107 overlap1 = 0;
2108 overlap2 = 0;
2109 found_reverse_match = 0;
2110 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2111 ? No_bSuf
2112 : (i.suffix == WORD_MNEM_SUFFIX
2113 ? No_wSuf
2114 : (i.suffix == SHORT_MNEM_SUFFIX
2115 ? No_sSuf
2116 : (i.suffix == LONG_MNEM_SUFFIX
2117 ? No_lSuf
2118 : (i.suffix == QWORD_MNEM_SUFFIX
2119 ? No_qSuf
2120 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2121 ? No_xSuf : 0))))));
2122
2123 t = current_templates->start;
2124 if (i.suffix == QWORD_MNEM_SUFFIX
2125 && flag_code != CODE_64BIT
2126 && (intel_syntax
2127 ? !(t->opcode_modifier & IgnoreSize)
2128 && !intel_float_operand (t->name)
2129 : intel_float_operand (t->name) != 2)
2130 && (!(t->operand_types[0] & (RegMMX | RegXMM))
2131 || !(t->operand_types[t->operands > 1] & (RegMMX | RegXMM)))
2132 && (t->base_opcode != 0x0fc7
2133 || t->extension_opcode != 1 /* cmpxchg8b */))
2134 t = current_templates->end;
2135 for (; t < current_templates->end; t++)
2136 {
2137 /* Must have right number of operands. */
2138 if (i.operands != t->operands)
2139 continue;
2140
2141 /* Check the suffix, except for some instructions in intel mode. */
2142 if ((t->opcode_modifier & suffix_check)
2143 && !(intel_syntax
2144 && (t->opcode_modifier & IgnoreSize)))
2145 continue;
2146
2147 /* Do not verify operands when there are none. */
2148 else if (!t->operands)
2149 {
2150 if (t->cpu_flags & ~cpu_arch_flags)
2151 continue;
2152 /* We've found a match; break out of loop. */
2153 break;
2154 }
2155
2156 overlap0 = i.types[0] & t->operand_types[0];
2157 switch (t->operands)
2158 {
2159 case 1:
2160 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
2161 continue;
2162 break;
2163 case 2:
2164 case 3:
2165 overlap1 = i.types[1] & t->operand_types[1];
2166 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
2167 || !MATCH (overlap1, i.types[1], t->operand_types[1])
2168 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2169 t->operand_types[0],
2170 overlap1, i.types[1],
2171 t->operand_types[1]))
2172 {
2173 /* Check if other direction is valid ... */
2174 if ((t->opcode_modifier & (D | FloatD)) == 0)
2175 continue;
2176
2177 /* Try reversing direction of operands. */
2178 overlap0 = i.types[0] & t->operand_types[1];
2179 overlap1 = i.types[1] & t->operand_types[0];
2180 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
2181 || !MATCH (overlap1, i.types[1], t->operand_types[0])
2182 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2183 t->operand_types[1],
2184 overlap1, i.types[1],
2185 t->operand_types[0]))
2186 {
2187 /* Does not match either direction. */
2188 continue;
2189 }
2190 /* found_reverse_match holds which of D or FloatDR
2191 we've found. */
2192 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2193 }
2194 /* Found a forward 2 operand match here. */
2195 else if (t->operands == 3)
2196 {
2197 /* Here we make use of the fact that there are no
2198 reverse match 3 operand instructions, and all 3
2199 operand instructions only need to be checked for
2200 register consistency between operands 2 and 3. */
2201 overlap2 = i.types[2] & t->operand_types[2];
2202 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
2203 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
2204 t->operand_types[1],
2205 overlap2, i.types[2],
2206 t->operand_types[2]))
2207
2208 continue;
2209 }
2210 /* Found either forward/reverse 2 or 3 operand match here:
2211 slip through to break. */
2212 }
2213 if (t->cpu_flags & ~cpu_arch_flags)
2214 {
2215 found_reverse_match = 0;
2216 continue;
2217 }
2218 /* We've found a match; break out of loop. */
2219 break;
2220 }
2221
2222 if (t == current_templates->end)
2223 {
2224 /* We found no match. */
2225 as_bad (_("suffix or operands invalid for `%s'"),
2226 current_templates->start->name);
2227 return 0;
2228 }
2229
2230 if (!quiet_warnings)
2231 {
2232 if (!intel_syntax
2233 && ((i.types[0] & JumpAbsolute)
2234 != (t->operand_types[0] & JumpAbsolute)))
2235 {
2236 as_warn (_("indirect %s without `*'"), t->name);
2237 }
2238
2239 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2240 == (IsPrefix | IgnoreSize))
2241 {
2242 /* Warn them that a data or address size prefix doesn't
2243 affect assembly of the next line of code. */
2244 as_warn (_("stand-alone `%s' prefix"), t->name);
2245 }
2246 }
2247
2248 /* Copy the template we found. */
2249 i.tm = *t;
2250 if (found_reverse_match)
2251 {
2252 /* If we found a reverse match we must alter the opcode
2253 direction bit. found_reverse_match holds bits to change
2254 (different for int & float insns). */
2255
2256 i.tm.base_opcode ^= found_reverse_match;
2257
2258 i.tm.operand_types[0] = t->operand_types[1];
2259 i.tm.operand_types[1] = t->operand_types[0];
2260 }
2261
2262 return 1;
2263 }
2264
2265 static int
2266 check_string ()
2267 {
2268 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2269 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2270 {
2271 if (i.seg[0] != NULL && i.seg[0] != &es)
2272 {
2273 as_bad (_("`%s' operand %d must use `%%es' segment"),
2274 i.tm.name,
2275 mem_op + 1);
2276 return 0;
2277 }
2278 /* There's only ever one segment override allowed per instruction.
2279 This instruction possibly has a legal segment override on the
2280 second operand, so copy the segment to where non-string
2281 instructions store it, allowing common code. */
2282 i.seg[0] = i.seg[1];
2283 }
2284 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2285 {
2286 if (i.seg[1] != NULL && i.seg[1] != &es)
2287 {
2288 as_bad (_("`%s' operand %d must use `%%es' segment"),
2289 i.tm.name,
2290 mem_op + 2);
2291 return 0;
2292 }
2293 }
2294 return 1;
2295 }
2296
2297 static int
2298 process_suffix (void)
2299 {
2300 /* If matched instruction specifies an explicit instruction mnemonic
2301 suffix, use it. */
2302 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2303 {
2304 if (i.tm.opcode_modifier & Size16)
2305 i.suffix = WORD_MNEM_SUFFIX;
2306 else if (i.tm.opcode_modifier & Size64)
2307 i.suffix = QWORD_MNEM_SUFFIX;
2308 else
2309 i.suffix = LONG_MNEM_SUFFIX;
2310 }
2311 else if (i.reg_operands)
2312 {
2313 /* If there's no instruction mnemonic suffix we try to invent one
2314 based on register operands. */
2315 if (!i.suffix)
2316 {
2317 /* We take i.suffix from the last register operand specified,
2318 Destination register type is more significant than source
2319 register type. */
2320 int op;
2321
2322 for (op = i.operands; --op >= 0;)
2323 if ((i.types[op] & Reg)
2324 && !(i.tm.operand_types[op] & InOutPortReg))
2325 {
2326 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2327 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2328 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2329 LONG_MNEM_SUFFIX);
2330 break;
2331 }
2332 }
2333 else if (i.suffix == BYTE_MNEM_SUFFIX)
2334 {
2335 if (!check_byte_reg ())
2336 return 0;
2337 }
2338 else if (i.suffix == LONG_MNEM_SUFFIX)
2339 {
2340 if (!check_long_reg ())
2341 return 0;
2342 }
2343 else if (i.suffix == QWORD_MNEM_SUFFIX)
2344 {
2345 if (!check_qword_reg ())
2346 return 0;
2347 }
2348 else if (i.suffix == WORD_MNEM_SUFFIX)
2349 {
2350 if (!check_word_reg ())
2351 return 0;
2352 }
2353 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2354 /* Do nothing if the instruction is going to ignore the prefix. */
2355 ;
2356 else
2357 abort ();
2358 }
2359 else if ((i.tm.opcode_modifier & DefaultSize)
2360 && !i.suffix
2361 /* exclude fldenv/frstor/fsave/fstenv */
2362 && (i.tm.opcode_modifier & No_sSuf))
2363 {
2364 i.suffix = stackop_size;
2365 }
2366 else if (intel_syntax
2367 && !i.suffix
2368 && ((i.tm.operand_types[0] & JumpAbsolute)
2369 || (i.tm.opcode_modifier & (JumpByte|JumpInterSegment))
2370 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
2371 && i.tm.extension_opcode <= 3)))
2372 {
2373 switch (flag_code)
2374 {
2375 case CODE_64BIT:
2376 if (!(i.tm.opcode_modifier & No_qSuf))
2377 {
2378 i.suffix = QWORD_MNEM_SUFFIX;
2379 break;
2380 }
2381 case CODE_32BIT:
2382 if (!(i.tm.opcode_modifier & No_lSuf))
2383 i.suffix = LONG_MNEM_SUFFIX;
2384 break;
2385 case CODE_16BIT:
2386 if (!(i.tm.opcode_modifier & No_wSuf))
2387 i.suffix = WORD_MNEM_SUFFIX;
2388 break;
2389 }
2390 }
2391
2392 if (!i.suffix)
2393 {
2394 if (!intel_syntax)
2395 {
2396 if (i.tm.opcode_modifier & W)
2397 {
2398 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2399 return 0;
2400 }
2401 }
2402 else
2403 {
2404 unsigned int suffixes = ~i.tm.opcode_modifier
2405 & (No_bSuf
2406 | No_wSuf
2407 | No_lSuf
2408 | No_sSuf
2409 | No_xSuf
2410 | No_qSuf);
2411
2412 if ((i.tm.opcode_modifier & W)
2413 || ((suffixes & (suffixes - 1))
2414 && !(i.tm.opcode_modifier & (DefaultSize | IgnoreSize))))
2415 {
2416 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2417 return 0;
2418 }
2419 }
2420 }
2421
2422 /* Change the opcode based on the operand size given by i.suffix;
2423 We don't need to change things for byte insns. */
2424
2425 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2426 {
2427 /* It's not a byte, select word/dword operation. */
2428 if (i.tm.opcode_modifier & W)
2429 {
2430 if (i.tm.opcode_modifier & ShortForm)
2431 i.tm.base_opcode |= 8;
2432 else
2433 i.tm.base_opcode |= 1;
2434 }
2435
2436 /* Now select between word & dword operations via the operand
2437 size prefix, except for instructions that will ignore this
2438 prefix anyway. */
2439 if (i.suffix != QWORD_MNEM_SUFFIX
2440 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
2441 && !(i.tm.opcode_modifier & (IgnoreSize | FloatMF))
2442 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2443 || (flag_code == CODE_64BIT
2444 && (i.tm.opcode_modifier & JumpByte))))
2445 {
2446 unsigned int prefix = DATA_PREFIX_OPCODE;
2447
2448 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2449 prefix = ADDR_PREFIX_OPCODE;
2450
2451 if (!add_prefix (prefix))
2452 return 0;
2453 }
2454
2455 /* Set mode64 for an operand. */
2456 if (i.suffix == QWORD_MNEM_SUFFIX
2457 && flag_code == CODE_64BIT
2458 && (i.tm.opcode_modifier & NoRex64) == 0)
2459 i.rex |= REX_MODE64;
2460
2461 /* Size floating point instruction. */
2462 if (i.suffix == LONG_MNEM_SUFFIX)
2463 if (i.tm.opcode_modifier & FloatMF)
2464 i.tm.base_opcode ^= 4;
2465 }
2466
2467 return 1;
2468 }
2469
2470 static int
2471 check_byte_reg (void)
2472 {
2473 int op;
2474
2475 for (op = i.operands; --op >= 0;)
2476 {
2477 /* If this is an eight bit register, it's OK. If it's the 16 or
2478 32 bit version of an eight bit register, we will just use the
2479 low portion, and that's OK too. */
2480 if (i.types[op] & Reg8)
2481 continue;
2482
2483 /* movzx and movsx should not generate this warning. */
2484 if (intel_syntax
2485 && (i.tm.base_opcode == 0xfb7
2486 || i.tm.base_opcode == 0xfb6
2487 || i.tm.base_opcode == 0x63
2488 || i.tm.base_opcode == 0xfbe
2489 || i.tm.base_opcode == 0xfbf))
2490 continue;
2491
2492 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4)
2493 {
2494 /* Prohibit these changes in the 64bit mode, since the
2495 lowering is more complicated. */
2496 if (flag_code == CODE_64BIT
2497 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2498 {
2499 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2500 i.op[op].regs->reg_name,
2501 i.suffix);
2502 return 0;
2503 }
2504 #if REGISTER_WARNINGS
2505 if (!quiet_warnings
2506 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2507 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2508 (i.op[op].regs + (i.types[op] & Reg16
2509 ? REGNAM_AL - REGNAM_AX
2510 : REGNAM_AL - REGNAM_EAX))->reg_name,
2511 i.op[op].regs->reg_name,
2512 i.suffix);
2513 #endif
2514 continue;
2515 }
2516 /* Any other register is bad. */
2517 if (i.types[op] & (Reg | RegMMX | RegXMM
2518 | SReg2 | SReg3
2519 | Control | Debug | Test
2520 | FloatReg | FloatAcc))
2521 {
2522 as_bad (_("`%%%s' not allowed with `%s%c'"),
2523 i.op[op].regs->reg_name,
2524 i.tm.name,
2525 i.suffix);
2526 return 0;
2527 }
2528 }
2529 return 1;
2530 }
2531
2532 static int
2533 check_long_reg ()
2534 {
2535 int op;
2536
2537 for (op = i.operands; --op >= 0;)
2538 /* Reject eight bit registers, except where the template requires
2539 them. (eg. movzb) */
2540 if ((i.types[op] & Reg8) != 0
2541 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2542 {
2543 as_bad (_("`%%%s' not allowed with `%s%c'"),
2544 i.op[op].regs->reg_name,
2545 i.tm.name,
2546 i.suffix);
2547 return 0;
2548 }
2549 /* Warn if the e prefix on a general reg is missing. */
2550 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2551 && (i.types[op] & Reg16) != 0
2552 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2553 {
2554 /* Prohibit these changes in the 64bit mode, since the
2555 lowering is more complicated. */
2556 if (flag_code == CODE_64BIT)
2557 {
2558 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2559 i.op[op].regs->reg_name,
2560 i.suffix);
2561 return 0;
2562 }
2563 #if REGISTER_WARNINGS
2564 else
2565 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2566 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2567 i.op[op].regs->reg_name,
2568 i.suffix);
2569 #endif
2570 }
2571 /* Warn if the r prefix on a general reg is missing. */
2572 else if ((i.types[op] & Reg64) != 0
2573 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2574 {
2575 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2576 i.op[op].regs->reg_name,
2577 i.suffix);
2578 return 0;
2579 }
2580 return 1;
2581 }
2582
2583 static int
2584 check_qword_reg ()
2585 {
2586 int op;
2587
2588 for (op = i.operands; --op >= 0; )
2589 /* Reject eight bit registers, except where the template requires
2590 them. (eg. movzb) */
2591 if ((i.types[op] & Reg8) != 0
2592 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2593 {
2594 as_bad (_("`%%%s' not allowed with `%s%c'"),
2595 i.op[op].regs->reg_name,
2596 i.tm.name,
2597 i.suffix);
2598 return 0;
2599 }
2600 /* Warn if the e prefix on a general reg is missing. */
2601 else if (((i.types[op] & Reg16) != 0
2602 || (i.types[op] & Reg32) != 0)
2603 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2604 {
2605 /* Prohibit these changes in the 64bit mode, since the
2606 lowering is more complicated. */
2607 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2608 i.op[op].regs->reg_name,
2609 i.suffix);
2610 return 0;
2611 }
2612 return 1;
2613 }
2614
2615 static int
2616 check_word_reg ()
2617 {
2618 int op;
2619 for (op = i.operands; --op >= 0;)
2620 /* Reject eight bit registers, except where the template requires
2621 them. (eg. movzb) */
2622 if ((i.types[op] & Reg8) != 0
2623 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2624 {
2625 as_bad (_("`%%%s' not allowed with `%s%c'"),
2626 i.op[op].regs->reg_name,
2627 i.tm.name,
2628 i.suffix);
2629 return 0;
2630 }
2631 /* Warn if the e prefix on a general reg is present. */
2632 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2633 && (i.types[op] & Reg32) != 0
2634 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
2635 {
2636 /* Prohibit these changes in the 64bit mode, since the
2637 lowering is more complicated. */
2638 if (flag_code == CODE_64BIT)
2639 {
2640 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2641 i.op[op].regs->reg_name,
2642 i.suffix);
2643 return 0;
2644 }
2645 else
2646 #if REGISTER_WARNINGS
2647 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2648 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2649 i.op[op].regs->reg_name,
2650 i.suffix);
2651 #endif
2652 }
2653 return 1;
2654 }
2655
2656 static int
2657 finalize_imm ()
2658 {
2659 unsigned int overlap0, overlap1, overlap2;
2660
2661 overlap0 = i.types[0] & i.tm.operand_types[0];
2662 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64))
2663 && overlap0 != Imm8 && overlap0 != Imm8S
2664 && overlap0 != Imm16 && overlap0 != Imm32S
2665 && overlap0 != Imm32 && overlap0 != Imm64)
2666 {
2667 if (i.suffix)
2668 {
2669 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
2670 ? Imm8 | Imm8S
2671 : (i.suffix == WORD_MNEM_SUFFIX
2672 ? Imm16
2673 : (i.suffix == QWORD_MNEM_SUFFIX
2674 ? Imm64 | Imm32S
2675 : Imm32)));
2676 }
2677 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2678 || overlap0 == (Imm16 | Imm32)
2679 || overlap0 == (Imm16 | Imm32S))
2680 {
2681 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2682 ? Imm16 : Imm32S);
2683 }
2684 if (overlap0 != Imm8 && overlap0 != Imm8S
2685 && overlap0 != Imm16 && overlap0 != Imm32S
2686 && overlap0 != Imm32 && overlap0 != Imm64)
2687 {
2688 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2689 return 0;
2690 }
2691 }
2692 i.types[0] = overlap0;
2693
2694 overlap1 = i.types[1] & i.tm.operand_types[1];
2695 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32 | Imm64))
2696 && overlap1 != Imm8 && overlap1 != Imm8S
2697 && overlap1 != Imm16 && overlap1 != Imm32S
2698 && overlap1 != Imm32 && overlap1 != Imm64)
2699 {
2700 if (i.suffix)
2701 {
2702 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
2703 ? Imm8 | Imm8S
2704 : (i.suffix == WORD_MNEM_SUFFIX
2705 ? Imm16
2706 : (i.suffix == QWORD_MNEM_SUFFIX
2707 ? Imm64 | Imm32S
2708 : Imm32)));
2709 }
2710 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2711 || overlap1 == (Imm16 | Imm32)
2712 || overlap1 == (Imm16 | Imm32S))
2713 {
2714 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2715 ? Imm16 : Imm32S);
2716 }
2717 if (overlap1 != Imm8 && overlap1 != Imm8S
2718 && overlap1 != Imm16 && overlap1 != Imm32S
2719 && overlap1 != Imm32 && overlap1 != Imm64)
2720 {
2721 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2722 return 0;
2723 }
2724 }
2725 i.types[1] = overlap1;
2726
2727 overlap2 = i.types[2] & i.tm.operand_types[2];
2728 assert ((overlap2 & Imm) == 0);
2729 i.types[2] = overlap2;
2730
2731 return 1;
2732 }
2733
2734 static int
2735 process_operands ()
2736 {
2737 /* Default segment register this instruction will use for memory
2738 accesses. 0 means unknown. This is only for optimizing out
2739 unnecessary segment overrides. */
2740 const seg_entry *default_seg = 0;
2741
2742 /* The imul $imm, %reg instruction is converted into
2743 imul $imm, %reg, %reg, and the clr %reg instruction
2744 is converted into xor %reg, %reg. */
2745 if (i.tm.opcode_modifier & regKludge)
2746 {
2747 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2748 /* Pretend we saw the extra register operand. */
2749 assert (i.op[first_reg_op + 1].regs == 0);
2750 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2751 i.types[first_reg_op + 1] = i.types[first_reg_op];
2752 i.reg_operands = 2;
2753 }
2754
2755 if (i.tm.opcode_modifier & ShortForm)
2756 {
2757 /* The register or float register operand is in operand 0 or 1. */
2758 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2759 /* Register goes in low 3 bits of opcode. */
2760 i.tm.base_opcode |= i.op[op].regs->reg_num;
2761 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2762 i.rex |= REX_EXTZ;
2763 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2764 {
2765 /* Warn about some common errors, but press on regardless.
2766 The first case can be generated by gcc (<= 2.8.1). */
2767 if (i.operands == 2)
2768 {
2769 /* Reversed arguments on faddp, fsubp, etc. */
2770 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2771 i.op[1].regs->reg_name,
2772 i.op[0].regs->reg_name);
2773 }
2774 else
2775 {
2776 /* Extraneous `l' suffix on fp insn. */
2777 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2778 i.op[0].regs->reg_name);
2779 }
2780 }
2781 }
2782 else if (i.tm.opcode_modifier & Modrm)
2783 {
2784 /* The opcode is completed (modulo i.tm.extension_opcode which
2785 must be put into the modrm byte). Now, we make the modrm and
2786 index base bytes based on all the info we've collected. */
2787
2788 default_seg = build_modrm_byte ();
2789 }
2790 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2791 {
2792 if (i.tm.base_opcode == POP_SEG_SHORT
2793 && i.op[0].regs->reg_num == 1)
2794 {
2795 as_bad (_("you can't `pop %%cs'"));
2796 return 0;
2797 }
2798 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2799 if ((i.op[0].regs->reg_flags & RegRex) != 0)
2800 i.rex |= REX_EXTZ;
2801 }
2802 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
2803 {
2804 default_seg = &ds;
2805 }
2806 else if ((i.tm.opcode_modifier & IsString) != 0)
2807 {
2808 /* For the string instructions that allow a segment override
2809 on one of their operands, the default segment is ds. */
2810 default_seg = &ds;
2811 }
2812
2813 if (i.tm.base_opcode == 0x8d /* lea */ && i.seg[0] && !quiet_warnings)
2814 as_warn (_("segment override on `lea' is ineffectual"));
2815
2816 /* If a segment was explicitly specified, and the specified segment
2817 is not the default, use an opcode prefix to select it. If we
2818 never figured out what the default segment is, then default_seg
2819 will be zero at this point, and the specified segment prefix will
2820 always be used. */
2821 if ((i.seg[0]) && (i.seg[0] != default_seg))
2822 {
2823 if (!add_prefix (i.seg[0]->seg_prefix))
2824 return 0;
2825 }
2826 return 1;
2827 }
2828
2829 static const seg_entry *
2830 build_modrm_byte ()
2831 {
2832 const seg_entry *default_seg = 0;
2833
2834 /* i.reg_operands MUST be the number of real register operands;
2835 implicit registers do not count. */
2836 if (i.reg_operands == 2)
2837 {
2838 unsigned int source, dest;
2839 source = ((i.types[0]
2840 & (Reg | RegMMX | RegXMM
2841 | SReg2 | SReg3
2842 | Control | Debug | Test))
2843 ? 0 : 1);
2844 dest = source + 1;
2845
2846 i.rm.mode = 3;
2847 /* One of the register operands will be encoded in the i.tm.reg
2848 field, the other in the combined i.tm.mode and i.tm.regmem
2849 fields. If no form of this instruction supports a memory
2850 destination operand, then we assume the source operand may
2851 sometimes be a memory operand and so we need to store the
2852 destination in the i.rm.reg field. */
2853 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2854 {
2855 i.rm.reg = i.op[dest].regs->reg_num;
2856 i.rm.regmem = i.op[source].regs->reg_num;
2857 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2858 i.rex |= REX_EXTX;
2859 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2860 i.rex |= REX_EXTZ;
2861 }
2862 else
2863 {
2864 i.rm.reg = i.op[source].regs->reg_num;
2865 i.rm.regmem = i.op[dest].regs->reg_num;
2866 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2867 i.rex |= REX_EXTZ;
2868 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2869 i.rex |= REX_EXTX;
2870 }
2871 if (flag_code != CODE_64BIT && (i.rex & (REX_EXTX | REX_EXTZ)))
2872 {
2873 if (!((i.types[0] | i.types[1]) & Control))
2874 abort ();
2875 i.rex &= ~(REX_EXTX | REX_EXTZ);
2876 add_prefix (LOCK_PREFIX_OPCODE);
2877 }
2878 }
2879 else
2880 { /* If it's not 2 reg operands... */
2881 if (i.mem_operands)
2882 {
2883 unsigned int fake_zero_displacement = 0;
2884 unsigned int op = ((i.types[0] & AnyMem)
2885 ? 0
2886 : (i.types[1] & AnyMem) ? 1 : 2);
2887
2888 default_seg = &ds;
2889
2890 if (i.base_reg == 0)
2891 {
2892 i.rm.mode = 0;
2893 if (!i.disp_operands)
2894 fake_zero_displacement = 1;
2895 if (i.index_reg == 0)
2896 {
2897 /* Operand is just <disp> */
2898 if (flag_code == CODE_64BIT)
2899 {
2900 /* 64bit mode overwrites the 32bit absolute
2901 addressing by RIP relative addressing and
2902 absolute addressing is encoded by one of the
2903 redundant SIB forms. */
2904 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2905 i.sib.base = NO_BASE_REGISTER;
2906 i.sib.index = NO_INDEX_REGISTER;
2907 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0) ? Disp32S : Disp32);
2908 }
2909 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
2910 {
2911 i.rm.regmem = NO_BASE_REGISTER_16;
2912 i.types[op] = Disp16;
2913 }
2914 else
2915 {
2916 i.rm.regmem = NO_BASE_REGISTER;
2917 i.types[op] = Disp32;
2918 }
2919 }
2920 else /* !i.base_reg && i.index_reg */
2921 {
2922 i.sib.index = i.index_reg->reg_num;
2923 i.sib.base = NO_BASE_REGISTER;
2924 i.sib.scale = i.log2_scale_factor;
2925 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2926 i.types[op] &= ~Disp;
2927 if (flag_code != CODE_64BIT)
2928 i.types[op] |= Disp32; /* Must be 32 bit */
2929 else
2930 i.types[op] |= Disp32S;
2931 if ((i.index_reg->reg_flags & RegRex) != 0)
2932 i.rex |= REX_EXTY;
2933 }
2934 }
2935 /* RIP addressing for 64bit mode. */
2936 else if (i.base_reg->reg_type == BaseIndex)
2937 {
2938 i.rm.regmem = NO_BASE_REGISTER;
2939 i.types[op] &= ~ Disp;
2940 i.types[op] |= Disp32S;
2941 i.flags[op] = Operand_PCrel;
2942 if (! i.disp_operands)
2943 fake_zero_displacement = 1;
2944 }
2945 else if (i.base_reg->reg_type & Reg16)
2946 {
2947 switch (i.base_reg->reg_num)
2948 {
2949 case 3: /* (%bx) */
2950 if (i.index_reg == 0)
2951 i.rm.regmem = 7;
2952 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2953 i.rm.regmem = i.index_reg->reg_num - 6;
2954 break;
2955 case 5: /* (%bp) */
2956 default_seg = &ss;
2957 if (i.index_reg == 0)
2958 {
2959 i.rm.regmem = 6;
2960 if ((i.types[op] & Disp) == 0)
2961 {
2962 /* fake (%bp) into 0(%bp) */
2963 i.types[op] |= Disp8;
2964 fake_zero_displacement = 1;
2965 }
2966 }
2967 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2968 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2969 break;
2970 default: /* (%si) -> 4 or (%di) -> 5 */
2971 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2972 }
2973 i.rm.mode = mode_from_disp_size (i.types[op]);
2974 }
2975 else /* i.base_reg and 32/64 bit mode */
2976 {
2977 if (flag_code == CODE_64BIT
2978 && (i.types[op] & Disp))
2979 i.types[op] = (i.types[op] & Disp8) | (i.prefix[ADDR_PREFIX] == 0 ? Disp32S : Disp32);
2980
2981 i.rm.regmem = i.base_reg->reg_num;
2982 if ((i.base_reg->reg_flags & RegRex) != 0)
2983 i.rex |= REX_EXTZ;
2984 i.sib.base = i.base_reg->reg_num;
2985 /* x86-64 ignores REX prefix bit here to avoid decoder
2986 complications. */
2987 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2988 {
2989 default_seg = &ss;
2990 if (i.disp_operands == 0)
2991 {
2992 fake_zero_displacement = 1;
2993 i.types[op] |= Disp8;
2994 }
2995 }
2996 else if (i.base_reg->reg_num == ESP_REG_NUM)
2997 {
2998 default_seg = &ss;
2999 }
3000 i.sib.scale = i.log2_scale_factor;
3001 if (i.index_reg == 0)
3002 {
3003 /* <disp>(%esp) becomes two byte modrm with no index
3004 register. We've already stored the code for esp
3005 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
3006 Any base register besides %esp will not use the
3007 extra modrm byte. */
3008 i.sib.index = NO_INDEX_REGISTER;
3009 #if !SCALE1_WHEN_NO_INDEX
3010 /* Another case where we force the second modrm byte. */
3011 if (i.log2_scale_factor)
3012 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3013 #endif
3014 }
3015 else
3016 {
3017 i.sib.index = i.index_reg->reg_num;
3018 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3019 if ((i.index_reg->reg_flags & RegRex) != 0)
3020 i.rex |= REX_EXTY;
3021 }
3022 i.rm.mode = mode_from_disp_size (i.types[op]);
3023 }
3024
3025 if (fake_zero_displacement)
3026 {
3027 /* Fakes a zero displacement assuming that i.types[op]
3028 holds the correct displacement size. */
3029 expressionS *exp;
3030
3031 assert (i.op[op].disps == 0);
3032 exp = &disp_expressions[i.disp_operands++];
3033 i.op[op].disps = exp;
3034 exp->X_op = O_constant;
3035 exp->X_add_number = 0;
3036 exp->X_add_symbol = (symbolS *) 0;
3037 exp->X_op_symbol = (symbolS *) 0;
3038 }
3039 }
3040
3041 /* Fill in i.rm.reg or i.rm.regmem field with register operand
3042 (if any) based on i.tm.extension_opcode. Again, we must be
3043 careful to make sure that segment/control/debug/test/MMX
3044 registers are coded into the i.rm.reg field. */
3045 if (i.reg_operands)
3046 {
3047 unsigned int op =
3048 ((i.types[0]
3049 & (Reg | RegMMX | RegXMM
3050 | SReg2 | SReg3
3051 | Control | Debug | Test))
3052 ? 0
3053 : ((i.types[1]
3054 & (Reg | RegMMX | RegXMM
3055 | SReg2 | SReg3
3056 | Control | Debug | Test))
3057 ? 1
3058 : 2));
3059 /* If there is an extension opcode to put here, the register
3060 number must be put into the regmem field. */
3061 if (i.tm.extension_opcode != None)
3062 {
3063 i.rm.regmem = i.op[op].regs->reg_num;
3064 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3065 i.rex |= REX_EXTZ;
3066 }
3067 else
3068 {
3069 i.rm.reg = i.op[op].regs->reg_num;
3070 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3071 i.rex |= REX_EXTX;
3072 }
3073
3074 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
3075 must set it to 3 to indicate this is a register operand
3076 in the regmem field. */
3077 if (!i.mem_operands)
3078 i.rm.mode = 3;
3079 }
3080
3081 /* Fill in i.rm.reg field with extension opcode (if any). */
3082 if (i.tm.extension_opcode != None)
3083 i.rm.reg = i.tm.extension_opcode;
3084 }
3085 return default_seg;
3086 }
3087
3088 static void
3089 output_branch ()
3090 {
3091 char *p;
3092 int code16;
3093 int prefix;
3094 relax_substateT subtype;
3095 symbolS *sym;
3096 offsetT off;
3097
3098 code16 = 0;
3099 if (flag_code == CODE_16BIT)
3100 code16 = CODE16;
3101
3102 prefix = 0;
3103 if (i.prefix[DATA_PREFIX] != 0)
3104 {
3105 prefix = 1;
3106 i.prefixes -= 1;
3107 code16 ^= CODE16;
3108 }
3109 /* Pentium4 branch hints. */
3110 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3111 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3112 {
3113 prefix++;
3114 i.prefixes--;
3115 }
3116 if (i.prefix[REX_PREFIX] != 0)
3117 {
3118 prefix++;
3119 i.prefixes--;
3120 }
3121
3122 if (i.prefixes != 0 && !intel_syntax)
3123 as_warn (_("skipping prefixes on this instruction"));
3124
3125 /* It's always a symbol; End frag & setup for relax.
3126 Make sure there is enough room in this frag for the largest
3127 instruction we may generate in md_convert_frag. This is 2
3128 bytes for the opcode and room for the prefix and largest
3129 displacement. */
3130 frag_grow (prefix + 2 + 4);
3131 /* Prefix and 1 opcode byte go in fr_fix. */
3132 p = frag_more (prefix + 1);
3133 if (i.prefix[DATA_PREFIX] != 0)
3134 *p++ = DATA_PREFIX_OPCODE;
3135 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3136 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3137 *p++ = i.prefix[SEG_PREFIX];
3138 if (i.prefix[REX_PREFIX] != 0)
3139 *p++ = i.prefix[REX_PREFIX];
3140 *p = i.tm.base_opcode;
3141
3142 if ((unsigned char) *p == JUMP_PC_RELATIVE)
3143 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3144 else if ((cpu_arch_flags & Cpu386) != 0)
3145 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3146 else
3147 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3148 subtype |= code16;
3149
3150 sym = i.op[0].disps->X_add_symbol;
3151 off = i.op[0].disps->X_add_number;
3152
3153 if (i.op[0].disps->X_op != O_constant
3154 && i.op[0].disps->X_op != O_symbol)
3155 {
3156 /* Handle complex expressions. */
3157 sym = make_expr_symbol (i.op[0].disps);
3158 off = 0;
3159 }
3160
3161 /* 1 possible extra opcode + 4 byte displacement go in var part.
3162 Pass reloc in fr_var. */
3163 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3164 }
3165
3166 static void
3167 output_jump ()
3168 {
3169 char *p;
3170 int size;
3171 fixS *fixP;
3172
3173 if (i.tm.opcode_modifier & JumpByte)
3174 {
3175 /* This is a loop or jecxz type instruction. */
3176 size = 1;
3177 if (i.prefix[ADDR_PREFIX] != 0)
3178 {
3179 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3180 i.prefixes -= 1;
3181 }
3182 /* Pentium4 branch hints. */
3183 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3184 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3185 {
3186 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3187 i.prefixes--;
3188 }
3189 }
3190 else
3191 {
3192 int code16;
3193
3194 code16 = 0;
3195 if (flag_code == CODE_16BIT)
3196 code16 = CODE16;
3197
3198 if (i.prefix[DATA_PREFIX] != 0)
3199 {
3200 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3201 i.prefixes -= 1;
3202 code16 ^= CODE16;
3203 }
3204
3205 size = 4;
3206 if (code16)
3207 size = 2;
3208 }
3209
3210 if (i.prefix[REX_PREFIX] != 0)
3211 {
3212 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3213 i.prefixes -= 1;
3214 }
3215
3216 if (i.prefixes != 0 && !intel_syntax)
3217 as_warn (_("skipping prefixes on this instruction"));
3218
3219 p = frag_more (1 + size);
3220 *p++ = i.tm.base_opcode;
3221
3222 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3223 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3224
3225 /* All jumps handled here are signed, but don't use a signed limit
3226 check for 32 and 16 bit jumps as we want to allow wrap around at
3227 4G and 64k respectively. */
3228 if (size == 1)
3229 fixP->fx_signed = 1;
3230 }
3231
3232 static void
3233 output_interseg_jump ()
3234 {
3235 char *p;
3236 int size;
3237 int prefix;
3238 int code16;
3239
3240 code16 = 0;
3241 if (flag_code == CODE_16BIT)
3242 code16 = CODE16;
3243
3244 prefix = 0;
3245 if (i.prefix[DATA_PREFIX] != 0)
3246 {
3247 prefix = 1;
3248 i.prefixes -= 1;
3249 code16 ^= CODE16;
3250 }
3251 if (i.prefix[REX_PREFIX] != 0)
3252 {
3253 prefix++;
3254 i.prefixes -= 1;
3255 }
3256
3257 size = 4;
3258 if (code16)
3259 size = 2;
3260
3261 if (i.prefixes != 0 && !intel_syntax)
3262 as_warn (_("skipping prefixes on this instruction"));
3263
3264 /* 1 opcode; 2 segment; offset */
3265 p = frag_more (prefix + 1 + 2 + size);
3266
3267 if (i.prefix[DATA_PREFIX] != 0)
3268 *p++ = DATA_PREFIX_OPCODE;
3269
3270 if (i.prefix[REX_PREFIX] != 0)
3271 *p++ = i.prefix[REX_PREFIX];
3272
3273 *p++ = i.tm.base_opcode;
3274 if (i.op[1].imms->X_op == O_constant)
3275 {
3276 offsetT n = i.op[1].imms->X_add_number;
3277
3278 if (size == 2
3279 && !fits_in_unsigned_word (n)
3280 && !fits_in_signed_word (n))
3281 {
3282 as_bad (_("16-bit jump out of range"));
3283 return;
3284 }
3285 md_number_to_chars (p, n, size);
3286 }
3287 else
3288 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3289 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3290 if (i.op[0].imms->X_op != O_constant)
3291 as_bad (_("can't handle non absolute segment in `%s'"),
3292 i.tm.name);
3293 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3294 }
3295
3296 static void
3297 output_insn ()
3298 {
3299 fragS *insn_start_frag;
3300 offsetT insn_start_off;
3301
3302 /* Tie dwarf2 debug info to the address at the start of the insn.
3303 We can't do this after the insn has been output as the current
3304 frag may have been closed off. eg. by frag_var. */
3305 dwarf2_emit_insn (0);
3306
3307 insn_start_frag = frag_now;
3308 insn_start_off = frag_now_fix ();
3309
3310 /* Output jumps. */
3311 if (i.tm.opcode_modifier & Jump)
3312 output_branch ();
3313 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3314 output_jump ();
3315 else if (i.tm.opcode_modifier & JumpInterSegment)
3316 output_interseg_jump ();
3317 else
3318 {
3319 /* Output normal instructions here. */
3320 char *p;
3321 unsigned char *q;
3322
3323 /* All opcodes on i386 have either 1 or 2 bytes. We may use one
3324 more higher byte to specify a prefix the instruction
3325 requires. */
3326 if ((i.tm.base_opcode & 0xff0000) != 0)
3327 {
3328 if ((i.tm.cpu_flags & CpuPadLock) != 0)
3329 {
3330 unsigned int prefix;
3331 prefix = (i.tm.base_opcode >> 16) & 0xff;
3332
3333 if (prefix != REPE_PREFIX_OPCODE
3334 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
3335 add_prefix (prefix);
3336 }
3337 else
3338 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
3339 }
3340
3341 /* The prefix bytes. */
3342 for (q = i.prefix;
3343 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3344 q++)
3345 {
3346 if (*q)
3347 {
3348 p = frag_more (1);
3349 md_number_to_chars (p, (valueT) *q, 1);
3350 }
3351 }
3352
3353 /* Now the opcode; be careful about word order here! */
3354 if (fits_in_unsigned_byte (i.tm.base_opcode))
3355 {
3356 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3357 }
3358 else
3359 {
3360 p = frag_more (2);
3361
3362 /* Put out high byte first: can't use md_number_to_chars! */
3363 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3364 *p = i.tm.base_opcode & 0xff;
3365 }
3366
3367 /* Now the modrm byte and sib byte (if present). */
3368 if (i.tm.opcode_modifier & Modrm)
3369 {
3370 p = frag_more (1);
3371 md_number_to_chars (p,
3372 (valueT) (i.rm.regmem << 0
3373 | i.rm.reg << 3
3374 | i.rm.mode << 6),
3375 1);
3376 /* If i.rm.regmem == ESP (4)
3377 && i.rm.mode != (Register mode)
3378 && not 16 bit
3379 ==> need second modrm byte. */
3380 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3381 && i.rm.mode != 3
3382 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3383 {
3384 p = frag_more (1);
3385 md_number_to_chars (p,
3386 (valueT) (i.sib.base << 0
3387 | i.sib.index << 3
3388 | i.sib.scale << 6),
3389 1);
3390 }
3391 }
3392
3393 if (i.disp_operands)
3394 output_disp (insn_start_frag, insn_start_off);
3395
3396 if (i.imm_operands)
3397 output_imm (insn_start_frag, insn_start_off);
3398 }
3399
3400 #ifdef DEBUG386
3401 if (flag_debug)
3402 {
3403 pi (line, &i);
3404 }
3405 #endif /* DEBUG386 */
3406 }
3407
3408 static void
3409 output_disp (insn_start_frag, insn_start_off)
3410 fragS *insn_start_frag;
3411 offsetT insn_start_off;
3412 {
3413 char *p;
3414 unsigned int n;
3415
3416 for (n = 0; n < i.operands; n++)
3417 {
3418 if (i.types[n] & Disp)
3419 {
3420 if (i.op[n].disps->X_op == O_constant)
3421 {
3422 int size;
3423 offsetT val;
3424
3425 size = 4;
3426 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3427 {
3428 size = 2;
3429 if (i.types[n] & Disp8)
3430 size = 1;
3431 if (i.types[n] & Disp64)
3432 size = 8;
3433 }
3434 val = offset_in_range (i.op[n].disps->X_add_number,
3435 size);
3436 p = frag_more (size);
3437 md_number_to_chars (p, val, size);
3438 }
3439 else
3440 {
3441 enum bfd_reloc_code_real reloc_type;
3442 int size = 4;
3443 int sign = 0;
3444 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3445
3446 /* The PC relative address is computed relative
3447 to the instruction boundary, so in case immediate
3448 fields follows, we need to adjust the value. */
3449 if (pcrel && i.imm_operands)
3450 {
3451 int imm_size = 4;
3452 unsigned int n1;
3453
3454 for (n1 = 0; n1 < i.operands; n1++)
3455 if (i.types[n1] & Imm)
3456 {
3457 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
3458 {
3459 imm_size = 2;
3460 if (i.types[n1] & (Imm8 | Imm8S))
3461 imm_size = 1;
3462 if (i.types[n1] & Imm64)
3463 imm_size = 8;
3464 }
3465 break;
3466 }
3467 /* We should find the immediate. */
3468 if (n1 == i.operands)
3469 abort ();
3470 i.op[n].disps->X_add_number -= imm_size;
3471 }
3472
3473 if (i.types[n] & Disp32S)
3474 sign = 1;
3475
3476 if (i.types[n] & (Disp16 | Disp64))
3477 {
3478 size = 2;
3479 if (i.types[n] & Disp64)
3480 size = 8;
3481 }
3482
3483 p = frag_more (size);
3484 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
3485 if (reloc_type == BFD_RELOC_32
3486 && GOT_symbol
3487 && GOT_symbol == i.op[n].disps->X_add_symbol
3488 && (i.op[n].disps->X_op == O_symbol
3489 || (i.op[n].disps->X_op == O_add
3490 && ((symbol_get_value_expression
3491 (i.op[n].disps->X_op_symbol)->X_op)
3492 == O_subtract))))
3493 {
3494 offsetT add;
3495
3496 if (insn_start_frag == frag_now)
3497 add = (p - frag_now->fr_literal) - insn_start_off;
3498 else
3499 {
3500 fragS *fr;
3501
3502 add = insn_start_frag->fr_fix - insn_start_off;
3503 for (fr = insn_start_frag->fr_next;
3504 fr && fr != frag_now; fr = fr->fr_next)
3505 add += fr->fr_fix;
3506 add += p - frag_now->fr_literal;
3507 }
3508
3509 /* We don't support dynamic linking on x86-64 yet. */
3510 if (flag_code == CODE_64BIT)
3511 abort ();
3512 reloc_type = BFD_RELOC_386_GOTPC;
3513 i.op[n].disps->X_add_number += add;
3514 }
3515 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3516 i.op[n].disps, pcrel, reloc_type);
3517 }
3518 }
3519 }
3520 }
3521
3522 static void
3523 output_imm (insn_start_frag, insn_start_off)
3524 fragS *insn_start_frag;
3525 offsetT insn_start_off;
3526 {
3527 char *p;
3528 unsigned int n;
3529
3530 for (n = 0; n < i.operands; n++)
3531 {
3532 if (i.types[n] & Imm)
3533 {
3534 if (i.op[n].imms->X_op == O_constant)
3535 {
3536 int size;
3537 offsetT val;
3538
3539 size = 4;
3540 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3541 {
3542 size = 2;
3543 if (i.types[n] & (Imm8 | Imm8S))
3544 size = 1;
3545 else if (i.types[n] & Imm64)
3546 size = 8;
3547 }
3548 val = offset_in_range (i.op[n].imms->X_add_number,
3549 size);
3550 p = frag_more (size);
3551 md_number_to_chars (p, val, size);
3552 }
3553 else
3554 {
3555 /* Not absolute_section.
3556 Need a 32-bit fixup (don't support 8bit
3557 non-absolute imms). Try to support other
3558 sizes ... */
3559 enum bfd_reloc_code_real reloc_type;
3560 int size = 4;
3561 int sign = 0;
3562
3563 if ((i.types[n] & (Imm32S))
3564 && (i.suffix == QWORD_MNEM_SUFFIX
3565 || (!i.suffix && (i.tm.opcode_modifier & No_lSuf))))
3566 sign = 1;
3567 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3568 {
3569 size = 2;
3570 if (i.types[n] & (Imm8 | Imm8S))
3571 size = 1;
3572 if (i.types[n] & Imm64)
3573 size = 8;
3574 }
3575
3576 p = frag_more (size);
3577 reloc_type = reloc (size, 0, sign, i.reloc[n]);
3578
3579 /* This is tough to explain. We end up with this one if we
3580 * have operands that look like
3581 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3582 * obtain the absolute address of the GOT, and it is strongly
3583 * preferable from a performance point of view to avoid using
3584 * a runtime relocation for this. The actual sequence of
3585 * instructions often look something like:
3586 *
3587 * call .L66
3588 * .L66:
3589 * popl %ebx
3590 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3591 *
3592 * The call and pop essentially return the absolute address
3593 * of the label .L66 and store it in %ebx. The linker itself
3594 * will ultimately change the first operand of the addl so
3595 * that %ebx points to the GOT, but to keep things simple, the
3596 * .o file must have this operand set so that it generates not
3597 * the absolute address of .L66, but the absolute address of
3598 * itself. This allows the linker itself simply treat a GOTPC
3599 * relocation as asking for a pcrel offset to the GOT to be
3600 * added in, and the addend of the relocation is stored in the
3601 * operand field for the instruction itself.
3602 *
3603 * Our job here is to fix the operand so that it would add
3604 * the correct offset so that %ebx would point to itself. The
3605 * thing that is tricky is that .-.L66 will point to the
3606 * beginning of the instruction, so we need to further modify
3607 * the operand so that it will point to itself. There are
3608 * other cases where you have something like:
3609 *
3610 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3611 *
3612 * and here no correction would be required. Internally in
3613 * the assembler we treat operands of this form as not being
3614 * pcrel since the '.' is explicitly mentioned, and I wonder
3615 * whether it would simplify matters to do it this way. Who
3616 * knows. In earlier versions of the PIC patches, the
3617 * pcrel_adjust field was used to store the correction, but
3618 * since the expression is not pcrel, I felt it would be
3619 * confusing to do it this way. */
3620
3621 if (reloc_type == BFD_RELOC_32
3622 && GOT_symbol
3623 && GOT_symbol == i.op[n].imms->X_add_symbol
3624 && (i.op[n].imms->X_op == O_symbol
3625 || (i.op[n].imms->X_op == O_add
3626 && ((symbol_get_value_expression
3627 (i.op[n].imms->X_op_symbol)->X_op)
3628 == O_subtract))))
3629 {
3630 offsetT add;
3631
3632 if (insn_start_frag == frag_now)
3633 add = (p - frag_now->fr_literal) - insn_start_off;
3634 else
3635 {
3636 fragS *fr;
3637
3638 add = insn_start_frag->fr_fix - insn_start_off;
3639 for (fr = insn_start_frag->fr_next;
3640 fr && fr != frag_now; fr = fr->fr_next)
3641 add += fr->fr_fix;
3642 add += p - frag_now->fr_literal;
3643 }
3644
3645 /* We don't support dynamic linking on x86-64 yet. */
3646 if (flag_code == CODE_64BIT)
3647 abort ();
3648 reloc_type = BFD_RELOC_386_GOTPC;
3649 i.op[n].imms->X_add_number += add;
3650 }
3651 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3652 i.op[n].imms, 0, reloc_type);
3653 }
3654 }
3655 }
3656 }
3657 \f
3658 #ifndef LEX_AT
3659 static char *lex_got PARAMS ((enum bfd_reloc_code_real *, int *));
3660
3661 /* Parse operands of the form
3662 <symbol>@GOTOFF+<nnn>
3663 and similar .plt or .got references.
3664
3665 If we find one, set up the correct relocation in RELOC and copy the
3666 input string, minus the `@GOTOFF' into a malloc'd buffer for
3667 parsing by the calling routine. Return this buffer, and if ADJUST
3668 is non-null set it to the length of the string we removed from the
3669 input line. Otherwise return NULL. */
3670 static char *
3671 lex_got (reloc, adjust)
3672 enum bfd_reloc_code_real *reloc;
3673 int *adjust;
3674 {
3675 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3676 static const struct {
3677 const char *str;
3678 const enum bfd_reloc_code_real rel[NUM_FLAG_CODE];
3679 } gotrel[] = {
3680 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3681 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3682 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
3683 { "TLSGD", { BFD_RELOC_386_TLS_GD, 0, BFD_RELOC_X86_64_TLSGD } },
3684 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0, 0 } },
3685 { "TLSLD", { 0, 0, BFD_RELOC_X86_64_TLSLD } },
3686 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, 0, BFD_RELOC_X86_64_GOTTPOFF } },
3687 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, 0, BFD_RELOC_X86_64_TPOFF32 } },
3688 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0, 0 } },
3689 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, 0, BFD_RELOC_X86_64_DTPOFF32 } },
3690 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0, 0 } },
3691 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0, 0 } },
3692 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
3693 };
3694 char *cp;
3695 unsigned int j;
3696
3697 for (cp = input_line_pointer; *cp != '@'; cp++)
3698 if (is_end_of_line[(unsigned char) *cp])
3699 return NULL;
3700
3701 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3702 {
3703 int len;
3704
3705 len = strlen (gotrel[j].str);
3706 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
3707 {
3708 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3709 {
3710 int first, second;
3711 char *tmpbuf, *past_reloc;
3712
3713 *reloc = gotrel[j].rel[(unsigned int) flag_code];
3714 if (adjust)
3715 *adjust = len;
3716
3717 if (GOT_symbol == NULL)
3718 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3719
3720 /* Replace the relocation token with ' ', so that
3721 errors like foo@GOTOFF1 will be detected. */
3722
3723 /* The length of the first part of our input line. */
3724 first = cp - input_line_pointer;
3725
3726 /* The second part goes from after the reloc token until
3727 (and including) an end_of_line char. Don't use strlen
3728 here as the end_of_line char may not be a NUL. */
3729 past_reloc = cp + 1 + len;
3730 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3731 ;
3732 second = cp - past_reloc;
3733
3734 /* Allocate and copy string. The trailing NUL shouldn't
3735 be necessary, but be safe. */
3736 tmpbuf = xmalloc (first + second + 2);
3737 memcpy (tmpbuf, input_line_pointer, first);
3738 tmpbuf[first] = ' ';
3739 memcpy (tmpbuf + first + 1, past_reloc, second);
3740 tmpbuf[first + second + 1] = '\0';
3741 return tmpbuf;
3742 }
3743
3744 as_bad (_("@%s reloc is not supported in %s bit mode"),
3745 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3746 return NULL;
3747 }
3748 }
3749
3750 /* Might be a symbol version string. Don't as_bad here. */
3751 return NULL;
3752 }
3753
3754 /* x86_cons_fix_new is called via the expression parsing code when a
3755 reloc is needed. We use this hook to get the correct .got reloc. */
3756 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
3757
3758 void
3759 x86_cons_fix_new (frag, off, len, exp)
3760 fragS *frag;
3761 unsigned int off;
3762 unsigned int len;
3763 expressionS *exp;
3764 {
3765 enum bfd_reloc_code_real r = reloc (len, 0, 0, got_reloc);
3766 got_reloc = NO_RELOC;
3767 fix_new_exp (frag, off, len, exp, 0, r);
3768 }
3769
3770 void
3771 x86_cons (exp, size)
3772 expressionS *exp;
3773 int size;
3774 {
3775 if (size == 4)
3776 {
3777 /* Handle @GOTOFF and the like in an expression. */
3778 char *save;
3779 char *gotfree_input_line;
3780 int adjust;
3781
3782 save = input_line_pointer;
3783 gotfree_input_line = lex_got (&got_reloc, &adjust);
3784 if (gotfree_input_line)
3785 input_line_pointer = gotfree_input_line;
3786
3787 expression (exp);
3788
3789 if (gotfree_input_line)
3790 {
3791 /* expression () has merrily parsed up to the end of line,
3792 or a comma - in the wrong buffer. Transfer how far
3793 input_line_pointer has moved to the right buffer. */
3794 input_line_pointer = (save
3795 + (input_line_pointer - gotfree_input_line)
3796 + adjust);
3797 free (gotfree_input_line);
3798 }
3799 }
3800 else
3801 expression (exp);
3802 }
3803 #endif
3804
3805 #ifdef TE_PE
3806
3807 void
3808 x86_pe_cons_fix_new (frag, off, len, exp)
3809 fragS *frag;
3810 unsigned int off;
3811 unsigned int len;
3812 expressionS *exp;
3813 {
3814 enum bfd_reloc_code_real r = reloc (len, 0, 0, NO_RELOC);
3815
3816 if (exp->X_op == O_secrel)
3817 {
3818 exp->X_op = O_symbol;
3819 r = BFD_RELOC_32_SECREL;
3820 }
3821
3822 fix_new_exp (frag, off, len, exp, 0, r);
3823 }
3824
3825 static void
3826 pe_directive_secrel (dummy)
3827 int dummy ATTRIBUTE_UNUSED;
3828 {
3829 expressionS exp;
3830
3831 do
3832 {
3833 expression (&exp);
3834 if (exp.X_op == O_symbol)
3835 exp.X_op = O_secrel;
3836
3837 emit_expr (&exp, 4);
3838 }
3839 while (*input_line_pointer++ == ',');
3840
3841 input_line_pointer--;
3842 demand_empty_rest_of_line ();
3843 }
3844
3845 #endif
3846
3847 static int i386_immediate PARAMS ((char *));
3848
3849 static int
3850 i386_immediate (imm_start)
3851 char *imm_start;
3852 {
3853 char *save_input_line_pointer;
3854 #ifndef LEX_AT
3855 char *gotfree_input_line;
3856 #endif
3857 segT exp_seg = 0;
3858 expressionS *exp;
3859
3860 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3861 {
3862 as_bad (_("only 1 or 2 immediate operands are allowed"));
3863 return 0;
3864 }
3865
3866 exp = &im_expressions[i.imm_operands++];
3867 i.op[this_operand].imms = exp;
3868
3869 if (is_space_char (*imm_start))
3870 ++imm_start;
3871
3872 save_input_line_pointer = input_line_pointer;
3873 input_line_pointer = imm_start;
3874
3875 #ifndef LEX_AT
3876 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3877 if (gotfree_input_line)
3878 input_line_pointer = gotfree_input_line;
3879 #endif
3880
3881 exp_seg = expression (exp);
3882
3883 SKIP_WHITESPACE ();
3884 if (*input_line_pointer)
3885 as_bad (_("junk `%s' after expression"), input_line_pointer);
3886
3887 input_line_pointer = save_input_line_pointer;
3888 #ifndef LEX_AT
3889 if (gotfree_input_line)
3890 free (gotfree_input_line);
3891 #endif
3892
3893 if (exp->X_op == O_absent || exp->X_op == O_big)
3894 {
3895 /* Missing or bad expr becomes absolute 0. */
3896 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
3897 imm_start);
3898 exp->X_op = O_constant;
3899 exp->X_add_number = 0;
3900 exp->X_add_symbol = (symbolS *) 0;
3901 exp->X_op_symbol = (symbolS *) 0;
3902 }
3903 else if (exp->X_op == O_constant)
3904 {
3905 /* Size it properly later. */
3906 i.types[this_operand] |= Imm64;
3907 /* If BFD64, sign extend val. */
3908 if (!use_rela_relocations)
3909 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3910 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
3911 }
3912 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3913 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
3914 && exp_seg != absolute_section
3915 && exp_seg != text_section
3916 && exp_seg != data_section
3917 && exp_seg != bss_section
3918 && exp_seg != undefined_section
3919 && !bfd_is_com_section (exp_seg))
3920 {
3921 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3922 return 0;
3923 }
3924 #endif
3925 else
3926 {
3927 /* This is an address. The size of the address will be
3928 determined later, depending on destination register,
3929 suffix, or the default for the section. */
3930 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
3931 }
3932
3933 return 1;
3934 }
3935
3936 static char *i386_scale PARAMS ((char *));
3937
3938 static char *
3939 i386_scale (scale)
3940 char *scale;
3941 {
3942 offsetT val;
3943 char *save = input_line_pointer;
3944
3945 input_line_pointer = scale;
3946 val = get_absolute_expression ();
3947
3948 switch (val)
3949 {
3950 case 1:
3951 i.log2_scale_factor = 0;
3952 break;
3953 case 2:
3954 i.log2_scale_factor = 1;
3955 break;
3956 case 4:
3957 i.log2_scale_factor = 2;
3958 break;
3959 case 8:
3960 i.log2_scale_factor = 3;
3961 break;
3962 default:
3963 {
3964 char sep = *input_line_pointer;
3965
3966 *input_line_pointer = '\0';
3967 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
3968 scale);
3969 *input_line_pointer = sep;
3970 input_line_pointer = save;
3971 return NULL;
3972 }
3973 }
3974 if (i.log2_scale_factor != 0 && i.index_reg == 0)
3975 {
3976 as_warn (_("scale factor of %d without an index register"),
3977 1 << i.log2_scale_factor);
3978 #if SCALE1_WHEN_NO_INDEX
3979 i.log2_scale_factor = 0;
3980 #endif
3981 }
3982 scale = input_line_pointer;
3983 input_line_pointer = save;
3984 return scale;
3985 }
3986
3987 static int i386_displacement PARAMS ((char *, char *));
3988
3989 static int
3990 i386_displacement (disp_start, disp_end)
3991 char *disp_start;
3992 char *disp_end;
3993 {
3994 expressionS *exp;
3995 segT exp_seg = 0;
3996 char *save_input_line_pointer;
3997 #ifndef LEX_AT
3998 char *gotfree_input_line;
3999 #endif
4000 int bigdisp = Disp32;
4001
4002 if (flag_code == CODE_64BIT)
4003 {
4004 if (i.prefix[ADDR_PREFIX] == 0)
4005 bigdisp = Disp64;
4006 }
4007 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4008 bigdisp = Disp16;
4009 i.types[this_operand] |= bigdisp;
4010
4011 exp = &disp_expressions[i.disp_operands];
4012 i.op[this_operand].disps = exp;
4013 i.disp_operands++;
4014 save_input_line_pointer = input_line_pointer;
4015 input_line_pointer = disp_start;
4016 END_STRING_AND_SAVE (disp_end);
4017
4018 #ifndef GCC_ASM_O_HACK
4019 #define GCC_ASM_O_HACK 0
4020 #endif
4021 #if GCC_ASM_O_HACK
4022 END_STRING_AND_SAVE (disp_end + 1);
4023 if ((i.types[this_operand] & BaseIndex) != 0
4024 && displacement_string_end[-1] == '+')
4025 {
4026 /* This hack is to avoid a warning when using the "o"
4027 constraint within gcc asm statements.
4028 For instance:
4029
4030 #define _set_tssldt_desc(n,addr,limit,type) \
4031 __asm__ __volatile__ ( \
4032 "movw %w2,%0\n\t" \
4033 "movw %w1,2+%0\n\t" \
4034 "rorl $16,%1\n\t" \
4035 "movb %b1,4+%0\n\t" \
4036 "movb %4,5+%0\n\t" \
4037 "movb $0,6+%0\n\t" \
4038 "movb %h1,7+%0\n\t" \
4039 "rorl $16,%1" \
4040 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
4041
4042 This works great except that the output assembler ends
4043 up looking a bit weird if it turns out that there is
4044 no offset. You end up producing code that looks like:
4045
4046 #APP
4047 movw $235,(%eax)
4048 movw %dx,2+(%eax)
4049 rorl $16,%edx
4050 movb %dl,4+(%eax)
4051 movb $137,5+(%eax)
4052 movb $0,6+(%eax)
4053 movb %dh,7+(%eax)
4054 rorl $16,%edx
4055 #NO_APP
4056
4057 So here we provide the missing zero. */
4058
4059 *displacement_string_end = '0';
4060 }
4061 #endif
4062 #ifndef LEX_AT
4063 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
4064 if (gotfree_input_line)
4065 input_line_pointer = gotfree_input_line;
4066 #endif
4067
4068 exp_seg = expression (exp);
4069
4070 SKIP_WHITESPACE ();
4071 if (*input_line_pointer)
4072 as_bad (_("junk `%s' after expression"), input_line_pointer);
4073 #if GCC_ASM_O_HACK
4074 RESTORE_END_STRING (disp_end + 1);
4075 #endif
4076 RESTORE_END_STRING (disp_end);
4077 input_line_pointer = save_input_line_pointer;
4078 #ifndef LEX_AT
4079 if (gotfree_input_line)
4080 free (gotfree_input_line);
4081 #endif
4082
4083 /* We do this to make sure that the section symbol is in
4084 the symbol table. We will ultimately change the relocation
4085 to be relative to the beginning of the section. */
4086 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
4087 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
4088 {
4089 if (exp->X_op != O_symbol)
4090 {
4091 as_bad (_("bad expression used with @%s"),
4092 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4093 ? "GOTPCREL"
4094 : "GOTOFF"));
4095 return 0;
4096 }
4097
4098 if (S_IS_LOCAL (exp->X_add_symbol)
4099 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
4100 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
4101 exp->X_op = O_subtract;
4102 exp->X_op_symbol = GOT_symbol;
4103 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
4104 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
4105 else
4106 i.reloc[this_operand] = BFD_RELOC_32;
4107 }
4108
4109 if (exp->X_op == O_absent || exp->X_op == O_big)
4110 {
4111 /* Missing or bad expr becomes absolute 0. */
4112 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
4113 disp_start);
4114 exp->X_op = O_constant;
4115 exp->X_add_number = 0;
4116 exp->X_add_symbol = (symbolS *) 0;
4117 exp->X_op_symbol = (symbolS *) 0;
4118 }
4119
4120 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4121 if (exp->X_op != O_constant
4122 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4123 && exp_seg != absolute_section
4124 && exp_seg != text_section
4125 && exp_seg != data_section
4126 && exp_seg != bss_section
4127 && exp_seg != undefined_section
4128 && !bfd_is_com_section (exp_seg))
4129 {
4130 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4131 return 0;
4132 }
4133 #endif
4134 else if (flag_code == CODE_64BIT)
4135 i.types[this_operand] |= Disp32S | Disp32;
4136 return 1;
4137 }
4138
4139 static int i386_index_check PARAMS ((const char *));
4140
4141 /* Make sure the memory operand we've been dealt is valid.
4142 Return 1 on success, 0 on a failure. */
4143
4144 static int
4145 i386_index_check (operand_string)
4146 const char *operand_string;
4147 {
4148 int ok;
4149 #if INFER_ADDR_PREFIX
4150 int fudged = 0;
4151
4152 tryprefix:
4153 #endif
4154 ok = 1;
4155 if (flag_code == CODE_64BIT)
4156 {
4157 unsigned RegXX = (i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32);
4158
4159 if ((i.base_reg
4160 && ((i.base_reg->reg_type & RegXX) == 0)
4161 && (i.base_reg->reg_type != BaseIndex
4162 || i.index_reg))
4163 || (i.index_reg
4164 && ((i.index_reg->reg_type & (RegXX | BaseIndex))
4165 != (RegXX | BaseIndex))))
4166 ok = 0;
4167 }
4168 else
4169 {
4170 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4171 {
4172 /* 16bit checks. */
4173 if ((i.base_reg
4174 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4175 != (Reg16 | BaseIndex)))
4176 || (i.index_reg
4177 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4178 != (Reg16 | BaseIndex))
4179 || !(i.base_reg
4180 && i.base_reg->reg_num < 6
4181 && i.index_reg->reg_num >= 6
4182 && i.log2_scale_factor == 0))))
4183 ok = 0;
4184 }
4185 else
4186 {
4187 /* 32bit checks. */
4188 if ((i.base_reg
4189 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4190 || (i.index_reg
4191 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4192 != (Reg32 | BaseIndex))))
4193 ok = 0;
4194 }
4195 }
4196 if (!ok)
4197 {
4198 #if INFER_ADDR_PREFIX
4199 if (i.prefix[ADDR_PREFIX] == 0)
4200 {
4201 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4202 i.prefixes += 1;
4203 /* Change the size of any displacement too. At most one of
4204 Disp16 or Disp32 is set.
4205 FIXME. There doesn't seem to be any real need for separate
4206 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
4207 Removing them would probably clean up the code quite a lot. */
4208 if (flag_code != CODE_64BIT && (i.types[this_operand] & (Disp16 | Disp32)))
4209 i.types[this_operand] ^= (Disp16 | Disp32);
4210 fudged = 1;
4211 goto tryprefix;
4212 }
4213 if (fudged)
4214 as_bad (_("`%s' is not a valid base/index expression"),
4215 operand_string);
4216 else
4217 #endif
4218 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4219 operand_string,
4220 flag_code_names[flag_code]);
4221 }
4222 return ok;
4223 }
4224
4225 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
4226 on error. */
4227
4228 static int
4229 i386_operand (operand_string)
4230 char *operand_string;
4231 {
4232 const reg_entry *r;
4233 char *end_op;
4234 char *op_string = operand_string;
4235
4236 if (is_space_char (*op_string))
4237 ++op_string;
4238
4239 /* We check for an absolute prefix (differentiating,
4240 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
4241 if (*op_string == ABSOLUTE_PREFIX)
4242 {
4243 ++op_string;
4244 if (is_space_char (*op_string))
4245 ++op_string;
4246 i.types[this_operand] |= JumpAbsolute;
4247 }
4248
4249 /* Check if operand is a register. */
4250 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
4251 && (r = parse_register (op_string, &end_op)) != NULL)
4252 {
4253 /* Check for a segment override by searching for ':' after a
4254 segment register. */
4255 op_string = end_op;
4256 if (is_space_char (*op_string))
4257 ++op_string;
4258 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4259 {
4260 switch (r->reg_num)
4261 {
4262 case 0:
4263 i.seg[i.mem_operands] = &es;
4264 break;
4265 case 1:
4266 i.seg[i.mem_operands] = &cs;
4267 break;
4268 case 2:
4269 i.seg[i.mem_operands] = &ss;
4270 break;
4271 case 3:
4272 i.seg[i.mem_operands] = &ds;
4273 break;
4274 case 4:
4275 i.seg[i.mem_operands] = &fs;
4276 break;
4277 case 5:
4278 i.seg[i.mem_operands] = &gs;
4279 break;
4280 }
4281
4282 /* Skip the ':' and whitespace. */
4283 ++op_string;
4284 if (is_space_char (*op_string))
4285 ++op_string;
4286
4287 if (!is_digit_char (*op_string)
4288 && !is_identifier_char (*op_string)
4289 && *op_string != '('
4290 && *op_string != ABSOLUTE_PREFIX)
4291 {
4292 as_bad (_("bad memory operand `%s'"), op_string);
4293 return 0;
4294 }
4295 /* Handle case of %es:*foo. */
4296 if (*op_string == ABSOLUTE_PREFIX)
4297 {
4298 ++op_string;
4299 if (is_space_char (*op_string))
4300 ++op_string;
4301 i.types[this_operand] |= JumpAbsolute;
4302 }
4303 goto do_memory_reference;
4304 }
4305 if (*op_string)
4306 {
4307 as_bad (_("junk `%s' after register"), op_string);
4308 return 0;
4309 }
4310 i.types[this_operand] |= r->reg_type & ~BaseIndex;
4311 i.op[this_operand].regs = r;
4312 i.reg_operands++;
4313 }
4314 else if (*op_string == REGISTER_PREFIX)
4315 {
4316 as_bad (_("bad register name `%s'"), op_string);
4317 return 0;
4318 }
4319 else if (*op_string == IMMEDIATE_PREFIX)
4320 {
4321 ++op_string;
4322 if (i.types[this_operand] & JumpAbsolute)
4323 {
4324 as_bad (_("immediate operand illegal with absolute jump"));
4325 return 0;
4326 }
4327 if (!i386_immediate (op_string))
4328 return 0;
4329 }
4330 else if (is_digit_char (*op_string)
4331 || is_identifier_char (*op_string)
4332 || *op_string == '(')
4333 {
4334 /* This is a memory reference of some sort. */
4335 char *base_string;
4336
4337 /* Start and end of displacement string expression (if found). */
4338 char *displacement_string_start;
4339 char *displacement_string_end;
4340
4341 do_memory_reference:
4342 if ((i.mem_operands == 1
4343 && (current_templates->start->opcode_modifier & IsString) == 0)
4344 || i.mem_operands == 2)
4345 {
4346 as_bad (_("too many memory references for `%s'"),
4347 current_templates->start->name);
4348 return 0;
4349 }
4350
4351 /* Check for base index form. We detect the base index form by
4352 looking for an ')' at the end of the operand, searching
4353 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4354 after the '('. */
4355 base_string = op_string + strlen (op_string);
4356
4357 --base_string;
4358 if (is_space_char (*base_string))
4359 --base_string;
4360
4361 /* If we only have a displacement, set-up for it to be parsed later. */
4362 displacement_string_start = op_string;
4363 displacement_string_end = base_string + 1;
4364
4365 if (*base_string == ')')
4366 {
4367 char *temp_string;
4368 unsigned int parens_balanced = 1;
4369 /* We've already checked that the number of left & right ()'s are
4370 equal, so this loop will not be infinite. */
4371 do
4372 {
4373 base_string--;
4374 if (*base_string == ')')
4375 parens_balanced++;
4376 if (*base_string == '(')
4377 parens_balanced--;
4378 }
4379 while (parens_balanced);
4380
4381 temp_string = base_string;
4382
4383 /* Skip past '(' and whitespace. */
4384 ++base_string;
4385 if (is_space_char (*base_string))
4386 ++base_string;
4387
4388 if (*base_string == ','
4389 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4390 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
4391 {
4392 displacement_string_end = temp_string;
4393
4394 i.types[this_operand] |= BaseIndex;
4395
4396 if (i.base_reg)
4397 {
4398 base_string = end_op;
4399 if (is_space_char (*base_string))
4400 ++base_string;
4401 }
4402
4403 /* There may be an index reg or scale factor here. */
4404 if (*base_string == ',')
4405 {
4406 ++base_string;
4407 if (is_space_char (*base_string))
4408 ++base_string;
4409
4410 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4411 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
4412 {
4413 base_string = end_op;
4414 if (is_space_char (*base_string))
4415 ++base_string;
4416 if (*base_string == ',')
4417 {
4418 ++base_string;
4419 if (is_space_char (*base_string))
4420 ++base_string;
4421 }
4422 else if (*base_string != ')')
4423 {
4424 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4425 operand_string);
4426 return 0;
4427 }
4428 }
4429 else if (*base_string == REGISTER_PREFIX)
4430 {
4431 as_bad (_("bad register name `%s'"), base_string);
4432 return 0;
4433 }
4434
4435 /* Check for scale factor. */
4436 if (*base_string != ')')
4437 {
4438 char *end_scale = i386_scale (base_string);
4439
4440 if (!end_scale)
4441 return 0;
4442
4443 base_string = end_scale;
4444 if (is_space_char (*base_string))
4445 ++base_string;
4446 if (*base_string != ')')
4447 {
4448 as_bad (_("expecting `)' after scale factor in `%s'"),
4449 operand_string);
4450 return 0;
4451 }
4452 }
4453 else if (!i.index_reg)
4454 {
4455 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4456 *base_string);
4457 return 0;
4458 }
4459 }
4460 else if (*base_string != ')')
4461 {
4462 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4463 operand_string);
4464 return 0;
4465 }
4466 }
4467 else if (*base_string == REGISTER_PREFIX)
4468 {
4469 as_bad (_("bad register name `%s'"), base_string);
4470 return 0;
4471 }
4472 }
4473
4474 /* If there's an expression beginning the operand, parse it,
4475 assuming displacement_string_start and
4476 displacement_string_end are meaningful. */
4477 if (displacement_string_start != displacement_string_end)
4478 {
4479 if (!i386_displacement (displacement_string_start,
4480 displacement_string_end))
4481 return 0;
4482 }
4483
4484 /* Special case for (%dx) while doing input/output op. */
4485 if (i.base_reg
4486 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
4487 && i.index_reg == 0
4488 && i.log2_scale_factor == 0
4489 && i.seg[i.mem_operands] == 0
4490 && (i.types[this_operand] & Disp) == 0)
4491 {
4492 i.types[this_operand] = InOutPortReg;
4493 return 1;
4494 }
4495
4496 if (i386_index_check (operand_string) == 0)
4497 return 0;
4498 i.mem_operands++;
4499 }
4500 else
4501 {
4502 /* It's not a memory operand; argh! */
4503 as_bad (_("invalid char %s beginning operand %d `%s'"),
4504 output_invalid (*op_string),
4505 this_operand + 1,
4506 op_string);
4507 return 0;
4508 }
4509 return 1; /* Normal return. */
4510 }
4511 \f
4512 /* md_estimate_size_before_relax()
4513
4514 Called just before relax() for rs_machine_dependent frags. The x86
4515 assembler uses these frags to handle variable size jump
4516 instructions.
4517
4518 Any symbol that is now undefined will not become defined.
4519 Return the correct fr_subtype in the frag.
4520 Return the initial "guess for variable size of frag" to caller.
4521 The guess is actually the growth beyond the fixed part. Whatever
4522 we do to grow the fixed or variable part contributes to our
4523 returned value. */
4524
4525 int
4526 md_estimate_size_before_relax (fragP, segment)
4527 fragS *fragP;
4528 segT segment;
4529 {
4530 /* We've already got fragP->fr_subtype right; all we have to do is
4531 check for un-relaxable symbols. On an ELF system, we can't relax
4532 an externally visible symbol, because it may be overridden by a
4533 shared library. */
4534 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
4535 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4536 || (OUTPUT_FLAVOR == bfd_target_elf_flavour
4537 && (S_IS_EXTERNAL (fragP->fr_symbol)
4538 || S_IS_WEAK (fragP->fr_symbol)))
4539 #endif
4540 )
4541 {
4542 /* Symbol is undefined in this segment, or we need to keep a
4543 reloc so that weak symbols can be overridden. */
4544 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
4545 enum bfd_reloc_code_real reloc_type;
4546 unsigned char *opcode;
4547 int old_fr_fix;
4548
4549 if (fragP->fr_var != NO_RELOC)
4550 reloc_type = fragP->fr_var;
4551 else if (size == 2)
4552 reloc_type = BFD_RELOC_16_PCREL;
4553 else
4554 reloc_type = BFD_RELOC_32_PCREL;
4555
4556 old_fr_fix = fragP->fr_fix;
4557 opcode = (unsigned char *) fragP->fr_opcode;
4558
4559 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
4560 {
4561 case UNCOND_JUMP:
4562 /* Make jmp (0xeb) a (d)word displacement jump. */
4563 opcode[0] = 0xe9;
4564 fragP->fr_fix += size;
4565 fix_new (fragP, old_fr_fix, size,
4566 fragP->fr_symbol,
4567 fragP->fr_offset, 1,
4568 reloc_type);
4569 break;
4570
4571 case COND_JUMP86:
4572 if (size == 2
4573 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
4574 {
4575 /* Negate the condition, and branch past an
4576 unconditional jump. */
4577 opcode[0] ^= 1;
4578 opcode[1] = 3;
4579 /* Insert an unconditional jump. */
4580 opcode[2] = 0xe9;
4581 /* We added two extra opcode bytes, and have a two byte
4582 offset. */
4583 fragP->fr_fix += 2 + 2;
4584 fix_new (fragP, old_fr_fix + 2, 2,
4585 fragP->fr_symbol,
4586 fragP->fr_offset, 1,
4587 reloc_type);
4588 break;
4589 }
4590 /* Fall through. */
4591
4592 case COND_JUMP:
4593 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
4594 {
4595 fixS *fixP;
4596
4597 fragP->fr_fix += 1;
4598 fixP = fix_new (fragP, old_fr_fix, 1,
4599 fragP->fr_symbol,
4600 fragP->fr_offset, 1,
4601 BFD_RELOC_8_PCREL);
4602 fixP->fx_signed = 1;
4603 break;
4604 }
4605
4606 /* This changes the byte-displacement jump 0x7N
4607 to the (d)word-displacement jump 0x0f,0x8N. */
4608 opcode[1] = opcode[0] + 0x10;
4609 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4610 /* We've added an opcode byte. */
4611 fragP->fr_fix += 1 + size;
4612 fix_new (fragP, old_fr_fix + 1, size,
4613 fragP->fr_symbol,
4614 fragP->fr_offset, 1,
4615 reloc_type);
4616 break;
4617
4618 default:
4619 BAD_CASE (fragP->fr_subtype);
4620 break;
4621 }
4622 frag_wane (fragP);
4623 return fragP->fr_fix - old_fr_fix;
4624 }
4625
4626 /* Guess size depending on current relax state. Initially the relax
4627 state will correspond to a short jump and we return 1, because
4628 the variable part of the frag (the branch offset) is one byte
4629 long. However, we can relax a section more than once and in that
4630 case we must either set fr_subtype back to the unrelaxed state,
4631 or return the value for the appropriate branch. */
4632 return md_relax_table[fragP->fr_subtype].rlx_length;
4633 }
4634
4635 /* Called after relax() is finished.
4636
4637 In: Address of frag.
4638 fr_type == rs_machine_dependent.
4639 fr_subtype is what the address relaxed to.
4640
4641 Out: Any fixSs and constants are set up.
4642 Caller will turn frag into a ".space 0". */
4643
4644 void
4645 md_convert_frag (abfd, sec, fragP)
4646 bfd *abfd ATTRIBUTE_UNUSED;
4647 segT sec ATTRIBUTE_UNUSED;
4648 fragS *fragP;
4649 {
4650 unsigned char *opcode;
4651 unsigned char *where_to_put_displacement = NULL;
4652 offsetT target_address;
4653 offsetT opcode_address;
4654 unsigned int extension = 0;
4655 offsetT displacement_from_opcode_start;
4656
4657 opcode = (unsigned char *) fragP->fr_opcode;
4658
4659 /* Address we want to reach in file space. */
4660 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
4661
4662 /* Address opcode resides at in file space. */
4663 opcode_address = fragP->fr_address + fragP->fr_fix;
4664
4665 /* Displacement from opcode start to fill into instruction. */
4666 displacement_from_opcode_start = target_address - opcode_address;
4667
4668 if ((fragP->fr_subtype & BIG) == 0)
4669 {
4670 /* Don't have to change opcode. */
4671 extension = 1; /* 1 opcode + 1 displacement */
4672 where_to_put_displacement = &opcode[1];
4673 }
4674 else
4675 {
4676 if (no_cond_jump_promotion
4677 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4678 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
4679
4680 switch (fragP->fr_subtype)
4681 {
4682 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4683 extension = 4; /* 1 opcode + 4 displacement */
4684 opcode[0] = 0xe9;
4685 where_to_put_displacement = &opcode[1];
4686 break;
4687
4688 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4689 extension = 2; /* 1 opcode + 2 displacement */
4690 opcode[0] = 0xe9;
4691 where_to_put_displacement = &opcode[1];
4692 break;
4693
4694 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4695 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4696 extension = 5; /* 2 opcode + 4 displacement */
4697 opcode[1] = opcode[0] + 0x10;
4698 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4699 where_to_put_displacement = &opcode[2];
4700 break;
4701
4702 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4703 extension = 3; /* 2 opcode + 2 displacement */
4704 opcode[1] = opcode[0] + 0x10;
4705 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4706 where_to_put_displacement = &opcode[2];
4707 break;
4708
4709 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4710 extension = 4;
4711 opcode[0] ^= 1;
4712 opcode[1] = 3;
4713 opcode[2] = 0xe9;
4714 where_to_put_displacement = &opcode[3];
4715 break;
4716
4717 default:
4718 BAD_CASE (fragP->fr_subtype);
4719 break;
4720 }
4721 }
4722
4723 /* Now put displacement after opcode. */
4724 md_number_to_chars ((char *) where_to_put_displacement,
4725 (valueT) (displacement_from_opcode_start - extension),
4726 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
4727 fragP->fr_fix += extension;
4728 }
4729 \f
4730 /* Size of byte displacement jmp. */
4731 int md_short_jump_size = 2;
4732
4733 /* Size of dword displacement jmp. */
4734 int md_long_jump_size = 5;
4735
4736 /* Size of relocation record. */
4737 const int md_reloc_size = 8;
4738
4739 void
4740 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4741 char *ptr;
4742 addressT from_addr, to_addr;
4743 fragS *frag ATTRIBUTE_UNUSED;
4744 symbolS *to_symbol ATTRIBUTE_UNUSED;
4745 {
4746 offsetT offset;
4747
4748 offset = to_addr - (from_addr + 2);
4749 /* Opcode for byte-disp jump. */
4750 md_number_to_chars (ptr, (valueT) 0xeb, 1);
4751 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4752 }
4753
4754 void
4755 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4756 char *ptr;
4757 addressT from_addr, to_addr;
4758 fragS *frag ATTRIBUTE_UNUSED;
4759 symbolS *to_symbol ATTRIBUTE_UNUSED;
4760 {
4761 offsetT offset;
4762
4763 offset = to_addr - (from_addr + 5);
4764 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4765 md_number_to_chars (ptr + 1, (valueT) offset, 4);
4766 }
4767 \f
4768 /* Apply a fixup (fixS) to segment data, once it has been determined
4769 by our caller that we have all the info we need to fix it up.
4770
4771 On the 386, immediates, displacements, and data pointers are all in
4772 the same (little-endian) format, so we don't need to care about which
4773 we are handling. */
4774
4775 void
4776 md_apply_fix3 (fixP, valP, seg)
4777 /* The fix we're to put in. */
4778 fixS *fixP;
4779 /* Pointer to the value of the bits. */
4780 valueT *valP;
4781 /* Segment fix is from. */
4782 segT seg ATTRIBUTE_UNUSED;
4783 {
4784 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4785 valueT value = *valP;
4786
4787 #if !defined (TE_Mach)
4788 if (fixP->fx_pcrel)
4789 {
4790 switch (fixP->fx_r_type)
4791 {
4792 default:
4793 break;
4794
4795 case BFD_RELOC_32:
4796 case BFD_RELOC_X86_64_32S:
4797 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4798 break;
4799 case BFD_RELOC_16:
4800 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4801 break;
4802 case BFD_RELOC_8:
4803 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4804 break;
4805 }
4806 }
4807
4808 if (fixP->fx_addsy != NULL
4809 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
4810 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4811 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4812 && !use_rela_relocations)
4813 {
4814 /* This is a hack. There should be a better way to handle this.
4815 This covers for the fact that bfd_install_relocation will
4816 subtract the current location (for partial_inplace, PC relative
4817 relocations); see more below. */
4818 #ifndef OBJ_AOUT
4819 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4820 #ifdef TE_PE
4821 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4822 #endif
4823 )
4824 value += fixP->fx_where + fixP->fx_frag->fr_address;
4825 #endif
4826 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4827 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
4828 {
4829 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
4830
4831 if ((sym_seg == seg
4832 || (symbol_section_p (fixP->fx_addsy)
4833 && sym_seg != absolute_section))
4834 && !generic_force_reloc (fixP))
4835 {
4836 /* Yes, we add the values in twice. This is because
4837 bfd_install_relocation subtracts them out again. I think
4838 bfd_install_relocation is broken, but I don't dare change
4839 it. FIXME. */
4840 value += fixP->fx_where + fixP->fx_frag->fr_address;
4841 }
4842 }
4843 #endif
4844 #if defined (OBJ_COFF) && defined (TE_PE)
4845 /* For some reason, the PE format does not store a
4846 section address offset for a PC relative symbol. */
4847 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
4848 #if defined(BFD_ASSEMBLER) || defined(S_IS_WEAK)
4849 || S_IS_WEAK (fixP->fx_addsy)
4850 #endif
4851 )
4852 value += md_pcrel_from (fixP);
4853 #endif
4854 }
4855
4856 /* Fix a few things - the dynamic linker expects certain values here,
4857 and we must not disappoint it. */
4858 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4859 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4860 && fixP->fx_addsy)
4861 switch (fixP->fx_r_type)
4862 {
4863 case BFD_RELOC_386_PLT32:
4864 case BFD_RELOC_X86_64_PLT32:
4865 /* Make the jump instruction point to the address of the operand. At
4866 runtime we merely add the offset to the actual PLT entry. */
4867 value = -4;
4868 break;
4869
4870 case BFD_RELOC_386_TLS_GD:
4871 case BFD_RELOC_386_TLS_LDM:
4872 case BFD_RELOC_386_TLS_IE_32:
4873 case BFD_RELOC_386_TLS_IE:
4874 case BFD_RELOC_386_TLS_GOTIE:
4875 case BFD_RELOC_X86_64_TLSGD:
4876 case BFD_RELOC_X86_64_TLSLD:
4877 case BFD_RELOC_X86_64_GOTTPOFF:
4878 value = 0; /* Fully resolved at runtime. No addend. */
4879 /* Fallthrough */
4880 case BFD_RELOC_386_TLS_LE:
4881 case BFD_RELOC_386_TLS_LDO_32:
4882 case BFD_RELOC_386_TLS_LE_32:
4883 case BFD_RELOC_X86_64_DTPOFF32:
4884 case BFD_RELOC_X86_64_TPOFF32:
4885 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4886 break;
4887
4888 case BFD_RELOC_386_GOT32:
4889 case BFD_RELOC_X86_64_GOT32:
4890 value = 0; /* Fully resolved at runtime. No addend. */
4891 break;
4892
4893 case BFD_RELOC_VTABLE_INHERIT:
4894 case BFD_RELOC_VTABLE_ENTRY:
4895 fixP->fx_done = 0;
4896 return;
4897
4898 default:
4899 break;
4900 }
4901 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
4902 *valP = value;
4903 #endif /* !defined (TE_Mach) */
4904
4905 /* Are we finished with this relocation now? */
4906 if (fixP->fx_addsy == NULL)
4907 fixP->fx_done = 1;
4908 else if (use_rela_relocations)
4909 {
4910 fixP->fx_no_overflow = 1;
4911 /* Remember value for tc_gen_reloc. */
4912 fixP->fx_addnumber = value;
4913 value = 0;
4914 }
4915
4916 md_number_to_chars (p, value, fixP->fx_size);
4917 }
4918 \f
4919 #define MAX_LITTLENUMS 6
4920
4921 /* Turn the string pointed to by litP into a floating point constant
4922 of type TYPE, and emit the appropriate bytes. The number of
4923 LITTLENUMS emitted is stored in *SIZEP. An error message is
4924 returned, or NULL on OK. */
4925
4926 char *
4927 md_atof (type, litP, sizeP)
4928 int type;
4929 char *litP;
4930 int *sizeP;
4931 {
4932 int prec;
4933 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4934 LITTLENUM_TYPE *wordP;
4935 char *t;
4936
4937 switch (type)
4938 {
4939 case 'f':
4940 case 'F':
4941 prec = 2;
4942 break;
4943
4944 case 'd':
4945 case 'D':
4946 prec = 4;
4947 break;
4948
4949 case 'x':
4950 case 'X':
4951 prec = 5;
4952 break;
4953
4954 default:
4955 *sizeP = 0;
4956 return _("Bad call to md_atof ()");
4957 }
4958 t = atof_ieee (input_line_pointer, type, words);
4959 if (t)
4960 input_line_pointer = t;
4961
4962 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4963 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4964 the bigendian 386. */
4965 for (wordP = words + prec - 1; prec--;)
4966 {
4967 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4968 litP += sizeof (LITTLENUM_TYPE);
4969 }
4970 return 0;
4971 }
4972 \f
4973 char output_invalid_buf[8];
4974
4975 static char *
4976 output_invalid (c)
4977 int c;
4978 {
4979 if (ISPRINT (c))
4980 sprintf (output_invalid_buf, "'%c'", c);
4981 else
4982 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4983 return output_invalid_buf;
4984 }
4985
4986 /* REG_STRING starts *before* REGISTER_PREFIX. */
4987
4988 static const reg_entry *
4989 parse_register (reg_string, end_op)
4990 char *reg_string;
4991 char **end_op;
4992 {
4993 char *s = reg_string;
4994 char *p;
4995 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4996 const reg_entry *r;
4997
4998 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4999 if (*s == REGISTER_PREFIX)
5000 ++s;
5001
5002 if (is_space_char (*s))
5003 ++s;
5004
5005 p = reg_name_given;
5006 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
5007 {
5008 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
5009 return (const reg_entry *) NULL;
5010 s++;
5011 }
5012
5013 /* For naked regs, make sure that we are not dealing with an identifier.
5014 This prevents confusing an identifier like `eax_var' with register
5015 `eax'. */
5016 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
5017 return (const reg_entry *) NULL;
5018
5019 *end_op = s;
5020
5021 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
5022
5023 /* Handle floating point regs, allowing spaces in the (i) part. */
5024 if (r == i386_regtab /* %st is first entry of table */)
5025 {
5026 if (is_space_char (*s))
5027 ++s;
5028 if (*s == '(')
5029 {
5030 ++s;
5031 if (is_space_char (*s))
5032 ++s;
5033 if (*s >= '0' && *s <= '7')
5034 {
5035 r = &i386_float_regtab[*s - '0'];
5036 ++s;
5037 if (is_space_char (*s))
5038 ++s;
5039 if (*s == ')')
5040 {
5041 *end_op = s + 1;
5042 return r;
5043 }
5044 }
5045 /* We have "%st(" then garbage. */
5046 return (const reg_entry *) NULL;
5047 }
5048 }
5049
5050 if (r != NULL
5051 && ((r->reg_flags & (RegRex64 | RegRex)) | (r->reg_type & Reg64)) != 0
5052 && (r->reg_type != Control || !(cpu_arch_flags & CpuSledgehammer))
5053 && flag_code != CODE_64BIT)
5054 return (const reg_entry *) NULL;
5055
5056 return r;
5057 }
5058 \f
5059 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5060 const char *md_shortopts = "kVQ:sqn";
5061 #else
5062 const char *md_shortopts = "qn";
5063 #endif
5064
5065 struct option md_longopts[] = {
5066 #define OPTION_32 (OPTION_MD_BASE + 0)
5067 {"32", no_argument, NULL, OPTION_32},
5068 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5069 #define OPTION_64 (OPTION_MD_BASE + 1)
5070 {"64", no_argument, NULL, OPTION_64},
5071 #endif
5072 {NULL, no_argument, NULL, 0}
5073 };
5074 size_t md_longopts_size = sizeof (md_longopts);
5075
5076 int
5077 md_parse_option (c, arg)
5078 int c;
5079 char *arg ATTRIBUTE_UNUSED;
5080 {
5081 switch (c)
5082 {
5083 case 'n':
5084 optimize_align_code = 0;
5085 break;
5086
5087 case 'q':
5088 quiet_warnings = 1;
5089 break;
5090
5091 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5092 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
5093 should be emitted or not. FIXME: Not implemented. */
5094 case 'Q':
5095 break;
5096
5097 /* -V: SVR4 argument to print version ID. */
5098 case 'V':
5099 print_version_id ();
5100 break;
5101
5102 /* -k: Ignore for FreeBSD compatibility. */
5103 case 'k':
5104 break;
5105
5106 case 's':
5107 /* -s: On i386 Solaris, this tells the native assembler to use
5108 .stab instead of .stab.excl. We always use .stab anyhow. */
5109 break;
5110
5111 case OPTION_64:
5112 {
5113 const char **list, **l;
5114
5115 list = bfd_target_list ();
5116 for (l = list; *l != NULL; l++)
5117 if (strcmp (*l, "elf64-x86-64") == 0)
5118 {
5119 default_arch = "x86_64";
5120 break;
5121 }
5122 if (*l == NULL)
5123 as_fatal (_("No compiled in support for x86_64"));
5124 free (list);
5125 }
5126 break;
5127 #endif
5128
5129 case OPTION_32:
5130 default_arch = "i386";
5131 break;
5132
5133 default:
5134 return 0;
5135 }
5136 return 1;
5137 }
5138
5139 void
5140 md_show_usage (stream)
5141 FILE *stream;
5142 {
5143 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5144 fprintf (stream, _("\
5145 -Q ignored\n\
5146 -V print assembler version number\n\
5147 -k ignored\n\
5148 -n Do not optimize code alignment\n\
5149 -q quieten some warnings\n\
5150 -s ignored\n"));
5151 #else
5152 fprintf (stream, _("\
5153 -n Do not optimize code alignment\n\
5154 -q quieten some warnings\n"));
5155 #endif
5156 }
5157
5158 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
5159 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5160
5161 /* Pick the target format to use. */
5162
5163 const char *
5164 i386_target_format ()
5165 {
5166 if (!strcmp (default_arch, "x86_64"))
5167 set_code_flag (CODE_64BIT);
5168 else if (!strcmp (default_arch, "i386"))
5169 set_code_flag (CODE_32BIT);
5170 else
5171 as_fatal (_("Unknown architecture"));
5172 switch (OUTPUT_FLAVOR)
5173 {
5174 #ifdef OBJ_MAYBE_AOUT
5175 case bfd_target_aout_flavour:
5176 return AOUT_TARGET_FORMAT;
5177 #endif
5178 #ifdef OBJ_MAYBE_COFF
5179 case bfd_target_coff_flavour:
5180 return "coff-i386";
5181 #endif
5182 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
5183 case bfd_target_elf_flavour:
5184 {
5185 if (flag_code == CODE_64BIT)
5186 use_rela_relocations = 1;
5187 return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
5188 }
5189 #endif
5190 default:
5191 abort ();
5192 return NULL;
5193 }
5194 }
5195
5196 #endif /* OBJ_MAYBE_ more than one */
5197
5198 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5199 void i386_elf_emit_arch_note ()
5200 {
5201 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
5202 && cpu_arch_name != NULL)
5203 {
5204 char *p;
5205 asection *seg = now_seg;
5206 subsegT subseg = now_subseg;
5207 Elf_Internal_Note i_note;
5208 Elf_External_Note e_note;
5209 asection *note_secp;
5210 int len;
5211
5212 /* Create the .note section. */
5213 note_secp = subseg_new (".note", 0);
5214 bfd_set_section_flags (stdoutput,
5215 note_secp,
5216 SEC_HAS_CONTENTS | SEC_READONLY);
5217
5218 /* Process the arch string. */
5219 len = strlen (cpu_arch_name);
5220
5221 i_note.namesz = len + 1;
5222 i_note.descsz = 0;
5223 i_note.type = NT_ARCH;
5224 p = frag_more (sizeof (e_note.namesz));
5225 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
5226 p = frag_more (sizeof (e_note.descsz));
5227 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
5228 p = frag_more (sizeof (e_note.type));
5229 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
5230 p = frag_more (len + 1);
5231 strcpy (p, cpu_arch_name);
5232
5233 frag_align (2, 0, 0);
5234
5235 subseg_set (seg, subseg);
5236 }
5237 }
5238 #endif
5239 \f
5240 symbolS *
5241 md_undefined_symbol (name)
5242 char *name;
5243 {
5244 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
5245 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
5246 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
5247 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
5248 {
5249 if (!GOT_symbol)
5250 {
5251 if (symbol_find (name))
5252 as_bad (_("GOT already in symbol table"));
5253 GOT_symbol = symbol_new (name, undefined_section,
5254 (valueT) 0, &zero_address_frag);
5255 };
5256 return GOT_symbol;
5257 }
5258 return 0;
5259 }
5260
5261 /* Round up a section size to the appropriate boundary. */
5262
5263 valueT
5264 md_section_align (segment, size)
5265 segT segment ATTRIBUTE_UNUSED;
5266 valueT size;
5267 {
5268 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5269 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
5270 {
5271 /* For a.out, force the section size to be aligned. If we don't do
5272 this, BFD will align it for us, but it will not write out the
5273 final bytes of the section. This may be a bug in BFD, but it is
5274 easier to fix it here since that is how the other a.out targets
5275 work. */
5276 int align;
5277
5278 align = bfd_get_section_alignment (stdoutput, segment);
5279 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
5280 }
5281 #endif
5282
5283 return size;
5284 }
5285
5286 /* On the i386, PC-relative offsets are relative to the start of the
5287 next instruction. That is, the address of the offset, plus its
5288 size, since the offset is always the last part of the insn. */
5289
5290 long
5291 md_pcrel_from (fixP)
5292 fixS *fixP;
5293 {
5294 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
5295 }
5296
5297 #ifndef I386COFF
5298
5299 static void
5300 s_bss (ignore)
5301 int ignore ATTRIBUTE_UNUSED;
5302 {
5303 int temp;
5304
5305 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5306 if (IS_ELF)
5307 obj_elf_section_change_hook ();
5308 #endif
5309 temp = get_absolute_expression ();
5310 subseg_set (bss_section, (subsegT) temp);
5311 demand_empty_rest_of_line ();
5312 }
5313
5314 #endif
5315
5316 void
5317 i386_validate_fix (fixp)
5318 fixS *fixp;
5319 {
5320 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
5321 {
5322 /* GOTOFF relocation are nonsense in 64bit mode. */
5323 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
5324 {
5325 if (flag_code != CODE_64BIT)
5326 abort ();
5327 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
5328 }
5329 else
5330 {
5331 if (flag_code == CODE_64BIT)
5332 abort ();
5333 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
5334 }
5335 fixp->fx_subsy = 0;
5336 }
5337 }
5338
5339 arelent *
5340 tc_gen_reloc (section, fixp)
5341 asection *section ATTRIBUTE_UNUSED;
5342 fixS *fixp;
5343 {
5344 arelent *rel;
5345 bfd_reloc_code_real_type code;
5346
5347 switch (fixp->fx_r_type)
5348 {
5349 case BFD_RELOC_X86_64_PLT32:
5350 case BFD_RELOC_X86_64_GOT32:
5351 case BFD_RELOC_X86_64_GOTPCREL:
5352 case BFD_RELOC_386_PLT32:
5353 case BFD_RELOC_386_GOT32:
5354 case BFD_RELOC_386_GOTOFF:
5355 case BFD_RELOC_386_GOTPC:
5356 case BFD_RELOC_386_TLS_GD:
5357 case BFD_RELOC_386_TLS_LDM:
5358 case BFD_RELOC_386_TLS_LDO_32:
5359 case BFD_RELOC_386_TLS_IE_32:
5360 case BFD_RELOC_386_TLS_IE:
5361 case BFD_RELOC_386_TLS_GOTIE:
5362 case BFD_RELOC_386_TLS_LE_32:
5363 case BFD_RELOC_386_TLS_LE:
5364 case BFD_RELOC_X86_64_TLSGD:
5365 case BFD_RELOC_X86_64_TLSLD:
5366 case BFD_RELOC_X86_64_DTPOFF32:
5367 case BFD_RELOC_X86_64_GOTTPOFF:
5368 case BFD_RELOC_X86_64_TPOFF32:
5369 case BFD_RELOC_RVA:
5370 case BFD_RELOC_VTABLE_ENTRY:
5371 case BFD_RELOC_VTABLE_INHERIT:
5372 #ifdef TE_PE
5373 case BFD_RELOC_32_SECREL:
5374 #endif
5375 code = fixp->fx_r_type;
5376 break;
5377 case BFD_RELOC_X86_64_32S:
5378 if (!fixp->fx_pcrel)
5379 {
5380 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
5381 code = fixp->fx_r_type;
5382 break;
5383 }
5384 default:
5385 if (fixp->fx_pcrel)
5386 {
5387 switch (fixp->fx_size)
5388 {
5389 default:
5390 as_bad_where (fixp->fx_file, fixp->fx_line,
5391 _("can not do %d byte pc-relative relocation"),
5392 fixp->fx_size);
5393 code = BFD_RELOC_32_PCREL;
5394 break;
5395 case 1: code = BFD_RELOC_8_PCREL; break;
5396 case 2: code = BFD_RELOC_16_PCREL; break;
5397 case 4: code = BFD_RELOC_32_PCREL; break;
5398 }
5399 }
5400 else
5401 {
5402 switch (fixp->fx_size)
5403 {
5404 default:
5405 as_bad_where (fixp->fx_file, fixp->fx_line,
5406 _("can not do %d byte relocation"),
5407 fixp->fx_size);
5408 code = BFD_RELOC_32;
5409 break;
5410 case 1: code = BFD_RELOC_8; break;
5411 case 2: code = BFD_RELOC_16; break;
5412 case 4: code = BFD_RELOC_32; break;
5413 #ifdef BFD64
5414 case 8: code = BFD_RELOC_64; break;
5415 #endif
5416 }
5417 }
5418 break;
5419 }
5420
5421 if (code == BFD_RELOC_32
5422 && GOT_symbol
5423 && fixp->fx_addsy == GOT_symbol)
5424 {
5425 /* We don't support GOTPC on 64bit targets. */
5426 if (flag_code == CODE_64BIT)
5427 abort ();
5428 code = BFD_RELOC_386_GOTPC;
5429 }
5430
5431 rel = (arelent *) xmalloc (sizeof (arelent));
5432 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5433 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
5434
5435 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
5436
5437 if (!use_rela_relocations)
5438 {
5439 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5440 vtable entry to be used in the relocation's section offset. */
5441 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5442 rel->address = fixp->fx_offset;
5443
5444 rel->addend = 0;
5445 }
5446 /* Use the rela in 64bit mode. */
5447 else
5448 {
5449 if (!fixp->fx_pcrel)
5450 rel->addend = fixp->fx_offset;
5451 else
5452 switch (code)
5453 {
5454 case BFD_RELOC_X86_64_PLT32:
5455 case BFD_RELOC_X86_64_GOT32:
5456 case BFD_RELOC_X86_64_GOTPCREL:
5457 case BFD_RELOC_X86_64_TLSGD:
5458 case BFD_RELOC_X86_64_TLSLD:
5459 case BFD_RELOC_X86_64_GOTTPOFF:
5460 rel->addend = fixp->fx_offset - fixp->fx_size;
5461 break;
5462 default:
5463 rel->addend = (section->vma
5464 - fixp->fx_size
5465 + fixp->fx_addnumber
5466 + md_pcrel_from (fixp));
5467 break;
5468 }
5469 }
5470
5471 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
5472 if (rel->howto == NULL)
5473 {
5474 as_bad_where (fixp->fx_file, fixp->fx_line,
5475 _("cannot represent relocation type %s"),
5476 bfd_get_reloc_code_name (code));
5477 /* Set howto to a garbage value so that we can keep going. */
5478 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
5479 assert (rel->howto != NULL);
5480 }
5481
5482 return rel;
5483 }
5484
5485 \f
5486 /* Parse operands using Intel syntax. This implements a recursive descent
5487 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5488 Programmer's Guide.
5489
5490 FIXME: We do not recognize the full operand grammar defined in the MASM
5491 documentation. In particular, all the structure/union and
5492 high-level macro operands are missing.
5493
5494 Uppercase words are terminals, lower case words are non-terminals.
5495 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5496 bars '|' denote choices. Most grammar productions are implemented in
5497 functions called 'intel_<production>'.
5498
5499 Initial production is 'expr'.
5500
5501 addOp + | -
5502
5503 alpha [a-zA-Z]
5504
5505 binOp & | AND | \| | OR | ^ | XOR
5506
5507 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5508
5509 constant digits [[ radixOverride ]]
5510
5511 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
5512
5513 digits decdigit
5514 | digits decdigit
5515 | digits hexdigit
5516
5517 decdigit [0-9]
5518
5519 e04 e04 addOp e05
5520 | e05
5521
5522 e05 e05 binOp e06
5523 | e06
5524
5525 e06 e06 mulOp e09
5526 | e09
5527
5528 e09 OFFSET e10
5529 | SHORT e10
5530 | + e10
5531 | - e10
5532 | ~ e10
5533 | NOT e10
5534 | e09 PTR e10
5535 | e09 : e10
5536 | e10
5537
5538 e10 e10 [ expr ]
5539 | e11
5540
5541 e11 ( expr )
5542 | [ expr ]
5543 | constant
5544 | dataType
5545 | id
5546 | $
5547 | register
5548
5549 => expr expr cmpOp e04
5550 | e04
5551
5552 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
5553 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
5554
5555 hexdigit a | b | c | d | e | f
5556 | A | B | C | D | E | F
5557
5558 id alpha
5559 | id alpha
5560 | id decdigit
5561
5562 mulOp * | / | % | MOD | << | SHL | >> | SHR
5563
5564 quote " | '
5565
5566 register specialRegister
5567 | gpRegister
5568 | byteRegister
5569
5570 segmentRegister CS | DS | ES | FS | GS | SS
5571
5572 specialRegister CR0 | CR2 | CR3 | CR4
5573 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
5574 | TR3 | TR4 | TR5 | TR6 | TR7
5575
5576 We simplify the grammar in obvious places (e.g., register parsing is
5577 done by calling parse_register) and eliminate immediate left recursion
5578 to implement a recursive-descent parser.
5579
5580 expr e04 expr'
5581
5582 expr' cmpOp e04 expr'
5583 | Empty
5584
5585 e04 e05 e04'
5586
5587 e04' addOp e05 e04'
5588 | Empty
5589
5590 e05 e06 e05'
5591
5592 e05' binOp e06 e05'
5593 | Empty
5594
5595 e06 e09 e06'
5596
5597 e06' mulOp e09 e06'
5598 | Empty
5599
5600 e09 OFFSET e10 e09'
5601 | SHORT e10'
5602 | + e10'
5603 | - e10'
5604 | ~ e10'
5605 | NOT e10'
5606 | e10 e09'
5607
5608 e09' PTR e10 e09'
5609 | : e10 e09'
5610 | Empty
5611
5612 e10 e11 e10'
5613
5614 e10' [ expr ] e10'
5615 | Empty
5616
5617 e11 ( expr )
5618 | [ expr ]
5619 | BYTE
5620 | WORD
5621 | DWORD
5622 | FWORD
5623 | QWORD
5624 | TBYTE
5625 | OWORD
5626 | XMMWORD
5627 | .
5628 | $
5629 | register
5630 | id
5631 | constant */
5632
5633 /* Parsing structure for the intel syntax parser. Used to implement the
5634 semantic actions for the operand grammar. */
5635 struct intel_parser_s
5636 {
5637 char *op_string; /* The string being parsed. */
5638 int got_a_float; /* Whether the operand is a float. */
5639 int op_modifier; /* Operand modifier. */
5640 int is_mem; /* 1 if operand is memory reference. */
5641 int in_offset; /* >=1 if parsing operand of offset. */
5642 int in_bracket; /* >=1 if parsing operand in brackets. */
5643 const reg_entry *reg; /* Last register reference found. */
5644 char *disp; /* Displacement string being built. */
5645 char *next_operand; /* Resume point when splitting operands. */
5646 };
5647
5648 static struct intel_parser_s intel_parser;
5649
5650 /* Token structure for parsing intel syntax. */
5651 struct intel_token
5652 {
5653 int code; /* Token code. */
5654 const reg_entry *reg; /* Register entry for register tokens. */
5655 char *str; /* String representation. */
5656 };
5657
5658 static struct intel_token cur_token, prev_token;
5659
5660 /* Token codes for the intel parser. Since T_SHORT is already used
5661 by COFF, undefine it first to prevent a warning. */
5662 #define T_NIL -1
5663 #define T_CONST 1
5664 #define T_REG 2
5665 #define T_BYTE 3
5666 #define T_WORD 4
5667 #define T_DWORD 5
5668 #define T_FWORD 6
5669 #define T_QWORD 7
5670 #define T_TBYTE 8
5671 #define T_XMMWORD 9
5672 #undef T_SHORT
5673 #define T_SHORT 10
5674 #define T_OFFSET 11
5675 #define T_PTR 12
5676 #define T_ID 13
5677 #define T_SHL 14
5678 #define T_SHR 15
5679
5680 /* Prototypes for intel parser functions. */
5681 static int intel_match_token PARAMS ((int code));
5682 static void intel_get_token PARAMS ((void));
5683 static void intel_putback_token PARAMS ((void));
5684 static int intel_expr PARAMS ((void));
5685 static int intel_e04 PARAMS ((void));
5686 static int intel_e05 PARAMS ((void));
5687 static int intel_e06 PARAMS ((void));
5688 static int intel_e09 PARAMS ((void));
5689 static int intel_bracket_expr PARAMS ((void));
5690 static int intel_e10 PARAMS ((void));
5691 static int intel_e11 PARAMS ((void));
5692
5693 static int
5694 i386_intel_operand (operand_string, got_a_float)
5695 char *operand_string;
5696 int got_a_float;
5697 {
5698 int ret;
5699 char *p;
5700
5701 p = intel_parser.op_string = xstrdup (operand_string);
5702 intel_parser.disp = (char *) xmalloc (strlen (operand_string) + 1);
5703
5704 for (;;)
5705 {
5706 /* Initialize token holders. */
5707 cur_token.code = prev_token.code = T_NIL;
5708 cur_token.reg = prev_token.reg = NULL;
5709 cur_token.str = prev_token.str = NULL;
5710
5711 /* Initialize parser structure. */
5712 intel_parser.got_a_float = got_a_float;
5713 intel_parser.op_modifier = 0;
5714 intel_parser.is_mem = 0;
5715 intel_parser.in_offset = 0;
5716 intel_parser.in_bracket = 0;
5717 intel_parser.reg = NULL;
5718 intel_parser.disp[0] = '\0';
5719 intel_parser.next_operand = NULL;
5720
5721 /* Read the first token and start the parser. */
5722 intel_get_token ();
5723 ret = intel_expr ();
5724
5725 if (!ret)
5726 break;
5727
5728 if (cur_token.code != T_NIL)
5729 {
5730 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
5731 current_templates->start->name, cur_token.str);
5732 ret = 0;
5733 }
5734 /* If we found a memory reference, hand it over to i386_displacement
5735 to fill in the rest of the operand fields. */
5736 else if (intel_parser.is_mem)
5737 {
5738 if ((i.mem_operands == 1
5739 && (current_templates->start->opcode_modifier & IsString) == 0)
5740 || i.mem_operands == 2)
5741 {
5742 as_bad (_("too many memory references for '%s'"),
5743 current_templates->start->name);
5744 ret = 0;
5745 }
5746 else
5747 {
5748 char *s = intel_parser.disp;
5749 i.mem_operands++;
5750
5751 if (!quiet_warnings && intel_parser.is_mem < 0)
5752 /* See the comments in intel_bracket_expr. */
5753 as_warn (_("Treating `%s' as memory reference"), operand_string);
5754
5755 /* Add the displacement expression. */
5756 if (*s != '\0')
5757 ret = i386_displacement (s, s + strlen (s));
5758 if (ret)
5759 {
5760 /* Swap base and index in 16-bit memory operands like
5761 [si+bx]. Since i386_index_check is also used in AT&T
5762 mode we have to do that here. */
5763 if (i.base_reg
5764 && i.index_reg
5765 && (i.base_reg->reg_type & Reg16)
5766 && (i.index_reg->reg_type & Reg16)
5767 && i.base_reg->reg_num >= 6
5768 && i.index_reg->reg_num < 6)
5769 {
5770 const reg_entry *base = i.index_reg;
5771
5772 i.index_reg = i.base_reg;
5773 i.base_reg = base;
5774 }
5775 ret = i386_index_check (operand_string);
5776 }
5777 }
5778 }
5779
5780 /* Constant and OFFSET expressions are handled by i386_immediate. */
5781 else if ((intel_parser.op_modifier & (1 << T_OFFSET))
5782 || intel_parser.reg == NULL)
5783 ret = i386_immediate (intel_parser.disp);
5784
5785 if (intel_parser.next_operand && this_operand >= MAX_OPERANDS - 1)
5786 ret = 0;
5787 if (!ret || !intel_parser.next_operand)
5788 break;
5789 intel_parser.op_string = intel_parser.next_operand;
5790 this_operand = i.operands++;
5791 }
5792
5793 free (p);
5794 free (intel_parser.disp);
5795
5796 return ret;
5797 }
5798
5799 #define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
5800
5801 /* expr e04 expr'
5802
5803 expr' cmpOp e04 expr'
5804 | Empty */
5805 static int
5806 intel_expr ()
5807 {
5808 /* XXX Implement the comparison operators. */
5809 return intel_e04 ();
5810 }
5811
5812 /* e04 e05 e04'
5813
5814 e04' addOp e05 e04'
5815 | Empty */
5816 static int
5817 intel_e04 ()
5818 {
5819 int nregs = -1;
5820
5821 for (;;)
5822 {
5823 if (!intel_e05())
5824 return 0;
5825
5826 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
5827 i.base_reg = i386_regtab + REGNAM_AL; /* al is invalid as base */
5828
5829 if (cur_token.code == '+')
5830 nregs = -1;
5831 else if (cur_token.code == '-')
5832 nregs = NUM_ADDRESS_REGS;
5833 else
5834 return 1;
5835
5836 strcat (intel_parser.disp, cur_token.str);
5837 intel_match_token (cur_token.code);
5838 }
5839 }
5840
5841 /* e05 e06 e05'
5842
5843 e05' binOp e06 e05'
5844 | Empty */
5845 static int
5846 intel_e05 ()
5847 {
5848 int nregs = ~NUM_ADDRESS_REGS;
5849
5850 for (;;)
5851 {
5852 if (!intel_e06())
5853 return 0;
5854
5855 if (cur_token.code == '&' || cur_token.code == '|' || cur_token.code == '^')
5856 {
5857 char str[2];
5858
5859 str[0] = cur_token.code;
5860 str[1] = 0;
5861 strcat (intel_parser.disp, str);
5862 }
5863 else
5864 break;
5865
5866 intel_match_token (cur_token.code);
5867
5868 if (nregs < 0)
5869 nregs = ~nregs;
5870 }
5871 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
5872 i.base_reg = i386_regtab + REGNAM_AL + 1; /* cl is invalid as base */
5873 return 1;
5874 }
5875
5876 /* e06 e09 e06'
5877
5878 e06' mulOp e09 e06'
5879 | Empty */
5880 static int
5881 intel_e06 ()
5882 {
5883 int nregs = ~NUM_ADDRESS_REGS;
5884
5885 for (;;)
5886 {
5887 if (!intel_e09())
5888 return 0;
5889
5890 if (cur_token.code == '*' || cur_token.code == '/' || cur_token.code == '%')
5891 {
5892 char str[2];
5893
5894 str[0] = cur_token.code;
5895 str[1] = 0;
5896 strcat (intel_parser.disp, str);
5897 }
5898 else if (cur_token.code == T_SHL)
5899 strcat (intel_parser.disp, "<<");
5900 else if (cur_token.code == T_SHR)
5901 strcat (intel_parser.disp, ">>");
5902 else
5903 break;
5904
5905 intel_match_token (cur_token.code);
5906
5907 if (nregs < 0)
5908 nregs = ~nregs;
5909 }
5910 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
5911 i.base_reg = i386_regtab + REGNAM_AL + 2; /* dl is invalid as base */
5912 return 1;
5913 }
5914
5915 /* e09 OFFSET e09
5916 | SHORT e09
5917 | + e09
5918 | - e09
5919 | ~ e09
5920 | NOT e09
5921 | e10 e09'
5922
5923 e09' PTR e10 e09'
5924 | : e10 e09'
5925 | Empty */
5926 static int
5927 intel_e09 ()
5928 {
5929 int nregs = ~NUM_ADDRESS_REGS;
5930 int in_offset = 0;
5931
5932 for (;;)
5933 {
5934 /* Don't consume constants here. */
5935 if (cur_token.code == '+' || cur_token.code == '-')
5936 {
5937 /* Need to look one token ahead - if the next token
5938 is a constant, the current token is its sign. */
5939 int next_code;
5940
5941 intel_match_token (cur_token.code);
5942 next_code = cur_token.code;
5943 intel_putback_token ();
5944 if (next_code == T_CONST)
5945 break;
5946 }
5947
5948 /* e09 OFFSET e09 */
5949 if (cur_token.code == T_OFFSET)
5950 {
5951 if (!in_offset++)
5952 ++intel_parser.in_offset;
5953 }
5954
5955 /* e09 SHORT e09 */
5956 else if (cur_token.code == T_SHORT)
5957 intel_parser.op_modifier |= 1 << T_SHORT;
5958
5959 /* e09 + e09 */
5960 else if (cur_token.code == '+')
5961 strcat (intel_parser.disp, "+");
5962
5963 /* e09 - e09
5964 | ~ e09
5965 | NOT e09 */
5966 else if (cur_token.code == '-' || cur_token.code == '~')
5967 {
5968 char str[2];
5969
5970 if (nregs < 0)
5971 nregs = ~nregs;
5972 str[0] = cur_token.code;
5973 str[1] = 0;
5974 strcat (intel_parser.disp, str);
5975 }
5976
5977 /* e09 e10 e09' */
5978 else
5979 break;
5980
5981 intel_match_token (cur_token.code);
5982 }
5983
5984 for (;;)
5985 {
5986 if (!intel_e10 ())
5987 return 0;
5988
5989 /* e09' PTR e10 e09' */
5990 if (cur_token.code == T_PTR)
5991 {
5992 char suffix;
5993
5994 if (prev_token.code == T_BYTE)
5995 suffix = BYTE_MNEM_SUFFIX;
5996
5997 else if (prev_token.code == T_WORD)
5998 {
5999 if (current_templates->start->name[0] == 'l'
6000 && current_templates->start->name[2] == 's'
6001 && current_templates->start->name[3] == 0)
6002 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6003 else if (intel_parser.got_a_float == 2) /* "fi..." */
6004 suffix = SHORT_MNEM_SUFFIX;
6005 else
6006 suffix = WORD_MNEM_SUFFIX;
6007 }
6008
6009 else if (prev_token.code == T_DWORD)
6010 {
6011 if (current_templates->start->name[0] == 'l'
6012 && current_templates->start->name[2] == 's'
6013 && current_templates->start->name[3] == 0)
6014 suffix = WORD_MNEM_SUFFIX;
6015 else if (flag_code == CODE_16BIT
6016 && (current_templates->start->opcode_modifier
6017 & (Jump|JumpDword|JumpInterSegment)))
6018 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6019 else if (intel_parser.got_a_float == 1) /* "f..." */
6020 suffix = SHORT_MNEM_SUFFIX;
6021 else
6022 suffix = LONG_MNEM_SUFFIX;
6023 }
6024
6025 else if (prev_token.code == T_FWORD)
6026 {
6027 if (current_templates->start->name[0] == 'l'
6028 && current_templates->start->name[2] == 's'
6029 && current_templates->start->name[3] == 0)
6030 suffix = LONG_MNEM_SUFFIX;
6031 else if (!intel_parser.got_a_float)
6032 {
6033 if (flag_code == CODE_16BIT)
6034 add_prefix (DATA_PREFIX_OPCODE);
6035 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6036 }
6037 else
6038 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6039 }
6040
6041 else if (prev_token.code == T_QWORD)
6042 {
6043 if (intel_parser.got_a_float == 1) /* "f..." */
6044 suffix = LONG_MNEM_SUFFIX;
6045 else
6046 suffix = QWORD_MNEM_SUFFIX;
6047 }
6048
6049 else if (prev_token.code == T_TBYTE)
6050 {
6051 if (intel_parser.got_a_float == 1)
6052 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6053 else
6054 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6055 }
6056
6057 else if (prev_token.code == T_XMMWORD)
6058 {
6059 /* XXX ignored for now, but accepted since gcc uses it */
6060 suffix = 0;
6061 }
6062
6063 else
6064 {
6065 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
6066 return 0;
6067 }
6068
6069 if (current_templates->start->base_opcode == 0x8d /* lea */)
6070 ;
6071 else if (!i.suffix)
6072 i.suffix = suffix;
6073 else if (i.suffix != suffix)
6074 {
6075 as_bad (_("Conflicting operand modifiers"));
6076 return 0;
6077 }
6078
6079 }
6080
6081 /* e09' : e10 e09' */
6082 else if (cur_token.code == ':')
6083 {
6084 if (prev_token.code != T_REG)
6085 {
6086 /* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
6087 segment/group identifier (which we don't have), using comma
6088 as the operand separator there is even less consistent, since
6089 there all branches only have a single operand. */
6090 if (this_operand != 0
6091 || intel_parser.in_offset
6092 || intel_parser.in_bracket
6093 || (!(current_templates->start->opcode_modifier
6094 & (Jump|JumpDword|JumpInterSegment))
6095 && !(current_templates->start->operand_types[0]
6096 & JumpAbsolute)))
6097 return intel_match_token (T_NIL);
6098 /* Remember the start of the 2nd operand and terminate 1st
6099 operand here.
6100 XXX This isn't right, yet (when SSSS:OOOO is right operand of
6101 another expression), but it gets at least the simplest case
6102 (a plain number or symbol on the left side) right. */
6103 intel_parser.next_operand = intel_parser.op_string;
6104 *--intel_parser.op_string = '\0';
6105 return intel_match_token (':');
6106 }
6107 }
6108
6109 /* e09' Empty */
6110 else
6111 break;
6112
6113 intel_match_token (cur_token.code);
6114
6115 }
6116
6117 if (in_offset)
6118 {
6119 --intel_parser.in_offset;
6120 if (nregs < 0)
6121 nregs = ~nregs;
6122 if (NUM_ADDRESS_REGS > nregs)
6123 {
6124 as_bad (_("Invalid operand to `OFFSET'"));
6125 return 0;
6126 }
6127 intel_parser.op_modifier |= 1 << T_OFFSET;
6128 }
6129
6130 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6131 i.base_reg = i386_regtab + REGNAM_AL + 3; /* bl is invalid as base */
6132 return 1;
6133 }
6134
6135 static int
6136 intel_bracket_expr ()
6137 {
6138 int was_offset = intel_parser.op_modifier & (1 << T_OFFSET);
6139 const char *start = intel_parser.op_string;
6140 int len;
6141
6142 if (i.op[this_operand].regs)
6143 return intel_match_token (T_NIL);
6144
6145 intel_match_token ('[');
6146
6147 /* Mark as a memory operand only if it's not already known to be an
6148 offset expression. If it's an offset expression, we need to keep
6149 the brace in. */
6150 if (!intel_parser.in_offset)
6151 {
6152 ++intel_parser.in_bracket;
6153 /* Unfortunately gas always diverged from MASM in a respect that can't
6154 be easily fixed without risking to break code sequences likely to be
6155 encountered (the testsuite even check for this): MASM doesn't consider
6156 an expression inside brackets unconditionally as a memory reference.
6157 When that is e.g. a constant, an offset expression, or the sum of the
6158 two, this is still taken as a constant load. gas, however, always
6159 treated these as memory references. As a compromise, we'll try to make
6160 offset expressions inside brackets work the MASM way (since that's
6161 less likely to be found in real world code), but make constants alone
6162 continue to work the traditional gas way. In either case, issue a
6163 warning. */
6164 intel_parser.op_modifier &= ~was_offset;
6165 }
6166 else
6167 strcat (intel_parser.disp, "[");
6168
6169 /* Add a '+' to the displacement string if necessary. */
6170 if (*intel_parser.disp != '\0'
6171 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
6172 strcat (intel_parser.disp, "+");
6173
6174 if (intel_expr ()
6175 && (len = intel_parser.op_string - start - 1,
6176 intel_match_token (']')))
6177 {
6178 /* Preserve brackets when the operand is an offset expression. */
6179 if (intel_parser.in_offset)
6180 strcat (intel_parser.disp, "]");
6181 else
6182 {
6183 --intel_parser.in_bracket;
6184 if (i.base_reg || i.index_reg)
6185 intel_parser.is_mem = 1;
6186 if (!intel_parser.is_mem)
6187 {
6188 if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
6189 /* Defer the warning until all of the operand was parsed. */
6190 intel_parser.is_mem = -1;
6191 else if (!quiet_warnings)
6192 as_warn (_("`[%.*s]' taken to mean just `%.*s'"), len, start, len, start);
6193 }
6194 }
6195 intel_parser.op_modifier |= was_offset;
6196
6197 return 1;
6198 }
6199 return 0;
6200 }
6201
6202 /* e10 e11 e10'
6203
6204 e10' [ expr ] e10'
6205 | Empty */
6206 static int
6207 intel_e10 ()
6208 {
6209 if (!intel_e11 ())
6210 return 0;
6211
6212 while (cur_token.code == '[')
6213 {
6214 if (!intel_bracket_expr ())
6215 return 0;
6216 }
6217
6218 return 1;
6219 }
6220
6221 /* e11 ( expr )
6222 | [ expr ]
6223 | BYTE
6224 | WORD
6225 | DWORD
6226 | FWORD
6227 | QWORD
6228 | TBYTE
6229 | OWORD
6230 | XMMWORD
6231 | $
6232 | .
6233 | register
6234 | id
6235 | constant */
6236 static int
6237 intel_e11 ()
6238 {
6239 switch (cur_token.code)
6240 {
6241 /* e11 ( expr ) */
6242 case '(':
6243 intel_match_token ('(');
6244 strcat (intel_parser.disp, "(");
6245
6246 if (intel_expr () && intel_match_token (')'))
6247 {
6248 strcat (intel_parser.disp, ")");
6249 return 1;
6250 }
6251 return 0;
6252
6253 /* e11 [ expr ] */
6254 case '[':
6255 /* Operands for jump/call inside brackets denote absolute addresses.
6256 XXX This shouldn't be needed anymore (or if it should rather live
6257 in intel_bracket_expr). */
6258 if (current_templates->start->opcode_modifier
6259 & (Jump|JumpDword|JumpByte|JumpInterSegment))
6260 i.types[this_operand] |= JumpAbsolute;
6261
6262 return intel_bracket_expr ();
6263
6264 /* e11 $
6265 | . */
6266 case '.':
6267 strcat (intel_parser.disp, cur_token.str);
6268 intel_match_token (cur_token.code);
6269
6270 /* Mark as a memory operand only if it's not already known to be an
6271 offset expression. */
6272 if (!intel_parser.in_offset)
6273 intel_parser.is_mem = 1;
6274
6275 return 1;
6276
6277 /* e11 register */
6278 case T_REG:
6279 {
6280 const reg_entry *reg = intel_parser.reg = cur_token.reg;
6281
6282 intel_match_token (T_REG);
6283
6284 /* Check for segment change. */
6285 if (cur_token.code == ':')
6286 {
6287 if (!(reg->reg_type & (SReg2 | SReg3)))
6288 {
6289 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
6290 return 0;
6291 }
6292 else if (i.seg[i.mem_operands])
6293 as_warn (_("Extra segment override ignored"));
6294 else
6295 {
6296 if (!intel_parser.in_offset)
6297 intel_parser.is_mem = 1;
6298 switch (reg->reg_num)
6299 {
6300 case 0:
6301 i.seg[i.mem_operands] = &es;
6302 break;
6303 case 1:
6304 i.seg[i.mem_operands] = &cs;
6305 break;
6306 case 2:
6307 i.seg[i.mem_operands] = &ss;
6308 break;
6309 case 3:
6310 i.seg[i.mem_operands] = &ds;
6311 break;
6312 case 4:
6313 i.seg[i.mem_operands] = &fs;
6314 break;
6315 case 5:
6316 i.seg[i.mem_operands] = &gs;
6317 break;
6318 }
6319 }
6320 }
6321
6322 /* Not a segment register. Check for register scaling. */
6323 else if (cur_token.code == '*')
6324 {
6325 if (!intel_parser.in_bracket)
6326 {
6327 as_bad (_("Register scaling only allowed in memory operands"));
6328 return 0;
6329 }
6330
6331 if (reg->reg_type & Reg16) /* Disallow things like [si*1]. */
6332 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
6333 else if (i.index_reg)
6334 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
6335
6336 /* What follows must be a valid scale. */
6337 intel_match_token ('*');
6338 i.index_reg = reg;
6339 i.types[this_operand] |= BaseIndex;
6340
6341 /* Set the scale after setting the register (otherwise,
6342 i386_scale will complain) */
6343 if (cur_token.code == '+' || cur_token.code == '-')
6344 {
6345 char *str, sign = cur_token.code;
6346 intel_match_token (cur_token.code);
6347 if (cur_token.code != T_CONST)
6348 {
6349 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
6350 cur_token.str);
6351 return 0;
6352 }
6353 str = (char *) xmalloc (strlen (cur_token.str) + 2);
6354 strcpy (str + 1, cur_token.str);
6355 *str = sign;
6356 if (!i386_scale (str))
6357 return 0;
6358 free (str);
6359 }
6360 else if (!i386_scale (cur_token.str))
6361 return 0;
6362 intel_match_token (cur_token.code);
6363 }
6364
6365 /* No scaling. If this is a memory operand, the register is either a
6366 base register (first occurrence) or an index register (second
6367 occurrence). */
6368 else if (intel_parser.in_bracket && !(reg->reg_type & (SReg2 | SReg3)))
6369 {
6370
6371 if (!i.base_reg)
6372 i.base_reg = reg;
6373 else if (!i.index_reg)
6374 i.index_reg = reg;
6375 else
6376 {
6377 as_bad (_("Too many register references in memory operand"));
6378 return 0;
6379 }
6380
6381 i.types[this_operand] |= BaseIndex;
6382 }
6383
6384 /* Offset modifier. Add the register to the displacement string to be
6385 parsed as an immediate expression after we're done. */
6386 else if (intel_parser.in_offset)
6387 {
6388 as_warn (_("Using register names in OFFSET expressions is deprecated"));
6389 strcat (intel_parser.disp, reg->reg_name);
6390 }
6391
6392 /* It's neither base nor index nor offset. */
6393 else if (!intel_parser.is_mem)
6394 {
6395 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
6396 i.op[this_operand].regs = reg;
6397 i.reg_operands++;
6398 }
6399 else
6400 {
6401 as_bad (_("Invalid use of register"));
6402 return 0;
6403 }
6404
6405 /* Since registers are not part of the displacement string (except
6406 when we're parsing offset operands), we may need to remove any
6407 preceding '+' from the displacement string. */
6408 if (*intel_parser.disp != '\0'
6409 && !intel_parser.in_offset)
6410 {
6411 char *s = intel_parser.disp;
6412 s += strlen (s) - 1;
6413 if (*s == '+')
6414 *s = '\0';
6415 }
6416
6417 return 1;
6418 }
6419
6420 /* e11 BYTE
6421 | WORD
6422 | DWORD
6423 | FWORD
6424 | QWORD
6425 | TBYTE
6426 | OWORD
6427 | XMMWORD */
6428 case T_BYTE:
6429 case T_WORD:
6430 case T_DWORD:
6431 case T_FWORD:
6432 case T_QWORD:
6433 case T_TBYTE:
6434 case T_XMMWORD:
6435 intel_match_token (cur_token.code);
6436
6437 if (cur_token.code == T_PTR)
6438 return 1;
6439
6440 /* It must have been an identifier. */
6441 intel_putback_token ();
6442 cur_token.code = T_ID;
6443 /* FALLTHRU */
6444
6445 /* e11 id
6446 | constant */
6447 case T_ID:
6448 if (!intel_parser.in_offset && intel_parser.is_mem <= 0)
6449 {
6450 symbolS *symbolP;
6451
6452 /* The identifier represents a memory reference only if it's not
6453 preceded by an offset modifier and if it's not an equate. */
6454 symbolP = symbol_find(cur_token.str);
6455 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
6456 intel_parser.is_mem = 1;
6457 }
6458 /* FALLTHRU */
6459
6460 case T_CONST:
6461 case '-':
6462 case '+':
6463 {
6464 char *save_str, sign = 0;
6465
6466 /* Allow constants that start with `+' or `-'. */
6467 if (cur_token.code == '-' || cur_token.code == '+')
6468 {
6469 sign = cur_token.code;
6470 intel_match_token (cur_token.code);
6471 if (cur_token.code != T_CONST)
6472 {
6473 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
6474 cur_token.str);
6475 return 0;
6476 }
6477 }
6478
6479 save_str = (char *) xmalloc (strlen (cur_token.str) + 2);
6480 strcpy (save_str + !!sign, cur_token.str);
6481 if (sign)
6482 *save_str = sign;
6483
6484 /* Get the next token to check for register scaling. */
6485 intel_match_token (cur_token.code);
6486
6487 /* Check if this constant is a scaling factor for an index register. */
6488 if (cur_token.code == '*')
6489 {
6490 if (intel_match_token ('*') && cur_token.code == T_REG)
6491 {
6492 const reg_entry *reg = cur_token.reg;
6493
6494 if (!intel_parser.in_bracket)
6495 {
6496 as_bad (_("Register scaling only allowed in memory operands"));
6497 return 0;
6498 }
6499
6500 if (reg->reg_type & Reg16) /* Disallow things like [1*si]. */
6501 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
6502 else if (i.index_reg)
6503 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
6504
6505 /* The constant is followed by `* reg', so it must be
6506 a valid scale. */
6507 i.index_reg = reg;
6508 i.types[this_operand] |= BaseIndex;
6509
6510 /* Set the scale after setting the register (otherwise,
6511 i386_scale will complain) */
6512 if (!i386_scale (save_str))
6513 return 0;
6514 intel_match_token (T_REG);
6515
6516 /* Since registers are not part of the displacement
6517 string, we may need to remove any preceding '+' from
6518 the displacement string. */
6519 if (*intel_parser.disp != '\0')
6520 {
6521 char *s = intel_parser.disp;
6522 s += strlen (s) - 1;
6523 if (*s == '+')
6524 *s = '\0';
6525 }
6526
6527 free (save_str);
6528
6529 return 1;
6530 }
6531
6532 /* The constant was not used for register scaling. Since we have
6533 already consumed the token following `*' we now need to put it
6534 back in the stream. */
6535 intel_putback_token ();
6536 }
6537
6538 /* Add the constant to the displacement string. */
6539 strcat (intel_parser.disp, save_str);
6540 free (save_str);
6541
6542 return 1;
6543 }
6544 }
6545
6546 as_bad (_("Unrecognized token '%s'"), cur_token.str);
6547 return 0;
6548 }
6549
6550 /* Match the given token against cur_token. If they match, read the next
6551 token from the operand string. */
6552 static int
6553 intel_match_token (code)
6554 int code;
6555 {
6556 if (cur_token.code == code)
6557 {
6558 intel_get_token ();
6559 return 1;
6560 }
6561 else
6562 {
6563 as_bad (_("Unexpected token `%s'"), cur_token.str);
6564 return 0;
6565 }
6566 }
6567
6568 /* Read a new token from intel_parser.op_string and store it in cur_token. */
6569 static void
6570 intel_get_token ()
6571 {
6572 char *end_op;
6573 const reg_entry *reg;
6574 struct intel_token new_token;
6575
6576 new_token.code = T_NIL;
6577 new_token.reg = NULL;
6578 new_token.str = NULL;
6579
6580 /* Free the memory allocated to the previous token and move
6581 cur_token to prev_token. */
6582 if (prev_token.str)
6583 free (prev_token.str);
6584
6585 prev_token = cur_token;
6586
6587 /* Skip whitespace. */
6588 while (is_space_char (*intel_parser.op_string))
6589 intel_parser.op_string++;
6590
6591 /* Return an empty token if we find nothing else on the line. */
6592 if (*intel_parser.op_string == '\0')
6593 {
6594 cur_token = new_token;
6595 return;
6596 }
6597
6598 /* The new token cannot be larger than the remainder of the operand
6599 string. */
6600 new_token.str = (char *) xmalloc (strlen (intel_parser.op_string) + 1);
6601 new_token.str[0] = '\0';
6602
6603 if (strchr ("0123456789", *intel_parser.op_string))
6604 {
6605 char *p = new_token.str;
6606 char *q = intel_parser.op_string;
6607 new_token.code = T_CONST;
6608
6609 /* Allow any kind of identifier char to encompass floating point and
6610 hexadecimal numbers. */
6611 while (is_identifier_char (*q))
6612 *p++ = *q++;
6613 *p = '\0';
6614
6615 /* Recognize special symbol names [0-9][bf]. */
6616 if (strlen (intel_parser.op_string) == 2
6617 && (intel_parser.op_string[1] == 'b'
6618 || intel_parser.op_string[1] == 'f'))
6619 new_token.code = T_ID;
6620 }
6621
6622 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
6623 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
6624 {
6625 new_token.code = T_REG;
6626 new_token.reg = reg;
6627
6628 if (*intel_parser.op_string == REGISTER_PREFIX)
6629 {
6630 new_token.str[0] = REGISTER_PREFIX;
6631 new_token.str[1] = '\0';
6632 }
6633
6634 strcat (new_token.str, reg->reg_name);
6635 }
6636
6637 else if (is_identifier_char (*intel_parser.op_string))
6638 {
6639 char *p = new_token.str;
6640 char *q = intel_parser.op_string;
6641
6642 /* A '.' or '$' followed by an identifier char is an identifier.
6643 Otherwise, it's operator '.' followed by an expression. */
6644 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
6645 {
6646 new_token.code = '.';
6647 new_token.str[0] = '.';
6648 new_token.str[1] = '\0';
6649 }
6650 else
6651 {
6652 while (is_identifier_char (*q) || *q == '@')
6653 *p++ = *q++;
6654 *p = '\0';
6655
6656 if (strcasecmp (new_token.str, "NOT") == 0)
6657 new_token.code = '~';
6658
6659 else if (strcasecmp (new_token.str, "MOD") == 0)
6660 new_token.code = '%';
6661
6662 else if (strcasecmp (new_token.str, "AND") == 0)
6663 new_token.code = '&';
6664
6665 else if (strcasecmp (new_token.str, "OR") == 0)
6666 new_token.code = '|';
6667
6668 else if (strcasecmp (new_token.str, "XOR") == 0)
6669 new_token.code = '^';
6670
6671 else if (strcasecmp (new_token.str, "SHL") == 0)
6672 new_token.code = T_SHL;
6673
6674 else if (strcasecmp (new_token.str, "SHR") == 0)
6675 new_token.code = T_SHR;
6676
6677 else if (strcasecmp (new_token.str, "BYTE") == 0)
6678 new_token.code = T_BYTE;
6679
6680 else if (strcasecmp (new_token.str, "WORD") == 0)
6681 new_token.code = T_WORD;
6682
6683 else if (strcasecmp (new_token.str, "DWORD") == 0)
6684 new_token.code = T_DWORD;
6685
6686 else if (strcasecmp (new_token.str, "FWORD") == 0)
6687 new_token.code = T_FWORD;
6688
6689 else if (strcasecmp (new_token.str, "QWORD") == 0)
6690 new_token.code = T_QWORD;
6691
6692 else if (strcasecmp (new_token.str, "TBYTE") == 0
6693 /* XXX remove (gcc still uses it) */
6694 || strcasecmp (new_token.str, "XWORD") == 0)
6695 new_token.code = T_TBYTE;
6696
6697 else if (strcasecmp (new_token.str, "XMMWORD") == 0
6698 || strcasecmp (new_token.str, "OWORD") == 0)
6699 new_token.code = T_XMMWORD;
6700
6701 else if (strcasecmp (new_token.str, "PTR") == 0)
6702 new_token.code = T_PTR;
6703
6704 else if (strcasecmp (new_token.str, "SHORT") == 0)
6705 new_token.code = T_SHORT;
6706
6707 else if (strcasecmp (new_token.str, "OFFSET") == 0)
6708 {
6709 new_token.code = T_OFFSET;
6710
6711 /* ??? This is not mentioned in the MASM grammar but gcc
6712 makes use of it with -mintel-syntax. OFFSET may be
6713 followed by FLAT: */
6714 if (strncasecmp (q, " FLAT:", 6) == 0)
6715 strcat (new_token.str, " FLAT:");
6716 }
6717
6718 /* ??? This is not mentioned in the MASM grammar. */
6719 else if (strcasecmp (new_token.str, "FLAT") == 0)
6720 {
6721 new_token.code = T_OFFSET;
6722 if (*q == ':')
6723 strcat (new_token.str, ":");
6724 else
6725 as_bad (_("`:' expected"));
6726 }
6727
6728 else
6729 new_token.code = T_ID;
6730 }
6731 }
6732
6733 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
6734 {
6735 new_token.code = *intel_parser.op_string;
6736 new_token.str[0] = *intel_parser.op_string;
6737 new_token.str[1] = '\0';
6738 }
6739
6740 else if (strchr ("<>", *intel_parser.op_string)
6741 && *intel_parser.op_string == *(intel_parser.op_string + 1))
6742 {
6743 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
6744 new_token.str[0] = *intel_parser.op_string;
6745 new_token.str[1] = *intel_parser.op_string;
6746 new_token.str[2] = '\0';
6747 }
6748
6749 else
6750 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
6751
6752 intel_parser.op_string += strlen (new_token.str);
6753 cur_token = new_token;
6754 }
6755
6756 /* Put cur_token back into the token stream and make cur_token point to
6757 prev_token. */
6758 static void
6759 intel_putback_token ()
6760 {
6761 if (cur_token.code != T_NIL)
6762 {
6763 intel_parser.op_string -= strlen (cur_token.str);
6764 free (cur_token.str);
6765 }
6766 cur_token = prev_token;
6767
6768 /* Forget prev_token. */
6769 prev_token.code = T_NIL;
6770 prev_token.reg = NULL;
6771 prev_token.str = NULL;
6772 }
6773
6774 int
6775 tc_x86_regname_to_dw2regnum (const char *regname)
6776 {
6777 unsigned int regnum;
6778 unsigned int regnames_count;
6779 char *regnames_32[] =
6780 {
6781 "eax", "ecx", "edx", "ebx",
6782 "esp", "ebp", "esi", "edi",
6783 "eip"
6784 };
6785 char *regnames_64[] =
6786 {
6787 "rax", "rbx", "rcx", "rdx",
6788 "rdi", "rsi", "rbp", "rsp",
6789 "r8", "r9", "r10", "r11",
6790 "r12", "r13", "r14", "r15",
6791 "rip"
6792 };
6793 char **regnames;
6794
6795 if (flag_code == CODE_64BIT)
6796 {
6797 regnames = regnames_64;
6798 regnames_count = ARRAY_SIZE (regnames_64);
6799 }
6800 else
6801 {
6802 regnames = regnames_32;
6803 regnames_count = ARRAY_SIZE (regnames_32);
6804 }
6805
6806 for (regnum = 0; regnum < regnames_count; regnum++)
6807 if (strcmp (regname, regnames[regnum]) == 0)
6808 return regnum;
6809
6810 return -1;
6811 }
6812
6813 void
6814 tc_x86_frame_initial_instructions (void)
6815 {
6816 static unsigned int sp_regno;
6817
6818 if (!sp_regno)
6819 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
6820 ? "rsp" : "esp");
6821
6822 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
6823 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
6824 }
6825
6826 int
6827 i386_elf_section_type (const char *str, size_t len)
6828 {
6829 if (flag_code == CODE_64BIT
6830 && len == sizeof ("unwind") - 1
6831 && strncmp (str, "unwind", 6) == 0)
6832 return SHT_X86_64_UNWIND;
6833
6834 return -1;
6835 }
6836
6837 #ifdef TE_PE
6838 void
6839 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
6840 {
6841 expressionS expr;
6842
6843 expr.X_op = O_secrel;
6844 expr.X_add_symbol = symbol;
6845 expr.X_add_number = 0;
6846 emit_expr (&expr, size);
6847 }
6848 #endif