7cca4cfe0f3df8d6aab7a38e87e26aa41aac9455
[binutils-gdb.git] / gas / config / tc-i386.c
1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989, 91, 92, 93, 94, 95, 96, 97, 98, 99, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* Intel 80386 machine specific gas.
23 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
24 x86_64 support by Jan Hubicka (jh@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include <ctype.h>
29
30 #include "as.h"
31 #include "subsegs.h"
32 #include "dwarf2dbg.h"
33 #include "opcode/i386.h"
34
35 #ifndef REGISTER_WARNINGS
36 #define REGISTER_WARNINGS 1
37 #endif
38
39 #ifndef INFER_ADDR_PREFIX
40 #define INFER_ADDR_PREFIX 1
41 #endif
42
43 #ifndef SCALE1_WHEN_NO_INDEX
44 /* Specifying a scale factor besides 1 when there is no index is
45 futile. eg. `mov (%ebx,2),%al' does exactly the same as
46 `mov (%ebx),%al'. To slavishly follow what the programmer
47 specified, set SCALE1_WHEN_NO_INDEX to 0. */
48 #define SCALE1_WHEN_NO_INDEX 1
49 #endif
50
51 #define true 1
52 #define false 0
53
54 static unsigned int mode_from_disp_size PARAMS ((unsigned int));
55 static int fits_in_signed_byte PARAMS ((offsetT));
56 static int fits_in_unsigned_byte PARAMS ((offsetT));
57 static int fits_in_unsigned_word PARAMS ((offsetT));
58 static int fits_in_signed_word PARAMS ((offsetT));
59 static int fits_in_unsigned_long PARAMS ((offsetT));
60 static int fits_in_signed_long PARAMS ((offsetT));
61 static int smallest_imm_type PARAMS ((offsetT));
62 static offsetT offset_in_range PARAMS ((offsetT, int));
63 static int add_prefix PARAMS ((unsigned int));
64 static void set_code_flag PARAMS ((int));
65 static void set_16bit_gcc_code_flag PARAMS ((int));
66 static void set_intel_syntax PARAMS ((int));
67 static void set_cpu_arch PARAMS ((int));
68
69 #ifdef BFD_ASSEMBLER
70 static bfd_reloc_code_real_type reloc
71 PARAMS ((int, int, int, bfd_reloc_code_real_type));
72 #endif
73
74 #ifndef DEFAULT_ARCH
75 #define DEFAULT_ARCH "i386"
76 #endif
77 static char *default_arch = DEFAULT_ARCH;
78
79 /* 'md_assemble ()' gathers together information and puts it into a
80 i386_insn. */
81
82 union i386_op
83 {
84 expressionS *disps;
85 expressionS *imms;
86 const reg_entry *regs;
87 };
88
89 struct _i386_insn
90 {
91 /* TM holds the template for the insn were currently assembling. */
92 template tm;
93
94 /* SUFFIX holds the instruction mnemonic suffix if given.
95 (e.g. 'l' for 'movl') */
96 char suffix;
97
98 /* OPERANDS gives the number of given operands. */
99 unsigned int operands;
100
101 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
102 of given register, displacement, memory operands and immediate
103 operands. */
104 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
105
106 /* TYPES [i] is the type (see above #defines) which tells us how to
107 use OP[i] for the corresponding operand. */
108 unsigned int types[MAX_OPERANDS];
109
110 /* Displacement expression, immediate expression, or register for each
111 operand. */
112 union i386_op op[MAX_OPERANDS];
113
114 /* Flags for operands. */
115 unsigned int flags[MAX_OPERANDS];
116 #define Operand_PCrel 1
117
118 /* Relocation type for operand */
119 #ifdef BFD_ASSEMBLER
120 enum bfd_reloc_code_real disp_reloc[MAX_OPERANDS];
121 #else
122 int disp_reloc[MAX_OPERANDS];
123 #endif
124
125 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
126 the base index byte below. */
127 const reg_entry *base_reg;
128 const reg_entry *index_reg;
129 unsigned int log2_scale_factor;
130
131 /* SEG gives the seg_entries of this insn. They are zero unless
132 explicit segment overrides are given. */
133 const seg_entry *seg[2];
134
135 /* PREFIX holds all the given prefix opcodes (usually null).
136 PREFIXES is the number of prefix opcodes. */
137 unsigned int prefixes;
138 unsigned char prefix[MAX_PREFIXES];
139
140 /* RM and SIB are the modrm byte and the sib byte where the
141 addressing modes of this insn are encoded. */
142
143 modrm_byte rm;
144 rex_byte rex;
145 sib_byte sib;
146 };
147
148 typedef struct _i386_insn i386_insn;
149
150 /* List of chars besides those in app.c:symbol_chars that can start an
151 operand. Used to prevent the scrubber eating vital white-space. */
152 #ifdef LEX_AT
153 const char extra_symbol_chars[] = "*%-(@";
154 #else
155 const char extra_symbol_chars[] = "*%-(";
156 #endif
157
158 /* This array holds the chars that always start a comment. If the
159 pre-processor is disabled, these aren't very useful. */
160 #if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD))
161 /* Putting '/' here makes it impossible to use the divide operator.
162 However, we need it for compatibility with SVR4 systems. */
163 const char comment_chars[] = "#/";
164 #define PREFIX_SEPARATOR '\\'
165 #else
166 const char comment_chars[] = "#";
167 #define PREFIX_SEPARATOR '/'
168 #endif
169
170 /* This array holds the chars that only start a comment at the beginning of
171 a line. If the line seems to have the form '# 123 filename'
172 .line and .file directives will appear in the pre-processed output.
173 Note that input_file.c hand checks for '#' at the beginning of the
174 first line of the input file. This is because the compiler outputs
175 #NO_APP at the beginning of its output.
176 Also note that comments started like this one will always work if
177 '/' isn't otherwise defined. */
178 #if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD))
179 const char line_comment_chars[] = "";
180 #else
181 const char line_comment_chars[] = "/";
182 #endif
183
184 const char line_separator_chars[] = ";";
185
186 /* Chars that can be used to separate mant from exp in floating point
187 nums. */
188 const char EXP_CHARS[] = "eE";
189
190 /* Chars that mean this number is a floating point constant
191 As in 0f12.456
192 or 0d1.2345e12. */
193 const char FLT_CHARS[] = "fFdDxX";
194
195 /* Tables for lexical analysis. */
196 static char mnemonic_chars[256];
197 static char register_chars[256];
198 static char operand_chars[256];
199 static char identifier_chars[256];
200 static char digit_chars[256];
201
202 /* Lexical macros. */
203 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
204 #define is_operand_char(x) (operand_chars[(unsigned char) x])
205 #define is_register_char(x) (register_chars[(unsigned char) x])
206 #define is_space_char(x) ((x) == ' ')
207 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
208 #define is_digit_char(x) (digit_chars[(unsigned char) x])
209
210 /* All non-digit non-letter charcters that may occur in an operand. */
211 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
212
213 /* md_assemble() always leaves the strings it's passed unaltered. To
214 effect this we maintain a stack of saved characters that we've smashed
215 with '\0's (indicating end of strings for various sub-fields of the
216 assembler instruction). */
217 static char save_stack[32];
218 static char *save_stack_p;
219 #define END_STRING_AND_SAVE(s) \
220 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
221 #define RESTORE_END_STRING(s) \
222 do { *(s) = *--save_stack_p; } while (0)
223
224 /* The instruction we're assembling. */
225 static i386_insn i;
226
227 /* Possible templates for current insn. */
228 static const templates *current_templates;
229
230 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
231 static expressionS disp_expressions[2], im_expressions[2];
232
233 /* Current operand we are working on. */
234 static int this_operand;
235
236 /* We support four different modes. FLAG_CODE variable is used to distinguish
237 these. */
238
239 enum flag_code {
240 CODE_32BIT,
241 CODE_16BIT,
242 CODE_64BIT };
243
244 static enum flag_code flag_code;
245 static int use_rela_relocations = 0;
246
247 /* The names used to print error messages. */
248 static const char *flag_code_names[] =
249 {
250 "32",
251 "16",
252 "64"
253 };
254
255 /* 1 for intel syntax,
256 0 if att syntax. */
257 static int intel_syntax = 0;
258
259 /* 1 if register prefix % not required. */
260 static int allow_naked_reg = 0;
261
262 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
263 leave, push, and pop instructions so that gcc has the same stack
264 frame as in 32 bit mode. */
265 static char stackop_size = '\0';
266
267 /* Non-zero to quieten some warnings. */
268 static int quiet_warnings = 0;
269
270 /* CPU name. */
271 static const char *cpu_arch_name = NULL;
272
273 /* CPU feature flags. */
274 static unsigned int cpu_arch_flags = CpuUnknownFlags|CpuNo64;
275
276 /* Interface to relax_segment.
277 There are 2 relax states for 386 jump insns: one for conditional &
278 one for unconditional jumps. This is because these two types of
279 jumps add different sizes to frags when we're figuring out what
280 sort of jump to choose to reach a given label. */
281
282 /* Types. */
283 #define COND_JUMP 1
284 #define UNCOND_JUMP 2
285 /* Sizes. */
286 #define CODE16 1
287 #define SMALL 0
288 #define SMALL16 (SMALL|CODE16)
289 #define BIG 2
290 #define BIG16 (BIG|CODE16)
291
292 #ifndef INLINE
293 #ifdef __GNUC__
294 #define INLINE __inline__
295 #else
296 #define INLINE
297 #endif
298 #endif
299
300 #define ENCODE_RELAX_STATE(type,size) \
301 ((relax_substateT) ((type<<2) | (size)))
302 #define SIZE_FROM_RELAX_STATE(s) \
303 ( (((s) & 0x3) == BIG ? 4 : (((s) & 0x3) == BIG16 ? 2 : 1)) )
304
305 /* This table is used by relax_frag to promote short jumps to long
306 ones where necessary. SMALL (short) jumps may be promoted to BIG
307 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
308 don't allow a short jump in a 32 bit code segment to be promoted to
309 a 16 bit offset jump because it's slower (requires data size
310 prefix), and doesn't work, unless the destination is in the bottom
311 64k of the code segment (The top 16 bits of eip are zeroed). */
312
313 const relax_typeS md_relax_table[] =
314 {
315 /* The fields are:
316 1) most positive reach of this state,
317 2) most negative reach of this state,
318 3) how many bytes this mode will add to the size of the current frag
319 4) which index into the table to try if we can't fit into this one. */
320 {1, 1, 0, 0},
321 {1, 1, 0, 0},
322 {1, 1, 0, 0},
323 {1, 1, 0, 0},
324
325 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
326 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
327 /* dword conditionals adds 4 bytes to frag:
328 1 extra opcode byte, 3 extra displacement bytes. */
329 {0, 0, 4, 0},
330 /* word conditionals add 2 bytes to frag:
331 1 extra opcode byte, 1 extra displacement byte. */
332 {0, 0, 2, 0},
333
334 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
335 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
336 /* dword jmp adds 3 bytes to frag:
337 0 extra opcode bytes, 3 extra displacement bytes. */
338 {0, 0, 3, 0},
339 /* word jmp adds 1 byte to frag:
340 0 extra opcode bytes, 1 extra displacement byte. */
341 {0, 0, 1, 0}
342
343 };
344
345 static const arch_entry cpu_arch[] = {
346 {"i8086", Cpu086 },
347 {"i186", Cpu086|Cpu186 },
348 {"i286", Cpu086|Cpu186|Cpu286 },
349 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
350 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
351 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
352 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
353 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
354 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
355 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
356 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
357 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
358 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
359 {NULL, 0 }
360 };
361
362 void
363 i386_align_code (fragP, count)
364 fragS *fragP;
365 int count;
366 {
367 /* Various efficient no-op patterns for aligning code labels.
368 Note: Don't try to assemble the instructions in the comments.
369 0L and 0w are not legal. */
370 static const char f32_1[] =
371 {0x90}; /* nop */
372 static const char f32_2[] =
373 {0x89,0xf6}; /* movl %esi,%esi */
374 static const char f32_3[] =
375 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
376 static const char f32_4[] =
377 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
378 static const char f32_5[] =
379 {0x90, /* nop */
380 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
381 static const char f32_6[] =
382 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
383 static const char f32_7[] =
384 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
385 static const char f32_8[] =
386 {0x90, /* nop */
387 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
388 static const char f32_9[] =
389 {0x89,0xf6, /* movl %esi,%esi */
390 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
391 static const char f32_10[] =
392 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
393 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
394 static const char f32_11[] =
395 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
396 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
397 static const char f32_12[] =
398 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
399 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
400 static const char f32_13[] =
401 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
402 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
403 static const char f32_14[] =
404 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
405 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
406 static const char f32_15[] =
407 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
408 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
409 static const char f16_3[] =
410 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
411 static const char f16_4[] =
412 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
413 static const char f16_5[] =
414 {0x90, /* nop */
415 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
416 static const char f16_6[] =
417 {0x89,0xf6, /* mov %si,%si */
418 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
419 static const char f16_7[] =
420 {0x8d,0x74,0x00, /* lea 0(%si),%si */
421 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
422 static const char f16_8[] =
423 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
424 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
425 static const char *const f32_patt[] = {
426 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
427 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
428 };
429 static const char *const f16_patt[] = {
430 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
431 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
432 };
433
434 /* ??? We can't use these fillers for x86_64, since they often kills the
435 upper halves. Solve later. */
436 if (flag_code == CODE_64BIT)
437 count = 1;
438
439 if (count > 0 && count <= 15)
440 {
441 if (flag_code == CODE_16BIT)
442 {
443 memcpy (fragP->fr_literal + fragP->fr_fix,
444 f16_patt[count - 1], count);
445 if (count > 8)
446 /* Adjust jump offset. */
447 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
448 }
449 else
450 memcpy (fragP->fr_literal + fragP->fr_fix,
451 f32_patt[count - 1], count);
452 fragP->fr_var = count;
453 }
454 }
455
456 static char *output_invalid PARAMS ((int c));
457 static int i386_operand PARAMS ((char *operand_string));
458 static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
459 static const reg_entry *parse_register PARAMS ((char *reg_string,
460 char **end_op));
461
462 #ifndef I386COFF
463 static void s_bss PARAMS ((int));
464 #endif
465
466 symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
467
468 static INLINE unsigned int
469 mode_from_disp_size (t)
470 unsigned int t;
471 {
472 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
473 }
474
475 static INLINE int
476 fits_in_signed_byte (num)
477 offsetT num;
478 {
479 return (num >= -128) && (num <= 127);
480 }
481
482 static INLINE int
483 fits_in_unsigned_byte (num)
484 offsetT num;
485 {
486 return (num & 0xff) == num;
487 }
488
489 static INLINE int
490 fits_in_unsigned_word (num)
491 offsetT num;
492 {
493 return (num & 0xffff) == num;
494 }
495
496 static INLINE int
497 fits_in_signed_word (num)
498 offsetT num;
499 {
500 return (-32768 <= num) && (num <= 32767);
501 }
502 static INLINE int
503 fits_in_signed_long (num)
504 offsetT num ATTRIBUTE_UNUSED;
505 {
506 #ifndef BFD64
507 return 1;
508 #else
509 return (!(((offsetT) -1 << 31) & num)
510 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
511 #endif
512 } /* fits_in_signed_long() */
513 static INLINE int
514 fits_in_unsigned_long (num)
515 offsetT num ATTRIBUTE_UNUSED;
516 {
517 #ifndef BFD64
518 return 1;
519 #else
520 return (num & (((offsetT) 2 << 31) - 1)) == num;
521 #endif
522 } /* fits_in_unsigned_long() */
523
524 static int
525 smallest_imm_type (num)
526 offsetT num;
527 {
528 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64)
529 && !(cpu_arch_flags & (CpuUnknown)))
530 {
531 /* This code is disabled on the 486 because all the Imm1 forms
532 in the opcode table are slower on the i486. They're the
533 versions with the implicitly specified single-position
534 displacement, which has another syntax if you really want to
535 use that form. */
536 if (num == 1)
537 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
538 }
539 return (fits_in_signed_byte (num)
540 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
541 : fits_in_unsigned_byte (num)
542 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
543 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
544 ? (Imm16 | Imm32 | Imm32S | Imm64)
545 : fits_in_signed_long (num)
546 ? (Imm32 | Imm32S | Imm64)
547 : fits_in_unsigned_long (num)
548 ? (Imm32 | Imm64)
549 : Imm64);
550 }
551
552 static offsetT
553 offset_in_range (val, size)
554 offsetT val;
555 int size;
556 {
557 addressT mask;
558
559 switch (size)
560 {
561 case 1: mask = ((addressT) 1 << 8) - 1; break;
562 case 2: mask = ((addressT) 1 << 16) - 1; break;
563 case 4: mask = ((addressT) 2 << 31) - 1; break;
564 #ifdef BFD64
565 case 8: mask = ((addressT) 2 << 63) - 1; break;
566 #endif
567 default: abort ();
568 }
569
570 /* If BFD64, sign extend val. */
571 if (!use_rela_relocations)
572 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
573 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
574
575 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
576 {
577 char buf1[40], buf2[40];
578
579 sprint_value (buf1, val);
580 sprint_value (buf2, val & mask);
581 as_warn (_("%s shortened to %s"), buf1, buf2);
582 }
583 return val & mask;
584 }
585
586 /* Returns 0 if attempting to add a prefix where one from the same
587 class already exists, 1 if non rep/repne added, 2 if rep/repne
588 added. */
589 static int
590 add_prefix (prefix)
591 unsigned int prefix;
592 {
593 int ret = 1;
594 int q;
595
596 if (prefix >= 0x40 && prefix < 0x50 && flag_code == CODE_64BIT)
597 q = REX_PREFIX;
598 else
599 switch (prefix)
600 {
601 default:
602 abort ();
603
604 case CS_PREFIX_OPCODE:
605 case DS_PREFIX_OPCODE:
606 case ES_PREFIX_OPCODE:
607 case FS_PREFIX_OPCODE:
608 case GS_PREFIX_OPCODE:
609 case SS_PREFIX_OPCODE:
610 q = SEG_PREFIX;
611 break;
612
613 case REPNE_PREFIX_OPCODE:
614 case REPE_PREFIX_OPCODE:
615 ret = 2;
616 /* fall thru */
617 case LOCK_PREFIX_OPCODE:
618 q = LOCKREP_PREFIX;
619 break;
620
621 case FWAIT_OPCODE:
622 q = WAIT_PREFIX;
623 break;
624
625 case ADDR_PREFIX_OPCODE:
626 q = ADDR_PREFIX;
627 break;
628
629 case DATA_PREFIX_OPCODE:
630 q = DATA_PREFIX;
631 break;
632 }
633
634 if (i.prefix[q])
635 {
636 as_bad (_("same type of prefix used twice"));
637 return 0;
638 }
639
640 i.prefixes += 1;
641 i.prefix[q] = prefix;
642 return ret;
643 }
644
645 static void
646 set_code_flag (value)
647 int value;
648 {
649 flag_code = value;
650 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
651 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
652 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
653 {
654 as_bad (_("64bit mode not supported on this CPU."));
655 }
656 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
657 {
658 as_bad (_("32bit mode not supported on this CPU."));
659 }
660 stackop_size = '\0';
661 }
662
663 static void
664 set_16bit_gcc_code_flag (new_code_flag)
665 int new_code_flag;
666 {
667 flag_code = new_code_flag;
668 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
669 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
670 stackop_size = 'l';
671 }
672
673 static void
674 set_intel_syntax (syntax_flag)
675 int syntax_flag;
676 {
677 /* Find out if register prefixing is specified. */
678 int ask_naked_reg = 0;
679
680 SKIP_WHITESPACE ();
681 if (! is_end_of_line[(unsigned char) *input_line_pointer])
682 {
683 char *string = input_line_pointer;
684 int e = get_symbol_end ();
685
686 if (strcmp (string, "prefix") == 0)
687 ask_naked_reg = 1;
688 else if (strcmp (string, "noprefix") == 0)
689 ask_naked_reg = -1;
690 else
691 as_bad (_("bad argument to syntax directive."));
692 *input_line_pointer = e;
693 }
694 demand_empty_rest_of_line ();
695
696 intel_syntax = syntax_flag;
697
698 if (ask_naked_reg == 0)
699 {
700 #ifdef BFD_ASSEMBLER
701 allow_naked_reg = (intel_syntax
702 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
703 #else
704 /* Conservative default. */
705 allow_naked_reg = 0;
706 #endif
707 }
708 else
709 allow_naked_reg = (ask_naked_reg < 0);
710 }
711
712 static void
713 set_cpu_arch (dummy)
714 int dummy ATTRIBUTE_UNUSED;
715 {
716 SKIP_WHITESPACE ();
717
718 if (! is_end_of_line[(unsigned char) *input_line_pointer])
719 {
720 char *string = input_line_pointer;
721 int e = get_symbol_end ();
722 int i;
723
724 for (i = 0; cpu_arch[i].name; i++)
725 {
726 if (strcmp (string, cpu_arch[i].name) == 0)
727 {
728 cpu_arch_name = cpu_arch[i].name;
729 cpu_arch_flags = cpu_arch[i].flags | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
730 break;
731 }
732 }
733 if (!cpu_arch[i].name)
734 as_bad (_("no such architecture: `%s'"), string);
735
736 *input_line_pointer = e;
737 }
738 else
739 as_bad (_("missing cpu architecture"));
740
741 demand_empty_rest_of_line ();
742 }
743
744 const pseudo_typeS md_pseudo_table[] =
745 {
746 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
747 {"align", s_align_bytes, 0},
748 #else
749 {"align", s_align_ptwo, 0},
750 #endif
751 {"arch", set_cpu_arch, 0},
752 #ifndef I386COFF
753 {"bss", s_bss, 0},
754 #endif
755 {"ffloat", float_cons, 'f'},
756 {"dfloat", float_cons, 'd'},
757 {"tfloat", float_cons, 'x'},
758 {"value", cons, 2},
759 {"noopt", s_ignore, 0},
760 {"optim", s_ignore, 0},
761 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
762 {"code16", set_code_flag, CODE_16BIT},
763 {"code32", set_code_flag, CODE_32BIT},
764 {"code64", set_code_flag, CODE_64BIT},
765 {"intel_syntax", set_intel_syntax, 1},
766 {"att_syntax", set_intel_syntax, 0},
767 {"file", dwarf2_directive_file, 0},
768 {"loc", dwarf2_directive_loc, 0},
769 {0, 0, 0}
770 };
771
772 /* For interface with expression (). */
773 extern char *input_line_pointer;
774
775 /* Hash table for instruction mnemonic lookup. */
776 static struct hash_control *op_hash;
777
778 /* Hash table for register lookup. */
779 static struct hash_control *reg_hash;
780 \f
781 void
782 md_begin ()
783 {
784 const char *hash_err;
785
786 /* Initialize op_hash hash table. */
787 op_hash = hash_new ();
788
789 {
790 register const template *optab;
791 register templates *core_optab;
792
793 /* Setup for loop. */
794 optab = i386_optab;
795 core_optab = (templates *) xmalloc (sizeof (templates));
796 core_optab->start = optab;
797
798 while (1)
799 {
800 ++optab;
801 if (optab->name == NULL
802 || strcmp (optab->name, (optab - 1)->name) != 0)
803 {
804 /* different name --> ship out current template list;
805 add to hash table; & begin anew. */
806 core_optab->end = optab;
807 hash_err = hash_insert (op_hash,
808 (optab - 1)->name,
809 (PTR) core_optab);
810 if (hash_err)
811 {
812 as_fatal (_("Internal Error: Can't hash %s: %s"),
813 (optab - 1)->name,
814 hash_err);
815 }
816 if (optab->name == NULL)
817 break;
818 core_optab = (templates *) xmalloc (sizeof (templates));
819 core_optab->start = optab;
820 }
821 }
822 }
823
824 /* Initialize reg_hash hash table. */
825 reg_hash = hash_new ();
826 {
827 register const reg_entry *regtab;
828
829 for (regtab = i386_regtab;
830 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
831 regtab++)
832 {
833 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
834 if (hash_err)
835 as_fatal (_("Internal Error: Can't hash %s: %s"),
836 regtab->reg_name,
837 hash_err);
838 }
839 }
840
841 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
842 {
843 register int c;
844 register char *p;
845
846 for (c = 0; c < 256; c++)
847 {
848 if (isdigit (c))
849 {
850 digit_chars[c] = c;
851 mnemonic_chars[c] = c;
852 register_chars[c] = c;
853 operand_chars[c] = c;
854 }
855 else if (islower (c))
856 {
857 mnemonic_chars[c] = c;
858 register_chars[c] = c;
859 operand_chars[c] = c;
860 }
861 else if (isupper (c))
862 {
863 mnemonic_chars[c] = tolower (c);
864 register_chars[c] = mnemonic_chars[c];
865 operand_chars[c] = c;
866 }
867
868 if (isalpha (c) || isdigit (c))
869 identifier_chars[c] = c;
870 else if (c >= 128)
871 {
872 identifier_chars[c] = c;
873 operand_chars[c] = c;
874 }
875 }
876
877 #ifdef LEX_AT
878 identifier_chars['@'] = '@';
879 #endif
880 digit_chars['-'] = '-';
881 identifier_chars['_'] = '_';
882 identifier_chars['.'] = '.';
883
884 for (p = operand_special_chars; *p != '\0'; p++)
885 operand_chars[(unsigned char) *p] = *p;
886 }
887
888 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
889 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
890 {
891 record_alignment (text_section, 2);
892 record_alignment (data_section, 2);
893 record_alignment (bss_section, 2);
894 }
895 #endif
896 }
897
898 void
899 i386_print_statistics (file)
900 FILE *file;
901 {
902 hash_print_statistics (file, "i386 opcode", op_hash);
903 hash_print_statistics (file, "i386 register", reg_hash);
904 }
905 \f
906 #ifdef DEBUG386
907
908 /* Debugging routines for md_assemble. */
909 static void pi PARAMS ((char *, i386_insn *));
910 static void pte PARAMS ((template *));
911 static void pt PARAMS ((unsigned int));
912 static void pe PARAMS ((expressionS *));
913 static void ps PARAMS ((symbolS *));
914
915 static void
916 pi (line, x)
917 char *line;
918 i386_insn *x;
919 {
920 unsigned int i;
921
922 fprintf (stdout, "%s: template ", line);
923 pte (&x->tm);
924 fprintf (stdout, " address: base %s index %s scale %x\n",
925 x->base_reg ? x->base_reg->reg_name : "none",
926 x->index_reg ? x->index_reg->reg_name : "none",
927 x->log2_scale_factor);
928 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
929 x->rm.mode, x->rm.reg, x->rm.regmem);
930 fprintf (stdout, " sib: base %x index %x scale %x\n",
931 x->sib.base, x->sib.index, x->sib.scale);
932 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
933 x->rex.mode64, x->rex.extX, x->rex.extY, x->rex.extZ);
934 for (i = 0; i < x->operands; i++)
935 {
936 fprintf (stdout, " #%d: ", i + 1);
937 pt (x->types[i]);
938 fprintf (stdout, "\n");
939 if (x->types[i]
940 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
941 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
942 if (x->types[i] & Imm)
943 pe (x->op[i].imms);
944 if (x->types[i] & Disp)
945 pe (x->op[i].disps);
946 }
947 }
948
949 static void
950 pte (t)
951 template *t;
952 {
953 unsigned int i;
954 fprintf (stdout, " %d operands ", t->operands);
955 fprintf (stdout, "opcode %x ", t->base_opcode);
956 if (t->extension_opcode != None)
957 fprintf (stdout, "ext %x ", t->extension_opcode);
958 if (t->opcode_modifier & D)
959 fprintf (stdout, "D");
960 if (t->opcode_modifier & W)
961 fprintf (stdout, "W");
962 fprintf (stdout, "\n");
963 for (i = 0; i < t->operands; i++)
964 {
965 fprintf (stdout, " #%d type ", i + 1);
966 pt (t->operand_types[i]);
967 fprintf (stdout, "\n");
968 }
969 }
970
971 static void
972 pe (e)
973 expressionS *e;
974 {
975 fprintf (stdout, " operation %d\n", e->X_op);
976 fprintf (stdout, " add_number %ld (%lx)\n",
977 (long) e->X_add_number, (long) e->X_add_number);
978 if (e->X_add_symbol)
979 {
980 fprintf (stdout, " add_symbol ");
981 ps (e->X_add_symbol);
982 fprintf (stdout, "\n");
983 }
984 if (e->X_op_symbol)
985 {
986 fprintf (stdout, " op_symbol ");
987 ps (e->X_op_symbol);
988 fprintf (stdout, "\n");
989 }
990 }
991
992 static void
993 ps (s)
994 symbolS *s;
995 {
996 fprintf (stdout, "%s type %s%s",
997 S_GET_NAME (s),
998 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
999 segment_name (S_GET_SEGMENT (s)));
1000 }
1001
1002 struct type_name
1003 {
1004 unsigned int mask;
1005 char *tname;
1006 }
1007
1008 type_names[] =
1009 {
1010 { Reg8, "r8" },
1011 { Reg16, "r16" },
1012 { Reg32, "r32" },
1013 { Reg64, "r64" },
1014 { Imm8, "i8" },
1015 { Imm8S, "i8s" },
1016 { Imm16, "i16" },
1017 { Imm32, "i32" },
1018 { Imm32S, "i32s" },
1019 { Imm64, "i64" },
1020 { Imm1, "i1" },
1021 { BaseIndex, "BaseIndex" },
1022 { Disp8, "d8" },
1023 { Disp16, "d16" },
1024 { Disp32, "d32" },
1025 { Disp32S, "d32s" },
1026 { Disp64, "d64" },
1027 { InOutPortReg, "InOutPortReg" },
1028 { ShiftCount, "ShiftCount" },
1029 { Control, "control reg" },
1030 { Test, "test reg" },
1031 { Debug, "debug reg" },
1032 { FloatReg, "FReg" },
1033 { FloatAcc, "FAcc" },
1034 { SReg2, "SReg2" },
1035 { SReg3, "SReg3" },
1036 { Acc, "Acc" },
1037 { JumpAbsolute, "Jump Absolute" },
1038 { RegMMX, "rMMX" },
1039 { RegXMM, "rXMM" },
1040 { EsSeg, "es" },
1041 { 0, "" }
1042 };
1043
1044 static void
1045 pt (t)
1046 unsigned int t;
1047 {
1048 register struct type_name *ty;
1049
1050 for (ty = type_names; ty->mask; ty++)
1051 if (t & ty->mask)
1052 fprintf (stdout, "%s, ", ty->tname);
1053 fflush (stdout);
1054 }
1055
1056 #endif /* DEBUG386 */
1057 \f
1058 int
1059 tc_i386_force_relocation (fixp)
1060 struct fix *fixp;
1061 {
1062 #ifdef BFD_ASSEMBLER
1063 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1064 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1065 return 1;
1066 return 0;
1067 #else
1068 /* For COFF. */
1069 return fixp->fx_r_type == 7;
1070 #endif
1071 }
1072
1073 #ifdef BFD_ASSEMBLER
1074
1075 static bfd_reloc_code_real_type
1076 reloc (size, pcrel, sign, other)
1077 int size;
1078 int pcrel;
1079 int sign;
1080 bfd_reloc_code_real_type other;
1081 {
1082 if (other != NO_RELOC)
1083 return other;
1084
1085 if (pcrel)
1086 {
1087 if (!sign)
1088 as_bad(_("There are no unsigned pc-relative relocations"));
1089 switch (size)
1090 {
1091 case 1: return BFD_RELOC_8_PCREL;
1092 case 2: return BFD_RELOC_16_PCREL;
1093 case 4: return BFD_RELOC_32_PCREL;
1094 }
1095 as_bad (_("can not do %d byte pc-relative relocation"), size);
1096 }
1097 else
1098 {
1099 if (sign)
1100 switch (size)
1101 {
1102 case 4: return BFD_RELOC_X86_64_32S;
1103 }
1104 else
1105 switch (size)
1106 {
1107 case 1: return BFD_RELOC_8;
1108 case 2: return BFD_RELOC_16;
1109 case 4: return BFD_RELOC_32;
1110 case 8: return BFD_RELOC_64;
1111 }
1112 as_bad (_("can not do %s %d byte relocation"),
1113 sign ? "signed" : "unsigned", size);
1114 }
1115
1116 abort();
1117 return BFD_RELOC_NONE;
1118 }
1119
1120 /* Here we decide which fixups can be adjusted to make them relative to
1121 the beginning of the section instead of the symbol. Basically we need
1122 to make sure that the dynamic relocations are done correctly, so in
1123 some cases we force the original symbol to be used. */
1124
1125 int
1126 tc_i386_fix_adjustable (fixP)
1127 fixS *fixP;
1128 {
1129 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1130 /* Prevent all adjustments to global symbols, or else dynamic
1131 linking will not work correctly. */
1132 if (S_IS_EXTERNAL (fixP->fx_addsy)
1133 || S_IS_WEAK (fixP->fx_addsy))
1134 return 0;
1135 #endif
1136 /* adjust_reloc_syms doesn't know about the GOT. */
1137 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1138 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1139 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1140 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1141 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1142 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1143 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1144 return 0;
1145 return 1;
1146 }
1147 #else
1148 #define reloc(SIZE,PCREL,SIGN,OTHER) 0
1149 #define BFD_RELOC_16 0
1150 #define BFD_RELOC_32 0
1151 #define BFD_RELOC_16_PCREL 0
1152 #define BFD_RELOC_32_PCREL 0
1153 #define BFD_RELOC_386_PLT32 0
1154 #define BFD_RELOC_386_GOT32 0
1155 #define BFD_RELOC_386_GOTOFF 0
1156 #define BFD_RELOC_X86_64_PLT32 0
1157 #define BFD_RELOC_X86_64_GOT32 0
1158 #define BFD_RELOC_X86_64_GOTPCREL 0
1159 #endif
1160
1161 static int intel_float_operand PARAMS ((char *mnemonic));
1162
1163 static int
1164 intel_float_operand (mnemonic)
1165 char *mnemonic;
1166 {
1167 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
1168 return 2;
1169
1170 if (mnemonic[0] == 'f')
1171 return 1;
1172
1173 return 0;
1174 }
1175
1176 /* This is the guts of the machine-dependent assembler. LINE points to a
1177 machine dependent instruction. This function is supposed to emit
1178 the frags/bytes it assembles to. */
1179
1180 void
1181 md_assemble (line)
1182 char *line;
1183 {
1184 /* Points to template once we've found it. */
1185 const template *t;
1186
1187 /* Count the size of the instruction generated. */
1188 int insn_size = 0;
1189
1190 int j;
1191
1192 char mnemonic[MAX_MNEM_SIZE];
1193
1194 /* Initialize globals. */
1195 memset (&i, '\0', sizeof (i));
1196 for (j = 0; j < MAX_OPERANDS; j++)
1197 i.disp_reloc[j] = NO_RELOC;
1198 memset (disp_expressions, '\0', sizeof (disp_expressions));
1199 memset (im_expressions, '\0', sizeof (im_expressions));
1200 save_stack_p = save_stack;
1201
1202 /* First parse an instruction mnemonic & call i386_operand for the operands.
1203 We assume that the scrubber has arranged it so that line[0] is the valid
1204 start of a (possibly prefixed) mnemonic. */
1205 {
1206 char *l = line;
1207 char *token_start = l;
1208 char *mnem_p;
1209
1210 /* Non-zero if we found a prefix only acceptable with string insns. */
1211 const char *expecting_string_instruction = NULL;
1212
1213 while (1)
1214 {
1215 mnem_p = mnemonic;
1216 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1217 {
1218 mnem_p++;
1219 if (mnem_p >= mnemonic + sizeof (mnemonic))
1220 {
1221 as_bad (_("no such instruction: `%s'"), token_start);
1222 return;
1223 }
1224 l++;
1225 }
1226 if (!is_space_char (*l)
1227 && *l != END_OF_INSN
1228 && *l != PREFIX_SEPARATOR)
1229 {
1230 as_bad (_("invalid character %s in mnemonic"),
1231 output_invalid (*l));
1232 return;
1233 }
1234 if (token_start == l)
1235 {
1236 if (*l == PREFIX_SEPARATOR)
1237 as_bad (_("expecting prefix; got nothing"));
1238 else
1239 as_bad (_("expecting mnemonic; got nothing"));
1240 return;
1241 }
1242
1243 /* Look up instruction (or prefix) via hash table. */
1244 current_templates = hash_find (op_hash, mnemonic);
1245
1246 if (*l != END_OF_INSN
1247 && (! is_space_char (*l) || l[1] != END_OF_INSN)
1248 && current_templates
1249 && (current_templates->start->opcode_modifier & IsPrefix))
1250 {
1251 /* If we are in 16-bit mode, do not allow addr16 or data16.
1252 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1253 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1254 && (((current_templates->start->opcode_modifier & Size32) != 0)
1255 ^ (flag_code == CODE_16BIT)))
1256 {
1257 as_bad (_("redundant %s prefix"),
1258 current_templates->start->name);
1259 return;
1260 }
1261 /* Add prefix, checking for repeated prefixes. */
1262 switch (add_prefix (current_templates->start->base_opcode))
1263 {
1264 case 0:
1265 return;
1266 case 2:
1267 expecting_string_instruction = current_templates->start->name;
1268 break;
1269 }
1270 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1271 token_start = ++l;
1272 }
1273 else
1274 break;
1275 }
1276
1277 if (!current_templates)
1278 {
1279 /* See if we can get a match by trimming off a suffix. */
1280 switch (mnem_p[-1])
1281 {
1282 case WORD_MNEM_SUFFIX:
1283 case BYTE_MNEM_SUFFIX:
1284 case QWORD_MNEM_SUFFIX:
1285 i.suffix = mnem_p[-1];
1286 mnem_p[-1] = '\0';
1287 current_templates = hash_find (op_hash, mnemonic);
1288 break;
1289 case SHORT_MNEM_SUFFIX:
1290 case LONG_MNEM_SUFFIX:
1291 if (!intel_syntax)
1292 {
1293 i.suffix = mnem_p[-1];
1294 mnem_p[-1] = '\0';
1295 current_templates = hash_find (op_hash, mnemonic);
1296 }
1297 break;
1298
1299 /* Intel Syntax. */
1300 case 'd':
1301 if (intel_syntax)
1302 {
1303 if (intel_float_operand (mnemonic))
1304 i.suffix = SHORT_MNEM_SUFFIX;
1305 else
1306 i.suffix = LONG_MNEM_SUFFIX;
1307 mnem_p[-1] = '\0';
1308 current_templates = hash_find (op_hash, mnemonic);
1309 }
1310 break;
1311 }
1312 if (!current_templates)
1313 {
1314 as_bad (_("no such instruction: `%s'"), token_start);
1315 return;
1316 }
1317 }
1318
1319 /* Check if instruction is supported on specified architecture. */
1320 if (cpu_arch_flags != 0)
1321 {
1322 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1323 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
1324 {
1325 as_warn (_("`%s' is not supported on `%s'"),
1326 current_templates->start->name, cpu_arch_name);
1327 }
1328 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1329 {
1330 as_warn (_("use .code16 to ensure correct addressing mode"));
1331 }
1332 }
1333
1334 /* Check for rep/repne without a string instruction. */
1335 if (expecting_string_instruction
1336 && !(current_templates->start->opcode_modifier & IsString))
1337 {
1338 as_bad (_("expecting string instruction after `%s'"),
1339 expecting_string_instruction);
1340 return;
1341 }
1342
1343 /* There may be operands to parse. */
1344 if (*l != END_OF_INSN)
1345 {
1346 /* 1 if operand is pending after ','. */
1347 unsigned int expecting_operand = 0;
1348
1349 /* Non-zero if operand parens not balanced. */
1350 unsigned int paren_not_balanced;
1351
1352 do
1353 {
1354 /* Skip optional white space before operand. */
1355 if (is_space_char (*l))
1356 ++l;
1357 if (!is_operand_char (*l) && *l != END_OF_INSN)
1358 {
1359 as_bad (_("invalid character %s before operand %d"),
1360 output_invalid (*l),
1361 i.operands + 1);
1362 return;
1363 }
1364 token_start = l; /* after white space */
1365 paren_not_balanced = 0;
1366 while (paren_not_balanced || *l != ',')
1367 {
1368 if (*l == END_OF_INSN)
1369 {
1370 if (paren_not_balanced)
1371 {
1372 if (!intel_syntax)
1373 as_bad (_("unbalanced parenthesis in operand %d."),
1374 i.operands + 1);
1375 else
1376 as_bad (_("unbalanced brackets in operand %d."),
1377 i.operands + 1);
1378 return;
1379 }
1380 else
1381 break; /* we are done */
1382 }
1383 else if (!is_operand_char (*l) && !is_space_char (*l))
1384 {
1385 as_bad (_("invalid character %s in operand %d"),
1386 output_invalid (*l),
1387 i.operands + 1);
1388 return;
1389 }
1390 if (!intel_syntax)
1391 {
1392 if (*l == '(')
1393 ++paren_not_balanced;
1394 if (*l == ')')
1395 --paren_not_balanced;
1396 }
1397 else
1398 {
1399 if (*l == '[')
1400 ++paren_not_balanced;
1401 if (*l == ']')
1402 --paren_not_balanced;
1403 }
1404 l++;
1405 }
1406 if (l != token_start)
1407 { /* Yes, we've read in another operand. */
1408 unsigned int operand_ok;
1409 this_operand = i.operands++;
1410 if (i.operands > MAX_OPERANDS)
1411 {
1412 as_bad (_("spurious operands; (%d operands/instruction max)"),
1413 MAX_OPERANDS);
1414 return;
1415 }
1416 /* Now parse operand adding info to 'i' as we go along. */
1417 END_STRING_AND_SAVE (l);
1418
1419 if (intel_syntax)
1420 operand_ok =
1421 i386_intel_operand (token_start,
1422 intel_float_operand (mnemonic));
1423 else
1424 operand_ok = i386_operand (token_start);
1425
1426 RESTORE_END_STRING (l);
1427 if (!operand_ok)
1428 return;
1429 }
1430 else
1431 {
1432 if (expecting_operand)
1433 {
1434 expecting_operand_after_comma:
1435 as_bad (_("expecting operand after ','; got nothing"));
1436 return;
1437 }
1438 if (*l == ',')
1439 {
1440 as_bad (_("expecting operand before ','; got nothing"));
1441 return;
1442 }
1443 }
1444
1445 /* Now *l must be either ',' or END_OF_INSN. */
1446 if (*l == ',')
1447 {
1448 if (*++l == END_OF_INSN)
1449 {
1450 /* Just skip it, if it's \n complain. */
1451 goto expecting_operand_after_comma;
1452 }
1453 expecting_operand = 1;
1454 }
1455 }
1456 while (*l != END_OF_INSN);
1457 }
1458 }
1459
1460 /* Now we've parsed the mnemonic into a set of templates, and have the
1461 operands at hand.
1462
1463 Next, we find a template that matches the given insn,
1464 making sure the overlap of the given operands types is consistent
1465 with the template operand types. */
1466
1467 #define MATCH(overlap, given, template) \
1468 ((overlap & ~JumpAbsolute) \
1469 && ((given) & (BaseIndex|JumpAbsolute)) == ((overlap) & (BaseIndex|JumpAbsolute)))
1470
1471 /* If given types r0 and r1 are registers they must be of the same type
1472 unless the expected operand type register overlap is null.
1473 Note that Acc in a template matches every size of reg. */
1474 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1475 ( ((g0) & Reg) == 0 || ((g1) & Reg) == 0 || \
1476 ((g0) & Reg) == ((g1) & Reg) || \
1477 ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
1478
1479 {
1480 register unsigned int overlap0, overlap1;
1481 unsigned int overlap2;
1482 unsigned int found_reverse_match;
1483 int suffix_check;
1484
1485 /* All intel opcodes have reversed operands except for "bound" and
1486 "enter". We also don't reverse intersegment "jmp" and "call"
1487 instructions with 2 immediate operands so that the immediate segment
1488 precedes the offset, as it does when in AT&T mode. "enter" and the
1489 intersegment "jmp" and "call" instructions are the only ones that
1490 have two immediate operands. */
1491 if (intel_syntax && i.operands > 1
1492 && (strcmp (mnemonic, "bound") != 0)
1493 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1494 {
1495 union i386_op temp_op;
1496 unsigned int temp_type;
1497 #ifdef BFD_ASSEMBLER
1498 enum bfd_reloc_code_real temp_reloc;
1499 #else
1500 int temp_reloc;
1501 #endif
1502 int xchg1 = 0;
1503 int xchg2 = 0;
1504
1505 if (i.operands == 2)
1506 {
1507 xchg1 = 0;
1508 xchg2 = 1;
1509 }
1510 else if (i.operands == 3)
1511 {
1512 xchg1 = 0;
1513 xchg2 = 2;
1514 }
1515 temp_type = i.types[xchg2];
1516 i.types[xchg2] = i.types[xchg1];
1517 i.types[xchg1] = temp_type;
1518 temp_op = i.op[xchg2];
1519 i.op[xchg2] = i.op[xchg1];
1520 i.op[xchg1] = temp_op;
1521 temp_reloc = i.disp_reloc[xchg2];
1522 i.disp_reloc[xchg2] = i.disp_reloc[xchg1];
1523 i.disp_reloc[xchg1] = temp_reloc;
1524
1525 if (i.mem_operands == 2)
1526 {
1527 const seg_entry *temp_seg;
1528 temp_seg = i.seg[0];
1529 i.seg[0] = i.seg[1];
1530 i.seg[1] = temp_seg;
1531 }
1532 }
1533
1534 if (i.imm_operands)
1535 {
1536 /* Try to ensure constant immediates are represented in the smallest
1537 opcode possible. */
1538 char guess_suffix = 0;
1539 int op;
1540
1541 if (i.suffix)
1542 guess_suffix = i.suffix;
1543 else if (i.reg_operands)
1544 {
1545 /* Figure out a suffix from the last register operand specified.
1546 We can't do this properly yet, ie. excluding InOutPortReg,
1547 but the following works for instructions with immediates.
1548 In any case, we can't set i.suffix yet. */
1549 for (op = i.operands; --op >= 0;)
1550 if (i.types[op] & Reg)
1551 {
1552 if (i.types[op] & Reg8)
1553 guess_suffix = BYTE_MNEM_SUFFIX;
1554 else if (i.types[op] & Reg16)
1555 guess_suffix = WORD_MNEM_SUFFIX;
1556 else if (i.types[op] & Reg32)
1557 guess_suffix = LONG_MNEM_SUFFIX;
1558 else if (i.types[op] & Reg64)
1559 guess_suffix = QWORD_MNEM_SUFFIX;
1560 break;
1561 }
1562 }
1563 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1564 guess_suffix = WORD_MNEM_SUFFIX;
1565
1566 for (op = i.operands; --op >= 0;)
1567 if (i.types[op] & Imm)
1568 {
1569 switch (i.op[op].imms->X_op)
1570 {
1571 case O_constant:
1572 /* If a suffix is given, this operand may be shortened. */
1573 switch (guess_suffix)
1574 {
1575 case LONG_MNEM_SUFFIX:
1576 i.types[op] |= Imm32 | Imm64;
1577 break;
1578 case WORD_MNEM_SUFFIX:
1579 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1580 break;
1581 case BYTE_MNEM_SUFFIX:
1582 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1583 break;
1584 }
1585
1586 /* If this operand is at most 16 bits, convert it to a
1587 signed 16 bit number before trying to see whether it will
1588 fit in an even smaller size. This allows a 16-bit operand
1589 such as $0xffe0 to be recognised as within Imm8S range. */
1590 if ((i.types[op] & Imm16)
1591 && (i.op[op].imms->X_add_number & ~(offsetT)0xffff) == 0)
1592 {
1593 i.op[op].imms->X_add_number =
1594 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1595 }
1596 if ((i.types[op] & Imm32)
1597 && (i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1)) == 0)
1598 {
1599 i.op[op].imms->X_add_number =
1600 (i.op[op].imms->X_add_number ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1601 }
1602 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
1603 /* We must avoid matching of Imm32 templates when 64bit only immediate is available. */
1604 if (guess_suffix == QWORD_MNEM_SUFFIX)
1605 i.types[op] &= ~Imm32;
1606 break;
1607 case O_absent:
1608 case O_register:
1609 abort();
1610 /* Symbols and expressions. */
1611 default:
1612 /* Convert symbolic operand to proper sizes for matching. */
1613 switch (guess_suffix)
1614 {
1615 case QWORD_MNEM_SUFFIX:
1616 i.types[op] = Imm64 | Imm32S;
1617 break;
1618 case LONG_MNEM_SUFFIX:
1619 i.types[op] = Imm32 | Imm64;
1620 break;
1621 case WORD_MNEM_SUFFIX:
1622 i.types[op] = Imm16 | Imm32 | Imm64;
1623 break;
1624 break;
1625 case BYTE_MNEM_SUFFIX:
1626 i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
1627 break;
1628 break;
1629 }
1630 break;
1631 }
1632 }
1633 }
1634
1635 if (i.disp_operands)
1636 {
1637 /* Try to use the smallest displacement type too. */
1638 int op;
1639
1640 for (op = i.operands; --op >= 0;)
1641 if ((i.types[op] & Disp)
1642 && i.op[op].imms->X_op == O_constant)
1643 {
1644 offsetT disp = i.op[op].disps->X_add_number;
1645
1646 if (i.types[op] & Disp16)
1647 {
1648 /* We know this operand is at most 16 bits, so
1649 convert to a signed 16 bit number before trying
1650 to see whether it will fit in an even smaller
1651 size. */
1652
1653 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
1654 }
1655 else if (i.types[op] & Disp32)
1656 {
1657 /* We know this operand is at most 32 bits, so convert to a
1658 signed 32 bit number before trying to see whether it will
1659 fit in an even smaller size. */
1660 disp &= (((offsetT) 2 << 31) - 1);
1661 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1662 }
1663 if (flag_code == CODE_64BIT)
1664 {
1665 if (fits_in_signed_long (disp))
1666 i.types[op] |= Disp32S;
1667 if (fits_in_unsigned_long (disp))
1668 i.types[op] |= Disp32;
1669 }
1670 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
1671 && fits_in_signed_byte (disp))
1672 i.types[op] |= Disp8;
1673 }
1674 }
1675
1676 overlap0 = 0;
1677 overlap1 = 0;
1678 overlap2 = 0;
1679 found_reverse_match = 0;
1680 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
1681 ? No_bSuf
1682 : (i.suffix == WORD_MNEM_SUFFIX
1683 ? No_wSuf
1684 : (i.suffix == SHORT_MNEM_SUFFIX
1685 ? No_sSuf
1686 : (i.suffix == LONG_MNEM_SUFFIX
1687 ? No_lSuf
1688 : (i.suffix == QWORD_MNEM_SUFFIX
1689 ? No_qSuf
1690 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX ? No_xSuf : 0))))));
1691
1692 for (t = current_templates->start;
1693 t < current_templates->end;
1694 t++)
1695 {
1696 /* Must have right number of operands. */
1697 if (i.operands != t->operands)
1698 continue;
1699
1700 /* Check the suffix, except for some instructions in intel mode. */
1701 if ((t->opcode_modifier & suffix_check)
1702 && !(intel_syntax
1703 && (t->opcode_modifier & IgnoreSize))
1704 && !(intel_syntax
1705 && t->base_opcode == 0xd9
1706 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
1707 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
1708 continue;
1709
1710 else if (!t->operands)
1711 /* 0 operands always matches. */
1712 break;
1713
1714 overlap0 = i.types[0] & t->operand_types[0];
1715 switch (t->operands)
1716 {
1717 case 1:
1718 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
1719 continue;
1720 break;
1721 case 2:
1722 case 3:
1723 overlap1 = i.types[1] & t->operand_types[1];
1724 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
1725 || !MATCH (overlap1, i.types[1], t->operand_types[1])
1726 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1727 t->operand_types[0],
1728 overlap1, i.types[1],
1729 t->operand_types[1]))
1730 {
1731 /* Check if other direction is valid ... */
1732 if ((t->opcode_modifier & (D|FloatD)) == 0)
1733 continue;
1734
1735 /* Try reversing direction of operands. */
1736 overlap0 = i.types[0] & t->operand_types[1];
1737 overlap1 = i.types[1] & t->operand_types[0];
1738 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
1739 || !MATCH (overlap1, i.types[1], t->operand_types[0])
1740 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1741 t->operand_types[1],
1742 overlap1, i.types[1],
1743 t->operand_types[0]))
1744 {
1745 /* Does not match either direction. */
1746 continue;
1747 }
1748 /* found_reverse_match holds which of D or FloatDR
1749 we've found. */
1750 found_reverse_match = t->opcode_modifier & (D|FloatDR);
1751 }
1752 /* Found a forward 2 operand match here. */
1753 else if (t->operands == 3)
1754 {
1755 /* Here we make use of the fact that there are no
1756 reverse match 3 operand instructions, and all 3
1757 operand instructions only need to be checked for
1758 register consistency between operands 2 and 3. */
1759 overlap2 = i.types[2] & t->operand_types[2];
1760 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
1761 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
1762 t->operand_types[1],
1763 overlap2, i.types[2],
1764 t->operand_types[2]))
1765
1766 continue;
1767 }
1768 /* Found either forward/reverse 2 or 3 operand match here:
1769 slip through to break. */
1770 }
1771 if (t->cpu_flags & ~cpu_arch_flags)
1772 {
1773 found_reverse_match = 0;
1774 continue;
1775 }
1776 /* We've found a match; break out of loop. */
1777 break;
1778 }
1779 if (t == current_templates->end)
1780 {
1781 /* We found no match. */
1782 as_bad (_("suffix or operands invalid for `%s'"),
1783 current_templates->start->name);
1784 return;
1785 }
1786
1787 if (!quiet_warnings)
1788 {
1789 if (!intel_syntax
1790 && ((i.types[0] & JumpAbsolute)
1791 != (t->operand_types[0] & JumpAbsolute)))
1792 {
1793 as_warn (_("indirect %s without `*'"), t->name);
1794 }
1795
1796 if ((t->opcode_modifier & (IsPrefix|IgnoreSize))
1797 == (IsPrefix|IgnoreSize))
1798 {
1799 /* Warn them that a data or address size prefix doesn't
1800 affect assembly of the next line of code. */
1801 as_warn (_("stand-alone `%s' prefix"), t->name);
1802 }
1803 }
1804
1805 /* Copy the template we found. */
1806 i.tm = *t;
1807 if (found_reverse_match)
1808 {
1809 /* If we found a reverse match we must alter the opcode
1810 direction bit. found_reverse_match holds bits to change
1811 (different for int & float insns). */
1812
1813 i.tm.base_opcode ^= found_reverse_match;
1814
1815 i.tm.operand_types[0] = t->operand_types[1];
1816 i.tm.operand_types[1] = t->operand_types[0];
1817 }
1818
1819 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1820 if (SYSV386_COMPAT
1821 && intel_syntax
1822 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1823 i.tm.base_opcode ^= FloatR;
1824
1825 if (i.tm.opcode_modifier & FWait)
1826 if (! add_prefix (FWAIT_OPCODE))
1827 return;
1828
1829 /* Check string instruction segment overrides. */
1830 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1831 {
1832 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
1833 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
1834 {
1835 if (i.seg[0] != NULL && i.seg[0] != &es)
1836 {
1837 as_bad (_("`%s' operand %d must use `%%es' segment"),
1838 i.tm.name,
1839 mem_op + 1);
1840 return;
1841 }
1842 /* There's only ever one segment override allowed per instruction.
1843 This instruction possibly has a legal segment override on the
1844 second operand, so copy the segment to where non-string
1845 instructions store it, allowing common code. */
1846 i.seg[0] = i.seg[1];
1847 }
1848 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
1849 {
1850 if (i.seg[1] != NULL && i.seg[1] != &es)
1851 {
1852 as_bad (_("`%s' operand %d must use `%%es' segment"),
1853 i.tm.name,
1854 mem_op + 2);
1855 return;
1856 }
1857 }
1858 }
1859
1860 if (i.reg_operands && flag_code < CODE_64BIT)
1861 {
1862 int op;
1863 for (op = i.operands; --op >= 0; )
1864 if ((i.types[op] & Reg)
1865 && (i.op[op].regs->reg_flags & (RegRex64|RegRex)))
1866 {
1867 as_bad (_("Extended register `%%%s' available only in 64bit mode."),
1868 i.op[op].regs->reg_name);
1869 return;
1870 }
1871 }
1872
1873 /* If matched instruction specifies an explicit instruction mnemonic
1874 suffix, use it. */
1875 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
1876 {
1877 if (i.tm.opcode_modifier & Size16)
1878 i.suffix = WORD_MNEM_SUFFIX;
1879 else if (i.tm.opcode_modifier & Size64)
1880 i.suffix = QWORD_MNEM_SUFFIX;
1881 else
1882 i.suffix = LONG_MNEM_SUFFIX;
1883 }
1884 else if (i.reg_operands)
1885 {
1886 /* If there's no instruction mnemonic suffix we try to invent one
1887 based on register operands. */
1888 if (!i.suffix)
1889 {
1890 /* We take i.suffix from the last register operand specified,
1891 Destination register type is more significant than source
1892 register type. */
1893 int op;
1894 for (op = i.operands; --op >= 0;)
1895 if ((i.types[op] & Reg)
1896 && !(i.tm.operand_types[op] & InOutPortReg))
1897 {
1898 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
1899 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
1900 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
1901 LONG_MNEM_SUFFIX);
1902 break;
1903 }
1904 }
1905 else if (i.suffix == BYTE_MNEM_SUFFIX)
1906 {
1907 int op;
1908 for (op = i.operands; --op >= 0;)
1909 {
1910 /* If this is an eight bit register, it's OK. If it's
1911 the 16 or 32 bit version of an eight bit register,
1912 we will just use the low portion, and that's OK too. */
1913 if (i.types[op] & Reg8)
1914 continue;
1915
1916 /* movzx and movsx should not generate this warning. */
1917 if (intel_syntax
1918 && (i.tm.base_opcode == 0xfb7
1919 || i.tm.base_opcode == 0xfb6
1920 || i.tm.base_opcode == 0x63
1921 || i.tm.base_opcode == 0xfbe
1922 || i.tm.base_opcode == 0xfbf))
1923 continue;
1924
1925 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
1926 #if 0
1927 /* Check that the template allows eight bit regs
1928 This kills insns such as `orb $1,%edx', which
1929 maybe should be allowed. */
1930 && (i.tm.operand_types[op] & (Reg8|InOutPortReg))
1931 #endif
1932 )
1933 {
1934 /* Prohibit these changes in the 64bit mode, since
1935 the lowering is more complicated. */
1936 if (flag_code == CODE_64BIT
1937 && (i.tm.operand_types[op] & InOutPortReg) == 0)
1938 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
1939 i.op[op].regs->reg_name,
1940 i.suffix);
1941 #if REGISTER_WARNINGS
1942 if (!quiet_warnings
1943 && (i.tm.operand_types[op] & InOutPortReg) == 0)
1944 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
1945 (i.op[op].regs - (i.types[op] & Reg16 ? 8 : 16))->reg_name,
1946 i.op[op].regs->reg_name,
1947 i.suffix);
1948 #endif
1949 continue;
1950 }
1951 /* Any other register is bad. */
1952 if (i.types[op] & (Reg | RegMMX | RegXMM
1953 | SReg2 | SReg3
1954 | Control | Debug | Test
1955 | FloatReg | FloatAcc))
1956 {
1957 as_bad (_("`%%%s' not allowed with `%s%c'"),
1958 i.op[op].regs->reg_name,
1959 i.tm.name,
1960 i.suffix);
1961 return;
1962 }
1963 }
1964 }
1965 else if (i.suffix == LONG_MNEM_SUFFIX)
1966 {
1967 int op;
1968
1969 for (op = i.operands; --op >= 0;)
1970 /* Reject eight bit registers, except where the template
1971 requires them. (eg. movzb) */
1972 if ((i.types[op] & Reg8) != 0
1973 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
1974 {
1975 as_bad (_("`%%%s' not allowed with `%s%c'"),
1976 i.op[op].regs->reg_name,
1977 i.tm.name,
1978 i.suffix);
1979 return;
1980 }
1981 /* Warn if the e prefix on a general reg is missing. */
1982 else if ((!quiet_warnings || flag_code == CODE_64BIT)
1983 && (i.types[op] & Reg16) != 0
1984 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
1985 {
1986 /* Prohibit these changes in the 64bit mode, since
1987 the lowering is more complicated. */
1988 if (flag_code == CODE_64BIT)
1989 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
1990 i.op[op].regs->reg_name,
1991 i.suffix);
1992 #if REGISTER_WARNINGS
1993 else
1994 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
1995 (i.op[op].regs + 8)->reg_name,
1996 i.op[op].regs->reg_name,
1997 i.suffix);
1998 #endif
1999 }
2000 /* Warn if the r prefix on a general reg is missing. */
2001 else if ((i.types[op] & Reg64) != 0
2002 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2003 {
2004 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2005 i.op[op].regs->reg_name,
2006 i.suffix);
2007 }
2008 }
2009 else if (i.suffix == QWORD_MNEM_SUFFIX)
2010 {
2011 int op;
2012
2013 for (op = i.operands; --op >= 0; )
2014 /* Reject eight bit registers, except where the template
2015 requires them. (eg. movzb) */
2016 if ((i.types[op] & Reg8) != 0
2017 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2018 {
2019 as_bad (_("`%%%s' not allowed with `%s%c'"),
2020 i.op[op].regs->reg_name,
2021 i.tm.name,
2022 i.suffix);
2023 return;
2024 }
2025 /* Warn if the e prefix on a general reg is missing. */
2026 else if (((i.types[op] & Reg16) != 0
2027 || (i.types[op] & Reg32) != 0)
2028 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2029 {
2030 /* Prohibit these changes in the 64bit mode, since
2031 the lowering is more complicated. */
2032 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2033 i.op[op].regs->reg_name,
2034 i.suffix);
2035 }
2036 }
2037 else if (i.suffix == WORD_MNEM_SUFFIX)
2038 {
2039 int op;
2040 for (op = i.operands; --op >= 0;)
2041 /* Reject eight bit registers, except where the template
2042 requires them. (eg. movzb) */
2043 if ((i.types[op] & Reg8) != 0
2044 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2045 {
2046 as_bad (_("`%%%s' not allowed with `%s%c'"),
2047 i.op[op].regs->reg_name,
2048 i.tm.name,
2049 i.suffix);
2050 return;
2051 }
2052 /* Warn if the e prefix on a general reg is present. */
2053 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2054 && (i.types[op] & Reg32) != 0
2055 && (i.tm.operand_types[op] & (Reg16|Acc)) != 0)
2056 {
2057 /* Prohibit these changes in the 64bit mode, since
2058 the lowering is more complicated. */
2059 if (flag_code == CODE_64BIT)
2060 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2061 i.op[op].regs->reg_name,
2062 i.suffix);
2063 else
2064 #if REGISTER_WARNINGS
2065 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2066 (i.op[op].regs - 8)->reg_name,
2067 i.op[op].regs->reg_name,
2068 i.suffix);
2069 #endif
2070 }
2071 }
2072 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2073 /* Do nothing if the instruction is going to ignore the prefix. */
2074 ;
2075 else
2076 abort ();
2077 }
2078 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
2079 {
2080 i.suffix = stackop_size;
2081 }
2082 /* Make still unresolved immediate matches conform to size of immediate
2083 given in i.suffix. Note: overlap2 cannot be an immediate! */
2084 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
2085 && overlap0 != Imm8 && overlap0 != Imm8S
2086 && overlap0 != Imm16 && overlap0 != Imm32S
2087 && overlap0 != Imm32 && overlap0 != Imm64)
2088 {
2089 if (i.suffix)
2090 {
2091 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
2092 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
2093 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
2094 }
2095 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2096 || overlap0 == (Imm16 | Imm32)
2097 || overlap0 == (Imm16 | Imm32S))
2098 {
2099 overlap0 =
2100 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
2101 }
2102 if (overlap0 != Imm8 && overlap0 != Imm8S
2103 && overlap0 != Imm16 && overlap0 != Imm32S
2104 && overlap0 != Imm32 && overlap0 != Imm64)
2105 {
2106 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2107 return;
2108 }
2109 }
2110 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
2111 && overlap1 != Imm8 && overlap1 != Imm8S
2112 && overlap1 != Imm16 && overlap1 != Imm32S
2113 && overlap1 != Imm32 && overlap1 != Imm64)
2114 {
2115 if (i.suffix)
2116 {
2117 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
2118 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
2119 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
2120 }
2121 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2122 || overlap1 == (Imm16 | Imm32)
2123 || overlap1 == (Imm16 | Imm32S))
2124 {
2125 overlap1 =
2126 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
2127 }
2128 if (overlap1 != Imm8 && overlap1 != Imm8S
2129 && overlap1 != Imm16 && overlap1 != Imm32S
2130 && overlap1 != Imm32 && overlap1 != Imm64)
2131 {
2132 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2133 return;
2134 }
2135 }
2136 assert ((overlap2 & Imm) == 0);
2137
2138 i.types[0] = overlap0;
2139 if (overlap0 & ImplicitRegister)
2140 i.reg_operands--;
2141 if (overlap0 & Imm1)
2142 i.imm_operands = 0; /* kludge for shift insns. */
2143
2144 i.types[1] = overlap1;
2145 if (overlap1 & ImplicitRegister)
2146 i.reg_operands--;
2147
2148 i.types[2] = overlap2;
2149 if (overlap2 & ImplicitRegister)
2150 i.reg_operands--;
2151
2152 /* Finalize opcode. First, we change the opcode based on the operand
2153 size given by i.suffix: We need not change things for byte insns. */
2154
2155 if (!i.suffix && (i.tm.opcode_modifier & W))
2156 {
2157 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2158 return;
2159 }
2160
2161 /* For movzx and movsx, need to check the register type. */
2162 if (intel_syntax
2163 && (i.tm.base_opcode == 0xfb6 || i.tm.base_opcode == 0xfbe))
2164 if (i.suffix && i.suffix == BYTE_MNEM_SUFFIX)
2165 {
2166 unsigned int prefix = DATA_PREFIX_OPCODE;
2167
2168 if ((i.op[1].regs->reg_type & Reg16) != 0)
2169 if (!add_prefix (prefix))
2170 return;
2171 }
2172
2173 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2174 {
2175 /* It's not a byte, select word/dword operation. */
2176 if (i.tm.opcode_modifier & W)
2177 {
2178 if (i.tm.opcode_modifier & ShortForm)
2179 i.tm.base_opcode |= 8;
2180 else
2181 i.tm.base_opcode |= 1;
2182 }
2183 /* Now select between word & dword operations via the operand
2184 size prefix, except for instructions that will ignore this
2185 prefix anyway. */
2186 if (i.suffix != QWORD_MNEM_SUFFIX
2187 && (i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2188 && !(i.tm.opcode_modifier & IgnoreSize))
2189 {
2190 unsigned int prefix = DATA_PREFIX_OPCODE;
2191 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2192 prefix = ADDR_PREFIX_OPCODE;
2193
2194 if (! add_prefix (prefix))
2195 return;
2196 }
2197
2198 /* Set mode64 for an operand. */
2199 if (i.suffix == QWORD_MNEM_SUFFIX
2200 && !(i.tm.opcode_modifier & NoRex64))
2201 {
2202 i.rex.mode64 = 1;
2203 if (flag_code < CODE_64BIT)
2204 {
2205 as_bad (_("64bit operations available only in 64bit modes."));
2206 return;
2207 }
2208 }
2209
2210 /* Size floating point instruction. */
2211 if (i.suffix == LONG_MNEM_SUFFIX)
2212 {
2213 if (i.tm.opcode_modifier & FloatMF)
2214 i.tm.base_opcode ^= 4;
2215 }
2216 }
2217
2218 if (i.tm.opcode_modifier & ImmExt)
2219 {
2220 /* These AMD 3DNow! and Intel Katmai New Instructions have an
2221 opcode suffix which is coded in the same place as an 8-bit
2222 immediate field would be. Here we fake an 8-bit immediate
2223 operand from the opcode suffix stored in tm.extension_opcode. */
2224
2225 expressionS *exp;
2226
2227 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
2228
2229 exp = &im_expressions[i.imm_operands++];
2230 i.op[i.operands].imms = exp;
2231 i.types[i.operands++] = Imm8;
2232 exp->X_op = O_constant;
2233 exp->X_add_number = i.tm.extension_opcode;
2234 i.tm.extension_opcode = None;
2235 }
2236
2237 /* For insns with operands there are more diddles to do to the opcode. */
2238 if (i.operands)
2239 {
2240 /* Default segment register this instruction will use
2241 for memory accesses. 0 means unknown.
2242 This is only for optimizing out unnecessary segment overrides. */
2243 const seg_entry *default_seg = 0;
2244
2245 /* The imul $imm, %reg instruction is converted into
2246 imul $imm, %reg, %reg, and the clr %reg instruction
2247 is converted into xor %reg, %reg. */
2248 if (i.tm.opcode_modifier & regKludge)
2249 {
2250 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2251 /* Pretend we saw the extra register operand. */
2252 assert (i.op[first_reg_op + 1].regs == 0);
2253 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2254 i.types[first_reg_op + 1] = i.types[first_reg_op];
2255 i.reg_operands = 2;
2256 }
2257
2258 if (i.tm.opcode_modifier & ShortForm)
2259 {
2260 /* The register or float register operand is in operand 0 or 1. */
2261 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2262 /* Register goes in low 3 bits of opcode. */
2263 i.tm.base_opcode |= i.op[op].regs->reg_num;
2264 if (i.op[op].regs->reg_flags & RegRex)
2265 i.rex.extZ=1;
2266 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2267 {
2268 /* Warn about some common errors, but press on regardless.
2269 The first case can be generated by gcc (<= 2.8.1). */
2270 if (i.operands == 2)
2271 {
2272 /* Reversed arguments on faddp, fsubp, etc. */
2273 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2274 i.op[1].regs->reg_name,
2275 i.op[0].regs->reg_name);
2276 }
2277 else
2278 {
2279 /* Extraneous `l' suffix on fp insn. */
2280 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2281 i.op[0].regs->reg_name);
2282 }
2283 }
2284 }
2285 else if (i.tm.opcode_modifier & Modrm)
2286 {
2287 /* The opcode is completed (modulo i.tm.extension_opcode which
2288 must be put into the modrm byte).
2289 Now, we make the modrm & index base bytes based on all the
2290 info we've collected. */
2291
2292 /* i.reg_operands MUST be the number of real register operands;
2293 implicit registers do not count. */
2294 if (i.reg_operands == 2)
2295 {
2296 unsigned int source, dest;
2297 source = ((i.types[0]
2298 & (Reg | RegMMX | RegXMM
2299 | SReg2 | SReg3
2300 | Control | Debug | Test))
2301 ? 0 : 1);
2302 dest = source + 1;
2303
2304 i.rm.mode = 3;
2305 /* One of the register operands will be encoded in the
2306 i.tm.reg field, the other in the combined i.tm.mode
2307 and i.tm.regmem fields. If no form of this
2308 instruction supports a memory destination operand,
2309 then we assume the source operand may sometimes be
2310 a memory operand and so we need to store the
2311 destination in the i.rm.reg field. */
2312 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2313 {
2314 i.rm.reg = i.op[dest].regs->reg_num;
2315 i.rm.regmem = i.op[source].regs->reg_num;
2316 if (i.op[dest].regs->reg_flags & RegRex)
2317 i.rex.extX=1;
2318 if (i.op[source].regs->reg_flags & RegRex)
2319 i.rex.extZ=1;
2320 }
2321 else
2322 {
2323 i.rm.reg = i.op[source].regs->reg_num;
2324 i.rm.regmem = i.op[dest].regs->reg_num;
2325 if (i.op[dest].regs->reg_flags & RegRex)
2326 i.rex.extZ=1;
2327 if (i.op[source].regs->reg_flags & RegRex)
2328 i.rex.extX=1;
2329 }
2330 }
2331 else
2332 { /* If it's not 2 reg operands... */
2333 if (i.mem_operands)
2334 {
2335 unsigned int fake_zero_displacement = 0;
2336 unsigned int op = ((i.types[0] & AnyMem)
2337 ? 0
2338 : (i.types[1] & AnyMem) ? 1 : 2);
2339
2340 default_seg = &ds;
2341
2342 if (! i.base_reg)
2343 {
2344 i.rm.mode = 0;
2345 if (! i.disp_operands)
2346 fake_zero_displacement = 1;
2347 if (! i.index_reg)
2348 {
2349 /* Operand is just <disp> */
2350 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
2351 {
2352 i.rm.regmem = NO_BASE_REGISTER_16;
2353 i.types[op] &= ~Disp;
2354 i.types[op] |= Disp16;
2355 }
2356 else if (flag_code != CODE_64BIT)
2357 {
2358 i.rm.regmem = NO_BASE_REGISTER;
2359 i.types[op] &= ~Disp;
2360 i.types[op] |= Disp32;
2361 }
2362 else
2363 {
2364 /* 64bit mode overwrites the 32bit absolute addressing
2365 by RIP relative addressing and absolute addressing
2366 is encoded by one of the redundant SIB forms. */
2367
2368 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2369 i.sib.base = NO_BASE_REGISTER;
2370 i.sib.index = NO_INDEX_REGISTER;
2371 i.types[op] &= ~Disp;
2372 i.types[op] |= Disp32S;
2373 }
2374 }
2375 else /* ! i.base_reg && i.index_reg */
2376 {
2377 i.sib.index = i.index_reg->reg_num;
2378 i.sib.base = NO_BASE_REGISTER;
2379 i.sib.scale = i.log2_scale_factor;
2380 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2381 i.types[op] &= ~Disp;
2382 if (flag_code != CODE_64BIT)
2383 i.types[op] |= Disp32; /* Must be 32 bit */
2384 else
2385 i.types[op] |= Disp32S;
2386 if (i.index_reg->reg_flags & RegRex)
2387 i.rex.extY=1;
2388 }
2389 }
2390 /* RIP addressing for 64bit mode. */
2391 else if (i.base_reg->reg_type == BaseIndex)
2392 {
2393 i.rm.regmem = NO_BASE_REGISTER;
2394 i.types[op] &= ~Disp;
2395 i.types[op] |= Disp32S;
2396 i.flags[op] = Operand_PCrel;
2397 }
2398 else if (i.base_reg->reg_type & Reg16)
2399 {
2400 switch (i.base_reg->reg_num)
2401 {
2402 case 3: /* (%bx) */
2403 if (! i.index_reg)
2404 i.rm.regmem = 7;
2405 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2406 i.rm.regmem = i.index_reg->reg_num - 6;
2407 break;
2408 case 5: /* (%bp) */
2409 default_seg = &ss;
2410 if (! i.index_reg)
2411 {
2412 i.rm.regmem = 6;
2413 if ((i.types[op] & Disp) == 0)
2414 {
2415 /* fake (%bp) into 0(%bp) */
2416 i.types[op] |= Disp8;
2417 fake_zero_displacement = 1;
2418 }
2419 }
2420 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2421 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2422 break;
2423 default: /* (%si) -> 4 or (%di) -> 5 */
2424 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2425 }
2426 i.rm.mode = mode_from_disp_size (i.types[op]);
2427 }
2428 else /* i.base_reg and 32/64 bit mode */
2429 {
2430 if (flag_code == CODE_64BIT
2431 && (i.types[op] & Disp))
2432 {
2433 if (i.types[op] & Disp8)
2434 i.types[op] = Disp8 | Disp32S;
2435 else
2436 i.types[op] = Disp32S;
2437 }
2438 i.rm.regmem = i.base_reg->reg_num;
2439 if (i.base_reg->reg_flags & RegRex)
2440 i.rex.extZ=1;
2441 i.sib.base = i.base_reg->reg_num;
2442 /* x86-64 ignores REX prefix bit here to avoid
2443 decoder complications. */
2444 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2445 {
2446 default_seg = &ss;
2447 if (i.disp_operands == 0)
2448 {
2449 fake_zero_displacement = 1;
2450 i.types[op] |= Disp8;
2451 }
2452 }
2453 else if (i.base_reg->reg_num == ESP_REG_NUM)
2454 {
2455 default_seg = &ss;
2456 }
2457 i.sib.scale = i.log2_scale_factor;
2458 if (! i.index_reg)
2459 {
2460 /* <disp>(%esp) becomes two byte modrm
2461 with no index register. We've already
2462 stored the code for esp in i.rm.regmem
2463 ie. ESCAPE_TO_TWO_BYTE_ADDRESSING. Any
2464 base register besides %esp will not use
2465 the extra modrm byte. */
2466 i.sib.index = NO_INDEX_REGISTER;
2467 #if ! SCALE1_WHEN_NO_INDEX
2468 /* Another case where we force the second
2469 modrm byte. */
2470 if (i.log2_scale_factor)
2471 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2472 #endif
2473 }
2474 else
2475 {
2476 i.sib.index = i.index_reg->reg_num;
2477 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2478 if (i.index_reg->reg_flags & RegRex)
2479 i.rex.extY=1;
2480 }
2481 i.rm.mode = mode_from_disp_size (i.types[op]);
2482 }
2483
2484 if (fake_zero_displacement)
2485 {
2486 /* Fakes a zero displacement assuming that i.types[op]
2487 holds the correct displacement size. */
2488 expressionS *exp;
2489
2490 assert (i.op[op].disps == 0);
2491 exp = &disp_expressions[i.disp_operands++];
2492 i.op[op].disps = exp;
2493 exp->X_op = O_constant;
2494 exp->X_add_number = 0;
2495 exp->X_add_symbol = (symbolS *) 0;
2496 exp->X_op_symbol = (symbolS *) 0;
2497 }
2498 }
2499
2500 /* Fill in i.rm.reg or i.rm.regmem field with register
2501 operand (if any) based on i.tm.extension_opcode.
2502 Again, we must be careful to make sure that
2503 segment/control/debug/test/MMX registers are coded
2504 into the i.rm.reg field. */
2505 if (i.reg_operands)
2506 {
2507 unsigned int op =
2508 ((i.types[0]
2509 & (Reg | RegMMX | RegXMM
2510 | SReg2 | SReg3
2511 | Control | Debug | Test))
2512 ? 0
2513 : ((i.types[1]
2514 & (Reg | RegMMX | RegXMM
2515 | SReg2 | SReg3
2516 | Control | Debug | Test))
2517 ? 1
2518 : 2));
2519 /* If there is an extension opcode to put here, the
2520 register number must be put into the regmem field. */
2521 if (i.tm.extension_opcode != None)
2522 {
2523 i.rm.regmem = i.op[op].regs->reg_num;
2524 if (i.op[op].regs->reg_flags & RegRex)
2525 i.rex.extZ=1;
2526 }
2527 else
2528 {
2529 i.rm.reg = i.op[op].regs->reg_num;
2530 if (i.op[op].regs->reg_flags & RegRex)
2531 i.rex.extX=1;
2532 }
2533
2534 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2
2535 we must set it to 3 to indicate this is a register
2536 operand in the regmem field. */
2537 if (!i.mem_operands)
2538 i.rm.mode = 3;
2539 }
2540
2541 /* Fill in i.rm.reg field with extension opcode (if any). */
2542 if (i.tm.extension_opcode != None)
2543 i.rm.reg = i.tm.extension_opcode;
2544 }
2545 }
2546 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2547 {
2548 if (i.tm.base_opcode == POP_SEG_SHORT
2549 && i.op[0].regs->reg_num == 1)
2550 {
2551 as_bad (_("you can't `pop %%cs'"));
2552 return;
2553 }
2554 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2555 if (i.op[0].regs->reg_flags & RegRex)
2556 i.rex.extZ = 1;
2557 }
2558 else if ((i.tm.base_opcode & ~(D|W)) == MOV_AX_DISP32)
2559 {
2560 default_seg = &ds;
2561 }
2562 else if ((i.tm.opcode_modifier & IsString) != 0)
2563 {
2564 /* For the string instructions that allow a segment override
2565 on one of their operands, the default segment is ds. */
2566 default_seg = &ds;
2567 }
2568
2569 /* If a segment was explicitly specified,
2570 and the specified segment is not the default,
2571 use an opcode prefix to select it.
2572 If we never figured out what the default segment is,
2573 then default_seg will be zero at this point,
2574 and the specified segment prefix will always be used. */
2575 if ((i.seg[0]) && (i.seg[0] != default_seg))
2576 {
2577 if (! add_prefix (i.seg[0]->seg_prefix))
2578 return;
2579 }
2580 }
2581 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2582 {
2583 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2584 as_warn (_("translating to `%sp'"), i.tm.name);
2585 }
2586 }
2587
2588 /* Handle conversion of 'int $3' --> special int3 insn. */
2589 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
2590 {
2591 i.tm.base_opcode = INT3_OPCODE;
2592 i.imm_operands = 0;
2593 }
2594
2595 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
2596 && i.op[0].disps->X_op == O_constant)
2597 {
2598 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2599 the absolute address given by the constant. Since ix86 jumps and
2600 calls are pc relative, we need to generate a reloc. */
2601 i.op[0].disps->X_add_symbol = &abs_symbol;
2602 i.op[0].disps->X_op = O_symbol;
2603 }
2604
2605 if (i.tm.opcode_modifier & Rex64)
2606 i.rex.mode64 = 1;
2607
2608 /* For 8bit registers we would need an empty rex prefix.
2609 Also in the case instruction is already having prefix,
2610 we need to convert old registers to new ones. */
2611
2612 if (((i.types[0] & Reg8) && (i.op[0].regs->reg_flags & RegRex64))
2613 || ((i.types[1] & Reg8) && (i.op[1].regs->reg_flags & RegRex64))
2614 || ((i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2615 && ((i.types[0] & Reg8) || (i.types[1] & Reg8))))
2616 {
2617 int x;
2618 i.rex.empty=1;
2619 for (x = 0; x < 2; x++)
2620 {
2621 /* Look for 8bit operand that does use old registers. */
2622 if (i.types[x] & Reg8
2623 && !(i.op[x].regs->reg_flags & RegRex64))
2624 {
2625 /* In case it is "hi" register, give up. */
2626 if (i.op[x].regs->reg_num > 3)
2627 as_bad (_("Can't encode registers '%%%s' in the instruction requiring REX prefix.\n"),
2628 i.op[x].regs->reg_name);
2629
2630 /* Otherwise it is equivalent to the extended register.
2631 Since the encoding don't change this is merely cosmetical
2632 cleanup for debug output. */
2633
2634 i.op[x].regs = i.op[x].regs + 8;
2635 }
2636 }
2637 }
2638
2639 if (i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2640 add_prefix (0x40
2641 | (i.rex.mode64 ? 8 : 0)
2642 | (i.rex.extX ? 4 : 0)
2643 | (i.rex.extY ? 2 : 0)
2644 | (i.rex.extZ ? 1 : 0));
2645
2646 /* We are ready to output the insn. */
2647 {
2648 register char *p;
2649
2650 /* Output jumps. */
2651 if (i.tm.opcode_modifier & Jump)
2652 {
2653 int size;
2654 int code16;
2655 int prefix;
2656
2657 code16 = 0;
2658 if (flag_code == CODE_16BIT)
2659 code16 = CODE16;
2660
2661 prefix = 0;
2662 if (i.prefix[DATA_PREFIX])
2663 {
2664 prefix = 1;
2665 i.prefixes -= 1;
2666 code16 ^= CODE16;
2667 }
2668 if (i.prefix[REX_PREFIX])
2669 {
2670 prefix++;
2671 i.prefixes --;
2672 }
2673
2674 size = 4;
2675 if (code16)
2676 size = 2;
2677
2678 if (i.prefixes != 0 && !intel_syntax)
2679 as_warn (_("skipping prefixes on this instruction"));
2680
2681 /* It's always a symbol; End frag & setup for relax.
2682 Make sure there is enough room in this frag for the largest
2683 instruction we may generate in md_convert_frag. This is 2
2684 bytes for the opcode and room for the prefix and largest
2685 displacement. */
2686 frag_grow (prefix + 2 + size);
2687 insn_size += prefix + 1;
2688 /* Prefix and 1 opcode byte go in fr_fix. */
2689 p = frag_more (prefix + 1);
2690 if (i.prefix[DATA_PREFIX])
2691 *p++ = DATA_PREFIX_OPCODE;
2692 if (i.prefix[REX_PREFIX])
2693 *p++ = i.prefix[REX_PREFIX];
2694 *p = i.tm.base_opcode;
2695 /* 1 possible extra opcode + displacement go in var part.
2696 Pass reloc in fr_var. */
2697 frag_var (rs_machine_dependent,
2698 1 + size,
2699 i.disp_reloc[0],
2700 ((unsigned char) *p == JUMP_PC_RELATIVE
2701 ? ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL) | code16
2702 : ENCODE_RELAX_STATE (COND_JUMP, SMALL) | code16),
2703 i.op[0].disps->X_add_symbol,
2704 i.op[0].disps->X_add_number,
2705 p);
2706 }
2707 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
2708 {
2709 int size;
2710
2711 if (i.tm.opcode_modifier & JumpByte)
2712 {
2713 /* This is a loop or jecxz type instruction. */
2714 size = 1;
2715 if (i.prefix[ADDR_PREFIX])
2716 {
2717 insn_size += 1;
2718 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
2719 i.prefixes -= 1;
2720 }
2721 }
2722 else
2723 {
2724 int code16;
2725
2726 code16 = 0;
2727 if (flag_code == CODE_16BIT)
2728 code16 = CODE16;
2729
2730 if (i.prefix[DATA_PREFIX])
2731 {
2732 insn_size += 1;
2733 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
2734 i.prefixes -= 1;
2735 code16 ^= CODE16;
2736 }
2737
2738 size = 4;
2739 if (code16)
2740 size = 2;
2741 }
2742
2743 if (i.prefix[REX_PREFIX])
2744 {
2745 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
2746 insn_size++;
2747 i.prefixes -= 1;
2748 }
2749
2750 if (i.prefixes != 0 && !intel_syntax)
2751 as_warn (_("skipping prefixes on this instruction"));
2752
2753 if (fits_in_unsigned_byte (i.tm.base_opcode))
2754 {
2755 insn_size += 1 + size;
2756 p = frag_more (1 + size);
2757 }
2758 else
2759 {
2760 /* Opcode can be at most two bytes. */
2761 insn_size += 2 + size;
2762 p = frag_more (2 + size);
2763 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2764 }
2765 *p++ = i.tm.base_opcode & 0xff;
2766
2767 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2768 i.op[0].disps, 1, reloc (size, 1, 1, i.disp_reloc[0]));
2769 }
2770 else if (i.tm.opcode_modifier & JumpInterSegment)
2771 {
2772 int size;
2773 int prefix;
2774 int code16;
2775
2776 code16 = 0;
2777 if (flag_code == CODE_16BIT)
2778 code16 = CODE16;
2779
2780 prefix = 0;
2781 if (i.prefix[DATA_PREFIX])
2782 {
2783 prefix = 1;
2784 i.prefixes -= 1;
2785 code16 ^= CODE16;
2786 }
2787 if (i.prefix[REX_PREFIX])
2788 {
2789 prefix++;
2790 i.prefixes -= 1;
2791 }
2792
2793 size = 4;
2794 if (code16)
2795 size = 2;
2796
2797 if (i.prefixes != 0 && !intel_syntax)
2798 as_warn (_("skipping prefixes on this instruction"));
2799
2800 /* 1 opcode; 2 segment; offset */
2801 insn_size += prefix + 1 + 2 + size;
2802 p = frag_more (prefix + 1 + 2 + size);
2803
2804 if (i.prefix[DATA_PREFIX])
2805 *p++ = DATA_PREFIX_OPCODE;
2806
2807 if (i.prefix[REX_PREFIX])
2808 *p++ = i.prefix[REX_PREFIX];
2809
2810 *p++ = i.tm.base_opcode;
2811 if (i.op[1].imms->X_op == O_constant)
2812 {
2813 offsetT n = i.op[1].imms->X_add_number;
2814
2815 if (size == 2
2816 && !fits_in_unsigned_word (n)
2817 && !fits_in_signed_word (n))
2818 {
2819 as_bad (_("16-bit jump out of range"));
2820 return;
2821 }
2822 md_number_to_chars (p, n, size);
2823 }
2824 else
2825 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2826 i.op[1].imms, 0, reloc (size, 0, 0, i.disp_reloc[0]));
2827 if (i.op[0].imms->X_op != O_constant)
2828 as_bad (_("can't handle non absolute segment in `%s'"),
2829 i.tm.name);
2830 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
2831 }
2832 else
2833 {
2834 /* Output normal instructions here. */
2835 unsigned char *q;
2836
2837 /* All opcodes on i386 have eighter 1 or 2 bytes. We may use third
2838 byte for the SSE instructions to specify prefix they require. */
2839 if (i.tm.base_opcode & 0xff0000)
2840 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
2841
2842 /* The prefix bytes. */
2843 for (q = i.prefix;
2844 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
2845 q++)
2846 {
2847 if (*q)
2848 {
2849 insn_size += 1;
2850 p = frag_more (1);
2851 md_number_to_chars (p, (valueT) *q, 1);
2852 }
2853 }
2854
2855 /* Now the opcode; be careful about word order here! */
2856 if (fits_in_unsigned_byte (i.tm.base_opcode))
2857 {
2858 insn_size += 1;
2859 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
2860 }
2861 else
2862 {
2863 insn_size += 2;
2864 p = frag_more (2);
2865 /* Put out high byte first: can't use md_number_to_chars! */
2866 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2867 *p = i.tm.base_opcode & 0xff;
2868 }
2869
2870 /* Now the modrm byte and sib byte (if present). */
2871 if (i.tm.opcode_modifier & Modrm)
2872 {
2873 insn_size += 1;
2874 p = frag_more (1);
2875 md_number_to_chars (p,
2876 (valueT) (i.rm.regmem << 0
2877 | i.rm.reg << 3
2878 | i.rm.mode << 6),
2879 1);
2880 /* If i.rm.regmem == ESP (4)
2881 && i.rm.mode != (Register mode)
2882 && not 16 bit
2883 ==> need second modrm byte. */
2884 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
2885 && i.rm.mode != 3
2886 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
2887 {
2888 insn_size += 1;
2889 p = frag_more (1);
2890 md_number_to_chars (p,
2891 (valueT) (i.sib.base << 0
2892 | i.sib.index << 3
2893 | i.sib.scale << 6),
2894 1);
2895 }
2896 }
2897
2898 if (i.disp_operands)
2899 {
2900 register unsigned int n;
2901
2902 for (n = 0; n < i.operands; n++)
2903 {
2904 if (i.types[n] & Disp)
2905 {
2906 if (i.op[n].disps->X_op == O_constant)
2907 {
2908 int size;
2909 offsetT val;
2910
2911 size = 4;
2912 if (i.types[n] & (Disp8 | Disp16 | Disp64))
2913 {
2914 size = 2;
2915 if (i.types[n] & Disp8)
2916 size = 1;
2917 if (i.types[n] & Disp64)
2918 size = 8;
2919 }
2920 val = offset_in_range (i.op[n].disps->X_add_number,
2921 size);
2922 insn_size += size;
2923 p = frag_more (size);
2924 md_number_to_chars (p, val, size);
2925 }
2926 else
2927 {
2928 int size = 4;
2929 int sign = 0;
2930 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
2931
2932 /* The PC relative address is computed relative
2933 to the instruction boundary, so in case immediate
2934 fields follows, we need to adjust the value. */
2935 if (pcrel && i.imm_operands)
2936 {
2937 int imm_size = 4;
2938 register unsigned int n1;
2939
2940 for (n1 = 0; n1 < i.operands; n1++)
2941 if (i.types[n1] & Imm)
2942 {
2943 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
2944 {
2945 imm_size = 2;
2946 if (i.types[n1] & (Imm8 | Imm8S))
2947 imm_size = 1;
2948 if (i.types[n1] & Imm64)
2949 imm_size = 8;
2950 }
2951 break;
2952 }
2953 /* We should find the immediate. */
2954 if (n1 == i.operands)
2955 abort();
2956 i.op[n].disps->X_add_number -= imm_size;
2957 }
2958
2959 if (i.types[n] & Disp32S)
2960 sign = 1;
2961
2962 if (i.types[n] & (Disp16 | Disp64))
2963 {
2964 size = 2;
2965 if (i.types[n] & Disp64)
2966 size = 8;
2967 }
2968
2969 insn_size += size;
2970 p = frag_more (size);
2971 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2972 i.op[n].disps, pcrel,
2973 reloc (size, pcrel, sign, i.disp_reloc[n]));
2974 }
2975 }
2976 }
2977 }
2978
2979 /* Output immediate. */
2980 if (i.imm_operands)
2981 {
2982 register unsigned int n;
2983
2984 for (n = 0; n < i.operands; n++)
2985 {
2986 if (i.types[n] & Imm)
2987 {
2988 if (i.op[n].imms->X_op == O_constant)
2989 {
2990 int size;
2991 offsetT val;
2992
2993 size = 4;
2994 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
2995 {
2996 size = 2;
2997 if (i.types[n] & (Imm8 | Imm8S))
2998 size = 1;
2999 else if (i.types[n] & Imm64)
3000 size = 8;
3001 }
3002 val = offset_in_range (i.op[n].imms->X_add_number,
3003 size);
3004 insn_size += size;
3005 p = frag_more (size);
3006 md_number_to_chars (p, val, size);
3007 }
3008 else
3009 {
3010 /* Not absolute_section.
3011 Need a 32-bit fixup (don't support 8bit
3012 non-absolute imms). Try to support other
3013 sizes ... */
3014 #ifdef BFD_ASSEMBLER
3015 enum bfd_reloc_code_real reloc_type;
3016 #else
3017 int reloc_type;
3018 #endif
3019 int size = 4;
3020 int sign = 0;
3021
3022 if ((i.types[n] & (Imm32S))
3023 && i.suffix == QWORD_MNEM_SUFFIX)
3024 sign = 1;
3025 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3026 {
3027 size = 2;
3028 if (i.types[n] & (Imm8 | Imm8S))
3029 size = 1;
3030 if (i.types[n] & Imm64)
3031 size = 8;
3032 }
3033
3034 insn_size += size;
3035 p = frag_more (size);
3036 reloc_type = reloc (size, 0, sign, i.disp_reloc[0]);
3037 #ifdef BFD_ASSEMBLER
3038 if (reloc_type == BFD_RELOC_32
3039 && GOT_symbol
3040 && GOT_symbol == i.op[n].imms->X_add_symbol
3041 && (i.op[n].imms->X_op == O_symbol
3042 || (i.op[n].imms->X_op == O_add
3043 && ((symbol_get_value_expression
3044 (i.op[n].imms->X_op_symbol)->X_op)
3045 == O_subtract))))
3046 {
3047 /* We don't support dynamic linking on x86-64 yet. */
3048 if (flag_code == CODE_64BIT)
3049 abort();
3050 reloc_type = BFD_RELOC_386_GOTPC;
3051 i.op[n].imms->X_add_number += 3;
3052 }
3053 #endif
3054 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3055 i.op[n].imms, 0, reloc_type);
3056 }
3057 }
3058 }
3059 }
3060 }
3061
3062 dwarf2_emit_insn (insn_size);
3063
3064 #ifdef DEBUG386
3065 if (flag_debug)
3066 {
3067 pi (line, &i);
3068 }
3069 #endif /* DEBUG386 */
3070 }
3071 }
3072 \f
3073 static int i386_immediate PARAMS ((char *));
3074
3075 static int
3076 i386_immediate (imm_start)
3077 char *imm_start;
3078 {
3079 char *save_input_line_pointer;
3080 segT exp_seg = 0;
3081 expressionS *exp;
3082
3083 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3084 {
3085 as_bad (_("only 1 or 2 immediate operands are allowed"));
3086 return 0;
3087 }
3088
3089 exp = &im_expressions[i.imm_operands++];
3090 i.op[this_operand].imms = exp;
3091
3092 if (is_space_char (*imm_start))
3093 ++imm_start;
3094
3095 save_input_line_pointer = input_line_pointer;
3096 input_line_pointer = imm_start;
3097
3098 #ifndef LEX_AT
3099 {
3100 /* We can have operands of the form
3101 <symbol>@GOTOFF+<nnn>
3102 Take the easy way out here and copy everything
3103 into a temporary buffer... */
3104 register char *cp;
3105
3106 cp = strchr (input_line_pointer, '@');
3107 if (cp != NULL)
3108 {
3109 char *tmpbuf;
3110 int len = 0;
3111 int first;
3112
3113 /* GOT relocations are not supported in 16 bit mode. */
3114 if (flag_code == CODE_16BIT)
3115 as_bad (_("GOT relocations not supported in 16 bit mode"));
3116
3117 if (GOT_symbol == NULL)
3118 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3119
3120 if (strncmp (cp + 1, "PLT", 3) == 0)
3121 {
3122 if (flag_code == CODE_64BIT)
3123 i.disp_reloc[this_operand] = BFD_RELOC_X86_64_PLT32;
3124 else
3125 i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
3126 len = 3;
3127 }
3128 else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
3129 {
3130 if (flag_code == CODE_64BIT)
3131 as_bad ("GOTOFF relocations are unsupported in 64bit mode.");
3132 i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF;
3133 len = 6;
3134 }
3135 else if (strncmp (cp + 1, "GOTPCREL", 8) == 0)
3136 {
3137 if (flag_code == CODE_64BIT)
3138 i.disp_reloc[this_operand] = BFD_RELOC_X86_64_GOTPCREL;
3139 else
3140 as_bad ("GOTPCREL relocations are supported only in 64bit mode.");
3141 len = 8;
3142 }
3143 else if (strncmp (cp + 1, "GOT", 3) == 0)
3144 {
3145 if (flag_code == CODE_64BIT)
3146 i.disp_reloc[this_operand] = BFD_RELOC_X86_64_GOT32;
3147 else
3148 i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
3149 len = 3;
3150 }
3151 else
3152 as_bad (_("bad reloc specifier in expression"));
3153
3154 /* Replace the relocation token with ' ', so that errors like
3155 foo@GOTOFF1 will be detected. */
3156 first = cp - input_line_pointer;
3157 tmpbuf = (char *) alloca (strlen (input_line_pointer));
3158 memcpy (tmpbuf, input_line_pointer, first);
3159 tmpbuf[first] = ' ';
3160 strcpy (tmpbuf + first + 1, cp + 1 + len);
3161 input_line_pointer = tmpbuf;
3162 }
3163 }
3164 #endif
3165
3166 exp_seg = expression (exp);
3167
3168 SKIP_WHITESPACE ();
3169 if (*input_line_pointer)
3170 as_bad (_("ignoring junk `%s' after expression"), input_line_pointer);
3171
3172 input_line_pointer = save_input_line_pointer;
3173
3174 if (exp->X_op == O_absent || exp->X_op == O_big)
3175 {
3176 /* Missing or bad expr becomes absolute 0. */
3177 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
3178 imm_start);
3179 exp->X_op = O_constant;
3180 exp->X_add_number = 0;
3181 exp->X_add_symbol = (symbolS *) 0;
3182 exp->X_op_symbol = (symbolS *) 0;
3183 }
3184 else if (exp->X_op == O_constant)
3185 {
3186 /* Size it properly later. */
3187 i.types[this_operand] |= Imm64;
3188 /* If BFD64, sign extend val. */
3189 if (!use_rela_relocations)
3190 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3191 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
3192 }
3193 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3194 else if (1
3195 #ifdef BFD_ASSEMBLER
3196 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3197 #endif
3198 && exp_seg != text_section
3199 && exp_seg != data_section
3200 && exp_seg != bss_section
3201 && exp_seg != undefined_section
3202 #ifdef BFD_ASSEMBLER
3203 && !bfd_is_com_section (exp_seg)
3204 #endif
3205 )
3206 {
3207 #ifdef BFD_ASSEMBLER
3208 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3209 #else
3210 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3211 #endif
3212 return 0;
3213 }
3214 #endif
3215 else
3216 {
3217 /* This is an address. The size of the address will be
3218 determined later, depending on destination register,
3219 suffix, or the default for the section. */
3220 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
3221 }
3222
3223 return 1;
3224 }
3225
3226 static int i386_scale PARAMS ((char *));
3227
3228 static int
3229 i386_scale (scale)
3230 char *scale;
3231 {
3232 if (!isdigit (*scale))
3233 goto bad_scale;
3234
3235 switch (*scale)
3236 {
3237 case '0':
3238 case '1':
3239 i.log2_scale_factor = 0;
3240 break;
3241 case '2':
3242 i.log2_scale_factor = 1;
3243 break;
3244 case '4':
3245 i.log2_scale_factor = 2;
3246 break;
3247 case '8':
3248 i.log2_scale_factor = 3;
3249 break;
3250 default:
3251 bad_scale:
3252 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
3253 scale);
3254 return 0;
3255 }
3256 if (i.log2_scale_factor != 0 && ! i.index_reg)
3257 {
3258 as_warn (_("scale factor of %d without an index register"),
3259 1 << i.log2_scale_factor);
3260 #if SCALE1_WHEN_NO_INDEX
3261 i.log2_scale_factor = 0;
3262 #endif
3263 }
3264 return 1;
3265 }
3266
3267 static int i386_displacement PARAMS ((char *, char *));
3268
3269 static int
3270 i386_displacement (disp_start, disp_end)
3271 char *disp_start;
3272 char *disp_end;
3273 {
3274 register expressionS *exp;
3275 segT exp_seg = 0;
3276 char *save_input_line_pointer;
3277 int bigdisp = Disp32;
3278
3279 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3280 bigdisp = Disp16;
3281 if (flag_code == CODE_64BIT)
3282 bigdisp = Disp64;
3283 i.types[this_operand] |= bigdisp;
3284
3285 exp = &disp_expressions[i.disp_operands];
3286 i.op[this_operand].disps = exp;
3287 i.disp_operands++;
3288 save_input_line_pointer = input_line_pointer;
3289 input_line_pointer = disp_start;
3290 END_STRING_AND_SAVE (disp_end);
3291
3292 #ifndef GCC_ASM_O_HACK
3293 #define GCC_ASM_O_HACK 0
3294 #endif
3295 #if GCC_ASM_O_HACK
3296 END_STRING_AND_SAVE (disp_end + 1);
3297 if ((i.types[this_operand] & BaseIndex) != 0
3298 && displacement_string_end[-1] == '+')
3299 {
3300 /* This hack is to avoid a warning when using the "o"
3301 constraint within gcc asm statements.
3302 For instance:
3303
3304 #define _set_tssldt_desc(n,addr,limit,type) \
3305 __asm__ __volatile__ ( \
3306 "movw %w2,%0\n\t" \
3307 "movw %w1,2+%0\n\t" \
3308 "rorl $16,%1\n\t" \
3309 "movb %b1,4+%0\n\t" \
3310 "movb %4,5+%0\n\t" \
3311 "movb $0,6+%0\n\t" \
3312 "movb %h1,7+%0\n\t" \
3313 "rorl $16,%1" \
3314 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3315
3316 This works great except that the output assembler ends
3317 up looking a bit weird if it turns out that there is
3318 no offset. You end up producing code that looks like:
3319
3320 #APP
3321 movw $235,(%eax)
3322 movw %dx,2+(%eax)
3323 rorl $16,%edx
3324 movb %dl,4+(%eax)
3325 movb $137,5+(%eax)
3326 movb $0,6+(%eax)
3327 movb %dh,7+(%eax)
3328 rorl $16,%edx
3329 #NO_APP
3330
3331 So here we provide the missing zero. */
3332
3333 *displacement_string_end = '0';
3334 }
3335 #endif
3336 #ifndef LEX_AT
3337 {
3338 /* We can have operands of the form
3339 <symbol>@GOTOFF+<nnn>
3340 Take the easy way out here and copy everything
3341 into a temporary buffer... */
3342 register char *cp;
3343
3344 cp = strchr (input_line_pointer, '@');
3345 if (cp != NULL)
3346 {
3347 char *tmpbuf;
3348 int len = 0;
3349 int first;
3350
3351 /* GOT relocations are not supported in 16 bit mode. */
3352 if (flag_code == CODE_16BIT)
3353 as_bad (_("GOT relocations not supported in 16 bit mode"));
3354
3355 if (GOT_symbol == NULL)
3356 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3357
3358 if (strncmp (cp + 1, "PLT", 3) == 0)
3359 {
3360 if (flag_code == CODE_64BIT)
3361 i.disp_reloc[this_operand] = BFD_RELOC_X86_64_PLT32;
3362 else
3363 i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
3364 len = 3;
3365 }
3366 else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
3367 {
3368 if (flag_code == CODE_64BIT)
3369 as_bad ("GOTOFF relocation is not supported in 64bit mode.");
3370 i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF;
3371 len = 6;
3372 }
3373 else if (strncmp (cp + 1, "GOTPCREL", 8) == 0)
3374 {
3375 if (flag_code != CODE_64BIT)
3376 as_bad ("GOTPCREL relocation is supported only in 64bit mode.");
3377 i.disp_reloc[this_operand] = BFD_RELOC_X86_64_GOTPCREL;
3378 len = 8;
3379 }
3380 else if (strncmp (cp + 1, "GOT", 3) == 0)
3381 {
3382 if (flag_code == CODE_64BIT)
3383 i.disp_reloc[this_operand] = BFD_RELOC_X86_64_GOT32;
3384 else
3385 i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
3386 len = 3;
3387 }
3388 else
3389 as_bad (_("bad reloc specifier in expression"));
3390
3391 /* Replace the relocation token with ' ', so that errors like
3392 foo@GOTOFF1 will be detected. */
3393 first = cp - input_line_pointer;
3394 tmpbuf = (char *) alloca (strlen (input_line_pointer));
3395 memcpy (tmpbuf, input_line_pointer, first);
3396 tmpbuf[first] = ' ';
3397 strcpy (tmpbuf + first + 1, cp + 1 + len);
3398 input_line_pointer = tmpbuf;
3399 }
3400 }
3401 #endif
3402
3403 exp_seg = expression (exp);
3404
3405 #ifdef BFD_ASSEMBLER
3406 /* We do this to make sure that the section symbol is in
3407 the symbol table. We will ultimately change the relocation
3408 to be relative to the beginning of the section. */
3409 if (i.disp_reloc[this_operand] == BFD_RELOC_386_GOTOFF
3410 || i.disp_reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3411 {
3412 if (S_IS_LOCAL(exp->X_add_symbol)
3413 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
3414 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
3415 assert (exp->X_op == O_symbol);
3416 exp->X_op = O_subtract;
3417 exp->X_op_symbol = GOT_symbol;
3418 i.disp_reloc[this_operand] = BFD_RELOC_32;
3419 }
3420 #endif
3421
3422 SKIP_WHITESPACE ();
3423 if (*input_line_pointer)
3424 as_bad (_("ignoring junk `%s' after expression"),
3425 input_line_pointer);
3426 #if GCC_ASM_O_HACK
3427 RESTORE_END_STRING (disp_end + 1);
3428 #endif
3429 RESTORE_END_STRING (disp_end);
3430 input_line_pointer = save_input_line_pointer;
3431
3432 if (exp->X_op == O_absent || exp->X_op == O_big)
3433 {
3434 /* Missing or bad expr becomes absolute 0. */
3435 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
3436 disp_start);
3437 exp->X_op = O_constant;
3438 exp->X_add_number = 0;
3439 exp->X_add_symbol = (symbolS *) 0;
3440 exp->X_op_symbol = (symbolS *) 0;
3441 }
3442
3443 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3444 if (exp->X_op != O_constant
3445 #ifdef BFD_ASSEMBLER
3446 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3447 #endif
3448 && exp_seg != text_section
3449 && exp_seg != data_section
3450 && exp_seg != bss_section
3451 && exp_seg != undefined_section)
3452 {
3453 #ifdef BFD_ASSEMBLER
3454 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3455 #else
3456 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3457 #endif
3458 return 0;
3459 }
3460 #endif
3461 else if (flag_code == CODE_64BIT)
3462 i.types[this_operand] |= Disp32S | Disp32;
3463 return 1;
3464 }
3465
3466 static int i386_index_check PARAMS((const char *));
3467
3468 /* Make sure the memory operand we've been dealt is valid.
3469 Return 1 on success, 0 on a failure. */
3470
3471 static int
3472 i386_index_check (operand_string)
3473 const char *operand_string;
3474 {
3475 int ok;
3476 #if INFER_ADDR_PREFIX
3477 int fudged = 0;
3478
3479 tryprefix:
3480 #endif
3481 ok = 1;
3482 if (flag_code == CODE_64BIT)
3483 {
3484 /* 64bit checks. */
3485 if ((i.base_reg
3486 && ((i.base_reg->reg_type & Reg64) == 0)
3487 && (i.base_reg->reg_type != BaseIndex
3488 || i.index_reg))
3489 || (i.index_reg
3490 && ((i.index_reg->reg_type & (Reg64|BaseIndex))
3491 != (Reg64|BaseIndex))))
3492 ok = 0;
3493 }
3494 else
3495 {
3496 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3497 {
3498 /* 16bit checks. */
3499 if ((i.base_reg
3500 && ((i.base_reg->reg_type & (Reg16|BaseIndex|RegRex))
3501 != (Reg16|BaseIndex)))
3502 || (i.index_reg
3503 && (((i.index_reg->reg_type & (Reg16|BaseIndex))
3504 != (Reg16|BaseIndex))
3505 || ! (i.base_reg
3506 && i.base_reg->reg_num < 6
3507 && i.index_reg->reg_num >= 6
3508 && i.log2_scale_factor == 0))))
3509 ok = 0;
3510 }
3511 else
3512 {
3513 /* 32bit checks. */
3514 if ((i.base_reg
3515 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
3516 || (i.index_reg
3517 && ((i.index_reg->reg_type & (Reg32|BaseIndex|RegRex))
3518 != (Reg32|BaseIndex))))
3519 ok = 0;
3520 }
3521 }
3522 if (!ok)
3523 {
3524 #if INFER_ADDR_PREFIX
3525 if (flag_code != CODE_64BIT
3526 && i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
3527 {
3528 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
3529 i.prefixes += 1;
3530 /* Change the size of any displacement too. At most one of
3531 Disp16 or Disp32 is set.
3532 FIXME. There doesn't seem to be any real need for separate
3533 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
3534 Removing them would probably clean up the code quite a lot. */
3535 if (i.types[this_operand] & (Disp16|Disp32))
3536 i.types[this_operand] ^= (Disp16|Disp32);
3537 fudged = 1;
3538 goto tryprefix;
3539 }
3540 if (fudged)
3541 as_bad (_("`%s' is not a valid base/index expression"),
3542 operand_string);
3543 else
3544 #endif
3545 as_bad (_("`%s' is not a valid %s bit base/index expression"),
3546 operand_string,
3547 flag_code_names[flag_code]);
3548 return 0;
3549 }
3550 return 1;
3551 }
3552
3553 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
3554 on error. */
3555
3556 static int
3557 i386_operand (operand_string)
3558 char *operand_string;
3559 {
3560 const reg_entry *r;
3561 char *end_op;
3562 char *op_string = operand_string;
3563
3564 if (is_space_char (*op_string))
3565 ++op_string;
3566
3567 /* We check for an absolute prefix (differentiating,
3568 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
3569 if (*op_string == ABSOLUTE_PREFIX)
3570 {
3571 ++op_string;
3572 if (is_space_char (*op_string))
3573 ++op_string;
3574 i.types[this_operand] |= JumpAbsolute;
3575 }
3576
3577 /* Check if operand is a register. */
3578 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
3579 && (r = parse_register (op_string, &end_op)) != NULL)
3580 {
3581 /* Check for a segment override by searching for ':' after a
3582 segment register. */
3583 op_string = end_op;
3584 if (is_space_char (*op_string))
3585 ++op_string;
3586 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
3587 {
3588 switch (r->reg_num)
3589 {
3590 case 0:
3591 i.seg[i.mem_operands] = &es;
3592 break;
3593 case 1:
3594 i.seg[i.mem_operands] = &cs;
3595 break;
3596 case 2:
3597 i.seg[i.mem_operands] = &ss;
3598 break;
3599 case 3:
3600 i.seg[i.mem_operands] = &ds;
3601 break;
3602 case 4:
3603 i.seg[i.mem_operands] = &fs;
3604 break;
3605 case 5:
3606 i.seg[i.mem_operands] = &gs;
3607 break;
3608 }
3609
3610 /* Skip the ':' and whitespace. */
3611 ++op_string;
3612 if (is_space_char (*op_string))
3613 ++op_string;
3614
3615 if (!is_digit_char (*op_string)
3616 && !is_identifier_char (*op_string)
3617 && *op_string != '('
3618 && *op_string != ABSOLUTE_PREFIX)
3619 {
3620 as_bad (_("bad memory operand `%s'"), op_string);
3621 return 0;
3622 }
3623 /* Handle case of %es:*foo. */
3624 if (*op_string == ABSOLUTE_PREFIX)
3625 {
3626 ++op_string;
3627 if (is_space_char (*op_string))
3628 ++op_string;
3629 i.types[this_operand] |= JumpAbsolute;
3630 }
3631 goto do_memory_reference;
3632 }
3633 if (*op_string)
3634 {
3635 as_bad (_("junk `%s' after register"), op_string);
3636 return 0;
3637 }
3638 i.types[this_operand] |= r->reg_type & ~BaseIndex;
3639 i.op[this_operand].regs = r;
3640 i.reg_operands++;
3641 }
3642 else if (*op_string == REGISTER_PREFIX)
3643 {
3644 as_bad (_("bad register name `%s'"), op_string);
3645 return 0;
3646 }
3647 else if (*op_string == IMMEDIATE_PREFIX)
3648 {
3649 ++op_string;
3650 if (i.types[this_operand] & JumpAbsolute)
3651 {
3652 as_bad (_("immediate operand illegal with absolute jump"));
3653 return 0;
3654 }
3655 if (!i386_immediate (op_string))
3656 return 0;
3657 }
3658 else if (is_digit_char (*op_string)
3659 || is_identifier_char (*op_string)
3660 || *op_string == '(' )
3661 {
3662 /* This is a memory reference of some sort. */
3663 char *base_string;
3664
3665 /* Start and end of displacement string expression (if found). */
3666 char *displacement_string_start;
3667 char *displacement_string_end;
3668
3669 do_memory_reference:
3670 if ((i.mem_operands == 1
3671 && (current_templates->start->opcode_modifier & IsString) == 0)
3672 || i.mem_operands == 2)
3673 {
3674 as_bad (_("too many memory references for `%s'"),
3675 current_templates->start->name);
3676 return 0;
3677 }
3678
3679 /* Check for base index form. We detect the base index form by
3680 looking for an ')' at the end of the operand, searching
3681 for the '(' matching it, and finding a REGISTER_PREFIX or ','
3682 after the '('. */
3683 base_string = op_string + strlen (op_string);
3684
3685 --base_string;
3686 if (is_space_char (*base_string))
3687 --base_string;
3688
3689 /* If we only have a displacement, set-up for it to be parsed later. */
3690 displacement_string_start = op_string;
3691 displacement_string_end = base_string + 1;
3692
3693 if (*base_string == ')')
3694 {
3695 char *temp_string;
3696 unsigned int parens_balanced = 1;
3697 /* We've already checked that the number of left & right ()'s are
3698 equal, so this loop will not be infinite. */
3699 do
3700 {
3701 base_string--;
3702 if (*base_string == ')')
3703 parens_balanced++;
3704 if (*base_string == '(')
3705 parens_balanced--;
3706 }
3707 while (parens_balanced);
3708
3709 temp_string = base_string;
3710
3711 /* Skip past '(' and whitespace. */
3712 ++base_string;
3713 if (is_space_char (*base_string))
3714 ++base_string;
3715
3716 if (*base_string == ','
3717 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3718 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
3719 {
3720 displacement_string_end = temp_string;
3721
3722 i.types[this_operand] |= BaseIndex;
3723
3724 if (i.base_reg)
3725 {
3726 base_string = end_op;
3727 if (is_space_char (*base_string))
3728 ++base_string;
3729 }
3730
3731 /* There may be an index reg or scale factor here. */
3732 if (*base_string == ',')
3733 {
3734 ++base_string;
3735 if (is_space_char (*base_string))
3736 ++base_string;
3737
3738 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3739 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
3740 {
3741 base_string = end_op;
3742 if (is_space_char (*base_string))
3743 ++base_string;
3744 if (*base_string == ',')
3745 {
3746 ++base_string;
3747 if (is_space_char (*base_string))
3748 ++base_string;
3749 }
3750 else if (*base_string != ')' )
3751 {
3752 as_bad (_("expecting `,' or `)' after index register in `%s'"),
3753 operand_string);
3754 return 0;
3755 }
3756 }
3757 else if (*base_string == REGISTER_PREFIX)
3758 {
3759 as_bad (_("bad register name `%s'"), base_string);
3760 return 0;
3761 }
3762
3763 /* Check for scale factor. */
3764 if (isdigit ((unsigned char) *base_string))
3765 {
3766 if (!i386_scale (base_string))
3767 return 0;
3768
3769 ++base_string;
3770 if (is_space_char (*base_string))
3771 ++base_string;
3772 if (*base_string != ')')
3773 {
3774 as_bad (_("expecting `)' after scale factor in `%s'"),
3775 operand_string);
3776 return 0;
3777 }
3778 }
3779 else if (!i.index_reg)
3780 {
3781 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
3782 *base_string);
3783 return 0;
3784 }
3785 }
3786 else if (*base_string != ')')
3787 {
3788 as_bad (_("expecting `,' or `)' after base register in `%s'"),
3789 operand_string);
3790 return 0;
3791 }
3792 }
3793 else if (*base_string == REGISTER_PREFIX)
3794 {
3795 as_bad (_("bad register name `%s'"), base_string);
3796 return 0;
3797 }
3798 }
3799
3800 /* If there's an expression beginning the operand, parse it,
3801 assuming displacement_string_start and
3802 displacement_string_end are meaningful. */
3803 if (displacement_string_start != displacement_string_end)
3804 {
3805 if (!i386_displacement (displacement_string_start,
3806 displacement_string_end))
3807 return 0;
3808 }
3809
3810 /* Special case for (%dx) while doing input/output op. */
3811 if (i.base_reg
3812 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
3813 && i.index_reg == 0
3814 && i.log2_scale_factor == 0
3815 && i.seg[i.mem_operands] == 0
3816 && (i.types[this_operand] & Disp) == 0)
3817 {
3818 i.types[this_operand] = InOutPortReg;
3819 return 1;
3820 }
3821
3822 if (i386_index_check (operand_string) == 0)
3823 return 0;
3824 i.mem_operands++;
3825 }
3826 else
3827 {
3828 /* It's not a memory operand; argh! */
3829 as_bad (_("invalid char %s beginning operand %d `%s'"),
3830 output_invalid (*op_string),
3831 this_operand + 1,
3832 op_string);
3833 return 0;
3834 }
3835 return 1; /* Normal return. */
3836 }
3837 \f
3838 /* md_estimate_size_before_relax()
3839
3840 Called just before relax() for rs_machine_dependent frags. The x86
3841 assembler uses these frags to handle variable size jump
3842 instructions.
3843
3844 Any symbol that is now undefined will not become defined.
3845 Return the correct fr_subtype in the frag.
3846 Return the initial "guess for variable size of frag" to caller.
3847 The guess is actually the growth beyond the fixed part. Whatever
3848 we do to grow the fixed or variable part contributes to our
3849 returned value. */
3850
3851 int
3852 md_estimate_size_before_relax (fragP, segment)
3853 register fragS *fragP;
3854 register segT segment;
3855 {
3856 /* We've already got fragP->fr_subtype right; all we have to do is
3857 check for un-relaxable symbols. On an ELF system, we can't relax
3858 an externally visible symbol, because it may be overridden by a
3859 shared library. */
3860 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
3861 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3862 || S_IS_EXTERNAL (fragP->fr_symbol)
3863 || S_IS_WEAK (fragP->fr_symbol)
3864 #endif
3865 )
3866 {
3867 /* Symbol is undefined in this segment, or we need to keep a
3868 reloc so that weak symbols can be overridden. */
3869 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
3870 #ifdef BFD_ASSEMBLER
3871 enum bfd_reloc_code_real reloc_type;
3872 #else
3873 int reloc_type;
3874 #endif
3875 unsigned char *opcode;
3876 int old_fr_fix;
3877
3878 if (fragP->fr_var != NO_RELOC)
3879 reloc_type = fragP->fr_var;
3880 else if (size == 2)
3881 reloc_type = BFD_RELOC_16_PCREL;
3882 else
3883 reloc_type = BFD_RELOC_32_PCREL;
3884
3885 old_fr_fix = fragP->fr_fix;
3886 opcode = (unsigned char *) fragP->fr_opcode;
3887
3888 switch (opcode[0])
3889 {
3890 case JUMP_PC_RELATIVE:
3891 /* Make jmp (0xeb) a dword displacement jump. */
3892 opcode[0] = 0xe9;
3893 fragP->fr_fix += size;
3894 fix_new (fragP, old_fr_fix, size,
3895 fragP->fr_symbol,
3896 fragP->fr_offset, 1,
3897 reloc_type);
3898 break;
3899
3900 default:
3901 /* This changes the byte-displacement jump 0x7N
3902 to the dword-displacement jump 0x0f,0x8N. */
3903 opcode[1] = opcode[0] + 0x10;
3904 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
3905 /* We've added an opcode byte. */
3906 fragP->fr_fix += 1 + size;
3907 fix_new (fragP, old_fr_fix + 1, size,
3908 fragP->fr_symbol,
3909 fragP->fr_offset, 1,
3910 reloc_type);
3911 break;
3912 }
3913 frag_wane (fragP);
3914 return fragP->fr_fix - old_fr_fix;
3915 }
3916 /* Guess a short jump. */
3917 return 1;
3918 }
3919
3920 /* Called after relax() is finished.
3921
3922 In: Address of frag.
3923 fr_type == rs_machine_dependent.
3924 fr_subtype is what the address relaxed to.
3925
3926 Out: Any fixSs and constants are set up.
3927 Caller will turn frag into a ".space 0". */
3928
3929 #ifndef BFD_ASSEMBLER
3930 void
3931 md_convert_frag (headers, sec, fragP)
3932 object_headers *headers ATTRIBUTE_UNUSED;
3933 segT sec ATTRIBUTE_UNUSED;
3934 register fragS *fragP;
3935 #else
3936 void
3937 md_convert_frag (abfd, sec, fragP)
3938 bfd *abfd ATTRIBUTE_UNUSED;
3939 segT sec ATTRIBUTE_UNUSED;
3940 register fragS *fragP;
3941 #endif
3942 {
3943 register unsigned char *opcode;
3944 unsigned char *where_to_put_displacement = NULL;
3945 offsetT target_address;
3946 offsetT opcode_address;
3947 unsigned int extension = 0;
3948 offsetT displacement_from_opcode_start;
3949
3950 opcode = (unsigned char *) fragP->fr_opcode;
3951
3952 /* Address we want to reach in file space. */
3953 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
3954 #ifdef BFD_ASSEMBLER
3955 /* Not needed otherwise? */
3956 target_address += symbol_get_frag (fragP->fr_symbol)->fr_address;
3957 #endif
3958
3959 /* Address opcode resides at in file space. */
3960 opcode_address = fragP->fr_address + fragP->fr_fix;
3961
3962 /* Displacement from opcode start to fill into instruction. */
3963 displacement_from_opcode_start = target_address - opcode_address;
3964
3965 switch (fragP->fr_subtype)
3966 {
3967 case ENCODE_RELAX_STATE (COND_JUMP, SMALL):
3968 case ENCODE_RELAX_STATE (COND_JUMP, SMALL16):
3969 case ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL):
3970 case ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL16):
3971 /* Don't have to change opcode. */
3972 extension = 1; /* 1 opcode + 1 displacement */
3973 where_to_put_displacement = &opcode[1];
3974 break;
3975
3976 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
3977 extension = 5; /* 2 opcode + 4 displacement */
3978 opcode[1] = opcode[0] + 0x10;
3979 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
3980 where_to_put_displacement = &opcode[2];
3981 break;
3982
3983 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
3984 extension = 4; /* 1 opcode + 4 displacement */
3985 opcode[0] = 0xe9;
3986 where_to_put_displacement = &opcode[1];
3987 break;
3988
3989 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
3990 extension = 3; /* 2 opcode + 2 displacement */
3991 opcode[1] = opcode[0] + 0x10;
3992 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
3993 where_to_put_displacement = &opcode[2];
3994 break;
3995
3996 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
3997 extension = 2; /* 1 opcode + 2 displacement */
3998 opcode[0] = 0xe9;
3999 where_to_put_displacement = &opcode[1];
4000 break;
4001
4002 default:
4003 BAD_CASE (fragP->fr_subtype);
4004 break;
4005 }
4006 /* Now put displacement after opcode. */
4007 md_number_to_chars ((char *) where_to_put_displacement,
4008 (valueT) (displacement_from_opcode_start - extension),
4009 SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
4010 fragP->fr_fix += extension;
4011 }
4012 \f
4013 /* Size of byte displacement jmp. */
4014 int md_short_jump_size = 2;
4015
4016 /* Size of dword displacement jmp. */
4017 int md_long_jump_size = 5;
4018
4019 /* Size of relocation record. */
4020 const int md_reloc_size = 8;
4021
4022 void
4023 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4024 char *ptr;
4025 addressT from_addr, to_addr;
4026 fragS *frag ATTRIBUTE_UNUSED;
4027 symbolS *to_symbol ATTRIBUTE_UNUSED;
4028 {
4029 offsetT offset;
4030
4031 offset = to_addr - (from_addr + 2);
4032 /* Opcode for byte-disp jump. */
4033 md_number_to_chars (ptr, (valueT) 0xeb, 1);
4034 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4035 }
4036
4037 void
4038 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4039 char *ptr;
4040 addressT from_addr, to_addr;
4041 fragS *frag ATTRIBUTE_UNUSED;
4042 symbolS *to_symbol ATTRIBUTE_UNUSED;
4043 {
4044 offsetT offset;
4045
4046 offset = to_addr - (from_addr + 5);
4047 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4048 md_number_to_chars (ptr + 1, (valueT) offset, 4);
4049 }
4050 \f
4051 /* Apply a fixup (fixS) to segment data, once it has been determined
4052 by our caller that we have all the info we need to fix it up.
4053
4054 On the 386, immediates, displacements, and data pointers are all in
4055 the same (little-endian) format, so we don't need to care about which
4056 we are handling. */
4057
4058 int
4059 md_apply_fix3 (fixP, valp, seg)
4060 /* The fix we're to put in. */
4061 fixS *fixP;
4062
4063 /* Pointer to the value of the bits. */
4064 valueT *valp;
4065
4066 /* Segment fix is from. */
4067 segT seg ATTRIBUTE_UNUSED;
4068 {
4069 register char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4070 valueT value = *valp;
4071
4072 #if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
4073 if (fixP->fx_pcrel)
4074 {
4075 switch (fixP->fx_r_type)
4076 {
4077 default:
4078 break;
4079
4080 case BFD_RELOC_32:
4081 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4082 break;
4083 case BFD_RELOC_16:
4084 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4085 break;
4086 case BFD_RELOC_8:
4087 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4088 break;
4089 }
4090 }
4091
4092 /* This is a hack. There should be a better way to handle this.
4093 This covers for the fact that bfd_install_relocation will
4094 subtract the current location (for partial_inplace, PC relative
4095 relocations); see more below. */
4096 if ((fixP->fx_r_type == BFD_RELOC_32_PCREL
4097 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4098 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4099 && fixP->fx_addsy)
4100 {
4101 #ifndef OBJ_AOUT
4102 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4103 #ifdef TE_PE
4104 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4105 #endif
4106 )
4107 value += fixP->fx_where + fixP->fx_frag->fr_address;
4108 #endif
4109 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4110 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
4111 {
4112 segT fseg = S_GET_SEGMENT (fixP->fx_addsy);
4113
4114 if ((fseg == seg
4115 || (symbol_section_p (fixP->fx_addsy)
4116 && fseg != absolute_section))
4117 && ! S_IS_EXTERNAL (fixP->fx_addsy)
4118 && ! S_IS_WEAK (fixP->fx_addsy)
4119 && S_IS_DEFINED (fixP->fx_addsy)
4120 && ! S_IS_COMMON (fixP->fx_addsy))
4121 {
4122 /* Yes, we add the values in twice. This is because
4123 bfd_perform_relocation subtracts them out again. I think
4124 bfd_perform_relocation is broken, but I don't dare change
4125 it. FIXME. */
4126 value += fixP->fx_where + fixP->fx_frag->fr_address;
4127 }
4128 }
4129 #endif
4130 #if defined (OBJ_COFF) && defined (TE_PE)
4131 /* For some reason, the PE format does not store a section
4132 address offset for a PC relative symbol. */
4133 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4134 value += md_pcrel_from (fixP);
4135 #endif
4136 }
4137
4138 /* Fix a few things - the dynamic linker expects certain values here,
4139 and we must not dissappoint it. */
4140 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4141 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4142 && fixP->fx_addsy)
4143 switch (fixP->fx_r_type)
4144 {
4145 case BFD_RELOC_386_PLT32:
4146 case BFD_RELOC_X86_64_PLT32:
4147 /* Make the jump instruction point to the address of the operand. At
4148 runtime we merely add the offset to the actual PLT entry. */
4149 value = -4;
4150 break;
4151 case BFD_RELOC_386_GOTPC:
4152
4153 /* This is tough to explain. We end up with this one if we have
4154 * operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal
4155 * here is to obtain the absolute address of the GOT, and it is strongly
4156 * preferable from a performance point of view to avoid using a runtime
4157 * relocation for this. The actual sequence of instructions often look
4158 * something like:
4159 *
4160 * call .L66
4161 * .L66:
4162 * popl %ebx
4163 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
4164 *
4165 * The call and pop essentially return the absolute address of
4166 * the label .L66 and store it in %ebx. The linker itself will
4167 * ultimately change the first operand of the addl so that %ebx points to
4168 * the GOT, but to keep things simple, the .o file must have this operand
4169 * set so that it generates not the absolute address of .L66, but the
4170 * absolute address of itself. This allows the linker itself simply
4171 * treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
4172 * added in, and the addend of the relocation is stored in the operand
4173 * field for the instruction itself.
4174 *
4175 * Our job here is to fix the operand so that it would add the correct
4176 * offset so that %ebx would point to itself. The thing that is tricky is
4177 * that .-.L66 will point to the beginning of the instruction, so we need
4178 * to further modify the operand so that it will point to itself.
4179 * There are other cases where you have something like:
4180 *
4181 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
4182 *
4183 * and here no correction would be required. Internally in the assembler
4184 * we treat operands of this form as not being pcrel since the '.' is
4185 * explicitly mentioned, and I wonder whether it would simplify matters
4186 * to do it this way. Who knows. In earlier versions of the PIC patches,
4187 * the pcrel_adjust field was used to store the correction, but since the
4188 * expression is not pcrel, I felt it would be confusing to do it this
4189 * way. */
4190
4191 value -= 1;
4192 break;
4193 case BFD_RELOC_386_GOT32:
4194 case BFD_RELOC_X86_64_GOT32:
4195 value = 0; /* Fully resolved at runtime. No addend. */
4196 break;
4197 case BFD_RELOC_386_GOTOFF:
4198 case BFD_RELOC_X86_64_GOTPCREL:
4199 break;
4200
4201 case BFD_RELOC_VTABLE_INHERIT:
4202 case BFD_RELOC_VTABLE_ENTRY:
4203 fixP->fx_done = 0;
4204 return 1;
4205
4206 default:
4207 break;
4208 }
4209 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
4210 *valp = value;
4211 #endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
4212
4213 #ifndef BFD_ASSEMBLER
4214 md_number_to_chars (p, value, fixP->fx_size);
4215 #else
4216 /* Are we finished with this relocation now? */
4217 if (fixP->fx_addsy == 0 && fixP->fx_pcrel == 0)
4218 fixP->fx_done = 1;
4219 else if (use_rela_relocations)
4220 {
4221 fixP->fx_no_overflow = 1;
4222 value = 0;
4223 }
4224 md_number_to_chars (p, value, fixP->fx_size);
4225 #endif
4226
4227 return 1;
4228 }
4229 \f
4230 #define MAX_LITTLENUMS 6
4231
4232 /* Turn the string pointed to by litP into a floating point constant
4233 of type TYPE, and emit the appropriate bytes. The number of
4234 LITTLENUMS emitted is stored in *SIZEP. An error message is
4235 returned, or NULL on OK. */
4236
4237 char *
4238 md_atof (type, litP, sizeP)
4239 int type;
4240 char *litP;
4241 int *sizeP;
4242 {
4243 int prec;
4244 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4245 LITTLENUM_TYPE *wordP;
4246 char *t;
4247
4248 switch (type)
4249 {
4250 case 'f':
4251 case 'F':
4252 prec = 2;
4253 break;
4254
4255 case 'd':
4256 case 'D':
4257 prec = 4;
4258 break;
4259
4260 case 'x':
4261 case 'X':
4262 prec = 5;
4263 break;
4264
4265 default:
4266 *sizeP = 0;
4267 return _("Bad call to md_atof ()");
4268 }
4269 t = atof_ieee (input_line_pointer, type, words);
4270 if (t)
4271 input_line_pointer = t;
4272
4273 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4274 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4275 the bigendian 386. */
4276 for (wordP = words + prec - 1; prec--;)
4277 {
4278 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4279 litP += sizeof (LITTLENUM_TYPE);
4280 }
4281 return 0;
4282 }
4283 \f
4284 char output_invalid_buf[8];
4285
4286 static char *
4287 output_invalid (c)
4288 int c;
4289 {
4290 if (isprint (c))
4291 sprintf (output_invalid_buf, "'%c'", c);
4292 else
4293 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4294 return output_invalid_buf;
4295 }
4296
4297 /* REG_STRING starts *before* REGISTER_PREFIX. */
4298
4299 static const reg_entry *
4300 parse_register (reg_string, end_op)
4301 char *reg_string;
4302 char **end_op;
4303 {
4304 char *s = reg_string;
4305 char *p;
4306 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4307 const reg_entry *r;
4308
4309 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4310 if (*s == REGISTER_PREFIX)
4311 ++s;
4312
4313 if (is_space_char (*s))
4314 ++s;
4315
4316 p = reg_name_given;
4317 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
4318 {
4319 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
4320 return (const reg_entry *) NULL;
4321 s++;
4322 }
4323
4324 /* For naked regs, make sure that we are not dealing with an identifier.
4325 This prevents confusing an identifier like `eax_var' with register
4326 `eax'. */
4327 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4328 return (const reg_entry *) NULL;
4329
4330 *end_op = s;
4331
4332 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4333
4334 /* Handle floating point regs, allowing spaces in the (i) part. */
4335 if (r == i386_regtab /* %st is first entry of table */)
4336 {
4337 if (is_space_char (*s))
4338 ++s;
4339 if (*s == '(')
4340 {
4341 ++s;
4342 if (is_space_char (*s))
4343 ++s;
4344 if (*s >= '0' && *s <= '7')
4345 {
4346 r = &i386_float_regtab[*s - '0'];
4347 ++s;
4348 if (is_space_char (*s))
4349 ++s;
4350 if (*s == ')')
4351 {
4352 *end_op = s + 1;
4353 return r;
4354 }
4355 }
4356 /* We have "%st(" then garbage. */
4357 return (const reg_entry *) NULL;
4358 }
4359 }
4360
4361 return r;
4362 }
4363 \f
4364 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4365 const char *md_shortopts = "kVQ:sq";
4366 #else
4367 const char *md_shortopts = "q";
4368 #endif
4369
4370 struct option md_longopts[] = {
4371 #define OPTION_32 (OPTION_MD_BASE + 0)
4372 {"32", no_argument, NULL, OPTION_32},
4373 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4374 #define OPTION_64 (OPTION_MD_BASE + 1)
4375 {"64", no_argument, NULL, OPTION_64},
4376 #endif
4377 {NULL, no_argument, NULL, 0}
4378 };
4379 size_t md_longopts_size = sizeof (md_longopts);
4380
4381 int
4382 md_parse_option (c, arg)
4383 int c;
4384 char *arg ATTRIBUTE_UNUSED;
4385 {
4386 switch (c)
4387 {
4388 case 'q':
4389 quiet_warnings = 1;
4390 break;
4391
4392 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4393 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4394 should be emitted or not. FIXME: Not implemented. */
4395 case 'Q':
4396 break;
4397
4398 /* -V: SVR4 argument to print version ID. */
4399 case 'V':
4400 print_version_id ();
4401 break;
4402
4403 /* -k: Ignore for FreeBSD compatibility. */
4404 case 'k':
4405 break;
4406
4407 case 's':
4408 /* -s: On i386 Solaris, this tells the native assembler to use
4409 .stab instead of .stab.excl. We always use .stab anyhow. */
4410 break;
4411
4412 case OPTION_64:
4413 {
4414 const char **list, **l;
4415
4416 list = bfd_target_list ();
4417 for (l = list; *l != NULL; l++)
4418 if (strcmp (*l, "elf64-x86-64") == 0)
4419 {
4420 default_arch = "x86_64";
4421 break;
4422 }
4423 if (*l == NULL)
4424 as_fatal (_("No compiled in support for x86_64"));
4425 free (list);
4426 }
4427 break;
4428 #endif
4429
4430 case OPTION_32:
4431 default_arch = "i386";
4432 break;
4433
4434 default:
4435 return 0;
4436 }
4437 return 1;
4438 }
4439
4440 void
4441 md_show_usage (stream)
4442 FILE *stream;
4443 {
4444 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4445 fprintf (stream, _("\
4446 -Q ignored\n\
4447 -V print assembler version number\n\
4448 -k ignored\n\
4449 -q quieten some warnings\n\
4450 -s ignored\n"));
4451 #else
4452 fprintf (stream, _("\
4453 -q quieten some warnings\n"));
4454 #endif
4455 }
4456
4457 #ifdef BFD_ASSEMBLER
4458 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
4459 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
4460
4461 /* Pick the target format to use. */
4462
4463 const char *
4464 i386_target_format ()
4465 {
4466 if (!strcmp (default_arch, "x86_64"))
4467 set_code_flag (CODE_64BIT);
4468 else if (!strcmp (default_arch, "i386"))
4469 set_code_flag (CODE_32BIT);
4470 else
4471 as_fatal (_("Unknown architecture"));
4472 switch (OUTPUT_FLAVOR)
4473 {
4474 #ifdef OBJ_MAYBE_AOUT
4475 case bfd_target_aout_flavour:
4476 return AOUT_TARGET_FORMAT;
4477 #endif
4478 #ifdef OBJ_MAYBE_COFF
4479 case bfd_target_coff_flavour:
4480 return "coff-i386";
4481 #endif
4482 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
4483 case bfd_target_elf_flavour:
4484 {
4485 if (flag_code == CODE_64BIT)
4486 use_rela_relocations = 1;
4487 return flag_code == CODE_64BIT ? "elf64-x86-64" : "elf32-i386";
4488 }
4489 #endif
4490 default:
4491 abort ();
4492 return NULL;
4493 }
4494 }
4495
4496 #endif /* OBJ_MAYBE_ more than one */
4497 #endif /* BFD_ASSEMBLER */
4498 \f
4499 symbolS *
4500 md_undefined_symbol (name)
4501 char *name;
4502 {
4503 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
4504 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
4505 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
4506 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
4507 {
4508 if (!GOT_symbol)
4509 {
4510 if (symbol_find (name))
4511 as_bad (_("GOT already in symbol table"));
4512 GOT_symbol = symbol_new (name, undefined_section,
4513 (valueT) 0, &zero_address_frag);
4514 };
4515 return GOT_symbol;
4516 }
4517 return 0;
4518 }
4519
4520 /* Round up a section size to the appropriate boundary. */
4521
4522 valueT
4523 md_section_align (segment, size)
4524 segT segment ATTRIBUTE_UNUSED;
4525 valueT size;
4526 {
4527 #ifdef BFD_ASSEMBLER
4528 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4529 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
4530 {
4531 /* For a.out, force the section size to be aligned. If we don't do
4532 this, BFD will align it for us, but it will not write out the
4533 final bytes of the section. This may be a bug in BFD, but it is
4534 easier to fix it here since that is how the other a.out targets
4535 work. */
4536 int align;
4537
4538 align = bfd_get_section_alignment (stdoutput, segment);
4539 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
4540 }
4541 #endif
4542 #endif
4543
4544 return size;
4545 }
4546
4547 /* On the i386, PC-relative offsets are relative to the start of the
4548 next instruction. That is, the address of the offset, plus its
4549 size, since the offset is always the last part of the insn. */
4550
4551 long
4552 md_pcrel_from (fixP)
4553 fixS *fixP;
4554 {
4555 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
4556 }
4557
4558 #ifndef I386COFF
4559
4560 static void
4561 s_bss (ignore)
4562 int ignore ATTRIBUTE_UNUSED;
4563 {
4564 register int temp;
4565
4566 temp = get_absolute_expression ();
4567 subseg_set (bss_section, (subsegT) temp);
4568 demand_empty_rest_of_line ();
4569 }
4570
4571 #endif
4572
4573 #ifdef BFD_ASSEMBLER
4574
4575 void
4576 i386_validate_fix (fixp)
4577 fixS *fixp;
4578 {
4579 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
4580 {
4581 /* GOTOFF relocation are nonsense in 64bit mode. */
4582 if (flag_code == CODE_64BIT)
4583 abort();
4584 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
4585 fixp->fx_subsy = 0;
4586 }
4587 }
4588
4589 arelent *
4590 tc_gen_reloc (section, fixp)
4591 asection *section ATTRIBUTE_UNUSED;
4592 fixS *fixp;
4593 {
4594 arelent *rel;
4595 bfd_reloc_code_real_type code;
4596
4597 switch (fixp->fx_r_type)
4598 {
4599 case BFD_RELOC_X86_64_PLT32:
4600 case BFD_RELOC_X86_64_GOT32:
4601 case BFD_RELOC_X86_64_GOTPCREL:
4602 case BFD_RELOC_386_PLT32:
4603 case BFD_RELOC_386_GOT32:
4604 case BFD_RELOC_386_GOTOFF:
4605 case BFD_RELOC_386_GOTPC:
4606 case BFD_RELOC_X86_64_32S:
4607 case BFD_RELOC_RVA:
4608 case BFD_RELOC_VTABLE_ENTRY:
4609 case BFD_RELOC_VTABLE_INHERIT:
4610 code = fixp->fx_r_type;
4611 break;
4612 default:
4613 if (fixp->fx_pcrel)
4614 {
4615 switch (fixp->fx_size)
4616 {
4617 default:
4618 as_bad (_("can not do %d byte pc-relative relocation"),
4619 fixp->fx_size);
4620 code = BFD_RELOC_32_PCREL;
4621 break;
4622 case 1: code = BFD_RELOC_8_PCREL; break;
4623 case 2: code = BFD_RELOC_16_PCREL; break;
4624 case 4: code = BFD_RELOC_32_PCREL; break;
4625 }
4626 }
4627 else
4628 {
4629 switch (fixp->fx_size)
4630 {
4631 default:
4632 as_bad (_("can not do %d byte relocation"), fixp->fx_size);
4633 code = BFD_RELOC_32;
4634 break;
4635 case 1: code = BFD_RELOC_8; break;
4636 case 2: code = BFD_RELOC_16; break;
4637 case 4: code = BFD_RELOC_32; break;
4638 case 8: code = BFD_RELOC_64; break;
4639 }
4640 }
4641 break;
4642 }
4643
4644 if (code == BFD_RELOC_32
4645 && GOT_symbol
4646 && fixp->fx_addsy == GOT_symbol)
4647 {
4648 /* We don't support GOTPC on 64bit targets. */
4649 if (flag_code == CODE_64BIT)
4650 abort();
4651 code = BFD_RELOC_386_GOTPC;
4652 }
4653
4654 rel = (arelent *) xmalloc (sizeof (arelent));
4655 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
4656 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
4657
4658 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
4659 if (!use_rela_relocations)
4660 {
4661 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
4662 vtable entry to be used in the relocation's section offset. */
4663 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
4664 rel->address = fixp->fx_offset;
4665
4666 if (fixp->fx_pcrel)
4667 rel->addend = fixp->fx_addnumber;
4668 else
4669 rel->addend = 0;
4670 }
4671 /* Use the rela in 64bit mode. */
4672 else
4673 {
4674 rel->addend = fixp->fx_offset;
4675 #ifdef OBJ_ELF
4676 /* Ohhh, this is ugly. The problem is that if this is a local global
4677 symbol, the relocation will entirely be performed at link time, not
4678 at assembly time. bfd_perform_reloc doesn't know about this sort
4679 of thing, and as a result we need to fake it out here. */
4680 if ((S_IS_EXTERN (fixp->fx_addsy) || S_IS_WEAK (fixp->fx_addsy))
4681 && !S_IS_COMMON(fixp->fx_addsy))
4682 rel->addend -= symbol_get_bfdsym (fixp->fx_addsy)->value;
4683 #endif
4684 if (fixp->fx_pcrel)
4685 rel->addend -= fixp->fx_size;
4686 }
4687
4688
4689 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
4690 if (rel->howto == NULL)
4691 {
4692 as_bad_where (fixp->fx_file, fixp->fx_line,
4693 _("cannot represent relocation type %s"),
4694 bfd_get_reloc_code_name (code));
4695 /* Set howto to a garbage value so that we can keep going. */
4696 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
4697 assert (rel->howto != NULL);
4698 }
4699
4700 return rel;
4701 }
4702
4703 #else /* ! BFD_ASSEMBLER */
4704
4705 #if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
4706 void
4707 tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
4708 char *where;
4709 fixS *fixP;
4710 relax_addressT segment_address_in_file;
4711 {
4712 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
4713 Out: GNU LD relocation length code: 0, 1, or 2. */
4714
4715 static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
4716 long r_symbolnum;
4717
4718 know (fixP->fx_addsy != NULL);
4719
4720 md_number_to_chars (where,
4721 (valueT) (fixP->fx_frag->fr_address
4722 + fixP->fx_where - segment_address_in_file),
4723 4);
4724
4725 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
4726 ? S_GET_TYPE (fixP->fx_addsy)
4727 : fixP->fx_addsy->sy_number);
4728
4729 where[6] = (r_symbolnum >> 16) & 0x0ff;
4730 where[5] = (r_symbolnum >> 8) & 0x0ff;
4731 where[4] = r_symbolnum & 0x0ff;
4732 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
4733 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
4734 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
4735 }
4736
4737 #endif /* OBJ_AOUT or OBJ_BOUT. */
4738
4739 #if defined (I386COFF)
4740
4741 short
4742 tc_coff_fix2rtype (fixP)
4743 fixS *fixP;
4744 {
4745 if (fixP->fx_r_type == R_IMAGEBASE)
4746 return R_IMAGEBASE;
4747
4748 return (fixP->fx_pcrel ?
4749 (fixP->fx_size == 1 ? R_PCRBYTE :
4750 fixP->fx_size == 2 ? R_PCRWORD :
4751 R_PCRLONG) :
4752 (fixP->fx_size == 1 ? R_RELBYTE :
4753 fixP->fx_size == 2 ? R_RELWORD :
4754 R_DIR32));
4755 }
4756
4757 int
4758 tc_coff_sizemachdep (frag)
4759 fragS *frag;
4760 {
4761 if (frag->fr_next)
4762 return (frag->fr_next->fr_address - frag->fr_address);
4763 else
4764 return 0;
4765 }
4766
4767 #endif /* I386COFF */
4768
4769 #endif /* ! BFD_ASSEMBLER */
4770 \f
4771 /* Parse operands using Intel syntax. This implements a recursive descent
4772 parser based on the BNF grammar published in Appendix B of the MASM 6.1
4773 Programmer's Guide.
4774
4775 FIXME: We do not recognize the full operand grammar defined in the MASM
4776 documentation. In particular, all the structure/union and
4777 high-level macro operands are missing.
4778
4779 Uppercase words are terminals, lower case words are non-terminals.
4780 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
4781 bars '|' denote choices. Most grammar productions are implemented in
4782 functions called 'intel_<production>'.
4783
4784 Initial production is 'expr'.
4785
4786 addOp + | -
4787
4788 alpha [a-zA-Z]
4789
4790 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
4791
4792 constant digits [[ radixOverride ]]
4793
4794 dataType BYTE | WORD | DWORD | QWORD | XWORD
4795
4796 digits decdigit
4797 | digits decdigit
4798 | digits hexdigit
4799
4800 decdigit [0-9]
4801
4802 e05 e05 addOp e06
4803 | e06
4804
4805 e06 e06 mulOp e09
4806 | e09
4807
4808 e09 OFFSET e10
4809 | e09 PTR e10
4810 | e09 : e10
4811 | e10
4812
4813 e10 e10 [ expr ]
4814 | e11
4815
4816 e11 ( expr )
4817 | [ expr ]
4818 | constant
4819 | dataType
4820 | id
4821 | $
4822 | register
4823
4824 => expr SHORT e05
4825 | e05
4826
4827 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
4828 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
4829
4830 hexdigit a | b | c | d | e | f
4831 | A | B | C | D | E | F
4832
4833 id alpha
4834 | id alpha
4835 | id decdigit
4836
4837 mulOp * | / | MOD
4838
4839 quote " | '
4840
4841 register specialRegister
4842 | gpRegister
4843 | byteRegister
4844
4845 segmentRegister CS | DS | ES | FS | GS | SS
4846
4847 specialRegister CR0 | CR2 | CR3
4848 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
4849 | TR3 | TR4 | TR5 | TR6 | TR7
4850
4851 We simplify the grammar in obvious places (e.g., register parsing is
4852 done by calling parse_register) and eliminate immediate left recursion
4853 to implement a recursive-descent parser.
4854
4855 expr SHORT e05
4856 | e05
4857
4858 e05 e06 e05'
4859
4860 e05' addOp e06 e05'
4861 | Empty
4862
4863 e06 e09 e06'
4864
4865 e06' mulOp e09 e06'
4866 | Empty
4867
4868 e09 OFFSET e10 e09'
4869 | e10 e09'
4870
4871 e09' PTR e10 e09'
4872 | : e10 e09'
4873 | Empty
4874
4875 e10 e11 e10'
4876
4877 e10' [ expr ] e10'
4878 | Empty
4879
4880 e11 ( expr )
4881 | [ expr ]
4882 | BYTE
4883 | WORD
4884 | DWORD
4885 | QWORD
4886 | XWORD
4887 | .
4888 | $
4889 | register
4890 | id
4891 | constant */
4892
4893 /* Parsing structure for the intel syntax parser. Used to implement the
4894 semantic actions for the operand grammar. */
4895 struct intel_parser_s
4896 {
4897 char *op_string; /* The string being parsed. */
4898 int got_a_float; /* Whether the operand is a float. */
4899 int op_modifier; /* Operand modifier. */
4900 int is_mem; /* 1 if operand is memory reference. */
4901 const reg_entry *reg; /* Last register reference found. */
4902 char *disp; /* Displacement string being built. */
4903 };
4904
4905 static struct intel_parser_s intel_parser;
4906
4907 /* Token structure for parsing intel syntax. */
4908 struct intel_token
4909 {
4910 int code; /* Token code. */
4911 const reg_entry *reg; /* Register entry for register tokens. */
4912 char *str; /* String representation. */
4913 };
4914
4915 static struct intel_token cur_token, prev_token;
4916
4917
4918 /* Token codes for the intel parser. Since T_SHORT is already used
4919 by COFF, undefine it first to prevent a warning. */
4920 #define T_NIL -1
4921 #define T_CONST 1
4922 #define T_REG 2
4923 #define T_BYTE 3
4924 #define T_WORD 4
4925 #define T_DWORD 5
4926 #define T_QWORD 6
4927 #define T_XWORD 7
4928 #undef T_SHORT
4929 #define T_SHORT 8
4930 #define T_OFFSET 9
4931 #define T_PTR 10
4932 #define T_ID 11
4933
4934 /* Prototypes for intel parser functions. */
4935 static int intel_match_token PARAMS ((int code));
4936 static void intel_get_token PARAMS ((void));
4937 static void intel_putback_token PARAMS ((void));
4938 static int intel_expr PARAMS ((void));
4939 static int intel_e05 PARAMS ((void));
4940 static int intel_e05_1 PARAMS ((void));
4941 static int intel_e06 PARAMS ((void));
4942 static int intel_e06_1 PARAMS ((void));
4943 static int intel_e09 PARAMS ((void));
4944 static int intel_e09_1 PARAMS ((void));
4945 static int intel_e10 PARAMS ((void));
4946 static int intel_e10_1 PARAMS ((void));
4947 static int intel_e11 PARAMS ((void));
4948
4949 static int
4950 i386_intel_operand (operand_string, got_a_float)
4951 char *operand_string;
4952 int got_a_float;
4953 {
4954 int ret;
4955 char *p;
4956
4957 /* Initialize token holders. */
4958 cur_token.code = prev_token.code = T_NIL;
4959 cur_token.reg = prev_token.reg = NULL;
4960 cur_token.str = prev_token.str = NULL;
4961
4962 /* Initialize parser structure. */
4963 p = intel_parser.op_string = (char *)malloc (strlen (operand_string) + 1);
4964 if (p == NULL)
4965 abort ();
4966 strcpy (intel_parser.op_string, operand_string);
4967 intel_parser.got_a_float = got_a_float;
4968 intel_parser.op_modifier = -1;
4969 intel_parser.is_mem = 0;
4970 intel_parser.reg = NULL;
4971 intel_parser.disp = (char *)malloc (strlen (operand_string) + 1);
4972 if (intel_parser.disp == NULL)
4973 abort ();
4974 intel_parser.disp[0] = '\0';
4975
4976 /* Read the first token and start the parser. */
4977 intel_get_token ();
4978 ret = intel_expr ();
4979
4980 if (ret)
4981 {
4982 /* If we found a memory reference, hand it over to i386_displacement
4983 to fill in the rest of the operand fields. */
4984 if (intel_parser.is_mem)
4985 {
4986 if ((i.mem_operands == 1
4987 && (current_templates->start->opcode_modifier & IsString) == 0)
4988 || i.mem_operands == 2)
4989 {
4990 as_bad (_("too many memory references for '%s'"),
4991 current_templates->start->name);
4992 ret = 0;
4993 }
4994 else
4995 {
4996 char *s = intel_parser.disp;
4997 i.mem_operands++;
4998
4999 /* Add the displacement expression. */
5000 if (*s != '\0')
5001 ret = i386_displacement (s, s + strlen (s))
5002 && i386_index_check (s);
5003 }
5004 }
5005
5006 /* Constant and OFFSET expressions are handled by i386_immediate. */
5007 else if (intel_parser.op_modifier == OFFSET_FLAT
5008 || intel_parser.reg == NULL)
5009 ret = i386_immediate (intel_parser.disp);
5010 }
5011
5012 free (p);
5013 free (intel_parser.disp);
5014
5015 return ret;
5016 }
5017
5018 /* expr SHORT e05
5019 | e05 */
5020 static int
5021 intel_expr ()
5022 {
5023 /* expr SHORT e05 */
5024 if (cur_token.code == T_SHORT)
5025 {
5026 intel_parser.op_modifier = SHORT;
5027 intel_match_token (T_SHORT);
5028
5029 return (intel_e05 ());
5030 }
5031
5032 /* expr e05 */
5033 else
5034 return intel_e05 ();
5035 }
5036
5037 /* e05 e06 e05'
5038
5039 e05' addOp e06 e05'
5040 | Empty */
5041 static int
5042 intel_e05 ()
5043 {
5044 return (intel_e06 () && intel_e05_1 ());
5045 }
5046
5047 static int
5048 intel_e05_1 ()
5049 {
5050 /* e05' addOp e06 e05' */
5051 if (cur_token.code == '+' || cur_token.code == '-')
5052 {
5053 strcat (intel_parser.disp, cur_token.str);
5054 intel_match_token (cur_token.code);
5055
5056 return (intel_e06 () && intel_e05_1 ());
5057 }
5058
5059 /* e05' Empty */
5060 else
5061 return 1;
5062 }
5063
5064 /* e06 e09 e06'
5065
5066 e06' mulOp e09 e06'
5067 | Empty */
5068 static int
5069 intel_e06 ()
5070 {
5071 return (intel_e09 () && intel_e06_1 ());
5072 }
5073
5074 static int
5075 intel_e06_1 ()
5076 {
5077 /* e06' mulOp e09 e06' */
5078 if (cur_token.code == '*' || cur_token.code == '/')
5079 {
5080 strcat (intel_parser.disp, cur_token.str);
5081 intel_match_token (cur_token.code);
5082
5083 return (intel_e09 () && intel_e06_1 ());
5084 }
5085
5086 /* e06' Empty */
5087 else
5088 return 1;
5089 }
5090
5091 /* e09 OFFSET e10 e09'
5092 | e10 e09'
5093
5094 e09' PTR e10 e09'
5095 | : e10 e09'
5096 | Empty */
5097 static int
5098 intel_e09 ()
5099 {
5100 /* e09 OFFSET e10 e09' */
5101 if (cur_token.code == T_OFFSET)
5102 {
5103 intel_parser.is_mem = 0;
5104 intel_parser.op_modifier = OFFSET_FLAT;
5105 intel_match_token (T_OFFSET);
5106
5107 return (intel_e10 () && intel_e09_1 ());
5108 }
5109
5110 /* e09 e10 e09' */
5111 else
5112 return (intel_e10 () && intel_e09_1 ());
5113 }
5114
5115 static int
5116 intel_e09_1 ()
5117 {
5118 /* e09' PTR e10 e09' */
5119 if (cur_token.code == T_PTR)
5120 {
5121 if (prev_token.code == T_BYTE)
5122 i.suffix = BYTE_MNEM_SUFFIX;
5123
5124 else if (prev_token.code == T_WORD)
5125 {
5126 if (intel_parser.got_a_float == 2) /* "fi..." */
5127 i.suffix = SHORT_MNEM_SUFFIX;
5128 else
5129 i.suffix = WORD_MNEM_SUFFIX;
5130 }
5131
5132 else if (prev_token.code == T_DWORD)
5133 {
5134 if (intel_parser.got_a_float == 1) /* "f..." */
5135 i.suffix = SHORT_MNEM_SUFFIX;
5136 else
5137 i.suffix = LONG_MNEM_SUFFIX;
5138 }
5139
5140 else if (prev_token.code == T_QWORD)
5141 {
5142 if (intel_parser.got_a_float == 1) /* "f..." */
5143 i.suffix = LONG_MNEM_SUFFIX;
5144 else
5145 i.suffix = QWORD_MNEM_SUFFIX;
5146 }
5147
5148 else if (prev_token.code == T_XWORD)
5149 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
5150
5151 else
5152 {
5153 as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
5154 return 0;
5155 }
5156
5157 intel_match_token (T_PTR);
5158
5159 return (intel_e10 () && intel_e09_1 ());
5160 }
5161
5162 /* e09 : e10 e09' */
5163 else if (cur_token.code == ':')
5164 {
5165 /* Mark as a memory operand only if it's not already known to be an
5166 offset expression. */
5167 if (intel_parser.op_modifier != OFFSET_FLAT)
5168 intel_parser.is_mem = 1;
5169
5170 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5171 }
5172
5173 /* e09' Empty */
5174 else
5175 return 1;
5176 }
5177
5178 /* e10 e11 e10'
5179
5180 e10' [ expr ] e10'
5181 | Empty */
5182 static int
5183 intel_e10 ()
5184 {
5185 return (intel_e11 () && intel_e10_1 ());
5186 }
5187
5188 static int
5189 intel_e10_1 ()
5190 {
5191 /* e10' [ expr ] e10' */
5192 if (cur_token.code == '[')
5193 {
5194 intel_match_token ('[');
5195
5196 /* Mark as a memory operand only if it's not already known to be an
5197 offset expression. If it's an offset expression, we need to keep
5198 the brace in. */
5199 if (intel_parser.op_modifier != OFFSET_FLAT)
5200 intel_parser.is_mem = 1;
5201 else
5202 strcat (intel_parser.disp, "[");
5203
5204 /* Add a '+' to the displacement string if necessary. */
5205 if (*intel_parser.disp != '\0'
5206 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5207 strcat (intel_parser.disp, "+");
5208
5209 if (intel_expr () && intel_match_token (']'))
5210 {
5211 /* Preserve brackets when the operand is an offset expression. */
5212 if (intel_parser.op_modifier == OFFSET_FLAT)
5213 strcat (intel_parser.disp, "]");
5214
5215 return intel_e10_1 ();
5216 }
5217 else
5218 return 0;
5219 }
5220
5221 /* e10' Empty */
5222 else
5223 return 1;
5224 }
5225
5226 /* e11 ( expr )
5227 | [ expr ]
5228 | BYTE
5229 | WORD
5230 | DWORD
5231 | QWORD
5232 | XWORD
5233 | $
5234 | .
5235 | register
5236 | id
5237 | constant */
5238 static int
5239 intel_e11 ()
5240 {
5241 /* e11 ( expr ) */
5242 if (cur_token.code == '(')
5243 {
5244 intel_match_token ('(');
5245 strcat (intel_parser.disp, "(");
5246
5247 if (intel_expr () && intel_match_token (')'))
5248 {
5249 strcat (intel_parser.disp, ")");
5250 return 1;
5251 }
5252 else
5253 return 0;
5254 }
5255
5256 /* e11 [ expr ] */
5257 else if (cur_token.code == '[')
5258 {
5259 intel_match_token ('[');
5260
5261 /* Mark as a memory operand only if it's not already known to be an
5262 offset expression. If it's an offset expression, we need to keep
5263 the brace in. */
5264 if (intel_parser.op_modifier != OFFSET_FLAT)
5265 intel_parser.is_mem = 1;
5266 else
5267 strcat (intel_parser.disp, "[");
5268
5269 /* Operands for jump/call inside brackets denote absolute addresses. */
5270 if (current_templates->start->opcode_modifier & Jump
5271 || current_templates->start->opcode_modifier & JumpDword
5272 || current_templates->start->opcode_modifier & JumpByte
5273 || current_templates->start->opcode_modifier & JumpInterSegment)
5274 i.types[this_operand] |= JumpAbsolute;
5275
5276 /* Add a '+' to the displacement string if necessary. */
5277 if (*intel_parser.disp != '\0'
5278 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5279 strcat (intel_parser.disp, "+");
5280
5281 if (intel_expr () && intel_match_token (']'))
5282 {
5283 /* Preserve brackets when the operand is an offset expression. */
5284 if (intel_parser.op_modifier == OFFSET_FLAT)
5285 strcat (intel_parser.disp, "]");
5286
5287 return 1;
5288 }
5289 else
5290 return 0;
5291 }
5292
5293 /* e11 BYTE
5294 | WORD
5295 | DWORD
5296 | QWORD
5297 | XWORD */
5298 else if (cur_token.code == T_BYTE
5299 || cur_token.code == T_WORD
5300 || cur_token.code == T_DWORD
5301 || cur_token.code == T_QWORD
5302 || cur_token.code == T_XWORD)
5303 {
5304 intel_match_token (cur_token.code);
5305
5306 return 1;
5307 }
5308
5309 /* e11 $
5310 | . */
5311 else if (cur_token.code == '$' || cur_token.code == '.')
5312 {
5313 strcat (intel_parser.disp, cur_token.str);
5314 intel_match_token (cur_token.code);
5315
5316 /* Mark as a memory operand only if it's not already known to be an
5317 offset expression. */
5318 if (intel_parser.op_modifier != OFFSET_FLAT)
5319 intel_parser.is_mem = 1;
5320
5321 return 1;
5322 }
5323
5324 /* e11 register */
5325 else if (cur_token.code == T_REG)
5326 {
5327 const reg_entry *reg = intel_parser.reg = cur_token.reg;
5328
5329 intel_match_token (T_REG);
5330
5331 /* Check for segment change. */
5332 if (cur_token.code == ':')
5333 {
5334 if (reg->reg_type & (SReg2 | SReg3))
5335 {
5336 switch (reg->reg_num)
5337 {
5338 case 0:
5339 i.seg[i.mem_operands] = &es;
5340 break;
5341 case 1:
5342 i.seg[i.mem_operands] = &cs;
5343 break;
5344 case 2:
5345 i.seg[i.mem_operands] = &ss;
5346 break;
5347 case 3:
5348 i.seg[i.mem_operands] = &ds;
5349 break;
5350 case 4:
5351 i.seg[i.mem_operands] = &fs;
5352 break;
5353 case 5:
5354 i.seg[i.mem_operands] = &gs;
5355 break;
5356 }
5357 }
5358 else
5359 {
5360 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
5361 return 0;
5362 }
5363 }
5364
5365 /* Not a segment register. Check for register scaling. */
5366 else if (cur_token.code == '*')
5367 {
5368 if (!intel_parser.is_mem)
5369 {
5370 as_bad (_("Register scaling only allowed in memory operands."));
5371 return 0;
5372 }
5373
5374 /* What follows must be a valid scale. */
5375 if (intel_match_token ('*')
5376 && strchr ("01248", *cur_token.str))
5377 {
5378 i.index_reg = reg;
5379 i.types[this_operand] |= BaseIndex;
5380
5381 /* Set the scale after setting the register (otherwise,
5382 i386_scale will complain) */
5383 i386_scale (cur_token.str);
5384 intel_match_token (T_CONST);
5385 }
5386 else
5387 {
5388 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5389 cur_token.str);
5390 return 0;
5391 }
5392 }
5393
5394 /* No scaling. If this is a memory operand, the register is either a
5395 base register (first occurrence) or an index register (second
5396 occurrence). */
5397 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
5398 {
5399 if (i.base_reg && i.index_reg)
5400 {
5401 as_bad (_("Too many register references in memory operand.\n"));
5402 return 0;
5403 }
5404
5405 if (i.base_reg == NULL)
5406 i.base_reg = reg;
5407 else
5408 i.index_reg = reg;
5409
5410 i.types[this_operand] |= BaseIndex;
5411 }
5412
5413 /* Offset modifier. Add the register to the displacement string to be
5414 parsed as an immediate expression after we're done. */
5415 else if (intel_parser.op_modifier == OFFSET_FLAT)
5416 strcat (intel_parser.disp, reg->reg_name);
5417
5418 /* It's neither base nor index nor offset. */
5419 else
5420 {
5421 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
5422 i.op[this_operand].regs = reg;
5423 i.reg_operands++;
5424 }
5425
5426 /* Since registers are not part of the displacement string (except
5427 when we're parsing offset operands), we may need to remove any
5428 preceding '+' from the displacement string. */
5429 if (*intel_parser.disp != '\0'
5430 && intel_parser.op_modifier != OFFSET_FLAT)
5431 {
5432 char *s = intel_parser.disp;
5433 s += strlen (s) - 1;
5434 if (*s == '+')
5435 *s = '\0';
5436 }
5437
5438 return 1;
5439 }
5440
5441 /* e11 id */
5442 else if (cur_token.code == T_ID)
5443 {
5444 /* Add the identifier to the displacement string. */
5445 strcat (intel_parser.disp, cur_token.str);
5446 intel_match_token (T_ID);
5447
5448 /* The identifier represents a memory reference only if it's not
5449 preceded by an offset modifier. */
5450 if (intel_parser.op_modifier != OFFSET_FLAT)
5451 intel_parser.is_mem = 1;
5452
5453 return 1;
5454 }
5455
5456 /* e11 constant */
5457 else if (cur_token.code == T_CONST
5458 || cur_token.code == '-'
5459 || cur_token.code == '+')
5460 {
5461 char *save_str;
5462
5463 /* Allow constants that start with `+' or `-'. */
5464 if (cur_token.code == '-' || cur_token.code == '+')
5465 {
5466 strcat (intel_parser.disp, cur_token.str);
5467 intel_match_token (cur_token.code);
5468 if (cur_token.code != T_CONST)
5469 {
5470 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
5471 cur_token.str);
5472 return 0;
5473 }
5474 }
5475
5476 save_str = (char *)malloc (strlen (cur_token.str) + 1);
5477 if (save_str == NULL)
5478 abort ();
5479 strcpy (save_str, cur_token.str);
5480
5481 /* Get the next token to check for register scaling. */
5482 intel_match_token (cur_token.code);
5483
5484 /* Check if this constant is a scaling factor for an index register. */
5485 if (cur_token.code == '*')
5486 {
5487 if (intel_match_token ('*') && cur_token.code == T_REG)
5488 {
5489 if (!intel_parser.is_mem)
5490 {
5491 as_bad (_("Register scaling only allowed in memory operands."));
5492 return 0;
5493 }
5494
5495 /* The constant is followed by `* reg', so it must be
5496 a valid scale. */
5497 if (strchr ("01248", *save_str))
5498 {
5499 i.index_reg = cur_token.reg;
5500 i.types[this_operand] |= BaseIndex;
5501
5502 /* Set the scale after setting the register (otherwise,
5503 i386_scale will complain) */
5504 i386_scale (save_str);
5505 intel_match_token (T_REG);
5506
5507 /* Since registers are not part of the displacement
5508 string, we may need to remove any preceding '+' from
5509 the displacement string. */
5510 if (*intel_parser.disp != '\0')
5511 {
5512 char *s = intel_parser.disp;
5513 s += strlen (s) - 1;
5514 if (*s == '+')
5515 *s = '\0';
5516 }
5517
5518 free (save_str);
5519
5520 return 1;
5521 }
5522 else
5523 return 0;
5524 }
5525
5526 /* The constant was not used for register scaling. Since we have
5527 already consumed the token following `*' we now need to put it
5528 back in the stream. */
5529 else
5530 intel_putback_token ();
5531 }
5532
5533 /* Add the constant to the displacement string. */
5534 strcat (intel_parser.disp, save_str);
5535 free (save_str);
5536
5537 return 1;
5538 }
5539
5540 as_bad (_("Unrecognized token '%s'"), cur_token.str);
5541 return 0;
5542 }
5543
5544 /* Match the given token against cur_token. If they match, read the next
5545 token from the operand string. */
5546 static int
5547 intel_match_token (code)
5548 int code;
5549 {
5550 if (cur_token.code == code)
5551 {
5552 intel_get_token ();
5553 return 1;
5554 }
5555 else
5556 {
5557 as_bad (_("Unexpected token `%s'\n"), cur_token.str);
5558 return 0;
5559 }
5560 }
5561
5562 /* Read a new token from intel_parser.op_string and store it in cur_token. */
5563 static void
5564 intel_get_token ()
5565 {
5566 char *end_op;
5567 const reg_entry *reg;
5568 struct intel_token new_token;
5569
5570 new_token.code = T_NIL;
5571 new_token.reg = NULL;
5572 new_token.str = NULL;
5573
5574 /* Free the memory allocated to the previous token and move
5575 cur_token to prev_token. */
5576 if (prev_token.str)
5577 free (prev_token.str);
5578
5579 prev_token = cur_token;
5580
5581 /* Skip whitespace. */
5582 while (is_space_char (*intel_parser.op_string))
5583 intel_parser.op_string++;
5584
5585 /* Return an empty token if we find nothing else on the line. */
5586 if (*intel_parser.op_string == '\0')
5587 {
5588 cur_token = new_token;
5589 return;
5590 }
5591
5592 /* The new token cannot be larger than the remainder of the operand
5593 string. */
5594 new_token.str = (char *)malloc (strlen (intel_parser.op_string) + 1);
5595 if (new_token.str == NULL)
5596 abort ();
5597 new_token.str[0] = '\0';
5598
5599 if (strchr ("0123456789", *intel_parser.op_string))
5600 {
5601 char *p = new_token.str;
5602 char *q = intel_parser.op_string;
5603 new_token.code = T_CONST;
5604
5605 /* Allow any kind of identifier char to encompass floating point and
5606 hexadecimal numbers. */
5607 while (is_identifier_char (*q))
5608 *p++ = *q++;
5609 *p = '\0';
5610
5611 /* Recognize special symbol names [0-9][bf]. */
5612 if (strlen (intel_parser.op_string) == 2
5613 && (intel_parser.op_string[1] == 'b'
5614 || intel_parser.op_string[1] == 'f'))
5615 new_token.code = T_ID;
5616 }
5617
5618 else if (strchr ("+-/*:[]()", *intel_parser.op_string))
5619 {
5620 new_token.code = *intel_parser.op_string;
5621 new_token.str[0] = *intel_parser.op_string;
5622 new_token.str[1] = '\0';
5623 }
5624
5625 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
5626 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
5627 {
5628 new_token.code = T_REG;
5629 new_token.reg = reg;
5630
5631 if (*intel_parser.op_string == REGISTER_PREFIX)
5632 {
5633 new_token.str[0] = REGISTER_PREFIX;
5634 new_token.str[1] = '\0';
5635 }
5636
5637 strcat (new_token.str, reg->reg_name);
5638 }
5639
5640 else if (is_identifier_char (*intel_parser.op_string))
5641 {
5642 char *p = new_token.str;
5643 char *q = intel_parser.op_string;
5644
5645 /* A '.' or '$' followed by an identifier char is an identifier.
5646 Otherwise, it's operator '.' followed by an expression. */
5647 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
5648 {
5649 new_token.code = *q;
5650 new_token.str[0] = *q;
5651 new_token.str[1] = '\0';
5652 }
5653 else
5654 {
5655 while (is_identifier_char (*q) || *q == '@')
5656 *p++ = *q++;
5657 *p = '\0';
5658
5659 if (strcasecmp (new_token.str, "BYTE") == 0)
5660 new_token.code = T_BYTE;
5661
5662 else if (strcasecmp (new_token.str, "WORD") == 0)
5663 new_token.code = T_WORD;
5664
5665 else if (strcasecmp (new_token.str, "DWORD") == 0)
5666 new_token.code = T_DWORD;
5667
5668 else if (strcasecmp (new_token.str, "QWORD") == 0)
5669 new_token.code = T_QWORD;
5670
5671 else if (strcasecmp (new_token.str, "XWORD") == 0)
5672 new_token.code = T_XWORD;
5673
5674 else if (strcasecmp (new_token.str, "PTR") == 0)
5675 new_token.code = T_PTR;
5676
5677 else if (strcasecmp (new_token.str, "SHORT") == 0)
5678 new_token.code = T_SHORT;
5679
5680 else if (strcasecmp (new_token.str, "OFFSET") == 0)
5681 {
5682 new_token.code = T_OFFSET;
5683
5684 /* ??? This is not mentioned in the MASM grammar but gcc
5685 makes use of it with -mintel-syntax. OFFSET may be
5686 followed by FLAT: */
5687 if (strncasecmp (q, " FLAT:", 6) == 0)
5688 strcat (new_token.str, " FLAT:");
5689 }
5690
5691 /* ??? This is not mentioned in the MASM grammar. */
5692 else if (strcasecmp (new_token.str, "FLAT") == 0)
5693 new_token.code = T_OFFSET;
5694
5695 else
5696 new_token.code = T_ID;
5697 }
5698 }
5699
5700 else
5701 as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
5702
5703 intel_parser.op_string += strlen (new_token.str);
5704 cur_token = new_token;
5705 }
5706
5707 /* Put cur_token back into the token stream and make cur_token point to
5708 prev_token. */
5709 static void
5710 intel_putback_token ()
5711 {
5712 intel_parser.op_string -= strlen (cur_token.str);
5713 free (cur_token.str);
5714 cur_token = prev_token;
5715
5716 /* Forget prev_token. */
5717 prev_token.code = T_NIL;
5718 prev_token.reg = NULL;
5719 prev_token.str = NULL;
5720 }