Allow for the possibility that the local labels won't be in the objdump output.
[binutils-gdb.git] / gas / config / tc-i386.c
1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 Bugs & suggestions are completely welcome. This is free software.
27 Please help us make it better. */
28
29 #include <ctype.h>
30
31 #include "as.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "opcode/i386.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef SCALE1_WHEN_NO_INDEX
45 /* Specifying a scale factor besides 1 when there is no index is
46 futile. eg. `mov (%ebx,2),%al' does exactly the same as
47 `mov (%ebx),%al'. To slavishly follow what the programmer
48 specified, set SCALE1_WHEN_NO_INDEX to 0. */
49 #define SCALE1_WHEN_NO_INDEX 1
50 #endif
51
52 #define true 1
53 #define false 0
54
55 static unsigned int mode_from_disp_size PARAMS ((unsigned int));
56 static int fits_in_signed_byte PARAMS ((offsetT));
57 static int fits_in_unsigned_byte PARAMS ((offsetT));
58 static int fits_in_unsigned_word PARAMS ((offsetT));
59 static int fits_in_signed_word PARAMS ((offsetT));
60 static int fits_in_unsigned_long PARAMS ((offsetT));
61 static int fits_in_signed_long PARAMS ((offsetT));
62 static int smallest_imm_type PARAMS ((offsetT));
63 static offsetT offset_in_range PARAMS ((offsetT, int));
64 static int add_prefix PARAMS ((unsigned int));
65 static void set_code_flag PARAMS ((int));
66 static void set_16bit_gcc_code_flag PARAMS ((int));
67 static void set_intel_syntax PARAMS ((int));
68 static void set_cpu_arch PARAMS ((int));
69
70 #ifdef BFD_ASSEMBLER
71 static bfd_reloc_code_real_type reloc
72 PARAMS ((int, int, int, bfd_reloc_code_real_type));
73 #define RELOC_ENUM enum bfd_reloc_code_real
74 #else
75 #define RELOC_ENUM int
76 #endif
77
78 #ifndef DEFAULT_ARCH
79 #define DEFAULT_ARCH "i386"
80 #endif
81 static char *default_arch = DEFAULT_ARCH;
82
83 /* 'md_assemble ()' gathers together information and puts it into a
84 i386_insn. */
85
86 union i386_op
87 {
88 expressionS *disps;
89 expressionS *imms;
90 const reg_entry *regs;
91 };
92
93 struct _i386_insn
94 {
95 /* TM holds the template for the insn were currently assembling. */
96 template tm;
97
98 /* SUFFIX holds the instruction mnemonic suffix if given.
99 (e.g. 'l' for 'movl') */
100 char suffix;
101
102 /* OPERANDS gives the number of given operands. */
103 unsigned int operands;
104
105 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
106 of given register, displacement, memory operands and immediate
107 operands. */
108 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
109
110 /* TYPES [i] is the type (see above #defines) which tells us how to
111 use OP[i] for the corresponding operand. */
112 unsigned int types[MAX_OPERANDS];
113
114 /* Displacement expression, immediate expression, or register for each
115 operand. */
116 union i386_op op[MAX_OPERANDS];
117
118 /* Flags for operands. */
119 unsigned int flags[MAX_OPERANDS];
120 #define Operand_PCrel 1
121
122 /* Relocation type for operand */
123 RELOC_ENUM reloc[MAX_OPERANDS];
124
125 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
126 the base index byte below. */
127 const reg_entry *base_reg;
128 const reg_entry *index_reg;
129 unsigned int log2_scale_factor;
130
131 /* SEG gives the seg_entries of this insn. They are zero unless
132 explicit segment overrides are given. */
133 const seg_entry *seg[2];
134
135 /* PREFIX holds all the given prefix opcodes (usually null).
136 PREFIXES is the number of prefix opcodes. */
137 unsigned int prefixes;
138 unsigned char prefix[MAX_PREFIXES];
139
140 /* RM and SIB are the modrm byte and the sib byte where the
141 addressing modes of this insn are encoded. */
142
143 modrm_byte rm;
144 rex_byte rex;
145 sib_byte sib;
146 };
147
148 typedef struct _i386_insn i386_insn;
149
150 /* List of chars besides those in app.c:symbol_chars that can start an
151 operand. Used to prevent the scrubber eating vital white-space. */
152 #ifdef LEX_AT
153 const char extra_symbol_chars[] = "*%-(@";
154 #else
155 const char extra_symbol_chars[] = "*%-(";
156 #endif
157
158 /* This array holds the chars that always start a comment. If the
159 pre-processor is disabled, these aren't very useful. */
160 #if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD))
161 /* Putting '/' here makes it impossible to use the divide operator.
162 However, we need it for compatibility with SVR4 systems. */
163 const char comment_chars[] = "#/";
164 #define PREFIX_SEPARATOR '\\'
165 #else
166 const char comment_chars[] = "#";
167 #define PREFIX_SEPARATOR '/'
168 #endif
169
170 /* This array holds the chars that only start a comment at the beginning of
171 a line. If the line seems to have the form '# 123 filename'
172 .line and .file directives will appear in the pre-processed output.
173 Note that input_file.c hand checks for '#' at the beginning of the
174 first line of the input file. This is because the compiler outputs
175 #NO_APP at the beginning of its output.
176 Also note that comments started like this one will always work if
177 '/' isn't otherwise defined. */
178 #if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD))
179 const char line_comment_chars[] = "";
180 #else
181 const char line_comment_chars[] = "/";
182 #endif
183
184 const char line_separator_chars[] = ";";
185
186 /* Chars that can be used to separate mant from exp in floating point
187 nums. */
188 const char EXP_CHARS[] = "eE";
189
190 /* Chars that mean this number is a floating point constant
191 As in 0f12.456
192 or 0d1.2345e12. */
193 const char FLT_CHARS[] = "fFdDxX";
194
195 /* Tables for lexical analysis. */
196 static char mnemonic_chars[256];
197 static char register_chars[256];
198 static char operand_chars[256];
199 static char identifier_chars[256];
200 static char digit_chars[256];
201
202 /* Lexical macros. */
203 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
204 #define is_operand_char(x) (operand_chars[(unsigned char) x])
205 #define is_register_char(x) (register_chars[(unsigned char) x])
206 #define is_space_char(x) ((x) == ' ')
207 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
208 #define is_digit_char(x) (digit_chars[(unsigned char) x])
209
210 /* All non-digit non-letter charcters that may occur in an operand. */
211 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
212
213 /* md_assemble() always leaves the strings it's passed unaltered. To
214 effect this we maintain a stack of saved characters that we've smashed
215 with '\0's (indicating end of strings for various sub-fields of the
216 assembler instruction). */
217 static char save_stack[32];
218 static char *save_stack_p;
219 #define END_STRING_AND_SAVE(s) \
220 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
221 #define RESTORE_END_STRING(s) \
222 do { *(s) = *--save_stack_p; } while (0)
223
224 /* The instruction we're assembling. */
225 static i386_insn i;
226
227 /* Possible templates for current insn. */
228 static const templates *current_templates;
229
230 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
231 static expressionS disp_expressions[2], im_expressions[2];
232
233 /* Current operand we are working on. */
234 static int this_operand;
235
236 /* We support four different modes. FLAG_CODE variable is used to distinguish
237 these. */
238
239 enum flag_code {
240 CODE_32BIT,
241 CODE_16BIT,
242 CODE_64BIT };
243 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
244
245 static enum flag_code flag_code;
246 static int use_rela_relocations = 0;
247
248 /* The names used to print error messages. */
249 static const char *flag_code_names[] =
250 {
251 "32",
252 "16",
253 "64"
254 };
255
256 /* 1 for intel syntax,
257 0 if att syntax. */
258 static int intel_syntax = 0;
259
260 /* 1 if register prefix % not required. */
261 static int allow_naked_reg = 0;
262
263 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
264 leave, push, and pop instructions so that gcc has the same stack
265 frame as in 32 bit mode. */
266 static char stackop_size = '\0';
267
268 /* Non-zero to quieten some warnings. */
269 static int quiet_warnings = 0;
270
271 /* CPU name. */
272 static const char *cpu_arch_name = NULL;
273
274 /* CPU feature flags. */
275 static unsigned int cpu_arch_flags = CpuUnknownFlags|CpuNo64;
276
277 /* If set, conditional jumps are not automatically promoted to handle
278 larger than a byte offset. */
279 static unsigned int no_cond_jump_promotion = 0;
280
281 /* Interface to relax_segment.
282 There are 3 major relax states for 386 jump insns because the
283 different types of jumps add different sizes to frags when we're
284 figuring out what sort of jump to choose to reach a given label. */
285
286 /* Types. */
287 #define UNCOND_JUMP 1
288 #define COND_JUMP 2
289 #define COND_JUMP86 3
290
291 /* Sizes. */
292 #define CODE16 1
293 #define SMALL 0
294 #define SMALL16 (SMALL|CODE16)
295 #define BIG 2
296 #define BIG16 (BIG|CODE16)
297
298 #ifndef INLINE
299 #ifdef __GNUC__
300 #define INLINE __inline__
301 #else
302 #define INLINE
303 #endif
304 #endif
305
306 #define ENCODE_RELAX_STATE(type, size) \
307 ((relax_substateT) (((type) << 2) | (size)))
308 #define TYPE_FROM_RELAX_STATE(s) \
309 ((s) >> 2)
310 #define DISP_SIZE_FROM_RELAX_STATE(s) \
311 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
312
313 /* This table is used by relax_frag to promote short jumps to long
314 ones where necessary. SMALL (short) jumps may be promoted to BIG
315 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
316 don't allow a short jump in a 32 bit code segment to be promoted to
317 a 16 bit offset jump because it's slower (requires data size
318 prefix), and doesn't work, unless the destination is in the bottom
319 64k of the code segment (The top 16 bits of eip are zeroed). */
320
321 const relax_typeS md_relax_table[] =
322 {
323 /* The fields are:
324 1) most positive reach of this state,
325 2) most negative reach of this state,
326 3) how many bytes this mode will add to the size of the current frag
327 4) which index into the table to try if we can't fit into this one. */
328 {1, 1, 0, 0},
329 {1, 1, 0, 0},
330 {1, 1, 0, 0},
331 {1, 1, 0, 0},
332
333 /* UNCOND_JUMP states. */
334 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
335 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
336 /* dword jmp adds 3 bytes to frag:
337 0 extra opcode bytes, 3 extra displacement bytes. */
338 {0, 0, 3, 0},
339 /* word jmp adds 1 byte to frag:
340 0 extra opcode bytes, 1 extra displacement byte. */
341 {0, 0, 1, 0},
342
343 /* COND_JUMP states. */
344 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
345 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
346 /* dword conditionals adds 4 bytes to frag:
347 1 extra opcode byte, 3 extra displacement bytes. */
348 {0, 0, 4, 0},
349 /* word conditionals add 2 bytes to frag:
350 1 extra opcode byte, 1 extra displacement byte. */
351 {0, 0, 2, 0},
352
353 /* COND_JUMP86 states. */
354 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
355 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
356 /* dword conditionals adds 4 bytes to frag:
357 1 extra opcode byte, 3 extra displacement bytes. */
358 {0, 0, 4, 0},
359 /* word conditionals add 3 bytes to frag:
360 1 extra opcode byte, 2 extra displacement bytes. */
361 {0, 0, 3, 0}
362 };
363
364 static const arch_entry cpu_arch[] = {
365 {"i8086", Cpu086 },
366 {"i186", Cpu086|Cpu186 },
367 {"i286", Cpu086|Cpu186|Cpu286 },
368 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
369 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
370 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
371 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
372 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
373 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
374 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
375 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
376 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
377 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
378 {NULL, 0 }
379 };
380
381 void
382 i386_align_code (fragP, count)
383 fragS *fragP;
384 int count;
385 {
386 /* Various efficient no-op patterns for aligning code labels.
387 Note: Don't try to assemble the instructions in the comments.
388 0L and 0w are not legal. */
389 static const char f32_1[] =
390 {0x90}; /* nop */
391 static const char f32_2[] =
392 {0x89,0xf6}; /* movl %esi,%esi */
393 static const char f32_3[] =
394 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
395 static const char f32_4[] =
396 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
397 static const char f32_5[] =
398 {0x90, /* nop */
399 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
400 static const char f32_6[] =
401 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
402 static const char f32_7[] =
403 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
404 static const char f32_8[] =
405 {0x90, /* nop */
406 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
407 static const char f32_9[] =
408 {0x89,0xf6, /* movl %esi,%esi */
409 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
410 static const char f32_10[] =
411 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
412 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
413 static const char f32_11[] =
414 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
415 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
416 static const char f32_12[] =
417 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
418 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
419 static const char f32_13[] =
420 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
421 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
422 static const char f32_14[] =
423 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
424 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
425 static const char f32_15[] =
426 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
427 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
428 static const char f16_3[] =
429 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
430 static const char f16_4[] =
431 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
432 static const char f16_5[] =
433 {0x90, /* nop */
434 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
435 static const char f16_6[] =
436 {0x89,0xf6, /* mov %si,%si */
437 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
438 static const char f16_7[] =
439 {0x8d,0x74,0x00, /* lea 0(%si),%si */
440 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
441 static const char f16_8[] =
442 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
443 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
444 static const char *const f32_patt[] = {
445 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
446 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
447 };
448 static const char *const f16_patt[] = {
449 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
450 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
451 };
452
453 /* ??? We can't use these fillers for x86_64, since they often kills the
454 upper halves. Solve later. */
455 if (flag_code == CODE_64BIT)
456 count = 1;
457
458 if (count > 0 && count <= 15)
459 {
460 if (flag_code == CODE_16BIT)
461 {
462 memcpy (fragP->fr_literal + fragP->fr_fix,
463 f16_patt[count - 1], count);
464 if (count > 8)
465 /* Adjust jump offset. */
466 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
467 }
468 else
469 memcpy (fragP->fr_literal + fragP->fr_fix,
470 f32_patt[count - 1], count);
471 fragP->fr_var = count;
472 }
473 }
474
475 static char *output_invalid PARAMS ((int c));
476 static int i386_operand PARAMS ((char *operand_string));
477 static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
478 static const reg_entry *parse_register PARAMS ((char *reg_string,
479 char **end_op));
480
481 #ifndef I386COFF
482 static void s_bss PARAMS ((int));
483 #endif
484
485 symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
486
487 static INLINE unsigned int
488 mode_from_disp_size (t)
489 unsigned int t;
490 {
491 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
492 }
493
494 static INLINE int
495 fits_in_signed_byte (num)
496 offsetT num;
497 {
498 return (num >= -128) && (num <= 127);
499 }
500
501 static INLINE int
502 fits_in_unsigned_byte (num)
503 offsetT num;
504 {
505 return (num & 0xff) == num;
506 }
507
508 static INLINE int
509 fits_in_unsigned_word (num)
510 offsetT num;
511 {
512 return (num & 0xffff) == num;
513 }
514
515 static INLINE int
516 fits_in_signed_word (num)
517 offsetT num;
518 {
519 return (-32768 <= num) && (num <= 32767);
520 }
521 static INLINE int
522 fits_in_signed_long (num)
523 offsetT num ATTRIBUTE_UNUSED;
524 {
525 #ifndef BFD64
526 return 1;
527 #else
528 return (!(((offsetT) -1 << 31) & num)
529 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
530 #endif
531 } /* fits_in_signed_long() */
532 static INLINE int
533 fits_in_unsigned_long (num)
534 offsetT num ATTRIBUTE_UNUSED;
535 {
536 #ifndef BFD64
537 return 1;
538 #else
539 return (num & (((offsetT) 2 << 31) - 1)) == num;
540 #endif
541 } /* fits_in_unsigned_long() */
542
543 static int
544 smallest_imm_type (num)
545 offsetT num;
546 {
547 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64)
548 && !(cpu_arch_flags & (CpuUnknown)))
549 {
550 /* This code is disabled on the 486 because all the Imm1 forms
551 in the opcode table are slower on the i486. They're the
552 versions with the implicitly specified single-position
553 displacement, which has another syntax if you really want to
554 use that form. */
555 if (num == 1)
556 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
557 }
558 return (fits_in_signed_byte (num)
559 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
560 : fits_in_unsigned_byte (num)
561 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
562 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
563 ? (Imm16 | Imm32 | Imm32S | Imm64)
564 : fits_in_signed_long (num)
565 ? (Imm32 | Imm32S | Imm64)
566 : fits_in_unsigned_long (num)
567 ? (Imm32 | Imm64)
568 : Imm64);
569 }
570
571 static offsetT
572 offset_in_range (val, size)
573 offsetT val;
574 int size;
575 {
576 addressT mask;
577
578 switch (size)
579 {
580 case 1: mask = ((addressT) 1 << 8) - 1; break;
581 case 2: mask = ((addressT) 1 << 16) - 1; break;
582 case 4: mask = ((addressT) 2 << 31) - 1; break;
583 #ifdef BFD64
584 case 8: mask = ((addressT) 2 << 63) - 1; break;
585 #endif
586 default: abort ();
587 }
588
589 /* If BFD64, sign extend val. */
590 if (!use_rela_relocations)
591 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
592 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
593
594 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
595 {
596 char buf1[40], buf2[40];
597
598 sprint_value (buf1, val);
599 sprint_value (buf2, val & mask);
600 as_warn (_("%s shortened to %s"), buf1, buf2);
601 }
602 return val & mask;
603 }
604
605 /* Returns 0 if attempting to add a prefix where one from the same
606 class already exists, 1 if non rep/repne added, 2 if rep/repne
607 added. */
608 static int
609 add_prefix (prefix)
610 unsigned int prefix;
611 {
612 int ret = 1;
613 int q;
614
615 if (prefix >= 0x40 && prefix < 0x50 && flag_code == CODE_64BIT)
616 q = REX_PREFIX;
617 else
618 switch (prefix)
619 {
620 default:
621 abort ();
622
623 case CS_PREFIX_OPCODE:
624 case DS_PREFIX_OPCODE:
625 case ES_PREFIX_OPCODE:
626 case FS_PREFIX_OPCODE:
627 case GS_PREFIX_OPCODE:
628 case SS_PREFIX_OPCODE:
629 q = SEG_PREFIX;
630 break;
631
632 case REPNE_PREFIX_OPCODE:
633 case REPE_PREFIX_OPCODE:
634 ret = 2;
635 /* fall thru */
636 case LOCK_PREFIX_OPCODE:
637 q = LOCKREP_PREFIX;
638 break;
639
640 case FWAIT_OPCODE:
641 q = WAIT_PREFIX;
642 break;
643
644 case ADDR_PREFIX_OPCODE:
645 q = ADDR_PREFIX;
646 break;
647
648 case DATA_PREFIX_OPCODE:
649 q = DATA_PREFIX;
650 break;
651 }
652
653 if (i.prefix[q])
654 {
655 as_bad (_("same type of prefix used twice"));
656 return 0;
657 }
658
659 i.prefixes += 1;
660 i.prefix[q] = prefix;
661 return ret;
662 }
663
664 static void
665 set_code_flag (value)
666 int value;
667 {
668 flag_code = value;
669 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
670 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
671 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
672 {
673 as_bad (_("64bit mode not supported on this CPU."));
674 }
675 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
676 {
677 as_bad (_("32bit mode not supported on this CPU."));
678 }
679 stackop_size = '\0';
680 }
681
682 static void
683 set_16bit_gcc_code_flag (new_code_flag)
684 int new_code_flag;
685 {
686 flag_code = new_code_flag;
687 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
688 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
689 stackop_size = 'l';
690 }
691
692 static void
693 set_intel_syntax (syntax_flag)
694 int syntax_flag;
695 {
696 /* Find out if register prefixing is specified. */
697 int ask_naked_reg = 0;
698
699 SKIP_WHITESPACE ();
700 if (! is_end_of_line[(unsigned char) *input_line_pointer])
701 {
702 char *string = input_line_pointer;
703 int e = get_symbol_end ();
704
705 if (strcmp (string, "prefix") == 0)
706 ask_naked_reg = 1;
707 else if (strcmp (string, "noprefix") == 0)
708 ask_naked_reg = -1;
709 else
710 as_bad (_("bad argument to syntax directive."));
711 *input_line_pointer = e;
712 }
713 demand_empty_rest_of_line ();
714
715 intel_syntax = syntax_flag;
716
717 if (ask_naked_reg == 0)
718 {
719 #ifdef BFD_ASSEMBLER
720 allow_naked_reg = (intel_syntax
721 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
722 #else
723 /* Conservative default. */
724 allow_naked_reg = 0;
725 #endif
726 }
727 else
728 allow_naked_reg = (ask_naked_reg < 0);
729 }
730
731 static void
732 set_cpu_arch (dummy)
733 int dummy ATTRIBUTE_UNUSED;
734 {
735 SKIP_WHITESPACE ();
736
737 if (! is_end_of_line[(unsigned char) *input_line_pointer])
738 {
739 char *string = input_line_pointer;
740 int e = get_symbol_end ();
741 int i;
742
743 for (i = 0; cpu_arch[i].name; i++)
744 {
745 if (strcmp (string, cpu_arch[i].name) == 0)
746 {
747 cpu_arch_name = cpu_arch[i].name;
748 cpu_arch_flags = (cpu_arch[i].flags
749 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
750 break;
751 }
752 }
753 if (!cpu_arch[i].name)
754 as_bad (_("no such architecture: `%s'"), string);
755
756 *input_line_pointer = e;
757 }
758 else
759 as_bad (_("missing cpu architecture"));
760
761 no_cond_jump_promotion = 0;
762 if (*input_line_pointer == ','
763 && ! is_end_of_line[(unsigned char) input_line_pointer[1]])
764 {
765 char *string = ++input_line_pointer;
766 int e = get_symbol_end ();
767
768 if (strcmp (string, "nojumps") == 0)
769 no_cond_jump_promotion = 1;
770 else if (strcmp (string, "jumps") == 0)
771 ;
772 else
773 as_bad (_("no such architecture modifier: `%s'"), string);
774
775 *input_line_pointer = e;
776 }
777
778 demand_empty_rest_of_line ();
779 }
780
781 const pseudo_typeS md_pseudo_table[] =
782 {
783 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
784 {"align", s_align_bytes, 0},
785 #else
786 {"align", s_align_ptwo, 0},
787 #endif
788 {"arch", set_cpu_arch, 0},
789 #ifndef I386COFF
790 {"bss", s_bss, 0},
791 #endif
792 {"ffloat", float_cons, 'f'},
793 {"dfloat", float_cons, 'd'},
794 {"tfloat", float_cons, 'x'},
795 {"value", cons, 2},
796 {"noopt", s_ignore, 0},
797 {"optim", s_ignore, 0},
798 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
799 {"code16", set_code_flag, CODE_16BIT},
800 {"code32", set_code_flag, CODE_32BIT},
801 {"code64", set_code_flag, CODE_64BIT},
802 {"intel_syntax", set_intel_syntax, 1},
803 {"att_syntax", set_intel_syntax, 0},
804 {"file", dwarf2_directive_file, 0},
805 {"loc", dwarf2_directive_loc, 0},
806 {0, 0, 0}
807 };
808
809 /* For interface with expression (). */
810 extern char *input_line_pointer;
811
812 /* Hash table for instruction mnemonic lookup. */
813 static struct hash_control *op_hash;
814
815 /* Hash table for register lookup. */
816 static struct hash_control *reg_hash;
817 \f
818 #ifdef BFD_ASSEMBLER
819 unsigned long
820 i386_mach ()
821 {
822 if (!strcmp (default_arch, "x86_64"))
823 return bfd_mach_x86_64;
824 else if (!strcmp (default_arch, "i386"))
825 return bfd_mach_i386_i386;
826 else
827 as_fatal (_("Unknown architecture"));
828 }
829 #endif
830 \f
831 void
832 md_begin ()
833 {
834 const char *hash_err;
835
836 /* Initialize op_hash hash table. */
837 op_hash = hash_new ();
838
839 {
840 register const template *optab;
841 register templates *core_optab;
842
843 /* Setup for loop. */
844 optab = i386_optab;
845 core_optab = (templates *) xmalloc (sizeof (templates));
846 core_optab->start = optab;
847
848 while (1)
849 {
850 ++optab;
851 if (optab->name == NULL
852 || strcmp (optab->name, (optab - 1)->name) != 0)
853 {
854 /* different name --> ship out current template list;
855 add to hash table; & begin anew. */
856 core_optab->end = optab;
857 hash_err = hash_insert (op_hash,
858 (optab - 1)->name,
859 (PTR) core_optab);
860 if (hash_err)
861 {
862 as_fatal (_("Internal Error: Can't hash %s: %s"),
863 (optab - 1)->name,
864 hash_err);
865 }
866 if (optab->name == NULL)
867 break;
868 core_optab = (templates *) xmalloc (sizeof (templates));
869 core_optab->start = optab;
870 }
871 }
872 }
873
874 /* Initialize reg_hash hash table. */
875 reg_hash = hash_new ();
876 {
877 register const reg_entry *regtab;
878
879 for (regtab = i386_regtab;
880 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
881 regtab++)
882 {
883 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
884 if (hash_err)
885 as_fatal (_("Internal Error: Can't hash %s: %s"),
886 regtab->reg_name,
887 hash_err);
888 }
889 }
890
891 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
892 {
893 register int c;
894 register char *p;
895
896 for (c = 0; c < 256; c++)
897 {
898 if (isdigit (c))
899 {
900 digit_chars[c] = c;
901 mnemonic_chars[c] = c;
902 register_chars[c] = c;
903 operand_chars[c] = c;
904 }
905 else if (islower (c))
906 {
907 mnemonic_chars[c] = c;
908 register_chars[c] = c;
909 operand_chars[c] = c;
910 }
911 else if (isupper (c))
912 {
913 mnemonic_chars[c] = tolower (c);
914 register_chars[c] = mnemonic_chars[c];
915 operand_chars[c] = c;
916 }
917
918 if (isalpha (c) || isdigit (c))
919 identifier_chars[c] = c;
920 else if (c >= 128)
921 {
922 identifier_chars[c] = c;
923 operand_chars[c] = c;
924 }
925 }
926
927 #ifdef LEX_AT
928 identifier_chars['@'] = '@';
929 #endif
930 digit_chars['-'] = '-';
931 identifier_chars['_'] = '_';
932 identifier_chars['.'] = '.';
933
934 for (p = operand_special_chars; *p != '\0'; p++)
935 operand_chars[(unsigned char) *p] = *p;
936 }
937
938 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
939 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
940 {
941 record_alignment (text_section, 2);
942 record_alignment (data_section, 2);
943 record_alignment (bss_section, 2);
944 }
945 #endif
946 }
947
948 void
949 i386_print_statistics (file)
950 FILE *file;
951 {
952 hash_print_statistics (file, "i386 opcode", op_hash);
953 hash_print_statistics (file, "i386 register", reg_hash);
954 }
955 \f
956 #ifdef DEBUG386
957
958 /* Debugging routines for md_assemble. */
959 static void pi PARAMS ((char *, i386_insn *));
960 static void pte PARAMS ((template *));
961 static void pt PARAMS ((unsigned int));
962 static void pe PARAMS ((expressionS *));
963 static void ps PARAMS ((symbolS *));
964
965 static void
966 pi (line, x)
967 char *line;
968 i386_insn *x;
969 {
970 unsigned int i;
971
972 fprintf (stdout, "%s: template ", line);
973 pte (&x->tm);
974 fprintf (stdout, " address: base %s index %s scale %x\n",
975 x->base_reg ? x->base_reg->reg_name : "none",
976 x->index_reg ? x->index_reg->reg_name : "none",
977 x->log2_scale_factor);
978 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
979 x->rm.mode, x->rm.reg, x->rm.regmem);
980 fprintf (stdout, " sib: base %x index %x scale %x\n",
981 x->sib.base, x->sib.index, x->sib.scale);
982 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
983 x->rex.mode64, x->rex.extX, x->rex.extY, x->rex.extZ);
984 for (i = 0; i < x->operands; i++)
985 {
986 fprintf (stdout, " #%d: ", i + 1);
987 pt (x->types[i]);
988 fprintf (stdout, "\n");
989 if (x->types[i]
990 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
991 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
992 if (x->types[i] & Imm)
993 pe (x->op[i].imms);
994 if (x->types[i] & Disp)
995 pe (x->op[i].disps);
996 }
997 }
998
999 static void
1000 pte (t)
1001 template *t;
1002 {
1003 unsigned int i;
1004 fprintf (stdout, " %d operands ", t->operands);
1005 fprintf (stdout, "opcode %x ", t->base_opcode);
1006 if (t->extension_opcode != None)
1007 fprintf (stdout, "ext %x ", t->extension_opcode);
1008 if (t->opcode_modifier & D)
1009 fprintf (stdout, "D");
1010 if (t->opcode_modifier & W)
1011 fprintf (stdout, "W");
1012 fprintf (stdout, "\n");
1013 for (i = 0; i < t->operands; i++)
1014 {
1015 fprintf (stdout, " #%d type ", i + 1);
1016 pt (t->operand_types[i]);
1017 fprintf (stdout, "\n");
1018 }
1019 }
1020
1021 static void
1022 pe (e)
1023 expressionS *e;
1024 {
1025 fprintf (stdout, " operation %d\n", e->X_op);
1026 fprintf (stdout, " add_number %ld (%lx)\n",
1027 (long) e->X_add_number, (long) e->X_add_number);
1028 if (e->X_add_symbol)
1029 {
1030 fprintf (stdout, " add_symbol ");
1031 ps (e->X_add_symbol);
1032 fprintf (stdout, "\n");
1033 }
1034 if (e->X_op_symbol)
1035 {
1036 fprintf (stdout, " op_symbol ");
1037 ps (e->X_op_symbol);
1038 fprintf (stdout, "\n");
1039 }
1040 }
1041
1042 static void
1043 ps (s)
1044 symbolS *s;
1045 {
1046 fprintf (stdout, "%s type %s%s",
1047 S_GET_NAME (s),
1048 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1049 segment_name (S_GET_SEGMENT (s)));
1050 }
1051
1052 struct type_name
1053 {
1054 unsigned int mask;
1055 char *tname;
1056 }
1057
1058 type_names[] =
1059 {
1060 { Reg8, "r8" },
1061 { Reg16, "r16" },
1062 { Reg32, "r32" },
1063 { Reg64, "r64" },
1064 { Imm8, "i8" },
1065 { Imm8S, "i8s" },
1066 { Imm16, "i16" },
1067 { Imm32, "i32" },
1068 { Imm32S, "i32s" },
1069 { Imm64, "i64" },
1070 { Imm1, "i1" },
1071 { BaseIndex, "BaseIndex" },
1072 { Disp8, "d8" },
1073 { Disp16, "d16" },
1074 { Disp32, "d32" },
1075 { Disp32S, "d32s" },
1076 { Disp64, "d64" },
1077 { InOutPortReg, "InOutPortReg" },
1078 { ShiftCount, "ShiftCount" },
1079 { Control, "control reg" },
1080 { Test, "test reg" },
1081 { Debug, "debug reg" },
1082 { FloatReg, "FReg" },
1083 { FloatAcc, "FAcc" },
1084 { SReg2, "SReg2" },
1085 { SReg3, "SReg3" },
1086 { Acc, "Acc" },
1087 { JumpAbsolute, "Jump Absolute" },
1088 { RegMMX, "rMMX" },
1089 { RegXMM, "rXMM" },
1090 { EsSeg, "es" },
1091 { 0, "" }
1092 };
1093
1094 static void
1095 pt (t)
1096 unsigned int t;
1097 {
1098 register struct type_name *ty;
1099
1100 for (ty = type_names; ty->mask; ty++)
1101 if (t & ty->mask)
1102 fprintf (stdout, "%s, ", ty->tname);
1103 fflush (stdout);
1104 }
1105
1106 #endif /* DEBUG386 */
1107 \f
1108 int
1109 tc_i386_force_relocation (fixp)
1110 struct fix *fixp;
1111 {
1112 #ifdef BFD_ASSEMBLER
1113 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1114 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1115 return 1;
1116 return 0;
1117 #else
1118 /* For COFF. */
1119 return fixp->fx_r_type == 7;
1120 #endif
1121 }
1122
1123 #ifdef BFD_ASSEMBLER
1124
1125 static bfd_reloc_code_real_type
1126 reloc (size, pcrel, sign, other)
1127 int size;
1128 int pcrel;
1129 int sign;
1130 bfd_reloc_code_real_type other;
1131 {
1132 if (other != NO_RELOC)
1133 return other;
1134
1135 if (pcrel)
1136 {
1137 if (!sign)
1138 as_bad (_("There are no unsigned pc-relative relocations"));
1139 switch (size)
1140 {
1141 case 1: return BFD_RELOC_8_PCREL;
1142 case 2: return BFD_RELOC_16_PCREL;
1143 case 4: return BFD_RELOC_32_PCREL;
1144 }
1145 as_bad (_("can not do %d byte pc-relative relocation"), size);
1146 }
1147 else
1148 {
1149 if (sign)
1150 switch (size)
1151 {
1152 case 4: return BFD_RELOC_X86_64_32S;
1153 }
1154 else
1155 switch (size)
1156 {
1157 case 1: return BFD_RELOC_8;
1158 case 2: return BFD_RELOC_16;
1159 case 4: return BFD_RELOC_32;
1160 case 8: return BFD_RELOC_64;
1161 }
1162 as_bad (_("can not do %s %d byte relocation"),
1163 sign ? "signed" : "unsigned", size);
1164 }
1165
1166 abort ();
1167 return BFD_RELOC_NONE;
1168 }
1169
1170 /* Here we decide which fixups can be adjusted to make them relative to
1171 the beginning of the section instead of the symbol. Basically we need
1172 to make sure that the dynamic relocations are done correctly, so in
1173 some cases we force the original symbol to be used. */
1174
1175 int
1176 tc_i386_fix_adjustable (fixP)
1177 fixS *fixP;
1178 {
1179 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1180 /* Prevent all adjustments to global symbols, or else dynamic
1181 linking will not work correctly. */
1182 if (S_IS_EXTERNAL (fixP->fx_addsy)
1183 || S_IS_WEAK (fixP->fx_addsy))
1184 return 0;
1185 #endif
1186 /* adjust_reloc_syms doesn't know about the GOT. */
1187 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1188 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1189 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1190 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1191 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1192 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1193 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1194 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1195 return 0;
1196 return 1;
1197 }
1198 #else
1199 #define reloc(SIZE,PCREL,SIGN,OTHER) 0
1200 #define BFD_RELOC_16 0
1201 #define BFD_RELOC_32 0
1202 #define BFD_RELOC_16_PCREL 0
1203 #define BFD_RELOC_32_PCREL 0
1204 #define BFD_RELOC_386_PLT32 0
1205 #define BFD_RELOC_386_GOT32 0
1206 #define BFD_RELOC_386_GOTOFF 0
1207 #define BFD_RELOC_X86_64_PLT32 0
1208 #define BFD_RELOC_X86_64_GOT32 0
1209 #define BFD_RELOC_X86_64_GOTPCREL 0
1210 #endif
1211
1212 static int intel_float_operand PARAMS ((char *mnemonic));
1213
1214 static int
1215 intel_float_operand (mnemonic)
1216 char *mnemonic;
1217 {
1218 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
1219 return 2;
1220
1221 if (mnemonic[0] == 'f')
1222 return 1;
1223
1224 return 0;
1225 }
1226
1227 /* This is the guts of the machine-dependent assembler. LINE points to a
1228 machine dependent instruction. This function is supposed to emit
1229 the frags/bytes it assembles to. */
1230
1231 void
1232 md_assemble (line)
1233 char *line;
1234 {
1235 /* Points to template once we've found it. */
1236 const template *t;
1237
1238 /* Count the size of the instruction generated. Does not include
1239 variable part of jump insns before relax. */
1240 int insn_size = 0;
1241
1242 int j;
1243
1244 char mnemonic[MAX_MNEM_SIZE];
1245
1246 /* Initialize globals. */
1247 memset (&i, '\0', sizeof (i));
1248 for (j = 0; j < MAX_OPERANDS; j++)
1249 i.reloc[j] = NO_RELOC;
1250 memset (disp_expressions, '\0', sizeof (disp_expressions));
1251 memset (im_expressions, '\0', sizeof (im_expressions));
1252 save_stack_p = save_stack;
1253
1254 /* First parse an instruction mnemonic & call i386_operand for the operands.
1255 We assume that the scrubber has arranged it so that line[0] is the valid
1256 start of a (possibly prefixed) mnemonic. */
1257 {
1258 char *l = line;
1259 char *token_start = l;
1260 char *mnem_p;
1261
1262 /* Non-zero if we found a prefix only acceptable with string insns. */
1263 const char *expecting_string_instruction = NULL;
1264
1265 while (1)
1266 {
1267 mnem_p = mnemonic;
1268 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1269 {
1270 mnem_p++;
1271 if (mnem_p >= mnemonic + sizeof (mnemonic))
1272 {
1273 as_bad (_("no such instruction: `%s'"), token_start);
1274 return;
1275 }
1276 l++;
1277 }
1278 if (!is_space_char (*l)
1279 && *l != END_OF_INSN
1280 && *l != PREFIX_SEPARATOR)
1281 {
1282 as_bad (_("invalid character %s in mnemonic"),
1283 output_invalid (*l));
1284 return;
1285 }
1286 if (token_start == l)
1287 {
1288 if (*l == PREFIX_SEPARATOR)
1289 as_bad (_("expecting prefix; got nothing"));
1290 else
1291 as_bad (_("expecting mnemonic; got nothing"));
1292 return;
1293 }
1294
1295 /* Look up instruction (or prefix) via hash table. */
1296 current_templates = hash_find (op_hash, mnemonic);
1297
1298 if (*l != END_OF_INSN
1299 && (! is_space_char (*l) || l[1] != END_OF_INSN)
1300 && current_templates
1301 && (current_templates->start->opcode_modifier & IsPrefix))
1302 {
1303 /* If we are in 16-bit mode, do not allow addr16 or data16.
1304 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1305 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1306 && (((current_templates->start->opcode_modifier & Size32) != 0)
1307 ^ (flag_code == CODE_16BIT)))
1308 {
1309 as_bad (_("redundant %s prefix"),
1310 current_templates->start->name);
1311 return;
1312 }
1313 /* Add prefix, checking for repeated prefixes. */
1314 switch (add_prefix (current_templates->start->base_opcode))
1315 {
1316 case 0:
1317 return;
1318 case 2:
1319 expecting_string_instruction = current_templates->start->name;
1320 break;
1321 }
1322 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1323 token_start = ++l;
1324 }
1325 else
1326 break;
1327 }
1328
1329 if (!current_templates)
1330 {
1331 /* See if we can get a match by trimming off a suffix. */
1332 switch (mnem_p[-1])
1333 {
1334 case WORD_MNEM_SUFFIX:
1335 case BYTE_MNEM_SUFFIX:
1336 case QWORD_MNEM_SUFFIX:
1337 i.suffix = mnem_p[-1];
1338 mnem_p[-1] = '\0';
1339 current_templates = hash_find (op_hash, mnemonic);
1340 break;
1341 case SHORT_MNEM_SUFFIX:
1342 case LONG_MNEM_SUFFIX:
1343 if (!intel_syntax)
1344 {
1345 i.suffix = mnem_p[-1];
1346 mnem_p[-1] = '\0';
1347 current_templates = hash_find (op_hash, mnemonic);
1348 }
1349 break;
1350
1351 /* Intel Syntax. */
1352 case 'd':
1353 if (intel_syntax)
1354 {
1355 if (intel_float_operand (mnemonic))
1356 i.suffix = SHORT_MNEM_SUFFIX;
1357 else
1358 i.suffix = LONG_MNEM_SUFFIX;
1359 mnem_p[-1] = '\0';
1360 current_templates = hash_find (op_hash, mnemonic);
1361 }
1362 break;
1363 }
1364 if (!current_templates)
1365 {
1366 as_bad (_("no such instruction: `%s'"), token_start);
1367 return;
1368 }
1369 }
1370
1371 /* Check if instruction is supported on specified architecture. */
1372 if (cpu_arch_flags != 0)
1373 {
1374 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1375 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
1376 {
1377 as_warn (_("`%s' is not supported on `%s'"),
1378 current_templates->start->name, cpu_arch_name);
1379 }
1380 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1381 {
1382 as_warn (_("use .code16 to ensure correct addressing mode"));
1383 }
1384 }
1385
1386 /* Check for rep/repne without a string instruction. */
1387 if (expecting_string_instruction
1388 && !(current_templates->start->opcode_modifier & IsString))
1389 {
1390 as_bad (_("expecting string instruction after `%s'"),
1391 expecting_string_instruction);
1392 return;
1393 }
1394
1395 /* There may be operands to parse. */
1396 if (*l != END_OF_INSN)
1397 {
1398 /* 1 if operand is pending after ','. */
1399 unsigned int expecting_operand = 0;
1400
1401 /* Non-zero if operand parens not balanced. */
1402 unsigned int paren_not_balanced;
1403
1404 do
1405 {
1406 /* Skip optional white space before operand. */
1407 if (is_space_char (*l))
1408 ++l;
1409 if (!is_operand_char (*l) && *l != END_OF_INSN)
1410 {
1411 as_bad (_("invalid character %s before operand %d"),
1412 output_invalid (*l),
1413 i.operands + 1);
1414 return;
1415 }
1416 token_start = l; /* after white space */
1417 paren_not_balanced = 0;
1418 while (paren_not_balanced || *l != ',')
1419 {
1420 if (*l == END_OF_INSN)
1421 {
1422 if (paren_not_balanced)
1423 {
1424 if (!intel_syntax)
1425 as_bad (_("unbalanced parenthesis in operand %d."),
1426 i.operands + 1);
1427 else
1428 as_bad (_("unbalanced brackets in operand %d."),
1429 i.operands + 1);
1430 return;
1431 }
1432 else
1433 break; /* we are done */
1434 }
1435 else if (!is_operand_char (*l) && !is_space_char (*l))
1436 {
1437 as_bad (_("invalid character %s in operand %d"),
1438 output_invalid (*l),
1439 i.operands + 1);
1440 return;
1441 }
1442 if (!intel_syntax)
1443 {
1444 if (*l == '(')
1445 ++paren_not_balanced;
1446 if (*l == ')')
1447 --paren_not_balanced;
1448 }
1449 else
1450 {
1451 if (*l == '[')
1452 ++paren_not_balanced;
1453 if (*l == ']')
1454 --paren_not_balanced;
1455 }
1456 l++;
1457 }
1458 if (l != token_start)
1459 { /* Yes, we've read in another operand. */
1460 unsigned int operand_ok;
1461 this_operand = i.operands++;
1462 if (i.operands > MAX_OPERANDS)
1463 {
1464 as_bad (_("spurious operands; (%d operands/instruction max)"),
1465 MAX_OPERANDS);
1466 return;
1467 }
1468 /* Now parse operand adding info to 'i' as we go along. */
1469 END_STRING_AND_SAVE (l);
1470
1471 if (intel_syntax)
1472 operand_ok =
1473 i386_intel_operand (token_start,
1474 intel_float_operand (mnemonic));
1475 else
1476 operand_ok = i386_operand (token_start);
1477
1478 RESTORE_END_STRING (l);
1479 if (!operand_ok)
1480 return;
1481 }
1482 else
1483 {
1484 if (expecting_operand)
1485 {
1486 expecting_operand_after_comma:
1487 as_bad (_("expecting operand after ','; got nothing"));
1488 return;
1489 }
1490 if (*l == ',')
1491 {
1492 as_bad (_("expecting operand before ','; got nothing"));
1493 return;
1494 }
1495 }
1496
1497 /* Now *l must be either ',' or END_OF_INSN. */
1498 if (*l == ',')
1499 {
1500 if (*++l == END_OF_INSN)
1501 {
1502 /* Just skip it, if it's \n complain. */
1503 goto expecting_operand_after_comma;
1504 }
1505 expecting_operand = 1;
1506 }
1507 }
1508 while (*l != END_OF_INSN);
1509 }
1510 }
1511
1512 /* Now we've parsed the mnemonic into a set of templates, and have the
1513 operands at hand.
1514
1515 Next, we find a template that matches the given insn,
1516 making sure the overlap of the given operands types is consistent
1517 with the template operand types. */
1518
1519 #define MATCH(overlap, given, template) \
1520 ((overlap & ~JumpAbsolute) \
1521 && ((given) & (BaseIndex|JumpAbsolute)) == ((overlap) & (BaseIndex|JumpAbsolute)))
1522
1523 /* If given types r0 and r1 are registers they must be of the same type
1524 unless the expected operand type register overlap is null.
1525 Note that Acc in a template matches every size of reg. */
1526 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1527 ( ((g0) & Reg) == 0 || ((g1) & Reg) == 0 || \
1528 ((g0) & Reg) == ((g1) & Reg) || \
1529 ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
1530
1531 {
1532 register unsigned int overlap0, overlap1;
1533 unsigned int overlap2;
1534 unsigned int found_reverse_match;
1535 int suffix_check;
1536
1537 /* All intel opcodes have reversed operands except for "bound" and
1538 "enter". We also don't reverse intersegment "jmp" and "call"
1539 instructions with 2 immediate operands so that the immediate segment
1540 precedes the offset, as it does when in AT&T mode. "enter" and the
1541 intersegment "jmp" and "call" instructions are the only ones that
1542 have two immediate operands. */
1543 if (intel_syntax && i.operands > 1
1544 && (strcmp (mnemonic, "bound") != 0)
1545 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1546 {
1547 union i386_op temp_op;
1548 unsigned int temp_type;
1549 RELOC_ENUM temp_reloc;
1550 int xchg1 = 0;
1551 int xchg2 = 0;
1552
1553 if (i.operands == 2)
1554 {
1555 xchg1 = 0;
1556 xchg2 = 1;
1557 }
1558 else if (i.operands == 3)
1559 {
1560 xchg1 = 0;
1561 xchg2 = 2;
1562 }
1563 temp_type = i.types[xchg2];
1564 i.types[xchg2] = i.types[xchg1];
1565 i.types[xchg1] = temp_type;
1566 temp_op = i.op[xchg2];
1567 i.op[xchg2] = i.op[xchg1];
1568 i.op[xchg1] = temp_op;
1569 temp_reloc = i.reloc[xchg2];
1570 i.reloc[xchg2] = i.reloc[xchg1];
1571 i.reloc[xchg1] = temp_reloc;
1572
1573 if (i.mem_operands == 2)
1574 {
1575 const seg_entry *temp_seg;
1576 temp_seg = i.seg[0];
1577 i.seg[0] = i.seg[1];
1578 i.seg[1] = temp_seg;
1579 }
1580 }
1581
1582 if (i.imm_operands)
1583 {
1584 /* Try to ensure constant immediates are represented in the smallest
1585 opcode possible. */
1586 char guess_suffix = 0;
1587 int op;
1588
1589 if (i.suffix)
1590 guess_suffix = i.suffix;
1591 else if (i.reg_operands)
1592 {
1593 /* Figure out a suffix from the last register operand specified.
1594 We can't do this properly yet, ie. excluding InOutPortReg,
1595 but the following works for instructions with immediates.
1596 In any case, we can't set i.suffix yet. */
1597 for (op = i.operands; --op >= 0;)
1598 if (i.types[op] & Reg)
1599 {
1600 if (i.types[op] & Reg8)
1601 guess_suffix = BYTE_MNEM_SUFFIX;
1602 else if (i.types[op] & Reg16)
1603 guess_suffix = WORD_MNEM_SUFFIX;
1604 else if (i.types[op] & Reg32)
1605 guess_suffix = LONG_MNEM_SUFFIX;
1606 else if (i.types[op] & Reg64)
1607 guess_suffix = QWORD_MNEM_SUFFIX;
1608 break;
1609 }
1610 }
1611 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1612 guess_suffix = WORD_MNEM_SUFFIX;
1613
1614 for (op = i.operands; --op >= 0;)
1615 if (i.types[op] & Imm)
1616 {
1617 switch (i.op[op].imms->X_op)
1618 {
1619 case O_constant:
1620 /* If a suffix is given, this operand may be shortened. */
1621 switch (guess_suffix)
1622 {
1623 case LONG_MNEM_SUFFIX:
1624 i.types[op] |= Imm32 | Imm64;
1625 break;
1626 case WORD_MNEM_SUFFIX:
1627 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1628 break;
1629 case BYTE_MNEM_SUFFIX:
1630 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1631 break;
1632 }
1633
1634 /* If this operand is at most 16 bits, convert it
1635 to a signed 16 bit number before trying to see
1636 whether it will fit in an even smaller size.
1637 This allows a 16-bit operand such as $0xffe0 to
1638 be recognised as within Imm8S range. */
1639 if ((i.types[op] & Imm16)
1640 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
1641 {
1642 i.op[op].imms->X_add_number =
1643 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1644 }
1645 if ((i.types[op] & Imm32)
1646 && (i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1)) == 0)
1647 {
1648 i.op[op].imms->X_add_number =
1649 (i.op[op].imms->X_add_number ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1650 }
1651 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
1652 /* We must avoid matching of Imm32 templates when 64bit only immediate is available. */
1653 if (guess_suffix == QWORD_MNEM_SUFFIX)
1654 i.types[op] &= ~Imm32;
1655 break;
1656 case O_absent:
1657 case O_register:
1658 abort ();
1659 /* Symbols and expressions. */
1660 default:
1661 /* Convert symbolic operand to proper sizes for matching. */
1662 switch (guess_suffix)
1663 {
1664 case QWORD_MNEM_SUFFIX:
1665 i.types[op] = Imm64 | Imm32S;
1666 break;
1667 case LONG_MNEM_SUFFIX:
1668 i.types[op] = Imm32 | Imm64;
1669 break;
1670 case WORD_MNEM_SUFFIX:
1671 i.types[op] = Imm16 | Imm32 | Imm64;
1672 break;
1673 break;
1674 case BYTE_MNEM_SUFFIX:
1675 i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
1676 break;
1677 break;
1678 }
1679 break;
1680 }
1681 }
1682 }
1683
1684 if (i.disp_operands)
1685 {
1686 /* Try to use the smallest displacement type too. */
1687 int op;
1688
1689 for (op = i.operands; --op >= 0;)
1690 if ((i.types[op] & Disp)
1691 && i.op[op].disps->X_op == O_constant)
1692 {
1693 offsetT disp = i.op[op].disps->X_add_number;
1694
1695 if (i.types[op] & Disp16)
1696 {
1697 /* We know this operand is at most 16 bits, so
1698 convert to a signed 16 bit number before trying
1699 to see whether it will fit in an even smaller
1700 size. */
1701
1702 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
1703 }
1704 else if (i.types[op] & Disp32)
1705 {
1706 /* We know this operand is at most 32 bits, so convert to a
1707 signed 32 bit number before trying to see whether it will
1708 fit in an even smaller size. */
1709 disp &= (((offsetT) 2 << 31) - 1);
1710 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1711 }
1712 if (flag_code == CODE_64BIT)
1713 {
1714 if (fits_in_signed_long (disp))
1715 i.types[op] |= Disp32S;
1716 if (fits_in_unsigned_long (disp))
1717 i.types[op] |= Disp32;
1718 }
1719 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
1720 && fits_in_signed_byte (disp))
1721 i.types[op] |= Disp8;
1722 }
1723 }
1724
1725 overlap0 = 0;
1726 overlap1 = 0;
1727 overlap2 = 0;
1728 found_reverse_match = 0;
1729 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
1730 ? No_bSuf
1731 : (i.suffix == WORD_MNEM_SUFFIX
1732 ? No_wSuf
1733 : (i.suffix == SHORT_MNEM_SUFFIX
1734 ? No_sSuf
1735 : (i.suffix == LONG_MNEM_SUFFIX
1736 ? No_lSuf
1737 : (i.suffix == QWORD_MNEM_SUFFIX
1738 ? No_qSuf
1739 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX ? No_xSuf : 0))))));
1740
1741 for (t = current_templates->start;
1742 t < current_templates->end;
1743 t++)
1744 {
1745 /* Must have right number of operands. */
1746 if (i.operands != t->operands)
1747 continue;
1748
1749 /* Check the suffix, except for some instructions in intel mode. */
1750 if ((t->opcode_modifier & suffix_check)
1751 && !(intel_syntax
1752 && (t->opcode_modifier & IgnoreSize))
1753 && !(intel_syntax
1754 && t->base_opcode == 0xd9
1755 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
1756 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
1757 continue;
1758
1759 /* Do not verify operands when there are none. */
1760 else if (!t->operands)
1761 {
1762 if (t->cpu_flags & ~cpu_arch_flags)
1763 continue;
1764 /* We've found a match; break out of loop. */
1765 break;
1766 }
1767
1768 overlap0 = i.types[0] & t->operand_types[0];
1769 switch (t->operands)
1770 {
1771 case 1:
1772 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
1773 continue;
1774 break;
1775 case 2:
1776 case 3:
1777 overlap1 = i.types[1] & t->operand_types[1];
1778 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
1779 || !MATCH (overlap1, i.types[1], t->operand_types[1])
1780 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1781 t->operand_types[0],
1782 overlap1, i.types[1],
1783 t->operand_types[1]))
1784 {
1785 /* Check if other direction is valid ... */
1786 if ((t->opcode_modifier & (D|FloatD)) == 0)
1787 continue;
1788
1789 /* Try reversing direction of operands. */
1790 overlap0 = i.types[0] & t->operand_types[1];
1791 overlap1 = i.types[1] & t->operand_types[0];
1792 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
1793 || !MATCH (overlap1, i.types[1], t->operand_types[0])
1794 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1795 t->operand_types[1],
1796 overlap1, i.types[1],
1797 t->operand_types[0]))
1798 {
1799 /* Does not match either direction. */
1800 continue;
1801 }
1802 /* found_reverse_match holds which of D or FloatDR
1803 we've found. */
1804 found_reverse_match = t->opcode_modifier & (D|FloatDR);
1805 }
1806 /* Found a forward 2 operand match here. */
1807 else if (t->operands == 3)
1808 {
1809 /* Here we make use of the fact that there are no
1810 reverse match 3 operand instructions, and all 3
1811 operand instructions only need to be checked for
1812 register consistency between operands 2 and 3. */
1813 overlap2 = i.types[2] & t->operand_types[2];
1814 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
1815 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
1816 t->operand_types[1],
1817 overlap2, i.types[2],
1818 t->operand_types[2]))
1819
1820 continue;
1821 }
1822 /* Found either forward/reverse 2 or 3 operand match here:
1823 slip through to break. */
1824 }
1825 if (t->cpu_flags & ~cpu_arch_flags)
1826 {
1827 found_reverse_match = 0;
1828 continue;
1829 }
1830 /* We've found a match; break out of loop. */
1831 break;
1832 }
1833 if (t == current_templates->end)
1834 {
1835 /* We found no match. */
1836 as_bad (_("suffix or operands invalid for `%s'"),
1837 current_templates->start->name);
1838 return;
1839 }
1840
1841 if (!quiet_warnings)
1842 {
1843 if (!intel_syntax
1844 && ((i.types[0] & JumpAbsolute)
1845 != (t->operand_types[0] & JumpAbsolute)))
1846 {
1847 as_warn (_("indirect %s without `*'"), t->name);
1848 }
1849
1850 if ((t->opcode_modifier & (IsPrefix|IgnoreSize))
1851 == (IsPrefix|IgnoreSize))
1852 {
1853 /* Warn them that a data or address size prefix doesn't
1854 affect assembly of the next line of code. */
1855 as_warn (_("stand-alone `%s' prefix"), t->name);
1856 }
1857 }
1858
1859 /* Copy the template we found. */
1860 i.tm = *t;
1861 if (found_reverse_match)
1862 {
1863 /* If we found a reverse match we must alter the opcode
1864 direction bit. found_reverse_match holds bits to change
1865 (different for int & float insns). */
1866
1867 i.tm.base_opcode ^= found_reverse_match;
1868
1869 i.tm.operand_types[0] = t->operand_types[1];
1870 i.tm.operand_types[1] = t->operand_types[0];
1871 }
1872
1873 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1874 if (SYSV386_COMPAT
1875 && intel_syntax
1876 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1877 i.tm.base_opcode ^= FloatR;
1878
1879 if (i.tm.opcode_modifier & FWait)
1880 if (! add_prefix (FWAIT_OPCODE))
1881 return;
1882
1883 /* Check string instruction segment overrides. */
1884 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1885 {
1886 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
1887 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
1888 {
1889 if (i.seg[0] != NULL && i.seg[0] != &es)
1890 {
1891 as_bad (_("`%s' operand %d must use `%%es' segment"),
1892 i.tm.name,
1893 mem_op + 1);
1894 return;
1895 }
1896 /* There's only ever one segment override allowed per instruction.
1897 This instruction possibly has a legal segment override on the
1898 second operand, so copy the segment to where non-string
1899 instructions store it, allowing common code. */
1900 i.seg[0] = i.seg[1];
1901 }
1902 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
1903 {
1904 if (i.seg[1] != NULL && i.seg[1] != &es)
1905 {
1906 as_bad (_("`%s' operand %d must use `%%es' segment"),
1907 i.tm.name,
1908 mem_op + 2);
1909 return;
1910 }
1911 }
1912 }
1913
1914 if (i.reg_operands && flag_code < CODE_64BIT)
1915 {
1916 int op;
1917 for (op = i.operands; --op >= 0;)
1918 if ((i.types[op] & Reg)
1919 && (i.op[op].regs->reg_flags & (RegRex64|RegRex)))
1920 {
1921 as_bad (_("Extended register `%%%s' available only in 64bit mode."),
1922 i.op[op].regs->reg_name);
1923 return;
1924 }
1925 }
1926
1927 /* If matched instruction specifies an explicit instruction mnemonic
1928 suffix, use it. */
1929 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
1930 {
1931 if (i.tm.opcode_modifier & Size16)
1932 i.suffix = WORD_MNEM_SUFFIX;
1933 else if (i.tm.opcode_modifier & Size64)
1934 i.suffix = QWORD_MNEM_SUFFIX;
1935 else
1936 i.suffix = LONG_MNEM_SUFFIX;
1937 }
1938 else if (i.reg_operands)
1939 {
1940 /* If there's no instruction mnemonic suffix we try to invent one
1941 based on register operands. */
1942 if (!i.suffix)
1943 {
1944 /* We take i.suffix from the last register operand specified,
1945 Destination register type is more significant than source
1946 register type. */
1947 int op;
1948 for (op = i.operands; --op >= 0;)
1949 if ((i.types[op] & Reg)
1950 && !(i.tm.operand_types[op] & InOutPortReg))
1951 {
1952 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
1953 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
1954 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
1955 LONG_MNEM_SUFFIX);
1956 break;
1957 }
1958 }
1959 else if (i.suffix == BYTE_MNEM_SUFFIX)
1960 {
1961 int op;
1962 for (op = i.operands; --op >= 0;)
1963 {
1964 /* If this is an eight bit register, it's OK. If it's
1965 the 16 or 32 bit version of an eight bit register,
1966 we will just use the low portion, and that's OK too. */
1967 if (i.types[op] & Reg8)
1968 continue;
1969
1970 /* movzx and movsx should not generate this warning. */
1971 if (intel_syntax
1972 && (i.tm.base_opcode == 0xfb7
1973 || i.tm.base_opcode == 0xfb6
1974 || i.tm.base_opcode == 0x63
1975 || i.tm.base_opcode == 0xfbe
1976 || i.tm.base_opcode == 0xfbf))
1977 continue;
1978
1979 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
1980 #if 0
1981 /* Check that the template allows eight bit regs
1982 This kills insns such as `orb $1,%edx', which
1983 maybe should be allowed. */
1984 && (i.tm.operand_types[op] & (Reg8|InOutPortReg))
1985 #endif
1986 )
1987 {
1988 /* Prohibit these changes in the 64bit mode, since
1989 the lowering is more complicated. */
1990 if (flag_code == CODE_64BIT
1991 && (i.tm.operand_types[op] & InOutPortReg) == 0)
1992 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
1993 i.op[op].regs->reg_name,
1994 i.suffix);
1995 #if REGISTER_WARNINGS
1996 if (!quiet_warnings
1997 && (i.tm.operand_types[op] & InOutPortReg) == 0)
1998 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
1999 (i.op[op].regs
2000 + (i.types[op] & Reg16
2001 ? REGNAM_AL - REGNAM_AX
2002 : REGNAM_AL - REGNAM_EAX))->reg_name,
2003 i.op[op].regs->reg_name,
2004 i.suffix);
2005 #endif
2006 continue;
2007 }
2008 /* Any other register is bad. */
2009 if (i.types[op] & (Reg | RegMMX | RegXMM
2010 | SReg2 | SReg3
2011 | Control | Debug | Test
2012 | FloatReg | FloatAcc))
2013 {
2014 as_bad (_("`%%%s' not allowed with `%s%c'"),
2015 i.op[op].regs->reg_name,
2016 i.tm.name,
2017 i.suffix);
2018 return;
2019 }
2020 }
2021 }
2022 else if (i.suffix == LONG_MNEM_SUFFIX)
2023 {
2024 int op;
2025
2026 for (op = i.operands; --op >= 0;)
2027 /* Reject eight bit registers, except where the template
2028 requires them. (eg. movzb) */
2029 if ((i.types[op] & Reg8) != 0
2030 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2031 {
2032 as_bad (_("`%%%s' not allowed with `%s%c'"),
2033 i.op[op].regs->reg_name,
2034 i.tm.name,
2035 i.suffix);
2036 return;
2037 }
2038 /* Warn if the e prefix on a general reg is missing. */
2039 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2040 && (i.types[op] & Reg16) != 0
2041 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2042 {
2043 /* Prohibit these changes in the 64bit mode, since
2044 the lowering is more complicated. */
2045 if (flag_code == CODE_64BIT)
2046 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2047 i.op[op].regs->reg_name,
2048 i.suffix);
2049 #if REGISTER_WARNINGS
2050 else
2051 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2052 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2053 i.op[op].regs->reg_name,
2054 i.suffix);
2055 #endif
2056 }
2057 /* Warn if the r prefix on a general reg is missing. */
2058 else if ((i.types[op] & Reg64) != 0
2059 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2060 {
2061 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2062 i.op[op].regs->reg_name,
2063 i.suffix);
2064 }
2065 }
2066 else if (i.suffix == QWORD_MNEM_SUFFIX)
2067 {
2068 int op;
2069
2070 for (op = i.operands; --op >= 0; )
2071 /* Reject eight bit registers, except where the template
2072 requires them. (eg. movzb) */
2073 if ((i.types[op] & Reg8) != 0
2074 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2075 {
2076 as_bad (_("`%%%s' not allowed with `%s%c'"),
2077 i.op[op].regs->reg_name,
2078 i.tm.name,
2079 i.suffix);
2080 return;
2081 }
2082 /* Warn if the e prefix on a general reg is missing. */
2083 else if (((i.types[op] & Reg16) != 0
2084 || (i.types[op] & Reg32) != 0)
2085 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2086 {
2087 /* Prohibit these changes in the 64bit mode, since
2088 the lowering is more complicated. */
2089 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2090 i.op[op].regs->reg_name,
2091 i.suffix);
2092 }
2093 }
2094 else if (i.suffix == WORD_MNEM_SUFFIX)
2095 {
2096 int op;
2097 for (op = i.operands; --op >= 0;)
2098 /* Reject eight bit registers, except where the template
2099 requires them. (eg. movzb) */
2100 if ((i.types[op] & Reg8) != 0
2101 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2102 {
2103 as_bad (_("`%%%s' not allowed with `%s%c'"),
2104 i.op[op].regs->reg_name,
2105 i.tm.name,
2106 i.suffix);
2107 return;
2108 }
2109 /* Warn if the e prefix on a general reg is present. */
2110 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2111 && (i.types[op] & Reg32) != 0
2112 && (i.tm.operand_types[op] & (Reg16|Acc)) != 0)
2113 {
2114 /* Prohibit these changes in the 64bit mode, since
2115 the lowering is more complicated. */
2116 if (flag_code == CODE_64BIT)
2117 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2118 i.op[op].regs->reg_name,
2119 i.suffix);
2120 else
2121 #if REGISTER_WARNINGS
2122 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2123 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2124 i.op[op].regs->reg_name,
2125 i.suffix);
2126 #endif
2127 }
2128 }
2129 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2130 /* Do nothing if the instruction is going to ignore the prefix. */
2131 ;
2132 else
2133 abort ();
2134 }
2135 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
2136 {
2137 i.suffix = stackop_size;
2138 }
2139 /* Make still unresolved immediate matches conform to size of immediate
2140 given in i.suffix. Note: overlap2 cannot be an immediate! */
2141 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
2142 && overlap0 != Imm8 && overlap0 != Imm8S
2143 && overlap0 != Imm16 && overlap0 != Imm32S
2144 && overlap0 != Imm32 && overlap0 != Imm64)
2145 {
2146 if (i.suffix)
2147 {
2148 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
2149 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
2150 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
2151 }
2152 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2153 || overlap0 == (Imm16 | Imm32)
2154 || overlap0 == (Imm16 | Imm32S))
2155 {
2156 overlap0 =
2157 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
2158 }
2159 if (overlap0 != Imm8 && overlap0 != Imm8S
2160 && overlap0 != Imm16 && overlap0 != Imm32S
2161 && overlap0 != Imm32 && overlap0 != Imm64)
2162 {
2163 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2164 return;
2165 }
2166 }
2167 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
2168 && overlap1 != Imm8 && overlap1 != Imm8S
2169 && overlap1 != Imm16 && overlap1 != Imm32S
2170 && overlap1 != Imm32 && overlap1 != Imm64)
2171 {
2172 if (i.suffix)
2173 {
2174 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
2175 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
2176 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
2177 }
2178 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2179 || overlap1 == (Imm16 | Imm32)
2180 || overlap1 == (Imm16 | Imm32S))
2181 {
2182 overlap1 =
2183 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
2184 }
2185 if (overlap1 != Imm8 && overlap1 != Imm8S
2186 && overlap1 != Imm16 && overlap1 != Imm32S
2187 && overlap1 != Imm32 && overlap1 != Imm64)
2188 {
2189 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2190 return;
2191 }
2192 }
2193 assert ((overlap2 & Imm) == 0);
2194
2195 i.types[0] = overlap0;
2196 if (overlap0 & ImplicitRegister)
2197 i.reg_operands--;
2198 if (overlap0 & Imm1)
2199 i.imm_operands = 0; /* kludge for shift insns. */
2200
2201 i.types[1] = overlap1;
2202 if (overlap1 & ImplicitRegister)
2203 i.reg_operands--;
2204
2205 i.types[2] = overlap2;
2206 if (overlap2 & ImplicitRegister)
2207 i.reg_operands--;
2208
2209 /* Finalize opcode. First, we change the opcode based on the operand
2210 size given by i.suffix: We need not change things for byte insns. */
2211
2212 if (!i.suffix && (i.tm.opcode_modifier & W))
2213 {
2214 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2215 return;
2216 }
2217
2218 /* For movzx and movsx, need to check the register type. */
2219 if (intel_syntax
2220 && (i.tm.base_opcode == 0xfb6 || i.tm.base_opcode == 0xfbe))
2221 if (i.suffix && i.suffix == BYTE_MNEM_SUFFIX)
2222 {
2223 unsigned int prefix = DATA_PREFIX_OPCODE;
2224
2225 if ((i.op[1].regs->reg_type & Reg16) != 0)
2226 if (!add_prefix (prefix))
2227 return;
2228 }
2229
2230 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2231 {
2232 /* It's not a byte, select word/dword operation. */
2233 if (i.tm.opcode_modifier & W)
2234 {
2235 if (i.tm.opcode_modifier & ShortForm)
2236 i.tm.base_opcode |= 8;
2237 else
2238 i.tm.base_opcode |= 1;
2239 }
2240 /* Now select between word & dword operations via the operand
2241 size prefix, except for instructions that will ignore this
2242 prefix anyway. */
2243 if (i.suffix != QWORD_MNEM_SUFFIX
2244 && (i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2245 && !(i.tm.opcode_modifier & IgnoreSize))
2246 {
2247 unsigned int prefix = DATA_PREFIX_OPCODE;
2248 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2249 prefix = ADDR_PREFIX_OPCODE;
2250
2251 if (! add_prefix (prefix))
2252 return;
2253 }
2254
2255 /* Set mode64 for an operand. */
2256 if (i.suffix == QWORD_MNEM_SUFFIX
2257 && !(i.tm.opcode_modifier & NoRex64))
2258 {
2259 i.rex.mode64 = 1;
2260 if (flag_code < CODE_64BIT)
2261 {
2262 as_bad (_("64bit operations available only in 64bit modes."));
2263 return;
2264 }
2265 }
2266
2267 /* Size floating point instruction. */
2268 if (i.suffix == LONG_MNEM_SUFFIX)
2269 {
2270 if (i.tm.opcode_modifier & FloatMF)
2271 i.tm.base_opcode ^= 4;
2272 }
2273 }
2274
2275 if (i.tm.opcode_modifier & ImmExt)
2276 {
2277 /* These AMD 3DNow! and Intel Katmai New Instructions have an
2278 opcode suffix which is coded in the same place as an 8-bit
2279 immediate field would be. Here we fake an 8-bit immediate
2280 operand from the opcode suffix stored in tm.extension_opcode. */
2281
2282 expressionS *exp;
2283
2284 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
2285
2286 exp = &im_expressions[i.imm_operands++];
2287 i.op[i.operands].imms = exp;
2288 i.types[i.operands++] = Imm8;
2289 exp->X_op = O_constant;
2290 exp->X_add_number = i.tm.extension_opcode;
2291 i.tm.extension_opcode = None;
2292 }
2293
2294 /* For insns with operands there are more diddles to do to the opcode. */
2295 if (i.operands)
2296 {
2297 /* Default segment register this instruction will use
2298 for memory accesses. 0 means unknown.
2299 This is only for optimizing out unnecessary segment overrides. */
2300 const seg_entry *default_seg = 0;
2301
2302 /* The imul $imm, %reg instruction is converted into
2303 imul $imm, %reg, %reg, and the clr %reg instruction
2304 is converted into xor %reg, %reg. */
2305 if (i.tm.opcode_modifier & regKludge)
2306 {
2307 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2308 /* Pretend we saw the extra register operand. */
2309 assert (i.op[first_reg_op + 1].regs == 0);
2310 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2311 i.types[first_reg_op + 1] = i.types[first_reg_op];
2312 i.reg_operands = 2;
2313 }
2314
2315 if (i.tm.opcode_modifier & ShortForm)
2316 {
2317 /* The register or float register operand is in operand 0 or 1. */
2318 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2319 /* Register goes in low 3 bits of opcode. */
2320 i.tm.base_opcode |= i.op[op].regs->reg_num;
2321 if (i.op[op].regs->reg_flags & RegRex)
2322 i.rex.extZ = 1;
2323 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2324 {
2325 /* Warn about some common errors, but press on regardless.
2326 The first case can be generated by gcc (<= 2.8.1). */
2327 if (i.operands == 2)
2328 {
2329 /* Reversed arguments on faddp, fsubp, etc. */
2330 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2331 i.op[1].regs->reg_name,
2332 i.op[0].regs->reg_name);
2333 }
2334 else
2335 {
2336 /* Extraneous `l' suffix on fp insn. */
2337 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2338 i.op[0].regs->reg_name);
2339 }
2340 }
2341 }
2342 else if (i.tm.opcode_modifier & Modrm)
2343 {
2344 /* The opcode is completed (modulo i.tm.extension_opcode which
2345 must be put into the modrm byte).
2346 Now, we make the modrm & index base bytes based on all the
2347 info we've collected. */
2348
2349 /* i.reg_operands MUST be the number of real register operands;
2350 implicit registers do not count. */
2351 if (i.reg_operands == 2)
2352 {
2353 unsigned int source, dest;
2354 source = ((i.types[0]
2355 & (Reg | RegMMX | RegXMM
2356 | SReg2 | SReg3
2357 | Control | Debug | Test))
2358 ? 0 : 1);
2359 dest = source + 1;
2360
2361 i.rm.mode = 3;
2362 /* One of the register operands will be encoded in the
2363 i.tm.reg field, the other in the combined i.tm.mode
2364 and i.tm.regmem fields. If no form of this
2365 instruction supports a memory destination operand,
2366 then we assume the source operand may sometimes be
2367 a memory operand and so we need to store the
2368 destination in the i.rm.reg field. */
2369 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2370 {
2371 i.rm.reg = i.op[dest].regs->reg_num;
2372 i.rm.regmem = i.op[source].regs->reg_num;
2373 if (i.op[dest].regs->reg_flags & RegRex)
2374 i.rex.extX = 1;
2375 if (i.op[source].regs->reg_flags & RegRex)
2376 i.rex.extZ = 1;
2377 }
2378 else
2379 {
2380 i.rm.reg = i.op[source].regs->reg_num;
2381 i.rm.regmem = i.op[dest].regs->reg_num;
2382 if (i.op[dest].regs->reg_flags & RegRex)
2383 i.rex.extZ = 1;
2384 if (i.op[source].regs->reg_flags & RegRex)
2385 i.rex.extX = 1;
2386 }
2387 }
2388 else
2389 { /* If it's not 2 reg operands... */
2390 if (i.mem_operands)
2391 {
2392 unsigned int fake_zero_displacement = 0;
2393 unsigned int op = ((i.types[0] & AnyMem)
2394 ? 0
2395 : (i.types[1] & AnyMem) ? 1 : 2);
2396
2397 default_seg = &ds;
2398
2399 if (! i.base_reg)
2400 {
2401 i.rm.mode = 0;
2402 if (! i.disp_operands)
2403 fake_zero_displacement = 1;
2404 if (! i.index_reg)
2405 {
2406 /* Operand is just <disp> */
2407 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
2408 {
2409 i.rm.regmem = NO_BASE_REGISTER_16;
2410 i.types[op] &= ~Disp;
2411 i.types[op] |= Disp16;
2412 }
2413 else if (flag_code != CODE_64BIT)
2414 {
2415 i.rm.regmem = NO_BASE_REGISTER;
2416 i.types[op] &= ~Disp;
2417 i.types[op] |= Disp32;
2418 }
2419 else
2420 {
2421 /* 64bit mode overwrites the 32bit
2422 absolute addressing by RIP relative
2423 addressing and absolute addressing
2424 is encoded by one of the redundant
2425 SIB forms. */
2426
2427 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2428 i.sib.base = NO_BASE_REGISTER;
2429 i.sib.index = NO_INDEX_REGISTER;
2430 i.types[op] &= ~Disp;
2431 i.types[op] |= Disp32S;
2432 }
2433 }
2434 else /* ! i.base_reg && i.index_reg */
2435 {
2436 i.sib.index = i.index_reg->reg_num;
2437 i.sib.base = NO_BASE_REGISTER;
2438 i.sib.scale = i.log2_scale_factor;
2439 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2440 i.types[op] &= ~Disp;
2441 if (flag_code != CODE_64BIT)
2442 i.types[op] |= Disp32; /* Must be 32 bit */
2443 else
2444 i.types[op] |= Disp32S;
2445 if (i.index_reg->reg_flags & RegRex)
2446 i.rex.extY = 1;
2447 }
2448 }
2449 /* RIP addressing for 64bit mode. */
2450 else if (i.base_reg->reg_type == BaseIndex)
2451 {
2452 i.rm.regmem = NO_BASE_REGISTER;
2453 i.types[op] &= ~Disp;
2454 i.types[op] |= Disp32S;
2455 i.flags[op] = Operand_PCrel;
2456 }
2457 else if (i.base_reg->reg_type & Reg16)
2458 {
2459 switch (i.base_reg->reg_num)
2460 {
2461 case 3: /* (%bx) */
2462 if (! i.index_reg)
2463 i.rm.regmem = 7;
2464 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2465 i.rm.regmem = i.index_reg->reg_num - 6;
2466 break;
2467 case 5: /* (%bp) */
2468 default_seg = &ss;
2469 if (! i.index_reg)
2470 {
2471 i.rm.regmem = 6;
2472 if ((i.types[op] & Disp) == 0)
2473 {
2474 /* fake (%bp) into 0(%bp) */
2475 i.types[op] |= Disp8;
2476 fake_zero_displacement = 1;
2477 }
2478 }
2479 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2480 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2481 break;
2482 default: /* (%si) -> 4 or (%di) -> 5 */
2483 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2484 }
2485 i.rm.mode = mode_from_disp_size (i.types[op]);
2486 }
2487 else /* i.base_reg and 32/64 bit mode */
2488 {
2489 if (flag_code == CODE_64BIT
2490 && (i.types[op] & Disp))
2491 {
2492 if (i.types[op] & Disp8)
2493 i.types[op] = Disp8 | Disp32S;
2494 else
2495 i.types[op] = Disp32S;
2496 }
2497 i.rm.regmem = i.base_reg->reg_num;
2498 if (i.base_reg->reg_flags & RegRex)
2499 i.rex.extZ = 1;
2500 i.sib.base = i.base_reg->reg_num;
2501 /* x86-64 ignores REX prefix bit here to avoid
2502 decoder complications. */
2503 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2504 {
2505 default_seg = &ss;
2506 if (i.disp_operands == 0)
2507 {
2508 fake_zero_displacement = 1;
2509 i.types[op] |= Disp8;
2510 }
2511 }
2512 else if (i.base_reg->reg_num == ESP_REG_NUM)
2513 {
2514 default_seg = &ss;
2515 }
2516 i.sib.scale = i.log2_scale_factor;
2517 if (! i.index_reg)
2518 {
2519 /* <disp>(%esp) becomes two byte modrm
2520 with no index register. We've already
2521 stored the code for esp in i.rm.regmem
2522 ie. ESCAPE_TO_TWO_BYTE_ADDRESSING. Any
2523 base register besides %esp will not use
2524 the extra modrm byte. */
2525 i.sib.index = NO_INDEX_REGISTER;
2526 #if ! SCALE1_WHEN_NO_INDEX
2527 /* Another case where we force the second
2528 modrm byte. */
2529 if (i.log2_scale_factor)
2530 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2531 #endif
2532 }
2533 else
2534 {
2535 i.sib.index = i.index_reg->reg_num;
2536 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2537 if (i.index_reg->reg_flags & RegRex)
2538 i.rex.extY = 1;
2539 }
2540 i.rm.mode = mode_from_disp_size (i.types[op]);
2541 }
2542
2543 if (fake_zero_displacement)
2544 {
2545 /* Fakes a zero displacement assuming that i.types[op]
2546 holds the correct displacement size. */
2547 expressionS *exp;
2548
2549 assert (i.op[op].disps == 0);
2550 exp = &disp_expressions[i.disp_operands++];
2551 i.op[op].disps = exp;
2552 exp->X_op = O_constant;
2553 exp->X_add_number = 0;
2554 exp->X_add_symbol = (symbolS *) 0;
2555 exp->X_op_symbol = (symbolS *) 0;
2556 }
2557 }
2558
2559 /* Fill in i.rm.reg or i.rm.regmem field with register
2560 operand (if any) based on i.tm.extension_opcode.
2561 Again, we must be careful to make sure that
2562 segment/control/debug/test/MMX registers are coded
2563 into the i.rm.reg field. */
2564 if (i.reg_operands)
2565 {
2566 unsigned int op =
2567 ((i.types[0]
2568 & (Reg | RegMMX | RegXMM
2569 | SReg2 | SReg3
2570 | Control | Debug | Test))
2571 ? 0
2572 : ((i.types[1]
2573 & (Reg | RegMMX | RegXMM
2574 | SReg2 | SReg3
2575 | Control | Debug | Test))
2576 ? 1
2577 : 2));
2578 /* If there is an extension opcode to put here, the
2579 register number must be put into the regmem field. */
2580 if (i.tm.extension_opcode != None)
2581 {
2582 i.rm.regmem = i.op[op].regs->reg_num;
2583 if (i.op[op].regs->reg_flags & RegRex)
2584 i.rex.extZ = 1;
2585 }
2586 else
2587 {
2588 i.rm.reg = i.op[op].regs->reg_num;
2589 if (i.op[op].regs->reg_flags & RegRex)
2590 i.rex.extX = 1;
2591 }
2592
2593 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2
2594 we must set it to 3 to indicate this is a register
2595 operand in the regmem field. */
2596 if (!i.mem_operands)
2597 i.rm.mode = 3;
2598 }
2599
2600 /* Fill in i.rm.reg field with extension opcode (if any). */
2601 if (i.tm.extension_opcode != None)
2602 i.rm.reg = i.tm.extension_opcode;
2603 }
2604 }
2605 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2606 {
2607 if (i.tm.base_opcode == POP_SEG_SHORT
2608 && i.op[0].regs->reg_num == 1)
2609 {
2610 as_bad (_("you can't `pop %%cs'"));
2611 return;
2612 }
2613 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2614 if (i.op[0].regs->reg_flags & RegRex)
2615 i.rex.extZ = 1;
2616 }
2617 else if ((i.tm.base_opcode & ~(D|W)) == MOV_AX_DISP32)
2618 {
2619 default_seg = &ds;
2620 }
2621 else if ((i.tm.opcode_modifier & IsString) != 0)
2622 {
2623 /* For the string instructions that allow a segment override
2624 on one of their operands, the default segment is ds. */
2625 default_seg = &ds;
2626 }
2627
2628 /* If a segment was explicitly specified,
2629 and the specified segment is not the default,
2630 use an opcode prefix to select it.
2631 If we never figured out what the default segment is,
2632 then default_seg will be zero at this point,
2633 and the specified segment prefix will always be used. */
2634 if ((i.seg[0]) && (i.seg[0] != default_seg))
2635 {
2636 if (! add_prefix (i.seg[0]->seg_prefix))
2637 return;
2638 }
2639 }
2640 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2641 {
2642 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2643 as_warn (_("translating to `%sp'"), i.tm.name);
2644 }
2645 }
2646
2647 /* Handle conversion of 'int $3' --> special int3 insn. */
2648 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
2649 {
2650 i.tm.base_opcode = INT3_OPCODE;
2651 i.imm_operands = 0;
2652 }
2653
2654 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
2655 && i.op[0].disps->X_op == O_constant)
2656 {
2657 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2658 the absolute address given by the constant. Since ix86 jumps and
2659 calls are pc relative, we need to generate a reloc. */
2660 i.op[0].disps->X_add_symbol = &abs_symbol;
2661 i.op[0].disps->X_op = O_symbol;
2662 }
2663
2664 if (i.tm.opcode_modifier & Rex64)
2665 i.rex.mode64 = 1;
2666
2667 /* For 8bit registers we would need an empty rex prefix.
2668 Also in the case instruction is already having prefix,
2669 we need to convert old registers to new ones. */
2670
2671 if (((i.types[0] & Reg8) && (i.op[0].regs->reg_flags & RegRex64))
2672 || ((i.types[1] & Reg8) && (i.op[1].regs->reg_flags & RegRex64))
2673 || ((i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2674 && ((i.types[0] & Reg8) || (i.types[1] & Reg8))))
2675 {
2676 int x;
2677 i.rex.empty = 1;
2678 for (x = 0; x < 2; x++)
2679 {
2680 /* Look for 8bit operand that does use old registers. */
2681 if (i.types[x] & Reg8
2682 && !(i.op[x].regs->reg_flags & RegRex64))
2683 {
2684 /* In case it is "hi" register, give up. */
2685 if (i.op[x].regs->reg_num > 3)
2686 as_bad (_("Can't encode registers '%%%s' in the instruction requiring REX prefix.\n"),
2687 i.op[x].regs->reg_name);
2688
2689 /* Otherwise it is equivalent to the extended register.
2690 Since the encoding don't change this is merely cosmetical
2691 cleanup for debug output. */
2692
2693 i.op[x].regs = i.op[x].regs + 8;
2694 }
2695 }
2696 }
2697
2698 if (i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2699 add_prefix (0x40
2700 | (i.rex.mode64 ? 8 : 0)
2701 | (i.rex.extX ? 4 : 0)
2702 | (i.rex.extY ? 2 : 0)
2703 | (i.rex.extZ ? 1 : 0));
2704
2705 /* We are ready to output the insn. */
2706 {
2707 register char *p;
2708
2709 /* Output jumps. */
2710 if (i.tm.opcode_modifier & Jump)
2711 {
2712 int code16;
2713 int prefix;
2714
2715 code16 = 0;
2716 if (flag_code == CODE_16BIT)
2717 code16 = CODE16;
2718
2719 prefix = 0;
2720 if (i.prefix[DATA_PREFIX])
2721 {
2722 prefix = 1;
2723 i.prefixes -= 1;
2724 code16 ^= CODE16;
2725 }
2726 if (i.prefix[REX_PREFIX])
2727 {
2728 prefix++;
2729 i.prefixes--;
2730 }
2731
2732 if (i.prefixes != 0 && !intel_syntax)
2733 as_warn (_("skipping prefixes on this instruction"));
2734
2735 /* It's always a symbol; End frag & setup for relax.
2736 Make sure there is enough room in this frag for the largest
2737 instruction we may generate in md_convert_frag. This is 2
2738 bytes for the opcode and room for the prefix and largest
2739 displacement. */
2740 frag_grow (prefix + 2 + 4);
2741 insn_size += prefix + 1;
2742 /* Prefix and 1 opcode byte go in fr_fix. */
2743 p = frag_more (prefix + 1);
2744 if (i.prefix[DATA_PREFIX])
2745 *p++ = DATA_PREFIX_OPCODE;
2746 if (i.prefix[REX_PREFIX])
2747 *p++ = i.prefix[REX_PREFIX];
2748 *p = i.tm.base_opcode;
2749 /* 1 possible extra opcode + displacement go in var part.
2750 Pass reloc in fr_var. */
2751 frag_var (rs_machine_dependent,
2752 1 + 4,
2753 i.reloc[0],
2754 ((unsigned char) *p == JUMP_PC_RELATIVE
2755 ? ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL) | code16
2756 : ((cpu_arch_flags & Cpu386) != 0
2757 ? ENCODE_RELAX_STATE (COND_JUMP, SMALL) | code16
2758 : ENCODE_RELAX_STATE (COND_JUMP86, SMALL) | code16)),
2759 i.op[0].disps->X_add_symbol,
2760 i.op[0].disps->X_add_number,
2761 p);
2762 }
2763 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
2764 {
2765 int size;
2766
2767 if (i.tm.opcode_modifier & JumpByte)
2768 {
2769 /* This is a loop or jecxz type instruction. */
2770 size = 1;
2771 if (i.prefix[ADDR_PREFIX])
2772 {
2773 insn_size += 1;
2774 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
2775 i.prefixes -= 1;
2776 }
2777 }
2778 else
2779 {
2780 int code16;
2781
2782 code16 = 0;
2783 if (flag_code == CODE_16BIT)
2784 code16 = CODE16;
2785
2786 if (i.prefix[DATA_PREFIX])
2787 {
2788 insn_size += 1;
2789 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
2790 i.prefixes -= 1;
2791 code16 ^= CODE16;
2792 }
2793
2794 size = 4;
2795 if (code16)
2796 size = 2;
2797 }
2798
2799 if (i.prefix[REX_PREFIX])
2800 {
2801 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
2802 insn_size++;
2803 i.prefixes -= 1;
2804 }
2805
2806 if (i.prefixes != 0 && !intel_syntax)
2807 as_warn (_("skipping prefixes on this instruction"));
2808
2809 if (fits_in_unsigned_byte (i.tm.base_opcode))
2810 {
2811 insn_size += 1 + size;
2812 p = frag_more (1 + size);
2813 }
2814 else
2815 {
2816 /* Opcode can be at most two bytes. */
2817 insn_size += 2 + size;
2818 p = frag_more (2 + size);
2819 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2820 }
2821 *p++ = i.tm.base_opcode & 0xff;
2822
2823 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2824 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
2825 }
2826 else if (i.tm.opcode_modifier & JumpInterSegment)
2827 {
2828 int size;
2829 int prefix;
2830 int code16;
2831
2832 code16 = 0;
2833 if (flag_code == CODE_16BIT)
2834 code16 = CODE16;
2835
2836 prefix = 0;
2837 if (i.prefix[DATA_PREFIX])
2838 {
2839 prefix = 1;
2840 i.prefixes -= 1;
2841 code16 ^= CODE16;
2842 }
2843 if (i.prefix[REX_PREFIX])
2844 {
2845 prefix++;
2846 i.prefixes -= 1;
2847 }
2848
2849 size = 4;
2850 if (code16)
2851 size = 2;
2852
2853 if (i.prefixes != 0 && !intel_syntax)
2854 as_warn (_("skipping prefixes on this instruction"));
2855
2856 /* 1 opcode; 2 segment; offset */
2857 insn_size += prefix + 1 + 2 + size;
2858 p = frag_more (prefix + 1 + 2 + size);
2859
2860 if (i.prefix[DATA_PREFIX])
2861 *p++ = DATA_PREFIX_OPCODE;
2862
2863 if (i.prefix[REX_PREFIX])
2864 *p++ = i.prefix[REX_PREFIX];
2865
2866 *p++ = i.tm.base_opcode;
2867 if (i.op[1].imms->X_op == O_constant)
2868 {
2869 offsetT n = i.op[1].imms->X_add_number;
2870
2871 if (size == 2
2872 && !fits_in_unsigned_word (n)
2873 && !fits_in_signed_word (n))
2874 {
2875 as_bad (_("16-bit jump out of range"));
2876 return;
2877 }
2878 md_number_to_chars (p, n, size);
2879 }
2880 else
2881 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2882 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
2883 if (i.op[0].imms->X_op != O_constant)
2884 as_bad (_("can't handle non absolute segment in `%s'"),
2885 i.tm.name);
2886 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
2887 }
2888 else
2889 {
2890 /* Output normal instructions here. */
2891 unsigned char *q;
2892
2893 /* All opcodes on i386 have eighter 1 or 2 bytes. We may use third
2894 byte for the SSE instructions to specify prefix they require. */
2895 if (i.tm.base_opcode & 0xff0000)
2896 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
2897
2898 /* The prefix bytes. */
2899 for (q = i.prefix;
2900 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
2901 q++)
2902 {
2903 if (*q)
2904 {
2905 insn_size += 1;
2906 p = frag_more (1);
2907 md_number_to_chars (p, (valueT) *q, 1);
2908 }
2909 }
2910
2911 /* Now the opcode; be careful about word order here! */
2912 if (fits_in_unsigned_byte (i.tm.base_opcode))
2913 {
2914 insn_size += 1;
2915 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
2916 }
2917 else
2918 {
2919 insn_size += 2;
2920 p = frag_more (2);
2921 /* Put out high byte first: can't use md_number_to_chars! */
2922 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2923 *p = i.tm.base_opcode & 0xff;
2924 }
2925
2926 /* Now the modrm byte and sib byte (if present). */
2927 if (i.tm.opcode_modifier & Modrm)
2928 {
2929 insn_size += 1;
2930 p = frag_more (1);
2931 md_number_to_chars (p,
2932 (valueT) (i.rm.regmem << 0
2933 | i.rm.reg << 3
2934 | i.rm.mode << 6),
2935 1);
2936 /* If i.rm.regmem == ESP (4)
2937 && i.rm.mode != (Register mode)
2938 && not 16 bit
2939 ==> need second modrm byte. */
2940 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
2941 && i.rm.mode != 3
2942 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
2943 {
2944 insn_size += 1;
2945 p = frag_more (1);
2946 md_number_to_chars (p,
2947 (valueT) (i.sib.base << 0
2948 | i.sib.index << 3
2949 | i.sib.scale << 6),
2950 1);
2951 }
2952 }
2953
2954 if (i.disp_operands)
2955 {
2956 register unsigned int n;
2957
2958 for (n = 0; n < i.operands; n++)
2959 {
2960 if (i.types[n] & Disp)
2961 {
2962 if (i.op[n].disps->X_op == O_constant)
2963 {
2964 int size;
2965 offsetT val;
2966
2967 size = 4;
2968 if (i.types[n] & (Disp8 | Disp16 | Disp64))
2969 {
2970 size = 2;
2971 if (i.types[n] & Disp8)
2972 size = 1;
2973 if (i.types[n] & Disp64)
2974 size = 8;
2975 }
2976 val = offset_in_range (i.op[n].disps->X_add_number,
2977 size);
2978 insn_size += size;
2979 p = frag_more (size);
2980 md_number_to_chars (p, val, size);
2981 }
2982 else
2983 {
2984 int size = 4;
2985 int sign = 0;
2986 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
2987
2988 /* The PC relative address is computed relative
2989 to the instruction boundary, so in case immediate
2990 fields follows, we need to adjust the value. */
2991 if (pcrel && i.imm_operands)
2992 {
2993 int imm_size = 4;
2994 register unsigned int n1;
2995
2996 for (n1 = 0; n1 < i.operands; n1++)
2997 if (i.types[n1] & Imm)
2998 {
2999 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
3000 {
3001 imm_size = 2;
3002 if (i.types[n1] & (Imm8 | Imm8S))
3003 imm_size = 1;
3004 if (i.types[n1] & Imm64)
3005 imm_size = 8;
3006 }
3007 break;
3008 }
3009 /* We should find the immediate. */
3010 if (n1 == i.operands)
3011 abort ();
3012 i.op[n].disps->X_add_number -= imm_size;
3013 }
3014
3015 if (i.types[n] & Disp32S)
3016 sign = 1;
3017
3018 if (i.types[n] & (Disp16 | Disp64))
3019 {
3020 size = 2;
3021 if (i.types[n] & Disp64)
3022 size = 8;
3023 }
3024
3025 insn_size += size;
3026 p = frag_more (size);
3027 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3028 i.op[n].disps, pcrel,
3029 reloc (size, pcrel, sign, i.reloc[n]));
3030 }
3031 }
3032 }
3033 }
3034
3035 /* Output immediate. */
3036 if (i.imm_operands)
3037 {
3038 register unsigned int n;
3039
3040 for (n = 0; n < i.operands; n++)
3041 {
3042 if (i.types[n] & Imm)
3043 {
3044 if (i.op[n].imms->X_op == O_constant)
3045 {
3046 int size;
3047 offsetT val;
3048
3049 size = 4;
3050 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3051 {
3052 size = 2;
3053 if (i.types[n] & (Imm8 | Imm8S))
3054 size = 1;
3055 else if (i.types[n] & Imm64)
3056 size = 8;
3057 }
3058 val = offset_in_range (i.op[n].imms->X_add_number,
3059 size);
3060 insn_size += size;
3061 p = frag_more (size);
3062 md_number_to_chars (p, val, size);
3063 }
3064 else
3065 {
3066 /* Not absolute_section.
3067 Need a 32-bit fixup (don't support 8bit
3068 non-absolute imms). Try to support other
3069 sizes ... */
3070 RELOC_ENUM reloc_type;
3071 int size = 4;
3072 int sign = 0;
3073
3074 if ((i.types[n] & (Imm32S))
3075 && i.suffix == QWORD_MNEM_SUFFIX)
3076 sign = 1;
3077 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3078 {
3079 size = 2;
3080 if (i.types[n] & (Imm8 | Imm8S))
3081 size = 1;
3082 if (i.types[n] & Imm64)
3083 size = 8;
3084 }
3085
3086 insn_size += size;
3087 p = frag_more (size);
3088 reloc_type = reloc (size, 0, sign, i.reloc[n]);
3089 #ifdef BFD_ASSEMBLER
3090 if (reloc_type == BFD_RELOC_32
3091 && GOT_symbol
3092 && GOT_symbol == i.op[n].imms->X_add_symbol
3093 && (i.op[n].imms->X_op == O_symbol
3094 || (i.op[n].imms->X_op == O_add
3095 && ((symbol_get_value_expression
3096 (i.op[n].imms->X_op_symbol)->X_op)
3097 == O_subtract))))
3098 {
3099 /* We don't support dynamic linking on x86-64 yet. */
3100 if (flag_code == CODE_64BIT)
3101 abort ();
3102 reloc_type = BFD_RELOC_386_GOTPC;
3103 i.op[n].imms->X_add_number += 3;
3104 }
3105 #endif
3106 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3107 i.op[n].imms, 0, reloc_type);
3108 }
3109 }
3110 }
3111 }
3112 }
3113
3114 dwarf2_emit_insn (insn_size);
3115
3116 #ifdef DEBUG386
3117 if (flag_debug)
3118 {
3119 pi (line, &i);
3120 }
3121 #endif /* DEBUG386 */
3122 }
3123 }
3124 \f
3125 #ifndef LEX_AT
3126 static char *lex_got PARAMS ((RELOC_ENUM *, int *));
3127
3128 /* Parse operands of the form
3129 <symbol>@GOTOFF+<nnn>
3130 and similar .plt or .got references.
3131
3132 If we find one, set up the correct relocation in RELOC and copy the
3133 input string, minus the `@GOTOFF' into a malloc'd buffer for
3134 parsing by the calling routine. Return this buffer, and if ADJUST
3135 is non-null set it to the length of the string we removed from the
3136 input line. Otherwise return NULL. */
3137 static char *
3138 lex_got (reloc, adjust)
3139 RELOC_ENUM *reloc;
3140 int *adjust;
3141 {
3142 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3143 static const struct {
3144 const char *str;
3145 const RELOC_ENUM rel[NUM_FLAG_CODE];
3146 } gotrel[] = {
3147 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3148 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3149 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
3150 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
3151 };
3152 char *cp;
3153 unsigned int j;
3154
3155 for (cp = input_line_pointer; *cp != '@'; cp++)
3156 if (is_end_of_line[(unsigned char) *cp])
3157 return NULL;
3158
3159 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3160 {
3161 int len;
3162
3163 len = strlen (gotrel[j].str);
3164 if (strncmp (cp + 1, gotrel[j].str, len) == 0)
3165 {
3166 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3167 {
3168 int first;
3169 char *tmpbuf;
3170
3171 *reloc = gotrel[j].rel[(unsigned int) flag_code];
3172
3173 if (GOT_symbol == NULL)
3174 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3175
3176 /* Replace the relocation token with ' ', so that
3177 errors like foo@GOTOFF1 will be detected. */
3178 first = cp - input_line_pointer;
3179 tmpbuf = xmalloc (strlen (input_line_pointer));
3180 memcpy (tmpbuf, input_line_pointer, first);
3181 tmpbuf[first] = ' ';
3182 strcpy (tmpbuf + first + 1, cp + 1 + len);
3183 if (adjust)
3184 *adjust = len;
3185 return tmpbuf;
3186 }
3187
3188 as_bad (_("@%s reloc is not supported in %s bit mode"),
3189 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3190 return NULL;
3191 }
3192 }
3193
3194 /* Might be a symbol version string. Don't as_bad here. */
3195 return NULL;
3196 }
3197
3198 /* x86_cons_fix_new is called via the expression parsing code when a
3199 reloc is needed. We use this hook to get the correct .got reloc. */
3200 static RELOC_ENUM got_reloc = NO_RELOC;
3201
3202 void
3203 x86_cons_fix_new (frag, off, len, exp)
3204 fragS *frag;
3205 unsigned int off;
3206 unsigned int len;
3207 expressionS *exp;
3208 {
3209 RELOC_ENUM r = reloc (len, 0, 0, got_reloc);
3210 got_reloc = NO_RELOC;
3211 fix_new_exp (frag, off, len, exp, 0, r);
3212 }
3213
3214 void
3215 x86_cons (exp, size)
3216 expressionS *exp;
3217 int size;
3218 {
3219 if (size == 4)
3220 {
3221 /* Handle @GOTOFF and the like in an expression. */
3222 char *save;
3223 char *gotfree_input_line;
3224 int adjust;
3225
3226 save = input_line_pointer;
3227 gotfree_input_line = lex_got (&got_reloc, &adjust);
3228 if (gotfree_input_line)
3229 input_line_pointer = gotfree_input_line;
3230
3231 expression (exp);
3232
3233 if (gotfree_input_line)
3234 {
3235 /* expression () has merrily parsed up to the end of line,
3236 or a comma - in the wrong buffer. Transfer how far
3237 input_line_pointer has moved to the right buffer. */
3238 input_line_pointer = (save
3239 + (input_line_pointer - gotfree_input_line)
3240 + adjust);
3241 free (gotfree_input_line);
3242 }
3243 }
3244 else
3245 expression (exp);
3246 }
3247 #endif
3248
3249 static int i386_immediate PARAMS ((char *));
3250
3251 static int
3252 i386_immediate (imm_start)
3253 char *imm_start;
3254 {
3255 char *save_input_line_pointer;
3256 #ifndef LEX_AT
3257 char *gotfree_input_line;
3258 #endif
3259 segT exp_seg = 0;
3260 expressionS *exp;
3261
3262 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3263 {
3264 as_bad (_("only 1 or 2 immediate operands are allowed"));
3265 return 0;
3266 }
3267
3268 exp = &im_expressions[i.imm_operands++];
3269 i.op[this_operand].imms = exp;
3270
3271 if (is_space_char (*imm_start))
3272 ++imm_start;
3273
3274 save_input_line_pointer = input_line_pointer;
3275 input_line_pointer = imm_start;
3276
3277 #ifndef LEX_AT
3278 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3279 if (gotfree_input_line)
3280 input_line_pointer = gotfree_input_line;
3281 #endif
3282
3283 exp_seg = expression (exp);
3284
3285 SKIP_WHITESPACE ();
3286 if (*input_line_pointer)
3287 as_bad (_("junk `%s' after expression"), input_line_pointer);
3288
3289 input_line_pointer = save_input_line_pointer;
3290 #ifndef LEX_AT
3291 if (gotfree_input_line)
3292 free (gotfree_input_line);
3293 #endif
3294
3295 if (exp->X_op == O_absent || exp->X_op == O_big)
3296 {
3297 /* Missing or bad expr becomes absolute 0. */
3298 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
3299 imm_start);
3300 exp->X_op = O_constant;
3301 exp->X_add_number = 0;
3302 exp->X_add_symbol = (symbolS *) 0;
3303 exp->X_op_symbol = (symbolS *) 0;
3304 }
3305 else if (exp->X_op == O_constant)
3306 {
3307 /* Size it properly later. */
3308 i.types[this_operand] |= Imm64;
3309 /* If BFD64, sign extend val. */
3310 if (!use_rela_relocations)
3311 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3312 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
3313 }
3314 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3315 else if (1
3316 #ifdef BFD_ASSEMBLER
3317 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3318 #endif
3319 && exp_seg != text_section
3320 && exp_seg != data_section
3321 && exp_seg != bss_section
3322 && exp_seg != undefined_section
3323 #ifdef BFD_ASSEMBLER
3324 && !bfd_is_com_section (exp_seg)
3325 #endif
3326 )
3327 {
3328 #ifdef BFD_ASSEMBLER
3329 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3330 #else
3331 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3332 #endif
3333 return 0;
3334 }
3335 #endif
3336 else
3337 {
3338 /* This is an address. The size of the address will be
3339 determined later, depending on destination register,
3340 suffix, or the default for the section. */
3341 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
3342 }
3343
3344 return 1;
3345 }
3346
3347 static char *i386_scale PARAMS ((char *));
3348
3349 static char *
3350 i386_scale (scale)
3351 char *scale;
3352 {
3353 offsetT val;
3354 char *save = input_line_pointer;
3355
3356 input_line_pointer = scale;
3357 val = get_absolute_expression ();
3358
3359 switch (val)
3360 {
3361 case 0:
3362 case 1:
3363 i.log2_scale_factor = 0;
3364 break;
3365 case 2:
3366 i.log2_scale_factor = 1;
3367 break;
3368 case 4:
3369 i.log2_scale_factor = 2;
3370 break;
3371 case 8:
3372 i.log2_scale_factor = 3;
3373 break;
3374 default:
3375 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
3376 scale);
3377 input_line_pointer = save;
3378 return NULL;
3379 }
3380 if (i.log2_scale_factor != 0 && ! i.index_reg)
3381 {
3382 as_warn (_("scale factor of %d without an index register"),
3383 1 << i.log2_scale_factor);
3384 #if SCALE1_WHEN_NO_INDEX
3385 i.log2_scale_factor = 0;
3386 #endif
3387 }
3388 scale = input_line_pointer;
3389 input_line_pointer = save;
3390 return scale;
3391 }
3392
3393 static int i386_displacement PARAMS ((char *, char *));
3394
3395 static int
3396 i386_displacement (disp_start, disp_end)
3397 char *disp_start;
3398 char *disp_end;
3399 {
3400 register expressionS *exp;
3401 segT exp_seg = 0;
3402 char *save_input_line_pointer;
3403 #ifndef LEX_AT
3404 char *gotfree_input_line;
3405 #endif
3406 int bigdisp = Disp32;
3407
3408 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3409 bigdisp = Disp16;
3410 if (flag_code == CODE_64BIT)
3411 bigdisp = Disp64;
3412 i.types[this_operand] |= bigdisp;
3413
3414 exp = &disp_expressions[i.disp_operands];
3415 i.op[this_operand].disps = exp;
3416 i.disp_operands++;
3417 save_input_line_pointer = input_line_pointer;
3418 input_line_pointer = disp_start;
3419 END_STRING_AND_SAVE (disp_end);
3420
3421 #ifndef GCC_ASM_O_HACK
3422 #define GCC_ASM_O_HACK 0
3423 #endif
3424 #if GCC_ASM_O_HACK
3425 END_STRING_AND_SAVE (disp_end + 1);
3426 if ((i.types[this_operand] & BaseIndex) != 0
3427 && displacement_string_end[-1] == '+')
3428 {
3429 /* This hack is to avoid a warning when using the "o"
3430 constraint within gcc asm statements.
3431 For instance:
3432
3433 #define _set_tssldt_desc(n,addr,limit,type) \
3434 __asm__ __volatile__ ( \
3435 "movw %w2,%0\n\t" \
3436 "movw %w1,2+%0\n\t" \
3437 "rorl $16,%1\n\t" \
3438 "movb %b1,4+%0\n\t" \
3439 "movb %4,5+%0\n\t" \
3440 "movb $0,6+%0\n\t" \
3441 "movb %h1,7+%0\n\t" \
3442 "rorl $16,%1" \
3443 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3444
3445 This works great except that the output assembler ends
3446 up looking a bit weird if it turns out that there is
3447 no offset. You end up producing code that looks like:
3448
3449 #APP
3450 movw $235,(%eax)
3451 movw %dx,2+(%eax)
3452 rorl $16,%edx
3453 movb %dl,4+(%eax)
3454 movb $137,5+(%eax)
3455 movb $0,6+(%eax)
3456 movb %dh,7+(%eax)
3457 rorl $16,%edx
3458 #NO_APP
3459
3460 So here we provide the missing zero. */
3461
3462 *displacement_string_end = '0';
3463 }
3464 #endif
3465 #ifndef LEX_AT
3466 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3467 if (gotfree_input_line)
3468 input_line_pointer = gotfree_input_line;
3469 #endif
3470
3471 exp_seg = expression (exp);
3472
3473 #ifdef BFD_ASSEMBLER
3474 /* We do this to make sure that the section symbol is in
3475 the symbol table. We will ultimately change the relocation
3476 to be relative to the beginning of the section. */
3477 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
3478 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3479 {
3480 if (S_IS_LOCAL (exp->X_add_symbol)
3481 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
3482 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
3483 assert (exp->X_op == O_symbol);
3484 exp->X_op = O_subtract;
3485 exp->X_op_symbol = GOT_symbol;
3486 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3487 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
3488 else
3489 i.reloc[this_operand] = BFD_RELOC_32;
3490 }
3491 #endif
3492
3493 SKIP_WHITESPACE ();
3494 if (*input_line_pointer)
3495 as_bad (_("junk `%s' after expression"), input_line_pointer);
3496 #if GCC_ASM_O_HACK
3497 RESTORE_END_STRING (disp_end + 1);
3498 #endif
3499 RESTORE_END_STRING (disp_end);
3500 input_line_pointer = save_input_line_pointer;
3501 #ifndef LEX_AT
3502 if (gotfree_input_line)
3503 free (gotfree_input_line);
3504 #endif
3505
3506 if (exp->X_op == O_absent || exp->X_op == O_big)
3507 {
3508 /* Missing or bad expr becomes absolute 0. */
3509 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
3510 disp_start);
3511 exp->X_op = O_constant;
3512 exp->X_add_number = 0;
3513 exp->X_add_symbol = (symbolS *) 0;
3514 exp->X_op_symbol = (symbolS *) 0;
3515 }
3516
3517 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3518 if (exp->X_op != O_constant
3519 #ifdef BFD_ASSEMBLER
3520 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3521 #endif
3522 && exp_seg != text_section
3523 && exp_seg != data_section
3524 && exp_seg != bss_section
3525 && exp_seg != undefined_section)
3526 {
3527 #ifdef BFD_ASSEMBLER
3528 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3529 #else
3530 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3531 #endif
3532 return 0;
3533 }
3534 #endif
3535 else if (flag_code == CODE_64BIT)
3536 i.types[this_operand] |= Disp32S | Disp32;
3537 return 1;
3538 }
3539
3540 static int i386_index_check PARAMS ((const char *));
3541
3542 /* Make sure the memory operand we've been dealt is valid.
3543 Return 1 on success, 0 on a failure. */
3544
3545 static int
3546 i386_index_check (operand_string)
3547 const char *operand_string;
3548 {
3549 int ok;
3550 #if INFER_ADDR_PREFIX
3551 int fudged = 0;
3552
3553 tryprefix:
3554 #endif
3555 ok = 1;
3556 if (flag_code == CODE_64BIT)
3557 {
3558 /* 64bit checks. */
3559 if ((i.base_reg
3560 && ((i.base_reg->reg_type & Reg64) == 0)
3561 && (i.base_reg->reg_type != BaseIndex
3562 || i.index_reg))
3563 || (i.index_reg
3564 && ((i.index_reg->reg_type & (Reg64|BaseIndex))
3565 != (Reg64|BaseIndex))))
3566 ok = 0;
3567 }
3568 else
3569 {
3570 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3571 {
3572 /* 16bit checks. */
3573 if ((i.base_reg
3574 && ((i.base_reg->reg_type & (Reg16|BaseIndex|RegRex))
3575 != (Reg16|BaseIndex)))
3576 || (i.index_reg
3577 && (((i.index_reg->reg_type & (Reg16|BaseIndex))
3578 != (Reg16|BaseIndex))
3579 || ! (i.base_reg
3580 && i.base_reg->reg_num < 6
3581 && i.index_reg->reg_num >= 6
3582 && i.log2_scale_factor == 0))))
3583 ok = 0;
3584 }
3585 else
3586 {
3587 /* 32bit checks. */
3588 if ((i.base_reg
3589 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
3590 || (i.index_reg
3591 && ((i.index_reg->reg_type & (Reg32|BaseIndex|RegRex))
3592 != (Reg32|BaseIndex))))
3593 ok = 0;
3594 }
3595 }
3596 if (!ok)
3597 {
3598 #if INFER_ADDR_PREFIX
3599 if (flag_code != CODE_64BIT
3600 && i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
3601 {
3602 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
3603 i.prefixes += 1;
3604 /* Change the size of any displacement too. At most one of
3605 Disp16 or Disp32 is set.
3606 FIXME. There doesn't seem to be any real need for separate
3607 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
3608 Removing them would probably clean up the code quite a lot. */
3609 if (i.types[this_operand] & (Disp16|Disp32))
3610 i.types[this_operand] ^= (Disp16|Disp32);
3611 fudged = 1;
3612 goto tryprefix;
3613 }
3614 if (fudged)
3615 as_bad (_("`%s' is not a valid base/index expression"),
3616 operand_string);
3617 else
3618 #endif
3619 as_bad (_("`%s' is not a valid %s bit base/index expression"),
3620 operand_string,
3621 flag_code_names[flag_code]);
3622 return 0;
3623 }
3624 return 1;
3625 }
3626
3627 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
3628 on error. */
3629
3630 static int
3631 i386_operand (operand_string)
3632 char *operand_string;
3633 {
3634 const reg_entry *r;
3635 char *end_op;
3636 char *op_string = operand_string;
3637
3638 if (is_space_char (*op_string))
3639 ++op_string;
3640
3641 /* We check for an absolute prefix (differentiating,
3642 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
3643 if (*op_string == ABSOLUTE_PREFIX)
3644 {
3645 ++op_string;
3646 if (is_space_char (*op_string))
3647 ++op_string;
3648 i.types[this_operand] |= JumpAbsolute;
3649 }
3650
3651 /* Check if operand is a register. */
3652 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
3653 && (r = parse_register (op_string, &end_op)) != NULL)
3654 {
3655 /* Check for a segment override by searching for ':' after a
3656 segment register. */
3657 op_string = end_op;
3658 if (is_space_char (*op_string))
3659 ++op_string;
3660 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
3661 {
3662 switch (r->reg_num)
3663 {
3664 case 0:
3665 i.seg[i.mem_operands] = &es;
3666 break;
3667 case 1:
3668 i.seg[i.mem_operands] = &cs;
3669 break;
3670 case 2:
3671 i.seg[i.mem_operands] = &ss;
3672 break;
3673 case 3:
3674 i.seg[i.mem_operands] = &ds;
3675 break;
3676 case 4:
3677 i.seg[i.mem_operands] = &fs;
3678 break;
3679 case 5:
3680 i.seg[i.mem_operands] = &gs;
3681 break;
3682 }
3683
3684 /* Skip the ':' and whitespace. */
3685 ++op_string;
3686 if (is_space_char (*op_string))
3687 ++op_string;
3688
3689 if (!is_digit_char (*op_string)
3690 && !is_identifier_char (*op_string)
3691 && *op_string != '('
3692 && *op_string != ABSOLUTE_PREFIX)
3693 {
3694 as_bad (_("bad memory operand `%s'"), op_string);
3695 return 0;
3696 }
3697 /* Handle case of %es:*foo. */
3698 if (*op_string == ABSOLUTE_PREFIX)
3699 {
3700 ++op_string;
3701 if (is_space_char (*op_string))
3702 ++op_string;
3703 i.types[this_operand] |= JumpAbsolute;
3704 }
3705 goto do_memory_reference;
3706 }
3707 if (*op_string)
3708 {
3709 as_bad (_("junk `%s' after register"), op_string);
3710 return 0;
3711 }
3712 i.types[this_operand] |= r->reg_type & ~BaseIndex;
3713 i.op[this_operand].regs = r;
3714 i.reg_operands++;
3715 }
3716 else if (*op_string == REGISTER_PREFIX)
3717 {
3718 as_bad (_("bad register name `%s'"), op_string);
3719 return 0;
3720 }
3721 else if (*op_string == IMMEDIATE_PREFIX)
3722 {
3723 ++op_string;
3724 if (i.types[this_operand] & JumpAbsolute)
3725 {
3726 as_bad (_("immediate operand illegal with absolute jump"));
3727 return 0;
3728 }
3729 if (!i386_immediate (op_string))
3730 return 0;
3731 }
3732 else if (is_digit_char (*op_string)
3733 || is_identifier_char (*op_string)
3734 || *op_string == '(')
3735 {
3736 /* This is a memory reference of some sort. */
3737 char *base_string;
3738
3739 /* Start and end of displacement string expression (if found). */
3740 char *displacement_string_start;
3741 char *displacement_string_end;
3742
3743 do_memory_reference:
3744 if ((i.mem_operands == 1
3745 && (current_templates->start->opcode_modifier & IsString) == 0)
3746 || i.mem_operands == 2)
3747 {
3748 as_bad (_("too many memory references for `%s'"),
3749 current_templates->start->name);
3750 return 0;
3751 }
3752
3753 /* Check for base index form. We detect the base index form by
3754 looking for an ')' at the end of the operand, searching
3755 for the '(' matching it, and finding a REGISTER_PREFIX or ','
3756 after the '('. */
3757 base_string = op_string + strlen (op_string);
3758
3759 --base_string;
3760 if (is_space_char (*base_string))
3761 --base_string;
3762
3763 /* If we only have a displacement, set-up for it to be parsed later. */
3764 displacement_string_start = op_string;
3765 displacement_string_end = base_string + 1;
3766
3767 if (*base_string == ')')
3768 {
3769 char *temp_string;
3770 unsigned int parens_balanced = 1;
3771 /* We've already checked that the number of left & right ()'s are
3772 equal, so this loop will not be infinite. */
3773 do
3774 {
3775 base_string--;
3776 if (*base_string == ')')
3777 parens_balanced++;
3778 if (*base_string == '(')
3779 parens_balanced--;
3780 }
3781 while (parens_balanced);
3782
3783 temp_string = base_string;
3784
3785 /* Skip past '(' and whitespace. */
3786 ++base_string;
3787 if (is_space_char (*base_string))
3788 ++base_string;
3789
3790 if (*base_string == ','
3791 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3792 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
3793 {
3794 displacement_string_end = temp_string;
3795
3796 i.types[this_operand] |= BaseIndex;
3797
3798 if (i.base_reg)
3799 {
3800 base_string = end_op;
3801 if (is_space_char (*base_string))
3802 ++base_string;
3803 }
3804
3805 /* There may be an index reg or scale factor here. */
3806 if (*base_string == ',')
3807 {
3808 ++base_string;
3809 if (is_space_char (*base_string))
3810 ++base_string;
3811
3812 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3813 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
3814 {
3815 base_string = end_op;
3816 if (is_space_char (*base_string))
3817 ++base_string;
3818 if (*base_string == ',')
3819 {
3820 ++base_string;
3821 if (is_space_char (*base_string))
3822 ++base_string;
3823 }
3824 else if (*base_string != ')')
3825 {
3826 as_bad (_("expecting `,' or `)' after index register in `%s'"),
3827 operand_string);
3828 return 0;
3829 }
3830 }
3831 else if (*base_string == REGISTER_PREFIX)
3832 {
3833 as_bad (_("bad register name `%s'"), base_string);
3834 return 0;
3835 }
3836
3837 /* Check for scale factor. */
3838 if (*base_string != ')')
3839 {
3840 char *end_scale = i386_scale (base_string);
3841
3842 if (!end_scale)
3843 return 0;
3844
3845 base_string = end_scale;
3846 if (is_space_char (*base_string))
3847 ++base_string;
3848 if (*base_string != ')')
3849 {
3850 as_bad (_("expecting `)' after scale factor in `%s'"),
3851 operand_string);
3852 return 0;
3853 }
3854 }
3855 else if (!i.index_reg)
3856 {
3857 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
3858 *base_string);
3859 return 0;
3860 }
3861 }
3862 else if (*base_string != ')')
3863 {
3864 as_bad (_("expecting `,' or `)' after base register in `%s'"),
3865 operand_string);
3866 return 0;
3867 }
3868 }
3869 else if (*base_string == REGISTER_PREFIX)
3870 {
3871 as_bad (_("bad register name `%s'"), base_string);
3872 return 0;
3873 }
3874 }
3875
3876 /* If there's an expression beginning the operand, parse it,
3877 assuming displacement_string_start and
3878 displacement_string_end are meaningful. */
3879 if (displacement_string_start != displacement_string_end)
3880 {
3881 if (!i386_displacement (displacement_string_start,
3882 displacement_string_end))
3883 return 0;
3884 }
3885
3886 /* Special case for (%dx) while doing input/output op. */
3887 if (i.base_reg
3888 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
3889 && i.index_reg == 0
3890 && i.log2_scale_factor == 0
3891 && i.seg[i.mem_operands] == 0
3892 && (i.types[this_operand] & Disp) == 0)
3893 {
3894 i.types[this_operand] = InOutPortReg;
3895 return 1;
3896 }
3897
3898 if (i386_index_check (operand_string) == 0)
3899 return 0;
3900 i.mem_operands++;
3901 }
3902 else
3903 {
3904 /* It's not a memory operand; argh! */
3905 as_bad (_("invalid char %s beginning operand %d `%s'"),
3906 output_invalid (*op_string),
3907 this_operand + 1,
3908 op_string);
3909 return 0;
3910 }
3911 return 1; /* Normal return. */
3912 }
3913 \f
3914 /* md_estimate_size_before_relax()
3915
3916 Called just before relax() for rs_machine_dependent frags. The x86
3917 assembler uses these frags to handle variable size jump
3918 instructions.
3919
3920 Any symbol that is now undefined will not become defined.
3921 Return the correct fr_subtype in the frag.
3922 Return the initial "guess for variable size of frag" to caller.
3923 The guess is actually the growth beyond the fixed part. Whatever
3924 we do to grow the fixed or variable part contributes to our
3925 returned value. */
3926
3927 int
3928 md_estimate_size_before_relax (fragP, segment)
3929 register fragS *fragP;
3930 register segT segment;
3931 {
3932 /* We've already got fragP->fr_subtype right; all we have to do is
3933 check for un-relaxable symbols. On an ELF system, we can't relax
3934 an externally visible symbol, because it may be overridden by a
3935 shared library. */
3936 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
3937 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3938 || S_IS_EXTERNAL (fragP->fr_symbol)
3939 || S_IS_WEAK (fragP->fr_symbol)
3940 #endif
3941 )
3942 {
3943 /* Symbol is undefined in this segment, or we need to keep a
3944 reloc so that weak symbols can be overridden. */
3945 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
3946 RELOC_ENUM reloc_type;
3947 unsigned char *opcode;
3948 int old_fr_fix;
3949
3950 if (fragP->fr_var != NO_RELOC)
3951 reloc_type = fragP->fr_var;
3952 else if (size == 2)
3953 reloc_type = BFD_RELOC_16_PCREL;
3954 else
3955 reloc_type = BFD_RELOC_32_PCREL;
3956
3957 old_fr_fix = fragP->fr_fix;
3958 opcode = (unsigned char *) fragP->fr_opcode;
3959
3960 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
3961 {
3962 case UNCOND_JUMP:
3963 /* Make jmp (0xeb) a (d)word displacement jump. */
3964 opcode[0] = 0xe9;
3965 fragP->fr_fix += size;
3966 fix_new (fragP, old_fr_fix, size,
3967 fragP->fr_symbol,
3968 fragP->fr_offset, 1,
3969 reloc_type);
3970 break;
3971
3972 case COND_JUMP86:
3973 if (no_cond_jump_promotion)
3974 return 1;
3975 if (size == 2)
3976 {
3977 /* Negate the condition, and branch past an
3978 unconditional jump. */
3979 opcode[0] ^= 1;
3980 opcode[1] = 3;
3981 /* Insert an unconditional jump. */
3982 opcode[2] = 0xe9;
3983 /* We added two extra opcode bytes, and have a two byte
3984 offset. */
3985 fragP->fr_fix += 2 + 2;
3986 fix_new (fragP, old_fr_fix + 2, 2,
3987 fragP->fr_symbol,
3988 fragP->fr_offset, 1,
3989 reloc_type);
3990 break;
3991 }
3992 /* Fall through. */
3993
3994 case COND_JUMP:
3995 if (no_cond_jump_promotion)
3996 return 1;
3997 /* This changes the byte-displacement jump 0x7N
3998 to the (d)word-displacement jump 0x0f,0x8N. */
3999 opcode[1] = opcode[0] + 0x10;
4000 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4001 /* We've added an opcode byte. */
4002 fragP->fr_fix += 1 + size;
4003 fix_new (fragP, old_fr_fix + 1, size,
4004 fragP->fr_symbol,
4005 fragP->fr_offset, 1,
4006 reloc_type);
4007 break;
4008
4009 default:
4010 BAD_CASE (fragP->fr_subtype);
4011 break;
4012 }
4013 frag_wane (fragP);
4014 return fragP->fr_fix - old_fr_fix;
4015 }
4016 /* Guess a short jump. */
4017 return 1;
4018 }
4019
4020 /* Called after relax() is finished.
4021
4022 In: Address of frag.
4023 fr_type == rs_machine_dependent.
4024 fr_subtype is what the address relaxed to.
4025
4026 Out: Any fixSs and constants are set up.
4027 Caller will turn frag into a ".space 0". */
4028
4029 #ifndef BFD_ASSEMBLER
4030 void
4031 md_convert_frag (headers, sec, fragP)
4032 object_headers *headers ATTRIBUTE_UNUSED;
4033 segT sec ATTRIBUTE_UNUSED;
4034 register fragS *fragP;
4035 #else
4036 void
4037 md_convert_frag (abfd, sec, fragP)
4038 bfd *abfd ATTRIBUTE_UNUSED;
4039 segT sec ATTRIBUTE_UNUSED;
4040 register fragS *fragP;
4041 #endif
4042 {
4043 register unsigned char *opcode;
4044 unsigned char *where_to_put_displacement = NULL;
4045 offsetT target_address;
4046 offsetT opcode_address;
4047 unsigned int extension = 0;
4048 offsetT displacement_from_opcode_start;
4049
4050 opcode = (unsigned char *) fragP->fr_opcode;
4051
4052 /* Address we want to reach in file space. */
4053 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
4054 #ifdef BFD_ASSEMBLER
4055 /* Not needed otherwise? */
4056 target_address += symbol_get_frag (fragP->fr_symbol)->fr_address;
4057 #endif
4058
4059 /* Address opcode resides at in file space. */
4060 opcode_address = fragP->fr_address + fragP->fr_fix;
4061
4062 /* Displacement from opcode start to fill into instruction. */
4063 displacement_from_opcode_start = target_address - opcode_address;
4064
4065 if ((fragP->fr_subtype & BIG) == 0)
4066 {
4067 /* Don't have to change opcode. */
4068 extension = 1; /* 1 opcode + 1 displacement */
4069 where_to_put_displacement = &opcode[1];
4070 }
4071 else
4072 {
4073 if (no_cond_jump_promotion
4074 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4075 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
4076
4077 switch (fragP->fr_subtype)
4078 {
4079 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4080 extension = 4; /* 1 opcode + 4 displacement */
4081 opcode[0] = 0xe9;
4082 where_to_put_displacement = &opcode[1];
4083 break;
4084
4085 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4086 extension = 2; /* 1 opcode + 2 displacement */
4087 opcode[0] = 0xe9;
4088 where_to_put_displacement = &opcode[1];
4089 break;
4090
4091 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4092 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4093 extension = 5; /* 2 opcode + 4 displacement */
4094 opcode[1] = opcode[0] + 0x10;
4095 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4096 where_to_put_displacement = &opcode[2];
4097 break;
4098
4099 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4100 extension = 3; /* 2 opcode + 2 displacement */
4101 opcode[1] = opcode[0] + 0x10;
4102 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4103 where_to_put_displacement = &opcode[2];
4104 break;
4105
4106 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4107 extension = 4;
4108 opcode[0] ^= 1;
4109 opcode[1] = 3;
4110 opcode[2] = 0xe9;
4111 where_to_put_displacement = &opcode[3];
4112 break;
4113
4114 default:
4115 BAD_CASE (fragP->fr_subtype);
4116 break;
4117 }
4118 }
4119
4120 /* Now put displacement after opcode. */
4121 md_number_to_chars ((char *) where_to_put_displacement,
4122 (valueT) (displacement_from_opcode_start - extension),
4123 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
4124 fragP->fr_fix += extension;
4125 }
4126 \f
4127 /* Size of byte displacement jmp. */
4128 int md_short_jump_size = 2;
4129
4130 /* Size of dword displacement jmp. */
4131 int md_long_jump_size = 5;
4132
4133 /* Size of relocation record. */
4134 const int md_reloc_size = 8;
4135
4136 void
4137 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4138 char *ptr;
4139 addressT from_addr, to_addr;
4140 fragS *frag ATTRIBUTE_UNUSED;
4141 symbolS *to_symbol ATTRIBUTE_UNUSED;
4142 {
4143 offsetT offset;
4144
4145 offset = to_addr - (from_addr + 2);
4146 /* Opcode for byte-disp jump. */
4147 md_number_to_chars (ptr, (valueT) 0xeb, 1);
4148 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4149 }
4150
4151 void
4152 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4153 char *ptr;
4154 addressT from_addr, to_addr;
4155 fragS *frag ATTRIBUTE_UNUSED;
4156 symbolS *to_symbol ATTRIBUTE_UNUSED;
4157 {
4158 offsetT offset;
4159
4160 offset = to_addr - (from_addr + 5);
4161 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4162 md_number_to_chars (ptr + 1, (valueT) offset, 4);
4163 }
4164 \f
4165 /* Apply a fixup (fixS) to segment data, once it has been determined
4166 by our caller that we have all the info we need to fix it up.
4167
4168 On the 386, immediates, displacements, and data pointers are all in
4169 the same (little-endian) format, so we don't need to care about which
4170 we are handling. */
4171
4172 int
4173 md_apply_fix3 (fixP, valp, seg)
4174 /* The fix we're to put in. */
4175 fixS *fixP;
4176
4177 /* Pointer to the value of the bits. */
4178 valueT *valp;
4179
4180 /* Segment fix is from. */
4181 segT seg ATTRIBUTE_UNUSED;
4182 {
4183 register char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4184 valueT value = *valp;
4185
4186 #if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
4187 if (fixP->fx_pcrel)
4188 {
4189 switch (fixP->fx_r_type)
4190 {
4191 default:
4192 break;
4193
4194 case BFD_RELOC_32:
4195 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4196 break;
4197 case BFD_RELOC_16:
4198 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4199 break;
4200 case BFD_RELOC_8:
4201 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4202 break;
4203 }
4204 }
4205
4206 /* This is a hack. There should be a better way to handle this.
4207 This covers for the fact that bfd_install_relocation will
4208 subtract the current location (for partial_inplace, PC relative
4209 relocations); see more below. */
4210 if ((fixP->fx_r_type == BFD_RELOC_32_PCREL
4211 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4212 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4213 && fixP->fx_addsy && !use_rela_relocations)
4214 {
4215 #ifndef OBJ_AOUT
4216 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4217 #ifdef TE_PE
4218 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4219 #endif
4220 )
4221 value += fixP->fx_where + fixP->fx_frag->fr_address;
4222 #endif
4223 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4224 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
4225 {
4226 segT fseg = S_GET_SEGMENT (fixP->fx_addsy);
4227
4228 if ((fseg == seg
4229 || (symbol_section_p (fixP->fx_addsy)
4230 && fseg != absolute_section))
4231 && ! S_IS_EXTERNAL (fixP->fx_addsy)
4232 && ! S_IS_WEAK (fixP->fx_addsy)
4233 && S_IS_DEFINED (fixP->fx_addsy)
4234 && ! S_IS_COMMON (fixP->fx_addsy))
4235 {
4236 /* Yes, we add the values in twice. This is because
4237 bfd_perform_relocation subtracts them out again. I think
4238 bfd_perform_relocation is broken, but I don't dare change
4239 it. FIXME. */
4240 value += fixP->fx_where + fixP->fx_frag->fr_address;
4241 }
4242 }
4243 #endif
4244 #if defined (OBJ_COFF) && defined (TE_PE)
4245 /* For some reason, the PE format does not store a section
4246 address offset for a PC relative symbol. */
4247 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4248 value += md_pcrel_from (fixP);
4249 #endif
4250 }
4251
4252 /* Fix a few things - the dynamic linker expects certain values here,
4253 and we must not dissappoint it. */
4254 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4255 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4256 && fixP->fx_addsy)
4257 switch (fixP->fx_r_type)
4258 {
4259 case BFD_RELOC_386_PLT32:
4260 case BFD_RELOC_X86_64_PLT32:
4261 /* Make the jump instruction point to the address of the operand. At
4262 runtime we merely add the offset to the actual PLT entry. */
4263 value = -4;
4264 break;
4265 case BFD_RELOC_386_GOTPC:
4266
4267 /* This is tough to explain. We end up with this one if we have
4268 * operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal
4269 * here is to obtain the absolute address of the GOT, and it is strongly
4270 * preferable from a performance point of view to avoid using a runtime
4271 * relocation for this. The actual sequence of instructions often look
4272 * something like:
4273 *
4274 * call .L66
4275 * .L66:
4276 * popl %ebx
4277 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
4278 *
4279 * The call and pop essentially return the absolute address of
4280 * the label .L66 and store it in %ebx. The linker itself will
4281 * ultimately change the first operand of the addl so that %ebx points to
4282 * the GOT, but to keep things simple, the .o file must have this operand
4283 * set so that it generates not the absolute address of .L66, but the
4284 * absolute address of itself. This allows the linker itself simply
4285 * treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
4286 * added in, and the addend of the relocation is stored in the operand
4287 * field for the instruction itself.
4288 *
4289 * Our job here is to fix the operand so that it would add the correct
4290 * offset so that %ebx would point to itself. The thing that is tricky is
4291 * that .-.L66 will point to the beginning of the instruction, so we need
4292 * to further modify the operand so that it will point to itself.
4293 * There are other cases where you have something like:
4294 *
4295 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
4296 *
4297 * and here no correction would be required. Internally in the assembler
4298 * we treat operands of this form as not being pcrel since the '.' is
4299 * explicitly mentioned, and I wonder whether it would simplify matters
4300 * to do it this way. Who knows. In earlier versions of the PIC patches,
4301 * the pcrel_adjust field was used to store the correction, but since the
4302 * expression is not pcrel, I felt it would be confusing to do it this
4303 * way. */
4304
4305 value -= 1;
4306 break;
4307 case BFD_RELOC_386_GOT32:
4308 case BFD_RELOC_X86_64_GOT32:
4309 value = 0; /* Fully resolved at runtime. No addend. */
4310 break;
4311 case BFD_RELOC_386_GOTOFF:
4312 case BFD_RELOC_X86_64_GOTPCREL:
4313 break;
4314
4315 case BFD_RELOC_VTABLE_INHERIT:
4316 case BFD_RELOC_VTABLE_ENTRY:
4317 fixP->fx_done = 0;
4318 return 1;
4319
4320 default:
4321 break;
4322 }
4323 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
4324 *valp = value;
4325 #endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
4326
4327 #ifndef BFD_ASSEMBLER
4328 md_number_to_chars (p, value, fixP->fx_size);
4329 #else
4330 /* Are we finished with this relocation now? */
4331 if (fixP->fx_addsy == 0 && fixP->fx_pcrel == 0)
4332 fixP->fx_done = 1;
4333 else if (use_rela_relocations)
4334 {
4335 fixP->fx_no_overflow = 1;
4336 value = 0;
4337 }
4338 md_number_to_chars (p, value, fixP->fx_size);
4339 #endif
4340
4341 return 1;
4342 }
4343 \f
4344 #define MAX_LITTLENUMS 6
4345
4346 /* Turn the string pointed to by litP into a floating point constant
4347 of type TYPE, and emit the appropriate bytes. The number of
4348 LITTLENUMS emitted is stored in *SIZEP. An error message is
4349 returned, or NULL on OK. */
4350
4351 char *
4352 md_atof (type, litP, sizeP)
4353 int type;
4354 char *litP;
4355 int *sizeP;
4356 {
4357 int prec;
4358 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4359 LITTLENUM_TYPE *wordP;
4360 char *t;
4361
4362 switch (type)
4363 {
4364 case 'f':
4365 case 'F':
4366 prec = 2;
4367 break;
4368
4369 case 'd':
4370 case 'D':
4371 prec = 4;
4372 break;
4373
4374 case 'x':
4375 case 'X':
4376 prec = 5;
4377 break;
4378
4379 default:
4380 *sizeP = 0;
4381 return _("Bad call to md_atof ()");
4382 }
4383 t = atof_ieee (input_line_pointer, type, words);
4384 if (t)
4385 input_line_pointer = t;
4386
4387 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4388 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4389 the bigendian 386. */
4390 for (wordP = words + prec - 1; prec--;)
4391 {
4392 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4393 litP += sizeof (LITTLENUM_TYPE);
4394 }
4395 return 0;
4396 }
4397 \f
4398 char output_invalid_buf[8];
4399
4400 static char *
4401 output_invalid (c)
4402 int c;
4403 {
4404 if (isprint (c))
4405 sprintf (output_invalid_buf, "'%c'", c);
4406 else
4407 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4408 return output_invalid_buf;
4409 }
4410
4411 /* REG_STRING starts *before* REGISTER_PREFIX. */
4412
4413 static const reg_entry *
4414 parse_register (reg_string, end_op)
4415 char *reg_string;
4416 char **end_op;
4417 {
4418 char *s = reg_string;
4419 char *p;
4420 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4421 const reg_entry *r;
4422
4423 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4424 if (*s == REGISTER_PREFIX)
4425 ++s;
4426
4427 if (is_space_char (*s))
4428 ++s;
4429
4430 p = reg_name_given;
4431 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
4432 {
4433 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
4434 return (const reg_entry *) NULL;
4435 s++;
4436 }
4437
4438 /* For naked regs, make sure that we are not dealing with an identifier.
4439 This prevents confusing an identifier like `eax_var' with register
4440 `eax'. */
4441 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4442 return (const reg_entry *) NULL;
4443
4444 *end_op = s;
4445
4446 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4447
4448 /* Handle floating point regs, allowing spaces in the (i) part. */
4449 if (r == i386_regtab /* %st is first entry of table */)
4450 {
4451 if (is_space_char (*s))
4452 ++s;
4453 if (*s == '(')
4454 {
4455 ++s;
4456 if (is_space_char (*s))
4457 ++s;
4458 if (*s >= '0' && *s <= '7')
4459 {
4460 r = &i386_float_regtab[*s - '0'];
4461 ++s;
4462 if (is_space_char (*s))
4463 ++s;
4464 if (*s == ')')
4465 {
4466 *end_op = s + 1;
4467 return r;
4468 }
4469 }
4470 /* We have "%st(" then garbage. */
4471 return (const reg_entry *) NULL;
4472 }
4473 }
4474
4475 return r;
4476 }
4477 \f
4478 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4479 const char *md_shortopts = "kVQ:sq";
4480 #else
4481 const char *md_shortopts = "q";
4482 #endif
4483
4484 struct option md_longopts[] = {
4485 #define OPTION_32 (OPTION_MD_BASE + 0)
4486 {"32", no_argument, NULL, OPTION_32},
4487 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4488 #define OPTION_64 (OPTION_MD_BASE + 1)
4489 {"64", no_argument, NULL, OPTION_64},
4490 #endif
4491 {NULL, no_argument, NULL, 0}
4492 };
4493 size_t md_longopts_size = sizeof (md_longopts);
4494
4495 int
4496 md_parse_option (c, arg)
4497 int c;
4498 char *arg ATTRIBUTE_UNUSED;
4499 {
4500 switch (c)
4501 {
4502 case 'q':
4503 quiet_warnings = 1;
4504 break;
4505
4506 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4507 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4508 should be emitted or not. FIXME: Not implemented. */
4509 case 'Q':
4510 break;
4511
4512 /* -V: SVR4 argument to print version ID. */
4513 case 'V':
4514 print_version_id ();
4515 break;
4516
4517 /* -k: Ignore for FreeBSD compatibility. */
4518 case 'k':
4519 break;
4520
4521 case 's':
4522 /* -s: On i386 Solaris, this tells the native assembler to use
4523 .stab instead of .stab.excl. We always use .stab anyhow. */
4524 break;
4525
4526 case OPTION_64:
4527 {
4528 const char **list, **l;
4529
4530 list = bfd_target_list ();
4531 for (l = list; *l != NULL; l++)
4532 if (strcmp (*l, "elf64-x86-64") == 0)
4533 {
4534 default_arch = "x86_64";
4535 break;
4536 }
4537 if (*l == NULL)
4538 as_fatal (_("No compiled in support for x86_64"));
4539 free (list);
4540 }
4541 break;
4542 #endif
4543
4544 case OPTION_32:
4545 default_arch = "i386";
4546 break;
4547
4548 default:
4549 return 0;
4550 }
4551 return 1;
4552 }
4553
4554 void
4555 md_show_usage (stream)
4556 FILE *stream;
4557 {
4558 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4559 fprintf (stream, _("\
4560 -Q ignored\n\
4561 -V print assembler version number\n\
4562 -k ignored\n\
4563 -q quieten some warnings\n\
4564 -s ignored\n"));
4565 #else
4566 fprintf (stream, _("\
4567 -q quieten some warnings\n"));
4568 #endif
4569 }
4570
4571 #ifdef BFD_ASSEMBLER
4572 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
4573 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
4574
4575 /* Pick the target format to use. */
4576
4577 const char *
4578 i386_target_format ()
4579 {
4580 if (!strcmp (default_arch, "x86_64"))
4581 set_code_flag (CODE_64BIT);
4582 else if (!strcmp (default_arch, "i386"))
4583 set_code_flag (CODE_32BIT);
4584 else
4585 as_fatal (_("Unknown architecture"));
4586 switch (OUTPUT_FLAVOR)
4587 {
4588 #ifdef OBJ_MAYBE_AOUT
4589 case bfd_target_aout_flavour:
4590 return AOUT_TARGET_FORMAT;
4591 #endif
4592 #ifdef OBJ_MAYBE_COFF
4593 case bfd_target_coff_flavour:
4594 return "coff-i386";
4595 #endif
4596 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
4597 case bfd_target_elf_flavour:
4598 {
4599 if (flag_code == CODE_64BIT)
4600 use_rela_relocations = 1;
4601 return flag_code == CODE_64BIT ? "elf64-x86-64" : "elf32-i386";
4602 }
4603 #endif
4604 default:
4605 abort ();
4606 return NULL;
4607 }
4608 }
4609
4610 #endif /* OBJ_MAYBE_ more than one */
4611 #endif /* BFD_ASSEMBLER */
4612 \f
4613 symbolS *
4614 md_undefined_symbol (name)
4615 char *name;
4616 {
4617 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
4618 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
4619 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
4620 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
4621 {
4622 if (!GOT_symbol)
4623 {
4624 if (symbol_find (name))
4625 as_bad (_("GOT already in symbol table"));
4626 GOT_symbol = symbol_new (name, undefined_section,
4627 (valueT) 0, &zero_address_frag);
4628 };
4629 return GOT_symbol;
4630 }
4631 return 0;
4632 }
4633
4634 /* Round up a section size to the appropriate boundary. */
4635
4636 valueT
4637 md_section_align (segment, size)
4638 segT segment ATTRIBUTE_UNUSED;
4639 valueT size;
4640 {
4641 #ifdef BFD_ASSEMBLER
4642 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4643 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
4644 {
4645 /* For a.out, force the section size to be aligned. If we don't do
4646 this, BFD will align it for us, but it will not write out the
4647 final bytes of the section. This may be a bug in BFD, but it is
4648 easier to fix it here since that is how the other a.out targets
4649 work. */
4650 int align;
4651
4652 align = bfd_get_section_alignment (stdoutput, segment);
4653 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
4654 }
4655 #endif
4656 #endif
4657
4658 return size;
4659 }
4660
4661 /* On the i386, PC-relative offsets are relative to the start of the
4662 next instruction. That is, the address of the offset, plus its
4663 size, since the offset is always the last part of the insn. */
4664
4665 long
4666 md_pcrel_from (fixP)
4667 fixS *fixP;
4668 {
4669 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
4670 }
4671
4672 #ifndef I386COFF
4673
4674 static void
4675 s_bss (ignore)
4676 int ignore ATTRIBUTE_UNUSED;
4677 {
4678 register int temp;
4679
4680 temp = get_absolute_expression ();
4681 subseg_set (bss_section, (subsegT) temp);
4682 demand_empty_rest_of_line ();
4683 }
4684
4685 #endif
4686
4687 #ifdef BFD_ASSEMBLER
4688
4689 void
4690 i386_validate_fix (fixp)
4691 fixS *fixp;
4692 {
4693 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
4694 {
4695 /* GOTOFF relocation are nonsense in 64bit mode. */
4696 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
4697 {
4698 if (flag_code != CODE_64BIT)
4699 abort ();
4700 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
4701 }
4702 else
4703 {
4704 if (flag_code == CODE_64BIT)
4705 abort ();
4706 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
4707 }
4708 fixp->fx_subsy = 0;
4709 }
4710 }
4711
4712 arelent *
4713 tc_gen_reloc (section, fixp)
4714 asection *section ATTRIBUTE_UNUSED;
4715 fixS *fixp;
4716 {
4717 arelent *rel;
4718 bfd_reloc_code_real_type code;
4719
4720 switch (fixp->fx_r_type)
4721 {
4722 case BFD_RELOC_X86_64_PLT32:
4723 case BFD_RELOC_X86_64_GOT32:
4724 case BFD_RELOC_X86_64_GOTPCREL:
4725 case BFD_RELOC_386_PLT32:
4726 case BFD_RELOC_386_GOT32:
4727 case BFD_RELOC_386_GOTOFF:
4728 case BFD_RELOC_386_GOTPC:
4729 case BFD_RELOC_X86_64_32S:
4730 case BFD_RELOC_RVA:
4731 case BFD_RELOC_VTABLE_ENTRY:
4732 case BFD_RELOC_VTABLE_INHERIT:
4733 code = fixp->fx_r_type;
4734 break;
4735 default:
4736 if (fixp->fx_pcrel)
4737 {
4738 switch (fixp->fx_size)
4739 {
4740 default:
4741 as_bad (_("can not do %d byte pc-relative relocation"),
4742 fixp->fx_size);
4743 code = BFD_RELOC_32_PCREL;
4744 break;
4745 case 1: code = BFD_RELOC_8_PCREL; break;
4746 case 2: code = BFD_RELOC_16_PCREL; break;
4747 case 4: code = BFD_RELOC_32_PCREL; break;
4748 }
4749 }
4750 else
4751 {
4752 switch (fixp->fx_size)
4753 {
4754 default:
4755 as_bad (_("can not do %d byte relocation"), fixp->fx_size);
4756 code = BFD_RELOC_32;
4757 break;
4758 case 1: code = BFD_RELOC_8; break;
4759 case 2: code = BFD_RELOC_16; break;
4760 case 4: code = BFD_RELOC_32; break;
4761 case 8: code = BFD_RELOC_64; break;
4762 }
4763 }
4764 break;
4765 }
4766
4767 if (code == BFD_RELOC_32
4768 && GOT_symbol
4769 && fixp->fx_addsy == GOT_symbol)
4770 {
4771 /* We don't support GOTPC on 64bit targets. */
4772 if (flag_code == CODE_64BIT)
4773 abort ();
4774 code = BFD_RELOC_386_GOTPC;
4775 }
4776
4777 rel = (arelent *) xmalloc (sizeof (arelent));
4778 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
4779 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
4780
4781 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
4782 if (!use_rela_relocations)
4783 {
4784 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
4785 vtable entry to be used in the relocation's section offset. */
4786 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
4787 rel->address = fixp->fx_offset;
4788
4789 if (fixp->fx_pcrel)
4790 rel->addend = fixp->fx_addnumber;
4791 else
4792 rel->addend = 0;
4793 }
4794 /* Use the rela in 64bit mode. */
4795 else
4796 {
4797 rel->addend = fixp->fx_offset;
4798 if (fixp->fx_pcrel)
4799 rel->addend -= fixp->fx_size;
4800 }
4801
4802 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
4803 if (rel->howto == NULL)
4804 {
4805 as_bad_where (fixp->fx_file, fixp->fx_line,
4806 _("cannot represent relocation type %s"),
4807 bfd_get_reloc_code_name (code));
4808 /* Set howto to a garbage value so that we can keep going. */
4809 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
4810 assert (rel->howto != NULL);
4811 }
4812
4813 return rel;
4814 }
4815
4816 #else /* ! BFD_ASSEMBLER */
4817
4818 #if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
4819 void
4820 tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
4821 char *where;
4822 fixS *fixP;
4823 relax_addressT segment_address_in_file;
4824 {
4825 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
4826 Out: GNU LD relocation length code: 0, 1, or 2. */
4827
4828 static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
4829 long r_symbolnum;
4830
4831 know (fixP->fx_addsy != NULL);
4832
4833 md_number_to_chars (where,
4834 (valueT) (fixP->fx_frag->fr_address
4835 + fixP->fx_where - segment_address_in_file),
4836 4);
4837
4838 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
4839 ? S_GET_TYPE (fixP->fx_addsy)
4840 : fixP->fx_addsy->sy_number);
4841
4842 where[6] = (r_symbolnum >> 16) & 0x0ff;
4843 where[5] = (r_symbolnum >> 8) & 0x0ff;
4844 where[4] = r_symbolnum & 0x0ff;
4845 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
4846 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
4847 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
4848 }
4849
4850 #endif /* OBJ_AOUT or OBJ_BOUT. */
4851
4852 #if defined (I386COFF)
4853
4854 short
4855 tc_coff_fix2rtype (fixP)
4856 fixS *fixP;
4857 {
4858 if (fixP->fx_r_type == R_IMAGEBASE)
4859 return R_IMAGEBASE;
4860
4861 return (fixP->fx_pcrel ?
4862 (fixP->fx_size == 1 ? R_PCRBYTE :
4863 fixP->fx_size == 2 ? R_PCRWORD :
4864 R_PCRLONG) :
4865 (fixP->fx_size == 1 ? R_RELBYTE :
4866 fixP->fx_size == 2 ? R_RELWORD :
4867 R_DIR32));
4868 }
4869
4870 int
4871 tc_coff_sizemachdep (frag)
4872 fragS *frag;
4873 {
4874 if (frag->fr_next)
4875 return (frag->fr_next->fr_address - frag->fr_address);
4876 else
4877 return 0;
4878 }
4879
4880 #endif /* I386COFF */
4881
4882 #endif /* ! BFD_ASSEMBLER */
4883 \f
4884 /* Parse operands using Intel syntax. This implements a recursive descent
4885 parser based on the BNF grammar published in Appendix B of the MASM 6.1
4886 Programmer's Guide.
4887
4888 FIXME: We do not recognize the full operand grammar defined in the MASM
4889 documentation. In particular, all the structure/union and
4890 high-level macro operands are missing.
4891
4892 Uppercase words are terminals, lower case words are non-terminals.
4893 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
4894 bars '|' denote choices. Most grammar productions are implemented in
4895 functions called 'intel_<production>'.
4896
4897 Initial production is 'expr'.
4898
4899 addOp + | -
4900
4901 alpha [a-zA-Z]
4902
4903 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
4904
4905 constant digits [[ radixOverride ]]
4906
4907 dataType BYTE | WORD | DWORD | QWORD | XWORD
4908
4909 digits decdigit
4910 | digits decdigit
4911 | digits hexdigit
4912
4913 decdigit [0-9]
4914
4915 e05 e05 addOp e06
4916 | e06
4917
4918 e06 e06 mulOp e09
4919 | e09
4920
4921 e09 OFFSET e10
4922 | e09 PTR e10
4923 | e09 : e10
4924 | e10
4925
4926 e10 e10 [ expr ]
4927 | e11
4928
4929 e11 ( expr )
4930 | [ expr ]
4931 | constant
4932 | dataType
4933 | id
4934 | $
4935 | register
4936
4937 => expr SHORT e05
4938 | e05
4939
4940 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
4941 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
4942
4943 hexdigit a | b | c | d | e | f
4944 | A | B | C | D | E | F
4945
4946 id alpha
4947 | id alpha
4948 | id decdigit
4949
4950 mulOp * | / | MOD
4951
4952 quote " | '
4953
4954 register specialRegister
4955 | gpRegister
4956 | byteRegister
4957
4958 segmentRegister CS | DS | ES | FS | GS | SS
4959
4960 specialRegister CR0 | CR2 | CR3
4961 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
4962 | TR3 | TR4 | TR5 | TR6 | TR7
4963
4964 We simplify the grammar in obvious places (e.g., register parsing is
4965 done by calling parse_register) and eliminate immediate left recursion
4966 to implement a recursive-descent parser.
4967
4968 expr SHORT e05
4969 | e05
4970
4971 e05 e06 e05'
4972
4973 e05' addOp e06 e05'
4974 | Empty
4975
4976 e06 e09 e06'
4977
4978 e06' mulOp e09 e06'
4979 | Empty
4980
4981 e09 OFFSET e10 e09'
4982 | e10 e09'
4983
4984 e09' PTR e10 e09'
4985 | : e10 e09'
4986 | Empty
4987
4988 e10 e11 e10'
4989
4990 e10' [ expr ] e10'
4991 | Empty
4992
4993 e11 ( expr )
4994 | [ expr ]
4995 | BYTE
4996 | WORD
4997 | DWORD
4998 | QWORD
4999 | XWORD
5000 | .
5001 | $
5002 | register
5003 | id
5004 | constant */
5005
5006 /* Parsing structure for the intel syntax parser. Used to implement the
5007 semantic actions for the operand grammar. */
5008 struct intel_parser_s
5009 {
5010 char *op_string; /* The string being parsed. */
5011 int got_a_float; /* Whether the operand is a float. */
5012 int op_modifier; /* Operand modifier. */
5013 int is_mem; /* 1 if operand is memory reference. */
5014 const reg_entry *reg; /* Last register reference found. */
5015 char *disp; /* Displacement string being built. */
5016 };
5017
5018 static struct intel_parser_s intel_parser;
5019
5020 /* Token structure for parsing intel syntax. */
5021 struct intel_token
5022 {
5023 int code; /* Token code. */
5024 const reg_entry *reg; /* Register entry for register tokens. */
5025 char *str; /* String representation. */
5026 };
5027
5028 static struct intel_token cur_token, prev_token;
5029
5030 /* Token codes for the intel parser. Since T_SHORT is already used
5031 by COFF, undefine it first to prevent a warning. */
5032 #define T_NIL -1
5033 #define T_CONST 1
5034 #define T_REG 2
5035 #define T_BYTE 3
5036 #define T_WORD 4
5037 #define T_DWORD 5
5038 #define T_QWORD 6
5039 #define T_XWORD 7
5040 #undef T_SHORT
5041 #define T_SHORT 8
5042 #define T_OFFSET 9
5043 #define T_PTR 10
5044 #define T_ID 11
5045
5046 /* Prototypes for intel parser functions. */
5047 static int intel_match_token PARAMS ((int code));
5048 static void intel_get_token PARAMS ((void));
5049 static void intel_putback_token PARAMS ((void));
5050 static int intel_expr PARAMS ((void));
5051 static int intel_e05 PARAMS ((void));
5052 static int intel_e05_1 PARAMS ((void));
5053 static int intel_e06 PARAMS ((void));
5054 static int intel_e06_1 PARAMS ((void));
5055 static int intel_e09 PARAMS ((void));
5056 static int intel_e09_1 PARAMS ((void));
5057 static int intel_e10 PARAMS ((void));
5058 static int intel_e10_1 PARAMS ((void));
5059 static int intel_e11 PARAMS ((void));
5060
5061 static int
5062 i386_intel_operand (operand_string, got_a_float)
5063 char *operand_string;
5064 int got_a_float;
5065 {
5066 int ret;
5067 char *p;
5068
5069 /* Initialize token holders. */
5070 cur_token.code = prev_token.code = T_NIL;
5071 cur_token.reg = prev_token.reg = NULL;
5072 cur_token.str = prev_token.str = NULL;
5073
5074 /* Initialize parser structure. */
5075 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
5076 if (p == NULL)
5077 abort ();
5078 strcpy (intel_parser.op_string, operand_string);
5079 intel_parser.got_a_float = got_a_float;
5080 intel_parser.op_modifier = -1;
5081 intel_parser.is_mem = 0;
5082 intel_parser.reg = NULL;
5083 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
5084 if (intel_parser.disp == NULL)
5085 abort ();
5086 intel_parser.disp[0] = '\0';
5087
5088 /* Read the first token and start the parser. */
5089 intel_get_token ();
5090 ret = intel_expr ();
5091
5092 if (ret)
5093 {
5094 /* If we found a memory reference, hand it over to i386_displacement
5095 to fill in the rest of the operand fields. */
5096 if (intel_parser.is_mem)
5097 {
5098 if ((i.mem_operands == 1
5099 && (current_templates->start->opcode_modifier & IsString) == 0)
5100 || i.mem_operands == 2)
5101 {
5102 as_bad (_("too many memory references for '%s'"),
5103 current_templates->start->name);
5104 ret = 0;
5105 }
5106 else
5107 {
5108 char *s = intel_parser.disp;
5109 i.mem_operands++;
5110
5111 /* Add the displacement expression. */
5112 if (*s != '\0')
5113 ret = i386_displacement (s, s + strlen (s))
5114 && i386_index_check (s);
5115 }
5116 }
5117
5118 /* Constant and OFFSET expressions are handled by i386_immediate. */
5119 else if (intel_parser.op_modifier == OFFSET_FLAT
5120 || intel_parser.reg == NULL)
5121 ret = i386_immediate (intel_parser.disp);
5122 }
5123
5124 free (p);
5125 free (intel_parser.disp);
5126
5127 return ret;
5128 }
5129
5130 /* expr SHORT e05
5131 | e05 */
5132 static int
5133 intel_expr ()
5134 {
5135 /* expr SHORT e05 */
5136 if (cur_token.code == T_SHORT)
5137 {
5138 intel_parser.op_modifier = SHORT;
5139 intel_match_token (T_SHORT);
5140
5141 return (intel_e05 ());
5142 }
5143
5144 /* expr e05 */
5145 else
5146 return intel_e05 ();
5147 }
5148
5149 /* e05 e06 e05'
5150
5151 e05' addOp e06 e05'
5152 | Empty */
5153 static int
5154 intel_e05 ()
5155 {
5156 return (intel_e06 () && intel_e05_1 ());
5157 }
5158
5159 static int
5160 intel_e05_1 ()
5161 {
5162 /* e05' addOp e06 e05' */
5163 if (cur_token.code == '+' || cur_token.code == '-')
5164 {
5165 strcat (intel_parser.disp, cur_token.str);
5166 intel_match_token (cur_token.code);
5167
5168 return (intel_e06 () && intel_e05_1 ());
5169 }
5170
5171 /* e05' Empty */
5172 else
5173 return 1;
5174 }
5175
5176 /* e06 e09 e06'
5177
5178 e06' mulOp e09 e06'
5179 | Empty */
5180 static int
5181 intel_e06 ()
5182 {
5183 return (intel_e09 () && intel_e06_1 ());
5184 }
5185
5186 static int
5187 intel_e06_1 ()
5188 {
5189 /* e06' mulOp e09 e06' */
5190 if (cur_token.code == '*' || cur_token.code == '/')
5191 {
5192 strcat (intel_parser.disp, cur_token.str);
5193 intel_match_token (cur_token.code);
5194
5195 return (intel_e09 () && intel_e06_1 ());
5196 }
5197
5198 /* e06' Empty */
5199 else
5200 return 1;
5201 }
5202
5203 /* e09 OFFSET e10 e09'
5204 | e10 e09'
5205
5206 e09' PTR e10 e09'
5207 | : e10 e09'
5208 | Empty */
5209 static int
5210 intel_e09 ()
5211 {
5212 /* e09 OFFSET e10 e09' */
5213 if (cur_token.code == T_OFFSET)
5214 {
5215 intel_parser.is_mem = 0;
5216 intel_parser.op_modifier = OFFSET_FLAT;
5217 intel_match_token (T_OFFSET);
5218
5219 return (intel_e10 () && intel_e09_1 ());
5220 }
5221
5222 /* e09 e10 e09' */
5223 else
5224 return (intel_e10 () && intel_e09_1 ());
5225 }
5226
5227 static int
5228 intel_e09_1 ()
5229 {
5230 /* e09' PTR e10 e09' */
5231 if (cur_token.code == T_PTR)
5232 {
5233 if (prev_token.code == T_BYTE)
5234 i.suffix = BYTE_MNEM_SUFFIX;
5235
5236 else if (prev_token.code == T_WORD)
5237 {
5238 if (intel_parser.got_a_float == 2) /* "fi..." */
5239 i.suffix = SHORT_MNEM_SUFFIX;
5240 else
5241 i.suffix = WORD_MNEM_SUFFIX;
5242 }
5243
5244 else if (prev_token.code == T_DWORD)
5245 {
5246 if (intel_parser.got_a_float == 1) /* "f..." */
5247 i.suffix = SHORT_MNEM_SUFFIX;
5248 else
5249 i.suffix = LONG_MNEM_SUFFIX;
5250 }
5251
5252 else if (prev_token.code == T_QWORD)
5253 {
5254 if (intel_parser.got_a_float == 1) /* "f..." */
5255 i.suffix = LONG_MNEM_SUFFIX;
5256 else
5257 i.suffix = QWORD_MNEM_SUFFIX;
5258 }
5259
5260 else if (prev_token.code == T_XWORD)
5261 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
5262
5263 else
5264 {
5265 as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
5266 return 0;
5267 }
5268
5269 intel_match_token (T_PTR);
5270
5271 return (intel_e10 () && intel_e09_1 ());
5272 }
5273
5274 /* e09 : e10 e09' */
5275 else if (cur_token.code == ':')
5276 {
5277 /* Mark as a memory operand only if it's not already known to be an
5278 offset expression. */
5279 if (intel_parser.op_modifier != OFFSET_FLAT)
5280 intel_parser.is_mem = 1;
5281
5282 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5283 }
5284
5285 /* e09' Empty */
5286 else
5287 return 1;
5288 }
5289
5290 /* e10 e11 e10'
5291
5292 e10' [ expr ] e10'
5293 | Empty */
5294 static int
5295 intel_e10 ()
5296 {
5297 return (intel_e11 () && intel_e10_1 ());
5298 }
5299
5300 static int
5301 intel_e10_1 ()
5302 {
5303 /* e10' [ expr ] e10' */
5304 if (cur_token.code == '[')
5305 {
5306 intel_match_token ('[');
5307
5308 /* Mark as a memory operand only if it's not already known to be an
5309 offset expression. If it's an offset expression, we need to keep
5310 the brace in. */
5311 if (intel_parser.op_modifier != OFFSET_FLAT)
5312 intel_parser.is_mem = 1;
5313 else
5314 strcat (intel_parser.disp, "[");
5315
5316 /* Add a '+' to the displacement string if necessary. */
5317 if (*intel_parser.disp != '\0'
5318 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5319 strcat (intel_parser.disp, "+");
5320
5321 if (intel_expr () && intel_match_token (']'))
5322 {
5323 /* Preserve brackets when the operand is an offset expression. */
5324 if (intel_parser.op_modifier == OFFSET_FLAT)
5325 strcat (intel_parser.disp, "]");
5326
5327 return intel_e10_1 ();
5328 }
5329 else
5330 return 0;
5331 }
5332
5333 /* e10' Empty */
5334 else
5335 return 1;
5336 }
5337
5338 /* e11 ( expr )
5339 | [ expr ]
5340 | BYTE
5341 | WORD
5342 | DWORD
5343 | QWORD
5344 | XWORD
5345 | $
5346 | .
5347 | register
5348 | id
5349 | constant */
5350 static int
5351 intel_e11 ()
5352 {
5353 /* e11 ( expr ) */
5354 if (cur_token.code == '(')
5355 {
5356 intel_match_token ('(');
5357 strcat (intel_parser.disp, "(");
5358
5359 if (intel_expr () && intel_match_token (')'))
5360 {
5361 strcat (intel_parser.disp, ")");
5362 return 1;
5363 }
5364 else
5365 return 0;
5366 }
5367
5368 /* e11 [ expr ] */
5369 else if (cur_token.code == '[')
5370 {
5371 intel_match_token ('[');
5372
5373 /* Mark as a memory operand only if it's not already known to be an
5374 offset expression. If it's an offset expression, we need to keep
5375 the brace in. */
5376 if (intel_parser.op_modifier != OFFSET_FLAT)
5377 intel_parser.is_mem = 1;
5378 else
5379 strcat (intel_parser.disp, "[");
5380
5381 /* Operands for jump/call inside brackets denote absolute addresses. */
5382 if (current_templates->start->opcode_modifier & Jump
5383 || current_templates->start->opcode_modifier & JumpDword
5384 || current_templates->start->opcode_modifier & JumpByte
5385 || current_templates->start->opcode_modifier & JumpInterSegment)
5386 i.types[this_operand] |= JumpAbsolute;
5387
5388 /* Add a '+' to the displacement string if necessary. */
5389 if (*intel_parser.disp != '\0'
5390 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5391 strcat (intel_parser.disp, "+");
5392
5393 if (intel_expr () && intel_match_token (']'))
5394 {
5395 /* Preserve brackets when the operand is an offset expression. */
5396 if (intel_parser.op_modifier == OFFSET_FLAT)
5397 strcat (intel_parser.disp, "]");
5398
5399 return 1;
5400 }
5401 else
5402 return 0;
5403 }
5404
5405 /* e11 BYTE
5406 | WORD
5407 | DWORD
5408 | QWORD
5409 | XWORD */
5410 else if (cur_token.code == T_BYTE
5411 || cur_token.code == T_WORD
5412 || cur_token.code == T_DWORD
5413 || cur_token.code == T_QWORD
5414 || cur_token.code == T_XWORD)
5415 {
5416 intel_match_token (cur_token.code);
5417
5418 return 1;
5419 }
5420
5421 /* e11 $
5422 | . */
5423 else if (cur_token.code == '$' || cur_token.code == '.')
5424 {
5425 strcat (intel_parser.disp, cur_token.str);
5426 intel_match_token (cur_token.code);
5427
5428 /* Mark as a memory operand only if it's not already known to be an
5429 offset expression. */
5430 if (intel_parser.op_modifier != OFFSET_FLAT)
5431 intel_parser.is_mem = 1;
5432
5433 return 1;
5434 }
5435
5436 /* e11 register */
5437 else if (cur_token.code == T_REG)
5438 {
5439 const reg_entry *reg = intel_parser.reg = cur_token.reg;
5440
5441 intel_match_token (T_REG);
5442
5443 /* Check for segment change. */
5444 if (cur_token.code == ':')
5445 {
5446 if (reg->reg_type & (SReg2 | SReg3))
5447 {
5448 switch (reg->reg_num)
5449 {
5450 case 0:
5451 i.seg[i.mem_operands] = &es;
5452 break;
5453 case 1:
5454 i.seg[i.mem_operands] = &cs;
5455 break;
5456 case 2:
5457 i.seg[i.mem_operands] = &ss;
5458 break;
5459 case 3:
5460 i.seg[i.mem_operands] = &ds;
5461 break;
5462 case 4:
5463 i.seg[i.mem_operands] = &fs;
5464 break;
5465 case 5:
5466 i.seg[i.mem_operands] = &gs;
5467 break;
5468 }
5469 }
5470 else
5471 {
5472 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
5473 return 0;
5474 }
5475 }
5476
5477 /* Not a segment register. Check for register scaling. */
5478 else if (cur_token.code == '*')
5479 {
5480 if (!intel_parser.is_mem)
5481 {
5482 as_bad (_("Register scaling only allowed in memory operands."));
5483 return 0;
5484 }
5485
5486 /* What follows must be a valid scale. */
5487 if (intel_match_token ('*')
5488 && strchr ("01248", *cur_token.str))
5489 {
5490 i.index_reg = reg;
5491 i.types[this_operand] |= BaseIndex;
5492
5493 /* Set the scale after setting the register (otherwise,
5494 i386_scale will complain) */
5495 i386_scale (cur_token.str);
5496 intel_match_token (T_CONST);
5497 }
5498 else
5499 {
5500 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5501 cur_token.str);
5502 return 0;
5503 }
5504 }
5505
5506 /* No scaling. If this is a memory operand, the register is either a
5507 base register (first occurrence) or an index register (second
5508 occurrence). */
5509 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
5510 {
5511 if (i.base_reg && i.index_reg)
5512 {
5513 as_bad (_("Too many register references in memory operand.\n"));
5514 return 0;
5515 }
5516
5517 if (i.base_reg == NULL)
5518 i.base_reg = reg;
5519 else
5520 i.index_reg = reg;
5521
5522 i.types[this_operand] |= BaseIndex;
5523 }
5524
5525 /* Offset modifier. Add the register to the displacement string to be
5526 parsed as an immediate expression after we're done. */
5527 else if (intel_parser.op_modifier == OFFSET_FLAT)
5528 strcat (intel_parser.disp, reg->reg_name);
5529
5530 /* It's neither base nor index nor offset. */
5531 else
5532 {
5533 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
5534 i.op[this_operand].regs = reg;
5535 i.reg_operands++;
5536 }
5537
5538 /* Since registers are not part of the displacement string (except
5539 when we're parsing offset operands), we may need to remove any
5540 preceding '+' from the displacement string. */
5541 if (*intel_parser.disp != '\0'
5542 && intel_parser.op_modifier != OFFSET_FLAT)
5543 {
5544 char *s = intel_parser.disp;
5545 s += strlen (s) - 1;
5546 if (*s == '+')
5547 *s = '\0';
5548 }
5549
5550 return 1;
5551 }
5552
5553 /* e11 id */
5554 else if (cur_token.code == T_ID)
5555 {
5556 /* Add the identifier to the displacement string. */
5557 strcat (intel_parser.disp, cur_token.str);
5558 intel_match_token (T_ID);
5559
5560 /* The identifier represents a memory reference only if it's not
5561 preceded by an offset modifier. */
5562 if (intel_parser.op_modifier != OFFSET_FLAT)
5563 intel_parser.is_mem = 1;
5564
5565 return 1;
5566 }
5567
5568 /* e11 constant */
5569 else if (cur_token.code == T_CONST
5570 || cur_token.code == '-'
5571 || cur_token.code == '+')
5572 {
5573 char *save_str;
5574
5575 /* Allow constants that start with `+' or `-'. */
5576 if (cur_token.code == '-' || cur_token.code == '+')
5577 {
5578 strcat (intel_parser.disp, cur_token.str);
5579 intel_match_token (cur_token.code);
5580 if (cur_token.code != T_CONST)
5581 {
5582 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
5583 cur_token.str);
5584 return 0;
5585 }
5586 }
5587
5588 save_str = (char *) malloc (strlen (cur_token.str) + 1);
5589 if (save_str == NULL)
5590 abort ();
5591 strcpy (save_str, cur_token.str);
5592
5593 /* Get the next token to check for register scaling. */
5594 intel_match_token (cur_token.code);
5595
5596 /* Check if this constant is a scaling factor for an index register. */
5597 if (cur_token.code == '*')
5598 {
5599 if (intel_match_token ('*') && cur_token.code == T_REG)
5600 {
5601 if (!intel_parser.is_mem)
5602 {
5603 as_bad (_("Register scaling only allowed in memory operands."));
5604 return 0;
5605 }
5606
5607 /* The constant is followed by `* reg', so it must be
5608 a valid scale. */
5609 if (strchr ("01248", *save_str))
5610 {
5611 i.index_reg = cur_token.reg;
5612 i.types[this_operand] |= BaseIndex;
5613
5614 /* Set the scale after setting the register (otherwise,
5615 i386_scale will complain) */
5616 i386_scale (save_str);
5617 intel_match_token (T_REG);
5618
5619 /* Since registers are not part of the displacement
5620 string, we may need to remove any preceding '+' from
5621 the displacement string. */
5622 if (*intel_parser.disp != '\0')
5623 {
5624 char *s = intel_parser.disp;
5625 s += strlen (s) - 1;
5626 if (*s == '+')
5627 *s = '\0';
5628 }
5629
5630 free (save_str);
5631
5632 return 1;
5633 }
5634 else
5635 return 0;
5636 }
5637
5638 /* The constant was not used for register scaling. Since we have
5639 already consumed the token following `*' we now need to put it
5640 back in the stream. */
5641 else
5642 intel_putback_token ();
5643 }
5644
5645 /* Add the constant to the displacement string. */
5646 strcat (intel_parser.disp, save_str);
5647 free (save_str);
5648
5649 return 1;
5650 }
5651
5652 as_bad (_("Unrecognized token '%s'"), cur_token.str);
5653 return 0;
5654 }
5655
5656 /* Match the given token against cur_token. If they match, read the next
5657 token from the operand string. */
5658 static int
5659 intel_match_token (code)
5660 int code;
5661 {
5662 if (cur_token.code == code)
5663 {
5664 intel_get_token ();
5665 return 1;
5666 }
5667 else
5668 {
5669 as_bad (_("Unexpected token `%s'\n"), cur_token.str);
5670 return 0;
5671 }
5672 }
5673
5674 /* Read a new token from intel_parser.op_string and store it in cur_token. */
5675 static void
5676 intel_get_token ()
5677 {
5678 char *end_op;
5679 const reg_entry *reg;
5680 struct intel_token new_token;
5681
5682 new_token.code = T_NIL;
5683 new_token.reg = NULL;
5684 new_token.str = NULL;
5685
5686 /* Free the memory allocated to the previous token and move
5687 cur_token to prev_token. */
5688 if (prev_token.str)
5689 free (prev_token.str);
5690
5691 prev_token = cur_token;
5692
5693 /* Skip whitespace. */
5694 while (is_space_char (*intel_parser.op_string))
5695 intel_parser.op_string++;
5696
5697 /* Return an empty token if we find nothing else on the line. */
5698 if (*intel_parser.op_string == '\0')
5699 {
5700 cur_token = new_token;
5701 return;
5702 }
5703
5704 /* The new token cannot be larger than the remainder of the operand
5705 string. */
5706 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
5707 if (new_token.str == NULL)
5708 abort ();
5709 new_token.str[0] = '\0';
5710
5711 if (strchr ("0123456789", *intel_parser.op_string))
5712 {
5713 char *p = new_token.str;
5714 char *q = intel_parser.op_string;
5715 new_token.code = T_CONST;
5716
5717 /* Allow any kind of identifier char to encompass floating point and
5718 hexadecimal numbers. */
5719 while (is_identifier_char (*q))
5720 *p++ = *q++;
5721 *p = '\0';
5722
5723 /* Recognize special symbol names [0-9][bf]. */
5724 if (strlen (intel_parser.op_string) == 2
5725 && (intel_parser.op_string[1] == 'b'
5726 || intel_parser.op_string[1] == 'f'))
5727 new_token.code = T_ID;
5728 }
5729
5730 else if (strchr ("+-/*:[]()", *intel_parser.op_string))
5731 {
5732 new_token.code = *intel_parser.op_string;
5733 new_token.str[0] = *intel_parser.op_string;
5734 new_token.str[1] = '\0';
5735 }
5736
5737 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
5738 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
5739 {
5740 new_token.code = T_REG;
5741 new_token.reg = reg;
5742
5743 if (*intel_parser.op_string == REGISTER_PREFIX)
5744 {
5745 new_token.str[0] = REGISTER_PREFIX;
5746 new_token.str[1] = '\0';
5747 }
5748
5749 strcat (new_token.str, reg->reg_name);
5750 }
5751
5752 else if (is_identifier_char (*intel_parser.op_string))
5753 {
5754 char *p = new_token.str;
5755 char *q = intel_parser.op_string;
5756
5757 /* A '.' or '$' followed by an identifier char is an identifier.
5758 Otherwise, it's operator '.' followed by an expression. */
5759 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
5760 {
5761 new_token.code = *q;
5762 new_token.str[0] = *q;
5763 new_token.str[1] = '\0';
5764 }
5765 else
5766 {
5767 while (is_identifier_char (*q) || *q == '@')
5768 *p++ = *q++;
5769 *p = '\0';
5770
5771 if (strcasecmp (new_token.str, "BYTE") == 0)
5772 new_token.code = T_BYTE;
5773
5774 else if (strcasecmp (new_token.str, "WORD") == 0)
5775 new_token.code = T_WORD;
5776
5777 else if (strcasecmp (new_token.str, "DWORD") == 0)
5778 new_token.code = T_DWORD;
5779
5780 else if (strcasecmp (new_token.str, "QWORD") == 0)
5781 new_token.code = T_QWORD;
5782
5783 else if (strcasecmp (new_token.str, "XWORD") == 0)
5784 new_token.code = T_XWORD;
5785
5786 else if (strcasecmp (new_token.str, "PTR") == 0)
5787 new_token.code = T_PTR;
5788
5789 else if (strcasecmp (new_token.str, "SHORT") == 0)
5790 new_token.code = T_SHORT;
5791
5792 else if (strcasecmp (new_token.str, "OFFSET") == 0)
5793 {
5794 new_token.code = T_OFFSET;
5795
5796 /* ??? This is not mentioned in the MASM grammar but gcc
5797 makes use of it with -mintel-syntax. OFFSET may be
5798 followed by FLAT: */
5799 if (strncasecmp (q, " FLAT:", 6) == 0)
5800 strcat (new_token.str, " FLAT:");
5801 }
5802
5803 /* ??? This is not mentioned in the MASM grammar. */
5804 else if (strcasecmp (new_token.str, "FLAT") == 0)
5805 new_token.code = T_OFFSET;
5806
5807 else
5808 new_token.code = T_ID;
5809 }
5810 }
5811
5812 else
5813 as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
5814
5815 intel_parser.op_string += strlen (new_token.str);
5816 cur_token = new_token;
5817 }
5818
5819 /* Put cur_token back into the token stream and make cur_token point to
5820 prev_token. */
5821 static void
5822 intel_putback_token ()
5823 {
5824 intel_parser.op_string -= strlen (cur_token.str);
5825 free (cur_token.str);
5826 cur_token = prev_token;
5827
5828 /* Forget prev_token. */
5829 prev_token.code = T_NIL;
5830 prev_token.reg = NULL;
5831 prev_token.str = NULL;
5832 }