RISC-V: Comments tidy and improvement.
[binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2021 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef INFER_ADDR_PREFIX
48 #define INFER_ADDR_PREFIX 1
49 #endif
50
51 #ifndef DEFAULT_ARCH
52 #define DEFAULT_ARCH "i386"
53 #endif
54
55 #ifndef INLINE
56 #if __GNUC__ >= 2
57 #define INLINE __inline__
58 #else
59 #define INLINE
60 #endif
61 #endif
62
63 /* Prefixes will be emitted in the order defined below.
64 WAIT_PREFIX must be the first prefix since FWAIT is really is an
65 instruction, and so must come before any prefixes.
66 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
67 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
68 #define WAIT_PREFIX 0
69 #define SEG_PREFIX 1
70 #define ADDR_PREFIX 2
71 #define DATA_PREFIX 3
72 #define REP_PREFIX 4
73 #define HLE_PREFIX REP_PREFIX
74 #define BND_PREFIX REP_PREFIX
75 #define LOCK_PREFIX 5
76 #define REX_PREFIX 6 /* must come last. */
77 #define MAX_PREFIXES 7 /* max prefixes per opcode */
78
79 /* we define the syntax here (modulo base,index,scale syntax) */
80 #define REGISTER_PREFIX '%'
81 #define IMMEDIATE_PREFIX '$'
82 #define ABSOLUTE_PREFIX '*'
83
84 /* these are the instruction mnemonic suffixes in AT&T syntax or
85 memory operand size in Intel syntax. */
86 #define WORD_MNEM_SUFFIX 'w'
87 #define BYTE_MNEM_SUFFIX 'b'
88 #define SHORT_MNEM_SUFFIX 's'
89 #define LONG_MNEM_SUFFIX 'l'
90 #define QWORD_MNEM_SUFFIX 'q'
91 /* Intel Syntax. Use a non-ascii letter since since it never appears
92 in instructions. */
93 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
94
95 #define END_OF_INSN '\0'
96
97 /* This matches the C -> StaticRounding alias in the opcode table. */
98 #define commutative staticrounding
99
100 /*
101 'templates' is for grouping together 'template' structures for opcodes
102 of the same name. This is only used for storing the insns in the grand
103 ole hash table of insns.
104 The templates themselves start at START and range up to (but not including)
105 END.
106 */
107 typedef struct
108 {
109 const insn_template *start;
110 const insn_template *end;
111 }
112 templates;
113
114 /* 386 operand encoding bytes: see 386 book for details of this. */
115 typedef struct
116 {
117 unsigned int regmem; /* codes register or memory operand */
118 unsigned int reg; /* codes register operand (or extended opcode) */
119 unsigned int mode; /* how to interpret regmem & reg */
120 }
121 modrm_byte;
122
123 /* x86-64 extension prefix. */
124 typedef int rex_byte;
125
126 /* 386 opcode byte to code indirect addressing. */
127 typedef struct
128 {
129 unsigned base;
130 unsigned index;
131 unsigned scale;
132 }
133 sib_byte;
134
135 /* x86 arch names, types and features */
136 typedef struct
137 {
138 const char *name; /* arch name */
139 unsigned int len; /* arch string length */
140 enum processor_type type; /* arch type */
141 i386_cpu_flags flags; /* cpu feature flags */
142 unsigned int skip; /* show_arch should skip this. */
143 }
144 arch_entry;
145
146 /* Used to turn off indicated flags. */
147 typedef struct
148 {
149 const char *name; /* arch name */
150 unsigned int len; /* arch string length */
151 i386_cpu_flags flags; /* cpu feature flags */
152 }
153 noarch_entry;
154
155 static void update_code_flag (int, int);
156 static void set_code_flag (int);
157 static void set_16bit_gcc_code_flag (int);
158 static void set_intel_syntax (int);
159 static void set_intel_mnemonic (int);
160 static void set_allow_index_reg (int);
161 static void set_check (int);
162 static void set_cpu_arch (int);
163 #ifdef TE_PE
164 static void pe_directive_secrel (int);
165 #endif
166 static void signed_cons (int);
167 static char *output_invalid (int c);
168 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
169 const char *);
170 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
171 const char *);
172 static int i386_att_operand (char *);
173 static int i386_intel_operand (char *, int);
174 static int i386_intel_simplify (expressionS *);
175 static int i386_intel_parse_name (const char *, expressionS *);
176 static const reg_entry *parse_register (char *, char **);
177 static char *parse_insn (char *, char *);
178 static char *parse_operands (char *, const char *);
179 static void swap_operands (void);
180 static void swap_2_operands (int, int);
181 static enum flag_code i386_addressing_mode (void);
182 static void optimize_imm (void);
183 static void optimize_disp (void);
184 static const insn_template *match_template (char);
185 static int check_string (void);
186 static int process_suffix (void);
187 static int check_byte_reg (void);
188 static int check_long_reg (void);
189 static int check_qword_reg (void);
190 static int check_word_reg (void);
191 static int finalize_imm (void);
192 static int process_operands (void);
193 static const seg_entry *build_modrm_byte (void);
194 static void output_insn (void);
195 static void output_imm (fragS *, offsetT);
196 static void output_disp (fragS *, offsetT);
197 #ifndef I386COFF
198 static void s_bss (int);
199 #endif
200 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201 static void handle_large_common (int small ATTRIBUTE_UNUSED);
202
203 /* GNU_PROPERTY_X86_ISA_1_USED. */
204 static unsigned int x86_isa_1_used;
205 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
206 static unsigned int x86_feature_2_used;
207 /* Generate x86 used ISA and feature properties. */
208 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
209 #endif
210
211 static const char *default_arch = DEFAULT_ARCH;
212
213 /* parse_register() returns this when a register alias cannot be used. */
214 static const reg_entry bad_reg = { "<bad>", OPERAND_TYPE_NONE, 0, 0,
215 { Dw2Inval, Dw2Inval } };
216
217 /* This struct describes rounding control and SAE in the instruction. */
218 struct RC_Operation
219 {
220 enum rc_type
221 {
222 rne = 0,
223 rd,
224 ru,
225 rz,
226 saeonly
227 } type;
228 int operand;
229 };
230
231 static struct RC_Operation rc_op;
232
233 /* The struct describes masking, applied to OPERAND in the instruction.
234 MASK is a pointer to the corresponding mask register. ZEROING tells
235 whether merging or zeroing mask is used. */
236 struct Mask_Operation
237 {
238 const reg_entry *mask;
239 unsigned int zeroing;
240 /* The operand where this operation is associated. */
241 int operand;
242 };
243
244 static struct Mask_Operation mask_op;
245
246 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
247 broadcast factor. */
248 struct Broadcast_Operation
249 {
250 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
251 int type;
252
253 /* Index of broadcasted operand. */
254 int operand;
255
256 /* Number of bytes to broadcast. */
257 int bytes;
258 };
259
260 static struct Broadcast_Operation broadcast_op;
261
262 /* VEX prefix. */
263 typedef struct
264 {
265 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
266 unsigned char bytes[4];
267 unsigned int length;
268 /* Destination or source register specifier. */
269 const reg_entry *register_specifier;
270 } vex_prefix;
271
272 /* 'md_assemble ()' gathers together information and puts it into a
273 i386_insn. */
274
275 union i386_op
276 {
277 expressionS *disps;
278 expressionS *imms;
279 const reg_entry *regs;
280 };
281
282 enum i386_error
283 {
284 operand_size_mismatch,
285 operand_type_mismatch,
286 register_type_mismatch,
287 number_of_operands_mismatch,
288 invalid_instruction_suffix,
289 bad_imm4,
290 unsupported_with_intel_mnemonic,
291 unsupported_syntax,
292 unsupported,
293 invalid_sib_address,
294 invalid_vsib_address,
295 invalid_vector_register_set,
296 invalid_tmm_register_set,
297 unsupported_vector_index_register,
298 unsupported_broadcast,
299 broadcast_needed,
300 unsupported_masking,
301 mask_not_on_destination,
302 no_default_mask,
303 unsupported_rc_sae,
304 rc_sae_operand_not_last_imm,
305 invalid_register_operand,
306 };
307
308 struct _i386_insn
309 {
310 /* TM holds the template for the insn were currently assembling. */
311 insn_template tm;
312
313 /* SUFFIX holds the instruction size suffix for byte, word, dword
314 or qword, if given. */
315 char suffix;
316
317 /* OPERANDS gives the number of given operands. */
318 unsigned int operands;
319
320 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
321 of given register, displacement, memory operands and immediate
322 operands. */
323 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
324
325 /* TYPES [i] is the type (see above #defines) which tells us how to
326 use OP[i] for the corresponding operand. */
327 i386_operand_type types[MAX_OPERANDS];
328
329 /* Displacement expression, immediate expression, or register for each
330 operand. */
331 union i386_op op[MAX_OPERANDS];
332
333 /* Flags for operands. */
334 unsigned int flags[MAX_OPERANDS];
335 #define Operand_PCrel 1
336 #define Operand_Mem 2
337
338 /* Relocation type for operand */
339 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
340
341 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
342 the base index byte below. */
343 const reg_entry *base_reg;
344 const reg_entry *index_reg;
345 unsigned int log2_scale_factor;
346
347 /* SEG gives the seg_entries of this insn. They are zero unless
348 explicit segment overrides are given. */
349 const seg_entry *seg[2];
350
351 /* Copied first memory operand string, for re-checking. */
352 char *memop1_string;
353
354 /* PREFIX holds all the given prefix opcodes (usually null).
355 PREFIXES is the number of prefix opcodes. */
356 unsigned int prefixes;
357 unsigned char prefix[MAX_PREFIXES];
358
359 /* Register is in low 3 bits of opcode. */
360 bfd_boolean short_form;
361
362 /* The operand to a branch insn indicates an absolute branch. */
363 bfd_boolean jumpabsolute;
364
365 /* Extended states. */
366 enum
367 {
368 /* Use MMX state. */
369 xstate_mmx = 1 << 0,
370 /* Use XMM state. */
371 xstate_xmm = 1 << 1,
372 /* Use YMM state. */
373 xstate_ymm = 1 << 2 | xstate_xmm,
374 /* Use ZMM state. */
375 xstate_zmm = 1 << 3 | xstate_ymm,
376 /* Use TMM state. */
377 xstate_tmm = 1 << 4,
378 /* Use MASK state. */
379 xstate_mask = 1 << 5
380 } xstate;
381
382 /* Has GOTPC or TLS relocation. */
383 bfd_boolean has_gotpc_tls_reloc;
384
385 /* RM and SIB are the modrm byte and the sib byte where the
386 addressing modes of this insn are encoded. */
387 modrm_byte rm;
388 rex_byte rex;
389 rex_byte vrex;
390 sib_byte sib;
391 vex_prefix vex;
392
393 /* Masking attributes. */
394 struct Mask_Operation *mask;
395
396 /* Rounding control and SAE attributes. */
397 struct RC_Operation *rounding;
398
399 /* Broadcasting attributes. */
400 struct Broadcast_Operation *broadcast;
401
402 /* Compressed disp8*N attribute. */
403 unsigned int memshift;
404
405 /* Prefer load or store in encoding. */
406 enum
407 {
408 dir_encoding_default = 0,
409 dir_encoding_load,
410 dir_encoding_store,
411 dir_encoding_swap
412 } dir_encoding;
413
414 /* Prefer 8bit, 16bit, 32bit displacement in encoding. */
415 enum
416 {
417 disp_encoding_default = 0,
418 disp_encoding_8bit,
419 disp_encoding_16bit,
420 disp_encoding_32bit
421 } disp_encoding;
422
423 /* Prefer the REX byte in encoding. */
424 bfd_boolean rex_encoding;
425
426 /* Disable instruction size optimization. */
427 bfd_boolean no_optimize;
428
429 /* How to encode vector instructions. */
430 enum
431 {
432 vex_encoding_default = 0,
433 vex_encoding_vex,
434 vex_encoding_vex3,
435 vex_encoding_evex,
436 vex_encoding_error
437 } vec_encoding;
438
439 /* REP prefix. */
440 const char *rep_prefix;
441
442 /* HLE prefix. */
443 const char *hle_prefix;
444
445 /* Have BND prefix. */
446 const char *bnd_prefix;
447
448 /* Have NOTRACK prefix. */
449 const char *notrack_prefix;
450
451 /* Error message. */
452 enum i386_error error;
453 };
454
455 typedef struct _i386_insn i386_insn;
456
457 /* Link RC type with corresponding string, that'll be looked for in
458 asm. */
459 struct RC_name
460 {
461 enum rc_type type;
462 const char *name;
463 unsigned int len;
464 };
465
466 static const struct RC_name RC_NamesTable[] =
467 {
468 { rne, STRING_COMMA_LEN ("rn-sae") },
469 { rd, STRING_COMMA_LEN ("rd-sae") },
470 { ru, STRING_COMMA_LEN ("ru-sae") },
471 { rz, STRING_COMMA_LEN ("rz-sae") },
472 { saeonly, STRING_COMMA_LEN ("sae") },
473 };
474
475 /* List of chars besides those in app.c:symbol_chars that can start an
476 operand. Used to prevent the scrubber eating vital white-space. */
477 const char extra_symbol_chars[] = "*%-([{}"
478 #ifdef LEX_AT
479 "@"
480 #endif
481 #ifdef LEX_QM
482 "?"
483 #endif
484 ;
485
486 #if ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
487 && !defined (TE_GNU) \
488 && !defined (TE_LINUX) \
489 && !defined (TE_FreeBSD) \
490 && !defined (TE_DragonFly) \
491 && !defined (TE_NetBSD))
492 /* This array holds the chars that always start a comment. If the
493 pre-processor is disabled, these aren't very useful. The option
494 --divide will remove '/' from this list. */
495 const char *i386_comment_chars = "#/";
496 #define SVR4_COMMENT_CHARS 1
497 #define PREFIX_SEPARATOR '\\'
498
499 #else
500 const char *i386_comment_chars = "#";
501 #define PREFIX_SEPARATOR '/'
502 #endif
503
504 /* This array holds the chars that only start a comment at the beginning of
505 a line. If the line seems to have the form '# 123 filename'
506 .line and .file directives will appear in the pre-processed output.
507 Note that input_file.c hand checks for '#' at the beginning of the
508 first line of the input file. This is because the compiler outputs
509 #NO_APP at the beginning of its output.
510 Also note that comments started like this one will always work if
511 '/' isn't otherwise defined. */
512 const char line_comment_chars[] = "#/";
513
514 const char line_separator_chars[] = ";";
515
516 /* Chars that can be used to separate mant from exp in floating point
517 nums. */
518 const char EXP_CHARS[] = "eE";
519
520 /* Chars that mean this number is a floating point constant
521 As in 0f12.456
522 or 0d1.2345e12. */
523 const char FLT_CHARS[] = "fFdDxX";
524
525 /* Tables for lexical analysis. */
526 static char mnemonic_chars[256];
527 static char register_chars[256];
528 static char operand_chars[256];
529 static char identifier_chars[256];
530 static char digit_chars[256];
531
532 /* Lexical macros. */
533 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
534 #define is_operand_char(x) (operand_chars[(unsigned char) x])
535 #define is_register_char(x) (register_chars[(unsigned char) x])
536 #define is_space_char(x) ((x) == ' ')
537 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
538 #define is_digit_char(x) (digit_chars[(unsigned char) x])
539
540 /* All non-digit non-letter characters that may occur in an operand. */
541 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
542
543 /* md_assemble() always leaves the strings it's passed unaltered. To
544 effect this we maintain a stack of saved characters that we've smashed
545 with '\0's (indicating end of strings for various sub-fields of the
546 assembler instruction). */
547 static char save_stack[32];
548 static char *save_stack_p;
549 #define END_STRING_AND_SAVE(s) \
550 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
551 #define RESTORE_END_STRING(s) \
552 do { *(s) = *--save_stack_p; } while (0)
553
554 /* The instruction we're assembling. */
555 static i386_insn i;
556
557 /* Possible templates for current insn. */
558 static const templates *current_templates;
559
560 /* Per instruction expressionS buffers: max displacements & immediates. */
561 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
562 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
563
564 /* Current operand we are working on. */
565 static int this_operand = -1;
566
567 /* We support four different modes. FLAG_CODE variable is used to distinguish
568 these. */
569
570 enum flag_code {
571 CODE_32BIT,
572 CODE_16BIT,
573 CODE_64BIT };
574
575 static enum flag_code flag_code;
576 static unsigned int object_64bit;
577 static unsigned int disallow_64bit_reloc;
578 static int use_rela_relocations = 0;
579 /* __tls_get_addr/___tls_get_addr symbol for TLS. */
580 static const char *tls_get_addr;
581
582 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
583 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
584 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
585
586 /* The ELF ABI to use. */
587 enum x86_elf_abi
588 {
589 I386_ABI,
590 X86_64_ABI,
591 X86_64_X32_ABI
592 };
593
594 static enum x86_elf_abi x86_elf_abi = I386_ABI;
595 #endif
596
597 #if defined (TE_PE) || defined (TE_PEP)
598 /* Use big object file format. */
599 static int use_big_obj = 0;
600 #endif
601
602 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
603 /* 1 if generating code for a shared library. */
604 static int shared = 0;
605 #endif
606
607 /* 1 for intel syntax,
608 0 if att syntax. */
609 static int intel_syntax = 0;
610
611 static enum x86_64_isa
612 {
613 amd64 = 1, /* AMD64 ISA. */
614 intel64 /* Intel64 ISA. */
615 } isa64;
616
617 /* 1 for intel mnemonic,
618 0 if att mnemonic. */
619 static int intel_mnemonic = !SYSV386_COMPAT;
620
621 /* 1 if pseudo registers are permitted. */
622 static int allow_pseudo_reg = 0;
623
624 /* 1 if register prefix % not required. */
625 static int allow_naked_reg = 0;
626
627 /* 1 if the assembler should add BND prefix for all control-transferring
628 instructions supporting it, even if this prefix wasn't specified
629 explicitly. */
630 static int add_bnd_prefix = 0;
631
632 /* 1 if pseudo index register, eiz/riz, is allowed . */
633 static int allow_index_reg = 0;
634
635 /* 1 if the assembler should ignore LOCK prefix, even if it was
636 specified explicitly. */
637 static int omit_lock_prefix = 0;
638
639 /* 1 if the assembler should encode lfence, mfence, and sfence as
640 "lock addl $0, (%{re}sp)". */
641 static int avoid_fence = 0;
642
643 /* 1 if lfence should be inserted after every load. */
644 static int lfence_after_load = 0;
645
646 /* Non-zero if lfence should be inserted before indirect branch. */
647 static enum lfence_before_indirect_branch_kind
648 {
649 lfence_branch_none = 0,
650 lfence_branch_register,
651 lfence_branch_memory,
652 lfence_branch_all
653 }
654 lfence_before_indirect_branch;
655
656 /* Non-zero if lfence should be inserted before ret. */
657 static enum lfence_before_ret_kind
658 {
659 lfence_before_ret_none = 0,
660 lfence_before_ret_not,
661 lfence_before_ret_or,
662 lfence_before_ret_shl
663 }
664 lfence_before_ret;
665
666 /* Types of previous instruction is .byte or prefix. */
667 static struct
668 {
669 segT seg;
670 const char *file;
671 const char *name;
672 unsigned int line;
673 enum last_insn_kind
674 {
675 last_insn_other = 0,
676 last_insn_directive,
677 last_insn_prefix
678 } kind;
679 } last_insn;
680
681 /* 1 if the assembler should generate relax relocations. */
682
683 static int generate_relax_relocations
684 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
685
686 static enum check_kind
687 {
688 check_none = 0,
689 check_warning,
690 check_error
691 }
692 sse_check, operand_check = check_warning;
693
694 /* Non-zero if branches should be aligned within power of 2 boundary. */
695 static int align_branch_power = 0;
696
697 /* Types of branches to align. */
698 enum align_branch_kind
699 {
700 align_branch_none = 0,
701 align_branch_jcc = 1,
702 align_branch_fused = 2,
703 align_branch_jmp = 3,
704 align_branch_call = 4,
705 align_branch_indirect = 5,
706 align_branch_ret = 6
707 };
708
709 /* Type bits of branches to align. */
710 enum align_branch_bit
711 {
712 align_branch_jcc_bit = 1 << align_branch_jcc,
713 align_branch_fused_bit = 1 << align_branch_fused,
714 align_branch_jmp_bit = 1 << align_branch_jmp,
715 align_branch_call_bit = 1 << align_branch_call,
716 align_branch_indirect_bit = 1 << align_branch_indirect,
717 align_branch_ret_bit = 1 << align_branch_ret
718 };
719
720 static unsigned int align_branch = (align_branch_jcc_bit
721 | align_branch_fused_bit
722 | align_branch_jmp_bit);
723
724 /* Types of condition jump used by macro-fusion. */
725 enum mf_jcc_kind
726 {
727 mf_jcc_jo = 0, /* base opcode 0x70 */
728 mf_jcc_jc, /* base opcode 0x72 */
729 mf_jcc_je, /* base opcode 0x74 */
730 mf_jcc_jna, /* base opcode 0x76 */
731 mf_jcc_js, /* base opcode 0x78 */
732 mf_jcc_jp, /* base opcode 0x7a */
733 mf_jcc_jl, /* base opcode 0x7c */
734 mf_jcc_jle, /* base opcode 0x7e */
735 };
736
737 /* Types of compare flag-modifying insntructions used by macro-fusion. */
738 enum mf_cmp_kind
739 {
740 mf_cmp_test_and, /* test/cmp */
741 mf_cmp_alu_cmp, /* add/sub/cmp */
742 mf_cmp_incdec /* inc/dec */
743 };
744
745 /* The maximum padding size for fused jcc. CMP like instruction can
746 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
747 prefixes. */
748 #define MAX_FUSED_JCC_PADDING_SIZE 20
749
750 /* The maximum number of prefixes added for an instruction. */
751 static unsigned int align_branch_prefix_size = 5;
752
753 /* Optimization:
754 1. Clear the REX_W bit with register operand if possible.
755 2. Above plus use 128bit vector instruction to clear the full vector
756 register.
757 */
758 static int optimize = 0;
759
760 /* Optimization:
761 1. Clear the REX_W bit with register operand if possible.
762 2. Above plus use 128bit vector instruction to clear the full vector
763 register.
764 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
765 "testb $imm7,%r8".
766 */
767 static int optimize_for_space = 0;
768
769 /* Register prefix used for error message. */
770 static const char *register_prefix = "%";
771
772 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
773 leave, push, and pop instructions so that gcc has the same stack
774 frame as in 32 bit mode. */
775 static char stackop_size = '\0';
776
777 /* Non-zero to optimize code alignment. */
778 int optimize_align_code = 1;
779
780 /* Non-zero to quieten some warnings. */
781 static int quiet_warnings = 0;
782
783 /* CPU name. */
784 static const char *cpu_arch_name = NULL;
785 static char *cpu_sub_arch_name = NULL;
786
787 /* CPU feature flags. */
788 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
789
790 /* If we have selected a cpu we are generating instructions for. */
791 static int cpu_arch_tune_set = 0;
792
793 /* Cpu we are generating instructions for. */
794 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
795
796 /* CPU feature flags of cpu we are generating instructions for. */
797 static i386_cpu_flags cpu_arch_tune_flags;
798
799 /* CPU instruction set architecture used. */
800 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
801
802 /* CPU feature flags of instruction set architecture used. */
803 i386_cpu_flags cpu_arch_isa_flags;
804
805 /* If set, conditional jumps are not automatically promoted to handle
806 larger than a byte offset. */
807 static unsigned int no_cond_jump_promotion = 0;
808
809 /* Encode SSE instructions with VEX prefix. */
810 static unsigned int sse2avx;
811
812 /* Encode scalar AVX instructions with specific vector length. */
813 static enum
814 {
815 vex128 = 0,
816 vex256
817 } avxscalar;
818
819 /* Encode VEX WIG instructions with specific vex.w. */
820 static enum
821 {
822 vexw0 = 0,
823 vexw1
824 } vexwig;
825
826 /* Encode scalar EVEX LIG instructions with specific vector length. */
827 static enum
828 {
829 evexl128 = 0,
830 evexl256,
831 evexl512
832 } evexlig;
833
834 /* Encode EVEX WIG instructions with specific evex.w. */
835 static enum
836 {
837 evexw0 = 0,
838 evexw1
839 } evexwig;
840
841 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
842 static enum rc_type evexrcig = rne;
843
844 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
845 static symbolS *GOT_symbol;
846
847 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
848 unsigned int x86_dwarf2_return_column;
849
850 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
851 int x86_cie_data_alignment;
852
853 /* Interface to relax_segment.
854 There are 3 major relax states for 386 jump insns because the
855 different types of jumps add different sizes to frags when we're
856 figuring out what sort of jump to choose to reach a given label.
857
858 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
859 branches which are handled by md_estimate_size_before_relax() and
860 i386_generic_table_relax_frag(). */
861
862 /* Types. */
863 #define UNCOND_JUMP 0
864 #define COND_JUMP 1
865 #define COND_JUMP86 2
866 #define BRANCH_PADDING 3
867 #define BRANCH_PREFIX 4
868 #define FUSED_JCC_PADDING 5
869
870 /* Sizes. */
871 #define CODE16 1
872 #define SMALL 0
873 #define SMALL16 (SMALL | CODE16)
874 #define BIG 2
875 #define BIG16 (BIG | CODE16)
876
877 #ifndef INLINE
878 #ifdef __GNUC__
879 #define INLINE __inline__
880 #else
881 #define INLINE
882 #endif
883 #endif
884
885 #define ENCODE_RELAX_STATE(type, size) \
886 ((relax_substateT) (((type) << 2) | (size)))
887 #define TYPE_FROM_RELAX_STATE(s) \
888 ((s) >> 2)
889 #define DISP_SIZE_FROM_RELAX_STATE(s) \
890 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
891
892 /* This table is used by relax_frag to promote short jumps to long
893 ones where necessary. SMALL (short) jumps may be promoted to BIG
894 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
895 don't allow a short jump in a 32 bit code segment to be promoted to
896 a 16 bit offset jump because it's slower (requires data size
897 prefix), and doesn't work, unless the destination is in the bottom
898 64k of the code segment (The top 16 bits of eip are zeroed). */
899
900 const relax_typeS md_relax_table[] =
901 {
902 /* The fields are:
903 1) most positive reach of this state,
904 2) most negative reach of this state,
905 3) how many bytes this mode will have in the variable part of the frag
906 4) which index into the table to try if we can't fit into this one. */
907
908 /* UNCOND_JUMP states. */
909 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
910 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
911 /* dword jmp adds 4 bytes to frag:
912 0 extra opcode bytes, 4 displacement bytes. */
913 {0, 0, 4, 0},
914 /* word jmp adds 2 byte2 to frag:
915 0 extra opcode bytes, 2 displacement bytes. */
916 {0, 0, 2, 0},
917
918 /* COND_JUMP states. */
919 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
920 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
921 /* dword conditionals adds 5 bytes to frag:
922 1 extra opcode byte, 4 displacement bytes. */
923 {0, 0, 5, 0},
924 /* word conditionals add 3 bytes to frag:
925 1 extra opcode byte, 2 displacement bytes. */
926 {0, 0, 3, 0},
927
928 /* COND_JUMP86 states. */
929 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
930 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
931 /* dword conditionals adds 5 bytes to frag:
932 1 extra opcode byte, 4 displacement bytes. */
933 {0, 0, 5, 0},
934 /* word conditionals add 4 bytes to frag:
935 1 displacement byte and a 3 byte long branch insn. */
936 {0, 0, 4, 0}
937 };
938
939 static const arch_entry cpu_arch[] =
940 {
941 /* Do not replace the first two entries - i386_target_format()
942 relies on them being there in this order. */
943 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
944 CPU_GENERIC32_FLAGS, 0 },
945 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
946 CPU_GENERIC64_FLAGS, 0 },
947 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
948 CPU_NONE_FLAGS, 0 },
949 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
950 CPU_I186_FLAGS, 0 },
951 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
952 CPU_I286_FLAGS, 0 },
953 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
954 CPU_I386_FLAGS, 0 },
955 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
956 CPU_I486_FLAGS, 0 },
957 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
958 CPU_I586_FLAGS, 0 },
959 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
960 CPU_I686_FLAGS, 0 },
961 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
962 CPU_I586_FLAGS, 0 },
963 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
964 CPU_PENTIUMPRO_FLAGS, 0 },
965 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
966 CPU_P2_FLAGS, 0 },
967 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
968 CPU_P3_FLAGS, 0 },
969 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
970 CPU_P4_FLAGS, 0 },
971 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
972 CPU_CORE_FLAGS, 0 },
973 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
974 CPU_NOCONA_FLAGS, 0 },
975 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
976 CPU_CORE_FLAGS, 1 },
977 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
978 CPU_CORE_FLAGS, 0 },
979 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
980 CPU_CORE2_FLAGS, 1 },
981 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
982 CPU_CORE2_FLAGS, 0 },
983 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
984 CPU_COREI7_FLAGS, 0 },
985 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
986 CPU_L1OM_FLAGS, 0 },
987 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
988 CPU_K1OM_FLAGS, 0 },
989 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
990 CPU_IAMCU_FLAGS, 0 },
991 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
992 CPU_K6_FLAGS, 0 },
993 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
994 CPU_K6_2_FLAGS, 0 },
995 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
996 CPU_ATHLON_FLAGS, 0 },
997 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
998 CPU_K8_FLAGS, 1 },
999 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
1000 CPU_K8_FLAGS, 0 },
1001 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
1002 CPU_K8_FLAGS, 0 },
1003 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
1004 CPU_AMDFAM10_FLAGS, 0 },
1005 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
1006 CPU_BDVER1_FLAGS, 0 },
1007 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
1008 CPU_BDVER2_FLAGS, 0 },
1009 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
1010 CPU_BDVER3_FLAGS, 0 },
1011 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
1012 CPU_BDVER4_FLAGS, 0 },
1013 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
1014 CPU_ZNVER1_FLAGS, 0 },
1015 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
1016 CPU_ZNVER2_FLAGS, 0 },
1017 { STRING_COMMA_LEN ("znver3"), PROCESSOR_ZNVER,
1018 CPU_ZNVER3_FLAGS, 0 },
1019 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
1020 CPU_BTVER1_FLAGS, 0 },
1021 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
1022 CPU_BTVER2_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
1024 CPU_8087_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
1026 CPU_287_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
1028 CPU_387_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
1030 CPU_687_FLAGS, 0 },
1031 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
1032 CPU_CMOV_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
1034 CPU_FXSR_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
1036 CPU_MMX_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
1038 CPU_SSE_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
1040 CPU_SSE2_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
1042 CPU_SSE3_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1044 CPU_SSE4A_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
1046 CPU_SSSE3_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
1048 CPU_SSE4_1_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
1050 CPU_SSE4_2_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
1052 CPU_SSE4_2_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
1054 CPU_AVX_FLAGS, 0 },
1055 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
1056 CPU_AVX2_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
1058 CPU_AVX512F_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
1060 CPU_AVX512CD_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
1062 CPU_AVX512ER_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
1064 CPU_AVX512PF_FLAGS, 0 },
1065 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
1066 CPU_AVX512DQ_FLAGS, 0 },
1067 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
1068 CPU_AVX512BW_FLAGS, 0 },
1069 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
1070 CPU_AVX512VL_FLAGS, 0 },
1071 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
1072 CPU_VMX_FLAGS, 0 },
1073 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
1074 CPU_VMFUNC_FLAGS, 0 },
1075 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
1076 CPU_SMX_FLAGS, 0 },
1077 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
1078 CPU_XSAVE_FLAGS, 0 },
1079 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
1080 CPU_XSAVEOPT_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
1082 CPU_XSAVEC_FLAGS, 0 },
1083 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
1084 CPU_XSAVES_FLAGS, 0 },
1085 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
1086 CPU_AES_FLAGS, 0 },
1087 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
1088 CPU_PCLMUL_FLAGS, 0 },
1089 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
1090 CPU_PCLMUL_FLAGS, 1 },
1091 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
1092 CPU_FSGSBASE_FLAGS, 0 },
1093 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
1094 CPU_RDRND_FLAGS, 0 },
1095 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
1096 CPU_F16C_FLAGS, 0 },
1097 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
1098 CPU_BMI2_FLAGS, 0 },
1099 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
1100 CPU_FMA_FLAGS, 0 },
1101 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
1102 CPU_FMA4_FLAGS, 0 },
1103 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
1104 CPU_XOP_FLAGS, 0 },
1105 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
1106 CPU_LWP_FLAGS, 0 },
1107 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
1108 CPU_MOVBE_FLAGS, 0 },
1109 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
1110 CPU_CX16_FLAGS, 0 },
1111 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
1112 CPU_EPT_FLAGS, 0 },
1113 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
1114 CPU_LZCNT_FLAGS, 0 },
1115 { STRING_COMMA_LEN (".popcnt"), PROCESSOR_UNKNOWN,
1116 CPU_POPCNT_FLAGS, 0 },
1117 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
1118 CPU_HLE_FLAGS, 0 },
1119 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
1120 CPU_RTM_FLAGS, 0 },
1121 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
1122 CPU_INVPCID_FLAGS, 0 },
1123 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
1124 CPU_CLFLUSH_FLAGS, 0 },
1125 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
1126 CPU_NOP_FLAGS, 0 },
1127 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
1128 CPU_SYSCALL_FLAGS, 0 },
1129 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
1130 CPU_RDTSCP_FLAGS, 0 },
1131 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1132 CPU_3DNOW_FLAGS, 0 },
1133 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1134 CPU_3DNOWA_FLAGS, 0 },
1135 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1136 CPU_PADLOCK_FLAGS, 0 },
1137 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1138 CPU_SVME_FLAGS, 1 },
1139 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1140 CPU_SVME_FLAGS, 0 },
1141 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1142 CPU_SSE4A_FLAGS, 0 },
1143 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1144 CPU_ABM_FLAGS, 0 },
1145 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1146 CPU_BMI_FLAGS, 0 },
1147 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1148 CPU_TBM_FLAGS, 0 },
1149 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1150 CPU_ADX_FLAGS, 0 },
1151 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1152 CPU_RDSEED_FLAGS, 0 },
1153 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1154 CPU_PRFCHW_FLAGS, 0 },
1155 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1156 CPU_SMAP_FLAGS, 0 },
1157 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1158 CPU_MPX_FLAGS, 0 },
1159 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1160 CPU_SHA_FLAGS, 0 },
1161 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1162 CPU_CLFLUSHOPT_FLAGS, 0 },
1163 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1164 CPU_PREFETCHWT1_FLAGS, 0 },
1165 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1166 CPU_SE1_FLAGS, 0 },
1167 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1168 CPU_CLWB_FLAGS, 0 },
1169 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1170 CPU_AVX512IFMA_FLAGS, 0 },
1171 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1172 CPU_AVX512VBMI_FLAGS, 0 },
1173 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1174 CPU_AVX512_4FMAPS_FLAGS, 0 },
1175 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1176 CPU_AVX512_4VNNIW_FLAGS, 0 },
1177 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1178 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1179 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1180 CPU_AVX512_VBMI2_FLAGS, 0 },
1181 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1182 CPU_AVX512_VNNI_FLAGS, 0 },
1183 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1184 CPU_AVX512_BITALG_FLAGS, 0 },
1185 { STRING_COMMA_LEN (".avx_vnni"), PROCESSOR_UNKNOWN,
1186 CPU_AVX_VNNI_FLAGS, 0 },
1187 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1188 CPU_CLZERO_FLAGS, 0 },
1189 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1190 CPU_MWAITX_FLAGS, 0 },
1191 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1192 CPU_OSPKE_FLAGS, 0 },
1193 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1194 CPU_RDPID_FLAGS, 0 },
1195 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1196 CPU_PTWRITE_FLAGS, 0 },
1197 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1198 CPU_IBT_FLAGS, 0 },
1199 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1200 CPU_SHSTK_FLAGS, 0 },
1201 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1202 CPU_GFNI_FLAGS, 0 },
1203 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1204 CPU_VAES_FLAGS, 0 },
1205 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1206 CPU_VPCLMULQDQ_FLAGS, 0 },
1207 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1208 CPU_WBNOINVD_FLAGS, 0 },
1209 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1210 CPU_PCONFIG_FLAGS, 0 },
1211 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1212 CPU_WAITPKG_FLAGS, 0 },
1213 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1214 CPU_CLDEMOTE_FLAGS, 0 },
1215 { STRING_COMMA_LEN (".amx_int8"), PROCESSOR_UNKNOWN,
1216 CPU_AMX_INT8_FLAGS, 0 },
1217 { STRING_COMMA_LEN (".amx_bf16"), PROCESSOR_UNKNOWN,
1218 CPU_AMX_BF16_FLAGS, 0 },
1219 { STRING_COMMA_LEN (".amx_tile"), PROCESSOR_UNKNOWN,
1220 CPU_AMX_TILE_FLAGS, 0 },
1221 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1222 CPU_MOVDIRI_FLAGS, 0 },
1223 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1224 CPU_MOVDIR64B_FLAGS, 0 },
1225 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1226 CPU_AVX512_BF16_FLAGS, 0 },
1227 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1228 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1229 { STRING_COMMA_LEN (".tdx"), PROCESSOR_UNKNOWN,
1230 CPU_TDX_FLAGS, 0 },
1231 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1232 CPU_ENQCMD_FLAGS, 0 },
1233 { STRING_COMMA_LEN (".serialize"), PROCESSOR_UNKNOWN,
1234 CPU_SERIALIZE_FLAGS, 0 },
1235 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1236 CPU_RDPRU_FLAGS, 0 },
1237 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1238 CPU_MCOMMIT_FLAGS, 0 },
1239 { STRING_COMMA_LEN (".sev_es"), PROCESSOR_UNKNOWN,
1240 CPU_SEV_ES_FLAGS, 0 },
1241 { STRING_COMMA_LEN (".tsxldtrk"), PROCESSOR_UNKNOWN,
1242 CPU_TSXLDTRK_FLAGS, 0 },
1243 { STRING_COMMA_LEN (".kl"), PROCESSOR_UNKNOWN,
1244 CPU_KL_FLAGS, 0 },
1245 { STRING_COMMA_LEN (".widekl"), PROCESSOR_UNKNOWN,
1246 CPU_WIDEKL_FLAGS, 0 },
1247 { STRING_COMMA_LEN (".uintr"), PROCESSOR_UNKNOWN,
1248 CPU_UINTR_FLAGS, 0 },
1249 { STRING_COMMA_LEN (".hreset"), PROCESSOR_UNKNOWN,
1250 CPU_HRESET_FLAGS, 0 },
1251 };
1252
1253 static const noarch_entry cpu_noarch[] =
1254 {
1255 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1256 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1257 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1258 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1259 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1260 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1261 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1262 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1263 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1264 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1265 { STRING_COMMA_LEN ("nosse4a"), CPU_ANY_SSE4A_FLAGS },
1266 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1267 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1268 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1269 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1270 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1271 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1272 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1273 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1274 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1275 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1276 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1277 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1278 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1279 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1280 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1281 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1282 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1283 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1284 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1285 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1286 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1287 { STRING_COMMA_LEN ("noavx_vnni"), CPU_ANY_AVX_VNNI_FLAGS },
1288 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1289 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1290 { STRING_COMMA_LEN ("noamx_int8"), CPU_ANY_AMX_INT8_FLAGS },
1291 { STRING_COMMA_LEN ("noamx_bf16"), CPU_ANY_AMX_BF16_FLAGS },
1292 { STRING_COMMA_LEN ("noamx_tile"), CPU_ANY_AMX_TILE_FLAGS },
1293 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1294 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1295 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1296 { STRING_COMMA_LEN ("noavx512_vp2intersect"),
1297 CPU_ANY_AVX512_VP2INTERSECT_FLAGS },
1298 { STRING_COMMA_LEN ("notdx"), CPU_ANY_TDX_FLAGS },
1299 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1300 { STRING_COMMA_LEN ("noserialize"), CPU_ANY_SERIALIZE_FLAGS },
1301 { STRING_COMMA_LEN ("notsxldtrk"), CPU_ANY_TSXLDTRK_FLAGS },
1302 { STRING_COMMA_LEN ("nokl"), CPU_ANY_KL_FLAGS },
1303 { STRING_COMMA_LEN ("nowidekl"), CPU_ANY_WIDEKL_FLAGS },
1304 { STRING_COMMA_LEN ("nouintr"), CPU_ANY_UINTR_FLAGS },
1305 { STRING_COMMA_LEN ("nohreset"), CPU_ANY_HRESET_FLAGS },
1306 };
1307
1308 #ifdef I386COFF
1309 /* Like s_lcomm_internal in gas/read.c but the alignment string
1310 is allowed to be optional. */
1311
1312 static symbolS *
1313 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1314 {
1315 addressT align = 0;
1316
1317 SKIP_WHITESPACE ();
1318
1319 if (needs_align
1320 && *input_line_pointer == ',')
1321 {
1322 align = parse_align (needs_align - 1);
1323
1324 if (align == (addressT) -1)
1325 return NULL;
1326 }
1327 else
1328 {
1329 if (size >= 8)
1330 align = 3;
1331 else if (size >= 4)
1332 align = 2;
1333 else if (size >= 2)
1334 align = 1;
1335 else
1336 align = 0;
1337 }
1338
1339 bss_alloc (symbolP, size, align);
1340 return symbolP;
1341 }
1342
1343 static void
1344 pe_lcomm (int needs_align)
1345 {
1346 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1347 }
1348 #endif
1349
1350 const pseudo_typeS md_pseudo_table[] =
1351 {
1352 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1353 {"align", s_align_bytes, 0},
1354 #else
1355 {"align", s_align_ptwo, 0},
1356 #endif
1357 {"arch", set_cpu_arch, 0},
1358 #ifndef I386COFF
1359 {"bss", s_bss, 0},
1360 #else
1361 {"lcomm", pe_lcomm, 1},
1362 #endif
1363 {"ffloat", float_cons, 'f'},
1364 {"dfloat", float_cons, 'd'},
1365 {"tfloat", float_cons, 'x'},
1366 {"value", cons, 2},
1367 {"slong", signed_cons, 4},
1368 {"noopt", s_ignore, 0},
1369 {"optim", s_ignore, 0},
1370 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1371 {"code16", set_code_flag, CODE_16BIT},
1372 {"code32", set_code_flag, CODE_32BIT},
1373 #ifdef BFD64
1374 {"code64", set_code_flag, CODE_64BIT},
1375 #endif
1376 {"intel_syntax", set_intel_syntax, 1},
1377 {"att_syntax", set_intel_syntax, 0},
1378 {"intel_mnemonic", set_intel_mnemonic, 1},
1379 {"att_mnemonic", set_intel_mnemonic, 0},
1380 {"allow_index_reg", set_allow_index_reg, 1},
1381 {"disallow_index_reg", set_allow_index_reg, 0},
1382 {"sse_check", set_check, 0},
1383 {"operand_check", set_check, 1},
1384 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1385 {"largecomm", handle_large_common, 0},
1386 #else
1387 {"file", dwarf2_directive_file, 0},
1388 {"loc", dwarf2_directive_loc, 0},
1389 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1390 #endif
1391 #ifdef TE_PE
1392 {"secrel32", pe_directive_secrel, 0},
1393 #endif
1394 {0, 0, 0}
1395 };
1396
1397 /* For interface with expression (). */
1398 extern char *input_line_pointer;
1399
1400 /* Hash table for instruction mnemonic lookup. */
1401 static htab_t op_hash;
1402
1403 /* Hash table for register lookup. */
1404 static htab_t reg_hash;
1405 \f
1406 /* Various efficient no-op patterns for aligning code labels.
1407 Note: Don't try to assemble the instructions in the comments.
1408 0L and 0w are not legal. */
1409 static const unsigned char f32_1[] =
1410 {0x90}; /* nop */
1411 static const unsigned char f32_2[] =
1412 {0x66,0x90}; /* xchg %ax,%ax */
1413 static const unsigned char f32_3[] =
1414 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1415 static const unsigned char f32_4[] =
1416 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1417 static const unsigned char f32_6[] =
1418 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1419 static const unsigned char f32_7[] =
1420 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1421 static const unsigned char f16_3[] =
1422 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1423 static const unsigned char f16_4[] =
1424 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1425 static const unsigned char jump_disp8[] =
1426 {0xeb}; /* jmp disp8 */
1427 static const unsigned char jump32_disp32[] =
1428 {0xe9}; /* jmp disp32 */
1429 static const unsigned char jump16_disp32[] =
1430 {0x66,0xe9}; /* jmp disp32 */
1431 /* 32-bit NOPs patterns. */
1432 static const unsigned char *const f32_patt[] = {
1433 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1434 };
1435 /* 16-bit NOPs patterns. */
1436 static const unsigned char *const f16_patt[] = {
1437 f32_1, f32_2, f16_3, f16_4
1438 };
1439 /* nopl (%[re]ax) */
1440 static const unsigned char alt_3[] =
1441 {0x0f,0x1f,0x00};
1442 /* nopl 0(%[re]ax) */
1443 static const unsigned char alt_4[] =
1444 {0x0f,0x1f,0x40,0x00};
1445 /* nopl 0(%[re]ax,%[re]ax,1) */
1446 static const unsigned char alt_5[] =
1447 {0x0f,0x1f,0x44,0x00,0x00};
1448 /* nopw 0(%[re]ax,%[re]ax,1) */
1449 static const unsigned char alt_6[] =
1450 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1451 /* nopl 0L(%[re]ax) */
1452 static const unsigned char alt_7[] =
1453 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1454 /* nopl 0L(%[re]ax,%[re]ax,1) */
1455 static const unsigned char alt_8[] =
1456 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1457 /* nopw 0L(%[re]ax,%[re]ax,1) */
1458 static const unsigned char alt_9[] =
1459 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1460 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1461 static const unsigned char alt_10[] =
1462 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1463 /* data16 nopw %cs:0L(%eax,%eax,1) */
1464 static const unsigned char alt_11[] =
1465 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1466 /* 32-bit and 64-bit NOPs patterns. */
1467 static const unsigned char *const alt_patt[] = {
1468 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1469 alt_9, alt_10, alt_11
1470 };
1471
1472 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1473 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1474
1475 static void
1476 i386_output_nops (char *where, const unsigned char *const *patt,
1477 int count, int max_single_nop_size)
1478
1479 {
1480 /* Place the longer NOP first. */
1481 int last;
1482 int offset;
1483 const unsigned char *nops;
1484
1485 if (max_single_nop_size < 1)
1486 {
1487 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1488 max_single_nop_size);
1489 return;
1490 }
1491
1492 nops = patt[max_single_nop_size - 1];
1493
1494 /* Use the smaller one if the requsted one isn't available. */
1495 if (nops == NULL)
1496 {
1497 max_single_nop_size--;
1498 nops = patt[max_single_nop_size - 1];
1499 }
1500
1501 last = count % max_single_nop_size;
1502
1503 count -= last;
1504 for (offset = 0; offset < count; offset += max_single_nop_size)
1505 memcpy (where + offset, nops, max_single_nop_size);
1506
1507 if (last)
1508 {
1509 nops = patt[last - 1];
1510 if (nops == NULL)
1511 {
1512 /* Use the smaller one plus one-byte NOP if the needed one
1513 isn't available. */
1514 last--;
1515 nops = patt[last - 1];
1516 memcpy (where + offset, nops, last);
1517 where[offset + last] = *patt[0];
1518 }
1519 else
1520 memcpy (where + offset, nops, last);
1521 }
1522 }
1523
1524 static INLINE int
1525 fits_in_imm7 (offsetT num)
1526 {
1527 return (num & 0x7f) == num;
1528 }
1529
1530 static INLINE int
1531 fits_in_imm31 (offsetT num)
1532 {
1533 return (num & 0x7fffffff) == num;
1534 }
1535
1536 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1537 single NOP instruction LIMIT. */
1538
1539 void
1540 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1541 {
1542 const unsigned char *const *patt = NULL;
1543 int max_single_nop_size;
1544 /* Maximum number of NOPs before switching to jump over NOPs. */
1545 int max_number_of_nops;
1546
1547 switch (fragP->fr_type)
1548 {
1549 case rs_fill_nop:
1550 case rs_align_code:
1551 break;
1552 case rs_machine_dependent:
1553 /* Allow NOP padding for jumps and calls. */
1554 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1555 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1556 break;
1557 /* Fall through. */
1558 default:
1559 return;
1560 }
1561
1562 /* We need to decide which NOP sequence to use for 32bit and
1563 64bit. When -mtune= is used:
1564
1565 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1566 PROCESSOR_GENERIC32, f32_patt will be used.
1567 2. For the rest, alt_patt will be used.
1568
1569 When -mtune= isn't used, alt_patt will be used if
1570 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1571 be used.
1572
1573 When -march= or .arch is used, we can't use anything beyond
1574 cpu_arch_isa_flags. */
1575
1576 if (flag_code == CODE_16BIT)
1577 {
1578 patt = f16_patt;
1579 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1580 /* Limit number of NOPs to 2 in 16-bit mode. */
1581 max_number_of_nops = 2;
1582 }
1583 else
1584 {
1585 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1586 {
1587 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1588 switch (cpu_arch_tune)
1589 {
1590 case PROCESSOR_UNKNOWN:
1591 /* We use cpu_arch_isa_flags to check if we SHOULD
1592 optimize with nops. */
1593 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1594 patt = alt_patt;
1595 else
1596 patt = f32_patt;
1597 break;
1598 case PROCESSOR_PENTIUM4:
1599 case PROCESSOR_NOCONA:
1600 case PROCESSOR_CORE:
1601 case PROCESSOR_CORE2:
1602 case PROCESSOR_COREI7:
1603 case PROCESSOR_L1OM:
1604 case PROCESSOR_K1OM:
1605 case PROCESSOR_GENERIC64:
1606 case PROCESSOR_K6:
1607 case PROCESSOR_ATHLON:
1608 case PROCESSOR_K8:
1609 case PROCESSOR_AMDFAM10:
1610 case PROCESSOR_BD:
1611 case PROCESSOR_ZNVER:
1612 case PROCESSOR_BT:
1613 patt = alt_patt;
1614 break;
1615 case PROCESSOR_I386:
1616 case PROCESSOR_I486:
1617 case PROCESSOR_PENTIUM:
1618 case PROCESSOR_PENTIUMPRO:
1619 case PROCESSOR_IAMCU:
1620 case PROCESSOR_GENERIC32:
1621 patt = f32_patt;
1622 break;
1623 }
1624 }
1625 else
1626 {
1627 switch (fragP->tc_frag_data.tune)
1628 {
1629 case PROCESSOR_UNKNOWN:
1630 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1631 PROCESSOR_UNKNOWN. */
1632 abort ();
1633 break;
1634
1635 case PROCESSOR_I386:
1636 case PROCESSOR_I486:
1637 case PROCESSOR_PENTIUM:
1638 case PROCESSOR_IAMCU:
1639 case PROCESSOR_K6:
1640 case PROCESSOR_ATHLON:
1641 case PROCESSOR_K8:
1642 case PROCESSOR_AMDFAM10:
1643 case PROCESSOR_BD:
1644 case PROCESSOR_ZNVER:
1645 case PROCESSOR_BT:
1646 case PROCESSOR_GENERIC32:
1647 /* We use cpu_arch_isa_flags to check if we CAN optimize
1648 with nops. */
1649 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1650 patt = alt_patt;
1651 else
1652 patt = f32_patt;
1653 break;
1654 case PROCESSOR_PENTIUMPRO:
1655 case PROCESSOR_PENTIUM4:
1656 case PROCESSOR_NOCONA:
1657 case PROCESSOR_CORE:
1658 case PROCESSOR_CORE2:
1659 case PROCESSOR_COREI7:
1660 case PROCESSOR_L1OM:
1661 case PROCESSOR_K1OM:
1662 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1663 patt = alt_patt;
1664 else
1665 patt = f32_patt;
1666 break;
1667 case PROCESSOR_GENERIC64:
1668 patt = alt_patt;
1669 break;
1670 }
1671 }
1672
1673 if (patt == f32_patt)
1674 {
1675 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1676 /* Limit number of NOPs to 2 for older processors. */
1677 max_number_of_nops = 2;
1678 }
1679 else
1680 {
1681 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1682 /* Limit number of NOPs to 7 for newer processors. */
1683 max_number_of_nops = 7;
1684 }
1685 }
1686
1687 if (limit == 0)
1688 limit = max_single_nop_size;
1689
1690 if (fragP->fr_type == rs_fill_nop)
1691 {
1692 /* Output NOPs for .nop directive. */
1693 if (limit > max_single_nop_size)
1694 {
1695 as_bad_where (fragP->fr_file, fragP->fr_line,
1696 _("invalid single nop size: %d "
1697 "(expect within [0, %d])"),
1698 limit, max_single_nop_size);
1699 return;
1700 }
1701 }
1702 else if (fragP->fr_type != rs_machine_dependent)
1703 fragP->fr_var = count;
1704
1705 if ((count / max_single_nop_size) > max_number_of_nops)
1706 {
1707 /* Generate jump over NOPs. */
1708 offsetT disp = count - 2;
1709 if (fits_in_imm7 (disp))
1710 {
1711 /* Use "jmp disp8" if possible. */
1712 count = disp;
1713 where[0] = jump_disp8[0];
1714 where[1] = count;
1715 where += 2;
1716 }
1717 else
1718 {
1719 unsigned int size_of_jump;
1720
1721 if (flag_code == CODE_16BIT)
1722 {
1723 where[0] = jump16_disp32[0];
1724 where[1] = jump16_disp32[1];
1725 size_of_jump = 2;
1726 }
1727 else
1728 {
1729 where[0] = jump32_disp32[0];
1730 size_of_jump = 1;
1731 }
1732
1733 count -= size_of_jump + 4;
1734 if (!fits_in_imm31 (count))
1735 {
1736 as_bad_where (fragP->fr_file, fragP->fr_line,
1737 _("jump over nop padding out of range"));
1738 return;
1739 }
1740
1741 md_number_to_chars (where + size_of_jump, count, 4);
1742 where += size_of_jump + 4;
1743 }
1744 }
1745
1746 /* Generate multiple NOPs. */
1747 i386_output_nops (where, patt, count, limit);
1748 }
1749
1750 static INLINE int
1751 operand_type_all_zero (const union i386_operand_type *x)
1752 {
1753 switch (ARRAY_SIZE(x->array))
1754 {
1755 case 3:
1756 if (x->array[2])
1757 return 0;
1758 /* Fall through. */
1759 case 2:
1760 if (x->array[1])
1761 return 0;
1762 /* Fall through. */
1763 case 1:
1764 return !x->array[0];
1765 default:
1766 abort ();
1767 }
1768 }
1769
1770 static INLINE void
1771 operand_type_set (union i386_operand_type *x, unsigned int v)
1772 {
1773 switch (ARRAY_SIZE(x->array))
1774 {
1775 case 3:
1776 x->array[2] = v;
1777 /* Fall through. */
1778 case 2:
1779 x->array[1] = v;
1780 /* Fall through. */
1781 case 1:
1782 x->array[0] = v;
1783 /* Fall through. */
1784 break;
1785 default:
1786 abort ();
1787 }
1788
1789 x->bitfield.class = ClassNone;
1790 x->bitfield.instance = InstanceNone;
1791 }
1792
1793 static INLINE int
1794 operand_type_equal (const union i386_operand_type *x,
1795 const union i386_operand_type *y)
1796 {
1797 switch (ARRAY_SIZE(x->array))
1798 {
1799 case 3:
1800 if (x->array[2] != y->array[2])
1801 return 0;
1802 /* Fall through. */
1803 case 2:
1804 if (x->array[1] != y->array[1])
1805 return 0;
1806 /* Fall through. */
1807 case 1:
1808 return x->array[0] == y->array[0];
1809 break;
1810 default:
1811 abort ();
1812 }
1813 }
1814
1815 static INLINE int
1816 cpu_flags_all_zero (const union i386_cpu_flags *x)
1817 {
1818 switch (ARRAY_SIZE(x->array))
1819 {
1820 case 4:
1821 if (x->array[3])
1822 return 0;
1823 /* Fall through. */
1824 case 3:
1825 if (x->array[2])
1826 return 0;
1827 /* Fall through. */
1828 case 2:
1829 if (x->array[1])
1830 return 0;
1831 /* Fall through. */
1832 case 1:
1833 return !x->array[0];
1834 default:
1835 abort ();
1836 }
1837 }
1838
1839 static INLINE int
1840 cpu_flags_equal (const union i386_cpu_flags *x,
1841 const union i386_cpu_flags *y)
1842 {
1843 switch (ARRAY_SIZE(x->array))
1844 {
1845 case 4:
1846 if (x->array[3] != y->array[3])
1847 return 0;
1848 /* Fall through. */
1849 case 3:
1850 if (x->array[2] != y->array[2])
1851 return 0;
1852 /* Fall through. */
1853 case 2:
1854 if (x->array[1] != y->array[1])
1855 return 0;
1856 /* Fall through. */
1857 case 1:
1858 return x->array[0] == y->array[0];
1859 break;
1860 default:
1861 abort ();
1862 }
1863 }
1864
1865 static INLINE int
1866 cpu_flags_check_cpu64 (i386_cpu_flags f)
1867 {
1868 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1869 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1870 }
1871
1872 static INLINE i386_cpu_flags
1873 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1874 {
1875 switch (ARRAY_SIZE (x.array))
1876 {
1877 case 4:
1878 x.array [3] &= y.array [3];
1879 /* Fall through. */
1880 case 3:
1881 x.array [2] &= y.array [2];
1882 /* Fall through. */
1883 case 2:
1884 x.array [1] &= y.array [1];
1885 /* Fall through. */
1886 case 1:
1887 x.array [0] &= y.array [0];
1888 break;
1889 default:
1890 abort ();
1891 }
1892 return x;
1893 }
1894
1895 static INLINE i386_cpu_flags
1896 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1897 {
1898 switch (ARRAY_SIZE (x.array))
1899 {
1900 case 4:
1901 x.array [3] |= y.array [3];
1902 /* Fall through. */
1903 case 3:
1904 x.array [2] |= y.array [2];
1905 /* Fall through. */
1906 case 2:
1907 x.array [1] |= y.array [1];
1908 /* Fall through. */
1909 case 1:
1910 x.array [0] |= y.array [0];
1911 break;
1912 default:
1913 abort ();
1914 }
1915 return x;
1916 }
1917
1918 static INLINE i386_cpu_flags
1919 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1920 {
1921 switch (ARRAY_SIZE (x.array))
1922 {
1923 case 4:
1924 x.array [3] &= ~y.array [3];
1925 /* Fall through. */
1926 case 3:
1927 x.array [2] &= ~y.array [2];
1928 /* Fall through. */
1929 case 2:
1930 x.array [1] &= ~y.array [1];
1931 /* Fall through. */
1932 case 1:
1933 x.array [0] &= ~y.array [0];
1934 break;
1935 default:
1936 abort ();
1937 }
1938 return x;
1939 }
1940
1941 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
1942
1943 #define CPU_FLAGS_ARCH_MATCH 0x1
1944 #define CPU_FLAGS_64BIT_MATCH 0x2
1945
1946 #define CPU_FLAGS_PERFECT_MATCH \
1947 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1948
1949 /* Return CPU flags match bits. */
1950
1951 static int
1952 cpu_flags_match (const insn_template *t)
1953 {
1954 i386_cpu_flags x = t->cpu_flags;
1955 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1956
1957 x.bitfield.cpu64 = 0;
1958 x.bitfield.cpuno64 = 0;
1959
1960 if (cpu_flags_all_zero (&x))
1961 {
1962 /* This instruction is available on all archs. */
1963 match |= CPU_FLAGS_ARCH_MATCH;
1964 }
1965 else
1966 {
1967 /* This instruction is available only on some archs. */
1968 i386_cpu_flags cpu = cpu_arch_flags;
1969
1970 /* AVX512VL is no standalone feature - match it and then strip it. */
1971 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1972 return match;
1973 x.bitfield.cpuavx512vl = 0;
1974
1975 cpu = cpu_flags_and (x, cpu);
1976 if (!cpu_flags_all_zero (&cpu))
1977 {
1978 if (x.bitfield.cpuavx)
1979 {
1980 /* We need to check a few extra flags with AVX. */
1981 if (cpu.bitfield.cpuavx
1982 && (!t->opcode_modifier.sse2avx
1983 || (sse2avx && !i.prefix[DATA_PREFIX]))
1984 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1985 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1986 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1987 match |= CPU_FLAGS_ARCH_MATCH;
1988 }
1989 else if (x.bitfield.cpuavx512f)
1990 {
1991 /* We need to check a few extra flags with AVX512F. */
1992 if (cpu.bitfield.cpuavx512f
1993 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1994 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1995 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1996 match |= CPU_FLAGS_ARCH_MATCH;
1997 }
1998 else
1999 match |= CPU_FLAGS_ARCH_MATCH;
2000 }
2001 }
2002 return match;
2003 }
2004
2005 static INLINE i386_operand_type
2006 operand_type_and (i386_operand_type x, i386_operand_type y)
2007 {
2008 if (x.bitfield.class != y.bitfield.class)
2009 x.bitfield.class = ClassNone;
2010 if (x.bitfield.instance != y.bitfield.instance)
2011 x.bitfield.instance = InstanceNone;
2012
2013 switch (ARRAY_SIZE (x.array))
2014 {
2015 case 3:
2016 x.array [2] &= y.array [2];
2017 /* Fall through. */
2018 case 2:
2019 x.array [1] &= y.array [1];
2020 /* Fall through. */
2021 case 1:
2022 x.array [0] &= y.array [0];
2023 break;
2024 default:
2025 abort ();
2026 }
2027 return x;
2028 }
2029
2030 static INLINE i386_operand_type
2031 operand_type_and_not (i386_operand_type x, i386_operand_type y)
2032 {
2033 gas_assert (y.bitfield.class == ClassNone);
2034 gas_assert (y.bitfield.instance == InstanceNone);
2035
2036 switch (ARRAY_SIZE (x.array))
2037 {
2038 case 3:
2039 x.array [2] &= ~y.array [2];
2040 /* Fall through. */
2041 case 2:
2042 x.array [1] &= ~y.array [1];
2043 /* Fall through. */
2044 case 1:
2045 x.array [0] &= ~y.array [0];
2046 break;
2047 default:
2048 abort ();
2049 }
2050 return x;
2051 }
2052
2053 static INLINE i386_operand_type
2054 operand_type_or (i386_operand_type x, i386_operand_type y)
2055 {
2056 gas_assert (x.bitfield.class == ClassNone ||
2057 y.bitfield.class == ClassNone ||
2058 x.bitfield.class == y.bitfield.class);
2059 gas_assert (x.bitfield.instance == InstanceNone ||
2060 y.bitfield.instance == InstanceNone ||
2061 x.bitfield.instance == y.bitfield.instance);
2062
2063 switch (ARRAY_SIZE (x.array))
2064 {
2065 case 3:
2066 x.array [2] |= y.array [2];
2067 /* Fall through. */
2068 case 2:
2069 x.array [1] |= y.array [1];
2070 /* Fall through. */
2071 case 1:
2072 x.array [0] |= y.array [0];
2073 break;
2074 default:
2075 abort ();
2076 }
2077 return x;
2078 }
2079
2080 static INLINE i386_operand_type
2081 operand_type_xor (i386_operand_type x, i386_operand_type y)
2082 {
2083 gas_assert (y.bitfield.class == ClassNone);
2084 gas_assert (y.bitfield.instance == InstanceNone);
2085
2086 switch (ARRAY_SIZE (x.array))
2087 {
2088 case 3:
2089 x.array [2] ^= y.array [2];
2090 /* Fall through. */
2091 case 2:
2092 x.array [1] ^= y.array [1];
2093 /* Fall through. */
2094 case 1:
2095 x.array [0] ^= y.array [0];
2096 break;
2097 default:
2098 abort ();
2099 }
2100 return x;
2101 }
2102
2103 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2104 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2105 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2106 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
2107 static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2108 static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
2109 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
2110 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
2111 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2112 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2113 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2114 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2115 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2116 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2117 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2118 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2119 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2120
2121 enum operand_type
2122 {
2123 reg,
2124 imm,
2125 disp,
2126 anymem
2127 };
2128
2129 static INLINE int
2130 operand_type_check (i386_operand_type t, enum operand_type c)
2131 {
2132 switch (c)
2133 {
2134 case reg:
2135 return t.bitfield.class == Reg;
2136
2137 case imm:
2138 return (t.bitfield.imm8
2139 || t.bitfield.imm8s
2140 || t.bitfield.imm16
2141 || t.bitfield.imm32
2142 || t.bitfield.imm32s
2143 || t.bitfield.imm64);
2144
2145 case disp:
2146 return (t.bitfield.disp8
2147 || t.bitfield.disp16
2148 || t.bitfield.disp32
2149 || t.bitfield.disp32s
2150 || t.bitfield.disp64);
2151
2152 case anymem:
2153 return (t.bitfield.disp8
2154 || t.bitfield.disp16
2155 || t.bitfield.disp32
2156 || t.bitfield.disp32s
2157 || t.bitfield.disp64
2158 || t.bitfield.baseindex);
2159
2160 default:
2161 abort ();
2162 }
2163
2164 return 0;
2165 }
2166
2167 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2168 between operand GIVEN and opeand WANTED for instruction template T. */
2169
2170 static INLINE int
2171 match_operand_size (const insn_template *t, unsigned int wanted,
2172 unsigned int given)
2173 {
2174 return !((i.types[given].bitfield.byte
2175 && !t->operand_types[wanted].bitfield.byte)
2176 || (i.types[given].bitfield.word
2177 && !t->operand_types[wanted].bitfield.word)
2178 || (i.types[given].bitfield.dword
2179 && !t->operand_types[wanted].bitfield.dword)
2180 || (i.types[given].bitfield.qword
2181 && !t->operand_types[wanted].bitfield.qword)
2182 || (i.types[given].bitfield.tbyte
2183 && !t->operand_types[wanted].bitfield.tbyte));
2184 }
2185
2186 /* Return 1 if there is no conflict in SIMD register between operand
2187 GIVEN and opeand WANTED for instruction template T. */
2188
2189 static INLINE int
2190 match_simd_size (const insn_template *t, unsigned int wanted,
2191 unsigned int given)
2192 {
2193 return !((i.types[given].bitfield.xmmword
2194 && !t->operand_types[wanted].bitfield.xmmword)
2195 || (i.types[given].bitfield.ymmword
2196 && !t->operand_types[wanted].bitfield.ymmword)
2197 || (i.types[given].bitfield.zmmword
2198 && !t->operand_types[wanted].bitfield.zmmword)
2199 || (i.types[given].bitfield.tmmword
2200 && !t->operand_types[wanted].bitfield.tmmword));
2201 }
2202
2203 /* Return 1 if there is no conflict in any size between operand GIVEN
2204 and opeand WANTED for instruction template T. */
2205
2206 static INLINE int
2207 match_mem_size (const insn_template *t, unsigned int wanted,
2208 unsigned int given)
2209 {
2210 return (match_operand_size (t, wanted, given)
2211 && !((i.types[given].bitfield.unspecified
2212 && !i.broadcast
2213 && !t->operand_types[wanted].bitfield.unspecified)
2214 || (i.types[given].bitfield.fword
2215 && !t->operand_types[wanted].bitfield.fword)
2216 /* For scalar opcode templates to allow register and memory
2217 operands at the same time, some special casing is needed
2218 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2219 down-conversion vpmov*. */
2220 || ((t->operand_types[wanted].bitfield.class == RegSIMD
2221 && t->operand_types[wanted].bitfield.byte
2222 + t->operand_types[wanted].bitfield.word
2223 + t->operand_types[wanted].bitfield.dword
2224 + t->operand_types[wanted].bitfield.qword
2225 > !!t->opcode_modifier.broadcast)
2226 ? (i.types[given].bitfield.xmmword
2227 || i.types[given].bitfield.ymmword
2228 || i.types[given].bitfield.zmmword)
2229 : !match_simd_size(t, wanted, given))));
2230 }
2231
2232 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2233 operands for instruction template T, and it has MATCH_REVERSE set if there
2234 is no size conflict on any operands for the template with operands reversed
2235 (and the template allows for reversing in the first place). */
2236
2237 #define MATCH_STRAIGHT 1
2238 #define MATCH_REVERSE 2
2239
2240 static INLINE unsigned int
2241 operand_size_match (const insn_template *t)
2242 {
2243 unsigned int j, match = MATCH_STRAIGHT;
2244
2245 /* Don't check non-absolute jump instructions. */
2246 if (t->opcode_modifier.jump
2247 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
2248 return match;
2249
2250 /* Check memory and accumulator operand size. */
2251 for (j = 0; j < i.operands; j++)
2252 {
2253 if (i.types[j].bitfield.class != Reg
2254 && i.types[j].bitfield.class != RegSIMD
2255 && t->opcode_modifier.anysize)
2256 continue;
2257
2258 if (t->operand_types[j].bitfield.class == Reg
2259 && !match_operand_size (t, j, j))
2260 {
2261 match = 0;
2262 break;
2263 }
2264
2265 if (t->operand_types[j].bitfield.class == RegSIMD
2266 && !match_simd_size (t, j, j))
2267 {
2268 match = 0;
2269 break;
2270 }
2271
2272 if (t->operand_types[j].bitfield.instance == Accum
2273 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2274 {
2275 match = 0;
2276 break;
2277 }
2278
2279 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2280 {
2281 match = 0;
2282 break;
2283 }
2284 }
2285
2286 if (!t->opcode_modifier.d)
2287 {
2288 mismatch:
2289 if (!match)
2290 i.error = operand_size_mismatch;
2291 return match;
2292 }
2293
2294 /* Check reverse. */
2295 gas_assert (i.operands >= 2 && i.operands <= 3);
2296
2297 for (j = 0; j < i.operands; j++)
2298 {
2299 unsigned int given = i.operands - j - 1;
2300
2301 if (t->operand_types[j].bitfield.class == Reg
2302 && !match_operand_size (t, j, given))
2303 goto mismatch;
2304
2305 if (t->operand_types[j].bitfield.class == RegSIMD
2306 && !match_simd_size (t, j, given))
2307 goto mismatch;
2308
2309 if (t->operand_types[j].bitfield.instance == Accum
2310 && (!match_operand_size (t, j, given)
2311 || !match_simd_size (t, j, given)))
2312 goto mismatch;
2313
2314 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2315 goto mismatch;
2316 }
2317
2318 return match | MATCH_REVERSE;
2319 }
2320
2321 static INLINE int
2322 operand_type_match (i386_operand_type overlap,
2323 i386_operand_type given)
2324 {
2325 i386_operand_type temp = overlap;
2326
2327 temp.bitfield.unspecified = 0;
2328 temp.bitfield.byte = 0;
2329 temp.bitfield.word = 0;
2330 temp.bitfield.dword = 0;
2331 temp.bitfield.fword = 0;
2332 temp.bitfield.qword = 0;
2333 temp.bitfield.tbyte = 0;
2334 temp.bitfield.xmmword = 0;
2335 temp.bitfield.ymmword = 0;
2336 temp.bitfield.zmmword = 0;
2337 temp.bitfield.tmmword = 0;
2338 if (operand_type_all_zero (&temp))
2339 goto mismatch;
2340
2341 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
2342 return 1;
2343
2344 mismatch:
2345 i.error = operand_type_mismatch;
2346 return 0;
2347 }
2348
2349 /* If given types g0 and g1 are registers they must be of the same type
2350 unless the expected operand type register overlap is null.
2351 Some Intel syntax memory operand size checking also happens here. */
2352
2353 static INLINE int
2354 operand_type_register_match (i386_operand_type g0,
2355 i386_operand_type t0,
2356 i386_operand_type g1,
2357 i386_operand_type t1)
2358 {
2359 if (g0.bitfield.class != Reg
2360 && g0.bitfield.class != RegSIMD
2361 && (!operand_type_check (g0, anymem)
2362 || g0.bitfield.unspecified
2363 || (t0.bitfield.class != Reg
2364 && t0.bitfield.class != RegSIMD)))
2365 return 1;
2366
2367 if (g1.bitfield.class != Reg
2368 && g1.bitfield.class != RegSIMD
2369 && (!operand_type_check (g1, anymem)
2370 || g1.bitfield.unspecified
2371 || (t1.bitfield.class != Reg
2372 && t1.bitfield.class != RegSIMD)))
2373 return 1;
2374
2375 if (g0.bitfield.byte == g1.bitfield.byte
2376 && g0.bitfield.word == g1.bitfield.word
2377 && g0.bitfield.dword == g1.bitfield.dword
2378 && g0.bitfield.qword == g1.bitfield.qword
2379 && g0.bitfield.xmmword == g1.bitfield.xmmword
2380 && g0.bitfield.ymmword == g1.bitfield.ymmword
2381 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2382 return 1;
2383
2384 if (!(t0.bitfield.byte & t1.bitfield.byte)
2385 && !(t0.bitfield.word & t1.bitfield.word)
2386 && !(t0.bitfield.dword & t1.bitfield.dword)
2387 && !(t0.bitfield.qword & t1.bitfield.qword)
2388 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2389 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2390 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2391 return 1;
2392
2393 i.error = register_type_mismatch;
2394
2395 return 0;
2396 }
2397
2398 static INLINE unsigned int
2399 register_number (const reg_entry *r)
2400 {
2401 unsigned int nr = r->reg_num;
2402
2403 if (r->reg_flags & RegRex)
2404 nr += 8;
2405
2406 if (r->reg_flags & RegVRex)
2407 nr += 16;
2408
2409 return nr;
2410 }
2411
2412 static INLINE unsigned int
2413 mode_from_disp_size (i386_operand_type t)
2414 {
2415 if (t.bitfield.disp8)
2416 return 1;
2417 else if (t.bitfield.disp16
2418 || t.bitfield.disp32
2419 || t.bitfield.disp32s)
2420 return 2;
2421 else
2422 return 0;
2423 }
2424
2425 static INLINE int
2426 fits_in_signed_byte (addressT num)
2427 {
2428 return num + 0x80 <= 0xff;
2429 }
2430
2431 static INLINE int
2432 fits_in_unsigned_byte (addressT num)
2433 {
2434 return num <= 0xff;
2435 }
2436
2437 static INLINE int
2438 fits_in_unsigned_word (addressT num)
2439 {
2440 return num <= 0xffff;
2441 }
2442
2443 static INLINE int
2444 fits_in_signed_word (addressT num)
2445 {
2446 return num + 0x8000 <= 0xffff;
2447 }
2448
2449 static INLINE int
2450 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2451 {
2452 #ifndef BFD64
2453 return 1;
2454 #else
2455 return num + 0x80000000 <= 0xffffffff;
2456 #endif
2457 } /* fits_in_signed_long() */
2458
2459 static INLINE int
2460 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2461 {
2462 #ifndef BFD64
2463 return 1;
2464 #else
2465 return num <= 0xffffffff;
2466 #endif
2467 } /* fits_in_unsigned_long() */
2468
2469 static INLINE int
2470 fits_in_disp8 (offsetT num)
2471 {
2472 int shift = i.memshift;
2473 unsigned int mask;
2474
2475 if (shift == -1)
2476 abort ();
2477
2478 mask = (1 << shift) - 1;
2479
2480 /* Return 0 if NUM isn't properly aligned. */
2481 if ((num & mask))
2482 return 0;
2483
2484 /* Check if NUM will fit in 8bit after shift. */
2485 return fits_in_signed_byte (num >> shift);
2486 }
2487
2488 static INLINE int
2489 fits_in_imm4 (offsetT num)
2490 {
2491 return (num & 0xf) == num;
2492 }
2493
2494 static i386_operand_type
2495 smallest_imm_type (offsetT num)
2496 {
2497 i386_operand_type t;
2498
2499 operand_type_set (&t, 0);
2500 t.bitfield.imm64 = 1;
2501
2502 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2503 {
2504 /* This code is disabled on the 486 because all the Imm1 forms
2505 in the opcode table are slower on the i486. They're the
2506 versions with the implicitly specified single-position
2507 displacement, which has another syntax if you really want to
2508 use that form. */
2509 t.bitfield.imm1 = 1;
2510 t.bitfield.imm8 = 1;
2511 t.bitfield.imm8s = 1;
2512 t.bitfield.imm16 = 1;
2513 t.bitfield.imm32 = 1;
2514 t.bitfield.imm32s = 1;
2515 }
2516 else if (fits_in_signed_byte (num))
2517 {
2518 t.bitfield.imm8 = 1;
2519 t.bitfield.imm8s = 1;
2520 t.bitfield.imm16 = 1;
2521 t.bitfield.imm32 = 1;
2522 t.bitfield.imm32s = 1;
2523 }
2524 else if (fits_in_unsigned_byte (num))
2525 {
2526 t.bitfield.imm8 = 1;
2527 t.bitfield.imm16 = 1;
2528 t.bitfield.imm32 = 1;
2529 t.bitfield.imm32s = 1;
2530 }
2531 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2532 {
2533 t.bitfield.imm16 = 1;
2534 t.bitfield.imm32 = 1;
2535 t.bitfield.imm32s = 1;
2536 }
2537 else if (fits_in_signed_long (num))
2538 {
2539 t.bitfield.imm32 = 1;
2540 t.bitfield.imm32s = 1;
2541 }
2542 else if (fits_in_unsigned_long (num))
2543 t.bitfield.imm32 = 1;
2544
2545 return t;
2546 }
2547
2548 static offsetT
2549 offset_in_range (offsetT val, int size)
2550 {
2551 addressT mask;
2552
2553 switch (size)
2554 {
2555 case 1: mask = ((addressT) 1 << 8) - 1; break;
2556 case 2: mask = ((addressT) 1 << 16) - 1; break;
2557 case 4: mask = ((addressT) 2 << 31) - 1; break;
2558 #ifdef BFD64
2559 case 8: mask = ((addressT) 2 << 63) - 1; break;
2560 #endif
2561 default: abort ();
2562 }
2563
2564 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2565 {
2566 char buf1[40], buf2[40];
2567
2568 sprint_value (buf1, val);
2569 sprint_value (buf2, val & mask);
2570 as_warn (_("%s shortened to %s"), buf1, buf2);
2571 }
2572 return val & mask;
2573 }
2574
2575 enum PREFIX_GROUP
2576 {
2577 PREFIX_EXIST = 0,
2578 PREFIX_LOCK,
2579 PREFIX_REP,
2580 PREFIX_DS,
2581 PREFIX_OTHER
2582 };
2583
2584 /* Returns
2585 a. PREFIX_EXIST if attempting to add a prefix where one from the
2586 same class already exists.
2587 b. PREFIX_LOCK if lock prefix is added.
2588 c. PREFIX_REP if rep/repne prefix is added.
2589 d. PREFIX_DS if ds prefix is added.
2590 e. PREFIX_OTHER if other prefix is added.
2591 */
2592
2593 static enum PREFIX_GROUP
2594 add_prefix (unsigned int prefix)
2595 {
2596 enum PREFIX_GROUP ret = PREFIX_OTHER;
2597 unsigned int q;
2598
2599 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2600 && flag_code == CODE_64BIT)
2601 {
2602 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2603 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2604 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2605 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2606 ret = PREFIX_EXIST;
2607 q = REX_PREFIX;
2608 }
2609 else
2610 {
2611 switch (prefix)
2612 {
2613 default:
2614 abort ();
2615
2616 case DS_PREFIX_OPCODE:
2617 ret = PREFIX_DS;
2618 /* Fall through. */
2619 case CS_PREFIX_OPCODE:
2620 case ES_PREFIX_OPCODE:
2621 case FS_PREFIX_OPCODE:
2622 case GS_PREFIX_OPCODE:
2623 case SS_PREFIX_OPCODE:
2624 q = SEG_PREFIX;
2625 break;
2626
2627 case REPNE_PREFIX_OPCODE:
2628 case REPE_PREFIX_OPCODE:
2629 q = REP_PREFIX;
2630 ret = PREFIX_REP;
2631 break;
2632
2633 case LOCK_PREFIX_OPCODE:
2634 q = LOCK_PREFIX;
2635 ret = PREFIX_LOCK;
2636 break;
2637
2638 case FWAIT_OPCODE:
2639 q = WAIT_PREFIX;
2640 break;
2641
2642 case ADDR_PREFIX_OPCODE:
2643 q = ADDR_PREFIX;
2644 break;
2645
2646 case DATA_PREFIX_OPCODE:
2647 q = DATA_PREFIX;
2648 break;
2649 }
2650 if (i.prefix[q] != 0)
2651 ret = PREFIX_EXIST;
2652 }
2653
2654 if (ret)
2655 {
2656 if (!i.prefix[q])
2657 ++i.prefixes;
2658 i.prefix[q] |= prefix;
2659 }
2660 else
2661 as_bad (_("same type of prefix used twice"));
2662
2663 return ret;
2664 }
2665
2666 static void
2667 update_code_flag (int value, int check)
2668 {
2669 PRINTF_LIKE ((*as_error));
2670
2671 flag_code = (enum flag_code) value;
2672 if (flag_code == CODE_64BIT)
2673 {
2674 cpu_arch_flags.bitfield.cpu64 = 1;
2675 cpu_arch_flags.bitfield.cpuno64 = 0;
2676 }
2677 else
2678 {
2679 cpu_arch_flags.bitfield.cpu64 = 0;
2680 cpu_arch_flags.bitfield.cpuno64 = 1;
2681 }
2682 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2683 {
2684 if (check)
2685 as_error = as_fatal;
2686 else
2687 as_error = as_bad;
2688 (*as_error) (_("64bit mode not supported on `%s'."),
2689 cpu_arch_name ? cpu_arch_name : default_arch);
2690 }
2691 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2692 {
2693 if (check)
2694 as_error = as_fatal;
2695 else
2696 as_error = as_bad;
2697 (*as_error) (_("32bit mode not supported on `%s'."),
2698 cpu_arch_name ? cpu_arch_name : default_arch);
2699 }
2700 stackop_size = '\0';
2701 }
2702
2703 static void
2704 set_code_flag (int value)
2705 {
2706 update_code_flag (value, 0);
2707 }
2708
2709 static void
2710 set_16bit_gcc_code_flag (int new_code_flag)
2711 {
2712 flag_code = (enum flag_code) new_code_flag;
2713 if (flag_code != CODE_16BIT)
2714 abort ();
2715 cpu_arch_flags.bitfield.cpu64 = 0;
2716 cpu_arch_flags.bitfield.cpuno64 = 1;
2717 stackop_size = LONG_MNEM_SUFFIX;
2718 }
2719
2720 static void
2721 set_intel_syntax (int syntax_flag)
2722 {
2723 /* Find out if register prefixing is specified. */
2724 int ask_naked_reg = 0;
2725
2726 SKIP_WHITESPACE ();
2727 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2728 {
2729 char *string;
2730 int e = get_symbol_name (&string);
2731
2732 if (strcmp (string, "prefix") == 0)
2733 ask_naked_reg = 1;
2734 else if (strcmp (string, "noprefix") == 0)
2735 ask_naked_reg = -1;
2736 else
2737 as_bad (_("bad argument to syntax directive."));
2738 (void) restore_line_pointer (e);
2739 }
2740 demand_empty_rest_of_line ();
2741
2742 intel_syntax = syntax_flag;
2743
2744 if (ask_naked_reg == 0)
2745 allow_naked_reg = (intel_syntax
2746 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2747 else
2748 allow_naked_reg = (ask_naked_reg < 0);
2749
2750 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2751
2752 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2753 identifier_chars['$'] = intel_syntax ? '$' : 0;
2754 register_prefix = allow_naked_reg ? "" : "%";
2755 }
2756
2757 static void
2758 set_intel_mnemonic (int mnemonic_flag)
2759 {
2760 intel_mnemonic = mnemonic_flag;
2761 }
2762
2763 static void
2764 set_allow_index_reg (int flag)
2765 {
2766 allow_index_reg = flag;
2767 }
2768
2769 static void
2770 set_check (int what)
2771 {
2772 enum check_kind *kind;
2773 const char *str;
2774
2775 if (what)
2776 {
2777 kind = &operand_check;
2778 str = "operand";
2779 }
2780 else
2781 {
2782 kind = &sse_check;
2783 str = "sse";
2784 }
2785
2786 SKIP_WHITESPACE ();
2787
2788 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2789 {
2790 char *string;
2791 int e = get_symbol_name (&string);
2792
2793 if (strcmp (string, "none") == 0)
2794 *kind = check_none;
2795 else if (strcmp (string, "warning") == 0)
2796 *kind = check_warning;
2797 else if (strcmp (string, "error") == 0)
2798 *kind = check_error;
2799 else
2800 as_bad (_("bad argument to %s_check directive."), str);
2801 (void) restore_line_pointer (e);
2802 }
2803 else
2804 as_bad (_("missing argument for %s_check directive"), str);
2805
2806 demand_empty_rest_of_line ();
2807 }
2808
2809 static void
2810 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2811 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2812 {
2813 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2814 static const char *arch;
2815
2816 /* Intel LIOM is only supported on ELF. */
2817 if (!IS_ELF)
2818 return;
2819
2820 if (!arch)
2821 {
2822 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2823 use default_arch. */
2824 arch = cpu_arch_name;
2825 if (!arch)
2826 arch = default_arch;
2827 }
2828
2829 /* If we are targeting Intel MCU, we must enable it. */
2830 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2831 || new_flag.bitfield.cpuiamcu)
2832 return;
2833
2834 /* If we are targeting Intel L1OM, we must enable it. */
2835 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2836 || new_flag.bitfield.cpul1om)
2837 return;
2838
2839 /* If we are targeting Intel K1OM, we must enable it. */
2840 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2841 || new_flag.bitfield.cpuk1om)
2842 return;
2843
2844 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2845 #endif
2846 }
2847
2848 static void
2849 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2850 {
2851 SKIP_WHITESPACE ();
2852
2853 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2854 {
2855 char *string;
2856 int e = get_symbol_name (&string);
2857 unsigned int j;
2858 i386_cpu_flags flags;
2859
2860 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2861 {
2862 if (strcmp (string, cpu_arch[j].name) == 0)
2863 {
2864 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2865
2866 if (*string != '.')
2867 {
2868 cpu_arch_name = cpu_arch[j].name;
2869 cpu_sub_arch_name = NULL;
2870 cpu_arch_flags = cpu_arch[j].flags;
2871 if (flag_code == CODE_64BIT)
2872 {
2873 cpu_arch_flags.bitfield.cpu64 = 1;
2874 cpu_arch_flags.bitfield.cpuno64 = 0;
2875 }
2876 else
2877 {
2878 cpu_arch_flags.bitfield.cpu64 = 0;
2879 cpu_arch_flags.bitfield.cpuno64 = 1;
2880 }
2881 cpu_arch_isa = cpu_arch[j].type;
2882 cpu_arch_isa_flags = cpu_arch[j].flags;
2883 if (!cpu_arch_tune_set)
2884 {
2885 cpu_arch_tune = cpu_arch_isa;
2886 cpu_arch_tune_flags = cpu_arch_isa_flags;
2887 }
2888 break;
2889 }
2890
2891 flags = cpu_flags_or (cpu_arch_flags,
2892 cpu_arch[j].flags);
2893
2894 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2895 {
2896 if (cpu_sub_arch_name)
2897 {
2898 char *name = cpu_sub_arch_name;
2899 cpu_sub_arch_name = concat (name,
2900 cpu_arch[j].name,
2901 (const char *) NULL);
2902 free (name);
2903 }
2904 else
2905 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2906 cpu_arch_flags = flags;
2907 cpu_arch_isa_flags = flags;
2908 }
2909 else
2910 cpu_arch_isa_flags
2911 = cpu_flags_or (cpu_arch_isa_flags,
2912 cpu_arch[j].flags);
2913 (void) restore_line_pointer (e);
2914 demand_empty_rest_of_line ();
2915 return;
2916 }
2917 }
2918
2919 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2920 {
2921 /* Disable an ISA extension. */
2922 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2923 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2924 {
2925 flags = cpu_flags_and_not (cpu_arch_flags,
2926 cpu_noarch[j].flags);
2927 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2928 {
2929 if (cpu_sub_arch_name)
2930 {
2931 char *name = cpu_sub_arch_name;
2932 cpu_sub_arch_name = concat (name, string,
2933 (const char *) NULL);
2934 free (name);
2935 }
2936 else
2937 cpu_sub_arch_name = xstrdup (string);
2938 cpu_arch_flags = flags;
2939 cpu_arch_isa_flags = flags;
2940 }
2941 (void) restore_line_pointer (e);
2942 demand_empty_rest_of_line ();
2943 return;
2944 }
2945
2946 j = ARRAY_SIZE (cpu_arch);
2947 }
2948
2949 if (j >= ARRAY_SIZE (cpu_arch))
2950 as_bad (_("no such architecture: `%s'"), string);
2951
2952 *input_line_pointer = e;
2953 }
2954 else
2955 as_bad (_("missing cpu architecture"));
2956
2957 no_cond_jump_promotion = 0;
2958 if (*input_line_pointer == ','
2959 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2960 {
2961 char *string;
2962 char e;
2963
2964 ++input_line_pointer;
2965 e = get_symbol_name (&string);
2966
2967 if (strcmp (string, "nojumps") == 0)
2968 no_cond_jump_promotion = 1;
2969 else if (strcmp (string, "jumps") == 0)
2970 ;
2971 else
2972 as_bad (_("no such architecture modifier: `%s'"), string);
2973
2974 (void) restore_line_pointer (e);
2975 }
2976
2977 demand_empty_rest_of_line ();
2978 }
2979
2980 enum bfd_architecture
2981 i386_arch (void)
2982 {
2983 if (cpu_arch_isa == PROCESSOR_L1OM)
2984 {
2985 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2986 || flag_code != CODE_64BIT)
2987 as_fatal (_("Intel L1OM is 64bit ELF only"));
2988 return bfd_arch_l1om;
2989 }
2990 else if (cpu_arch_isa == PROCESSOR_K1OM)
2991 {
2992 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2993 || flag_code != CODE_64BIT)
2994 as_fatal (_("Intel K1OM is 64bit ELF only"));
2995 return bfd_arch_k1om;
2996 }
2997 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2998 {
2999 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
3000 || flag_code == CODE_64BIT)
3001 as_fatal (_("Intel MCU is 32bit ELF only"));
3002 return bfd_arch_iamcu;
3003 }
3004 else
3005 return bfd_arch_i386;
3006 }
3007
3008 unsigned long
3009 i386_mach (void)
3010 {
3011 if (!strncmp (default_arch, "x86_64", 6))
3012 {
3013 if (cpu_arch_isa == PROCESSOR_L1OM)
3014 {
3015 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
3016 || default_arch[6] != '\0')
3017 as_fatal (_("Intel L1OM is 64bit ELF only"));
3018 return bfd_mach_l1om;
3019 }
3020 else if (cpu_arch_isa == PROCESSOR_K1OM)
3021 {
3022 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
3023 || default_arch[6] != '\0')
3024 as_fatal (_("Intel K1OM is 64bit ELF only"));
3025 return bfd_mach_k1om;
3026 }
3027 else if (default_arch[6] == '\0')
3028 return bfd_mach_x86_64;
3029 else
3030 return bfd_mach_x64_32;
3031 }
3032 else if (!strcmp (default_arch, "i386")
3033 || !strcmp (default_arch, "iamcu"))
3034 {
3035 if (cpu_arch_isa == PROCESSOR_IAMCU)
3036 {
3037 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
3038 as_fatal (_("Intel MCU is 32bit ELF only"));
3039 return bfd_mach_i386_iamcu;
3040 }
3041 else
3042 return bfd_mach_i386_i386;
3043 }
3044 else
3045 as_fatal (_("unknown architecture"));
3046 }
3047 \f
3048 void
3049 md_begin (void)
3050 {
3051 /* Support pseudo prefixes like {disp32}. */
3052 lex_type ['{'] = LEX_BEGIN_NAME;
3053
3054 /* Initialize op_hash hash table. */
3055 op_hash = str_htab_create ();
3056
3057 {
3058 const insn_template *optab;
3059 templates *core_optab;
3060
3061 /* Setup for loop. */
3062 optab = i386_optab;
3063 core_optab = XNEW (templates);
3064 core_optab->start = optab;
3065
3066 while (1)
3067 {
3068 ++optab;
3069 if (optab->name == NULL
3070 || strcmp (optab->name, (optab - 1)->name) != 0)
3071 {
3072 /* different name --> ship out current template list;
3073 add to hash table; & begin anew. */
3074 core_optab->end = optab;
3075 if (str_hash_insert (op_hash, (optab - 1)->name, core_optab, 0))
3076 as_fatal (_("duplicate %s"), (optab - 1)->name);
3077
3078 if (optab->name == NULL)
3079 break;
3080 core_optab = XNEW (templates);
3081 core_optab->start = optab;
3082 }
3083 }
3084 }
3085
3086 /* Initialize reg_hash hash table. */
3087 reg_hash = str_htab_create ();
3088 {
3089 const reg_entry *regtab;
3090 unsigned int regtab_size = i386_regtab_size;
3091
3092 for (regtab = i386_regtab; regtab_size--; regtab++)
3093 if (str_hash_insert (reg_hash, regtab->reg_name, regtab, 0) != NULL)
3094 as_fatal (_("duplicate %s"), regtab->reg_name);
3095 }
3096
3097 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
3098 {
3099 int c;
3100 char *p;
3101
3102 for (c = 0; c < 256; c++)
3103 {
3104 if (ISDIGIT (c))
3105 {
3106 digit_chars[c] = c;
3107 mnemonic_chars[c] = c;
3108 register_chars[c] = c;
3109 operand_chars[c] = c;
3110 }
3111 else if (ISLOWER (c))
3112 {
3113 mnemonic_chars[c] = c;
3114 register_chars[c] = c;
3115 operand_chars[c] = c;
3116 }
3117 else if (ISUPPER (c))
3118 {
3119 mnemonic_chars[c] = TOLOWER (c);
3120 register_chars[c] = mnemonic_chars[c];
3121 operand_chars[c] = c;
3122 }
3123 else if (c == '{' || c == '}')
3124 {
3125 mnemonic_chars[c] = c;
3126 operand_chars[c] = c;
3127 }
3128 #ifdef SVR4_COMMENT_CHARS
3129 else if (c == '\\' && strchr (i386_comment_chars, '/'))
3130 operand_chars[c] = c;
3131 #endif
3132
3133 if (ISALPHA (c) || ISDIGIT (c))
3134 identifier_chars[c] = c;
3135 else if (c >= 128)
3136 {
3137 identifier_chars[c] = c;
3138 operand_chars[c] = c;
3139 }
3140 }
3141
3142 #ifdef LEX_AT
3143 identifier_chars['@'] = '@';
3144 #endif
3145 #ifdef LEX_QM
3146 identifier_chars['?'] = '?';
3147 operand_chars['?'] = '?';
3148 #endif
3149 digit_chars['-'] = '-';
3150 mnemonic_chars['_'] = '_';
3151 mnemonic_chars['-'] = '-';
3152 mnemonic_chars['.'] = '.';
3153 identifier_chars['_'] = '_';
3154 identifier_chars['.'] = '.';
3155
3156 for (p = operand_special_chars; *p != '\0'; p++)
3157 operand_chars[(unsigned char) *p] = *p;
3158 }
3159
3160 if (flag_code == CODE_64BIT)
3161 {
3162 #if defined (OBJ_COFF) && defined (TE_PE)
3163 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3164 ? 32 : 16);
3165 #else
3166 x86_dwarf2_return_column = 16;
3167 #endif
3168 x86_cie_data_alignment = -8;
3169 }
3170 else
3171 {
3172 x86_dwarf2_return_column = 8;
3173 x86_cie_data_alignment = -4;
3174 }
3175
3176 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3177 can be turned into BRANCH_PREFIX frag. */
3178 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3179 abort ();
3180 }
3181
3182 void
3183 i386_print_statistics (FILE *file)
3184 {
3185 htab_print_statistics (file, "i386 opcode", op_hash);
3186 htab_print_statistics (file, "i386 register", reg_hash);
3187 }
3188 \f
3189 #ifdef DEBUG386
3190
3191 /* Debugging routines for md_assemble. */
3192 static void pte (insn_template *);
3193 static void pt (i386_operand_type);
3194 static void pe (expressionS *);
3195 static void ps (symbolS *);
3196
3197 static void
3198 pi (const char *line, i386_insn *x)
3199 {
3200 unsigned int j;
3201
3202 fprintf (stdout, "%s: template ", line);
3203 pte (&x->tm);
3204 fprintf (stdout, " address: base %s index %s scale %x\n",
3205 x->base_reg ? x->base_reg->reg_name : "none",
3206 x->index_reg ? x->index_reg->reg_name : "none",
3207 x->log2_scale_factor);
3208 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3209 x->rm.mode, x->rm.reg, x->rm.regmem);
3210 fprintf (stdout, " sib: base %x index %x scale %x\n",
3211 x->sib.base, x->sib.index, x->sib.scale);
3212 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3213 (x->rex & REX_W) != 0,
3214 (x->rex & REX_R) != 0,
3215 (x->rex & REX_X) != 0,
3216 (x->rex & REX_B) != 0);
3217 for (j = 0; j < x->operands; j++)
3218 {
3219 fprintf (stdout, " #%d: ", j + 1);
3220 pt (x->types[j]);
3221 fprintf (stdout, "\n");
3222 if (x->types[j].bitfield.class == Reg
3223 || x->types[j].bitfield.class == RegMMX
3224 || x->types[j].bitfield.class == RegSIMD
3225 || x->types[j].bitfield.class == RegMask
3226 || x->types[j].bitfield.class == SReg
3227 || x->types[j].bitfield.class == RegCR
3228 || x->types[j].bitfield.class == RegDR
3229 || x->types[j].bitfield.class == RegTR
3230 || x->types[j].bitfield.class == RegBND)
3231 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3232 if (operand_type_check (x->types[j], imm))
3233 pe (x->op[j].imms);
3234 if (operand_type_check (x->types[j], disp))
3235 pe (x->op[j].disps);
3236 }
3237 }
3238
3239 static void
3240 pte (insn_template *t)
3241 {
3242 unsigned int j;
3243 fprintf (stdout, " %d operands ", t->operands);
3244 fprintf (stdout, "opcode %x ", t->base_opcode);
3245 if (t->extension_opcode != None)
3246 fprintf (stdout, "ext %x ", t->extension_opcode);
3247 if (t->opcode_modifier.d)
3248 fprintf (stdout, "D");
3249 if (t->opcode_modifier.w)
3250 fprintf (stdout, "W");
3251 fprintf (stdout, "\n");
3252 for (j = 0; j < t->operands; j++)
3253 {
3254 fprintf (stdout, " #%d type ", j + 1);
3255 pt (t->operand_types[j]);
3256 fprintf (stdout, "\n");
3257 }
3258 }
3259
3260 static void
3261 pe (expressionS *e)
3262 {
3263 fprintf (stdout, " operation %d\n", e->X_op);
3264 fprintf (stdout, " add_number %ld (%lx)\n",
3265 (long) e->X_add_number, (long) e->X_add_number);
3266 if (e->X_add_symbol)
3267 {
3268 fprintf (stdout, " add_symbol ");
3269 ps (e->X_add_symbol);
3270 fprintf (stdout, "\n");
3271 }
3272 if (e->X_op_symbol)
3273 {
3274 fprintf (stdout, " op_symbol ");
3275 ps (e->X_op_symbol);
3276 fprintf (stdout, "\n");
3277 }
3278 }
3279
3280 static void
3281 ps (symbolS *s)
3282 {
3283 fprintf (stdout, "%s type %s%s",
3284 S_GET_NAME (s),
3285 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3286 segment_name (S_GET_SEGMENT (s)));
3287 }
3288
3289 static struct type_name
3290 {
3291 i386_operand_type mask;
3292 const char *name;
3293 }
3294 const type_names[] =
3295 {
3296 { OPERAND_TYPE_REG8, "r8" },
3297 { OPERAND_TYPE_REG16, "r16" },
3298 { OPERAND_TYPE_REG32, "r32" },
3299 { OPERAND_TYPE_REG64, "r64" },
3300 { OPERAND_TYPE_ACC8, "acc8" },
3301 { OPERAND_TYPE_ACC16, "acc16" },
3302 { OPERAND_TYPE_ACC32, "acc32" },
3303 { OPERAND_TYPE_ACC64, "acc64" },
3304 { OPERAND_TYPE_IMM8, "i8" },
3305 { OPERAND_TYPE_IMM8, "i8s" },
3306 { OPERAND_TYPE_IMM16, "i16" },
3307 { OPERAND_TYPE_IMM32, "i32" },
3308 { OPERAND_TYPE_IMM32S, "i32s" },
3309 { OPERAND_TYPE_IMM64, "i64" },
3310 { OPERAND_TYPE_IMM1, "i1" },
3311 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3312 { OPERAND_TYPE_DISP8, "d8" },
3313 { OPERAND_TYPE_DISP16, "d16" },
3314 { OPERAND_TYPE_DISP32, "d32" },
3315 { OPERAND_TYPE_DISP32S, "d32s" },
3316 { OPERAND_TYPE_DISP64, "d64" },
3317 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3318 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3319 { OPERAND_TYPE_CONTROL, "control reg" },
3320 { OPERAND_TYPE_TEST, "test reg" },
3321 { OPERAND_TYPE_DEBUG, "debug reg" },
3322 { OPERAND_TYPE_FLOATREG, "FReg" },
3323 { OPERAND_TYPE_FLOATACC, "FAcc" },
3324 { OPERAND_TYPE_SREG, "SReg" },
3325 { OPERAND_TYPE_REGMMX, "rMMX" },
3326 { OPERAND_TYPE_REGXMM, "rXMM" },
3327 { OPERAND_TYPE_REGYMM, "rYMM" },
3328 { OPERAND_TYPE_REGZMM, "rZMM" },
3329 { OPERAND_TYPE_REGTMM, "rTMM" },
3330 { OPERAND_TYPE_REGMASK, "Mask reg" },
3331 };
3332
3333 static void
3334 pt (i386_operand_type t)
3335 {
3336 unsigned int j;
3337 i386_operand_type a;
3338
3339 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3340 {
3341 a = operand_type_and (t, type_names[j].mask);
3342 if (operand_type_equal (&a, &type_names[j].mask))
3343 fprintf (stdout, "%s, ", type_names[j].name);
3344 }
3345 fflush (stdout);
3346 }
3347
3348 #endif /* DEBUG386 */
3349 \f
3350 static bfd_reloc_code_real_type
3351 reloc (unsigned int size,
3352 int pcrel,
3353 int sign,
3354 bfd_reloc_code_real_type other)
3355 {
3356 if (other != NO_RELOC)
3357 {
3358 reloc_howto_type *rel;
3359
3360 if (size == 8)
3361 switch (other)
3362 {
3363 case BFD_RELOC_X86_64_GOT32:
3364 return BFD_RELOC_X86_64_GOT64;
3365 break;
3366 case BFD_RELOC_X86_64_GOTPLT64:
3367 return BFD_RELOC_X86_64_GOTPLT64;
3368 break;
3369 case BFD_RELOC_X86_64_PLTOFF64:
3370 return BFD_RELOC_X86_64_PLTOFF64;
3371 break;
3372 case BFD_RELOC_X86_64_GOTPC32:
3373 other = BFD_RELOC_X86_64_GOTPC64;
3374 break;
3375 case BFD_RELOC_X86_64_GOTPCREL:
3376 other = BFD_RELOC_X86_64_GOTPCREL64;
3377 break;
3378 case BFD_RELOC_X86_64_TPOFF32:
3379 other = BFD_RELOC_X86_64_TPOFF64;
3380 break;
3381 case BFD_RELOC_X86_64_DTPOFF32:
3382 other = BFD_RELOC_X86_64_DTPOFF64;
3383 break;
3384 default:
3385 break;
3386 }
3387
3388 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3389 if (other == BFD_RELOC_SIZE32)
3390 {
3391 if (size == 8)
3392 other = BFD_RELOC_SIZE64;
3393 if (pcrel)
3394 {
3395 as_bad (_("there are no pc-relative size relocations"));
3396 return NO_RELOC;
3397 }
3398 }
3399 #endif
3400
3401 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3402 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3403 sign = -1;
3404
3405 rel = bfd_reloc_type_lookup (stdoutput, other);
3406 if (!rel)
3407 as_bad (_("unknown relocation (%u)"), other);
3408 else if (size != bfd_get_reloc_size (rel))
3409 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3410 bfd_get_reloc_size (rel),
3411 size);
3412 else if (pcrel && !rel->pc_relative)
3413 as_bad (_("non-pc-relative relocation for pc-relative field"));
3414 else if ((rel->complain_on_overflow == complain_overflow_signed
3415 && !sign)
3416 || (rel->complain_on_overflow == complain_overflow_unsigned
3417 && sign > 0))
3418 as_bad (_("relocated field and relocation type differ in signedness"));
3419 else
3420 return other;
3421 return NO_RELOC;
3422 }
3423
3424 if (pcrel)
3425 {
3426 if (!sign)
3427 as_bad (_("there are no unsigned pc-relative relocations"));
3428 switch (size)
3429 {
3430 case 1: return BFD_RELOC_8_PCREL;
3431 case 2: return BFD_RELOC_16_PCREL;
3432 case 4: return BFD_RELOC_32_PCREL;
3433 case 8: return BFD_RELOC_64_PCREL;
3434 }
3435 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3436 }
3437 else
3438 {
3439 if (sign > 0)
3440 switch (size)
3441 {
3442 case 4: return BFD_RELOC_X86_64_32S;
3443 }
3444 else
3445 switch (size)
3446 {
3447 case 1: return BFD_RELOC_8;
3448 case 2: return BFD_RELOC_16;
3449 case 4: return BFD_RELOC_32;
3450 case 8: return BFD_RELOC_64;
3451 }
3452 as_bad (_("cannot do %s %u byte relocation"),
3453 sign > 0 ? "signed" : "unsigned", size);
3454 }
3455
3456 return NO_RELOC;
3457 }
3458
3459 /* Here we decide which fixups can be adjusted to make them relative to
3460 the beginning of the section instead of the symbol. Basically we need
3461 to make sure that the dynamic relocations are done correctly, so in
3462 some cases we force the original symbol to be used. */
3463
3464 int
3465 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3466 {
3467 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3468 if (!IS_ELF)
3469 return 1;
3470
3471 /* Don't adjust pc-relative references to merge sections in 64-bit
3472 mode. */
3473 if (use_rela_relocations
3474 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3475 && fixP->fx_pcrel)
3476 return 0;
3477
3478 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3479 and changed later by validate_fix. */
3480 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3481 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3482 return 0;
3483
3484 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3485 for size relocations. */
3486 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3487 || fixP->fx_r_type == BFD_RELOC_SIZE64
3488 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3489 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3490 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3491 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3492 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3493 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3494 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3495 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3496 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3497 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3498 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3499 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3500 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3501 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3502 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3503 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3504 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3505 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3506 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3507 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3508 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3509 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3510 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3511 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3512 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3513 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3514 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3515 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3516 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3517 return 0;
3518 #endif
3519 return 1;
3520 }
3521
3522 static int
3523 intel_float_operand (const char *mnemonic)
3524 {
3525 /* Note that the value returned is meaningful only for opcodes with (memory)
3526 operands, hence the code here is free to improperly handle opcodes that
3527 have no operands (for better performance and smaller code). */
3528
3529 if (mnemonic[0] != 'f')
3530 return 0; /* non-math */
3531
3532 switch (mnemonic[1])
3533 {
3534 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3535 the fs segment override prefix not currently handled because no
3536 call path can make opcodes without operands get here */
3537 case 'i':
3538 return 2 /* integer op */;
3539 case 'l':
3540 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3541 return 3; /* fldcw/fldenv */
3542 break;
3543 case 'n':
3544 if (mnemonic[2] != 'o' /* fnop */)
3545 return 3; /* non-waiting control op */
3546 break;
3547 case 'r':
3548 if (mnemonic[2] == 's')
3549 return 3; /* frstor/frstpm */
3550 break;
3551 case 's':
3552 if (mnemonic[2] == 'a')
3553 return 3; /* fsave */
3554 if (mnemonic[2] == 't')
3555 {
3556 switch (mnemonic[3])
3557 {
3558 case 'c': /* fstcw */
3559 case 'd': /* fstdw */
3560 case 'e': /* fstenv */
3561 case 's': /* fsts[gw] */
3562 return 3;
3563 }
3564 }
3565 break;
3566 case 'x':
3567 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3568 return 0; /* fxsave/fxrstor are not really math ops */
3569 break;
3570 }
3571
3572 return 1;
3573 }
3574
3575 /* Build the VEX prefix. */
3576
3577 static void
3578 build_vex_prefix (const insn_template *t)
3579 {
3580 unsigned int register_specifier;
3581 unsigned int implied_prefix;
3582 unsigned int vector_length;
3583 unsigned int w;
3584
3585 /* Check register specifier. */
3586 if (i.vex.register_specifier)
3587 {
3588 register_specifier =
3589 ~register_number (i.vex.register_specifier) & 0xf;
3590 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3591 }
3592 else
3593 register_specifier = 0xf;
3594
3595 /* Use 2-byte VEX prefix by swapping destination and source operand
3596 if there are more than 1 register operand. */
3597 if (i.reg_operands > 1
3598 && i.vec_encoding != vex_encoding_vex3
3599 && i.dir_encoding == dir_encoding_default
3600 && i.operands == i.reg_operands
3601 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3602 && i.tm.opcode_modifier.opcodeprefix == VEX0F
3603 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3604 && i.rex == REX_B)
3605 {
3606 unsigned int xchg = i.operands - 1;
3607 union i386_op temp_op;
3608 i386_operand_type temp_type;
3609
3610 temp_type = i.types[xchg];
3611 i.types[xchg] = i.types[0];
3612 i.types[0] = temp_type;
3613 temp_op = i.op[xchg];
3614 i.op[xchg] = i.op[0];
3615 i.op[0] = temp_op;
3616
3617 gas_assert (i.rm.mode == 3);
3618
3619 i.rex = REX_R;
3620 xchg = i.rm.regmem;
3621 i.rm.regmem = i.rm.reg;
3622 i.rm.reg = xchg;
3623
3624 if (i.tm.opcode_modifier.d)
3625 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3626 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3627 else /* Use the next insn. */
3628 i.tm = t[1];
3629 }
3630
3631 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3632 are no memory operands and at least 3 register ones. */
3633 if (i.reg_operands >= 3
3634 && i.vec_encoding != vex_encoding_vex3
3635 && i.reg_operands == i.operands - i.imm_operands
3636 && i.tm.opcode_modifier.vex
3637 && i.tm.opcode_modifier.commutative
3638 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3639 && i.rex == REX_B
3640 && i.vex.register_specifier
3641 && !(i.vex.register_specifier->reg_flags & RegRex))
3642 {
3643 unsigned int xchg = i.operands - i.reg_operands;
3644 union i386_op temp_op;
3645 i386_operand_type temp_type;
3646
3647 gas_assert (i.tm.opcode_modifier.opcodeprefix == VEX0F);
3648 gas_assert (!i.tm.opcode_modifier.sae);
3649 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3650 &i.types[i.operands - 3]));
3651 gas_assert (i.rm.mode == 3);
3652
3653 temp_type = i.types[xchg];
3654 i.types[xchg] = i.types[xchg + 1];
3655 i.types[xchg + 1] = temp_type;
3656 temp_op = i.op[xchg];
3657 i.op[xchg] = i.op[xchg + 1];
3658 i.op[xchg + 1] = temp_op;
3659
3660 i.rex = 0;
3661 xchg = i.rm.regmem | 8;
3662 i.rm.regmem = ~register_specifier & 0xf;
3663 gas_assert (!(i.rm.regmem & 8));
3664 i.vex.register_specifier += xchg - i.rm.regmem;
3665 register_specifier = ~xchg & 0xf;
3666 }
3667
3668 if (i.tm.opcode_modifier.vex == VEXScalar)
3669 vector_length = avxscalar;
3670 else if (i.tm.opcode_modifier.vex == VEX256)
3671 vector_length = 1;
3672 else
3673 {
3674 unsigned int op;
3675
3676 /* Determine vector length from the last multi-length vector
3677 operand. */
3678 vector_length = 0;
3679 for (op = t->operands; op--;)
3680 if (t->operand_types[op].bitfield.xmmword
3681 && t->operand_types[op].bitfield.ymmword
3682 && i.types[op].bitfield.ymmword)
3683 {
3684 vector_length = 1;
3685 break;
3686 }
3687 }
3688
3689 switch ((i.tm.base_opcode >> (i.tm.opcode_length << 3)) & 0xff)
3690 {
3691 case 0:
3692 implied_prefix = 0;
3693 break;
3694 case DATA_PREFIX_OPCODE:
3695 implied_prefix = 1;
3696 break;
3697 case REPE_PREFIX_OPCODE:
3698 implied_prefix = 2;
3699 break;
3700 case REPNE_PREFIX_OPCODE:
3701 implied_prefix = 3;
3702 break;
3703 default:
3704 abort ();
3705 }
3706
3707 /* Check the REX.W bit and VEXW. */
3708 if (i.tm.opcode_modifier.vexw == VEXWIG)
3709 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3710 else if (i.tm.opcode_modifier.vexw)
3711 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3712 else
3713 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3714
3715 /* Use 2-byte VEX prefix if possible. */
3716 if (w == 0
3717 && i.vec_encoding != vex_encoding_vex3
3718 && i.tm.opcode_modifier.opcodeprefix == VEX0F
3719 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3720 {
3721 /* 2-byte VEX prefix. */
3722 unsigned int r;
3723
3724 i.vex.length = 2;
3725 i.vex.bytes[0] = 0xc5;
3726
3727 /* Check the REX.R bit. */
3728 r = (i.rex & REX_R) ? 0 : 1;
3729 i.vex.bytes[1] = (r << 7
3730 | register_specifier << 3
3731 | vector_length << 2
3732 | implied_prefix);
3733 }
3734 else
3735 {
3736 /* 3-byte VEX prefix. */
3737 unsigned int m;
3738
3739 i.vex.length = 3;
3740
3741 switch (i.tm.opcode_modifier.opcodeprefix)
3742 {
3743 case VEX0F:
3744 m = 0x1;
3745 i.vex.bytes[0] = 0xc4;
3746 break;
3747 case VEX0F38:
3748 m = 0x2;
3749 i.vex.bytes[0] = 0xc4;
3750 break;
3751 case VEX0F3A:
3752 m = 0x3;
3753 i.vex.bytes[0] = 0xc4;
3754 break;
3755 case XOP08:
3756 m = 0x8;
3757 i.vex.bytes[0] = 0x8f;
3758 break;
3759 case XOP09:
3760 m = 0x9;
3761 i.vex.bytes[0] = 0x8f;
3762 break;
3763 case XOP0A:
3764 m = 0xa;
3765 i.vex.bytes[0] = 0x8f;
3766 break;
3767 default:
3768 abort ();
3769 }
3770
3771 /* The high 3 bits of the second VEX byte are 1's compliment
3772 of RXB bits from REX. */
3773 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3774
3775 i.vex.bytes[2] = (w << 7
3776 | register_specifier << 3
3777 | vector_length << 2
3778 | implied_prefix);
3779 }
3780 }
3781
3782 static INLINE bfd_boolean
3783 is_evex_encoding (const insn_template *t)
3784 {
3785 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3786 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3787 || t->opcode_modifier.sae;
3788 }
3789
3790 static INLINE bfd_boolean
3791 is_any_vex_encoding (const insn_template *t)
3792 {
3793 return t->opcode_modifier.vex || is_evex_encoding (t);
3794 }
3795
3796 /* Build the EVEX prefix. */
3797
3798 static void
3799 build_evex_prefix (void)
3800 {
3801 unsigned int register_specifier;
3802 unsigned int implied_prefix;
3803 unsigned int m, w;
3804 rex_byte vrex_used = 0;
3805
3806 /* Check register specifier. */
3807 if (i.vex.register_specifier)
3808 {
3809 gas_assert ((i.vrex & REX_X) == 0);
3810
3811 register_specifier = i.vex.register_specifier->reg_num;
3812 if ((i.vex.register_specifier->reg_flags & RegRex))
3813 register_specifier += 8;
3814 /* The upper 16 registers are encoded in the fourth byte of the
3815 EVEX prefix. */
3816 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3817 i.vex.bytes[3] = 0x8;
3818 register_specifier = ~register_specifier & 0xf;
3819 }
3820 else
3821 {
3822 register_specifier = 0xf;
3823
3824 /* Encode upper 16 vector index register in the fourth byte of
3825 the EVEX prefix. */
3826 if (!(i.vrex & REX_X))
3827 i.vex.bytes[3] = 0x8;
3828 else
3829 vrex_used |= REX_X;
3830 }
3831
3832 switch ((i.tm.base_opcode >> 8) & 0xff)
3833 {
3834 case 0:
3835 implied_prefix = 0;
3836 break;
3837 case DATA_PREFIX_OPCODE:
3838 implied_prefix = 1;
3839 break;
3840 case REPE_PREFIX_OPCODE:
3841 implied_prefix = 2;
3842 break;
3843 case REPNE_PREFIX_OPCODE:
3844 implied_prefix = 3;
3845 break;
3846 default:
3847 abort ();
3848 }
3849
3850 /* 4 byte EVEX prefix. */
3851 i.vex.length = 4;
3852 i.vex.bytes[0] = 0x62;
3853
3854 /* mmmm bits. */
3855 switch (i.tm.opcode_modifier.opcodeprefix)
3856 {
3857 case VEX0F:
3858 m = 1;
3859 break;
3860 case VEX0F38:
3861 m = 2;
3862 break;
3863 case VEX0F3A:
3864 m = 3;
3865 break;
3866 default:
3867 abort ();
3868 break;
3869 }
3870
3871 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3872 bits from REX. */
3873 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3874
3875 /* The fifth bit of the second EVEX byte is 1's compliment of the
3876 REX_R bit in VREX. */
3877 if (!(i.vrex & REX_R))
3878 i.vex.bytes[1] |= 0x10;
3879 else
3880 vrex_used |= REX_R;
3881
3882 if ((i.reg_operands + i.imm_operands) == i.operands)
3883 {
3884 /* When all operands are registers, the REX_X bit in REX is not
3885 used. We reuse it to encode the upper 16 registers, which is
3886 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3887 as 1's compliment. */
3888 if ((i.vrex & REX_B))
3889 {
3890 vrex_used |= REX_B;
3891 i.vex.bytes[1] &= ~0x40;
3892 }
3893 }
3894
3895 /* EVEX instructions shouldn't need the REX prefix. */
3896 i.vrex &= ~vrex_used;
3897 gas_assert (i.vrex == 0);
3898
3899 /* Check the REX.W bit and VEXW. */
3900 if (i.tm.opcode_modifier.vexw == VEXWIG)
3901 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3902 else if (i.tm.opcode_modifier.vexw)
3903 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3904 else
3905 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3906
3907 /* Encode the U bit. */
3908 implied_prefix |= 0x4;
3909
3910 /* The third byte of the EVEX prefix. */
3911 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3912
3913 /* The fourth byte of the EVEX prefix. */
3914 /* The zeroing-masking bit. */
3915 if (i.mask && i.mask->zeroing)
3916 i.vex.bytes[3] |= 0x80;
3917
3918 /* Don't always set the broadcast bit if there is no RC. */
3919 if (!i.rounding)
3920 {
3921 /* Encode the vector length. */
3922 unsigned int vec_length;
3923
3924 if (!i.tm.opcode_modifier.evex
3925 || i.tm.opcode_modifier.evex == EVEXDYN)
3926 {
3927 unsigned int op;
3928
3929 /* Determine vector length from the last multi-length vector
3930 operand. */
3931 for (op = i.operands; op--;)
3932 if (i.tm.operand_types[op].bitfield.xmmword
3933 + i.tm.operand_types[op].bitfield.ymmword
3934 + i.tm.operand_types[op].bitfield.zmmword > 1)
3935 {
3936 if (i.types[op].bitfield.zmmword)
3937 {
3938 i.tm.opcode_modifier.evex = EVEX512;
3939 break;
3940 }
3941 else if (i.types[op].bitfield.ymmword)
3942 {
3943 i.tm.opcode_modifier.evex = EVEX256;
3944 break;
3945 }
3946 else if (i.types[op].bitfield.xmmword)
3947 {
3948 i.tm.opcode_modifier.evex = EVEX128;
3949 break;
3950 }
3951 else if (i.broadcast && (int) op == i.broadcast->operand)
3952 {
3953 switch (i.broadcast->bytes)
3954 {
3955 case 64:
3956 i.tm.opcode_modifier.evex = EVEX512;
3957 break;
3958 case 32:
3959 i.tm.opcode_modifier.evex = EVEX256;
3960 break;
3961 case 16:
3962 i.tm.opcode_modifier.evex = EVEX128;
3963 break;
3964 default:
3965 abort ();
3966 }
3967 break;
3968 }
3969 }
3970
3971 if (op >= MAX_OPERANDS)
3972 abort ();
3973 }
3974
3975 switch (i.tm.opcode_modifier.evex)
3976 {
3977 case EVEXLIG: /* LL' is ignored */
3978 vec_length = evexlig << 5;
3979 break;
3980 case EVEX128:
3981 vec_length = 0 << 5;
3982 break;
3983 case EVEX256:
3984 vec_length = 1 << 5;
3985 break;
3986 case EVEX512:
3987 vec_length = 2 << 5;
3988 break;
3989 default:
3990 abort ();
3991 break;
3992 }
3993 i.vex.bytes[3] |= vec_length;
3994 /* Encode the broadcast bit. */
3995 if (i.broadcast)
3996 i.vex.bytes[3] |= 0x10;
3997 }
3998 else
3999 {
4000 if (i.rounding->type != saeonly)
4001 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
4002 else
4003 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
4004 }
4005
4006 if (i.mask && i.mask->mask)
4007 i.vex.bytes[3] |= i.mask->mask->reg_num;
4008 }
4009
4010 static void
4011 process_immext (void)
4012 {
4013 expressionS *exp;
4014
4015 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
4016 which is coded in the same place as an 8-bit immediate field
4017 would be. Here we fake an 8-bit immediate operand from the
4018 opcode suffix stored in tm.extension_opcode.
4019
4020 AVX instructions also use this encoding, for some of
4021 3 argument instructions. */
4022
4023 gas_assert (i.imm_operands <= 1
4024 && (i.operands <= 2
4025 || (is_any_vex_encoding (&i.tm)
4026 && i.operands <= 4)));
4027
4028 exp = &im_expressions[i.imm_operands++];
4029 i.op[i.operands].imms = exp;
4030 i.types[i.operands] = imm8;
4031 i.operands++;
4032 exp->X_op = O_constant;
4033 exp->X_add_number = i.tm.extension_opcode;
4034 i.tm.extension_opcode = None;
4035 }
4036
4037
4038 static int
4039 check_hle (void)
4040 {
4041 switch (i.tm.opcode_modifier.hleprefixok)
4042 {
4043 default:
4044 abort ();
4045 case HLEPrefixNone:
4046 as_bad (_("invalid instruction `%s' after `%s'"),
4047 i.tm.name, i.hle_prefix);
4048 return 0;
4049 case HLEPrefixLock:
4050 if (i.prefix[LOCK_PREFIX])
4051 return 1;
4052 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
4053 return 0;
4054 case HLEPrefixAny:
4055 return 1;
4056 case HLEPrefixRelease:
4057 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
4058 {
4059 as_bad (_("instruction `%s' after `xacquire' not allowed"),
4060 i.tm.name);
4061 return 0;
4062 }
4063 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
4064 {
4065 as_bad (_("memory destination needed for instruction `%s'"
4066 " after `xrelease'"), i.tm.name);
4067 return 0;
4068 }
4069 return 1;
4070 }
4071 }
4072
4073 /* Try the shortest encoding by shortening operand size. */
4074
4075 static void
4076 optimize_encoding (void)
4077 {
4078 unsigned int j;
4079
4080 if (optimize_for_space
4081 && !is_any_vex_encoding (&i.tm)
4082 && i.reg_operands == 1
4083 && i.imm_operands == 1
4084 && !i.types[1].bitfield.byte
4085 && i.op[0].imms->X_op == O_constant
4086 && fits_in_imm7 (i.op[0].imms->X_add_number)
4087 && (i.tm.base_opcode == 0xa8
4088 || (i.tm.base_opcode == 0xf6
4089 && i.tm.extension_opcode == 0x0)))
4090 {
4091 /* Optimize: -Os:
4092 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4093 */
4094 unsigned int base_regnum = i.op[1].regs->reg_num;
4095 if (flag_code == CODE_64BIT || base_regnum < 4)
4096 {
4097 i.types[1].bitfield.byte = 1;
4098 /* Ignore the suffix. */
4099 i.suffix = 0;
4100 /* Convert to byte registers. */
4101 if (i.types[1].bitfield.word)
4102 j = 16;
4103 else if (i.types[1].bitfield.dword)
4104 j = 32;
4105 else
4106 j = 48;
4107 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4108 j += 8;
4109 i.op[1].regs -= j;
4110 }
4111 }
4112 else if (flag_code == CODE_64BIT
4113 && !is_any_vex_encoding (&i.tm)
4114 && ((i.types[1].bitfield.qword
4115 && i.reg_operands == 1
4116 && i.imm_operands == 1
4117 && i.op[0].imms->X_op == O_constant
4118 && ((i.tm.base_opcode == 0xb8
4119 && i.tm.extension_opcode == None
4120 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4121 || (fits_in_imm31 (i.op[0].imms->X_add_number)
4122 && ((i.tm.base_opcode == 0x24
4123 || i.tm.base_opcode == 0xa8)
4124 || (i.tm.base_opcode == 0x80
4125 && i.tm.extension_opcode == 0x4)
4126 || ((i.tm.base_opcode == 0xf6
4127 || (i.tm.base_opcode | 1) == 0xc7)
4128 && i.tm.extension_opcode == 0x0)))
4129 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4130 && i.tm.base_opcode == 0x83
4131 && i.tm.extension_opcode == 0x4)))
4132 || (i.types[0].bitfield.qword
4133 && ((i.reg_operands == 2
4134 && i.op[0].regs == i.op[1].regs
4135 && (i.tm.base_opcode == 0x30
4136 || i.tm.base_opcode == 0x28))
4137 || (i.reg_operands == 1
4138 && i.operands == 1
4139 && i.tm.base_opcode == 0x30)))))
4140 {
4141 /* Optimize: -O:
4142 andq $imm31, %r64 -> andl $imm31, %r32
4143 andq $imm7, %r64 -> andl $imm7, %r32
4144 testq $imm31, %r64 -> testl $imm31, %r32
4145 xorq %r64, %r64 -> xorl %r32, %r32
4146 subq %r64, %r64 -> subl %r32, %r32
4147 movq $imm31, %r64 -> movl $imm31, %r32
4148 movq $imm32, %r64 -> movl $imm32, %r32
4149 */
4150 i.tm.opcode_modifier.norex64 = 1;
4151 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
4152 {
4153 /* Handle
4154 movq $imm31, %r64 -> movl $imm31, %r32
4155 movq $imm32, %r64 -> movl $imm32, %r32
4156 */
4157 i.tm.operand_types[0].bitfield.imm32 = 1;
4158 i.tm.operand_types[0].bitfield.imm32s = 0;
4159 i.tm.operand_types[0].bitfield.imm64 = 0;
4160 i.types[0].bitfield.imm32 = 1;
4161 i.types[0].bitfield.imm32s = 0;
4162 i.types[0].bitfield.imm64 = 0;
4163 i.types[1].bitfield.dword = 1;
4164 i.types[1].bitfield.qword = 0;
4165 if ((i.tm.base_opcode | 1) == 0xc7)
4166 {
4167 /* Handle
4168 movq $imm31, %r64 -> movl $imm31, %r32
4169 */
4170 i.tm.base_opcode = 0xb8;
4171 i.tm.extension_opcode = None;
4172 i.tm.opcode_modifier.w = 0;
4173 i.tm.opcode_modifier.modrm = 0;
4174 }
4175 }
4176 }
4177 else if (optimize > 1
4178 && !optimize_for_space
4179 && !is_any_vex_encoding (&i.tm)
4180 && i.reg_operands == 2
4181 && i.op[0].regs == i.op[1].regs
4182 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4183 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4184 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4185 {
4186 /* Optimize: -O2:
4187 andb %rN, %rN -> testb %rN, %rN
4188 andw %rN, %rN -> testw %rN, %rN
4189 andq %rN, %rN -> testq %rN, %rN
4190 orb %rN, %rN -> testb %rN, %rN
4191 orw %rN, %rN -> testw %rN, %rN
4192 orq %rN, %rN -> testq %rN, %rN
4193
4194 and outside of 64-bit mode
4195
4196 andl %rN, %rN -> testl %rN, %rN
4197 orl %rN, %rN -> testl %rN, %rN
4198 */
4199 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4200 }
4201 else if (i.reg_operands == 3
4202 && i.op[0].regs == i.op[1].regs
4203 && !i.types[2].bitfield.xmmword
4204 && (i.tm.opcode_modifier.vex
4205 || ((!i.mask || i.mask->zeroing)
4206 && !i.rounding
4207 && is_evex_encoding (&i.tm)
4208 && (i.vec_encoding != vex_encoding_evex
4209 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4210 || i.tm.cpu_flags.bitfield.cpuavx512vl
4211 || (i.tm.operand_types[2].bitfield.zmmword
4212 && i.types[2].bitfield.ymmword))))
4213 && ((i.tm.base_opcode == 0x55
4214 || i.tm.base_opcode == 0x6655
4215 || i.tm.base_opcode == 0x66df
4216 || i.tm.base_opcode == 0x57
4217 || i.tm.base_opcode == 0x6657
4218 || i.tm.base_opcode == 0x66ef
4219 || i.tm.base_opcode == 0x66f8
4220 || i.tm.base_opcode == 0x66f9
4221 || i.tm.base_opcode == 0x66fa
4222 || i.tm.base_opcode == 0x66fb
4223 || i.tm.base_opcode == 0x42
4224 || i.tm.base_opcode == 0x6642
4225 || i.tm.base_opcode == 0x47
4226 || i.tm.base_opcode == 0x6647)
4227 && i.tm.extension_opcode == None))
4228 {
4229 /* Optimize: -O1:
4230 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4231 vpsubq and vpsubw:
4232 EVEX VOP %zmmM, %zmmM, %zmmN
4233 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4234 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4235 EVEX VOP %ymmM, %ymmM, %ymmN
4236 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4237 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4238 VEX VOP %ymmM, %ymmM, %ymmN
4239 -> VEX VOP %xmmM, %xmmM, %xmmN
4240 VOP, one of vpandn and vpxor:
4241 VEX VOP %ymmM, %ymmM, %ymmN
4242 -> VEX VOP %xmmM, %xmmM, %xmmN
4243 VOP, one of vpandnd and vpandnq:
4244 EVEX VOP %zmmM, %zmmM, %zmmN
4245 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4246 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4247 EVEX VOP %ymmM, %ymmM, %ymmN
4248 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4249 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4250 VOP, one of vpxord and vpxorq:
4251 EVEX VOP %zmmM, %zmmM, %zmmN
4252 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4253 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4254 EVEX VOP %ymmM, %ymmM, %ymmN
4255 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4256 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4257 VOP, one of kxord and kxorq:
4258 VEX VOP %kM, %kM, %kN
4259 -> VEX kxorw %kM, %kM, %kN
4260 VOP, one of kandnd and kandnq:
4261 VEX VOP %kM, %kM, %kN
4262 -> VEX kandnw %kM, %kM, %kN
4263 */
4264 if (is_evex_encoding (&i.tm))
4265 {
4266 if (i.vec_encoding != vex_encoding_evex)
4267 {
4268 i.tm.opcode_modifier.vex = VEX128;
4269 i.tm.opcode_modifier.vexw = VEXW0;
4270 i.tm.opcode_modifier.evex = 0;
4271 }
4272 else if (optimize > 1)
4273 i.tm.opcode_modifier.evex = EVEX128;
4274 else
4275 return;
4276 }
4277 else if (i.tm.operand_types[0].bitfield.class == RegMask)
4278 {
4279 i.tm.base_opcode &= 0xff;
4280 i.tm.opcode_modifier.vexw = VEXW0;
4281 }
4282 else
4283 i.tm.opcode_modifier.vex = VEX128;
4284
4285 if (i.tm.opcode_modifier.vex)
4286 for (j = 0; j < 3; j++)
4287 {
4288 i.types[j].bitfield.xmmword = 1;
4289 i.types[j].bitfield.ymmword = 0;
4290 }
4291 }
4292 else if (i.vec_encoding != vex_encoding_evex
4293 && !i.types[0].bitfield.zmmword
4294 && !i.types[1].bitfield.zmmword
4295 && !i.mask
4296 && !i.broadcast
4297 && is_evex_encoding (&i.tm)
4298 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4299 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4300 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4301 || (i.tm.base_opcode & ~4) == 0x66db
4302 || (i.tm.base_opcode & ~4) == 0x66eb)
4303 && i.tm.extension_opcode == None)
4304 {
4305 /* Optimize: -O1:
4306 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4307 vmovdqu32 and vmovdqu64:
4308 EVEX VOP %xmmM, %xmmN
4309 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4310 EVEX VOP %ymmM, %ymmN
4311 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4312 EVEX VOP %xmmM, mem
4313 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4314 EVEX VOP %ymmM, mem
4315 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4316 EVEX VOP mem, %xmmN
4317 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4318 EVEX VOP mem, %ymmN
4319 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4320 VOP, one of vpand, vpandn, vpor, vpxor:
4321 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4322 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4323 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4324 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4325 EVEX VOP{d,q} mem, %xmmM, %xmmN
4326 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4327 EVEX VOP{d,q} mem, %ymmM, %ymmN
4328 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4329 */
4330 for (j = 0; j < i.operands; j++)
4331 if (operand_type_check (i.types[j], disp)
4332 && i.op[j].disps->X_op == O_constant)
4333 {
4334 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4335 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4336 bytes, we choose EVEX Disp8 over VEX Disp32. */
4337 int evex_disp8, vex_disp8;
4338 unsigned int memshift = i.memshift;
4339 offsetT n = i.op[j].disps->X_add_number;
4340
4341 evex_disp8 = fits_in_disp8 (n);
4342 i.memshift = 0;
4343 vex_disp8 = fits_in_disp8 (n);
4344 if (evex_disp8 != vex_disp8)
4345 {
4346 i.memshift = memshift;
4347 return;
4348 }
4349
4350 i.types[j].bitfield.disp8 = vex_disp8;
4351 break;
4352 }
4353 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4354 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4355 i.tm.opcode_modifier.vex
4356 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4357 i.tm.opcode_modifier.vexw = VEXW0;
4358 /* VPAND, VPOR, and VPXOR are commutative. */
4359 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4360 i.tm.opcode_modifier.commutative = 1;
4361 i.tm.opcode_modifier.evex = 0;
4362 i.tm.opcode_modifier.masking = 0;
4363 i.tm.opcode_modifier.broadcast = 0;
4364 i.tm.opcode_modifier.disp8memshift = 0;
4365 i.memshift = 0;
4366 if (j < i.operands)
4367 i.types[j].bitfield.disp8
4368 = fits_in_disp8 (i.op[j].disps->X_add_number);
4369 }
4370 }
4371
4372 /* Return non-zero for load instruction. */
4373
4374 static int
4375 load_insn_p (void)
4376 {
4377 unsigned int dest;
4378 int any_vex_p = is_any_vex_encoding (&i.tm);
4379 unsigned int base_opcode = i.tm.base_opcode | 1;
4380
4381 if (!any_vex_p)
4382 {
4383 /* Anysize insns: lea, invlpg, clflush, prefetchnta, prefetcht0,
4384 prefetcht1, prefetcht2, prefetchtw, bndmk, bndcl, bndcu, bndcn,
4385 bndstx, bndldx, prefetchwt1, clflushopt, clwb, cldemote. */
4386 if (i.tm.opcode_modifier.anysize)
4387 return 0;
4388
4389 /* pop, popf, popa. */
4390 if (strcmp (i.tm.name, "pop") == 0
4391 || i.tm.base_opcode == 0x9d
4392 || i.tm.base_opcode == 0x61)
4393 return 1;
4394
4395 /* movs, cmps, lods, scas. */
4396 if ((i.tm.base_opcode | 0xb) == 0xaf)
4397 return 1;
4398
4399 /* outs, xlatb. */
4400 if (base_opcode == 0x6f
4401 || i.tm.base_opcode == 0xd7)
4402 return 1;
4403 /* NB: For AMD-specific insns with implicit memory operands,
4404 they're intentionally not covered. */
4405 }
4406
4407 /* No memory operand. */
4408 if (!i.mem_operands)
4409 return 0;
4410
4411 if (any_vex_p)
4412 {
4413 /* vldmxcsr. */
4414 if (i.tm.base_opcode == 0xae
4415 && i.tm.opcode_modifier.vex
4416 && i.tm.opcode_modifier.opcodeprefix == VEX0F
4417 && i.tm.extension_opcode == 2)
4418 return 1;
4419 }
4420 else
4421 {
4422 /* test, not, neg, mul, imul, div, idiv. */
4423 if ((i.tm.base_opcode == 0xf6 || i.tm.base_opcode == 0xf7)
4424 && i.tm.extension_opcode != 1)
4425 return 1;
4426
4427 /* inc, dec. */
4428 if (base_opcode == 0xff && i.tm.extension_opcode <= 1)
4429 return 1;
4430
4431 /* add, or, adc, sbb, and, sub, xor, cmp. */
4432 if (i.tm.base_opcode >= 0x80 && i.tm.base_opcode <= 0x83)
4433 return 1;
4434
4435 /* bt, bts, btr, btc. */
4436 if (i.tm.base_opcode == 0xfba
4437 && (i.tm.extension_opcode >= 4 && i.tm.extension_opcode <= 7))
4438 return 1;
4439
4440 /* rol, ror, rcl, rcr, shl/sal, shr, sar. */
4441 if ((base_opcode == 0xc1
4442 || (i.tm.base_opcode >= 0xd0 && i.tm.base_opcode <= 0xd3))
4443 && i.tm.extension_opcode != 6)
4444 return 1;
4445
4446 /* cmpxchg8b, cmpxchg16b, xrstors. */
4447 if (i.tm.base_opcode == 0xfc7
4448 && i.tm.opcode_modifier.opcodeprefix == 0
4449 && (i.tm.extension_opcode == 1 || i.tm.extension_opcode == 3))
4450 return 1;
4451
4452 /* fxrstor, ldmxcsr, xrstor. */
4453 if (i.tm.base_opcode == 0xfae
4454 && (i.tm.extension_opcode == 1
4455 || i.tm.extension_opcode == 2
4456 || i.tm.extension_opcode == 5))
4457 return 1;
4458
4459 /* lgdt, lidt, lmsw. */
4460 if (i.tm.base_opcode == 0xf01
4461 && (i.tm.extension_opcode == 2
4462 || i.tm.extension_opcode == 3
4463 || i.tm.extension_opcode == 6))
4464 return 1;
4465
4466 /* vmptrld */
4467 if (i.tm.base_opcode == 0xfc7
4468 && i.tm.opcode_modifier.opcodeprefix == 0
4469 && i.tm.extension_opcode == 6)
4470 return 1;
4471
4472 /* Check for x87 instructions. */
4473 if (i.tm.base_opcode >= 0xd8 && i.tm.base_opcode <= 0xdf)
4474 {
4475 /* Skip fst, fstp, fstenv, fstcw. */
4476 if (i.tm.base_opcode == 0xd9
4477 && (i.tm.extension_opcode == 2
4478 || i.tm.extension_opcode == 3
4479 || i.tm.extension_opcode == 6
4480 || i.tm.extension_opcode == 7))
4481 return 0;
4482
4483 /* Skip fisttp, fist, fistp, fstp. */
4484 if (i.tm.base_opcode == 0xdb
4485 && (i.tm.extension_opcode == 1
4486 || i.tm.extension_opcode == 2
4487 || i.tm.extension_opcode == 3
4488 || i.tm.extension_opcode == 7))
4489 return 0;
4490
4491 /* Skip fisttp, fst, fstp, fsave, fstsw. */
4492 if (i.tm.base_opcode == 0xdd
4493 && (i.tm.extension_opcode == 1
4494 || i.tm.extension_opcode == 2
4495 || i.tm.extension_opcode == 3
4496 || i.tm.extension_opcode == 6
4497 || i.tm.extension_opcode == 7))
4498 return 0;
4499
4500 /* Skip fisttp, fist, fistp, fbstp, fistp. */
4501 if (i.tm.base_opcode == 0xdf
4502 && (i.tm.extension_opcode == 1
4503 || i.tm.extension_opcode == 2
4504 || i.tm.extension_opcode == 3
4505 || i.tm.extension_opcode == 6
4506 || i.tm.extension_opcode == 7))
4507 return 0;
4508
4509 return 1;
4510 }
4511 }
4512
4513 dest = i.operands - 1;
4514
4515 /* Check fake imm8 operand and 3 source operands. */
4516 if ((i.tm.opcode_modifier.immext
4517 || i.tm.opcode_modifier.vexsources == VEX3SOURCES)
4518 && i.types[dest].bitfield.imm8)
4519 dest--;
4520
4521 /* add, or, adc, sbb, and, sub, xor, cmp, test, xchg, xadd */
4522 if (!any_vex_p
4523 && (base_opcode == 0x1
4524 || base_opcode == 0x9
4525 || base_opcode == 0x11
4526 || base_opcode == 0x19
4527 || base_opcode == 0x21
4528 || base_opcode == 0x29
4529 || base_opcode == 0x31
4530 || base_opcode == 0x39
4531 || (i.tm.base_opcode >= 0x84 && i.tm.base_opcode <= 0x87)
4532 || base_opcode == 0xfc1))
4533 return 1;
4534
4535 /* Check for load instruction. */
4536 return (i.types[dest].bitfield.class != ClassNone
4537 || i.types[dest].bitfield.instance == Accum);
4538 }
4539
4540 /* Output lfence, 0xfaee8, after instruction. */
4541
4542 static void
4543 insert_lfence_after (void)
4544 {
4545 if (lfence_after_load && load_insn_p ())
4546 {
4547 /* There are also two REP string instructions that require
4548 special treatment. Specifically, the compare string (CMPS)
4549 and scan string (SCAS) instructions set EFLAGS in a manner
4550 that depends on the data being compared/scanned. When used
4551 with a REP prefix, the number of iterations may therefore
4552 vary depending on this data. If the data is a program secret
4553 chosen by the adversary using an LVI method,
4554 then this data-dependent behavior may leak some aspect
4555 of the secret. */
4556 if (((i.tm.base_opcode | 0x1) == 0xa7
4557 || (i.tm.base_opcode | 0x1) == 0xaf)
4558 && i.prefix[REP_PREFIX])
4559 {
4560 as_warn (_("`%s` changes flags which would affect control flow behavior"),
4561 i.tm.name);
4562 }
4563 char *p = frag_more (3);
4564 *p++ = 0xf;
4565 *p++ = 0xae;
4566 *p = 0xe8;
4567 }
4568 }
4569
4570 /* Output lfence, 0xfaee8, before instruction. */
4571
4572 static void
4573 insert_lfence_before (void)
4574 {
4575 char *p;
4576
4577 if (is_any_vex_encoding (&i.tm))
4578 return;
4579
4580 if (i.tm.base_opcode == 0xff
4581 && (i.tm.extension_opcode == 2 || i.tm.extension_opcode == 4))
4582 {
4583 /* Insert lfence before indirect branch if needed. */
4584
4585 if (lfence_before_indirect_branch == lfence_branch_none)
4586 return;
4587
4588 if (i.operands != 1)
4589 abort ();
4590
4591 if (i.reg_operands == 1)
4592 {
4593 /* Indirect branch via register. Don't insert lfence with
4594 -mlfence-after-load=yes. */
4595 if (lfence_after_load
4596 || lfence_before_indirect_branch == lfence_branch_memory)
4597 return;
4598 }
4599 else if (i.mem_operands == 1
4600 && lfence_before_indirect_branch != lfence_branch_register)
4601 {
4602 as_warn (_("indirect `%s` with memory operand should be avoided"),
4603 i.tm.name);
4604 return;
4605 }
4606 else
4607 return;
4608
4609 if (last_insn.kind != last_insn_other
4610 && last_insn.seg == now_seg)
4611 {
4612 as_warn_where (last_insn.file, last_insn.line,
4613 _("`%s` skips -mlfence-before-indirect-branch on `%s`"),
4614 last_insn.name, i.tm.name);
4615 return;
4616 }
4617
4618 p = frag_more (3);
4619 *p++ = 0xf;
4620 *p++ = 0xae;
4621 *p = 0xe8;
4622 return;
4623 }
4624
4625 /* Output or/not/shl and lfence before near ret. */
4626 if (lfence_before_ret != lfence_before_ret_none
4627 && (i.tm.base_opcode == 0xc2
4628 || i.tm.base_opcode == 0xc3))
4629 {
4630 if (last_insn.kind != last_insn_other
4631 && last_insn.seg == now_seg)
4632 {
4633 as_warn_where (last_insn.file, last_insn.line,
4634 _("`%s` skips -mlfence-before-ret on `%s`"),
4635 last_insn.name, i.tm.name);
4636 return;
4637 }
4638
4639 /* Near ret ingore operand size override under CPU64. */
4640 char prefix = flag_code == CODE_64BIT
4641 ? 0x48
4642 : i.prefix[DATA_PREFIX] ? 0x66 : 0x0;
4643
4644 if (lfence_before_ret == lfence_before_ret_not)
4645 {
4646 /* not: 0xf71424, may add prefix
4647 for operand size override or 64-bit code. */
4648 p = frag_more ((prefix ? 2 : 0) + 6 + 3);
4649 if (prefix)
4650 *p++ = prefix;
4651 *p++ = 0xf7;
4652 *p++ = 0x14;
4653 *p++ = 0x24;
4654 if (prefix)
4655 *p++ = prefix;
4656 *p++ = 0xf7;
4657 *p++ = 0x14;
4658 *p++ = 0x24;
4659 }
4660 else
4661 {
4662 p = frag_more ((prefix ? 1 : 0) + 4 + 3);
4663 if (prefix)
4664 *p++ = prefix;
4665 if (lfence_before_ret == lfence_before_ret_or)
4666 {
4667 /* or: 0x830c2400, may add prefix
4668 for operand size override or 64-bit code. */
4669 *p++ = 0x83;
4670 *p++ = 0x0c;
4671 }
4672 else
4673 {
4674 /* shl: 0xc1242400, may add prefix
4675 for operand size override or 64-bit code. */
4676 *p++ = 0xc1;
4677 *p++ = 0x24;
4678 }
4679
4680 *p++ = 0x24;
4681 *p++ = 0x0;
4682 }
4683
4684 *p++ = 0xf;
4685 *p++ = 0xae;
4686 *p = 0xe8;
4687 }
4688 }
4689
4690 /* This is the guts of the machine-dependent assembler. LINE points to a
4691 machine dependent instruction. This function is supposed to emit
4692 the frags/bytes it assembles to. */
4693
4694 void
4695 md_assemble (char *line)
4696 {
4697 unsigned int j;
4698 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4699 const insn_template *t;
4700
4701 /* Initialize globals. */
4702 memset (&i, '\0', sizeof (i));
4703 for (j = 0; j < MAX_OPERANDS; j++)
4704 i.reloc[j] = NO_RELOC;
4705 memset (disp_expressions, '\0', sizeof (disp_expressions));
4706 memset (im_expressions, '\0', sizeof (im_expressions));
4707 save_stack_p = save_stack;
4708
4709 /* First parse an instruction mnemonic & call i386_operand for the operands.
4710 We assume that the scrubber has arranged it so that line[0] is the valid
4711 start of a (possibly prefixed) mnemonic. */
4712
4713 line = parse_insn (line, mnemonic);
4714 if (line == NULL)
4715 return;
4716 mnem_suffix = i.suffix;
4717
4718 line = parse_operands (line, mnemonic);
4719 this_operand = -1;
4720 xfree (i.memop1_string);
4721 i.memop1_string = NULL;
4722 if (line == NULL)
4723 return;
4724
4725 /* Now we've parsed the mnemonic into a set of templates, and have the
4726 operands at hand. */
4727
4728 /* All Intel opcodes have reversed operands except for "bound", "enter",
4729 "monitor*", "mwait*", "tpause", and "umwait". We also don't reverse
4730 intersegment "jmp" and "call" instructions with 2 immediate operands so
4731 that the immediate segment precedes the offset, as it does when in AT&T
4732 mode. */
4733 if (intel_syntax
4734 && i.operands > 1
4735 && (strcmp (mnemonic, "bound") != 0)
4736 && (strcmp (mnemonic, "invlpga") != 0)
4737 && (strncmp (mnemonic, "monitor", 7) != 0)
4738 && (strncmp (mnemonic, "mwait", 5) != 0)
4739 && (strcmp (mnemonic, "tpause") != 0)
4740 && (strcmp (mnemonic, "umwait") != 0)
4741 && !(operand_type_check (i.types[0], imm)
4742 && operand_type_check (i.types[1], imm)))
4743 swap_operands ();
4744
4745 /* The order of the immediates should be reversed
4746 for 2 immediates extrq and insertq instructions */
4747 if (i.imm_operands == 2
4748 && (strcmp (mnemonic, "extrq") == 0
4749 || strcmp (mnemonic, "insertq") == 0))
4750 swap_2_operands (0, 1);
4751
4752 if (i.imm_operands)
4753 optimize_imm ();
4754
4755 /* Don't optimize displacement for movabs since it only takes 64bit
4756 displacement. */
4757 if (i.disp_operands
4758 && i.disp_encoding != disp_encoding_32bit
4759 && (flag_code != CODE_64BIT
4760 || strcmp (mnemonic, "movabs") != 0))
4761 optimize_disp ();
4762
4763 /* Next, we find a template that matches the given insn,
4764 making sure the overlap of the given operands types is consistent
4765 with the template operand types. */
4766
4767 if (!(t = match_template (mnem_suffix)))
4768 return;
4769
4770 if (sse_check != check_none
4771 && !i.tm.opcode_modifier.noavx
4772 && !i.tm.cpu_flags.bitfield.cpuavx
4773 && !i.tm.cpu_flags.bitfield.cpuavx512f
4774 && (i.tm.cpu_flags.bitfield.cpusse
4775 || i.tm.cpu_flags.bitfield.cpusse2
4776 || i.tm.cpu_flags.bitfield.cpusse3
4777 || i.tm.cpu_flags.bitfield.cpussse3
4778 || i.tm.cpu_flags.bitfield.cpusse4_1
4779 || i.tm.cpu_flags.bitfield.cpusse4_2
4780 || i.tm.cpu_flags.bitfield.cpupclmul
4781 || i.tm.cpu_flags.bitfield.cpuaes
4782 || i.tm.cpu_flags.bitfield.cpusha
4783 || i.tm.cpu_flags.bitfield.cpugfni))
4784 {
4785 (sse_check == check_warning
4786 ? as_warn
4787 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4788 }
4789
4790 if (i.tm.opcode_modifier.fwait)
4791 if (!add_prefix (FWAIT_OPCODE))
4792 return;
4793
4794 /* Check if REP prefix is OK. */
4795 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4796 {
4797 as_bad (_("invalid instruction `%s' after `%s'"),
4798 i.tm.name, i.rep_prefix);
4799 return;
4800 }
4801
4802 /* Check for lock without a lockable instruction. Destination operand
4803 must be memory unless it is xchg (0x86). */
4804 if (i.prefix[LOCK_PREFIX]
4805 && (!i.tm.opcode_modifier.islockable
4806 || i.mem_operands == 0
4807 || (i.tm.base_opcode != 0x86
4808 && !(i.flags[i.operands - 1] & Operand_Mem))))
4809 {
4810 as_bad (_("expecting lockable instruction after `lock'"));
4811 return;
4812 }
4813
4814 /* Check for data size prefix on VEX/XOP/EVEX encoded and SIMD insns. */
4815 if (i.prefix[DATA_PREFIX]
4816 && (is_any_vex_encoding (&i.tm)
4817 || i.tm.operand_types[i.imm_operands].bitfield.class >= RegMMX
4818 || i.tm.operand_types[i.imm_operands + 1].bitfield.class >= RegMMX))
4819 {
4820 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4821 return;
4822 }
4823
4824 /* Check if HLE prefix is OK. */
4825 if (i.hle_prefix && !check_hle ())
4826 return;
4827
4828 /* Check BND prefix. */
4829 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4830 as_bad (_("expecting valid branch instruction after `bnd'"));
4831
4832 /* Check NOTRACK prefix. */
4833 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4834 as_bad (_("expecting indirect branch instruction after `notrack'"));
4835
4836 if (i.tm.cpu_flags.bitfield.cpumpx)
4837 {
4838 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4839 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4840 else if (flag_code != CODE_16BIT
4841 ? i.prefix[ADDR_PREFIX]
4842 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4843 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4844 }
4845
4846 /* Insert BND prefix. */
4847 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4848 {
4849 if (!i.prefix[BND_PREFIX])
4850 add_prefix (BND_PREFIX_OPCODE);
4851 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4852 {
4853 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4854 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4855 }
4856 }
4857
4858 /* Check string instruction segment overrides. */
4859 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
4860 {
4861 gas_assert (i.mem_operands);
4862 if (!check_string ())
4863 return;
4864 i.disp_operands = 0;
4865 }
4866
4867 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4868 optimize_encoding ();
4869
4870 if (!process_suffix ())
4871 return;
4872
4873 /* Update operand types and check extended states. */
4874 for (j = 0; j < i.operands; j++)
4875 {
4876 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4877 switch (i.types[j].bitfield.class)
4878 {
4879 default:
4880 break;
4881 case RegMMX:
4882 i.xstate |= xstate_mmx;
4883 break;
4884 case RegMask:
4885 i.xstate |= xstate_mask;
4886 break;
4887 case RegSIMD:
4888 if (i.types[j].bitfield.tmmword)
4889 i.xstate |= xstate_tmm;
4890 else if (i.types[j].bitfield.zmmword)
4891 i.xstate |= xstate_zmm;
4892 else if (i.types[j].bitfield.ymmword)
4893 i.xstate |= xstate_ymm;
4894 else if (i.types[j].bitfield.xmmword)
4895 i.xstate |= xstate_xmm;
4896 break;
4897 }
4898 }
4899
4900 /* Make still unresolved immediate matches conform to size of immediate
4901 given in i.suffix. */
4902 if (!finalize_imm ())
4903 return;
4904
4905 if (i.types[0].bitfield.imm1)
4906 i.imm_operands = 0; /* kludge for shift insns. */
4907
4908 /* We only need to check those implicit registers for instructions
4909 with 3 operands or less. */
4910 if (i.operands <= 3)
4911 for (j = 0; j < i.operands; j++)
4912 if (i.types[j].bitfield.instance != InstanceNone
4913 && !i.types[j].bitfield.xmmword)
4914 i.reg_operands--;
4915
4916 /* For insns with operands there are more diddles to do to the opcode. */
4917 if (i.operands)
4918 {
4919 if (!process_operands ())
4920 return;
4921 }
4922 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4923 {
4924 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4925 as_warn (_("translating to `%sp'"), i.tm.name);
4926 }
4927
4928 if (is_any_vex_encoding (&i.tm))
4929 {
4930 if (!cpu_arch_flags.bitfield.cpui286)
4931 {
4932 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4933 i.tm.name);
4934 return;
4935 }
4936
4937 /* Check for explicit REX prefix. */
4938 if (i.prefix[REX_PREFIX] || i.rex_encoding)
4939 {
4940 as_bad (_("REX prefix invalid with `%s'"), i.tm.name);
4941 return;
4942 }
4943
4944 if (i.tm.opcode_modifier.vex)
4945 build_vex_prefix (t);
4946 else
4947 build_evex_prefix ();
4948
4949 /* The individual REX.RXBW bits got consumed. */
4950 i.rex &= REX_OPCODE;
4951 }
4952
4953 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4954 instructions may define INT_OPCODE as well, so avoid this corner
4955 case for those instructions that use MODRM. */
4956 if (i.tm.base_opcode == INT_OPCODE
4957 && !i.tm.opcode_modifier.modrm
4958 && i.op[0].imms->X_add_number == 3)
4959 {
4960 i.tm.base_opcode = INT3_OPCODE;
4961 i.imm_operands = 0;
4962 }
4963
4964 if ((i.tm.opcode_modifier.jump == JUMP
4965 || i.tm.opcode_modifier.jump == JUMP_BYTE
4966 || i.tm.opcode_modifier.jump == JUMP_DWORD)
4967 && i.op[0].disps->X_op == O_constant)
4968 {
4969 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4970 the absolute address given by the constant. Since ix86 jumps and
4971 calls are pc relative, we need to generate a reloc. */
4972 i.op[0].disps->X_add_symbol = &abs_symbol;
4973 i.op[0].disps->X_op = O_symbol;
4974 }
4975
4976 /* For 8 bit registers we need an empty rex prefix. Also if the
4977 instruction already has a prefix, we need to convert old
4978 registers to new ones. */
4979
4980 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
4981 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4982 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
4983 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4984 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4985 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
4986 && i.rex != 0))
4987 {
4988 int x;
4989
4990 i.rex |= REX_OPCODE;
4991 for (x = 0; x < 2; x++)
4992 {
4993 /* Look for 8 bit operand that uses old registers. */
4994 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
4995 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4996 {
4997 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4998 /* In case it is "hi" register, give up. */
4999 if (i.op[x].regs->reg_num > 3)
5000 as_bad (_("can't encode register '%s%s' in an "
5001 "instruction requiring REX prefix."),
5002 register_prefix, i.op[x].regs->reg_name);
5003
5004 /* Otherwise it is equivalent to the extended register.
5005 Since the encoding doesn't change this is merely
5006 cosmetic cleanup for debug output. */
5007
5008 i.op[x].regs = i.op[x].regs + 8;
5009 }
5010 }
5011 }
5012
5013 if (i.rex == 0 && i.rex_encoding)
5014 {
5015 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
5016 that uses legacy register. If it is "hi" register, don't add
5017 the REX_OPCODE byte. */
5018 int x;
5019 for (x = 0; x < 2; x++)
5020 if (i.types[x].bitfield.class == Reg
5021 && i.types[x].bitfield.byte
5022 && (i.op[x].regs->reg_flags & RegRex64) == 0
5023 && i.op[x].regs->reg_num > 3)
5024 {
5025 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
5026 i.rex_encoding = FALSE;
5027 break;
5028 }
5029
5030 if (i.rex_encoding)
5031 i.rex = REX_OPCODE;
5032 }
5033
5034 if (i.rex != 0)
5035 add_prefix (REX_OPCODE | i.rex);
5036
5037 insert_lfence_before ();
5038
5039 /* We are ready to output the insn. */
5040 output_insn ();
5041
5042 insert_lfence_after ();
5043
5044 last_insn.seg = now_seg;
5045
5046 if (i.tm.opcode_modifier.isprefix)
5047 {
5048 last_insn.kind = last_insn_prefix;
5049 last_insn.name = i.tm.name;
5050 last_insn.file = as_where (&last_insn.line);
5051 }
5052 else
5053 last_insn.kind = last_insn_other;
5054 }
5055
5056 static char *
5057 parse_insn (char *line, char *mnemonic)
5058 {
5059 char *l = line;
5060 char *token_start = l;
5061 char *mnem_p;
5062 int supported;
5063 const insn_template *t;
5064 char *dot_p = NULL;
5065
5066 while (1)
5067 {
5068 mnem_p = mnemonic;
5069 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
5070 {
5071 if (*mnem_p == '.')
5072 dot_p = mnem_p;
5073 mnem_p++;
5074 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
5075 {
5076 as_bad (_("no such instruction: `%s'"), token_start);
5077 return NULL;
5078 }
5079 l++;
5080 }
5081 if (!is_space_char (*l)
5082 && *l != END_OF_INSN
5083 && (intel_syntax
5084 || (*l != PREFIX_SEPARATOR
5085 && *l != ',')))
5086 {
5087 as_bad (_("invalid character %s in mnemonic"),
5088 output_invalid (*l));
5089 return NULL;
5090 }
5091 if (token_start == l)
5092 {
5093 if (!intel_syntax && *l == PREFIX_SEPARATOR)
5094 as_bad (_("expecting prefix; got nothing"));
5095 else
5096 as_bad (_("expecting mnemonic; got nothing"));
5097 return NULL;
5098 }
5099
5100 /* Look up instruction (or prefix) via hash table. */
5101 current_templates = (const templates *) str_hash_find (op_hash, mnemonic);
5102
5103 if (*l != END_OF_INSN
5104 && (!is_space_char (*l) || l[1] != END_OF_INSN)
5105 && current_templates
5106 && current_templates->start->opcode_modifier.isprefix)
5107 {
5108 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
5109 {
5110 as_bad ((flag_code != CODE_64BIT
5111 ? _("`%s' is only supported in 64-bit mode")
5112 : _("`%s' is not supported in 64-bit mode")),
5113 current_templates->start->name);
5114 return NULL;
5115 }
5116 /* If we are in 16-bit mode, do not allow addr16 or data16.
5117 Similarly, in 32-bit mode, do not allow addr32 or data32. */
5118 if ((current_templates->start->opcode_modifier.size == SIZE16
5119 || current_templates->start->opcode_modifier.size == SIZE32)
5120 && flag_code != CODE_64BIT
5121 && ((current_templates->start->opcode_modifier.size == SIZE32)
5122 ^ (flag_code == CODE_16BIT)))
5123 {
5124 as_bad (_("redundant %s prefix"),
5125 current_templates->start->name);
5126 return NULL;
5127 }
5128 if (current_templates->start->opcode_length == 0)
5129 {
5130 /* Handle pseudo prefixes. */
5131 switch (current_templates->start->base_opcode)
5132 {
5133 case Prefix_Disp8:
5134 /* {disp8} */
5135 i.disp_encoding = disp_encoding_8bit;
5136 break;
5137 case Prefix_Disp16:
5138 /* {disp16} */
5139 i.disp_encoding = disp_encoding_16bit;
5140 break;
5141 case Prefix_Disp32:
5142 /* {disp32} */
5143 i.disp_encoding = disp_encoding_32bit;
5144 break;
5145 case Prefix_Load:
5146 /* {load} */
5147 i.dir_encoding = dir_encoding_load;
5148 break;
5149 case Prefix_Store:
5150 /* {store} */
5151 i.dir_encoding = dir_encoding_store;
5152 break;
5153 case Prefix_VEX:
5154 /* {vex} */
5155 i.vec_encoding = vex_encoding_vex;
5156 break;
5157 case Prefix_VEX3:
5158 /* {vex3} */
5159 i.vec_encoding = vex_encoding_vex3;
5160 break;
5161 case Prefix_EVEX:
5162 /* {evex} */
5163 i.vec_encoding = vex_encoding_evex;
5164 break;
5165 case Prefix_REX:
5166 /* {rex} */
5167 i.rex_encoding = TRUE;
5168 break;
5169 case Prefix_NoOptimize:
5170 /* {nooptimize} */
5171 i.no_optimize = TRUE;
5172 break;
5173 default:
5174 abort ();
5175 }
5176 }
5177 else
5178 {
5179 /* Add prefix, checking for repeated prefixes. */
5180 switch (add_prefix (current_templates->start->base_opcode))
5181 {
5182 case PREFIX_EXIST:
5183 return NULL;
5184 case PREFIX_DS:
5185 if (current_templates->start->cpu_flags.bitfield.cpuibt)
5186 i.notrack_prefix = current_templates->start->name;
5187 break;
5188 case PREFIX_REP:
5189 if (current_templates->start->cpu_flags.bitfield.cpuhle)
5190 i.hle_prefix = current_templates->start->name;
5191 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
5192 i.bnd_prefix = current_templates->start->name;
5193 else
5194 i.rep_prefix = current_templates->start->name;
5195 break;
5196 default:
5197 break;
5198 }
5199 }
5200 /* Skip past PREFIX_SEPARATOR and reset token_start. */
5201 token_start = ++l;
5202 }
5203 else
5204 break;
5205 }
5206
5207 if (!current_templates)
5208 {
5209 /* Deprecated functionality (new code should use pseudo-prefixes instead):
5210 Check if we should swap operand or force 32bit displacement in
5211 encoding. */
5212 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
5213 i.dir_encoding = dir_encoding_swap;
5214 else if (mnem_p - 3 == dot_p
5215 && dot_p[1] == 'd'
5216 && dot_p[2] == '8')
5217 i.disp_encoding = disp_encoding_8bit;
5218 else if (mnem_p - 4 == dot_p
5219 && dot_p[1] == 'd'
5220 && dot_p[2] == '3'
5221 && dot_p[3] == '2')
5222 i.disp_encoding = disp_encoding_32bit;
5223 else
5224 goto check_suffix;
5225 mnem_p = dot_p;
5226 *dot_p = '\0';
5227 current_templates = (const templates *) str_hash_find (op_hash, mnemonic);
5228 }
5229
5230 if (!current_templates)
5231 {
5232 check_suffix:
5233 if (mnem_p > mnemonic)
5234 {
5235 /* See if we can get a match by trimming off a suffix. */
5236 switch (mnem_p[-1])
5237 {
5238 case WORD_MNEM_SUFFIX:
5239 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
5240 i.suffix = SHORT_MNEM_SUFFIX;
5241 else
5242 /* Fall through. */
5243 case BYTE_MNEM_SUFFIX:
5244 case QWORD_MNEM_SUFFIX:
5245 i.suffix = mnem_p[-1];
5246 mnem_p[-1] = '\0';
5247 current_templates
5248 = (const templates *) str_hash_find (op_hash, mnemonic);
5249 break;
5250 case SHORT_MNEM_SUFFIX:
5251 case LONG_MNEM_SUFFIX:
5252 if (!intel_syntax)
5253 {
5254 i.suffix = mnem_p[-1];
5255 mnem_p[-1] = '\0';
5256 current_templates
5257 = (const templates *) str_hash_find (op_hash, mnemonic);
5258 }
5259 break;
5260
5261 /* Intel Syntax. */
5262 case 'd':
5263 if (intel_syntax)
5264 {
5265 if (intel_float_operand (mnemonic) == 1)
5266 i.suffix = SHORT_MNEM_SUFFIX;
5267 else
5268 i.suffix = LONG_MNEM_SUFFIX;
5269 mnem_p[-1] = '\0';
5270 current_templates
5271 = (const templates *) str_hash_find (op_hash, mnemonic);
5272 }
5273 break;
5274 }
5275 }
5276
5277 if (!current_templates)
5278 {
5279 as_bad (_("no such instruction: `%s'"), token_start);
5280 return NULL;
5281 }
5282 }
5283
5284 if (current_templates->start->opcode_modifier.jump == JUMP
5285 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
5286 {
5287 /* Check for a branch hint. We allow ",pt" and ",pn" for
5288 predict taken and predict not taken respectively.
5289 I'm not sure that branch hints actually do anything on loop
5290 and jcxz insns (JumpByte) for current Pentium4 chips. They
5291 may work in the future and it doesn't hurt to accept them
5292 now. */
5293 if (l[0] == ',' && l[1] == 'p')
5294 {
5295 if (l[2] == 't')
5296 {
5297 if (!add_prefix (DS_PREFIX_OPCODE))
5298 return NULL;
5299 l += 3;
5300 }
5301 else if (l[2] == 'n')
5302 {
5303 if (!add_prefix (CS_PREFIX_OPCODE))
5304 return NULL;
5305 l += 3;
5306 }
5307 }
5308 }
5309 /* Any other comma loses. */
5310 if (*l == ',')
5311 {
5312 as_bad (_("invalid character %s in mnemonic"),
5313 output_invalid (*l));
5314 return NULL;
5315 }
5316
5317 /* Check if instruction is supported on specified architecture. */
5318 supported = 0;
5319 for (t = current_templates->start; t < current_templates->end; ++t)
5320 {
5321 supported |= cpu_flags_match (t);
5322 if (supported == CPU_FLAGS_PERFECT_MATCH)
5323 {
5324 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
5325 as_warn (_("use .code16 to ensure correct addressing mode"));
5326
5327 return l;
5328 }
5329 }
5330
5331 if (!(supported & CPU_FLAGS_64BIT_MATCH))
5332 as_bad (flag_code == CODE_64BIT
5333 ? _("`%s' is not supported in 64-bit mode")
5334 : _("`%s' is only supported in 64-bit mode"),
5335 current_templates->start->name);
5336 else
5337 as_bad (_("`%s' is not supported on `%s%s'"),
5338 current_templates->start->name,
5339 cpu_arch_name ? cpu_arch_name : default_arch,
5340 cpu_sub_arch_name ? cpu_sub_arch_name : "");
5341
5342 return NULL;
5343 }
5344
5345 static char *
5346 parse_operands (char *l, const char *mnemonic)
5347 {
5348 char *token_start;
5349
5350 /* 1 if operand is pending after ','. */
5351 unsigned int expecting_operand = 0;
5352
5353 /* Non-zero if operand parens not balanced. */
5354 unsigned int paren_not_balanced;
5355
5356 while (*l != END_OF_INSN)
5357 {
5358 /* Skip optional white space before operand. */
5359 if (is_space_char (*l))
5360 ++l;
5361 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
5362 {
5363 as_bad (_("invalid character %s before operand %d"),
5364 output_invalid (*l),
5365 i.operands + 1);
5366 return NULL;
5367 }
5368 token_start = l; /* After white space. */
5369 paren_not_balanced = 0;
5370 while (paren_not_balanced || *l != ',')
5371 {
5372 if (*l == END_OF_INSN)
5373 {
5374 if (paren_not_balanced)
5375 {
5376 if (!intel_syntax)
5377 as_bad (_("unbalanced parenthesis in operand %d."),
5378 i.operands + 1);
5379 else
5380 as_bad (_("unbalanced brackets in operand %d."),
5381 i.operands + 1);
5382 return NULL;
5383 }
5384 else
5385 break; /* we are done */
5386 }
5387 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
5388 {
5389 as_bad (_("invalid character %s in operand %d"),
5390 output_invalid (*l),
5391 i.operands + 1);
5392 return NULL;
5393 }
5394 if (!intel_syntax)
5395 {
5396 if (*l == '(')
5397 ++paren_not_balanced;
5398 if (*l == ')')
5399 --paren_not_balanced;
5400 }
5401 else
5402 {
5403 if (*l == '[')
5404 ++paren_not_balanced;
5405 if (*l == ']')
5406 --paren_not_balanced;
5407 }
5408 l++;
5409 }
5410 if (l != token_start)
5411 { /* Yes, we've read in another operand. */
5412 unsigned int operand_ok;
5413 this_operand = i.operands++;
5414 if (i.operands > MAX_OPERANDS)
5415 {
5416 as_bad (_("spurious operands; (%d operands/instruction max)"),
5417 MAX_OPERANDS);
5418 return NULL;
5419 }
5420 i.types[this_operand].bitfield.unspecified = 1;
5421 /* Now parse operand adding info to 'i' as we go along. */
5422 END_STRING_AND_SAVE (l);
5423
5424 if (i.mem_operands > 1)
5425 {
5426 as_bad (_("too many memory references for `%s'"),
5427 mnemonic);
5428 return 0;
5429 }
5430
5431 if (intel_syntax)
5432 operand_ok =
5433 i386_intel_operand (token_start,
5434 intel_float_operand (mnemonic));
5435 else
5436 operand_ok = i386_att_operand (token_start);
5437
5438 RESTORE_END_STRING (l);
5439 if (!operand_ok)
5440 return NULL;
5441 }
5442 else
5443 {
5444 if (expecting_operand)
5445 {
5446 expecting_operand_after_comma:
5447 as_bad (_("expecting operand after ','; got nothing"));
5448 return NULL;
5449 }
5450 if (*l == ',')
5451 {
5452 as_bad (_("expecting operand before ','; got nothing"));
5453 return NULL;
5454 }
5455 }
5456
5457 /* Now *l must be either ',' or END_OF_INSN. */
5458 if (*l == ',')
5459 {
5460 if (*++l == END_OF_INSN)
5461 {
5462 /* Just skip it, if it's \n complain. */
5463 goto expecting_operand_after_comma;
5464 }
5465 expecting_operand = 1;
5466 }
5467 }
5468 return l;
5469 }
5470
5471 static void
5472 swap_2_operands (int xchg1, int xchg2)
5473 {
5474 union i386_op temp_op;
5475 i386_operand_type temp_type;
5476 unsigned int temp_flags;
5477 enum bfd_reloc_code_real temp_reloc;
5478
5479 temp_type = i.types[xchg2];
5480 i.types[xchg2] = i.types[xchg1];
5481 i.types[xchg1] = temp_type;
5482
5483 temp_flags = i.flags[xchg2];
5484 i.flags[xchg2] = i.flags[xchg1];
5485 i.flags[xchg1] = temp_flags;
5486
5487 temp_op = i.op[xchg2];
5488 i.op[xchg2] = i.op[xchg1];
5489 i.op[xchg1] = temp_op;
5490
5491 temp_reloc = i.reloc[xchg2];
5492 i.reloc[xchg2] = i.reloc[xchg1];
5493 i.reloc[xchg1] = temp_reloc;
5494
5495 if (i.mask)
5496 {
5497 if (i.mask->operand == xchg1)
5498 i.mask->operand = xchg2;
5499 else if (i.mask->operand == xchg2)
5500 i.mask->operand = xchg1;
5501 }
5502 if (i.broadcast)
5503 {
5504 if (i.broadcast->operand == xchg1)
5505 i.broadcast->operand = xchg2;
5506 else if (i.broadcast->operand == xchg2)
5507 i.broadcast->operand = xchg1;
5508 }
5509 if (i.rounding)
5510 {
5511 if (i.rounding->operand == xchg1)
5512 i.rounding->operand = xchg2;
5513 else if (i.rounding->operand == xchg2)
5514 i.rounding->operand = xchg1;
5515 }
5516 }
5517
5518 static void
5519 swap_operands (void)
5520 {
5521 switch (i.operands)
5522 {
5523 case 5:
5524 case 4:
5525 swap_2_operands (1, i.operands - 2);
5526 /* Fall through. */
5527 case 3:
5528 case 2:
5529 swap_2_operands (0, i.operands - 1);
5530 break;
5531 default:
5532 abort ();
5533 }
5534
5535 if (i.mem_operands == 2)
5536 {
5537 const seg_entry *temp_seg;
5538 temp_seg = i.seg[0];
5539 i.seg[0] = i.seg[1];
5540 i.seg[1] = temp_seg;
5541 }
5542 }
5543
5544 /* Try to ensure constant immediates are represented in the smallest
5545 opcode possible. */
5546 static void
5547 optimize_imm (void)
5548 {
5549 char guess_suffix = 0;
5550 int op;
5551
5552 if (i.suffix)
5553 guess_suffix = i.suffix;
5554 else if (i.reg_operands)
5555 {
5556 /* Figure out a suffix from the last register operand specified.
5557 We can't do this properly yet, i.e. excluding special register
5558 instances, but the following works for instructions with
5559 immediates. In any case, we can't set i.suffix yet. */
5560 for (op = i.operands; --op >= 0;)
5561 if (i.types[op].bitfield.class != Reg)
5562 continue;
5563 else if (i.types[op].bitfield.byte)
5564 {
5565 guess_suffix = BYTE_MNEM_SUFFIX;
5566 break;
5567 }
5568 else if (i.types[op].bitfield.word)
5569 {
5570 guess_suffix = WORD_MNEM_SUFFIX;
5571 break;
5572 }
5573 else if (i.types[op].bitfield.dword)
5574 {
5575 guess_suffix = LONG_MNEM_SUFFIX;
5576 break;
5577 }
5578 else if (i.types[op].bitfield.qword)
5579 {
5580 guess_suffix = QWORD_MNEM_SUFFIX;
5581 break;
5582 }
5583 }
5584 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5585 guess_suffix = WORD_MNEM_SUFFIX;
5586
5587 for (op = i.operands; --op >= 0;)
5588 if (operand_type_check (i.types[op], imm))
5589 {
5590 switch (i.op[op].imms->X_op)
5591 {
5592 case O_constant:
5593 /* If a suffix is given, this operand may be shortened. */
5594 switch (guess_suffix)
5595 {
5596 case LONG_MNEM_SUFFIX:
5597 i.types[op].bitfield.imm32 = 1;
5598 i.types[op].bitfield.imm64 = 1;
5599 break;
5600 case WORD_MNEM_SUFFIX:
5601 i.types[op].bitfield.imm16 = 1;
5602 i.types[op].bitfield.imm32 = 1;
5603 i.types[op].bitfield.imm32s = 1;
5604 i.types[op].bitfield.imm64 = 1;
5605 break;
5606 case BYTE_MNEM_SUFFIX:
5607 i.types[op].bitfield.imm8 = 1;
5608 i.types[op].bitfield.imm8s = 1;
5609 i.types[op].bitfield.imm16 = 1;
5610 i.types[op].bitfield.imm32 = 1;
5611 i.types[op].bitfield.imm32s = 1;
5612 i.types[op].bitfield.imm64 = 1;
5613 break;
5614 }
5615
5616 /* If this operand is at most 16 bits, convert it
5617 to a signed 16 bit number before trying to see
5618 whether it will fit in an even smaller size.
5619 This allows a 16-bit operand such as $0xffe0 to
5620 be recognised as within Imm8S range. */
5621 if ((i.types[op].bitfield.imm16)
5622 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5623 {
5624 i.op[op].imms->X_add_number =
5625 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5626 }
5627 #ifdef BFD64
5628 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5629 if ((i.types[op].bitfield.imm32)
5630 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5631 == 0))
5632 {
5633 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5634 ^ ((offsetT) 1 << 31))
5635 - ((offsetT) 1 << 31));
5636 }
5637 #endif
5638 i.types[op]
5639 = operand_type_or (i.types[op],
5640 smallest_imm_type (i.op[op].imms->X_add_number));
5641
5642 /* We must avoid matching of Imm32 templates when 64bit
5643 only immediate is available. */
5644 if (guess_suffix == QWORD_MNEM_SUFFIX)
5645 i.types[op].bitfield.imm32 = 0;
5646 break;
5647
5648 case O_absent:
5649 case O_register:
5650 abort ();
5651
5652 /* Symbols and expressions. */
5653 default:
5654 /* Convert symbolic operand to proper sizes for matching, but don't
5655 prevent matching a set of insns that only supports sizes other
5656 than those matching the insn suffix. */
5657 {
5658 i386_operand_type mask, allowed;
5659 const insn_template *t;
5660
5661 operand_type_set (&mask, 0);
5662 operand_type_set (&allowed, 0);
5663
5664 for (t = current_templates->start;
5665 t < current_templates->end;
5666 ++t)
5667 {
5668 allowed = operand_type_or (allowed, t->operand_types[op]);
5669 allowed = operand_type_and (allowed, anyimm);
5670 }
5671 switch (guess_suffix)
5672 {
5673 case QWORD_MNEM_SUFFIX:
5674 mask.bitfield.imm64 = 1;
5675 mask.bitfield.imm32s = 1;
5676 break;
5677 case LONG_MNEM_SUFFIX:
5678 mask.bitfield.imm32 = 1;
5679 break;
5680 case WORD_MNEM_SUFFIX:
5681 mask.bitfield.imm16 = 1;
5682 break;
5683 case BYTE_MNEM_SUFFIX:
5684 mask.bitfield.imm8 = 1;
5685 break;
5686 default:
5687 break;
5688 }
5689 allowed = operand_type_and (mask, allowed);
5690 if (!operand_type_all_zero (&allowed))
5691 i.types[op] = operand_type_and (i.types[op], mask);
5692 }
5693 break;
5694 }
5695 }
5696 }
5697
5698 /* Try to use the smallest displacement type too. */
5699 static void
5700 optimize_disp (void)
5701 {
5702 int op;
5703
5704 for (op = i.operands; --op >= 0;)
5705 if (operand_type_check (i.types[op], disp))
5706 {
5707 if (i.op[op].disps->X_op == O_constant)
5708 {
5709 offsetT op_disp = i.op[op].disps->X_add_number;
5710
5711 if (i.types[op].bitfield.disp16
5712 && (op_disp & ~(offsetT) 0xffff) == 0)
5713 {
5714 /* If this operand is at most 16 bits, convert
5715 to a signed 16 bit number and don't use 64bit
5716 displacement. */
5717 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5718 i.types[op].bitfield.disp64 = 0;
5719 }
5720 #ifdef BFD64
5721 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5722 if (i.types[op].bitfield.disp32
5723 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5724 {
5725 /* If this operand is at most 32 bits, convert
5726 to a signed 32 bit number and don't use 64bit
5727 displacement. */
5728 op_disp &= (((offsetT) 2 << 31) - 1);
5729 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5730 i.types[op].bitfield.disp64 = 0;
5731 }
5732 #endif
5733 if (!op_disp && i.types[op].bitfield.baseindex)
5734 {
5735 i.types[op].bitfield.disp8 = 0;
5736 i.types[op].bitfield.disp16 = 0;
5737 i.types[op].bitfield.disp32 = 0;
5738 i.types[op].bitfield.disp32s = 0;
5739 i.types[op].bitfield.disp64 = 0;
5740 i.op[op].disps = 0;
5741 i.disp_operands--;
5742 }
5743 else if (flag_code == CODE_64BIT)
5744 {
5745 if (fits_in_signed_long (op_disp))
5746 {
5747 i.types[op].bitfield.disp64 = 0;
5748 i.types[op].bitfield.disp32s = 1;
5749 }
5750 if (i.prefix[ADDR_PREFIX]
5751 && fits_in_unsigned_long (op_disp))
5752 i.types[op].bitfield.disp32 = 1;
5753 }
5754 if ((i.types[op].bitfield.disp32
5755 || i.types[op].bitfield.disp32s
5756 || i.types[op].bitfield.disp16)
5757 && fits_in_disp8 (op_disp))
5758 i.types[op].bitfield.disp8 = 1;
5759 }
5760 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5761 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5762 {
5763 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5764 i.op[op].disps, 0, i.reloc[op]);
5765 i.types[op].bitfield.disp8 = 0;
5766 i.types[op].bitfield.disp16 = 0;
5767 i.types[op].bitfield.disp32 = 0;
5768 i.types[op].bitfield.disp32s = 0;
5769 i.types[op].bitfield.disp64 = 0;
5770 }
5771 else
5772 /* We only support 64bit displacement on constants. */
5773 i.types[op].bitfield.disp64 = 0;
5774 }
5775 }
5776
5777 /* Return 1 if there is a match in broadcast bytes between operand
5778 GIVEN and instruction template T. */
5779
5780 static INLINE int
5781 match_broadcast_size (const insn_template *t, unsigned int given)
5782 {
5783 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5784 && i.types[given].bitfield.byte)
5785 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5786 && i.types[given].bitfield.word)
5787 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5788 && i.types[given].bitfield.dword)
5789 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5790 && i.types[given].bitfield.qword));
5791 }
5792
5793 /* Check if operands are valid for the instruction. */
5794
5795 static int
5796 check_VecOperands (const insn_template *t)
5797 {
5798 unsigned int op;
5799 i386_cpu_flags cpu;
5800
5801 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5802 any one operand are implicity requiring AVX512VL support if the actual
5803 operand size is YMMword or XMMword. Since this function runs after
5804 template matching, there's no need to check for YMMword/XMMword in
5805 the template. */
5806 cpu = cpu_flags_and (t->cpu_flags, avx512);
5807 if (!cpu_flags_all_zero (&cpu)
5808 && !t->cpu_flags.bitfield.cpuavx512vl
5809 && !cpu_arch_flags.bitfield.cpuavx512vl)
5810 {
5811 for (op = 0; op < t->operands; ++op)
5812 {
5813 if (t->operand_types[op].bitfield.zmmword
5814 && (i.types[op].bitfield.ymmword
5815 || i.types[op].bitfield.xmmword))
5816 {
5817 i.error = unsupported;
5818 return 1;
5819 }
5820 }
5821 }
5822
5823 /* Without VSIB byte, we can't have a vector register for index. */
5824 if (!t->opcode_modifier.sib
5825 && i.index_reg
5826 && (i.index_reg->reg_type.bitfield.xmmword
5827 || i.index_reg->reg_type.bitfield.ymmword
5828 || i.index_reg->reg_type.bitfield.zmmword))
5829 {
5830 i.error = unsupported_vector_index_register;
5831 return 1;
5832 }
5833
5834 /* Check if default mask is allowed. */
5835 if (t->opcode_modifier.nodefmask
5836 && (!i.mask || i.mask->mask->reg_num == 0))
5837 {
5838 i.error = no_default_mask;
5839 return 1;
5840 }
5841
5842 /* For VSIB byte, we need a vector register for index, and all vector
5843 registers must be distinct. */
5844 if (t->opcode_modifier.sib && t->opcode_modifier.sib != SIBMEM)
5845 {
5846 if (!i.index_reg
5847 || !((t->opcode_modifier.sib == VECSIB128
5848 && i.index_reg->reg_type.bitfield.xmmword)
5849 || (t->opcode_modifier.sib == VECSIB256
5850 && i.index_reg->reg_type.bitfield.ymmword)
5851 || (t->opcode_modifier.sib == VECSIB512
5852 && i.index_reg->reg_type.bitfield.zmmword)))
5853 {
5854 i.error = invalid_vsib_address;
5855 return 1;
5856 }
5857
5858 gas_assert (i.reg_operands == 2 || i.mask);
5859 if (i.reg_operands == 2 && !i.mask)
5860 {
5861 gas_assert (i.types[0].bitfield.class == RegSIMD);
5862 gas_assert (i.types[0].bitfield.xmmword
5863 || i.types[0].bitfield.ymmword);
5864 gas_assert (i.types[2].bitfield.class == RegSIMD);
5865 gas_assert (i.types[2].bitfield.xmmword
5866 || i.types[2].bitfield.ymmword);
5867 if (operand_check == check_none)
5868 return 0;
5869 if (register_number (i.op[0].regs)
5870 != register_number (i.index_reg)
5871 && register_number (i.op[2].regs)
5872 != register_number (i.index_reg)
5873 && register_number (i.op[0].regs)
5874 != register_number (i.op[2].regs))
5875 return 0;
5876 if (operand_check == check_error)
5877 {
5878 i.error = invalid_vector_register_set;
5879 return 1;
5880 }
5881 as_warn (_("mask, index, and destination registers should be distinct"));
5882 }
5883 else if (i.reg_operands == 1 && i.mask)
5884 {
5885 if (i.types[1].bitfield.class == RegSIMD
5886 && (i.types[1].bitfield.xmmword
5887 || i.types[1].bitfield.ymmword
5888 || i.types[1].bitfield.zmmword)
5889 && (register_number (i.op[1].regs)
5890 == register_number (i.index_reg)))
5891 {
5892 if (operand_check == check_error)
5893 {
5894 i.error = invalid_vector_register_set;
5895 return 1;
5896 }
5897 if (operand_check != check_none)
5898 as_warn (_("index and destination registers should be distinct"));
5899 }
5900 }
5901 }
5902
5903 /* For AMX instructions with three tmmword operands, all tmmword operand must be
5904 distinct */
5905 if (t->operand_types[0].bitfield.tmmword
5906 && i.reg_operands == 3)
5907 {
5908 if (register_number (i.op[0].regs)
5909 == register_number (i.op[1].regs)
5910 || register_number (i.op[0].regs)
5911 == register_number (i.op[2].regs)
5912 || register_number (i.op[1].regs)
5913 == register_number (i.op[2].regs))
5914 {
5915 i.error = invalid_tmm_register_set;
5916 return 1;
5917 }
5918 }
5919
5920 /* Check if broadcast is supported by the instruction and is applied
5921 to the memory operand. */
5922 if (i.broadcast)
5923 {
5924 i386_operand_type type, overlap;
5925
5926 /* Check if specified broadcast is supported in this instruction,
5927 and its broadcast bytes match the memory operand. */
5928 op = i.broadcast->operand;
5929 if (!t->opcode_modifier.broadcast
5930 || !(i.flags[op] & Operand_Mem)
5931 || (!i.types[op].bitfield.unspecified
5932 && !match_broadcast_size (t, op)))
5933 {
5934 bad_broadcast:
5935 i.error = unsupported_broadcast;
5936 return 1;
5937 }
5938
5939 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5940 * i.broadcast->type);
5941 operand_type_set (&type, 0);
5942 switch (i.broadcast->bytes)
5943 {
5944 case 2:
5945 type.bitfield.word = 1;
5946 break;
5947 case 4:
5948 type.bitfield.dword = 1;
5949 break;
5950 case 8:
5951 type.bitfield.qword = 1;
5952 break;
5953 case 16:
5954 type.bitfield.xmmword = 1;
5955 break;
5956 case 32:
5957 type.bitfield.ymmword = 1;
5958 break;
5959 case 64:
5960 type.bitfield.zmmword = 1;
5961 break;
5962 default:
5963 goto bad_broadcast;
5964 }
5965
5966 overlap = operand_type_and (type, t->operand_types[op]);
5967 if (t->operand_types[op].bitfield.class == RegSIMD
5968 && t->operand_types[op].bitfield.byte
5969 + t->operand_types[op].bitfield.word
5970 + t->operand_types[op].bitfield.dword
5971 + t->operand_types[op].bitfield.qword > 1)
5972 {
5973 overlap.bitfield.xmmword = 0;
5974 overlap.bitfield.ymmword = 0;
5975 overlap.bitfield.zmmword = 0;
5976 }
5977 if (operand_type_all_zero (&overlap))
5978 goto bad_broadcast;
5979
5980 if (t->opcode_modifier.checkregsize)
5981 {
5982 unsigned int j;
5983
5984 type.bitfield.baseindex = 1;
5985 for (j = 0; j < i.operands; ++j)
5986 {
5987 if (j != op
5988 && !operand_type_register_match(i.types[j],
5989 t->operand_types[j],
5990 type,
5991 t->operand_types[op]))
5992 goto bad_broadcast;
5993 }
5994 }
5995 }
5996 /* If broadcast is supported in this instruction, we need to check if
5997 operand of one-element size isn't specified without broadcast. */
5998 else if (t->opcode_modifier.broadcast && i.mem_operands)
5999 {
6000 /* Find memory operand. */
6001 for (op = 0; op < i.operands; op++)
6002 if (i.flags[op] & Operand_Mem)
6003 break;
6004 gas_assert (op < i.operands);
6005 /* Check size of the memory operand. */
6006 if (match_broadcast_size (t, op))
6007 {
6008 i.error = broadcast_needed;
6009 return 1;
6010 }
6011 }
6012 else
6013 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
6014
6015 /* Check if requested masking is supported. */
6016 if (i.mask)
6017 {
6018 switch (t->opcode_modifier.masking)
6019 {
6020 case BOTH_MASKING:
6021 break;
6022 case MERGING_MASKING:
6023 if (i.mask->zeroing)
6024 {
6025 case 0:
6026 i.error = unsupported_masking;
6027 return 1;
6028 }
6029 break;
6030 case DYNAMIC_MASKING:
6031 /* Memory destinations allow only merging masking. */
6032 if (i.mask->zeroing && i.mem_operands)
6033 {
6034 /* Find memory operand. */
6035 for (op = 0; op < i.operands; op++)
6036 if (i.flags[op] & Operand_Mem)
6037 break;
6038 gas_assert (op < i.operands);
6039 if (op == i.operands - 1)
6040 {
6041 i.error = unsupported_masking;
6042 return 1;
6043 }
6044 }
6045 break;
6046 default:
6047 abort ();
6048 }
6049 }
6050
6051 /* Check if masking is applied to dest operand. */
6052 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
6053 {
6054 i.error = mask_not_on_destination;
6055 return 1;
6056 }
6057
6058 /* Check RC/SAE. */
6059 if (i.rounding)
6060 {
6061 if (!t->opcode_modifier.sae
6062 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
6063 {
6064 i.error = unsupported_rc_sae;
6065 return 1;
6066 }
6067 /* If the instruction has several immediate operands and one of
6068 them is rounding, the rounding operand should be the last
6069 immediate operand. */
6070 if (i.imm_operands > 1
6071 && i.rounding->operand != (int) (i.imm_operands - 1))
6072 {
6073 i.error = rc_sae_operand_not_last_imm;
6074 return 1;
6075 }
6076 }
6077
6078 /* Check the special Imm4 cases; must be the first operand. */
6079 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
6080 {
6081 if (i.op[0].imms->X_op != O_constant
6082 || !fits_in_imm4 (i.op[0].imms->X_add_number))
6083 {
6084 i.error = bad_imm4;
6085 return 1;
6086 }
6087
6088 /* Turn off Imm<N> so that update_imm won't complain. */
6089 operand_type_set (&i.types[0], 0);
6090 }
6091
6092 /* Check vector Disp8 operand. */
6093 if (t->opcode_modifier.disp8memshift
6094 && i.disp_encoding != disp_encoding_32bit)
6095 {
6096 if (i.broadcast)
6097 i.memshift = t->opcode_modifier.broadcast - 1;
6098 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
6099 i.memshift = t->opcode_modifier.disp8memshift;
6100 else
6101 {
6102 const i386_operand_type *type = NULL;
6103
6104 i.memshift = 0;
6105 for (op = 0; op < i.operands; op++)
6106 if (i.flags[op] & Operand_Mem)
6107 {
6108 if (t->opcode_modifier.evex == EVEXLIG)
6109 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
6110 else if (t->operand_types[op].bitfield.xmmword
6111 + t->operand_types[op].bitfield.ymmword
6112 + t->operand_types[op].bitfield.zmmword <= 1)
6113 type = &t->operand_types[op];
6114 else if (!i.types[op].bitfield.unspecified)
6115 type = &i.types[op];
6116 }
6117 else if (i.types[op].bitfield.class == RegSIMD
6118 && t->opcode_modifier.evex != EVEXLIG)
6119 {
6120 if (i.types[op].bitfield.zmmword)
6121 i.memshift = 6;
6122 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
6123 i.memshift = 5;
6124 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
6125 i.memshift = 4;
6126 }
6127
6128 if (type)
6129 {
6130 if (type->bitfield.zmmword)
6131 i.memshift = 6;
6132 else if (type->bitfield.ymmword)
6133 i.memshift = 5;
6134 else if (type->bitfield.xmmword)
6135 i.memshift = 4;
6136 }
6137
6138 /* For the check in fits_in_disp8(). */
6139 if (i.memshift == 0)
6140 i.memshift = -1;
6141 }
6142
6143 for (op = 0; op < i.operands; op++)
6144 if (operand_type_check (i.types[op], disp)
6145 && i.op[op].disps->X_op == O_constant)
6146 {
6147 if (fits_in_disp8 (i.op[op].disps->X_add_number))
6148 {
6149 i.types[op].bitfield.disp8 = 1;
6150 return 0;
6151 }
6152 i.types[op].bitfield.disp8 = 0;
6153 }
6154 }
6155
6156 i.memshift = 0;
6157
6158 return 0;
6159 }
6160
6161 /* Check if encoding requirements are met by the instruction. */
6162
6163 static int
6164 VEX_check_encoding (const insn_template *t)
6165 {
6166 if (i.vec_encoding == vex_encoding_error)
6167 {
6168 i.error = unsupported;
6169 return 1;
6170 }
6171
6172 if (i.vec_encoding == vex_encoding_evex)
6173 {
6174 /* This instruction must be encoded with EVEX prefix. */
6175 if (!is_evex_encoding (t))
6176 {
6177 i.error = unsupported;
6178 return 1;
6179 }
6180 return 0;
6181 }
6182
6183 if (!t->opcode_modifier.vex)
6184 {
6185 /* This instruction template doesn't have VEX prefix. */
6186 if (i.vec_encoding != vex_encoding_default)
6187 {
6188 i.error = unsupported;
6189 return 1;
6190 }
6191 return 0;
6192 }
6193
6194 return 0;
6195 }
6196
6197 static const insn_template *
6198 match_template (char mnem_suffix)
6199 {
6200 /* Points to template once we've found it. */
6201 const insn_template *t;
6202 i386_operand_type overlap0, overlap1, overlap2, overlap3;
6203 i386_operand_type overlap4;
6204 unsigned int found_reverse_match;
6205 i386_opcode_modifier suffix_check;
6206 i386_operand_type operand_types [MAX_OPERANDS];
6207 int addr_prefix_disp;
6208 unsigned int j, size_match, check_register;
6209 enum i386_error specific_error = 0;
6210
6211 #if MAX_OPERANDS != 5
6212 # error "MAX_OPERANDS must be 5."
6213 #endif
6214
6215 found_reverse_match = 0;
6216 addr_prefix_disp = -1;
6217
6218 /* Prepare for mnemonic suffix check. */
6219 memset (&suffix_check, 0, sizeof (suffix_check));
6220 switch (mnem_suffix)
6221 {
6222 case BYTE_MNEM_SUFFIX:
6223 suffix_check.no_bsuf = 1;
6224 break;
6225 case WORD_MNEM_SUFFIX:
6226 suffix_check.no_wsuf = 1;
6227 break;
6228 case SHORT_MNEM_SUFFIX:
6229 suffix_check.no_ssuf = 1;
6230 break;
6231 case LONG_MNEM_SUFFIX:
6232 suffix_check.no_lsuf = 1;
6233 break;
6234 case QWORD_MNEM_SUFFIX:
6235 suffix_check.no_qsuf = 1;
6236 break;
6237 default:
6238 /* NB: In Intel syntax, normally we can check for memory operand
6239 size when there is no mnemonic suffix. But jmp and call have
6240 2 different encodings with Dword memory operand size, one with
6241 No_ldSuf and the other without. i.suffix is set to
6242 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
6243 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
6244 suffix_check.no_ldsuf = 1;
6245 }
6246
6247 /* Must have right number of operands. */
6248 i.error = number_of_operands_mismatch;
6249
6250 for (t = current_templates->start; t < current_templates->end; t++)
6251 {
6252 addr_prefix_disp = -1;
6253 found_reverse_match = 0;
6254
6255 if (i.operands != t->operands)
6256 continue;
6257
6258 /* Check processor support. */
6259 i.error = unsupported;
6260 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
6261 continue;
6262
6263 /* Check Pseudo Prefix. */
6264 i.error = unsupported;
6265 if (t->opcode_modifier.pseudovexprefix
6266 && !(i.vec_encoding == vex_encoding_vex
6267 || i.vec_encoding == vex_encoding_vex3))
6268 continue;
6269
6270 /* Check AT&T mnemonic. */
6271 i.error = unsupported_with_intel_mnemonic;
6272 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
6273 continue;
6274
6275 /* Check AT&T/Intel syntax. */
6276 i.error = unsupported_syntax;
6277 if ((intel_syntax && t->opcode_modifier.attsyntax)
6278 || (!intel_syntax && t->opcode_modifier.intelsyntax))
6279 continue;
6280
6281 /* Check Intel64/AMD64 ISA. */
6282 switch (isa64)
6283 {
6284 default:
6285 /* Default: Don't accept Intel64. */
6286 if (t->opcode_modifier.isa64 == INTEL64)
6287 continue;
6288 break;
6289 case amd64:
6290 /* -mamd64: Don't accept Intel64 and Intel64 only. */
6291 if (t->opcode_modifier.isa64 >= INTEL64)
6292 continue;
6293 break;
6294 case intel64:
6295 /* -mintel64: Don't accept AMD64. */
6296 if (t->opcode_modifier.isa64 == AMD64 && flag_code == CODE_64BIT)
6297 continue;
6298 break;
6299 }
6300
6301 /* Check the suffix. */
6302 i.error = invalid_instruction_suffix;
6303 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
6304 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
6305 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
6306 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
6307 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
6308 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
6309 continue;
6310
6311 size_match = operand_size_match (t);
6312 if (!size_match)
6313 continue;
6314
6315 /* This is intentionally not
6316
6317 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
6318
6319 as the case of a missing * on the operand is accepted (perhaps with
6320 a warning, issued further down). */
6321 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
6322 {
6323 i.error = operand_type_mismatch;
6324 continue;
6325 }
6326
6327 for (j = 0; j < MAX_OPERANDS; j++)
6328 operand_types[j] = t->operand_types[j];
6329
6330 /* In general, don't allow
6331 - 64-bit operands outside of 64-bit mode,
6332 - 32-bit operands on pre-386. */
6333 j = i.imm_operands + (t->operands > i.imm_operands + 1);
6334 if (((i.suffix == QWORD_MNEM_SUFFIX
6335 && flag_code != CODE_64BIT
6336 && !(t->base_opcode == 0xfc7
6337 && i.tm.opcode_modifier.opcodeprefix == 0
6338 && t->extension_opcode == 1) /* cmpxchg8b */)
6339 || (i.suffix == LONG_MNEM_SUFFIX
6340 && !cpu_arch_flags.bitfield.cpui386))
6341 && (intel_syntax
6342 ? (t->opcode_modifier.mnemonicsize != IGNORESIZE
6343 && !intel_float_operand (t->name))
6344 : intel_float_operand (t->name) != 2)
6345 && (t->operands == i.imm_operands
6346 || (operand_types[i.imm_operands].bitfield.class != RegMMX
6347 && operand_types[i.imm_operands].bitfield.class != RegSIMD
6348 && operand_types[i.imm_operands].bitfield.class != RegMask)
6349 || (operand_types[j].bitfield.class != RegMMX
6350 && operand_types[j].bitfield.class != RegSIMD
6351 && operand_types[j].bitfield.class != RegMask))
6352 && !t->opcode_modifier.sib)
6353 continue;
6354
6355 /* Do not verify operands when there are none. */
6356 if (!t->operands)
6357 {
6358 if (VEX_check_encoding (t))
6359 {
6360 specific_error = i.error;
6361 continue;
6362 }
6363
6364 /* We've found a match; break out of loop. */
6365 break;
6366 }
6367
6368 if (!t->opcode_modifier.jump
6369 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
6370 {
6371 /* There should be only one Disp operand. */
6372 for (j = 0; j < MAX_OPERANDS; j++)
6373 if (operand_type_check (operand_types[j], disp))
6374 break;
6375 if (j < MAX_OPERANDS)
6376 {
6377 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
6378
6379 addr_prefix_disp = j;
6380
6381 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
6382 operand into Disp32/Disp32/Disp16/Disp32 operand. */
6383 switch (flag_code)
6384 {
6385 case CODE_16BIT:
6386 override = !override;
6387 /* Fall through. */
6388 case CODE_32BIT:
6389 if (operand_types[j].bitfield.disp32
6390 && operand_types[j].bitfield.disp16)
6391 {
6392 operand_types[j].bitfield.disp16 = override;
6393 operand_types[j].bitfield.disp32 = !override;
6394 }
6395 operand_types[j].bitfield.disp32s = 0;
6396 operand_types[j].bitfield.disp64 = 0;
6397 break;
6398
6399 case CODE_64BIT:
6400 if (operand_types[j].bitfield.disp32s
6401 || operand_types[j].bitfield.disp64)
6402 {
6403 operand_types[j].bitfield.disp64 &= !override;
6404 operand_types[j].bitfield.disp32s &= !override;
6405 operand_types[j].bitfield.disp32 = override;
6406 }
6407 operand_types[j].bitfield.disp16 = 0;
6408 break;
6409 }
6410 }
6411 }
6412
6413 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
6414 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
6415 continue;
6416
6417 /* We check register size if needed. */
6418 if (t->opcode_modifier.checkregsize)
6419 {
6420 check_register = (1 << t->operands) - 1;
6421 if (i.broadcast)
6422 check_register &= ~(1 << i.broadcast->operand);
6423 }
6424 else
6425 check_register = 0;
6426
6427 overlap0 = operand_type_and (i.types[0], operand_types[0]);
6428 switch (t->operands)
6429 {
6430 case 1:
6431 if (!operand_type_match (overlap0, i.types[0]))
6432 continue;
6433 break;
6434 case 2:
6435 /* xchg %eax, %eax is a special case. It is an alias for nop
6436 only in 32bit mode and we can use opcode 0x90. In 64bit
6437 mode, we can't use 0x90 for xchg %eax, %eax since it should
6438 zero-extend %eax to %rax. */
6439 if (flag_code == CODE_64BIT
6440 && t->base_opcode == 0x90
6441 && i.types[0].bitfield.instance == Accum
6442 && i.types[0].bitfield.dword
6443 && i.types[1].bitfield.instance == Accum
6444 && i.types[1].bitfield.dword)
6445 continue;
6446 /* xrelease mov %eax, <disp> is another special case. It must not
6447 match the accumulator-only encoding of mov. */
6448 if (flag_code != CODE_64BIT
6449 && i.hle_prefix
6450 && t->base_opcode == 0xa0
6451 && i.types[0].bitfield.instance == Accum
6452 && (i.flags[1] & Operand_Mem))
6453 continue;
6454 /* Fall through. */
6455
6456 case 3:
6457 if (!(size_match & MATCH_STRAIGHT))
6458 goto check_reverse;
6459 /* Reverse direction of operands if swapping is possible in the first
6460 place (operands need to be symmetric) and
6461 - the load form is requested, and the template is a store form,
6462 - the store form is requested, and the template is a load form,
6463 - the non-default (swapped) form is requested. */
6464 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
6465 if (t->opcode_modifier.d && i.reg_operands == i.operands
6466 && !operand_type_all_zero (&overlap1))
6467 switch (i.dir_encoding)
6468 {
6469 case dir_encoding_load:
6470 if (operand_type_check (operand_types[i.operands - 1], anymem)
6471 || t->opcode_modifier.regmem)
6472 goto check_reverse;
6473 break;
6474
6475 case dir_encoding_store:
6476 if (!operand_type_check (operand_types[i.operands - 1], anymem)
6477 && !t->opcode_modifier.regmem)
6478 goto check_reverse;
6479 break;
6480
6481 case dir_encoding_swap:
6482 goto check_reverse;
6483
6484 case dir_encoding_default:
6485 break;
6486 }
6487 /* If we want store form, we skip the current load. */
6488 if ((i.dir_encoding == dir_encoding_store
6489 || i.dir_encoding == dir_encoding_swap)
6490 && i.mem_operands == 0
6491 && t->opcode_modifier.load)
6492 continue;
6493 /* Fall through. */
6494 case 4:
6495 case 5:
6496 overlap1 = operand_type_and (i.types[1], operand_types[1]);
6497 if (!operand_type_match (overlap0, i.types[0])
6498 || !operand_type_match (overlap1, i.types[1])
6499 || ((check_register & 3) == 3
6500 && !operand_type_register_match (i.types[0],
6501 operand_types[0],
6502 i.types[1],
6503 operand_types[1])))
6504 {
6505 /* Check if other direction is valid ... */
6506 if (!t->opcode_modifier.d)
6507 continue;
6508
6509 check_reverse:
6510 if (!(size_match & MATCH_REVERSE))
6511 continue;
6512 /* Try reversing direction of operands. */
6513 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6514 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
6515 if (!operand_type_match (overlap0, i.types[0])
6516 || !operand_type_match (overlap1, i.types[i.operands - 1])
6517 || (check_register
6518 && !operand_type_register_match (i.types[0],
6519 operand_types[i.operands - 1],
6520 i.types[i.operands - 1],
6521 operand_types[0])))
6522 {
6523 /* Does not match either direction. */
6524 continue;
6525 }
6526 /* found_reverse_match holds which of D or FloatR
6527 we've found. */
6528 if (!t->opcode_modifier.d)
6529 found_reverse_match = 0;
6530 else if (operand_types[0].bitfield.tbyte)
6531 found_reverse_match = Opcode_FloatD;
6532 else if (operand_types[0].bitfield.xmmword
6533 || operand_types[i.operands - 1].bitfield.xmmword
6534 || operand_types[0].bitfield.class == RegMMX
6535 || operand_types[i.operands - 1].bitfield.class == RegMMX
6536 || is_any_vex_encoding(t))
6537 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6538 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
6539 else
6540 found_reverse_match = Opcode_D;
6541 if (t->opcode_modifier.floatr)
6542 found_reverse_match |= Opcode_FloatR;
6543 }
6544 else
6545 {
6546 /* Found a forward 2 operand match here. */
6547 switch (t->operands)
6548 {
6549 case 5:
6550 overlap4 = operand_type_and (i.types[4],
6551 operand_types[4]);
6552 /* Fall through. */
6553 case 4:
6554 overlap3 = operand_type_and (i.types[3],
6555 operand_types[3]);
6556 /* Fall through. */
6557 case 3:
6558 overlap2 = operand_type_and (i.types[2],
6559 operand_types[2]);
6560 break;
6561 }
6562
6563 switch (t->operands)
6564 {
6565 case 5:
6566 if (!operand_type_match (overlap4, i.types[4])
6567 || !operand_type_register_match (i.types[3],
6568 operand_types[3],
6569 i.types[4],
6570 operand_types[4]))
6571 continue;
6572 /* Fall through. */
6573 case 4:
6574 if (!operand_type_match (overlap3, i.types[3])
6575 || ((check_register & 0xa) == 0xa
6576 && !operand_type_register_match (i.types[1],
6577 operand_types[1],
6578 i.types[3],
6579 operand_types[3]))
6580 || ((check_register & 0xc) == 0xc
6581 && !operand_type_register_match (i.types[2],
6582 operand_types[2],
6583 i.types[3],
6584 operand_types[3])))
6585 continue;
6586 /* Fall through. */
6587 case 3:
6588 /* Here we make use of the fact that there are no
6589 reverse match 3 operand instructions. */
6590 if (!operand_type_match (overlap2, i.types[2])
6591 || ((check_register & 5) == 5
6592 && !operand_type_register_match (i.types[0],
6593 operand_types[0],
6594 i.types[2],
6595 operand_types[2]))
6596 || ((check_register & 6) == 6
6597 && !operand_type_register_match (i.types[1],
6598 operand_types[1],
6599 i.types[2],
6600 operand_types[2])))
6601 continue;
6602 break;
6603 }
6604 }
6605 /* Found either forward/reverse 2, 3 or 4 operand match here:
6606 slip through to break. */
6607 }
6608
6609 /* Check if vector operands are valid. */
6610 if (check_VecOperands (t))
6611 {
6612 specific_error = i.error;
6613 continue;
6614 }
6615
6616 /* Check if VEX/EVEX encoding requirements can be satisfied. */
6617 if (VEX_check_encoding (t))
6618 {
6619 specific_error = i.error;
6620 continue;
6621 }
6622
6623 /* We've found a match; break out of loop. */
6624 break;
6625 }
6626
6627 if (t == current_templates->end)
6628 {
6629 /* We found no match. */
6630 const char *err_msg;
6631 switch (specific_error ? specific_error : i.error)
6632 {
6633 default:
6634 abort ();
6635 case operand_size_mismatch:
6636 err_msg = _("operand size mismatch");
6637 break;
6638 case operand_type_mismatch:
6639 err_msg = _("operand type mismatch");
6640 break;
6641 case register_type_mismatch:
6642 err_msg = _("register type mismatch");
6643 break;
6644 case number_of_operands_mismatch:
6645 err_msg = _("number of operands mismatch");
6646 break;
6647 case invalid_instruction_suffix:
6648 err_msg = _("invalid instruction suffix");
6649 break;
6650 case bad_imm4:
6651 err_msg = _("constant doesn't fit in 4 bits");
6652 break;
6653 case unsupported_with_intel_mnemonic:
6654 err_msg = _("unsupported with Intel mnemonic");
6655 break;
6656 case unsupported_syntax:
6657 err_msg = _("unsupported syntax");
6658 break;
6659 case unsupported:
6660 as_bad (_("unsupported instruction `%s'"),
6661 current_templates->start->name);
6662 return NULL;
6663 case invalid_sib_address:
6664 err_msg = _("invalid SIB address");
6665 break;
6666 case invalid_vsib_address:
6667 err_msg = _("invalid VSIB address");
6668 break;
6669 case invalid_vector_register_set:
6670 err_msg = _("mask, index, and destination registers must be distinct");
6671 break;
6672 case invalid_tmm_register_set:
6673 err_msg = _("all tmm registers must be distinct");
6674 break;
6675 case unsupported_vector_index_register:
6676 err_msg = _("unsupported vector index register");
6677 break;
6678 case unsupported_broadcast:
6679 err_msg = _("unsupported broadcast");
6680 break;
6681 case broadcast_needed:
6682 err_msg = _("broadcast is needed for operand of such type");
6683 break;
6684 case unsupported_masking:
6685 err_msg = _("unsupported masking");
6686 break;
6687 case mask_not_on_destination:
6688 err_msg = _("mask not on destination operand");
6689 break;
6690 case no_default_mask:
6691 err_msg = _("default mask isn't allowed");
6692 break;
6693 case unsupported_rc_sae:
6694 err_msg = _("unsupported static rounding/sae");
6695 break;
6696 case rc_sae_operand_not_last_imm:
6697 if (intel_syntax)
6698 err_msg = _("RC/SAE operand must precede immediate operands");
6699 else
6700 err_msg = _("RC/SAE operand must follow immediate operands");
6701 break;
6702 case invalid_register_operand:
6703 err_msg = _("invalid register operand");
6704 break;
6705 }
6706 as_bad (_("%s for `%s'"), err_msg,
6707 current_templates->start->name);
6708 return NULL;
6709 }
6710
6711 if (!quiet_warnings)
6712 {
6713 if (!intel_syntax
6714 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6715 as_warn (_("indirect %s without `*'"), t->name);
6716
6717 if (t->opcode_modifier.isprefix
6718 && t->opcode_modifier.mnemonicsize == IGNORESIZE)
6719 {
6720 /* Warn them that a data or address size prefix doesn't
6721 affect assembly of the next line of code. */
6722 as_warn (_("stand-alone `%s' prefix"), t->name);
6723 }
6724 }
6725
6726 /* Copy the template we found. */
6727 i.tm = *t;
6728
6729 if (addr_prefix_disp != -1)
6730 i.tm.operand_types[addr_prefix_disp]
6731 = operand_types[addr_prefix_disp];
6732
6733 if (found_reverse_match)
6734 {
6735 /* If we found a reverse match we must alter the opcode direction
6736 bit and clear/flip the regmem modifier one. found_reverse_match
6737 holds bits to change (different for int & float insns). */
6738
6739 i.tm.base_opcode ^= found_reverse_match;
6740
6741 i.tm.operand_types[0] = operand_types[i.operands - 1];
6742 i.tm.operand_types[i.operands - 1] = operand_types[0];
6743
6744 /* Certain SIMD insns have their load forms specified in the opcode
6745 table, and hence we need to _set_ RegMem instead of clearing it.
6746 We need to avoid setting the bit though on insns like KMOVW. */
6747 i.tm.opcode_modifier.regmem
6748 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6749 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6750 && !i.tm.opcode_modifier.regmem;
6751 }
6752
6753 return t;
6754 }
6755
6756 static int
6757 check_string (void)
6758 {
6759 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6760 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
6761
6762 if (i.seg[op] != NULL && i.seg[op] != &es)
6763 {
6764 as_bad (_("`%s' operand %u must use `%ses' segment"),
6765 i.tm.name,
6766 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6767 register_prefix);
6768 return 0;
6769 }
6770
6771 /* There's only ever one segment override allowed per instruction.
6772 This instruction possibly has a legal segment override on the
6773 second operand, so copy the segment to where non-string
6774 instructions store it, allowing common code. */
6775 i.seg[op] = i.seg[1];
6776
6777 return 1;
6778 }
6779
6780 static int
6781 process_suffix (void)
6782 {
6783 bfd_boolean is_crc32 = FALSE;
6784
6785 /* If matched instruction specifies an explicit instruction mnemonic
6786 suffix, use it. */
6787 if (i.tm.opcode_modifier.size == SIZE16)
6788 i.suffix = WORD_MNEM_SUFFIX;
6789 else if (i.tm.opcode_modifier.size == SIZE32)
6790 i.suffix = LONG_MNEM_SUFFIX;
6791 else if (i.tm.opcode_modifier.size == SIZE64)
6792 i.suffix = QWORD_MNEM_SUFFIX;
6793 else if (i.reg_operands
6794 && (i.operands > 1 || i.types[0].bitfield.class == Reg)
6795 && !i.tm.opcode_modifier.addrprefixopreg)
6796 {
6797 unsigned int numop = i.operands;
6798 /* CRC32 */
6799 is_crc32 = (i.tm.base_opcode == 0xf38f0
6800 && i.tm.opcode_modifier.opcodeprefix == PREFIX_0XF2);
6801
6802 /* movsx/movzx want only their source operand considered here, for the
6803 ambiguity checking below. The suffix will be replaced afterwards
6804 to represent the destination (register). */
6805 if (((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w)
6806 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6807 --i.operands;
6808
6809 /* crc32 needs REX.W set regardless of suffix / source operand size. */
6810 if (is_crc32 && i.tm.operand_types[1].bitfield.qword)
6811 i.rex |= REX_W;
6812
6813 /* If there's no instruction mnemonic suffix we try to invent one
6814 based on GPR operands. */
6815 if (!i.suffix)
6816 {
6817 /* We take i.suffix from the last register operand specified,
6818 Destination register type is more significant than source
6819 register type. crc32 in SSE4.2 prefers source register
6820 type. */
6821 unsigned int op = is_crc32 ? 1 : i.operands;
6822
6823 while (op--)
6824 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6825 || i.tm.operand_types[op].bitfield.instance == Accum)
6826 {
6827 if (i.types[op].bitfield.class != Reg)
6828 continue;
6829 if (i.types[op].bitfield.byte)
6830 i.suffix = BYTE_MNEM_SUFFIX;
6831 else if (i.types[op].bitfield.word)
6832 i.suffix = WORD_MNEM_SUFFIX;
6833 else if (i.types[op].bitfield.dword)
6834 i.suffix = LONG_MNEM_SUFFIX;
6835 else if (i.types[op].bitfield.qword)
6836 i.suffix = QWORD_MNEM_SUFFIX;
6837 else
6838 continue;
6839 break;
6840 }
6841
6842 /* As an exception, movsx/movzx silently default to a byte source
6843 in AT&T mode. */
6844 if ((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w
6845 && !i.suffix && !intel_syntax)
6846 i.suffix = BYTE_MNEM_SUFFIX;
6847 }
6848 else if (i.suffix == BYTE_MNEM_SUFFIX)
6849 {
6850 if (intel_syntax
6851 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6852 && i.tm.opcode_modifier.no_bsuf)
6853 i.suffix = 0;
6854 else if (!check_byte_reg ())
6855 return 0;
6856 }
6857 else if (i.suffix == LONG_MNEM_SUFFIX)
6858 {
6859 if (intel_syntax
6860 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6861 && i.tm.opcode_modifier.no_lsuf
6862 && !i.tm.opcode_modifier.todword
6863 && !i.tm.opcode_modifier.toqword)
6864 i.suffix = 0;
6865 else if (!check_long_reg ())
6866 return 0;
6867 }
6868 else if (i.suffix == QWORD_MNEM_SUFFIX)
6869 {
6870 if (intel_syntax
6871 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6872 && i.tm.opcode_modifier.no_qsuf
6873 && !i.tm.opcode_modifier.todword
6874 && !i.tm.opcode_modifier.toqword)
6875 i.suffix = 0;
6876 else if (!check_qword_reg ())
6877 return 0;
6878 }
6879 else if (i.suffix == WORD_MNEM_SUFFIX)
6880 {
6881 if (intel_syntax
6882 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6883 && i.tm.opcode_modifier.no_wsuf)
6884 i.suffix = 0;
6885 else if (!check_word_reg ())
6886 return 0;
6887 }
6888 else if (intel_syntax
6889 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE)
6890 /* Do nothing if the instruction is going to ignore the prefix. */
6891 ;
6892 else
6893 abort ();
6894
6895 /* Undo the movsx/movzx change done above. */
6896 i.operands = numop;
6897 }
6898 else if (i.tm.opcode_modifier.mnemonicsize == DEFAULTSIZE
6899 && !i.suffix)
6900 {
6901 i.suffix = stackop_size;
6902 if (stackop_size == LONG_MNEM_SUFFIX)
6903 {
6904 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6905 .code16gcc directive to support 16-bit mode with
6906 32-bit address. For IRET without a suffix, generate
6907 16-bit IRET (opcode 0xcf) to return from an interrupt
6908 handler. */
6909 if (i.tm.base_opcode == 0xcf)
6910 {
6911 i.suffix = WORD_MNEM_SUFFIX;
6912 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6913 }
6914 /* Warn about changed behavior for segment register push/pop. */
6915 else if ((i.tm.base_opcode | 1) == 0x07)
6916 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6917 i.tm.name);
6918 }
6919 }
6920 else if (!i.suffix
6921 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6922 || i.tm.opcode_modifier.jump == JUMP_BYTE
6923 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
6924 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6925 && i.tm.extension_opcode <= 3)))
6926 {
6927 switch (flag_code)
6928 {
6929 case CODE_64BIT:
6930 if (!i.tm.opcode_modifier.no_qsuf)
6931 {
6932 if (i.tm.opcode_modifier.jump == JUMP_BYTE
6933 || i.tm.opcode_modifier.no_lsuf)
6934 i.suffix = QWORD_MNEM_SUFFIX;
6935 break;
6936 }
6937 /* Fall through. */
6938 case CODE_32BIT:
6939 if (!i.tm.opcode_modifier.no_lsuf)
6940 i.suffix = LONG_MNEM_SUFFIX;
6941 break;
6942 case CODE_16BIT:
6943 if (!i.tm.opcode_modifier.no_wsuf)
6944 i.suffix = WORD_MNEM_SUFFIX;
6945 break;
6946 }
6947 }
6948
6949 if (!i.suffix
6950 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
6951 /* Also cover lret/retf/iret in 64-bit mode. */
6952 || (flag_code == CODE_64BIT
6953 && !i.tm.opcode_modifier.no_lsuf
6954 && !i.tm.opcode_modifier.no_qsuf))
6955 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
6956 /* Explicit sizing prefixes are assumed to disambiguate insns. */
6957 && !i.prefix[DATA_PREFIX] && !(i.prefix[REX_PREFIX] & REX_W)
6958 /* Accept FLDENV et al without suffix. */
6959 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
6960 {
6961 unsigned int suffixes, evex = 0;
6962
6963 suffixes = !i.tm.opcode_modifier.no_bsuf;
6964 if (!i.tm.opcode_modifier.no_wsuf)
6965 suffixes |= 1 << 1;
6966 if (!i.tm.opcode_modifier.no_lsuf)
6967 suffixes |= 1 << 2;
6968 if (!i.tm.opcode_modifier.no_ldsuf)
6969 suffixes |= 1 << 3;
6970 if (!i.tm.opcode_modifier.no_ssuf)
6971 suffixes |= 1 << 4;
6972 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6973 suffixes |= 1 << 5;
6974
6975 /* For [XYZ]MMWORD operands inspect operand sizes. While generally
6976 also suitable for AT&T syntax mode, it was requested that this be
6977 restricted to just Intel syntax. */
6978 if (intel_syntax && is_any_vex_encoding (&i.tm) && !i.broadcast)
6979 {
6980 unsigned int op;
6981
6982 for (op = 0; op < i.tm.operands; ++op)
6983 {
6984 if (is_evex_encoding (&i.tm)
6985 && !cpu_arch_flags.bitfield.cpuavx512vl)
6986 {
6987 if (i.tm.operand_types[op].bitfield.ymmword)
6988 i.tm.operand_types[op].bitfield.xmmword = 0;
6989 if (i.tm.operand_types[op].bitfield.zmmword)
6990 i.tm.operand_types[op].bitfield.ymmword = 0;
6991 if (!i.tm.opcode_modifier.evex
6992 || i.tm.opcode_modifier.evex == EVEXDYN)
6993 i.tm.opcode_modifier.evex = EVEX512;
6994 }
6995
6996 if (i.tm.operand_types[op].bitfield.xmmword
6997 + i.tm.operand_types[op].bitfield.ymmword
6998 + i.tm.operand_types[op].bitfield.zmmword < 2)
6999 continue;
7000
7001 /* Any properly sized operand disambiguates the insn. */
7002 if (i.types[op].bitfield.xmmword
7003 || i.types[op].bitfield.ymmword
7004 || i.types[op].bitfield.zmmword)
7005 {
7006 suffixes &= ~(7 << 6);
7007 evex = 0;
7008 break;
7009 }
7010
7011 if ((i.flags[op] & Operand_Mem)
7012 && i.tm.operand_types[op].bitfield.unspecified)
7013 {
7014 if (i.tm.operand_types[op].bitfield.xmmword)
7015 suffixes |= 1 << 6;
7016 if (i.tm.operand_types[op].bitfield.ymmword)
7017 suffixes |= 1 << 7;
7018 if (i.tm.operand_types[op].bitfield.zmmword)
7019 suffixes |= 1 << 8;
7020 if (is_evex_encoding (&i.tm))
7021 evex = EVEX512;
7022 }
7023 }
7024 }
7025
7026 /* Are multiple suffixes / operand sizes allowed? */
7027 if (suffixes & (suffixes - 1))
7028 {
7029 if (intel_syntax
7030 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
7031 || operand_check == check_error))
7032 {
7033 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
7034 return 0;
7035 }
7036 if (operand_check == check_error)
7037 {
7038 as_bad (_("no instruction mnemonic suffix given and "
7039 "no register operands; can't size `%s'"), i.tm.name);
7040 return 0;
7041 }
7042 if (operand_check == check_warning)
7043 as_warn (_("%s; using default for `%s'"),
7044 intel_syntax
7045 ? _("ambiguous operand size")
7046 : _("no instruction mnemonic suffix given and "
7047 "no register operands"),
7048 i.tm.name);
7049
7050 if (i.tm.opcode_modifier.floatmf)
7051 i.suffix = SHORT_MNEM_SUFFIX;
7052 else if ((i.tm.base_opcode | 8) == 0xfbe
7053 || (i.tm.base_opcode == 0x63
7054 && i.tm.cpu_flags.bitfield.cpu64))
7055 /* handled below */;
7056 else if (evex)
7057 i.tm.opcode_modifier.evex = evex;
7058 else if (flag_code == CODE_16BIT)
7059 i.suffix = WORD_MNEM_SUFFIX;
7060 else if (!i.tm.opcode_modifier.no_lsuf)
7061 i.suffix = LONG_MNEM_SUFFIX;
7062 else
7063 i.suffix = QWORD_MNEM_SUFFIX;
7064 }
7065 }
7066
7067 if ((i.tm.base_opcode | 8) == 0xfbe
7068 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
7069 {
7070 /* In Intel syntax, movsx/movzx must have a "suffix" (checked above).
7071 In AT&T syntax, if there is no suffix (warned about above), the default
7072 will be byte extension. */
7073 if (i.tm.opcode_modifier.w && i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
7074 i.tm.base_opcode |= 1;
7075
7076 /* For further processing, the suffix should represent the destination
7077 (register). This is already the case when one was used with
7078 mov[sz][bw]*, but we need to replace it for mov[sz]x, or if there was
7079 no suffix to begin with. */
7080 if (i.tm.opcode_modifier.w || i.tm.base_opcode == 0x63 || !i.suffix)
7081 {
7082 if (i.types[1].bitfield.word)
7083 i.suffix = WORD_MNEM_SUFFIX;
7084 else if (i.types[1].bitfield.qword)
7085 i.suffix = QWORD_MNEM_SUFFIX;
7086 else
7087 i.suffix = LONG_MNEM_SUFFIX;
7088
7089 i.tm.opcode_modifier.w = 0;
7090 }
7091 }
7092
7093 if (!i.tm.opcode_modifier.modrm && i.reg_operands && i.tm.operands < 3)
7094 i.short_form = (i.tm.operand_types[0].bitfield.class == Reg)
7095 != (i.tm.operand_types[1].bitfield.class == Reg);
7096
7097 /* Change the opcode based on the operand size given by i.suffix. */
7098 switch (i.suffix)
7099 {
7100 /* Size floating point instruction. */
7101 case LONG_MNEM_SUFFIX:
7102 if (i.tm.opcode_modifier.floatmf)
7103 {
7104 i.tm.base_opcode ^= 4;
7105 break;
7106 }
7107 /* fall through */
7108 case WORD_MNEM_SUFFIX:
7109 case QWORD_MNEM_SUFFIX:
7110 /* It's not a byte, select word/dword operation. */
7111 if (i.tm.opcode_modifier.w)
7112 {
7113 if (i.short_form)
7114 i.tm.base_opcode |= 8;
7115 else
7116 i.tm.base_opcode |= 1;
7117 }
7118 /* fall through */
7119 case SHORT_MNEM_SUFFIX:
7120 /* Now select between word & dword operations via the operand
7121 size prefix, except for instructions that will ignore this
7122 prefix anyway. */
7123 if (i.suffix != QWORD_MNEM_SUFFIX
7124 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
7125 && !i.tm.opcode_modifier.floatmf
7126 && !is_any_vex_encoding (&i.tm)
7127 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
7128 || (flag_code == CODE_64BIT
7129 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
7130 {
7131 unsigned int prefix = DATA_PREFIX_OPCODE;
7132
7133 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
7134 prefix = ADDR_PREFIX_OPCODE;
7135
7136 if (!add_prefix (prefix))
7137 return 0;
7138 }
7139
7140 /* Set mode64 for an operand. */
7141 if (i.suffix == QWORD_MNEM_SUFFIX
7142 && flag_code == CODE_64BIT
7143 && !i.tm.opcode_modifier.norex64
7144 && !i.tm.opcode_modifier.vexw
7145 /* Special case for xchg %rax,%rax. It is NOP and doesn't
7146 need rex64. */
7147 && ! (i.operands == 2
7148 && i.tm.base_opcode == 0x90
7149 && i.tm.extension_opcode == None
7150 && i.types[0].bitfield.instance == Accum
7151 && i.types[0].bitfield.qword
7152 && i.types[1].bitfield.instance == Accum
7153 && i.types[1].bitfield.qword))
7154 i.rex |= REX_W;
7155
7156 break;
7157
7158 case 0:
7159 /* Select word/dword/qword operation with explicit data sizing prefix
7160 when there are no suitable register operands. */
7161 if (i.tm.opcode_modifier.w
7162 && (i.prefix[DATA_PREFIX] || (i.prefix[REX_PREFIX] & REX_W))
7163 && (!i.reg_operands
7164 || (i.reg_operands == 1
7165 /* ShiftCount */
7166 && (i.tm.operand_types[0].bitfield.instance == RegC
7167 /* InOutPortReg */
7168 || i.tm.operand_types[0].bitfield.instance == RegD
7169 || i.tm.operand_types[1].bitfield.instance == RegD
7170 /* CRC32 */
7171 || is_crc32))))
7172 i.tm.base_opcode |= 1;
7173 break;
7174 }
7175
7176 if (i.tm.opcode_modifier.addrprefixopreg)
7177 {
7178 gas_assert (!i.suffix);
7179 gas_assert (i.reg_operands);
7180
7181 if (i.tm.operand_types[0].bitfield.instance == Accum
7182 || i.operands == 1)
7183 {
7184 /* The address size override prefix changes the size of the
7185 first operand. */
7186 if (flag_code == CODE_64BIT
7187 && i.op[0].regs->reg_type.bitfield.word)
7188 {
7189 as_bad (_("16-bit addressing unavailable for `%s'"),
7190 i.tm.name);
7191 return 0;
7192 }
7193
7194 if ((flag_code == CODE_32BIT
7195 ? i.op[0].regs->reg_type.bitfield.word
7196 : i.op[0].regs->reg_type.bitfield.dword)
7197 && !add_prefix (ADDR_PREFIX_OPCODE))
7198 return 0;
7199 }
7200 else
7201 {
7202 /* Check invalid register operand when the address size override
7203 prefix changes the size of register operands. */
7204 unsigned int op;
7205 enum { need_word, need_dword, need_qword } need;
7206
7207 /* Check the register operand for the address size prefix if
7208 the memory operand has no real registers, like symbol, DISP
7209 or symbol(%rip). */
7210 if (i.mem_operands == 1
7211 && i.reg_operands == 1
7212 && i.operands == 2
7213 && i.types[1].bitfield.class == Reg
7214 && (flag_code == CODE_32BIT
7215 ? i.op[1].regs->reg_type.bitfield.word
7216 : i.op[1].regs->reg_type.bitfield.dword)
7217 && ((i.base_reg == NULL && i.index_reg == NULL)
7218 || (i.base_reg
7219 && i.base_reg->reg_num == RegIP
7220 && i.base_reg->reg_type.bitfield.qword))
7221 && !add_prefix (ADDR_PREFIX_OPCODE))
7222 return 0;
7223
7224 if (flag_code == CODE_32BIT)
7225 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
7226 else if (i.prefix[ADDR_PREFIX])
7227 need = need_dword;
7228 else
7229 need = flag_code == CODE_64BIT ? need_qword : need_word;
7230
7231 for (op = 0; op < i.operands; op++)
7232 {
7233 if (i.types[op].bitfield.class != Reg)
7234 continue;
7235
7236 switch (need)
7237 {
7238 case need_word:
7239 if (i.op[op].regs->reg_type.bitfield.word)
7240 continue;
7241 break;
7242 case need_dword:
7243 if (i.op[op].regs->reg_type.bitfield.dword)
7244 continue;
7245 break;
7246 case need_qword:
7247 if (i.op[op].regs->reg_type.bitfield.qword)
7248 continue;
7249 break;
7250 }
7251
7252 as_bad (_("invalid register operand size for `%s'"),
7253 i.tm.name);
7254 return 0;
7255 }
7256 }
7257 }
7258
7259 return 1;
7260 }
7261
7262 static int
7263 check_byte_reg (void)
7264 {
7265 int op;
7266
7267 for (op = i.operands; --op >= 0;)
7268 {
7269 /* Skip non-register operands. */
7270 if (i.types[op].bitfield.class != Reg)
7271 continue;
7272
7273 /* If this is an eight bit register, it's OK. If it's the 16 or
7274 32 bit version of an eight bit register, we will just use the
7275 low portion, and that's OK too. */
7276 if (i.types[op].bitfield.byte)
7277 continue;
7278
7279 /* I/O port address operands are OK too. */
7280 if (i.tm.operand_types[op].bitfield.instance == RegD
7281 && i.tm.operand_types[op].bitfield.word)
7282 continue;
7283
7284 /* crc32 only wants its source operand checked here. */
7285 if (i.tm.base_opcode == 0xf38f0
7286 && i.tm.opcode_modifier.opcodeprefix == PREFIX_0XF2
7287 && op != 0)
7288 continue;
7289
7290 /* Any other register is bad. */
7291 as_bad (_("`%s%s' not allowed with `%s%c'"),
7292 register_prefix, i.op[op].regs->reg_name,
7293 i.tm.name, i.suffix);
7294 return 0;
7295 }
7296 return 1;
7297 }
7298
7299 static int
7300 check_long_reg (void)
7301 {
7302 int op;
7303
7304 for (op = i.operands; --op >= 0;)
7305 /* Skip non-register operands. */
7306 if (i.types[op].bitfield.class != Reg)
7307 continue;
7308 /* Reject eight bit registers, except where the template requires
7309 them. (eg. movzb) */
7310 else if (i.types[op].bitfield.byte
7311 && (i.tm.operand_types[op].bitfield.class == Reg
7312 || i.tm.operand_types[op].bitfield.instance == Accum)
7313 && (i.tm.operand_types[op].bitfield.word
7314 || i.tm.operand_types[op].bitfield.dword))
7315 {
7316 as_bad (_("`%s%s' not allowed with `%s%c'"),
7317 register_prefix,
7318 i.op[op].regs->reg_name,
7319 i.tm.name,
7320 i.suffix);
7321 return 0;
7322 }
7323 /* Error if the e prefix on a general reg is missing. */
7324 else if (i.types[op].bitfield.word
7325 && (i.tm.operand_types[op].bitfield.class == Reg
7326 || i.tm.operand_types[op].bitfield.instance == Accum)
7327 && i.tm.operand_types[op].bitfield.dword)
7328 {
7329 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7330 register_prefix, i.op[op].regs->reg_name,
7331 i.suffix);
7332 return 0;
7333 }
7334 /* Warn if the r prefix on a general reg is present. */
7335 else if (i.types[op].bitfield.qword
7336 && (i.tm.operand_types[op].bitfield.class == Reg
7337 || i.tm.operand_types[op].bitfield.instance == Accum)
7338 && i.tm.operand_types[op].bitfield.dword)
7339 {
7340 if (intel_syntax
7341 && i.tm.opcode_modifier.toqword
7342 && i.types[0].bitfield.class != RegSIMD)
7343 {
7344 /* Convert to QWORD. We want REX byte. */
7345 i.suffix = QWORD_MNEM_SUFFIX;
7346 }
7347 else
7348 {
7349 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7350 register_prefix, i.op[op].regs->reg_name,
7351 i.suffix);
7352 return 0;
7353 }
7354 }
7355 return 1;
7356 }
7357
7358 static int
7359 check_qword_reg (void)
7360 {
7361 int op;
7362
7363 for (op = i.operands; --op >= 0; )
7364 /* Skip non-register operands. */
7365 if (i.types[op].bitfield.class != Reg)
7366 continue;
7367 /* Reject eight bit registers, except where the template requires
7368 them. (eg. movzb) */
7369 else if (i.types[op].bitfield.byte
7370 && (i.tm.operand_types[op].bitfield.class == Reg
7371 || i.tm.operand_types[op].bitfield.instance == Accum)
7372 && (i.tm.operand_types[op].bitfield.word
7373 || i.tm.operand_types[op].bitfield.dword))
7374 {
7375 as_bad (_("`%s%s' not allowed with `%s%c'"),
7376 register_prefix,
7377 i.op[op].regs->reg_name,
7378 i.tm.name,
7379 i.suffix);
7380 return 0;
7381 }
7382 /* Warn if the r prefix on a general reg is missing. */
7383 else if ((i.types[op].bitfield.word
7384 || i.types[op].bitfield.dword)
7385 && (i.tm.operand_types[op].bitfield.class == Reg
7386 || i.tm.operand_types[op].bitfield.instance == Accum)
7387 && i.tm.operand_types[op].bitfield.qword)
7388 {
7389 /* Prohibit these changes in the 64bit mode, since the
7390 lowering is more complicated. */
7391 if (intel_syntax
7392 && i.tm.opcode_modifier.todword
7393 && i.types[0].bitfield.class != RegSIMD)
7394 {
7395 /* Convert to DWORD. We don't want REX byte. */
7396 i.suffix = LONG_MNEM_SUFFIX;
7397 }
7398 else
7399 {
7400 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7401 register_prefix, i.op[op].regs->reg_name,
7402 i.suffix);
7403 return 0;
7404 }
7405 }
7406 return 1;
7407 }
7408
7409 static int
7410 check_word_reg (void)
7411 {
7412 int op;
7413 for (op = i.operands; --op >= 0;)
7414 /* Skip non-register operands. */
7415 if (i.types[op].bitfield.class != Reg)
7416 continue;
7417 /* Reject eight bit registers, except where the template requires
7418 them. (eg. movzb) */
7419 else if (i.types[op].bitfield.byte
7420 && (i.tm.operand_types[op].bitfield.class == Reg
7421 || i.tm.operand_types[op].bitfield.instance == Accum)
7422 && (i.tm.operand_types[op].bitfield.word
7423 || i.tm.operand_types[op].bitfield.dword))
7424 {
7425 as_bad (_("`%s%s' not allowed with `%s%c'"),
7426 register_prefix,
7427 i.op[op].regs->reg_name,
7428 i.tm.name,
7429 i.suffix);
7430 return 0;
7431 }
7432 /* Error if the e or r prefix on a general reg is present. */
7433 else if ((i.types[op].bitfield.dword
7434 || i.types[op].bitfield.qword)
7435 && (i.tm.operand_types[op].bitfield.class == Reg
7436 || i.tm.operand_types[op].bitfield.instance == Accum)
7437 && i.tm.operand_types[op].bitfield.word)
7438 {
7439 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7440 register_prefix, i.op[op].regs->reg_name,
7441 i.suffix);
7442 return 0;
7443 }
7444 return 1;
7445 }
7446
7447 static int
7448 update_imm (unsigned int j)
7449 {
7450 i386_operand_type overlap = i.types[j];
7451 if ((overlap.bitfield.imm8
7452 || overlap.bitfield.imm8s
7453 || overlap.bitfield.imm16
7454 || overlap.bitfield.imm32
7455 || overlap.bitfield.imm32s
7456 || overlap.bitfield.imm64)
7457 && !operand_type_equal (&overlap, &imm8)
7458 && !operand_type_equal (&overlap, &imm8s)
7459 && !operand_type_equal (&overlap, &imm16)
7460 && !operand_type_equal (&overlap, &imm32)
7461 && !operand_type_equal (&overlap, &imm32s)
7462 && !operand_type_equal (&overlap, &imm64))
7463 {
7464 if (i.suffix)
7465 {
7466 i386_operand_type temp;
7467
7468 operand_type_set (&temp, 0);
7469 if (i.suffix == BYTE_MNEM_SUFFIX)
7470 {
7471 temp.bitfield.imm8 = overlap.bitfield.imm8;
7472 temp.bitfield.imm8s = overlap.bitfield.imm8s;
7473 }
7474 else if (i.suffix == WORD_MNEM_SUFFIX)
7475 temp.bitfield.imm16 = overlap.bitfield.imm16;
7476 else if (i.suffix == QWORD_MNEM_SUFFIX)
7477 {
7478 temp.bitfield.imm64 = overlap.bitfield.imm64;
7479 temp.bitfield.imm32s = overlap.bitfield.imm32s;
7480 }
7481 else
7482 temp.bitfield.imm32 = overlap.bitfield.imm32;
7483 overlap = temp;
7484 }
7485 else if (operand_type_equal (&overlap, &imm16_32_32s)
7486 || operand_type_equal (&overlap, &imm16_32)
7487 || operand_type_equal (&overlap, &imm16_32s))
7488 {
7489 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
7490 overlap = imm16;
7491 else
7492 overlap = imm32s;
7493 }
7494 else if (i.prefix[REX_PREFIX] & REX_W)
7495 overlap = operand_type_and (overlap, imm32s);
7496 else if (i.prefix[DATA_PREFIX])
7497 overlap = operand_type_and (overlap,
7498 flag_code != CODE_16BIT ? imm16 : imm32);
7499 if (!operand_type_equal (&overlap, &imm8)
7500 && !operand_type_equal (&overlap, &imm8s)
7501 && !operand_type_equal (&overlap, &imm16)
7502 && !operand_type_equal (&overlap, &imm32)
7503 && !operand_type_equal (&overlap, &imm32s)
7504 && !operand_type_equal (&overlap, &imm64))
7505 {
7506 as_bad (_("no instruction mnemonic suffix given; "
7507 "can't determine immediate size"));
7508 return 0;
7509 }
7510 }
7511 i.types[j] = overlap;
7512
7513 return 1;
7514 }
7515
7516 static int
7517 finalize_imm (void)
7518 {
7519 unsigned int j, n;
7520
7521 /* Update the first 2 immediate operands. */
7522 n = i.operands > 2 ? 2 : i.operands;
7523 if (n)
7524 {
7525 for (j = 0; j < n; j++)
7526 if (update_imm (j) == 0)
7527 return 0;
7528
7529 /* The 3rd operand can't be immediate operand. */
7530 gas_assert (operand_type_check (i.types[2], imm) == 0);
7531 }
7532
7533 return 1;
7534 }
7535
7536 static int
7537 process_operands (void)
7538 {
7539 /* Default segment register this instruction will use for memory
7540 accesses. 0 means unknown. This is only for optimizing out
7541 unnecessary segment overrides. */
7542 const seg_entry *default_seg = 0;
7543
7544 if (i.tm.opcode_modifier.sse2avx)
7545 {
7546 /* Legacy encoded insns allow explicit REX prefixes, so these prefixes
7547 need converting. */
7548 i.rex |= i.prefix[REX_PREFIX] & (REX_W | REX_R | REX_X | REX_B);
7549 i.prefix[REX_PREFIX] = 0;
7550 i.rex_encoding = 0;
7551 }
7552 /* ImmExt should be processed after SSE2AVX. */
7553 else if (i.tm.opcode_modifier.immext)
7554 process_immext ();
7555
7556 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
7557 {
7558 unsigned int dupl = i.operands;
7559 unsigned int dest = dupl - 1;
7560 unsigned int j;
7561
7562 /* The destination must be an xmm register. */
7563 gas_assert (i.reg_operands
7564 && MAX_OPERANDS > dupl
7565 && operand_type_equal (&i.types[dest], &regxmm));
7566
7567 if (i.tm.operand_types[0].bitfield.instance == Accum
7568 && i.tm.operand_types[0].bitfield.xmmword)
7569 {
7570 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
7571 {
7572 /* Keep xmm0 for instructions with VEX prefix and 3
7573 sources. */
7574 i.tm.operand_types[0].bitfield.instance = InstanceNone;
7575 i.tm.operand_types[0].bitfield.class = RegSIMD;
7576 goto duplicate;
7577 }
7578 else
7579 {
7580 /* We remove the first xmm0 and keep the number of
7581 operands unchanged, which in fact duplicates the
7582 destination. */
7583 for (j = 1; j < i.operands; j++)
7584 {
7585 i.op[j - 1] = i.op[j];
7586 i.types[j - 1] = i.types[j];
7587 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
7588 i.flags[j - 1] = i.flags[j];
7589 }
7590 }
7591 }
7592 else if (i.tm.opcode_modifier.implicit1stxmm0)
7593 {
7594 gas_assert ((MAX_OPERANDS - 1) > dupl
7595 && (i.tm.opcode_modifier.vexsources
7596 == VEX3SOURCES));
7597
7598 /* Add the implicit xmm0 for instructions with VEX prefix
7599 and 3 sources. */
7600 for (j = i.operands; j > 0; j--)
7601 {
7602 i.op[j] = i.op[j - 1];
7603 i.types[j] = i.types[j - 1];
7604 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
7605 i.flags[j] = i.flags[j - 1];
7606 }
7607 i.op[0].regs
7608 = (const reg_entry *) str_hash_find (reg_hash, "xmm0");
7609 i.types[0] = regxmm;
7610 i.tm.operand_types[0] = regxmm;
7611
7612 i.operands += 2;
7613 i.reg_operands += 2;
7614 i.tm.operands += 2;
7615
7616 dupl++;
7617 dest++;
7618 i.op[dupl] = i.op[dest];
7619 i.types[dupl] = i.types[dest];
7620 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7621 i.flags[dupl] = i.flags[dest];
7622 }
7623 else
7624 {
7625 duplicate:
7626 i.operands++;
7627 i.reg_operands++;
7628 i.tm.operands++;
7629
7630 i.op[dupl] = i.op[dest];
7631 i.types[dupl] = i.types[dest];
7632 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7633 i.flags[dupl] = i.flags[dest];
7634 }
7635
7636 if (i.tm.opcode_modifier.immext)
7637 process_immext ();
7638 }
7639 else if (i.tm.operand_types[0].bitfield.instance == Accum
7640 && i.tm.operand_types[0].bitfield.xmmword)
7641 {
7642 unsigned int j;
7643
7644 for (j = 1; j < i.operands; j++)
7645 {
7646 i.op[j - 1] = i.op[j];
7647 i.types[j - 1] = i.types[j];
7648
7649 /* We need to adjust fields in i.tm since they are used by
7650 build_modrm_byte. */
7651 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
7652
7653 i.flags[j - 1] = i.flags[j];
7654 }
7655
7656 i.operands--;
7657 i.reg_operands--;
7658 i.tm.operands--;
7659 }
7660 else if (i.tm.opcode_modifier.implicitquadgroup)
7661 {
7662 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7663
7664 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
7665 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
7666 regnum = register_number (i.op[1].regs);
7667 first_reg_in_group = regnum & ~3;
7668 last_reg_in_group = first_reg_in_group + 3;
7669 if (regnum != first_reg_in_group)
7670 as_warn (_("source register `%s%s' implicitly denotes"
7671 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7672 register_prefix, i.op[1].regs->reg_name,
7673 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7674 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7675 i.tm.name);
7676 }
7677 else if (i.tm.opcode_modifier.regkludge)
7678 {
7679 /* The imul $imm, %reg instruction is converted into
7680 imul $imm, %reg, %reg, and the clr %reg instruction
7681 is converted into xor %reg, %reg. */
7682
7683 unsigned int first_reg_op;
7684
7685 if (operand_type_check (i.types[0], reg))
7686 first_reg_op = 0;
7687 else
7688 first_reg_op = 1;
7689 /* Pretend we saw the extra register operand. */
7690 gas_assert (i.reg_operands == 1
7691 && i.op[first_reg_op + 1].regs == 0);
7692 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7693 i.types[first_reg_op + 1] = i.types[first_reg_op];
7694 i.operands++;
7695 i.reg_operands++;
7696 }
7697
7698 if (i.tm.opcode_modifier.modrm)
7699 {
7700 /* The opcode is completed (modulo i.tm.extension_opcode which
7701 must be put into the modrm byte). Now, we make the modrm and
7702 index base bytes based on all the info we've collected. */
7703
7704 default_seg = build_modrm_byte ();
7705 }
7706 else if (i.types[0].bitfield.class == SReg)
7707 {
7708 if (flag_code != CODE_64BIT
7709 ? i.tm.base_opcode == POP_SEG_SHORT
7710 && i.op[0].regs->reg_num == 1
7711 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7712 && i.op[0].regs->reg_num < 4)
7713 {
7714 as_bad (_("you can't `%s %s%s'"),
7715 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7716 return 0;
7717 }
7718 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7719 {
7720 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7721 i.tm.opcode_length = 2;
7722 }
7723 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7724 }
7725 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7726 {
7727 default_seg = &ds;
7728 }
7729 else if (i.tm.opcode_modifier.isstring)
7730 {
7731 /* For the string instructions that allow a segment override
7732 on one of their operands, the default segment is ds. */
7733 default_seg = &ds;
7734 }
7735 else if (i.short_form)
7736 {
7737 /* The register or float register operand is in operand
7738 0 or 1. */
7739 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
7740
7741 /* Register goes in low 3 bits of opcode. */
7742 i.tm.base_opcode |= i.op[op].regs->reg_num;
7743 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7744 i.rex |= REX_B;
7745 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7746 {
7747 /* Warn about some common errors, but press on regardless.
7748 The first case can be generated by gcc (<= 2.8.1). */
7749 if (i.operands == 2)
7750 {
7751 /* Reversed arguments on faddp, fsubp, etc. */
7752 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7753 register_prefix, i.op[!intel_syntax].regs->reg_name,
7754 register_prefix, i.op[intel_syntax].regs->reg_name);
7755 }
7756 else
7757 {
7758 /* Extraneous `l' suffix on fp insn. */
7759 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7760 register_prefix, i.op[0].regs->reg_name);
7761 }
7762 }
7763 }
7764
7765 if ((i.seg[0] || i.prefix[SEG_PREFIX])
7766 && i.tm.base_opcode == 0x8d /* lea */
7767 && !is_any_vex_encoding(&i.tm))
7768 {
7769 if (!quiet_warnings)
7770 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7771 if (optimize)
7772 {
7773 i.seg[0] = NULL;
7774 i.prefix[SEG_PREFIX] = 0;
7775 }
7776 }
7777
7778 /* If a segment was explicitly specified, and the specified segment
7779 is neither the default nor the one already recorded from a prefix,
7780 use an opcode prefix to select it. If we never figured out what
7781 the default segment is, then default_seg will be zero at this
7782 point, and the specified segment prefix will always be used. */
7783 if (i.seg[0]
7784 && i.seg[0] != default_seg
7785 && i.seg[0]->seg_prefix != i.prefix[SEG_PREFIX])
7786 {
7787 if (!add_prefix (i.seg[0]->seg_prefix))
7788 return 0;
7789 }
7790 return 1;
7791 }
7792
7793 static INLINE void set_rex_vrex (const reg_entry *r, unsigned int rex_bit,
7794 bfd_boolean do_sse2avx)
7795 {
7796 if (r->reg_flags & RegRex)
7797 {
7798 if (i.rex & rex_bit)
7799 as_bad (_("same type of prefix used twice"));
7800 i.rex |= rex_bit;
7801 }
7802 else if (do_sse2avx && (i.rex & rex_bit) && i.vex.register_specifier)
7803 {
7804 gas_assert (i.vex.register_specifier == r);
7805 i.vex.register_specifier += 8;
7806 }
7807
7808 if (r->reg_flags & RegVRex)
7809 i.vrex |= rex_bit;
7810 }
7811
7812 static const seg_entry *
7813 build_modrm_byte (void)
7814 {
7815 const seg_entry *default_seg = 0;
7816 unsigned int source, dest;
7817 int vex_3_sources;
7818
7819 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7820 if (vex_3_sources)
7821 {
7822 unsigned int nds, reg_slot;
7823 expressionS *exp;
7824
7825 dest = i.operands - 1;
7826 nds = dest - 1;
7827
7828 /* There are 2 kinds of instructions:
7829 1. 5 operands: 4 register operands or 3 register operands
7830 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7831 VexW0 or VexW1. The destination must be either XMM, YMM or
7832 ZMM register.
7833 2. 4 operands: 4 register operands or 3 register operands
7834 plus 1 memory operand, with VexXDS. */
7835 gas_assert ((i.reg_operands == 4
7836 || (i.reg_operands == 3 && i.mem_operands == 1))
7837 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7838 && i.tm.opcode_modifier.vexw
7839 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
7840
7841 /* If VexW1 is set, the first non-immediate operand is the source and
7842 the second non-immediate one is encoded in the immediate operand. */
7843 if (i.tm.opcode_modifier.vexw == VEXW1)
7844 {
7845 source = i.imm_operands;
7846 reg_slot = i.imm_operands + 1;
7847 }
7848 else
7849 {
7850 source = i.imm_operands + 1;
7851 reg_slot = i.imm_operands;
7852 }
7853
7854 if (i.imm_operands == 0)
7855 {
7856 /* When there is no immediate operand, generate an 8bit
7857 immediate operand to encode the first operand. */
7858 exp = &im_expressions[i.imm_operands++];
7859 i.op[i.operands].imms = exp;
7860 i.types[i.operands] = imm8;
7861 i.operands++;
7862
7863 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7864 exp->X_op = O_constant;
7865 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7866 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7867 }
7868 else
7869 {
7870 gas_assert (i.imm_operands == 1);
7871 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7872 gas_assert (!i.tm.opcode_modifier.immext);
7873
7874 /* Turn on Imm8 again so that output_imm will generate it. */
7875 i.types[0].bitfield.imm8 = 1;
7876
7877 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7878 i.op[0].imms->X_add_number
7879 |= register_number (i.op[reg_slot].regs) << 4;
7880 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7881 }
7882
7883 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
7884 i.vex.register_specifier = i.op[nds].regs;
7885 }
7886 else
7887 source = dest = 0;
7888
7889 /* i.reg_operands MUST be the number of real register operands;
7890 implicit registers do not count. If there are 3 register
7891 operands, it must be a instruction with VexNDS. For a
7892 instruction with VexNDD, the destination register is encoded
7893 in VEX prefix. If there are 4 register operands, it must be
7894 a instruction with VEX prefix and 3 sources. */
7895 if (i.mem_operands == 0
7896 && ((i.reg_operands == 2
7897 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7898 || (i.reg_operands == 3
7899 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7900 || (i.reg_operands == 4 && vex_3_sources)))
7901 {
7902 switch (i.operands)
7903 {
7904 case 2:
7905 source = 0;
7906 break;
7907 case 3:
7908 /* When there are 3 operands, one of them may be immediate,
7909 which may be the first or the last operand. Otherwise,
7910 the first operand must be shift count register (cl) or it
7911 is an instruction with VexNDS. */
7912 gas_assert (i.imm_operands == 1
7913 || (i.imm_operands == 0
7914 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7915 || (i.types[0].bitfield.instance == RegC
7916 && i.types[0].bitfield.byte))));
7917 if (operand_type_check (i.types[0], imm)
7918 || (i.types[0].bitfield.instance == RegC
7919 && i.types[0].bitfield.byte))
7920 source = 1;
7921 else
7922 source = 0;
7923 break;
7924 case 4:
7925 /* When there are 4 operands, the first two must be 8bit
7926 immediate operands. The source operand will be the 3rd
7927 one.
7928
7929 For instructions with VexNDS, if the first operand
7930 an imm8, the source operand is the 2nd one. If the last
7931 operand is imm8, the source operand is the first one. */
7932 gas_assert ((i.imm_operands == 2
7933 && i.types[0].bitfield.imm8
7934 && i.types[1].bitfield.imm8)
7935 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7936 && i.imm_operands == 1
7937 && (i.types[0].bitfield.imm8
7938 || i.types[i.operands - 1].bitfield.imm8
7939 || i.rounding)));
7940 if (i.imm_operands == 2)
7941 source = 2;
7942 else
7943 {
7944 if (i.types[0].bitfield.imm8)
7945 source = 1;
7946 else
7947 source = 0;
7948 }
7949 break;
7950 case 5:
7951 if (is_evex_encoding (&i.tm))
7952 {
7953 /* For EVEX instructions, when there are 5 operands, the
7954 first one must be immediate operand. If the second one
7955 is immediate operand, the source operand is the 3th
7956 one. If the last one is immediate operand, the source
7957 operand is the 2nd one. */
7958 gas_assert (i.imm_operands == 2
7959 && i.tm.opcode_modifier.sae
7960 && operand_type_check (i.types[0], imm));
7961 if (operand_type_check (i.types[1], imm))
7962 source = 2;
7963 else if (operand_type_check (i.types[4], imm))
7964 source = 1;
7965 else
7966 abort ();
7967 }
7968 break;
7969 default:
7970 abort ();
7971 }
7972
7973 if (!vex_3_sources)
7974 {
7975 dest = source + 1;
7976
7977 /* RC/SAE operand could be between DEST and SRC. That happens
7978 when one operand is GPR and the other one is XMM/YMM/ZMM
7979 register. */
7980 if (i.rounding && i.rounding->operand == (int) dest)
7981 dest++;
7982
7983 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7984 {
7985 /* For instructions with VexNDS, the register-only source
7986 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7987 register. It is encoded in VEX prefix. */
7988
7989 i386_operand_type op;
7990 unsigned int vvvv;
7991
7992 /* Swap two source operands if needed. */
7993 if (i.tm.opcode_modifier.swapsources)
7994 {
7995 vvvv = source;
7996 source = dest;
7997 }
7998 else
7999 vvvv = dest;
8000
8001 op = i.tm.operand_types[vvvv];
8002 if ((dest + 1) >= i.operands
8003 || ((op.bitfield.class != Reg
8004 || (!op.bitfield.dword && !op.bitfield.qword))
8005 && op.bitfield.class != RegSIMD
8006 && !operand_type_equal (&op, &regmask)))
8007 abort ();
8008 i.vex.register_specifier = i.op[vvvv].regs;
8009 dest++;
8010 }
8011 }
8012
8013 i.rm.mode = 3;
8014 /* One of the register operands will be encoded in the i.rm.reg
8015 field, the other in the combined i.rm.mode and i.rm.regmem
8016 fields. If no form of this instruction supports a memory
8017 destination operand, then we assume the source operand may
8018 sometimes be a memory operand and so we need to store the
8019 destination in the i.rm.reg field. */
8020 if (!i.tm.opcode_modifier.regmem
8021 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
8022 {
8023 i.rm.reg = i.op[dest].regs->reg_num;
8024 i.rm.regmem = i.op[source].regs->reg_num;
8025 set_rex_vrex (i.op[dest].regs, REX_R, i.tm.opcode_modifier.sse2avx);
8026 set_rex_vrex (i.op[source].regs, REX_B, FALSE);
8027 }
8028 else
8029 {
8030 i.rm.reg = i.op[source].regs->reg_num;
8031 i.rm.regmem = i.op[dest].regs->reg_num;
8032 set_rex_vrex (i.op[dest].regs, REX_B, i.tm.opcode_modifier.sse2avx);
8033 set_rex_vrex (i.op[source].regs, REX_R, FALSE);
8034 }
8035 if (flag_code != CODE_64BIT && (i.rex & REX_R))
8036 {
8037 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
8038 abort ();
8039 i.rex &= ~REX_R;
8040 add_prefix (LOCK_PREFIX_OPCODE);
8041 }
8042 }
8043 else
8044 { /* If it's not 2 reg operands... */
8045 unsigned int mem;
8046
8047 if (i.mem_operands)
8048 {
8049 unsigned int fake_zero_displacement = 0;
8050 unsigned int op;
8051
8052 for (op = 0; op < i.operands; op++)
8053 if (i.flags[op] & Operand_Mem)
8054 break;
8055 gas_assert (op < i.operands);
8056
8057 if (i.tm.opcode_modifier.sib)
8058 {
8059 /* The index register of VSIB shouldn't be RegIZ. */
8060 if (i.tm.opcode_modifier.sib != SIBMEM
8061 && i.index_reg->reg_num == RegIZ)
8062 abort ();
8063
8064 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8065 if (!i.base_reg)
8066 {
8067 i.sib.base = NO_BASE_REGISTER;
8068 i.sib.scale = i.log2_scale_factor;
8069 i.types[op].bitfield.disp8 = 0;
8070 i.types[op].bitfield.disp16 = 0;
8071 i.types[op].bitfield.disp64 = 0;
8072 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
8073 {
8074 /* Must be 32 bit */
8075 i.types[op].bitfield.disp32 = 1;
8076 i.types[op].bitfield.disp32s = 0;
8077 }
8078 else
8079 {
8080 i.types[op].bitfield.disp32 = 0;
8081 i.types[op].bitfield.disp32s = 1;
8082 }
8083 }
8084
8085 /* Since the mandatory SIB always has index register, so
8086 the code logic remains unchanged. The non-mandatory SIB
8087 without index register is allowed and will be handled
8088 later. */
8089 if (i.index_reg)
8090 {
8091 if (i.index_reg->reg_num == RegIZ)
8092 i.sib.index = NO_INDEX_REGISTER;
8093 else
8094 i.sib.index = i.index_reg->reg_num;
8095 set_rex_vrex (i.index_reg, REX_X, FALSE);
8096 }
8097 }
8098
8099 default_seg = &ds;
8100
8101 if (i.base_reg == 0)
8102 {
8103 i.rm.mode = 0;
8104 if (!i.disp_operands)
8105 fake_zero_displacement = 1;
8106 if (i.index_reg == 0)
8107 {
8108 i386_operand_type newdisp;
8109
8110 /* Both check for VSIB and mandatory non-vector SIB. */
8111 gas_assert (!i.tm.opcode_modifier.sib
8112 || i.tm.opcode_modifier.sib == SIBMEM);
8113 /* Operand is just <disp> */
8114 if (flag_code == CODE_64BIT)
8115 {
8116 /* 64bit mode overwrites the 32bit absolute
8117 addressing by RIP relative addressing and
8118 absolute addressing is encoded by one of the
8119 redundant SIB forms. */
8120 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8121 i.sib.base = NO_BASE_REGISTER;
8122 i.sib.index = NO_INDEX_REGISTER;
8123 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
8124 }
8125 else if ((flag_code == CODE_16BIT)
8126 ^ (i.prefix[ADDR_PREFIX] != 0))
8127 {
8128 i.rm.regmem = NO_BASE_REGISTER_16;
8129 newdisp = disp16;
8130 }
8131 else
8132 {
8133 i.rm.regmem = NO_BASE_REGISTER;
8134 newdisp = disp32;
8135 }
8136 i.types[op] = operand_type_and_not (i.types[op], anydisp);
8137 i.types[op] = operand_type_or (i.types[op], newdisp);
8138 }
8139 else if (!i.tm.opcode_modifier.sib)
8140 {
8141 /* !i.base_reg && i.index_reg */
8142 if (i.index_reg->reg_num == RegIZ)
8143 i.sib.index = NO_INDEX_REGISTER;
8144 else
8145 i.sib.index = i.index_reg->reg_num;
8146 i.sib.base = NO_BASE_REGISTER;
8147 i.sib.scale = i.log2_scale_factor;
8148 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8149 i.types[op].bitfield.disp8 = 0;
8150 i.types[op].bitfield.disp16 = 0;
8151 i.types[op].bitfield.disp64 = 0;
8152 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
8153 {
8154 /* Must be 32 bit */
8155 i.types[op].bitfield.disp32 = 1;
8156 i.types[op].bitfield.disp32s = 0;
8157 }
8158 else
8159 {
8160 i.types[op].bitfield.disp32 = 0;
8161 i.types[op].bitfield.disp32s = 1;
8162 }
8163 if ((i.index_reg->reg_flags & RegRex) != 0)
8164 i.rex |= REX_X;
8165 }
8166 }
8167 /* RIP addressing for 64bit mode. */
8168 else if (i.base_reg->reg_num == RegIP)
8169 {
8170 gas_assert (!i.tm.opcode_modifier.sib);
8171 i.rm.regmem = NO_BASE_REGISTER;
8172 i.types[op].bitfield.disp8 = 0;
8173 i.types[op].bitfield.disp16 = 0;
8174 i.types[op].bitfield.disp32 = 0;
8175 i.types[op].bitfield.disp32s = 1;
8176 i.types[op].bitfield.disp64 = 0;
8177 i.flags[op] |= Operand_PCrel;
8178 if (! i.disp_operands)
8179 fake_zero_displacement = 1;
8180 }
8181 else if (i.base_reg->reg_type.bitfield.word)
8182 {
8183 gas_assert (!i.tm.opcode_modifier.sib);
8184 switch (i.base_reg->reg_num)
8185 {
8186 case 3: /* (%bx) */
8187 if (i.index_reg == 0)
8188 i.rm.regmem = 7;
8189 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
8190 i.rm.regmem = i.index_reg->reg_num - 6;
8191 break;
8192 case 5: /* (%bp) */
8193 default_seg = &ss;
8194 if (i.index_reg == 0)
8195 {
8196 i.rm.regmem = 6;
8197 if (operand_type_check (i.types[op], disp) == 0)
8198 {
8199 /* fake (%bp) into 0(%bp) */
8200 if (i.disp_encoding == disp_encoding_16bit)
8201 i.types[op].bitfield.disp16 = 1;
8202 else
8203 i.types[op].bitfield.disp8 = 1;
8204 fake_zero_displacement = 1;
8205 }
8206 }
8207 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
8208 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
8209 break;
8210 default: /* (%si) -> 4 or (%di) -> 5 */
8211 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
8212 }
8213 if (!fake_zero_displacement
8214 && !i.disp_operands
8215 && i.disp_encoding)
8216 {
8217 fake_zero_displacement = 1;
8218 if (i.disp_encoding == disp_encoding_8bit)
8219 i.types[op].bitfield.disp8 = 1;
8220 else
8221 i.types[op].bitfield.disp16 = 1;
8222 }
8223 i.rm.mode = mode_from_disp_size (i.types[op]);
8224 }
8225 else /* i.base_reg and 32/64 bit mode */
8226 {
8227 if (flag_code == CODE_64BIT
8228 && operand_type_check (i.types[op], disp))
8229 {
8230 i.types[op].bitfield.disp16 = 0;
8231 i.types[op].bitfield.disp64 = 0;
8232 if (i.prefix[ADDR_PREFIX] == 0)
8233 {
8234 i.types[op].bitfield.disp32 = 0;
8235 i.types[op].bitfield.disp32s = 1;
8236 }
8237 else
8238 {
8239 i.types[op].bitfield.disp32 = 1;
8240 i.types[op].bitfield.disp32s = 0;
8241 }
8242 }
8243
8244 if (!i.tm.opcode_modifier.sib)
8245 i.rm.regmem = i.base_reg->reg_num;
8246 if ((i.base_reg->reg_flags & RegRex) != 0)
8247 i.rex |= REX_B;
8248 i.sib.base = i.base_reg->reg_num;
8249 /* x86-64 ignores REX prefix bit here to avoid decoder
8250 complications. */
8251 if (!(i.base_reg->reg_flags & RegRex)
8252 && (i.base_reg->reg_num == EBP_REG_NUM
8253 || i.base_reg->reg_num == ESP_REG_NUM))
8254 default_seg = &ss;
8255 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
8256 {
8257 fake_zero_displacement = 1;
8258 if (i.disp_encoding == disp_encoding_32bit)
8259 i.types[op].bitfield.disp32 = 1;
8260 else
8261 i.types[op].bitfield.disp8 = 1;
8262 }
8263 i.sib.scale = i.log2_scale_factor;
8264 if (i.index_reg == 0)
8265 {
8266 /* Only check for VSIB. */
8267 gas_assert (i.tm.opcode_modifier.sib != VECSIB128
8268 && i.tm.opcode_modifier.sib != VECSIB256
8269 && i.tm.opcode_modifier.sib != VECSIB512);
8270
8271 /* <disp>(%esp) becomes two byte modrm with no index
8272 register. We've already stored the code for esp
8273 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
8274 Any base register besides %esp will not use the
8275 extra modrm byte. */
8276 i.sib.index = NO_INDEX_REGISTER;
8277 }
8278 else if (!i.tm.opcode_modifier.sib)
8279 {
8280 if (i.index_reg->reg_num == RegIZ)
8281 i.sib.index = NO_INDEX_REGISTER;
8282 else
8283 i.sib.index = i.index_reg->reg_num;
8284 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8285 if ((i.index_reg->reg_flags & RegRex) != 0)
8286 i.rex |= REX_X;
8287 }
8288
8289 if (i.disp_operands
8290 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
8291 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
8292 i.rm.mode = 0;
8293 else
8294 {
8295 if (!fake_zero_displacement
8296 && !i.disp_operands
8297 && i.disp_encoding)
8298 {
8299 fake_zero_displacement = 1;
8300 if (i.disp_encoding == disp_encoding_8bit)
8301 i.types[op].bitfield.disp8 = 1;
8302 else
8303 i.types[op].bitfield.disp32 = 1;
8304 }
8305 i.rm.mode = mode_from_disp_size (i.types[op]);
8306 }
8307 }
8308
8309 if (fake_zero_displacement)
8310 {
8311 /* Fakes a zero displacement assuming that i.types[op]
8312 holds the correct displacement size. */
8313 expressionS *exp;
8314
8315 gas_assert (i.op[op].disps == 0);
8316 exp = &disp_expressions[i.disp_operands++];
8317 i.op[op].disps = exp;
8318 exp->X_op = O_constant;
8319 exp->X_add_number = 0;
8320 exp->X_add_symbol = (symbolS *) 0;
8321 exp->X_op_symbol = (symbolS *) 0;
8322 }
8323
8324 mem = op;
8325 }
8326 else
8327 mem = ~0;
8328
8329 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
8330 {
8331 if (operand_type_check (i.types[0], imm))
8332 i.vex.register_specifier = NULL;
8333 else
8334 {
8335 /* VEX.vvvv encodes one of the sources when the first
8336 operand is not an immediate. */
8337 if (i.tm.opcode_modifier.vexw == VEXW0)
8338 i.vex.register_specifier = i.op[0].regs;
8339 else
8340 i.vex.register_specifier = i.op[1].regs;
8341 }
8342
8343 /* Destination is a XMM register encoded in the ModRM.reg
8344 and VEX.R bit. */
8345 i.rm.reg = i.op[2].regs->reg_num;
8346 if ((i.op[2].regs->reg_flags & RegRex) != 0)
8347 i.rex |= REX_R;
8348
8349 /* ModRM.rm and VEX.B encodes the other source. */
8350 if (!i.mem_operands)
8351 {
8352 i.rm.mode = 3;
8353
8354 if (i.tm.opcode_modifier.vexw == VEXW0)
8355 i.rm.regmem = i.op[1].regs->reg_num;
8356 else
8357 i.rm.regmem = i.op[0].regs->reg_num;
8358
8359 if ((i.op[1].regs->reg_flags & RegRex) != 0)
8360 i.rex |= REX_B;
8361 }
8362 }
8363 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
8364 {
8365 i.vex.register_specifier = i.op[2].regs;
8366 if (!i.mem_operands)
8367 {
8368 i.rm.mode = 3;
8369 i.rm.regmem = i.op[1].regs->reg_num;
8370 if ((i.op[1].regs->reg_flags & RegRex) != 0)
8371 i.rex |= REX_B;
8372 }
8373 }
8374 /* Fill in i.rm.reg or i.rm.regmem field with register operand
8375 (if any) based on i.tm.extension_opcode. Again, we must be
8376 careful to make sure that segment/control/debug/test/MMX
8377 registers are coded into the i.rm.reg field. */
8378 else if (i.reg_operands)
8379 {
8380 unsigned int op;
8381 unsigned int vex_reg = ~0;
8382
8383 for (op = 0; op < i.operands; op++)
8384 if (i.types[op].bitfield.class == Reg
8385 || i.types[op].bitfield.class == RegBND
8386 || i.types[op].bitfield.class == RegMask
8387 || i.types[op].bitfield.class == SReg
8388 || i.types[op].bitfield.class == RegCR
8389 || i.types[op].bitfield.class == RegDR
8390 || i.types[op].bitfield.class == RegTR
8391 || i.types[op].bitfield.class == RegSIMD
8392 || i.types[op].bitfield.class == RegMMX)
8393 break;
8394
8395 if (vex_3_sources)
8396 op = dest;
8397 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
8398 {
8399 /* For instructions with VexNDS, the register-only
8400 source operand is encoded in VEX prefix. */
8401 gas_assert (mem != (unsigned int) ~0);
8402
8403 if (op > mem)
8404 {
8405 vex_reg = op++;
8406 gas_assert (op < i.operands);
8407 }
8408 else
8409 {
8410 /* Check register-only source operand when two source
8411 operands are swapped. */
8412 if (!i.tm.operand_types[op].bitfield.baseindex
8413 && i.tm.operand_types[op + 1].bitfield.baseindex)
8414 {
8415 vex_reg = op;
8416 op += 2;
8417 gas_assert (mem == (vex_reg + 1)
8418 && op < i.operands);
8419 }
8420 else
8421 {
8422 vex_reg = op + 1;
8423 gas_assert (vex_reg < i.operands);
8424 }
8425 }
8426 }
8427 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
8428 {
8429 /* For instructions with VexNDD, the register destination
8430 is encoded in VEX prefix. */
8431 if (i.mem_operands == 0)
8432 {
8433 /* There is no memory operand. */
8434 gas_assert ((op + 2) == i.operands);
8435 vex_reg = op + 1;
8436 }
8437 else
8438 {
8439 /* There are only 2 non-immediate operands. */
8440 gas_assert (op < i.imm_operands + 2
8441 && i.operands == i.imm_operands + 2);
8442 vex_reg = i.imm_operands + 1;
8443 }
8444 }
8445 else
8446 gas_assert (op < i.operands);
8447
8448 if (vex_reg != (unsigned int) ~0)
8449 {
8450 i386_operand_type *type = &i.tm.operand_types[vex_reg];
8451
8452 if ((type->bitfield.class != Reg
8453 || (!type->bitfield.dword && !type->bitfield.qword))
8454 && type->bitfield.class != RegSIMD
8455 && !operand_type_equal (type, &regmask))
8456 abort ();
8457
8458 i.vex.register_specifier = i.op[vex_reg].regs;
8459 }
8460
8461 /* Don't set OP operand twice. */
8462 if (vex_reg != op)
8463 {
8464 /* If there is an extension opcode to put here, the
8465 register number must be put into the regmem field. */
8466 if (i.tm.extension_opcode != None)
8467 {
8468 i.rm.regmem = i.op[op].regs->reg_num;
8469 set_rex_vrex (i.op[op].regs, REX_B,
8470 i.tm.opcode_modifier.sse2avx);
8471 }
8472 else
8473 {
8474 i.rm.reg = i.op[op].regs->reg_num;
8475 set_rex_vrex (i.op[op].regs, REX_R,
8476 i.tm.opcode_modifier.sse2avx);
8477 }
8478 }
8479
8480 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
8481 must set it to 3 to indicate this is a register operand
8482 in the regmem field. */
8483 if (!i.mem_operands)
8484 i.rm.mode = 3;
8485 }
8486
8487 /* Fill in i.rm.reg field with extension opcode (if any). */
8488 if (i.tm.extension_opcode != None)
8489 i.rm.reg = i.tm.extension_opcode;
8490 }
8491 return default_seg;
8492 }
8493
8494 static INLINE void
8495 frag_opcode_byte (unsigned char byte)
8496 {
8497 if (now_seg != absolute_section)
8498 FRAG_APPEND_1_CHAR (byte);
8499 else
8500 ++abs_section_offset;
8501 }
8502
8503 static unsigned int
8504 flip_code16 (unsigned int code16)
8505 {
8506 gas_assert (i.tm.operands == 1);
8507
8508 return !(i.prefix[REX_PREFIX] & REX_W)
8509 && (code16 ? i.tm.operand_types[0].bitfield.disp32
8510 || i.tm.operand_types[0].bitfield.disp32s
8511 : i.tm.operand_types[0].bitfield.disp16)
8512 ? CODE16 : 0;
8513 }
8514
8515 static void
8516 output_branch (void)
8517 {
8518 char *p;
8519 int size;
8520 int code16;
8521 int prefix;
8522 relax_substateT subtype;
8523 symbolS *sym;
8524 offsetT off;
8525
8526 if (now_seg == absolute_section)
8527 {
8528 as_bad (_("relaxable branches not supported in absolute section"));
8529 return;
8530 }
8531
8532 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
8533 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
8534
8535 prefix = 0;
8536 if (i.prefix[DATA_PREFIX] != 0)
8537 {
8538 prefix = 1;
8539 i.prefixes -= 1;
8540 code16 ^= flip_code16(code16);
8541 }
8542 /* Pentium4 branch hints. */
8543 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8544 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8545 {
8546 prefix++;
8547 i.prefixes--;
8548 }
8549 if (i.prefix[REX_PREFIX] != 0)
8550 {
8551 prefix++;
8552 i.prefixes--;
8553 }
8554
8555 /* BND prefixed jump. */
8556 if (i.prefix[BND_PREFIX] != 0)
8557 {
8558 prefix++;
8559 i.prefixes--;
8560 }
8561
8562 if (i.prefixes != 0)
8563 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8564
8565 /* It's always a symbol; End frag & setup for relax.
8566 Make sure there is enough room in this frag for the largest
8567 instruction we may generate in md_convert_frag. This is 2
8568 bytes for the opcode and room for the prefix and largest
8569 displacement. */
8570 frag_grow (prefix + 2 + 4);
8571 /* Prefix and 1 opcode byte go in fr_fix. */
8572 p = frag_more (prefix + 1);
8573 if (i.prefix[DATA_PREFIX] != 0)
8574 *p++ = DATA_PREFIX_OPCODE;
8575 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
8576 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
8577 *p++ = i.prefix[SEG_PREFIX];
8578 if (i.prefix[BND_PREFIX] != 0)
8579 *p++ = BND_PREFIX_OPCODE;
8580 if (i.prefix[REX_PREFIX] != 0)
8581 *p++ = i.prefix[REX_PREFIX];
8582 *p = i.tm.base_opcode;
8583
8584 if ((unsigned char) *p == JUMP_PC_RELATIVE)
8585 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
8586 else if (cpu_arch_flags.bitfield.cpui386)
8587 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
8588 else
8589 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
8590 subtype |= code16;
8591
8592 sym = i.op[0].disps->X_add_symbol;
8593 off = i.op[0].disps->X_add_number;
8594
8595 if (i.op[0].disps->X_op != O_constant
8596 && i.op[0].disps->X_op != O_symbol)
8597 {
8598 /* Handle complex expressions. */
8599 sym = make_expr_symbol (i.op[0].disps);
8600 off = 0;
8601 }
8602
8603 /* 1 possible extra opcode + 4 byte displacement go in var part.
8604 Pass reloc in fr_var. */
8605 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
8606 }
8607
8608 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8609 /* Return TRUE iff PLT32 relocation should be used for branching to
8610 symbol S. */
8611
8612 static bfd_boolean
8613 need_plt32_p (symbolS *s)
8614 {
8615 /* PLT32 relocation is ELF only. */
8616 if (!IS_ELF)
8617 return FALSE;
8618
8619 #ifdef TE_SOLARIS
8620 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
8621 krtld support it. */
8622 return FALSE;
8623 #endif
8624
8625 /* Since there is no need to prepare for PLT branch on x86-64, we
8626 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
8627 be used as a marker for 32-bit PC-relative branches. */
8628 if (!object_64bit)
8629 return FALSE;
8630
8631 /* Weak or undefined symbol need PLT32 relocation. */
8632 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
8633 return TRUE;
8634
8635 /* Non-global symbol doesn't need PLT32 relocation. */
8636 if (! S_IS_EXTERNAL (s))
8637 return FALSE;
8638
8639 /* Other global symbols need PLT32 relocation. NB: Symbol with
8640 non-default visibilities are treated as normal global symbol
8641 so that PLT32 relocation can be used as a marker for 32-bit
8642 PC-relative branches. It is useful for linker relaxation. */
8643 return TRUE;
8644 }
8645 #endif
8646
8647 static void
8648 output_jump (void)
8649 {
8650 char *p;
8651 int size;
8652 fixS *fixP;
8653 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
8654
8655 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
8656 {
8657 /* This is a loop or jecxz type instruction. */
8658 size = 1;
8659 if (i.prefix[ADDR_PREFIX] != 0)
8660 {
8661 frag_opcode_byte (ADDR_PREFIX_OPCODE);
8662 i.prefixes -= 1;
8663 }
8664 /* Pentium4 branch hints. */
8665 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8666 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8667 {
8668 frag_opcode_byte (i.prefix[SEG_PREFIX]);
8669 i.prefixes--;
8670 }
8671 }
8672 else
8673 {
8674 int code16;
8675
8676 code16 = 0;
8677 if (flag_code == CODE_16BIT)
8678 code16 = CODE16;
8679
8680 if (i.prefix[DATA_PREFIX] != 0)
8681 {
8682 frag_opcode_byte (DATA_PREFIX_OPCODE);
8683 i.prefixes -= 1;
8684 code16 ^= flip_code16(code16);
8685 }
8686
8687 size = 4;
8688 if (code16)
8689 size = 2;
8690 }
8691
8692 /* BND prefixed jump. */
8693 if (i.prefix[BND_PREFIX] != 0)
8694 {
8695 frag_opcode_byte (i.prefix[BND_PREFIX]);
8696 i.prefixes -= 1;
8697 }
8698
8699 if (i.prefix[REX_PREFIX] != 0)
8700 {
8701 frag_opcode_byte (i.prefix[REX_PREFIX]);
8702 i.prefixes -= 1;
8703 }
8704
8705 if (i.prefixes != 0)
8706 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8707
8708 if (now_seg == absolute_section)
8709 {
8710 abs_section_offset += i.tm.opcode_length + size;
8711 return;
8712 }
8713
8714 p = frag_more (i.tm.opcode_length + size);
8715 switch (i.tm.opcode_length)
8716 {
8717 case 2:
8718 *p++ = i.tm.base_opcode >> 8;
8719 /* Fall through. */
8720 case 1:
8721 *p++ = i.tm.base_opcode;
8722 break;
8723 default:
8724 abort ();
8725 }
8726
8727 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8728 if (size == 4
8729 && jump_reloc == NO_RELOC
8730 && need_plt32_p (i.op[0].disps->X_add_symbol))
8731 jump_reloc = BFD_RELOC_X86_64_PLT32;
8732 #endif
8733
8734 jump_reloc = reloc (size, 1, 1, jump_reloc);
8735
8736 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8737 i.op[0].disps, 1, jump_reloc);
8738
8739 /* All jumps handled here are signed, but don't use a signed limit
8740 check for 32 and 16 bit jumps as we want to allow wrap around at
8741 4G and 64k respectively. */
8742 if (size == 1)
8743 fixP->fx_signed = 1;
8744 }
8745
8746 static void
8747 output_interseg_jump (void)
8748 {
8749 char *p;
8750 int size;
8751 int prefix;
8752 int code16;
8753
8754 code16 = 0;
8755 if (flag_code == CODE_16BIT)
8756 code16 = CODE16;
8757
8758 prefix = 0;
8759 if (i.prefix[DATA_PREFIX] != 0)
8760 {
8761 prefix = 1;
8762 i.prefixes -= 1;
8763 code16 ^= CODE16;
8764 }
8765
8766 gas_assert (!i.prefix[REX_PREFIX]);
8767
8768 size = 4;
8769 if (code16)
8770 size = 2;
8771
8772 if (i.prefixes != 0)
8773 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8774
8775 if (now_seg == absolute_section)
8776 {
8777 abs_section_offset += prefix + 1 + 2 + size;
8778 return;
8779 }
8780
8781 /* 1 opcode; 2 segment; offset */
8782 p = frag_more (prefix + 1 + 2 + size);
8783
8784 if (i.prefix[DATA_PREFIX] != 0)
8785 *p++ = DATA_PREFIX_OPCODE;
8786
8787 if (i.prefix[REX_PREFIX] != 0)
8788 *p++ = i.prefix[REX_PREFIX];
8789
8790 *p++ = i.tm.base_opcode;
8791 if (i.op[1].imms->X_op == O_constant)
8792 {
8793 offsetT n = i.op[1].imms->X_add_number;
8794
8795 if (size == 2
8796 && !fits_in_unsigned_word (n)
8797 && !fits_in_signed_word (n))
8798 {
8799 as_bad (_("16-bit jump out of range"));
8800 return;
8801 }
8802 md_number_to_chars (p, n, size);
8803 }
8804 else
8805 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8806 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8807
8808 p += size;
8809 if (i.op[0].imms->X_op == O_constant)
8810 md_number_to_chars (p, (valueT) i.op[0].imms->X_add_number, 2);
8811 else
8812 fix_new_exp (frag_now, p - frag_now->fr_literal, 2,
8813 i.op[0].imms, 0, reloc (2, 0, 0, i.reloc[0]));
8814 }
8815
8816 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8817 void
8818 x86_cleanup (void)
8819 {
8820 char *p;
8821 asection *seg = now_seg;
8822 subsegT subseg = now_subseg;
8823 asection *sec;
8824 unsigned int alignment, align_size_1;
8825 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8826 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8827 unsigned int padding;
8828
8829 if (!IS_ELF || !x86_used_note)
8830 return;
8831
8832 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8833
8834 /* The .note.gnu.property section layout:
8835
8836 Field Length Contents
8837 ---- ---- ----
8838 n_namsz 4 4
8839 n_descsz 4 The note descriptor size
8840 n_type 4 NT_GNU_PROPERTY_TYPE_0
8841 n_name 4 "GNU"
8842 n_desc n_descsz The program property array
8843 .... .... ....
8844 */
8845
8846 /* Create the .note.gnu.property section. */
8847 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8848 bfd_set_section_flags (sec,
8849 (SEC_ALLOC
8850 | SEC_LOAD
8851 | SEC_DATA
8852 | SEC_HAS_CONTENTS
8853 | SEC_READONLY));
8854
8855 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8856 {
8857 align_size_1 = 7;
8858 alignment = 3;
8859 }
8860 else
8861 {
8862 align_size_1 = 3;
8863 alignment = 2;
8864 }
8865
8866 bfd_set_section_alignment (sec, alignment);
8867 elf_section_type (sec) = SHT_NOTE;
8868
8869 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8870 + 4-byte data */
8871 isa_1_descsz_raw = 4 + 4 + 4;
8872 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8873 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8874
8875 feature_2_descsz_raw = isa_1_descsz;
8876 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8877 + 4-byte data */
8878 feature_2_descsz_raw += 4 + 4 + 4;
8879 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8880 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8881 & ~align_size_1);
8882
8883 descsz = feature_2_descsz;
8884 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8885 p = frag_more (4 + 4 + 4 + 4 + descsz);
8886
8887 /* Write n_namsz. */
8888 md_number_to_chars (p, (valueT) 4, 4);
8889
8890 /* Write n_descsz. */
8891 md_number_to_chars (p + 4, (valueT) descsz, 4);
8892
8893 /* Write n_type. */
8894 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8895
8896 /* Write n_name. */
8897 memcpy (p + 4 * 3, "GNU", 4);
8898
8899 /* Write 4-byte type. */
8900 md_number_to_chars (p + 4 * 4,
8901 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8902
8903 /* Write 4-byte data size. */
8904 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8905
8906 /* Write 4-byte data. */
8907 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8908
8909 /* Zero out paddings. */
8910 padding = isa_1_descsz - isa_1_descsz_raw;
8911 if (padding)
8912 memset (p + 4 * 7, 0, padding);
8913
8914 /* Write 4-byte type. */
8915 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8916 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8917
8918 /* Write 4-byte data size. */
8919 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8920
8921 /* Write 4-byte data. */
8922 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8923 (valueT) x86_feature_2_used, 4);
8924
8925 /* Zero out paddings. */
8926 padding = feature_2_descsz - feature_2_descsz_raw;
8927 if (padding)
8928 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8929
8930 /* We probably can't restore the current segment, for there likely
8931 isn't one yet... */
8932 if (seg && subseg)
8933 subseg_set (seg, subseg);
8934 }
8935 #endif
8936
8937 static unsigned int
8938 encoding_length (const fragS *start_frag, offsetT start_off,
8939 const char *frag_now_ptr)
8940 {
8941 unsigned int len = 0;
8942
8943 if (start_frag != frag_now)
8944 {
8945 const fragS *fr = start_frag;
8946
8947 do {
8948 len += fr->fr_fix;
8949 fr = fr->fr_next;
8950 } while (fr && fr != frag_now);
8951 }
8952
8953 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8954 }
8955
8956 /* Return 1 for test, and, cmp, add, sub, inc and dec which may
8957 be macro-fused with conditional jumps.
8958 NB: If TEST/AND/CMP/ADD/SUB/INC/DEC is of RIP relative address,
8959 or is one of the following format:
8960
8961 cmp m, imm
8962 add m, imm
8963 sub m, imm
8964 test m, imm
8965 and m, imm
8966 inc m
8967 dec m
8968
8969 it is unfusible. */
8970
8971 static int
8972 maybe_fused_with_jcc_p (enum mf_cmp_kind* mf_cmp_p)
8973 {
8974 /* No RIP address. */
8975 if (i.base_reg && i.base_reg->reg_num == RegIP)
8976 return 0;
8977
8978 /* No VEX/EVEX encoding. */
8979 if (is_any_vex_encoding (&i.tm))
8980 return 0;
8981
8982 /* add, sub without add/sub m, imm. */
8983 if (i.tm.base_opcode <= 5
8984 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8985 || ((i.tm.base_opcode | 3) == 0x83
8986 && (i.tm.extension_opcode == 0x5
8987 || i.tm.extension_opcode == 0x0)))
8988 {
8989 *mf_cmp_p = mf_cmp_alu_cmp;
8990 return !(i.mem_operands && i.imm_operands);
8991 }
8992
8993 /* and without and m, imm. */
8994 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8995 || ((i.tm.base_opcode | 3) == 0x83
8996 && i.tm.extension_opcode == 0x4))
8997 {
8998 *mf_cmp_p = mf_cmp_test_and;
8999 return !(i.mem_operands && i.imm_operands);
9000 }
9001
9002 /* test without test m imm. */
9003 if ((i.tm.base_opcode | 1) == 0x85
9004 || (i.tm.base_opcode | 1) == 0xa9
9005 || ((i.tm.base_opcode | 1) == 0xf7
9006 && i.tm.extension_opcode == 0))
9007 {
9008 *mf_cmp_p = mf_cmp_test_and;
9009 return !(i.mem_operands && i.imm_operands);
9010 }
9011
9012 /* cmp without cmp m, imm. */
9013 if ((i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
9014 || ((i.tm.base_opcode | 3) == 0x83
9015 && (i.tm.extension_opcode == 0x7)))
9016 {
9017 *mf_cmp_p = mf_cmp_alu_cmp;
9018 return !(i.mem_operands && i.imm_operands);
9019 }
9020
9021 /* inc, dec without inc/dec m. */
9022 if ((i.tm.cpu_flags.bitfield.cpuno64
9023 && (i.tm.base_opcode | 0xf) == 0x4f)
9024 || ((i.tm.base_opcode | 1) == 0xff
9025 && i.tm.extension_opcode <= 0x1))
9026 {
9027 *mf_cmp_p = mf_cmp_incdec;
9028 return !i.mem_operands;
9029 }
9030
9031 return 0;
9032 }
9033
9034 /* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
9035
9036 static int
9037 add_fused_jcc_padding_frag_p (enum mf_cmp_kind* mf_cmp_p)
9038 {
9039 /* NB: Don't work with COND_JUMP86 without i386. */
9040 if (!align_branch_power
9041 || now_seg == absolute_section
9042 || !cpu_arch_flags.bitfield.cpui386
9043 || !(align_branch & align_branch_fused_bit))
9044 return 0;
9045
9046 if (maybe_fused_with_jcc_p (mf_cmp_p))
9047 {
9048 if (last_insn.kind == last_insn_other
9049 || last_insn.seg != now_seg)
9050 return 1;
9051 if (flag_debug)
9052 as_warn_where (last_insn.file, last_insn.line,
9053 _("`%s` skips -malign-branch-boundary on `%s`"),
9054 last_insn.name, i.tm.name);
9055 }
9056
9057 return 0;
9058 }
9059
9060 /* Return 1 if a BRANCH_PREFIX frag should be generated. */
9061
9062 static int
9063 add_branch_prefix_frag_p (void)
9064 {
9065 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
9066 to PadLock instructions since they include prefixes in opcode. */
9067 if (!align_branch_power
9068 || !align_branch_prefix_size
9069 || now_seg == absolute_section
9070 || i.tm.cpu_flags.bitfield.cpupadlock
9071 || !cpu_arch_flags.bitfield.cpui386)
9072 return 0;
9073
9074 /* Don't add prefix if it is a prefix or there is no operand in case
9075 that segment prefix is special. */
9076 if (!i.operands || i.tm.opcode_modifier.isprefix)
9077 return 0;
9078
9079 if (last_insn.kind == last_insn_other
9080 || last_insn.seg != now_seg)
9081 return 1;
9082
9083 if (flag_debug)
9084 as_warn_where (last_insn.file, last_insn.line,
9085 _("`%s` skips -malign-branch-boundary on `%s`"),
9086 last_insn.name, i.tm.name);
9087
9088 return 0;
9089 }
9090
9091 /* Return 1 if a BRANCH_PADDING frag should be generated. */
9092
9093 static int
9094 add_branch_padding_frag_p (enum align_branch_kind *branch_p,
9095 enum mf_jcc_kind *mf_jcc_p)
9096 {
9097 int add_padding;
9098
9099 /* NB: Don't work with COND_JUMP86 without i386. */
9100 if (!align_branch_power
9101 || now_seg == absolute_section
9102 || !cpu_arch_flags.bitfield.cpui386)
9103 return 0;
9104
9105 add_padding = 0;
9106
9107 /* Check for jcc and direct jmp. */
9108 if (i.tm.opcode_modifier.jump == JUMP)
9109 {
9110 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
9111 {
9112 *branch_p = align_branch_jmp;
9113 add_padding = align_branch & align_branch_jmp_bit;
9114 }
9115 else
9116 {
9117 /* Because J<cc> and JN<cc> share same group in macro-fusible table,
9118 igore the lowest bit. */
9119 *mf_jcc_p = (i.tm.base_opcode & 0x0e) >> 1;
9120 *branch_p = align_branch_jcc;
9121 if ((align_branch & align_branch_jcc_bit))
9122 add_padding = 1;
9123 }
9124 }
9125 else if (is_any_vex_encoding (&i.tm))
9126 return 0;
9127 else if ((i.tm.base_opcode | 1) == 0xc3)
9128 {
9129 /* Near ret. */
9130 *branch_p = align_branch_ret;
9131 if ((align_branch & align_branch_ret_bit))
9132 add_padding = 1;
9133 }
9134 else
9135 {
9136 /* Check for indirect jmp, direct and indirect calls. */
9137 if (i.tm.base_opcode == 0xe8)
9138 {
9139 /* Direct call. */
9140 *branch_p = align_branch_call;
9141 if ((align_branch & align_branch_call_bit))
9142 add_padding = 1;
9143 }
9144 else if (i.tm.base_opcode == 0xff
9145 && (i.tm.extension_opcode == 2
9146 || i.tm.extension_opcode == 4))
9147 {
9148 /* Indirect call and jmp. */
9149 *branch_p = align_branch_indirect;
9150 if ((align_branch & align_branch_indirect_bit))
9151 add_padding = 1;
9152 }
9153
9154 if (add_padding
9155 && i.disp_operands
9156 && tls_get_addr
9157 && (i.op[0].disps->X_op == O_symbol
9158 || (i.op[0].disps->X_op == O_subtract
9159 && i.op[0].disps->X_op_symbol == GOT_symbol)))
9160 {
9161 symbolS *s = i.op[0].disps->X_add_symbol;
9162 /* No padding to call to global or undefined tls_get_addr. */
9163 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
9164 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
9165 return 0;
9166 }
9167 }
9168
9169 if (add_padding
9170 && last_insn.kind != last_insn_other
9171 && last_insn.seg == now_seg)
9172 {
9173 if (flag_debug)
9174 as_warn_where (last_insn.file, last_insn.line,
9175 _("`%s` skips -malign-branch-boundary on `%s`"),
9176 last_insn.name, i.tm.name);
9177 return 0;
9178 }
9179
9180 return add_padding;
9181 }
9182
9183 static void
9184 output_insn (void)
9185 {
9186 fragS *insn_start_frag;
9187 offsetT insn_start_off;
9188 fragS *fragP = NULL;
9189 enum align_branch_kind branch = align_branch_none;
9190 /* The initializer is arbitrary just to avoid uninitialized error.
9191 it's actually either assigned in add_branch_padding_frag_p
9192 or never be used. */
9193 enum mf_jcc_kind mf_jcc = mf_jcc_jo;
9194
9195 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9196 if (IS_ELF && x86_used_note && now_seg != absolute_section)
9197 {
9198 if ((i.xstate & xstate_tmm) == xstate_tmm
9199 || i.tm.cpu_flags.bitfield.cpuamx_tile)
9200 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_TMM;
9201
9202 if (i.tm.cpu_flags.bitfield.cpu8087
9203 || i.tm.cpu_flags.bitfield.cpu287
9204 || i.tm.cpu_flags.bitfield.cpu387
9205 || i.tm.cpu_flags.bitfield.cpu687
9206 || i.tm.cpu_flags.bitfield.cpufisttp)
9207 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
9208 if ((i.xstate & xstate_mmx)
9209 || i.tm.base_opcode == 0xf77 /* emms */
9210 || i.tm.base_opcode == 0xf0e /* femms */)
9211 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
9212 if (i.index_reg)
9213 {
9214 if (i.index_reg->reg_type.bitfield.zmmword)
9215 i.xstate |= xstate_zmm;
9216 else if (i.index_reg->reg_type.bitfield.ymmword)
9217 i.xstate |= xstate_ymm;
9218 else if (i.index_reg->reg_type.bitfield.xmmword)
9219 i.xstate |= xstate_xmm;
9220 }
9221 if ((i.xstate & xstate_xmm)
9222 || i.tm.cpu_flags.bitfield.cpuwidekl
9223 || i.tm.cpu_flags.bitfield.cpukl)
9224 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
9225 if ((i.xstate & xstate_ymm) == xstate_ymm)
9226 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
9227 if ((i.xstate & xstate_zmm) == xstate_zmm)
9228 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
9229 if (i.mask || (i.xstate & xstate_mask) == xstate_mask)
9230 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MASK;
9231 if (i.tm.cpu_flags.bitfield.cpufxsr)
9232 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
9233 if (i.tm.cpu_flags.bitfield.cpuxsave)
9234 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
9235 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
9236 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
9237 if (i.tm.cpu_flags.bitfield.cpuxsavec)
9238 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
9239
9240 if (x86_feature_2_used
9241 || i.tm.cpu_flags.bitfield.cpucmov
9242 || i.tm.cpu_flags.bitfield.cpusyscall
9243 || (i.tm.base_opcode == 0xfc7
9244 && i.tm.opcode_modifier.opcodeprefix == 0
9245 && i.tm.extension_opcode == 1) /* cmpxchg8b */)
9246 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_BASELINE;
9247 if (i.tm.cpu_flags.bitfield.cpusse3
9248 || i.tm.cpu_flags.bitfield.cpussse3
9249 || i.tm.cpu_flags.bitfield.cpusse4_1
9250 || i.tm.cpu_flags.bitfield.cpusse4_2
9251 || i.tm.cpu_flags.bitfield.cpucx16
9252 || i.tm.cpu_flags.bitfield.cpupopcnt
9253 /* LAHF-SAHF insns in 64-bit mode. */
9254 || (flag_code == CODE_64BIT
9255 && (i.tm.base_opcode | 1) == 0x9f))
9256 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_V2;
9257 if (i.tm.cpu_flags.bitfield.cpuavx
9258 || i.tm.cpu_flags.bitfield.cpuavx2
9259 /* Any VEX encoded insns execpt for CpuAVX512F, CpuAVX512BW,
9260 CpuAVX512DQ, LPW, TBM and AMX. */
9261 || (i.tm.opcode_modifier.vex
9262 && !i.tm.cpu_flags.bitfield.cpuavx512f
9263 && !i.tm.cpu_flags.bitfield.cpuavx512bw
9264 && !i.tm.cpu_flags.bitfield.cpuavx512dq
9265 && !i.tm.cpu_flags.bitfield.cpulwp
9266 && !i.tm.cpu_flags.bitfield.cputbm
9267 && !(x86_feature_2_used & GNU_PROPERTY_X86_FEATURE_2_TMM))
9268 || i.tm.cpu_flags.bitfield.cpuf16c
9269 || i.tm.cpu_flags.bitfield.cpufma
9270 || i.tm.cpu_flags.bitfield.cpulzcnt
9271 || i.tm.cpu_flags.bitfield.cpumovbe
9272 || i.tm.cpu_flags.bitfield.cpuxsaves
9273 || (x86_feature_2_used
9274 & (GNU_PROPERTY_X86_FEATURE_2_XSAVE
9275 | GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT
9276 | GNU_PROPERTY_X86_FEATURE_2_XSAVEC)) != 0)
9277 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_V3;
9278 if (i.tm.cpu_flags.bitfield.cpuavx512f
9279 || i.tm.cpu_flags.bitfield.cpuavx512bw
9280 || i.tm.cpu_flags.bitfield.cpuavx512dq
9281 || i.tm.cpu_flags.bitfield.cpuavx512vl
9282 /* Any EVEX encoded insns except for AVX512ER, AVX512PF and
9283 VNNIW. */
9284 || (i.tm.opcode_modifier.evex
9285 && !i.tm.cpu_flags.bitfield.cpuavx512er
9286 && !i.tm.cpu_flags.bitfield.cpuavx512pf
9287 && !i.tm.cpu_flags.bitfield.cpuavx512_4vnniw))
9288 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_V4;
9289 }
9290 #endif
9291
9292 /* Tie dwarf2 debug info to the address at the start of the insn.
9293 We can't do this after the insn has been output as the current
9294 frag may have been closed off. eg. by frag_var. */
9295 dwarf2_emit_insn (0);
9296
9297 insn_start_frag = frag_now;
9298 insn_start_off = frag_now_fix ();
9299
9300 if (add_branch_padding_frag_p (&branch, &mf_jcc))
9301 {
9302 char *p;
9303 /* Branch can be 8 bytes. Leave some room for prefixes. */
9304 unsigned int max_branch_padding_size = 14;
9305
9306 /* Align section to boundary. */
9307 record_alignment (now_seg, align_branch_power);
9308
9309 /* Make room for padding. */
9310 frag_grow (max_branch_padding_size);
9311
9312 /* Start of the padding. */
9313 p = frag_more (0);
9314
9315 fragP = frag_now;
9316
9317 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
9318 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
9319 NULL, 0, p);
9320
9321 fragP->tc_frag_data.mf_type = mf_jcc;
9322 fragP->tc_frag_data.branch_type = branch;
9323 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
9324 }
9325
9326 /* Output jumps. */
9327 if (i.tm.opcode_modifier.jump == JUMP)
9328 output_branch ();
9329 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
9330 || i.tm.opcode_modifier.jump == JUMP_DWORD)
9331 output_jump ();
9332 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
9333 output_interseg_jump ();
9334 else
9335 {
9336 /* Output normal instructions here. */
9337 char *p;
9338 unsigned char *q;
9339 unsigned int j;
9340 enum mf_cmp_kind mf_cmp;
9341
9342 if (avoid_fence
9343 && (i.tm.base_opcode == 0xfaee8
9344 || i.tm.base_opcode == 0xfaef0
9345 || i.tm.base_opcode == 0xfaef8))
9346 {
9347 /* Encode lfence, mfence, and sfence as
9348 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
9349 if (now_seg != absolute_section)
9350 {
9351 offsetT val = 0x240483f0ULL;
9352
9353 p = frag_more (5);
9354 md_number_to_chars (p, val, 5);
9355 }
9356 else
9357 abs_section_offset += 5;
9358 return;
9359 }
9360
9361 /* Some processors fail on LOCK prefix. This options makes
9362 assembler ignore LOCK prefix and serves as a workaround. */
9363 if (omit_lock_prefix)
9364 {
9365 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
9366 return;
9367 i.prefix[LOCK_PREFIX] = 0;
9368 }
9369
9370 if (branch)
9371 /* Skip if this is a branch. */
9372 ;
9373 else if (add_fused_jcc_padding_frag_p (&mf_cmp))
9374 {
9375 /* Make room for padding. */
9376 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
9377 p = frag_more (0);
9378
9379 fragP = frag_now;
9380
9381 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
9382 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
9383 NULL, 0, p);
9384
9385 fragP->tc_frag_data.mf_type = mf_cmp;
9386 fragP->tc_frag_data.branch_type = align_branch_fused;
9387 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
9388 }
9389 else if (add_branch_prefix_frag_p ())
9390 {
9391 unsigned int max_prefix_size = align_branch_prefix_size;
9392
9393 /* Make room for padding. */
9394 frag_grow (max_prefix_size);
9395 p = frag_more (0);
9396
9397 fragP = frag_now;
9398
9399 frag_var (rs_machine_dependent, max_prefix_size, 0,
9400 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
9401 NULL, 0, p);
9402
9403 fragP->tc_frag_data.max_bytes = max_prefix_size;
9404 }
9405
9406 /* Since the VEX/EVEX prefix contains the implicit prefix, we
9407 don't need the explicit prefix. */
9408 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
9409 {
9410 switch (i.tm.opcode_modifier.opcodeprefix)
9411 {
9412 case PREFIX_0X66:
9413 add_prefix (0x66);
9414 break;
9415 case PREFIX_0XF2:
9416 add_prefix (0xf2);
9417 break;
9418 case PREFIX_0XF3:
9419 if (!i.tm.cpu_flags.bitfield.cpupadlock
9420 || (i.prefix[REP_PREFIX] != 0xf3))
9421 add_prefix (0xf3);
9422 break;
9423 case PREFIX_NONE:
9424 switch (i.tm.opcode_length)
9425 {
9426 case 3:
9427 case 2:
9428 case 1:
9429 break;
9430 case 0:
9431 /* Check for pseudo prefixes. */
9432 as_bad_where (insn_start_frag->fr_file,
9433 insn_start_frag->fr_line,
9434 _("pseudo prefix without instruction"));
9435 return;
9436 default:
9437 abort ();
9438 }
9439 break;
9440 default:
9441 abort ();
9442 }
9443
9444 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
9445 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
9446 R_X86_64_GOTTPOFF relocation so that linker can safely
9447 perform IE->LE optimization. A dummy REX_OPCODE prefix
9448 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
9449 relocation for GDesc -> IE/LE optimization. */
9450 if (x86_elf_abi == X86_64_X32_ABI
9451 && i.operands == 2
9452 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
9453 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
9454 && i.prefix[REX_PREFIX] == 0)
9455 add_prefix (REX_OPCODE);
9456 #endif
9457
9458 /* The prefix bytes. */
9459 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
9460 if (*q)
9461 frag_opcode_byte (*q);
9462 }
9463 else
9464 {
9465 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
9466 if (*q)
9467 switch (j)
9468 {
9469 case SEG_PREFIX:
9470 case ADDR_PREFIX:
9471 frag_opcode_byte (*q);
9472 break;
9473 default:
9474 /* There should be no other prefixes for instructions
9475 with VEX prefix. */
9476 abort ();
9477 }
9478
9479 /* For EVEX instructions i.vrex should become 0 after
9480 build_evex_prefix. For VEX instructions upper 16 registers
9481 aren't available, so VREX should be 0. */
9482 if (i.vrex)
9483 abort ();
9484 /* Now the VEX prefix. */
9485 if (now_seg != absolute_section)
9486 {
9487 p = frag_more (i.vex.length);
9488 for (j = 0; j < i.vex.length; j++)
9489 p[j] = i.vex.bytes[j];
9490 }
9491 else
9492 abs_section_offset += i.vex.length;
9493 }
9494
9495 /* Now the opcode; be careful about word order here! */
9496 if (now_seg == absolute_section)
9497 abs_section_offset += i.tm.opcode_length;
9498 else if (i.tm.opcode_length == 1)
9499 {
9500 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
9501 }
9502 else
9503 {
9504 switch (i.tm.opcode_length)
9505 {
9506 case 4:
9507 p = frag_more (4);
9508 *p++ = (i.tm.base_opcode >> 24) & 0xff;
9509 *p++ = (i.tm.base_opcode >> 16) & 0xff;
9510 break;
9511 case 3:
9512 p = frag_more (3);
9513 *p++ = (i.tm.base_opcode >> 16) & 0xff;
9514 break;
9515 case 2:
9516 p = frag_more (2);
9517 break;
9518 default:
9519 abort ();
9520 break;
9521 }
9522
9523 /* Put out high byte first: can't use md_number_to_chars! */
9524 *p++ = (i.tm.base_opcode >> 8) & 0xff;
9525 *p = i.tm.base_opcode & 0xff;
9526 }
9527
9528 /* Now the modrm byte and sib byte (if present). */
9529 if (i.tm.opcode_modifier.modrm)
9530 {
9531 frag_opcode_byte ((i.rm.regmem << 0)
9532 | (i.rm.reg << 3)
9533 | (i.rm.mode << 6));
9534 /* If i.rm.regmem == ESP (4)
9535 && i.rm.mode != (Register mode)
9536 && not 16 bit
9537 ==> need second modrm byte. */
9538 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
9539 && i.rm.mode != 3
9540 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
9541 frag_opcode_byte ((i.sib.base << 0)
9542 | (i.sib.index << 3)
9543 | (i.sib.scale << 6));
9544 }
9545
9546 if (i.disp_operands)
9547 output_disp (insn_start_frag, insn_start_off);
9548
9549 if (i.imm_operands)
9550 output_imm (insn_start_frag, insn_start_off);
9551
9552 /*
9553 * frag_now_fix () returning plain abs_section_offset when we're in the
9554 * absolute section, and abs_section_offset not getting updated as data
9555 * gets added to the frag breaks the logic below.
9556 */
9557 if (now_seg != absolute_section)
9558 {
9559 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
9560 if (j > 15)
9561 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
9562 j);
9563 else if (fragP)
9564 {
9565 /* NB: Don't add prefix with GOTPC relocation since
9566 output_disp() above depends on the fixed encoding
9567 length. Can't add prefix with TLS relocation since
9568 it breaks TLS linker optimization. */
9569 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
9570 /* Prefix count on the current instruction. */
9571 unsigned int count = i.vex.length;
9572 unsigned int k;
9573 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
9574 /* REX byte is encoded in VEX/EVEX prefix. */
9575 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
9576 count++;
9577
9578 /* Count prefixes for extended opcode maps. */
9579 if (!i.vex.length)
9580 switch (i.tm.opcode_length)
9581 {
9582 case 3:
9583 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
9584 {
9585 count++;
9586 switch ((i.tm.base_opcode >> 8) & 0xff)
9587 {
9588 case 0x38:
9589 case 0x3a:
9590 count++;
9591 break;
9592 default:
9593 break;
9594 }
9595 }
9596 break;
9597 case 2:
9598 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
9599 count++;
9600 break;
9601 case 1:
9602 break;
9603 default:
9604 abort ();
9605 }
9606
9607 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
9608 == BRANCH_PREFIX)
9609 {
9610 /* Set the maximum prefix size in BRANCH_PREFIX
9611 frag. */
9612 if (fragP->tc_frag_data.max_bytes > max)
9613 fragP->tc_frag_data.max_bytes = max;
9614 if (fragP->tc_frag_data.max_bytes > count)
9615 fragP->tc_frag_data.max_bytes -= count;
9616 else
9617 fragP->tc_frag_data.max_bytes = 0;
9618 }
9619 else
9620 {
9621 /* Remember the maximum prefix size in FUSED_JCC_PADDING
9622 frag. */
9623 unsigned int max_prefix_size;
9624 if (align_branch_prefix_size > max)
9625 max_prefix_size = max;
9626 else
9627 max_prefix_size = align_branch_prefix_size;
9628 if (max_prefix_size > count)
9629 fragP->tc_frag_data.max_prefix_length
9630 = max_prefix_size - count;
9631 }
9632
9633 /* Use existing segment prefix if possible. Use CS
9634 segment prefix in 64-bit mode. In 32-bit mode, use SS
9635 segment prefix with ESP/EBP base register and use DS
9636 segment prefix without ESP/EBP base register. */
9637 if (i.prefix[SEG_PREFIX])
9638 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
9639 else if (flag_code == CODE_64BIT)
9640 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
9641 else if (i.base_reg
9642 && (i.base_reg->reg_num == 4
9643 || i.base_reg->reg_num == 5))
9644 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
9645 else
9646 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
9647 }
9648 }
9649 }
9650
9651 /* NB: Don't work with COND_JUMP86 without i386. */
9652 if (align_branch_power
9653 && now_seg != absolute_section
9654 && cpu_arch_flags.bitfield.cpui386)
9655 {
9656 /* Terminate each frag so that we can add prefix and check for
9657 fused jcc. */
9658 frag_wane (frag_now);
9659 frag_new (0);
9660 }
9661
9662 #ifdef DEBUG386
9663 if (flag_debug)
9664 {
9665 pi ("" /*line*/, &i);
9666 }
9667 #endif /* DEBUG386 */
9668 }
9669
9670 /* Return the size of the displacement operand N. */
9671
9672 static int
9673 disp_size (unsigned int n)
9674 {
9675 int size = 4;
9676
9677 if (i.types[n].bitfield.disp64)
9678 size = 8;
9679 else if (i.types[n].bitfield.disp8)
9680 size = 1;
9681 else if (i.types[n].bitfield.disp16)
9682 size = 2;
9683 return size;
9684 }
9685
9686 /* Return the size of the immediate operand N. */
9687
9688 static int
9689 imm_size (unsigned int n)
9690 {
9691 int size = 4;
9692 if (i.types[n].bitfield.imm64)
9693 size = 8;
9694 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
9695 size = 1;
9696 else if (i.types[n].bitfield.imm16)
9697 size = 2;
9698 return size;
9699 }
9700
9701 static void
9702 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
9703 {
9704 char *p;
9705 unsigned int n;
9706
9707 for (n = 0; n < i.operands; n++)
9708 {
9709 if (operand_type_check (i.types[n], disp))
9710 {
9711 int size = disp_size (n);
9712
9713 if (now_seg == absolute_section)
9714 abs_section_offset += size;
9715 else if (i.op[n].disps->X_op == O_constant)
9716 {
9717 offsetT val = i.op[n].disps->X_add_number;
9718
9719 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
9720 size);
9721 p = frag_more (size);
9722 md_number_to_chars (p, val, size);
9723 }
9724 else
9725 {
9726 enum bfd_reloc_code_real reloc_type;
9727 int sign = i.types[n].bitfield.disp32s;
9728 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
9729 fixS *fixP;
9730
9731 /* We can't have 8 bit displacement here. */
9732 gas_assert (!i.types[n].bitfield.disp8);
9733
9734 /* The PC relative address is computed relative
9735 to the instruction boundary, so in case immediate
9736 fields follows, we need to adjust the value. */
9737 if (pcrel && i.imm_operands)
9738 {
9739 unsigned int n1;
9740 int sz = 0;
9741
9742 for (n1 = 0; n1 < i.operands; n1++)
9743 if (operand_type_check (i.types[n1], imm))
9744 {
9745 /* Only one immediate is allowed for PC
9746 relative address. */
9747 gas_assert (sz == 0);
9748 sz = imm_size (n1);
9749 i.op[n].disps->X_add_number -= sz;
9750 }
9751 /* We should find the immediate. */
9752 gas_assert (sz != 0);
9753 }
9754
9755 p = frag_more (size);
9756 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
9757 if (GOT_symbol
9758 && GOT_symbol == i.op[n].disps->X_add_symbol
9759 && (((reloc_type == BFD_RELOC_32
9760 || reloc_type == BFD_RELOC_X86_64_32S
9761 || (reloc_type == BFD_RELOC_64
9762 && object_64bit))
9763 && (i.op[n].disps->X_op == O_symbol
9764 || (i.op[n].disps->X_op == O_add
9765 && ((symbol_get_value_expression
9766 (i.op[n].disps->X_op_symbol)->X_op)
9767 == O_subtract))))
9768 || reloc_type == BFD_RELOC_32_PCREL))
9769 {
9770 if (!object_64bit)
9771 {
9772 reloc_type = BFD_RELOC_386_GOTPC;
9773 i.has_gotpc_tls_reloc = TRUE;
9774 i.op[n].imms->X_add_number +=
9775 encoding_length (insn_start_frag, insn_start_off, p);
9776 }
9777 else if (reloc_type == BFD_RELOC_64)
9778 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9779 else
9780 /* Don't do the adjustment for x86-64, as there
9781 the pcrel addressing is relative to the _next_
9782 insn, and that is taken care of in other code. */
9783 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9784 }
9785 else if (align_branch_power)
9786 {
9787 switch (reloc_type)
9788 {
9789 case BFD_RELOC_386_TLS_GD:
9790 case BFD_RELOC_386_TLS_LDM:
9791 case BFD_RELOC_386_TLS_IE:
9792 case BFD_RELOC_386_TLS_IE_32:
9793 case BFD_RELOC_386_TLS_GOTIE:
9794 case BFD_RELOC_386_TLS_GOTDESC:
9795 case BFD_RELOC_386_TLS_DESC_CALL:
9796 case BFD_RELOC_X86_64_TLSGD:
9797 case BFD_RELOC_X86_64_TLSLD:
9798 case BFD_RELOC_X86_64_GOTTPOFF:
9799 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9800 case BFD_RELOC_X86_64_TLSDESC_CALL:
9801 i.has_gotpc_tls_reloc = TRUE;
9802 default:
9803 break;
9804 }
9805 }
9806 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9807 size, i.op[n].disps, pcrel,
9808 reloc_type);
9809 /* Check for "call/jmp *mem", "mov mem, %reg",
9810 "test %reg, mem" and "binop mem, %reg" where binop
9811 is one of adc, add, and, cmp, or, sbb, sub, xor
9812 instructions without data prefix. Always generate
9813 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9814 if (i.prefix[DATA_PREFIX] == 0
9815 && (generate_relax_relocations
9816 || (!object_64bit
9817 && i.rm.mode == 0
9818 && i.rm.regmem == 5))
9819 && (i.rm.mode == 2
9820 || (i.rm.mode == 0 && i.rm.regmem == 5))
9821 && !is_any_vex_encoding(&i.tm)
9822 && ((i.operands == 1
9823 && i.tm.base_opcode == 0xff
9824 && (i.rm.reg == 2 || i.rm.reg == 4))
9825 || (i.operands == 2
9826 && (i.tm.base_opcode == 0x8b
9827 || i.tm.base_opcode == 0x85
9828 || (i.tm.base_opcode & ~0x38) == 0x03))))
9829 {
9830 if (object_64bit)
9831 {
9832 fixP->fx_tcbit = i.rex != 0;
9833 if (i.base_reg
9834 && (i.base_reg->reg_num == RegIP))
9835 fixP->fx_tcbit2 = 1;
9836 }
9837 else
9838 fixP->fx_tcbit2 = 1;
9839 }
9840 }
9841 }
9842 }
9843 }
9844
9845 static void
9846 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
9847 {
9848 char *p;
9849 unsigned int n;
9850
9851 for (n = 0; n < i.operands; n++)
9852 {
9853 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9854 if (i.rounding && (int) n == i.rounding->operand)
9855 continue;
9856
9857 if (operand_type_check (i.types[n], imm))
9858 {
9859 int size = imm_size (n);
9860
9861 if (now_seg == absolute_section)
9862 abs_section_offset += size;
9863 else if (i.op[n].imms->X_op == O_constant)
9864 {
9865 offsetT val;
9866
9867 val = offset_in_range (i.op[n].imms->X_add_number,
9868 size);
9869 p = frag_more (size);
9870 md_number_to_chars (p, val, size);
9871 }
9872 else
9873 {
9874 /* Not absolute_section.
9875 Need a 32-bit fixup (don't support 8bit
9876 non-absolute imms). Try to support other
9877 sizes ... */
9878 enum bfd_reloc_code_real reloc_type;
9879 int sign;
9880
9881 if (i.types[n].bitfield.imm32s
9882 && (i.suffix == QWORD_MNEM_SUFFIX
9883 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
9884 sign = 1;
9885 else
9886 sign = 0;
9887
9888 p = frag_more (size);
9889 reloc_type = reloc (size, 0, sign, i.reloc[n]);
9890
9891 /* This is tough to explain. We end up with this one if we
9892 * have operands that look like
9893 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9894 * obtain the absolute address of the GOT, and it is strongly
9895 * preferable from a performance point of view to avoid using
9896 * a runtime relocation for this. The actual sequence of
9897 * instructions often look something like:
9898 *
9899 * call .L66
9900 * .L66:
9901 * popl %ebx
9902 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9903 *
9904 * The call and pop essentially return the absolute address
9905 * of the label .L66 and store it in %ebx. The linker itself
9906 * will ultimately change the first operand of the addl so
9907 * that %ebx points to the GOT, but to keep things simple, the
9908 * .o file must have this operand set so that it generates not
9909 * the absolute address of .L66, but the absolute address of
9910 * itself. This allows the linker itself simply treat a GOTPC
9911 * relocation as asking for a pcrel offset to the GOT to be
9912 * added in, and the addend of the relocation is stored in the
9913 * operand field for the instruction itself.
9914 *
9915 * Our job here is to fix the operand so that it would add
9916 * the correct offset so that %ebx would point to itself. The
9917 * thing that is tricky is that .-.L66 will point to the
9918 * beginning of the instruction, so we need to further modify
9919 * the operand so that it will point to itself. There are
9920 * other cases where you have something like:
9921 *
9922 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9923 *
9924 * and here no correction would be required. Internally in
9925 * the assembler we treat operands of this form as not being
9926 * pcrel since the '.' is explicitly mentioned, and I wonder
9927 * whether it would simplify matters to do it this way. Who
9928 * knows. In earlier versions of the PIC patches, the
9929 * pcrel_adjust field was used to store the correction, but
9930 * since the expression is not pcrel, I felt it would be
9931 * confusing to do it this way. */
9932
9933 if ((reloc_type == BFD_RELOC_32
9934 || reloc_type == BFD_RELOC_X86_64_32S
9935 || reloc_type == BFD_RELOC_64)
9936 && GOT_symbol
9937 && GOT_symbol == i.op[n].imms->X_add_symbol
9938 && (i.op[n].imms->X_op == O_symbol
9939 || (i.op[n].imms->X_op == O_add
9940 && ((symbol_get_value_expression
9941 (i.op[n].imms->X_op_symbol)->X_op)
9942 == O_subtract))))
9943 {
9944 if (!object_64bit)
9945 reloc_type = BFD_RELOC_386_GOTPC;
9946 else if (size == 4)
9947 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9948 else if (size == 8)
9949 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9950 i.has_gotpc_tls_reloc = TRUE;
9951 i.op[n].imms->X_add_number +=
9952 encoding_length (insn_start_frag, insn_start_off, p);
9953 }
9954 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9955 i.op[n].imms, 0, reloc_type);
9956 }
9957 }
9958 }
9959 }
9960 \f
9961 /* x86_cons_fix_new is called via the expression parsing code when a
9962 reloc is needed. We use this hook to get the correct .got reloc. */
9963 static int cons_sign = -1;
9964
9965 void
9966 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
9967 expressionS *exp, bfd_reloc_code_real_type r)
9968 {
9969 r = reloc (len, 0, cons_sign, r);
9970
9971 #ifdef TE_PE
9972 if (exp->X_op == O_secrel)
9973 {
9974 exp->X_op = O_symbol;
9975 r = BFD_RELOC_32_SECREL;
9976 }
9977 #endif
9978
9979 fix_new_exp (frag, off, len, exp, 0, r);
9980 }
9981
9982 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9983 purpose of the `.dc.a' internal pseudo-op. */
9984
9985 int
9986 x86_address_bytes (void)
9987 {
9988 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9989 return 4;
9990 return stdoutput->arch_info->bits_per_address / 8;
9991 }
9992
9993 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9994 || defined (LEX_AT)
9995 # define lex_got(reloc, adjust, types) NULL
9996 #else
9997 /* Parse operands of the form
9998 <symbol>@GOTOFF+<nnn>
9999 and similar .plt or .got references.
10000
10001 If we find one, set up the correct relocation in RELOC and copy the
10002 input string, minus the `@GOTOFF' into a malloc'd buffer for
10003 parsing by the calling routine. Return this buffer, and if ADJUST
10004 is non-null set it to the length of the string we removed from the
10005 input line. Otherwise return NULL. */
10006 static char *
10007 lex_got (enum bfd_reloc_code_real *rel,
10008 int *adjust,
10009 i386_operand_type *types)
10010 {
10011 /* Some of the relocations depend on the size of what field is to
10012 be relocated. But in our callers i386_immediate and i386_displacement
10013 we don't yet know the operand size (this will be set by insn
10014 matching). Hence we record the word32 relocation here,
10015 and adjust the reloc according to the real size in reloc(). */
10016 static const struct {
10017 const char *str;
10018 int len;
10019 const enum bfd_reloc_code_real rel[2];
10020 const i386_operand_type types64;
10021 bfd_boolean need_GOT_symbol;
10022 } gotrel[] = {
10023 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10024 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
10025 BFD_RELOC_SIZE32 },
10026 OPERAND_TYPE_IMM32_64, FALSE },
10027 #endif
10028 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
10029 BFD_RELOC_X86_64_PLTOFF64 },
10030 OPERAND_TYPE_IMM64, TRUE },
10031 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
10032 BFD_RELOC_X86_64_PLT32 },
10033 OPERAND_TYPE_IMM32_32S_DISP32, FALSE },
10034 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
10035 BFD_RELOC_X86_64_GOTPLT64 },
10036 OPERAND_TYPE_IMM64_DISP64, TRUE },
10037 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
10038 BFD_RELOC_X86_64_GOTOFF64 },
10039 OPERAND_TYPE_IMM64_DISP64, TRUE },
10040 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
10041 BFD_RELOC_X86_64_GOTPCREL },
10042 OPERAND_TYPE_IMM32_32S_DISP32, TRUE },
10043 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
10044 BFD_RELOC_X86_64_TLSGD },
10045 OPERAND_TYPE_IMM32_32S_DISP32, TRUE },
10046 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
10047 _dummy_first_bfd_reloc_code_real },
10048 OPERAND_TYPE_NONE, TRUE },
10049 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
10050 BFD_RELOC_X86_64_TLSLD },
10051 OPERAND_TYPE_IMM32_32S_DISP32, TRUE },
10052 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
10053 BFD_RELOC_X86_64_GOTTPOFF },
10054 OPERAND_TYPE_IMM32_32S_DISP32, TRUE },
10055 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
10056 BFD_RELOC_X86_64_TPOFF32 },
10057 OPERAND_TYPE_IMM32_32S_64_DISP32_64, TRUE },
10058 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
10059 _dummy_first_bfd_reloc_code_real },
10060 OPERAND_TYPE_NONE, TRUE },
10061 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
10062 BFD_RELOC_X86_64_DTPOFF32 },
10063 OPERAND_TYPE_IMM32_32S_64_DISP32_64, TRUE },
10064 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
10065 _dummy_first_bfd_reloc_code_real },
10066 OPERAND_TYPE_NONE, TRUE },
10067 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
10068 _dummy_first_bfd_reloc_code_real },
10069 OPERAND_TYPE_NONE, TRUE },
10070 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
10071 BFD_RELOC_X86_64_GOT32 },
10072 OPERAND_TYPE_IMM32_32S_64_DISP32, TRUE },
10073 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
10074 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
10075 OPERAND_TYPE_IMM32_32S_DISP32, TRUE },
10076 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
10077 BFD_RELOC_X86_64_TLSDESC_CALL },
10078 OPERAND_TYPE_IMM32_32S_DISP32, TRUE },
10079 };
10080 char *cp;
10081 unsigned int j;
10082
10083 #if defined (OBJ_MAYBE_ELF)
10084 if (!IS_ELF)
10085 return NULL;
10086 #endif
10087
10088 for (cp = input_line_pointer; *cp != '@'; cp++)
10089 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
10090 return NULL;
10091
10092 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
10093 {
10094 int len = gotrel[j].len;
10095 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
10096 {
10097 if (gotrel[j].rel[object_64bit] != 0)
10098 {
10099 int first, second;
10100 char *tmpbuf, *past_reloc;
10101
10102 *rel = gotrel[j].rel[object_64bit];
10103
10104 if (types)
10105 {
10106 if (flag_code != CODE_64BIT)
10107 {
10108 types->bitfield.imm32 = 1;
10109 types->bitfield.disp32 = 1;
10110 }
10111 else
10112 *types = gotrel[j].types64;
10113 }
10114
10115 if (gotrel[j].need_GOT_symbol && GOT_symbol == NULL)
10116 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
10117
10118 /* The length of the first part of our input line. */
10119 first = cp - input_line_pointer;
10120
10121 /* The second part goes from after the reloc token until
10122 (and including) an end_of_line char or comma. */
10123 past_reloc = cp + 1 + len;
10124 cp = past_reloc;
10125 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
10126 ++cp;
10127 second = cp + 1 - past_reloc;
10128
10129 /* Allocate and copy string. The trailing NUL shouldn't
10130 be necessary, but be safe. */
10131 tmpbuf = XNEWVEC (char, first + second + 2);
10132 memcpy (tmpbuf, input_line_pointer, first);
10133 if (second != 0 && *past_reloc != ' ')
10134 /* Replace the relocation token with ' ', so that
10135 errors like foo@GOTOFF1 will be detected. */
10136 tmpbuf[first++] = ' ';
10137 else
10138 /* Increment length by 1 if the relocation token is
10139 removed. */
10140 len++;
10141 if (adjust)
10142 *adjust = len;
10143 memcpy (tmpbuf + first, past_reloc, second);
10144 tmpbuf[first + second] = '\0';
10145 return tmpbuf;
10146 }
10147
10148 as_bad (_("@%s reloc is not supported with %d-bit output format"),
10149 gotrel[j].str, 1 << (5 + object_64bit));
10150 return NULL;
10151 }
10152 }
10153
10154 /* Might be a symbol version string. Don't as_bad here. */
10155 return NULL;
10156 }
10157 #endif
10158
10159 #ifdef TE_PE
10160 #ifdef lex_got
10161 #undef lex_got
10162 #endif
10163 /* Parse operands of the form
10164 <symbol>@SECREL32+<nnn>
10165
10166 If we find one, set up the correct relocation in RELOC and copy the
10167 input string, minus the `@SECREL32' into a malloc'd buffer for
10168 parsing by the calling routine. Return this buffer, and if ADJUST
10169 is non-null set it to the length of the string we removed from the
10170 input line. Otherwise return NULL.
10171
10172 This function is copied from the ELF version above adjusted for PE targets. */
10173
10174 static char *
10175 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
10176 int *adjust ATTRIBUTE_UNUSED,
10177 i386_operand_type *types)
10178 {
10179 static const struct
10180 {
10181 const char *str;
10182 int len;
10183 const enum bfd_reloc_code_real rel[2];
10184 const i386_operand_type types64;
10185 }
10186 gotrel[] =
10187 {
10188 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
10189 BFD_RELOC_32_SECREL },
10190 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
10191 };
10192
10193 char *cp;
10194 unsigned j;
10195
10196 for (cp = input_line_pointer; *cp != '@'; cp++)
10197 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
10198 return NULL;
10199
10200 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
10201 {
10202 int len = gotrel[j].len;
10203
10204 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
10205 {
10206 if (gotrel[j].rel[object_64bit] != 0)
10207 {
10208 int first, second;
10209 char *tmpbuf, *past_reloc;
10210
10211 *rel = gotrel[j].rel[object_64bit];
10212 if (adjust)
10213 *adjust = len;
10214
10215 if (types)
10216 {
10217 if (flag_code != CODE_64BIT)
10218 {
10219 types->bitfield.imm32 = 1;
10220 types->bitfield.disp32 = 1;
10221 }
10222 else
10223 *types = gotrel[j].types64;
10224 }
10225
10226 /* The length of the first part of our input line. */
10227 first = cp - input_line_pointer;
10228
10229 /* The second part goes from after the reloc token until
10230 (and including) an end_of_line char or comma. */
10231 past_reloc = cp + 1 + len;
10232 cp = past_reloc;
10233 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
10234 ++cp;
10235 second = cp + 1 - past_reloc;
10236
10237 /* Allocate and copy string. The trailing NUL shouldn't
10238 be necessary, but be safe. */
10239 tmpbuf = XNEWVEC (char, first + second + 2);
10240 memcpy (tmpbuf, input_line_pointer, first);
10241 if (second != 0 && *past_reloc != ' ')
10242 /* Replace the relocation token with ' ', so that
10243 errors like foo@SECLREL321 will be detected. */
10244 tmpbuf[first++] = ' ';
10245 memcpy (tmpbuf + first, past_reloc, second);
10246 tmpbuf[first + second] = '\0';
10247 return tmpbuf;
10248 }
10249
10250 as_bad (_("@%s reloc is not supported with %d-bit output format"),
10251 gotrel[j].str, 1 << (5 + object_64bit));
10252 return NULL;
10253 }
10254 }
10255
10256 /* Might be a symbol version string. Don't as_bad here. */
10257 return NULL;
10258 }
10259
10260 #endif /* TE_PE */
10261
10262 bfd_reloc_code_real_type
10263 x86_cons (expressionS *exp, int size)
10264 {
10265 bfd_reloc_code_real_type got_reloc = NO_RELOC;
10266
10267 intel_syntax = -intel_syntax;
10268
10269 exp->X_md = 0;
10270 if (size == 4 || (object_64bit && size == 8))
10271 {
10272 /* Handle @GOTOFF and the like in an expression. */
10273 char *save;
10274 char *gotfree_input_line;
10275 int adjust = 0;
10276
10277 save = input_line_pointer;
10278 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
10279 if (gotfree_input_line)
10280 input_line_pointer = gotfree_input_line;
10281
10282 expression (exp);
10283
10284 if (gotfree_input_line)
10285 {
10286 /* expression () has merrily parsed up to the end of line,
10287 or a comma - in the wrong buffer. Transfer how far
10288 input_line_pointer has moved to the right buffer. */
10289 input_line_pointer = (save
10290 + (input_line_pointer - gotfree_input_line)
10291 + adjust);
10292 free (gotfree_input_line);
10293 if (exp->X_op == O_constant
10294 || exp->X_op == O_absent
10295 || exp->X_op == O_illegal
10296 || exp->X_op == O_register
10297 || exp->X_op == O_big)
10298 {
10299 char c = *input_line_pointer;
10300 *input_line_pointer = 0;
10301 as_bad (_("missing or invalid expression `%s'"), save);
10302 *input_line_pointer = c;
10303 }
10304 else if ((got_reloc == BFD_RELOC_386_PLT32
10305 || got_reloc == BFD_RELOC_X86_64_PLT32)
10306 && exp->X_op != O_symbol)
10307 {
10308 char c = *input_line_pointer;
10309 *input_line_pointer = 0;
10310 as_bad (_("invalid PLT expression `%s'"), save);
10311 *input_line_pointer = c;
10312 }
10313 }
10314 }
10315 else
10316 expression (exp);
10317
10318 intel_syntax = -intel_syntax;
10319
10320 if (intel_syntax)
10321 i386_intel_simplify (exp);
10322
10323 return got_reloc;
10324 }
10325
10326 static void
10327 signed_cons (int size)
10328 {
10329 if (flag_code == CODE_64BIT)
10330 cons_sign = 1;
10331 cons (size);
10332 cons_sign = -1;
10333 }
10334
10335 #ifdef TE_PE
10336 static void
10337 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
10338 {
10339 expressionS exp;
10340
10341 do
10342 {
10343 expression (&exp);
10344 if (exp.X_op == O_symbol)
10345 exp.X_op = O_secrel;
10346
10347 emit_expr (&exp, 4);
10348 }
10349 while (*input_line_pointer++ == ',');
10350
10351 input_line_pointer--;
10352 demand_empty_rest_of_line ();
10353 }
10354 #endif
10355
10356 /* Handle Vector operations. */
10357
10358 static char *
10359 check_VecOperations (char *op_string, char *op_end)
10360 {
10361 const reg_entry *mask;
10362 const char *saved;
10363 char *end_op;
10364
10365 while (*op_string
10366 && (op_end == NULL || op_string < op_end))
10367 {
10368 saved = op_string;
10369 if (*op_string == '{')
10370 {
10371 op_string++;
10372
10373 /* Check broadcasts. */
10374 if (strncmp (op_string, "1to", 3) == 0)
10375 {
10376 int bcst_type;
10377
10378 if (i.broadcast)
10379 goto duplicated_vec_op;
10380
10381 op_string += 3;
10382 if (*op_string == '8')
10383 bcst_type = 8;
10384 else if (*op_string == '4')
10385 bcst_type = 4;
10386 else if (*op_string == '2')
10387 bcst_type = 2;
10388 else if (*op_string == '1'
10389 && *(op_string+1) == '6')
10390 {
10391 bcst_type = 16;
10392 op_string++;
10393 }
10394 else
10395 {
10396 as_bad (_("Unsupported broadcast: `%s'"), saved);
10397 return NULL;
10398 }
10399 op_string++;
10400
10401 broadcast_op.type = bcst_type;
10402 broadcast_op.operand = this_operand;
10403 broadcast_op.bytes = 0;
10404 i.broadcast = &broadcast_op;
10405 }
10406 /* Check masking operation. */
10407 else if ((mask = parse_register (op_string, &end_op)) != NULL)
10408 {
10409 if (mask == &bad_reg)
10410 return NULL;
10411
10412 /* k0 can't be used for write mask. */
10413 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
10414 {
10415 as_bad (_("`%s%s' can't be used for write mask"),
10416 register_prefix, mask->reg_name);
10417 return NULL;
10418 }
10419
10420 if (!i.mask)
10421 {
10422 mask_op.mask = mask;
10423 mask_op.zeroing = 0;
10424 mask_op.operand = this_operand;
10425 i.mask = &mask_op;
10426 }
10427 else
10428 {
10429 if (i.mask->mask)
10430 goto duplicated_vec_op;
10431
10432 i.mask->mask = mask;
10433
10434 /* Only "{z}" is allowed here. No need to check
10435 zeroing mask explicitly. */
10436 if (i.mask->operand != this_operand)
10437 {
10438 as_bad (_("invalid write mask `%s'"), saved);
10439 return NULL;
10440 }
10441 }
10442
10443 op_string = end_op;
10444 }
10445 /* Check zeroing-flag for masking operation. */
10446 else if (*op_string == 'z')
10447 {
10448 if (!i.mask)
10449 {
10450 mask_op.mask = NULL;
10451 mask_op.zeroing = 1;
10452 mask_op.operand = this_operand;
10453 i.mask = &mask_op;
10454 }
10455 else
10456 {
10457 if (i.mask->zeroing)
10458 {
10459 duplicated_vec_op:
10460 as_bad (_("duplicated `%s'"), saved);
10461 return NULL;
10462 }
10463
10464 i.mask->zeroing = 1;
10465
10466 /* Only "{%k}" is allowed here. No need to check mask
10467 register explicitly. */
10468 if (i.mask->operand != this_operand)
10469 {
10470 as_bad (_("invalid zeroing-masking `%s'"),
10471 saved);
10472 return NULL;
10473 }
10474 }
10475
10476 op_string++;
10477 }
10478 else
10479 goto unknown_vec_op;
10480
10481 if (*op_string != '}')
10482 {
10483 as_bad (_("missing `}' in `%s'"), saved);
10484 return NULL;
10485 }
10486 op_string++;
10487
10488 /* Strip whitespace since the addition of pseudo prefixes
10489 changed how the scrubber treats '{'. */
10490 if (is_space_char (*op_string))
10491 ++op_string;
10492
10493 continue;
10494 }
10495 unknown_vec_op:
10496 /* We don't know this one. */
10497 as_bad (_("unknown vector operation: `%s'"), saved);
10498 return NULL;
10499 }
10500
10501 if (i.mask && i.mask->zeroing && !i.mask->mask)
10502 {
10503 as_bad (_("zeroing-masking only allowed with write mask"));
10504 return NULL;
10505 }
10506
10507 return op_string;
10508 }
10509
10510 static int
10511 i386_immediate (char *imm_start)
10512 {
10513 char *save_input_line_pointer;
10514 char *gotfree_input_line;
10515 segT exp_seg = 0;
10516 expressionS *exp;
10517 i386_operand_type types;
10518
10519 operand_type_set (&types, ~0);
10520
10521 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
10522 {
10523 as_bad (_("at most %d immediate operands are allowed"),
10524 MAX_IMMEDIATE_OPERANDS);
10525 return 0;
10526 }
10527
10528 exp = &im_expressions[i.imm_operands++];
10529 i.op[this_operand].imms = exp;
10530
10531 if (is_space_char (*imm_start))
10532 ++imm_start;
10533
10534 save_input_line_pointer = input_line_pointer;
10535 input_line_pointer = imm_start;
10536
10537 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10538 if (gotfree_input_line)
10539 input_line_pointer = gotfree_input_line;
10540
10541 exp_seg = expression (exp);
10542
10543 SKIP_WHITESPACE ();
10544
10545 /* Handle vector operations. */
10546 if (*input_line_pointer == '{')
10547 {
10548 input_line_pointer = check_VecOperations (input_line_pointer,
10549 NULL);
10550 if (input_line_pointer == NULL)
10551 return 0;
10552 }
10553
10554 if (*input_line_pointer)
10555 as_bad (_("junk `%s' after expression"), input_line_pointer);
10556
10557 input_line_pointer = save_input_line_pointer;
10558 if (gotfree_input_line)
10559 {
10560 free (gotfree_input_line);
10561
10562 if (exp->X_op == O_constant || exp->X_op == O_register)
10563 exp->X_op = O_illegal;
10564 }
10565
10566 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
10567 }
10568
10569 static int
10570 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10571 i386_operand_type types, const char *imm_start)
10572 {
10573 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
10574 {
10575 if (imm_start)
10576 as_bad (_("missing or invalid immediate expression `%s'"),
10577 imm_start);
10578 return 0;
10579 }
10580 else if (exp->X_op == O_constant)
10581 {
10582 /* Size it properly later. */
10583 i.types[this_operand].bitfield.imm64 = 1;
10584 /* If not 64bit, sign extend val. */
10585 if (flag_code != CODE_64BIT
10586 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
10587 exp->X_add_number
10588 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
10589 }
10590 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10591 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
10592 && exp_seg != absolute_section
10593 && exp_seg != text_section
10594 && exp_seg != data_section
10595 && exp_seg != bss_section
10596 && exp_seg != undefined_section
10597 && !bfd_is_com_section (exp_seg))
10598 {
10599 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10600 return 0;
10601 }
10602 #endif
10603 else if (!intel_syntax && exp_seg == reg_section)
10604 {
10605 if (imm_start)
10606 as_bad (_("illegal immediate register operand %s"), imm_start);
10607 return 0;
10608 }
10609 else
10610 {
10611 /* This is an address. The size of the address will be
10612 determined later, depending on destination register,
10613 suffix, or the default for the section. */
10614 i.types[this_operand].bitfield.imm8 = 1;
10615 i.types[this_operand].bitfield.imm16 = 1;
10616 i.types[this_operand].bitfield.imm32 = 1;
10617 i.types[this_operand].bitfield.imm32s = 1;
10618 i.types[this_operand].bitfield.imm64 = 1;
10619 i.types[this_operand] = operand_type_and (i.types[this_operand],
10620 types);
10621 }
10622
10623 return 1;
10624 }
10625
10626 static char *
10627 i386_scale (char *scale)
10628 {
10629 offsetT val;
10630 char *save = input_line_pointer;
10631
10632 input_line_pointer = scale;
10633 val = get_absolute_expression ();
10634
10635 switch (val)
10636 {
10637 case 1:
10638 i.log2_scale_factor = 0;
10639 break;
10640 case 2:
10641 i.log2_scale_factor = 1;
10642 break;
10643 case 4:
10644 i.log2_scale_factor = 2;
10645 break;
10646 case 8:
10647 i.log2_scale_factor = 3;
10648 break;
10649 default:
10650 {
10651 char sep = *input_line_pointer;
10652
10653 *input_line_pointer = '\0';
10654 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
10655 scale);
10656 *input_line_pointer = sep;
10657 input_line_pointer = save;
10658 return NULL;
10659 }
10660 }
10661 if (i.log2_scale_factor != 0 && i.index_reg == 0)
10662 {
10663 as_warn (_("scale factor of %d without an index register"),
10664 1 << i.log2_scale_factor);
10665 i.log2_scale_factor = 0;
10666 }
10667 scale = input_line_pointer;
10668 input_line_pointer = save;
10669 return scale;
10670 }
10671
10672 static int
10673 i386_displacement (char *disp_start, char *disp_end)
10674 {
10675 expressionS *exp;
10676 segT exp_seg = 0;
10677 char *save_input_line_pointer;
10678 char *gotfree_input_line;
10679 int override;
10680 i386_operand_type bigdisp, types = anydisp;
10681 int ret;
10682
10683 if (i.disp_operands == MAX_MEMORY_OPERANDS)
10684 {
10685 as_bad (_("at most %d displacement operands are allowed"),
10686 MAX_MEMORY_OPERANDS);
10687 return 0;
10688 }
10689
10690 operand_type_set (&bigdisp, 0);
10691 if (i.jumpabsolute
10692 || i.types[this_operand].bitfield.baseindex
10693 || (current_templates->start->opcode_modifier.jump != JUMP
10694 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
10695 {
10696 i386_addressing_mode ();
10697 override = (i.prefix[ADDR_PREFIX] != 0);
10698 if (flag_code == CODE_64BIT)
10699 {
10700 if (!override)
10701 {
10702 bigdisp.bitfield.disp32s = 1;
10703 bigdisp.bitfield.disp64 = 1;
10704 }
10705 else
10706 bigdisp.bitfield.disp32 = 1;
10707 }
10708 else if ((flag_code == CODE_16BIT) ^ override)
10709 bigdisp.bitfield.disp16 = 1;
10710 else
10711 bigdisp.bitfield.disp32 = 1;
10712 }
10713 else
10714 {
10715 /* For PC-relative branches, the width of the displacement may be
10716 dependent upon data size, but is never dependent upon address size.
10717 Also make sure to not unintentionally match against a non-PC-relative
10718 branch template. */
10719 static templates aux_templates;
10720 const insn_template *t = current_templates->start;
10721 bfd_boolean has_intel64 = FALSE;
10722
10723 aux_templates.start = t;
10724 while (++t < current_templates->end)
10725 {
10726 if (t->opcode_modifier.jump
10727 != current_templates->start->opcode_modifier.jump)
10728 break;
10729 if ((t->opcode_modifier.isa64 >= INTEL64))
10730 has_intel64 = TRUE;
10731 }
10732 if (t < current_templates->end)
10733 {
10734 aux_templates.end = t;
10735 current_templates = &aux_templates;
10736 }
10737
10738 override = (i.prefix[DATA_PREFIX] != 0);
10739 if (flag_code == CODE_64BIT)
10740 {
10741 if ((override || i.suffix == WORD_MNEM_SUFFIX)
10742 && (!intel64 || !has_intel64))
10743 bigdisp.bitfield.disp16 = 1;
10744 else
10745 bigdisp.bitfield.disp32s = 1;
10746 }
10747 else
10748 {
10749 if (!override)
10750 override = (i.suffix == (flag_code != CODE_16BIT
10751 ? WORD_MNEM_SUFFIX
10752 : LONG_MNEM_SUFFIX));
10753 bigdisp.bitfield.disp32 = 1;
10754 if ((flag_code == CODE_16BIT) ^ override)
10755 {
10756 bigdisp.bitfield.disp32 = 0;
10757 bigdisp.bitfield.disp16 = 1;
10758 }
10759 }
10760 }
10761 i.types[this_operand] = operand_type_or (i.types[this_operand],
10762 bigdisp);
10763
10764 exp = &disp_expressions[i.disp_operands];
10765 i.op[this_operand].disps = exp;
10766 i.disp_operands++;
10767 save_input_line_pointer = input_line_pointer;
10768 input_line_pointer = disp_start;
10769 END_STRING_AND_SAVE (disp_end);
10770
10771 #ifndef GCC_ASM_O_HACK
10772 #define GCC_ASM_O_HACK 0
10773 #endif
10774 #if GCC_ASM_O_HACK
10775 END_STRING_AND_SAVE (disp_end + 1);
10776 if (i.types[this_operand].bitfield.baseIndex
10777 && displacement_string_end[-1] == '+')
10778 {
10779 /* This hack is to avoid a warning when using the "o"
10780 constraint within gcc asm statements.
10781 For instance:
10782
10783 #define _set_tssldt_desc(n,addr,limit,type) \
10784 __asm__ __volatile__ ( \
10785 "movw %w2,%0\n\t" \
10786 "movw %w1,2+%0\n\t" \
10787 "rorl $16,%1\n\t" \
10788 "movb %b1,4+%0\n\t" \
10789 "movb %4,5+%0\n\t" \
10790 "movb $0,6+%0\n\t" \
10791 "movb %h1,7+%0\n\t" \
10792 "rorl $16,%1" \
10793 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10794
10795 This works great except that the output assembler ends
10796 up looking a bit weird if it turns out that there is
10797 no offset. You end up producing code that looks like:
10798
10799 #APP
10800 movw $235,(%eax)
10801 movw %dx,2+(%eax)
10802 rorl $16,%edx
10803 movb %dl,4+(%eax)
10804 movb $137,5+(%eax)
10805 movb $0,6+(%eax)
10806 movb %dh,7+(%eax)
10807 rorl $16,%edx
10808 #NO_APP
10809
10810 So here we provide the missing zero. */
10811
10812 *displacement_string_end = '0';
10813 }
10814 #endif
10815 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10816 if (gotfree_input_line)
10817 input_line_pointer = gotfree_input_line;
10818
10819 exp_seg = expression (exp);
10820
10821 SKIP_WHITESPACE ();
10822 if (*input_line_pointer)
10823 as_bad (_("junk `%s' after expression"), input_line_pointer);
10824 #if GCC_ASM_O_HACK
10825 RESTORE_END_STRING (disp_end + 1);
10826 #endif
10827 input_line_pointer = save_input_line_pointer;
10828 if (gotfree_input_line)
10829 {
10830 free (gotfree_input_line);
10831
10832 if (exp->X_op == O_constant || exp->X_op == O_register)
10833 exp->X_op = O_illegal;
10834 }
10835
10836 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10837
10838 RESTORE_END_STRING (disp_end);
10839
10840 return ret;
10841 }
10842
10843 static int
10844 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10845 i386_operand_type types, const char *disp_start)
10846 {
10847 i386_operand_type bigdisp;
10848 int ret = 1;
10849
10850 /* We do this to make sure that the section symbol is in
10851 the symbol table. We will ultimately change the relocation
10852 to be relative to the beginning of the section. */
10853 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
10854 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10855 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10856 {
10857 if (exp->X_op != O_symbol)
10858 goto inv_disp;
10859
10860 if (S_IS_LOCAL (exp->X_add_symbol)
10861 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10862 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
10863 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
10864 exp->X_op = O_subtract;
10865 exp->X_op_symbol = GOT_symbol;
10866 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
10867 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
10868 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10869 i.reloc[this_operand] = BFD_RELOC_64;
10870 else
10871 i.reloc[this_operand] = BFD_RELOC_32;
10872 }
10873
10874 else if (exp->X_op == O_absent
10875 || exp->X_op == O_illegal
10876 || exp->X_op == O_big)
10877 {
10878 inv_disp:
10879 as_bad (_("missing or invalid displacement expression `%s'"),
10880 disp_start);
10881 ret = 0;
10882 }
10883
10884 else if (flag_code == CODE_64BIT
10885 && !i.prefix[ADDR_PREFIX]
10886 && exp->X_op == O_constant)
10887 {
10888 /* Since displacement is signed extended to 64bit, don't allow
10889 disp32 and turn off disp32s if they are out of range. */
10890 i.types[this_operand].bitfield.disp32 = 0;
10891 if (!fits_in_signed_long (exp->X_add_number))
10892 {
10893 i.types[this_operand].bitfield.disp32s = 0;
10894 if (i.types[this_operand].bitfield.baseindex)
10895 {
10896 as_bad (_("0x%lx out range of signed 32bit displacement"),
10897 (long) exp->X_add_number);
10898 ret = 0;
10899 }
10900 }
10901 }
10902
10903 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10904 else if (exp->X_op != O_constant
10905 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10906 && exp_seg != absolute_section
10907 && exp_seg != text_section
10908 && exp_seg != data_section
10909 && exp_seg != bss_section
10910 && exp_seg != undefined_section
10911 && !bfd_is_com_section (exp_seg))
10912 {
10913 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10914 ret = 0;
10915 }
10916 #endif
10917
10918 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10919 /* Constants get taken care of by optimize_disp(). */
10920 && exp->X_op != O_constant)
10921 i.types[this_operand].bitfield.disp8 = 1;
10922
10923 /* Check if this is a displacement only operand. */
10924 bigdisp = i.types[this_operand];
10925 bigdisp.bitfield.disp8 = 0;
10926 bigdisp.bitfield.disp16 = 0;
10927 bigdisp.bitfield.disp32 = 0;
10928 bigdisp.bitfield.disp32s = 0;
10929 bigdisp.bitfield.disp64 = 0;
10930 if (operand_type_all_zero (&bigdisp))
10931 i.types[this_operand] = operand_type_and (i.types[this_operand],
10932 types);
10933
10934 return ret;
10935 }
10936
10937 /* Return the active addressing mode, taking address override and
10938 registers forming the address into consideration. Update the
10939 address override prefix if necessary. */
10940
10941 static enum flag_code
10942 i386_addressing_mode (void)
10943 {
10944 enum flag_code addr_mode;
10945
10946 if (i.prefix[ADDR_PREFIX])
10947 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10948 else if (flag_code == CODE_16BIT
10949 && current_templates->start->cpu_flags.bitfield.cpumpx
10950 /* Avoid replacing the "16-bit addressing not allowed" diagnostic
10951 from md_assemble() by "is not a valid base/index expression"
10952 when there is a base and/or index. */
10953 && !i.types[this_operand].bitfield.baseindex)
10954 {
10955 /* MPX insn memory operands with neither base nor index must be forced
10956 to use 32-bit addressing in 16-bit mode. */
10957 addr_mode = CODE_32BIT;
10958 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10959 ++i.prefixes;
10960 gas_assert (!i.types[this_operand].bitfield.disp16);
10961 gas_assert (!i.types[this_operand].bitfield.disp32);
10962 }
10963 else
10964 {
10965 addr_mode = flag_code;
10966
10967 #if INFER_ADDR_PREFIX
10968 if (i.mem_operands == 0)
10969 {
10970 /* Infer address prefix from the first memory operand. */
10971 const reg_entry *addr_reg = i.base_reg;
10972
10973 if (addr_reg == NULL)
10974 addr_reg = i.index_reg;
10975
10976 if (addr_reg)
10977 {
10978 if (addr_reg->reg_type.bitfield.dword)
10979 addr_mode = CODE_32BIT;
10980 else if (flag_code != CODE_64BIT
10981 && addr_reg->reg_type.bitfield.word)
10982 addr_mode = CODE_16BIT;
10983
10984 if (addr_mode != flag_code)
10985 {
10986 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10987 i.prefixes += 1;
10988 /* Change the size of any displacement too. At most one
10989 of Disp16 or Disp32 is set.
10990 FIXME. There doesn't seem to be any real need for
10991 separate Disp16 and Disp32 flags. The same goes for
10992 Imm16 and Imm32. Removing them would probably clean
10993 up the code quite a lot. */
10994 if (flag_code != CODE_64BIT
10995 && (i.types[this_operand].bitfield.disp16
10996 || i.types[this_operand].bitfield.disp32))
10997 i.types[this_operand]
10998 = operand_type_xor (i.types[this_operand], disp16_32);
10999 }
11000 }
11001 }
11002 #endif
11003 }
11004
11005 return addr_mode;
11006 }
11007
11008 /* Make sure the memory operand we've been dealt is valid.
11009 Return 1 on success, 0 on a failure. */
11010
11011 static int
11012 i386_index_check (const char *operand_string)
11013 {
11014 const char *kind = "base/index";
11015 enum flag_code addr_mode = i386_addressing_mode ();
11016
11017 if (current_templates->start->opcode_modifier.isstring
11018 && !current_templates->start->cpu_flags.bitfield.cpupadlock
11019 && (current_templates->end[-1].opcode_modifier.isstring
11020 || i.mem_operands))
11021 {
11022 /* Memory operands of string insns are special in that they only allow
11023 a single register (rDI, rSI, or rBX) as their memory address. */
11024 const reg_entry *expected_reg;
11025 static const char *di_si[][2] =
11026 {
11027 { "esi", "edi" },
11028 { "si", "di" },
11029 { "rsi", "rdi" }
11030 };
11031 static const char *bx[] = { "ebx", "bx", "rbx" };
11032
11033 kind = "string address";
11034
11035 if (current_templates->start->opcode_modifier.repprefixok)
11036 {
11037 int es_op = current_templates->end[-1].opcode_modifier.isstring
11038 - IS_STRING_ES_OP0;
11039 int op = 0;
11040
11041 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
11042 || ((!i.mem_operands != !intel_syntax)
11043 && current_templates->end[-1].operand_types[1]
11044 .bitfield.baseindex))
11045 op = 1;
11046 expected_reg
11047 = (const reg_entry *) str_hash_find (reg_hash,
11048 di_si[addr_mode][op == es_op]);
11049 }
11050 else
11051 expected_reg
11052 = (const reg_entry *)str_hash_find (reg_hash, bx[addr_mode]);
11053
11054 if (i.base_reg != expected_reg
11055 || i.index_reg
11056 || operand_type_check (i.types[this_operand], disp))
11057 {
11058 /* The second memory operand must have the same size as
11059 the first one. */
11060 if (i.mem_operands
11061 && i.base_reg
11062 && !((addr_mode == CODE_64BIT
11063 && i.base_reg->reg_type.bitfield.qword)
11064 || (addr_mode == CODE_32BIT
11065 ? i.base_reg->reg_type.bitfield.dword
11066 : i.base_reg->reg_type.bitfield.word)))
11067 goto bad_address;
11068
11069 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
11070 operand_string,
11071 intel_syntax ? '[' : '(',
11072 register_prefix,
11073 expected_reg->reg_name,
11074 intel_syntax ? ']' : ')');
11075 return 1;
11076 }
11077 else
11078 return 1;
11079
11080 bad_address:
11081 as_bad (_("`%s' is not a valid %s expression"),
11082 operand_string, kind);
11083 return 0;
11084 }
11085 else
11086 {
11087 if (addr_mode != CODE_16BIT)
11088 {
11089 /* 32-bit/64-bit checks. */
11090 if (i.disp_encoding == disp_encoding_16bit)
11091 {
11092 bad_disp:
11093 as_bad (_("invalid `%s' prefix"),
11094 addr_mode == CODE_16BIT ? "{disp32}" : "{disp16}");
11095 return 0;
11096 }
11097
11098 if ((i.base_reg
11099 && ((addr_mode == CODE_64BIT
11100 ? !i.base_reg->reg_type.bitfield.qword
11101 : !i.base_reg->reg_type.bitfield.dword)
11102 || (i.index_reg && i.base_reg->reg_num == RegIP)
11103 || i.base_reg->reg_num == RegIZ))
11104 || (i.index_reg
11105 && !i.index_reg->reg_type.bitfield.xmmword
11106 && !i.index_reg->reg_type.bitfield.ymmword
11107 && !i.index_reg->reg_type.bitfield.zmmword
11108 && ((addr_mode == CODE_64BIT
11109 ? !i.index_reg->reg_type.bitfield.qword
11110 : !i.index_reg->reg_type.bitfield.dword)
11111 || !i.index_reg->reg_type.bitfield.baseindex)))
11112 goto bad_address;
11113
11114 /* bndmk, bndldx, bndstx and mandatory non-vector SIB have special restrictions. */
11115 if (current_templates->start->base_opcode == 0xf30f1b
11116 || (current_templates->start->base_opcode & ~1) == 0x0f1a
11117 || current_templates->start->opcode_modifier.sib == SIBMEM)
11118 {
11119 /* They cannot use RIP-relative addressing. */
11120 if (i.base_reg && i.base_reg->reg_num == RegIP)
11121 {
11122 as_bad (_("`%s' cannot be used here"), operand_string);
11123 return 0;
11124 }
11125
11126 /* bndldx and bndstx ignore their scale factor. */
11127 if ((current_templates->start->base_opcode & ~1) == 0x0f1a
11128 && i.log2_scale_factor)
11129 as_warn (_("register scaling is being ignored here"));
11130 }
11131 }
11132 else
11133 {
11134 /* 16-bit checks. */
11135 if (i.disp_encoding == disp_encoding_32bit)
11136 goto bad_disp;
11137
11138 if ((i.base_reg
11139 && (!i.base_reg->reg_type.bitfield.word
11140 || !i.base_reg->reg_type.bitfield.baseindex))
11141 || (i.index_reg
11142 && (!i.index_reg->reg_type.bitfield.word
11143 || !i.index_reg->reg_type.bitfield.baseindex
11144 || !(i.base_reg
11145 && i.base_reg->reg_num < 6
11146 && i.index_reg->reg_num >= 6
11147 && i.log2_scale_factor == 0))))
11148 goto bad_address;
11149 }
11150 }
11151 return 1;
11152 }
11153
11154 /* Handle vector immediates. */
11155
11156 static int
11157 RC_SAE_immediate (const char *imm_start)
11158 {
11159 unsigned int match_found, j;
11160 const char *pstr = imm_start;
11161 expressionS *exp;
11162
11163 if (*pstr != '{')
11164 return 0;
11165
11166 pstr++;
11167 match_found = 0;
11168 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
11169 {
11170 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
11171 {
11172 if (!i.rounding)
11173 {
11174 rc_op.type = RC_NamesTable[j].type;
11175 rc_op.operand = this_operand;
11176 i.rounding = &rc_op;
11177 }
11178 else
11179 {
11180 as_bad (_("duplicated `%s'"), imm_start);
11181 return 0;
11182 }
11183 pstr += RC_NamesTable[j].len;
11184 match_found = 1;
11185 break;
11186 }
11187 }
11188 if (!match_found)
11189 return 0;
11190
11191 if (*pstr++ != '}')
11192 {
11193 as_bad (_("Missing '}': '%s'"), imm_start);
11194 return 0;
11195 }
11196 /* RC/SAE immediate string should contain nothing more. */;
11197 if (*pstr != 0)
11198 {
11199 as_bad (_("Junk after '}': '%s'"), imm_start);
11200 return 0;
11201 }
11202
11203 exp = &im_expressions[i.imm_operands++];
11204 i.op[this_operand].imms = exp;
11205
11206 exp->X_op = O_constant;
11207 exp->X_add_number = 0;
11208 exp->X_add_symbol = (symbolS *) 0;
11209 exp->X_op_symbol = (symbolS *) 0;
11210
11211 i.types[this_operand].bitfield.imm8 = 1;
11212 return 1;
11213 }
11214
11215 /* Only string instructions can have a second memory operand, so
11216 reduce current_templates to just those if it contains any. */
11217 static int
11218 maybe_adjust_templates (void)
11219 {
11220 const insn_template *t;
11221
11222 gas_assert (i.mem_operands == 1);
11223
11224 for (t = current_templates->start; t < current_templates->end; ++t)
11225 if (t->opcode_modifier.isstring)
11226 break;
11227
11228 if (t < current_templates->end)
11229 {
11230 static templates aux_templates;
11231 bfd_boolean recheck;
11232
11233 aux_templates.start = t;
11234 for (; t < current_templates->end; ++t)
11235 if (!t->opcode_modifier.isstring)
11236 break;
11237 aux_templates.end = t;
11238
11239 /* Determine whether to re-check the first memory operand. */
11240 recheck = (aux_templates.start != current_templates->start
11241 || t != current_templates->end);
11242
11243 current_templates = &aux_templates;
11244
11245 if (recheck)
11246 {
11247 i.mem_operands = 0;
11248 if (i.memop1_string != NULL
11249 && i386_index_check (i.memop1_string) == 0)
11250 return 0;
11251 i.mem_operands = 1;
11252 }
11253 }
11254
11255 return 1;
11256 }
11257
11258 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
11259 on error. */
11260
11261 static int
11262 i386_att_operand (char *operand_string)
11263 {
11264 const reg_entry *r;
11265 char *end_op;
11266 char *op_string = operand_string;
11267
11268 if (is_space_char (*op_string))
11269 ++op_string;
11270
11271 /* We check for an absolute prefix (differentiating,
11272 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
11273 if (*op_string == ABSOLUTE_PREFIX)
11274 {
11275 ++op_string;
11276 if (is_space_char (*op_string))
11277 ++op_string;
11278 i.jumpabsolute = TRUE;
11279 }
11280
11281 /* Check if operand is a register. */
11282 if ((r = parse_register (op_string, &end_op)) != NULL)
11283 {
11284 i386_operand_type temp;
11285
11286 if (r == &bad_reg)
11287 return 0;
11288
11289 /* Check for a segment override by searching for ':' after a
11290 segment register. */
11291 op_string = end_op;
11292 if (is_space_char (*op_string))
11293 ++op_string;
11294 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
11295 {
11296 switch (r->reg_num)
11297 {
11298 case 0:
11299 i.seg[i.mem_operands] = &es;
11300 break;
11301 case 1:
11302 i.seg[i.mem_operands] = &cs;
11303 break;
11304 case 2:
11305 i.seg[i.mem_operands] = &ss;
11306 break;
11307 case 3:
11308 i.seg[i.mem_operands] = &ds;
11309 break;
11310 case 4:
11311 i.seg[i.mem_operands] = &fs;
11312 break;
11313 case 5:
11314 i.seg[i.mem_operands] = &gs;
11315 break;
11316 }
11317
11318 /* Skip the ':' and whitespace. */
11319 ++op_string;
11320 if (is_space_char (*op_string))
11321 ++op_string;
11322
11323 if (!is_digit_char (*op_string)
11324 && !is_identifier_char (*op_string)
11325 && *op_string != '('
11326 && *op_string != ABSOLUTE_PREFIX)
11327 {
11328 as_bad (_("bad memory operand `%s'"), op_string);
11329 return 0;
11330 }
11331 /* Handle case of %es:*foo. */
11332 if (*op_string == ABSOLUTE_PREFIX)
11333 {
11334 ++op_string;
11335 if (is_space_char (*op_string))
11336 ++op_string;
11337 i.jumpabsolute = TRUE;
11338 }
11339 goto do_memory_reference;
11340 }
11341
11342 /* Handle vector operations. */
11343 if (*op_string == '{')
11344 {
11345 op_string = check_VecOperations (op_string, NULL);
11346 if (op_string == NULL)
11347 return 0;
11348 }
11349
11350 if (*op_string)
11351 {
11352 as_bad (_("junk `%s' after register"), op_string);
11353 return 0;
11354 }
11355 temp = r->reg_type;
11356 temp.bitfield.baseindex = 0;
11357 i.types[this_operand] = operand_type_or (i.types[this_operand],
11358 temp);
11359 i.types[this_operand].bitfield.unspecified = 0;
11360 i.op[this_operand].regs = r;
11361 i.reg_operands++;
11362 }
11363 else if (*op_string == REGISTER_PREFIX)
11364 {
11365 as_bad (_("bad register name `%s'"), op_string);
11366 return 0;
11367 }
11368 else if (*op_string == IMMEDIATE_PREFIX)
11369 {
11370 ++op_string;
11371 if (i.jumpabsolute)
11372 {
11373 as_bad (_("immediate operand illegal with absolute jump"));
11374 return 0;
11375 }
11376 if (!i386_immediate (op_string))
11377 return 0;
11378 }
11379 else if (RC_SAE_immediate (operand_string))
11380 {
11381 /* If it is a RC or SAE immediate, do nothing. */
11382 ;
11383 }
11384 else if (is_digit_char (*op_string)
11385 || is_identifier_char (*op_string)
11386 || *op_string == '"'
11387 || *op_string == '(')
11388 {
11389 /* This is a memory reference of some sort. */
11390 char *base_string;
11391
11392 /* Start and end of displacement string expression (if found). */
11393 char *displacement_string_start;
11394 char *displacement_string_end;
11395 char *vop_start;
11396
11397 do_memory_reference:
11398 if (i.mem_operands == 1 && !maybe_adjust_templates ())
11399 return 0;
11400 if ((i.mem_operands == 1
11401 && !current_templates->start->opcode_modifier.isstring)
11402 || i.mem_operands == 2)
11403 {
11404 as_bad (_("too many memory references for `%s'"),
11405 current_templates->start->name);
11406 return 0;
11407 }
11408
11409 /* Check for base index form. We detect the base index form by
11410 looking for an ')' at the end of the operand, searching
11411 for the '(' matching it, and finding a REGISTER_PREFIX or ','
11412 after the '('. */
11413 base_string = op_string + strlen (op_string);
11414
11415 /* Handle vector operations. */
11416 vop_start = strchr (op_string, '{');
11417 if (vop_start && vop_start < base_string)
11418 {
11419 if (check_VecOperations (vop_start, base_string) == NULL)
11420 return 0;
11421 base_string = vop_start;
11422 }
11423
11424 --base_string;
11425 if (is_space_char (*base_string))
11426 --base_string;
11427
11428 /* If we only have a displacement, set-up for it to be parsed later. */
11429 displacement_string_start = op_string;
11430 displacement_string_end = base_string + 1;
11431
11432 if (*base_string == ')')
11433 {
11434 char *temp_string;
11435 unsigned int parens_balanced = 1;
11436 /* We've already checked that the number of left & right ()'s are
11437 equal, so this loop will not be infinite. */
11438 do
11439 {
11440 base_string--;
11441 if (*base_string == ')')
11442 parens_balanced++;
11443 if (*base_string == '(')
11444 parens_balanced--;
11445 }
11446 while (parens_balanced);
11447
11448 temp_string = base_string;
11449
11450 /* Skip past '(' and whitespace. */
11451 ++base_string;
11452 if (is_space_char (*base_string))
11453 ++base_string;
11454
11455 if (*base_string == ','
11456 || ((i.base_reg = parse_register (base_string, &end_op))
11457 != NULL))
11458 {
11459 displacement_string_end = temp_string;
11460
11461 i.types[this_operand].bitfield.baseindex = 1;
11462
11463 if (i.base_reg)
11464 {
11465 if (i.base_reg == &bad_reg)
11466 return 0;
11467 base_string = end_op;
11468 if (is_space_char (*base_string))
11469 ++base_string;
11470 }
11471
11472 /* There may be an index reg or scale factor here. */
11473 if (*base_string == ',')
11474 {
11475 ++base_string;
11476 if (is_space_char (*base_string))
11477 ++base_string;
11478
11479 if ((i.index_reg = parse_register (base_string, &end_op))
11480 != NULL)
11481 {
11482 if (i.index_reg == &bad_reg)
11483 return 0;
11484 base_string = end_op;
11485 if (is_space_char (*base_string))
11486 ++base_string;
11487 if (*base_string == ',')
11488 {
11489 ++base_string;
11490 if (is_space_char (*base_string))
11491 ++base_string;
11492 }
11493 else if (*base_string != ')')
11494 {
11495 as_bad (_("expecting `,' or `)' "
11496 "after index register in `%s'"),
11497 operand_string);
11498 return 0;
11499 }
11500 }
11501 else if (*base_string == REGISTER_PREFIX)
11502 {
11503 end_op = strchr (base_string, ',');
11504 if (end_op)
11505 *end_op = '\0';
11506 as_bad (_("bad register name `%s'"), base_string);
11507 return 0;
11508 }
11509
11510 /* Check for scale factor. */
11511 if (*base_string != ')')
11512 {
11513 char *end_scale = i386_scale (base_string);
11514
11515 if (!end_scale)
11516 return 0;
11517
11518 base_string = end_scale;
11519 if (is_space_char (*base_string))
11520 ++base_string;
11521 if (*base_string != ')')
11522 {
11523 as_bad (_("expecting `)' "
11524 "after scale factor in `%s'"),
11525 operand_string);
11526 return 0;
11527 }
11528 }
11529 else if (!i.index_reg)
11530 {
11531 as_bad (_("expecting index register or scale factor "
11532 "after `,'; got '%c'"),
11533 *base_string);
11534 return 0;
11535 }
11536 }
11537 else if (*base_string != ')')
11538 {
11539 as_bad (_("expecting `,' or `)' "
11540 "after base register in `%s'"),
11541 operand_string);
11542 return 0;
11543 }
11544 }
11545 else if (*base_string == REGISTER_PREFIX)
11546 {
11547 end_op = strchr (base_string, ',');
11548 if (end_op)
11549 *end_op = '\0';
11550 as_bad (_("bad register name `%s'"), base_string);
11551 return 0;
11552 }
11553 }
11554
11555 /* If there's an expression beginning the operand, parse it,
11556 assuming displacement_string_start and
11557 displacement_string_end are meaningful. */
11558 if (displacement_string_start != displacement_string_end)
11559 {
11560 if (!i386_displacement (displacement_string_start,
11561 displacement_string_end))
11562 return 0;
11563 }
11564
11565 /* Special case for (%dx) while doing input/output op. */
11566 if (i.base_reg
11567 && i.base_reg->reg_type.bitfield.instance == RegD
11568 && i.base_reg->reg_type.bitfield.word
11569 && i.index_reg == 0
11570 && i.log2_scale_factor == 0
11571 && i.seg[i.mem_operands] == 0
11572 && !operand_type_check (i.types[this_operand], disp))
11573 {
11574 i.types[this_operand] = i.base_reg->reg_type;
11575 return 1;
11576 }
11577
11578 if (i386_index_check (operand_string) == 0)
11579 return 0;
11580 i.flags[this_operand] |= Operand_Mem;
11581 if (i.mem_operands == 0)
11582 i.memop1_string = xstrdup (operand_string);
11583 i.mem_operands++;
11584 }
11585 else
11586 {
11587 /* It's not a memory operand; argh! */
11588 as_bad (_("invalid char %s beginning operand %d `%s'"),
11589 output_invalid (*op_string),
11590 this_operand + 1,
11591 op_string);
11592 return 0;
11593 }
11594 return 1; /* Normal return. */
11595 }
11596 \f
11597 /* Calculate the maximum variable size (i.e., excluding fr_fix)
11598 that an rs_machine_dependent frag may reach. */
11599
11600 unsigned int
11601 i386_frag_max_var (fragS *frag)
11602 {
11603 /* The only relaxable frags are for jumps.
11604 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
11605 gas_assert (frag->fr_type == rs_machine_dependent);
11606 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
11607 }
11608
11609 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11610 static int
11611 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
11612 {
11613 /* STT_GNU_IFUNC symbol must go through PLT. */
11614 if ((symbol_get_bfdsym (fr_symbol)->flags
11615 & BSF_GNU_INDIRECT_FUNCTION) != 0)
11616 return 0;
11617
11618 if (!S_IS_EXTERNAL (fr_symbol))
11619 /* Symbol may be weak or local. */
11620 return !S_IS_WEAK (fr_symbol);
11621
11622 /* Global symbols with non-default visibility can't be preempted. */
11623 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
11624 return 1;
11625
11626 if (fr_var != NO_RELOC)
11627 switch ((enum bfd_reloc_code_real) fr_var)
11628 {
11629 case BFD_RELOC_386_PLT32:
11630 case BFD_RELOC_X86_64_PLT32:
11631 /* Symbol with PLT relocation may be preempted. */
11632 return 0;
11633 default:
11634 abort ();
11635 }
11636
11637 /* Global symbols with default visibility in a shared library may be
11638 preempted by another definition. */
11639 return !shared;
11640 }
11641 #endif
11642
11643 /* Table 3-2. Macro-Fusible Instructions in Haswell Microarchitecture
11644 Note also work for Skylake and Cascadelake.
11645 ---------------------------------------------------------------------
11646 | JCC | ADD/SUB/CMP | INC/DEC | TEST/AND |
11647 | ------ | ----------- | ------- | -------- |
11648 | Jo | N | N | Y |
11649 | Jno | N | N | Y |
11650 | Jc/Jb | Y | N | Y |
11651 | Jae/Jnb | Y | N | Y |
11652 | Je/Jz | Y | Y | Y |
11653 | Jne/Jnz | Y | Y | Y |
11654 | Jna/Jbe | Y | N | Y |
11655 | Ja/Jnbe | Y | N | Y |
11656 | Js | N | N | Y |
11657 | Jns | N | N | Y |
11658 | Jp/Jpe | N | N | Y |
11659 | Jnp/Jpo | N | N | Y |
11660 | Jl/Jnge | Y | Y | Y |
11661 | Jge/Jnl | Y | Y | Y |
11662 | Jle/Jng | Y | Y | Y |
11663 | Jg/Jnle | Y | Y | Y |
11664 --------------------------------------------------------------------- */
11665 static int
11666 i386_macro_fusible_p (enum mf_cmp_kind mf_cmp, enum mf_jcc_kind mf_jcc)
11667 {
11668 if (mf_cmp == mf_cmp_alu_cmp)
11669 return ((mf_jcc >= mf_jcc_jc && mf_jcc <= mf_jcc_jna)
11670 || mf_jcc == mf_jcc_jl || mf_jcc == mf_jcc_jle);
11671 if (mf_cmp == mf_cmp_incdec)
11672 return (mf_jcc == mf_jcc_je || mf_jcc == mf_jcc_jl
11673 || mf_jcc == mf_jcc_jle);
11674 if (mf_cmp == mf_cmp_test_and)
11675 return 1;
11676 return 0;
11677 }
11678
11679 /* Return the next non-empty frag. */
11680
11681 static fragS *
11682 i386_next_non_empty_frag (fragS *fragP)
11683 {
11684 /* There may be a frag with a ".fill 0" when there is no room in
11685 the current frag for frag_grow in output_insn. */
11686 for (fragP = fragP->fr_next;
11687 (fragP != NULL
11688 && fragP->fr_type == rs_fill
11689 && fragP->fr_fix == 0);
11690 fragP = fragP->fr_next)
11691 ;
11692 return fragP;
11693 }
11694
11695 /* Return the next jcc frag after BRANCH_PADDING. */
11696
11697 static fragS *
11698 i386_next_fusible_jcc_frag (fragS *maybe_cmp_fragP, fragS *pad_fragP)
11699 {
11700 fragS *branch_fragP;
11701 if (!pad_fragP)
11702 return NULL;
11703
11704 if (pad_fragP->fr_type == rs_machine_dependent
11705 && (TYPE_FROM_RELAX_STATE (pad_fragP->fr_subtype)
11706 == BRANCH_PADDING))
11707 {
11708 branch_fragP = i386_next_non_empty_frag (pad_fragP);
11709 if (branch_fragP->fr_type != rs_machine_dependent)
11710 return NULL;
11711 if (TYPE_FROM_RELAX_STATE (branch_fragP->fr_subtype) == COND_JUMP
11712 && i386_macro_fusible_p (maybe_cmp_fragP->tc_frag_data.mf_type,
11713 pad_fragP->tc_frag_data.mf_type))
11714 return branch_fragP;
11715 }
11716
11717 return NULL;
11718 }
11719
11720 /* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
11721
11722 static void
11723 i386_classify_machine_dependent_frag (fragS *fragP)
11724 {
11725 fragS *cmp_fragP;
11726 fragS *pad_fragP;
11727 fragS *branch_fragP;
11728 fragS *next_fragP;
11729 unsigned int max_prefix_length;
11730
11731 if (fragP->tc_frag_data.classified)
11732 return;
11733
11734 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
11735 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
11736 for (next_fragP = fragP;
11737 next_fragP != NULL;
11738 next_fragP = next_fragP->fr_next)
11739 {
11740 next_fragP->tc_frag_data.classified = 1;
11741 if (next_fragP->fr_type == rs_machine_dependent)
11742 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
11743 {
11744 case BRANCH_PADDING:
11745 /* The BRANCH_PADDING frag must be followed by a branch
11746 frag. */
11747 branch_fragP = i386_next_non_empty_frag (next_fragP);
11748 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11749 break;
11750 case FUSED_JCC_PADDING:
11751 /* Check if this is a fused jcc:
11752 FUSED_JCC_PADDING
11753 CMP like instruction
11754 BRANCH_PADDING
11755 COND_JUMP
11756 */
11757 cmp_fragP = i386_next_non_empty_frag (next_fragP);
11758 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
11759 branch_fragP = i386_next_fusible_jcc_frag (next_fragP, pad_fragP);
11760 if (branch_fragP)
11761 {
11762 /* The BRANCH_PADDING frag is merged with the
11763 FUSED_JCC_PADDING frag. */
11764 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11765 /* CMP like instruction size. */
11766 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
11767 frag_wane (pad_fragP);
11768 /* Skip to branch_fragP. */
11769 next_fragP = branch_fragP;
11770 }
11771 else if (next_fragP->tc_frag_data.max_prefix_length)
11772 {
11773 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
11774 a fused jcc. */
11775 next_fragP->fr_subtype
11776 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
11777 next_fragP->tc_frag_data.max_bytes
11778 = next_fragP->tc_frag_data.max_prefix_length;
11779 /* This will be updated in the BRANCH_PREFIX scan. */
11780 next_fragP->tc_frag_data.max_prefix_length = 0;
11781 }
11782 else
11783 frag_wane (next_fragP);
11784 break;
11785 }
11786 }
11787
11788 /* Stop if there is no BRANCH_PREFIX. */
11789 if (!align_branch_prefix_size)
11790 return;
11791
11792 /* Scan for BRANCH_PREFIX. */
11793 for (; fragP != NULL; fragP = fragP->fr_next)
11794 {
11795 if (fragP->fr_type != rs_machine_dependent
11796 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11797 != BRANCH_PREFIX))
11798 continue;
11799
11800 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
11801 COND_JUMP_PREFIX. */
11802 max_prefix_length = 0;
11803 for (next_fragP = fragP;
11804 next_fragP != NULL;
11805 next_fragP = next_fragP->fr_next)
11806 {
11807 if (next_fragP->fr_type == rs_fill)
11808 /* Skip rs_fill frags. */
11809 continue;
11810 else if (next_fragP->fr_type != rs_machine_dependent)
11811 /* Stop for all other frags. */
11812 break;
11813
11814 /* rs_machine_dependent frags. */
11815 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11816 == BRANCH_PREFIX)
11817 {
11818 /* Count BRANCH_PREFIX frags. */
11819 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
11820 {
11821 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
11822 frag_wane (next_fragP);
11823 }
11824 else
11825 max_prefix_length
11826 += next_fragP->tc_frag_data.max_bytes;
11827 }
11828 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11829 == BRANCH_PADDING)
11830 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11831 == FUSED_JCC_PADDING))
11832 {
11833 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
11834 fragP->tc_frag_data.u.padding_fragP = next_fragP;
11835 break;
11836 }
11837 else
11838 /* Stop for other rs_machine_dependent frags. */
11839 break;
11840 }
11841
11842 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11843
11844 /* Skip to the next frag. */
11845 fragP = next_fragP;
11846 }
11847 }
11848
11849 /* Compute padding size for
11850
11851 FUSED_JCC_PADDING
11852 CMP like instruction
11853 BRANCH_PADDING
11854 COND_JUMP/UNCOND_JUMP
11855
11856 or
11857
11858 BRANCH_PADDING
11859 COND_JUMP/UNCOND_JUMP
11860 */
11861
11862 static int
11863 i386_branch_padding_size (fragS *fragP, offsetT address)
11864 {
11865 unsigned int offset, size, padding_size;
11866 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11867
11868 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11869 if (!address)
11870 address = fragP->fr_address;
11871 address += fragP->fr_fix;
11872
11873 /* CMP like instrunction size. */
11874 size = fragP->tc_frag_data.cmp_size;
11875
11876 /* The base size of the branch frag. */
11877 size += branch_fragP->fr_fix;
11878
11879 /* Add opcode and displacement bytes for the rs_machine_dependent
11880 branch frag. */
11881 if (branch_fragP->fr_type == rs_machine_dependent)
11882 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11883
11884 /* Check if branch is within boundary and doesn't end at the last
11885 byte. */
11886 offset = address & ((1U << align_branch_power) - 1);
11887 if ((offset + size) >= (1U << align_branch_power))
11888 /* Padding needed to avoid crossing boundary. */
11889 padding_size = (1U << align_branch_power) - offset;
11890 else
11891 /* No padding needed. */
11892 padding_size = 0;
11893
11894 /* The return value may be saved in tc_frag_data.length which is
11895 unsigned byte. */
11896 if (!fits_in_unsigned_byte (padding_size))
11897 abort ();
11898
11899 return padding_size;
11900 }
11901
11902 /* i386_generic_table_relax_frag()
11903
11904 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11905 grow/shrink padding to align branch frags. Hand others to
11906 relax_frag(). */
11907
11908 long
11909 i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11910 {
11911 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11912 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11913 {
11914 long padding_size = i386_branch_padding_size (fragP, 0);
11915 long grow = padding_size - fragP->tc_frag_data.length;
11916
11917 /* When the BRANCH_PREFIX frag is used, the computed address
11918 must match the actual address and there should be no padding. */
11919 if (fragP->tc_frag_data.padding_address
11920 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11921 || padding_size))
11922 abort ();
11923
11924 /* Update the padding size. */
11925 if (grow)
11926 fragP->tc_frag_data.length = padding_size;
11927
11928 return grow;
11929 }
11930 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11931 {
11932 fragS *padding_fragP, *next_fragP;
11933 long padding_size, left_size, last_size;
11934
11935 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11936 if (!padding_fragP)
11937 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11938 return (fragP->tc_frag_data.length
11939 - fragP->tc_frag_data.last_length);
11940
11941 /* Compute the relative address of the padding frag in the very
11942 first time where the BRANCH_PREFIX frag sizes are zero. */
11943 if (!fragP->tc_frag_data.padding_address)
11944 fragP->tc_frag_data.padding_address
11945 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11946
11947 /* First update the last length from the previous interation. */
11948 left_size = fragP->tc_frag_data.prefix_length;
11949 for (next_fragP = fragP;
11950 next_fragP != padding_fragP;
11951 next_fragP = next_fragP->fr_next)
11952 if (next_fragP->fr_type == rs_machine_dependent
11953 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11954 == BRANCH_PREFIX))
11955 {
11956 if (left_size)
11957 {
11958 int max = next_fragP->tc_frag_data.max_bytes;
11959 if (max)
11960 {
11961 int size;
11962 if (max > left_size)
11963 size = left_size;
11964 else
11965 size = max;
11966 left_size -= size;
11967 next_fragP->tc_frag_data.last_length = size;
11968 }
11969 }
11970 else
11971 next_fragP->tc_frag_data.last_length = 0;
11972 }
11973
11974 /* Check the padding size for the padding frag. */
11975 padding_size = i386_branch_padding_size
11976 (padding_fragP, (fragP->fr_address
11977 + fragP->tc_frag_data.padding_address));
11978
11979 last_size = fragP->tc_frag_data.prefix_length;
11980 /* Check if there is change from the last interation. */
11981 if (padding_size == last_size)
11982 {
11983 /* Update the expected address of the padding frag. */
11984 padding_fragP->tc_frag_data.padding_address
11985 = (fragP->fr_address + padding_size
11986 + fragP->tc_frag_data.padding_address);
11987 return 0;
11988 }
11989
11990 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11991 {
11992 /* No padding if there is no sufficient room. Clear the
11993 expected address of the padding frag. */
11994 padding_fragP->tc_frag_data.padding_address = 0;
11995 padding_size = 0;
11996 }
11997 else
11998 /* Store the expected address of the padding frag. */
11999 padding_fragP->tc_frag_data.padding_address
12000 = (fragP->fr_address + padding_size
12001 + fragP->tc_frag_data.padding_address);
12002
12003 fragP->tc_frag_data.prefix_length = padding_size;
12004
12005 /* Update the length for the current interation. */
12006 left_size = padding_size;
12007 for (next_fragP = fragP;
12008 next_fragP != padding_fragP;
12009 next_fragP = next_fragP->fr_next)
12010 if (next_fragP->fr_type == rs_machine_dependent
12011 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
12012 == BRANCH_PREFIX))
12013 {
12014 if (left_size)
12015 {
12016 int max = next_fragP->tc_frag_data.max_bytes;
12017 if (max)
12018 {
12019 int size;
12020 if (max > left_size)
12021 size = left_size;
12022 else
12023 size = max;
12024 left_size -= size;
12025 next_fragP->tc_frag_data.length = size;
12026 }
12027 }
12028 else
12029 next_fragP->tc_frag_data.length = 0;
12030 }
12031
12032 return (fragP->tc_frag_data.length
12033 - fragP->tc_frag_data.last_length);
12034 }
12035 return relax_frag (segment, fragP, stretch);
12036 }
12037
12038 /* md_estimate_size_before_relax()
12039
12040 Called just before relax() for rs_machine_dependent frags. The x86
12041 assembler uses these frags to handle variable size jump
12042 instructions.
12043
12044 Any symbol that is now undefined will not become defined.
12045 Return the correct fr_subtype in the frag.
12046 Return the initial "guess for variable size of frag" to caller.
12047 The guess is actually the growth beyond the fixed part. Whatever
12048 we do to grow the fixed or variable part contributes to our
12049 returned value. */
12050
12051 int
12052 md_estimate_size_before_relax (fragS *fragP, segT segment)
12053 {
12054 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
12055 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
12056 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
12057 {
12058 i386_classify_machine_dependent_frag (fragP);
12059 return fragP->tc_frag_data.length;
12060 }
12061
12062 /* We've already got fragP->fr_subtype right; all we have to do is
12063 check for un-relaxable symbols. On an ELF system, we can't relax
12064 an externally visible symbol, because it may be overridden by a
12065 shared library. */
12066 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
12067 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12068 || (IS_ELF
12069 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
12070 fragP->fr_var))
12071 #endif
12072 #if defined (OBJ_COFF) && defined (TE_PE)
12073 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
12074 && S_IS_WEAK (fragP->fr_symbol))
12075 #endif
12076 )
12077 {
12078 /* Symbol is undefined in this segment, or we need to keep a
12079 reloc so that weak symbols can be overridden. */
12080 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
12081 enum bfd_reloc_code_real reloc_type;
12082 unsigned char *opcode;
12083 int old_fr_fix;
12084
12085 if (fragP->fr_var != NO_RELOC)
12086 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
12087 else if (size == 2)
12088 reloc_type = BFD_RELOC_16_PCREL;
12089 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12090 else if (need_plt32_p (fragP->fr_symbol))
12091 reloc_type = BFD_RELOC_X86_64_PLT32;
12092 #endif
12093 else
12094 reloc_type = BFD_RELOC_32_PCREL;
12095
12096 old_fr_fix = fragP->fr_fix;
12097 opcode = (unsigned char *) fragP->fr_opcode;
12098
12099 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
12100 {
12101 case UNCOND_JUMP:
12102 /* Make jmp (0xeb) a (d)word displacement jump. */
12103 opcode[0] = 0xe9;
12104 fragP->fr_fix += size;
12105 fix_new (fragP, old_fr_fix, size,
12106 fragP->fr_symbol,
12107 fragP->fr_offset, 1,
12108 reloc_type);
12109 break;
12110
12111 case COND_JUMP86:
12112 if (size == 2
12113 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
12114 {
12115 /* Negate the condition, and branch past an
12116 unconditional jump. */
12117 opcode[0] ^= 1;
12118 opcode[1] = 3;
12119 /* Insert an unconditional jump. */
12120 opcode[2] = 0xe9;
12121 /* We added two extra opcode bytes, and have a two byte
12122 offset. */
12123 fragP->fr_fix += 2 + 2;
12124 fix_new (fragP, old_fr_fix + 2, 2,
12125 fragP->fr_symbol,
12126 fragP->fr_offset, 1,
12127 reloc_type);
12128 break;
12129 }
12130 /* Fall through. */
12131
12132 case COND_JUMP:
12133 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
12134 {
12135 fixS *fixP;
12136
12137 fragP->fr_fix += 1;
12138 fixP = fix_new (fragP, old_fr_fix, 1,
12139 fragP->fr_symbol,
12140 fragP->fr_offset, 1,
12141 BFD_RELOC_8_PCREL);
12142 fixP->fx_signed = 1;
12143 break;
12144 }
12145
12146 /* This changes the byte-displacement jump 0x7N
12147 to the (d)word-displacement jump 0x0f,0x8N. */
12148 opcode[1] = opcode[0] + 0x10;
12149 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
12150 /* We've added an opcode byte. */
12151 fragP->fr_fix += 1 + size;
12152 fix_new (fragP, old_fr_fix + 1, size,
12153 fragP->fr_symbol,
12154 fragP->fr_offset, 1,
12155 reloc_type);
12156 break;
12157
12158 default:
12159 BAD_CASE (fragP->fr_subtype);
12160 break;
12161 }
12162 frag_wane (fragP);
12163 return fragP->fr_fix - old_fr_fix;
12164 }
12165
12166 /* Guess size depending on current relax state. Initially the relax
12167 state will correspond to a short jump and we return 1, because
12168 the variable part of the frag (the branch offset) is one byte
12169 long. However, we can relax a section more than once and in that
12170 case we must either set fr_subtype back to the unrelaxed state,
12171 or return the value for the appropriate branch. */
12172 return md_relax_table[fragP->fr_subtype].rlx_length;
12173 }
12174
12175 /* Called after relax() is finished.
12176
12177 In: Address of frag.
12178 fr_type == rs_machine_dependent.
12179 fr_subtype is what the address relaxed to.
12180
12181 Out: Any fixSs and constants are set up.
12182 Caller will turn frag into a ".space 0". */
12183
12184 void
12185 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
12186 fragS *fragP)
12187 {
12188 unsigned char *opcode;
12189 unsigned char *where_to_put_displacement = NULL;
12190 offsetT target_address;
12191 offsetT opcode_address;
12192 unsigned int extension = 0;
12193 offsetT displacement_from_opcode_start;
12194
12195 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
12196 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
12197 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
12198 {
12199 /* Generate nop padding. */
12200 unsigned int size = fragP->tc_frag_data.length;
12201 if (size)
12202 {
12203 if (size > fragP->tc_frag_data.max_bytes)
12204 abort ();
12205
12206 if (flag_debug)
12207 {
12208 const char *msg;
12209 const char *branch = "branch";
12210 const char *prefix = "";
12211 fragS *padding_fragP;
12212 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
12213 == BRANCH_PREFIX)
12214 {
12215 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
12216 switch (fragP->tc_frag_data.default_prefix)
12217 {
12218 default:
12219 abort ();
12220 break;
12221 case CS_PREFIX_OPCODE:
12222 prefix = " cs";
12223 break;
12224 case DS_PREFIX_OPCODE:
12225 prefix = " ds";
12226 break;
12227 case ES_PREFIX_OPCODE:
12228 prefix = " es";
12229 break;
12230 case FS_PREFIX_OPCODE:
12231 prefix = " fs";
12232 break;
12233 case GS_PREFIX_OPCODE:
12234 prefix = " gs";
12235 break;
12236 case SS_PREFIX_OPCODE:
12237 prefix = " ss";
12238 break;
12239 }
12240 if (padding_fragP)
12241 msg = _("%s:%u: add %d%s at 0x%llx to align "
12242 "%s within %d-byte boundary\n");
12243 else
12244 msg = _("%s:%u: add additional %d%s at 0x%llx to "
12245 "align %s within %d-byte boundary\n");
12246 }
12247 else
12248 {
12249 padding_fragP = fragP;
12250 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
12251 "%s within %d-byte boundary\n");
12252 }
12253
12254 if (padding_fragP)
12255 switch (padding_fragP->tc_frag_data.branch_type)
12256 {
12257 case align_branch_jcc:
12258 branch = "jcc";
12259 break;
12260 case align_branch_fused:
12261 branch = "fused jcc";
12262 break;
12263 case align_branch_jmp:
12264 branch = "jmp";
12265 break;
12266 case align_branch_call:
12267 branch = "call";
12268 break;
12269 case align_branch_indirect:
12270 branch = "indiret branch";
12271 break;
12272 case align_branch_ret:
12273 branch = "ret";
12274 break;
12275 default:
12276 break;
12277 }
12278
12279 fprintf (stdout, msg,
12280 fragP->fr_file, fragP->fr_line, size, prefix,
12281 (long long) fragP->fr_address, branch,
12282 1 << align_branch_power);
12283 }
12284 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
12285 memset (fragP->fr_opcode,
12286 fragP->tc_frag_data.default_prefix, size);
12287 else
12288 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
12289 size, 0);
12290 fragP->fr_fix += size;
12291 }
12292 return;
12293 }
12294
12295 opcode = (unsigned char *) fragP->fr_opcode;
12296
12297 /* Address we want to reach in file space. */
12298 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
12299
12300 /* Address opcode resides at in file space. */
12301 opcode_address = fragP->fr_address + fragP->fr_fix;
12302
12303 /* Displacement from opcode start to fill into instruction. */
12304 displacement_from_opcode_start = target_address - opcode_address;
12305
12306 if ((fragP->fr_subtype & BIG) == 0)
12307 {
12308 /* Don't have to change opcode. */
12309 extension = 1; /* 1 opcode + 1 displacement */
12310 where_to_put_displacement = &opcode[1];
12311 }
12312 else
12313 {
12314 if (no_cond_jump_promotion
12315 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
12316 as_warn_where (fragP->fr_file, fragP->fr_line,
12317 _("long jump required"));
12318
12319 switch (fragP->fr_subtype)
12320 {
12321 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
12322 extension = 4; /* 1 opcode + 4 displacement */
12323 opcode[0] = 0xe9;
12324 where_to_put_displacement = &opcode[1];
12325 break;
12326
12327 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
12328 extension = 2; /* 1 opcode + 2 displacement */
12329 opcode[0] = 0xe9;
12330 where_to_put_displacement = &opcode[1];
12331 break;
12332
12333 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
12334 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
12335 extension = 5; /* 2 opcode + 4 displacement */
12336 opcode[1] = opcode[0] + 0x10;
12337 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
12338 where_to_put_displacement = &opcode[2];
12339 break;
12340
12341 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
12342 extension = 3; /* 2 opcode + 2 displacement */
12343 opcode[1] = opcode[0] + 0x10;
12344 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
12345 where_to_put_displacement = &opcode[2];
12346 break;
12347
12348 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
12349 extension = 4;
12350 opcode[0] ^= 1;
12351 opcode[1] = 3;
12352 opcode[2] = 0xe9;
12353 where_to_put_displacement = &opcode[3];
12354 break;
12355
12356 default:
12357 BAD_CASE (fragP->fr_subtype);
12358 break;
12359 }
12360 }
12361
12362 /* If size if less then four we are sure that the operand fits,
12363 but if it's 4, then it could be that the displacement is larger
12364 then -/+ 2GB. */
12365 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
12366 && object_64bit
12367 && ((addressT) (displacement_from_opcode_start - extension
12368 + ((addressT) 1 << 31))
12369 > (((addressT) 2 << 31) - 1)))
12370 {
12371 as_bad_where (fragP->fr_file, fragP->fr_line,
12372 _("jump target out of range"));
12373 /* Make us emit 0. */
12374 displacement_from_opcode_start = extension;
12375 }
12376 /* Now put displacement after opcode. */
12377 md_number_to_chars ((char *) where_to_put_displacement,
12378 (valueT) (displacement_from_opcode_start - extension),
12379 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
12380 fragP->fr_fix += extension;
12381 }
12382 \f
12383 /* Apply a fixup (fixP) to segment data, once it has been determined
12384 by our caller that we have all the info we need to fix it up.
12385
12386 Parameter valP is the pointer to the value of the bits.
12387
12388 On the 386, immediates, displacements, and data pointers are all in
12389 the same (little-endian) format, so we don't need to care about which
12390 we are handling. */
12391
12392 void
12393 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
12394 {
12395 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
12396 valueT value = *valP;
12397
12398 #if !defined (TE_Mach)
12399 if (fixP->fx_pcrel)
12400 {
12401 switch (fixP->fx_r_type)
12402 {
12403 default:
12404 break;
12405
12406 case BFD_RELOC_64:
12407 fixP->fx_r_type = BFD_RELOC_64_PCREL;
12408 break;
12409 case BFD_RELOC_32:
12410 case BFD_RELOC_X86_64_32S:
12411 fixP->fx_r_type = BFD_RELOC_32_PCREL;
12412 break;
12413 case BFD_RELOC_16:
12414 fixP->fx_r_type = BFD_RELOC_16_PCREL;
12415 break;
12416 case BFD_RELOC_8:
12417 fixP->fx_r_type = BFD_RELOC_8_PCREL;
12418 break;
12419 }
12420 }
12421
12422 if (fixP->fx_addsy != NULL
12423 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
12424 || fixP->fx_r_type == BFD_RELOC_64_PCREL
12425 || fixP->fx_r_type == BFD_RELOC_16_PCREL
12426 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
12427 && !use_rela_relocations)
12428 {
12429 /* This is a hack. There should be a better way to handle this.
12430 This covers for the fact that bfd_install_relocation will
12431 subtract the current location (for partial_inplace, PC relative
12432 relocations); see more below. */
12433 #ifndef OBJ_AOUT
12434 if (IS_ELF
12435 #ifdef TE_PE
12436 || OUTPUT_FLAVOR == bfd_target_coff_flavour
12437 #endif
12438 )
12439 value += fixP->fx_where + fixP->fx_frag->fr_address;
12440 #endif
12441 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12442 if (IS_ELF)
12443 {
12444 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
12445
12446 if ((sym_seg == seg
12447 || (symbol_section_p (fixP->fx_addsy)
12448 && sym_seg != absolute_section))
12449 && !generic_force_reloc (fixP))
12450 {
12451 /* Yes, we add the values in twice. This is because
12452 bfd_install_relocation subtracts them out again. I think
12453 bfd_install_relocation is broken, but I don't dare change
12454 it. FIXME. */
12455 value += fixP->fx_where + fixP->fx_frag->fr_address;
12456 }
12457 }
12458 #endif
12459 #if defined (OBJ_COFF) && defined (TE_PE)
12460 /* For some reason, the PE format does not store a
12461 section address offset for a PC relative symbol. */
12462 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
12463 || S_IS_WEAK (fixP->fx_addsy))
12464 value += md_pcrel_from (fixP);
12465 #endif
12466 }
12467 #if defined (OBJ_COFF) && defined (TE_PE)
12468 if (fixP->fx_addsy != NULL
12469 && S_IS_WEAK (fixP->fx_addsy)
12470 /* PR 16858: Do not modify weak function references. */
12471 && ! fixP->fx_pcrel)
12472 {
12473 #if !defined (TE_PEP)
12474 /* For x86 PE weak function symbols are neither PC-relative
12475 nor do they set S_IS_FUNCTION. So the only reliable way
12476 to detect them is to check the flags of their containing
12477 section. */
12478 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
12479 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
12480 ;
12481 else
12482 #endif
12483 value -= S_GET_VALUE (fixP->fx_addsy);
12484 }
12485 #endif
12486
12487 /* Fix a few things - the dynamic linker expects certain values here,
12488 and we must not disappoint it. */
12489 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12490 if (IS_ELF && fixP->fx_addsy)
12491 switch (fixP->fx_r_type)
12492 {
12493 case BFD_RELOC_386_PLT32:
12494 case BFD_RELOC_X86_64_PLT32:
12495 /* Make the jump instruction point to the address of the operand.
12496 At runtime we merely add the offset to the actual PLT entry.
12497 NB: Subtract the offset size only for jump instructions. */
12498 if (fixP->fx_pcrel)
12499 value = -4;
12500 break;
12501
12502 case BFD_RELOC_386_TLS_GD:
12503 case BFD_RELOC_386_TLS_LDM:
12504 case BFD_RELOC_386_TLS_IE_32:
12505 case BFD_RELOC_386_TLS_IE:
12506 case BFD_RELOC_386_TLS_GOTIE:
12507 case BFD_RELOC_386_TLS_GOTDESC:
12508 case BFD_RELOC_X86_64_TLSGD:
12509 case BFD_RELOC_X86_64_TLSLD:
12510 case BFD_RELOC_X86_64_GOTTPOFF:
12511 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12512 value = 0; /* Fully resolved at runtime. No addend. */
12513 /* Fallthrough */
12514 case BFD_RELOC_386_TLS_LE:
12515 case BFD_RELOC_386_TLS_LDO_32:
12516 case BFD_RELOC_386_TLS_LE_32:
12517 case BFD_RELOC_X86_64_DTPOFF32:
12518 case BFD_RELOC_X86_64_DTPOFF64:
12519 case BFD_RELOC_X86_64_TPOFF32:
12520 case BFD_RELOC_X86_64_TPOFF64:
12521 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12522 break;
12523
12524 case BFD_RELOC_386_TLS_DESC_CALL:
12525 case BFD_RELOC_X86_64_TLSDESC_CALL:
12526 value = 0; /* Fully resolved at runtime. No addend. */
12527 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12528 fixP->fx_done = 0;
12529 return;
12530
12531 case BFD_RELOC_VTABLE_INHERIT:
12532 case BFD_RELOC_VTABLE_ENTRY:
12533 fixP->fx_done = 0;
12534 return;
12535
12536 default:
12537 break;
12538 }
12539 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
12540 *valP = value;
12541 #endif /* !defined (TE_Mach) */
12542
12543 /* Are we finished with this relocation now? */
12544 if (fixP->fx_addsy == NULL)
12545 fixP->fx_done = 1;
12546 #if defined (OBJ_COFF) && defined (TE_PE)
12547 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
12548 {
12549 fixP->fx_done = 0;
12550 /* Remember value for tc_gen_reloc. */
12551 fixP->fx_addnumber = value;
12552 /* Clear out the frag for now. */
12553 value = 0;
12554 }
12555 #endif
12556 else if (use_rela_relocations)
12557 {
12558 fixP->fx_no_overflow = 1;
12559 /* Remember value for tc_gen_reloc. */
12560 fixP->fx_addnumber = value;
12561 value = 0;
12562 }
12563
12564 md_number_to_chars (p, value, fixP->fx_size);
12565 }
12566 \f
12567 const char *
12568 md_atof (int type, char *litP, int *sizeP)
12569 {
12570 /* This outputs the LITTLENUMs in REVERSE order;
12571 in accord with the bigendian 386. */
12572 return ieee_md_atof (type, litP, sizeP, FALSE);
12573 }
12574 \f
12575 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
12576
12577 static char *
12578 output_invalid (int c)
12579 {
12580 if (ISPRINT (c))
12581 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
12582 "'%c'", c);
12583 else
12584 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
12585 "(0x%x)", (unsigned char) c);
12586 return output_invalid_buf;
12587 }
12588
12589 /* Verify that @r can be used in the current context. */
12590
12591 static bfd_boolean check_register (const reg_entry *r)
12592 {
12593 if (allow_pseudo_reg)
12594 return TRUE;
12595
12596 if (operand_type_all_zero (&r->reg_type))
12597 return FALSE;
12598
12599 if ((r->reg_type.bitfield.dword
12600 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
12601 || r->reg_type.bitfield.class == RegCR
12602 || r->reg_type.bitfield.class == RegDR)
12603 && !cpu_arch_flags.bitfield.cpui386)
12604 return FALSE;
12605
12606 if (r->reg_type.bitfield.class == RegTR
12607 && (flag_code == CODE_64BIT
12608 || !cpu_arch_flags.bitfield.cpui386
12609 || cpu_arch_isa_flags.bitfield.cpui586
12610 || cpu_arch_isa_flags.bitfield.cpui686))
12611 return FALSE;
12612
12613 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
12614 return FALSE;
12615
12616 if (!cpu_arch_flags.bitfield.cpuavx512f)
12617 {
12618 if (r->reg_type.bitfield.zmmword
12619 || r->reg_type.bitfield.class == RegMask)
12620 return FALSE;
12621
12622 if (!cpu_arch_flags.bitfield.cpuavx)
12623 {
12624 if (r->reg_type.bitfield.ymmword)
12625 return FALSE;
12626
12627 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
12628 return FALSE;
12629 }
12630 }
12631
12632 if (r->reg_type.bitfield.tmmword
12633 && (!cpu_arch_flags.bitfield.cpuamx_tile
12634 || flag_code != CODE_64BIT))
12635 return FALSE;
12636
12637 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
12638 return FALSE;
12639
12640 /* Don't allow fake index register unless allow_index_reg isn't 0. */
12641 if (!allow_index_reg && r->reg_num == RegIZ)
12642 return FALSE;
12643
12644 /* Upper 16 vector registers are only available with VREX in 64bit
12645 mode, and require EVEX encoding. */
12646 if (r->reg_flags & RegVRex)
12647 {
12648 if (!cpu_arch_flags.bitfield.cpuavx512f
12649 || flag_code != CODE_64BIT)
12650 return FALSE;
12651
12652 if (i.vec_encoding == vex_encoding_default)
12653 i.vec_encoding = vex_encoding_evex;
12654 else if (i.vec_encoding != vex_encoding_evex)
12655 i.vec_encoding = vex_encoding_error;
12656 }
12657
12658 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
12659 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
12660 && flag_code != CODE_64BIT)
12661 return FALSE;
12662
12663 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
12664 && !intel_syntax)
12665 return FALSE;
12666
12667 return TRUE;
12668 }
12669
12670 /* REG_STRING starts *before* REGISTER_PREFIX. */
12671
12672 static const reg_entry *
12673 parse_real_register (char *reg_string, char **end_op)
12674 {
12675 char *s = reg_string;
12676 char *p;
12677 char reg_name_given[MAX_REG_NAME_SIZE + 1];
12678 const reg_entry *r;
12679
12680 /* Skip possible REGISTER_PREFIX and possible whitespace. */
12681 if (*s == REGISTER_PREFIX)
12682 ++s;
12683
12684 if (is_space_char (*s))
12685 ++s;
12686
12687 p = reg_name_given;
12688 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
12689 {
12690 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
12691 return (const reg_entry *) NULL;
12692 s++;
12693 }
12694
12695 /* For naked regs, make sure that we are not dealing with an identifier.
12696 This prevents confusing an identifier like `eax_var' with register
12697 `eax'. */
12698 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
12699 return (const reg_entry *) NULL;
12700
12701 *end_op = s;
12702
12703 r = (const reg_entry *) str_hash_find (reg_hash, reg_name_given);
12704
12705 /* Handle floating point regs, allowing spaces in the (i) part. */
12706 if (r == i386_regtab /* %st is first entry of table */)
12707 {
12708 if (!cpu_arch_flags.bitfield.cpu8087
12709 && !cpu_arch_flags.bitfield.cpu287
12710 && !cpu_arch_flags.bitfield.cpu387
12711 && !allow_pseudo_reg)
12712 return (const reg_entry *) NULL;
12713
12714 if (is_space_char (*s))
12715 ++s;
12716 if (*s == '(')
12717 {
12718 ++s;
12719 if (is_space_char (*s))
12720 ++s;
12721 if (*s >= '0' && *s <= '7')
12722 {
12723 int fpr = *s - '0';
12724 ++s;
12725 if (is_space_char (*s))
12726 ++s;
12727 if (*s == ')')
12728 {
12729 *end_op = s + 1;
12730 r = (const reg_entry *) str_hash_find (reg_hash, "st(0)");
12731 know (r);
12732 return r + fpr;
12733 }
12734 }
12735 /* We have "%st(" then garbage. */
12736 return (const reg_entry *) NULL;
12737 }
12738 }
12739
12740 return r && check_register (r) ? r : NULL;
12741 }
12742
12743 /* REG_STRING starts *before* REGISTER_PREFIX. */
12744
12745 static const reg_entry *
12746 parse_register (char *reg_string, char **end_op)
12747 {
12748 const reg_entry *r;
12749
12750 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
12751 r = parse_real_register (reg_string, end_op);
12752 else
12753 r = NULL;
12754 if (!r)
12755 {
12756 char *save = input_line_pointer;
12757 char c;
12758 symbolS *symbolP;
12759
12760 input_line_pointer = reg_string;
12761 c = get_symbol_name (&reg_string);
12762 symbolP = symbol_find (reg_string);
12763 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
12764 {
12765 const expressionS *e = symbol_get_value_expression (symbolP);
12766
12767 know (e->X_op == O_register);
12768 know (e->X_add_number >= 0
12769 && (valueT) e->X_add_number < i386_regtab_size);
12770 r = i386_regtab + e->X_add_number;
12771 if (!check_register (r))
12772 {
12773 as_bad (_("register '%s%s' cannot be used here"),
12774 register_prefix, r->reg_name);
12775 r = &bad_reg;
12776 }
12777 *end_op = input_line_pointer;
12778 }
12779 *input_line_pointer = c;
12780 input_line_pointer = save;
12781 }
12782 return r;
12783 }
12784
12785 int
12786 i386_parse_name (char *name, expressionS *e, char *nextcharP)
12787 {
12788 const reg_entry *r;
12789 char *end = input_line_pointer;
12790
12791 *end = *nextcharP;
12792 r = parse_register (name, &input_line_pointer);
12793 if (r && end <= input_line_pointer)
12794 {
12795 *nextcharP = *input_line_pointer;
12796 *input_line_pointer = 0;
12797 if (r != &bad_reg)
12798 {
12799 e->X_op = O_register;
12800 e->X_add_number = r - i386_regtab;
12801 }
12802 else
12803 e->X_op = O_illegal;
12804 return 1;
12805 }
12806 input_line_pointer = end;
12807 *end = 0;
12808 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
12809 }
12810
12811 void
12812 md_operand (expressionS *e)
12813 {
12814 char *end;
12815 const reg_entry *r;
12816
12817 switch (*input_line_pointer)
12818 {
12819 case REGISTER_PREFIX:
12820 r = parse_real_register (input_line_pointer, &end);
12821 if (r)
12822 {
12823 e->X_op = O_register;
12824 e->X_add_number = r - i386_regtab;
12825 input_line_pointer = end;
12826 }
12827 break;
12828
12829 case '[':
12830 gas_assert (intel_syntax);
12831 end = input_line_pointer++;
12832 expression (e);
12833 if (*input_line_pointer == ']')
12834 {
12835 ++input_line_pointer;
12836 e->X_op_symbol = make_expr_symbol (e);
12837 e->X_add_symbol = NULL;
12838 e->X_add_number = 0;
12839 e->X_op = O_index;
12840 }
12841 else
12842 {
12843 e->X_op = O_absent;
12844 input_line_pointer = end;
12845 }
12846 break;
12847 }
12848 }
12849
12850 \f
12851 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12852 const char *md_shortopts = "kVQ:sqnO::";
12853 #else
12854 const char *md_shortopts = "qnO::";
12855 #endif
12856
12857 #define OPTION_32 (OPTION_MD_BASE + 0)
12858 #define OPTION_64 (OPTION_MD_BASE + 1)
12859 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
12860 #define OPTION_MARCH (OPTION_MD_BASE + 3)
12861 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
12862 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
12863 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
12864 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
12865 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
12866 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
12867 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
12868 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
12869 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12870 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12871 #define OPTION_X32 (OPTION_MD_BASE + 14)
12872 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
12873 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12874 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
12875 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
12876 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
12877 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
12878 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
12879 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12880 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
12881 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
12882 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
12883 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
12884 #define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12885 #define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12886 #define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
12887 #define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
12888 #define OPTION_MLFENCE_AFTER_LOAD (OPTION_MD_BASE + 31)
12889 #define OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH (OPTION_MD_BASE + 32)
12890 #define OPTION_MLFENCE_BEFORE_RET (OPTION_MD_BASE + 33)
12891
12892 struct option md_longopts[] =
12893 {
12894 {"32", no_argument, NULL, OPTION_32},
12895 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12896 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12897 {"64", no_argument, NULL, OPTION_64},
12898 #endif
12899 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12900 {"x32", no_argument, NULL, OPTION_X32},
12901 {"mshared", no_argument, NULL, OPTION_MSHARED},
12902 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
12903 #endif
12904 {"divide", no_argument, NULL, OPTION_DIVIDE},
12905 {"march", required_argument, NULL, OPTION_MARCH},
12906 {"mtune", required_argument, NULL, OPTION_MTUNE},
12907 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12908 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12909 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12910 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
12911 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
12912 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
12913 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
12914 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
12915 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
12916 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
12917 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12918 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
12919 # if defined (TE_PE) || defined (TE_PEP)
12920 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12921 #endif
12922 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
12923 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
12924 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
12925 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
12926 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12927 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12928 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
12929 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
12930 {"mlfence-after-load", required_argument, NULL, OPTION_MLFENCE_AFTER_LOAD},
12931 {"mlfence-before-indirect-branch", required_argument, NULL,
12932 OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH},
12933 {"mlfence-before-ret", required_argument, NULL, OPTION_MLFENCE_BEFORE_RET},
12934 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12935 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
12936 {NULL, no_argument, NULL, 0}
12937 };
12938 size_t md_longopts_size = sizeof (md_longopts);
12939
12940 int
12941 md_parse_option (int c, const char *arg)
12942 {
12943 unsigned int j;
12944 char *arch, *next, *saved, *type;
12945
12946 switch (c)
12947 {
12948 case 'n':
12949 optimize_align_code = 0;
12950 break;
12951
12952 case 'q':
12953 quiet_warnings = 1;
12954 break;
12955
12956 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12957 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12958 should be emitted or not. FIXME: Not implemented. */
12959 case 'Q':
12960 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12961 return 0;
12962 break;
12963
12964 /* -V: SVR4 argument to print version ID. */
12965 case 'V':
12966 print_version_id ();
12967 break;
12968
12969 /* -k: Ignore for FreeBSD compatibility. */
12970 case 'k':
12971 break;
12972
12973 case 's':
12974 /* -s: On i386 Solaris, this tells the native assembler to use
12975 .stab instead of .stab.excl. We always use .stab anyhow. */
12976 break;
12977
12978 case OPTION_MSHARED:
12979 shared = 1;
12980 break;
12981
12982 case OPTION_X86_USED_NOTE:
12983 if (strcasecmp (arg, "yes") == 0)
12984 x86_used_note = 1;
12985 else if (strcasecmp (arg, "no") == 0)
12986 x86_used_note = 0;
12987 else
12988 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12989 break;
12990
12991
12992 #endif
12993 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12994 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12995 case OPTION_64:
12996 {
12997 const char **list, **l;
12998
12999 list = bfd_target_list ();
13000 for (l = list; *l != NULL; l++)
13001 if (CONST_STRNEQ (*l, "elf64-x86-64")
13002 || strcmp (*l, "coff-x86-64") == 0
13003 || strcmp (*l, "pe-x86-64") == 0
13004 || strcmp (*l, "pei-x86-64") == 0
13005 || strcmp (*l, "mach-o-x86-64") == 0)
13006 {
13007 default_arch = "x86_64";
13008 break;
13009 }
13010 if (*l == NULL)
13011 as_fatal (_("no compiled in support for x86_64"));
13012 free (list);
13013 }
13014 break;
13015 #endif
13016
13017 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13018 case OPTION_X32:
13019 if (IS_ELF)
13020 {
13021 const char **list, **l;
13022
13023 list = bfd_target_list ();
13024 for (l = list; *l != NULL; l++)
13025 if (CONST_STRNEQ (*l, "elf32-x86-64"))
13026 {
13027 default_arch = "x86_64:32";
13028 break;
13029 }
13030 if (*l == NULL)
13031 as_fatal (_("no compiled in support for 32bit x86_64"));
13032 free (list);
13033 }
13034 else
13035 as_fatal (_("32bit x86_64 is only supported for ELF"));
13036 break;
13037 #endif
13038
13039 case OPTION_32:
13040 default_arch = "i386";
13041 break;
13042
13043 case OPTION_DIVIDE:
13044 #ifdef SVR4_COMMENT_CHARS
13045 {
13046 char *n, *t;
13047 const char *s;
13048
13049 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
13050 t = n;
13051 for (s = i386_comment_chars; *s != '\0'; s++)
13052 if (*s != '/')
13053 *t++ = *s;
13054 *t = '\0';
13055 i386_comment_chars = n;
13056 }
13057 #endif
13058 break;
13059
13060 case OPTION_MARCH:
13061 saved = xstrdup (arg);
13062 arch = saved;
13063 /* Allow -march=+nosse. */
13064 if (*arch == '+')
13065 arch++;
13066 do
13067 {
13068 if (*arch == '.')
13069 as_fatal (_("invalid -march= option: `%s'"), arg);
13070 next = strchr (arch, '+');
13071 if (next)
13072 *next++ = '\0';
13073 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
13074 {
13075 if (strcmp (arch, cpu_arch [j].name) == 0)
13076 {
13077 /* Processor. */
13078 if (! cpu_arch[j].flags.bitfield.cpui386)
13079 continue;
13080
13081 cpu_arch_name = cpu_arch[j].name;
13082 cpu_sub_arch_name = NULL;
13083 cpu_arch_flags = cpu_arch[j].flags;
13084 cpu_arch_isa = cpu_arch[j].type;
13085 cpu_arch_isa_flags = cpu_arch[j].flags;
13086 if (!cpu_arch_tune_set)
13087 {
13088 cpu_arch_tune = cpu_arch_isa;
13089 cpu_arch_tune_flags = cpu_arch_isa_flags;
13090 }
13091 break;
13092 }
13093 else if (*cpu_arch [j].name == '.'
13094 && strcmp (arch, cpu_arch [j].name + 1) == 0)
13095 {
13096 /* ISA extension. */
13097 i386_cpu_flags flags;
13098
13099 flags = cpu_flags_or (cpu_arch_flags,
13100 cpu_arch[j].flags);
13101
13102 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
13103 {
13104 if (cpu_sub_arch_name)
13105 {
13106 char *name = cpu_sub_arch_name;
13107 cpu_sub_arch_name = concat (name,
13108 cpu_arch[j].name,
13109 (const char *) NULL);
13110 free (name);
13111 }
13112 else
13113 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
13114 cpu_arch_flags = flags;
13115 cpu_arch_isa_flags = flags;
13116 }
13117 else
13118 cpu_arch_isa_flags
13119 = cpu_flags_or (cpu_arch_isa_flags,
13120 cpu_arch[j].flags);
13121 break;
13122 }
13123 }
13124
13125 if (j >= ARRAY_SIZE (cpu_arch))
13126 {
13127 /* Disable an ISA extension. */
13128 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
13129 if (strcmp (arch, cpu_noarch [j].name) == 0)
13130 {
13131 i386_cpu_flags flags;
13132
13133 flags = cpu_flags_and_not (cpu_arch_flags,
13134 cpu_noarch[j].flags);
13135 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
13136 {
13137 if (cpu_sub_arch_name)
13138 {
13139 char *name = cpu_sub_arch_name;
13140 cpu_sub_arch_name = concat (arch,
13141 (const char *) NULL);
13142 free (name);
13143 }
13144 else
13145 cpu_sub_arch_name = xstrdup (arch);
13146 cpu_arch_flags = flags;
13147 cpu_arch_isa_flags = flags;
13148 }
13149 break;
13150 }
13151
13152 if (j >= ARRAY_SIZE (cpu_noarch))
13153 j = ARRAY_SIZE (cpu_arch);
13154 }
13155
13156 if (j >= ARRAY_SIZE (cpu_arch))
13157 as_fatal (_("invalid -march= option: `%s'"), arg);
13158
13159 arch = next;
13160 }
13161 while (next != NULL);
13162 free (saved);
13163 break;
13164
13165 case OPTION_MTUNE:
13166 if (*arg == '.')
13167 as_fatal (_("invalid -mtune= option: `%s'"), arg);
13168 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
13169 {
13170 if (strcmp (arg, cpu_arch [j].name) == 0)
13171 {
13172 cpu_arch_tune_set = 1;
13173 cpu_arch_tune = cpu_arch [j].type;
13174 cpu_arch_tune_flags = cpu_arch[j].flags;
13175 break;
13176 }
13177 }
13178 if (j >= ARRAY_SIZE (cpu_arch))
13179 as_fatal (_("invalid -mtune= option: `%s'"), arg);
13180 break;
13181
13182 case OPTION_MMNEMONIC:
13183 if (strcasecmp (arg, "att") == 0)
13184 intel_mnemonic = 0;
13185 else if (strcasecmp (arg, "intel") == 0)
13186 intel_mnemonic = 1;
13187 else
13188 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
13189 break;
13190
13191 case OPTION_MSYNTAX:
13192 if (strcasecmp (arg, "att") == 0)
13193 intel_syntax = 0;
13194 else if (strcasecmp (arg, "intel") == 0)
13195 intel_syntax = 1;
13196 else
13197 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
13198 break;
13199
13200 case OPTION_MINDEX_REG:
13201 allow_index_reg = 1;
13202 break;
13203
13204 case OPTION_MNAKED_REG:
13205 allow_naked_reg = 1;
13206 break;
13207
13208 case OPTION_MSSE2AVX:
13209 sse2avx = 1;
13210 break;
13211
13212 case OPTION_MSSE_CHECK:
13213 if (strcasecmp (arg, "error") == 0)
13214 sse_check = check_error;
13215 else if (strcasecmp (arg, "warning") == 0)
13216 sse_check = check_warning;
13217 else if (strcasecmp (arg, "none") == 0)
13218 sse_check = check_none;
13219 else
13220 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
13221 break;
13222
13223 case OPTION_MOPERAND_CHECK:
13224 if (strcasecmp (arg, "error") == 0)
13225 operand_check = check_error;
13226 else if (strcasecmp (arg, "warning") == 0)
13227 operand_check = check_warning;
13228 else if (strcasecmp (arg, "none") == 0)
13229 operand_check = check_none;
13230 else
13231 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
13232 break;
13233
13234 case OPTION_MAVXSCALAR:
13235 if (strcasecmp (arg, "128") == 0)
13236 avxscalar = vex128;
13237 else if (strcasecmp (arg, "256") == 0)
13238 avxscalar = vex256;
13239 else
13240 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
13241 break;
13242
13243 case OPTION_MVEXWIG:
13244 if (strcmp (arg, "0") == 0)
13245 vexwig = vexw0;
13246 else if (strcmp (arg, "1") == 0)
13247 vexwig = vexw1;
13248 else
13249 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
13250 break;
13251
13252 case OPTION_MADD_BND_PREFIX:
13253 add_bnd_prefix = 1;
13254 break;
13255
13256 case OPTION_MEVEXLIG:
13257 if (strcmp (arg, "128") == 0)
13258 evexlig = evexl128;
13259 else if (strcmp (arg, "256") == 0)
13260 evexlig = evexl256;
13261 else if (strcmp (arg, "512") == 0)
13262 evexlig = evexl512;
13263 else
13264 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
13265 break;
13266
13267 case OPTION_MEVEXRCIG:
13268 if (strcmp (arg, "rne") == 0)
13269 evexrcig = rne;
13270 else if (strcmp (arg, "rd") == 0)
13271 evexrcig = rd;
13272 else if (strcmp (arg, "ru") == 0)
13273 evexrcig = ru;
13274 else if (strcmp (arg, "rz") == 0)
13275 evexrcig = rz;
13276 else
13277 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
13278 break;
13279
13280 case OPTION_MEVEXWIG:
13281 if (strcmp (arg, "0") == 0)
13282 evexwig = evexw0;
13283 else if (strcmp (arg, "1") == 0)
13284 evexwig = evexw1;
13285 else
13286 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
13287 break;
13288
13289 # if defined (TE_PE) || defined (TE_PEP)
13290 case OPTION_MBIG_OBJ:
13291 use_big_obj = 1;
13292 break;
13293 #endif
13294
13295 case OPTION_MOMIT_LOCK_PREFIX:
13296 if (strcasecmp (arg, "yes") == 0)
13297 omit_lock_prefix = 1;
13298 else if (strcasecmp (arg, "no") == 0)
13299 omit_lock_prefix = 0;
13300 else
13301 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
13302 break;
13303
13304 case OPTION_MFENCE_AS_LOCK_ADD:
13305 if (strcasecmp (arg, "yes") == 0)
13306 avoid_fence = 1;
13307 else if (strcasecmp (arg, "no") == 0)
13308 avoid_fence = 0;
13309 else
13310 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
13311 break;
13312
13313 case OPTION_MLFENCE_AFTER_LOAD:
13314 if (strcasecmp (arg, "yes") == 0)
13315 lfence_after_load = 1;
13316 else if (strcasecmp (arg, "no") == 0)
13317 lfence_after_load = 0;
13318 else
13319 as_fatal (_("invalid -mlfence-after-load= option: `%s'"), arg);
13320 break;
13321
13322 case OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH:
13323 if (strcasecmp (arg, "all") == 0)
13324 {
13325 lfence_before_indirect_branch = lfence_branch_all;
13326 if (lfence_before_ret == lfence_before_ret_none)
13327 lfence_before_ret = lfence_before_ret_shl;
13328 }
13329 else if (strcasecmp (arg, "memory") == 0)
13330 lfence_before_indirect_branch = lfence_branch_memory;
13331 else if (strcasecmp (arg, "register") == 0)
13332 lfence_before_indirect_branch = lfence_branch_register;
13333 else if (strcasecmp (arg, "none") == 0)
13334 lfence_before_indirect_branch = lfence_branch_none;
13335 else
13336 as_fatal (_("invalid -mlfence-before-indirect-branch= option: `%s'"),
13337 arg);
13338 break;
13339
13340 case OPTION_MLFENCE_BEFORE_RET:
13341 if (strcasecmp (arg, "or") == 0)
13342 lfence_before_ret = lfence_before_ret_or;
13343 else if (strcasecmp (arg, "not") == 0)
13344 lfence_before_ret = lfence_before_ret_not;
13345 else if (strcasecmp (arg, "shl") == 0 || strcasecmp (arg, "yes") == 0)
13346 lfence_before_ret = lfence_before_ret_shl;
13347 else if (strcasecmp (arg, "none") == 0)
13348 lfence_before_ret = lfence_before_ret_none;
13349 else
13350 as_fatal (_("invalid -mlfence-before-ret= option: `%s'"),
13351 arg);
13352 break;
13353
13354 case OPTION_MRELAX_RELOCATIONS:
13355 if (strcasecmp (arg, "yes") == 0)
13356 generate_relax_relocations = 1;
13357 else if (strcasecmp (arg, "no") == 0)
13358 generate_relax_relocations = 0;
13359 else
13360 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
13361 break;
13362
13363 case OPTION_MALIGN_BRANCH_BOUNDARY:
13364 {
13365 char *end;
13366 long int align = strtoul (arg, &end, 0);
13367 if (*end == '\0')
13368 {
13369 if (align == 0)
13370 {
13371 align_branch_power = 0;
13372 break;
13373 }
13374 else if (align >= 16)
13375 {
13376 int align_power;
13377 for (align_power = 0;
13378 (align & 1) == 0;
13379 align >>= 1, align_power++)
13380 continue;
13381 /* Limit alignment power to 31. */
13382 if (align == 1 && align_power < 32)
13383 {
13384 align_branch_power = align_power;
13385 break;
13386 }
13387 }
13388 }
13389 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
13390 }
13391 break;
13392
13393 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
13394 {
13395 char *end;
13396 int align = strtoul (arg, &end, 0);
13397 /* Some processors only support 5 prefixes. */
13398 if (*end == '\0' && align >= 0 && align < 6)
13399 {
13400 align_branch_prefix_size = align;
13401 break;
13402 }
13403 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
13404 arg);
13405 }
13406 break;
13407
13408 case OPTION_MALIGN_BRANCH:
13409 align_branch = 0;
13410 saved = xstrdup (arg);
13411 type = saved;
13412 do
13413 {
13414 next = strchr (type, '+');
13415 if (next)
13416 *next++ = '\0';
13417 if (strcasecmp (type, "jcc") == 0)
13418 align_branch |= align_branch_jcc_bit;
13419 else if (strcasecmp (type, "fused") == 0)
13420 align_branch |= align_branch_fused_bit;
13421 else if (strcasecmp (type, "jmp") == 0)
13422 align_branch |= align_branch_jmp_bit;
13423 else if (strcasecmp (type, "call") == 0)
13424 align_branch |= align_branch_call_bit;
13425 else if (strcasecmp (type, "ret") == 0)
13426 align_branch |= align_branch_ret_bit;
13427 else if (strcasecmp (type, "indirect") == 0)
13428 align_branch |= align_branch_indirect_bit;
13429 else
13430 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
13431 type = next;
13432 }
13433 while (next != NULL);
13434 free (saved);
13435 break;
13436
13437 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
13438 align_branch_power = 5;
13439 align_branch_prefix_size = 5;
13440 align_branch = (align_branch_jcc_bit
13441 | align_branch_fused_bit
13442 | align_branch_jmp_bit);
13443 break;
13444
13445 case OPTION_MAMD64:
13446 isa64 = amd64;
13447 break;
13448
13449 case OPTION_MINTEL64:
13450 isa64 = intel64;
13451 break;
13452
13453 case 'O':
13454 if (arg == NULL)
13455 {
13456 optimize = 1;
13457 /* Turn off -Os. */
13458 optimize_for_space = 0;
13459 }
13460 else if (*arg == 's')
13461 {
13462 optimize_for_space = 1;
13463 /* Turn on all encoding optimizations. */
13464 optimize = INT_MAX;
13465 }
13466 else
13467 {
13468 optimize = atoi (arg);
13469 /* Turn off -Os. */
13470 optimize_for_space = 0;
13471 }
13472 break;
13473
13474 default:
13475 return 0;
13476 }
13477 return 1;
13478 }
13479
13480 #define MESSAGE_TEMPLATE \
13481 " "
13482
13483 static char *
13484 output_message (FILE *stream, char *p, char *message, char *start,
13485 int *left_p, const char *name, int len)
13486 {
13487 int size = sizeof (MESSAGE_TEMPLATE);
13488 int left = *left_p;
13489
13490 /* Reserve 2 spaces for ", " or ",\0" */
13491 left -= len + 2;
13492
13493 /* Check if there is any room. */
13494 if (left >= 0)
13495 {
13496 if (p != start)
13497 {
13498 *p++ = ',';
13499 *p++ = ' ';
13500 }
13501 p = mempcpy (p, name, len);
13502 }
13503 else
13504 {
13505 /* Output the current message now and start a new one. */
13506 *p++ = ',';
13507 *p = '\0';
13508 fprintf (stream, "%s\n", message);
13509 p = start;
13510 left = size - (start - message) - len - 2;
13511
13512 gas_assert (left >= 0);
13513
13514 p = mempcpy (p, name, len);
13515 }
13516
13517 *left_p = left;
13518 return p;
13519 }
13520
13521 static void
13522 show_arch (FILE *stream, int ext, int check)
13523 {
13524 static char message[] = MESSAGE_TEMPLATE;
13525 char *start = message + 27;
13526 char *p;
13527 int size = sizeof (MESSAGE_TEMPLATE);
13528 int left;
13529 const char *name;
13530 int len;
13531 unsigned int j;
13532
13533 p = start;
13534 left = size - (start - message);
13535 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
13536 {
13537 /* Should it be skipped? */
13538 if (cpu_arch [j].skip)
13539 continue;
13540
13541 name = cpu_arch [j].name;
13542 len = cpu_arch [j].len;
13543 if (*name == '.')
13544 {
13545 /* It is an extension. Skip if we aren't asked to show it. */
13546 if (ext)
13547 {
13548 name++;
13549 len--;
13550 }
13551 else
13552 continue;
13553 }
13554 else if (ext)
13555 {
13556 /* It is an processor. Skip if we show only extension. */
13557 continue;
13558 }
13559 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
13560 {
13561 /* It is an impossible processor - skip. */
13562 continue;
13563 }
13564
13565 p = output_message (stream, p, message, start, &left, name, len);
13566 }
13567
13568 /* Display disabled extensions. */
13569 if (ext)
13570 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
13571 {
13572 name = cpu_noarch [j].name;
13573 len = cpu_noarch [j].len;
13574 p = output_message (stream, p, message, start, &left, name,
13575 len);
13576 }
13577
13578 *p = '\0';
13579 fprintf (stream, "%s\n", message);
13580 }
13581
13582 void
13583 md_show_usage (FILE *stream)
13584 {
13585 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13586 fprintf (stream, _("\
13587 -Qy, -Qn ignored\n\
13588 -V print assembler version number\n\
13589 -k ignored\n"));
13590 #endif
13591 fprintf (stream, _("\
13592 -n Do not optimize code alignment\n\
13593 -q quieten some warnings\n"));
13594 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13595 fprintf (stream, _("\
13596 -s ignored\n"));
13597 #endif
13598 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
13599 || defined (TE_PE) || defined (TE_PEP))
13600 fprintf (stream, _("\
13601 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
13602 #endif
13603 #ifdef SVR4_COMMENT_CHARS
13604 fprintf (stream, _("\
13605 --divide do not treat `/' as a comment character\n"));
13606 #else
13607 fprintf (stream, _("\
13608 --divide ignored\n"));
13609 #endif
13610 fprintf (stream, _("\
13611 -march=CPU[,+EXTENSION...]\n\
13612 generate code for CPU and EXTENSION, CPU is one of:\n"));
13613 show_arch (stream, 0, 1);
13614 fprintf (stream, _("\
13615 EXTENSION is combination of:\n"));
13616 show_arch (stream, 1, 0);
13617 fprintf (stream, _("\
13618 -mtune=CPU optimize for CPU, CPU is one of:\n"));
13619 show_arch (stream, 0, 0);
13620 fprintf (stream, _("\
13621 -msse2avx encode SSE instructions with VEX prefix\n"));
13622 fprintf (stream, _("\
13623 -msse-check=[none|error|warning] (default: warning)\n\
13624 check SSE instructions\n"));
13625 fprintf (stream, _("\
13626 -moperand-check=[none|error|warning] (default: warning)\n\
13627 check operand combinations for validity\n"));
13628 fprintf (stream, _("\
13629 -mavxscalar=[128|256] (default: 128)\n\
13630 encode scalar AVX instructions with specific vector\n\
13631 length\n"));
13632 fprintf (stream, _("\
13633 -mvexwig=[0|1] (default: 0)\n\
13634 encode VEX instructions with specific VEX.W value\n\
13635 for VEX.W bit ignored instructions\n"));
13636 fprintf (stream, _("\
13637 -mevexlig=[128|256|512] (default: 128)\n\
13638 encode scalar EVEX instructions with specific vector\n\
13639 length\n"));
13640 fprintf (stream, _("\
13641 -mevexwig=[0|1] (default: 0)\n\
13642 encode EVEX instructions with specific EVEX.W value\n\
13643 for EVEX.W bit ignored instructions\n"));
13644 fprintf (stream, _("\
13645 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
13646 encode EVEX instructions with specific EVEX.RC value\n\
13647 for SAE-only ignored instructions\n"));
13648 fprintf (stream, _("\
13649 -mmnemonic=[att|intel] "));
13650 if (SYSV386_COMPAT)
13651 fprintf (stream, _("(default: att)\n"));
13652 else
13653 fprintf (stream, _("(default: intel)\n"));
13654 fprintf (stream, _("\
13655 use AT&T/Intel mnemonic\n"));
13656 fprintf (stream, _("\
13657 -msyntax=[att|intel] (default: att)\n\
13658 use AT&T/Intel syntax\n"));
13659 fprintf (stream, _("\
13660 -mindex-reg support pseudo index registers\n"));
13661 fprintf (stream, _("\
13662 -mnaked-reg don't require `%%' prefix for registers\n"));
13663 fprintf (stream, _("\
13664 -madd-bnd-prefix add BND prefix for all valid branches\n"));
13665 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13666 fprintf (stream, _("\
13667 -mshared disable branch optimization for shared code\n"));
13668 fprintf (stream, _("\
13669 -mx86-used-note=[no|yes] "));
13670 if (DEFAULT_X86_USED_NOTE)
13671 fprintf (stream, _("(default: yes)\n"));
13672 else
13673 fprintf (stream, _("(default: no)\n"));
13674 fprintf (stream, _("\
13675 generate x86 used ISA and feature properties\n"));
13676 #endif
13677 #if defined (TE_PE) || defined (TE_PEP)
13678 fprintf (stream, _("\
13679 -mbig-obj generate big object files\n"));
13680 #endif
13681 fprintf (stream, _("\
13682 -momit-lock-prefix=[no|yes] (default: no)\n\
13683 strip all lock prefixes\n"));
13684 fprintf (stream, _("\
13685 -mfence-as-lock-add=[no|yes] (default: no)\n\
13686 encode lfence, mfence and sfence as\n\
13687 lock addl $0x0, (%%{re}sp)\n"));
13688 fprintf (stream, _("\
13689 -mrelax-relocations=[no|yes] "));
13690 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
13691 fprintf (stream, _("(default: yes)\n"));
13692 else
13693 fprintf (stream, _("(default: no)\n"));
13694 fprintf (stream, _("\
13695 generate relax relocations\n"));
13696 fprintf (stream, _("\
13697 -malign-branch-boundary=NUM (default: 0)\n\
13698 align branches within NUM byte boundary\n"));
13699 fprintf (stream, _("\
13700 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
13701 TYPE is combination of jcc, fused, jmp, call, ret,\n\
13702 indirect\n\
13703 specify types of branches to align\n"));
13704 fprintf (stream, _("\
13705 -malign-branch-prefix-size=NUM (default: 5)\n\
13706 align branches with NUM prefixes per instruction\n"));
13707 fprintf (stream, _("\
13708 -mbranches-within-32B-boundaries\n\
13709 align branches within 32 byte boundary\n"));
13710 fprintf (stream, _("\
13711 -mlfence-after-load=[no|yes] (default: no)\n\
13712 generate lfence after load\n"));
13713 fprintf (stream, _("\
13714 -mlfence-before-indirect-branch=[none|all|register|memory] (default: none)\n\
13715 generate lfence before indirect near branch\n"));
13716 fprintf (stream, _("\
13717 -mlfence-before-ret=[none|or|not|shl|yes] (default: none)\n\
13718 generate lfence before ret\n"));
13719 fprintf (stream, _("\
13720 -mamd64 accept only AMD64 ISA [default]\n"));
13721 fprintf (stream, _("\
13722 -mintel64 accept only Intel64 ISA\n"));
13723 }
13724
13725 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
13726 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
13727 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
13728
13729 /* Pick the target format to use. */
13730
13731 const char *
13732 i386_target_format (void)
13733 {
13734 if (!strncmp (default_arch, "x86_64", 6))
13735 {
13736 update_code_flag (CODE_64BIT, 1);
13737 if (default_arch[6] == '\0')
13738 x86_elf_abi = X86_64_ABI;
13739 else
13740 x86_elf_abi = X86_64_X32_ABI;
13741 }
13742 else if (!strcmp (default_arch, "i386"))
13743 update_code_flag (CODE_32BIT, 1);
13744 else if (!strcmp (default_arch, "iamcu"))
13745 {
13746 update_code_flag (CODE_32BIT, 1);
13747 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
13748 {
13749 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
13750 cpu_arch_name = "iamcu";
13751 cpu_sub_arch_name = NULL;
13752 cpu_arch_flags = iamcu_flags;
13753 cpu_arch_isa = PROCESSOR_IAMCU;
13754 cpu_arch_isa_flags = iamcu_flags;
13755 if (!cpu_arch_tune_set)
13756 {
13757 cpu_arch_tune = cpu_arch_isa;
13758 cpu_arch_tune_flags = cpu_arch_isa_flags;
13759 }
13760 }
13761 else if (cpu_arch_isa != PROCESSOR_IAMCU)
13762 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
13763 cpu_arch_name);
13764 }
13765 else
13766 as_fatal (_("unknown architecture"));
13767
13768 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
13769 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13770 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
13771 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13772
13773 switch (OUTPUT_FLAVOR)
13774 {
13775 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
13776 case bfd_target_aout_flavour:
13777 return AOUT_TARGET_FORMAT;
13778 #endif
13779 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
13780 # if defined (TE_PE) || defined (TE_PEP)
13781 case bfd_target_coff_flavour:
13782 if (flag_code == CODE_64BIT)
13783 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
13784 else
13785 return use_big_obj ? "pe-bigobj-i386" : "pe-i386";
13786 # elif defined (TE_GO32)
13787 case bfd_target_coff_flavour:
13788 return "coff-go32";
13789 # else
13790 case bfd_target_coff_flavour:
13791 return "coff-i386";
13792 # endif
13793 #endif
13794 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13795 case bfd_target_elf_flavour:
13796 {
13797 const char *format;
13798
13799 switch (x86_elf_abi)
13800 {
13801 default:
13802 format = ELF_TARGET_FORMAT;
13803 #ifndef TE_SOLARIS
13804 tls_get_addr = "___tls_get_addr";
13805 #endif
13806 break;
13807 case X86_64_ABI:
13808 use_rela_relocations = 1;
13809 object_64bit = 1;
13810 #ifndef TE_SOLARIS
13811 tls_get_addr = "__tls_get_addr";
13812 #endif
13813 format = ELF_TARGET_FORMAT64;
13814 break;
13815 case X86_64_X32_ABI:
13816 use_rela_relocations = 1;
13817 object_64bit = 1;
13818 #ifndef TE_SOLARIS
13819 tls_get_addr = "__tls_get_addr";
13820 #endif
13821 disallow_64bit_reloc = 1;
13822 format = ELF_TARGET_FORMAT32;
13823 break;
13824 }
13825 if (cpu_arch_isa == PROCESSOR_L1OM)
13826 {
13827 if (x86_elf_abi != X86_64_ABI)
13828 as_fatal (_("Intel L1OM is 64bit only"));
13829 return ELF_TARGET_L1OM_FORMAT;
13830 }
13831 else if (cpu_arch_isa == PROCESSOR_K1OM)
13832 {
13833 if (x86_elf_abi != X86_64_ABI)
13834 as_fatal (_("Intel K1OM is 64bit only"));
13835 return ELF_TARGET_K1OM_FORMAT;
13836 }
13837 else if (cpu_arch_isa == PROCESSOR_IAMCU)
13838 {
13839 if (x86_elf_abi != I386_ABI)
13840 as_fatal (_("Intel MCU is 32bit only"));
13841 return ELF_TARGET_IAMCU_FORMAT;
13842 }
13843 else
13844 return format;
13845 }
13846 #endif
13847 #if defined (OBJ_MACH_O)
13848 case bfd_target_mach_o_flavour:
13849 if (flag_code == CODE_64BIT)
13850 {
13851 use_rela_relocations = 1;
13852 object_64bit = 1;
13853 return "mach-o-x86-64";
13854 }
13855 else
13856 return "mach-o-i386";
13857 #endif
13858 default:
13859 abort ();
13860 return NULL;
13861 }
13862 }
13863
13864 #endif /* OBJ_MAYBE_ more than one */
13865 \f
13866 symbolS *
13867 md_undefined_symbol (char *name)
13868 {
13869 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
13870 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
13871 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
13872 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
13873 {
13874 if (!GOT_symbol)
13875 {
13876 if (symbol_find (name))
13877 as_bad (_("GOT already in symbol table"));
13878 GOT_symbol = symbol_new (name, undefined_section,
13879 &zero_address_frag, 0);
13880 };
13881 return GOT_symbol;
13882 }
13883 return 0;
13884 }
13885
13886 /* Round up a section size to the appropriate boundary. */
13887
13888 valueT
13889 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
13890 {
13891 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
13892 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
13893 {
13894 /* For a.out, force the section size to be aligned. If we don't do
13895 this, BFD will align it for us, but it will not write out the
13896 final bytes of the section. This may be a bug in BFD, but it is
13897 easier to fix it here since that is how the other a.out targets
13898 work. */
13899 int align;
13900
13901 align = bfd_section_alignment (segment);
13902 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
13903 }
13904 #endif
13905
13906 return size;
13907 }
13908
13909 /* On the i386, PC-relative offsets are relative to the start of the
13910 next instruction. That is, the address of the offset, plus its
13911 size, since the offset is always the last part of the insn. */
13912
13913 long
13914 md_pcrel_from (fixS *fixP)
13915 {
13916 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
13917 }
13918
13919 #ifndef I386COFF
13920
13921 static void
13922 s_bss (int ignore ATTRIBUTE_UNUSED)
13923 {
13924 int temp;
13925
13926 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13927 if (IS_ELF)
13928 obj_elf_section_change_hook ();
13929 #endif
13930 temp = get_absolute_expression ();
13931 subseg_set (bss_section, (subsegT) temp);
13932 demand_empty_rest_of_line ();
13933 }
13934
13935 #endif
13936
13937 /* Remember constant directive. */
13938
13939 void
13940 i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13941 {
13942 if (last_insn.kind != last_insn_directive
13943 && (bfd_section_flags (now_seg) & SEC_CODE))
13944 {
13945 last_insn.seg = now_seg;
13946 last_insn.kind = last_insn_directive;
13947 last_insn.name = "constant directive";
13948 last_insn.file = as_where (&last_insn.line);
13949 if (lfence_before_ret != lfence_before_ret_none)
13950 {
13951 if (lfence_before_indirect_branch != lfence_branch_none)
13952 as_warn (_("constant directive skips -mlfence-before-ret "
13953 "and -mlfence-before-indirect-branch"));
13954 else
13955 as_warn (_("constant directive skips -mlfence-before-ret"));
13956 }
13957 else if (lfence_before_indirect_branch != lfence_branch_none)
13958 as_warn (_("constant directive skips -mlfence-before-indirect-branch"));
13959 }
13960 }
13961
13962 void
13963 i386_validate_fix (fixS *fixp)
13964 {
13965 if (fixp->fx_subsy)
13966 {
13967 if (fixp->fx_subsy == GOT_symbol)
13968 {
13969 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13970 {
13971 if (!object_64bit)
13972 abort ();
13973 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13974 if (fixp->fx_tcbit2)
13975 fixp->fx_r_type = (fixp->fx_tcbit
13976 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13977 : BFD_RELOC_X86_64_GOTPCRELX);
13978 else
13979 #endif
13980 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13981 }
13982 else
13983 {
13984 if (!object_64bit)
13985 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13986 else
13987 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13988 }
13989 fixp->fx_subsy = 0;
13990 }
13991 }
13992 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13993 else
13994 {
13995 /* NB: Commit 292676c1 resolved PLT32 reloc aganst local symbol
13996 to section. Since PLT32 relocation must be against symbols,
13997 turn such PLT32 relocation into PC32 relocation. */
13998 if (fixp->fx_addsy
13999 && (fixp->fx_r_type == BFD_RELOC_386_PLT32
14000 || fixp->fx_r_type == BFD_RELOC_X86_64_PLT32)
14001 && symbol_section_p (fixp->fx_addsy))
14002 fixp->fx_r_type = BFD_RELOC_32_PCREL;
14003 if (!object_64bit)
14004 {
14005 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
14006 && fixp->fx_tcbit2)
14007 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
14008 }
14009 }
14010 #endif
14011 }
14012
14013 arelent *
14014 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
14015 {
14016 arelent *rel;
14017 bfd_reloc_code_real_type code;
14018
14019 switch (fixp->fx_r_type)
14020 {
14021 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14022 case BFD_RELOC_SIZE32:
14023 case BFD_RELOC_SIZE64:
14024 if (S_IS_DEFINED (fixp->fx_addsy)
14025 && !S_IS_EXTERNAL (fixp->fx_addsy))
14026 {
14027 /* Resolve size relocation against local symbol to size of
14028 the symbol plus addend. */
14029 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
14030 if (fixp->fx_r_type == BFD_RELOC_SIZE32
14031 && !fits_in_unsigned_long (value))
14032 as_bad_where (fixp->fx_file, fixp->fx_line,
14033 _("symbol size computation overflow"));
14034 fixp->fx_addsy = NULL;
14035 fixp->fx_subsy = NULL;
14036 md_apply_fix (fixp, (valueT *) &value, NULL);
14037 return NULL;
14038 }
14039 #endif
14040 /* Fall through. */
14041
14042 case BFD_RELOC_X86_64_PLT32:
14043 case BFD_RELOC_X86_64_GOT32:
14044 case BFD_RELOC_X86_64_GOTPCREL:
14045 case BFD_RELOC_X86_64_GOTPCRELX:
14046 case BFD_RELOC_X86_64_REX_GOTPCRELX:
14047 case BFD_RELOC_386_PLT32:
14048 case BFD_RELOC_386_GOT32:
14049 case BFD_RELOC_386_GOT32X:
14050 case BFD_RELOC_386_GOTOFF:
14051 case BFD_RELOC_386_GOTPC:
14052 case BFD_RELOC_386_TLS_GD:
14053 case BFD_RELOC_386_TLS_LDM:
14054 case BFD_RELOC_386_TLS_LDO_32:
14055 case BFD_RELOC_386_TLS_IE_32:
14056 case BFD_RELOC_386_TLS_IE:
14057 case BFD_RELOC_386_TLS_GOTIE:
14058 case BFD_RELOC_386_TLS_LE_32:
14059 case BFD_RELOC_386_TLS_LE:
14060 case BFD_RELOC_386_TLS_GOTDESC:
14061 case BFD_RELOC_386_TLS_DESC_CALL:
14062 case BFD_RELOC_X86_64_TLSGD:
14063 case BFD_RELOC_X86_64_TLSLD:
14064 case BFD_RELOC_X86_64_DTPOFF32:
14065 case BFD_RELOC_X86_64_DTPOFF64:
14066 case BFD_RELOC_X86_64_GOTTPOFF:
14067 case BFD_RELOC_X86_64_TPOFF32:
14068 case BFD_RELOC_X86_64_TPOFF64:
14069 case BFD_RELOC_X86_64_GOTOFF64:
14070 case BFD_RELOC_X86_64_GOTPC32:
14071 case BFD_RELOC_X86_64_GOT64:
14072 case BFD_RELOC_X86_64_GOTPCREL64:
14073 case BFD_RELOC_X86_64_GOTPC64:
14074 case BFD_RELOC_X86_64_GOTPLT64:
14075 case BFD_RELOC_X86_64_PLTOFF64:
14076 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
14077 case BFD_RELOC_X86_64_TLSDESC_CALL:
14078 case BFD_RELOC_RVA:
14079 case BFD_RELOC_VTABLE_ENTRY:
14080 case BFD_RELOC_VTABLE_INHERIT:
14081 #ifdef TE_PE
14082 case BFD_RELOC_32_SECREL:
14083 #endif
14084 code = fixp->fx_r_type;
14085 break;
14086 case BFD_RELOC_X86_64_32S:
14087 if (!fixp->fx_pcrel)
14088 {
14089 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
14090 code = fixp->fx_r_type;
14091 break;
14092 }
14093 /* Fall through. */
14094 default:
14095 if (fixp->fx_pcrel)
14096 {
14097 switch (fixp->fx_size)
14098 {
14099 default:
14100 as_bad_where (fixp->fx_file, fixp->fx_line,
14101 _("can not do %d byte pc-relative relocation"),
14102 fixp->fx_size);
14103 code = BFD_RELOC_32_PCREL;
14104 break;
14105 case 1: code = BFD_RELOC_8_PCREL; break;
14106 case 2: code = BFD_RELOC_16_PCREL; break;
14107 case 4: code = BFD_RELOC_32_PCREL; break;
14108 #ifdef BFD64
14109 case 8: code = BFD_RELOC_64_PCREL; break;
14110 #endif
14111 }
14112 }
14113 else
14114 {
14115 switch (fixp->fx_size)
14116 {
14117 default:
14118 as_bad_where (fixp->fx_file, fixp->fx_line,
14119 _("can not do %d byte relocation"),
14120 fixp->fx_size);
14121 code = BFD_RELOC_32;
14122 break;
14123 case 1: code = BFD_RELOC_8; break;
14124 case 2: code = BFD_RELOC_16; break;
14125 case 4: code = BFD_RELOC_32; break;
14126 #ifdef BFD64
14127 case 8: code = BFD_RELOC_64; break;
14128 #endif
14129 }
14130 }
14131 break;
14132 }
14133
14134 if ((code == BFD_RELOC_32
14135 || code == BFD_RELOC_32_PCREL
14136 || code == BFD_RELOC_X86_64_32S)
14137 && GOT_symbol
14138 && fixp->fx_addsy == GOT_symbol)
14139 {
14140 if (!object_64bit)
14141 code = BFD_RELOC_386_GOTPC;
14142 else
14143 code = BFD_RELOC_X86_64_GOTPC32;
14144 }
14145 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
14146 && GOT_symbol
14147 && fixp->fx_addsy == GOT_symbol)
14148 {
14149 code = BFD_RELOC_X86_64_GOTPC64;
14150 }
14151
14152 rel = XNEW (arelent);
14153 rel->sym_ptr_ptr = XNEW (asymbol *);
14154 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
14155
14156 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
14157
14158 if (!use_rela_relocations)
14159 {
14160 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
14161 vtable entry to be used in the relocation's section offset. */
14162 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14163 rel->address = fixp->fx_offset;
14164 #if defined (OBJ_COFF) && defined (TE_PE)
14165 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
14166 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
14167 else
14168 #endif
14169 rel->addend = 0;
14170 }
14171 /* Use the rela in 64bit mode. */
14172 else
14173 {
14174 if (disallow_64bit_reloc)
14175 switch (code)
14176 {
14177 case BFD_RELOC_X86_64_DTPOFF64:
14178 case BFD_RELOC_X86_64_TPOFF64:
14179 case BFD_RELOC_64_PCREL:
14180 case BFD_RELOC_X86_64_GOTOFF64:
14181 case BFD_RELOC_X86_64_GOT64:
14182 case BFD_RELOC_X86_64_GOTPCREL64:
14183 case BFD_RELOC_X86_64_GOTPC64:
14184 case BFD_RELOC_X86_64_GOTPLT64:
14185 case BFD_RELOC_X86_64_PLTOFF64:
14186 as_bad_where (fixp->fx_file, fixp->fx_line,
14187 _("cannot represent relocation type %s in x32 mode"),
14188 bfd_get_reloc_code_name (code));
14189 break;
14190 default:
14191 break;
14192 }
14193
14194 if (!fixp->fx_pcrel)
14195 rel->addend = fixp->fx_offset;
14196 else
14197 switch (code)
14198 {
14199 case BFD_RELOC_X86_64_PLT32:
14200 case BFD_RELOC_X86_64_GOT32:
14201 case BFD_RELOC_X86_64_GOTPCREL:
14202 case BFD_RELOC_X86_64_GOTPCRELX:
14203 case BFD_RELOC_X86_64_REX_GOTPCRELX:
14204 case BFD_RELOC_X86_64_TLSGD:
14205 case BFD_RELOC_X86_64_TLSLD:
14206 case BFD_RELOC_X86_64_GOTTPOFF:
14207 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
14208 case BFD_RELOC_X86_64_TLSDESC_CALL:
14209 rel->addend = fixp->fx_offset - fixp->fx_size;
14210 break;
14211 default:
14212 rel->addend = (section->vma
14213 - fixp->fx_size
14214 + fixp->fx_addnumber
14215 + md_pcrel_from (fixp));
14216 break;
14217 }
14218 }
14219
14220 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
14221 if (rel->howto == NULL)
14222 {
14223 as_bad_where (fixp->fx_file, fixp->fx_line,
14224 _("cannot represent relocation type %s"),
14225 bfd_get_reloc_code_name (code));
14226 /* Set howto to a garbage value so that we can keep going. */
14227 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
14228 gas_assert (rel->howto != NULL);
14229 }
14230
14231 return rel;
14232 }
14233
14234 #include "tc-i386-intel.c"
14235
14236 void
14237 tc_x86_parse_to_dw2regnum (expressionS *exp)
14238 {
14239 int saved_naked_reg;
14240 char saved_register_dot;
14241
14242 saved_naked_reg = allow_naked_reg;
14243 allow_naked_reg = 1;
14244 saved_register_dot = register_chars['.'];
14245 register_chars['.'] = '.';
14246 allow_pseudo_reg = 1;
14247 expression_and_evaluate (exp);
14248 allow_pseudo_reg = 0;
14249 register_chars['.'] = saved_register_dot;
14250 allow_naked_reg = saved_naked_reg;
14251
14252 if (exp->X_op == O_register && exp->X_add_number >= 0)
14253 {
14254 if ((addressT) exp->X_add_number < i386_regtab_size)
14255 {
14256 exp->X_op = O_constant;
14257 exp->X_add_number = i386_regtab[exp->X_add_number]
14258 .dw2_regnum[flag_code >> 1];
14259 }
14260 else
14261 exp->X_op = O_illegal;
14262 }
14263 }
14264
14265 void
14266 tc_x86_frame_initial_instructions (void)
14267 {
14268 static unsigned int sp_regno[2];
14269
14270 if (!sp_regno[flag_code >> 1])
14271 {
14272 char *saved_input = input_line_pointer;
14273 char sp[][4] = {"esp", "rsp"};
14274 expressionS exp;
14275
14276 input_line_pointer = sp[flag_code >> 1];
14277 tc_x86_parse_to_dw2regnum (&exp);
14278 gas_assert (exp.X_op == O_constant);
14279 sp_regno[flag_code >> 1] = exp.X_add_number;
14280 input_line_pointer = saved_input;
14281 }
14282
14283 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
14284 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
14285 }
14286
14287 int
14288 x86_dwarf2_addr_size (void)
14289 {
14290 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
14291 if (x86_elf_abi == X86_64_X32_ABI)
14292 return 4;
14293 #endif
14294 return bfd_arch_bits_per_address (stdoutput) / 8;
14295 }
14296
14297 int
14298 i386_elf_section_type (const char *str, size_t len)
14299 {
14300 if (flag_code == CODE_64BIT
14301 && len == sizeof ("unwind") - 1
14302 && strncmp (str, "unwind", 6) == 0)
14303 return SHT_X86_64_UNWIND;
14304
14305 return -1;
14306 }
14307
14308 #ifdef TE_SOLARIS
14309 void
14310 i386_solaris_fix_up_eh_frame (segT sec)
14311 {
14312 if (flag_code == CODE_64BIT)
14313 elf_section_type (sec) = SHT_X86_64_UNWIND;
14314 }
14315 #endif
14316
14317 #ifdef TE_PE
14318 void
14319 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
14320 {
14321 expressionS exp;
14322
14323 exp.X_op = O_secrel;
14324 exp.X_add_symbol = symbol;
14325 exp.X_add_number = 0;
14326 emit_expr (&exp, size);
14327 }
14328 #endif
14329
14330 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14331 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
14332
14333 bfd_vma
14334 x86_64_section_letter (int letter, const char **ptr_msg)
14335 {
14336 if (flag_code == CODE_64BIT)
14337 {
14338 if (letter == 'l')
14339 return SHF_X86_64_LARGE;
14340
14341 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
14342 }
14343 else
14344 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
14345 return -1;
14346 }
14347
14348 bfd_vma
14349 x86_64_section_word (char *str, size_t len)
14350 {
14351 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
14352 return SHF_X86_64_LARGE;
14353
14354 return -1;
14355 }
14356
14357 static void
14358 handle_large_common (int small ATTRIBUTE_UNUSED)
14359 {
14360 if (flag_code != CODE_64BIT)
14361 {
14362 s_comm_internal (0, elf_common_parse);
14363 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
14364 }
14365 else
14366 {
14367 static segT lbss_section;
14368 asection *saved_com_section_ptr = elf_com_section_ptr;
14369 asection *saved_bss_section = bss_section;
14370
14371 if (lbss_section == NULL)
14372 {
14373 flagword applicable;
14374 segT seg = now_seg;
14375 subsegT subseg = now_subseg;
14376
14377 /* The .lbss section is for local .largecomm symbols. */
14378 lbss_section = subseg_new (".lbss", 0);
14379 applicable = bfd_applicable_section_flags (stdoutput);
14380 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
14381 seg_info (lbss_section)->bss = 1;
14382
14383 subseg_set (seg, subseg);
14384 }
14385
14386 elf_com_section_ptr = &_bfd_elf_large_com_section;
14387 bss_section = lbss_section;
14388
14389 s_comm_internal (0, elf_common_parse);
14390
14391 elf_com_section_ptr = saved_com_section_ptr;
14392 bss_section = saved_bss_section;
14393 }
14394 }
14395 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */