bcd2904044c86b8068ce4c1ed524e290bcc276fa
[binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 /* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88 #define END_OF_INSN '\0'
89
90 /*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97 typedef struct
98 {
99 const insn_template *start;
100 const insn_template *end;
101 }
102 templates;
103
104 /* 386 operand encoding bytes: see 386 book for details of this. */
105 typedef struct
106 {
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110 }
111 modrm_byte;
112
113 /* x86-64 extension prefix. */
114 typedef int rex_byte;
115
116 /* 386 opcode byte to code indirect addressing. */
117 typedef struct
118 {
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122 }
123 sib_byte;
124
125 /* x86 arch names, types and features */
126 typedef struct
127 {
128 const char *name; /* arch name */
129 unsigned int len; /* arch string length */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
132 unsigned int skip; /* show_arch should skip this. */
133 }
134 arch_entry;
135
136 /* Used to turn off indicated flags. */
137 typedef struct
138 {
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142 }
143 noarch_entry;
144
145 static void update_code_flag (int, int);
146 static void set_code_flag (int);
147 static void set_16bit_gcc_code_flag (int);
148 static void set_intel_syntax (int);
149 static void set_intel_mnemonic (int);
150 static void set_allow_index_reg (int);
151 static void set_check (int);
152 static void set_cpu_arch (int);
153 #ifdef TE_PE
154 static void pe_directive_secrel (int);
155 #endif
156 static void signed_cons (int);
157 static char *output_invalid (int c);
158 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
162 static int i386_att_operand (char *);
163 static int i386_intel_operand (char *, int);
164 static int i386_intel_simplify (expressionS *);
165 static int i386_intel_parse_name (const char *, expressionS *);
166 static const reg_entry *parse_register (char *, char **);
167 static char *parse_insn (char *, char *);
168 static char *parse_operands (char *, const char *);
169 static void swap_operands (void);
170 static void swap_2_operands (int, int);
171 static void optimize_imm (void);
172 static void optimize_disp (void);
173 static const insn_template *match_template (char);
174 static int check_string (void);
175 static int process_suffix (void);
176 static int check_byte_reg (void);
177 static int check_long_reg (void);
178 static int check_qword_reg (void);
179 static int check_word_reg (void);
180 static int finalize_imm (void);
181 static int process_operands (void);
182 static const seg_entry *build_modrm_byte (void);
183 static void output_insn (void);
184 static void output_imm (fragS *, offsetT);
185 static void output_disp (fragS *, offsetT);
186 #ifndef I386COFF
187 static void s_bss (int);
188 #endif
189 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190 static void handle_large_common (int small ATTRIBUTE_UNUSED);
191 #endif
192
193 static const char *default_arch = DEFAULT_ARCH;
194
195 /* This struct describes rounding control and SAE in the instruction. */
196 struct RC_Operation
197 {
198 enum rc_type
199 {
200 rne = 0,
201 rd,
202 ru,
203 rz,
204 saeonly
205 } type;
206 int operand;
207 };
208
209 static struct RC_Operation rc_op;
210
211 /* The struct describes masking, applied to OPERAND in the instruction.
212 MASK is a pointer to the corresponding mask register. ZEROING tells
213 whether merging or zeroing mask is used. */
214 struct Mask_Operation
215 {
216 const reg_entry *mask;
217 unsigned int zeroing;
218 /* The operand where this operation is associated. */
219 int operand;
220 };
221
222 static struct Mask_Operation mask_op;
223
224 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
225 broadcast factor. */
226 struct Broadcast_Operation
227 {
228 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
229 int type;
230
231 /* Index of broadcasted operand. */
232 int operand;
233 };
234
235 static struct Broadcast_Operation broadcast_op;
236
237 /* VEX prefix. */
238 typedef struct
239 {
240 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
241 unsigned char bytes[4];
242 unsigned int length;
243 /* Destination or source register specifier. */
244 const reg_entry *register_specifier;
245 } vex_prefix;
246
247 /* 'md_assemble ()' gathers together information and puts it into a
248 i386_insn. */
249
250 union i386_op
251 {
252 expressionS *disps;
253 expressionS *imms;
254 const reg_entry *regs;
255 };
256
257 enum i386_error
258 {
259 operand_size_mismatch,
260 operand_type_mismatch,
261 register_type_mismatch,
262 number_of_operands_mismatch,
263 invalid_instruction_suffix,
264 bad_imm4,
265 unsupported_with_intel_mnemonic,
266 unsupported_syntax,
267 unsupported,
268 invalid_vsib_address,
269 invalid_vector_register_set,
270 unsupported_vector_index_register,
271 unsupported_broadcast,
272 broadcast_needed,
273 unsupported_masking,
274 mask_not_on_destination,
275 no_default_mask,
276 unsupported_rc_sae,
277 rc_sae_operand_not_last_imm,
278 invalid_register_operand,
279 };
280
281 struct _i386_insn
282 {
283 /* TM holds the template for the insn were currently assembling. */
284 insn_template tm;
285
286 /* SUFFIX holds the instruction size suffix for byte, word, dword
287 or qword, if given. */
288 char suffix;
289
290 /* OPERANDS gives the number of given operands. */
291 unsigned int operands;
292
293 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
294 of given register, displacement, memory operands and immediate
295 operands. */
296 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
297
298 /* TYPES [i] is the type (see above #defines) which tells us how to
299 use OP[i] for the corresponding operand. */
300 i386_operand_type types[MAX_OPERANDS];
301
302 /* Displacement expression, immediate expression, or register for each
303 operand. */
304 union i386_op op[MAX_OPERANDS];
305
306 /* Flags for operands. */
307 unsigned int flags[MAX_OPERANDS];
308 #define Operand_PCrel 1
309
310 /* Relocation type for operand */
311 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
312
313 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
314 the base index byte below. */
315 const reg_entry *base_reg;
316 const reg_entry *index_reg;
317 unsigned int log2_scale_factor;
318
319 /* SEG gives the seg_entries of this insn. They are zero unless
320 explicit segment overrides are given. */
321 const seg_entry *seg[2];
322
323 /* Copied first memory operand string, for re-checking. */
324 char *memop1_string;
325
326 /* PREFIX holds all the given prefix opcodes (usually null).
327 PREFIXES is the number of prefix opcodes. */
328 unsigned int prefixes;
329 unsigned char prefix[MAX_PREFIXES];
330
331 /* RM and SIB are the modrm byte and the sib byte where the
332 addressing modes of this insn are encoded. */
333 modrm_byte rm;
334 rex_byte rex;
335 rex_byte vrex;
336 sib_byte sib;
337 vex_prefix vex;
338
339 /* Masking attributes. */
340 struct Mask_Operation *mask;
341
342 /* Rounding control and SAE attributes. */
343 struct RC_Operation *rounding;
344
345 /* Broadcasting attributes. */
346 struct Broadcast_Operation *broadcast;
347
348 /* Compressed disp8*N attribute. */
349 unsigned int memshift;
350
351 /* Prefer load or store in encoding. */
352 enum
353 {
354 dir_encoding_default = 0,
355 dir_encoding_load,
356 dir_encoding_store
357 } dir_encoding;
358
359 /* Prefer 8bit or 32bit displacement in encoding. */
360 enum
361 {
362 disp_encoding_default = 0,
363 disp_encoding_8bit,
364 disp_encoding_32bit
365 } disp_encoding;
366
367 /* Prefer the REX byte in encoding. */
368 bfd_boolean rex_encoding;
369
370 /* Disable instruction size optimization. */
371 bfd_boolean no_optimize;
372
373 /* How to encode vector instructions. */
374 enum
375 {
376 vex_encoding_default = 0,
377 vex_encoding_vex2,
378 vex_encoding_vex3,
379 vex_encoding_evex
380 } vec_encoding;
381
382 /* REP prefix. */
383 const char *rep_prefix;
384
385 /* HLE prefix. */
386 const char *hle_prefix;
387
388 /* Have BND prefix. */
389 const char *bnd_prefix;
390
391 /* Have NOTRACK prefix. */
392 const char *notrack_prefix;
393
394 /* Error message. */
395 enum i386_error error;
396 };
397
398 typedef struct _i386_insn i386_insn;
399
400 /* Link RC type with corresponding string, that'll be looked for in
401 asm. */
402 struct RC_name
403 {
404 enum rc_type type;
405 const char *name;
406 unsigned int len;
407 };
408
409 static const struct RC_name RC_NamesTable[] =
410 {
411 { rne, STRING_COMMA_LEN ("rn-sae") },
412 { rd, STRING_COMMA_LEN ("rd-sae") },
413 { ru, STRING_COMMA_LEN ("ru-sae") },
414 { rz, STRING_COMMA_LEN ("rz-sae") },
415 { saeonly, STRING_COMMA_LEN ("sae") },
416 };
417
418 /* List of chars besides those in app.c:symbol_chars that can start an
419 operand. Used to prevent the scrubber eating vital white-space. */
420 const char extra_symbol_chars[] = "*%-([{}"
421 #ifdef LEX_AT
422 "@"
423 #endif
424 #ifdef LEX_QM
425 "?"
426 #endif
427 ;
428
429 #if (defined (TE_I386AIX) \
430 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
431 && !defined (TE_GNU) \
432 && !defined (TE_LINUX) \
433 && !defined (TE_NACL) \
434 && !defined (TE_FreeBSD) \
435 && !defined (TE_DragonFly) \
436 && !defined (TE_NetBSD)))
437 /* This array holds the chars that always start a comment. If the
438 pre-processor is disabled, these aren't very useful. The option
439 --divide will remove '/' from this list. */
440 const char *i386_comment_chars = "#/";
441 #define SVR4_COMMENT_CHARS 1
442 #define PREFIX_SEPARATOR '\\'
443
444 #else
445 const char *i386_comment_chars = "#";
446 #define PREFIX_SEPARATOR '/'
447 #endif
448
449 /* This array holds the chars that only start a comment at the beginning of
450 a line. If the line seems to have the form '# 123 filename'
451 .line and .file directives will appear in the pre-processed output.
452 Note that input_file.c hand checks for '#' at the beginning of the
453 first line of the input file. This is because the compiler outputs
454 #NO_APP at the beginning of its output.
455 Also note that comments started like this one will always work if
456 '/' isn't otherwise defined. */
457 const char line_comment_chars[] = "#/";
458
459 const char line_separator_chars[] = ";";
460
461 /* Chars that can be used to separate mant from exp in floating point
462 nums. */
463 const char EXP_CHARS[] = "eE";
464
465 /* Chars that mean this number is a floating point constant
466 As in 0f12.456
467 or 0d1.2345e12. */
468 const char FLT_CHARS[] = "fFdDxX";
469
470 /* Tables for lexical analysis. */
471 static char mnemonic_chars[256];
472 static char register_chars[256];
473 static char operand_chars[256];
474 static char identifier_chars[256];
475 static char digit_chars[256];
476
477 /* Lexical macros. */
478 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
479 #define is_operand_char(x) (operand_chars[(unsigned char) x])
480 #define is_register_char(x) (register_chars[(unsigned char) x])
481 #define is_space_char(x) ((x) == ' ')
482 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
483 #define is_digit_char(x) (digit_chars[(unsigned char) x])
484
485 /* All non-digit non-letter characters that may occur in an operand. */
486 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
487
488 /* md_assemble() always leaves the strings it's passed unaltered. To
489 effect this we maintain a stack of saved characters that we've smashed
490 with '\0's (indicating end of strings for various sub-fields of the
491 assembler instruction). */
492 static char save_stack[32];
493 static char *save_stack_p;
494 #define END_STRING_AND_SAVE(s) \
495 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
496 #define RESTORE_END_STRING(s) \
497 do { *(s) = *--save_stack_p; } while (0)
498
499 /* The instruction we're assembling. */
500 static i386_insn i;
501
502 /* Possible templates for current insn. */
503 static const templates *current_templates;
504
505 /* Per instruction expressionS buffers: max displacements & immediates. */
506 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
507 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
508
509 /* Current operand we are working on. */
510 static int this_operand = -1;
511
512 /* We support four different modes. FLAG_CODE variable is used to distinguish
513 these. */
514
515 enum flag_code {
516 CODE_32BIT,
517 CODE_16BIT,
518 CODE_64BIT };
519
520 static enum flag_code flag_code;
521 static unsigned int object_64bit;
522 static unsigned int disallow_64bit_reloc;
523 static int use_rela_relocations = 0;
524
525 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
526 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
527 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
528
529 /* The ELF ABI to use. */
530 enum x86_elf_abi
531 {
532 I386_ABI,
533 X86_64_ABI,
534 X86_64_X32_ABI
535 };
536
537 static enum x86_elf_abi x86_elf_abi = I386_ABI;
538 #endif
539
540 #if defined (TE_PE) || defined (TE_PEP)
541 /* Use big object file format. */
542 static int use_big_obj = 0;
543 #endif
544
545 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
546 /* 1 if generating code for a shared library. */
547 static int shared = 0;
548 #endif
549
550 /* 1 for intel syntax,
551 0 if att syntax. */
552 static int intel_syntax = 0;
553
554 /* 1 for Intel64 ISA,
555 0 if AMD64 ISA. */
556 static int intel64;
557
558 /* 1 for intel mnemonic,
559 0 if att mnemonic. */
560 static int intel_mnemonic = !SYSV386_COMPAT;
561
562 /* 1 if pseudo registers are permitted. */
563 static int allow_pseudo_reg = 0;
564
565 /* 1 if register prefix % not required. */
566 static int allow_naked_reg = 0;
567
568 /* 1 if the assembler should add BND prefix for all control-transferring
569 instructions supporting it, even if this prefix wasn't specified
570 explicitly. */
571 static int add_bnd_prefix = 0;
572
573 /* 1 if pseudo index register, eiz/riz, is allowed . */
574 static int allow_index_reg = 0;
575
576 /* 1 if the assembler should ignore LOCK prefix, even if it was
577 specified explicitly. */
578 static int omit_lock_prefix = 0;
579
580 /* 1 if the assembler should encode lfence, mfence, and sfence as
581 "lock addl $0, (%{re}sp)". */
582 static int avoid_fence = 0;
583
584 /* 1 if the assembler should generate relax relocations. */
585
586 static int generate_relax_relocations
587 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
588
589 static enum check_kind
590 {
591 check_none = 0,
592 check_warning,
593 check_error
594 }
595 sse_check, operand_check = check_warning;
596
597 /* Optimization:
598 1. Clear the REX_W bit with register operand if possible.
599 2. Above plus use 128bit vector instruction to clear the full vector
600 register.
601 */
602 static int optimize = 0;
603
604 /* Optimization:
605 1. Clear the REX_W bit with register operand if possible.
606 2. Above plus use 128bit vector instruction to clear the full vector
607 register.
608 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
609 "testb $imm7,%r8".
610 */
611 static int optimize_for_space = 0;
612
613 /* Register prefix used for error message. */
614 static const char *register_prefix = "%";
615
616 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
617 leave, push, and pop instructions so that gcc has the same stack
618 frame as in 32 bit mode. */
619 static char stackop_size = '\0';
620
621 /* Non-zero to optimize code alignment. */
622 int optimize_align_code = 1;
623
624 /* Non-zero to quieten some warnings. */
625 static int quiet_warnings = 0;
626
627 /* CPU name. */
628 static const char *cpu_arch_name = NULL;
629 static char *cpu_sub_arch_name = NULL;
630
631 /* CPU feature flags. */
632 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
633
634 /* If we have selected a cpu we are generating instructions for. */
635 static int cpu_arch_tune_set = 0;
636
637 /* Cpu we are generating instructions for. */
638 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
639
640 /* CPU feature flags of cpu we are generating instructions for. */
641 static i386_cpu_flags cpu_arch_tune_flags;
642
643 /* CPU instruction set architecture used. */
644 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
645
646 /* CPU feature flags of instruction set architecture used. */
647 i386_cpu_flags cpu_arch_isa_flags;
648
649 /* If set, conditional jumps are not automatically promoted to handle
650 larger than a byte offset. */
651 static unsigned int no_cond_jump_promotion = 0;
652
653 /* Encode SSE instructions with VEX prefix. */
654 static unsigned int sse2avx;
655
656 /* Encode scalar AVX instructions with specific vector length. */
657 static enum
658 {
659 vex128 = 0,
660 vex256
661 } avxscalar;
662
663 /* Encode scalar EVEX LIG instructions with specific vector length. */
664 static enum
665 {
666 evexl128 = 0,
667 evexl256,
668 evexl512
669 } evexlig;
670
671 /* Encode EVEX WIG instructions with specific evex.w. */
672 static enum
673 {
674 evexw0 = 0,
675 evexw1
676 } evexwig;
677
678 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
679 static enum rc_type evexrcig = rne;
680
681 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
682 static symbolS *GOT_symbol;
683
684 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
685 unsigned int x86_dwarf2_return_column;
686
687 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
688 int x86_cie_data_alignment;
689
690 /* Interface to relax_segment.
691 There are 3 major relax states for 386 jump insns because the
692 different types of jumps add different sizes to frags when we're
693 figuring out what sort of jump to choose to reach a given label. */
694
695 /* Types. */
696 #define UNCOND_JUMP 0
697 #define COND_JUMP 1
698 #define COND_JUMP86 2
699
700 /* Sizes. */
701 #define CODE16 1
702 #define SMALL 0
703 #define SMALL16 (SMALL | CODE16)
704 #define BIG 2
705 #define BIG16 (BIG | CODE16)
706
707 #ifndef INLINE
708 #ifdef __GNUC__
709 #define INLINE __inline__
710 #else
711 #define INLINE
712 #endif
713 #endif
714
715 #define ENCODE_RELAX_STATE(type, size) \
716 ((relax_substateT) (((type) << 2) | (size)))
717 #define TYPE_FROM_RELAX_STATE(s) \
718 ((s) >> 2)
719 #define DISP_SIZE_FROM_RELAX_STATE(s) \
720 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
721
722 /* This table is used by relax_frag to promote short jumps to long
723 ones where necessary. SMALL (short) jumps may be promoted to BIG
724 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
725 don't allow a short jump in a 32 bit code segment to be promoted to
726 a 16 bit offset jump because it's slower (requires data size
727 prefix), and doesn't work, unless the destination is in the bottom
728 64k of the code segment (The top 16 bits of eip are zeroed). */
729
730 const relax_typeS md_relax_table[] =
731 {
732 /* The fields are:
733 1) most positive reach of this state,
734 2) most negative reach of this state,
735 3) how many bytes this mode will have in the variable part of the frag
736 4) which index into the table to try if we can't fit into this one. */
737
738 /* UNCOND_JUMP states. */
739 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
740 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
741 /* dword jmp adds 4 bytes to frag:
742 0 extra opcode bytes, 4 displacement bytes. */
743 {0, 0, 4, 0},
744 /* word jmp adds 2 byte2 to frag:
745 0 extra opcode bytes, 2 displacement bytes. */
746 {0, 0, 2, 0},
747
748 /* COND_JUMP states. */
749 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
750 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
751 /* dword conditionals adds 5 bytes to frag:
752 1 extra opcode byte, 4 displacement bytes. */
753 {0, 0, 5, 0},
754 /* word conditionals add 3 bytes to frag:
755 1 extra opcode byte, 2 displacement bytes. */
756 {0, 0, 3, 0},
757
758 /* COND_JUMP86 states. */
759 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
760 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
761 /* dword conditionals adds 5 bytes to frag:
762 1 extra opcode byte, 4 displacement bytes. */
763 {0, 0, 5, 0},
764 /* word conditionals add 4 bytes to frag:
765 1 displacement byte and a 3 byte long branch insn. */
766 {0, 0, 4, 0}
767 };
768
769 static const arch_entry cpu_arch[] =
770 {
771 /* Do not replace the first two entries - i386_target_format()
772 relies on them being there in this order. */
773 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
774 CPU_GENERIC32_FLAGS, 0 },
775 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
776 CPU_GENERIC64_FLAGS, 0 },
777 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
778 CPU_NONE_FLAGS, 0 },
779 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
780 CPU_I186_FLAGS, 0 },
781 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
782 CPU_I286_FLAGS, 0 },
783 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
784 CPU_I386_FLAGS, 0 },
785 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
786 CPU_I486_FLAGS, 0 },
787 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
788 CPU_I586_FLAGS, 0 },
789 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
790 CPU_I686_FLAGS, 0 },
791 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
792 CPU_I586_FLAGS, 0 },
793 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
794 CPU_PENTIUMPRO_FLAGS, 0 },
795 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
796 CPU_P2_FLAGS, 0 },
797 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
798 CPU_P3_FLAGS, 0 },
799 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
800 CPU_P4_FLAGS, 0 },
801 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
802 CPU_CORE_FLAGS, 0 },
803 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
804 CPU_NOCONA_FLAGS, 0 },
805 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
806 CPU_CORE_FLAGS, 1 },
807 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
808 CPU_CORE_FLAGS, 0 },
809 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
810 CPU_CORE2_FLAGS, 1 },
811 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
812 CPU_CORE2_FLAGS, 0 },
813 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
814 CPU_COREI7_FLAGS, 0 },
815 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
816 CPU_L1OM_FLAGS, 0 },
817 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
818 CPU_K1OM_FLAGS, 0 },
819 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
820 CPU_IAMCU_FLAGS, 0 },
821 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
822 CPU_K6_FLAGS, 0 },
823 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
824 CPU_K6_2_FLAGS, 0 },
825 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
826 CPU_ATHLON_FLAGS, 0 },
827 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
828 CPU_K8_FLAGS, 1 },
829 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
830 CPU_K8_FLAGS, 0 },
831 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
832 CPU_K8_FLAGS, 0 },
833 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
834 CPU_AMDFAM10_FLAGS, 0 },
835 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
836 CPU_BDVER1_FLAGS, 0 },
837 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
838 CPU_BDVER2_FLAGS, 0 },
839 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
840 CPU_BDVER3_FLAGS, 0 },
841 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
842 CPU_BDVER4_FLAGS, 0 },
843 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
844 CPU_ZNVER1_FLAGS, 0 },
845 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
846 CPU_ZNVER2_FLAGS, 0 },
847 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
848 CPU_BTVER1_FLAGS, 0 },
849 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
850 CPU_BTVER2_FLAGS, 0 },
851 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
852 CPU_8087_FLAGS, 0 },
853 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
854 CPU_287_FLAGS, 0 },
855 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
856 CPU_387_FLAGS, 0 },
857 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
858 CPU_687_FLAGS, 0 },
859 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
860 CPU_MMX_FLAGS, 0 },
861 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
862 CPU_SSE_FLAGS, 0 },
863 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
864 CPU_SSE2_FLAGS, 0 },
865 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
866 CPU_SSE3_FLAGS, 0 },
867 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
868 CPU_SSSE3_FLAGS, 0 },
869 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
870 CPU_SSE4_1_FLAGS, 0 },
871 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
872 CPU_SSE4_2_FLAGS, 0 },
873 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
874 CPU_SSE4_2_FLAGS, 0 },
875 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
876 CPU_AVX_FLAGS, 0 },
877 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
878 CPU_AVX2_FLAGS, 0 },
879 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
880 CPU_AVX512F_FLAGS, 0 },
881 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
882 CPU_AVX512CD_FLAGS, 0 },
883 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
884 CPU_AVX512ER_FLAGS, 0 },
885 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
886 CPU_AVX512PF_FLAGS, 0 },
887 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
888 CPU_AVX512DQ_FLAGS, 0 },
889 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
890 CPU_AVX512BW_FLAGS, 0 },
891 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
892 CPU_AVX512VL_FLAGS, 0 },
893 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
894 CPU_VMX_FLAGS, 0 },
895 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
896 CPU_VMFUNC_FLAGS, 0 },
897 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
898 CPU_SMX_FLAGS, 0 },
899 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
900 CPU_XSAVE_FLAGS, 0 },
901 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
902 CPU_XSAVEOPT_FLAGS, 0 },
903 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
904 CPU_XSAVEC_FLAGS, 0 },
905 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
906 CPU_XSAVES_FLAGS, 0 },
907 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
908 CPU_AES_FLAGS, 0 },
909 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
910 CPU_PCLMUL_FLAGS, 0 },
911 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
912 CPU_PCLMUL_FLAGS, 1 },
913 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
914 CPU_FSGSBASE_FLAGS, 0 },
915 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
916 CPU_RDRND_FLAGS, 0 },
917 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
918 CPU_F16C_FLAGS, 0 },
919 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
920 CPU_BMI2_FLAGS, 0 },
921 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
922 CPU_FMA_FLAGS, 0 },
923 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
924 CPU_FMA4_FLAGS, 0 },
925 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
926 CPU_XOP_FLAGS, 0 },
927 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
928 CPU_LWP_FLAGS, 0 },
929 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
930 CPU_MOVBE_FLAGS, 0 },
931 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
932 CPU_CX16_FLAGS, 0 },
933 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
934 CPU_EPT_FLAGS, 0 },
935 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
936 CPU_LZCNT_FLAGS, 0 },
937 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
938 CPU_HLE_FLAGS, 0 },
939 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
940 CPU_RTM_FLAGS, 0 },
941 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
942 CPU_INVPCID_FLAGS, 0 },
943 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
944 CPU_CLFLUSH_FLAGS, 0 },
945 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
946 CPU_NOP_FLAGS, 0 },
947 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
948 CPU_SYSCALL_FLAGS, 0 },
949 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
950 CPU_RDTSCP_FLAGS, 0 },
951 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
952 CPU_3DNOW_FLAGS, 0 },
953 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
954 CPU_3DNOWA_FLAGS, 0 },
955 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
956 CPU_PADLOCK_FLAGS, 0 },
957 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
958 CPU_SVME_FLAGS, 1 },
959 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
960 CPU_SVME_FLAGS, 0 },
961 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
962 CPU_SSE4A_FLAGS, 0 },
963 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
964 CPU_ABM_FLAGS, 0 },
965 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
966 CPU_BMI_FLAGS, 0 },
967 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
968 CPU_TBM_FLAGS, 0 },
969 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
970 CPU_ADX_FLAGS, 0 },
971 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
972 CPU_RDSEED_FLAGS, 0 },
973 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
974 CPU_PRFCHW_FLAGS, 0 },
975 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
976 CPU_SMAP_FLAGS, 0 },
977 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
978 CPU_MPX_FLAGS, 0 },
979 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
980 CPU_SHA_FLAGS, 0 },
981 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
982 CPU_CLFLUSHOPT_FLAGS, 0 },
983 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
984 CPU_PREFETCHWT1_FLAGS, 0 },
985 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
986 CPU_SE1_FLAGS, 0 },
987 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
988 CPU_CLWB_FLAGS, 0 },
989 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
990 CPU_AVX512IFMA_FLAGS, 0 },
991 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
992 CPU_AVX512VBMI_FLAGS, 0 },
993 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
994 CPU_AVX512_4FMAPS_FLAGS, 0 },
995 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
996 CPU_AVX512_4VNNIW_FLAGS, 0 },
997 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
998 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
999 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1000 CPU_AVX512_VBMI2_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1002 CPU_AVX512_VNNI_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1004 CPU_AVX512_BITALG_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1006 CPU_CLZERO_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1008 CPU_MWAITX_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1010 CPU_OSPKE_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1012 CPU_RDPID_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1014 CPU_PTWRITE_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1016 CPU_IBT_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1018 CPU_SHSTK_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1020 CPU_GFNI_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1022 CPU_VAES_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1024 CPU_VPCLMULQDQ_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1026 CPU_WBNOINVD_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1028 CPU_PCONFIG_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1030 CPU_WAITPKG_FLAGS, 0 },
1031 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1032 CPU_CLDEMOTE_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1034 CPU_MOVDIRI_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1036 CPU_MOVDIR64B_FLAGS, 0 },
1037 };
1038
1039 static const noarch_entry cpu_noarch[] =
1040 {
1041 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1042 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1043 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1044 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1045 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1046 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1047 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1048 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1049 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1050 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1051 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1052 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1053 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1054 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1055 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1056 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1057 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1058 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1059 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1060 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1061 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1062 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1063 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1064 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1065 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1066 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1067 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1068 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1069 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1070 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1071 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1072 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1073 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1074 };
1075
1076 #ifdef I386COFF
1077 /* Like s_lcomm_internal in gas/read.c but the alignment string
1078 is allowed to be optional. */
1079
1080 static symbolS *
1081 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1082 {
1083 addressT align = 0;
1084
1085 SKIP_WHITESPACE ();
1086
1087 if (needs_align
1088 && *input_line_pointer == ',')
1089 {
1090 align = parse_align (needs_align - 1);
1091
1092 if (align == (addressT) -1)
1093 return NULL;
1094 }
1095 else
1096 {
1097 if (size >= 8)
1098 align = 3;
1099 else if (size >= 4)
1100 align = 2;
1101 else if (size >= 2)
1102 align = 1;
1103 else
1104 align = 0;
1105 }
1106
1107 bss_alloc (symbolP, size, align);
1108 return symbolP;
1109 }
1110
1111 static void
1112 pe_lcomm (int needs_align)
1113 {
1114 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1115 }
1116 #endif
1117
1118 const pseudo_typeS md_pseudo_table[] =
1119 {
1120 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1121 {"align", s_align_bytes, 0},
1122 #else
1123 {"align", s_align_ptwo, 0},
1124 #endif
1125 {"arch", set_cpu_arch, 0},
1126 #ifndef I386COFF
1127 {"bss", s_bss, 0},
1128 #else
1129 {"lcomm", pe_lcomm, 1},
1130 #endif
1131 {"ffloat", float_cons, 'f'},
1132 {"dfloat", float_cons, 'd'},
1133 {"tfloat", float_cons, 'x'},
1134 {"value", cons, 2},
1135 {"slong", signed_cons, 4},
1136 {"noopt", s_ignore, 0},
1137 {"optim", s_ignore, 0},
1138 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1139 {"code16", set_code_flag, CODE_16BIT},
1140 {"code32", set_code_flag, CODE_32BIT},
1141 #ifdef BFD64
1142 {"code64", set_code_flag, CODE_64BIT},
1143 #endif
1144 {"intel_syntax", set_intel_syntax, 1},
1145 {"att_syntax", set_intel_syntax, 0},
1146 {"intel_mnemonic", set_intel_mnemonic, 1},
1147 {"att_mnemonic", set_intel_mnemonic, 0},
1148 {"allow_index_reg", set_allow_index_reg, 1},
1149 {"disallow_index_reg", set_allow_index_reg, 0},
1150 {"sse_check", set_check, 0},
1151 {"operand_check", set_check, 1},
1152 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1153 {"largecomm", handle_large_common, 0},
1154 #else
1155 {"file", dwarf2_directive_file, 0},
1156 {"loc", dwarf2_directive_loc, 0},
1157 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1158 #endif
1159 #ifdef TE_PE
1160 {"secrel32", pe_directive_secrel, 0},
1161 #endif
1162 {0, 0, 0}
1163 };
1164
1165 /* For interface with expression (). */
1166 extern char *input_line_pointer;
1167
1168 /* Hash table for instruction mnemonic lookup. */
1169 static struct hash_control *op_hash;
1170
1171 /* Hash table for register lookup. */
1172 static struct hash_control *reg_hash;
1173 \f
1174 /* Various efficient no-op patterns for aligning code labels.
1175 Note: Don't try to assemble the instructions in the comments.
1176 0L and 0w are not legal. */
1177 static const unsigned char f32_1[] =
1178 {0x90}; /* nop */
1179 static const unsigned char f32_2[] =
1180 {0x66,0x90}; /* xchg %ax,%ax */
1181 static const unsigned char f32_3[] =
1182 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1183 static const unsigned char f32_4[] =
1184 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1185 static const unsigned char f32_6[] =
1186 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1187 static const unsigned char f32_7[] =
1188 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1189 static const unsigned char f16_3[] =
1190 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1191 static const unsigned char f16_4[] =
1192 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1193 static const unsigned char jump_disp8[] =
1194 {0xeb}; /* jmp disp8 */
1195 static const unsigned char jump32_disp32[] =
1196 {0xe9}; /* jmp disp32 */
1197 static const unsigned char jump16_disp32[] =
1198 {0x66,0xe9}; /* jmp disp32 */
1199 /* 32-bit NOPs patterns. */
1200 static const unsigned char *const f32_patt[] = {
1201 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1202 };
1203 /* 16-bit NOPs patterns. */
1204 static const unsigned char *const f16_patt[] = {
1205 f32_1, f32_2, f16_3, f16_4
1206 };
1207 /* nopl (%[re]ax) */
1208 static const unsigned char alt_3[] =
1209 {0x0f,0x1f,0x00};
1210 /* nopl 0(%[re]ax) */
1211 static const unsigned char alt_4[] =
1212 {0x0f,0x1f,0x40,0x00};
1213 /* nopl 0(%[re]ax,%[re]ax,1) */
1214 static const unsigned char alt_5[] =
1215 {0x0f,0x1f,0x44,0x00,0x00};
1216 /* nopw 0(%[re]ax,%[re]ax,1) */
1217 static const unsigned char alt_6[] =
1218 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1219 /* nopl 0L(%[re]ax) */
1220 static const unsigned char alt_7[] =
1221 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1222 /* nopl 0L(%[re]ax,%[re]ax,1) */
1223 static const unsigned char alt_8[] =
1224 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1225 /* nopw 0L(%[re]ax,%[re]ax,1) */
1226 static const unsigned char alt_9[] =
1227 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1228 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1229 static const unsigned char alt_10[] =
1230 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1231 /* data16 nopw %cs:0L(%eax,%eax,1) */
1232 static const unsigned char alt_11[] =
1233 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1234 /* 32-bit and 64-bit NOPs patterns. */
1235 static const unsigned char *const alt_patt[] = {
1236 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1237 alt_9, alt_10, alt_11
1238 };
1239
1240 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1241 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1242
1243 static void
1244 i386_output_nops (char *where, const unsigned char *const *patt,
1245 int count, int max_single_nop_size)
1246
1247 {
1248 /* Place the longer NOP first. */
1249 int last;
1250 int offset;
1251 const unsigned char *nops = patt[max_single_nop_size - 1];
1252
1253 /* Use the smaller one if the requsted one isn't available. */
1254 if (nops == NULL)
1255 {
1256 max_single_nop_size--;
1257 nops = patt[max_single_nop_size - 1];
1258 }
1259
1260 last = count % max_single_nop_size;
1261
1262 count -= last;
1263 for (offset = 0; offset < count; offset += max_single_nop_size)
1264 memcpy (where + offset, nops, max_single_nop_size);
1265
1266 if (last)
1267 {
1268 nops = patt[last - 1];
1269 if (nops == NULL)
1270 {
1271 /* Use the smaller one plus one-byte NOP if the needed one
1272 isn't available. */
1273 last--;
1274 nops = patt[last - 1];
1275 memcpy (where + offset, nops, last);
1276 where[offset + last] = *patt[0];
1277 }
1278 else
1279 memcpy (where + offset, nops, last);
1280 }
1281 }
1282
1283 static INLINE int
1284 fits_in_imm7 (offsetT num)
1285 {
1286 return (num & 0x7f) == num;
1287 }
1288
1289 static INLINE int
1290 fits_in_imm31 (offsetT num)
1291 {
1292 return (num & 0x7fffffff) == num;
1293 }
1294
1295 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1296 single NOP instruction LIMIT. */
1297
1298 void
1299 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1300 {
1301 const unsigned char *const *patt = NULL;
1302 int max_single_nop_size;
1303 /* Maximum number of NOPs before switching to jump over NOPs. */
1304 int max_number_of_nops;
1305
1306 switch (fragP->fr_type)
1307 {
1308 case rs_fill_nop:
1309 case rs_align_code:
1310 break;
1311 default:
1312 return;
1313 }
1314
1315 /* We need to decide which NOP sequence to use for 32bit and
1316 64bit. When -mtune= is used:
1317
1318 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1319 PROCESSOR_GENERIC32, f32_patt will be used.
1320 2. For the rest, alt_patt will be used.
1321
1322 When -mtune= isn't used, alt_patt will be used if
1323 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1324 be used.
1325
1326 When -march= or .arch is used, we can't use anything beyond
1327 cpu_arch_isa_flags. */
1328
1329 if (flag_code == CODE_16BIT)
1330 {
1331 patt = f16_patt;
1332 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1333 /* Limit number of NOPs to 2 in 16-bit mode. */
1334 max_number_of_nops = 2;
1335 }
1336 else
1337 {
1338 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1339 {
1340 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1341 switch (cpu_arch_tune)
1342 {
1343 case PROCESSOR_UNKNOWN:
1344 /* We use cpu_arch_isa_flags to check if we SHOULD
1345 optimize with nops. */
1346 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1347 patt = alt_patt;
1348 else
1349 patt = f32_patt;
1350 break;
1351 case PROCESSOR_PENTIUM4:
1352 case PROCESSOR_NOCONA:
1353 case PROCESSOR_CORE:
1354 case PROCESSOR_CORE2:
1355 case PROCESSOR_COREI7:
1356 case PROCESSOR_L1OM:
1357 case PROCESSOR_K1OM:
1358 case PROCESSOR_GENERIC64:
1359 case PROCESSOR_K6:
1360 case PROCESSOR_ATHLON:
1361 case PROCESSOR_K8:
1362 case PROCESSOR_AMDFAM10:
1363 case PROCESSOR_BD:
1364 case PROCESSOR_ZNVER:
1365 case PROCESSOR_BT:
1366 patt = alt_patt;
1367 break;
1368 case PROCESSOR_I386:
1369 case PROCESSOR_I486:
1370 case PROCESSOR_PENTIUM:
1371 case PROCESSOR_PENTIUMPRO:
1372 case PROCESSOR_IAMCU:
1373 case PROCESSOR_GENERIC32:
1374 patt = f32_patt;
1375 break;
1376 }
1377 }
1378 else
1379 {
1380 switch (fragP->tc_frag_data.tune)
1381 {
1382 case PROCESSOR_UNKNOWN:
1383 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1384 PROCESSOR_UNKNOWN. */
1385 abort ();
1386 break;
1387
1388 case PROCESSOR_I386:
1389 case PROCESSOR_I486:
1390 case PROCESSOR_PENTIUM:
1391 case PROCESSOR_IAMCU:
1392 case PROCESSOR_K6:
1393 case PROCESSOR_ATHLON:
1394 case PROCESSOR_K8:
1395 case PROCESSOR_AMDFAM10:
1396 case PROCESSOR_BD:
1397 case PROCESSOR_ZNVER:
1398 case PROCESSOR_BT:
1399 case PROCESSOR_GENERIC32:
1400 /* We use cpu_arch_isa_flags to check if we CAN optimize
1401 with nops. */
1402 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1403 patt = alt_patt;
1404 else
1405 patt = f32_patt;
1406 break;
1407 case PROCESSOR_PENTIUMPRO:
1408 case PROCESSOR_PENTIUM4:
1409 case PROCESSOR_NOCONA:
1410 case PROCESSOR_CORE:
1411 case PROCESSOR_CORE2:
1412 case PROCESSOR_COREI7:
1413 case PROCESSOR_L1OM:
1414 case PROCESSOR_K1OM:
1415 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1416 patt = alt_patt;
1417 else
1418 patt = f32_patt;
1419 break;
1420 case PROCESSOR_GENERIC64:
1421 patt = alt_patt;
1422 break;
1423 }
1424 }
1425
1426 if (patt == f32_patt)
1427 {
1428 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1429 /* Limit number of NOPs to 2 for older processors. */
1430 max_number_of_nops = 2;
1431 }
1432 else
1433 {
1434 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1435 /* Limit number of NOPs to 7 for newer processors. */
1436 max_number_of_nops = 7;
1437 }
1438 }
1439
1440 if (limit == 0)
1441 limit = max_single_nop_size;
1442
1443 if (fragP->fr_type == rs_fill_nop)
1444 {
1445 /* Output NOPs for .nop directive. */
1446 if (limit > max_single_nop_size)
1447 {
1448 as_bad_where (fragP->fr_file, fragP->fr_line,
1449 _("invalid single nop size: %d "
1450 "(expect within [0, %d])"),
1451 limit, max_single_nop_size);
1452 return;
1453 }
1454 }
1455 else
1456 fragP->fr_var = count;
1457
1458 if ((count / max_single_nop_size) > max_number_of_nops)
1459 {
1460 /* Generate jump over NOPs. */
1461 offsetT disp = count - 2;
1462 if (fits_in_imm7 (disp))
1463 {
1464 /* Use "jmp disp8" if possible. */
1465 count = disp;
1466 where[0] = jump_disp8[0];
1467 where[1] = count;
1468 where += 2;
1469 }
1470 else
1471 {
1472 unsigned int size_of_jump;
1473
1474 if (flag_code == CODE_16BIT)
1475 {
1476 where[0] = jump16_disp32[0];
1477 where[1] = jump16_disp32[1];
1478 size_of_jump = 2;
1479 }
1480 else
1481 {
1482 where[0] = jump32_disp32[0];
1483 size_of_jump = 1;
1484 }
1485
1486 count -= size_of_jump + 4;
1487 if (!fits_in_imm31 (count))
1488 {
1489 as_bad_where (fragP->fr_file, fragP->fr_line,
1490 _("jump over nop padding out of range"));
1491 return;
1492 }
1493
1494 md_number_to_chars (where + size_of_jump, count, 4);
1495 where += size_of_jump + 4;
1496 }
1497 }
1498
1499 /* Generate multiple NOPs. */
1500 i386_output_nops (where, patt, count, limit);
1501 }
1502
1503 static INLINE int
1504 operand_type_all_zero (const union i386_operand_type *x)
1505 {
1506 switch (ARRAY_SIZE(x->array))
1507 {
1508 case 3:
1509 if (x->array[2])
1510 return 0;
1511 /* Fall through. */
1512 case 2:
1513 if (x->array[1])
1514 return 0;
1515 /* Fall through. */
1516 case 1:
1517 return !x->array[0];
1518 default:
1519 abort ();
1520 }
1521 }
1522
1523 static INLINE void
1524 operand_type_set (union i386_operand_type *x, unsigned int v)
1525 {
1526 switch (ARRAY_SIZE(x->array))
1527 {
1528 case 3:
1529 x->array[2] = v;
1530 /* Fall through. */
1531 case 2:
1532 x->array[1] = v;
1533 /* Fall through. */
1534 case 1:
1535 x->array[0] = v;
1536 /* Fall through. */
1537 break;
1538 default:
1539 abort ();
1540 }
1541 }
1542
1543 static INLINE int
1544 operand_type_equal (const union i386_operand_type *x,
1545 const union i386_operand_type *y)
1546 {
1547 switch (ARRAY_SIZE(x->array))
1548 {
1549 case 3:
1550 if (x->array[2] != y->array[2])
1551 return 0;
1552 /* Fall through. */
1553 case 2:
1554 if (x->array[1] != y->array[1])
1555 return 0;
1556 /* Fall through. */
1557 case 1:
1558 return x->array[0] == y->array[0];
1559 break;
1560 default:
1561 abort ();
1562 }
1563 }
1564
1565 static INLINE int
1566 cpu_flags_all_zero (const union i386_cpu_flags *x)
1567 {
1568 switch (ARRAY_SIZE(x->array))
1569 {
1570 case 4:
1571 if (x->array[3])
1572 return 0;
1573 /* Fall through. */
1574 case 3:
1575 if (x->array[2])
1576 return 0;
1577 /* Fall through. */
1578 case 2:
1579 if (x->array[1])
1580 return 0;
1581 /* Fall through. */
1582 case 1:
1583 return !x->array[0];
1584 default:
1585 abort ();
1586 }
1587 }
1588
1589 static INLINE int
1590 cpu_flags_equal (const union i386_cpu_flags *x,
1591 const union i386_cpu_flags *y)
1592 {
1593 switch (ARRAY_SIZE(x->array))
1594 {
1595 case 4:
1596 if (x->array[3] != y->array[3])
1597 return 0;
1598 /* Fall through. */
1599 case 3:
1600 if (x->array[2] != y->array[2])
1601 return 0;
1602 /* Fall through. */
1603 case 2:
1604 if (x->array[1] != y->array[1])
1605 return 0;
1606 /* Fall through. */
1607 case 1:
1608 return x->array[0] == y->array[0];
1609 break;
1610 default:
1611 abort ();
1612 }
1613 }
1614
1615 static INLINE int
1616 cpu_flags_check_cpu64 (i386_cpu_flags f)
1617 {
1618 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1619 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1620 }
1621
1622 static INLINE i386_cpu_flags
1623 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1624 {
1625 switch (ARRAY_SIZE (x.array))
1626 {
1627 case 4:
1628 x.array [3] &= y.array [3];
1629 /* Fall through. */
1630 case 3:
1631 x.array [2] &= y.array [2];
1632 /* Fall through. */
1633 case 2:
1634 x.array [1] &= y.array [1];
1635 /* Fall through. */
1636 case 1:
1637 x.array [0] &= y.array [0];
1638 break;
1639 default:
1640 abort ();
1641 }
1642 return x;
1643 }
1644
1645 static INLINE i386_cpu_flags
1646 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1647 {
1648 switch (ARRAY_SIZE (x.array))
1649 {
1650 case 4:
1651 x.array [3] |= y.array [3];
1652 /* Fall through. */
1653 case 3:
1654 x.array [2] |= y.array [2];
1655 /* Fall through. */
1656 case 2:
1657 x.array [1] |= y.array [1];
1658 /* Fall through. */
1659 case 1:
1660 x.array [0] |= y.array [0];
1661 break;
1662 default:
1663 abort ();
1664 }
1665 return x;
1666 }
1667
1668 static INLINE i386_cpu_flags
1669 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1670 {
1671 switch (ARRAY_SIZE (x.array))
1672 {
1673 case 4:
1674 x.array [3] &= ~y.array [3];
1675 /* Fall through. */
1676 case 3:
1677 x.array [2] &= ~y.array [2];
1678 /* Fall through. */
1679 case 2:
1680 x.array [1] &= ~y.array [1];
1681 /* Fall through. */
1682 case 1:
1683 x.array [0] &= ~y.array [0];
1684 break;
1685 default:
1686 abort ();
1687 }
1688 return x;
1689 }
1690
1691 #define CPU_FLAGS_ARCH_MATCH 0x1
1692 #define CPU_FLAGS_64BIT_MATCH 0x2
1693
1694 #define CPU_FLAGS_PERFECT_MATCH \
1695 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1696
1697 /* Return CPU flags match bits. */
1698
1699 static int
1700 cpu_flags_match (const insn_template *t)
1701 {
1702 i386_cpu_flags x = t->cpu_flags;
1703 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1704
1705 x.bitfield.cpu64 = 0;
1706 x.bitfield.cpuno64 = 0;
1707
1708 if (cpu_flags_all_zero (&x))
1709 {
1710 /* This instruction is available on all archs. */
1711 match |= CPU_FLAGS_ARCH_MATCH;
1712 }
1713 else
1714 {
1715 /* This instruction is available only on some archs. */
1716 i386_cpu_flags cpu = cpu_arch_flags;
1717
1718 /* AVX512VL is no standalone feature - match it and then strip it. */
1719 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1720 return match;
1721 x.bitfield.cpuavx512vl = 0;
1722
1723 cpu = cpu_flags_and (x, cpu);
1724 if (!cpu_flags_all_zero (&cpu))
1725 {
1726 if (x.bitfield.cpuavx)
1727 {
1728 /* We need to check a few extra flags with AVX. */
1729 if (cpu.bitfield.cpuavx
1730 && (!t->opcode_modifier.sse2avx || sse2avx)
1731 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1732 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1733 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1734 match |= CPU_FLAGS_ARCH_MATCH;
1735 }
1736 else if (x.bitfield.cpuavx512f)
1737 {
1738 /* We need to check a few extra flags with AVX512F. */
1739 if (cpu.bitfield.cpuavx512f
1740 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1741 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1742 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1743 match |= CPU_FLAGS_ARCH_MATCH;
1744 }
1745 else
1746 match |= CPU_FLAGS_ARCH_MATCH;
1747 }
1748 }
1749 return match;
1750 }
1751
1752 static INLINE i386_operand_type
1753 operand_type_and (i386_operand_type x, i386_operand_type y)
1754 {
1755 switch (ARRAY_SIZE (x.array))
1756 {
1757 case 3:
1758 x.array [2] &= y.array [2];
1759 /* Fall through. */
1760 case 2:
1761 x.array [1] &= y.array [1];
1762 /* Fall through. */
1763 case 1:
1764 x.array [0] &= y.array [0];
1765 break;
1766 default:
1767 abort ();
1768 }
1769 return x;
1770 }
1771
1772 static INLINE i386_operand_type
1773 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1774 {
1775 switch (ARRAY_SIZE (x.array))
1776 {
1777 case 3:
1778 x.array [2] &= ~y.array [2];
1779 /* Fall through. */
1780 case 2:
1781 x.array [1] &= ~y.array [1];
1782 /* Fall through. */
1783 case 1:
1784 x.array [0] &= ~y.array [0];
1785 break;
1786 default:
1787 abort ();
1788 }
1789 return x;
1790 }
1791
1792 static INLINE i386_operand_type
1793 operand_type_or (i386_operand_type x, i386_operand_type y)
1794 {
1795 switch (ARRAY_SIZE (x.array))
1796 {
1797 case 3:
1798 x.array [2] |= y.array [2];
1799 /* Fall through. */
1800 case 2:
1801 x.array [1] |= y.array [1];
1802 /* Fall through. */
1803 case 1:
1804 x.array [0] |= y.array [0];
1805 break;
1806 default:
1807 abort ();
1808 }
1809 return x;
1810 }
1811
1812 static INLINE i386_operand_type
1813 operand_type_xor (i386_operand_type x, i386_operand_type y)
1814 {
1815 switch (ARRAY_SIZE (x.array))
1816 {
1817 case 3:
1818 x.array [2] ^= y.array [2];
1819 /* Fall through. */
1820 case 2:
1821 x.array [1] ^= y.array [1];
1822 /* Fall through. */
1823 case 1:
1824 x.array [0] ^= y.array [0];
1825 break;
1826 default:
1827 abort ();
1828 }
1829 return x;
1830 }
1831
1832 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1833 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1834 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1835 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1836 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1837 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1838 static const i386_operand_type anydisp
1839 = OPERAND_TYPE_ANYDISP;
1840 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1841 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1842 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1843 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1844 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1845 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1846 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1847 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1848 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1849 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1850 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1851 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1852
1853 enum operand_type
1854 {
1855 reg,
1856 imm,
1857 disp,
1858 anymem
1859 };
1860
1861 static INLINE int
1862 operand_type_check (i386_operand_type t, enum operand_type c)
1863 {
1864 switch (c)
1865 {
1866 case reg:
1867 return t.bitfield.reg;
1868
1869 case imm:
1870 return (t.bitfield.imm8
1871 || t.bitfield.imm8s
1872 || t.bitfield.imm16
1873 || t.bitfield.imm32
1874 || t.bitfield.imm32s
1875 || t.bitfield.imm64);
1876
1877 case disp:
1878 return (t.bitfield.disp8
1879 || t.bitfield.disp16
1880 || t.bitfield.disp32
1881 || t.bitfield.disp32s
1882 || t.bitfield.disp64);
1883
1884 case anymem:
1885 return (t.bitfield.disp8
1886 || t.bitfield.disp16
1887 || t.bitfield.disp32
1888 || t.bitfield.disp32s
1889 || t.bitfield.disp64
1890 || t.bitfield.baseindex);
1891
1892 default:
1893 abort ();
1894 }
1895
1896 return 0;
1897 }
1898
1899 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1900 between operand GIVEN and opeand WANTED for instruction template T. */
1901
1902 static INLINE int
1903 match_operand_size (const insn_template *t, unsigned int wanted,
1904 unsigned int given)
1905 {
1906 return !((i.types[given].bitfield.byte
1907 && !t->operand_types[wanted].bitfield.byte)
1908 || (i.types[given].bitfield.word
1909 && !t->operand_types[wanted].bitfield.word)
1910 || (i.types[given].bitfield.dword
1911 && !t->operand_types[wanted].bitfield.dword)
1912 || (i.types[given].bitfield.qword
1913 && !t->operand_types[wanted].bitfield.qword)
1914 || (i.types[given].bitfield.tbyte
1915 && !t->operand_types[wanted].bitfield.tbyte));
1916 }
1917
1918 /* Return 1 if there is no conflict in SIMD register between operand
1919 GIVEN and opeand WANTED for instruction template T. */
1920
1921 static INLINE int
1922 match_simd_size (const insn_template *t, unsigned int wanted,
1923 unsigned int given)
1924 {
1925 return !((i.types[given].bitfield.xmmword
1926 && !t->operand_types[wanted].bitfield.xmmword)
1927 || (i.types[given].bitfield.ymmword
1928 && !t->operand_types[wanted].bitfield.ymmword)
1929 || (i.types[given].bitfield.zmmword
1930 && !t->operand_types[wanted].bitfield.zmmword));
1931 }
1932
1933 /* Return 1 if there is no conflict in any size between operand GIVEN
1934 and opeand WANTED for instruction template T. */
1935
1936 static INLINE int
1937 match_mem_size (const insn_template *t, unsigned int wanted,
1938 unsigned int given)
1939 {
1940 return (match_operand_size (t, wanted, given)
1941 && !((i.types[given].bitfield.unspecified
1942 && !i.broadcast
1943 && !t->operand_types[wanted].bitfield.unspecified)
1944 || (i.types[given].bitfield.fword
1945 && !t->operand_types[wanted].bitfield.fword)
1946 /* For scalar opcode templates to allow register and memory
1947 operands at the same time, some special casing is needed
1948 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1949 down-conversion vpmov*. */
1950 || ((t->operand_types[wanted].bitfield.regsimd
1951 && !t->opcode_modifier.broadcast
1952 && (t->operand_types[wanted].bitfield.byte
1953 || t->operand_types[wanted].bitfield.word
1954 || t->operand_types[wanted].bitfield.dword
1955 || t->operand_types[wanted].bitfield.qword))
1956 ? (i.types[given].bitfield.xmmword
1957 || i.types[given].bitfield.ymmword
1958 || i.types[given].bitfield.zmmword)
1959 : !match_simd_size(t, wanted, given))));
1960 }
1961
1962 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
1963 operands for instruction template T, and it has MATCH_REVERSE set if there
1964 is no size conflict on any operands for the template with operands reversed
1965 (and the template allows for reversing in the first place). */
1966
1967 #define MATCH_STRAIGHT 1
1968 #define MATCH_REVERSE 2
1969
1970 static INLINE unsigned int
1971 operand_size_match (const insn_template *t)
1972 {
1973 unsigned int j, match = MATCH_STRAIGHT;
1974
1975 /* Don't check jump instructions. */
1976 if (t->opcode_modifier.jump
1977 || t->opcode_modifier.jumpbyte
1978 || t->opcode_modifier.jumpdword
1979 || t->opcode_modifier.jumpintersegment)
1980 return match;
1981
1982 /* Check memory and accumulator operand size. */
1983 for (j = 0; j < i.operands; j++)
1984 {
1985 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1986 && t->operand_types[j].bitfield.anysize)
1987 continue;
1988
1989 if (t->operand_types[j].bitfield.reg
1990 && !match_operand_size (t, j, j))
1991 {
1992 match = 0;
1993 break;
1994 }
1995
1996 if (t->operand_types[j].bitfield.regsimd
1997 && !match_simd_size (t, j, j))
1998 {
1999 match = 0;
2000 break;
2001 }
2002
2003 if (t->operand_types[j].bitfield.acc
2004 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2005 {
2006 match = 0;
2007 break;
2008 }
2009
2010 if (i.types[j].bitfield.mem && !match_mem_size (t, j, j))
2011 {
2012 match = 0;
2013 break;
2014 }
2015 }
2016
2017 if (!t->opcode_modifier.d)
2018 {
2019 mismatch:
2020 if (!match)
2021 i.error = operand_size_mismatch;
2022 return match;
2023 }
2024
2025 /* Check reverse. */
2026 gas_assert (i.operands == 2);
2027
2028 for (j = 0; j < 2; j++)
2029 {
2030 if ((t->operand_types[j].bitfield.reg
2031 || t->operand_types[j].bitfield.acc)
2032 && !match_operand_size (t, j, !j))
2033 goto mismatch;
2034
2035 if (i.types[!j].bitfield.mem
2036 && !match_mem_size (t, j, !j))
2037 goto mismatch;
2038 }
2039
2040 return match | MATCH_REVERSE;
2041 }
2042
2043 static INLINE int
2044 operand_type_match (i386_operand_type overlap,
2045 i386_operand_type given)
2046 {
2047 i386_operand_type temp = overlap;
2048
2049 temp.bitfield.jumpabsolute = 0;
2050 temp.bitfield.unspecified = 0;
2051 temp.bitfield.byte = 0;
2052 temp.bitfield.word = 0;
2053 temp.bitfield.dword = 0;
2054 temp.bitfield.fword = 0;
2055 temp.bitfield.qword = 0;
2056 temp.bitfield.tbyte = 0;
2057 temp.bitfield.xmmword = 0;
2058 temp.bitfield.ymmword = 0;
2059 temp.bitfield.zmmword = 0;
2060 if (operand_type_all_zero (&temp))
2061 goto mismatch;
2062
2063 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2064 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2065 return 1;
2066
2067 mismatch:
2068 i.error = operand_type_mismatch;
2069 return 0;
2070 }
2071
2072 /* If given types g0 and g1 are registers they must be of the same type
2073 unless the expected operand type register overlap is null.
2074 Memory operand size of certain SIMD instructions is also being checked
2075 here. */
2076
2077 static INLINE int
2078 operand_type_register_match (i386_operand_type g0,
2079 i386_operand_type t0,
2080 i386_operand_type g1,
2081 i386_operand_type t1)
2082 {
2083 if (!g0.bitfield.reg
2084 && !g0.bitfield.regsimd
2085 && (!operand_type_check (g0, anymem)
2086 || g0.bitfield.unspecified
2087 || !t0.bitfield.regsimd))
2088 return 1;
2089
2090 if (!g1.bitfield.reg
2091 && !g1.bitfield.regsimd
2092 && (!operand_type_check (g1, anymem)
2093 || g1.bitfield.unspecified
2094 || !t1.bitfield.regsimd))
2095 return 1;
2096
2097 if (g0.bitfield.byte == g1.bitfield.byte
2098 && g0.bitfield.word == g1.bitfield.word
2099 && g0.bitfield.dword == g1.bitfield.dword
2100 && g0.bitfield.qword == g1.bitfield.qword
2101 && g0.bitfield.xmmword == g1.bitfield.xmmword
2102 && g0.bitfield.ymmword == g1.bitfield.ymmword
2103 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2104 return 1;
2105
2106 if (!(t0.bitfield.byte & t1.bitfield.byte)
2107 && !(t0.bitfield.word & t1.bitfield.word)
2108 && !(t0.bitfield.dword & t1.bitfield.dword)
2109 && !(t0.bitfield.qword & t1.bitfield.qword)
2110 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2111 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2112 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2113 return 1;
2114
2115 i.error = register_type_mismatch;
2116
2117 return 0;
2118 }
2119
2120 static INLINE unsigned int
2121 register_number (const reg_entry *r)
2122 {
2123 unsigned int nr = r->reg_num;
2124
2125 if (r->reg_flags & RegRex)
2126 nr += 8;
2127
2128 if (r->reg_flags & RegVRex)
2129 nr += 16;
2130
2131 return nr;
2132 }
2133
2134 static INLINE unsigned int
2135 mode_from_disp_size (i386_operand_type t)
2136 {
2137 if (t.bitfield.disp8)
2138 return 1;
2139 else if (t.bitfield.disp16
2140 || t.bitfield.disp32
2141 || t.bitfield.disp32s)
2142 return 2;
2143 else
2144 return 0;
2145 }
2146
2147 static INLINE int
2148 fits_in_signed_byte (addressT num)
2149 {
2150 return num + 0x80 <= 0xff;
2151 }
2152
2153 static INLINE int
2154 fits_in_unsigned_byte (addressT num)
2155 {
2156 return num <= 0xff;
2157 }
2158
2159 static INLINE int
2160 fits_in_unsigned_word (addressT num)
2161 {
2162 return num <= 0xffff;
2163 }
2164
2165 static INLINE int
2166 fits_in_signed_word (addressT num)
2167 {
2168 return num + 0x8000 <= 0xffff;
2169 }
2170
2171 static INLINE int
2172 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2173 {
2174 #ifndef BFD64
2175 return 1;
2176 #else
2177 return num + 0x80000000 <= 0xffffffff;
2178 #endif
2179 } /* fits_in_signed_long() */
2180
2181 static INLINE int
2182 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2183 {
2184 #ifndef BFD64
2185 return 1;
2186 #else
2187 return num <= 0xffffffff;
2188 #endif
2189 } /* fits_in_unsigned_long() */
2190
2191 static INLINE int
2192 fits_in_disp8 (offsetT num)
2193 {
2194 int shift = i.memshift;
2195 unsigned int mask;
2196
2197 if (shift == -1)
2198 abort ();
2199
2200 mask = (1 << shift) - 1;
2201
2202 /* Return 0 if NUM isn't properly aligned. */
2203 if ((num & mask))
2204 return 0;
2205
2206 /* Check if NUM will fit in 8bit after shift. */
2207 return fits_in_signed_byte (num >> shift);
2208 }
2209
2210 static INLINE int
2211 fits_in_imm4 (offsetT num)
2212 {
2213 return (num & 0xf) == num;
2214 }
2215
2216 static i386_operand_type
2217 smallest_imm_type (offsetT num)
2218 {
2219 i386_operand_type t;
2220
2221 operand_type_set (&t, 0);
2222 t.bitfield.imm64 = 1;
2223
2224 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2225 {
2226 /* This code is disabled on the 486 because all the Imm1 forms
2227 in the opcode table are slower on the i486. They're the
2228 versions with the implicitly specified single-position
2229 displacement, which has another syntax if you really want to
2230 use that form. */
2231 t.bitfield.imm1 = 1;
2232 t.bitfield.imm8 = 1;
2233 t.bitfield.imm8s = 1;
2234 t.bitfield.imm16 = 1;
2235 t.bitfield.imm32 = 1;
2236 t.bitfield.imm32s = 1;
2237 }
2238 else if (fits_in_signed_byte (num))
2239 {
2240 t.bitfield.imm8 = 1;
2241 t.bitfield.imm8s = 1;
2242 t.bitfield.imm16 = 1;
2243 t.bitfield.imm32 = 1;
2244 t.bitfield.imm32s = 1;
2245 }
2246 else if (fits_in_unsigned_byte (num))
2247 {
2248 t.bitfield.imm8 = 1;
2249 t.bitfield.imm16 = 1;
2250 t.bitfield.imm32 = 1;
2251 t.bitfield.imm32s = 1;
2252 }
2253 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2254 {
2255 t.bitfield.imm16 = 1;
2256 t.bitfield.imm32 = 1;
2257 t.bitfield.imm32s = 1;
2258 }
2259 else if (fits_in_signed_long (num))
2260 {
2261 t.bitfield.imm32 = 1;
2262 t.bitfield.imm32s = 1;
2263 }
2264 else if (fits_in_unsigned_long (num))
2265 t.bitfield.imm32 = 1;
2266
2267 return t;
2268 }
2269
2270 static offsetT
2271 offset_in_range (offsetT val, int size)
2272 {
2273 addressT mask;
2274
2275 switch (size)
2276 {
2277 case 1: mask = ((addressT) 1 << 8) - 1; break;
2278 case 2: mask = ((addressT) 1 << 16) - 1; break;
2279 case 4: mask = ((addressT) 2 << 31) - 1; break;
2280 #ifdef BFD64
2281 case 8: mask = ((addressT) 2 << 63) - 1; break;
2282 #endif
2283 default: abort ();
2284 }
2285
2286 #ifdef BFD64
2287 /* If BFD64, sign extend val for 32bit address mode. */
2288 if (flag_code != CODE_64BIT
2289 || i.prefix[ADDR_PREFIX])
2290 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2291 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2292 #endif
2293
2294 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2295 {
2296 char buf1[40], buf2[40];
2297
2298 sprint_value (buf1, val);
2299 sprint_value (buf2, val & mask);
2300 as_warn (_("%s shortened to %s"), buf1, buf2);
2301 }
2302 return val & mask;
2303 }
2304
2305 enum PREFIX_GROUP
2306 {
2307 PREFIX_EXIST = 0,
2308 PREFIX_LOCK,
2309 PREFIX_REP,
2310 PREFIX_DS,
2311 PREFIX_OTHER
2312 };
2313
2314 /* Returns
2315 a. PREFIX_EXIST if attempting to add a prefix where one from the
2316 same class already exists.
2317 b. PREFIX_LOCK if lock prefix is added.
2318 c. PREFIX_REP if rep/repne prefix is added.
2319 d. PREFIX_DS if ds prefix is added.
2320 e. PREFIX_OTHER if other prefix is added.
2321 */
2322
2323 static enum PREFIX_GROUP
2324 add_prefix (unsigned int prefix)
2325 {
2326 enum PREFIX_GROUP ret = PREFIX_OTHER;
2327 unsigned int q;
2328
2329 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2330 && flag_code == CODE_64BIT)
2331 {
2332 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2333 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2334 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2335 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2336 ret = PREFIX_EXIST;
2337 q = REX_PREFIX;
2338 }
2339 else
2340 {
2341 switch (prefix)
2342 {
2343 default:
2344 abort ();
2345
2346 case DS_PREFIX_OPCODE:
2347 ret = PREFIX_DS;
2348 /* Fall through. */
2349 case CS_PREFIX_OPCODE:
2350 case ES_PREFIX_OPCODE:
2351 case FS_PREFIX_OPCODE:
2352 case GS_PREFIX_OPCODE:
2353 case SS_PREFIX_OPCODE:
2354 q = SEG_PREFIX;
2355 break;
2356
2357 case REPNE_PREFIX_OPCODE:
2358 case REPE_PREFIX_OPCODE:
2359 q = REP_PREFIX;
2360 ret = PREFIX_REP;
2361 break;
2362
2363 case LOCK_PREFIX_OPCODE:
2364 q = LOCK_PREFIX;
2365 ret = PREFIX_LOCK;
2366 break;
2367
2368 case FWAIT_OPCODE:
2369 q = WAIT_PREFIX;
2370 break;
2371
2372 case ADDR_PREFIX_OPCODE:
2373 q = ADDR_PREFIX;
2374 break;
2375
2376 case DATA_PREFIX_OPCODE:
2377 q = DATA_PREFIX;
2378 break;
2379 }
2380 if (i.prefix[q] != 0)
2381 ret = PREFIX_EXIST;
2382 }
2383
2384 if (ret)
2385 {
2386 if (!i.prefix[q])
2387 ++i.prefixes;
2388 i.prefix[q] |= prefix;
2389 }
2390 else
2391 as_bad (_("same type of prefix used twice"));
2392
2393 return ret;
2394 }
2395
2396 static void
2397 update_code_flag (int value, int check)
2398 {
2399 PRINTF_LIKE ((*as_error));
2400
2401 flag_code = (enum flag_code) value;
2402 if (flag_code == CODE_64BIT)
2403 {
2404 cpu_arch_flags.bitfield.cpu64 = 1;
2405 cpu_arch_flags.bitfield.cpuno64 = 0;
2406 }
2407 else
2408 {
2409 cpu_arch_flags.bitfield.cpu64 = 0;
2410 cpu_arch_flags.bitfield.cpuno64 = 1;
2411 }
2412 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2413 {
2414 if (check)
2415 as_error = as_fatal;
2416 else
2417 as_error = as_bad;
2418 (*as_error) (_("64bit mode not supported on `%s'."),
2419 cpu_arch_name ? cpu_arch_name : default_arch);
2420 }
2421 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2422 {
2423 if (check)
2424 as_error = as_fatal;
2425 else
2426 as_error = as_bad;
2427 (*as_error) (_("32bit mode not supported on `%s'."),
2428 cpu_arch_name ? cpu_arch_name : default_arch);
2429 }
2430 stackop_size = '\0';
2431 }
2432
2433 static void
2434 set_code_flag (int value)
2435 {
2436 update_code_flag (value, 0);
2437 }
2438
2439 static void
2440 set_16bit_gcc_code_flag (int new_code_flag)
2441 {
2442 flag_code = (enum flag_code) new_code_flag;
2443 if (flag_code != CODE_16BIT)
2444 abort ();
2445 cpu_arch_flags.bitfield.cpu64 = 0;
2446 cpu_arch_flags.bitfield.cpuno64 = 1;
2447 stackop_size = LONG_MNEM_SUFFIX;
2448 }
2449
2450 static void
2451 set_intel_syntax (int syntax_flag)
2452 {
2453 /* Find out if register prefixing is specified. */
2454 int ask_naked_reg = 0;
2455
2456 SKIP_WHITESPACE ();
2457 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2458 {
2459 char *string;
2460 int e = get_symbol_name (&string);
2461
2462 if (strcmp (string, "prefix") == 0)
2463 ask_naked_reg = 1;
2464 else if (strcmp (string, "noprefix") == 0)
2465 ask_naked_reg = -1;
2466 else
2467 as_bad (_("bad argument to syntax directive."));
2468 (void) restore_line_pointer (e);
2469 }
2470 demand_empty_rest_of_line ();
2471
2472 intel_syntax = syntax_flag;
2473
2474 if (ask_naked_reg == 0)
2475 allow_naked_reg = (intel_syntax
2476 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2477 else
2478 allow_naked_reg = (ask_naked_reg < 0);
2479
2480 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2481
2482 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2483 identifier_chars['$'] = intel_syntax ? '$' : 0;
2484 register_prefix = allow_naked_reg ? "" : "%";
2485 }
2486
2487 static void
2488 set_intel_mnemonic (int mnemonic_flag)
2489 {
2490 intel_mnemonic = mnemonic_flag;
2491 }
2492
2493 static void
2494 set_allow_index_reg (int flag)
2495 {
2496 allow_index_reg = flag;
2497 }
2498
2499 static void
2500 set_check (int what)
2501 {
2502 enum check_kind *kind;
2503 const char *str;
2504
2505 if (what)
2506 {
2507 kind = &operand_check;
2508 str = "operand";
2509 }
2510 else
2511 {
2512 kind = &sse_check;
2513 str = "sse";
2514 }
2515
2516 SKIP_WHITESPACE ();
2517
2518 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2519 {
2520 char *string;
2521 int e = get_symbol_name (&string);
2522
2523 if (strcmp (string, "none") == 0)
2524 *kind = check_none;
2525 else if (strcmp (string, "warning") == 0)
2526 *kind = check_warning;
2527 else if (strcmp (string, "error") == 0)
2528 *kind = check_error;
2529 else
2530 as_bad (_("bad argument to %s_check directive."), str);
2531 (void) restore_line_pointer (e);
2532 }
2533 else
2534 as_bad (_("missing argument for %s_check directive"), str);
2535
2536 demand_empty_rest_of_line ();
2537 }
2538
2539 static void
2540 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2541 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2542 {
2543 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2544 static const char *arch;
2545
2546 /* Intel LIOM is only supported on ELF. */
2547 if (!IS_ELF)
2548 return;
2549
2550 if (!arch)
2551 {
2552 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2553 use default_arch. */
2554 arch = cpu_arch_name;
2555 if (!arch)
2556 arch = default_arch;
2557 }
2558
2559 /* If we are targeting Intel MCU, we must enable it. */
2560 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2561 || new_flag.bitfield.cpuiamcu)
2562 return;
2563
2564 /* If we are targeting Intel L1OM, we must enable it. */
2565 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2566 || new_flag.bitfield.cpul1om)
2567 return;
2568
2569 /* If we are targeting Intel K1OM, we must enable it. */
2570 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2571 || new_flag.bitfield.cpuk1om)
2572 return;
2573
2574 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2575 #endif
2576 }
2577
2578 static void
2579 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2580 {
2581 SKIP_WHITESPACE ();
2582
2583 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2584 {
2585 char *string;
2586 int e = get_symbol_name (&string);
2587 unsigned int j;
2588 i386_cpu_flags flags;
2589
2590 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2591 {
2592 if (strcmp (string, cpu_arch[j].name) == 0)
2593 {
2594 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2595
2596 if (*string != '.')
2597 {
2598 cpu_arch_name = cpu_arch[j].name;
2599 cpu_sub_arch_name = NULL;
2600 cpu_arch_flags = cpu_arch[j].flags;
2601 if (flag_code == CODE_64BIT)
2602 {
2603 cpu_arch_flags.bitfield.cpu64 = 1;
2604 cpu_arch_flags.bitfield.cpuno64 = 0;
2605 }
2606 else
2607 {
2608 cpu_arch_flags.bitfield.cpu64 = 0;
2609 cpu_arch_flags.bitfield.cpuno64 = 1;
2610 }
2611 cpu_arch_isa = cpu_arch[j].type;
2612 cpu_arch_isa_flags = cpu_arch[j].flags;
2613 if (!cpu_arch_tune_set)
2614 {
2615 cpu_arch_tune = cpu_arch_isa;
2616 cpu_arch_tune_flags = cpu_arch_isa_flags;
2617 }
2618 break;
2619 }
2620
2621 flags = cpu_flags_or (cpu_arch_flags,
2622 cpu_arch[j].flags);
2623
2624 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2625 {
2626 if (cpu_sub_arch_name)
2627 {
2628 char *name = cpu_sub_arch_name;
2629 cpu_sub_arch_name = concat (name,
2630 cpu_arch[j].name,
2631 (const char *) NULL);
2632 free (name);
2633 }
2634 else
2635 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2636 cpu_arch_flags = flags;
2637 cpu_arch_isa_flags = flags;
2638 }
2639 else
2640 cpu_arch_isa_flags
2641 = cpu_flags_or (cpu_arch_isa_flags,
2642 cpu_arch[j].flags);
2643 (void) restore_line_pointer (e);
2644 demand_empty_rest_of_line ();
2645 return;
2646 }
2647 }
2648
2649 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2650 {
2651 /* Disable an ISA extension. */
2652 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2653 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2654 {
2655 flags = cpu_flags_and_not (cpu_arch_flags,
2656 cpu_noarch[j].flags);
2657 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2658 {
2659 if (cpu_sub_arch_name)
2660 {
2661 char *name = cpu_sub_arch_name;
2662 cpu_sub_arch_name = concat (name, string,
2663 (const char *) NULL);
2664 free (name);
2665 }
2666 else
2667 cpu_sub_arch_name = xstrdup (string);
2668 cpu_arch_flags = flags;
2669 cpu_arch_isa_flags = flags;
2670 }
2671 (void) restore_line_pointer (e);
2672 demand_empty_rest_of_line ();
2673 return;
2674 }
2675
2676 j = ARRAY_SIZE (cpu_arch);
2677 }
2678
2679 if (j >= ARRAY_SIZE (cpu_arch))
2680 as_bad (_("no such architecture: `%s'"), string);
2681
2682 *input_line_pointer = e;
2683 }
2684 else
2685 as_bad (_("missing cpu architecture"));
2686
2687 no_cond_jump_promotion = 0;
2688 if (*input_line_pointer == ','
2689 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2690 {
2691 char *string;
2692 char e;
2693
2694 ++input_line_pointer;
2695 e = get_symbol_name (&string);
2696
2697 if (strcmp (string, "nojumps") == 0)
2698 no_cond_jump_promotion = 1;
2699 else if (strcmp (string, "jumps") == 0)
2700 ;
2701 else
2702 as_bad (_("no such architecture modifier: `%s'"), string);
2703
2704 (void) restore_line_pointer (e);
2705 }
2706
2707 demand_empty_rest_of_line ();
2708 }
2709
2710 enum bfd_architecture
2711 i386_arch (void)
2712 {
2713 if (cpu_arch_isa == PROCESSOR_L1OM)
2714 {
2715 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2716 || flag_code != CODE_64BIT)
2717 as_fatal (_("Intel L1OM is 64bit ELF only"));
2718 return bfd_arch_l1om;
2719 }
2720 else if (cpu_arch_isa == PROCESSOR_K1OM)
2721 {
2722 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2723 || flag_code != CODE_64BIT)
2724 as_fatal (_("Intel K1OM is 64bit ELF only"));
2725 return bfd_arch_k1om;
2726 }
2727 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2728 {
2729 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2730 || flag_code == CODE_64BIT)
2731 as_fatal (_("Intel MCU is 32bit ELF only"));
2732 return bfd_arch_iamcu;
2733 }
2734 else
2735 return bfd_arch_i386;
2736 }
2737
2738 unsigned long
2739 i386_mach (void)
2740 {
2741 if (!strncmp (default_arch, "x86_64", 6))
2742 {
2743 if (cpu_arch_isa == PROCESSOR_L1OM)
2744 {
2745 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2746 || default_arch[6] != '\0')
2747 as_fatal (_("Intel L1OM is 64bit ELF only"));
2748 return bfd_mach_l1om;
2749 }
2750 else if (cpu_arch_isa == PROCESSOR_K1OM)
2751 {
2752 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2753 || default_arch[6] != '\0')
2754 as_fatal (_("Intel K1OM is 64bit ELF only"));
2755 return bfd_mach_k1om;
2756 }
2757 else if (default_arch[6] == '\0')
2758 return bfd_mach_x86_64;
2759 else
2760 return bfd_mach_x64_32;
2761 }
2762 else if (!strcmp (default_arch, "i386")
2763 || !strcmp (default_arch, "iamcu"))
2764 {
2765 if (cpu_arch_isa == PROCESSOR_IAMCU)
2766 {
2767 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2768 as_fatal (_("Intel MCU is 32bit ELF only"));
2769 return bfd_mach_i386_iamcu;
2770 }
2771 else
2772 return bfd_mach_i386_i386;
2773 }
2774 else
2775 as_fatal (_("unknown architecture"));
2776 }
2777 \f
2778 void
2779 md_begin (void)
2780 {
2781 const char *hash_err;
2782
2783 /* Support pseudo prefixes like {disp32}. */
2784 lex_type ['{'] = LEX_BEGIN_NAME;
2785
2786 /* Initialize op_hash hash table. */
2787 op_hash = hash_new ();
2788
2789 {
2790 const insn_template *optab;
2791 templates *core_optab;
2792
2793 /* Setup for loop. */
2794 optab = i386_optab;
2795 core_optab = XNEW (templates);
2796 core_optab->start = optab;
2797
2798 while (1)
2799 {
2800 ++optab;
2801 if (optab->name == NULL
2802 || strcmp (optab->name, (optab - 1)->name) != 0)
2803 {
2804 /* different name --> ship out current template list;
2805 add to hash table; & begin anew. */
2806 core_optab->end = optab;
2807 hash_err = hash_insert (op_hash,
2808 (optab - 1)->name,
2809 (void *) core_optab);
2810 if (hash_err)
2811 {
2812 as_fatal (_("can't hash %s: %s"),
2813 (optab - 1)->name,
2814 hash_err);
2815 }
2816 if (optab->name == NULL)
2817 break;
2818 core_optab = XNEW (templates);
2819 core_optab->start = optab;
2820 }
2821 }
2822 }
2823
2824 /* Initialize reg_hash hash table. */
2825 reg_hash = hash_new ();
2826 {
2827 const reg_entry *regtab;
2828 unsigned int regtab_size = i386_regtab_size;
2829
2830 for (regtab = i386_regtab; regtab_size--; regtab++)
2831 {
2832 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2833 if (hash_err)
2834 as_fatal (_("can't hash %s: %s"),
2835 regtab->reg_name,
2836 hash_err);
2837 }
2838 }
2839
2840 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2841 {
2842 int c;
2843 char *p;
2844
2845 for (c = 0; c < 256; c++)
2846 {
2847 if (ISDIGIT (c))
2848 {
2849 digit_chars[c] = c;
2850 mnemonic_chars[c] = c;
2851 register_chars[c] = c;
2852 operand_chars[c] = c;
2853 }
2854 else if (ISLOWER (c))
2855 {
2856 mnemonic_chars[c] = c;
2857 register_chars[c] = c;
2858 operand_chars[c] = c;
2859 }
2860 else if (ISUPPER (c))
2861 {
2862 mnemonic_chars[c] = TOLOWER (c);
2863 register_chars[c] = mnemonic_chars[c];
2864 operand_chars[c] = c;
2865 }
2866 else if (c == '{' || c == '}')
2867 {
2868 mnemonic_chars[c] = c;
2869 operand_chars[c] = c;
2870 }
2871
2872 if (ISALPHA (c) || ISDIGIT (c))
2873 identifier_chars[c] = c;
2874 else if (c >= 128)
2875 {
2876 identifier_chars[c] = c;
2877 operand_chars[c] = c;
2878 }
2879 }
2880
2881 #ifdef LEX_AT
2882 identifier_chars['@'] = '@';
2883 #endif
2884 #ifdef LEX_QM
2885 identifier_chars['?'] = '?';
2886 operand_chars['?'] = '?';
2887 #endif
2888 digit_chars['-'] = '-';
2889 mnemonic_chars['_'] = '_';
2890 mnemonic_chars['-'] = '-';
2891 mnemonic_chars['.'] = '.';
2892 identifier_chars['_'] = '_';
2893 identifier_chars['.'] = '.';
2894
2895 for (p = operand_special_chars; *p != '\0'; p++)
2896 operand_chars[(unsigned char) *p] = *p;
2897 }
2898
2899 if (flag_code == CODE_64BIT)
2900 {
2901 #if defined (OBJ_COFF) && defined (TE_PE)
2902 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2903 ? 32 : 16);
2904 #else
2905 x86_dwarf2_return_column = 16;
2906 #endif
2907 x86_cie_data_alignment = -8;
2908 }
2909 else
2910 {
2911 x86_dwarf2_return_column = 8;
2912 x86_cie_data_alignment = -4;
2913 }
2914 }
2915
2916 void
2917 i386_print_statistics (FILE *file)
2918 {
2919 hash_print_statistics (file, "i386 opcode", op_hash);
2920 hash_print_statistics (file, "i386 register", reg_hash);
2921 }
2922 \f
2923 #ifdef DEBUG386
2924
2925 /* Debugging routines for md_assemble. */
2926 static void pte (insn_template *);
2927 static void pt (i386_operand_type);
2928 static void pe (expressionS *);
2929 static void ps (symbolS *);
2930
2931 static void
2932 pi (char *line, i386_insn *x)
2933 {
2934 unsigned int j;
2935
2936 fprintf (stdout, "%s: template ", line);
2937 pte (&x->tm);
2938 fprintf (stdout, " address: base %s index %s scale %x\n",
2939 x->base_reg ? x->base_reg->reg_name : "none",
2940 x->index_reg ? x->index_reg->reg_name : "none",
2941 x->log2_scale_factor);
2942 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2943 x->rm.mode, x->rm.reg, x->rm.regmem);
2944 fprintf (stdout, " sib: base %x index %x scale %x\n",
2945 x->sib.base, x->sib.index, x->sib.scale);
2946 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2947 (x->rex & REX_W) != 0,
2948 (x->rex & REX_R) != 0,
2949 (x->rex & REX_X) != 0,
2950 (x->rex & REX_B) != 0);
2951 for (j = 0; j < x->operands; j++)
2952 {
2953 fprintf (stdout, " #%d: ", j + 1);
2954 pt (x->types[j]);
2955 fprintf (stdout, "\n");
2956 if (x->types[j].bitfield.reg
2957 || x->types[j].bitfield.regmmx
2958 || x->types[j].bitfield.regsimd
2959 || x->types[j].bitfield.sreg2
2960 || x->types[j].bitfield.sreg3
2961 || x->types[j].bitfield.control
2962 || x->types[j].bitfield.debug
2963 || x->types[j].bitfield.test)
2964 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2965 if (operand_type_check (x->types[j], imm))
2966 pe (x->op[j].imms);
2967 if (operand_type_check (x->types[j], disp))
2968 pe (x->op[j].disps);
2969 }
2970 }
2971
2972 static void
2973 pte (insn_template *t)
2974 {
2975 unsigned int j;
2976 fprintf (stdout, " %d operands ", t->operands);
2977 fprintf (stdout, "opcode %x ", t->base_opcode);
2978 if (t->extension_opcode != None)
2979 fprintf (stdout, "ext %x ", t->extension_opcode);
2980 if (t->opcode_modifier.d)
2981 fprintf (stdout, "D");
2982 if (t->opcode_modifier.w)
2983 fprintf (stdout, "W");
2984 fprintf (stdout, "\n");
2985 for (j = 0; j < t->operands; j++)
2986 {
2987 fprintf (stdout, " #%d type ", j + 1);
2988 pt (t->operand_types[j]);
2989 fprintf (stdout, "\n");
2990 }
2991 }
2992
2993 static void
2994 pe (expressionS *e)
2995 {
2996 fprintf (stdout, " operation %d\n", e->X_op);
2997 fprintf (stdout, " add_number %ld (%lx)\n",
2998 (long) e->X_add_number, (long) e->X_add_number);
2999 if (e->X_add_symbol)
3000 {
3001 fprintf (stdout, " add_symbol ");
3002 ps (e->X_add_symbol);
3003 fprintf (stdout, "\n");
3004 }
3005 if (e->X_op_symbol)
3006 {
3007 fprintf (stdout, " op_symbol ");
3008 ps (e->X_op_symbol);
3009 fprintf (stdout, "\n");
3010 }
3011 }
3012
3013 static void
3014 ps (symbolS *s)
3015 {
3016 fprintf (stdout, "%s type %s%s",
3017 S_GET_NAME (s),
3018 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3019 segment_name (S_GET_SEGMENT (s)));
3020 }
3021
3022 static struct type_name
3023 {
3024 i386_operand_type mask;
3025 const char *name;
3026 }
3027 const type_names[] =
3028 {
3029 { OPERAND_TYPE_REG8, "r8" },
3030 { OPERAND_TYPE_REG16, "r16" },
3031 { OPERAND_TYPE_REG32, "r32" },
3032 { OPERAND_TYPE_REG64, "r64" },
3033 { OPERAND_TYPE_IMM8, "i8" },
3034 { OPERAND_TYPE_IMM8, "i8s" },
3035 { OPERAND_TYPE_IMM16, "i16" },
3036 { OPERAND_TYPE_IMM32, "i32" },
3037 { OPERAND_TYPE_IMM32S, "i32s" },
3038 { OPERAND_TYPE_IMM64, "i64" },
3039 { OPERAND_TYPE_IMM1, "i1" },
3040 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3041 { OPERAND_TYPE_DISP8, "d8" },
3042 { OPERAND_TYPE_DISP16, "d16" },
3043 { OPERAND_TYPE_DISP32, "d32" },
3044 { OPERAND_TYPE_DISP32S, "d32s" },
3045 { OPERAND_TYPE_DISP64, "d64" },
3046 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3047 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3048 { OPERAND_TYPE_CONTROL, "control reg" },
3049 { OPERAND_TYPE_TEST, "test reg" },
3050 { OPERAND_TYPE_DEBUG, "debug reg" },
3051 { OPERAND_TYPE_FLOATREG, "FReg" },
3052 { OPERAND_TYPE_FLOATACC, "FAcc" },
3053 { OPERAND_TYPE_SREG2, "SReg2" },
3054 { OPERAND_TYPE_SREG3, "SReg3" },
3055 { OPERAND_TYPE_ACC, "Acc" },
3056 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3057 { OPERAND_TYPE_REGMMX, "rMMX" },
3058 { OPERAND_TYPE_REGXMM, "rXMM" },
3059 { OPERAND_TYPE_REGYMM, "rYMM" },
3060 { OPERAND_TYPE_REGZMM, "rZMM" },
3061 { OPERAND_TYPE_REGMASK, "Mask reg" },
3062 { OPERAND_TYPE_ESSEG, "es" },
3063 };
3064
3065 static void
3066 pt (i386_operand_type t)
3067 {
3068 unsigned int j;
3069 i386_operand_type a;
3070
3071 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3072 {
3073 a = operand_type_and (t, type_names[j].mask);
3074 if (!operand_type_all_zero (&a))
3075 fprintf (stdout, "%s, ", type_names[j].name);
3076 }
3077 fflush (stdout);
3078 }
3079
3080 #endif /* DEBUG386 */
3081 \f
3082 static bfd_reloc_code_real_type
3083 reloc (unsigned int size,
3084 int pcrel,
3085 int sign,
3086 bfd_reloc_code_real_type other)
3087 {
3088 if (other != NO_RELOC)
3089 {
3090 reloc_howto_type *rel;
3091
3092 if (size == 8)
3093 switch (other)
3094 {
3095 case BFD_RELOC_X86_64_GOT32:
3096 return BFD_RELOC_X86_64_GOT64;
3097 break;
3098 case BFD_RELOC_X86_64_GOTPLT64:
3099 return BFD_RELOC_X86_64_GOTPLT64;
3100 break;
3101 case BFD_RELOC_X86_64_PLTOFF64:
3102 return BFD_RELOC_X86_64_PLTOFF64;
3103 break;
3104 case BFD_RELOC_X86_64_GOTPC32:
3105 other = BFD_RELOC_X86_64_GOTPC64;
3106 break;
3107 case BFD_RELOC_X86_64_GOTPCREL:
3108 other = BFD_RELOC_X86_64_GOTPCREL64;
3109 break;
3110 case BFD_RELOC_X86_64_TPOFF32:
3111 other = BFD_RELOC_X86_64_TPOFF64;
3112 break;
3113 case BFD_RELOC_X86_64_DTPOFF32:
3114 other = BFD_RELOC_X86_64_DTPOFF64;
3115 break;
3116 default:
3117 break;
3118 }
3119
3120 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3121 if (other == BFD_RELOC_SIZE32)
3122 {
3123 if (size == 8)
3124 other = BFD_RELOC_SIZE64;
3125 if (pcrel)
3126 {
3127 as_bad (_("there are no pc-relative size relocations"));
3128 return NO_RELOC;
3129 }
3130 }
3131 #endif
3132
3133 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3134 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3135 sign = -1;
3136
3137 rel = bfd_reloc_type_lookup (stdoutput, other);
3138 if (!rel)
3139 as_bad (_("unknown relocation (%u)"), other);
3140 else if (size != bfd_get_reloc_size (rel))
3141 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3142 bfd_get_reloc_size (rel),
3143 size);
3144 else if (pcrel && !rel->pc_relative)
3145 as_bad (_("non-pc-relative relocation for pc-relative field"));
3146 else if ((rel->complain_on_overflow == complain_overflow_signed
3147 && !sign)
3148 || (rel->complain_on_overflow == complain_overflow_unsigned
3149 && sign > 0))
3150 as_bad (_("relocated field and relocation type differ in signedness"));
3151 else
3152 return other;
3153 return NO_RELOC;
3154 }
3155
3156 if (pcrel)
3157 {
3158 if (!sign)
3159 as_bad (_("there are no unsigned pc-relative relocations"));
3160 switch (size)
3161 {
3162 case 1: return BFD_RELOC_8_PCREL;
3163 case 2: return BFD_RELOC_16_PCREL;
3164 case 4: return BFD_RELOC_32_PCREL;
3165 case 8: return BFD_RELOC_64_PCREL;
3166 }
3167 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3168 }
3169 else
3170 {
3171 if (sign > 0)
3172 switch (size)
3173 {
3174 case 4: return BFD_RELOC_X86_64_32S;
3175 }
3176 else
3177 switch (size)
3178 {
3179 case 1: return BFD_RELOC_8;
3180 case 2: return BFD_RELOC_16;
3181 case 4: return BFD_RELOC_32;
3182 case 8: return BFD_RELOC_64;
3183 }
3184 as_bad (_("cannot do %s %u byte relocation"),
3185 sign > 0 ? "signed" : "unsigned", size);
3186 }
3187
3188 return NO_RELOC;
3189 }
3190
3191 /* Here we decide which fixups can be adjusted to make them relative to
3192 the beginning of the section instead of the symbol. Basically we need
3193 to make sure that the dynamic relocations are done correctly, so in
3194 some cases we force the original symbol to be used. */
3195
3196 int
3197 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3198 {
3199 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3200 if (!IS_ELF)
3201 return 1;
3202
3203 /* Don't adjust pc-relative references to merge sections in 64-bit
3204 mode. */
3205 if (use_rela_relocations
3206 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3207 && fixP->fx_pcrel)
3208 return 0;
3209
3210 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3211 and changed later by validate_fix. */
3212 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3213 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3214 return 0;
3215
3216 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3217 for size relocations. */
3218 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3219 || fixP->fx_r_type == BFD_RELOC_SIZE64
3220 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3221 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3222 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3223 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3224 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3225 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3226 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3227 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3228 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3229 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3230 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3231 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3232 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3233 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3234 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3235 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3236 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3237 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3238 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3239 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3240 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3241 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3242 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3243 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3244 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3245 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3246 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3247 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3248 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3249 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3250 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3251 return 0;
3252 #endif
3253 return 1;
3254 }
3255
3256 static int
3257 intel_float_operand (const char *mnemonic)
3258 {
3259 /* Note that the value returned is meaningful only for opcodes with (memory)
3260 operands, hence the code here is free to improperly handle opcodes that
3261 have no operands (for better performance and smaller code). */
3262
3263 if (mnemonic[0] != 'f')
3264 return 0; /* non-math */
3265
3266 switch (mnemonic[1])
3267 {
3268 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3269 the fs segment override prefix not currently handled because no
3270 call path can make opcodes without operands get here */
3271 case 'i':
3272 return 2 /* integer op */;
3273 case 'l':
3274 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3275 return 3; /* fldcw/fldenv */
3276 break;
3277 case 'n':
3278 if (mnemonic[2] != 'o' /* fnop */)
3279 return 3; /* non-waiting control op */
3280 break;
3281 case 'r':
3282 if (mnemonic[2] == 's')
3283 return 3; /* frstor/frstpm */
3284 break;
3285 case 's':
3286 if (mnemonic[2] == 'a')
3287 return 3; /* fsave */
3288 if (mnemonic[2] == 't')
3289 {
3290 switch (mnemonic[3])
3291 {
3292 case 'c': /* fstcw */
3293 case 'd': /* fstdw */
3294 case 'e': /* fstenv */
3295 case 's': /* fsts[gw] */
3296 return 3;
3297 }
3298 }
3299 break;
3300 case 'x':
3301 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3302 return 0; /* fxsave/fxrstor are not really math ops */
3303 break;
3304 }
3305
3306 return 1;
3307 }
3308
3309 /* Build the VEX prefix. */
3310
3311 static void
3312 build_vex_prefix (const insn_template *t)
3313 {
3314 unsigned int register_specifier;
3315 unsigned int implied_prefix;
3316 unsigned int vector_length;
3317
3318 /* Check register specifier. */
3319 if (i.vex.register_specifier)
3320 {
3321 register_specifier =
3322 ~register_number (i.vex.register_specifier) & 0xf;
3323 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3324 }
3325 else
3326 register_specifier = 0xf;
3327
3328 /* Use 2-byte VEX prefix by swapping destination and source
3329 operand. */
3330 if (i.vec_encoding != vex_encoding_vex3
3331 && i.dir_encoding == dir_encoding_default
3332 && i.operands == i.reg_operands
3333 && i.tm.opcode_modifier.vexopcode == VEX0F
3334 && i.tm.opcode_modifier.load
3335 && i.rex == REX_B)
3336 {
3337 unsigned int xchg = i.operands - 1;
3338 union i386_op temp_op;
3339 i386_operand_type temp_type;
3340
3341 temp_type = i.types[xchg];
3342 i.types[xchg] = i.types[0];
3343 i.types[0] = temp_type;
3344 temp_op = i.op[xchg];
3345 i.op[xchg] = i.op[0];
3346 i.op[0] = temp_op;
3347
3348 gas_assert (i.rm.mode == 3);
3349
3350 i.rex = REX_R;
3351 xchg = i.rm.regmem;
3352 i.rm.regmem = i.rm.reg;
3353 i.rm.reg = xchg;
3354
3355 /* Use the next insn. */
3356 i.tm = t[1];
3357 }
3358
3359 if (i.tm.opcode_modifier.vex == VEXScalar)
3360 vector_length = avxscalar;
3361 else if (i.tm.opcode_modifier.vex == VEX256)
3362 vector_length = 1;
3363 else
3364 {
3365 unsigned int op;
3366
3367 /* Determine vector length from the last multi-length vector
3368 operand. */
3369 vector_length = 0;
3370 for (op = t->operands; op--;)
3371 if (t->operand_types[op].bitfield.xmmword
3372 && t->operand_types[op].bitfield.ymmword
3373 && i.types[op].bitfield.ymmword)
3374 {
3375 vector_length = 1;
3376 break;
3377 }
3378 }
3379
3380 switch ((i.tm.base_opcode >> 8) & 0xff)
3381 {
3382 case 0:
3383 implied_prefix = 0;
3384 break;
3385 case DATA_PREFIX_OPCODE:
3386 implied_prefix = 1;
3387 break;
3388 case REPE_PREFIX_OPCODE:
3389 implied_prefix = 2;
3390 break;
3391 case REPNE_PREFIX_OPCODE:
3392 implied_prefix = 3;
3393 break;
3394 default:
3395 abort ();
3396 }
3397
3398 /* Use 2-byte VEX prefix if possible. */
3399 if (i.vec_encoding != vex_encoding_vex3
3400 && i.tm.opcode_modifier.vexopcode == VEX0F
3401 && i.tm.opcode_modifier.vexw != VEXW1
3402 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3403 {
3404 /* 2-byte VEX prefix. */
3405 unsigned int r;
3406
3407 i.vex.length = 2;
3408 i.vex.bytes[0] = 0xc5;
3409
3410 /* Check the REX.R bit. */
3411 r = (i.rex & REX_R) ? 0 : 1;
3412 i.vex.bytes[1] = (r << 7
3413 | register_specifier << 3
3414 | vector_length << 2
3415 | implied_prefix);
3416 }
3417 else
3418 {
3419 /* 3-byte VEX prefix. */
3420 unsigned int m, w;
3421
3422 i.vex.length = 3;
3423
3424 switch (i.tm.opcode_modifier.vexopcode)
3425 {
3426 case VEX0F:
3427 m = 0x1;
3428 i.vex.bytes[0] = 0xc4;
3429 break;
3430 case VEX0F38:
3431 m = 0x2;
3432 i.vex.bytes[0] = 0xc4;
3433 break;
3434 case VEX0F3A:
3435 m = 0x3;
3436 i.vex.bytes[0] = 0xc4;
3437 break;
3438 case XOP08:
3439 m = 0x8;
3440 i.vex.bytes[0] = 0x8f;
3441 break;
3442 case XOP09:
3443 m = 0x9;
3444 i.vex.bytes[0] = 0x8f;
3445 break;
3446 case XOP0A:
3447 m = 0xa;
3448 i.vex.bytes[0] = 0x8f;
3449 break;
3450 default:
3451 abort ();
3452 }
3453
3454 /* The high 3 bits of the second VEX byte are 1's compliment
3455 of RXB bits from REX. */
3456 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3457
3458 /* Check the REX.W bit. */
3459 w = (i.rex & REX_W) ? 1 : 0;
3460 if (i.tm.opcode_modifier.vexw == VEXW1)
3461 w = 1;
3462
3463 i.vex.bytes[2] = (w << 7
3464 | register_specifier << 3
3465 | vector_length << 2
3466 | implied_prefix);
3467 }
3468 }
3469
3470 static INLINE bfd_boolean
3471 is_evex_encoding (const insn_template *t)
3472 {
3473 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3474 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3475 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3476 }
3477
3478 /* Build the EVEX prefix. */
3479
3480 static void
3481 build_evex_prefix (void)
3482 {
3483 unsigned int register_specifier;
3484 unsigned int implied_prefix;
3485 unsigned int m, w;
3486 rex_byte vrex_used = 0;
3487
3488 /* Check register specifier. */
3489 if (i.vex.register_specifier)
3490 {
3491 gas_assert ((i.vrex & REX_X) == 0);
3492
3493 register_specifier = i.vex.register_specifier->reg_num;
3494 if ((i.vex.register_specifier->reg_flags & RegRex))
3495 register_specifier += 8;
3496 /* The upper 16 registers are encoded in the fourth byte of the
3497 EVEX prefix. */
3498 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3499 i.vex.bytes[3] = 0x8;
3500 register_specifier = ~register_specifier & 0xf;
3501 }
3502 else
3503 {
3504 register_specifier = 0xf;
3505
3506 /* Encode upper 16 vector index register in the fourth byte of
3507 the EVEX prefix. */
3508 if (!(i.vrex & REX_X))
3509 i.vex.bytes[3] = 0x8;
3510 else
3511 vrex_used |= REX_X;
3512 }
3513
3514 switch ((i.tm.base_opcode >> 8) & 0xff)
3515 {
3516 case 0:
3517 implied_prefix = 0;
3518 break;
3519 case DATA_PREFIX_OPCODE:
3520 implied_prefix = 1;
3521 break;
3522 case REPE_PREFIX_OPCODE:
3523 implied_prefix = 2;
3524 break;
3525 case REPNE_PREFIX_OPCODE:
3526 implied_prefix = 3;
3527 break;
3528 default:
3529 abort ();
3530 }
3531
3532 /* 4 byte EVEX prefix. */
3533 i.vex.length = 4;
3534 i.vex.bytes[0] = 0x62;
3535
3536 /* mmmm bits. */
3537 switch (i.tm.opcode_modifier.vexopcode)
3538 {
3539 case VEX0F:
3540 m = 1;
3541 break;
3542 case VEX0F38:
3543 m = 2;
3544 break;
3545 case VEX0F3A:
3546 m = 3;
3547 break;
3548 default:
3549 abort ();
3550 break;
3551 }
3552
3553 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3554 bits from REX. */
3555 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3556
3557 /* The fifth bit of the second EVEX byte is 1's compliment of the
3558 REX_R bit in VREX. */
3559 if (!(i.vrex & REX_R))
3560 i.vex.bytes[1] |= 0x10;
3561 else
3562 vrex_used |= REX_R;
3563
3564 if ((i.reg_operands + i.imm_operands) == i.operands)
3565 {
3566 /* When all operands are registers, the REX_X bit in REX is not
3567 used. We reuse it to encode the upper 16 registers, which is
3568 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3569 as 1's compliment. */
3570 if ((i.vrex & REX_B))
3571 {
3572 vrex_used |= REX_B;
3573 i.vex.bytes[1] &= ~0x40;
3574 }
3575 }
3576
3577 /* EVEX instructions shouldn't need the REX prefix. */
3578 i.vrex &= ~vrex_used;
3579 gas_assert (i.vrex == 0);
3580
3581 /* Check the REX.W bit. */
3582 w = (i.rex & REX_W) ? 1 : 0;
3583 if (i.tm.opcode_modifier.vexw)
3584 {
3585 if (i.tm.opcode_modifier.vexw == VEXW1)
3586 w = 1;
3587 }
3588 /* If w is not set it means we are dealing with WIG instruction. */
3589 else if (!w)
3590 {
3591 if (evexwig == evexw1)
3592 w = 1;
3593 }
3594
3595 /* Encode the U bit. */
3596 implied_prefix |= 0x4;
3597
3598 /* The third byte of the EVEX prefix. */
3599 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3600
3601 /* The fourth byte of the EVEX prefix. */
3602 /* The zeroing-masking bit. */
3603 if (i.mask && i.mask->zeroing)
3604 i.vex.bytes[3] |= 0x80;
3605
3606 /* Don't always set the broadcast bit if there is no RC. */
3607 if (!i.rounding)
3608 {
3609 /* Encode the vector length. */
3610 unsigned int vec_length;
3611
3612 if (!i.tm.opcode_modifier.evex
3613 || i.tm.opcode_modifier.evex == EVEXDYN)
3614 {
3615 unsigned int op;
3616
3617 /* Determine vector length from the last multi-length vector
3618 operand. */
3619 vec_length = 0;
3620 for (op = i.operands; op--;)
3621 if (i.tm.operand_types[op].bitfield.xmmword
3622 + i.tm.operand_types[op].bitfield.ymmword
3623 + i.tm.operand_types[op].bitfield.zmmword > 1)
3624 {
3625 if (i.types[op].bitfield.zmmword)
3626 {
3627 i.tm.opcode_modifier.evex = EVEX512;
3628 break;
3629 }
3630 else if (i.types[op].bitfield.ymmword)
3631 {
3632 i.tm.opcode_modifier.evex = EVEX256;
3633 break;
3634 }
3635 else if (i.types[op].bitfield.xmmword)
3636 {
3637 i.tm.opcode_modifier.evex = EVEX128;
3638 break;
3639 }
3640 else if (i.broadcast && (int) op == i.broadcast->operand)
3641 {
3642 switch ((i.tm.operand_types[op].bitfield.dword ? 4 : 8)
3643 * i.broadcast->type)
3644 {
3645 case 64:
3646 i.tm.opcode_modifier.evex = EVEX512;
3647 break;
3648 case 32:
3649 i.tm.opcode_modifier.evex = EVEX256;
3650 break;
3651 case 16:
3652 i.tm.opcode_modifier.evex = EVEX128;
3653 break;
3654 default:
3655 abort ();
3656 }
3657 break;
3658 }
3659 }
3660
3661 if (op >= MAX_OPERANDS)
3662 abort ();
3663 }
3664
3665 switch (i.tm.opcode_modifier.evex)
3666 {
3667 case EVEXLIG: /* LL' is ignored */
3668 vec_length = evexlig << 5;
3669 break;
3670 case EVEX128:
3671 vec_length = 0 << 5;
3672 break;
3673 case EVEX256:
3674 vec_length = 1 << 5;
3675 break;
3676 case EVEX512:
3677 vec_length = 2 << 5;
3678 break;
3679 default:
3680 abort ();
3681 break;
3682 }
3683 i.vex.bytes[3] |= vec_length;
3684 /* Encode the broadcast bit. */
3685 if (i.broadcast)
3686 i.vex.bytes[3] |= 0x10;
3687 }
3688 else
3689 {
3690 if (i.rounding->type != saeonly)
3691 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3692 else
3693 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3694 }
3695
3696 if (i.mask && i.mask->mask)
3697 i.vex.bytes[3] |= i.mask->mask->reg_num;
3698 }
3699
3700 static void
3701 process_immext (void)
3702 {
3703 expressionS *exp;
3704
3705 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3706 && i.operands > 0)
3707 {
3708 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3709 with an opcode suffix which is coded in the same place as an
3710 8-bit immediate field would be.
3711 Here we check those operands and remove them afterwards. */
3712 unsigned int x;
3713
3714 for (x = 0; x < i.operands; x++)
3715 if (register_number (i.op[x].regs) != x)
3716 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3717 register_prefix, i.op[x].regs->reg_name, x + 1,
3718 i.tm.name);
3719
3720 i.operands = 0;
3721 }
3722
3723 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3724 {
3725 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3726 suffix which is coded in the same place as an 8-bit immediate
3727 field would be.
3728 Here we check those operands and remove them afterwards. */
3729 unsigned int x;
3730
3731 if (i.operands != 3)
3732 abort();
3733
3734 for (x = 0; x < 2; x++)
3735 if (register_number (i.op[x].regs) != x)
3736 goto bad_register_operand;
3737
3738 /* Check for third operand for mwaitx/monitorx insn. */
3739 if (register_number (i.op[x].regs)
3740 != (x + (i.tm.extension_opcode == 0xfb)))
3741 {
3742 bad_register_operand:
3743 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3744 register_prefix, i.op[x].regs->reg_name, x+1,
3745 i.tm.name);
3746 }
3747
3748 i.operands = 0;
3749 }
3750
3751 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3752 which is coded in the same place as an 8-bit immediate field
3753 would be. Here we fake an 8-bit immediate operand from the
3754 opcode suffix stored in tm.extension_opcode.
3755
3756 AVX instructions also use this encoding, for some of
3757 3 argument instructions. */
3758
3759 gas_assert (i.imm_operands <= 1
3760 && (i.operands <= 2
3761 || ((i.tm.opcode_modifier.vex
3762 || i.tm.opcode_modifier.vexopcode
3763 || is_evex_encoding (&i.tm))
3764 && i.operands <= 4)));
3765
3766 exp = &im_expressions[i.imm_operands++];
3767 i.op[i.operands].imms = exp;
3768 i.types[i.operands] = imm8;
3769 i.operands++;
3770 exp->X_op = O_constant;
3771 exp->X_add_number = i.tm.extension_opcode;
3772 i.tm.extension_opcode = None;
3773 }
3774
3775
3776 static int
3777 check_hle (void)
3778 {
3779 switch (i.tm.opcode_modifier.hleprefixok)
3780 {
3781 default:
3782 abort ();
3783 case HLEPrefixNone:
3784 as_bad (_("invalid instruction `%s' after `%s'"),
3785 i.tm.name, i.hle_prefix);
3786 return 0;
3787 case HLEPrefixLock:
3788 if (i.prefix[LOCK_PREFIX])
3789 return 1;
3790 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3791 return 0;
3792 case HLEPrefixAny:
3793 return 1;
3794 case HLEPrefixRelease:
3795 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3796 {
3797 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3798 i.tm.name);
3799 return 0;
3800 }
3801 if (i.mem_operands == 0
3802 || !operand_type_check (i.types[i.operands - 1], anymem))
3803 {
3804 as_bad (_("memory destination needed for instruction `%s'"
3805 " after `xrelease'"), i.tm.name);
3806 return 0;
3807 }
3808 return 1;
3809 }
3810 }
3811
3812 /* Try the shortest encoding by shortening operand size. */
3813
3814 static void
3815 optimize_encoding (void)
3816 {
3817 int j;
3818
3819 if (optimize_for_space
3820 && i.reg_operands == 1
3821 && i.imm_operands == 1
3822 && !i.types[1].bitfield.byte
3823 && i.op[0].imms->X_op == O_constant
3824 && fits_in_imm7 (i.op[0].imms->X_add_number)
3825 && ((i.tm.base_opcode == 0xa8
3826 && i.tm.extension_opcode == None)
3827 || (i.tm.base_opcode == 0xf6
3828 && i.tm.extension_opcode == 0x0)))
3829 {
3830 /* Optimize: -Os:
3831 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3832 */
3833 unsigned int base_regnum = i.op[1].regs->reg_num;
3834 if (flag_code == CODE_64BIT || base_regnum < 4)
3835 {
3836 i.types[1].bitfield.byte = 1;
3837 /* Ignore the suffix. */
3838 i.suffix = 0;
3839 if (base_regnum >= 4
3840 && !(i.op[1].regs->reg_flags & RegRex))
3841 {
3842 /* Handle SP, BP, SI and DI registers. */
3843 if (i.types[1].bitfield.word)
3844 j = 16;
3845 else if (i.types[1].bitfield.dword)
3846 j = 32;
3847 else
3848 j = 48;
3849 i.op[1].regs -= j;
3850 }
3851 }
3852 }
3853 else if (flag_code == CODE_64BIT
3854 && ((i.types[1].bitfield.qword
3855 && i.reg_operands == 1
3856 && i.imm_operands == 1
3857 && i.op[0].imms->X_op == O_constant
3858 && ((i.tm.base_opcode == 0xb0
3859 && i.tm.extension_opcode == None
3860 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3861 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3862 && (((i.tm.base_opcode == 0x24
3863 || i.tm.base_opcode == 0xa8)
3864 && i.tm.extension_opcode == None)
3865 || (i.tm.base_opcode == 0x80
3866 && i.tm.extension_opcode == 0x4)
3867 || ((i.tm.base_opcode == 0xf6
3868 || i.tm.base_opcode == 0xc6)
3869 && i.tm.extension_opcode == 0x0)))))
3870 || (i.types[0].bitfield.qword
3871 && ((i.reg_operands == 2
3872 && i.op[0].regs == i.op[1].regs
3873 && ((i.tm.base_opcode == 0x30
3874 || i.tm.base_opcode == 0x28)
3875 && i.tm.extension_opcode == None))
3876 || (i.reg_operands == 1
3877 && i.operands == 1
3878 && i.tm.base_opcode == 0x30
3879 && i.tm.extension_opcode == None)))))
3880 {
3881 /* Optimize: -O:
3882 andq $imm31, %r64 -> andl $imm31, %r32
3883 testq $imm31, %r64 -> testl $imm31, %r32
3884 xorq %r64, %r64 -> xorl %r32, %r32
3885 subq %r64, %r64 -> subl %r32, %r32
3886 movq $imm31, %r64 -> movl $imm31, %r32
3887 movq $imm32, %r64 -> movl $imm32, %r32
3888 */
3889 i.tm.opcode_modifier.norex64 = 1;
3890 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3891 {
3892 /* Handle
3893 movq $imm31, %r64 -> movl $imm31, %r32
3894 movq $imm32, %r64 -> movl $imm32, %r32
3895 */
3896 i.tm.operand_types[0].bitfield.imm32 = 1;
3897 i.tm.operand_types[0].bitfield.imm32s = 0;
3898 i.tm.operand_types[0].bitfield.imm64 = 0;
3899 i.types[0].bitfield.imm32 = 1;
3900 i.types[0].bitfield.imm32s = 0;
3901 i.types[0].bitfield.imm64 = 0;
3902 i.types[1].bitfield.dword = 1;
3903 i.types[1].bitfield.qword = 0;
3904 if (i.tm.base_opcode == 0xc6)
3905 {
3906 /* Handle
3907 movq $imm31, %r64 -> movl $imm31, %r32
3908 */
3909 i.tm.base_opcode = 0xb0;
3910 i.tm.extension_opcode = None;
3911 i.tm.opcode_modifier.shortform = 1;
3912 i.tm.opcode_modifier.modrm = 0;
3913 }
3914 }
3915 }
3916 else if (optimize > 1
3917 && i.reg_operands == 3
3918 && i.op[0].regs == i.op[1].regs
3919 && !i.types[2].bitfield.xmmword
3920 && (i.tm.opcode_modifier.vex
3921 || ((!i.mask || i.mask->zeroing)
3922 && !i.rounding
3923 && is_evex_encoding (&i.tm)
3924 && (i.vec_encoding != vex_encoding_evex
3925 || i.tm.cpu_flags.bitfield.cpuavx512vl
3926 || (i.tm.operand_types[2].bitfield.zmmword
3927 && i.types[2].bitfield.ymmword)
3928 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
3929 && ((i.tm.base_opcode == 0x55
3930 || i.tm.base_opcode == 0x6655
3931 || i.tm.base_opcode == 0x66df
3932 || i.tm.base_opcode == 0x57
3933 || i.tm.base_opcode == 0x6657
3934 || i.tm.base_opcode == 0x66ef
3935 || i.tm.base_opcode == 0x66f8
3936 || i.tm.base_opcode == 0x66f9
3937 || i.tm.base_opcode == 0x66fa
3938 || i.tm.base_opcode == 0x66fb)
3939 && i.tm.extension_opcode == None))
3940 {
3941 /* Optimize: -O2:
3942 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3943 vpsubq and vpsubw:
3944 EVEX VOP %zmmM, %zmmM, %zmmN
3945 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3946 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3947 EVEX VOP %ymmM, %ymmM, %ymmN
3948 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3949 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3950 VEX VOP %ymmM, %ymmM, %ymmN
3951 -> VEX VOP %xmmM, %xmmM, %xmmN
3952 VOP, one of vpandn and vpxor:
3953 VEX VOP %ymmM, %ymmM, %ymmN
3954 -> VEX VOP %xmmM, %xmmM, %xmmN
3955 VOP, one of vpandnd and vpandnq:
3956 EVEX VOP %zmmM, %zmmM, %zmmN
3957 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3958 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3959 EVEX VOP %ymmM, %ymmM, %ymmN
3960 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3961 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3962 VOP, one of vpxord and vpxorq:
3963 EVEX VOP %zmmM, %zmmM, %zmmN
3964 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3965 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3966 EVEX VOP %ymmM, %ymmM, %ymmN
3967 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3968 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3969 */
3970 if (is_evex_encoding (&i.tm))
3971 {
3972 if (i.vec_encoding == vex_encoding_evex)
3973 i.tm.opcode_modifier.evex = EVEX128;
3974 else
3975 {
3976 i.tm.opcode_modifier.vex = VEX128;
3977 i.tm.opcode_modifier.vexw = VEXW0;
3978 i.tm.opcode_modifier.evex = 0;
3979 }
3980 }
3981 else
3982 i.tm.opcode_modifier.vex = VEX128;
3983
3984 if (i.tm.opcode_modifier.vex)
3985 for (j = 0; j < 3; j++)
3986 {
3987 i.types[j].bitfield.xmmword = 1;
3988 i.types[j].bitfield.ymmword = 0;
3989 }
3990 }
3991 }
3992
3993 /* This is the guts of the machine-dependent assembler. LINE points to a
3994 machine dependent instruction. This function is supposed to emit
3995 the frags/bytes it assembles to. */
3996
3997 void
3998 md_assemble (char *line)
3999 {
4000 unsigned int j;
4001 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4002 const insn_template *t;
4003
4004 /* Initialize globals. */
4005 memset (&i, '\0', sizeof (i));
4006 for (j = 0; j < MAX_OPERANDS; j++)
4007 i.reloc[j] = NO_RELOC;
4008 memset (disp_expressions, '\0', sizeof (disp_expressions));
4009 memset (im_expressions, '\0', sizeof (im_expressions));
4010 save_stack_p = save_stack;
4011
4012 /* First parse an instruction mnemonic & call i386_operand for the operands.
4013 We assume that the scrubber has arranged it so that line[0] is the valid
4014 start of a (possibly prefixed) mnemonic. */
4015
4016 line = parse_insn (line, mnemonic);
4017 if (line == NULL)
4018 return;
4019 mnem_suffix = i.suffix;
4020
4021 line = parse_operands (line, mnemonic);
4022 this_operand = -1;
4023 xfree (i.memop1_string);
4024 i.memop1_string = NULL;
4025 if (line == NULL)
4026 return;
4027
4028 /* Now we've parsed the mnemonic into a set of templates, and have the
4029 operands at hand. */
4030
4031 /* All intel opcodes have reversed operands except for "bound" and
4032 "enter". We also don't reverse intersegment "jmp" and "call"
4033 instructions with 2 immediate operands so that the immediate segment
4034 precedes the offset, as it does when in AT&T mode. */
4035 if (intel_syntax
4036 && i.operands > 1
4037 && (strcmp (mnemonic, "bound") != 0)
4038 && (strcmp (mnemonic, "invlpga") != 0)
4039 && !(operand_type_check (i.types[0], imm)
4040 && operand_type_check (i.types[1], imm)))
4041 swap_operands ();
4042
4043 /* The order of the immediates should be reversed
4044 for 2 immediates extrq and insertq instructions */
4045 if (i.imm_operands == 2
4046 && (strcmp (mnemonic, "extrq") == 0
4047 || strcmp (mnemonic, "insertq") == 0))
4048 swap_2_operands (0, 1);
4049
4050 if (i.imm_operands)
4051 optimize_imm ();
4052
4053 /* Don't optimize displacement for movabs since it only takes 64bit
4054 displacement. */
4055 if (i.disp_operands
4056 && i.disp_encoding != disp_encoding_32bit
4057 && (flag_code != CODE_64BIT
4058 || strcmp (mnemonic, "movabs") != 0))
4059 optimize_disp ();
4060
4061 /* Next, we find a template that matches the given insn,
4062 making sure the overlap of the given operands types is consistent
4063 with the template operand types. */
4064
4065 if (!(t = match_template (mnem_suffix)))
4066 return;
4067
4068 if (sse_check != check_none
4069 && !i.tm.opcode_modifier.noavx
4070 && !i.tm.cpu_flags.bitfield.cpuavx
4071 && (i.tm.cpu_flags.bitfield.cpusse
4072 || i.tm.cpu_flags.bitfield.cpusse2
4073 || i.tm.cpu_flags.bitfield.cpusse3
4074 || i.tm.cpu_flags.bitfield.cpussse3
4075 || i.tm.cpu_flags.bitfield.cpusse4_1
4076 || i.tm.cpu_flags.bitfield.cpusse4_2
4077 || i.tm.cpu_flags.bitfield.cpupclmul
4078 || i.tm.cpu_flags.bitfield.cpuaes
4079 || i.tm.cpu_flags.bitfield.cpugfni))
4080 {
4081 (sse_check == check_warning
4082 ? as_warn
4083 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4084 }
4085
4086 /* Zap movzx and movsx suffix. The suffix has been set from
4087 "word ptr" or "byte ptr" on the source operand in Intel syntax
4088 or extracted from mnemonic in AT&T syntax. But we'll use
4089 the destination register to choose the suffix for encoding. */
4090 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4091 {
4092 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4093 there is no suffix, the default will be byte extension. */
4094 if (i.reg_operands != 2
4095 && !i.suffix
4096 && intel_syntax)
4097 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4098
4099 i.suffix = 0;
4100 }
4101
4102 if (i.tm.opcode_modifier.fwait)
4103 if (!add_prefix (FWAIT_OPCODE))
4104 return;
4105
4106 /* Check if REP prefix is OK. */
4107 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4108 {
4109 as_bad (_("invalid instruction `%s' after `%s'"),
4110 i.tm.name, i.rep_prefix);
4111 return;
4112 }
4113
4114 /* Check for lock without a lockable instruction. Destination operand
4115 must be memory unless it is xchg (0x86). */
4116 if (i.prefix[LOCK_PREFIX]
4117 && (!i.tm.opcode_modifier.islockable
4118 || i.mem_operands == 0
4119 || (i.tm.base_opcode != 0x86
4120 && !operand_type_check (i.types[i.operands - 1], anymem))))
4121 {
4122 as_bad (_("expecting lockable instruction after `lock'"));
4123 return;
4124 }
4125
4126 /* Check if HLE prefix is OK. */
4127 if (i.hle_prefix && !check_hle ())
4128 return;
4129
4130 /* Check BND prefix. */
4131 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4132 as_bad (_("expecting valid branch instruction after `bnd'"));
4133
4134 /* Check NOTRACK prefix. */
4135 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4136 as_bad (_("expecting indirect branch instruction after `notrack'"));
4137
4138 if (i.tm.cpu_flags.bitfield.cpumpx)
4139 {
4140 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4141 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4142 else if (flag_code != CODE_16BIT
4143 ? i.prefix[ADDR_PREFIX]
4144 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4145 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4146 }
4147
4148 /* Insert BND prefix. */
4149 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4150 {
4151 if (!i.prefix[BND_PREFIX])
4152 add_prefix (BND_PREFIX_OPCODE);
4153 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4154 {
4155 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4156 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4157 }
4158 }
4159
4160 /* Check string instruction segment overrides. */
4161 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4162 {
4163 if (!check_string ())
4164 return;
4165 i.disp_operands = 0;
4166 }
4167
4168 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4169 optimize_encoding ();
4170
4171 if (!process_suffix ())
4172 return;
4173
4174 /* Update operand types. */
4175 for (j = 0; j < i.operands; j++)
4176 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4177
4178 /* Make still unresolved immediate matches conform to size of immediate
4179 given in i.suffix. */
4180 if (!finalize_imm ())
4181 return;
4182
4183 if (i.types[0].bitfield.imm1)
4184 i.imm_operands = 0; /* kludge for shift insns. */
4185
4186 /* We only need to check those implicit registers for instructions
4187 with 3 operands or less. */
4188 if (i.operands <= 3)
4189 for (j = 0; j < i.operands; j++)
4190 if (i.types[j].bitfield.inoutportreg
4191 || i.types[j].bitfield.shiftcount
4192 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4193 i.reg_operands--;
4194
4195 /* ImmExt should be processed after SSE2AVX. */
4196 if (!i.tm.opcode_modifier.sse2avx
4197 && i.tm.opcode_modifier.immext)
4198 process_immext ();
4199
4200 /* For insns with operands there are more diddles to do to the opcode. */
4201 if (i.operands)
4202 {
4203 if (!process_operands ())
4204 return;
4205 }
4206 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4207 {
4208 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4209 as_warn (_("translating to `%sp'"), i.tm.name);
4210 }
4211
4212 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.vexopcode
4213 || is_evex_encoding (&i.tm))
4214 {
4215 if (flag_code == CODE_16BIT)
4216 {
4217 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4218 i.tm.name);
4219 return;
4220 }
4221
4222 if (i.tm.opcode_modifier.vex)
4223 build_vex_prefix (t);
4224 else
4225 build_evex_prefix ();
4226 }
4227
4228 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4229 instructions may define INT_OPCODE as well, so avoid this corner
4230 case for those instructions that use MODRM. */
4231 if (i.tm.base_opcode == INT_OPCODE
4232 && !i.tm.opcode_modifier.modrm
4233 && i.op[0].imms->X_add_number == 3)
4234 {
4235 i.tm.base_opcode = INT3_OPCODE;
4236 i.imm_operands = 0;
4237 }
4238
4239 if ((i.tm.opcode_modifier.jump
4240 || i.tm.opcode_modifier.jumpbyte
4241 || i.tm.opcode_modifier.jumpdword)
4242 && i.op[0].disps->X_op == O_constant)
4243 {
4244 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4245 the absolute address given by the constant. Since ix86 jumps and
4246 calls are pc relative, we need to generate a reloc. */
4247 i.op[0].disps->X_add_symbol = &abs_symbol;
4248 i.op[0].disps->X_op = O_symbol;
4249 }
4250
4251 if (i.tm.opcode_modifier.rex64)
4252 i.rex |= REX_W;
4253
4254 /* For 8 bit registers we need an empty rex prefix. Also if the
4255 instruction already has a prefix, we need to convert old
4256 registers to new ones. */
4257
4258 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4259 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4260 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4261 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4262 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4263 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4264 && i.rex != 0))
4265 {
4266 int x;
4267
4268 i.rex |= REX_OPCODE;
4269 for (x = 0; x < 2; x++)
4270 {
4271 /* Look for 8 bit operand that uses old registers. */
4272 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4273 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4274 {
4275 /* In case it is "hi" register, give up. */
4276 if (i.op[x].regs->reg_num > 3)
4277 as_bad (_("can't encode register '%s%s' in an "
4278 "instruction requiring REX prefix."),
4279 register_prefix, i.op[x].regs->reg_name);
4280
4281 /* Otherwise it is equivalent to the extended register.
4282 Since the encoding doesn't change this is merely
4283 cosmetic cleanup for debug output. */
4284
4285 i.op[x].regs = i.op[x].regs + 8;
4286 }
4287 }
4288 }
4289
4290 if (i.rex == 0 && i.rex_encoding)
4291 {
4292 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4293 that uses legacy register. If it is "hi" register, don't add
4294 the REX_OPCODE byte. */
4295 int x;
4296 for (x = 0; x < 2; x++)
4297 if (i.types[x].bitfield.reg
4298 && i.types[x].bitfield.byte
4299 && (i.op[x].regs->reg_flags & RegRex64) == 0
4300 && i.op[x].regs->reg_num > 3)
4301 {
4302 i.rex_encoding = FALSE;
4303 break;
4304 }
4305
4306 if (i.rex_encoding)
4307 i.rex = REX_OPCODE;
4308 }
4309
4310 if (i.rex != 0)
4311 add_prefix (REX_OPCODE | i.rex);
4312
4313 /* We are ready to output the insn. */
4314 output_insn ();
4315 }
4316
4317 static char *
4318 parse_insn (char *line, char *mnemonic)
4319 {
4320 char *l = line;
4321 char *token_start = l;
4322 char *mnem_p;
4323 int supported;
4324 const insn_template *t;
4325 char *dot_p = NULL;
4326
4327 while (1)
4328 {
4329 mnem_p = mnemonic;
4330 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4331 {
4332 if (*mnem_p == '.')
4333 dot_p = mnem_p;
4334 mnem_p++;
4335 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4336 {
4337 as_bad (_("no such instruction: `%s'"), token_start);
4338 return NULL;
4339 }
4340 l++;
4341 }
4342 if (!is_space_char (*l)
4343 && *l != END_OF_INSN
4344 && (intel_syntax
4345 || (*l != PREFIX_SEPARATOR
4346 && *l != ',')))
4347 {
4348 as_bad (_("invalid character %s in mnemonic"),
4349 output_invalid (*l));
4350 return NULL;
4351 }
4352 if (token_start == l)
4353 {
4354 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4355 as_bad (_("expecting prefix; got nothing"));
4356 else
4357 as_bad (_("expecting mnemonic; got nothing"));
4358 return NULL;
4359 }
4360
4361 /* Look up instruction (or prefix) via hash table. */
4362 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4363
4364 if (*l != END_OF_INSN
4365 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4366 && current_templates
4367 && current_templates->start->opcode_modifier.isprefix)
4368 {
4369 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4370 {
4371 as_bad ((flag_code != CODE_64BIT
4372 ? _("`%s' is only supported in 64-bit mode")
4373 : _("`%s' is not supported in 64-bit mode")),
4374 current_templates->start->name);
4375 return NULL;
4376 }
4377 /* If we are in 16-bit mode, do not allow addr16 or data16.
4378 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4379 if ((current_templates->start->opcode_modifier.size16
4380 || current_templates->start->opcode_modifier.size32)
4381 && flag_code != CODE_64BIT
4382 && (current_templates->start->opcode_modifier.size32
4383 ^ (flag_code == CODE_16BIT)))
4384 {
4385 as_bad (_("redundant %s prefix"),
4386 current_templates->start->name);
4387 return NULL;
4388 }
4389 if (current_templates->start->opcode_length == 0)
4390 {
4391 /* Handle pseudo prefixes. */
4392 switch (current_templates->start->base_opcode)
4393 {
4394 case 0x0:
4395 /* {disp8} */
4396 i.disp_encoding = disp_encoding_8bit;
4397 break;
4398 case 0x1:
4399 /* {disp32} */
4400 i.disp_encoding = disp_encoding_32bit;
4401 break;
4402 case 0x2:
4403 /* {load} */
4404 i.dir_encoding = dir_encoding_load;
4405 break;
4406 case 0x3:
4407 /* {store} */
4408 i.dir_encoding = dir_encoding_store;
4409 break;
4410 case 0x4:
4411 /* {vex2} */
4412 i.vec_encoding = vex_encoding_vex2;
4413 break;
4414 case 0x5:
4415 /* {vex3} */
4416 i.vec_encoding = vex_encoding_vex3;
4417 break;
4418 case 0x6:
4419 /* {evex} */
4420 i.vec_encoding = vex_encoding_evex;
4421 break;
4422 case 0x7:
4423 /* {rex} */
4424 i.rex_encoding = TRUE;
4425 break;
4426 case 0x8:
4427 /* {nooptimize} */
4428 i.no_optimize = TRUE;
4429 break;
4430 default:
4431 abort ();
4432 }
4433 }
4434 else
4435 {
4436 /* Add prefix, checking for repeated prefixes. */
4437 switch (add_prefix (current_templates->start->base_opcode))
4438 {
4439 case PREFIX_EXIST:
4440 return NULL;
4441 case PREFIX_DS:
4442 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4443 i.notrack_prefix = current_templates->start->name;
4444 break;
4445 case PREFIX_REP:
4446 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4447 i.hle_prefix = current_templates->start->name;
4448 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4449 i.bnd_prefix = current_templates->start->name;
4450 else
4451 i.rep_prefix = current_templates->start->name;
4452 break;
4453 default:
4454 break;
4455 }
4456 }
4457 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4458 token_start = ++l;
4459 }
4460 else
4461 break;
4462 }
4463
4464 if (!current_templates)
4465 {
4466 /* Check if we should swap operand or force 32bit displacement in
4467 encoding. */
4468 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4469 i.dir_encoding = dir_encoding_store;
4470 else if (mnem_p - 3 == dot_p
4471 && dot_p[1] == 'd'
4472 && dot_p[2] == '8')
4473 i.disp_encoding = disp_encoding_8bit;
4474 else if (mnem_p - 4 == dot_p
4475 && dot_p[1] == 'd'
4476 && dot_p[2] == '3'
4477 && dot_p[3] == '2')
4478 i.disp_encoding = disp_encoding_32bit;
4479 else
4480 goto check_suffix;
4481 mnem_p = dot_p;
4482 *dot_p = '\0';
4483 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4484 }
4485
4486 if (!current_templates)
4487 {
4488 check_suffix:
4489 /* See if we can get a match by trimming off a suffix. */
4490 switch (mnem_p[-1])
4491 {
4492 case WORD_MNEM_SUFFIX:
4493 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4494 i.suffix = SHORT_MNEM_SUFFIX;
4495 else
4496 /* Fall through. */
4497 case BYTE_MNEM_SUFFIX:
4498 case QWORD_MNEM_SUFFIX:
4499 i.suffix = mnem_p[-1];
4500 mnem_p[-1] = '\0';
4501 current_templates = (const templates *) hash_find (op_hash,
4502 mnemonic);
4503 break;
4504 case SHORT_MNEM_SUFFIX:
4505 case LONG_MNEM_SUFFIX:
4506 if (!intel_syntax)
4507 {
4508 i.suffix = mnem_p[-1];
4509 mnem_p[-1] = '\0';
4510 current_templates = (const templates *) hash_find (op_hash,
4511 mnemonic);
4512 }
4513 break;
4514
4515 /* Intel Syntax. */
4516 case 'd':
4517 if (intel_syntax)
4518 {
4519 if (intel_float_operand (mnemonic) == 1)
4520 i.suffix = SHORT_MNEM_SUFFIX;
4521 else
4522 i.suffix = LONG_MNEM_SUFFIX;
4523 mnem_p[-1] = '\0';
4524 current_templates = (const templates *) hash_find (op_hash,
4525 mnemonic);
4526 }
4527 break;
4528 }
4529 if (!current_templates)
4530 {
4531 as_bad (_("no such instruction: `%s'"), token_start);
4532 return NULL;
4533 }
4534 }
4535
4536 if (current_templates->start->opcode_modifier.jump
4537 || current_templates->start->opcode_modifier.jumpbyte)
4538 {
4539 /* Check for a branch hint. We allow ",pt" and ",pn" for
4540 predict taken and predict not taken respectively.
4541 I'm not sure that branch hints actually do anything on loop
4542 and jcxz insns (JumpByte) for current Pentium4 chips. They
4543 may work in the future and it doesn't hurt to accept them
4544 now. */
4545 if (l[0] == ',' && l[1] == 'p')
4546 {
4547 if (l[2] == 't')
4548 {
4549 if (!add_prefix (DS_PREFIX_OPCODE))
4550 return NULL;
4551 l += 3;
4552 }
4553 else if (l[2] == 'n')
4554 {
4555 if (!add_prefix (CS_PREFIX_OPCODE))
4556 return NULL;
4557 l += 3;
4558 }
4559 }
4560 }
4561 /* Any other comma loses. */
4562 if (*l == ',')
4563 {
4564 as_bad (_("invalid character %s in mnemonic"),
4565 output_invalid (*l));
4566 return NULL;
4567 }
4568
4569 /* Check if instruction is supported on specified architecture. */
4570 supported = 0;
4571 for (t = current_templates->start; t < current_templates->end; ++t)
4572 {
4573 supported |= cpu_flags_match (t);
4574 if (supported == CPU_FLAGS_PERFECT_MATCH)
4575 {
4576 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4577 as_warn (_("use .code16 to ensure correct addressing mode"));
4578
4579 return l;
4580 }
4581 }
4582
4583 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4584 as_bad (flag_code == CODE_64BIT
4585 ? _("`%s' is not supported in 64-bit mode")
4586 : _("`%s' is only supported in 64-bit mode"),
4587 current_templates->start->name);
4588 else
4589 as_bad (_("`%s' is not supported on `%s%s'"),
4590 current_templates->start->name,
4591 cpu_arch_name ? cpu_arch_name : default_arch,
4592 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4593
4594 return NULL;
4595 }
4596
4597 static char *
4598 parse_operands (char *l, const char *mnemonic)
4599 {
4600 char *token_start;
4601
4602 /* 1 if operand is pending after ','. */
4603 unsigned int expecting_operand = 0;
4604
4605 /* Non-zero if operand parens not balanced. */
4606 unsigned int paren_not_balanced;
4607
4608 while (*l != END_OF_INSN)
4609 {
4610 /* Skip optional white space before operand. */
4611 if (is_space_char (*l))
4612 ++l;
4613 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4614 {
4615 as_bad (_("invalid character %s before operand %d"),
4616 output_invalid (*l),
4617 i.operands + 1);
4618 return NULL;
4619 }
4620 token_start = l; /* After white space. */
4621 paren_not_balanced = 0;
4622 while (paren_not_balanced || *l != ',')
4623 {
4624 if (*l == END_OF_INSN)
4625 {
4626 if (paren_not_balanced)
4627 {
4628 if (!intel_syntax)
4629 as_bad (_("unbalanced parenthesis in operand %d."),
4630 i.operands + 1);
4631 else
4632 as_bad (_("unbalanced brackets in operand %d."),
4633 i.operands + 1);
4634 return NULL;
4635 }
4636 else
4637 break; /* we are done */
4638 }
4639 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4640 {
4641 as_bad (_("invalid character %s in operand %d"),
4642 output_invalid (*l),
4643 i.operands + 1);
4644 return NULL;
4645 }
4646 if (!intel_syntax)
4647 {
4648 if (*l == '(')
4649 ++paren_not_balanced;
4650 if (*l == ')')
4651 --paren_not_balanced;
4652 }
4653 else
4654 {
4655 if (*l == '[')
4656 ++paren_not_balanced;
4657 if (*l == ']')
4658 --paren_not_balanced;
4659 }
4660 l++;
4661 }
4662 if (l != token_start)
4663 { /* Yes, we've read in another operand. */
4664 unsigned int operand_ok;
4665 this_operand = i.operands++;
4666 if (i.operands > MAX_OPERANDS)
4667 {
4668 as_bad (_("spurious operands; (%d operands/instruction max)"),
4669 MAX_OPERANDS);
4670 return NULL;
4671 }
4672 i.types[this_operand].bitfield.unspecified = 1;
4673 /* Now parse operand adding info to 'i' as we go along. */
4674 END_STRING_AND_SAVE (l);
4675
4676 if (intel_syntax)
4677 operand_ok =
4678 i386_intel_operand (token_start,
4679 intel_float_operand (mnemonic));
4680 else
4681 operand_ok = i386_att_operand (token_start);
4682
4683 RESTORE_END_STRING (l);
4684 if (!operand_ok)
4685 return NULL;
4686 }
4687 else
4688 {
4689 if (expecting_operand)
4690 {
4691 expecting_operand_after_comma:
4692 as_bad (_("expecting operand after ','; got nothing"));
4693 return NULL;
4694 }
4695 if (*l == ',')
4696 {
4697 as_bad (_("expecting operand before ','; got nothing"));
4698 return NULL;
4699 }
4700 }
4701
4702 /* Now *l must be either ',' or END_OF_INSN. */
4703 if (*l == ',')
4704 {
4705 if (*++l == END_OF_INSN)
4706 {
4707 /* Just skip it, if it's \n complain. */
4708 goto expecting_operand_after_comma;
4709 }
4710 expecting_operand = 1;
4711 }
4712 }
4713 return l;
4714 }
4715
4716 static void
4717 swap_2_operands (int xchg1, int xchg2)
4718 {
4719 union i386_op temp_op;
4720 i386_operand_type temp_type;
4721 enum bfd_reloc_code_real temp_reloc;
4722
4723 temp_type = i.types[xchg2];
4724 i.types[xchg2] = i.types[xchg1];
4725 i.types[xchg1] = temp_type;
4726 temp_op = i.op[xchg2];
4727 i.op[xchg2] = i.op[xchg1];
4728 i.op[xchg1] = temp_op;
4729 temp_reloc = i.reloc[xchg2];
4730 i.reloc[xchg2] = i.reloc[xchg1];
4731 i.reloc[xchg1] = temp_reloc;
4732
4733 if (i.mask)
4734 {
4735 if (i.mask->operand == xchg1)
4736 i.mask->operand = xchg2;
4737 else if (i.mask->operand == xchg2)
4738 i.mask->operand = xchg1;
4739 }
4740 if (i.broadcast)
4741 {
4742 if (i.broadcast->operand == xchg1)
4743 i.broadcast->operand = xchg2;
4744 else if (i.broadcast->operand == xchg2)
4745 i.broadcast->operand = xchg1;
4746 }
4747 if (i.rounding)
4748 {
4749 if (i.rounding->operand == xchg1)
4750 i.rounding->operand = xchg2;
4751 else if (i.rounding->operand == xchg2)
4752 i.rounding->operand = xchg1;
4753 }
4754 }
4755
4756 static void
4757 swap_operands (void)
4758 {
4759 switch (i.operands)
4760 {
4761 case 5:
4762 case 4:
4763 swap_2_operands (1, i.operands - 2);
4764 /* Fall through. */
4765 case 3:
4766 case 2:
4767 swap_2_operands (0, i.operands - 1);
4768 break;
4769 default:
4770 abort ();
4771 }
4772
4773 if (i.mem_operands == 2)
4774 {
4775 const seg_entry *temp_seg;
4776 temp_seg = i.seg[0];
4777 i.seg[0] = i.seg[1];
4778 i.seg[1] = temp_seg;
4779 }
4780 }
4781
4782 /* Try to ensure constant immediates are represented in the smallest
4783 opcode possible. */
4784 static void
4785 optimize_imm (void)
4786 {
4787 char guess_suffix = 0;
4788 int op;
4789
4790 if (i.suffix)
4791 guess_suffix = i.suffix;
4792 else if (i.reg_operands)
4793 {
4794 /* Figure out a suffix from the last register operand specified.
4795 We can't do this properly yet, ie. excluding InOutPortReg,
4796 but the following works for instructions with immediates.
4797 In any case, we can't set i.suffix yet. */
4798 for (op = i.operands; --op >= 0;)
4799 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4800 {
4801 guess_suffix = BYTE_MNEM_SUFFIX;
4802 break;
4803 }
4804 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4805 {
4806 guess_suffix = WORD_MNEM_SUFFIX;
4807 break;
4808 }
4809 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4810 {
4811 guess_suffix = LONG_MNEM_SUFFIX;
4812 break;
4813 }
4814 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4815 {
4816 guess_suffix = QWORD_MNEM_SUFFIX;
4817 break;
4818 }
4819 }
4820 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4821 guess_suffix = WORD_MNEM_SUFFIX;
4822
4823 for (op = i.operands; --op >= 0;)
4824 if (operand_type_check (i.types[op], imm))
4825 {
4826 switch (i.op[op].imms->X_op)
4827 {
4828 case O_constant:
4829 /* If a suffix is given, this operand may be shortened. */
4830 switch (guess_suffix)
4831 {
4832 case LONG_MNEM_SUFFIX:
4833 i.types[op].bitfield.imm32 = 1;
4834 i.types[op].bitfield.imm64 = 1;
4835 break;
4836 case WORD_MNEM_SUFFIX:
4837 i.types[op].bitfield.imm16 = 1;
4838 i.types[op].bitfield.imm32 = 1;
4839 i.types[op].bitfield.imm32s = 1;
4840 i.types[op].bitfield.imm64 = 1;
4841 break;
4842 case BYTE_MNEM_SUFFIX:
4843 i.types[op].bitfield.imm8 = 1;
4844 i.types[op].bitfield.imm8s = 1;
4845 i.types[op].bitfield.imm16 = 1;
4846 i.types[op].bitfield.imm32 = 1;
4847 i.types[op].bitfield.imm32s = 1;
4848 i.types[op].bitfield.imm64 = 1;
4849 break;
4850 }
4851
4852 /* If this operand is at most 16 bits, convert it
4853 to a signed 16 bit number before trying to see
4854 whether it will fit in an even smaller size.
4855 This allows a 16-bit operand such as $0xffe0 to
4856 be recognised as within Imm8S range. */
4857 if ((i.types[op].bitfield.imm16)
4858 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4859 {
4860 i.op[op].imms->X_add_number =
4861 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4862 }
4863 #ifdef BFD64
4864 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4865 if ((i.types[op].bitfield.imm32)
4866 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4867 == 0))
4868 {
4869 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4870 ^ ((offsetT) 1 << 31))
4871 - ((offsetT) 1 << 31));
4872 }
4873 #endif
4874 i.types[op]
4875 = operand_type_or (i.types[op],
4876 smallest_imm_type (i.op[op].imms->X_add_number));
4877
4878 /* We must avoid matching of Imm32 templates when 64bit
4879 only immediate is available. */
4880 if (guess_suffix == QWORD_MNEM_SUFFIX)
4881 i.types[op].bitfield.imm32 = 0;
4882 break;
4883
4884 case O_absent:
4885 case O_register:
4886 abort ();
4887
4888 /* Symbols and expressions. */
4889 default:
4890 /* Convert symbolic operand to proper sizes for matching, but don't
4891 prevent matching a set of insns that only supports sizes other
4892 than those matching the insn suffix. */
4893 {
4894 i386_operand_type mask, allowed;
4895 const insn_template *t;
4896
4897 operand_type_set (&mask, 0);
4898 operand_type_set (&allowed, 0);
4899
4900 for (t = current_templates->start;
4901 t < current_templates->end;
4902 ++t)
4903 allowed = operand_type_or (allowed,
4904 t->operand_types[op]);
4905 switch (guess_suffix)
4906 {
4907 case QWORD_MNEM_SUFFIX:
4908 mask.bitfield.imm64 = 1;
4909 mask.bitfield.imm32s = 1;
4910 break;
4911 case LONG_MNEM_SUFFIX:
4912 mask.bitfield.imm32 = 1;
4913 break;
4914 case WORD_MNEM_SUFFIX:
4915 mask.bitfield.imm16 = 1;
4916 break;
4917 case BYTE_MNEM_SUFFIX:
4918 mask.bitfield.imm8 = 1;
4919 break;
4920 default:
4921 break;
4922 }
4923 allowed = operand_type_and (mask, allowed);
4924 if (!operand_type_all_zero (&allowed))
4925 i.types[op] = operand_type_and (i.types[op], mask);
4926 }
4927 break;
4928 }
4929 }
4930 }
4931
4932 /* Try to use the smallest displacement type too. */
4933 static void
4934 optimize_disp (void)
4935 {
4936 int op;
4937
4938 for (op = i.operands; --op >= 0;)
4939 if (operand_type_check (i.types[op], disp))
4940 {
4941 if (i.op[op].disps->X_op == O_constant)
4942 {
4943 offsetT op_disp = i.op[op].disps->X_add_number;
4944
4945 if (i.types[op].bitfield.disp16
4946 && (op_disp & ~(offsetT) 0xffff) == 0)
4947 {
4948 /* If this operand is at most 16 bits, convert
4949 to a signed 16 bit number and don't use 64bit
4950 displacement. */
4951 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4952 i.types[op].bitfield.disp64 = 0;
4953 }
4954 #ifdef BFD64
4955 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4956 if (i.types[op].bitfield.disp32
4957 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4958 {
4959 /* If this operand is at most 32 bits, convert
4960 to a signed 32 bit number and don't use 64bit
4961 displacement. */
4962 op_disp &= (((offsetT) 2 << 31) - 1);
4963 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4964 i.types[op].bitfield.disp64 = 0;
4965 }
4966 #endif
4967 if (!op_disp && i.types[op].bitfield.baseindex)
4968 {
4969 i.types[op].bitfield.disp8 = 0;
4970 i.types[op].bitfield.disp16 = 0;
4971 i.types[op].bitfield.disp32 = 0;
4972 i.types[op].bitfield.disp32s = 0;
4973 i.types[op].bitfield.disp64 = 0;
4974 i.op[op].disps = 0;
4975 i.disp_operands--;
4976 }
4977 else if (flag_code == CODE_64BIT)
4978 {
4979 if (fits_in_signed_long (op_disp))
4980 {
4981 i.types[op].bitfield.disp64 = 0;
4982 i.types[op].bitfield.disp32s = 1;
4983 }
4984 if (i.prefix[ADDR_PREFIX]
4985 && fits_in_unsigned_long (op_disp))
4986 i.types[op].bitfield.disp32 = 1;
4987 }
4988 if ((i.types[op].bitfield.disp32
4989 || i.types[op].bitfield.disp32s
4990 || i.types[op].bitfield.disp16)
4991 && fits_in_disp8 (op_disp))
4992 i.types[op].bitfield.disp8 = 1;
4993 }
4994 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4995 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4996 {
4997 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4998 i.op[op].disps, 0, i.reloc[op]);
4999 i.types[op].bitfield.disp8 = 0;
5000 i.types[op].bitfield.disp16 = 0;
5001 i.types[op].bitfield.disp32 = 0;
5002 i.types[op].bitfield.disp32s = 0;
5003 i.types[op].bitfield.disp64 = 0;
5004 }
5005 else
5006 /* We only support 64bit displacement on constants. */
5007 i.types[op].bitfield.disp64 = 0;
5008 }
5009 }
5010
5011 /* Check if operands are valid for the instruction. */
5012
5013 static int
5014 check_VecOperands (const insn_template *t)
5015 {
5016 unsigned int op;
5017 i386_cpu_flags cpu;
5018 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5019
5020 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5021 any one operand are implicity requiring AVX512VL support if the actual
5022 operand size is YMMword or XMMword. Since this function runs after
5023 template matching, there's no need to check for YMMword/XMMword in
5024 the template. */
5025 cpu = cpu_flags_and (t->cpu_flags, avx512);
5026 if (!cpu_flags_all_zero (&cpu)
5027 && !t->cpu_flags.bitfield.cpuavx512vl
5028 && !cpu_arch_flags.bitfield.cpuavx512vl)
5029 {
5030 for (op = 0; op < t->operands; ++op)
5031 {
5032 if (t->operand_types[op].bitfield.zmmword
5033 && (i.types[op].bitfield.ymmword
5034 || i.types[op].bitfield.xmmword))
5035 {
5036 i.error = unsupported;
5037 return 1;
5038 }
5039 }
5040 }
5041
5042 /* Without VSIB byte, we can't have a vector register for index. */
5043 if (!t->opcode_modifier.vecsib
5044 && i.index_reg
5045 && (i.index_reg->reg_type.bitfield.xmmword
5046 || i.index_reg->reg_type.bitfield.ymmword
5047 || i.index_reg->reg_type.bitfield.zmmword))
5048 {
5049 i.error = unsupported_vector_index_register;
5050 return 1;
5051 }
5052
5053 /* Check if default mask is allowed. */
5054 if (t->opcode_modifier.nodefmask
5055 && (!i.mask || i.mask->mask->reg_num == 0))
5056 {
5057 i.error = no_default_mask;
5058 return 1;
5059 }
5060
5061 /* For VSIB byte, we need a vector register for index, and all vector
5062 registers must be distinct. */
5063 if (t->opcode_modifier.vecsib)
5064 {
5065 if (!i.index_reg
5066 || !((t->opcode_modifier.vecsib == VecSIB128
5067 && i.index_reg->reg_type.bitfield.xmmword)
5068 || (t->opcode_modifier.vecsib == VecSIB256
5069 && i.index_reg->reg_type.bitfield.ymmword)
5070 || (t->opcode_modifier.vecsib == VecSIB512
5071 && i.index_reg->reg_type.bitfield.zmmword)))
5072 {
5073 i.error = invalid_vsib_address;
5074 return 1;
5075 }
5076
5077 gas_assert (i.reg_operands == 2 || i.mask);
5078 if (i.reg_operands == 2 && !i.mask)
5079 {
5080 gas_assert (i.types[0].bitfield.regsimd);
5081 gas_assert (i.types[0].bitfield.xmmword
5082 || i.types[0].bitfield.ymmword);
5083 gas_assert (i.types[2].bitfield.regsimd);
5084 gas_assert (i.types[2].bitfield.xmmword
5085 || i.types[2].bitfield.ymmword);
5086 if (operand_check == check_none)
5087 return 0;
5088 if (register_number (i.op[0].regs)
5089 != register_number (i.index_reg)
5090 && register_number (i.op[2].regs)
5091 != register_number (i.index_reg)
5092 && register_number (i.op[0].regs)
5093 != register_number (i.op[2].regs))
5094 return 0;
5095 if (operand_check == check_error)
5096 {
5097 i.error = invalid_vector_register_set;
5098 return 1;
5099 }
5100 as_warn (_("mask, index, and destination registers should be distinct"));
5101 }
5102 else if (i.reg_operands == 1 && i.mask)
5103 {
5104 if (i.types[1].bitfield.regsimd
5105 && (i.types[1].bitfield.xmmword
5106 || i.types[1].bitfield.ymmword
5107 || i.types[1].bitfield.zmmword)
5108 && (register_number (i.op[1].regs)
5109 == register_number (i.index_reg)))
5110 {
5111 if (operand_check == check_error)
5112 {
5113 i.error = invalid_vector_register_set;
5114 return 1;
5115 }
5116 if (operand_check != check_none)
5117 as_warn (_("index and destination registers should be distinct"));
5118 }
5119 }
5120 }
5121
5122 /* Check if broadcast is supported by the instruction and is applied
5123 to the memory operand. */
5124 if (i.broadcast)
5125 {
5126 i386_operand_type type, overlap;
5127
5128 /* Check if specified broadcast is supported in this instruction,
5129 and it's applied to memory operand of DWORD or QWORD type. */
5130 op = i.broadcast->operand;
5131 if (!t->opcode_modifier.broadcast
5132 || !i.types[op].bitfield.mem
5133 || (!i.types[op].bitfield.unspecified
5134 && (t->operand_types[op].bitfield.dword
5135 ? !i.types[op].bitfield.dword
5136 : !i.types[op].bitfield.qword)))
5137 {
5138 bad_broadcast:
5139 i.error = unsupported_broadcast;
5140 return 1;
5141 }
5142
5143 operand_type_set (&type, 0);
5144 switch ((t->operand_types[op].bitfield.dword ? 4 : 8) * i.broadcast->type)
5145 {
5146 case 8:
5147 type.bitfield.qword = 1;
5148 break;
5149 case 16:
5150 type.bitfield.xmmword = 1;
5151 break;
5152 case 32:
5153 type.bitfield.ymmword = 1;
5154 break;
5155 case 64:
5156 type.bitfield.zmmword = 1;
5157 break;
5158 default:
5159 goto bad_broadcast;
5160 }
5161
5162 overlap = operand_type_and (type, t->operand_types[op]);
5163 if (operand_type_all_zero (&overlap))
5164 goto bad_broadcast;
5165
5166 if (t->opcode_modifier.checkregsize)
5167 {
5168 unsigned int j;
5169
5170 type.bitfield.baseindex = 1;
5171 for (j = 0; j < i.operands; ++j)
5172 {
5173 if (j != op
5174 && !operand_type_register_match(i.types[j],
5175 t->operand_types[j],
5176 type,
5177 t->operand_types[op]))
5178 goto bad_broadcast;
5179 }
5180 }
5181 }
5182 /* If broadcast is supported in this instruction, we need to check if
5183 operand of one-element size isn't specified without broadcast. */
5184 else if (t->opcode_modifier.broadcast && i.mem_operands)
5185 {
5186 /* Find memory operand. */
5187 for (op = 0; op < i.operands; op++)
5188 if (operand_type_check (i.types[op], anymem))
5189 break;
5190 gas_assert (op < i.operands);
5191 /* Check size of the memory operand. */
5192 if (t->operand_types[op].bitfield.dword
5193 ? i.types[op].bitfield.dword
5194 : i.types[op].bitfield.qword)
5195 {
5196 i.error = broadcast_needed;
5197 return 1;
5198 }
5199 }
5200 else
5201 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5202
5203 /* Check if requested masking is supported. */
5204 if (i.mask
5205 && (!t->opcode_modifier.masking
5206 || (i.mask->zeroing
5207 && t->opcode_modifier.masking == MERGING_MASKING)))
5208 {
5209 i.error = unsupported_masking;
5210 return 1;
5211 }
5212
5213 /* Check if masking is applied to dest operand. */
5214 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5215 {
5216 i.error = mask_not_on_destination;
5217 return 1;
5218 }
5219
5220 /* Check RC/SAE. */
5221 if (i.rounding)
5222 {
5223 if ((i.rounding->type != saeonly
5224 && !t->opcode_modifier.staticrounding)
5225 || (i.rounding->type == saeonly
5226 && (t->opcode_modifier.staticrounding
5227 || !t->opcode_modifier.sae)))
5228 {
5229 i.error = unsupported_rc_sae;
5230 return 1;
5231 }
5232 /* If the instruction has several immediate operands and one of
5233 them is rounding, the rounding operand should be the last
5234 immediate operand. */
5235 if (i.imm_operands > 1
5236 && i.rounding->operand != (int) (i.imm_operands - 1))
5237 {
5238 i.error = rc_sae_operand_not_last_imm;
5239 return 1;
5240 }
5241 }
5242
5243 /* Check vector Disp8 operand. */
5244 if (t->opcode_modifier.disp8memshift
5245 && i.disp_encoding != disp_encoding_32bit)
5246 {
5247 if (i.broadcast)
5248 i.memshift = t->operand_types[op].bitfield.dword ? 2 : 3;
5249 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5250 i.memshift = t->opcode_modifier.disp8memshift;
5251 else
5252 {
5253 const i386_operand_type *type = NULL;
5254
5255 i.memshift = 0;
5256 for (op = 0; op < i.operands; op++)
5257 if (operand_type_check (i.types[op], anymem))
5258 {
5259 if (t->opcode_modifier.evex == EVEXLIG)
5260 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5261 else if (t->operand_types[op].bitfield.xmmword
5262 + t->operand_types[op].bitfield.ymmword
5263 + t->operand_types[op].bitfield.zmmword <= 1)
5264 type = &t->operand_types[op];
5265 else if (!i.types[op].bitfield.unspecified)
5266 type = &i.types[op];
5267 }
5268 else if (i.types[op].bitfield.regsimd
5269 && t->opcode_modifier.evex != EVEXLIG)
5270 {
5271 if (i.types[op].bitfield.zmmword)
5272 i.memshift = 6;
5273 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5274 i.memshift = 5;
5275 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5276 i.memshift = 4;
5277 }
5278
5279 if (type)
5280 {
5281 if (type->bitfield.zmmword)
5282 i.memshift = 6;
5283 else if (type->bitfield.ymmword)
5284 i.memshift = 5;
5285 else if (type->bitfield.xmmword)
5286 i.memshift = 4;
5287 }
5288
5289 /* For the check in fits_in_disp8(). */
5290 if (i.memshift == 0)
5291 i.memshift = -1;
5292 }
5293
5294 for (op = 0; op < i.operands; op++)
5295 if (operand_type_check (i.types[op], disp)
5296 && i.op[op].disps->X_op == O_constant)
5297 {
5298 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5299 {
5300 i.types[op].bitfield.disp8 = 1;
5301 return 0;
5302 }
5303 i.types[op].bitfield.disp8 = 0;
5304 }
5305 }
5306
5307 i.memshift = 0;
5308
5309 return 0;
5310 }
5311
5312 /* Check if operands are valid for the instruction. Update VEX
5313 operand types. */
5314
5315 static int
5316 VEX_check_operands (const insn_template *t)
5317 {
5318 if (i.vec_encoding == vex_encoding_evex)
5319 {
5320 /* This instruction must be encoded with EVEX prefix. */
5321 if (!is_evex_encoding (t))
5322 {
5323 i.error = unsupported;
5324 return 1;
5325 }
5326 return 0;
5327 }
5328
5329 if (!t->opcode_modifier.vex)
5330 {
5331 /* This instruction template doesn't have VEX prefix. */
5332 if (i.vec_encoding != vex_encoding_default)
5333 {
5334 i.error = unsupported;
5335 return 1;
5336 }
5337 return 0;
5338 }
5339
5340 /* Only check VEX_Imm4, which must be the first operand. */
5341 if (t->operand_types[0].bitfield.vec_imm4)
5342 {
5343 if (i.op[0].imms->X_op != O_constant
5344 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5345 {
5346 i.error = bad_imm4;
5347 return 1;
5348 }
5349
5350 /* Turn off Imm8 so that update_imm won't complain. */
5351 i.types[0] = vec_imm4;
5352 }
5353
5354 return 0;
5355 }
5356
5357 static const insn_template *
5358 match_template (char mnem_suffix)
5359 {
5360 /* Points to template once we've found it. */
5361 const insn_template *t;
5362 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5363 i386_operand_type overlap4;
5364 unsigned int found_reverse_match;
5365 i386_opcode_modifier suffix_check, mnemsuf_check;
5366 i386_operand_type operand_types [MAX_OPERANDS];
5367 int addr_prefix_disp;
5368 unsigned int j;
5369 unsigned int found_cpu_match, size_match;
5370 unsigned int check_register;
5371 enum i386_error specific_error = 0;
5372
5373 #if MAX_OPERANDS != 5
5374 # error "MAX_OPERANDS must be 5."
5375 #endif
5376
5377 found_reverse_match = 0;
5378 addr_prefix_disp = -1;
5379
5380 memset (&suffix_check, 0, sizeof (suffix_check));
5381 if (intel_syntax && i.broadcast)
5382 /* nothing */;
5383 else if (i.suffix == BYTE_MNEM_SUFFIX)
5384 suffix_check.no_bsuf = 1;
5385 else if (i.suffix == WORD_MNEM_SUFFIX)
5386 suffix_check.no_wsuf = 1;
5387 else if (i.suffix == SHORT_MNEM_SUFFIX)
5388 suffix_check.no_ssuf = 1;
5389 else if (i.suffix == LONG_MNEM_SUFFIX)
5390 suffix_check.no_lsuf = 1;
5391 else if (i.suffix == QWORD_MNEM_SUFFIX)
5392 suffix_check.no_qsuf = 1;
5393 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5394 suffix_check.no_ldsuf = 1;
5395
5396 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5397 if (intel_syntax)
5398 {
5399 switch (mnem_suffix)
5400 {
5401 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5402 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5403 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5404 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5405 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5406 }
5407 }
5408
5409 /* Must have right number of operands. */
5410 i.error = number_of_operands_mismatch;
5411
5412 for (t = current_templates->start; t < current_templates->end; t++)
5413 {
5414 addr_prefix_disp = -1;
5415
5416 if (i.operands != t->operands)
5417 continue;
5418
5419 /* Check processor support. */
5420 i.error = unsupported;
5421 found_cpu_match = (cpu_flags_match (t)
5422 == CPU_FLAGS_PERFECT_MATCH);
5423 if (!found_cpu_match)
5424 continue;
5425
5426 /* Check AT&T mnemonic. */
5427 i.error = unsupported_with_intel_mnemonic;
5428 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5429 continue;
5430
5431 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5432 i.error = unsupported_syntax;
5433 if ((intel_syntax && t->opcode_modifier.attsyntax)
5434 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5435 || (intel64 && t->opcode_modifier.amd64)
5436 || (!intel64 && t->opcode_modifier.intel64))
5437 continue;
5438
5439 /* Check the suffix, except for some instructions in intel mode. */
5440 i.error = invalid_instruction_suffix;
5441 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5442 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5443 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5444 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5445 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5446 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5447 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5448 continue;
5449 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5450 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5451 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5452 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5453 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5454 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5455 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5456 continue;
5457
5458 size_match = operand_size_match (t);
5459 if (!size_match)
5460 continue;
5461
5462 for (j = 0; j < MAX_OPERANDS; j++)
5463 operand_types[j] = t->operand_types[j];
5464
5465 /* In general, don't allow 64-bit operands in 32-bit mode. */
5466 if (i.suffix == QWORD_MNEM_SUFFIX
5467 && flag_code != CODE_64BIT
5468 && (intel_syntax
5469 ? (!t->opcode_modifier.ignoresize
5470 && !t->opcode_modifier.broadcast
5471 && !intel_float_operand (t->name))
5472 : intel_float_operand (t->name) != 2)
5473 && ((!operand_types[0].bitfield.regmmx
5474 && !operand_types[0].bitfield.regsimd)
5475 || (!operand_types[t->operands > 1].bitfield.regmmx
5476 && !operand_types[t->operands > 1].bitfield.regsimd))
5477 && (t->base_opcode != 0x0fc7
5478 || t->extension_opcode != 1 /* cmpxchg8b */))
5479 continue;
5480
5481 /* In general, don't allow 32-bit operands on pre-386. */
5482 else if (i.suffix == LONG_MNEM_SUFFIX
5483 && !cpu_arch_flags.bitfield.cpui386
5484 && (intel_syntax
5485 ? (!t->opcode_modifier.ignoresize
5486 && !intel_float_operand (t->name))
5487 : intel_float_operand (t->name) != 2)
5488 && ((!operand_types[0].bitfield.regmmx
5489 && !operand_types[0].bitfield.regsimd)
5490 || (!operand_types[t->operands > 1].bitfield.regmmx
5491 && !operand_types[t->operands > 1].bitfield.regsimd)))
5492 continue;
5493
5494 /* Do not verify operands when there are none. */
5495 else
5496 {
5497 if (!t->operands)
5498 /* We've found a match; break out of loop. */
5499 break;
5500 }
5501
5502 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5503 into Disp32/Disp16/Disp32 operand. */
5504 if (i.prefix[ADDR_PREFIX] != 0)
5505 {
5506 /* There should be only one Disp operand. */
5507 switch (flag_code)
5508 {
5509 case CODE_16BIT:
5510 for (j = 0; j < MAX_OPERANDS; j++)
5511 {
5512 if (operand_types[j].bitfield.disp16)
5513 {
5514 addr_prefix_disp = j;
5515 operand_types[j].bitfield.disp32 = 1;
5516 operand_types[j].bitfield.disp16 = 0;
5517 break;
5518 }
5519 }
5520 break;
5521 case CODE_32BIT:
5522 for (j = 0; j < MAX_OPERANDS; j++)
5523 {
5524 if (operand_types[j].bitfield.disp32)
5525 {
5526 addr_prefix_disp = j;
5527 operand_types[j].bitfield.disp32 = 0;
5528 operand_types[j].bitfield.disp16 = 1;
5529 break;
5530 }
5531 }
5532 break;
5533 case CODE_64BIT:
5534 for (j = 0; j < MAX_OPERANDS; j++)
5535 {
5536 if (operand_types[j].bitfield.disp64)
5537 {
5538 addr_prefix_disp = j;
5539 operand_types[j].bitfield.disp64 = 0;
5540 operand_types[j].bitfield.disp32 = 1;
5541 break;
5542 }
5543 }
5544 break;
5545 }
5546 }
5547
5548 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5549 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5550 continue;
5551
5552 /* We check register size if needed. */
5553 if (t->opcode_modifier.checkregsize)
5554 {
5555 check_register = (1 << t->operands) - 1;
5556 if (i.broadcast)
5557 check_register &= ~(1 << i.broadcast->operand);
5558 }
5559 else
5560 check_register = 0;
5561
5562 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5563 switch (t->operands)
5564 {
5565 case 1:
5566 if (!operand_type_match (overlap0, i.types[0]))
5567 continue;
5568 break;
5569 case 2:
5570 /* xchg %eax, %eax is a special case. It is an alias for nop
5571 only in 32bit mode and we can use opcode 0x90. In 64bit
5572 mode, we can't use 0x90 for xchg %eax, %eax since it should
5573 zero-extend %eax to %rax. */
5574 if (flag_code == CODE_64BIT
5575 && t->base_opcode == 0x90
5576 && operand_type_equal (&i.types [0], &acc32)
5577 && operand_type_equal (&i.types [1], &acc32))
5578 continue;
5579 /* xrelease mov %eax, <disp> is another special case. It must not
5580 match the accumulator-only encoding of mov. */
5581 if (flag_code != CODE_64BIT
5582 && i.hle_prefix
5583 && t->base_opcode == 0xa0
5584 && i.types[0].bitfield.acc
5585 && operand_type_check (i.types[1], anymem))
5586 continue;
5587 if (!(size_match & MATCH_STRAIGHT))
5588 goto check_reverse;
5589 /* If we want store form, we reverse direction of operands. */
5590 if (i.dir_encoding == dir_encoding_store
5591 && t->opcode_modifier.d)
5592 goto check_reverse;
5593 /* Fall through. */
5594
5595 case 3:
5596 /* If we want store form, we skip the current load. */
5597 if (i.dir_encoding == dir_encoding_store
5598 && i.mem_operands == 0
5599 && t->opcode_modifier.load)
5600 continue;
5601 /* Fall through. */
5602 case 4:
5603 case 5:
5604 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5605 if (!operand_type_match (overlap0, i.types[0])
5606 || !operand_type_match (overlap1, i.types[1])
5607 || ((check_register & 3) == 3
5608 && !operand_type_register_match (i.types[0],
5609 operand_types[0],
5610 i.types[1],
5611 operand_types[1])))
5612 {
5613 /* Check if other direction is valid ... */
5614 if (!t->opcode_modifier.d)
5615 continue;
5616
5617 check_reverse:
5618 if (!(size_match & MATCH_REVERSE))
5619 continue;
5620 /* Try reversing direction of operands. */
5621 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5622 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5623 if (!operand_type_match (overlap0, i.types[0])
5624 || !operand_type_match (overlap1, i.types[1])
5625 || (check_register
5626 && !operand_type_register_match (i.types[0],
5627 operand_types[1],
5628 i.types[1],
5629 operand_types[0])))
5630 {
5631 /* Does not match either direction. */
5632 continue;
5633 }
5634 /* found_reverse_match holds which of D or FloatR
5635 we've found. */
5636 if (!t->opcode_modifier.d)
5637 found_reverse_match = 0;
5638 else if (operand_types[0].bitfield.tbyte)
5639 found_reverse_match = Opcode_FloatD;
5640 else
5641 found_reverse_match = Opcode_D;
5642 if (t->opcode_modifier.floatr)
5643 found_reverse_match |= Opcode_FloatR;
5644 }
5645 else
5646 {
5647 /* Found a forward 2 operand match here. */
5648 switch (t->operands)
5649 {
5650 case 5:
5651 overlap4 = operand_type_and (i.types[4],
5652 operand_types[4]);
5653 /* Fall through. */
5654 case 4:
5655 overlap3 = operand_type_and (i.types[3],
5656 operand_types[3]);
5657 /* Fall through. */
5658 case 3:
5659 overlap2 = operand_type_and (i.types[2],
5660 operand_types[2]);
5661 break;
5662 }
5663
5664 switch (t->operands)
5665 {
5666 case 5:
5667 if (!operand_type_match (overlap4, i.types[4])
5668 || !operand_type_register_match (i.types[3],
5669 operand_types[3],
5670 i.types[4],
5671 operand_types[4]))
5672 continue;
5673 /* Fall through. */
5674 case 4:
5675 if (!operand_type_match (overlap3, i.types[3])
5676 || ((check_register & 0xa) == 0xa
5677 && !operand_type_register_match (i.types[1],
5678 operand_types[1],
5679 i.types[3],
5680 operand_types[3]))
5681 || ((check_register & 0xc) == 0xc
5682 && !operand_type_register_match (i.types[2],
5683 operand_types[2],
5684 i.types[3],
5685 operand_types[3])))
5686 continue;
5687 /* Fall through. */
5688 case 3:
5689 /* Here we make use of the fact that there are no
5690 reverse match 3 operand instructions. */
5691 if (!operand_type_match (overlap2, i.types[2])
5692 || ((check_register & 5) == 5
5693 && !operand_type_register_match (i.types[0],
5694 operand_types[0],
5695 i.types[2],
5696 operand_types[2]))
5697 || ((check_register & 6) == 6
5698 && !operand_type_register_match (i.types[1],
5699 operand_types[1],
5700 i.types[2],
5701 operand_types[2])))
5702 continue;
5703 break;
5704 }
5705 }
5706 /* Found either forward/reverse 2, 3 or 4 operand match here:
5707 slip through to break. */
5708 }
5709 if (!found_cpu_match)
5710 {
5711 found_reverse_match = 0;
5712 continue;
5713 }
5714
5715 /* Check if vector and VEX operands are valid. */
5716 if (check_VecOperands (t) || VEX_check_operands (t))
5717 {
5718 specific_error = i.error;
5719 continue;
5720 }
5721
5722 /* We've found a match; break out of loop. */
5723 break;
5724 }
5725
5726 if (t == current_templates->end)
5727 {
5728 /* We found no match. */
5729 const char *err_msg;
5730 switch (specific_error ? specific_error : i.error)
5731 {
5732 default:
5733 abort ();
5734 case operand_size_mismatch:
5735 err_msg = _("operand size mismatch");
5736 break;
5737 case operand_type_mismatch:
5738 err_msg = _("operand type mismatch");
5739 break;
5740 case register_type_mismatch:
5741 err_msg = _("register type mismatch");
5742 break;
5743 case number_of_operands_mismatch:
5744 err_msg = _("number of operands mismatch");
5745 break;
5746 case invalid_instruction_suffix:
5747 err_msg = _("invalid instruction suffix");
5748 break;
5749 case bad_imm4:
5750 err_msg = _("constant doesn't fit in 4 bits");
5751 break;
5752 case unsupported_with_intel_mnemonic:
5753 err_msg = _("unsupported with Intel mnemonic");
5754 break;
5755 case unsupported_syntax:
5756 err_msg = _("unsupported syntax");
5757 break;
5758 case unsupported:
5759 as_bad (_("unsupported instruction `%s'"),
5760 current_templates->start->name);
5761 return NULL;
5762 case invalid_vsib_address:
5763 err_msg = _("invalid VSIB address");
5764 break;
5765 case invalid_vector_register_set:
5766 err_msg = _("mask, index, and destination registers must be distinct");
5767 break;
5768 case unsupported_vector_index_register:
5769 err_msg = _("unsupported vector index register");
5770 break;
5771 case unsupported_broadcast:
5772 err_msg = _("unsupported broadcast");
5773 break;
5774 case broadcast_needed:
5775 err_msg = _("broadcast is needed for operand of such type");
5776 break;
5777 case unsupported_masking:
5778 err_msg = _("unsupported masking");
5779 break;
5780 case mask_not_on_destination:
5781 err_msg = _("mask not on destination operand");
5782 break;
5783 case no_default_mask:
5784 err_msg = _("default mask isn't allowed");
5785 break;
5786 case unsupported_rc_sae:
5787 err_msg = _("unsupported static rounding/sae");
5788 break;
5789 case rc_sae_operand_not_last_imm:
5790 if (intel_syntax)
5791 err_msg = _("RC/SAE operand must precede immediate operands");
5792 else
5793 err_msg = _("RC/SAE operand must follow immediate operands");
5794 break;
5795 case invalid_register_operand:
5796 err_msg = _("invalid register operand");
5797 break;
5798 }
5799 as_bad (_("%s for `%s'"), err_msg,
5800 current_templates->start->name);
5801 return NULL;
5802 }
5803
5804 if (!quiet_warnings)
5805 {
5806 if (!intel_syntax
5807 && (i.types[0].bitfield.jumpabsolute
5808 != operand_types[0].bitfield.jumpabsolute))
5809 {
5810 as_warn (_("indirect %s without `*'"), t->name);
5811 }
5812
5813 if (t->opcode_modifier.isprefix
5814 && t->opcode_modifier.ignoresize)
5815 {
5816 /* Warn them that a data or address size prefix doesn't
5817 affect assembly of the next line of code. */
5818 as_warn (_("stand-alone `%s' prefix"), t->name);
5819 }
5820 }
5821
5822 /* Copy the template we found. */
5823 i.tm = *t;
5824
5825 if (addr_prefix_disp != -1)
5826 i.tm.operand_types[addr_prefix_disp]
5827 = operand_types[addr_prefix_disp];
5828
5829 if (found_reverse_match)
5830 {
5831 /* If we found a reverse match we must alter the opcode
5832 direction bit. found_reverse_match holds bits to change
5833 (different for int & float insns). */
5834
5835 i.tm.base_opcode ^= found_reverse_match;
5836
5837 i.tm.operand_types[0] = operand_types[1];
5838 i.tm.operand_types[1] = operand_types[0];
5839 }
5840
5841 return t;
5842 }
5843
5844 static int
5845 check_string (void)
5846 {
5847 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5848 if (i.tm.operand_types[mem_op].bitfield.esseg)
5849 {
5850 if (i.seg[0] != NULL && i.seg[0] != &es)
5851 {
5852 as_bad (_("`%s' operand %d must use `%ses' segment"),
5853 i.tm.name,
5854 mem_op + 1,
5855 register_prefix);
5856 return 0;
5857 }
5858 /* There's only ever one segment override allowed per instruction.
5859 This instruction possibly has a legal segment override on the
5860 second operand, so copy the segment to where non-string
5861 instructions store it, allowing common code. */
5862 i.seg[0] = i.seg[1];
5863 }
5864 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5865 {
5866 if (i.seg[1] != NULL && i.seg[1] != &es)
5867 {
5868 as_bad (_("`%s' operand %d must use `%ses' segment"),
5869 i.tm.name,
5870 mem_op + 2,
5871 register_prefix);
5872 return 0;
5873 }
5874 }
5875 return 1;
5876 }
5877
5878 static int
5879 process_suffix (void)
5880 {
5881 /* If matched instruction specifies an explicit instruction mnemonic
5882 suffix, use it. */
5883 if (i.tm.opcode_modifier.size16)
5884 i.suffix = WORD_MNEM_SUFFIX;
5885 else if (i.tm.opcode_modifier.size32)
5886 i.suffix = LONG_MNEM_SUFFIX;
5887 else if (i.tm.opcode_modifier.size64)
5888 i.suffix = QWORD_MNEM_SUFFIX;
5889 else if (i.reg_operands)
5890 {
5891 /* If there's no instruction mnemonic suffix we try to invent one
5892 based on register operands. */
5893 if (!i.suffix)
5894 {
5895 /* We take i.suffix from the last register operand specified,
5896 Destination register type is more significant than source
5897 register type. crc32 in SSE4.2 prefers source register
5898 type. */
5899 if (i.tm.base_opcode == 0xf20f38f1)
5900 {
5901 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
5902 i.suffix = WORD_MNEM_SUFFIX;
5903 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
5904 i.suffix = LONG_MNEM_SUFFIX;
5905 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
5906 i.suffix = QWORD_MNEM_SUFFIX;
5907 }
5908 else if (i.tm.base_opcode == 0xf20f38f0)
5909 {
5910 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
5911 i.suffix = BYTE_MNEM_SUFFIX;
5912 }
5913
5914 if (!i.suffix)
5915 {
5916 int op;
5917
5918 if (i.tm.base_opcode == 0xf20f38f1
5919 || i.tm.base_opcode == 0xf20f38f0)
5920 {
5921 /* We have to know the operand size for crc32. */
5922 as_bad (_("ambiguous memory operand size for `%s`"),
5923 i.tm.name);
5924 return 0;
5925 }
5926
5927 for (op = i.operands; --op >= 0;)
5928 if (!i.tm.operand_types[op].bitfield.inoutportreg
5929 && !i.tm.operand_types[op].bitfield.shiftcount)
5930 {
5931 if (!i.types[op].bitfield.reg)
5932 continue;
5933 if (i.types[op].bitfield.byte)
5934 i.suffix = BYTE_MNEM_SUFFIX;
5935 else if (i.types[op].bitfield.word)
5936 i.suffix = WORD_MNEM_SUFFIX;
5937 else if (i.types[op].bitfield.dword)
5938 i.suffix = LONG_MNEM_SUFFIX;
5939 else if (i.types[op].bitfield.qword)
5940 i.suffix = QWORD_MNEM_SUFFIX;
5941 else
5942 continue;
5943 break;
5944 }
5945 }
5946 }
5947 else if (i.suffix == BYTE_MNEM_SUFFIX)
5948 {
5949 if (intel_syntax
5950 && i.tm.opcode_modifier.ignoresize
5951 && i.tm.opcode_modifier.no_bsuf)
5952 i.suffix = 0;
5953 else if (!check_byte_reg ())
5954 return 0;
5955 }
5956 else if (i.suffix == LONG_MNEM_SUFFIX)
5957 {
5958 if (intel_syntax
5959 && i.tm.opcode_modifier.ignoresize
5960 && i.tm.opcode_modifier.no_lsuf
5961 && !i.tm.opcode_modifier.todword
5962 && !i.tm.opcode_modifier.toqword)
5963 i.suffix = 0;
5964 else if (!check_long_reg ())
5965 return 0;
5966 }
5967 else if (i.suffix == QWORD_MNEM_SUFFIX)
5968 {
5969 if (intel_syntax
5970 && i.tm.opcode_modifier.ignoresize
5971 && i.tm.opcode_modifier.no_qsuf
5972 && !i.tm.opcode_modifier.todword
5973 && !i.tm.opcode_modifier.toqword)
5974 i.suffix = 0;
5975 else if (!check_qword_reg ())
5976 return 0;
5977 }
5978 else if (i.suffix == WORD_MNEM_SUFFIX)
5979 {
5980 if (intel_syntax
5981 && i.tm.opcode_modifier.ignoresize
5982 && i.tm.opcode_modifier.no_wsuf)
5983 i.suffix = 0;
5984 else if (!check_word_reg ())
5985 return 0;
5986 }
5987 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5988 /* Do nothing if the instruction is going to ignore the prefix. */
5989 ;
5990 else
5991 abort ();
5992 }
5993 else if (i.tm.opcode_modifier.defaultsize
5994 && !i.suffix
5995 /* exclude fldenv/frstor/fsave/fstenv */
5996 && i.tm.opcode_modifier.no_ssuf)
5997 {
5998 i.suffix = stackop_size;
5999 }
6000 else if (intel_syntax
6001 && !i.suffix
6002 && (i.tm.operand_types[0].bitfield.jumpabsolute
6003 || i.tm.opcode_modifier.jumpbyte
6004 || i.tm.opcode_modifier.jumpintersegment
6005 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6006 && i.tm.extension_opcode <= 3)))
6007 {
6008 switch (flag_code)
6009 {
6010 case CODE_64BIT:
6011 if (!i.tm.opcode_modifier.no_qsuf)
6012 {
6013 i.suffix = QWORD_MNEM_SUFFIX;
6014 break;
6015 }
6016 /* Fall through. */
6017 case CODE_32BIT:
6018 if (!i.tm.opcode_modifier.no_lsuf)
6019 i.suffix = LONG_MNEM_SUFFIX;
6020 break;
6021 case CODE_16BIT:
6022 if (!i.tm.opcode_modifier.no_wsuf)
6023 i.suffix = WORD_MNEM_SUFFIX;
6024 break;
6025 }
6026 }
6027
6028 if (!i.suffix)
6029 {
6030 if (!intel_syntax)
6031 {
6032 if (i.tm.opcode_modifier.w)
6033 {
6034 as_bad (_("no instruction mnemonic suffix given and "
6035 "no register operands; can't size instruction"));
6036 return 0;
6037 }
6038 }
6039 else
6040 {
6041 unsigned int suffixes;
6042
6043 suffixes = !i.tm.opcode_modifier.no_bsuf;
6044 if (!i.tm.opcode_modifier.no_wsuf)
6045 suffixes |= 1 << 1;
6046 if (!i.tm.opcode_modifier.no_lsuf)
6047 suffixes |= 1 << 2;
6048 if (!i.tm.opcode_modifier.no_ldsuf)
6049 suffixes |= 1 << 3;
6050 if (!i.tm.opcode_modifier.no_ssuf)
6051 suffixes |= 1 << 4;
6052 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6053 suffixes |= 1 << 5;
6054
6055 /* There are more than suffix matches. */
6056 if (i.tm.opcode_modifier.w
6057 || ((suffixes & (suffixes - 1))
6058 && !i.tm.opcode_modifier.defaultsize
6059 && !i.tm.opcode_modifier.ignoresize))
6060 {
6061 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6062 return 0;
6063 }
6064 }
6065 }
6066
6067 /* Change the opcode based on the operand size given by i.suffix. */
6068 switch (i.suffix)
6069 {
6070 /* Size floating point instruction. */
6071 case LONG_MNEM_SUFFIX:
6072 if (i.tm.opcode_modifier.floatmf)
6073 {
6074 i.tm.base_opcode ^= 4;
6075 break;
6076 }
6077 /* fall through */
6078 case WORD_MNEM_SUFFIX:
6079 case QWORD_MNEM_SUFFIX:
6080 /* It's not a byte, select word/dword operation. */
6081 if (i.tm.opcode_modifier.w)
6082 {
6083 if (i.tm.opcode_modifier.shortform)
6084 i.tm.base_opcode |= 8;
6085 else
6086 i.tm.base_opcode |= 1;
6087 }
6088 /* fall through */
6089 case SHORT_MNEM_SUFFIX:
6090 /* Now select between word & dword operations via the operand
6091 size prefix, except for instructions that will ignore this
6092 prefix anyway. */
6093 if (i.reg_operands > 0
6094 && i.types[0].bitfield.reg
6095 && i.tm.opcode_modifier.addrprefixopreg
6096 && (i.tm.opcode_modifier.immext
6097 || i.operands == 1))
6098 {
6099 /* The address size override prefix changes the size of the
6100 first operand. */
6101 if ((flag_code == CODE_32BIT
6102 && i.op[0].regs->reg_type.bitfield.word)
6103 || (flag_code != CODE_32BIT
6104 && i.op[0].regs->reg_type.bitfield.dword))
6105 if (!add_prefix (ADDR_PREFIX_OPCODE))
6106 return 0;
6107 }
6108 else if (i.suffix != QWORD_MNEM_SUFFIX
6109 && !i.tm.opcode_modifier.ignoresize
6110 && !i.tm.opcode_modifier.floatmf
6111 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6112 || (flag_code == CODE_64BIT
6113 && i.tm.opcode_modifier.jumpbyte)))
6114 {
6115 unsigned int prefix = DATA_PREFIX_OPCODE;
6116
6117 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
6118 prefix = ADDR_PREFIX_OPCODE;
6119
6120 if (!add_prefix (prefix))
6121 return 0;
6122 }
6123
6124 /* Set mode64 for an operand. */
6125 if (i.suffix == QWORD_MNEM_SUFFIX
6126 && flag_code == CODE_64BIT
6127 && !i.tm.opcode_modifier.norex64
6128 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6129 need rex64. */
6130 && ! (i.operands == 2
6131 && i.tm.base_opcode == 0x90
6132 && i.tm.extension_opcode == None
6133 && operand_type_equal (&i.types [0], &acc64)
6134 && operand_type_equal (&i.types [1], &acc64)))
6135 i.rex |= REX_W;
6136
6137 break;
6138 }
6139
6140 if (i.reg_operands != 0
6141 && i.operands > 1
6142 && i.tm.opcode_modifier.addrprefixopreg
6143 && !i.tm.opcode_modifier.immext)
6144 {
6145 /* Check invalid register operand when the address size override
6146 prefix changes the size of register operands. */
6147 unsigned int op;
6148 enum { need_word, need_dword, need_qword } need;
6149
6150 if (flag_code == CODE_32BIT)
6151 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6152 else
6153 {
6154 if (i.prefix[ADDR_PREFIX])
6155 need = need_dword;
6156 else
6157 need = flag_code == CODE_64BIT ? need_qword : need_word;
6158 }
6159
6160 for (op = 0; op < i.operands; op++)
6161 if (i.types[op].bitfield.reg
6162 && ((need == need_word
6163 && !i.op[op].regs->reg_type.bitfield.word)
6164 || (need == need_dword
6165 && !i.op[op].regs->reg_type.bitfield.dword)
6166 || (need == need_qword
6167 && !i.op[op].regs->reg_type.bitfield.qword)))
6168 {
6169 as_bad (_("invalid register operand size for `%s'"),
6170 i.tm.name);
6171 return 0;
6172 }
6173 }
6174
6175 return 1;
6176 }
6177
6178 static int
6179 check_byte_reg (void)
6180 {
6181 int op;
6182
6183 for (op = i.operands; --op >= 0;)
6184 {
6185 /* Skip non-register operands. */
6186 if (!i.types[op].bitfield.reg)
6187 continue;
6188
6189 /* If this is an eight bit register, it's OK. If it's the 16 or
6190 32 bit version of an eight bit register, we will just use the
6191 low portion, and that's OK too. */
6192 if (i.types[op].bitfield.byte)
6193 continue;
6194
6195 /* I/O port address operands are OK too. */
6196 if (i.tm.operand_types[op].bitfield.inoutportreg)
6197 continue;
6198
6199 /* crc32 doesn't generate this warning. */
6200 if (i.tm.base_opcode == 0xf20f38f0)
6201 continue;
6202
6203 if ((i.types[op].bitfield.word
6204 || i.types[op].bitfield.dword
6205 || i.types[op].bitfield.qword)
6206 && i.op[op].regs->reg_num < 4
6207 /* Prohibit these changes in 64bit mode, since the lowering
6208 would be more complicated. */
6209 && flag_code != CODE_64BIT)
6210 {
6211 #if REGISTER_WARNINGS
6212 if (!quiet_warnings)
6213 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6214 register_prefix,
6215 (i.op[op].regs + (i.types[op].bitfield.word
6216 ? REGNAM_AL - REGNAM_AX
6217 : REGNAM_AL - REGNAM_EAX))->reg_name,
6218 register_prefix,
6219 i.op[op].regs->reg_name,
6220 i.suffix);
6221 #endif
6222 continue;
6223 }
6224 /* Any other register is bad. */
6225 if (i.types[op].bitfield.reg
6226 || i.types[op].bitfield.regmmx
6227 || i.types[op].bitfield.regsimd
6228 || i.types[op].bitfield.sreg2
6229 || i.types[op].bitfield.sreg3
6230 || i.types[op].bitfield.control
6231 || i.types[op].bitfield.debug
6232 || i.types[op].bitfield.test)
6233 {
6234 as_bad (_("`%s%s' not allowed with `%s%c'"),
6235 register_prefix,
6236 i.op[op].regs->reg_name,
6237 i.tm.name,
6238 i.suffix);
6239 return 0;
6240 }
6241 }
6242 return 1;
6243 }
6244
6245 static int
6246 check_long_reg (void)
6247 {
6248 int op;
6249
6250 for (op = i.operands; --op >= 0;)
6251 /* Skip non-register operands. */
6252 if (!i.types[op].bitfield.reg)
6253 continue;
6254 /* Reject eight bit registers, except where the template requires
6255 them. (eg. movzb) */
6256 else if (i.types[op].bitfield.byte
6257 && (i.tm.operand_types[op].bitfield.reg
6258 || i.tm.operand_types[op].bitfield.acc)
6259 && (i.tm.operand_types[op].bitfield.word
6260 || i.tm.operand_types[op].bitfield.dword))
6261 {
6262 as_bad (_("`%s%s' not allowed with `%s%c'"),
6263 register_prefix,
6264 i.op[op].regs->reg_name,
6265 i.tm.name,
6266 i.suffix);
6267 return 0;
6268 }
6269 /* Warn if the e prefix on a general reg is missing. */
6270 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6271 && i.types[op].bitfield.word
6272 && (i.tm.operand_types[op].bitfield.reg
6273 || i.tm.operand_types[op].bitfield.acc)
6274 && i.tm.operand_types[op].bitfield.dword)
6275 {
6276 /* Prohibit these changes in the 64bit mode, since the
6277 lowering is more complicated. */
6278 if (flag_code == CODE_64BIT)
6279 {
6280 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6281 register_prefix, i.op[op].regs->reg_name,
6282 i.suffix);
6283 return 0;
6284 }
6285 #if REGISTER_WARNINGS
6286 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6287 register_prefix,
6288 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6289 register_prefix, i.op[op].regs->reg_name, i.suffix);
6290 #endif
6291 }
6292 /* Warn if the r prefix on a general reg is present. */
6293 else if (i.types[op].bitfield.qword
6294 && (i.tm.operand_types[op].bitfield.reg
6295 || i.tm.operand_types[op].bitfield.acc)
6296 && i.tm.operand_types[op].bitfield.dword)
6297 {
6298 if (intel_syntax
6299 && i.tm.opcode_modifier.toqword
6300 && !i.types[0].bitfield.regsimd)
6301 {
6302 /* Convert to QWORD. We want REX byte. */
6303 i.suffix = QWORD_MNEM_SUFFIX;
6304 }
6305 else
6306 {
6307 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6308 register_prefix, i.op[op].regs->reg_name,
6309 i.suffix);
6310 return 0;
6311 }
6312 }
6313 return 1;
6314 }
6315
6316 static int
6317 check_qword_reg (void)
6318 {
6319 int op;
6320
6321 for (op = i.operands; --op >= 0; )
6322 /* Skip non-register operands. */
6323 if (!i.types[op].bitfield.reg)
6324 continue;
6325 /* Reject eight bit registers, except where the template requires
6326 them. (eg. movzb) */
6327 else if (i.types[op].bitfield.byte
6328 && (i.tm.operand_types[op].bitfield.reg
6329 || i.tm.operand_types[op].bitfield.acc)
6330 && (i.tm.operand_types[op].bitfield.word
6331 || i.tm.operand_types[op].bitfield.dword))
6332 {
6333 as_bad (_("`%s%s' not allowed with `%s%c'"),
6334 register_prefix,
6335 i.op[op].regs->reg_name,
6336 i.tm.name,
6337 i.suffix);
6338 return 0;
6339 }
6340 /* Warn if the r prefix on a general reg is missing. */
6341 else if ((i.types[op].bitfield.word
6342 || i.types[op].bitfield.dword)
6343 && (i.tm.operand_types[op].bitfield.reg
6344 || i.tm.operand_types[op].bitfield.acc)
6345 && i.tm.operand_types[op].bitfield.qword)
6346 {
6347 /* Prohibit these changes in the 64bit mode, since the
6348 lowering is more complicated. */
6349 if (intel_syntax
6350 && i.tm.opcode_modifier.todword
6351 && !i.types[0].bitfield.regsimd)
6352 {
6353 /* Convert to DWORD. We don't want REX byte. */
6354 i.suffix = LONG_MNEM_SUFFIX;
6355 }
6356 else
6357 {
6358 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6359 register_prefix, i.op[op].regs->reg_name,
6360 i.suffix);
6361 return 0;
6362 }
6363 }
6364 return 1;
6365 }
6366
6367 static int
6368 check_word_reg (void)
6369 {
6370 int op;
6371 for (op = i.operands; --op >= 0;)
6372 /* Skip non-register operands. */
6373 if (!i.types[op].bitfield.reg)
6374 continue;
6375 /* Reject eight bit registers, except where the template requires
6376 them. (eg. movzb) */
6377 else if (i.types[op].bitfield.byte
6378 && (i.tm.operand_types[op].bitfield.reg
6379 || i.tm.operand_types[op].bitfield.acc)
6380 && (i.tm.operand_types[op].bitfield.word
6381 || i.tm.operand_types[op].bitfield.dword))
6382 {
6383 as_bad (_("`%s%s' not allowed with `%s%c'"),
6384 register_prefix,
6385 i.op[op].regs->reg_name,
6386 i.tm.name,
6387 i.suffix);
6388 return 0;
6389 }
6390 /* Warn if the e or r prefix on a general reg is present. */
6391 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6392 && (i.types[op].bitfield.dword
6393 || i.types[op].bitfield.qword)
6394 && (i.tm.operand_types[op].bitfield.reg
6395 || i.tm.operand_types[op].bitfield.acc)
6396 && i.tm.operand_types[op].bitfield.word)
6397 {
6398 /* Prohibit these changes in the 64bit mode, since the
6399 lowering is more complicated. */
6400 if (flag_code == CODE_64BIT)
6401 {
6402 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6403 register_prefix, i.op[op].regs->reg_name,
6404 i.suffix);
6405 return 0;
6406 }
6407 #if REGISTER_WARNINGS
6408 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6409 register_prefix,
6410 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6411 register_prefix, i.op[op].regs->reg_name, i.suffix);
6412 #endif
6413 }
6414 return 1;
6415 }
6416
6417 static int
6418 update_imm (unsigned int j)
6419 {
6420 i386_operand_type overlap = i.types[j];
6421 if ((overlap.bitfield.imm8
6422 || overlap.bitfield.imm8s
6423 || overlap.bitfield.imm16
6424 || overlap.bitfield.imm32
6425 || overlap.bitfield.imm32s
6426 || overlap.bitfield.imm64)
6427 && !operand_type_equal (&overlap, &imm8)
6428 && !operand_type_equal (&overlap, &imm8s)
6429 && !operand_type_equal (&overlap, &imm16)
6430 && !operand_type_equal (&overlap, &imm32)
6431 && !operand_type_equal (&overlap, &imm32s)
6432 && !operand_type_equal (&overlap, &imm64))
6433 {
6434 if (i.suffix)
6435 {
6436 i386_operand_type temp;
6437
6438 operand_type_set (&temp, 0);
6439 if (i.suffix == BYTE_MNEM_SUFFIX)
6440 {
6441 temp.bitfield.imm8 = overlap.bitfield.imm8;
6442 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6443 }
6444 else if (i.suffix == WORD_MNEM_SUFFIX)
6445 temp.bitfield.imm16 = overlap.bitfield.imm16;
6446 else if (i.suffix == QWORD_MNEM_SUFFIX)
6447 {
6448 temp.bitfield.imm64 = overlap.bitfield.imm64;
6449 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6450 }
6451 else
6452 temp.bitfield.imm32 = overlap.bitfield.imm32;
6453 overlap = temp;
6454 }
6455 else if (operand_type_equal (&overlap, &imm16_32_32s)
6456 || operand_type_equal (&overlap, &imm16_32)
6457 || operand_type_equal (&overlap, &imm16_32s))
6458 {
6459 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6460 overlap = imm16;
6461 else
6462 overlap = imm32s;
6463 }
6464 if (!operand_type_equal (&overlap, &imm8)
6465 && !operand_type_equal (&overlap, &imm8s)
6466 && !operand_type_equal (&overlap, &imm16)
6467 && !operand_type_equal (&overlap, &imm32)
6468 && !operand_type_equal (&overlap, &imm32s)
6469 && !operand_type_equal (&overlap, &imm64))
6470 {
6471 as_bad (_("no instruction mnemonic suffix given; "
6472 "can't determine immediate size"));
6473 return 0;
6474 }
6475 }
6476 i.types[j] = overlap;
6477
6478 return 1;
6479 }
6480
6481 static int
6482 finalize_imm (void)
6483 {
6484 unsigned int j, n;
6485
6486 /* Update the first 2 immediate operands. */
6487 n = i.operands > 2 ? 2 : i.operands;
6488 if (n)
6489 {
6490 for (j = 0; j < n; j++)
6491 if (update_imm (j) == 0)
6492 return 0;
6493
6494 /* The 3rd operand can't be immediate operand. */
6495 gas_assert (operand_type_check (i.types[2], imm) == 0);
6496 }
6497
6498 return 1;
6499 }
6500
6501 static int
6502 process_operands (void)
6503 {
6504 /* Default segment register this instruction will use for memory
6505 accesses. 0 means unknown. This is only for optimizing out
6506 unnecessary segment overrides. */
6507 const seg_entry *default_seg = 0;
6508
6509 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6510 {
6511 unsigned int dupl = i.operands;
6512 unsigned int dest = dupl - 1;
6513 unsigned int j;
6514
6515 /* The destination must be an xmm register. */
6516 gas_assert (i.reg_operands
6517 && MAX_OPERANDS > dupl
6518 && operand_type_equal (&i.types[dest], &regxmm));
6519
6520 if (i.tm.operand_types[0].bitfield.acc
6521 && i.tm.operand_types[0].bitfield.xmmword)
6522 {
6523 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6524 {
6525 /* Keep xmm0 for instructions with VEX prefix and 3
6526 sources. */
6527 i.tm.operand_types[0].bitfield.acc = 0;
6528 i.tm.operand_types[0].bitfield.regsimd = 1;
6529 goto duplicate;
6530 }
6531 else
6532 {
6533 /* We remove the first xmm0 and keep the number of
6534 operands unchanged, which in fact duplicates the
6535 destination. */
6536 for (j = 1; j < i.operands; j++)
6537 {
6538 i.op[j - 1] = i.op[j];
6539 i.types[j - 1] = i.types[j];
6540 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6541 }
6542 }
6543 }
6544 else if (i.tm.opcode_modifier.implicit1stxmm0)
6545 {
6546 gas_assert ((MAX_OPERANDS - 1) > dupl
6547 && (i.tm.opcode_modifier.vexsources
6548 == VEX3SOURCES));
6549
6550 /* Add the implicit xmm0 for instructions with VEX prefix
6551 and 3 sources. */
6552 for (j = i.operands; j > 0; j--)
6553 {
6554 i.op[j] = i.op[j - 1];
6555 i.types[j] = i.types[j - 1];
6556 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6557 }
6558 i.op[0].regs
6559 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6560 i.types[0] = regxmm;
6561 i.tm.operand_types[0] = regxmm;
6562
6563 i.operands += 2;
6564 i.reg_operands += 2;
6565 i.tm.operands += 2;
6566
6567 dupl++;
6568 dest++;
6569 i.op[dupl] = i.op[dest];
6570 i.types[dupl] = i.types[dest];
6571 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6572 }
6573 else
6574 {
6575 duplicate:
6576 i.operands++;
6577 i.reg_operands++;
6578 i.tm.operands++;
6579
6580 i.op[dupl] = i.op[dest];
6581 i.types[dupl] = i.types[dest];
6582 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6583 }
6584
6585 if (i.tm.opcode_modifier.immext)
6586 process_immext ();
6587 }
6588 else if (i.tm.operand_types[0].bitfield.acc
6589 && i.tm.operand_types[0].bitfield.xmmword)
6590 {
6591 unsigned int j;
6592
6593 for (j = 1; j < i.operands; j++)
6594 {
6595 i.op[j - 1] = i.op[j];
6596 i.types[j - 1] = i.types[j];
6597
6598 /* We need to adjust fields in i.tm since they are used by
6599 build_modrm_byte. */
6600 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6601 }
6602
6603 i.operands--;
6604 i.reg_operands--;
6605 i.tm.operands--;
6606 }
6607 else if (i.tm.opcode_modifier.implicitquadgroup)
6608 {
6609 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6610
6611 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6612 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6613 regnum = register_number (i.op[1].regs);
6614 first_reg_in_group = regnum & ~3;
6615 last_reg_in_group = first_reg_in_group + 3;
6616 if (regnum != first_reg_in_group)
6617 as_warn (_("source register `%s%s' implicitly denotes"
6618 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6619 register_prefix, i.op[1].regs->reg_name,
6620 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6621 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6622 i.tm.name);
6623 }
6624 else if (i.tm.opcode_modifier.regkludge)
6625 {
6626 /* The imul $imm, %reg instruction is converted into
6627 imul $imm, %reg, %reg, and the clr %reg instruction
6628 is converted into xor %reg, %reg. */
6629
6630 unsigned int first_reg_op;
6631
6632 if (operand_type_check (i.types[0], reg))
6633 first_reg_op = 0;
6634 else
6635 first_reg_op = 1;
6636 /* Pretend we saw the extra register operand. */
6637 gas_assert (i.reg_operands == 1
6638 && i.op[first_reg_op + 1].regs == 0);
6639 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6640 i.types[first_reg_op + 1] = i.types[first_reg_op];
6641 i.operands++;
6642 i.reg_operands++;
6643 }
6644
6645 if (i.tm.opcode_modifier.shortform)
6646 {
6647 if (i.types[0].bitfield.sreg2
6648 || i.types[0].bitfield.sreg3)
6649 {
6650 if (i.tm.base_opcode == POP_SEG_SHORT
6651 && i.op[0].regs->reg_num == 1)
6652 {
6653 as_bad (_("you can't `pop %scs'"), register_prefix);
6654 return 0;
6655 }
6656 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6657 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6658 i.rex |= REX_B;
6659 }
6660 else
6661 {
6662 /* The register or float register operand is in operand
6663 0 or 1. */
6664 unsigned int op;
6665
6666 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6667 || operand_type_check (i.types[0], reg))
6668 op = 0;
6669 else
6670 op = 1;
6671 /* Register goes in low 3 bits of opcode. */
6672 i.tm.base_opcode |= i.op[op].regs->reg_num;
6673 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6674 i.rex |= REX_B;
6675 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6676 {
6677 /* Warn about some common errors, but press on regardless.
6678 The first case can be generated by gcc (<= 2.8.1). */
6679 if (i.operands == 2)
6680 {
6681 /* Reversed arguments on faddp, fsubp, etc. */
6682 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6683 register_prefix, i.op[!intel_syntax].regs->reg_name,
6684 register_prefix, i.op[intel_syntax].regs->reg_name);
6685 }
6686 else
6687 {
6688 /* Extraneous `l' suffix on fp insn. */
6689 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6690 register_prefix, i.op[0].regs->reg_name);
6691 }
6692 }
6693 }
6694 }
6695 else if (i.tm.opcode_modifier.modrm)
6696 {
6697 /* The opcode is completed (modulo i.tm.extension_opcode which
6698 must be put into the modrm byte). Now, we make the modrm and
6699 index base bytes based on all the info we've collected. */
6700
6701 default_seg = build_modrm_byte ();
6702 }
6703 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6704 {
6705 default_seg = &ds;
6706 }
6707 else if (i.tm.opcode_modifier.isstring)
6708 {
6709 /* For the string instructions that allow a segment override
6710 on one of their operands, the default segment is ds. */
6711 default_seg = &ds;
6712 }
6713
6714 if (i.tm.base_opcode == 0x8d /* lea */
6715 && i.seg[0]
6716 && !quiet_warnings)
6717 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6718
6719 /* If a segment was explicitly specified, and the specified segment
6720 is not the default, use an opcode prefix to select it. If we
6721 never figured out what the default segment is, then default_seg
6722 will be zero at this point, and the specified segment prefix will
6723 always be used. */
6724 if ((i.seg[0]) && (i.seg[0] != default_seg))
6725 {
6726 if (!add_prefix (i.seg[0]->seg_prefix))
6727 return 0;
6728 }
6729 return 1;
6730 }
6731
6732 static const seg_entry *
6733 build_modrm_byte (void)
6734 {
6735 const seg_entry *default_seg = 0;
6736 unsigned int source, dest;
6737 int vex_3_sources;
6738
6739 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6740 if (vex_3_sources)
6741 {
6742 unsigned int nds, reg_slot;
6743 expressionS *exp;
6744
6745 dest = i.operands - 1;
6746 nds = dest - 1;
6747
6748 /* There are 2 kinds of instructions:
6749 1. 5 operands: 4 register operands or 3 register operands
6750 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6751 VexW0 or VexW1. The destination must be either XMM, YMM or
6752 ZMM register.
6753 2. 4 operands: 4 register operands or 3 register operands
6754 plus 1 memory operand, with VexXDS. */
6755 gas_assert ((i.reg_operands == 4
6756 || (i.reg_operands == 3 && i.mem_operands == 1))
6757 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6758 && i.tm.opcode_modifier.vexw
6759 && i.tm.operand_types[dest].bitfield.regsimd);
6760
6761 /* If VexW1 is set, the first non-immediate operand is the source and
6762 the second non-immediate one is encoded in the immediate operand. */
6763 if (i.tm.opcode_modifier.vexw == VEXW1)
6764 {
6765 source = i.imm_operands;
6766 reg_slot = i.imm_operands + 1;
6767 }
6768 else
6769 {
6770 source = i.imm_operands + 1;
6771 reg_slot = i.imm_operands;
6772 }
6773
6774 if (i.imm_operands == 0)
6775 {
6776 /* When there is no immediate operand, generate an 8bit
6777 immediate operand to encode the first operand. */
6778 exp = &im_expressions[i.imm_operands++];
6779 i.op[i.operands].imms = exp;
6780 i.types[i.operands] = imm8;
6781 i.operands++;
6782
6783 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6784 exp->X_op = O_constant;
6785 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6786 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6787 }
6788 else
6789 {
6790 unsigned int imm_slot;
6791
6792 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
6793
6794 if (i.tm.opcode_modifier.immext)
6795 {
6796 /* When ImmExt is set, the immediate byte is the last
6797 operand. */
6798 imm_slot = i.operands - 1;
6799 source--;
6800 reg_slot--;
6801 }
6802 else
6803 {
6804 imm_slot = 0;
6805
6806 /* Turn on Imm8 so that output_imm will generate it. */
6807 i.types[imm_slot].bitfield.imm8 = 1;
6808 }
6809
6810 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6811 i.op[imm_slot].imms->X_add_number
6812 |= register_number (i.op[reg_slot].regs) << 4;
6813 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6814 }
6815
6816 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
6817 i.vex.register_specifier = i.op[nds].regs;
6818 }
6819 else
6820 source = dest = 0;
6821
6822 /* i.reg_operands MUST be the number of real register operands;
6823 implicit registers do not count. If there are 3 register
6824 operands, it must be a instruction with VexNDS. For a
6825 instruction with VexNDD, the destination register is encoded
6826 in VEX prefix. If there are 4 register operands, it must be
6827 a instruction with VEX prefix and 3 sources. */
6828 if (i.mem_operands == 0
6829 && ((i.reg_operands == 2
6830 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6831 || (i.reg_operands == 3
6832 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6833 || (i.reg_operands == 4 && vex_3_sources)))
6834 {
6835 switch (i.operands)
6836 {
6837 case 2:
6838 source = 0;
6839 break;
6840 case 3:
6841 /* When there are 3 operands, one of them may be immediate,
6842 which may be the first or the last operand. Otherwise,
6843 the first operand must be shift count register (cl) or it
6844 is an instruction with VexNDS. */
6845 gas_assert (i.imm_operands == 1
6846 || (i.imm_operands == 0
6847 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6848 || i.types[0].bitfield.shiftcount)));
6849 if (operand_type_check (i.types[0], imm)
6850 || i.types[0].bitfield.shiftcount)
6851 source = 1;
6852 else
6853 source = 0;
6854 break;
6855 case 4:
6856 /* When there are 4 operands, the first two must be 8bit
6857 immediate operands. The source operand will be the 3rd
6858 one.
6859
6860 For instructions with VexNDS, if the first operand
6861 an imm8, the source operand is the 2nd one. If the last
6862 operand is imm8, the source operand is the first one. */
6863 gas_assert ((i.imm_operands == 2
6864 && i.types[0].bitfield.imm8
6865 && i.types[1].bitfield.imm8)
6866 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6867 && i.imm_operands == 1
6868 && (i.types[0].bitfield.imm8
6869 || i.types[i.operands - 1].bitfield.imm8
6870 || i.rounding)));
6871 if (i.imm_operands == 2)
6872 source = 2;
6873 else
6874 {
6875 if (i.types[0].bitfield.imm8)
6876 source = 1;
6877 else
6878 source = 0;
6879 }
6880 break;
6881 case 5:
6882 if (is_evex_encoding (&i.tm))
6883 {
6884 /* For EVEX instructions, when there are 5 operands, the
6885 first one must be immediate operand. If the second one
6886 is immediate operand, the source operand is the 3th
6887 one. If the last one is immediate operand, the source
6888 operand is the 2nd one. */
6889 gas_assert (i.imm_operands == 2
6890 && i.tm.opcode_modifier.sae
6891 && operand_type_check (i.types[0], imm));
6892 if (operand_type_check (i.types[1], imm))
6893 source = 2;
6894 else if (operand_type_check (i.types[4], imm))
6895 source = 1;
6896 else
6897 abort ();
6898 }
6899 break;
6900 default:
6901 abort ();
6902 }
6903
6904 if (!vex_3_sources)
6905 {
6906 dest = source + 1;
6907
6908 /* RC/SAE operand could be between DEST and SRC. That happens
6909 when one operand is GPR and the other one is XMM/YMM/ZMM
6910 register. */
6911 if (i.rounding && i.rounding->operand == (int) dest)
6912 dest++;
6913
6914 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6915 {
6916 /* For instructions with VexNDS, the register-only source
6917 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
6918 register. It is encoded in VEX prefix. We need to
6919 clear RegMem bit before calling operand_type_equal. */
6920
6921 i386_operand_type op;
6922 unsigned int vvvv;
6923
6924 /* Check register-only source operand when two source
6925 operands are swapped. */
6926 if (!i.tm.operand_types[source].bitfield.baseindex
6927 && i.tm.operand_types[dest].bitfield.baseindex)
6928 {
6929 vvvv = source;
6930 source = dest;
6931 }
6932 else
6933 vvvv = dest;
6934
6935 op = i.tm.operand_types[vvvv];
6936 op.bitfield.regmem = 0;
6937 if ((dest + 1) >= i.operands
6938 || ((!op.bitfield.reg
6939 || (!op.bitfield.dword && !op.bitfield.qword))
6940 && !op.bitfield.regsimd
6941 && !operand_type_equal (&op, &regmask)))
6942 abort ();
6943 i.vex.register_specifier = i.op[vvvv].regs;
6944 dest++;
6945 }
6946 }
6947
6948 i.rm.mode = 3;
6949 /* One of the register operands will be encoded in the i.tm.reg
6950 field, the other in the combined i.tm.mode and i.tm.regmem
6951 fields. If no form of this instruction supports a memory
6952 destination operand, then we assume the source operand may
6953 sometimes be a memory operand and so we need to store the
6954 destination in the i.rm.reg field. */
6955 if (!i.tm.operand_types[dest].bitfield.regmem
6956 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6957 {
6958 i.rm.reg = i.op[dest].regs->reg_num;
6959 i.rm.regmem = i.op[source].regs->reg_num;
6960 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6961 i.rex |= REX_R;
6962 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6963 i.vrex |= REX_R;
6964 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6965 i.rex |= REX_B;
6966 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6967 i.vrex |= REX_B;
6968 }
6969 else
6970 {
6971 i.rm.reg = i.op[source].regs->reg_num;
6972 i.rm.regmem = i.op[dest].regs->reg_num;
6973 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6974 i.rex |= REX_B;
6975 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6976 i.vrex |= REX_B;
6977 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6978 i.rex |= REX_R;
6979 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6980 i.vrex |= REX_R;
6981 }
6982 if (flag_code != CODE_64BIT && (i.rex & REX_R))
6983 {
6984 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
6985 abort ();
6986 i.rex &= ~REX_R;
6987 add_prefix (LOCK_PREFIX_OPCODE);
6988 }
6989 }
6990 else
6991 { /* If it's not 2 reg operands... */
6992 unsigned int mem;
6993
6994 if (i.mem_operands)
6995 {
6996 unsigned int fake_zero_displacement = 0;
6997 unsigned int op;
6998
6999 for (op = 0; op < i.operands; op++)
7000 if (operand_type_check (i.types[op], anymem))
7001 break;
7002 gas_assert (op < i.operands);
7003
7004 if (i.tm.opcode_modifier.vecsib)
7005 {
7006 if (i.index_reg->reg_num == RegEiz
7007 || i.index_reg->reg_num == RegRiz)
7008 abort ();
7009
7010 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7011 if (!i.base_reg)
7012 {
7013 i.sib.base = NO_BASE_REGISTER;
7014 i.sib.scale = i.log2_scale_factor;
7015 i.types[op].bitfield.disp8 = 0;
7016 i.types[op].bitfield.disp16 = 0;
7017 i.types[op].bitfield.disp64 = 0;
7018 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7019 {
7020 /* Must be 32 bit */
7021 i.types[op].bitfield.disp32 = 1;
7022 i.types[op].bitfield.disp32s = 0;
7023 }
7024 else
7025 {
7026 i.types[op].bitfield.disp32 = 0;
7027 i.types[op].bitfield.disp32s = 1;
7028 }
7029 }
7030 i.sib.index = i.index_reg->reg_num;
7031 if ((i.index_reg->reg_flags & RegRex) != 0)
7032 i.rex |= REX_X;
7033 if ((i.index_reg->reg_flags & RegVRex) != 0)
7034 i.vrex |= REX_X;
7035 }
7036
7037 default_seg = &ds;
7038
7039 if (i.base_reg == 0)
7040 {
7041 i.rm.mode = 0;
7042 if (!i.disp_operands)
7043 fake_zero_displacement = 1;
7044 if (i.index_reg == 0)
7045 {
7046 i386_operand_type newdisp;
7047
7048 gas_assert (!i.tm.opcode_modifier.vecsib);
7049 /* Operand is just <disp> */
7050 if (flag_code == CODE_64BIT)
7051 {
7052 /* 64bit mode overwrites the 32bit absolute
7053 addressing by RIP relative addressing and
7054 absolute addressing is encoded by one of the
7055 redundant SIB forms. */
7056 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7057 i.sib.base = NO_BASE_REGISTER;
7058 i.sib.index = NO_INDEX_REGISTER;
7059 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7060 }
7061 else if ((flag_code == CODE_16BIT)
7062 ^ (i.prefix[ADDR_PREFIX] != 0))
7063 {
7064 i.rm.regmem = NO_BASE_REGISTER_16;
7065 newdisp = disp16;
7066 }
7067 else
7068 {
7069 i.rm.regmem = NO_BASE_REGISTER;
7070 newdisp = disp32;
7071 }
7072 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7073 i.types[op] = operand_type_or (i.types[op], newdisp);
7074 }
7075 else if (!i.tm.opcode_modifier.vecsib)
7076 {
7077 /* !i.base_reg && i.index_reg */
7078 if (i.index_reg->reg_num == RegEiz
7079 || i.index_reg->reg_num == RegRiz)
7080 i.sib.index = NO_INDEX_REGISTER;
7081 else
7082 i.sib.index = i.index_reg->reg_num;
7083 i.sib.base = NO_BASE_REGISTER;
7084 i.sib.scale = i.log2_scale_factor;
7085 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7086 i.types[op].bitfield.disp8 = 0;
7087 i.types[op].bitfield.disp16 = 0;
7088 i.types[op].bitfield.disp64 = 0;
7089 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7090 {
7091 /* Must be 32 bit */
7092 i.types[op].bitfield.disp32 = 1;
7093 i.types[op].bitfield.disp32s = 0;
7094 }
7095 else
7096 {
7097 i.types[op].bitfield.disp32 = 0;
7098 i.types[op].bitfield.disp32s = 1;
7099 }
7100 if ((i.index_reg->reg_flags & RegRex) != 0)
7101 i.rex |= REX_X;
7102 }
7103 }
7104 /* RIP addressing for 64bit mode. */
7105 else if (i.base_reg->reg_num == RegRip ||
7106 i.base_reg->reg_num == RegEip)
7107 {
7108 gas_assert (!i.tm.opcode_modifier.vecsib);
7109 i.rm.regmem = NO_BASE_REGISTER;
7110 i.types[op].bitfield.disp8 = 0;
7111 i.types[op].bitfield.disp16 = 0;
7112 i.types[op].bitfield.disp32 = 0;
7113 i.types[op].bitfield.disp32s = 1;
7114 i.types[op].bitfield.disp64 = 0;
7115 i.flags[op] |= Operand_PCrel;
7116 if (! i.disp_operands)
7117 fake_zero_displacement = 1;
7118 }
7119 else if (i.base_reg->reg_type.bitfield.word)
7120 {
7121 gas_assert (!i.tm.opcode_modifier.vecsib);
7122 switch (i.base_reg->reg_num)
7123 {
7124 case 3: /* (%bx) */
7125 if (i.index_reg == 0)
7126 i.rm.regmem = 7;
7127 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7128 i.rm.regmem = i.index_reg->reg_num - 6;
7129 break;
7130 case 5: /* (%bp) */
7131 default_seg = &ss;
7132 if (i.index_reg == 0)
7133 {
7134 i.rm.regmem = 6;
7135 if (operand_type_check (i.types[op], disp) == 0)
7136 {
7137 /* fake (%bp) into 0(%bp) */
7138 i.types[op].bitfield.disp8 = 1;
7139 fake_zero_displacement = 1;
7140 }
7141 }
7142 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7143 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7144 break;
7145 default: /* (%si) -> 4 or (%di) -> 5 */
7146 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7147 }
7148 i.rm.mode = mode_from_disp_size (i.types[op]);
7149 }
7150 else /* i.base_reg and 32/64 bit mode */
7151 {
7152 if (flag_code == CODE_64BIT
7153 && operand_type_check (i.types[op], disp))
7154 {
7155 i.types[op].bitfield.disp16 = 0;
7156 i.types[op].bitfield.disp64 = 0;
7157 if (i.prefix[ADDR_PREFIX] == 0)
7158 {
7159 i.types[op].bitfield.disp32 = 0;
7160 i.types[op].bitfield.disp32s = 1;
7161 }
7162 else
7163 {
7164 i.types[op].bitfield.disp32 = 1;
7165 i.types[op].bitfield.disp32s = 0;
7166 }
7167 }
7168
7169 if (!i.tm.opcode_modifier.vecsib)
7170 i.rm.regmem = i.base_reg->reg_num;
7171 if ((i.base_reg->reg_flags & RegRex) != 0)
7172 i.rex |= REX_B;
7173 i.sib.base = i.base_reg->reg_num;
7174 /* x86-64 ignores REX prefix bit here to avoid decoder
7175 complications. */
7176 if (!(i.base_reg->reg_flags & RegRex)
7177 && (i.base_reg->reg_num == EBP_REG_NUM
7178 || i.base_reg->reg_num == ESP_REG_NUM))
7179 default_seg = &ss;
7180 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7181 {
7182 fake_zero_displacement = 1;
7183 i.types[op].bitfield.disp8 = 1;
7184 }
7185 i.sib.scale = i.log2_scale_factor;
7186 if (i.index_reg == 0)
7187 {
7188 gas_assert (!i.tm.opcode_modifier.vecsib);
7189 /* <disp>(%esp) becomes two byte modrm with no index
7190 register. We've already stored the code for esp
7191 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7192 Any base register besides %esp will not use the
7193 extra modrm byte. */
7194 i.sib.index = NO_INDEX_REGISTER;
7195 }
7196 else if (!i.tm.opcode_modifier.vecsib)
7197 {
7198 if (i.index_reg->reg_num == RegEiz
7199 || i.index_reg->reg_num == RegRiz)
7200 i.sib.index = NO_INDEX_REGISTER;
7201 else
7202 i.sib.index = i.index_reg->reg_num;
7203 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7204 if ((i.index_reg->reg_flags & RegRex) != 0)
7205 i.rex |= REX_X;
7206 }
7207
7208 if (i.disp_operands
7209 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7210 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7211 i.rm.mode = 0;
7212 else
7213 {
7214 if (!fake_zero_displacement
7215 && !i.disp_operands
7216 && i.disp_encoding)
7217 {
7218 fake_zero_displacement = 1;
7219 if (i.disp_encoding == disp_encoding_8bit)
7220 i.types[op].bitfield.disp8 = 1;
7221 else
7222 i.types[op].bitfield.disp32 = 1;
7223 }
7224 i.rm.mode = mode_from_disp_size (i.types[op]);
7225 }
7226 }
7227
7228 if (fake_zero_displacement)
7229 {
7230 /* Fakes a zero displacement assuming that i.types[op]
7231 holds the correct displacement size. */
7232 expressionS *exp;
7233
7234 gas_assert (i.op[op].disps == 0);
7235 exp = &disp_expressions[i.disp_operands++];
7236 i.op[op].disps = exp;
7237 exp->X_op = O_constant;
7238 exp->X_add_number = 0;
7239 exp->X_add_symbol = (symbolS *) 0;
7240 exp->X_op_symbol = (symbolS *) 0;
7241 }
7242
7243 mem = op;
7244 }
7245 else
7246 mem = ~0;
7247
7248 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7249 {
7250 if (operand_type_check (i.types[0], imm))
7251 i.vex.register_specifier = NULL;
7252 else
7253 {
7254 /* VEX.vvvv encodes one of the sources when the first
7255 operand is not an immediate. */
7256 if (i.tm.opcode_modifier.vexw == VEXW0)
7257 i.vex.register_specifier = i.op[0].regs;
7258 else
7259 i.vex.register_specifier = i.op[1].regs;
7260 }
7261
7262 /* Destination is a XMM register encoded in the ModRM.reg
7263 and VEX.R bit. */
7264 i.rm.reg = i.op[2].regs->reg_num;
7265 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7266 i.rex |= REX_R;
7267
7268 /* ModRM.rm and VEX.B encodes the other source. */
7269 if (!i.mem_operands)
7270 {
7271 i.rm.mode = 3;
7272
7273 if (i.tm.opcode_modifier.vexw == VEXW0)
7274 i.rm.regmem = i.op[1].regs->reg_num;
7275 else
7276 i.rm.regmem = i.op[0].regs->reg_num;
7277
7278 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7279 i.rex |= REX_B;
7280 }
7281 }
7282 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7283 {
7284 i.vex.register_specifier = i.op[2].regs;
7285 if (!i.mem_operands)
7286 {
7287 i.rm.mode = 3;
7288 i.rm.regmem = i.op[1].regs->reg_num;
7289 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7290 i.rex |= REX_B;
7291 }
7292 }
7293 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7294 (if any) based on i.tm.extension_opcode. Again, we must be
7295 careful to make sure that segment/control/debug/test/MMX
7296 registers are coded into the i.rm.reg field. */
7297 else if (i.reg_operands)
7298 {
7299 unsigned int op;
7300 unsigned int vex_reg = ~0;
7301
7302 for (op = 0; op < i.operands; op++)
7303 if (i.types[op].bitfield.reg
7304 || i.types[op].bitfield.regmmx
7305 || i.types[op].bitfield.regsimd
7306 || i.types[op].bitfield.regbnd
7307 || i.types[op].bitfield.regmask
7308 || i.types[op].bitfield.sreg2
7309 || i.types[op].bitfield.sreg3
7310 || i.types[op].bitfield.control
7311 || i.types[op].bitfield.debug
7312 || i.types[op].bitfield.test)
7313 break;
7314
7315 if (vex_3_sources)
7316 op = dest;
7317 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7318 {
7319 /* For instructions with VexNDS, the register-only
7320 source operand is encoded in VEX prefix. */
7321 gas_assert (mem != (unsigned int) ~0);
7322
7323 if (op > mem)
7324 {
7325 vex_reg = op++;
7326 gas_assert (op < i.operands);
7327 }
7328 else
7329 {
7330 /* Check register-only source operand when two source
7331 operands are swapped. */
7332 if (!i.tm.operand_types[op].bitfield.baseindex
7333 && i.tm.operand_types[op + 1].bitfield.baseindex)
7334 {
7335 vex_reg = op;
7336 op += 2;
7337 gas_assert (mem == (vex_reg + 1)
7338 && op < i.operands);
7339 }
7340 else
7341 {
7342 vex_reg = op + 1;
7343 gas_assert (vex_reg < i.operands);
7344 }
7345 }
7346 }
7347 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7348 {
7349 /* For instructions with VexNDD, the register destination
7350 is encoded in VEX prefix. */
7351 if (i.mem_operands == 0)
7352 {
7353 /* There is no memory operand. */
7354 gas_assert ((op + 2) == i.operands);
7355 vex_reg = op + 1;
7356 }
7357 else
7358 {
7359 /* There are only 2 non-immediate operands. */
7360 gas_assert (op < i.imm_operands + 2
7361 && i.operands == i.imm_operands + 2);
7362 vex_reg = i.imm_operands + 1;
7363 }
7364 }
7365 else
7366 gas_assert (op < i.operands);
7367
7368 if (vex_reg != (unsigned int) ~0)
7369 {
7370 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7371
7372 if ((!type->bitfield.reg
7373 || (!type->bitfield.dword && !type->bitfield.qword))
7374 && !type->bitfield.regsimd
7375 && !operand_type_equal (type, &regmask))
7376 abort ();
7377
7378 i.vex.register_specifier = i.op[vex_reg].regs;
7379 }
7380
7381 /* Don't set OP operand twice. */
7382 if (vex_reg != op)
7383 {
7384 /* If there is an extension opcode to put here, the
7385 register number must be put into the regmem field. */
7386 if (i.tm.extension_opcode != None)
7387 {
7388 i.rm.regmem = i.op[op].regs->reg_num;
7389 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7390 i.rex |= REX_B;
7391 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7392 i.vrex |= REX_B;
7393 }
7394 else
7395 {
7396 i.rm.reg = i.op[op].regs->reg_num;
7397 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7398 i.rex |= REX_R;
7399 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7400 i.vrex |= REX_R;
7401 }
7402 }
7403
7404 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7405 must set it to 3 to indicate this is a register operand
7406 in the regmem field. */
7407 if (!i.mem_operands)
7408 i.rm.mode = 3;
7409 }
7410
7411 /* Fill in i.rm.reg field with extension opcode (if any). */
7412 if (i.tm.extension_opcode != None)
7413 i.rm.reg = i.tm.extension_opcode;
7414 }
7415 return default_seg;
7416 }
7417
7418 static void
7419 output_branch (void)
7420 {
7421 char *p;
7422 int size;
7423 int code16;
7424 int prefix;
7425 relax_substateT subtype;
7426 symbolS *sym;
7427 offsetT off;
7428
7429 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7430 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7431
7432 prefix = 0;
7433 if (i.prefix[DATA_PREFIX] != 0)
7434 {
7435 prefix = 1;
7436 i.prefixes -= 1;
7437 code16 ^= CODE16;
7438 }
7439 /* Pentium4 branch hints. */
7440 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7441 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7442 {
7443 prefix++;
7444 i.prefixes--;
7445 }
7446 if (i.prefix[REX_PREFIX] != 0)
7447 {
7448 prefix++;
7449 i.prefixes--;
7450 }
7451
7452 /* BND prefixed jump. */
7453 if (i.prefix[BND_PREFIX] != 0)
7454 {
7455 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7456 i.prefixes -= 1;
7457 }
7458
7459 if (i.prefixes != 0 && !intel_syntax)
7460 as_warn (_("skipping prefixes on this instruction"));
7461
7462 /* It's always a symbol; End frag & setup for relax.
7463 Make sure there is enough room in this frag for the largest
7464 instruction we may generate in md_convert_frag. This is 2
7465 bytes for the opcode and room for the prefix and largest
7466 displacement. */
7467 frag_grow (prefix + 2 + 4);
7468 /* Prefix and 1 opcode byte go in fr_fix. */
7469 p = frag_more (prefix + 1);
7470 if (i.prefix[DATA_PREFIX] != 0)
7471 *p++ = DATA_PREFIX_OPCODE;
7472 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7473 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7474 *p++ = i.prefix[SEG_PREFIX];
7475 if (i.prefix[REX_PREFIX] != 0)
7476 *p++ = i.prefix[REX_PREFIX];
7477 *p = i.tm.base_opcode;
7478
7479 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7480 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7481 else if (cpu_arch_flags.bitfield.cpui386)
7482 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7483 else
7484 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7485 subtype |= code16;
7486
7487 sym = i.op[0].disps->X_add_symbol;
7488 off = i.op[0].disps->X_add_number;
7489
7490 if (i.op[0].disps->X_op != O_constant
7491 && i.op[0].disps->X_op != O_symbol)
7492 {
7493 /* Handle complex expressions. */
7494 sym = make_expr_symbol (i.op[0].disps);
7495 off = 0;
7496 }
7497
7498 /* 1 possible extra opcode + 4 byte displacement go in var part.
7499 Pass reloc in fr_var. */
7500 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7501 }
7502
7503 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7504 /* Return TRUE iff PLT32 relocation should be used for branching to
7505 symbol S. */
7506
7507 static bfd_boolean
7508 need_plt32_p (symbolS *s)
7509 {
7510 /* PLT32 relocation is ELF only. */
7511 if (!IS_ELF)
7512 return FALSE;
7513
7514 /* Since there is no need to prepare for PLT branch on x86-64, we
7515 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7516 be used as a marker for 32-bit PC-relative branches. */
7517 if (!object_64bit)
7518 return FALSE;
7519
7520 /* Weak or undefined symbol need PLT32 relocation. */
7521 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7522 return TRUE;
7523
7524 /* Non-global symbol doesn't need PLT32 relocation. */
7525 if (! S_IS_EXTERNAL (s))
7526 return FALSE;
7527
7528 /* Other global symbols need PLT32 relocation. NB: Symbol with
7529 non-default visibilities are treated as normal global symbol
7530 so that PLT32 relocation can be used as a marker for 32-bit
7531 PC-relative branches. It is useful for linker relaxation. */
7532 return TRUE;
7533 }
7534 #endif
7535
7536 static void
7537 output_jump (void)
7538 {
7539 char *p;
7540 int size;
7541 fixS *fixP;
7542 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7543
7544 if (i.tm.opcode_modifier.jumpbyte)
7545 {
7546 /* This is a loop or jecxz type instruction. */
7547 size = 1;
7548 if (i.prefix[ADDR_PREFIX] != 0)
7549 {
7550 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7551 i.prefixes -= 1;
7552 }
7553 /* Pentium4 branch hints. */
7554 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7555 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7556 {
7557 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7558 i.prefixes--;
7559 }
7560 }
7561 else
7562 {
7563 int code16;
7564
7565 code16 = 0;
7566 if (flag_code == CODE_16BIT)
7567 code16 = CODE16;
7568
7569 if (i.prefix[DATA_PREFIX] != 0)
7570 {
7571 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7572 i.prefixes -= 1;
7573 code16 ^= CODE16;
7574 }
7575
7576 size = 4;
7577 if (code16)
7578 size = 2;
7579 }
7580
7581 if (i.prefix[REX_PREFIX] != 0)
7582 {
7583 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7584 i.prefixes -= 1;
7585 }
7586
7587 /* BND prefixed jump. */
7588 if (i.prefix[BND_PREFIX] != 0)
7589 {
7590 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7591 i.prefixes -= 1;
7592 }
7593
7594 if (i.prefixes != 0 && !intel_syntax)
7595 as_warn (_("skipping prefixes on this instruction"));
7596
7597 p = frag_more (i.tm.opcode_length + size);
7598 switch (i.tm.opcode_length)
7599 {
7600 case 2:
7601 *p++ = i.tm.base_opcode >> 8;
7602 /* Fall through. */
7603 case 1:
7604 *p++ = i.tm.base_opcode;
7605 break;
7606 default:
7607 abort ();
7608 }
7609
7610 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7611 if (size == 4
7612 && jump_reloc == NO_RELOC
7613 && need_plt32_p (i.op[0].disps->X_add_symbol))
7614 jump_reloc = BFD_RELOC_X86_64_PLT32;
7615 #endif
7616
7617 jump_reloc = reloc (size, 1, 1, jump_reloc);
7618
7619 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7620 i.op[0].disps, 1, jump_reloc);
7621
7622 /* All jumps handled here are signed, but don't use a signed limit
7623 check for 32 and 16 bit jumps as we want to allow wrap around at
7624 4G and 64k respectively. */
7625 if (size == 1)
7626 fixP->fx_signed = 1;
7627 }
7628
7629 static void
7630 output_interseg_jump (void)
7631 {
7632 char *p;
7633 int size;
7634 int prefix;
7635 int code16;
7636
7637 code16 = 0;
7638 if (flag_code == CODE_16BIT)
7639 code16 = CODE16;
7640
7641 prefix = 0;
7642 if (i.prefix[DATA_PREFIX] != 0)
7643 {
7644 prefix = 1;
7645 i.prefixes -= 1;
7646 code16 ^= CODE16;
7647 }
7648 if (i.prefix[REX_PREFIX] != 0)
7649 {
7650 prefix++;
7651 i.prefixes -= 1;
7652 }
7653
7654 size = 4;
7655 if (code16)
7656 size = 2;
7657
7658 if (i.prefixes != 0 && !intel_syntax)
7659 as_warn (_("skipping prefixes on this instruction"));
7660
7661 /* 1 opcode; 2 segment; offset */
7662 p = frag_more (prefix + 1 + 2 + size);
7663
7664 if (i.prefix[DATA_PREFIX] != 0)
7665 *p++ = DATA_PREFIX_OPCODE;
7666
7667 if (i.prefix[REX_PREFIX] != 0)
7668 *p++ = i.prefix[REX_PREFIX];
7669
7670 *p++ = i.tm.base_opcode;
7671 if (i.op[1].imms->X_op == O_constant)
7672 {
7673 offsetT n = i.op[1].imms->X_add_number;
7674
7675 if (size == 2
7676 && !fits_in_unsigned_word (n)
7677 && !fits_in_signed_word (n))
7678 {
7679 as_bad (_("16-bit jump out of range"));
7680 return;
7681 }
7682 md_number_to_chars (p, n, size);
7683 }
7684 else
7685 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7686 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7687 if (i.op[0].imms->X_op != O_constant)
7688 as_bad (_("can't handle non absolute segment in `%s'"),
7689 i.tm.name);
7690 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7691 }
7692
7693 static void
7694 output_insn (void)
7695 {
7696 fragS *insn_start_frag;
7697 offsetT insn_start_off;
7698
7699 /* Tie dwarf2 debug info to the address at the start of the insn.
7700 We can't do this after the insn has been output as the current
7701 frag may have been closed off. eg. by frag_var. */
7702 dwarf2_emit_insn (0);
7703
7704 insn_start_frag = frag_now;
7705 insn_start_off = frag_now_fix ();
7706
7707 /* Output jumps. */
7708 if (i.tm.opcode_modifier.jump)
7709 output_branch ();
7710 else if (i.tm.opcode_modifier.jumpbyte
7711 || i.tm.opcode_modifier.jumpdword)
7712 output_jump ();
7713 else if (i.tm.opcode_modifier.jumpintersegment)
7714 output_interseg_jump ();
7715 else
7716 {
7717 /* Output normal instructions here. */
7718 char *p;
7719 unsigned char *q;
7720 unsigned int j;
7721 unsigned int prefix;
7722
7723 if (avoid_fence
7724 && i.tm.base_opcode == 0xfae
7725 && i.operands == 1
7726 && i.imm_operands == 1
7727 && (i.op[0].imms->X_add_number == 0xe8
7728 || i.op[0].imms->X_add_number == 0xf0
7729 || i.op[0].imms->X_add_number == 0xf8))
7730 {
7731 /* Encode lfence, mfence, and sfence as
7732 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7733 offsetT val = 0x240483f0ULL;
7734 p = frag_more (5);
7735 md_number_to_chars (p, val, 5);
7736 return;
7737 }
7738
7739 /* Some processors fail on LOCK prefix. This options makes
7740 assembler ignore LOCK prefix and serves as a workaround. */
7741 if (omit_lock_prefix)
7742 {
7743 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7744 return;
7745 i.prefix[LOCK_PREFIX] = 0;
7746 }
7747
7748 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7749 don't need the explicit prefix. */
7750 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7751 {
7752 switch (i.tm.opcode_length)
7753 {
7754 case 3:
7755 if (i.tm.base_opcode & 0xff000000)
7756 {
7757 prefix = (i.tm.base_opcode >> 24) & 0xff;
7758 add_prefix (prefix);
7759 }
7760 break;
7761 case 2:
7762 if ((i.tm.base_opcode & 0xff0000) != 0)
7763 {
7764 prefix = (i.tm.base_opcode >> 16) & 0xff;
7765 if (!i.tm.cpu_flags.bitfield.cpupadlock
7766 || prefix != REPE_PREFIX_OPCODE
7767 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
7768 add_prefix (prefix);
7769 }
7770 break;
7771 case 1:
7772 break;
7773 case 0:
7774 /* Check for pseudo prefixes. */
7775 as_bad_where (insn_start_frag->fr_file,
7776 insn_start_frag->fr_line,
7777 _("pseudo prefix without instruction"));
7778 return;
7779 default:
7780 abort ();
7781 }
7782
7783 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7784 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7785 R_X86_64_GOTTPOFF relocation so that linker can safely
7786 perform IE->LE optimization. */
7787 if (x86_elf_abi == X86_64_X32_ABI
7788 && i.operands == 2
7789 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7790 && i.prefix[REX_PREFIX] == 0)
7791 add_prefix (REX_OPCODE);
7792 #endif
7793
7794 /* The prefix bytes. */
7795 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7796 if (*q)
7797 FRAG_APPEND_1_CHAR (*q);
7798 }
7799 else
7800 {
7801 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7802 if (*q)
7803 switch (j)
7804 {
7805 case REX_PREFIX:
7806 /* REX byte is encoded in VEX prefix. */
7807 break;
7808 case SEG_PREFIX:
7809 case ADDR_PREFIX:
7810 FRAG_APPEND_1_CHAR (*q);
7811 break;
7812 default:
7813 /* There should be no other prefixes for instructions
7814 with VEX prefix. */
7815 abort ();
7816 }
7817
7818 /* For EVEX instructions i.vrex should become 0 after
7819 build_evex_prefix. For VEX instructions upper 16 registers
7820 aren't available, so VREX should be 0. */
7821 if (i.vrex)
7822 abort ();
7823 /* Now the VEX prefix. */
7824 p = frag_more (i.vex.length);
7825 for (j = 0; j < i.vex.length; j++)
7826 p[j] = i.vex.bytes[j];
7827 }
7828
7829 /* Now the opcode; be careful about word order here! */
7830 if (i.tm.opcode_length == 1)
7831 {
7832 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7833 }
7834 else
7835 {
7836 switch (i.tm.opcode_length)
7837 {
7838 case 4:
7839 p = frag_more (4);
7840 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7841 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7842 break;
7843 case 3:
7844 p = frag_more (3);
7845 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7846 break;
7847 case 2:
7848 p = frag_more (2);
7849 break;
7850 default:
7851 abort ();
7852 break;
7853 }
7854
7855 /* Put out high byte first: can't use md_number_to_chars! */
7856 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7857 *p = i.tm.base_opcode & 0xff;
7858 }
7859
7860 /* Now the modrm byte and sib byte (if present). */
7861 if (i.tm.opcode_modifier.modrm)
7862 {
7863 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7864 | i.rm.reg << 3
7865 | i.rm.mode << 6));
7866 /* If i.rm.regmem == ESP (4)
7867 && i.rm.mode != (Register mode)
7868 && not 16 bit
7869 ==> need second modrm byte. */
7870 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7871 && i.rm.mode != 3
7872 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
7873 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7874 | i.sib.index << 3
7875 | i.sib.scale << 6));
7876 }
7877
7878 if (i.disp_operands)
7879 output_disp (insn_start_frag, insn_start_off);
7880
7881 if (i.imm_operands)
7882 output_imm (insn_start_frag, insn_start_off);
7883 }
7884
7885 #ifdef DEBUG386
7886 if (flag_debug)
7887 {
7888 pi ("" /*line*/, &i);
7889 }
7890 #endif /* DEBUG386 */
7891 }
7892
7893 /* Return the size of the displacement operand N. */
7894
7895 static int
7896 disp_size (unsigned int n)
7897 {
7898 int size = 4;
7899
7900 if (i.types[n].bitfield.disp64)
7901 size = 8;
7902 else if (i.types[n].bitfield.disp8)
7903 size = 1;
7904 else if (i.types[n].bitfield.disp16)
7905 size = 2;
7906 return size;
7907 }
7908
7909 /* Return the size of the immediate operand N. */
7910
7911 static int
7912 imm_size (unsigned int n)
7913 {
7914 int size = 4;
7915 if (i.types[n].bitfield.imm64)
7916 size = 8;
7917 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7918 size = 1;
7919 else if (i.types[n].bitfield.imm16)
7920 size = 2;
7921 return size;
7922 }
7923
7924 static void
7925 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7926 {
7927 char *p;
7928 unsigned int n;
7929
7930 for (n = 0; n < i.operands; n++)
7931 {
7932 if (operand_type_check (i.types[n], disp))
7933 {
7934 if (i.op[n].disps->X_op == O_constant)
7935 {
7936 int size = disp_size (n);
7937 offsetT val = i.op[n].disps->X_add_number;
7938
7939 val = offset_in_range (val >> i.memshift, size);
7940 p = frag_more (size);
7941 md_number_to_chars (p, val, size);
7942 }
7943 else
7944 {
7945 enum bfd_reloc_code_real reloc_type;
7946 int size = disp_size (n);
7947 int sign = i.types[n].bitfield.disp32s;
7948 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7949 fixS *fixP;
7950
7951 /* We can't have 8 bit displacement here. */
7952 gas_assert (!i.types[n].bitfield.disp8);
7953
7954 /* The PC relative address is computed relative
7955 to the instruction boundary, so in case immediate
7956 fields follows, we need to adjust the value. */
7957 if (pcrel && i.imm_operands)
7958 {
7959 unsigned int n1;
7960 int sz = 0;
7961
7962 for (n1 = 0; n1 < i.operands; n1++)
7963 if (operand_type_check (i.types[n1], imm))
7964 {
7965 /* Only one immediate is allowed for PC
7966 relative address. */
7967 gas_assert (sz == 0);
7968 sz = imm_size (n1);
7969 i.op[n].disps->X_add_number -= sz;
7970 }
7971 /* We should find the immediate. */
7972 gas_assert (sz != 0);
7973 }
7974
7975 p = frag_more (size);
7976 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7977 if (GOT_symbol
7978 && GOT_symbol == i.op[n].disps->X_add_symbol
7979 && (((reloc_type == BFD_RELOC_32
7980 || reloc_type == BFD_RELOC_X86_64_32S
7981 || (reloc_type == BFD_RELOC_64
7982 && object_64bit))
7983 && (i.op[n].disps->X_op == O_symbol
7984 || (i.op[n].disps->X_op == O_add
7985 && ((symbol_get_value_expression
7986 (i.op[n].disps->X_op_symbol)->X_op)
7987 == O_subtract))))
7988 || reloc_type == BFD_RELOC_32_PCREL))
7989 {
7990 offsetT add;
7991
7992 if (insn_start_frag == frag_now)
7993 add = (p - frag_now->fr_literal) - insn_start_off;
7994 else
7995 {
7996 fragS *fr;
7997
7998 add = insn_start_frag->fr_fix - insn_start_off;
7999 for (fr = insn_start_frag->fr_next;
8000 fr && fr != frag_now; fr = fr->fr_next)
8001 add += fr->fr_fix;
8002 add += p - frag_now->fr_literal;
8003 }
8004
8005 if (!object_64bit)
8006 {
8007 reloc_type = BFD_RELOC_386_GOTPC;
8008 i.op[n].imms->X_add_number += add;
8009 }
8010 else if (reloc_type == BFD_RELOC_64)
8011 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8012 else
8013 /* Don't do the adjustment for x86-64, as there
8014 the pcrel addressing is relative to the _next_
8015 insn, and that is taken care of in other code. */
8016 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8017 }
8018 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8019 size, i.op[n].disps, pcrel,
8020 reloc_type);
8021 /* Check for "call/jmp *mem", "mov mem, %reg",
8022 "test %reg, mem" and "binop mem, %reg" where binop
8023 is one of adc, add, and, cmp, or, sbb, sub, xor
8024 instructions. Always generate R_386_GOT32X for
8025 "sym*GOT" operand in 32-bit mode. */
8026 if ((generate_relax_relocations
8027 || (!object_64bit
8028 && i.rm.mode == 0
8029 && i.rm.regmem == 5))
8030 && (i.rm.mode == 2
8031 || (i.rm.mode == 0 && i.rm.regmem == 5))
8032 && ((i.operands == 1
8033 && i.tm.base_opcode == 0xff
8034 && (i.rm.reg == 2 || i.rm.reg == 4))
8035 || (i.operands == 2
8036 && (i.tm.base_opcode == 0x8b
8037 || i.tm.base_opcode == 0x85
8038 || (i.tm.base_opcode & 0xc7) == 0x03))))
8039 {
8040 if (object_64bit)
8041 {
8042 fixP->fx_tcbit = i.rex != 0;
8043 if (i.base_reg
8044 && (i.base_reg->reg_num == RegRip
8045 || i.base_reg->reg_num == RegEip))
8046 fixP->fx_tcbit2 = 1;
8047 }
8048 else
8049 fixP->fx_tcbit2 = 1;
8050 }
8051 }
8052 }
8053 }
8054 }
8055
8056 static void
8057 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
8058 {
8059 char *p;
8060 unsigned int n;
8061
8062 for (n = 0; n < i.operands; n++)
8063 {
8064 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8065 if (i.rounding && (int) n == i.rounding->operand)
8066 continue;
8067
8068 if (operand_type_check (i.types[n], imm))
8069 {
8070 if (i.op[n].imms->X_op == O_constant)
8071 {
8072 int size = imm_size (n);
8073 offsetT val;
8074
8075 val = offset_in_range (i.op[n].imms->X_add_number,
8076 size);
8077 p = frag_more (size);
8078 md_number_to_chars (p, val, size);
8079 }
8080 else
8081 {
8082 /* Not absolute_section.
8083 Need a 32-bit fixup (don't support 8bit
8084 non-absolute imms). Try to support other
8085 sizes ... */
8086 enum bfd_reloc_code_real reloc_type;
8087 int size = imm_size (n);
8088 int sign;
8089
8090 if (i.types[n].bitfield.imm32s
8091 && (i.suffix == QWORD_MNEM_SUFFIX
8092 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8093 sign = 1;
8094 else
8095 sign = 0;
8096
8097 p = frag_more (size);
8098 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8099
8100 /* This is tough to explain. We end up with this one if we
8101 * have operands that look like
8102 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8103 * obtain the absolute address of the GOT, and it is strongly
8104 * preferable from a performance point of view to avoid using
8105 * a runtime relocation for this. The actual sequence of
8106 * instructions often look something like:
8107 *
8108 * call .L66
8109 * .L66:
8110 * popl %ebx
8111 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8112 *
8113 * The call and pop essentially return the absolute address
8114 * of the label .L66 and store it in %ebx. The linker itself
8115 * will ultimately change the first operand of the addl so
8116 * that %ebx points to the GOT, but to keep things simple, the
8117 * .o file must have this operand set so that it generates not
8118 * the absolute address of .L66, but the absolute address of
8119 * itself. This allows the linker itself simply treat a GOTPC
8120 * relocation as asking for a pcrel offset to the GOT to be
8121 * added in, and the addend of the relocation is stored in the
8122 * operand field for the instruction itself.
8123 *
8124 * Our job here is to fix the operand so that it would add
8125 * the correct offset so that %ebx would point to itself. The
8126 * thing that is tricky is that .-.L66 will point to the
8127 * beginning of the instruction, so we need to further modify
8128 * the operand so that it will point to itself. There are
8129 * other cases where you have something like:
8130 *
8131 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8132 *
8133 * and here no correction would be required. Internally in
8134 * the assembler we treat operands of this form as not being
8135 * pcrel since the '.' is explicitly mentioned, and I wonder
8136 * whether it would simplify matters to do it this way. Who
8137 * knows. In earlier versions of the PIC patches, the
8138 * pcrel_adjust field was used to store the correction, but
8139 * since the expression is not pcrel, I felt it would be
8140 * confusing to do it this way. */
8141
8142 if ((reloc_type == BFD_RELOC_32
8143 || reloc_type == BFD_RELOC_X86_64_32S
8144 || reloc_type == BFD_RELOC_64)
8145 && GOT_symbol
8146 && GOT_symbol == i.op[n].imms->X_add_symbol
8147 && (i.op[n].imms->X_op == O_symbol
8148 || (i.op[n].imms->X_op == O_add
8149 && ((symbol_get_value_expression
8150 (i.op[n].imms->X_op_symbol)->X_op)
8151 == O_subtract))))
8152 {
8153 offsetT add;
8154
8155 if (insn_start_frag == frag_now)
8156 add = (p - frag_now->fr_literal) - insn_start_off;
8157 else
8158 {
8159 fragS *fr;
8160
8161 add = insn_start_frag->fr_fix - insn_start_off;
8162 for (fr = insn_start_frag->fr_next;
8163 fr && fr != frag_now; fr = fr->fr_next)
8164 add += fr->fr_fix;
8165 add += p - frag_now->fr_literal;
8166 }
8167
8168 if (!object_64bit)
8169 reloc_type = BFD_RELOC_386_GOTPC;
8170 else if (size == 4)
8171 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8172 else if (size == 8)
8173 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8174 i.op[n].imms->X_add_number += add;
8175 }
8176 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8177 i.op[n].imms, 0, reloc_type);
8178 }
8179 }
8180 }
8181 }
8182 \f
8183 /* x86_cons_fix_new is called via the expression parsing code when a
8184 reloc is needed. We use this hook to get the correct .got reloc. */
8185 static int cons_sign = -1;
8186
8187 void
8188 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8189 expressionS *exp, bfd_reloc_code_real_type r)
8190 {
8191 r = reloc (len, 0, cons_sign, r);
8192
8193 #ifdef TE_PE
8194 if (exp->X_op == O_secrel)
8195 {
8196 exp->X_op = O_symbol;
8197 r = BFD_RELOC_32_SECREL;
8198 }
8199 #endif
8200
8201 fix_new_exp (frag, off, len, exp, 0, r);
8202 }
8203
8204 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8205 purpose of the `.dc.a' internal pseudo-op. */
8206
8207 int
8208 x86_address_bytes (void)
8209 {
8210 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8211 return 4;
8212 return stdoutput->arch_info->bits_per_address / 8;
8213 }
8214
8215 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8216 || defined (LEX_AT)
8217 # define lex_got(reloc, adjust, types) NULL
8218 #else
8219 /* Parse operands of the form
8220 <symbol>@GOTOFF+<nnn>
8221 and similar .plt or .got references.
8222
8223 If we find one, set up the correct relocation in RELOC and copy the
8224 input string, minus the `@GOTOFF' into a malloc'd buffer for
8225 parsing by the calling routine. Return this buffer, and if ADJUST
8226 is non-null set it to the length of the string we removed from the
8227 input line. Otherwise return NULL. */
8228 static char *
8229 lex_got (enum bfd_reloc_code_real *rel,
8230 int *adjust,
8231 i386_operand_type *types)
8232 {
8233 /* Some of the relocations depend on the size of what field is to
8234 be relocated. But in our callers i386_immediate and i386_displacement
8235 we don't yet know the operand size (this will be set by insn
8236 matching). Hence we record the word32 relocation here,
8237 and adjust the reloc according to the real size in reloc(). */
8238 static const struct {
8239 const char *str;
8240 int len;
8241 const enum bfd_reloc_code_real rel[2];
8242 const i386_operand_type types64;
8243 } gotrel[] = {
8244 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8245 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8246 BFD_RELOC_SIZE32 },
8247 OPERAND_TYPE_IMM32_64 },
8248 #endif
8249 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8250 BFD_RELOC_X86_64_PLTOFF64 },
8251 OPERAND_TYPE_IMM64 },
8252 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8253 BFD_RELOC_X86_64_PLT32 },
8254 OPERAND_TYPE_IMM32_32S_DISP32 },
8255 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8256 BFD_RELOC_X86_64_GOTPLT64 },
8257 OPERAND_TYPE_IMM64_DISP64 },
8258 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8259 BFD_RELOC_X86_64_GOTOFF64 },
8260 OPERAND_TYPE_IMM64_DISP64 },
8261 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8262 BFD_RELOC_X86_64_GOTPCREL },
8263 OPERAND_TYPE_IMM32_32S_DISP32 },
8264 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8265 BFD_RELOC_X86_64_TLSGD },
8266 OPERAND_TYPE_IMM32_32S_DISP32 },
8267 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8268 _dummy_first_bfd_reloc_code_real },
8269 OPERAND_TYPE_NONE },
8270 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8271 BFD_RELOC_X86_64_TLSLD },
8272 OPERAND_TYPE_IMM32_32S_DISP32 },
8273 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8274 BFD_RELOC_X86_64_GOTTPOFF },
8275 OPERAND_TYPE_IMM32_32S_DISP32 },
8276 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8277 BFD_RELOC_X86_64_TPOFF32 },
8278 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8279 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8280 _dummy_first_bfd_reloc_code_real },
8281 OPERAND_TYPE_NONE },
8282 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8283 BFD_RELOC_X86_64_DTPOFF32 },
8284 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8285 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8286 _dummy_first_bfd_reloc_code_real },
8287 OPERAND_TYPE_NONE },
8288 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8289 _dummy_first_bfd_reloc_code_real },
8290 OPERAND_TYPE_NONE },
8291 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8292 BFD_RELOC_X86_64_GOT32 },
8293 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8294 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8295 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8296 OPERAND_TYPE_IMM32_32S_DISP32 },
8297 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8298 BFD_RELOC_X86_64_TLSDESC_CALL },
8299 OPERAND_TYPE_IMM32_32S_DISP32 },
8300 };
8301 char *cp;
8302 unsigned int j;
8303
8304 #if defined (OBJ_MAYBE_ELF)
8305 if (!IS_ELF)
8306 return NULL;
8307 #endif
8308
8309 for (cp = input_line_pointer; *cp != '@'; cp++)
8310 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8311 return NULL;
8312
8313 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8314 {
8315 int len = gotrel[j].len;
8316 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8317 {
8318 if (gotrel[j].rel[object_64bit] != 0)
8319 {
8320 int first, second;
8321 char *tmpbuf, *past_reloc;
8322
8323 *rel = gotrel[j].rel[object_64bit];
8324
8325 if (types)
8326 {
8327 if (flag_code != CODE_64BIT)
8328 {
8329 types->bitfield.imm32 = 1;
8330 types->bitfield.disp32 = 1;
8331 }
8332 else
8333 *types = gotrel[j].types64;
8334 }
8335
8336 if (j != 0 && GOT_symbol == NULL)
8337 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8338
8339 /* The length of the first part of our input line. */
8340 first = cp - input_line_pointer;
8341
8342 /* The second part goes from after the reloc token until
8343 (and including) an end_of_line char or comma. */
8344 past_reloc = cp + 1 + len;
8345 cp = past_reloc;
8346 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8347 ++cp;
8348 second = cp + 1 - past_reloc;
8349
8350 /* Allocate and copy string. The trailing NUL shouldn't
8351 be necessary, but be safe. */
8352 tmpbuf = XNEWVEC (char, first + second + 2);
8353 memcpy (tmpbuf, input_line_pointer, first);
8354 if (second != 0 && *past_reloc != ' ')
8355 /* Replace the relocation token with ' ', so that
8356 errors like foo@GOTOFF1 will be detected. */
8357 tmpbuf[first++] = ' ';
8358 else
8359 /* Increment length by 1 if the relocation token is
8360 removed. */
8361 len++;
8362 if (adjust)
8363 *adjust = len;
8364 memcpy (tmpbuf + first, past_reloc, second);
8365 tmpbuf[first + second] = '\0';
8366 return tmpbuf;
8367 }
8368
8369 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8370 gotrel[j].str, 1 << (5 + object_64bit));
8371 return NULL;
8372 }
8373 }
8374
8375 /* Might be a symbol version string. Don't as_bad here. */
8376 return NULL;
8377 }
8378 #endif
8379
8380 #ifdef TE_PE
8381 #ifdef lex_got
8382 #undef lex_got
8383 #endif
8384 /* Parse operands of the form
8385 <symbol>@SECREL32+<nnn>
8386
8387 If we find one, set up the correct relocation in RELOC and copy the
8388 input string, minus the `@SECREL32' into a malloc'd buffer for
8389 parsing by the calling routine. Return this buffer, and if ADJUST
8390 is non-null set it to the length of the string we removed from the
8391 input line. Otherwise return NULL.
8392
8393 This function is copied from the ELF version above adjusted for PE targets. */
8394
8395 static char *
8396 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8397 int *adjust ATTRIBUTE_UNUSED,
8398 i386_operand_type *types)
8399 {
8400 static const struct
8401 {
8402 const char *str;
8403 int len;
8404 const enum bfd_reloc_code_real rel[2];
8405 const i386_operand_type types64;
8406 }
8407 gotrel[] =
8408 {
8409 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8410 BFD_RELOC_32_SECREL },
8411 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8412 };
8413
8414 char *cp;
8415 unsigned j;
8416
8417 for (cp = input_line_pointer; *cp != '@'; cp++)
8418 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8419 return NULL;
8420
8421 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8422 {
8423 int len = gotrel[j].len;
8424
8425 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8426 {
8427 if (gotrel[j].rel[object_64bit] != 0)
8428 {
8429 int first, second;
8430 char *tmpbuf, *past_reloc;
8431
8432 *rel = gotrel[j].rel[object_64bit];
8433 if (adjust)
8434 *adjust = len;
8435
8436 if (types)
8437 {
8438 if (flag_code != CODE_64BIT)
8439 {
8440 types->bitfield.imm32 = 1;
8441 types->bitfield.disp32 = 1;
8442 }
8443 else
8444 *types = gotrel[j].types64;
8445 }
8446
8447 /* The length of the first part of our input line. */
8448 first = cp - input_line_pointer;
8449
8450 /* The second part goes from after the reloc token until
8451 (and including) an end_of_line char or comma. */
8452 past_reloc = cp + 1 + len;
8453 cp = past_reloc;
8454 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8455 ++cp;
8456 second = cp + 1 - past_reloc;
8457
8458 /* Allocate and copy string. The trailing NUL shouldn't
8459 be necessary, but be safe. */
8460 tmpbuf = XNEWVEC (char, first + second + 2);
8461 memcpy (tmpbuf, input_line_pointer, first);
8462 if (second != 0 && *past_reloc != ' ')
8463 /* Replace the relocation token with ' ', so that
8464 errors like foo@SECLREL321 will be detected. */
8465 tmpbuf[first++] = ' ';
8466 memcpy (tmpbuf + first, past_reloc, second);
8467 tmpbuf[first + second] = '\0';
8468 return tmpbuf;
8469 }
8470
8471 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8472 gotrel[j].str, 1 << (5 + object_64bit));
8473 return NULL;
8474 }
8475 }
8476
8477 /* Might be a symbol version string. Don't as_bad here. */
8478 return NULL;
8479 }
8480
8481 #endif /* TE_PE */
8482
8483 bfd_reloc_code_real_type
8484 x86_cons (expressionS *exp, int size)
8485 {
8486 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8487
8488 intel_syntax = -intel_syntax;
8489
8490 exp->X_md = 0;
8491 if (size == 4 || (object_64bit && size == 8))
8492 {
8493 /* Handle @GOTOFF and the like in an expression. */
8494 char *save;
8495 char *gotfree_input_line;
8496 int adjust = 0;
8497
8498 save = input_line_pointer;
8499 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8500 if (gotfree_input_line)
8501 input_line_pointer = gotfree_input_line;
8502
8503 expression (exp);
8504
8505 if (gotfree_input_line)
8506 {
8507 /* expression () has merrily parsed up to the end of line,
8508 or a comma - in the wrong buffer. Transfer how far
8509 input_line_pointer has moved to the right buffer. */
8510 input_line_pointer = (save
8511 + (input_line_pointer - gotfree_input_line)
8512 + adjust);
8513 free (gotfree_input_line);
8514 if (exp->X_op == O_constant
8515 || exp->X_op == O_absent
8516 || exp->X_op == O_illegal
8517 || exp->X_op == O_register
8518 || exp->X_op == O_big)
8519 {
8520 char c = *input_line_pointer;
8521 *input_line_pointer = 0;
8522 as_bad (_("missing or invalid expression `%s'"), save);
8523 *input_line_pointer = c;
8524 }
8525 }
8526 }
8527 else
8528 expression (exp);
8529
8530 intel_syntax = -intel_syntax;
8531
8532 if (intel_syntax)
8533 i386_intel_simplify (exp);
8534
8535 return got_reloc;
8536 }
8537
8538 static void
8539 signed_cons (int size)
8540 {
8541 if (flag_code == CODE_64BIT)
8542 cons_sign = 1;
8543 cons (size);
8544 cons_sign = -1;
8545 }
8546
8547 #ifdef TE_PE
8548 static void
8549 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8550 {
8551 expressionS exp;
8552
8553 do
8554 {
8555 expression (&exp);
8556 if (exp.X_op == O_symbol)
8557 exp.X_op = O_secrel;
8558
8559 emit_expr (&exp, 4);
8560 }
8561 while (*input_line_pointer++ == ',');
8562
8563 input_line_pointer--;
8564 demand_empty_rest_of_line ();
8565 }
8566 #endif
8567
8568 /* Handle Vector operations. */
8569
8570 static char *
8571 check_VecOperations (char *op_string, char *op_end)
8572 {
8573 const reg_entry *mask;
8574 const char *saved;
8575 char *end_op;
8576
8577 while (*op_string
8578 && (op_end == NULL || op_string < op_end))
8579 {
8580 saved = op_string;
8581 if (*op_string == '{')
8582 {
8583 op_string++;
8584
8585 /* Check broadcasts. */
8586 if (strncmp (op_string, "1to", 3) == 0)
8587 {
8588 int bcst_type;
8589
8590 if (i.broadcast)
8591 goto duplicated_vec_op;
8592
8593 op_string += 3;
8594 if (*op_string == '8')
8595 bcst_type = 8;
8596 else if (*op_string == '4')
8597 bcst_type = 4;
8598 else if (*op_string == '2')
8599 bcst_type = 2;
8600 else if (*op_string == '1'
8601 && *(op_string+1) == '6')
8602 {
8603 bcst_type = 16;
8604 op_string++;
8605 }
8606 else
8607 {
8608 as_bad (_("Unsupported broadcast: `%s'"), saved);
8609 return NULL;
8610 }
8611 op_string++;
8612
8613 broadcast_op.type = bcst_type;
8614 broadcast_op.operand = this_operand;
8615 i.broadcast = &broadcast_op;
8616 }
8617 /* Check masking operation. */
8618 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8619 {
8620 /* k0 can't be used for write mask. */
8621 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
8622 {
8623 as_bad (_("`%s%s' can't be used for write mask"),
8624 register_prefix, mask->reg_name);
8625 return NULL;
8626 }
8627
8628 if (!i.mask)
8629 {
8630 mask_op.mask = mask;
8631 mask_op.zeroing = 0;
8632 mask_op.operand = this_operand;
8633 i.mask = &mask_op;
8634 }
8635 else
8636 {
8637 if (i.mask->mask)
8638 goto duplicated_vec_op;
8639
8640 i.mask->mask = mask;
8641
8642 /* Only "{z}" is allowed here. No need to check
8643 zeroing mask explicitly. */
8644 if (i.mask->operand != this_operand)
8645 {
8646 as_bad (_("invalid write mask `%s'"), saved);
8647 return NULL;
8648 }
8649 }
8650
8651 op_string = end_op;
8652 }
8653 /* Check zeroing-flag for masking operation. */
8654 else if (*op_string == 'z')
8655 {
8656 if (!i.mask)
8657 {
8658 mask_op.mask = NULL;
8659 mask_op.zeroing = 1;
8660 mask_op.operand = this_operand;
8661 i.mask = &mask_op;
8662 }
8663 else
8664 {
8665 if (i.mask->zeroing)
8666 {
8667 duplicated_vec_op:
8668 as_bad (_("duplicated `%s'"), saved);
8669 return NULL;
8670 }
8671
8672 i.mask->zeroing = 1;
8673
8674 /* Only "{%k}" is allowed here. No need to check mask
8675 register explicitly. */
8676 if (i.mask->operand != this_operand)
8677 {
8678 as_bad (_("invalid zeroing-masking `%s'"),
8679 saved);
8680 return NULL;
8681 }
8682 }
8683
8684 op_string++;
8685 }
8686 else
8687 goto unknown_vec_op;
8688
8689 if (*op_string != '}')
8690 {
8691 as_bad (_("missing `}' in `%s'"), saved);
8692 return NULL;
8693 }
8694 op_string++;
8695
8696 /* Strip whitespace since the addition of pseudo prefixes
8697 changed how the scrubber treats '{'. */
8698 if (is_space_char (*op_string))
8699 ++op_string;
8700
8701 continue;
8702 }
8703 unknown_vec_op:
8704 /* We don't know this one. */
8705 as_bad (_("unknown vector operation: `%s'"), saved);
8706 return NULL;
8707 }
8708
8709 if (i.mask && i.mask->zeroing && !i.mask->mask)
8710 {
8711 as_bad (_("zeroing-masking only allowed with write mask"));
8712 return NULL;
8713 }
8714
8715 return op_string;
8716 }
8717
8718 static int
8719 i386_immediate (char *imm_start)
8720 {
8721 char *save_input_line_pointer;
8722 char *gotfree_input_line;
8723 segT exp_seg = 0;
8724 expressionS *exp;
8725 i386_operand_type types;
8726
8727 operand_type_set (&types, ~0);
8728
8729 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8730 {
8731 as_bad (_("at most %d immediate operands are allowed"),
8732 MAX_IMMEDIATE_OPERANDS);
8733 return 0;
8734 }
8735
8736 exp = &im_expressions[i.imm_operands++];
8737 i.op[this_operand].imms = exp;
8738
8739 if (is_space_char (*imm_start))
8740 ++imm_start;
8741
8742 save_input_line_pointer = input_line_pointer;
8743 input_line_pointer = imm_start;
8744
8745 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8746 if (gotfree_input_line)
8747 input_line_pointer = gotfree_input_line;
8748
8749 exp_seg = expression (exp);
8750
8751 SKIP_WHITESPACE ();
8752
8753 /* Handle vector operations. */
8754 if (*input_line_pointer == '{')
8755 {
8756 input_line_pointer = check_VecOperations (input_line_pointer,
8757 NULL);
8758 if (input_line_pointer == NULL)
8759 return 0;
8760 }
8761
8762 if (*input_line_pointer)
8763 as_bad (_("junk `%s' after expression"), input_line_pointer);
8764
8765 input_line_pointer = save_input_line_pointer;
8766 if (gotfree_input_line)
8767 {
8768 free (gotfree_input_line);
8769
8770 if (exp->X_op == O_constant || exp->X_op == O_register)
8771 exp->X_op = O_illegal;
8772 }
8773
8774 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8775 }
8776
8777 static int
8778 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8779 i386_operand_type types, const char *imm_start)
8780 {
8781 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8782 {
8783 if (imm_start)
8784 as_bad (_("missing or invalid immediate expression `%s'"),
8785 imm_start);
8786 return 0;
8787 }
8788 else if (exp->X_op == O_constant)
8789 {
8790 /* Size it properly later. */
8791 i.types[this_operand].bitfield.imm64 = 1;
8792 /* If not 64bit, sign extend val. */
8793 if (flag_code != CODE_64BIT
8794 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8795 exp->X_add_number
8796 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8797 }
8798 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8799 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8800 && exp_seg != absolute_section
8801 && exp_seg != text_section
8802 && exp_seg != data_section
8803 && exp_seg != bss_section
8804 && exp_seg != undefined_section
8805 && !bfd_is_com_section (exp_seg))
8806 {
8807 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8808 return 0;
8809 }
8810 #endif
8811 else if (!intel_syntax && exp_seg == reg_section)
8812 {
8813 if (imm_start)
8814 as_bad (_("illegal immediate register operand %s"), imm_start);
8815 return 0;
8816 }
8817 else
8818 {
8819 /* This is an address. The size of the address will be
8820 determined later, depending on destination register,
8821 suffix, or the default for the section. */
8822 i.types[this_operand].bitfield.imm8 = 1;
8823 i.types[this_operand].bitfield.imm16 = 1;
8824 i.types[this_operand].bitfield.imm32 = 1;
8825 i.types[this_operand].bitfield.imm32s = 1;
8826 i.types[this_operand].bitfield.imm64 = 1;
8827 i.types[this_operand] = operand_type_and (i.types[this_operand],
8828 types);
8829 }
8830
8831 return 1;
8832 }
8833
8834 static char *
8835 i386_scale (char *scale)
8836 {
8837 offsetT val;
8838 char *save = input_line_pointer;
8839
8840 input_line_pointer = scale;
8841 val = get_absolute_expression ();
8842
8843 switch (val)
8844 {
8845 case 1:
8846 i.log2_scale_factor = 0;
8847 break;
8848 case 2:
8849 i.log2_scale_factor = 1;
8850 break;
8851 case 4:
8852 i.log2_scale_factor = 2;
8853 break;
8854 case 8:
8855 i.log2_scale_factor = 3;
8856 break;
8857 default:
8858 {
8859 char sep = *input_line_pointer;
8860
8861 *input_line_pointer = '\0';
8862 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8863 scale);
8864 *input_line_pointer = sep;
8865 input_line_pointer = save;
8866 return NULL;
8867 }
8868 }
8869 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8870 {
8871 as_warn (_("scale factor of %d without an index register"),
8872 1 << i.log2_scale_factor);
8873 i.log2_scale_factor = 0;
8874 }
8875 scale = input_line_pointer;
8876 input_line_pointer = save;
8877 return scale;
8878 }
8879
8880 static int
8881 i386_displacement (char *disp_start, char *disp_end)
8882 {
8883 expressionS *exp;
8884 segT exp_seg = 0;
8885 char *save_input_line_pointer;
8886 char *gotfree_input_line;
8887 int override;
8888 i386_operand_type bigdisp, types = anydisp;
8889 int ret;
8890
8891 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8892 {
8893 as_bad (_("at most %d displacement operands are allowed"),
8894 MAX_MEMORY_OPERANDS);
8895 return 0;
8896 }
8897
8898 operand_type_set (&bigdisp, 0);
8899 if ((i.types[this_operand].bitfield.jumpabsolute)
8900 || (!current_templates->start->opcode_modifier.jump
8901 && !current_templates->start->opcode_modifier.jumpdword))
8902 {
8903 bigdisp.bitfield.disp32 = 1;
8904 override = (i.prefix[ADDR_PREFIX] != 0);
8905 if (flag_code == CODE_64BIT)
8906 {
8907 if (!override)
8908 {
8909 bigdisp.bitfield.disp32s = 1;
8910 bigdisp.bitfield.disp64 = 1;
8911 }
8912 }
8913 else if ((flag_code == CODE_16BIT) ^ override)
8914 {
8915 bigdisp.bitfield.disp32 = 0;
8916 bigdisp.bitfield.disp16 = 1;
8917 }
8918 }
8919 else
8920 {
8921 /* For PC-relative branches, the width of the displacement
8922 is dependent upon data size, not address size. */
8923 override = (i.prefix[DATA_PREFIX] != 0);
8924 if (flag_code == CODE_64BIT)
8925 {
8926 if (override || i.suffix == WORD_MNEM_SUFFIX)
8927 bigdisp.bitfield.disp16 = 1;
8928 else
8929 {
8930 bigdisp.bitfield.disp32 = 1;
8931 bigdisp.bitfield.disp32s = 1;
8932 }
8933 }
8934 else
8935 {
8936 if (!override)
8937 override = (i.suffix == (flag_code != CODE_16BIT
8938 ? WORD_MNEM_SUFFIX
8939 : LONG_MNEM_SUFFIX));
8940 bigdisp.bitfield.disp32 = 1;
8941 if ((flag_code == CODE_16BIT) ^ override)
8942 {
8943 bigdisp.bitfield.disp32 = 0;
8944 bigdisp.bitfield.disp16 = 1;
8945 }
8946 }
8947 }
8948 i.types[this_operand] = operand_type_or (i.types[this_operand],
8949 bigdisp);
8950
8951 exp = &disp_expressions[i.disp_operands];
8952 i.op[this_operand].disps = exp;
8953 i.disp_operands++;
8954 save_input_line_pointer = input_line_pointer;
8955 input_line_pointer = disp_start;
8956 END_STRING_AND_SAVE (disp_end);
8957
8958 #ifndef GCC_ASM_O_HACK
8959 #define GCC_ASM_O_HACK 0
8960 #endif
8961 #if GCC_ASM_O_HACK
8962 END_STRING_AND_SAVE (disp_end + 1);
8963 if (i.types[this_operand].bitfield.baseIndex
8964 && displacement_string_end[-1] == '+')
8965 {
8966 /* This hack is to avoid a warning when using the "o"
8967 constraint within gcc asm statements.
8968 For instance:
8969
8970 #define _set_tssldt_desc(n,addr,limit,type) \
8971 __asm__ __volatile__ ( \
8972 "movw %w2,%0\n\t" \
8973 "movw %w1,2+%0\n\t" \
8974 "rorl $16,%1\n\t" \
8975 "movb %b1,4+%0\n\t" \
8976 "movb %4,5+%0\n\t" \
8977 "movb $0,6+%0\n\t" \
8978 "movb %h1,7+%0\n\t" \
8979 "rorl $16,%1" \
8980 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8981
8982 This works great except that the output assembler ends
8983 up looking a bit weird if it turns out that there is
8984 no offset. You end up producing code that looks like:
8985
8986 #APP
8987 movw $235,(%eax)
8988 movw %dx,2+(%eax)
8989 rorl $16,%edx
8990 movb %dl,4+(%eax)
8991 movb $137,5+(%eax)
8992 movb $0,6+(%eax)
8993 movb %dh,7+(%eax)
8994 rorl $16,%edx
8995 #NO_APP
8996
8997 So here we provide the missing zero. */
8998
8999 *displacement_string_end = '0';
9000 }
9001 #endif
9002 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9003 if (gotfree_input_line)
9004 input_line_pointer = gotfree_input_line;
9005
9006 exp_seg = expression (exp);
9007
9008 SKIP_WHITESPACE ();
9009 if (*input_line_pointer)
9010 as_bad (_("junk `%s' after expression"), input_line_pointer);
9011 #if GCC_ASM_O_HACK
9012 RESTORE_END_STRING (disp_end + 1);
9013 #endif
9014 input_line_pointer = save_input_line_pointer;
9015 if (gotfree_input_line)
9016 {
9017 free (gotfree_input_line);
9018
9019 if (exp->X_op == O_constant || exp->X_op == O_register)
9020 exp->X_op = O_illegal;
9021 }
9022
9023 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9024
9025 RESTORE_END_STRING (disp_end);
9026
9027 return ret;
9028 }
9029
9030 static int
9031 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9032 i386_operand_type types, const char *disp_start)
9033 {
9034 i386_operand_type bigdisp;
9035 int ret = 1;
9036
9037 /* We do this to make sure that the section symbol is in
9038 the symbol table. We will ultimately change the relocation
9039 to be relative to the beginning of the section. */
9040 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
9041 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9042 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9043 {
9044 if (exp->X_op != O_symbol)
9045 goto inv_disp;
9046
9047 if (S_IS_LOCAL (exp->X_add_symbol)
9048 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9049 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
9050 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
9051 exp->X_op = O_subtract;
9052 exp->X_op_symbol = GOT_symbol;
9053 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
9054 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
9055 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9056 i.reloc[this_operand] = BFD_RELOC_64;
9057 else
9058 i.reloc[this_operand] = BFD_RELOC_32;
9059 }
9060
9061 else if (exp->X_op == O_absent
9062 || exp->X_op == O_illegal
9063 || exp->X_op == O_big)
9064 {
9065 inv_disp:
9066 as_bad (_("missing or invalid displacement expression `%s'"),
9067 disp_start);
9068 ret = 0;
9069 }
9070
9071 else if (flag_code == CODE_64BIT
9072 && !i.prefix[ADDR_PREFIX]
9073 && exp->X_op == O_constant)
9074 {
9075 /* Since displacement is signed extended to 64bit, don't allow
9076 disp32 and turn off disp32s if they are out of range. */
9077 i.types[this_operand].bitfield.disp32 = 0;
9078 if (!fits_in_signed_long (exp->X_add_number))
9079 {
9080 i.types[this_operand].bitfield.disp32s = 0;
9081 if (i.types[this_operand].bitfield.baseindex)
9082 {
9083 as_bad (_("0x%lx out range of signed 32bit displacement"),
9084 (long) exp->X_add_number);
9085 ret = 0;
9086 }
9087 }
9088 }
9089
9090 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9091 else if (exp->X_op != O_constant
9092 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9093 && exp_seg != absolute_section
9094 && exp_seg != text_section
9095 && exp_seg != data_section
9096 && exp_seg != bss_section
9097 && exp_seg != undefined_section
9098 && !bfd_is_com_section (exp_seg))
9099 {
9100 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9101 ret = 0;
9102 }
9103 #endif
9104
9105 /* Check if this is a displacement only operand. */
9106 bigdisp = i.types[this_operand];
9107 bigdisp.bitfield.disp8 = 0;
9108 bigdisp.bitfield.disp16 = 0;
9109 bigdisp.bitfield.disp32 = 0;
9110 bigdisp.bitfield.disp32s = 0;
9111 bigdisp.bitfield.disp64 = 0;
9112 if (operand_type_all_zero (&bigdisp))
9113 i.types[this_operand] = operand_type_and (i.types[this_operand],
9114 types);
9115
9116 return ret;
9117 }
9118
9119 /* Return the active addressing mode, taking address override and
9120 registers forming the address into consideration. Update the
9121 address override prefix if necessary. */
9122
9123 static enum flag_code
9124 i386_addressing_mode (void)
9125 {
9126 enum flag_code addr_mode;
9127
9128 if (i.prefix[ADDR_PREFIX])
9129 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9130 else
9131 {
9132 addr_mode = flag_code;
9133
9134 #if INFER_ADDR_PREFIX
9135 if (i.mem_operands == 0)
9136 {
9137 /* Infer address prefix from the first memory operand. */
9138 const reg_entry *addr_reg = i.base_reg;
9139
9140 if (addr_reg == NULL)
9141 addr_reg = i.index_reg;
9142
9143 if (addr_reg)
9144 {
9145 if (addr_reg->reg_num == RegEip
9146 || addr_reg->reg_num == RegEiz
9147 || addr_reg->reg_type.bitfield.dword)
9148 addr_mode = CODE_32BIT;
9149 else if (flag_code != CODE_64BIT
9150 && addr_reg->reg_type.bitfield.word)
9151 addr_mode = CODE_16BIT;
9152
9153 if (addr_mode != flag_code)
9154 {
9155 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9156 i.prefixes += 1;
9157 /* Change the size of any displacement too. At most one
9158 of Disp16 or Disp32 is set.
9159 FIXME. There doesn't seem to be any real need for
9160 separate Disp16 and Disp32 flags. The same goes for
9161 Imm16 and Imm32. Removing them would probably clean
9162 up the code quite a lot. */
9163 if (flag_code != CODE_64BIT
9164 && (i.types[this_operand].bitfield.disp16
9165 || i.types[this_operand].bitfield.disp32))
9166 i.types[this_operand]
9167 = operand_type_xor (i.types[this_operand], disp16_32);
9168 }
9169 }
9170 }
9171 #endif
9172 }
9173
9174 return addr_mode;
9175 }
9176
9177 /* Make sure the memory operand we've been dealt is valid.
9178 Return 1 on success, 0 on a failure. */
9179
9180 static int
9181 i386_index_check (const char *operand_string)
9182 {
9183 const char *kind = "base/index";
9184 enum flag_code addr_mode = i386_addressing_mode ();
9185
9186 if (current_templates->start->opcode_modifier.isstring
9187 && !current_templates->start->opcode_modifier.immext
9188 && (current_templates->end[-1].opcode_modifier.isstring
9189 || i.mem_operands))
9190 {
9191 /* Memory operands of string insns are special in that they only allow
9192 a single register (rDI, rSI, or rBX) as their memory address. */
9193 const reg_entry *expected_reg;
9194 static const char *di_si[][2] =
9195 {
9196 { "esi", "edi" },
9197 { "si", "di" },
9198 { "rsi", "rdi" }
9199 };
9200 static const char *bx[] = { "ebx", "bx", "rbx" };
9201
9202 kind = "string address";
9203
9204 if (current_templates->start->opcode_modifier.repprefixok)
9205 {
9206 i386_operand_type type = current_templates->end[-1].operand_types[0];
9207
9208 if (!type.bitfield.baseindex
9209 || ((!i.mem_operands != !intel_syntax)
9210 && current_templates->end[-1].operand_types[1]
9211 .bitfield.baseindex))
9212 type = current_templates->end[-1].operand_types[1];
9213 expected_reg = hash_find (reg_hash,
9214 di_si[addr_mode][type.bitfield.esseg]);
9215
9216 }
9217 else
9218 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9219
9220 if (i.base_reg != expected_reg
9221 || i.index_reg
9222 || operand_type_check (i.types[this_operand], disp))
9223 {
9224 /* The second memory operand must have the same size as
9225 the first one. */
9226 if (i.mem_operands
9227 && i.base_reg
9228 && !((addr_mode == CODE_64BIT
9229 && i.base_reg->reg_type.bitfield.qword)
9230 || (addr_mode == CODE_32BIT
9231 ? i.base_reg->reg_type.bitfield.dword
9232 : i.base_reg->reg_type.bitfield.word)))
9233 goto bad_address;
9234
9235 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9236 operand_string,
9237 intel_syntax ? '[' : '(',
9238 register_prefix,
9239 expected_reg->reg_name,
9240 intel_syntax ? ']' : ')');
9241 return 1;
9242 }
9243 else
9244 return 1;
9245
9246 bad_address:
9247 as_bad (_("`%s' is not a valid %s expression"),
9248 operand_string, kind);
9249 return 0;
9250 }
9251 else
9252 {
9253 if (addr_mode != CODE_16BIT)
9254 {
9255 /* 32-bit/64-bit checks. */
9256 if ((i.base_reg
9257 && (addr_mode == CODE_64BIT
9258 ? !i.base_reg->reg_type.bitfield.qword
9259 : !i.base_reg->reg_type.bitfield.dword)
9260 && (i.index_reg
9261 || (i.base_reg->reg_num
9262 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
9263 || (i.index_reg
9264 && !i.index_reg->reg_type.bitfield.xmmword
9265 && !i.index_reg->reg_type.bitfield.ymmword
9266 && !i.index_reg->reg_type.bitfield.zmmword
9267 && ((addr_mode == CODE_64BIT
9268 ? !(i.index_reg->reg_type.bitfield.qword
9269 || i.index_reg->reg_num == RegRiz)
9270 : !(i.index_reg->reg_type.bitfield.dword
9271 || i.index_reg->reg_num == RegEiz))
9272 || !i.index_reg->reg_type.bitfield.baseindex)))
9273 goto bad_address;
9274
9275 /* bndmk, bndldx, and bndstx have special restrictions. */
9276 if (current_templates->start->base_opcode == 0xf30f1b
9277 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9278 {
9279 /* They cannot use RIP-relative addressing. */
9280 if (i.base_reg && i.base_reg->reg_num == RegRip)
9281 {
9282 as_bad (_("`%s' cannot be used here"), operand_string);
9283 return 0;
9284 }
9285
9286 /* bndldx and bndstx ignore their scale factor. */
9287 if (current_templates->start->base_opcode != 0xf30f1b
9288 && i.log2_scale_factor)
9289 as_warn (_("register scaling is being ignored here"));
9290 }
9291 }
9292 else
9293 {
9294 /* 16-bit checks. */
9295 if ((i.base_reg
9296 && (!i.base_reg->reg_type.bitfield.word
9297 || !i.base_reg->reg_type.bitfield.baseindex))
9298 || (i.index_reg
9299 && (!i.index_reg->reg_type.bitfield.word
9300 || !i.index_reg->reg_type.bitfield.baseindex
9301 || !(i.base_reg
9302 && i.base_reg->reg_num < 6
9303 && i.index_reg->reg_num >= 6
9304 && i.log2_scale_factor == 0))))
9305 goto bad_address;
9306 }
9307 }
9308 return 1;
9309 }
9310
9311 /* Handle vector immediates. */
9312
9313 static int
9314 RC_SAE_immediate (const char *imm_start)
9315 {
9316 unsigned int match_found, j;
9317 const char *pstr = imm_start;
9318 expressionS *exp;
9319
9320 if (*pstr != '{')
9321 return 0;
9322
9323 pstr++;
9324 match_found = 0;
9325 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9326 {
9327 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9328 {
9329 if (!i.rounding)
9330 {
9331 rc_op.type = RC_NamesTable[j].type;
9332 rc_op.operand = this_operand;
9333 i.rounding = &rc_op;
9334 }
9335 else
9336 {
9337 as_bad (_("duplicated `%s'"), imm_start);
9338 return 0;
9339 }
9340 pstr += RC_NamesTable[j].len;
9341 match_found = 1;
9342 break;
9343 }
9344 }
9345 if (!match_found)
9346 return 0;
9347
9348 if (*pstr++ != '}')
9349 {
9350 as_bad (_("Missing '}': '%s'"), imm_start);
9351 return 0;
9352 }
9353 /* RC/SAE immediate string should contain nothing more. */;
9354 if (*pstr != 0)
9355 {
9356 as_bad (_("Junk after '}': '%s'"), imm_start);
9357 return 0;
9358 }
9359
9360 exp = &im_expressions[i.imm_operands++];
9361 i.op[this_operand].imms = exp;
9362
9363 exp->X_op = O_constant;
9364 exp->X_add_number = 0;
9365 exp->X_add_symbol = (symbolS *) 0;
9366 exp->X_op_symbol = (symbolS *) 0;
9367
9368 i.types[this_operand].bitfield.imm8 = 1;
9369 return 1;
9370 }
9371
9372 /* Only string instructions can have a second memory operand, so
9373 reduce current_templates to just those if it contains any. */
9374 static int
9375 maybe_adjust_templates (void)
9376 {
9377 const insn_template *t;
9378
9379 gas_assert (i.mem_operands == 1);
9380
9381 for (t = current_templates->start; t < current_templates->end; ++t)
9382 if (t->opcode_modifier.isstring)
9383 break;
9384
9385 if (t < current_templates->end)
9386 {
9387 static templates aux_templates;
9388 bfd_boolean recheck;
9389
9390 aux_templates.start = t;
9391 for (; t < current_templates->end; ++t)
9392 if (!t->opcode_modifier.isstring)
9393 break;
9394 aux_templates.end = t;
9395
9396 /* Determine whether to re-check the first memory operand. */
9397 recheck = (aux_templates.start != current_templates->start
9398 || t != current_templates->end);
9399
9400 current_templates = &aux_templates;
9401
9402 if (recheck)
9403 {
9404 i.mem_operands = 0;
9405 if (i.memop1_string != NULL
9406 && i386_index_check (i.memop1_string) == 0)
9407 return 0;
9408 i.mem_operands = 1;
9409 }
9410 }
9411
9412 return 1;
9413 }
9414
9415 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9416 on error. */
9417
9418 static int
9419 i386_att_operand (char *operand_string)
9420 {
9421 const reg_entry *r;
9422 char *end_op;
9423 char *op_string = operand_string;
9424
9425 if (is_space_char (*op_string))
9426 ++op_string;
9427
9428 /* We check for an absolute prefix (differentiating,
9429 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9430 if (*op_string == ABSOLUTE_PREFIX)
9431 {
9432 ++op_string;
9433 if (is_space_char (*op_string))
9434 ++op_string;
9435 i.types[this_operand].bitfield.jumpabsolute = 1;
9436 }
9437
9438 /* Check if operand is a register. */
9439 if ((r = parse_register (op_string, &end_op)) != NULL)
9440 {
9441 i386_operand_type temp;
9442
9443 /* Check for a segment override by searching for ':' after a
9444 segment register. */
9445 op_string = end_op;
9446 if (is_space_char (*op_string))
9447 ++op_string;
9448 if (*op_string == ':'
9449 && (r->reg_type.bitfield.sreg2
9450 || r->reg_type.bitfield.sreg3))
9451 {
9452 switch (r->reg_num)
9453 {
9454 case 0:
9455 i.seg[i.mem_operands] = &es;
9456 break;
9457 case 1:
9458 i.seg[i.mem_operands] = &cs;
9459 break;
9460 case 2:
9461 i.seg[i.mem_operands] = &ss;
9462 break;
9463 case 3:
9464 i.seg[i.mem_operands] = &ds;
9465 break;
9466 case 4:
9467 i.seg[i.mem_operands] = &fs;
9468 break;
9469 case 5:
9470 i.seg[i.mem_operands] = &gs;
9471 break;
9472 }
9473
9474 /* Skip the ':' and whitespace. */
9475 ++op_string;
9476 if (is_space_char (*op_string))
9477 ++op_string;
9478
9479 if (!is_digit_char (*op_string)
9480 && !is_identifier_char (*op_string)
9481 && *op_string != '('
9482 && *op_string != ABSOLUTE_PREFIX)
9483 {
9484 as_bad (_("bad memory operand `%s'"), op_string);
9485 return 0;
9486 }
9487 /* Handle case of %es:*foo. */
9488 if (*op_string == ABSOLUTE_PREFIX)
9489 {
9490 ++op_string;
9491 if (is_space_char (*op_string))
9492 ++op_string;
9493 i.types[this_operand].bitfield.jumpabsolute = 1;
9494 }
9495 goto do_memory_reference;
9496 }
9497
9498 /* Handle vector operations. */
9499 if (*op_string == '{')
9500 {
9501 op_string = check_VecOperations (op_string, NULL);
9502 if (op_string == NULL)
9503 return 0;
9504 }
9505
9506 if (*op_string)
9507 {
9508 as_bad (_("junk `%s' after register"), op_string);
9509 return 0;
9510 }
9511 temp = r->reg_type;
9512 temp.bitfield.baseindex = 0;
9513 i.types[this_operand] = operand_type_or (i.types[this_operand],
9514 temp);
9515 i.types[this_operand].bitfield.unspecified = 0;
9516 i.op[this_operand].regs = r;
9517 i.reg_operands++;
9518 }
9519 else if (*op_string == REGISTER_PREFIX)
9520 {
9521 as_bad (_("bad register name `%s'"), op_string);
9522 return 0;
9523 }
9524 else if (*op_string == IMMEDIATE_PREFIX)
9525 {
9526 ++op_string;
9527 if (i.types[this_operand].bitfield.jumpabsolute)
9528 {
9529 as_bad (_("immediate operand illegal with absolute jump"));
9530 return 0;
9531 }
9532 if (!i386_immediate (op_string))
9533 return 0;
9534 }
9535 else if (RC_SAE_immediate (operand_string))
9536 {
9537 /* If it is a RC or SAE immediate, do nothing. */
9538 ;
9539 }
9540 else if (is_digit_char (*op_string)
9541 || is_identifier_char (*op_string)
9542 || *op_string == '"'
9543 || *op_string == '(')
9544 {
9545 /* This is a memory reference of some sort. */
9546 char *base_string;
9547
9548 /* Start and end of displacement string expression (if found). */
9549 char *displacement_string_start;
9550 char *displacement_string_end;
9551 char *vop_start;
9552
9553 do_memory_reference:
9554 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9555 return 0;
9556 if ((i.mem_operands == 1
9557 && !current_templates->start->opcode_modifier.isstring)
9558 || i.mem_operands == 2)
9559 {
9560 as_bad (_("too many memory references for `%s'"),
9561 current_templates->start->name);
9562 return 0;
9563 }
9564
9565 /* Check for base index form. We detect the base index form by
9566 looking for an ')' at the end of the operand, searching
9567 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9568 after the '('. */
9569 base_string = op_string + strlen (op_string);
9570
9571 /* Handle vector operations. */
9572 vop_start = strchr (op_string, '{');
9573 if (vop_start && vop_start < base_string)
9574 {
9575 if (check_VecOperations (vop_start, base_string) == NULL)
9576 return 0;
9577 base_string = vop_start;
9578 }
9579
9580 --base_string;
9581 if (is_space_char (*base_string))
9582 --base_string;
9583
9584 /* If we only have a displacement, set-up for it to be parsed later. */
9585 displacement_string_start = op_string;
9586 displacement_string_end = base_string + 1;
9587
9588 if (*base_string == ')')
9589 {
9590 char *temp_string;
9591 unsigned int parens_balanced = 1;
9592 /* We've already checked that the number of left & right ()'s are
9593 equal, so this loop will not be infinite. */
9594 do
9595 {
9596 base_string--;
9597 if (*base_string == ')')
9598 parens_balanced++;
9599 if (*base_string == '(')
9600 parens_balanced--;
9601 }
9602 while (parens_balanced);
9603
9604 temp_string = base_string;
9605
9606 /* Skip past '(' and whitespace. */
9607 ++base_string;
9608 if (is_space_char (*base_string))
9609 ++base_string;
9610
9611 if (*base_string == ','
9612 || ((i.base_reg = parse_register (base_string, &end_op))
9613 != NULL))
9614 {
9615 displacement_string_end = temp_string;
9616
9617 i.types[this_operand].bitfield.baseindex = 1;
9618
9619 if (i.base_reg)
9620 {
9621 base_string = end_op;
9622 if (is_space_char (*base_string))
9623 ++base_string;
9624 }
9625
9626 /* There may be an index reg or scale factor here. */
9627 if (*base_string == ',')
9628 {
9629 ++base_string;
9630 if (is_space_char (*base_string))
9631 ++base_string;
9632
9633 if ((i.index_reg = parse_register (base_string, &end_op))
9634 != NULL)
9635 {
9636 base_string = end_op;
9637 if (is_space_char (*base_string))
9638 ++base_string;
9639 if (*base_string == ',')
9640 {
9641 ++base_string;
9642 if (is_space_char (*base_string))
9643 ++base_string;
9644 }
9645 else if (*base_string != ')')
9646 {
9647 as_bad (_("expecting `,' or `)' "
9648 "after index register in `%s'"),
9649 operand_string);
9650 return 0;
9651 }
9652 }
9653 else if (*base_string == REGISTER_PREFIX)
9654 {
9655 end_op = strchr (base_string, ',');
9656 if (end_op)
9657 *end_op = '\0';
9658 as_bad (_("bad register name `%s'"), base_string);
9659 return 0;
9660 }
9661
9662 /* Check for scale factor. */
9663 if (*base_string != ')')
9664 {
9665 char *end_scale = i386_scale (base_string);
9666
9667 if (!end_scale)
9668 return 0;
9669
9670 base_string = end_scale;
9671 if (is_space_char (*base_string))
9672 ++base_string;
9673 if (*base_string != ')')
9674 {
9675 as_bad (_("expecting `)' "
9676 "after scale factor in `%s'"),
9677 operand_string);
9678 return 0;
9679 }
9680 }
9681 else if (!i.index_reg)
9682 {
9683 as_bad (_("expecting index register or scale factor "
9684 "after `,'; got '%c'"),
9685 *base_string);
9686 return 0;
9687 }
9688 }
9689 else if (*base_string != ')')
9690 {
9691 as_bad (_("expecting `,' or `)' "
9692 "after base register in `%s'"),
9693 operand_string);
9694 return 0;
9695 }
9696 }
9697 else if (*base_string == REGISTER_PREFIX)
9698 {
9699 end_op = strchr (base_string, ',');
9700 if (end_op)
9701 *end_op = '\0';
9702 as_bad (_("bad register name `%s'"), base_string);
9703 return 0;
9704 }
9705 }
9706
9707 /* If there's an expression beginning the operand, parse it,
9708 assuming displacement_string_start and
9709 displacement_string_end are meaningful. */
9710 if (displacement_string_start != displacement_string_end)
9711 {
9712 if (!i386_displacement (displacement_string_start,
9713 displacement_string_end))
9714 return 0;
9715 }
9716
9717 /* Special case for (%dx) while doing input/output op. */
9718 if (i.base_reg
9719 && i.base_reg->reg_type.bitfield.inoutportreg
9720 && i.index_reg == 0
9721 && i.log2_scale_factor == 0
9722 && i.seg[i.mem_operands] == 0
9723 && !operand_type_check (i.types[this_operand], disp))
9724 {
9725 i.types[this_operand] = i.base_reg->reg_type;
9726 return 1;
9727 }
9728
9729 if (i386_index_check (operand_string) == 0)
9730 return 0;
9731 i.types[this_operand].bitfield.mem = 1;
9732 if (i.mem_operands == 0)
9733 i.memop1_string = xstrdup (operand_string);
9734 i.mem_operands++;
9735 }
9736 else
9737 {
9738 /* It's not a memory operand; argh! */
9739 as_bad (_("invalid char %s beginning operand %d `%s'"),
9740 output_invalid (*op_string),
9741 this_operand + 1,
9742 op_string);
9743 return 0;
9744 }
9745 return 1; /* Normal return. */
9746 }
9747 \f
9748 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9749 that an rs_machine_dependent frag may reach. */
9750
9751 unsigned int
9752 i386_frag_max_var (fragS *frag)
9753 {
9754 /* The only relaxable frags are for jumps.
9755 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9756 gas_assert (frag->fr_type == rs_machine_dependent);
9757 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9758 }
9759
9760 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9761 static int
9762 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9763 {
9764 /* STT_GNU_IFUNC symbol must go through PLT. */
9765 if ((symbol_get_bfdsym (fr_symbol)->flags
9766 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9767 return 0;
9768
9769 if (!S_IS_EXTERNAL (fr_symbol))
9770 /* Symbol may be weak or local. */
9771 return !S_IS_WEAK (fr_symbol);
9772
9773 /* Global symbols with non-default visibility can't be preempted. */
9774 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9775 return 1;
9776
9777 if (fr_var != NO_RELOC)
9778 switch ((enum bfd_reloc_code_real) fr_var)
9779 {
9780 case BFD_RELOC_386_PLT32:
9781 case BFD_RELOC_X86_64_PLT32:
9782 /* Symbol with PLT relocation may be preempted. */
9783 return 0;
9784 default:
9785 abort ();
9786 }
9787
9788 /* Global symbols with default visibility in a shared library may be
9789 preempted by another definition. */
9790 return !shared;
9791 }
9792 #endif
9793
9794 /* md_estimate_size_before_relax()
9795
9796 Called just before relax() for rs_machine_dependent frags. The x86
9797 assembler uses these frags to handle variable size jump
9798 instructions.
9799
9800 Any symbol that is now undefined will not become defined.
9801 Return the correct fr_subtype in the frag.
9802 Return the initial "guess for variable size of frag" to caller.
9803 The guess is actually the growth beyond the fixed part. Whatever
9804 we do to grow the fixed or variable part contributes to our
9805 returned value. */
9806
9807 int
9808 md_estimate_size_before_relax (fragS *fragP, segT segment)
9809 {
9810 /* We've already got fragP->fr_subtype right; all we have to do is
9811 check for un-relaxable symbols. On an ELF system, we can't relax
9812 an externally visible symbol, because it may be overridden by a
9813 shared library. */
9814 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9815 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9816 || (IS_ELF
9817 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9818 fragP->fr_var))
9819 #endif
9820 #if defined (OBJ_COFF) && defined (TE_PE)
9821 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9822 && S_IS_WEAK (fragP->fr_symbol))
9823 #endif
9824 )
9825 {
9826 /* Symbol is undefined in this segment, or we need to keep a
9827 reloc so that weak symbols can be overridden. */
9828 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9829 enum bfd_reloc_code_real reloc_type;
9830 unsigned char *opcode;
9831 int old_fr_fix;
9832
9833 if (fragP->fr_var != NO_RELOC)
9834 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9835 else if (size == 2)
9836 reloc_type = BFD_RELOC_16_PCREL;
9837 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9838 else if (need_plt32_p (fragP->fr_symbol))
9839 reloc_type = BFD_RELOC_X86_64_PLT32;
9840 #endif
9841 else
9842 reloc_type = BFD_RELOC_32_PCREL;
9843
9844 old_fr_fix = fragP->fr_fix;
9845 opcode = (unsigned char *) fragP->fr_opcode;
9846
9847 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9848 {
9849 case UNCOND_JUMP:
9850 /* Make jmp (0xeb) a (d)word displacement jump. */
9851 opcode[0] = 0xe9;
9852 fragP->fr_fix += size;
9853 fix_new (fragP, old_fr_fix, size,
9854 fragP->fr_symbol,
9855 fragP->fr_offset, 1,
9856 reloc_type);
9857 break;
9858
9859 case COND_JUMP86:
9860 if (size == 2
9861 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9862 {
9863 /* Negate the condition, and branch past an
9864 unconditional jump. */
9865 opcode[0] ^= 1;
9866 opcode[1] = 3;
9867 /* Insert an unconditional jump. */
9868 opcode[2] = 0xe9;
9869 /* We added two extra opcode bytes, and have a two byte
9870 offset. */
9871 fragP->fr_fix += 2 + 2;
9872 fix_new (fragP, old_fr_fix + 2, 2,
9873 fragP->fr_symbol,
9874 fragP->fr_offset, 1,
9875 reloc_type);
9876 break;
9877 }
9878 /* Fall through. */
9879
9880 case COND_JUMP:
9881 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9882 {
9883 fixS *fixP;
9884
9885 fragP->fr_fix += 1;
9886 fixP = fix_new (fragP, old_fr_fix, 1,
9887 fragP->fr_symbol,
9888 fragP->fr_offset, 1,
9889 BFD_RELOC_8_PCREL);
9890 fixP->fx_signed = 1;
9891 break;
9892 }
9893
9894 /* This changes the byte-displacement jump 0x7N
9895 to the (d)word-displacement jump 0x0f,0x8N. */
9896 opcode[1] = opcode[0] + 0x10;
9897 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9898 /* We've added an opcode byte. */
9899 fragP->fr_fix += 1 + size;
9900 fix_new (fragP, old_fr_fix + 1, size,
9901 fragP->fr_symbol,
9902 fragP->fr_offset, 1,
9903 reloc_type);
9904 break;
9905
9906 default:
9907 BAD_CASE (fragP->fr_subtype);
9908 break;
9909 }
9910 frag_wane (fragP);
9911 return fragP->fr_fix - old_fr_fix;
9912 }
9913
9914 /* Guess size depending on current relax state. Initially the relax
9915 state will correspond to a short jump and we return 1, because
9916 the variable part of the frag (the branch offset) is one byte
9917 long. However, we can relax a section more than once and in that
9918 case we must either set fr_subtype back to the unrelaxed state,
9919 or return the value for the appropriate branch. */
9920 return md_relax_table[fragP->fr_subtype].rlx_length;
9921 }
9922
9923 /* Called after relax() is finished.
9924
9925 In: Address of frag.
9926 fr_type == rs_machine_dependent.
9927 fr_subtype is what the address relaxed to.
9928
9929 Out: Any fixSs and constants are set up.
9930 Caller will turn frag into a ".space 0". */
9931
9932 void
9933 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9934 fragS *fragP)
9935 {
9936 unsigned char *opcode;
9937 unsigned char *where_to_put_displacement = NULL;
9938 offsetT target_address;
9939 offsetT opcode_address;
9940 unsigned int extension = 0;
9941 offsetT displacement_from_opcode_start;
9942
9943 opcode = (unsigned char *) fragP->fr_opcode;
9944
9945 /* Address we want to reach in file space. */
9946 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9947
9948 /* Address opcode resides at in file space. */
9949 opcode_address = fragP->fr_address + fragP->fr_fix;
9950
9951 /* Displacement from opcode start to fill into instruction. */
9952 displacement_from_opcode_start = target_address - opcode_address;
9953
9954 if ((fragP->fr_subtype & BIG) == 0)
9955 {
9956 /* Don't have to change opcode. */
9957 extension = 1; /* 1 opcode + 1 displacement */
9958 where_to_put_displacement = &opcode[1];
9959 }
9960 else
9961 {
9962 if (no_cond_jump_promotion
9963 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9964 as_warn_where (fragP->fr_file, fragP->fr_line,
9965 _("long jump required"));
9966
9967 switch (fragP->fr_subtype)
9968 {
9969 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9970 extension = 4; /* 1 opcode + 4 displacement */
9971 opcode[0] = 0xe9;
9972 where_to_put_displacement = &opcode[1];
9973 break;
9974
9975 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9976 extension = 2; /* 1 opcode + 2 displacement */
9977 opcode[0] = 0xe9;
9978 where_to_put_displacement = &opcode[1];
9979 break;
9980
9981 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9982 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9983 extension = 5; /* 2 opcode + 4 displacement */
9984 opcode[1] = opcode[0] + 0x10;
9985 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9986 where_to_put_displacement = &opcode[2];
9987 break;
9988
9989 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9990 extension = 3; /* 2 opcode + 2 displacement */
9991 opcode[1] = opcode[0] + 0x10;
9992 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9993 where_to_put_displacement = &opcode[2];
9994 break;
9995
9996 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9997 extension = 4;
9998 opcode[0] ^= 1;
9999 opcode[1] = 3;
10000 opcode[2] = 0xe9;
10001 where_to_put_displacement = &opcode[3];
10002 break;
10003
10004 default:
10005 BAD_CASE (fragP->fr_subtype);
10006 break;
10007 }
10008 }
10009
10010 /* If size if less then four we are sure that the operand fits,
10011 but if it's 4, then it could be that the displacement is larger
10012 then -/+ 2GB. */
10013 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10014 && object_64bit
10015 && ((addressT) (displacement_from_opcode_start - extension
10016 + ((addressT) 1 << 31))
10017 > (((addressT) 2 << 31) - 1)))
10018 {
10019 as_bad_where (fragP->fr_file, fragP->fr_line,
10020 _("jump target out of range"));
10021 /* Make us emit 0. */
10022 displacement_from_opcode_start = extension;
10023 }
10024 /* Now put displacement after opcode. */
10025 md_number_to_chars ((char *) where_to_put_displacement,
10026 (valueT) (displacement_from_opcode_start - extension),
10027 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
10028 fragP->fr_fix += extension;
10029 }
10030 \f
10031 /* Apply a fixup (fixP) to segment data, once it has been determined
10032 by our caller that we have all the info we need to fix it up.
10033
10034 Parameter valP is the pointer to the value of the bits.
10035
10036 On the 386, immediates, displacements, and data pointers are all in
10037 the same (little-endian) format, so we don't need to care about which
10038 we are handling. */
10039
10040 void
10041 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
10042 {
10043 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
10044 valueT value = *valP;
10045
10046 #if !defined (TE_Mach)
10047 if (fixP->fx_pcrel)
10048 {
10049 switch (fixP->fx_r_type)
10050 {
10051 default:
10052 break;
10053
10054 case BFD_RELOC_64:
10055 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10056 break;
10057 case BFD_RELOC_32:
10058 case BFD_RELOC_X86_64_32S:
10059 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10060 break;
10061 case BFD_RELOC_16:
10062 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10063 break;
10064 case BFD_RELOC_8:
10065 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10066 break;
10067 }
10068 }
10069
10070 if (fixP->fx_addsy != NULL
10071 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
10072 || fixP->fx_r_type == BFD_RELOC_64_PCREL
10073 || fixP->fx_r_type == BFD_RELOC_16_PCREL
10074 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
10075 && !use_rela_relocations)
10076 {
10077 /* This is a hack. There should be a better way to handle this.
10078 This covers for the fact that bfd_install_relocation will
10079 subtract the current location (for partial_inplace, PC relative
10080 relocations); see more below. */
10081 #ifndef OBJ_AOUT
10082 if (IS_ELF
10083 #ifdef TE_PE
10084 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10085 #endif
10086 )
10087 value += fixP->fx_where + fixP->fx_frag->fr_address;
10088 #endif
10089 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10090 if (IS_ELF)
10091 {
10092 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10093
10094 if ((sym_seg == seg
10095 || (symbol_section_p (fixP->fx_addsy)
10096 && sym_seg != absolute_section))
10097 && !generic_force_reloc (fixP))
10098 {
10099 /* Yes, we add the values in twice. This is because
10100 bfd_install_relocation subtracts them out again. I think
10101 bfd_install_relocation is broken, but I don't dare change
10102 it. FIXME. */
10103 value += fixP->fx_where + fixP->fx_frag->fr_address;
10104 }
10105 }
10106 #endif
10107 #if defined (OBJ_COFF) && defined (TE_PE)
10108 /* For some reason, the PE format does not store a
10109 section address offset for a PC relative symbol. */
10110 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10111 || S_IS_WEAK (fixP->fx_addsy))
10112 value += md_pcrel_from (fixP);
10113 #endif
10114 }
10115 #if defined (OBJ_COFF) && defined (TE_PE)
10116 if (fixP->fx_addsy != NULL
10117 && S_IS_WEAK (fixP->fx_addsy)
10118 /* PR 16858: Do not modify weak function references. */
10119 && ! fixP->fx_pcrel)
10120 {
10121 #if !defined (TE_PEP)
10122 /* For x86 PE weak function symbols are neither PC-relative
10123 nor do they set S_IS_FUNCTION. So the only reliable way
10124 to detect them is to check the flags of their containing
10125 section. */
10126 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10127 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10128 ;
10129 else
10130 #endif
10131 value -= S_GET_VALUE (fixP->fx_addsy);
10132 }
10133 #endif
10134
10135 /* Fix a few things - the dynamic linker expects certain values here,
10136 and we must not disappoint it. */
10137 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10138 if (IS_ELF && fixP->fx_addsy)
10139 switch (fixP->fx_r_type)
10140 {
10141 case BFD_RELOC_386_PLT32:
10142 case BFD_RELOC_X86_64_PLT32:
10143 /* Make the jump instruction point to the address of the operand. At
10144 runtime we merely add the offset to the actual PLT entry. */
10145 value = -4;
10146 break;
10147
10148 case BFD_RELOC_386_TLS_GD:
10149 case BFD_RELOC_386_TLS_LDM:
10150 case BFD_RELOC_386_TLS_IE_32:
10151 case BFD_RELOC_386_TLS_IE:
10152 case BFD_RELOC_386_TLS_GOTIE:
10153 case BFD_RELOC_386_TLS_GOTDESC:
10154 case BFD_RELOC_X86_64_TLSGD:
10155 case BFD_RELOC_X86_64_TLSLD:
10156 case BFD_RELOC_X86_64_GOTTPOFF:
10157 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10158 value = 0; /* Fully resolved at runtime. No addend. */
10159 /* Fallthrough */
10160 case BFD_RELOC_386_TLS_LE:
10161 case BFD_RELOC_386_TLS_LDO_32:
10162 case BFD_RELOC_386_TLS_LE_32:
10163 case BFD_RELOC_X86_64_DTPOFF32:
10164 case BFD_RELOC_X86_64_DTPOFF64:
10165 case BFD_RELOC_X86_64_TPOFF32:
10166 case BFD_RELOC_X86_64_TPOFF64:
10167 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10168 break;
10169
10170 case BFD_RELOC_386_TLS_DESC_CALL:
10171 case BFD_RELOC_X86_64_TLSDESC_CALL:
10172 value = 0; /* Fully resolved at runtime. No addend. */
10173 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10174 fixP->fx_done = 0;
10175 return;
10176
10177 case BFD_RELOC_VTABLE_INHERIT:
10178 case BFD_RELOC_VTABLE_ENTRY:
10179 fixP->fx_done = 0;
10180 return;
10181
10182 default:
10183 break;
10184 }
10185 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10186 *valP = value;
10187 #endif /* !defined (TE_Mach) */
10188
10189 /* Are we finished with this relocation now? */
10190 if (fixP->fx_addsy == NULL)
10191 fixP->fx_done = 1;
10192 #if defined (OBJ_COFF) && defined (TE_PE)
10193 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10194 {
10195 fixP->fx_done = 0;
10196 /* Remember value for tc_gen_reloc. */
10197 fixP->fx_addnumber = value;
10198 /* Clear out the frag for now. */
10199 value = 0;
10200 }
10201 #endif
10202 else if (use_rela_relocations)
10203 {
10204 fixP->fx_no_overflow = 1;
10205 /* Remember value for tc_gen_reloc. */
10206 fixP->fx_addnumber = value;
10207 value = 0;
10208 }
10209
10210 md_number_to_chars (p, value, fixP->fx_size);
10211 }
10212 \f
10213 const char *
10214 md_atof (int type, char *litP, int *sizeP)
10215 {
10216 /* This outputs the LITTLENUMs in REVERSE order;
10217 in accord with the bigendian 386. */
10218 return ieee_md_atof (type, litP, sizeP, FALSE);
10219 }
10220 \f
10221 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10222
10223 static char *
10224 output_invalid (int c)
10225 {
10226 if (ISPRINT (c))
10227 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10228 "'%c'", c);
10229 else
10230 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10231 "(0x%x)", (unsigned char) c);
10232 return output_invalid_buf;
10233 }
10234
10235 /* REG_STRING starts *before* REGISTER_PREFIX. */
10236
10237 static const reg_entry *
10238 parse_real_register (char *reg_string, char **end_op)
10239 {
10240 char *s = reg_string;
10241 char *p;
10242 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10243 const reg_entry *r;
10244
10245 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10246 if (*s == REGISTER_PREFIX)
10247 ++s;
10248
10249 if (is_space_char (*s))
10250 ++s;
10251
10252 p = reg_name_given;
10253 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10254 {
10255 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10256 return (const reg_entry *) NULL;
10257 s++;
10258 }
10259
10260 /* For naked regs, make sure that we are not dealing with an identifier.
10261 This prevents confusing an identifier like `eax_var' with register
10262 `eax'. */
10263 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10264 return (const reg_entry *) NULL;
10265
10266 *end_op = s;
10267
10268 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10269
10270 /* Handle floating point regs, allowing spaces in the (i) part. */
10271 if (r == i386_regtab /* %st is first entry of table */)
10272 {
10273 if (!cpu_arch_flags.bitfield.cpu8087
10274 && !cpu_arch_flags.bitfield.cpu287
10275 && !cpu_arch_flags.bitfield.cpu387)
10276 return (const reg_entry *) NULL;
10277
10278 if (is_space_char (*s))
10279 ++s;
10280 if (*s == '(')
10281 {
10282 ++s;
10283 if (is_space_char (*s))
10284 ++s;
10285 if (*s >= '0' && *s <= '7')
10286 {
10287 int fpr = *s - '0';
10288 ++s;
10289 if (is_space_char (*s))
10290 ++s;
10291 if (*s == ')')
10292 {
10293 *end_op = s + 1;
10294 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10295 know (r);
10296 return r + fpr;
10297 }
10298 }
10299 /* We have "%st(" then garbage. */
10300 return (const reg_entry *) NULL;
10301 }
10302 }
10303
10304 if (r == NULL || allow_pseudo_reg)
10305 return r;
10306
10307 if (operand_type_all_zero (&r->reg_type))
10308 return (const reg_entry *) NULL;
10309
10310 if ((r->reg_type.bitfield.dword
10311 || r->reg_type.bitfield.sreg3
10312 || r->reg_type.bitfield.control
10313 || r->reg_type.bitfield.debug
10314 || r->reg_type.bitfield.test)
10315 && !cpu_arch_flags.bitfield.cpui386)
10316 return (const reg_entry *) NULL;
10317
10318 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
10319 return (const reg_entry *) NULL;
10320
10321 if (!cpu_arch_flags.bitfield.cpuavx512f)
10322 {
10323 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10324 return (const reg_entry *) NULL;
10325
10326 if (!cpu_arch_flags.bitfield.cpuavx)
10327 {
10328 if (r->reg_type.bitfield.ymmword)
10329 return (const reg_entry *) NULL;
10330
10331 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10332 return (const reg_entry *) NULL;
10333 }
10334 }
10335
10336 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10337 return (const reg_entry *) NULL;
10338
10339 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10340 if (!allow_index_reg
10341 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
10342 return (const reg_entry *) NULL;
10343
10344 /* Upper 16 vector registers are only available with VREX in 64bit
10345 mode, and require EVEX encoding. */
10346 if (r->reg_flags & RegVRex)
10347 {
10348 if (!cpu_arch_flags.bitfield.cpuvrex
10349 || flag_code != CODE_64BIT)
10350 return (const reg_entry *) NULL;
10351
10352 i.vec_encoding = vex_encoding_evex;
10353 }
10354
10355 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10356 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
10357 && flag_code != CODE_64BIT)
10358 return (const reg_entry *) NULL;
10359
10360 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10361 return (const reg_entry *) NULL;
10362
10363 return r;
10364 }
10365
10366 /* REG_STRING starts *before* REGISTER_PREFIX. */
10367
10368 static const reg_entry *
10369 parse_register (char *reg_string, char **end_op)
10370 {
10371 const reg_entry *r;
10372
10373 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10374 r = parse_real_register (reg_string, end_op);
10375 else
10376 r = NULL;
10377 if (!r)
10378 {
10379 char *save = input_line_pointer;
10380 char c;
10381 symbolS *symbolP;
10382
10383 input_line_pointer = reg_string;
10384 c = get_symbol_name (&reg_string);
10385 symbolP = symbol_find (reg_string);
10386 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10387 {
10388 const expressionS *e = symbol_get_value_expression (symbolP);
10389
10390 know (e->X_op == O_register);
10391 know (e->X_add_number >= 0
10392 && (valueT) e->X_add_number < i386_regtab_size);
10393 r = i386_regtab + e->X_add_number;
10394 if ((r->reg_flags & RegVRex))
10395 i.vec_encoding = vex_encoding_evex;
10396 *end_op = input_line_pointer;
10397 }
10398 *input_line_pointer = c;
10399 input_line_pointer = save;
10400 }
10401 return r;
10402 }
10403
10404 int
10405 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10406 {
10407 const reg_entry *r;
10408 char *end = input_line_pointer;
10409
10410 *end = *nextcharP;
10411 r = parse_register (name, &input_line_pointer);
10412 if (r && end <= input_line_pointer)
10413 {
10414 *nextcharP = *input_line_pointer;
10415 *input_line_pointer = 0;
10416 e->X_op = O_register;
10417 e->X_add_number = r - i386_regtab;
10418 return 1;
10419 }
10420 input_line_pointer = end;
10421 *end = 0;
10422 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10423 }
10424
10425 void
10426 md_operand (expressionS *e)
10427 {
10428 char *end;
10429 const reg_entry *r;
10430
10431 switch (*input_line_pointer)
10432 {
10433 case REGISTER_PREFIX:
10434 r = parse_real_register (input_line_pointer, &end);
10435 if (r)
10436 {
10437 e->X_op = O_register;
10438 e->X_add_number = r - i386_regtab;
10439 input_line_pointer = end;
10440 }
10441 break;
10442
10443 case '[':
10444 gas_assert (intel_syntax);
10445 end = input_line_pointer++;
10446 expression (e);
10447 if (*input_line_pointer == ']')
10448 {
10449 ++input_line_pointer;
10450 e->X_op_symbol = make_expr_symbol (e);
10451 e->X_add_symbol = NULL;
10452 e->X_add_number = 0;
10453 e->X_op = O_index;
10454 }
10455 else
10456 {
10457 e->X_op = O_absent;
10458 input_line_pointer = end;
10459 }
10460 break;
10461 }
10462 }
10463
10464 \f
10465 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10466 const char *md_shortopts = "kVQ:sqnO::";
10467 #else
10468 const char *md_shortopts = "qnO::";
10469 #endif
10470
10471 #define OPTION_32 (OPTION_MD_BASE + 0)
10472 #define OPTION_64 (OPTION_MD_BASE + 1)
10473 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
10474 #define OPTION_MARCH (OPTION_MD_BASE + 3)
10475 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
10476 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10477 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10478 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10479 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10480 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
10481 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
10482 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
10483 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10484 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10485 #define OPTION_X32 (OPTION_MD_BASE + 14)
10486 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
10487 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10488 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
10489 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
10490 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
10491 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
10492 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
10493 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10494 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
10495 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
10496
10497 struct option md_longopts[] =
10498 {
10499 {"32", no_argument, NULL, OPTION_32},
10500 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10501 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10502 {"64", no_argument, NULL, OPTION_64},
10503 #endif
10504 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10505 {"x32", no_argument, NULL, OPTION_X32},
10506 {"mshared", no_argument, NULL, OPTION_MSHARED},
10507 #endif
10508 {"divide", no_argument, NULL, OPTION_DIVIDE},
10509 {"march", required_argument, NULL, OPTION_MARCH},
10510 {"mtune", required_argument, NULL, OPTION_MTUNE},
10511 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10512 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10513 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10514 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10515 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
10516 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
10517 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
10518 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
10519 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
10520 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10521 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10522 # if defined (TE_PE) || defined (TE_PEP)
10523 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10524 #endif
10525 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10526 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10527 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10528 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10529 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10530 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10531 {NULL, no_argument, NULL, 0}
10532 };
10533 size_t md_longopts_size = sizeof (md_longopts);
10534
10535 int
10536 md_parse_option (int c, const char *arg)
10537 {
10538 unsigned int j;
10539 char *arch, *next, *saved;
10540
10541 switch (c)
10542 {
10543 case 'n':
10544 optimize_align_code = 0;
10545 break;
10546
10547 case 'q':
10548 quiet_warnings = 1;
10549 break;
10550
10551 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10552 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10553 should be emitted or not. FIXME: Not implemented. */
10554 case 'Q':
10555 break;
10556
10557 /* -V: SVR4 argument to print version ID. */
10558 case 'V':
10559 print_version_id ();
10560 break;
10561
10562 /* -k: Ignore for FreeBSD compatibility. */
10563 case 'k':
10564 break;
10565
10566 case 's':
10567 /* -s: On i386 Solaris, this tells the native assembler to use
10568 .stab instead of .stab.excl. We always use .stab anyhow. */
10569 break;
10570
10571 case OPTION_MSHARED:
10572 shared = 1;
10573 break;
10574 #endif
10575 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10576 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10577 case OPTION_64:
10578 {
10579 const char **list, **l;
10580
10581 list = bfd_target_list ();
10582 for (l = list; *l != NULL; l++)
10583 if (CONST_STRNEQ (*l, "elf64-x86-64")
10584 || strcmp (*l, "coff-x86-64") == 0
10585 || strcmp (*l, "pe-x86-64") == 0
10586 || strcmp (*l, "pei-x86-64") == 0
10587 || strcmp (*l, "mach-o-x86-64") == 0)
10588 {
10589 default_arch = "x86_64";
10590 break;
10591 }
10592 if (*l == NULL)
10593 as_fatal (_("no compiled in support for x86_64"));
10594 free (list);
10595 }
10596 break;
10597 #endif
10598
10599 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10600 case OPTION_X32:
10601 if (IS_ELF)
10602 {
10603 const char **list, **l;
10604
10605 list = bfd_target_list ();
10606 for (l = list; *l != NULL; l++)
10607 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10608 {
10609 default_arch = "x86_64:32";
10610 break;
10611 }
10612 if (*l == NULL)
10613 as_fatal (_("no compiled in support for 32bit x86_64"));
10614 free (list);
10615 }
10616 else
10617 as_fatal (_("32bit x86_64 is only supported for ELF"));
10618 break;
10619 #endif
10620
10621 case OPTION_32:
10622 default_arch = "i386";
10623 break;
10624
10625 case OPTION_DIVIDE:
10626 #ifdef SVR4_COMMENT_CHARS
10627 {
10628 char *n, *t;
10629 const char *s;
10630
10631 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
10632 t = n;
10633 for (s = i386_comment_chars; *s != '\0'; s++)
10634 if (*s != '/')
10635 *t++ = *s;
10636 *t = '\0';
10637 i386_comment_chars = n;
10638 }
10639 #endif
10640 break;
10641
10642 case OPTION_MARCH:
10643 saved = xstrdup (arg);
10644 arch = saved;
10645 /* Allow -march=+nosse. */
10646 if (*arch == '+')
10647 arch++;
10648 do
10649 {
10650 if (*arch == '.')
10651 as_fatal (_("invalid -march= option: `%s'"), arg);
10652 next = strchr (arch, '+');
10653 if (next)
10654 *next++ = '\0';
10655 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10656 {
10657 if (strcmp (arch, cpu_arch [j].name) == 0)
10658 {
10659 /* Processor. */
10660 if (! cpu_arch[j].flags.bitfield.cpui386)
10661 continue;
10662
10663 cpu_arch_name = cpu_arch[j].name;
10664 cpu_sub_arch_name = NULL;
10665 cpu_arch_flags = cpu_arch[j].flags;
10666 cpu_arch_isa = cpu_arch[j].type;
10667 cpu_arch_isa_flags = cpu_arch[j].flags;
10668 if (!cpu_arch_tune_set)
10669 {
10670 cpu_arch_tune = cpu_arch_isa;
10671 cpu_arch_tune_flags = cpu_arch_isa_flags;
10672 }
10673 break;
10674 }
10675 else if (*cpu_arch [j].name == '.'
10676 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10677 {
10678 /* ISA extension. */
10679 i386_cpu_flags flags;
10680
10681 flags = cpu_flags_or (cpu_arch_flags,
10682 cpu_arch[j].flags);
10683
10684 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10685 {
10686 if (cpu_sub_arch_name)
10687 {
10688 char *name = cpu_sub_arch_name;
10689 cpu_sub_arch_name = concat (name,
10690 cpu_arch[j].name,
10691 (const char *) NULL);
10692 free (name);
10693 }
10694 else
10695 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10696 cpu_arch_flags = flags;
10697 cpu_arch_isa_flags = flags;
10698 }
10699 else
10700 cpu_arch_isa_flags
10701 = cpu_flags_or (cpu_arch_isa_flags,
10702 cpu_arch[j].flags);
10703 break;
10704 }
10705 }
10706
10707 if (j >= ARRAY_SIZE (cpu_arch))
10708 {
10709 /* Disable an ISA extension. */
10710 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10711 if (strcmp (arch, cpu_noarch [j].name) == 0)
10712 {
10713 i386_cpu_flags flags;
10714
10715 flags = cpu_flags_and_not (cpu_arch_flags,
10716 cpu_noarch[j].flags);
10717 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10718 {
10719 if (cpu_sub_arch_name)
10720 {
10721 char *name = cpu_sub_arch_name;
10722 cpu_sub_arch_name = concat (arch,
10723 (const char *) NULL);
10724 free (name);
10725 }
10726 else
10727 cpu_sub_arch_name = xstrdup (arch);
10728 cpu_arch_flags = flags;
10729 cpu_arch_isa_flags = flags;
10730 }
10731 break;
10732 }
10733
10734 if (j >= ARRAY_SIZE (cpu_noarch))
10735 j = ARRAY_SIZE (cpu_arch);
10736 }
10737
10738 if (j >= ARRAY_SIZE (cpu_arch))
10739 as_fatal (_("invalid -march= option: `%s'"), arg);
10740
10741 arch = next;
10742 }
10743 while (next != NULL);
10744 free (saved);
10745 break;
10746
10747 case OPTION_MTUNE:
10748 if (*arg == '.')
10749 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10750 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10751 {
10752 if (strcmp (arg, cpu_arch [j].name) == 0)
10753 {
10754 cpu_arch_tune_set = 1;
10755 cpu_arch_tune = cpu_arch [j].type;
10756 cpu_arch_tune_flags = cpu_arch[j].flags;
10757 break;
10758 }
10759 }
10760 if (j >= ARRAY_SIZE (cpu_arch))
10761 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10762 break;
10763
10764 case OPTION_MMNEMONIC:
10765 if (strcasecmp (arg, "att") == 0)
10766 intel_mnemonic = 0;
10767 else if (strcasecmp (arg, "intel") == 0)
10768 intel_mnemonic = 1;
10769 else
10770 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10771 break;
10772
10773 case OPTION_MSYNTAX:
10774 if (strcasecmp (arg, "att") == 0)
10775 intel_syntax = 0;
10776 else if (strcasecmp (arg, "intel") == 0)
10777 intel_syntax = 1;
10778 else
10779 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10780 break;
10781
10782 case OPTION_MINDEX_REG:
10783 allow_index_reg = 1;
10784 break;
10785
10786 case OPTION_MNAKED_REG:
10787 allow_naked_reg = 1;
10788 break;
10789
10790 case OPTION_MSSE2AVX:
10791 sse2avx = 1;
10792 break;
10793
10794 case OPTION_MSSE_CHECK:
10795 if (strcasecmp (arg, "error") == 0)
10796 sse_check = check_error;
10797 else if (strcasecmp (arg, "warning") == 0)
10798 sse_check = check_warning;
10799 else if (strcasecmp (arg, "none") == 0)
10800 sse_check = check_none;
10801 else
10802 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10803 break;
10804
10805 case OPTION_MOPERAND_CHECK:
10806 if (strcasecmp (arg, "error") == 0)
10807 operand_check = check_error;
10808 else if (strcasecmp (arg, "warning") == 0)
10809 operand_check = check_warning;
10810 else if (strcasecmp (arg, "none") == 0)
10811 operand_check = check_none;
10812 else
10813 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10814 break;
10815
10816 case OPTION_MAVXSCALAR:
10817 if (strcasecmp (arg, "128") == 0)
10818 avxscalar = vex128;
10819 else if (strcasecmp (arg, "256") == 0)
10820 avxscalar = vex256;
10821 else
10822 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10823 break;
10824
10825 case OPTION_MADD_BND_PREFIX:
10826 add_bnd_prefix = 1;
10827 break;
10828
10829 case OPTION_MEVEXLIG:
10830 if (strcmp (arg, "128") == 0)
10831 evexlig = evexl128;
10832 else if (strcmp (arg, "256") == 0)
10833 evexlig = evexl256;
10834 else if (strcmp (arg, "512") == 0)
10835 evexlig = evexl512;
10836 else
10837 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10838 break;
10839
10840 case OPTION_MEVEXRCIG:
10841 if (strcmp (arg, "rne") == 0)
10842 evexrcig = rne;
10843 else if (strcmp (arg, "rd") == 0)
10844 evexrcig = rd;
10845 else if (strcmp (arg, "ru") == 0)
10846 evexrcig = ru;
10847 else if (strcmp (arg, "rz") == 0)
10848 evexrcig = rz;
10849 else
10850 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10851 break;
10852
10853 case OPTION_MEVEXWIG:
10854 if (strcmp (arg, "0") == 0)
10855 evexwig = evexw0;
10856 else if (strcmp (arg, "1") == 0)
10857 evexwig = evexw1;
10858 else
10859 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10860 break;
10861
10862 # if defined (TE_PE) || defined (TE_PEP)
10863 case OPTION_MBIG_OBJ:
10864 use_big_obj = 1;
10865 break;
10866 #endif
10867
10868 case OPTION_MOMIT_LOCK_PREFIX:
10869 if (strcasecmp (arg, "yes") == 0)
10870 omit_lock_prefix = 1;
10871 else if (strcasecmp (arg, "no") == 0)
10872 omit_lock_prefix = 0;
10873 else
10874 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10875 break;
10876
10877 case OPTION_MFENCE_AS_LOCK_ADD:
10878 if (strcasecmp (arg, "yes") == 0)
10879 avoid_fence = 1;
10880 else if (strcasecmp (arg, "no") == 0)
10881 avoid_fence = 0;
10882 else
10883 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10884 break;
10885
10886 case OPTION_MRELAX_RELOCATIONS:
10887 if (strcasecmp (arg, "yes") == 0)
10888 generate_relax_relocations = 1;
10889 else if (strcasecmp (arg, "no") == 0)
10890 generate_relax_relocations = 0;
10891 else
10892 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10893 break;
10894
10895 case OPTION_MAMD64:
10896 intel64 = 0;
10897 break;
10898
10899 case OPTION_MINTEL64:
10900 intel64 = 1;
10901 break;
10902
10903 case 'O':
10904 if (arg == NULL)
10905 {
10906 optimize = 1;
10907 /* Turn off -Os. */
10908 optimize_for_space = 0;
10909 }
10910 else if (*arg == 's')
10911 {
10912 optimize_for_space = 1;
10913 /* Turn on all encoding optimizations. */
10914 optimize = -1;
10915 }
10916 else
10917 {
10918 optimize = atoi (arg);
10919 /* Turn off -Os. */
10920 optimize_for_space = 0;
10921 }
10922 break;
10923
10924 default:
10925 return 0;
10926 }
10927 return 1;
10928 }
10929
10930 #define MESSAGE_TEMPLATE \
10931 " "
10932
10933 static char *
10934 output_message (FILE *stream, char *p, char *message, char *start,
10935 int *left_p, const char *name, int len)
10936 {
10937 int size = sizeof (MESSAGE_TEMPLATE);
10938 int left = *left_p;
10939
10940 /* Reserve 2 spaces for ", " or ",\0" */
10941 left -= len + 2;
10942
10943 /* Check if there is any room. */
10944 if (left >= 0)
10945 {
10946 if (p != start)
10947 {
10948 *p++ = ',';
10949 *p++ = ' ';
10950 }
10951 p = mempcpy (p, name, len);
10952 }
10953 else
10954 {
10955 /* Output the current message now and start a new one. */
10956 *p++ = ',';
10957 *p = '\0';
10958 fprintf (stream, "%s\n", message);
10959 p = start;
10960 left = size - (start - message) - len - 2;
10961
10962 gas_assert (left >= 0);
10963
10964 p = mempcpy (p, name, len);
10965 }
10966
10967 *left_p = left;
10968 return p;
10969 }
10970
10971 static void
10972 show_arch (FILE *stream, int ext, int check)
10973 {
10974 static char message[] = MESSAGE_TEMPLATE;
10975 char *start = message + 27;
10976 char *p;
10977 int size = sizeof (MESSAGE_TEMPLATE);
10978 int left;
10979 const char *name;
10980 int len;
10981 unsigned int j;
10982
10983 p = start;
10984 left = size - (start - message);
10985 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10986 {
10987 /* Should it be skipped? */
10988 if (cpu_arch [j].skip)
10989 continue;
10990
10991 name = cpu_arch [j].name;
10992 len = cpu_arch [j].len;
10993 if (*name == '.')
10994 {
10995 /* It is an extension. Skip if we aren't asked to show it. */
10996 if (ext)
10997 {
10998 name++;
10999 len--;
11000 }
11001 else
11002 continue;
11003 }
11004 else if (ext)
11005 {
11006 /* It is an processor. Skip if we show only extension. */
11007 continue;
11008 }
11009 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11010 {
11011 /* It is an impossible processor - skip. */
11012 continue;
11013 }
11014
11015 p = output_message (stream, p, message, start, &left, name, len);
11016 }
11017
11018 /* Display disabled extensions. */
11019 if (ext)
11020 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11021 {
11022 name = cpu_noarch [j].name;
11023 len = cpu_noarch [j].len;
11024 p = output_message (stream, p, message, start, &left, name,
11025 len);
11026 }
11027
11028 *p = '\0';
11029 fprintf (stream, "%s\n", message);
11030 }
11031
11032 void
11033 md_show_usage (FILE *stream)
11034 {
11035 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11036 fprintf (stream, _("\
11037 -Q ignored\n\
11038 -V print assembler version number\n\
11039 -k ignored\n"));
11040 #endif
11041 fprintf (stream, _("\
11042 -n Do not optimize code alignment\n\
11043 -q quieten some warnings\n"));
11044 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11045 fprintf (stream, _("\
11046 -s ignored\n"));
11047 #endif
11048 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11049 || defined (TE_PE) || defined (TE_PEP))
11050 fprintf (stream, _("\
11051 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
11052 #endif
11053 #ifdef SVR4_COMMENT_CHARS
11054 fprintf (stream, _("\
11055 --divide do not treat `/' as a comment character\n"));
11056 #else
11057 fprintf (stream, _("\
11058 --divide ignored\n"));
11059 #endif
11060 fprintf (stream, _("\
11061 -march=CPU[,+EXTENSION...]\n\
11062 generate code for CPU and EXTENSION, CPU is one of:\n"));
11063 show_arch (stream, 0, 1);
11064 fprintf (stream, _("\
11065 EXTENSION is combination of:\n"));
11066 show_arch (stream, 1, 0);
11067 fprintf (stream, _("\
11068 -mtune=CPU optimize for CPU, CPU is one of:\n"));
11069 show_arch (stream, 0, 0);
11070 fprintf (stream, _("\
11071 -msse2avx encode SSE instructions with VEX prefix\n"));
11072 fprintf (stream, _("\
11073 -msse-check=[none|error|warning]\n\
11074 check SSE instructions\n"));
11075 fprintf (stream, _("\
11076 -moperand-check=[none|error|warning]\n\
11077 check operand combinations for validity\n"));
11078 fprintf (stream, _("\
11079 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
11080 length\n"));
11081 fprintf (stream, _("\
11082 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
11083 length\n"));
11084 fprintf (stream, _("\
11085 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
11086 for EVEX.W bit ignored instructions\n"));
11087 fprintf (stream, _("\
11088 -mevexrcig=[rne|rd|ru|rz]\n\
11089 encode EVEX instructions with specific EVEX.RC value\n\
11090 for SAE-only ignored instructions\n"));
11091 fprintf (stream, _("\
11092 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
11093 fprintf (stream, _("\
11094 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
11095 fprintf (stream, _("\
11096 -mindex-reg support pseudo index registers\n"));
11097 fprintf (stream, _("\
11098 -mnaked-reg don't require `%%' prefix for registers\n"));
11099 fprintf (stream, _("\
11100 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11101 fprintf (stream, _("\
11102 -mshared disable branch optimization for shared code\n"));
11103 # if defined (TE_PE) || defined (TE_PEP)
11104 fprintf (stream, _("\
11105 -mbig-obj generate big object files\n"));
11106 #endif
11107 fprintf (stream, _("\
11108 -momit-lock-prefix=[no|yes]\n\
11109 strip all lock prefixes\n"));
11110 fprintf (stream, _("\
11111 -mfence-as-lock-add=[no|yes]\n\
11112 encode lfence, mfence and sfence as\n\
11113 lock addl $0x0, (%%{re}sp)\n"));
11114 fprintf (stream, _("\
11115 -mrelax-relocations=[no|yes]\n\
11116 generate relax relocations\n"));
11117 fprintf (stream, _("\
11118 -mamd64 accept only AMD64 ISA\n"));
11119 fprintf (stream, _("\
11120 -mintel64 accept only Intel64 ISA\n"));
11121 }
11122
11123 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11124 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11125 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11126
11127 /* Pick the target format to use. */
11128
11129 const char *
11130 i386_target_format (void)
11131 {
11132 if (!strncmp (default_arch, "x86_64", 6))
11133 {
11134 update_code_flag (CODE_64BIT, 1);
11135 if (default_arch[6] == '\0')
11136 x86_elf_abi = X86_64_ABI;
11137 else
11138 x86_elf_abi = X86_64_X32_ABI;
11139 }
11140 else if (!strcmp (default_arch, "i386"))
11141 update_code_flag (CODE_32BIT, 1);
11142 else if (!strcmp (default_arch, "iamcu"))
11143 {
11144 update_code_flag (CODE_32BIT, 1);
11145 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11146 {
11147 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11148 cpu_arch_name = "iamcu";
11149 cpu_sub_arch_name = NULL;
11150 cpu_arch_flags = iamcu_flags;
11151 cpu_arch_isa = PROCESSOR_IAMCU;
11152 cpu_arch_isa_flags = iamcu_flags;
11153 if (!cpu_arch_tune_set)
11154 {
11155 cpu_arch_tune = cpu_arch_isa;
11156 cpu_arch_tune_flags = cpu_arch_isa_flags;
11157 }
11158 }
11159 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11160 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11161 cpu_arch_name);
11162 }
11163 else
11164 as_fatal (_("unknown architecture"));
11165
11166 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11167 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11168 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11169 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11170
11171 switch (OUTPUT_FLAVOR)
11172 {
11173 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11174 case bfd_target_aout_flavour:
11175 return AOUT_TARGET_FORMAT;
11176 #endif
11177 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11178 # if defined (TE_PE) || defined (TE_PEP)
11179 case bfd_target_coff_flavour:
11180 if (flag_code == CODE_64BIT)
11181 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11182 else
11183 return "pe-i386";
11184 # elif defined (TE_GO32)
11185 case bfd_target_coff_flavour:
11186 return "coff-go32";
11187 # else
11188 case bfd_target_coff_flavour:
11189 return "coff-i386";
11190 # endif
11191 #endif
11192 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11193 case bfd_target_elf_flavour:
11194 {
11195 const char *format;
11196
11197 switch (x86_elf_abi)
11198 {
11199 default:
11200 format = ELF_TARGET_FORMAT;
11201 break;
11202 case X86_64_ABI:
11203 use_rela_relocations = 1;
11204 object_64bit = 1;
11205 format = ELF_TARGET_FORMAT64;
11206 break;
11207 case X86_64_X32_ABI:
11208 use_rela_relocations = 1;
11209 object_64bit = 1;
11210 disallow_64bit_reloc = 1;
11211 format = ELF_TARGET_FORMAT32;
11212 break;
11213 }
11214 if (cpu_arch_isa == PROCESSOR_L1OM)
11215 {
11216 if (x86_elf_abi != X86_64_ABI)
11217 as_fatal (_("Intel L1OM is 64bit only"));
11218 return ELF_TARGET_L1OM_FORMAT;
11219 }
11220 else if (cpu_arch_isa == PROCESSOR_K1OM)
11221 {
11222 if (x86_elf_abi != X86_64_ABI)
11223 as_fatal (_("Intel K1OM is 64bit only"));
11224 return ELF_TARGET_K1OM_FORMAT;
11225 }
11226 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11227 {
11228 if (x86_elf_abi != I386_ABI)
11229 as_fatal (_("Intel MCU is 32bit only"));
11230 return ELF_TARGET_IAMCU_FORMAT;
11231 }
11232 else
11233 return format;
11234 }
11235 #endif
11236 #if defined (OBJ_MACH_O)
11237 case bfd_target_mach_o_flavour:
11238 if (flag_code == CODE_64BIT)
11239 {
11240 use_rela_relocations = 1;
11241 object_64bit = 1;
11242 return "mach-o-x86-64";
11243 }
11244 else
11245 return "mach-o-i386";
11246 #endif
11247 default:
11248 abort ();
11249 return NULL;
11250 }
11251 }
11252
11253 #endif /* OBJ_MAYBE_ more than one */
11254 \f
11255 symbolS *
11256 md_undefined_symbol (char *name)
11257 {
11258 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11259 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11260 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11261 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11262 {
11263 if (!GOT_symbol)
11264 {
11265 if (symbol_find (name))
11266 as_bad (_("GOT already in symbol table"));
11267 GOT_symbol = symbol_new (name, undefined_section,
11268 (valueT) 0, &zero_address_frag);
11269 };
11270 return GOT_symbol;
11271 }
11272 return 0;
11273 }
11274
11275 /* Round up a section size to the appropriate boundary. */
11276
11277 valueT
11278 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11279 {
11280 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11281 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11282 {
11283 /* For a.out, force the section size to be aligned. If we don't do
11284 this, BFD will align it for us, but it will not write out the
11285 final bytes of the section. This may be a bug in BFD, but it is
11286 easier to fix it here since that is how the other a.out targets
11287 work. */
11288 int align;
11289
11290 align = bfd_get_section_alignment (stdoutput, segment);
11291 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11292 }
11293 #endif
11294
11295 return size;
11296 }
11297
11298 /* On the i386, PC-relative offsets are relative to the start of the
11299 next instruction. That is, the address of the offset, plus its
11300 size, since the offset is always the last part of the insn. */
11301
11302 long
11303 md_pcrel_from (fixS *fixP)
11304 {
11305 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11306 }
11307
11308 #ifndef I386COFF
11309
11310 static void
11311 s_bss (int ignore ATTRIBUTE_UNUSED)
11312 {
11313 int temp;
11314
11315 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11316 if (IS_ELF)
11317 obj_elf_section_change_hook ();
11318 #endif
11319 temp = get_absolute_expression ();
11320 subseg_set (bss_section, (subsegT) temp);
11321 demand_empty_rest_of_line ();
11322 }
11323
11324 #endif
11325
11326 void
11327 i386_validate_fix (fixS *fixp)
11328 {
11329 if (fixp->fx_subsy)
11330 {
11331 if (fixp->fx_subsy == GOT_symbol)
11332 {
11333 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11334 {
11335 if (!object_64bit)
11336 abort ();
11337 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11338 if (fixp->fx_tcbit2)
11339 fixp->fx_r_type = (fixp->fx_tcbit
11340 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11341 : BFD_RELOC_X86_64_GOTPCRELX);
11342 else
11343 #endif
11344 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11345 }
11346 else
11347 {
11348 if (!object_64bit)
11349 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11350 else
11351 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11352 }
11353 fixp->fx_subsy = 0;
11354 }
11355 }
11356 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11357 else if (!object_64bit)
11358 {
11359 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11360 && fixp->fx_tcbit2)
11361 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11362 }
11363 #endif
11364 }
11365
11366 arelent *
11367 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11368 {
11369 arelent *rel;
11370 bfd_reloc_code_real_type code;
11371
11372 switch (fixp->fx_r_type)
11373 {
11374 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11375 case BFD_RELOC_SIZE32:
11376 case BFD_RELOC_SIZE64:
11377 if (S_IS_DEFINED (fixp->fx_addsy)
11378 && !S_IS_EXTERNAL (fixp->fx_addsy))
11379 {
11380 /* Resolve size relocation against local symbol to size of
11381 the symbol plus addend. */
11382 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11383 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11384 && !fits_in_unsigned_long (value))
11385 as_bad_where (fixp->fx_file, fixp->fx_line,
11386 _("symbol size computation overflow"));
11387 fixp->fx_addsy = NULL;
11388 fixp->fx_subsy = NULL;
11389 md_apply_fix (fixp, (valueT *) &value, NULL);
11390 return NULL;
11391 }
11392 #endif
11393 /* Fall through. */
11394
11395 case BFD_RELOC_X86_64_PLT32:
11396 case BFD_RELOC_X86_64_GOT32:
11397 case BFD_RELOC_X86_64_GOTPCREL:
11398 case BFD_RELOC_X86_64_GOTPCRELX:
11399 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11400 case BFD_RELOC_386_PLT32:
11401 case BFD_RELOC_386_GOT32:
11402 case BFD_RELOC_386_GOT32X:
11403 case BFD_RELOC_386_GOTOFF:
11404 case BFD_RELOC_386_GOTPC:
11405 case BFD_RELOC_386_TLS_GD:
11406 case BFD_RELOC_386_TLS_LDM:
11407 case BFD_RELOC_386_TLS_LDO_32:
11408 case BFD_RELOC_386_TLS_IE_32:
11409 case BFD_RELOC_386_TLS_IE:
11410 case BFD_RELOC_386_TLS_GOTIE:
11411 case BFD_RELOC_386_TLS_LE_32:
11412 case BFD_RELOC_386_TLS_LE:
11413 case BFD_RELOC_386_TLS_GOTDESC:
11414 case BFD_RELOC_386_TLS_DESC_CALL:
11415 case BFD_RELOC_X86_64_TLSGD:
11416 case BFD_RELOC_X86_64_TLSLD:
11417 case BFD_RELOC_X86_64_DTPOFF32:
11418 case BFD_RELOC_X86_64_DTPOFF64:
11419 case BFD_RELOC_X86_64_GOTTPOFF:
11420 case BFD_RELOC_X86_64_TPOFF32:
11421 case BFD_RELOC_X86_64_TPOFF64:
11422 case BFD_RELOC_X86_64_GOTOFF64:
11423 case BFD_RELOC_X86_64_GOTPC32:
11424 case BFD_RELOC_X86_64_GOT64:
11425 case BFD_RELOC_X86_64_GOTPCREL64:
11426 case BFD_RELOC_X86_64_GOTPC64:
11427 case BFD_RELOC_X86_64_GOTPLT64:
11428 case BFD_RELOC_X86_64_PLTOFF64:
11429 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11430 case BFD_RELOC_X86_64_TLSDESC_CALL:
11431 case BFD_RELOC_RVA:
11432 case BFD_RELOC_VTABLE_ENTRY:
11433 case BFD_RELOC_VTABLE_INHERIT:
11434 #ifdef TE_PE
11435 case BFD_RELOC_32_SECREL:
11436 #endif
11437 code = fixp->fx_r_type;
11438 break;
11439 case BFD_RELOC_X86_64_32S:
11440 if (!fixp->fx_pcrel)
11441 {
11442 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11443 code = fixp->fx_r_type;
11444 break;
11445 }
11446 /* Fall through. */
11447 default:
11448 if (fixp->fx_pcrel)
11449 {
11450 switch (fixp->fx_size)
11451 {
11452 default:
11453 as_bad_where (fixp->fx_file, fixp->fx_line,
11454 _("can not do %d byte pc-relative relocation"),
11455 fixp->fx_size);
11456 code = BFD_RELOC_32_PCREL;
11457 break;
11458 case 1: code = BFD_RELOC_8_PCREL; break;
11459 case 2: code = BFD_RELOC_16_PCREL; break;
11460 case 4: code = BFD_RELOC_32_PCREL; break;
11461 #ifdef BFD64
11462 case 8: code = BFD_RELOC_64_PCREL; break;
11463 #endif
11464 }
11465 }
11466 else
11467 {
11468 switch (fixp->fx_size)
11469 {
11470 default:
11471 as_bad_where (fixp->fx_file, fixp->fx_line,
11472 _("can not do %d byte relocation"),
11473 fixp->fx_size);
11474 code = BFD_RELOC_32;
11475 break;
11476 case 1: code = BFD_RELOC_8; break;
11477 case 2: code = BFD_RELOC_16; break;
11478 case 4: code = BFD_RELOC_32; break;
11479 #ifdef BFD64
11480 case 8: code = BFD_RELOC_64; break;
11481 #endif
11482 }
11483 }
11484 break;
11485 }
11486
11487 if ((code == BFD_RELOC_32
11488 || code == BFD_RELOC_32_PCREL
11489 || code == BFD_RELOC_X86_64_32S)
11490 && GOT_symbol
11491 && fixp->fx_addsy == GOT_symbol)
11492 {
11493 if (!object_64bit)
11494 code = BFD_RELOC_386_GOTPC;
11495 else
11496 code = BFD_RELOC_X86_64_GOTPC32;
11497 }
11498 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11499 && GOT_symbol
11500 && fixp->fx_addsy == GOT_symbol)
11501 {
11502 code = BFD_RELOC_X86_64_GOTPC64;
11503 }
11504
11505 rel = XNEW (arelent);
11506 rel->sym_ptr_ptr = XNEW (asymbol *);
11507 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11508
11509 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
11510
11511 if (!use_rela_relocations)
11512 {
11513 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11514 vtable entry to be used in the relocation's section offset. */
11515 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11516 rel->address = fixp->fx_offset;
11517 #if defined (OBJ_COFF) && defined (TE_PE)
11518 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11519 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11520 else
11521 #endif
11522 rel->addend = 0;
11523 }
11524 /* Use the rela in 64bit mode. */
11525 else
11526 {
11527 if (disallow_64bit_reloc)
11528 switch (code)
11529 {
11530 case BFD_RELOC_X86_64_DTPOFF64:
11531 case BFD_RELOC_X86_64_TPOFF64:
11532 case BFD_RELOC_64_PCREL:
11533 case BFD_RELOC_X86_64_GOTOFF64:
11534 case BFD_RELOC_X86_64_GOT64:
11535 case BFD_RELOC_X86_64_GOTPCREL64:
11536 case BFD_RELOC_X86_64_GOTPC64:
11537 case BFD_RELOC_X86_64_GOTPLT64:
11538 case BFD_RELOC_X86_64_PLTOFF64:
11539 as_bad_where (fixp->fx_file, fixp->fx_line,
11540 _("cannot represent relocation type %s in x32 mode"),
11541 bfd_get_reloc_code_name (code));
11542 break;
11543 default:
11544 break;
11545 }
11546
11547 if (!fixp->fx_pcrel)
11548 rel->addend = fixp->fx_offset;
11549 else
11550 switch (code)
11551 {
11552 case BFD_RELOC_X86_64_PLT32:
11553 case BFD_RELOC_X86_64_GOT32:
11554 case BFD_RELOC_X86_64_GOTPCREL:
11555 case BFD_RELOC_X86_64_GOTPCRELX:
11556 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11557 case BFD_RELOC_X86_64_TLSGD:
11558 case BFD_RELOC_X86_64_TLSLD:
11559 case BFD_RELOC_X86_64_GOTTPOFF:
11560 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11561 case BFD_RELOC_X86_64_TLSDESC_CALL:
11562 rel->addend = fixp->fx_offset - fixp->fx_size;
11563 break;
11564 default:
11565 rel->addend = (section->vma
11566 - fixp->fx_size
11567 + fixp->fx_addnumber
11568 + md_pcrel_from (fixp));
11569 break;
11570 }
11571 }
11572
11573 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11574 if (rel->howto == NULL)
11575 {
11576 as_bad_where (fixp->fx_file, fixp->fx_line,
11577 _("cannot represent relocation type %s"),
11578 bfd_get_reloc_code_name (code));
11579 /* Set howto to a garbage value so that we can keep going. */
11580 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
11581 gas_assert (rel->howto != NULL);
11582 }
11583
11584 return rel;
11585 }
11586
11587 #include "tc-i386-intel.c"
11588
11589 void
11590 tc_x86_parse_to_dw2regnum (expressionS *exp)
11591 {
11592 int saved_naked_reg;
11593 char saved_register_dot;
11594
11595 saved_naked_reg = allow_naked_reg;
11596 allow_naked_reg = 1;
11597 saved_register_dot = register_chars['.'];
11598 register_chars['.'] = '.';
11599 allow_pseudo_reg = 1;
11600 expression_and_evaluate (exp);
11601 allow_pseudo_reg = 0;
11602 register_chars['.'] = saved_register_dot;
11603 allow_naked_reg = saved_naked_reg;
11604
11605 if (exp->X_op == O_register && exp->X_add_number >= 0)
11606 {
11607 if ((addressT) exp->X_add_number < i386_regtab_size)
11608 {
11609 exp->X_op = O_constant;
11610 exp->X_add_number = i386_regtab[exp->X_add_number]
11611 .dw2_regnum[flag_code >> 1];
11612 }
11613 else
11614 exp->X_op = O_illegal;
11615 }
11616 }
11617
11618 void
11619 tc_x86_frame_initial_instructions (void)
11620 {
11621 static unsigned int sp_regno[2];
11622
11623 if (!sp_regno[flag_code >> 1])
11624 {
11625 char *saved_input = input_line_pointer;
11626 char sp[][4] = {"esp", "rsp"};
11627 expressionS exp;
11628
11629 input_line_pointer = sp[flag_code >> 1];
11630 tc_x86_parse_to_dw2regnum (&exp);
11631 gas_assert (exp.X_op == O_constant);
11632 sp_regno[flag_code >> 1] = exp.X_add_number;
11633 input_line_pointer = saved_input;
11634 }
11635
11636 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11637 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
11638 }
11639
11640 int
11641 x86_dwarf2_addr_size (void)
11642 {
11643 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11644 if (x86_elf_abi == X86_64_X32_ABI)
11645 return 4;
11646 #endif
11647 return bfd_arch_bits_per_address (stdoutput) / 8;
11648 }
11649
11650 int
11651 i386_elf_section_type (const char *str, size_t len)
11652 {
11653 if (flag_code == CODE_64BIT
11654 && len == sizeof ("unwind") - 1
11655 && strncmp (str, "unwind", 6) == 0)
11656 return SHT_X86_64_UNWIND;
11657
11658 return -1;
11659 }
11660
11661 #ifdef TE_SOLARIS
11662 void
11663 i386_solaris_fix_up_eh_frame (segT sec)
11664 {
11665 if (flag_code == CODE_64BIT)
11666 elf_section_type (sec) = SHT_X86_64_UNWIND;
11667 }
11668 #endif
11669
11670 #ifdef TE_PE
11671 void
11672 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11673 {
11674 expressionS exp;
11675
11676 exp.X_op = O_secrel;
11677 exp.X_add_symbol = symbol;
11678 exp.X_add_number = 0;
11679 emit_expr (&exp, size);
11680 }
11681 #endif
11682
11683 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11684 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11685
11686 bfd_vma
11687 x86_64_section_letter (int letter, const char **ptr_msg)
11688 {
11689 if (flag_code == CODE_64BIT)
11690 {
11691 if (letter == 'l')
11692 return SHF_X86_64_LARGE;
11693
11694 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11695 }
11696 else
11697 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11698 return -1;
11699 }
11700
11701 bfd_vma
11702 x86_64_section_word (char *str, size_t len)
11703 {
11704 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11705 return SHF_X86_64_LARGE;
11706
11707 return -1;
11708 }
11709
11710 static void
11711 handle_large_common (int small ATTRIBUTE_UNUSED)
11712 {
11713 if (flag_code != CODE_64BIT)
11714 {
11715 s_comm_internal (0, elf_common_parse);
11716 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11717 }
11718 else
11719 {
11720 static segT lbss_section;
11721 asection *saved_com_section_ptr = elf_com_section_ptr;
11722 asection *saved_bss_section = bss_section;
11723
11724 if (lbss_section == NULL)
11725 {
11726 flagword applicable;
11727 segT seg = now_seg;
11728 subsegT subseg = now_subseg;
11729
11730 /* The .lbss section is for local .largecomm symbols. */
11731 lbss_section = subseg_new (".lbss", 0);
11732 applicable = bfd_applicable_section_flags (stdoutput);
11733 bfd_set_section_flags (stdoutput, lbss_section,
11734 applicable & SEC_ALLOC);
11735 seg_info (lbss_section)->bss = 1;
11736
11737 subseg_set (seg, subseg);
11738 }
11739
11740 elf_com_section_ptr = &_bfd_elf_large_com_section;
11741 bss_section = lbss_section;
11742
11743 s_comm_internal (0, elf_common_parse);
11744
11745 elf_com_section_ptr = saved_com_section_ptr;
11746 bss_section = saved_bss_section;
11747 }
11748 }
11749 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */