x86-64: REX prefix is invalid with VEX etc
[binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef INFER_ADDR_PREFIX
48 #define INFER_ADDR_PREFIX 1
49 #endif
50
51 #ifndef DEFAULT_ARCH
52 #define DEFAULT_ARCH "i386"
53 #endif
54
55 #ifndef INLINE
56 #if __GNUC__ >= 2
57 #define INLINE __inline__
58 #else
59 #define INLINE
60 #endif
61 #endif
62
63 /* Prefixes will be emitted in the order defined below.
64 WAIT_PREFIX must be the first prefix since FWAIT is really is an
65 instruction, and so must come before any prefixes.
66 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
67 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
68 #define WAIT_PREFIX 0
69 #define SEG_PREFIX 1
70 #define ADDR_PREFIX 2
71 #define DATA_PREFIX 3
72 #define REP_PREFIX 4
73 #define HLE_PREFIX REP_PREFIX
74 #define BND_PREFIX REP_PREFIX
75 #define LOCK_PREFIX 5
76 #define REX_PREFIX 6 /* must come last. */
77 #define MAX_PREFIXES 7 /* max prefixes per opcode */
78
79 /* we define the syntax here (modulo base,index,scale syntax) */
80 #define REGISTER_PREFIX '%'
81 #define IMMEDIATE_PREFIX '$'
82 #define ABSOLUTE_PREFIX '*'
83
84 /* these are the instruction mnemonic suffixes in AT&T syntax or
85 memory operand size in Intel syntax. */
86 #define WORD_MNEM_SUFFIX 'w'
87 #define BYTE_MNEM_SUFFIX 'b'
88 #define SHORT_MNEM_SUFFIX 's'
89 #define LONG_MNEM_SUFFIX 'l'
90 #define QWORD_MNEM_SUFFIX 'q'
91 /* Intel Syntax. Use a non-ascii letter since since it never appears
92 in instructions. */
93 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
94
95 #define END_OF_INSN '\0'
96
97 /* This matches the C -> StaticRounding alias in the opcode table. */
98 #define commutative staticrounding
99
100 /*
101 'templates' is for grouping together 'template' structures for opcodes
102 of the same name. This is only used for storing the insns in the grand
103 ole hash table of insns.
104 The templates themselves start at START and range up to (but not including)
105 END.
106 */
107 typedef struct
108 {
109 const insn_template *start;
110 const insn_template *end;
111 }
112 templates;
113
114 /* 386 operand encoding bytes: see 386 book for details of this. */
115 typedef struct
116 {
117 unsigned int regmem; /* codes register or memory operand */
118 unsigned int reg; /* codes register operand (or extended opcode) */
119 unsigned int mode; /* how to interpret regmem & reg */
120 }
121 modrm_byte;
122
123 /* x86-64 extension prefix. */
124 typedef int rex_byte;
125
126 /* 386 opcode byte to code indirect addressing. */
127 typedef struct
128 {
129 unsigned base;
130 unsigned index;
131 unsigned scale;
132 }
133 sib_byte;
134
135 /* x86 arch names, types and features */
136 typedef struct
137 {
138 const char *name; /* arch name */
139 unsigned int len; /* arch string length */
140 enum processor_type type; /* arch type */
141 i386_cpu_flags flags; /* cpu feature flags */
142 unsigned int skip; /* show_arch should skip this. */
143 }
144 arch_entry;
145
146 /* Used to turn off indicated flags. */
147 typedef struct
148 {
149 const char *name; /* arch name */
150 unsigned int len; /* arch string length */
151 i386_cpu_flags flags; /* cpu feature flags */
152 }
153 noarch_entry;
154
155 static void update_code_flag (int, int);
156 static void set_code_flag (int);
157 static void set_16bit_gcc_code_flag (int);
158 static void set_intel_syntax (int);
159 static void set_intel_mnemonic (int);
160 static void set_allow_index_reg (int);
161 static void set_check (int);
162 static void set_cpu_arch (int);
163 #ifdef TE_PE
164 static void pe_directive_secrel (int);
165 #endif
166 static void signed_cons (int);
167 static char *output_invalid (int c);
168 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
169 const char *);
170 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
171 const char *);
172 static int i386_att_operand (char *);
173 static int i386_intel_operand (char *, int);
174 static int i386_intel_simplify (expressionS *);
175 static int i386_intel_parse_name (const char *, expressionS *);
176 static const reg_entry *parse_register (char *, char **);
177 static char *parse_insn (char *, char *);
178 static char *parse_operands (char *, const char *);
179 static void swap_operands (void);
180 static void swap_2_operands (int, int);
181 static enum flag_code i386_addressing_mode (void);
182 static void optimize_imm (void);
183 static void optimize_disp (void);
184 static const insn_template *match_template (char);
185 static int check_string (void);
186 static int process_suffix (void);
187 static int check_byte_reg (void);
188 static int check_long_reg (void);
189 static int check_qword_reg (void);
190 static int check_word_reg (void);
191 static int finalize_imm (void);
192 static int process_operands (void);
193 static const seg_entry *build_modrm_byte (void);
194 static void output_insn (void);
195 static void output_imm (fragS *, offsetT);
196 static void output_disp (fragS *, offsetT);
197 #ifndef I386COFF
198 static void s_bss (int);
199 #endif
200 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201 static void handle_large_common (int small ATTRIBUTE_UNUSED);
202
203 /* GNU_PROPERTY_X86_ISA_1_USED. */
204 static unsigned int x86_isa_1_used;
205 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
206 static unsigned int x86_feature_2_used;
207 /* Generate x86 used ISA and feature properties. */
208 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
209 #endif
210
211 static const char *default_arch = DEFAULT_ARCH;
212
213 /* parse_register() returns this when a register alias cannot be used. */
214 static const reg_entry bad_reg = { "<bad>", OPERAND_TYPE_NONE, 0, 0,
215 { Dw2Inval, Dw2Inval } };
216
217 /* This struct describes rounding control and SAE in the instruction. */
218 struct RC_Operation
219 {
220 enum rc_type
221 {
222 rne = 0,
223 rd,
224 ru,
225 rz,
226 saeonly
227 } type;
228 int operand;
229 };
230
231 static struct RC_Operation rc_op;
232
233 /* The struct describes masking, applied to OPERAND in the instruction.
234 MASK is a pointer to the corresponding mask register. ZEROING tells
235 whether merging or zeroing mask is used. */
236 struct Mask_Operation
237 {
238 const reg_entry *mask;
239 unsigned int zeroing;
240 /* The operand where this operation is associated. */
241 int operand;
242 };
243
244 static struct Mask_Operation mask_op;
245
246 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
247 broadcast factor. */
248 struct Broadcast_Operation
249 {
250 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
251 int type;
252
253 /* Index of broadcasted operand. */
254 int operand;
255
256 /* Number of bytes to broadcast. */
257 int bytes;
258 };
259
260 static struct Broadcast_Operation broadcast_op;
261
262 /* VEX prefix. */
263 typedef struct
264 {
265 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
266 unsigned char bytes[4];
267 unsigned int length;
268 /* Destination or source register specifier. */
269 const reg_entry *register_specifier;
270 } vex_prefix;
271
272 /* 'md_assemble ()' gathers together information and puts it into a
273 i386_insn. */
274
275 union i386_op
276 {
277 expressionS *disps;
278 expressionS *imms;
279 const reg_entry *regs;
280 };
281
282 enum i386_error
283 {
284 operand_size_mismatch,
285 operand_type_mismatch,
286 register_type_mismatch,
287 number_of_operands_mismatch,
288 invalid_instruction_suffix,
289 bad_imm4,
290 unsupported_with_intel_mnemonic,
291 unsupported_syntax,
292 unsupported,
293 invalid_vsib_address,
294 invalid_vector_register_set,
295 unsupported_vector_index_register,
296 unsupported_broadcast,
297 broadcast_needed,
298 unsupported_masking,
299 mask_not_on_destination,
300 no_default_mask,
301 unsupported_rc_sae,
302 rc_sae_operand_not_last_imm,
303 invalid_register_operand,
304 };
305
306 struct _i386_insn
307 {
308 /* TM holds the template for the insn were currently assembling. */
309 insn_template tm;
310
311 /* SUFFIX holds the instruction size suffix for byte, word, dword
312 or qword, if given. */
313 char suffix;
314
315 /* OPERANDS gives the number of given operands. */
316 unsigned int operands;
317
318 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
319 of given register, displacement, memory operands and immediate
320 operands. */
321 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
322
323 /* TYPES [i] is the type (see above #defines) which tells us how to
324 use OP[i] for the corresponding operand. */
325 i386_operand_type types[MAX_OPERANDS];
326
327 /* Displacement expression, immediate expression, or register for each
328 operand. */
329 union i386_op op[MAX_OPERANDS];
330
331 /* Flags for operands. */
332 unsigned int flags[MAX_OPERANDS];
333 #define Operand_PCrel 1
334 #define Operand_Mem 2
335
336 /* Relocation type for operand */
337 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
338
339 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
340 the base index byte below. */
341 const reg_entry *base_reg;
342 const reg_entry *index_reg;
343 unsigned int log2_scale_factor;
344
345 /* SEG gives the seg_entries of this insn. They are zero unless
346 explicit segment overrides are given. */
347 const seg_entry *seg[2];
348
349 /* Copied first memory operand string, for re-checking. */
350 char *memop1_string;
351
352 /* PREFIX holds all the given prefix opcodes (usually null).
353 PREFIXES is the number of prefix opcodes. */
354 unsigned int prefixes;
355 unsigned char prefix[MAX_PREFIXES];
356
357 /* Register is in low 3 bits of opcode. */
358 bfd_boolean short_form;
359
360 /* The operand to a branch insn indicates an absolute branch. */
361 bfd_boolean jumpabsolute;
362
363 /* Has MMX register operands. */
364 bfd_boolean has_regmmx;
365
366 /* Has XMM register operands. */
367 bfd_boolean has_regxmm;
368
369 /* Has YMM register operands. */
370 bfd_boolean has_regymm;
371
372 /* Has ZMM register operands. */
373 bfd_boolean has_regzmm;
374
375 /* Has GOTPC or TLS relocation. */
376 bfd_boolean has_gotpc_tls_reloc;
377
378 /* RM and SIB are the modrm byte and the sib byte where the
379 addressing modes of this insn are encoded. */
380 modrm_byte rm;
381 rex_byte rex;
382 rex_byte vrex;
383 sib_byte sib;
384 vex_prefix vex;
385
386 /* Masking attributes. */
387 struct Mask_Operation *mask;
388
389 /* Rounding control and SAE attributes. */
390 struct RC_Operation *rounding;
391
392 /* Broadcasting attributes. */
393 struct Broadcast_Operation *broadcast;
394
395 /* Compressed disp8*N attribute. */
396 unsigned int memshift;
397
398 /* Prefer load or store in encoding. */
399 enum
400 {
401 dir_encoding_default = 0,
402 dir_encoding_load,
403 dir_encoding_store,
404 dir_encoding_swap
405 } dir_encoding;
406
407 /* Prefer 8bit or 32bit displacement in encoding. */
408 enum
409 {
410 disp_encoding_default = 0,
411 disp_encoding_8bit,
412 disp_encoding_32bit
413 } disp_encoding;
414
415 /* Prefer the REX byte in encoding. */
416 bfd_boolean rex_encoding;
417
418 /* Disable instruction size optimization. */
419 bfd_boolean no_optimize;
420
421 /* How to encode vector instructions. */
422 enum
423 {
424 vex_encoding_default = 0,
425 vex_encoding_vex,
426 vex_encoding_vex3,
427 vex_encoding_evex,
428 vex_encoding_error
429 } vec_encoding;
430
431 /* REP prefix. */
432 const char *rep_prefix;
433
434 /* HLE prefix. */
435 const char *hle_prefix;
436
437 /* Have BND prefix. */
438 const char *bnd_prefix;
439
440 /* Have NOTRACK prefix. */
441 const char *notrack_prefix;
442
443 /* Error message. */
444 enum i386_error error;
445 };
446
447 typedef struct _i386_insn i386_insn;
448
449 /* Link RC type with corresponding string, that'll be looked for in
450 asm. */
451 struct RC_name
452 {
453 enum rc_type type;
454 const char *name;
455 unsigned int len;
456 };
457
458 static const struct RC_name RC_NamesTable[] =
459 {
460 { rne, STRING_COMMA_LEN ("rn-sae") },
461 { rd, STRING_COMMA_LEN ("rd-sae") },
462 { ru, STRING_COMMA_LEN ("ru-sae") },
463 { rz, STRING_COMMA_LEN ("rz-sae") },
464 { saeonly, STRING_COMMA_LEN ("sae") },
465 };
466
467 /* List of chars besides those in app.c:symbol_chars that can start an
468 operand. Used to prevent the scrubber eating vital white-space. */
469 const char extra_symbol_chars[] = "*%-([{}"
470 #ifdef LEX_AT
471 "@"
472 #endif
473 #ifdef LEX_QM
474 "?"
475 #endif
476 ;
477
478 #if (defined (TE_I386AIX) \
479 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
480 && !defined (TE_GNU) \
481 && !defined (TE_LINUX) \
482 && !defined (TE_NACL) \
483 && !defined (TE_FreeBSD) \
484 && !defined (TE_DragonFly) \
485 && !defined (TE_NetBSD)))
486 /* This array holds the chars that always start a comment. If the
487 pre-processor is disabled, these aren't very useful. The option
488 --divide will remove '/' from this list. */
489 const char *i386_comment_chars = "#/";
490 #define SVR4_COMMENT_CHARS 1
491 #define PREFIX_SEPARATOR '\\'
492
493 #else
494 const char *i386_comment_chars = "#";
495 #define PREFIX_SEPARATOR '/'
496 #endif
497
498 /* This array holds the chars that only start a comment at the beginning of
499 a line. If the line seems to have the form '# 123 filename'
500 .line and .file directives will appear in the pre-processed output.
501 Note that input_file.c hand checks for '#' at the beginning of the
502 first line of the input file. This is because the compiler outputs
503 #NO_APP at the beginning of its output.
504 Also note that comments started like this one will always work if
505 '/' isn't otherwise defined. */
506 const char line_comment_chars[] = "#/";
507
508 const char line_separator_chars[] = ";";
509
510 /* Chars that can be used to separate mant from exp in floating point
511 nums. */
512 const char EXP_CHARS[] = "eE";
513
514 /* Chars that mean this number is a floating point constant
515 As in 0f12.456
516 or 0d1.2345e12. */
517 const char FLT_CHARS[] = "fFdDxX";
518
519 /* Tables for lexical analysis. */
520 static char mnemonic_chars[256];
521 static char register_chars[256];
522 static char operand_chars[256];
523 static char identifier_chars[256];
524 static char digit_chars[256];
525
526 /* Lexical macros. */
527 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
528 #define is_operand_char(x) (operand_chars[(unsigned char) x])
529 #define is_register_char(x) (register_chars[(unsigned char) x])
530 #define is_space_char(x) ((x) == ' ')
531 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
532 #define is_digit_char(x) (digit_chars[(unsigned char) x])
533
534 /* All non-digit non-letter characters that may occur in an operand. */
535 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
536
537 /* md_assemble() always leaves the strings it's passed unaltered. To
538 effect this we maintain a stack of saved characters that we've smashed
539 with '\0's (indicating end of strings for various sub-fields of the
540 assembler instruction). */
541 static char save_stack[32];
542 static char *save_stack_p;
543 #define END_STRING_AND_SAVE(s) \
544 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
545 #define RESTORE_END_STRING(s) \
546 do { *(s) = *--save_stack_p; } while (0)
547
548 /* The instruction we're assembling. */
549 static i386_insn i;
550
551 /* Possible templates for current insn. */
552 static const templates *current_templates;
553
554 /* Per instruction expressionS buffers: max displacements & immediates. */
555 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
556 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
557
558 /* Current operand we are working on. */
559 static int this_operand = -1;
560
561 /* We support four different modes. FLAG_CODE variable is used to distinguish
562 these. */
563
564 enum flag_code {
565 CODE_32BIT,
566 CODE_16BIT,
567 CODE_64BIT };
568
569 static enum flag_code flag_code;
570 static unsigned int object_64bit;
571 static unsigned int disallow_64bit_reloc;
572 static int use_rela_relocations = 0;
573 /* __tls_get_addr/___tls_get_addr symbol for TLS. */
574 static const char *tls_get_addr;
575
576 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
577 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
578 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
579
580 /* The ELF ABI to use. */
581 enum x86_elf_abi
582 {
583 I386_ABI,
584 X86_64_ABI,
585 X86_64_X32_ABI
586 };
587
588 static enum x86_elf_abi x86_elf_abi = I386_ABI;
589 #endif
590
591 #if defined (TE_PE) || defined (TE_PEP)
592 /* Use big object file format. */
593 static int use_big_obj = 0;
594 #endif
595
596 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
597 /* 1 if generating code for a shared library. */
598 static int shared = 0;
599 #endif
600
601 /* 1 for intel syntax,
602 0 if att syntax. */
603 static int intel_syntax = 0;
604
605 static enum x86_64_isa
606 {
607 amd64 = 1, /* AMD64 ISA. */
608 intel64 /* Intel64 ISA. */
609 } isa64;
610
611 /* 1 for intel mnemonic,
612 0 if att mnemonic. */
613 static int intel_mnemonic = !SYSV386_COMPAT;
614
615 /* 1 if pseudo registers are permitted. */
616 static int allow_pseudo_reg = 0;
617
618 /* 1 if register prefix % not required. */
619 static int allow_naked_reg = 0;
620
621 /* 1 if the assembler should add BND prefix for all control-transferring
622 instructions supporting it, even if this prefix wasn't specified
623 explicitly. */
624 static int add_bnd_prefix = 0;
625
626 /* 1 if pseudo index register, eiz/riz, is allowed . */
627 static int allow_index_reg = 0;
628
629 /* 1 if the assembler should ignore LOCK prefix, even if it was
630 specified explicitly. */
631 static int omit_lock_prefix = 0;
632
633 /* 1 if the assembler should encode lfence, mfence, and sfence as
634 "lock addl $0, (%{re}sp)". */
635 static int avoid_fence = 0;
636
637 /* 1 if lfence should be inserted after every load. */
638 static int lfence_after_load = 0;
639
640 /* Non-zero if lfence should be inserted before indirect branch. */
641 static enum lfence_before_indirect_branch_kind
642 {
643 lfence_branch_none = 0,
644 lfence_branch_register,
645 lfence_branch_memory,
646 lfence_branch_all
647 }
648 lfence_before_indirect_branch;
649
650 /* Non-zero if lfence should be inserted before ret. */
651 static enum lfence_before_ret_kind
652 {
653 lfence_before_ret_none = 0,
654 lfence_before_ret_not,
655 lfence_before_ret_or,
656 lfence_before_ret_shl
657 }
658 lfence_before_ret;
659
660 /* Types of previous instruction is .byte or prefix. */
661 static struct
662 {
663 segT seg;
664 const char *file;
665 const char *name;
666 unsigned int line;
667 enum last_insn_kind
668 {
669 last_insn_other = 0,
670 last_insn_directive,
671 last_insn_prefix
672 } kind;
673 } last_insn;
674
675 /* 1 if the assembler should generate relax relocations. */
676
677 static int generate_relax_relocations
678 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
679
680 static enum check_kind
681 {
682 check_none = 0,
683 check_warning,
684 check_error
685 }
686 sse_check, operand_check = check_warning;
687
688 /* Non-zero if branches should be aligned within power of 2 boundary. */
689 static int align_branch_power = 0;
690
691 /* Types of branches to align. */
692 enum align_branch_kind
693 {
694 align_branch_none = 0,
695 align_branch_jcc = 1,
696 align_branch_fused = 2,
697 align_branch_jmp = 3,
698 align_branch_call = 4,
699 align_branch_indirect = 5,
700 align_branch_ret = 6
701 };
702
703 /* Type bits of branches to align. */
704 enum align_branch_bit
705 {
706 align_branch_jcc_bit = 1 << align_branch_jcc,
707 align_branch_fused_bit = 1 << align_branch_fused,
708 align_branch_jmp_bit = 1 << align_branch_jmp,
709 align_branch_call_bit = 1 << align_branch_call,
710 align_branch_indirect_bit = 1 << align_branch_indirect,
711 align_branch_ret_bit = 1 << align_branch_ret
712 };
713
714 static unsigned int align_branch = (align_branch_jcc_bit
715 | align_branch_fused_bit
716 | align_branch_jmp_bit);
717
718 /* Types of condition jump used by macro-fusion. */
719 enum mf_jcc_kind
720 {
721 mf_jcc_jo = 0, /* base opcode 0x70 */
722 mf_jcc_jc, /* base opcode 0x72 */
723 mf_jcc_je, /* base opcode 0x74 */
724 mf_jcc_jna, /* base opcode 0x76 */
725 mf_jcc_js, /* base opcode 0x78 */
726 mf_jcc_jp, /* base opcode 0x7a */
727 mf_jcc_jl, /* base opcode 0x7c */
728 mf_jcc_jle, /* base opcode 0x7e */
729 };
730
731 /* Types of compare flag-modifying insntructions used by macro-fusion. */
732 enum mf_cmp_kind
733 {
734 mf_cmp_test_and, /* test/cmp */
735 mf_cmp_alu_cmp, /* add/sub/cmp */
736 mf_cmp_incdec /* inc/dec */
737 };
738
739 /* The maximum padding size for fused jcc. CMP like instruction can
740 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
741 prefixes. */
742 #define MAX_FUSED_JCC_PADDING_SIZE 20
743
744 /* The maximum number of prefixes added for an instruction. */
745 static unsigned int align_branch_prefix_size = 5;
746
747 /* Optimization:
748 1. Clear the REX_W bit with register operand if possible.
749 2. Above plus use 128bit vector instruction to clear the full vector
750 register.
751 */
752 static int optimize = 0;
753
754 /* Optimization:
755 1. Clear the REX_W bit with register operand if possible.
756 2. Above plus use 128bit vector instruction to clear the full vector
757 register.
758 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
759 "testb $imm7,%r8".
760 */
761 static int optimize_for_space = 0;
762
763 /* Register prefix used for error message. */
764 static const char *register_prefix = "%";
765
766 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
767 leave, push, and pop instructions so that gcc has the same stack
768 frame as in 32 bit mode. */
769 static char stackop_size = '\0';
770
771 /* Non-zero to optimize code alignment. */
772 int optimize_align_code = 1;
773
774 /* Non-zero to quieten some warnings. */
775 static int quiet_warnings = 0;
776
777 /* CPU name. */
778 static const char *cpu_arch_name = NULL;
779 static char *cpu_sub_arch_name = NULL;
780
781 /* CPU feature flags. */
782 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
783
784 /* If we have selected a cpu we are generating instructions for. */
785 static int cpu_arch_tune_set = 0;
786
787 /* Cpu we are generating instructions for. */
788 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
789
790 /* CPU feature flags of cpu we are generating instructions for. */
791 static i386_cpu_flags cpu_arch_tune_flags;
792
793 /* CPU instruction set architecture used. */
794 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
795
796 /* CPU feature flags of instruction set architecture used. */
797 i386_cpu_flags cpu_arch_isa_flags;
798
799 /* If set, conditional jumps are not automatically promoted to handle
800 larger than a byte offset. */
801 static unsigned int no_cond_jump_promotion = 0;
802
803 /* Encode SSE instructions with VEX prefix. */
804 static unsigned int sse2avx;
805
806 /* Encode scalar AVX instructions with specific vector length. */
807 static enum
808 {
809 vex128 = 0,
810 vex256
811 } avxscalar;
812
813 /* Encode VEX WIG instructions with specific vex.w. */
814 static enum
815 {
816 vexw0 = 0,
817 vexw1
818 } vexwig;
819
820 /* Encode scalar EVEX LIG instructions with specific vector length. */
821 static enum
822 {
823 evexl128 = 0,
824 evexl256,
825 evexl512
826 } evexlig;
827
828 /* Encode EVEX WIG instructions with specific evex.w. */
829 static enum
830 {
831 evexw0 = 0,
832 evexw1
833 } evexwig;
834
835 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
836 static enum rc_type evexrcig = rne;
837
838 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
839 static symbolS *GOT_symbol;
840
841 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
842 unsigned int x86_dwarf2_return_column;
843
844 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
845 int x86_cie_data_alignment;
846
847 /* Interface to relax_segment.
848 There are 3 major relax states for 386 jump insns because the
849 different types of jumps add different sizes to frags when we're
850 figuring out what sort of jump to choose to reach a given label.
851
852 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
853 branches which are handled by md_estimate_size_before_relax() and
854 i386_generic_table_relax_frag(). */
855
856 /* Types. */
857 #define UNCOND_JUMP 0
858 #define COND_JUMP 1
859 #define COND_JUMP86 2
860 #define BRANCH_PADDING 3
861 #define BRANCH_PREFIX 4
862 #define FUSED_JCC_PADDING 5
863
864 /* Sizes. */
865 #define CODE16 1
866 #define SMALL 0
867 #define SMALL16 (SMALL | CODE16)
868 #define BIG 2
869 #define BIG16 (BIG | CODE16)
870
871 #ifndef INLINE
872 #ifdef __GNUC__
873 #define INLINE __inline__
874 #else
875 #define INLINE
876 #endif
877 #endif
878
879 #define ENCODE_RELAX_STATE(type, size) \
880 ((relax_substateT) (((type) << 2) | (size)))
881 #define TYPE_FROM_RELAX_STATE(s) \
882 ((s) >> 2)
883 #define DISP_SIZE_FROM_RELAX_STATE(s) \
884 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
885
886 /* This table is used by relax_frag to promote short jumps to long
887 ones where necessary. SMALL (short) jumps may be promoted to BIG
888 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
889 don't allow a short jump in a 32 bit code segment to be promoted to
890 a 16 bit offset jump because it's slower (requires data size
891 prefix), and doesn't work, unless the destination is in the bottom
892 64k of the code segment (The top 16 bits of eip are zeroed). */
893
894 const relax_typeS md_relax_table[] =
895 {
896 /* The fields are:
897 1) most positive reach of this state,
898 2) most negative reach of this state,
899 3) how many bytes this mode will have in the variable part of the frag
900 4) which index into the table to try if we can't fit into this one. */
901
902 /* UNCOND_JUMP states. */
903 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
904 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
905 /* dword jmp adds 4 bytes to frag:
906 0 extra opcode bytes, 4 displacement bytes. */
907 {0, 0, 4, 0},
908 /* word jmp adds 2 byte2 to frag:
909 0 extra opcode bytes, 2 displacement bytes. */
910 {0, 0, 2, 0},
911
912 /* COND_JUMP states. */
913 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
914 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
915 /* dword conditionals adds 5 bytes to frag:
916 1 extra opcode byte, 4 displacement bytes. */
917 {0, 0, 5, 0},
918 /* word conditionals add 3 bytes to frag:
919 1 extra opcode byte, 2 displacement bytes. */
920 {0, 0, 3, 0},
921
922 /* COND_JUMP86 states. */
923 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
924 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
925 /* dword conditionals adds 5 bytes to frag:
926 1 extra opcode byte, 4 displacement bytes. */
927 {0, 0, 5, 0},
928 /* word conditionals add 4 bytes to frag:
929 1 displacement byte and a 3 byte long branch insn. */
930 {0, 0, 4, 0}
931 };
932
933 static const arch_entry cpu_arch[] =
934 {
935 /* Do not replace the first two entries - i386_target_format()
936 relies on them being there in this order. */
937 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
938 CPU_GENERIC32_FLAGS, 0 },
939 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
940 CPU_GENERIC64_FLAGS, 0 },
941 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
942 CPU_NONE_FLAGS, 0 },
943 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
944 CPU_I186_FLAGS, 0 },
945 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
946 CPU_I286_FLAGS, 0 },
947 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
948 CPU_I386_FLAGS, 0 },
949 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
950 CPU_I486_FLAGS, 0 },
951 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
952 CPU_I586_FLAGS, 0 },
953 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
954 CPU_I686_FLAGS, 0 },
955 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
956 CPU_I586_FLAGS, 0 },
957 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
958 CPU_PENTIUMPRO_FLAGS, 0 },
959 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
960 CPU_P2_FLAGS, 0 },
961 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
962 CPU_P3_FLAGS, 0 },
963 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
964 CPU_P4_FLAGS, 0 },
965 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
966 CPU_CORE_FLAGS, 0 },
967 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
968 CPU_NOCONA_FLAGS, 0 },
969 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
970 CPU_CORE_FLAGS, 1 },
971 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
972 CPU_CORE_FLAGS, 0 },
973 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
974 CPU_CORE2_FLAGS, 1 },
975 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
976 CPU_CORE2_FLAGS, 0 },
977 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
978 CPU_COREI7_FLAGS, 0 },
979 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
980 CPU_L1OM_FLAGS, 0 },
981 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
982 CPU_K1OM_FLAGS, 0 },
983 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
984 CPU_IAMCU_FLAGS, 0 },
985 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
986 CPU_K6_FLAGS, 0 },
987 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
988 CPU_K6_2_FLAGS, 0 },
989 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
990 CPU_ATHLON_FLAGS, 0 },
991 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
992 CPU_K8_FLAGS, 1 },
993 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
994 CPU_K8_FLAGS, 0 },
995 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
996 CPU_K8_FLAGS, 0 },
997 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
998 CPU_AMDFAM10_FLAGS, 0 },
999 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
1000 CPU_BDVER1_FLAGS, 0 },
1001 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
1002 CPU_BDVER2_FLAGS, 0 },
1003 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
1004 CPU_BDVER3_FLAGS, 0 },
1005 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
1006 CPU_BDVER4_FLAGS, 0 },
1007 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
1008 CPU_ZNVER1_FLAGS, 0 },
1009 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
1010 CPU_ZNVER2_FLAGS, 0 },
1011 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
1012 CPU_BTVER1_FLAGS, 0 },
1013 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
1014 CPU_BTVER2_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
1016 CPU_8087_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
1018 CPU_287_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
1020 CPU_387_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
1022 CPU_687_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
1024 CPU_CMOV_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
1026 CPU_FXSR_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
1028 CPU_MMX_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
1030 CPU_SSE_FLAGS, 0 },
1031 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
1032 CPU_SSE2_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
1034 CPU_SSE3_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1036 CPU_SSE4A_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
1038 CPU_SSSE3_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
1040 CPU_SSE4_1_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
1042 CPU_SSE4_2_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
1044 CPU_SSE4_2_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
1046 CPU_AVX_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
1048 CPU_AVX2_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
1050 CPU_AVX512F_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
1052 CPU_AVX512CD_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
1054 CPU_AVX512ER_FLAGS, 0 },
1055 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
1056 CPU_AVX512PF_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
1058 CPU_AVX512DQ_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
1060 CPU_AVX512BW_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
1062 CPU_AVX512VL_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
1064 CPU_VMX_FLAGS, 0 },
1065 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
1066 CPU_VMFUNC_FLAGS, 0 },
1067 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
1068 CPU_SMX_FLAGS, 0 },
1069 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
1070 CPU_XSAVE_FLAGS, 0 },
1071 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
1072 CPU_XSAVEOPT_FLAGS, 0 },
1073 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
1074 CPU_XSAVEC_FLAGS, 0 },
1075 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
1076 CPU_XSAVES_FLAGS, 0 },
1077 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
1078 CPU_AES_FLAGS, 0 },
1079 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
1080 CPU_PCLMUL_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
1082 CPU_PCLMUL_FLAGS, 1 },
1083 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
1084 CPU_FSGSBASE_FLAGS, 0 },
1085 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
1086 CPU_RDRND_FLAGS, 0 },
1087 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
1088 CPU_F16C_FLAGS, 0 },
1089 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
1090 CPU_BMI2_FLAGS, 0 },
1091 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
1092 CPU_FMA_FLAGS, 0 },
1093 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
1094 CPU_FMA4_FLAGS, 0 },
1095 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
1096 CPU_XOP_FLAGS, 0 },
1097 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
1098 CPU_LWP_FLAGS, 0 },
1099 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
1100 CPU_MOVBE_FLAGS, 0 },
1101 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
1102 CPU_CX16_FLAGS, 0 },
1103 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
1104 CPU_EPT_FLAGS, 0 },
1105 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
1106 CPU_LZCNT_FLAGS, 0 },
1107 { STRING_COMMA_LEN (".popcnt"), PROCESSOR_UNKNOWN,
1108 CPU_POPCNT_FLAGS, 0 },
1109 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
1110 CPU_HLE_FLAGS, 0 },
1111 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
1112 CPU_RTM_FLAGS, 0 },
1113 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
1114 CPU_INVPCID_FLAGS, 0 },
1115 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
1116 CPU_CLFLUSH_FLAGS, 0 },
1117 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
1118 CPU_NOP_FLAGS, 0 },
1119 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
1120 CPU_SYSCALL_FLAGS, 0 },
1121 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
1122 CPU_RDTSCP_FLAGS, 0 },
1123 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1124 CPU_3DNOW_FLAGS, 0 },
1125 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1126 CPU_3DNOWA_FLAGS, 0 },
1127 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1128 CPU_PADLOCK_FLAGS, 0 },
1129 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1130 CPU_SVME_FLAGS, 1 },
1131 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1132 CPU_SVME_FLAGS, 0 },
1133 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1134 CPU_SSE4A_FLAGS, 0 },
1135 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1136 CPU_ABM_FLAGS, 0 },
1137 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1138 CPU_BMI_FLAGS, 0 },
1139 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1140 CPU_TBM_FLAGS, 0 },
1141 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1142 CPU_ADX_FLAGS, 0 },
1143 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1144 CPU_RDSEED_FLAGS, 0 },
1145 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1146 CPU_PRFCHW_FLAGS, 0 },
1147 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1148 CPU_SMAP_FLAGS, 0 },
1149 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1150 CPU_MPX_FLAGS, 0 },
1151 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1152 CPU_SHA_FLAGS, 0 },
1153 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1154 CPU_CLFLUSHOPT_FLAGS, 0 },
1155 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1156 CPU_PREFETCHWT1_FLAGS, 0 },
1157 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1158 CPU_SE1_FLAGS, 0 },
1159 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1160 CPU_CLWB_FLAGS, 0 },
1161 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1162 CPU_AVX512IFMA_FLAGS, 0 },
1163 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1164 CPU_AVX512VBMI_FLAGS, 0 },
1165 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1166 CPU_AVX512_4FMAPS_FLAGS, 0 },
1167 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1168 CPU_AVX512_4VNNIW_FLAGS, 0 },
1169 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1170 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1171 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1172 CPU_AVX512_VBMI2_FLAGS, 0 },
1173 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1174 CPU_AVX512_VNNI_FLAGS, 0 },
1175 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1176 CPU_AVX512_BITALG_FLAGS, 0 },
1177 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1178 CPU_CLZERO_FLAGS, 0 },
1179 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1180 CPU_MWAITX_FLAGS, 0 },
1181 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1182 CPU_OSPKE_FLAGS, 0 },
1183 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1184 CPU_RDPID_FLAGS, 0 },
1185 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1186 CPU_PTWRITE_FLAGS, 0 },
1187 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1188 CPU_IBT_FLAGS, 0 },
1189 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1190 CPU_SHSTK_FLAGS, 0 },
1191 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1192 CPU_GFNI_FLAGS, 0 },
1193 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1194 CPU_VAES_FLAGS, 0 },
1195 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1196 CPU_VPCLMULQDQ_FLAGS, 0 },
1197 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1198 CPU_WBNOINVD_FLAGS, 0 },
1199 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1200 CPU_PCONFIG_FLAGS, 0 },
1201 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1202 CPU_WAITPKG_FLAGS, 0 },
1203 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1204 CPU_CLDEMOTE_FLAGS, 0 },
1205 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1206 CPU_MOVDIRI_FLAGS, 0 },
1207 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1208 CPU_MOVDIR64B_FLAGS, 0 },
1209 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1210 CPU_AVX512_BF16_FLAGS, 0 },
1211 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1212 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1213 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1214 CPU_ENQCMD_FLAGS, 0 },
1215 { STRING_COMMA_LEN (".serialize"), PROCESSOR_UNKNOWN,
1216 CPU_SERIALIZE_FLAGS, 0 },
1217 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1218 CPU_RDPRU_FLAGS, 0 },
1219 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1220 CPU_MCOMMIT_FLAGS, 0 },
1221 { STRING_COMMA_LEN (".sev_es"), PROCESSOR_UNKNOWN,
1222 CPU_SEV_ES_FLAGS, 0 },
1223 { STRING_COMMA_LEN (".tsxldtrk"), PROCESSOR_UNKNOWN,
1224 CPU_TSXLDTRK_FLAGS, 0 },
1225 };
1226
1227 static const noarch_entry cpu_noarch[] =
1228 {
1229 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1230 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1231 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1232 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1233 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1234 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1235 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1236 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1237 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1238 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1239 { STRING_COMMA_LEN ("nosse4a"), CPU_ANY_SSE4A_FLAGS },
1240 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1241 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1242 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1243 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1244 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1245 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1246 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1247 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1248 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1249 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1250 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1251 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1252 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1253 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1254 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1255 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1256 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1257 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1258 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1259 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1260 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1261 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1262 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1263 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1264 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1265 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1266 { STRING_COMMA_LEN ("noavx512_vp2intersect"),
1267 CPU_ANY_AVX512_VP2INTERSECT_FLAGS },
1268 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1269 { STRING_COMMA_LEN ("noserialize"), CPU_ANY_SERIALIZE_FLAGS },
1270 { STRING_COMMA_LEN ("notsxldtrk"), CPU_ANY_TSXLDTRK_FLAGS },
1271 };
1272
1273 #ifdef I386COFF
1274 /* Like s_lcomm_internal in gas/read.c but the alignment string
1275 is allowed to be optional. */
1276
1277 static symbolS *
1278 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1279 {
1280 addressT align = 0;
1281
1282 SKIP_WHITESPACE ();
1283
1284 if (needs_align
1285 && *input_line_pointer == ',')
1286 {
1287 align = parse_align (needs_align - 1);
1288
1289 if (align == (addressT) -1)
1290 return NULL;
1291 }
1292 else
1293 {
1294 if (size >= 8)
1295 align = 3;
1296 else if (size >= 4)
1297 align = 2;
1298 else if (size >= 2)
1299 align = 1;
1300 else
1301 align = 0;
1302 }
1303
1304 bss_alloc (symbolP, size, align);
1305 return symbolP;
1306 }
1307
1308 static void
1309 pe_lcomm (int needs_align)
1310 {
1311 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1312 }
1313 #endif
1314
1315 const pseudo_typeS md_pseudo_table[] =
1316 {
1317 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1318 {"align", s_align_bytes, 0},
1319 #else
1320 {"align", s_align_ptwo, 0},
1321 #endif
1322 {"arch", set_cpu_arch, 0},
1323 #ifndef I386COFF
1324 {"bss", s_bss, 0},
1325 #else
1326 {"lcomm", pe_lcomm, 1},
1327 #endif
1328 {"ffloat", float_cons, 'f'},
1329 {"dfloat", float_cons, 'd'},
1330 {"tfloat", float_cons, 'x'},
1331 {"value", cons, 2},
1332 {"slong", signed_cons, 4},
1333 {"noopt", s_ignore, 0},
1334 {"optim", s_ignore, 0},
1335 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1336 {"code16", set_code_flag, CODE_16BIT},
1337 {"code32", set_code_flag, CODE_32BIT},
1338 #ifdef BFD64
1339 {"code64", set_code_flag, CODE_64BIT},
1340 #endif
1341 {"intel_syntax", set_intel_syntax, 1},
1342 {"att_syntax", set_intel_syntax, 0},
1343 {"intel_mnemonic", set_intel_mnemonic, 1},
1344 {"att_mnemonic", set_intel_mnemonic, 0},
1345 {"allow_index_reg", set_allow_index_reg, 1},
1346 {"disallow_index_reg", set_allow_index_reg, 0},
1347 {"sse_check", set_check, 0},
1348 {"operand_check", set_check, 1},
1349 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1350 {"largecomm", handle_large_common, 0},
1351 #else
1352 {"file", dwarf2_directive_file, 0},
1353 {"loc", dwarf2_directive_loc, 0},
1354 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1355 #endif
1356 #ifdef TE_PE
1357 {"secrel32", pe_directive_secrel, 0},
1358 #endif
1359 {0, 0, 0}
1360 };
1361
1362 /* For interface with expression (). */
1363 extern char *input_line_pointer;
1364
1365 /* Hash table for instruction mnemonic lookup. */
1366 static struct hash_control *op_hash;
1367
1368 /* Hash table for register lookup. */
1369 static struct hash_control *reg_hash;
1370 \f
1371 /* Various efficient no-op patterns for aligning code labels.
1372 Note: Don't try to assemble the instructions in the comments.
1373 0L and 0w are not legal. */
1374 static const unsigned char f32_1[] =
1375 {0x90}; /* nop */
1376 static const unsigned char f32_2[] =
1377 {0x66,0x90}; /* xchg %ax,%ax */
1378 static const unsigned char f32_3[] =
1379 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1380 static const unsigned char f32_4[] =
1381 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1382 static const unsigned char f32_6[] =
1383 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1384 static const unsigned char f32_7[] =
1385 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1386 static const unsigned char f16_3[] =
1387 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1388 static const unsigned char f16_4[] =
1389 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1390 static const unsigned char jump_disp8[] =
1391 {0xeb}; /* jmp disp8 */
1392 static const unsigned char jump32_disp32[] =
1393 {0xe9}; /* jmp disp32 */
1394 static const unsigned char jump16_disp32[] =
1395 {0x66,0xe9}; /* jmp disp32 */
1396 /* 32-bit NOPs patterns. */
1397 static const unsigned char *const f32_patt[] = {
1398 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1399 };
1400 /* 16-bit NOPs patterns. */
1401 static const unsigned char *const f16_patt[] = {
1402 f32_1, f32_2, f16_3, f16_4
1403 };
1404 /* nopl (%[re]ax) */
1405 static const unsigned char alt_3[] =
1406 {0x0f,0x1f,0x00};
1407 /* nopl 0(%[re]ax) */
1408 static const unsigned char alt_4[] =
1409 {0x0f,0x1f,0x40,0x00};
1410 /* nopl 0(%[re]ax,%[re]ax,1) */
1411 static const unsigned char alt_5[] =
1412 {0x0f,0x1f,0x44,0x00,0x00};
1413 /* nopw 0(%[re]ax,%[re]ax,1) */
1414 static const unsigned char alt_6[] =
1415 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1416 /* nopl 0L(%[re]ax) */
1417 static const unsigned char alt_7[] =
1418 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1419 /* nopl 0L(%[re]ax,%[re]ax,1) */
1420 static const unsigned char alt_8[] =
1421 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1422 /* nopw 0L(%[re]ax,%[re]ax,1) */
1423 static const unsigned char alt_9[] =
1424 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1425 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1426 static const unsigned char alt_10[] =
1427 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1428 /* data16 nopw %cs:0L(%eax,%eax,1) */
1429 static const unsigned char alt_11[] =
1430 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1431 /* 32-bit and 64-bit NOPs patterns. */
1432 static const unsigned char *const alt_patt[] = {
1433 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1434 alt_9, alt_10, alt_11
1435 };
1436
1437 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1438 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1439
1440 static void
1441 i386_output_nops (char *where, const unsigned char *const *patt,
1442 int count, int max_single_nop_size)
1443
1444 {
1445 /* Place the longer NOP first. */
1446 int last;
1447 int offset;
1448 const unsigned char *nops;
1449
1450 if (max_single_nop_size < 1)
1451 {
1452 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1453 max_single_nop_size);
1454 return;
1455 }
1456
1457 nops = patt[max_single_nop_size - 1];
1458
1459 /* Use the smaller one if the requsted one isn't available. */
1460 if (nops == NULL)
1461 {
1462 max_single_nop_size--;
1463 nops = patt[max_single_nop_size - 1];
1464 }
1465
1466 last = count % max_single_nop_size;
1467
1468 count -= last;
1469 for (offset = 0; offset < count; offset += max_single_nop_size)
1470 memcpy (where + offset, nops, max_single_nop_size);
1471
1472 if (last)
1473 {
1474 nops = patt[last - 1];
1475 if (nops == NULL)
1476 {
1477 /* Use the smaller one plus one-byte NOP if the needed one
1478 isn't available. */
1479 last--;
1480 nops = patt[last - 1];
1481 memcpy (where + offset, nops, last);
1482 where[offset + last] = *patt[0];
1483 }
1484 else
1485 memcpy (where + offset, nops, last);
1486 }
1487 }
1488
1489 static INLINE int
1490 fits_in_imm7 (offsetT num)
1491 {
1492 return (num & 0x7f) == num;
1493 }
1494
1495 static INLINE int
1496 fits_in_imm31 (offsetT num)
1497 {
1498 return (num & 0x7fffffff) == num;
1499 }
1500
1501 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1502 single NOP instruction LIMIT. */
1503
1504 void
1505 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1506 {
1507 const unsigned char *const *patt = NULL;
1508 int max_single_nop_size;
1509 /* Maximum number of NOPs before switching to jump over NOPs. */
1510 int max_number_of_nops;
1511
1512 switch (fragP->fr_type)
1513 {
1514 case rs_fill_nop:
1515 case rs_align_code:
1516 break;
1517 case rs_machine_dependent:
1518 /* Allow NOP padding for jumps and calls. */
1519 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1520 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1521 break;
1522 /* Fall through. */
1523 default:
1524 return;
1525 }
1526
1527 /* We need to decide which NOP sequence to use for 32bit and
1528 64bit. When -mtune= is used:
1529
1530 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1531 PROCESSOR_GENERIC32, f32_patt will be used.
1532 2. For the rest, alt_patt will be used.
1533
1534 When -mtune= isn't used, alt_patt will be used if
1535 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1536 be used.
1537
1538 When -march= or .arch is used, we can't use anything beyond
1539 cpu_arch_isa_flags. */
1540
1541 if (flag_code == CODE_16BIT)
1542 {
1543 patt = f16_patt;
1544 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1545 /* Limit number of NOPs to 2 in 16-bit mode. */
1546 max_number_of_nops = 2;
1547 }
1548 else
1549 {
1550 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1551 {
1552 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1553 switch (cpu_arch_tune)
1554 {
1555 case PROCESSOR_UNKNOWN:
1556 /* We use cpu_arch_isa_flags to check if we SHOULD
1557 optimize with nops. */
1558 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1559 patt = alt_patt;
1560 else
1561 patt = f32_patt;
1562 break;
1563 case PROCESSOR_PENTIUM4:
1564 case PROCESSOR_NOCONA:
1565 case PROCESSOR_CORE:
1566 case PROCESSOR_CORE2:
1567 case PROCESSOR_COREI7:
1568 case PROCESSOR_L1OM:
1569 case PROCESSOR_K1OM:
1570 case PROCESSOR_GENERIC64:
1571 case PROCESSOR_K6:
1572 case PROCESSOR_ATHLON:
1573 case PROCESSOR_K8:
1574 case PROCESSOR_AMDFAM10:
1575 case PROCESSOR_BD:
1576 case PROCESSOR_ZNVER:
1577 case PROCESSOR_BT:
1578 patt = alt_patt;
1579 break;
1580 case PROCESSOR_I386:
1581 case PROCESSOR_I486:
1582 case PROCESSOR_PENTIUM:
1583 case PROCESSOR_PENTIUMPRO:
1584 case PROCESSOR_IAMCU:
1585 case PROCESSOR_GENERIC32:
1586 patt = f32_patt;
1587 break;
1588 }
1589 }
1590 else
1591 {
1592 switch (fragP->tc_frag_data.tune)
1593 {
1594 case PROCESSOR_UNKNOWN:
1595 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1596 PROCESSOR_UNKNOWN. */
1597 abort ();
1598 break;
1599
1600 case PROCESSOR_I386:
1601 case PROCESSOR_I486:
1602 case PROCESSOR_PENTIUM:
1603 case PROCESSOR_IAMCU:
1604 case PROCESSOR_K6:
1605 case PROCESSOR_ATHLON:
1606 case PROCESSOR_K8:
1607 case PROCESSOR_AMDFAM10:
1608 case PROCESSOR_BD:
1609 case PROCESSOR_ZNVER:
1610 case PROCESSOR_BT:
1611 case PROCESSOR_GENERIC32:
1612 /* We use cpu_arch_isa_flags to check if we CAN optimize
1613 with nops. */
1614 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1615 patt = alt_patt;
1616 else
1617 patt = f32_patt;
1618 break;
1619 case PROCESSOR_PENTIUMPRO:
1620 case PROCESSOR_PENTIUM4:
1621 case PROCESSOR_NOCONA:
1622 case PROCESSOR_CORE:
1623 case PROCESSOR_CORE2:
1624 case PROCESSOR_COREI7:
1625 case PROCESSOR_L1OM:
1626 case PROCESSOR_K1OM:
1627 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1628 patt = alt_patt;
1629 else
1630 patt = f32_patt;
1631 break;
1632 case PROCESSOR_GENERIC64:
1633 patt = alt_patt;
1634 break;
1635 }
1636 }
1637
1638 if (patt == f32_patt)
1639 {
1640 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1641 /* Limit number of NOPs to 2 for older processors. */
1642 max_number_of_nops = 2;
1643 }
1644 else
1645 {
1646 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1647 /* Limit number of NOPs to 7 for newer processors. */
1648 max_number_of_nops = 7;
1649 }
1650 }
1651
1652 if (limit == 0)
1653 limit = max_single_nop_size;
1654
1655 if (fragP->fr_type == rs_fill_nop)
1656 {
1657 /* Output NOPs for .nop directive. */
1658 if (limit > max_single_nop_size)
1659 {
1660 as_bad_where (fragP->fr_file, fragP->fr_line,
1661 _("invalid single nop size: %d "
1662 "(expect within [0, %d])"),
1663 limit, max_single_nop_size);
1664 return;
1665 }
1666 }
1667 else if (fragP->fr_type != rs_machine_dependent)
1668 fragP->fr_var = count;
1669
1670 if ((count / max_single_nop_size) > max_number_of_nops)
1671 {
1672 /* Generate jump over NOPs. */
1673 offsetT disp = count - 2;
1674 if (fits_in_imm7 (disp))
1675 {
1676 /* Use "jmp disp8" if possible. */
1677 count = disp;
1678 where[0] = jump_disp8[0];
1679 where[1] = count;
1680 where += 2;
1681 }
1682 else
1683 {
1684 unsigned int size_of_jump;
1685
1686 if (flag_code == CODE_16BIT)
1687 {
1688 where[0] = jump16_disp32[0];
1689 where[1] = jump16_disp32[1];
1690 size_of_jump = 2;
1691 }
1692 else
1693 {
1694 where[0] = jump32_disp32[0];
1695 size_of_jump = 1;
1696 }
1697
1698 count -= size_of_jump + 4;
1699 if (!fits_in_imm31 (count))
1700 {
1701 as_bad_where (fragP->fr_file, fragP->fr_line,
1702 _("jump over nop padding out of range"));
1703 return;
1704 }
1705
1706 md_number_to_chars (where + size_of_jump, count, 4);
1707 where += size_of_jump + 4;
1708 }
1709 }
1710
1711 /* Generate multiple NOPs. */
1712 i386_output_nops (where, patt, count, limit);
1713 }
1714
1715 static INLINE int
1716 operand_type_all_zero (const union i386_operand_type *x)
1717 {
1718 switch (ARRAY_SIZE(x->array))
1719 {
1720 case 3:
1721 if (x->array[2])
1722 return 0;
1723 /* Fall through. */
1724 case 2:
1725 if (x->array[1])
1726 return 0;
1727 /* Fall through. */
1728 case 1:
1729 return !x->array[0];
1730 default:
1731 abort ();
1732 }
1733 }
1734
1735 static INLINE void
1736 operand_type_set (union i386_operand_type *x, unsigned int v)
1737 {
1738 switch (ARRAY_SIZE(x->array))
1739 {
1740 case 3:
1741 x->array[2] = v;
1742 /* Fall through. */
1743 case 2:
1744 x->array[1] = v;
1745 /* Fall through. */
1746 case 1:
1747 x->array[0] = v;
1748 /* Fall through. */
1749 break;
1750 default:
1751 abort ();
1752 }
1753
1754 x->bitfield.class = ClassNone;
1755 x->bitfield.instance = InstanceNone;
1756 }
1757
1758 static INLINE int
1759 operand_type_equal (const union i386_operand_type *x,
1760 const union i386_operand_type *y)
1761 {
1762 switch (ARRAY_SIZE(x->array))
1763 {
1764 case 3:
1765 if (x->array[2] != y->array[2])
1766 return 0;
1767 /* Fall through. */
1768 case 2:
1769 if (x->array[1] != y->array[1])
1770 return 0;
1771 /* Fall through. */
1772 case 1:
1773 return x->array[0] == y->array[0];
1774 break;
1775 default:
1776 abort ();
1777 }
1778 }
1779
1780 static INLINE int
1781 cpu_flags_all_zero (const union i386_cpu_flags *x)
1782 {
1783 switch (ARRAY_SIZE(x->array))
1784 {
1785 case 4:
1786 if (x->array[3])
1787 return 0;
1788 /* Fall through. */
1789 case 3:
1790 if (x->array[2])
1791 return 0;
1792 /* Fall through. */
1793 case 2:
1794 if (x->array[1])
1795 return 0;
1796 /* Fall through. */
1797 case 1:
1798 return !x->array[0];
1799 default:
1800 abort ();
1801 }
1802 }
1803
1804 static INLINE int
1805 cpu_flags_equal (const union i386_cpu_flags *x,
1806 const union i386_cpu_flags *y)
1807 {
1808 switch (ARRAY_SIZE(x->array))
1809 {
1810 case 4:
1811 if (x->array[3] != y->array[3])
1812 return 0;
1813 /* Fall through. */
1814 case 3:
1815 if (x->array[2] != y->array[2])
1816 return 0;
1817 /* Fall through. */
1818 case 2:
1819 if (x->array[1] != y->array[1])
1820 return 0;
1821 /* Fall through. */
1822 case 1:
1823 return x->array[0] == y->array[0];
1824 break;
1825 default:
1826 abort ();
1827 }
1828 }
1829
1830 static INLINE int
1831 cpu_flags_check_cpu64 (i386_cpu_flags f)
1832 {
1833 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1834 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1835 }
1836
1837 static INLINE i386_cpu_flags
1838 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1839 {
1840 switch (ARRAY_SIZE (x.array))
1841 {
1842 case 4:
1843 x.array [3] &= y.array [3];
1844 /* Fall through. */
1845 case 3:
1846 x.array [2] &= y.array [2];
1847 /* Fall through. */
1848 case 2:
1849 x.array [1] &= y.array [1];
1850 /* Fall through. */
1851 case 1:
1852 x.array [0] &= y.array [0];
1853 break;
1854 default:
1855 abort ();
1856 }
1857 return x;
1858 }
1859
1860 static INLINE i386_cpu_flags
1861 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1862 {
1863 switch (ARRAY_SIZE (x.array))
1864 {
1865 case 4:
1866 x.array [3] |= y.array [3];
1867 /* Fall through. */
1868 case 3:
1869 x.array [2] |= y.array [2];
1870 /* Fall through. */
1871 case 2:
1872 x.array [1] |= y.array [1];
1873 /* Fall through. */
1874 case 1:
1875 x.array [0] |= y.array [0];
1876 break;
1877 default:
1878 abort ();
1879 }
1880 return x;
1881 }
1882
1883 static INLINE i386_cpu_flags
1884 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1885 {
1886 switch (ARRAY_SIZE (x.array))
1887 {
1888 case 4:
1889 x.array [3] &= ~y.array [3];
1890 /* Fall through. */
1891 case 3:
1892 x.array [2] &= ~y.array [2];
1893 /* Fall through. */
1894 case 2:
1895 x.array [1] &= ~y.array [1];
1896 /* Fall through. */
1897 case 1:
1898 x.array [0] &= ~y.array [0];
1899 break;
1900 default:
1901 abort ();
1902 }
1903 return x;
1904 }
1905
1906 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
1907
1908 #define CPU_FLAGS_ARCH_MATCH 0x1
1909 #define CPU_FLAGS_64BIT_MATCH 0x2
1910
1911 #define CPU_FLAGS_PERFECT_MATCH \
1912 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1913
1914 /* Return CPU flags match bits. */
1915
1916 static int
1917 cpu_flags_match (const insn_template *t)
1918 {
1919 i386_cpu_flags x = t->cpu_flags;
1920 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1921
1922 x.bitfield.cpu64 = 0;
1923 x.bitfield.cpuno64 = 0;
1924
1925 if (cpu_flags_all_zero (&x))
1926 {
1927 /* This instruction is available on all archs. */
1928 match |= CPU_FLAGS_ARCH_MATCH;
1929 }
1930 else
1931 {
1932 /* This instruction is available only on some archs. */
1933 i386_cpu_flags cpu = cpu_arch_flags;
1934
1935 /* AVX512VL is no standalone feature - match it and then strip it. */
1936 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1937 return match;
1938 x.bitfield.cpuavx512vl = 0;
1939
1940 cpu = cpu_flags_and (x, cpu);
1941 if (!cpu_flags_all_zero (&cpu))
1942 {
1943 if (x.bitfield.cpuavx)
1944 {
1945 /* We need to check a few extra flags with AVX. */
1946 if (cpu.bitfield.cpuavx
1947 && (!t->opcode_modifier.sse2avx
1948 || (sse2avx && !i.prefix[DATA_PREFIX]))
1949 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1950 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1951 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1952 match |= CPU_FLAGS_ARCH_MATCH;
1953 }
1954 else if (x.bitfield.cpuavx512f)
1955 {
1956 /* We need to check a few extra flags with AVX512F. */
1957 if (cpu.bitfield.cpuavx512f
1958 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1959 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1960 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1961 match |= CPU_FLAGS_ARCH_MATCH;
1962 }
1963 else
1964 match |= CPU_FLAGS_ARCH_MATCH;
1965 }
1966 }
1967 return match;
1968 }
1969
1970 static INLINE i386_operand_type
1971 operand_type_and (i386_operand_type x, i386_operand_type y)
1972 {
1973 if (x.bitfield.class != y.bitfield.class)
1974 x.bitfield.class = ClassNone;
1975 if (x.bitfield.instance != y.bitfield.instance)
1976 x.bitfield.instance = InstanceNone;
1977
1978 switch (ARRAY_SIZE (x.array))
1979 {
1980 case 3:
1981 x.array [2] &= y.array [2];
1982 /* Fall through. */
1983 case 2:
1984 x.array [1] &= y.array [1];
1985 /* Fall through. */
1986 case 1:
1987 x.array [0] &= y.array [0];
1988 break;
1989 default:
1990 abort ();
1991 }
1992 return x;
1993 }
1994
1995 static INLINE i386_operand_type
1996 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1997 {
1998 gas_assert (y.bitfield.class == ClassNone);
1999 gas_assert (y.bitfield.instance == InstanceNone);
2000
2001 switch (ARRAY_SIZE (x.array))
2002 {
2003 case 3:
2004 x.array [2] &= ~y.array [2];
2005 /* Fall through. */
2006 case 2:
2007 x.array [1] &= ~y.array [1];
2008 /* Fall through. */
2009 case 1:
2010 x.array [0] &= ~y.array [0];
2011 break;
2012 default:
2013 abort ();
2014 }
2015 return x;
2016 }
2017
2018 static INLINE i386_operand_type
2019 operand_type_or (i386_operand_type x, i386_operand_type y)
2020 {
2021 gas_assert (x.bitfield.class == ClassNone ||
2022 y.bitfield.class == ClassNone ||
2023 x.bitfield.class == y.bitfield.class);
2024 gas_assert (x.bitfield.instance == InstanceNone ||
2025 y.bitfield.instance == InstanceNone ||
2026 x.bitfield.instance == y.bitfield.instance);
2027
2028 switch (ARRAY_SIZE (x.array))
2029 {
2030 case 3:
2031 x.array [2] |= y.array [2];
2032 /* Fall through. */
2033 case 2:
2034 x.array [1] |= y.array [1];
2035 /* Fall through. */
2036 case 1:
2037 x.array [0] |= y.array [0];
2038 break;
2039 default:
2040 abort ();
2041 }
2042 return x;
2043 }
2044
2045 static INLINE i386_operand_type
2046 operand_type_xor (i386_operand_type x, i386_operand_type y)
2047 {
2048 gas_assert (y.bitfield.class == ClassNone);
2049 gas_assert (y.bitfield.instance == InstanceNone);
2050
2051 switch (ARRAY_SIZE (x.array))
2052 {
2053 case 3:
2054 x.array [2] ^= y.array [2];
2055 /* Fall through. */
2056 case 2:
2057 x.array [1] ^= y.array [1];
2058 /* Fall through. */
2059 case 1:
2060 x.array [0] ^= y.array [0];
2061 break;
2062 default:
2063 abort ();
2064 }
2065 return x;
2066 }
2067
2068 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2069 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2070 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2071 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
2072 static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2073 static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
2074 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
2075 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
2076 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2077 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2078 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2079 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2080 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2081 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2082 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2083 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2084 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2085
2086 enum operand_type
2087 {
2088 reg,
2089 imm,
2090 disp,
2091 anymem
2092 };
2093
2094 static INLINE int
2095 operand_type_check (i386_operand_type t, enum operand_type c)
2096 {
2097 switch (c)
2098 {
2099 case reg:
2100 return t.bitfield.class == Reg;
2101
2102 case imm:
2103 return (t.bitfield.imm8
2104 || t.bitfield.imm8s
2105 || t.bitfield.imm16
2106 || t.bitfield.imm32
2107 || t.bitfield.imm32s
2108 || t.bitfield.imm64);
2109
2110 case disp:
2111 return (t.bitfield.disp8
2112 || t.bitfield.disp16
2113 || t.bitfield.disp32
2114 || t.bitfield.disp32s
2115 || t.bitfield.disp64);
2116
2117 case anymem:
2118 return (t.bitfield.disp8
2119 || t.bitfield.disp16
2120 || t.bitfield.disp32
2121 || t.bitfield.disp32s
2122 || t.bitfield.disp64
2123 || t.bitfield.baseindex);
2124
2125 default:
2126 abort ();
2127 }
2128
2129 return 0;
2130 }
2131
2132 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2133 between operand GIVEN and opeand WANTED for instruction template T. */
2134
2135 static INLINE int
2136 match_operand_size (const insn_template *t, unsigned int wanted,
2137 unsigned int given)
2138 {
2139 return !((i.types[given].bitfield.byte
2140 && !t->operand_types[wanted].bitfield.byte)
2141 || (i.types[given].bitfield.word
2142 && !t->operand_types[wanted].bitfield.word)
2143 || (i.types[given].bitfield.dword
2144 && !t->operand_types[wanted].bitfield.dword)
2145 || (i.types[given].bitfield.qword
2146 && !t->operand_types[wanted].bitfield.qword)
2147 || (i.types[given].bitfield.tbyte
2148 && !t->operand_types[wanted].bitfield.tbyte));
2149 }
2150
2151 /* Return 1 if there is no conflict in SIMD register between operand
2152 GIVEN and opeand WANTED for instruction template T. */
2153
2154 static INLINE int
2155 match_simd_size (const insn_template *t, unsigned int wanted,
2156 unsigned int given)
2157 {
2158 return !((i.types[given].bitfield.xmmword
2159 && !t->operand_types[wanted].bitfield.xmmword)
2160 || (i.types[given].bitfield.ymmword
2161 && !t->operand_types[wanted].bitfield.ymmword)
2162 || (i.types[given].bitfield.zmmword
2163 && !t->operand_types[wanted].bitfield.zmmword));
2164 }
2165
2166 /* Return 1 if there is no conflict in any size between operand GIVEN
2167 and opeand WANTED for instruction template T. */
2168
2169 static INLINE int
2170 match_mem_size (const insn_template *t, unsigned int wanted,
2171 unsigned int given)
2172 {
2173 return (match_operand_size (t, wanted, given)
2174 && !((i.types[given].bitfield.unspecified
2175 && !i.broadcast
2176 && !t->operand_types[wanted].bitfield.unspecified)
2177 || (i.types[given].bitfield.fword
2178 && !t->operand_types[wanted].bitfield.fword)
2179 /* For scalar opcode templates to allow register and memory
2180 operands at the same time, some special casing is needed
2181 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2182 down-conversion vpmov*. */
2183 || ((t->operand_types[wanted].bitfield.class == RegSIMD
2184 && t->operand_types[wanted].bitfield.byte
2185 + t->operand_types[wanted].bitfield.word
2186 + t->operand_types[wanted].bitfield.dword
2187 + t->operand_types[wanted].bitfield.qword
2188 > !!t->opcode_modifier.broadcast)
2189 ? (i.types[given].bitfield.xmmword
2190 || i.types[given].bitfield.ymmword
2191 || i.types[given].bitfield.zmmword)
2192 : !match_simd_size(t, wanted, given))));
2193 }
2194
2195 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2196 operands for instruction template T, and it has MATCH_REVERSE set if there
2197 is no size conflict on any operands for the template with operands reversed
2198 (and the template allows for reversing in the first place). */
2199
2200 #define MATCH_STRAIGHT 1
2201 #define MATCH_REVERSE 2
2202
2203 static INLINE unsigned int
2204 operand_size_match (const insn_template *t)
2205 {
2206 unsigned int j, match = MATCH_STRAIGHT;
2207
2208 /* Don't check non-absolute jump instructions. */
2209 if (t->opcode_modifier.jump
2210 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
2211 return match;
2212
2213 /* Check memory and accumulator operand size. */
2214 for (j = 0; j < i.operands; j++)
2215 {
2216 if (i.types[j].bitfield.class != Reg
2217 && i.types[j].bitfield.class != RegSIMD
2218 && t->opcode_modifier.anysize)
2219 continue;
2220
2221 if (t->operand_types[j].bitfield.class == Reg
2222 && !match_operand_size (t, j, j))
2223 {
2224 match = 0;
2225 break;
2226 }
2227
2228 if (t->operand_types[j].bitfield.class == RegSIMD
2229 && !match_simd_size (t, j, j))
2230 {
2231 match = 0;
2232 break;
2233 }
2234
2235 if (t->operand_types[j].bitfield.instance == Accum
2236 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2237 {
2238 match = 0;
2239 break;
2240 }
2241
2242 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2243 {
2244 match = 0;
2245 break;
2246 }
2247 }
2248
2249 if (!t->opcode_modifier.d)
2250 {
2251 mismatch:
2252 if (!match)
2253 i.error = operand_size_mismatch;
2254 return match;
2255 }
2256
2257 /* Check reverse. */
2258 gas_assert (i.operands >= 2 && i.operands <= 3);
2259
2260 for (j = 0; j < i.operands; j++)
2261 {
2262 unsigned int given = i.operands - j - 1;
2263
2264 if (t->operand_types[j].bitfield.class == Reg
2265 && !match_operand_size (t, j, given))
2266 goto mismatch;
2267
2268 if (t->operand_types[j].bitfield.class == RegSIMD
2269 && !match_simd_size (t, j, given))
2270 goto mismatch;
2271
2272 if (t->operand_types[j].bitfield.instance == Accum
2273 && (!match_operand_size (t, j, given)
2274 || !match_simd_size (t, j, given)))
2275 goto mismatch;
2276
2277 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2278 goto mismatch;
2279 }
2280
2281 return match | MATCH_REVERSE;
2282 }
2283
2284 static INLINE int
2285 operand_type_match (i386_operand_type overlap,
2286 i386_operand_type given)
2287 {
2288 i386_operand_type temp = overlap;
2289
2290 temp.bitfield.unspecified = 0;
2291 temp.bitfield.byte = 0;
2292 temp.bitfield.word = 0;
2293 temp.bitfield.dword = 0;
2294 temp.bitfield.fword = 0;
2295 temp.bitfield.qword = 0;
2296 temp.bitfield.tbyte = 0;
2297 temp.bitfield.xmmword = 0;
2298 temp.bitfield.ymmword = 0;
2299 temp.bitfield.zmmword = 0;
2300 if (operand_type_all_zero (&temp))
2301 goto mismatch;
2302
2303 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
2304 return 1;
2305
2306 mismatch:
2307 i.error = operand_type_mismatch;
2308 return 0;
2309 }
2310
2311 /* If given types g0 and g1 are registers they must be of the same type
2312 unless the expected operand type register overlap is null.
2313 Some Intel syntax memory operand size checking also happens here. */
2314
2315 static INLINE int
2316 operand_type_register_match (i386_operand_type g0,
2317 i386_operand_type t0,
2318 i386_operand_type g1,
2319 i386_operand_type t1)
2320 {
2321 if (g0.bitfield.class != Reg
2322 && g0.bitfield.class != RegSIMD
2323 && (!operand_type_check (g0, anymem)
2324 || g0.bitfield.unspecified
2325 || (t0.bitfield.class != Reg
2326 && t0.bitfield.class != RegSIMD)))
2327 return 1;
2328
2329 if (g1.bitfield.class != Reg
2330 && g1.bitfield.class != RegSIMD
2331 && (!operand_type_check (g1, anymem)
2332 || g1.bitfield.unspecified
2333 || (t1.bitfield.class != Reg
2334 && t1.bitfield.class != RegSIMD)))
2335 return 1;
2336
2337 if (g0.bitfield.byte == g1.bitfield.byte
2338 && g0.bitfield.word == g1.bitfield.word
2339 && g0.bitfield.dword == g1.bitfield.dword
2340 && g0.bitfield.qword == g1.bitfield.qword
2341 && g0.bitfield.xmmword == g1.bitfield.xmmword
2342 && g0.bitfield.ymmword == g1.bitfield.ymmword
2343 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2344 return 1;
2345
2346 if (!(t0.bitfield.byte & t1.bitfield.byte)
2347 && !(t0.bitfield.word & t1.bitfield.word)
2348 && !(t0.bitfield.dword & t1.bitfield.dword)
2349 && !(t0.bitfield.qword & t1.bitfield.qword)
2350 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2351 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2352 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2353 return 1;
2354
2355 i.error = register_type_mismatch;
2356
2357 return 0;
2358 }
2359
2360 static INLINE unsigned int
2361 register_number (const reg_entry *r)
2362 {
2363 unsigned int nr = r->reg_num;
2364
2365 if (r->reg_flags & RegRex)
2366 nr += 8;
2367
2368 if (r->reg_flags & RegVRex)
2369 nr += 16;
2370
2371 return nr;
2372 }
2373
2374 static INLINE unsigned int
2375 mode_from_disp_size (i386_operand_type t)
2376 {
2377 if (t.bitfield.disp8)
2378 return 1;
2379 else if (t.bitfield.disp16
2380 || t.bitfield.disp32
2381 || t.bitfield.disp32s)
2382 return 2;
2383 else
2384 return 0;
2385 }
2386
2387 static INLINE int
2388 fits_in_signed_byte (addressT num)
2389 {
2390 return num + 0x80 <= 0xff;
2391 }
2392
2393 static INLINE int
2394 fits_in_unsigned_byte (addressT num)
2395 {
2396 return num <= 0xff;
2397 }
2398
2399 static INLINE int
2400 fits_in_unsigned_word (addressT num)
2401 {
2402 return num <= 0xffff;
2403 }
2404
2405 static INLINE int
2406 fits_in_signed_word (addressT num)
2407 {
2408 return num + 0x8000 <= 0xffff;
2409 }
2410
2411 static INLINE int
2412 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2413 {
2414 #ifndef BFD64
2415 return 1;
2416 #else
2417 return num + 0x80000000 <= 0xffffffff;
2418 #endif
2419 } /* fits_in_signed_long() */
2420
2421 static INLINE int
2422 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2423 {
2424 #ifndef BFD64
2425 return 1;
2426 #else
2427 return num <= 0xffffffff;
2428 #endif
2429 } /* fits_in_unsigned_long() */
2430
2431 static INLINE int
2432 fits_in_disp8 (offsetT num)
2433 {
2434 int shift = i.memshift;
2435 unsigned int mask;
2436
2437 if (shift == -1)
2438 abort ();
2439
2440 mask = (1 << shift) - 1;
2441
2442 /* Return 0 if NUM isn't properly aligned. */
2443 if ((num & mask))
2444 return 0;
2445
2446 /* Check if NUM will fit in 8bit after shift. */
2447 return fits_in_signed_byte (num >> shift);
2448 }
2449
2450 static INLINE int
2451 fits_in_imm4 (offsetT num)
2452 {
2453 return (num & 0xf) == num;
2454 }
2455
2456 static i386_operand_type
2457 smallest_imm_type (offsetT num)
2458 {
2459 i386_operand_type t;
2460
2461 operand_type_set (&t, 0);
2462 t.bitfield.imm64 = 1;
2463
2464 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2465 {
2466 /* This code is disabled on the 486 because all the Imm1 forms
2467 in the opcode table are slower on the i486. They're the
2468 versions with the implicitly specified single-position
2469 displacement, which has another syntax if you really want to
2470 use that form. */
2471 t.bitfield.imm1 = 1;
2472 t.bitfield.imm8 = 1;
2473 t.bitfield.imm8s = 1;
2474 t.bitfield.imm16 = 1;
2475 t.bitfield.imm32 = 1;
2476 t.bitfield.imm32s = 1;
2477 }
2478 else if (fits_in_signed_byte (num))
2479 {
2480 t.bitfield.imm8 = 1;
2481 t.bitfield.imm8s = 1;
2482 t.bitfield.imm16 = 1;
2483 t.bitfield.imm32 = 1;
2484 t.bitfield.imm32s = 1;
2485 }
2486 else if (fits_in_unsigned_byte (num))
2487 {
2488 t.bitfield.imm8 = 1;
2489 t.bitfield.imm16 = 1;
2490 t.bitfield.imm32 = 1;
2491 t.bitfield.imm32s = 1;
2492 }
2493 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2494 {
2495 t.bitfield.imm16 = 1;
2496 t.bitfield.imm32 = 1;
2497 t.bitfield.imm32s = 1;
2498 }
2499 else if (fits_in_signed_long (num))
2500 {
2501 t.bitfield.imm32 = 1;
2502 t.bitfield.imm32s = 1;
2503 }
2504 else if (fits_in_unsigned_long (num))
2505 t.bitfield.imm32 = 1;
2506
2507 return t;
2508 }
2509
2510 static offsetT
2511 offset_in_range (offsetT val, int size)
2512 {
2513 addressT mask;
2514
2515 switch (size)
2516 {
2517 case 1: mask = ((addressT) 1 << 8) - 1; break;
2518 case 2: mask = ((addressT) 1 << 16) - 1; break;
2519 case 4: mask = ((addressT) 2 << 31) - 1; break;
2520 #ifdef BFD64
2521 case 8: mask = ((addressT) 2 << 63) - 1; break;
2522 #endif
2523 default: abort ();
2524 }
2525
2526 #ifdef BFD64
2527 /* If BFD64, sign extend val for 32bit address mode. */
2528 if (flag_code != CODE_64BIT
2529 || i.prefix[ADDR_PREFIX])
2530 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2531 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2532 #endif
2533
2534 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2535 {
2536 char buf1[40], buf2[40];
2537
2538 sprint_value (buf1, val);
2539 sprint_value (buf2, val & mask);
2540 as_warn (_("%s shortened to %s"), buf1, buf2);
2541 }
2542 return val & mask;
2543 }
2544
2545 enum PREFIX_GROUP
2546 {
2547 PREFIX_EXIST = 0,
2548 PREFIX_LOCK,
2549 PREFIX_REP,
2550 PREFIX_DS,
2551 PREFIX_OTHER
2552 };
2553
2554 /* Returns
2555 a. PREFIX_EXIST if attempting to add a prefix where one from the
2556 same class already exists.
2557 b. PREFIX_LOCK if lock prefix is added.
2558 c. PREFIX_REP if rep/repne prefix is added.
2559 d. PREFIX_DS if ds prefix is added.
2560 e. PREFIX_OTHER if other prefix is added.
2561 */
2562
2563 static enum PREFIX_GROUP
2564 add_prefix (unsigned int prefix)
2565 {
2566 enum PREFIX_GROUP ret = PREFIX_OTHER;
2567 unsigned int q;
2568
2569 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2570 && flag_code == CODE_64BIT)
2571 {
2572 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2573 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2574 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2575 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2576 ret = PREFIX_EXIST;
2577 q = REX_PREFIX;
2578 }
2579 else
2580 {
2581 switch (prefix)
2582 {
2583 default:
2584 abort ();
2585
2586 case DS_PREFIX_OPCODE:
2587 ret = PREFIX_DS;
2588 /* Fall through. */
2589 case CS_PREFIX_OPCODE:
2590 case ES_PREFIX_OPCODE:
2591 case FS_PREFIX_OPCODE:
2592 case GS_PREFIX_OPCODE:
2593 case SS_PREFIX_OPCODE:
2594 q = SEG_PREFIX;
2595 break;
2596
2597 case REPNE_PREFIX_OPCODE:
2598 case REPE_PREFIX_OPCODE:
2599 q = REP_PREFIX;
2600 ret = PREFIX_REP;
2601 break;
2602
2603 case LOCK_PREFIX_OPCODE:
2604 q = LOCK_PREFIX;
2605 ret = PREFIX_LOCK;
2606 break;
2607
2608 case FWAIT_OPCODE:
2609 q = WAIT_PREFIX;
2610 break;
2611
2612 case ADDR_PREFIX_OPCODE:
2613 q = ADDR_PREFIX;
2614 break;
2615
2616 case DATA_PREFIX_OPCODE:
2617 q = DATA_PREFIX;
2618 break;
2619 }
2620 if (i.prefix[q] != 0)
2621 ret = PREFIX_EXIST;
2622 }
2623
2624 if (ret)
2625 {
2626 if (!i.prefix[q])
2627 ++i.prefixes;
2628 i.prefix[q] |= prefix;
2629 }
2630 else
2631 as_bad (_("same type of prefix used twice"));
2632
2633 return ret;
2634 }
2635
2636 static void
2637 update_code_flag (int value, int check)
2638 {
2639 PRINTF_LIKE ((*as_error));
2640
2641 flag_code = (enum flag_code) value;
2642 if (flag_code == CODE_64BIT)
2643 {
2644 cpu_arch_flags.bitfield.cpu64 = 1;
2645 cpu_arch_flags.bitfield.cpuno64 = 0;
2646 }
2647 else
2648 {
2649 cpu_arch_flags.bitfield.cpu64 = 0;
2650 cpu_arch_flags.bitfield.cpuno64 = 1;
2651 }
2652 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2653 {
2654 if (check)
2655 as_error = as_fatal;
2656 else
2657 as_error = as_bad;
2658 (*as_error) (_("64bit mode not supported on `%s'."),
2659 cpu_arch_name ? cpu_arch_name : default_arch);
2660 }
2661 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2662 {
2663 if (check)
2664 as_error = as_fatal;
2665 else
2666 as_error = as_bad;
2667 (*as_error) (_("32bit mode not supported on `%s'."),
2668 cpu_arch_name ? cpu_arch_name : default_arch);
2669 }
2670 stackop_size = '\0';
2671 }
2672
2673 static void
2674 set_code_flag (int value)
2675 {
2676 update_code_flag (value, 0);
2677 }
2678
2679 static void
2680 set_16bit_gcc_code_flag (int new_code_flag)
2681 {
2682 flag_code = (enum flag_code) new_code_flag;
2683 if (flag_code != CODE_16BIT)
2684 abort ();
2685 cpu_arch_flags.bitfield.cpu64 = 0;
2686 cpu_arch_flags.bitfield.cpuno64 = 1;
2687 stackop_size = LONG_MNEM_SUFFIX;
2688 }
2689
2690 static void
2691 set_intel_syntax (int syntax_flag)
2692 {
2693 /* Find out if register prefixing is specified. */
2694 int ask_naked_reg = 0;
2695
2696 SKIP_WHITESPACE ();
2697 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2698 {
2699 char *string;
2700 int e = get_symbol_name (&string);
2701
2702 if (strcmp (string, "prefix") == 0)
2703 ask_naked_reg = 1;
2704 else if (strcmp (string, "noprefix") == 0)
2705 ask_naked_reg = -1;
2706 else
2707 as_bad (_("bad argument to syntax directive."));
2708 (void) restore_line_pointer (e);
2709 }
2710 demand_empty_rest_of_line ();
2711
2712 intel_syntax = syntax_flag;
2713
2714 if (ask_naked_reg == 0)
2715 allow_naked_reg = (intel_syntax
2716 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2717 else
2718 allow_naked_reg = (ask_naked_reg < 0);
2719
2720 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2721
2722 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2723 identifier_chars['$'] = intel_syntax ? '$' : 0;
2724 register_prefix = allow_naked_reg ? "" : "%";
2725 }
2726
2727 static void
2728 set_intel_mnemonic (int mnemonic_flag)
2729 {
2730 intel_mnemonic = mnemonic_flag;
2731 }
2732
2733 static void
2734 set_allow_index_reg (int flag)
2735 {
2736 allow_index_reg = flag;
2737 }
2738
2739 static void
2740 set_check (int what)
2741 {
2742 enum check_kind *kind;
2743 const char *str;
2744
2745 if (what)
2746 {
2747 kind = &operand_check;
2748 str = "operand";
2749 }
2750 else
2751 {
2752 kind = &sse_check;
2753 str = "sse";
2754 }
2755
2756 SKIP_WHITESPACE ();
2757
2758 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2759 {
2760 char *string;
2761 int e = get_symbol_name (&string);
2762
2763 if (strcmp (string, "none") == 0)
2764 *kind = check_none;
2765 else if (strcmp (string, "warning") == 0)
2766 *kind = check_warning;
2767 else if (strcmp (string, "error") == 0)
2768 *kind = check_error;
2769 else
2770 as_bad (_("bad argument to %s_check directive."), str);
2771 (void) restore_line_pointer (e);
2772 }
2773 else
2774 as_bad (_("missing argument for %s_check directive"), str);
2775
2776 demand_empty_rest_of_line ();
2777 }
2778
2779 static void
2780 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2781 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2782 {
2783 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2784 static const char *arch;
2785
2786 /* Intel LIOM is only supported on ELF. */
2787 if (!IS_ELF)
2788 return;
2789
2790 if (!arch)
2791 {
2792 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2793 use default_arch. */
2794 arch = cpu_arch_name;
2795 if (!arch)
2796 arch = default_arch;
2797 }
2798
2799 /* If we are targeting Intel MCU, we must enable it. */
2800 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2801 || new_flag.bitfield.cpuiamcu)
2802 return;
2803
2804 /* If we are targeting Intel L1OM, we must enable it. */
2805 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2806 || new_flag.bitfield.cpul1om)
2807 return;
2808
2809 /* If we are targeting Intel K1OM, we must enable it. */
2810 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2811 || new_flag.bitfield.cpuk1om)
2812 return;
2813
2814 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2815 #endif
2816 }
2817
2818 static void
2819 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2820 {
2821 SKIP_WHITESPACE ();
2822
2823 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2824 {
2825 char *string;
2826 int e = get_symbol_name (&string);
2827 unsigned int j;
2828 i386_cpu_flags flags;
2829
2830 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2831 {
2832 if (strcmp (string, cpu_arch[j].name) == 0)
2833 {
2834 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2835
2836 if (*string != '.')
2837 {
2838 cpu_arch_name = cpu_arch[j].name;
2839 cpu_sub_arch_name = NULL;
2840 cpu_arch_flags = cpu_arch[j].flags;
2841 if (flag_code == CODE_64BIT)
2842 {
2843 cpu_arch_flags.bitfield.cpu64 = 1;
2844 cpu_arch_flags.bitfield.cpuno64 = 0;
2845 }
2846 else
2847 {
2848 cpu_arch_flags.bitfield.cpu64 = 0;
2849 cpu_arch_flags.bitfield.cpuno64 = 1;
2850 }
2851 cpu_arch_isa = cpu_arch[j].type;
2852 cpu_arch_isa_flags = cpu_arch[j].flags;
2853 if (!cpu_arch_tune_set)
2854 {
2855 cpu_arch_tune = cpu_arch_isa;
2856 cpu_arch_tune_flags = cpu_arch_isa_flags;
2857 }
2858 break;
2859 }
2860
2861 flags = cpu_flags_or (cpu_arch_flags,
2862 cpu_arch[j].flags);
2863
2864 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2865 {
2866 if (cpu_sub_arch_name)
2867 {
2868 char *name = cpu_sub_arch_name;
2869 cpu_sub_arch_name = concat (name,
2870 cpu_arch[j].name,
2871 (const char *) NULL);
2872 free (name);
2873 }
2874 else
2875 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2876 cpu_arch_flags = flags;
2877 cpu_arch_isa_flags = flags;
2878 }
2879 else
2880 cpu_arch_isa_flags
2881 = cpu_flags_or (cpu_arch_isa_flags,
2882 cpu_arch[j].flags);
2883 (void) restore_line_pointer (e);
2884 demand_empty_rest_of_line ();
2885 return;
2886 }
2887 }
2888
2889 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2890 {
2891 /* Disable an ISA extension. */
2892 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2893 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2894 {
2895 flags = cpu_flags_and_not (cpu_arch_flags,
2896 cpu_noarch[j].flags);
2897 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2898 {
2899 if (cpu_sub_arch_name)
2900 {
2901 char *name = cpu_sub_arch_name;
2902 cpu_sub_arch_name = concat (name, string,
2903 (const char *) NULL);
2904 free (name);
2905 }
2906 else
2907 cpu_sub_arch_name = xstrdup (string);
2908 cpu_arch_flags = flags;
2909 cpu_arch_isa_flags = flags;
2910 }
2911 (void) restore_line_pointer (e);
2912 demand_empty_rest_of_line ();
2913 return;
2914 }
2915
2916 j = ARRAY_SIZE (cpu_arch);
2917 }
2918
2919 if (j >= ARRAY_SIZE (cpu_arch))
2920 as_bad (_("no such architecture: `%s'"), string);
2921
2922 *input_line_pointer = e;
2923 }
2924 else
2925 as_bad (_("missing cpu architecture"));
2926
2927 no_cond_jump_promotion = 0;
2928 if (*input_line_pointer == ','
2929 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2930 {
2931 char *string;
2932 char e;
2933
2934 ++input_line_pointer;
2935 e = get_symbol_name (&string);
2936
2937 if (strcmp (string, "nojumps") == 0)
2938 no_cond_jump_promotion = 1;
2939 else if (strcmp (string, "jumps") == 0)
2940 ;
2941 else
2942 as_bad (_("no such architecture modifier: `%s'"), string);
2943
2944 (void) restore_line_pointer (e);
2945 }
2946
2947 demand_empty_rest_of_line ();
2948 }
2949
2950 enum bfd_architecture
2951 i386_arch (void)
2952 {
2953 if (cpu_arch_isa == PROCESSOR_L1OM)
2954 {
2955 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2956 || flag_code != CODE_64BIT)
2957 as_fatal (_("Intel L1OM is 64bit ELF only"));
2958 return bfd_arch_l1om;
2959 }
2960 else if (cpu_arch_isa == PROCESSOR_K1OM)
2961 {
2962 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2963 || flag_code != CODE_64BIT)
2964 as_fatal (_("Intel K1OM is 64bit ELF only"));
2965 return bfd_arch_k1om;
2966 }
2967 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2968 {
2969 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2970 || flag_code == CODE_64BIT)
2971 as_fatal (_("Intel MCU is 32bit ELF only"));
2972 return bfd_arch_iamcu;
2973 }
2974 else
2975 return bfd_arch_i386;
2976 }
2977
2978 unsigned long
2979 i386_mach (void)
2980 {
2981 if (!strncmp (default_arch, "x86_64", 6))
2982 {
2983 if (cpu_arch_isa == PROCESSOR_L1OM)
2984 {
2985 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2986 || default_arch[6] != '\0')
2987 as_fatal (_("Intel L1OM is 64bit ELF only"));
2988 return bfd_mach_l1om;
2989 }
2990 else if (cpu_arch_isa == PROCESSOR_K1OM)
2991 {
2992 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2993 || default_arch[6] != '\0')
2994 as_fatal (_("Intel K1OM is 64bit ELF only"));
2995 return bfd_mach_k1om;
2996 }
2997 else if (default_arch[6] == '\0')
2998 return bfd_mach_x86_64;
2999 else
3000 return bfd_mach_x64_32;
3001 }
3002 else if (!strcmp (default_arch, "i386")
3003 || !strcmp (default_arch, "iamcu"))
3004 {
3005 if (cpu_arch_isa == PROCESSOR_IAMCU)
3006 {
3007 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
3008 as_fatal (_("Intel MCU is 32bit ELF only"));
3009 return bfd_mach_i386_iamcu;
3010 }
3011 else
3012 return bfd_mach_i386_i386;
3013 }
3014 else
3015 as_fatal (_("unknown architecture"));
3016 }
3017 \f
3018 void
3019 md_begin (void)
3020 {
3021 const char *hash_err;
3022
3023 /* Support pseudo prefixes like {disp32}. */
3024 lex_type ['{'] = LEX_BEGIN_NAME;
3025
3026 /* Initialize op_hash hash table. */
3027 op_hash = hash_new ();
3028
3029 {
3030 const insn_template *optab;
3031 templates *core_optab;
3032
3033 /* Setup for loop. */
3034 optab = i386_optab;
3035 core_optab = XNEW (templates);
3036 core_optab->start = optab;
3037
3038 while (1)
3039 {
3040 ++optab;
3041 if (optab->name == NULL
3042 || strcmp (optab->name, (optab - 1)->name) != 0)
3043 {
3044 /* different name --> ship out current template list;
3045 add to hash table; & begin anew. */
3046 core_optab->end = optab;
3047 hash_err = hash_insert (op_hash,
3048 (optab - 1)->name,
3049 (void *) core_optab);
3050 if (hash_err)
3051 {
3052 as_fatal (_("can't hash %s: %s"),
3053 (optab - 1)->name,
3054 hash_err);
3055 }
3056 if (optab->name == NULL)
3057 break;
3058 core_optab = XNEW (templates);
3059 core_optab->start = optab;
3060 }
3061 }
3062 }
3063
3064 /* Initialize reg_hash hash table. */
3065 reg_hash = hash_new ();
3066 {
3067 const reg_entry *regtab;
3068 unsigned int regtab_size = i386_regtab_size;
3069
3070 for (regtab = i386_regtab; regtab_size--; regtab++)
3071 {
3072 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
3073 if (hash_err)
3074 as_fatal (_("can't hash %s: %s"),
3075 regtab->reg_name,
3076 hash_err);
3077 }
3078 }
3079
3080 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
3081 {
3082 int c;
3083 char *p;
3084
3085 for (c = 0; c < 256; c++)
3086 {
3087 if (ISDIGIT (c))
3088 {
3089 digit_chars[c] = c;
3090 mnemonic_chars[c] = c;
3091 register_chars[c] = c;
3092 operand_chars[c] = c;
3093 }
3094 else if (ISLOWER (c))
3095 {
3096 mnemonic_chars[c] = c;
3097 register_chars[c] = c;
3098 operand_chars[c] = c;
3099 }
3100 else if (ISUPPER (c))
3101 {
3102 mnemonic_chars[c] = TOLOWER (c);
3103 register_chars[c] = mnemonic_chars[c];
3104 operand_chars[c] = c;
3105 }
3106 else if (c == '{' || c == '}')
3107 {
3108 mnemonic_chars[c] = c;
3109 operand_chars[c] = c;
3110 }
3111
3112 if (ISALPHA (c) || ISDIGIT (c))
3113 identifier_chars[c] = c;
3114 else if (c >= 128)
3115 {
3116 identifier_chars[c] = c;
3117 operand_chars[c] = c;
3118 }
3119 }
3120
3121 #ifdef LEX_AT
3122 identifier_chars['@'] = '@';
3123 #endif
3124 #ifdef LEX_QM
3125 identifier_chars['?'] = '?';
3126 operand_chars['?'] = '?';
3127 #endif
3128 digit_chars['-'] = '-';
3129 mnemonic_chars['_'] = '_';
3130 mnemonic_chars['-'] = '-';
3131 mnemonic_chars['.'] = '.';
3132 identifier_chars['_'] = '_';
3133 identifier_chars['.'] = '.';
3134
3135 for (p = operand_special_chars; *p != '\0'; p++)
3136 operand_chars[(unsigned char) *p] = *p;
3137 }
3138
3139 if (flag_code == CODE_64BIT)
3140 {
3141 #if defined (OBJ_COFF) && defined (TE_PE)
3142 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3143 ? 32 : 16);
3144 #else
3145 x86_dwarf2_return_column = 16;
3146 #endif
3147 x86_cie_data_alignment = -8;
3148 }
3149 else
3150 {
3151 x86_dwarf2_return_column = 8;
3152 x86_cie_data_alignment = -4;
3153 }
3154
3155 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3156 can be turned into BRANCH_PREFIX frag. */
3157 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3158 abort ();
3159 }
3160
3161 void
3162 i386_print_statistics (FILE *file)
3163 {
3164 hash_print_statistics (file, "i386 opcode", op_hash);
3165 hash_print_statistics (file, "i386 register", reg_hash);
3166 }
3167 \f
3168 #ifdef DEBUG386
3169
3170 /* Debugging routines for md_assemble. */
3171 static void pte (insn_template *);
3172 static void pt (i386_operand_type);
3173 static void pe (expressionS *);
3174 static void ps (symbolS *);
3175
3176 static void
3177 pi (const char *line, i386_insn *x)
3178 {
3179 unsigned int j;
3180
3181 fprintf (stdout, "%s: template ", line);
3182 pte (&x->tm);
3183 fprintf (stdout, " address: base %s index %s scale %x\n",
3184 x->base_reg ? x->base_reg->reg_name : "none",
3185 x->index_reg ? x->index_reg->reg_name : "none",
3186 x->log2_scale_factor);
3187 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3188 x->rm.mode, x->rm.reg, x->rm.regmem);
3189 fprintf (stdout, " sib: base %x index %x scale %x\n",
3190 x->sib.base, x->sib.index, x->sib.scale);
3191 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3192 (x->rex & REX_W) != 0,
3193 (x->rex & REX_R) != 0,
3194 (x->rex & REX_X) != 0,
3195 (x->rex & REX_B) != 0);
3196 for (j = 0; j < x->operands; j++)
3197 {
3198 fprintf (stdout, " #%d: ", j + 1);
3199 pt (x->types[j]);
3200 fprintf (stdout, "\n");
3201 if (x->types[j].bitfield.class == Reg
3202 || x->types[j].bitfield.class == RegMMX
3203 || x->types[j].bitfield.class == RegSIMD
3204 || x->types[j].bitfield.class == RegMask
3205 || x->types[j].bitfield.class == SReg
3206 || x->types[j].bitfield.class == RegCR
3207 || x->types[j].bitfield.class == RegDR
3208 || x->types[j].bitfield.class == RegTR
3209 || x->types[j].bitfield.class == RegBND)
3210 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3211 if (operand_type_check (x->types[j], imm))
3212 pe (x->op[j].imms);
3213 if (operand_type_check (x->types[j], disp))
3214 pe (x->op[j].disps);
3215 }
3216 }
3217
3218 static void
3219 pte (insn_template *t)
3220 {
3221 unsigned int j;
3222 fprintf (stdout, " %d operands ", t->operands);
3223 fprintf (stdout, "opcode %x ", t->base_opcode);
3224 if (t->extension_opcode != None)
3225 fprintf (stdout, "ext %x ", t->extension_opcode);
3226 if (t->opcode_modifier.d)
3227 fprintf (stdout, "D");
3228 if (t->opcode_modifier.w)
3229 fprintf (stdout, "W");
3230 fprintf (stdout, "\n");
3231 for (j = 0; j < t->operands; j++)
3232 {
3233 fprintf (stdout, " #%d type ", j + 1);
3234 pt (t->operand_types[j]);
3235 fprintf (stdout, "\n");
3236 }
3237 }
3238
3239 static void
3240 pe (expressionS *e)
3241 {
3242 fprintf (stdout, " operation %d\n", e->X_op);
3243 fprintf (stdout, " add_number %ld (%lx)\n",
3244 (long) e->X_add_number, (long) e->X_add_number);
3245 if (e->X_add_symbol)
3246 {
3247 fprintf (stdout, " add_symbol ");
3248 ps (e->X_add_symbol);
3249 fprintf (stdout, "\n");
3250 }
3251 if (e->X_op_symbol)
3252 {
3253 fprintf (stdout, " op_symbol ");
3254 ps (e->X_op_symbol);
3255 fprintf (stdout, "\n");
3256 }
3257 }
3258
3259 static void
3260 ps (symbolS *s)
3261 {
3262 fprintf (stdout, "%s type %s%s",
3263 S_GET_NAME (s),
3264 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3265 segment_name (S_GET_SEGMENT (s)));
3266 }
3267
3268 static struct type_name
3269 {
3270 i386_operand_type mask;
3271 const char *name;
3272 }
3273 const type_names[] =
3274 {
3275 { OPERAND_TYPE_REG8, "r8" },
3276 { OPERAND_TYPE_REG16, "r16" },
3277 { OPERAND_TYPE_REG32, "r32" },
3278 { OPERAND_TYPE_REG64, "r64" },
3279 { OPERAND_TYPE_ACC8, "acc8" },
3280 { OPERAND_TYPE_ACC16, "acc16" },
3281 { OPERAND_TYPE_ACC32, "acc32" },
3282 { OPERAND_TYPE_ACC64, "acc64" },
3283 { OPERAND_TYPE_IMM8, "i8" },
3284 { OPERAND_TYPE_IMM8, "i8s" },
3285 { OPERAND_TYPE_IMM16, "i16" },
3286 { OPERAND_TYPE_IMM32, "i32" },
3287 { OPERAND_TYPE_IMM32S, "i32s" },
3288 { OPERAND_TYPE_IMM64, "i64" },
3289 { OPERAND_TYPE_IMM1, "i1" },
3290 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3291 { OPERAND_TYPE_DISP8, "d8" },
3292 { OPERAND_TYPE_DISP16, "d16" },
3293 { OPERAND_TYPE_DISP32, "d32" },
3294 { OPERAND_TYPE_DISP32S, "d32s" },
3295 { OPERAND_TYPE_DISP64, "d64" },
3296 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3297 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3298 { OPERAND_TYPE_CONTROL, "control reg" },
3299 { OPERAND_TYPE_TEST, "test reg" },
3300 { OPERAND_TYPE_DEBUG, "debug reg" },
3301 { OPERAND_TYPE_FLOATREG, "FReg" },
3302 { OPERAND_TYPE_FLOATACC, "FAcc" },
3303 { OPERAND_TYPE_SREG, "SReg" },
3304 { OPERAND_TYPE_REGMMX, "rMMX" },
3305 { OPERAND_TYPE_REGXMM, "rXMM" },
3306 { OPERAND_TYPE_REGYMM, "rYMM" },
3307 { OPERAND_TYPE_REGZMM, "rZMM" },
3308 { OPERAND_TYPE_REGMASK, "Mask reg" },
3309 };
3310
3311 static void
3312 pt (i386_operand_type t)
3313 {
3314 unsigned int j;
3315 i386_operand_type a;
3316
3317 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3318 {
3319 a = operand_type_and (t, type_names[j].mask);
3320 if (operand_type_equal (&a, &type_names[j].mask))
3321 fprintf (stdout, "%s, ", type_names[j].name);
3322 }
3323 fflush (stdout);
3324 }
3325
3326 #endif /* DEBUG386 */
3327 \f
3328 static bfd_reloc_code_real_type
3329 reloc (unsigned int size,
3330 int pcrel,
3331 int sign,
3332 bfd_reloc_code_real_type other)
3333 {
3334 if (other != NO_RELOC)
3335 {
3336 reloc_howto_type *rel;
3337
3338 if (size == 8)
3339 switch (other)
3340 {
3341 case BFD_RELOC_X86_64_GOT32:
3342 return BFD_RELOC_X86_64_GOT64;
3343 break;
3344 case BFD_RELOC_X86_64_GOTPLT64:
3345 return BFD_RELOC_X86_64_GOTPLT64;
3346 break;
3347 case BFD_RELOC_X86_64_PLTOFF64:
3348 return BFD_RELOC_X86_64_PLTOFF64;
3349 break;
3350 case BFD_RELOC_X86_64_GOTPC32:
3351 other = BFD_RELOC_X86_64_GOTPC64;
3352 break;
3353 case BFD_RELOC_X86_64_GOTPCREL:
3354 other = BFD_RELOC_X86_64_GOTPCREL64;
3355 break;
3356 case BFD_RELOC_X86_64_TPOFF32:
3357 other = BFD_RELOC_X86_64_TPOFF64;
3358 break;
3359 case BFD_RELOC_X86_64_DTPOFF32:
3360 other = BFD_RELOC_X86_64_DTPOFF64;
3361 break;
3362 default:
3363 break;
3364 }
3365
3366 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3367 if (other == BFD_RELOC_SIZE32)
3368 {
3369 if (size == 8)
3370 other = BFD_RELOC_SIZE64;
3371 if (pcrel)
3372 {
3373 as_bad (_("there are no pc-relative size relocations"));
3374 return NO_RELOC;
3375 }
3376 }
3377 #endif
3378
3379 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3380 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3381 sign = -1;
3382
3383 rel = bfd_reloc_type_lookup (stdoutput, other);
3384 if (!rel)
3385 as_bad (_("unknown relocation (%u)"), other);
3386 else if (size != bfd_get_reloc_size (rel))
3387 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3388 bfd_get_reloc_size (rel),
3389 size);
3390 else if (pcrel && !rel->pc_relative)
3391 as_bad (_("non-pc-relative relocation for pc-relative field"));
3392 else if ((rel->complain_on_overflow == complain_overflow_signed
3393 && !sign)
3394 || (rel->complain_on_overflow == complain_overflow_unsigned
3395 && sign > 0))
3396 as_bad (_("relocated field and relocation type differ in signedness"));
3397 else
3398 return other;
3399 return NO_RELOC;
3400 }
3401
3402 if (pcrel)
3403 {
3404 if (!sign)
3405 as_bad (_("there are no unsigned pc-relative relocations"));
3406 switch (size)
3407 {
3408 case 1: return BFD_RELOC_8_PCREL;
3409 case 2: return BFD_RELOC_16_PCREL;
3410 case 4: return BFD_RELOC_32_PCREL;
3411 case 8: return BFD_RELOC_64_PCREL;
3412 }
3413 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3414 }
3415 else
3416 {
3417 if (sign > 0)
3418 switch (size)
3419 {
3420 case 4: return BFD_RELOC_X86_64_32S;
3421 }
3422 else
3423 switch (size)
3424 {
3425 case 1: return BFD_RELOC_8;
3426 case 2: return BFD_RELOC_16;
3427 case 4: return BFD_RELOC_32;
3428 case 8: return BFD_RELOC_64;
3429 }
3430 as_bad (_("cannot do %s %u byte relocation"),
3431 sign > 0 ? "signed" : "unsigned", size);
3432 }
3433
3434 return NO_RELOC;
3435 }
3436
3437 /* Here we decide which fixups can be adjusted to make them relative to
3438 the beginning of the section instead of the symbol. Basically we need
3439 to make sure that the dynamic relocations are done correctly, so in
3440 some cases we force the original symbol to be used. */
3441
3442 int
3443 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3444 {
3445 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3446 if (!IS_ELF)
3447 return 1;
3448
3449 /* Don't adjust pc-relative references to merge sections in 64-bit
3450 mode. */
3451 if (use_rela_relocations
3452 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3453 && fixP->fx_pcrel)
3454 return 0;
3455
3456 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3457 and changed later by validate_fix. */
3458 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3459 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3460 return 0;
3461
3462 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3463 for size relocations. */
3464 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3465 || fixP->fx_r_type == BFD_RELOC_SIZE64
3466 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3467 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3468 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3469 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3470 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3471 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3472 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3473 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3474 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3475 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3476 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3477 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3478 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3479 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3480 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3481 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3482 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3483 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3484 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3485 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3486 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3487 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3488 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3489 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3490 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3491 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3492 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3493 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3494 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3495 return 0;
3496 #endif
3497 return 1;
3498 }
3499
3500 static int
3501 intel_float_operand (const char *mnemonic)
3502 {
3503 /* Note that the value returned is meaningful only for opcodes with (memory)
3504 operands, hence the code here is free to improperly handle opcodes that
3505 have no operands (for better performance and smaller code). */
3506
3507 if (mnemonic[0] != 'f')
3508 return 0; /* non-math */
3509
3510 switch (mnemonic[1])
3511 {
3512 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3513 the fs segment override prefix not currently handled because no
3514 call path can make opcodes without operands get here */
3515 case 'i':
3516 return 2 /* integer op */;
3517 case 'l':
3518 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3519 return 3; /* fldcw/fldenv */
3520 break;
3521 case 'n':
3522 if (mnemonic[2] != 'o' /* fnop */)
3523 return 3; /* non-waiting control op */
3524 break;
3525 case 'r':
3526 if (mnemonic[2] == 's')
3527 return 3; /* frstor/frstpm */
3528 break;
3529 case 's':
3530 if (mnemonic[2] == 'a')
3531 return 3; /* fsave */
3532 if (mnemonic[2] == 't')
3533 {
3534 switch (mnemonic[3])
3535 {
3536 case 'c': /* fstcw */
3537 case 'd': /* fstdw */
3538 case 'e': /* fstenv */
3539 case 's': /* fsts[gw] */
3540 return 3;
3541 }
3542 }
3543 break;
3544 case 'x':
3545 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3546 return 0; /* fxsave/fxrstor are not really math ops */
3547 break;
3548 }
3549
3550 return 1;
3551 }
3552
3553 /* Build the VEX prefix. */
3554
3555 static void
3556 build_vex_prefix (const insn_template *t)
3557 {
3558 unsigned int register_specifier;
3559 unsigned int implied_prefix;
3560 unsigned int vector_length;
3561 unsigned int w;
3562
3563 /* Check register specifier. */
3564 if (i.vex.register_specifier)
3565 {
3566 register_specifier =
3567 ~register_number (i.vex.register_specifier) & 0xf;
3568 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3569 }
3570 else
3571 register_specifier = 0xf;
3572
3573 /* Use 2-byte VEX prefix by swapping destination and source operand
3574 if there are more than 1 register operand. */
3575 if (i.reg_operands > 1
3576 && i.vec_encoding != vex_encoding_vex3
3577 && i.dir_encoding == dir_encoding_default
3578 && i.operands == i.reg_operands
3579 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3580 && i.tm.opcode_modifier.vexopcode == VEX0F
3581 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3582 && i.rex == REX_B)
3583 {
3584 unsigned int xchg = i.operands - 1;
3585 union i386_op temp_op;
3586 i386_operand_type temp_type;
3587
3588 temp_type = i.types[xchg];
3589 i.types[xchg] = i.types[0];
3590 i.types[0] = temp_type;
3591 temp_op = i.op[xchg];
3592 i.op[xchg] = i.op[0];
3593 i.op[0] = temp_op;
3594
3595 gas_assert (i.rm.mode == 3);
3596
3597 i.rex = REX_R;
3598 xchg = i.rm.regmem;
3599 i.rm.regmem = i.rm.reg;
3600 i.rm.reg = xchg;
3601
3602 if (i.tm.opcode_modifier.d)
3603 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3604 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3605 else /* Use the next insn. */
3606 i.tm = t[1];
3607 }
3608
3609 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3610 are no memory operands and at least 3 register ones. */
3611 if (i.reg_operands >= 3
3612 && i.vec_encoding != vex_encoding_vex3
3613 && i.reg_operands == i.operands - i.imm_operands
3614 && i.tm.opcode_modifier.vex
3615 && i.tm.opcode_modifier.commutative
3616 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3617 && i.rex == REX_B
3618 && i.vex.register_specifier
3619 && !(i.vex.register_specifier->reg_flags & RegRex))
3620 {
3621 unsigned int xchg = i.operands - i.reg_operands;
3622 union i386_op temp_op;
3623 i386_operand_type temp_type;
3624
3625 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3626 gas_assert (!i.tm.opcode_modifier.sae);
3627 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3628 &i.types[i.operands - 3]));
3629 gas_assert (i.rm.mode == 3);
3630
3631 temp_type = i.types[xchg];
3632 i.types[xchg] = i.types[xchg + 1];
3633 i.types[xchg + 1] = temp_type;
3634 temp_op = i.op[xchg];
3635 i.op[xchg] = i.op[xchg + 1];
3636 i.op[xchg + 1] = temp_op;
3637
3638 i.rex = 0;
3639 xchg = i.rm.regmem | 8;
3640 i.rm.regmem = ~register_specifier & 0xf;
3641 gas_assert (!(i.rm.regmem & 8));
3642 i.vex.register_specifier += xchg - i.rm.regmem;
3643 register_specifier = ~xchg & 0xf;
3644 }
3645
3646 if (i.tm.opcode_modifier.vex == VEXScalar)
3647 vector_length = avxscalar;
3648 else if (i.tm.opcode_modifier.vex == VEX256)
3649 vector_length = 1;
3650 else
3651 {
3652 unsigned int op;
3653
3654 /* Determine vector length from the last multi-length vector
3655 operand. */
3656 vector_length = 0;
3657 for (op = t->operands; op--;)
3658 if (t->operand_types[op].bitfield.xmmword
3659 && t->operand_types[op].bitfield.ymmword
3660 && i.types[op].bitfield.ymmword)
3661 {
3662 vector_length = 1;
3663 break;
3664 }
3665 }
3666
3667 switch ((i.tm.base_opcode >> 8) & 0xff)
3668 {
3669 case 0:
3670 implied_prefix = 0;
3671 break;
3672 case DATA_PREFIX_OPCODE:
3673 implied_prefix = 1;
3674 break;
3675 case REPE_PREFIX_OPCODE:
3676 implied_prefix = 2;
3677 break;
3678 case REPNE_PREFIX_OPCODE:
3679 implied_prefix = 3;
3680 break;
3681 default:
3682 abort ();
3683 }
3684
3685 /* Check the REX.W bit and VEXW. */
3686 if (i.tm.opcode_modifier.vexw == VEXWIG)
3687 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3688 else if (i.tm.opcode_modifier.vexw)
3689 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3690 else
3691 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3692
3693 /* Use 2-byte VEX prefix if possible. */
3694 if (w == 0
3695 && i.vec_encoding != vex_encoding_vex3
3696 && i.tm.opcode_modifier.vexopcode == VEX0F
3697 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3698 {
3699 /* 2-byte VEX prefix. */
3700 unsigned int r;
3701
3702 i.vex.length = 2;
3703 i.vex.bytes[0] = 0xc5;
3704
3705 /* Check the REX.R bit. */
3706 r = (i.rex & REX_R) ? 0 : 1;
3707 i.vex.bytes[1] = (r << 7
3708 | register_specifier << 3
3709 | vector_length << 2
3710 | implied_prefix);
3711 }
3712 else
3713 {
3714 /* 3-byte VEX prefix. */
3715 unsigned int m;
3716
3717 i.vex.length = 3;
3718
3719 switch (i.tm.opcode_modifier.vexopcode)
3720 {
3721 case VEX0F:
3722 m = 0x1;
3723 i.vex.bytes[0] = 0xc4;
3724 break;
3725 case VEX0F38:
3726 m = 0x2;
3727 i.vex.bytes[0] = 0xc4;
3728 break;
3729 case VEX0F3A:
3730 m = 0x3;
3731 i.vex.bytes[0] = 0xc4;
3732 break;
3733 case XOP08:
3734 m = 0x8;
3735 i.vex.bytes[0] = 0x8f;
3736 break;
3737 case XOP09:
3738 m = 0x9;
3739 i.vex.bytes[0] = 0x8f;
3740 break;
3741 case XOP0A:
3742 m = 0xa;
3743 i.vex.bytes[0] = 0x8f;
3744 break;
3745 default:
3746 abort ();
3747 }
3748
3749 /* The high 3 bits of the second VEX byte are 1's compliment
3750 of RXB bits from REX. */
3751 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3752
3753 i.vex.bytes[2] = (w << 7
3754 | register_specifier << 3
3755 | vector_length << 2
3756 | implied_prefix);
3757 }
3758 }
3759
3760 static INLINE bfd_boolean
3761 is_evex_encoding (const insn_template *t)
3762 {
3763 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3764 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3765 || t->opcode_modifier.sae;
3766 }
3767
3768 static INLINE bfd_boolean
3769 is_any_vex_encoding (const insn_template *t)
3770 {
3771 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3772 || is_evex_encoding (t);
3773 }
3774
3775 /* Build the EVEX prefix. */
3776
3777 static void
3778 build_evex_prefix (void)
3779 {
3780 unsigned int register_specifier;
3781 unsigned int implied_prefix;
3782 unsigned int m, w;
3783 rex_byte vrex_used = 0;
3784
3785 /* Check register specifier. */
3786 if (i.vex.register_specifier)
3787 {
3788 gas_assert ((i.vrex & REX_X) == 0);
3789
3790 register_specifier = i.vex.register_specifier->reg_num;
3791 if ((i.vex.register_specifier->reg_flags & RegRex))
3792 register_specifier += 8;
3793 /* The upper 16 registers are encoded in the fourth byte of the
3794 EVEX prefix. */
3795 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3796 i.vex.bytes[3] = 0x8;
3797 register_specifier = ~register_specifier & 0xf;
3798 }
3799 else
3800 {
3801 register_specifier = 0xf;
3802
3803 /* Encode upper 16 vector index register in the fourth byte of
3804 the EVEX prefix. */
3805 if (!(i.vrex & REX_X))
3806 i.vex.bytes[3] = 0x8;
3807 else
3808 vrex_used |= REX_X;
3809 }
3810
3811 switch ((i.tm.base_opcode >> 8) & 0xff)
3812 {
3813 case 0:
3814 implied_prefix = 0;
3815 break;
3816 case DATA_PREFIX_OPCODE:
3817 implied_prefix = 1;
3818 break;
3819 case REPE_PREFIX_OPCODE:
3820 implied_prefix = 2;
3821 break;
3822 case REPNE_PREFIX_OPCODE:
3823 implied_prefix = 3;
3824 break;
3825 default:
3826 abort ();
3827 }
3828
3829 /* 4 byte EVEX prefix. */
3830 i.vex.length = 4;
3831 i.vex.bytes[0] = 0x62;
3832
3833 /* mmmm bits. */
3834 switch (i.tm.opcode_modifier.vexopcode)
3835 {
3836 case VEX0F:
3837 m = 1;
3838 break;
3839 case VEX0F38:
3840 m = 2;
3841 break;
3842 case VEX0F3A:
3843 m = 3;
3844 break;
3845 default:
3846 abort ();
3847 break;
3848 }
3849
3850 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3851 bits from REX. */
3852 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3853
3854 /* The fifth bit of the second EVEX byte is 1's compliment of the
3855 REX_R bit in VREX. */
3856 if (!(i.vrex & REX_R))
3857 i.vex.bytes[1] |= 0x10;
3858 else
3859 vrex_used |= REX_R;
3860
3861 if ((i.reg_operands + i.imm_operands) == i.operands)
3862 {
3863 /* When all operands are registers, the REX_X bit in REX is not
3864 used. We reuse it to encode the upper 16 registers, which is
3865 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3866 as 1's compliment. */
3867 if ((i.vrex & REX_B))
3868 {
3869 vrex_used |= REX_B;
3870 i.vex.bytes[1] &= ~0x40;
3871 }
3872 }
3873
3874 /* EVEX instructions shouldn't need the REX prefix. */
3875 i.vrex &= ~vrex_used;
3876 gas_assert (i.vrex == 0);
3877
3878 /* Check the REX.W bit and VEXW. */
3879 if (i.tm.opcode_modifier.vexw == VEXWIG)
3880 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3881 else if (i.tm.opcode_modifier.vexw)
3882 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3883 else
3884 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3885
3886 /* Encode the U bit. */
3887 implied_prefix |= 0x4;
3888
3889 /* The third byte of the EVEX prefix. */
3890 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3891
3892 /* The fourth byte of the EVEX prefix. */
3893 /* The zeroing-masking bit. */
3894 if (i.mask && i.mask->zeroing)
3895 i.vex.bytes[3] |= 0x80;
3896
3897 /* Don't always set the broadcast bit if there is no RC. */
3898 if (!i.rounding)
3899 {
3900 /* Encode the vector length. */
3901 unsigned int vec_length;
3902
3903 if (!i.tm.opcode_modifier.evex
3904 || i.tm.opcode_modifier.evex == EVEXDYN)
3905 {
3906 unsigned int op;
3907
3908 /* Determine vector length from the last multi-length vector
3909 operand. */
3910 for (op = i.operands; op--;)
3911 if (i.tm.operand_types[op].bitfield.xmmword
3912 + i.tm.operand_types[op].bitfield.ymmword
3913 + i.tm.operand_types[op].bitfield.zmmword > 1)
3914 {
3915 if (i.types[op].bitfield.zmmword)
3916 {
3917 i.tm.opcode_modifier.evex = EVEX512;
3918 break;
3919 }
3920 else if (i.types[op].bitfield.ymmword)
3921 {
3922 i.tm.opcode_modifier.evex = EVEX256;
3923 break;
3924 }
3925 else if (i.types[op].bitfield.xmmword)
3926 {
3927 i.tm.opcode_modifier.evex = EVEX128;
3928 break;
3929 }
3930 else if (i.broadcast && (int) op == i.broadcast->operand)
3931 {
3932 switch (i.broadcast->bytes)
3933 {
3934 case 64:
3935 i.tm.opcode_modifier.evex = EVEX512;
3936 break;
3937 case 32:
3938 i.tm.opcode_modifier.evex = EVEX256;
3939 break;
3940 case 16:
3941 i.tm.opcode_modifier.evex = EVEX128;
3942 break;
3943 default:
3944 abort ();
3945 }
3946 break;
3947 }
3948 }
3949
3950 if (op >= MAX_OPERANDS)
3951 abort ();
3952 }
3953
3954 switch (i.tm.opcode_modifier.evex)
3955 {
3956 case EVEXLIG: /* LL' is ignored */
3957 vec_length = evexlig << 5;
3958 break;
3959 case EVEX128:
3960 vec_length = 0 << 5;
3961 break;
3962 case EVEX256:
3963 vec_length = 1 << 5;
3964 break;
3965 case EVEX512:
3966 vec_length = 2 << 5;
3967 break;
3968 default:
3969 abort ();
3970 break;
3971 }
3972 i.vex.bytes[3] |= vec_length;
3973 /* Encode the broadcast bit. */
3974 if (i.broadcast)
3975 i.vex.bytes[3] |= 0x10;
3976 }
3977 else
3978 {
3979 if (i.rounding->type != saeonly)
3980 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3981 else
3982 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3983 }
3984
3985 if (i.mask && i.mask->mask)
3986 i.vex.bytes[3] |= i.mask->mask->reg_num;
3987 }
3988
3989 static void
3990 process_immext (void)
3991 {
3992 expressionS *exp;
3993
3994 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3995 which is coded in the same place as an 8-bit immediate field
3996 would be. Here we fake an 8-bit immediate operand from the
3997 opcode suffix stored in tm.extension_opcode.
3998
3999 AVX instructions also use this encoding, for some of
4000 3 argument instructions. */
4001
4002 gas_assert (i.imm_operands <= 1
4003 && (i.operands <= 2
4004 || (is_any_vex_encoding (&i.tm)
4005 && i.operands <= 4)));
4006
4007 exp = &im_expressions[i.imm_operands++];
4008 i.op[i.operands].imms = exp;
4009 i.types[i.operands] = imm8;
4010 i.operands++;
4011 exp->X_op = O_constant;
4012 exp->X_add_number = i.tm.extension_opcode;
4013 i.tm.extension_opcode = None;
4014 }
4015
4016
4017 static int
4018 check_hle (void)
4019 {
4020 switch (i.tm.opcode_modifier.hleprefixok)
4021 {
4022 default:
4023 abort ();
4024 case HLEPrefixNone:
4025 as_bad (_("invalid instruction `%s' after `%s'"),
4026 i.tm.name, i.hle_prefix);
4027 return 0;
4028 case HLEPrefixLock:
4029 if (i.prefix[LOCK_PREFIX])
4030 return 1;
4031 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
4032 return 0;
4033 case HLEPrefixAny:
4034 return 1;
4035 case HLEPrefixRelease:
4036 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
4037 {
4038 as_bad (_("instruction `%s' after `xacquire' not allowed"),
4039 i.tm.name);
4040 return 0;
4041 }
4042 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
4043 {
4044 as_bad (_("memory destination needed for instruction `%s'"
4045 " after `xrelease'"), i.tm.name);
4046 return 0;
4047 }
4048 return 1;
4049 }
4050 }
4051
4052 /* Try the shortest encoding by shortening operand size. */
4053
4054 static void
4055 optimize_encoding (void)
4056 {
4057 unsigned int j;
4058
4059 if (optimize_for_space
4060 && !is_any_vex_encoding (&i.tm)
4061 && i.reg_operands == 1
4062 && i.imm_operands == 1
4063 && !i.types[1].bitfield.byte
4064 && i.op[0].imms->X_op == O_constant
4065 && fits_in_imm7 (i.op[0].imms->X_add_number)
4066 && (i.tm.base_opcode == 0xa8
4067 || (i.tm.base_opcode == 0xf6
4068 && i.tm.extension_opcode == 0x0)))
4069 {
4070 /* Optimize: -Os:
4071 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4072 */
4073 unsigned int base_regnum = i.op[1].regs->reg_num;
4074 if (flag_code == CODE_64BIT || base_regnum < 4)
4075 {
4076 i.types[1].bitfield.byte = 1;
4077 /* Ignore the suffix. */
4078 i.suffix = 0;
4079 /* Convert to byte registers. */
4080 if (i.types[1].bitfield.word)
4081 j = 16;
4082 else if (i.types[1].bitfield.dword)
4083 j = 32;
4084 else
4085 j = 48;
4086 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4087 j += 8;
4088 i.op[1].regs -= j;
4089 }
4090 }
4091 else if (flag_code == CODE_64BIT
4092 && !is_any_vex_encoding (&i.tm)
4093 && ((i.types[1].bitfield.qword
4094 && i.reg_operands == 1
4095 && i.imm_operands == 1
4096 && i.op[0].imms->X_op == O_constant
4097 && ((i.tm.base_opcode == 0xb8
4098 && i.tm.extension_opcode == None
4099 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4100 || (fits_in_imm31 (i.op[0].imms->X_add_number)
4101 && ((i.tm.base_opcode == 0x24
4102 || i.tm.base_opcode == 0xa8)
4103 || (i.tm.base_opcode == 0x80
4104 && i.tm.extension_opcode == 0x4)
4105 || ((i.tm.base_opcode == 0xf6
4106 || (i.tm.base_opcode | 1) == 0xc7)
4107 && i.tm.extension_opcode == 0x0)))
4108 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4109 && i.tm.base_opcode == 0x83
4110 && i.tm.extension_opcode == 0x4)))
4111 || (i.types[0].bitfield.qword
4112 && ((i.reg_operands == 2
4113 && i.op[0].regs == i.op[1].regs
4114 && (i.tm.base_opcode == 0x30
4115 || i.tm.base_opcode == 0x28))
4116 || (i.reg_operands == 1
4117 && i.operands == 1
4118 && i.tm.base_opcode == 0x30)))))
4119 {
4120 /* Optimize: -O:
4121 andq $imm31, %r64 -> andl $imm31, %r32
4122 andq $imm7, %r64 -> andl $imm7, %r32
4123 testq $imm31, %r64 -> testl $imm31, %r32
4124 xorq %r64, %r64 -> xorl %r32, %r32
4125 subq %r64, %r64 -> subl %r32, %r32
4126 movq $imm31, %r64 -> movl $imm31, %r32
4127 movq $imm32, %r64 -> movl $imm32, %r32
4128 */
4129 i.tm.opcode_modifier.norex64 = 1;
4130 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
4131 {
4132 /* Handle
4133 movq $imm31, %r64 -> movl $imm31, %r32
4134 movq $imm32, %r64 -> movl $imm32, %r32
4135 */
4136 i.tm.operand_types[0].bitfield.imm32 = 1;
4137 i.tm.operand_types[0].bitfield.imm32s = 0;
4138 i.tm.operand_types[0].bitfield.imm64 = 0;
4139 i.types[0].bitfield.imm32 = 1;
4140 i.types[0].bitfield.imm32s = 0;
4141 i.types[0].bitfield.imm64 = 0;
4142 i.types[1].bitfield.dword = 1;
4143 i.types[1].bitfield.qword = 0;
4144 if ((i.tm.base_opcode | 1) == 0xc7)
4145 {
4146 /* Handle
4147 movq $imm31, %r64 -> movl $imm31, %r32
4148 */
4149 i.tm.base_opcode = 0xb8;
4150 i.tm.extension_opcode = None;
4151 i.tm.opcode_modifier.w = 0;
4152 i.tm.opcode_modifier.modrm = 0;
4153 }
4154 }
4155 }
4156 else if (optimize > 1
4157 && !optimize_for_space
4158 && !is_any_vex_encoding (&i.tm)
4159 && i.reg_operands == 2
4160 && i.op[0].regs == i.op[1].regs
4161 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4162 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4163 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4164 {
4165 /* Optimize: -O2:
4166 andb %rN, %rN -> testb %rN, %rN
4167 andw %rN, %rN -> testw %rN, %rN
4168 andq %rN, %rN -> testq %rN, %rN
4169 orb %rN, %rN -> testb %rN, %rN
4170 orw %rN, %rN -> testw %rN, %rN
4171 orq %rN, %rN -> testq %rN, %rN
4172
4173 and outside of 64-bit mode
4174
4175 andl %rN, %rN -> testl %rN, %rN
4176 orl %rN, %rN -> testl %rN, %rN
4177 */
4178 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4179 }
4180 else if (i.reg_operands == 3
4181 && i.op[0].regs == i.op[1].regs
4182 && !i.types[2].bitfield.xmmword
4183 && (i.tm.opcode_modifier.vex
4184 || ((!i.mask || i.mask->zeroing)
4185 && !i.rounding
4186 && is_evex_encoding (&i.tm)
4187 && (i.vec_encoding != vex_encoding_evex
4188 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4189 || i.tm.cpu_flags.bitfield.cpuavx512vl
4190 || (i.tm.operand_types[2].bitfield.zmmword
4191 && i.types[2].bitfield.ymmword))))
4192 && ((i.tm.base_opcode == 0x55
4193 || i.tm.base_opcode == 0x6655
4194 || i.tm.base_opcode == 0x66df
4195 || i.tm.base_opcode == 0x57
4196 || i.tm.base_opcode == 0x6657
4197 || i.tm.base_opcode == 0x66ef
4198 || i.tm.base_opcode == 0x66f8
4199 || i.tm.base_opcode == 0x66f9
4200 || i.tm.base_opcode == 0x66fa
4201 || i.tm.base_opcode == 0x66fb
4202 || i.tm.base_opcode == 0x42
4203 || i.tm.base_opcode == 0x6642
4204 || i.tm.base_opcode == 0x47
4205 || i.tm.base_opcode == 0x6647)
4206 && i.tm.extension_opcode == None))
4207 {
4208 /* Optimize: -O1:
4209 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4210 vpsubq and vpsubw:
4211 EVEX VOP %zmmM, %zmmM, %zmmN
4212 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4213 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4214 EVEX VOP %ymmM, %ymmM, %ymmN
4215 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4216 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4217 VEX VOP %ymmM, %ymmM, %ymmN
4218 -> VEX VOP %xmmM, %xmmM, %xmmN
4219 VOP, one of vpandn and vpxor:
4220 VEX VOP %ymmM, %ymmM, %ymmN
4221 -> VEX VOP %xmmM, %xmmM, %xmmN
4222 VOP, one of vpandnd and vpandnq:
4223 EVEX VOP %zmmM, %zmmM, %zmmN
4224 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4225 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4226 EVEX VOP %ymmM, %ymmM, %ymmN
4227 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4228 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4229 VOP, one of vpxord and vpxorq:
4230 EVEX VOP %zmmM, %zmmM, %zmmN
4231 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4232 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4233 EVEX VOP %ymmM, %ymmM, %ymmN
4234 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4235 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4236 VOP, one of kxord and kxorq:
4237 VEX VOP %kM, %kM, %kN
4238 -> VEX kxorw %kM, %kM, %kN
4239 VOP, one of kandnd and kandnq:
4240 VEX VOP %kM, %kM, %kN
4241 -> VEX kandnw %kM, %kM, %kN
4242 */
4243 if (is_evex_encoding (&i.tm))
4244 {
4245 if (i.vec_encoding != vex_encoding_evex)
4246 {
4247 i.tm.opcode_modifier.vex = VEX128;
4248 i.tm.opcode_modifier.vexw = VEXW0;
4249 i.tm.opcode_modifier.evex = 0;
4250 }
4251 else if (optimize > 1)
4252 i.tm.opcode_modifier.evex = EVEX128;
4253 else
4254 return;
4255 }
4256 else if (i.tm.operand_types[0].bitfield.class == RegMask)
4257 {
4258 i.tm.base_opcode &= 0xff;
4259 i.tm.opcode_modifier.vexw = VEXW0;
4260 }
4261 else
4262 i.tm.opcode_modifier.vex = VEX128;
4263
4264 if (i.tm.opcode_modifier.vex)
4265 for (j = 0; j < 3; j++)
4266 {
4267 i.types[j].bitfield.xmmword = 1;
4268 i.types[j].bitfield.ymmword = 0;
4269 }
4270 }
4271 else if (i.vec_encoding != vex_encoding_evex
4272 && !i.types[0].bitfield.zmmword
4273 && !i.types[1].bitfield.zmmword
4274 && !i.mask
4275 && !i.broadcast
4276 && is_evex_encoding (&i.tm)
4277 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4278 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4279 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4280 || (i.tm.base_opcode & ~4) == 0x66db
4281 || (i.tm.base_opcode & ~4) == 0x66eb)
4282 && i.tm.extension_opcode == None)
4283 {
4284 /* Optimize: -O1:
4285 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4286 vmovdqu32 and vmovdqu64:
4287 EVEX VOP %xmmM, %xmmN
4288 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4289 EVEX VOP %ymmM, %ymmN
4290 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4291 EVEX VOP %xmmM, mem
4292 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4293 EVEX VOP %ymmM, mem
4294 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4295 EVEX VOP mem, %xmmN
4296 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4297 EVEX VOP mem, %ymmN
4298 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4299 VOP, one of vpand, vpandn, vpor, vpxor:
4300 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4301 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4302 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4303 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4304 EVEX VOP{d,q} mem, %xmmM, %xmmN
4305 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4306 EVEX VOP{d,q} mem, %ymmM, %ymmN
4307 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4308 */
4309 for (j = 0; j < i.operands; j++)
4310 if (operand_type_check (i.types[j], disp)
4311 && i.op[j].disps->X_op == O_constant)
4312 {
4313 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4314 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4315 bytes, we choose EVEX Disp8 over VEX Disp32. */
4316 int evex_disp8, vex_disp8;
4317 unsigned int memshift = i.memshift;
4318 offsetT n = i.op[j].disps->X_add_number;
4319
4320 evex_disp8 = fits_in_disp8 (n);
4321 i.memshift = 0;
4322 vex_disp8 = fits_in_disp8 (n);
4323 if (evex_disp8 != vex_disp8)
4324 {
4325 i.memshift = memshift;
4326 return;
4327 }
4328
4329 i.types[j].bitfield.disp8 = vex_disp8;
4330 break;
4331 }
4332 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4333 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4334 i.tm.opcode_modifier.vex
4335 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4336 i.tm.opcode_modifier.vexw = VEXW0;
4337 /* VPAND, VPOR, and VPXOR are commutative. */
4338 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4339 i.tm.opcode_modifier.commutative = 1;
4340 i.tm.opcode_modifier.evex = 0;
4341 i.tm.opcode_modifier.masking = 0;
4342 i.tm.opcode_modifier.broadcast = 0;
4343 i.tm.opcode_modifier.disp8memshift = 0;
4344 i.memshift = 0;
4345 if (j < i.operands)
4346 i.types[j].bitfield.disp8
4347 = fits_in_disp8 (i.op[j].disps->X_add_number);
4348 }
4349 }
4350
4351 /* Return non-zero for load instruction. */
4352
4353 static int
4354 load_insn_p (void)
4355 {
4356 unsigned int dest;
4357 int any_vex_p = is_any_vex_encoding (&i.tm);
4358 unsigned int base_opcode = i.tm.base_opcode | 1;
4359
4360 if (!any_vex_p)
4361 {
4362 /* Anysize insns: lea, invlpg, clflush, prefetchnta, prefetcht0,
4363 prefetcht1, prefetcht2, prefetchtw, bndmk, bndcl, bndcu, bndcn,
4364 bndstx, bndldx, prefetchwt1, clflushopt, clwb, cldemote. */
4365 if (i.tm.opcode_modifier.anysize)
4366 return 0;
4367
4368 /* pop, popf, popa. */
4369 if (strcmp (i.tm.name, "pop") == 0
4370 || i.tm.base_opcode == 0x9d
4371 || i.tm.base_opcode == 0x61)
4372 return 1;
4373
4374 /* movs, cmps, lods, scas. */
4375 if ((i.tm.base_opcode | 0xb) == 0xaf)
4376 return 1;
4377
4378 /* outs, xlatb. */
4379 if (base_opcode == 0x6f
4380 || i.tm.base_opcode == 0xd7)
4381 return 1;
4382 /* NB: For AMD-specific insns with implicit memory operands,
4383 they're intentionally not covered. */
4384 }
4385
4386 /* No memory operand. */
4387 if (!i.mem_operands)
4388 return 0;
4389
4390 if (any_vex_p)
4391 {
4392 /* vldmxcsr. */
4393 if (i.tm.base_opcode == 0xae
4394 && i.tm.opcode_modifier.vex
4395 && i.tm.opcode_modifier.vexopcode == VEX0F
4396 && i.tm.extension_opcode == 2)
4397 return 1;
4398 }
4399 else
4400 {
4401 /* test, not, neg, mul, imul, div, idiv. */
4402 if ((i.tm.base_opcode == 0xf6 || i.tm.base_opcode == 0xf7)
4403 && i.tm.extension_opcode != 1)
4404 return 1;
4405
4406 /* inc, dec. */
4407 if (base_opcode == 0xff && i.tm.extension_opcode <= 1)
4408 return 1;
4409
4410 /* add, or, adc, sbb, and, sub, xor, cmp. */
4411 if (i.tm.base_opcode >= 0x80 && i.tm.base_opcode <= 0x83)
4412 return 1;
4413
4414 /* bt, bts, btr, btc. */
4415 if (i.tm.base_opcode == 0xfba
4416 && (i.tm.extension_opcode >= 4 && i.tm.extension_opcode <= 7))
4417 return 1;
4418
4419 /* rol, ror, rcl, rcr, shl/sal, shr, sar. */
4420 if ((base_opcode == 0xc1
4421 || (i.tm.base_opcode >= 0xd0 && i.tm.base_opcode <= 0xd3))
4422 && i.tm.extension_opcode != 6)
4423 return 1;
4424
4425 /* cmpxchg8b, cmpxchg16b, xrstors. */
4426 if (i.tm.base_opcode == 0xfc7
4427 && (i.tm.extension_opcode == 1 || i.tm.extension_opcode == 3))
4428 return 1;
4429
4430 /* fxrstor, ldmxcsr, xrstor. */
4431 if (i.tm.base_opcode == 0xfae
4432 && (i.tm.extension_opcode == 1
4433 || i.tm.extension_opcode == 2
4434 || i.tm.extension_opcode == 5))
4435 return 1;
4436
4437 /* lgdt, lidt, lmsw. */
4438 if (i.tm.base_opcode == 0xf01
4439 && (i.tm.extension_opcode == 2
4440 || i.tm.extension_opcode == 3
4441 || i.tm.extension_opcode == 6))
4442 return 1;
4443
4444 /* vmptrld */
4445 if (i.tm.base_opcode == 0xfc7
4446 && i.tm.extension_opcode == 6)
4447 return 1;
4448
4449 /* Check for x87 instructions. */
4450 if (i.tm.base_opcode >= 0xd8 && i.tm.base_opcode <= 0xdf)
4451 {
4452 /* Skip fst, fstp, fstenv, fstcw. */
4453 if (i.tm.base_opcode == 0xd9
4454 && (i.tm.extension_opcode == 2
4455 || i.tm.extension_opcode == 3
4456 || i.tm.extension_opcode == 6
4457 || i.tm.extension_opcode == 7))
4458 return 0;
4459
4460 /* Skip fisttp, fist, fistp, fstp. */
4461 if (i.tm.base_opcode == 0xdb
4462 && (i.tm.extension_opcode == 1
4463 || i.tm.extension_opcode == 2
4464 || i.tm.extension_opcode == 3
4465 || i.tm.extension_opcode == 7))
4466 return 0;
4467
4468 /* Skip fisttp, fst, fstp, fsave, fstsw. */
4469 if (i.tm.base_opcode == 0xdd
4470 && (i.tm.extension_opcode == 1
4471 || i.tm.extension_opcode == 2
4472 || i.tm.extension_opcode == 3
4473 || i.tm.extension_opcode == 6
4474 || i.tm.extension_opcode == 7))
4475 return 0;
4476
4477 /* Skip fisttp, fist, fistp, fbstp, fistp. */
4478 if (i.tm.base_opcode == 0xdf
4479 && (i.tm.extension_opcode == 1
4480 || i.tm.extension_opcode == 2
4481 || i.tm.extension_opcode == 3
4482 || i.tm.extension_opcode == 6
4483 || i.tm.extension_opcode == 7))
4484 return 0;
4485
4486 return 1;
4487 }
4488 }
4489
4490 dest = i.operands - 1;
4491
4492 /* Check fake imm8 operand and 3 source operands. */
4493 if ((i.tm.opcode_modifier.immext
4494 || i.tm.opcode_modifier.vexsources == VEX3SOURCES)
4495 && i.types[dest].bitfield.imm8)
4496 dest--;
4497
4498 /* add, or, adc, sbb, and, sub, xor, cmp, test, xchg, xadd */
4499 if (!any_vex_p
4500 && (base_opcode == 0x1
4501 || base_opcode == 0x9
4502 || base_opcode == 0x11
4503 || base_opcode == 0x19
4504 || base_opcode == 0x21
4505 || base_opcode == 0x29
4506 || base_opcode == 0x31
4507 || base_opcode == 0x39
4508 || (i.tm.base_opcode >= 0x84 && i.tm.base_opcode <= 0x87)
4509 || base_opcode == 0xfc1))
4510 return 1;
4511
4512 /* Check for load instruction. */
4513 return (i.types[dest].bitfield.class != ClassNone
4514 || i.types[dest].bitfield.instance == Accum);
4515 }
4516
4517 /* Output lfence, 0xfaee8, after instruction. */
4518
4519 static void
4520 insert_lfence_after (void)
4521 {
4522 if (lfence_after_load && load_insn_p ())
4523 {
4524 /* There are also two REP string instructions that require
4525 special treatment. Specifically, the compare string (CMPS)
4526 and scan string (SCAS) instructions set EFLAGS in a manner
4527 that depends on the data being compared/scanned. When used
4528 with a REP prefix, the number of iterations may therefore
4529 vary depending on this data. If the data is a program secret
4530 chosen by the adversary using an LVI method,
4531 then this data-dependent behavior may leak some aspect
4532 of the secret. */
4533 if (((i.tm.base_opcode | 0x1) == 0xa7
4534 || (i.tm.base_opcode | 0x1) == 0xaf)
4535 && i.prefix[REP_PREFIX])
4536 {
4537 as_warn (_("`%s` changes flags which would affect control flow behavior"),
4538 i.tm.name);
4539 }
4540 char *p = frag_more (3);
4541 *p++ = 0xf;
4542 *p++ = 0xae;
4543 *p = 0xe8;
4544 }
4545 }
4546
4547 /* Output lfence, 0xfaee8, before instruction. */
4548
4549 static void
4550 insert_lfence_before (void)
4551 {
4552 char *p;
4553
4554 if (is_any_vex_encoding (&i.tm))
4555 return;
4556
4557 if (i.tm.base_opcode == 0xff
4558 && (i.tm.extension_opcode == 2 || i.tm.extension_opcode == 4))
4559 {
4560 /* Insert lfence before indirect branch if needed. */
4561
4562 if (lfence_before_indirect_branch == lfence_branch_none)
4563 return;
4564
4565 if (i.operands != 1)
4566 abort ();
4567
4568 if (i.reg_operands == 1)
4569 {
4570 /* Indirect branch via register. Don't insert lfence with
4571 -mlfence-after-load=yes. */
4572 if (lfence_after_load
4573 || lfence_before_indirect_branch == lfence_branch_memory)
4574 return;
4575 }
4576 else if (i.mem_operands == 1
4577 && lfence_before_indirect_branch != lfence_branch_register)
4578 {
4579 as_warn (_("indirect `%s` with memory operand should be avoided"),
4580 i.tm.name);
4581 return;
4582 }
4583 else
4584 return;
4585
4586 if (last_insn.kind != last_insn_other
4587 && last_insn.seg == now_seg)
4588 {
4589 as_warn_where (last_insn.file, last_insn.line,
4590 _("`%s` skips -mlfence-before-indirect-branch on `%s`"),
4591 last_insn.name, i.tm.name);
4592 return;
4593 }
4594
4595 p = frag_more (3);
4596 *p++ = 0xf;
4597 *p++ = 0xae;
4598 *p = 0xe8;
4599 return;
4600 }
4601
4602 /* Output or/not/shl and lfence before near ret. */
4603 if (lfence_before_ret != lfence_before_ret_none
4604 && (i.tm.base_opcode == 0xc2
4605 || i.tm.base_opcode == 0xc3))
4606 {
4607 if (last_insn.kind != last_insn_other
4608 && last_insn.seg == now_seg)
4609 {
4610 as_warn_where (last_insn.file, last_insn.line,
4611 _("`%s` skips -mlfence-before-ret on `%s`"),
4612 last_insn.name, i.tm.name);
4613 return;
4614 }
4615
4616 /* Near ret ingore operand size override under CPU64. */
4617 char prefix = flag_code == CODE_64BIT
4618 ? 0x48
4619 : i.prefix[DATA_PREFIX] ? 0x66 : 0x0;
4620
4621 if (lfence_before_ret == lfence_before_ret_not)
4622 {
4623 /* not: 0xf71424, may add prefix
4624 for operand size override or 64-bit code. */
4625 p = frag_more ((prefix ? 2 : 0) + 6 + 3);
4626 if (prefix)
4627 *p++ = prefix;
4628 *p++ = 0xf7;
4629 *p++ = 0x14;
4630 *p++ = 0x24;
4631 if (prefix)
4632 *p++ = prefix;
4633 *p++ = 0xf7;
4634 *p++ = 0x14;
4635 *p++ = 0x24;
4636 }
4637 else
4638 {
4639 p = frag_more ((prefix ? 1 : 0) + 4 + 3);
4640 if (prefix)
4641 *p++ = prefix;
4642 if (lfence_before_ret == lfence_before_ret_or)
4643 {
4644 /* or: 0x830c2400, may add prefix
4645 for operand size override or 64-bit code. */
4646 *p++ = 0x83;
4647 *p++ = 0x0c;
4648 }
4649 else
4650 {
4651 /* shl: 0xc1242400, may add prefix
4652 for operand size override or 64-bit code. */
4653 *p++ = 0xc1;
4654 *p++ = 0x24;
4655 }
4656
4657 *p++ = 0x24;
4658 *p++ = 0x0;
4659 }
4660
4661 *p++ = 0xf;
4662 *p++ = 0xae;
4663 *p = 0xe8;
4664 }
4665 }
4666
4667 /* This is the guts of the machine-dependent assembler. LINE points to a
4668 machine dependent instruction. This function is supposed to emit
4669 the frags/bytes it assembles to. */
4670
4671 void
4672 md_assemble (char *line)
4673 {
4674 unsigned int j;
4675 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4676 const insn_template *t;
4677
4678 /* Initialize globals. */
4679 memset (&i, '\0', sizeof (i));
4680 for (j = 0; j < MAX_OPERANDS; j++)
4681 i.reloc[j] = NO_RELOC;
4682 memset (disp_expressions, '\0', sizeof (disp_expressions));
4683 memset (im_expressions, '\0', sizeof (im_expressions));
4684 save_stack_p = save_stack;
4685
4686 /* First parse an instruction mnemonic & call i386_operand for the operands.
4687 We assume that the scrubber has arranged it so that line[0] is the valid
4688 start of a (possibly prefixed) mnemonic. */
4689
4690 line = parse_insn (line, mnemonic);
4691 if (line == NULL)
4692 return;
4693 mnem_suffix = i.suffix;
4694
4695 line = parse_operands (line, mnemonic);
4696 this_operand = -1;
4697 xfree (i.memop1_string);
4698 i.memop1_string = NULL;
4699 if (line == NULL)
4700 return;
4701
4702 /* Now we've parsed the mnemonic into a set of templates, and have the
4703 operands at hand. */
4704
4705 /* All Intel opcodes have reversed operands except for "bound", "enter",
4706 "monitor*", "mwait*", "tpause", and "umwait". We also don't reverse
4707 intersegment "jmp" and "call" instructions with 2 immediate operands so
4708 that the immediate segment precedes the offset, as it does when in AT&T
4709 mode. */
4710 if (intel_syntax
4711 && i.operands > 1
4712 && (strcmp (mnemonic, "bound") != 0)
4713 && (strcmp (mnemonic, "invlpga") != 0)
4714 && (strncmp (mnemonic, "monitor", 7) != 0)
4715 && (strncmp (mnemonic, "mwait", 5) != 0)
4716 && (strcmp (mnemonic, "tpause") != 0)
4717 && (strcmp (mnemonic, "umwait") != 0)
4718 && !(operand_type_check (i.types[0], imm)
4719 && operand_type_check (i.types[1], imm)))
4720 swap_operands ();
4721
4722 /* The order of the immediates should be reversed
4723 for 2 immediates extrq and insertq instructions */
4724 if (i.imm_operands == 2
4725 && (strcmp (mnemonic, "extrq") == 0
4726 || strcmp (mnemonic, "insertq") == 0))
4727 swap_2_operands (0, 1);
4728
4729 if (i.imm_operands)
4730 optimize_imm ();
4731
4732 /* Don't optimize displacement for movabs since it only takes 64bit
4733 displacement. */
4734 if (i.disp_operands
4735 && i.disp_encoding != disp_encoding_32bit
4736 && (flag_code != CODE_64BIT
4737 || strcmp (mnemonic, "movabs") != 0))
4738 optimize_disp ();
4739
4740 /* Next, we find a template that matches the given insn,
4741 making sure the overlap of the given operands types is consistent
4742 with the template operand types. */
4743
4744 if (!(t = match_template (mnem_suffix)))
4745 return;
4746
4747 if (sse_check != check_none
4748 && !i.tm.opcode_modifier.noavx
4749 && !i.tm.cpu_flags.bitfield.cpuavx
4750 && !i.tm.cpu_flags.bitfield.cpuavx512f
4751 && (i.tm.cpu_flags.bitfield.cpusse
4752 || i.tm.cpu_flags.bitfield.cpusse2
4753 || i.tm.cpu_flags.bitfield.cpusse3
4754 || i.tm.cpu_flags.bitfield.cpussse3
4755 || i.tm.cpu_flags.bitfield.cpusse4_1
4756 || i.tm.cpu_flags.bitfield.cpusse4_2
4757 || i.tm.cpu_flags.bitfield.cpupclmul
4758 || i.tm.cpu_flags.bitfield.cpuaes
4759 || i.tm.cpu_flags.bitfield.cpusha
4760 || i.tm.cpu_flags.bitfield.cpugfni))
4761 {
4762 (sse_check == check_warning
4763 ? as_warn
4764 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4765 }
4766
4767 if (i.tm.opcode_modifier.fwait)
4768 if (!add_prefix (FWAIT_OPCODE))
4769 return;
4770
4771 /* Check if REP prefix is OK. */
4772 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4773 {
4774 as_bad (_("invalid instruction `%s' after `%s'"),
4775 i.tm.name, i.rep_prefix);
4776 return;
4777 }
4778
4779 /* Check for lock without a lockable instruction. Destination operand
4780 must be memory unless it is xchg (0x86). */
4781 if (i.prefix[LOCK_PREFIX]
4782 && (!i.tm.opcode_modifier.islockable
4783 || i.mem_operands == 0
4784 || (i.tm.base_opcode != 0x86
4785 && !(i.flags[i.operands - 1] & Operand_Mem))))
4786 {
4787 as_bad (_("expecting lockable instruction after `lock'"));
4788 return;
4789 }
4790
4791 /* Check for data size prefix on VEX/XOP/EVEX encoded and SIMD insns. */
4792 if (i.prefix[DATA_PREFIX]
4793 && (is_any_vex_encoding (&i.tm)
4794 || i.tm.operand_types[i.imm_operands].bitfield.class >= RegMMX
4795 || i.tm.operand_types[i.imm_operands + 1].bitfield.class >= RegMMX))
4796 {
4797 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4798 return;
4799 }
4800
4801 /* Check if HLE prefix is OK. */
4802 if (i.hle_prefix && !check_hle ())
4803 return;
4804
4805 /* Check BND prefix. */
4806 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4807 as_bad (_("expecting valid branch instruction after `bnd'"));
4808
4809 /* Check NOTRACK prefix. */
4810 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4811 as_bad (_("expecting indirect branch instruction after `notrack'"));
4812
4813 if (i.tm.cpu_flags.bitfield.cpumpx)
4814 {
4815 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4816 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4817 else if (flag_code != CODE_16BIT
4818 ? i.prefix[ADDR_PREFIX]
4819 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4820 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4821 }
4822
4823 /* Insert BND prefix. */
4824 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4825 {
4826 if (!i.prefix[BND_PREFIX])
4827 add_prefix (BND_PREFIX_OPCODE);
4828 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4829 {
4830 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4831 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4832 }
4833 }
4834
4835 /* Check string instruction segment overrides. */
4836 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
4837 {
4838 gas_assert (i.mem_operands);
4839 if (!check_string ())
4840 return;
4841 i.disp_operands = 0;
4842 }
4843
4844 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4845 optimize_encoding ();
4846
4847 if (!process_suffix ())
4848 return;
4849
4850 /* Update operand types. */
4851 for (j = 0; j < i.operands; j++)
4852 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4853
4854 /* Make still unresolved immediate matches conform to size of immediate
4855 given in i.suffix. */
4856 if (!finalize_imm ())
4857 return;
4858
4859 if (i.types[0].bitfield.imm1)
4860 i.imm_operands = 0; /* kludge for shift insns. */
4861
4862 /* We only need to check those implicit registers for instructions
4863 with 3 operands or less. */
4864 if (i.operands <= 3)
4865 for (j = 0; j < i.operands; j++)
4866 if (i.types[j].bitfield.instance != InstanceNone
4867 && !i.types[j].bitfield.xmmword)
4868 i.reg_operands--;
4869
4870 /* ImmExt should be processed after SSE2AVX. */
4871 if (!i.tm.opcode_modifier.sse2avx
4872 && i.tm.opcode_modifier.immext)
4873 process_immext ();
4874
4875 /* For insns with operands there are more diddles to do to the opcode. */
4876 if (i.operands)
4877 {
4878 if (!process_operands ())
4879 return;
4880 }
4881 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4882 {
4883 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4884 as_warn (_("translating to `%sp'"), i.tm.name);
4885 }
4886
4887 if (is_any_vex_encoding (&i.tm))
4888 {
4889 if (!cpu_arch_flags.bitfield.cpui286)
4890 {
4891 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4892 i.tm.name);
4893 return;
4894 }
4895
4896 /* Check for explicit REX prefix. */
4897 if (i.prefix[REX_PREFIX] || i.rex_encoding)
4898 {
4899 as_bad (_("REX prefix invalid with `%s'"), i.tm.name);
4900 return;
4901 }
4902
4903 if (i.tm.opcode_modifier.vex)
4904 build_vex_prefix (t);
4905 else
4906 build_evex_prefix ();
4907
4908 /* The individual REX.RXBW bits got consumed. */
4909 i.rex &= REX_OPCODE;
4910 }
4911
4912 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4913 instructions may define INT_OPCODE as well, so avoid this corner
4914 case for those instructions that use MODRM. */
4915 if (i.tm.base_opcode == INT_OPCODE
4916 && !i.tm.opcode_modifier.modrm
4917 && i.op[0].imms->X_add_number == 3)
4918 {
4919 i.tm.base_opcode = INT3_OPCODE;
4920 i.imm_operands = 0;
4921 }
4922
4923 if ((i.tm.opcode_modifier.jump == JUMP
4924 || i.tm.opcode_modifier.jump == JUMP_BYTE
4925 || i.tm.opcode_modifier.jump == JUMP_DWORD)
4926 && i.op[0].disps->X_op == O_constant)
4927 {
4928 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4929 the absolute address given by the constant. Since ix86 jumps and
4930 calls are pc relative, we need to generate a reloc. */
4931 i.op[0].disps->X_add_symbol = &abs_symbol;
4932 i.op[0].disps->X_op = O_symbol;
4933 }
4934
4935 /* For 8 bit registers we need an empty rex prefix. Also if the
4936 instruction already has a prefix, we need to convert old
4937 registers to new ones. */
4938
4939 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
4940 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4941 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
4942 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4943 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4944 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
4945 && i.rex != 0))
4946 {
4947 int x;
4948
4949 i.rex |= REX_OPCODE;
4950 for (x = 0; x < 2; x++)
4951 {
4952 /* Look for 8 bit operand that uses old registers. */
4953 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
4954 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4955 {
4956 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4957 /* In case it is "hi" register, give up. */
4958 if (i.op[x].regs->reg_num > 3)
4959 as_bad (_("can't encode register '%s%s' in an "
4960 "instruction requiring REX prefix."),
4961 register_prefix, i.op[x].regs->reg_name);
4962
4963 /* Otherwise it is equivalent to the extended register.
4964 Since the encoding doesn't change this is merely
4965 cosmetic cleanup for debug output. */
4966
4967 i.op[x].regs = i.op[x].regs + 8;
4968 }
4969 }
4970 }
4971
4972 if (i.rex == 0 && i.rex_encoding)
4973 {
4974 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4975 that uses legacy register. If it is "hi" register, don't add
4976 the REX_OPCODE byte. */
4977 int x;
4978 for (x = 0; x < 2; x++)
4979 if (i.types[x].bitfield.class == Reg
4980 && i.types[x].bitfield.byte
4981 && (i.op[x].regs->reg_flags & RegRex64) == 0
4982 && i.op[x].regs->reg_num > 3)
4983 {
4984 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4985 i.rex_encoding = FALSE;
4986 break;
4987 }
4988
4989 if (i.rex_encoding)
4990 i.rex = REX_OPCODE;
4991 }
4992
4993 if (i.rex != 0)
4994 add_prefix (REX_OPCODE | i.rex);
4995
4996 insert_lfence_before ();
4997
4998 /* We are ready to output the insn. */
4999 output_insn ();
5000
5001 insert_lfence_after ();
5002
5003 last_insn.seg = now_seg;
5004
5005 if (i.tm.opcode_modifier.isprefix)
5006 {
5007 last_insn.kind = last_insn_prefix;
5008 last_insn.name = i.tm.name;
5009 last_insn.file = as_where (&last_insn.line);
5010 }
5011 else
5012 last_insn.kind = last_insn_other;
5013 }
5014
5015 static char *
5016 parse_insn (char *line, char *mnemonic)
5017 {
5018 char *l = line;
5019 char *token_start = l;
5020 char *mnem_p;
5021 int supported;
5022 const insn_template *t;
5023 char *dot_p = NULL;
5024
5025 while (1)
5026 {
5027 mnem_p = mnemonic;
5028 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
5029 {
5030 if (*mnem_p == '.')
5031 dot_p = mnem_p;
5032 mnem_p++;
5033 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
5034 {
5035 as_bad (_("no such instruction: `%s'"), token_start);
5036 return NULL;
5037 }
5038 l++;
5039 }
5040 if (!is_space_char (*l)
5041 && *l != END_OF_INSN
5042 && (intel_syntax
5043 || (*l != PREFIX_SEPARATOR
5044 && *l != ',')))
5045 {
5046 as_bad (_("invalid character %s in mnemonic"),
5047 output_invalid (*l));
5048 return NULL;
5049 }
5050 if (token_start == l)
5051 {
5052 if (!intel_syntax && *l == PREFIX_SEPARATOR)
5053 as_bad (_("expecting prefix; got nothing"));
5054 else
5055 as_bad (_("expecting mnemonic; got nothing"));
5056 return NULL;
5057 }
5058
5059 /* Look up instruction (or prefix) via hash table. */
5060 current_templates = (const templates *) hash_find (op_hash, mnemonic);
5061
5062 if (*l != END_OF_INSN
5063 && (!is_space_char (*l) || l[1] != END_OF_INSN)
5064 && current_templates
5065 && current_templates->start->opcode_modifier.isprefix)
5066 {
5067 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
5068 {
5069 as_bad ((flag_code != CODE_64BIT
5070 ? _("`%s' is only supported in 64-bit mode")
5071 : _("`%s' is not supported in 64-bit mode")),
5072 current_templates->start->name);
5073 return NULL;
5074 }
5075 /* If we are in 16-bit mode, do not allow addr16 or data16.
5076 Similarly, in 32-bit mode, do not allow addr32 or data32. */
5077 if ((current_templates->start->opcode_modifier.size == SIZE16
5078 || current_templates->start->opcode_modifier.size == SIZE32)
5079 && flag_code != CODE_64BIT
5080 && ((current_templates->start->opcode_modifier.size == SIZE32)
5081 ^ (flag_code == CODE_16BIT)))
5082 {
5083 as_bad (_("redundant %s prefix"),
5084 current_templates->start->name);
5085 return NULL;
5086 }
5087 if (current_templates->start->opcode_length == 0)
5088 {
5089 /* Handle pseudo prefixes. */
5090 switch (current_templates->start->base_opcode)
5091 {
5092 case 0x0:
5093 /* {disp8} */
5094 i.disp_encoding = disp_encoding_8bit;
5095 break;
5096 case 0x1:
5097 /* {disp32} */
5098 i.disp_encoding = disp_encoding_32bit;
5099 break;
5100 case 0x2:
5101 /* {load} */
5102 i.dir_encoding = dir_encoding_load;
5103 break;
5104 case 0x3:
5105 /* {store} */
5106 i.dir_encoding = dir_encoding_store;
5107 break;
5108 case 0x4:
5109 /* {vex} */
5110 i.vec_encoding = vex_encoding_vex;
5111 break;
5112 case 0x5:
5113 /* {vex3} */
5114 i.vec_encoding = vex_encoding_vex3;
5115 break;
5116 case 0x6:
5117 /* {evex} */
5118 i.vec_encoding = vex_encoding_evex;
5119 break;
5120 case 0x7:
5121 /* {rex} */
5122 i.rex_encoding = TRUE;
5123 break;
5124 case 0x8:
5125 /* {nooptimize} */
5126 i.no_optimize = TRUE;
5127 break;
5128 default:
5129 abort ();
5130 }
5131 }
5132 else
5133 {
5134 /* Add prefix, checking for repeated prefixes. */
5135 switch (add_prefix (current_templates->start->base_opcode))
5136 {
5137 case PREFIX_EXIST:
5138 return NULL;
5139 case PREFIX_DS:
5140 if (current_templates->start->cpu_flags.bitfield.cpuibt)
5141 i.notrack_prefix = current_templates->start->name;
5142 break;
5143 case PREFIX_REP:
5144 if (current_templates->start->cpu_flags.bitfield.cpuhle)
5145 i.hle_prefix = current_templates->start->name;
5146 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
5147 i.bnd_prefix = current_templates->start->name;
5148 else
5149 i.rep_prefix = current_templates->start->name;
5150 break;
5151 default:
5152 break;
5153 }
5154 }
5155 /* Skip past PREFIX_SEPARATOR and reset token_start. */
5156 token_start = ++l;
5157 }
5158 else
5159 break;
5160 }
5161
5162 if (!current_templates)
5163 {
5164 /* Deprecated functionality (new code should use pseudo-prefixes instead):
5165 Check if we should swap operand or force 32bit displacement in
5166 encoding. */
5167 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
5168 i.dir_encoding = dir_encoding_swap;
5169 else if (mnem_p - 3 == dot_p
5170 && dot_p[1] == 'd'
5171 && dot_p[2] == '8')
5172 i.disp_encoding = disp_encoding_8bit;
5173 else if (mnem_p - 4 == dot_p
5174 && dot_p[1] == 'd'
5175 && dot_p[2] == '3'
5176 && dot_p[3] == '2')
5177 i.disp_encoding = disp_encoding_32bit;
5178 else
5179 goto check_suffix;
5180 mnem_p = dot_p;
5181 *dot_p = '\0';
5182 current_templates = (const templates *) hash_find (op_hash, mnemonic);
5183 }
5184
5185 if (!current_templates)
5186 {
5187 check_suffix:
5188 if (mnem_p > mnemonic)
5189 {
5190 /* See if we can get a match by trimming off a suffix. */
5191 switch (mnem_p[-1])
5192 {
5193 case WORD_MNEM_SUFFIX:
5194 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
5195 i.suffix = SHORT_MNEM_SUFFIX;
5196 else
5197 /* Fall through. */
5198 case BYTE_MNEM_SUFFIX:
5199 case QWORD_MNEM_SUFFIX:
5200 i.suffix = mnem_p[-1];
5201 mnem_p[-1] = '\0';
5202 current_templates = (const templates *) hash_find (op_hash,
5203 mnemonic);
5204 break;
5205 case SHORT_MNEM_SUFFIX:
5206 case LONG_MNEM_SUFFIX:
5207 if (!intel_syntax)
5208 {
5209 i.suffix = mnem_p[-1];
5210 mnem_p[-1] = '\0';
5211 current_templates = (const templates *) hash_find (op_hash,
5212 mnemonic);
5213 }
5214 break;
5215
5216 /* Intel Syntax. */
5217 case 'd':
5218 if (intel_syntax)
5219 {
5220 if (intel_float_operand (mnemonic) == 1)
5221 i.suffix = SHORT_MNEM_SUFFIX;
5222 else
5223 i.suffix = LONG_MNEM_SUFFIX;
5224 mnem_p[-1] = '\0';
5225 current_templates = (const templates *) hash_find (op_hash,
5226 mnemonic);
5227 }
5228 break;
5229 }
5230 }
5231
5232 if (!current_templates)
5233 {
5234 as_bad (_("no such instruction: `%s'"), token_start);
5235 return NULL;
5236 }
5237 }
5238
5239 if (current_templates->start->opcode_modifier.jump == JUMP
5240 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
5241 {
5242 /* Check for a branch hint. We allow ",pt" and ",pn" for
5243 predict taken and predict not taken respectively.
5244 I'm not sure that branch hints actually do anything on loop
5245 and jcxz insns (JumpByte) for current Pentium4 chips. They
5246 may work in the future and it doesn't hurt to accept them
5247 now. */
5248 if (l[0] == ',' && l[1] == 'p')
5249 {
5250 if (l[2] == 't')
5251 {
5252 if (!add_prefix (DS_PREFIX_OPCODE))
5253 return NULL;
5254 l += 3;
5255 }
5256 else if (l[2] == 'n')
5257 {
5258 if (!add_prefix (CS_PREFIX_OPCODE))
5259 return NULL;
5260 l += 3;
5261 }
5262 }
5263 }
5264 /* Any other comma loses. */
5265 if (*l == ',')
5266 {
5267 as_bad (_("invalid character %s in mnemonic"),
5268 output_invalid (*l));
5269 return NULL;
5270 }
5271
5272 /* Check if instruction is supported on specified architecture. */
5273 supported = 0;
5274 for (t = current_templates->start; t < current_templates->end; ++t)
5275 {
5276 supported |= cpu_flags_match (t);
5277 if (supported == CPU_FLAGS_PERFECT_MATCH)
5278 {
5279 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
5280 as_warn (_("use .code16 to ensure correct addressing mode"));
5281
5282 return l;
5283 }
5284 }
5285
5286 if (!(supported & CPU_FLAGS_64BIT_MATCH))
5287 as_bad (flag_code == CODE_64BIT
5288 ? _("`%s' is not supported in 64-bit mode")
5289 : _("`%s' is only supported in 64-bit mode"),
5290 current_templates->start->name);
5291 else
5292 as_bad (_("`%s' is not supported on `%s%s'"),
5293 current_templates->start->name,
5294 cpu_arch_name ? cpu_arch_name : default_arch,
5295 cpu_sub_arch_name ? cpu_sub_arch_name : "");
5296
5297 return NULL;
5298 }
5299
5300 static char *
5301 parse_operands (char *l, const char *mnemonic)
5302 {
5303 char *token_start;
5304
5305 /* 1 if operand is pending after ','. */
5306 unsigned int expecting_operand = 0;
5307
5308 /* Non-zero if operand parens not balanced. */
5309 unsigned int paren_not_balanced;
5310
5311 while (*l != END_OF_INSN)
5312 {
5313 /* Skip optional white space before operand. */
5314 if (is_space_char (*l))
5315 ++l;
5316 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
5317 {
5318 as_bad (_("invalid character %s before operand %d"),
5319 output_invalid (*l),
5320 i.operands + 1);
5321 return NULL;
5322 }
5323 token_start = l; /* After white space. */
5324 paren_not_balanced = 0;
5325 while (paren_not_balanced || *l != ',')
5326 {
5327 if (*l == END_OF_INSN)
5328 {
5329 if (paren_not_balanced)
5330 {
5331 if (!intel_syntax)
5332 as_bad (_("unbalanced parenthesis in operand %d."),
5333 i.operands + 1);
5334 else
5335 as_bad (_("unbalanced brackets in operand %d."),
5336 i.operands + 1);
5337 return NULL;
5338 }
5339 else
5340 break; /* we are done */
5341 }
5342 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
5343 {
5344 as_bad (_("invalid character %s in operand %d"),
5345 output_invalid (*l),
5346 i.operands + 1);
5347 return NULL;
5348 }
5349 if (!intel_syntax)
5350 {
5351 if (*l == '(')
5352 ++paren_not_balanced;
5353 if (*l == ')')
5354 --paren_not_balanced;
5355 }
5356 else
5357 {
5358 if (*l == '[')
5359 ++paren_not_balanced;
5360 if (*l == ']')
5361 --paren_not_balanced;
5362 }
5363 l++;
5364 }
5365 if (l != token_start)
5366 { /* Yes, we've read in another operand. */
5367 unsigned int operand_ok;
5368 this_operand = i.operands++;
5369 if (i.operands > MAX_OPERANDS)
5370 {
5371 as_bad (_("spurious operands; (%d operands/instruction max)"),
5372 MAX_OPERANDS);
5373 return NULL;
5374 }
5375 i.types[this_operand].bitfield.unspecified = 1;
5376 /* Now parse operand adding info to 'i' as we go along. */
5377 END_STRING_AND_SAVE (l);
5378
5379 if (i.mem_operands > 1)
5380 {
5381 as_bad (_("too many memory references for `%s'"),
5382 mnemonic);
5383 return 0;
5384 }
5385
5386 if (intel_syntax)
5387 operand_ok =
5388 i386_intel_operand (token_start,
5389 intel_float_operand (mnemonic));
5390 else
5391 operand_ok = i386_att_operand (token_start);
5392
5393 RESTORE_END_STRING (l);
5394 if (!operand_ok)
5395 return NULL;
5396 }
5397 else
5398 {
5399 if (expecting_operand)
5400 {
5401 expecting_operand_after_comma:
5402 as_bad (_("expecting operand after ','; got nothing"));
5403 return NULL;
5404 }
5405 if (*l == ',')
5406 {
5407 as_bad (_("expecting operand before ','; got nothing"));
5408 return NULL;
5409 }
5410 }
5411
5412 /* Now *l must be either ',' or END_OF_INSN. */
5413 if (*l == ',')
5414 {
5415 if (*++l == END_OF_INSN)
5416 {
5417 /* Just skip it, if it's \n complain. */
5418 goto expecting_operand_after_comma;
5419 }
5420 expecting_operand = 1;
5421 }
5422 }
5423 return l;
5424 }
5425
5426 static void
5427 swap_2_operands (int xchg1, int xchg2)
5428 {
5429 union i386_op temp_op;
5430 i386_operand_type temp_type;
5431 unsigned int temp_flags;
5432 enum bfd_reloc_code_real temp_reloc;
5433
5434 temp_type = i.types[xchg2];
5435 i.types[xchg2] = i.types[xchg1];
5436 i.types[xchg1] = temp_type;
5437
5438 temp_flags = i.flags[xchg2];
5439 i.flags[xchg2] = i.flags[xchg1];
5440 i.flags[xchg1] = temp_flags;
5441
5442 temp_op = i.op[xchg2];
5443 i.op[xchg2] = i.op[xchg1];
5444 i.op[xchg1] = temp_op;
5445
5446 temp_reloc = i.reloc[xchg2];
5447 i.reloc[xchg2] = i.reloc[xchg1];
5448 i.reloc[xchg1] = temp_reloc;
5449
5450 if (i.mask)
5451 {
5452 if (i.mask->operand == xchg1)
5453 i.mask->operand = xchg2;
5454 else if (i.mask->operand == xchg2)
5455 i.mask->operand = xchg1;
5456 }
5457 if (i.broadcast)
5458 {
5459 if (i.broadcast->operand == xchg1)
5460 i.broadcast->operand = xchg2;
5461 else if (i.broadcast->operand == xchg2)
5462 i.broadcast->operand = xchg1;
5463 }
5464 if (i.rounding)
5465 {
5466 if (i.rounding->operand == xchg1)
5467 i.rounding->operand = xchg2;
5468 else if (i.rounding->operand == xchg2)
5469 i.rounding->operand = xchg1;
5470 }
5471 }
5472
5473 static void
5474 swap_operands (void)
5475 {
5476 switch (i.operands)
5477 {
5478 case 5:
5479 case 4:
5480 swap_2_operands (1, i.operands - 2);
5481 /* Fall through. */
5482 case 3:
5483 case 2:
5484 swap_2_operands (0, i.operands - 1);
5485 break;
5486 default:
5487 abort ();
5488 }
5489
5490 if (i.mem_operands == 2)
5491 {
5492 const seg_entry *temp_seg;
5493 temp_seg = i.seg[0];
5494 i.seg[0] = i.seg[1];
5495 i.seg[1] = temp_seg;
5496 }
5497 }
5498
5499 /* Try to ensure constant immediates are represented in the smallest
5500 opcode possible. */
5501 static void
5502 optimize_imm (void)
5503 {
5504 char guess_suffix = 0;
5505 int op;
5506
5507 if (i.suffix)
5508 guess_suffix = i.suffix;
5509 else if (i.reg_operands)
5510 {
5511 /* Figure out a suffix from the last register operand specified.
5512 We can't do this properly yet, i.e. excluding special register
5513 instances, but the following works for instructions with
5514 immediates. In any case, we can't set i.suffix yet. */
5515 for (op = i.operands; --op >= 0;)
5516 if (i.types[op].bitfield.class != Reg)
5517 continue;
5518 else if (i.types[op].bitfield.byte)
5519 {
5520 guess_suffix = BYTE_MNEM_SUFFIX;
5521 break;
5522 }
5523 else if (i.types[op].bitfield.word)
5524 {
5525 guess_suffix = WORD_MNEM_SUFFIX;
5526 break;
5527 }
5528 else if (i.types[op].bitfield.dword)
5529 {
5530 guess_suffix = LONG_MNEM_SUFFIX;
5531 break;
5532 }
5533 else if (i.types[op].bitfield.qword)
5534 {
5535 guess_suffix = QWORD_MNEM_SUFFIX;
5536 break;
5537 }
5538 }
5539 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5540 guess_suffix = WORD_MNEM_SUFFIX;
5541
5542 for (op = i.operands; --op >= 0;)
5543 if (operand_type_check (i.types[op], imm))
5544 {
5545 switch (i.op[op].imms->X_op)
5546 {
5547 case O_constant:
5548 /* If a suffix is given, this operand may be shortened. */
5549 switch (guess_suffix)
5550 {
5551 case LONG_MNEM_SUFFIX:
5552 i.types[op].bitfield.imm32 = 1;
5553 i.types[op].bitfield.imm64 = 1;
5554 break;
5555 case WORD_MNEM_SUFFIX:
5556 i.types[op].bitfield.imm16 = 1;
5557 i.types[op].bitfield.imm32 = 1;
5558 i.types[op].bitfield.imm32s = 1;
5559 i.types[op].bitfield.imm64 = 1;
5560 break;
5561 case BYTE_MNEM_SUFFIX:
5562 i.types[op].bitfield.imm8 = 1;
5563 i.types[op].bitfield.imm8s = 1;
5564 i.types[op].bitfield.imm16 = 1;
5565 i.types[op].bitfield.imm32 = 1;
5566 i.types[op].bitfield.imm32s = 1;
5567 i.types[op].bitfield.imm64 = 1;
5568 break;
5569 }
5570
5571 /* If this operand is at most 16 bits, convert it
5572 to a signed 16 bit number before trying to see
5573 whether it will fit in an even smaller size.
5574 This allows a 16-bit operand such as $0xffe0 to
5575 be recognised as within Imm8S range. */
5576 if ((i.types[op].bitfield.imm16)
5577 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5578 {
5579 i.op[op].imms->X_add_number =
5580 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5581 }
5582 #ifdef BFD64
5583 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5584 if ((i.types[op].bitfield.imm32)
5585 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5586 == 0))
5587 {
5588 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5589 ^ ((offsetT) 1 << 31))
5590 - ((offsetT) 1 << 31));
5591 }
5592 #endif
5593 i.types[op]
5594 = operand_type_or (i.types[op],
5595 smallest_imm_type (i.op[op].imms->X_add_number));
5596
5597 /* We must avoid matching of Imm32 templates when 64bit
5598 only immediate is available. */
5599 if (guess_suffix == QWORD_MNEM_SUFFIX)
5600 i.types[op].bitfield.imm32 = 0;
5601 break;
5602
5603 case O_absent:
5604 case O_register:
5605 abort ();
5606
5607 /* Symbols and expressions. */
5608 default:
5609 /* Convert symbolic operand to proper sizes for matching, but don't
5610 prevent matching a set of insns that only supports sizes other
5611 than those matching the insn suffix. */
5612 {
5613 i386_operand_type mask, allowed;
5614 const insn_template *t;
5615
5616 operand_type_set (&mask, 0);
5617 operand_type_set (&allowed, 0);
5618
5619 for (t = current_templates->start;
5620 t < current_templates->end;
5621 ++t)
5622 {
5623 allowed = operand_type_or (allowed, t->operand_types[op]);
5624 allowed = operand_type_and (allowed, anyimm);
5625 }
5626 switch (guess_suffix)
5627 {
5628 case QWORD_MNEM_SUFFIX:
5629 mask.bitfield.imm64 = 1;
5630 mask.bitfield.imm32s = 1;
5631 break;
5632 case LONG_MNEM_SUFFIX:
5633 mask.bitfield.imm32 = 1;
5634 break;
5635 case WORD_MNEM_SUFFIX:
5636 mask.bitfield.imm16 = 1;
5637 break;
5638 case BYTE_MNEM_SUFFIX:
5639 mask.bitfield.imm8 = 1;
5640 break;
5641 default:
5642 break;
5643 }
5644 allowed = operand_type_and (mask, allowed);
5645 if (!operand_type_all_zero (&allowed))
5646 i.types[op] = operand_type_and (i.types[op], mask);
5647 }
5648 break;
5649 }
5650 }
5651 }
5652
5653 /* Try to use the smallest displacement type too. */
5654 static void
5655 optimize_disp (void)
5656 {
5657 int op;
5658
5659 for (op = i.operands; --op >= 0;)
5660 if (operand_type_check (i.types[op], disp))
5661 {
5662 if (i.op[op].disps->X_op == O_constant)
5663 {
5664 offsetT op_disp = i.op[op].disps->X_add_number;
5665
5666 if (i.types[op].bitfield.disp16
5667 && (op_disp & ~(offsetT) 0xffff) == 0)
5668 {
5669 /* If this operand is at most 16 bits, convert
5670 to a signed 16 bit number and don't use 64bit
5671 displacement. */
5672 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5673 i.types[op].bitfield.disp64 = 0;
5674 }
5675 #ifdef BFD64
5676 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5677 if (i.types[op].bitfield.disp32
5678 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5679 {
5680 /* If this operand is at most 32 bits, convert
5681 to a signed 32 bit number and don't use 64bit
5682 displacement. */
5683 op_disp &= (((offsetT) 2 << 31) - 1);
5684 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5685 i.types[op].bitfield.disp64 = 0;
5686 }
5687 #endif
5688 if (!op_disp && i.types[op].bitfield.baseindex)
5689 {
5690 i.types[op].bitfield.disp8 = 0;
5691 i.types[op].bitfield.disp16 = 0;
5692 i.types[op].bitfield.disp32 = 0;
5693 i.types[op].bitfield.disp32s = 0;
5694 i.types[op].bitfield.disp64 = 0;
5695 i.op[op].disps = 0;
5696 i.disp_operands--;
5697 }
5698 else if (flag_code == CODE_64BIT)
5699 {
5700 if (fits_in_signed_long (op_disp))
5701 {
5702 i.types[op].bitfield.disp64 = 0;
5703 i.types[op].bitfield.disp32s = 1;
5704 }
5705 if (i.prefix[ADDR_PREFIX]
5706 && fits_in_unsigned_long (op_disp))
5707 i.types[op].bitfield.disp32 = 1;
5708 }
5709 if ((i.types[op].bitfield.disp32
5710 || i.types[op].bitfield.disp32s
5711 || i.types[op].bitfield.disp16)
5712 && fits_in_disp8 (op_disp))
5713 i.types[op].bitfield.disp8 = 1;
5714 }
5715 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5716 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5717 {
5718 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5719 i.op[op].disps, 0, i.reloc[op]);
5720 i.types[op].bitfield.disp8 = 0;
5721 i.types[op].bitfield.disp16 = 0;
5722 i.types[op].bitfield.disp32 = 0;
5723 i.types[op].bitfield.disp32s = 0;
5724 i.types[op].bitfield.disp64 = 0;
5725 }
5726 else
5727 /* We only support 64bit displacement on constants. */
5728 i.types[op].bitfield.disp64 = 0;
5729 }
5730 }
5731
5732 /* Return 1 if there is a match in broadcast bytes between operand
5733 GIVEN and instruction template T. */
5734
5735 static INLINE int
5736 match_broadcast_size (const insn_template *t, unsigned int given)
5737 {
5738 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5739 && i.types[given].bitfield.byte)
5740 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5741 && i.types[given].bitfield.word)
5742 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5743 && i.types[given].bitfield.dword)
5744 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5745 && i.types[given].bitfield.qword));
5746 }
5747
5748 /* Check if operands are valid for the instruction. */
5749
5750 static int
5751 check_VecOperands (const insn_template *t)
5752 {
5753 unsigned int op;
5754 i386_cpu_flags cpu;
5755
5756 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5757 any one operand are implicity requiring AVX512VL support if the actual
5758 operand size is YMMword or XMMword. Since this function runs after
5759 template matching, there's no need to check for YMMword/XMMword in
5760 the template. */
5761 cpu = cpu_flags_and (t->cpu_flags, avx512);
5762 if (!cpu_flags_all_zero (&cpu)
5763 && !t->cpu_flags.bitfield.cpuavx512vl
5764 && !cpu_arch_flags.bitfield.cpuavx512vl)
5765 {
5766 for (op = 0; op < t->operands; ++op)
5767 {
5768 if (t->operand_types[op].bitfield.zmmword
5769 && (i.types[op].bitfield.ymmword
5770 || i.types[op].bitfield.xmmword))
5771 {
5772 i.error = unsupported;
5773 return 1;
5774 }
5775 }
5776 }
5777
5778 /* Without VSIB byte, we can't have a vector register for index. */
5779 if (!t->opcode_modifier.vecsib
5780 && i.index_reg
5781 && (i.index_reg->reg_type.bitfield.xmmword
5782 || i.index_reg->reg_type.bitfield.ymmword
5783 || i.index_reg->reg_type.bitfield.zmmword))
5784 {
5785 i.error = unsupported_vector_index_register;
5786 return 1;
5787 }
5788
5789 /* Check if default mask is allowed. */
5790 if (t->opcode_modifier.nodefmask
5791 && (!i.mask || i.mask->mask->reg_num == 0))
5792 {
5793 i.error = no_default_mask;
5794 return 1;
5795 }
5796
5797 /* For VSIB byte, we need a vector register for index, and all vector
5798 registers must be distinct. */
5799 if (t->opcode_modifier.vecsib)
5800 {
5801 if (!i.index_reg
5802 || !((t->opcode_modifier.vecsib == VecSIB128
5803 && i.index_reg->reg_type.bitfield.xmmword)
5804 || (t->opcode_modifier.vecsib == VecSIB256
5805 && i.index_reg->reg_type.bitfield.ymmword)
5806 || (t->opcode_modifier.vecsib == VecSIB512
5807 && i.index_reg->reg_type.bitfield.zmmword)))
5808 {
5809 i.error = invalid_vsib_address;
5810 return 1;
5811 }
5812
5813 gas_assert (i.reg_operands == 2 || i.mask);
5814 if (i.reg_operands == 2 && !i.mask)
5815 {
5816 gas_assert (i.types[0].bitfield.class == RegSIMD);
5817 gas_assert (i.types[0].bitfield.xmmword
5818 || i.types[0].bitfield.ymmword);
5819 gas_assert (i.types[2].bitfield.class == RegSIMD);
5820 gas_assert (i.types[2].bitfield.xmmword
5821 || i.types[2].bitfield.ymmword);
5822 if (operand_check == check_none)
5823 return 0;
5824 if (register_number (i.op[0].regs)
5825 != register_number (i.index_reg)
5826 && register_number (i.op[2].regs)
5827 != register_number (i.index_reg)
5828 && register_number (i.op[0].regs)
5829 != register_number (i.op[2].regs))
5830 return 0;
5831 if (operand_check == check_error)
5832 {
5833 i.error = invalid_vector_register_set;
5834 return 1;
5835 }
5836 as_warn (_("mask, index, and destination registers should be distinct"));
5837 }
5838 else if (i.reg_operands == 1 && i.mask)
5839 {
5840 if (i.types[1].bitfield.class == RegSIMD
5841 && (i.types[1].bitfield.xmmword
5842 || i.types[1].bitfield.ymmword
5843 || i.types[1].bitfield.zmmword)
5844 && (register_number (i.op[1].regs)
5845 == register_number (i.index_reg)))
5846 {
5847 if (operand_check == check_error)
5848 {
5849 i.error = invalid_vector_register_set;
5850 return 1;
5851 }
5852 if (operand_check != check_none)
5853 as_warn (_("index and destination registers should be distinct"));
5854 }
5855 }
5856 }
5857
5858 /* Check if broadcast is supported by the instruction and is applied
5859 to the memory operand. */
5860 if (i.broadcast)
5861 {
5862 i386_operand_type type, overlap;
5863
5864 /* Check if specified broadcast is supported in this instruction,
5865 and its broadcast bytes match the memory operand. */
5866 op = i.broadcast->operand;
5867 if (!t->opcode_modifier.broadcast
5868 || !(i.flags[op] & Operand_Mem)
5869 || (!i.types[op].bitfield.unspecified
5870 && !match_broadcast_size (t, op)))
5871 {
5872 bad_broadcast:
5873 i.error = unsupported_broadcast;
5874 return 1;
5875 }
5876
5877 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5878 * i.broadcast->type);
5879 operand_type_set (&type, 0);
5880 switch (i.broadcast->bytes)
5881 {
5882 case 2:
5883 type.bitfield.word = 1;
5884 break;
5885 case 4:
5886 type.bitfield.dword = 1;
5887 break;
5888 case 8:
5889 type.bitfield.qword = 1;
5890 break;
5891 case 16:
5892 type.bitfield.xmmword = 1;
5893 break;
5894 case 32:
5895 type.bitfield.ymmword = 1;
5896 break;
5897 case 64:
5898 type.bitfield.zmmword = 1;
5899 break;
5900 default:
5901 goto bad_broadcast;
5902 }
5903
5904 overlap = operand_type_and (type, t->operand_types[op]);
5905 if (t->operand_types[op].bitfield.class == RegSIMD
5906 && t->operand_types[op].bitfield.byte
5907 + t->operand_types[op].bitfield.word
5908 + t->operand_types[op].bitfield.dword
5909 + t->operand_types[op].bitfield.qword > 1)
5910 {
5911 overlap.bitfield.xmmword = 0;
5912 overlap.bitfield.ymmword = 0;
5913 overlap.bitfield.zmmword = 0;
5914 }
5915 if (operand_type_all_zero (&overlap))
5916 goto bad_broadcast;
5917
5918 if (t->opcode_modifier.checkregsize)
5919 {
5920 unsigned int j;
5921
5922 type.bitfield.baseindex = 1;
5923 for (j = 0; j < i.operands; ++j)
5924 {
5925 if (j != op
5926 && !operand_type_register_match(i.types[j],
5927 t->operand_types[j],
5928 type,
5929 t->operand_types[op]))
5930 goto bad_broadcast;
5931 }
5932 }
5933 }
5934 /* If broadcast is supported in this instruction, we need to check if
5935 operand of one-element size isn't specified without broadcast. */
5936 else if (t->opcode_modifier.broadcast && i.mem_operands)
5937 {
5938 /* Find memory operand. */
5939 for (op = 0; op < i.operands; op++)
5940 if (i.flags[op] & Operand_Mem)
5941 break;
5942 gas_assert (op < i.operands);
5943 /* Check size of the memory operand. */
5944 if (match_broadcast_size (t, op))
5945 {
5946 i.error = broadcast_needed;
5947 return 1;
5948 }
5949 }
5950 else
5951 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5952
5953 /* Check if requested masking is supported. */
5954 if (i.mask)
5955 {
5956 switch (t->opcode_modifier.masking)
5957 {
5958 case BOTH_MASKING:
5959 break;
5960 case MERGING_MASKING:
5961 if (i.mask->zeroing)
5962 {
5963 case 0:
5964 i.error = unsupported_masking;
5965 return 1;
5966 }
5967 break;
5968 case DYNAMIC_MASKING:
5969 /* Memory destinations allow only merging masking. */
5970 if (i.mask->zeroing && i.mem_operands)
5971 {
5972 /* Find memory operand. */
5973 for (op = 0; op < i.operands; op++)
5974 if (i.flags[op] & Operand_Mem)
5975 break;
5976 gas_assert (op < i.operands);
5977 if (op == i.operands - 1)
5978 {
5979 i.error = unsupported_masking;
5980 return 1;
5981 }
5982 }
5983 break;
5984 default:
5985 abort ();
5986 }
5987 }
5988
5989 /* Check if masking is applied to dest operand. */
5990 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5991 {
5992 i.error = mask_not_on_destination;
5993 return 1;
5994 }
5995
5996 /* Check RC/SAE. */
5997 if (i.rounding)
5998 {
5999 if (!t->opcode_modifier.sae
6000 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
6001 {
6002 i.error = unsupported_rc_sae;
6003 return 1;
6004 }
6005 /* If the instruction has several immediate operands and one of
6006 them is rounding, the rounding operand should be the last
6007 immediate operand. */
6008 if (i.imm_operands > 1
6009 && i.rounding->operand != (int) (i.imm_operands - 1))
6010 {
6011 i.error = rc_sae_operand_not_last_imm;
6012 return 1;
6013 }
6014 }
6015
6016 /* Check the special Imm4 cases; must be the first operand. */
6017 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
6018 {
6019 if (i.op[0].imms->X_op != O_constant
6020 || !fits_in_imm4 (i.op[0].imms->X_add_number))
6021 {
6022 i.error = bad_imm4;
6023 return 1;
6024 }
6025
6026 /* Turn off Imm<N> so that update_imm won't complain. */
6027 operand_type_set (&i.types[0], 0);
6028 }
6029
6030 /* Check vector Disp8 operand. */
6031 if (t->opcode_modifier.disp8memshift
6032 && i.disp_encoding != disp_encoding_32bit)
6033 {
6034 if (i.broadcast)
6035 i.memshift = t->opcode_modifier.broadcast - 1;
6036 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
6037 i.memshift = t->opcode_modifier.disp8memshift;
6038 else
6039 {
6040 const i386_operand_type *type = NULL;
6041
6042 i.memshift = 0;
6043 for (op = 0; op < i.operands; op++)
6044 if (i.flags[op] & Operand_Mem)
6045 {
6046 if (t->opcode_modifier.evex == EVEXLIG)
6047 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
6048 else if (t->operand_types[op].bitfield.xmmword
6049 + t->operand_types[op].bitfield.ymmword
6050 + t->operand_types[op].bitfield.zmmword <= 1)
6051 type = &t->operand_types[op];
6052 else if (!i.types[op].bitfield.unspecified)
6053 type = &i.types[op];
6054 }
6055 else if (i.types[op].bitfield.class == RegSIMD
6056 && t->opcode_modifier.evex != EVEXLIG)
6057 {
6058 if (i.types[op].bitfield.zmmword)
6059 i.memshift = 6;
6060 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
6061 i.memshift = 5;
6062 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
6063 i.memshift = 4;
6064 }
6065
6066 if (type)
6067 {
6068 if (type->bitfield.zmmword)
6069 i.memshift = 6;
6070 else if (type->bitfield.ymmword)
6071 i.memshift = 5;
6072 else if (type->bitfield.xmmword)
6073 i.memshift = 4;
6074 }
6075
6076 /* For the check in fits_in_disp8(). */
6077 if (i.memshift == 0)
6078 i.memshift = -1;
6079 }
6080
6081 for (op = 0; op < i.operands; op++)
6082 if (operand_type_check (i.types[op], disp)
6083 && i.op[op].disps->X_op == O_constant)
6084 {
6085 if (fits_in_disp8 (i.op[op].disps->X_add_number))
6086 {
6087 i.types[op].bitfield.disp8 = 1;
6088 return 0;
6089 }
6090 i.types[op].bitfield.disp8 = 0;
6091 }
6092 }
6093
6094 i.memshift = 0;
6095
6096 return 0;
6097 }
6098
6099 /* Check if encoding requirements are met by the instruction. */
6100
6101 static int
6102 VEX_check_encoding (const insn_template *t)
6103 {
6104 if (i.vec_encoding == vex_encoding_error)
6105 {
6106 i.error = unsupported;
6107 return 1;
6108 }
6109
6110 if (i.vec_encoding == vex_encoding_evex)
6111 {
6112 /* This instruction must be encoded with EVEX prefix. */
6113 if (!is_evex_encoding (t))
6114 {
6115 i.error = unsupported;
6116 return 1;
6117 }
6118 return 0;
6119 }
6120
6121 if (!t->opcode_modifier.vex)
6122 {
6123 /* This instruction template doesn't have VEX prefix. */
6124 if (i.vec_encoding != vex_encoding_default)
6125 {
6126 i.error = unsupported;
6127 return 1;
6128 }
6129 return 0;
6130 }
6131
6132 return 0;
6133 }
6134
6135 static const insn_template *
6136 match_template (char mnem_suffix)
6137 {
6138 /* Points to template once we've found it. */
6139 const insn_template *t;
6140 i386_operand_type overlap0, overlap1, overlap2, overlap3;
6141 i386_operand_type overlap4;
6142 unsigned int found_reverse_match;
6143 i386_opcode_modifier suffix_check;
6144 i386_operand_type operand_types [MAX_OPERANDS];
6145 int addr_prefix_disp;
6146 unsigned int j, size_match, check_register;
6147 enum i386_error specific_error = 0;
6148
6149 #if MAX_OPERANDS != 5
6150 # error "MAX_OPERANDS must be 5."
6151 #endif
6152
6153 found_reverse_match = 0;
6154 addr_prefix_disp = -1;
6155
6156 /* Prepare for mnemonic suffix check. */
6157 memset (&suffix_check, 0, sizeof (suffix_check));
6158 switch (mnem_suffix)
6159 {
6160 case BYTE_MNEM_SUFFIX:
6161 suffix_check.no_bsuf = 1;
6162 break;
6163 case WORD_MNEM_SUFFIX:
6164 suffix_check.no_wsuf = 1;
6165 break;
6166 case SHORT_MNEM_SUFFIX:
6167 suffix_check.no_ssuf = 1;
6168 break;
6169 case LONG_MNEM_SUFFIX:
6170 suffix_check.no_lsuf = 1;
6171 break;
6172 case QWORD_MNEM_SUFFIX:
6173 suffix_check.no_qsuf = 1;
6174 break;
6175 default:
6176 /* NB: In Intel syntax, normally we can check for memory operand
6177 size when there is no mnemonic suffix. But jmp and call have
6178 2 different encodings with Dword memory operand size, one with
6179 No_ldSuf and the other without. i.suffix is set to
6180 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
6181 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
6182 suffix_check.no_ldsuf = 1;
6183 }
6184
6185 /* Must have right number of operands. */
6186 i.error = number_of_operands_mismatch;
6187
6188 for (t = current_templates->start; t < current_templates->end; t++)
6189 {
6190 addr_prefix_disp = -1;
6191 found_reverse_match = 0;
6192
6193 if (i.operands != t->operands)
6194 continue;
6195
6196 /* Check processor support. */
6197 i.error = unsupported;
6198 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
6199 continue;
6200
6201 /* Check AT&T mnemonic. */
6202 i.error = unsupported_with_intel_mnemonic;
6203 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
6204 continue;
6205
6206 /* Check AT&T/Intel syntax. */
6207 i.error = unsupported_syntax;
6208 if ((intel_syntax && t->opcode_modifier.attsyntax)
6209 || (!intel_syntax && t->opcode_modifier.intelsyntax))
6210 continue;
6211
6212 /* Check Intel64/AMD64 ISA. */
6213 switch (isa64)
6214 {
6215 default:
6216 /* Default: Don't accept Intel64. */
6217 if (t->opcode_modifier.isa64 == INTEL64)
6218 continue;
6219 break;
6220 case amd64:
6221 /* -mamd64: Don't accept Intel64 and Intel64 only. */
6222 if (t->opcode_modifier.isa64 >= INTEL64)
6223 continue;
6224 break;
6225 case intel64:
6226 /* -mintel64: Don't accept AMD64. */
6227 if (t->opcode_modifier.isa64 == AMD64 && flag_code == CODE_64BIT)
6228 continue;
6229 break;
6230 }
6231
6232 /* Check the suffix. */
6233 i.error = invalid_instruction_suffix;
6234 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
6235 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
6236 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
6237 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
6238 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
6239 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
6240 continue;
6241
6242 size_match = operand_size_match (t);
6243 if (!size_match)
6244 continue;
6245
6246 /* This is intentionally not
6247
6248 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
6249
6250 as the case of a missing * on the operand is accepted (perhaps with
6251 a warning, issued further down). */
6252 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
6253 {
6254 i.error = operand_type_mismatch;
6255 continue;
6256 }
6257
6258 for (j = 0; j < MAX_OPERANDS; j++)
6259 operand_types[j] = t->operand_types[j];
6260
6261 /* In general, don't allow
6262 - 64-bit operands outside of 64-bit mode,
6263 - 32-bit operands on pre-386. */
6264 j = i.imm_operands + (t->operands > i.imm_operands + 1);
6265 if (((i.suffix == QWORD_MNEM_SUFFIX
6266 && flag_code != CODE_64BIT
6267 && (t->base_opcode != 0x0fc7
6268 || t->extension_opcode != 1 /* cmpxchg8b */))
6269 || (i.suffix == LONG_MNEM_SUFFIX
6270 && !cpu_arch_flags.bitfield.cpui386))
6271 && (intel_syntax
6272 ? (t->opcode_modifier.mnemonicsize != IGNORESIZE
6273 && !intel_float_operand (t->name))
6274 : intel_float_operand (t->name) != 2)
6275 && (t->operands == i.imm_operands
6276 || (operand_types[i.imm_operands].bitfield.class != RegMMX
6277 && operand_types[i.imm_operands].bitfield.class != RegSIMD
6278 && operand_types[i.imm_operands].bitfield.class != RegMask)
6279 || (operand_types[j].bitfield.class != RegMMX
6280 && operand_types[j].bitfield.class != RegSIMD
6281 && operand_types[j].bitfield.class != RegMask))
6282 && !t->opcode_modifier.vecsib)
6283 continue;
6284
6285 /* Do not verify operands when there are none. */
6286 if (!t->operands)
6287 {
6288 if (VEX_check_encoding (t))
6289 {
6290 specific_error = i.error;
6291 continue;
6292 }
6293
6294 /* We've found a match; break out of loop. */
6295 break;
6296 }
6297
6298 if (!t->opcode_modifier.jump
6299 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
6300 {
6301 /* There should be only one Disp operand. */
6302 for (j = 0; j < MAX_OPERANDS; j++)
6303 if (operand_type_check (operand_types[j], disp))
6304 break;
6305 if (j < MAX_OPERANDS)
6306 {
6307 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
6308
6309 addr_prefix_disp = j;
6310
6311 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
6312 operand into Disp32/Disp32/Disp16/Disp32 operand. */
6313 switch (flag_code)
6314 {
6315 case CODE_16BIT:
6316 override = !override;
6317 /* Fall through. */
6318 case CODE_32BIT:
6319 if (operand_types[j].bitfield.disp32
6320 && operand_types[j].bitfield.disp16)
6321 {
6322 operand_types[j].bitfield.disp16 = override;
6323 operand_types[j].bitfield.disp32 = !override;
6324 }
6325 operand_types[j].bitfield.disp32s = 0;
6326 operand_types[j].bitfield.disp64 = 0;
6327 break;
6328
6329 case CODE_64BIT:
6330 if (operand_types[j].bitfield.disp32s
6331 || operand_types[j].bitfield.disp64)
6332 {
6333 operand_types[j].bitfield.disp64 &= !override;
6334 operand_types[j].bitfield.disp32s &= !override;
6335 operand_types[j].bitfield.disp32 = override;
6336 }
6337 operand_types[j].bitfield.disp16 = 0;
6338 break;
6339 }
6340 }
6341 }
6342
6343 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
6344 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
6345 continue;
6346
6347 /* We check register size if needed. */
6348 if (t->opcode_modifier.checkregsize)
6349 {
6350 check_register = (1 << t->operands) - 1;
6351 if (i.broadcast)
6352 check_register &= ~(1 << i.broadcast->operand);
6353 }
6354 else
6355 check_register = 0;
6356
6357 overlap0 = operand_type_and (i.types[0], operand_types[0]);
6358 switch (t->operands)
6359 {
6360 case 1:
6361 if (!operand_type_match (overlap0, i.types[0]))
6362 continue;
6363 break;
6364 case 2:
6365 /* xchg %eax, %eax is a special case. It is an alias for nop
6366 only in 32bit mode and we can use opcode 0x90. In 64bit
6367 mode, we can't use 0x90 for xchg %eax, %eax since it should
6368 zero-extend %eax to %rax. */
6369 if (flag_code == CODE_64BIT
6370 && t->base_opcode == 0x90
6371 && i.types[0].bitfield.instance == Accum
6372 && i.types[0].bitfield.dword
6373 && i.types[1].bitfield.instance == Accum
6374 && i.types[1].bitfield.dword)
6375 continue;
6376 /* xrelease mov %eax, <disp> is another special case. It must not
6377 match the accumulator-only encoding of mov. */
6378 if (flag_code != CODE_64BIT
6379 && i.hle_prefix
6380 && t->base_opcode == 0xa0
6381 && i.types[0].bitfield.instance == Accum
6382 && (i.flags[1] & Operand_Mem))
6383 continue;
6384 /* Fall through. */
6385
6386 case 3:
6387 if (!(size_match & MATCH_STRAIGHT))
6388 goto check_reverse;
6389 /* Reverse direction of operands if swapping is possible in the first
6390 place (operands need to be symmetric) and
6391 - the load form is requested, and the template is a store form,
6392 - the store form is requested, and the template is a load form,
6393 - the non-default (swapped) form is requested. */
6394 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
6395 if (t->opcode_modifier.d && i.reg_operands == i.operands
6396 && !operand_type_all_zero (&overlap1))
6397 switch (i.dir_encoding)
6398 {
6399 case dir_encoding_load:
6400 if (operand_type_check (operand_types[i.operands - 1], anymem)
6401 || t->opcode_modifier.regmem)
6402 goto check_reverse;
6403 break;
6404
6405 case dir_encoding_store:
6406 if (!operand_type_check (operand_types[i.operands - 1], anymem)
6407 && !t->opcode_modifier.regmem)
6408 goto check_reverse;
6409 break;
6410
6411 case dir_encoding_swap:
6412 goto check_reverse;
6413
6414 case dir_encoding_default:
6415 break;
6416 }
6417 /* If we want store form, we skip the current load. */
6418 if ((i.dir_encoding == dir_encoding_store
6419 || i.dir_encoding == dir_encoding_swap)
6420 && i.mem_operands == 0
6421 && t->opcode_modifier.load)
6422 continue;
6423 /* Fall through. */
6424 case 4:
6425 case 5:
6426 overlap1 = operand_type_and (i.types[1], operand_types[1]);
6427 if (!operand_type_match (overlap0, i.types[0])
6428 || !operand_type_match (overlap1, i.types[1])
6429 || ((check_register & 3) == 3
6430 && !operand_type_register_match (i.types[0],
6431 operand_types[0],
6432 i.types[1],
6433 operand_types[1])))
6434 {
6435 /* Check if other direction is valid ... */
6436 if (!t->opcode_modifier.d)
6437 continue;
6438
6439 check_reverse:
6440 if (!(size_match & MATCH_REVERSE))
6441 continue;
6442 /* Try reversing direction of operands. */
6443 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6444 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
6445 if (!operand_type_match (overlap0, i.types[0])
6446 || !operand_type_match (overlap1, i.types[i.operands - 1])
6447 || (check_register
6448 && !operand_type_register_match (i.types[0],
6449 operand_types[i.operands - 1],
6450 i.types[i.operands - 1],
6451 operand_types[0])))
6452 {
6453 /* Does not match either direction. */
6454 continue;
6455 }
6456 /* found_reverse_match holds which of D or FloatR
6457 we've found. */
6458 if (!t->opcode_modifier.d)
6459 found_reverse_match = 0;
6460 else if (operand_types[0].bitfield.tbyte)
6461 found_reverse_match = Opcode_FloatD;
6462 else if (operand_types[0].bitfield.xmmword
6463 || operand_types[i.operands - 1].bitfield.xmmword
6464 || operand_types[0].bitfield.class == RegMMX
6465 || operand_types[i.operands - 1].bitfield.class == RegMMX
6466 || is_any_vex_encoding(t))
6467 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6468 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
6469 else
6470 found_reverse_match = Opcode_D;
6471 if (t->opcode_modifier.floatr)
6472 found_reverse_match |= Opcode_FloatR;
6473 }
6474 else
6475 {
6476 /* Found a forward 2 operand match here. */
6477 switch (t->operands)
6478 {
6479 case 5:
6480 overlap4 = operand_type_and (i.types[4],
6481 operand_types[4]);
6482 /* Fall through. */
6483 case 4:
6484 overlap3 = operand_type_and (i.types[3],
6485 operand_types[3]);
6486 /* Fall through. */
6487 case 3:
6488 overlap2 = operand_type_and (i.types[2],
6489 operand_types[2]);
6490 break;
6491 }
6492
6493 switch (t->operands)
6494 {
6495 case 5:
6496 if (!operand_type_match (overlap4, i.types[4])
6497 || !operand_type_register_match (i.types[3],
6498 operand_types[3],
6499 i.types[4],
6500 operand_types[4]))
6501 continue;
6502 /* Fall through. */
6503 case 4:
6504 if (!operand_type_match (overlap3, i.types[3])
6505 || ((check_register & 0xa) == 0xa
6506 && !operand_type_register_match (i.types[1],
6507 operand_types[1],
6508 i.types[3],
6509 operand_types[3]))
6510 || ((check_register & 0xc) == 0xc
6511 && !operand_type_register_match (i.types[2],
6512 operand_types[2],
6513 i.types[3],
6514 operand_types[3])))
6515 continue;
6516 /* Fall through. */
6517 case 3:
6518 /* Here we make use of the fact that there are no
6519 reverse match 3 operand instructions. */
6520 if (!operand_type_match (overlap2, i.types[2])
6521 || ((check_register & 5) == 5
6522 && !operand_type_register_match (i.types[0],
6523 operand_types[0],
6524 i.types[2],
6525 operand_types[2]))
6526 || ((check_register & 6) == 6
6527 && !operand_type_register_match (i.types[1],
6528 operand_types[1],
6529 i.types[2],
6530 operand_types[2])))
6531 continue;
6532 break;
6533 }
6534 }
6535 /* Found either forward/reverse 2, 3 or 4 operand match here:
6536 slip through to break. */
6537 }
6538
6539 /* Check if vector operands are valid. */
6540 if (check_VecOperands (t))
6541 {
6542 specific_error = i.error;
6543 continue;
6544 }
6545
6546 /* Check if VEX/EVEX encoding requirements can be satisfied. */
6547 if (VEX_check_encoding (t))
6548 {
6549 specific_error = i.error;
6550 continue;
6551 }
6552
6553 /* We've found a match; break out of loop. */
6554 break;
6555 }
6556
6557 if (t == current_templates->end)
6558 {
6559 /* We found no match. */
6560 const char *err_msg;
6561 switch (specific_error ? specific_error : i.error)
6562 {
6563 default:
6564 abort ();
6565 case operand_size_mismatch:
6566 err_msg = _("operand size mismatch");
6567 break;
6568 case operand_type_mismatch:
6569 err_msg = _("operand type mismatch");
6570 break;
6571 case register_type_mismatch:
6572 err_msg = _("register type mismatch");
6573 break;
6574 case number_of_operands_mismatch:
6575 err_msg = _("number of operands mismatch");
6576 break;
6577 case invalid_instruction_suffix:
6578 err_msg = _("invalid instruction suffix");
6579 break;
6580 case bad_imm4:
6581 err_msg = _("constant doesn't fit in 4 bits");
6582 break;
6583 case unsupported_with_intel_mnemonic:
6584 err_msg = _("unsupported with Intel mnemonic");
6585 break;
6586 case unsupported_syntax:
6587 err_msg = _("unsupported syntax");
6588 break;
6589 case unsupported:
6590 as_bad (_("unsupported instruction `%s'"),
6591 current_templates->start->name);
6592 return NULL;
6593 case invalid_vsib_address:
6594 err_msg = _("invalid VSIB address");
6595 break;
6596 case invalid_vector_register_set:
6597 err_msg = _("mask, index, and destination registers must be distinct");
6598 break;
6599 case unsupported_vector_index_register:
6600 err_msg = _("unsupported vector index register");
6601 break;
6602 case unsupported_broadcast:
6603 err_msg = _("unsupported broadcast");
6604 break;
6605 case broadcast_needed:
6606 err_msg = _("broadcast is needed for operand of such type");
6607 break;
6608 case unsupported_masking:
6609 err_msg = _("unsupported masking");
6610 break;
6611 case mask_not_on_destination:
6612 err_msg = _("mask not on destination operand");
6613 break;
6614 case no_default_mask:
6615 err_msg = _("default mask isn't allowed");
6616 break;
6617 case unsupported_rc_sae:
6618 err_msg = _("unsupported static rounding/sae");
6619 break;
6620 case rc_sae_operand_not_last_imm:
6621 if (intel_syntax)
6622 err_msg = _("RC/SAE operand must precede immediate operands");
6623 else
6624 err_msg = _("RC/SAE operand must follow immediate operands");
6625 break;
6626 case invalid_register_operand:
6627 err_msg = _("invalid register operand");
6628 break;
6629 }
6630 as_bad (_("%s for `%s'"), err_msg,
6631 current_templates->start->name);
6632 return NULL;
6633 }
6634
6635 if (!quiet_warnings)
6636 {
6637 if (!intel_syntax
6638 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6639 as_warn (_("indirect %s without `*'"), t->name);
6640
6641 if (t->opcode_modifier.isprefix
6642 && t->opcode_modifier.mnemonicsize == IGNORESIZE)
6643 {
6644 /* Warn them that a data or address size prefix doesn't
6645 affect assembly of the next line of code. */
6646 as_warn (_("stand-alone `%s' prefix"), t->name);
6647 }
6648 }
6649
6650 /* Copy the template we found. */
6651 i.tm = *t;
6652
6653 if (addr_prefix_disp != -1)
6654 i.tm.operand_types[addr_prefix_disp]
6655 = operand_types[addr_prefix_disp];
6656
6657 if (found_reverse_match)
6658 {
6659 /* If we found a reverse match we must alter the opcode direction
6660 bit and clear/flip the regmem modifier one. found_reverse_match
6661 holds bits to change (different for int & float insns). */
6662
6663 i.tm.base_opcode ^= found_reverse_match;
6664
6665 i.tm.operand_types[0] = operand_types[i.operands - 1];
6666 i.tm.operand_types[i.operands - 1] = operand_types[0];
6667
6668 /* Certain SIMD insns have their load forms specified in the opcode
6669 table, and hence we need to _set_ RegMem instead of clearing it.
6670 We need to avoid setting the bit though on insns like KMOVW. */
6671 i.tm.opcode_modifier.regmem
6672 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6673 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6674 && !i.tm.opcode_modifier.regmem;
6675 }
6676
6677 return t;
6678 }
6679
6680 static int
6681 check_string (void)
6682 {
6683 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6684 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
6685
6686 if (i.seg[op] != NULL && i.seg[op] != &es)
6687 {
6688 as_bad (_("`%s' operand %u must use `%ses' segment"),
6689 i.tm.name,
6690 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6691 register_prefix);
6692 return 0;
6693 }
6694
6695 /* There's only ever one segment override allowed per instruction.
6696 This instruction possibly has a legal segment override on the
6697 second operand, so copy the segment to where non-string
6698 instructions store it, allowing common code. */
6699 i.seg[op] = i.seg[1];
6700
6701 return 1;
6702 }
6703
6704 static int
6705 process_suffix (void)
6706 {
6707 /* If matched instruction specifies an explicit instruction mnemonic
6708 suffix, use it. */
6709 if (i.tm.opcode_modifier.size == SIZE16)
6710 i.suffix = WORD_MNEM_SUFFIX;
6711 else if (i.tm.opcode_modifier.size == SIZE32)
6712 i.suffix = LONG_MNEM_SUFFIX;
6713 else if (i.tm.opcode_modifier.size == SIZE64)
6714 i.suffix = QWORD_MNEM_SUFFIX;
6715 else if (i.reg_operands
6716 && (i.operands > 1 || i.types[0].bitfield.class == Reg)
6717 && !i.tm.opcode_modifier.addrprefixopreg)
6718 {
6719 unsigned int numop = i.operands;
6720
6721 /* movsx/movzx want only their source operand considered here, for the
6722 ambiguity checking below. The suffix will be replaced afterwards
6723 to represent the destination (register). */
6724 if (((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w)
6725 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6726 --i.operands;
6727
6728 /* crc32 needs REX.W set regardless of suffix / source operand size. */
6729 if (i.tm.base_opcode == 0xf20f38f0
6730 && i.tm.operand_types[1].bitfield.qword)
6731 i.rex |= REX_W;
6732
6733 /* If there's no instruction mnemonic suffix we try to invent one
6734 based on GPR operands. */
6735 if (!i.suffix)
6736 {
6737 /* We take i.suffix from the last register operand specified,
6738 Destination register type is more significant than source
6739 register type. crc32 in SSE4.2 prefers source register
6740 type. */
6741 unsigned int op = i.tm.base_opcode != 0xf20f38f0 ? i.operands : 1;
6742
6743 while (op--)
6744 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6745 || i.tm.operand_types[op].bitfield.instance == Accum)
6746 {
6747 if (i.types[op].bitfield.class != Reg)
6748 continue;
6749 if (i.types[op].bitfield.byte)
6750 i.suffix = BYTE_MNEM_SUFFIX;
6751 else if (i.types[op].bitfield.word)
6752 i.suffix = WORD_MNEM_SUFFIX;
6753 else if (i.types[op].bitfield.dword)
6754 i.suffix = LONG_MNEM_SUFFIX;
6755 else if (i.types[op].bitfield.qword)
6756 i.suffix = QWORD_MNEM_SUFFIX;
6757 else
6758 continue;
6759 break;
6760 }
6761
6762 /* As an exception, movsx/movzx silently default to a byte source
6763 in AT&T mode. */
6764 if ((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w
6765 && !i.suffix && !intel_syntax)
6766 i.suffix = BYTE_MNEM_SUFFIX;
6767 }
6768 else if (i.suffix == BYTE_MNEM_SUFFIX)
6769 {
6770 if (intel_syntax
6771 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6772 && i.tm.opcode_modifier.no_bsuf)
6773 i.suffix = 0;
6774 else if (!check_byte_reg ())
6775 return 0;
6776 }
6777 else if (i.suffix == LONG_MNEM_SUFFIX)
6778 {
6779 if (intel_syntax
6780 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6781 && i.tm.opcode_modifier.no_lsuf
6782 && !i.tm.opcode_modifier.todword
6783 && !i.tm.opcode_modifier.toqword)
6784 i.suffix = 0;
6785 else if (!check_long_reg ())
6786 return 0;
6787 }
6788 else if (i.suffix == QWORD_MNEM_SUFFIX)
6789 {
6790 if (intel_syntax
6791 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6792 && i.tm.opcode_modifier.no_qsuf
6793 && !i.tm.opcode_modifier.todword
6794 && !i.tm.opcode_modifier.toqword)
6795 i.suffix = 0;
6796 else if (!check_qword_reg ())
6797 return 0;
6798 }
6799 else if (i.suffix == WORD_MNEM_SUFFIX)
6800 {
6801 if (intel_syntax
6802 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6803 && i.tm.opcode_modifier.no_wsuf)
6804 i.suffix = 0;
6805 else if (!check_word_reg ())
6806 return 0;
6807 }
6808 else if (intel_syntax
6809 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE)
6810 /* Do nothing if the instruction is going to ignore the prefix. */
6811 ;
6812 else
6813 abort ();
6814
6815 /* Undo the movsx/movzx change done above. */
6816 i.operands = numop;
6817 }
6818 else if (i.tm.opcode_modifier.mnemonicsize == DEFAULTSIZE
6819 && !i.suffix)
6820 {
6821 i.suffix = stackop_size;
6822 if (stackop_size == LONG_MNEM_SUFFIX)
6823 {
6824 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6825 .code16gcc directive to support 16-bit mode with
6826 32-bit address. For IRET without a suffix, generate
6827 16-bit IRET (opcode 0xcf) to return from an interrupt
6828 handler. */
6829 if (i.tm.base_opcode == 0xcf)
6830 {
6831 i.suffix = WORD_MNEM_SUFFIX;
6832 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6833 }
6834 /* Warn about changed behavior for segment register push/pop. */
6835 else if ((i.tm.base_opcode | 1) == 0x07)
6836 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6837 i.tm.name);
6838 }
6839 }
6840 else if (!i.suffix
6841 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6842 || i.tm.opcode_modifier.jump == JUMP_BYTE
6843 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
6844 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6845 && i.tm.extension_opcode <= 3)))
6846 {
6847 switch (flag_code)
6848 {
6849 case CODE_64BIT:
6850 if (!i.tm.opcode_modifier.no_qsuf)
6851 {
6852 if (i.tm.opcode_modifier.jump == JUMP_BYTE
6853 || i.tm.opcode_modifier.no_lsuf)
6854 i.suffix = QWORD_MNEM_SUFFIX;
6855 break;
6856 }
6857 /* Fall through. */
6858 case CODE_32BIT:
6859 if (!i.tm.opcode_modifier.no_lsuf)
6860 i.suffix = LONG_MNEM_SUFFIX;
6861 break;
6862 case CODE_16BIT:
6863 if (!i.tm.opcode_modifier.no_wsuf)
6864 i.suffix = WORD_MNEM_SUFFIX;
6865 break;
6866 }
6867 }
6868
6869 if (!i.suffix
6870 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
6871 /* Also cover lret/retf/iret in 64-bit mode. */
6872 || (flag_code == CODE_64BIT
6873 && !i.tm.opcode_modifier.no_lsuf
6874 && !i.tm.opcode_modifier.no_qsuf))
6875 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
6876 /* Accept FLDENV et al without suffix. */
6877 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
6878 {
6879 unsigned int suffixes, evex = 0;
6880
6881 suffixes = !i.tm.opcode_modifier.no_bsuf;
6882 if (!i.tm.opcode_modifier.no_wsuf)
6883 suffixes |= 1 << 1;
6884 if (!i.tm.opcode_modifier.no_lsuf)
6885 suffixes |= 1 << 2;
6886 if (!i.tm.opcode_modifier.no_ldsuf)
6887 suffixes |= 1 << 3;
6888 if (!i.tm.opcode_modifier.no_ssuf)
6889 suffixes |= 1 << 4;
6890 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6891 suffixes |= 1 << 5;
6892
6893 /* For [XYZ]MMWORD operands inspect operand sizes. While generally
6894 also suitable for AT&T syntax mode, it was requested that this be
6895 restricted to just Intel syntax. */
6896 if (intel_syntax && is_any_vex_encoding (&i.tm) && !i.broadcast)
6897 {
6898 unsigned int op;
6899
6900 for (op = 0; op < i.tm.operands; ++op)
6901 {
6902 if (is_evex_encoding (&i.tm)
6903 && !cpu_arch_flags.bitfield.cpuavx512vl)
6904 {
6905 if (i.tm.operand_types[op].bitfield.ymmword)
6906 i.tm.operand_types[op].bitfield.xmmword = 0;
6907 if (i.tm.operand_types[op].bitfield.zmmword)
6908 i.tm.operand_types[op].bitfield.ymmword = 0;
6909 if (!i.tm.opcode_modifier.evex
6910 || i.tm.opcode_modifier.evex == EVEXDYN)
6911 i.tm.opcode_modifier.evex = EVEX512;
6912 }
6913
6914 if (i.tm.operand_types[op].bitfield.xmmword
6915 + i.tm.operand_types[op].bitfield.ymmword
6916 + i.tm.operand_types[op].bitfield.zmmword < 2)
6917 continue;
6918
6919 /* Any properly sized operand disambiguates the insn. */
6920 if (i.types[op].bitfield.xmmword
6921 || i.types[op].bitfield.ymmword
6922 || i.types[op].bitfield.zmmword)
6923 {
6924 suffixes &= ~(7 << 6);
6925 evex = 0;
6926 break;
6927 }
6928
6929 if ((i.flags[op] & Operand_Mem)
6930 && i.tm.operand_types[op].bitfield.unspecified)
6931 {
6932 if (i.tm.operand_types[op].bitfield.xmmword)
6933 suffixes |= 1 << 6;
6934 if (i.tm.operand_types[op].bitfield.ymmword)
6935 suffixes |= 1 << 7;
6936 if (i.tm.operand_types[op].bitfield.zmmword)
6937 suffixes |= 1 << 8;
6938 if (is_evex_encoding (&i.tm))
6939 evex = EVEX512;
6940 }
6941 }
6942 }
6943
6944 /* Are multiple suffixes / operand sizes allowed? */
6945 if (suffixes & (suffixes - 1))
6946 {
6947 if (intel_syntax
6948 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
6949 || operand_check == check_error))
6950 {
6951 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6952 return 0;
6953 }
6954 if (operand_check == check_error)
6955 {
6956 as_bad (_("no instruction mnemonic suffix given and "
6957 "no register operands; can't size `%s'"), i.tm.name);
6958 return 0;
6959 }
6960 if (operand_check == check_warning)
6961 as_warn (_("%s; using default for `%s'"),
6962 intel_syntax
6963 ? _("ambiguous operand size")
6964 : _("no instruction mnemonic suffix given and "
6965 "no register operands"),
6966 i.tm.name);
6967
6968 if (i.tm.opcode_modifier.floatmf)
6969 i.suffix = SHORT_MNEM_SUFFIX;
6970 else if ((i.tm.base_opcode | 8) == 0xfbe
6971 || (i.tm.base_opcode == 0x63
6972 && i.tm.cpu_flags.bitfield.cpu64))
6973 /* handled below */;
6974 else if (evex)
6975 i.tm.opcode_modifier.evex = evex;
6976 else if (flag_code == CODE_16BIT)
6977 i.suffix = WORD_MNEM_SUFFIX;
6978 else if (!i.tm.opcode_modifier.no_lsuf)
6979 i.suffix = LONG_MNEM_SUFFIX;
6980 else
6981 i.suffix = QWORD_MNEM_SUFFIX;
6982 }
6983 }
6984
6985 if ((i.tm.base_opcode | 8) == 0xfbe
6986 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6987 {
6988 /* In Intel syntax, movsx/movzx must have a "suffix" (checked above).
6989 In AT&T syntax, if there is no suffix (warned about above), the default
6990 will be byte extension. */
6991 if (i.tm.opcode_modifier.w && i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
6992 i.tm.base_opcode |= 1;
6993
6994 /* For further processing, the suffix should represent the destination
6995 (register). This is already the case when one was used with
6996 mov[sz][bw]*, but we need to replace it for mov[sz]x, or if there was
6997 no suffix to begin with. */
6998 if (i.tm.opcode_modifier.w || i.tm.base_opcode == 0x63 || !i.suffix)
6999 {
7000 if (i.types[1].bitfield.word)
7001 i.suffix = WORD_MNEM_SUFFIX;
7002 else if (i.types[1].bitfield.qword)
7003 i.suffix = QWORD_MNEM_SUFFIX;
7004 else
7005 i.suffix = LONG_MNEM_SUFFIX;
7006
7007 i.tm.opcode_modifier.w = 0;
7008 }
7009 }
7010
7011 if (!i.tm.opcode_modifier.modrm && i.reg_operands && i.tm.operands < 3)
7012 i.short_form = (i.tm.operand_types[0].bitfield.class == Reg)
7013 != (i.tm.operand_types[1].bitfield.class == Reg);
7014
7015 /* Change the opcode based on the operand size given by i.suffix. */
7016 switch (i.suffix)
7017 {
7018 /* Size floating point instruction. */
7019 case LONG_MNEM_SUFFIX:
7020 if (i.tm.opcode_modifier.floatmf)
7021 {
7022 i.tm.base_opcode ^= 4;
7023 break;
7024 }
7025 /* fall through */
7026 case WORD_MNEM_SUFFIX:
7027 case QWORD_MNEM_SUFFIX:
7028 /* It's not a byte, select word/dword operation. */
7029 if (i.tm.opcode_modifier.w)
7030 {
7031 if (i.short_form)
7032 i.tm.base_opcode |= 8;
7033 else
7034 i.tm.base_opcode |= 1;
7035 }
7036 /* fall through */
7037 case SHORT_MNEM_SUFFIX:
7038 /* Now select between word & dword operations via the operand
7039 size prefix, except for instructions that will ignore this
7040 prefix anyway. */
7041 if (i.suffix != QWORD_MNEM_SUFFIX
7042 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
7043 && !i.tm.opcode_modifier.floatmf
7044 && !is_any_vex_encoding (&i.tm)
7045 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
7046 || (flag_code == CODE_64BIT
7047 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
7048 {
7049 unsigned int prefix = DATA_PREFIX_OPCODE;
7050
7051 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
7052 prefix = ADDR_PREFIX_OPCODE;
7053
7054 if (!add_prefix (prefix))
7055 return 0;
7056 }
7057
7058 /* Set mode64 for an operand. */
7059 if (i.suffix == QWORD_MNEM_SUFFIX
7060 && flag_code == CODE_64BIT
7061 && !i.tm.opcode_modifier.norex64
7062 && !i.tm.opcode_modifier.vexw
7063 /* Special case for xchg %rax,%rax. It is NOP and doesn't
7064 need rex64. */
7065 && ! (i.operands == 2
7066 && i.tm.base_opcode == 0x90
7067 && i.tm.extension_opcode == None
7068 && i.types[0].bitfield.instance == Accum
7069 && i.types[0].bitfield.qword
7070 && i.types[1].bitfield.instance == Accum
7071 && i.types[1].bitfield.qword))
7072 i.rex |= REX_W;
7073
7074 break;
7075 }
7076
7077 if (i.tm.opcode_modifier.addrprefixopreg)
7078 {
7079 gas_assert (!i.suffix);
7080 gas_assert (i.reg_operands);
7081
7082 if (i.tm.operand_types[0].bitfield.instance == Accum
7083 || i.operands == 1)
7084 {
7085 /* The address size override prefix changes the size of the
7086 first operand. */
7087 if (flag_code == CODE_64BIT
7088 && i.op[0].regs->reg_type.bitfield.word)
7089 {
7090 as_bad (_("16-bit addressing unavailable for `%s'"),
7091 i.tm.name);
7092 return 0;
7093 }
7094
7095 if ((flag_code == CODE_32BIT
7096 ? i.op[0].regs->reg_type.bitfield.word
7097 : i.op[0].regs->reg_type.bitfield.dword)
7098 && !add_prefix (ADDR_PREFIX_OPCODE))
7099 return 0;
7100 }
7101 else
7102 {
7103 /* Check invalid register operand when the address size override
7104 prefix changes the size of register operands. */
7105 unsigned int op;
7106 enum { need_word, need_dword, need_qword } need;
7107
7108 if (flag_code == CODE_32BIT)
7109 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
7110 else if (i.prefix[ADDR_PREFIX])
7111 need = need_dword;
7112 else
7113 need = flag_code == CODE_64BIT ? need_qword : need_word;
7114
7115 for (op = 0; op < i.operands; op++)
7116 {
7117 if (i.types[op].bitfield.class != Reg)
7118 continue;
7119
7120 switch (need)
7121 {
7122 case need_word:
7123 if (i.op[op].regs->reg_type.bitfield.word)
7124 continue;
7125 break;
7126 case need_dword:
7127 if (i.op[op].regs->reg_type.bitfield.dword)
7128 continue;
7129 break;
7130 case need_qword:
7131 if (i.op[op].regs->reg_type.bitfield.qword)
7132 continue;
7133 break;
7134 }
7135
7136 as_bad (_("invalid register operand size for `%s'"),
7137 i.tm.name);
7138 return 0;
7139 }
7140 }
7141 }
7142
7143 return 1;
7144 }
7145
7146 static int
7147 check_byte_reg (void)
7148 {
7149 int op;
7150
7151 for (op = i.operands; --op >= 0;)
7152 {
7153 /* Skip non-register operands. */
7154 if (i.types[op].bitfield.class != Reg)
7155 continue;
7156
7157 /* If this is an eight bit register, it's OK. If it's the 16 or
7158 32 bit version of an eight bit register, we will just use the
7159 low portion, and that's OK too. */
7160 if (i.types[op].bitfield.byte)
7161 continue;
7162
7163 /* I/O port address operands are OK too. */
7164 if (i.tm.operand_types[op].bitfield.instance == RegD
7165 && i.tm.operand_types[op].bitfield.word)
7166 continue;
7167
7168 /* crc32 only wants its source operand checked here. */
7169 if (i.tm.base_opcode == 0xf20f38f0 && op)
7170 continue;
7171
7172 /* Any other register is bad. */
7173 as_bad (_("`%s%s' not allowed with `%s%c'"),
7174 register_prefix, i.op[op].regs->reg_name,
7175 i.tm.name, i.suffix);
7176 return 0;
7177 }
7178 return 1;
7179 }
7180
7181 static int
7182 check_long_reg (void)
7183 {
7184 int op;
7185
7186 for (op = i.operands; --op >= 0;)
7187 /* Skip non-register operands. */
7188 if (i.types[op].bitfield.class != Reg)
7189 continue;
7190 /* Reject eight bit registers, except where the template requires
7191 them. (eg. movzb) */
7192 else if (i.types[op].bitfield.byte
7193 && (i.tm.operand_types[op].bitfield.class == Reg
7194 || i.tm.operand_types[op].bitfield.instance == Accum)
7195 && (i.tm.operand_types[op].bitfield.word
7196 || i.tm.operand_types[op].bitfield.dword))
7197 {
7198 as_bad (_("`%s%s' not allowed with `%s%c'"),
7199 register_prefix,
7200 i.op[op].regs->reg_name,
7201 i.tm.name,
7202 i.suffix);
7203 return 0;
7204 }
7205 /* Error if the e prefix on a general reg is missing. */
7206 else if (i.types[op].bitfield.word
7207 && (i.tm.operand_types[op].bitfield.class == Reg
7208 || i.tm.operand_types[op].bitfield.instance == Accum)
7209 && i.tm.operand_types[op].bitfield.dword)
7210 {
7211 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7212 register_prefix, i.op[op].regs->reg_name,
7213 i.suffix);
7214 return 0;
7215 }
7216 /* Warn if the r prefix on a general reg is present. */
7217 else if (i.types[op].bitfield.qword
7218 && (i.tm.operand_types[op].bitfield.class == Reg
7219 || i.tm.operand_types[op].bitfield.instance == Accum)
7220 && i.tm.operand_types[op].bitfield.dword)
7221 {
7222 if (intel_syntax
7223 && i.tm.opcode_modifier.toqword
7224 && i.types[0].bitfield.class != RegSIMD)
7225 {
7226 /* Convert to QWORD. We want REX byte. */
7227 i.suffix = QWORD_MNEM_SUFFIX;
7228 }
7229 else
7230 {
7231 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7232 register_prefix, i.op[op].regs->reg_name,
7233 i.suffix);
7234 return 0;
7235 }
7236 }
7237 return 1;
7238 }
7239
7240 static int
7241 check_qword_reg (void)
7242 {
7243 int op;
7244
7245 for (op = i.operands; --op >= 0; )
7246 /* Skip non-register operands. */
7247 if (i.types[op].bitfield.class != Reg)
7248 continue;
7249 /* Reject eight bit registers, except where the template requires
7250 them. (eg. movzb) */
7251 else if (i.types[op].bitfield.byte
7252 && (i.tm.operand_types[op].bitfield.class == Reg
7253 || i.tm.operand_types[op].bitfield.instance == Accum)
7254 && (i.tm.operand_types[op].bitfield.word
7255 || i.tm.operand_types[op].bitfield.dword))
7256 {
7257 as_bad (_("`%s%s' not allowed with `%s%c'"),
7258 register_prefix,
7259 i.op[op].regs->reg_name,
7260 i.tm.name,
7261 i.suffix);
7262 return 0;
7263 }
7264 /* Warn if the r prefix on a general reg is missing. */
7265 else if ((i.types[op].bitfield.word
7266 || i.types[op].bitfield.dword)
7267 && (i.tm.operand_types[op].bitfield.class == Reg
7268 || i.tm.operand_types[op].bitfield.instance == Accum)
7269 && i.tm.operand_types[op].bitfield.qword)
7270 {
7271 /* Prohibit these changes in the 64bit mode, since the
7272 lowering is more complicated. */
7273 if (intel_syntax
7274 && i.tm.opcode_modifier.todword
7275 && i.types[0].bitfield.class != RegSIMD)
7276 {
7277 /* Convert to DWORD. We don't want REX byte. */
7278 i.suffix = LONG_MNEM_SUFFIX;
7279 }
7280 else
7281 {
7282 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7283 register_prefix, i.op[op].regs->reg_name,
7284 i.suffix);
7285 return 0;
7286 }
7287 }
7288 return 1;
7289 }
7290
7291 static int
7292 check_word_reg (void)
7293 {
7294 int op;
7295 for (op = i.operands; --op >= 0;)
7296 /* Skip non-register operands. */
7297 if (i.types[op].bitfield.class != Reg)
7298 continue;
7299 /* Reject eight bit registers, except where the template requires
7300 them. (eg. movzb) */
7301 else if (i.types[op].bitfield.byte
7302 && (i.tm.operand_types[op].bitfield.class == Reg
7303 || i.tm.operand_types[op].bitfield.instance == Accum)
7304 && (i.tm.operand_types[op].bitfield.word
7305 || i.tm.operand_types[op].bitfield.dword))
7306 {
7307 as_bad (_("`%s%s' not allowed with `%s%c'"),
7308 register_prefix,
7309 i.op[op].regs->reg_name,
7310 i.tm.name,
7311 i.suffix);
7312 return 0;
7313 }
7314 /* Error if the e or r prefix on a general reg is present. */
7315 else if ((i.types[op].bitfield.dword
7316 || i.types[op].bitfield.qword)
7317 && (i.tm.operand_types[op].bitfield.class == Reg
7318 || i.tm.operand_types[op].bitfield.instance == Accum)
7319 && i.tm.operand_types[op].bitfield.word)
7320 {
7321 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7322 register_prefix, i.op[op].regs->reg_name,
7323 i.suffix);
7324 return 0;
7325 }
7326 return 1;
7327 }
7328
7329 static int
7330 update_imm (unsigned int j)
7331 {
7332 i386_operand_type overlap = i.types[j];
7333 if ((overlap.bitfield.imm8
7334 || overlap.bitfield.imm8s
7335 || overlap.bitfield.imm16
7336 || overlap.bitfield.imm32
7337 || overlap.bitfield.imm32s
7338 || overlap.bitfield.imm64)
7339 && !operand_type_equal (&overlap, &imm8)
7340 && !operand_type_equal (&overlap, &imm8s)
7341 && !operand_type_equal (&overlap, &imm16)
7342 && !operand_type_equal (&overlap, &imm32)
7343 && !operand_type_equal (&overlap, &imm32s)
7344 && !operand_type_equal (&overlap, &imm64))
7345 {
7346 if (i.suffix)
7347 {
7348 i386_operand_type temp;
7349
7350 operand_type_set (&temp, 0);
7351 if (i.suffix == BYTE_MNEM_SUFFIX)
7352 {
7353 temp.bitfield.imm8 = overlap.bitfield.imm8;
7354 temp.bitfield.imm8s = overlap.bitfield.imm8s;
7355 }
7356 else if (i.suffix == WORD_MNEM_SUFFIX)
7357 temp.bitfield.imm16 = overlap.bitfield.imm16;
7358 else if (i.suffix == QWORD_MNEM_SUFFIX)
7359 {
7360 temp.bitfield.imm64 = overlap.bitfield.imm64;
7361 temp.bitfield.imm32s = overlap.bitfield.imm32s;
7362 }
7363 else
7364 temp.bitfield.imm32 = overlap.bitfield.imm32;
7365 overlap = temp;
7366 }
7367 else if (operand_type_equal (&overlap, &imm16_32_32s)
7368 || operand_type_equal (&overlap, &imm16_32)
7369 || operand_type_equal (&overlap, &imm16_32s))
7370 {
7371 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
7372 overlap = imm16;
7373 else
7374 overlap = imm32s;
7375 }
7376 if (!operand_type_equal (&overlap, &imm8)
7377 && !operand_type_equal (&overlap, &imm8s)
7378 && !operand_type_equal (&overlap, &imm16)
7379 && !operand_type_equal (&overlap, &imm32)
7380 && !operand_type_equal (&overlap, &imm32s)
7381 && !operand_type_equal (&overlap, &imm64))
7382 {
7383 as_bad (_("no instruction mnemonic suffix given; "
7384 "can't determine immediate size"));
7385 return 0;
7386 }
7387 }
7388 i.types[j] = overlap;
7389
7390 return 1;
7391 }
7392
7393 static int
7394 finalize_imm (void)
7395 {
7396 unsigned int j, n;
7397
7398 /* Update the first 2 immediate operands. */
7399 n = i.operands > 2 ? 2 : i.operands;
7400 if (n)
7401 {
7402 for (j = 0; j < n; j++)
7403 if (update_imm (j) == 0)
7404 return 0;
7405
7406 /* The 3rd operand can't be immediate operand. */
7407 gas_assert (operand_type_check (i.types[2], imm) == 0);
7408 }
7409
7410 return 1;
7411 }
7412
7413 static int
7414 process_operands (void)
7415 {
7416 /* Default segment register this instruction will use for memory
7417 accesses. 0 means unknown. This is only for optimizing out
7418 unnecessary segment overrides. */
7419 const seg_entry *default_seg = 0;
7420
7421 if (i.tm.opcode_modifier.sse2avx)
7422 {
7423 /* Legacy encoded insns allow explicit REX prefixes, so these prefixes
7424 need converting. */
7425 i.rex |= i.prefix[REX_PREFIX] & (REX_W | REX_R | REX_X | REX_B);
7426 i.prefix[REX_PREFIX] = 0;
7427 i.rex_encoding = 0;
7428 }
7429
7430 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
7431 {
7432 unsigned int dupl = i.operands;
7433 unsigned int dest = dupl - 1;
7434 unsigned int j;
7435
7436 /* The destination must be an xmm register. */
7437 gas_assert (i.reg_operands
7438 && MAX_OPERANDS > dupl
7439 && operand_type_equal (&i.types[dest], &regxmm));
7440
7441 if (i.tm.operand_types[0].bitfield.instance == Accum
7442 && i.tm.operand_types[0].bitfield.xmmword)
7443 {
7444 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
7445 {
7446 /* Keep xmm0 for instructions with VEX prefix and 3
7447 sources. */
7448 i.tm.operand_types[0].bitfield.instance = InstanceNone;
7449 i.tm.operand_types[0].bitfield.class = RegSIMD;
7450 goto duplicate;
7451 }
7452 else
7453 {
7454 /* We remove the first xmm0 and keep the number of
7455 operands unchanged, which in fact duplicates the
7456 destination. */
7457 for (j = 1; j < i.operands; j++)
7458 {
7459 i.op[j - 1] = i.op[j];
7460 i.types[j - 1] = i.types[j];
7461 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
7462 i.flags[j - 1] = i.flags[j];
7463 }
7464 }
7465 }
7466 else if (i.tm.opcode_modifier.implicit1stxmm0)
7467 {
7468 gas_assert ((MAX_OPERANDS - 1) > dupl
7469 && (i.tm.opcode_modifier.vexsources
7470 == VEX3SOURCES));
7471
7472 /* Add the implicit xmm0 for instructions with VEX prefix
7473 and 3 sources. */
7474 for (j = i.operands; j > 0; j--)
7475 {
7476 i.op[j] = i.op[j - 1];
7477 i.types[j] = i.types[j - 1];
7478 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
7479 i.flags[j] = i.flags[j - 1];
7480 }
7481 i.op[0].regs
7482 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7483 i.types[0] = regxmm;
7484 i.tm.operand_types[0] = regxmm;
7485
7486 i.operands += 2;
7487 i.reg_operands += 2;
7488 i.tm.operands += 2;
7489
7490 dupl++;
7491 dest++;
7492 i.op[dupl] = i.op[dest];
7493 i.types[dupl] = i.types[dest];
7494 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7495 i.flags[dupl] = i.flags[dest];
7496 }
7497 else
7498 {
7499 duplicate:
7500 i.operands++;
7501 i.reg_operands++;
7502 i.tm.operands++;
7503
7504 i.op[dupl] = i.op[dest];
7505 i.types[dupl] = i.types[dest];
7506 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7507 i.flags[dupl] = i.flags[dest];
7508 }
7509
7510 if (i.tm.opcode_modifier.immext)
7511 process_immext ();
7512 }
7513 else if (i.tm.operand_types[0].bitfield.instance == Accum
7514 && i.tm.operand_types[0].bitfield.xmmword)
7515 {
7516 unsigned int j;
7517
7518 for (j = 1; j < i.operands; j++)
7519 {
7520 i.op[j - 1] = i.op[j];
7521 i.types[j - 1] = i.types[j];
7522
7523 /* We need to adjust fields in i.tm since they are used by
7524 build_modrm_byte. */
7525 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
7526
7527 i.flags[j - 1] = i.flags[j];
7528 }
7529
7530 i.operands--;
7531 i.reg_operands--;
7532 i.tm.operands--;
7533 }
7534 else if (i.tm.opcode_modifier.implicitquadgroup)
7535 {
7536 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7537
7538 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
7539 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
7540 regnum = register_number (i.op[1].regs);
7541 first_reg_in_group = regnum & ~3;
7542 last_reg_in_group = first_reg_in_group + 3;
7543 if (regnum != first_reg_in_group)
7544 as_warn (_("source register `%s%s' implicitly denotes"
7545 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7546 register_prefix, i.op[1].regs->reg_name,
7547 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7548 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7549 i.tm.name);
7550 }
7551 else if (i.tm.opcode_modifier.regkludge)
7552 {
7553 /* The imul $imm, %reg instruction is converted into
7554 imul $imm, %reg, %reg, and the clr %reg instruction
7555 is converted into xor %reg, %reg. */
7556
7557 unsigned int first_reg_op;
7558
7559 if (operand_type_check (i.types[0], reg))
7560 first_reg_op = 0;
7561 else
7562 first_reg_op = 1;
7563 /* Pretend we saw the extra register operand. */
7564 gas_assert (i.reg_operands == 1
7565 && i.op[first_reg_op + 1].regs == 0);
7566 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7567 i.types[first_reg_op + 1] = i.types[first_reg_op];
7568 i.operands++;
7569 i.reg_operands++;
7570 }
7571
7572 if (i.tm.opcode_modifier.modrm)
7573 {
7574 /* The opcode is completed (modulo i.tm.extension_opcode which
7575 must be put into the modrm byte). Now, we make the modrm and
7576 index base bytes based on all the info we've collected. */
7577
7578 default_seg = build_modrm_byte ();
7579 }
7580 else if (i.types[0].bitfield.class == SReg)
7581 {
7582 if (flag_code != CODE_64BIT
7583 ? i.tm.base_opcode == POP_SEG_SHORT
7584 && i.op[0].regs->reg_num == 1
7585 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7586 && i.op[0].regs->reg_num < 4)
7587 {
7588 as_bad (_("you can't `%s %s%s'"),
7589 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7590 return 0;
7591 }
7592 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7593 {
7594 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7595 i.tm.opcode_length = 2;
7596 }
7597 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7598 }
7599 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7600 {
7601 default_seg = &ds;
7602 }
7603 else if (i.tm.opcode_modifier.isstring)
7604 {
7605 /* For the string instructions that allow a segment override
7606 on one of their operands, the default segment is ds. */
7607 default_seg = &ds;
7608 }
7609 else if (i.short_form)
7610 {
7611 /* The register or float register operand is in operand
7612 0 or 1. */
7613 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
7614
7615 /* Register goes in low 3 bits of opcode. */
7616 i.tm.base_opcode |= i.op[op].regs->reg_num;
7617 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7618 i.rex |= REX_B;
7619 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7620 {
7621 /* Warn about some common errors, but press on regardless.
7622 The first case can be generated by gcc (<= 2.8.1). */
7623 if (i.operands == 2)
7624 {
7625 /* Reversed arguments on faddp, fsubp, etc. */
7626 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7627 register_prefix, i.op[!intel_syntax].regs->reg_name,
7628 register_prefix, i.op[intel_syntax].regs->reg_name);
7629 }
7630 else
7631 {
7632 /* Extraneous `l' suffix on fp insn. */
7633 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7634 register_prefix, i.op[0].regs->reg_name);
7635 }
7636 }
7637 }
7638
7639 if ((i.seg[0] || i.prefix[SEG_PREFIX])
7640 && i.tm.base_opcode == 0x8d /* lea */
7641 && !is_any_vex_encoding(&i.tm))
7642 {
7643 if (!quiet_warnings)
7644 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7645 if (optimize)
7646 {
7647 i.seg[0] = NULL;
7648 i.prefix[SEG_PREFIX] = 0;
7649 }
7650 }
7651
7652 /* If a segment was explicitly specified, and the specified segment
7653 is neither the default nor the one already recorded from a prefix,
7654 use an opcode prefix to select it. If we never figured out what
7655 the default segment is, then default_seg will be zero at this
7656 point, and the specified segment prefix will always be used. */
7657 if (i.seg[0]
7658 && i.seg[0] != default_seg
7659 && i.seg[0]->seg_prefix != i.prefix[SEG_PREFIX])
7660 {
7661 if (!add_prefix (i.seg[0]->seg_prefix))
7662 return 0;
7663 }
7664 return 1;
7665 }
7666
7667 static INLINE void set_rex_vrex (const reg_entry *r, unsigned int rex_bit,
7668 bfd_boolean do_sse2avx)
7669 {
7670 if (r->reg_flags & RegRex)
7671 {
7672 if (i.rex & rex_bit)
7673 as_bad (_("same type of prefix used twice"));
7674 i.rex |= rex_bit;
7675 }
7676 else if (do_sse2avx && (i.rex & rex_bit) && i.vex.register_specifier)
7677 {
7678 gas_assert (i.vex.register_specifier == r);
7679 i.vex.register_specifier += 8;
7680 }
7681
7682 if (r->reg_flags & RegVRex)
7683 i.vrex |= rex_bit;
7684 }
7685
7686 static const seg_entry *
7687 build_modrm_byte (void)
7688 {
7689 const seg_entry *default_seg = 0;
7690 unsigned int source, dest;
7691 int vex_3_sources;
7692
7693 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7694 if (vex_3_sources)
7695 {
7696 unsigned int nds, reg_slot;
7697 expressionS *exp;
7698
7699 dest = i.operands - 1;
7700 nds = dest - 1;
7701
7702 /* There are 2 kinds of instructions:
7703 1. 5 operands: 4 register operands or 3 register operands
7704 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7705 VexW0 or VexW1. The destination must be either XMM, YMM or
7706 ZMM register.
7707 2. 4 operands: 4 register operands or 3 register operands
7708 plus 1 memory operand, with VexXDS. */
7709 gas_assert ((i.reg_operands == 4
7710 || (i.reg_operands == 3 && i.mem_operands == 1))
7711 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7712 && i.tm.opcode_modifier.vexw
7713 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
7714
7715 /* If VexW1 is set, the first non-immediate operand is the source and
7716 the second non-immediate one is encoded in the immediate operand. */
7717 if (i.tm.opcode_modifier.vexw == VEXW1)
7718 {
7719 source = i.imm_operands;
7720 reg_slot = i.imm_operands + 1;
7721 }
7722 else
7723 {
7724 source = i.imm_operands + 1;
7725 reg_slot = i.imm_operands;
7726 }
7727
7728 if (i.imm_operands == 0)
7729 {
7730 /* When there is no immediate operand, generate an 8bit
7731 immediate operand to encode the first operand. */
7732 exp = &im_expressions[i.imm_operands++];
7733 i.op[i.operands].imms = exp;
7734 i.types[i.operands] = imm8;
7735 i.operands++;
7736
7737 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7738 exp->X_op = O_constant;
7739 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7740 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7741 }
7742 else
7743 {
7744 gas_assert (i.imm_operands == 1);
7745 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7746 gas_assert (!i.tm.opcode_modifier.immext);
7747
7748 /* Turn on Imm8 again so that output_imm will generate it. */
7749 i.types[0].bitfield.imm8 = 1;
7750
7751 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7752 i.op[0].imms->X_add_number
7753 |= register_number (i.op[reg_slot].regs) << 4;
7754 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7755 }
7756
7757 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
7758 i.vex.register_specifier = i.op[nds].regs;
7759 }
7760 else
7761 source = dest = 0;
7762
7763 /* i.reg_operands MUST be the number of real register operands;
7764 implicit registers do not count. If there are 3 register
7765 operands, it must be a instruction with VexNDS. For a
7766 instruction with VexNDD, the destination register is encoded
7767 in VEX prefix. If there are 4 register operands, it must be
7768 a instruction with VEX prefix and 3 sources. */
7769 if (i.mem_operands == 0
7770 && ((i.reg_operands == 2
7771 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7772 || (i.reg_operands == 3
7773 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7774 || (i.reg_operands == 4 && vex_3_sources)))
7775 {
7776 switch (i.operands)
7777 {
7778 case 2:
7779 source = 0;
7780 break;
7781 case 3:
7782 /* When there are 3 operands, one of them may be immediate,
7783 which may be the first or the last operand. Otherwise,
7784 the first operand must be shift count register (cl) or it
7785 is an instruction with VexNDS. */
7786 gas_assert (i.imm_operands == 1
7787 || (i.imm_operands == 0
7788 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7789 || (i.types[0].bitfield.instance == RegC
7790 && i.types[0].bitfield.byte))));
7791 if (operand_type_check (i.types[0], imm)
7792 || (i.types[0].bitfield.instance == RegC
7793 && i.types[0].bitfield.byte))
7794 source = 1;
7795 else
7796 source = 0;
7797 break;
7798 case 4:
7799 /* When there are 4 operands, the first two must be 8bit
7800 immediate operands. The source operand will be the 3rd
7801 one.
7802
7803 For instructions with VexNDS, if the first operand
7804 an imm8, the source operand is the 2nd one. If the last
7805 operand is imm8, the source operand is the first one. */
7806 gas_assert ((i.imm_operands == 2
7807 && i.types[0].bitfield.imm8
7808 && i.types[1].bitfield.imm8)
7809 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7810 && i.imm_operands == 1
7811 && (i.types[0].bitfield.imm8
7812 || i.types[i.operands - 1].bitfield.imm8
7813 || i.rounding)));
7814 if (i.imm_operands == 2)
7815 source = 2;
7816 else
7817 {
7818 if (i.types[0].bitfield.imm8)
7819 source = 1;
7820 else
7821 source = 0;
7822 }
7823 break;
7824 case 5:
7825 if (is_evex_encoding (&i.tm))
7826 {
7827 /* For EVEX instructions, when there are 5 operands, the
7828 first one must be immediate operand. If the second one
7829 is immediate operand, the source operand is the 3th
7830 one. If the last one is immediate operand, the source
7831 operand is the 2nd one. */
7832 gas_assert (i.imm_operands == 2
7833 && i.tm.opcode_modifier.sae
7834 && operand_type_check (i.types[0], imm));
7835 if (operand_type_check (i.types[1], imm))
7836 source = 2;
7837 else if (operand_type_check (i.types[4], imm))
7838 source = 1;
7839 else
7840 abort ();
7841 }
7842 break;
7843 default:
7844 abort ();
7845 }
7846
7847 if (!vex_3_sources)
7848 {
7849 dest = source + 1;
7850
7851 /* RC/SAE operand could be between DEST and SRC. That happens
7852 when one operand is GPR and the other one is XMM/YMM/ZMM
7853 register. */
7854 if (i.rounding && i.rounding->operand == (int) dest)
7855 dest++;
7856
7857 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7858 {
7859 /* For instructions with VexNDS, the register-only source
7860 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7861 register. It is encoded in VEX prefix. */
7862
7863 i386_operand_type op;
7864 unsigned int vvvv;
7865
7866 /* Check register-only source operand when two source
7867 operands are swapped. */
7868 if (!i.tm.operand_types[source].bitfield.baseindex
7869 && i.tm.operand_types[dest].bitfield.baseindex)
7870 {
7871 vvvv = source;
7872 source = dest;
7873 }
7874 else
7875 vvvv = dest;
7876
7877 op = i.tm.operand_types[vvvv];
7878 if ((dest + 1) >= i.operands
7879 || ((op.bitfield.class != Reg
7880 || (!op.bitfield.dword && !op.bitfield.qword))
7881 && op.bitfield.class != RegSIMD
7882 && !operand_type_equal (&op, &regmask)))
7883 abort ();
7884 i.vex.register_specifier = i.op[vvvv].regs;
7885 dest++;
7886 }
7887 }
7888
7889 i.rm.mode = 3;
7890 /* One of the register operands will be encoded in the i.rm.reg
7891 field, the other in the combined i.rm.mode and i.rm.regmem
7892 fields. If no form of this instruction supports a memory
7893 destination operand, then we assume the source operand may
7894 sometimes be a memory operand and so we need to store the
7895 destination in the i.rm.reg field. */
7896 if (!i.tm.opcode_modifier.regmem
7897 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7898 {
7899 i.rm.reg = i.op[dest].regs->reg_num;
7900 i.rm.regmem = i.op[source].regs->reg_num;
7901 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7902 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
7903 i.has_regmmx = TRUE;
7904 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7905 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
7906 {
7907 if (i.types[dest].bitfield.zmmword
7908 || i.types[source].bitfield.zmmword)
7909 i.has_regzmm = TRUE;
7910 else if (i.types[dest].bitfield.ymmword
7911 || i.types[source].bitfield.ymmword)
7912 i.has_regymm = TRUE;
7913 else
7914 i.has_regxmm = TRUE;
7915 }
7916 set_rex_vrex (i.op[dest].regs, REX_R, i.tm.opcode_modifier.sse2avx);
7917 set_rex_vrex (i.op[source].regs, REX_B, FALSE);
7918 }
7919 else
7920 {
7921 i.rm.reg = i.op[source].regs->reg_num;
7922 i.rm.regmem = i.op[dest].regs->reg_num;
7923 set_rex_vrex (i.op[dest].regs, REX_B, i.tm.opcode_modifier.sse2avx);
7924 set_rex_vrex (i.op[source].regs, REX_R, FALSE);
7925 }
7926 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7927 {
7928 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
7929 abort ();
7930 i.rex &= ~REX_R;
7931 add_prefix (LOCK_PREFIX_OPCODE);
7932 }
7933 }
7934 else
7935 { /* If it's not 2 reg operands... */
7936 unsigned int mem;
7937
7938 if (i.mem_operands)
7939 {
7940 unsigned int fake_zero_displacement = 0;
7941 unsigned int op;
7942
7943 for (op = 0; op < i.operands; op++)
7944 if (i.flags[op] & Operand_Mem)
7945 break;
7946 gas_assert (op < i.operands);
7947
7948 if (i.tm.opcode_modifier.vecsib)
7949 {
7950 if (i.index_reg->reg_num == RegIZ)
7951 abort ();
7952
7953 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7954 if (!i.base_reg)
7955 {
7956 i.sib.base = NO_BASE_REGISTER;
7957 i.sib.scale = i.log2_scale_factor;
7958 i.types[op].bitfield.disp8 = 0;
7959 i.types[op].bitfield.disp16 = 0;
7960 i.types[op].bitfield.disp64 = 0;
7961 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7962 {
7963 /* Must be 32 bit */
7964 i.types[op].bitfield.disp32 = 1;
7965 i.types[op].bitfield.disp32s = 0;
7966 }
7967 else
7968 {
7969 i.types[op].bitfield.disp32 = 0;
7970 i.types[op].bitfield.disp32s = 1;
7971 }
7972 }
7973 i.sib.index = i.index_reg->reg_num;
7974 set_rex_vrex (i.index_reg, REX_X, FALSE);
7975 }
7976
7977 default_seg = &ds;
7978
7979 if (i.base_reg == 0)
7980 {
7981 i.rm.mode = 0;
7982 if (!i.disp_operands)
7983 fake_zero_displacement = 1;
7984 if (i.index_reg == 0)
7985 {
7986 i386_operand_type newdisp;
7987
7988 gas_assert (!i.tm.opcode_modifier.vecsib);
7989 /* Operand is just <disp> */
7990 if (flag_code == CODE_64BIT)
7991 {
7992 /* 64bit mode overwrites the 32bit absolute
7993 addressing by RIP relative addressing and
7994 absolute addressing is encoded by one of the
7995 redundant SIB forms. */
7996 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7997 i.sib.base = NO_BASE_REGISTER;
7998 i.sib.index = NO_INDEX_REGISTER;
7999 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
8000 }
8001 else if ((flag_code == CODE_16BIT)
8002 ^ (i.prefix[ADDR_PREFIX] != 0))
8003 {
8004 i.rm.regmem = NO_BASE_REGISTER_16;
8005 newdisp = disp16;
8006 }
8007 else
8008 {
8009 i.rm.regmem = NO_BASE_REGISTER;
8010 newdisp = disp32;
8011 }
8012 i.types[op] = operand_type_and_not (i.types[op], anydisp);
8013 i.types[op] = operand_type_or (i.types[op], newdisp);
8014 }
8015 else if (!i.tm.opcode_modifier.vecsib)
8016 {
8017 /* !i.base_reg && i.index_reg */
8018 if (i.index_reg->reg_num == RegIZ)
8019 i.sib.index = NO_INDEX_REGISTER;
8020 else
8021 i.sib.index = i.index_reg->reg_num;
8022 i.sib.base = NO_BASE_REGISTER;
8023 i.sib.scale = i.log2_scale_factor;
8024 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8025 i.types[op].bitfield.disp8 = 0;
8026 i.types[op].bitfield.disp16 = 0;
8027 i.types[op].bitfield.disp64 = 0;
8028 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
8029 {
8030 /* Must be 32 bit */
8031 i.types[op].bitfield.disp32 = 1;
8032 i.types[op].bitfield.disp32s = 0;
8033 }
8034 else
8035 {
8036 i.types[op].bitfield.disp32 = 0;
8037 i.types[op].bitfield.disp32s = 1;
8038 }
8039 if ((i.index_reg->reg_flags & RegRex) != 0)
8040 i.rex |= REX_X;
8041 }
8042 }
8043 /* RIP addressing for 64bit mode. */
8044 else if (i.base_reg->reg_num == RegIP)
8045 {
8046 gas_assert (!i.tm.opcode_modifier.vecsib);
8047 i.rm.regmem = NO_BASE_REGISTER;
8048 i.types[op].bitfield.disp8 = 0;
8049 i.types[op].bitfield.disp16 = 0;
8050 i.types[op].bitfield.disp32 = 0;
8051 i.types[op].bitfield.disp32s = 1;
8052 i.types[op].bitfield.disp64 = 0;
8053 i.flags[op] |= Operand_PCrel;
8054 if (! i.disp_operands)
8055 fake_zero_displacement = 1;
8056 }
8057 else if (i.base_reg->reg_type.bitfield.word)
8058 {
8059 gas_assert (!i.tm.opcode_modifier.vecsib);
8060 switch (i.base_reg->reg_num)
8061 {
8062 case 3: /* (%bx) */
8063 if (i.index_reg == 0)
8064 i.rm.regmem = 7;
8065 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
8066 i.rm.regmem = i.index_reg->reg_num - 6;
8067 break;
8068 case 5: /* (%bp) */
8069 default_seg = &ss;
8070 if (i.index_reg == 0)
8071 {
8072 i.rm.regmem = 6;
8073 if (operand_type_check (i.types[op], disp) == 0)
8074 {
8075 /* fake (%bp) into 0(%bp) */
8076 i.types[op].bitfield.disp8 = 1;
8077 fake_zero_displacement = 1;
8078 }
8079 }
8080 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
8081 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
8082 break;
8083 default: /* (%si) -> 4 or (%di) -> 5 */
8084 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
8085 }
8086 i.rm.mode = mode_from_disp_size (i.types[op]);
8087 }
8088 else /* i.base_reg and 32/64 bit mode */
8089 {
8090 if (flag_code == CODE_64BIT
8091 && operand_type_check (i.types[op], disp))
8092 {
8093 i.types[op].bitfield.disp16 = 0;
8094 i.types[op].bitfield.disp64 = 0;
8095 if (i.prefix[ADDR_PREFIX] == 0)
8096 {
8097 i.types[op].bitfield.disp32 = 0;
8098 i.types[op].bitfield.disp32s = 1;
8099 }
8100 else
8101 {
8102 i.types[op].bitfield.disp32 = 1;
8103 i.types[op].bitfield.disp32s = 0;
8104 }
8105 }
8106
8107 if (!i.tm.opcode_modifier.vecsib)
8108 i.rm.regmem = i.base_reg->reg_num;
8109 if ((i.base_reg->reg_flags & RegRex) != 0)
8110 i.rex |= REX_B;
8111 i.sib.base = i.base_reg->reg_num;
8112 /* x86-64 ignores REX prefix bit here to avoid decoder
8113 complications. */
8114 if (!(i.base_reg->reg_flags & RegRex)
8115 && (i.base_reg->reg_num == EBP_REG_NUM
8116 || i.base_reg->reg_num == ESP_REG_NUM))
8117 default_seg = &ss;
8118 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
8119 {
8120 fake_zero_displacement = 1;
8121 i.types[op].bitfield.disp8 = 1;
8122 }
8123 i.sib.scale = i.log2_scale_factor;
8124 if (i.index_reg == 0)
8125 {
8126 gas_assert (!i.tm.opcode_modifier.vecsib);
8127 /* <disp>(%esp) becomes two byte modrm with no index
8128 register. We've already stored the code for esp
8129 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
8130 Any base register besides %esp will not use the
8131 extra modrm byte. */
8132 i.sib.index = NO_INDEX_REGISTER;
8133 }
8134 else if (!i.tm.opcode_modifier.vecsib)
8135 {
8136 if (i.index_reg->reg_num == RegIZ)
8137 i.sib.index = NO_INDEX_REGISTER;
8138 else
8139 i.sib.index = i.index_reg->reg_num;
8140 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8141 if ((i.index_reg->reg_flags & RegRex) != 0)
8142 i.rex |= REX_X;
8143 }
8144
8145 if (i.disp_operands
8146 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
8147 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
8148 i.rm.mode = 0;
8149 else
8150 {
8151 if (!fake_zero_displacement
8152 && !i.disp_operands
8153 && i.disp_encoding)
8154 {
8155 fake_zero_displacement = 1;
8156 if (i.disp_encoding == disp_encoding_8bit)
8157 i.types[op].bitfield.disp8 = 1;
8158 else
8159 i.types[op].bitfield.disp32 = 1;
8160 }
8161 i.rm.mode = mode_from_disp_size (i.types[op]);
8162 }
8163 }
8164
8165 if (fake_zero_displacement)
8166 {
8167 /* Fakes a zero displacement assuming that i.types[op]
8168 holds the correct displacement size. */
8169 expressionS *exp;
8170
8171 gas_assert (i.op[op].disps == 0);
8172 exp = &disp_expressions[i.disp_operands++];
8173 i.op[op].disps = exp;
8174 exp->X_op = O_constant;
8175 exp->X_add_number = 0;
8176 exp->X_add_symbol = (symbolS *) 0;
8177 exp->X_op_symbol = (symbolS *) 0;
8178 }
8179
8180 mem = op;
8181 }
8182 else
8183 mem = ~0;
8184
8185 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
8186 {
8187 if (operand_type_check (i.types[0], imm))
8188 i.vex.register_specifier = NULL;
8189 else
8190 {
8191 /* VEX.vvvv encodes one of the sources when the first
8192 operand is not an immediate. */
8193 if (i.tm.opcode_modifier.vexw == VEXW0)
8194 i.vex.register_specifier = i.op[0].regs;
8195 else
8196 i.vex.register_specifier = i.op[1].regs;
8197 }
8198
8199 /* Destination is a XMM register encoded in the ModRM.reg
8200 and VEX.R bit. */
8201 i.rm.reg = i.op[2].regs->reg_num;
8202 if ((i.op[2].regs->reg_flags & RegRex) != 0)
8203 i.rex |= REX_R;
8204
8205 /* ModRM.rm and VEX.B encodes the other source. */
8206 if (!i.mem_operands)
8207 {
8208 i.rm.mode = 3;
8209
8210 if (i.tm.opcode_modifier.vexw == VEXW0)
8211 i.rm.regmem = i.op[1].regs->reg_num;
8212 else
8213 i.rm.regmem = i.op[0].regs->reg_num;
8214
8215 if ((i.op[1].regs->reg_flags & RegRex) != 0)
8216 i.rex |= REX_B;
8217 }
8218 }
8219 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
8220 {
8221 i.vex.register_specifier = i.op[2].regs;
8222 if (!i.mem_operands)
8223 {
8224 i.rm.mode = 3;
8225 i.rm.regmem = i.op[1].regs->reg_num;
8226 if ((i.op[1].regs->reg_flags & RegRex) != 0)
8227 i.rex |= REX_B;
8228 }
8229 }
8230 /* Fill in i.rm.reg or i.rm.regmem field with register operand
8231 (if any) based on i.tm.extension_opcode. Again, we must be
8232 careful to make sure that segment/control/debug/test/MMX
8233 registers are coded into the i.rm.reg field. */
8234 else if (i.reg_operands)
8235 {
8236 unsigned int op;
8237 unsigned int vex_reg = ~0;
8238
8239 for (op = 0; op < i.operands; op++)
8240 {
8241 if (i.types[op].bitfield.class == Reg
8242 || i.types[op].bitfield.class == RegBND
8243 || i.types[op].bitfield.class == RegMask
8244 || i.types[op].bitfield.class == SReg
8245 || i.types[op].bitfield.class == RegCR
8246 || i.types[op].bitfield.class == RegDR
8247 || i.types[op].bitfield.class == RegTR)
8248 break;
8249 if (i.types[op].bitfield.class == RegSIMD)
8250 {
8251 if (i.types[op].bitfield.zmmword)
8252 i.has_regzmm = TRUE;
8253 else if (i.types[op].bitfield.ymmword)
8254 i.has_regymm = TRUE;
8255 else
8256 i.has_regxmm = TRUE;
8257 break;
8258 }
8259 if (i.types[op].bitfield.class == RegMMX)
8260 {
8261 i.has_regmmx = TRUE;
8262 break;
8263 }
8264 }
8265
8266 if (vex_3_sources)
8267 op = dest;
8268 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
8269 {
8270 /* For instructions with VexNDS, the register-only
8271 source operand is encoded in VEX prefix. */
8272 gas_assert (mem != (unsigned int) ~0);
8273
8274 if (op > mem)
8275 {
8276 vex_reg = op++;
8277 gas_assert (op < i.operands);
8278 }
8279 else
8280 {
8281 /* Check register-only source operand when two source
8282 operands are swapped. */
8283 if (!i.tm.operand_types[op].bitfield.baseindex
8284 && i.tm.operand_types[op + 1].bitfield.baseindex)
8285 {
8286 vex_reg = op;
8287 op += 2;
8288 gas_assert (mem == (vex_reg + 1)
8289 && op < i.operands);
8290 }
8291 else
8292 {
8293 vex_reg = op + 1;
8294 gas_assert (vex_reg < i.operands);
8295 }
8296 }
8297 }
8298 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
8299 {
8300 /* For instructions with VexNDD, the register destination
8301 is encoded in VEX prefix. */
8302 if (i.mem_operands == 0)
8303 {
8304 /* There is no memory operand. */
8305 gas_assert ((op + 2) == i.operands);
8306 vex_reg = op + 1;
8307 }
8308 else
8309 {
8310 /* There are only 2 non-immediate operands. */
8311 gas_assert (op < i.imm_operands + 2
8312 && i.operands == i.imm_operands + 2);
8313 vex_reg = i.imm_operands + 1;
8314 }
8315 }
8316 else
8317 gas_assert (op < i.operands);
8318
8319 if (vex_reg != (unsigned int) ~0)
8320 {
8321 i386_operand_type *type = &i.tm.operand_types[vex_reg];
8322
8323 if ((type->bitfield.class != Reg
8324 || (!type->bitfield.dword && !type->bitfield.qword))
8325 && type->bitfield.class != RegSIMD
8326 && !operand_type_equal (type, &regmask))
8327 abort ();
8328
8329 i.vex.register_specifier = i.op[vex_reg].regs;
8330 }
8331
8332 /* Don't set OP operand twice. */
8333 if (vex_reg != op)
8334 {
8335 /* If there is an extension opcode to put here, the
8336 register number must be put into the regmem field. */
8337 if (i.tm.extension_opcode != None)
8338 {
8339 i.rm.regmem = i.op[op].regs->reg_num;
8340 set_rex_vrex (i.op[op].regs, REX_B,
8341 i.tm.opcode_modifier.sse2avx);
8342 }
8343 else
8344 {
8345 i.rm.reg = i.op[op].regs->reg_num;
8346 set_rex_vrex (i.op[op].regs, REX_R,
8347 i.tm.opcode_modifier.sse2avx);
8348 }
8349 }
8350
8351 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
8352 must set it to 3 to indicate this is a register operand
8353 in the regmem field. */
8354 if (!i.mem_operands)
8355 i.rm.mode = 3;
8356 }
8357
8358 /* Fill in i.rm.reg field with extension opcode (if any). */
8359 if (i.tm.extension_opcode != None)
8360 i.rm.reg = i.tm.extension_opcode;
8361 }
8362 return default_seg;
8363 }
8364
8365 static unsigned int
8366 flip_code16 (unsigned int code16)
8367 {
8368 gas_assert (i.tm.operands == 1);
8369
8370 return !(i.prefix[REX_PREFIX] & REX_W)
8371 && (code16 ? i.tm.operand_types[0].bitfield.disp32
8372 || i.tm.operand_types[0].bitfield.disp32s
8373 : i.tm.operand_types[0].bitfield.disp16)
8374 ? CODE16 : 0;
8375 }
8376
8377 static void
8378 output_branch (void)
8379 {
8380 char *p;
8381 int size;
8382 int code16;
8383 int prefix;
8384 relax_substateT subtype;
8385 symbolS *sym;
8386 offsetT off;
8387
8388 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
8389 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
8390
8391 prefix = 0;
8392 if (i.prefix[DATA_PREFIX] != 0)
8393 {
8394 prefix = 1;
8395 i.prefixes -= 1;
8396 code16 ^= flip_code16(code16);
8397 }
8398 /* Pentium4 branch hints. */
8399 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8400 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8401 {
8402 prefix++;
8403 i.prefixes--;
8404 }
8405 if (i.prefix[REX_PREFIX] != 0)
8406 {
8407 prefix++;
8408 i.prefixes--;
8409 }
8410
8411 /* BND prefixed jump. */
8412 if (i.prefix[BND_PREFIX] != 0)
8413 {
8414 prefix++;
8415 i.prefixes--;
8416 }
8417
8418 if (i.prefixes != 0)
8419 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8420
8421 /* It's always a symbol; End frag & setup for relax.
8422 Make sure there is enough room in this frag for the largest
8423 instruction we may generate in md_convert_frag. This is 2
8424 bytes for the opcode and room for the prefix and largest
8425 displacement. */
8426 frag_grow (prefix + 2 + 4);
8427 /* Prefix and 1 opcode byte go in fr_fix. */
8428 p = frag_more (prefix + 1);
8429 if (i.prefix[DATA_PREFIX] != 0)
8430 *p++ = DATA_PREFIX_OPCODE;
8431 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
8432 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
8433 *p++ = i.prefix[SEG_PREFIX];
8434 if (i.prefix[BND_PREFIX] != 0)
8435 *p++ = BND_PREFIX_OPCODE;
8436 if (i.prefix[REX_PREFIX] != 0)
8437 *p++ = i.prefix[REX_PREFIX];
8438 *p = i.tm.base_opcode;
8439
8440 if ((unsigned char) *p == JUMP_PC_RELATIVE)
8441 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
8442 else if (cpu_arch_flags.bitfield.cpui386)
8443 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
8444 else
8445 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
8446 subtype |= code16;
8447
8448 sym = i.op[0].disps->X_add_symbol;
8449 off = i.op[0].disps->X_add_number;
8450
8451 if (i.op[0].disps->X_op != O_constant
8452 && i.op[0].disps->X_op != O_symbol)
8453 {
8454 /* Handle complex expressions. */
8455 sym = make_expr_symbol (i.op[0].disps);
8456 off = 0;
8457 }
8458
8459 /* 1 possible extra opcode + 4 byte displacement go in var part.
8460 Pass reloc in fr_var. */
8461 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
8462 }
8463
8464 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8465 /* Return TRUE iff PLT32 relocation should be used for branching to
8466 symbol S. */
8467
8468 static bfd_boolean
8469 need_plt32_p (symbolS *s)
8470 {
8471 /* PLT32 relocation is ELF only. */
8472 if (!IS_ELF)
8473 return FALSE;
8474
8475 #ifdef TE_SOLARIS
8476 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
8477 krtld support it. */
8478 return FALSE;
8479 #endif
8480
8481 /* Since there is no need to prepare for PLT branch on x86-64, we
8482 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
8483 be used as a marker for 32-bit PC-relative branches. */
8484 if (!object_64bit)
8485 return FALSE;
8486
8487 /* Weak or undefined symbol need PLT32 relocation. */
8488 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
8489 return TRUE;
8490
8491 /* Non-global symbol doesn't need PLT32 relocation. */
8492 if (! S_IS_EXTERNAL (s))
8493 return FALSE;
8494
8495 /* Other global symbols need PLT32 relocation. NB: Symbol with
8496 non-default visibilities are treated as normal global symbol
8497 so that PLT32 relocation can be used as a marker for 32-bit
8498 PC-relative branches. It is useful for linker relaxation. */
8499 return TRUE;
8500 }
8501 #endif
8502
8503 static void
8504 output_jump (void)
8505 {
8506 char *p;
8507 int size;
8508 fixS *fixP;
8509 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
8510
8511 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
8512 {
8513 /* This is a loop or jecxz type instruction. */
8514 size = 1;
8515 if (i.prefix[ADDR_PREFIX] != 0)
8516 {
8517 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
8518 i.prefixes -= 1;
8519 }
8520 /* Pentium4 branch hints. */
8521 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8522 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8523 {
8524 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
8525 i.prefixes--;
8526 }
8527 }
8528 else
8529 {
8530 int code16;
8531
8532 code16 = 0;
8533 if (flag_code == CODE_16BIT)
8534 code16 = CODE16;
8535
8536 if (i.prefix[DATA_PREFIX] != 0)
8537 {
8538 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8539 i.prefixes -= 1;
8540 code16 ^= flip_code16(code16);
8541 }
8542
8543 size = 4;
8544 if (code16)
8545 size = 2;
8546 }
8547
8548 /* BND prefixed jump. */
8549 if (i.prefix[BND_PREFIX] != 0)
8550 {
8551 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
8552 i.prefixes -= 1;
8553 }
8554
8555 if (i.prefix[REX_PREFIX] != 0)
8556 {
8557 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
8558 i.prefixes -= 1;
8559 }
8560
8561 if (i.prefixes != 0)
8562 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8563
8564 p = frag_more (i.tm.opcode_length + size);
8565 switch (i.tm.opcode_length)
8566 {
8567 case 2:
8568 *p++ = i.tm.base_opcode >> 8;
8569 /* Fall through. */
8570 case 1:
8571 *p++ = i.tm.base_opcode;
8572 break;
8573 default:
8574 abort ();
8575 }
8576
8577 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8578 if (size == 4
8579 && jump_reloc == NO_RELOC
8580 && need_plt32_p (i.op[0].disps->X_add_symbol))
8581 jump_reloc = BFD_RELOC_X86_64_PLT32;
8582 #endif
8583
8584 jump_reloc = reloc (size, 1, 1, jump_reloc);
8585
8586 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8587 i.op[0].disps, 1, jump_reloc);
8588
8589 /* All jumps handled here are signed, but don't use a signed limit
8590 check for 32 and 16 bit jumps as we want to allow wrap around at
8591 4G and 64k respectively. */
8592 if (size == 1)
8593 fixP->fx_signed = 1;
8594 }
8595
8596 static void
8597 output_interseg_jump (void)
8598 {
8599 char *p;
8600 int size;
8601 int prefix;
8602 int code16;
8603
8604 code16 = 0;
8605 if (flag_code == CODE_16BIT)
8606 code16 = CODE16;
8607
8608 prefix = 0;
8609 if (i.prefix[DATA_PREFIX] != 0)
8610 {
8611 prefix = 1;
8612 i.prefixes -= 1;
8613 code16 ^= CODE16;
8614 }
8615
8616 gas_assert (!i.prefix[REX_PREFIX]);
8617
8618 size = 4;
8619 if (code16)
8620 size = 2;
8621
8622 if (i.prefixes != 0)
8623 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8624
8625 /* 1 opcode; 2 segment; offset */
8626 p = frag_more (prefix + 1 + 2 + size);
8627
8628 if (i.prefix[DATA_PREFIX] != 0)
8629 *p++ = DATA_PREFIX_OPCODE;
8630
8631 if (i.prefix[REX_PREFIX] != 0)
8632 *p++ = i.prefix[REX_PREFIX];
8633
8634 *p++ = i.tm.base_opcode;
8635 if (i.op[1].imms->X_op == O_constant)
8636 {
8637 offsetT n = i.op[1].imms->X_add_number;
8638
8639 if (size == 2
8640 && !fits_in_unsigned_word (n)
8641 && !fits_in_signed_word (n))
8642 {
8643 as_bad (_("16-bit jump out of range"));
8644 return;
8645 }
8646 md_number_to_chars (p, n, size);
8647 }
8648 else
8649 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8650 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8651 if (i.op[0].imms->X_op != O_constant)
8652 as_bad (_("can't handle non absolute segment in `%s'"),
8653 i.tm.name);
8654 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8655 }
8656
8657 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8658 void
8659 x86_cleanup (void)
8660 {
8661 char *p;
8662 asection *seg = now_seg;
8663 subsegT subseg = now_subseg;
8664 asection *sec;
8665 unsigned int alignment, align_size_1;
8666 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8667 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8668 unsigned int padding;
8669
8670 if (!IS_ELF || !x86_used_note)
8671 return;
8672
8673 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8674
8675 /* The .note.gnu.property section layout:
8676
8677 Field Length Contents
8678 ---- ---- ----
8679 n_namsz 4 4
8680 n_descsz 4 The note descriptor size
8681 n_type 4 NT_GNU_PROPERTY_TYPE_0
8682 n_name 4 "GNU"
8683 n_desc n_descsz The program property array
8684 .... .... ....
8685 */
8686
8687 /* Create the .note.gnu.property section. */
8688 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8689 bfd_set_section_flags (sec,
8690 (SEC_ALLOC
8691 | SEC_LOAD
8692 | SEC_DATA
8693 | SEC_HAS_CONTENTS
8694 | SEC_READONLY));
8695
8696 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8697 {
8698 align_size_1 = 7;
8699 alignment = 3;
8700 }
8701 else
8702 {
8703 align_size_1 = 3;
8704 alignment = 2;
8705 }
8706
8707 bfd_set_section_alignment (sec, alignment);
8708 elf_section_type (sec) = SHT_NOTE;
8709
8710 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8711 + 4-byte data */
8712 isa_1_descsz_raw = 4 + 4 + 4;
8713 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8714 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8715
8716 feature_2_descsz_raw = isa_1_descsz;
8717 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8718 + 4-byte data */
8719 feature_2_descsz_raw += 4 + 4 + 4;
8720 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8721 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8722 & ~align_size_1);
8723
8724 descsz = feature_2_descsz;
8725 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8726 p = frag_more (4 + 4 + 4 + 4 + descsz);
8727
8728 /* Write n_namsz. */
8729 md_number_to_chars (p, (valueT) 4, 4);
8730
8731 /* Write n_descsz. */
8732 md_number_to_chars (p + 4, (valueT) descsz, 4);
8733
8734 /* Write n_type. */
8735 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8736
8737 /* Write n_name. */
8738 memcpy (p + 4 * 3, "GNU", 4);
8739
8740 /* Write 4-byte type. */
8741 md_number_to_chars (p + 4 * 4,
8742 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8743
8744 /* Write 4-byte data size. */
8745 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8746
8747 /* Write 4-byte data. */
8748 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8749
8750 /* Zero out paddings. */
8751 padding = isa_1_descsz - isa_1_descsz_raw;
8752 if (padding)
8753 memset (p + 4 * 7, 0, padding);
8754
8755 /* Write 4-byte type. */
8756 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8757 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8758
8759 /* Write 4-byte data size. */
8760 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8761
8762 /* Write 4-byte data. */
8763 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8764 (valueT) x86_feature_2_used, 4);
8765
8766 /* Zero out paddings. */
8767 padding = feature_2_descsz - feature_2_descsz_raw;
8768 if (padding)
8769 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8770
8771 /* We probably can't restore the current segment, for there likely
8772 isn't one yet... */
8773 if (seg && subseg)
8774 subseg_set (seg, subseg);
8775 }
8776 #endif
8777
8778 static unsigned int
8779 encoding_length (const fragS *start_frag, offsetT start_off,
8780 const char *frag_now_ptr)
8781 {
8782 unsigned int len = 0;
8783
8784 if (start_frag != frag_now)
8785 {
8786 const fragS *fr = start_frag;
8787
8788 do {
8789 len += fr->fr_fix;
8790 fr = fr->fr_next;
8791 } while (fr && fr != frag_now);
8792 }
8793
8794 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8795 }
8796
8797 /* Return 1 for test, and, cmp, add, sub, inc and dec which may
8798 be macro-fused with conditional jumps.
8799 NB: If TEST/AND/CMP/ADD/SUB/INC/DEC is of RIP relative address,
8800 or is one of the following format:
8801
8802 cmp m, imm
8803 add m, imm
8804 sub m, imm
8805 test m, imm
8806 and m, imm
8807 inc m
8808 dec m
8809
8810 it is unfusible. */
8811
8812 static int
8813 maybe_fused_with_jcc_p (enum mf_cmp_kind* mf_cmp_p)
8814 {
8815 /* No RIP address. */
8816 if (i.base_reg && i.base_reg->reg_num == RegIP)
8817 return 0;
8818
8819 /* No VEX/EVEX encoding. */
8820 if (is_any_vex_encoding (&i.tm))
8821 return 0;
8822
8823 /* add, sub without add/sub m, imm. */
8824 if (i.tm.base_opcode <= 5
8825 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8826 || ((i.tm.base_opcode | 3) == 0x83
8827 && (i.tm.extension_opcode == 0x5
8828 || i.tm.extension_opcode == 0x0)))
8829 {
8830 *mf_cmp_p = mf_cmp_alu_cmp;
8831 return !(i.mem_operands && i.imm_operands);
8832 }
8833
8834 /* and without and m, imm. */
8835 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8836 || ((i.tm.base_opcode | 3) == 0x83
8837 && i.tm.extension_opcode == 0x4))
8838 {
8839 *mf_cmp_p = mf_cmp_test_and;
8840 return !(i.mem_operands && i.imm_operands);
8841 }
8842
8843 /* test without test m imm. */
8844 if ((i.tm.base_opcode | 1) == 0x85
8845 || (i.tm.base_opcode | 1) == 0xa9
8846 || ((i.tm.base_opcode | 1) == 0xf7
8847 && i.tm.extension_opcode == 0))
8848 {
8849 *mf_cmp_p = mf_cmp_test_and;
8850 return !(i.mem_operands && i.imm_operands);
8851 }
8852
8853 /* cmp without cmp m, imm. */
8854 if ((i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
8855 || ((i.tm.base_opcode | 3) == 0x83
8856 && (i.tm.extension_opcode == 0x7)))
8857 {
8858 *mf_cmp_p = mf_cmp_alu_cmp;
8859 return !(i.mem_operands && i.imm_operands);
8860 }
8861
8862 /* inc, dec without inc/dec m. */
8863 if ((i.tm.cpu_flags.bitfield.cpuno64
8864 && (i.tm.base_opcode | 0xf) == 0x4f)
8865 || ((i.tm.base_opcode | 1) == 0xff
8866 && i.tm.extension_opcode <= 0x1))
8867 {
8868 *mf_cmp_p = mf_cmp_incdec;
8869 return !i.mem_operands;
8870 }
8871
8872 return 0;
8873 }
8874
8875 /* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8876
8877 static int
8878 add_fused_jcc_padding_frag_p (enum mf_cmp_kind* mf_cmp_p)
8879 {
8880 /* NB: Don't work with COND_JUMP86 without i386. */
8881 if (!align_branch_power
8882 || now_seg == absolute_section
8883 || !cpu_arch_flags.bitfield.cpui386
8884 || !(align_branch & align_branch_fused_bit))
8885 return 0;
8886
8887 if (maybe_fused_with_jcc_p (mf_cmp_p))
8888 {
8889 if (last_insn.kind == last_insn_other
8890 || last_insn.seg != now_seg)
8891 return 1;
8892 if (flag_debug)
8893 as_warn_where (last_insn.file, last_insn.line,
8894 _("`%s` skips -malign-branch-boundary on `%s`"),
8895 last_insn.name, i.tm.name);
8896 }
8897
8898 return 0;
8899 }
8900
8901 /* Return 1 if a BRANCH_PREFIX frag should be generated. */
8902
8903 static int
8904 add_branch_prefix_frag_p (void)
8905 {
8906 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8907 to PadLock instructions since they include prefixes in opcode. */
8908 if (!align_branch_power
8909 || !align_branch_prefix_size
8910 || now_seg == absolute_section
8911 || i.tm.cpu_flags.bitfield.cpupadlock
8912 || !cpu_arch_flags.bitfield.cpui386)
8913 return 0;
8914
8915 /* Don't add prefix if it is a prefix or there is no operand in case
8916 that segment prefix is special. */
8917 if (!i.operands || i.tm.opcode_modifier.isprefix)
8918 return 0;
8919
8920 if (last_insn.kind == last_insn_other
8921 || last_insn.seg != now_seg)
8922 return 1;
8923
8924 if (flag_debug)
8925 as_warn_where (last_insn.file, last_insn.line,
8926 _("`%s` skips -malign-branch-boundary on `%s`"),
8927 last_insn.name, i.tm.name);
8928
8929 return 0;
8930 }
8931
8932 /* Return 1 if a BRANCH_PADDING frag should be generated. */
8933
8934 static int
8935 add_branch_padding_frag_p (enum align_branch_kind *branch_p,
8936 enum mf_jcc_kind *mf_jcc_p)
8937 {
8938 int add_padding;
8939
8940 /* NB: Don't work with COND_JUMP86 without i386. */
8941 if (!align_branch_power
8942 || now_seg == absolute_section
8943 || !cpu_arch_flags.bitfield.cpui386)
8944 return 0;
8945
8946 add_padding = 0;
8947
8948 /* Check for jcc and direct jmp. */
8949 if (i.tm.opcode_modifier.jump == JUMP)
8950 {
8951 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
8952 {
8953 *branch_p = align_branch_jmp;
8954 add_padding = align_branch & align_branch_jmp_bit;
8955 }
8956 else
8957 {
8958 /* Because J<cc> and JN<cc> share same group in macro-fusible table,
8959 igore the lowest bit. */
8960 *mf_jcc_p = (i.tm.base_opcode & 0x0e) >> 1;
8961 *branch_p = align_branch_jcc;
8962 if ((align_branch & align_branch_jcc_bit))
8963 add_padding = 1;
8964 }
8965 }
8966 else if (is_any_vex_encoding (&i.tm))
8967 return 0;
8968 else if ((i.tm.base_opcode | 1) == 0xc3)
8969 {
8970 /* Near ret. */
8971 *branch_p = align_branch_ret;
8972 if ((align_branch & align_branch_ret_bit))
8973 add_padding = 1;
8974 }
8975 else
8976 {
8977 /* Check for indirect jmp, direct and indirect calls. */
8978 if (i.tm.base_opcode == 0xe8)
8979 {
8980 /* Direct call. */
8981 *branch_p = align_branch_call;
8982 if ((align_branch & align_branch_call_bit))
8983 add_padding = 1;
8984 }
8985 else if (i.tm.base_opcode == 0xff
8986 && (i.tm.extension_opcode == 2
8987 || i.tm.extension_opcode == 4))
8988 {
8989 /* Indirect call and jmp. */
8990 *branch_p = align_branch_indirect;
8991 if ((align_branch & align_branch_indirect_bit))
8992 add_padding = 1;
8993 }
8994
8995 if (add_padding
8996 && i.disp_operands
8997 && tls_get_addr
8998 && (i.op[0].disps->X_op == O_symbol
8999 || (i.op[0].disps->X_op == O_subtract
9000 && i.op[0].disps->X_op_symbol == GOT_symbol)))
9001 {
9002 symbolS *s = i.op[0].disps->X_add_symbol;
9003 /* No padding to call to global or undefined tls_get_addr. */
9004 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
9005 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
9006 return 0;
9007 }
9008 }
9009
9010 if (add_padding
9011 && last_insn.kind != last_insn_other
9012 && last_insn.seg == now_seg)
9013 {
9014 if (flag_debug)
9015 as_warn_where (last_insn.file, last_insn.line,
9016 _("`%s` skips -malign-branch-boundary on `%s`"),
9017 last_insn.name, i.tm.name);
9018 return 0;
9019 }
9020
9021 return add_padding;
9022 }
9023
9024 static void
9025 output_insn (void)
9026 {
9027 fragS *insn_start_frag;
9028 offsetT insn_start_off;
9029 fragS *fragP = NULL;
9030 enum align_branch_kind branch = align_branch_none;
9031 /* The initializer is arbitrary just to avoid uninitialized error.
9032 it's actually either assigned in add_branch_padding_frag_p
9033 or never be used. */
9034 enum mf_jcc_kind mf_jcc = mf_jcc_jo;
9035
9036 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9037 if (IS_ELF && x86_used_note)
9038 {
9039 if (i.tm.cpu_flags.bitfield.cpucmov)
9040 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
9041 if (i.tm.cpu_flags.bitfield.cpusse)
9042 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
9043 if (i.tm.cpu_flags.bitfield.cpusse2)
9044 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
9045 if (i.tm.cpu_flags.bitfield.cpusse3)
9046 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
9047 if (i.tm.cpu_flags.bitfield.cpussse3)
9048 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
9049 if (i.tm.cpu_flags.bitfield.cpusse4_1)
9050 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
9051 if (i.tm.cpu_flags.bitfield.cpusse4_2)
9052 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
9053 if (i.tm.cpu_flags.bitfield.cpuavx)
9054 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
9055 if (i.tm.cpu_flags.bitfield.cpuavx2)
9056 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
9057 if (i.tm.cpu_flags.bitfield.cpufma)
9058 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
9059 if (i.tm.cpu_flags.bitfield.cpuavx512f)
9060 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
9061 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
9062 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
9063 if (i.tm.cpu_flags.bitfield.cpuavx512er)
9064 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
9065 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
9066 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
9067 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
9068 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
9069 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
9070 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
9071 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
9072 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
9073 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
9074 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
9075 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
9076 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
9077 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
9078 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
9079 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
9080 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
9081 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
9082 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
9083 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
9084 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
9085 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
9086 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
9087 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
9088 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
9089
9090 if (i.tm.cpu_flags.bitfield.cpu8087
9091 || i.tm.cpu_flags.bitfield.cpu287
9092 || i.tm.cpu_flags.bitfield.cpu387
9093 || i.tm.cpu_flags.bitfield.cpu687
9094 || i.tm.cpu_flags.bitfield.cpufisttp)
9095 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
9096 if (i.has_regmmx
9097 || i.tm.base_opcode == 0xf77 /* emms */
9098 || i.tm.base_opcode == 0xf0e /* femms */
9099 || i.tm.base_opcode == 0xf2a /* cvtpi2ps */
9100 || i.tm.base_opcode == 0x660f2a /* cvtpi2pd */)
9101 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
9102 if (i.has_regxmm)
9103 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
9104 if (i.has_regymm)
9105 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
9106 if (i.has_regzmm)
9107 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
9108 if (i.tm.cpu_flags.bitfield.cpufxsr)
9109 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
9110 if (i.tm.cpu_flags.bitfield.cpuxsave)
9111 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
9112 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
9113 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
9114 if (i.tm.cpu_flags.bitfield.cpuxsavec)
9115 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
9116 }
9117 #endif
9118
9119 /* Tie dwarf2 debug info to the address at the start of the insn.
9120 We can't do this after the insn has been output as the current
9121 frag may have been closed off. eg. by frag_var. */
9122 dwarf2_emit_insn (0);
9123
9124 insn_start_frag = frag_now;
9125 insn_start_off = frag_now_fix ();
9126
9127 if (add_branch_padding_frag_p (&branch, &mf_jcc))
9128 {
9129 char *p;
9130 /* Branch can be 8 bytes. Leave some room for prefixes. */
9131 unsigned int max_branch_padding_size = 14;
9132
9133 /* Align section to boundary. */
9134 record_alignment (now_seg, align_branch_power);
9135
9136 /* Make room for padding. */
9137 frag_grow (max_branch_padding_size);
9138
9139 /* Start of the padding. */
9140 p = frag_more (0);
9141
9142 fragP = frag_now;
9143
9144 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
9145 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
9146 NULL, 0, p);
9147
9148 fragP->tc_frag_data.mf_type = mf_jcc;
9149 fragP->tc_frag_data.branch_type = branch;
9150 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
9151 }
9152
9153 /* Output jumps. */
9154 if (i.tm.opcode_modifier.jump == JUMP)
9155 output_branch ();
9156 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
9157 || i.tm.opcode_modifier.jump == JUMP_DWORD)
9158 output_jump ();
9159 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
9160 output_interseg_jump ();
9161 else
9162 {
9163 /* Output normal instructions here. */
9164 char *p;
9165 unsigned char *q;
9166 unsigned int j;
9167 unsigned int prefix;
9168 enum mf_cmp_kind mf_cmp;
9169
9170 if (avoid_fence
9171 && (i.tm.base_opcode == 0xfaee8
9172 || i.tm.base_opcode == 0xfaef0
9173 || i.tm.base_opcode == 0xfaef8))
9174 {
9175 /* Encode lfence, mfence, and sfence as
9176 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
9177 offsetT val = 0x240483f0ULL;
9178 p = frag_more (5);
9179 md_number_to_chars (p, val, 5);
9180 return;
9181 }
9182
9183 /* Some processors fail on LOCK prefix. This options makes
9184 assembler ignore LOCK prefix and serves as a workaround. */
9185 if (omit_lock_prefix)
9186 {
9187 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
9188 return;
9189 i.prefix[LOCK_PREFIX] = 0;
9190 }
9191
9192 if (branch)
9193 /* Skip if this is a branch. */
9194 ;
9195 else if (add_fused_jcc_padding_frag_p (&mf_cmp))
9196 {
9197 /* Make room for padding. */
9198 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
9199 p = frag_more (0);
9200
9201 fragP = frag_now;
9202
9203 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
9204 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
9205 NULL, 0, p);
9206
9207 fragP->tc_frag_data.mf_type = mf_cmp;
9208 fragP->tc_frag_data.branch_type = align_branch_fused;
9209 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
9210 }
9211 else if (add_branch_prefix_frag_p ())
9212 {
9213 unsigned int max_prefix_size = align_branch_prefix_size;
9214
9215 /* Make room for padding. */
9216 frag_grow (max_prefix_size);
9217 p = frag_more (0);
9218
9219 fragP = frag_now;
9220
9221 frag_var (rs_machine_dependent, max_prefix_size, 0,
9222 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
9223 NULL, 0, p);
9224
9225 fragP->tc_frag_data.max_bytes = max_prefix_size;
9226 }
9227
9228 /* Since the VEX/EVEX prefix contains the implicit prefix, we
9229 don't need the explicit prefix. */
9230 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
9231 {
9232 switch (i.tm.opcode_length)
9233 {
9234 case 3:
9235 if (i.tm.base_opcode & 0xff000000)
9236 {
9237 prefix = (i.tm.base_opcode >> 24) & 0xff;
9238 if (!i.tm.cpu_flags.bitfield.cpupadlock
9239 || prefix != REPE_PREFIX_OPCODE
9240 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
9241 add_prefix (prefix);
9242 }
9243 break;
9244 case 2:
9245 if ((i.tm.base_opcode & 0xff0000) != 0)
9246 {
9247 prefix = (i.tm.base_opcode >> 16) & 0xff;
9248 add_prefix (prefix);
9249 }
9250 break;
9251 case 1:
9252 break;
9253 case 0:
9254 /* Check for pseudo prefixes. */
9255 as_bad_where (insn_start_frag->fr_file,
9256 insn_start_frag->fr_line,
9257 _("pseudo prefix without instruction"));
9258 return;
9259 default:
9260 abort ();
9261 }
9262
9263 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
9264 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
9265 R_X86_64_GOTTPOFF relocation so that linker can safely
9266 perform IE->LE optimization. A dummy REX_OPCODE prefix
9267 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
9268 relocation for GDesc -> IE/LE optimization. */
9269 if (x86_elf_abi == X86_64_X32_ABI
9270 && i.operands == 2
9271 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
9272 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
9273 && i.prefix[REX_PREFIX] == 0)
9274 add_prefix (REX_OPCODE);
9275 #endif
9276
9277 /* The prefix bytes. */
9278 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
9279 if (*q)
9280 FRAG_APPEND_1_CHAR (*q);
9281 }
9282 else
9283 {
9284 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
9285 if (*q)
9286 switch (j)
9287 {
9288 case SEG_PREFIX:
9289 case ADDR_PREFIX:
9290 FRAG_APPEND_1_CHAR (*q);
9291 break;
9292 default:
9293 /* There should be no other prefixes for instructions
9294 with VEX prefix. */
9295 abort ();
9296 }
9297
9298 /* For EVEX instructions i.vrex should become 0 after
9299 build_evex_prefix. For VEX instructions upper 16 registers
9300 aren't available, so VREX should be 0. */
9301 if (i.vrex)
9302 abort ();
9303 /* Now the VEX prefix. */
9304 p = frag_more (i.vex.length);
9305 for (j = 0; j < i.vex.length; j++)
9306 p[j] = i.vex.bytes[j];
9307 }
9308
9309 /* Now the opcode; be careful about word order here! */
9310 if (i.tm.opcode_length == 1)
9311 {
9312 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
9313 }
9314 else
9315 {
9316 switch (i.tm.opcode_length)
9317 {
9318 case 4:
9319 p = frag_more (4);
9320 *p++ = (i.tm.base_opcode >> 24) & 0xff;
9321 *p++ = (i.tm.base_opcode >> 16) & 0xff;
9322 break;
9323 case 3:
9324 p = frag_more (3);
9325 *p++ = (i.tm.base_opcode >> 16) & 0xff;
9326 break;
9327 case 2:
9328 p = frag_more (2);
9329 break;
9330 default:
9331 abort ();
9332 break;
9333 }
9334
9335 /* Put out high byte first: can't use md_number_to_chars! */
9336 *p++ = (i.tm.base_opcode >> 8) & 0xff;
9337 *p = i.tm.base_opcode & 0xff;
9338 }
9339
9340 /* Now the modrm byte and sib byte (if present). */
9341 if (i.tm.opcode_modifier.modrm)
9342 {
9343 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
9344 | i.rm.reg << 3
9345 | i.rm.mode << 6));
9346 /* If i.rm.regmem == ESP (4)
9347 && i.rm.mode != (Register mode)
9348 && not 16 bit
9349 ==> need second modrm byte. */
9350 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
9351 && i.rm.mode != 3
9352 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
9353 FRAG_APPEND_1_CHAR ((i.sib.base << 0
9354 | i.sib.index << 3
9355 | i.sib.scale << 6));
9356 }
9357
9358 if (i.disp_operands)
9359 output_disp (insn_start_frag, insn_start_off);
9360
9361 if (i.imm_operands)
9362 output_imm (insn_start_frag, insn_start_off);
9363
9364 /*
9365 * frag_now_fix () returning plain abs_section_offset when we're in the
9366 * absolute section, and abs_section_offset not getting updated as data
9367 * gets added to the frag breaks the logic below.
9368 */
9369 if (now_seg != absolute_section)
9370 {
9371 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
9372 if (j > 15)
9373 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
9374 j);
9375 else if (fragP)
9376 {
9377 /* NB: Don't add prefix with GOTPC relocation since
9378 output_disp() above depends on the fixed encoding
9379 length. Can't add prefix with TLS relocation since
9380 it breaks TLS linker optimization. */
9381 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
9382 /* Prefix count on the current instruction. */
9383 unsigned int count = i.vex.length;
9384 unsigned int k;
9385 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
9386 /* REX byte is encoded in VEX/EVEX prefix. */
9387 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
9388 count++;
9389
9390 /* Count prefixes for extended opcode maps. */
9391 if (!i.vex.length)
9392 switch (i.tm.opcode_length)
9393 {
9394 case 3:
9395 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
9396 {
9397 count++;
9398 switch ((i.tm.base_opcode >> 8) & 0xff)
9399 {
9400 case 0x38:
9401 case 0x3a:
9402 count++;
9403 break;
9404 default:
9405 break;
9406 }
9407 }
9408 break;
9409 case 2:
9410 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
9411 count++;
9412 break;
9413 case 1:
9414 break;
9415 default:
9416 abort ();
9417 }
9418
9419 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
9420 == BRANCH_PREFIX)
9421 {
9422 /* Set the maximum prefix size in BRANCH_PREFIX
9423 frag. */
9424 if (fragP->tc_frag_data.max_bytes > max)
9425 fragP->tc_frag_data.max_bytes = max;
9426 if (fragP->tc_frag_data.max_bytes > count)
9427 fragP->tc_frag_data.max_bytes -= count;
9428 else
9429 fragP->tc_frag_data.max_bytes = 0;
9430 }
9431 else
9432 {
9433 /* Remember the maximum prefix size in FUSED_JCC_PADDING
9434 frag. */
9435 unsigned int max_prefix_size;
9436 if (align_branch_prefix_size > max)
9437 max_prefix_size = max;
9438 else
9439 max_prefix_size = align_branch_prefix_size;
9440 if (max_prefix_size > count)
9441 fragP->tc_frag_data.max_prefix_length
9442 = max_prefix_size - count;
9443 }
9444
9445 /* Use existing segment prefix if possible. Use CS
9446 segment prefix in 64-bit mode. In 32-bit mode, use SS
9447 segment prefix with ESP/EBP base register and use DS
9448 segment prefix without ESP/EBP base register. */
9449 if (i.prefix[SEG_PREFIX])
9450 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
9451 else if (flag_code == CODE_64BIT)
9452 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
9453 else if (i.base_reg
9454 && (i.base_reg->reg_num == 4
9455 || i.base_reg->reg_num == 5))
9456 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
9457 else
9458 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
9459 }
9460 }
9461 }
9462
9463 /* NB: Don't work with COND_JUMP86 without i386. */
9464 if (align_branch_power
9465 && now_seg != absolute_section
9466 && cpu_arch_flags.bitfield.cpui386)
9467 {
9468 /* Terminate each frag so that we can add prefix and check for
9469 fused jcc. */
9470 frag_wane (frag_now);
9471 frag_new (0);
9472 }
9473
9474 #ifdef DEBUG386
9475 if (flag_debug)
9476 {
9477 pi ("" /*line*/, &i);
9478 }
9479 #endif /* DEBUG386 */
9480 }
9481
9482 /* Return the size of the displacement operand N. */
9483
9484 static int
9485 disp_size (unsigned int n)
9486 {
9487 int size = 4;
9488
9489 if (i.types[n].bitfield.disp64)
9490 size = 8;
9491 else if (i.types[n].bitfield.disp8)
9492 size = 1;
9493 else if (i.types[n].bitfield.disp16)
9494 size = 2;
9495 return size;
9496 }
9497
9498 /* Return the size of the immediate operand N. */
9499
9500 static int
9501 imm_size (unsigned int n)
9502 {
9503 int size = 4;
9504 if (i.types[n].bitfield.imm64)
9505 size = 8;
9506 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
9507 size = 1;
9508 else if (i.types[n].bitfield.imm16)
9509 size = 2;
9510 return size;
9511 }
9512
9513 static void
9514 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
9515 {
9516 char *p;
9517 unsigned int n;
9518
9519 for (n = 0; n < i.operands; n++)
9520 {
9521 if (operand_type_check (i.types[n], disp))
9522 {
9523 if (i.op[n].disps->X_op == O_constant)
9524 {
9525 int size = disp_size (n);
9526 offsetT val = i.op[n].disps->X_add_number;
9527
9528 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
9529 size);
9530 p = frag_more (size);
9531 md_number_to_chars (p, val, size);
9532 }
9533 else
9534 {
9535 enum bfd_reloc_code_real reloc_type;
9536 int size = disp_size (n);
9537 int sign = i.types[n].bitfield.disp32s;
9538 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
9539 fixS *fixP;
9540
9541 /* We can't have 8 bit displacement here. */
9542 gas_assert (!i.types[n].bitfield.disp8);
9543
9544 /* The PC relative address is computed relative
9545 to the instruction boundary, so in case immediate
9546 fields follows, we need to adjust the value. */
9547 if (pcrel && i.imm_operands)
9548 {
9549 unsigned int n1;
9550 int sz = 0;
9551
9552 for (n1 = 0; n1 < i.operands; n1++)
9553 if (operand_type_check (i.types[n1], imm))
9554 {
9555 /* Only one immediate is allowed for PC
9556 relative address. */
9557 gas_assert (sz == 0);
9558 sz = imm_size (n1);
9559 i.op[n].disps->X_add_number -= sz;
9560 }
9561 /* We should find the immediate. */
9562 gas_assert (sz != 0);
9563 }
9564
9565 p = frag_more (size);
9566 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
9567 if (GOT_symbol
9568 && GOT_symbol == i.op[n].disps->X_add_symbol
9569 && (((reloc_type == BFD_RELOC_32
9570 || reloc_type == BFD_RELOC_X86_64_32S
9571 || (reloc_type == BFD_RELOC_64
9572 && object_64bit))
9573 && (i.op[n].disps->X_op == O_symbol
9574 || (i.op[n].disps->X_op == O_add
9575 && ((symbol_get_value_expression
9576 (i.op[n].disps->X_op_symbol)->X_op)
9577 == O_subtract))))
9578 || reloc_type == BFD_RELOC_32_PCREL))
9579 {
9580 if (!object_64bit)
9581 {
9582 reloc_type = BFD_RELOC_386_GOTPC;
9583 i.has_gotpc_tls_reloc = TRUE;
9584 i.op[n].imms->X_add_number +=
9585 encoding_length (insn_start_frag, insn_start_off, p);
9586 }
9587 else if (reloc_type == BFD_RELOC_64)
9588 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9589 else
9590 /* Don't do the adjustment for x86-64, as there
9591 the pcrel addressing is relative to the _next_
9592 insn, and that is taken care of in other code. */
9593 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9594 }
9595 else if (align_branch_power)
9596 {
9597 switch (reloc_type)
9598 {
9599 case BFD_RELOC_386_TLS_GD:
9600 case BFD_RELOC_386_TLS_LDM:
9601 case BFD_RELOC_386_TLS_IE:
9602 case BFD_RELOC_386_TLS_IE_32:
9603 case BFD_RELOC_386_TLS_GOTIE:
9604 case BFD_RELOC_386_TLS_GOTDESC:
9605 case BFD_RELOC_386_TLS_DESC_CALL:
9606 case BFD_RELOC_X86_64_TLSGD:
9607 case BFD_RELOC_X86_64_TLSLD:
9608 case BFD_RELOC_X86_64_GOTTPOFF:
9609 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9610 case BFD_RELOC_X86_64_TLSDESC_CALL:
9611 i.has_gotpc_tls_reloc = TRUE;
9612 default:
9613 break;
9614 }
9615 }
9616 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9617 size, i.op[n].disps, pcrel,
9618 reloc_type);
9619 /* Check for "call/jmp *mem", "mov mem, %reg",
9620 "test %reg, mem" and "binop mem, %reg" where binop
9621 is one of adc, add, and, cmp, or, sbb, sub, xor
9622 instructions without data prefix. Always generate
9623 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9624 if (i.prefix[DATA_PREFIX] == 0
9625 && (generate_relax_relocations
9626 || (!object_64bit
9627 && i.rm.mode == 0
9628 && i.rm.regmem == 5))
9629 && (i.rm.mode == 2
9630 || (i.rm.mode == 0 && i.rm.regmem == 5))
9631 && !is_any_vex_encoding(&i.tm)
9632 && ((i.operands == 1
9633 && i.tm.base_opcode == 0xff
9634 && (i.rm.reg == 2 || i.rm.reg == 4))
9635 || (i.operands == 2
9636 && (i.tm.base_opcode == 0x8b
9637 || i.tm.base_opcode == 0x85
9638 || (i.tm.base_opcode & ~0x38) == 0x03))))
9639 {
9640 if (object_64bit)
9641 {
9642 fixP->fx_tcbit = i.rex != 0;
9643 if (i.base_reg
9644 && (i.base_reg->reg_num == RegIP))
9645 fixP->fx_tcbit2 = 1;
9646 }
9647 else
9648 fixP->fx_tcbit2 = 1;
9649 }
9650 }
9651 }
9652 }
9653 }
9654
9655 static void
9656 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
9657 {
9658 char *p;
9659 unsigned int n;
9660
9661 for (n = 0; n < i.operands; n++)
9662 {
9663 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9664 if (i.rounding && (int) n == i.rounding->operand)
9665 continue;
9666
9667 if (operand_type_check (i.types[n], imm))
9668 {
9669 if (i.op[n].imms->X_op == O_constant)
9670 {
9671 int size = imm_size (n);
9672 offsetT val;
9673
9674 val = offset_in_range (i.op[n].imms->X_add_number,
9675 size);
9676 p = frag_more (size);
9677 md_number_to_chars (p, val, size);
9678 }
9679 else
9680 {
9681 /* Not absolute_section.
9682 Need a 32-bit fixup (don't support 8bit
9683 non-absolute imms). Try to support other
9684 sizes ... */
9685 enum bfd_reloc_code_real reloc_type;
9686 int size = imm_size (n);
9687 int sign;
9688
9689 if (i.types[n].bitfield.imm32s
9690 && (i.suffix == QWORD_MNEM_SUFFIX
9691 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
9692 sign = 1;
9693 else
9694 sign = 0;
9695
9696 p = frag_more (size);
9697 reloc_type = reloc (size, 0, sign, i.reloc[n]);
9698
9699 /* This is tough to explain. We end up with this one if we
9700 * have operands that look like
9701 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9702 * obtain the absolute address of the GOT, and it is strongly
9703 * preferable from a performance point of view to avoid using
9704 * a runtime relocation for this. The actual sequence of
9705 * instructions often look something like:
9706 *
9707 * call .L66
9708 * .L66:
9709 * popl %ebx
9710 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9711 *
9712 * The call and pop essentially return the absolute address
9713 * of the label .L66 and store it in %ebx. The linker itself
9714 * will ultimately change the first operand of the addl so
9715 * that %ebx points to the GOT, but to keep things simple, the
9716 * .o file must have this operand set so that it generates not
9717 * the absolute address of .L66, but the absolute address of
9718 * itself. This allows the linker itself simply treat a GOTPC
9719 * relocation as asking for a pcrel offset to the GOT to be
9720 * added in, and the addend of the relocation is stored in the
9721 * operand field for the instruction itself.
9722 *
9723 * Our job here is to fix the operand so that it would add
9724 * the correct offset so that %ebx would point to itself. The
9725 * thing that is tricky is that .-.L66 will point to the
9726 * beginning of the instruction, so we need to further modify
9727 * the operand so that it will point to itself. There are
9728 * other cases where you have something like:
9729 *
9730 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9731 *
9732 * and here no correction would be required. Internally in
9733 * the assembler we treat operands of this form as not being
9734 * pcrel since the '.' is explicitly mentioned, and I wonder
9735 * whether it would simplify matters to do it this way. Who
9736 * knows. In earlier versions of the PIC patches, the
9737 * pcrel_adjust field was used to store the correction, but
9738 * since the expression is not pcrel, I felt it would be
9739 * confusing to do it this way. */
9740
9741 if ((reloc_type == BFD_RELOC_32
9742 || reloc_type == BFD_RELOC_X86_64_32S
9743 || reloc_type == BFD_RELOC_64)
9744 && GOT_symbol
9745 && GOT_symbol == i.op[n].imms->X_add_symbol
9746 && (i.op[n].imms->X_op == O_symbol
9747 || (i.op[n].imms->X_op == O_add
9748 && ((symbol_get_value_expression
9749 (i.op[n].imms->X_op_symbol)->X_op)
9750 == O_subtract))))
9751 {
9752 if (!object_64bit)
9753 reloc_type = BFD_RELOC_386_GOTPC;
9754 else if (size == 4)
9755 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9756 else if (size == 8)
9757 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9758 i.has_gotpc_tls_reloc = TRUE;
9759 i.op[n].imms->X_add_number +=
9760 encoding_length (insn_start_frag, insn_start_off, p);
9761 }
9762 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9763 i.op[n].imms, 0, reloc_type);
9764 }
9765 }
9766 }
9767 }
9768 \f
9769 /* x86_cons_fix_new is called via the expression parsing code when a
9770 reloc is needed. We use this hook to get the correct .got reloc. */
9771 static int cons_sign = -1;
9772
9773 void
9774 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
9775 expressionS *exp, bfd_reloc_code_real_type r)
9776 {
9777 r = reloc (len, 0, cons_sign, r);
9778
9779 #ifdef TE_PE
9780 if (exp->X_op == O_secrel)
9781 {
9782 exp->X_op = O_symbol;
9783 r = BFD_RELOC_32_SECREL;
9784 }
9785 #endif
9786
9787 fix_new_exp (frag, off, len, exp, 0, r);
9788 }
9789
9790 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9791 purpose of the `.dc.a' internal pseudo-op. */
9792
9793 int
9794 x86_address_bytes (void)
9795 {
9796 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9797 return 4;
9798 return stdoutput->arch_info->bits_per_address / 8;
9799 }
9800
9801 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9802 || defined (LEX_AT)
9803 # define lex_got(reloc, adjust, types) NULL
9804 #else
9805 /* Parse operands of the form
9806 <symbol>@GOTOFF+<nnn>
9807 and similar .plt or .got references.
9808
9809 If we find one, set up the correct relocation in RELOC and copy the
9810 input string, minus the `@GOTOFF' into a malloc'd buffer for
9811 parsing by the calling routine. Return this buffer, and if ADJUST
9812 is non-null set it to the length of the string we removed from the
9813 input line. Otherwise return NULL. */
9814 static char *
9815 lex_got (enum bfd_reloc_code_real *rel,
9816 int *adjust,
9817 i386_operand_type *types)
9818 {
9819 /* Some of the relocations depend on the size of what field is to
9820 be relocated. But in our callers i386_immediate and i386_displacement
9821 we don't yet know the operand size (this will be set by insn
9822 matching). Hence we record the word32 relocation here,
9823 and adjust the reloc according to the real size in reloc(). */
9824 static const struct {
9825 const char *str;
9826 int len;
9827 const enum bfd_reloc_code_real rel[2];
9828 const i386_operand_type types64;
9829 } gotrel[] = {
9830 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9831 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9832 BFD_RELOC_SIZE32 },
9833 OPERAND_TYPE_IMM32_64 },
9834 #endif
9835 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9836 BFD_RELOC_X86_64_PLTOFF64 },
9837 OPERAND_TYPE_IMM64 },
9838 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9839 BFD_RELOC_X86_64_PLT32 },
9840 OPERAND_TYPE_IMM32_32S_DISP32 },
9841 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9842 BFD_RELOC_X86_64_GOTPLT64 },
9843 OPERAND_TYPE_IMM64_DISP64 },
9844 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9845 BFD_RELOC_X86_64_GOTOFF64 },
9846 OPERAND_TYPE_IMM64_DISP64 },
9847 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9848 BFD_RELOC_X86_64_GOTPCREL },
9849 OPERAND_TYPE_IMM32_32S_DISP32 },
9850 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9851 BFD_RELOC_X86_64_TLSGD },
9852 OPERAND_TYPE_IMM32_32S_DISP32 },
9853 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9854 _dummy_first_bfd_reloc_code_real },
9855 OPERAND_TYPE_NONE },
9856 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9857 BFD_RELOC_X86_64_TLSLD },
9858 OPERAND_TYPE_IMM32_32S_DISP32 },
9859 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9860 BFD_RELOC_X86_64_GOTTPOFF },
9861 OPERAND_TYPE_IMM32_32S_DISP32 },
9862 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9863 BFD_RELOC_X86_64_TPOFF32 },
9864 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9865 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9866 _dummy_first_bfd_reloc_code_real },
9867 OPERAND_TYPE_NONE },
9868 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9869 BFD_RELOC_X86_64_DTPOFF32 },
9870 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9871 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9872 _dummy_first_bfd_reloc_code_real },
9873 OPERAND_TYPE_NONE },
9874 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9875 _dummy_first_bfd_reloc_code_real },
9876 OPERAND_TYPE_NONE },
9877 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9878 BFD_RELOC_X86_64_GOT32 },
9879 OPERAND_TYPE_IMM32_32S_64_DISP32 },
9880 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9881 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
9882 OPERAND_TYPE_IMM32_32S_DISP32 },
9883 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9884 BFD_RELOC_X86_64_TLSDESC_CALL },
9885 OPERAND_TYPE_IMM32_32S_DISP32 },
9886 };
9887 char *cp;
9888 unsigned int j;
9889
9890 #if defined (OBJ_MAYBE_ELF)
9891 if (!IS_ELF)
9892 return NULL;
9893 #endif
9894
9895 for (cp = input_line_pointer; *cp != '@'; cp++)
9896 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9897 return NULL;
9898
9899 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9900 {
9901 int len = gotrel[j].len;
9902 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9903 {
9904 if (gotrel[j].rel[object_64bit] != 0)
9905 {
9906 int first, second;
9907 char *tmpbuf, *past_reloc;
9908
9909 *rel = gotrel[j].rel[object_64bit];
9910
9911 if (types)
9912 {
9913 if (flag_code != CODE_64BIT)
9914 {
9915 types->bitfield.imm32 = 1;
9916 types->bitfield.disp32 = 1;
9917 }
9918 else
9919 *types = gotrel[j].types64;
9920 }
9921
9922 if (j != 0 && GOT_symbol == NULL)
9923 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9924
9925 /* The length of the first part of our input line. */
9926 first = cp - input_line_pointer;
9927
9928 /* The second part goes from after the reloc token until
9929 (and including) an end_of_line char or comma. */
9930 past_reloc = cp + 1 + len;
9931 cp = past_reloc;
9932 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9933 ++cp;
9934 second = cp + 1 - past_reloc;
9935
9936 /* Allocate and copy string. The trailing NUL shouldn't
9937 be necessary, but be safe. */
9938 tmpbuf = XNEWVEC (char, first + second + 2);
9939 memcpy (tmpbuf, input_line_pointer, first);
9940 if (second != 0 && *past_reloc != ' ')
9941 /* Replace the relocation token with ' ', so that
9942 errors like foo@GOTOFF1 will be detected. */
9943 tmpbuf[first++] = ' ';
9944 else
9945 /* Increment length by 1 if the relocation token is
9946 removed. */
9947 len++;
9948 if (adjust)
9949 *adjust = len;
9950 memcpy (tmpbuf + first, past_reloc, second);
9951 tmpbuf[first + second] = '\0';
9952 return tmpbuf;
9953 }
9954
9955 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9956 gotrel[j].str, 1 << (5 + object_64bit));
9957 return NULL;
9958 }
9959 }
9960
9961 /* Might be a symbol version string. Don't as_bad here. */
9962 return NULL;
9963 }
9964 #endif
9965
9966 #ifdef TE_PE
9967 #ifdef lex_got
9968 #undef lex_got
9969 #endif
9970 /* Parse operands of the form
9971 <symbol>@SECREL32+<nnn>
9972
9973 If we find one, set up the correct relocation in RELOC and copy the
9974 input string, minus the `@SECREL32' into a malloc'd buffer for
9975 parsing by the calling routine. Return this buffer, and if ADJUST
9976 is non-null set it to the length of the string we removed from the
9977 input line. Otherwise return NULL.
9978
9979 This function is copied from the ELF version above adjusted for PE targets. */
9980
9981 static char *
9982 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9983 int *adjust ATTRIBUTE_UNUSED,
9984 i386_operand_type *types)
9985 {
9986 static const struct
9987 {
9988 const char *str;
9989 int len;
9990 const enum bfd_reloc_code_real rel[2];
9991 const i386_operand_type types64;
9992 }
9993 gotrel[] =
9994 {
9995 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9996 BFD_RELOC_32_SECREL },
9997 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9998 };
9999
10000 char *cp;
10001 unsigned j;
10002
10003 for (cp = input_line_pointer; *cp != '@'; cp++)
10004 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
10005 return NULL;
10006
10007 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
10008 {
10009 int len = gotrel[j].len;
10010
10011 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
10012 {
10013 if (gotrel[j].rel[object_64bit] != 0)
10014 {
10015 int first, second;
10016 char *tmpbuf, *past_reloc;
10017
10018 *rel = gotrel[j].rel[object_64bit];
10019 if (adjust)
10020 *adjust = len;
10021
10022 if (types)
10023 {
10024 if (flag_code != CODE_64BIT)
10025 {
10026 types->bitfield.imm32 = 1;
10027 types->bitfield.disp32 = 1;
10028 }
10029 else
10030 *types = gotrel[j].types64;
10031 }
10032
10033 /* The length of the first part of our input line. */
10034 first = cp - input_line_pointer;
10035
10036 /* The second part goes from after the reloc token until
10037 (and including) an end_of_line char or comma. */
10038 past_reloc = cp + 1 + len;
10039 cp = past_reloc;
10040 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
10041 ++cp;
10042 second = cp + 1 - past_reloc;
10043
10044 /* Allocate and copy string. The trailing NUL shouldn't
10045 be necessary, but be safe. */
10046 tmpbuf = XNEWVEC (char, first + second + 2);
10047 memcpy (tmpbuf, input_line_pointer, first);
10048 if (second != 0 && *past_reloc != ' ')
10049 /* Replace the relocation token with ' ', so that
10050 errors like foo@SECLREL321 will be detected. */
10051 tmpbuf[first++] = ' ';
10052 memcpy (tmpbuf + first, past_reloc, second);
10053 tmpbuf[first + second] = '\0';
10054 return tmpbuf;
10055 }
10056
10057 as_bad (_("@%s reloc is not supported with %d-bit output format"),
10058 gotrel[j].str, 1 << (5 + object_64bit));
10059 return NULL;
10060 }
10061 }
10062
10063 /* Might be a symbol version string. Don't as_bad here. */
10064 return NULL;
10065 }
10066
10067 #endif /* TE_PE */
10068
10069 bfd_reloc_code_real_type
10070 x86_cons (expressionS *exp, int size)
10071 {
10072 bfd_reloc_code_real_type got_reloc = NO_RELOC;
10073
10074 intel_syntax = -intel_syntax;
10075
10076 exp->X_md = 0;
10077 if (size == 4 || (object_64bit && size == 8))
10078 {
10079 /* Handle @GOTOFF and the like in an expression. */
10080 char *save;
10081 char *gotfree_input_line;
10082 int adjust = 0;
10083
10084 save = input_line_pointer;
10085 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
10086 if (gotfree_input_line)
10087 input_line_pointer = gotfree_input_line;
10088
10089 expression (exp);
10090
10091 if (gotfree_input_line)
10092 {
10093 /* expression () has merrily parsed up to the end of line,
10094 or a comma - in the wrong buffer. Transfer how far
10095 input_line_pointer has moved to the right buffer. */
10096 input_line_pointer = (save
10097 + (input_line_pointer - gotfree_input_line)
10098 + adjust);
10099 free (gotfree_input_line);
10100 if (exp->X_op == O_constant
10101 || exp->X_op == O_absent
10102 || exp->X_op == O_illegal
10103 || exp->X_op == O_register
10104 || exp->X_op == O_big)
10105 {
10106 char c = *input_line_pointer;
10107 *input_line_pointer = 0;
10108 as_bad (_("missing or invalid expression `%s'"), save);
10109 *input_line_pointer = c;
10110 }
10111 else if ((got_reloc == BFD_RELOC_386_PLT32
10112 || got_reloc == BFD_RELOC_X86_64_PLT32)
10113 && exp->X_op != O_symbol)
10114 {
10115 char c = *input_line_pointer;
10116 *input_line_pointer = 0;
10117 as_bad (_("invalid PLT expression `%s'"), save);
10118 *input_line_pointer = c;
10119 }
10120 }
10121 }
10122 else
10123 expression (exp);
10124
10125 intel_syntax = -intel_syntax;
10126
10127 if (intel_syntax)
10128 i386_intel_simplify (exp);
10129
10130 return got_reloc;
10131 }
10132
10133 static void
10134 signed_cons (int size)
10135 {
10136 if (flag_code == CODE_64BIT)
10137 cons_sign = 1;
10138 cons (size);
10139 cons_sign = -1;
10140 }
10141
10142 #ifdef TE_PE
10143 static void
10144 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
10145 {
10146 expressionS exp;
10147
10148 do
10149 {
10150 expression (&exp);
10151 if (exp.X_op == O_symbol)
10152 exp.X_op = O_secrel;
10153
10154 emit_expr (&exp, 4);
10155 }
10156 while (*input_line_pointer++ == ',');
10157
10158 input_line_pointer--;
10159 demand_empty_rest_of_line ();
10160 }
10161 #endif
10162
10163 /* Handle Vector operations. */
10164
10165 static char *
10166 check_VecOperations (char *op_string, char *op_end)
10167 {
10168 const reg_entry *mask;
10169 const char *saved;
10170 char *end_op;
10171
10172 while (*op_string
10173 && (op_end == NULL || op_string < op_end))
10174 {
10175 saved = op_string;
10176 if (*op_string == '{')
10177 {
10178 op_string++;
10179
10180 /* Check broadcasts. */
10181 if (strncmp (op_string, "1to", 3) == 0)
10182 {
10183 int bcst_type;
10184
10185 if (i.broadcast)
10186 goto duplicated_vec_op;
10187
10188 op_string += 3;
10189 if (*op_string == '8')
10190 bcst_type = 8;
10191 else if (*op_string == '4')
10192 bcst_type = 4;
10193 else if (*op_string == '2')
10194 bcst_type = 2;
10195 else if (*op_string == '1'
10196 && *(op_string+1) == '6')
10197 {
10198 bcst_type = 16;
10199 op_string++;
10200 }
10201 else
10202 {
10203 as_bad (_("Unsupported broadcast: `%s'"), saved);
10204 return NULL;
10205 }
10206 op_string++;
10207
10208 broadcast_op.type = bcst_type;
10209 broadcast_op.operand = this_operand;
10210 broadcast_op.bytes = 0;
10211 i.broadcast = &broadcast_op;
10212 }
10213 /* Check masking operation. */
10214 else if ((mask = parse_register (op_string, &end_op)) != NULL)
10215 {
10216 if (mask == &bad_reg)
10217 return NULL;
10218
10219 /* k0 can't be used for write mask. */
10220 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
10221 {
10222 as_bad (_("`%s%s' can't be used for write mask"),
10223 register_prefix, mask->reg_name);
10224 return NULL;
10225 }
10226
10227 if (!i.mask)
10228 {
10229 mask_op.mask = mask;
10230 mask_op.zeroing = 0;
10231 mask_op.operand = this_operand;
10232 i.mask = &mask_op;
10233 }
10234 else
10235 {
10236 if (i.mask->mask)
10237 goto duplicated_vec_op;
10238
10239 i.mask->mask = mask;
10240
10241 /* Only "{z}" is allowed here. No need to check
10242 zeroing mask explicitly. */
10243 if (i.mask->operand != this_operand)
10244 {
10245 as_bad (_("invalid write mask `%s'"), saved);
10246 return NULL;
10247 }
10248 }
10249
10250 op_string = end_op;
10251 }
10252 /* Check zeroing-flag for masking operation. */
10253 else if (*op_string == 'z')
10254 {
10255 if (!i.mask)
10256 {
10257 mask_op.mask = NULL;
10258 mask_op.zeroing = 1;
10259 mask_op.operand = this_operand;
10260 i.mask = &mask_op;
10261 }
10262 else
10263 {
10264 if (i.mask->zeroing)
10265 {
10266 duplicated_vec_op:
10267 as_bad (_("duplicated `%s'"), saved);
10268 return NULL;
10269 }
10270
10271 i.mask->zeroing = 1;
10272
10273 /* Only "{%k}" is allowed here. No need to check mask
10274 register explicitly. */
10275 if (i.mask->operand != this_operand)
10276 {
10277 as_bad (_("invalid zeroing-masking `%s'"),
10278 saved);
10279 return NULL;
10280 }
10281 }
10282
10283 op_string++;
10284 }
10285 else
10286 goto unknown_vec_op;
10287
10288 if (*op_string != '}')
10289 {
10290 as_bad (_("missing `}' in `%s'"), saved);
10291 return NULL;
10292 }
10293 op_string++;
10294
10295 /* Strip whitespace since the addition of pseudo prefixes
10296 changed how the scrubber treats '{'. */
10297 if (is_space_char (*op_string))
10298 ++op_string;
10299
10300 continue;
10301 }
10302 unknown_vec_op:
10303 /* We don't know this one. */
10304 as_bad (_("unknown vector operation: `%s'"), saved);
10305 return NULL;
10306 }
10307
10308 if (i.mask && i.mask->zeroing && !i.mask->mask)
10309 {
10310 as_bad (_("zeroing-masking only allowed with write mask"));
10311 return NULL;
10312 }
10313
10314 return op_string;
10315 }
10316
10317 static int
10318 i386_immediate (char *imm_start)
10319 {
10320 char *save_input_line_pointer;
10321 char *gotfree_input_line;
10322 segT exp_seg = 0;
10323 expressionS *exp;
10324 i386_operand_type types;
10325
10326 operand_type_set (&types, ~0);
10327
10328 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
10329 {
10330 as_bad (_("at most %d immediate operands are allowed"),
10331 MAX_IMMEDIATE_OPERANDS);
10332 return 0;
10333 }
10334
10335 exp = &im_expressions[i.imm_operands++];
10336 i.op[this_operand].imms = exp;
10337
10338 if (is_space_char (*imm_start))
10339 ++imm_start;
10340
10341 save_input_line_pointer = input_line_pointer;
10342 input_line_pointer = imm_start;
10343
10344 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10345 if (gotfree_input_line)
10346 input_line_pointer = gotfree_input_line;
10347
10348 exp_seg = expression (exp);
10349
10350 SKIP_WHITESPACE ();
10351
10352 /* Handle vector operations. */
10353 if (*input_line_pointer == '{')
10354 {
10355 input_line_pointer = check_VecOperations (input_line_pointer,
10356 NULL);
10357 if (input_line_pointer == NULL)
10358 return 0;
10359 }
10360
10361 if (*input_line_pointer)
10362 as_bad (_("junk `%s' after expression"), input_line_pointer);
10363
10364 input_line_pointer = save_input_line_pointer;
10365 if (gotfree_input_line)
10366 {
10367 free (gotfree_input_line);
10368
10369 if (exp->X_op == O_constant || exp->X_op == O_register)
10370 exp->X_op = O_illegal;
10371 }
10372
10373 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
10374 }
10375
10376 static int
10377 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10378 i386_operand_type types, const char *imm_start)
10379 {
10380 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
10381 {
10382 if (imm_start)
10383 as_bad (_("missing or invalid immediate expression `%s'"),
10384 imm_start);
10385 return 0;
10386 }
10387 else if (exp->X_op == O_constant)
10388 {
10389 /* Size it properly later. */
10390 i.types[this_operand].bitfield.imm64 = 1;
10391 /* If not 64bit, sign extend val. */
10392 if (flag_code != CODE_64BIT
10393 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
10394 exp->X_add_number
10395 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
10396 }
10397 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10398 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
10399 && exp_seg != absolute_section
10400 && exp_seg != text_section
10401 && exp_seg != data_section
10402 && exp_seg != bss_section
10403 && exp_seg != undefined_section
10404 && !bfd_is_com_section (exp_seg))
10405 {
10406 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10407 return 0;
10408 }
10409 #endif
10410 else if (!intel_syntax && exp_seg == reg_section)
10411 {
10412 if (imm_start)
10413 as_bad (_("illegal immediate register operand %s"), imm_start);
10414 return 0;
10415 }
10416 else
10417 {
10418 /* This is an address. The size of the address will be
10419 determined later, depending on destination register,
10420 suffix, or the default for the section. */
10421 i.types[this_operand].bitfield.imm8 = 1;
10422 i.types[this_operand].bitfield.imm16 = 1;
10423 i.types[this_operand].bitfield.imm32 = 1;
10424 i.types[this_operand].bitfield.imm32s = 1;
10425 i.types[this_operand].bitfield.imm64 = 1;
10426 i.types[this_operand] = operand_type_and (i.types[this_operand],
10427 types);
10428 }
10429
10430 return 1;
10431 }
10432
10433 static char *
10434 i386_scale (char *scale)
10435 {
10436 offsetT val;
10437 char *save = input_line_pointer;
10438
10439 input_line_pointer = scale;
10440 val = get_absolute_expression ();
10441
10442 switch (val)
10443 {
10444 case 1:
10445 i.log2_scale_factor = 0;
10446 break;
10447 case 2:
10448 i.log2_scale_factor = 1;
10449 break;
10450 case 4:
10451 i.log2_scale_factor = 2;
10452 break;
10453 case 8:
10454 i.log2_scale_factor = 3;
10455 break;
10456 default:
10457 {
10458 char sep = *input_line_pointer;
10459
10460 *input_line_pointer = '\0';
10461 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
10462 scale);
10463 *input_line_pointer = sep;
10464 input_line_pointer = save;
10465 return NULL;
10466 }
10467 }
10468 if (i.log2_scale_factor != 0 && i.index_reg == 0)
10469 {
10470 as_warn (_("scale factor of %d without an index register"),
10471 1 << i.log2_scale_factor);
10472 i.log2_scale_factor = 0;
10473 }
10474 scale = input_line_pointer;
10475 input_line_pointer = save;
10476 return scale;
10477 }
10478
10479 static int
10480 i386_displacement (char *disp_start, char *disp_end)
10481 {
10482 expressionS *exp;
10483 segT exp_seg = 0;
10484 char *save_input_line_pointer;
10485 char *gotfree_input_line;
10486 int override;
10487 i386_operand_type bigdisp, types = anydisp;
10488 int ret;
10489
10490 if (i.disp_operands == MAX_MEMORY_OPERANDS)
10491 {
10492 as_bad (_("at most %d displacement operands are allowed"),
10493 MAX_MEMORY_OPERANDS);
10494 return 0;
10495 }
10496
10497 operand_type_set (&bigdisp, 0);
10498 if (i.jumpabsolute
10499 || i.types[this_operand].bitfield.baseindex
10500 || (current_templates->start->opcode_modifier.jump != JUMP
10501 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
10502 {
10503 i386_addressing_mode ();
10504 override = (i.prefix[ADDR_PREFIX] != 0);
10505 if (flag_code == CODE_64BIT)
10506 {
10507 if (!override)
10508 {
10509 bigdisp.bitfield.disp32s = 1;
10510 bigdisp.bitfield.disp64 = 1;
10511 }
10512 else
10513 bigdisp.bitfield.disp32 = 1;
10514 }
10515 else if ((flag_code == CODE_16BIT) ^ override)
10516 bigdisp.bitfield.disp16 = 1;
10517 else
10518 bigdisp.bitfield.disp32 = 1;
10519 }
10520 else
10521 {
10522 /* For PC-relative branches, the width of the displacement may be
10523 dependent upon data size, but is never dependent upon address size.
10524 Also make sure to not unintentionally match against a non-PC-relative
10525 branch template. */
10526 static templates aux_templates;
10527 const insn_template *t = current_templates->start;
10528 bfd_boolean has_intel64 = FALSE;
10529
10530 aux_templates.start = t;
10531 while (++t < current_templates->end)
10532 {
10533 if (t->opcode_modifier.jump
10534 != current_templates->start->opcode_modifier.jump)
10535 break;
10536 if ((t->opcode_modifier.isa64 >= INTEL64))
10537 has_intel64 = TRUE;
10538 }
10539 if (t < current_templates->end)
10540 {
10541 aux_templates.end = t;
10542 current_templates = &aux_templates;
10543 }
10544
10545 override = (i.prefix[DATA_PREFIX] != 0);
10546 if (flag_code == CODE_64BIT)
10547 {
10548 if ((override || i.suffix == WORD_MNEM_SUFFIX)
10549 && (!intel64 || !has_intel64))
10550 bigdisp.bitfield.disp16 = 1;
10551 else
10552 bigdisp.bitfield.disp32s = 1;
10553 }
10554 else
10555 {
10556 if (!override)
10557 override = (i.suffix == (flag_code != CODE_16BIT
10558 ? WORD_MNEM_SUFFIX
10559 : LONG_MNEM_SUFFIX));
10560 bigdisp.bitfield.disp32 = 1;
10561 if ((flag_code == CODE_16BIT) ^ override)
10562 {
10563 bigdisp.bitfield.disp32 = 0;
10564 bigdisp.bitfield.disp16 = 1;
10565 }
10566 }
10567 }
10568 i.types[this_operand] = operand_type_or (i.types[this_operand],
10569 bigdisp);
10570
10571 exp = &disp_expressions[i.disp_operands];
10572 i.op[this_operand].disps = exp;
10573 i.disp_operands++;
10574 save_input_line_pointer = input_line_pointer;
10575 input_line_pointer = disp_start;
10576 END_STRING_AND_SAVE (disp_end);
10577
10578 #ifndef GCC_ASM_O_HACK
10579 #define GCC_ASM_O_HACK 0
10580 #endif
10581 #if GCC_ASM_O_HACK
10582 END_STRING_AND_SAVE (disp_end + 1);
10583 if (i.types[this_operand].bitfield.baseIndex
10584 && displacement_string_end[-1] == '+')
10585 {
10586 /* This hack is to avoid a warning when using the "o"
10587 constraint within gcc asm statements.
10588 For instance:
10589
10590 #define _set_tssldt_desc(n,addr,limit,type) \
10591 __asm__ __volatile__ ( \
10592 "movw %w2,%0\n\t" \
10593 "movw %w1,2+%0\n\t" \
10594 "rorl $16,%1\n\t" \
10595 "movb %b1,4+%0\n\t" \
10596 "movb %4,5+%0\n\t" \
10597 "movb $0,6+%0\n\t" \
10598 "movb %h1,7+%0\n\t" \
10599 "rorl $16,%1" \
10600 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10601
10602 This works great except that the output assembler ends
10603 up looking a bit weird if it turns out that there is
10604 no offset. You end up producing code that looks like:
10605
10606 #APP
10607 movw $235,(%eax)
10608 movw %dx,2+(%eax)
10609 rorl $16,%edx
10610 movb %dl,4+(%eax)
10611 movb $137,5+(%eax)
10612 movb $0,6+(%eax)
10613 movb %dh,7+(%eax)
10614 rorl $16,%edx
10615 #NO_APP
10616
10617 So here we provide the missing zero. */
10618
10619 *displacement_string_end = '0';
10620 }
10621 #endif
10622 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10623 if (gotfree_input_line)
10624 input_line_pointer = gotfree_input_line;
10625
10626 exp_seg = expression (exp);
10627
10628 SKIP_WHITESPACE ();
10629 if (*input_line_pointer)
10630 as_bad (_("junk `%s' after expression"), input_line_pointer);
10631 #if GCC_ASM_O_HACK
10632 RESTORE_END_STRING (disp_end + 1);
10633 #endif
10634 input_line_pointer = save_input_line_pointer;
10635 if (gotfree_input_line)
10636 {
10637 free (gotfree_input_line);
10638
10639 if (exp->X_op == O_constant || exp->X_op == O_register)
10640 exp->X_op = O_illegal;
10641 }
10642
10643 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10644
10645 RESTORE_END_STRING (disp_end);
10646
10647 return ret;
10648 }
10649
10650 static int
10651 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10652 i386_operand_type types, const char *disp_start)
10653 {
10654 i386_operand_type bigdisp;
10655 int ret = 1;
10656
10657 /* We do this to make sure that the section symbol is in
10658 the symbol table. We will ultimately change the relocation
10659 to be relative to the beginning of the section. */
10660 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
10661 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10662 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10663 {
10664 if (exp->X_op != O_symbol)
10665 goto inv_disp;
10666
10667 if (S_IS_LOCAL (exp->X_add_symbol)
10668 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10669 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
10670 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
10671 exp->X_op = O_subtract;
10672 exp->X_op_symbol = GOT_symbol;
10673 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
10674 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
10675 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10676 i.reloc[this_operand] = BFD_RELOC_64;
10677 else
10678 i.reloc[this_operand] = BFD_RELOC_32;
10679 }
10680
10681 else if (exp->X_op == O_absent
10682 || exp->X_op == O_illegal
10683 || exp->X_op == O_big)
10684 {
10685 inv_disp:
10686 as_bad (_("missing or invalid displacement expression `%s'"),
10687 disp_start);
10688 ret = 0;
10689 }
10690
10691 else if (flag_code == CODE_64BIT
10692 && !i.prefix[ADDR_PREFIX]
10693 && exp->X_op == O_constant)
10694 {
10695 /* Since displacement is signed extended to 64bit, don't allow
10696 disp32 and turn off disp32s if they are out of range. */
10697 i.types[this_operand].bitfield.disp32 = 0;
10698 if (!fits_in_signed_long (exp->X_add_number))
10699 {
10700 i.types[this_operand].bitfield.disp32s = 0;
10701 if (i.types[this_operand].bitfield.baseindex)
10702 {
10703 as_bad (_("0x%lx out range of signed 32bit displacement"),
10704 (long) exp->X_add_number);
10705 ret = 0;
10706 }
10707 }
10708 }
10709
10710 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10711 else if (exp->X_op != O_constant
10712 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10713 && exp_seg != absolute_section
10714 && exp_seg != text_section
10715 && exp_seg != data_section
10716 && exp_seg != bss_section
10717 && exp_seg != undefined_section
10718 && !bfd_is_com_section (exp_seg))
10719 {
10720 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10721 ret = 0;
10722 }
10723 #endif
10724
10725 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10726 /* Constants get taken care of by optimize_disp(). */
10727 && exp->X_op != O_constant)
10728 i.types[this_operand].bitfield.disp8 = 1;
10729
10730 /* Check if this is a displacement only operand. */
10731 bigdisp = i.types[this_operand];
10732 bigdisp.bitfield.disp8 = 0;
10733 bigdisp.bitfield.disp16 = 0;
10734 bigdisp.bitfield.disp32 = 0;
10735 bigdisp.bitfield.disp32s = 0;
10736 bigdisp.bitfield.disp64 = 0;
10737 if (operand_type_all_zero (&bigdisp))
10738 i.types[this_operand] = operand_type_and (i.types[this_operand],
10739 types);
10740
10741 return ret;
10742 }
10743
10744 /* Return the active addressing mode, taking address override and
10745 registers forming the address into consideration. Update the
10746 address override prefix if necessary. */
10747
10748 static enum flag_code
10749 i386_addressing_mode (void)
10750 {
10751 enum flag_code addr_mode;
10752
10753 if (i.prefix[ADDR_PREFIX])
10754 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10755 else if (flag_code == CODE_16BIT
10756 && current_templates->start->cpu_flags.bitfield.cpumpx
10757 /* Avoid replacing the "16-bit addressing not allowed" diagnostic
10758 from md_assemble() by "is not a valid base/index expression"
10759 when there is a base and/or index. */
10760 && !i.types[this_operand].bitfield.baseindex)
10761 {
10762 /* MPX insn memory operands with neither base nor index must be forced
10763 to use 32-bit addressing in 16-bit mode. */
10764 addr_mode = CODE_32BIT;
10765 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10766 ++i.prefixes;
10767 gas_assert (!i.types[this_operand].bitfield.disp16);
10768 gas_assert (!i.types[this_operand].bitfield.disp32);
10769 }
10770 else
10771 {
10772 addr_mode = flag_code;
10773
10774 #if INFER_ADDR_PREFIX
10775 if (i.mem_operands == 0)
10776 {
10777 /* Infer address prefix from the first memory operand. */
10778 const reg_entry *addr_reg = i.base_reg;
10779
10780 if (addr_reg == NULL)
10781 addr_reg = i.index_reg;
10782
10783 if (addr_reg)
10784 {
10785 if (addr_reg->reg_type.bitfield.dword)
10786 addr_mode = CODE_32BIT;
10787 else if (flag_code != CODE_64BIT
10788 && addr_reg->reg_type.bitfield.word)
10789 addr_mode = CODE_16BIT;
10790
10791 if (addr_mode != flag_code)
10792 {
10793 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10794 i.prefixes += 1;
10795 /* Change the size of any displacement too. At most one
10796 of Disp16 or Disp32 is set.
10797 FIXME. There doesn't seem to be any real need for
10798 separate Disp16 and Disp32 flags. The same goes for
10799 Imm16 and Imm32. Removing them would probably clean
10800 up the code quite a lot. */
10801 if (flag_code != CODE_64BIT
10802 && (i.types[this_operand].bitfield.disp16
10803 || i.types[this_operand].bitfield.disp32))
10804 i.types[this_operand]
10805 = operand_type_xor (i.types[this_operand], disp16_32);
10806 }
10807 }
10808 }
10809 #endif
10810 }
10811
10812 return addr_mode;
10813 }
10814
10815 /* Make sure the memory operand we've been dealt is valid.
10816 Return 1 on success, 0 on a failure. */
10817
10818 static int
10819 i386_index_check (const char *operand_string)
10820 {
10821 const char *kind = "base/index";
10822 enum flag_code addr_mode = i386_addressing_mode ();
10823
10824 if (current_templates->start->opcode_modifier.isstring
10825 && !current_templates->start->cpu_flags.bitfield.cpupadlock
10826 && (current_templates->end[-1].opcode_modifier.isstring
10827 || i.mem_operands))
10828 {
10829 /* Memory operands of string insns are special in that they only allow
10830 a single register (rDI, rSI, or rBX) as their memory address. */
10831 const reg_entry *expected_reg;
10832 static const char *di_si[][2] =
10833 {
10834 { "esi", "edi" },
10835 { "si", "di" },
10836 { "rsi", "rdi" }
10837 };
10838 static const char *bx[] = { "ebx", "bx", "rbx" };
10839
10840 kind = "string address";
10841
10842 if (current_templates->start->opcode_modifier.repprefixok)
10843 {
10844 int es_op = current_templates->end[-1].opcode_modifier.isstring
10845 - IS_STRING_ES_OP0;
10846 int op = 0;
10847
10848 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
10849 || ((!i.mem_operands != !intel_syntax)
10850 && current_templates->end[-1].operand_types[1]
10851 .bitfield.baseindex))
10852 op = 1;
10853 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
10854 }
10855 else
10856 expected_reg = hash_find (reg_hash, bx[addr_mode]);
10857
10858 if (i.base_reg != expected_reg
10859 || i.index_reg
10860 || operand_type_check (i.types[this_operand], disp))
10861 {
10862 /* The second memory operand must have the same size as
10863 the first one. */
10864 if (i.mem_operands
10865 && i.base_reg
10866 && !((addr_mode == CODE_64BIT
10867 && i.base_reg->reg_type.bitfield.qword)
10868 || (addr_mode == CODE_32BIT
10869 ? i.base_reg->reg_type.bitfield.dword
10870 : i.base_reg->reg_type.bitfield.word)))
10871 goto bad_address;
10872
10873 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10874 operand_string,
10875 intel_syntax ? '[' : '(',
10876 register_prefix,
10877 expected_reg->reg_name,
10878 intel_syntax ? ']' : ')');
10879 return 1;
10880 }
10881 else
10882 return 1;
10883
10884 bad_address:
10885 as_bad (_("`%s' is not a valid %s expression"),
10886 operand_string, kind);
10887 return 0;
10888 }
10889 else
10890 {
10891 if (addr_mode != CODE_16BIT)
10892 {
10893 /* 32-bit/64-bit checks. */
10894 if ((i.base_reg
10895 && ((addr_mode == CODE_64BIT
10896 ? !i.base_reg->reg_type.bitfield.qword
10897 : !i.base_reg->reg_type.bitfield.dword)
10898 || (i.index_reg && i.base_reg->reg_num == RegIP)
10899 || i.base_reg->reg_num == RegIZ))
10900 || (i.index_reg
10901 && !i.index_reg->reg_type.bitfield.xmmword
10902 && !i.index_reg->reg_type.bitfield.ymmword
10903 && !i.index_reg->reg_type.bitfield.zmmword
10904 && ((addr_mode == CODE_64BIT
10905 ? !i.index_reg->reg_type.bitfield.qword
10906 : !i.index_reg->reg_type.bitfield.dword)
10907 || !i.index_reg->reg_type.bitfield.baseindex)))
10908 goto bad_address;
10909
10910 /* bndmk, bndldx, and bndstx have special restrictions. */
10911 if (current_templates->start->base_opcode == 0xf30f1b
10912 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
10913 {
10914 /* They cannot use RIP-relative addressing. */
10915 if (i.base_reg && i.base_reg->reg_num == RegIP)
10916 {
10917 as_bad (_("`%s' cannot be used here"), operand_string);
10918 return 0;
10919 }
10920
10921 /* bndldx and bndstx ignore their scale factor. */
10922 if (current_templates->start->base_opcode != 0xf30f1b
10923 && i.log2_scale_factor)
10924 as_warn (_("register scaling is being ignored here"));
10925 }
10926 }
10927 else
10928 {
10929 /* 16-bit checks. */
10930 if ((i.base_reg
10931 && (!i.base_reg->reg_type.bitfield.word
10932 || !i.base_reg->reg_type.bitfield.baseindex))
10933 || (i.index_reg
10934 && (!i.index_reg->reg_type.bitfield.word
10935 || !i.index_reg->reg_type.bitfield.baseindex
10936 || !(i.base_reg
10937 && i.base_reg->reg_num < 6
10938 && i.index_reg->reg_num >= 6
10939 && i.log2_scale_factor == 0))))
10940 goto bad_address;
10941 }
10942 }
10943 return 1;
10944 }
10945
10946 /* Handle vector immediates. */
10947
10948 static int
10949 RC_SAE_immediate (const char *imm_start)
10950 {
10951 unsigned int match_found, j;
10952 const char *pstr = imm_start;
10953 expressionS *exp;
10954
10955 if (*pstr != '{')
10956 return 0;
10957
10958 pstr++;
10959 match_found = 0;
10960 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
10961 {
10962 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
10963 {
10964 if (!i.rounding)
10965 {
10966 rc_op.type = RC_NamesTable[j].type;
10967 rc_op.operand = this_operand;
10968 i.rounding = &rc_op;
10969 }
10970 else
10971 {
10972 as_bad (_("duplicated `%s'"), imm_start);
10973 return 0;
10974 }
10975 pstr += RC_NamesTable[j].len;
10976 match_found = 1;
10977 break;
10978 }
10979 }
10980 if (!match_found)
10981 return 0;
10982
10983 if (*pstr++ != '}')
10984 {
10985 as_bad (_("Missing '}': '%s'"), imm_start);
10986 return 0;
10987 }
10988 /* RC/SAE immediate string should contain nothing more. */;
10989 if (*pstr != 0)
10990 {
10991 as_bad (_("Junk after '}': '%s'"), imm_start);
10992 return 0;
10993 }
10994
10995 exp = &im_expressions[i.imm_operands++];
10996 i.op[this_operand].imms = exp;
10997
10998 exp->X_op = O_constant;
10999 exp->X_add_number = 0;
11000 exp->X_add_symbol = (symbolS *) 0;
11001 exp->X_op_symbol = (symbolS *) 0;
11002
11003 i.types[this_operand].bitfield.imm8 = 1;
11004 return 1;
11005 }
11006
11007 /* Only string instructions can have a second memory operand, so
11008 reduce current_templates to just those if it contains any. */
11009 static int
11010 maybe_adjust_templates (void)
11011 {
11012 const insn_template *t;
11013
11014 gas_assert (i.mem_operands == 1);
11015
11016 for (t = current_templates->start; t < current_templates->end; ++t)
11017 if (t->opcode_modifier.isstring)
11018 break;
11019
11020 if (t < current_templates->end)
11021 {
11022 static templates aux_templates;
11023 bfd_boolean recheck;
11024
11025 aux_templates.start = t;
11026 for (; t < current_templates->end; ++t)
11027 if (!t->opcode_modifier.isstring)
11028 break;
11029 aux_templates.end = t;
11030
11031 /* Determine whether to re-check the first memory operand. */
11032 recheck = (aux_templates.start != current_templates->start
11033 || t != current_templates->end);
11034
11035 current_templates = &aux_templates;
11036
11037 if (recheck)
11038 {
11039 i.mem_operands = 0;
11040 if (i.memop1_string != NULL
11041 && i386_index_check (i.memop1_string) == 0)
11042 return 0;
11043 i.mem_operands = 1;
11044 }
11045 }
11046
11047 return 1;
11048 }
11049
11050 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
11051 on error. */
11052
11053 static int
11054 i386_att_operand (char *operand_string)
11055 {
11056 const reg_entry *r;
11057 char *end_op;
11058 char *op_string = operand_string;
11059
11060 if (is_space_char (*op_string))
11061 ++op_string;
11062
11063 /* We check for an absolute prefix (differentiating,
11064 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
11065 if (*op_string == ABSOLUTE_PREFIX)
11066 {
11067 ++op_string;
11068 if (is_space_char (*op_string))
11069 ++op_string;
11070 i.jumpabsolute = TRUE;
11071 }
11072
11073 /* Check if operand is a register. */
11074 if ((r = parse_register (op_string, &end_op)) != NULL)
11075 {
11076 i386_operand_type temp;
11077
11078 if (r == &bad_reg)
11079 return 0;
11080
11081 /* Check for a segment override by searching for ':' after a
11082 segment register. */
11083 op_string = end_op;
11084 if (is_space_char (*op_string))
11085 ++op_string;
11086 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
11087 {
11088 switch (r->reg_num)
11089 {
11090 case 0:
11091 i.seg[i.mem_operands] = &es;
11092 break;
11093 case 1:
11094 i.seg[i.mem_operands] = &cs;
11095 break;
11096 case 2:
11097 i.seg[i.mem_operands] = &ss;
11098 break;
11099 case 3:
11100 i.seg[i.mem_operands] = &ds;
11101 break;
11102 case 4:
11103 i.seg[i.mem_operands] = &fs;
11104 break;
11105 case 5:
11106 i.seg[i.mem_operands] = &gs;
11107 break;
11108 }
11109
11110 /* Skip the ':' and whitespace. */
11111 ++op_string;
11112 if (is_space_char (*op_string))
11113 ++op_string;
11114
11115 if (!is_digit_char (*op_string)
11116 && !is_identifier_char (*op_string)
11117 && *op_string != '('
11118 && *op_string != ABSOLUTE_PREFIX)
11119 {
11120 as_bad (_("bad memory operand `%s'"), op_string);
11121 return 0;
11122 }
11123 /* Handle case of %es:*foo. */
11124 if (*op_string == ABSOLUTE_PREFIX)
11125 {
11126 ++op_string;
11127 if (is_space_char (*op_string))
11128 ++op_string;
11129 i.jumpabsolute = TRUE;
11130 }
11131 goto do_memory_reference;
11132 }
11133
11134 /* Handle vector operations. */
11135 if (*op_string == '{')
11136 {
11137 op_string = check_VecOperations (op_string, NULL);
11138 if (op_string == NULL)
11139 return 0;
11140 }
11141
11142 if (*op_string)
11143 {
11144 as_bad (_("junk `%s' after register"), op_string);
11145 return 0;
11146 }
11147 temp = r->reg_type;
11148 temp.bitfield.baseindex = 0;
11149 i.types[this_operand] = operand_type_or (i.types[this_operand],
11150 temp);
11151 i.types[this_operand].bitfield.unspecified = 0;
11152 i.op[this_operand].regs = r;
11153 i.reg_operands++;
11154 }
11155 else if (*op_string == REGISTER_PREFIX)
11156 {
11157 as_bad (_("bad register name `%s'"), op_string);
11158 return 0;
11159 }
11160 else if (*op_string == IMMEDIATE_PREFIX)
11161 {
11162 ++op_string;
11163 if (i.jumpabsolute)
11164 {
11165 as_bad (_("immediate operand illegal with absolute jump"));
11166 return 0;
11167 }
11168 if (!i386_immediate (op_string))
11169 return 0;
11170 }
11171 else if (RC_SAE_immediate (operand_string))
11172 {
11173 /* If it is a RC or SAE immediate, do nothing. */
11174 ;
11175 }
11176 else if (is_digit_char (*op_string)
11177 || is_identifier_char (*op_string)
11178 || *op_string == '"'
11179 || *op_string == '(')
11180 {
11181 /* This is a memory reference of some sort. */
11182 char *base_string;
11183
11184 /* Start and end of displacement string expression (if found). */
11185 char *displacement_string_start;
11186 char *displacement_string_end;
11187 char *vop_start;
11188
11189 do_memory_reference:
11190 if (i.mem_operands == 1 && !maybe_adjust_templates ())
11191 return 0;
11192 if ((i.mem_operands == 1
11193 && !current_templates->start->opcode_modifier.isstring)
11194 || i.mem_operands == 2)
11195 {
11196 as_bad (_("too many memory references for `%s'"),
11197 current_templates->start->name);
11198 return 0;
11199 }
11200
11201 /* Check for base index form. We detect the base index form by
11202 looking for an ')' at the end of the operand, searching
11203 for the '(' matching it, and finding a REGISTER_PREFIX or ','
11204 after the '('. */
11205 base_string = op_string + strlen (op_string);
11206
11207 /* Handle vector operations. */
11208 vop_start = strchr (op_string, '{');
11209 if (vop_start && vop_start < base_string)
11210 {
11211 if (check_VecOperations (vop_start, base_string) == NULL)
11212 return 0;
11213 base_string = vop_start;
11214 }
11215
11216 --base_string;
11217 if (is_space_char (*base_string))
11218 --base_string;
11219
11220 /* If we only have a displacement, set-up for it to be parsed later. */
11221 displacement_string_start = op_string;
11222 displacement_string_end = base_string + 1;
11223
11224 if (*base_string == ')')
11225 {
11226 char *temp_string;
11227 unsigned int parens_balanced = 1;
11228 /* We've already checked that the number of left & right ()'s are
11229 equal, so this loop will not be infinite. */
11230 do
11231 {
11232 base_string--;
11233 if (*base_string == ')')
11234 parens_balanced++;
11235 if (*base_string == '(')
11236 parens_balanced--;
11237 }
11238 while (parens_balanced);
11239
11240 temp_string = base_string;
11241
11242 /* Skip past '(' and whitespace. */
11243 ++base_string;
11244 if (is_space_char (*base_string))
11245 ++base_string;
11246
11247 if (*base_string == ','
11248 || ((i.base_reg = parse_register (base_string, &end_op))
11249 != NULL))
11250 {
11251 displacement_string_end = temp_string;
11252
11253 i.types[this_operand].bitfield.baseindex = 1;
11254
11255 if (i.base_reg)
11256 {
11257 if (i.base_reg == &bad_reg)
11258 return 0;
11259 base_string = end_op;
11260 if (is_space_char (*base_string))
11261 ++base_string;
11262 }
11263
11264 /* There may be an index reg or scale factor here. */
11265 if (*base_string == ',')
11266 {
11267 ++base_string;
11268 if (is_space_char (*base_string))
11269 ++base_string;
11270
11271 if ((i.index_reg = parse_register (base_string, &end_op))
11272 != NULL)
11273 {
11274 if (i.index_reg == &bad_reg)
11275 return 0;
11276 base_string = end_op;
11277 if (is_space_char (*base_string))
11278 ++base_string;
11279 if (*base_string == ',')
11280 {
11281 ++base_string;
11282 if (is_space_char (*base_string))
11283 ++base_string;
11284 }
11285 else if (*base_string != ')')
11286 {
11287 as_bad (_("expecting `,' or `)' "
11288 "after index register in `%s'"),
11289 operand_string);
11290 return 0;
11291 }
11292 }
11293 else if (*base_string == REGISTER_PREFIX)
11294 {
11295 end_op = strchr (base_string, ',');
11296 if (end_op)
11297 *end_op = '\0';
11298 as_bad (_("bad register name `%s'"), base_string);
11299 return 0;
11300 }
11301
11302 /* Check for scale factor. */
11303 if (*base_string != ')')
11304 {
11305 char *end_scale = i386_scale (base_string);
11306
11307 if (!end_scale)
11308 return 0;
11309
11310 base_string = end_scale;
11311 if (is_space_char (*base_string))
11312 ++base_string;
11313 if (*base_string != ')')
11314 {
11315 as_bad (_("expecting `)' "
11316 "after scale factor in `%s'"),
11317 operand_string);
11318 return 0;
11319 }
11320 }
11321 else if (!i.index_reg)
11322 {
11323 as_bad (_("expecting index register or scale factor "
11324 "after `,'; got '%c'"),
11325 *base_string);
11326 return 0;
11327 }
11328 }
11329 else if (*base_string != ')')
11330 {
11331 as_bad (_("expecting `,' or `)' "
11332 "after base register in `%s'"),
11333 operand_string);
11334 return 0;
11335 }
11336 }
11337 else if (*base_string == REGISTER_PREFIX)
11338 {
11339 end_op = strchr (base_string, ',');
11340 if (end_op)
11341 *end_op = '\0';
11342 as_bad (_("bad register name `%s'"), base_string);
11343 return 0;
11344 }
11345 }
11346
11347 /* If there's an expression beginning the operand, parse it,
11348 assuming displacement_string_start and
11349 displacement_string_end are meaningful. */
11350 if (displacement_string_start != displacement_string_end)
11351 {
11352 if (!i386_displacement (displacement_string_start,
11353 displacement_string_end))
11354 return 0;
11355 }
11356
11357 /* Special case for (%dx) while doing input/output op. */
11358 if (i.base_reg
11359 && i.base_reg->reg_type.bitfield.instance == RegD
11360 && i.base_reg->reg_type.bitfield.word
11361 && i.index_reg == 0
11362 && i.log2_scale_factor == 0
11363 && i.seg[i.mem_operands] == 0
11364 && !operand_type_check (i.types[this_operand], disp))
11365 {
11366 i.types[this_operand] = i.base_reg->reg_type;
11367 return 1;
11368 }
11369
11370 if (i386_index_check (operand_string) == 0)
11371 return 0;
11372 i.flags[this_operand] |= Operand_Mem;
11373 if (i.mem_operands == 0)
11374 i.memop1_string = xstrdup (operand_string);
11375 i.mem_operands++;
11376 }
11377 else
11378 {
11379 /* It's not a memory operand; argh! */
11380 as_bad (_("invalid char %s beginning operand %d `%s'"),
11381 output_invalid (*op_string),
11382 this_operand + 1,
11383 op_string);
11384 return 0;
11385 }
11386 return 1; /* Normal return. */
11387 }
11388 \f
11389 /* Calculate the maximum variable size (i.e., excluding fr_fix)
11390 that an rs_machine_dependent frag may reach. */
11391
11392 unsigned int
11393 i386_frag_max_var (fragS *frag)
11394 {
11395 /* The only relaxable frags are for jumps.
11396 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
11397 gas_assert (frag->fr_type == rs_machine_dependent);
11398 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
11399 }
11400
11401 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11402 static int
11403 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
11404 {
11405 /* STT_GNU_IFUNC symbol must go through PLT. */
11406 if ((symbol_get_bfdsym (fr_symbol)->flags
11407 & BSF_GNU_INDIRECT_FUNCTION) != 0)
11408 return 0;
11409
11410 if (!S_IS_EXTERNAL (fr_symbol))
11411 /* Symbol may be weak or local. */
11412 return !S_IS_WEAK (fr_symbol);
11413
11414 /* Global symbols with non-default visibility can't be preempted. */
11415 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
11416 return 1;
11417
11418 if (fr_var != NO_RELOC)
11419 switch ((enum bfd_reloc_code_real) fr_var)
11420 {
11421 case BFD_RELOC_386_PLT32:
11422 case BFD_RELOC_X86_64_PLT32:
11423 /* Symbol with PLT relocation may be preempted. */
11424 return 0;
11425 default:
11426 abort ();
11427 }
11428
11429 /* Global symbols with default visibility in a shared library may be
11430 preempted by another definition. */
11431 return !shared;
11432 }
11433 #endif
11434
11435 /* Table 3-2. Macro-Fusible Instructions in Haswell Microarchitecture
11436 Note also work for Skylake and Cascadelake.
11437 ---------------------------------------------------------------------
11438 | JCC | ADD/SUB/CMP | INC/DEC | TEST/AND |
11439 | ------ | ----------- | ------- | -------- |
11440 | Jo | N | N | Y |
11441 | Jno | N | N | Y |
11442 | Jc/Jb | Y | N | Y |
11443 | Jae/Jnb | Y | N | Y |
11444 | Je/Jz | Y | Y | Y |
11445 | Jne/Jnz | Y | Y | Y |
11446 | Jna/Jbe | Y | N | Y |
11447 | Ja/Jnbe | Y | N | Y |
11448 | Js | N | N | Y |
11449 | Jns | N | N | Y |
11450 | Jp/Jpe | N | N | Y |
11451 | Jnp/Jpo | N | N | Y |
11452 | Jl/Jnge | Y | Y | Y |
11453 | Jge/Jnl | Y | Y | Y |
11454 | Jle/Jng | Y | Y | Y |
11455 | Jg/Jnle | Y | Y | Y |
11456 --------------------------------------------------------------------- */
11457 static int
11458 i386_macro_fusible_p (enum mf_cmp_kind mf_cmp, enum mf_jcc_kind mf_jcc)
11459 {
11460 if (mf_cmp == mf_cmp_alu_cmp)
11461 return ((mf_jcc >= mf_jcc_jc && mf_jcc <= mf_jcc_jna)
11462 || mf_jcc == mf_jcc_jl || mf_jcc == mf_jcc_jle);
11463 if (mf_cmp == mf_cmp_incdec)
11464 return (mf_jcc == mf_jcc_je || mf_jcc == mf_jcc_jl
11465 || mf_jcc == mf_jcc_jle);
11466 if (mf_cmp == mf_cmp_test_and)
11467 return 1;
11468 return 0;
11469 }
11470
11471 /* Return the next non-empty frag. */
11472
11473 static fragS *
11474 i386_next_non_empty_frag (fragS *fragP)
11475 {
11476 /* There may be a frag with a ".fill 0" when there is no room in
11477 the current frag for frag_grow in output_insn. */
11478 for (fragP = fragP->fr_next;
11479 (fragP != NULL
11480 && fragP->fr_type == rs_fill
11481 && fragP->fr_fix == 0);
11482 fragP = fragP->fr_next)
11483 ;
11484 return fragP;
11485 }
11486
11487 /* Return the next jcc frag after BRANCH_PADDING. */
11488
11489 static fragS *
11490 i386_next_fusible_jcc_frag (fragS *maybe_cmp_fragP, fragS *pad_fragP)
11491 {
11492 fragS *branch_fragP;
11493 if (!pad_fragP)
11494 return NULL;
11495
11496 if (pad_fragP->fr_type == rs_machine_dependent
11497 && (TYPE_FROM_RELAX_STATE (pad_fragP->fr_subtype)
11498 == BRANCH_PADDING))
11499 {
11500 branch_fragP = i386_next_non_empty_frag (pad_fragP);
11501 if (branch_fragP->fr_type != rs_machine_dependent)
11502 return NULL;
11503 if (TYPE_FROM_RELAX_STATE (branch_fragP->fr_subtype) == COND_JUMP
11504 && i386_macro_fusible_p (maybe_cmp_fragP->tc_frag_data.mf_type,
11505 pad_fragP->tc_frag_data.mf_type))
11506 return branch_fragP;
11507 }
11508
11509 return NULL;
11510 }
11511
11512 /* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
11513
11514 static void
11515 i386_classify_machine_dependent_frag (fragS *fragP)
11516 {
11517 fragS *cmp_fragP;
11518 fragS *pad_fragP;
11519 fragS *branch_fragP;
11520 fragS *next_fragP;
11521 unsigned int max_prefix_length;
11522
11523 if (fragP->tc_frag_data.classified)
11524 return;
11525
11526 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
11527 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
11528 for (next_fragP = fragP;
11529 next_fragP != NULL;
11530 next_fragP = next_fragP->fr_next)
11531 {
11532 next_fragP->tc_frag_data.classified = 1;
11533 if (next_fragP->fr_type == rs_machine_dependent)
11534 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
11535 {
11536 case BRANCH_PADDING:
11537 /* The BRANCH_PADDING frag must be followed by a branch
11538 frag. */
11539 branch_fragP = i386_next_non_empty_frag (next_fragP);
11540 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11541 break;
11542 case FUSED_JCC_PADDING:
11543 /* Check if this is a fused jcc:
11544 FUSED_JCC_PADDING
11545 CMP like instruction
11546 BRANCH_PADDING
11547 COND_JUMP
11548 */
11549 cmp_fragP = i386_next_non_empty_frag (next_fragP);
11550 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
11551 branch_fragP = i386_next_fusible_jcc_frag (next_fragP, pad_fragP);
11552 if (branch_fragP)
11553 {
11554 /* The BRANCH_PADDING frag is merged with the
11555 FUSED_JCC_PADDING frag. */
11556 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11557 /* CMP like instruction size. */
11558 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
11559 frag_wane (pad_fragP);
11560 /* Skip to branch_fragP. */
11561 next_fragP = branch_fragP;
11562 }
11563 else if (next_fragP->tc_frag_data.max_prefix_length)
11564 {
11565 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
11566 a fused jcc. */
11567 next_fragP->fr_subtype
11568 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
11569 next_fragP->tc_frag_data.max_bytes
11570 = next_fragP->tc_frag_data.max_prefix_length;
11571 /* This will be updated in the BRANCH_PREFIX scan. */
11572 next_fragP->tc_frag_data.max_prefix_length = 0;
11573 }
11574 else
11575 frag_wane (next_fragP);
11576 break;
11577 }
11578 }
11579
11580 /* Stop if there is no BRANCH_PREFIX. */
11581 if (!align_branch_prefix_size)
11582 return;
11583
11584 /* Scan for BRANCH_PREFIX. */
11585 for (; fragP != NULL; fragP = fragP->fr_next)
11586 {
11587 if (fragP->fr_type != rs_machine_dependent
11588 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11589 != BRANCH_PREFIX))
11590 continue;
11591
11592 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
11593 COND_JUMP_PREFIX. */
11594 max_prefix_length = 0;
11595 for (next_fragP = fragP;
11596 next_fragP != NULL;
11597 next_fragP = next_fragP->fr_next)
11598 {
11599 if (next_fragP->fr_type == rs_fill)
11600 /* Skip rs_fill frags. */
11601 continue;
11602 else if (next_fragP->fr_type != rs_machine_dependent)
11603 /* Stop for all other frags. */
11604 break;
11605
11606 /* rs_machine_dependent frags. */
11607 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11608 == BRANCH_PREFIX)
11609 {
11610 /* Count BRANCH_PREFIX frags. */
11611 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
11612 {
11613 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
11614 frag_wane (next_fragP);
11615 }
11616 else
11617 max_prefix_length
11618 += next_fragP->tc_frag_data.max_bytes;
11619 }
11620 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11621 == BRANCH_PADDING)
11622 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11623 == FUSED_JCC_PADDING))
11624 {
11625 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
11626 fragP->tc_frag_data.u.padding_fragP = next_fragP;
11627 break;
11628 }
11629 else
11630 /* Stop for other rs_machine_dependent frags. */
11631 break;
11632 }
11633
11634 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11635
11636 /* Skip to the next frag. */
11637 fragP = next_fragP;
11638 }
11639 }
11640
11641 /* Compute padding size for
11642
11643 FUSED_JCC_PADDING
11644 CMP like instruction
11645 BRANCH_PADDING
11646 COND_JUMP/UNCOND_JUMP
11647
11648 or
11649
11650 BRANCH_PADDING
11651 COND_JUMP/UNCOND_JUMP
11652 */
11653
11654 static int
11655 i386_branch_padding_size (fragS *fragP, offsetT address)
11656 {
11657 unsigned int offset, size, padding_size;
11658 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11659
11660 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11661 if (!address)
11662 address = fragP->fr_address;
11663 address += fragP->fr_fix;
11664
11665 /* CMP like instrunction size. */
11666 size = fragP->tc_frag_data.cmp_size;
11667
11668 /* The base size of the branch frag. */
11669 size += branch_fragP->fr_fix;
11670
11671 /* Add opcode and displacement bytes for the rs_machine_dependent
11672 branch frag. */
11673 if (branch_fragP->fr_type == rs_machine_dependent)
11674 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11675
11676 /* Check if branch is within boundary and doesn't end at the last
11677 byte. */
11678 offset = address & ((1U << align_branch_power) - 1);
11679 if ((offset + size) >= (1U << align_branch_power))
11680 /* Padding needed to avoid crossing boundary. */
11681 padding_size = (1U << align_branch_power) - offset;
11682 else
11683 /* No padding needed. */
11684 padding_size = 0;
11685
11686 /* The return value may be saved in tc_frag_data.length which is
11687 unsigned byte. */
11688 if (!fits_in_unsigned_byte (padding_size))
11689 abort ();
11690
11691 return padding_size;
11692 }
11693
11694 /* i386_generic_table_relax_frag()
11695
11696 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11697 grow/shrink padding to align branch frags. Hand others to
11698 relax_frag(). */
11699
11700 long
11701 i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11702 {
11703 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11704 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11705 {
11706 long padding_size = i386_branch_padding_size (fragP, 0);
11707 long grow = padding_size - fragP->tc_frag_data.length;
11708
11709 /* When the BRANCH_PREFIX frag is used, the computed address
11710 must match the actual address and there should be no padding. */
11711 if (fragP->tc_frag_data.padding_address
11712 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11713 || padding_size))
11714 abort ();
11715
11716 /* Update the padding size. */
11717 if (grow)
11718 fragP->tc_frag_data.length = padding_size;
11719
11720 return grow;
11721 }
11722 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11723 {
11724 fragS *padding_fragP, *next_fragP;
11725 long padding_size, left_size, last_size;
11726
11727 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11728 if (!padding_fragP)
11729 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11730 return (fragP->tc_frag_data.length
11731 - fragP->tc_frag_data.last_length);
11732
11733 /* Compute the relative address of the padding frag in the very
11734 first time where the BRANCH_PREFIX frag sizes are zero. */
11735 if (!fragP->tc_frag_data.padding_address)
11736 fragP->tc_frag_data.padding_address
11737 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11738
11739 /* First update the last length from the previous interation. */
11740 left_size = fragP->tc_frag_data.prefix_length;
11741 for (next_fragP = fragP;
11742 next_fragP != padding_fragP;
11743 next_fragP = next_fragP->fr_next)
11744 if (next_fragP->fr_type == rs_machine_dependent
11745 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11746 == BRANCH_PREFIX))
11747 {
11748 if (left_size)
11749 {
11750 int max = next_fragP->tc_frag_data.max_bytes;
11751 if (max)
11752 {
11753 int size;
11754 if (max > left_size)
11755 size = left_size;
11756 else
11757 size = max;
11758 left_size -= size;
11759 next_fragP->tc_frag_data.last_length = size;
11760 }
11761 }
11762 else
11763 next_fragP->tc_frag_data.last_length = 0;
11764 }
11765
11766 /* Check the padding size for the padding frag. */
11767 padding_size = i386_branch_padding_size
11768 (padding_fragP, (fragP->fr_address
11769 + fragP->tc_frag_data.padding_address));
11770
11771 last_size = fragP->tc_frag_data.prefix_length;
11772 /* Check if there is change from the last interation. */
11773 if (padding_size == last_size)
11774 {
11775 /* Update the expected address of the padding frag. */
11776 padding_fragP->tc_frag_data.padding_address
11777 = (fragP->fr_address + padding_size
11778 + fragP->tc_frag_data.padding_address);
11779 return 0;
11780 }
11781
11782 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11783 {
11784 /* No padding if there is no sufficient room. Clear the
11785 expected address of the padding frag. */
11786 padding_fragP->tc_frag_data.padding_address = 0;
11787 padding_size = 0;
11788 }
11789 else
11790 /* Store the expected address of the padding frag. */
11791 padding_fragP->tc_frag_data.padding_address
11792 = (fragP->fr_address + padding_size
11793 + fragP->tc_frag_data.padding_address);
11794
11795 fragP->tc_frag_data.prefix_length = padding_size;
11796
11797 /* Update the length for the current interation. */
11798 left_size = padding_size;
11799 for (next_fragP = fragP;
11800 next_fragP != padding_fragP;
11801 next_fragP = next_fragP->fr_next)
11802 if (next_fragP->fr_type == rs_machine_dependent
11803 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11804 == BRANCH_PREFIX))
11805 {
11806 if (left_size)
11807 {
11808 int max = next_fragP->tc_frag_data.max_bytes;
11809 if (max)
11810 {
11811 int size;
11812 if (max > left_size)
11813 size = left_size;
11814 else
11815 size = max;
11816 left_size -= size;
11817 next_fragP->tc_frag_data.length = size;
11818 }
11819 }
11820 else
11821 next_fragP->tc_frag_data.length = 0;
11822 }
11823
11824 return (fragP->tc_frag_data.length
11825 - fragP->tc_frag_data.last_length);
11826 }
11827 return relax_frag (segment, fragP, stretch);
11828 }
11829
11830 /* md_estimate_size_before_relax()
11831
11832 Called just before relax() for rs_machine_dependent frags. The x86
11833 assembler uses these frags to handle variable size jump
11834 instructions.
11835
11836 Any symbol that is now undefined will not become defined.
11837 Return the correct fr_subtype in the frag.
11838 Return the initial "guess for variable size of frag" to caller.
11839 The guess is actually the growth beyond the fixed part. Whatever
11840 we do to grow the fixed or variable part contributes to our
11841 returned value. */
11842
11843 int
11844 md_estimate_size_before_relax (fragS *fragP, segT segment)
11845 {
11846 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11847 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11848 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11849 {
11850 i386_classify_machine_dependent_frag (fragP);
11851 return fragP->tc_frag_data.length;
11852 }
11853
11854 /* We've already got fragP->fr_subtype right; all we have to do is
11855 check for un-relaxable symbols. On an ELF system, we can't relax
11856 an externally visible symbol, because it may be overridden by a
11857 shared library. */
11858 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
11859 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11860 || (IS_ELF
11861 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11862 fragP->fr_var))
11863 #endif
11864 #if defined (OBJ_COFF) && defined (TE_PE)
11865 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
11866 && S_IS_WEAK (fragP->fr_symbol))
11867 #endif
11868 )
11869 {
11870 /* Symbol is undefined in this segment, or we need to keep a
11871 reloc so that weak symbols can be overridden. */
11872 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
11873 enum bfd_reloc_code_real reloc_type;
11874 unsigned char *opcode;
11875 int old_fr_fix;
11876
11877 if (fragP->fr_var != NO_RELOC)
11878 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
11879 else if (size == 2)
11880 reloc_type = BFD_RELOC_16_PCREL;
11881 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11882 else if (need_plt32_p (fragP->fr_symbol))
11883 reloc_type = BFD_RELOC_X86_64_PLT32;
11884 #endif
11885 else
11886 reloc_type = BFD_RELOC_32_PCREL;
11887
11888 old_fr_fix = fragP->fr_fix;
11889 opcode = (unsigned char *) fragP->fr_opcode;
11890
11891 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
11892 {
11893 case UNCOND_JUMP:
11894 /* Make jmp (0xeb) a (d)word displacement jump. */
11895 opcode[0] = 0xe9;
11896 fragP->fr_fix += size;
11897 fix_new (fragP, old_fr_fix, size,
11898 fragP->fr_symbol,
11899 fragP->fr_offset, 1,
11900 reloc_type);
11901 break;
11902
11903 case COND_JUMP86:
11904 if (size == 2
11905 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
11906 {
11907 /* Negate the condition, and branch past an
11908 unconditional jump. */
11909 opcode[0] ^= 1;
11910 opcode[1] = 3;
11911 /* Insert an unconditional jump. */
11912 opcode[2] = 0xe9;
11913 /* We added two extra opcode bytes, and have a two byte
11914 offset. */
11915 fragP->fr_fix += 2 + 2;
11916 fix_new (fragP, old_fr_fix + 2, 2,
11917 fragP->fr_symbol,
11918 fragP->fr_offset, 1,
11919 reloc_type);
11920 break;
11921 }
11922 /* Fall through. */
11923
11924 case COND_JUMP:
11925 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11926 {
11927 fixS *fixP;
11928
11929 fragP->fr_fix += 1;
11930 fixP = fix_new (fragP, old_fr_fix, 1,
11931 fragP->fr_symbol,
11932 fragP->fr_offset, 1,
11933 BFD_RELOC_8_PCREL);
11934 fixP->fx_signed = 1;
11935 break;
11936 }
11937
11938 /* This changes the byte-displacement jump 0x7N
11939 to the (d)word-displacement jump 0x0f,0x8N. */
11940 opcode[1] = opcode[0] + 0x10;
11941 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11942 /* We've added an opcode byte. */
11943 fragP->fr_fix += 1 + size;
11944 fix_new (fragP, old_fr_fix + 1, size,
11945 fragP->fr_symbol,
11946 fragP->fr_offset, 1,
11947 reloc_type);
11948 break;
11949
11950 default:
11951 BAD_CASE (fragP->fr_subtype);
11952 break;
11953 }
11954 frag_wane (fragP);
11955 return fragP->fr_fix - old_fr_fix;
11956 }
11957
11958 /* Guess size depending on current relax state. Initially the relax
11959 state will correspond to a short jump and we return 1, because
11960 the variable part of the frag (the branch offset) is one byte
11961 long. However, we can relax a section more than once and in that
11962 case we must either set fr_subtype back to the unrelaxed state,
11963 or return the value for the appropriate branch. */
11964 return md_relax_table[fragP->fr_subtype].rlx_length;
11965 }
11966
11967 /* Called after relax() is finished.
11968
11969 In: Address of frag.
11970 fr_type == rs_machine_dependent.
11971 fr_subtype is what the address relaxed to.
11972
11973 Out: Any fixSs and constants are set up.
11974 Caller will turn frag into a ".space 0". */
11975
11976 void
11977 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
11978 fragS *fragP)
11979 {
11980 unsigned char *opcode;
11981 unsigned char *where_to_put_displacement = NULL;
11982 offsetT target_address;
11983 offsetT opcode_address;
11984 unsigned int extension = 0;
11985 offsetT displacement_from_opcode_start;
11986
11987 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11988 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
11989 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11990 {
11991 /* Generate nop padding. */
11992 unsigned int size = fragP->tc_frag_data.length;
11993 if (size)
11994 {
11995 if (size > fragP->tc_frag_data.max_bytes)
11996 abort ();
11997
11998 if (flag_debug)
11999 {
12000 const char *msg;
12001 const char *branch = "branch";
12002 const char *prefix = "";
12003 fragS *padding_fragP;
12004 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
12005 == BRANCH_PREFIX)
12006 {
12007 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
12008 switch (fragP->tc_frag_data.default_prefix)
12009 {
12010 default:
12011 abort ();
12012 break;
12013 case CS_PREFIX_OPCODE:
12014 prefix = " cs";
12015 break;
12016 case DS_PREFIX_OPCODE:
12017 prefix = " ds";
12018 break;
12019 case ES_PREFIX_OPCODE:
12020 prefix = " es";
12021 break;
12022 case FS_PREFIX_OPCODE:
12023 prefix = " fs";
12024 break;
12025 case GS_PREFIX_OPCODE:
12026 prefix = " gs";
12027 break;
12028 case SS_PREFIX_OPCODE:
12029 prefix = " ss";
12030 break;
12031 }
12032 if (padding_fragP)
12033 msg = _("%s:%u: add %d%s at 0x%llx to align "
12034 "%s within %d-byte boundary\n");
12035 else
12036 msg = _("%s:%u: add additional %d%s at 0x%llx to "
12037 "align %s within %d-byte boundary\n");
12038 }
12039 else
12040 {
12041 padding_fragP = fragP;
12042 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
12043 "%s within %d-byte boundary\n");
12044 }
12045
12046 if (padding_fragP)
12047 switch (padding_fragP->tc_frag_data.branch_type)
12048 {
12049 case align_branch_jcc:
12050 branch = "jcc";
12051 break;
12052 case align_branch_fused:
12053 branch = "fused jcc";
12054 break;
12055 case align_branch_jmp:
12056 branch = "jmp";
12057 break;
12058 case align_branch_call:
12059 branch = "call";
12060 break;
12061 case align_branch_indirect:
12062 branch = "indiret branch";
12063 break;
12064 case align_branch_ret:
12065 branch = "ret";
12066 break;
12067 default:
12068 break;
12069 }
12070
12071 fprintf (stdout, msg,
12072 fragP->fr_file, fragP->fr_line, size, prefix,
12073 (long long) fragP->fr_address, branch,
12074 1 << align_branch_power);
12075 }
12076 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
12077 memset (fragP->fr_opcode,
12078 fragP->tc_frag_data.default_prefix, size);
12079 else
12080 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
12081 size, 0);
12082 fragP->fr_fix += size;
12083 }
12084 return;
12085 }
12086
12087 opcode = (unsigned char *) fragP->fr_opcode;
12088
12089 /* Address we want to reach in file space. */
12090 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
12091
12092 /* Address opcode resides at in file space. */
12093 opcode_address = fragP->fr_address + fragP->fr_fix;
12094
12095 /* Displacement from opcode start to fill into instruction. */
12096 displacement_from_opcode_start = target_address - opcode_address;
12097
12098 if ((fragP->fr_subtype & BIG) == 0)
12099 {
12100 /* Don't have to change opcode. */
12101 extension = 1; /* 1 opcode + 1 displacement */
12102 where_to_put_displacement = &opcode[1];
12103 }
12104 else
12105 {
12106 if (no_cond_jump_promotion
12107 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
12108 as_warn_where (fragP->fr_file, fragP->fr_line,
12109 _("long jump required"));
12110
12111 switch (fragP->fr_subtype)
12112 {
12113 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
12114 extension = 4; /* 1 opcode + 4 displacement */
12115 opcode[0] = 0xe9;
12116 where_to_put_displacement = &opcode[1];
12117 break;
12118
12119 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
12120 extension = 2; /* 1 opcode + 2 displacement */
12121 opcode[0] = 0xe9;
12122 where_to_put_displacement = &opcode[1];
12123 break;
12124
12125 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
12126 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
12127 extension = 5; /* 2 opcode + 4 displacement */
12128 opcode[1] = opcode[0] + 0x10;
12129 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
12130 where_to_put_displacement = &opcode[2];
12131 break;
12132
12133 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
12134 extension = 3; /* 2 opcode + 2 displacement */
12135 opcode[1] = opcode[0] + 0x10;
12136 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
12137 where_to_put_displacement = &opcode[2];
12138 break;
12139
12140 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
12141 extension = 4;
12142 opcode[0] ^= 1;
12143 opcode[1] = 3;
12144 opcode[2] = 0xe9;
12145 where_to_put_displacement = &opcode[3];
12146 break;
12147
12148 default:
12149 BAD_CASE (fragP->fr_subtype);
12150 break;
12151 }
12152 }
12153
12154 /* If size if less then four we are sure that the operand fits,
12155 but if it's 4, then it could be that the displacement is larger
12156 then -/+ 2GB. */
12157 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
12158 && object_64bit
12159 && ((addressT) (displacement_from_opcode_start - extension
12160 + ((addressT) 1 << 31))
12161 > (((addressT) 2 << 31) - 1)))
12162 {
12163 as_bad_where (fragP->fr_file, fragP->fr_line,
12164 _("jump target out of range"));
12165 /* Make us emit 0. */
12166 displacement_from_opcode_start = extension;
12167 }
12168 /* Now put displacement after opcode. */
12169 md_number_to_chars ((char *) where_to_put_displacement,
12170 (valueT) (displacement_from_opcode_start - extension),
12171 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
12172 fragP->fr_fix += extension;
12173 }
12174 \f
12175 /* Apply a fixup (fixP) to segment data, once it has been determined
12176 by our caller that we have all the info we need to fix it up.
12177
12178 Parameter valP is the pointer to the value of the bits.
12179
12180 On the 386, immediates, displacements, and data pointers are all in
12181 the same (little-endian) format, so we don't need to care about which
12182 we are handling. */
12183
12184 void
12185 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
12186 {
12187 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
12188 valueT value = *valP;
12189
12190 #if !defined (TE_Mach)
12191 if (fixP->fx_pcrel)
12192 {
12193 switch (fixP->fx_r_type)
12194 {
12195 default:
12196 break;
12197
12198 case BFD_RELOC_64:
12199 fixP->fx_r_type = BFD_RELOC_64_PCREL;
12200 break;
12201 case BFD_RELOC_32:
12202 case BFD_RELOC_X86_64_32S:
12203 fixP->fx_r_type = BFD_RELOC_32_PCREL;
12204 break;
12205 case BFD_RELOC_16:
12206 fixP->fx_r_type = BFD_RELOC_16_PCREL;
12207 break;
12208 case BFD_RELOC_8:
12209 fixP->fx_r_type = BFD_RELOC_8_PCREL;
12210 break;
12211 }
12212 }
12213
12214 if (fixP->fx_addsy != NULL
12215 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
12216 || fixP->fx_r_type == BFD_RELOC_64_PCREL
12217 || fixP->fx_r_type == BFD_RELOC_16_PCREL
12218 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
12219 && !use_rela_relocations)
12220 {
12221 /* This is a hack. There should be a better way to handle this.
12222 This covers for the fact that bfd_install_relocation will
12223 subtract the current location (for partial_inplace, PC relative
12224 relocations); see more below. */
12225 #ifndef OBJ_AOUT
12226 if (IS_ELF
12227 #ifdef TE_PE
12228 || OUTPUT_FLAVOR == bfd_target_coff_flavour
12229 #endif
12230 )
12231 value += fixP->fx_where + fixP->fx_frag->fr_address;
12232 #endif
12233 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12234 if (IS_ELF)
12235 {
12236 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
12237
12238 if ((sym_seg == seg
12239 || (symbol_section_p (fixP->fx_addsy)
12240 && sym_seg != absolute_section))
12241 && !generic_force_reloc (fixP))
12242 {
12243 /* Yes, we add the values in twice. This is because
12244 bfd_install_relocation subtracts them out again. I think
12245 bfd_install_relocation is broken, but I don't dare change
12246 it. FIXME. */
12247 value += fixP->fx_where + fixP->fx_frag->fr_address;
12248 }
12249 }
12250 #endif
12251 #if defined (OBJ_COFF) && defined (TE_PE)
12252 /* For some reason, the PE format does not store a
12253 section address offset for a PC relative symbol. */
12254 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
12255 || S_IS_WEAK (fixP->fx_addsy))
12256 value += md_pcrel_from (fixP);
12257 #endif
12258 }
12259 #if defined (OBJ_COFF) && defined (TE_PE)
12260 if (fixP->fx_addsy != NULL
12261 && S_IS_WEAK (fixP->fx_addsy)
12262 /* PR 16858: Do not modify weak function references. */
12263 && ! fixP->fx_pcrel)
12264 {
12265 #if !defined (TE_PEP)
12266 /* For x86 PE weak function symbols are neither PC-relative
12267 nor do they set S_IS_FUNCTION. So the only reliable way
12268 to detect them is to check the flags of their containing
12269 section. */
12270 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
12271 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
12272 ;
12273 else
12274 #endif
12275 value -= S_GET_VALUE (fixP->fx_addsy);
12276 }
12277 #endif
12278
12279 /* Fix a few things - the dynamic linker expects certain values here,
12280 and we must not disappoint it. */
12281 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12282 if (IS_ELF && fixP->fx_addsy)
12283 switch (fixP->fx_r_type)
12284 {
12285 case BFD_RELOC_386_PLT32:
12286 case BFD_RELOC_X86_64_PLT32:
12287 /* Make the jump instruction point to the address of the operand.
12288 At runtime we merely add the offset to the actual PLT entry.
12289 NB: Subtract the offset size only for jump instructions. */
12290 if (fixP->fx_pcrel)
12291 value = -4;
12292 break;
12293
12294 case BFD_RELOC_386_TLS_GD:
12295 case BFD_RELOC_386_TLS_LDM:
12296 case BFD_RELOC_386_TLS_IE_32:
12297 case BFD_RELOC_386_TLS_IE:
12298 case BFD_RELOC_386_TLS_GOTIE:
12299 case BFD_RELOC_386_TLS_GOTDESC:
12300 case BFD_RELOC_X86_64_TLSGD:
12301 case BFD_RELOC_X86_64_TLSLD:
12302 case BFD_RELOC_X86_64_GOTTPOFF:
12303 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12304 value = 0; /* Fully resolved at runtime. No addend. */
12305 /* Fallthrough */
12306 case BFD_RELOC_386_TLS_LE:
12307 case BFD_RELOC_386_TLS_LDO_32:
12308 case BFD_RELOC_386_TLS_LE_32:
12309 case BFD_RELOC_X86_64_DTPOFF32:
12310 case BFD_RELOC_X86_64_DTPOFF64:
12311 case BFD_RELOC_X86_64_TPOFF32:
12312 case BFD_RELOC_X86_64_TPOFF64:
12313 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12314 break;
12315
12316 case BFD_RELOC_386_TLS_DESC_CALL:
12317 case BFD_RELOC_X86_64_TLSDESC_CALL:
12318 value = 0; /* Fully resolved at runtime. No addend. */
12319 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12320 fixP->fx_done = 0;
12321 return;
12322
12323 case BFD_RELOC_VTABLE_INHERIT:
12324 case BFD_RELOC_VTABLE_ENTRY:
12325 fixP->fx_done = 0;
12326 return;
12327
12328 default:
12329 break;
12330 }
12331 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
12332 *valP = value;
12333 #endif /* !defined (TE_Mach) */
12334
12335 /* Are we finished with this relocation now? */
12336 if (fixP->fx_addsy == NULL)
12337 fixP->fx_done = 1;
12338 #if defined (OBJ_COFF) && defined (TE_PE)
12339 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
12340 {
12341 fixP->fx_done = 0;
12342 /* Remember value for tc_gen_reloc. */
12343 fixP->fx_addnumber = value;
12344 /* Clear out the frag for now. */
12345 value = 0;
12346 }
12347 #endif
12348 else if (use_rela_relocations)
12349 {
12350 fixP->fx_no_overflow = 1;
12351 /* Remember value for tc_gen_reloc. */
12352 fixP->fx_addnumber = value;
12353 value = 0;
12354 }
12355
12356 md_number_to_chars (p, value, fixP->fx_size);
12357 }
12358 \f
12359 const char *
12360 md_atof (int type, char *litP, int *sizeP)
12361 {
12362 /* This outputs the LITTLENUMs in REVERSE order;
12363 in accord with the bigendian 386. */
12364 return ieee_md_atof (type, litP, sizeP, FALSE);
12365 }
12366 \f
12367 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
12368
12369 static char *
12370 output_invalid (int c)
12371 {
12372 if (ISPRINT (c))
12373 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
12374 "'%c'", c);
12375 else
12376 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
12377 "(0x%x)", (unsigned char) c);
12378 return output_invalid_buf;
12379 }
12380
12381 /* Verify that @r can be used in the current context. */
12382
12383 static bfd_boolean check_register (const reg_entry *r)
12384 {
12385 if (allow_pseudo_reg)
12386 return TRUE;
12387
12388 if (operand_type_all_zero (&r->reg_type))
12389 return FALSE;
12390
12391 if ((r->reg_type.bitfield.dword
12392 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
12393 || r->reg_type.bitfield.class == RegCR
12394 || r->reg_type.bitfield.class == RegDR)
12395 && !cpu_arch_flags.bitfield.cpui386)
12396 return FALSE;
12397
12398 if (r->reg_type.bitfield.class == RegTR
12399 && (flag_code == CODE_64BIT
12400 || !cpu_arch_flags.bitfield.cpui386
12401 || cpu_arch_isa_flags.bitfield.cpui586
12402 || cpu_arch_isa_flags.bitfield.cpui686))
12403 return FALSE;
12404
12405 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
12406 return FALSE;
12407
12408 if (!cpu_arch_flags.bitfield.cpuavx512f)
12409 {
12410 if (r->reg_type.bitfield.zmmword
12411 || r->reg_type.bitfield.class == RegMask)
12412 return FALSE;
12413
12414 if (!cpu_arch_flags.bitfield.cpuavx)
12415 {
12416 if (r->reg_type.bitfield.ymmword)
12417 return FALSE;
12418
12419 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
12420 return FALSE;
12421 }
12422 }
12423
12424 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
12425 return FALSE;
12426
12427 /* Don't allow fake index register unless allow_index_reg isn't 0. */
12428 if (!allow_index_reg && r->reg_num == RegIZ)
12429 return FALSE;
12430
12431 /* Upper 16 vector registers are only available with VREX in 64bit
12432 mode, and require EVEX encoding. */
12433 if (r->reg_flags & RegVRex)
12434 {
12435 if (!cpu_arch_flags.bitfield.cpuavx512f
12436 || flag_code != CODE_64BIT)
12437 return FALSE;
12438
12439 if (i.vec_encoding == vex_encoding_default)
12440 i.vec_encoding = vex_encoding_evex;
12441 else if (i.vec_encoding != vex_encoding_evex)
12442 i.vec_encoding = vex_encoding_error;
12443 }
12444
12445 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
12446 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
12447 && flag_code != CODE_64BIT)
12448 return FALSE;
12449
12450 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
12451 && !intel_syntax)
12452 return FALSE;
12453
12454 return TRUE;
12455 }
12456
12457 /* REG_STRING starts *before* REGISTER_PREFIX. */
12458
12459 static const reg_entry *
12460 parse_real_register (char *reg_string, char **end_op)
12461 {
12462 char *s = reg_string;
12463 char *p;
12464 char reg_name_given[MAX_REG_NAME_SIZE + 1];
12465 const reg_entry *r;
12466
12467 /* Skip possible REGISTER_PREFIX and possible whitespace. */
12468 if (*s == REGISTER_PREFIX)
12469 ++s;
12470
12471 if (is_space_char (*s))
12472 ++s;
12473
12474 p = reg_name_given;
12475 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
12476 {
12477 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
12478 return (const reg_entry *) NULL;
12479 s++;
12480 }
12481
12482 /* For naked regs, make sure that we are not dealing with an identifier.
12483 This prevents confusing an identifier like `eax_var' with register
12484 `eax'. */
12485 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
12486 return (const reg_entry *) NULL;
12487
12488 *end_op = s;
12489
12490 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
12491
12492 /* Handle floating point regs, allowing spaces in the (i) part. */
12493 if (r == i386_regtab /* %st is first entry of table */)
12494 {
12495 if (!cpu_arch_flags.bitfield.cpu8087
12496 && !cpu_arch_flags.bitfield.cpu287
12497 && !cpu_arch_flags.bitfield.cpu387
12498 && !allow_pseudo_reg)
12499 return (const reg_entry *) NULL;
12500
12501 if (is_space_char (*s))
12502 ++s;
12503 if (*s == '(')
12504 {
12505 ++s;
12506 if (is_space_char (*s))
12507 ++s;
12508 if (*s >= '0' && *s <= '7')
12509 {
12510 int fpr = *s - '0';
12511 ++s;
12512 if (is_space_char (*s))
12513 ++s;
12514 if (*s == ')')
12515 {
12516 *end_op = s + 1;
12517 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
12518 know (r);
12519 return r + fpr;
12520 }
12521 }
12522 /* We have "%st(" then garbage. */
12523 return (const reg_entry *) NULL;
12524 }
12525 }
12526
12527 return r && check_register (r) ? r : NULL;
12528 }
12529
12530 /* REG_STRING starts *before* REGISTER_PREFIX. */
12531
12532 static const reg_entry *
12533 parse_register (char *reg_string, char **end_op)
12534 {
12535 const reg_entry *r;
12536
12537 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
12538 r = parse_real_register (reg_string, end_op);
12539 else
12540 r = NULL;
12541 if (!r)
12542 {
12543 char *save = input_line_pointer;
12544 char c;
12545 symbolS *symbolP;
12546
12547 input_line_pointer = reg_string;
12548 c = get_symbol_name (&reg_string);
12549 symbolP = symbol_find (reg_string);
12550 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
12551 {
12552 const expressionS *e = symbol_get_value_expression (symbolP);
12553
12554 know (e->X_op == O_register);
12555 know (e->X_add_number >= 0
12556 && (valueT) e->X_add_number < i386_regtab_size);
12557 r = i386_regtab + e->X_add_number;
12558 if (!check_register (r))
12559 {
12560 as_bad (_("register '%s%s' cannot be used here"),
12561 register_prefix, r->reg_name);
12562 r = &bad_reg;
12563 }
12564 *end_op = input_line_pointer;
12565 }
12566 *input_line_pointer = c;
12567 input_line_pointer = save;
12568 }
12569 return r;
12570 }
12571
12572 int
12573 i386_parse_name (char *name, expressionS *e, char *nextcharP)
12574 {
12575 const reg_entry *r;
12576 char *end = input_line_pointer;
12577
12578 *end = *nextcharP;
12579 r = parse_register (name, &input_line_pointer);
12580 if (r && end <= input_line_pointer)
12581 {
12582 *nextcharP = *input_line_pointer;
12583 *input_line_pointer = 0;
12584 if (r != &bad_reg)
12585 {
12586 e->X_op = O_register;
12587 e->X_add_number = r - i386_regtab;
12588 }
12589 else
12590 e->X_op = O_illegal;
12591 return 1;
12592 }
12593 input_line_pointer = end;
12594 *end = 0;
12595 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
12596 }
12597
12598 void
12599 md_operand (expressionS *e)
12600 {
12601 char *end;
12602 const reg_entry *r;
12603
12604 switch (*input_line_pointer)
12605 {
12606 case REGISTER_PREFIX:
12607 r = parse_real_register (input_line_pointer, &end);
12608 if (r)
12609 {
12610 e->X_op = O_register;
12611 e->X_add_number = r - i386_regtab;
12612 input_line_pointer = end;
12613 }
12614 break;
12615
12616 case '[':
12617 gas_assert (intel_syntax);
12618 end = input_line_pointer++;
12619 expression (e);
12620 if (*input_line_pointer == ']')
12621 {
12622 ++input_line_pointer;
12623 e->X_op_symbol = make_expr_symbol (e);
12624 e->X_add_symbol = NULL;
12625 e->X_add_number = 0;
12626 e->X_op = O_index;
12627 }
12628 else
12629 {
12630 e->X_op = O_absent;
12631 input_line_pointer = end;
12632 }
12633 break;
12634 }
12635 }
12636
12637 \f
12638 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12639 const char *md_shortopts = "kVQ:sqnO::";
12640 #else
12641 const char *md_shortopts = "qnO::";
12642 #endif
12643
12644 #define OPTION_32 (OPTION_MD_BASE + 0)
12645 #define OPTION_64 (OPTION_MD_BASE + 1)
12646 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
12647 #define OPTION_MARCH (OPTION_MD_BASE + 3)
12648 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
12649 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
12650 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
12651 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
12652 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
12653 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
12654 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
12655 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
12656 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12657 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12658 #define OPTION_X32 (OPTION_MD_BASE + 14)
12659 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
12660 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12661 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
12662 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
12663 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
12664 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
12665 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
12666 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12667 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
12668 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
12669 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
12670 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
12671 #define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12672 #define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12673 #define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
12674 #define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
12675 #define OPTION_MLFENCE_AFTER_LOAD (OPTION_MD_BASE + 31)
12676 #define OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH (OPTION_MD_BASE + 32)
12677 #define OPTION_MLFENCE_BEFORE_RET (OPTION_MD_BASE + 33)
12678
12679 struct option md_longopts[] =
12680 {
12681 {"32", no_argument, NULL, OPTION_32},
12682 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12683 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12684 {"64", no_argument, NULL, OPTION_64},
12685 #endif
12686 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12687 {"x32", no_argument, NULL, OPTION_X32},
12688 {"mshared", no_argument, NULL, OPTION_MSHARED},
12689 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
12690 #endif
12691 {"divide", no_argument, NULL, OPTION_DIVIDE},
12692 {"march", required_argument, NULL, OPTION_MARCH},
12693 {"mtune", required_argument, NULL, OPTION_MTUNE},
12694 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12695 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12696 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12697 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
12698 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
12699 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
12700 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
12701 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
12702 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
12703 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
12704 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12705 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
12706 # if defined (TE_PE) || defined (TE_PEP)
12707 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12708 #endif
12709 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
12710 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
12711 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
12712 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
12713 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12714 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12715 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
12716 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
12717 {"mlfence-after-load", required_argument, NULL, OPTION_MLFENCE_AFTER_LOAD},
12718 {"mlfence-before-indirect-branch", required_argument, NULL,
12719 OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH},
12720 {"mlfence-before-ret", required_argument, NULL, OPTION_MLFENCE_BEFORE_RET},
12721 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12722 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
12723 {NULL, no_argument, NULL, 0}
12724 };
12725 size_t md_longopts_size = sizeof (md_longopts);
12726
12727 int
12728 md_parse_option (int c, const char *arg)
12729 {
12730 unsigned int j;
12731 char *arch, *next, *saved, *type;
12732
12733 switch (c)
12734 {
12735 case 'n':
12736 optimize_align_code = 0;
12737 break;
12738
12739 case 'q':
12740 quiet_warnings = 1;
12741 break;
12742
12743 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12744 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12745 should be emitted or not. FIXME: Not implemented. */
12746 case 'Q':
12747 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12748 return 0;
12749 break;
12750
12751 /* -V: SVR4 argument to print version ID. */
12752 case 'V':
12753 print_version_id ();
12754 break;
12755
12756 /* -k: Ignore for FreeBSD compatibility. */
12757 case 'k':
12758 break;
12759
12760 case 's':
12761 /* -s: On i386 Solaris, this tells the native assembler to use
12762 .stab instead of .stab.excl. We always use .stab anyhow. */
12763 break;
12764
12765 case OPTION_MSHARED:
12766 shared = 1;
12767 break;
12768
12769 case OPTION_X86_USED_NOTE:
12770 if (strcasecmp (arg, "yes") == 0)
12771 x86_used_note = 1;
12772 else if (strcasecmp (arg, "no") == 0)
12773 x86_used_note = 0;
12774 else
12775 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12776 break;
12777
12778
12779 #endif
12780 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12781 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12782 case OPTION_64:
12783 {
12784 const char **list, **l;
12785
12786 list = bfd_target_list ();
12787 for (l = list; *l != NULL; l++)
12788 if (CONST_STRNEQ (*l, "elf64-x86-64")
12789 || strcmp (*l, "coff-x86-64") == 0
12790 || strcmp (*l, "pe-x86-64") == 0
12791 || strcmp (*l, "pei-x86-64") == 0
12792 || strcmp (*l, "mach-o-x86-64") == 0)
12793 {
12794 default_arch = "x86_64";
12795 break;
12796 }
12797 if (*l == NULL)
12798 as_fatal (_("no compiled in support for x86_64"));
12799 free (list);
12800 }
12801 break;
12802 #endif
12803
12804 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12805 case OPTION_X32:
12806 if (IS_ELF)
12807 {
12808 const char **list, **l;
12809
12810 list = bfd_target_list ();
12811 for (l = list; *l != NULL; l++)
12812 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12813 {
12814 default_arch = "x86_64:32";
12815 break;
12816 }
12817 if (*l == NULL)
12818 as_fatal (_("no compiled in support for 32bit x86_64"));
12819 free (list);
12820 }
12821 else
12822 as_fatal (_("32bit x86_64 is only supported for ELF"));
12823 break;
12824 #endif
12825
12826 case OPTION_32:
12827 default_arch = "i386";
12828 break;
12829
12830 case OPTION_DIVIDE:
12831 #ifdef SVR4_COMMENT_CHARS
12832 {
12833 char *n, *t;
12834 const char *s;
12835
12836 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
12837 t = n;
12838 for (s = i386_comment_chars; *s != '\0'; s++)
12839 if (*s != '/')
12840 *t++ = *s;
12841 *t = '\0';
12842 i386_comment_chars = n;
12843 }
12844 #endif
12845 break;
12846
12847 case OPTION_MARCH:
12848 saved = xstrdup (arg);
12849 arch = saved;
12850 /* Allow -march=+nosse. */
12851 if (*arch == '+')
12852 arch++;
12853 do
12854 {
12855 if (*arch == '.')
12856 as_fatal (_("invalid -march= option: `%s'"), arg);
12857 next = strchr (arch, '+');
12858 if (next)
12859 *next++ = '\0';
12860 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12861 {
12862 if (strcmp (arch, cpu_arch [j].name) == 0)
12863 {
12864 /* Processor. */
12865 if (! cpu_arch[j].flags.bitfield.cpui386)
12866 continue;
12867
12868 cpu_arch_name = cpu_arch[j].name;
12869 cpu_sub_arch_name = NULL;
12870 cpu_arch_flags = cpu_arch[j].flags;
12871 cpu_arch_isa = cpu_arch[j].type;
12872 cpu_arch_isa_flags = cpu_arch[j].flags;
12873 if (!cpu_arch_tune_set)
12874 {
12875 cpu_arch_tune = cpu_arch_isa;
12876 cpu_arch_tune_flags = cpu_arch_isa_flags;
12877 }
12878 break;
12879 }
12880 else if (*cpu_arch [j].name == '.'
12881 && strcmp (arch, cpu_arch [j].name + 1) == 0)
12882 {
12883 /* ISA extension. */
12884 i386_cpu_flags flags;
12885
12886 flags = cpu_flags_or (cpu_arch_flags,
12887 cpu_arch[j].flags);
12888
12889 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12890 {
12891 if (cpu_sub_arch_name)
12892 {
12893 char *name = cpu_sub_arch_name;
12894 cpu_sub_arch_name = concat (name,
12895 cpu_arch[j].name,
12896 (const char *) NULL);
12897 free (name);
12898 }
12899 else
12900 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
12901 cpu_arch_flags = flags;
12902 cpu_arch_isa_flags = flags;
12903 }
12904 else
12905 cpu_arch_isa_flags
12906 = cpu_flags_or (cpu_arch_isa_flags,
12907 cpu_arch[j].flags);
12908 break;
12909 }
12910 }
12911
12912 if (j >= ARRAY_SIZE (cpu_arch))
12913 {
12914 /* Disable an ISA extension. */
12915 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12916 if (strcmp (arch, cpu_noarch [j].name) == 0)
12917 {
12918 i386_cpu_flags flags;
12919
12920 flags = cpu_flags_and_not (cpu_arch_flags,
12921 cpu_noarch[j].flags);
12922 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12923 {
12924 if (cpu_sub_arch_name)
12925 {
12926 char *name = cpu_sub_arch_name;
12927 cpu_sub_arch_name = concat (arch,
12928 (const char *) NULL);
12929 free (name);
12930 }
12931 else
12932 cpu_sub_arch_name = xstrdup (arch);
12933 cpu_arch_flags = flags;
12934 cpu_arch_isa_flags = flags;
12935 }
12936 break;
12937 }
12938
12939 if (j >= ARRAY_SIZE (cpu_noarch))
12940 j = ARRAY_SIZE (cpu_arch);
12941 }
12942
12943 if (j >= ARRAY_SIZE (cpu_arch))
12944 as_fatal (_("invalid -march= option: `%s'"), arg);
12945
12946 arch = next;
12947 }
12948 while (next != NULL);
12949 free (saved);
12950 break;
12951
12952 case OPTION_MTUNE:
12953 if (*arg == '.')
12954 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12955 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12956 {
12957 if (strcmp (arg, cpu_arch [j].name) == 0)
12958 {
12959 cpu_arch_tune_set = 1;
12960 cpu_arch_tune = cpu_arch [j].type;
12961 cpu_arch_tune_flags = cpu_arch[j].flags;
12962 break;
12963 }
12964 }
12965 if (j >= ARRAY_SIZE (cpu_arch))
12966 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12967 break;
12968
12969 case OPTION_MMNEMONIC:
12970 if (strcasecmp (arg, "att") == 0)
12971 intel_mnemonic = 0;
12972 else if (strcasecmp (arg, "intel") == 0)
12973 intel_mnemonic = 1;
12974 else
12975 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
12976 break;
12977
12978 case OPTION_MSYNTAX:
12979 if (strcasecmp (arg, "att") == 0)
12980 intel_syntax = 0;
12981 else if (strcasecmp (arg, "intel") == 0)
12982 intel_syntax = 1;
12983 else
12984 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
12985 break;
12986
12987 case OPTION_MINDEX_REG:
12988 allow_index_reg = 1;
12989 break;
12990
12991 case OPTION_MNAKED_REG:
12992 allow_naked_reg = 1;
12993 break;
12994
12995 case OPTION_MSSE2AVX:
12996 sse2avx = 1;
12997 break;
12998
12999 case OPTION_MSSE_CHECK:
13000 if (strcasecmp (arg, "error") == 0)
13001 sse_check = check_error;
13002 else if (strcasecmp (arg, "warning") == 0)
13003 sse_check = check_warning;
13004 else if (strcasecmp (arg, "none") == 0)
13005 sse_check = check_none;
13006 else
13007 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
13008 break;
13009
13010 case OPTION_MOPERAND_CHECK:
13011 if (strcasecmp (arg, "error") == 0)
13012 operand_check = check_error;
13013 else if (strcasecmp (arg, "warning") == 0)
13014 operand_check = check_warning;
13015 else if (strcasecmp (arg, "none") == 0)
13016 operand_check = check_none;
13017 else
13018 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
13019 break;
13020
13021 case OPTION_MAVXSCALAR:
13022 if (strcasecmp (arg, "128") == 0)
13023 avxscalar = vex128;
13024 else if (strcasecmp (arg, "256") == 0)
13025 avxscalar = vex256;
13026 else
13027 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
13028 break;
13029
13030 case OPTION_MVEXWIG:
13031 if (strcmp (arg, "0") == 0)
13032 vexwig = vexw0;
13033 else if (strcmp (arg, "1") == 0)
13034 vexwig = vexw1;
13035 else
13036 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
13037 break;
13038
13039 case OPTION_MADD_BND_PREFIX:
13040 add_bnd_prefix = 1;
13041 break;
13042
13043 case OPTION_MEVEXLIG:
13044 if (strcmp (arg, "128") == 0)
13045 evexlig = evexl128;
13046 else if (strcmp (arg, "256") == 0)
13047 evexlig = evexl256;
13048 else if (strcmp (arg, "512") == 0)
13049 evexlig = evexl512;
13050 else
13051 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
13052 break;
13053
13054 case OPTION_MEVEXRCIG:
13055 if (strcmp (arg, "rne") == 0)
13056 evexrcig = rne;
13057 else if (strcmp (arg, "rd") == 0)
13058 evexrcig = rd;
13059 else if (strcmp (arg, "ru") == 0)
13060 evexrcig = ru;
13061 else if (strcmp (arg, "rz") == 0)
13062 evexrcig = rz;
13063 else
13064 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
13065 break;
13066
13067 case OPTION_MEVEXWIG:
13068 if (strcmp (arg, "0") == 0)
13069 evexwig = evexw0;
13070 else if (strcmp (arg, "1") == 0)
13071 evexwig = evexw1;
13072 else
13073 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
13074 break;
13075
13076 # if defined (TE_PE) || defined (TE_PEP)
13077 case OPTION_MBIG_OBJ:
13078 use_big_obj = 1;
13079 break;
13080 #endif
13081
13082 case OPTION_MOMIT_LOCK_PREFIX:
13083 if (strcasecmp (arg, "yes") == 0)
13084 omit_lock_prefix = 1;
13085 else if (strcasecmp (arg, "no") == 0)
13086 omit_lock_prefix = 0;
13087 else
13088 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
13089 break;
13090
13091 case OPTION_MFENCE_AS_LOCK_ADD:
13092 if (strcasecmp (arg, "yes") == 0)
13093 avoid_fence = 1;
13094 else if (strcasecmp (arg, "no") == 0)
13095 avoid_fence = 0;
13096 else
13097 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
13098 break;
13099
13100 case OPTION_MLFENCE_AFTER_LOAD:
13101 if (strcasecmp (arg, "yes") == 0)
13102 lfence_after_load = 1;
13103 else if (strcasecmp (arg, "no") == 0)
13104 lfence_after_load = 0;
13105 else
13106 as_fatal (_("invalid -mlfence-after-load= option: `%s'"), arg);
13107 break;
13108
13109 case OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH:
13110 if (strcasecmp (arg, "all") == 0)
13111 {
13112 lfence_before_indirect_branch = lfence_branch_all;
13113 if (lfence_before_ret == lfence_before_ret_none)
13114 lfence_before_ret = lfence_before_ret_shl;
13115 }
13116 else if (strcasecmp (arg, "memory") == 0)
13117 lfence_before_indirect_branch = lfence_branch_memory;
13118 else if (strcasecmp (arg, "register") == 0)
13119 lfence_before_indirect_branch = lfence_branch_register;
13120 else if (strcasecmp (arg, "none") == 0)
13121 lfence_before_indirect_branch = lfence_branch_none;
13122 else
13123 as_fatal (_("invalid -mlfence-before-indirect-branch= option: `%s'"),
13124 arg);
13125 break;
13126
13127 case OPTION_MLFENCE_BEFORE_RET:
13128 if (strcasecmp (arg, "or") == 0)
13129 lfence_before_ret = lfence_before_ret_or;
13130 else if (strcasecmp (arg, "not") == 0)
13131 lfence_before_ret = lfence_before_ret_not;
13132 else if (strcasecmp (arg, "shl") == 0 || strcasecmp (arg, "yes") == 0)
13133 lfence_before_ret = lfence_before_ret_shl;
13134 else if (strcasecmp (arg, "none") == 0)
13135 lfence_before_ret = lfence_before_ret_none;
13136 else
13137 as_fatal (_("invalid -mlfence-before-ret= option: `%s'"),
13138 arg);
13139 break;
13140
13141 case OPTION_MRELAX_RELOCATIONS:
13142 if (strcasecmp (arg, "yes") == 0)
13143 generate_relax_relocations = 1;
13144 else if (strcasecmp (arg, "no") == 0)
13145 generate_relax_relocations = 0;
13146 else
13147 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
13148 break;
13149
13150 case OPTION_MALIGN_BRANCH_BOUNDARY:
13151 {
13152 char *end;
13153 long int align = strtoul (arg, &end, 0);
13154 if (*end == '\0')
13155 {
13156 if (align == 0)
13157 {
13158 align_branch_power = 0;
13159 break;
13160 }
13161 else if (align >= 16)
13162 {
13163 int align_power;
13164 for (align_power = 0;
13165 (align & 1) == 0;
13166 align >>= 1, align_power++)
13167 continue;
13168 /* Limit alignment power to 31. */
13169 if (align == 1 && align_power < 32)
13170 {
13171 align_branch_power = align_power;
13172 break;
13173 }
13174 }
13175 }
13176 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
13177 }
13178 break;
13179
13180 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
13181 {
13182 char *end;
13183 int align = strtoul (arg, &end, 0);
13184 /* Some processors only support 5 prefixes. */
13185 if (*end == '\0' && align >= 0 && align < 6)
13186 {
13187 align_branch_prefix_size = align;
13188 break;
13189 }
13190 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
13191 arg);
13192 }
13193 break;
13194
13195 case OPTION_MALIGN_BRANCH:
13196 align_branch = 0;
13197 saved = xstrdup (arg);
13198 type = saved;
13199 do
13200 {
13201 next = strchr (type, '+');
13202 if (next)
13203 *next++ = '\0';
13204 if (strcasecmp (type, "jcc") == 0)
13205 align_branch |= align_branch_jcc_bit;
13206 else if (strcasecmp (type, "fused") == 0)
13207 align_branch |= align_branch_fused_bit;
13208 else if (strcasecmp (type, "jmp") == 0)
13209 align_branch |= align_branch_jmp_bit;
13210 else if (strcasecmp (type, "call") == 0)
13211 align_branch |= align_branch_call_bit;
13212 else if (strcasecmp (type, "ret") == 0)
13213 align_branch |= align_branch_ret_bit;
13214 else if (strcasecmp (type, "indirect") == 0)
13215 align_branch |= align_branch_indirect_bit;
13216 else
13217 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
13218 type = next;
13219 }
13220 while (next != NULL);
13221 free (saved);
13222 break;
13223
13224 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
13225 align_branch_power = 5;
13226 align_branch_prefix_size = 5;
13227 align_branch = (align_branch_jcc_bit
13228 | align_branch_fused_bit
13229 | align_branch_jmp_bit);
13230 break;
13231
13232 case OPTION_MAMD64:
13233 isa64 = amd64;
13234 break;
13235
13236 case OPTION_MINTEL64:
13237 isa64 = intel64;
13238 break;
13239
13240 case 'O':
13241 if (arg == NULL)
13242 {
13243 optimize = 1;
13244 /* Turn off -Os. */
13245 optimize_for_space = 0;
13246 }
13247 else if (*arg == 's')
13248 {
13249 optimize_for_space = 1;
13250 /* Turn on all encoding optimizations. */
13251 optimize = INT_MAX;
13252 }
13253 else
13254 {
13255 optimize = atoi (arg);
13256 /* Turn off -Os. */
13257 optimize_for_space = 0;
13258 }
13259 break;
13260
13261 default:
13262 return 0;
13263 }
13264 return 1;
13265 }
13266
13267 #define MESSAGE_TEMPLATE \
13268 " "
13269
13270 static char *
13271 output_message (FILE *stream, char *p, char *message, char *start,
13272 int *left_p, const char *name, int len)
13273 {
13274 int size = sizeof (MESSAGE_TEMPLATE);
13275 int left = *left_p;
13276
13277 /* Reserve 2 spaces for ", " or ",\0" */
13278 left -= len + 2;
13279
13280 /* Check if there is any room. */
13281 if (left >= 0)
13282 {
13283 if (p != start)
13284 {
13285 *p++ = ',';
13286 *p++ = ' ';
13287 }
13288 p = mempcpy (p, name, len);
13289 }
13290 else
13291 {
13292 /* Output the current message now and start a new one. */
13293 *p++ = ',';
13294 *p = '\0';
13295 fprintf (stream, "%s\n", message);
13296 p = start;
13297 left = size - (start - message) - len - 2;
13298
13299 gas_assert (left >= 0);
13300
13301 p = mempcpy (p, name, len);
13302 }
13303
13304 *left_p = left;
13305 return p;
13306 }
13307
13308 static void
13309 show_arch (FILE *stream, int ext, int check)
13310 {
13311 static char message[] = MESSAGE_TEMPLATE;
13312 char *start = message + 27;
13313 char *p;
13314 int size = sizeof (MESSAGE_TEMPLATE);
13315 int left;
13316 const char *name;
13317 int len;
13318 unsigned int j;
13319
13320 p = start;
13321 left = size - (start - message);
13322 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
13323 {
13324 /* Should it be skipped? */
13325 if (cpu_arch [j].skip)
13326 continue;
13327
13328 name = cpu_arch [j].name;
13329 len = cpu_arch [j].len;
13330 if (*name == '.')
13331 {
13332 /* It is an extension. Skip if we aren't asked to show it. */
13333 if (ext)
13334 {
13335 name++;
13336 len--;
13337 }
13338 else
13339 continue;
13340 }
13341 else if (ext)
13342 {
13343 /* It is an processor. Skip if we show only extension. */
13344 continue;
13345 }
13346 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
13347 {
13348 /* It is an impossible processor - skip. */
13349 continue;
13350 }
13351
13352 p = output_message (stream, p, message, start, &left, name, len);
13353 }
13354
13355 /* Display disabled extensions. */
13356 if (ext)
13357 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
13358 {
13359 name = cpu_noarch [j].name;
13360 len = cpu_noarch [j].len;
13361 p = output_message (stream, p, message, start, &left, name,
13362 len);
13363 }
13364
13365 *p = '\0';
13366 fprintf (stream, "%s\n", message);
13367 }
13368
13369 void
13370 md_show_usage (FILE *stream)
13371 {
13372 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13373 fprintf (stream, _("\
13374 -Qy, -Qn ignored\n\
13375 -V print assembler version number\n\
13376 -k ignored\n"));
13377 #endif
13378 fprintf (stream, _("\
13379 -n Do not optimize code alignment\n\
13380 -q quieten some warnings\n"));
13381 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13382 fprintf (stream, _("\
13383 -s ignored\n"));
13384 #endif
13385 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
13386 || defined (TE_PE) || defined (TE_PEP))
13387 fprintf (stream, _("\
13388 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
13389 #endif
13390 #ifdef SVR4_COMMENT_CHARS
13391 fprintf (stream, _("\
13392 --divide do not treat `/' as a comment character\n"));
13393 #else
13394 fprintf (stream, _("\
13395 --divide ignored\n"));
13396 #endif
13397 fprintf (stream, _("\
13398 -march=CPU[,+EXTENSION...]\n\
13399 generate code for CPU and EXTENSION, CPU is one of:\n"));
13400 show_arch (stream, 0, 1);
13401 fprintf (stream, _("\
13402 EXTENSION is combination of:\n"));
13403 show_arch (stream, 1, 0);
13404 fprintf (stream, _("\
13405 -mtune=CPU optimize for CPU, CPU is one of:\n"));
13406 show_arch (stream, 0, 0);
13407 fprintf (stream, _("\
13408 -msse2avx encode SSE instructions with VEX prefix\n"));
13409 fprintf (stream, _("\
13410 -msse-check=[none|error|warning] (default: warning)\n\
13411 check SSE instructions\n"));
13412 fprintf (stream, _("\
13413 -moperand-check=[none|error|warning] (default: warning)\n\
13414 check operand combinations for validity\n"));
13415 fprintf (stream, _("\
13416 -mavxscalar=[128|256] (default: 128)\n\
13417 encode scalar AVX instructions with specific vector\n\
13418 length\n"));
13419 fprintf (stream, _("\
13420 -mvexwig=[0|1] (default: 0)\n\
13421 encode VEX instructions with specific VEX.W value\n\
13422 for VEX.W bit ignored instructions\n"));
13423 fprintf (stream, _("\
13424 -mevexlig=[128|256|512] (default: 128)\n\
13425 encode scalar EVEX instructions with specific vector\n\
13426 length\n"));
13427 fprintf (stream, _("\
13428 -mevexwig=[0|1] (default: 0)\n\
13429 encode EVEX instructions with specific EVEX.W value\n\
13430 for EVEX.W bit ignored instructions\n"));
13431 fprintf (stream, _("\
13432 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
13433 encode EVEX instructions with specific EVEX.RC value\n\
13434 for SAE-only ignored instructions\n"));
13435 fprintf (stream, _("\
13436 -mmnemonic=[att|intel] "));
13437 if (SYSV386_COMPAT)
13438 fprintf (stream, _("(default: att)\n"));
13439 else
13440 fprintf (stream, _("(default: intel)\n"));
13441 fprintf (stream, _("\
13442 use AT&T/Intel mnemonic\n"));
13443 fprintf (stream, _("\
13444 -msyntax=[att|intel] (default: att)\n\
13445 use AT&T/Intel syntax\n"));
13446 fprintf (stream, _("\
13447 -mindex-reg support pseudo index registers\n"));
13448 fprintf (stream, _("\
13449 -mnaked-reg don't require `%%' prefix for registers\n"));
13450 fprintf (stream, _("\
13451 -madd-bnd-prefix add BND prefix for all valid branches\n"));
13452 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13453 fprintf (stream, _("\
13454 -mshared disable branch optimization for shared code\n"));
13455 fprintf (stream, _("\
13456 -mx86-used-note=[no|yes] "));
13457 if (DEFAULT_X86_USED_NOTE)
13458 fprintf (stream, _("(default: yes)\n"));
13459 else
13460 fprintf (stream, _("(default: no)\n"));
13461 fprintf (stream, _("\
13462 generate x86 used ISA and feature properties\n"));
13463 #endif
13464 #if defined (TE_PE) || defined (TE_PEP)
13465 fprintf (stream, _("\
13466 -mbig-obj generate big object files\n"));
13467 #endif
13468 fprintf (stream, _("\
13469 -momit-lock-prefix=[no|yes] (default: no)\n\
13470 strip all lock prefixes\n"));
13471 fprintf (stream, _("\
13472 -mfence-as-lock-add=[no|yes] (default: no)\n\
13473 encode lfence, mfence and sfence as\n\
13474 lock addl $0x0, (%%{re}sp)\n"));
13475 fprintf (stream, _("\
13476 -mrelax-relocations=[no|yes] "));
13477 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
13478 fprintf (stream, _("(default: yes)\n"));
13479 else
13480 fprintf (stream, _("(default: no)\n"));
13481 fprintf (stream, _("\
13482 generate relax relocations\n"));
13483 fprintf (stream, _("\
13484 -malign-branch-boundary=NUM (default: 0)\n\
13485 align branches within NUM byte boundary\n"));
13486 fprintf (stream, _("\
13487 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
13488 TYPE is combination of jcc, fused, jmp, call, ret,\n\
13489 indirect\n\
13490 specify types of branches to align\n"));
13491 fprintf (stream, _("\
13492 -malign-branch-prefix-size=NUM (default: 5)\n\
13493 align branches with NUM prefixes per instruction\n"));
13494 fprintf (stream, _("\
13495 -mbranches-within-32B-boundaries\n\
13496 align branches within 32 byte boundary\n"));
13497 fprintf (stream, _("\
13498 -mlfence-after-load=[no|yes] (default: no)\n\
13499 generate lfence after load\n"));
13500 fprintf (stream, _("\
13501 -mlfence-before-indirect-branch=[none|all|register|memory] (default: none)\n\
13502 generate lfence before indirect near branch\n"));
13503 fprintf (stream, _("\
13504 -mlfence-before-ret=[none|or|not|shl|yes] (default: none)\n\
13505 generate lfence before ret\n"));
13506 fprintf (stream, _("\
13507 -mamd64 accept only AMD64 ISA [default]\n"));
13508 fprintf (stream, _("\
13509 -mintel64 accept only Intel64 ISA\n"));
13510 }
13511
13512 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
13513 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
13514 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
13515
13516 /* Pick the target format to use. */
13517
13518 const char *
13519 i386_target_format (void)
13520 {
13521 if (!strncmp (default_arch, "x86_64", 6))
13522 {
13523 update_code_flag (CODE_64BIT, 1);
13524 if (default_arch[6] == '\0')
13525 x86_elf_abi = X86_64_ABI;
13526 else
13527 x86_elf_abi = X86_64_X32_ABI;
13528 }
13529 else if (!strcmp (default_arch, "i386"))
13530 update_code_flag (CODE_32BIT, 1);
13531 else if (!strcmp (default_arch, "iamcu"))
13532 {
13533 update_code_flag (CODE_32BIT, 1);
13534 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
13535 {
13536 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
13537 cpu_arch_name = "iamcu";
13538 cpu_sub_arch_name = NULL;
13539 cpu_arch_flags = iamcu_flags;
13540 cpu_arch_isa = PROCESSOR_IAMCU;
13541 cpu_arch_isa_flags = iamcu_flags;
13542 if (!cpu_arch_tune_set)
13543 {
13544 cpu_arch_tune = cpu_arch_isa;
13545 cpu_arch_tune_flags = cpu_arch_isa_flags;
13546 }
13547 }
13548 else if (cpu_arch_isa != PROCESSOR_IAMCU)
13549 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
13550 cpu_arch_name);
13551 }
13552 else
13553 as_fatal (_("unknown architecture"));
13554
13555 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
13556 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13557 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
13558 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13559
13560 switch (OUTPUT_FLAVOR)
13561 {
13562 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
13563 case bfd_target_aout_flavour:
13564 return AOUT_TARGET_FORMAT;
13565 #endif
13566 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
13567 # if defined (TE_PE) || defined (TE_PEP)
13568 case bfd_target_coff_flavour:
13569 if (flag_code == CODE_64BIT)
13570 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
13571 else
13572 return use_big_obj ? "pe-bigobj-i386" : "pe-i386";
13573 # elif defined (TE_GO32)
13574 case bfd_target_coff_flavour:
13575 return "coff-go32";
13576 # else
13577 case bfd_target_coff_flavour:
13578 return "coff-i386";
13579 # endif
13580 #endif
13581 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13582 case bfd_target_elf_flavour:
13583 {
13584 const char *format;
13585
13586 switch (x86_elf_abi)
13587 {
13588 default:
13589 format = ELF_TARGET_FORMAT;
13590 #ifndef TE_SOLARIS
13591 tls_get_addr = "___tls_get_addr";
13592 #endif
13593 break;
13594 case X86_64_ABI:
13595 use_rela_relocations = 1;
13596 object_64bit = 1;
13597 #ifndef TE_SOLARIS
13598 tls_get_addr = "__tls_get_addr";
13599 #endif
13600 format = ELF_TARGET_FORMAT64;
13601 break;
13602 case X86_64_X32_ABI:
13603 use_rela_relocations = 1;
13604 object_64bit = 1;
13605 #ifndef TE_SOLARIS
13606 tls_get_addr = "__tls_get_addr";
13607 #endif
13608 disallow_64bit_reloc = 1;
13609 format = ELF_TARGET_FORMAT32;
13610 break;
13611 }
13612 if (cpu_arch_isa == PROCESSOR_L1OM)
13613 {
13614 if (x86_elf_abi != X86_64_ABI)
13615 as_fatal (_("Intel L1OM is 64bit only"));
13616 return ELF_TARGET_L1OM_FORMAT;
13617 }
13618 else if (cpu_arch_isa == PROCESSOR_K1OM)
13619 {
13620 if (x86_elf_abi != X86_64_ABI)
13621 as_fatal (_("Intel K1OM is 64bit only"));
13622 return ELF_TARGET_K1OM_FORMAT;
13623 }
13624 else if (cpu_arch_isa == PROCESSOR_IAMCU)
13625 {
13626 if (x86_elf_abi != I386_ABI)
13627 as_fatal (_("Intel MCU is 32bit only"));
13628 return ELF_TARGET_IAMCU_FORMAT;
13629 }
13630 else
13631 return format;
13632 }
13633 #endif
13634 #if defined (OBJ_MACH_O)
13635 case bfd_target_mach_o_flavour:
13636 if (flag_code == CODE_64BIT)
13637 {
13638 use_rela_relocations = 1;
13639 object_64bit = 1;
13640 return "mach-o-x86-64";
13641 }
13642 else
13643 return "mach-o-i386";
13644 #endif
13645 default:
13646 abort ();
13647 return NULL;
13648 }
13649 }
13650
13651 #endif /* OBJ_MAYBE_ more than one */
13652 \f
13653 symbolS *
13654 md_undefined_symbol (char *name)
13655 {
13656 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
13657 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
13658 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
13659 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
13660 {
13661 if (!GOT_symbol)
13662 {
13663 if (symbol_find (name))
13664 as_bad (_("GOT already in symbol table"));
13665 GOT_symbol = symbol_new (name, undefined_section,
13666 (valueT) 0, &zero_address_frag);
13667 };
13668 return GOT_symbol;
13669 }
13670 return 0;
13671 }
13672
13673 /* Round up a section size to the appropriate boundary. */
13674
13675 valueT
13676 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
13677 {
13678 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
13679 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
13680 {
13681 /* For a.out, force the section size to be aligned. If we don't do
13682 this, BFD will align it for us, but it will not write out the
13683 final bytes of the section. This may be a bug in BFD, but it is
13684 easier to fix it here since that is how the other a.out targets
13685 work. */
13686 int align;
13687
13688 align = bfd_section_alignment (segment);
13689 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
13690 }
13691 #endif
13692
13693 return size;
13694 }
13695
13696 /* On the i386, PC-relative offsets are relative to the start of the
13697 next instruction. That is, the address of the offset, plus its
13698 size, since the offset is always the last part of the insn. */
13699
13700 long
13701 md_pcrel_from (fixS *fixP)
13702 {
13703 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
13704 }
13705
13706 #ifndef I386COFF
13707
13708 static void
13709 s_bss (int ignore ATTRIBUTE_UNUSED)
13710 {
13711 int temp;
13712
13713 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13714 if (IS_ELF)
13715 obj_elf_section_change_hook ();
13716 #endif
13717 temp = get_absolute_expression ();
13718 subseg_set (bss_section, (subsegT) temp);
13719 demand_empty_rest_of_line ();
13720 }
13721
13722 #endif
13723
13724 /* Remember constant directive. */
13725
13726 void
13727 i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13728 {
13729 if (last_insn.kind != last_insn_directive
13730 && (bfd_section_flags (now_seg) & SEC_CODE))
13731 {
13732 last_insn.seg = now_seg;
13733 last_insn.kind = last_insn_directive;
13734 last_insn.name = "constant directive";
13735 last_insn.file = as_where (&last_insn.line);
13736 if (lfence_before_ret != lfence_before_ret_none)
13737 {
13738 if (lfence_before_indirect_branch != lfence_branch_none)
13739 as_warn (_("constant directive skips -mlfence-before-ret "
13740 "and -mlfence-before-indirect-branch"));
13741 else
13742 as_warn (_("constant directive skips -mlfence-before-ret"));
13743 }
13744 else if (lfence_before_indirect_branch != lfence_branch_none)
13745 as_warn (_("constant directive skips -mlfence-before-indirect-branch"));
13746 }
13747 }
13748
13749 void
13750 i386_validate_fix (fixS *fixp)
13751 {
13752 if (fixp->fx_subsy)
13753 {
13754 if (fixp->fx_subsy == GOT_symbol)
13755 {
13756 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13757 {
13758 if (!object_64bit)
13759 abort ();
13760 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13761 if (fixp->fx_tcbit2)
13762 fixp->fx_r_type = (fixp->fx_tcbit
13763 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13764 : BFD_RELOC_X86_64_GOTPCRELX);
13765 else
13766 #endif
13767 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13768 }
13769 else
13770 {
13771 if (!object_64bit)
13772 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13773 else
13774 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13775 }
13776 fixp->fx_subsy = 0;
13777 }
13778 }
13779 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13780 else if (!object_64bit)
13781 {
13782 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13783 && fixp->fx_tcbit2)
13784 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13785 }
13786 #endif
13787 }
13788
13789 arelent *
13790 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
13791 {
13792 arelent *rel;
13793 bfd_reloc_code_real_type code;
13794
13795 switch (fixp->fx_r_type)
13796 {
13797 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13798 case BFD_RELOC_SIZE32:
13799 case BFD_RELOC_SIZE64:
13800 if (S_IS_DEFINED (fixp->fx_addsy)
13801 && !S_IS_EXTERNAL (fixp->fx_addsy))
13802 {
13803 /* Resolve size relocation against local symbol to size of
13804 the symbol plus addend. */
13805 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13806 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13807 && !fits_in_unsigned_long (value))
13808 as_bad_where (fixp->fx_file, fixp->fx_line,
13809 _("symbol size computation overflow"));
13810 fixp->fx_addsy = NULL;
13811 fixp->fx_subsy = NULL;
13812 md_apply_fix (fixp, (valueT *) &value, NULL);
13813 return NULL;
13814 }
13815 #endif
13816 /* Fall through. */
13817
13818 case BFD_RELOC_X86_64_PLT32:
13819 case BFD_RELOC_X86_64_GOT32:
13820 case BFD_RELOC_X86_64_GOTPCREL:
13821 case BFD_RELOC_X86_64_GOTPCRELX:
13822 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13823 case BFD_RELOC_386_PLT32:
13824 case BFD_RELOC_386_GOT32:
13825 case BFD_RELOC_386_GOT32X:
13826 case BFD_RELOC_386_GOTOFF:
13827 case BFD_RELOC_386_GOTPC:
13828 case BFD_RELOC_386_TLS_GD:
13829 case BFD_RELOC_386_TLS_LDM:
13830 case BFD_RELOC_386_TLS_LDO_32:
13831 case BFD_RELOC_386_TLS_IE_32:
13832 case BFD_RELOC_386_TLS_IE:
13833 case BFD_RELOC_386_TLS_GOTIE:
13834 case BFD_RELOC_386_TLS_LE_32:
13835 case BFD_RELOC_386_TLS_LE:
13836 case BFD_RELOC_386_TLS_GOTDESC:
13837 case BFD_RELOC_386_TLS_DESC_CALL:
13838 case BFD_RELOC_X86_64_TLSGD:
13839 case BFD_RELOC_X86_64_TLSLD:
13840 case BFD_RELOC_X86_64_DTPOFF32:
13841 case BFD_RELOC_X86_64_DTPOFF64:
13842 case BFD_RELOC_X86_64_GOTTPOFF:
13843 case BFD_RELOC_X86_64_TPOFF32:
13844 case BFD_RELOC_X86_64_TPOFF64:
13845 case BFD_RELOC_X86_64_GOTOFF64:
13846 case BFD_RELOC_X86_64_GOTPC32:
13847 case BFD_RELOC_X86_64_GOT64:
13848 case BFD_RELOC_X86_64_GOTPCREL64:
13849 case BFD_RELOC_X86_64_GOTPC64:
13850 case BFD_RELOC_X86_64_GOTPLT64:
13851 case BFD_RELOC_X86_64_PLTOFF64:
13852 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13853 case BFD_RELOC_X86_64_TLSDESC_CALL:
13854 case BFD_RELOC_RVA:
13855 case BFD_RELOC_VTABLE_ENTRY:
13856 case BFD_RELOC_VTABLE_INHERIT:
13857 #ifdef TE_PE
13858 case BFD_RELOC_32_SECREL:
13859 #endif
13860 code = fixp->fx_r_type;
13861 break;
13862 case BFD_RELOC_X86_64_32S:
13863 if (!fixp->fx_pcrel)
13864 {
13865 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13866 code = fixp->fx_r_type;
13867 break;
13868 }
13869 /* Fall through. */
13870 default:
13871 if (fixp->fx_pcrel)
13872 {
13873 switch (fixp->fx_size)
13874 {
13875 default:
13876 as_bad_where (fixp->fx_file, fixp->fx_line,
13877 _("can not do %d byte pc-relative relocation"),
13878 fixp->fx_size);
13879 code = BFD_RELOC_32_PCREL;
13880 break;
13881 case 1: code = BFD_RELOC_8_PCREL; break;
13882 case 2: code = BFD_RELOC_16_PCREL; break;
13883 case 4: code = BFD_RELOC_32_PCREL; break;
13884 #ifdef BFD64
13885 case 8: code = BFD_RELOC_64_PCREL; break;
13886 #endif
13887 }
13888 }
13889 else
13890 {
13891 switch (fixp->fx_size)
13892 {
13893 default:
13894 as_bad_where (fixp->fx_file, fixp->fx_line,
13895 _("can not do %d byte relocation"),
13896 fixp->fx_size);
13897 code = BFD_RELOC_32;
13898 break;
13899 case 1: code = BFD_RELOC_8; break;
13900 case 2: code = BFD_RELOC_16; break;
13901 case 4: code = BFD_RELOC_32; break;
13902 #ifdef BFD64
13903 case 8: code = BFD_RELOC_64; break;
13904 #endif
13905 }
13906 }
13907 break;
13908 }
13909
13910 if ((code == BFD_RELOC_32
13911 || code == BFD_RELOC_32_PCREL
13912 || code == BFD_RELOC_X86_64_32S)
13913 && GOT_symbol
13914 && fixp->fx_addsy == GOT_symbol)
13915 {
13916 if (!object_64bit)
13917 code = BFD_RELOC_386_GOTPC;
13918 else
13919 code = BFD_RELOC_X86_64_GOTPC32;
13920 }
13921 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13922 && GOT_symbol
13923 && fixp->fx_addsy == GOT_symbol)
13924 {
13925 code = BFD_RELOC_X86_64_GOTPC64;
13926 }
13927
13928 rel = XNEW (arelent);
13929 rel->sym_ptr_ptr = XNEW (asymbol *);
13930 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
13931
13932 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
13933
13934 if (!use_rela_relocations)
13935 {
13936 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
13937 vtable entry to be used in the relocation's section offset. */
13938 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13939 rel->address = fixp->fx_offset;
13940 #if defined (OBJ_COFF) && defined (TE_PE)
13941 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
13942 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
13943 else
13944 #endif
13945 rel->addend = 0;
13946 }
13947 /* Use the rela in 64bit mode. */
13948 else
13949 {
13950 if (disallow_64bit_reloc)
13951 switch (code)
13952 {
13953 case BFD_RELOC_X86_64_DTPOFF64:
13954 case BFD_RELOC_X86_64_TPOFF64:
13955 case BFD_RELOC_64_PCREL:
13956 case BFD_RELOC_X86_64_GOTOFF64:
13957 case BFD_RELOC_X86_64_GOT64:
13958 case BFD_RELOC_X86_64_GOTPCREL64:
13959 case BFD_RELOC_X86_64_GOTPC64:
13960 case BFD_RELOC_X86_64_GOTPLT64:
13961 case BFD_RELOC_X86_64_PLTOFF64:
13962 as_bad_where (fixp->fx_file, fixp->fx_line,
13963 _("cannot represent relocation type %s in x32 mode"),
13964 bfd_get_reloc_code_name (code));
13965 break;
13966 default:
13967 break;
13968 }
13969
13970 if (!fixp->fx_pcrel)
13971 rel->addend = fixp->fx_offset;
13972 else
13973 switch (code)
13974 {
13975 case BFD_RELOC_X86_64_PLT32:
13976 case BFD_RELOC_X86_64_GOT32:
13977 case BFD_RELOC_X86_64_GOTPCREL:
13978 case BFD_RELOC_X86_64_GOTPCRELX:
13979 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13980 case BFD_RELOC_X86_64_TLSGD:
13981 case BFD_RELOC_X86_64_TLSLD:
13982 case BFD_RELOC_X86_64_GOTTPOFF:
13983 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13984 case BFD_RELOC_X86_64_TLSDESC_CALL:
13985 rel->addend = fixp->fx_offset - fixp->fx_size;
13986 break;
13987 default:
13988 rel->addend = (section->vma
13989 - fixp->fx_size
13990 + fixp->fx_addnumber
13991 + md_pcrel_from (fixp));
13992 break;
13993 }
13994 }
13995
13996 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
13997 if (rel->howto == NULL)
13998 {
13999 as_bad_where (fixp->fx_file, fixp->fx_line,
14000 _("cannot represent relocation type %s"),
14001 bfd_get_reloc_code_name (code));
14002 /* Set howto to a garbage value so that we can keep going. */
14003 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
14004 gas_assert (rel->howto != NULL);
14005 }
14006
14007 return rel;
14008 }
14009
14010 #include "tc-i386-intel.c"
14011
14012 void
14013 tc_x86_parse_to_dw2regnum (expressionS *exp)
14014 {
14015 int saved_naked_reg;
14016 char saved_register_dot;
14017
14018 saved_naked_reg = allow_naked_reg;
14019 allow_naked_reg = 1;
14020 saved_register_dot = register_chars['.'];
14021 register_chars['.'] = '.';
14022 allow_pseudo_reg = 1;
14023 expression_and_evaluate (exp);
14024 allow_pseudo_reg = 0;
14025 register_chars['.'] = saved_register_dot;
14026 allow_naked_reg = saved_naked_reg;
14027
14028 if (exp->X_op == O_register && exp->X_add_number >= 0)
14029 {
14030 if ((addressT) exp->X_add_number < i386_regtab_size)
14031 {
14032 exp->X_op = O_constant;
14033 exp->X_add_number = i386_regtab[exp->X_add_number]
14034 .dw2_regnum[flag_code >> 1];
14035 }
14036 else
14037 exp->X_op = O_illegal;
14038 }
14039 }
14040
14041 void
14042 tc_x86_frame_initial_instructions (void)
14043 {
14044 static unsigned int sp_regno[2];
14045
14046 if (!sp_regno[flag_code >> 1])
14047 {
14048 char *saved_input = input_line_pointer;
14049 char sp[][4] = {"esp", "rsp"};
14050 expressionS exp;
14051
14052 input_line_pointer = sp[flag_code >> 1];
14053 tc_x86_parse_to_dw2regnum (&exp);
14054 gas_assert (exp.X_op == O_constant);
14055 sp_regno[flag_code >> 1] = exp.X_add_number;
14056 input_line_pointer = saved_input;
14057 }
14058
14059 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
14060 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
14061 }
14062
14063 int
14064 x86_dwarf2_addr_size (void)
14065 {
14066 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
14067 if (x86_elf_abi == X86_64_X32_ABI)
14068 return 4;
14069 #endif
14070 return bfd_arch_bits_per_address (stdoutput) / 8;
14071 }
14072
14073 int
14074 i386_elf_section_type (const char *str, size_t len)
14075 {
14076 if (flag_code == CODE_64BIT
14077 && len == sizeof ("unwind") - 1
14078 && strncmp (str, "unwind", 6) == 0)
14079 return SHT_X86_64_UNWIND;
14080
14081 return -1;
14082 }
14083
14084 #ifdef TE_SOLARIS
14085 void
14086 i386_solaris_fix_up_eh_frame (segT sec)
14087 {
14088 if (flag_code == CODE_64BIT)
14089 elf_section_type (sec) = SHT_X86_64_UNWIND;
14090 }
14091 #endif
14092
14093 #ifdef TE_PE
14094 void
14095 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
14096 {
14097 expressionS exp;
14098
14099 exp.X_op = O_secrel;
14100 exp.X_add_symbol = symbol;
14101 exp.X_add_number = 0;
14102 emit_expr (&exp, size);
14103 }
14104 #endif
14105
14106 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14107 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
14108
14109 bfd_vma
14110 x86_64_section_letter (int letter, const char **ptr_msg)
14111 {
14112 if (flag_code == CODE_64BIT)
14113 {
14114 if (letter == 'l')
14115 return SHF_X86_64_LARGE;
14116
14117 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
14118 }
14119 else
14120 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
14121 return -1;
14122 }
14123
14124 bfd_vma
14125 x86_64_section_word (char *str, size_t len)
14126 {
14127 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
14128 return SHF_X86_64_LARGE;
14129
14130 return -1;
14131 }
14132
14133 static void
14134 handle_large_common (int small ATTRIBUTE_UNUSED)
14135 {
14136 if (flag_code != CODE_64BIT)
14137 {
14138 s_comm_internal (0, elf_common_parse);
14139 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
14140 }
14141 else
14142 {
14143 static segT lbss_section;
14144 asection *saved_com_section_ptr = elf_com_section_ptr;
14145 asection *saved_bss_section = bss_section;
14146
14147 if (lbss_section == NULL)
14148 {
14149 flagword applicable;
14150 segT seg = now_seg;
14151 subsegT subseg = now_subseg;
14152
14153 /* The .lbss section is for local .largecomm symbols. */
14154 lbss_section = subseg_new (".lbss", 0);
14155 applicable = bfd_applicable_section_flags (stdoutput);
14156 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
14157 seg_info (lbss_section)->bss = 1;
14158
14159 subseg_set (seg, subseg);
14160 }
14161
14162 elf_com_section_ptr = &_bfd_elf_large_com_section;
14163 bss_section = lbss_section;
14164
14165 s_comm_internal (0, elf_common_parse);
14166
14167 elf_com_section_ptr = saved_com_section_ptr;
14168 bss_section = saved_bss_section;
14169 }
14170 }
14171 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */