2003-06-09 H.J. Lu <hongjiu.lu@intel.com>
[binutils-gdb.git] / gas / config / tc-i386.c
1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 Bugs & suggestions are completely welcome. This is free software.
27 Please help us make it better. */
28
29 #include "as.h"
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34 #include "opcode/i386.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef SCALE1_WHEN_NO_INDEX
45 /* Specifying a scale factor besides 1 when there is no index is
46 futile. eg. `mov (%ebx,2),%al' does exactly the same as
47 `mov (%ebx),%al'. To slavishly follow what the programmer
48 specified, set SCALE1_WHEN_NO_INDEX to 0. */
49 #define SCALE1_WHEN_NO_INDEX 1
50 #endif
51
52 #ifdef BFD_ASSEMBLER
53 #define RELOC_ENUM enum bfd_reloc_code_real
54 #else
55 #define RELOC_ENUM int
56 #endif
57
58 #ifndef DEFAULT_ARCH
59 #define DEFAULT_ARCH "i386"
60 #endif
61
62 #ifndef INLINE
63 #if __GNUC__ >= 2
64 #define INLINE __inline__
65 #else
66 #define INLINE
67 #endif
68 #endif
69
70 static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
71 static INLINE int fits_in_signed_byte PARAMS ((offsetT));
72 static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
73 static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
74 static INLINE int fits_in_signed_word PARAMS ((offsetT));
75 static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
76 static INLINE int fits_in_signed_long PARAMS ((offsetT));
77 static int smallest_imm_type PARAMS ((offsetT));
78 static offsetT offset_in_range PARAMS ((offsetT, int));
79 static int add_prefix PARAMS ((unsigned int));
80 static void set_code_flag PARAMS ((int));
81 static void set_16bit_gcc_code_flag PARAMS ((int));
82 static void set_intel_syntax PARAMS ((int));
83 static void set_cpu_arch PARAMS ((int));
84 static char *output_invalid PARAMS ((int c));
85 static int i386_operand PARAMS ((char *operand_string));
86 static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
87 static const reg_entry *parse_register PARAMS ((char *reg_string,
88 char **end_op));
89 static char *parse_insn PARAMS ((char *, char *));
90 static char *parse_operands PARAMS ((char *, const char *));
91 static void swap_operands PARAMS ((void));
92 static void optimize_imm PARAMS ((void));
93 static void optimize_disp PARAMS ((void));
94 static int match_template PARAMS ((void));
95 static int check_string PARAMS ((void));
96 static int process_suffix PARAMS ((void));
97 static int check_byte_reg PARAMS ((void));
98 static int check_long_reg PARAMS ((void));
99 static int check_qword_reg PARAMS ((void));
100 static int check_word_reg PARAMS ((void));
101 static int finalize_imm PARAMS ((void));
102 static int process_operands PARAMS ((void));
103 static const seg_entry *build_modrm_byte PARAMS ((void));
104 static void output_insn PARAMS ((void));
105 static void output_branch PARAMS ((void));
106 static void output_jump PARAMS ((void));
107 static void output_interseg_jump PARAMS ((void));
108 static void output_imm PARAMS ((fragS *insn_start_frag,
109 offsetT insn_start_off));
110 static void output_disp PARAMS ((fragS *insn_start_frag,
111 offsetT insn_start_off));
112 #ifndef I386COFF
113 static void s_bss PARAMS ((int));
114 #endif
115
116 static const char *default_arch = DEFAULT_ARCH;
117
118 /* 'md_assemble ()' gathers together information and puts it into a
119 i386_insn. */
120
121 union i386_op
122 {
123 expressionS *disps;
124 expressionS *imms;
125 const reg_entry *regs;
126 };
127
128 struct _i386_insn
129 {
130 /* TM holds the template for the insn were currently assembling. */
131 template tm;
132
133 /* SUFFIX holds the instruction mnemonic suffix if given.
134 (e.g. 'l' for 'movl') */
135 char suffix;
136
137 /* OPERANDS gives the number of given operands. */
138 unsigned int operands;
139
140 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
141 of given register, displacement, memory operands and immediate
142 operands. */
143 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
144
145 /* TYPES [i] is the type (see above #defines) which tells us how to
146 use OP[i] for the corresponding operand. */
147 unsigned int types[MAX_OPERANDS];
148
149 /* Displacement expression, immediate expression, or register for each
150 operand. */
151 union i386_op op[MAX_OPERANDS];
152
153 /* Flags for operands. */
154 unsigned int flags[MAX_OPERANDS];
155 #define Operand_PCrel 1
156
157 /* Relocation type for operand */
158 RELOC_ENUM reloc[MAX_OPERANDS];
159
160 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
161 the base index byte below. */
162 const reg_entry *base_reg;
163 const reg_entry *index_reg;
164 unsigned int log2_scale_factor;
165
166 /* SEG gives the seg_entries of this insn. They are zero unless
167 explicit segment overrides are given. */
168 const seg_entry *seg[2];
169
170 /* PREFIX holds all the given prefix opcodes (usually null).
171 PREFIXES is the number of prefix opcodes. */
172 unsigned int prefixes;
173 unsigned char prefix[MAX_PREFIXES];
174
175 /* RM and SIB are the modrm byte and the sib byte where the
176 addressing modes of this insn are encoded. */
177
178 modrm_byte rm;
179 rex_byte rex;
180 sib_byte sib;
181 };
182
183 typedef struct _i386_insn i386_insn;
184
185 /* List of chars besides those in app.c:symbol_chars that can start an
186 operand. Used to prevent the scrubber eating vital white-space. */
187 #ifdef LEX_AT
188 const char extra_symbol_chars[] = "*%-(@[";
189 #else
190 const char extra_symbol_chars[] = "*%-([";
191 #endif
192
193 #if (defined (TE_I386AIX) \
194 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
195 && !defined (TE_LINUX) \
196 && !defined (TE_FreeBSD) \
197 && !defined (TE_NetBSD)))
198 /* This array holds the chars that always start a comment. If the
199 pre-processor is disabled, these aren't very useful. */
200 const char comment_chars[] = "#/";
201 #define PREFIX_SEPARATOR '\\'
202
203 /* This array holds the chars that only start a comment at the beginning of
204 a line. If the line seems to have the form '# 123 filename'
205 .line and .file directives will appear in the pre-processed output.
206 Note that input_file.c hand checks for '#' at the beginning of the
207 first line of the input file. This is because the compiler outputs
208 #NO_APP at the beginning of its output.
209 Also note that comments started like this one will always work if
210 '/' isn't otherwise defined. */
211 const char line_comment_chars[] = "#";
212
213 #else
214 /* Putting '/' here makes it impossible to use the divide operator.
215 However, we need it for compatibility with SVR4 systems. */
216 const char comment_chars[] = "#";
217 #define PREFIX_SEPARATOR '/'
218
219 const char line_comment_chars[] = "/#";
220 #endif
221
222 const char line_separator_chars[] = ";";
223
224 /* Chars that can be used to separate mant from exp in floating point
225 nums. */
226 const char EXP_CHARS[] = "eE";
227
228 /* Chars that mean this number is a floating point constant
229 As in 0f12.456
230 or 0d1.2345e12. */
231 const char FLT_CHARS[] = "fFdDxX";
232
233 /* Tables for lexical analysis. */
234 static char mnemonic_chars[256];
235 static char register_chars[256];
236 static char operand_chars[256];
237 static char identifier_chars[256];
238 static char digit_chars[256];
239
240 /* Lexical macros. */
241 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
242 #define is_operand_char(x) (operand_chars[(unsigned char) x])
243 #define is_register_char(x) (register_chars[(unsigned char) x])
244 #define is_space_char(x) ((x) == ' ')
245 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
246 #define is_digit_char(x) (digit_chars[(unsigned char) x])
247
248 /* All non-digit non-letter charcters that may occur in an operand. */
249 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
250
251 /* md_assemble() always leaves the strings it's passed unaltered. To
252 effect this we maintain a stack of saved characters that we've smashed
253 with '\0's (indicating end of strings for various sub-fields of the
254 assembler instruction). */
255 static char save_stack[32];
256 static char *save_stack_p;
257 #define END_STRING_AND_SAVE(s) \
258 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
259 #define RESTORE_END_STRING(s) \
260 do { *(s) = *--save_stack_p; } while (0)
261
262 /* The instruction we're assembling. */
263 static i386_insn i;
264
265 /* Possible templates for current insn. */
266 static const templates *current_templates;
267
268 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
269 static expressionS disp_expressions[2], im_expressions[2];
270
271 /* Current operand we are working on. */
272 static int this_operand;
273
274 /* We support four different modes. FLAG_CODE variable is used to distinguish
275 these. */
276
277 enum flag_code {
278 CODE_32BIT,
279 CODE_16BIT,
280 CODE_64BIT };
281 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
282
283 static enum flag_code flag_code;
284 static int use_rela_relocations = 0;
285
286 /* The names used to print error messages. */
287 static const char *flag_code_names[] =
288 {
289 "32",
290 "16",
291 "64"
292 };
293
294 /* 1 for intel syntax,
295 0 if att syntax. */
296 static int intel_syntax = 0;
297
298 /* 1 if register prefix % not required. */
299 static int allow_naked_reg = 0;
300
301 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
302 leave, push, and pop instructions so that gcc has the same stack
303 frame as in 32 bit mode. */
304 static char stackop_size = '\0';
305
306 /* Non-zero to optimize code alignment. */
307 int optimize_align_code = 1;
308
309 /* Non-zero to quieten some warnings. */
310 static int quiet_warnings = 0;
311
312 /* CPU name. */
313 static const char *cpu_arch_name = NULL;
314
315 /* CPU feature flags. */
316 static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
317
318 /* If set, conditional jumps are not automatically promoted to handle
319 larger than a byte offset. */
320 static unsigned int no_cond_jump_promotion = 0;
321
322 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
323 symbolS *GOT_symbol;
324
325 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
326 unsigned int x86_dwarf2_return_column;
327
328 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
329 int x86_cie_data_alignment;
330
331 /* Interface to relax_segment.
332 There are 3 major relax states for 386 jump insns because the
333 different types of jumps add different sizes to frags when we're
334 figuring out what sort of jump to choose to reach a given label. */
335
336 /* Types. */
337 #define UNCOND_JUMP 0
338 #define COND_JUMP 1
339 #define COND_JUMP86 2
340
341 /* Sizes. */
342 #define CODE16 1
343 #define SMALL 0
344 #define SMALL16 (SMALL | CODE16)
345 #define BIG 2
346 #define BIG16 (BIG | CODE16)
347
348 #ifndef INLINE
349 #ifdef __GNUC__
350 #define INLINE __inline__
351 #else
352 #define INLINE
353 #endif
354 #endif
355
356 #define ENCODE_RELAX_STATE(type, size) \
357 ((relax_substateT) (((type) << 2) | (size)))
358 #define TYPE_FROM_RELAX_STATE(s) \
359 ((s) >> 2)
360 #define DISP_SIZE_FROM_RELAX_STATE(s) \
361 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
362
363 /* This table is used by relax_frag to promote short jumps to long
364 ones where necessary. SMALL (short) jumps may be promoted to BIG
365 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
366 don't allow a short jump in a 32 bit code segment to be promoted to
367 a 16 bit offset jump because it's slower (requires data size
368 prefix), and doesn't work, unless the destination is in the bottom
369 64k of the code segment (The top 16 bits of eip are zeroed). */
370
371 const relax_typeS md_relax_table[] =
372 {
373 /* The fields are:
374 1) most positive reach of this state,
375 2) most negative reach of this state,
376 3) how many bytes this mode will have in the variable part of the frag
377 4) which index into the table to try if we can't fit into this one. */
378
379 /* UNCOND_JUMP states. */
380 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
381 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
382 /* dword jmp adds 4 bytes to frag:
383 0 extra opcode bytes, 4 displacement bytes. */
384 {0, 0, 4, 0},
385 /* word jmp adds 2 byte2 to frag:
386 0 extra opcode bytes, 2 displacement bytes. */
387 {0, 0, 2, 0},
388
389 /* COND_JUMP states. */
390 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
391 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
392 /* dword conditionals adds 5 bytes to frag:
393 1 extra opcode byte, 4 displacement bytes. */
394 {0, 0, 5, 0},
395 /* word conditionals add 3 bytes to frag:
396 1 extra opcode byte, 2 displacement bytes. */
397 {0, 0, 3, 0},
398
399 /* COND_JUMP86 states. */
400 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
401 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
402 /* dword conditionals adds 5 bytes to frag:
403 1 extra opcode byte, 4 displacement bytes. */
404 {0, 0, 5, 0},
405 /* word conditionals add 4 bytes to frag:
406 1 displacement byte and a 3 byte long branch insn. */
407 {0, 0, 4, 0}
408 };
409
410 static const arch_entry cpu_arch[] = {
411 {"i8086", Cpu086 },
412 {"i186", Cpu086|Cpu186 },
413 {"i286", Cpu086|Cpu186|Cpu286 },
414 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
415 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
416 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
417 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
418 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
419 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
420 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
421 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
422 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
423 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
424 {NULL, 0 }
425 };
426
427 const pseudo_typeS md_pseudo_table[] =
428 {
429 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
430 {"align", s_align_bytes, 0},
431 #else
432 {"align", s_align_ptwo, 0},
433 #endif
434 {"arch", set_cpu_arch, 0},
435 #ifndef I386COFF
436 {"bss", s_bss, 0},
437 #endif
438 {"ffloat", float_cons, 'f'},
439 {"dfloat", float_cons, 'd'},
440 {"tfloat", float_cons, 'x'},
441 {"value", cons, 2},
442 {"noopt", s_ignore, 0},
443 {"optim", s_ignore, 0},
444 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
445 {"code16", set_code_flag, CODE_16BIT},
446 {"code32", set_code_flag, CODE_32BIT},
447 {"code64", set_code_flag, CODE_64BIT},
448 {"intel_syntax", set_intel_syntax, 1},
449 {"att_syntax", set_intel_syntax, 0},
450 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
451 {"loc", dwarf2_directive_loc, 0},
452 {0, 0, 0}
453 };
454
455 /* For interface with expression (). */
456 extern char *input_line_pointer;
457
458 /* Hash table for instruction mnemonic lookup. */
459 static struct hash_control *op_hash;
460
461 /* Hash table for register lookup. */
462 static struct hash_control *reg_hash;
463 \f
464 void
465 i386_align_code (fragP, count)
466 fragS *fragP;
467 int count;
468 {
469 /* Various efficient no-op patterns for aligning code labels.
470 Note: Don't try to assemble the instructions in the comments.
471 0L and 0w are not legal. */
472 static const char f32_1[] =
473 {0x90}; /* nop */
474 static const char f32_2[] =
475 {0x89,0xf6}; /* movl %esi,%esi */
476 static const char f32_3[] =
477 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
478 static const char f32_4[] =
479 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
480 static const char f32_5[] =
481 {0x90, /* nop */
482 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
483 static const char f32_6[] =
484 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
485 static const char f32_7[] =
486 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
487 static const char f32_8[] =
488 {0x90, /* nop */
489 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
490 static const char f32_9[] =
491 {0x89,0xf6, /* movl %esi,%esi */
492 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
493 static const char f32_10[] =
494 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
495 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
496 static const char f32_11[] =
497 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
498 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
499 static const char f32_12[] =
500 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
501 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
502 static const char f32_13[] =
503 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
504 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
505 static const char f32_14[] =
506 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
507 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
508 static const char f32_15[] =
509 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
510 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
511 static const char f16_3[] =
512 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
513 static const char f16_4[] =
514 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
515 static const char f16_5[] =
516 {0x90, /* nop */
517 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
518 static const char f16_6[] =
519 {0x89,0xf6, /* mov %si,%si */
520 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
521 static const char f16_7[] =
522 {0x8d,0x74,0x00, /* lea 0(%si),%si */
523 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
524 static const char f16_8[] =
525 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
526 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
527 static const char *const f32_patt[] = {
528 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
529 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
530 };
531 static const char *const f16_patt[] = {
532 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
533 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
534 };
535
536 if (count <= 0 || count > 15)
537 return;
538
539 /* The recommended way to pad 64bit code is to use NOPs preceded by
540 maximally four 0x66 prefixes. Balance the size of nops. */
541 if (flag_code == CODE_64BIT)
542 {
543 int i;
544 int nnops = (count + 3) / 4;
545 int len = count / nnops;
546 int remains = count - nnops * len;
547 int pos = 0;
548
549 for (i = 0; i < remains; i++)
550 {
551 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
552 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
553 pos += len + 1;
554 }
555 for (; i < nnops; i++)
556 {
557 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
558 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
559 pos += len;
560 }
561 }
562 else
563 if (flag_code == CODE_16BIT)
564 {
565 memcpy (fragP->fr_literal + fragP->fr_fix,
566 f16_patt[count - 1], count);
567 if (count > 8)
568 /* Adjust jump offset. */
569 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
570 }
571 else
572 memcpy (fragP->fr_literal + fragP->fr_fix,
573 f32_patt[count - 1], count);
574 fragP->fr_var = count;
575 }
576
577 static INLINE unsigned int
578 mode_from_disp_size (t)
579 unsigned int t;
580 {
581 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
582 }
583
584 static INLINE int
585 fits_in_signed_byte (num)
586 offsetT num;
587 {
588 return (num >= -128) && (num <= 127);
589 }
590
591 static INLINE int
592 fits_in_unsigned_byte (num)
593 offsetT num;
594 {
595 return (num & 0xff) == num;
596 }
597
598 static INLINE int
599 fits_in_unsigned_word (num)
600 offsetT num;
601 {
602 return (num & 0xffff) == num;
603 }
604
605 static INLINE int
606 fits_in_signed_word (num)
607 offsetT num;
608 {
609 return (-32768 <= num) && (num <= 32767);
610 }
611 static INLINE int
612 fits_in_signed_long (num)
613 offsetT num ATTRIBUTE_UNUSED;
614 {
615 #ifndef BFD64
616 return 1;
617 #else
618 return (!(((offsetT) -1 << 31) & num)
619 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
620 #endif
621 } /* fits_in_signed_long() */
622 static INLINE int
623 fits_in_unsigned_long (num)
624 offsetT num ATTRIBUTE_UNUSED;
625 {
626 #ifndef BFD64
627 return 1;
628 #else
629 return (num & (((offsetT) 2 << 31) - 1)) == num;
630 #endif
631 } /* fits_in_unsigned_long() */
632
633 static int
634 smallest_imm_type (num)
635 offsetT num;
636 {
637 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
638 {
639 /* This code is disabled on the 486 because all the Imm1 forms
640 in the opcode table are slower on the i486. They're the
641 versions with the implicitly specified single-position
642 displacement, which has another syntax if you really want to
643 use that form. */
644 if (num == 1)
645 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
646 }
647 return (fits_in_signed_byte (num)
648 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
649 : fits_in_unsigned_byte (num)
650 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
651 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
652 ? (Imm16 | Imm32 | Imm32S | Imm64)
653 : fits_in_signed_long (num)
654 ? (Imm32 | Imm32S | Imm64)
655 : fits_in_unsigned_long (num)
656 ? (Imm32 | Imm64)
657 : Imm64);
658 }
659
660 static offsetT
661 offset_in_range (val, size)
662 offsetT val;
663 int size;
664 {
665 addressT mask;
666
667 switch (size)
668 {
669 case 1: mask = ((addressT) 1 << 8) - 1; break;
670 case 2: mask = ((addressT) 1 << 16) - 1; break;
671 case 4: mask = ((addressT) 2 << 31) - 1; break;
672 #ifdef BFD64
673 case 8: mask = ((addressT) 2 << 63) - 1; break;
674 #endif
675 default: abort ();
676 }
677
678 /* If BFD64, sign extend val. */
679 if (!use_rela_relocations)
680 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
681 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
682
683 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
684 {
685 char buf1[40], buf2[40];
686
687 sprint_value (buf1, val);
688 sprint_value (buf2, val & mask);
689 as_warn (_("%s shortened to %s"), buf1, buf2);
690 }
691 return val & mask;
692 }
693
694 /* Returns 0 if attempting to add a prefix where one from the same
695 class already exists, 1 if non rep/repne added, 2 if rep/repne
696 added. */
697 static int
698 add_prefix (prefix)
699 unsigned int prefix;
700 {
701 int ret = 1;
702 int q;
703
704 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
705 && flag_code == CODE_64BIT)
706 q = REX_PREFIX;
707 else
708 switch (prefix)
709 {
710 default:
711 abort ();
712
713 case CS_PREFIX_OPCODE:
714 case DS_PREFIX_OPCODE:
715 case ES_PREFIX_OPCODE:
716 case FS_PREFIX_OPCODE:
717 case GS_PREFIX_OPCODE:
718 case SS_PREFIX_OPCODE:
719 q = SEG_PREFIX;
720 break;
721
722 case REPNE_PREFIX_OPCODE:
723 case REPE_PREFIX_OPCODE:
724 ret = 2;
725 /* fall thru */
726 case LOCK_PREFIX_OPCODE:
727 q = LOCKREP_PREFIX;
728 break;
729
730 case FWAIT_OPCODE:
731 q = WAIT_PREFIX;
732 break;
733
734 case ADDR_PREFIX_OPCODE:
735 q = ADDR_PREFIX;
736 break;
737
738 case DATA_PREFIX_OPCODE:
739 q = DATA_PREFIX;
740 break;
741 }
742
743 if (i.prefix[q] != 0)
744 {
745 as_bad (_("same type of prefix used twice"));
746 return 0;
747 }
748
749 i.prefixes += 1;
750 i.prefix[q] = prefix;
751 return ret;
752 }
753
754 static void
755 set_code_flag (value)
756 int value;
757 {
758 flag_code = value;
759 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
760 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
761 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
762 {
763 as_bad (_("64bit mode not supported on this CPU."));
764 }
765 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
766 {
767 as_bad (_("32bit mode not supported on this CPU."));
768 }
769 stackop_size = '\0';
770 }
771
772 static void
773 set_16bit_gcc_code_flag (new_code_flag)
774 int new_code_flag;
775 {
776 flag_code = new_code_flag;
777 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
778 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
779 stackop_size = 'l';
780 }
781
782 static void
783 set_intel_syntax (syntax_flag)
784 int syntax_flag;
785 {
786 /* Find out if register prefixing is specified. */
787 int ask_naked_reg = 0;
788
789 SKIP_WHITESPACE ();
790 if (!is_end_of_line[(unsigned char) *input_line_pointer])
791 {
792 char *string = input_line_pointer;
793 int e = get_symbol_end ();
794
795 if (strcmp (string, "prefix") == 0)
796 ask_naked_reg = 1;
797 else if (strcmp (string, "noprefix") == 0)
798 ask_naked_reg = -1;
799 else
800 as_bad (_("bad argument to syntax directive."));
801 *input_line_pointer = e;
802 }
803 demand_empty_rest_of_line ();
804
805 intel_syntax = syntax_flag;
806
807 if (ask_naked_reg == 0)
808 {
809 #ifdef BFD_ASSEMBLER
810 allow_naked_reg = (intel_syntax
811 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
812 #else
813 /* Conservative default. */
814 allow_naked_reg = 0;
815 #endif
816 }
817 else
818 allow_naked_reg = (ask_naked_reg < 0);
819 }
820
821 static void
822 set_cpu_arch (dummy)
823 int dummy ATTRIBUTE_UNUSED;
824 {
825 SKIP_WHITESPACE ();
826
827 if (!is_end_of_line[(unsigned char) *input_line_pointer])
828 {
829 char *string = input_line_pointer;
830 int e = get_symbol_end ();
831 int i;
832
833 for (i = 0; cpu_arch[i].name; i++)
834 {
835 if (strcmp (string, cpu_arch[i].name) == 0)
836 {
837 cpu_arch_name = cpu_arch[i].name;
838 cpu_arch_flags = (cpu_arch[i].flags
839 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
840 break;
841 }
842 }
843 if (!cpu_arch[i].name)
844 as_bad (_("no such architecture: `%s'"), string);
845
846 *input_line_pointer = e;
847 }
848 else
849 as_bad (_("missing cpu architecture"));
850
851 no_cond_jump_promotion = 0;
852 if (*input_line_pointer == ','
853 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
854 {
855 char *string = ++input_line_pointer;
856 int e = get_symbol_end ();
857
858 if (strcmp (string, "nojumps") == 0)
859 no_cond_jump_promotion = 1;
860 else if (strcmp (string, "jumps") == 0)
861 ;
862 else
863 as_bad (_("no such architecture modifier: `%s'"), string);
864
865 *input_line_pointer = e;
866 }
867
868 demand_empty_rest_of_line ();
869 }
870
871 #ifdef BFD_ASSEMBLER
872 unsigned long
873 i386_mach ()
874 {
875 if (!strcmp (default_arch, "x86_64"))
876 return bfd_mach_x86_64;
877 else if (!strcmp (default_arch, "i386"))
878 return bfd_mach_i386_i386;
879 else
880 as_fatal (_("Unknown architecture"));
881 }
882 #endif
883 \f
884 void
885 md_begin ()
886 {
887 const char *hash_err;
888
889 /* Initialize op_hash hash table. */
890 op_hash = hash_new ();
891
892 {
893 const template *optab;
894 templates *core_optab;
895
896 /* Setup for loop. */
897 optab = i386_optab;
898 core_optab = (templates *) xmalloc (sizeof (templates));
899 core_optab->start = optab;
900
901 while (1)
902 {
903 ++optab;
904 if (optab->name == NULL
905 || strcmp (optab->name, (optab - 1)->name) != 0)
906 {
907 /* different name --> ship out current template list;
908 add to hash table; & begin anew. */
909 core_optab->end = optab;
910 hash_err = hash_insert (op_hash,
911 (optab - 1)->name,
912 (PTR) core_optab);
913 if (hash_err)
914 {
915 as_fatal (_("Internal Error: Can't hash %s: %s"),
916 (optab - 1)->name,
917 hash_err);
918 }
919 if (optab->name == NULL)
920 break;
921 core_optab = (templates *) xmalloc (sizeof (templates));
922 core_optab->start = optab;
923 }
924 }
925 }
926
927 /* Initialize reg_hash hash table. */
928 reg_hash = hash_new ();
929 {
930 const reg_entry *regtab;
931
932 for (regtab = i386_regtab;
933 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
934 regtab++)
935 {
936 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
937 if (hash_err)
938 as_fatal (_("Internal Error: Can't hash %s: %s"),
939 regtab->reg_name,
940 hash_err);
941 }
942 }
943
944 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
945 {
946 int c;
947 char *p;
948
949 for (c = 0; c < 256; c++)
950 {
951 if (ISDIGIT (c))
952 {
953 digit_chars[c] = c;
954 mnemonic_chars[c] = c;
955 register_chars[c] = c;
956 operand_chars[c] = c;
957 }
958 else if (ISLOWER (c))
959 {
960 mnemonic_chars[c] = c;
961 register_chars[c] = c;
962 operand_chars[c] = c;
963 }
964 else if (ISUPPER (c))
965 {
966 mnemonic_chars[c] = TOLOWER (c);
967 register_chars[c] = mnemonic_chars[c];
968 operand_chars[c] = c;
969 }
970
971 if (ISALPHA (c) || ISDIGIT (c))
972 identifier_chars[c] = c;
973 else if (c >= 128)
974 {
975 identifier_chars[c] = c;
976 operand_chars[c] = c;
977 }
978 }
979
980 #ifdef LEX_AT
981 identifier_chars['@'] = '@';
982 #endif
983 digit_chars['-'] = '-';
984 identifier_chars['_'] = '_';
985 identifier_chars['.'] = '.';
986
987 for (p = operand_special_chars; *p != '\0'; p++)
988 operand_chars[(unsigned char) *p] = *p;
989 }
990
991 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
992 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
993 {
994 record_alignment (text_section, 2);
995 record_alignment (data_section, 2);
996 record_alignment (bss_section, 2);
997 }
998 #endif
999
1000 if (flag_code == CODE_64BIT)
1001 {
1002 x86_dwarf2_return_column = 16;
1003 x86_cie_data_alignment = -8;
1004 }
1005 else
1006 {
1007 x86_dwarf2_return_column = 8;
1008 x86_cie_data_alignment = -4;
1009 }
1010 }
1011
1012 void
1013 i386_print_statistics (file)
1014 FILE *file;
1015 {
1016 hash_print_statistics (file, "i386 opcode", op_hash);
1017 hash_print_statistics (file, "i386 register", reg_hash);
1018 }
1019 \f
1020 #ifdef DEBUG386
1021
1022 /* Debugging routines for md_assemble. */
1023 static void pi PARAMS ((char *, i386_insn *));
1024 static void pte PARAMS ((template *));
1025 static void pt PARAMS ((unsigned int));
1026 static void pe PARAMS ((expressionS *));
1027 static void ps PARAMS ((symbolS *));
1028
1029 static void
1030 pi (line, x)
1031 char *line;
1032 i386_insn *x;
1033 {
1034 unsigned int i;
1035
1036 fprintf (stdout, "%s: template ", line);
1037 pte (&x->tm);
1038 fprintf (stdout, " address: base %s index %s scale %x\n",
1039 x->base_reg ? x->base_reg->reg_name : "none",
1040 x->index_reg ? x->index_reg->reg_name : "none",
1041 x->log2_scale_factor);
1042 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
1043 x->rm.mode, x->rm.reg, x->rm.regmem);
1044 fprintf (stdout, " sib: base %x index %x scale %x\n",
1045 x->sib.base, x->sib.index, x->sib.scale);
1046 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
1047 (x->rex & REX_MODE64) != 0,
1048 (x->rex & REX_EXTX) != 0,
1049 (x->rex & REX_EXTY) != 0,
1050 (x->rex & REX_EXTZ) != 0);
1051 for (i = 0; i < x->operands; i++)
1052 {
1053 fprintf (stdout, " #%d: ", i + 1);
1054 pt (x->types[i]);
1055 fprintf (stdout, "\n");
1056 if (x->types[i]
1057 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
1058 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1059 if (x->types[i] & Imm)
1060 pe (x->op[i].imms);
1061 if (x->types[i] & Disp)
1062 pe (x->op[i].disps);
1063 }
1064 }
1065
1066 static void
1067 pte (t)
1068 template *t;
1069 {
1070 unsigned int i;
1071 fprintf (stdout, " %d operands ", t->operands);
1072 fprintf (stdout, "opcode %x ", t->base_opcode);
1073 if (t->extension_opcode != None)
1074 fprintf (stdout, "ext %x ", t->extension_opcode);
1075 if (t->opcode_modifier & D)
1076 fprintf (stdout, "D");
1077 if (t->opcode_modifier & W)
1078 fprintf (stdout, "W");
1079 fprintf (stdout, "\n");
1080 for (i = 0; i < t->operands; i++)
1081 {
1082 fprintf (stdout, " #%d type ", i + 1);
1083 pt (t->operand_types[i]);
1084 fprintf (stdout, "\n");
1085 }
1086 }
1087
1088 static void
1089 pe (e)
1090 expressionS *e;
1091 {
1092 fprintf (stdout, " operation %d\n", e->X_op);
1093 fprintf (stdout, " add_number %ld (%lx)\n",
1094 (long) e->X_add_number, (long) e->X_add_number);
1095 if (e->X_add_symbol)
1096 {
1097 fprintf (stdout, " add_symbol ");
1098 ps (e->X_add_symbol);
1099 fprintf (stdout, "\n");
1100 }
1101 if (e->X_op_symbol)
1102 {
1103 fprintf (stdout, " op_symbol ");
1104 ps (e->X_op_symbol);
1105 fprintf (stdout, "\n");
1106 }
1107 }
1108
1109 static void
1110 ps (s)
1111 symbolS *s;
1112 {
1113 fprintf (stdout, "%s type %s%s",
1114 S_GET_NAME (s),
1115 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1116 segment_name (S_GET_SEGMENT (s)));
1117 }
1118
1119 struct type_name
1120 {
1121 unsigned int mask;
1122 char *tname;
1123 }
1124
1125 static const type_names[] =
1126 {
1127 { Reg8, "r8" },
1128 { Reg16, "r16" },
1129 { Reg32, "r32" },
1130 { Reg64, "r64" },
1131 { Imm8, "i8" },
1132 { Imm8S, "i8s" },
1133 { Imm16, "i16" },
1134 { Imm32, "i32" },
1135 { Imm32S, "i32s" },
1136 { Imm64, "i64" },
1137 { Imm1, "i1" },
1138 { BaseIndex, "BaseIndex" },
1139 { Disp8, "d8" },
1140 { Disp16, "d16" },
1141 { Disp32, "d32" },
1142 { Disp32S, "d32s" },
1143 { Disp64, "d64" },
1144 { InOutPortReg, "InOutPortReg" },
1145 { ShiftCount, "ShiftCount" },
1146 { Control, "control reg" },
1147 { Test, "test reg" },
1148 { Debug, "debug reg" },
1149 { FloatReg, "FReg" },
1150 { FloatAcc, "FAcc" },
1151 { SReg2, "SReg2" },
1152 { SReg3, "SReg3" },
1153 { Acc, "Acc" },
1154 { JumpAbsolute, "Jump Absolute" },
1155 { RegMMX, "rMMX" },
1156 { RegXMM, "rXMM" },
1157 { EsSeg, "es" },
1158 { 0, "" }
1159 };
1160
1161 static void
1162 pt (t)
1163 unsigned int t;
1164 {
1165 const struct type_name *ty;
1166
1167 for (ty = type_names; ty->mask; ty++)
1168 if (t & ty->mask)
1169 fprintf (stdout, "%s, ", ty->tname);
1170 fflush (stdout);
1171 }
1172
1173 #endif /* DEBUG386 */
1174 \f
1175 #ifdef BFD_ASSEMBLER
1176 static bfd_reloc_code_real_type reloc
1177 PARAMS ((int, int, int, bfd_reloc_code_real_type));
1178
1179 static bfd_reloc_code_real_type
1180 reloc (size, pcrel, sign, other)
1181 int size;
1182 int pcrel;
1183 int sign;
1184 bfd_reloc_code_real_type other;
1185 {
1186 if (other != NO_RELOC)
1187 return other;
1188
1189 if (pcrel)
1190 {
1191 if (!sign)
1192 as_bad (_("There are no unsigned pc-relative relocations"));
1193 switch (size)
1194 {
1195 case 1: return BFD_RELOC_8_PCREL;
1196 case 2: return BFD_RELOC_16_PCREL;
1197 case 4: return BFD_RELOC_32_PCREL;
1198 }
1199 as_bad (_("can not do %d byte pc-relative relocation"), size);
1200 }
1201 else
1202 {
1203 if (sign)
1204 switch (size)
1205 {
1206 case 4: return BFD_RELOC_X86_64_32S;
1207 }
1208 else
1209 switch (size)
1210 {
1211 case 1: return BFD_RELOC_8;
1212 case 2: return BFD_RELOC_16;
1213 case 4: return BFD_RELOC_32;
1214 case 8: return BFD_RELOC_64;
1215 }
1216 as_bad (_("can not do %s %d byte relocation"),
1217 sign ? "signed" : "unsigned", size);
1218 }
1219
1220 abort ();
1221 return BFD_RELOC_NONE;
1222 }
1223
1224 /* Here we decide which fixups can be adjusted to make them relative to
1225 the beginning of the section instead of the symbol. Basically we need
1226 to make sure that the dynamic relocations are done correctly, so in
1227 some cases we force the original symbol to be used. */
1228
1229 int
1230 tc_i386_fix_adjustable (fixP)
1231 fixS *fixP ATTRIBUTE_UNUSED;
1232 {
1233 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1234 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
1235 return 1;
1236
1237 /* Don't adjust pc-relative references to merge sections in 64-bit
1238 mode. */
1239 if (use_rela_relocations
1240 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1241 && fixP->fx_pcrel)
1242 return 0;
1243
1244 /* adjust_reloc_syms doesn't know about the GOT. */
1245 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1246 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1247 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1248 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1249 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1250 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1251 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
1252 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1253 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
1254 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1255 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
1256 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1257 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1258 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1259 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1260 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1261 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1262 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1263 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
1264 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1265 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1266 return 0;
1267 #endif
1268 return 1;
1269 }
1270 #else
1271 #define reloc(SIZE,PCREL,SIGN,OTHER) 0
1272 #define BFD_RELOC_8 0
1273 #define BFD_RELOC_16 0
1274 #define BFD_RELOC_32 0
1275 #define BFD_RELOC_8_PCREL 0
1276 #define BFD_RELOC_16_PCREL 0
1277 #define BFD_RELOC_32_PCREL 0
1278 #define BFD_RELOC_386_PLT32 0
1279 #define BFD_RELOC_386_GOT32 0
1280 #define BFD_RELOC_386_GOTOFF 0
1281 #define BFD_RELOC_386_TLS_GD 0
1282 #define BFD_RELOC_386_TLS_LDM 0
1283 #define BFD_RELOC_386_TLS_LDO_32 0
1284 #define BFD_RELOC_386_TLS_IE_32 0
1285 #define BFD_RELOC_386_TLS_IE 0
1286 #define BFD_RELOC_386_TLS_GOTIE 0
1287 #define BFD_RELOC_386_TLS_LE_32 0
1288 #define BFD_RELOC_386_TLS_LE 0
1289 #define BFD_RELOC_X86_64_PLT32 0
1290 #define BFD_RELOC_X86_64_GOT32 0
1291 #define BFD_RELOC_X86_64_GOTPCREL 0
1292 #define BFD_RELOC_X86_64_TLSGD 0
1293 #define BFD_RELOC_X86_64_TLSLD 0
1294 #define BFD_RELOC_X86_64_DTPOFF32 0
1295 #define BFD_RELOC_X86_64_GOTTPOFF 0
1296 #define BFD_RELOC_X86_64_TPOFF32 0
1297 #endif
1298
1299 static int intel_float_operand PARAMS ((const char *mnemonic));
1300
1301 static int
1302 intel_float_operand (mnemonic)
1303 const char *mnemonic;
1304 {
1305 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
1306 return 2;
1307
1308 if (mnemonic[0] == 'f')
1309 return 1;
1310
1311 return 0;
1312 }
1313
1314 /* This is the guts of the machine-dependent assembler. LINE points to a
1315 machine dependent instruction. This function is supposed to emit
1316 the frags/bytes it assembles to. */
1317
1318 void
1319 md_assemble (line)
1320 char *line;
1321 {
1322 int j;
1323 char mnemonic[MAX_MNEM_SIZE];
1324
1325 /* Initialize globals. */
1326 memset (&i, '\0', sizeof (i));
1327 for (j = 0; j < MAX_OPERANDS; j++)
1328 i.reloc[j] = NO_RELOC;
1329 memset (disp_expressions, '\0', sizeof (disp_expressions));
1330 memset (im_expressions, '\0', sizeof (im_expressions));
1331 save_stack_p = save_stack;
1332
1333 /* First parse an instruction mnemonic & call i386_operand for the operands.
1334 We assume that the scrubber has arranged it so that line[0] is the valid
1335 start of a (possibly prefixed) mnemonic. */
1336
1337 line = parse_insn (line, mnemonic);
1338 if (line == NULL)
1339 return;
1340
1341 line = parse_operands (line, mnemonic);
1342 if (line == NULL)
1343 return;
1344
1345 /* Now we've parsed the mnemonic into a set of templates, and have the
1346 operands at hand. */
1347
1348 /* All intel opcodes have reversed operands except for "bound" and
1349 "enter". We also don't reverse intersegment "jmp" and "call"
1350 instructions with 2 immediate operands so that the immediate segment
1351 precedes the offset, as it does when in AT&T mode. "enter" and the
1352 intersegment "jmp" and "call" instructions are the only ones that
1353 have two immediate operands. */
1354 if (intel_syntax && i.operands > 1
1355 && (strcmp (mnemonic, "bound") != 0)
1356 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1357 swap_operands ();
1358
1359 if (i.imm_operands)
1360 optimize_imm ();
1361
1362 if (i.disp_operands)
1363 optimize_disp ();
1364
1365 /* Next, we find a template that matches the given insn,
1366 making sure the overlap of the given operands types is consistent
1367 with the template operand types. */
1368
1369 if (!match_template ())
1370 return;
1371
1372 if (intel_syntax)
1373 {
1374 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1375 if (SYSV386_COMPAT
1376 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1377 i.tm.base_opcode ^= FloatR;
1378
1379 /* Zap movzx and movsx suffix. The suffix may have been set from
1380 "word ptr" or "byte ptr" on the source operand, but we'll use
1381 the suffix later to choose the destination register. */
1382 if ((i.tm.base_opcode & ~9) == 0x0fb6)
1383 i.suffix = 0;
1384 }
1385
1386 if (i.tm.opcode_modifier & FWait)
1387 if (!add_prefix (FWAIT_OPCODE))
1388 return;
1389
1390 /* Check string instruction segment overrides. */
1391 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1392 {
1393 if (!check_string ())
1394 return;
1395 }
1396
1397 if (!process_suffix ())
1398 return;
1399
1400 /* Make still unresolved immediate matches conform to size of immediate
1401 given in i.suffix. */
1402 if (!finalize_imm ())
1403 return;
1404
1405 if (i.types[0] & Imm1)
1406 i.imm_operands = 0; /* kludge for shift insns. */
1407 if (i.types[0] & ImplicitRegister)
1408 i.reg_operands--;
1409 if (i.types[1] & ImplicitRegister)
1410 i.reg_operands--;
1411 if (i.types[2] & ImplicitRegister)
1412 i.reg_operands--;
1413
1414 if (i.tm.opcode_modifier & ImmExt)
1415 {
1416 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1417 opcode suffix which is coded in the same place as an 8-bit
1418 immediate field would be. Here we fake an 8-bit immediate
1419 operand from the opcode suffix stored in tm.extension_opcode. */
1420
1421 expressionS *exp;
1422
1423 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
1424
1425 exp = &im_expressions[i.imm_operands++];
1426 i.op[i.operands].imms = exp;
1427 i.types[i.operands++] = Imm8;
1428 exp->X_op = O_constant;
1429 exp->X_add_number = i.tm.extension_opcode;
1430 i.tm.extension_opcode = None;
1431 }
1432
1433 /* For insns with operands there are more diddles to do to the opcode. */
1434 if (i.operands)
1435 {
1436 if (!process_operands ())
1437 return;
1438 }
1439 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1440 {
1441 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1442 as_warn (_("translating to `%sp'"), i.tm.name);
1443 }
1444
1445 /* Handle conversion of 'int $3' --> special int3 insn. */
1446 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1447 {
1448 i.tm.base_opcode = INT3_OPCODE;
1449 i.imm_operands = 0;
1450 }
1451
1452 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1453 && i.op[0].disps->X_op == O_constant)
1454 {
1455 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1456 the absolute address given by the constant. Since ix86 jumps and
1457 calls are pc relative, we need to generate a reloc. */
1458 i.op[0].disps->X_add_symbol = &abs_symbol;
1459 i.op[0].disps->X_op = O_symbol;
1460 }
1461
1462 if ((i.tm.opcode_modifier & Rex64) != 0)
1463 i.rex |= REX_MODE64;
1464
1465 /* For 8 bit registers we need an empty rex prefix. Also if the
1466 instruction already has a prefix, we need to convert old
1467 registers to new ones. */
1468
1469 if (((i.types[0] & Reg8) != 0
1470 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1471 || ((i.types[1] & Reg8) != 0
1472 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1473 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1474 && i.rex != 0))
1475 {
1476 int x;
1477
1478 i.rex |= REX_OPCODE;
1479 for (x = 0; x < 2; x++)
1480 {
1481 /* Look for 8 bit operand that uses old registers. */
1482 if ((i.types[x] & Reg8) != 0
1483 && (i.op[x].regs->reg_flags & RegRex64) == 0)
1484 {
1485 /* In case it is "hi" register, give up. */
1486 if (i.op[x].regs->reg_num > 3)
1487 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix.\n"),
1488 i.op[x].regs->reg_name);
1489
1490 /* Otherwise it is equivalent to the extended register.
1491 Since the encoding doesn't change this is merely
1492 cosmetic cleanup for debug output. */
1493
1494 i.op[x].regs = i.op[x].regs + 8;
1495 }
1496 }
1497 }
1498
1499 if (i.rex != 0)
1500 add_prefix (REX_OPCODE | i.rex);
1501
1502 /* We are ready to output the insn. */
1503 output_insn ();
1504 }
1505
1506 static char *
1507 parse_insn (line, mnemonic)
1508 char *line;
1509 char *mnemonic;
1510 {
1511 char *l = line;
1512 char *token_start = l;
1513 char *mnem_p;
1514
1515 /* Non-zero if we found a prefix only acceptable with string insns. */
1516 const char *expecting_string_instruction = NULL;
1517
1518 while (1)
1519 {
1520 mnem_p = mnemonic;
1521 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1522 {
1523 mnem_p++;
1524 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
1525 {
1526 as_bad (_("no such instruction: `%s'"), token_start);
1527 return NULL;
1528 }
1529 l++;
1530 }
1531 if (!is_space_char (*l)
1532 && *l != END_OF_INSN
1533 && *l != PREFIX_SEPARATOR
1534 && *l != ',')
1535 {
1536 as_bad (_("invalid character %s in mnemonic"),
1537 output_invalid (*l));
1538 return NULL;
1539 }
1540 if (token_start == l)
1541 {
1542 if (*l == PREFIX_SEPARATOR)
1543 as_bad (_("expecting prefix; got nothing"));
1544 else
1545 as_bad (_("expecting mnemonic; got nothing"));
1546 return NULL;
1547 }
1548
1549 /* Look up instruction (or prefix) via hash table. */
1550 current_templates = hash_find (op_hash, mnemonic);
1551
1552 if (*l != END_OF_INSN
1553 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1554 && current_templates
1555 && (current_templates->start->opcode_modifier & IsPrefix))
1556 {
1557 /* If we are in 16-bit mode, do not allow addr16 or data16.
1558 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1559 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1560 && flag_code != CODE_64BIT
1561 && (((current_templates->start->opcode_modifier & Size32) != 0)
1562 ^ (flag_code == CODE_16BIT)))
1563 {
1564 as_bad (_("redundant %s prefix"),
1565 current_templates->start->name);
1566 return NULL;
1567 }
1568 /* Add prefix, checking for repeated prefixes. */
1569 switch (add_prefix (current_templates->start->base_opcode))
1570 {
1571 case 0:
1572 return NULL;
1573 case 2:
1574 expecting_string_instruction = current_templates->start->name;
1575 break;
1576 }
1577 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1578 token_start = ++l;
1579 }
1580 else
1581 break;
1582 }
1583
1584 if (!current_templates)
1585 {
1586 /* See if we can get a match by trimming off a suffix. */
1587 switch (mnem_p[-1])
1588 {
1589 case WORD_MNEM_SUFFIX:
1590 case BYTE_MNEM_SUFFIX:
1591 case QWORD_MNEM_SUFFIX:
1592 i.suffix = mnem_p[-1];
1593 mnem_p[-1] = '\0';
1594 current_templates = hash_find (op_hash, mnemonic);
1595 break;
1596 case SHORT_MNEM_SUFFIX:
1597 case LONG_MNEM_SUFFIX:
1598 if (!intel_syntax)
1599 {
1600 i.suffix = mnem_p[-1];
1601 mnem_p[-1] = '\0';
1602 current_templates = hash_find (op_hash, mnemonic);
1603 }
1604 break;
1605
1606 /* Intel Syntax. */
1607 case 'd':
1608 if (intel_syntax)
1609 {
1610 if (intel_float_operand (mnemonic))
1611 i.suffix = SHORT_MNEM_SUFFIX;
1612 else
1613 i.suffix = LONG_MNEM_SUFFIX;
1614 mnem_p[-1] = '\0';
1615 current_templates = hash_find (op_hash, mnemonic);
1616 }
1617 break;
1618 }
1619 if (!current_templates)
1620 {
1621 as_bad (_("no such instruction: `%s'"), token_start);
1622 return NULL;
1623 }
1624 }
1625
1626 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1627 {
1628 /* Check for a branch hint. We allow ",pt" and ",pn" for
1629 predict taken and predict not taken respectively.
1630 I'm not sure that branch hints actually do anything on loop
1631 and jcxz insns (JumpByte) for current Pentium4 chips. They
1632 may work in the future and it doesn't hurt to accept them
1633 now. */
1634 if (l[0] == ',' && l[1] == 'p')
1635 {
1636 if (l[2] == 't')
1637 {
1638 if (!add_prefix (DS_PREFIX_OPCODE))
1639 return NULL;
1640 l += 3;
1641 }
1642 else if (l[2] == 'n')
1643 {
1644 if (!add_prefix (CS_PREFIX_OPCODE))
1645 return NULL;
1646 l += 3;
1647 }
1648 }
1649 }
1650 /* Any other comma loses. */
1651 if (*l == ',')
1652 {
1653 as_bad (_("invalid character %s in mnemonic"),
1654 output_invalid (*l));
1655 return NULL;
1656 }
1657
1658 /* Check if instruction is supported on specified architecture. */
1659 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1660 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
1661 {
1662 as_warn (_("`%s' is not supported on `%s'"),
1663 current_templates->start->name, cpu_arch_name);
1664 }
1665 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1666 {
1667 as_warn (_("use .code16 to ensure correct addressing mode"));
1668 }
1669
1670 /* Check for rep/repne without a string instruction. */
1671 if (expecting_string_instruction
1672 && !(current_templates->start->opcode_modifier & IsString))
1673 {
1674 as_bad (_("expecting string instruction after `%s'"),
1675 expecting_string_instruction);
1676 return NULL;
1677 }
1678
1679 return l;
1680 }
1681
1682 static char *
1683 parse_operands (l, mnemonic)
1684 char *l;
1685 const char *mnemonic;
1686 {
1687 char *token_start;
1688
1689 /* 1 if operand is pending after ','. */
1690 unsigned int expecting_operand = 0;
1691
1692 /* Non-zero if operand parens not balanced. */
1693 unsigned int paren_not_balanced;
1694
1695 while (*l != END_OF_INSN)
1696 {
1697 /* Skip optional white space before operand. */
1698 if (is_space_char (*l))
1699 ++l;
1700 if (!is_operand_char (*l) && *l != END_OF_INSN)
1701 {
1702 as_bad (_("invalid character %s before operand %d"),
1703 output_invalid (*l),
1704 i.operands + 1);
1705 return NULL;
1706 }
1707 token_start = l; /* after white space */
1708 paren_not_balanced = 0;
1709 while (paren_not_balanced || *l != ',')
1710 {
1711 if (*l == END_OF_INSN)
1712 {
1713 if (paren_not_balanced)
1714 {
1715 if (!intel_syntax)
1716 as_bad (_("unbalanced parenthesis in operand %d."),
1717 i.operands + 1);
1718 else
1719 as_bad (_("unbalanced brackets in operand %d."),
1720 i.operands + 1);
1721 return NULL;
1722 }
1723 else
1724 break; /* we are done */
1725 }
1726 else if (!is_operand_char (*l) && !is_space_char (*l))
1727 {
1728 as_bad (_("invalid character %s in operand %d"),
1729 output_invalid (*l),
1730 i.operands + 1);
1731 return NULL;
1732 }
1733 if (!intel_syntax)
1734 {
1735 if (*l == '(')
1736 ++paren_not_balanced;
1737 if (*l == ')')
1738 --paren_not_balanced;
1739 }
1740 else
1741 {
1742 if (*l == '[')
1743 ++paren_not_balanced;
1744 if (*l == ']')
1745 --paren_not_balanced;
1746 }
1747 l++;
1748 }
1749 if (l != token_start)
1750 { /* Yes, we've read in another operand. */
1751 unsigned int operand_ok;
1752 this_operand = i.operands++;
1753 if (i.operands > MAX_OPERANDS)
1754 {
1755 as_bad (_("spurious operands; (%d operands/instruction max)"),
1756 MAX_OPERANDS);
1757 return NULL;
1758 }
1759 /* Now parse operand adding info to 'i' as we go along. */
1760 END_STRING_AND_SAVE (l);
1761
1762 if (intel_syntax)
1763 operand_ok =
1764 i386_intel_operand (token_start,
1765 intel_float_operand (mnemonic));
1766 else
1767 operand_ok = i386_operand (token_start);
1768
1769 RESTORE_END_STRING (l);
1770 if (!operand_ok)
1771 return NULL;
1772 }
1773 else
1774 {
1775 if (expecting_operand)
1776 {
1777 expecting_operand_after_comma:
1778 as_bad (_("expecting operand after ','; got nothing"));
1779 return NULL;
1780 }
1781 if (*l == ',')
1782 {
1783 as_bad (_("expecting operand before ','; got nothing"));
1784 return NULL;
1785 }
1786 }
1787
1788 /* Now *l must be either ',' or END_OF_INSN. */
1789 if (*l == ',')
1790 {
1791 if (*++l == END_OF_INSN)
1792 {
1793 /* Just skip it, if it's \n complain. */
1794 goto expecting_operand_after_comma;
1795 }
1796 expecting_operand = 1;
1797 }
1798 }
1799 return l;
1800 }
1801
1802 static void
1803 swap_operands ()
1804 {
1805 union i386_op temp_op;
1806 unsigned int temp_type;
1807 RELOC_ENUM temp_reloc;
1808 int xchg1 = 0;
1809 int xchg2 = 0;
1810
1811 if (i.operands == 2)
1812 {
1813 xchg1 = 0;
1814 xchg2 = 1;
1815 }
1816 else if (i.operands == 3)
1817 {
1818 xchg1 = 0;
1819 xchg2 = 2;
1820 }
1821 temp_type = i.types[xchg2];
1822 i.types[xchg2] = i.types[xchg1];
1823 i.types[xchg1] = temp_type;
1824 temp_op = i.op[xchg2];
1825 i.op[xchg2] = i.op[xchg1];
1826 i.op[xchg1] = temp_op;
1827 temp_reloc = i.reloc[xchg2];
1828 i.reloc[xchg2] = i.reloc[xchg1];
1829 i.reloc[xchg1] = temp_reloc;
1830
1831 if (i.mem_operands == 2)
1832 {
1833 const seg_entry *temp_seg;
1834 temp_seg = i.seg[0];
1835 i.seg[0] = i.seg[1];
1836 i.seg[1] = temp_seg;
1837 }
1838 }
1839
1840 /* Try to ensure constant immediates are represented in the smallest
1841 opcode possible. */
1842 static void
1843 optimize_imm ()
1844 {
1845 char guess_suffix = 0;
1846 int op;
1847
1848 if (i.suffix)
1849 guess_suffix = i.suffix;
1850 else if (i.reg_operands)
1851 {
1852 /* Figure out a suffix from the last register operand specified.
1853 We can't do this properly yet, ie. excluding InOutPortReg,
1854 but the following works for instructions with immediates.
1855 In any case, we can't set i.suffix yet. */
1856 for (op = i.operands; --op >= 0;)
1857 if (i.types[op] & Reg)
1858 {
1859 if (i.types[op] & Reg8)
1860 guess_suffix = BYTE_MNEM_SUFFIX;
1861 else if (i.types[op] & Reg16)
1862 guess_suffix = WORD_MNEM_SUFFIX;
1863 else if (i.types[op] & Reg32)
1864 guess_suffix = LONG_MNEM_SUFFIX;
1865 else if (i.types[op] & Reg64)
1866 guess_suffix = QWORD_MNEM_SUFFIX;
1867 break;
1868 }
1869 }
1870 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1871 guess_suffix = WORD_MNEM_SUFFIX;
1872
1873 for (op = i.operands; --op >= 0;)
1874 if (i.types[op] & Imm)
1875 {
1876 switch (i.op[op].imms->X_op)
1877 {
1878 case O_constant:
1879 /* If a suffix is given, this operand may be shortened. */
1880 switch (guess_suffix)
1881 {
1882 case LONG_MNEM_SUFFIX:
1883 i.types[op] |= Imm32 | Imm64;
1884 break;
1885 case WORD_MNEM_SUFFIX:
1886 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1887 break;
1888 case BYTE_MNEM_SUFFIX:
1889 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1890 break;
1891 }
1892
1893 /* If this operand is at most 16 bits, convert it
1894 to a signed 16 bit number before trying to see
1895 whether it will fit in an even smaller size.
1896 This allows a 16-bit operand such as $0xffe0 to
1897 be recognised as within Imm8S range. */
1898 if ((i.types[op] & Imm16)
1899 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
1900 {
1901 i.op[op].imms->X_add_number =
1902 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1903 }
1904 if ((i.types[op] & Imm32)
1905 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
1906 == 0))
1907 {
1908 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
1909 ^ ((offsetT) 1 << 31))
1910 - ((offsetT) 1 << 31));
1911 }
1912 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
1913
1914 /* We must avoid matching of Imm32 templates when 64bit
1915 only immediate is available. */
1916 if (guess_suffix == QWORD_MNEM_SUFFIX)
1917 i.types[op] &= ~Imm32;
1918 break;
1919
1920 case O_absent:
1921 case O_register:
1922 abort ();
1923
1924 /* Symbols and expressions. */
1925 default:
1926 /* Convert symbolic operand to proper sizes for matching. */
1927 switch (guess_suffix)
1928 {
1929 case QWORD_MNEM_SUFFIX:
1930 i.types[op] = Imm64 | Imm32S;
1931 break;
1932 case LONG_MNEM_SUFFIX:
1933 i.types[op] = Imm32 | Imm64;
1934 break;
1935 case WORD_MNEM_SUFFIX:
1936 i.types[op] = Imm16 | Imm32 | Imm64;
1937 break;
1938 break;
1939 case BYTE_MNEM_SUFFIX:
1940 i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
1941 break;
1942 break;
1943 }
1944 break;
1945 }
1946 }
1947 }
1948
1949 /* Try to use the smallest displacement type too. */
1950 static void
1951 optimize_disp ()
1952 {
1953 int op;
1954
1955 for (op = i.operands; --op >= 0;)
1956 if ((i.types[op] & Disp) && i.op[op].disps->X_op == O_constant)
1957 {
1958 offsetT disp = i.op[op].disps->X_add_number;
1959
1960 if (i.types[op] & Disp16)
1961 {
1962 /* We know this operand is at most 16 bits, so
1963 convert to a signed 16 bit number before trying
1964 to see whether it will fit in an even smaller
1965 size. */
1966
1967 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
1968 }
1969 else if (i.types[op] & Disp32)
1970 {
1971 /* We know this operand is at most 32 bits, so convert to a
1972 signed 32 bit number before trying to see whether it will
1973 fit in an even smaller size. */
1974 disp &= (((offsetT) 2 << 31) - 1);
1975 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1976 }
1977 if (flag_code == CODE_64BIT)
1978 {
1979 if (fits_in_signed_long (disp))
1980 i.types[op] |= Disp32S;
1981 if (fits_in_unsigned_long (disp))
1982 i.types[op] |= Disp32;
1983 }
1984 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
1985 && fits_in_signed_byte (disp))
1986 i.types[op] |= Disp8;
1987 }
1988 }
1989
1990 static int
1991 match_template ()
1992 {
1993 /* Points to template once we've found it. */
1994 const template *t;
1995 unsigned int overlap0, overlap1, overlap2;
1996 unsigned int found_reverse_match;
1997 int suffix_check;
1998
1999 #define MATCH(overlap, given, template) \
2000 ((overlap & ~JumpAbsolute) \
2001 && (((given) & (BaseIndex | JumpAbsolute)) \
2002 == ((overlap) & (BaseIndex | JumpAbsolute))))
2003
2004 /* If given types r0 and r1 are registers they must be of the same type
2005 unless the expected operand type register overlap is null.
2006 Note that Acc in a template matches every size of reg. */
2007 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2008 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2009 || ((g0) & Reg) == ((g1) & Reg) \
2010 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2011
2012 overlap0 = 0;
2013 overlap1 = 0;
2014 overlap2 = 0;
2015 found_reverse_match = 0;
2016 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2017 ? No_bSuf
2018 : (i.suffix == WORD_MNEM_SUFFIX
2019 ? No_wSuf
2020 : (i.suffix == SHORT_MNEM_SUFFIX
2021 ? No_sSuf
2022 : (i.suffix == LONG_MNEM_SUFFIX
2023 ? No_lSuf
2024 : (i.suffix == QWORD_MNEM_SUFFIX
2025 ? No_qSuf
2026 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2027 ? No_xSuf : 0))))));
2028
2029 for (t = current_templates->start;
2030 t < current_templates->end;
2031 t++)
2032 {
2033 /* Must have right number of operands. */
2034 if (i.operands != t->operands)
2035 continue;
2036
2037 /* Check the suffix, except for some instructions in intel mode. */
2038 if ((t->opcode_modifier & suffix_check)
2039 && !(intel_syntax
2040 && (t->opcode_modifier & IgnoreSize))
2041 && !(intel_syntax
2042 && t->base_opcode == 0xd9
2043 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
2044 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
2045 continue;
2046
2047 /* Do not verify operands when there are none. */
2048 else if (!t->operands)
2049 {
2050 if (t->cpu_flags & ~cpu_arch_flags)
2051 continue;
2052 /* We've found a match; break out of loop. */
2053 break;
2054 }
2055
2056 overlap0 = i.types[0] & t->operand_types[0];
2057 switch (t->operands)
2058 {
2059 case 1:
2060 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
2061 continue;
2062 break;
2063 case 2:
2064 case 3:
2065 overlap1 = i.types[1] & t->operand_types[1];
2066 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
2067 || !MATCH (overlap1, i.types[1], t->operand_types[1])
2068 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2069 t->operand_types[0],
2070 overlap1, i.types[1],
2071 t->operand_types[1]))
2072 {
2073 /* Check if other direction is valid ... */
2074 if ((t->opcode_modifier & (D | FloatD)) == 0)
2075 continue;
2076
2077 /* Try reversing direction of operands. */
2078 overlap0 = i.types[0] & t->operand_types[1];
2079 overlap1 = i.types[1] & t->operand_types[0];
2080 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
2081 || !MATCH (overlap1, i.types[1], t->operand_types[0])
2082 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2083 t->operand_types[1],
2084 overlap1, i.types[1],
2085 t->operand_types[0]))
2086 {
2087 /* Does not match either direction. */
2088 continue;
2089 }
2090 /* found_reverse_match holds which of D or FloatDR
2091 we've found. */
2092 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2093 }
2094 /* Found a forward 2 operand match here. */
2095 else if (t->operands == 3)
2096 {
2097 /* Here we make use of the fact that there are no
2098 reverse match 3 operand instructions, and all 3
2099 operand instructions only need to be checked for
2100 register consistency between operands 2 and 3. */
2101 overlap2 = i.types[2] & t->operand_types[2];
2102 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
2103 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
2104 t->operand_types[1],
2105 overlap2, i.types[2],
2106 t->operand_types[2]))
2107
2108 continue;
2109 }
2110 /* Found either forward/reverse 2 or 3 operand match here:
2111 slip through to break. */
2112 }
2113 if (t->cpu_flags & ~cpu_arch_flags)
2114 {
2115 found_reverse_match = 0;
2116 continue;
2117 }
2118 /* We've found a match; break out of loop. */
2119 break;
2120 }
2121
2122 if (t == current_templates->end)
2123 {
2124 /* We found no match. */
2125 as_bad (_("suffix or operands invalid for `%s'"),
2126 current_templates->start->name);
2127 return 0;
2128 }
2129
2130 if (!quiet_warnings)
2131 {
2132 if (!intel_syntax
2133 && ((i.types[0] & JumpAbsolute)
2134 != (t->operand_types[0] & JumpAbsolute)))
2135 {
2136 as_warn (_("indirect %s without `*'"), t->name);
2137 }
2138
2139 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2140 == (IsPrefix | IgnoreSize))
2141 {
2142 /* Warn them that a data or address size prefix doesn't
2143 affect assembly of the next line of code. */
2144 as_warn (_("stand-alone `%s' prefix"), t->name);
2145 }
2146 }
2147
2148 /* Copy the template we found. */
2149 i.tm = *t;
2150 if (found_reverse_match)
2151 {
2152 /* If we found a reverse match we must alter the opcode
2153 direction bit. found_reverse_match holds bits to change
2154 (different for int & float insns). */
2155
2156 i.tm.base_opcode ^= found_reverse_match;
2157
2158 i.tm.operand_types[0] = t->operand_types[1];
2159 i.tm.operand_types[1] = t->operand_types[0];
2160 }
2161
2162 return 1;
2163 }
2164
2165 static int
2166 check_string ()
2167 {
2168 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2169 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2170 {
2171 if (i.seg[0] != NULL && i.seg[0] != &es)
2172 {
2173 as_bad (_("`%s' operand %d must use `%%es' segment"),
2174 i.tm.name,
2175 mem_op + 1);
2176 return 0;
2177 }
2178 /* There's only ever one segment override allowed per instruction.
2179 This instruction possibly has a legal segment override on the
2180 second operand, so copy the segment to where non-string
2181 instructions store it, allowing common code. */
2182 i.seg[0] = i.seg[1];
2183 }
2184 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2185 {
2186 if (i.seg[1] != NULL && i.seg[1] != &es)
2187 {
2188 as_bad (_("`%s' operand %d must use `%%es' segment"),
2189 i.tm.name,
2190 mem_op + 2);
2191 return 0;
2192 }
2193 }
2194 return 1;
2195 }
2196
2197 static int
2198 process_suffix ()
2199 {
2200 /* If matched instruction specifies an explicit instruction mnemonic
2201 suffix, use it. */
2202 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2203 {
2204 if (i.tm.opcode_modifier & Size16)
2205 i.suffix = WORD_MNEM_SUFFIX;
2206 else if (i.tm.opcode_modifier & Size64)
2207 i.suffix = QWORD_MNEM_SUFFIX;
2208 else
2209 i.suffix = LONG_MNEM_SUFFIX;
2210 }
2211 else if (i.reg_operands)
2212 {
2213 /* If there's no instruction mnemonic suffix we try to invent one
2214 based on register operands. */
2215 if (!i.suffix)
2216 {
2217 /* We take i.suffix from the last register operand specified,
2218 Destination register type is more significant than source
2219 register type. */
2220 int op;
2221 for (op = i.operands; --op >= 0;)
2222 if ((i.types[op] & Reg)
2223 && !(i.tm.operand_types[op] & InOutPortReg))
2224 {
2225 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2226 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2227 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2228 LONG_MNEM_SUFFIX);
2229 break;
2230 }
2231 }
2232 else if (i.suffix == BYTE_MNEM_SUFFIX)
2233 {
2234 if (!check_byte_reg ())
2235 return 0;
2236 }
2237 else if (i.suffix == LONG_MNEM_SUFFIX)
2238 {
2239 if (!check_long_reg ())
2240 return 0;
2241 }
2242 else if (i.suffix == QWORD_MNEM_SUFFIX)
2243 {
2244 if (!check_qword_reg ())
2245 return 0;
2246 }
2247 else if (i.suffix == WORD_MNEM_SUFFIX)
2248 {
2249 if (!check_word_reg ())
2250 return 0;
2251 }
2252 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2253 /* Do nothing if the instruction is going to ignore the prefix. */
2254 ;
2255 else
2256 abort ();
2257 }
2258 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
2259 {
2260 i.suffix = stackop_size;
2261 }
2262
2263 /* Change the opcode based on the operand size given by i.suffix;
2264 We need not change things for byte insns. */
2265
2266 if (!i.suffix && (i.tm.opcode_modifier & W))
2267 {
2268 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2269 return 0;
2270 }
2271
2272 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2273 {
2274 /* It's not a byte, select word/dword operation. */
2275 if (i.tm.opcode_modifier & W)
2276 {
2277 if (i.tm.opcode_modifier & ShortForm)
2278 i.tm.base_opcode |= 8;
2279 else
2280 i.tm.base_opcode |= 1;
2281 }
2282
2283 /* Now select between word & dword operations via the operand
2284 size prefix, except for instructions that will ignore this
2285 prefix anyway. */
2286 if (i.suffix != QWORD_MNEM_SUFFIX
2287 && !(i.tm.opcode_modifier & IgnoreSize)
2288 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2289 || (flag_code == CODE_64BIT
2290 && (i.tm.opcode_modifier & JumpByte))))
2291 {
2292 unsigned int prefix = DATA_PREFIX_OPCODE;
2293 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2294 prefix = ADDR_PREFIX_OPCODE;
2295
2296 if (!add_prefix (prefix))
2297 return 0;
2298 }
2299
2300 /* Set mode64 for an operand. */
2301 if (i.suffix == QWORD_MNEM_SUFFIX
2302 && flag_code == CODE_64BIT
2303 && (i.tm.opcode_modifier & NoRex64) == 0)
2304 i.rex |= REX_MODE64;
2305
2306 /* Size floating point instruction. */
2307 if (i.suffix == LONG_MNEM_SUFFIX)
2308 {
2309 if (i.tm.opcode_modifier & FloatMF)
2310 i.tm.base_opcode ^= 4;
2311 }
2312 }
2313
2314 return 1;
2315 }
2316
2317 static int
2318 check_byte_reg ()
2319 {
2320 int op;
2321 for (op = i.operands; --op >= 0;)
2322 {
2323 /* If this is an eight bit register, it's OK. If it's the 16 or
2324 32 bit version of an eight bit register, we will just use the
2325 low portion, and that's OK too. */
2326 if (i.types[op] & Reg8)
2327 continue;
2328
2329 /* movzx and movsx should not generate this warning. */
2330 if (intel_syntax
2331 && (i.tm.base_opcode == 0xfb7
2332 || i.tm.base_opcode == 0xfb6
2333 || i.tm.base_opcode == 0x63
2334 || i.tm.base_opcode == 0xfbe
2335 || i.tm.base_opcode == 0xfbf))
2336 continue;
2337
2338 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
2339 #if 0
2340 /* Check that the template allows eight bit regs. This
2341 kills insns such as `orb $1,%edx', which maybe should be
2342 allowed. */
2343 && (i.tm.operand_types[op] & (Reg8 | InOutPortReg))
2344 #endif
2345 )
2346 {
2347 /* Prohibit these changes in the 64bit mode, since the
2348 lowering is more complicated. */
2349 if (flag_code == CODE_64BIT
2350 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2351 {
2352 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2353 i.op[op].regs->reg_name,
2354 i.suffix);
2355 return 0;
2356 }
2357 #if REGISTER_WARNINGS
2358 if (!quiet_warnings
2359 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2360 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2361 (i.op[op].regs + (i.types[op] & Reg16
2362 ? REGNAM_AL - REGNAM_AX
2363 : REGNAM_AL - REGNAM_EAX))->reg_name,
2364 i.op[op].regs->reg_name,
2365 i.suffix);
2366 #endif
2367 continue;
2368 }
2369 /* Any other register is bad. */
2370 if (i.types[op] & (Reg | RegMMX | RegXMM
2371 | SReg2 | SReg3
2372 | Control | Debug | Test
2373 | FloatReg | FloatAcc))
2374 {
2375 as_bad (_("`%%%s' not allowed with `%s%c'"),
2376 i.op[op].regs->reg_name,
2377 i.tm.name,
2378 i.suffix);
2379 return 0;
2380 }
2381 }
2382 return 1;
2383 }
2384
2385 static int
2386 check_long_reg ()
2387 {
2388 int op;
2389
2390 for (op = i.operands; --op >= 0;)
2391 /* Reject eight bit registers, except where the template requires
2392 them. (eg. movzb) */
2393 if ((i.types[op] & Reg8) != 0
2394 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2395 {
2396 as_bad (_("`%%%s' not allowed with `%s%c'"),
2397 i.op[op].regs->reg_name,
2398 i.tm.name,
2399 i.suffix);
2400 return 0;
2401 }
2402 /* Warn if the e prefix on a general reg is missing. */
2403 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2404 && (i.types[op] & Reg16) != 0
2405 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2406 {
2407 /* Prohibit these changes in the 64bit mode, since the
2408 lowering is more complicated. */
2409 if (flag_code == CODE_64BIT)
2410 {
2411 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2412 i.op[op].regs->reg_name,
2413 i.suffix);
2414 return 0;
2415 }
2416 #if REGISTER_WARNINGS
2417 else
2418 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2419 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2420 i.op[op].regs->reg_name,
2421 i.suffix);
2422 #endif
2423 }
2424 /* Warn if the r prefix on a general reg is missing. */
2425 else if ((i.types[op] & Reg64) != 0
2426 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2427 {
2428 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2429 i.op[op].regs->reg_name,
2430 i.suffix);
2431 return 0;
2432 }
2433 return 1;
2434 }
2435
2436 static int
2437 check_qword_reg ()
2438 {
2439 int op;
2440
2441 for (op = i.operands; --op >= 0; )
2442 /* Reject eight bit registers, except where the template requires
2443 them. (eg. movzb) */
2444 if ((i.types[op] & Reg8) != 0
2445 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2446 {
2447 as_bad (_("`%%%s' not allowed with `%s%c'"),
2448 i.op[op].regs->reg_name,
2449 i.tm.name,
2450 i.suffix);
2451 return 0;
2452 }
2453 /* Warn if the e prefix on a general reg is missing. */
2454 else if (((i.types[op] & Reg16) != 0
2455 || (i.types[op] & Reg32) != 0)
2456 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2457 {
2458 /* Prohibit these changes in the 64bit mode, since the
2459 lowering is more complicated. */
2460 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2461 i.op[op].regs->reg_name,
2462 i.suffix);
2463 return 0;
2464 }
2465 return 1;
2466 }
2467
2468 static int
2469 check_word_reg ()
2470 {
2471 int op;
2472 for (op = i.operands; --op >= 0;)
2473 /* Reject eight bit registers, except where the template requires
2474 them. (eg. movzb) */
2475 if ((i.types[op] & Reg8) != 0
2476 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2477 {
2478 as_bad (_("`%%%s' not allowed with `%s%c'"),
2479 i.op[op].regs->reg_name,
2480 i.tm.name,
2481 i.suffix);
2482 return 0;
2483 }
2484 /* Warn if the e prefix on a general reg is present. */
2485 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2486 && (i.types[op] & Reg32) != 0
2487 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
2488 {
2489 /* Prohibit these changes in the 64bit mode, since the
2490 lowering is more complicated. */
2491 if (flag_code == CODE_64BIT)
2492 {
2493 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2494 i.op[op].regs->reg_name,
2495 i.suffix);
2496 return 0;
2497 }
2498 else
2499 #if REGISTER_WARNINGS
2500 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2501 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2502 i.op[op].regs->reg_name,
2503 i.suffix);
2504 #endif
2505 }
2506 return 1;
2507 }
2508
2509 static int
2510 finalize_imm ()
2511 {
2512 unsigned int overlap0, overlap1, overlap2;
2513
2514 overlap0 = i.types[0] & i.tm.operand_types[0];
2515 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
2516 && overlap0 != Imm8 && overlap0 != Imm8S
2517 && overlap0 != Imm16 && overlap0 != Imm32S
2518 && overlap0 != Imm32 && overlap0 != Imm64)
2519 {
2520 if (i.suffix)
2521 {
2522 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
2523 ? Imm8 | Imm8S
2524 : (i.suffix == WORD_MNEM_SUFFIX
2525 ? Imm16
2526 : (i.suffix == QWORD_MNEM_SUFFIX
2527 ? Imm64 | Imm32S
2528 : Imm32)));
2529 }
2530 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2531 || overlap0 == (Imm16 | Imm32)
2532 || overlap0 == (Imm16 | Imm32S))
2533 {
2534 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2535 ? Imm16 : Imm32S);
2536 }
2537 if (overlap0 != Imm8 && overlap0 != Imm8S
2538 && overlap0 != Imm16 && overlap0 != Imm32S
2539 && overlap0 != Imm32 && overlap0 != Imm64)
2540 {
2541 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2542 return 0;
2543 }
2544 }
2545 i.types[0] = overlap0;
2546
2547 overlap1 = i.types[1] & i.tm.operand_types[1];
2548 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
2549 && overlap1 != Imm8 && overlap1 != Imm8S
2550 && overlap1 != Imm16 && overlap1 != Imm32S
2551 && overlap1 != Imm32 && overlap1 != Imm64)
2552 {
2553 if (i.suffix)
2554 {
2555 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
2556 ? Imm8 | Imm8S
2557 : (i.suffix == WORD_MNEM_SUFFIX
2558 ? Imm16
2559 : (i.suffix == QWORD_MNEM_SUFFIX
2560 ? Imm64 | Imm32S
2561 : Imm32)));
2562 }
2563 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2564 || overlap1 == (Imm16 | Imm32)
2565 || overlap1 == (Imm16 | Imm32S))
2566 {
2567 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2568 ? Imm16 : Imm32S);
2569 }
2570 if (overlap1 != Imm8 && overlap1 != Imm8S
2571 && overlap1 != Imm16 && overlap1 != Imm32S
2572 && overlap1 != Imm32 && overlap1 != Imm64)
2573 {
2574 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2575 return 0;
2576 }
2577 }
2578 i.types[1] = overlap1;
2579
2580 overlap2 = i.types[2] & i.tm.operand_types[2];
2581 assert ((overlap2 & Imm) == 0);
2582 i.types[2] = overlap2;
2583
2584 return 1;
2585 }
2586
2587 static int
2588 process_operands ()
2589 {
2590 /* Default segment register this instruction will use for memory
2591 accesses. 0 means unknown. This is only for optimizing out
2592 unnecessary segment overrides. */
2593 const seg_entry *default_seg = 0;
2594
2595 /* The imul $imm, %reg instruction is converted into
2596 imul $imm, %reg, %reg, and the clr %reg instruction
2597 is converted into xor %reg, %reg. */
2598 if (i.tm.opcode_modifier & regKludge)
2599 {
2600 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2601 /* Pretend we saw the extra register operand. */
2602 assert (i.op[first_reg_op + 1].regs == 0);
2603 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2604 i.types[first_reg_op + 1] = i.types[first_reg_op];
2605 i.reg_operands = 2;
2606 }
2607
2608 if (i.tm.opcode_modifier & ShortForm)
2609 {
2610 /* The register or float register operand is in operand 0 or 1. */
2611 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2612 /* Register goes in low 3 bits of opcode. */
2613 i.tm.base_opcode |= i.op[op].regs->reg_num;
2614 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2615 i.rex |= REX_EXTZ;
2616 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2617 {
2618 /* Warn about some common errors, but press on regardless.
2619 The first case can be generated by gcc (<= 2.8.1). */
2620 if (i.operands == 2)
2621 {
2622 /* Reversed arguments on faddp, fsubp, etc. */
2623 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2624 i.op[1].regs->reg_name,
2625 i.op[0].regs->reg_name);
2626 }
2627 else
2628 {
2629 /* Extraneous `l' suffix on fp insn. */
2630 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2631 i.op[0].regs->reg_name);
2632 }
2633 }
2634 }
2635 else if (i.tm.opcode_modifier & Modrm)
2636 {
2637 /* The opcode is completed (modulo i.tm.extension_opcode which
2638 must be put into the modrm byte). Now, we make the modrm and
2639 index base bytes based on all the info we've collected. */
2640
2641 default_seg = build_modrm_byte ();
2642 }
2643 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2644 {
2645 if (i.tm.base_opcode == POP_SEG_SHORT
2646 && i.op[0].regs->reg_num == 1)
2647 {
2648 as_bad (_("you can't `pop %%cs'"));
2649 return 0;
2650 }
2651 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2652 if ((i.op[0].regs->reg_flags & RegRex) != 0)
2653 i.rex |= REX_EXTZ;
2654 }
2655 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
2656 {
2657 default_seg = &ds;
2658 }
2659 else if ((i.tm.opcode_modifier & IsString) != 0)
2660 {
2661 /* For the string instructions that allow a segment override
2662 on one of their operands, the default segment is ds. */
2663 default_seg = &ds;
2664 }
2665
2666 if (i.tm.base_opcode == 0x8d /* lea */ && i.seg[0] && !quiet_warnings)
2667 as_warn (_("segment override on `lea' is ineffectual"));
2668
2669 /* If a segment was explicitly specified, and the specified segment
2670 is not the default, use an opcode prefix to select it. If we
2671 never figured out what the default segment is, then default_seg
2672 will be zero at this point, and the specified segment prefix will
2673 always be used. */
2674 if ((i.seg[0]) && (i.seg[0] != default_seg))
2675 {
2676 if (!add_prefix (i.seg[0]->seg_prefix))
2677 return 0;
2678 }
2679 return 1;
2680 }
2681
2682 static const seg_entry *
2683 build_modrm_byte ()
2684 {
2685 const seg_entry *default_seg = 0;
2686
2687 /* i.reg_operands MUST be the number of real register operands;
2688 implicit registers do not count. */
2689 if (i.reg_operands == 2)
2690 {
2691 unsigned int source, dest;
2692 source = ((i.types[0]
2693 & (Reg | RegMMX | RegXMM
2694 | SReg2 | SReg3
2695 | Control | Debug | Test))
2696 ? 0 : 1);
2697 dest = source + 1;
2698
2699 i.rm.mode = 3;
2700 /* One of the register operands will be encoded in the i.tm.reg
2701 field, the other in the combined i.tm.mode and i.tm.regmem
2702 fields. If no form of this instruction supports a memory
2703 destination operand, then we assume the source operand may
2704 sometimes be a memory operand and so we need to store the
2705 destination in the i.rm.reg field. */
2706 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2707 {
2708 i.rm.reg = i.op[dest].regs->reg_num;
2709 i.rm.regmem = i.op[source].regs->reg_num;
2710 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2711 i.rex |= REX_EXTX;
2712 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2713 i.rex |= REX_EXTZ;
2714 }
2715 else
2716 {
2717 i.rm.reg = i.op[source].regs->reg_num;
2718 i.rm.regmem = i.op[dest].regs->reg_num;
2719 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2720 i.rex |= REX_EXTZ;
2721 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2722 i.rex |= REX_EXTX;
2723 }
2724 }
2725 else
2726 { /* If it's not 2 reg operands... */
2727 if (i.mem_operands)
2728 {
2729 unsigned int fake_zero_displacement = 0;
2730 unsigned int op = ((i.types[0] & AnyMem)
2731 ? 0
2732 : (i.types[1] & AnyMem) ? 1 : 2);
2733
2734 default_seg = &ds;
2735
2736 if (i.base_reg == 0)
2737 {
2738 i.rm.mode = 0;
2739 if (!i.disp_operands)
2740 fake_zero_displacement = 1;
2741 if (i.index_reg == 0)
2742 {
2743 /* Operand is just <disp> */
2744 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0)
2745 && (flag_code != CODE_64BIT))
2746 {
2747 i.rm.regmem = NO_BASE_REGISTER_16;
2748 i.types[op] &= ~Disp;
2749 i.types[op] |= Disp16;
2750 }
2751 else if (flag_code != CODE_64BIT
2752 || (i.prefix[ADDR_PREFIX] != 0))
2753 {
2754 i.rm.regmem = NO_BASE_REGISTER;
2755 i.types[op] &= ~Disp;
2756 i.types[op] |= Disp32;
2757 }
2758 else
2759 {
2760 /* 64bit mode overwrites the 32bit absolute
2761 addressing by RIP relative addressing and
2762 absolute addressing is encoded by one of the
2763 redundant SIB forms. */
2764 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2765 i.sib.base = NO_BASE_REGISTER;
2766 i.sib.index = NO_INDEX_REGISTER;
2767 i.types[op] &= ~Disp;
2768 i.types[op] |= Disp32S;
2769 }
2770 }
2771 else /* !i.base_reg && i.index_reg */
2772 {
2773 i.sib.index = i.index_reg->reg_num;
2774 i.sib.base = NO_BASE_REGISTER;
2775 i.sib.scale = i.log2_scale_factor;
2776 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2777 i.types[op] &= ~Disp;
2778 if (flag_code != CODE_64BIT)
2779 i.types[op] |= Disp32; /* Must be 32 bit */
2780 else
2781 i.types[op] |= Disp32S;
2782 if ((i.index_reg->reg_flags & RegRex) != 0)
2783 i.rex |= REX_EXTY;
2784 }
2785 }
2786 /* RIP addressing for 64bit mode. */
2787 else if (i.base_reg->reg_type == BaseIndex)
2788 {
2789 i.rm.regmem = NO_BASE_REGISTER;
2790 i.types[op] &= ~Disp;
2791 i.types[op] |= Disp32S;
2792 i.flags[op] = Operand_PCrel;
2793 }
2794 else if (i.base_reg->reg_type & Reg16)
2795 {
2796 switch (i.base_reg->reg_num)
2797 {
2798 case 3: /* (%bx) */
2799 if (i.index_reg == 0)
2800 i.rm.regmem = 7;
2801 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2802 i.rm.regmem = i.index_reg->reg_num - 6;
2803 break;
2804 case 5: /* (%bp) */
2805 default_seg = &ss;
2806 if (i.index_reg == 0)
2807 {
2808 i.rm.regmem = 6;
2809 if ((i.types[op] & Disp) == 0)
2810 {
2811 /* fake (%bp) into 0(%bp) */
2812 i.types[op] |= Disp8;
2813 fake_zero_displacement = 1;
2814 }
2815 }
2816 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2817 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2818 break;
2819 default: /* (%si) -> 4 or (%di) -> 5 */
2820 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2821 }
2822 i.rm.mode = mode_from_disp_size (i.types[op]);
2823 }
2824 else /* i.base_reg and 32/64 bit mode */
2825 {
2826 if (flag_code == CODE_64BIT
2827 && (i.types[op] & Disp))
2828 {
2829 if (i.types[op] & Disp8)
2830 i.types[op] = Disp8 | Disp32S;
2831 else
2832 i.types[op] = Disp32S;
2833 }
2834 i.rm.regmem = i.base_reg->reg_num;
2835 if ((i.base_reg->reg_flags & RegRex) != 0)
2836 i.rex |= REX_EXTZ;
2837 i.sib.base = i.base_reg->reg_num;
2838 /* x86-64 ignores REX prefix bit here to avoid decoder
2839 complications. */
2840 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2841 {
2842 default_seg = &ss;
2843 if (i.disp_operands == 0)
2844 {
2845 fake_zero_displacement = 1;
2846 i.types[op] |= Disp8;
2847 }
2848 }
2849 else if (i.base_reg->reg_num == ESP_REG_NUM)
2850 {
2851 default_seg = &ss;
2852 }
2853 i.sib.scale = i.log2_scale_factor;
2854 if (i.index_reg == 0)
2855 {
2856 /* <disp>(%esp) becomes two byte modrm with no index
2857 register. We've already stored the code for esp
2858 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
2859 Any base register besides %esp will not use the
2860 extra modrm byte. */
2861 i.sib.index = NO_INDEX_REGISTER;
2862 #if !SCALE1_WHEN_NO_INDEX
2863 /* Another case where we force the second modrm byte. */
2864 if (i.log2_scale_factor)
2865 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2866 #endif
2867 }
2868 else
2869 {
2870 i.sib.index = i.index_reg->reg_num;
2871 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2872 if ((i.index_reg->reg_flags & RegRex) != 0)
2873 i.rex |= REX_EXTY;
2874 }
2875 i.rm.mode = mode_from_disp_size (i.types[op]);
2876 }
2877
2878 if (fake_zero_displacement)
2879 {
2880 /* Fakes a zero displacement assuming that i.types[op]
2881 holds the correct displacement size. */
2882 expressionS *exp;
2883
2884 assert (i.op[op].disps == 0);
2885 exp = &disp_expressions[i.disp_operands++];
2886 i.op[op].disps = exp;
2887 exp->X_op = O_constant;
2888 exp->X_add_number = 0;
2889 exp->X_add_symbol = (symbolS *) 0;
2890 exp->X_op_symbol = (symbolS *) 0;
2891 }
2892 }
2893
2894 /* Fill in i.rm.reg or i.rm.regmem field with register operand
2895 (if any) based on i.tm.extension_opcode. Again, we must be
2896 careful to make sure that segment/control/debug/test/MMX
2897 registers are coded into the i.rm.reg field. */
2898 if (i.reg_operands)
2899 {
2900 unsigned int op =
2901 ((i.types[0]
2902 & (Reg | RegMMX | RegXMM
2903 | SReg2 | SReg3
2904 | Control | Debug | Test))
2905 ? 0
2906 : ((i.types[1]
2907 & (Reg | RegMMX | RegXMM
2908 | SReg2 | SReg3
2909 | Control | Debug | Test))
2910 ? 1
2911 : 2));
2912 /* If there is an extension opcode to put here, the register
2913 number must be put into the regmem field. */
2914 if (i.tm.extension_opcode != None)
2915 {
2916 i.rm.regmem = i.op[op].regs->reg_num;
2917 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2918 i.rex |= REX_EXTZ;
2919 }
2920 else
2921 {
2922 i.rm.reg = i.op[op].regs->reg_num;
2923 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2924 i.rex |= REX_EXTX;
2925 }
2926
2927 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
2928 must set it to 3 to indicate this is a register operand
2929 in the regmem field. */
2930 if (!i.mem_operands)
2931 i.rm.mode = 3;
2932 }
2933
2934 /* Fill in i.rm.reg field with extension opcode (if any). */
2935 if (i.tm.extension_opcode != None)
2936 i.rm.reg = i.tm.extension_opcode;
2937 }
2938 return default_seg;
2939 }
2940
2941 static void
2942 output_branch ()
2943 {
2944 char *p;
2945 int code16;
2946 int prefix;
2947 relax_substateT subtype;
2948 symbolS *sym;
2949 offsetT off;
2950
2951 code16 = 0;
2952 if (flag_code == CODE_16BIT)
2953 code16 = CODE16;
2954
2955 prefix = 0;
2956 if (i.prefix[DATA_PREFIX] != 0)
2957 {
2958 prefix = 1;
2959 i.prefixes -= 1;
2960 code16 ^= CODE16;
2961 }
2962 /* Pentium4 branch hints. */
2963 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
2964 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2965 {
2966 prefix++;
2967 i.prefixes--;
2968 }
2969 if (i.prefix[REX_PREFIX] != 0)
2970 {
2971 prefix++;
2972 i.prefixes--;
2973 }
2974
2975 if (i.prefixes != 0 && !intel_syntax)
2976 as_warn (_("skipping prefixes on this instruction"));
2977
2978 /* It's always a symbol; End frag & setup for relax.
2979 Make sure there is enough room in this frag for the largest
2980 instruction we may generate in md_convert_frag. This is 2
2981 bytes for the opcode and room for the prefix and largest
2982 displacement. */
2983 frag_grow (prefix + 2 + 4);
2984 /* Prefix and 1 opcode byte go in fr_fix. */
2985 p = frag_more (prefix + 1);
2986 if (i.prefix[DATA_PREFIX] != 0)
2987 *p++ = DATA_PREFIX_OPCODE;
2988 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
2989 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
2990 *p++ = i.prefix[SEG_PREFIX];
2991 if (i.prefix[REX_PREFIX] != 0)
2992 *p++ = i.prefix[REX_PREFIX];
2993 *p = i.tm.base_opcode;
2994
2995 if ((unsigned char) *p == JUMP_PC_RELATIVE)
2996 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
2997 else if ((cpu_arch_flags & Cpu386) != 0)
2998 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
2999 else
3000 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3001 subtype |= code16;
3002
3003 sym = i.op[0].disps->X_add_symbol;
3004 off = i.op[0].disps->X_add_number;
3005
3006 if (i.op[0].disps->X_op != O_constant
3007 && i.op[0].disps->X_op != O_symbol)
3008 {
3009 /* Handle complex expressions. */
3010 sym = make_expr_symbol (i.op[0].disps);
3011 off = 0;
3012 }
3013
3014 /* 1 possible extra opcode + 4 byte displacement go in var part.
3015 Pass reloc in fr_var. */
3016 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3017 }
3018
3019 static void
3020 output_jump ()
3021 {
3022 char *p;
3023 int size;
3024 fixS *fixP;
3025
3026 if (i.tm.opcode_modifier & JumpByte)
3027 {
3028 /* This is a loop or jecxz type instruction. */
3029 size = 1;
3030 if (i.prefix[ADDR_PREFIX] != 0)
3031 {
3032 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3033 i.prefixes -= 1;
3034 }
3035 /* Pentium4 branch hints. */
3036 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3037 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3038 {
3039 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3040 i.prefixes--;
3041 }
3042 }
3043 else
3044 {
3045 int code16;
3046
3047 code16 = 0;
3048 if (flag_code == CODE_16BIT)
3049 code16 = CODE16;
3050
3051 if (i.prefix[DATA_PREFIX] != 0)
3052 {
3053 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3054 i.prefixes -= 1;
3055 code16 ^= CODE16;
3056 }
3057
3058 size = 4;
3059 if (code16)
3060 size = 2;
3061 }
3062
3063 if (i.prefix[REX_PREFIX] != 0)
3064 {
3065 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3066 i.prefixes -= 1;
3067 }
3068
3069 if (i.prefixes != 0 && !intel_syntax)
3070 as_warn (_("skipping prefixes on this instruction"));
3071
3072 p = frag_more (1 + size);
3073 *p++ = i.tm.base_opcode;
3074
3075 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3076 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3077
3078 /* All jumps handled here are signed, but don't use a signed limit
3079 check for 32 and 16 bit jumps as we want to allow wrap around at
3080 4G and 64k respectively. */
3081 if (size == 1)
3082 fixP->fx_signed = 1;
3083 }
3084
3085 static void
3086 output_interseg_jump ()
3087 {
3088 char *p;
3089 int size;
3090 int prefix;
3091 int code16;
3092
3093 code16 = 0;
3094 if (flag_code == CODE_16BIT)
3095 code16 = CODE16;
3096
3097 prefix = 0;
3098 if (i.prefix[DATA_PREFIX] != 0)
3099 {
3100 prefix = 1;
3101 i.prefixes -= 1;
3102 code16 ^= CODE16;
3103 }
3104 if (i.prefix[REX_PREFIX] != 0)
3105 {
3106 prefix++;
3107 i.prefixes -= 1;
3108 }
3109
3110 size = 4;
3111 if (code16)
3112 size = 2;
3113
3114 if (i.prefixes != 0 && !intel_syntax)
3115 as_warn (_("skipping prefixes on this instruction"));
3116
3117 /* 1 opcode; 2 segment; offset */
3118 p = frag_more (prefix + 1 + 2 + size);
3119
3120 if (i.prefix[DATA_PREFIX] != 0)
3121 *p++ = DATA_PREFIX_OPCODE;
3122
3123 if (i.prefix[REX_PREFIX] != 0)
3124 *p++ = i.prefix[REX_PREFIX];
3125
3126 *p++ = i.tm.base_opcode;
3127 if (i.op[1].imms->X_op == O_constant)
3128 {
3129 offsetT n = i.op[1].imms->X_add_number;
3130
3131 if (size == 2
3132 && !fits_in_unsigned_word (n)
3133 && !fits_in_signed_word (n))
3134 {
3135 as_bad (_("16-bit jump out of range"));
3136 return;
3137 }
3138 md_number_to_chars (p, n, size);
3139 }
3140 else
3141 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3142 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3143 if (i.op[0].imms->X_op != O_constant)
3144 as_bad (_("can't handle non absolute segment in `%s'"),
3145 i.tm.name);
3146 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3147 }
3148
3149
3150 static void
3151 output_insn ()
3152 {
3153 fragS *insn_start_frag;
3154 offsetT insn_start_off;
3155
3156 /* Tie dwarf2 debug info to the address at the start of the insn.
3157 We can't do this after the insn has been output as the current
3158 frag may have been closed off. eg. by frag_var. */
3159 dwarf2_emit_insn (0);
3160
3161 insn_start_frag = frag_now;
3162 insn_start_off = frag_now_fix ();
3163
3164 /* Output jumps. */
3165 if (i.tm.opcode_modifier & Jump)
3166 output_branch ();
3167 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3168 output_jump ();
3169 else if (i.tm.opcode_modifier & JumpInterSegment)
3170 output_interseg_jump ();
3171 else
3172 {
3173 /* Output normal instructions here. */
3174 char *p;
3175 unsigned char *q;
3176
3177 /* All opcodes on i386 have either 1 or 2 bytes. We may use third
3178 byte for the SSE instructions to specify a prefix they require. */
3179 if (i.tm.base_opcode & 0xff0000)
3180 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
3181
3182 /* The prefix bytes. */
3183 for (q = i.prefix;
3184 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3185 q++)
3186 {
3187 if (*q)
3188 {
3189 p = frag_more (1);
3190 md_number_to_chars (p, (valueT) *q, 1);
3191 }
3192 }
3193
3194 /* Now the opcode; be careful about word order here! */
3195 if (fits_in_unsigned_byte (i.tm.base_opcode))
3196 {
3197 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3198 }
3199 else
3200 {
3201 p = frag_more (2);
3202 /* Put out high byte first: can't use md_number_to_chars! */
3203 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3204 *p = i.tm.base_opcode & 0xff;
3205 }
3206
3207 /* Now the modrm byte and sib byte (if present). */
3208 if (i.tm.opcode_modifier & Modrm)
3209 {
3210 p = frag_more (1);
3211 md_number_to_chars (p,
3212 (valueT) (i.rm.regmem << 0
3213 | i.rm.reg << 3
3214 | i.rm.mode << 6),
3215 1);
3216 /* If i.rm.regmem == ESP (4)
3217 && i.rm.mode != (Register mode)
3218 && not 16 bit
3219 ==> need second modrm byte. */
3220 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3221 && i.rm.mode != 3
3222 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3223 {
3224 p = frag_more (1);
3225 md_number_to_chars (p,
3226 (valueT) (i.sib.base << 0
3227 | i.sib.index << 3
3228 | i.sib.scale << 6),
3229 1);
3230 }
3231 }
3232
3233 if (i.disp_operands)
3234 output_disp (insn_start_frag, insn_start_off);
3235
3236 if (i.imm_operands)
3237 output_imm (insn_start_frag, insn_start_off);
3238 }
3239
3240 #ifdef DEBUG386
3241 if (flag_debug)
3242 {
3243 pi (line, &i);
3244 }
3245 #endif /* DEBUG386 */
3246 }
3247
3248 static void
3249 output_disp (insn_start_frag, insn_start_off)
3250 fragS *insn_start_frag;
3251 offsetT insn_start_off;
3252 {
3253 char *p;
3254 unsigned int n;
3255
3256 for (n = 0; n < i.operands; n++)
3257 {
3258 if (i.types[n] & Disp)
3259 {
3260 if (i.op[n].disps->X_op == O_constant)
3261 {
3262 int size;
3263 offsetT val;
3264
3265 size = 4;
3266 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3267 {
3268 size = 2;
3269 if (i.types[n] & Disp8)
3270 size = 1;
3271 if (i.types[n] & Disp64)
3272 size = 8;
3273 }
3274 val = offset_in_range (i.op[n].disps->X_add_number,
3275 size);
3276 p = frag_more (size);
3277 md_number_to_chars (p, val, size);
3278 }
3279 else
3280 {
3281 RELOC_ENUM reloc_type;
3282 int size = 4;
3283 int sign = 0;
3284 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3285
3286 /* The PC relative address is computed relative
3287 to the instruction boundary, so in case immediate
3288 fields follows, we need to adjust the value. */
3289 if (pcrel && i.imm_operands)
3290 {
3291 int imm_size = 4;
3292 unsigned int n1;
3293
3294 for (n1 = 0; n1 < i.operands; n1++)
3295 if (i.types[n1] & Imm)
3296 {
3297 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
3298 {
3299 imm_size = 2;
3300 if (i.types[n1] & (Imm8 | Imm8S))
3301 imm_size = 1;
3302 if (i.types[n1] & Imm64)
3303 imm_size = 8;
3304 }
3305 break;
3306 }
3307 /* We should find the immediate. */
3308 if (n1 == i.operands)
3309 abort ();
3310 i.op[n].disps->X_add_number -= imm_size;
3311 }
3312
3313 if (i.types[n] & Disp32S)
3314 sign = 1;
3315
3316 if (i.types[n] & (Disp16 | Disp64))
3317 {
3318 size = 2;
3319 if (i.types[n] & Disp64)
3320 size = 8;
3321 }
3322
3323 p = frag_more (size);
3324 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
3325 #ifdef BFD_ASSEMBLER
3326 if (reloc_type == BFD_RELOC_32
3327 && GOT_symbol
3328 && GOT_symbol == i.op[n].disps->X_add_symbol
3329 && (i.op[n].disps->X_op == O_symbol
3330 || (i.op[n].disps->X_op == O_add
3331 && ((symbol_get_value_expression
3332 (i.op[n].disps->X_op_symbol)->X_op)
3333 == O_subtract))))
3334 {
3335 offsetT add;
3336
3337 if (insn_start_frag == frag_now)
3338 add = (p - frag_now->fr_literal) - insn_start_off;
3339 else
3340 {
3341 fragS *fr;
3342
3343 add = insn_start_frag->fr_fix - insn_start_off;
3344 for (fr = insn_start_frag->fr_next;
3345 fr && fr != frag_now; fr = fr->fr_next)
3346 add += fr->fr_fix;
3347 add += p - frag_now->fr_literal;
3348 }
3349
3350 /* We don't support dynamic linking on x86-64 yet. */
3351 if (flag_code == CODE_64BIT)
3352 abort ();
3353 reloc_type = BFD_RELOC_386_GOTPC;
3354 i.op[n].disps->X_add_number += add;
3355 }
3356 #endif
3357 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3358 i.op[n].disps, pcrel, reloc_type);
3359 }
3360 }
3361 }
3362 }
3363
3364 static void
3365 output_imm (insn_start_frag, insn_start_off)
3366 fragS *insn_start_frag;
3367 offsetT insn_start_off;
3368 {
3369 char *p;
3370 unsigned int n;
3371
3372 for (n = 0; n < i.operands; n++)
3373 {
3374 if (i.types[n] & Imm)
3375 {
3376 if (i.op[n].imms->X_op == O_constant)
3377 {
3378 int size;
3379 offsetT val;
3380
3381 size = 4;
3382 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3383 {
3384 size = 2;
3385 if (i.types[n] & (Imm8 | Imm8S))
3386 size = 1;
3387 else if (i.types[n] & Imm64)
3388 size = 8;
3389 }
3390 val = offset_in_range (i.op[n].imms->X_add_number,
3391 size);
3392 p = frag_more (size);
3393 md_number_to_chars (p, val, size);
3394 }
3395 else
3396 {
3397 /* Not absolute_section.
3398 Need a 32-bit fixup (don't support 8bit
3399 non-absolute imms). Try to support other
3400 sizes ... */
3401 RELOC_ENUM reloc_type;
3402 int size = 4;
3403 int sign = 0;
3404
3405 if ((i.types[n] & (Imm32S))
3406 && i.suffix == QWORD_MNEM_SUFFIX)
3407 sign = 1;
3408 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3409 {
3410 size = 2;
3411 if (i.types[n] & (Imm8 | Imm8S))
3412 size = 1;
3413 if (i.types[n] & Imm64)
3414 size = 8;
3415 }
3416
3417 p = frag_more (size);
3418 reloc_type = reloc (size, 0, sign, i.reloc[n]);
3419 #ifdef BFD_ASSEMBLER
3420 /* This is tough to explain. We end up with this one if we
3421 * have operands that look like
3422 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3423 * obtain the absolute address of the GOT, and it is strongly
3424 * preferable from a performance point of view to avoid using
3425 * a runtime relocation for this. The actual sequence of
3426 * instructions often look something like:
3427 *
3428 * call .L66
3429 * .L66:
3430 * popl %ebx
3431 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3432 *
3433 * The call and pop essentially return the absolute address
3434 * of the label .L66 and store it in %ebx. The linker itself
3435 * will ultimately change the first operand of the addl so
3436 * that %ebx points to the GOT, but to keep things simple, the
3437 * .o file must have this operand set so that it generates not
3438 * the absolute address of .L66, but the absolute address of
3439 * itself. This allows the linker itself simply treat a GOTPC
3440 * relocation as asking for a pcrel offset to the GOT to be
3441 * added in, and the addend of the relocation is stored in the
3442 * operand field for the instruction itself.
3443 *
3444 * Our job here is to fix the operand so that it would add
3445 * the correct offset so that %ebx would point to itself. The
3446 * thing that is tricky is that .-.L66 will point to the
3447 * beginning of the instruction, so we need to further modify
3448 * the operand so that it will point to itself. There are
3449 * other cases where you have something like:
3450 *
3451 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3452 *
3453 * and here no correction would be required. Internally in
3454 * the assembler we treat operands of this form as not being
3455 * pcrel since the '.' is explicitly mentioned, and I wonder
3456 * whether it would simplify matters to do it this way. Who
3457 * knows. In earlier versions of the PIC patches, the
3458 * pcrel_adjust field was used to store the correction, but
3459 * since the expression is not pcrel, I felt it would be
3460 * confusing to do it this way. */
3461
3462 if (reloc_type == BFD_RELOC_32
3463 && GOT_symbol
3464 && GOT_symbol == i.op[n].imms->X_add_symbol
3465 && (i.op[n].imms->X_op == O_symbol
3466 || (i.op[n].imms->X_op == O_add
3467 && ((symbol_get_value_expression
3468 (i.op[n].imms->X_op_symbol)->X_op)
3469 == O_subtract))))
3470 {
3471 offsetT add;
3472
3473 if (insn_start_frag == frag_now)
3474 add = (p - frag_now->fr_literal) - insn_start_off;
3475 else
3476 {
3477 fragS *fr;
3478
3479 add = insn_start_frag->fr_fix - insn_start_off;
3480 for (fr = insn_start_frag->fr_next;
3481 fr && fr != frag_now; fr = fr->fr_next)
3482 add += fr->fr_fix;
3483 add += p - frag_now->fr_literal;
3484 }
3485
3486 /* We don't support dynamic linking on x86-64 yet. */
3487 if (flag_code == CODE_64BIT)
3488 abort ();
3489 reloc_type = BFD_RELOC_386_GOTPC;
3490 i.op[n].imms->X_add_number += add;
3491 }
3492 #endif
3493 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3494 i.op[n].imms, 0, reloc_type);
3495 }
3496 }
3497 }
3498 }
3499 \f
3500 #ifndef LEX_AT
3501 static char *lex_got PARAMS ((RELOC_ENUM *, int *));
3502
3503 /* Parse operands of the form
3504 <symbol>@GOTOFF+<nnn>
3505 and similar .plt or .got references.
3506
3507 If we find one, set up the correct relocation in RELOC and copy the
3508 input string, minus the `@GOTOFF' into a malloc'd buffer for
3509 parsing by the calling routine. Return this buffer, and if ADJUST
3510 is non-null set it to the length of the string we removed from the
3511 input line. Otherwise return NULL. */
3512 static char *
3513 lex_got (reloc, adjust)
3514 RELOC_ENUM *reloc;
3515 int *adjust;
3516 {
3517 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3518 static const struct {
3519 const char *str;
3520 const RELOC_ENUM rel[NUM_FLAG_CODE];
3521 } gotrel[] = {
3522 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3523 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3524 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
3525 { "TLSGD", { BFD_RELOC_386_TLS_GD, 0, BFD_RELOC_X86_64_TLSGD } },
3526 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0, 0 } },
3527 { "TLSLD", { 0, 0, BFD_RELOC_X86_64_TLSLD } },
3528 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, 0, BFD_RELOC_X86_64_GOTTPOFF } },
3529 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, 0, BFD_RELOC_X86_64_TPOFF32 } },
3530 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0, 0 } },
3531 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, 0, BFD_RELOC_X86_64_DTPOFF32 } },
3532 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0, 0 } },
3533 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0, 0 } },
3534 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
3535 };
3536 char *cp;
3537 unsigned int j;
3538
3539 for (cp = input_line_pointer; *cp != '@'; cp++)
3540 if (is_end_of_line[(unsigned char) *cp])
3541 return NULL;
3542
3543 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3544 {
3545 int len;
3546
3547 len = strlen (gotrel[j].str);
3548 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
3549 {
3550 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3551 {
3552 int first, second;
3553 char *tmpbuf, *past_reloc;
3554
3555 *reloc = gotrel[j].rel[(unsigned int) flag_code];
3556 if (adjust)
3557 *adjust = len;
3558
3559 if (GOT_symbol == NULL)
3560 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3561
3562 /* Replace the relocation token with ' ', so that
3563 errors like foo@GOTOFF1 will be detected. */
3564
3565 /* The length of the first part of our input line. */
3566 first = cp - input_line_pointer;
3567
3568 /* The second part goes from after the reloc token until
3569 (and including) an end_of_line char. Don't use strlen
3570 here as the end_of_line char may not be a NUL. */
3571 past_reloc = cp + 1 + len;
3572 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3573 ;
3574 second = cp - past_reloc;
3575
3576 /* Allocate and copy string. The trailing NUL shouldn't
3577 be necessary, but be safe. */
3578 tmpbuf = xmalloc (first + second + 2);
3579 memcpy (tmpbuf, input_line_pointer, first);
3580 tmpbuf[first] = ' ';
3581 memcpy (tmpbuf + first + 1, past_reloc, second);
3582 tmpbuf[first + second + 1] = '\0';
3583 return tmpbuf;
3584 }
3585
3586 as_bad (_("@%s reloc is not supported in %s bit mode"),
3587 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3588 return NULL;
3589 }
3590 }
3591
3592 /* Might be a symbol version string. Don't as_bad here. */
3593 return NULL;
3594 }
3595
3596 /* x86_cons_fix_new is called via the expression parsing code when a
3597 reloc is needed. We use this hook to get the correct .got reloc. */
3598 static RELOC_ENUM got_reloc = NO_RELOC;
3599
3600 void
3601 x86_cons_fix_new (frag, off, len, exp)
3602 fragS *frag;
3603 unsigned int off;
3604 unsigned int len;
3605 expressionS *exp;
3606 {
3607 RELOC_ENUM r = reloc (len, 0, 0, got_reloc);
3608 got_reloc = NO_RELOC;
3609 fix_new_exp (frag, off, len, exp, 0, r);
3610 }
3611
3612 void
3613 x86_cons (exp, size)
3614 expressionS *exp;
3615 int size;
3616 {
3617 if (size == 4)
3618 {
3619 /* Handle @GOTOFF and the like in an expression. */
3620 char *save;
3621 char *gotfree_input_line;
3622 int adjust;
3623
3624 save = input_line_pointer;
3625 gotfree_input_line = lex_got (&got_reloc, &adjust);
3626 if (gotfree_input_line)
3627 input_line_pointer = gotfree_input_line;
3628
3629 expression (exp);
3630
3631 if (gotfree_input_line)
3632 {
3633 /* expression () has merrily parsed up to the end of line,
3634 or a comma - in the wrong buffer. Transfer how far
3635 input_line_pointer has moved to the right buffer. */
3636 input_line_pointer = (save
3637 + (input_line_pointer - gotfree_input_line)
3638 + adjust);
3639 free (gotfree_input_line);
3640 }
3641 }
3642 else
3643 expression (exp);
3644 }
3645 #endif
3646
3647 static int i386_immediate PARAMS ((char *));
3648
3649 static int
3650 i386_immediate (imm_start)
3651 char *imm_start;
3652 {
3653 char *save_input_line_pointer;
3654 #ifndef LEX_AT
3655 char *gotfree_input_line;
3656 #endif
3657 segT exp_seg = 0;
3658 expressionS *exp;
3659
3660 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3661 {
3662 as_bad (_("only 1 or 2 immediate operands are allowed"));
3663 return 0;
3664 }
3665
3666 exp = &im_expressions[i.imm_operands++];
3667 i.op[this_operand].imms = exp;
3668
3669 if (is_space_char (*imm_start))
3670 ++imm_start;
3671
3672 save_input_line_pointer = input_line_pointer;
3673 input_line_pointer = imm_start;
3674
3675 #ifndef LEX_AT
3676 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3677 if (gotfree_input_line)
3678 input_line_pointer = gotfree_input_line;
3679 #endif
3680
3681 exp_seg = expression (exp);
3682
3683 SKIP_WHITESPACE ();
3684 if (*input_line_pointer)
3685 as_bad (_("junk `%s' after expression"), input_line_pointer);
3686
3687 input_line_pointer = save_input_line_pointer;
3688 #ifndef LEX_AT
3689 if (gotfree_input_line)
3690 free (gotfree_input_line);
3691 #endif
3692
3693 if (exp->X_op == O_absent || exp->X_op == O_big)
3694 {
3695 /* Missing or bad expr becomes absolute 0. */
3696 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
3697 imm_start);
3698 exp->X_op = O_constant;
3699 exp->X_add_number = 0;
3700 exp->X_add_symbol = (symbolS *) 0;
3701 exp->X_op_symbol = (symbolS *) 0;
3702 }
3703 else if (exp->X_op == O_constant)
3704 {
3705 /* Size it properly later. */
3706 i.types[this_operand] |= Imm64;
3707 /* If BFD64, sign extend val. */
3708 if (!use_rela_relocations)
3709 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3710 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
3711 }
3712 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3713 else if (1
3714 #ifdef BFD_ASSEMBLER
3715 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3716 #endif
3717 && exp_seg != absolute_section
3718 && exp_seg != text_section
3719 && exp_seg != data_section
3720 && exp_seg != bss_section
3721 && exp_seg != undefined_section
3722 #ifdef BFD_ASSEMBLER
3723 && !bfd_is_com_section (exp_seg)
3724 #endif
3725 )
3726 {
3727 #ifdef BFD_ASSEMBLER
3728 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3729 #else
3730 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3731 #endif
3732 return 0;
3733 }
3734 #endif
3735 else
3736 {
3737 /* This is an address. The size of the address will be
3738 determined later, depending on destination register,
3739 suffix, or the default for the section. */
3740 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
3741 }
3742
3743 return 1;
3744 }
3745
3746 static char *i386_scale PARAMS ((char *));
3747
3748 static char *
3749 i386_scale (scale)
3750 char *scale;
3751 {
3752 offsetT val;
3753 char *save = input_line_pointer;
3754
3755 input_line_pointer = scale;
3756 val = get_absolute_expression ();
3757
3758 switch (val)
3759 {
3760 case 0:
3761 case 1:
3762 i.log2_scale_factor = 0;
3763 break;
3764 case 2:
3765 i.log2_scale_factor = 1;
3766 break;
3767 case 4:
3768 i.log2_scale_factor = 2;
3769 break;
3770 case 8:
3771 i.log2_scale_factor = 3;
3772 break;
3773 default:
3774 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
3775 scale);
3776 input_line_pointer = save;
3777 return NULL;
3778 }
3779 if (i.log2_scale_factor != 0 && i.index_reg == 0)
3780 {
3781 as_warn (_("scale factor of %d without an index register"),
3782 1 << i.log2_scale_factor);
3783 #if SCALE1_WHEN_NO_INDEX
3784 i.log2_scale_factor = 0;
3785 #endif
3786 }
3787 scale = input_line_pointer;
3788 input_line_pointer = save;
3789 return scale;
3790 }
3791
3792 static int i386_displacement PARAMS ((char *, char *));
3793
3794 static int
3795 i386_displacement (disp_start, disp_end)
3796 char *disp_start;
3797 char *disp_end;
3798 {
3799 expressionS *exp;
3800 segT exp_seg = 0;
3801 char *save_input_line_pointer;
3802 #ifndef LEX_AT
3803 char *gotfree_input_line;
3804 #endif
3805 int bigdisp = Disp32;
3806
3807 if (flag_code == CODE_64BIT)
3808 {
3809 if (i.prefix[ADDR_PREFIX] == 0)
3810 bigdisp = Disp64;
3811 }
3812 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3813 bigdisp = Disp16;
3814 i.types[this_operand] |= bigdisp;
3815
3816 exp = &disp_expressions[i.disp_operands];
3817 i.op[this_operand].disps = exp;
3818 i.disp_operands++;
3819 save_input_line_pointer = input_line_pointer;
3820 input_line_pointer = disp_start;
3821 END_STRING_AND_SAVE (disp_end);
3822
3823 #ifndef GCC_ASM_O_HACK
3824 #define GCC_ASM_O_HACK 0
3825 #endif
3826 #if GCC_ASM_O_HACK
3827 END_STRING_AND_SAVE (disp_end + 1);
3828 if ((i.types[this_operand] & BaseIndex) != 0
3829 && displacement_string_end[-1] == '+')
3830 {
3831 /* This hack is to avoid a warning when using the "o"
3832 constraint within gcc asm statements.
3833 For instance:
3834
3835 #define _set_tssldt_desc(n,addr,limit,type) \
3836 __asm__ __volatile__ ( \
3837 "movw %w2,%0\n\t" \
3838 "movw %w1,2+%0\n\t" \
3839 "rorl $16,%1\n\t" \
3840 "movb %b1,4+%0\n\t" \
3841 "movb %4,5+%0\n\t" \
3842 "movb $0,6+%0\n\t" \
3843 "movb %h1,7+%0\n\t" \
3844 "rorl $16,%1" \
3845 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3846
3847 This works great except that the output assembler ends
3848 up looking a bit weird if it turns out that there is
3849 no offset. You end up producing code that looks like:
3850
3851 #APP
3852 movw $235,(%eax)
3853 movw %dx,2+(%eax)
3854 rorl $16,%edx
3855 movb %dl,4+(%eax)
3856 movb $137,5+(%eax)
3857 movb $0,6+(%eax)
3858 movb %dh,7+(%eax)
3859 rorl $16,%edx
3860 #NO_APP
3861
3862 So here we provide the missing zero. */
3863
3864 *displacement_string_end = '0';
3865 }
3866 #endif
3867 #ifndef LEX_AT
3868 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3869 if (gotfree_input_line)
3870 input_line_pointer = gotfree_input_line;
3871 #endif
3872
3873 exp_seg = expression (exp);
3874
3875 SKIP_WHITESPACE ();
3876 if (*input_line_pointer)
3877 as_bad (_("junk `%s' after expression"), input_line_pointer);
3878 #if GCC_ASM_O_HACK
3879 RESTORE_END_STRING (disp_end + 1);
3880 #endif
3881 RESTORE_END_STRING (disp_end);
3882 input_line_pointer = save_input_line_pointer;
3883 #ifndef LEX_AT
3884 if (gotfree_input_line)
3885 free (gotfree_input_line);
3886 #endif
3887
3888 #ifdef BFD_ASSEMBLER
3889 /* We do this to make sure that the section symbol is in
3890 the symbol table. We will ultimately change the relocation
3891 to be relative to the beginning of the section. */
3892 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
3893 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3894 {
3895 if (exp->X_op != O_symbol)
3896 {
3897 as_bad (_("bad expression used with @%s"),
3898 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
3899 ? "GOTPCREL"
3900 : "GOTOFF"));
3901 return 0;
3902 }
3903
3904 if (S_IS_LOCAL (exp->X_add_symbol)
3905 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
3906 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
3907 exp->X_op = O_subtract;
3908 exp->X_op_symbol = GOT_symbol;
3909 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3910 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
3911 else
3912 i.reloc[this_operand] = BFD_RELOC_32;
3913 }
3914 #endif
3915
3916 if (exp->X_op == O_absent || exp->X_op == O_big)
3917 {
3918 /* Missing or bad expr becomes absolute 0. */
3919 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
3920 disp_start);
3921 exp->X_op = O_constant;
3922 exp->X_add_number = 0;
3923 exp->X_add_symbol = (symbolS *) 0;
3924 exp->X_op_symbol = (symbolS *) 0;
3925 }
3926
3927 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3928 if (exp->X_op != O_constant
3929 #ifdef BFD_ASSEMBLER
3930 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3931 #endif
3932 && exp_seg != absolute_section
3933 && exp_seg != text_section
3934 && exp_seg != data_section
3935 && exp_seg != bss_section
3936 && exp_seg != undefined_section
3937 #ifdef BFD_ASSEMBLER
3938 && !bfd_is_com_section (exp_seg)
3939 #endif
3940 )
3941 {
3942 #ifdef BFD_ASSEMBLER
3943 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3944 #else
3945 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3946 #endif
3947 return 0;
3948 }
3949 #endif
3950 else if (flag_code == CODE_64BIT)
3951 i.types[this_operand] |= Disp32S | Disp32;
3952 return 1;
3953 }
3954
3955 static int i386_index_check PARAMS ((const char *));
3956
3957 /* Make sure the memory operand we've been dealt is valid.
3958 Return 1 on success, 0 on a failure. */
3959
3960 static int
3961 i386_index_check (operand_string)
3962 const char *operand_string;
3963 {
3964 int ok;
3965 #if INFER_ADDR_PREFIX
3966 int fudged = 0;
3967
3968 tryprefix:
3969 #endif
3970 ok = 1;
3971 if (flag_code == CODE_64BIT)
3972 {
3973 if (i.prefix[ADDR_PREFIX] == 0)
3974 {
3975 /* 64bit checks. */
3976 if ((i.base_reg
3977 && ((i.base_reg->reg_type & Reg64) == 0)
3978 && (i.base_reg->reg_type != BaseIndex
3979 || i.index_reg))
3980 || (i.index_reg
3981 && ((i.index_reg->reg_type & (Reg64 | BaseIndex))
3982 != (Reg64 | BaseIndex))))
3983 ok = 0;
3984 }
3985 else
3986 {
3987 /* 32bit checks. */
3988 if ((i.base_reg
3989 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
3990 || (i.index_reg
3991 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
3992 != (Reg32 | BaseIndex))))
3993 ok = 0;
3994 }
3995 }
3996 else
3997 {
3998 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3999 {
4000 /* 16bit checks. */
4001 if ((i.base_reg
4002 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4003 != (Reg16 | BaseIndex)))
4004 || (i.index_reg
4005 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4006 != (Reg16 | BaseIndex))
4007 || !(i.base_reg
4008 && i.base_reg->reg_num < 6
4009 && i.index_reg->reg_num >= 6
4010 && i.log2_scale_factor == 0))))
4011 ok = 0;
4012 }
4013 else
4014 {
4015 /* 32bit checks. */
4016 if ((i.base_reg
4017 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4018 || (i.index_reg
4019 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4020 != (Reg32 | BaseIndex))))
4021 ok = 0;
4022 }
4023 }
4024 if (!ok)
4025 {
4026 #if INFER_ADDR_PREFIX
4027 if (flag_code != CODE_64BIT
4028 && i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
4029 {
4030 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4031 i.prefixes += 1;
4032 /* Change the size of any displacement too. At most one of
4033 Disp16 or Disp32 is set.
4034 FIXME. There doesn't seem to be any real need for separate
4035 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
4036 Removing them would probably clean up the code quite a lot. */
4037 if (i.types[this_operand] & (Disp16 | Disp32))
4038 i.types[this_operand] ^= (Disp16 | Disp32);
4039 fudged = 1;
4040 goto tryprefix;
4041 }
4042 if (fudged)
4043 as_bad (_("`%s' is not a valid base/index expression"),
4044 operand_string);
4045 else
4046 #endif
4047 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4048 operand_string,
4049 flag_code_names[flag_code]);
4050 return 0;
4051 }
4052 return 1;
4053 }
4054
4055 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
4056 on error. */
4057
4058 static int
4059 i386_operand (operand_string)
4060 char *operand_string;
4061 {
4062 const reg_entry *r;
4063 char *end_op;
4064 char *op_string = operand_string;
4065
4066 if (is_space_char (*op_string))
4067 ++op_string;
4068
4069 /* We check for an absolute prefix (differentiating,
4070 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
4071 if (*op_string == ABSOLUTE_PREFIX)
4072 {
4073 ++op_string;
4074 if (is_space_char (*op_string))
4075 ++op_string;
4076 i.types[this_operand] |= JumpAbsolute;
4077 }
4078
4079 /* Check if operand is a register. */
4080 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
4081 && (r = parse_register (op_string, &end_op)) != NULL)
4082 {
4083 /* Check for a segment override by searching for ':' after a
4084 segment register. */
4085 op_string = end_op;
4086 if (is_space_char (*op_string))
4087 ++op_string;
4088 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4089 {
4090 switch (r->reg_num)
4091 {
4092 case 0:
4093 i.seg[i.mem_operands] = &es;
4094 break;
4095 case 1:
4096 i.seg[i.mem_operands] = &cs;
4097 break;
4098 case 2:
4099 i.seg[i.mem_operands] = &ss;
4100 break;
4101 case 3:
4102 i.seg[i.mem_operands] = &ds;
4103 break;
4104 case 4:
4105 i.seg[i.mem_operands] = &fs;
4106 break;
4107 case 5:
4108 i.seg[i.mem_operands] = &gs;
4109 break;
4110 }
4111
4112 /* Skip the ':' and whitespace. */
4113 ++op_string;
4114 if (is_space_char (*op_string))
4115 ++op_string;
4116
4117 if (!is_digit_char (*op_string)
4118 && !is_identifier_char (*op_string)
4119 && *op_string != '('
4120 && *op_string != ABSOLUTE_PREFIX)
4121 {
4122 as_bad (_("bad memory operand `%s'"), op_string);
4123 return 0;
4124 }
4125 /* Handle case of %es:*foo. */
4126 if (*op_string == ABSOLUTE_PREFIX)
4127 {
4128 ++op_string;
4129 if (is_space_char (*op_string))
4130 ++op_string;
4131 i.types[this_operand] |= JumpAbsolute;
4132 }
4133 goto do_memory_reference;
4134 }
4135 if (*op_string)
4136 {
4137 as_bad (_("junk `%s' after register"), op_string);
4138 return 0;
4139 }
4140 i.types[this_operand] |= r->reg_type & ~BaseIndex;
4141 i.op[this_operand].regs = r;
4142 i.reg_operands++;
4143 }
4144 else if (*op_string == REGISTER_PREFIX)
4145 {
4146 as_bad (_("bad register name `%s'"), op_string);
4147 return 0;
4148 }
4149 else if (*op_string == IMMEDIATE_PREFIX)
4150 {
4151 ++op_string;
4152 if (i.types[this_operand] & JumpAbsolute)
4153 {
4154 as_bad (_("immediate operand illegal with absolute jump"));
4155 return 0;
4156 }
4157 if (!i386_immediate (op_string))
4158 return 0;
4159 }
4160 else if (is_digit_char (*op_string)
4161 || is_identifier_char (*op_string)
4162 || *op_string == '(')
4163 {
4164 /* This is a memory reference of some sort. */
4165 char *base_string;
4166
4167 /* Start and end of displacement string expression (if found). */
4168 char *displacement_string_start;
4169 char *displacement_string_end;
4170
4171 do_memory_reference:
4172 if ((i.mem_operands == 1
4173 && (current_templates->start->opcode_modifier & IsString) == 0)
4174 || i.mem_operands == 2)
4175 {
4176 as_bad (_("too many memory references for `%s'"),
4177 current_templates->start->name);
4178 return 0;
4179 }
4180
4181 /* Check for base index form. We detect the base index form by
4182 looking for an ')' at the end of the operand, searching
4183 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4184 after the '('. */
4185 base_string = op_string + strlen (op_string);
4186
4187 --base_string;
4188 if (is_space_char (*base_string))
4189 --base_string;
4190
4191 /* If we only have a displacement, set-up for it to be parsed later. */
4192 displacement_string_start = op_string;
4193 displacement_string_end = base_string + 1;
4194
4195 if (*base_string == ')')
4196 {
4197 char *temp_string;
4198 unsigned int parens_balanced = 1;
4199 /* We've already checked that the number of left & right ()'s are
4200 equal, so this loop will not be infinite. */
4201 do
4202 {
4203 base_string--;
4204 if (*base_string == ')')
4205 parens_balanced++;
4206 if (*base_string == '(')
4207 parens_balanced--;
4208 }
4209 while (parens_balanced);
4210
4211 temp_string = base_string;
4212
4213 /* Skip past '(' and whitespace. */
4214 ++base_string;
4215 if (is_space_char (*base_string))
4216 ++base_string;
4217
4218 if (*base_string == ','
4219 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4220 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
4221 {
4222 displacement_string_end = temp_string;
4223
4224 i.types[this_operand] |= BaseIndex;
4225
4226 if (i.base_reg)
4227 {
4228 base_string = end_op;
4229 if (is_space_char (*base_string))
4230 ++base_string;
4231 }
4232
4233 /* There may be an index reg or scale factor here. */
4234 if (*base_string == ',')
4235 {
4236 ++base_string;
4237 if (is_space_char (*base_string))
4238 ++base_string;
4239
4240 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4241 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
4242 {
4243 base_string = end_op;
4244 if (is_space_char (*base_string))
4245 ++base_string;
4246 if (*base_string == ',')
4247 {
4248 ++base_string;
4249 if (is_space_char (*base_string))
4250 ++base_string;
4251 }
4252 else if (*base_string != ')')
4253 {
4254 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4255 operand_string);
4256 return 0;
4257 }
4258 }
4259 else if (*base_string == REGISTER_PREFIX)
4260 {
4261 as_bad (_("bad register name `%s'"), base_string);
4262 return 0;
4263 }
4264
4265 /* Check for scale factor. */
4266 if (*base_string != ')')
4267 {
4268 char *end_scale = i386_scale (base_string);
4269
4270 if (!end_scale)
4271 return 0;
4272
4273 base_string = end_scale;
4274 if (is_space_char (*base_string))
4275 ++base_string;
4276 if (*base_string != ')')
4277 {
4278 as_bad (_("expecting `)' after scale factor in `%s'"),
4279 operand_string);
4280 return 0;
4281 }
4282 }
4283 else if (!i.index_reg)
4284 {
4285 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4286 *base_string);
4287 return 0;
4288 }
4289 }
4290 else if (*base_string != ')')
4291 {
4292 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4293 operand_string);
4294 return 0;
4295 }
4296 }
4297 else if (*base_string == REGISTER_PREFIX)
4298 {
4299 as_bad (_("bad register name `%s'"), base_string);
4300 return 0;
4301 }
4302 }
4303
4304 /* If there's an expression beginning the operand, parse it,
4305 assuming displacement_string_start and
4306 displacement_string_end are meaningful. */
4307 if (displacement_string_start != displacement_string_end)
4308 {
4309 if (!i386_displacement (displacement_string_start,
4310 displacement_string_end))
4311 return 0;
4312 }
4313
4314 /* Special case for (%dx) while doing input/output op. */
4315 if (i.base_reg
4316 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
4317 && i.index_reg == 0
4318 && i.log2_scale_factor == 0
4319 && i.seg[i.mem_operands] == 0
4320 && (i.types[this_operand] & Disp) == 0)
4321 {
4322 i.types[this_operand] = InOutPortReg;
4323 return 1;
4324 }
4325
4326 if (i386_index_check (operand_string) == 0)
4327 return 0;
4328 i.mem_operands++;
4329 }
4330 else
4331 {
4332 /* It's not a memory operand; argh! */
4333 as_bad (_("invalid char %s beginning operand %d `%s'"),
4334 output_invalid (*op_string),
4335 this_operand + 1,
4336 op_string);
4337 return 0;
4338 }
4339 return 1; /* Normal return. */
4340 }
4341 \f
4342 /* md_estimate_size_before_relax()
4343
4344 Called just before relax() for rs_machine_dependent frags. The x86
4345 assembler uses these frags to handle variable size jump
4346 instructions.
4347
4348 Any symbol that is now undefined will not become defined.
4349 Return the correct fr_subtype in the frag.
4350 Return the initial "guess for variable size of frag" to caller.
4351 The guess is actually the growth beyond the fixed part. Whatever
4352 we do to grow the fixed or variable part contributes to our
4353 returned value. */
4354
4355 int
4356 md_estimate_size_before_relax (fragP, segment)
4357 fragS *fragP;
4358 segT segment;
4359 {
4360 /* We've already got fragP->fr_subtype right; all we have to do is
4361 check for un-relaxable symbols. On an ELF system, we can't relax
4362 an externally visible symbol, because it may be overridden by a
4363 shared library. */
4364 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
4365 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4366 || (OUTPUT_FLAVOR == bfd_target_elf_flavour
4367 && (S_IS_EXTERNAL (fragP->fr_symbol)
4368 || S_IS_WEAK (fragP->fr_symbol)))
4369 #endif
4370 )
4371 {
4372 /* Symbol is undefined in this segment, or we need to keep a
4373 reloc so that weak symbols can be overridden. */
4374 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
4375 RELOC_ENUM reloc_type;
4376 unsigned char *opcode;
4377 int old_fr_fix;
4378
4379 if (fragP->fr_var != NO_RELOC)
4380 reloc_type = fragP->fr_var;
4381 else if (size == 2)
4382 reloc_type = BFD_RELOC_16_PCREL;
4383 else
4384 reloc_type = BFD_RELOC_32_PCREL;
4385
4386 old_fr_fix = fragP->fr_fix;
4387 opcode = (unsigned char *) fragP->fr_opcode;
4388
4389 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
4390 {
4391 case UNCOND_JUMP:
4392 /* Make jmp (0xeb) a (d)word displacement jump. */
4393 opcode[0] = 0xe9;
4394 fragP->fr_fix += size;
4395 fix_new (fragP, old_fr_fix, size,
4396 fragP->fr_symbol,
4397 fragP->fr_offset, 1,
4398 reloc_type);
4399 break;
4400
4401 case COND_JUMP86:
4402 if (size == 2
4403 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
4404 {
4405 /* Negate the condition, and branch past an
4406 unconditional jump. */
4407 opcode[0] ^= 1;
4408 opcode[1] = 3;
4409 /* Insert an unconditional jump. */
4410 opcode[2] = 0xe9;
4411 /* We added two extra opcode bytes, and have a two byte
4412 offset. */
4413 fragP->fr_fix += 2 + 2;
4414 fix_new (fragP, old_fr_fix + 2, 2,
4415 fragP->fr_symbol,
4416 fragP->fr_offset, 1,
4417 reloc_type);
4418 break;
4419 }
4420 /* Fall through. */
4421
4422 case COND_JUMP:
4423 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
4424 {
4425 fixS *fixP;
4426
4427 fragP->fr_fix += 1;
4428 fixP = fix_new (fragP, old_fr_fix, 1,
4429 fragP->fr_symbol,
4430 fragP->fr_offset, 1,
4431 BFD_RELOC_8_PCREL);
4432 fixP->fx_signed = 1;
4433 break;
4434 }
4435
4436 /* This changes the byte-displacement jump 0x7N
4437 to the (d)word-displacement jump 0x0f,0x8N. */
4438 opcode[1] = opcode[0] + 0x10;
4439 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4440 /* We've added an opcode byte. */
4441 fragP->fr_fix += 1 + size;
4442 fix_new (fragP, old_fr_fix + 1, size,
4443 fragP->fr_symbol,
4444 fragP->fr_offset, 1,
4445 reloc_type);
4446 break;
4447
4448 default:
4449 BAD_CASE (fragP->fr_subtype);
4450 break;
4451 }
4452 frag_wane (fragP);
4453 return fragP->fr_fix - old_fr_fix;
4454 }
4455
4456 /* Guess size depending on current relax state. Initially the relax
4457 state will correspond to a short jump and we return 1, because
4458 the variable part of the frag (the branch offset) is one byte
4459 long. However, we can relax a section more than once and in that
4460 case we must either set fr_subtype back to the unrelaxed state,
4461 or return the value for the appropriate branch. */
4462 return md_relax_table[fragP->fr_subtype].rlx_length;
4463 }
4464
4465 /* Called after relax() is finished.
4466
4467 In: Address of frag.
4468 fr_type == rs_machine_dependent.
4469 fr_subtype is what the address relaxed to.
4470
4471 Out: Any fixSs and constants are set up.
4472 Caller will turn frag into a ".space 0". */
4473
4474 #ifndef BFD_ASSEMBLER
4475 void
4476 md_convert_frag (headers, sec, fragP)
4477 object_headers *headers ATTRIBUTE_UNUSED;
4478 segT sec ATTRIBUTE_UNUSED;
4479 fragS *fragP;
4480 #else
4481 void
4482 md_convert_frag (abfd, sec, fragP)
4483 bfd *abfd ATTRIBUTE_UNUSED;
4484 segT sec ATTRIBUTE_UNUSED;
4485 fragS *fragP;
4486 #endif
4487 {
4488 unsigned char *opcode;
4489 unsigned char *where_to_put_displacement = NULL;
4490 offsetT target_address;
4491 offsetT opcode_address;
4492 unsigned int extension = 0;
4493 offsetT displacement_from_opcode_start;
4494
4495 opcode = (unsigned char *) fragP->fr_opcode;
4496
4497 /* Address we want to reach in file space. */
4498 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
4499
4500 /* Address opcode resides at in file space. */
4501 opcode_address = fragP->fr_address + fragP->fr_fix;
4502
4503 /* Displacement from opcode start to fill into instruction. */
4504 displacement_from_opcode_start = target_address - opcode_address;
4505
4506 if ((fragP->fr_subtype & BIG) == 0)
4507 {
4508 /* Don't have to change opcode. */
4509 extension = 1; /* 1 opcode + 1 displacement */
4510 where_to_put_displacement = &opcode[1];
4511 }
4512 else
4513 {
4514 if (no_cond_jump_promotion
4515 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4516 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
4517
4518 switch (fragP->fr_subtype)
4519 {
4520 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4521 extension = 4; /* 1 opcode + 4 displacement */
4522 opcode[0] = 0xe9;
4523 where_to_put_displacement = &opcode[1];
4524 break;
4525
4526 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4527 extension = 2; /* 1 opcode + 2 displacement */
4528 opcode[0] = 0xe9;
4529 where_to_put_displacement = &opcode[1];
4530 break;
4531
4532 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4533 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4534 extension = 5; /* 2 opcode + 4 displacement */
4535 opcode[1] = opcode[0] + 0x10;
4536 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4537 where_to_put_displacement = &opcode[2];
4538 break;
4539
4540 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4541 extension = 3; /* 2 opcode + 2 displacement */
4542 opcode[1] = opcode[0] + 0x10;
4543 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4544 where_to_put_displacement = &opcode[2];
4545 break;
4546
4547 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4548 extension = 4;
4549 opcode[0] ^= 1;
4550 opcode[1] = 3;
4551 opcode[2] = 0xe9;
4552 where_to_put_displacement = &opcode[3];
4553 break;
4554
4555 default:
4556 BAD_CASE (fragP->fr_subtype);
4557 break;
4558 }
4559 }
4560
4561 /* Now put displacement after opcode. */
4562 md_number_to_chars ((char *) where_to_put_displacement,
4563 (valueT) (displacement_from_opcode_start - extension),
4564 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
4565 fragP->fr_fix += extension;
4566 }
4567 \f
4568 /* Size of byte displacement jmp. */
4569 int md_short_jump_size = 2;
4570
4571 /* Size of dword displacement jmp. */
4572 int md_long_jump_size = 5;
4573
4574 /* Size of relocation record. */
4575 const int md_reloc_size = 8;
4576
4577 void
4578 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4579 char *ptr;
4580 addressT from_addr, to_addr;
4581 fragS *frag ATTRIBUTE_UNUSED;
4582 symbolS *to_symbol ATTRIBUTE_UNUSED;
4583 {
4584 offsetT offset;
4585
4586 offset = to_addr - (from_addr + 2);
4587 /* Opcode for byte-disp jump. */
4588 md_number_to_chars (ptr, (valueT) 0xeb, 1);
4589 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4590 }
4591
4592 void
4593 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4594 char *ptr;
4595 addressT from_addr, to_addr;
4596 fragS *frag ATTRIBUTE_UNUSED;
4597 symbolS *to_symbol ATTRIBUTE_UNUSED;
4598 {
4599 offsetT offset;
4600
4601 offset = to_addr - (from_addr + 5);
4602 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4603 md_number_to_chars (ptr + 1, (valueT) offset, 4);
4604 }
4605 \f
4606 /* Apply a fixup (fixS) to segment data, once it has been determined
4607 by our caller that we have all the info we need to fix it up.
4608
4609 On the 386, immediates, displacements, and data pointers are all in
4610 the same (little-endian) format, so we don't need to care about which
4611 we are handling. */
4612
4613 void
4614 md_apply_fix3 (fixP, valP, seg)
4615 /* The fix we're to put in. */
4616 fixS *fixP;
4617 /* Pointer to the value of the bits. */
4618 valueT *valP;
4619 /* Segment fix is from. */
4620 segT seg ATTRIBUTE_UNUSED;
4621 {
4622 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4623 valueT value = *valP;
4624
4625 #if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
4626 if (fixP->fx_pcrel)
4627 {
4628 switch (fixP->fx_r_type)
4629 {
4630 default:
4631 break;
4632
4633 case BFD_RELOC_32:
4634 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4635 break;
4636 case BFD_RELOC_16:
4637 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4638 break;
4639 case BFD_RELOC_8:
4640 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4641 break;
4642 }
4643 }
4644
4645 if (fixP->fx_addsy != NULL
4646 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
4647 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4648 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4649 && !use_rela_relocations)
4650 {
4651 /* This is a hack. There should be a better way to handle this.
4652 This covers for the fact that bfd_install_relocation will
4653 subtract the current location (for partial_inplace, PC relative
4654 relocations); see more below. */
4655 #ifndef OBJ_AOUT
4656 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4657 #ifdef TE_PE
4658 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4659 #endif
4660 )
4661 value += fixP->fx_where + fixP->fx_frag->fr_address;
4662 #endif
4663 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4664 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
4665 {
4666 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
4667
4668 if ((sym_seg == seg
4669 || (symbol_section_p (fixP->fx_addsy)
4670 && sym_seg != absolute_section))
4671 && !generic_force_reloc (fixP))
4672 {
4673 /* Yes, we add the values in twice. This is because
4674 bfd_install_relocation subtracts them out again. I think
4675 bfd_install_relocation is broken, but I don't dare change
4676 it. FIXME. */
4677 value += fixP->fx_where + fixP->fx_frag->fr_address;
4678 }
4679 }
4680 #endif
4681 #if defined (OBJ_COFF) && defined (TE_PE)
4682 /* For some reason, the PE format does not store a section
4683 address offset for a PC relative symbol. */
4684 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4685 value += md_pcrel_from (fixP);
4686 #endif
4687 }
4688
4689 /* Fix a few things - the dynamic linker expects certain values here,
4690 and we must not dissappoint it. */
4691 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4692 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4693 && fixP->fx_addsy)
4694 switch (fixP->fx_r_type)
4695 {
4696 case BFD_RELOC_386_PLT32:
4697 case BFD_RELOC_X86_64_PLT32:
4698 /* Make the jump instruction point to the address of the operand. At
4699 runtime we merely add the offset to the actual PLT entry. */
4700 value = -4;
4701 break;
4702
4703 case BFD_RELOC_386_TLS_GD:
4704 case BFD_RELOC_386_TLS_LDM:
4705 case BFD_RELOC_386_TLS_IE_32:
4706 case BFD_RELOC_386_TLS_IE:
4707 case BFD_RELOC_386_TLS_GOTIE:
4708 case BFD_RELOC_X86_64_TLSGD:
4709 case BFD_RELOC_X86_64_TLSLD:
4710 case BFD_RELOC_X86_64_GOTTPOFF:
4711 value = 0; /* Fully resolved at runtime. No addend. */
4712 /* Fallthrough */
4713 case BFD_RELOC_386_TLS_LE:
4714 case BFD_RELOC_386_TLS_LDO_32:
4715 case BFD_RELOC_386_TLS_LE_32:
4716 case BFD_RELOC_X86_64_DTPOFF32:
4717 case BFD_RELOC_X86_64_TPOFF32:
4718 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4719 break;
4720
4721 case BFD_RELOC_386_GOT32:
4722 case BFD_RELOC_X86_64_GOT32:
4723 value = 0; /* Fully resolved at runtime. No addend. */
4724 break;
4725
4726 case BFD_RELOC_VTABLE_INHERIT:
4727 case BFD_RELOC_VTABLE_ENTRY:
4728 fixP->fx_done = 0;
4729 return;
4730
4731 default:
4732 break;
4733 }
4734 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
4735 *valP = value;
4736 #endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
4737
4738 /* Are we finished with this relocation now? */
4739 if (fixP->fx_addsy == NULL)
4740 fixP->fx_done = 1;
4741 #ifdef BFD_ASSEMBLER
4742 else if (use_rela_relocations)
4743 {
4744 fixP->fx_no_overflow = 1;
4745 /* Remember value for tc_gen_reloc. */
4746 fixP->fx_addnumber = value;
4747 value = 0;
4748 }
4749 #endif
4750 md_number_to_chars (p, value, fixP->fx_size);
4751 }
4752 \f
4753 #define MAX_LITTLENUMS 6
4754
4755 /* Turn the string pointed to by litP into a floating point constant
4756 of type TYPE, and emit the appropriate bytes. The number of
4757 LITTLENUMS emitted is stored in *SIZEP. An error message is
4758 returned, or NULL on OK. */
4759
4760 char *
4761 md_atof (type, litP, sizeP)
4762 int type;
4763 char *litP;
4764 int *sizeP;
4765 {
4766 int prec;
4767 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4768 LITTLENUM_TYPE *wordP;
4769 char *t;
4770
4771 switch (type)
4772 {
4773 case 'f':
4774 case 'F':
4775 prec = 2;
4776 break;
4777
4778 case 'd':
4779 case 'D':
4780 prec = 4;
4781 break;
4782
4783 case 'x':
4784 case 'X':
4785 prec = 5;
4786 break;
4787
4788 default:
4789 *sizeP = 0;
4790 return _("Bad call to md_atof ()");
4791 }
4792 t = atof_ieee (input_line_pointer, type, words);
4793 if (t)
4794 input_line_pointer = t;
4795
4796 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4797 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4798 the bigendian 386. */
4799 for (wordP = words + prec - 1; prec--;)
4800 {
4801 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4802 litP += sizeof (LITTLENUM_TYPE);
4803 }
4804 return 0;
4805 }
4806 \f
4807 char output_invalid_buf[8];
4808
4809 static char *
4810 output_invalid (c)
4811 int c;
4812 {
4813 if (ISPRINT (c))
4814 sprintf (output_invalid_buf, "'%c'", c);
4815 else
4816 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4817 return output_invalid_buf;
4818 }
4819
4820 /* REG_STRING starts *before* REGISTER_PREFIX. */
4821
4822 static const reg_entry *
4823 parse_register (reg_string, end_op)
4824 char *reg_string;
4825 char **end_op;
4826 {
4827 char *s = reg_string;
4828 char *p;
4829 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4830 const reg_entry *r;
4831
4832 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4833 if (*s == REGISTER_PREFIX)
4834 ++s;
4835
4836 if (is_space_char (*s))
4837 ++s;
4838
4839 p = reg_name_given;
4840 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
4841 {
4842 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
4843 return (const reg_entry *) NULL;
4844 s++;
4845 }
4846
4847 /* For naked regs, make sure that we are not dealing with an identifier.
4848 This prevents confusing an identifier like `eax_var' with register
4849 `eax'. */
4850 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4851 return (const reg_entry *) NULL;
4852
4853 *end_op = s;
4854
4855 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4856
4857 /* Handle floating point regs, allowing spaces in the (i) part. */
4858 if (r == i386_regtab /* %st is first entry of table */)
4859 {
4860 if (is_space_char (*s))
4861 ++s;
4862 if (*s == '(')
4863 {
4864 ++s;
4865 if (is_space_char (*s))
4866 ++s;
4867 if (*s >= '0' && *s <= '7')
4868 {
4869 r = &i386_float_regtab[*s - '0'];
4870 ++s;
4871 if (is_space_char (*s))
4872 ++s;
4873 if (*s == ')')
4874 {
4875 *end_op = s + 1;
4876 return r;
4877 }
4878 }
4879 /* We have "%st(" then garbage. */
4880 return (const reg_entry *) NULL;
4881 }
4882 }
4883
4884 if (r != NULL
4885 && (r->reg_flags & (RegRex64 | RegRex)) != 0
4886 && flag_code != CODE_64BIT)
4887 {
4888 return (const reg_entry *) NULL;
4889 }
4890
4891 return r;
4892 }
4893 \f
4894 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4895 const char *md_shortopts = "kVQ:sqn";
4896 #else
4897 const char *md_shortopts = "qn";
4898 #endif
4899
4900 struct option md_longopts[] = {
4901 #define OPTION_32 (OPTION_MD_BASE + 0)
4902 {"32", no_argument, NULL, OPTION_32},
4903 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4904 #define OPTION_64 (OPTION_MD_BASE + 1)
4905 {"64", no_argument, NULL, OPTION_64},
4906 #endif
4907 {NULL, no_argument, NULL, 0}
4908 };
4909 size_t md_longopts_size = sizeof (md_longopts);
4910
4911 int
4912 md_parse_option (c, arg)
4913 int c;
4914 char *arg ATTRIBUTE_UNUSED;
4915 {
4916 switch (c)
4917 {
4918 case 'n':
4919 optimize_align_code = 0;
4920 break;
4921
4922 case 'q':
4923 quiet_warnings = 1;
4924 break;
4925
4926 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4927 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4928 should be emitted or not. FIXME: Not implemented. */
4929 case 'Q':
4930 break;
4931
4932 /* -V: SVR4 argument to print version ID. */
4933 case 'V':
4934 print_version_id ();
4935 break;
4936
4937 /* -k: Ignore for FreeBSD compatibility. */
4938 case 'k':
4939 break;
4940
4941 case 's':
4942 /* -s: On i386 Solaris, this tells the native assembler to use
4943 .stab instead of .stab.excl. We always use .stab anyhow. */
4944 break;
4945
4946 case OPTION_64:
4947 {
4948 const char **list, **l;
4949
4950 list = bfd_target_list ();
4951 for (l = list; *l != NULL; l++)
4952 if (strcmp (*l, "elf64-x86-64") == 0)
4953 {
4954 default_arch = "x86_64";
4955 break;
4956 }
4957 if (*l == NULL)
4958 as_fatal (_("No compiled in support for x86_64"));
4959 free (list);
4960 }
4961 break;
4962 #endif
4963
4964 case OPTION_32:
4965 default_arch = "i386";
4966 break;
4967
4968 default:
4969 return 0;
4970 }
4971 return 1;
4972 }
4973
4974 void
4975 md_show_usage (stream)
4976 FILE *stream;
4977 {
4978 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4979 fprintf (stream, _("\
4980 -Q ignored\n\
4981 -V print assembler version number\n\
4982 -k ignored\n\
4983 -n Do not optimize code alignment\n\
4984 -q quieten some warnings\n\
4985 -s ignored\n"));
4986 #else
4987 fprintf (stream, _("\
4988 -n Do not optimize code alignment\n\
4989 -q quieten some warnings\n"));
4990 #endif
4991 }
4992
4993 #ifdef BFD_ASSEMBLER
4994 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
4995 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
4996
4997 /* Pick the target format to use. */
4998
4999 const char *
5000 i386_target_format ()
5001 {
5002 if (!strcmp (default_arch, "x86_64"))
5003 set_code_flag (CODE_64BIT);
5004 else if (!strcmp (default_arch, "i386"))
5005 set_code_flag (CODE_32BIT);
5006 else
5007 as_fatal (_("Unknown architecture"));
5008 switch (OUTPUT_FLAVOR)
5009 {
5010 #ifdef OBJ_MAYBE_AOUT
5011 case bfd_target_aout_flavour:
5012 return AOUT_TARGET_FORMAT;
5013 #endif
5014 #ifdef OBJ_MAYBE_COFF
5015 case bfd_target_coff_flavour:
5016 return "coff-i386";
5017 #endif
5018 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
5019 case bfd_target_elf_flavour:
5020 {
5021 if (flag_code == CODE_64BIT)
5022 use_rela_relocations = 1;
5023 return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
5024 }
5025 #endif
5026 default:
5027 abort ();
5028 return NULL;
5029 }
5030 }
5031
5032 #endif /* OBJ_MAYBE_ more than one */
5033
5034 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5035 void i386_elf_emit_arch_note ()
5036 {
5037 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
5038 && cpu_arch_name != NULL)
5039 {
5040 char *p;
5041 asection *seg = now_seg;
5042 subsegT subseg = now_subseg;
5043 Elf_Internal_Note i_note;
5044 Elf_External_Note e_note;
5045 asection *note_secp;
5046 int len;
5047
5048 /* Create the .note section. */
5049 note_secp = subseg_new (".note", 0);
5050 bfd_set_section_flags (stdoutput,
5051 note_secp,
5052 SEC_HAS_CONTENTS | SEC_READONLY);
5053
5054 /* Process the arch string. */
5055 len = strlen (cpu_arch_name);
5056
5057 i_note.namesz = len + 1;
5058 i_note.descsz = 0;
5059 i_note.type = NT_ARCH;
5060 p = frag_more (sizeof (e_note.namesz));
5061 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
5062 p = frag_more (sizeof (e_note.descsz));
5063 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
5064 p = frag_more (sizeof (e_note.type));
5065 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
5066 p = frag_more (len + 1);
5067 strcpy (p, cpu_arch_name);
5068
5069 frag_align (2, 0, 0);
5070
5071 subseg_set (seg, subseg);
5072 }
5073 }
5074 #endif
5075 #endif /* BFD_ASSEMBLER */
5076 \f
5077 symbolS *
5078 md_undefined_symbol (name)
5079 char *name;
5080 {
5081 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
5082 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
5083 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
5084 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
5085 {
5086 if (!GOT_symbol)
5087 {
5088 if (symbol_find (name))
5089 as_bad (_("GOT already in symbol table"));
5090 GOT_symbol = symbol_new (name, undefined_section,
5091 (valueT) 0, &zero_address_frag);
5092 };
5093 return GOT_symbol;
5094 }
5095 return 0;
5096 }
5097
5098 /* Round up a section size to the appropriate boundary. */
5099
5100 valueT
5101 md_section_align (segment, size)
5102 segT segment ATTRIBUTE_UNUSED;
5103 valueT size;
5104 {
5105 #ifdef BFD_ASSEMBLER
5106 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5107 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
5108 {
5109 /* For a.out, force the section size to be aligned. If we don't do
5110 this, BFD will align it for us, but it will not write out the
5111 final bytes of the section. This may be a bug in BFD, but it is
5112 easier to fix it here since that is how the other a.out targets
5113 work. */
5114 int align;
5115
5116 align = bfd_get_section_alignment (stdoutput, segment);
5117 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
5118 }
5119 #endif
5120 #endif
5121
5122 return size;
5123 }
5124
5125 /* On the i386, PC-relative offsets are relative to the start of the
5126 next instruction. That is, the address of the offset, plus its
5127 size, since the offset is always the last part of the insn. */
5128
5129 long
5130 md_pcrel_from (fixP)
5131 fixS *fixP;
5132 {
5133 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
5134 }
5135
5136 #ifndef I386COFF
5137
5138 static void
5139 s_bss (ignore)
5140 int ignore ATTRIBUTE_UNUSED;
5141 {
5142 int temp;
5143
5144 temp = get_absolute_expression ();
5145 subseg_set (bss_section, (subsegT) temp);
5146 demand_empty_rest_of_line ();
5147 }
5148
5149 #endif
5150
5151 #ifdef BFD_ASSEMBLER
5152
5153 void
5154 i386_validate_fix (fixp)
5155 fixS *fixp;
5156 {
5157 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
5158 {
5159 /* GOTOFF relocation are nonsense in 64bit mode. */
5160 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
5161 {
5162 if (flag_code != CODE_64BIT)
5163 abort ();
5164 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
5165 }
5166 else
5167 {
5168 if (flag_code == CODE_64BIT)
5169 abort ();
5170 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
5171 }
5172 fixp->fx_subsy = 0;
5173 }
5174 }
5175
5176 arelent *
5177 tc_gen_reloc (section, fixp)
5178 asection *section ATTRIBUTE_UNUSED;
5179 fixS *fixp;
5180 {
5181 arelent *rel;
5182 bfd_reloc_code_real_type code;
5183
5184 switch (fixp->fx_r_type)
5185 {
5186 case BFD_RELOC_X86_64_PLT32:
5187 case BFD_RELOC_X86_64_GOT32:
5188 case BFD_RELOC_X86_64_GOTPCREL:
5189 case BFD_RELOC_386_PLT32:
5190 case BFD_RELOC_386_GOT32:
5191 case BFD_RELOC_386_GOTOFF:
5192 case BFD_RELOC_386_GOTPC:
5193 case BFD_RELOC_386_TLS_GD:
5194 case BFD_RELOC_386_TLS_LDM:
5195 case BFD_RELOC_386_TLS_LDO_32:
5196 case BFD_RELOC_386_TLS_IE_32:
5197 case BFD_RELOC_386_TLS_IE:
5198 case BFD_RELOC_386_TLS_GOTIE:
5199 case BFD_RELOC_386_TLS_LE_32:
5200 case BFD_RELOC_386_TLS_LE:
5201 case BFD_RELOC_X86_64_32S:
5202 case BFD_RELOC_X86_64_TLSGD:
5203 case BFD_RELOC_X86_64_TLSLD:
5204 case BFD_RELOC_X86_64_DTPOFF32:
5205 case BFD_RELOC_X86_64_GOTTPOFF:
5206 case BFD_RELOC_X86_64_TPOFF32:
5207 case BFD_RELOC_RVA:
5208 case BFD_RELOC_VTABLE_ENTRY:
5209 case BFD_RELOC_VTABLE_INHERIT:
5210 code = fixp->fx_r_type;
5211 break;
5212 default:
5213 if (fixp->fx_pcrel)
5214 {
5215 switch (fixp->fx_size)
5216 {
5217 default:
5218 as_bad_where (fixp->fx_file, fixp->fx_line,
5219 _("can not do %d byte pc-relative relocation"),
5220 fixp->fx_size);
5221 code = BFD_RELOC_32_PCREL;
5222 break;
5223 case 1: code = BFD_RELOC_8_PCREL; break;
5224 case 2: code = BFD_RELOC_16_PCREL; break;
5225 case 4: code = BFD_RELOC_32_PCREL; break;
5226 }
5227 }
5228 else
5229 {
5230 switch (fixp->fx_size)
5231 {
5232 default:
5233 as_bad_where (fixp->fx_file, fixp->fx_line,
5234 _("can not do %d byte relocation"),
5235 fixp->fx_size);
5236 code = BFD_RELOC_32;
5237 break;
5238 case 1: code = BFD_RELOC_8; break;
5239 case 2: code = BFD_RELOC_16; break;
5240 case 4: code = BFD_RELOC_32; break;
5241 #ifdef BFD64
5242 case 8: code = BFD_RELOC_64; break;
5243 #endif
5244 }
5245 }
5246 break;
5247 }
5248
5249 if (code == BFD_RELOC_32
5250 && GOT_symbol
5251 && fixp->fx_addsy == GOT_symbol)
5252 {
5253 /* We don't support GOTPC on 64bit targets. */
5254 if (flag_code == CODE_64BIT)
5255 abort ();
5256 code = BFD_RELOC_386_GOTPC;
5257 }
5258
5259 rel = (arelent *) xmalloc (sizeof (arelent));
5260 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5261 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
5262
5263 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
5264 if (!use_rela_relocations)
5265 {
5266 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5267 vtable entry to be used in the relocation's section offset. */
5268 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5269 rel->address = fixp->fx_offset;
5270
5271 rel->addend = 0;
5272 }
5273 /* Use the rela in 64bit mode. */
5274 else
5275 {
5276 if (!fixp->fx_pcrel)
5277 rel->addend = fixp->fx_offset;
5278 else
5279 switch (code)
5280 {
5281 case BFD_RELOC_X86_64_PLT32:
5282 case BFD_RELOC_X86_64_GOT32:
5283 case BFD_RELOC_X86_64_GOTPCREL:
5284 case BFD_RELOC_X86_64_TLSGD:
5285 case BFD_RELOC_X86_64_TLSLD:
5286 case BFD_RELOC_X86_64_GOTTPOFF:
5287 rel->addend = fixp->fx_offset - fixp->fx_size;
5288 break;
5289 default:
5290 rel->addend = (section->vma
5291 - fixp->fx_size
5292 + fixp->fx_addnumber
5293 + md_pcrel_from (fixp));
5294 break;
5295 }
5296 }
5297
5298 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
5299 if (rel->howto == NULL)
5300 {
5301 as_bad_where (fixp->fx_file, fixp->fx_line,
5302 _("cannot represent relocation type %s"),
5303 bfd_get_reloc_code_name (code));
5304 /* Set howto to a garbage value so that we can keep going. */
5305 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
5306 assert (rel->howto != NULL);
5307 }
5308
5309 return rel;
5310 }
5311
5312 #else /* !BFD_ASSEMBLER */
5313
5314 #if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
5315 void
5316 tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
5317 char *where;
5318 fixS *fixP;
5319 relax_addressT segment_address_in_file;
5320 {
5321 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
5322 Out: GNU LD relocation length code: 0, 1, or 2. */
5323
5324 static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
5325 long r_symbolnum;
5326
5327 know (fixP->fx_addsy != NULL);
5328
5329 md_number_to_chars (where,
5330 (valueT) (fixP->fx_frag->fr_address
5331 + fixP->fx_where - segment_address_in_file),
5332 4);
5333
5334 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
5335 ? S_GET_TYPE (fixP->fx_addsy)
5336 : fixP->fx_addsy->sy_number);
5337
5338 where[6] = (r_symbolnum >> 16) & 0x0ff;
5339 where[5] = (r_symbolnum >> 8) & 0x0ff;
5340 where[4] = r_symbolnum & 0x0ff;
5341 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
5342 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
5343 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
5344 }
5345
5346 #endif /* OBJ_AOUT or OBJ_BOUT. */
5347
5348 #if defined (I386COFF)
5349
5350 short
5351 tc_coff_fix2rtype (fixP)
5352 fixS *fixP;
5353 {
5354 if (fixP->fx_r_type == R_IMAGEBASE)
5355 return R_IMAGEBASE;
5356
5357 return (fixP->fx_pcrel ?
5358 (fixP->fx_size == 1 ? R_PCRBYTE :
5359 fixP->fx_size == 2 ? R_PCRWORD :
5360 R_PCRLONG) :
5361 (fixP->fx_size == 1 ? R_RELBYTE :
5362 fixP->fx_size == 2 ? R_RELWORD :
5363 R_DIR32));
5364 }
5365
5366 int
5367 tc_coff_sizemachdep (frag)
5368 fragS *frag;
5369 {
5370 if (frag->fr_next)
5371 return (frag->fr_next->fr_address - frag->fr_address);
5372 else
5373 return 0;
5374 }
5375
5376 #endif /* I386COFF */
5377
5378 #endif /* !BFD_ASSEMBLER */
5379 \f
5380 /* Parse operands using Intel syntax. This implements a recursive descent
5381 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5382 Programmer's Guide.
5383
5384 FIXME: We do not recognize the full operand grammar defined in the MASM
5385 documentation. In particular, all the structure/union and
5386 high-level macro operands are missing.
5387
5388 Uppercase words are terminals, lower case words are non-terminals.
5389 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5390 bars '|' denote choices. Most grammar productions are implemented in
5391 functions called 'intel_<production>'.
5392
5393 Initial production is 'expr'.
5394
5395 addOp + | -
5396
5397 alpha [a-zA-Z]
5398
5399 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5400
5401 constant digits [[ radixOverride ]]
5402
5403 dataType BYTE | WORD | DWORD | QWORD | XWORD
5404
5405 digits decdigit
5406 | digits decdigit
5407 | digits hexdigit
5408
5409 decdigit [0-9]
5410
5411 e05 e05 addOp e06
5412 | e06
5413
5414 e06 e06 mulOp e09
5415 | e09
5416
5417 e09 OFFSET e10
5418 | e09 PTR e10
5419 | e09 : e10
5420 | e10
5421
5422 e10 e10 [ expr ]
5423 | e11
5424
5425 e11 ( expr )
5426 | [ expr ]
5427 | constant
5428 | dataType
5429 | id
5430 | $
5431 | register
5432
5433 => expr SHORT e05
5434 | e05
5435
5436 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
5437 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
5438
5439 hexdigit a | b | c | d | e | f
5440 | A | B | C | D | E | F
5441
5442 id alpha
5443 | id alpha
5444 | id decdigit
5445
5446 mulOp * | / | MOD
5447
5448 quote " | '
5449
5450 register specialRegister
5451 | gpRegister
5452 | byteRegister
5453
5454 segmentRegister CS | DS | ES | FS | GS | SS
5455
5456 specialRegister CR0 | CR2 | CR3
5457 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
5458 | TR3 | TR4 | TR5 | TR6 | TR7
5459
5460 We simplify the grammar in obvious places (e.g., register parsing is
5461 done by calling parse_register) and eliminate immediate left recursion
5462 to implement a recursive-descent parser.
5463
5464 expr SHORT e05
5465 | e05
5466
5467 e05 e06 e05'
5468
5469 e05' addOp e06 e05'
5470 | Empty
5471
5472 e06 e09 e06'
5473
5474 e06' mulOp e09 e06'
5475 | Empty
5476
5477 e09 OFFSET e10 e09'
5478 | e10 e09'
5479
5480 e09' PTR e10 e09'
5481 | : e10 e09'
5482 | Empty
5483
5484 e10 e11 e10'
5485
5486 e10' [ expr ] e10'
5487 | Empty
5488
5489 e11 ( expr )
5490 | [ expr ]
5491 | BYTE
5492 | WORD
5493 | DWORD
5494 | QWORD
5495 | XWORD
5496 | .
5497 | $
5498 | register
5499 | id
5500 | constant */
5501
5502 /* Parsing structure for the intel syntax parser. Used to implement the
5503 semantic actions for the operand grammar. */
5504 struct intel_parser_s
5505 {
5506 char *op_string; /* The string being parsed. */
5507 int got_a_float; /* Whether the operand is a float. */
5508 int op_modifier; /* Operand modifier. */
5509 int is_mem; /* 1 if operand is memory reference. */
5510 const reg_entry *reg; /* Last register reference found. */
5511 char *disp; /* Displacement string being built. */
5512 };
5513
5514 static struct intel_parser_s intel_parser;
5515
5516 /* Token structure for parsing intel syntax. */
5517 struct intel_token
5518 {
5519 int code; /* Token code. */
5520 const reg_entry *reg; /* Register entry for register tokens. */
5521 char *str; /* String representation. */
5522 };
5523
5524 static struct intel_token cur_token, prev_token;
5525
5526 /* Token codes for the intel parser. Since T_SHORT is already used
5527 by COFF, undefine it first to prevent a warning. */
5528 #define T_NIL -1
5529 #define T_CONST 1
5530 #define T_REG 2
5531 #define T_BYTE 3
5532 #define T_WORD 4
5533 #define T_DWORD 5
5534 #define T_QWORD 6
5535 #define T_XWORD 7
5536 #undef T_SHORT
5537 #define T_SHORT 8
5538 #define T_OFFSET 9
5539 #define T_PTR 10
5540 #define T_ID 11
5541
5542 /* Prototypes for intel parser functions. */
5543 static int intel_match_token PARAMS ((int code));
5544 static void intel_get_token PARAMS ((void));
5545 static void intel_putback_token PARAMS ((void));
5546 static int intel_expr PARAMS ((void));
5547 static int intel_e05 PARAMS ((void));
5548 static int intel_e05_1 PARAMS ((void));
5549 static int intel_e06 PARAMS ((void));
5550 static int intel_e06_1 PARAMS ((void));
5551 static int intel_e09 PARAMS ((void));
5552 static int intel_e09_1 PARAMS ((void));
5553 static int intel_e10 PARAMS ((void));
5554 static int intel_e10_1 PARAMS ((void));
5555 static int intel_e11 PARAMS ((void));
5556
5557 static int
5558 i386_intel_operand (operand_string, got_a_float)
5559 char *operand_string;
5560 int got_a_float;
5561 {
5562 int ret;
5563 char *p;
5564
5565 /* Initialize token holders. */
5566 cur_token.code = prev_token.code = T_NIL;
5567 cur_token.reg = prev_token.reg = NULL;
5568 cur_token.str = prev_token.str = NULL;
5569
5570 /* Initialize parser structure. */
5571 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
5572 if (p == NULL)
5573 abort ();
5574 strcpy (intel_parser.op_string, operand_string);
5575 intel_parser.got_a_float = got_a_float;
5576 intel_parser.op_modifier = -1;
5577 intel_parser.is_mem = 0;
5578 intel_parser.reg = NULL;
5579 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
5580 if (intel_parser.disp == NULL)
5581 abort ();
5582 intel_parser.disp[0] = '\0';
5583
5584 /* Read the first token and start the parser. */
5585 intel_get_token ();
5586 ret = intel_expr ();
5587
5588 if (ret)
5589 {
5590 /* If we found a memory reference, hand it over to i386_displacement
5591 to fill in the rest of the operand fields. */
5592 if (intel_parser.is_mem)
5593 {
5594 if ((i.mem_operands == 1
5595 && (current_templates->start->opcode_modifier & IsString) == 0)
5596 || i.mem_operands == 2)
5597 {
5598 as_bad (_("too many memory references for '%s'"),
5599 current_templates->start->name);
5600 ret = 0;
5601 }
5602 else
5603 {
5604 char *s = intel_parser.disp;
5605 i.mem_operands++;
5606
5607 /* Add the displacement expression. */
5608 if (*s != '\0')
5609 ret = i386_displacement (s, s + strlen (s))
5610 && i386_index_check (s);
5611 }
5612 }
5613
5614 /* Constant and OFFSET expressions are handled by i386_immediate. */
5615 else if (intel_parser.op_modifier == OFFSET_FLAT
5616 || intel_parser.reg == NULL)
5617 ret = i386_immediate (intel_parser.disp);
5618 }
5619
5620 free (p);
5621 free (intel_parser.disp);
5622
5623 return ret;
5624 }
5625
5626 /* expr SHORT e05
5627 | e05 */
5628 static int
5629 intel_expr ()
5630 {
5631 /* expr SHORT e05 */
5632 if (cur_token.code == T_SHORT)
5633 {
5634 intel_parser.op_modifier = SHORT;
5635 intel_match_token (T_SHORT);
5636
5637 return (intel_e05 ());
5638 }
5639
5640 /* expr e05 */
5641 else
5642 return intel_e05 ();
5643 }
5644
5645 /* e05 e06 e05'
5646
5647 e05' addOp e06 e05'
5648 | Empty */
5649 static int
5650 intel_e05 ()
5651 {
5652 return (intel_e06 () && intel_e05_1 ());
5653 }
5654
5655 static int
5656 intel_e05_1 ()
5657 {
5658 /* e05' addOp e06 e05' */
5659 if (cur_token.code == '+' || cur_token.code == '-')
5660 {
5661 strcat (intel_parser.disp, cur_token.str);
5662 intel_match_token (cur_token.code);
5663
5664 return (intel_e06 () && intel_e05_1 ());
5665 }
5666
5667 /* e05' Empty */
5668 else
5669 return 1;
5670 }
5671
5672 /* e06 e09 e06'
5673
5674 e06' mulOp e09 e06'
5675 | Empty */
5676 static int
5677 intel_e06 ()
5678 {
5679 return (intel_e09 () && intel_e06_1 ());
5680 }
5681
5682 static int
5683 intel_e06_1 ()
5684 {
5685 /* e06' mulOp e09 e06' */
5686 if (cur_token.code == '*' || cur_token.code == '/')
5687 {
5688 strcat (intel_parser.disp, cur_token.str);
5689 intel_match_token (cur_token.code);
5690
5691 return (intel_e09 () && intel_e06_1 ());
5692 }
5693
5694 /* e06' Empty */
5695 else
5696 return 1;
5697 }
5698
5699 /* e09 OFFSET e10 e09'
5700 | e10 e09'
5701
5702 e09' PTR e10 e09'
5703 | : e10 e09'
5704 | Empty */
5705 static int
5706 intel_e09 ()
5707 {
5708 /* e09 OFFSET e10 e09' */
5709 if (cur_token.code == T_OFFSET)
5710 {
5711 intel_parser.is_mem = 0;
5712 intel_parser.op_modifier = OFFSET_FLAT;
5713 intel_match_token (T_OFFSET);
5714
5715 return (intel_e10 () && intel_e09_1 ());
5716 }
5717
5718 /* e09 e10 e09' */
5719 else
5720 return (intel_e10 () && intel_e09_1 ());
5721 }
5722
5723 static int
5724 intel_e09_1 ()
5725 {
5726 /* e09' PTR e10 e09' */
5727 if (cur_token.code == T_PTR)
5728 {
5729 if (prev_token.code == T_BYTE)
5730 i.suffix = BYTE_MNEM_SUFFIX;
5731
5732 else if (prev_token.code == T_WORD)
5733 {
5734 if (intel_parser.got_a_float == 2) /* "fi..." */
5735 i.suffix = SHORT_MNEM_SUFFIX;
5736 else
5737 i.suffix = WORD_MNEM_SUFFIX;
5738 }
5739
5740 else if (prev_token.code == T_DWORD)
5741 {
5742 if (intel_parser.got_a_float == 1) /* "f..." */
5743 i.suffix = SHORT_MNEM_SUFFIX;
5744 else
5745 i.suffix = LONG_MNEM_SUFFIX;
5746 }
5747
5748 else if (prev_token.code == T_QWORD)
5749 {
5750 if (intel_parser.got_a_float == 1) /* "f..." */
5751 i.suffix = LONG_MNEM_SUFFIX;
5752 else
5753 i.suffix = QWORD_MNEM_SUFFIX;
5754 }
5755
5756 else if (prev_token.code == T_XWORD)
5757 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
5758
5759 else
5760 {
5761 as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
5762 return 0;
5763 }
5764
5765 intel_match_token (T_PTR);
5766
5767 return (intel_e10 () && intel_e09_1 ());
5768 }
5769
5770 /* e09 : e10 e09' */
5771 else if (cur_token.code == ':')
5772 {
5773 /* Mark as a memory operand only if it's not already known to be an
5774 offset expression. */
5775 if (intel_parser.op_modifier != OFFSET_FLAT)
5776 intel_parser.is_mem = 1;
5777
5778 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5779 }
5780
5781 /* e09' Empty */
5782 else
5783 return 1;
5784 }
5785
5786 /* e10 e11 e10'
5787
5788 e10' [ expr ] e10'
5789 | Empty */
5790 static int
5791 intel_e10 ()
5792 {
5793 return (intel_e11 () && intel_e10_1 ());
5794 }
5795
5796 static int
5797 intel_e10_1 ()
5798 {
5799 /* e10' [ expr ] e10' */
5800 if (cur_token.code == '[')
5801 {
5802 intel_match_token ('[');
5803
5804 /* Mark as a memory operand only if it's not already known to be an
5805 offset expression. If it's an offset expression, we need to keep
5806 the brace in. */
5807 if (intel_parser.op_modifier != OFFSET_FLAT)
5808 intel_parser.is_mem = 1;
5809 else
5810 strcat (intel_parser.disp, "[");
5811
5812 /* Add a '+' to the displacement string if necessary. */
5813 if (*intel_parser.disp != '\0'
5814 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5815 strcat (intel_parser.disp, "+");
5816
5817 if (intel_expr () && intel_match_token (']'))
5818 {
5819 /* Preserve brackets when the operand is an offset expression. */
5820 if (intel_parser.op_modifier == OFFSET_FLAT)
5821 strcat (intel_parser.disp, "]");
5822
5823 return intel_e10_1 ();
5824 }
5825 else
5826 return 0;
5827 }
5828
5829 /* e10' Empty */
5830 else
5831 return 1;
5832 }
5833
5834 /* e11 ( expr )
5835 | [ expr ]
5836 | BYTE
5837 | WORD
5838 | DWORD
5839 | QWORD
5840 | XWORD
5841 | $
5842 | .
5843 | register
5844 | id
5845 | constant */
5846 static int
5847 intel_e11 ()
5848 {
5849 /* e11 ( expr ) */
5850 if (cur_token.code == '(')
5851 {
5852 intel_match_token ('(');
5853 strcat (intel_parser.disp, "(");
5854
5855 if (intel_expr () && intel_match_token (')'))
5856 {
5857 strcat (intel_parser.disp, ")");
5858 return 1;
5859 }
5860 else
5861 return 0;
5862 }
5863
5864 /* e11 [ expr ] */
5865 else if (cur_token.code == '[')
5866 {
5867 intel_match_token ('[');
5868
5869 /* Mark as a memory operand only if it's not already known to be an
5870 offset expression. If it's an offset expression, we need to keep
5871 the brace in. */
5872 if (intel_parser.op_modifier != OFFSET_FLAT)
5873 intel_parser.is_mem = 1;
5874 else
5875 strcat (intel_parser.disp, "[");
5876
5877 /* Operands for jump/call inside brackets denote absolute addresses. */
5878 if (current_templates->start->opcode_modifier & Jump
5879 || current_templates->start->opcode_modifier & JumpDword
5880 || current_templates->start->opcode_modifier & JumpByte
5881 || current_templates->start->opcode_modifier & JumpInterSegment)
5882 i.types[this_operand] |= JumpAbsolute;
5883
5884 /* Add a '+' to the displacement string if necessary. */
5885 if (*intel_parser.disp != '\0'
5886 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5887 strcat (intel_parser.disp, "+");
5888
5889 if (intel_expr () && intel_match_token (']'))
5890 {
5891 /* Preserve brackets when the operand is an offset expression. */
5892 if (intel_parser.op_modifier == OFFSET_FLAT)
5893 strcat (intel_parser.disp, "]");
5894
5895 return 1;
5896 }
5897 else
5898 return 0;
5899 }
5900
5901 /* e11 BYTE
5902 | WORD
5903 | DWORD
5904 | QWORD
5905 | XWORD */
5906 else if (cur_token.code == T_BYTE
5907 || cur_token.code == T_WORD
5908 || cur_token.code == T_DWORD
5909 || cur_token.code == T_QWORD
5910 || cur_token.code == T_XWORD)
5911 {
5912 intel_match_token (cur_token.code);
5913
5914 return 1;
5915 }
5916
5917 /* e11 $
5918 | . */
5919 else if (cur_token.code == '$' || cur_token.code == '.')
5920 {
5921 strcat (intel_parser.disp, cur_token.str);
5922 intel_match_token (cur_token.code);
5923
5924 /* Mark as a memory operand only if it's not already known to be an
5925 offset expression. */
5926 if (intel_parser.op_modifier != OFFSET_FLAT)
5927 intel_parser.is_mem = 1;
5928
5929 return 1;
5930 }
5931
5932 /* e11 register */
5933 else if (cur_token.code == T_REG)
5934 {
5935 const reg_entry *reg = intel_parser.reg = cur_token.reg;
5936
5937 intel_match_token (T_REG);
5938
5939 /* Check for segment change. */
5940 if (cur_token.code == ':')
5941 {
5942 if (reg->reg_type & (SReg2 | SReg3))
5943 {
5944 switch (reg->reg_num)
5945 {
5946 case 0:
5947 i.seg[i.mem_operands] = &es;
5948 break;
5949 case 1:
5950 i.seg[i.mem_operands] = &cs;
5951 break;
5952 case 2:
5953 i.seg[i.mem_operands] = &ss;
5954 break;
5955 case 3:
5956 i.seg[i.mem_operands] = &ds;
5957 break;
5958 case 4:
5959 i.seg[i.mem_operands] = &fs;
5960 break;
5961 case 5:
5962 i.seg[i.mem_operands] = &gs;
5963 break;
5964 }
5965 }
5966 else
5967 {
5968 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
5969 return 0;
5970 }
5971 }
5972
5973 /* Not a segment register. Check for register scaling. */
5974 else if (cur_token.code == '*')
5975 {
5976 if (!intel_parser.is_mem)
5977 {
5978 as_bad (_("Register scaling only allowed in memory operands."));
5979 return 0;
5980 }
5981
5982 /* What follows must be a valid scale. */
5983 if (intel_match_token ('*')
5984 && strchr ("01248", *cur_token.str))
5985 {
5986 i.index_reg = reg;
5987 i.types[this_operand] |= BaseIndex;
5988
5989 /* Set the scale after setting the register (otherwise,
5990 i386_scale will complain) */
5991 i386_scale (cur_token.str);
5992 intel_match_token (T_CONST);
5993 }
5994 else
5995 {
5996 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5997 cur_token.str);
5998 return 0;
5999 }
6000 }
6001
6002 /* No scaling. If this is a memory operand, the register is either a
6003 base register (first occurrence) or an index register (second
6004 occurrence). */
6005 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
6006 {
6007 if (i.base_reg && i.index_reg)
6008 {
6009 as_bad (_("Too many register references in memory operand.\n"));
6010 return 0;
6011 }
6012
6013 if (i.base_reg == NULL)
6014 i.base_reg = reg;
6015 else
6016 i.index_reg = reg;
6017
6018 i.types[this_operand] |= BaseIndex;
6019 }
6020
6021 /* Offset modifier. Add the register to the displacement string to be
6022 parsed as an immediate expression after we're done. */
6023 else if (intel_parser.op_modifier == OFFSET_FLAT)
6024 strcat (intel_parser.disp, reg->reg_name);
6025
6026 /* It's neither base nor index nor offset. */
6027 else
6028 {
6029 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
6030 i.op[this_operand].regs = reg;
6031 i.reg_operands++;
6032 }
6033
6034 /* Since registers are not part of the displacement string (except
6035 when we're parsing offset operands), we may need to remove any
6036 preceding '+' from the displacement string. */
6037 if (*intel_parser.disp != '\0'
6038 && intel_parser.op_modifier != OFFSET_FLAT)
6039 {
6040 char *s = intel_parser.disp;
6041 s += strlen (s) - 1;
6042 if (*s == '+')
6043 *s = '\0';
6044 }
6045
6046 return 1;
6047 }
6048
6049 /* e11 id */
6050 else if (cur_token.code == T_ID)
6051 {
6052 /* Add the identifier to the displacement string. */
6053 strcat (intel_parser.disp, cur_token.str);
6054 intel_match_token (T_ID);
6055
6056 /* The identifier represents a memory reference only if it's not
6057 preceded by an offset modifier. */
6058 if (intel_parser.op_modifier != OFFSET_FLAT)
6059 intel_parser.is_mem = 1;
6060
6061 return 1;
6062 }
6063
6064 /* e11 constant */
6065 else if (cur_token.code == T_CONST
6066 || cur_token.code == '-'
6067 || cur_token.code == '+')
6068 {
6069 char *save_str;
6070
6071 /* Allow constants that start with `+' or `-'. */
6072 if (cur_token.code == '-' || cur_token.code == '+')
6073 {
6074 strcat (intel_parser.disp, cur_token.str);
6075 intel_match_token (cur_token.code);
6076 if (cur_token.code != T_CONST)
6077 {
6078 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
6079 cur_token.str);
6080 return 0;
6081 }
6082 }
6083
6084 save_str = (char *) malloc (strlen (cur_token.str) + 1);
6085 if (save_str == NULL)
6086 abort ();
6087 strcpy (save_str, cur_token.str);
6088
6089 /* Get the next token to check for register scaling. */
6090 intel_match_token (cur_token.code);
6091
6092 /* Check if this constant is a scaling factor for an index register. */
6093 if (cur_token.code == '*')
6094 {
6095 if (intel_match_token ('*') && cur_token.code == T_REG)
6096 {
6097 if (!intel_parser.is_mem)
6098 {
6099 as_bad (_("Register scaling only allowed in memory operands."));
6100 return 0;
6101 }
6102
6103 /* The constant is followed by `* reg', so it must be
6104 a valid scale. */
6105 if (strchr ("01248", *save_str))
6106 {
6107 i.index_reg = cur_token.reg;
6108 i.types[this_operand] |= BaseIndex;
6109
6110 /* Set the scale after setting the register (otherwise,
6111 i386_scale will complain) */
6112 i386_scale (save_str);
6113 intel_match_token (T_REG);
6114
6115 /* Since registers are not part of the displacement
6116 string, we may need to remove any preceding '+' from
6117 the displacement string. */
6118 if (*intel_parser.disp != '\0')
6119 {
6120 char *s = intel_parser.disp;
6121 s += strlen (s) - 1;
6122 if (*s == '+')
6123 *s = '\0';
6124 }
6125
6126 free (save_str);
6127
6128 return 1;
6129 }
6130 else
6131 return 0;
6132 }
6133
6134 /* The constant was not used for register scaling. Since we have
6135 already consumed the token following `*' we now need to put it
6136 back in the stream. */
6137 else
6138 intel_putback_token ();
6139 }
6140
6141 /* Add the constant to the displacement string. */
6142 strcat (intel_parser.disp, save_str);
6143 free (save_str);
6144
6145 return 1;
6146 }
6147
6148 as_bad (_("Unrecognized token '%s'"), cur_token.str);
6149 return 0;
6150 }
6151
6152 /* Match the given token against cur_token. If they match, read the next
6153 token from the operand string. */
6154 static int
6155 intel_match_token (code)
6156 int code;
6157 {
6158 if (cur_token.code == code)
6159 {
6160 intel_get_token ();
6161 return 1;
6162 }
6163 else
6164 {
6165 as_bad (_("Unexpected token `%s'\n"), cur_token.str);
6166 return 0;
6167 }
6168 }
6169
6170 /* Read a new token from intel_parser.op_string and store it in cur_token. */
6171 static void
6172 intel_get_token ()
6173 {
6174 char *end_op;
6175 const reg_entry *reg;
6176 struct intel_token new_token;
6177
6178 new_token.code = T_NIL;
6179 new_token.reg = NULL;
6180 new_token.str = NULL;
6181
6182 /* Free the memory allocated to the previous token and move
6183 cur_token to prev_token. */
6184 if (prev_token.str)
6185 free (prev_token.str);
6186
6187 prev_token = cur_token;
6188
6189 /* Skip whitespace. */
6190 while (is_space_char (*intel_parser.op_string))
6191 intel_parser.op_string++;
6192
6193 /* Return an empty token if we find nothing else on the line. */
6194 if (*intel_parser.op_string == '\0')
6195 {
6196 cur_token = new_token;
6197 return;
6198 }
6199
6200 /* The new token cannot be larger than the remainder of the operand
6201 string. */
6202 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
6203 if (new_token.str == NULL)
6204 abort ();
6205 new_token.str[0] = '\0';
6206
6207 if (strchr ("0123456789", *intel_parser.op_string))
6208 {
6209 char *p = new_token.str;
6210 char *q = intel_parser.op_string;
6211 new_token.code = T_CONST;
6212
6213 /* Allow any kind of identifier char to encompass floating point and
6214 hexadecimal numbers. */
6215 while (is_identifier_char (*q))
6216 *p++ = *q++;
6217 *p = '\0';
6218
6219 /* Recognize special symbol names [0-9][bf]. */
6220 if (strlen (intel_parser.op_string) == 2
6221 && (intel_parser.op_string[1] == 'b'
6222 || intel_parser.op_string[1] == 'f'))
6223 new_token.code = T_ID;
6224 }
6225
6226 else if (strchr ("+-/*:[]()", *intel_parser.op_string))
6227 {
6228 new_token.code = *intel_parser.op_string;
6229 new_token.str[0] = *intel_parser.op_string;
6230 new_token.str[1] = '\0';
6231 }
6232
6233 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
6234 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
6235 {
6236 new_token.code = T_REG;
6237 new_token.reg = reg;
6238
6239 if (*intel_parser.op_string == REGISTER_PREFIX)
6240 {
6241 new_token.str[0] = REGISTER_PREFIX;
6242 new_token.str[1] = '\0';
6243 }
6244
6245 strcat (new_token.str, reg->reg_name);
6246 }
6247
6248 else if (is_identifier_char (*intel_parser.op_string))
6249 {
6250 char *p = new_token.str;
6251 char *q = intel_parser.op_string;
6252
6253 /* A '.' or '$' followed by an identifier char is an identifier.
6254 Otherwise, it's operator '.' followed by an expression. */
6255 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
6256 {
6257 new_token.code = *q;
6258 new_token.str[0] = *q;
6259 new_token.str[1] = '\0';
6260 }
6261 else
6262 {
6263 while (is_identifier_char (*q) || *q == '@')
6264 *p++ = *q++;
6265 *p = '\0';
6266
6267 if (strcasecmp (new_token.str, "BYTE") == 0)
6268 new_token.code = T_BYTE;
6269
6270 else if (strcasecmp (new_token.str, "WORD") == 0)
6271 new_token.code = T_WORD;
6272
6273 else if (strcasecmp (new_token.str, "DWORD") == 0)
6274 new_token.code = T_DWORD;
6275
6276 else if (strcasecmp (new_token.str, "QWORD") == 0)
6277 new_token.code = T_QWORD;
6278
6279 else if (strcasecmp (new_token.str, "XWORD") == 0)
6280 new_token.code = T_XWORD;
6281
6282 else if (strcasecmp (new_token.str, "PTR") == 0)
6283 new_token.code = T_PTR;
6284
6285 else if (strcasecmp (new_token.str, "SHORT") == 0)
6286 new_token.code = T_SHORT;
6287
6288 else if (strcasecmp (new_token.str, "OFFSET") == 0)
6289 {
6290 new_token.code = T_OFFSET;
6291
6292 /* ??? This is not mentioned in the MASM grammar but gcc
6293 makes use of it with -mintel-syntax. OFFSET may be
6294 followed by FLAT: */
6295 if (strncasecmp (q, " FLAT:", 6) == 0)
6296 strcat (new_token.str, " FLAT:");
6297 }
6298
6299 /* ??? This is not mentioned in the MASM grammar. */
6300 else if (strcasecmp (new_token.str, "FLAT") == 0)
6301 new_token.code = T_OFFSET;
6302
6303 else
6304 new_token.code = T_ID;
6305 }
6306 }
6307
6308 else
6309 as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
6310
6311 intel_parser.op_string += strlen (new_token.str);
6312 cur_token = new_token;
6313 }
6314
6315 /* Put cur_token back into the token stream and make cur_token point to
6316 prev_token. */
6317 static void
6318 intel_putback_token ()
6319 {
6320 intel_parser.op_string -= strlen (cur_token.str);
6321 free (cur_token.str);
6322 cur_token = prev_token;
6323
6324 /* Forget prev_token. */
6325 prev_token.code = T_NIL;
6326 prev_token.reg = NULL;
6327 prev_token.str = NULL;
6328 }
6329
6330 int
6331 tc_x86_regname_to_dw2regnum (const char *regname)
6332 {
6333 unsigned int regnum;
6334 unsigned int regnames_count;
6335 char *regnames_32[] =
6336 {
6337 "eax", "ecx", "edx", "ebx",
6338 "esp", "ebp", "esi", "edi",
6339 "eip"
6340 };
6341 char *regnames_64[] =
6342 {
6343 "rax", "rbx", "rcx", "rdx",
6344 "rdi", "rsi", "rbp", "rsp",
6345 "r8", "r9", "r10", "r11",
6346 "r12", "r13", "r14", "r15",
6347 "rip"
6348 };
6349 char **regnames;
6350
6351 if (flag_code == CODE_64BIT)
6352 {
6353 regnames = regnames_64;
6354 regnames_count = sizeof (regnames_64);
6355 }
6356 else
6357 {
6358 regnames = regnames_32;
6359 regnames_count = sizeof (regnames_32);
6360 }
6361
6362 for (regnum = 0; regnum < regnames_count; regnum++)
6363 if (strcmp (regname, regnames[regnum]) == 0)
6364 return regnum;
6365
6366 return -1;
6367 }
6368
6369 void
6370 tc_x86_frame_initial_instructions (void)
6371 {
6372 static unsigned int sp_regno;
6373
6374 if (!sp_regno)
6375 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
6376 ? "rsp" : "esp");
6377
6378 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
6379 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
6380 }