gas/
[binutils-gdb.git] / gas / config / tc-i386.c
1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
29
30 #include "as.h"
31 #include "safe-ctype.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "opcode/i386.h"
36 #include "elf/x86-64.h"
37
38 #ifndef REGISTER_WARNINGS
39 #define REGISTER_WARNINGS 1
40 #endif
41
42 #ifndef INFER_ADDR_PREFIX
43 #define INFER_ADDR_PREFIX 1
44 #endif
45
46 #ifndef SCALE1_WHEN_NO_INDEX
47 /* Specifying a scale factor besides 1 when there is no index is
48 futile. eg. `mov (%ebx,2),%al' does exactly the same as
49 `mov (%ebx),%al'. To slavishly follow what the programmer
50 specified, set SCALE1_WHEN_NO_INDEX to 0. */
51 #define SCALE1_WHEN_NO_INDEX 1
52 #endif
53
54 #ifndef DEFAULT_ARCH
55 #define DEFAULT_ARCH "i386"
56 #endif
57
58 #ifndef INLINE
59 #if __GNUC__ >= 2
60 #define INLINE __inline__
61 #else
62 #define INLINE
63 #endif
64 #endif
65
66 static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
67 static INLINE int fits_in_signed_byte PARAMS ((offsetT));
68 static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
69 static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
70 static INLINE int fits_in_signed_word PARAMS ((offsetT));
71 static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
72 static INLINE int fits_in_signed_long PARAMS ((offsetT));
73 static int smallest_imm_type PARAMS ((offsetT));
74 static offsetT offset_in_range PARAMS ((offsetT, int));
75 static int add_prefix PARAMS ((unsigned int));
76 static void set_code_flag PARAMS ((int));
77 static void set_16bit_gcc_code_flag PARAMS ((int));
78 static void set_intel_syntax PARAMS ((int));
79 static void set_cpu_arch PARAMS ((int));
80 #ifdef TE_PE
81 static void pe_directive_secrel PARAMS ((int));
82 #endif
83 static char *output_invalid PARAMS ((int c));
84 static int i386_operand PARAMS ((char *operand_string));
85 static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
86 static const reg_entry *parse_register PARAMS ((char *reg_string,
87 char **end_op));
88 static char *parse_insn PARAMS ((char *, char *));
89 static char *parse_operands PARAMS ((char *, const char *));
90 static void swap_operands PARAMS ((void));
91 static void optimize_imm PARAMS ((void));
92 static void optimize_disp PARAMS ((void));
93 static int match_template PARAMS ((void));
94 static int check_string PARAMS ((void));
95 static int process_suffix PARAMS ((void));
96 static int check_byte_reg PARAMS ((void));
97 static int check_long_reg PARAMS ((void));
98 static int check_qword_reg PARAMS ((void));
99 static int check_word_reg PARAMS ((void));
100 static int finalize_imm PARAMS ((void));
101 static int process_operands PARAMS ((void));
102 static const seg_entry *build_modrm_byte PARAMS ((void));
103 static void output_insn PARAMS ((void));
104 static void output_branch PARAMS ((void));
105 static void output_jump PARAMS ((void));
106 static void output_interseg_jump PARAMS ((void));
107 static void output_imm PARAMS ((fragS *insn_start_frag,
108 offsetT insn_start_off));
109 static void output_disp PARAMS ((fragS *insn_start_frag,
110 offsetT insn_start_off));
111 #ifndef I386COFF
112 static void s_bss PARAMS ((int));
113 #endif
114
115 static const char *default_arch = DEFAULT_ARCH;
116
117 /* 'md_assemble ()' gathers together information and puts it into a
118 i386_insn. */
119
120 union i386_op
121 {
122 expressionS *disps;
123 expressionS *imms;
124 const reg_entry *regs;
125 };
126
127 struct _i386_insn
128 {
129 /* TM holds the template for the insn were currently assembling. */
130 template tm;
131
132 /* SUFFIX holds the instruction mnemonic suffix if given.
133 (e.g. 'l' for 'movl') */
134 char suffix;
135
136 /* OPERANDS gives the number of given operands. */
137 unsigned int operands;
138
139 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
140 of given register, displacement, memory operands and immediate
141 operands. */
142 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
143
144 /* TYPES [i] is the type (see above #defines) which tells us how to
145 use OP[i] for the corresponding operand. */
146 unsigned int types[MAX_OPERANDS];
147
148 /* Displacement expression, immediate expression, or register for each
149 operand. */
150 union i386_op op[MAX_OPERANDS];
151
152 /* Flags for operands. */
153 unsigned int flags[MAX_OPERANDS];
154 #define Operand_PCrel 1
155
156 /* Relocation type for operand */
157 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
158
159 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
160 the base index byte below. */
161 const reg_entry *base_reg;
162 const reg_entry *index_reg;
163 unsigned int log2_scale_factor;
164
165 /* SEG gives the seg_entries of this insn. They are zero unless
166 explicit segment overrides are given. */
167 const seg_entry *seg[2];
168
169 /* PREFIX holds all the given prefix opcodes (usually null).
170 PREFIXES is the number of prefix opcodes. */
171 unsigned int prefixes;
172 unsigned char prefix[MAX_PREFIXES];
173
174 /* RM and SIB are the modrm byte and the sib byte where the
175 addressing modes of this insn are encoded. */
176
177 modrm_byte rm;
178 rex_byte rex;
179 sib_byte sib;
180 };
181
182 typedef struct _i386_insn i386_insn;
183
184 /* List of chars besides those in app.c:symbol_chars that can start an
185 operand. Used to prevent the scrubber eating vital white-space. */
186 const char extra_symbol_chars[] = "*%-(["
187 #ifdef LEX_AT
188 "@"
189 #endif
190 #ifdef LEX_QM
191 "?"
192 #endif
193 ;
194
195 #if (defined (TE_I386AIX) \
196 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
197 && !defined (TE_LINUX) \
198 && !defined (TE_NETWARE) \
199 && !defined (TE_FreeBSD) \
200 && !defined (TE_NetBSD)))
201 /* This array holds the chars that always start a comment. If the
202 pre-processor is disabled, these aren't very useful. */
203 const char comment_chars[] = "#/";
204 #define PREFIX_SEPARATOR '\\'
205
206 /* This array holds the chars that only start a comment at the beginning of
207 a line. If the line seems to have the form '# 123 filename'
208 .line and .file directives will appear in the pre-processed output.
209 Note that input_file.c hand checks for '#' at the beginning of the
210 first line of the input file. This is because the compiler outputs
211 #NO_APP at the beginning of its output.
212 Also note that comments started like this one will always work if
213 '/' isn't otherwise defined. */
214 const char line_comment_chars[] = "#";
215
216 #else
217 /* Putting '/' here makes it impossible to use the divide operator.
218 However, we need it for compatibility with SVR4 systems. */
219 const char comment_chars[] = "#";
220 #define PREFIX_SEPARATOR '/'
221
222 const char line_comment_chars[] = "/#";
223 #endif
224
225 const char line_separator_chars[] = ";";
226
227 /* Chars that can be used to separate mant from exp in floating point
228 nums. */
229 const char EXP_CHARS[] = "eE";
230
231 /* Chars that mean this number is a floating point constant
232 As in 0f12.456
233 or 0d1.2345e12. */
234 const char FLT_CHARS[] = "fFdDxX";
235
236 /* Tables for lexical analysis. */
237 static char mnemonic_chars[256];
238 static char register_chars[256];
239 static char operand_chars[256];
240 static char identifier_chars[256];
241 static char digit_chars[256];
242
243 /* Lexical macros. */
244 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
245 #define is_operand_char(x) (operand_chars[(unsigned char) x])
246 #define is_register_char(x) (register_chars[(unsigned char) x])
247 #define is_space_char(x) ((x) == ' ')
248 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
249 #define is_digit_char(x) (digit_chars[(unsigned char) x])
250
251 /* All non-digit non-letter characters that may occur in an operand. */
252 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
253
254 /* md_assemble() always leaves the strings it's passed unaltered. To
255 effect this we maintain a stack of saved characters that we've smashed
256 with '\0's (indicating end of strings for various sub-fields of the
257 assembler instruction). */
258 static char save_stack[32];
259 static char *save_stack_p;
260 #define END_STRING_AND_SAVE(s) \
261 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
262 #define RESTORE_END_STRING(s) \
263 do { *(s) = *--save_stack_p; } while (0)
264
265 /* The instruction we're assembling. */
266 static i386_insn i;
267
268 /* Possible templates for current insn. */
269 static const templates *current_templates;
270
271 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
272 static expressionS disp_expressions[2], im_expressions[2];
273
274 /* Current operand we are working on. */
275 static int this_operand;
276
277 /* We support four different modes. FLAG_CODE variable is used to distinguish
278 these. */
279
280 enum flag_code {
281 CODE_32BIT,
282 CODE_16BIT,
283 CODE_64BIT };
284 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
285
286 static enum flag_code flag_code;
287 static int use_rela_relocations = 0;
288
289 /* The names used to print error messages. */
290 static const char *flag_code_names[] =
291 {
292 "32",
293 "16",
294 "64"
295 };
296
297 /* 1 for intel syntax,
298 0 if att syntax. */
299 static int intel_syntax = 0;
300
301 /* 1 if register prefix % not required. */
302 static int allow_naked_reg = 0;
303
304 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
305 leave, push, and pop instructions so that gcc has the same stack
306 frame as in 32 bit mode. */
307 static char stackop_size = '\0';
308
309 /* Non-zero to optimize code alignment. */
310 int optimize_align_code = 1;
311
312 /* Non-zero to quieten some warnings. */
313 static int quiet_warnings = 0;
314
315 /* CPU name. */
316 static const char *cpu_arch_name = NULL;
317 static const char *cpu_sub_arch_name = NULL;
318
319 /* CPU feature flags. */
320 static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
321
322 /* If set, conditional jumps are not automatically promoted to handle
323 larger than a byte offset. */
324 static unsigned int no_cond_jump_promotion = 0;
325
326 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
327 symbolS *GOT_symbol;
328
329 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
330 unsigned int x86_dwarf2_return_column;
331
332 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
333 int x86_cie_data_alignment;
334
335 /* Interface to relax_segment.
336 There are 3 major relax states for 386 jump insns because the
337 different types of jumps add different sizes to frags when we're
338 figuring out what sort of jump to choose to reach a given label. */
339
340 /* Types. */
341 #define UNCOND_JUMP 0
342 #define COND_JUMP 1
343 #define COND_JUMP86 2
344
345 /* Sizes. */
346 #define CODE16 1
347 #define SMALL 0
348 #define SMALL16 (SMALL | CODE16)
349 #define BIG 2
350 #define BIG16 (BIG | CODE16)
351
352 #ifndef INLINE
353 #ifdef __GNUC__
354 #define INLINE __inline__
355 #else
356 #define INLINE
357 #endif
358 #endif
359
360 #define ENCODE_RELAX_STATE(type, size) \
361 ((relax_substateT) (((type) << 2) | (size)))
362 #define TYPE_FROM_RELAX_STATE(s) \
363 ((s) >> 2)
364 #define DISP_SIZE_FROM_RELAX_STATE(s) \
365 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
366
367 /* This table is used by relax_frag to promote short jumps to long
368 ones where necessary. SMALL (short) jumps may be promoted to BIG
369 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
370 don't allow a short jump in a 32 bit code segment to be promoted to
371 a 16 bit offset jump because it's slower (requires data size
372 prefix), and doesn't work, unless the destination is in the bottom
373 64k of the code segment (The top 16 bits of eip are zeroed). */
374
375 const relax_typeS md_relax_table[] =
376 {
377 /* The fields are:
378 1) most positive reach of this state,
379 2) most negative reach of this state,
380 3) how many bytes this mode will have in the variable part of the frag
381 4) which index into the table to try if we can't fit into this one. */
382
383 /* UNCOND_JUMP states. */
384 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
385 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
386 /* dword jmp adds 4 bytes to frag:
387 0 extra opcode bytes, 4 displacement bytes. */
388 {0, 0, 4, 0},
389 /* word jmp adds 2 byte2 to frag:
390 0 extra opcode bytes, 2 displacement bytes. */
391 {0, 0, 2, 0},
392
393 /* COND_JUMP states. */
394 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
395 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
396 /* dword conditionals adds 5 bytes to frag:
397 1 extra opcode byte, 4 displacement bytes. */
398 {0, 0, 5, 0},
399 /* word conditionals add 3 bytes to frag:
400 1 extra opcode byte, 2 displacement bytes. */
401 {0, 0, 3, 0},
402
403 /* COND_JUMP86 states. */
404 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
405 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
406 /* dword conditionals adds 5 bytes to frag:
407 1 extra opcode byte, 4 displacement bytes. */
408 {0, 0, 5, 0},
409 /* word conditionals add 4 bytes to frag:
410 1 displacement byte and a 3 byte long branch insn. */
411 {0, 0, 4, 0}
412 };
413
414 static const arch_entry cpu_arch[] = {
415 {"i8086", Cpu086 },
416 {"i186", Cpu086|Cpu186 },
417 {"i286", Cpu086|Cpu186|Cpu286 },
418 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
419 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
420 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586 },
421 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686 },
422 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586 },
423 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686 },
424 {"pentiumii", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX },
425 {"pentiumiii",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuMMX2|CpuSSE },
426 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2|CpuSSE|CpuSSE2 },
427 {"prescott", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuPNI },
428 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX },
429 {"k6_2", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
430 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA },
431 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2 },
432 {".mmx", CpuMMX },
433 {".sse", CpuMMX|CpuMMX2|CpuSSE },
434 {".sse2", CpuMMX|CpuMMX2|CpuSSE|CpuSSE2 },
435 {".3dnow", CpuMMX|Cpu3dnow },
436 {".3dnowa", CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA },
437 {".padlock", CpuPadLock },
438 {NULL, 0 }
439 };
440
441 const pseudo_typeS md_pseudo_table[] =
442 {
443 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
444 {"align", s_align_bytes, 0},
445 #else
446 {"align", s_align_ptwo, 0},
447 #endif
448 {"arch", set_cpu_arch, 0},
449 #ifndef I386COFF
450 {"bss", s_bss, 0},
451 #endif
452 {"ffloat", float_cons, 'f'},
453 {"dfloat", float_cons, 'd'},
454 {"tfloat", float_cons, 'x'},
455 {"value", cons, 2},
456 {"noopt", s_ignore, 0},
457 {"optim", s_ignore, 0},
458 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
459 {"code16", set_code_flag, CODE_16BIT},
460 {"code32", set_code_flag, CODE_32BIT},
461 {"code64", set_code_flag, CODE_64BIT},
462 {"intel_syntax", set_intel_syntax, 1},
463 {"att_syntax", set_intel_syntax, 0},
464 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
465 {"loc", dwarf2_directive_loc, 0},
466 #ifdef TE_PE
467 {"secrel32", pe_directive_secrel, 0},
468 #endif
469 {0, 0, 0}
470 };
471
472 /* For interface with expression (). */
473 extern char *input_line_pointer;
474
475 /* Hash table for instruction mnemonic lookup. */
476 static struct hash_control *op_hash;
477
478 /* Hash table for register lookup. */
479 static struct hash_control *reg_hash;
480 \f
481 void
482 i386_align_code (fragP, count)
483 fragS *fragP;
484 int count;
485 {
486 /* Various efficient no-op patterns for aligning code labels.
487 Note: Don't try to assemble the instructions in the comments.
488 0L and 0w are not legal. */
489 static const char f32_1[] =
490 {0x90}; /* nop */
491 static const char f32_2[] =
492 {0x89,0xf6}; /* movl %esi,%esi */
493 static const char f32_3[] =
494 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
495 static const char f32_4[] =
496 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
497 static const char f32_5[] =
498 {0x90, /* nop */
499 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
500 static const char f32_6[] =
501 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
502 static const char f32_7[] =
503 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
504 static const char f32_8[] =
505 {0x90, /* nop */
506 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
507 static const char f32_9[] =
508 {0x89,0xf6, /* movl %esi,%esi */
509 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
510 static const char f32_10[] =
511 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
512 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
513 static const char f32_11[] =
514 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
515 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
516 static const char f32_12[] =
517 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
518 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
519 static const char f32_13[] =
520 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
521 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
522 static const char f32_14[] =
523 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
524 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
525 static const char f32_15[] =
526 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
527 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
528 static const char f16_3[] =
529 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
530 static const char f16_4[] =
531 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
532 static const char f16_5[] =
533 {0x90, /* nop */
534 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
535 static const char f16_6[] =
536 {0x89,0xf6, /* mov %si,%si */
537 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
538 static const char f16_7[] =
539 {0x8d,0x74,0x00, /* lea 0(%si),%si */
540 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
541 static const char f16_8[] =
542 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
543 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
544 static const char *const f32_patt[] = {
545 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
546 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
547 };
548 static const char *const f16_patt[] = {
549 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
550 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
551 };
552
553 if (count <= 0 || count > 15)
554 return;
555
556 /* The recommended way to pad 64bit code is to use NOPs preceded by
557 maximally four 0x66 prefixes. Balance the size of nops. */
558 if (flag_code == CODE_64BIT)
559 {
560 int i;
561 int nnops = (count + 3) / 4;
562 int len = count / nnops;
563 int remains = count - nnops * len;
564 int pos = 0;
565
566 for (i = 0; i < remains; i++)
567 {
568 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
569 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
570 pos += len + 1;
571 }
572 for (; i < nnops; i++)
573 {
574 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
575 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
576 pos += len;
577 }
578 }
579 else
580 if (flag_code == CODE_16BIT)
581 {
582 memcpy (fragP->fr_literal + fragP->fr_fix,
583 f16_patt[count - 1], count);
584 if (count > 8)
585 /* Adjust jump offset. */
586 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
587 }
588 else
589 memcpy (fragP->fr_literal + fragP->fr_fix,
590 f32_patt[count - 1], count);
591 fragP->fr_var = count;
592 }
593
594 static INLINE unsigned int
595 mode_from_disp_size (t)
596 unsigned int t;
597 {
598 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
599 }
600
601 static INLINE int
602 fits_in_signed_byte (num)
603 offsetT num;
604 {
605 return (num >= -128) && (num <= 127);
606 }
607
608 static INLINE int
609 fits_in_unsigned_byte (num)
610 offsetT num;
611 {
612 return (num & 0xff) == num;
613 }
614
615 static INLINE int
616 fits_in_unsigned_word (num)
617 offsetT num;
618 {
619 return (num & 0xffff) == num;
620 }
621
622 static INLINE int
623 fits_in_signed_word (num)
624 offsetT num;
625 {
626 return (-32768 <= num) && (num <= 32767);
627 }
628 static INLINE int
629 fits_in_signed_long (num)
630 offsetT num ATTRIBUTE_UNUSED;
631 {
632 #ifndef BFD64
633 return 1;
634 #else
635 return (!(((offsetT) -1 << 31) & num)
636 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
637 #endif
638 } /* fits_in_signed_long() */
639 static INLINE int
640 fits_in_unsigned_long (num)
641 offsetT num ATTRIBUTE_UNUSED;
642 {
643 #ifndef BFD64
644 return 1;
645 #else
646 return (num & (((offsetT) 2 << 31) - 1)) == num;
647 #endif
648 } /* fits_in_unsigned_long() */
649
650 static int
651 smallest_imm_type (num)
652 offsetT num;
653 {
654 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
655 {
656 /* This code is disabled on the 486 because all the Imm1 forms
657 in the opcode table are slower on the i486. They're the
658 versions with the implicitly specified single-position
659 displacement, which has another syntax if you really want to
660 use that form. */
661 if (num == 1)
662 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
663 }
664 return (fits_in_signed_byte (num)
665 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
666 : fits_in_unsigned_byte (num)
667 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
668 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
669 ? (Imm16 | Imm32 | Imm32S | Imm64)
670 : fits_in_signed_long (num)
671 ? (Imm32 | Imm32S | Imm64)
672 : fits_in_unsigned_long (num)
673 ? (Imm32 | Imm64)
674 : Imm64);
675 }
676
677 static offsetT
678 offset_in_range (val, size)
679 offsetT val;
680 int size;
681 {
682 addressT mask;
683
684 switch (size)
685 {
686 case 1: mask = ((addressT) 1 << 8) - 1; break;
687 case 2: mask = ((addressT) 1 << 16) - 1; break;
688 case 4: mask = ((addressT) 2 << 31) - 1; break;
689 #ifdef BFD64
690 case 8: mask = ((addressT) 2 << 63) - 1; break;
691 #endif
692 default: abort ();
693 }
694
695 /* If BFD64, sign extend val. */
696 if (!use_rela_relocations)
697 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
698 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
699
700 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
701 {
702 char buf1[40], buf2[40];
703
704 sprint_value (buf1, val);
705 sprint_value (buf2, val & mask);
706 as_warn (_("%s shortened to %s"), buf1, buf2);
707 }
708 return val & mask;
709 }
710
711 /* Returns 0 if attempting to add a prefix where one from the same
712 class already exists, 1 if non rep/repne added, 2 if rep/repne
713 added. */
714 static int
715 add_prefix (prefix)
716 unsigned int prefix;
717 {
718 int ret = 1;
719 int q;
720
721 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
722 && flag_code == CODE_64BIT)
723 q = REX_PREFIX;
724 else
725 switch (prefix)
726 {
727 default:
728 abort ();
729
730 case CS_PREFIX_OPCODE:
731 case DS_PREFIX_OPCODE:
732 case ES_PREFIX_OPCODE:
733 case FS_PREFIX_OPCODE:
734 case GS_PREFIX_OPCODE:
735 case SS_PREFIX_OPCODE:
736 q = SEG_PREFIX;
737 break;
738
739 case REPNE_PREFIX_OPCODE:
740 case REPE_PREFIX_OPCODE:
741 ret = 2;
742 /* fall thru */
743 case LOCK_PREFIX_OPCODE:
744 q = LOCKREP_PREFIX;
745 break;
746
747 case FWAIT_OPCODE:
748 q = WAIT_PREFIX;
749 break;
750
751 case ADDR_PREFIX_OPCODE:
752 q = ADDR_PREFIX;
753 break;
754
755 case DATA_PREFIX_OPCODE:
756 q = DATA_PREFIX;
757 break;
758 }
759
760 if (i.prefix[q] != 0)
761 {
762 as_bad (_("same type of prefix used twice"));
763 return 0;
764 }
765
766 i.prefixes += 1;
767 i.prefix[q] = prefix;
768 return ret;
769 }
770
771 static void
772 set_code_flag (value)
773 int value;
774 {
775 flag_code = value;
776 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
777 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
778 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
779 {
780 as_bad (_("64bit mode not supported on this CPU."));
781 }
782 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
783 {
784 as_bad (_("32bit mode not supported on this CPU."));
785 }
786 stackop_size = '\0';
787 }
788
789 static void
790 set_16bit_gcc_code_flag (new_code_flag)
791 int new_code_flag;
792 {
793 flag_code = new_code_flag;
794 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
795 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
796 stackop_size = LONG_MNEM_SUFFIX;
797 }
798
799 static void
800 set_intel_syntax (syntax_flag)
801 int syntax_flag;
802 {
803 /* Find out if register prefixing is specified. */
804 int ask_naked_reg = 0;
805
806 SKIP_WHITESPACE ();
807 if (!is_end_of_line[(unsigned char) *input_line_pointer])
808 {
809 char *string = input_line_pointer;
810 int e = get_symbol_end ();
811
812 if (strcmp (string, "prefix") == 0)
813 ask_naked_reg = 1;
814 else if (strcmp (string, "noprefix") == 0)
815 ask_naked_reg = -1;
816 else
817 as_bad (_("bad argument to syntax directive."));
818 *input_line_pointer = e;
819 }
820 demand_empty_rest_of_line ();
821
822 intel_syntax = syntax_flag;
823
824 if (ask_naked_reg == 0)
825 allow_naked_reg = (intel_syntax
826 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
827 else
828 allow_naked_reg = (ask_naked_reg < 0);
829
830 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
831 identifier_chars['$'] = intel_syntax ? '$' : 0;
832 }
833
834 static void
835 set_cpu_arch (dummy)
836 int dummy ATTRIBUTE_UNUSED;
837 {
838 SKIP_WHITESPACE ();
839
840 if (!is_end_of_line[(unsigned char) *input_line_pointer])
841 {
842 char *string = input_line_pointer;
843 int e = get_symbol_end ();
844 int i;
845
846 for (i = 0; cpu_arch[i].name; i++)
847 {
848 if (strcmp (string, cpu_arch[i].name) == 0)
849 {
850 if (*string != '.')
851 {
852 cpu_arch_name = cpu_arch[i].name;
853 cpu_sub_arch_name = NULL;
854 cpu_arch_flags = (cpu_arch[i].flags
855 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
856 break;
857 }
858 if ((cpu_arch_flags | cpu_arch[i].flags) != cpu_arch_flags)
859 {
860 cpu_sub_arch_name = cpu_arch[i].name;
861 cpu_arch_flags |= cpu_arch[i].flags;
862 }
863 *input_line_pointer = e;
864 demand_empty_rest_of_line ();
865 return;
866 }
867 }
868 if (!cpu_arch[i].name)
869 as_bad (_("no such architecture: `%s'"), string);
870
871 *input_line_pointer = e;
872 }
873 else
874 as_bad (_("missing cpu architecture"));
875
876 no_cond_jump_promotion = 0;
877 if (*input_line_pointer == ','
878 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
879 {
880 char *string = ++input_line_pointer;
881 int e = get_symbol_end ();
882
883 if (strcmp (string, "nojumps") == 0)
884 no_cond_jump_promotion = 1;
885 else if (strcmp (string, "jumps") == 0)
886 ;
887 else
888 as_bad (_("no such architecture modifier: `%s'"), string);
889
890 *input_line_pointer = e;
891 }
892
893 demand_empty_rest_of_line ();
894 }
895
896 unsigned long
897 i386_mach ()
898 {
899 if (!strcmp (default_arch, "x86_64"))
900 return bfd_mach_x86_64;
901 else if (!strcmp (default_arch, "i386"))
902 return bfd_mach_i386_i386;
903 else
904 as_fatal (_("Unknown architecture"));
905 }
906 \f
907 void
908 md_begin ()
909 {
910 const char *hash_err;
911
912 /* Initialize op_hash hash table. */
913 op_hash = hash_new ();
914
915 {
916 const template *optab;
917 templates *core_optab;
918
919 /* Setup for loop. */
920 optab = i386_optab;
921 core_optab = (templates *) xmalloc (sizeof (templates));
922 core_optab->start = optab;
923
924 while (1)
925 {
926 ++optab;
927 if (optab->name == NULL
928 || strcmp (optab->name, (optab - 1)->name) != 0)
929 {
930 /* different name --> ship out current template list;
931 add to hash table; & begin anew. */
932 core_optab->end = optab;
933 hash_err = hash_insert (op_hash,
934 (optab - 1)->name,
935 (PTR) core_optab);
936 if (hash_err)
937 {
938 as_fatal (_("Internal Error: Can't hash %s: %s"),
939 (optab - 1)->name,
940 hash_err);
941 }
942 if (optab->name == NULL)
943 break;
944 core_optab = (templates *) xmalloc (sizeof (templates));
945 core_optab->start = optab;
946 }
947 }
948 }
949
950 /* Initialize reg_hash hash table. */
951 reg_hash = hash_new ();
952 {
953 const reg_entry *regtab;
954
955 for (regtab = i386_regtab;
956 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
957 regtab++)
958 {
959 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
960 if (hash_err)
961 as_fatal (_("Internal Error: Can't hash %s: %s"),
962 regtab->reg_name,
963 hash_err);
964 }
965 }
966
967 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
968 {
969 int c;
970 char *p;
971
972 for (c = 0; c < 256; c++)
973 {
974 if (ISDIGIT (c))
975 {
976 digit_chars[c] = c;
977 mnemonic_chars[c] = c;
978 register_chars[c] = c;
979 operand_chars[c] = c;
980 }
981 else if (ISLOWER (c))
982 {
983 mnemonic_chars[c] = c;
984 register_chars[c] = c;
985 operand_chars[c] = c;
986 }
987 else if (ISUPPER (c))
988 {
989 mnemonic_chars[c] = TOLOWER (c);
990 register_chars[c] = mnemonic_chars[c];
991 operand_chars[c] = c;
992 }
993
994 if (ISALPHA (c) || ISDIGIT (c))
995 identifier_chars[c] = c;
996 else if (c >= 128)
997 {
998 identifier_chars[c] = c;
999 operand_chars[c] = c;
1000 }
1001 }
1002
1003 #ifdef LEX_AT
1004 identifier_chars['@'] = '@';
1005 #endif
1006 #ifdef LEX_QM
1007 identifier_chars['?'] = '?';
1008 operand_chars['?'] = '?';
1009 #endif
1010 digit_chars['-'] = '-';
1011 identifier_chars['_'] = '_';
1012 identifier_chars['.'] = '.';
1013
1014 for (p = operand_special_chars; *p != '\0'; p++)
1015 operand_chars[(unsigned char) *p] = *p;
1016 }
1017
1018 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1019 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
1020 {
1021 record_alignment (text_section, 2);
1022 record_alignment (data_section, 2);
1023 record_alignment (bss_section, 2);
1024 }
1025 #endif
1026
1027 if (flag_code == CODE_64BIT)
1028 {
1029 x86_dwarf2_return_column = 16;
1030 x86_cie_data_alignment = -8;
1031 }
1032 else
1033 {
1034 x86_dwarf2_return_column = 8;
1035 x86_cie_data_alignment = -4;
1036 }
1037 }
1038
1039 void
1040 i386_print_statistics (file)
1041 FILE *file;
1042 {
1043 hash_print_statistics (file, "i386 opcode", op_hash);
1044 hash_print_statistics (file, "i386 register", reg_hash);
1045 }
1046 \f
1047 #ifdef DEBUG386
1048
1049 /* Debugging routines for md_assemble. */
1050 static void pi PARAMS ((char *, i386_insn *));
1051 static void pte PARAMS ((template *));
1052 static void pt PARAMS ((unsigned int));
1053 static void pe PARAMS ((expressionS *));
1054 static void ps PARAMS ((symbolS *));
1055
1056 static void
1057 pi (line, x)
1058 char *line;
1059 i386_insn *x;
1060 {
1061 unsigned int i;
1062
1063 fprintf (stdout, "%s: template ", line);
1064 pte (&x->tm);
1065 fprintf (stdout, " address: base %s index %s scale %x\n",
1066 x->base_reg ? x->base_reg->reg_name : "none",
1067 x->index_reg ? x->index_reg->reg_name : "none",
1068 x->log2_scale_factor);
1069 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
1070 x->rm.mode, x->rm.reg, x->rm.regmem);
1071 fprintf (stdout, " sib: base %x index %x scale %x\n",
1072 x->sib.base, x->sib.index, x->sib.scale);
1073 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
1074 (x->rex & REX_MODE64) != 0,
1075 (x->rex & REX_EXTX) != 0,
1076 (x->rex & REX_EXTY) != 0,
1077 (x->rex & REX_EXTZ) != 0);
1078 for (i = 0; i < x->operands; i++)
1079 {
1080 fprintf (stdout, " #%d: ", i + 1);
1081 pt (x->types[i]);
1082 fprintf (stdout, "\n");
1083 if (x->types[i]
1084 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
1085 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1086 if (x->types[i] & Imm)
1087 pe (x->op[i].imms);
1088 if (x->types[i] & Disp)
1089 pe (x->op[i].disps);
1090 }
1091 }
1092
1093 static void
1094 pte (t)
1095 template *t;
1096 {
1097 unsigned int i;
1098 fprintf (stdout, " %d operands ", t->operands);
1099 fprintf (stdout, "opcode %x ", t->base_opcode);
1100 if (t->extension_opcode != None)
1101 fprintf (stdout, "ext %x ", t->extension_opcode);
1102 if (t->opcode_modifier & D)
1103 fprintf (stdout, "D");
1104 if (t->opcode_modifier & W)
1105 fprintf (stdout, "W");
1106 fprintf (stdout, "\n");
1107 for (i = 0; i < t->operands; i++)
1108 {
1109 fprintf (stdout, " #%d type ", i + 1);
1110 pt (t->operand_types[i]);
1111 fprintf (stdout, "\n");
1112 }
1113 }
1114
1115 static void
1116 pe (e)
1117 expressionS *e;
1118 {
1119 fprintf (stdout, " operation %d\n", e->X_op);
1120 fprintf (stdout, " add_number %ld (%lx)\n",
1121 (long) e->X_add_number, (long) e->X_add_number);
1122 if (e->X_add_symbol)
1123 {
1124 fprintf (stdout, " add_symbol ");
1125 ps (e->X_add_symbol);
1126 fprintf (stdout, "\n");
1127 }
1128 if (e->X_op_symbol)
1129 {
1130 fprintf (stdout, " op_symbol ");
1131 ps (e->X_op_symbol);
1132 fprintf (stdout, "\n");
1133 }
1134 }
1135
1136 static void
1137 ps (s)
1138 symbolS *s;
1139 {
1140 fprintf (stdout, "%s type %s%s",
1141 S_GET_NAME (s),
1142 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1143 segment_name (S_GET_SEGMENT (s)));
1144 }
1145
1146 struct type_name
1147 {
1148 unsigned int mask;
1149 char *tname;
1150 }
1151
1152 static const type_names[] =
1153 {
1154 { Reg8, "r8" },
1155 { Reg16, "r16" },
1156 { Reg32, "r32" },
1157 { Reg64, "r64" },
1158 { Imm8, "i8" },
1159 { Imm8S, "i8s" },
1160 { Imm16, "i16" },
1161 { Imm32, "i32" },
1162 { Imm32S, "i32s" },
1163 { Imm64, "i64" },
1164 { Imm1, "i1" },
1165 { BaseIndex, "BaseIndex" },
1166 { Disp8, "d8" },
1167 { Disp16, "d16" },
1168 { Disp32, "d32" },
1169 { Disp32S, "d32s" },
1170 { Disp64, "d64" },
1171 { InOutPortReg, "InOutPortReg" },
1172 { ShiftCount, "ShiftCount" },
1173 { Control, "control reg" },
1174 { Test, "test reg" },
1175 { Debug, "debug reg" },
1176 { FloatReg, "FReg" },
1177 { FloatAcc, "FAcc" },
1178 { SReg2, "SReg2" },
1179 { SReg3, "SReg3" },
1180 { Acc, "Acc" },
1181 { JumpAbsolute, "Jump Absolute" },
1182 { RegMMX, "rMMX" },
1183 { RegXMM, "rXMM" },
1184 { EsSeg, "es" },
1185 { 0, "" }
1186 };
1187
1188 static void
1189 pt (t)
1190 unsigned int t;
1191 {
1192 const struct type_name *ty;
1193
1194 for (ty = type_names; ty->mask; ty++)
1195 if (t & ty->mask)
1196 fprintf (stdout, "%s, ", ty->tname);
1197 fflush (stdout);
1198 }
1199
1200 #endif /* DEBUG386 */
1201 \f
1202 static bfd_reloc_code_real_type reloc
1203 PARAMS ((int, int, int, bfd_reloc_code_real_type));
1204
1205 static bfd_reloc_code_real_type
1206 reloc (size, pcrel, sign, other)
1207 int size;
1208 int pcrel;
1209 int sign;
1210 bfd_reloc_code_real_type other;
1211 {
1212 if (other != NO_RELOC)
1213 return other;
1214
1215 if (pcrel)
1216 {
1217 if (!sign)
1218 as_bad (_("There are no unsigned pc-relative relocations"));
1219 switch (size)
1220 {
1221 case 1: return BFD_RELOC_8_PCREL;
1222 case 2: return BFD_RELOC_16_PCREL;
1223 case 4: return BFD_RELOC_32_PCREL;
1224 }
1225 as_bad (_("can not do %d byte pc-relative relocation"), size);
1226 }
1227 else
1228 {
1229 if (sign)
1230 switch (size)
1231 {
1232 case 4: return BFD_RELOC_X86_64_32S;
1233 }
1234 else
1235 switch (size)
1236 {
1237 case 1: return BFD_RELOC_8;
1238 case 2: return BFD_RELOC_16;
1239 case 4: return BFD_RELOC_32;
1240 case 8: return BFD_RELOC_64;
1241 }
1242 as_bad (_("can not do %s %d byte relocation"),
1243 sign ? "signed" : "unsigned", size);
1244 }
1245
1246 abort ();
1247 return BFD_RELOC_NONE;
1248 }
1249
1250 /* Here we decide which fixups can be adjusted to make them relative to
1251 the beginning of the section instead of the symbol. Basically we need
1252 to make sure that the dynamic relocations are done correctly, so in
1253 some cases we force the original symbol to be used. */
1254
1255 int
1256 tc_i386_fix_adjustable (fixP)
1257 fixS *fixP ATTRIBUTE_UNUSED;
1258 {
1259 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1260 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
1261 return 1;
1262
1263 /* Don't adjust pc-relative references to merge sections in 64-bit
1264 mode. */
1265 if (use_rela_relocations
1266 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1267 && fixP->fx_pcrel)
1268 return 0;
1269
1270 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1271 and changed later by validate_fix. */
1272 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1273 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1274 return 0;
1275
1276 /* adjust_reloc_syms doesn't know about the GOT. */
1277 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1278 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1279 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1280 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1281 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1282 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1283 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
1284 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1285 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
1286 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1287 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
1288 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1289 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1290 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1291 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1292 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1293 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1294 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1295 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
1296 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1297 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1298 return 0;
1299 #endif
1300 return 1;
1301 }
1302
1303 static int intel_float_operand PARAMS ((const char *mnemonic));
1304
1305 static int
1306 intel_float_operand (mnemonic)
1307 const char *mnemonic;
1308 {
1309 /* Note that the value returned is meaningful only for opcodes with (memory)
1310 operands, hence the code here is free to improperly handle opcodes that
1311 have no operands (for better performance and smaller code). */
1312
1313 if (mnemonic[0] != 'f')
1314 return 0; /* non-math */
1315
1316 switch (mnemonic[1])
1317 {
1318 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
1319 the fs segment override prefix not currently handled because no
1320 call path can make opcodes without operands get here */
1321 case 'i':
1322 return 2 /* integer op */;
1323 case 'l':
1324 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
1325 return 3; /* fldcw/fldenv */
1326 break;
1327 case 'n':
1328 if (mnemonic[2] != 'o' /* fnop */)
1329 return 3; /* non-waiting control op */
1330 break;
1331 case 'r':
1332 if (mnemonic[2] == 's')
1333 return 3; /* frstor/frstpm */
1334 break;
1335 case 's':
1336 if (mnemonic[2] == 'a')
1337 return 3; /* fsave */
1338 if (mnemonic[2] == 't')
1339 {
1340 switch (mnemonic[3])
1341 {
1342 case 'c': /* fstcw */
1343 case 'd': /* fstdw */
1344 case 'e': /* fstenv */
1345 case 's': /* fsts[gw] */
1346 return 3;
1347 }
1348 }
1349 break;
1350 case 'x':
1351 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
1352 return 0; /* fxsave/fxrstor are not really math ops */
1353 break;
1354 }
1355
1356 return 1;
1357 }
1358
1359 /* This is the guts of the machine-dependent assembler. LINE points to a
1360 machine dependent instruction. This function is supposed to emit
1361 the frags/bytes it assembles to. */
1362
1363 void
1364 md_assemble (line)
1365 char *line;
1366 {
1367 int j;
1368 char mnemonic[MAX_MNEM_SIZE];
1369
1370 /* Initialize globals. */
1371 memset (&i, '\0', sizeof (i));
1372 for (j = 0; j < MAX_OPERANDS; j++)
1373 i.reloc[j] = NO_RELOC;
1374 memset (disp_expressions, '\0', sizeof (disp_expressions));
1375 memset (im_expressions, '\0', sizeof (im_expressions));
1376 save_stack_p = save_stack;
1377
1378 /* First parse an instruction mnemonic & call i386_operand for the operands.
1379 We assume that the scrubber has arranged it so that line[0] is the valid
1380 start of a (possibly prefixed) mnemonic. */
1381
1382 line = parse_insn (line, mnemonic);
1383 if (line == NULL)
1384 return;
1385
1386 line = parse_operands (line, mnemonic);
1387 if (line == NULL)
1388 return;
1389
1390 /* Now we've parsed the mnemonic into a set of templates, and have the
1391 operands at hand. */
1392
1393 /* All intel opcodes have reversed operands except for "bound" and
1394 "enter". We also don't reverse intersegment "jmp" and "call"
1395 instructions with 2 immediate operands so that the immediate segment
1396 precedes the offset, as it does when in AT&T mode. "enter" and the
1397 intersegment "jmp" and "call" instructions are the only ones that
1398 have two immediate operands. */
1399 if (intel_syntax && i.operands > 1
1400 && (strcmp (mnemonic, "bound") != 0)
1401 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1402 swap_operands ();
1403
1404 if (i.imm_operands)
1405 optimize_imm ();
1406
1407 if (i.disp_operands)
1408 optimize_disp ();
1409
1410 /* Next, we find a template that matches the given insn,
1411 making sure the overlap of the given operands types is consistent
1412 with the template operand types. */
1413
1414 if (!match_template ())
1415 return;
1416
1417 if (intel_syntax)
1418 {
1419 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1420 if (SYSV386_COMPAT
1421 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1422 i.tm.base_opcode ^= FloatR;
1423
1424 /* Zap movzx and movsx suffix. The suffix may have been set from
1425 "word ptr" or "byte ptr" on the source operand, but we'll use
1426 the suffix later to choose the destination register. */
1427 if ((i.tm.base_opcode & ~9) == 0x0fb6)
1428 {
1429 if (i.reg_operands < 2
1430 && !i.suffix
1431 && (~i.tm.opcode_modifier
1432 & (No_bSuf
1433 | No_wSuf
1434 | No_lSuf
1435 | No_sSuf
1436 | No_xSuf
1437 | No_qSuf)))
1438 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
1439
1440 i.suffix = 0;
1441 }
1442 }
1443
1444 if (i.tm.opcode_modifier & FWait)
1445 if (!add_prefix (FWAIT_OPCODE))
1446 return;
1447
1448 /* Check string instruction segment overrides. */
1449 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1450 {
1451 if (!check_string ())
1452 return;
1453 }
1454
1455 if (!process_suffix ())
1456 return;
1457
1458 /* Make still unresolved immediate matches conform to size of immediate
1459 given in i.suffix. */
1460 if (!finalize_imm ())
1461 return;
1462
1463 if (i.types[0] & Imm1)
1464 i.imm_operands = 0; /* kludge for shift insns. */
1465 if (i.types[0] & ImplicitRegister)
1466 i.reg_operands--;
1467 if (i.types[1] & ImplicitRegister)
1468 i.reg_operands--;
1469 if (i.types[2] & ImplicitRegister)
1470 i.reg_operands--;
1471
1472 if (i.tm.opcode_modifier & ImmExt)
1473 {
1474 expressionS *exp;
1475
1476 if ((i.tm.cpu_flags & CpuPNI) && i.operands > 0)
1477 {
1478 /* These Intel Prescott New Instructions have the fixed
1479 operands with an opcode suffix which is coded in the same
1480 place as an 8-bit immediate field would be. Here we check
1481 those operands and remove them afterwards. */
1482 unsigned int x;
1483
1484 for (x = 0; x < i.operands; x++)
1485 if (i.op[x].regs->reg_num != x)
1486 as_bad (_("can't use register '%%%s' as operand %d in '%s'."),
1487 i.op[x].regs->reg_name, x + 1, i.tm.name);
1488 i.operands = 0;
1489 }
1490
1491 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1492 opcode suffix which is coded in the same place as an 8-bit
1493 immediate field would be. Here we fake an 8-bit immediate
1494 operand from the opcode suffix stored in tm.extension_opcode. */
1495
1496 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
1497
1498 exp = &im_expressions[i.imm_operands++];
1499 i.op[i.operands].imms = exp;
1500 i.types[i.operands++] = Imm8;
1501 exp->X_op = O_constant;
1502 exp->X_add_number = i.tm.extension_opcode;
1503 i.tm.extension_opcode = None;
1504 }
1505
1506 /* For insns with operands there are more diddles to do to the opcode. */
1507 if (i.operands)
1508 {
1509 if (!process_operands ())
1510 return;
1511 }
1512 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1513 {
1514 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1515 as_warn (_("translating to `%sp'"), i.tm.name);
1516 }
1517
1518 /* Handle conversion of 'int $3' --> special int3 insn. */
1519 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1520 {
1521 i.tm.base_opcode = INT3_OPCODE;
1522 i.imm_operands = 0;
1523 }
1524
1525 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1526 && i.op[0].disps->X_op == O_constant)
1527 {
1528 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1529 the absolute address given by the constant. Since ix86 jumps and
1530 calls are pc relative, we need to generate a reloc. */
1531 i.op[0].disps->X_add_symbol = &abs_symbol;
1532 i.op[0].disps->X_op = O_symbol;
1533 }
1534
1535 if ((i.tm.opcode_modifier & Rex64) != 0)
1536 i.rex |= REX_MODE64;
1537
1538 /* For 8 bit registers we need an empty rex prefix. Also if the
1539 instruction already has a prefix, we need to convert old
1540 registers to new ones. */
1541
1542 if (((i.types[0] & Reg8) != 0
1543 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1544 || ((i.types[1] & Reg8) != 0
1545 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1546 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1547 && i.rex != 0))
1548 {
1549 int x;
1550
1551 i.rex |= REX_OPCODE;
1552 for (x = 0; x < 2; x++)
1553 {
1554 /* Look for 8 bit operand that uses old registers. */
1555 if ((i.types[x] & Reg8) != 0
1556 && (i.op[x].regs->reg_flags & RegRex64) == 0)
1557 {
1558 /* In case it is "hi" register, give up. */
1559 if (i.op[x].regs->reg_num > 3)
1560 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix."),
1561 i.op[x].regs->reg_name);
1562
1563 /* Otherwise it is equivalent to the extended register.
1564 Since the encoding doesn't change this is merely
1565 cosmetic cleanup for debug output. */
1566
1567 i.op[x].regs = i.op[x].regs + 8;
1568 }
1569 }
1570 }
1571
1572 if (i.rex != 0)
1573 add_prefix (REX_OPCODE | i.rex);
1574
1575 /* We are ready to output the insn. */
1576 output_insn ();
1577 }
1578
1579 static char *
1580 parse_insn (line, mnemonic)
1581 char *line;
1582 char *mnemonic;
1583 {
1584 char *l = line;
1585 char *token_start = l;
1586 char *mnem_p;
1587 int supported;
1588 const template *t;
1589
1590 /* Non-zero if we found a prefix only acceptable with string insns. */
1591 const char *expecting_string_instruction = NULL;
1592
1593 while (1)
1594 {
1595 mnem_p = mnemonic;
1596 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1597 {
1598 mnem_p++;
1599 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
1600 {
1601 as_bad (_("no such instruction: `%s'"), token_start);
1602 return NULL;
1603 }
1604 l++;
1605 }
1606 if (!is_space_char (*l)
1607 && *l != END_OF_INSN
1608 && *l != PREFIX_SEPARATOR
1609 && *l != ',')
1610 {
1611 as_bad (_("invalid character %s in mnemonic"),
1612 output_invalid (*l));
1613 return NULL;
1614 }
1615 if (token_start == l)
1616 {
1617 if (*l == PREFIX_SEPARATOR)
1618 as_bad (_("expecting prefix; got nothing"));
1619 else
1620 as_bad (_("expecting mnemonic; got nothing"));
1621 return NULL;
1622 }
1623
1624 /* Look up instruction (or prefix) via hash table. */
1625 current_templates = hash_find (op_hash, mnemonic);
1626
1627 if (*l != END_OF_INSN
1628 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1629 && current_templates
1630 && (current_templates->start->opcode_modifier & IsPrefix))
1631 {
1632 /* If we are in 16-bit mode, do not allow addr16 or data16.
1633 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1634 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1635 && flag_code != CODE_64BIT
1636 && (((current_templates->start->opcode_modifier & Size32) != 0)
1637 ^ (flag_code == CODE_16BIT)))
1638 {
1639 as_bad (_("redundant %s prefix"),
1640 current_templates->start->name);
1641 return NULL;
1642 }
1643 /* Add prefix, checking for repeated prefixes. */
1644 switch (add_prefix (current_templates->start->base_opcode))
1645 {
1646 case 0:
1647 return NULL;
1648 case 2:
1649 expecting_string_instruction = current_templates->start->name;
1650 break;
1651 }
1652 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1653 token_start = ++l;
1654 }
1655 else
1656 break;
1657 }
1658
1659 if (!current_templates)
1660 {
1661 /* See if we can get a match by trimming off a suffix. */
1662 switch (mnem_p[-1])
1663 {
1664 case WORD_MNEM_SUFFIX:
1665 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
1666 i.suffix = SHORT_MNEM_SUFFIX;
1667 else
1668 case BYTE_MNEM_SUFFIX:
1669 case QWORD_MNEM_SUFFIX:
1670 i.suffix = mnem_p[-1];
1671 mnem_p[-1] = '\0';
1672 current_templates = hash_find (op_hash, mnemonic);
1673 break;
1674 case SHORT_MNEM_SUFFIX:
1675 case LONG_MNEM_SUFFIX:
1676 if (!intel_syntax)
1677 {
1678 i.suffix = mnem_p[-1];
1679 mnem_p[-1] = '\0';
1680 current_templates = hash_find (op_hash, mnemonic);
1681 }
1682 break;
1683
1684 /* Intel Syntax. */
1685 case 'd':
1686 if (intel_syntax)
1687 {
1688 if (intel_float_operand (mnemonic) == 1)
1689 i.suffix = SHORT_MNEM_SUFFIX;
1690 else
1691 i.suffix = LONG_MNEM_SUFFIX;
1692 mnem_p[-1] = '\0';
1693 current_templates = hash_find (op_hash, mnemonic);
1694 }
1695 break;
1696 }
1697 if (!current_templates)
1698 {
1699 as_bad (_("no such instruction: `%s'"), token_start);
1700 return NULL;
1701 }
1702 }
1703
1704 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1705 {
1706 /* Check for a branch hint. We allow ",pt" and ",pn" for
1707 predict taken and predict not taken respectively.
1708 I'm not sure that branch hints actually do anything on loop
1709 and jcxz insns (JumpByte) for current Pentium4 chips. They
1710 may work in the future and it doesn't hurt to accept them
1711 now. */
1712 if (l[0] == ',' && l[1] == 'p')
1713 {
1714 if (l[2] == 't')
1715 {
1716 if (!add_prefix (DS_PREFIX_OPCODE))
1717 return NULL;
1718 l += 3;
1719 }
1720 else if (l[2] == 'n')
1721 {
1722 if (!add_prefix (CS_PREFIX_OPCODE))
1723 return NULL;
1724 l += 3;
1725 }
1726 }
1727 }
1728 /* Any other comma loses. */
1729 if (*l == ',')
1730 {
1731 as_bad (_("invalid character %s in mnemonic"),
1732 output_invalid (*l));
1733 return NULL;
1734 }
1735
1736 /* Check if instruction is supported on specified architecture. */
1737 supported = 0;
1738 for (t = current_templates->start; t < current_templates->end; ++t)
1739 {
1740 if (!((t->cpu_flags & ~(Cpu64 | CpuNo64))
1741 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64))))
1742 supported |= 1;
1743 if (!(t->cpu_flags & (flag_code == CODE_64BIT ? CpuNo64 : Cpu64)))
1744 supported |= 2;
1745 }
1746 if (!(supported & 2))
1747 {
1748 as_bad (flag_code == CODE_64BIT
1749 ? _("`%s' is not supported in 64-bit mode")
1750 : _("`%s' is only supported in 64-bit mode"),
1751 current_templates->start->name);
1752 return NULL;
1753 }
1754 if (!(supported & 1))
1755 {
1756 as_warn (_("`%s' is not supported on `%s%s'"),
1757 current_templates->start->name,
1758 cpu_arch_name,
1759 cpu_sub_arch_name ? cpu_sub_arch_name : "");
1760 }
1761 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1762 {
1763 as_warn (_("use .code16 to ensure correct addressing mode"));
1764 }
1765
1766 /* Check for rep/repne without a string instruction. */
1767 if (expecting_string_instruction
1768 && !(current_templates->start->opcode_modifier & IsString))
1769 {
1770 as_bad (_("expecting string instruction after `%s'"),
1771 expecting_string_instruction);
1772 return NULL;
1773 }
1774
1775 return l;
1776 }
1777
1778 static char *
1779 parse_operands (l, mnemonic)
1780 char *l;
1781 const char *mnemonic;
1782 {
1783 char *token_start;
1784
1785 /* 1 if operand is pending after ','. */
1786 unsigned int expecting_operand = 0;
1787
1788 /* Non-zero if operand parens not balanced. */
1789 unsigned int paren_not_balanced;
1790
1791 while (*l != END_OF_INSN)
1792 {
1793 /* Skip optional white space before operand. */
1794 if (is_space_char (*l))
1795 ++l;
1796 if (!is_operand_char (*l) && *l != END_OF_INSN)
1797 {
1798 as_bad (_("invalid character %s before operand %d"),
1799 output_invalid (*l),
1800 i.operands + 1);
1801 return NULL;
1802 }
1803 token_start = l; /* after white space */
1804 paren_not_balanced = 0;
1805 while (paren_not_balanced || *l != ',')
1806 {
1807 if (*l == END_OF_INSN)
1808 {
1809 if (paren_not_balanced)
1810 {
1811 if (!intel_syntax)
1812 as_bad (_("unbalanced parenthesis in operand %d."),
1813 i.operands + 1);
1814 else
1815 as_bad (_("unbalanced brackets in operand %d."),
1816 i.operands + 1);
1817 return NULL;
1818 }
1819 else
1820 break; /* we are done */
1821 }
1822 else if (!is_operand_char (*l) && !is_space_char (*l))
1823 {
1824 as_bad (_("invalid character %s in operand %d"),
1825 output_invalid (*l),
1826 i.operands + 1);
1827 return NULL;
1828 }
1829 if (!intel_syntax)
1830 {
1831 if (*l == '(')
1832 ++paren_not_balanced;
1833 if (*l == ')')
1834 --paren_not_balanced;
1835 }
1836 else
1837 {
1838 if (*l == '[')
1839 ++paren_not_balanced;
1840 if (*l == ']')
1841 --paren_not_balanced;
1842 }
1843 l++;
1844 }
1845 if (l != token_start)
1846 { /* Yes, we've read in another operand. */
1847 unsigned int operand_ok;
1848 this_operand = i.operands++;
1849 if (i.operands > MAX_OPERANDS)
1850 {
1851 as_bad (_("spurious operands; (%d operands/instruction max)"),
1852 MAX_OPERANDS);
1853 return NULL;
1854 }
1855 /* Now parse operand adding info to 'i' as we go along. */
1856 END_STRING_AND_SAVE (l);
1857
1858 if (intel_syntax)
1859 operand_ok =
1860 i386_intel_operand (token_start,
1861 intel_float_operand (mnemonic));
1862 else
1863 operand_ok = i386_operand (token_start);
1864
1865 RESTORE_END_STRING (l);
1866 if (!operand_ok)
1867 return NULL;
1868 }
1869 else
1870 {
1871 if (expecting_operand)
1872 {
1873 expecting_operand_after_comma:
1874 as_bad (_("expecting operand after ','; got nothing"));
1875 return NULL;
1876 }
1877 if (*l == ',')
1878 {
1879 as_bad (_("expecting operand before ','; got nothing"));
1880 return NULL;
1881 }
1882 }
1883
1884 /* Now *l must be either ',' or END_OF_INSN. */
1885 if (*l == ',')
1886 {
1887 if (*++l == END_OF_INSN)
1888 {
1889 /* Just skip it, if it's \n complain. */
1890 goto expecting_operand_after_comma;
1891 }
1892 expecting_operand = 1;
1893 }
1894 }
1895 return l;
1896 }
1897
1898 static void
1899 swap_operands ()
1900 {
1901 union i386_op temp_op;
1902 unsigned int temp_type;
1903 enum bfd_reloc_code_real temp_reloc;
1904 int xchg1 = 0;
1905 int xchg2 = 0;
1906
1907 if (i.operands == 2)
1908 {
1909 xchg1 = 0;
1910 xchg2 = 1;
1911 }
1912 else if (i.operands == 3)
1913 {
1914 xchg1 = 0;
1915 xchg2 = 2;
1916 }
1917 temp_type = i.types[xchg2];
1918 i.types[xchg2] = i.types[xchg1];
1919 i.types[xchg1] = temp_type;
1920 temp_op = i.op[xchg2];
1921 i.op[xchg2] = i.op[xchg1];
1922 i.op[xchg1] = temp_op;
1923 temp_reloc = i.reloc[xchg2];
1924 i.reloc[xchg2] = i.reloc[xchg1];
1925 i.reloc[xchg1] = temp_reloc;
1926
1927 if (i.mem_operands == 2)
1928 {
1929 const seg_entry *temp_seg;
1930 temp_seg = i.seg[0];
1931 i.seg[0] = i.seg[1];
1932 i.seg[1] = temp_seg;
1933 }
1934 }
1935
1936 /* Try to ensure constant immediates are represented in the smallest
1937 opcode possible. */
1938 static void
1939 optimize_imm ()
1940 {
1941 char guess_suffix = 0;
1942 int op;
1943
1944 if (i.suffix)
1945 guess_suffix = i.suffix;
1946 else if (i.reg_operands)
1947 {
1948 /* Figure out a suffix from the last register operand specified.
1949 We can't do this properly yet, ie. excluding InOutPortReg,
1950 but the following works for instructions with immediates.
1951 In any case, we can't set i.suffix yet. */
1952 for (op = i.operands; --op >= 0;)
1953 if (i.types[op] & Reg)
1954 {
1955 if (i.types[op] & Reg8)
1956 guess_suffix = BYTE_MNEM_SUFFIX;
1957 else if (i.types[op] & Reg16)
1958 guess_suffix = WORD_MNEM_SUFFIX;
1959 else if (i.types[op] & Reg32)
1960 guess_suffix = LONG_MNEM_SUFFIX;
1961 else if (i.types[op] & Reg64)
1962 guess_suffix = QWORD_MNEM_SUFFIX;
1963 break;
1964 }
1965 }
1966 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1967 guess_suffix = WORD_MNEM_SUFFIX;
1968
1969 for (op = i.operands; --op >= 0;)
1970 if (i.types[op] & Imm)
1971 {
1972 switch (i.op[op].imms->X_op)
1973 {
1974 case O_constant:
1975 /* If a suffix is given, this operand may be shortened. */
1976 switch (guess_suffix)
1977 {
1978 case LONG_MNEM_SUFFIX:
1979 i.types[op] |= Imm32 | Imm64;
1980 break;
1981 case WORD_MNEM_SUFFIX:
1982 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1983 break;
1984 case BYTE_MNEM_SUFFIX:
1985 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1986 break;
1987 }
1988
1989 /* If this operand is at most 16 bits, convert it
1990 to a signed 16 bit number before trying to see
1991 whether it will fit in an even smaller size.
1992 This allows a 16-bit operand such as $0xffe0 to
1993 be recognised as within Imm8S range. */
1994 if ((i.types[op] & Imm16)
1995 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
1996 {
1997 i.op[op].imms->X_add_number =
1998 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1999 }
2000 if ((i.types[op] & Imm32)
2001 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
2002 == 0))
2003 {
2004 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
2005 ^ ((offsetT) 1 << 31))
2006 - ((offsetT) 1 << 31));
2007 }
2008 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
2009
2010 /* We must avoid matching of Imm32 templates when 64bit
2011 only immediate is available. */
2012 if (guess_suffix == QWORD_MNEM_SUFFIX)
2013 i.types[op] &= ~Imm32;
2014 break;
2015
2016 case O_absent:
2017 case O_register:
2018 abort ();
2019
2020 /* Symbols and expressions. */
2021 default:
2022 /* Convert symbolic operand to proper sizes for matching. */
2023 switch (guess_suffix)
2024 {
2025 case QWORD_MNEM_SUFFIX:
2026 i.types[op] = Imm64 | Imm32S;
2027 break;
2028 case LONG_MNEM_SUFFIX:
2029 i.types[op] = Imm32;
2030 break;
2031 case WORD_MNEM_SUFFIX:
2032 i.types[op] = Imm16;
2033 break;
2034 case BYTE_MNEM_SUFFIX:
2035 i.types[op] = Imm8 | Imm8S;
2036 break;
2037 }
2038 break;
2039 }
2040 }
2041 }
2042
2043 /* Try to use the smallest displacement type too. */
2044 static void
2045 optimize_disp ()
2046 {
2047 int op;
2048
2049 for (op = i.operands; --op >= 0;)
2050 if ((i.types[op] & Disp) && i.op[op].disps->X_op == O_constant)
2051 {
2052 offsetT disp = i.op[op].disps->X_add_number;
2053
2054 if (i.types[op] & Disp16)
2055 {
2056 /* We know this operand is at most 16 bits, so
2057 convert to a signed 16 bit number before trying
2058 to see whether it will fit in an even smaller
2059 size. */
2060
2061 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
2062 }
2063 else if (i.types[op] & Disp32)
2064 {
2065 /* We know this operand is at most 32 bits, so convert to a
2066 signed 32 bit number before trying to see whether it will
2067 fit in an even smaller size. */
2068 disp &= (((offsetT) 2 << 31) - 1);
2069 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
2070 }
2071 if (flag_code == CODE_64BIT)
2072 {
2073 if (fits_in_signed_long (disp))
2074 i.types[op] |= Disp32S;
2075 if (fits_in_unsigned_long (disp))
2076 i.types[op] |= Disp32;
2077 }
2078 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2079 && fits_in_signed_byte (disp))
2080 i.types[op] |= Disp8;
2081 }
2082 }
2083
2084 static int
2085 match_template ()
2086 {
2087 /* Points to template once we've found it. */
2088 const template *t;
2089 unsigned int overlap0, overlap1, overlap2;
2090 unsigned int found_reverse_match;
2091 int suffix_check;
2092
2093 #define MATCH(overlap, given, template) \
2094 ((overlap & ~JumpAbsolute) \
2095 && (((given) & (BaseIndex | JumpAbsolute)) \
2096 == ((overlap) & (BaseIndex | JumpAbsolute))))
2097
2098 /* If given types r0 and r1 are registers they must be of the same type
2099 unless the expected operand type register overlap is null.
2100 Note that Acc in a template matches every size of reg. */
2101 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2102 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2103 || ((g0) & Reg) == ((g1) & Reg) \
2104 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2105
2106 overlap0 = 0;
2107 overlap1 = 0;
2108 overlap2 = 0;
2109 found_reverse_match = 0;
2110 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2111 ? No_bSuf
2112 : (i.suffix == WORD_MNEM_SUFFIX
2113 ? No_wSuf
2114 : (i.suffix == SHORT_MNEM_SUFFIX
2115 ? No_sSuf
2116 : (i.suffix == LONG_MNEM_SUFFIX
2117 ? No_lSuf
2118 : (i.suffix == QWORD_MNEM_SUFFIX
2119 ? No_qSuf
2120 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2121 ? No_xSuf : 0))))));
2122
2123 t = current_templates->start;
2124 if (i.suffix == QWORD_MNEM_SUFFIX
2125 && flag_code != CODE_64BIT
2126 && (intel_syntax
2127 ? !(t->opcode_modifier & IgnoreSize)
2128 && !intel_float_operand (t->name)
2129 : intel_float_operand (t->name) != 2)
2130 && (!(t->operand_types[0] & (RegMMX | RegXMM))
2131 || !(t->operand_types[t->operands > 1] & (RegMMX | RegXMM)))
2132 && (t->base_opcode != 0x0fc7
2133 || t->extension_opcode != 1 /* cmpxchg8b */))
2134 t = current_templates->end;
2135 for (; t < current_templates->end; t++)
2136 {
2137 /* Must have right number of operands. */
2138 if (i.operands != t->operands)
2139 continue;
2140
2141 /* Check the suffix, except for some instructions in intel mode. */
2142 if ((t->opcode_modifier & suffix_check)
2143 && !(intel_syntax
2144 && (t->opcode_modifier & IgnoreSize)))
2145 continue;
2146
2147 /* Do not verify operands when there are none. */
2148 else if (!t->operands)
2149 {
2150 if (t->cpu_flags & ~cpu_arch_flags)
2151 continue;
2152 /* We've found a match; break out of loop. */
2153 break;
2154 }
2155
2156 overlap0 = i.types[0] & t->operand_types[0];
2157 switch (t->operands)
2158 {
2159 case 1:
2160 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
2161 continue;
2162 break;
2163 case 2:
2164 case 3:
2165 overlap1 = i.types[1] & t->operand_types[1];
2166 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
2167 || !MATCH (overlap1, i.types[1], t->operand_types[1])
2168 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2169 t->operand_types[0],
2170 overlap1, i.types[1],
2171 t->operand_types[1]))
2172 {
2173 /* Check if other direction is valid ... */
2174 if ((t->opcode_modifier & (D | FloatD)) == 0)
2175 continue;
2176
2177 /* Try reversing direction of operands. */
2178 overlap0 = i.types[0] & t->operand_types[1];
2179 overlap1 = i.types[1] & t->operand_types[0];
2180 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
2181 || !MATCH (overlap1, i.types[1], t->operand_types[0])
2182 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2183 t->operand_types[1],
2184 overlap1, i.types[1],
2185 t->operand_types[0]))
2186 {
2187 /* Does not match either direction. */
2188 continue;
2189 }
2190 /* found_reverse_match holds which of D or FloatDR
2191 we've found. */
2192 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2193 }
2194 /* Found a forward 2 operand match here. */
2195 else if (t->operands == 3)
2196 {
2197 /* Here we make use of the fact that there are no
2198 reverse match 3 operand instructions, and all 3
2199 operand instructions only need to be checked for
2200 register consistency between operands 2 and 3. */
2201 overlap2 = i.types[2] & t->operand_types[2];
2202 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
2203 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
2204 t->operand_types[1],
2205 overlap2, i.types[2],
2206 t->operand_types[2]))
2207
2208 continue;
2209 }
2210 /* Found either forward/reverse 2 or 3 operand match here:
2211 slip through to break. */
2212 }
2213 if (t->cpu_flags & ~cpu_arch_flags)
2214 {
2215 found_reverse_match = 0;
2216 continue;
2217 }
2218 /* We've found a match; break out of loop. */
2219 break;
2220 }
2221
2222 if (t == current_templates->end)
2223 {
2224 /* We found no match. */
2225 as_bad (_("suffix or operands invalid for `%s'"),
2226 current_templates->start->name);
2227 return 0;
2228 }
2229
2230 if (!quiet_warnings)
2231 {
2232 if (!intel_syntax
2233 && ((i.types[0] & JumpAbsolute)
2234 != (t->operand_types[0] & JumpAbsolute)))
2235 {
2236 as_warn (_("indirect %s without `*'"), t->name);
2237 }
2238
2239 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2240 == (IsPrefix | IgnoreSize))
2241 {
2242 /* Warn them that a data or address size prefix doesn't
2243 affect assembly of the next line of code. */
2244 as_warn (_("stand-alone `%s' prefix"), t->name);
2245 }
2246 }
2247
2248 /* Copy the template we found. */
2249 i.tm = *t;
2250 if (found_reverse_match)
2251 {
2252 /* If we found a reverse match we must alter the opcode
2253 direction bit. found_reverse_match holds bits to change
2254 (different for int & float insns). */
2255
2256 i.tm.base_opcode ^= found_reverse_match;
2257
2258 i.tm.operand_types[0] = t->operand_types[1];
2259 i.tm.operand_types[1] = t->operand_types[0];
2260 }
2261
2262 return 1;
2263 }
2264
2265 static int
2266 check_string ()
2267 {
2268 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2269 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2270 {
2271 if (i.seg[0] != NULL && i.seg[0] != &es)
2272 {
2273 as_bad (_("`%s' operand %d must use `%%es' segment"),
2274 i.tm.name,
2275 mem_op + 1);
2276 return 0;
2277 }
2278 /* There's only ever one segment override allowed per instruction.
2279 This instruction possibly has a legal segment override on the
2280 second operand, so copy the segment to where non-string
2281 instructions store it, allowing common code. */
2282 i.seg[0] = i.seg[1];
2283 }
2284 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2285 {
2286 if (i.seg[1] != NULL && i.seg[1] != &es)
2287 {
2288 as_bad (_("`%s' operand %d must use `%%es' segment"),
2289 i.tm.name,
2290 mem_op + 2);
2291 return 0;
2292 }
2293 }
2294 return 1;
2295 }
2296
2297 static int
2298 process_suffix (void)
2299 {
2300 /* If matched instruction specifies an explicit instruction mnemonic
2301 suffix, use it. */
2302 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2303 {
2304 if (i.tm.opcode_modifier & Size16)
2305 i.suffix = WORD_MNEM_SUFFIX;
2306 else if (i.tm.opcode_modifier & Size64)
2307 i.suffix = QWORD_MNEM_SUFFIX;
2308 else
2309 i.suffix = LONG_MNEM_SUFFIX;
2310 }
2311 else if (i.reg_operands)
2312 {
2313 /* If there's no instruction mnemonic suffix we try to invent one
2314 based on register operands. */
2315 if (!i.suffix)
2316 {
2317 /* We take i.suffix from the last register operand specified,
2318 Destination register type is more significant than source
2319 register type. */
2320 int op;
2321
2322 for (op = i.operands; --op >= 0;)
2323 if ((i.types[op] & Reg)
2324 && !(i.tm.operand_types[op] & InOutPortReg))
2325 {
2326 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2327 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2328 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2329 LONG_MNEM_SUFFIX);
2330 break;
2331 }
2332 }
2333 else if (i.suffix == BYTE_MNEM_SUFFIX)
2334 {
2335 if (!check_byte_reg ())
2336 return 0;
2337 }
2338 else if (i.suffix == LONG_MNEM_SUFFIX)
2339 {
2340 if (!check_long_reg ())
2341 return 0;
2342 }
2343 else if (i.suffix == QWORD_MNEM_SUFFIX)
2344 {
2345 if (!check_qword_reg ())
2346 return 0;
2347 }
2348 else if (i.suffix == WORD_MNEM_SUFFIX)
2349 {
2350 if (!check_word_reg ())
2351 return 0;
2352 }
2353 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2354 /* Do nothing if the instruction is going to ignore the prefix. */
2355 ;
2356 else
2357 abort ();
2358 }
2359 else if ((i.tm.opcode_modifier & DefaultSize)
2360 && !i.suffix
2361 /* exclude fldenv/frstor/fsave/fstenv */
2362 && (i.tm.opcode_modifier & No_sSuf))
2363 {
2364 i.suffix = stackop_size;
2365 }
2366 else if (intel_syntax
2367 && !i.suffix
2368 && ((i.tm.operand_types[0] & JumpAbsolute)
2369 || (i.tm.opcode_modifier & (JumpByte|JumpInterSegment))
2370 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
2371 && i.tm.extension_opcode <= 3)))
2372 {
2373 switch (flag_code)
2374 {
2375 case CODE_64BIT:
2376 if (!(i.tm.opcode_modifier & No_qSuf))
2377 {
2378 i.suffix = QWORD_MNEM_SUFFIX;
2379 break;
2380 }
2381 case CODE_32BIT:
2382 if (!(i.tm.opcode_modifier & No_lSuf))
2383 i.suffix = LONG_MNEM_SUFFIX;
2384 break;
2385 case CODE_16BIT:
2386 if (!(i.tm.opcode_modifier & No_wSuf))
2387 i.suffix = WORD_MNEM_SUFFIX;
2388 break;
2389 }
2390 }
2391
2392 if (!i.suffix)
2393 {
2394 if (!intel_syntax)
2395 {
2396 if (i.tm.opcode_modifier & W)
2397 {
2398 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2399 return 0;
2400 }
2401 }
2402 else
2403 {
2404 unsigned int suffixes = ~i.tm.opcode_modifier
2405 & (No_bSuf
2406 | No_wSuf
2407 | No_lSuf
2408 | No_sSuf
2409 | No_xSuf
2410 | No_qSuf);
2411
2412 if ((i.tm.opcode_modifier & W)
2413 || ((suffixes & (suffixes - 1))
2414 && !(i.tm.opcode_modifier & (DefaultSize | IgnoreSize))))
2415 {
2416 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2417 return 0;
2418 }
2419 }
2420 }
2421
2422 /* Change the opcode based on the operand size given by i.suffix;
2423 We don't need to change things for byte insns. */
2424
2425 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2426 {
2427 /* It's not a byte, select word/dword operation. */
2428 if (i.tm.opcode_modifier & W)
2429 {
2430 if (i.tm.opcode_modifier & ShortForm)
2431 i.tm.base_opcode |= 8;
2432 else
2433 i.tm.base_opcode |= 1;
2434 }
2435
2436 /* Now select between word & dword operations via the operand
2437 size prefix, except for instructions that will ignore this
2438 prefix anyway. */
2439 if (i.suffix != QWORD_MNEM_SUFFIX
2440 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
2441 && !(i.tm.opcode_modifier & (IgnoreSize | FloatMF))
2442 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2443 || (flag_code == CODE_64BIT
2444 && (i.tm.opcode_modifier & JumpByte))))
2445 {
2446 unsigned int prefix = DATA_PREFIX_OPCODE;
2447
2448 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2449 prefix = ADDR_PREFIX_OPCODE;
2450
2451 if (!add_prefix (prefix))
2452 return 0;
2453 }
2454
2455 /* Set mode64 for an operand. */
2456 if (i.suffix == QWORD_MNEM_SUFFIX
2457 && flag_code == CODE_64BIT
2458 && (i.tm.opcode_modifier & NoRex64) == 0)
2459 i.rex |= REX_MODE64;
2460
2461 /* Size floating point instruction. */
2462 if (i.suffix == LONG_MNEM_SUFFIX)
2463 if (i.tm.opcode_modifier & FloatMF)
2464 i.tm.base_opcode ^= 4;
2465 }
2466
2467 return 1;
2468 }
2469
2470 static int
2471 check_byte_reg (void)
2472 {
2473 int op;
2474
2475 for (op = i.operands; --op >= 0;)
2476 {
2477 /* If this is an eight bit register, it's OK. If it's the 16 or
2478 32 bit version of an eight bit register, we will just use the
2479 low portion, and that's OK too. */
2480 if (i.types[op] & Reg8)
2481 continue;
2482
2483 /* movzx and movsx should not generate this warning. */
2484 if (intel_syntax
2485 && (i.tm.base_opcode == 0xfb7
2486 || i.tm.base_opcode == 0xfb6
2487 || i.tm.base_opcode == 0x63
2488 || i.tm.base_opcode == 0xfbe
2489 || i.tm.base_opcode == 0xfbf))
2490 continue;
2491
2492 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4)
2493 {
2494 /* Prohibit these changes in the 64bit mode, since the
2495 lowering is more complicated. */
2496 if (flag_code == CODE_64BIT
2497 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2498 {
2499 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2500 i.op[op].regs->reg_name,
2501 i.suffix);
2502 return 0;
2503 }
2504 #if REGISTER_WARNINGS
2505 if (!quiet_warnings
2506 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2507 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2508 (i.op[op].regs + (i.types[op] & Reg16
2509 ? REGNAM_AL - REGNAM_AX
2510 : REGNAM_AL - REGNAM_EAX))->reg_name,
2511 i.op[op].regs->reg_name,
2512 i.suffix);
2513 #endif
2514 continue;
2515 }
2516 /* Any other register is bad. */
2517 if (i.types[op] & (Reg | RegMMX | RegXMM
2518 | SReg2 | SReg3
2519 | Control | Debug | Test
2520 | FloatReg | FloatAcc))
2521 {
2522 as_bad (_("`%%%s' not allowed with `%s%c'"),
2523 i.op[op].regs->reg_name,
2524 i.tm.name,
2525 i.suffix);
2526 return 0;
2527 }
2528 }
2529 return 1;
2530 }
2531
2532 static int
2533 check_long_reg ()
2534 {
2535 int op;
2536
2537 for (op = i.operands; --op >= 0;)
2538 /* Reject eight bit registers, except where the template requires
2539 them. (eg. movzb) */
2540 if ((i.types[op] & Reg8) != 0
2541 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2542 {
2543 as_bad (_("`%%%s' not allowed with `%s%c'"),
2544 i.op[op].regs->reg_name,
2545 i.tm.name,
2546 i.suffix);
2547 return 0;
2548 }
2549 /* Warn if the e prefix on a general reg is missing. */
2550 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2551 && (i.types[op] & Reg16) != 0
2552 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2553 {
2554 /* Prohibit these changes in the 64bit mode, since the
2555 lowering is more complicated. */
2556 if (flag_code == CODE_64BIT)
2557 {
2558 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2559 i.op[op].regs->reg_name,
2560 i.suffix);
2561 return 0;
2562 }
2563 #if REGISTER_WARNINGS
2564 else
2565 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2566 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2567 i.op[op].regs->reg_name,
2568 i.suffix);
2569 #endif
2570 }
2571 /* Warn if the r prefix on a general reg is missing. */
2572 else if ((i.types[op] & Reg64) != 0
2573 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2574 {
2575 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2576 i.op[op].regs->reg_name,
2577 i.suffix);
2578 return 0;
2579 }
2580 return 1;
2581 }
2582
2583 static int
2584 check_qword_reg ()
2585 {
2586 int op;
2587
2588 for (op = i.operands; --op >= 0; )
2589 /* Reject eight bit registers, except where the template requires
2590 them. (eg. movzb) */
2591 if ((i.types[op] & Reg8) != 0
2592 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2593 {
2594 as_bad (_("`%%%s' not allowed with `%s%c'"),
2595 i.op[op].regs->reg_name,
2596 i.tm.name,
2597 i.suffix);
2598 return 0;
2599 }
2600 /* Warn if the e prefix on a general reg is missing. */
2601 else if (((i.types[op] & Reg16) != 0
2602 || (i.types[op] & Reg32) != 0)
2603 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2604 {
2605 /* Prohibit these changes in the 64bit mode, since the
2606 lowering is more complicated. */
2607 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2608 i.op[op].regs->reg_name,
2609 i.suffix);
2610 return 0;
2611 }
2612 return 1;
2613 }
2614
2615 static int
2616 check_word_reg ()
2617 {
2618 int op;
2619 for (op = i.operands; --op >= 0;)
2620 /* Reject eight bit registers, except where the template requires
2621 them. (eg. movzb) */
2622 if ((i.types[op] & Reg8) != 0
2623 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2624 {
2625 as_bad (_("`%%%s' not allowed with `%s%c'"),
2626 i.op[op].regs->reg_name,
2627 i.tm.name,
2628 i.suffix);
2629 return 0;
2630 }
2631 /* Warn if the e prefix on a general reg is present. */
2632 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2633 && (i.types[op] & Reg32) != 0
2634 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
2635 {
2636 /* Prohibit these changes in the 64bit mode, since the
2637 lowering is more complicated. */
2638 if (flag_code == CODE_64BIT)
2639 {
2640 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2641 i.op[op].regs->reg_name,
2642 i.suffix);
2643 return 0;
2644 }
2645 else
2646 #if REGISTER_WARNINGS
2647 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2648 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2649 i.op[op].regs->reg_name,
2650 i.suffix);
2651 #endif
2652 }
2653 return 1;
2654 }
2655
2656 static int
2657 finalize_imm ()
2658 {
2659 unsigned int overlap0, overlap1, overlap2;
2660
2661 overlap0 = i.types[0] & i.tm.operand_types[0];
2662 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64))
2663 && overlap0 != Imm8 && overlap0 != Imm8S
2664 && overlap0 != Imm16 && overlap0 != Imm32S
2665 && overlap0 != Imm32 && overlap0 != Imm64)
2666 {
2667 if (i.suffix)
2668 {
2669 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
2670 ? Imm8 | Imm8S
2671 : (i.suffix == WORD_MNEM_SUFFIX
2672 ? Imm16
2673 : (i.suffix == QWORD_MNEM_SUFFIX
2674 ? Imm64 | Imm32S
2675 : Imm32)));
2676 }
2677 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2678 || overlap0 == (Imm16 | Imm32)
2679 || overlap0 == (Imm16 | Imm32S))
2680 {
2681 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2682 ? Imm16 : Imm32S);
2683 }
2684 if (overlap0 != Imm8 && overlap0 != Imm8S
2685 && overlap0 != Imm16 && overlap0 != Imm32S
2686 && overlap0 != Imm32 && overlap0 != Imm64)
2687 {
2688 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2689 return 0;
2690 }
2691 }
2692 i.types[0] = overlap0;
2693
2694 overlap1 = i.types[1] & i.tm.operand_types[1];
2695 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32 | Imm64))
2696 && overlap1 != Imm8 && overlap1 != Imm8S
2697 && overlap1 != Imm16 && overlap1 != Imm32S
2698 && overlap1 != Imm32 && overlap1 != Imm64)
2699 {
2700 if (i.suffix)
2701 {
2702 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
2703 ? Imm8 | Imm8S
2704 : (i.suffix == WORD_MNEM_SUFFIX
2705 ? Imm16
2706 : (i.suffix == QWORD_MNEM_SUFFIX
2707 ? Imm64 | Imm32S
2708 : Imm32)));
2709 }
2710 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2711 || overlap1 == (Imm16 | Imm32)
2712 || overlap1 == (Imm16 | Imm32S))
2713 {
2714 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2715 ? Imm16 : Imm32S);
2716 }
2717 if (overlap1 != Imm8 && overlap1 != Imm8S
2718 && overlap1 != Imm16 && overlap1 != Imm32S
2719 && overlap1 != Imm32 && overlap1 != Imm64)
2720 {
2721 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2722 return 0;
2723 }
2724 }
2725 i.types[1] = overlap1;
2726
2727 overlap2 = i.types[2] & i.tm.operand_types[2];
2728 assert ((overlap2 & Imm) == 0);
2729 i.types[2] = overlap2;
2730
2731 return 1;
2732 }
2733
2734 static int
2735 process_operands ()
2736 {
2737 /* Default segment register this instruction will use for memory
2738 accesses. 0 means unknown. This is only for optimizing out
2739 unnecessary segment overrides. */
2740 const seg_entry *default_seg = 0;
2741
2742 /* The imul $imm, %reg instruction is converted into
2743 imul $imm, %reg, %reg, and the clr %reg instruction
2744 is converted into xor %reg, %reg. */
2745 if (i.tm.opcode_modifier & regKludge)
2746 {
2747 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2748 /* Pretend we saw the extra register operand. */
2749 assert (i.op[first_reg_op + 1].regs == 0);
2750 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2751 i.types[first_reg_op + 1] = i.types[first_reg_op];
2752 i.reg_operands = 2;
2753 }
2754
2755 if (i.tm.opcode_modifier & ShortForm)
2756 {
2757 /* The register or float register operand is in operand 0 or 1. */
2758 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2759 /* Register goes in low 3 bits of opcode. */
2760 i.tm.base_opcode |= i.op[op].regs->reg_num;
2761 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2762 i.rex |= REX_EXTZ;
2763 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2764 {
2765 /* Warn about some common errors, but press on regardless.
2766 The first case can be generated by gcc (<= 2.8.1). */
2767 if (i.operands == 2)
2768 {
2769 /* Reversed arguments on faddp, fsubp, etc. */
2770 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2771 i.op[1].regs->reg_name,
2772 i.op[0].regs->reg_name);
2773 }
2774 else
2775 {
2776 /* Extraneous `l' suffix on fp insn. */
2777 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2778 i.op[0].regs->reg_name);
2779 }
2780 }
2781 }
2782 else if (i.tm.opcode_modifier & Modrm)
2783 {
2784 /* The opcode is completed (modulo i.tm.extension_opcode which
2785 must be put into the modrm byte). Now, we make the modrm and
2786 index base bytes based on all the info we've collected. */
2787
2788 default_seg = build_modrm_byte ();
2789 }
2790 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2791 {
2792 if (i.tm.base_opcode == POP_SEG_SHORT
2793 && i.op[0].regs->reg_num == 1)
2794 {
2795 as_bad (_("you can't `pop %%cs'"));
2796 return 0;
2797 }
2798 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2799 if ((i.op[0].regs->reg_flags & RegRex) != 0)
2800 i.rex |= REX_EXTZ;
2801 }
2802 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
2803 {
2804 default_seg = &ds;
2805 }
2806 else if ((i.tm.opcode_modifier & IsString) != 0)
2807 {
2808 /* For the string instructions that allow a segment override
2809 on one of their operands, the default segment is ds. */
2810 default_seg = &ds;
2811 }
2812
2813 if (i.tm.base_opcode == 0x8d /* lea */ && i.seg[0] && !quiet_warnings)
2814 as_warn (_("segment override on `lea' is ineffectual"));
2815
2816 /* If a segment was explicitly specified, and the specified segment
2817 is not the default, use an opcode prefix to select it. If we
2818 never figured out what the default segment is, then default_seg
2819 will be zero at this point, and the specified segment prefix will
2820 always be used. */
2821 if ((i.seg[0]) && (i.seg[0] != default_seg))
2822 {
2823 if (!add_prefix (i.seg[0]->seg_prefix))
2824 return 0;
2825 }
2826 return 1;
2827 }
2828
2829 static const seg_entry *
2830 build_modrm_byte ()
2831 {
2832 const seg_entry *default_seg = 0;
2833
2834 /* i.reg_operands MUST be the number of real register operands;
2835 implicit registers do not count. */
2836 if (i.reg_operands == 2)
2837 {
2838 unsigned int source, dest;
2839 source = ((i.types[0]
2840 & (Reg | RegMMX | RegXMM
2841 | SReg2 | SReg3
2842 | Control | Debug | Test))
2843 ? 0 : 1);
2844 dest = source + 1;
2845
2846 i.rm.mode = 3;
2847 /* One of the register operands will be encoded in the i.tm.reg
2848 field, the other in the combined i.tm.mode and i.tm.regmem
2849 fields. If no form of this instruction supports a memory
2850 destination operand, then we assume the source operand may
2851 sometimes be a memory operand and so we need to store the
2852 destination in the i.rm.reg field. */
2853 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2854 {
2855 i.rm.reg = i.op[dest].regs->reg_num;
2856 i.rm.regmem = i.op[source].regs->reg_num;
2857 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2858 i.rex |= REX_EXTX;
2859 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2860 i.rex |= REX_EXTZ;
2861 }
2862 else
2863 {
2864 i.rm.reg = i.op[source].regs->reg_num;
2865 i.rm.regmem = i.op[dest].regs->reg_num;
2866 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2867 i.rex |= REX_EXTZ;
2868 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2869 i.rex |= REX_EXTX;
2870 }
2871 }
2872 else
2873 { /* If it's not 2 reg operands... */
2874 if (i.mem_operands)
2875 {
2876 unsigned int fake_zero_displacement = 0;
2877 unsigned int op = ((i.types[0] & AnyMem)
2878 ? 0
2879 : (i.types[1] & AnyMem) ? 1 : 2);
2880
2881 default_seg = &ds;
2882
2883 if (i.base_reg == 0)
2884 {
2885 i.rm.mode = 0;
2886 if (!i.disp_operands)
2887 fake_zero_displacement = 1;
2888 if (i.index_reg == 0)
2889 {
2890 /* Operand is just <disp> */
2891 if (flag_code == CODE_64BIT)
2892 {
2893 /* 64bit mode overwrites the 32bit absolute
2894 addressing by RIP relative addressing and
2895 absolute addressing is encoded by one of the
2896 redundant SIB forms. */
2897 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2898 i.sib.base = NO_BASE_REGISTER;
2899 i.sib.index = NO_INDEX_REGISTER;
2900 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0) ? Disp32S : Disp32);
2901 }
2902 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
2903 {
2904 i.rm.regmem = NO_BASE_REGISTER_16;
2905 i.types[op] = Disp16;
2906 }
2907 else
2908 {
2909 i.rm.regmem = NO_BASE_REGISTER;
2910 i.types[op] = Disp32;
2911 }
2912 }
2913 else /* !i.base_reg && i.index_reg */
2914 {
2915 i.sib.index = i.index_reg->reg_num;
2916 i.sib.base = NO_BASE_REGISTER;
2917 i.sib.scale = i.log2_scale_factor;
2918 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2919 i.types[op] &= ~Disp;
2920 if (flag_code != CODE_64BIT)
2921 i.types[op] |= Disp32; /* Must be 32 bit */
2922 else
2923 i.types[op] |= Disp32S;
2924 if ((i.index_reg->reg_flags & RegRex) != 0)
2925 i.rex |= REX_EXTY;
2926 }
2927 }
2928 /* RIP addressing for 64bit mode. */
2929 else if (i.base_reg->reg_type == BaseIndex)
2930 {
2931 i.rm.regmem = NO_BASE_REGISTER;
2932 i.types[op] &= ~ Disp;
2933 i.types[op] |= Disp32S;
2934 i.flags[op] = Operand_PCrel;
2935 if (! i.disp_operands)
2936 fake_zero_displacement = 1;
2937 }
2938 else if (i.base_reg->reg_type & Reg16)
2939 {
2940 switch (i.base_reg->reg_num)
2941 {
2942 case 3: /* (%bx) */
2943 if (i.index_reg == 0)
2944 i.rm.regmem = 7;
2945 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2946 i.rm.regmem = i.index_reg->reg_num - 6;
2947 break;
2948 case 5: /* (%bp) */
2949 default_seg = &ss;
2950 if (i.index_reg == 0)
2951 {
2952 i.rm.regmem = 6;
2953 if ((i.types[op] & Disp) == 0)
2954 {
2955 /* fake (%bp) into 0(%bp) */
2956 i.types[op] |= Disp8;
2957 fake_zero_displacement = 1;
2958 }
2959 }
2960 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2961 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2962 break;
2963 default: /* (%si) -> 4 or (%di) -> 5 */
2964 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2965 }
2966 i.rm.mode = mode_from_disp_size (i.types[op]);
2967 }
2968 else /* i.base_reg and 32/64 bit mode */
2969 {
2970 if (flag_code == CODE_64BIT
2971 && (i.types[op] & Disp))
2972 i.types[op] = (i.types[op] & Disp8) | (i.prefix[ADDR_PREFIX] == 0 ? Disp32S : Disp32);
2973
2974 i.rm.regmem = i.base_reg->reg_num;
2975 if ((i.base_reg->reg_flags & RegRex) != 0)
2976 i.rex |= REX_EXTZ;
2977 i.sib.base = i.base_reg->reg_num;
2978 /* x86-64 ignores REX prefix bit here to avoid decoder
2979 complications. */
2980 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2981 {
2982 default_seg = &ss;
2983 if (i.disp_operands == 0)
2984 {
2985 fake_zero_displacement = 1;
2986 i.types[op] |= Disp8;
2987 }
2988 }
2989 else if (i.base_reg->reg_num == ESP_REG_NUM)
2990 {
2991 default_seg = &ss;
2992 }
2993 i.sib.scale = i.log2_scale_factor;
2994 if (i.index_reg == 0)
2995 {
2996 /* <disp>(%esp) becomes two byte modrm with no index
2997 register. We've already stored the code for esp
2998 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
2999 Any base register besides %esp will not use the
3000 extra modrm byte. */
3001 i.sib.index = NO_INDEX_REGISTER;
3002 #if !SCALE1_WHEN_NO_INDEX
3003 /* Another case where we force the second modrm byte. */
3004 if (i.log2_scale_factor)
3005 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3006 #endif
3007 }
3008 else
3009 {
3010 i.sib.index = i.index_reg->reg_num;
3011 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3012 if ((i.index_reg->reg_flags & RegRex) != 0)
3013 i.rex |= REX_EXTY;
3014 }
3015 i.rm.mode = mode_from_disp_size (i.types[op]);
3016 }
3017
3018 if (fake_zero_displacement)
3019 {
3020 /* Fakes a zero displacement assuming that i.types[op]
3021 holds the correct displacement size. */
3022 expressionS *exp;
3023
3024 assert (i.op[op].disps == 0);
3025 exp = &disp_expressions[i.disp_operands++];
3026 i.op[op].disps = exp;
3027 exp->X_op = O_constant;
3028 exp->X_add_number = 0;
3029 exp->X_add_symbol = (symbolS *) 0;
3030 exp->X_op_symbol = (symbolS *) 0;
3031 }
3032 }
3033
3034 /* Fill in i.rm.reg or i.rm.regmem field with register operand
3035 (if any) based on i.tm.extension_opcode. Again, we must be
3036 careful to make sure that segment/control/debug/test/MMX
3037 registers are coded into the i.rm.reg field. */
3038 if (i.reg_operands)
3039 {
3040 unsigned int op =
3041 ((i.types[0]
3042 & (Reg | RegMMX | RegXMM
3043 | SReg2 | SReg3
3044 | Control | Debug | Test))
3045 ? 0
3046 : ((i.types[1]
3047 & (Reg | RegMMX | RegXMM
3048 | SReg2 | SReg3
3049 | Control | Debug | Test))
3050 ? 1
3051 : 2));
3052 /* If there is an extension opcode to put here, the register
3053 number must be put into the regmem field. */
3054 if (i.tm.extension_opcode != None)
3055 {
3056 i.rm.regmem = i.op[op].regs->reg_num;
3057 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3058 i.rex |= REX_EXTZ;
3059 }
3060 else
3061 {
3062 i.rm.reg = i.op[op].regs->reg_num;
3063 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3064 i.rex |= REX_EXTX;
3065 }
3066
3067 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
3068 must set it to 3 to indicate this is a register operand
3069 in the regmem field. */
3070 if (!i.mem_operands)
3071 i.rm.mode = 3;
3072 }
3073
3074 /* Fill in i.rm.reg field with extension opcode (if any). */
3075 if (i.tm.extension_opcode != None)
3076 i.rm.reg = i.tm.extension_opcode;
3077 }
3078 return default_seg;
3079 }
3080
3081 static void
3082 output_branch ()
3083 {
3084 char *p;
3085 int code16;
3086 int prefix;
3087 relax_substateT subtype;
3088 symbolS *sym;
3089 offsetT off;
3090
3091 code16 = 0;
3092 if (flag_code == CODE_16BIT)
3093 code16 = CODE16;
3094
3095 prefix = 0;
3096 if (i.prefix[DATA_PREFIX] != 0)
3097 {
3098 prefix = 1;
3099 i.prefixes -= 1;
3100 code16 ^= CODE16;
3101 }
3102 /* Pentium4 branch hints. */
3103 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3104 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3105 {
3106 prefix++;
3107 i.prefixes--;
3108 }
3109 if (i.prefix[REX_PREFIX] != 0)
3110 {
3111 prefix++;
3112 i.prefixes--;
3113 }
3114
3115 if (i.prefixes != 0 && !intel_syntax)
3116 as_warn (_("skipping prefixes on this instruction"));
3117
3118 /* It's always a symbol; End frag & setup for relax.
3119 Make sure there is enough room in this frag for the largest
3120 instruction we may generate in md_convert_frag. This is 2
3121 bytes for the opcode and room for the prefix and largest
3122 displacement. */
3123 frag_grow (prefix + 2 + 4);
3124 /* Prefix and 1 opcode byte go in fr_fix. */
3125 p = frag_more (prefix + 1);
3126 if (i.prefix[DATA_PREFIX] != 0)
3127 *p++ = DATA_PREFIX_OPCODE;
3128 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3129 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3130 *p++ = i.prefix[SEG_PREFIX];
3131 if (i.prefix[REX_PREFIX] != 0)
3132 *p++ = i.prefix[REX_PREFIX];
3133 *p = i.tm.base_opcode;
3134
3135 if ((unsigned char) *p == JUMP_PC_RELATIVE)
3136 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3137 else if ((cpu_arch_flags & Cpu386) != 0)
3138 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3139 else
3140 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3141 subtype |= code16;
3142
3143 sym = i.op[0].disps->X_add_symbol;
3144 off = i.op[0].disps->X_add_number;
3145
3146 if (i.op[0].disps->X_op != O_constant
3147 && i.op[0].disps->X_op != O_symbol)
3148 {
3149 /* Handle complex expressions. */
3150 sym = make_expr_symbol (i.op[0].disps);
3151 off = 0;
3152 }
3153
3154 /* 1 possible extra opcode + 4 byte displacement go in var part.
3155 Pass reloc in fr_var. */
3156 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3157 }
3158
3159 static void
3160 output_jump ()
3161 {
3162 char *p;
3163 int size;
3164 fixS *fixP;
3165
3166 if (i.tm.opcode_modifier & JumpByte)
3167 {
3168 /* This is a loop or jecxz type instruction. */
3169 size = 1;
3170 if (i.prefix[ADDR_PREFIX] != 0)
3171 {
3172 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3173 i.prefixes -= 1;
3174 }
3175 /* Pentium4 branch hints. */
3176 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3177 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3178 {
3179 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3180 i.prefixes--;
3181 }
3182 }
3183 else
3184 {
3185 int code16;
3186
3187 code16 = 0;
3188 if (flag_code == CODE_16BIT)
3189 code16 = CODE16;
3190
3191 if (i.prefix[DATA_PREFIX] != 0)
3192 {
3193 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3194 i.prefixes -= 1;
3195 code16 ^= CODE16;
3196 }
3197
3198 size = 4;
3199 if (code16)
3200 size = 2;
3201 }
3202
3203 if (i.prefix[REX_PREFIX] != 0)
3204 {
3205 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3206 i.prefixes -= 1;
3207 }
3208
3209 if (i.prefixes != 0 && !intel_syntax)
3210 as_warn (_("skipping prefixes on this instruction"));
3211
3212 p = frag_more (1 + size);
3213 *p++ = i.tm.base_opcode;
3214
3215 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3216 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3217
3218 /* All jumps handled here are signed, but don't use a signed limit
3219 check for 32 and 16 bit jumps as we want to allow wrap around at
3220 4G and 64k respectively. */
3221 if (size == 1)
3222 fixP->fx_signed = 1;
3223 }
3224
3225 static void
3226 output_interseg_jump ()
3227 {
3228 char *p;
3229 int size;
3230 int prefix;
3231 int code16;
3232
3233 code16 = 0;
3234 if (flag_code == CODE_16BIT)
3235 code16 = CODE16;
3236
3237 prefix = 0;
3238 if (i.prefix[DATA_PREFIX] != 0)
3239 {
3240 prefix = 1;
3241 i.prefixes -= 1;
3242 code16 ^= CODE16;
3243 }
3244 if (i.prefix[REX_PREFIX] != 0)
3245 {
3246 prefix++;
3247 i.prefixes -= 1;
3248 }
3249
3250 size = 4;
3251 if (code16)
3252 size = 2;
3253
3254 if (i.prefixes != 0 && !intel_syntax)
3255 as_warn (_("skipping prefixes on this instruction"));
3256
3257 /* 1 opcode; 2 segment; offset */
3258 p = frag_more (prefix + 1 + 2 + size);
3259
3260 if (i.prefix[DATA_PREFIX] != 0)
3261 *p++ = DATA_PREFIX_OPCODE;
3262
3263 if (i.prefix[REX_PREFIX] != 0)
3264 *p++ = i.prefix[REX_PREFIX];
3265
3266 *p++ = i.tm.base_opcode;
3267 if (i.op[1].imms->X_op == O_constant)
3268 {
3269 offsetT n = i.op[1].imms->X_add_number;
3270
3271 if (size == 2
3272 && !fits_in_unsigned_word (n)
3273 && !fits_in_signed_word (n))
3274 {
3275 as_bad (_("16-bit jump out of range"));
3276 return;
3277 }
3278 md_number_to_chars (p, n, size);
3279 }
3280 else
3281 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3282 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3283 if (i.op[0].imms->X_op != O_constant)
3284 as_bad (_("can't handle non absolute segment in `%s'"),
3285 i.tm.name);
3286 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3287 }
3288
3289 static void
3290 output_insn ()
3291 {
3292 fragS *insn_start_frag;
3293 offsetT insn_start_off;
3294
3295 /* Tie dwarf2 debug info to the address at the start of the insn.
3296 We can't do this after the insn has been output as the current
3297 frag may have been closed off. eg. by frag_var. */
3298 dwarf2_emit_insn (0);
3299
3300 insn_start_frag = frag_now;
3301 insn_start_off = frag_now_fix ();
3302
3303 /* Output jumps. */
3304 if (i.tm.opcode_modifier & Jump)
3305 output_branch ();
3306 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3307 output_jump ();
3308 else if (i.tm.opcode_modifier & JumpInterSegment)
3309 output_interseg_jump ();
3310 else
3311 {
3312 /* Output normal instructions here. */
3313 char *p;
3314 unsigned char *q;
3315
3316 /* All opcodes on i386 have either 1 or 2 bytes, PadLock instructions
3317 have 3 bytes. We may use one more higher byte to specify a prefix
3318 the instruction requires. */
3319 if ((i.tm.cpu_flags & CpuPadLock) != 0
3320 && (i.tm.base_opcode & 0xff000000) != 0)
3321 {
3322 unsigned int prefix;
3323 prefix = (i.tm.base_opcode >> 24) & 0xff;
3324
3325 if (prefix != REPE_PREFIX_OPCODE
3326 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
3327 add_prefix (prefix);
3328 }
3329 else
3330 if ((i.tm.cpu_flags & CpuPadLock) == 0
3331 && (i.tm.base_opcode & 0xff0000) != 0)
3332 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
3333
3334 /* The prefix bytes. */
3335 for (q = i.prefix;
3336 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3337 q++)
3338 {
3339 if (*q)
3340 {
3341 p = frag_more (1);
3342 md_number_to_chars (p, (valueT) *q, 1);
3343 }
3344 }
3345
3346 /* Now the opcode; be careful about word order here! */
3347 if (fits_in_unsigned_byte (i.tm.base_opcode))
3348 {
3349 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3350 }
3351 else
3352 {
3353 if ((i.tm.cpu_flags & CpuPadLock) != 0)
3354 {
3355 p = frag_more (3);
3356 *p++ = (i.tm.base_opcode >> 16) & 0xff;
3357 }
3358 else
3359 p = frag_more (2);
3360
3361 /* Put out high byte first: can't use md_number_to_chars! */
3362 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3363 *p = i.tm.base_opcode & 0xff;
3364 }
3365
3366 /* Now the modrm byte and sib byte (if present). */
3367 if (i.tm.opcode_modifier & Modrm)
3368 {
3369 p = frag_more (1);
3370 md_number_to_chars (p,
3371 (valueT) (i.rm.regmem << 0
3372 | i.rm.reg << 3
3373 | i.rm.mode << 6),
3374 1);
3375 /* If i.rm.regmem == ESP (4)
3376 && i.rm.mode != (Register mode)
3377 && not 16 bit
3378 ==> need second modrm byte. */
3379 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3380 && i.rm.mode != 3
3381 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3382 {
3383 p = frag_more (1);
3384 md_number_to_chars (p,
3385 (valueT) (i.sib.base << 0
3386 | i.sib.index << 3
3387 | i.sib.scale << 6),
3388 1);
3389 }
3390 }
3391
3392 if (i.disp_operands)
3393 output_disp (insn_start_frag, insn_start_off);
3394
3395 if (i.imm_operands)
3396 output_imm (insn_start_frag, insn_start_off);
3397 }
3398
3399 #ifdef DEBUG386
3400 if (flag_debug)
3401 {
3402 pi (line, &i);
3403 }
3404 #endif /* DEBUG386 */
3405 }
3406
3407 static void
3408 output_disp (insn_start_frag, insn_start_off)
3409 fragS *insn_start_frag;
3410 offsetT insn_start_off;
3411 {
3412 char *p;
3413 unsigned int n;
3414
3415 for (n = 0; n < i.operands; n++)
3416 {
3417 if (i.types[n] & Disp)
3418 {
3419 if (i.op[n].disps->X_op == O_constant)
3420 {
3421 int size;
3422 offsetT val;
3423
3424 size = 4;
3425 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3426 {
3427 size = 2;
3428 if (i.types[n] & Disp8)
3429 size = 1;
3430 if (i.types[n] & Disp64)
3431 size = 8;
3432 }
3433 val = offset_in_range (i.op[n].disps->X_add_number,
3434 size);
3435 p = frag_more (size);
3436 md_number_to_chars (p, val, size);
3437 }
3438 else
3439 {
3440 enum bfd_reloc_code_real reloc_type;
3441 int size = 4;
3442 int sign = 0;
3443 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3444
3445 /* The PC relative address is computed relative
3446 to the instruction boundary, so in case immediate
3447 fields follows, we need to adjust the value. */
3448 if (pcrel && i.imm_operands)
3449 {
3450 int imm_size = 4;
3451 unsigned int n1;
3452
3453 for (n1 = 0; n1 < i.operands; n1++)
3454 if (i.types[n1] & Imm)
3455 {
3456 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
3457 {
3458 imm_size = 2;
3459 if (i.types[n1] & (Imm8 | Imm8S))
3460 imm_size = 1;
3461 if (i.types[n1] & Imm64)
3462 imm_size = 8;
3463 }
3464 break;
3465 }
3466 /* We should find the immediate. */
3467 if (n1 == i.operands)
3468 abort ();
3469 i.op[n].disps->X_add_number -= imm_size;
3470 }
3471
3472 if (i.types[n] & Disp32S)
3473 sign = 1;
3474
3475 if (i.types[n] & (Disp16 | Disp64))
3476 {
3477 size = 2;
3478 if (i.types[n] & Disp64)
3479 size = 8;
3480 }
3481
3482 p = frag_more (size);
3483 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
3484 if (reloc_type == BFD_RELOC_32
3485 && GOT_symbol
3486 && GOT_symbol == i.op[n].disps->X_add_symbol
3487 && (i.op[n].disps->X_op == O_symbol
3488 || (i.op[n].disps->X_op == O_add
3489 && ((symbol_get_value_expression
3490 (i.op[n].disps->X_op_symbol)->X_op)
3491 == O_subtract))))
3492 {
3493 offsetT add;
3494
3495 if (insn_start_frag == frag_now)
3496 add = (p - frag_now->fr_literal) - insn_start_off;
3497 else
3498 {
3499 fragS *fr;
3500
3501 add = insn_start_frag->fr_fix - insn_start_off;
3502 for (fr = insn_start_frag->fr_next;
3503 fr && fr != frag_now; fr = fr->fr_next)
3504 add += fr->fr_fix;
3505 add += p - frag_now->fr_literal;
3506 }
3507
3508 /* We don't support dynamic linking on x86-64 yet. */
3509 if (flag_code == CODE_64BIT)
3510 abort ();
3511 reloc_type = BFD_RELOC_386_GOTPC;
3512 i.op[n].disps->X_add_number += add;
3513 }
3514 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3515 i.op[n].disps, pcrel, reloc_type);
3516 }
3517 }
3518 }
3519 }
3520
3521 static void
3522 output_imm (insn_start_frag, insn_start_off)
3523 fragS *insn_start_frag;
3524 offsetT insn_start_off;
3525 {
3526 char *p;
3527 unsigned int n;
3528
3529 for (n = 0; n < i.operands; n++)
3530 {
3531 if (i.types[n] & Imm)
3532 {
3533 if (i.op[n].imms->X_op == O_constant)
3534 {
3535 int size;
3536 offsetT val;
3537
3538 size = 4;
3539 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3540 {
3541 size = 2;
3542 if (i.types[n] & (Imm8 | Imm8S))
3543 size = 1;
3544 else if (i.types[n] & Imm64)
3545 size = 8;
3546 }
3547 val = offset_in_range (i.op[n].imms->X_add_number,
3548 size);
3549 p = frag_more (size);
3550 md_number_to_chars (p, val, size);
3551 }
3552 else
3553 {
3554 /* Not absolute_section.
3555 Need a 32-bit fixup (don't support 8bit
3556 non-absolute imms). Try to support other
3557 sizes ... */
3558 enum bfd_reloc_code_real reloc_type;
3559 int size = 4;
3560 int sign = 0;
3561
3562 if ((i.types[n] & (Imm32S))
3563 && i.suffix == QWORD_MNEM_SUFFIX)
3564 sign = 1;
3565 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3566 {
3567 size = 2;
3568 if (i.types[n] & (Imm8 | Imm8S))
3569 size = 1;
3570 if (i.types[n] & Imm64)
3571 size = 8;
3572 }
3573
3574 p = frag_more (size);
3575 reloc_type = reloc (size, 0, sign, i.reloc[n]);
3576
3577 /* This is tough to explain. We end up with this one if we
3578 * have operands that look like
3579 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3580 * obtain the absolute address of the GOT, and it is strongly
3581 * preferable from a performance point of view to avoid using
3582 * a runtime relocation for this. The actual sequence of
3583 * instructions often look something like:
3584 *
3585 * call .L66
3586 * .L66:
3587 * popl %ebx
3588 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3589 *
3590 * The call and pop essentially return the absolute address
3591 * of the label .L66 and store it in %ebx. The linker itself
3592 * will ultimately change the first operand of the addl so
3593 * that %ebx points to the GOT, but to keep things simple, the
3594 * .o file must have this operand set so that it generates not
3595 * the absolute address of .L66, but the absolute address of
3596 * itself. This allows the linker itself simply treat a GOTPC
3597 * relocation as asking for a pcrel offset to the GOT to be
3598 * added in, and the addend of the relocation is stored in the
3599 * operand field for the instruction itself.
3600 *
3601 * Our job here is to fix the operand so that it would add
3602 * the correct offset so that %ebx would point to itself. The
3603 * thing that is tricky is that .-.L66 will point to the
3604 * beginning of the instruction, so we need to further modify
3605 * the operand so that it will point to itself. There are
3606 * other cases where you have something like:
3607 *
3608 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3609 *
3610 * and here no correction would be required. Internally in
3611 * the assembler we treat operands of this form as not being
3612 * pcrel since the '.' is explicitly mentioned, and I wonder
3613 * whether it would simplify matters to do it this way. Who
3614 * knows. In earlier versions of the PIC patches, the
3615 * pcrel_adjust field was used to store the correction, but
3616 * since the expression is not pcrel, I felt it would be
3617 * confusing to do it this way. */
3618
3619 if (reloc_type == BFD_RELOC_32
3620 && GOT_symbol
3621 && GOT_symbol == i.op[n].imms->X_add_symbol
3622 && (i.op[n].imms->X_op == O_symbol
3623 || (i.op[n].imms->X_op == O_add
3624 && ((symbol_get_value_expression
3625 (i.op[n].imms->X_op_symbol)->X_op)
3626 == O_subtract))))
3627 {
3628 offsetT add;
3629
3630 if (insn_start_frag == frag_now)
3631 add = (p - frag_now->fr_literal) - insn_start_off;
3632 else
3633 {
3634 fragS *fr;
3635
3636 add = insn_start_frag->fr_fix - insn_start_off;
3637 for (fr = insn_start_frag->fr_next;
3638 fr && fr != frag_now; fr = fr->fr_next)
3639 add += fr->fr_fix;
3640 add += p - frag_now->fr_literal;
3641 }
3642
3643 /* We don't support dynamic linking on x86-64 yet. */
3644 if (flag_code == CODE_64BIT)
3645 abort ();
3646 reloc_type = BFD_RELOC_386_GOTPC;
3647 i.op[n].imms->X_add_number += add;
3648 }
3649 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3650 i.op[n].imms, 0, reloc_type);
3651 }
3652 }
3653 }
3654 }
3655 \f
3656 #ifndef LEX_AT
3657 static char *lex_got PARAMS ((enum bfd_reloc_code_real *, int *));
3658
3659 /* Parse operands of the form
3660 <symbol>@GOTOFF+<nnn>
3661 and similar .plt or .got references.
3662
3663 If we find one, set up the correct relocation in RELOC and copy the
3664 input string, minus the `@GOTOFF' into a malloc'd buffer for
3665 parsing by the calling routine. Return this buffer, and if ADJUST
3666 is non-null set it to the length of the string we removed from the
3667 input line. Otherwise return NULL. */
3668 static char *
3669 lex_got (reloc, adjust)
3670 enum bfd_reloc_code_real *reloc;
3671 int *adjust;
3672 {
3673 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3674 static const struct {
3675 const char *str;
3676 const enum bfd_reloc_code_real rel[NUM_FLAG_CODE];
3677 } gotrel[] = {
3678 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3679 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3680 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
3681 { "TLSGD", { BFD_RELOC_386_TLS_GD, 0, BFD_RELOC_X86_64_TLSGD } },
3682 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0, 0 } },
3683 { "TLSLD", { 0, 0, BFD_RELOC_X86_64_TLSLD } },
3684 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, 0, BFD_RELOC_X86_64_GOTTPOFF } },
3685 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, 0, BFD_RELOC_X86_64_TPOFF32 } },
3686 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0, 0 } },
3687 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, 0, BFD_RELOC_X86_64_DTPOFF32 } },
3688 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0, 0 } },
3689 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0, 0 } },
3690 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
3691 };
3692 char *cp;
3693 unsigned int j;
3694
3695 for (cp = input_line_pointer; *cp != '@'; cp++)
3696 if (is_end_of_line[(unsigned char) *cp])
3697 return NULL;
3698
3699 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3700 {
3701 int len;
3702
3703 len = strlen (gotrel[j].str);
3704 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
3705 {
3706 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3707 {
3708 int first, second;
3709 char *tmpbuf, *past_reloc;
3710
3711 *reloc = gotrel[j].rel[(unsigned int) flag_code];
3712 if (adjust)
3713 *adjust = len;
3714
3715 if (GOT_symbol == NULL)
3716 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3717
3718 /* Replace the relocation token with ' ', so that
3719 errors like foo@GOTOFF1 will be detected. */
3720
3721 /* The length of the first part of our input line. */
3722 first = cp - input_line_pointer;
3723
3724 /* The second part goes from after the reloc token until
3725 (and including) an end_of_line char. Don't use strlen
3726 here as the end_of_line char may not be a NUL. */
3727 past_reloc = cp + 1 + len;
3728 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3729 ;
3730 second = cp - past_reloc;
3731
3732 /* Allocate and copy string. The trailing NUL shouldn't
3733 be necessary, but be safe. */
3734 tmpbuf = xmalloc (first + second + 2);
3735 memcpy (tmpbuf, input_line_pointer, first);
3736 tmpbuf[first] = ' ';
3737 memcpy (tmpbuf + first + 1, past_reloc, second);
3738 tmpbuf[first + second + 1] = '\0';
3739 return tmpbuf;
3740 }
3741
3742 as_bad (_("@%s reloc is not supported in %s bit mode"),
3743 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3744 return NULL;
3745 }
3746 }
3747
3748 /* Might be a symbol version string. Don't as_bad here. */
3749 return NULL;
3750 }
3751
3752 /* x86_cons_fix_new is called via the expression parsing code when a
3753 reloc is needed. We use this hook to get the correct .got reloc. */
3754 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
3755
3756 void
3757 x86_cons_fix_new (frag, off, len, exp)
3758 fragS *frag;
3759 unsigned int off;
3760 unsigned int len;
3761 expressionS *exp;
3762 {
3763 enum bfd_reloc_code_real r = reloc (len, 0, 0, got_reloc);
3764 got_reloc = NO_RELOC;
3765 fix_new_exp (frag, off, len, exp, 0, r);
3766 }
3767
3768 void
3769 x86_cons (exp, size)
3770 expressionS *exp;
3771 int size;
3772 {
3773 if (size == 4)
3774 {
3775 /* Handle @GOTOFF and the like in an expression. */
3776 char *save;
3777 char *gotfree_input_line;
3778 int adjust;
3779
3780 save = input_line_pointer;
3781 gotfree_input_line = lex_got (&got_reloc, &adjust);
3782 if (gotfree_input_line)
3783 input_line_pointer = gotfree_input_line;
3784
3785 expression (exp);
3786
3787 if (gotfree_input_line)
3788 {
3789 /* expression () has merrily parsed up to the end of line,
3790 or a comma - in the wrong buffer. Transfer how far
3791 input_line_pointer has moved to the right buffer. */
3792 input_line_pointer = (save
3793 + (input_line_pointer - gotfree_input_line)
3794 + adjust);
3795 free (gotfree_input_line);
3796 }
3797 }
3798 else
3799 expression (exp);
3800 }
3801 #endif
3802
3803 #ifdef TE_PE
3804
3805 void
3806 x86_pe_cons_fix_new (frag, off, len, exp)
3807 fragS *frag;
3808 unsigned int off;
3809 unsigned int len;
3810 expressionS *exp;
3811 {
3812 enum bfd_reloc_code_real r = reloc (len, 0, 0, NO_RELOC);
3813
3814 if (exp->X_op == O_secrel)
3815 {
3816 exp->X_op = O_symbol;
3817 r = BFD_RELOC_32_SECREL;
3818 }
3819
3820 fix_new_exp (frag, off, len, exp, 0, r);
3821 }
3822
3823 static void
3824 pe_directive_secrel (dummy)
3825 int dummy ATTRIBUTE_UNUSED;
3826 {
3827 expressionS exp;
3828
3829 do
3830 {
3831 expression (&exp);
3832 if (exp.X_op == O_symbol)
3833 exp.X_op = O_secrel;
3834
3835 emit_expr (&exp, 4);
3836 }
3837 while (*input_line_pointer++ == ',');
3838
3839 input_line_pointer--;
3840 demand_empty_rest_of_line ();
3841 }
3842
3843 #endif
3844
3845 static int i386_immediate PARAMS ((char *));
3846
3847 static int
3848 i386_immediate (imm_start)
3849 char *imm_start;
3850 {
3851 char *save_input_line_pointer;
3852 #ifndef LEX_AT
3853 char *gotfree_input_line;
3854 #endif
3855 segT exp_seg = 0;
3856 expressionS *exp;
3857
3858 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3859 {
3860 as_bad (_("only 1 or 2 immediate operands are allowed"));
3861 return 0;
3862 }
3863
3864 exp = &im_expressions[i.imm_operands++];
3865 i.op[this_operand].imms = exp;
3866
3867 if (is_space_char (*imm_start))
3868 ++imm_start;
3869
3870 save_input_line_pointer = input_line_pointer;
3871 input_line_pointer = imm_start;
3872
3873 #ifndef LEX_AT
3874 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3875 if (gotfree_input_line)
3876 input_line_pointer = gotfree_input_line;
3877 #endif
3878
3879 exp_seg = expression (exp);
3880
3881 SKIP_WHITESPACE ();
3882 if (*input_line_pointer)
3883 as_bad (_("junk `%s' after expression"), input_line_pointer);
3884
3885 input_line_pointer = save_input_line_pointer;
3886 #ifndef LEX_AT
3887 if (gotfree_input_line)
3888 free (gotfree_input_line);
3889 #endif
3890
3891 if (exp->X_op == O_absent || exp->X_op == O_big)
3892 {
3893 /* Missing or bad expr becomes absolute 0. */
3894 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
3895 imm_start);
3896 exp->X_op = O_constant;
3897 exp->X_add_number = 0;
3898 exp->X_add_symbol = (symbolS *) 0;
3899 exp->X_op_symbol = (symbolS *) 0;
3900 }
3901 else if (exp->X_op == O_constant)
3902 {
3903 /* Size it properly later. */
3904 i.types[this_operand] |= Imm64;
3905 /* If BFD64, sign extend val. */
3906 if (!use_rela_relocations)
3907 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3908 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
3909 }
3910 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3911 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
3912 && exp_seg != absolute_section
3913 && exp_seg != text_section
3914 && exp_seg != data_section
3915 && exp_seg != bss_section
3916 && exp_seg != undefined_section
3917 && !bfd_is_com_section (exp_seg))
3918 {
3919 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3920 return 0;
3921 }
3922 #endif
3923 else
3924 {
3925 /* This is an address. The size of the address will be
3926 determined later, depending on destination register,
3927 suffix, or the default for the section. */
3928 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
3929 }
3930
3931 return 1;
3932 }
3933
3934 static char *i386_scale PARAMS ((char *));
3935
3936 static char *
3937 i386_scale (scale)
3938 char *scale;
3939 {
3940 offsetT val;
3941 char *save = input_line_pointer;
3942
3943 input_line_pointer = scale;
3944 val = get_absolute_expression ();
3945
3946 switch (val)
3947 {
3948 case 1:
3949 i.log2_scale_factor = 0;
3950 break;
3951 case 2:
3952 i.log2_scale_factor = 1;
3953 break;
3954 case 4:
3955 i.log2_scale_factor = 2;
3956 break;
3957 case 8:
3958 i.log2_scale_factor = 3;
3959 break;
3960 default:
3961 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
3962 scale);
3963 input_line_pointer = save;
3964 return NULL;
3965 }
3966 if (i.log2_scale_factor != 0 && i.index_reg == 0)
3967 {
3968 as_warn (_("scale factor of %d without an index register"),
3969 1 << i.log2_scale_factor);
3970 #if SCALE1_WHEN_NO_INDEX
3971 i.log2_scale_factor = 0;
3972 #endif
3973 }
3974 scale = input_line_pointer;
3975 input_line_pointer = save;
3976 return scale;
3977 }
3978
3979 static int i386_displacement PARAMS ((char *, char *));
3980
3981 static int
3982 i386_displacement (disp_start, disp_end)
3983 char *disp_start;
3984 char *disp_end;
3985 {
3986 expressionS *exp;
3987 segT exp_seg = 0;
3988 char *save_input_line_pointer;
3989 #ifndef LEX_AT
3990 char *gotfree_input_line;
3991 #endif
3992 int bigdisp = Disp32;
3993
3994 if (flag_code == CODE_64BIT)
3995 {
3996 if (i.prefix[ADDR_PREFIX] == 0)
3997 bigdisp = Disp64;
3998 }
3999 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4000 bigdisp = Disp16;
4001 i.types[this_operand] |= bigdisp;
4002
4003 exp = &disp_expressions[i.disp_operands];
4004 i.op[this_operand].disps = exp;
4005 i.disp_operands++;
4006 save_input_line_pointer = input_line_pointer;
4007 input_line_pointer = disp_start;
4008 END_STRING_AND_SAVE (disp_end);
4009
4010 #ifndef GCC_ASM_O_HACK
4011 #define GCC_ASM_O_HACK 0
4012 #endif
4013 #if GCC_ASM_O_HACK
4014 END_STRING_AND_SAVE (disp_end + 1);
4015 if ((i.types[this_operand] & BaseIndex) != 0
4016 && displacement_string_end[-1] == '+')
4017 {
4018 /* This hack is to avoid a warning when using the "o"
4019 constraint within gcc asm statements.
4020 For instance:
4021
4022 #define _set_tssldt_desc(n,addr,limit,type) \
4023 __asm__ __volatile__ ( \
4024 "movw %w2,%0\n\t" \
4025 "movw %w1,2+%0\n\t" \
4026 "rorl $16,%1\n\t" \
4027 "movb %b1,4+%0\n\t" \
4028 "movb %4,5+%0\n\t" \
4029 "movb $0,6+%0\n\t" \
4030 "movb %h1,7+%0\n\t" \
4031 "rorl $16,%1" \
4032 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
4033
4034 This works great except that the output assembler ends
4035 up looking a bit weird if it turns out that there is
4036 no offset. You end up producing code that looks like:
4037
4038 #APP
4039 movw $235,(%eax)
4040 movw %dx,2+(%eax)
4041 rorl $16,%edx
4042 movb %dl,4+(%eax)
4043 movb $137,5+(%eax)
4044 movb $0,6+(%eax)
4045 movb %dh,7+(%eax)
4046 rorl $16,%edx
4047 #NO_APP
4048
4049 So here we provide the missing zero. */
4050
4051 *displacement_string_end = '0';
4052 }
4053 #endif
4054 #ifndef LEX_AT
4055 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
4056 if (gotfree_input_line)
4057 input_line_pointer = gotfree_input_line;
4058 #endif
4059
4060 exp_seg = expression (exp);
4061
4062 SKIP_WHITESPACE ();
4063 if (*input_line_pointer)
4064 as_bad (_("junk `%s' after expression"), input_line_pointer);
4065 #if GCC_ASM_O_HACK
4066 RESTORE_END_STRING (disp_end + 1);
4067 #endif
4068 RESTORE_END_STRING (disp_end);
4069 input_line_pointer = save_input_line_pointer;
4070 #ifndef LEX_AT
4071 if (gotfree_input_line)
4072 free (gotfree_input_line);
4073 #endif
4074
4075 /* We do this to make sure that the section symbol is in
4076 the symbol table. We will ultimately change the relocation
4077 to be relative to the beginning of the section. */
4078 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
4079 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
4080 {
4081 if (exp->X_op != O_symbol)
4082 {
4083 as_bad (_("bad expression used with @%s"),
4084 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4085 ? "GOTPCREL"
4086 : "GOTOFF"));
4087 return 0;
4088 }
4089
4090 if (S_IS_LOCAL (exp->X_add_symbol)
4091 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
4092 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
4093 exp->X_op = O_subtract;
4094 exp->X_op_symbol = GOT_symbol;
4095 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
4096 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
4097 else
4098 i.reloc[this_operand] = BFD_RELOC_32;
4099 }
4100
4101 if (exp->X_op == O_absent || exp->X_op == O_big)
4102 {
4103 /* Missing or bad expr becomes absolute 0. */
4104 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
4105 disp_start);
4106 exp->X_op = O_constant;
4107 exp->X_add_number = 0;
4108 exp->X_add_symbol = (symbolS *) 0;
4109 exp->X_op_symbol = (symbolS *) 0;
4110 }
4111
4112 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4113 if (exp->X_op != O_constant
4114 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4115 && exp_seg != absolute_section
4116 && exp_seg != text_section
4117 && exp_seg != data_section
4118 && exp_seg != bss_section
4119 && exp_seg != undefined_section
4120 && !bfd_is_com_section (exp_seg))
4121 {
4122 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4123 return 0;
4124 }
4125 #endif
4126 else if (flag_code == CODE_64BIT)
4127 i.types[this_operand] |= Disp32S | Disp32;
4128 return 1;
4129 }
4130
4131 static int i386_index_check PARAMS ((const char *));
4132
4133 /* Make sure the memory operand we've been dealt is valid.
4134 Return 1 on success, 0 on a failure. */
4135
4136 static int
4137 i386_index_check (operand_string)
4138 const char *operand_string;
4139 {
4140 int ok;
4141 #if INFER_ADDR_PREFIX
4142 int fudged = 0;
4143
4144 tryprefix:
4145 #endif
4146 ok = 1;
4147 if (flag_code == CODE_64BIT)
4148 {
4149 unsigned RegXX = (i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32);
4150
4151 if ((i.base_reg
4152 && ((i.base_reg->reg_type & RegXX) == 0)
4153 && (i.base_reg->reg_type != BaseIndex
4154 || i.index_reg))
4155 || (i.index_reg
4156 && ((i.index_reg->reg_type & (RegXX | BaseIndex))
4157 != (RegXX | BaseIndex))))
4158 ok = 0;
4159 }
4160 else
4161 {
4162 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4163 {
4164 /* 16bit checks. */
4165 if ((i.base_reg
4166 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4167 != (Reg16 | BaseIndex)))
4168 || (i.index_reg
4169 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4170 != (Reg16 | BaseIndex))
4171 || !(i.base_reg
4172 && i.base_reg->reg_num < 6
4173 && i.index_reg->reg_num >= 6
4174 && i.log2_scale_factor == 0))))
4175 ok = 0;
4176 }
4177 else
4178 {
4179 /* 32bit checks. */
4180 if ((i.base_reg
4181 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4182 || (i.index_reg
4183 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4184 != (Reg32 | BaseIndex))))
4185 ok = 0;
4186 }
4187 }
4188 if (!ok)
4189 {
4190 #if INFER_ADDR_PREFIX
4191 if (i.prefix[ADDR_PREFIX] == 0)
4192 {
4193 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4194 i.prefixes += 1;
4195 /* Change the size of any displacement too. At most one of
4196 Disp16 or Disp32 is set.
4197 FIXME. There doesn't seem to be any real need for separate
4198 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
4199 Removing them would probably clean up the code quite a lot. */
4200 if (flag_code != CODE_64BIT && (i.types[this_operand] & (Disp16 | Disp32)))
4201 i.types[this_operand] ^= (Disp16 | Disp32);
4202 fudged = 1;
4203 goto tryprefix;
4204 }
4205 if (fudged)
4206 as_bad (_("`%s' is not a valid base/index expression"),
4207 operand_string);
4208 else
4209 #endif
4210 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4211 operand_string,
4212 flag_code_names[flag_code]);
4213 }
4214 return ok;
4215 }
4216
4217 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
4218 on error. */
4219
4220 static int
4221 i386_operand (operand_string)
4222 char *operand_string;
4223 {
4224 const reg_entry *r;
4225 char *end_op;
4226 char *op_string = operand_string;
4227
4228 if (is_space_char (*op_string))
4229 ++op_string;
4230
4231 /* We check for an absolute prefix (differentiating,
4232 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
4233 if (*op_string == ABSOLUTE_PREFIX)
4234 {
4235 ++op_string;
4236 if (is_space_char (*op_string))
4237 ++op_string;
4238 i.types[this_operand] |= JumpAbsolute;
4239 }
4240
4241 /* Check if operand is a register. */
4242 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
4243 && (r = parse_register (op_string, &end_op)) != NULL)
4244 {
4245 /* Check for a segment override by searching for ':' after a
4246 segment register. */
4247 op_string = end_op;
4248 if (is_space_char (*op_string))
4249 ++op_string;
4250 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4251 {
4252 switch (r->reg_num)
4253 {
4254 case 0:
4255 i.seg[i.mem_operands] = &es;
4256 break;
4257 case 1:
4258 i.seg[i.mem_operands] = &cs;
4259 break;
4260 case 2:
4261 i.seg[i.mem_operands] = &ss;
4262 break;
4263 case 3:
4264 i.seg[i.mem_operands] = &ds;
4265 break;
4266 case 4:
4267 i.seg[i.mem_operands] = &fs;
4268 break;
4269 case 5:
4270 i.seg[i.mem_operands] = &gs;
4271 break;
4272 }
4273
4274 /* Skip the ':' and whitespace. */
4275 ++op_string;
4276 if (is_space_char (*op_string))
4277 ++op_string;
4278
4279 if (!is_digit_char (*op_string)
4280 && !is_identifier_char (*op_string)
4281 && *op_string != '('
4282 && *op_string != ABSOLUTE_PREFIX)
4283 {
4284 as_bad (_("bad memory operand `%s'"), op_string);
4285 return 0;
4286 }
4287 /* Handle case of %es:*foo. */
4288 if (*op_string == ABSOLUTE_PREFIX)
4289 {
4290 ++op_string;
4291 if (is_space_char (*op_string))
4292 ++op_string;
4293 i.types[this_operand] |= JumpAbsolute;
4294 }
4295 goto do_memory_reference;
4296 }
4297 if (*op_string)
4298 {
4299 as_bad (_("junk `%s' after register"), op_string);
4300 return 0;
4301 }
4302 i.types[this_operand] |= r->reg_type & ~BaseIndex;
4303 i.op[this_operand].regs = r;
4304 i.reg_operands++;
4305 }
4306 else if (*op_string == REGISTER_PREFIX)
4307 {
4308 as_bad (_("bad register name `%s'"), op_string);
4309 return 0;
4310 }
4311 else if (*op_string == IMMEDIATE_PREFIX)
4312 {
4313 ++op_string;
4314 if (i.types[this_operand] & JumpAbsolute)
4315 {
4316 as_bad (_("immediate operand illegal with absolute jump"));
4317 return 0;
4318 }
4319 if (!i386_immediate (op_string))
4320 return 0;
4321 }
4322 else if (is_digit_char (*op_string)
4323 || is_identifier_char (*op_string)
4324 || *op_string == '(')
4325 {
4326 /* This is a memory reference of some sort. */
4327 char *base_string;
4328
4329 /* Start and end of displacement string expression (if found). */
4330 char *displacement_string_start;
4331 char *displacement_string_end;
4332
4333 do_memory_reference:
4334 if ((i.mem_operands == 1
4335 && (current_templates->start->opcode_modifier & IsString) == 0)
4336 || i.mem_operands == 2)
4337 {
4338 as_bad (_("too many memory references for `%s'"),
4339 current_templates->start->name);
4340 return 0;
4341 }
4342
4343 /* Check for base index form. We detect the base index form by
4344 looking for an ')' at the end of the operand, searching
4345 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4346 after the '('. */
4347 base_string = op_string + strlen (op_string);
4348
4349 --base_string;
4350 if (is_space_char (*base_string))
4351 --base_string;
4352
4353 /* If we only have a displacement, set-up for it to be parsed later. */
4354 displacement_string_start = op_string;
4355 displacement_string_end = base_string + 1;
4356
4357 if (*base_string == ')')
4358 {
4359 char *temp_string;
4360 unsigned int parens_balanced = 1;
4361 /* We've already checked that the number of left & right ()'s are
4362 equal, so this loop will not be infinite. */
4363 do
4364 {
4365 base_string--;
4366 if (*base_string == ')')
4367 parens_balanced++;
4368 if (*base_string == '(')
4369 parens_balanced--;
4370 }
4371 while (parens_balanced);
4372
4373 temp_string = base_string;
4374
4375 /* Skip past '(' and whitespace. */
4376 ++base_string;
4377 if (is_space_char (*base_string))
4378 ++base_string;
4379
4380 if (*base_string == ','
4381 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4382 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
4383 {
4384 displacement_string_end = temp_string;
4385
4386 i.types[this_operand] |= BaseIndex;
4387
4388 if (i.base_reg)
4389 {
4390 base_string = end_op;
4391 if (is_space_char (*base_string))
4392 ++base_string;
4393 }
4394
4395 /* There may be an index reg or scale factor here. */
4396 if (*base_string == ',')
4397 {
4398 ++base_string;
4399 if (is_space_char (*base_string))
4400 ++base_string;
4401
4402 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4403 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
4404 {
4405 base_string = end_op;
4406 if (is_space_char (*base_string))
4407 ++base_string;
4408 if (*base_string == ',')
4409 {
4410 ++base_string;
4411 if (is_space_char (*base_string))
4412 ++base_string;
4413 }
4414 else if (*base_string != ')')
4415 {
4416 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4417 operand_string);
4418 return 0;
4419 }
4420 }
4421 else if (*base_string == REGISTER_PREFIX)
4422 {
4423 as_bad (_("bad register name `%s'"), base_string);
4424 return 0;
4425 }
4426
4427 /* Check for scale factor. */
4428 if (*base_string != ')')
4429 {
4430 char *end_scale = i386_scale (base_string);
4431
4432 if (!end_scale)
4433 return 0;
4434
4435 base_string = end_scale;
4436 if (is_space_char (*base_string))
4437 ++base_string;
4438 if (*base_string != ')')
4439 {
4440 as_bad (_("expecting `)' after scale factor in `%s'"),
4441 operand_string);
4442 return 0;
4443 }
4444 }
4445 else if (!i.index_reg)
4446 {
4447 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4448 *base_string);
4449 return 0;
4450 }
4451 }
4452 else if (*base_string != ')')
4453 {
4454 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4455 operand_string);
4456 return 0;
4457 }
4458 }
4459 else if (*base_string == REGISTER_PREFIX)
4460 {
4461 as_bad (_("bad register name `%s'"), base_string);
4462 return 0;
4463 }
4464 }
4465
4466 /* If there's an expression beginning the operand, parse it,
4467 assuming displacement_string_start and
4468 displacement_string_end are meaningful. */
4469 if (displacement_string_start != displacement_string_end)
4470 {
4471 if (!i386_displacement (displacement_string_start,
4472 displacement_string_end))
4473 return 0;
4474 }
4475
4476 /* Special case for (%dx) while doing input/output op. */
4477 if (i.base_reg
4478 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
4479 && i.index_reg == 0
4480 && i.log2_scale_factor == 0
4481 && i.seg[i.mem_operands] == 0
4482 && (i.types[this_operand] & Disp) == 0)
4483 {
4484 i.types[this_operand] = InOutPortReg;
4485 return 1;
4486 }
4487
4488 if (i386_index_check (operand_string) == 0)
4489 return 0;
4490 i.mem_operands++;
4491 }
4492 else
4493 {
4494 /* It's not a memory operand; argh! */
4495 as_bad (_("invalid char %s beginning operand %d `%s'"),
4496 output_invalid (*op_string),
4497 this_operand + 1,
4498 op_string);
4499 return 0;
4500 }
4501 return 1; /* Normal return. */
4502 }
4503 \f
4504 /* md_estimate_size_before_relax()
4505
4506 Called just before relax() for rs_machine_dependent frags. The x86
4507 assembler uses these frags to handle variable size jump
4508 instructions.
4509
4510 Any symbol that is now undefined will not become defined.
4511 Return the correct fr_subtype in the frag.
4512 Return the initial "guess for variable size of frag" to caller.
4513 The guess is actually the growth beyond the fixed part. Whatever
4514 we do to grow the fixed or variable part contributes to our
4515 returned value. */
4516
4517 int
4518 md_estimate_size_before_relax (fragP, segment)
4519 fragS *fragP;
4520 segT segment;
4521 {
4522 /* We've already got fragP->fr_subtype right; all we have to do is
4523 check for un-relaxable symbols. On an ELF system, we can't relax
4524 an externally visible symbol, because it may be overridden by a
4525 shared library. */
4526 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
4527 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4528 || (OUTPUT_FLAVOR == bfd_target_elf_flavour
4529 && (S_IS_EXTERNAL (fragP->fr_symbol)
4530 || S_IS_WEAK (fragP->fr_symbol)))
4531 #endif
4532 )
4533 {
4534 /* Symbol is undefined in this segment, or we need to keep a
4535 reloc so that weak symbols can be overridden. */
4536 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
4537 enum bfd_reloc_code_real reloc_type;
4538 unsigned char *opcode;
4539 int old_fr_fix;
4540
4541 if (fragP->fr_var != NO_RELOC)
4542 reloc_type = fragP->fr_var;
4543 else if (size == 2)
4544 reloc_type = BFD_RELOC_16_PCREL;
4545 else
4546 reloc_type = BFD_RELOC_32_PCREL;
4547
4548 old_fr_fix = fragP->fr_fix;
4549 opcode = (unsigned char *) fragP->fr_opcode;
4550
4551 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
4552 {
4553 case UNCOND_JUMP:
4554 /* Make jmp (0xeb) a (d)word displacement jump. */
4555 opcode[0] = 0xe9;
4556 fragP->fr_fix += size;
4557 fix_new (fragP, old_fr_fix, size,
4558 fragP->fr_symbol,
4559 fragP->fr_offset, 1,
4560 reloc_type);
4561 break;
4562
4563 case COND_JUMP86:
4564 if (size == 2
4565 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
4566 {
4567 /* Negate the condition, and branch past an
4568 unconditional jump. */
4569 opcode[0] ^= 1;
4570 opcode[1] = 3;
4571 /* Insert an unconditional jump. */
4572 opcode[2] = 0xe9;
4573 /* We added two extra opcode bytes, and have a two byte
4574 offset. */
4575 fragP->fr_fix += 2 + 2;
4576 fix_new (fragP, old_fr_fix + 2, 2,
4577 fragP->fr_symbol,
4578 fragP->fr_offset, 1,
4579 reloc_type);
4580 break;
4581 }
4582 /* Fall through. */
4583
4584 case COND_JUMP:
4585 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
4586 {
4587 fixS *fixP;
4588
4589 fragP->fr_fix += 1;
4590 fixP = fix_new (fragP, old_fr_fix, 1,
4591 fragP->fr_symbol,
4592 fragP->fr_offset, 1,
4593 BFD_RELOC_8_PCREL);
4594 fixP->fx_signed = 1;
4595 break;
4596 }
4597
4598 /* This changes the byte-displacement jump 0x7N
4599 to the (d)word-displacement jump 0x0f,0x8N. */
4600 opcode[1] = opcode[0] + 0x10;
4601 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4602 /* We've added an opcode byte. */
4603 fragP->fr_fix += 1 + size;
4604 fix_new (fragP, old_fr_fix + 1, size,
4605 fragP->fr_symbol,
4606 fragP->fr_offset, 1,
4607 reloc_type);
4608 break;
4609
4610 default:
4611 BAD_CASE (fragP->fr_subtype);
4612 break;
4613 }
4614 frag_wane (fragP);
4615 return fragP->fr_fix - old_fr_fix;
4616 }
4617
4618 /* Guess size depending on current relax state. Initially the relax
4619 state will correspond to a short jump and we return 1, because
4620 the variable part of the frag (the branch offset) is one byte
4621 long. However, we can relax a section more than once and in that
4622 case we must either set fr_subtype back to the unrelaxed state,
4623 or return the value for the appropriate branch. */
4624 return md_relax_table[fragP->fr_subtype].rlx_length;
4625 }
4626
4627 /* Called after relax() is finished.
4628
4629 In: Address of frag.
4630 fr_type == rs_machine_dependent.
4631 fr_subtype is what the address relaxed to.
4632
4633 Out: Any fixSs and constants are set up.
4634 Caller will turn frag into a ".space 0". */
4635
4636 void
4637 md_convert_frag (abfd, sec, fragP)
4638 bfd *abfd ATTRIBUTE_UNUSED;
4639 segT sec ATTRIBUTE_UNUSED;
4640 fragS *fragP;
4641 {
4642 unsigned char *opcode;
4643 unsigned char *where_to_put_displacement = NULL;
4644 offsetT target_address;
4645 offsetT opcode_address;
4646 unsigned int extension = 0;
4647 offsetT displacement_from_opcode_start;
4648
4649 opcode = (unsigned char *) fragP->fr_opcode;
4650
4651 /* Address we want to reach in file space. */
4652 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
4653
4654 /* Address opcode resides at in file space. */
4655 opcode_address = fragP->fr_address + fragP->fr_fix;
4656
4657 /* Displacement from opcode start to fill into instruction. */
4658 displacement_from_opcode_start = target_address - opcode_address;
4659
4660 if ((fragP->fr_subtype & BIG) == 0)
4661 {
4662 /* Don't have to change opcode. */
4663 extension = 1; /* 1 opcode + 1 displacement */
4664 where_to_put_displacement = &opcode[1];
4665 }
4666 else
4667 {
4668 if (no_cond_jump_promotion
4669 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4670 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
4671
4672 switch (fragP->fr_subtype)
4673 {
4674 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4675 extension = 4; /* 1 opcode + 4 displacement */
4676 opcode[0] = 0xe9;
4677 where_to_put_displacement = &opcode[1];
4678 break;
4679
4680 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4681 extension = 2; /* 1 opcode + 2 displacement */
4682 opcode[0] = 0xe9;
4683 where_to_put_displacement = &opcode[1];
4684 break;
4685
4686 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4687 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4688 extension = 5; /* 2 opcode + 4 displacement */
4689 opcode[1] = opcode[0] + 0x10;
4690 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4691 where_to_put_displacement = &opcode[2];
4692 break;
4693
4694 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4695 extension = 3; /* 2 opcode + 2 displacement */
4696 opcode[1] = opcode[0] + 0x10;
4697 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4698 where_to_put_displacement = &opcode[2];
4699 break;
4700
4701 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4702 extension = 4;
4703 opcode[0] ^= 1;
4704 opcode[1] = 3;
4705 opcode[2] = 0xe9;
4706 where_to_put_displacement = &opcode[3];
4707 break;
4708
4709 default:
4710 BAD_CASE (fragP->fr_subtype);
4711 break;
4712 }
4713 }
4714
4715 /* Now put displacement after opcode. */
4716 md_number_to_chars ((char *) where_to_put_displacement,
4717 (valueT) (displacement_from_opcode_start - extension),
4718 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
4719 fragP->fr_fix += extension;
4720 }
4721 \f
4722 /* Size of byte displacement jmp. */
4723 int md_short_jump_size = 2;
4724
4725 /* Size of dword displacement jmp. */
4726 int md_long_jump_size = 5;
4727
4728 /* Size of relocation record. */
4729 const int md_reloc_size = 8;
4730
4731 void
4732 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4733 char *ptr;
4734 addressT from_addr, to_addr;
4735 fragS *frag ATTRIBUTE_UNUSED;
4736 symbolS *to_symbol ATTRIBUTE_UNUSED;
4737 {
4738 offsetT offset;
4739
4740 offset = to_addr - (from_addr + 2);
4741 /* Opcode for byte-disp jump. */
4742 md_number_to_chars (ptr, (valueT) 0xeb, 1);
4743 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4744 }
4745
4746 void
4747 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4748 char *ptr;
4749 addressT from_addr, to_addr;
4750 fragS *frag ATTRIBUTE_UNUSED;
4751 symbolS *to_symbol ATTRIBUTE_UNUSED;
4752 {
4753 offsetT offset;
4754
4755 offset = to_addr - (from_addr + 5);
4756 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4757 md_number_to_chars (ptr + 1, (valueT) offset, 4);
4758 }
4759 \f
4760 /* Apply a fixup (fixS) to segment data, once it has been determined
4761 by our caller that we have all the info we need to fix it up.
4762
4763 On the 386, immediates, displacements, and data pointers are all in
4764 the same (little-endian) format, so we don't need to care about which
4765 we are handling. */
4766
4767 void
4768 md_apply_fix3 (fixP, valP, seg)
4769 /* The fix we're to put in. */
4770 fixS *fixP;
4771 /* Pointer to the value of the bits. */
4772 valueT *valP;
4773 /* Segment fix is from. */
4774 segT seg ATTRIBUTE_UNUSED;
4775 {
4776 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4777 valueT value = *valP;
4778
4779 #if !defined (TE_Mach)
4780 if (fixP->fx_pcrel)
4781 {
4782 switch (fixP->fx_r_type)
4783 {
4784 default:
4785 break;
4786
4787 case BFD_RELOC_32:
4788 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4789 break;
4790 case BFD_RELOC_16:
4791 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4792 break;
4793 case BFD_RELOC_8:
4794 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4795 break;
4796 }
4797 }
4798
4799 if (fixP->fx_addsy != NULL
4800 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
4801 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4802 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4803 && !use_rela_relocations)
4804 {
4805 /* This is a hack. There should be a better way to handle this.
4806 This covers for the fact that bfd_install_relocation will
4807 subtract the current location (for partial_inplace, PC relative
4808 relocations); see more below. */
4809 #ifndef OBJ_AOUT
4810 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4811 #ifdef TE_PE
4812 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4813 #endif
4814 )
4815 value += fixP->fx_where + fixP->fx_frag->fr_address;
4816 #endif
4817 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4818 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
4819 {
4820 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
4821
4822 if ((sym_seg == seg
4823 || (symbol_section_p (fixP->fx_addsy)
4824 && sym_seg != absolute_section))
4825 && !generic_force_reloc (fixP))
4826 {
4827 /* Yes, we add the values in twice. This is because
4828 bfd_install_relocation subtracts them out again. I think
4829 bfd_install_relocation is broken, but I don't dare change
4830 it. FIXME. */
4831 value += fixP->fx_where + fixP->fx_frag->fr_address;
4832 }
4833 }
4834 #endif
4835 #if defined (OBJ_COFF) && defined (TE_PE)
4836 /* For some reason, the PE format does not store a
4837 section address offset for a PC relative symbol. */
4838 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
4839 #if defined(BFD_ASSEMBLER) || defined(S_IS_WEAK)
4840 || S_IS_WEAK (fixP->fx_addsy)
4841 #endif
4842 )
4843 value += md_pcrel_from (fixP);
4844 #endif
4845 }
4846
4847 /* Fix a few things - the dynamic linker expects certain values here,
4848 and we must not disappoint it. */
4849 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4850 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4851 && fixP->fx_addsy)
4852 switch (fixP->fx_r_type)
4853 {
4854 case BFD_RELOC_386_PLT32:
4855 case BFD_RELOC_X86_64_PLT32:
4856 /* Make the jump instruction point to the address of the operand. At
4857 runtime we merely add the offset to the actual PLT entry. */
4858 value = -4;
4859 break;
4860
4861 case BFD_RELOC_386_TLS_GD:
4862 case BFD_RELOC_386_TLS_LDM:
4863 case BFD_RELOC_386_TLS_IE_32:
4864 case BFD_RELOC_386_TLS_IE:
4865 case BFD_RELOC_386_TLS_GOTIE:
4866 case BFD_RELOC_X86_64_TLSGD:
4867 case BFD_RELOC_X86_64_TLSLD:
4868 case BFD_RELOC_X86_64_GOTTPOFF:
4869 value = 0; /* Fully resolved at runtime. No addend. */
4870 /* Fallthrough */
4871 case BFD_RELOC_386_TLS_LE:
4872 case BFD_RELOC_386_TLS_LDO_32:
4873 case BFD_RELOC_386_TLS_LE_32:
4874 case BFD_RELOC_X86_64_DTPOFF32:
4875 case BFD_RELOC_X86_64_TPOFF32:
4876 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4877 break;
4878
4879 case BFD_RELOC_386_GOT32:
4880 case BFD_RELOC_X86_64_GOT32:
4881 value = 0; /* Fully resolved at runtime. No addend. */
4882 break;
4883
4884 case BFD_RELOC_VTABLE_INHERIT:
4885 case BFD_RELOC_VTABLE_ENTRY:
4886 fixP->fx_done = 0;
4887 return;
4888
4889 default:
4890 break;
4891 }
4892 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
4893 *valP = value;
4894 #endif /* !defined (TE_Mach) */
4895
4896 /* Are we finished with this relocation now? */
4897 if (fixP->fx_addsy == NULL)
4898 fixP->fx_done = 1;
4899 else if (use_rela_relocations)
4900 {
4901 fixP->fx_no_overflow = 1;
4902 /* Remember value for tc_gen_reloc. */
4903 fixP->fx_addnumber = value;
4904 value = 0;
4905 }
4906
4907 md_number_to_chars (p, value, fixP->fx_size);
4908 }
4909 \f
4910 #define MAX_LITTLENUMS 6
4911
4912 /* Turn the string pointed to by litP into a floating point constant
4913 of type TYPE, and emit the appropriate bytes. The number of
4914 LITTLENUMS emitted is stored in *SIZEP. An error message is
4915 returned, or NULL on OK. */
4916
4917 char *
4918 md_atof (type, litP, sizeP)
4919 int type;
4920 char *litP;
4921 int *sizeP;
4922 {
4923 int prec;
4924 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4925 LITTLENUM_TYPE *wordP;
4926 char *t;
4927
4928 switch (type)
4929 {
4930 case 'f':
4931 case 'F':
4932 prec = 2;
4933 break;
4934
4935 case 'd':
4936 case 'D':
4937 prec = 4;
4938 break;
4939
4940 case 'x':
4941 case 'X':
4942 prec = 5;
4943 break;
4944
4945 default:
4946 *sizeP = 0;
4947 return _("Bad call to md_atof ()");
4948 }
4949 t = atof_ieee (input_line_pointer, type, words);
4950 if (t)
4951 input_line_pointer = t;
4952
4953 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4954 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4955 the bigendian 386. */
4956 for (wordP = words + prec - 1; prec--;)
4957 {
4958 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4959 litP += sizeof (LITTLENUM_TYPE);
4960 }
4961 return 0;
4962 }
4963 \f
4964 char output_invalid_buf[8];
4965
4966 static char *
4967 output_invalid (c)
4968 int c;
4969 {
4970 if (ISPRINT (c))
4971 sprintf (output_invalid_buf, "'%c'", c);
4972 else
4973 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4974 return output_invalid_buf;
4975 }
4976
4977 /* REG_STRING starts *before* REGISTER_PREFIX. */
4978
4979 static const reg_entry *
4980 parse_register (reg_string, end_op)
4981 char *reg_string;
4982 char **end_op;
4983 {
4984 char *s = reg_string;
4985 char *p;
4986 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4987 const reg_entry *r;
4988
4989 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4990 if (*s == REGISTER_PREFIX)
4991 ++s;
4992
4993 if (is_space_char (*s))
4994 ++s;
4995
4996 p = reg_name_given;
4997 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
4998 {
4999 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
5000 return (const reg_entry *) NULL;
5001 s++;
5002 }
5003
5004 /* For naked regs, make sure that we are not dealing with an identifier.
5005 This prevents confusing an identifier like `eax_var' with register
5006 `eax'. */
5007 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
5008 return (const reg_entry *) NULL;
5009
5010 *end_op = s;
5011
5012 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
5013
5014 /* Handle floating point regs, allowing spaces in the (i) part. */
5015 if (r == i386_regtab /* %st is first entry of table */)
5016 {
5017 if (is_space_char (*s))
5018 ++s;
5019 if (*s == '(')
5020 {
5021 ++s;
5022 if (is_space_char (*s))
5023 ++s;
5024 if (*s >= '0' && *s <= '7')
5025 {
5026 r = &i386_float_regtab[*s - '0'];
5027 ++s;
5028 if (is_space_char (*s))
5029 ++s;
5030 if (*s == ')')
5031 {
5032 *end_op = s + 1;
5033 return r;
5034 }
5035 }
5036 /* We have "%st(" then garbage. */
5037 return (const reg_entry *) NULL;
5038 }
5039 }
5040
5041 if (r != NULL
5042 && ((r->reg_flags & (RegRex64 | RegRex)) | (r->reg_type & Reg64)) != 0
5043 && flag_code != CODE_64BIT)
5044 return (const reg_entry *) NULL;
5045
5046 return r;
5047 }
5048 \f
5049 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5050 const char *md_shortopts = "kVQ:sqn";
5051 #else
5052 const char *md_shortopts = "qn";
5053 #endif
5054
5055 struct option md_longopts[] = {
5056 #define OPTION_32 (OPTION_MD_BASE + 0)
5057 {"32", no_argument, NULL, OPTION_32},
5058 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5059 #define OPTION_64 (OPTION_MD_BASE + 1)
5060 {"64", no_argument, NULL, OPTION_64},
5061 #endif
5062 {NULL, no_argument, NULL, 0}
5063 };
5064 size_t md_longopts_size = sizeof (md_longopts);
5065
5066 int
5067 md_parse_option (c, arg)
5068 int c;
5069 char *arg ATTRIBUTE_UNUSED;
5070 {
5071 switch (c)
5072 {
5073 case 'n':
5074 optimize_align_code = 0;
5075 break;
5076
5077 case 'q':
5078 quiet_warnings = 1;
5079 break;
5080
5081 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5082 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
5083 should be emitted or not. FIXME: Not implemented. */
5084 case 'Q':
5085 break;
5086
5087 /* -V: SVR4 argument to print version ID. */
5088 case 'V':
5089 print_version_id ();
5090 break;
5091
5092 /* -k: Ignore for FreeBSD compatibility. */
5093 case 'k':
5094 break;
5095
5096 case 's':
5097 /* -s: On i386 Solaris, this tells the native assembler to use
5098 .stab instead of .stab.excl. We always use .stab anyhow. */
5099 break;
5100
5101 case OPTION_64:
5102 {
5103 const char **list, **l;
5104
5105 list = bfd_target_list ();
5106 for (l = list; *l != NULL; l++)
5107 if (strcmp (*l, "elf64-x86-64") == 0)
5108 {
5109 default_arch = "x86_64";
5110 break;
5111 }
5112 if (*l == NULL)
5113 as_fatal (_("No compiled in support for x86_64"));
5114 free (list);
5115 }
5116 break;
5117 #endif
5118
5119 case OPTION_32:
5120 default_arch = "i386";
5121 break;
5122
5123 default:
5124 return 0;
5125 }
5126 return 1;
5127 }
5128
5129 void
5130 md_show_usage (stream)
5131 FILE *stream;
5132 {
5133 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5134 fprintf (stream, _("\
5135 -Q ignored\n\
5136 -V print assembler version number\n\
5137 -k ignored\n\
5138 -n Do not optimize code alignment\n\
5139 -q quieten some warnings\n\
5140 -s ignored\n"));
5141 #else
5142 fprintf (stream, _("\
5143 -n Do not optimize code alignment\n\
5144 -q quieten some warnings\n"));
5145 #endif
5146 }
5147
5148 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
5149 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5150
5151 /* Pick the target format to use. */
5152
5153 const char *
5154 i386_target_format ()
5155 {
5156 if (!strcmp (default_arch, "x86_64"))
5157 set_code_flag (CODE_64BIT);
5158 else if (!strcmp (default_arch, "i386"))
5159 set_code_flag (CODE_32BIT);
5160 else
5161 as_fatal (_("Unknown architecture"));
5162 switch (OUTPUT_FLAVOR)
5163 {
5164 #ifdef OBJ_MAYBE_AOUT
5165 case bfd_target_aout_flavour:
5166 return AOUT_TARGET_FORMAT;
5167 #endif
5168 #ifdef OBJ_MAYBE_COFF
5169 case bfd_target_coff_flavour:
5170 return "coff-i386";
5171 #endif
5172 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
5173 case bfd_target_elf_flavour:
5174 {
5175 if (flag_code == CODE_64BIT)
5176 use_rela_relocations = 1;
5177 return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
5178 }
5179 #endif
5180 default:
5181 abort ();
5182 return NULL;
5183 }
5184 }
5185
5186 #endif /* OBJ_MAYBE_ more than one */
5187
5188 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5189 void i386_elf_emit_arch_note ()
5190 {
5191 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
5192 && cpu_arch_name != NULL)
5193 {
5194 char *p;
5195 asection *seg = now_seg;
5196 subsegT subseg = now_subseg;
5197 Elf_Internal_Note i_note;
5198 Elf_External_Note e_note;
5199 asection *note_secp;
5200 int len;
5201
5202 /* Create the .note section. */
5203 note_secp = subseg_new (".note", 0);
5204 bfd_set_section_flags (stdoutput,
5205 note_secp,
5206 SEC_HAS_CONTENTS | SEC_READONLY);
5207
5208 /* Process the arch string. */
5209 len = strlen (cpu_arch_name);
5210
5211 i_note.namesz = len + 1;
5212 i_note.descsz = 0;
5213 i_note.type = NT_ARCH;
5214 p = frag_more (sizeof (e_note.namesz));
5215 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
5216 p = frag_more (sizeof (e_note.descsz));
5217 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
5218 p = frag_more (sizeof (e_note.type));
5219 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
5220 p = frag_more (len + 1);
5221 strcpy (p, cpu_arch_name);
5222
5223 frag_align (2, 0, 0);
5224
5225 subseg_set (seg, subseg);
5226 }
5227 }
5228 #endif
5229 \f
5230 symbolS *
5231 md_undefined_symbol (name)
5232 char *name;
5233 {
5234 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
5235 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
5236 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
5237 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
5238 {
5239 if (!GOT_symbol)
5240 {
5241 if (symbol_find (name))
5242 as_bad (_("GOT already in symbol table"));
5243 GOT_symbol = symbol_new (name, undefined_section,
5244 (valueT) 0, &zero_address_frag);
5245 };
5246 return GOT_symbol;
5247 }
5248 return 0;
5249 }
5250
5251 /* Round up a section size to the appropriate boundary. */
5252
5253 valueT
5254 md_section_align (segment, size)
5255 segT segment ATTRIBUTE_UNUSED;
5256 valueT size;
5257 {
5258 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5259 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
5260 {
5261 /* For a.out, force the section size to be aligned. If we don't do
5262 this, BFD will align it for us, but it will not write out the
5263 final bytes of the section. This may be a bug in BFD, but it is
5264 easier to fix it here since that is how the other a.out targets
5265 work. */
5266 int align;
5267
5268 align = bfd_get_section_alignment (stdoutput, segment);
5269 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
5270 }
5271 #endif
5272
5273 return size;
5274 }
5275
5276 /* On the i386, PC-relative offsets are relative to the start of the
5277 next instruction. That is, the address of the offset, plus its
5278 size, since the offset is always the last part of the insn. */
5279
5280 long
5281 md_pcrel_from (fixP)
5282 fixS *fixP;
5283 {
5284 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
5285 }
5286
5287 #ifndef I386COFF
5288
5289 static void
5290 s_bss (ignore)
5291 int ignore ATTRIBUTE_UNUSED;
5292 {
5293 int temp;
5294
5295 temp = get_absolute_expression ();
5296 subseg_set (bss_section, (subsegT) temp);
5297 demand_empty_rest_of_line ();
5298 }
5299
5300 #endif
5301
5302 void
5303 i386_validate_fix (fixp)
5304 fixS *fixp;
5305 {
5306 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
5307 {
5308 /* GOTOFF relocation are nonsense in 64bit mode. */
5309 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
5310 {
5311 if (flag_code != CODE_64BIT)
5312 abort ();
5313 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
5314 }
5315 else
5316 {
5317 if (flag_code == CODE_64BIT)
5318 abort ();
5319 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
5320 }
5321 fixp->fx_subsy = 0;
5322 }
5323 }
5324
5325 arelent *
5326 tc_gen_reloc (section, fixp)
5327 asection *section ATTRIBUTE_UNUSED;
5328 fixS *fixp;
5329 {
5330 arelent *rel;
5331 bfd_reloc_code_real_type code;
5332
5333 switch (fixp->fx_r_type)
5334 {
5335 case BFD_RELOC_X86_64_PLT32:
5336 case BFD_RELOC_X86_64_GOT32:
5337 case BFD_RELOC_X86_64_GOTPCREL:
5338 case BFD_RELOC_386_PLT32:
5339 case BFD_RELOC_386_GOT32:
5340 case BFD_RELOC_386_GOTOFF:
5341 case BFD_RELOC_386_GOTPC:
5342 case BFD_RELOC_386_TLS_GD:
5343 case BFD_RELOC_386_TLS_LDM:
5344 case BFD_RELOC_386_TLS_LDO_32:
5345 case BFD_RELOC_386_TLS_IE_32:
5346 case BFD_RELOC_386_TLS_IE:
5347 case BFD_RELOC_386_TLS_GOTIE:
5348 case BFD_RELOC_386_TLS_LE_32:
5349 case BFD_RELOC_386_TLS_LE:
5350 case BFD_RELOC_X86_64_32S:
5351 case BFD_RELOC_X86_64_TLSGD:
5352 case BFD_RELOC_X86_64_TLSLD:
5353 case BFD_RELOC_X86_64_DTPOFF32:
5354 case BFD_RELOC_X86_64_GOTTPOFF:
5355 case BFD_RELOC_X86_64_TPOFF32:
5356 case BFD_RELOC_RVA:
5357 case BFD_RELOC_VTABLE_ENTRY:
5358 case BFD_RELOC_VTABLE_INHERIT:
5359 #ifdef TE_PE
5360 case BFD_RELOC_32_SECREL:
5361 #endif
5362 code = fixp->fx_r_type;
5363 break;
5364 default:
5365 if (fixp->fx_pcrel)
5366 {
5367 switch (fixp->fx_size)
5368 {
5369 default:
5370 as_bad_where (fixp->fx_file, fixp->fx_line,
5371 _("can not do %d byte pc-relative relocation"),
5372 fixp->fx_size);
5373 code = BFD_RELOC_32_PCREL;
5374 break;
5375 case 1: code = BFD_RELOC_8_PCREL; break;
5376 case 2: code = BFD_RELOC_16_PCREL; break;
5377 case 4: code = BFD_RELOC_32_PCREL; break;
5378 }
5379 }
5380 else
5381 {
5382 switch (fixp->fx_size)
5383 {
5384 default:
5385 as_bad_where (fixp->fx_file, fixp->fx_line,
5386 _("can not do %d byte relocation"),
5387 fixp->fx_size);
5388 code = BFD_RELOC_32;
5389 break;
5390 case 1: code = BFD_RELOC_8; break;
5391 case 2: code = BFD_RELOC_16; break;
5392 case 4: code = BFD_RELOC_32; break;
5393 #ifdef BFD64
5394 case 8: code = BFD_RELOC_64; break;
5395 #endif
5396 }
5397 }
5398 break;
5399 }
5400
5401 if (code == BFD_RELOC_32
5402 && GOT_symbol
5403 && fixp->fx_addsy == GOT_symbol)
5404 {
5405 /* We don't support GOTPC on 64bit targets. */
5406 if (flag_code == CODE_64BIT)
5407 abort ();
5408 code = BFD_RELOC_386_GOTPC;
5409 }
5410
5411 rel = (arelent *) xmalloc (sizeof (arelent));
5412 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5413 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
5414
5415 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
5416
5417 if (!use_rela_relocations)
5418 {
5419 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5420 vtable entry to be used in the relocation's section offset. */
5421 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5422 rel->address = fixp->fx_offset;
5423
5424 rel->addend = 0;
5425 }
5426 /* Use the rela in 64bit mode. */
5427 else
5428 {
5429 if (!fixp->fx_pcrel)
5430 rel->addend = fixp->fx_offset;
5431 else
5432 switch (code)
5433 {
5434 case BFD_RELOC_X86_64_PLT32:
5435 case BFD_RELOC_X86_64_GOT32:
5436 case BFD_RELOC_X86_64_GOTPCREL:
5437 case BFD_RELOC_X86_64_TLSGD:
5438 case BFD_RELOC_X86_64_TLSLD:
5439 case BFD_RELOC_X86_64_GOTTPOFF:
5440 rel->addend = fixp->fx_offset - fixp->fx_size;
5441 break;
5442 default:
5443 rel->addend = (section->vma
5444 - fixp->fx_size
5445 + fixp->fx_addnumber
5446 + md_pcrel_from (fixp));
5447 break;
5448 }
5449 }
5450
5451 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
5452 if (rel->howto == NULL)
5453 {
5454 as_bad_where (fixp->fx_file, fixp->fx_line,
5455 _("cannot represent relocation type %s"),
5456 bfd_get_reloc_code_name (code));
5457 /* Set howto to a garbage value so that we can keep going. */
5458 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
5459 assert (rel->howto != NULL);
5460 }
5461
5462 return rel;
5463 }
5464
5465 \f
5466 /* Parse operands using Intel syntax. This implements a recursive descent
5467 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5468 Programmer's Guide.
5469
5470 FIXME: We do not recognize the full operand grammar defined in the MASM
5471 documentation. In particular, all the structure/union and
5472 high-level macro operands are missing.
5473
5474 Uppercase words are terminals, lower case words are non-terminals.
5475 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5476 bars '|' denote choices. Most grammar productions are implemented in
5477 functions called 'intel_<production>'.
5478
5479 Initial production is 'expr'.
5480
5481 addOp + | -
5482
5483 alpha [a-zA-Z]
5484
5485 binOp & | AND | \| | OR | ^ | XOR
5486
5487 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5488
5489 constant digits [[ radixOverride ]]
5490
5491 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
5492
5493 digits decdigit
5494 | digits decdigit
5495 | digits hexdigit
5496
5497 decdigit [0-9]
5498
5499 e04 e04 addOp e05
5500 | e05
5501
5502 e05 e05 binOp e06
5503 | e06
5504
5505 e06 e06 mulOp e09
5506 | e09
5507
5508 e09 OFFSET e10
5509 | ~ e10
5510 | NOT e10
5511 | e09 PTR e10
5512 | e09 : e10
5513 | e10
5514
5515 e10 e10 [ expr ]
5516 | e11
5517
5518 e11 ( expr )
5519 | [ expr ]
5520 | constant
5521 | dataType
5522 | id
5523 | $
5524 | register
5525
5526 => expr SHORT e04
5527 | e04
5528
5529 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
5530 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
5531
5532 hexdigit a | b | c | d | e | f
5533 | A | B | C | D | E | F
5534
5535 id alpha
5536 | id alpha
5537 | id decdigit
5538
5539 mulOp * | / | % | MOD | << | SHL | >> | SHR
5540
5541 quote " | '
5542
5543 register specialRegister
5544 | gpRegister
5545 | byteRegister
5546
5547 segmentRegister CS | DS | ES | FS | GS | SS
5548
5549 specialRegister CR0 | CR2 | CR3 | CR4
5550 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
5551 | TR3 | TR4 | TR5 | TR6 | TR7
5552
5553 We simplify the grammar in obvious places (e.g., register parsing is
5554 done by calling parse_register) and eliminate immediate left recursion
5555 to implement a recursive-descent parser.
5556
5557 expr SHORT e04
5558 | e04
5559
5560 e04 e05 e04'
5561
5562 e04' addOp e05 e04'
5563 | Empty
5564
5565 e05 e06 e05'
5566
5567 e05' binOp e06 e05'
5568 | Empty
5569
5570 e06 e09 e06'
5571
5572 e06' mulOp e09 e06'
5573 | Empty
5574
5575 e09 OFFSET e10 e09'
5576 | ~ e10
5577 | NOT e10
5578 | e10 e09'
5579
5580 e09' PTR e10 e09'
5581 | : e10 e09'
5582 | Empty
5583
5584 e10 e11 e10'
5585
5586 e10' [ expr ] e10'
5587 | Empty
5588
5589 e11 ( expr )
5590 | [ expr ]
5591 | BYTE
5592 | WORD
5593 | DWORD
5594 | FWORD
5595 | QWORD
5596 | TBYTE
5597 | OWORD
5598 | XMMWORD
5599 | .
5600 | $
5601 | register
5602 | id
5603 | constant */
5604
5605 /* Parsing structure for the intel syntax parser. Used to implement the
5606 semantic actions for the operand grammar. */
5607 struct intel_parser_s
5608 {
5609 char *op_string; /* The string being parsed. */
5610 int got_a_float; /* Whether the operand is a float. */
5611 int op_modifier; /* Operand modifier. */
5612 int is_mem; /* 1 if operand is memory reference. */
5613 const reg_entry *reg; /* Last register reference found. */
5614 char *disp; /* Displacement string being built. */
5615 };
5616
5617 static struct intel_parser_s intel_parser;
5618
5619 /* Token structure for parsing intel syntax. */
5620 struct intel_token
5621 {
5622 int code; /* Token code. */
5623 const reg_entry *reg; /* Register entry for register tokens. */
5624 char *str; /* String representation. */
5625 };
5626
5627 static struct intel_token cur_token, prev_token;
5628
5629 /* Token codes for the intel parser. Since T_SHORT is already used
5630 by COFF, undefine it first to prevent a warning. */
5631 #define T_NIL -1
5632 #define T_CONST 1
5633 #define T_REG 2
5634 #define T_BYTE 3
5635 #define T_WORD 4
5636 #define T_DWORD 5
5637 #define T_FWORD 6
5638 #define T_QWORD 7
5639 #define T_TBYTE 8
5640 #define T_XMMWORD 9
5641 #undef T_SHORT
5642 #define T_SHORT 10
5643 #define T_OFFSET 11
5644 #define T_PTR 12
5645 #define T_ID 13
5646 #define T_SHL 14
5647 #define T_SHR 15
5648
5649 /* Prototypes for intel parser functions. */
5650 static int intel_match_token PARAMS ((int code));
5651 static void intel_get_token PARAMS ((void));
5652 static void intel_putback_token PARAMS ((void));
5653 static int intel_expr PARAMS ((void));
5654 static int intel_e04 PARAMS ((void));
5655 static int intel_e04_1 PARAMS ((void));
5656 static int intel_e05 PARAMS ((void));
5657 static int intel_e05_1 PARAMS ((void));
5658 static int intel_e06 PARAMS ((void));
5659 static int intel_e06_1 PARAMS ((void));
5660 static int intel_e09 PARAMS ((void));
5661 static int intel_e09_1 PARAMS ((void));
5662 static int intel_e10 PARAMS ((void));
5663 static int intel_e10_1 PARAMS ((void));
5664 static int intel_e11 PARAMS ((void));
5665
5666 static int
5667 i386_intel_operand (operand_string, got_a_float)
5668 char *operand_string;
5669 int got_a_float;
5670 {
5671 int ret;
5672 char *p;
5673
5674 /* Initialize token holders. */
5675 cur_token.code = prev_token.code = T_NIL;
5676 cur_token.reg = prev_token.reg = NULL;
5677 cur_token.str = prev_token.str = NULL;
5678
5679 /* Initialize parser structure. */
5680 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
5681 if (p == NULL)
5682 abort ();
5683 strcpy (intel_parser.op_string, operand_string);
5684 intel_parser.got_a_float = got_a_float;
5685 intel_parser.op_modifier = -1;
5686 intel_parser.is_mem = 0;
5687 intel_parser.reg = NULL;
5688 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
5689 if (intel_parser.disp == NULL)
5690 abort ();
5691 intel_parser.disp[0] = '\0';
5692
5693 /* Read the first token and start the parser. */
5694 intel_get_token ();
5695 ret = intel_expr ();
5696
5697 if (ret)
5698 {
5699 if (cur_token.code != T_NIL)
5700 {
5701 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
5702 current_templates->start->name, cur_token.str);
5703 ret = 0;
5704 }
5705 /* If we found a memory reference, hand it over to i386_displacement
5706 to fill in the rest of the operand fields. */
5707 else if (intel_parser.is_mem)
5708 {
5709 if ((i.mem_operands == 1
5710 && (current_templates->start->opcode_modifier & IsString) == 0)
5711 || i.mem_operands == 2)
5712 {
5713 as_bad (_("too many memory references for '%s'"),
5714 current_templates->start->name);
5715 ret = 0;
5716 }
5717 else
5718 {
5719 char *s = intel_parser.disp;
5720 i.mem_operands++;
5721
5722 /* Add the displacement expression. */
5723 if (*s != '\0')
5724 ret = i386_displacement (s, s + strlen (s));
5725 if (ret)
5726 ret = i386_index_check (operand_string);
5727 }
5728 }
5729
5730 /* Constant and OFFSET expressions are handled by i386_immediate. */
5731 else if (intel_parser.op_modifier == T_OFFSET
5732 || intel_parser.reg == NULL)
5733 ret = i386_immediate (intel_parser.disp);
5734 }
5735
5736 free (p);
5737 free (intel_parser.disp);
5738
5739 return ret;
5740 }
5741
5742 /* expr SHORT e04
5743 | e04 */
5744 static int
5745 intel_expr ()
5746 {
5747 /* expr SHORT e04 */
5748 if (cur_token.code == T_SHORT)
5749 {
5750 intel_parser.op_modifier = T_SHORT;
5751 intel_match_token (T_SHORT);
5752
5753 return (intel_e04 ());
5754 }
5755
5756 /* expr e04 */
5757 else
5758 return intel_e04 ();
5759 }
5760
5761 /* e04 e06 e04'
5762
5763 e04' addOp e06 e04'
5764 | Empty */
5765 static int
5766 intel_e04 ()
5767 {
5768 return (intel_e05 () && intel_e04_1 ());
5769 }
5770
5771 static int
5772 intel_e04_1 ()
5773 {
5774 /* e04' addOp e05 e04' */
5775 if (cur_token.code == '+' || cur_token.code == '-')
5776 {
5777 char str[2];
5778
5779 str[0] = cur_token.code;
5780 str[1] = 0;
5781 strcat (intel_parser.disp, str);
5782 intel_match_token (cur_token.code);
5783
5784 return (intel_e05 () && intel_e04_1 ());
5785 }
5786
5787 /* e04' Empty */
5788 else
5789 return 1;
5790 }
5791
5792 /* e05 e06 e05'
5793
5794 e05' binOp e06 e05'
5795 | Empty */
5796 static int
5797 intel_e05 ()
5798 {
5799 return (intel_e06 () && intel_e05_1 ());
5800 }
5801
5802 static int
5803 intel_e05_1 ()
5804 {
5805 /* e05' binOp e06 e05' */
5806 if (cur_token.code == '&' || cur_token.code == '|' || cur_token.code == '^')
5807 {
5808 char str[2];
5809
5810 str[0] = cur_token.code;
5811 str[1] = 0;
5812 strcat (intel_parser.disp, str);
5813 intel_match_token (cur_token.code);
5814
5815 return (intel_e06 () && intel_e05_1 ());
5816 }
5817
5818 /* e05' Empty */
5819 else
5820 return 1;
5821 }
5822
5823 /* e06 e09 e06'
5824
5825 e06' mulOp e09 e06'
5826 | Empty */
5827 static int
5828 intel_e06 ()
5829 {
5830 return (intel_e09 () && intel_e06_1 ());
5831 }
5832
5833 static int
5834 intel_e06_1 ()
5835 {
5836 /* e06' mulOp e09 e06' */
5837 if (cur_token.code == '*' || cur_token.code == '/' || cur_token.code == '%')
5838 {
5839 char str[2];
5840
5841 str[0] = cur_token.code;
5842 str[1] = 0;
5843 strcat (intel_parser.disp, str);
5844 intel_match_token (cur_token.code);
5845
5846 return (intel_e09 () && intel_e06_1 ());
5847 }
5848 else if (cur_token.code == T_SHL)
5849 {
5850 strcat (intel_parser.disp, "<<");
5851 intel_match_token (cur_token.code);
5852
5853 return (intel_e09 () && intel_e06_1 ());
5854 }
5855 else if (cur_token.code == T_SHR)
5856 {
5857 strcat (intel_parser.disp, ">>");
5858 intel_match_token (cur_token.code);
5859
5860 return (intel_e09 () && intel_e06_1 ());
5861 }
5862
5863 /* e06' Empty */
5864 else
5865 return 1;
5866 }
5867
5868 /* e09 OFFSET e10 e09'
5869 | e10 e09'
5870
5871 e09 ~ e10 e09'
5872 | NOT e10 e09'
5873 | e10 e09'
5874
5875 e09' PTR e10 e09'
5876 | : e10 e09'
5877 | Empty */
5878 static int
5879 intel_e09 ()
5880 {
5881 /* e09 OFFSET e10 e09' */
5882 if (cur_token.code == T_OFFSET)
5883 {
5884 intel_parser.is_mem = 0;
5885 intel_parser.op_modifier = T_OFFSET;
5886 intel_match_token (T_OFFSET);
5887
5888 return (intel_e10 () && intel_e09_1 ());
5889 }
5890
5891 /* e09 NOT e10 e09' */
5892 else if (cur_token.code == '~')
5893 {
5894 char str[2];
5895
5896 str[0] = cur_token.code;
5897 str[1] = 0;
5898 strcat (intel_parser.disp, str);
5899 intel_match_token (cur_token.code);
5900
5901 return (intel_e10 () && intel_e09_1 ());
5902 }
5903
5904 /* e09 e10 e09' */
5905 else
5906 return (intel_e10 () && intel_e09_1 ());
5907 }
5908
5909 static int
5910 intel_e09_1 ()
5911 {
5912 /* e09' PTR e10 e09' */
5913 if (cur_token.code == T_PTR)
5914 {
5915 char suffix;
5916
5917 if (prev_token.code == T_BYTE)
5918 suffix = BYTE_MNEM_SUFFIX;
5919
5920 else if (prev_token.code == T_WORD)
5921 {
5922 if (current_templates->start->name[0] == 'l'
5923 && current_templates->start->name[2] == 's'
5924 && current_templates->start->name[3] == 0)
5925 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
5926 else if (intel_parser.got_a_float == 2) /* "fi..." */
5927 suffix = SHORT_MNEM_SUFFIX;
5928 else
5929 suffix = WORD_MNEM_SUFFIX;
5930 }
5931
5932 else if (prev_token.code == T_DWORD)
5933 {
5934 if (current_templates->start->name[0] == 'l'
5935 && current_templates->start->name[2] == 's'
5936 && current_templates->start->name[3] == 0)
5937 suffix = WORD_MNEM_SUFFIX;
5938 else if (flag_code == CODE_16BIT
5939 && (current_templates->start->opcode_modifier
5940 & (Jump|JumpDword|JumpInterSegment)))
5941 suffix = LONG_DOUBLE_MNEM_SUFFIX;
5942 else if (intel_parser.got_a_float == 1) /* "f..." */
5943 suffix = SHORT_MNEM_SUFFIX;
5944 else
5945 suffix = LONG_MNEM_SUFFIX;
5946 }
5947
5948 else if (prev_token.code == T_FWORD)
5949 {
5950 if (current_templates->start->name[0] == 'l'
5951 && current_templates->start->name[2] == 's'
5952 && current_templates->start->name[3] == 0)
5953 suffix = LONG_MNEM_SUFFIX;
5954 else if (!intel_parser.got_a_float)
5955 {
5956 if (flag_code == CODE_16BIT)
5957 add_prefix (DATA_PREFIX_OPCODE);
5958 suffix = LONG_DOUBLE_MNEM_SUFFIX;
5959 }
5960 else
5961 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
5962 }
5963
5964 else if (prev_token.code == T_QWORD)
5965 {
5966 if (intel_parser.got_a_float == 1) /* "f..." */
5967 suffix = LONG_MNEM_SUFFIX;
5968 else
5969 suffix = QWORD_MNEM_SUFFIX;
5970 }
5971
5972 else if (prev_token.code == T_TBYTE)
5973 {
5974 if (intel_parser.got_a_float == 1)
5975 suffix = LONG_DOUBLE_MNEM_SUFFIX;
5976 else
5977 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
5978 }
5979
5980 else if (prev_token.code == T_XMMWORD)
5981 {
5982 /* XXX ignored for now, but accepted since gcc uses it */
5983 suffix = 0;
5984 }
5985
5986 else
5987 {
5988 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
5989 return 0;
5990 }
5991
5992 if (current_templates->start->base_opcode == 0x8d /* lea */)
5993 ;
5994 else if (!i.suffix)
5995 i.suffix = suffix;
5996 else if (i.suffix != suffix)
5997 {
5998 as_bad (_("Conflicting operand modifiers"));
5999 return 0;
6000 }
6001
6002 intel_match_token (T_PTR);
6003
6004 return (intel_e10 () && intel_e09_1 ());
6005 }
6006
6007 /* e09 : e10 e09' */
6008 else if (cur_token.code == ':')
6009 {
6010 /* Mark as a memory operand only if it's not already known to be an
6011 offset expression. */
6012 if (intel_parser.op_modifier != T_OFFSET)
6013 intel_parser.is_mem = 1;
6014
6015 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
6016 }
6017
6018 /* e09' Empty */
6019 else
6020 return 1;
6021 }
6022
6023 /* e10 e11 e10'
6024
6025 e10' [ expr ] e10'
6026 | Empty */
6027 static int
6028 intel_e10 ()
6029 {
6030 return (intel_e11 () && intel_e10_1 ());
6031 }
6032
6033 static int
6034 intel_e10_1 ()
6035 {
6036 /* e10' [ expr ] e10' */
6037 if (cur_token.code == '[')
6038 {
6039 intel_match_token ('[');
6040
6041 /* Mark as a memory operand only if it's not already known to be an
6042 offset expression. If it's an offset expression, we need to keep
6043 the brace in. */
6044 if (intel_parser.op_modifier != T_OFFSET)
6045 intel_parser.is_mem = 1;
6046 else
6047 strcat (intel_parser.disp, "[");
6048
6049 /* Add a '+' to the displacement string if necessary. */
6050 if (*intel_parser.disp != '\0'
6051 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
6052 strcat (intel_parser.disp, "+");
6053
6054 if (intel_expr () && intel_match_token (']'))
6055 {
6056 /* Preserve brackets when the operand is an offset expression. */
6057 if (intel_parser.op_modifier == T_OFFSET)
6058 strcat (intel_parser.disp, "]");
6059
6060 return intel_e10_1 ();
6061 }
6062 else
6063 return 0;
6064 }
6065
6066 /* e10' Empty */
6067 else
6068 return 1;
6069 }
6070
6071 /* e11 ( expr )
6072 | [ expr ]
6073 | BYTE
6074 | WORD
6075 | DWORD
6076 | FWORD
6077 | QWORD
6078 | TBYTE
6079 | OWORD
6080 | XMMWORD
6081 | $
6082 | .
6083 | register
6084 | id
6085 | constant */
6086 static int
6087 intel_e11 ()
6088 {
6089 /* e11 ( expr ) */
6090 if (cur_token.code == '(')
6091 {
6092 intel_match_token ('(');
6093 strcat (intel_parser.disp, "(");
6094
6095 if (intel_expr () && intel_match_token (')'))
6096 {
6097 strcat (intel_parser.disp, ")");
6098 return 1;
6099 }
6100 else
6101 return 0;
6102 }
6103
6104 /* e11 [ expr ] */
6105 else if (cur_token.code == '[')
6106 {
6107 intel_match_token ('[');
6108
6109 /* Mark as a memory operand only if it's not already known to be an
6110 offset expression. If it's an offset expression, we need to keep
6111 the brace in. */
6112 if (intel_parser.op_modifier != T_OFFSET)
6113 intel_parser.is_mem = 1;
6114 else
6115 strcat (intel_parser.disp, "[");
6116
6117 /* Operands for jump/call inside brackets denote absolute addresses. */
6118 if (current_templates->start->opcode_modifier
6119 & (Jump|JumpDword|JumpByte|JumpInterSegment))
6120 i.types[this_operand] |= JumpAbsolute;
6121
6122 /* Add a '+' to the displacement string if necessary. */
6123 if (*intel_parser.disp != '\0'
6124 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
6125 strcat (intel_parser.disp, "+");
6126
6127 if (intel_expr () && intel_match_token (']'))
6128 {
6129 /* Preserve brackets when the operand is an offset expression. */
6130 if (intel_parser.op_modifier == T_OFFSET)
6131 strcat (intel_parser.disp, "]");
6132
6133 return 1;
6134 }
6135 else
6136 return 0;
6137 }
6138
6139 /* e11 BYTE
6140 | WORD
6141 | DWORD
6142 | FWORD
6143 | QWORD
6144 | TBYTE
6145 | OWORD
6146 | XMMWORD */
6147 else if (cur_token.code == T_BYTE
6148 || cur_token.code == T_WORD
6149 || cur_token.code == T_DWORD
6150 || cur_token.code == T_FWORD
6151 || cur_token.code == T_QWORD
6152 || cur_token.code == T_TBYTE
6153 || cur_token.code == T_XMMWORD)
6154 {
6155 intel_match_token (cur_token.code);
6156
6157 if (cur_token.code != T_PTR)
6158 {
6159 /* It must have been an identifier; add it to the displacement string. */
6160 strcat (intel_parser.disp, prev_token.str);
6161
6162 /* The identifier represents a memory reference only if it's not
6163 preceded by an offset modifier and if it's not an equate. */
6164 if (intel_parser.op_modifier != T_OFFSET)
6165 {
6166 symbolS *symbolP;
6167
6168 symbolP = symbol_find(prev_token.str);
6169 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
6170 intel_parser.is_mem = 1;
6171 }
6172 }
6173
6174 return 1;
6175 }
6176
6177 /* e11 $
6178 | . */
6179 else if (cur_token.code == '.')
6180 {
6181 strcat (intel_parser.disp, cur_token.str);
6182 intel_match_token (cur_token.code);
6183
6184 /* Mark as a memory operand only if it's not already known to be an
6185 offset expression. */
6186 if (intel_parser.op_modifier != T_OFFSET)
6187 intel_parser.is_mem = 1;
6188
6189 return 1;
6190 }
6191
6192 /* e11 register */
6193 else if (cur_token.code == T_REG)
6194 {
6195 const reg_entry *reg = intel_parser.reg = cur_token.reg;
6196
6197 intel_match_token (T_REG);
6198
6199 /* Check for segment change. */
6200 if (cur_token.code == ':')
6201 {
6202 if (reg->reg_type & (SReg2 | SReg3))
6203 {
6204 switch (reg->reg_num)
6205 {
6206 case 0:
6207 i.seg[i.mem_operands] = &es;
6208 break;
6209 case 1:
6210 i.seg[i.mem_operands] = &cs;
6211 break;
6212 case 2:
6213 i.seg[i.mem_operands] = &ss;
6214 break;
6215 case 3:
6216 i.seg[i.mem_operands] = &ds;
6217 break;
6218 case 4:
6219 i.seg[i.mem_operands] = &fs;
6220 break;
6221 case 5:
6222 i.seg[i.mem_operands] = &gs;
6223 break;
6224 }
6225 }
6226 else
6227 {
6228 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
6229 return 0;
6230 }
6231 }
6232
6233 /* Not a segment register. Check for register scaling. */
6234 else if (cur_token.code == '*')
6235 {
6236 if (!intel_parser.is_mem)
6237 {
6238 as_bad (_("Register scaling only allowed in memory operands."));
6239 return 0;
6240 }
6241
6242 /* What follows must be a valid scale. */
6243 if (intel_match_token ('*')
6244 && strchr ("01248", *cur_token.str))
6245 {
6246 i.index_reg = reg;
6247 i.types[this_operand] |= BaseIndex;
6248
6249 /* Set the scale after setting the register (otherwise,
6250 i386_scale will complain) */
6251 i386_scale (cur_token.str);
6252 intel_match_token (T_CONST);
6253 }
6254 else
6255 {
6256 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
6257 cur_token.str);
6258 return 0;
6259 }
6260 }
6261
6262 /* No scaling. If this is a memory operand, the register is either a
6263 base register (first occurrence) or an index register (second
6264 occurrence). */
6265 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
6266 {
6267 if (i.base_reg && i.index_reg)
6268 {
6269 as_bad (_("Too many register references in memory operand."));
6270 return 0;
6271 }
6272
6273 if (i.base_reg == NULL)
6274 i.base_reg = reg;
6275 else
6276 i.index_reg = reg;
6277
6278 i.types[this_operand] |= BaseIndex;
6279 }
6280
6281 /* Offset modifier. Add the register to the displacement string to be
6282 parsed as an immediate expression after we're done. */
6283 else if (intel_parser.op_modifier == T_OFFSET)
6284 strcat (intel_parser.disp, reg->reg_name);
6285
6286 /* It's neither base nor index nor offset. */
6287 else
6288 {
6289 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
6290 i.op[this_operand].regs = reg;
6291 i.reg_operands++;
6292 }
6293
6294 /* Since registers are not part of the displacement string (except
6295 when we're parsing offset operands), we may need to remove any
6296 preceding '+' from the displacement string. */
6297 if (*intel_parser.disp != '\0'
6298 && intel_parser.op_modifier != T_OFFSET)
6299 {
6300 char *s = intel_parser.disp;
6301 s += strlen (s) - 1;
6302 if (*s == '+')
6303 *s = '\0';
6304 }
6305
6306 return 1;
6307 }
6308
6309 /* e11 id */
6310 else if (cur_token.code == T_ID)
6311 {
6312 /* Add the identifier to the displacement string. */
6313 strcat (intel_parser.disp, cur_token.str);
6314
6315 /* The identifier represents a memory reference only if it's not
6316 preceded by an offset modifier and if it's not an equate. */
6317 if (intel_parser.op_modifier != T_OFFSET)
6318 {
6319 symbolS *symbolP;
6320
6321 symbolP = symbol_find(cur_token.str);
6322 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
6323 intel_parser.is_mem = 1;
6324 }
6325
6326 intel_match_token (T_ID);
6327 return 1;
6328 }
6329
6330 /* e11 constant */
6331 else if (cur_token.code == T_CONST
6332 || cur_token.code == '-'
6333 || cur_token.code == '+')
6334 {
6335 char *save_str;
6336
6337 /* Allow constants that start with `+' or `-'. */
6338 if (cur_token.code == '-' || cur_token.code == '+')
6339 {
6340 strcat (intel_parser.disp, cur_token.str);
6341 intel_match_token (cur_token.code);
6342 if (cur_token.code != T_CONST)
6343 {
6344 as_bad (_("Syntax error. Expecting a constant. Got `%s'."),
6345 cur_token.str);
6346 return 0;
6347 }
6348 }
6349
6350 save_str = (char *) malloc (strlen (cur_token.str) + 1);
6351 if (save_str == NULL)
6352 abort ();
6353 strcpy (save_str, cur_token.str);
6354
6355 /* Get the next token to check for register scaling. */
6356 intel_match_token (cur_token.code);
6357
6358 /* Check if this constant is a scaling factor for an index register. */
6359 if (cur_token.code == '*')
6360 {
6361 if (intel_match_token ('*') && cur_token.code == T_REG)
6362 {
6363 if (!intel_parser.is_mem)
6364 {
6365 as_bad (_("Register scaling only allowed in memory operands."));
6366 return 0;
6367 }
6368
6369 /* The constant is followed by `* reg', so it must be
6370 a valid scale. */
6371 if (strchr ("01248", *save_str))
6372 {
6373 i.index_reg = cur_token.reg;
6374 i.types[this_operand] |= BaseIndex;
6375
6376 /* Set the scale after setting the register (otherwise,
6377 i386_scale will complain) */
6378 i386_scale (save_str);
6379 intel_match_token (T_REG);
6380
6381 /* Since registers are not part of the displacement
6382 string, we may need to remove any preceding '+' from
6383 the displacement string. */
6384 if (*intel_parser.disp != '\0')
6385 {
6386 char *s = intel_parser.disp;
6387 s += strlen (s) - 1;
6388 if (*s == '+')
6389 *s = '\0';
6390 }
6391
6392 free (save_str);
6393
6394 return 1;
6395 }
6396 else
6397 return 0;
6398 }
6399
6400 /* The constant was not used for register scaling. Since we have
6401 already consumed the token following `*' we now need to put it
6402 back in the stream. */
6403 else
6404 intel_putback_token ();
6405 }
6406
6407 /* Add the constant to the displacement string. */
6408 strcat (intel_parser.disp, save_str);
6409 free (save_str);
6410
6411 return 1;
6412 }
6413
6414 as_bad (_("Unrecognized token '%s'"), cur_token.str);
6415 return 0;
6416 }
6417
6418 /* Match the given token against cur_token. If they match, read the next
6419 token from the operand string. */
6420 static int
6421 intel_match_token (code)
6422 int code;
6423 {
6424 if (cur_token.code == code)
6425 {
6426 intel_get_token ();
6427 return 1;
6428 }
6429 else
6430 {
6431 as_bad (_("Unexpected token `%s'"), cur_token.str);
6432 return 0;
6433 }
6434 }
6435
6436 /* Read a new token from intel_parser.op_string and store it in cur_token. */
6437 static void
6438 intel_get_token ()
6439 {
6440 char *end_op;
6441 const reg_entry *reg;
6442 struct intel_token new_token;
6443
6444 new_token.code = T_NIL;
6445 new_token.reg = NULL;
6446 new_token.str = NULL;
6447
6448 /* Free the memory allocated to the previous token and move
6449 cur_token to prev_token. */
6450 if (prev_token.str)
6451 free (prev_token.str);
6452
6453 prev_token = cur_token;
6454
6455 /* Skip whitespace. */
6456 while (is_space_char (*intel_parser.op_string))
6457 intel_parser.op_string++;
6458
6459 /* Return an empty token if we find nothing else on the line. */
6460 if (*intel_parser.op_string == '\0')
6461 {
6462 cur_token = new_token;
6463 return;
6464 }
6465
6466 /* The new token cannot be larger than the remainder of the operand
6467 string. */
6468 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
6469 if (new_token.str == NULL)
6470 abort ();
6471 new_token.str[0] = '\0';
6472
6473 if (strchr ("0123456789", *intel_parser.op_string))
6474 {
6475 char *p = new_token.str;
6476 char *q = intel_parser.op_string;
6477 new_token.code = T_CONST;
6478
6479 /* Allow any kind of identifier char to encompass floating point and
6480 hexadecimal numbers. */
6481 while (is_identifier_char (*q))
6482 *p++ = *q++;
6483 *p = '\0';
6484
6485 /* Recognize special symbol names [0-9][bf]. */
6486 if (strlen (intel_parser.op_string) == 2
6487 && (intel_parser.op_string[1] == 'b'
6488 || intel_parser.op_string[1] == 'f'))
6489 new_token.code = T_ID;
6490 }
6491
6492 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
6493 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
6494 {
6495 new_token.code = T_REG;
6496 new_token.reg = reg;
6497
6498 if (*intel_parser.op_string == REGISTER_PREFIX)
6499 {
6500 new_token.str[0] = REGISTER_PREFIX;
6501 new_token.str[1] = '\0';
6502 }
6503
6504 strcat (new_token.str, reg->reg_name);
6505 }
6506
6507 else if (is_identifier_char (*intel_parser.op_string))
6508 {
6509 char *p = new_token.str;
6510 char *q = intel_parser.op_string;
6511
6512 /* A '.' or '$' followed by an identifier char is an identifier.
6513 Otherwise, it's operator '.' followed by an expression. */
6514 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
6515 {
6516 new_token.code = '.';
6517 new_token.str[0] = '.';
6518 new_token.str[1] = '\0';
6519 }
6520 else
6521 {
6522 while (is_identifier_char (*q) || *q == '@')
6523 *p++ = *q++;
6524 *p = '\0';
6525
6526 if (strcasecmp (new_token.str, "NOT") == 0)
6527 new_token.code = '~';
6528
6529 else if (strcasecmp (new_token.str, "MOD") == 0)
6530 new_token.code = '%';
6531
6532 else if (strcasecmp (new_token.str, "AND") == 0)
6533 new_token.code = '&';
6534
6535 else if (strcasecmp (new_token.str, "OR") == 0)
6536 new_token.code = '|';
6537
6538 else if (strcasecmp (new_token.str, "XOR") == 0)
6539 new_token.code = '^';
6540
6541 else if (strcasecmp (new_token.str, "SHL") == 0)
6542 new_token.code = T_SHL;
6543
6544 else if (strcasecmp (new_token.str, "SHR") == 0)
6545 new_token.code = T_SHR;
6546
6547 else if (strcasecmp (new_token.str, "BYTE") == 0)
6548 new_token.code = T_BYTE;
6549
6550 else if (strcasecmp (new_token.str, "WORD") == 0)
6551 new_token.code = T_WORD;
6552
6553 else if (strcasecmp (new_token.str, "DWORD") == 0)
6554 new_token.code = T_DWORD;
6555
6556 else if (strcasecmp (new_token.str, "FWORD") == 0)
6557 new_token.code = T_FWORD;
6558
6559 else if (strcasecmp (new_token.str, "QWORD") == 0)
6560 new_token.code = T_QWORD;
6561
6562 else if (strcasecmp (new_token.str, "TBYTE") == 0
6563 /* XXX remove (gcc still uses it) */
6564 || strcasecmp (new_token.str, "XWORD") == 0)
6565 new_token.code = T_TBYTE;
6566
6567 else if (strcasecmp (new_token.str, "XMMWORD") == 0
6568 || strcasecmp (new_token.str, "OWORD") == 0)
6569 new_token.code = T_XMMWORD;
6570
6571 else if (strcasecmp (new_token.str, "PTR") == 0)
6572 new_token.code = T_PTR;
6573
6574 else if (strcasecmp (new_token.str, "SHORT") == 0)
6575 new_token.code = T_SHORT;
6576
6577 else if (strcasecmp (new_token.str, "OFFSET") == 0)
6578 {
6579 new_token.code = T_OFFSET;
6580
6581 /* ??? This is not mentioned in the MASM grammar but gcc
6582 makes use of it with -mintel-syntax. OFFSET may be
6583 followed by FLAT: */
6584 if (strncasecmp (q, " FLAT:", 6) == 0)
6585 strcat (new_token.str, " FLAT:");
6586 }
6587
6588 /* ??? This is not mentioned in the MASM grammar. */
6589 else if (strcasecmp (new_token.str, "FLAT") == 0)
6590 new_token.code = T_OFFSET;
6591
6592 else
6593 new_token.code = T_ID;
6594 }
6595 }
6596
6597 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
6598 {
6599 new_token.code = *intel_parser.op_string;
6600 new_token.str[0] = *intel_parser.op_string;
6601 new_token.str[1] = '\0';
6602 }
6603
6604 else if (strchr ("<>", *intel_parser.op_string)
6605 && *intel_parser.op_string == *(intel_parser.op_string + 1))
6606 {
6607 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
6608 new_token.str[0] = *intel_parser.op_string;
6609 new_token.str[1] = *intel_parser.op_string;
6610 new_token.str[2] = '\0';
6611 }
6612
6613 else
6614 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
6615
6616 intel_parser.op_string += strlen (new_token.str);
6617 cur_token = new_token;
6618 }
6619
6620 /* Put cur_token back into the token stream and make cur_token point to
6621 prev_token. */
6622 static void
6623 intel_putback_token ()
6624 {
6625 intel_parser.op_string -= strlen (cur_token.str);
6626 free (cur_token.str);
6627 cur_token = prev_token;
6628
6629 /* Forget prev_token. */
6630 prev_token.code = T_NIL;
6631 prev_token.reg = NULL;
6632 prev_token.str = NULL;
6633 }
6634
6635 int
6636 tc_x86_regname_to_dw2regnum (const char *regname)
6637 {
6638 unsigned int regnum;
6639 unsigned int regnames_count;
6640 char *regnames_32[] =
6641 {
6642 "eax", "ecx", "edx", "ebx",
6643 "esp", "ebp", "esi", "edi",
6644 "eip"
6645 };
6646 char *regnames_64[] =
6647 {
6648 "rax", "rbx", "rcx", "rdx",
6649 "rdi", "rsi", "rbp", "rsp",
6650 "r8", "r9", "r10", "r11",
6651 "r12", "r13", "r14", "r15",
6652 "rip"
6653 };
6654 char **regnames;
6655
6656 if (flag_code == CODE_64BIT)
6657 {
6658 regnames = regnames_64;
6659 regnames_count = ARRAY_SIZE (regnames_64);
6660 }
6661 else
6662 {
6663 regnames = regnames_32;
6664 regnames_count = ARRAY_SIZE (regnames_32);
6665 }
6666
6667 for (regnum = 0; regnum < regnames_count; regnum++)
6668 if (strcmp (regname, regnames[regnum]) == 0)
6669 return regnum;
6670
6671 return -1;
6672 }
6673
6674 void
6675 tc_x86_frame_initial_instructions (void)
6676 {
6677 static unsigned int sp_regno;
6678
6679 if (!sp_regno)
6680 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
6681 ? "rsp" : "esp");
6682
6683 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
6684 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
6685 }
6686
6687 int
6688 i386_elf_section_type (const char *str, size_t len)
6689 {
6690 if (flag_code == CODE_64BIT
6691 && len == sizeof ("unwind") - 1
6692 && strncmp (str, "unwind", 6) == 0)
6693 return SHT_X86_64_UNWIND;
6694
6695 return -1;
6696 }
6697
6698 #ifdef TE_PE
6699 void
6700 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
6701 {
6702 expressionS expr;
6703
6704 expr.X_op = O_secrel;
6705 expr.X_add_symbol = symbol;
6706 expr.X_add_number = 0;
6707 emit_expr (&expr, size);
6708 }
6709 #endif