x86/MPX: fix address size handling
[binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2016 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 #define XMMWORD_MNEM_SUFFIX 'x'
85 #define YMMWORD_MNEM_SUFFIX 'y'
86 #define ZMMWORD_MNEM_SUFFIX 'z'
87 /* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91 #define END_OF_INSN '\0'
92
93 /*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100 typedef struct
101 {
102 const insn_template *start;
103 const insn_template *end;
104 }
105 templates;
106
107 /* 386 operand encoding bytes: see 386 book for details of this. */
108 typedef struct
109 {
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113 }
114 modrm_byte;
115
116 /* x86-64 extension prefix. */
117 typedef int rex_byte;
118
119 /* 386 opcode byte to code indirect addressing. */
120 typedef struct
121 {
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125 }
126 sib_byte;
127
128 /* x86 arch names, types and features */
129 typedef struct
130 {
131 const char *name; /* arch name */
132 unsigned int len; /* arch string length */
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
135 unsigned int skip; /* show_arch should skip this. */
136 }
137 arch_entry;
138
139 /* Used to turn off indicated flags. */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 i386_cpu_flags flags; /* cpu feature flags */
145 }
146 noarch_entry;
147
148 static void update_code_flag (int, int);
149 static void set_code_flag (int);
150 static void set_16bit_gcc_code_flag (int);
151 static void set_intel_syntax (int);
152 static void set_intel_mnemonic (int);
153 static void set_allow_index_reg (int);
154 static void set_check (int);
155 static void set_cpu_arch (int);
156 #ifdef TE_PE
157 static void pe_directive_secrel (int);
158 #endif
159 static void signed_cons (int);
160 static char *output_invalid (int c);
161 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
162 const char *);
163 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
164 const char *);
165 static int i386_att_operand (char *);
166 static int i386_intel_operand (char *, int);
167 static int i386_intel_simplify (expressionS *);
168 static int i386_intel_parse_name (const char *, expressionS *);
169 static const reg_entry *parse_register (char *, char **);
170 static char *parse_insn (char *, char *);
171 static char *parse_operands (char *, const char *);
172 static void swap_operands (void);
173 static void swap_2_operands (int, int);
174 static void optimize_imm (void);
175 static void optimize_disp (void);
176 static const insn_template *match_template (char);
177 static int check_string (void);
178 static int process_suffix (void);
179 static int check_byte_reg (void);
180 static int check_long_reg (void);
181 static int check_qword_reg (void);
182 static int check_word_reg (void);
183 static int finalize_imm (void);
184 static int process_operands (void);
185 static const seg_entry *build_modrm_byte (void);
186 static void output_insn (void);
187 static void output_imm (fragS *, offsetT);
188 static void output_disp (fragS *, offsetT);
189 #ifndef I386COFF
190 static void s_bss (int);
191 #endif
192 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
193 static void handle_large_common (int small ATTRIBUTE_UNUSED);
194 #endif
195
196 static const char *default_arch = DEFAULT_ARCH;
197
198 /* This struct describes rounding control and SAE in the instruction. */
199 struct RC_Operation
200 {
201 enum rc_type
202 {
203 rne = 0,
204 rd,
205 ru,
206 rz,
207 saeonly
208 } type;
209 int operand;
210 };
211
212 static struct RC_Operation rc_op;
213
214 /* The struct describes masking, applied to OPERAND in the instruction.
215 MASK is a pointer to the corresponding mask register. ZEROING tells
216 whether merging or zeroing mask is used. */
217 struct Mask_Operation
218 {
219 const reg_entry *mask;
220 unsigned int zeroing;
221 /* The operand where this operation is associated. */
222 int operand;
223 };
224
225 static struct Mask_Operation mask_op;
226
227 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
228 broadcast factor. */
229 struct Broadcast_Operation
230 {
231 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
232 int type;
233
234 /* Index of broadcasted operand. */
235 int operand;
236 };
237
238 static struct Broadcast_Operation broadcast_op;
239
240 /* VEX prefix. */
241 typedef struct
242 {
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248 } vex_prefix;
249
250 /* 'md_assemble ()' gathers together information and puts it into a
251 i386_insn. */
252
253 union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
260 enum i386_error
261 {
262 operand_size_mismatch,
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
268 old_gcc_only,
269 unsupported_with_intel_mnemonic,
270 unsupported_syntax,
271 unsupported,
272 invalid_vsib_address,
273 invalid_vector_register_set,
274 unsupported_vector_index_register,
275 unsupported_broadcast,
276 broadcast_not_on_src_operand,
277 broadcast_needed,
278 unsupported_masking,
279 mask_not_on_destination,
280 no_default_mask,
281 unsupported_rc_sae,
282 rc_sae_operand_not_last_imm,
283 invalid_register_operand,
284 try_vector_disp8
285 };
286
287 struct _i386_insn
288 {
289 /* TM holds the template for the insn were currently assembling. */
290 insn_template tm;
291
292 /* SUFFIX holds the instruction size suffix for byte, word, dword
293 or qword, if given. */
294 char suffix;
295
296 /* OPERANDS gives the number of given operands. */
297 unsigned int operands;
298
299 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
300 of given register, displacement, memory operands and immediate
301 operands. */
302 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
303
304 /* TYPES [i] is the type (see above #defines) which tells us how to
305 use OP[i] for the corresponding operand. */
306 i386_operand_type types[MAX_OPERANDS];
307
308 /* Displacement expression, immediate expression, or register for each
309 operand. */
310 union i386_op op[MAX_OPERANDS];
311
312 /* Flags for operands. */
313 unsigned int flags[MAX_OPERANDS];
314 #define Operand_PCrel 1
315
316 /* Relocation type for operand */
317 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
318
319 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
320 the base index byte below. */
321 const reg_entry *base_reg;
322 const reg_entry *index_reg;
323 unsigned int log2_scale_factor;
324
325 /* SEG gives the seg_entries of this insn. They are zero unless
326 explicit segment overrides are given. */
327 const seg_entry *seg[2];
328
329 /* Copied first memory operand string, for re-checking. */
330 char *memop1_string;
331
332 /* PREFIX holds all the given prefix opcodes (usually null).
333 PREFIXES is the number of prefix opcodes. */
334 unsigned int prefixes;
335 unsigned char prefix[MAX_PREFIXES];
336
337 /* RM and SIB are the modrm byte and the sib byte where the
338 addressing modes of this insn are encoded. */
339 modrm_byte rm;
340 rex_byte rex;
341 rex_byte vrex;
342 sib_byte sib;
343 vex_prefix vex;
344
345 /* Masking attributes. */
346 struct Mask_Operation *mask;
347
348 /* Rounding control and SAE attributes. */
349 struct RC_Operation *rounding;
350
351 /* Broadcasting attributes. */
352 struct Broadcast_Operation *broadcast;
353
354 /* Compressed disp8*N attribute. */
355 unsigned int memshift;
356
357 /* Swap operand in encoding. */
358 unsigned int swap_operand;
359
360 /* Prefer 8bit or 32bit displacement in encoding. */
361 enum
362 {
363 disp_encoding_default = 0,
364 disp_encoding_8bit,
365 disp_encoding_32bit
366 } disp_encoding;
367
368 /* REP prefix. */
369 const char *rep_prefix;
370
371 /* HLE prefix. */
372 const char *hle_prefix;
373
374 /* Have BND prefix. */
375 const char *bnd_prefix;
376
377 /* Need VREX to support upper 16 registers. */
378 int need_vrex;
379
380 /* Error message. */
381 enum i386_error error;
382 };
383
384 typedef struct _i386_insn i386_insn;
385
386 /* Link RC type with corresponding string, that'll be looked for in
387 asm. */
388 struct RC_name
389 {
390 enum rc_type type;
391 const char *name;
392 unsigned int len;
393 };
394
395 static const struct RC_name RC_NamesTable[] =
396 {
397 { rne, STRING_COMMA_LEN ("rn-sae") },
398 { rd, STRING_COMMA_LEN ("rd-sae") },
399 { ru, STRING_COMMA_LEN ("ru-sae") },
400 { rz, STRING_COMMA_LEN ("rz-sae") },
401 { saeonly, STRING_COMMA_LEN ("sae") },
402 };
403
404 /* List of chars besides those in app.c:symbol_chars that can start an
405 operand. Used to prevent the scrubber eating vital white-space. */
406 const char extra_symbol_chars[] = "*%-([{"
407 #ifdef LEX_AT
408 "@"
409 #endif
410 #ifdef LEX_QM
411 "?"
412 #endif
413 ;
414
415 #if (defined (TE_I386AIX) \
416 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
417 && !defined (TE_GNU) \
418 && !defined (TE_LINUX) \
419 && !defined (TE_NACL) \
420 && !defined (TE_NETWARE) \
421 && !defined (TE_FreeBSD) \
422 && !defined (TE_DragonFly) \
423 && !defined (TE_NetBSD)))
424 /* This array holds the chars that always start a comment. If the
425 pre-processor is disabled, these aren't very useful. The option
426 --divide will remove '/' from this list. */
427 const char *i386_comment_chars = "#/";
428 #define SVR4_COMMENT_CHARS 1
429 #define PREFIX_SEPARATOR '\\'
430
431 #else
432 const char *i386_comment_chars = "#";
433 #define PREFIX_SEPARATOR '/'
434 #endif
435
436 /* This array holds the chars that only start a comment at the beginning of
437 a line. If the line seems to have the form '# 123 filename'
438 .line and .file directives will appear in the pre-processed output.
439 Note that input_file.c hand checks for '#' at the beginning of the
440 first line of the input file. This is because the compiler outputs
441 #NO_APP at the beginning of its output.
442 Also note that comments started like this one will always work if
443 '/' isn't otherwise defined. */
444 const char line_comment_chars[] = "#/";
445
446 const char line_separator_chars[] = ";";
447
448 /* Chars that can be used to separate mant from exp in floating point
449 nums. */
450 const char EXP_CHARS[] = "eE";
451
452 /* Chars that mean this number is a floating point constant
453 As in 0f12.456
454 or 0d1.2345e12. */
455 const char FLT_CHARS[] = "fFdDxX";
456
457 /* Tables for lexical analysis. */
458 static char mnemonic_chars[256];
459 static char register_chars[256];
460 static char operand_chars[256];
461 static char identifier_chars[256];
462 static char digit_chars[256];
463
464 /* Lexical macros. */
465 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
466 #define is_operand_char(x) (operand_chars[(unsigned char) x])
467 #define is_register_char(x) (register_chars[(unsigned char) x])
468 #define is_space_char(x) ((x) == ' ')
469 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
470 #define is_digit_char(x) (digit_chars[(unsigned char) x])
471
472 /* All non-digit non-letter characters that may occur in an operand. */
473 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
474
475 /* md_assemble() always leaves the strings it's passed unaltered. To
476 effect this we maintain a stack of saved characters that we've smashed
477 with '\0's (indicating end of strings for various sub-fields of the
478 assembler instruction). */
479 static char save_stack[32];
480 static char *save_stack_p;
481 #define END_STRING_AND_SAVE(s) \
482 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
483 #define RESTORE_END_STRING(s) \
484 do { *(s) = *--save_stack_p; } while (0)
485
486 /* The instruction we're assembling. */
487 static i386_insn i;
488
489 /* Possible templates for current insn. */
490 static const templates *current_templates;
491
492 /* Per instruction expressionS buffers: max displacements & immediates. */
493 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
494 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
495
496 /* Current operand we are working on. */
497 static int this_operand = -1;
498
499 /* We support four different modes. FLAG_CODE variable is used to distinguish
500 these. */
501
502 enum flag_code {
503 CODE_32BIT,
504 CODE_16BIT,
505 CODE_64BIT };
506
507 static enum flag_code flag_code;
508 static unsigned int object_64bit;
509 static unsigned int disallow_64bit_reloc;
510 static int use_rela_relocations = 0;
511
512 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
513 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
514 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
515
516 /* The ELF ABI to use. */
517 enum x86_elf_abi
518 {
519 I386_ABI,
520 X86_64_ABI,
521 X86_64_X32_ABI
522 };
523
524 static enum x86_elf_abi x86_elf_abi = I386_ABI;
525 #endif
526
527 #if defined (TE_PE) || defined (TE_PEP)
528 /* Use big object file format. */
529 static int use_big_obj = 0;
530 #endif
531
532 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
533 /* 1 if generating code for a shared library. */
534 static int shared = 0;
535 #endif
536
537 /* 1 for intel syntax,
538 0 if att syntax. */
539 static int intel_syntax = 0;
540
541 /* 1 for Intel64 ISA,
542 0 if AMD64 ISA. */
543 static int intel64;
544
545 /* 1 for intel mnemonic,
546 0 if att mnemonic. */
547 static int intel_mnemonic = !SYSV386_COMPAT;
548
549 /* 1 if support old (<= 2.8.1) versions of gcc. */
550 static int old_gcc = OLDGCC_COMPAT;
551
552 /* 1 if pseudo registers are permitted. */
553 static int allow_pseudo_reg = 0;
554
555 /* 1 if register prefix % not required. */
556 static int allow_naked_reg = 0;
557
558 /* 1 if the assembler should add BND prefix for all control-tranferring
559 instructions supporting it, even if this prefix wasn't specified
560 explicitly. */
561 static int add_bnd_prefix = 0;
562
563 /* 1 if pseudo index register, eiz/riz, is allowed . */
564 static int allow_index_reg = 0;
565
566 /* 1 if the assembler should ignore LOCK prefix, even if it was
567 specified explicitly. */
568 static int omit_lock_prefix = 0;
569
570 /* 1 if the assembler should encode lfence, mfence, and sfence as
571 "lock addl $0, (%{re}sp)". */
572 static int avoid_fence = 0;
573
574 /* 1 if the assembler should generate relax relocations. */
575
576 static int generate_relax_relocations
577 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
578
579 static enum check_kind
580 {
581 check_none = 0,
582 check_warning,
583 check_error
584 }
585 sse_check, operand_check = check_warning;
586
587 /* Register prefix used for error message. */
588 static const char *register_prefix = "%";
589
590 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
591 leave, push, and pop instructions so that gcc has the same stack
592 frame as in 32 bit mode. */
593 static char stackop_size = '\0';
594
595 /* Non-zero to optimize code alignment. */
596 int optimize_align_code = 1;
597
598 /* Non-zero to quieten some warnings. */
599 static int quiet_warnings = 0;
600
601 /* CPU name. */
602 static const char *cpu_arch_name = NULL;
603 static char *cpu_sub_arch_name = NULL;
604
605 /* CPU feature flags. */
606 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
607
608 /* If we have selected a cpu we are generating instructions for. */
609 static int cpu_arch_tune_set = 0;
610
611 /* Cpu we are generating instructions for. */
612 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
613
614 /* CPU feature flags of cpu we are generating instructions for. */
615 static i386_cpu_flags cpu_arch_tune_flags;
616
617 /* CPU instruction set architecture used. */
618 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
619
620 /* CPU feature flags of instruction set architecture used. */
621 i386_cpu_flags cpu_arch_isa_flags;
622
623 /* If set, conditional jumps are not automatically promoted to handle
624 larger than a byte offset. */
625 static unsigned int no_cond_jump_promotion = 0;
626
627 /* Encode SSE instructions with VEX prefix. */
628 static unsigned int sse2avx;
629
630 /* Encode scalar AVX instructions with specific vector length. */
631 static enum
632 {
633 vex128 = 0,
634 vex256
635 } avxscalar;
636
637 /* Encode scalar EVEX LIG instructions with specific vector length. */
638 static enum
639 {
640 evexl128 = 0,
641 evexl256,
642 evexl512
643 } evexlig;
644
645 /* Encode EVEX WIG instructions with specific evex.w. */
646 static enum
647 {
648 evexw0 = 0,
649 evexw1
650 } evexwig;
651
652 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
653 static enum rc_type evexrcig = rne;
654
655 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
656 static symbolS *GOT_symbol;
657
658 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
659 unsigned int x86_dwarf2_return_column;
660
661 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
662 int x86_cie_data_alignment;
663
664 /* Interface to relax_segment.
665 There are 3 major relax states for 386 jump insns because the
666 different types of jumps add different sizes to frags when we're
667 figuring out what sort of jump to choose to reach a given label. */
668
669 /* Types. */
670 #define UNCOND_JUMP 0
671 #define COND_JUMP 1
672 #define COND_JUMP86 2
673
674 /* Sizes. */
675 #define CODE16 1
676 #define SMALL 0
677 #define SMALL16 (SMALL | CODE16)
678 #define BIG 2
679 #define BIG16 (BIG | CODE16)
680
681 #ifndef INLINE
682 #ifdef __GNUC__
683 #define INLINE __inline__
684 #else
685 #define INLINE
686 #endif
687 #endif
688
689 #define ENCODE_RELAX_STATE(type, size) \
690 ((relax_substateT) (((type) << 2) | (size)))
691 #define TYPE_FROM_RELAX_STATE(s) \
692 ((s) >> 2)
693 #define DISP_SIZE_FROM_RELAX_STATE(s) \
694 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
695
696 /* This table is used by relax_frag to promote short jumps to long
697 ones where necessary. SMALL (short) jumps may be promoted to BIG
698 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
699 don't allow a short jump in a 32 bit code segment to be promoted to
700 a 16 bit offset jump because it's slower (requires data size
701 prefix), and doesn't work, unless the destination is in the bottom
702 64k of the code segment (The top 16 bits of eip are zeroed). */
703
704 const relax_typeS md_relax_table[] =
705 {
706 /* The fields are:
707 1) most positive reach of this state,
708 2) most negative reach of this state,
709 3) how many bytes this mode will have in the variable part of the frag
710 4) which index into the table to try if we can't fit into this one. */
711
712 /* UNCOND_JUMP states. */
713 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
714 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
715 /* dword jmp adds 4 bytes to frag:
716 0 extra opcode bytes, 4 displacement bytes. */
717 {0, 0, 4, 0},
718 /* word jmp adds 2 byte2 to frag:
719 0 extra opcode bytes, 2 displacement bytes. */
720 {0, 0, 2, 0},
721
722 /* COND_JUMP states. */
723 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
724 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
725 /* dword conditionals adds 5 bytes to frag:
726 1 extra opcode byte, 4 displacement bytes. */
727 {0, 0, 5, 0},
728 /* word conditionals add 3 bytes to frag:
729 1 extra opcode byte, 2 displacement bytes. */
730 {0, 0, 3, 0},
731
732 /* COND_JUMP86 states. */
733 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
734 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
735 /* dword conditionals adds 5 bytes to frag:
736 1 extra opcode byte, 4 displacement bytes. */
737 {0, 0, 5, 0},
738 /* word conditionals add 4 bytes to frag:
739 1 displacement byte and a 3 byte long branch insn. */
740 {0, 0, 4, 0}
741 };
742
743 static const arch_entry cpu_arch[] =
744 {
745 /* Do not replace the first two entries - i386_target_format()
746 relies on them being there in this order. */
747 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
748 CPU_GENERIC32_FLAGS, 0 },
749 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
750 CPU_GENERIC64_FLAGS, 0 },
751 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
752 CPU_NONE_FLAGS, 0 },
753 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
754 CPU_I186_FLAGS, 0 },
755 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
756 CPU_I286_FLAGS, 0 },
757 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
758 CPU_I386_FLAGS, 0 },
759 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
760 CPU_I486_FLAGS, 0 },
761 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
762 CPU_I586_FLAGS, 0 },
763 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
764 CPU_I686_FLAGS, 0 },
765 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
766 CPU_I586_FLAGS, 0 },
767 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
768 CPU_PENTIUMPRO_FLAGS, 0 },
769 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
770 CPU_P2_FLAGS, 0 },
771 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
772 CPU_P3_FLAGS, 0 },
773 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
774 CPU_P4_FLAGS, 0 },
775 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
776 CPU_CORE_FLAGS, 0 },
777 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
778 CPU_NOCONA_FLAGS, 0 },
779 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
780 CPU_CORE_FLAGS, 1 },
781 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
782 CPU_CORE_FLAGS, 0 },
783 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
784 CPU_CORE2_FLAGS, 1 },
785 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
786 CPU_CORE2_FLAGS, 0 },
787 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
788 CPU_COREI7_FLAGS, 0 },
789 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
790 CPU_L1OM_FLAGS, 0 },
791 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
792 CPU_K1OM_FLAGS, 0 },
793 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
794 CPU_IAMCU_FLAGS, 0 },
795 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
796 CPU_K6_FLAGS, 0 },
797 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
798 CPU_K6_2_FLAGS, 0 },
799 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
800 CPU_ATHLON_FLAGS, 0 },
801 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
802 CPU_K8_FLAGS, 1 },
803 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
804 CPU_K8_FLAGS, 0 },
805 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
806 CPU_K8_FLAGS, 0 },
807 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
808 CPU_AMDFAM10_FLAGS, 0 },
809 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
810 CPU_BDVER1_FLAGS, 0 },
811 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
812 CPU_BDVER2_FLAGS, 0 },
813 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
814 CPU_BDVER3_FLAGS, 0 },
815 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
816 CPU_BDVER4_FLAGS, 0 },
817 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
818 CPU_ZNVER1_FLAGS, 0 },
819 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
820 CPU_BTVER1_FLAGS, 0 },
821 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
822 CPU_BTVER2_FLAGS, 0 },
823 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
824 CPU_8087_FLAGS, 0 },
825 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
826 CPU_287_FLAGS, 0 },
827 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
828 CPU_387_FLAGS, 0 },
829 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
830 CPU_687_FLAGS, 0 },
831 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
832 CPU_MMX_FLAGS, 0 },
833 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
834 CPU_SSE_FLAGS, 0 },
835 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
836 CPU_SSE2_FLAGS, 0 },
837 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
838 CPU_SSE3_FLAGS, 0 },
839 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
840 CPU_SSSE3_FLAGS, 0 },
841 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
842 CPU_SSE4_1_FLAGS, 0 },
843 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
844 CPU_SSE4_2_FLAGS, 0 },
845 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
846 CPU_SSE4_2_FLAGS, 0 },
847 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
848 CPU_AVX_FLAGS, 0 },
849 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
850 CPU_AVX2_FLAGS, 0 },
851 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
852 CPU_AVX512F_FLAGS, 0 },
853 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
854 CPU_AVX512CD_FLAGS, 0 },
855 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
856 CPU_AVX512ER_FLAGS, 0 },
857 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
858 CPU_AVX512PF_FLAGS, 0 },
859 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
860 CPU_AVX512DQ_FLAGS, 0 },
861 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
862 CPU_AVX512BW_FLAGS, 0 },
863 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
864 CPU_AVX512VL_FLAGS, 0 },
865 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
866 CPU_VMX_FLAGS, 0 },
867 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
868 CPU_VMFUNC_FLAGS, 0 },
869 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
870 CPU_SMX_FLAGS, 0 },
871 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
872 CPU_XSAVE_FLAGS, 0 },
873 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
874 CPU_XSAVEOPT_FLAGS, 0 },
875 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
876 CPU_XSAVEC_FLAGS, 0 },
877 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
878 CPU_XSAVES_FLAGS, 0 },
879 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
880 CPU_AES_FLAGS, 0 },
881 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
882 CPU_PCLMUL_FLAGS, 0 },
883 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
884 CPU_PCLMUL_FLAGS, 1 },
885 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
886 CPU_FSGSBASE_FLAGS, 0 },
887 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
888 CPU_RDRND_FLAGS, 0 },
889 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
890 CPU_F16C_FLAGS, 0 },
891 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
892 CPU_BMI2_FLAGS, 0 },
893 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
894 CPU_FMA_FLAGS, 0 },
895 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
896 CPU_FMA4_FLAGS, 0 },
897 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
898 CPU_XOP_FLAGS, 0 },
899 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
900 CPU_LWP_FLAGS, 0 },
901 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
902 CPU_MOVBE_FLAGS, 0 },
903 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
904 CPU_CX16_FLAGS, 0 },
905 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
906 CPU_EPT_FLAGS, 0 },
907 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
908 CPU_LZCNT_FLAGS, 0 },
909 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
910 CPU_HLE_FLAGS, 0 },
911 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
912 CPU_RTM_FLAGS, 0 },
913 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
914 CPU_INVPCID_FLAGS, 0 },
915 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
916 CPU_CLFLUSH_FLAGS, 0 },
917 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
918 CPU_NOP_FLAGS, 0 },
919 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
920 CPU_SYSCALL_FLAGS, 0 },
921 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
922 CPU_RDTSCP_FLAGS, 0 },
923 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
924 CPU_3DNOW_FLAGS, 0 },
925 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
926 CPU_3DNOWA_FLAGS, 0 },
927 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
928 CPU_PADLOCK_FLAGS, 0 },
929 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
930 CPU_SVME_FLAGS, 1 },
931 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
932 CPU_SVME_FLAGS, 0 },
933 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
934 CPU_SSE4A_FLAGS, 0 },
935 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
936 CPU_ABM_FLAGS, 0 },
937 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
938 CPU_BMI_FLAGS, 0 },
939 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
940 CPU_TBM_FLAGS, 0 },
941 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
942 CPU_ADX_FLAGS, 0 },
943 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
944 CPU_RDSEED_FLAGS, 0 },
945 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
946 CPU_PRFCHW_FLAGS, 0 },
947 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
948 CPU_SMAP_FLAGS, 0 },
949 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
950 CPU_MPX_FLAGS, 0 },
951 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
952 CPU_SHA_FLAGS, 0 },
953 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
954 CPU_CLFLUSHOPT_FLAGS, 0 },
955 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
956 CPU_PREFETCHWT1_FLAGS, 0 },
957 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
958 CPU_SE1_FLAGS, 0 },
959 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
960 CPU_CLWB_FLAGS, 0 },
961 { STRING_COMMA_LEN (".pcommit"), PROCESSOR_UNKNOWN,
962 CPU_PCOMMIT_FLAGS, 0 },
963 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
964 CPU_AVX512IFMA_FLAGS, 0 },
965 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
966 CPU_AVX512VBMI_FLAGS, 0 },
967 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
968 CPU_CLZERO_FLAGS, 0 },
969 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
970 CPU_MWAITX_FLAGS, 0 },
971 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
972 CPU_OSPKE_FLAGS, 0 },
973 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
974 CPU_RDPID_FLAGS, 0 },
975 };
976
977 static const noarch_entry cpu_noarch[] =
978 {
979 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
980 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
981 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
982 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
983 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
984 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
985 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
986 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
987 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
988 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
989 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
990 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
991 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
992 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
993 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
994 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
995 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
996 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
997 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
998 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
999 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1000 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1001 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1002 };
1003
1004 #ifdef I386COFF
1005 /* Like s_lcomm_internal in gas/read.c but the alignment string
1006 is allowed to be optional. */
1007
1008 static symbolS *
1009 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1010 {
1011 addressT align = 0;
1012
1013 SKIP_WHITESPACE ();
1014
1015 if (needs_align
1016 && *input_line_pointer == ',')
1017 {
1018 align = parse_align (needs_align - 1);
1019
1020 if (align == (addressT) -1)
1021 return NULL;
1022 }
1023 else
1024 {
1025 if (size >= 8)
1026 align = 3;
1027 else if (size >= 4)
1028 align = 2;
1029 else if (size >= 2)
1030 align = 1;
1031 else
1032 align = 0;
1033 }
1034
1035 bss_alloc (symbolP, size, align);
1036 return symbolP;
1037 }
1038
1039 static void
1040 pe_lcomm (int needs_align)
1041 {
1042 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1043 }
1044 #endif
1045
1046 const pseudo_typeS md_pseudo_table[] =
1047 {
1048 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1049 {"align", s_align_bytes, 0},
1050 #else
1051 {"align", s_align_ptwo, 0},
1052 #endif
1053 {"arch", set_cpu_arch, 0},
1054 #ifndef I386COFF
1055 {"bss", s_bss, 0},
1056 #else
1057 {"lcomm", pe_lcomm, 1},
1058 #endif
1059 {"ffloat", float_cons, 'f'},
1060 {"dfloat", float_cons, 'd'},
1061 {"tfloat", float_cons, 'x'},
1062 {"value", cons, 2},
1063 {"slong", signed_cons, 4},
1064 {"noopt", s_ignore, 0},
1065 {"optim", s_ignore, 0},
1066 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1067 {"code16", set_code_flag, CODE_16BIT},
1068 {"code32", set_code_flag, CODE_32BIT},
1069 {"code64", set_code_flag, CODE_64BIT},
1070 {"intel_syntax", set_intel_syntax, 1},
1071 {"att_syntax", set_intel_syntax, 0},
1072 {"intel_mnemonic", set_intel_mnemonic, 1},
1073 {"att_mnemonic", set_intel_mnemonic, 0},
1074 {"allow_index_reg", set_allow_index_reg, 1},
1075 {"disallow_index_reg", set_allow_index_reg, 0},
1076 {"sse_check", set_check, 0},
1077 {"operand_check", set_check, 1},
1078 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1079 {"largecomm", handle_large_common, 0},
1080 #else
1081 {"file", (void (*) (int)) dwarf2_directive_file, 0},
1082 {"loc", dwarf2_directive_loc, 0},
1083 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1084 #endif
1085 #ifdef TE_PE
1086 {"secrel32", pe_directive_secrel, 0},
1087 #endif
1088 {0, 0, 0}
1089 };
1090
1091 /* For interface with expression (). */
1092 extern char *input_line_pointer;
1093
1094 /* Hash table for instruction mnemonic lookup. */
1095 static struct hash_control *op_hash;
1096
1097 /* Hash table for register lookup. */
1098 static struct hash_control *reg_hash;
1099 \f
1100 void
1101 i386_align_code (fragS *fragP, int count)
1102 {
1103 /* Various efficient no-op patterns for aligning code labels.
1104 Note: Don't try to assemble the instructions in the comments.
1105 0L and 0w are not legal. */
1106 static const unsigned char f32_1[] =
1107 {0x90}; /* nop */
1108 static const unsigned char f32_2[] =
1109 {0x66,0x90}; /* xchg %ax,%ax */
1110 static const unsigned char f32_3[] =
1111 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1112 static const unsigned char f32_4[] =
1113 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1114 static const unsigned char f32_5[] =
1115 {0x90, /* nop */
1116 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1117 static const unsigned char f32_6[] =
1118 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1119 static const unsigned char f32_7[] =
1120 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1121 static const unsigned char f32_8[] =
1122 {0x90, /* nop */
1123 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1124 static const unsigned char f32_9[] =
1125 {0x89,0xf6, /* movl %esi,%esi */
1126 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1127 static const unsigned char f32_10[] =
1128 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1129 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1130 static const unsigned char f32_11[] =
1131 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1132 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1133 static const unsigned char f32_12[] =
1134 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1135 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1136 static const unsigned char f32_13[] =
1137 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1138 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1139 static const unsigned char f32_14[] =
1140 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1141 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1142 static const unsigned char f16_3[] =
1143 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1144 static const unsigned char f16_4[] =
1145 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1146 static const unsigned char f16_5[] =
1147 {0x90, /* nop */
1148 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1149 static const unsigned char f16_6[] =
1150 {0x89,0xf6, /* mov %si,%si */
1151 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1152 static const unsigned char f16_7[] =
1153 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1154 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1155 static const unsigned char f16_8[] =
1156 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1157 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1158 static const unsigned char jump_31[] =
1159 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1160 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1161 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1162 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1163 static const unsigned char *const f32_patt[] = {
1164 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1165 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1166 };
1167 static const unsigned char *const f16_patt[] = {
1168 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1169 };
1170 /* nopl (%[re]ax) */
1171 static const unsigned char alt_3[] =
1172 {0x0f,0x1f,0x00};
1173 /* nopl 0(%[re]ax) */
1174 static const unsigned char alt_4[] =
1175 {0x0f,0x1f,0x40,0x00};
1176 /* nopl 0(%[re]ax,%[re]ax,1) */
1177 static const unsigned char alt_5[] =
1178 {0x0f,0x1f,0x44,0x00,0x00};
1179 /* nopw 0(%[re]ax,%[re]ax,1) */
1180 static const unsigned char alt_6[] =
1181 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1182 /* nopl 0L(%[re]ax) */
1183 static const unsigned char alt_7[] =
1184 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1185 /* nopl 0L(%[re]ax,%[re]ax,1) */
1186 static const unsigned char alt_8[] =
1187 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1188 /* nopw 0L(%[re]ax,%[re]ax,1) */
1189 static const unsigned char alt_9[] =
1190 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1191 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1192 static const unsigned char alt_10[] =
1193 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1194 static const unsigned char *const alt_patt[] = {
1195 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1196 alt_9, alt_10
1197 };
1198
1199 /* Only align for at least a positive non-zero boundary. */
1200 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1201 return;
1202
1203 /* We need to decide which NOP sequence to use for 32bit and
1204 64bit. When -mtune= is used:
1205
1206 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1207 PROCESSOR_GENERIC32, f32_patt will be used.
1208 2. For the rest, alt_patt will be used.
1209
1210 When -mtune= isn't used, alt_patt will be used if
1211 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1212 be used.
1213
1214 When -march= or .arch is used, we can't use anything beyond
1215 cpu_arch_isa_flags. */
1216
1217 if (flag_code == CODE_16BIT)
1218 {
1219 if (count > 8)
1220 {
1221 memcpy (fragP->fr_literal + fragP->fr_fix,
1222 jump_31, count);
1223 /* Adjust jump offset. */
1224 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1225 }
1226 else
1227 memcpy (fragP->fr_literal + fragP->fr_fix,
1228 f16_patt[count - 1], count);
1229 }
1230 else
1231 {
1232 const unsigned char *const *patt = NULL;
1233
1234 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1235 {
1236 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1237 switch (cpu_arch_tune)
1238 {
1239 case PROCESSOR_UNKNOWN:
1240 /* We use cpu_arch_isa_flags to check if we SHOULD
1241 optimize with nops. */
1242 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1243 patt = alt_patt;
1244 else
1245 patt = f32_patt;
1246 break;
1247 case PROCESSOR_PENTIUM4:
1248 case PROCESSOR_NOCONA:
1249 case PROCESSOR_CORE:
1250 case PROCESSOR_CORE2:
1251 case PROCESSOR_COREI7:
1252 case PROCESSOR_L1OM:
1253 case PROCESSOR_K1OM:
1254 case PROCESSOR_GENERIC64:
1255 case PROCESSOR_K6:
1256 case PROCESSOR_ATHLON:
1257 case PROCESSOR_K8:
1258 case PROCESSOR_AMDFAM10:
1259 case PROCESSOR_BD:
1260 case PROCESSOR_ZNVER:
1261 case PROCESSOR_BT:
1262 patt = alt_patt;
1263 break;
1264 case PROCESSOR_I386:
1265 case PROCESSOR_I486:
1266 case PROCESSOR_PENTIUM:
1267 case PROCESSOR_PENTIUMPRO:
1268 case PROCESSOR_IAMCU:
1269 case PROCESSOR_GENERIC32:
1270 patt = f32_patt;
1271 break;
1272 }
1273 }
1274 else
1275 {
1276 switch (fragP->tc_frag_data.tune)
1277 {
1278 case PROCESSOR_UNKNOWN:
1279 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1280 PROCESSOR_UNKNOWN. */
1281 abort ();
1282 break;
1283
1284 case PROCESSOR_I386:
1285 case PROCESSOR_I486:
1286 case PROCESSOR_PENTIUM:
1287 case PROCESSOR_IAMCU:
1288 case PROCESSOR_K6:
1289 case PROCESSOR_ATHLON:
1290 case PROCESSOR_K8:
1291 case PROCESSOR_AMDFAM10:
1292 case PROCESSOR_BD:
1293 case PROCESSOR_ZNVER:
1294 case PROCESSOR_BT:
1295 case PROCESSOR_GENERIC32:
1296 /* We use cpu_arch_isa_flags to check if we CAN optimize
1297 with nops. */
1298 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1299 patt = alt_patt;
1300 else
1301 patt = f32_patt;
1302 break;
1303 case PROCESSOR_PENTIUMPRO:
1304 case PROCESSOR_PENTIUM4:
1305 case PROCESSOR_NOCONA:
1306 case PROCESSOR_CORE:
1307 case PROCESSOR_CORE2:
1308 case PROCESSOR_COREI7:
1309 case PROCESSOR_L1OM:
1310 case PROCESSOR_K1OM:
1311 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1312 patt = alt_patt;
1313 else
1314 patt = f32_patt;
1315 break;
1316 case PROCESSOR_GENERIC64:
1317 patt = alt_patt;
1318 break;
1319 }
1320 }
1321
1322 if (patt == f32_patt)
1323 {
1324 /* If the padding is less than 15 bytes, we use the normal
1325 ones. Otherwise, we use a jump instruction and adjust
1326 its offset. */
1327 int limit;
1328
1329 /* For 64bit, the limit is 3 bytes. */
1330 if (flag_code == CODE_64BIT
1331 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1332 limit = 3;
1333 else
1334 limit = 15;
1335 if (count < limit)
1336 memcpy (fragP->fr_literal + fragP->fr_fix,
1337 patt[count - 1], count);
1338 else
1339 {
1340 memcpy (fragP->fr_literal + fragP->fr_fix,
1341 jump_31, count);
1342 /* Adjust jump offset. */
1343 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1344 }
1345 }
1346 else
1347 {
1348 /* Maximum length of an instruction is 10 byte. If the
1349 padding is greater than 10 bytes and we don't use jump,
1350 we have to break it into smaller pieces. */
1351 int padding = count;
1352 while (padding > 10)
1353 {
1354 padding -= 10;
1355 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1356 patt [9], 10);
1357 }
1358
1359 if (padding)
1360 memcpy (fragP->fr_literal + fragP->fr_fix,
1361 patt [padding - 1], padding);
1362 }
1363 }
1364 fragP->fr_var = count;
1365 }
1366
1367 static INLINE int
1368 operand_type_all_zero (const union i386_operand_type *x)
1369 {
1370 switch (ARRAY_SIZE(x->array))
1371 {
1372 case 3:
1373 if (x->array[2])
1374 return 0;
1375 case 2:
1376 if (x->array[1])
1377 return 0;
1378 case 1:
1379 return !x->array[0];
1380 default:
1381 abort ();
1382 }
1383 }
1384
1385 static INLINE void
1386 operand_type_set (union i386_operand_type *x, unsigned int v)
1387 {
1388 switch (ARRAY_SIZE(x->array))
1389 {
1390 case 3:
1391 x->array[2] = v;
1392 case 2:
1393 x->array[1] = v;
1394 case 1:
1395 x->array[0] = v;
1396 break;
1397 default:
1398 abort ();
1399 }
1400 }
1401
1402 static INLINE int
1403 operand_type_equal (const union i386_operand_type *x,
1404 const union i386_operand_type *y)
1405 {
1406 switch (ARRAY_SIZE(x->array))
1407 {
1408 case 3:
1409 if (x->array[2] != y->array[2])
1410 return 0;
1411 case 2:
1412 if (x->array[1] != y->array[1])
1413 return 0;
1414 case 1:
1415 return x->array[0] == y->array[0];
1416 break;
1417 default:
1418 abort ();
1419 }
1420 }
1421
1422 static INLINE int
1423 cpu_flags_all_zero (const union i386_cpu_flags *x)
1424 {
1425 switch (ARRAY_SIZE(x->array))
1426 {
1427 case 3:
1428 if (x->array[2])
1429 return 0;
1430 case 2:
1431 if (x->array[1])
1432 return 0;
1433 case 1:
1434 return !x->array[0];
1435 default:
1436 abort ();
1437 }
1438 }
1439
1440 static INLINE int
1441 cpu_flags_equal (const union i386_cpu_flags *x,
1442 const union i386_cpu_flags *y)
1443 {
1444 switch (ARRAY_SIZE(x->array))
1445 {
1446 case 3:
1447 if (x->array[2] != y->array[2])
1448 return 0;
1449 case 2:
1450 if (x->array[1] != y->array[1])
1451 return 0;
1452 case 1:
1453 return x->array[0] == y->array[0];
1454 break;
1455 default:
1456 abort ();
1457 }
1458 }
1459
1460 static INLINE int
1461 cpu_flags_check_cpu64 (i386_cpu_flags f)
1462 {
1463 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1464 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1465 }
1466
1467 static INLINE i386_cpu_flags
1468 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1469 {
1470 switch (ARRAY_SIZE (x.array))
1471 {
1472 case 3:
1473 x.array [2] &= y.array [2];
1474 case 2:
1475 x.array [1] &= y.array [1];
1476 case 1:
1477 x.array [0] &= y.array [0];
1478 break;
1479 default:
1480 abort ();
1481 }
1482 return x;
1483 }
1484
1485 static INLINE i386_cpu_flags
1486 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1487 {
1488 switch (ARRAY_SIZE (x.array))
1489 {
1490 case 3:
1491 x.array [2] |= y.array [2];
1492 case 2:
1493 x.array [1] |= y.array [1];
1494 case 1:
1495 x.array [0] |= y.array [0];
1496 break;
1497 default:
1498 abort ();
1499 }
1500 return x;
1501 }
1502
1503 static INLINE i386_cpu_flags
1504 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1505 {
1506 switch (ARRAY_SIZE (x.array))
1507 {
1508 case 3:
1509 x.array [2] &= ~y.array [2];
1510 case 2:
1511 x.array [1] &= ~y.array [1];
1512 case 1:
1513 x.array [0] &= ~y.array [0];
1514 break;
1515 default:
1516 abort ();
1517 }
1518 return x;
1519 }
1520
1521 static int
1522 valid_iamcu_cpu_flags (const i386_cpu_flags *flags)
1523 {
1524 if (cpu_arch_isa == PROCESSOR_IAMCU)
1525 {
1526 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_COMPAT_FLAGS;
1527 i386_cpu_flags compat_flags;
1528 compat_flags = cpu_flags_and_not (*flags, iamcu_flags);
1529 return cpu_flags_all_zero (&compat_flags);
1530 }
1531 else
1532 return 1;
1533 }
1534
1535 #define CPU_FLAGS_ARCH_MATCH 0x1
1536 #define CPU_FLAGS_64BIT_MATCH 0x2
1537 #define CPU_FLAGS_AES_MATCH 0x4
1538 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1539 #define CPU_FLAGS_AVX_MATCH 0x10
1540
1541 #define CPU_FLAGS_32BIT_MATCH \
1542 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1543 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1544 #define CPU_FLAGS_PERFECT_MATCH \
1545 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1546
1547 /* Return CPU flags match bits. */
1548
1549 static int
1550 cpu_flags_match (const insn_template *t)
1551 {
1552 i386_cpu_flags x = t->cpu_flags;
1553 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1554
1555 x.bitfield.cpu64 = 0;
1556 x.bitfield.cpuno64 = 0;
1557
1558 if (cpu_flags_all_zero (&x))
1559 {
1560 /* This instruction is available on all archs. */
1561 match |= CPU_FLAGS_32BIT_MATCH;
1562 }
1563 else
1564 {
1565 /* This instruction is available only on some archs. */
1566 i386_cpu_flags cpu = cpu_arch_flags;
1567
1568 cpu = cpu_flags_and (x, cpu);
1569 if (!cpu_flags_all_zero (&cpu))
1570 {
1571 if (x.bitfield.cpuavx)
1572 {
1573 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1574 if (cpu.bitfield.cpuavx)
1575 {
1576 /* Check SSE2AVX. */
1577 if (!t->opcode_modifier.sse2avx|| sse2avx)
1578 {
1579 match |= (CPU_FLAGS_ARCH_MATCH
1580 | CPU_FLAGS_AVX_MATCH);
1581 /* Check AES. */
1582 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1583 match |= CPU_FLAGS_AES_MATCH;
1584 /* Check PCLMUL. */
1585 if (!x.bitfield.cpupclmul
1586 || cpu.bitfield.cpupclmul)
1587 match |= CPU_FLAGS_PCLMUL_MATCH;
1588 }
1589 }
1590 else
1591 match |= CPU_FLAGS_ARCH_MATCH;
1592 }
1593 else if (x.bitfield.cpuavx512vl)
1594 {
1595 /* Match AVX512VL. */
1596 if (cpu.bitfield.cpuavx512vl)
1597 {
1598 /* Need another match. */
1599 cpu.bitfield.cpuavx512vl = 0;
1600 if (!cpu_flags_all_zero (&cpu))
1601 match |= CPU_FLAGS_32BIT_MATCH;
1602 else
1603 match |= CPU_FLAGS_ARCH_MATCH;
1604 }
1605 else
1606 match |= CPU_FLAGS_ARCH_MATCH;
1607 }
1608 else
1609 match |= CPU_FLAGS_32BIT_MATCH;
1610 }
1611 }
1612 return match;
1613 }
1614
1615 static INLINE i386_operand_type
1616 operand_type_and (i386_operand_type x, i386_operand_type y)
1617 {
1618 switch (ARRAY_SIZE (x.array))
1619 {
1620 case 3:
1621 x.array [2] &= y.array [2];
1622 case 2:
1623 x.array [1] &= y.array [1];
1624 case 1:
1625 x.array [0] &= y.array [0];
1626 break;
1627 default:
1628 abort ();
1629 }
1630 return x;
1631 }
1632
1633 static INLINE i386_operand_type
1634 operand_type_or (i386_operand_type x, i386_operand_type y)
1635 {
1636 switch (ARRAY_SIZE (x.array))
1637 {
1638 case 3:
1639 x.array [2] |= y.array [2];
1640 case 2:
1641 x.array [1] |= y.array [1];
1642 case 1:
1643 x.array [0] |= y.array [0];
1644 break;
1645 default:
1646 abort ();
1647 }
1648 return x;
1649 }
1650
1651 static INLINE i386_operand_type
1652 operand_type_xor (i386_operand_type x, i386_operand_type y)
1653 {
1654 switch (ARRAY_SIZE (x.array))
1655 {
1656 case 3:
1657 x.array [2] ^= y.array [2];
1658 case 2:
1659 x.array [1] ^= y.array [1];
1660 case 1:
1661 x.array [0] ^= y.array [0];
1662 break;
1663 default:
1664 abort ();
1665 }
1666 return x;
1667 }
1668
1669 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1670 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1671 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1672 static const i386_operand_type inoutportreg
1673 = OPERAND_TYPE_INOUTPORTREG;
1674 static const i386_operand_type reg16_inoutportreg
1675 = OPERAND_TYPE_REG16_INOUTPORTREG;
1676 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1677 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1678 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1679 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1680 static const i386_operand_type anydisp
1681 = OPERAND_TYPE_ANYDISP;
1682 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1683 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1684 static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1685 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1686 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1687 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1688 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1689 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1690 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1691 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1692 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1693 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1694 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1695 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1696
1697 enum operand_type
1698 {
1699 reg,
1700 imm,
1701 disp,
1702 anymem
1703 };
1704
1705 static INLINE int
1706 operand_type_check (i386_operand_type t, enum operand_type c)
1707 {
1708 switch (c)
1709 {
1710 case reg:
1711 return (t.bitfield.reg8
1712 || t.bitfield.reg16
1713 || t.bitfield.reg32
1714 || t.bitfield.reg64);
1715
1716 case imm:
1717 return (t.bitfield.imm8
1718 || t.bitfield.imm8s
1719 || t.bitfield.imm16
1720 || t.bitfield.imm32
1721 || t.bitfield.imm32s
1722 || t.bitfield.imm64);
1723
1724 case disp:
1725 return (t.bitfield.disp8
1726 || t.bitfield.disp16
1727 || t.bitfield.disp32
1728 || t.bitfield.disp32s
1729 || t.bitfield.disp64);
1730
1731 case anymem:
1732 return (t.bitfield.disp8
1733 || t.bitfield.disp16
1734 || t.bitfield.disp32
1735 || t.bitfield.disp32s
1736 || t.bitfield.disp64
1737 || t.bitfield.baseindex);
1738
1739 default:
1740 abort ();
1741 }
1742
1743 return 0;
1744 }
1745
1746 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1747 operand J for instruction template T. */
1748
1749 static INLINE int
1750 match_reg_size (const insn_template *t, unsigned int j)
1751 {
1752 return !((i.types[j].bitfield.byte
1753 && !t->operand_types[j].bitfield.byte)
1754 || (i.types[j].bitfield.word
1755 && !t->operand_types[j].bitfield.word)
1756 || (i.types[j].bitfield.dword
1757 && !t->operand_types[j].bitfield.dword)
1758 || (i.types[j].bitfield.qword
1759 && !t->operand_types[j].bitfield.qword));
1760 }
1761
1762 /* Return 1 if there is no conflict in any size on operand J for
1763 instruction template T. */
1764
1765 static INLINE int
1766 match_mem_size (const insn_template *t, unsigned int j)
1767 {
1768 return (match_reg_size (t, j)
1769 && !((i.types[j].bitfield.unspecified
1770 && !i.broadcast
1771 && !t->operand_types[j].bitfield.unspecified)
1772 || (i.types[j].bitfield.fword
1773 && !t->operand_types[j].bitfield.fword)
1774 || (i.types[j].bitfield.tbyte
1775 && !t->operand_types[j].bitfield.tbyte)
1776 || (i.types[j].bitfield.xmmword
1777 && !t->operand_types[j].bitfield.xmmword)
1778 || (i.types[j].bitfield.ymmword
1779 && !t->operand_types[j].bitfield.ymmword)
1780 || (i.types[j].bitfield.zmmword
1781 && !t->operand_types[j].bitfield.zmmword)));
1782 }
1783
1784 /* Return 1 if there is no size conflict on any operands for
1785 instruction template T. */
1786
1787 static INLINE int
1788 operand_size_match (const insn_template *t)
1789 {
1790 unsigned int j;
1791 int match = 1;
1792
1793 /* Don't check jump instructions. */
1794 if (t->opcode_modifier.jump
1795 || t->opcode_modifier.jumpbyte
1796 || t->opcode_modifier.jumpdword
1797 || t->opcode_modifier.jumpintersegment)
1798 return match;
1799
1800 /* Check memory and accumulator operand size. */
1801 for (j = 0; j < i.operands; j++)
1802 {
1803 if (t->operand_types[j].bitfield.anysize)
1804 continue;
1805
1806 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1807 {
1808 match = 0;
1809 break;
1810 }
1811
1812 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1813 {
1814 match = 0;
1815 break;
1816 }
1817 }
1818
1819 if (match)
1820 return match;
1821 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1822 {
1823 mismatch:
1824 i.error = operand_size_mismatch;
1825 return 0;
1826 }
1827
1828 /* Check reverse. */
1829 gas_assert (i.operands == 2);
1830
1831 match = 1;
1832 for (j = 0; j < 2; j++)
1833 {
1834 if (t->operand_types[j].bitfield.acc
1835 && !match_reg_size (t, j ? 0 : 1))
1836 goto mismatch;
1837
1838 if (i.types[j].bitfield.mem
1839 && !match_mem_size (t, j ? 0 : 1))
1840 goto mismatch;
1841 }
1842
1843 return match;
1844 }
1845
1846 static INLINE int
1847 operand_type_match (i386_operand_type overlap,
1848 i386_operand_type given)
1849 {
1850 i386_operand_type temp = overlap;
1851
1852 temp.bitfield.jumpabsolute = 0;
1853 temp.bitfield.unspecified = 0;
1854 temp.bitfield.byte = 0;
1855 temp.bitfield.word = 0;
1856 temp.bitfield.dword = 0;
1857 temp.bitfield.fword = 0;
1858 temp.bitfield.qword = 0;
1859 temp.bitfield.tbyte = 0;
1860 temp.bitfield.xmmword = 0;
1861 temp.bitfield.ymmword = 0;
1862 temp.bitfield.zmmword = 0;
1863 if (operand_type_all_zero (&temp))
1864 goto mismatch;
1865
1866 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1867 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1868 return 1;
1869
1870 mismatch:
1871 i.error = operand_type_mismatch;
1872 return 0;
1873 }
1874
1875 /* If given types g0 and g1 are registers they must be of the same type
1876 unless the expected operand type register overlap is null.
1877 Note that Acc in a template matches every size of reg. */
1878
1879 static INLINE int
1880 operand_type_register_match (i386_operand_type m0,
1881 i386_operand_type g0,
1882 i386_operand_type t0,
1883 i386_operand_type m1,
1884 i386_operand_type g1,
1885 i386_operand_type t1)
1886 {
1887 if (!operand_type_check (g0, reg))
1888 return 1;
1889
1890 if (!operand_type_check (g1, reg))
1891 return 1;
1892
1893 if (g0.bitfield.reg8 == g1.bitfield.reg8
1894 && g0.bitfield.reg16 == g1.bitfield.reg16
1895 && g0.bitfield.reg32 == g1.bitfield.reg32
1896 && g0.bitfield.reg64 == g1.bitfield.reg64)
1897 return 1;
1898
1899 if (m0.bitfield.acc)
1900 {
1901 t0.bitfield.reg8 = 1;
1902 t0.bitfield.reg16 = 1;
1903 t0.bitfield.reg32 = 1;
1904 t0.bitfield.reg64 = 1;
1905 }
1906
1907 if (m1.bitfield.acc)
1908 {
1909 t1.bitfield.reg8 = 1;
1910 t1.bitfield.reg16 = 1;
1911 t1.bitfield.reg32 = 1;
1912 t1.bitfield.reg64 = 1;
1913 }
1914
1915 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1916 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1917 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1918 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1919 return 1;
1920
1921 i.error = register_type_mismatch;
1922
1923 return 0;
1924 }
1925
1926 static INLINE unsigned int
1927 register_number (const reg_entry *r)
1928 {
1929 unsigned int nr = r->reg_num;
1930
1931 if (r->reg_flags & RegRex)
1932 nr += 8;
1933
1934 if (r->reg_flags & RegVRex)
1935 nr += 16;
1936
1937 return nr;
1938 }
1939
1940 static INLINE unsigned int
1941 mode_from_disp_size (i386_operand_type t)
1942 {
1943 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
1944 return 1;
1945 else if (t.bitfield.disp16
1946 || t.bitfield.disp32
1947 || t.bitfield.disp32s)
1948 return 2;
1949 else
1950 return 0;
1951 }
1952
1953 static INLINE int
1954 fits_in_signed_byte (addressT num)
1955 {
1956 return num + 0x80 <= 0xff;
1957 }
1958
1959 static INLINE int
1960 fits_in_unsigned_byte (addressT num)
1961 {
1962 return num <= 0xff;
1963 }
1964
1965 static INLINE int
1966 fits_in_unsigned_word (addressT num)
1967 {
1968 return num <= 0xffff;
1969 }
1970
1971 static INLINE int
1972 fits_in_signed_word (addressT num)
1973 {
1974 return num + 0x8000 <= 0xffff;
1975 }
1976
1977 static INLINE int
1978 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
1979 {
1980 #ifndef BFD64
1981 return 1;
1982 #else
1983 return num + 0x80000000 <= 0xffffffff;
1984 #endif
1985 } /* fits_in_signed_long() */
1986
1987 static INLINE int
1988 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
1989 {
1990 #ifndef BFD64
1991 return 1;
1992 #else
1993 return num <= 0xffffffff;
1994 #endif
1995 } /* fits_in_unsigned_long() */
1996
1997 static INLINE int
1998 fits_in_vec_disp8 (offsetT num)
1999 {
2000 int shift = i.memshift;
2001 unsigned int mask;
2002
2003 if (shift == -1)
2004 abort ();
2005
2006 mask = (1 << shift) - 1;
2007
2008 /* Return 0 if NUM isn't properly aligned. */
2009 if ((num & mask))
2010 return 0;
2011
2012 /* Check if NUM will fit in 8bit after shift. */
2013 return fits_in_signed_byte (num >> shift);
2014 }
2015
2016 static INLINE int
2017 fits_in_imm4 (offsetT num)
2018 {
2019 return (num & 0xf) == num;
2020 }
2021
2022 static i386_operand_type
2023 smallest_imm_type (offsetT num)
2024 {
2025 i386_operand_type t;
2026
2027 operand_type_set (&t, 0);
2028 t.bitfield.imm64 = 1;
2029
2030 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2031 {
2032 /* This code is disabled on the 486 because all the Imm1 forms
2033 in the opcode table are slower on the i486. They're the
2034 versions with the implicitly specified single-position
2035 displacement, which has another syntax if you really want to
2036 use that form. */
2037 t.bitfield.imm1 = 1;
2038 t.bitfield.imm8 = 1;
2039 t.bitfield.imm8s = 1;
2040 t.bitfield.imm16 = 1;
2041 t.bitfield.imm32 = 1;
2042 t.bitfield.imm32s = 1;
2043 }
2044 else if (fits_in_signed_byte (num))
2045 {
2046 t.bitfield.imm8 = 1;
2047 t.bitfield.imm8s = 1;
2048 t.bitfield.imm16 = 1;
2049 t.bitfield.imm32 = 1;
2050 t.bitfield.imm32s = 1;
2051 }
2052 else if (fits_in_unsigned_byte (num))
2053 {
2054 t.bitfield.imm8 = 1;
2055 t.bitfield.imm16 = 1;
2056 t.bitfield.imm32 = 1;
2057 t.bitfield.imm32s = 1;
2058 }
2059 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2060 {
2061 t.bitfield.imm16 = 1;
2062 t.bitfield.imm32 = 1;
2063 t.bitfield.imm32s = 1;
2064 }
2065 else if (fits_in_signed_long (num))
2066 {
2067 t.bitfield.imm32 = 1;
2068 t.bitfield.imm32s = 1;
2069 }
2070 else if (fits_in_unsigned_long (num))
2071 t.bitfield.imm32 = 1;
2072
2073 return t;
2074 }
2075
2076 static offsetT
2077 offset_in_range (offsetT val, int size)
2078 {
2079 addressT mask;
2080
2081 switch (size)
2082 {
2083 case 1: mask = ((addressT) 1 << 8) - 1; break;
2084 case 2: mask = ((addressT) 1 << 16) - 1; break;
2085 case 4: mask = ((addressT) 2 << 31) - 1; break;
2086 #ifdef BFD64
2087 case 8: mask = ((addressT) 2 << 63) - 1; break;
2088 #endif
2089 default: abort ();
2090 }
2091
2092 #ifdef BFD64
2093 /* If BFD64, sign extend val for 32bit address mode. */
2094 if (flag_code != CODE_64BIT
2095 || i.prefix[ADDR_PREFIX])
2096 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2097 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2098 #endif
2099
2100 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2101 {
2102 char buf1[40], buf2[40];
2103
2104 sprint_value (buf1, val);
2105 sprint_value (buf2, val & mask);
2106 as_warn (_("%s shortened to %s"), buf1, buf2);
2107 }
2108 return val & mask;
2109 }
2110
2111 enum PREFIX_GROUP
2112 {
2113 PREFIX_EXIST = 0,
2114 PREFIX_LOCK,
2115 PREFIX_REP,
2116 PREFIX_OTHER
2117 };
2118
2119 /* Returns
2120 a. PREFIX_EXIST if attempting to add a prefix where one from the
2121 same class already exists.
2122 b. PREFIX_LOCK if lock prefix is added.
2123 c. PREFIX_REP if rep/repne prefix is added.
2124 d. PREFIX_OTHER if other prefix is added.
2125 */
2126
2127 static enum PREFIX_GROUP
2128 add_prefix (unsigned int prefix)
2129 {
2130 enum PREFIX_GROUP ret = PREFIX_OTHER;
2131 unsigned int q;
2132
2133 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2134 && flag_code == CODE_64BIT)
2135 {
2136 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2137 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2138 && (prefix & (REX_R | REX_X | REX_B))))
2139 ret = PREFIX_EXIST;
2140 q = REX_PREFIX;
2141 }
2142 else
2143 {
2144 switch (prefix)
2145 {
2146 default:
2147 abort ();
2148
2149 case CS_PREFIX_OPCODE:
2150 case DS_PREFIX_OPCODE:
2151 case ES_PREFIX_OPCODE:
2152 case FS_PREFIX_OPCODE:
2153 case GS_PREFIX_OPCODE:
2154 case SS_PREFIX_OPCODE:
2155 q = SEG_PREFIX;
2156 break;
2157
2158 case REPNE_PREFIX_OPCODE:
2159 case REPE_PREFIX_OPCODE:
2160 q = REP_PREFIX;
2161 ret = PREFIX_REP;
2162 break;
2163
2164 case LOCK_PREFIX_OPCODE:
2165 q = LOCK_PREFIX;
2166 ret = PREFIX_LOCK;
2167 break;
2168
2169 case FWAIT_OPCODE:
2170 q = WAIT_PREFIX;
2171 break;
2172
2173 case ADDR_PREFIX_OPCODE:
2174 q = ADDR_PREFIX;
2175 break;
2176
2177 case DATA_PREFIX_OPCODE:
2178 q = DATA_PREFIX;
2179 break;
2180 }
2181 if (i.prefix[q] != 0)
2182 ret = PREFIX_EXIST;
2183 }
2184
2185 if (ret)
2186 {
2187 if (!i.prefix[q])
2188 ++i.prefixes;
2189 i.prefix[q] |= prefix;
2190 }
2191 else
2192 as_bad (_("same type of prefix used twice"));
2193
2194 return ret;
2195 }
2196
2197 static void
2198 update_code_flag (int value, int check)
2199 {
2200 PRINTF_LIKE ((*as_error));
2201
2202 flag_code = (enum flag_code) value;
2203 if (flag_code == CODE_64BIT)
2204 {
2205 cpu_arch_flags.bitfield.cpu64 = 1;
2206 cpu_arch_flags.bitfield.cpuno64 = 0;
2207 }
2208 else
2209 {
2210 cpu_arch_flags.bitfield.cpu64 = 0;
2211 cpu_arch_flags.bitfield.cpuno64 = 1;
2212 }
2213 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2214 {
2215 if (check)
2216 as_error = as_fatal;
2217 else
2218 as_error = as_bad;
2219 (*as_error) (_("64bit mode not supported on `%s'."),
2220 cpu_arch_name ? cpu_arch_name : default_arch);
2221 }
2222 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2223 {
2224 if (check)
2225 as_error = as_fatal;
2226 else
2227 as_error = as_bad;
2228 (*as_error) (_("32bit mode not supported on `%s'."),
2229 cpu_arch_name ? cpu_arch_name : default_arch);
2230 }
2231 stackop_size = '\0';
2232 }
2233
2234 static void
2235 set_code_flag (int value)
2236 {
2237 update_code_flag (value, 0);
2238 }
2239
2240 static void
2241 set_16bit_gcc_code_flag (int new_code_flag)
2242 {
2243 flag_code = (enum flag_code) new_code_flag;
2244 if (flag_code != CODE_16BIT)
2245 abort ();
2246 cpu_arch_flags.bitfield.cpu64 = 0;
2247 cpu_arch_flags.bitfield.cpuno64 = 1;
2248 stackop_size = LONG_MNEM_SUFFIX;
2249 }
2250
2251 static void
2252 set_intel_syntax (int syntax_flag)
2253 {
2254 /* Find out if register prefixing is specified. */
2255 int ask_naked_reg = 0;
2256
2257 SKIP_WHITESPACE ();
2258 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2259 {
2260 char *string;
2261 int e = get_symbol_name (&string);
2262
2263 if (strcmp (string, "prefix") == 0)
2264 ask_naked_reg = 1;
2265 else if (strcmp (string, "noprefix") == 0)
2266 ask_naked_reg = -1;
2267 else
2268 as_bad (_("bad argument to syntax directive."));
2269 (void) restore_line_pointer (e);
2270 }
2271 demand_empty_rest_of_line ();
2272
2273 intel_syntax = syntax_flag;
2274
2275 if (ask_naked_reg == 0)
2276 allow_naked_reg = (intel_syntax
2277 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2278 else
2279 allow_naked_reg = (ask_naked_reg < 0);
2280
2281 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2282
2283 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2284 identifier_chars['$'] = intel_syntax ? '$' : 0;
2285 register_prefix = allow_naked_reg ? "" : "%";
2286 }
2287
2288 static void
2289 set_intel_mnemonic (int mnemonic_flag)
2290 {
2291 intel_mnemonic = mnemonic_flag;
2292 }
2293
2294 static void
2295 set_allow_index_reg (int flag)
2296 {
2297 allow_index_reg = flag;
2298 }
2299
2300 static void
2301 set_check (int what)
2302 {
2303 enum check_kind *kind;
2304 const char *str;
2305
2306 if (what)
2307 {
2308 kind = &operand_check;
2309 str = "operand";
2310 }
2311 else
2312 {
2313 kind = &sse_check;
2314 str = "sse";
2315 }
2316
2317 SKIP_WHITESPACE ();
2318
2319 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2320 {
2321 char *string;
2322 int e = get_symbol_name (&string);
2323
2324 if (strcmp (string, "none") == 0)
2325 *kind = check_none;
2326 else if (strcmp (string, "warning") == 0)
2327 *kind = check_warning;
2328 else if (strcmp (string, "error") == 0)
2329 *kind = check_error;
2330 else
2331 as_bad (_("bad argument to %s_check directive."), str);
2332 (void) restore_line_pointer (e);
2333 }
2334 else
2335 as_bad (_("missing argument for %s_check directive"), str);
2336
2337 demand_empty_rest_of_line ();
2338 }
2339
2340 static void
2341 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2342 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2343 {
2344 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2345 static const char *arch;
2346
2347 /* Intel LIOM is only supported on ELF. */
2348 if (!IS_ELF)
2349 return;
2350
2351 if (!arch)
2352 {
2353 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2354 use default_arch. */
2355 arch = cpu_arch_name;
2356 if (!arch)
2357 arch = default_arch;
2358 }
2359
2360 /* If we are targeting Intel MCU, we must enable it. */
2361 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2362 || new_flag.bitfield.cpuiamcu)
2363 return;
2364
2365 /* If we are targeting Intel L1OM, we must enable it. */
2366 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2367 || new_flag.bitfield.cpul1om)
2368 return;
2369
2370 /* If we are targeting Intel K1OM, we must enable it. */
2371 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2372 || new_flag.bitfield.cpuk1om)
2373 return;
2374
2375 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2376 #endif
2377 }
2378
2379 static void
2380 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2381 {
2382 SKIP_WHITESPACE ();
2383
2384 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2385 {
2386 char *string;
2387 int e = get_symbol_name (&string);
2388 unsigned int j;
2389 i386_cpu_flags flags;
2390
2391 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2392 {
2393 if (strcmp (string, cpu_arch[j].name) == 0)
2394 {
2395 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2396
2397 if (*string != '.')
2398 {
2399 cpu_arch_name = cpu_arch[j].name;
2400 cpu_sub_arch_name = NULL;
2401 cpu_arch_flags = cpu_arch[j].flags;
2402 if (flag_code == CODE_64BIT)
2403 {
2404 cpu_arch_flags.bitfield.cpu64 = 1;
2405 cpu_arch_flags.bitfield.cpuno64 = 0;
2406 }
2407 else
2408 {
2409 cpu_arch_flags.bitfield.cpu64 = 0;
2410 cpu_arch_flags.bitfield.cpuno64 = 1;
2411 }
2412 cpu_arch_isa = cpu_arch[j].type;
2413 cpu_arch_isa_flags = cpu_arch[j].flags;
2414 if (!cpu_arch_tune_set)
2415 {
2416 cpu_arch_tune = cpu_arch_isa;
2417 cpu_arch_tune_flags = cpu_arch_isa_flags;
2418 }
2419 break;
2420 }
2421
2422 flags = cpu_flags_or (cpu_arch_flags,
2423 cpu_arch[j].flags);
2424
2425 if (!valid_iamcu_cpu_flags (&flags))
2426 as_fatal (_("`%s' isn't valid for Intel MCU"),
2427 cpu_arch[j].name);
2428 else if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2429 {
2430 if (cpu_sub_arch_name)
2431 {
2432 char *name = cpu_sub_arch_name;
2433 cpu_sub_arch_name = concat (name,
2434 cpu_arch[j].name,
2435 (const char *) NULL);
2436 free (name);
2437 }
2438 else
2439 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2440 cpu_arch_flags = flags;
2441 cpu_arch_isa_flags = flags;
2442 }
2443 (void) restore_line_pointer (e);
2444 demand_empty_rest_of_line ();
2445 return;
2446 }
2447 }
2448
2449 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2450 {
2451 /* Disable an ISA entension. */
2452 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2453 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2454 {
2455 flags = cpu_flags_and_not (cpu_arch_flags,
2456 cpu_noarch[j].flags);
2457 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2458 {
2459 if (cpu_sub_arch_name)
2460 {
2461 char *name = cpu_sub_arch_name;
2462 cpu_sub_arch_name = concat (name, string,
2463 (const char *) NULL);
2464 free (name);
2465 }
2466 else
2467 cpu_sub_arch_name = xstrdup (string);
2468 cpu_arch_flags = flags;
2469 cpu_arch_isa_flags = flags;
2470 }
2471 (void) restore_line_pointer (e);
2472 demand_empty_rest_of_line ();
2473 return;
2474 }
2475
2476 j = ARRAY_SIZE (cpu_arch);
2477 }
2478
2479 if (j >= ARRAY_SIZE (cpu_arch))
2480 as_bad (_("no such architecture: `%s'"), string);
2481
2482 *input_line_pointer = e;
2483 }
2484 else
2485 as_bad (_("missing cpu architecture"));
2486
2487 no_cond_jump_promotion = 0;
2488 if (*input_line_pointer == ','
2489 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2490 {
2491 char *string;
2492 char e;
2493
2494 ++input_line_pointer;
2495 e = get_symbol_name (&string);
2496
2497 if (strcmp (string, "nojumps") == 0)
2498 no_cond_jump_promotion = 1;
2499 else if (strcmp (string, "jumps") == 0)
2500 ;
2501 else
2502 as_bad (_("no such architecture modifier: `%s'"), string);
2503
2504 (void) restore_line_pointer (e);
2505 }
2506
2507 demand_empty_rest_of_line ();
2508 }
2509
2510 enum bfd_architecture
2511 i386_arch (void)
2512 {
2513 if (cpu_arch_isa == PROCESSOR_L1OM)
2514 {
2515 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2516 || flag_code != CODE_64BIT)
2517 as_fatal (_("Intel L1OM is 64bit ELF only"));
2518 return bfd_arch_l1om;
2519 }
2520 else if (cpu_arch_isa == PROCESSOR_K1OM)
2521 {
2522 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2523 || flag_code != CODE_64BIT)
2524 as_fatal (_("Intel K1OM is 64bit ELF only"));
2525 return bfd_arch_k1om;
2526 }
2527 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2528 {
2529 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2530 || flag_code == CODE_64BIT)
2531 as_fatal (_("Intel MCU is 32bit ELF only"));
2532 return bfd_arch_iamcu;
2533 }
2534 else
2535 return bfd_arch_i386;
2536 }
2537
2538 unsigned long
2539 i386_mach (void)
2540 {
2541 if (!strncmp (default_arch, "x86_64", 6))
2542 {
2543 if (cpu_arch_isa == PROCESSOR_L1OM)
2544 {
2545 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2546 || default_arch[6] != '\0')
2547 as_fatal (_("Intel L1OM is 64bit ELF only"));
2548 return bfd_mach_l1om;
2549 }
2550 else if (cpu_arch_isa == PROCESSOR_K1OM)
2551 {
2552 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2553 || default_arch[6] != '\0')
2554 as_fatal (_("Intel K1OM is 64bit ELF only"));
2555 return bfd_mach_k1om;
2556 }
2557 else if (default_arch[6] == '\0')
2558 return bfd_mach_x86_64;
2559 else
2560 return bfd_mach_x64_32;
2561 }
2562 else if (!strcmp (default_arch, "i386")
2563 || !strcmp (default_arch, "iamcu"))
2564 {
2565 if (cpu_arch_isa == PROCESSOR_IAMCU)
2566 {
2567 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2568 as_fatal (_("Intel MCU is 32bit ELF only"));
2569 return bfd_mach_i386_iamcu;
2570 }
2571 else
2572 return bfd_mach_i386_i386;
2573 }
2574 else
2575 as_fatal (_("unknown architecture"));
2576 }
2577 \f
2578 void
2579 md_begin (void)
2580 {
2581 const char *hash_err;
2582
2583 /* Initialize op_hash hash table. */
2584 op_hash = hash_new ();
2585
2586 {
2587 const insn_template *optab;
2588 templates *core_optab;
2589
2590 /* Setup for loop. */
2591 optab = i386_optab;
2592 core_optab = XNEW (templates);
2593 core_optab->start = optab;
2594
2595 while (1)
2596 {
2597 ++optab;
2598 if (optab->name == NULL
2599 || strcmp (optab->name, (optab - 1)->name) != 0)
2600 {
2601 /* different name --> ship out current template list;
2602 add to hash table; & begin anew. */
2603 core_optab->end = optab;
2604 hash_err = hash_insert (op_hash,
2605 (optab - 1)->name,
2606 (void *) core_optab);
2607 if (hash_err)
2608 {
2609 as_fatal (_("can't hash %s: %s"),
2610 (optab - 1)->name,
2611 hash_err);
2612 }
2613 if (optab->name == NULL)
2614 break;
2615 core_optab = XNEW (templates);
2616 core_optab->start = optab;
2617 }
2618 }
2619 }
2620
2621 /* Initialize reg_hash hash table. */
2622 reg_hash = hash_new ();
2623 {
2624 const reg_entry *regtab;
2625 unsigned int regtab_size = i386_regtab_size;
2626
2627 for (regtab = i386_regtab; regtab_size--; regtab++)
2628 {
2629 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2630 if (hash_err)
2631 as_fatal (_("can't hash %s: %s"),
2632 regtab->reg_name,
2633 hash_err);
2634 }
2635 }
2636
2637 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2638 {
2639 int c;
2640 char *p;
2641
2642 for (c = 0; c < 256; c++)
2643 {
2644 if (ISDIGIT (c))
2645 {
2646 digit_chars[c] = c;
2647 mnemonic_chars[c] = c;
2648 register_chars[c] = c;
2649 operand_chars[c] = c;
2650 }
2651 else if (ISLOWER (c))
2652 {
2653 mnemonic_chars[c] = c;
2654 register_chars[c] = c;
2655 operand_chars[c] = c;
2656 }
2657 else if (ISUPPER (c))
2658 {
2659 mnemonic_chars[c] = TOLOWER (c);
2660 register_chars[c] = mnemonic_chars[c];
2661 operand_chars[c] = c;
2662 }
2663 else if (c == '{' || c == '}')
2664 operand_chars[c] = c;
2665
2666 if (ISALPHA (c) || ISDIGIT (c))
2667 identifier_chars[c] = c;
2668 else if (c >= 128)
2669 {
2670 identifier_chars[c] = c;
2671 operand_chars[c] = c;
2672 }
2673 }
2674
2675 #ifdef LEX_AT
2676 identifier_chars['@'] = '@';
2677 #endif
2678 #ifdef LEX_QM
2679 identifier_chars['?'] = '?';
2680 operand_chars['?'] = '?';
2681 #endif
2682 digit_chars['-'] = '-';
2683 mnemonic_chars['_'] = '_';
2684 mnemonic_chars['-'] = '-';
2685 mnemonic_chars['.'] = '.';
2686 identifier_chars['_'] = '_';
2687 identifier_chars['.'] = '.';
2688
2689 for (p = operand_special_chars; *p != '\0'; p++)
2690 operand_chars[(unsigned char) *p] = *p;
2691 }
2692
2693 if (flag_code == CODE_64BIT)
2694 {
2695 #if defined (OBJ_COFF) && defined (TE_PE)
2696 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2697 ? 32 : 16);
2698 #else
2699 x86_dwarf2_return_column = 16;
2700 #endif
2701 x86_cie_data_alignment = -8;
2702 }
2703 else
2704 {
2705 x86_dwarf2_return_column = 8;
2706 x86_cie_data_alignment = -4;
2707 }
2708 }
2709
2710 void
2711 i386_print_statistics (FILE *file)
2712 {
2713 hash_print_statistics (file, "i386 opcode", op_hash);
2714 hash_print_statistics (file, "i386 register", reg_hash);
2715 }
2716 \f
2717 #ifdef DEBUG386
2718
2719 /* Debugging routines for md_assemble. */
2720 static void pte (insn_template *);
2721 static void pt (i386_operand_type);
2722 static void pe (expressionS *);
2723 static void ps (symbolS *);
2724
2725 static void
2726 pi (char *line, i386_insn *x)
2727 {
2728 unsigned int j;
2729
2730 fprintf (stdout, "%s: template ", line);
2731 pte (&x->tm);
2732 fprintf (stdout, " address: base %s index %s scale %x\n",
2733 x->base_reg ? x->base_reg->reg_name : "none",
2734 x->index_reg ? x->index_reg->reg_name : "none",
2735 x->log2_scale_factor);
2736 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2737 x->rm.mode, x->rm.reg, x->rm.regmem);
2738 fprintf (stdout, " sib: base %x index %x scale %x\n",
2739 x->sib.base, x->sib.index, x->sib.scale);
2740 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2741 (x->rex & REX_W) != 0,
2742 (x->rex & REX_R) != 0,
2743 (x->rex & REX_X) != 0,
2744 (x->rex & REX_B) != 0);
2745 for (j = 0; j < x->operands; j++)
2746 {
2747 fprintf (stdout, " #%d: ", j + 1);
2748 pt (x->types[j]);
2749 fprintf (stdout, "\n");
2750 if (x->types[j].bitfield.reg8
2751 || x->types[j].bitfield.reg16
2752 || x->types[j].bitfield.reg32
2753 || x->types[j].bitfield.reg64
2754 || x->types[j].bitfield.regmmx
2755 || x->types[j].bitfield.regxmm
2756 || x->types[j].bitfield.regymm
2757 || x->types[j].bitfield.regzmm
2758 || x->types[j].bitfield.sreg2
2759 || x->types[j].bitfield.sreg3
2760 || x->types[j].bitfield.control
2761 || x->types[j].bitfield.debug
2762 || x->types[j].bitfield.test)
2763 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2764 if (operand_type_check (x->types[j], imm))
2765 pe (x->op[j].imms);
2766 if (operand_type_check (x->types[j], disp))
2767 pe (x->op[j].disps);
2768 }
2769 }
2770
2771 static void
2772 pte (insn_template *t)
2773 {
2774 unsigned int j;
2775 fprintf (stdout, " %d operands ", t->operands);
2776 fprintf (stdout, "opcode %x ", t->base_opcode);
2777 if (t->extension_opcode != None)
2778 fprintf (stdout, "ext %x ", t->extension_opcode);
2779 if (t->opcode_modifier.d)
2780 fprintf (stdout, "D");
2781 if (t->opcode_modifier.w)
2782 fprintf (stdout, "W");
2783 fprintf (stdout, "\n");
2784 for (j = 0; j < t->operands; j++)
2785 {
2786 fprintf (stdout, " #%d type ", j + 1);
2787 pt (t->operand_types[j]);
2788 fprintf (stdout, "\n");
2789 }
2790 }
2791
2792 static void
2793 pe (expressionS *e)
2794 {
2795 fprintf (stdout, " operation %d\n", e->X_op);
2796 fprintf (stdout, " add_number %ld (%lx)\n",
2797 (long) e->X_add_number, (long) e->X_add_number);
2798 if (e->X_add_symbol)
2799 {
2800 fprintf (stdout, " add_symbol ");
2801 ps (e->X_add_symbol);
2802 fprintf (stdout, "\n");
2803 }
2804 if (e->X_op_symbol)
2805 {
2806 fprintf (stdout, " op_symbol ");
2807 ps (e->X_op_symbol);
2808 fprintf (stdout, "\n");
2809 }
2810 }
2811
2812 static void
2813 ps (symbolS *s)
2814 {
2815 fprintf (stdout, "%s type %s%s",
2816 S_GET_NAME (s),
2817 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2818 segment_name (S_GET_SEGMENT (s)));
2819 }
2820
2821 static struct type_name
2822 {
2823 i386_operand_type mask;
2824 const char *name;
2825 }
2826 const type_names[] =
2827 {
2828 { OPERAND_TYPE_REG8, "r8" },
2829 { OPERAND_TYPE_REG16, "r16" },
2830 { OPERAND_TYPE_REG32, "r32" },
2831 { OPERAND_TYPE_REG64, "r64" },
2832 { OPERAND_TYPE_IMM8, "i8" },
2833 { OPERAND_TYPE_IMM8, "i8s" },
2834 { OPERAND_TYPE_IMM16, "i16" },
2835 { OPERAND_TYPE_IMM32, "i32" },
2836 { OPERAND_TYPE_IMM32S, "i32s" },
2837 { OPERAND_TYPE_IMM64, "i64" },
2838 { OPERAND_TYPE_IMM1, "i1" },
2839 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2840 { OPERAND_TYPE_DISP8, "d8" },
2841 { OPERAND_TYPE_DISP16, "d16" },
2842 { OPERAND_TYPE_DISP32, "d32" },
2843 { OPERAND_TYPE_DISP32S, "d32s" },
2844 { OPERAND_TYPE_DISP64, "d64" },
2845 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
2846 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2847 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2848 { OPERAND_TYPE_CONTROL, "control reg" },
2849 { OPERAND_TYPE_TEST, "test reg" },
2850 { OPERAND_TYPE_DEBUG, "debug reg" },
2851 { OPERAND_TYPE_FLOATREG, "FReg" },
2852 { OPERAND_TYPE_FLOATACC, "FAcc" },
2853 { OPERAND_TYPE_SREG2, "SReg2" },
2854 { OPERAND_TYPE_SREG3, "SReg3" },
2855 { OPERAND_TYPE_ACC, "Acc" },
2856 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2857 { OPERAND_TYPE_REGMMX, "rMMX" },
2858 { OPERAND_TYPE_REGXMM, "rXMM" },
2859 { OPERAND_TYPE_REGYMM, "rYMM" },
2860 { OPERAND_TYPE_REGZMM, "rZMM" },
2861 { OPERAND_TYPE_REGMASK, "Mask reg" },
2862 { OPERAND_TYPE_ESSEG, "es" },
2863 };
2864
2865 static void
2866 pt (i386_operand_type t)
2867 {
2868 unsigned int j;
2869 i386_operand_type a;
2870
2871 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2872 {
2873 a = operand_type_and (t, type_names[j].mask);
2874 if (!operand_type_all_zero (&a))
2875 fprintf (stdout, "%s, ", type_names[j].name);
2876 }
2877 fflush (stdout);
2878 }
2879
2880 #endif /* DEBUG386 */
2881 \f
2882 static bfd_reloc_code_real_type
2883 reloc (unsigned int size,
2884 int pcrel,
2885 int sign,
2886 bfd_reloc_code_real_type other)
2887 {
2888 if (other != NO_RELOC)
2889 {
2890 reloc_howto_type *rel;
2891
2892 if (size == 8)
2893 switch (other)
2894 {
2895 case BFD_RELOC_X86_64_GOT32:
2896 return BFD_RELOC_X86_64_GOT64;
2897 break;
2898 case BFD_RELOC_X86_64_GOTPLT64:
2899 return BFD_RELOC_X86_64_GOTPLT64;
2900 break;
2901 case BFD_RELOC_X86_64_PLTOFF64:
2902 return BFD_RELOC_X86_64_PLTOFF64;
2903 break;
2904 case BFD_RELOC_X86_64_GOTPC32:
2905 other = BFD_RELOC_X86_64_GOTPC64;
2906 break;
2907 case BFD_RELOC_X86_64_GOTPCREL:
2908 other = BFD_RELOC_X86_64_GOTPCREL64;
2909 break;
2910 case BFD_RELOC_X86_64_TPOFF32:
2911 other = BFD_RELOC_X86_64_TPOFF64;
2912 break;
2913 case BFD_RELOC_X86_64_DTPOFF32:
2914 other = BFD_RELOC_X86_64_DTPOFF64;
2915 break;
2916 default:
2917 break;
2918 }
2919
2920 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2921 if (other == BFD_RELOC_SIZE32)
2922 {
2923 if (size == 8)
2924 other = BFD_RELOC_SIZE64;
2925 if (pcrel)
2926 {
2927 as_bad (_("there are no pc-relative size relocations"));
2928 return NO_RELOC;
2929 }
2930 }
2931 #endif
2932
2933 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2934 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
2935 sign = -1;
2936
2937 rel = bfd_reloc_type_lookup (stdoutput, other);
2938 if (!rel)
2939 as_bad (_("unknown relocation (%u)"), other);
2940 else if (size != bfd_get_reloc_size (rel))
2941 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2942 bfd_get_reloc_size (rel),
2943 size);
2944 else if (pcrel && !rel->pc_relative)
2945 as_bad (_("non-pc-relative relocation for pc-relative field"));
2946 else if ((rel->complain_on_overflow == complain_overflow_signed
2947 && !sign)
2948 || (rel->complain_on_overflow == complain_overflow_unsigned
2949 && sign > 0))
2950 as_bad (_("relocated field and relocation type differ in signedness"));
2951 else
2952 return other;
2953 return NO_RELOC;
2954 }
2955
2956 if (pcrel)
2957 {
2958 if (!sign)
2959 as_bad (_("there are no unsigned pc-relative relocations"));
2960 switch (size)
2961 {
2962 case 1: return BFD_RELOC_8_PCREL;
2963 case 2: return BFD_RELOC_16_PCREL;
2964 case 4: return BFD_RELOC_32_PCREL;
2965 case 8: return BFD_RELOC_64_PCREL;
2966 }
2967 as_bad (_("cannot do %u byte pc-relative relocation"), size);
2968 }
2969 else
2970 {
2971 if (sign > 0)
2972 switch (size)
2973 {
2974 case 4: return BFD_RELOC_X86_64_32S;
2975 }
2976 else
2977 switch (size)
2978 {
2979 case 1: return BFD_RELOC_8;
2980 case 2: return BFD_RELOC_16;
2981 case 4: return BFD_RELOC_32;
2982 case 8: return BFD_RELOC_64;
2983 }
2984 as_bad (_("cannot do %s %u byte relocation"),
2985 sign > 0 ? "signed" : "unsigned", size);
2986 }
2987
2988 return NO_RELOC;
2989 }
2990
2991 /* Here we decide which fixups can be adjusted to make them relative to
2992 the beginning of the section instead of the symbol. Basically we need
2993 to make sure that the dynamic relocations are done correctly, so in
2994 some cases we force the original symbol to be used. */
2995
2996 int
2997 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2998 {
2999 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3000 if (!IS_ELF)
3001 return 1;
3002
3003 /* Don't adjust pc-relative references to merge sections in 64-bit
3004 mode. */
3005 if (use_rela_relocations
3006 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3007 && fixP->fx_pcrel)
3008 return 0;
3009
3010 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3011 and changed later by validate_fix. */
3012 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3013 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3014 return 0;
3015
3016 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3017 for size relocations. */
3018 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3019 || fixP->fx_r_type == BFD_RELOC_SIZE64
3020 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3021 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3022 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3023 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3024 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3025 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3026 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3027 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3028 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3029 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3030 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3031 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3032 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3033 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3034 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3035 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3036 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3037 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3038 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3039 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3040 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3041 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3042 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3043 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3044 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3045 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3046 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3047 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3048 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3049 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3050 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3051 return 0;
3052 #endif
3053 return 1;
3054 }
3055
3056 static int
3057 intel_float_operand (const char *mnemonic)
3058 {
3059 /* Note that the value returned is meaningful only for opcodes with (memory)
3060 operands, hence the code here is free to improperly handle opcodes that
3061 have no operands (for better performance and smaller code). */
3062
3063 if (mnemonic[0] != 'f')
3064 return 0; /* non-math */
3065
3066 switch (mnemonic[1])
3067 {
3068 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3069 the fs segment override prefix not currently handled because no
3070 call path can make opcodes without operands get here */
3071 case 'i':
3072 return 2 /* integer op */;
3073 case 'l':
3074 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3075 return 3; /* fldcw/fldenv */
3076 break;
3077 case 'n':
3078 if (mnemonic[2] != 'o' /* fnop */)
3079 return 3; /* non-waiting control op */
3080 break;
3081 case 'r':
3082 if (mnemonic[2] == 's')
3083 return 3; /* frstor/frstpm */
3084 break;
3085 case 's':
3086 if (mnemonic[2] == 'a')
3087 return 3; /* fsave */
3088 if (mnemonic[2] == 't')
3089 {
3090 switch (mnemonic[3])
3091 {
3092 case 'c': /* fstcw */
3093 case 'd': /* fstdw */
3094 case 'e': /* fstenv */
3095 case 's': /* fsts[gw] */
3096 return 3;
3097 }
3098 }
3099 break;
3100 case 'x':
3101 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3102 return 0; /* fxsave/fxrstor are not really math ops */
3103 break;
3104 }
3105
3106 return 1;
3107 }
3108
3109 /* Build the VEX prefix. */
3110
3111 static void
3112 build_vex_prefix (const insn_template *t)
3113 {
3114 unsigned int register_specifier;
3115 unsigned int implied_prefix;
3116 unsigned int vector_length;
3117
3118 /* Check register specifier. */
3119 if (i.vex.register_specifier)
3120 {
3121 register_specifier =
3122 ~register_number (i.vex.register_specifier) & 0xf;
3123 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3124 }
3125 else
3126 register_specifier = 0xf;
3127
3128 /* Use 2-byte VEX prefix by swappping destination and source
3129 operand. */
3130 if (!i.swap_operand
3131 && i.operands == i.reg_operands
3132 && i.tm.opcode_modifier.vexopcode == VEX0F
3133 && i.tm.opcode_modifier.s
3134 && i.rex == REX_B)
3135 {
3136 unsigned int xchg = i.operands - 1;
3137 union i386_op temp_op;
3138 i386_operand_type temp_type;
3139
3140 temp_type = i.types[xchg];
3141 i.types[xchg] = i.types[0];
3142 i.types[0] = temp_type;
3143 temp_op = i.op[xchg];
3144 i.op[xchg] = i.op[0];
3145 i.op[0] = temp_op;
3146
3147 gas_assert (i.rm.mode == 3);
3148
3149 i.rex = REX_R;
3150 xchg = i.rm.regmem;
3151 i.rm.regmem = i.rm.reg;
3152 i.rm.reg = xchg;
3153
3154 /* Use the next insn. */
3155 i.tm = t[1];
3156 }
3157
3158 if (i.tm.opcode_modifier.vex == VEXScalar)
3159 vector_length = avxscalar;
3160 else
3161 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
3162
3163 switch ((i.tm.base_opcode >> 8) & 0xff)
3164 {
3165 case 0:
3166 implied_prefix = 0;
3167 break;
3168 case DATA_PREFIX_OPCODE:
3169 implied_prefix = 1;
3170 break;
3171 case REPE_PREFIX_OPCODE:
3172 implied_prefix = 2;
3173 break;
3174 case REPNE_PREFIX_OPCODE:
3175 implied_prefix = 3;
3176 break;
3177 default:
3178 abort ();
3179 }
3180
3181 /* Use 2-byte VEX prefix if possible. */
3182 if (i.tm.opcode_modifier.vexopcode == VEX0F
3183 && i.tm.opcode_modifier.vexw != VEXW1
3184 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3185 {
3186 /* 2-byte VEX prefix. */
3187 unsigned int r;
3188
3189 i.vex.length = 2;
3190 i.vex.bytes[0] = 0xc5;
3191
3192 /* Check the REX.R bit. */
3193 r = (i.rex & REX_R) ? 0 : 1;
3194 i.vex.bytes[1] = (r << 7
3195 | register_specifier << 3
3196 | vector_length << 2
3197 | implied_prefix);
3198 }
3199 else
3200 {
3201 /* 3-byte VEX prefix. */
3202 unsigned int m, w;
3203
3204 i.vex.length = 3;
3205
3206 switch (i.tm.opcode_modifier.vexopcode)
3207 {
3208 case VEX0F:
3209 m = 0x1;
3210 i.vex.bytes[0] = 0xc4;
3211 break;
3212 case VEX0F38:
3213 m = 0x2;
3214 i.vex.bytes[0] = 0xc4;
3215 break;
3216 case VEX0F3A:
3217 m = 0x3;
3218 i.vex.bytes[0] = 0xc4;
3219 break;
3220 case XOP08:
3221 m = 0x8;
3222 i.vex.bytes[0] = 0x8f;
3223 break;
3224 case XOP09:
3225 m = 0x9;
3226 i.vex.bytes[0] = 0x8f;
3227 break;
3228 case XOP0A:
3229 m = 0xa;
3230 i.vex.bytes[0] = 0x8f;
3231 break;
3232 default:
3233 abort ();
3234 }
3235
3236 /* The high 3 bits of the second VEX byte are 1's compliment
3237 of RXB bits from REX. */
3238 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3239
3240 /* Check the REX.W bit. */
3241 w = (i.rex & REX_W) ? 1 : 0;
3242 if (i.tm.opcode_modifier.vexw == VEXW1)
3243 w = 1;
3244
3245 i.vex.bytes[2] = (w << 7
3246 | register_specifier << 3
3247 | vector_length << 2
3248 | implied_prefix);
3249 }
3250 }
3251
3252 /* Build the EVEX prefix. */
3253
3254 static void
3255 build_evex_prefix (void)
3256 {
3257 unsigned int register_specifier;
3258 unsigned int implied_prefix;
3259 unsigned int m, w;
3260 rex_byte vrex_used = 0;
3261
3262 /* Check register specifier. */
3263 if (i.vex.register_specifier)
3264 {
3265 gas_assert ((i.vrex & REX_X) == 0);
3266
3267 register_specifier = i.vex.register_specifier->reg_num;
3268 if ((i.vex.register_specifier->reg_flags & RegRex))
3269 register_specifier += 8;
3270 /* The upper 16 registers are encoded in the fourth byte of the
3271 EVEX prefix. */
3272 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3273 i.vex.bytes[3] = 0x8;
3274 register_specifier = ~register_specifier & 0xf;
3275 }
3276 else
3277 {
3278 register_specifier = 0xf;
3279
3280 /* Encode upper 16 vector index register in the fourth byte of
3281 the EVEX prefix. */
3282 if (!(i.vrex & REX_X))
3283 i.vex.bytes[3] = 0x8;
3284 else
3285 vrex_used |= REX_X;
3286 }
3287
3288 switch ((i.tm.base_opcode >> 8) & 0xff)
3289 {
3290 case 0:
3291 implied_prefix = 0;
3292 break;
3293 case DATA_PREFIX_OPCODE:
3294 implied_prefix = 1;
3295 break;
3296 case REPE_PREFIX_OPCODE:
3297 implied_prefix = 2;
3298 break;
3299 case REPNE_PREFIX_OPCODE:
3300 implied_prefix = 3;
3301 break;
3302 default:
3303 abort ();
3304 }
3305
3306 /* 4 byte EVEX prefix. */
3307 i.vex.length = 4;
3308 i.vex.bytes[0] = 0x62;
3309
3310 /* mmmm bits. */
3311 switch (i.tm.opcode_modifier.vexopcode)
3312 {
3313 case VEX0F:
3314 m = 1;
3315 break;
3316 case VEX0F38:
3317 m = 2;
3318 break;
3319 case VEX0F3A:
3320 m = 3;
3321 break;
3322 default:
3323 abort ();
3324 break;
3325 }
3326
3327 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3328 bits from REX. */
3329 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3330
3331 /* The fifth bit of the second EVEX byte is 1's compliment of the
3332 REX_R bit in VREX. */
3333 if (!(i.vrex & REX_R))
3334 i.vex.bytes[1] |= 0x10;
3335 else
3336 vrex_used |= REX_R;
3337
3338 if ((i.reg_operands + i.imm_operands) == i.operands)
3339 {
3340 /* When all operands are registers, the REX_X bit in REX is not
3341 used. We reuse it to encode the upper 16 registers, which is
3342 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3343 as 1's compliment. */
3344 if ((i.vrex & REX_B))
3345 {
3346 vrex_used |= REX_B;
3347 i.vex.bytes[1] &= ~0x40;
3348 }
3349 }
3350
3351 /* EVEX instructions shouldn't need the REX prefix. */
3352 i.vrex &= ~vrex_used;
3353 gas_assert (i.vrex == 0);
3354
3355 /* Check the REX.W bit. */
3356 w = (i.rex & REX_W) ? 1 : 0;
3357 if (i.tm.opcode_modifier.vexw)
3358 {
3359 if (i.tm.opcode_modifier.vexw == VEXW1)
3360 w = 1;
3361 }
3362 /* If w is not set it means we are dealing with WIG instruction. */
3363 else if (!w)
3364 {
3365 if (evexwig == evexw1)
3366 w = 1;
3367 }
3368
3369 /* Encode the U bit. */
3370 implied_prefix |= 0x4;
3371
3372 /* The third byte of the EVEX prefix. */
3373 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3374
3375 /* The fourth byte of the EVEX prefix. */
3376 /* The zeroing-masking bit. */
3377 if (i.mask && i.mask->zeroing)
3378 i.vex.bytes[3] |= 0x80;
3379
3380 /* Don't always set the broadcast bit if there is no RC. */
3381 if (!i.rounding)
3382 {
3383 /* Encode the vector length. */
3384 unsigned int vec_length;
3385
3386 switch (i.tm.opcode_modifier.evex)
3387 {
3388 case EVEXLIG: /* LL' is ignored */
3389 vec_length = evexlig << 5;
3390 break;
3391 case EVEX128:
3392 vec_length = 0 << 5;
3393 break;
3394 case EVEX256:
3395 vec_length = 1 << 5;
3396 break;
3397 case EVEX512:
3398 vec_length = 2 << 5;
3399 break;
3400 default:
3401 abort ();
3402 break;
3403 }
3404 i.vex.bytes[3] |= vec_length;
3405 /* Encode the broadcast bit. */
3406 if (i.broadcast)
3407 i.vex.bytes[3] |= 0x10;
3408 }
3409 else
3410 {
3411 if (i.rounding->type != saeonly)
3412 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3413 else
3414 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3415 }
3416
3417 if (i.mask && i.mask->mask)
3418 i.vex.bytes[3] |= i.mask->mask->reg_num;
3419 }
3420
3421 static void
3422 process_immext (void)
3423 {
3424 expressionS *exp;
3425
3426 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3427 && i.operands > 0)
3428 {
3429 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3430 with an opcode suffix which is coded in the same place as an
3431 8-bit immediate field would be.
3432 Here we check those operands and remove them afterwards. */
3433 unsigned int x;
3434
3435 for (x = 0; x < i.operands; x++)
3436 if (register_number (i.op[x].regs) != x)
3437 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3438 register_prefix, i.op[x].regs->reg_name, x + 1,
3439 i.tm.name);
3440
3441 i.operands = 0;
3442 }
3443
3444 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3445 {
3446 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3447 suffix which is coded in the same place as an 8-bit immediate
3448 field would be.
3449 Here we check those operands and remove them afterwards. */
3450 unsigned int x;
3451
3452 if (i.operands != 3)
3453 abort();
3454
3455 for (x = 0; x < 2; x++)
3456 if (register_number (i.op[x].regs) != x)
3457 goto bad_register_operand;
3458
3459 /* Check for third operand for mwaitx/monitorx insn. */
3460 if (register_number (i.op[x].regs)
3461 != (x + (i.tm.extension_opcode == 0xfb)))
3462 {
3463 bad_register_operand:
3464 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3465 register_prefix, i.op[x].regs->reg_name, x+1,
3466 i.tm.name);
3467 }
3468
3469 i.operands = 0;
3470 }
3471
3472 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3473 which is coded in the same place as an 8-bit immediate field
3474 would be. Here we fake an 8-bit immediate operand from the
3475 opcode suffix stored in tm.extension_opcode.
3476
3477 AVX instructions also use this encoding, for some of
3478 3 argument instructions. */
3479
3480 gas_assert (i.imm_operands <= 1
3481 && (i.operands <= 2
3482 || ((i.tm.opcode_modifier.vex
3483 || i.tm.opcode_modifier.evex)
3484 && i.operands <= 4)));
3485
3486 exp = &im_expressions[i.imm_operands++];
3487 i.op[i.operands].imms = exp;
3488 i.types[i.operands] = imm8;
3489 i.operands++;
3490 exp->X_op = O_constant;
3491 exp->X_add_number = i.tm.extension_opcode;
3492 i.tm.extension_opcode = None;
3493 }
3494
3495
3496 static int
3497 check_hle (void)
3498 {
3499 switch (i.tm.opcode_modifier.hleprefixok)
3500 {
3501 default:
3502 abort ();
3503 case HLEPrefixNone:
3504 as_bad (_("invalid instruction `%s' after `%s'"),
3505 i.tm.name, i.hle_prefix);
3506 return 0;
3507 case HLEPrefixLock:
3508 if (i.prefix[LOCK_PREFIX])
3509 return 1;
3510 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3511 return 0;
3512 case HLEPrefixAny:
3513 return 1;
3514 case HLEPrefixRelease:
3515 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3516 {
3517 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3518 i.tm.name);
3519 return 0;
3520 }
3521 if (i.mem_operands == 0
3522 || !operand_type_check (i.types[i.operands - 1], anymem))
3523 {
3524 as_bad (_("memory destination needed for instruction `%s'"
3525 " after `xrelease'"), i.tm.name);
3526 return 0;
3527 }
3528 return 1;
3529 }
3530 }
3531
3532 /* This is the guts of the machine-dependent assembler. LINE points to a
3533 machine dependent instruction. This function is supposed to emit
3534 the frags/bytes it assembles to. */
3535
3536 void
3537 md_assemble (char *line)
3538 {
3539 unsigned int j;
3540 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
3541 const insn_template *t;
3542
3543 /* Initialize globals. */
3544 memset (&i, '\0', sizeof (i));
3545 for (j = 0; j < MAX_OPERANDS; j++)
3546 i.reloc[j] = NO_RELOC;
3547 memset (disp_expressions, '\0', sizeof (disp_expressions));
3548 memset (im_expressions, '\0', sizeof (im_expressions));
3549 save_stack_p = save_stack;
3550
3551 /* First parse an instruction mnemonic & call i386_operand for the operands.
3552 We assume that the scrubber has arranged it so that line[0] is the valid
3553 start of a (possibly prefixed) mnemonic. */
3554
3555 line = parse_insn (line, mnemonic);
3556 if (line == NULL)
3557 return;
3558 mnem_suffix = i.suffix;
3559
3560 line = parse_operands (line, mnemonic);
3561 this_operand = -1;
3562 xfree (i.memop1_string);
3563 i.memop1_string = NULL;
3564 if (line == NULL)
3565 return;
3566
3567 /* Now we've parsed the mnemonic into a set of templates, and have the
3568 operands at hand. */
3569
3570 /* All intel opcodes have reversed operands except for "bound" and
3571 "enter". We also don't reverse intersegment "jmp" and "call"
3572 instructions with 2 immediate operands so that the immediate segment
3573 precedes the offset, as it does when in AT&T mode. */
3574 if (intel_syntax
3575 && i.operands > 1
3576 && (strcmp (mnemonic, "bound") != 0)
3577 && (strcmp (mnemonic, "invlpga") != 0)
3578 && !(operand_type_check (i.types[0], imm)
3579 && operand_type_check (i.types[1], imm)))
3580 swap_operands ();
3581
3582 /* The order of the immediates should be reversed
3583 for 2 immediates extrq and insertq instructions */
3584 if (i.imm_operands == 2
3585 && (strcmp (mnemonic, "extrq") == 0
3586 || strcmp (mnemonic, "insertq") == 0))
3587 swap_2_operands (0, 1);
3588
3589 if (i.imm_operands)
3590 optimize_imm ();
3591
3592 /* Don't optimize displacement for movabs since it only takes 64bit
3593 displacement. */
3594 if (i.disp_operands
3595 && i.disp_encoding != disp_encoding_32bit
3596 && (flag_code != CODE_64BIT
3597 || strcmp (mnemonic, "movabs") != 0))
3598 optimize_disp ();
3599
3600 /* Next, we find a template that matches the given insn,
3601 making sure the overlap of the given operands types is consistent
3602 with the template operand types. */
3603
3604 if (!(t = match_template (mnem_suffix)))
3605 return;
3606
3607 if (sse_check != check_none
3608 && !i.tm.opcode_modifier.noavx
3609 && (i.tm.cpu_flags.bitfield.cpusse
3610 || i.tm.cpu_flags.bitfield.cpusse2
3611 || i.tm.cpu_flags.bitfield.cpusse3
3612 || i.tm.cpu_flags.bitfield.cpussse3
3613 || i.tm.cpu_flags.bitfield.cpusse4_1
3614 || i.tm.cpu_flags.bitfield.cpusse4_2))
3615 {
3616 (sse_check == check_warning
3617 ? as_warn
3618 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3619 }
3620
3621 /* Zap movzx and movsx suffix. The suffix has been set from
3622 "word ptr" or "byte ptr" on the source operand in Intel syntax
3623 or extracted from mnemonic in AT&T syntax. But we'll use
3624 the destination register to choose the suffix for encoding. */
3625 if ((i.tm.base_opcode & ~9) == 0x0fb6)
3626 {
3627 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3628 there is no suffix, the default will be byte extension. */
3629 if (i.reg_operands != 2
3630 && !i.suffix
3631 && intel_syntax)
3632 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3633
3634 i.suffix = 0;
3635 }
3636
3637 if (i.tm.opcode_modifier.fwait)
3638 if (!add_prefix (FWAIT_OPCODE))
3639 return;
3640
3641 /* Check if REP prefix is OK. */
3642 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3643 {
3644 as_bad (_("invalid instruction `%s' after `%s'"),
3645 i.tm.name, i.rep_prefix);
3646 return;
3647 }
3648
3649 /* Check for lock without a lockable instruction. Destination operand
3650 must be memory unless it is xchg (0x86). */
3651 if (i.prefix[LOCK_PREFIX]
3652 && (!i.tm.opcode_modifier.islockable
3653 || i.mem_operands == 0
3654 || (i.tm.base_opcode != 0x86
3655 && !operand_type_check (i.types[i.operands - 1], anymem))))
3656 {
3657 as_bad (_("expecting lockable instruction after `lock'"));
3658 return;
3659 }
3660
3661 /* Check if HLE prefix is OK. */
3662 if (i.hle_prefix && !check_hle ())
3663 return;
3664
3665 /* Check BND prefix. */
3666 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3667 as_bad (_("expecting valid branch instruction after `bnd'"));
3668
3669 if (i.tm.cpu_flags.bitfield.cpumpx)
3670 {
3671 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
3672 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3673 else if (flag_code != CODE_16BIT
3674 ? i.prefix[ADDR_PREFIX]
3675 : i.mem_operands && !i.prefix[ADDR_PREFIX])
3676 as_bad (_("16-bit address isn't allowed in MPX instructions"));
3677 }
3678
3679 /* Insert BND prefix. */
3680 if (add_bnd_prefix
3681 && i.tm.opcode_modifier.bndprefixok
3682 && !i.prefix[BND_PREFIX])
3683 add_prefix (BND_PREFIX_OPCODE);
3684
3685 /* Check string instruction segment overrides. */
3686 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3687 {
3688 if (!check_string ())
3689 return;
3690 i.disp_operands = 0;
3691 }
3692
3693 if (!process_suffix ())
3694 return;
3695
3696 /* Update operand types. */
3697 for (j = 0; j < i.operands; j++)
3698 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3699
3700 /* Make still unresolved immediate matches conform to size of immediate
3701 given in i.suffix. */
3702 if (!finalize_imm ())
3703 return;
3704
3705 if (i.types[0].bitfield.imm1)
3706 i.imm_operands = 0; /* kludge for shift insns. */
3707
3708 /* We only need to check those implicit registers for instructions
3709 with 3 operands or less. */
3710 if (i.operands <= 3)
3711 for (j = 0; j < i.operands; j++)
3712 if (i.types[j].bitfield.inoutportreg
3713 || i.types[j].bitfield.shiftcount
3714 || i.types[j].bitfield.acc
3715 || i.types[j].bitfield.floatacc)
3716 i.reg_operands--;
3717
3718 /* ImmExt should be processed after SSE2AVX. */
3719 if (!i.tm.opcode_modifier.sse2avx
3720 && i.tm.opcode_modifier.immext)
3721 process_immext ();
3722
3723 /* For insns with operands there are more diddles to do to the opcode. */
3724 if (i.operands)
3725 {
3726 if (!process_operands ())
3727 return;
3728 }
3729 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3730 {
3731 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3732 as_warn (_("translating to `%sp'"), i.tm.name);
3733 }
3734
3735 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3736 {
3737 if (flag_code == CODE_16BIT)
3738 {
3739 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3740 i.tm.name);
3741 return;
3742 }
3743
3744 if (i.tm.opcode_modifier.vex)
3745 build_vex_prefix (t);
3746 else
3747 build_evex_prefix ();
3748 }
3749
3750 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3751 instructions may define INT_OPCODE as well, so avoid this corner
3752 case for those instructions that use MODRM. */
3753 if (i.tm.base_opcode == INT_OPCODE
3754 && !i.tm.opcode_modifier.modrm
3755 && i.op[0].imms->X_add_number == 3)
3756 {
3757 i.tm.base_opcode = INT3_OPCODE;
3758 i.imm_operands = 0;
3759 }
3760
3761 if ((i.tm.opcode_modifier.jump
3762 || i.tm.opcode_modifier.jumpbyte
3763 || i.tm.opcode_modifier.jumpdword)
3764 && i.op[0].disps->X_op == O_constant)
3765 {
3766 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3767 the absolute address given by the constant. Since ix86 jumps and
3768 calls are pc relative, we need to generate a reloc. */
3769 i.op[0].disps->X_add_symbol = &abs_symbol;
3770 i.op[0].disps->X_op = O_symbol;
3771 }
3772
3773 if (i.tm.opcode_modifier.rex64)
3774 i.rex |= REX_W;
3775
3776 /* For 8 bit registers we need an empty rex prefix. Also if the
3777 instruction already has a prefix, we need to convert old
3778 registers to new ones. */
3779
3780 if ((i.types[0].bitfield.reg8
3781 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3782 || (i.types[1].bitfield.reg8
3783 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3784 || ((i.types[0].bitfield.reg8
3785 || i.types[1].bitfield.reg8)
3786 && i.rex != 0))
3787 {
3788 int x;
3789
3790 i.rex |= REX_OPCODE;
3791 for (x = 0; x < 2; x++)
3792 {
3793 /* Look for 8 bit operand that uses old registers. */
3794 if (i.types[x].bitfield.reg8
3795 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3796 {
3797 /* In case it is "hi" register, give up. */
3798 if (i.op[x].regs->reg_num > 3)
3799 as_bad (_("can't encode register '%s%s' in an "
3800 "instruction requiring REX prefix."),
3801 register_prefix, i.op[x].regs->reg_name);
3802
3803 /* Otherwise it is equivalent to the extended register.
3804 Since the encoding doesn't change this is merely
3805 cosmetic cleanup for debug output. */
3806
3807 i.op[x].regs = i.op[x].regs + 8;
3808 }
3809 }
3810 }
3811
3812 if (i.rex != 0)
3813 add_prefix (REX_OPCODE | i.rex);
3814
3815 /* We are ready to output the insn. */
3816 output_insn ();
3817 }
3818
3819 static char *
3820 parse_insn (char *line, char *mnemonic)
3821 {
3822 char *l = line;
3823 char *token_start = l;
3824 char *mnem_p;
3825 int supported;
3826 const insn_template *t;
3827 char *dot_p = NULL;
3828
3829 while (1)
3830 {
3831 mnem_p = mnemonic;
3832 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3833 {
3834 if (*mnem_p == '.')
3835 dot_p = mnem_p;
3836 mnem_p++;
3837 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3838 {
3839 as_bad (_("no such instruction: `%s'"), token_start);
3840 return NULL;
3841 }
3842 l++;
3843 }
3844 if (!is_space_char (*l)
3845 && *l != END_OF_INSN
3846 && (intel_syntax
3847 || (*l != PREFIX_SEPARATOR
3848 && *l != ',')))
3849 {
3850 as_bad (_("invalid character %s in mnemonic"),
3851 output_invalid (*l));
3852 return NULL;
3853 }
3854 if (token_start == l)
3855 {
3856 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3857 as_bad (_("expecting prefix; got nothing"));
3858 else
3859 as_bad (_("expecting mnemonic; got nothing"));
3860 return NULL;
3861 }
3862
3863 /* Look up instruction (or prefix) via hash table. */
3864 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3865
3866 if (*l != END_OF_INSN
3867 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3868 && current_templates
3869 && current_templates->start->opcode_modifier.isprefix)
3870 {
3871 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3872 {
3873 as_bad ((flag_code != CODE_64BIT
3874 ? _("`%s' is only supported in 64-bit mode")
3875 : _("`%s' is not supported in 64-bit mode")),
3876 current_templates->start->name);
3877 return NULL;
3878 }
3879 /* If we are in 16-bit mode, do not allow addr16 or data16.
3880 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3881 if ((current_templates->start->opcode_modifier.size16
3882 || current_templates->start->opcode_modifier.size32)
3883 && flag_code != CODE_64BIT
3884 && (current_templates->start->opcode_modifier.size32
3885 ^ (flag_code == CODE_16BIT)))
3886 {
3887 as_bad (_("redundant %s prefix"),
3888 current_templates->start->name);
3889 return NULL;
3890 }
3891 /* Add prefix, checking for repeated prefixes. */
3892 switch (add_prefix (current_templates->start->base_opcode))
3893 {
3894 case PREFIX_EXIST:
3895 return NULL;
3896 case PREFIX_REP:
3897 if (current_templates->start->cpu_flags.bitfield.cpuhle)
3898 i.hle_prefix = current_templates->start->name;
3899 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
3900 i.bnd_prefix = current_templates->start->name;
3901 else
3902 i.rep_prefix = current_templates->start->name;
3903 break;
3904 default:
3905 break;
3906 }
3907 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3908 token_start = ++l;
3909 }
3910 else
3911 break;
3912 }
3913
3914 if (!current_templates)
3915 {
3916 /* Check if we should swap operand or force 32bit displacement in
3917 encoding. */
3918 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3919 i.swap_operand = 1;
3920 else if (mnem_p - 3 == dot_p
3921 && dot_p[1] == 'd'
3922 && dot_p[2] == '8')
3923 i.disp_encoding = disp_encoding_8bit;
3924 else if (mnem_p - 4 == dot_p
3925 && dot_p[1] == 'd'
3926 && dot_p[2] == '3'
3927 && dot_p[3] == '2')
3928 i.disp_encoding = disp_encoding_32bit;
3929 else
3930 goto check_suffix;
3931 mnem_p = dot_p;
3932 *dot_p = '\0';
3933 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3934 }
3935
3936 if (!current_templates)
3937 {
3938 check_suffix:
3939 /* See if we can get a match by trimming off a suffix. */
3940 switch (mnem_p[-1])
3941 {
3942 case WORD_MNEM_SUFFIX:
3943 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3944 i.suffix = SHORT_MNEM_SUFFIX;
3945 else
3946 case BYTE_MNEM_SUFFIX:
3947 case QWORD_MNEM_SUFFIX:
3948 i.suffix = mnem_p[-1];
3949 mnem_p[-1] = '\0';
3950 current_templates = (const templates *) hash_find (op_hash,
3951 mnemonic);
3952 break;
3953 case SHORT_MNEM_SUFFIX:
3954 case LONG_MNEM_SUFFIX:
3955 if (!intel_syntax)
3956 {
3957 i.suffix = mnem_p[-1];
3958 mnem_p[-1] = '\0';
3959 current_templates = (const templates *) hash_find (op_hash,
3960 mnemonic);
3961 }
3962 break;
3963
3964 /* Intel Syntax. */
3965 case 'd':
3966 if (intel_syntax)
3967 {
3968 if (intel_float_operand (mnemonic) == 1)
3969 i.suffix = SHORT_MNEM_SUFFIX;
3970 else
3971 i.suffix = LONG_MNEM_SUFFIX;
3972 mnem_p[-1] = '\0';
3973 current_templates = (const templates *) hash_find (op_hash,
3974 mnemonic);
3975 }
3976 break;
3977 }
3978 if (!current_templates)
3979 {
3980 as_bad (_("no such instruction: `%s'"), token_start);
3981 return NULL;
3982 }
3983 }
3984
3985 if (current_templates->start->opcode_modifier.jump
3986 || current_templates->start->opcode_modifier.jumpbyte)
3987 {
3988 /* Check for a branch hint. We allow ",pt" and ",pn" for
3989 predict taken and predict not taken respectively.
3990 I'm not sure that branch hints actually do anything on loop
3991 and jcxz insns (JumpByte) for current Pentium4 chips. They
3992 may work in the future and it doesn't hurt to accept them
3993 now. */
3994 if (l[0] == ',' && l[1] == 'p')
3995 {
3996 if (l[2] == 't')
3997 {
3998 if (!add_prefix (DS_PREFIX_OPCODE))
3999 return NULL;
4000 l += 3;
4001 }
4002 else if (l[2] == 'n')
4003 {
4004 if (!add_prefix (CS_PREFIX_OPCODE))
4005 return NULL;
4006 l += 3;
4007 }
4008 }
4009 }
4010 /* Any other comma loses. */
4011 if (*l == ',')
4012 {
4013 as_bad (_("invalid character %s in mnemonic"),
4014 output_invalid (*l));
4015 return NULL;
4016 }
4017
4018 /* Check if instruction is supported on specified architecture. */
4019 supported = 0;
4020 for (t = current_templates->start; t < current_templates->end; ++t)
4021 {
4022 supported |= cpu_flags_match (t);
4023 if (supported == CPU_FLAGS_PERFECT_MATCH)
4024 goto skip;
4025 }
4026
4027 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4028 {
4029 as_bad (flag_code == CODE_64BIT
4030 ? _("`%s' is not supported in 64-bit mode")
4031 : _("`%s' is only supported in 64-bit mode"),
4032 current_templates->start->name);
4033 return NULL;
4034 }
4035 if (supported != CPU_FLAGS_PERFECT_MATCH)
4036 {
4037 as_bad (_("`%s' is not supported on `%s%s'"),
4038 current_templates->start->name,
4039 cpu_arch_name ? cpu_arch_name : default_arch,
4040 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4041 return NULL;
4042 }
4043
4044 skip:
4045 if (!cpu_arch_flags.bitfield.cpui386
4046 && (flag_code != CODE_16BIT))
4047 {
4048 as_warn (_("use .code16 to ensure correct addressing mode"));
4049 }
4050
4051 return l;
4052 }
4053
4054 static char *
4055 parse_operands (char *l, const char *mnemonic)
4056 {
4057 char *token_start;
4058
4059 /* 1 if operand is pending after ','. */
4060 unsigned int expecting_operand = 0;
4061
4062 /* Non-zero if operand parens not balanced. */
4063 unsigned int paren_not_balanced;
4064
4065 while (*l != END_OF_INSN)
4066 {
4067 /* Skip optional white space before operand. */
4068 if (is_space_char (*l))
4069 ++l;
4070 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4071 {
4072 as_bad (_("invalid character %s before operand %d"),
4073 output_invalid (*l),
4074 i.operands + 1);
4075 return NULL;
4076 }
4077 token_start = l; /* After white space. */
4078 paren_not_balanced = 0;
4079 while (paren_not_balanced || *l != ',')
4080 {
4081 if (*l == END_OF_INSN)
4082 {
4083 if (paren_not_balanced)
4084 {
4085 if (!intel_syntax)
4086 as_bad (_("unbalanced parenthesis in operand %d."),
4087 i.operands + 1);
4088 else
4089 as_bad (_("unbalanced brackets in operand %d."),
4090 i.operands + 1);
4091 return NULL;
4092 }
4093 else
4094 break; /* we are done */
4095 }
4096 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4097 {
4098 as_bad (_("invalid character %s in operand %d"),
4099 output_invalid (*l),
4100 i.operands + 1);
4101 return NULL;
4102 }
4103 if (!intel_syntax)
4104 {
4105 if (*l == '(')
4106 ++paren_not_balanced;
4107 if (*l == ')')
4108 --paren_not_balanced;
4109 }
4110 else
4111 {
4112 if (*l == '[')
4113 ++paren_not_balanced;
4114 if (*l == ']')
4115 --paren_not_balanced;
4116 }
4117 l++;
4118 }
4119 if (l != token_start)
4120 { /* Yes, we've read in another operand. */
4121 unsigned int operand_ok;
4122 this_operand = i.operands++;
4123 i.types[this_operand].bitfield.unspecified = 1;
4124 if (i.operands > MAX_OPERANDS)
4125 {
4126 as_bad (_("spurious operands; (%d operands/instruction max)"),
4127 MAX_OPERANDS);
4128 return NULL;
4129 }
4130 /* Now parse operand adding info to 'i' as we go along. */
4131 END_STRING_AND_SAVE (l);
4132
4133 if (intel_syntax)
4134 operand_ok =
4135 i386_intel_operand (token_start,
4136 intel_float_operand (mnemonic));
4137 else
4138 operand_ok = i386_att_operand (token_start);
4139
4140 RESTORE_END_STRING (l);
4141 if (!operand_ok)
4142 return NULL;
4143 }
4144 else
4145 {
4146 if (expecting_operand)
4147 {
4148 expecting_operand_after_comma:
4149 as_bad (_("expecting operand after ','; got nothing"));
4150 return NULL;
4151 }
4152 if (*l == ',')
4153 {
4154 as_bad (_("expecting operand before ','; got nothing"));
4155 return NULL;
4156 }
4157 }
4158
4159 /* Now *l must be either ',' or END_OF_INSN. */
4160 if (*l == ',')
4161 {
4162 if (*++l == END_OF_INSN)
4163 {
4164 /* Just skip it, if it's \n complain. */
4165 goto expecting_operand_after_comma;
4166 }
4167 expecting_operand = 1;
4168 }
4169 }
4170 return l;
4171 }
4172
4173 static void
4174 swap_2_operands (int xchg1, int xchg2)
4175 {
4176 union i386_op temp_op;
4177 i386_operand_type temp_type;
4178 enum bfd_reloc_code_real temp_reloc;
4179
4180 temp_type = i.types[xchg2];
4181 i.types[xchg2] = i.types[xchg1];
4182 i.types[xchg1] = temp_type;
4183 temp_op = i.op[xchg2];
4184 i.op[xchg2] = i.op[xchg1];
4185 i.op[xchg1] = temp_op;
4186 temp_reloc = i.reloc[xchg2];
4187 i.reloc[xchg2] = i.reloc[xchg1];
4188 i.reloc[xchg1] = temp_reloc;
4189
4190 if (i.mask)
4191 {
4192 if (i.mask->operand == xchg1)
4193 i.mask->operand = xchg2;
4194 else if (i.mask->operand == xchg2)
4195 i.mask->operand = xchg1;
4196 }
4197 if (i.broadcast)
4198 {
4199 if (i.broadcast->operand == xchg1)
4200 i.broadcast->operand = xchg2;
4201 else if (i.broadcast->operand == xchg2)
4202 i.broadcast->operand = xchg1;
4203 }
4204 if (i.rounding)
4205 {
4206 if (i.rounding->operand == xchg1)
4207 i.rounding->operand = xchg2;
4208 else if (i.rounding->operand == xchg2)
4209 i.rounding->operand = xchg1;
4210 }
4211 }
4212
4213 static void
4214 swap_operands (void)
4215 {
4216 switch (i.operands)
4217 {
4218 case 5:
4219 case 4:
4220 swap_2_operands (1, i.operands - 2);
4221 case 3:
4222 case 2:
4223 swap_2_operands (0, i.operands - 1);
4224 break;
4225 default:
4226 abort ();
4227 }
4228
4229 if (i.mem_operands == 2)
4230 {
4231 const seg_entry *temp_seg;
4232 temp_seg = i.seg[0];
4233 i.seg[0] = i.seg[1];
4234 i.seg[1] = temp_seg;
4235 }
4236 }
4237
4238 /* Try to ensure constant immediates are represented in the smallest
4239 opcode possible. */
4240 static void
4241 optimize_imm (void)
4242 {
4243 char guess_suffix = 0;
4244 int op;
4245
4246 if (i.suffix)
4247 guess_suffix = i.suffix;
4248 else if (i.reg_operands)
4249 {
4250 /* Figure out a suffix from the last register operand specified.
4251 We can't do this properly yet, ie. excluding InOutPortReg,
4252 but the following works for instructions with immediates.
4253 In any case, we can't set i.suffix yet. */
4254 for (op = i.operands; --op >= 0;)
4255 if (i.types[op].bitfield.reg8)
4256 {
4257 guess_suffix = BYTE_MNEM_SUFFIX;
4258 break;
4259 }
4260 else if (i.types[op].bitfield.reg16)
4261 {
4262 guess_suffix = WORD_MNEM_SUFFIX;
4263 break;
4264 }
4265 else if (i.types[op].bitfield.reg32)
4266 {
4267 guess_suffix = LONG_MNEM_SUFFIX;
4268 break;
4269 }
4270 else if (i.types[op].bitfield.reg64)
4271 {
4272 guess_suffix = QWORD_MNEM_SUFFIX;
4273 break;
4274 }
4275 }
4276 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4277 guess_suffix = WORD_MNEM_SUFFIX;
4278
4279 for (op = i.operands; --op >= 0;)
4280 if (operand_type_check (i.types[op], imm))
4281 {
4282 switch (i.op[op].imms->X_op)
4283 {
4284 case O_constant:
4285 /* If a suffix is given, this operand may be shortened. */
4286 switch (guess_suffix)
4287 {
4288 case LONG_MNEM_SUFFIX:
4289 i.types[op].bitfield.imm32 = 1;
4290 i.types[op].bitfield.imm64 = 1;
4291 break;
4292 case WORD_MNEM_SUFFIX:
4293 i.types[op].bitfield.imm16 = 1;
4294 i.types[op].bitfield.imm32 = 1;
4295 i.types[op].bitfield.imm32s = 1;
4296 i.types[op].bitfield.imm64 = 1;
4297 break;
4298 case BYTE_MNEM_SUFFIX:
4299 i.types[op].bitfield.imm8 = 1;
4300 i.types[op].bitfield.imm8s = 1;
4301 i.types[op].bitfield.imm16 = 1;
4302 i.types[op].bitfield.imm32 = 1;
4303 i.types[op].bitfield.imm32s = 1;
4304 i.types[op].bitfield.imm64 = 1;
4305 break;
4306 }
4307
4308 /* If this operand is at most 16 bits, convert it
4309 to a signed 16 bit number before trying to see
4310 whether it will fit in an even smaller size.
4311 This allows a 16-bit operand such as $0xffe0 to
4312 be recognised as within Imm8S range. */
4313 if ((i.types[op].bitfield.imm16)
4314 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4315 {
4316 i.op[op].imms->X_add_number =
4317 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4318 }
4319 #ifdef BFD64
4320 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4321 if ((i.types[op].bitfield.imm32)
4322 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4323 == 0))
4324 {
4325 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4326 ^ ((offsetT) 1 << 31))
4327 - ((offsetT) 1 << 31));
4328 }
4329 #endif
4330 i.types[op]
4331 = operand_type_or (i.types[op],
4332 smallest_imm_type (i.op[op].imms->X_add_number));
4333
4334 /* We must avoid matching of Imm32 templates when 64bit
4335 only immediate is available. */
4336 if (guess_suffix == QWORD_MNEM_SUFFIX)
4337 i.types[op].bitfield.imm32 = 0;
4338 break;
4339
4340 case O_absent:
4341 case O_register:
4342 abort ();
4343
4344 /* Symbols and expressions. */
4345 default:
4346 /* Convert symbolic operand to proper sizes for matching, but don't
4347 prevent matching a set of insns that only supports sizes other
4348 than those matching the insn suffix. */
4349 {
4350 i386_operand_type mask, allowed;
4351 const insn_template *t;
4352
4353 operand_type_set (&mask, 0);
4354 operand_type_set (&allowed, 0);
4355
4356 for (t = current_templates->start;
4357 t < current_templates->end;
4358 ++t)
4359 allowed = operand_type_or (allowed,
4360 t->operand_types[op]);
4361 switch (guess_suffix)
4362 {
4363 case QWORD_MNEM_SUFFIX:
4364 mask.bitfield.imm64 = 1;
4365 mask.bitfield.imm32s = 1;
4366 break;
4367 case LONG_MNEM_SUFFIX:
4368 mask.bitfield.imm32 = 1;
4369 break;
4370 case WORD_MNEM_SUFFIX:
4371 mask.bitfield.imm16 = 1;
4372 break;
4373 case BYTE_MNEM_SUFFIX:
4374 mask.bitfield.imm8 = 1;
4375 break;
4376 default:
4377 break;
4378 }
4379 allowed = operand_type_and (mask, allowed);
4380 if (!operand_type_all_zero (&allowed))
4381 i.types[op] = operand_type_and (i.types[op], mask);
4382 }
4383 break;
4384 }
4385 }
4386 }
4387
4388 /* Try to use the smallest displacement type too. */
4389 static void
4390 optimize_disp (void)
4391 {
4392 int op;
4393
4394 for (op = i.operands; --op >= 0;)
4395 if (operand_type_check (i.types[op], disp))
4396 {
4397 if (i.op[op].disps->X_op == O_constant)
4398 {
4399 offsetT op_disp = i.op[op].disps->X_add_number;
4400
4401 if (i.types[op].bitfield.disp16
4402 && (op_disp & ~(offsetT) 0xffff) == 0)
4403 {
4404 /* If this operand is at most 16 bits, convert
4405 to a signed 16 bit number and don't use 64bit
4406 displacement. */
4407 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4408 i.types[op].bitfield.disp64 = 0;
4409 }
4410 #ifdef BFD64
4411 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4412 if (i.types[op].bitfield.disp32
4413 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4414 {
4415 /* If this operand is at most 32 bits, convert
4416 to a signed 32 bit number and don't use 64bit
4417 displacement. */
4418 op_disp &= (((offsetT) 2 << 31) - 1);
4419 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4420 i.types[op].bitfield.disp64 = 0;
4421 }
4422 #endif
4423 if (!op_disp && i.types[op].bitfield.baseindex)
4424 {
4425 i.types[op].bitfield.disp8 = 0;
4426 i.types[op].bitfield.disp16 = 0;
4427 i.types[op].bitfield.disp32 = 0;
4428 i.types[op].bitfield.disp32s = 0;
4429 i.types[op].bitfield.disp64 = 0;
4430 i.op[op].disps = 0;
4431 i.disp_operands--;
4432 }
4433 else if (flag_code == CODE_64BIT)
4434 {
4435 if (fits_in_signed_long (op_disp))
4436 {
4437 i.types[op].bitfield.disp64 = 0;
4438 i.types[op].bitfield.disp32s = 1;
4439 }
4440 if (i.prefix[ADDR_PREFIX]
4441 && fits_in_unsigned_long (op_disp))
4442 i.types[op].bitfield.disp32 = 1;
4443 }
4444 if ((i.types[op].bitfield.disp32
4445 || i.types[op].bitfield.disp32s
4446 || i.types[op].bitfield.disp16)
4447 && fits_in_signed_byte (op_disp))
4448 i.types[op].bitfield.disp8 = 1;
4449 }
4450 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4451 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4452 {
4453 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4454 i.op[op].disps, 0, i.reloc[op]);
4455 i.types[op].bitfield.disp8 = 0;
4456 i.types[op].bitfield.disp16 = 0;
4457 i.types[op].bitfield.disp32 = 0;
4458 i.types[op].bitfield.disp32s = 0;
4459 i.types[op].bitfield.disp64 = 0;
4460 }
4461 else
4462 /* We only support 64bit displacement on constants. */
4463 i.types[op].bitfield.disp64 = 0;
4464 }
4465 }
4466
4467 /* Check if operands are valid for the instruction. */
4468
4469 static int
4470 check_VecOperands (const insn_template *t)
4471 {
4472 unsigned int op;
4473
4474 /* Without VSIB byte, we can't have a vector register for index. */
4475 if (!t->opcode_modifier.vecsib
4476 && i.index_reg
4477 && (i.index_reg->reg_type.bitfield.regxmm
4478 || i.index_reg->reg_type.bitfield.regymm
4479 || i.index_reg->reg_type.bitfield.regzmm))
4480 {
4481 i.error = unsupported_vector_index_register;
4482 return 1;
4483 }
4484
4485 /* Check if default mask is allowed. */
4486 if (t->opcode_modifier.nodefmask
4487 && (!i.mask || i.mask->mask->reg_num == 0))
4488 {
4489 i.error = no_default_mask;
4490 return 1;
4491 }
4492
4493 /* For VSIB byte, we need a vector register for index, and all vector
4494 registers must be distinct. */
4495 if (t->opcode_modifier.vecsib)
4496 {
4497 if (!i.index_reg
4498 || !((t->opcode_modifier.vecsib == VecSIB128
4499 && i.index_reg->reg_type.bitfield.regxmm)
4500 || (t->opcode_modifier.vecsib == VecSIB256
4501 && i.index_reg->reg_type.bitfield.regymm)
4502 || (t->opcode_modifier.vecsib == VecSIB512
4503 && i.index_reg->reg_type.bitfield.regzmm)))
4504 {
4505 i.error = invalid_vsib_address;
4506 return 1;
4507 }
4508
4509 gas_assert (i.reg_operands == 2 || i.mask);
4510 if (i.reg_operands == 2 && !i.mask)
4511 {
4512 gas_assert (i.types[0].bitfield.regxmm
4513 || i.types[0].bitfield.regymm);
4514 gas_assert (i.types[2].bitfield.regxmm
4515 || i.types[2].bitfield.regymm);
4516 if (operand_check == check_none)
4517 return 0;
4518 if (register_number (i.op[0].regs)
4519 != register_number (i.index_reg)
4520 && register_number (i.op[2].regs)
4521 != register_number (i.index_reg)
4522 && register_number (i.op[0].regs)
4523 != register_number (i.op[2].regs))
4524 return 0;
4525 if (operand_check == check_error)
4526 {
4527 i.error = invalid_vector_register_set;
4528 return 1;
4529 }
4530 as_warn (_("mask, index, and destination registers should be distinct"));
4531 }
4532 else if (i.reg_operands == 1 && i.mask)
4533 {
4534 if ((i.types[1].bitfield.regymm
4535 || i.types[1].bitfield.regzmm)
4536 && (register_number (i.op[1].regs)
4537 == register_number (i.index_reg)))
4538 {
4539 if (operand_check == check_error)
4540 {
4541 i.error = invalid_vector_register_set;
4542 return 1;
4543 }
4544 if (operand_check != check_none)
4545 as_warn (_("index and destination registers should be distinct"));
4546 }
4547 }
4548 }
4549
4550 /* Check if broadcast is supported by the instruction and is applied
4551 to the memory operand. */
4552 if (i.broadcast)
4553 {
4554 int broadcasted_opnd_size;
4555
4556 /* Check if specified broadcast is supported in this instruction,
4557 and it's applied to memory operand of DWORD or QWORD type,
4558 depending on VecESize. */
4559 if (i.broadcast->type != t->opcode_modifier.broadcast
4560 || !i.types[i.broadcast->operand].bitfield.mem
4561 || (t->opcode_modifier.vecesize == 0
4562 && !i.types[i.broadcast->operand].bitfield.dword
4563 && !i.types[i.broadcast->operand].bitfield.unspecified)
4564 || (t->opcode_modifier.vecesize == 1
4565 && !i.types[i.broadcast->operand].bitfield.qword
4566 && !i.types[i.broadcast->operand].bitfield.unspecified))
4567 goto bad_broadcast;
4568
4569 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4570 if (i.broadcast->type == BROADCAST_1TO16)
4571 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4572 else if (i.broadcast->type == BROADCAST_1TO8)
4573 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
4574 else if (i.broadcast->type == BROADCAST_1TO4)
4575 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4576 else if (i.broadcast->type == BROADCAST_1TO2)
4577 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
4578 else
4579 goto bad_broadcast;
4580
4581 if ((broadcasted_opnd_size == 256
4582 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4583 || (broadcasted_opnd_size == 512
4584 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4585 {
4586 bad_broadcast:
4587 i.error = unsupported_broadcast;
4588 return 1;
4589 }
4590 }
4591 /* If broadcast is supported in this instruction, we need to check if
4592 operand of one-element size isn't specified without broadcast. */
4593 else if (t->opcode_modifier.broadcast && i.mem_operands)
4594 {
4595 /* Find memory operand. */
4596 for (op = 0; op < i.operands; op++)
4597 if (operand_type_check (i.types[op], anymem))
4598 break;
4599 gas_assert (op < i.operands);
4600 /* Check size of the memory operand. */
4601 if ((t->opcode_modifier.vecesize == 0
4602 && i.types[op].bitfield.dword)
4603 || (t->opcode_modifier.vecesize == 1
4604 && i.types[op].bitfield.qword))
4605 {
4606 i.error = broadcast_needed;
4607 return 1;
4608 }
4609 }
4610
4611 /* Check if requested masking is supported. */
4612 if (i.mask
4613 && (!t->opcode_modifier.masking
4614 || (i.mask->zeroing
4615 && t->opcode_modifier.masking == MERGING_MASKING)))
4616 {
4617 i.error = unsupported_masking;
4618 return 1;
4619 }
4620
4621 /* Check if masking is applied to dest operand. */
4622 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4623 {
4624 i.error = mask_not_on_destination;
4625 return 1;
4626 }
4627
4628 /* Check RC/SAE. */
4629 if (i.rounding)
4630 {
4631 if ((i.rounding->type != saeonly
4632 && !t->opcode_modifier.staticrounding)
4633 || (i.rounding->type == saeonly
4634 && (t->opcode_modifier.staticrounding
4635 || !t->opcode_modifier.sae)))
4636 {
4637 i.error = unsupported_rc_sae;
4638 return 1;
4639 }
4640 /* If the instruction has several immediate operands and one of
4641 them is rounding, the rounding operand should be the last
4642 immediate operand. */
4643 if (i.imm_operands > 1
4644 && i.rounding->operand != (int) (i.imm_operands - 1))
4645 {
4646 i.error = rc_sae_operand_not_last_imm;
4647 return 1;
4648 }
4649 }
4650
4651 /* Check vector Disp8 operand. */
4652 if (t->opcode_modifier.disp8memshift)
4653 {
4654 if (i.broadcast)
4655 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4656 else
4657 i.memshift = t->opcode_modifier.disp8memshift;
4658
4659 for (op = 0; op < i.operands; op++)
4660 if (operand_type_check (i.types[op], disp)
4661 && i.op[op].disps->X_op == O_constant)
4662 {
4663 offsetT value = i.op[op].disps->X_add_number;
4664 int vec_disp8_ok
4665 = (i.disp_encoding != disp_encoding_32bit
4666 && fits_in_vec_disp8 (value));
4667 if (t->operand_types [op].bitfield.vec_disp8)
4668 {
4669 if (vec_disp8_ok)
4670 i.types[op].bitfield.vec_disp8 = 1;
4671 else
4672 {
4673 /* Vector insn can only have Vec_Disp8/Disp32 in
4674 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4675 mode. */
4676 i.types[op].bitfield.disp8 = 0;
4677 if (flag_code != CODE_16BIT)
4678 i.types[op].bitfield.disp16 = 0;
4679 }
4680 }
4681 else if (flag_code != CODE_16BIT)
4682 {
4683 /* One form of this instruction supports vector Disp8.
4684 Try vector Disp8 if we need to use Disp32. */
4685 if (vec_disp8_ok && !fits_in_signed_byte (value))
4686 {
4687 i.error = try_vector_disp8;
4688 return 1;
4689 }
4690 }
4691 }
4692 }
4693 else
4694 i.memshift = -1;
4695
4696 return 0;
4697 }
4698
4699 /* Check if operands are valid for the instruction. Update VEX
4700 operand types. */
4701
4702 static int
4703 VEX_check_operands (const insn_template *t)
4704 {
4705 /* VREX is only valid with EVEX prefix. */
4706 if (i.need_vrex && !t->opcode_modifier.evex)
4707 {
4708 i.error = invalid_register_operand;
4709 return 1;
4710 }
4711
4712 if (!t->opcode_modifier.vex)
4713 return 0;
4714
4715 /* Only check VEX_Imm4, which must be the first operand. */
4716 if (t->operand_types[0].bitfield.vec_imm4)
4717 {
4718 if (i.op[0].imms->X_op != O_constant
4719 || !fits_in_imm4 (i.op[0].imms->X_add_number))
4720 {
4721 i.error = bad_imm4;
4722 return 1;
4723 }
4724
4725 /* Turn off Imm8 so that update_imm won't complain. */
4726 i.types[0] = vec_imm4;
4727 }
4728
4729 return 0;
4730 }
4731
4732 static const insn_template *
4733 match_template (char mnem_suffix)
4734 {
4735 /* Points to template once we've found it. */
4736 const insn_template *t;
4737 i386_operand_type overlap0, overlap1, overlap2, overlap3;
4738 i386_operand_type overlap4;
4739 unsigned int found_reverse_match;
4740 i386_opcode_modifier suffix_check, mnemsuf_check;
4741 i386_operand_type operand_types [MAX_OPERANDS];
4742 int addr_prefix_disp;
4743 unsigned int j;
4744 unsigned int found_cpu_match;
4745 unsigned int check_register;
4746 enum i386_error specific_error = 0;
4747
4748 #if MAX_OPERANDS != 5
4749 # error "MAX_OPERANDS must be 5."
4750 #endif
4751
4752 found_reverse_match = 0;
4753 addr_prefix_disp = -1;
4754
4755 memset (&suffix_check, 0, sizeof (suffix_check));
4756 if (i.suffix == BYTE_MNEM_SUFFIX)
4757 suffix_check.no_bsuf = 1;
4758 else if (i.suffix == WORD_MNEM_SUFFIX)
4759 suffix_check.no_wsuf = 1;
4760 else if (i.suffix == SHORT_MNEM_SUFFIX)
4761 suffix_check.no_ssuf = 1;
4762 else if (i.suffix == LONG_MNEM_SUFFIX)
4763 suffix_check.no_lsuf = 1;
4764 else if (i.suffix == QWORD_MNEM_SUFFIX)
4765 suffix_check.no_qsuf = 1;
4766 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
4767 suffix_check.no_ldsuf = 1;
4768
4769 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
4770 if (intel_syntax)
4771 {
4772 switch (mnem_suffix)
4773 {
4774 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
4775 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
4776 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
4777 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
4778 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
4779 }
4780 }
4781
4782 /* Must have right number of operands. */
4783 i.error = number_of_operands_mismatch;
4784
4785 for (t = current_templates->start; t < current_templates->end; t++)
4786 {
4787 addr_prefix_disp = -1;
4788
4789 if (i.operands != t->operands)
4790 continue;
4791
4792 /* Check processor support. */
4793 i.error = unsupported;
4794 found_cpu_match = (cpu_flags_match (t)
4795 == CPU_FLAGS_PERFECT_MATCH);
4796 if (!found_cpu_match)
4797 continue;
4798
4799 /* Check old gcc support. */
4800 i.error = old_gcc_only;
4801 if (!old_gcc && t->opcode_modifier.oldgcc)
4802 continue;
4803
4804 /* Check AT&T mnemonic. */
4805 i.error = unsupported_with_intel_mnemonic;
4806 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
4807 continue;
4808
4809 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
4810 i.error = unsupported_syntax;
4811 if ((intel_syntax && t->opcode_modifier.attsyntax)
4812 || (!intel_syntax && t->opcode_modifier.intelsyntax)
4813 || (intel64 && t->opcode_modifier.amd64)
4814 || (!intel64 && t->opcode_modifier.intel64))
4815 continue;
4816
4817 /* Check the suffix, except for some instructions in intel mode. */
4818 i.error = invalid_instruction_suffix;
4819 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4820 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4821 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4822 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4823 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4824 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4825 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
4826 continue;
4827 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
4828 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
4829 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
4830 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
4831 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
4832 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
4833 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
4834 continue;
4835
4836 if (!operand_size_match (t))
4837 continue;
4838
4839 for (j = 0; j < MAX_OPERANDS; j++)
4840 operand_types[j] = t->operand_types[j];
4841
4842 /* In general, don't allow 64-bit operands in 32-bit mode. */
4843 if (i.suffix == QWORD_MNEM_SUFFIX
4844 && flag_code != CODE_64BIT
4845 && (intel_syntax
4846 ? (!t->opcode_modifier.ignoresize
4847 && !intel_float_operand (t->name))
4848 : intel_float_operand (t->name) != 2)
4849 && ((!operand_types[0].bitfield.regmmx
4850 && !operand_types[0].bitfield.regxmm
4851 && !operand_types[0].bitfield.regymm
4852 && !operand_types[0].bitfield.regzmm)
4853 || (!operand_types[t->operands > 1].bitfield.regmmx
4854 && operand_types[t->operands > 1].bitfield.regxmm
4855 && operand_types[t->operands > 1].bitfield.regymm
4856 && operand_types[t->operands > 1].bitfield.regzmm))
4857 && (t->base_opcode != 0x0fc7
4858 || t->extension_opcode != 1 /* cmpxchg8b */))
4859 continue;
4860
4861 /* In general, don't allow 32-bit operands on pre-386. */
4862 else if (i.suffix == LONG_MNEM_SUFFIX
4863 && !cpu_arch_flags.bitfield.cpui386
4864 && (intel_syntax
4865 ? (!t->opcode_modifier.ignoresize
4866 && !intel_float_operand (t->name))
4867 : intel_float_operand (t->name) != 2)
4868 && ((!operand_types[0].bitfield.regmmx
4869 && !operand_types[0].bitfield.regxmm)
4870 || (!operand_types[t->operands > 1].bitfield.regmmx
4871 && operand_types[t->operands > 1].bitfield.regxmm)))
4872 continue;
4873
4874 /* Do not verify operands when there are none. */
4875 else
4876 {
4877 if (!t->operands)
4878 /* We've found a match; break out of loop. */
4879 break;
4880 }
4881
4882 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4883 into Disp32/Disp16/Disp32 operand. */
4884 if (i.prefix[ADDR_PREFIX] != 0)
4885 {
4886 /* There should be only one Disp operand. */
4887 switch (flag_code)
4888 {
4889 case CODE_16BIT:
4890 for (j = 0; j < MAX_OPERANDS; j++)
4891 {
4892 if (operand_types[j].bitfield.disp16)
4893 {
4894 addr_prefix_disp = j;
4895 operand_types[j].bitfield.disp32 = 1;
4896 operand_types[j].bitfield.disp16 = 0;
4897 break;
4898 }
4899 }
4900 break;
4901 case CODE_32BIT:
4902 for (j = 0; j < MAX_OPERANDS; j++)
4903 {
4904 if (operand_types[j].bitfield.disp32)
4905 {
4906 addr_prefix_disp = j;
4907 operand_types[j].bitfield.disp32 = 0;
4908 operand_types[j].bitfield.disp16 = 1;
4909 break;
4910 }
4911 }
4912 break;
4913 case CODE_64BIT:
4914 for (j = 0; j < MAX_OPERANDS; j++)
4915 {
4916 if (operand_types[j].bitfield.disp64)
4917 {
4918 addr_prefix_disp = j;
4919 operand_types[j].bitfield.disp64 = 0;
4920 operand_types[j].bitfield.disp32 = 1;
4921 break;
4922 }
4923 }
4924 break;
4925 }
4926 }
4927
4928 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
4929 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
4930 continue;
4931
4932 /* We check register size if needed. */
4933 check_register = t->opcode_modifier.checkregsize;
4934 overlap0 = operand_type_and (i.types[0], operand_types[0]);
4935 switch (t->operands)
4936 {
4937 case 1:
4938 if (!operand_type_match (overlap0, i.types[0]))
4939 continue;
4940 break;
4941 case 2:
4942 /* xchg %eax, %eax is a special case. It is an aliase for nop
4943 only in 32bit mode and we can use opcode 0x90. In 64bit
4944 mode, we can't use 0x90 for xchg %eax, %eax since it should
4945 zero-extend %eax to %rax. */
4946 if (flag_code == CODE_64BIT
4947 && t->base_opcode == 0x90
4948 && operand_type_equal (&i.types [0], &acc32)
4949 && operand_type_equal (&i.types [1], &acc32))
4950 continue;
4951 if (i.swap_operand)
4952 {
4953 /* If we swap operand in encoding, we either match
4954 the next one or reverse direction of operands. */
4955 if (t->opcode_modifier.s)
4956 continue;
4957 else if (t->opcode_modifier.d)
4958 goto check_reverse;
4959 }
4960
4961 case 3:
4962 /* If we swap operand in encoding, we match the next one. */
4963 if (i.swap_operand && t->opcode_modifier.s)
4964 continue;
4965 case 4:
4966 case 5:
4967 overlap1 = operand_type_and (i.types[1], operand_types[1]);
4968 if (!operand_type_match (overlap0, i.types[0])
4969 || !operand_type_match (overlap1, i.types[1])
4970 || (check_register
4971 && !operand_type_register_match (overlap0, i.types[0],
4972 operand_types[0],
4973 overlap1, i.types[1],
4974 operand_types[1])))
4975 {
4976 /* Check if other direction is valid ... */
4977 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
4978 continue;
4979
4980 check_reverse:
4981 /* Try reversing direction of operands. */
4982 overlap0 = operand_type_and (i.types[0], operand_types[1]);
4983 overlap1 = operand_type_and (i.types[1], operand_types[0]);
4984 if (!operand_type_match (overlap0, i.types[0])
4985 || !operand_type_match (overlap1, i.types[1])
4986 || (check_register
4987 && !operand_type_register_match (overlap0,
4988 i.types[0],
4989 operand_types[1],
4990 overlap1,
4991 i.types[1],
4992 operand_types[0])))
4993 {
4994 /* Does not match either direction. */
4995 continue;
4996 }
4997 /* found_reverse_match holds which of D or FloatDR
4998 we've found. */
4999 if (t->opcode_modifier.d)
5000 found_reverse_match = Opcode_D;
5001 else if (t->opcode_modifier.floatd)
5002 found_reverse_match = Opcode_FloatD;
5003 else
5004 found_reverse_match = 0;
5005 if (t->opcode_modifier.floatr)
5006 found_reverse_match |= Opcode_FloatR;
5007 }
5008 else
5009 {
5010 /* Found a forward 2 operand match here. */
5011 switch (t->operands)
5012 {
5013 case 5:
5014 overlap4 = operand_type_and (i.types[4],
5015 operand_types[4]);
5016 case 4:
5017 overlap3 = operand_type_and (i.types[3],
5018 operand_types[3]);
5019 case 3:
5020 overlap2 = operand_type_and (i.types[2],
5021 operand_types[2]);
5022 break;
5023 }
5024
5025 switch (t->operands)
5026 {
5027 case 5:
5028 if (!operand_type_match (overlap4, i.types[4])
5029 || !operand_type_register_match (overlap3,
5030 i.types[3],
5031 operand_types[3],
5032 overlap4,
5033 i.types[4],
5034 operand_types[4]))
5035 continue;
5036 case 4:
5037 if (!operand_type_match (overlap3, i.types[3])
5038 || (check_register
5039 && !operand_type_register_match (overlap2,
5040 i.types[2],
5041 operand_types[2],
5042 overlap3,
5043 i.types[3],
5044 operand_types[3])))
5045 continue;
5046 case 3:
5047 /* Here we make use of the fact that there are no
5048 reverse match 3 operand instructions, and all 3
5049 operand instructions only need to be checked for
5050 register consistency between operands 2 and 3. */
5051 if (!operand_type_match (overlap2, i.types[2])
5052 || (check_register
5053 && !operand_type_register_match (overlap1,
5054 i.types[1],
5055 operand_types[1],
5056 overlap2,
5057 i.types[2],
5058 operand_types[2])))
5059 continue;
5060 break;
5061 }
5062 }
5063 /* Found either forward/reverse 2, 3 or 4 operand match here:
5064 slip through to break. */
5065 }
5066 if (!found_cpu_match)
5067 {
5068 found_reverse_match = 0;
5069 continue;
5070 }
5071
5072 /* Check if vector and VEX operands are valid. */
5073 if (check_VecOperands (t) || VEX_check_operands (t))
5074 {
5075 specific_error = i.error;
5076 continue;
5077 }
5078
5079 /* We've found a match; break out of loop. */
5080 break;
5081 }
5082
5083 if (t == current_templates->end)
5084 {
5085 /* We found no match. */
5086 const char *err_msg;
5087 switch (specific_error ? specific_error : i.error)
5088 {
5089 default:
5090 abort ();
5091 case operand_size_mismatch:
5092 err_msg = _("operand size mismatch");
5093 break;
5094 case operand_type_mismatch:
5095 err_msg = _("operand type mismatch");
5096 break;
5097 case register_type_mismatch:
5098 err_msg = _("register type mismatch");
5099 break;
5100 case number_of_operands_mismatch:
5101 err_msg = _("number of operands mismatch");
5102 break;
5103 case invalid_instruction_suffix:
5104 err_msg = _("invalid instruction suffix");
5105 break;
5106 case bad_imm4:
5107 err_msg = _("constant doesn't fit in 4 bits");
5108 break;
5109 case old_gcc_only:
5110 err_msg = _("only supported with old gcc");
5111 break;
5112 case unsupported_with_intel_mnemonic:
5113 err_msg = _("unsupported with Intel mnemonic");
5114 break;
5115 case unsupported_syntax:
5116 err_msg = _("unsupported syntax");
5117 break;
5118 case unsupported:
5119 as_bad (_("unsupported instruction `%s'"),
5120 current_templates->start->name);
5121 return NULL;
5122 case invalid_vsib_address:
5123 err_msg = _("invalid VSIB address");
5124 break;
5125 case invalid_vector_register_set:
5126 err_msg = _("mask, index, and destination registers must be distinct");
5127 break;
5128 case unsupported_vector_index_register:
5129 err_msg = _("unsupported vector index register");
5130 break;
5131 case unsupported_broadcast:
5132 err_msg = _("unsupported broadcast");
5133 break;
5134 case broadcast_not_on_src_operand:
5135 err_msg = _("broadcast not on source memory operand");
5136 break;
5137 case broadcast_needed:
5138 err_msg = _("broadcast is needed for operand of such type");
5139 break;
5140 case unsupported_masking:
5141 err_msg = _("unsupported masking");
5142 break;
5143 case mask_not_on_destination:
5144 err_msg = _("mask not on destination operand");
5145 break;
5146 case no_default_mask:
5147 err_msg = _("default mask isn't allowed");
5148 break;
5149 case unsupported_rc_sae:
5150 err_msg = _("unsupported static rounding/sae");
5151 break;
5152 case rc_sae_operand_not_last_imm:
5153 if (intel_syntax)
5154 err_msg = _("RC/SAE operand must precede immediate operands");
5155 else
5156 err_msg = _("RC/SAE operand must follow immediate operands");
5157 break;
5158 case invalid_register_operand:
5159 err_msg = _("invalid register operand");
5160 break;
5161 }
5162 as_bad (_("%s for `%s'"), err_msg,
5163 current_templates->start->name);
5164 return NULL;
5165 }
5166
5167 if (!quiet_warnings)
5168 {
5169 if (!intel_syntax
5170 && (i.types[0].bitfield.jumpabsolute
5171 != operand_types[0].bitfield.jumpabsolute))
5172 {
5173 as_warn (_("indirect %s without `*'"), t->name);
5174 }
5175
5176 if (t->opcode_modifier.isprefix
5177 && t->opcode_modifier.ignoresize)
5178 {
5179 /* Warn them that a data or address size prefix doesn't
5180 affect assembly of the next line of code. */
5181 as_warn (_("stand-alone `%s' prefix"), t->name);
5182 }
5183 }
5184
5185 /* Copy the template we found. */
5186 i.tm = *t;
5187
5188 if (addr_prefix_disp != -1)
5189 i.tm.operand_types[addr_prefix_disp]
5190 = operand_types[addr_prefix_disp];
5191
5192 if (found_reverse_match)
5193 {
5194 /* If we found a reverse match we must alter the opcode
5195 direction bit. found_reverse_match holds bits to change
5196 (different for int & float insns). */
5197
5198 i.tm.base_opcode ^= found_reverse_match;
5199
5200 i.tm.operand_types[0] = operand_types[1];
5201 i.tm.operand_types[1] = operand_types[0];
5202 }
5203
5204 return t;
5205 }
5206
5207 static int
5208 check_string (void)
5209 {
5210 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5211 if (i.tm.operand_types[mem_op].bitfield.esseg)
5212 {
5213 if (i.seg[0] != NULL && i.seg[0] != &es)
5214 {
5215 as_bad (_("`%s' operand %d must use `%ses' segment"),
5216 i.tm.name,
5217 mem_op + 1,
5218 register_prefix);
5219 return 0;
5220 }
5221 /* There's only ever one segment override allowed per instruction.
5222 This instruction possibly has a legal segment override on the
5223 second operand, so copy the segment to where non-string
5224 instructions store it, allowing common code. */
5225 i.seg[0] = i.seg[1];
5226 }
5227 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5228 {
5229 if (i.seg[1] != NULL && i.seg[1] != &es)
5230 {
5231 as_bad (_("`%s' operand %d must use `%ses' segment"),
5232 i.tm.name,
5233 mem_op + 2,
5234 register_prefix);
5235 return 0;
5236 }
5237 }
5238 return 1;
5239 }
5240
5241 static int
5242 process_suffix (void)
5243 {
5244 /* If matched instruction specifies an explicit instruction mnemonic
5245 suffix, use it. */
5246 if (i.tm.opcode_modifier.size16)
5247 i.suffix = WORD_MNEM_SUFFIX;
5248 else if (i.tm.opcode_modifier.size32)
5249 i.suffix = LONG_MNEM_SUFFIX;
5250 else if (i.tm.opcode_modifier.size64)
5251 i.suffix = QWORD_MNEM_SUFFIX;
5252 else if (i.reg_operands)
5253 {
5254 /* If there's no instruction mnemonic suffix we try to invent one
5255 based on register operands. */
5256 if (!i.suffix)
5257 {
5258 /* We take i.suffix from the last register operand specified,
5259 Destination register type is more significant than source
5260 register type. crc32 in SSE4.2 prefers source register
5261 type. */
5262 if (i.tm.base_opcode == 0xf20f38f1)
5263 {
5264 if (i.types[0].bitfield.reg16)
5265 i.suffix = WORD_MNEM_SUFFIX;
5266 else if (i.types[0].bitfield.reg32)
5267 i.suffix = LONG_MNEM_SUFFIX;
5268 else if (i.types[0].bitfield.reg64)
5269 i.suffix = QWORD_MNEM_SUFFIX;
5270 }
5271 else if (i.tm.base_opcode == 0xf20f38f0)
5272 {
5273 if (i.types[0].bitfield.reg8)
5274 i.suffix = BYTE_MNEM_SUFFIX;
5275 }
5276
5277 if (!i.suffix)
5278 {
5279 int op;
5280
5281 if (i.tm.base_opcode == 0xf20f38f1
5282 || i.tm.base_opcode == 0xf20f38f0)
5283 {
5284 /* We have to know the operand size for crc32. */
5285 as_bad (_("ambiguous memory operand size for `%s`"),
5286 i.tm.name);
5287 return 0;
5288 }
5289
5290 for (op = i.operands; --op >= 0;)
5291 if (!i.tm.operand_types[op].bitfield.inoutportreg)
5292 {
5293 if (i.types[op].bitfield.reg8)
5294 {
5295 i.suffix = BYTE_MNEM_SUFFIX;
5296 break;
5297 }
5298 else if (i.types[op].bitfield.reg16)
5299 {
5300 i.suffix = WORD_MNEM_SUFFIX;
5301 break;
5302 }
5303 else if (i.types[op].bitfield.reg32)
5304 {
5305 i.suffix = LONG_MNEM_SUFFIX;
5306 break;
5307 }
5308 else if (i.types[op].bitfield.reg64)
5309 {
5310 i.suffix = QWORD_MNEM_SUFFIX;
5311 break;
5312 }
5313 }
5314 }
5315 }
5316 else if (i.suffix == BYTE_MNEM_SUFFIX)
5317 {
5318 if (intel_syntax
5319 && i.tm.opcode_modifier.ignoresize
5320 && i.tm.opcode_modifier.no_bsuf)
5321 i.suffix = 0;
5322 else if (!check_byte_reg ())
5323 return 0;
5324 }
5325 else if (i.suffix == LONG_MNEM_SUFFIX)
5326 {
5327 if (intel_syntax
5328 && i.tm.opcode_modifier.ignoresize
5329 && i.tm.opcode_modifier.no_lsuf)
5330 i.suffix = 0;
5331 else if (!check_long_reg ())
5332 return 0;
5333 }
5334 else if (i.suffix == QWORD_MNEM_SUFFIX)
5335 {
5336 if (intel_syntax
5337 && i.tm.opcode_modifier.ignoresize
5338 && i.tm.opcode_modifier.no_qsuf)
5339 i.suffix = 0;
5340 else if (!check_qword_reg ())
5341 return 0;
5342 }
5343 else if (i.suffix == WORD_MNEM_SUFFIX)
5344 {
5345 if (intel_syntax
5346 && i.tm.opcode_modifier.ignoresize
5347 && i.tm.opcode_modifier.no_wsuf)
5348 i.suffix = 0;
5349 else if (!check_word_reg ())
5350 return 0;
5351 }
5352 else if (i.suffix == XMMWORD_MNEM_SUFFIX
5353 || i.suffix == YMMWORD_MNEM_SUFFIX
5354 || i.suffix == ZMMWORD_MNEM_SUFFIX)
5355 {
5356 /* Skip if the instruction has x/y/z suffix. match_template
5357 should check if it is a valid suffix. */
5358 }
5359 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5360 /* Do nothing if the instruction is going to ignore the prefix. */
5361 ;
5362 else
5363 abort ();
5364 }
5365 else if (i.tm.opcode_modifier.defaultsize
5366 && !i.suffix
5367 /* exclude fldenv/frstor/fsave/fstenv */
5368 && i.tm.opcode_modifier.no_ssuf)
5369 {
5370 i.suffix = stackop_size;
5371 }
5372 else if (intel_syntax
5373 && !i.suffix
5374 && (i.tm.operand_types[0].bitfield.jumpabsolute
5375 || i.tm.opcode_modifier.jumpbyte
5376 || i.tm.opcode_modifier.jumpintersegment
5377 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5378 && i.tm.extension_opcode <= 3)))
5379 {
5380 switch (flag_code)
5381 {
5382 case CODE_64BIT:
5383 if (!i.tm.opcode_modifier.no_qsuf)
5384 {
5385 i.suffix = QWORD_MNEM_SUFFIX;
5386 break;
5387 }
5388 case CODE_32BIT:
5389 if (!i.tm.opcode_modifier.no_lsuf)
5390 i.suffix = LONG_MNEM_SUFFIX;
5391 break;
5392 case CODE_16BIT:
5393 if (!i.tm.opcode_modifier.no_wsuf)
5394 i.suffix = WORD_MNEM_SUFFIX;
5395 break;
5396 }
5397 }
5398
5399 if (!i.suffix)
5400 {
5401 if (!intel_syntax)
5402 {
5403 if (i.tm.opcode_modifier.w)
5404 {
5405 as_bad (_("no instruction mnemonic suffix given and "
5406 "no register operands; can't size instruction"));
5407 return 0;
5408 }
5409 }
5410 else
5411 {
5412 unsigned int suffixes;
5413
5414 suffixes = !i.tm.opcode_modifier.no_bsuf;
5415 if (!i.tm.opcode_modifier.no_wsuf)
5416 suffixes |= 1 << 1;
5417 if (!i.tm.opcode_modifier.no_lsuf)
5418 suffixes |= 1 << 2;
5419 if (!i.tm.opcode_modifier.no_ldsuf)
5420 suffixes |= 1 << 3;
5421 if (!i.tm.opcode_modifier.no_ssuf)
5422 suffixes |= 1 << 4;
5423 if (!i.tm.opcode_modifier.no_qsuf)
5424 suffixes |= 1 << 5;
5425
5426 /* There are more than suffix matches. */
5427 if (i.tm.opcode_modifier.w
5428 || ((suffixes & (suffixes - 1))
5429 && !i.tm.opcode_modifier.defaultsize
5430 && !i.tm.opcode_modifier.ignoresize))
5431 {
5432 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5433 return 0;
5434 }
5435 }
5436 }
5437
5438 /* Change the opcode based on the operand size given by i.suffix;
5439 We don't need to change things for byte insns. */
5440
5441 if (i.suffix
5442 && i.suffix != BYTE_MNEM_SUFFIX
5443 && i.suffix != XMMWORD_MNEM_SUFFIX
5444 && i.suffix != YMMWORD_MNEM_SUFFIX
5445 && i.suffix != ZMMWORD_MNEM_SUFFIX)
5446 {
5447 /* It's not a byte, select word/dword operation. */
5448 if (i.tm.opcode_modifier.w)
5449 {
5450 if (i.tm.opcode_modifier.shortform)
5451 i.tm.base_opcode |= 8;
5452 else
5453 i.tm.base_opcode |= 1;
5454 }
5455
5456 /* Now select between word & dword operations via the operand
5457 size prefix, except for instructions that will ignore this
5458 prefix anyway. */
5459 if (i.tm.opcode_modifier.addrprefixop0)
5460 {
5461 /* The address size override prefix changes the size of the
5462 first operand. */
5463 if ((flag_code == CODE_32BIT
5464 && i.op->regs[0].reg_type.bitfield.reg16)
5465 || (flag_code != CODE_32BIT
5466 && i.op->regs[0].reg_type.bitfield.reg32))
5467 if (!add_prefix (ADDR_PREFIX_OPCODE))
5468 return 0;
5469 }
5470 else if (i.suffix != QWORD_MNEM_SUFFIX
5471 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5472 && !i.tm.opcode_modifier.ignoresize
5473 && !i.tm.opcode_modifier.floatmf
5474 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5475 || (flag_code == CODE_64BIT
5476 && i.tm.opcode_modifier.jumpbyte)))
5477 {
5478 unsigned int prefix = DATA_PREFIX_OPCODE;
5479
5480 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5481 prefix = ADDR_PREFIX_OPCODE;
5482
5483 if (!add_prefix (prefix))
5484 return 0;
5485 }
5486
5487 /* Set mode64 for an operand. */
5488 if (i.suffix == QWORD_MNEM_SUFFIX
5489 && flag_code == CODE_64BIT
5490 && !i.tm.opcode_modifier.norex64)
5491 {
5492 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5493 need rex64. cmpxchg8b is also a special case. */
5494 if (! (i.operands == 2
5495 && i.tm.base_opcode == 0x90
5496 && i.tm.extension_opcode == None
5497 && operand_type_equal (&i.types [0], &acc64)
5498 && operand_type_equal (&i.types [1], &acc64))
5499 && ! (i.operands == 1
5500 && i.tm.base_opcode == 0xfc7
5501 && i.tm.extension_opcode == 1
5502 && !operand_type_check (i.types [0], reg)
5503 && operand_type_check (i.types [0], anymem)))
5504 i.rex |= REX_W;
5505 }
5506
5507 /* Size floating point instruction. */
5508 if (i.suffix == LONG_MNEM_SUFFIX)
5509 if (i.tm.opcode_modifier.floatmf)
5510 i.tm.base_opcode ^= 4;
5511 }
5512
5513 return 1;
5514 }
5515
5516 static int
5517 check_byte_reg (void)
5518 {
5519 int op;
5520
5521 for (op = i.operands; --op >= 0;)
5522 {
5523 /* If this is an eight bit register, it's OK. If it's the 16 or
5524 32 bit version of an eight bit register, we will just use the
5525 low portion, and that's OK too. */
5526 if (i.types[op].bitfield.reg8)
5527 continue;
5528
5529 /* I/O port address operands are OK too. */
5530 if (i.tm.operand_types[op].bitfield.inoutportreg)
5531 continue;
5532
5533 /* crc32 doesn't generate this warning. */
5534 if (i.tm.base_opcode == 0xf20f38f0)
5535 continue;
5536
5537 if ((i.types[op].bitfield.reg16
5538 || i.types[op].bitfield.reg32
5539 || i.types[op].bitfield.reg64)
5540 && i.op[op].regs->reg_num < 4
5541 /* Prohibit these changes in 64bit mode, since the lowering
5542 would be more complicated. */
5543 && flag_code != CODE_64BIT)
5544 {
5545 #if REGISTER_WARNINGS
5546 if (!quiet_warnings)
5547 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5548 register_prefix,
5549 (i.op[op].regs + (i.types[op].bitfield.reg16
5550 ? REGNAM_AL - REGNAM_AX
5551 : REGNAM_AL - REGNAM_EAX))->reg_name,
5552 register_prefix,
5553 i.op[op].regs->reg_name,
5554 i.suffix);
5555 #endif
5556 continue;
5557 }
5558 /* Any other register is bad. */
5559 if (i.types[op].bitfield.reg16
5560 || i.types[op].bitfield.reg32
5561 || i.types[op].bitfield.reg64
5562 || i.types[op].bitfield.regmmx
5563 || i.types[op].bitfield.regxmm
5564 || i.types[op].bitfield.regymm
5565 || i.types[op].bitfield.regzmm
5566 || i.types[op].bitfield.sreg2
5567 || i.types[op].bitfield.sreg3
5568 || i.types[op].bitfield.control
5569 || i.types[op].bitfield.debug
5570 || i.types[op].bitfield.test
5571 || i.types[op].bitfield.floatreg
5572 || i.types[op].bitfield.floatacc)
5573 {
5574 as_bad (_("`%s%s' not allowed with `%s%c'"),
5575 register_prefix,
5576 i.op[op].regs->reg_name,
5577 i.tm.name,
5578 i.suffix);
5579 return 0;
5580 }
5581 }
5582 return 1;
5583 }
5584
5585 static int
5586 check_long_reg (void)
5587 {
5588 int op;
5589
5590 for (op = i.operands; --op >= 0;)
5591 /* Reject eight bit registers, except where the template requires
5592 them. (eg. movzb) */
5593 if (i.types[op].bitfield.reg8
5594 && (i.tm.operand_types[op].bitfield.reg16
5595 || i.tm.operand_types[op].bitfield.reg32
5596 || i.tm.operand_types[op].bitfield.acc))
5597 {
5598 as_bad (_("`%s%s' not allowed with `%s%c'"),
5599 register_prefix,
5600 i.op[op].regs->reg_name,
5601 i.tm.name,
5602 i.suffix);
5603 return 0;
5604 }
5605 /* Warn if the e prefix on a general reg is missing. */
5606 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5607 && i.types[op].bitfield.reg16
5608 && (i.tm.operand_types[op].bitfield.reg32
5609 || i.tm.operand_types[op].bitfield.acc))
5610 {
5611 /* Prohibit these changes in the 64bit mode, since the
5612 lowering is more complicated. */
5613 if (flag_code == CODE_64BIT)
5614 {
5615 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5616 register_prefix, i.op[op].regs->reg_name,
5617 i.suffix);
5618 return 0;
5619 }
5620 #if REGISTER_WARNINGS
5621 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5622 register_prefix,
5623 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5624 register_prefix, i.op[op].regs->reg_name, i.suffix);
5625 #endif
5626 }
5627 /* Warn if the r prefix on a general reg is present. */
5628 else if (i.types[op].bitfield.reg64
5629 && (i.tm.operand_types[op].bitfield.reg32
5630 || i.tm.operand_types[op].bitfield.acc))
5631 {
5632 if (intel_syntax
5633 && i.tm.opcode_modifier.toqword
5634 && !i.types[0].bitfield.regxmm)
5635 {
5636 /* Convert to QWORD. We want REX byte. */
5637 i.suffix = QWORD_MNEM_SUFFIX;
5638 }
5639 else
5640 {
5641 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5642 register_prefix, i.op[op].regs->reg_name,
5643 i.suffix);
5644 return 0;
5645 }
5646 }
5647 return 1;
5648 }
5649
5650 static int
5651 check_qword_reg (void)
5652 {
5653 int op;
5654
5655 for (op = i.operands; --op >= 0; )
5656 /* Reject eight bit registers, except where the template requires
5657 them. (eg. movzb) */
5658 if (i.types[op].bitfield.reg8
5659 && (i.tm.operand_types[op].bitfield.reg16
5660 || i.tm.operand_types[op].bitfield.reg32
5661 || i.tm.operand_types[op].bitfield.acc))
5662 {
5663 as_bad (_("`%s%s' not allowed with `%s%c'"),
5664 register_prefix,
5665 i.op[op].regs->reg_name,
5666 i.tm.name,
5667 i.suffix);
5668 return 0;
5669 }
5670 /* Warn if the r prefix on a general reg is missing. */
5671 else if ((i.types[op].bitfield.reg16
5672 || i.types[op].bitfield.reg32)
5673 && (i.tm.operand_types[op].bitfield.reg32
5674 || i.tm.operand_types[op].bitfield.acc))
5675 {
5676 /* Prohibit these changes in the 64bit mode, since the
5677 lowering is more complicated. */
5678 if (intel_syntax
5679 && i.tm.opcode_modifier.todword
5680 && !i.types[0].bitfield.regxmm)
5681 {
5682 /* Convert to DWORD. We don't want REX byte. */
5683 i.suffix = LONG_MNEM_SUFFIX;
5684 }
5685 else
5686 {
5687 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5688 register_prefix, i.op[op].regs->reg_name,
5689 i.suffix);
5690 return 0;
5691 }
5692 }
5693 return 1;
5694 }
5695
5696 static int
5697 check_word_reg (void)
5698 {
5699 int op;
5700 for (op = i.operands; --op >= 0;)
5701 /* Reject eight bit registers, except where the template requires
5702 them. (eg. movzb) */
5703 if (i.types[op].bitfield.reg8
5704 && (i.tm.operand_types[op].bitfield.reg16
5705 || i.tm.operand_types[op].bitfield.reg32
5706 || i.tm.operand_types[op].bitfield.acc))
5707 {
5708 as_bad (_("`%s%s' not allowed with `%s%c'"),
5709 register_prefix,
5710 i.op[op].regs->reg_name,
5711 i.tm.name,
5712 i.suffix);
5713 return 0;
5714 }
5715 /* Warn if the e or r prefix on a general reg is present. */
5716 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5717 && (i.types[op].bitfield.reg32
5718 || i.types[op].bitfield.reg64)
5719 && (i.tm.operand_types[op].bitfield.reg16
5720 || i.tm.operand_types[op].bitfield.acc))
5721 {
5722 /* Prohibit these changes in the 64bit mode, since the
5723 lowering is more complicated. */
5724 if (flag_code == CODE_64BIT)
5725 {
5726 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5727 register_prefix, i.op[op].regs->reg_name,
5728 i.suffix);
5729 return 0;
5730 }
5731 #if REGISTER_WARNINGS
5732 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5733 register_prefix,
5734 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5735 register_prefix, i.op[op].regs->reg_name, i.suffix);
5736 #endif
5737 }
5738 return 1;
5739 }
5740
5741 static int
5742 update_imm (unsigned int j)
5743 {
5744 i386_operand_type overlap = i.types[j];
5745 if ((overlap.bitfield.imm8
5746 || overlap.bitfield.imm8s
5747 || overlap.bitfield.imm16
5748 || overlap.bitfield.imm32
5749 || overlap.bitfield.imm32s
5750 || overlap.bitfield.imm64)
5751 && !operand_type_equal (&overlap, &imm8)
5752 && !operand_type_equal (&overlap, &imm8s)
5753 && !operand_type_equal (&overlap, &imm16)
5754 && !operand_type_equal (&overlap, &imm32)
5755 && !operand_type_equal (&overlap, &imm32s)
5756 && !operand_type_equal (&overlap, &imm64))
5757 {
5758 if (i.suffix)
5759 {
5760 i386_operand_type temp;
5761
5762 operand_type_set (&temp, 0);
5763 if (i.suffix == BYTE_MNEM_SUFFIX)
5764 {
5765 temp.bitfield.imm8 = overlap.bitfield.imm8;
5766 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5767 }
5768 else if (i.suffix == WORD_MNEM_SUFFIX)
5769 temp.bitfield.imm16 = overlap.bitfield.imm16;
5770 else if (i.suffix == QWORD_MNEM_SUFFIX)
5771 {
5772 temp.bitfield.imm64 = overlap.bitfield.imm64;
5773 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5774 }
5775 else
5776 temp.bitfield.imm32 = overlap.bitfield.imm32;
5777 overlap = temp;
5778 }
5779 else if (operand_type_equal (&overlap, &imm16_32_32s)
5780 || operand_type_equal (&overlap, &imm16_32)
5781 || operand_type_equal (&overlap, &imm16_32s))
5782 {
5783 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5784 overlap = imm16;
5785 else
5786 overlap = imm32s;
5787 }
5788 if (!operand_type_equal (&overlap, &imm8)
5789 && !operand_type_equal (&overlap, &imm8s)
5790 && !operand_type_equal (&overlap, &imm16)
5791 && !operand_type_equal (&overlap, &imm32)
5792 && !operand_type_equal (&overlap, &imm32s)
5793 && !operand_type_equal (&overlap, &imm64))
5794 {
5795 as_bad (_("no instruction mnemonic suffix given; "
5796 "can't determine immediate size"));
5797 return 0;
5798 }
5799 }
5800 i.types[j] = overlap;
5801
5802 return 1;
5803 }
5804
5805 static int
5806 finalize_imm (void)
5807 {
5808 unsigned int j, n;
5809
5810 /* Update the first 2 immediate operands. */
5811 n = i.operands > 2 ? 2 : i.operands;
5812 if (n)
5813 {
5814 for (j = 0; j < n; j++)
5815 if (update_imm (j) == 0)
5816 return 0;
5817
5818 /* The 3rd operand can't be immediate operand. */
5819 gas_assert (operand_type_check (i.types[2], imm) == 0);
5820 }
5821
5822 return 1;
5823 }
5824
5825 static int
5826 bad_implicit_operand (int xmm)
5827 {
5828 const char *ireg = xmm ? "xmm0" : "ymm0";
5829
5830 if (intel_syntax)
5831 as_bad (_("the last operand of `%s' must be `%s%s'"),
5832 i.tm.name, register_prefix, ireg);
5833 else
5834 as_bad (_("the first operand of `%s' must be `%s%s'"),
5835 i.tm.name, register_prefix, ireg);
5836 return 0;
5837 }
5838
5839 static int
5840 process_operands (void)
5841 {
5842 /* Default segment register this instruction will use for memory
5843 accesses. 0 means unknown. This is only for optimizing out
5844 unnecessary segment overrides. */
5845 const seg_entry *default_seg = 0;
5846
5847 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
5848 {
5849 unsigned int dupl = i.operands;
5850 unsigned int dest = dupl - 1;
5851 unsigned int j;
5852
5853 /* The destination must be an xmm register. */
5854 gas_assert (i.reg_operands
5855 && MAX_OPERANDS > dupl
5856 && operand_type_equal (&i.types[dest], &regxmm));
5857
5858 if (i.tm.opcode_modifier.firstxmm0)
5859 {
5860 /* The first operand is implicit and must be xmm0. */
5861 gas_assert (operand_type_equal (&i.types[0], &regxmm));
5862 if (register_number (i.op[0].regs) != 0)
5863 return bad_implicit_operand (1);
5864
5865 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
5866 {
5867 /* Keep xmm0 for instructions with VEX prefix and 3
5868 sources. */
5869 goto duplicate;
5870 }
5871 else
5872 {
5873 /* We remove the first xmm0 and keep the number of
5874 operands unchanged, which in fact duplicates the
5875 destination. */
5876 for (j = 1; j < i.operands; j++)
5877 {
5878 i.op[j - 1] = i.op[j];
5879 i.types[j - 1] = i.types[j];
5880 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
5881 }
5882 }
5883 }
5884 else if (i.tm.opcode_modifier.implicit1stxmm0)
5885 {
5886 gas_assert ((MAX_OPERANDS - 1) > dupl
5887 && (i.tm.opcode_modifier.vexsources
5888 == VEX3SOURCES));
5889
5890 /* Add the implicit xmm0 for instructions with VEX prefix
5891 and 3 sources. */
5892 for (j = i.operands; j > 0; j--)
5893 {
5894 i.op[j] = i.op[j - 1];
5895 i.types[j] = i.types[j - 1];
5896 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
5897 }
5898 i.op[0].regs
5899 = (const reg_entry *) hash_find (reg_hash, "xmm0");
5900 i.types[0] = regxmm;
5901 i.tm.operand_types[0] = regxmm;
5902
5903 i.operands += 2;
5904 i.reg_operands += 2;
5905 i.tm.operands += 2;
5906
5907 dupl++;
5908 dest++;
5909 i.op[dupl] = i.op[dest];
5910 i.types[dupl] = i.types[dest];
5911 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5912 }
5913 else
5914 {
5915 duplicate:
5916 i.operands++;
5917 i.reg_operands++;
5918 i.tm.operands++;
5919
5920 i.op[dupl] = i.op[dest];
5921 i.types[dupl] = i.types[dest];
5922 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5923 }
5924
5925 if (i.tm.opcode_modifier.immext)
5926 process_immext ();
5927 }
5928 else if (i.tm.opcode_modifier.firstxmm0)
5929 {
5930 unsigned int j;
5931
5932 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
5933 gas_assert (i.reg_operands
5934 && (operand_type_equal (&i.types[0], &regxmm)
5935 || operand_type_equal (&i.types[0], &regymm)
5936 || operand_type_equal (&i.types[0], &regzmm)));
5937 if (register_number (i.op[0].regs) != 0)
5938 return bad_implicit_operand (i.types[0].bitfield.regxmm);
5939
5940 for (j = 1; j < i.operands; j++)
5941 {
5942 i.op[j - 1] = i.op[j];
5943 i.types[j - 1] = i.types[j];
5944
5945 /* We need to adjust fields in i.tm since they are used by
5946 build_modrm_byte. */
5947 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
5948 }
5949
5950 i.operands--;
5951 i.reg_operands--;
5952 i.tm.operands--;
5953 }
5954 else if (i.tm.opcode_modifier.regkludge)
5955 {
5956 /* The imul $imm, %reg instruction is converted into
5957 imul $imm, %reg, %reg, and the clr %reg instruction
5958 is converted into xor %reg, %reg. */
5959
5960 unsigned int first_reg_op;
5961
5962 if (operand_type_check (i.types[0], reg))
5963 first_reg_op = 0;
5964 else
5965 first_reg_op = 1;
5966 /* Pretend we saw the extra register operand. */
5967 gas_assert (i.reg_operands == 1
5968 && i.op[first_reg_op + 1].regs == 0);
5969 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
5970 i.types[first_reg_op + 1] = i.types[first_reg_op];
5971 i.operands++;
5972 i.reg_operands++;
5973 }
5974
5975 if (i.tm.opcode_modifier.shortform)
5976 {
5977 if (i.types[0].bitfield.sreg2
5978 || i.types[0].bitfield.sreg3)
5979 {
5980 if (i.tm.base_opcode == POP_SEG_SHORT
5981 && i.op[0].regs->reg_num == 1)
5982 {
5983 as_bad (_("you can't `pop %scs'"), register_prefix);
5984 return 0;
5985 }
5986 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
5987 if ((i.op[0].regs->reg_flags & RegRex) != 0)
5988 i.rex |= REX_B;
5989 }
5990 else
5991 {
5992 /* The register or float register operand is in operand
5993 0 or 1. */
5994 unsigned int op;
5995
5996 if (i.types[0].bitfield.floatreg
5997 || operand_type_check (i.types[0], reg))
5998 op = 0;
5999 else
6000 op = 1;
6001 /* Register goes in low 3 bits of opcode. */
6002 i.tm.base_opcode |= i.op[op].regs->reg_num;
6003 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6004 i.rex |= REX_B;
6005 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6006 {
6007 /* Warn about some common errors, but press on regardless.
6008 The first case can be generated by gcc (<= 2.8.1). */
6009 if (i.operands == 2)
6010 {
6011 /* Reversed arguments on faddp, fsubp, etc. */
6012 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6013 register_prefix, i.op[!intel_syntax].regs->reg_name,
6014 register_prefix, i.op[intel_syntax].regs->reg_name);
6015 }
6016 else
6017 {
6018 /* Extraneous `l' suffix on fp insn. */
6019 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6020 register_prefix, i.op[0].regs->reg_name);
6021 }
6022 }
6023 }
6024 }
6025 else if (i.tm.opcode_modifier.modrm)
6026 {
6027 /* The opcode is completed (modulo i.tm.extension_opcode which
6028 must be put into the modrm byte). Now, we make the modrm and
6029 index base bytes based on all the info we've collected. */
6030
6031 default_seg = build_modrm_byte ();
6032 }
6033 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6034 {
6035 default_seg = &ds;
6036 }
6037 else if (i.tm.opcode_modifier.isstring)
6038 {
6039 /* For the string instructions that allow a segment override
6040 on one of their operands, the default segment is ds. */
6041 default_seg = &ds;
6042 }
6043
6044 if (i.tm.base_opcode == 0x8d /* lea */
6045 && i.seg[0]
6046 && !quiet_warnings)
6047 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6048
6049 /* If a segment was explicitly specified, and the specified segment
6050 is not the default, use an opcode prefix to select it. If we
6051 never figured out what the default segment is, then default_seg
6052 will be zero at this point, and the specified segment prefix will
6053 always be used. */
6054 if ((i.seg[0]) && (i.seg[0] != default_seg))
6055 {
6056 if (!add_prefix (i.seg[0]->seg_prefix))
6057 return 0;
6058 }
6059 return 1;
6060 }
6061
6062 static const seg_entry *
6063 build_modrm_byte (void)
6064 {
6065 const seg_entry *default_seg = 0;
6066 unsigned int source, dest;
6067 int vex_3_sources;
6068
6069 /* The first operand of instructions with VEX prefix and 3 sources
6070 must be VEX_Imm4. */
6071 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6072 if (vex_3_sources)
6073 {
6074 unsigned int nds, reg_slot;
6075 expressionS *exp;
6076
6077 if (i.tm.opcode_modifier.veximmext
6078 && i.tm.opcode_modifier.immext)
6079 {
6080 dest = i.operands - 2;
6081 gas_assert (dest == 3);
6082 }
6083 else
6084 dest = i.operands - 1;
6085 nds = dest - 1;
6086
6087 /* There are 2 kinds of instructions:
6088 1. 5 operands: 4 register operands or 3 register operands
6089 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6090 VexW0 or VexW1. The destination must be either XMM, YMM or
6091 ZMM register.
6092 2. 4 operands: 4 register operands or 3 register operands
6093 plus 1 memory operand, VexXDS, and VexImmExt */
6094 gas_assert ((i.reg_operands == 4
6095 || (i.reg_operands == 3 && i.mem_operands == 1))
6096 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6097 && (i.tm.opcode_modifier.veximmext
6098 || (i.imm_operands == 1
6099 && i.types[0].bitfield.vec_imm4
6100 && (i.tm.opcode_modifier.vexw == VEXW0
6101 || i.tm.opcode_modifier.vexw == VEXW1)
6102 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
6103 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
6104 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
6105
6106 if (i.imm_operands == 0)
6107 {
6108 /* When there is no immediate operand, generate an 8bit
6109 immediate operand to encode the first operand. */
6110 exp = &im_expressions[i.imm_operands++];
6111 i.op[i.operands].imms = exp;
6112 i.types[i.operands] = imm8;
6113 i.operands++;
6114 /* If VexW1 is set, the first operand is the source and
6115 the second operand is encoded in the immediate operand. */
6116 if (i.tm.opcode_modifier.vexw == VEXW1)
6117 {
6118 source = 0;
6119 reg_slot = 1;
6120 }
6121 else
6122 {
6123 source = 1;
6124 reg_slot = 0;
6125 }
6126
6127 /* FMA swaps REG and NDS. */
6128 if (i.tm.cpu_flags.bitfield.cpufma)
6129 {
6130 unsigned int tmp;
6131 tmp = reg_slot;
6132 reg_slot = nds;
6133 nds = tmp;
6134 }
6135
6136 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6137 &regxmm)
6138 || operand_type_equal (&i.tm.operand_types[reg_slot],
6139 &regymm)
6140 || operand_type_equal (&i.tm.operand_types[reg_slot],
6141 &regzmm));
6142 exp->X_op = O_constant;
6143 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6144 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6145 }
6146 else
6147 {
6148 unsigned int imm_slot;
6149
6150 if (i.tm.opcode_modifier.vexw == VEXW0)
6151 {
6152 /* If VexW0 is set, the third operand is the source and
6153 the second operand is encoded in the immediate
6154 operand. */
6155 source = 2;
6156 reg_slot = 1;
6157 }
6158 else
6159 {
6160 /* VexW1 is set, the second operand is the source and
6161 the third operand is encoded in the immediate
6162 operand. */
6163 source = 1;
6164 reg_slot = 2;
6165 }
6166
6167 if (i.tm.opcode_modifier.immext)
6168 {
6169 /* When ImmExt is set, the immdiate byte is the last
6170 operand. */
6171 imm_slot = i.operands - 1;
6172 source--;
6173 reg_slot--;
6174 }
6175 else
6176 {
6177 imm_slot = 0;
6178
6179 /* Turn on Imm8 so that output_imm will generate it. */
6180 i.types[imm_slot].bitfield.imm8 = 1;
6181 }
6182
6183 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6184 &regxmm)
6185 || operand_type_equal (&i.tm.operand_types[reg_slot],
6186 &regymm)
6187 || operand_type_equal (&i.tm.operand_types[reg_slot],
6188 &regzmm));
6189 i.op[imm_slot].imms->X_add_number
6190 |= register_number (i.op[reg_slot].regs) << 4;
6191 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6192 }
6193
6194 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6195 || operand_type_equal (&i.tm.operand_types[nds],
6196 &regymm)
6197 || operand_type_equal (&i.tm.operand_types[nds],
6198 &regzmm));
6199 i.vex.register_specifier = i.op[nds].regs;
6200 }
6201 else
6202 source = dest = 0;
6203
6204 /* i.reg_operands MUST be the number of real register operands;
6205 implicit registers do not count. If there are 3 register
6206 operands, it must be a instruction with VexNDS. For a
6207 instruction with VexNDD, the destination register is encoded
6208 in VEX prefix. If there are 4 register operands, it must be
6209 a instruction with VEX prefix and 3 sources. */
6210 if (i.mem_operands == 0
6211 && ((i.reg_operands == 2
6212 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6213 || (i.reg_operands == 3
6214 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6215 || (i.reg_operands == 4 && vex_3_sources)))
6216 {
6217 switch (i.operands)
6218 {
6219 case 2:
6220 source = 0;
6221 break;
6222 case 3:
6223 /* When there are 3 operands, one of them may be immediate,
6224 which may be the first or the last operand. Otherwise,
6225 the first operand must be shift count register (cl) or it
6226 is an instruction with VexNDS. */
6227 gas_assert (i.imm_operands == 1
6228 || (i.imm_operands == 0
6229 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6230 || i.types[0].bitfield.shiftcount)));
6231 if (operand_type_check (i.types[0], imm)
6232 || i.types[0].bitfield.shiftcount)
6233 source = 1;
6234 else
6235 source = 0;
6236 break;
6237 case 4:
6238 /* When there are 4 operands, the first two must be 8bit
6239 immediate operands. The source operand will be the 3rd
6240 one.
6241
6242 For instructions with VexNDS, if the first operand
6243 an imm8, the source operand is the 2nd one. If the last
6244 operand is imm8, the source operand is the first one. */
6245 gas_assert ((i.imm_operands == 2
6246 && i.types[0].bitfield.imm8
6247 && i.types[1].bitfield.imm8)
6248 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6249 && i.imm_operands == 1
6250 && (i.types[0].bitfield.imm8
6251 || i.types[i.operands - 1].bitfield.imm8
6252 || i.rounding)));
6253 if (i.imm_operands == 2)
6254 source = 2;
6255 else
6256 {
6257 if (i.types[0].bitfield.imm8)
6258 source = 1;
6259 else
6260 source = 0;
6261 }
6262 break;
6263 case 5:
6264 if (i.tm.opcode_modifier.evex)
6265 {
6266 /* For EVEX instructions, when there are 5 operands, the
6267 first one must be immediate operand. If the second one
6268 is immediate operand, the source operand is the 3th
6269 one. If the last one is immediate operand, the source
6270 operand is the 2nd one. */
6271 gas_assert (i.imm_operands == 2
6272 && i.tm.opcode_modifier.sae
6273 && operand_type_check (i.types[0], imm));
6274 if (operand_type_check (i.types[1], imm))
6275 source = 2;
6276 else if (operand_type_check (i.types[4], imm))
6277 source = 1;
6278 else
6279 abort ();
6280 }
6281 break;
6282 default:
6283 abort ();
6284 }
6285
6286 if (!vex_3_sources)
6287 {
6288 dest = source + 1;
6289
6290 /* RC/SAE operand could be between DEST and SRC. That happens
6291 when one operand is GPR and the other one is XMM/YMM/ZMM
6292 register. */
6293 if (i.rounding && i.rounding->operand == (int) dest)
6294 dest++;
6295
6296 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6297 {
6298 /* For instructions with VexNDS, the register-only source
6299 operand must be 32/64bit integer, XMM, YMM or ZMM
6300 register. It is encoded in VEX prefix. We need to
6301 clear RegMem bit before calling operand_type_equal. */
6302
6303 i386_operand_type op;
6304 unsigned int vvvv;
6305
6306 /* Check register-only source operand when two source
6307 operands are swapped. */
6308 if (!i.tm.operand_types[source].bitfield.baseindex
6309 && i.tm.operand_types[dest].bitfield.baseindex)
6310 {
6311 vvvv = source;
6312 source = dest;
6313 }
6314 else
6315 vvvv = dest;
6316
6317 op = i.tm.operand_types[vvvv];
6318 op.bitfield.regmem = 0;
6319 if ((dest + 1) >= i.operands
6320 || (!op.bitfield.reg32
6321 && op.bitfield.reg64
6322 && !operand_type_equal (&op, &regxmm)
6323 && !operand_type_equal (&op, &regymm)
6324 && !operand_type_equal (&op, &regzmm)
6325 && !operand_type_equal (&op, &regmask)))
6326 abort ();
6327 i.vex.register_specifier = i.op[vvvv].regs;
6328 dest++;
6329 }
6330 }
6331
6332 i.rm.mode = 3;
6333 /* One of the register operands will be encoded in the i.tm.reg
6334 field, the other in the combined i.tm.mode and i.tm.regmem
6335 fields. If no form of this instruction supports a memory
6336 destination operand, then we assume the source operand may
6337 sometimes be a memory operand and so we need to store the
6338 destination in the i.rm.reg field. */
6339 if (!i.tm.operand_types[dest].bitfield.regmem
6340 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6341 {
6342 i.rm.reg = i.op[dest].regs->reg_num;
6343 i.rm.regmem = i.op[source].regs->reg_num;
6344 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6345 i.rex |= REX_R;
6346 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6347 i.vrex |= REX_R;
6348 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6349 i.rex |= REX_B;
6350 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6351 i.vrex |= REX_B;
6352 }
6353 else
6354 {
6355 i.rm.reg = i.op[source].regs->reg_num;
6356 i.rm.regmem = i.op[dest].regs->reg_num;
6357 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6358 i.rex |= REX_B;
6359 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6360 i.vrex |= REX_B;
6361 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6362 i.rex |= REX_R;
6363 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6364 i.vrex |= REX_R;
6365 }
6366 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6367 {
6368 if (!i.types[0].bitfield.control
6369 && !i.types[1].bitfield.control)
6370 abort ();
6371 i.rex &= ~(REX_R | REX_B);
6372 add_prefix (LOCK_PREFIX_OPCODE);
6373 }
6374 }
6375 else
6376 { /* If it's not 2 reg operands... */
6377 unsigned int mem;
6378
6379 if (i.mem_operands)
6380 {
6381 unsigned int fake_zero_displacement = 0;
6382 unsigned int op;
6383
6384 for (op = 0; op < i.operands; op++)
6385 if (operand_type_check (i.types[op], anymem))
6386 break;
6387 gas_assert (op < i.operands);
6388
6389 if (i.tm.opcode_modifier.vecsib)
6390 {
6391 if (i.index_reg->reg_num == RegEiz
6392 || i.index_reg->reg_num == RegRiz)
6393 abort ();
6394
6395 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6396 if (!i.base_reg)
6397 {
6398 i.sib.base = NO_BASE_REGISTER;
6399 i.sib.scale = i.log2_scale_factor;
6400 /* No Vec_Disp8 if there is no base. */
6401 i.types[op].bitfield.vec_disp8 = 0;
6402 i.types[op].bitfield.disp8 = 0;
6403 i.types[op].bitfield.disp16 = 0;
6404 i.types[op].bitfield.disp64 = 0;
6405 if (flag_code != CODE_64BIT)
6406 {
6407 /* Must be 32 bit */
6408 i.types[op].bitfield.disp32 = 1;
6409 i.types[op].bitfield.disp32s = 0;
6410 }
6411 else
6412 {
6413 i.types[op].bitfield.disp32 = 0;
6414 i.types[op].bitfield.disp32s = 1;
6415 }
6416 }
6417 i.sib.index = i.index_reg->reg_num;
6418 if ((i.index_reg->reg_flags & RegRex) != 0)
6419 i.rex |= REX_X;
6420 if ((i.index_reg->reg_flags & RegVRex) != 0)
6421 i.vrex |= REX_X;
6422 }
6423
6424 default_seg = &ds;
6425
6426 if (i.base_reg == 0)
6427 {
6428 i.rm.mode = 0;
6429 if (!i.disp_operands)
6430 {
6431 fake_zero_displacement = 1;
6432 /* Instructions with VSIB byte need 32bit displacement
6433 if there is no base register. */
6434 if (i.tm.opcode_modifier.vecsib)
6435 i.types[op].bitfield.disp32 = 1;
6436 }
6437 if (i.index_reg == 0)
6438 {
6439 gas_assert (!i.tm.opcode_modifier.vecsib);
6440 /* Operand is just <disp> */
6441 if (flag_code == CODE_64BIT)
6442 {
6443 /* 64bit mode overwrites the 32bit absolute
6444 addressing by RIP relative addressing and
6445 absolute addressing is encoded by one of the
6446 redundant SIB forms. */
6447 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6448 i.sib.base = NO_BASE_REGISTER;
6449 i.sib.index = NO_INDEX_REGISTER;
6450 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
6451 ? disp32s : disp32);
6452 }
6453 else if ((flag_code == CODE_16BIT)
6454 ^ (i.prefix[ADDR_PREFIX] != 0))
6455 {
6456 i.rm.regmem = NO_BASE_REGISTER_16;
6457 i.types[op] = disp16;
6458 }
6459 else
6460 {
6461 i.rm.regmem = NO_BASE_REGISTER;
6462 i.types[op] = disp32;
6463 }
6464 }
6465 else if (!i.tm.opcode_modifier.vecsib)
6466 {
6467 /* !i.base_reg && i.index_reg */
6468 if (i.index_reg->reg_num == RegEiz
6469 || i.index_reg->reg_num == RegRiz)
6470 i.sib.index = NO_INDEX_REGISTER;
6471 else
6472 i.sib.index = i.index_reg->reg_num;
6473 i.sib.base = NO_BASE_REGISTER;
6474 i.sib.scale = i.log2_scale_factor;
6475 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6476 /* No Vec_Disp8 if there is no base. */
6477 i.types[op].bitfield.vec_disp8 = 0;
6478 i.types[op].bitfield.disp8 = 0;
6479 i.types[op].bitfield.disp16 = 0;
6480 i.types[op].bitfield.disp64 = 0;
6481 if (flag_code != CODE_64BIT)
6482 {
6483 /* Must be 32 bit */
6484 i.types[op].bitfield.disp32 = 1;
6485 i.types[op].bitfield.disp32s = 0;
6486 }
6487 else
6488 {
6489 i.types[op].bitfield.disp32 = 0;
6490 i.types[op].bitfield.disp32s = 1;
6491 }
6492 if ((i.index_reg->reg_flags & RegRex) != 0)
6493 i.rex |= REX_X;
6494 }
6495 }
6496 /* RIP addressing for 64bit mode. */
6497 else if (i.base_reg->reg_num == RegRip ||
6498 i.base_reg->reg_num == RegEip)
6499 {
6500 gas_assert (!i.tm.opcode_modifier.vecsib);
6501 i.rm.regmem = NO_BASE_REGISTER;
6502 i.types[op].bitfield.disp8 = 0;
6503 i.types[op].bitfield.disp16 = 0;
6504 i.types[op].bitfield.disp32 = 0;
6505 i.types[op].bitfield.disp32s = 1;
6506 i.types[op].bitfield.disp64 = 0;
6507 i.types[op].bitfield.vec_disp8 = 0;
6508 i.flags[op] |= Operand_PCrel;
6509 if (! i.disp_operands)
6510 fake_zero_displacement = 1;
6511 }
6512 else if (i.base_reg->reg_type.bitfield.reg16)
6513 {
6514 gas_assert (!i.tm.opcode_modifier.vecsib);
6515 switch (i.base_reg->reg_num)
6516 {
6517 case 3: /* (%bx) */
6518 if (i.index_reg == 0)
6519 i.rm.regmem = 7;
6520 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6521 i.rm.regmem = i.index_reg->reg_num - 6;
6522 break;
6523 case 5: /* (%bp) */
6524 default_seg = &ss;
6525 if (i.index_reg == 0)
6526 {
6527 i.rm.regmem = 6;
6528 if (operand_type_check (i.types[op], disp) == 0)
6529 {
6530 /* fake (%bp) into 0(%bp) */
6531 if (i.tm.operand_types[op].bitfield.vec_disp8)
6532 i.types[op].bitfield.vec_disp8 = 1;
6533 else
6534 i.types[op].bitfield.disp8 = 1;
6535 fake_zero_displacement = 1;
6536 }
6537 }
6538 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6539 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6540 break;
6541 default: /* (%si) -> 4 or (%di) -> 5 */
6542 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6543 }
6544 i.rm.mode = mode_from_disp_size (i.types[op]);
6545 }
6546 else /* i.base_reg and 32/64 bit mode */
6547 {
6548 if (flag_code == CODE_64BIT
6549 && operand_type_check (i.types[op], disp))
6550 {
6551 i386_operand_type temp;
6552 operand_type_set (&temp, 0);
6553 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6554 temp.bitfield.vec_disp8
6555 = i.types[op].bitfield.vec_disp8;
6556 i.types[op] = temp;
6557 if (i.prefix[ADDR_PREFIX] == 0)
6558 i.types[op].bitfield.disp32s = 1;
6559 else
6560 i.types[op].bitfield.disp32 = 1;
6561 }
6562
6563 if (!i.tm.opcode_modifier.vecsib)
6564 i.rm.regmem = i.base_reg->reg_num;
6565 if ((i.base_reg->reg_flags & RegRex) != 0)
6566 i.rex |= REX_B;
6567 i.sib.base = i.base_reg->reg_num;
6568 /* x86-64 ignores REX prefix bit here to avoid decoder
6569 complications. */
6570 if (!(i.base_reg->reg_flags & RegRex)
6571 && (i.base_reg->reg_num == EBP_REG_NUM
6572 || i.base_reg->reg_num == ESP_REG_NUM))
6573 default_seg = &ss;
6574 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6575 {
6576 fake_zero_displacement = 1;
6577 if (i.tm.operand_types [op].bitfield.vec_disp8)
6578 i.types[op].bitfield.vec_disp8 = 1;
6579 else
6580 i.types[op].bitfield.disp8 = 1;
6581 }
6582 i.sib.scale = i.log2_scale_factor;
6583 if (i.index_reg == 0)
6584 {
6585 gas_assert (!i.tm.opcode_modifier.vecsib);
6586 /* <disp>(%esp) becomes two byte modrm with no index
6587 register. We've already stored the code for esp
6588 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6589 Any base register besides %esp will not use the
6590 extra modrm byte. */
6591 i.sib.index = NO_INDEX_REGISTER;
6592 }
6593 else if (!i.tm.opcode_modifier.vecsib)
6594 {
6595 if (i.index_reg->reg_num == RegEiz
6596 || i.index_reg->reg_num == RegRiz)
6597 i.sib.index = NO_INDEX_REGISTER;
6598 else
6599 i.sib.index = i.index_reg->reg_num;
6600 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6601 if ((i.index_reg->reg_flags & RegRex) != 0)
6602 i.rex |= REX_X;
6603 }
6604
6605 if (i.disp_operands
6606 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6607 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6608 i.rm.mode = 0;
6609 else
6610 {
6611 if (!fake_zero_displacement
6612 && !i.disp_operands
6613 && i.disp_encoding)
6614 {
6615 fake_zero_displacement = 1;
6616 if (i.disp_encoding == disp_encoding_8bit)
6617 i.types[op].bitfield.disp8 = 1;
6618 else
6619 i.types[op].bitfield.disp32 = 1;
6620 }
6621 i.rm.mode = mode_from_disp_size (i.types[op]);
6622 }
6623 }
6624
6625 if (fake_zero_displacement)
6626 {
6627 /* Fakes a zero displacement assuming that i.types[op]
6628 holds the correct displacement size. */
6629 expressionS *exp;
6630
6631 gas_assert (i.op[op].disps == 0);
6632 exp = &disp_expressions[i.disp_operands++];
6633 i.op[op].disps = exp;
6634 exp->X_op = O_constant;
6635 exp->X_add_number = 0;
6636 exp->X_add_symbol = (symbolS *) 0;
6637 exp->X_op_symbol = (symbolS *) 0;
6638 }
6639
6640 mem = op;
6641 }
6642 else
6643 mem = ~0;
6644
6645 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
6646 {
6647 if (operand_type_check (i.types[0], imm))
6648 i.vex.register_specifier = NULL;
6649 else
6650 {
6651 /* VEX.vvvv encodes one of the sources when the first
6652 operand is not an immediate. */
6653 if (i.tm.opcode_modifier.vexw == VEXW0)
6654 i.vex.register_specifier = i.op[0].regs;
6655 else
6656 i.vex.register_specifier = i.op[1].regs;
6657 }
6658
6659 /* Destination is a XMM register encoded in the ModRM.reg
6660 and VEX.R bit. */
6661 i.rm.reg = i.op[2].regs->reg_num;
6662 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6663 i.rex |= REX_R;
6664
6665 /* ModRM.rm and VEX.B encodes the other source. */
6666 if (!i.mem_operands)
6667 {
6668 i.rm.mode = 3;
6669
6670 if (i.tm.opcode_modifier.vexw == VEXW0)
6671 i.rm.regmem = i.op[1].regs->reg_num;
6672 else
6673 i.rm.regmem = i.op[0].regs->reg_num;
6674
6675 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6676 i.rex |= REX_B;
6677 }
6678 }
6679 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
6680 {
6681 i.vex.register_specifier = i.op[2].regs;
6682 if (!i.mem_operands)
6683 {
6684 i.rm.mode = 3;
6685 i.rm.regmem = i.op[1].regs->reg_num;
6686 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6687 i.rex |= REX_B;
6688 }
6689 }
6690 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6691 (if any) based on i.tm.extension_opcode. Again, we must be
6692 careful to make sure that segment/control/debug/test/MMX
6693 registers are coded into the i.rm.reg field. */
6694 else if (i.reg_operands)
6695 {
6696 unsigned int op;
6697 unsigned int vex_reg = ~0;
6698
6699 for (op = 0; op < i.operands; op++)
6700 if (i.types[op].bitfield.reg8
6701 || i.types[op].bitfield.reg16
6702 || i.types[op].bitfield.reg32
6703 || i.types[op].bitfield.reg64
6704 || i.types[op].bitfield.regmmx
6705 || i.types[op].bitfield.regxmm
6706 || i.types[op].bitfield.regymm
6707 || i.types[op].bitfield.regbnd
6708 || i.types[op].bitfield.regzmm
6709 || i.types[op].bitfield.regmask
6710 || i.types[op].bitfield.sreg2
6711 || i.types[op].bitfield.sreg3
6712 || i.types[op].bitfield.control
6713 || i.types[op].bitfield.debug
6714 || i.types[op].bitfield.test)
6715 break;
6716
6717 if (vex_3_sources)
6718 op = dest;
6719 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6720 {
6721 /* For instructions with VexNDS, the register-only
6722 source operand is encoded in VEX prefix. */
6723 gas_assert (mem != (unsigned int) ~0);
6724
6725 if (op > mem)
6726 {
6727 vex_reg = op++;
6728 gas_assert (op < i.operands);
6729 }
6730 else
6731 {
6732 /* Check register-only source operand when two source
6733 operands are swapped. */
6734 if (!i.tm.operand_types[op].bitfield.baseindex
6735 && i.tm.operand_types[op + 1].bitfield.baseindex)
6736 {
6737 vex_reg = op;
6738 op += 2;
6739 gas_assert (mem == (vex_reg + 1)
6740 && op < i.operands);
6741 }
6742 else
6743 {
6744 vex_reg = op + 1;
6745 gas_assert (vex_reg < i.operands);
6746 }
6747 }
6748 }
6749 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
6750 {
6751 /* For instructions with VexNDD, the register destination
6752 is encoded in VEX prefix. */
6753 if (i.mem_operands == 0)
6754 {
6755 /* There is no memory operand. */
6756 gas_assert ((op + 2) == i.operands);
6757 vex_reg = op + 1;
6758 }
6759 else
6760 {
6761 /* There are only 2 operands. */
6762 gas_assert (op < 2 && i.operands == 2);
6763 vex_reg = 1;
6764 }
6765 }
6766 else
6767 gas_assert (op < i.operands);
6768
6769 if (vex_reg != (unsigned int) ~0)
6770 {
6771 i386_operand_type *type = &i.tm.operand_types[vex_reg];
6772
6773 if (type->bitfield.reg32 != 1
6774 && type->bitfield.reg64 != 1
6775 && !operand_type_equal (type, &regxmm)
6776 && !operand_type_equal (type, &regymm)
6777 && !operand_type_equal (type, &regzmm)
6778 && !operand_type_equal (type, &regmask))
6779 abort ();
6780
6781 i.vex.register_specifier = i.op[vex_reg].regs;
6782 }
6783
6784 /* Don't set OP operand twice. */
6785 if (vex_reg != op)
6786 {
6787 /* If there is an extension opcode to put here, the
6788 register number must be put into the regmem field. */
6789 if (i.tm.extension_opcode != None)
6790 {
6791 i.rm.regmem = i.op[op].regs->reg_num;
6792 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6793 i.rex |= REX_B;
6794 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6795 i.vrex |= REX_B;
6796 }
6797 else
6798 {
6799 i.rm.reg = i.op[op].regs->reg_num;
6800 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6801 i.rex |= REX_R;
6802 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6803 i.vrex |= REX_R;
6804 }
6805 }
6806
6807 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6808 must set it to 3 to indicate this is a register operand
6809 in the regmem field. */
6810 if (!i.mem_operands)
6811 i.rm.mode = 3;
6812 }
6813
6814 /* Fill in i.rm.reg field with extension opcode (if any). */
6815 if (i.tm.extension_opcode != None)
6816 i.rm.reg = i.tm.extension_opcode;
6817 }
6818 return default_seg;
6819 }
6820
6821 static void
6822 output_branch (void)
6823 {
6824 char *p;
6825 int size;
6826 int code16;
6827 int prefix;
6828 relax_substateT subtype;
6829 symbolS *sym;
6830 offsetT off;
6831
6832 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
6833 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
6834
6835 prefix = 0;
6836 if (i.prefix[DATA_PREFIX] != 0)
6837 {
6838 prefix = 1;
6839 i.prefixes -= 1;
6840 code16 ^= CODE16;
6841 }
6842 /* Pentium4 branch hints. */
6843 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6844 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6845 {
6846 prefix++;
6847 i.prefixes--;
6848 }
6849 if (i.prefix[REX_PREFIX] != 0)
6850 {
6851 prefix++;
6852 i.prefixes--;
6853 }
6854
6855 /* BND prefixed jump. */
6856 if (i.prefix[BND_PREFIX] != 0)
6857 {
6858 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6859 i.prefixes -= 1;
6860 }
6861
6862 if (i.prefixes != 0 && !intel_syntax)
6863 as_warn (_("skipping prefixes on this instruction"));
6864
6865 /* It's always a symbol; End frag & setup for relax.
6866 Make sure there is enough room in this frag for the largest
6867 instruction we may generate in md_convert_frag. This is 2
6868 bytes for the opcode and room for the prefix and largest
6869 displacement. */
6870 frag_grow (prefix + 2 + 4);
6871 /* Prefix and 1 opcode byte go in fr_fix. */
6872 p = frag_more (prefix + 1);
6873 if (i.prefix[DATA_PREFIX] != 0)
6874 *p++ = DATA_PREFIX_OPCODE;
6875 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6876 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6877 *p++ = i.prefix[SEG_PREFIX];
6878 if (i.prefix[REX_PREFIX] != 0)
6879 *p++ = i.prefix[REX_PREFIX];
6880 *p = i.tm.base_opcode;
6881
6882 if ((unsigned char) *p == JUMP_PC_RELATIVE)
6883 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
6884 else if (cpu_arch_flags.bitfield.cpui386)
6885 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
6886 else
6887 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
6888 subtype |= code16;
6889
6890 sym = i.op[0].disps->X_add_symbol;
6891 off = i.op[0].disps->X_add_number;
6892
6893 if (i.op[0].disps->X_op != O_constant
6894 && i.op[0].disps->X_op != O_symbol)
6895 {
6896 /* Handle complex expressions. */
6897 sym = make_expr_symbol (i.op[0].disps);
6898 off = 0;
6899 }
6900
6901 /* 1 possible extra opcode + 4 byte displacement go in var part.
6902 Pass reloc in fr_var. */
6903 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
6904 }
6905
6906 static void
6907 output_jump (void)
6908 {
6909 char *p;
6910 int size;
6911 fixS *fixP;
6912
6913 if (i.tm.opcode_modifier.jumpbyte)
6914 {
6915 /* This is a loop or jecxz type instruction. */
6916 size = 1;
6917 if (i.prefix[ADDR_PREFIX] != 0)
6918 {
6919 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
6920 i.prefixes -= 1;
6921 }
6922 /* Pentium4 branch hints. */
6923 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6924 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6925 {
6926 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
6927 i.prefixes--;
6928 }
6929 }
6930 else
6931 {
6932 int code16;
6933
6934 code16 = 0;
6935 if (flag_code == CODE_16BIT)
6936 code16 = CODE16;
6937
6938 if (i.prefix[DATA_PREFIX] != 0)
6939 {
6940 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
6941 i.prefixes -= 1;
6942 code16 ^= CODE16;
6943 }
6944
6945 size = 4;
6946 if (code16)
6947 size = 2;
6948 }
6949
6950 if (i.prefix[REX_PREFIX] != 0)
6951 {
6952 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
6953 i.prefixes -= 1;
6954 }
6955
6956 /* BND prefixed jump. */
6957 if (i.prefix[BND_PREFIX] != 0)
6958 {
6959 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6960 i.prefixes -= 1;
6961 }
6962
6963 if (i.prefixes != 0 && !intel_syntax)
6964 as_warn (_("skipping prefixes on this instruction"));
6965
6966 p = frag_more (i.tm.opcode_length + size);
6967 switch (i.tm.opcode_length)
6968 {
6969 case 2:
6970 *p++ = i.tm.base_opcode >> 8;
6971 case 1:
6972 *p++ = i.tm.base_opcode;
6973 break;
6974 default:
6975 abort ();
6976 }
6977
6978 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6979 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
6980
6981 /* All jumps handled here are signed, but don't use a signed limit
6982 check for 32 and 16 bit jumps as we want to allow wrap around at
6983 4G and 64k respectively. */
6984 if (size == 1)
6985 fixP->fx_signed = 1;
6986 }
6987
6988 static void
6989 output_interseg_jump (void)
6990 {
6991 char *p;
6992 int size;
6993 int prefix;
6994 int code16;
6995
6996 code16 = 0;
6997 if (flag_code == CODE_16BIT)
6998 code16 = CODE16;
6999
7000 prefix = 0;
7001 if (i.prefix[DATA_PREFIX] != 0)
7002 {
7003 prefix = 1;
7004 i.prefixes -= 1;
7005 code16 ^= CODE16;
7006 }
7007 if (i.prefix[REX_PREFIX] != 0)
7008 {
7009 prefix++;
7010 i.prefixes -= 1;
7011 }
7012
7013 size = 4;
7014 if (code16)
7015 size = 2;
7016
7017 if (i.prefixes != 0 && !intel_syntax)
7018 as_warn (_("skipping prefixes on this instruction"));
7019
7020 /* 1 opcode; 2 segment; offset */
7021 p = frag_more (prefix + 1 + 2 + size);
7022
7023 if (i.prefix[DATA_PREFIX] != 0)
7024 *p++ = DATA_PREFIX_OPCODE;
7025
7026 if (i.prefix[REX_PREFIX] != 0)
7027 *p++ = i.prefix[REX_PREFIX];
7028
7029 *p++ = i.tm.base_opcode;
7030 if (i.op[1].imms->X_op == O_constant)
7031 {
7032 offsetT n = i.op[1].imms->X_add_number;
7033
7034 if (size == 2
7035 && !fits_in_unsigned_word (n)
7036 && !fits_in_signed_word (n))
7037 {
7038 as_bad (_("16-bit jump out of range"));
7039 return;
7040 }
7041 md_number_to_chars (p, n, size);
7042 }
7043 else
7044 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7045 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7046 if (i.op[0].imms->X_op != O_constant)
7047 as_bad (_("can't handle non absolute segment in `%s'"),
7048 i.tm.name);
7049 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7050 }
7051
7052 static void
7053 output_insn (void)
7054 {
7055 fragS *insn_start_frag;
7056 offsetT insn_start_off;
7057
7058 /* Tie dwarf2 debug info to the address at the start of the insn.
7059 We can't do this after the insn has been output as the current
7060 frag may have been closed off. eg. by frag_var. */
7061 dwarf2_emit_insn (0);
7062
7063 insn_start_frag = frag_now;
7064 insn_start_off = frag_now_fix ();
7065
7066 /* Output jumps. */
7067 if (i.tm.opcode_modifier.jump)
7068 output_branch ();
7069 else if (i.tm.opcode_modifier.jumpbyte
7070 || i.tm.opcode_modifier.jumpdword)
7071 output_jump ();
7072 else if (i.tm.opcode_modifier.jumpintersegment)
7073 output_interseg_jump ();
7074 else
7075 {
7076 /* Output normal instructions here. */
7077 char *p;
7078 unsigned char *q;
7079 unsigned int j;
7080 unsigned int prefix;
7081
7082 if (avoid_fence
7083 && i.tm.base_opcode == 0xfae
7084 && i.operands == 1
7085 && i.imm_operands == 1
7086 && (i.op[0].imms->X_add_number == 0xe8
7087 || i.op[0].imms->X_add_number == 0xf0
7088 || i.op[0].imms->X_add_number == 0xf8))
7089 {
7090 /* Encode lfence, mfence, and sfence as
7091 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7092 offsetT val = 0x240483f0ULL;
7093 p = frag_more (5);
7094 md_number_to_chars (p, val, 5);
7095 return;
7096 }
7097
7098 /* Some processors fail on LOCK prefix. This options makes
7099 assembler ignore LOCK prefix and serves as a workaround. */
7100 if (omit_lock_prefix)
7101 {
7102 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7103 return;
7104 i.prefix[LOCK_PREFIX] = 0;
7105 }
7106
7107 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7108 don't need the explicit prefix. */
7109 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7110 {
7111 switch (i.tm.opcode_length)
7112 {
7113 case 3:
7114 if (i.tm.base_opcode & 0xff000000)
7115 {
7116 prefix = (i.tm.base_opcode >> 24) & 0xff;
7117 goto check_prefix;
7118 }
7119 break;
7120 case 2:
7121 if ((i.tm.base_opcode & 0xff0000) != 0)
7122 {
7123 prefix = (i.tm.base_opcode >> 16) & 0xff;
7124 if (i.tm.cpu_flags.bitfield.cpupadlock)
7125 {
7126 check_prefix:
7127 if (prefix != REPE_PREFIX_OPCODE
7128 || (i.prefix[REP_PREFIX]
7129 != REPE_PREFIX_OPCODE))
7130 add_prefix (prefix);
7131 }
7132 else
7133 add_prefix (prefix);
7134 }
7135 break;
7136 case 1:
7137 break;
7138 default:
7139 abort ();
7140 }
7141
7142 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7143 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7144 R_X86_64_GOTTPOFF relocation so that linker can safely
7145 perform IE->LE optimization. */
7146 if (x86_elf_abi == X86_64_X32_ABI
7147 && i.operands == 2
7148 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7149 && i.prefix[REX_PREFIX] == 0)
7150 add_prefix (REX_OPCODE);
7151 #endif
7152
7153 /* The prefix bytes. */
7154 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7155 if (*q)
7156 FRAG_APPEND_1_CHAR (*q);
7157 }
7158 else
7159 {
7160 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7161 if (*q)
7162 switch (j)
7163 {
7164 case REX_PREFIX:
7165 /* REX byte is encoded in VEX prefix. */
7166 break;
7167 case SEG_PREFIX:
7168 case ADDR_PREFIX:
7169 FRAG_APPEND_1_CHAR (*q);
7170 break;
7171 default:
7172 /* There should be no other prefixes for instructions
7173 with VEX prefix. */
7174 abort ();
7175 }
7176
7177 /* For EVEX instructions i.vrex should become 0 after
7178 build_evex_prefix. For VEX instructions upper 16 registers
7179 aren't available, so VREX should be 0. */
7180 if (i.vrex)
7181 abort ();
7182 /* Now the VEX prefix. */
7183 p = frag_more (i.vex.length);
7184 for (j = 0; j < i.vex.length; j++)
7185 p[j] = i.vex.bytes[j];
7186 }
7187
7188 /* Now the opcode; be careful about word order here! */
7189 if (i.tm.opcode_length == 1)
7190 {
7191 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7192 }
7193 else
7194 {
7195 switch (i.tm.opcode_length)
7196 {
7197 case 4:
7198 p = frag_more (4);
7199 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7200 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7201 break;
7202 case 3:
7203 p = frag_more (3);
7204 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7205 break;
7206 case 2:
7207 p = frag_more (2);
7208 break;
7209 default:
7210 abort ();
7211 break;
7212 }
7213
7214 /* Put out high byte first: can't use md_number_to_chars! */
7215 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7216 *p = i.tm.base_opcode & 0xff;
7217 }
7218
7219 /* Now the modrm byte and sib byte (if present). */
7220 if (i.tm.opcode_modifier.modrm)
7221 {
7222 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7223 | i.rm.reg << 3
7224 | i.rm.mode << 6));
7225 /* If i.rm.regmem == ESP (4)
7226 && i.rm.mode != (Register mode)
7227 && not 16 bit
7228 ==> need second modrm byte. */
7229 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7230 && i.rm.mode != 3
7231 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
7232 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7233 | i.sib.index << 3
7234 | i.sib.scale << 6));
7235 }
7236
7237 if (i.disp_operands)
7238 output_disp (insn_start_frag, insn_start_off);
7239
7240 if (i.imm_operands)
7241 output_imm (insn_start_frag, insn_start_off);
7242 }
7243
7244 #ifdef DEBUG386
7245 if (flag_debug)
7246 {
7247 pi ("" /*line*/, &i);
7248 }
7249 #endif /* DEBUG386 */
7250 }
7251
7252 /* Return the size of the displacement operand N. */
7253
7254 static int
7255 disp_size (unsigned int n)
7256 {
7257 int size = 4;
7258
7259 /* Vec_Disp8 has to be 8bit. */
7260 if (i.types[n].bitfield.vec_disp8)
7261 size = 1;
7262 else if (i.types[n].bitfield.disp64)
7263 size = 8;
7264 else if (i.types[n].bitfield.disp8)
7265 size = 1;
7266 else if (i.types[n].bitfield.disp16)
7267 size = 2;
7268 return size;
7269 }
7270
7271 /* Return the size of the immediate operand N. */
7272
7273 static int
7274 imm_size (unsigned int n)
7275 {
7276 int size = 4;
7277 if (i.types[n].bitfield.imm64)
7278 size = 8;
7279 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7280 size = 1;
7281 else if (i.types[n].bitfield.imm16)
7282 size = 2;
7283 return size;
7284 }
7285
7286 static void
7287 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7288 {
7289 char *p;
7290 unsigned int n;
7291
7292 for (n = 0; n < i.operands; n++)
7293 {
7294 if (i.types[n].bitfield.vec_disp8
7295 || operand_type_check (i.types[n], disp))
7296 {
7297 if (i.op[n].disps->X_op == O_constant)
7298 {
7299 int size = disp_size (n);
7300 offsetT val = i.op[n].disps->X_add_number;
7301
7302 if (i.types[n].bitfield.vec_disp8)
7303 val >>= i.memshift;
7304 val = offset_in_range (val, size);
7305 p = frag_more (size);
7306 md_number_to_chars (p, val, size);
7307 }
7308 else
7309 {
7310 enum bfd_reloc_code_real reloc_type;
7311 int size = disp_size (n);
7312 int sign = i.types[n].bitfield.disp32s;
7313 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7314 fixS *fixP;
7315
7316 /* We can't have 8 bit displacement here. */
7317 gas_assert (!i.types[n].bitfield.disp8);
7318
7319 /* The PC relative address is computed relative
7320 to the instruction boundary, so in case immediate
7321 fields follows, we need to adjust the value. */
7322 if (pcrel && i.imm_operands)
7323 {
7324 unsigned int n1;
7325 int sz = 0;
7326
7327 for (n1 = 0; n1 < i.operands; n1++)
7328 if (operand_type_check (i.types[n1], imm))
7329 {
7330 /* Only one immediate is allowed for PC
7331 relative address. */
7332 gas_assert (sz == 0);
7333 sz = imm_size (n1);
7334 i.op[n].disps->X_add_number -= sz;
7335 }
7336 /* We should find the immediate. */
7337 gas_assert (sz != 0);
7338 }
7339
7340 p = frag_more (size);
7341 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7342 if (GOT_symbol
7343 && GOT_symbol == i.op[n].disps->X_add_symbol
7344 && (((reloc_type == BFD_RELOC_32
7345 || reloc_type == BFD_RELOC_X86_64_32S
7346 || (reloc_type == BFD_RELOC_64
7347 && object_64bit))
7348 && (i.op[n].disps->X_op == O_symbol
7349 || (i.op[n].disps->X_op == O_add
7350 && ((symbol_get_value_expression
7351 (i.op[n].disps->X_op_symbol)->X_op)
7352 == O_subtract))))
7353 || reloc_type == BFD_RELOC_32_PCREL))
7354 {
7355 offsetT add;
7356
7357 if (insn_start_frag == frag_now)
7358 add = (p - frag_now->fr_literal) - insn_start_off;
7359 else
7360 {
7361 fragS *fr;
7362
7363 add = insn_start_frag->fr_fix - insn_start_off;
7364 for (fr = insn_start_frag->fr_next;
7365 fr && fr != frag_now; fr = fr->fr_next)
7366 add += fr->fr_fix;
7367 add += p - frag_now->fr_literal;
7368 }
7369
7370 if (!object_64bit)
7371 {
7372 reloc_type = BFD_RELOC_386_GOTPC;
7373 i.op[n].imms->X_add_number += add;
7374 }
7375 else if (reloc_type == BFD_RELOC_64)
7376 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7377 else
7378 /* Don't do the adjustment for x86-64, as there
7379 the pcrel addressing is relative to the _next_
7380 insn, and that is taken care of in other code. */
7381 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7382 }
7383 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7384 size, i.op[n].disps, pcrel,
7385 reloc_type);
7386 /* Check for "call/jmp *mem", "mov mem, %reg",
7387 "test %reg, mem" and "binop mem, %reg" where binop
7388 is one of adc, add, and, cmp, or, sbb, sub, xor
7389 instructions. Always generate R_386_GOT32X for
7390 "sym*GOT" operand in 32-bit mode. */
7391 if ((generate_relax_relocations
7392 || (!object_64bit
7393 && i.rm.mode == 0
7394 && i.rm.regmem == 5))
7395 && (i.rm.mode == 2
7396 || (i.rm.mode == 0 && i.rm.regmem == 5))
7397 && ((i.operands == 1
7398 && i.tm.base_opcode == 0xff
7399 && (i.rm.reg == 2 || i.rm.reg == 4))
7400 || (i.operands == 2
7401 && (i.tm.base_opcode == 0x8b
7402 || i.tm.base_opcode == 0x85
7403 || (i.tm.base_opcode & 0xc7) == 0x03))))
7404 {
7405 if (object_64bit)
7406 {
7407 fixP->fx_tcbit = i.rex != 0;
7408 if (i.base_reg
7409 && (i.base_reg->reg_num == RegRip
7410 || i.base_reg->reg_num == RegEip))
7411 fixP->fx_tcbit2 = 1;
7412 }
7413 else
7414 fixP->fx_tcbit2 = 1;
7415 }
7416 }
7417 }
7418 }
7419 }
7420
7421 static void
7422 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7423 {
7424 char *p;
7425 unsigned int n;
7426
7427 for (n = 0; n < i.operands; n++)
7428 {
7429 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7430 if (i.rounding && (int) n == i.rounding->operand)
7431 continue;
7432
7433 if (operand_type_check (i.types[n], imm))
7434 {
7435 if (i.op[n].imms->X_op == O_constant)
7436 {
7437 int size = imm_size (n);
7438 offsetT val;
7439
7440 val = offset_in_range (i.op[n].imms->X_add_number,
7441 size);
7442 p = frag_more (size);
7443 md_number_to_chars (p, val, size);
7444 }
7445 else
7446 {
7447 /* Not absolute_section.
7448 Need a 32-bit fixup (don't support 8bit
7449 non-absolute imms). Try to support other
7450 sizes ... */
7451 enum bfd_reloc_code_real reloc_type;
7452 int size = imm_size (n);
7453 int sign;
7454
7455 if (i.types[n].bitfield.imm32s
7456 && (i.suffix == QWORD_MNEM_SUFFIX
7457 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7458 sign = 1;
7459 else
7460 sign = 0;
7461
7462 p = frag_more (size);
7463 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7464
7465 /* This is tough to explain. We end up with this one if we
7466 * have operands that look like
7467 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7468 * obtain the absolute address of the GOT, and it is strongly
7469 * preferable from a performance point of view to avoid using
7470 * a runtime relocation for this. The actual sequence of
7471 * instructions often look something like:
7472 *
7473 * call .L66
7474 * .L66:
7475 * popl %ebx
7476 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7477 *
7478 * The call and pop essentially return the absolute address
7479 * of the label .L66 and store it in %ebx. The linker itself
7480 * will ultimately change the first operand of the addl so
7481 * that %ebx points to the GOT, but to keep things simple, the
7482 * .o file must have this operand set so that it generates not
7483 * the absolute address of .L66, but the absolute address of
7484 * itself. This allows the linker itself simply treat a GOTPC
7485 * relocation as asking for a pcrel offset to the GOT to be
7486 * added in, and the addend of the relocation is stored in the
7487 * operand field for the instruction itself.
7488 *
7489 * Our job here is to fix the operand so that it would add
7490 * the correct offset so that %ebx would point to itself. The
7491 * thing that is tricky is that .-.L66 will point to the
7492 * beginning of the instruction, so we need to further modify
7493 * the operand so that it will point to itself. There are
7494 * other cases where you have something like:
7495 *
7496 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7497 *
7498 * and here no correction would be required. Internally in
7499 * the assembler we treat operands of this form as not being
7500 * pcrel since the '.' is explicitly mentioned, and I wonder
7501 * whether it would simplify matters to do it this way. Who
7502 * knows. In earlier versions of the PIC patches, the
7503 * pcrel_adjust field was used to store the correction, but
7504 * since the expression is not pcrel, I felt it would be
7505 * confusing to do it this way. */
7506
7507 if ((reloc_type == BFD_RELOC_32
7508 || reloc_type == BFD_RELOC_X86_64_32S
7509 || reloc_type == BFD_RELOC_64)
7510 && GOT_symbol
7511 && GOT_symbol == i.op[n].imms->X_add_symbol
7512 && (i.op[n].imms->X_op == O_symbol
7513 || (i.op[n].imms->X_op == O_add
7514 && ((symbol_get_value_expression
7515 (i.op[n].imms->X_op_symbol)->X_op)
7516 == O_subtract))))
7517 {
7518 offsetT add;
7519
7520 if (insn_start_frag == frag_now)
7521 add = (p - frag_now->fr_literal) - insn_start_off;
7522 else
7523 {
7524 fragS *fr;
7525
7526 add = insn_start_frag->fr_fix - insn_start_off;
7527 for (fr = insn_start_frag->fr_next;
7528 fr && fr != frag_now; fr = fr->fr_next)
7529 add += fr->fr_fix;
7530 add += p - frag_now->fr_literal;
7531 }
7532
7533 if (!object_64bit)
7534 reloc_type = BFD_RELOC_386_GOTPC;
7535 else if (size == 4)
7536 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7537 else if (size == 8)
7538 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7539 i.op[n].imms->X_add_number += add;
7540 }
7541 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7542 i.op[n].imms, 0, reloc_type);
7543 }
7544 }
7545 }
7546 }
7547 \f
7548 /* x86_cons_fix_new is called via the expression parsing code when a
7549 reloc is needed. We use this hook to get the correct .got reloc. */
7550 static int cons_sign = -1;
7551
7552 void
7553 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7554 expressionS *exp, bfd_reloc_code_real_type r)
7555 {
7556 r = reloc (len, 0, cons_sign, r);
7557
7558 #ifdef TE_PE
7559 if (exp->X_op == O_secrel)
7560 {
7561 exp->X_op = O_symbol;
7562 r = BFD_RELOC_32_SECREL;
7563 }
7564 #endif
7565
7566 fix_new_exp (frag, off, len, exp, 0, r);
7567 }
7568
7569 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7570 purpose of the `.dc.a' internal pseudo-op. */
7571
7572 int
7573 x86_address_bytes (void)
7574 {
7575 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7576 return 4;
7577 return stdoutput->arch_info->bits_per_address / 8;
7578 }
7579
7580 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7581 || defined (LEX_AT)
7582 # define lex_got(reloc, adjust, types) NULL
7583 #else
7584 /* Parse operands of the form
7585 <symbol>@GOTOFF+<nnn>
7586 and similar .plt or .got references.
7587
7588 If we find one, set up the correct relocation in RELOC and copy the
7589 input string, minus the `@GOTOFF' into a malloc'd buffer for
7590 parsing by the calling routine. Return this buffer, and if ADJUST
7591 is non-null set it to the length of the string we removed from the
7592 input line. Otherwise return NULL. */
7593 static char *
7594 lex_got (enum bfd_reloc_code_real *rel,
7595 int *adjust,
7596 i386_operand_type *types)
7597 {
7598 /* Some of the relocations depend on the size of what field is to
7599 be relocated. But in our callers i386_immediate and i386_displacement
7600 we don't yet know the operand size (this will be set by insn
7601 matching). Hence we record the word32 relocation here,
7602 and adjust the reloc according to the real size in reloc(). */
7603 static const struct {
7604 const char *str;
7605 int len;
7606 const enum bfd_reloc_code_real rel[2];
7607 const i386_operand_type types64;
7608 } gotrel[] = {
7609 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7610 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7611 BFD_RELOC_SIZE32 },
7612 OPERAND_TYPE_IMM32_64 },
7613 #endif
7614 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7615 BFD_RELOC_X86_64_PLTOFF64 },
7616 OPERAND_TYPE_IMM64 },
7617 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7618 BFD_RELOC_X86_64_PLT32 },
7619 OPERAND_TYPE_IMM32_32S_DISP32 },
7620 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7621 BFD_RELOC_X86_64_GOTPLT64 },
7622 OPERAND_TYPE_IMM64_DISP64 },
7623 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7624 BFD_RELOC_X86_64_GOTOFF64 },
7625 OPERAND_TYPE_IMM64_DISP64 },
7626 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7627 BFD_RELOC_X86_64_GOTPCREL },
7628 OPERAND_TYPE_IMM32_32S_DISP32 },
7629 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7630 BFD_RELOC_X86_64_TLSGD },
7631 OPERAND_TYPE_IMM32_32S_DISP32 },
7632 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7633 _dummy_first_bfd_reloc_code_real },
7634 OPERAND_TYPE_NONE },
7635 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7636 BFD_RELOC_X86_64_TLSLD },
7637 OPERAND_TYPE_IMM32_32S_DISP32 },
7638 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7639 BFD_RELOC_X86_64_GOTTPOFF },
7640 OPERAND_TYPE_IMM32_32S_DISP32 },
7641 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7642 BFD_RELOC_X86_64_TPOFF32 },
7643 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7644 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7645 _dummy_first_bfd_reloc_code_real },
7646 OPERAND_TYPE_NONE },
7647 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7648 BFD_RELOC_X86_64_DTPOFF32 },
7649 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7650 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7651 _dummy_first_bfd_reloc_code_real },
7652 OPERAND_TYPE_NONE },
7653 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7654 _dummy_first_bfd_reloc_code_real },
7655 OPERAND_TYPE_NONE },
7656 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7657 BFD_RELOC_X86_64_GOT32 },
7658 OPERAND_TYPE_IMM32_32S_64_DISP32 },
7659 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7660 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
7661 OPERAND_TYPE_IMM32_32S_DISP32 },
7662 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7663 BFD_RELOC_X86_64_TLSDESC_CALL },
7664 OPERAND_TYPE_IMM32_32S_DISP32 },
7665 };
7666 char *cp;
7667 unsigned int j;
7668
7669 #if defined (OBJ_MAYBE_ELF)
7670 if (!IS_ELF)
7671 return NULL;
7672 #endif
7673
7674 for (cp = input_line_pointer; *cp != '@'; cp++)
7675 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7676 return NULL;
7677
7678 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7679 {
7680 int len = gotrel[j].len;
7681 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7682 {
7683 if (gotrel[j].rel[object_64bit] != 0)
7684 {
7685 int first, second;
7686 char *tmpbuf, *past_reloc;
7687
7688 *rel = gotrel[j].rel[object_64bit];
7689
7690 if (types)
7691 {
7692 if (flag_code != CODE_64BIT)
7693 {
7694 types->bitfield.imm32 = 1;
7695 types->bitfield.disp32 = 1;
7696 }
7697 else
7698 *types = gotrel[j].types64;
7699 }
7700
7701 if (j != 0 && GOT_symbol == NULL)
7702 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7703
7704 /* The length of the first part of our input line. */
7705 first = cp - input_line_pointer;
7706
7707 /* The second part goes from after the reloc token until
7708 (and including) an end_of_line char or comma. */
7709 past_reloc = cp + 1 + len;
7710 cp = past_reloc;
7711 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7712 ++cp;
7713 second = cp + 1 - past_reloc;
7714
7715 /* Allocate and copy string. The trailing NUL shouldn't
7716 be necessary, but be safe. */
7717 tmpbuf = XNEWVEC (char, first + second + 2);
7718 memcpy (tmpbuf, input_line_pointer, first);
7719 if (second != 0 && *past_reloc != ' ')
7720 /* Replace the relocation token with ' ', so that
7721 errors like foo@GOTOFF1 will be detected. */
7722 tmpbuf[first++] = ' ';
7723 else
7724 /* Increment length by 1 if the relocation token is
7725 removed. */
7726 len++;
7727 if (adjust)
7728 *adjust = len;
7729 memcpy (tmpbuf + first, past_reloc, second);
7730 tmpbuf[first + second] = '\0';
7731 return tmpbuf;
7732 }
7733
7734 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7735 gotrel[j].str, 1 << (5 + object_64bit));
7736 return NULL;
7737 }
7738 }
7739
7740 /* Might be a symbol version string. Don't as_bad here. */
7741 return NULL;
7742 }
7743 #endif
7744
7745 #ifdef TE_PE
7746 #ifdef lex_got
7747 #undef lex_got
7748 #endif
7749 /* Parse operands of the form
7750 <symbol>@SECREL32+<nnn>
7751
7752 If we find one, set up the correct relocation in RELOC and copy the
7753 input string, minus the `@SECREL32' into a malloc'd buffer for
7754 parsing by the calling routine. Return this buffer, and if ADJUST
7755 is non-null set it to the length of the string we removed from the
7756 input line. Otherwise return NULL.
7757
7758 This function is copied from the ELF version above adjusted for PE targets. */
7759
7760 static char *
7761 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7762 int *adjust ATTRIBUTE_UNUSED,
7763 i386_operand_type *types)
7764 {
7765 static const struct
7766 {
7767 const char *str;
7768 int len;
7769 const enum bfd_reloc_code_real rel[2];
7770 const i386_operand_type types64;
7771 }
7772 gotrel[] =
7773 {
7774 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7775 BFD_RELOC_32_SECREL },
7776 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7777 };
7778
7779 char *cp;
7780 unsigned j;
7781
7782 for (cp = input_line_pointer; *cp != '@'; cp++)
7783 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7784 return NULL;
7785
7786 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7787 {
7788 int len = gotrel[j].len;
7789
7790 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7791 {
7792 if (gotrel[j].rel[object_64bit] != 0)
7793 {
7794 int first, second;
7795 char *tmpbuf, *past_reloc;
7796
7797 *rel = gotrel[j].rel[object_64bit];
7798 if (adjust)
7799 *adjust = len;
7800
7801 if (types)
7802 {
7803 if (flag_code != CODE_64BIT)
7804 {
7805 types->bitfield.imm32 = 1;
7806 types->bitfield.disp32 = 1;
7807 }
7808 else
7809 *types = gotrel[j].types64;
7810 }
7811
7812 /* The length of the first part of our input line. */
7813 first = cp - input_line_pointer;
7814
7815 /* The second part goes from after the reloc token until
7816 (and including) an end_of_line char or comma. */
7817 past_reloc = cp + 1 + len;
7818 cp = past_reloc;
7819 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7820 ++cp;
7821 second = cp + 1 - past_reloc;
7822
7823 /* Allocate and copy string. The trailing NUL shouldn't
7824 be necessary, but be safe. */
7825 tmpbuf = XNEWVEC (char, first + second + 2);
7826 memcpy (tmpbuf, input_line_pointer, first);
7827 if (second != 0 && *past_reloc != ' ')
7828 /* Replace the relocation token with ' ', so that
7829 errors like foo@SECLREL321 will be detected. */
7830 tmpbuf[first++] = ' ';
7831 memcpy (tmpbuf + first, past_reloc, second);
7832 tmpbuf[first + second] = '\0';
7833 return tmpbuf;
7834 }
7835
7836 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7837 gotrel[j].str, 1 << (5 + object_64bit));
7838 return NULL;
7839 }
7840 }
7841
7842 /* Might be a symbol version string. Don't as_bad here. */
7843 return NULL;
7844 }
7845
7846 #endif /* TE_PE */
7847
7848 bfd_reloc_code_real_type
7849 x86_cons (expressionS *exp, int size)
7850 {
7851 bfd_reloc_code_real_type got_reloc = NO_RELOC;
7852
7853 intel_syntax = -intel_syntax;
7854
7855 exp->X_md = 0;
7856 if (size == 4 || (object_64bit && size == 8))
7857 {
7858 /* Handle @GOTOFF and the like in an expression. */
7859 char *save;
7860 char *gotfree_input_line;
7861 int adjust = 0;
7862
7863 save = input_line_pointer;
7864 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
7865 if (gotfree_input_line)
7866 input_line_pointer = gotfree_input_line;
7867
7868 expression (exp);
7869
7870 if (gotfree_input_line)
7871 {
7872 /* expression () has merrily parsed up to the end of line,
7873 or a comma - in the wrong buffer. Transfer how far
7874 input_line_pointer has moved to the right buffer. */
7875 input_line_pointer = (save
7876 + (input_line_pointer - gotfree_input_line)
7877 + adjust);
7878 free (gotfree_input_line);
7879 if (exp->X_op == O_constant
7880 || exp->X_op == O_absent
7881 || exp->X_op == O_illegal
7882 || exp->X_op == O_register
7883 || exp->X_op == O_big)
7884 {
7885 char c = *input_line_pointer;
7886 *input_line_pointer = 0;
7887 as_bad (_("missing or invalid expression `%s'"), save);
7888 *input_line_pointer = c;
7889 }
7890 }
7891 }
7892 else
7893 expression (exp);
7894
7895 intel_syntax = -intel_syntax;
7896
7897 if (intel_syntax)
7898 i386_intel_simplify (exp);
7899
7900 return got_reloc;
7901 }
7902
7903 static void
7904 signed_cons (int size)
7905 {
7906 if (flag_code == CODE_64BIT)
7907 cons_sign = 1;
7908 cons (size);
7909 cons_sign = -1;
7910 }
7911
7912 #ifdef TE_PE
7913 static void
7914 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
7915 {
7916 expressionS exp;
7917
7918 do
7919 {
7920 expression (&exp);
7921 if (exp.X_op == O_symbol)
7922 exp.X_op = O_secrel;
7923
7924 emit_expr (&exp, 4);
7925 }
7926 while (*input_line_pointer++ == ',');
7927
7928 input_line_pointer--;
7929 demand_empty_rest_of_line ();
7930 }
7931 #endif
7932
7933 /* Handle Vector operations. */
7934
7935 static char *
7936 check_VecOperations (char *op_string, char *op_end)
7937 {
7938 const reg_entry *mask;
7939 const char *saved;
7940 char *end_op;
7941
7942 while (*op_string
7943 && (op_end == NULL || op_string < op_end))
7944 {
7945 saved = op_string;
7946 if (*op_string == '{')
7947 {
7948 op_string++;
7949
7950 /* Check broadcasts. */
7951 if (strncmp (op_string, "1to", 3) == 0)
7952 {
7953 int bcst_type;
7954
7955 if (i.broadcast)
7956 goto duplicated_vec_op;
7957
7958 op_string += 3;
7959 if (*op_string == '8')
7960 bcst_type = BROADCAST_1TO8;
7961 else if (*op_string == '4')
7962 bcst_type = BROADCAST_1TO4;
7963 else if (*op_string == '2')
7964 bcst_type = BROADCAST_1TO2;
7965 else if (*op_string == '1'
7966 && *(op_string+1) == '6')
7967 {
7968 bcst_type = BROADCAST_1TO16;
7969 op_string++;
7970 }
7971 else
7972 {
7973 as_bad (_("Unsupported broadcast: `%s'"), saved);
7974 return NULL;
7975 }
7976 op_string++;
7977
7978 broadcast_op.type = bcst_type;
7979 broadcast_op.operand = this_operand;
7980 i.broadcast = &broadcast_op;
7981 }
7982 /* Check masking operation. */
7983 else if ((mask = parse_register (op_string, &end_op)) != NULL)
7984 {
7985 /* k0 can't be used for write mask. */
7986 if (mask->reg_num == 0)
7987 {
7988 as_bad (_("`%s' can't be used for write mask"),
7989 op_string);
7990 return NULL;
7991 }
7992
7993 if (!i.mask)
7994 {
7995 mask_op.mask = mask;
7996 mask_op.zeroing = 0;
7997 mask_op.operand = this_operand;
7998 i.mask = &mask_op;
7999 }
8000 else
8001 {
8002 if (i.mask->mask)
8003 goto duplicated_vec_op;
8004
8005 i.mask->mask = mask;
8006
8007 /* Only "{z}" is allowed here. No need to check
8008 zeroing mask explicitly. */
8009 if (i.mask->operand != this_operand)
8010 {
8011 as_bad (_("invalid write mask `%s'"), saved);
8012 return NULL;
8013 }
8014 }
8015
8016 op_string = end_op;
8017 }
8018 /* Check zeroing-flag for masking operation. */
8019 else if (*op_string == 'z')
8020 {
8021 if (!i.mask)
8022 {
8023 mask_op.mask = NULL;
8024 mask_op.zeroing = 1;
8025 mask_op.operand = this_operand;
8026 i.mask = &mask_op;
8027 }
8028 else
8029 {
8030 if (i.mask->zeroing)
8031 {
8032 duplicated_vec_op:
8033 as_bad (_("duplicated `%s'"), saved);
8034 return NULL;
8035 }
8036
8037 i.mask->zeroing = 1;
8038
8039 /* Only "{%k}" is allowed here. No need to check mask
8040 register explicitly. */
8041 if (i.mask->operand != this_operand)
8042 {
8043 as_bad (_("invalid zeroing-masking `%s'"),
8044 saved);
8045 return NULL;
8046 }
8047 }
8048
8049 op_string++;
8050 }
8051 else
8052 goto unknown_vec_op;
8053
8054 if (*op_string != '}')
8055 {
8056 as_bad (_("missing `}' in `%s'"), saved);
8057 return NULL;
8058 }
8059 op_string++;
8060 continue;
8061 }
8062 unknown_vec_op:
8063 /* We don't know this one. */
8064 as_bad (_("unknown vector operation: `%s'"), saved);
8065 return NULL;
8066 }
8067
8068 return op_string;
8069 }
8070
8071 static int
8072 i386_immediate (char *imm_start)
8073 {
8074 char *save_input_line_pointer;
8075 char *gotfree_input_line;
8076 segT exp_seg = 0;
8077 expressionS *exp;
8078 i386_operand_type types;
8079
8080 operand_type_set (&types, ~0);
8081
8082 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8083 {
8084 as_bad (_("at most %d immediate operands are allowed"),
8085 MAX_IMMEDIATE_OPERANDS);
8086 return 0;
8087 }
8088
8089 exp = &im_expressions[i.imm_operands++];
8090 i.op[this_operand].imms = exp;
8091
8092 if (is_space_char (*imm_start))
8093 ++imm_start;
8094
8095 save_input_line_pointer = input_line_pointer;
8096 input_line_pointer = imm_start;
8097
8098 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8099 if (gotfree_input_line)
8100 input_line_pointer = gotfree_input_line;
8101
8102 exp_seg = expression (exp);
8103
8104 SKIP_WHITESPACE ();
8105
8106 /* Handle vector operations. */
8107 if (*input_line_pointer == '{')
8108 {
8109 input_line_pointer = check_VecOperations (input_line_pointer,
8110 NULL);
8111 if (input_line_pointer == NULL)
8112 return 0;
8113 }
8114
8115 if (*input_line_pointer)
8116 as_bad (_("junk `%s' after expression"), input_line_pointer);
8117
8118 input_line_pointer = save_input_line_pointer;
8119 if (gotfree_input_line)
8120 {
8121 free (gotfree_input_line);
8122
8123 if (exp->X_op == O_constant || exp->X_op == O_register)
8124 exp->X_op = O_illegal;
8125 }
8126
8127 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8128 }
8129
8130 static int
8131 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8132 i386_operand_type types, const char *imm_start)
8133 {
8134 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8135 {
8136 if (imm_start)
8137 as_bad (_("missing or invalid immediate expression `%s'"),
8138 imm_start);
8139 return 0;
8140 }
8141 else if (exp->X_op == O_constant)
8142 {
8143 /* Size it properly later. */
8144 i.types[this_operand].bitfield.imm64 = 1;
8145 /* If not 64bit, sign extend val. */
8146 if (flag_code != CODE_64BIT
8147 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8148 exp->X_add_number
8149 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8150 }
8151 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8152 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8153 && exp_seg != absolute_section
8154 && exp_seg != text_section
8155 && exp_seg != data_section
8156 && exp_seg != bss_section
8157 && exp_seg != undefined_section
8158 && !bfd_is_com_section (exp_seg))
8159 {
8160 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8161 return 0;
8162 }
8163 #endif
8164 else if (!intel_syntax && exp_seg == reg_section)
8165 {
8166 if (imm_start)
8167 as_bad (_("illegal immediate register operand %s"), imm_start);
8168 return 0;
8169 }
8170 else
8171 {
8172 /* This is an address. The size of the address will be
8173 determined later, depending on destination register,
8174 suffix, or the default for the section. */
8175 i.types[this_operand].bitfield.imm8 = 1;
8176 i.types[this_operand].bitfield.imm16 = 1;
8177 i.types[this_operand].bitfield.imm32 = 1;
8178 i.types[this_operand].bitfield.imm32s = 1;
8179 i.types[this_operand].bitfield.imm64 = 1;
8180 i.types[this_operand] = operand_type_and (i.types[this_operand],
8181 types);
8182 }
8183
8184 return 1;
8185 }
8186
8187 static char *
8188 i386_scale (char *scale)
8189 {
8190 offsetT val;
8191 char *save = input_line_pointer;
8192
8193 input_line_pointer = scale;
8194 val = get_absolute_expression ();
8195
8196 switch (val)
8197 {
8198 case 1:
8199 i.log2_scale_factor = 0;
8200 break;
8201 case 2:
8202 i.log2_scale_factor = 1;
8203 break;
8204 case 4:
8205 i.log2_scale_factor = 2;
8206 break;
8207 case 8:
8208 i.log2_scale_factor = 3;
8209 break;
8210 default:
8211 {
8212 char sep = *input_line_pointer;
8213
8214 *input_line_pointer = '\0';
8215 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8216 scale);
8217 *input_line_pointer = sep;
8218 input_line_pointer = save;
8219 return NULL;
8220 }
8221 }
8222 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8223 {
8224 as_warn (_("scale factor of %d without an index register"),
8225 1 << i.log2_scale_factor);
8226 i.log2_scale_factor = 0;
8227 }
8228 scale = input_line_pointer;
8229 input_line_pointer = save;
8230 return scale;
8231 }
8232
8233 static int
8234 i386_displacement (char *disp_start, char *disp_end)
8235 {
8236 expressionS *exp;
8237 segT exp_seg = 0;
8238 char *save_input_line_pointer;
8239 char *gotfree_input_line;
8240 int override;
8241 i386_operand_type bigdisp, types = anydisp;
8242 int ret;
8243
8244 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8245 {
8246 as_bad (_("at most %d displacement operands are allowed"),
8247 MAX_MEMORY_OPERANDS);
8248 return 0;
8249 }
8250
8251 operand_type_set (&bigdisp, 0);
8252 if ((i.types[this_operand].bitfield.jumpabsolute)
8253 || (!current_templates->start->opcode_modifier.jump
8254 && !current_templates->start->opcode_modifier.jumpdword))
8255 {
8256 bigdisp.bitfield.disp32 = 1;
8257 override = (i.prefix[ADDR_PREFIX] != 0);
8258 if (flag_code == CODE_64BIT)
8259 {
8260 if (!override)
8261 {
8262 bigdisp.bitfield.disp32s = 1;
8263 bigdisp.bitfield.disp64 = 1;
8264 }
8265 }
8266 else if ((flag_code == CODE_16BIT) ^ override)
8267 {
8268 bigdisp.bitfield.disp32 = 0;
8269 bigdisp.bitfield.disp16 = 1;
8270 }
8271 }
8272 else
8273 {
8274 /* For PC-relative branches, the width of the displacement
8275 is dependent upon data size, not address size. */
8276 override = (i.prefix[DATA_PREFIX] != 0);
8277 if (flag_code == CODE_64BIT)
8278 {
8279 if (override || i.suffix == WORD_MNEM_SUFFIX)
8280 bigdisp.bitfield.disp16 = 1;
8281 else
8282 {
8283 bigdisp.bitfield.disp32 = 1;
8284 bigdisp.bitfield.disp32s = 1;
8285 }
8286 }
8287 else
8288 {
8289 if (!override)
8290 override = (i.suffix == (flag_code != CODE_16BIT
8291 ? WORD_MNEM_SUFFIX
8292 : LONG_MNEM_SUFFIX));
8293 bigdisp.bitfield.disp32 = 1;
8294 if ((flag_code == CODE_16BIT) ^ override)
8295 {
8296 bigdisp.bitfield.disp32 = 0;
8297 bigdisp.bitfield.disp16 = 1;
8298 }
8299 }
8300 }
8301 i.types[this_operand] = operand_type_or (i.types[this_operand],
8302 bigdisp);
8303
8304 exp = &disp_expressions[i.disp_operands];
8305 i.op[this_operand].disps = exp;
8306 i.disp_operands++;
8307 save_input_line_pointer = input_line_pointer;
8308 input_line_pointer = disp_start;
8309 END_STRING_AND_SAVE (disp_end);
8310
8311 #ifndef GCC_ASM_O_HACK
8312 #define GCC_ASM_O_HACK 0
8313 #endif
8314 #if GCC_ASM_O_HACK
8315 END_STRING_AND_SAVE (disp_end + 1);
8316 if (i.types[this_operand].bitfield.baseIndex
8317 && displacement_string_end[-1] == '+')
8318 {
8319 /* This hack is to avoid a warning when using the "o"
8320 constraint within gcc asm statements.
8321 For instance:
8322
8323 #define _set_tssldt_desc(n,addr,limit,type) \
8324 __asm__ __volatile__ ( \
8325 "movw %w2,%0\n\t" \
8326 "movw %w1,2+%0\n\t" \
8327 "rorl $16,%1\n\t" \
8328 "movb %b1,4+%0\n\t" \
8329 "movb %4,5+%0\n\t" \
8330 "movb $0,6+%0\n\t" \
8331 "movb %h1,7+%0\n\t" \
8332 "rorl $16,%1" \
8333 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8334
8335 This works great except that the output assembler ends
8336 up looking a bit weird if it turns out that there is
8337 no offset. You end up producing code that looks like:
8338
8339 #APP
8340 movw $235,(%eax)
8341 movw %dx,2+(%eax)
8342 rorl $16,%edx
8343 movb %dl,4+(%eax)
8344 movb $137,5+(%eax)
8345 movb $0,6+(%eax)
8346 movb %dh,7+(%eax)
8347 rorl $16,%edx
8348 #NO_APP
8349
8350 So here we provide the missing zero. */
8351
8352 *displacement_string_end = '0';
8353 }
8354 #endif
8355 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8356 if (gotfree_input_line)
8357 input_line_pointer = gotfree_input_line;
8358
8359 exp_seg = expression (exp);
8360
8361 SKIP_WHITESPACE ();
8362 if (*input_line_pointer)
8363 as_bad (_("junk `%s' after expression"), input_line_pointer);
8364 #if GCC_ASM_O_HACK
8365 RESTORE_END_STRING (disp_end + 1);
8366 #endif
8367 input_line_pointer = save_input_line_pointer;
8368 if (gotfree_input_line)
8369 {
8370 free (gotfree_input_line);
8371
8372 if (exp->X_op == O_constant || exp->X_op == O_register)
8373 exp->X_op = O_illegal;
8374 }
8375
8376 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8377
8378 RESTORE_END_STRING (disp_end);
8379
8380 return ret;
8381 }
8382
8383 static int
8384 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8385 i386_operand_type types, const char *disp_start)
8386 {
8387 i386_operand_type bigdisp;
8388 int ret = 1;
8389
8390 /* We do this to make sure that the section symbol is in
8391 the symbol table. We will ultimately change the relocation
8392 to be relative to the beginning of the section. */
8393 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8394 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8395 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8396 {
8397 if (exp->X_op != O_symbol)
8398 goto inv_disp;
8399
8400 if (S_IS_LOCAL (exp->X_add_symbol)
8401 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8402 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8403 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8404 exp->X_op = O_subtract;
8405 exp->X_op_symbol = GOT_symbol;
8406 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8407 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8408 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8409 i.reloc[this_operand] = BFD_RELOC_64;
8410 else
8411 i.reloc[this_operand] = BFD_RELOC_32;
8412 }
8413
8414 else if (exp->X_op == O_absent
8415 || exp->X_op == O_illegal
8416 || exp->X_op == O_big)
8417 {
8418 inv_disp:
8419 as_bad (_("missing or invalid displacement expression `%s'"),
8420 disp_start);
8421 ret = 0;
8422 }
8423
8424 else if (flag_code == CODE_64BIT
8425 && !i.prefix[ADDR_PREFIX]
8426 && exp->X_op == O_constant)
8427 {
8428 /* Since displacement is signed extended to 64bit, don't allow
8429 disp32 and turn off disp32s if they are out of range. */
8430 i.types[this_operand].bitfield.disp32 = 0;
8431 if (!fits_in_signed_long (exp->X_add_number))
8432 {
8433 i.types[this_operand].bitfield.disp32s = 0;
8434 if (i.types[this_operand].bitfield.baseindex)
8435 {
8436 as_bad (_("0x%lx out range of signed 32bit displacement"),
8437 (long) exp->X_add_number);
8438 ret = 0;
8439 }
8440 }
8441 }
8442
8443 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8444 else if (exp->X_op != O_constant
8445 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8446 && exp_seg != absolute_section
8447 && exp_seg != text_section
8448 && exp_seg != data_section
8449 && exp_seg != bss_section
8450 && exp_seg != undefined_section
8451 && !bfd_is_com_section (exp_seg))
8452 {
8453 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8454 ret = 0;
8455 }
8456 #endif
8457
8458 /* Check if this is a displacement only operand. */
8459 bigdisp = i.types[this_operand];
8460 bigdisp.bitfield.disp8 = 0;
8461 bigdisp.bitfield.disp16 = 0;
8462 bigdisp.bitfield.disp32 = 0;
8463 bigdisp.bitfield.disp32s = 0;
8464 bigdisp.bitfield.disp64 = 0;
8465 if (operand_type_all_zero (&bigdisp))
8466 i.types[this_operand] = operand_type_and (i.types[this_operand],
8467 types);
8468
8469 return ret;
8470 }
8471
8472 /* Make sure the memory operand we've been dealt is valid.
8473 Return 1 on success, 0 on a failure. */
8474
8475 static int
8476 i386_index_check (const char *operand_string)
8477 {
8478 const char *kind = "base/index";
8479 enum flag_code addr_mode;
8480
8481 if (i.prefix[ADDR_PREFIX])
8482 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8483 else
8484 {
8485 addr_mode = flag_code;
8486
8487 #if INFER_ADDR_PREFIX
8488 if (i.mem_operands == 0)
8489 {
8490 /* Infer address prefix from the first memory operand. */
8491 const reg_entry *addr_reg = i.base_reg;
8492
8493 if (addr_reg == NULL)
8494 addr_reg = i.index_reg;
8495
8496 if (addr_reg)
8497 {
8498 if (addr_reg->reg_num == RegEip
8499 || addr_reg->reg_num == RegEiz
8500 || addr_reg->reg_type.bitfield.reg32)
8501 addr_mode = CODE_32BIT;
8502 else if (flag_code != CODE_64BIT
8503 && addr_reg->reg_type.bitfield.reg16)
8504 addr_mode = CODE_16BIT;
8505
8506 if (addr_mode != flag_code)
8507 {
8508 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8509 i.prefixes += 1;
8510 /* Change the size of any displacement too. At most one
8511 of Disp16 or Disp32 is set.
8512 FIXME. There doesn't seem to be any real need for
8513 separate Disp16 and Disp32 flags. The same goes for
8514 Imm16 and Imm32. Removing them would probably clean
8515 up the code quite a lot. */
8516 if (flag_code != CODE_64BIT
8517 && (i.types[this_operand].bitfield.disp16
8518 || i.types[this_operand].bitfield.disp32))
8519 i.types[this_operand]
8520 = operand_type_xor (i.types[this_operand], disp16_32);
8521 }
8522 }
8523 }
8524 #endif
8525 }
8526
8527 if (current_templates->start->opcode_modifier.isstring
8528 && !current_templates->start->opcode_modifier.immext
8529 && (current_templates->end[-1].opcode_modifier.isstring
8530 || i.mem_operands))
8531 {
8532 /* Memory operands of string insns are special in that they only allow
8533 a single register (rDI, rSI, or rBX) as their memory address. */
8534 const reg_entry *expected_reg;
8535 static const char *di_si[][2] =
8536 {
8537 { "esi", "edi" },
8538 { "si", "di" },
8539 { "rsi", "rdi" }
8540 };
8541 static const char *bx[] = { "ebx", "bx", "rbx" };
8542
8543 kind = "string address";
8544
8545 if (current_templates->start->opcode_modifier.repprefixok)
8546 {
8547 i386_operand_type type = current_templates->end[-1].operand_types[0];
8548
8549 if (!type.bitfield.baseindex
8550 || ((!i.mem_operands != !intel_syntax)
8551 && current_templates->end[-1].operand_types[1]
8552 .bitfield.baseindex))
8553 type = current_templates->end[-1].operand_types[1];
8554 expected_reg = hash_find (reg_hash,
8555 di_si[addr_mode][type.bitfield.esseg]);
8556
8557 }
8558 else
8559 expected_reg = hash_find (reg_hash, bx[addr_mode]);
8560
8561 if (i.base_reg != expected_reg
8562 || i.index_reg
8563 || operand_type_check (i.types[this_operand], disp))
8564 {
8565 /* The second memory operand must have the same size as
8566 the first one. */
8567 if (i.mem_operands
8568 && i.base_reg
8569 && !((addr_mode == CODE_64BIT
8570 && i.base_reg->reg_type.bitfield.reg64)
8571 || (addr_mode == CODE_32BIT
8572 ? i.base_reg->reg_type.bitfield.reg32
8573 : i.base_reg->reg_type.bitfield.reg16)))
8574 goto bad_address;
8575
8576 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8577 operand_string,
8578 intel_syntax ? '[' : '(',
8579 register_prefix,
8580 expected_reg->reg_name,
8581 intel_syntax ? ']' : ')');
8582 return 1;
8583 }
8584 else
8585 return 1;
8586
8587 bad_address:
8588 as_bad (_("`%s' is not a valid %s expression"),
8589 operand_string, kind);
8590 return 0;
8591 }
8592 else
8593 {
8594 if (addr_mode != CODE_16BIT)
8595 {
8596 /* 32-bit/64-bit checks. */
8597 if ((i.base_reg
8598 && (addr_mode == CODE_64BIT
8599 ? !i.base_reg->reg_type.bitfield.reg64
8600 : !i.base_reg->reg_type.bitfield.reg32)
8601 && (i.index_reg
8602 || (i.base_reg->reg_num
8603 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8604 || (i.index_reg
8605 && !i.index_reg->reg_type.bitfield.regxmm
8606 && !i.index_reg->reg_type.bitfield.regymm
8607 && !i.index_reg->reg_type.bitfield.regzmm
8608 && ((addr_mode == CODE_64BIT
8609 ? !(i.index_reg->reg_type.bitfield.reg64
8610 || i.index_reg->reg_num == RegRiz)
8611 : !(i.index_reg->reg_type.bitfield.reg32
8612 || i.index_reg->reg_num == RegEiz))
8613 || !i.index_reg->reg_type.bitfield.baseindex)))
8614 goto bad_address;
8615 }
8616 else
8617 {
8618 /* 16-bit checks. */
8619 if ((i.base_reg
8620 && (!i.base_reg->reg_type.bitfield.reg16
8621 || !i.base_reg->reg_type.bitfield.baseindex))
8622 || (i.index_reg
8623 && (!i.index_reg->reg_type.bitfield.reg16
8624 || !i.index_reg->reg_type.bitfield.baseindex
8625 || !(i.base_reg
8626 && i.base_reg->reg_num < 6
8627 && i.index_reg->reg_num >= 6
8628 && i.log2_scale_factor == 0))))
8629 goto bad_address;
8630 }
8631 }
8632 return 1;
8633 }
8634
8635 /* Handle vector immediates. */
8636
8637 static int
8638 RC_SAE_immediate (const char *imm_start)
8639 {
8640 unsigned int match_found, j;
8641 const char *pstr = imm_start;
8642 expressionS *exp;
8643
8644 if (*pstr != '{')
8645 return 0;
8646
8647 pstr++;
8648 match_found = 0;
8649 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8650 {
8651 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8652 {
8653 if (!i.rounding)
8654 {
8655 rc_op.type = RC_NamesTable[j].type;
8656 rc_op.operand = this_operand;
8657 i.rounding = &rc_op;
8658 }
8659 else
8660 {
8661 as_bad (_("duplicated `%s'"), imm_start);
8662 return 0;
8663 }
8664 pstr += RC_NamesTable[j].len;
8665 match_found = 1;
8666 break;
8667 }
8668 }
8669 if (!match_found)
8670 return 0;
8671
8672 if (*pstr++ != '}')
8673 {
8674 as_bad (_("Missing '}': '%s'"), imm_start);
8675 return 0;
8676 }
8677 /* RC/SAE immediate string should contain nothing more. */;
8678 if (*pstr != 0)
8679 {
8680 as_bad (_("Junk after '}': '%s'"), imm_start);
8681 return 0;
8682 }
8683
8684 exp = &im_expressions[i.imm_operands++];
8685 i.op[this_operand].imms = exp;
8686
8687 exp->X_op = O_constant;
8688 exp->X_add_number = 0;
8689 exp->X_add_symbol = (symbolS *) 0;
8690 exp->X_op_symbol = (symbolS *) 0;
8691
8692 i.types[this_operand].bitfield.imm8 = 1;
8693 return 1;
8694 }
8695
8696 /* Only string instructions can have a second memory operand, so
8697 reduce current_templates to just those if it contains any. */
8698 static int
8699 maybe_adjust_templates (void)
8700 {
8701 const insn_template *t;
8702
8703 gas_assert (i.mem_operands == 1);
8704
8705 for (t = current_templates->start; t < current_templates->end; ++t)
8706 if (t->opcode_modifier.isstring)
8707 break;
8708
8709 if (t < current_templates->end)
8710 {
8711 static templates aux_templates;
8712 bfd_boolean recheck;
8713
8714 aux_templates.start = t;
8715 for (; t < current_templates->end; ++t)
8716 if (!t->opcode_modifier.isstring)
8717 break;
8718 aux_templates.end = t;
8719
8720 /* Determine whether to re-check the first memory operand. */
8721 recheck = (aux_templates.start != current_templates->start
8722 || t != current_templates->end);
8723
8724 current_templates = &aux_templates;
8725
8726 if (recheck)
8727 {
8728 i.mem_operands = 0;
8729 if (i.memop1_string != NULL
8730 && i386_index_check (i.memop1_string) == 0)
8731 return 0;
8732 i.mem_operands = 1;
8733 }
8734 }
8735
8736 return 1;
8737 }
8738
8739 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
8740 on error. */
8741
8742 static int
8743 i386_att_operand (char *operand_string)
8744 {
8745 const reg_entry *r;
8746 char *end_op;
8747 char *op_string = operand_string;
8748
8749 if (is_space_char (*op_string))
8750 ++op_string;
8751
8752 /* We check for an absolute prefix (differentiating,
8753 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
8754 if (*op_string == ABSOLUTE_PREFIX)
8755 {
8756 ++op_string;
8757 if (is_space_char (*op_string))
8758 ++op_string;
8759 i.types[this_operand].bitfield.jumpabsolute = 1;
8760 }
8761
8762 /* Check if operand is a register. */
8763 if ((r = parse_register (op_string, &end_op)) != NULL)
8764 {
8765 i386_operand_type temp;
8766
8767 /* Check for a segment override by searching for ':' after a
8768 segment register. */
8769 op_string = end_op;
8770 if (is_space_char (*op_string))
8771 ++op_string;
8772 if (*op_string == ':'
8773 && (r->reg_type.bitfield.sreg2
8774 || r->reg_type.bitfield.sreg3))
8775 {
8776 switch (r->reg_num)
8777 {
8778 case 0:
8779 i.seg[i.mem_operands] = &es;
8780 break;
8781 case 1:
8782 i.seg[i.mem_operands] = &cs;
8783 break;
8784 case 2:
8785 i.seg[i.mem_operands] = &ss;
8786 break;
8787 case 3:
8788 i.seg[i.mem_operands] = &ds;
8789 break;
8790 case 4:
8791 i.seg[i.mem_operands] = &fs;
8792 break;
8793 case 5:
8794 i.seg[i.mem_operands] = &gs;
8795 break;
8796 }
8797
8798 /* Skip the ':' and whitespace. */
8799 ++op_string;
8800 if (is_space_char (*op_string))
8801 ++op_string;
8802
8803 if (!is_digit_char (*op_string)
8804 && !is_identifier_char (*op_string)
8805 && *op_string != '('
8806 && *op_string != ABSOLUTE_PREFIX)
8807 {
8808 as_bad (_("bad memory operand `%s'"), op_string);
8809 return 0;
8810 }
8811 /* Handle case of %es:*foo. */
8812 if (*op_string == ABSOLUTE_PREFIX)
8813 {
8814 ++op_string;
8815 if (is_space_char (*op_string))
8816 ++op_string;
8817 i.types[this_operand].bitfield.jumpabsolute = 1;
8818 }
8819 goto do_memory_reference;
8820 }
8821
8822 /* Handle vector operations. */
8823 if (*op_string == '{')
8824 {
8825 op_string = check_VecOperations (op_string, NULL);
8826 if (op_string == NULL)
8827 return 0;
8828 }
8829
8830 if (*op_string)
8831 {
8832 as_bad (_("junk `%s' after register"), op_string);
8833 return 0;
8834 }
8835 temp = r->reg_type;
8836 temp.bitfield.baseindex = 0;
8837 i.types[this_operand] = operand_type_or (i.types[this_operand],
8838 temp);
8839 i.types[this_operand].bitfield.unspecified = 0;
8840 i.op[this_operand].regs = r;
8841 i.reg_operands++;
8842 }
8843 else if (*op_string == REGISTER_PREFIX)
8844 {
8845 as_bad (_("bad register name `%s'"), op_string);
8846 return 0;
8847 }
8848 else if (*op_string == IMMEDIATE_PREFIX)
8849 {
8850 ++op_string;
8851 if (i.types[this_operand].bitfield.jumpabsolute)
8852 {
8853 as_bad (_("immediate operand illegal with absolute jump"));
8854 return 0;
8855 }
8856 if (!i386_immediate (op_string))
8857 return 0;
8858 }
8859 else if (RC_SAE_immediate (operand_string))
8860 {
8861 /* If it is a RC or SAE immediate, do nothing. */
8862 ;
8863 }
8864 else if (is_digit_char (*op_string)
8865 || is_identifier_char (*op_string)
8866 || *op_string == '"'
8867 || *op_string == '(')
8868 {
8869 /* This is a memory reference of some sort. */
8870 char *base_string;
8871
8872 /* Start and end of displacement string expression (if found). */
8873 char *displacement_string_start;
8874 char *displacement_string_end;
8875 char *vop_start;
8876
8877 do_memory_reference:
8878 if (i.mem_operands == 1 && !maybe_adjust_templates ())
8879 return 0;
8880 if ((i.mem_operands == 1
8881 && !current_templates->start->opcode_modifier.isstring)
8882 || i.mem_operands == 2)
8883 {
8884 as_bad (_("too many memory references for `%s'"),
8885 current_templates->start->name);
8886 return 0;
8887 }
8888
8889 /* Check for base index form. We detect the base index form by
8890 looking for an ')' at the end of the operand, searching
8891 for the '(' matching it, and finding a REGISTER_PREFIX or ','
8892 after the '('. */
8893 base_string = op_string + strlen (op_string);
8894
8895 /* Handle vector operations. */
8896 vop_start = strchr (op_string, '{');
8897 if (vop_start && vop_start < base_string)
8898 {
8899 if (check_VecOperations (vop_start, base_string) == NULL)
8900 return 0;
8901 base_string = vop_start;
8902 }
8903
8904 --base_string;
8905 if (is_space_char (*base_string))
8906 --base_string;
8907
8908 /* If we only have a displacement, set-up for it to be parsed later. */
8909 displacement_string_start = op_string;
8910 displacement_string_end = base_string + 1;
8911
8912 if (*base_string == ')')
8913 {
8914 char *temp_string;
8915 unsigned int parens_balanced = 1;
8916 /* We've already checked that the number of left & right ()'s are
8917 equal, so this loop will not be infinite. */
8918 do
8919 {
8920 base_string--;
8921 if (*base_string == ')')
8922 parens_balanced++;
8923 if (*base_string == '(')
8924 parens_balanced--;
8925 }
8926 while (parens_balanced);
8927
8928 temp_string = base_string;
8929
8930 /* Skip past '(' and whitespace. */
8931 ++base_string;
8932 if (is_space_char (*base_string))
8933 ++base_string;
8934
8935 if (*base_string == ','
8936 || ((i.base_reg = parse_register (base_string, &end_op))
8937 != NULL))
8938 {
8939 displacement_string_end = temp_string;
8940
8941 i.types[this_operand].bitfield.baseindex = 1;
8942
8943 if (i.base_reg)
8944 {
8945 base_string = end_op;
8946 if (is_space_char (*base_string))
8947 ++base_string;
8948 }
8949
8950 /* There may be an index reg or scale factor here. */
8951 if (*base_string == ',')
8952 {
8953 ++base_string;
8954 if (is_space_char (*base_string))
8955 ++base_string;
8956
8957 if ((i.index_reg = parse_register (base_string, &end_op))
8958 != NULL)
8959 {
8960 base_string = end_op;
8961 if (is_space_char (*base_string))
8962 ++base_string;
8963 if (*base_string == ',')
8964 {
8965 ++base_string;
8966 if (is_space_char (*base_string))
8967 ++base_string;
8968 }
8969 else if (*base_string != ')')
8970 {
8971 as_bad (_("expecting `,' or `)' "
8972 "after index register in `%s'"),
8973 operand_string);
8974 return 0;
8975 }
8976 }
8977 else if (*base_string == REGISTER_PREFIX)
8978 {
8979 end_op = strchr (base_string, ',');
8980 if (end_op)
8981 *end_op = '\0';
8982 as_bad (_("bad register name `%s'"), base_string);
8983 return 0;
8984 }
8985
8986 /* Check for scale factor. */
8987 if (*base_string != ')')
8988 {
8989 char *end_scale = i386_scale (base_string);
8990
8991 if (!end_scale)
8992 return 0;
8993
8994 base_string = end_scale;
8995 if (is_space_char (*base_string))
8996 ++base_string;
8997 if (*base_string != ')')
8998 {
8999 as_bad (_("expecting `)' "
9000 "after scale factor in `%s'"),
9001 operand_string);
9002 return 0;
9003 }
9004 }
9005 else if (!i.index_reg)
9006 {
9007 as_bad (_("expecting index register or scale factor "
9008 "after `,'; got '%c'"),
9009 *base_string);
9010 return 0;
9011 }
9012 }
9013 else if (*base_string != ')')
9014 {
9015 as_bad (_("expecting `,' or `)' "
9016 "after base register in `%s'"),
9017 operand_string);
9018 return 0;
9019 }
9020 }
9021 else if (*base_string == REGISTER_PREFIX)
9022 {
9023 end_op = strchr (base_string, ',');
9024 if (end_op)
9025 *end_op = '\0';
9026 as_bad (_("bad register name `%s'"), base_string);
9027 return 0;
9028 }
9029 }
9030
9031 /* If there's an expression beginning the operand, parse it,
9032 assuming displacement_string_start and
9033 displacement_string_end are meaningful. */
9034 if (displacement_string_start != displacement_string_end)
9035 {
9036 if (!i386_displacement (displacement_string_start,
9037 displacement_string_end))
9038 return 0;
9039 }
9040
9041 /* Special case for (%dx) while doing input/output op. */
9042 if (i.base_reg
9043 && operand_type_equal (&i.base_reg->reg_type,
9044 &reg16_inoutportreg)
9045 && i.index_reg == 0
9046 && i.log2_scale_factor == 0
9047 && i.seg[i.mem_operands] == 0
9048 && !operand_type_check (i.types[this_operand], disp))
9049 {
9050 i.types[this_operand] = inoutportreg;
9051 return 1;
9052 }
9053
9054 if (i386_index_check (operand_string) == 0)
9055 return 0;
9056 i.types[this_operand].bitfield.mem = 1;
9057 if (i.mem_operands == 0)
9058 i.memop1_string = xstrdup (operand_string);
9059 i.mem_operands++;
9060 }
9061 else
9062 {
9063 /* It's not a memory operand; argh! */
9064 as_bad (_("invalid char %s beginning operand %d `%s'"),
9065 output_invalid (*op_string),
9066 this_operand + 1,
9067 op_string);
9068 return 0;
9069 }
9070 return 1; /* Normal return. */
9071 }
9072 \f
9073 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9074 that an rs_machine_dependent frag may reach. */
9075
9076 unsigned int
9077 i386_frag_max_var (fragS *frag)
9078 {
9079 /* The only relaxable frags are for jumps.
9080 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9081 gas_assert (frag->fr_type == rs_machine_dependent);
9082 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9083 }
9084
9085 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9086 static int
9087 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9088 {
9089 /* STT_GNU_IFUNC symbol must go through PLT. */
9090 if ((symbol_get_bfdsym (fr_symbol)->flags
9091 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9092 return 0;
9093
9094 if (!S_IS_EXTERNAL (fr_symbol))
9095 /* Symbol may be weak or local. */
9096 return !S_IS_WEAK (fr_symbol);
9097
9098 /* Global symbols with non-default visibility can't be preempted. */
9099 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9100 return 1;
9101
9102 if (fr_var != NO_RELOC)
9103 switch ((enum bfd_reloc_code_real) fr_var)
9104 {
9105 case BFD_RELOC_386_PLT32:
9106 case BFD_RELOC_X86_64_PLT32:
9107 /* Symbol with PLT relocatin may be preempted. */
9108 return 0;
9109 default:
9110 abort ();
9111 }
9112
9113 /* Global symbols with default visibility in a shared library may be
9114 preempted by another definition. */
9115 return !shared;
9116 }
9117 #endif
9118
9119 /* md_estimate_size_before_relax()
9120
9121 Called just before relax() for rs_machine_dependent frags. The x86
9122 assembler uses these frags to handle variable size jump
9123 instructions.
9124
9125 Any symbol that is now undefined will not become defined.
9126 Return the correct fr_subtype in the frag.
9127 Return the initial "guess for variable size of frag" to caller.
9128 The guess is actually the growth beyond the fixed part. Whatever
9129 we do to grow the fixed or variable part contributes to our
9130 returned value. */
9131
9132 int
9133 md_estimate_size_before_relax (fragS *fragP, segT segment)
9134 {
9135 /* We've already got fragP->fr_subtype right; all we have to do is
9136 check for un-relaxable symbols. On an ELF system, we can't relax
9137 an externally visible symbol, because it may be overridden by a
9138 shared library. */
9139 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9140 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9141 || (IS_ELF
9142 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9143 fragP->fr_var))
9144 #endif
9145 #if defined (OBJ_COFF) && defined (TE_PE)
9146 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9147 && S_IS_WEAK (fragP->fr_symbol))
9148 #endif
9149 )
9150 {
9151 /* Symbol is undefined in this segment, or we need to keep a
9152 reloc so that weak symbols can be overridden. */
9153 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9154 enum bfd_reloc_code_real reloc_type;
9155 unsigned char *opcode;
9156 int old_fr_fix;
9157
9158 if (fragP->fr_var != NO_RELOC)
9159 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9160 else if (size == 2)
9161 reloc_type = BFD_RELOC_16_PCREL;
9162 else
9163 reloc_type = BFD_RELOC_32_PCREL;
9164
9165 old_fr_fix = fragP->fr_fix;
9166 opcode = (unsigned char *) fragP->fr_opcode;
9167
9168 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9169 {
9170 case UNCOND_JUMP:
9171 /* Make jmp (0xeb) a (d)word displacement jump. */
9172 opcode[0] = 0xe9;
9173 fragP->fr_fix += size;
9174 fix_new (fragP, old_fr_fix, size,
9175 fragP->fr_symbol,
9176 fragP->fr_offset, 1,
9177 reloc_type);
9178 break;
9179
9180 case COND_JUMP86:
9181 if (size == 2
9182 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9183 {
9184 /* Negate the condition, and branch past an
9185 unconditional jump. */
9186 opcode[0] ^= 1;
9187 opcode[1] = 3;
9188 /* Insert an unconditional jump. */
9189 opcode[2] = 0xe9;
9190 /* We added two extra opcode bytes, and have a two byte
9191 offset. */
9192 fragP->fr_fix += 2 + 2;
9193 fix_new (fragP, old_fr_fix + 2, 2,
9194 fragP->fr_symbol,
9195 fragP->fr_offset, 1,
9196 reloc_type);
9197 break;
9198 }
9199 /* Fall through. */
9200
9201 case COND_JUMP:
9202 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9203 {
9204 fixS *fixP;
9205
9206 fragP->fr_fix += 1;
9207 fixP = fix_new (fragP, old_fr_fix, 1,
9208 fragP->fr_symbol,
9209 fragP->fr_offset, 1,
9210 BFD_RELOC_8_PCREL);
9211 fixP->fx_signed = 1;
9212 break;
9213 }
9214
9215 /* This changes the byte-displacement jump 0x7N
9216 to the (d)word-displacement jump 0x0f,0x8N. */
9217 opcode[1] = opcode[0] + 0x10;
9218 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9219 /* We've added an opcode byte. */
9220 fragP->fr_fix += 1 + size;
9221 fix_new (fragP, old_fr_fix + 1, size,
9222 fragP->fr_symbol,
9223 fragP->fr_offset, 1,
9224 reloc_type);
9225 break;
9226
9227 default:
9228 BAD_CASE (fragP->fr_subtype);
9229 break;
9230 }
9231 frag_wane (fragP);
9232 return fragP->fr_fix - old_fr_fix;
9233 }
9234
9235 /* Guess size depending on current relax state. Initially the relax
9236 state will correspond to a short jump and we return 1, because
9237 the variable part of the frag (the branch offset) is one byte
9238 long. However, we can relax a section more than once and in that
9239 case we must either set fr_subtype back to the unrelaxed state,
9240 or return the value for the appropriate branch. */
9241 return md_relax_table[fragP->fr_subtype].rlx_length;
9242 }
9243
9244 /* Called after relax() is finished.
9245
9246 In: Address of frag.
9247 fr_type == rs_machine_dependent.
9248 fr_subtype is what the address relaxed to.
9249
9250 Out: Any fixSs and constants are set up.
9251 Caller will turn frag into a ".space 0". */
9252
9253 void
9254 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9255 fragS *fragP)
9256 {
9257 unsigned char *opcode;
9258 unsigned char *where_to_put_displacement = NULL;
9259 offsetT target_address;
9260 offsetT opcode_address;
9261 unsigned int extension = 0;
9262 offsetT displacement_from_opcode_start;
9263
9264 opcode = (unsigned char *) fragP->fr_opcode;
9265
9266 /* Address we want to reach in file space. */
9267 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9268
9269 /* Address opcode resides at in file space. */
9270 opcode_address = fragP->fr_address + fragP->fr_fix;
9271
9272 /* Displacement from opcode start to fill into instruction. */
9273 displacement_from_opcode_start = target_address - opcode_address;
9274
9275 if ((fragP->fr_subtype & BIG) == 0)
9276 {
9277 /* Don't have to change opcode. */
9278 extension = 1; /* 1 opcode + 1 displacement */
9279 where_to_put_displacement = &opcode[1];
9280 }
9281 else
9282 {
9283 if (no_cond_jump_promotion
9284 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9285 as_warn_where (fragP->fr_file, fragP->fr_line,
9286 _("long jump required"));
9287
9288 switch (fragP->fr_subtype)
9289 {
9290 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9291 extension = 4; /* 1 opcode + 4 displacement */
9292 opcode[0] = 0xe9;
9293 where_to_put_displacement = &opcode[1];
9294 break;
9295
9296 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9297 extension = 2; /* 1 opcode + 2 displacement */
9298 opcode[0] = 0xe9;
9299 where_to_put_displacement = &opcode[1];
9300 break;
9301
9302 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9303 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9304 extension = 5; /* 2 opcode + 4 displacement */
9305 opcode[1] = opcode[0] + 0x10;
9306 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9307 where_to_put_displacement = &opcode[2];
9308 break;
9309
9310 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9311 extension = 3; /* 2 opcode + 2 displacement */
9312 opcode[1] = opcode[0] + 0x10;
9313 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9314 where_to_put_displacement = &opcode[2];
9315 break;
9316
9317 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9318 extension = 4;
9319 opcode[0] ^= 1;
9320 opcode[1] = 3;
9321 opcode[2] = 0xe9;
9322 where_to_put_displacement = &opcode[3];
9323 break;
9324
9325 default:
9326 BAD_CASE (fragP->fr_subtype);
9327 break;
9328 }
9329 }
9330
9331 /* If size if less then four we are sure that the operand fits,
9332 but if it's 4, then it could be that the displacement is larger
9333 then -/+ 2GB. */
9334 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9335 && object_64bit
9336 && ((addressT) (displacement_from_opcode_start - extension
9337 + ((addressT) 1 << 31))
9338 > (((addressT) 2 << 31) - 1)))
9339 {
9340 as_bad_where (fragP->fr_file, fragP->fr_line,
9341 _("jump target out of range"));
9342 /* Make us emit 0. */
9343 displacement_from_opcode_start = extension;
9344 }
9345 /* Now put displacement after opcode. */
9346 md_number_to_chars ((char *) where_to_put_displacement,
9347 (valueT) (displacement_from_opcode_start - extension),
9348 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9349 fragP->fr_fix += extension;
9350 }
9351 \f
9352 /* Apply a fixup (fixP) to segment data, once it has been determined
9353 by our caller that we have all the info we need to fix it up.
9354
9355 Parameter valP is the pointer to the value of the bits.
9356
9357 On the 386, immediates, displacements, and data pointers are all in
9358 the same (little-endian) format, so we don't need to care about which
9359 we are handling. */
9360
9361 void
9362 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9363 {
9364 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9365 valueT value = *valP;
9366
9367 #if !defined (TE_Mach)
9368 if (fixP->fx_pcrel)
9369 {
9370 switch (fixP->fx_r_type)
9371 {
9372 default:
9373 break;
9374
9375 case BFD_RELOC_64:
9376 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9377 break;
9378 case BFD_RELOC_32:
9379 case BFD_RELOC_X86_64_32S:
9380 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9381 break;
9382 case BFD_RELOC_16:
9383 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9384 break;
9385 case BFD_RELOC_8:
9386 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9387 break;
9388 }
9389 }
9390
9391 if (fixP->fx_addsy != NULL
9392 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9393 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9394 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9395 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9396 && !use_rela_relocations)
9397 {
9398 /* This is a hack. There should be a better way to handle this.
9399 This covers for the fact that bfd_install_relocation will
9400 subtract the current location (for partial_inplace, PC relative
9401 relocations); see more below. */
9402 #ifndef OBJ_AOUT
9403 if (IS_ELF
9404 #ifdef TE_PE
9405 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9406 #endif
9407 )
9408 value += fixP->fx_where + fixP->fx_frag->fr_address;
9409 #endif
9410 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9411 if (IS_ELF)
9412 {
9413 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9414
9415 if ((sym_seg == seg
9416 || (symbol_section_p (fixP->fx_addsy)
9417 && sym_seg != absolute_section))
9418 && !generic_force_reloc (fixP))
9419 {
9420 /* Yes, we add the values in twice. This is because
9421 bfd_install_relocation subtracts them out again. I think
9422 bfd_install_relocation is broken, but I don't dare change
9423 it. FIXME. */
9424 value += fixP->fx_where + fixP->fx_frag->fr_address;
9425 }
9426 }
9427 #endif
9428 #if defined (OBJ_COFF) && defined (TE_PE)
9429 /* For some reason, the PE format does not store a
9430 section address offset for a PC relative symbol. */
9431 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9432 || S_IS_WEAK (fixP->fx_addsy))
9433 value += md_pcrel_from (fixP);
9434 #endif
9435 }
9436 #if defined (OBJ_COFF) && defined (TE_PE)
9437 if (fixP->fx_addsy != NULL
9438 && S_IS_WEAK (fixP->fx_addsy)
9439 /* PR 16858: Do not modify weak function references. */
9440 && ! fixP->fx_pcrel)
9441 {
9442 #if !defined (TE_PEP)
9443 /* For x86 PE weak function symbols are neither PC-relative
9444 nor do they set S_IS_FUNCTION. So the only reliable way
9445 to detect them is to check the flags of their containing
9446 section. */
9447 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9448 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9449 ;
9450 else
9451 #endif
9452 value -= S_GET_VALUE (fixP->fx_addsy);
9453 }
9454 #endif
9455
9456 /* Fix a few things - the dynamic linker expects certain values here,
9457 and we must not disappoint it. */
9458 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9459 if (IS_ELF && fixP->fx_addsy)
9460 switch (fixP->fx_r_type)
9461 {
9462 case BFD_RELOC_386_PLT32:
9463 case BFD_RELOC_X86_64_PLT32:
9464 /* Make the jump instruction point to the address of the operand. At
9465 runtime we merely add the offset to the actual PLT entry. */
9466 value = -4;
9467 break;
9468
9469 case BFD_RELOC_386_TLS_GD:
9470 case BFD_RELOC_386_TLS_LDM:
9471 case BFD_RELOC_386_TLS_IE_32:
9472 case BFD_RELOC_386_TLS_IE:
9473 case BFD_RELOC_386_TLS_GOTIE:
9474 case BFD_RELOC_386_TLS_GOTDESC:
9475 case BFD_RELOC_X86_64_TLSGD:
9476 case BFD_RELOC_X86_64_TLSLD:
9477 case BFD_RELOC_X86_64_GOTTPOFF:
9478 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9479 value = 0; /* Fully resolved at runtime. No addend. */
9480 /* Fallthrough */
9481 case BFD_RELOC_386_TLS_LE:
9482 case BFD_RELOC_386_TLS_LDO_32:
9483 case BFD_RELOC_386_TLS_LE_32:
9484 case BFD_RELOC_X86_64_DTPOFF32:
9485 case BFD_RELOC_X86_64_DTPOFF64:
9486 case BFD_RELOC_X86_64_TPOFF32:
9487 case BFD_RELOC_X86_64_TPOFF64:
9488 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9489 break;
9490
9491 case BFD_RELOC_386_TLS_DESC_CALL:
9492 case BFD_RELOC_X86_64_TLSDESC_CALL:
9493 value = 0; /* Fully resolved at runtime. No addend. */
9494 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9495 fixP->fx_done = 0;
9496 return;
9497
9498 case BFD_RELOC_VTABLE_INHERIT:
9499 case BFD_RELOC_VTABLE_ENTRY:
9500 fixP->fx_done = 0;
9501 return;
9502
9503 default:
9504 break;
9505 }
9506 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
9507 *valP = value;
9508 #endif /* !defined (TE_Mach) */
9509
9510 /* Are we finished with this relocation now? */
9511 if (fixP->fx_addsy == NULL)
9512 fixP->fx_done = 1;
9513 #if defined (OBJ_COFF) && defined (TE_PE)
9514 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9515 {
9516 fixP->fx_done = 0;
9517 /* Remember value for tc_gen_reloc. */
9518 fixP->fx_addnumber = value;
9519 /* Clear out the frag for now. */
9520 value = 0;
9521 }
9522 #endif
9523 else if (use_rela_relocations)
9524 {
9525 fixP->fx_no_overflow = 1;
9526 /* Remember value for tc_gen_reloc. */
9527 fixP->fx_addnumber = value;
9528 value = 0;
9529 }
9530
9531 md_number_to_chars (p, value, fixP->fx_size);
9532 }
9533 \f
9534 const char *
9535 md_atof (int type, char *litP, int *sizeP)
9536 {
9537 /* This outputs the LITTLENUMs in REVERSE order;
9538 in accord with the bigendian 386. */
9539 return ieee_md_atof (type, litP, sizeP, FALSE);
9540 }
9541 \f
9542 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
9543
9544 static char *
9545 output_invalid (int c)
9546 {
9547 if (ISPRINT (c))
9548 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9549 "'%c'", c);
9550 else
9551 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9552 "(0x%x)", (unsigned char) c);
9553 return output_invalid_buf;
9554 }
9555
9556 /* REG_STRING starts *before* REGISTER_PREFIX. */
9557
9558 static const reg_entry *
9559 parse_real_register (char *reg_string, char **end_op)
9560 {
9561 char *s = reg_string;
9562 char *p;
9563 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9564 const reg_entry *r;
9565
9566 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9567 if (*s == REGISTER_PREFIX)
9568 ++s;
9569
9570 if (is_space_char (*s))
9571 ++s;
9572
9573 p = reg_name_given;
9574 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
9575 {
9576 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
9577 return (const reg_entry *) NULL;
9578 s++;
9579 }
9580
9581 /* For naked regs, make sure that we are not dealing with an identifier.
9582 This prevents confusing an identifier like `eax_var' with register
9583 `eax'. */
9584 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9585 return (const reg_entry *) NULL;
9586
9587 *end_op = s;
9588
9589 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9590
9591 /* Handle floating point regs, allowing spaces in the (i) part. */
9592 if (r == i386_regtab /* %st is first entry of table */)
9593 {
9594 if (is_space_char (*s))
9595 ++s;
9596 if (*s == '(')
9597 {
9598 ++s;
9599 if (is_space_char (*s))
9600 ++s;
9601 if (*s >= '0' && *s <= '7')
9602 {
9603 int fpr = *s - '0';
9604 ++s;
9605 if (is_space_char (*s))
9606 ++s;
9607 if (*s == ')')
9608 {
9609 *end_op = s + 1;
9610 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
9611 know (r);
9612 return r + fpr;
9613 }
9614 }
9615 /* We have "%st(" then garbage. */
9616 return (const reg_entry *) NULL;
9617 }
9618 }
9619
9620 if (r == NULL || allow_pseudo_reg)
9621 return r;
9622
9623 if (operand_type_all_zero (&r->reg_type))
9624 return (const reg_entry *) NULL;
9625
9626 if ((r->reg_type.bitfield.reg32
9627 || r->reg_type.bitfield.sreg3
9628 || r->reg_type.bitfield.control
9629 || r->reg_type.bitfield.debug
9630 || r->reg_type.bitfield.test)
9631 && !cpu_arch_flags.bitfield.cpui386)
9632 return (const reg_entry *) NULL;
9633
9634 if (r->reg_type.bitfield.floatreg
9635 && !cpu_arch_flags.bitfield.cpu8087
9636 && !cpu_arch_flags.bitfield.cpu287
9637 && !cpu_arch_flags.bitfield.cpu387)
9638 return (const reg_entry *) NULL;
9639
9640 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
9641 return (const reg_entry *) NULL;
9642
9643 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpuregxmm)
9644 return (const reg_entry *) NULL;
9645
9646 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuregymm)
9647 return (const reg_entry *) NULL;
9648
9649 if (r->reg_type.bitfield.regzmm && !cpu_arch_flags.bitfield.cpuregzmm)
9650 return (const reg_entry *) NULL;
9651
9652 if (r->reg_type.bitfield.regmask
9653 && !cpu_arch_flags.bitfield.cpuregmask)
9654 return (const reg_entry *) NULL;
9655
9656 /* Don't allow fake index register unless allow_index_reg isn't 0. */
9657 if (!allow_index_reg
9658 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9659 return (const reg_entry *) NULL;
9660
9661 /* Upper 16 vector register is only available with VREX in 64bit
9662 mode. */
9663 if ((r->reg_flags & RegVRex))
9664 {
9665 if (!cpu_arch_flags.bitfield.cpuvrex
9666 || flag_code != CODE_64BIT)
9667 return (const reg_entry *) NULL;
9668
9669 i.need_vrex = 1;
9670 }
9671
9672 if (((r->reg_flags & (RegRex64 | RegRex))
9673 || r->reg_type.bitfield.reg64)
9674 && (!cpu_arch_flags.bitfield.cpulm
9675 || !operand_type_equal (&r->reg_type, &control))
9676 && flag_code != CODE_64BIT)
9677 return (const reg_entry *) NULL;
9678
9679 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9680 return (const reg_entry *) NULL;
9681
9682 return r;
9683 }
9684
9685 /* REG_STRING starts *before* REGISTER_PREFIX. */
9686
9687 static const reg_entry *
9688 parse_register (char *reg_string, char **end_op)
9689 {
9690 const reg_entry *r;
9691
9692 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9693 r = parse_real_register (reg_string, end_op);
9694 else
9695 r = NULL;
9696 if (!r)
9697 {
9698 char *save = input_line_pointer;
9699 char c;
9700 symbolS *symbolP;
9701
9702 input_line_pointer = reg_string;
9703 c = get_symbol_name (&reg_string);
9704 symbolP = symbol_find (reg_string);
9705 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9706 {
9707 const expressionS *e = symbol_get_value_expression (symbolP);
9708
9709 know (e->X_op == O_register);
9710 know (e->X_add_number >= 0
9711 && (valueT) e->X_add_number < i386_regtab_size);
9712 r = i386_regtab + e->X_add_number;
9713 if ((r->reg_flags & RegVRex))
9714 i.need_vrex = 1;
9715 *end_op = input_line_pointer;
9716 }
9717 *input_line_pointer = c;
9718 input_line_pointer = save;
9719 }
9720 return r;
9721 }
9722
9723 int
9724 i386_parse_name (char *name, expressionS *e, char *nextcharP)
9725 {
9726 const reg_entry *r;
9727 char *end = input_line_pointer;
9728
9729 *end = *nextcharP;
9730 r = parse_register (name, &input_line_pointer);
9731 if (r && end <= input_line_pointer)
9732 {
9733 *nextcharP = *input_line_pointer;
9734 *input_line_pointer = 0;
9735 e->X_op = O_register;
9736 e->X_add_number = r - i386_regtab;
9737 return 1;
9738 }
9739 input_line_pointer = end;
9740 *end = 0;
9741 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
9742 }
9743
9744 void
9745 md_operand (expressionS *e)
9746 {
9747 char *end;
9748 const reg_entry *r;
9749
9750 switch (*input_line_pointer)
9751 {
9752 case REGISTER_PREFIX:
9753 r = parse_real_register (input_line_pointer, &end);
9754 if (r)
9755 {
9756 e->X_op = O_register;
9757 e->X_add_number = r - i386_regtab;
9758 input_line_pointer = end;
9759 }
9760 break;
9761
9762 case '[':
9763 gas_assert (intel_syntax);
9764 end = input_line_pointer++;
9765 expression (e);
9766 if (*input_line_pointer == ']')
9767 {
9768 ++input_line_pointer;
9769 e->X_op_symbol = make_expr_symbol (e);
9770 e->X_add_symbol = NULL;
9771 e->X_add_number = 0;
9772 e->X_op = O_index;
9773 }
9774 else
9775 {
9776 e->X_op = O_absent;
9777 input_line_pointer = end;
9778 }
9779 break;
9780 }
9781 }
9782
9783 \f
9784 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9785 const char *md_shortopts = "kVQ:sqn";
9786 #else
9787 const char *md_shortopts = "qn";
9788 #endif
9789
9790 #define OPTION_32 (OPTION_MD_BASE + 0)
9791 #define OPTION_64 (OPTION_MD_BASE + 1)
9792 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9793 #define OPTION_MARCH (OPTION_MD_BASE + 3)
9794 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
9795 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9796 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9797 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9798 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9799 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
9800 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
9801 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
9802 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9803 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9804 #define OPTION_X32 (OPTION_MD_BASE + 14)
9805 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
9806 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9807 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
9808 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
9809 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
9810 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
9811 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
9812 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
9813 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
9814 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
9815 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 25)
9816
9817 struct option md_longopts[] =
9818 {
9819 {"32", no_argument, NULL, OPTION_32},
9820 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9821 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9822 {"64", no_argument, NULL, OPTION_64},
9823 #endif
9824 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9825 {"x32", no_argument, NULL, OPTION_X32},
9826 {"mshared", no_argument, NULL, OPTION_MSHARED},
9827 #endif
9828 {"divide", no_argument, NULL, OPTION_DIVIDE},
9829 {"march", required_argument, NULL, OPTION_MARCH},
9830 {"mtune", required_argument, NULL, OPTION_MTUNE},
9831 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
9832 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
9833 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
9834 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
9835 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
9836 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
9837 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
9838 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
9839 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
9840 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
9841 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
9842 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
9843 # if defined (TE_PE) || defined (TE_PEP)
9844 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
9845 #endif
9846 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
9847 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
9848 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
9849 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
9850 {"mamd64", no_argument, NULL, OPTION_MAMD64},
9851 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
9852 {NULL, no_argument, NULL, 0}
9853 };
9854 size_t md_longopts_size = sizeof (md_longopts);
9855
9856 int
9857 md_parse_option (int c, const char *arg)
9858 {
9859 unsigned int j;
9860 char *arch, *next, *saved;
9861
9862 switch (c)
9863 {
9864 case 'n':
9865 optimize_align_code = 0;
9866 break;
9867
9868 case 'q':
9869 quiet_warnings = 1;
9870 break;
9871
9872 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9873 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
9874 should be emitted or not. FIXME: Not implemented. */
9875 case 'Q':
9876 break;
9877
9878 /* -V: SVR4 argument to print version ID. */
9879 case 'V':
9880 print_version_id ();
9881 break;
9882
9883 /* -k: Ignore for FreeBSD compatibility. */
9884 case 'k':
9885 break;
9886
9887 case 's':
9888 /* -s: On i386 Solaris, this tells the native assembler to use
9889 .stab instead of .stab.excl. We always use .stab anyhow. */
9890 break;
9891
9892 case OPTION_MSHARED:
9893 shared = 1;
9894 break;
9895 #endif
9896 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9897 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9898 case OPTION_64:
9899 {
9900 const char **list, **l;
9901
9902 list = bfd_target_list ();
9903 for (l = list; *l != NULL; l++)
9904 if (CONST_STRNEQ (*l, "elf64-x86-64")
9905 || strcmp (*l, "coff-x86-64") == 0
9906 || strcmp (*l, "pe-x86-64") == 0
9907 || strcmp (*l, "pei-x86-64") == 0
9908 || strcmp (*l, "mach-o-x86-64") == 0)
9909 {
9910 default_arch = "x86_64";
9911 break;
9912 }
9913 if (*l == NULL)
9914 as_fatal (_("no compiled in support for x86_64"));
9915 free (list);
9916 }
9917 break;
9918 #endif
9919
9920 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9921 case OPTION_X32:
9922 if (IS_ELF)
9923 {
9924 const char **list, **l;
9925
9926 list = bfd_target_list ();
9927 for (l = list; *l != NULL; l++)
9928 if (CONST_STRNEQ (*l, "elf32-x86-64"))
9929 {
9930 default_arch = "x86_64:32";
9931 break;
9932 }
9933 if (*l == NULL)
9934 as_fatal (_("no compiled in support for 32bit x86_64"));
9935 free (list);
9936 }
9937 else
9938 as_fatal (_("32bit x86_64 is only supported for ELF"));
9939 break;
9940 #endif
9941
9942 case OPTION_32:
9943 default_arch = "i386";
9944 break;
9945
9946 case OPTION_DIVIDE:
9947 #ifdef SVR4_COMMENT_CHARS
9948 {
9949 char *n, *t;
9950 const char *s;
9951
9952 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
9953 t = n;
9954 for (s = i386_comment_chars; *s != '\0'; s++)
9955 if (*s != '/')
9956 *t++ = *s;
9957 *t = '\0';
9958 i386_comment_chars = n;
9959 }
9960 #endif
9961 break;
9962
9963 case OPTION_MARCH:
9964 saved = xstrdup (arg);
9965 arch = saved;
9966 /* Allow -march=+nosse. */
9967 if (*arch == '+')
9968 arch++;
9969 do
9970 {
9971 if (*arch == '.')
9972 as_fatal (_("invalid -march= option: `%s'"), arg);
9973 next = strchr (arch, '+');
9974 if (next)
9975 *next++ = '\0';
9976 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9977 {
9978 if (strcmp (arch, cpu_arch [j].name) == 0)
9979 {
9980 /* Processor. */
9981 if (! cpu_arch[j].flags.bitfield.cpui386)
9982 continue;
9983
9984 cpu_arch_name = cpu_arch[j].name;
9985 cpu_sub_arch_name = NULL;
9986 cpu_arch_flags = cpu_arch[j].flags;
9987 cpu_arch_isa = cpu_arch[j].type;
9988 cpu_arch_isa_flags = cpu_arch[j].flags;
9989 if (!cpu_arch_tune_set)
9990 {
9991 cpu_arch_tune = cpu_arch_isa;
9992 cpu_arch_tune_flags = cpu_arch_isa_flags;
9993 }
9994 break;
9995 }
9996 else if (*cpu_arch [j].name == '.'
9997 && strcmp (arch, cpu_arch [j].name + 1) == 0)
9998 {
9999 /* ISA entension. */
10000 i386_cpu_flags flags;
10001
10002 flags = cpu_flags_or (cpu_arch_flags,
10003 cpu_arch[j].flags);
10004
10005 if (!valid_iamcu_cpu_flags (&flags))
10006 as_fatal (_("`%s' isn't valid for Intel MCU"), arch);
10007 else if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10008 {
10009 if (cpu_sub_arch_name)
10010 {
10011 char *name = cpu_sub_arch_name;
10012 cpu_sub_arch_name = concat (name,
10013 cpu_arch[j].name,
10014 (const char *) NULL);
10015 free (name);
10016 }
10017 else
10018 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10019 cpu_arch_flags = flags;
10020 cpu_arch_isa_flags = flags;
10021 }
10022 break;
10023 }
10024 }
10025
10026 if (j >= ARRAY_SIZE (cpu_arch))
10027 {
10028 /* Disable an ISA entension. */
10029 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10030 if (strcmp (arch, cpu_noarch [j].name) == 0)
10031 {
10032 i386_cpu_flags flags;
10033
10034 flags = cpu_flags_and_not (cpu_arch_flags,
10035 cpu_noarch[j].flags);
10036 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10037 {
10038 if (cpu_sub_arch_name)
10039 {
10040 char *name = cpu_sub_arch_name;
10041 cpu_sub_arch_name = concat (arch,
10042 (const char *) NULL);
10043 free (name);
10044 }
10045 else
10046 cpu_sub_arch_name = xstrdup (arch);
10047 cpu_arch_flags = flags;
10048 cpu_arch_isa_flags = flags;
10049 }
10050 break;
10051 }
10052
10053 if (j >= ARRAY_SIZE (cpu_noarch))
10054 j = ARRAY_SIZE (cpu_arch);
10055 }
10056
10057 if (j >= ARRAY_SIZE (cpu_arch))
10058 as_fatal (_("invalid -march= option: `%s'"), arg);
10059
10060 arch = next;
10061 }
10062 while (next != NULL);
10063 free (saved);
10064 break;
10065
10066 case OPTION_MTUNE:
10067 if (*arg == '.')
10068 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10069 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10070 {
10071 if (strcmp (arg, cpu_arch [j].name) == 0)
10072 {
10073 cpu_arch_tune_set = 1;
10074 cpu_arch_tune = cpu_arch [j].type;
10075 cpu_arch_tune_flags = cpu_arch[j].flags;
10076 break;
10077 }
10078 }
10079 if (j >= ARRAY_SIZE (cpu_arch))
10080 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10081 break;
10082
10083 case OPTION_MMNEMONIC:
10084 if (strcasecmp (arg, "att") == 0)
10085 intel_mnemonic = 0;
10086 else if (strcasecmp (arg, "intel") == 0)
10087 intel_mnemonic = 1;
10088 else
10089 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10090 break;
10091
10092 case OPTION_MSYNTAX:
10093 if (strcasecmp (arg, "att") == 0)
10094 intel_syntax = 0;
10095 else if (strcasecmp (arg, "intel") == 0)
10096 intel_syntax = 1;
10097 else
10098 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10099 break;
10100
10101 case OPTION_MINDEX_REG:
10102 allow_index_reg = 1;
10103 break;
10104
10105 case OPTION_MNAKED_REG:
10106 allow_naked_reg = 1;
10107 break;
10108
10109 case OPTION_MOLD_GCC:
10110 old_gcc = 1;
10111 break;
10112
10113 case OPTION_MSSE2AVX:
10114 sse2avx = 1;
10115 break;
10116
10117 case OPTION_MSSE_CHECK:
10118 if (strcasecmp (arg, "error") == 0)
10119 sse_check = check_error;
10120 else if (strcasecmp (arg, "warning") == 0)
10121 sse_check = check_warning;
10122 else if (strcasecmp (arg, "none") == 0)
10123 sse_check = check_none;
10124 else
10125 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10126 break;
10127
10128 case OPTION_MOPERAND_CHECK:
10129 if (strcasecmp (arg, "error") == 0)
10130 operand_check = check_error;
10131 else if (strcasecmp (arg, "warning") == 0)
10132 operand_check = check_warning;
10133 else if (strcasecmp (arg, "none") == 0)
10134 operand_check = check_none;
10135 else
10136 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10137 break;
10138
10139 case OPTION_MAVXSCALAR:
10140 if (strcasecmp (arg, "128") == 0)
10141 avxscalar = vex128;
10142 else if (strcasecmp (arg, "256") == 0)
10143 avxscalar = vex256;
10144 else
10145 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10146 break;
10147
10148 case OPTION_MADD_BND_PREFIX:
10149 add_bnd_prefix = 1;
10150 break;
10151
10152 case OPTION_MEVEXLIG:
10153 if (strcmp (arg, "128") == 0)
10154 evexlig = evexl128;
10155 else if (strcmp (arg, "256") == 0)
10156 evexlig = evexl256;
10157 else if (strcmp (arg, "512") == 0)
10158 evexlig = evexl512;
10159 else
10160 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10161 break;
10162
10163 case OPTION_MEVEXRCIG:
10164 if (strcmp (arg, "rne") == 0)
10165 evexrcig = rne;
10166 else if (strcmp (arg, "rd") == 0)
10167 evexrcig = rd;
10168 else if (strcmp (arg, "ru") == 0)
10169 evexrcig = ru;
10170 else if (strcmp (arg, "rz") == 0)
10171 evexrcig = rz;
10172 else
10173 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10174 break;
10175
10176 case OPTION_MEVEXWIG:
10177 if (strcmp (arg, "0") == 0)
10178 evexwig = evexw0;
10179 else if (strcmp (arg, "1") == 0)
10180 evexwig = evexw1;
10181 else
10182 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10183 break;
10184
10185 # if defined (TE_PE) || defined (TE_PEP)
10186 case OPTION_MBIG_OBJ:
10187 use_big_obj = 1;
10188 break;
10189 #endif
10190
10191 case OPTION_MOMIT_LOCK_PREFIX:
10192 if (strcasecmp (arg, "yes") == 0)
10193 omit_lock_prefix = 1;
10194 else if (strcasecmp (arg, "no") == 0)
10195 omit_lock_prefix = 0;
10196 else
10197 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10198 break;
10199
10200 case OPTION_MFENCE_AS_LOCK_ADD:
10201 if (strcasecmp (arg, "yes") == 0)
10202 avoid_fence = 1;
10203 else if (strcasecmp (arg, "no") == 0)
10204 avoid_fence = 0;
10205 else
10206 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10207 break;
10208
10209 case OPTION_MRELAX_RELOCATIONS:
10210 if (strcasecmp (arg, "yes") == 0)
10211 generate_relax_relocations = 1;
10212 else if (strcasecmp (arg, "no") == 0)
10213 generate_relax_relocations = 0;
10214 else
10215 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10216 break;
10217
10218 case OPTION_MAMD64:
10219 intel64 = 0;
10220 break;
10221
10222 case OPTION_MINTEL64:
10223 intel64 = 1;
10224 break;
10225
10226 default:
10227 return 0;
10228 }
10229 return 1;
10230 }
10231
10232 #define MESSAGE_TEMPLATE \
10233 " "
10234
10235 static char *
10236 output_message (FILE *stream, char *p, char *message, char *start,
10237 int *left_p, const char *name, int len)
10238 {
10239 int size = sizeof (MESSAGE_TEMPLATE);
10240 int left = *left_p;
10241
10242 /* Reserve 2 spaces for ", " or ",\0" */
10243 left -= len + 2;
10244
10245 /* Check if there is any room. */
10246 if (left >= 0)
10247 {
10248 if (p != start)
10249 {
10250 *p++ = ',';
10251 *p++ = ' ';
10252 }
10253 p = mempcpy (p, name, len);
10254 }
10255 else
10256 {
10257 /* Output the current message now and start a new one. */
10258 *p++ = ',';
10259 *p = '\0';
10260 fprintf (stream, "%s\n", message);
10261 p = start;
10262 left = size - (start - message) - len - 2;
10263
10264 gas_assert (left >= 0);
10265
10266 p = mempcpy (p, name, len);
10267 }
10268
10269 *left_p = left;
10270 return p;
10271 }
10272
10273 static void
10274 show_arch (FILE *stream, int ext, int check)
10275 {
10276 static char message[] = MESSAGE_TEMPLATE;
10277 char *start = message + 27;
10278 char *p;
10279 int size = sizeof (MESSAGE_TEMPLATE);
10280 int left;
10281 const char *name;
10282 int len;
10283 unsigned int j;
10284
10285 p = start;
10286 left = size - (start - message);
10287 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10288 {
10289 /* Should it be skipped? */
10290 if (cpu_arch [j].skip)
10291 continue;
10292
10293 name = cpu_arch [j].name;
10294 len = cpu_arch [j].len;
10295 if (*name == '.')
10296 {
10297 /* It is an extension. Skip if we aren't asked to show it. */
10298 if (ext)
10299 {
10300 name++;
10301 len--;
10302 }
10303 else
10304 continue;
10305 }
10306 else if (ext)
10307 {
10308 /* It is an processor. Skip if we show only extension. */
10309 continue;
10310 }
10311 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10312 {
10313 /* It is an impossible processor - skip. */
10314 continue;
10315 }
10316
10317 p = output_message (stream, p, message, start, &left, name, len);
10318 }
10319
10320 /* Display disabled extensions. */
10321 if (ext)
10322 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10323 {
10324 name = cpu_noarch [j].name;
10325 len = cpu_noarch [j].len;
10326 p = output_message (stream, p, message, start, &left, name,
10327 len);
10328 }
10329
10330 *p = '\0';
10331 fprintf (stream, "%s\n", message);
10332 }
10333
10334 void
10335 md_show_usage (FILE *stream)
10336 {
10337 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10338 fprintf (stream, _("\
10339 -Q ignored\n\
10340 -V print assembler version number\n\
10341 -k ignored\n"));
10342 #endif
10343 fprintf (stream, _("\
10344 -n Do not optimize code alignment\n\
10345 -q quieten some warnings\n"));
10346 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10347 fprintf (stream, _("\
10348 -s ignored\n"));
10349 #endif
10350 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10351 || defined (TE_PE) || defined (TE_PEP))
10352 fprintf (stream, _("\
10353 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10354 #endif
10355 #ifdef SVR4_COMMENT_CHARS
10356 fprintf (stream, _("\
10357 --divide do not treat `/' as a comment character\n"));
10358 #else
10359 fprintf (stream, _("\
10360 --divide ignored\n"));
10361 #endif
10362 fprintf (stream, _("\
10363 -march=CPU[,+EXTENSION...]\n\
10364 generate code for CPU and EXTENSION, CPU is one of:\n"));
10365 show_arch (stream, 0, 1);
10366 fprintf (stream, _("\
10367 EXTENSION is combination of:\n"));
10368 show_arch (stream, 1, 0);
10369 fprintf (stream, _("\
10370 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10371 show_arch (stream, 0, 0);
10372 fprintf (stream, _("\
10373 -msse2avx encode SSE instructions with VEX prefix\n"));
10374 fprintf (stream, _("\
10375 -msse-check=[none|error|warning]\n\
10376 check SSE instructions\n"));
10377 fprintf (stream, _("\
10378 -moperand-check=[none|error|warning]\n\
10379 check operand combinations for validity\n"));
10380 fprintf (stream, _("\
10381 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10382 length\n"));
10383 fprintf (stream, _("\
10384 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10385 length\n"));
10386 fprintf (stream, _("\
10387 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10388 for EVEX.W bit ignored instructions\n"));
10389 fprintf (stream, _("\
10390 -mevexrcig=[rne|rd|ru|rz]\n\
10391 encode EVEX instructions with specific EVEX.RC value\n\
10392 for SAE-only ignored instructions\n"));
10393 fprintf (stream, _("\
10394 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10395 fprintf (stream, _("\
10396 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10397 fprintf (stream, _("\
10398 -mindex-reg support pseudo index registers\n"));
10399 fprintf (stream, _("\
10400 -mnaked-reg don't require `%%' prefix for registers\n"));
10401 fprintf (stream, _("\
10402 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
10403 fprintf (stream, _("\
10404 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10405 fprintf (stream, _("\
10406 -mshared disable branch optimization for shared code\n"));
10407 # if defined (TE_PE) || defined (TE_PEP)
10408 fprintf (stream, _("\
10409 -mbig-obj generate big object files\n"));
10410 #endif
10411 fprintf (stream, _("\
10412 -momit-lock-prefix=[no|yes]\n\
10413 strip all lock prefixes\n"));
10414 fprintf (stream, _("\
10415 -mfence-as-lock-add=[no|yes]\n\
10416 encode lfence, mfence and sfence as\n\
10417 lock addl $0x0, (%%{re}sp)\n"));
10418 fprintf (stream, _("\
10419 -mrelax-relocations=[no|yes]\n\
10420 generate relax relocations\n"));
10421 fprintf (stream, _("\
10422 -mamd64 accept only AMD64 ISA\n"));
10423 fprintf (stream, _("\
10424 -mintel64 accept only Intel64 ISA\n"));
10425 }
10426
10427 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10428 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10429 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10430
10431 /* Pick the target format to use. */
10432
10433 const char *
10434 i386_target_format (void)
10435 {
10436 if (!strncmp (default_arch, "x86_64", 6))
10437 {
10438 update_code_flag (CODE_64BIT, 1);
10439 if (default_arch[6] == '\0')
10440 x86_elf_abi = X86_64_ABI;
10441 else
10442 x86_elf_abi = X86_64_X32_ABI;
10443 }
10444 else if (!strcmp (default_arch, "i386"))
10445 update_code_flag (CODE_32BIT, 1);
10446 else if (!strcmp (default_arch, "iamcu"))
10447 {
10448 update_code_flag (CODE_32BIT, 1);
10449 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10450 {
10451 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10452 cpu_arch_name = "iamcu";
10453 cpu_sub_arch_name = NULL;
10454 cpu_arch_flags = iamcu_flags;
10455 cpu_arch_isa = PROCESSOR_IAMCU;
10456 cpu_arch_isa_flags = iamcu_flags;
10457 if (!cpu_arch_tune_set)
10458 {
10459 cpu_arch_tune = cpu_arch_isa;
10460 cpu_arch_tune_flags = cpu_arch_isa_flags;
10461 }
10462 }
10463 else
10464 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10465 cpu_arch_name);
10466 }
10467 else
10468 as_fatal (_("unknown architecture"));
10469
10470 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10471 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10472 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10473 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10474
10475 switch (OUTPUT_FLAVOR)
10476 {
10477 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
10478 case bfd_target_aout_flavour:
10479 return AOUT_TARGET_FORMAT;
10480 #endif
10481 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10482 # if defined (TE_PE) || defined (TE_PEP)
10483 case bfd_target_coff_flavour:
10484 if (flag_code == CODE_64BIT)
10485 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10486 else
10487 return "pe-i386";
10488 # elif defined (TE_GO32)
10489 case bfd_target_coff_flavour:
10490 return "coff-go32";
10491 # else
10492 case bfd_target_coff_flavour:
10493 return "coff-i386";
10494 # endif
10495 #endif
10496 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10497 case bfd_target_elf_flavour:
10498 {
10499 const char *format;
10500
10501 switch (x86_elf_abi)
10502 {
10503 default:
10504 format = ELF_TARGET_FORMAT;
10505 break;
10506 case X86_64_ABI:
10507 use_rela_relocations = 1;
10508 object_64bit = 1;
10509 format = ELF_TARGET_FORMAT64;
10510 break;
10511 case X86_64_X32_ABI:
10512 use_rela_relocations = 1;
10513 object_64bit = 1;
10514 disallow_64bit_reloc = 1;
10515 format = ELF_TARGET_FORMAT32;
10516 break;
10517 }
10518 if (cpu_arch_isa == PROCESSOR_L1OM)
10519 {
10520 if (x86_elf_abi != X86_64_ABI)
10521 as_fatal (_("Intel L1OM is 64bit only"));
10522 return ELF_TARGET_L1OM_FORMAT;
10523 }
10524 else if (cpu_arch_isa == PROCESSOR_K1OM)
10525 {
10526 if (x86_elf_abi != X86_64_ABI)
10527 as_fatal (_("Intel K1OM is 64bit only"));
10528 return ELF_TARGET_K1OM_FORMAT;
10529 }
10530 else if (cpu_arch_isa == PROCESSOR_IAMCU)
10531 {
10532 if (x86_elf_abi != I386_ABI)
10533 as_fatal (_("Intel MCU is 32bit only"));
10534 return ELF_TARGET_IAMCU_FORMAT;
10535 }
10536 else
10537 return format;
10538 }
10539 #endif
10540 #if defined (OBJ_MACH_O)
10541 case bfd_target_mach_o_flavour:
10542 if (flag_code == CODE_64BIT)
10543 {
10544 use_rela_relocations = 1;
10545 object_64bit = 1;
10546 return "mach-o-x86-64";
10547 }
10548 else
10549 return "mach-o-i386";
10550 #endif
10551 default:
10552 abort ();
10553 return NULL;
10554 }
10555 }
10556
10557 #endif /* OBJ_MAYBE_ more than one */
10558 \f
10559 symbolS *
10560 md_undefined_symbol (char *name)
10561 {
10562 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10563 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10564 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10565 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
10566 {
10567 if (!GOT_symbol)
10568 {
10569 if (symbol_find (name))
10570 as_bad (_("GOT already in symbol table"));
10571 GOT_symbol = symbol_new (name, undefined_section,
10572 (valueT) 0, &zero_address_frag);
10573 };
10574 return GOT_symbol;
10575 }
10576 return 0;
10577 }
10578
10579 /* Round up a section size to the appropriate boundary. */
10580
10581 valueT
10582 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
10583 {
10584 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10585 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10586 {
10587 /* For a.out, force the section size to be aligned. If we don't do
10588 this, BFD will align it for us, but it will not write out the
10589 final bytes of the section. This may be a bug in BFD, but it is
10590 easier to fix it here since that is how the other a.out targets
10591 work. */
10592 int align;
10593
10594 align = bfd_get_section_alignment (stdoutput, segment);
10595 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
10596 }
10597 #endif
10598
10599 return size;
10600 }
10601
10602 /* On the i386, PC-relative offsets are relative to the start of the
10603 next instruction. That is, the address of the offset, plus its
10604 size, since the offset is always the last part of the insn. */
10605
10606 long
10607 md_pcrel_from (fixS *fixP)
10608 {
10609 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10610 }
10611
10612 #ifndef I386COFF
10613
10614 static void
10615 s_bss (int ignore ATTRIBUTE_UNUSED)
10616 {
10617 int temp;
10618
10619 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10620 if (IS_ELF)
10621 obj_elf_section_change_hook ();
10622 #endif
10623 temp = get_absolute_expression ();
10624 subseg_set (bss_section, (subsegT) temp);
10625 demand_empty_rest_of_line ();
10626 }
10627
10628 #endif
10629
10630 void
10631 i386_validate_fix (fixS *fixp)
10632 {
10633 if (fixp->fx_subsy)
10634 {
10635 if (fixp->fx_subsy == GOT_symbol)
10636 {
10637 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10638 {
10639 if (!object_64bit)
10640 abort ();
10641 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10642 if (fixp->fx_tcbit2)
10643 fixp->fx_r_type = (fixp->fx_tcbit
10644 ? BFD_RELOC_X86_64_REX_GOTPCRELX
10645 : BFD_RELOC_X86_64_GOTPCRELX);
10646 else
10647 #endif
10648 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10649 }
10650 else
10651 {
10652 if (!object_64bit)
10653 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10654 else
10655 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10656 }
10657 fixp->fx_subsy = 0;
10658 }
10659 }
10660 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10661 else if (!object_64bit)
10662 {
10663 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
10664 && fixp->fx_tcbit2)
10665 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
10666 }
10667 #endif
10668 }
10669
10670 arelent *
10671 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
10672 {
10673 arelent *rel;
10674 bfd_reloc_code_real_type code;
10675
10676 switch (fixp->fx_r_type)
10677 {
10678 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10679 case BFD_RELOC_SIZE32:
10680 case BFD_RELOC_SIZE64:
10681 if (S_IS_DEFINED (fixp->fx_addsy)
10682 && !S_IS_EXTERNAL (fixp->fx_addsy))
10683 {
10684 /* Resolve size relocation against local symbol to size of
10685 the symbol plus addend. */
10686 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10687 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10688 && !fits_in_unsigned_long (value))
10689 as_bad_where (fixp->fx_file, fixp->fx_line,
10690 _("symbol size computation overflow"));
10691 fixp->fx_addsy = NULL;
10692 fixp->fx_subsy = NULL;
10693 md_apply_fix (fixp, (valueT *) &value, NULL);
10694 return NULL;
10695 }
10696 #endif
10697
10698 case BFD_RELOC_X86_64_PLT32:
10699 case BFD_RELOC_X86_64_GOT32:
10700 case BFD_RELOC_X86_64_GOTPCREL:
10701 case BFD_RELOC_X86_64_GOTPCRELX:
10702 case BFD_RELOC_X86_64_REX_GOTPCRELX:
10703 case BFD_RELOC_386_PLT32:
10704 case BFD_RELOC_386_GOT32:
10705 case BFD_RELOC_386_GOT32X:
10706 case BFD_RELOC_386_GOTOFF:
10707 case BFD_RELOC_386_GOTPC:
10708 case BFD_RELOC_386_TLS_GD:
10709 case BFD_RELOC_386_TLS_LDM:
10710 case BFD_RELOC_386_TLS_LDO_32:
10711 case BFD_RELOC_386_TLS_IE_32:
10712 case BFD_RELOC_386_TLS_IE:
10713 case BFD_RELOC_386_TLS_GOTIE:
10714 case BFD_RELOC_386_TLS_LE_32:
10715 case BFD_RELOC_386_TLS_LE:
10716 case BFD_RELOC_386_TLS_GOTDESC:
10717 case BFD_RELOC_386_TLS_DESC_CALL:
10718 case BFD_RELOC_X86_64_TLSGD:
10719 case BFD_RELOC_X86_64_TLSLD:
10720 case BFD_RELOC_X86_64_DTPOFF32:
10721 case BFD_RELOC_X86_64_DTPOFF64:
10722 case BFD_RELOC_X86_64_GOTTPOFF:
10723 case BFD_RELOC_X86_64_TPOFF32:
10724 case BFD_RELOC_X86_64_TPOFF64:
10725 case BFD_RELOC_X86_64_GOTOFF64:
10726 case BFD_RELOC_X86_64_GOTPC32:
10727 case BFD_RELOC_X86_64_GOT64:
10728 case BFD_RELOC_X86_64_GOTPCREL64:
10729 case BFD_RELOC_X86_64_GOTPC64:
10730 case BFD_RELOC_X86_64_GOTPLT64:
10731 case BFD_RELOC_X86_64_PLTOFF64:
10732 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10733 case BFD_RELOC_X86_64_TLSDESC_CALL:
10734 case BFD_RELOC_RVA:
10735 case BFD_RELOC_VTABLE_ENTRY:
10736 case BFD_RELOC_VTABLE_INHERIT:
10737 #ifdef TE_PE
10738 case BFD_RELOC_32_SECREL:
10739 #endif
10740 code = fixp->fx_r_type;
10741 break;
10742 case BFD_RELOC_X86_64_32S:
10743 if (!fixp->fx_pcrel)
10744 {
10745 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10746 code = fixp->fx_r_type;
10747 break;
10748 }
10749 default:
10750 if (fixp->fx_pcrel)
10751 {
10752 switch (fixp->fx_size)
10753 {
10754 default:
10755 as_bad_where (fixp->fx_file, fixp->fx_line,
10756 _("can not do %d byte pc-relative relocation"),
10757 fixp->fx_size);
10758 code = BFD_RELOC_32_PCREL;
10759 break;
10760 case 1: code = BFD_RELOC_8_PCREL; break;
10761 case 2: code = BFD_RELOC_16_PCREL; break;
10762 case 4: code = BFD_RELOC_32_PCREL; break;
10763 #ifdef BFD64
10764 case 8: code = BFD_RELOC_64_PCREL; break;
10765 #endif
10766 }
10767 }
10768 else
10769 {
10770 switch (fixp->fx_size)
10771 {
10772 default:
10773 as_bad_where (fixp->fx_file, fixp->fx_line,
10774 _("can not do %d byte relocation"),
10775 fixp->fx_size);
10776 code = BFD_RELOC_32;
10777 break;
10778 case 1: code = BFD_RELOC_8; break;
10779 case 2: code = BFD_RELOC_16; break;
10780 case 4: code = BFD_RELOC_32; break;
10781 #ifdef BFD64
10782 case 8: code = BFD_RELOC_64; break;
10783 #endif
10784 }
10785 }
10786 break;
10787 }
10788
10789 if ((code == BFD_RELOC_32
10790 || code == BFD_RELOC_32_PCREL
10791 || code == BFD_RELOC_X86_64_32S)
10792 && GOT_symbol
10793 && fixp->fx_addsy == GOT_symbol)
10794 {
10795 if (!object_64bit)
10796 code = BFD_RELOC_386_GOTPC;
10797 else
10798 code = BFD_RELOC_X86_64_GOTPC32;
10799 }
10800 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10801 && GOT_symbol
10802 && fixp->fx_addsy == GOT_symbol)
10803 {
10804 code = BFD_RELOC_X86_64_GOTPC64;
10805 }
10806
10807 rel = XNEW (arelent);
10808 rel->sym_ptr_ptr = XNEW (asymbol *);
10809 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10810
10811 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
10812
10813 if (!use_rela_relocations)
10814 {
10815 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10816 vtable entry to be used in the relocation's section offset. */
10817 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10818 rel->address = fixp->fx_offset;
10819 #if defined (OBJ_COFF) && defined (TE_PE)
10820 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10821 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10822 else
10823 #endif
10824 rel->addend = 0;
10825 }
10826 /* Use the rela in 64bit mode. */
10827 else
10828 {
10829 if (disallow_64bit_reloc)
10830 switch (code)
10831 {
10832 case BFD_RELOC_X86_64_DTPOFF64:
10833 case BFD_RELOC_X86_64_TPOFF64:
10834 case BFD_RELOC_64_PCREL:
10835 case BFD_RELOC_X86_64_GOTOFF64:
10836 case BFD_RELOC_X86_64_GOT64:
10837 case BFD_RELOC_X86_64_GOTPCREL64:
10838 case BFD_RELOC_X86_64_GOTPC64:
10839 case BFD_RELOC_X86_64_GOTPLT64:
10840 case BFD_RELOC_X86_64_PLTOFF64:
10841 as_bad_where (fixp->fx_file, fixp->fx_line,
10842 _("cannot represent relocation type %s in x32 mode"),
10843 bfd_get_reloc_code_name (code));
10844 break;
10845 default:
10846 break;
10847 }
10848
10849 if (!fixp->fx_pcrel)
10850 rel->addend = fixp->fx_offset;
10851 else
10852 switch (code)
10853 {
10854 case BFD_RELOC_X86_64_PLT32:
10855 case BFD_RELOC_X86_64_GOT32:
10856 case BFD_RELOC_X86_64_GOTPCREL:
10857 case BFD_RELOC_X86_64_GOTPCRELX:
10858 case BFD_RELOC_X86_64_REX_GOTPCRELX:
10859 case BFD_RELOC_X86_64_TLSGD:
10860 case BFD_RELOC_X86_64_TLSLD:
10861 case BFD_RELOC_X86_64_GOTTPOFF:
10862 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10863 case BFD_RELOC_X86_64_TLSDESC_CALL:
10864 rel->addend = fixp->fx_offset - fixp->fx_size;
10865 break;
10866 default:
10867 rel->addend = (section->vma
10868 - fixp->fx_size
10869 + fixp->fx_addnumber
10870 + md_pcrel_from (fixp));
10871 break;
10872 }
10873 }
10874
10875 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
10876 if (rel->howto == NULL)
10877 {
10878 as_bad_where (fixp->fx_file, fixp->fx_line,
10879 _("cannot represent relocation type %s"),
10880 bfd_get_reloc_code_name (code));
10881 /* Set howto to a garbage value so that we can keep going. */
10882 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
10883 gas_assert (rel->howto != NULL);
10884 }
10885
10886 return rel;
10887 }
10888
10889 #include "tc-i386-intel.c"
10890
10891 void
10892 tc_x86_parse_to_dw2regnum (expressionS *exp)
10893 {
10894 int saved_naked_reg;
10895 char saved_register_dot;
10896
10897 saved_naked_reg = allow_naked_reg;
10898 allow_naked_reg = 1;
10899 saved_register_dot = register_chars['.'];
10900 register_chars['.'] = '.';
10901 allow_pseudo_reg = 1;
10902 expression_and_evaluate (exp);
10903 allow_pseudo_reg = 0;
10904 register_chars['.'] = saved_register_dot;
10905 allow_naked_reg = saved_naked_reg;
10906
10907 if (exp->X_op == O_register && exp->X_add_number >= 0)
10908 {
10909 if ((addressT) exp->X_add_number < i386_regtab_size)
10910 {
10911 exp->X_op = O_constant;
10912 exp->X_add_number = i386_regtab[exp->X_add_number]
10913 .dw2_regnum[flag_code >> 1];
10914 }
10915 else
10916 exp->X_op = O_illegal;
10917 }
10918 }
10919
10920 void
10921 tc_x86_frame_initial_instructions (void)
10922 {
10923 static unsigned int sp_regno[2];
10924
10925 if (!sp_regno[flag_code >> 1])
10926 {
10927 char *saved_input = input_line_pointer;
10928 char sp[][4] = {"esp", "rsp"};
10929 expressionS exp;
10930
10931 input_line_pointer = sp[flag_code >> 1];
10932 tc_x86_parse_to_dw2regnum (&exp);
10933 gas_assert (exp.X_op == O_constant);
10934 sp_regno[flag_code >> 1] = exp.X_add_number;
10935 input_line_pointer = saved_input;
10936 }
10937
10938 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
10939 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
10940 }
10941
10942 int
10943 x86_dwarf2_addr_size (void)
10944 {
10945 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10946 if (x86_elf_abi == X86_64_X32_ABI)
10947 return 4;
10948 #endif
10949 return bfd_arch_bits_per_address (stdoutput) / 8;
10950 }
10951
10952 int
10953 i386_elf_section_type (const char *str, size_t len)
10954 {
10955 if (flag_code == CODE_64BIT
10956 && len == sizeof ("unwind") - 1
10957 && strncmp (str, "unwind", 6) == 0)
10958 return SHT_X86_64_UNWIND;
10959
10960 return -1;
10961 }
10962
10963 #ifdef TE_SOLARIS
10964 void
10965 i386_solaris_fix_up_eh_frame (segT sec)
10966 {
10967 if (flag_code == CODE_64BIT)
10968 elf_section_type (sec) = SHT_X86_64_UNWIND;
10969 }
10970 #endif
10971
10972 #ifdef TE_PE
10973 void
10974 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10975 {
10976 expressionS exp;
10977
10978 exp.X_op = O_secrel;
10979 exp.X_add_symbol = symbol;
10980 exp.X_add_number = 0;
10981 emit_expr (&exp, size);
10982 }
10983 #endif
10984
10985 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10986 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
10987
10988 bfd_vma
10989 x86_64_section_letter (int letter, const char **ptr_msg)
10990 {
10991 if (flag_code == CODE_64BIT)
10992 {
10993 if (letter == 'l')
10994 return SHF_X86_64_LARGE;
10995
10996 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
10997 }
10998 else
10999 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11000 return -1;
11001 }
11002
11003 bfd_vma
11004 x86_64_section_word (char *str, size_t len)
11005 {
11006 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11007 return SHF_X86_64_LARGE;
11008
11009 return -1;
11010 }
11011
11012 static void
11013 handle_large_common (int small ATTRIBUTE_UNUSED)
11014 {
11015 if (flag_code != CODE_64BIT)
11016 {
11017 s_comm_internal (0, elf_common_parse);
11018 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11019 }
11020 else
11021 {
11022 static segT lbss_section;
11023 asection *saved_com_section_ptr = elf_com_section_ptr;
11024 asection *saved_bss_section = bss_section;
11025
11026 if (lbss_section == NULL)
11027 {
11028 flagword applicable;
11029 segT seg = now_seg;
11030 subsegT subseg = now_subseg;
11031
11032 /* The .lbss section is for local .largecomm symbols. */
11033 lbss_section = subseg_new (".lbss", 0);
11034 applicable = bfd_applicable_section_flags (stdoutput);
11035 bfd_set_section_flags (stdoutput, lbss_section,
11036 applicable & SEC_ALLOC);
11037 seg_info (lbss_section)->bss = 1;
11038
11039 subseg_set (seg, subseg);
11040 }
11041
11042 elf_com_section_ptr = &_bfd_elf_large_com_section;
11043 bss_section = lbss_section;
11044
11045 s_comm_internal (0, elf_common_parse);
11046
11047 elf_com_section_ptr = saved_com_section_ptr;
11048 bss_section = saved_bss_section;
11049 }
11050 }
11051 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */