* dw2gencfi.c, dw2gencfi.h: New files.
[binutils-gdb.git] / gas / config / tc-i386.c
1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 Bugs & suggestions are completely welcome. This is free software.
27 Please help us make it better. */
28
29 #include "as.h"
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34 #include "opcode/i386.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef SCALE1_WHEN_NO_INDEX
45 /* Specifying a scale factor besides 1 when there is no index is
46 futile. eg. `mov (%ebx,2),%al' does exactly the same as
47 `mov (%ebx),%al'. To slavishly follow what the programmer
48 specified, set SCALE1_WHEN_NO_INDEX to 0. */
49 #define SCALE1_WHEN_NO_INDEX 1
50 #endif
51
52 #ifdef BFD_ASSEMBLER
53 #define RELOC_ENUM enum bfd_reloc_code_real
54 #else
55 #define RELOC_ENUM int
56 #endif
57
58 #ifndef DEFAULT_ARCH
59 #define DEFAULT_ARCH "i386"
60 #endif
61
62 #ifndef INLINE
63 #if __GNUC__ >= 2
64 #define INLINE __inline__
65 #else
66 #define INLINE
67 #endif
68 #endif
69
70 static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
71 static INLINE int fits_in_signed_byte PARAMS ((offsetT));
72 static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
73 static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
74 static INLINE int fits_in_signed_word PARAMS ((offsetT));
75 static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
76 static INLINE int fits_in_signed_long PARAMS ((offsetT));
77 static int smallest_imm_type PARAMS ((offsetT));
78 static offsetT offset_in_range PARAMS ((offsetT, int));
79 static int add_prefix PARAMS ((unsigned int));
80 static void set_code_flag PARAMS ((int));
81 static void set_16bit_gcc_code_flag PARAMS ((int));
82 static void set_intel_syntax PARAMS ((int));
83 static void set_cpu_arch PARAMS ((int));
84 static char *output_invalid PARAMS ((int c));
85 static int i386_operand PARAMS ((char *operand_string));
86 static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
87 static const reg_entry *parse_register PARAMS ((char *reg_string,
88 char **end_op));
89 static char *parse_insn PARAMS ((char *, char *));
90 static char *parse_operands PARAMS ((char *, const char *));
91 static void swap_operands PARAMS ((void));
92 static void optimize_imm PARAMS ((void));
93 static void optimize_disp PARAMS ((void));
94 static int match_template PARAMS ((void));
95 static int check_string PARAMS ((void));
96 static int process_suffix PARAMS ((void));
97 static int check_byte_reg PARAMS ((void));
98 static int check_long_reg PARAMS ((void));
99 static int check_qword_reg PARAMS ((void));
100 static int check_word_reg PARAMS ((void));
101 static int finalize_imm PARAMS ((void));
102 static int process_operands PARAMS ((void));
103 static const seg_entry *build_modrm_byte PARAMS ((void));
104 static void output_insn PARAMS ((void));
105 static void output_branch PARAMS ((void));
106 static void output_jump PARAMS ((void));
107 static void output_interseg_jump PARAMS ((void));
108 static void output_imm PARAMS ((fragS *insn_start_frag,
109 offsetT insn_start_off));
110 static void output_disp PARAMS ((fragS *insn_start_frag,
111 offsetT insn_start_off));
112 #ifndef I386COFF
113 static void s_bss PARAMS ((int));
114 #endif
115
116 static const char *default_arch = DEFAULT_ARCH;
117
118 /* 'md_assemble ()' gathers together information and puts it into a
119 i386_insn. */
120
121 union i386_op
122 {
123 expressionS *disps;
124 expressionS *imms;
125 const reg_entry *regs;
126 };
127
128 struct _i386_insn
129 {
130 /* TM holds the template for the insn were currently assembling. */
131 template tm;
132
133 /* SUFFIX holds the instruction mnemonic suffix if given.
134 (e.g. 'l' for 'movl') */
135 char suffix;
136
137 /* OPERANDS gives the number of given operands. */
138 unsigned int operands;
139
140 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
141 of given register, displacement, memory operands and immediate
142 operands. */
143 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
144
145 /* TYPES [i] is the type (see above #defines) which tells us how to
146 use OP[i] for the corresponding operand. */
147 unsigned int types[MAX_OPERANDS];
148
149 /* Displacement expression, immediate expression, or register for each
150 operand. */
151 union i386_op op[MAX_OPERANDS];
152
153 /* Flags for operands. */
154 unsigned int flags[MAX_OPERANDS];
155 #define Operand_PCrel 1
156
157 /* Relocation type for operand */
158 RELOC_ENUM reloc[MAX_OPERANDS];
159
160 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
161 the base index byte below. */
162 const reg_entry *base_reg;
163 const reg_entry *index_reg;
164 unsigned int log2_scale_factor;
165
166 /* SEG gives the seg_entries of this insn. They are zero unless
167 explicit segment overrides are given. */
168 const seg_entry *seg[2];
169
170 /* PREFIX holds all the given prefix opcodes (usually null).
171 PREFIXES is the number of prefix opcodes. */
172 unsigned int prefixes;
173 unsigned char prefix[MAX_PREFIXES];
174
175 /* RM and SIB are the modrm byte and the sib byte where the
176 addressing modes of this insn are encoded. */
177
178 modrm_byte rm;
179 rex_byte rex;
180 sib_byte sib;
181 };
182
183 typedef struct _i386_insn i386_insn;
184
185 /* List of chars besides those in app.c:symbol_chars that can start an
186 operand. Used to prevent the scrubber eating vital white-space. */
187 #ifdef LEX_AT
188 const char extra_symbol_chars[] = "*%-(@[";
189 #else
190 const char extra_symbol_chars[] = "*%-([";
191 #endif
192
193 #if (defined (TE_I386AIX) \
194 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
195 && !defined (TE_LINUX) \
196 && !defined (TE_FreeBSD) \
197 && !defined (TE_NetBSD)))
198 /* This array holds the chars that always start a comment. If the
199 pre-processor is disabled, these aren't very useful. */
200 const char comment_chars[] = "#/";
201 #define PREFIX_SEPARATOR '\\'
202
203 /* This array holds the chars that only start a comment at the beginning of
204 a line. If the line seems to have the form '# 123 filename'
205 .line and .file directives will appear in the pre-processed output.
206 Note that input_file.c hand checks for '#' at the beginning of the
207 first line of the input file. This is because the compiler outputs
208 #NO_APP at the beginning of its output.
209 Also note that comments started like this one will always work if
210 '/' isn't otherwise defined. */
211 const char line_comment_chars[] = "#";
212
213 #else
214 /* Putting '/' here makes it impossible to use the divide operator.
215 However, we need it for compatibility with SVR4 systems. */
216 const char comment_chars[] = "#";
217 #define PREFIX_SEPARATOR '/'
218
219 const char line_comment_chars[] = "/#";
220 #endif
221
222 const char line_separator_chars[] = ";";
223
224 /* Chars that can be used to separate mant from exp in floating point
225 nums. */
226 const char EXP_CHARS[] = "eE";
227
228 /* Chars that mean this number is a floating point constant
229 As in 0f12.456
230 or 0d1.2345e12. */
231 const char FLT_CHARS[] = "fFdDxX";
232
233 /* Tables for lexical analysis. */
234 static char mnemonic_chars[256];
235 static char register_chars[256];
236 static char operand_chars[256];
237 static char identifier_chars[256];
238 static char digit_chars[256];
239
240 /* Lexical macros. */
241 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
242 #define is_operand_char(x) (operand_chars[(unsigned char) x])
243 #define is_register_char(x) (register_chars[(unsigned char) x])
244 #define is_space_char(x) ((x) == ' ')
245 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
246 #define is_digit_char(x) (digit_chars[(unsigned char) x])
247
248 /* All non-digit non-letter charcters that may occur in an operand. */
249 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
250
251 /* md_assemble() always leaves the strings it's passed unaltered. To
252 effect this we maintain a stack of saved characters that we've smashed
253 with '\0's (indicating end of strings for various sub-fields of the
254 assembler instruction). */
255 static char save_stack[32];
256 static char *save_stack_p;
257 #define END_STRING_AND_SAVE(s) \
258 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
259 #define RESTORE_END_STRING(s) \
260 do { *(s) = *--save_stack_p; } while (0)
261
262 /* The instruction we're assembling. */
263 static i386_insn i;
264
265 /* Possible templates for current insn. */
266 static const templates *current_templates;
267
268 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
269 static expressionS disp_expressions[2], im_expressions[2];
270
271 /* Current operand we are working on. */
272 static int this_operand;
273
274 /* We support four different modes. FLAG_CODE variable is used to distinguish
275 these. */
276
277 enum flag_code {
278 CODE_32BIT,
279 CODE_16BIT,
280 CODE_64BIT };
281 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
282
283 static enum flag_code flag_code;
284 static int use_rela_relocations = 0;
285
286 /* The names used to print error messages. */
287 static const char *flag_code_names[] =
288 {
289 "32",
290 "16",
291 "64"
292 };
293
294 /* 1 for intel syntax,
295 0 if att syntax. */
296 static int intel_syntax = 0;
297
298 /* 1 if register prefix % not required. */
299 static int allow_naked_reg = 0;
300
301 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
302 leave, push, and pop instructions so that gcc has the same stack
303 frame as in 32 bit mode. */
304 static char stackop_size = '\0';
305
306 /* Non-zero to quieten some warnings. */
307 static int quiet_warnings = 0;
308
309 /* CPU name. */
310 static const char *cpu_arch_name = NULL;
311
312 /* CPU feature flags. */
313 static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
314
315 /* If set, conditional jumps are not automatically promoted to handle
316 larger than a byte offset. */
317 static unsigned int no_cond_jump_promotion = 0;
318
319 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
320 symbolS *GOT_symbol;
321
322 /* Interface to relax_segment.
323 There are 3 major relax states for 386 jump insns because the
324 different types of jumps add different sizes to frags when we're
325 figuring out what sort of jump to choose to reach a given label. */
326
327 /* Types. */
328 #define UNCOND_JUMP 0
329 #define COND_JUMP 1
330 #define COND_JUMP86 2
331
332 /* Sizes. */
333 #define CODE16 1
334 #define SMALL 0
335 #define SMALL16 (SMALL | CODE16)
336 #define BIG 2
337 #define BIG16 (BIG | CODE16)
338
339 #ifndef INLINE
340 #ifdef __GNUC__
341 #define INLINE __inline__
342 #else
343 #define INLINE
344 #endif
345 #endif
346
347 #define ENCODE_RELAX_STATE(type, size) \
348 ((relax_substateT) (((type) << 2) | (size)))
349 #define TYPE_FROM_RELAX_STATE(s) \
350 ((s) >> 2)
351 #define DISP_SIZE_FROM_RELAX_STATE(s) \
352 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
353
354 /* This table is used by relax_frag to promote short jumps to long
355 ones where necessary. SMALL (short) jumps may be promoted to BIG
356 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
357 don't allow a short jump in a 32 bit code segment to be promoted to
358 a 16 bit offset jump because it's slower (requires data size
359 prefix), and doesn't work, unless the destination is in the bottom
360 64k of the code segment (The top 16 bits of eip are zeroed). */
361
362 const relax_typeS md_relax_table[] =
363 {
364 /* The fields are:
365 1) most positive reach of this state,
366 2) most negative reach of this state,
367 3) how many bytes this mode will have in the variable part of the frag
368 4) which index into the table to try if we can't fit into this one. */
369
370 /* UNCOND_JUMP states. */
371 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
372 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
373 /* dword jmp adds 4 bytes to frag:
374 0 extra opcode bytes, 4 displacement bytes. */
375 {0, 0, 4, 0},
376 /* word jmp adds 2 byte2 to frag:
377 0 extra opcode bytes, 2 displacement bytes. */
378 {0, 0, 2, 0},
379
380 /* COND_JUMP states. */
381 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
382 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
383 /* dword conditionals adds 5 bytes to frag:
384 1 extra opcode byte, 4 displacement bytes. */
385 {0, 0, 5, 0},
386 /* word conditionals add 3 bytes to frag:
387 1 extra opcode byte, 2 displacement bytes. */
388 {0, 0, 3, 0},
389
390 /* COND_JUMP86 states. */
391 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
392 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
393 /* dword conditionals adds 5 bytes to frag:
394 1 extra opcode byte, 4 displacement bytes. */
395 {0, 0, 5, 0},
396 /* word conditionals add 4 bytes to frag:
397 1 displacement byte and a 3 byte long branch insn. */
398 {0, 0, 4, 0}
399 };
400
401 static const arch_entry cpu_arch[] = {
402 {"i8086", Cpu086 },
403 {"i186", Cpu086|Cpu186 },
404 {"i286", Cpu086|Cpu186|Cpu286 },
405 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
406 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
407 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
408 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
409 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
410 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
411 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
412 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
413 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
414 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
415 {NULL, 0 }
416 };
417
418 const pseudo_typeS md_pseudo_table[] =
419 {
420 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
421 {"align", s_align_bytes, 0},
422 #else
423 {"align", s_align_ptwo, 0},
424 #endif
425 {"arch", set_cpu_arch, 0},
426 #ifndef I386COFF
427 {"bss", s_bss, 0},
428 #endif
429 {"ffloat", float_cons, 'f'},
430 {"dfloat", float_cons, 'd'},
431 {"tfloat", float_cons, 'x'},
432 {"value", cons, 2},
433 {"noopt", s_ignore, 0},
434 {"optim", s_ignore, 0},
435 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
436 {"code16", set_code_flag, CODE_16BIT},
437 {"code32", set_code_flag, CODE_32BIT},
438 {"code64", set_code_flag, CODE_64BIT},
439 {"intel_syntax", set_intel_syntax, 1},
440 {"att_syntax", set_intel_syntax, 0},
441 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
442 {"loc", dwarf2_directive_loc, 0},
443 {0, 0, 0}
444 };
445
446 /* For interface with expression (). */
447 extern char *input_line_pointer;
448
449 /* Hash table for instruction mnemonic lookup. */
450 static struct hash_control *op_hash;
451
452 /* Hash table for register lookup. */
453 static struct hash_control *reg_hash;
454 \f
455 void
456 i386_align_code (fragP, count)
457 fragS *fragP;
458 int count;
459 {
460 /* Various efficient no-op patterns for aligning code labels.
461 Note: Don't try to assemble the instructions in the comments.
462 0L and 0w are not legal. */
463 static const char f32_1[] =
464 {0x90}; /* nop */
465 static const char f32_2[] =
466 {0x89,0xf6}; /* movl %esi,%esi */
467 static const char f32_3[] =
468 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
469 static const char f32_4[] =
470 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
471 static const char f32_5[] =
472 {0x90, /* nop */
473 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
474 static const char f32_6[] =
475 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
476 static const char f32_7[] =
477 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
478 static const char f32_8[] =
479 {0x90, /* nop */
480 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
481 static const char f32_9[] =
482 {0x89,0xf6, /* movl %esi,%esi */
483 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
484 static const char f32_10[] =
485 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
486 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
487 static const char f32_11[] =
488 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
489 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
490 static const char f32_12[] =
491 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
492 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
493 static const char f32_13[] =
494 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
495 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
496 static const char f32_14[] =
497 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
498 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
499 static const char f32_15[] =
500 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
501 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
502 static const char f16_3[] =
503 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
504 static const char f16_4[] =
505 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
506 static const char f16_5[] =
507 {0x90, /* nop */
508 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
509 static const char f16_6[] =
510 {0x89,0xf6, /* mov %si,%si */
511 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
512 static const char f16_7[] =
513 {0x8d,0x74,0x00, /* lea 0(%si),%si */
514 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
515 static const char f16_8[] =
516 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
517 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
518 static const char *const f32_patt[] = {
519 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
520 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
521 };
522 static const char *const f16_patt[] = {
523 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
524 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
525 };
526
527 if (count <= 0 || count > 15)
528 return;
529
530 /* The recommended way to pad 64bit code is to use NOPs preceded by
531 maximally four 0x66 prefixes. Balance the size of nops. */
532 if (flag_code == CODE_64BIT)
533 {
534 int i;
535 int nnops = (count + 3) / 4;
536 int len = count / nnops;
537 int remains = count - nnops * len;
538 int pos = 0;
539
540 for (i = 0; i < remains; i++)
541 {
542 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
543 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
544 pos += len + 1;
545 }
546 for (; i < nnops; i++)
547 {
548 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
549 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
550 pos += len;
551 }
552 }
553 else
554 if (flag_code == CODE_16BIT)
555 {
556 memcpy (fragP->fr_literal + fragP->fr_fix,
557 f16_patt[count - 1], count);
558 if (count > 8)
559 /* Adjust jump offset. */
560 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
561 }
562 else
563 memcpy (fragP->fr_literal + fragP->fr_fix,
564 f32_patt[count - 1], count);
565 fragP->fr_var = count;
566 }
567
568 static INLINE unsigned int
569 mode_from_disp_size (t)
570 unsigned int t;
571 {
572 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
573 }
574
575 static INLINE int
576 fits_in_signed_byte (num)
577 offsetT num;
578 {
579 return (num >= -128) && (num <= 127);
580 }
581
582 static INLINE int
583 fits_in_unsigned_byte (num)
584 offsetT num;
585 {
586 return (num & 0xff) == num;
587 }
588
589 static INLINE int
590 fits_in_unsigned_word (num)
591 offsetT num;
592 {
593 return (num & 0xffff) == num;
594 }
595
596 static INLINE int
597 fits_in_signed_word (num)
598 offsetT num;
599 {
600 return (-32768 <= num) && (num <= 32767);
601 }
602 static INLINE int
603 fits_in_signed_long (num)
604 offsetT num ATTRIBUTE_UNUSED;
605 {
606 #ifndef BFD64
607 return 1;
608 #else
609 return (!(((offsetT) -1 << 31) & num)
610 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
611 #endif
612 } /* fits_in_signed_long() */
613 static INLINE int
614 fits_in_unsigned_long (num)
615 offsetT num ATTRIBUTE_UNUSED;
616 {
617 #ifndef BFD64
618 return 1;
619 #else
620 return (num & (((offsetT) 2 << 31) - 1)) == num;
621 #endif
622 } /* fits_in_unsigned_long() */
623
624 static int
625 smallest_imm_type (num)
626 offsetT num;
627 {
628 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
629 {
630 /* This code is disabled on the 486 because all the Imm1 forms
631 in the opcode table are slower on the i486. They're the
632 versions with the implicitly specified single-position
633 displacement, which has another syntax if you really want to
634 use that form. */
635 if (num == 1)
636 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
637 }
638 return (fits_in_signed_byte (num)
639 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
640 : fits_in_unsigned_byte (num)
641 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
642 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
643 ? (Imm16 | Imm32 | Imm32S | Imm64)
644 : fits_in_signed_long (num)
645 ? (Imm32 | Imm32S | Imm64)
646 : fits_in_unsigned_long (num)
647 ? (Imm32 | Imm64)
648 : Imm64);
649 }
650
651 static offsetT
652 offset_in_range (val, size)
653 offsetT val;
654 int size;
655 {
656 addressT mask;
657
658 switch (size)
659 {
660 case 1: mask = ((addressT) 1 << 8) - 1; break;
661 case 2: mask = ((addressT) 1 << 16) - 1; break;
662 case 4: mask = ((addressT) 2 << 31) - 1; break;
663 #ifdef BFD64
664 case 8: mask = ((addressT) 2 << 63) - 1; break;
665 #endif
666 default: abort ();
667 }
668
669 /* If BFD64, sign extend val. */
670 if (!use_rela_relocations)
671 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
672 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
673
674 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
675 {
676 char buf1[40], buf2[40];
677
678 sprint_value (buf1, val);
679 sprint_value (buf2, val & mask);
680 as_warn (_("%s shortened to %s"), buf1, buf2);
681 }
682 return val & mask;
683 }
684
685 /* Returns 0 if attempting to add a prefix where one from the same
686 class already exists, 1 if non rep/repne added, 2 if rep/repne
687 added. */
688 static int
689 add_prefix (prefix)
690 unsigned int prefix;
691 {
692 int ret = 1;
693 int q;
694
695 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
696 && flag_code == CODE_64BIT)
697 q = REX_PREFIX;
698 else
699 switch (prefix)
700 {
701 default:
702 abort ();
703
704 case CS_PREFIX_OPCODE:
705 case DS_PREFIX_OPCODE:
706 case ES_PREFIX_OPCODE:
707 case FS_PREFIX_OPCODE:
708 case GS_PREFIX_OPCODE:
709 case SS_PREFIX_OPCODE:
710 q = SEG_PREFIX;
711 break;
712
713 case REPNE_PREFIX_OPCODE:
714 case REPE_PREFIX_OPCODE:
715 ret = 2;
716 /* fall thru */
717 case LOCK_PREFIX_OPCODE:
718 q = LOCKREP_PREFIX;
719 break;
720
721 case FWAIT_OPCODE:
722 q = WAIT_PREFIX;
723 break;
724
725 case ADDR_PREFIX_OPCODE:
726 q = ADDR_PREFIX;
727 break;
728
729 case DATA_PREFIX_OPCODE:
730 q = DATA_PREFIX;
731 break;
732 }
733
734 if (i.prefix[q] != 0)
735 {
736 as_bad (_("same type of prefix used twice"));
737 return 0;
738 }
739
740 i.prefixes += 1;
741 i.prefix[q] = prefix;
742 return ret;
743 }
744
745 static void
746 set_code_flag (value)
747 int value;
748 {
749 flag_code = value;
750 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
751 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
752 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
753 {
754 as_bad (_("64bit mode not supported on this CPU."));
755 }
756 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
757 {
758 as_bad (_("32bit mode not supported on this CPU."));
759 }
760 stackop_size = '\0';
761 }
762
763 static void
764 set_16bit_gcc_code_flag (new_code_flag)
765 int new_code_flag;
766 {
767 flag_code = new_code_flag;
768 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
769 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
770 stackop_size = 'l';
771 }
772
773 static void
774 set_intel_syntax (syntax_flag)
775 int syntax_flag;
776 {
777 /* Find out if register prefixing is specified. */
778 int ask_naked_reg = 0;
779
780 SKIP_WHITESPACE ();
781 if (!is_end_of_line[(unsigned char) *input_line_pointer])
782 {
783 char *string = input_line_pointer;
784 int e = get_symbol_end ();
785
786 if (strcmp (string, "prefix") == 0)
787 ask_naked_reg = 1;
788 else if (strcmp (string, "noprefix") == 0)
789 ask_naked_reg = -1;
790 else
791 as_bad (_("bad argument to syntax directive."));
792 *input_line_pointer = e;
793 }
794 demand_empty_rest_of_line ();
795
796 intel_syntax = syntax_flag;
797
798 if (ask_naked_reg == 0)
799 {
800 #ifdef BFD_ASSEMBLER
801 allow_naked_reg = (intel_syntax
802 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
803 #else
804 /* Conservative default. */
805 allow_naked_reg = 0;
806 #endif
807 }
808 else
809 allow_naked_reg = (ask_naked_reg < 0);
810 }
811
812 static void
813 set_cpu_arch (dummy)
814 int dummy ATTRIBUTE_UNUSED;
815 {
816 SKIP_WHITESPACE ();
817
818 if (!is_end_of_line[(unsigned char) *input_line_pointer])
819 {
820 char *string = input_line_pointer;
821 int e = get_symbol_end ();
822 int i;
823
824 for (i = 0; cpu_arch[i].name; i++)
825 {
826 if (strcmp (string, cpu_arch[i].name) == 0)
827 {
828 cpu_arch_name = cpu_arch[i].name;
829 cpu_arch_flags = (cpu_arch[i].flags
830 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
831 break;
832 }
833 }
834 if (!cpu_arch[i].name)
835 as_bad (_("no such architecture: `%s'"), string);
836
837 *input_line_pointer = e;
838 }
839 else
840 as_bad (_("missing cpu architecture"));
841
842 no_cond_jump_promotion = 0;
843 if (*input_line_pointer == ','
844 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
845 {
846 char *string = ++input_line_pointer;
847 int e = get_symbol_end ();
848
849 if (strcmp (string, "nojumps") == 0)
850 no_cond_jump_promotion = 1;
851 else if (strcmp (string, "jumps") == 0)
852 ;
853 else
854 as_bad (_("no such architecture modifier: `%s'"), string);
855
856 *input_line_pointer = e;
857 }
858
859 demand_empty_rest_of_line ();
860 }
861
862 #ifdef BFD_ASSEMBLER
863 unsigned long
864 i386_mach ()
865 {
866 if (!strcmp (default_arch, "x86_64"))
867 return bfd_mach_x86_64;
868 else if (!strcmp (default_arch, "i386"))
869 return bfd_mach_i386_i386;
870 else
871 as_fatal (_("Unknown architecture"));
872 }
873 #endif
874 \f
875 void
876 md_begin ()
877 {
878 const char *hash_err;
879
880 /* Initialize op_hash hash table. */
881 op_hash = hash_new ();
882
883 {
884 const template *optab;
885 templates *core_optab;
886
887 /* Setup for loop. */
888 optab = i386_optab;
889 core_optab = (templates *) xmalloc (sizeof (templates));
890 core_optab->start = optab;
891
892 while (1)
893 {
894 ++optab;
895 if (optab->name == NULL
896 || strcmp (optab->name, (optab - 1)->name) != 0)
897 {
898 /* different name --> ship out current template list;
899 add to hash table; & begin anew. */
900 core_optab->end = optab;
901 hash_err = hash_insert (op_hash,
902 (optab - 1)->name,
903 (PTR) core_optab);
904 if (hash_err)
905 {
906 as_fatal (_("Internal Error: Can't hash %s: %s"),
907 (optab - 1)->name,
908 hash_err);
909 }
910 if (optab->name == NULL)
911 break;
912 core_optab = (templates *) xmalloc (sizeof (templates));
913 core_optab->start = optab;
914 }
915 }
916 }
917
918 /* Initialize reg_hash hash table. */
919 reg_hash = hash_new ();
920 {
921 const reg_entry *regtab;
922
923 for (regtab = i386_regtab;
924 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
925 regtab++)
926 {
927 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
928 if (hash_err)
929 as_fatal (_("Internal Error: Can't hash %s: %s"),
930 regtab->reg_name,
931 hash_err);
932 }
933 }
934
935 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
936 {
937 int c;
938 char *p;
939
940 for (c = 0; c < 256; c++)
941 {
942 if (ISDIGIT (c))
943 {
944 digit_chars[c] = c;
945 mnemonic_chars[c] = c;
946 register_chars[c] = c;
947 operand_chars[c] = c;
948 }
949 else if (ISLOWER (c))
950 {
951 mnemonic_chars[c] = c;
952 register_chars[c] = c;
953 operand_chars[c] = c;
954 }
955 else if (ISUPPER (c))
956 {
957 mnemonic_chars[c] = TOLOWER (c);
958 register_chars[c] = mnemonic_chars[c];
959 operand_chars[c] = c;
960 }
961
962 if (ISALPHA (c) || ISDIGIT (c))
963 identifier_chars[c] = c;
964 else if (c >= 128)
965 {
966 identifier_chars[c] = c;
967 operand_chars[c] = c;
968 }
969 }
970
971 #ifdef LEX_AT
972 identifier_chars['@'] = '@';
973 #endif
974 digit_chars['-'] = '-';
975 identifier_chars['_'] = '_';
976 identifier_chars['.'] = '.';
977
978 for (p = operand_special_chars; *p != '\0'; p++)
979 operand_chars[(unsigned char) *p] = *p;
980 }
981
982 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
983 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
984 {
985 record_alignment (text_section, 2);
986 record_alignment (data_section, 2);
987 record_alignment (bss_section, 2);
988 }
989 #endif
990 }
991
992 void
993 i386_print_statistics (file)
994 FILE *file;
995 {
996 hash_print_statistics (file, "i386 opcode", op_hash);
997 hash_print_statistics (file, "i386 register", reg_hash);
998 }
999 \f
1000 #ifdef DEBUG386
1001
1002 /* Debugging routines for md_assemble. */
1003 static void pi PARAMS ((char *, i386_insn *));
1004 static void pte PARAMS ((template *));
1005 static void pt PARAMS ((unsigned int));
1006 static void pe PARAMS ((expressionS *));
1007 static void ps PARAMS ((symbolS *));
1008
1009 static void
1010 pi (line, x)
1011 char *line;
1012 i386_insn *x;
1013 {
1014 unsigned int i;
1015
1016 fprintf (stdout, "%s: template ", line);
1017 pte (&x->tm);
1018 fprintf (stdout, " address: base %s index %s scale %x\n",
1019 x->base_reg ? x->base_reg->reg_name : "none",
1020 x->index_reg ? x->index_reg->reg_name : "none",
1021 x->log2_scale_factor);
1022 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
1023 x->rm.mode, x->rm.reg, x->rm.regmem);
1024 fprintf (stdout, " sib: base %x index %x scale %x\n",
1025 x->sib.base, x->sib.index, x->sib.scale);
1026 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
1027 (x->rex & REX_MODE64) != 0,
1028 (x->rex & REX_EXTX) != 0,
1029 (x->rex & REX_EXTY) != 0,
1030 (x->rex & REX_EXTZ) != 0);
1031 for (i = 0; i < x->operands; i++)
1032 {
1033 fprintf (stdout, " #%d: ", i + 1);
1034 pt (x->types[i]);
1035 fprintf (stdout, "\n");
1036 if (x->types[i]
1037 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
1038 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1039 if (x->types[i] & Imm)
1040 pe (x->op[i].imms);
1041 if (x->types[i] & Disp)
1042 pe (x->op[i].disps);
1043 }
1044 }
1045
1046 static void
1047 pte (t)
1048 template *t;
1049 {
1050 unsigned int i;
1051 fprintf (stdout, " %d operands ", t->operands);
1052 fprintf (stdout, "opcode %x ", t->base_opcode);
1053 if (t->extension_opcode != None)
1054 fprintf (stdout, "ext %x ", t->extension_opcode);
1055 if (t->opcode_modifier & D)
1056 fprintf (stdout, "D");
1057 if (t->opcode_modifier & W)
1058 fprintf (stdout, "W");
1059 fprintf (stdout, "\n");
1060 for (i = 0; i < t->operands; i++)
1061 {
1062 fprintf (stdout, " #%d type ", i + 1);
1063 pt (t->operand_types[i]);
1064 fprintf (stdout, "\n");
1065 }
1066 }
1067
1068 static void
1069 pe (e)
1070 expressionS *e;
1071 {
1072 fprintf (stdout, " operation %d\n", e->X_op);
1073 fprintf (stdout, " add_number %ld (%lx)\n",
1074 (long) e->X_add_number, (long) e->X_add_number);
1075 if (e->X_add_symbol)
1076 {
1077 fprintf (stdout, " add_symbol ");
1078 ps (e->X_add_symbol);
1079 fprintf (stdout, "\n");
1080 }
1081 if (e->X_op_symbol)
1082 {
1083 fprintf (stdout, " op_symbol ");
1084 ps (e->X_op_symbol);
1085 fprintf (stdout, "\n");
1086 }
1087 }
1088
1089 static void
1090 ps (s)
1091 symbolS *s;
1092 {
1093 fprintf (stdout, "%s type %s%s",
1094 S_GET_NAME (s),
1095 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1096 segment_name (S_GET_SEGMENT (s)));
1097 }
1098
1099 struct type_name
1100 {
1101 unsigned int mask;
1102 char *tname;
1103 }
1104
1105 static const type_names[] =
1106 {
1107 { Reg8, "r8" },
1108 { Reg16, "r16" },
1109 { Reg32, "r32" },
1110 { Reg64, "r64" },
1111 { Imm8, "i8" },
1112 { Imm8S, "i8s" },
1113 { Imm16, "i16" },
1114 { Imm32, "i32" },
1115 { Imm32S, "i32s" },
1116 { Imm64, "i64" },
1117 { Imm1, "i1" },
1118 { BaseIndex, "BaseIndex" },
1119 { Disp8, "d8" },
1120 { Disp16, "d16" },
1121 { Disp32, "d32" },
1122 { Disp32S, "d32s" },
1123 { Disp64, "d64" },
1124 { InOutPortReg, "InOutPortReg" },
1125 { ShiftCount, "ShiftCount" },
1126 { Control, "control reg" },
1127 { Test, "test reg" },
1128 { Debug, "debug reg" },
1129 { FloatReg, "FReg" },
1130 { FloatAcc, "FAcc" },
1131 { SReg2, "SReg2" },
1132 { SReg3, "SReg3" },
1133 { Acc, "Acc" },
1134 { JumpAbsolute, "Jump Absolute" },
1135 { RegMMX, "rMMX" },
1136 { RegXMM, "rXMM" },
1137 { EsSeg, "es" },
1138 { 0, "" }
1139 };
1140
1141 static void
1142 pt (t)
1143 unsigned int t;
1144 {
1145 const struct type_name *ty;
1146
1147 for (ty = type_names; ty->mask; ty++)
1148 if (t & ty->mask)
1149 fprintf (stdout, "%s, ", ty->tname);
1150 fflush (stdout);
1151 }
1152
1153 #endif /* DEBUG386 */
1154 \f
1155 #ifdef BFD_ASSEMBLER
1156 static bfd_reloc_code_real_type reloc
1157 PARAMS ((int, int, int, bfd_reloc_code_real_type));
1158
1159 static bfd_reloc_code_real_type
1160 reloc (size, pcrel, sign, other)
1161 int size;
1162 int pcrel;
1163 int sign;
1164 bfd_reloc_code_real_type other;
1165 {
1166 if (other != NO_RELOC)
1167 return other;
1168
1169 if (pcrel)
1170 {
1171 if (!sign)
1172 as_bad (_("There are no unsigned pc-relative relocations"));
1173 switch (size)
1174 {
1175 case 1: return BFD_RELOC_8_PCREL;
1176 case 2: return BFD_RELOC_16_PCREL;
1177 case 4: return BFD_RELOC_32_PCREL;
1178 }
1179 as_bad (_("can not do %d byte pc-relative relocation"), size);
1180 }
1181 else
1182 {
1183 if (sign)
1184 switch (size)
1185 {
1186 case 4: return BFD_RELOC_X86_64_32S;
1187 }
1188 else
1189 switch (size)
1190 {
1191 case 1: return BFD_RELOC_8;
1192 case 2: return BFD_RELOC_16;
1193 case 4: return BFD_RELOC_32;
1194 case 8: return BFD_RELOC_64;
1195 }
1196 as_bad (_("can not do %s %d byte relocation"),
1197 sign ? "signed" : "unsigned", size);
1198 }
1199
1200 abort ();
1201 return BFD_RELOC_NONE;
1202 }
1203
1204 /* Here we decide which fixups can be adjusted to make them relative to
1205 the beginning of the section instead of the symbol. Basically we need
1206 to make sure that the dynamic relocations are done correctly, so in
1207 some cases we force the original symbol to be used. */
1208
1209 int
1210 tc_i386_fix_adjustable (fixP)
1211 fixS *fixP ATTRIBUTE_UNUSED;
1212 {
1213 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1214 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
1215 return 1;
1216
1217 /* Don't adjust pc-relative references to merge sections in 64-bit
1218 mode. */
1219 if (use_rela_relocations
1220 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1221 && fixP->fx_pcrel)
1222 return 0;
1223
1224 /* adjust_reloc_syms doesn't know about the GOT. */
1225 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1226 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1227 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1228 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1229 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1230 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1231 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
1232 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1233 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
1234 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1235 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
1236 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1237 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1238 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1239 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1240 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1241 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1242 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1243 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
1244 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1245 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1246 return 0;
1247 #endif
1248 return 1;
1249 }
1250 #else
1251 #define reloc(SIZE,PCREL,SIGN,OTHER) 0
1252 #define BFD_RELOC_8 0
1253 #define BFD_RELOC_16 0
1254 #define BFD_RELOC_32 0
1255 #define BFD_RELOC_8_PCREL 0
1256 #define BFD_RELOC_16_PCREL 0
1257 #define BFD_RELOC_32_PCREL 0
1258 #define BFD_RELOC_386_PLT32 0
1259 #define BFD_RELOC_386_GOT32 0
1260 #define BFD_RELOC_386_GOTOFF 0
1261 #define BFD_RELOC_386_TLS_GD 0
1262 #define BFD_RELOC_386_TLS_LDM 0
1263 #define BFD_RELOC_386_TLS_LDO_32 0
1264 #define BFD_RELOC_386_TLS_IE_32 0
1265 #define BFD_RELOC_386_TLS_IE 0
1266 #define BFD_RELOC_386_TLS_GOTIE 0
1267 #define BFD_RELOC_386_TLS_LE_32 0
1268 #define BFD_RELOC_386_TLS_LE 0
1269 #define BFD_RELOC_X86_64_PLT32 0
1270 #define BFD_RELOC_X86_64_GOT32 0
1271 #define BFD_RELOC_X86_64_GOTPCREL 0
1272 #define BFD_RELOC_X86_64_TLSGD 0
1273 #define BFD_RELOC_X86_64_TLSLD 0
1274 #define BFD_RELOC_X86_64_DTPOFF32 0
1275 #define BFD_RELOC_X86_64_GOTTPOFF 0
1276 #define BFD_RELOC_X86_64_TPOFF32 0
1277 #endif
1278
1279 static int intel_float_operand PARAMS ((const char *mnemonic));
1280
1281 static int
1282 intel_float_operand (mnemonic)
1283 const char *mnemonic;
1284 {
1285 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
1286 return 2;
1287
1288 if (mnemonic[0] == 'f')
1289 return 1;
1290
1291 return 0;
1292 }
1293
1294 /* This is the guts of the machine-dependent assembler. LINE points to a
1295 machine dependent instruction. This function is supposed to emit
1296 the frags/bytes it assembles to. */
1297
1298 void
1299 md_assemble (line)
1300 char *line;
1301 {
1302 int j;
1303 char mnemonic[MAX_MNEM_SIZE];
1304
1305 /* Initialize globals. */
1306 memset (&i, '\0', sizeof (i));
1307 for (j = 0; j < MAX_OPERANDS; j++)
1308 i.reloc[j] = NO_RELOC;
1309 memset (disp_expressions, '\0', sizeof (disp_expressions));
1310 memset (im_expressions, '\0', sizeof (im_expressions));
1311 save_stack_p = save_stack;
1312
1313 /* First parse an instruction mnemonic & call i386_operand for the operands.
1314 We assume that the scrubber has arranged it so that line[0] is the valid
1315 start of a (possibly prefixed) mnemonic. */
1316
1317 line = parse_insn (line, mnemonic);
1318 if (line == NULL)
1319 return;
1320
1321 line = parse_operands (line, mnemonic);
1322 if (line == NULL)
1323 return;
1324
1325 /* Now we've parsed the mnemonic into a set of templates, and have the
1326 operands at hand. */
1327
1328 /* All intel opcodes have reversed operands except for "bound" and
1329 "enter". We also don't reverse intersegment "jmp" and "call"
1330 instructions with 2 immediate operands so that the immediate segment
1331 precedes the offset, as it does when in AT&T mode. "enter" and the
1332 intersegment "jmp" and "call" instructions are the only ones that
1333 have two immediate operands. */
1334 if (intel_syntax && i.operands > 1
1335 && (strcmp (mnemonic, "bound") != 0)
1336 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1337 swap_operands ();
1338
1339 if (i.imm_operands)
1340 optimize_imm ();
1341
1342 if (i.disp_operands)
1343 optimize_disp ();
1344
1345 /* Next, we find a template that matches the given insn,
1346 making sure the overlap of the given operands types is consistent
1347 with the template operand types. */
1348
1349 if (!match_template ())
1350 return;
1351
1352 if (intel_syntax)
1353 {
1354 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1355 if (SYSV386_COMPAT
1356 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1357 i.tm.base_opcode ^= FloatR;
1358
1359 /* Zap movzx and movsx suffix. The suffix may have been set from
1360 "word ptr" or "byte ptr" on the source operand, but we'll use
1361 the suffix later to choose the destination register. */
1362 if ((i.tm.base_opcode & ~9) == 0x0fb6)
1363 i.suffix = 0;
1364 }
1365
1366 if (i.tm.opcode_modifier & FWait)
1367 if (!add_prefix (FWAIT_OPCODE))
1368 return;
1369
1370 /* Check string instruction segment overrides. */
1371 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1372 {
1373 if (!check_string ())
1374 return;
1375 }
1376
1377 if (!process_suffix ())
1378 return;
1379
1380 /* Make still unresolved immediate matches conform to size of immediate
1381 given in i.suffix. */
1382 if (!finalize_imm ())
1383 return;
1384
1385 if (i.types[0] & Imm1)
1386 i.imm_operands = 0; /* kludge for shift insns. */
1387 if (i.types[0] & ImplicitRegister)
1388 i.reg_operands--;
1389 if (i.types[1] & ImplicitRegister)
1390 i.reg_operands--;
1391 if (i.types[2] & ImplicitRegister)
1392 i.reg_operands--;
1393
1394 if (i.tm.opcode_modifier & ImmExt)
1395 {
1396 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1397 opcode suffix which is coded in the same place as an 8-bit
1398 immediate field would be. Here we fake an 8-bit immediate
1399 operand from the opcode suffix stored in tm.extension_opcode. */
1400
1401 expressionS *exp;
1402
1403 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
1404
1405 exp = &im_expressions[i.imm_operands++];
1406 i.op[i.operands].imms = exp;
1407 i.types[i.operands++] = Imm8;
1408 exp->X_op = O_constant;
1409 exp->X_add_number = i.tm.extension_opcode;
1410 i.tm.extension_opcode = None;
1411 }
1412
1413 /* For insns with operands there are more diddles to do to the opcode. */
1414 if (i.operands)
1415 {
1416 if (!process_operands ())
1417 return;
1418 }
1419 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1420 {
1421 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1422 as_warn (_("translating to `%sp'"), i.tm.name);
1423 }
1424
1425 /* Handle conversion of 'int $3' --> special int3 insn. */
1426 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1427 {
1428 i.tm.base_opcode = INT3_OPCODE;
1429 i.imm_operands = 0;
1430 }
1431
1432 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1433 && i.op[0].disps->X_op == O_constant)
1434 {
1435 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1436 the absolute address given by the constant. Since ix86 jumps and
1437 calls are pc relative, we need to generate a reloc. */
1438 i.op[0].disps->X_add_symbol = &abs_symbol;
1439 i.op[0].disps->X_op = O_symbol;
1440 }
1441
1442 if ((i.tm.opcode_modifier & Rex64) != 0)
1443 i.rex |= REX_MODE64;
1444
1445 /* For 8 bit registers we need an empty rex prefix. Also if the
1446 instruction already has a prefix, we need to convert old
1447 registers to new ones. */
1448
1449 if (((i.types[0] & Reg8) != 0
1450 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1451 || ((i.types[1] & Reg8) != 0
1452 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1453 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1454 && i.rex != 0))
1455 {
1456 int x;
1457
1458 i.rex |= REX_OPCODE;
1459 for (x = 0; x < 2; x++)
1460 {
1461 /* Look for 8 bit operand that uses old registers. */
1462 if ((i.types[x] & Reg8) != 0
1463 && (i.op[x].regs->reg_flags & RegRex64) == 0)
1464 {
1465 /* In case it is "hi" register, give up. */
1466 if (i.op[x].regs->reg_num > 3)
1467 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix.\n"),
1468 i.op[x].regs->reg_name);
1469
1470 /* Otherwise it is equivalent to the extended register.
1471 Since the encoding doesn't change this is merely
1472 cosmetic cleanup for debug output. */
1473
1474 i.op[x].regs = i.op[x].regs + 8;
1475 }
1476 }
1477 }
1478
1479 if (i.rex != 0)
1480 add_prefix (REX_OPCODE | i.rex);
1481
1482 /* We are ready to output the insn. */
1483 output_insn ();
1484 }
1485
1486 static char *
1487 parse_insn (line, mnemonic)
1488 char *line;
1489 char *mnemonic;
1490 {
1491 char *l = line;
1492 char *token_start = l;
1493 char *mnem_p;
1494
1495 /* Non-zero if we found a prefix only acceptable with string insns. */
1496 const char *expecting_string_instruction = NULL;
1497
1498 while (1)
1499 {
1500 mnem_p = mnemonic;
1501 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1502 {
1503 mnem_p++;
1504 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
1505 {
1506 as_bad (_("no such instruction: `%s'"), token_start);
1507 return NULL;
1508 }
1509 l++;
1510 }
1511 if (!is_space_char (*l)
1512 && *l != END_OF_INSN
1513 && *l != PREFIX_SEPARATOR
1514 && *l != ',')
1515 {
1516 as_bad (_("invalid character %s in mnemonic"),
1517 output_invalid (*l));
1518 return NULL;
1519 }
1520 if (token_start == l)
1521 {
1522 if (*l == PREFIX_SEPARATOR)
1523 as_bad (_("expecting prefix; got nothing"));
1524 else
1525 as_bad (_("expecting mnemonic; got nothing"));
1526 return NULL;
1527 }
1528
1529 /* Look up instruction (or prefix) via hash table. */
1530 current_templates = hash_find (op_hash, mnemonic);
1531
1532 if (*l != END_OF_INSN
1533 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1534 && current_templates
1535 && (current_templates->start->opcode_modifier & IsPrefix))
1536 {
1537 /* If we are in 16-bit mode, do not allow addr16 or data16.
1538 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1539 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1540 && flag_code != CODE_64BIT
1541 && (((current_templates->start->opcode_modifier & Size32) != 0)
1542 ^ (flag_code == CODE_16BIT)))
1543 {
1544 as_bad (_("redundant %s prefix"),
1545 current_templates->start->name);
1546 return NULL;
1547 }
1548 /* Add prefix, checking for repeated prefixes. */
1549 switch (add_prefix (current_templates->start->base_opcode))
1550 {
1551 case 0:
1552 return NULL;
1553 case 2:
1554 expecting_string_instruction = current_templates->start->name;
1555 break;
1556 }
1557 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1558 token_start = ++l;
1559 }
1560 else
1561 break;
1562 }
1563
1564 if (!current_templates)
1565 {
1566 /* See if we can get a match by trimming off a suffix. */
1567 switch (mnem_p[-1])
1568 {
1569 case WORD_MNEM_SUFFIX:
1570 case BYTE_MNEM_SUFFIX:
1571 case QWORD_MNEM_SUFFIX:
1572 i.suffix = mnem_p[-1];
1573 mnem_p[-1] = '\0';
1574 current_templates = hash_find (op_hash, mnemonic);
1575 break;
1576 case SHORT_MNEM_SUFFIX:
1577 case LONG_MNEM_SUFFIX:
1578 if (!intel_syntax)
1579 {
1580 i.suffix = mnem_p[-1];
1581 mnem_p[-1] = '\0';
1582 current_templates = hash_find (op_hash, mnemonic);
1583 }
1584 break;
1585
1586 /* Intel Syntax. */
1587 case 'd':
1588 if (intel_syntax)
1589 {
1590 if (intel_float_operand (mnemonic))
1591 i.suffix = SHORT_MNEM_SUFFIX;
1592 else
1593 i.suffix = LONG_MNEM_SUFFIX;
1594 mnem_p[-1] = '\0';
1595 current_templates = hash_find (op_hash, mnemonic);
1596 }
1597 break;
1598 }
1599 if (!current_templates)
1600 {
1601 as_bad (_("no such instruction: `%s'"), token_start);
1602 return NULL;
1603 }
1604 }
1605
1606 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1607 {
1608 /* Check for a branch hint. We allow ",pt" and ",pn" for
1609 predict taken and predict not taken respectively.
1610 I'm not sure that branch hints actually do anything on loop
1611 and jcxz insns (JumpByte) for current Pentium4 chips. They
1612 may work in the future and it doesn't hurt to accept them
1613 now. */
1614 if (l[0] == ',' && l[1] == 'p')
1615 {
1616 if (l[2] == 't')
1617 {
1618 if (!add_prefix (DS_PREFIX_OPCODE))
1619 return NULL;
1620 l += 3;
1621 }
1622 else if (l[2] == 'n')
1623 {
1624 if (!add_prefix (CS_PREFIX_OPCODE))
1625 return NULL;
1626 l += 3;
1627 }
1628 }
1629 }
1630 /* Any other comma loses. */
1631 if (*l == ',')
1632 {
1633 as_bad (_("invalid character %s in mnemonic"),
1634 output_invalid (*l));
1635 return NULL;
1636 }
1637
1638 /* Check if instruction is supported on specified architecture. */
1639 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1640 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
1641 {
1642 as_warn (_("`%s' is not supported on `%s'"),
1643 current_templates->start->name, cpu_arch_name);
1644 }
1645 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1646 {
1647 as_warn (_("use .code16 to ensure correct addressing mode"));
1648 }
1649
1650 /* Check for rep/repne without a string instruction. */
1651 if (expecting_string_instruction
1652 && !(current_templates->start->opcode_modifier & IsString))
1653 {
1654 as_bad (_("expecting string instruction after `%s'"),
1655 expecting_string_instruction);
1656 return NULL;
1657 }
1658
1659 return l;
1660 }
1661
1662 static char *
1663 parse_operands (l, mnemonic)
1664 char *l;
1665 const char *mnemonic;
1666 {
1667 char *token_start;
1668
1669 /* 1 if operand is pending after ','. */
1670 unsigned int expecting_operand = 0;
1671
1672 /* Non-zero if operand parens not balanced. */
1673 unsigned int paren_not_balanced;
1674
1675 while (*l != END_OF_INSN)
1676 {
1677 /* Skip optional white space before operand. */
1678 if (is_space_char (*l))
1679 ++l;
1680 if (!is_operand_char (*l) && *l != END_OF_INSN)
1681 {
1682 as_bad (_("invalid character %s before operand %d"),
1683 output_invalid (*l),
1684 i.operands + 1);
1685 return NULL;
1686 }
1687 token_start = l; /* after white space */
1688 paren_not_balanced = 0;
1689 while (paren_not_balanced || *l != ',')
1690 {
1691 if (*l == END_OF_INSN)
1692 {
1693 if (paren_not_balanced)
1694 {
1695 if (!intel_syntax)
1696 as_bad (_("unbalanced parenthesis in operand %d."),
1697 i.operands + 1);
1698 else
1699 as_bad (_("unbalanced brackets in operand %d."),
1700 i.operands + 1);
1701 return NULL;
1702 }
1703 else
1704 break; /* we are done */
1705 }
1706 else if (!is_operand_char (*l) && !is_space_char (*l))
1707 {
1708 as_bad (_("invalid character %s in operand %d"),
1709 output_invalid (*l),
1710 i.operands + 1);
1711 return NULL;
1712 }
1713 if (!intel_syntax)
1714 {
1715 if (*l == '(')
1716 ++paren_not_balanced;
1717 if (*l == ')')
1718 --paren_not_balanced;
1719 }
1720 else
1721 {
1722 if (*l == '[')
1723 ++paren_not_balanced;
1724 if (*l == ']')
1725 --paren_not_balanced;
1726 }
1727 l++;
1728 }
1729 if (l != token_start)
1730 { /* Yes, we've read in another operand. */
1731 unsigned int operand_ok;
1732 this_operand = i.operands++;
1733 if (i.operands > MAX_OPERANDS)
1734 {
1735 as_bad (_("spurious operands; (%d operands/instruction max)"),
1736 MAX_OPERANDS);
1737 return NULL;
1738 }
1739 /* Now parse operand adding info to 'i' as we go along. */
1740 END_STRING_AND_SAVE (l);
1741
1742 if (intel_syntax)
1743 operand_ok =
1744 i386_intel_operand (token_start,
1745 intel_float_operand (mnemonic));
1746 else
1747 operand_ok = i386_operand (token_start);
1748
1749 RESTORE_END_STRING (l);
1750 if (!operand_ok)
1751 return NULL;
1752 }
1753 else
1754 {
1755 if (expecting_operand)
1756 {
1757 expecting_operand_after_comma:
1758 as_bad (_("expecting operand after ','; got nothing"));
1759 return NULL;
1760 }
1761 if (*l == ',')
1762 {
1763 as_bad (_("expecting operand before ','; got nothing"));
1764 return NULL;
1765 }
1766 }
1767
1768 /* Now *l must be either ',' or END_OF_INSN. */
1769 if (*l == ',')
1770 {
1771 if (*++l == END_OF_INSN)
1772 {
1773 /* Just skip it, if it's \n complain. */
1774 goto expecting_operand_after_comma;
1775 }
1776 expecting_operand = 1;
1777 }
1778 }
1779 return l;
1780 }
1781
1782 static void
1783 swap_operands ()
1784 {
1785 union i386_op temp_op;
1786 unsigned int temp_type;
1787 RELOC_ENUM temp_reloc;
1788 int xchg1 = 0;
1789 int xchg2 = 0;
1790
1791 if (i.operands == 2)
1792 {
1793 xchg1 = 0;
1794 xchg2 = 1;
1795 }
1796 else if (i.operands == 3)
1797 {
1798 xchg1 = 0;
1799 xchg2 = 2;
1800 }
1801 temp_type = i.types[xchg2];
1802 i.types[xchg2] = i.types[xchg1];
1803 i.types[xchg1] = temp_type;
1804 temp_op = i.op[xchg2];
1805 i.op[xchg2] = i.op[xchg1];
1806 i.op[xchg1] = temp_op;
1807 temp_reloc = i.reloc[xchg2];
1808 i.reloc[xchg2] = i.reloc[xchg1];
1809 i.reloc[xchg1] = temp_reloc;
1810
1811 if (i.mem_operands == 2)
1812 {
1813 const seg_entry *temp_seg;
1814 temp_seg = i.seg[0];
1815 i.seg[0] = i.seg[1];
1816 i.seg[1] = temp_seg;
1817 }
1818 }
1819
1820 /* Try to ensure constant immediates are represented in the smallest
1821 opcode possible. */
1822 static void
1823 optimize_imm ()
1824 {
1825 char guess_suffix = 0;
1826 int op;
1827
1828 if (i.suffix)
1829 guess_suffix = i.suffix;
1830 else if (i.reg_operands)
1831 {
1832 /* Figure out a suffix from the last register operand specified.
1833 We can't do this properly yet, ie. excluding InOutPortReg,
1834 but the following works for instructions with immediates.
1835 In any case, we can't set i.suffix yet. */
1836 for (op = i.operands; --op >= 0;)
1837 if (i.types[op] & Reg)
1838 {
1839 if (i.types[op] & Reg8)
1840 guess_suffix = BYTE_MNEM_SUFFIX;
1841 else if (i.types[op] & Reg16)
1842 guess_suffix = WORD_MNEM_SUFFIX;
1843 else if (i.types[op] & Reg32)
1844 guess_suffix = LONG_MNEM_SUFFIX;
1845 else if (i.types[op] & Reg64)
1846 guess_suffix = QWORD_MNEM_SUFFIX;
1847 break;
1848 }
1849 }
1850 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1851 guess_suffix = WORD_MNEM_SUFFIX;
1852
1853 for (op = i.operands; --op >= 0;)
1854 if (i.types[op] & Imm)
1855 {
1856 switch (i.op[op].imms->X_op)
1857 {
1858 case O_constant:
1859 /* If a suffix is given, this operand may be shortened. */
1860 switch (guess_suffix)
1861 {
1862 case LONG_MNEM_SUFFIX:
1863 i.types[op] |= Imm32 | Imm64;
1864 break;
1865 case WORD_MNEM_SUFFIX:
1866 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1867 break;
1868 case BYTE_MNEM_SUFFIX:
1869 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1870 break;
1871 }
1872
1873 /* If this operand is at most 16 bits, convert it
1874 to a signed 16 bit number before trying to see
1875 whether it will fit in an even smaller size.
1876 This allows a 16-bit operand such as $0xffe0 to
1877 be recognised as within Imm8S range. */
1878 if ((i.types[op] & Imm16)
1879 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
1880 {
1881 i.op[op].imms->X_add_number =
1882 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1883 }
1884 if ((i.types[op] & Imm32)
1885 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
1886 == 0))
1887 {
1888 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
1889 ^ ((offsetT) 1 << 31))
1890 - ((offsetT) 1 << 31));
1891 }
1892 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
1893
1894 /* We must avoid matching of Imm32 templates when 64bit
1895 only immediate is available. */
1896 if (guess_suffix == QWORD_MNEM_SUFFIX)
1897 i.types[op] &= ~Imm32;
1898 break;
1899
1900 case O_absent:
1901 case O_register:
1902 abort ();
1903
1904 /* Symbols and expressions. */
1905 default:
1906 /* Convert symbolic operand to proper sizes for matching. */
1907 switch (guess_suffix)
1908 {
1909 case QWORD_MNEM_SUFFIX:
1910 i.types[op] = Imm64 | Imm32S;
1911 break;
1912 case LONG_MNEM_SUFFIX:
1913 i.types[op] = Imm32 | Imm64;
1914 break;
1915 case WORD_MNEM_SUFFIX:
1916 i.types[op] = Imm16 | Imm32 | Imm64;
1917 break;
1918 break;
1919 case BYTE_MNEM_SUFFIX:
1920 i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
1921 break;
1922 break;
1923 }
1924 break;
1925 }
1926 }
1927 }
1928
1929 /* Try to use the smallest displacement type too. */
1930 static void
1931 optimize_disp ()
1932 {
1933 int op;
1934
1935 for (op = i.operands; --op >= 0;)
1936 if ((i.types[op] & Disp) && i.op[op].disps->X_op == O_constant)
1937 {
1938 offsetT disp = i.op[op].disps->X_add_number;
1939
1940 if (i.types[op] & Disp16)
1941 {
1942 /* We know this operand is at most 16 bits, so
1943 convert to a signed 16 bit number before trying
1944 to see whether it will fit in an even smaller
1945 size. */
1946
1947 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
1948 }
1949 else if (i.types[op] & Disp32)
1950 {
1951 /* We know this operand is at most 32 bits, so convert to a
1952 signed 32 bit number before trying to see whether it will
1953 fit in an even smaller size. */
1954 disp &= (((offsetT) 2 << 31) - 1);
1955 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1956 }
1957 if (flag_code == CODE_64BIT)
1958 {
1959 if (fits_in_signed_long (disp))
1960 i.types[op] |= Disp32S;
1961 if (fits_in_unsigned_long (disp))
1962 i.types[op] |= Disp32;
1963 }
1964 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
1965 && fits_in_signed_byte (disp))
1966 i.types[op] |= Disp8;
1967 }
1968 }
1969
1970 static int
1971 match_template ()
1972 {
1973 /* Points to template once we've found it. */
1974 const template *t;
1975 unsigned int overlap0, overlap1, overlap2;
1976 unsigned int found_reverse_match;
1977 int suffix_check;
1978
1979 #define MATCH(overlap, given, template) \
1980 ((overlap & ~JumpAbsolute) \
1981 && (((given) & (BaseIndex | JumpAbsolute)) \
1982 == ((overlap) & (BaseIndex | JumpAbsolute))))
1983
1984 /* If given types r0 and r1 are registers they must be of the same type
1985 unless the expected operand type register overlap is null.
1986 Note that Acc in a template matches every size of reg. */
1987 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1988 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
1989 || ((g0) & Reg) == ((g1) & Reg) \
1990 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
1991
1992 overlap0 = 0;
1993 overlap1 = 0;
1994 overlap2 = 0;
1995 found_reverse_match = 0;
1996 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
1997 ? No_bSuf
1998 : (i.suffix == WORD_MNEM_SUFFIX
1999 ? No_wSuf
2000 : (i.suffix == SHORT_MNEM_SUFFIX
2001 ? No_sSuf
2002 : (i.suffix == LONG_MNEM_SUFFIX
2003 ? No_lSuf
2004 : (i.suffix == QWORD_MNEM_SUFFIX
2005 ? No_qSuf
2006 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2007 ? No_xSuf : 0))))));
2008
2009 for (t = current_templates->start;
2010 t < current_templates->end;
2011 t++)
2012 {
2013 /* Must have right number of operands. */
2014 if (i.operands != t->operands)
2015 continue;
2016
2017 /* Check the suffix, except for some instructions in intel mode. */
2018 if ((t->opcode_modifier & suffix_check)
2019 && !(intel_syntax
2020 && (t->opcode_modifier & IgnoreSize))
2021 && !(intel_syntax
2022 && t->base_opcode == 0xd9
2023 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
2024 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
2025 continue;
2026
2027 /* Do not verify operands when there are none. */
2028 else if (!t->operands)
2029 {
2030 if (t->cpu_flags & ~cpu_arch_flags)
2031 continue;
2032 /* We've found a match; break out of loop. */
2033 break;
2034 }
2035
2036 overlap0 = i.types[0] & t->operand_types[0];
2037 switch (t->operands)
2038 {
2039 case 1:
2040 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
2041 continue;
2042 break;
2043 case 2:
2044 case 3:
2045 overlap1 = i.types[1] & t->operand_types[1];
2046 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
2047 || !MATCH (overlap1, i.types[1], t->operand_types[1])
2048 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2049 t->operand_types[0],
2050 overlap1, i.types[1],
2051 t->operand_types[1]))
2052 {
2053 /* Check if other direction is valid ... */
2054 if ((t->opcode_modifier & (D | FloatD)) == 0)
2055 continue;
2056
2057 /* Try reversing direction of operands. */
2058 overlap0 = i.types[0] & t->operand_types[1];
2059 overlap1 = i.types[1] & t->operand_types[0];
2060 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
2061 || !MATCH (overlap1, i.types[1], t->operand_types[0])
2062 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2063 t->operand_types[1],
2064 overlap1, i.types[1],
2065 t->operand_types[0]))
2066 {
2067 /* Does not match either direction. */
2068 continue;
2069 }
2070 /* found_reverse_match holds which of D or FloatDR
2071 we've found. */
2072 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2073 }
2074 /* Found a forward 2 operand match here. */
2075 else if (t->operands == 3)
2076 {
2077 /* Here we make use of the fact that there are no
2078 reverse match 3 operand instructions, and all 3
2079 operand instructions only need to be checked for
2080 register consistency between operands 2 and 3. */
2081 overlap2 = i.types[2] & t->operand_types[2];
2082 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
2083 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
2084 t->operand_types[1],
2085 overlap2, i.types[2],
2086 t->operand_types[2]))
2087
2088 continue;
2089 }
2090 /* Found either forward/reverse 2 or 3 operand match here:
2091 slip through to break. */
2092 }
2093 if (t->cpu_flags & ~cpu_arch_flags)
2094 {
2095 found_reverse_match = 0;
2096 continue;
2097 }
2098 /* We've found a match; break out of loop. */
2099 break;
2100 }
2101
2102 if (t == current_templates->end)
2103 {
2104 /* We found no match. */
2105 as_bad (_("suffix or operands invalid for `%s'"),
2106 current_templates->start->name);
2107 return 0;
2108 }
2109
2110 if (!quiet_warnings)
2111 {
2112 if (!intel_syntax
2113 && ((i.types[0] & JumpAbsolute)
2114 != (t->operand_types[0] & JumpAbsolute)))
2115 {
2116 as_warn (_("indirect %s without `*'"), t->name);
2117 }
2118
2119 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2120 == (IsPrefix | IgnoreSize))
2121 {
2122 /* Warn them that a data or address size prefix doesn't
2123 affect assembly of the next line of code. */
2124 as_warn (_("stand-alone `%s' prefix"), t->name);
2125 }
2126 }
2127
2128 /* Copy the template we found. */
2129 i.tm = *t;
2130 if (found_reverse_match)
2131 {
2132 /* If we found a reverse match we must alter the opcode
2133 direction bit. found_reverse_match holds bits to change
2134 (different for int & float insns). */
2135
2136 i.tm.base_opcode ^= found_reverse_match;
2137
2138 i.tm.operand_types[0] = t->operand_types[1];
2139 i.tm.operand_types[1] = t->operand_types[0];
2140 }
2141
2142 return 1;
2143 }
2144
2145 static int
2146 check_string ()
2147 {
2148 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2149 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2150 {
2151 if (i.seg[0] != NULL && i.seg[0] != &es)
2152 {
2153 as_bad (_("`%s' operand %d must use `%%es' segment"),
2154 i.tm.name,
2155 mem_op + 1);
2156 return 0;
2157 }
2158 /* There's only ever one segment override allowed per instruction.
2159 This instruction possibly has a legal segment override on the
2160 second operand, so copy the segment to where non-string
2161 instructions store it, allowing common code. */
2162 i.seg[0] = i.seg[1];
2163 }
2164 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2165 {
2166 if (i.seg[1] != NULL && i.seg[1] != &es)
2167 {
2168 as_bad (_("`%s' operand %d must use `%%es' segment"),
2169 i.tm.name,
2170 mem_op + 2);
2171 return 0;
2172 }
2173 }
2174 return 1;
2175 }
2176
2177 static int
2178 process_suffix ()
2179 {
2180 /* If matched instruction specifies an explicit instruction mnemonic
2181 suffix, use it. */
2182 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2183 {
2184 if (i.tm.opcode_modifier & Size16)
2185 i.suffix = WORD_MNEM_SUFFIX;
2186 else if (i.tm.opcode_modifier & Size64)
2187 i.suffix = QWORD_MNEM_SUFFIX;
2188 else
2189 i.suffix = LONG_MNEM_SUFFIX;
2190 }
2191 else if (i.reg_operands)
2192 {
2193 /* If there's no instruction mnemonic suffix we try to invent one
2194 based on register operands. */
2195 if (!i.suffix)
2196 {
2197 /* We take i.suffix from the last register operand specified,
2198 Destination register type is more significant than source
2199 register type. */
2200 int op;
2201 for (op = i.operands; --op >= 0;)
2202 if ((i.types[op] & Reg)
2203 && !(i.tm.operand_types[op] & InOutPortReg))
2204 {
2205 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2206 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2207 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2208 LONG_MNEM_SUFFIX);
2209 break;
2210 }
2211 }
2212 else if (i.suffix == BYTE_MNEM_SUFFIX)
2213 {
2214 if (!check_byte_reg ())
2215 return 0;
2216 }
2217 else if (i.suffix == LONG_MNEM_SUFFIX)
2218 {
2219 if (!check_long_reg ())
2220 return 0;
2221 }
2222 else if (i.suffix == QWORD_MNEM_SUFFIX)
2223 {
2224 if (!check_qword_reg ())
2225 return 0;
2226 }
2227 else if (i.suffix == WORD_MNEM_SUFFIX)
2228 {
2229 if (!check_word_reg ())
2230 return 0;
2231 }
2232 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2233 /* Do nothing if the instruction is going to ignore the prefix. */
2234 ;
2235 else
2236 abort ();
2237 }
2238 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
2239 {
2240 i.suffix = stackop_size;
2241 }
2242
2243 /* Change the opcode based on the operand size given by i.suffix;
2244 We need not change things for byte insns. */
2245
2246 if (!i.suffix && (i.tm.opcode_modifier & W))
2247 {
2248 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2249 return 0;
2250 }
2251
2252 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2253 {
2254 /* It's not a byte, select word/dword operation. */
2255 if (i.tm.opcode_modifier & W)
2256 {
2257 if (i.tm.opcode_modifier & ShortForm)
2258 i.tm.base_opcode |= 8;
2259 else
2260 i.tm.base_opcode |= 1;
2261 }
2262
2263 /* Now select between word & dword operations via the operand
2264 size prefix, except for instructions that will ignore this
2265 prefix anyway. */
2266 if (i.suffix != QWORD_MNEM_SUFFIX
2267 && !(i.tm.opcode_modifier & IgnoreSize)
2268 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2269 || (flag_code == CODE_64BIT
2270 && (i.tm.opcode_modifier & JumpByte))))
2271 {
2272 unsigned int prefix = DATA_PREFIX_OPCODE;
2273 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2274 prefix = ADDR_PREFIX_OPCODE;
2275
2276 if (!add_prefix (prefix))
2277 return 0;
2278 }
2279
2280 /* Set mode64 for an operand. */
2281 if (i.suffix == QWORD_MNEM_SUFFIX
2282 && flag_code == CODE_64BIT
2283 && (i.tm.opcode_modifier & NoRex64) == 0)
2284 i.rex |= REX_MODE64;
2285
2286 /* Size floating point instruction. */
2287 if (i.suffix == LONG_MNEM_SUFFIX)
2288 {
2289 if (i.tm.opcode_modifier & FloatMF)
2290 i.tm.base_opcode ^= 4;
2291 }
2292 }
2293
2294 return 1;
2295 }
2296
2297 static int
2298 check_byte_reg ()
2299 {
2300 int op;
2301 for (op = i.operands; --op >= 0;)
2302 {
2303 /* If this is an eight bit register, it's OK. If it's the 16 or
2304 32 bit version of an eight bit register, we will just use the
2305 low portion, and that's OK too. */
2306 if (i.types[op] & Reg8)
2307 continue;
2308
2309 /* movzx and movsx should not generate this warning. */
2310 if (intel_syntax
2311 && (i.tm.base_opcode == 0xfb7
2312 || i.tm.base_opcode == 0xfb6
2313 || i.tm.base_opcode == 0x63
2314 || i.tm.base_opcode == 0xfbe
2315 || i.tm.base_opcode == 0xfbf))
2316 continue;
2317
2318 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
2319 #if 0
2320 /* Check that the template allows eight bit regs. This
2321 kills insns such as `orb $1,%edx', which maybe should be
2322 allowed. */
2323 && (i.tm.operand_types[op] & (Reg8 | InOutPortReg))
2324 #endif
2325 )
2326 {
2327 /* Prohibit these changes in the 64bit mode, since the
2328 lowering is more complicated. */
2329 if (flag_code == CODE_64BIT
2330 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2331 {
2332 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2333 i.op[op].regs->reg_name,
2334 i.suffix);
2335 return 0;
2336 }
2337 #if REGISTER_WARNINGS
2338 if (!quiet_warnings
2339 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2340 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2341 (i.op[op].regs + (i.types[op] & Reg16
2342 ? REGNAM_AL - REGNAM_AX
2343 : REGNAM_AL - REGNAM_EAX))->reg_name,
2344 i.op[op].regs->reg_name,
2345 i.suffix);
2346 #endif
2347 continue;
2348 }
2349 /* Any other register is bad. */
2350 if (i.types[op] & (Reg | RegMMX | RegXMM
2351 | SReg2 | SReg3
2352 | Control | Debug | Test
2353 | FloatReg | FloatAcc))
2354 {
2355 as_bad (_("`%%%s' not allowed with `%s%c'"),
2356 i.op[op].regs->reg_name,
2357 i.tm.name,
2358 i.suffix);
2359 return 0;
2360 }
2361 }
2362 return 1;
2363 }
2364
2365 static int
2366 check_long_reg ()
2367 {
2368 int op;
2369
2370 for (op = i.operands; --op >= 0;)
2371 /* Reject eight bit registers, except where the template requires
2372 them. (eg. movzb) */
2373 if ((i.types[op] & Reg8) != 0
2374 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2375 {
2376 as_bad (_("`%%%s' not allowed with `%s%c'"),
2377 i.op[op].regs->reg_name,
2378 i.tm.name,
2379 i.suffix);
2380 return 0;
2381 }
2382 /* Warn if the e prefix on a general reg is missing. */
2383 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2384 && (i.types[op] & Reg16) != 0
2385 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2386 {
2387 /* Prohibit these changes in the 64bit mode, since the
2388 lowering is more complicated. */
2389 if (flag_code == CODE_64BIT)
2390 {
2391 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2392 i.op[op].regs->reg_name,
2393 i.suffix);
2394 return 0;
2395 }
2396 #if REGISTER_WARNINGS
2397 else
2398 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2399 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2400 i.op[op].regs->reg_name,
2401 i.suffix);
2402 #endif
2403 }
2404 /* Warn if the r prefix on a general reg is missing. */
2405 else if ((i.types[op] & Reg64) != 0
2406 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2407 {
2408 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2409 i.op[op].regs->reg_name,
2410 i.suffix);
2411 return 0;
2412 }
2413 return 1;
2414 }
2415
2416 static int
2417 check_qword_reg ()
2418 {
2419 int op;
2420
2421 for (op = i.operands; --op >= 0; )
2422 /* Reject eight bit registers, except where the template requires
2423 them. (eg. movzb) */
2424 if ((i.types[op] & Reg8) != 0
2425 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2426 {
2427 as_bad (_("`%%%s' not allowed with `%s%c'"),
2428 i.op[op].regs->reg_name,
2429 i.tm.name,
2430 i.suffix);
2431 return 0;
2432 }
2433 /* Warn if the e prefix on a general reg is missing. */
2434 else if (((i.types[op] & Reg16) != 0
2435 || (i.types[op] & Reg32) != 0)
2436 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2437 {
2438 /* Prohibit these changes in the 64bit mode, since the
2439 lowering is more complicated. */
2440 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2441 i.op[op].regs->reg_name,
2442 i.suffix);
2443 return 0;
2444 }
2445 return 1;
2446 }
2447
2448 static int
2449 check_word_reg ()
2450 {
2451 int op;
2452 for (op = i.operands; --op >= 0;)
2453 /* Reject eight bit registers, except where the template requires
2454 them. (eg. movzb) */
2455 if ((i.types[op] & Reg8) != 0
2456 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2457 {
2458 as_bad (_("`%%%s' not allowed with `%s%c'"),
2459 i.op[op].regs->reg_name,
2460 i.tm.name,
2461 i.suffix);
2462 return 0;
2463 }
2464 /* Warn if the e prefix on a general reg is present. */
2465 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2466 && (i.types[op] & Reg32) != 0
2467 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
2468 {
2469 /* Prohibit these changes in the 64bit mode, since the
2470 lowering is more complicated. */
2471 if (flag_code == CODE_64BIT)
2472 {
2473 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2474 i.op[op].regs->reg_name,
2475 i.suffix);
2476 return 0;
2477 }
2478 else
2479 #if REGISTER_WARNINGS
2480 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2481 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2482 i.op[op].regs->reg_name,
2483 i.suffix);
2484 #endif
2485 }
2486 return 1;
2487 }
2488
2489 static int
2490 finalize_imm ()
2491 {
2492 unsigned int overlap0, overlap1, overlap2;
2493
2494 overlap0 = i.types[0] & i.tm.operand_types[0];
2495 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
2496 && overlap0 != Imm8 && overlap0 != Imm8S
2497 && overlap0 != Imm16 && overlap0 != Imm32S
2498 && overlap0 != Imm32 && overlap0 != Imm64)
2499 {
2500 if (i.suffix)
2501 {
2502 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
2503 ? Imm8 | Imm8S
2504 : (i.suffix == WORD_MNEM_SUFFIX
2505 ? Imm16
2506 : (i.suffix == QWORD_MNEM_SUFFIX
2507 ? Imm64 | Imm32S
2508 : Imm32)));
2509 }
2510 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2511 || overlap0 == (Imm16 | Imm32)
2512 || overlap0 == (Imm16 | Imm32S))
2513 {
2514 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2515 ? Imm16 : Imm32S);
2516 }
2517 if (overlap0 != Imm8 && overlap0 != Imm8S
2518 && overlap0 != Imm16 && overlap0 != Imm32S
2519 && overlap0 != Imm32 && overlap0 != Imm64)
2520 {
2521 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2522 return 0;
2523 }
2524 }
2525 i.types[0] = overlap0;
2526
2527 overlap1 = i.types[1] & i.tm.operand_types[1];
2528 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
2529 && overlap1 != Imm8 && overlap1 != Imm8S
2530 && overlap1 != Imm16 && overlap1 != Imm32S
2531 && overlap1 != Imm32 && overlap1 != Imm64)
2532 {
2533 if (i.suffix)
2534 {
2535 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
2536 ? Imm8 | Imm8S
2537 : (i.suffix == WORD_MNEM_SUFFIX
2538 ? Imm16
2539 : (i.suffix == QWORD_MNEM_SUFFIX
2540 ? Imm64 | Imm32S
2541 : Imm32)));
2542 }
2543 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2544 || overlap1 == (Imm16 | Imm32)
2545 || overlap1 == (Imm16 | Imm32S))
2546 {
2547 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2548 ? Imm16 : Imm32S);
2549 }
2550 if (overlap1 != Imm8 && overlap1 != Imm8S
2551 && overlap1 != Imm16 && overlap1 != Imm32S
2552 && overlap1 != Imm32 && overlap1 != Imm64)
2553 {
2554 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2555 return 0;
2556 }
2557 }
2558 i.types[1] = overlap1;
2559
2560 overlap2 = i.types[2] & i.tm.operand_types[2];
2561 assert ((overlap2 & Imm) == 0);
2562 i.types[2] = overlap2;
2563
2564 return 1;
2565 }
2566
2567 static int
2568 process_operands ()
2569 {
2570 /* Default segment register this instruction will use for memory
2571 accesses. 0 means unknown. This is only for optimizing out
2572 unnecessary segment overrides. */
2573 const seg_entry *default_seg = 0;
2574
2575 /* The imul $imm, %reg instruction is converted into
2576 imul $imm, %reg, %reg, and the clr %reg instruction
2577 is converted into xor %reg, %reg. */
2578 if (i.tm.opcode_modifier & regKludge)
2579 {
2580 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2581 /* Pretend we saw the extra register operand. */
2582 assert (i.op[first_reg_op + 1].regs == 0);
2583 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2584 i.types[first_reg_op + 1] = i.types[first_reg_op];
2585 i.reg_operands = 2;
2586 }
2587
2588 if (i.tm.opcode_modifier & ShortForm)
2589 {
2590 /* The register or float register operand is in operand 0 or 1. */
2591 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2592 /* Register goes in low 3 bits of opcode. */
2593 i.tm.base_opcode |= i.op[op].regs->reg_num;
2594 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2595 i.rex |= REX_EXTZ;
2596 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2597 {
2598 /* Warn about some common errors, but press on regardless.
2599 The first case can be generated by gcc (<= 2.8.1). */
2600 if (i.operands == 2)
2601 {
2602 /* Reversed arguments on faddp, fsubp, etc. */
2603 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2604 i.op[1].regs->reg_name,
2605 i.op[0].regs->reg_name);
2606 }
2607 else
2608 {
2609 /* Extraneous `l' suffix on fp insn. */
2610 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2611 i.op[0].regs->reg_name);
2612 }
2613 }
2614 }
2615 else if (i.tm.opcode_modifier & Modrm)
2616 {
2617 /* The opcode is completed (modulo i.tm.extension_opcode which
2618 must be put into the modrm byte). Now, we make the modrm and
2619 index base bytes based on all the info we've collected. */
2620
2621 default_seg = build_modrm_byte ();
2622 }
2623 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2624 {
2625 if (i.tm.base_opcode == POP_SEG_SHORT
2626 && i.op[0].regs->reg_num == 1)
2627 {
2628 as_bad (_("you can't `pop %%cs'"));
2629 return 0;
2630 }
2631 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2632 if ((i.op[0].regs->reg_flags & RegRex) != 0)
2633 i.rex |= REX_EXTZ;
2634 }
2635 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
2636 {
2637 default_seg = &ds;
2638 }
2639 else if ((i.tm.opcode_modifier & IsString) != 0)
2640 {
2641 /* For the string instructions that allow a segment override
2642 on one of their operands, the default segment is ds. */
2643 default_seg = &ds;
2644 }
2645
2646 if (i.tm.base_opcode == 0x8d /* lea */ && i.seg[0] && !quiet_warnings)
2647 as_warn (_("segment override on `lea' is ineffectual"));
2648
2649 /* If a segment was explicitly specified, and the specified segment
2650 is not the default, use an opcode prefix to select it. If we
2651 never figured out what the default segment is, then default_seg
2652 will be zero at this point, and the specified segment prefix will
2653 always be used. */
2654 if ((i.seg[0]) && (i.seg[0] != default_seg))
2655 {
2656 if (!add_prefix (i.seg[0]->seg_prefix))
2657 return 0;
2658 }
2659 return 1;
2660 }
2661
2662 static const seg_entry *
2663 build_modrm_byte ()
2664 {
2665 const seg_entry *default_seg = 0;
2666
2667 /* i.reg_operands MUST be the number of real register operands;
2668 implicit registers do not count. */
2669 if (i.reg_operands == 2)
2670 {
2671 unsigned int source, dest;
2672 source = ((i.types[0]
2673 & (Reg | RegMMX | RegXMM
2674 | SReg2 | SReg3
2675 | Control | Debug | Test))
2676 ? 0 : 1);
2677 dest = source + 1;
2678
2679 i.rm.mode = 3;
2680 /* One of the register operands will be encoded in the i.tm.reg
2681 field, the other in the combined i.tm.mode and i.tm.regmem
2682 fields. If no form of this instruction supports a memory
2683 destination operand, then we assume the source operand may
2684 sometimes be a memory operand and so we need to store the
2685 destination in the i.rm.reg field. */
2686 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2687 {
2688 i.rm.reg = i.op[dest].regs->reg_num;
2689 i.rm.regmem = i.op[source].regs->reg_num;
2690 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2691 i.rex |= REX_EXTX;
2692 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2693 i.rex |= REX_EXTZ;
2694 }
2695 else
2696 {
2697 i.rm.reg = i.op[source].regs->reg_num;
2698 i.rm.regmem = i.op[dest].regs->reg_num;
2699 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2700 i.rex |= REX_EXTZ;
2701 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2702 i.rex |= REX_EXTX;
2703 }
2704 }
2705 else
2706 { /* If it's not 2 reg operands... */
2707 if (i.mem_operands)
2708 {
2709 unsigned int fake_zero_displacement = 0;
2710 unsigned int op = ((i.types[0] & AnyMem)
2711 ? 0
2712 : (i.types[1] & AnyMem) ? 1 : 2);
2713
2714 default_seg = &ds;
2715
2716 if (i.base_reg == 0)
2717 {
2718 i.rm.mode = 0;
2719 if (!i.disp_operands)
2720 fake_zero_displacement = 1;
2721 if (i.index_reg == 0)
2722 {
2723 /* Operand is just <disp> */
2724 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0)
2725 && (flag_code != CODE_64BIT))
2726 {
2727 i.rm.regmem = NO_BASE_REGISTER_16;
2728 i.types[op] &= ~Disp;
2729 i.types[op] |= Disp16;
2730 }
2731 else if (flag_code != CODE_64BIT
2732 || (i.prefix[ADDR_PREFIX] != 0))
2733 {
2734 i.rm.regmem = NO_BASE_REGISTER;
2735 i.types[op] &= ~Disp;
2736 i.types[op] |= Disp32;
2737 }
2738 else
2739 {
2740 /* 64bit mode overwrites the 32bit absolute
2741 addressing by RIP relative addressing and
2742 absolute addressing is encoded by one of the
2743 redundant SIB forms. */
2744 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2745 i.sib.base = NO_BASE_REGISTER;
2746 i.sib.index = NO_INDEX_REGISTER;
2747 i.types[op] &= ~Disp;
2748 i.types[op] |= Disp32S;
2749 }
2750 }
2751 else /* !i.base_reg && i.index_reg */
2752 {
2753 i.sib.index = i.index_reg->reg_num;
2754 i.sib.base = NO_BASE_REGISTER;
2755 i.sib.scale = i.log2_scale_factor;
2756 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2757 i.types[op] &= ~Disp;
2758 if (flag_code != CODE_64BIT)
2759 i.types[op] |= Disp32; /* Must be 32 bit */
2760 else
2761 i.types[op] |= Disp32S;
2762 if ((i.index_reg->reg_flags & RegRex) != 0)
2763 i.rex |= REX_EXTY;
2764 }
2765 }
2766 /* RIP addressing for 64bit mode. */
2767 else if (i.base_reg->reg_type == BaseIndex)
2768 {
2769 i.rm.regmem = NO_BASE_REGISTER;
2770 i.types[op] &= ~Disp;
2771 i.types[op] |= Disp32S;
2772 i.flags[op] = Operand_PCrel;
2773 }
2774 else if (i.base_reg->reg_type & Reg16)
2775 {
2776 switch (i.base_reg->reg_num)
2777 {
2778 case 3: /* (%bx) */
2779 if (i.index_reg == 0)
2780 i.rm.regmem = 7;
2781 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2782 i.rm.regmem = i.index_reg->reg_num - 6;
2783 break;
2784 case 5: /* (%bp) */
2785 default_seg = &ss;
2786 if (i.index_reg == 0)
2787 {
2788 i.rm.regmem = 6;
2789 if ((i.types[op] & Disp) == 0)
2790 {
2791 /* fake (%bp) into 0(%bp) */
2792 i.types[op] |= Disp8;
2793 fake_zero_displacement = 1;
2794 }
2795 }
2796 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2797 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2798 break;
2799 default: /* (%si) -> 4 or (%di) -> 5 */
2800 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2801 }
2802 i.rm.mode = mode_from_disp_size (i.types[op]);
2803 }
2804 else /* i.base_reg and 32/64 bit mode */
2805 {
2806 if (flag_code == CODE_64BIT
2807 && (i.types[op] & Disp))
2808 {
2809 if (i.types[op] & Disp8)
2810 i.types[op] = Disp8 | Disp32S;
2811 else
2812 i.types[op] = Disp32S;
2813 }
2814 i.rm.regmem = i.base_reg->reg_num;
2815 if ((i.base_reg->reg_flags & RegRex) != 0)
2816 i.rex |= REX_EXTZ;
2817 i.sib.base = i.base_reg->reg_num;
2818 /* x86-64 ignores REX prefix bit here to avoid decoder
2819 complications. */
2820 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2821 {
2822 default_seg = &ss;
2823 if (i.disp_operands == 0)
2824 {
2825 fake_zero_displacement = 1;
2826 i.types[op] |= Disp8;
2827 }
2828 }
2829 else if (i.base_reg->reg_num == ESP_REG_NUM)
2830 {
2831 default_seg = &ss;
2832 }
2833 i.sib.scale = i.log2_scale_factor;
2834 if (i.index_reg == 0)
2835 {
2836 /* <disp>(%esp) becomes two byte modrm with no index
2837 register. We've already stored the code for esp
2838 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
2839 Any base register besides %esp will not use the
2840 extra modrm byte. */
2841 i.sib.index = NO_INDEX_REGISTER;
2842 #if !SCALE1_WHEN_NO_INDEX
2843 /* Another case where we force the second modrm byte. */
2844 if (i.log2_scale_factor)
2845 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2846 #endif
2847 }
2848 else
2849 {
2850 i.sib.index = i.index_reg->reg_num;
2851 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2852 if ((i.index_reg->reg_flags & RegRex) != 0)
2853 i.rex |= REX_EXTY;
2854 }
2855 i.rm.mode = mode_from_disp_size (i.types[op]);
2856 }
2857
2858 if (fake_zero_displacement)
2859 {
2860 /* Fakes a zero displacement assuming that i.types[op]
2861 holds the correct displacement size. */
2862 expressionS *exp;
2863
2864 assert (i.op[op].disps == 0);
2865 exp = &disp_expressions[i.disp_operands++];
2866 i.op[op].disps = exp;
2867 exp->X_op = O_constant;
2868 exp->X_add_number = 0;
2869 exp->X_add_symbol = (symbolS *) 0;
2870 exp->X_op_symbol = (symbolS *) 0;
2871 }
2872 }
2873
2874 /* Fill in i.rm.reg or i.rm.regmem field with register operand
2875 (if any) based on i.tm.extension_opcode. Again, we must be
2876 careful to make sure that segment/control/debug/test/MMX
2877 registers are coded into the i.rm.reg field. */
2878 if (i.reg_operands)
2879 {
2880 unsigned int op =
2881 ((i.types[0]
2882 & (Reg | RegMMX | RegXMM
2883 | SReg2 | SReg3
2884 | Control | Debug | Test))
2885 ? 0
2886 : ((i.types[1]
2887 & (Reg | RegMMX | RegXMM
2888 | SReg2 | SReg3
2889 | Control | Debug | Test))
2890 ? 1
2891 : 2));
2892 /* If there is an extension opcode to put here, the register
2893 number must be put into the regmem field. */
2894 if (i.tm.extension_opcode != None)
2895 {
2896 i.rm.regmem = i.op[op].regs->reg_num;
2897 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2898 i.rex |= REX_EXTZ;
2899 }
2900 else
2901 {
2902 i.rm.reg = i.op[op].regs->reg_num;
2903 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2904 i.rex |= REX_EXTX;
2905 }
2906
2907 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
2908 must set it to 3 to indicate this is a register operand
2909 in the regmem field. */
2910 if (!i.mem_operands)
2911 i.rm.mode = 3;
2912 }
2913
2914 /* Fill in i.rm.reg field with extension opcode (if any). */
2915 if (i.tm.extension_opcode != None)
2916 i.rm.reg = i.tm.extension_opcode;
2917 }
2918 return default_seg;
2919 }
2920
2921 static void
2922 output_branch ()
2923 {
2924 char *p;
2925 int code16;
2926 int prefix;
2927 relax_substateT subtype;
2928 symbolS *sym;
2929 offsetT off;
2930
2931 code16 = 0;
2932 if (flag_code == CODE_16BIT)
2933 code16 = CODE16;
2934
2935 prefix = 0;
2936 if (i.prefix[DATA_PREFIX] != 0)
2937 {
2938 prefix = 1;
2939 i.prefixes -= 1;
2940 code16 ^= CODE16;
2941 }
2942 /* Pentium4 branch hints. */
2943 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
2944 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2945 {
2946 prefix++;
2947 i.prefixes--;
2948 }
2949 if (i.prefix[REX_PREFIX] != 0)
2950 {
2951 prefix++;
2952 i.prefixes--;
2953 }
2954
2955 if (i.prefixes != 0 && !intel_syntax)
2956 as_warn (_("skipping prefixes on this instruction"));
2957
2958 /* It's always a symbol; End frag & setup for relax.
2959 Make sure there is enough room in this frag for the largest
2960 instruction we may generate in md_convert_frag. This is 2
2961 bytes for the opcode and room for the prefix and largest
2962 displacement. */
2963 frag_grow (prefix + 2 + 4);
2964 /* Prefix and 1 opcode byte go in fr_fix. */
2965 p = frag_more (prefix + 1);
2966 if (i.prefix[DATA_PREFIX] != 0)
2967 *p++ = DATA_PREFIX_OPCODE;
2968 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
2969 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
2970 *p++ = i.prefix[SEG_PREFIX];
2971 if (i.prefix[REX_PREFIX] != 0)
2972 *p++ = i.prefix[REX_PREFIX];
2973 *p = i.tm.base_opcode;
2974
2975 if ((unsigned char) *p == JUMP_PC_RELATIVE)
2976 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
2977 else if ((cpu_arch_flags & Cpu386) != 0)
2978 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
2979 else
2980 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
2981 subtype |= code16;
2982
2983 sym = i.op[0].disps->X_add_symbol;
2984 off = i.op[0].disps->X_add_number;
2985
2986 if (i.op[0].disps->X_op != O_constant
2987 && i.op[0].disps->X_op != O_symbol)
2988 {
2989 /* Handle complex expressions. */
2990 sym = make_expr_symbol (i.op[0].disps);
2991 off = 0;
2992 }
2993
2994 /* 1 possible extra opcode + 4 byte displacement go in var part.
2995 Pass reloc in fr_var. */
2996 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
2997 }
2998
2999 static void
3000 output_jump ()
3001 {
3002 char *p;
3003 int size;
3004 fixS *fixP;
3005
3006 if (i.tm.opcode_modifier & JumpByte)
3007 {
3008 /* This is a loop or jecxz type instruction. */
3009 size = 1;
3010 if (i.prefix[ADDR_PREFIX] != 0)
3011 {
3012 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3013 i.prefixes -= 1;
3014 }
3015 /* Pentium4 branch hints. */
3016 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3017 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3018 {
3019 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3020 i.prefixes--;
3021 }
3022 }
3023 else
3024 {
3025 int code16;
3026
3027 code16 = 0;
3028 if (flag_code == CODE_16BIT)
3029 code16 = CODE16;
3030
3031 if (i.prefix[DATA_PREFIX] != 0)
3032 {
3033 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3034 i.prefixes -= 1;
3035 code16 ^= CODE16;
3036 }
3037
3038 size = 4;
3039 if (code16)
3040 size = 2;
3041 }
3042
3043 if (i.prefix[REX_PREFIX] != 0)
3044 {
3045 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3046 i.prefixes -= 1;
3047 }
3048
3049 if (i.prefixes != 0 && !intel_syntax)
3050 as_warn (_("skipping prefixes on this instruction"));
3051
3052 p = frag_more (1 + size);
3053 *p++ = i.tm.base_opcode;
3054
3055 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3056 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3057
3058 /* All jumps handled here are signed, but don't use a signed limit
3059 check for 32 and 16 bit jumps as we want to allow wrap around at
3060 4G and 64k respectively. */
3061 if (size == 1)
3062 fixP->fx_signed = 1;
3063 }
3064
3065 static void
3066 output_interseg_jump ()
3067 {
3068 char *p;
3069 int size;
3070 int prefix;
3071 int code16;
3072
3073 code16 = 0;
3074 if (flag_code == CODE_16BIT)
3075 code16 = CODE16;
3076
3077 prefix = 0;
3078 if (i.prefix[DATA_PREFIX] != 0)
3079 {
3080 prefix = 1;
3081 i.prefixes -= 1;
3082 code16 ^= CODE16;
3083 }
3084 if (i.prefix[REX_PREFIX] != 0)
3085 {
3086 prefix++;
3087 i.prefixes -= 1;
3088 }
3089
3090 size = 4;
3091 if (code16)
3092 size = 2;
3093
3094 if (i.prefixes != 0 && !intel_syntax)
3095 as_warn (_("skipping prefixes on this instruction"));
3096
3097 /* 1 opcode; 2 segment; offset */
3098 p = frag_more (prefix + 1 + 2 + size);
3099
3100 if (i.prefix[DATA_PREFIX] != 0)
3101 *p++ = DATA_PREFIX_OPCODE;
3102
3103 if (i.prefix[REX_PREFIX] != 0)
3104 *p++ = i.prefix[REX_PREFIX];
3105
3106 *p++ = i.tm.base_opcode;
3107 if (i.op[1].imms->X_op == O_constant)
3108 {
3109 offsetT n = i.op[1].imms->X_add_number;
3110
3111 if (size == 2
3112 && !fits_in_unsigned_word (n)
3113 && !fits_in_signed_word (n))
3114 {
3115 as_bad (_("16-bit jump out of range"));
3116 return;
3117 }
3118 md_number_to_chars (p, n, size);
3119 }
3120 else
3121 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3122 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3123 if (i.op[0].imms->X_op != O_constant)
3124 as_bad (_("can't handle non absolute segment in `%s'"),
3125 i.tm.name);
3126 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3127 }
3128
3129
3130 static void
3131 output_insn ()
3132 {
3133 fragS *insn_start_frag;
3134 offsetT insn_start_off;
3135
3136 /* Tie dwarf2 debug info to the address at the start of the insn.
3137 We can't do this after the insn has been output as the current
3138 frag may have been closed off. eg. by frag_var. */
3139 dwarf2_emit_insn (0);
3140
3141 insn_start_frag = frag_now;
3142 insn_start_off = frag_now_fix ();
3143
3144 /* Output jumps. */
3145 if (i.tm.opcode_modifier & Jump)
3146 output_branch ();
3147 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3148 output_jump ();
3149 else if (i.tm.opcode_modifier & JumpInterSegment)
3150 output_interseg_jump ();
3151 else
3152 {
3153 /* Output normal instructions here. */
3154 char *p;
3155 unsigned char *q;
3156
3157 /* All opcodes on i386 have either 1 or 2 bytes. We may use third
3158 byte for the SSE instructions to specify a prefix they require. */
3159 if (i.tm.base_opcode & 0xff0000)
3160 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
3161
3162 /* The prefix bytes. */
3163 for (q = i.prefix;
3164 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3165 q++)
3166 {
3167 if (*q)
3168 {
3169 p = frag_more (1);
3170 md_number_to_chars (p, (valueT) *q, 1);
3171 }
3172 }
3173
3174 /* Now the opcode; be careful about word order here! */
3175 if (fits_in_unsigned_byte (i.tm.base_opcode))
3176 {
3177 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3178 }
3179 else
3180 {
3181 p = frag_more (2);
3182 /* Put out high byte first: can't use md_number_to_chars! */
3183 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3184 *p = i.tm.base_opcode & 0xff;
3185 }
3186
3187 /* Now the modrm byte and sib byte (if present). */
3188 if (i.tm.opcode_modifier & Modrm)
3189 {
3190 p = frag_more (1);
3191 md_number_to_chars (p,
3192 (valueT) (i.rm.regmem << 0
3193 | i.rm.reg << 3
3194 | i.rm.mode << 6),
3195 1);
3196 /* If i.rm.regmem == ESP (4)
3197 && i.rm.mode != (Register mode)
3198 && not 16 bit
3199 ==> need second modrm byte. */
3200 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3201 && i.rm.mode != 3
3202 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3203 {
3204 p = frag_more (1);
3205 md_number_to_chars (p,
3206 (valueT) (i.sib.base << 0
3207 | i.sib.index << 3
3208 | i.sib.scale << 6),
3209 1);
3210 }
3211 }
3212
3213 if (i.disp_operands)
3214 output_disp (insn_start_frag, insn_start_off);
3215
3216 if (i.imm_operands)
3217 output_imm (insn_start_frag, insn_start_off);
3218 }
3219
3220 #ifdef DEBUG386
3221 if (flag_debug)
3222 {
3223 pi (line, &i);
3224 }
3225 #endif /* DEBUG386 */
3226 }
3227
3228 static void
3229 output_disp (insn_start_frag, insn_start_off)
3230 fragS *insn_start_frag;
3231 offsetT insn_start_off;
3232 {
3233 char *p;
3234 unsigned int n;
3235
3236 for (n = 0; n < i.operands; n++)
3237 {
3238 if (i.types[n] & Disp)
3239 {
3240 if (i.op[n].disps->X_op == O_constant)
3241 {
3242 int size;
3243 offsetT val;
3244
3245 size = 4;
3246 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3247 {
3248 size = 2;
3249 if (i.types[n] & Disp8)
3250 size = 1;
3251 if (i.types[n] & Disp64)
3252 size = 8;
3253 }
3254 val = offset_in_range (i.op[n].disps->X_add_number,
3255 size);
3256 p = frag_more (size);
3257 md_number_to_chars (p, val, size);
3258 }
3259 else
3260 {
3261 RELOC_ENUM reloc_type;
3262 int size = 4;
3263 int sign = 0;
3264 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3265
3266 /* The PC relative address is computed relative
3267 to the instruction boundary, so in case immediate
3268 fields follows, we need to adjust the value. */
3269 if (pcrel && i.imm_operands)
3270 {
3271 int imm_size = 4;
3272 unsigned int n1;
3273
3274 for (n1 = 0; n1 < i.operands; n1++)
3275 if (i.types[n1] & Imm)
3276 {
3277 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
3278 {
3279 imm_size = 2;
3280 if (i.types[n1] & (Imm8 | Imm8S))
3281 imm_size = 1;
3282 if (i.types[n1] & Imm64)
3283 imm_size = 8;
3284 }
3285 break;
3286 }
3287 /* We should find the immediate. */
3288 if (n1 == i.operands)
3289 abort ();
3290 i.op[n].disps->X_add_number -= imm_size;
3291 }
3292
3293 if (i.types[n] & Disp32S)
3294 sign = 1;
3295
3296 if (i.types[n] & (Disp16 | Disp64))
3297 {
3298 size = 2;
3299 if (i.types[n] & Disp64)
3300 size = 8;
3301 }
3302
3303 p = frag_more (size);
3304 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
3305 #ifdef BFD_ASSEMBLER
3306 if (reloc_type == BFD_RELOC_32
3307 && GOT_symbol
3308 && GOT_symbol == i.op[n].disps->X_add_symbol
3309 && (i.op[n].disps->X_op == O_symbol
3310 || (i.op[n].disps->X_op == O_add
3311 && ((symbol_get_value_expression
3312 (i.op[n].disps->X_op_symbol)->X_op)
3313 == O_subtract))))
3314 {
3315 offsetT add;
3316
3317 if (insn_start_frag == frag_now)
3318 add = (p - frag_now->fr_literal) - insn_start_off;
3319 else
3320 {
3321 fragS *fr;
3322
3323 add = insn_start_frag->fr_fix - insn_start_off;
3324 for (fr = insn_start_frag->fr_next;
3325 fr && fr != frag_now; fr = fr->fr_next)
3326 add += fr->fr_fix;
3327 add += p - frag_now->fr_literal;
3328 }
3329
3330 /* We don't support dynamic linking on x86-64 yet. */
3331 if (flag_code == CODE_64BIT)
3332 abort ();
3333 reloc_type = BFD_RELOC_386_GOTPC;
3334 i.op[n].disps->X_add_number += add;
3335 }
3336 #endif
3337 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3338 i.op[n].disps, pcrel, reloc_type);
3339 }
3340 }
3341 }
3342 }
3343
3344 static void
3345 output_imm (insn_start_frag, insn_start_off)
3346 fragS *insn_start_frag;
3347 offsetT insn_start_off;
3348 {
3349 char *p;
3350 unsigned int n;
3351
3352 for (n = 0; n < i.operands; n++)
3353 {
3354 if (i.types[n] & Imm)
3355 {
3356 if (i.op[n].imms->X_op == O_constant)
3357 {
3358 int size;
3359 offsetT val;
3360
3361 size = 4;
3362 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3363 {
3364 size = 2;
3365 if (i.types[n] & (Imm8 | Imm8S))
3366 size = 1;
3367 else if (i.types[n] & Imm64)
3368 size = 8;
3369 }
3370 val = offset_in_range (i.op[n].imms->X_add_number,
3371 size);
3372 p = frag_more (size);
3373 md_number_to_chars (p, val, size);
3374 }
3375 else
3376 {
3377 /* Not absolute_section.
3378 Need a 32-bit fixup (don't support 8bit
3379 non-absolute imms). Try to support other
3380 sizes ... */
3381 RELOC_ENUM reloc_type;
3382 int size = 4;
3383 int sign = 0;
3384
3385 if ((i.types[n] & (Imm32S))
3386 && i.suffix == QWORD_MNEM_SUFFIX)
3387 sign = 1;
3388 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3389 {
3390 size = 2;
3391 if (i.types[n] & (Imm8 | Imm8S))
3392 size = 1;
3393 if (i.types[n] & Imm64)
3394 size = 8;
3395 }
3396
3397 p = frag_more (size);
3398 reloc_type = reloc (size, 0, sign, i.reloc[n]);
3399 #ifdef BFD_ASSEMBLER
3400 /* This is tough to explain. We end up with this one if we
3401 * have operands that look like
3402 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3403 * obtain the absolute address of the GOT, and it is strongly
3404 * preferable from a performance point of view to avoid using
3405 * a runtime relocation for this. The actual sequence of
3406 * instructions often look something like:
3407 *
3408 * call .L66
3409 * .L66:
3410 * popl %ebx
3411 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3412 *
3413 * The call and pop essentially return the absolute address
3414 * of the label .L66 and store it in %ebx. The linker itself
3415 * will ultimately change the first operand of the addl so
3416 * that %ebx points to the GOT, but to keep things simple, the
3417 * .o file must have this operand set so that it generates not
3418 * the absolute address of .L66, but the absolute address of
3419 * itself. This allows the linker itself simply treat a GOTPC
3420 * relocation as asking for a pcrel offset to the GOT to be
3421 * added in, and the addend of the relocation is stored in the
3422 * operand field for the instruction itself.
3423 *
3424 * Our job here is to fix the operand so that it would add
3425 * the correct offset so that %ebx would point to itself. The
3426 * thing that is tricky is that .-.L66 will point to the
3427 * beginning of the instruction, so we need to further modify
3428 * the operand so that it will point to itself. There are
3429 * other cases where you have something like:
3430 *
3431 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3432 *
3433 * and here no correction would be required. Internally in
3434 * the assembler we treat operands of this form as not being
3435 * pcrel since the '.' is explicitly mentioned, and I wonder
3436 * whether it would simplify matters to do it this way. Who
3437 * knows. In earlier versions of the PIC patches, the
3438 * pcrel_adjust field was used to store the correction, but
3439 * since the expression is not pcrel, I felt it would be
3440 * confusing to do it this way. */
3441
3442 if (reloc_type == BFD_RELOC_32
3443 && GOT_symbol
3444 && GOT_symbol == i.op[n].imms->X_add_symbol
3445 && (i.op[n].imms->X_op == O_symbol
3446 || (i.op[n].imms->X_op == O_add
3447 && ((symbol_get_value_expression
3448 (i.op[n].imms->X_op_symbol)->X_op)
3449 == O_subtract))))
3450 {
3451 offsetT add;
3452
3453 if (insn_start_frag == frag_now)
3454 add = (p - frag_now->fr_literal) - insn_start_off;
3455 else
3456 {
3457 fragS *fr;
3458
3459 add = insn_start_frag->fr_fix - insn_start_off;
3460 for (fr = insn_start_frag->fr_next;
3461 fr && fr != frag_now; fr = fr->fr_next)
3462 add += fr->fr_fix;
3463 add += p - frag_now->fr_literal;
3464 }
3465
3466 /* We don't support dynamic linking on x86-64 yet. */
3467 if (flag_code == CODE_64BIT)
3468 abort ();
3469 reloc_type = BFD_RELOC_386_GOTPC;
3470 i.op[n].imms->X_add_number += add;
3471 }
3472 #endif
3473 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3474 i.op[n].imms, 0, reloc_type);
3475 }
3476 }
3477 }
3478 }
3479 \f
3480 #ifndef LEX_AT
3481 static char *lex_got PARAMS ((RELOC_ENUM *, int *));
3482
3483 /* Parse operands of the form
3484 <symbol>@GOTOFF+<nnn>
3485 and similar .plt or .got references.
3486
3487 If we find one, set up the correct relocation in RELOC and copy the
3488 input string, minus the `@GOTOFF' into a malloc'd buffer for
3489 parsing by the calling routine. Return this buffer, and if ADJUST
3490 is non-null set it to the length of the string we removed from the
3491 input line. Otherwise return NULL. */
3492 static char *
3493 lex_got (reloc, adjust)
3494 RELOC_ENUM *reloc;
3495 int *adjust;
3496 {
3497 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3498 static const struct {
3499 const char *str;
3500 const RELOC_ENUM rel[NUM_FLAG_CODE];
3501 } gotrel[] = {
3502 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3503 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3504 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
3505 { "TLSGD", { BFD_RELOC_386_TLS_GD, 0, BFD_RELOC_X86_64_TLSGD } },
3506 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0, 0 } },
3507 { "TLSLD", { 0, 0, BFD_RELOC_X86_64_TLSLD } },
3508 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, 0, BFD_RELOC_X86_64_GOTTPOFF } },
3509 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, 0, BFD_RELOC_X86_64_TPOFF32 } },
3510 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0, 0 } },
3511 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, 0, BFD_RELOC_X86_64_DTPOFF32 } },
3512 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0, 0 } },
3513 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0, 0 } },
3514 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
3515 };
3516 char *cp;
3517 unsigned int j;
3518
3519 for (cp = input_line_pointer; *cp != '@'; cp++)
3520 if (is_end_of_line[(unsigned char) *cp])
3521 return NULL;
3522
3523 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3524 {
3525 int len;
3526
3527 len = strlen (gotrel[j].str);
3528 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
3529 {
3530 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3531 {
3532 int first, second;
3533 char *tmpbuf, *past_reloc;
3534
3535 *reloc = gotrel[j].rel[(unsigned int) flag_code];
3536 if (adjust)
3537 *adjust = len;
3538
3539 if (GOT_symbol == NULL)
3540 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3541
3542 /* Replace the relocation token with ' ', so that
3543 errors like foo@GOTOFF1 will be detected. */
3544
3545 /* The length of the first part of our input line. */
3546 first = cp - input_line_pointer;
3547
3548 /* The second part goes from after the reloc token until
3549 (and including) an end_of_line char. Don't use strlen
3550 here as the end_of_line char may not be a NUL. */
3551 past_reloc = cp + 1 + len;
3552 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3553 ;
3554 second = cp - past_reloc;
3555
3556 /* Allocate and copy string. The trailing NUL shouldn't
3557 be necessary, but be safe. */
3558 tmpbuf = xmalloc (first + second + 2);
3559 memcpy (tmpbuf, input_line_pointer, first);
3560 tmpbuf[first] = ' ';
3561 memcpy (tmpbuf + first + 1, past_reloc, second);
3562 tmpbuf[first + second + 1] = '\0';
3563 return tmpbuf;
3564 }
3565
3566 as_bad (_("@%s reloc is not supported in %s bit mode"),
3567 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3568 return NULL;
3569 }
3570 }
3571
3572 /* Might be a symbol version string. Don't as_bad here. */
3573 return NULL;
3574 }
3575
3576 /* x86_cons_fix_new is called via the expression parsing code when a
3577 reloc is needed. We use this hook to get the correct .got reloc. */
3578 static RELOC_ENUM got_reloc = NO_RELOC;
3579
3580 void
3581 x86_cons_fix_new (frag, off, len, exp)
3582 fragS *frag;
3583 unsigned int off;
3584 unsigned int len;
3585 expressionS *exp;
3586 {
3587 RELOC_ENUM r = reloc (len, 0, 0, got_reloc);
3588 got_reloc = NO_RELOC;
3589 fix_new_exp (frag, off, len, exp, 0, r);
3590 }
3591
3592 void
3593 x86_cons (exp, size)
3594 expressionS *exp;
3595 int size;
3596 {
3597 if (size == 4)
3598 {
3599 /* Handle @GOTOFF and the like in an expression. */
3600 char *save;
3601 char *gotfree_input_line;
3602 int adjust;
3603
3604 save = input_line_pointer;
3605 gotfree_input_line = lex_got (&got_reloc, &adjust);
3606 if (gotfree_input_line)
3607 input_line_pointer = gotfree_input_line;
3608
3609 expression (exp);
3610
3611 if (gotfree_input_line)
3612 {
3613 /* expression () has merrily parsed up to the end of line,
3614 or a comma - in the wrong buffer. Transfer how far
3615 input_line_pointer has moved to the right buffer. */
3616 input_line_pointer = (save
3617 + (input_line_pointer - gotfree_input_line)
3618 + adjust);
3619 free (gotfree_input_line);
3620 }
3621 }
3622 else
3623 expression (exp);
3624 }
3625 #endif
3626
3627 static int i386_immediate PARAMS ((char *));
3628
3629 static int
3630 i386_immediate (imm_start)
3631 char *imm_start;
3632 {
3633 char *save_input_line_pointer;
3634 #ifndef LEX_AT
3635 char *gotfree_input_line;
3636 #endif
3637 segT exp_seg = 0;
3638 expressionS *exp;
3639
3640 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3641 {
3642 as_bad (_("only 1 or 2 immediate operands are allowed"));
3643 return 0;
3644 }
3645
3646 exp = &im_expressions[i.imm_operands++];
3647 i.op[this_operand].imms = exp;
3648
3649 if (is_space_char (*imm_start))
3650 ++imm_start;
3651
3652 save_input_line_pointer = input_line_pointer;
3653 input_line_pointer = imm_start;
3654
3655 #ifndef LEX_AT
3656 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3657 if (gotfree_input_line)
3658 input_line_pointer = gotfree_input_line;
3659 #endif
3660
3661 exp_seg = expression (exp);
3662
3663 SKIP_WHITESPACE ();
3664 if (*input_line_pointer)
3665 as_bad (_("junk `%s' after expression"), input_line_pointer);
3666
3667 input_line_pointer = save_input_line_pointer;
3668 #ifndef LEX_AT
3669 if (gotfree_input_line)
3670 free (gotfree_input_line);
3671 #endif
3672
3673 if (exp->X_op == O_absent || exp->X_op == O_big)
3674 {
3675 /* Missing or bad expr becomes absolute 0. */
3676 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
3677 imm_start);
3678 exp->X_op = O_constant;
3679 exp->X_add_number = 0;
3680 exp->X_add_symbol = (symbolS *) 0;
3681 exp->X_op_symbol = (symbolS *) 0;
3682 }
3683 else if (exp->X_op == O_constant)
3684 {
3685 /* Size it properly later. */
3686 i.types[this_operand] |= Imm64;
3687 /* If BFD64, sign extend val. */
3688 if (!use_rela_relocations)
3689 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3690 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
3691 }
3692 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3693 else if (1
3694 #ifdef BFD_ASSEMBLER
3695 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3696 #endif
3697 && exp_seg != absolute_section
3698 && exp_seg != text_section
3699 && exp_seg != data_section
3700 && exp_seg != bss_section
3701 && exp_seg != undefined_section
3702 #ifdef BFD_ASSEMBLER
3703 && !bfd_is_com_section (exp_seg)
3704 #endif
3705 )
3706 {
3707 #ifdef BFD_ASSEMBLER
3708 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3709 #else
3710 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3711 #endif
3712 return 0;
3713 }
3714 #endif
3715 else
3716 {
3717 /* This is an address. The size of the address will be
3718 determined later, depending on destination register,
3719 suffix, or the default for the section. */
3720 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
3721 }
3722
3723 return 1;
3724 }
3725
3726 static char *i386_scale PARAMS ((char *));
3727
3728 static char *
3729 i386_scale (scale)
3730 char *scale;
3731 {
3732 offsetT val;
3733 char *save = input_line_pointer;
3734
3735 input_line_pointer = scale;
3736 val = get_absolute_expression ();
3737
3738 switch (val)
3739 {
3740 case 0:
3741 case 1:
3742 i.log2_scale_factor = 0;
3743 break;
3744 case 2:
3745 i.log2_scale_factor = 1;
3746 break;
3747 case 4:
3748 i.log2_scale_factor = 2;
3749 break;
3750 case 8:
3751 i.log2_scale_factor = 3;
3752 break;
3753 default:
3754 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
3755 scale);
3756 input_line_pointer = save;
3757 return NULL;
3758 }
3759 if (i.log2_scale_factor != 0 && i.index_reg == 0)
3760 {
3761 as_warn (_("scale factor of %d without an index register"),
3762 1 << i.log2_scale_factor);
3763 #if SCALE1_WHEN_NO_INDEX
3764 i.log2_scale_factor = 0;
3765 #endif
3766 }
3767 scale = input_line_pointer;
3768 input_line_pointer = save;
3769 return scale;
3770 }
3771
3772 static int i386_displacement PARAMS ((char *, char *));
3773
3774 static int
3775 i386_displacement (disp_start, disp_end)
3776 char *disp_start;
3777 char *disp_end;
3778 {
3779 expressionS *exp;
3780 segT exp_seg = 0;
3781 char *save_input_line_pointer;
3782 #ifndef LEX_AT
3783 char *gotfree_input_line;
3784 #endif
3785 int bigdisp = Disp32;
3786
3787 if (flag_code == CODE_64BIT)
3788 {
3789 if (i.prefix[ADDR_PREFIX] == 0)
3790 bigdisp = Disp64;
3791 }
3792 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3793 bigdisp = Disp16;
3794 i.types[this_operand] |= bigdisp;
3795
3796 exp = &disp_expressions[i.disp_operands];
3797 i.op[this_operand].disps = exp;
3798 i.disp_operands++;
3799 save_input_line_pointer = input_line_pointer;
3800 input_line_pointer = disp_start;
3801 END_STRING_AND_SAVE (disp_end);
3802
3803 #ifndef GCC_ASM_O_HACK
3804 #define GCC_ASM_O_HACK 0
3805 #endif
3806 #if GCC_ASM_O_HACK
3807 END_STRING_AND_SAVE (disp_end + 1);
3808 if ((i.types[this_operand] & BaseIndex) != 0
3809 && displacement_string_end[-1] == '+')
3810 {
3811 /* This hack is to avoid a warning when using the "o"
3812 constraint within gcc asm statements.
3813 For instance:
3814
3815 #define _set_tssldt_desc(n,addr,limit,type) \
3816 __asm__ __volatile__ ( \
3817 "movw %w2,%0\n\t" \
3818 "movw %w1,2+%0\n\t" \
3819 "rorl $16,%1\n\t" \
3820 "movb %b1,4+%0\n\t" \
3821 "movb %4,5+%0\n\t" \
3822 "movb $0,6+%0\n\t" \
3823 "movb %h1,7+%0\n\t" \
3824 "rorl $16,%1" \
3825 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3826
3827 This works great except that the output assembler ends
3828 up looking a bit weird if it turns out that there is
3829 no offset. You end up producing code that looks like:
3830
3831 #APP
3832 movw $235,(%eax)
3833 movw %dx,2+(%eax)
3834 rorl $16,%edx
3835 movb %dl,4+(%eax)
3836 movb $137,5+(%eax)
3837 movb $0,6+(%eax)
3838 movb %dh,7+(%eax)
3839 rorl $16,%edx
3840 #NO_APP
3841
3842 So here we provide the missing zero. */
3843
3844 *displacement_string_end = '0';
3845 }
3846 #endif
3847 #ifndef LEX_AT
3848 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3849 if (gotfree_input_line)
3850 input_line_pointer = gotfree_input_line;
3851 #endif
3852
3853 exp_seg = expression (exp);
3854
3855 SKIP_WHITESPACE ();
3856 if (*input_line_pointer)
3857 as_bad (_("junk `%s' after expression"), input_line_pointer);
3858 #if GCC_ASM_O_HACK
3859 RESTORE_END_STRING (disp_end + 1);
3860 #endif
3861 RESTORE_END_STRING (disp_end);
3862 input_line_pointer = save_input_line_pointer;
3863 #ifndef LEX_AT
3864 if (gotfree_input_line)
3865 free (gotfree_input_line);
3866 #endif
3867
3868 #ifdef BFD_ASSEMBLER
3869 /* We do this to make sure that the section symbol is in
3870 the symbol table. We will ultimately change the relocation
3871 to be relative to the beginning of the section. */
3872 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
3873 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3874 {
3875 if (exp->X_op != O_symbol)
3876 {
3877 as_bad (_("bad expression used with @%s"),
3878 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
3879 ? "GOTPCREL"
3880 : "GOTOFF"));
3881 return 0;
3882 }
3883
3884 if (S_IS_LOCAL (exp->X_add_symbol)
3885 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
3886 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
3887 exp->X_op = O_subtract;
3888 exp->X_op_symbol = GOT_symbol;
3889 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3890 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
3891 else
3892 i.reloc[this_operand] = BFD_RELOC_32;
3893 }
3894 #endif
3895
3896 if (exp->X_op == O_absent || exp->X_op == O_big)
3897 {
3898 /* Missing or bad expr becomes absolute 0. */
3899 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
3900 disp_start);
3901 exp->X_op = O_constant;
3902 exp->X_add_number = 0;
3903 exp->X_add_symbol = (symbolS *) 0;
3904 exp->X_op_symbol = (symbolS *) 0;
3905 }
3906
3907 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3908 if (exp->X_op != O_constant
3909 #ifdef BFD_ASSEMBLER
3910 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3911 #endif
3912 && exp_seg != absolute_section
3913 && exp_seg != text_section
3914 && exp_seg != data_section
3915 && exp_seg != bss_section
3916 && exp_seg != undefined_section
3917 #ifdef BFD_ASSEMBLER
3918 && !bfd_is_com_section (exp_seg)
3919 #endif
3920 )
3921 {
3922 #ifdef BFD_ASSEMBLER
3923 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3924 #else
3925 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3926 #endif
3927 return 0;
3928 }
3929 #endif
3930 else if (flag_code == CODE_64BIT)
3931 i.types[this_operand] |= Disp32S | Disp32;
3932 return 1;
3933 }
3934
3935 static int i386_index_check PARAMS ((const char *));
3936
3937 /* Make sure the memory operand we've been dealt is valid.
3938 Return 1 on success, 0 on a failure. */
3939
3940 static int
3941 i386_index_check (operand_string)
3942 const char *operand_string;
3943 {
3944 int ok;
3945 #if INFER_ADDR_PREFIX
3946 int fudged = 0;
3947
3948 tryprefix:
3949 #endif
3950 ok = 1;
3951 if (flag_code == CODE_64BIT)
3952 {
3953 if (i.prefix[ADDR_PREFIX] == 0)
3954 {
3955 /* 64bit checks. */
3956 if ((i.base_reg
3957 && ((i.base_reg->reg_type & Reg64) == 0)
3958 && (i.base_reg->reg_type != BaseIndex
3959 || i.index_reg))
3960 || (i.index_reg
3961 && ((i.index_reg->reg_type & (Reg64 | BaseIndex))
3962 != (Reg64 | BaseIndex))))
3963 ok = 0;
3964 }
3965 else
3966 {
3967 /* 32bit checks. */
3968 if ((i.base_reg
3969 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
3970 || (i.index_reg
3971 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
3972 != (Reg32 | BaseIndex))))
3973 ok = 0;
3974 }
3975 }
3976 else
3977 {
3978 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3979 {
3980 /* 16bit checks. */
3981 if ((i.base_reg
3982 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
3983 != (Reg16 | BaseIndex)))
3984 || (i.index_reg
3985 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
3986 != (Reg16 | BaseIndex))
3987 || !(i.base_reg
3988 && i.base_reg->reg_num < 6
3989 && i.index_reg->reg_num >= 6
3990 && i.log2_scale_factor == 0))))
3991 ok = 0;
3992 }
3993 else
3994 {
3995 /* 32bit checks. */
3996 if ((i.base_reg
3997 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
3998 || (i.index_reg
3999 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4000 != (Reg32 | BaseIndex))))
4001 ok = 0;
4002 }
4003 }
4004 if (!ok)
4005 {
4006 #if INFER_ADDR_PREFIX
4007 if (flag_code != CODE_64BIT
4008 && i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
4009 {
4010 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4011 i.prefixes += 1;
4012 /* Change the size of any displacement too. At most one of
4013 Disp16 or Disp32 is set.
4014 FIXME. There doesn't seem to be any real need for separate
4015 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
4016 Removing them would probably clean up the code quite a lot. */
4017 if (i.types[this_operand] & (Disp16 | Disp32))
4018 i.types[this_operand] ^= (Disp16 | Disp32);
4019 fudged = 1;
4020 goto tryprefix;
4021 }
4022 if (fudged)
4023 as_bad (_("`%s' is not a valid base/index expression"),
4024 operand_string);
4025 else
4026 #endif
4027 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4028 operand_string,
4029 flag_code_names[flag_code]);
4030 return 0;
4031 }
4032 return 1;
4033 }
4034
4035 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
4036 on error. */
4037
4038 static int
4039 i386_operand (operand_string)
4040 char *operand_string;
4041 {
4042 const reg_entry *r;
4043 char *end_op;
4044 char *op_string = operand_string;
4045
4046 if (is_space_char (*op_string))
4047 ++op_string;
4048
4049 /* We check for an absolute prefix (differentiating,
4050 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
4051 if (*op_string == ABSOLUTE_PREFIX)
4052 {
4053 ++op_string;
4054 if (is_space_char (*op_string))
4055 ++op_string;
4056 i.types[this_operand] |= JumpAbsolute;
4057 }
4058
4059 /* Check if operand is a register. */
4060 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
4061 && (r = parse_register (op_string, &end_op)) != NULL)
4062 {
4063 /* Check for a segment override by searching for ':' after a
4064 segment register. */
4065 op_string = end_op;
4066 if (is_space_char (*op_string))
4067 ++op_string;
4068 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4069 {
4070 switch (r->reg_num)
4071 {
4072 case 0:
4073 i.seg[i.mem_operands] = &es;
4074 break;
4075 case 1:
4076 i.seg[i.mem_operands] = &cs;
4077 break;
4078 case 2:
4079 i.seg[i.mem_operands] = &ss;
4080 break;
4081 case 3:
4082 i.seg[i.mem_operands] = &ds;
4083 break;
4084 case 4:
4085 i.seg[i.mem_operands] = &fs;
4086 break;
4087 case 5:
4088 i.seg[i.mem_operands] = &gs;
4089 break;
4090 }
4091
4092 /* Skip the ':' and whitespace. */
4093 ++op_string;
4094 if (is_space_char (*op_string))
4095 ++op_string;
4096
4097 if (!is_digit_char (*op_string)
4098 && !is_identifier_char (*op_string)
4099 && *op_string != '('
4100 && *op_string != ABSOLUTE_PREFIX)
4101 {
4102 as_bad (_("bad memory operand `%s'"), op_string);
4103 return 0;
4104 }
4105 /* Handle case of %es:*foo. */
4106 if (*op_string == ABSOLUTE_PREFIX)
4107 {
4108 ++op_string;
4109 if (is_space_char (*op_string))
4110 ++op_string;
4111 i.types[this_operand] |= JumpAbsolute;
4112 }
4113 goto do_memory_reference;
4114 }
4115 if (*op_string)
4116 {
4117 as_bad (_("junk `%s' after register"), op_string);
4118 return 0;
4119 }
4120 i.types[this_operand] |= r->reg_type & ~BaseIndex;
4121 i.op[this_operand].regs = r;
4122 i.reg_operands++;
4123 }
4124 else if (*op_string == REGISTER_PREFIX)
4125 {
4126 as_bad (_("bad register name `%s'"), op_string);
4127 return 0;
4128 }
4129 else if (*op_string == IMMEDIATE_PREFIX)
4130 {
4131 ++op_string;
4132 if (i.types[this_operand] & JumpAbsolute)
4133 {
4134 as_bad (_("immediate operand illegal with absolute jump"));
4135 return 0;
4136 }
4137 if (!i386_immediate (op_string))
4138 return 0;
4139 }
4140 else if (is_digit_char (*op_string)
4141 || is_identifier_char (*op_string)
4142 || *op_string == '(')
4143 {
4144 /* This is a memory reference of some sort. */
4145 char *base_string;
4146
4147 /* Start and end of displacement string expression (if found). */
4148 char *displacement_string_start;
4149 char *displacement_string_end;
4150
4151 do_memory_reference:
4152 if ((i.mem_operands == 1
4153 && (current_templates->start->opcode_modifier & IsString) == 0)
4154 || i.mem_operands == 2)
4155 {
4156 as_bad (_("too many memory references for `%s'"),
4157 current_templates->start->name);
4158 return 0;
4159 }
4160
4161 /* Check for base index form. We detect the base index form by
4162 looking for an ')' at the end of the operand, searching
4163 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4164 after the '('. */
4165 base_string = op_string + strlen (op_string);
4166
4167 --base_string;
4168 if (is_space_char (*base_string))
4169 --base_string;
4170
4171 /* If we only have a displacement, set-up for it to be parsed later. */
4172 displacement_string_start = op_string;
4173 displacement_string_end = base_string + 1;
4174
4175 if (*base_string == ')')
4176 {
4177 char *temp_string;
4178 unsigned int parens_balanced = 1;
4179 /* We've already checked that the number of left & right ()'s are
4180 equal, so this loop will not be infinite. */
4181 do
4182 {
4183 base_string--;
4184 if (*base_string == ')')
4185 parens_balanced++;
4186 if (*base_string == '(')
4187 parens_balanced--;
4188 }
4189 while (parens_balanced);
4190
4191 temp_string = base_string;
4192
4193 /* Skip past '(' and whitespace. */
4194 ++base_string;
4195 if (is_space_char (*base_string))
4196 ++base_string;
4197
4198 if (*base_string == ','
4199 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4200 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
4201 {
4202 displacement_string_end = temp_string;
4203
4204 i.types[this_operand] |= BaseIndex;
4205
4206 if (i.base_reg)
4207 {
4208 base_string = end_op;
4209 if (is_space_char (*base_string))
4210 ++base_string;
4211 }
4212
4213 /* There may be an index reg or scale factor here. */
4214 if (*base_string == ',')
4215 {
4216 ++base_string;
4217 if (is_space_char (*base_string))
4218 ++base_string;
4219
4220 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4221 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
4222 {
4223 base_string = end_op;
4224 if (is_space_char (*base_string))
4225 ++base_string;
4226 if (*base_string == ',')
4227 {
4228 ++base_string;
4229 if (is_space_char (*base_string))
4230 ++base_string;
4231 }
4232 else if (*base_string != ')')
4233 {
4234 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4235 operand_string);
4236 return 0;
4237 }
4238 }
4239 else if (*base_string == REGISTER_PREFIX)
4240 {
4241 as_bad (_("bad register name `%s'"), base_string);
4242 return 0;
4243 }
4244
4245 /* Check for scale factor. */
4246 if (*base_string != ')')
4247 {
4248 char *end_scale = i386_scale (base_string);
4249
4250 if (!end_scale)
4251 return 0;
4252
4253 base_string = end_scale;
4254 if (is_space_char (*base_string))
4255 ++base_string;
4256 if (*base_string != ')')
4257 {
4258 as_bad (_("expecting `)' after scale factor in `%s'"),
4259 operand_string);
4260 return 0;
4261 }
4262 }
4263 else if (!i.index_reg)
4264 {
4265 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4266 *base_string);
4267 return 0;
4268 }
4269 }
4270 else if (*base_string != ')')
4271 {
4272 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4273 operand_string);
4274 return 0;
4275 }
4276 }
4277 else if (*base_string == REGISTER_PREFIX)
4278 {
4279 as_bad (_("bad register name `%s'"), base_string);
4280 return 0;
4281 }
4282 }
4283
4284 /* If there's an expression beginning the operand, parse it,
4285 assuming displacement_string_start and
4286 displacement_string_end are meaningful. */
4287 if (displacement_string_start != displacement_string_end)
4288 {
4289 if (!i386_displacement (displacement_string_start,
4290 displacement_string_end))
4291 return 0;
4292 }
4293
4294 /* Special case for (%dx) while doing input/output op. */
4295 if (i.base_reg
4296 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
4297 && i.index_reg == 0
4298 && i.log2_scale_factor == 0
4299 && i.seg[i.mem_operands] == 0
4300 && (i.types[this_operand] & Disp) == 0)
4301 {
4302 i.types[this_operand] = InOutPortReg;
4303 return 1;
4304 }
4305
4306 if (i386_index_check (operand_string) == 0)
4307 return 0;
4308 i.mem_operands++;
4309 }
4310 else
4311 {
4312 /* It's not a memory operand; argh! */
4313 as_bad (_("invalid char %s beginning operand %d `%s'"),
4314 output_invalid (*op_string),
4315 this_operand + 1,
4316 op_string);
4317 return 0;
4318 }
4319 return 1; /* Normal return. */
4320 }
4321 \f
4322 /* md_estimate_size_before_relax()
4323
4324 Called just before relax() for rs_machine_dependent frags. The x86
4325 assembler uses these frags to handle variable size jump
4326 instructions.
4327
4328 Any symbol that is now undefined will not become defined.
4329 Return the correct fr_subtype in the frag.
4330 Return the initial "guess for variable size of frag" to caller.
4331 The guess is actually the growth beyond the fixed part. Whatever
4332 we do to grow the fixed or variable part contributes to our
4333 returned value. */
4334
4335 int
4336 md_estimate_size_before_relax (fragP, segment)
4337 fragS *fragP;
4338 segT segment;
4339 {
4340 /* We've already got fragP->fr_subtype right; all we have to do is
4341 check for un-relaxable symbols. On an ELF system, we can't relax
4342 an externally visible symbol, because it may be overridden by a
4343 shared library. */
4344 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
4345 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4346 || (OUTPUT_FLAVOR == bfd_target_elf_flavour
4347 && (S_IS_EXTERNAL (fragP->fr_symbol)
4348 || S_IS_WEAK (fragP->fr_symbol)))
4349 #endif
4350 )
4351 {
4352 /* Symbol is undefined in this segment, or we need to keep a
4353 reloc so that weak symbols can be overridden. */
4354 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
4355 RELOC_ENUM reloc_type;
4356 unsigned char *opcode;
4357 int old_fr_fix;
4358
4359 if (fragP->fr_var != NO_RELOC)
4360 reloc_type = fragP->fr_var;
4361 else if (size == 2)
4362 reloc_type = BFD_RELOC_16_PCREL;
4363 else
4364 reloc_type = BFD_RELOC_32_PCREL;
4365
4366 old_fr_fix = fragP->fr_fix;
4367 opcode = (unsigned char *) fragP->fr_opcode;
4368
4369 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
4370 {
4371 case UNCOND_JUMP:
4372 /* Make jmp (0xeb) a (d)word displacement jump. */
4373 opcode[0] = 0xe9;
4374 fragP->fr_fix += size;
4375 fix_new (fragP, old_fr_fix, size,
4376 fragP->fr_symbol,
4377 fragP->fr_offset, 1,
4378 reloc_type);
4379 break;
4380
4381 case COND_JUMP86:
4382 if (size == 2
4383 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
4384 {
4385 /* Negate the condition, and branch past an
4386 unconditional jump. */
4387 opcode[0] ^= 1;
4388 opcode[1] = 3;
4389 /* Insert an unconditional jump. */
4390 opcode[2] = 0xe9;
4391 /* We added two extra opcode bytes, and have a two byte
4392 offset. */
4393 fragP->fr_fix += 2 + 2;
4394 fix_new (fragP, old_fr_fix + 2, 2,
4395 fragP->fr_symbol,
4396 fragP->fr_offset, 1,
4397 reloc_type);
4398 break;
4399 }
4400 /* Fall through. */
4401
4402 case COND_JUMP:
4403 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
4404 {
4405 fixS *fixP;
4406
4407 fragP->fr_fix += 1;
4408 fixP = fix_new (fragP, old_fr_fix, 1,
4409 fragP->fr_symbol,
4410 fragP->fr_offset, 1,
4411 BFD_RELOC_8_PCREL);
4412 fixP->fx_signed = 1;
4413 break;
4414 }
4415
4416 /* This changes the byte-displacement jump 0x7N
4417 to the (d)word-displacement jump 0x0f,0x8N. */
4418 opcode[1] = opcode[0] + 0x10;
4419 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4420 /* We've added an opcode byte. */
4421 fragP->fr_fix += 1 + size;
4422 fix_new (fragP, old_fr_fix + 1, size,
4423 fragP->fr_symbol,
4424 fragP->fr_offset, 1,
4425 reloc_type);
4426 break;
4427
4428 default:
4429 BAD_CASE (fragP->fr_subtype);
4430 break;
4431 }
4432 frag_wane (fragP);
4433 return fragP->fr_fix - old_fr_fix;
4434 }
4435
4436 /* Guess size depending on current relax state. Initially the relax
4437 state will correspond to a short jump and we return 1, because
4438 the variable part of the frag (the branch offset) is one byte
4439 long. However, we can relax a section more than once and in that
4440 case we must either set fr_subtype back to the unrelaxed state,
4441 or return the value for the appropriate branch. */
4442 return md_relax_table[fragP->fr_subtype].rlx_length;
4443 }
4444
4445 /* Called after relax() is finished.
4446
4447 In: Address of frag.
4448 fr_type == rs_machine_dependent.
4449 fr_subtype is what the address relaxed to.
4450
4451 Out: Any fixSs and constants are set up.
4452 Caller will turn frag into a ".space 0". */
4453
4454 #ifndef BFD_ASSEMBLER
4455 void
4456 md_convert_frag (headers, sec, fragP)
4457 object_headers *headers ATTRIBUTE_UNUSED;
4458 segT sec ATTRIBUTE_UNUSED;
4459 fragS *fragP;
4460 #else
4461 void
4462 md_convert_frag (abfd, sec, fragP)
4463 bfd *abfd ATTRIBUTE_UNUSED;
4464 segT sec ATTRIBUTE_UNUSED;
4465 fragS *fragP;
4466 #endif
4467 {
4468 unsigned char *opcode;
4469 unsigned char *where_to_put_displacement = NULL;
4470 offsetT target_address;
4471 offsetT opcode_address;
4472 unsigned int extension = 0;
4473 offsetT displacement_from_opcode_start;
4474
4475 opcode = (unsigned char *) fragP->fr_opcode;
4476
4477 /* Address we want to reach in file space. */
4478 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
4479
4480 /* Address opcode resides at in file space. */
4481 opcode_address = fragP->fr_address + fragP->fr_fix;
4482
4483 /* Displacement from opcode start to fill into instruction. */
4484 displacement_from_opcode_start = target_address - opcode_address;
4485
4486 if ((fragP->fr_subtype & BIG) == 0)
4487 {
4488 /* Don't have to change opcode. */
4489 extension = 1; /* 1 opcode + 1 displacement */
4490 where_to_put_displacement = &opcode[1];
4491 }
4492 else
4493 {
4494 if (no_cond_jump_promotion
4495 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4496 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
4497
4498 switch (fragP->fr_subtype)
4499 {
4500 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4501 extension = 4; /* 1 opcode + 4 displacement */
4502 opcode[0] = 0xe9;
4503 where_to_put_displacement = &opcode[1];
4504 break;
4505
4506 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4507 extension = 2; /* 1 opcode + 2 displacement */
4508 opcode[0] = 0xe9;
4509 where_to_put_displacement = &opcode[1];
4510 break;
4511
4512 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4513 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4514 extension = 5; /* 2 opcode + 4 displacement */
4515 opcode[1] = opcode[0] + 0x10;
4516 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4517 where_to_put_displacement = &opcode[2];
4518 break;
4519
4520 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4521 extension = 3; /* 2 opcode + 2 displacement */
4522 opcode[1] = opcode[0] + 0x10;
4523 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4524 where_to_put_displacement = &opcode[2];
4525 break;
4526
4527 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4528 extension = 4;
4529 opcode[0] ^= 1;
4530 opcode[1] = 3;
4531 opcode[2] = 0xe9;
4532 where_to_put_displacement = &opcode[3];
4533 break;
4534
4535 default:
4536 BAD_CASE (fragP->fr_subtype);
4537 break;
4538 }
4539 }
4540
4541 /* Now put displacement after opcode. */
4542 md_number_to_chars ((char *) where_to_put_displacement,
4543 (valueT) (displacement_from_opcode_start - extension),
4544 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
4545 fragP->fr_fix += extension;
4546 }
4547 \f
4548 /* Size of byte displacement jmp. */
4549 int md_short_jump_size = 2;
4550
4551 /* Size of dword displacement jmp. */
4552 int md_long_jump_size = 5;
4553
4554 /* Size of relocation record. */
4555 const int md_reloc_size = 8;
4556
4557 void
4558 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4559 char *ptr;
4560 addressT from_addr, to_addr;
4561 fragS *frag ATTRIBUTE_UNUSED;
4562 symbolS *to_symbol ATTRIBUTE_UNUSED;
4563 {
4564 offsetT offset;
4565
4566 offset = to_addr - (from_addr + 2);
4567 /* Opcode for byte-disp jump. */
4568 md_number_to_chars (ptr, (valueT) 0xeb, 1);
4569 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4570 }
4571
4572 void
4573 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4574 char *ptr;
4575 addressT from_addr, to_addr;
4576 fragS *frag ATTRIBUTE_UNUSED;
4577 symbolS *to_symbol ATTRIBUTE_UNUSED;
4578 {
4579 offsetT offset;
4580
4581 offset = to_addr - (from_addr + 5);
4582 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4583 md_number_to_chars (ptr + 1, (valueT) offset, 4);
4584 }
4585 \f
4586 /* Apply a fixup (fixS) to segment data, once it has been determined
4587 by our caller that we have all the info we need to fix it up.
4588
4589 On the 386, immediates, displacements, and data pointers are all in
4590 the same (little-endian) format, so we don't need to care about which
4591 we are handling. */
4592
4593 void
4594 md_apply_fix3 (fixP, valP, seg)
4595 /* The fix we're to put in. */
4596 fixS *fixP;
4597 /* Pointer to the value of the bits. */
4598 valueT *valP;
4599 /* Segment fix is from. */
4600 segT seg ATTRIBUTE_UNUSED;
4601 {
4602 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4603 valueT value = *valP;
4604
4605 #if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
4606 if (fixP->fx_pcrel)
4607 {
4608 switch (fixP->fx_r_type)
4609 {
4610 default:
4611 break;
4612
4613 case BFD_RELOC_32:
4614 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4615 break;
4616 case BFD_RELOC_16:
4617 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4618 break;
4619 case BFD_RELOC_8:
4620 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4621 break;
4622 }
4623 }
4624
4625 if (fixP->fx_addsy != NULL
4626 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
4627 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4628 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4629 && !use_rela_relocations)
4630 {
4631 /* This is a hack. There should be a better way to handle this.
4632 This covers for the fact that bfd_install_relocation will
4633 subtract the current location (for partial_inplace, PC relative
4634 relocations); see more below. */
4635 #ifndef OBJ_AOUT
4636 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4637 #ifdef TE_PE
4638 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4639 #endif
4640 )
4641 value += fixP->fx_where + fixP->fx_frag->fr_address;
4642 #endif
4643 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4644 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
4645 {
4646 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
4647
4648 if ((sym_seg == seg
4649 || (symbol_section_p (fixP->fx_addsy)
4650 && sym_seg != absolute_section))
4651 && !generic_force_reloc (fixP))
4652 {
4653 /* Yes, we add the values in twice. This is because
4654 bfd_install_relocation subtracts them out again. I think
4655 bfd_install_relocation is broken, but I don't dare change
4656 it. FIXME. */
4657 value += fixP->fx_where + fixP->fx_frag->fr_address;
4658 }
4659 }
4660 #endif
4661 #if defined (OBJ_COFF) && defined (TE_PE)
4662 /* For some reason, the PE format does not store a section
4663 address offset for a PC relative symbol. */
4664 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4665 value += md_pcrel_from (fixP);
4666 #endif
4667 }
4668
4669 /* Fix a few things - the dynamic linker expects certain values here,
4670 and we must not dissappoint it. */
4671 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4672 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4673 && fixP->fx_addsy)
4674 switch (fixP->fx_r_type)
4675 {
4676 case BFD_RELOC_386_PLT32:
4677 case BFD_RELOC_X86_64_PLT32:
4678 /* Make the jump instruction point to the address of the operand. At
4679 runtime we merely add the offset to the actual PLT entry. */
4680 value = -4;
4681 break;
4682
4683 case BFD_RELOC_386_TLS_GD:
4684 case BFD_RELOC_386_TLS_LDM:
4685 case BFD_RELOC_386_TLS_IE_32:
4686 case BFD_RELOC_386_TLS_IE:
4687 case BFD_RELOC_386_TLS_GOTIE:
4688 case BFD_RELOC_X86_64_TLSGD:
4689 case BFD_RELOC_X86_64_TLSLD:
4690 case BFD_RELOC_X86_64_GOTTPOFF:
4691 value = 0; /* Fully resolved at runtime. No addend. */
4692 /* Fallthrough */
4693 case BFD_RELOC_386_TLS_LE:
4694 case BFD_RELOC_386_TLS_LDO_32:
4695 case BFD_RELOC_386_TLS_LE_32:
4696 case BFD_RELOC_X86_64_DTPOFF32:
4697 case BFD_RELOC_X86_64_TPOFF32:
4698 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4699 break;
4700
4701 case BFD_RELOC_386_GOT32:
4702 case BFD_RELOC_X86_64_GOT32:
4703 value = 0; /* Fully resolved at runtime. No addend. */
4704 break;
4705
4706 case BFD_RELOC_VTABLE_INHERIT:
4707 case BFD_RELOC_VTABLE_ENTRY:
4708 fixP->fx_done = 0;
4709 return;
4710
4711 default:
4712 break;
4713 }
4714 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
4715 *valP = value;
4716 #endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
4717
4718 /* Are we finished with this relocation now? */
4719 if (fixP->fx_addsy == NULL)
4720 fixP->fx_done = 1;
4721 #ifdef BFD_ASSEMBLER
4722 else if (use_rela_relocations)
4723 {
4724 fixP->fx_no_overflow = 1;
4725 /* Remember value for tc_gen_reloc. */
4726 fixP->fx_addnumber = value;
4727 value = 0;
4728 }
4729 #endif
4730 md_number_to_chars (p, value, fixP->fx_size);
4731 }
4732 \f
4733 #define MAX_LITTLENUMS 6
4734
4735 /* Turn the string pointed to by litP into a floating point constant
4736 of type TYPE, and emit the appropriate bytes. The number of
4737 LITTLENUMS emitted is stored in *SIZEP. An error message is
4738 returned, or NULL on OK. */
4739
4740 char *
4741 md_atof (type, litP, sizeP)
4742 int type;
4743 char *litP;
4744 int *sizeP;
4745 {
4746 int prec;
4747 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4748 LITTLENUM_TYPE *wordP;
4749 char *t;
4750
4751 switch (type)
4752 {
4753 case 'f':
4754 case 'F':
4755 prec = 2;
4756 break;
4757
4758 case 'd':
4759 case 'D':
4760 prec = 4;
4761 break;
4762
4763 case 'x':
4764 case 'X':
4765 prec = 5;
4766 break;
4767
4768 default:
4769 *sizeP = 0;
4770 return _("Bad call to md_atof ()");
4771 }
4772 t = atof_ieee (input_line_pointer, type, words);
4773 if (t)
4774 input_line_pointer = t;
4775
4776 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4777 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4778 the bigendian 386. */
4779 for (wordP = words + prec - 1; prec--;)
4780 {
4781 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4782 litP += sizeof (LITTLENUM_TYPE);
4783 }
4784 return 0;
4785 }
4786 \f
4787 char output_invalid_buf[8];
4788
4789 static char *
4790 output_invalid (c)
4791 int c;
4792 {
4793 if (ISPRINT (c))
4794 sprintf (output_invalid_buf, "'%c'", c);
4795 else
4796 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4797 return output_invalid_buf;
4798 }
4799
4800 /* REG_STRING starts *before* REGISTER_PREFIX. */
4801
4802 static const reg_entry *
4803 parse_register (reg_string, end_op)
4804 char *reg_string;
4805 char **end_op;
4806 {
4807 char *s = reg_string;
4808 char *p;
4809 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4810 const reg_entry *r;
4811
4812 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4813 if (*s == REGISTER_PREFIX)
4814 ++s;
4815
4816 if (is_space_char (*s))
4817 ++s;
4818
4819 p = reg_name_given;
4820 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
4821 {
4822 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
4823 return (const reg_entry *) NULL;
4824 s++;
4825 }
4826
4827 /* For naked regs, make sure that we are not dealing with an identifier.
4828 This prevents confusing an identifier like `eax_var' with register
4829 `eax'. */
4830 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4831 return (const reg_entry *) NULL;
4832
4833 *end_op = s;
4834
4835 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4836
4837 /* Handle floating point regs, allowing spaces in the (i) part. */
4838 if (r == i386_regtab /* %st is first entry of table */)
4839 {
4840 if (is_space_char (*s))
4841 ++s;
4842 if (*s == '(')
4843 {
4844 ++s;
4845 if (is_space_char (*s))
4846 ++s;
4847 if (*s >= '0' && *s <= '7')
4848 {
4849 r = &i386_float_regtab[*s - '0'];
4850 ++s;
4851 if (is_space_char (*s))
4852 ++s;
4853 if (*s == ')')
4854 {
4855 *end_op = s + 1;
4856 return r;
4857 }
4858 }
4859 /* We have "%st(" then garbage. */
4860 return (const reg_entry *) NULL;
4861 }
4862 }
4863
4864 if (r != NULL
4865 && (r->reg_flags & (RegRex64 | RegRex)) != 0
4866 && flag_code != CODE_64BIT)
4867 {
4868 return (const reg_entry *) NULL;
4869 }
4870
4871 return r;
4872 }
4873 \f
4874 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4875 const char *md_shortopts = "kVQ:sq";
4876 #else
4877 const char *md_shortopts = "q";
4878 #endif
4879
4880 struct option md_longopts[] = {
4881 #define OPTION_32 (OPTION_MD_BASE + 0)
4882 {"32", no_argument, NULL, OPTION_32},
4883 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4884 #define OPTION_64 (OPTION_MD_BASE + 1)
4885 {"64", no_argument, NULL, OPTION_64},
4886 #endif
4887 {NULL, no_argument, NULL, 0}
4888 };
4889 size_t md_longopts_size = sizeof (md_longopts);
4890
4891 int
4892 md_parse_option (c, arg)
4893 int c;
4894 char *arg ATTRIBUTE_UNUSED;
4895 {
4896 switch (c)
4897 {
4898 case 'q':
4899 quiet_warnings = 1;
4900 break;
4901
4902 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4903 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4904 should be emitted or not. FIXME: Not implemented. */
4905 case 'Q':
4906 break;
4907
4908 /* -V: SVR4 argument to print version ID. */
4909 case 'V':
4910 print_version_id ();
4911 break;
4912
4913 /* -k: Ignore for FreeBSD compatibility. */
4914 case 'k':
4915 break;
4916
4917 case 's':
4918 /* -s: On i386 Solaris, this tells the native assembler to use
4919 .stab instead of .stab.excl. We always use .stab anyhow. */
4920 break;
4921
4922 case OPTION_64:
4923 {
4924 const char **list, **l;
4925
4926 list = bfd_target_list ();
4927 for (l = list; *l != NULL; l++)
4928 if (strcmp (*l, "elf64-x86-64") == 0)
4929 {
4930 default_arch = "x86_64";
4931 break;
4932 }
4933 if (*l == NULL)
4934 as_fatal (_("No compiled in support for x86_64"));
4935 free (list);
4936 }
4937 break;
4938 #endif
4939
4940 case OPTION_32:
4941 default_arch = "i386";
4942 break;
4943
4944 default:
4945 return 0;
4946 }
4947 return 1;
4948 }
4949
4950 void
4951 md_show_usage (stream)
4952 FILE *stream;
4953 {
4954 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4955 fprintf (stream, _("\
4956 -Q ignored\n\
4957 -V print assembler version number\n\
4958 -k ignored\n\
4959 -q quieten some warnings\n\
4960 -s ignored\n"));
4961 #else
4962 fprintf (stream, _("\
4963 -q quieten some warnings\n"));
4964 #endif
4965 }
4966
4967 #ifdef BFD_ASSEMBLER
4968 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
4969 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
4970
4971 /* Pick the target format to use. */
4972
4973 const char *
4974 i386_target_format ()
4975 {
4976 if (!strcmp (default_arch, "x86_64"))
4977 set_code_flag (CODE_64BIT);
4978 else if (!strcmp (default_arch, "i386"))
4979 set_code_flag (CODE_32BIT);
4980 else
4981 as_fatal (_("Unknown architecture"));
4982 switch (OUTPUT_FLAVOR)
4983 {
4984 #ifdef OBJ_MAYBE_AOUT
4985 case bfd_target_aout_flavour:
4986 return AOUT_TARGET_FORMAT;
4987 #endif
4988 #ifdef OBJ_MAYBE_COFF
4989 case bfd_target_coff_flavour:
4990 return "coff-i386";
4991 #endif
4992 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
4993 case bfd_target_elf_flavour:
4994 {
4995 if (flag_code == CODE_64BIT)
4996 use_rela_relocations = 1;
4997 return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
4998 }
4999 #endif
5000 default:
5001 abort ();
5002 return NULL;
5003 }
5004 }
5005
5006 #endif /* OBJ_MAYBE_ more than one */
5007
5008 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5009 void i386_elf_emit_arch_note ()
5010 {
5011 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
5012 && cpu_arch_name != NULL)
5013 {
5014 char *p;
5015 asection *seg = now_seg;
5016 subsegT subseg = now_subseg;
5017 Elf_Internal_Note i_note;
5018 Elf_External_Note e_note;
5019 asection *note_secp;
5020 int len;
5021
5022 /* Create the .note section. */
5023 note_secp = subseg_new (".note", 0);
5024 bfd_set_section_flags (stdoutput,
5025 note_secp,
5026 SEC_HAS_CONTENTS | SEC_READONLY);
5027
5028 /* Process the arch string. */
5029 len = strlen (cpu_arch_name);
5030
5031 i_note.namesz = len + 1;
5032 i_note.descsz = 0;
5033 i_note.type = NT_ARCH;
5034 p = frag_more (sizeof (e_note.namesz));
5035 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
5036 p = frag_more (sizeof (e_note.descsz));
5037 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
5038 p = frag_more (sizeof (e_note.type));
5039 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
5040 p = frag_more (len + 1);
5041 strcpy (p, cpu_arch_name);
5042
5043 frag_align (2, 0, 0);
5044
5045 subseg_set (seg, subseg);
5046 }
5047 }
5048 #endif
5049 #endif /* BFD_ASSEMBLER */
5050 \f
5051 symbolS *
5052 md_undefined_symbol (name)
5053 char *name;
5054 {
5055 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
5056 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
5057 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
5058 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
5059 {
5060 if (!GOT_symbol)
5061 {
5062 if (symbol_find (name))
5063 as_bad (_("GOT already in symbol table"));
5064 GOT_symbol = symbol_new (name, undefined_section,
5065 (valueT) 0, &zero_address_frag);
5066 };
5067 return GOT_symbol;
5068 }
5069 return 0;
5070 }
5071
5072 /* Round up a section size to the appropriate boundary. */
5073
5074 valueT
5075 md_section_align (segment, size)
5076 segT segment ATTRIBUTE_UNUSED;
5077 valueT size;
5078 {
5079 #ifdef BFD_ASSEMBLER
5080 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5081 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
5082 {
5083 /* For a.out, force the section size to be aligned. If we don't do
5084 this, BFD will align it for us, but it will not write out the
5085 final bytes of the section. This may be a bug in BFD, but it is
5086 easier to fix it here since that is how the other a.out targets
5087 work. */
5088 int align;
5089
5090 align = bfd_get_section_alignment (stdoutput, segment);
5091 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
5092 }
5093 #endif
5094 #endif
5095
5096 return size;
5097 }
5098
5099 /* On the i386, PC-relative offsets are relative to the start of the
5100 next instruction. That is, the address of the offset, plus its
5101 size, since the offset is always the last part of the insn. */
5102
5103 long
5104 md_pcrel_from (fixP)
5105 fixS *fixP;
5106 {
5107 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
5108 }
5109
5110 #ifndef I386COFF
5111
5112 static void
5113 s_bss (ignore)
5114 int ignore ATTRIBUTE_UNUSED;
5115 {
5116 int temp;
5117
5118 temp = get_absolute_expression ();
5119 subseg_set (bss_section, (subsegT) temp);
5120 demand_empty_rest_of_line ();
5121 }
5122
5123 #endif
5124
5125 #ifdef BFD_ASSEMBLER
5126
5127 void
5128 i386_validate_fix (fixp)
5129 fixS *fixp;
5130 {
5131 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
5132 {
5133 /* GOTOFF relocation are nonsense in 64bit mode. */
5134 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
5135 {
5136 if (flag_code != CODE_64BIT)
5137 abort ();
5138 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
5139 }
5140 else
5141 {
5142 if (flag_code == CODE_64BIT)
5143 abort ();
5144 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
5145 }
5146 fixp->fx_subsy = 0;
5147 }
5148 }
5149
5150 arelent *
5151 tc_gen_reloc (section, fixp)
5152 asection *section ATTRIBUTE_UNUSED;
5153 fixS *fixp;
5154 {
5155 arelent *rel;
5156 bfd_reloc_code_real_type code;
5157
5158 switch (fixp->fx_r_type)
5159 {
5160 case BFD_RELOC_X86_64_PLT32:
5161 case BFD_RELOC_X86_64_GOT32:
5162 case BFD_RELOC_X86_64_GOTPCREL:
5163 case BFD_RELOC_386_PLT32:
5164 case BFD_RELOC_386_GOT32:
5165 case BFD_RELOC_386_GOTOFF:
5166 case BFD_RELOC_386_GOTPC:
5167 case BFD_RELOC_386_TLS_GD:
5168 case BFD_RELOC_386_TLS_LDM:
5169 case BFD_RELOC_386_TLS_LDO_32:
5170 case BFD_RELOC_386_TLS_IE_32:
5171 case BFD_RELOC_386_TLS_IE:
5172 case BFD_RELOC_386_TLS_GOTIE:
5173 case BFD_RELOC_386_TLS_LE_32:
5174 case BFD_RELOC_386_TLS_LE:
5175 case BFD_RELOC_X86_64_32S:
5176 case BFD_RELOC_X86_64_TLSGD:
5177 case BFD_RELOC_X86_64_TLSLD:
5178 case BFD_RELOC_X86_64_DTPOFF32:
5179 case BFD_RELOC_X86_64_GOTTPOFF:
5180 case BFD_RELOC_X86_64_TPOFF32:
5181 case BFD_RELOC_RVA:
5182 case BFD_RELOC_VTABLE_ENTRY:
5183 case BFD_RELOC_VTABLE_INHERIT:
5184 code = fixp->fx_r_type;
5185 break;
5186 default:
5187 if (fixp->fx_pcrel)
5188 {
5189 switch (fixp->fx_size)
5190 {
5191 default:
5192 as_bad_where (fixp->fx_file, fixp->fx_line,
5193 _("can not do %d byte pc-relative relocation"),
5194 fixp->fx_size);
5195 code = BFD_RELOC_32_PCREL;
5196 break;
5197 case 1: code = BFD_RELOC_8_PCREL; break;
5198 case 2: code = BFD_RELOC_16_PCREL; break;
5199 case 4: code = BFD_RELOC_32_PCREL; break;
5200 }
5201 }
5202 else
5203 {
5204 switch (fixp->fx_size)
5205 {
5206 default:
5207 as_bad_where (fixp->fx_file, fixp->fx_line,
5208 _("can not do %d byte relocation"),
5209 fixp->fx_size);
5210 code = BFD_RELOC_32;
5211 break;
5212 case 1: code = BFD_RELOC_8; break;
5213 case 2: code = BFD_RELOC_16; break;
5214 case 4: code = BFD_RELOC_32; break;
5215 #ifdef BFD64
5216 case 8: code = BFD_RELOC_64; break;
5217 #endif
5218 }
5219 }
5220 break;
5221 }
5222
5223 if (code == BFD_RELOC_32
5224 && GOT_symbol
5225 && fixp->fx_addsy == GOT_symbol)
5226 {
5227 /* We don't support GOTPC on 64bit targets. */
5228 if (flag_code == CODE_64BIT)
5229 abort ();
5230 code = BFD_RELOC_386_GOTPC;
5231 }
5232
5233 rel = (arelent *) xmalloc (sizeof (arelent));
5234 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5235 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
5236
5237 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
5238 if (!use_rela_relocations)
5239 {
5240 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5241 vtable entry to be used in the relocation's section offset. */
5242 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5243 rel->address = fixp->fx_offset;
5244
5245 rel->addend = 0;
5246 }
5247 /* Use the rela in 64bit mode. */
5248 else
5249 {
5250 if (!fixp->fx_pcrel)
5251 rel->addend = fixp->fx_offset;
5252 else
5253 switch (code)
5254 {
5255 case BFD_RELOC_X86_64_PLT32:
5256 case BFD_RELOC_X86_64_GOT32:
5257 case BFD_RELOC_X86_64_GOTPCREL:
5258 case BFD_RELOC_X86_64_TLSGD:
5259 case BFD_RELOC_X86_64_TLSLD:
5260 case BFD_RELOC_X86_64_GOTTPOFF:
5261 rel->addend = fixp->fx_offset - fixp->fx_size;
5262 break;
5263 default:
5264 rel->addend = (section->vma
5265 - fixp->fx_size
5266 + fixp->fx_addnumber
5267 + md_pcrel_from (fixp));
5268 break;
5269 }
5270 }
5271
5272 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
5273 if (rel->howto == NULL)
5274 {
5275 as_bad_where (fixp->fx_file, fixp->fx_line,
5276 _("cannot represent relocation type %s"),
5277 bfd_get_reloc_code_name (code));
5278 /* Set howto to a garbage value so that we can keep going. */
5279 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
5280 assert (rel->howto != NULL);
5281 }
5282
5283 return rel;
5284 }
5285
5286 #else /* !BFD_ASSEMBLER */
5287
5288 #if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
5289 void
5290 tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
5291 char *where;
5292 fixS *fixP;
5293 relax_addressT segment_address_in_file;
5294 {
5295 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
5296 Out: GNU LD relocation length code: 0, 1, or 2. */
5297
5298 static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
5299 long r_symbolnum;
5300
5301 know (fixP->fx_addsy != NULL);
5302
5303 md_number_to_chars (where,
5304 (valueT) (fixP->fx_frag->fr_address
5305 + fixP->fx_where - segment_address_in_file),
5306 4);
5307
5308 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
5309 ? S_GET_TYPE (fixP->fx_addsy)
5310 : fixP->fx_addsy->sy_number);
5311
5312 where[6] = (r_symbolnum >> 16) & 0x0ff;
5313 where[5] = (r_symbolnum >> 8) & 0x0ff;
5314 where[4] = r_symbolnum & 0x0ff;
5315 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
5316 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
5317 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
5318 }
5319
5320 #endif /* OBJ_AOUT or OBJ_BOUT. */
5321
5322 #if defined (I386COFF)
5323
5324 short
5325 tc_coff_fix2rtype (fixP)
5326 fixS *fixP;
5327 {
5328 if (fixP->fx_r_type == R_IMAGEBASE)
5329 return R_IMAGEBASE;
5330
5331 return (fixP->fx_pcrel ?
5332 (fixP->fx_size == 1 ? R_PCRBYTE :
5333 fixP->fx_size == 2 ? R_PCRWORD :
5334 R_PCRLONG) :
5335 (fixP->fx_size == 1 ? R_RELBYTE :
5336 fixP->fx_size == 2 ? R_RELWORD :
5337 R_DIR32));
5338 }
5339
5340 int
5341 tc_coff_sizemachdep (frag)
5342 fragS *frag;
5343 {
5344 if (frag->fr_next)
5345 return (frag->fr_next->fr_address - frag->fr_address);
5346 else
5347 return 0;
5348 }
5349
5350 #endif /* I386COFF */
5351
5352 #endif /* !BFD_ASSEMBLER */
5353 \f
5354 /* Parse operands using Intel syntax. This implements a recursive descent
5355 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5356 Programmer's Guide.
5357
5358 FIXME: We do not recognize the full operand grammar defined in the MASM
5359 documentation. In particular, all the structure/union and
5360 high-level macro operands are missing.
5361
5362 Uppercase words are terminals, lower case words are non-terminals.
5363 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5364 bars '|' denote choices. Most grammar productions are implemented in
5365 functions called 'intel_<production>'.
5366
5367 Initial production is 'expr'.
5368
5369 addOp + | -
5370
5371 alpha [a-zA-Z]
5372
5373 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5374
5375 constant digits [[ radixOverride ]]
5376
5377 dataType BYTE | WORD | DWORD | QWORD | XWORD
5378
5379 digits decdigit
5380 | digits decdigit
5381 | digits hexdigit
5382
5383 decdigit [0-9]
5384
5385 e05 e05 addOp e06
5386 | e06
5387
5388 e06 e06 mulOp e09
5389 | e09
5390
5391 e09 OFFSET e10
5392 | e09 PTR e10
5393 | e09 : e10
5394 | e10
5395
5396 e10 e10 [ expr ]
5397 | e11
5398
5399 e11 ( expr )
5400 | [ expr ]
5401 | constant
5402 | dataType
5403 | id
5404 | $
5405 | register
5406
5407 => expr SHORT e05
5408 | e05
5409
5410 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
5411 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
5412
5413 hexdigit a | b | c | d | e | f
5414 | A | B | C | D | E | F
5415
5416 id alpha
5417 | id alpha
5418 | id decdigit
5419
5420 mulOp * | / | MOD
5421
5422 quote " | '
5423
5424 register specialRegister
5425 | gpRegister
5426 | byteRegister
5427
5428 segmentRegister CS | DS | ES | FS | GS | SS
5429
5430 specialRegister CR0 | CR2 | CR3
5431 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
5432 | TR3 | TR4 | TR5 | TR6 | TR7
5433
5434 We simplify the grammar in obvious places (e.g., register parsing is
5435 done by calling parse_register) and eliminate immediate left recursion
5436 to implement a recursive-descent parser.
5437
5438 expr SHORT e05
5439 | e05
5440
5441 e05 e06 e05'
5442
5443 e05' addOp e06 e05'
5444 | Empty
5445
5446 e06 e09 e06'
5447
5448 e06' mulOp e09 e06'
5449 | Empty
5450
5451 e09 OFFSET e10 e09'
5452 | e10 e09'
5453
5454 e09' PTR e10 e09'
5455 | : e10 e09'
5456 | Empty
5457
5458 e10 e11 e10'
5459
5460 e10' [ expr ] e10'
5461 | Empty
5462
5463 e11 ( expr )
5464 | [ expr ]
5465 | BYTE
5466 | WORD
5467 | DWORD
5468 | QWORD
5469 | XWORD
5470 | .
5471 | $
5472 | register
5473 | id
5474 | constant */
5475
5476 /* Parsing structure for the intel syntax parser. Used to implement the
5477 semantic actions for the operand grammar. */
5478 struct intel_parser_s
5479 {
5480 char *op_string; /* The string being parsed. */
5481 int got_a_float; /* Whether the operand is a float. */
5482 int op_modifier; /* Operand modifier. */
5483 int is_mem; /* 1 if operand is memory reference. */
5484 const reg_entry *reg; /* Last register reference found. */
5485 char *disp; /* Displacement string being built. */
5486 };
5487
5488 static struct intel_parser_s intel_parser;
5489
5490 /* Token structure for parsing intel syntax. */
5491 struct intel_token
5492 {
5493 int code; /* Token code. */
5494 const reg_entry *reg; /* Register entry for register tokens. */
5495 char *str; /* String representation. */
5496 };
5497
5498 static struct intel_token cur_token, prev_token;
5499
5500 /* Token codes for the intel parser. Since T_SHORT is already used
5501 by COFF, undefine it first to prevent a warning. */
5502 #define T_NIL -1
5503 #define T_CONST 1
5504 #define T_REG 2
5505 #define T_BYTE 3
5506 #define T_WORD 4
5507 #define T_DWORD 5
5508 #define T_QWORD 6
5509 #define T_XWORD 7
5510 #undef T_SHORT
5511 #define T_SHORT 8
5512 #define T_OFFSET 9
5513 #define T_PTR 10
5514 #define T_ID 11
5515
5516 /* Prototypes for intel parser functions. */
5517 static int intel_match_token PARAMS ((int code));
5518 static void intel_get_token PARAMS ((void));
5519 static void intel_putback_token PARAMS ((void));
5520 static int intel_expr PARAMS ((void));
5521 static int intel_e05 PARAMS ((void));
5522 static int intel_e05_1 PARAMS ((void));
5523 static int intel_e06 PARAMS ((void));
5524 static int intel_e06_1 PARAMS ((void));
5525 static int intel_e09 PARAMS ((void));
5526 static int intel_e09_1 PARAMS ((void));
5527 static int intel_e10 PARAMS ((void));
5528 static int intel_e10_1 PARAMS ((void));
5529 static int intel_e11 PARAMS ((void));
5530
5531 static int
5532 i386_intel_operand (operand_string, got_a_float)
5533 char *operand_string;
5534 int got_a_float;
5535 {
5536 int ret;
5537 char *p;
5538
5539 /* Initialize token holders. */
5540 cur_token.code = prev_token.code = T_NIL;
5541 cur_token.reg = prev_token.reg = NULL;
5542 cur_token.str = prev_token.str = NULL;
5543
5544 /* Initialize parser structure. */
5545 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
5546 if (p == NULL)
5547 abort ();
5548 strcpy (intel_parser.op_string, operand_string);
5549 intel_parser.got_a_float = got_a_float;
5550 intel_parser.op_modifier = -1;
5551 intel_parser.is_mem = 0;
5552 intel_parser.reg = NULL;
5553 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
5554 if (intel_parser.disp == NULL)
5555 abort ();
5556 intel_parser.disp[0] = '\0';
5557
5558 /* Read the first token and start the parser. */
5559 intel_get_token ();
5560 ret = intel_expr ();
5561
5562 if (ret)
5563 {
5564 /* If we found a memory reference, hand it over to i386_displacement
5565 to fill in the rest of the operand fields. */
5566 if (intel_parser.is_mem)
5567 {
5568 if ((i.mem_operands == 1
5569 && (current_templates->start->opcode_modifier & IsString) == 0)
5570 || i.mem_operands == 2)
5571 {
5572 as_bad (_("too many memory references for '%s'"),
5573 current_templates->start->name);
5574 ret = 0;
5575 }
5576 else
5577 {
5578 char *s = intel_parser.disp;
5579 i.mem_operands++;
5580
5581 /* Add the displacement expression. */
5582 if (*s != '\0')
5583 ret = i386_displacement (s, s + strlen (s))
5584 && i386_index_check (s);
5585 }
5586 }
5587
5588 /* Constant and OFFSET expressions are handled by i386_immediate. */
5589 else if (intel_parser.op_modifier == OFFSET_FLAT
5590 || intel_parser.reg == NULL)
5591 ret = i386_immediate (intel_parser.disp);
5592 }
5593
5594 free (p);
5595 free (intel_parser.disp);
5596
5597 return ret;
5598 }
5599
5600 /* expr SHORT e05
5601 | e05 */
5602 static int
5603 intel_expr ()
5604 {
5605 /* expr SHORT e05 */
5606 if (cur_token.code == T_SHORT)
5607 {
5608 intel_parser.op_modifier = SHORT;
5609 intel_match_token (T_SHORT);
5610
5611 return (intel_e05 ());
5612 }
5613
5614 /* expr e05 */
5615 else
5616 return intel_e05 ();
5617 }
5618
5619 /* e05 e06 e05'
5620
5621 e05' addOp e06 e05'
5622 | Empty */
5623 static int
5624 intel_e05 ()
5625 {
5626 return (intel_e06 () && intel_e05_1 ());
5627 }
5628
5629 static int
5630 intel_e05_1 ()
5631 {
5632 /* e05' addOp e06 e05' */
5633 if (cur_token.code == '+' || cur_token.code == '-')
5634 {
5635 strcat (intel_parser.disp, cur_token.str);
5636 intel_match_token (cur_token.code);
5637
5638 return (intel_e06 () && intel_e05_1 ());
5639 }
5640
5641 /* e05' Empty */
5642 else
5643 return 1;
5644 }
5645
5646 /* e06 e09 e06'
5647
5648 e06' mulOp e09 e06'
5649 | Empty */
5650 static int
5651 intel_e06 ()
5652 {
5653 return (intel_e09 () && intel_e06_1 ());
5654 }
5655
5656 static int
5657 intel_e06_1 ()
5658 {
5659 /* e06' mulOp e09 e06' */
5660 if (cur_token.code == '*' || cur_token.code == '/')
5661 {
5662 strcat (intel_parser.disp, cur_token.str);
5663 intel_match_token (cur_token.code);
5664
5665 return (intel_e09 () && intel_e06_1 ());
5666 }
5667
5668 /* e06' Empty */
5669 else
5670 return 1;
5671 }
5672
5673 /* e09 OFFSET e10 e09'
5674 | e10 e09'
5675
5676 e09' PTR e10 e09'
5677 | : e10 e09'
5678 | Empty */
5679 static int
5680 intel_e09 ()
5681 {
5682 /* e09 OFFSET e10 e09' */
5683 if (cur_token.code == T_OFFSET)
5684 {
5685 intel_parser.is_mem = 0;
5686 intel_parser.op_modifier = OFFSET_FLAT;
5687 intel_match_token (T_OFFSET);
5688
5689 return (intel_e10 () && intel_e09_1 ());
5690 }
5691
5692 /* e09 e10 e09' */
5693 else
5694 return (intel_e10 () && intel_e09_1 ());
5695 }
5696
5697 static int
5698 intel_e09_1 ()
5699 {
5700 /* e09' PTR e10 e09' */
5701 if (cur_token.code == T_PTR)
5702 {
5703 if (prev_token.code == T_BYTE)
5704 i.suffix = BYTE_MNEM_SUFFIX;
5705
5706 else if (prev_token.code == T_WORD)
5707 {
5708 if (intel_parser.got_a_float == 2) /* "fi..." */
5709 i.suffix = SHORT_MNEM_SUFFIX;
5710 else
5711 i.suffix = WORD_MNEM_SUFFIX;
5712 }
5713
5714 else if (prev_token.code == T_DWORD)
5715 {
5716 if (intel_parser.got_a_float == 1) /* "f..." */
5717 i.suffix = SHORT_MNEM_SUFFIX;
5718 else
5719 i.suffix = LONG_MNEM_SUFFIX;
5720 }
5721
5722 else if (prev_token.code == T_QWORD)
5723 {
5724 if (intel_parser.got_a_float == 1) /* "f..." */
5725 i.suffix = LONG_MNEM_SUFFIX;
5726 else
5727 i.suffix = QWORD_MNEM_SUFFIX;
5728 }
5729
5730 else if (prev_token.code == T_XWORD)
5731 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
5732
5733 else
5734 {
5735 as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
5736 return 0;
5737 }
5738
5739 intel_match_token (T_PTR);
5740
5741 return (intel_e10 () && intel_e09_1 ());
5742 }
5743
5744 /* e09 : e10 e09' */
5745 else if (cur_token.code == ':')
5746 {
5747 /* Mark as a memory operand only if it's not already known to be an
5748 offset expression. */
5749 if (intel_parser.op_modifier != OFFSET_FLAT)
5750 intel_parser.is_mem = 1;
5751
5752 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5753 }
5754
5755 /* e09' Empty */
5756 else
5757 return 1;
5758 }
5759
5760 /* e10 e11 e10'
5761
5762 e10' [ expr ] e10'
5763 | Empty */
5764 static int
5765 intel_e10 ()
5766 {
5767 return (intel_e11 () && intel_e10_1 ());
5768 }
5769
5770 static int
5771 intel_e10_1 ()
5772 {
5773 /* e10' [ expr ] e10' */
5774 if (cur_token.code == '[')
5775 {
5776 intel_match_token ('[');
5777
5778 /* Mark as a memory operand only if it's not already known to be an
5779 offset expression. If it's an offset expression, we need to keep
5780 the brace in. */
5781 if (intel_parser.op_modifier != OFFSET_FLAT)
5782 intel_parser.is_mem = 1;
5783 else
5784 strcat (intel_parser.disp, "[");
5785
5786 /* Add a '+' to the displacement string if necessary. */
5787 if (*intel_parser.disp != '\0'
5788 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5789 strcat (intel_parser.disp, "+");
5790
5791 if (intel_expr () && intel_match_token (']'))
5792 {
5793 /* Preserve brackets when the operand is an offset expression. */
5794 if (intel_parser.op_modifier == OFFSET_FLAT)
5795 strcat (intel_parser.disp, "]");
5796
5797 return intel_e10_1 ();
5798 }
5799 else
5800 return 0;
5801 }
5802
5803 /* e10' Empty */
5804 else
5805 return 1;
5806 }
5807
5808 /* e11 ( expr )
5809 | [ expr ]
5810 | BYTE
5811 | WORD
5812 | DWORD
5813 | QWORD
5814 | XWORD
5815 | $
5816 | .
5817 | register
5818 | id
5819 | constant */
5820 static int
5821 intel_e11 ()
5822 {
5823 /* e11 ( expr ) */
5824 if (cur_token.code == '(')
5825 {
5826 intel_match_token ('(');
5827 strcat (intel_parser.disp, "(");
5828
5829 if (intel_expr () && intel_match_token (')'))
5830 {
5831 strcat (intel_parser.disp, ")");
5832 return 1;
5833 }
5834 else
5835 return 0;
5836 }
5837
5838 /* e11 [ expr ] */
5839 else if (cur_token.code == '[')
5840 {
5841 intel_match_token ('[');
5842
5843 /* Mark as a memory operand only if it's not already known to be an
5844 offset expression. If it's an offset expression, we need to keep
5845 the brace in. */
5846 if (intel_parser.op_modifier != OFFSET_FLAT)
5847 intel_parser.is_mem = 1;
5848 else
5849 strcat (intel_parser.disp, "[");
5850
5851 /* Operands for jump/call inside brackets denote absolute addresses. */
5852 if (current_templates->start->opcode_modifier & Jump
5853 || current_templates->start->opcode_modifier & JumpDword
5854 || current_templates->start->opcode_modifier & JumpByte
5855 || current_templates->start->opcode_modifier & JumpInterSegment)
5856 i.types[this_operand] |= JumpAbsolute;
5857
5858 /* Add a '+' to the displacement string if necessary. */
5859 if (*intel_parser.disp != '\0'
5860 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5861 strcat (intel_parser.disp, "+");
5862
5863 if (intel_expr () && intel_match_token (']'))
5864 {
5865 /* Preserve brackets when the operand is an offset expression. */
5866 if (intel_parser.op_modifier == OFFSET_FLAT)
5867 strcat (intel_parser.disp, "]");
5868
5869 return 1;
5870 }
5871 else
5872 return 0;
5873 }
5874
5875 /* e11 BYTE
5876 | WORD
5877 | DWORD
5878 | QWORD
5879 | XWORD */
5880 else if (cur_token.code == T_BYTE
5881 || cur_token.code == T_WORD
5882 || cur_token.code == T_DWORD
5883 || cur_token.code == T_QWORD
5884 || cur_token.code == T_XWORD)
5885 {
5886 intel_match_token (cur_token.code);
5887
5888 return 1;
5889 }
5890
5891 /* e11 $
5892 | . */
5893 else if (cur_token.code == '$' || cur_token.code == '.')
5894 {
5895 strcat (intel_parser.disp, cur_token.str);
5896 intel_match_token (cur_token.code);
5897
5898 /* Mark as a memory operand only if it's not already known to be an
5899 offset expression. */
5900 if (intel_parser.op_modifier != OFFSET_FLAT)
5901 intel_parser.is_mem = 1;
5902
5903 return 1;
5904 }
5905
5906 /* e11 register */
5907 else if (cur_token.code == T_REG)
5908 {
5909 const reg_entry *reg = intel_parser.reg = cur_token.reg;
5910
5911 intel_match_token (T_REG);
5912
5913 /* Check for segment change. */
5914 if (cur_token.code == ':')
5915 {
5916 if (reg->reg_type & (SReg2 | SReg3))
5917 {
5918 switch (reg->reg_num)
5919 {
5920 case 0:
5921 i.seg[i.mem_operands] = &es;
5922 break;
5923 case 1:
5924 i.seg[i.mem_operands] = &cs;
5925 break;
5926 case 2:
5927 i.seg[i.mem_operands] = &ss;
5928 break;
5929 case 3:
5930 i.seg[i.mem_operands] = &ds;
5931 break;
5932 case 4:
5933 i.seg[i.mem_operands] = &fs;
5934 break;
5935 case 5:
5936 i.seg[i.mem_operands] = &gs;
5937 break;
5938 }
5939 }
5940 else
5941 {
5942 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
5943 return 0;
5944 }
5945 }
5946
5947 /* Not a segment register. Check for register scaling. */
5948 else if (cur_token.code == '*')
5949 {
5950 if (!intel_parser.is_mem)
5951 {
5952 as_bad (_("Register scaling only allowed in memory operands."));
5953 return 0;
5954 }
5955
5956 /* What follows must be a valid scale. */
5957 if (intel_match_token ('*')
5958 && strchr ("01248", *cur_token.str))
5959 {
5960 i.index_reg = reg;
5961 i.types[this_operand] |= BaseIndex;
5962
5963 /* Set the scale after setting the register (otherwise,
5964 i386_scale will complain) */
5965 i386_scale (cur_token.str);
5966 intel_match_token (T_CONST);
5967 }
5968 else
5969 {
5970 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5971 cur_token.str);
5972 return 0;
5973 }
5974 }
5975
5976 /* No scaling. If this is a memory operand, the register is either a
5977 base register (first occurrence) or an index register (second
5978 occurrence). */
5979 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
5980 {
5981 if (i.base_reg && i.index_reg)
5982 {
5983 as_bad (_("Too many register references in memory operand.\n"));
5984 return 0;
5985 }
5986
5987 if (i.base_reg == NULL)
5988 i.base_reg = reg;
5989 else
5990 i.index_reg = reg;
5991
5992 i.types[this_operand] |= BaseIndex;
5993 }
5994
5995 /* Offset modifier. Add the register to the displacement string to be
5996 parsed as an immediate expression after we're done. */
5997 else if (intel_parser.op_modifier == OFFSET_FLAT)
5998 strcat (intel_parser.disp, reg->reg_name);
5999
6000 /* It's neither base nor index nor offset. */
6001 else
6002 {
6003 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
6004 i.op[this_operand].regs = reg;
6005 i.reg_operands++;
6006 }
6007
6008 /* Since registers are not part of the displacement string (except
6009 when we're parsing offset operands), we may need to remove any
6010 preceding '+' from the displacement string. */
6011 if (*intel_parser.disp != '\0'
6012 && intel_parser.op_modifier != OFFSET_FLAT)
6013 {
6014 char *s = intel_parser.disp;
6015 s += strlen (s) - 1;
6016 if (*s == '+')
6017 *s = '\0';
6018 }
6019
6020 return 1;
6021 }
6022
6023 /* e11 id */
6024 else if (cur_token.code == T_ID)
6025 {
6026 /* Add the identifier to the displacement string. */
6027 strcat (intel_parser.disp, cur_token.str);
6028 intel_match_token (T_ID);
6029
6030 /* The identifier represents a memory reference only if it's not
6031 preceded by an offset modifier. */
6032 if (intel_parser.op_modifier != OFFSET_FLAT)
6033 intel_parser.is_mem = 1;
6034
6035 return 1;
6036 }
6037
6038 /* e11 constant */
6039 else if (cur_token.code == T_CONST
6040 || cur_token.code == '-'
6041 || cur_token.code == '+')
6042 {
6043 char *save_str;
6044
6045 /* Allow constants that start with `+' or `-'. */
6046 if (cur_token.code == '-' || cur_token.code == '+')
6047 {
6048 strcat (intel_parser.disp, cur_token.str);
6049 intel_match_token (cur_token.code);
6050 if (cur_token.code != T_CONST)
6051 {
6052 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
6053 cur_token.str);
6054 return 0;
6055 }
6056 }
6057
6058 save_str = (char *) malloc (strlen (cur_token.str) + 1);
6059 if (save_str == NULL)
6060 abort ();
6061 strcpy (save_str, cur_token.str);
6062
6063 /* Get the next token to check for register scaling. */
6064 intel_match_token (cur_token.code);
6065
6066 /* Check if this constant is a scaling factor for an index register. */
6067 if (cur_token.code == '*')
6068 {
6069 if (intel_match_token ('*') && cur_token.code == T_REG)
6070 {
6071 if (!intel_parser.is_mem)
6072 {
6073 as_bad (_("Register scaling only allowed in memory operands."));
6074 return 0;
6075 }
6076
6077 /* The constant is followed by `* reg', so it must be
6078 a valid scale. */
6079 if (strchr ("01248", *save_str))
6080 {
6081 i.index_reg = cur_token.reg;
6082 i.types[this_operand] |= BaseIndex;
6083
6084 /* Set the scale after setting the register (otherwise,
6085 i386_scale will complain) */
6086 i386_scale (save_str);
6087 intel_match_token (T_REG);
6088
6089 /* Since registers are not part of the displacement
6090 string, we may need to remove any preceding '+' from
6091 the displacement string. */
6092 if (*intel_parser.disp != '\0')
6093 {
6094 char *s = intel_parser.disp;
6095 s += strlen (s) - 1;
6096 if (*s == '+')
6097 *s = '\0';
6098 }
6099
6100 free (save_str);
6101
6102 return 1;
6103 }
6104 else
6105 return 0;
6106 }
6107
6108 /* The constant was not used for register scaling. Since we have
6109 already consumed the token following `*' we now need to put it
6110 back in the stream. */
6111 else
6112 intel_putback_token ();
6113 }
6114
6115 /* Add the constant to the displacement string. */
6116 strcat (intel_parser.disp, save_str);
6117 free (save_str);
6118
6119 return 1;
6120 }
6121
6122 as_bad (_("Unrecognized token '%s'"), cur_token.str);
6123 return 0;
6124 }
6125
6126 /* Match the given token against cur_token. If they match, read the next
6127 token from the operand string. */
6128 static int
6129 intel_match_token (code)
6130 int code;
6131 {
6132 if (cur_token.code == code)
6133 {
6134 intel_get_token ();
6135 return 1;
6136 }
6137 else
6138 {
6139 as_bad (_("Unexpected token `%s'\n"), cur_token.str);
6140 return 0;
6141 }
6142 }
6143
6144 /* Read a new token from intel_parser.op_string and store it in cur_token. */
6145 static void
6146 intel_get_token ()
6147 {
6148 char *end_op;
6149 const reg_entry *reg;
6150 struct intel_token new_token;
6151
6152 new_token.code = T_NIL;
6153 new_token.reg = NULL;
6154 new_token.str = NULL;
6155
6156 /* Free the memory allocated to the previous token and move
6157 cur_token to prev_token. */
6158 if (prev_token.str)
6159 free (prev_token.str);
6160
6161 prev_token = cur_token;
6162
6163 /* Skip whitespace. */
6164 while (is_space_char (*intel_parser.op_string))
6165 intel_parser.op_string++;
6166
6167 /* Return an empty token if we find nothing else on the line. */
6168 if (*intel_parser.op_string == '\0')
6169 {
6170 cur_token = new_token;
6171 return;
6172 }
6173
6174 /* The new token cannot be larger than the remainder of the operand
6175 string. */
6176 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
6177 if (new_token.str == NULL)
6178 abort ();
6179 new_token.str[0] = '\0';
6180
6181 if (strchr ("0123456789", *intel_parser.op_string))
6182 {
6183 char *p = new_token.str;
6184 char *q = intel_parser.op_string;
6185 new_token.code = T_CONST;
6186
6187 /* Allow any kind of identifier char to encompass floating point and
6188 hexadecimal numbers. */
6189 while (is_identifier_char (*q))
6190 *p++ = *q++;
6191 *p = '\0';
6192
6193 /* Recognize special symbol names [0-9][bf]. */
6194 if (strlen (intel_parser.op_string) == 2
6195 && (intel_parser.op_string[1] == 'b'
6196 || intel_parser.op_string[1] == 'f'))
6197 new_token.code = T_ID;
6198 }
6199
6200 else if (strchr ("+-/*:[]()", *intel_parser.op_string))
6201 {
6202 new_token.code = *intel_parser.op_string;
6203 new_token.str[0] = *intel_parser.op_string;
6204 new_token.str[1] = '\0';
6205 }
6206
6207 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
6208 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
6209 {
6210 new_token.code = T_REG;
6211 new_token.reg = reg;
6212
6213 if (*intel_parser.op_string == REGISTER_PREFIX)
6214 {
6215 new_token.str[0] = REGISTER_PREFIX;
6216 new_token.str[1] = '\0';
6217 }
6218
6219 strcat (new_token.str, reg->reg_name);
6220 }
6221
6222 else if (is_identifier_char (*intel_parser.op_string))
6223 {
6224 char *p = new_token.str;
6225 char *q = intel_parser.op_string;
6226
6227 /* A '.' or '$' followed by an identifier char is an identifier.
6228 Otherwise, it's operator '.' followed by an expression. */
6229 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
6230 {
6231 new_token.code = *q;
6232 new_token.str[0] = *q;
6233 new_token.str[1] = '\0';
6234 }
6235 else
6236 {
6237 while (is_identifier_char (*q) || *q == '@')
6238 *p++ = *q++;
6239 *p = '\0';
6240
6241 if (strcasecmp (new_token.str, "BYTE") == 0)
6242 new_token.code = T_BYTE;
6243
6244 else if (strcasecmp (new_token.str, "WORD") == 0)
6245 new_token.code = T_WORD;
6246
6247 else if (strcasecmp (new_token.str, "DWORD") == 0)
6248 new_token.code = T_DWORD;
6249
6250 else if (strcasecmp (new_token.str, "QWORD") == 0)
6251 new_token.code = T_QWORD;
6252
6253 else if (strcasecmp (new_token.str, "XWORD") == 0)
6254 new_token.code = T_XWORD;
6255
6256 else if (strcasecmp (new_token.str, "PTR") == 0)
6257 new_token.code = T_PTR;
6258
6259 else if (strcasecmp (new_token.str, "SHORT") == 0)
6260 new_token.code = T_SHORT;
6261
6262 else if (strcasecmp (new_token.str, "OFFSET") == 0)
6263 {
6264 new_token.code = T_OFFSET;
6265
6266 /* ??? This is not mentioned in the MASM grammar but gcc
6267 makes use of it with -mintel-syntax. OFFSET may be
6268 followed by FLAT: */
6269 if (strncasecmp (q, " FLAT:", 6) == 0)
6270 strcat (new_token.str, " FLAT:");
6271 }
6272
6273 /* ??? This is not mentioned in the MASM grammar. */
6274 else if (strcasecmp (new_token.str, "FLAT") == 0)
6275 new_token.code = T_OFFSET;
6276
6277 else
6278 new_token.code = T_ID;
6279 }
6280 }
6281
6282 else
6283 as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
6284
6285 intel_parser.op_string += strlen (new_token.str);
6286 cur_token = new_token;
6287 }
6288
6289 /* Put cur_token back into the token stream and make cur_token point to
6290 prev_token. */
6291 static void
6292 intel_putback_token ()
6293 {
6294 intel_parser.op_string -= strlen (cur_token.str);
6295 free (cur_token.str);
6296 cur_token = prev_token;
6297
6298 /* Forget prev_token. */
6299 prev_token.code = T_NIL;
6300 prev_token.reg = NULL;
6301 prev_token.str = NULL;
6302 }
6303
6304 void
6305 tc_x86_cfi_init (void)
6306 {
6307 struct cfi_config cfi_config;
6308
6309 if (flag_code == CODE_64BIT)
6310 {
6311 cfi_config.addr_length = 8;
6312 cfi_config.eh_align = 8;
6313 cfi_config.code_align = 1;
6314 cfi_config.data_align = -8;
6315 cfi_config.ra_column = 0x10;
6316 cfi_config.reloc_type = BFD_RELOC_64;
6317 }
6318 else
6319 {
6320 cfi_config.addr_length = 4;
6321 cfi_config.eh_align = 4;
6322 cfi_config.code_align = 1;
6323 cfi_config.data_align = -4;
6324 cfi_config.ra_column = 0x08;
6325 cfi_config.reloc_type = BFD_RELOC_32;
6326 }
6327
6328 cfi_set_config (&cfi_config);
6329 }
6330
6331 unsigned long
6332 tc_x86_regname_to_dw2regnum (const char *regname)
6333 {
6334 unsigned int regnum;
6335 unsigned int regnames_count;
6336 char *regnames_32[] =
6337 {
6338 "eax", "ebx", "ecx", "edx",
6339 "edi", "esi", "ebp", "esp",
6340 "eip"
6341 };
6342 char *regnames_64[] =
6343 {
6344 "rax", "rbx", "rcx", "rdx",
6345 "rdi", "rsi", "rbp", "rsp",
6346 "r8", "r9", "r10", "r11",
6347 "r12", "r13", "r14", "r15",
6348 "rip"
6349 };
6350 char **regnames;
6351
6352 if (flag_code == CODE_64BIT)
6353 {
6354 regnames = regnames_64;
6355 regnames_count = sizeof (regnames_64);
6356 }
6357 else
6358 {
6359 regnames = regnames_32;
6360 regnames_count = sizeof (regnames_32);
6361 }
6362
6363 for (regnum = 0; regnum < regnames_count; regnum++)
6364 if (strcmp (regname, regnames[regnum]) == 0)
6365 return regnum;
6366
6367 as_bad (_("unknown register name '%s'"), regname);
6368 return -1;
6369 }
6370
6371 void
6372 tc_x86_frame_initial_instructions (void)
6373 {
6374 if (flag_code == CODE_64BIT)
6375 {
6376 cfi_add_insn (CFA_def_cfa, tc_x86_regname_to_dw2regnum ("rsp"), 8);
6377 cfi_add_insn (CFA_offset, tc_x86_regname_to_dw2regnum ("rip"), -8);
6378 }
6379 else
6380 {
6381 cfi_add_insn (CFA_def_cfa, tc_x86_regname_to_dw2regnum ("esp"), 4);
6382 cfi_add_insn (CFA_offset, tc_x86_regname_to_dw2regnum ("eip"), -4);
6383 }
6384 }