x86: fold redundant expressions in process_suffix()
[binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 #define XMMWORD_MNEM_SUFFIX 'x'
85 #define YMMWORD_MNEM_SUFFIX 'y'
86 #define ZMMWORD_MNEM_SUFFIX 'z'
87 /* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91 #define END_OF_INSN '\0'
92
93 /*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100 typedef struct
101 {
102 const insn_template *start;
103 const insn_template *end;
104 }
105 templates;
106
107 /* 386 operand encoding bytes: see 386 book for details of this. */
108 typedef struct
109 {
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113 }
114 modrm_byte;
115
116 /* x86-64 extension prefix. */
117 typedef int rex_byte;
118
119 /* 386 opcode byte to code indirect addressing. */
120 typedef struct
121 {
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125 }
126 sib_byte;
127
128 /* x86 arch names, types and features */
129 typedef struct
130 {
131 const char *name; /* arch name */
132 unsigned int len; /* arch string length */
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
135 unsigned int skip; /* show_arch should skip this. */
136 }
137 arch_entry;
138
139 /* Used to turn off indicated flags. */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 i386_cpu_flags flags; /* cpu feature flags */
145 }
146 noarch_entry;
147
148 static void update_code_flag (int, int);
149 static void set_code_flag (int);
150 static void set_16bit_gcc_code_flag (int);
151 static void set_intel_syntax (int);
152 static void set_intel_mnemonic (int);
153 static void set_allow_index_reg (int);
154 static void set_check (int);
155 static void set_cpu_arch (int);
156 #ifdef TE_PE
157 static void pe_directive_secrel (int);
158 #endif
159 static void signed_cons (int);
160 static char *output_invalid (int c);
161 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
162 const char *);
163 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
164 const char *);
165 static int i386_att_operand (char *);
166 static int i386_intel_operand (char *, int);
167 static int i386_intel_simplify (expressionS *);
168 static int i386_intel_parse_name (const char *, expressionS *);
169 static const reg_entry *parse_register (char *, char **);
170 static char *parse_insn (char *, char *);
171 static char *parse_operands (char *, const char *);
172 static void swap_operands (void);
173 static void swap_2_operands (int, int);
174 static void optimize_imm (void);
175 static void optimize_disp (void);
176 static const insn_template *match_template (char);
177 static int check_string (void);
178 static int process_suffix (void);
179 static int check_byte_reg (void);
180 static int check_long_reg (void);
181 static int check_qword_reg (void);
182 static int check_word_reg (void);
183 static int finalize_imm (void);
184 static int process_operands (void);
185 static const seg_entry *build_modrm_byte (void);
186 static void output_insn (void);
187 static void output_imm (fragS *, offsetT);
188 static void output_disp (fragS *, offsetT);
189 #ifndef I386COFF
190 static void s_bss (int);
191 #endif
192 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
193 static void handle_large_common (int small ATTRIBUTE_UNUSED);
194 #endif
195
196 static const char *default_arch = DEFAULT_ARCH;
197
198 /* This struct describes rounding control and SAE in the instruction. */
199 struct RC_Operation
200 {
201 enum rc_type
202 {
203 rne = 0,
204 rd,
205 ru,
206 rz,
207 saeonly
208 } type;
209 int operand;
210 };
211
212 static struct RC_Operation rc_op;
213
214 /* The struct describes masking, applied to OPERAND in the instruction.
215 MASK is a pointer to the corresponding mask register. ZEROING tells
216 whether merging or zeroing mask is used. */
217 struct Mask_Operation
218 {
219 const reg_entry *mask;
220 unsigned int zeroing;
221 /* The operand where this operation is associated. */
222 int operand;
223 };
224
225 static struct Mask_Operation mask_op;
226
227 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
228 broadcast factor. */
229 struct Broadcast_Operation
230 {
231 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
232 int type;
233
234 /* Index of broadcasted operand. */
235 int operand;
236 };
237
238 static struct Broadcast_Operation broadcast_op;
239
240 /* VEX prefix. */
241 typedef struct
242 {
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248 } vex_prefix;
249
250 /* 'md_assemble ()' gathers together information and puts it into a
251 i386_insn. */
252
253 union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
260 enum i386_error
261 {
262 operand_size_mismatch,
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
268 old_gcc_only,
269 unsupported_with_intel_mnemonic,
270 unsupported_syntax,
271 unsupported,
272 invalid_vsib_address,
273 invalid_vector_register_set,
274 unsupported_vector_index_register,
275 unsupported_broadcast,
276 broadcast_not_on_src_operand,
277 broadcast_needed,
278 unsupported_masking,
279 mask_not_on_destination,
280 no_default_mask,
281 unsupported_rc_sae,
282 rc_sae_operand_not_last_imm,
283 invalid_register_operand,
284 };
285
286 struct _i386_insn
287 {
288 /* TM holds the template for the insn were currently assembling. */
289 insn_template tm;
290
291 /* SUFFIX holds the instruction size suffix for byte, word, dword
292 or qword, if given. */
293 char suffix;
294
295 /* OPERANDS gives the number of given operands. */
296 unsigned int operands;
297
298 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
299 of given register, displacement, memory operands and immediate
300 operands. */
301 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
302
303 /* TYPES [i] is the type (see above #defines) which tells us how to
304 use OP[i] for the corresponding operand. */
305 i386_operand_type types[MAX_OPERANDS];
306
307 /* Displacement expression, immediate expression, or register for each
308 operand. */
309 union i386_op op[MAX_OPERANDS];
310
311 /* Flags for operands. */
312 unsigned int flags[MAX_OPERANDS];
313 #define Operand_PCrel 1
314
315 /* Relocation type for operand */
316 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
317
318 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
319 the base index byte below. */
320 const reg_entry *base_reg;
321 const reg_entry *index_reg;
322 unsigned int log2_scale_factor;
323
324 /* SEG gives the seg_entries of this insn. They are zero unless
325 explicit segment overrides are given. */
326 const seg_entry *seg[2];
327
328 /* Copied first memory operand string, for re-checking. */
329 char *memop1_string;
330
331 /* PREFIX holds all the given prefix opcodes (usually null).
332 PREFIXES is the number of prefix opcodes. */
333 unsigned int prefixes;
334 unsigned char prefix[MAX_PREFIXES];
335
336 /* RM and SIB are the modrm byte and the sib byte where the
337 addressing modes of this insn are encoded. */
338 modrm_byte rm;
339 rex_byte rex;
340 rex_byte vrex;
341 sib_byte sib;
342 vex_prefix vex;
343
344 /* Masking attributes. */
345 struct Mask_Operation *mask;
346
347 /* Rounding control and SAE attributes. */
348 struct RC_Operation *rounding;
349
350 /* Broadcasting attributes. */
351 struct Broadcast_Operation *broadcast;
352
353 /* Compressed disp8*N attribute. */
354 unsigned int memshift;
355
356 /* Prefer load or store in encoding. */
357 enum
358 {
359 dir_encoding_default = 0,
360 dir_encoding_load,
361 dir_encoding_store
362 } dir_encoding;
363
364 /* Prefer 8bit or 32bit displacement in encoding. */
365 enum
366 {
367 disp_encoding_default = 0,
368 disp_encoding_8bit,
369 disp_encoding_32bit
370 } disp_encoding;
371
372 /* Prefer the REX byte in encoding. */
373 bfd_boolean rex_encoding;
374
375 /* Disable instruction size optimization. */
376 bfd_boolean no_optimize;
377
378 /* How to encode vector instructions. */
379 enum
380 {
381 vex_encoding_default = 0,
382 vex_encoding_vex2,
383 vex_encoding_vex3,
384 vex_encoding_evex
385 } vec_encoding;
386
387 /* REP prefix. */
388 const char *rep_prefix;
389
390 /* HLE prefix. */
391 const char *hle_prefix;
392
393 /* Have BND prefix. */
394 const char *bnd_prefix;
395
396 /* Have NOTRACK prefix. */
397 const char *notrack_prefix;
398
399 /* Error message. */
400 enum i386_error error;
401 };
402
403 typedef struct _i386_insn i386_insn;
404
405 /* Link RC type with corresponding string, that'll be looked for in
406 asm. */
407 struct RC_name
408 {
409 enum rc_type type;
410 const char *name;
411 unsigned int len;
412 };
413
414 static const struct RC_name RC_NamesTable[] =
415 {
416 { rne, STRING_COMMA_LEN ("rn-sae") },
417 { rd, STRING_COMMA_LEN ("rd-sae") },
418 { ru, STRING_COMMA_LEN ("ru-sae") },
419 { rz, STRING_COMMA_LEN ("rz-sae") },
420 { saeonly, STRING_COMMA_LEN ("sae") },
421 };
422
423 /* List of chars besides those in app.c:symbol_chars that can start an
424 operand. Used to prevent the scrubber eating vital white-space. */
425 const char extra_symbol_chars[] = "*%-([{}"
426 #ifdef LEX_AT
427 "@"
428 #endif
429 #ifdef LEX_QM
430 "?"
431 #endif
432 ;
433
434 #if (defined (TE_I386AIX) \
435 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
436 && !defined (TE_GNU) \
437 && !defined (TE_LINUX) \
438 && !defined (TE_NACL) \
439 && !defined (TE_NETWARE) \
440 && !defined (TE_FreeBSD) \
441 && !defined (TE_DragonFly) \
442 && !defined (TE_NetBSD)))
443 /* This array holds the chars that always start a comment. If the
444 pre-processor is disabled, these aren't very useful. The option
445 --divide will remove '/' from this list. */
446 const char *i386_comment_chars = "#/";
447 #define SVR4_COMMENT_CHARS 1
448 #define PREFIX_SEPARATOR '\\'
449
450 #else
451 const char *i386_comment_chars = "#";
452 #define PREFIX_SEPARATOR '/'
453 #endif
454
455 /* This array holds the chars that only start a comment at the beginning of
456 a line. If the line seems to have the form '# 123 filename'
457 .line and .file directives will appear in the pre-processed output.
458 Note that input_file.c hand checks for '#' at the beginning of the
459 first line of the input file. This is because the compiler outputs
460 #NO_APP at the beginning of its output.
461 Also note that comments started like this one will always work if
462 '/' isn't otherwise defined. */
463 const char line_comment_chars[] = "#/";
464
465 const char line_separator_chars[] = ";";
466
467 /* Chars that can be used to separate mant from exp in floating point
468 nums. */
469 const char EXP_CHARS[] = "eE";
470
471 /* Chars that mean this number is a floating point constant
472 As in 0f12.456
473 or 0d1.2345e12. */
474 const char FLT_CHARS[] = "fFdDxX";
475
476 /* Tables for lexical analysis. */
477 static char mnemonic_chars[256];
478 static char register_chars[256];
479 static char operand_chars[256];
480 static char identifier_chars[256];
481 static char digit_chars[256];
482
483 /* Lexical macros. */
484 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
485 #define is_operand_char(x) (operand_chars[(unsigned char) x])
486 #define is_register_char(x) (register_chars[(unsigned char) x])
487 #define is_space_char(x) ((x) == ' ')
488 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
489 #define is_digit_char(x) (digit_chars[(unsigned char) x])
490
491 /* All non-digit non-letter characters that may occur in an operand. */
492 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
493
494 /* md_assemble() always leaves the strings it's passed unaltered. To
495 effect this we maintain a stack of saved characters that we've smashed
496 with '\0's (indicating end of strings for various sub-fields of the
497 assembler instruction). */
498 static char save_stack[32];
499 static char *save_stack_p;
500 #define END_STRING_AND_SAVE(s) \
501 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
502 #define RESTORE_END_STRING(s) \
503 do { *(s) = *--save_stack_p; } while (0)
504
505 /* The instruction we're assembling. */
506 static i386_insn i;
507
508 /* Possible templates for current insn. */
509 static const templates *current_templates;
510
511 /* Per instruction expressionS buffers: max displacements & immediates. */
512 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
513 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
514
515 /* Current operand we are working on. */
516 static int this_operand = -1;
517
518 /* We support four different modes. FLAG_CODE variable is used to distinguish
519 these. */
520
521 enum flag_code {
522 CODE_32BIT,
523 CODE_16BIT,
524 CODE_64BIT };
525
526 static enum flag_code flag_code;
527 static unsigned int object_64bit;
528 static unsigned int disallow_64bit_reloc;
529 static int use_rela_relocations = 0;
530
531 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
532 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
533 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
534
535 /* The ELF ABI to use. */
536 enum x86_elf_abi
537 {
538 I386_ABI,
539 X86_64_ABI,
540 X86_64_X32_ABI
541 };
542
543 static enum x86_elf_abi x86_elf_abi = I386_ABI;
544 #endif
545
546 #if defined (TE_PE) || defined (TE_PEP)
547 /* Use big object file format. */
548 static int use_big_obj = 0;
549 #endif
550
551 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
552 /* 1 if generating code for a shared library. */
553 static int shared = 0;
554 #endif
555
556 /* 1 for intel syntax,
557 0 if att syntax. */
558 static int intel_syntax = 0;
559
560 /* 1 for Intel64 ISA,
561 0 if AMD64 ISA. */
562 static int intel64;
563
564 /* 1 for intel mnemonic,
565 0 if att mnemonic. */
566 static int intel_mnemonic = !SYSV386_COMPAT;
567
568 /* 1 if support old (<= 2.8.1) versions of gcc. */
569 static int old_gcc = OLDGCC_COMPAT;
570
571 /* 1 if pseudo registers are permitted. */
572 static int allow_pseudo_reg = 0;
573
574 /* 1 if register prefix % not required. */
575 static int allow_naked_reg = 0;
576
577 /* 1 if the assembler should add BND prefix for all control-transferring
578 instructions supporting it, even if this prefix wasn't specified
579 explicitly. */
580 static int add_bnd_prefix = 0;
581
582 /* 1 if pseudo index register, eiz/riz, is allowed . */
583 static int allow_index_reg = 0;
584
585 /* 1 if the assembler should ignore LOCK prefix, even if it was
586 specified explicitly. */
587 static int omit_lock_prefix = 0;
588
589 /* 1 if the assembler should encode lfence, mfence, and sfence as
590 "lock addl $0, (%{re}sp)". */
591 static int avoid_fence = 0;
592
593 /* 1 if the assembler should generate relax relocations. */
594
595 static int generate_relax_relocations
596 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
597
598 static enum check_kind
599 {
600 check_none = 0,
601 check_warning,
602 check_error
603 }
604 sse_check, operand_check = check_warning;
605
606 /* Optimization:
607 1. Clear the REX_W bit with register operand if possible.
608 2. Above plus use 128bit vector instruction to clear the full vector
609 register.
610 */
611 static int optimize = 0;
612
613 /* Optimization:
614 1. Clear the REX_W bit with register operand if possible.
615 2. Above plus use 128bit vector instruction to clear the full vector
616 register.
617 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
618 "testb $imm7,%r8".
619 */
620 static int optimize_for_space = 0;
621
622 /* Register prefix used for error message. */
623 static const char *register_prefix = "%";
624
625 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
626 leave, push, and pop instructions so that gcc has the same stack
627 frame as in 32 bit mode. */
628 static char stackop_size = '\0';
629
630 /* Non-zero to optimize code alignment. */
631 int optimize_align_code = 1;
632
633 /* Non-zero to quieten some warnings. */
634 static int quiet_warnings = 0;
635
636 /* CPU name. */
637 static const char *cpu_arch_name = NULL;
638 static char *cpu_sub_arch_name = NULL;
639
640 /* CPU feature flags. */
641 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
642
643 /* If we have selected a cpu we are generating instructions for. */
644 static int cpu_arch_tune_set = 0;
645
646 /* Cpu we are generating instructions for. */
647 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
648
649 /* CPU feature flags of cpu we are generating instructions for. */
650 static i386_cpu_flags cpu_arch_tune_flags;
651
652 /* CPU instruction set architecture used. */
653 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
654
655 /* CPU feature flags of instruction set architecture used. */
656 i386_cpu_flags cpu_arch_isa_flags;
657
658 /* If set, conditional jumps are not automatically promoted to handle
659 larger than a byte offset. */
660 static unsigned int no_cond_jump_promotion = 0;
661
662 /* Encode SSE instructions with VEX prefix. */
663 static unsigned int sse2avx;
664
665 /* Encode scalar AVX instructions with specific vector length. */
666 static enum
667 {
668 vex128 = 0,
669 vex256
670 } avxscalar;
671
672 /* Encode scalar EVEX LIG instructions with specific vector length. */
673 static enum
674 {
675 evexl128 = 0,
676 evexl256,
677 evexl512
678 } evexlig;
679
680 /* Encode EVEX WIG instructions with specific evex.w. */
681 static enum
682 {
683 evexw0 = 0,
684 evexw1
685 } evexwig;
686
687 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
688 static enum rc_type evexrcig = rne;
689
690 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
691 static symbolS *GOT_symbol;
692
693 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
694 unsigned int x86_dwarf2_return_column;
695
696 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
697 int x86_cie_data_alignment;
698
699 /* Interface to relax_segment.
700 There are 3 major relax states for 386 jump insns because the
701 different types of jumps add different sizes to frags when we're
702 figuring out what sort of jump to choose to reach a given label. */
703
704 /* Types. */
705 #define UNCOND_JUMP 0
706 #define COND_JUMP 1
707 #define COND_JUMP86 2
708
709 /* Sizes. */
710 #define CODE16 1
711 #define SMALL 0
712 #define SMALL16 (SMALL | CODE16)
713 #define BIG 2
714 #define BIG16 (BIG | CODE16)
715
716 #ifndef INLINE
717 #ifdef __GNUC__
718 #define INLINE __inline__
719 #else
720 #define INLINE
721 #endif
722 #endif
723
724 #define ENCODE_RELAX_STATE(type, size) \
725 ((relax_substateT) (((type) << 2) | (size)))
726 #define TYPE_FROM_RELAX_STATE(s) \
727 ((s) >> 2)
728 #define DISP_SIZE_FROM_RELAX_STATE(s) \
729 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
730
731 /* This table is used by relax_frag to promote short jumps to long
732 ones where necessary. SMALL (short) jumps may be promoted to BIG
733 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
734 don't allow a short jump in a 32 bit code segment to be promoted to
735 a 16 bit offset jump because it's slower (requires data size
736 prefix), and doesn't work, unless the destination is in the bottom
737 64k of the code segment (The top 16 bits of eip are zeroed). */
738
739 const relax_typeS md_relax_table[] =
740 {
741 /* The fields are:
742 1) most positive reach of this state,
743 2) most negative reach of this state,
744 3) how many bytes this mode will have in the variable part of the frag
745 4) which index into the table to try if we can't fit into this one. */
746
747 /* UNCOND_JUMP states. */
748 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
749 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
750 /* dword jmp adds 4 bytes to frag:
751 0 extra opcode bytes, 4 displacement bytes. */
752 {0, 0, 4, 0},
753 /* word jmp adds 2 byte2 to frag:
754 0 extra opcode bytes, 2 displacement bytes. */
755 {0, 0, 2, 0},
756
757 /* COND_JUMP states. */
758 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
759 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
760 /* dword conditionals adds 5 bytes to frag:
761 1 extra opcode byte, 4 displacement bytes. */
762 {0, 0, 5, 0},
763 /* word conditionals add 3 bytes to frag:
764 1 extra opcode byte, 2 displacement bytes. */
765 {0, 0, 3, 0},
766
767 /* COND_JUMP86 states. */
768 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
769 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
770 /* dword conditionals adds 5 bytes to frag:
771 1 extra opcode byte, 4 displacement bytes. */
772 {0, 0, 5, 0},
773 /* word conditionals add 4 bytes to frag:
774 1 displacement byte and a 3 byte long branch insn. */
775 {0, 0, 4, 0}
776 };
777
778 static const arch_entry cpu_arch[] =
779 {
780 /* Do not replace the first two entries - i386_target_format()
781 relies on them being there in this order. */
782 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
783 CPU_GENERIC32_FLAGS, 0 },
784 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
785 CPU_GENERIC64_FLAGS, 0 },
786 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
787 CPU_NONE_FLAGS, 0 },
788 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
789 CPU_I186_FLAGS, 0 },
790 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
791 CPU_I286_FLAGS, 0 },
792 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
793 CPU_I386_FLAGS, 0 },
794 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
795 CPU_I486_FLAGS, 0 },
796 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
797 CPU_I586_FLAGS, 0 },
798 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
799 CPU_I686_FLAGS, 0 },
800 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
801 CPU_I586_FLAGS, 0 },
802 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
803 CPU_PENTIUMPRO_FLAGS, 0 },
804 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
805 CPU_P2_FLAGS, 0 },
806 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
807 CPU_P3_FLAGS, 0 },
808 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
809 CPU_P4_FLAGS, 0 },
810 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
811 CPU_CORE_FLAGS, 0 },
812 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
813 CPU_NOCONA_FLAGS, 0 },
814 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
815 CPU_CORE_FLAGS, 1 },
816 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
817 CPU_CORE_FLAGS, 0 },
818 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
819 CPU_CORE2_FLAGS, 1 },
820 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
821 CPU_CORE2_FLAGS, 0 },
822 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
823 CPU_COREI7_FLAGS, 0 },
824 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
825 CPU_L1OM_FLAGS, 0 },
826 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
827 CPU_K1OM_FLAGS, 0 },
828 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
829 CPU_IAMCU_FLAGS, 0 },
830 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
831 CPU_K6_FLAGS, 0 },
832 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
833 CPU_K6_2_FLAGS, 0 },
834 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
835 CPU_ATHLON_FLAGS, 0 },
836 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
837 CPU_K8_FLAGS, 1 },
838 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
839 CPU_K8_FLAGS, 0 },
840 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
841 CPU_K8_FLAGS, 0 },
842 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
843 CPU_AMDFAM10_FLAGS, 0 },
844 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
845 CPU_BDVER1_FLAGS, 0 },
846 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
847 CPU_BDVER2_FLAGS, 0 },
848 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
849 CPU_BDVER3_FLAGS, 0 },
850 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
851 CPU_BDVER4_FLAGS, 0 },
852 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
853 CPU_ZNVER1_FLAGS, 0 },
854 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
855 CPU_BTVER1_FLAGS, 0 },
856 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
857 CPU_BTVER2_FLAGS, 0 },
858 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
859 CPU_8087_FLAGS, 0 },
860 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
861 CPU_287_FLAGS, 0 },
862 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
863 CPU_387_FLAGS, 0 },
864 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
865 CPU_687_FLAGS, 0 },
866 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
867 CPU_MMX_FLAGS, 0 },
868 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
869 CPU_SSE_FLAGS, 0 },
870 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
871 CPU_SSE2_FLAGS, 0 },
872 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
873 CPU_SSE3_FLAGS, 0 },
874 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
875 CPU_SSSE3_FLAGS, 0 },
876 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
877 CPU_SSE4_1_FLAGS, 0 },
878 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
879 CPU_SSE4_2_FLAGS, 0 },
880 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
881 CPU_SSE4_2_FLAGS, 0 },
882 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
883 CPU_AVX_FLAGS, 0 },
884 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
885 CPU_AVX2_FLAGS, 0 },
886 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
887 CPU_AVX512F_FLAGS, 0 },
888 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
889 CPU_AVX512CD_FLAGS, 0 },
890 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
891 CPU_AVX512ER_FLAGS, 0 },
892 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
893 CPU_AVX512PF_FLAGS, 0 },
894 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
895 CPU_AVX512DQ_FLAGS, 0 },
896 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
897 CPU_AVX512BW_FLAGS, 0 },
898 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
899 CPU_AVX512VL_FLAGS, 0 },
900 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
901 CPU_VMX_FLAGS, 0 },
902 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
903 CPU_VMFUNC_FLAGS, 0 },
904 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
905 CPU_SMX_FLAGS, 0 },
906 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
907 CPU_XSAVE_FLAGS, 0 },
908 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
909 CPU_XSAVEOPT_FLAGS, 0 },
910 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
911 CPU_XSAVEC_FLAGS, 0 },
912 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
913 CPU_XSAVES_FLAGS, 0 },
914 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
915 CPU_AES_FLAGS, 0 },
916 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
917 CPU_PCLMUL_FLAGS, 0 },
918 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
919 CPU_PCLMUL_FLAGS, 1 },
920 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
921 CPU_FSGSBASE_FLAGS, 0 },
922 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
923 CPU_RDRND_FLAGS, 0 },
924 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
925 CPU_F16C_FLAGS, 0 },
926 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
927 CPU_BMI2_FLAGS, 0 },
928 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
929 CPU_FMA_FLAGS, 0 },
930 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
931 CPU_FMA4_FLAGS, 0 },
932 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
933 CPU_XOP_FLAGS, 0 },
934 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
935 CPU_LWP_FLAGS, 0 },
936 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
937 CPU_MOVBE_FLAGS, 0 },
938 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
939 CPU_CX16_FLAGS, 0 },
940 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
941 CPU_EPT_FLAGS, 0 },
942 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
943 CPU_LZCNT_FLAGS, 0 },
944 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
945 CPU_HLE_FLAGS, 0 },
946 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
947 CPU_RTM_FLAGS, 0 },
948 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
949 CPU_INVPCID_FLAGS, 0 },
950 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
951 CPU_CLFLUSH_FLAGS, 0 },
952 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
953 CPU_NOP_FLAGS, 0 },
954 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
955 CPU_SYSCALL_FLAGS, 0 },
956 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
957 CPU_RDTSCP_FLAGS, 0 },
958 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
959 CPU_3DNOW_FLAGS, 0 },
960 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
961 CPU_3DNOWA_FLAGS, 0 },
962 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
963 CPU_PADLOCK_FLAGS, 0 },
964 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
965 CPU_SVME_FLAGS, 1 },
966 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
967 CPU_SVME_FLAGS, 0 },
968 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
969 CPU_SSE4A_FLAGS, 0 },
970 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
971 CPU_ABM_FLAGS, 0 },
972 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
973 CPU_BMI_FLAGS, 0 },
974 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
975 CPU_TBM_FLAGS, 0 },
976 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
977 CPU_ADX_FLAGS, 0 },
978 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
979 CPU_RDSEED_FLAGS, 0 },
980 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
981 CPU_PRFCHW_FLAGS, 0 },
982 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
983 CPU_SMAP_FLAGS, 0 },
984 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
985 CPU_MPX_FLAGS, 0 },
986 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
987 CPU_SHA_FLAGS, 0 },
988 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
989 CPU_CLFLUSHOPT_FLAGS, 0 },
990 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
991 CPU_PREFETCHWT1_FLAGS, 0 },
992 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
993 CPU_SE1_FLAGS, 0 },
994 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
995 CPU_CLWB_FLAGS, 0 },
996 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
997 CPU_AVX512IFMA_FLAGS, 0 },
998 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
999 CPU_AVX512VBMI_FLAGS, 0 },
1000 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1001 CPU_AVX512_4FMAPS_FLAGS, 0 },
1002 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1003 CPU_AVX512_4VNNIW_FLAGS, 0 },
1004 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1005 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1006 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1007 CPU_AVX512_VBMI2_FLAGS, 0 },
1008 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1009 CPU_AVX512_VNNI_FLAGS, 0 },
1010 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1011 CPU_AVX512_BITALG_FLAGS, 0 },
1012 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1013 CPU_CLZERO_FLAGS, 0 },
1014 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1015 CPU_MWAITX_FLAGS, 0 },
1016 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1017 CPU_OSPKE_FLAGS, 0 },
1018 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1019 CPU_RDPID_FLAGS, 0 },
1020 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1021 CPU_PTWRITE_FLAGS, 0 },
1022 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1023 CPU_IBT_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1025 CPU_SHSTK_FLAGS, 0 },
1026 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1027 CPU_GFNI_FLAGS, 0 },
1028 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1029 CPU_VAES_FLAGS, 0 },
1030 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1031 CPU_VPCLMULQDQ_FLAGS, 0 },
1032 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1033 CPU_WBNOINVD_FLAGS, 0 },
1034 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1035 CPU_PCONFIG_FLAGS, 0 },
1036 };
1037
1038 static const noarch_entry cpu_noarch[] =
1039 {
1040 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1041 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1042 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1043 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1044 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1045 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1046 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1047 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1048 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1049 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1050 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1051 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1052 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1053 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1054 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1055 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1056 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1057 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1058 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1059 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1060 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1061 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1062 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1063 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1064 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1065 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1066 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1067 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1068 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1069 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1070 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1071 };
1072
1073 #ifdef I386COFF
1074 /* Like s_lcomm_internal in gas/read.c but the alignment string
1075 is allowed to be optional. */
1076
1077 static symbolS *
1078 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1079 {
1080 addressT align = 0;
1081
1082 SKIP_WHITESPACE ();
1083
1084 if (needs_align
1085 && *input_line_pointer == ',')
1086 {
1087 align = parse_align (needs_align - 1);
1088
1089 if (align == (addressT) -1)
1090 return NULL;
1091 }
1092 else
1093 {
1094 if (size >= 8)
1095 align = 3;
1096 else if (size >= 4)
1097 align = 2;
1098 else if (size >= 2)
1099 align = 1;
1100 else
1101 align = 0;
1102 }
1103
1104 bss_alloc (symbolP, size, align);
1105 return symbolP;
1106 }
1107
1108 static void
1109 pe_lcomm (int needs_align)
1110 {
1111 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1112 }
1113 #endif
1114
1115 const pseudo_typeS md_pseudo_table[] =
1116 {
1117 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1118 {"align", s_align_bytes, 0},
1119 #else
1120 {"align", s_align_ptwo, 0},
1121 #endif
1122 {"arch", set_cpu_arch, 0},
1123 #ifndef I386COFF
1124 {"bss", s_bss, 0},
1125 #else
1126 {"lcomm", pe_lcomm, 1},
1127 #endif
1128 {"ffloat", float_cons, 'f'},
1129 {"dfloat", float_cons, 'd'},
1130 {"tfloat", float_cons, 'x'},
1131 {"value", cons, 2},
1132 {"slong", signed_cons, 4},
1133 {"noopt", s_ignore, 0},
1134 {"optim", s_ignore, 0},
1135 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1136 {"code16", set_code_flag, CODE_16BIT},
1137 {"code32", set_code_flag, CODE_32BIT},
1138 #ifdef BFD64
1139 {"code64", set_code_flag, CODE_64BIT},
1140 #endif
1141 {"intel_syntax", set_intel_syntax, 1},
1142 {"att_syntax", set_intel_syntax, 0},
1143 {"intel_mnemonic", set_intel_mnemonic, 1},
1144 {"att_mnemonic", set_intel_mnemonic, 0},
1145 {"allow_index_reg", set_allow_index_reg, 1},
1146 {"disallow_index_reg", set_allow_index_reg, 0},
1147 {"sse_check", set_check, 0},
1148 {"operand_check", set_check, 1},
1149 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1150 {"largecomm", handle_large_common, 0},
1151 #else
1152 {"file", dwarf2_directive_file, 0},
1153 {"loc", dwarf2_directive_loc, 0},
1154 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1155 #endif
1156 #ifdef TE_PE
1157 {"secrel32", pe_directive_secrel, 0},
1158 #endif
1159 {0, 0, 0}
1160 };
1161
1162 /* For interface with expression (). */
1163 extern char *input_line_pointer;
1164
1165 /* Hash table for instruction mnemonic lookup. */
1166 static struct hash_control *op_hash;
1167
1168 /* Hash table for register lookup. */
1169 static struct hash_control *reg_hash;
1170 \f
1171 /* Various efficient no-op patterns for aligning code labels.
1172 Note: Don't try to assemble the instructions in the comments.
1173 0L and 0w are not legal. */
1174 static const unsigned char f32_1[] =
1175 {0x90}; /* nop */
1176 static const unsigned char f32_2[] =
1177 {0x66,0x90}; /* xchg %ax,%ax */
1178 static const unsigned char f32_3[] =
1179 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1180 static const unsigned char f32_4[] =
1181 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1182 static const unsigned char f32_6[] =
1183 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1184 static const unsigned char f32_7[] =
1185 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1186 static const unsigned char f16_3[] =
1187 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1188 static const unsigned char f16_4[] =
1189 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1190 static const unsigned char jump_disp8[] =
1191 {0xeb}; /* jmp disp8 */
1192 static const unsigned char jump32_disp32[] =
1193 {0xe9}; /* jmp disp32 */
1194 static const unsigned char jump16_disp32[] =
1195 {0x66,0xe9}; /* jmp disp32 */
1196 /* 32-bit NOPs patterns. */
1197 static const unsigned char *const f32_patt[] = {
1198 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1199 };
1200 /* 16-bit NOPs patterns. */
1201 static const unsigned char *const f16_patt[] = {
1202 f32_1, f32_2, f16_3, f16_4
1203 };
1204 /* nopl (%[re]ax) */
1205 static const unsigned char alt_3[] =
1206 {0x0f,0x1f,0x00};
1207 /* nopl 0(%[re]ax) */
1208 static const unsigned char alt_4[] =
1209 {0x0f,0x1f,0x40,0x00};
1210 /* nopl 0(%[re]ax,%[re]ax,1) */
1211 static const unsigned char alt_5[] =
1212 {0x0f,0x1f,0x44,0x00,0x00};
1213 /* nopw 0(%[re]ax,%[re]ax,1) */
1214 static const unsigned char alt_6[] =
1215 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1216 /* nopl 0L(%[re]ax) */
1217 static const unsigned char alt_7[] =
1218 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1219 /* nopl 0L(%[re]ax,%[re]ax,1) */
1220 static const unsigned char alt_8[] =
1221 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1222 /* nopw 0L(%[re]ax,%[re]ax,1) */
1223 static const unsigned char alt_9[] =
1224 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1225 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1226 static const unsigned char alt_10[] =
1227 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1228 /* data16 nopw %cs:0L(%eax,%eax,1) */
1229 static const unsigned char alt_11[] =
1230 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1231 /* 32-bit and 64-bit NOPs patterns. */
1232 static const unsigned char *const alt_patt[] = {
1233 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1234 alt_9, alt_10, alt_11
1235 };
1236
1237 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1238 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1239
1240 static void
1241 i386_output_nops (char *where, const unsigned char *const *patt,
1242 int count, int max_single_nop_size)
1243
1244 {
1245 /* Place the longer NOP first. */
1246 int last;
1247 int offset;
1248 const unsigned char *nops = patt[max_single_nop_size - 1];
1249
1250 /* Use the smaller one if the requsted one isn't available. */
1251 if (nops == NULL)
1252 {
1253 max_single_nop_size--;
1254 nops = patt[max_single_nop_size - 1];
1255 }
1256
1257 last = count % max_single_nop_size;
1258
1259 count -= last;
1260 for (offset = 0; offset < count; offset += max_single_nop_size)
1261 memcpy (where + offset, nops, max_single_nop_size);
1262
1263 if (last)
1264 {
1265 nops = patt[last - 1];
1266 if (nops == NULL)
1267 {
1268 /* Use the smaller one plus one-byte NOP if the needed one
1269 isn't available. */
1270 last--;
1271 nops = patt[last - 1];
1272 memcpy (where + offset, nops, last);
1273 where[offset + last] = *patt[0];
1274 }
1275 else
1276 memcpy (where + offset, nops, last);
1277 }
1278 }
1279
1280 static INLINE int
1281 fits_in_imm7 (offsetT num)
1282 {
1283 return (num & 0x7f) == num;
1284 }
1285
1286 static INLINE int
1287 fits_in_imm31 (offsetT num)
1288 {
1289 return (num & 0x7fffffff) == num;
1290 }
1291
1292 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1293 single NOP instruction LIMIT. */
1294
1295 void
1296 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1297 {
1298 const unsigned char *const *patt = NULL;
1299 int max_single_nop_size;
1300 /* Maximum number of NOPs before switching to jump over NOPs. */
1301 int max_number_of_nops;
1302
1303 switch (fragP->fr_type)
1304 {
1305 case rs_fill_nop:
1306 case rs_align_code:
1307 break;
1308 default:
1309 return;
1310 }
1311
1312 /* We need to decide which NOP sequence to use for 32bit and
1313 64bit. When -mtune= is used:
1314
1315 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1316 PROCESSOR_GENERIC32, f32_patt will be used.
1317 2. For the rest, alt_patt will be used.
1318
1319 When -mtune= isn't used, alt_patt will be used if
1320 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1321 be used.
1322
1323 When -march= or .arch is used, we can't use anything beyond
1324 cpu_arch_isa_flags. */
1325
1326 if (flag_code == CODE_16BIT)
1327 {
1328 patt = f16_patt;
1329 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1330 /* Limit number of NOPs to 2 in 16-bit mode. */
1331 max_number_of_nops = 2;
1332 }
1333 else
1334 {
1335 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1336 {
1337 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1338 switch (cpu_arch_tune)
1339 {
1340 case PROCESSOR_UNKNOWN:
1341 /* We use cpu_arch_isa_flags to check if we SHOULD
1342 optimize with nops. */
1343 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1344 patt = alt_patt;
1345 else
1346 patt = f32_patt;
1347 break;
1348 case PROCESSOR_PENTIUM4:
1349 case PROCESSOR_NOCONA:
1350 case PROCESSOR_CORE:
1351 case PROCESSOR_CORE2:
1352 case PROCESSOR_COREI7:
1353 case PROCESSOR_L1OM:
1354 case PROCESSOR_K1OM:
1355 case PROCESSOR_GENERIC64:
1356 case PROCESSOR_K6:
1357 case PROCESSOR_ATHLON:
1358 case PROCESSOR_K8:
1359 case PROCESSOR_AMDFAM10:
1360 case PROCESSOR_BD:
1361 case PROCESSOR_ZNVER:
1362 case PROCESSOR_BT:
1363 patt = alt_patt;
1364 break;
1365 case PROCESSOR_I386:
1366 case PROCESSOR_I486:
1367 case PROCESSOR_PENTIUM:
1368 case PROCESSOR_PENTIUMPRO:
1369 case PROCESSOR_IAMCU:
1370 case PROCESSOR_GENERIC32:
1371 patt = f32_patt;
1372 break;
1373 }
1374 }
1375 else
1376 {
1377 switch (fragP->tc_frag_data.tune)
1378 {
1379 case PROCESSOR_UNKNOWN:
1380 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1381 PROCESSOR_UNKNOWN. */
1382 abort ();
1383 break;
1384
1385 case PROCESSOR_I386:
1386 case PROCESSOR_I486:
1387 case PROCESSOR_PENTIUM:
1388 case PROCESSOR_IAMCU:
1389 case PROCESSOR_K6:
1390 case PROCESSOR_ATHLON:
1391 case PROCESSOR_K8:
1392 case PROCESSOR_AMDFAM10:
1393 case PROCESSOR_BD:
1394 case PROCESSOR_ZNVER:
1395 case PROCESSOR_BT:
1396 case PROCESSOR_GENERIC32:
1397 /* We use cpu_arch_isa_flags to check if we CAN optimize
1398 with nops. */
1399 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1400 patt = alt_patt;
1401 else
1402 patt = f32_patt;
1403 break;
1404 case PROCESSOR_PENTIUMPRO:
1405 case PROCESSOR_PENTIUM4:
1406 case PROCESSOR_NOCONA:
1407 case PROCESSOR_CORE:
1408 case PROCESSOR_CORE2:
1409 case PROCESSOR_COREI7:
1410 case PROCESSOR_L1OM:
1411 case PROCESSOR_K1OM:
1412 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1413 patt = alt_patt;
1414 else
1415 patt = f32_patt;
1416 break;
1417 case PROCESSOR_GENERIC64:
1418 patt = alt_patt;
1419 break;
1420 }
1421 }
1422
1423 if (patt == f32_patt)
1424 {
1425 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1426 /* Limit number of NOPs to 2 for older processors. */
1427 max_number_of_nops = 2;
1428 }
1429 else
1430 {
1431 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1432 /* Limit number of NOPs to 7 for newer processors. */
1433 max_number_of_nops = 7;
1434 }
1435 }
1436
1437 if (limit == 0)
1438 limit = max_single_nop_size;
1439
1440 if (fragP->fr_type == rs_fill_nop)
1441 {
1442 /* Output NOPs for .nop directive. */
1443 if (limit > max_single_nop_size)
1444 {
1445 as_bad_where (fragP->fr_file, fragP->fr_line,
1446 _("invalid single nop size: %d "
1447 "(expect within [0, %d])"),
1448 limit, max_single_nop_size);
1449 return;
1450 }
1451 }
1452 else
1453 fragP->fr_var = count;
1454
1455 if ((count / max_single_nop_size) > max_number_of_nops)
1456 {
1457 /* Generate jump over NOPs. */
1458 offsetT disp = count - 2;
1459 if (fits_in_imm7 (disp))
1460 {
1461 /* Use "jmp disp8" if possible. */
1462 count = disp;
1463 where[0] = jump_disp8[0];
1464 where[1] = count;
1465 where += 2;
1466 }
1467 else
1468 {
1469 unsigned int size_of_jump;
1470
1471 if (flag_code == CODE_16BIT)
1472 {
1473 where[0] = jump16_disp32[0];
1474 where[1] = jump16_disp32[1];
1475 size_of_jump = 2;
1476 }
1477 else
1478 {
1479 where[0] = jump32_disp32[0];
1480 size_of_jump = 1;
1481 }
1482
1483 count -= size_of_jump + 4;
1484 if (!fits_in_imm31 (count))
1485 {
1486 as_bad_where (fragP->fr_file, fragP->fr_line,
1487 _("jump over nop padding out of range"));
1488 return;
1489 }
1490
1491 md_number_to_chars (where + size_of_jump, count, 4);
1492 where += size_of_jump + 4;
1493 }
1494 }
1495
1496 /* Generate multiple NOPs. */
1497 i386_output_nops (where, patt, count, limit);
1498 }
1499
1500 static INLINE int
1501 operand_type_all_zero (const union i386_operand_type *x)
1502 {
1503 switch (ARRAY_SIZE(x->array))
1504 {
1505 case 3:
1506 if (x->array[2])
1507 return 0;
1508 /* Fall through. */
1509 case 2:
1510 if (x->array[1])
1511 return 0;
1512 /* Fall through. */
1513 case 1:
1514 return !x->array[0];
1515 default:
1516 abort ();
1517 }
1518 }
1519
1520 static INLINE void
1521 operand_type_set (union i386_operand_type *x, unsigned int v)
1522 {
1523 switch (ARRAY_SIZE(x->array))
1524 {
1525 case 3:
1526 x->array[2] = v;
1527 /* Fall through. */
1528 case 2:
1529 x->array[1] = v;
1530 /* Fall through. */
1531 case 1:
1532 x->array[0] = v;
1533 /* Fall through. */
1534 break;
1535 default:
1536 abort ();
1537 }
1538 }
1539
1540 static INLINE int
1541 operand_type_equal (const union i386_operand_type *x,
1542 const union i386_operand_type *y)
1543 {
1544 switch (ARRAY_SIZE(x->array))
1545 {
1546 case 3:
1547 if (x->array[2] != y->array[2])
1548 return 0;
1549 /* Fall through. */
1550 case 2:
1551 if (x->array[1] != y->array[1])
1552 return 0;
1553 /* Fall through. */
1554 case 1:
1555 return x->array[0] == y->array[0];
1556 break;
1557 default:
1558 abort ();
1559 }
1560 }
1561
1562 static INLINE int
1563 cpu_flags_all_zero (const union i386_cpu_flags *x)
1564 {
1565 switch (ARRAY_SIZE(x->array))
1566 {
1567 case 4:
1568 if (x->array[3])
1569 return 0;
1570 /* Fall through. */
1571 case 3:
1572 if (x->array[2])
1573 return 0;
1574 /* Fall through. */
1575 case 2:
1576 if (x->array[1])
1577 return 0;
1578 /* Fall through. */
1579 case 1:
1580 return !x->array[0];
1581 default:
1582 abort ();
1583 }
1584 }
1585
1586 static INLINE int
1587 cpu_flags_equal (const union i386_cpu_flags *x,
1588 const union i386_cpu_flags *y)
1589 {
1590 switch (ARRAY_SIZE(x->array))
1591 {
1592 case 4:
1593 if (x->array[3] != y->array[3])
1594 return 0;
1595 /* Fall through. */
1596 case 3:
1597 if (x->array[2] != y->array[2])
1598 return 0;
1599 /* Fall through. */
1600 case 2:
1601 if (x->array[1] != y->array[1])
1602 return 0;
1603 /* Fall through. */
1604 case 1:
1605 return x->array[0] == y->array[0];
1606 break;
1607 default:
1608 abort ();
1609 }
1610 }
1611
1612 static INLINE int
1613 cpu_flags_check_cpu64 (i386_cpu_flags f)
1614 {
1615 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1616 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1617 }
1618
1619 static INLINE i386_cpu_flags
1620 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1621 {
1622 switch (ARRAY_SIZE (x.array))
1623 {
1624 case 4:
1625 x.array [3] &= y.array [3];
1626 /* Fall through. */
1627 case 3:
1628 x.array [2] &= y.array [2];
1629 /* Fall through. */
1630 case 2:
1631 x.array [1] &= y.array [1];
1632 /* Fall through. */
1633 case 1:
1634 x.array [0] &= y.array [0];
1635 break;
1636 default:
1637 abort ();
1638 }
1639 return x;
1640 }
1641
1642 static INLINE i386_cpu_flags
1643 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1644 {
1645 switch (ARRAY_SIZE (x.array))
1646 {
1647 case 4:
1648 x.array [3] |= y.array [3];
1649 /* Fall through. */
1650 case 3:
1651 x.array [2] |= y.array [2];
1652 /* Fall through. */
1653 case 2:
1654 x.array [1] |= y.array [1];
1655 /* Fall through. */
1656 case 1:
1657 x.array [0] |= y.array [0];
1658 break;
1659 default:
1660 abort ();
1661 }
1662 return x;
1663 }
1664
1665 static INLINE i386_cpu_flags
1666 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1667 {
1668 switch (ARRAY_SIZE (x.array))
1669 {
1670 case 4:
1671 x.array [3] &= ~y.array [3];
1672 /* Fall through. */
1673 case 3:
1674 x.array [2] &= ~y.array [2];
1675 /* Fall through. */
1676 case 2:
1677 x.array [1] &= ~y.array [1];
1678 /* Fall through. */
1679 case 1:
1680 x.array [0] &= ~y.array [0];
1681 break;
1682 default:
1683 abort ();
1684 }
1685 return x;
1686 }
1687
1688 #define CPU_FLAGS_ARCH_MATCH 0x1
1689 #define CPU_FLAGS_64BIT_MATCH 0x2
1690
1691 #define CPU_FLAGS_PERFECT_MATCH \
1692 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1693
1694 /* Return CPU flags match bits. */
1695
1696 static int
1697 cpu_flags_match (const insn_template *t)
1698 {
1699 i386_cpu_flags x = t->cpu_flags;
1700 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1701
1702 x.bitfield.cpu64 = 0;
1703 x.bitfield.cpuno64 = 0;
1704
1705 if (cpu_flags_all_zero (&x))
1706 {
1707 /* This instruction is available on all archs. */
1708 match |= CPU_FLAGS_ARCH_MATCH;
1709 }
1710 else
1711 {
1712 /* This instruction is available only on some archs. */
1713 i386_cpu_flags cpu = cpu_arch_flags;
1714
1715 /* AVX512VL is no standalone feature - match it and then strip it. */
1716 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1717 return match;
1718 x.bitfield.cpuavx512vl = 0;
1719
1720 cpu = cpu_flags_and (x, cpu);
1721 if (!cpu_flags_all_zero (&cpu))
1722 {
1723 if (x.bitfield.cpuavx)
1724 {
1725 /* We need to check a few extra flags with AVX. */
1726 if (cpu.bitfield.cpuavx
1727 && (!t->opcode_modifier.sse2avx || sse2avx)
1728 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1729 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1730 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1731 match |= CPU_FLAGS_ARCH_MATCH;
1732 }
1733 else if (x.bitfield.cpuavx512f)
1734 {
1735 /* We need to check a few extra flags with AVX512F. */
1736 if (cpu.bitfield.cpuavx512f
1737 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1738 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1739 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1740 match |= CPU_FLAGS_ARCH_MATCH;
1741 }
1742 else
1743 match |= CPU_FLAGS_ARCH_MATCH;
1744 }
1745 }
1746 return match;
1747 }
1748
1749 static INLINE i386_operand_type
1750 operand_type_and (i386_operand_type x, i386_operand_type y)
1751 {
1752 switch (ARRAY_SIZE (x.array))
1753 {
1754 case 3:
1755 x.array [2] &= y.array [2];
1756 /* Fall through. */
1757 case 2:
1758 x.array [1] &= y.array [1];
1759 /* Fall through. */
1760 case 1:
1761 x.array [0] &= y.array [0];
1762 break;
1763 default:
1764 abort ();
1765 }
1766 return x;
1767 }
1768
1769 static INLINE i386_operand_type
1770 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1771 {
1772 switch (ARRAY_SIZE (x.array))
1773 {
1774 case 3:
1775 x.array [2] &= ~y.array [2];
1776 /* Fall through. */
1777 case 2:
1778 x.array [1] &= ~y.array [1];
1779 /* Fall through. */
1780 case 1:
1781 x.array [0] &= ~y.array [0];
1782 break;
1783 default:
1784 abort ();
1785 }
1786 return x;
1787 }
1788
1789 static INLINE i386_operand_type
1790 operand_type_or (i386_operand_type x, i386_operand_type y)
1791 {
1792 switch (ARRAY_SIZE (x.array))
1793 {
1794 case 3:
1795 x.array [2] |= y.array [2];
1796 /* Fall through. */
1797 case 2:
1798 x.array [1] |= y.array [1];
1799 /* Fall through. */
1800 case 1:
1801 x.array [0] |= y.array [0];
1802 break;
1803 default:
1804 abort ();
1805 }
1806 return x;
1807 }
1808
1809 static INLINE i386_operand_type
1810 operand_type_xor (i386_operand_type x, i386_operand_type y)
1811 {
1812 switch (ARRAY_SIZE (x.array))
1813 {
1814 case 3:
1815 x.array [2] ^= y.array [2];
1816 /* Fall through. */
1817 case 2:
1818 x.array [1] ^= y.array [1];
1819 /* Fall through. */
1820 case 1:
1821 x.array [0] ^= y.array [0];
1822 break;
1823 default:
1824 abort ();
1825 }
1826 return x;
1827 }
1828
1829 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1830 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1831 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1832 static const i386_operand_type inoutportreg
1833 = OPERAND_TYPE_INOUTPORTREG;
1834 static const i386_operand_type reg16_inoutportreg
1835 = OPERAND_TYPE_REG16_INOUTPORTREG;
1836 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1837 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1838 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1839 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1840 static const i386_operand_type anydisp
1841 = OPERAND_TYPE_ANYDISP;
1842 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1843 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1844 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1845 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1846 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1847 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1848 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1849 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1850 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1851 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1852 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1853 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1854
1855 enum operand_type
1856 {
1857 reg,
1858 imm,
1859 disp,
1860 anymem
1861 };
1862
1863 static INLINE int
1864 operand_type_check (i386_operand_type t, enum operand_type c)
1865 {
1866 switch (c)
1867 {
1868 case reg:
1869 return t.bitfield.reg;
1870
1871 case imm:
1872 return (t.bitfield.imm8
1873 || t.bitfield.imm8s
1874 || t.bitfield.imm16
1875 || t.bitfield.imm32
1876 || t.bitfield.imm32s
1877 || t.bitfield.imm64);
1878
1879 case disp:
1880 return (t.bitfield.disp8
1881 || t.bitfield.disp16
1882 || t.bitfield.disp32
1883 || t.bitfield.disp32s
1884 || t.bitfield.disp64);
1885
1886 case anymem:
1887 return (t.bitfield.disp8
1888 || t.bitfield.disp16
1889 || t.bitfield.disp32
1890 || t.bitfield.disp32s
1891 || t.bitfield.disp64
1892 || t.bitfield.baseindex);
1893
1894 default:
1895 abort ();
1896 }
1897
1898 return 0;
1899 }
1900
1901 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit on
1902 operand J for instruction template T. */
1903
1904 static INLINE int
1905 match_reg_size (const insn_template *t, unsigned int j)
1906 {
1907 return !((i.types[j].bitfield.byte
1908 && !t->operand_types[j].bitfield.byte)
1909 || (i.types[j].bitfield.word
1910 && !t->operand_types[j].bitfield.word)
1911 || (i.types[j].bitfield.dword
1912 && !t->operand_types[j].bitfield.dword)
1913 || (i.types[j].bitfield.qword
1914 && !t->operand_types[j].bitfield.qword)
1915 || (i.types[j].bitfield.tbyte
1916 && !t->operand_types[j].bitfield.tbyte));
1917 }
1918
1919 /* Return 1 if there is no conflict in SIMD register on
1920 operand J for instruction template T. */
1921
1922 static INLINE int
1923 match_simd_size (const insn_template *t, unsigned int j)
1924 {
1925 return !((i.types[j].bitfield.xmmword
1926 && !t->operand_types[j].bitfield.xmmword)
1927 || (i.types[j].bitfield.ymmword
1928 && !t->operand_types[j].bitfield.ymmword)
1929 || (i.types[j].bitfield.zmmword
1930 && !t->operand_types[j].bitfield.zmmword));
1931 }
1932
1933 /* Return 1 if there is no conflict in any size on operand J for
1934 instruction template T. */
1935
1936 static INLINE int
1937 match_mem_size (const insn_template *t, unsigned int j)
1938 {
1939 return (match_reg_size (t, j)
1940 && !((i.types[j].bitfield.unspecified
1941 && !i.broadcast
1942 && !t->operand_types[j].bitfield.unspecified)
1943 || (i.types[j].bitfield.fword
1944 && !t->operand_types[j].bitfield.fword)
1945 /* For scalar opcode templates to allow register and memory
1946 operands at the same time, some special casing is needed
1947 here. */
1948 || ((t->operand_types[j].bitfield.regsimd
1949 && !t->opcode_modifier.broadcast
1950 && (t->operand_types[j].bitfield.dword
1951 || t->operand_types[j].bitfield.qword))
1952 ? (i.types[j].bitfield.xmmword
1953 || i.types[j].bitfield.ymmword
1954 || i.types[j].bitfield.zmmword)
1955 : !match_simd_size(t, j))));
1956 }
1957
1958 /* Return 1 if there is no size conflict on any operands for
1959 instruction template T. */
1960
1961 static INLINE int
1962 operand_size_match (const insn_template *t)
1963 {
1964 unsigned int j;
1965 int match = 1;
1966
1967 /* Don't check jump instructions. */
1968 if (t->opcode_modifier.jump
1969 || t->opcode_modifier.jumpbyte
1970 || t->opcode_modifier.jumpdword
1971 || t->opcode_modifier.jumpintersegment)
1972 return match;
1973
1974 /* Check memory and accumulator operand size. */
1975 for (j = 0; j < i.operands; j++)
1976 {
1977 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1978 && t->operand_types[j].bitfield.anysize)
1979 continue;
1980
1981 if (t->operand_types[j].bitfield.reg
1982 && !match_reg_size (t, j))
1983 {
1984 match = 0;
1985 break;
1986 }
1987
1988 if (t->operand_types[j].bitfield.regsimd
1989 && !match_simd_size (t, j))
1990 {
1991 match = 0;
1992 break;
1993 }
1994
1995 if (t->operand_types[j].bitfield.acc
1996 && (!match_reg_size (t, j) || !match_simd_size (t, j)))
1997 {
1998 match = 0;
1999 break;
2000 }
2001
2002 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
2003 {
2004 match = 0;
2005 break;
2006 }
2007 }
2008
2009 if (match)
2010 return match;
2011 else if (!t->opcode_modifier.d)
2012 {
2013 mismatch:
2014 i.error = operand_size_mismatch;
2015 return 0;
2016 }
2017
2018 /* Check reverse. */
2019 gas_assert (i.operands == 2);
2020
2021 match = 1;
2022 for (j = 0; j < 2; j++)
2023 {
2024 if ((t->operand_types[j].bitfield.reg
2025 || t->operand_types[j].bitfield.acc)
2026 && !match_reg_size (t, j ? 0 : 1))
2027 goto mismatch;
2028
2029 if (i.types[j].bitfield.mem
2030 && !match_mem_size (t, j ? 0 : 1))
2031 goto mismatch;
2032 }
2033
2034 return match;
2035 }
2036
2037 static INLINE int
2038 operand_type_match (i386_operand_type overlap,
2039 i386_operand_type given)
2040 {
2041 i386_operand_type temp = overlap;
2042
2043 temp.bitfield.jumpabsolute = 0;
2044 temp.bitfield.unspecified = 0;
2045 temp.bitfield.byte = 0;
2046 temp.bitfield.word = 0;
2047 temp.bitfield.dword = 0;
2048 temp.bitfield.fword = 0;
2049 temp.bitfield.qword = 0;
2050 temp.bitfield.tbyte = 0;
2051 temp.bitfield.xmmword = 0;
2052 temp.bitfield.ymmword = 0;
2053 temp.bitfield.zmmword = 0;
2054 if (operand_type_all_zero (&temp))
2055 goto mismatch;
2056
2057 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2058 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2059 return 1;
2060
2061 mismatch:
2062 i.error = operand_type_mismatch;
2063 return 0;
2064 }
2065
2066 /* If given types g0 and g1 are registers they must be of the same type
2067 unless the expected operand type register overlap is null.
2068 Memory operand size of certain SIMD instructions is also being checked
2069 here. */
2070
2071 static INLINE int
2072 operand_type_register_match (i386_operand_type g0,
2073 i386_operand_type t0,
2074 i386_operand_type g1,
2075 i386_operand_type t1)
2076 {
2077 if (!g0.bitfield.reg
2078 && !g0.bitfield.regsimd
2079 && (!operand_type_check (g0, anymem)
2080 || g0.bitfield.unspecified
2081 || !t0.bitfield.regsimd))
2082 return 1;
2083
2084 if (!g1.bitfield.reg
2085 && !g1.bitfield.regsimd
2086 && (!operand_type_check (g1, anymem)
2087 || g1.bitfield.unspecified
2088 || !t1.bitfield.regsimd))
2089 return 1;
2090
2091 if (g0.bitfield.byte == g1.bitfield.byte
2092 && g0.bitfield.word == g1.bitfield.word
2093 && g0.bitfield.dword == g1.bitfield.dword
2094 && g0.bitfield.qword == g1.bitfield.qword
2095 && g0.bitfield.xmmword == g1.bitfield.xmmword
2096 && g0.bitfield.ymmword == g1.bitfield.ymmword
2097 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2098 return 1;
2099
2100 if (!(t0.bitfield.byte & t1.bitfield.byte)
2101 && !(t0.bitfield.word & t1.bitfield.word)
2102 && !(t0.bitfield.dword & t1.bitfield.dword)
2103 && !(t0.bitfield.qword & t1.bitfield.qword)
2104 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2105 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2106 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2107 return 1;
2108
2109 i.error = register_type_mismatch;
2110
2111 return 0;
2112 }
2113
2114 static INLINE unsigned int
2115 register_number (const reg_entry *r)
2116 {
2117 unsigned int nr = r->reg_num;
2118
2119 if (r->reg_flags & RegRex)
2120 nr += 8;
2121
2122 if (r->reg_flags & RegVRex)
2123 nr += 16;
2124
2125 return nr;
2126 }
2127
2128 static INLINE unsigned int
2129 mode_from_disp_size (i386_operand_type t)
2130 {
2131 if (t.bitfield.disp8)
2132 return 1;
2133 else if (t.bitfield.disp16
2134 || t.bitfield.disp32
2135 || t.bitfield.disp32s)
2136 return 2;
2137 else
2138 return 0;
2139 }
2140
2141 static INLINE int
2142 fits_in_signed_byte (addressT num)
2143 {
2144 return num + 0x80 <= 0xff;
2145 }
2146
2147 static INLINE int
2148 fits_in_unsigned_byte (addressT num)
2149 {
2150 return num <= 0xff;
2151 }
2152
2153 static INLINE int
2154 fits_in_unsigned_word (addressT num)
2155 {
2156 return num <= 0xffff;
2157 }
2158
2159 static INLINE int
2160 fits_in_signed_word (addressT num)
2161 {
2162 return num + 0x8000 <= 0xffff;
2163 }
2164
2165 static INLINE int
2166 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2167 {
2168 #ifndef BFD64
2169 return 1;
2170 #else
2171 return num + 0x80000000 <= 0xffffffff;
2172 #endif
2173 } /* fits_in_signed_long() */
2174
2175 static INLINE int
2176 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2177 {
2178 #ifndef BFD64
2179 return 1;
2180 #else
2181 return num <= 0xffffffff;
2182 #endif
2183 } /* fits_in_unsigned_long() */
2184
2185 static INLINE int
2186 fits_in_disp8 (offsetT num)
2187 {
2188 int shift = i.memshift;
2189 unsigned int mask;
2190
2191 if (shift == -1)
2192 abort ();
2193
2194 mask = (1 << shift) - 1;
2195
2196 /* Return 0 if NUM isn't properly aligned. */
2197 if ((num & mask))
2198 return 0;
2199
2200 /* Check if NUM will fit in 8bit after shift. */
2201 return fits_in_signed_byte (num >> shift);
2202 }
2203
2204 static INLINE int
2205 fits_in_imm4 (offsetT num)
2206 {
2207 return (num & 0xf) == num;
2208 }
2209
2210 static i386_operand_type
2211 smallest_imm_type (offsetT num)
2212 {
2213 i386_operand_type t;
2214
2215 operand_type_set (&t, 0);
2216 t.bitfield.imm64 = 1;
2217
2218 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2219 {
2220 /* This code is disabled on the 486 because all the Imm1 forms
2221 in the opcode table are slower on the i486. They're the
2222 versions with the implicitly specified single-position
2223 displacement, which has another syntax if you really want to
2224 use that form. */
2225 t.bitfield.imm1 = 1;
2226 t.bitfield.imm8 = 1;
2227 t.bitfield.imm8s = 1;
2228 t.bitfield.imm16 = 1;
2229 t.bitfield.imm32 = 1;
2230 t.bitfield.imm32s = 1;
2231 }
2232 else if (fits_in_signed_byte (num))
2233 {
2234 t.bitfield.imm8 = 1;
2235 t.bitfield.imm8s = 1;
2236 t.bitfield.imm16 = 1;
2237 t.bitfield.imm32 = 1;
2238 t.bitfield.imm32s = 1;
2239 }
2240 else if (fits_in_unsigned_byte (num))
2241 {
2242 t.bitfield.imm8 = 1;
2243 t.bitfield.imm16 = 1;
2244 t.bitfield.imm32 = 1;
2245 t.bitfield.imm32s = 1;
2246 }
2247 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2248 {
2249 t.bitfield.imm16 = 1;
2250 t.bitfield.imm32 = 1;
2251 t.bitfield.imm32s = 1;
2252 }
2253 else if (fits_in_signed_long (num))
2254 {
2255 t.bitfield.imm32 = 1;
2256 t.bitfield.imm32s = 1;
2257 }
2258 else if (fits_in_unsigned_long (num))
2259 t.bitfield.imm32 = 1;
2260
2261 return t;
2262 }
2263
2264 static offsetT
2265 offset_in_range (offsetT val, int size)
2266 {
2267 addressT mask;
2268
2269 switch (size)
2270 {
2271 case 1: mask = ((addressT) 1 << 8) - 1; break;
2272 case 2: mask = ((addressT) 1 << 16) - 1; break;
2273 case 4: mask = ((addressT) 2 << 31) - 1; break;
2274 #ifdef BFD64
2275 case 8: mask = ((addressT) 2 << 63) - 1; break;
2276 #endif
2277 default: abort ();
2278 }
2279
2280 #ifdef BFD64
2281 /* If BFD64, sign extend val for 32bit address mode. */
2282 if (flag_code != CODE_64BIT
2283 || i.prefix[ADDR_PREFIX])
2284 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2285 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2286 #endif
2287
2288 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2289 {
2290 char buf1[40], buf2[40];
2291
2292 sprint_value (buf1, val);
2293 sprint_value (buf2, val & mask);
2294 as_warn (_("%s shortened to %s"), buf1, buf2);
2295 }
2296 return val & mask;
2297 }
2298
2299 enum PREFIX_GROUP
2300 {
2301 PREFIX_EXIST = 0,
2302 PREFIX_LOCK,
2303 PREFIX_REP,
2304 PREFIX_DS,
2305 PREFIX_OTHER
2306 };
2307
2308 /* Returns
2309 a. PREFIX_EXIST if attempting to add a prefix where one from the
2310 same class already exists.
2311 b. PREFIX_LOCK if lock prefix is added.
2312 c. PREFIX_REP if rep/repne prefix is added.
2313 d. PREFIX_DS if ds prefix is added.
2314 e. PREFIX_OTHER if other prefix is added.
2315 */
2316
2317 static enum PREFIX_GROUP
2318 add_prefix (unsigned int prefix)
2319 {
2320 enum PREFIX_GROUP ret = PREFIX_OTHER;
2321 unsigned int q;
2322
2323 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2324 && flag_code == CODE_64BIT)
2325 {
2326 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2327 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2328 && (prefix & (REX_R | REX_X | REX_B))))
2329 ret = PREFIX_EXIST;
2330 q = REX_PREFIX;
2331 }
2332 else
2333 {
2334 switch (prefix)
2335 {
2336 default:
2337 abort ();
2338
2339 case DS_PREFIX_OPCODE:
2340 ret = PREFIX_DS;
2341 /* Fall through. */
2342 case CS_PREFIX_OPCODE:
2343 case ES_PREFIX_OPCODE:
2344 case FS_PREFIX_OPCODE:
2345 case GS_PREFIX_OPCODE:
2346 case SS_PREFIX_OPCODE:
2347 q = SEG_PREFIX;
2348 break;
2349
2350 case REPNE_PREFIX_OPCODE:
2351 case REPE_PREFIX_OPCODE:
2352 q = REP_PREFIX;
2353 ret = PREFIX_REP;
2354 break;
2355
2356 case LOCK_PREFIX_OPCODE:
2357 q = LOCK_PREFIX;
2358 ret = PREFIX_LOCK;
2359 break;
2360
2361 case FWAIT_OPCODE:
2362 q = WAIT_PREFIX;
2363 break;
2364
2365 case ADDR_PREFIX_OPCODE:
2366 q = ADDR_PREFIX;
2367 break;
2368
2369 case DATA_PREFIX_OPCODE:
2370 q = DATA_PREFIX;
2371 break;
2372 }
2373 if (i.prefix[q] != 0)
2374 ret = PREFIX_EXIST;
2375 }
2376
2377 if (ret)
2378 {
2379 if (!i.prefix[q])
2380 ++i.prefixes;
2381 i.prefix[q] |= prefix;
2382 }
2383 else
2384 as_bad (_("same type of prefix used twice"));
2385
2386 return ret;
2387 }
2388
2389 static void
2390 update_code_flag (int value, int check)
2391 {
2392 PRINTF_LIKE ((*as_error));
2393
2394 flag_code = (enum flag_code) value;
2395 if (flag_code == CODE_64BIT)
2396 {
2397 cpu_arch_flags.bitfield.cpu64 = 1;
2398 cpu_arch_flags.bitfield.cpuno64 = 0;
2399 }
2400 else
2401 {
2402 cpu_arch_flags.bitfield.cpu64 = 0;
2403 cpu_arch_flags.bitfield.cpuno64 = 1;
2404 }
2405 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2406 {
2407 if (check)
2408 as_error = as_fatal;
2409 else
2410 as_error = as_bad;
2411 (*as_error) (_("64bit mode not supported on `%s'."),
2412 cpu_arch_name ? cpu_arch_name : default_arch);
2413 }
2414 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2415 {
2416 if (check)
2417 as_error = as_fatal;
2418 else
2419 as_error = as_bad;
2420 (*as_error) (_("32bit mode not supported on `%s'."),
2421 cpu_arch_name ? cpu_arch_name : default_arch);
2422 }
2423 stackop_size = '\0';
2424 }
2425
2426 static void
2427 set_code_flag (int value)
2428 {
2429 update_code_flag (value, 0);
2430 }
2431
2432 static void
2433 set_16bit_gcc_code_flag (int new_code_flag)
2434 {
2435 flag_code = (enum flag_code) new_code_flag;
2436 if (flag_code != CODE_16BIT)
2437 abort ();
2438 cpu_arch_flags.bitfield.cpu64 = 0;
2439 cpu_arch_flags.bitfield.cpuno64 = 1;
2440 stackop_size = LONG_MNEM_SUFFIX;
2441 }
2442
2443 static void
2444 set_intel_syntax (int syntax_flag)
2445 {
2446 /* Find out if register prefixing is specified. */
2447 int ask_naked_reg = 0;
2448
2449 SKIP_WHITESPACE ();
2450 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2451 {
2452 char *string;
2453 int e = get_symbol_name (&string);
2454
2455 if (strcmp (string, "prefix") == 0)
2456 ask_naked_reg = 1;
2457 else if (strcmp (string, "noprefix") == 0)
2458 ask_naked_reg = -1;
2459 else
2460 as_bad (_("bad argument to syntax directive."));
2461 (void) restore_line_pointer (e);
2462 }
2463 demand_empty_rest_of_line ();
2464
2465 intel_syntax = syntax_flag;
2466
2467 if (ask_naked_reg == 0)
2468 allow_naked_reg = (intel_syntax
2469 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2470 else
2471 allow_naked_reg = (ask_naked_reg < 0);
2472
2473 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2474
2475 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2476 identifier_chars['$'] = intel_syntax ? '$' : 0;
2477 register_prefix = allow_naked_reg ? "" : "%";
2478 }
2479
2480 static void
2481 set_intel_mnemonic (int mnemonic_flag)
2482 {
2483 intel_mnemonic = mnemonic_flag;
2484 }
2485
2486 static void
2487 set_allow_index_reg (int flag)
2488 {
2489 allow_index_reg = flag;
2490 }
2491
2492 static void
2493 set_check (int what)
2494 {
2495 enum check_kind *kind;
2496 const char *str;
2497
2498 if (what)
2499 {
2500 kind = &operand_check;
2501 str = "operand";
2502 }
2503 else
2504 {
2505 kind = &sse_check;
2506 str = "sse";
2507 }
2508
2509 SKIP_WHITESPACE ();
2510
2511 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2512 {
2513 char *string;
2514 int e = get_symbol_name (&string);
2515
2516 if (strcmp (string, "none") == 0)
2517 *kind = check_none;
2518 else if (strcmp (string, "warning") == 0)
2519 *kind = check_warning;
2520 else if (strcmp (string, "error") == 0)
2521 *kind = check_error;
2522 else
2523 as_bad (_("bad argument to %s_check directive."), str);
2524 (void) restore_line_pointer (e);
2525 }
2526 else
2527 as_bad (_("missing argument for %s_check directive"), str);
2528
2529 demand_empty_rest_of_line ();
2530 }
2531
2532 static void
2533 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2534 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2535 {
2536 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2537 static const char *arch;
2538
2539 /* Intel LIOM is only supported on ELF. */
2540 if (!IS_ELF)
2541 return;
2542
2543 if (!arch)
2544 {
2545 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2546 use default_arch. */
2547 arch = cpu_arch_name;
2548 if (!arch)
2549 arch = default_arch;
2550 }
2551
2552 /* If we are targeting Intel MCU, we must enable it. */
2553 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2554 || new_flag.bitfield.cpuiamcu)
2555 return;
2556
2557 /* If we are targeting Intel L1OM, we must enable it. */
2558 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2559 || new_flag.bitfield.cpul1om)
2560 return;
2561
2562 /* If we are targeting Intel K1OM, we must enable it. */
2563 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2564 || new_flag.bitfield.cpuk1om)
2565 return;
2566
2567 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2568 #endif
2569 }
2570
2571 static void
2572 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2573 {
2574 SKIP_WHITESPACE ();
2575
2576 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2577 {
2578 char *string;
2579 int e = get_symbol_name (&string);
2580 unsigned int j;
2581 i386_cpu_flags flags;
2582
2583 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2584 {
2585 if (strcmp (string, cpu_arch[j].name) == 0)
2586 {
2587 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2588
2589 if (*string != '.')
2590 {
2591 cpu_arch_name = cpu_arch[j].name;
2592 cpu_sub_arch_name = NULL;
2593 cpu_arch_flags = cpu_arch[j].flags;
2594 if (flag_code == CODE_64BIT)
2595 {
2596 cpu_arch_flags.bitfield.cpu64 = 1;
2597 cpu_arch_flags.bitfield.cpuno64 = 0;
2598 }
2599 else
2600 {
2601 cpu_arch_flags.bitfield.cpu64 = 0;
2602 cpu_arch_flags.bitfield.cpuno64 = 1;
2603 }
2604 cpu_arch_isa = cpu_arch[j].type;
2605 cpu_arch_isa_flags = cpu_arch[j].flags;
2606 if (!cpu_arch_tune_set)
2607 {
2608 cpu_arch_tune = cpu_arch_isa;
2609 cpu_arch_tune_flags = cpu_arch_isa_flags;
2610 }
2611 break;
2612 }
2613
2614 flags = cpu_flags_or (cpu_arch_flags,
2615 cpu_arch[j].flags);
2616
2617 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2618 {
2619 if (cpu_sub_arch_name)
2620 {
2621 char *name = cpu_sub_arch_name;
2622 cpu_sub_arch_name = concat (name,
2623 cpu_arch[j].name,
2624 (const char *) NULL);
2625 free (name);
2626 }
2627 else
2628 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2629 cpu_arch_flags = flags;
2630 cpu_arch_isa_flags = flags;
2631 }
2632 (void) restore_line_pointer (e);
2633 demand_empty_rest_of_line ();
2634 return;
2635 }
2636 }
2637
2638 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2639 {
2640 /* Disable an ISA extension. */
2641 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2642 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2643 {
2644 flags = cpu_flags_and_not (cpu_arch_flags,
2645 cpu_noarch[j].flags);
2646 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2647 {
2648 if (cpu_sub_arch_name)
2649 {
2650 char *name = cpu_sub_arch_name;
2651 cpu_sub_arch_name = concat (name, string,
2652 (const char *) NULL);
2653 free (name);
2654 }
2655 else
2656 cpu_sub_arch_name = xstrdup (string);
2657 cpu_arch_flags = flags;
2658 cpu_arch_isa_flags = flags;
2659 }
2660 (void) restore_line_pointer (e);
2661 demand_empty_rest_of_line ();
2662 return;
2663 }
2664
2665 j = ARRAY_SIZE (cpu_arch);
2666 }
2667
2668 if (j >= ARRAY_SIZE (cpu_arch))
2669 as_bad (_("no such architecture: `%s'"), string);
2670
2671 *input_line_pointer = e;
2672 }
2673 else
2674 as_bad (_("missing cpu architecture"));
2675
2676 no_cond_jump_promotion = 0;
2677 if (*input_line_pointer == ','
2678 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2679 {
2680 char *string;
2681 char e;
2682
2683 ++input_line_pointer;
2684 e = get_symbol_name (&string);
2685
2686 if (strcmp (string, "nojumps") == 0)
2687 no_cond_jump_promotion = 1;
2688 else if (strcmp (string, "jumps") == 0)
2689 ;
2690 else
2691 as_bad (_("no such architecture modifier: `%s'"), string);
2692
2693 (void) restore_line_pointer (e);
2694 }
2695
2696 demand_empty_rest_of_line ();
2697 }
2698
2699 enum bfd_architecture
2700 i386_arch (void)
2701 {
2702 if (cpu_arch_isa == PROCESSOR_L1OM)
2703 {
2704 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2705 || flag_code != CODE_64BIT)
2706 as_fatal (_("Intel L1OM is 64bit ELF only"));
2707 return bfd_arch_l1om;
2708 }
2709 else if (cpu_arch_isa == PROCESSOR_K1OM)
2710 {
2711 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2712 || flag_code != CODE_64BIT)
2713 as_fatal (_("Intel K1OM is 64bit ELF only"));
2714 return bfd_arch_k1om;
2715 }
2716 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2717 {
2718 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2719 || flag_code == CODE_64BIT)
2720 as_fatal (_("Intel MCU is 32bit ELF only"));
2721 return bfd_arch_iamcu;
2722 }
2723 else
2724 return bfd_arch_i386;
2725 }
2726
2727 unsigned long
2728 i386_mach (void)
2729 {
2730 if (!strncmp (default_arch, "x86_64", 6))
2731 {
2732 if (cpu_arch_isa == PROCESSOR_L1OM)
2733 {
2734 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2735 || default_arch[6] != '\0')
2736 as_fatal (_("Intel L1OM is 64bit ELF only"));
2737 return bfd_mach_l1om;
2738 }
2739 else if (cpu_arch_isa == PROCESSOR_K1OM)
2740 {
2741 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2742 || default_arch[6] != '\0')
2743 as_fatal (_("Intel K1OM is 64bit ELF only"));
2744 return bfd_mach_k1om;
2745 }
2746 else if (default_arch[6] == '\0')
2747 return bfd_mach_x86_64;
2748 else
2749 return bfd_mach_x64_32;
2750 }
2751 else if (!strcmp (default_arch, "i386")
2752 || !strcmp (default_arch, "iamcu"))
2753 {
2754 if (cpu_arch_isa == PROCESSOR_IAMCU)
2755 {
2756 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2757 as_fatal (_("Intel MCU is 32bit ELF only"));
2758 return bfd_mach_i386_iamcu;
2759 }
2760 else
2761 return bfd_mach_i386_i386;
2762 }
2763 else
2764 as_fatal (_("unknown architecture"));
2765 }
2766 \f
2767 void
2768 md_begin (void)
2769 {
2770 const char *hash_err;
2771
2772 /* Support pseudo prefixes like {disp32}. */
2773 lex_type ['{'] = LEX_BEGIN_NAME;
2774
2775 /* Initialize op_hash hash table. */
2776 op_hash = hash_new ();
2777
2778 {
2779 const insn_template *optab;
2780 templates *core_optab;
2781
2782 /* Setup for loop. */
2783 optab = i386_optab;
2784 core_optab = XNEW (templates);
2785 core_optab->start = optab;
2786
2787 while (1)
2788 {
2789 ++optab;
2790 if (optab->name == NULL
2791 || strcmp (optab->name, (optab - 1)->name) != 0)
2792 {
2793 /* different name --> ship out current template list;
2794 add to hash table; & begin anew. */
2795 core_optab->end = optab;
2796 hash_err = hash_insert (op_hash,
2797 (optab - 1)->name,
2798 (void *) core_optab);
2799 if (hash_err)
2800 {
2801 as_fatal (_("can't hash %s: %s"),
2802 (optab - 1)->name,
2803 hash_err);
2804 }
2805 if (optab->name == NULL)
2806 break;
2807 core_optab = XNEW (templates);
2808 core_optab->start = optab;
2809 }
2810 }
2811 }
2812
2813 /* Initialize reg_hash hash table. */
2814 reg_hash = hash_new ();
2815 {
2816 const reg_entry *regtab;
2817 unsigned int regtab_size = i386_regtab_size;
2818
2819 for (regtab = i386_regtab; regtab_size--; regtab++)
2820 {
2821 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2822 if (hash_err)
2823 as_fatal (_("can't hash %s: %s"),
2824 regtab->reg_name,
2825 hash_err);
2826 }
2827 }
2828
2829 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2830 {
2831 int c;
2832 char *p;
2833
2834 for (c = 0; c < 256; c++)
2835 {
2836 if (ISDIGIT (c))
2837 {
2838 digit_chars[c] = c;
2839 mnemonic_chars[c] = c;
2840 register_chars[c] = c;
2841 operand_chars[c] = c;
2842 }
2843 else if (ISLOWER (c))
2844 {
2845 mnemonic_chars[c] = c;
2846 register_chars[c] = c;
2847 operand_chars[c] = c;
2848 }
2849 else if (ISUPPER (c))
2850 {
2851 mnemonic_chars[c] = TOLOWER (c);
2852 register_chars[c] = mnemonic_chars[c];
2853 operand_chars[c] = c;
2854 }
2855 else if (c == '{' || c == '}')
2856 {
2857 mnemonic_chars[c] = c;
2858 operand_chars[c] = c;
2859 }
2860
2861 if (ISALPHA (c) || ISDIGIT (c))
2862 identifier_chars[c] = c;
2863 else if (c >= 128)
2864 {
2865 identifier_chars[c] = c;
2866 operand_chars[c] = c;
2867 }
2868 }
2869
2870 #ifdef LEX_AT
2871 identifier_chars['@'] = '@';
2872 #endif
2873 #ifdef LEX_QM
2874 identifier_chars['?'] = '?';
2875 operand_chars['?'] = '?';
2876 #endif
2877 digit_chars['-'] = '-';
2878 mnemonic_chars['_'] = '_';
2879 mnemonic_chars['-'] = '-';
2880 mnemonic_chars['.'] = '.';
2881 identifier_chars['_'] = '_';
2882 identifier_chars['.'] = '.';
2883
2884 for (p = operand_special_chars; *p != '\0'; p++)
2885 operand_chars[(unsigned char) *p] = *p;
2886 }
2887
2888 if (flag_code == CODE_64BIT)
2889 {
2890 #if defined (OBJ_COFF) && defined (TE_PE)
2891 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2892 ? 32 : 16);
2893 #else
2894 x86_dwarf2_return_column = 16;
2895 #endif
2896 x86_cie_data_alignment = -8;
2897 }
2898 else
2899 {
2900 x86_dwarf2_return_column = 8;
2901 x86_cie_data_alignment = -4;
2902 }
2903 }
2904
2905 void
2906 i386_print_statistics (FILE *file)
2907 {
2908 hash_print_statistics (file, "i386 opcode", op_hash);
2909 hash_print_statistics (file, "i386 register", reg_hash);
2910 }
2911 \f
2912 #ifdef DEBUG386
2913
2914 /* Debugging routines for md_assemble. */
2915 static void pte (insn_template *);
2916 static void pt (i386_operand_type);
2917 static void pe (expressionS *);
2918 static void ps (symbolS *);
2919
2920 static void
2921 pi (char *line, i386_insn *x)
2922 {
2923 unsigned int j;
2924
2925 fprintf (stdout, "%s: template ", line);
2926 pte (&x->tm);
2927 fprintf (stdout, " address: base %s index %s scale %x\n",
2928 x->base_reg ? x->base_reg->reg_name : "none",
2929 x->index_reg ? x->index_reg->reg_name : "none",
2930 x->log2_scale_factor);
2931 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2932 x->rm.mode, x->rm.reg, x->rm.regmem);
2933 fprintf (stdout, " sib: base %x index %x scale %x\n",
2934 x->sib.base, x->sib.index, x->sib.scale);
2935 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2936 (x->rex & REX_W) != 0,
2937 (x->rex & REX_R) != 0,
2938 (x->rex & REX_X) != 0,
2939 (x->rex & REX_B) != 0);
2940 for (j = 0; j < x->operands; j++)
2941 {
2942 fprintf (stdout, " #%d: ", j + 1);
2943 pt (x->types[j]);
2944 fprintf (stdout, "\n");
2945 if (x->types[j].bitfield.reg
2946 || x->types[j].bitfield.regmmx
2947 || x->types[j].bitfield.regsimd
2948 || x->types[j].bitfield.sreg2
2949 || x->types[j].bitfield.sreg3
2950 || x->types[j].bitfield.control
2951 || x->types[j].bitfield.debug
2952 || x->types[j].bitfield.test)
2953 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2954 if (operand_type_check (x->types[j], imm))
2955 pe (x->op[j].imms);
2956 if (operand_type_check (x->types[j], disp))
2957 pe (x->op[j].disps);
2958 }
2959 }
2960
2961 static void
2962 pte (insn_template *t)
2963 {
2964 unsigned int j;
2965 fprintf (stdout, " %d operands ", t->operands);
2966 fprintf (stdout, "opcode %x ", t->base_opcode);
2967 if (t->extension_opcode != None)
2968 fprintf (stdout, "ext %x ", t->extension_opcode);
2969 if (t->opcode_modifier.d)
2970 fprintf (stdout, "D");
2971 if (t->opcode_modifier.w)
2972 fprintf (stdout, "W");
2973 fprintf (stdout, "\n");
2974 for (j = 0; j < t->operands; j++)
2975 {
2976 fprintf (stdout, " #%d type ", j + 1);
2977 pt (t->operand_types[j]);
2978 fprintf (stdout, "\n");
2979 }
2980 }
2981
2982 static void
2983 pe (expressionS *e)
2984 {
2985 fprintf (stdout, " operation %d\n", e->X_op);
2986 fprintf (stdout, " add_number %ld (%lx)\n",
2987 (long) e->X_add_number, (long) e->X_add_number);
2988 if (e->X_add_symbol)
2989 {
2990 fprintf (stdout, " add_symbol ");
2991 ps (e->X_add_symbol);
2992 fprintf (stdout, "\n");
2993 }
2994 if (e->X_op_symbol)
2995 {
2996 fprintf (stdout, " op_symbol ");
2997 ps (e->X_op_symbol);
2998 fprintf (stdout, "\n");
2999 }
3000 }
3001
3002 static void
3003 ps (symbolS *s)
3004 {
3005 fprintf (stdout, "%s type %s%s",
3006 S_GET_NAME (s),
3007 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3008 segment_name (S_GET_SEGMENT (s)));
3009 }
3010
3011 static struct type_name
3012 {
3013 i386_operand_type mask;
3014 const char *name;
3015 }
3016 const type_names[] =
3017 {
3018 { OPERAND_TYPE_REG8, "r8" },
3019 { OPERAND_TYPE_REG16, "r16" },
3020 { OPERAND_TYPE_REG32, "r32" },
3021 { OPERAND_TYPE_REG64, "r64" },
3022 { OPERAND_TYPE_IMM8, "i8" },
3023 { OPERAND_TYPE_IMM8, "i8s" },
3024 { OPERAND_TYPE_IMM16, "i16" },
3025 { OPERAND_TYPE_IMM32, "i32" },
3026 { OPERAND_TYPE_IMM32S, "i32s" },
3027 { OPERAND_TYPE_IMM64, "i64" },
3028 { OPERAND_TYPE_IMM1, "i1" },
3029 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3030 { OPERAND_TYPE_DISP8, "d8" },
3031 { OPERAND_TYPE_DISP16, "d16" },
3032 { OPERAND_TYPE_DISP32, "d32" },
3033 { OPERAND_TYPE_DISP32S, "d32s" },
3034 { OPERAND_TYPE_DISP64, "d64" },
3035 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3036 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3037 { OPERAND_TYPE_CONTROL, "control reg" },
3038 { OPERAND_TYPE_TEST, "test reg" },
3039 { OPERAND_TYPE_DEBUG, "debug reg" },
3040 { OPERAND_TYPE_FLOATREG, "FReg" },
3041 { OPERAND_TYPE_FLOATACC, "FAcc" },
3042 { OPERAND_TYPE_SREG2, "SReg2" },
3043 { OPERAND_TYPE_SREG3, "SReg3" },
3044 { OPERAND_TYPE_ACC, "Acc" },
3045 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3046 { OPERAND_TYPE_REGMMX, "rMMX" },
3047 { OPERAND_TYPE_REGXMM, "rXMM" },
3048 { OPERAND_TYPE_REGYMM, "rYMM" },
3049 { OPERAND_TYPE_REGZMM, "rZMM" },
3050 { OPERAND_TYPE_REGMASK, "Mask reg" },
3051 { OPERAND_TYPE_ESSEG, "es" },
3052 };
3053
3054 static void
3055 pt (i386_operand_type t)
3056 {
3057 unsigned int j;
3058 i386_operand_type a;
3059
3060 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3061 {
3062 a = operand_type_and (t, type_names[j].mask);
3063 if (!operand_type_all_zero (&a))
3064 fprintf (stdout, "%s, ", type_names[j].name);
3065 }
3066 fflush (stdout);
3067 }
3068
3069 #endif /* DEBUG386 */
3070 \f
3071 static bfd_reloc_code_real_type
3072 reloc (unsigned int size,
3073 int pcrel,
3074 int sign,
3075 bfd_reloc_code_real_type other)
3076 {
3077 if (other != NO_RELOC)
3078 {
3079 reloc_howto_type *rel;
3080
3081 if (size == 8)
3082 switch (other)
3083 {
3084 case BFD_RELOC_X86_64_GOT32:
3085 return BFD_RELOC_X86_64_GOT64;
3086 break;
3087 case BFD_RELOC_X86_64_GOTPLT64:
3088 return BFD_RELOC_X86_64_GOTPLT64;
3089 break;
3090 case BFD_RELOC_X86_64_PLTOFF64:
3091 return BFD_RELOC_X86_64_PLTOFF64;
3092 break;
3093 case BFD_RELOC_X86_64_GOTPC32:
3094 other = BFD_RELOC_X86_64_GOTPC64;
3095 break;
3096 case BFD_RELOC_X86_64_GOTPCREL:
3097 other = BFD_RELOC_X86_64_GOTPCREL64;
3098 break;
3099 case BFD_RELOC_X86_64_TPOFF32:
3100 other = BFD_RELOC_X86_64_TPOFF64;
3101 break;
3102 case BFD_RELOC_X86_64_DTPOFF32:
3103 other = BFD_RELOC_X86_64_DTPOFF64;
3104 break;
3105 default:
3106 break;
3107 }
3108
3109 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3110 if (other == BFD_RELOC_SIZE32)
3111 {
3112 if (size == 8)
3113 other = BFD_RELOC_SIZE64;
3114 if (pcrel)
3115 {
3116 as_bad (_("there are no pc-relative size relocations"));
3117 return NO_RELOC;
3118 }
3119 }
3120 #endif
3121
3122 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3123 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3124 sign = -1;
3125
3126 rel = bfd_reloc_type_lookup (stdoutput, other);
3127 if (!rel)
3128 as_bad (_("unknown relocation (%u)"), other);
3129 else if (size != bfd_get_reloc_size (rel))
3130 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3131 bfd_get_reloc_size (rel),
3132 size);
3133 else if (pcrel && !rel->pc_relative)
3134 as_bad (_("non-pc-relative relocation for pc-relative field"));
3135 else if ((rel->complain_on_overflow == complain_overflow_signed
3136 && !sign)
3137 || (rel->complain_on_overflow == complain_overflow_unsigned
3138 && sign > 0))
3139 as_bad (_("relocated field and relocation type differ in signedness"));
3140 else
3141 return other;
3142 return NO_RELOC;
3143 }
3144
3145 if (pcrel)
3146 {
3147 if (!sign)
3148 as_bad (_("there are no unsigned pc-relative relocations"));
3149 switch (size)
3150 {
3151 case 1: return BFD_RELOC_8_PCREL;
3152 case 2: return BFD_RELOC_16_PCREL;
3153 case 4: return BFD_RELOC_32_PCREL;
3154 case 8: return BFD_RELOC_64_PCREL;
3155 }
3156 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3157 }
3158 else
3159 {
3160 if (sign > 0)
3161 switch (size)
3162 {
3163 case 4: return BFD_RELOC_X86_64_32S;
3164 }
3165 else
3166 switch (size)
3167 {
3168 case 1: return BFD_RELOC_8;
3169 case 2: return BFD_RELOC_16;
3170 case 4: return BFD_RELOC_32;
3171 case 8: return BFD_RELOC_64;
3172 }
3173 as_bad (_("cannot do %s %u byte relocation"),
3174 sign > 0 ? "signed" : "unsigned", size);
3175 }
3176
3177 return NO_RELOC;
3178 }
3179
3180 /* Here we decide which fixups can be adjusted to make them relative to
3181 the beginning of the section instead of the symbol. Basically we need
3182 to make sure that the dynamic relocations are done correctly, so in
3183 some cases we force the original symbol to be used. */
3184
3185 int
3186 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3187 {
3188 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3189 if (!IS_ELF)
3190 return 1;
3191
3192 /* Don't adjust pc-relative references to merge sections in 64-bit
3193 mode. */
3194 if (use_rela_relocations
3195 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3196 && fixP->fx_pcrel)
3197 return 0;
3198
3199 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3200 and changed later by validate_fix. */
3201 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3202 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3203 return 0;
3204
3205 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3206 for size relocations. */
3207 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3208 || fixP->fx_r_type == BFD_RELOC_SIZE64
3209 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3210 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3211 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3212 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3213 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3214 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3215 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3216 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3217 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3218 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3219 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3220 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3221 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3222 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3223 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3224 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3225 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3226 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3227 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3228 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3229 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3230 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3231 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3232 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3233 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3234 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3235 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3236 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3237 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3238 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3239 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3240 return 0;
3241 #endif
3242 return 1;
3243 }
3244
3245 static int
3246 intel_float_operand (const char *mnemonic)
3247 {
3248 /* Note that the value returned is meaningful only for opcodes with (memory)
3249 operands, hence the code here is free to improperly handle opcodes that
3250 have no operands (for better performance and smaller code). */
3251
3252 if (mnemonic[0] != 'f')
3253 return 0; /* non-math */
3254
3255 switch (mnemonic[1])
3256 {
3257 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3258 the fs segment override prefix not currently handled because no
3259 call path can make opcodes without operands get here */
3260 case 'i':
3261 return 2 /* integer op */;
3262 case 'l':
3263 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3264 return 3; /* fldcw/fldenv */
3265 break;
3266 case 'n':
3267 if (mnemonic[2] != 'o' /* fnop */)
3268 return 3; /* non-waiting control op */
3269 break;
3270 case 'r':
3271 if (mnemonic[2] == 's')
3272 return 3; /* frstor/frstpm */
3273 break;
3274 case 's':
3275 if (mnemonic[2] == 'a')
3276 return 3; /* fsave */
3277 if (mnemonic[2] == 't')
3278 {
3279 switch (mnemonic[3])
3280 {
3281 case 'c': /* fstcw */
3282 case 'd': /* fstdw */
3283 case 'e': /* fstenv */
3284 case 's': /* fsts[gw] */
3285 return 3;
3286 }
3287 }
3288 break;
3289 case 'x':
3290 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3291 return 0; /* fxsave/fxrstor are not really math ops */
3292 break;
3293 }
3294
3295 return 1;
3296 }
3297
3298 /* Build the VEX prefix. */
3299
3300 static void
3301 build_vex_prefix (const insn_template *t)
3302 {
3303 unsigned int register_specifier;
3304 unsigned int implied_prefix;
3305 unsigned int vector_length;
3306
3307 /* Check register specifier. */
3308 if (i.vex.register_specifier)
3309 {
3310 register_specifier =
3311 ~register_number (i.vex.register_specifier) & 0xf;
3312 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3313 }
3314 else
3315 register_specifier = 0xf;
3316
3317 /* Use 2-byte VEX prefix by swapping destination and source
3318 operand. */
3319 if (i.vec_encoding != vex_encoding_vex3
3320 && i.dir_encoding == dir_encoding_default
3321 && i.operands == i.reg_operands
3322 && i.tm.opcode_modifier.vexopcode == VEX0F
3323 && i.tm.opcode_modifier.load
3324 && i.rex == REX_B)
3325 {
3326 unsigned int xchg = i.operands - 1;
3327 union i386_op temp_op;
3328 i386_operand_type temp_type;
3329
3330 temp_type = i.types[xchg];
3331 i.types[xchg] = i.types[0];
3332 i.types[0] = temp_type;
3333 temp_op = i.op[xchg];
3334 i.op[xchg] = i.op[0];
3335 i.op[0] = temp_op;
3336
3337 gas_assert (i.rm.mode == 3);
3338
3339 i.rex = REX_R;
3340 xchg = i.rm.regmem;
3341 i.rm.regmem = i.rm.reg;
3342 i.rm.reg = xchg;
3343
3344 /* Use the next insn. */
3345 i.tm = t[1];
3346 }
3347
3348 if (i.tm.opcode_modifier.vex == VEXScalar)
3349 vector_length = avxscalar;
3350 else if (i.tm.opcode_modifier.vex == VEX256)
3351 vector_length = 1;
3352 else
3353 {
3354 unsigned int op;
3355
3356 vector_length = 0;
3357 for (op = 0; op < t->operands; ++op)
3358 if (t->operand_types[op].bitfield.xmmword
3359 && t->operand_types[op].bitfield.ymmword
3360 && i.types[op].bitfield.ymmword)
3361 {
3362 vector_length = 1;
3363 break;
3364 }
3365 }
3366
3367 switch ((i.tm.base_opcode >> 8) & 0xff)
3368 {
3369 case 0:
3370 implied_prefix = 0;
3371 break;
3372 case DATA_PREFIX_OPCODE:
3373 implied_prefix = 1;
3374 break;
3375 case REPE_PREFIX_OPCODE:
3376 implied_prefix = 2;
3377 break;
3378 case REPNE_PREFIX_OPCODE:
3379 implied_prefix = 3;
3380 break;
3381 default:
3382 abort ();
3383 }
3384
3385 /* Use 2-byte VEX prefix if possible. */
3386 if (i.vec_encoding != vex_encoding_vex3
3387 && i.tm.opcode_modifier.vexopcode == VEX0F
3388 && i.tm.opcode_modifier.vexw != VEXW1
3389 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3390 {
3391 /* 2-byte VEX prefix. */
3392 unsigned int r;
3393
3394 i.vex.length = 2;
3395 i.vex.bytes[0] = 0xc5;
3396
3397 /* Check the REX.R bit. */
3398 r = (i.rex & REX_R) ? 0 : 1;
3399 i.vex.bytes[1] = (r << 7
3400 | register_specifier << 3
3401 | vector_length << 2
3402 | implied_prefix);
3403 }
3404 else
3405 {
3406 /* 3-byte VEX prefix. */
3407 unsigned int m, w;
3408
3409 i.vex.length = 3;
3410
3411 switch (i.tm.opcode_modifier.vexopcode)
3412 {
3413 case VEX0F:
3414 m = 0x1;
3415 i.vex.bytes[0] = 0xc4;
3416 break;
3417 case VEX0F38:
3418 m = 0x2;
3419 i.vex.bytes[0] = 0xc4;
3420 break;
3421 case VEX0F3A:
3422 m = 0x3;
3423 i.vex.bytes[0] = 0xc4;
3424 break;
3425 case XOP08:
3426 m = 0x8;
3427 i.vex.bytes[0] = 0x8f;
3428 break;
3429 case XOP09:
3430 m = 0x9;
3431 i.vex.bytes[0] = 0x8f;
3432 break;
3433 case XOP0A:
3434 m = 0xa;
3435 i.vex.bytes[0] = 0x8f;
3436 break;
3437 default:
3438 abort ();
3439 }
3440
3441 /* The high 3 bits of the second VEX byte are 1's compliment
3442 of RXB bits from REX. */
3443 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3444
3445 /* Check the REX.W bit. */
3446 w = (i.rex & REX_W) ? 1 : 0;
3447 if (i.tm.opcode_modifier.vexw == VEXW1)
3448 w = 1;
3449
3450 i.vex.bytes[2] = (w << 7
3451 | register_specifier << 3
3452 | vector_length << 2
3453 | implied_prefix);
3454 }
3455 }
3456
3457 /* Build the EVEX prefix. */
3458
3459 static void
3460 build_evex_prefix (void)
3461 {
3462 unsigned int register_specifier;
3463 unsigned int implied_prefix;
3464 unsigned int m, w;
3465 rex_byte vrex_used = 0;
3466
3467 /* Check register specifier. */
3468 if (i.vex.register_specifier)
3469 {
3470 gas_assert ((i.vrex & REX_X) == 0);
3471
3472 register_specifier = i.vex.register_specifier->reg_num;
3473 if ((i.vex.register_specifier->reg_flags & RegRex))
3474 register_specifier += 8;
3475 /* The upper 16 registers are encoded in the fourth byte of the
3476 EVEX prefix. */
3477 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3478 i.vex.bytes[3] = 0x8;
3479 register_specifier = ~register_specifier & 0xf;
3480 }
3481 else
3482 {
3483 register_specifier = 0xf;
3484
3485 /* Encode upper 16 vector index register in the fourth byte of
3486 the EVEX prefix. */
3487 if (!(i.vrex & REX_X))
3488 i.vex.bytes[3] = 0x8;
3489 else
3490 vrex_used |= REX_X;
3491 }
3492
3493 switch ((i.tm.base_opcode >> 8) & 0xff)
3494 {
3495 case 0:
3496 implied_prefix = 0;
3497 break;
3498 case DATA_PREFIX_OPCODE:
3499 implied_prefix = 1;
3500 break;
3501 case REPE_PREFIX_OPCODE:
3502 implied_prefix = 2;
3503 break;
3504 case REPNE_PREFIX_OPCODE:
3505 implied_prefix = 3;
3506 break;
3507 default:
3508 abort ();
3509 }
3510
3511 /* 4 byte EVEX prefix. */
3512 i.vex.length = 4;
3513 i.vex.bytes[0] = 0x62;
3514
3515 /* mmmm bits. */
3516 switch (i.tm.opcode_modifier.vexopcode)
3517 {
3518 case VEX0F:
3519 m = 1;
3520 break;
3521 case VEX0F38:
3522 m = 2;
3523 break;
3524 case VEX0F3A:
3525 m = 3;
3526 break;
3527 default:
3528 abort ();
3529 break;
3530 }
3531
3532 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3533 bits from REX. */
3534 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3535
3536 /* The fifth bit of the second EVEX byte is 1's compliment of the
3537 REX_R bit in VREX. */
3538 if (!(i.vrex & REX_R))
3539 i.vex.bytes[1] |= 0x10;
3540 else
3541 vrex_used |= REX_R;
3542
3543 if ((i.reg_operands + i.imm_operands) == i.operands)
3544 {
3545 /* When all operands are registers, the REX_X bit in REX is not
3546 used. We reuse it to encode the upper 16 registers, which is
3547 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3548 as 1's compliment. */
3549 if ((i.vrex & REX_B))
3550 {
3551 vrex_used |= REX_B;
3552 i.vex.bytes[1] &= ~0x40;
3553 }
3554 }
3555
3556 /* EVEX instructions shouldn't need the REX prefix. */
3557 i.vrex &= ~vrex_used;
3558 gas_assert (i.vrex == 0);
3559
3560 /* Check the REX.W bit. */
3561 w = (i.rex & REX_W) ? 1 : 0;
3562 if (i.tm.opcode_modifier.vexw)
3563 {
3564 if (i.tm.opcode_modifier.vexw == VEXW1)
3565 w = 1;
3566 }
3567 /* If w is not set it means we are dealing with WIG instruction. */
3568 else if (!w)
3569 {
3570 if (evexwig == evexw1)
3571 w = 1;
3572 }
3573
3574 /* Encode the U bit. */
3575 implied_prefix |= 0x4;
3576
3577 /* The third byte of the EVEX prefix. */
3578 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3579
3580 /* The fourth byte of the EVEX prefix. */
3581 /* The zeroing-masking bit. */
3582 if (i.mask && i.mask->zeroing)
3583 i.vex.bytes[3] |= 0x80;
3584
3585 /* Don't always set the broadcast bit if there is no RC. */
3586 if (!i.rounding)
3587 {
3588 /* Encode the vector length. */
3589 unsigned int vec_length;
3590
3591 switch (i.tm.opcode_modifier.evex)
3592 {
3593 case EVEXLIG: /* LL' is ignored */
3594 vec_length = evexlig << 5;
3595 break;
3596 case EVEX128:
3597 vec_length = 0 << 5;
3598 break;
3599 case EVEX256:
3600 vec_length = 1 << 5;
3601 break;
3602 case EVEX512:
3603 vec_length = 2 << 5;
3604 break;
3605 default:
3606 abort ();
3607 break;
3608 }
3609 i.vex.bytes[3] |= vec_length;
3610 /* Encode the broadcast bit. */
3611 if (i.broadcast)
3612 i.vex.bytes[3] |= 0x10;
3613 }
3614 else
3615 {
3616 if (i.rounding->type != saeonly)
3617 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3618 else
3619 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3620 }
3621
3622 if (i.mask && i.mask->mask)
3623 i.vex.bytes[3] |= i.mask->mask->reg_num;
3624 }
3625
3626 static void
3627 process_immext (void)
3628 {
3629 expressionS *exp;
3630
3631 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3632 && i.operands > 0)
3633 {
3634 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3635 with an opcode suffix which is coded in the same place as an
3636 8-bit immediate field would be.
3637 Here we check those operands and remove them afterwards. */
3638 unsigned int x;
3639
3640 for (x = 0; x < i.operands; x++)
3641 if (register_number (i.op[x].regs) != x)
3642 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3643 register_prefix, i.op[x].regs->reg_name, x + 1,
3644 i.tm.name);
3645
3646 i.operands = 0;
3647 }
3648
3649 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3650 {
3651 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3652 suffix which is coded in the same place as an 8-bit immediate
3653 field would be.
3654 Here we check those operands and remove them afterwards. */
3655 unsigned int x;
3656
3657 if (i.operands != 3)
3658 abort();
3659
3660 for (x = 0; x < 2; x++)
3661 if (register_number (i.op[x].regs) != x)
3662 goto bad_register_operand;
3663
3664 /* Check for third operand for mwaitx/monitorx insn. */
3665 if (register_number (i.op[x].regs)
3666 != (x + (i.tm.extension_opcode == 0xfb)))
3667 {
3668 bad_register_operand:
3669 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3670 register_prefix, i.op[x].regs->reg_name, x+1,
3671 i.tm.name);
3672 }
3673
3674 i.operands = 0;
3675 }
3676
3677 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3678 which is coded in the same place as an 8-bit immediate field
3679 would be. Here we fake an 8-bit immediate operand from the
3680 opcode suffix stored in tm.extension_opcode.
3681
3682 AVX instructions also use this encoding, for some of
3683 3 argument instructions. */
3684
3685 gas_assert (i.imm_operands <= 1
3686 && (i.operands <= 2
3687 || ((i.tm.opcode_modifier.vex
3688 || i.tm.opcode_modifier.evex)
3689 && i.operands <= 4)));
3690
3691 exp = &im_expressions[i.imm_operands++];
3692 i.op[i.operands].imms = exp;
3693 i.types[i.operands] = imm8;
3694 i.operands++;
3695 exp->X_op = O_constant;
3696 exp->X_add_number = i.tm.extension_opcode;
3697 i.tm.extension_opcode = None;
3698 }
3699
3700
3701 static int
3702 check_hle (void)
3703 {
3704 switch (i.tm.opcode_modifier.hleprefixok)
3705 {
3706 default:
3707 abort ();
3708 case HLEPrefixNone:
3709 as_bad (_("invalid instruction `%s' after `%s'"),
3710 i.tm.name, i.hle_prefix);
3711 return 0;
3712 case HLEPrefixLock:
3713 if (i.prefix[LOCK_PREFIX])
3714 return 1;
3715 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3716 return 0;
3717 case HLEPrefixAny:
3718 return 1;
3719 case HLEPrefixRelease:
3720 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3721 {
3722 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3723 i.tm.name);
3724 return 0;
3725 }
3726 if (i.mem_operands == 0
3727 || !operand_type_check (i.types[i.operands - 1], anymem))
3728 {
3729 as_bad (_("memory destination needed for instruction `%s'"
3730 " after `xrelease'"), i.tm.name);
3731 return 0;
3732 }
3733 return 1;
3734 }
3735 }
3736
3737 /* Try the shortest encoding by shortening operand size. */
3738
3739 static void
3740 optimize_encoding (void)
3741 {
3742 int j;
3743
3744 if (optimize_for_space
3745 && i.reg_operands == 1
3746 && i.imm_operands == 1
3747 && !i.types[1].bitfield.byte
3748 && i.op[0].imms->X_op == O_constant
3749 && fits_in_imm7 (i.op[0].imms->X_add_number)
3750 && ((i.tm.base_opcode == 0xa8
3751 && i.tm.extension_opcode == None)
3752 || (i.tm.base_opcode == 0xf6
3753 && i.tm.extension_opcode == 0x0)))
3754 {
3755 /* Optimize: -Os:
3756 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3757 */
3758 unsigned int base_regnum = i.op[1].regs->reg_num;
3759 if (flag_code == CODE_64BIT || base_regnum < 4)
3760 {
3761 i.types[1].bitfield.byte = 1;
3762 /* Ignore the suffix. */
3763 i.suffix = 0;
3764 if (base_regnum >= 4
3765 && !(i.op[1].regs->reg_flags & RegRex))
3766 {
3767 /* Handle SP, BP, SI and DI registers. */
3768 if (i.types[1].bitfield.word)
3769 j = 16;
3770 else if (i.types[1].bitfield.dword)
3771 j = 32;
3772 else
3773 j = 48;
3774 i.op[1].regs -= j;
3775 }
3776 }
3777 }
3778 else if (flag_code == CODE_64BIT
3779 && ((i.reg_operands == 1
3780 && i.imm_operands == 1
3781 && i.op[0].imms->X_op == O_constant
3782 && ((i.tm.base_opcode == 0xb0
3783 && i.tm.extension_opcode == None
3784 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3785 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3786 && (((i.tm.base_opcode == 0x24
3787 || i.tm.base_opcode == 0xa8)
3788 && i.tm.extension_opcode == None)
3789 || (i.tm.base_opcode == 0x80
3790 && i.tm.extension_opcode == 0x4)
3791 || ((i.tm.base_opcode == 0xf6
3792 || i.tm.base_opcode == 0xc6)
3793 && i.tm.extension_opcode == 0x0)))))
3794 || (i.reg_operands == 2
3795 && i.op[0].regs == i.op[1].regs
3796 && ((i.tm.base_opcode == 0x30
3797 || i.tm.base_opcode == 0x28)
3798 && i.tm.extension_opcode == None)))
3799 && i.types[1].bitfield.qword)
3800 {
3801 /* Optimize: -O:
3802 andq $imm31, %r64 -> andl $imm31, %r32
3803 testq $imm31, %r64 -> testl $imm31, %r32
3804 xorq %r64, %r64 -> xorl %r32, %r32
3805 subq %r64, %r64 -> subl %r32, %r32
3806 movq $imm31, %r64 -> movl $imm31, %r32
3807 movq $imm32, %r64 -> movl $imm32, %r32
3808 */
3809 i.tm.opcode_modifier.norex64 = 1;
3810 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3811 {
3812 /* Handle
3813 movq $imm31, %r64 -> movl $imm31, %r32
3814 movq $imm32, %r64 -> movl $imm32, %r32
3815 */
3816 i.tm.operand_types[0].bitfield.imm32 = 1;
3817 i.tm.operand_types[0].bitfield.imm32s = 0;
3818 i.tm.operand_types[0].bitfield.imm64 = 0;
3819 i.types[0].bitfield.imm32 = 1;
3820 i.types[0].bitfield.imm32s = 0;
3821 i.types[0].bitfield.imm64 = 0;
3822 i.types[1].bitfield.dword = 1;
3823 i.types[1].bitfield.qword = 0;
3824 if (i.tm.base_opcode == 0xc6)
3825 {
3826 /* Handle
3827 movq $imm31, %r64 -> movl $imm31, %r32
3828 */
3829 i.tm.base_opcode = 0xb0;
3830 i.tm.extension_opcode = None;
3831 i.tm.opcode_modifier.shortform = 1;
3832 i.tm.opcode_modifier.modrm = 0;
3833 }
3834 }
3835 }
3836 else if (optimize > 1
3837 && i.reg_operands == 3
3838 && i.op[0].regs == i.op[1].regs
3839 && !i.types[2].bitfield.xmmword
3840 && (i.tm.opcode_modifier.vex
3841 || (!i.mask
3842 && !i.rounding
3843 && i.tm.opcode_modifier.evex
3844 && cpu_arch_flags.bitfield.cpuavx512vl))
3845 && ((i.tm.base_opcode == 0x55
3846 || i.tm.base_opcode == 0x6655
3847 || i.tm.base_opcode == 0x66df
3848 || i.tm.base_opcode == 0x57
3849 || i.tm.base_opcode == 0x6657
3850 || i.tm.base_opcode == 0x66ef
3851 || i.tm.base_opcode == 0x66f8
3852 || i.tm.base_opcode == 0x66f9
3853 || i.tm.base_opcode == 0x66fa
3854 || i.tm.base_opcode == 0x66fb)
3855 && i.tm.extension_opcode == None))
3856 {
3857 /* Optimize: -O2:
3858 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3859 vpsubq and vpsubw:
3860 EVEX VOP %zmmM, %zmmM, %zmmN
3861 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3862 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3863 EVEX VOP %ymmM, %ymmM, %ymmN
3864 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3865 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3866 VEX VOP %ymmM, %ymmM, %ymmN
3867 -> VEX VOP %xmmM, %xmmM, %xmmN
3868 VOP, one of vpandn and vpxor:
3869 VEX VOP %ymmM, %ymmM, %ymmN
3870 -> VEX VOP %xmmM, %xmmM, %xmmN
3871 VOP, one of vpandnd and vpandnq:
3872 EVEX VOP %zmmM, %zmmM, %zmmN
3873 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3874 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3875 EVEX VOP %ymmM, %ymmM, %ymmN
3876 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3877 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3878 VOP, one of vpxord and vpxorq:
3879 EVEX VOP %zmmM, %zmmM, %zmmN
3880 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3881 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3882 EVEX VOP %ymmM, %ymmM, %ymmN
3883 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3884 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3885 */
3886 if (i.tm.opcode_modifier.evex)
3887 {
3888 /* If only lower 16 vector registers are used, we can use
3889 VEX encoding. */
3890 for (j = 0; j < 3; j++)
3891 if (register_number (i.op[j].regs) > 15)
3892 break;
3893
3894 if (j < 3)
3895 i.tm.opcode_modifier.evex = EVEX128;
3896 else
3897 {
3898 i.tm.opcode_modifier.vex = VEX128;
3899 i.tm.opcode_modifier.vexw = VEXW0;
3900 i.tm.opcode_modifier.evex = 0;
3901 }
3902 }
3903 else
3904 i.tm.opcode_modifier.vex = VEX128;
3905
3906 if (i.tm.opcode_modifier.vex)
3907 for (j = 0; j < 3; j++)
3908 {
3909 i.types[j].bitfield.xmmword = 1;
3910 i.types[j].bitfield.ymmword = 0;
3911 }
3912 }
3913 }
3914
3915 /* This is the guts of the machine-dependent assembler. LINE points to a
3916 machine dependent instruction. This function is supposed to emit
3917 the frags/bytes it assembles to. */
3918
3919 void
3920 md_assemble (char *line)
3921 {
3922 unsigned int j;
3923 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
3924 const insn_template *t;
3925
3926 /* Initialize globals. */
3927 memset (&i, '\0', sizeof (i));
3928 for (j = 0; j < MAX_OPERANDS; j++)
3929 i.reloc[j] = NO_RELOC;
3930 memset (disp_expressions, '\0', sizeof (disp_expressions));
3931 memset (im_expressions, '\0', sizeof (im_expressions));
3932 save_stack_p = save_stack;
3933
3934 /* First parse an instruction mnemonic & call i386_operand for the operands.
3935 We assume that the scrubber has arranged it so that line[0] is the valid
3936 start of a (possibly prefixed) mnemonic. */
3937
3938 line = parse_insn (line, mnemonic);
3939 if (line == NULL)
3940 return;
3941 mnem_suffix = i.suffix;
3942
3943 line = parse_operands (line, mnemonic);
3944 this_operand = -1;
3945 xfree (i.memop1_string);
3946 i.memop1_string = NULL;
3947 if (line == NULL)
3948 return;
3949
3950 /* Now we've parsed the mnemonic into a set of templates, and have the
3951 operands at hand. */
3952
3953 /* All intel opcodes have reversed operands except for "bound" and
3954 "enter". We also don't reverse intersegment "jmp" and "call"
3955 instructions with 2 immediate operands so that the immediate segment
3956 precedes the offset, as it does when in AT&T mode. */
3957 if (intel_syntax
3958 && i.operands > 1
3959 && (strcmp (mnemonic, "bound") != 0)
3960 && (strcmp (mnemonic, "invlpga") != 0)
3961 && !(operand_type_check (i.types[0], imm)
3962 && operand_type_check (i.types[1], imm)))
3963 swap_operands ();
3964
3965 /* The order of the immediates should be reversed
3966 for 2 immediates extrq and insertq instructions */
3967 if (i.imm_operands == 2
3968 && (strcmp (mnemonic, "extrq") == 0
3969 || strcmp (mnemonic, "insertq") == 0))
3970 swap_2_operands (0, 1);
3971
3972 if (i.imm_operands)
3973 optimize_imm ();
3974
3975 /* Don't optimize displacement for movabs since it only takes 64bit
3976 displacement. */
3977 if (i.disp_operands
3978 && i.disp_encoding != disp_encoding_32bit
3979 && (flag_code != CODE_64BIT
3980 || strcmp (mnemonic, "movabs") != 0))
3981 optimize_disp ();
3982
3983 /* Next, we find a template that matches the given insn,
3984 making sure the overlap of the given operands types is consistent
3985 with the template operand types. */
3986
3987 if (!(t = match_template (mnem_suffix)))
3988 return;
3989
3990 if (sse_check != check_none
3991 && !i.tm.opcode_modifier.noavx
3992 && !i.tm.cpu_flags.bitfield.cpuavx
3993 && (i.tm.cpu_flags.bitfield.cpusse
3994 || i.tm.cpu_flags.bitfield.cpusse2
3995 || i.tm.cpu_flags.bitfield.cpusse3
3996 || i.tm.cpu_flags.bitfield.cpussse3
3997 || i.tm.cpu_flags.bitfield.cpusse4_1
3998 || i.tm.cpu_flags.bitfield.cpusse4_2
3999 || i.tm.cpu_flags.bitfield.cpupclmul
4000 || i.tm.cpu_flags.bitfield.cpuaes
4001 || i.tm.cpu_flags.bitfield.cpugfni))
4002 {
4003 (sse_check == check_warning
4004 ? as_warn
4005 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4006 }
4007
4008 /* Zap movzx and movsx suffix. The suffix has been set from
4009 "word ptr" or "byte ptr" on the source operand in Intel syntax
4010 or extracted from mnemonic in AT&T syntax. But we'll use
4011 the destination register to choose the suffix for encoding. */
4012 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4013 {
4014 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4015 there is no suffix, the default will be byte extension. */
4016 if (i.reg_operands != 2
4017 && !i.suffix
4018 && intel_syntax)
4019 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4020
4021 i.suffix = 0;
4022 }
4023
4024 if (i.tm.opcode_modifier.fwait)
4025 if (!add_prefix (FWAIT_OPCODE))
4026 return;
4027
4028 /* Check if REP prefix is OK. */
4029 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4030 {
4031 as_bad (_("invalid instruction `%s' after `%s'"),
4032 i.tm.name, i.rep_prefix);
4033 return;
4034 }
4035
4036 /* Check for lock without a lockable instruction. Destination operand
4037 must be memory unless it is xchg (0x86). */
4038 if (i.prefix[LOCK_PREFIX]
4039 && (!i.tm.opcode_modifier.islockable
4040 || i.mem_operands == 0
4041 || (i.tm.base_opcode != 0x86
4042 && !operand_type_check (i.types[i.operands - 1], anymem))))
4043 {
4044 as_bad (_("expecting lockable instruction after `lock'"));
4045 return;
4046 }
4047
4048 /* Check if HLE prefix is OK. */
4049 if (i.hle_prefix && !check_hle ())
4050 return;
4051
4052 /* Check BND prefix. */
4053 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4054 as_bad (_("expecting valid branch instruction after `bnd'"));
4055
4056 /* Check NOTRACK prefix. */
4057 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4058 as_bad (_("expecting indirect branch instruction after `notrack'"));
4059
4060 if (i.tm.cpu_flags.bitfield.cpumpx)
4061 {
4062 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4063 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4064 else if (flag_code != CODE_16BIT
4065 ? i.prefix[ADDR_PREFIX]
4066 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4067 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4068 }
4069
4070 /* Insert BND prefix. */
4071 if (add_bnd_prefix
4072 && i.tm.opcode_modifier.bndprefixok
4073 && !i.prefix[BND_PREFIX])
4074 add_prefix (BND_PREFIX_OPCODE);
4075
4076 /* Check string instruction segment overrides. */
4077 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4078 {
4079 if (!check_string ())
4080 return;
4081 i.disp_operands = 0;
4082 }
4083
4084 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4085 optimize_encoding ();
4086
4087 if (!process_suffix ())
4088 return;
4089
4090 /* Update operand types. */
4091 for (j = 0; j < i.operands; j++)
4092 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4093
4094 /* Make still unresolved immediate matches conform to size of immediate
4095 given in i.suffix. */
4096 if (!finalize_imm ())
4097 return;
4098
4099 if (i.types[0].bitfield.imm1)
4100 i.imm_operands = 0; /* kludge for shift insns. */
4101
4102 /* We only need to check those implicit registers for instructions
4103 with 3 operands or less. */
4104 if (i.operands <= 3)
4105 for (j = 0; j < i.operands; j++)
4106 if (i.types[j].bitfield.inoutportreg
4107 || i.types[j].bitfield.shiftcount
4108 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4109 i.reg_operands--;
4110
4111 /* ImmExt should be processed after SSE2AVX. */
4112 if (!i.tm.opcode_modifier.sse2avx
4113 && i.tm.opcode_modifier.immext)
4114 process_immext ();
4115
4116 /* For insns with operands there are more diddles to do to the opcode. */
4117 if (i.operands)
4118 {
4119 if (!process_operands ())
4120 return;
4121 }
4122 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4123 {
4124 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4125 as_warn (_("translating to `%sp'"), i.tm.name);
4126 }
4127
4128 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
4129 {
4130 if (flag_code == CODE_16BIT)
4131 {
4132 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4133 i.tm.name);
4134 return;
4135 }
4136
4137 if (i.tm.opcode_modifier.vex)
4138 build_vex_prefix (t);
4139 else
4140 build_evex_prefix ();
4141 }
4142
4143 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4144 instructions may define INT_OPCODE as well, so avoid this corner
4145 case for those instructions that use MODRM. */
4146 if (i.tm.base_opcode == INT_OPCODE
4147 && !i.tm.opcode_modifier.modrm
4148 && i.op[0].imms->X_add_number == 3)
4149 {
4150 i.tm.base_opcode = INT3_OPCODE;
4151 i.imm_operands = 0;
4152 }
4153
4154 if ((i.tm.opcode_modifier.jump
4155 || i.tm.opcode_modifier.jumpbyte
4156 || i.tm.opcode_modifier.jumpdword)
4157 && i.op[0].disps->X_op == O_constant)
4158 {
4159 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4160 the absolute address given by the constant. Since ix86 jumps and
4161 calls are pc relative, we need to generate a reloc. */
4162 i.op[0].disps->X_add_symbol = &abs_symbol;
4163 i.op[0].disps->X_op = O_symbol;
4164 }
4165
4166 if (i.tm.opcode_modifier.rex64)
4167 i.rex |= REX_W;
4168
4169 /* For 8 bit registers we need an empty rex prefix. Also if the
4170 instruction already has a prefix, we need to convert old
4171 registers to new ones. */
4172
4173 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4174 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4175 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4176 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4177 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4178 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4179 && i.rex != 0))
4180 {
4181 int x;
4182
4183 i.rex |= REX_OPCODE;
4184 for (x = 0; x < 2; x++)
4185 {
4186 /* Look for 8 bit operand that uses old registers. */
4187 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4188 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4189 {
4190 /* In case it is "hi" register, give up. */
4191 if (i.op[x].regs->reg_num > 3)
4192 as_bad (_("can't encode register '%s%s' in an "
4193 "instruction requiring REX prefix."),
4194 register_prefix, i.op[x].regs->reg_name);
4195
4196 /* Otherwise it is equivalent to the extended register.
4197 Since the encoding doesn't change this is merely
4198 cosmetic cleanup for debug output. */
4199
4200 i.op[x].regs = i.op[x].regs + 8;
4201 }
4202 }
4203 }
4204
4205 if (i.rex == 0 && i.rex_encoding)
4206 {
4207 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4208 that uses legacy register. If it is "hi" register, don't add
4209 the REX_OPCODE byte. */
4210 int x;
4211 for (x = 0; x < 2; x++)
4212 if (i.types[x].bitfield.reg
4213 && i.types[x].bitfield.byte
4214 && (i.op[x].regs->reg_flags & RegRex64) == 0
4215 && i.op[x].regs->reg_num > 3)
4216 {
4217 i.rex_encoding = FALSE;
4218 break;
4219 }
4220
4221 if (i.rex_encoding)
4222 i.rex = REX_OPCODE;
4223 }
4224
4225 if (i.rex != 0)
4226 add_prefix (REX_OPCODE | i.rex);
4227
4228 /* We are ready to output the insn. */
4229 output_insn ();
4230 }
4231
4232 static char *
4233 parse_insn (char *line, char *mnemonic)
4234 {
4235 char *l = line;
4236 char *token_start = l;
4237 char *mnem_p;
4238 int supported;
4239 const insn_template *t;
4240 char *dot_p = NULL;
4241
4242 while (1)
4243 {
4244 mnem_p = mnemonic;
4245 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4246 {
4247 if (*mnem_p == '.')
4248 dot_p = mnem_p;
4249 mnem_p++;
4250 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4251 {
4252 as_bad (_("no such instruction: `%s'"), token_start);
4253 return NULL;
4254 }
4255 l++;
4256 }
4257 if (!is_space_char (*l)
4258 && *l != END_OF_INSN
4259 && (intel_syntax
4260 || (*l != PREFIX_SEPARATOR
4261 && *l != ',')))
4262 {
4263 as_bad (_("invalid character %s in mnemonic"),
4264 output_invalid (*l));
4265 return NULL;
4266 }
4267 if (token_start == l)
4268 {
4269 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4270 as_bad (_("expecting prefix; got nothing"));
4271 else
4272 as_bad (_("expecting mnemonic; got nothing"));
4273 return NULL;
4274 }
4275
4276 /* Look up instruction (or prefix) via hash table. */
4277 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4278
4279 if (*l != END_OF_INSN
4280 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4281 && current_templates
4282 && current_templates->start->opcode_modifier.isprefix)
4283 {
4284 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4285 {
4286 as_bad ((flag_code != CODE_64BIT
4287 ? _("`%s' is only supported in 64-bit mode")
4288 : _("`%s' is not supported in 64-bit mode")),
4289 current_templates->start->name);
4290 return NULL;
4291 }
4292 /* If we are in 16-bit mode, do not allow addr16 or data16.
4293 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4294 if ((current_templates->start->opcode_modifier.size16
4295 || current_templates->start->opcode_modifier.size32)
4296 && flag_code != CODE_64BIT
4297 && (current_templates->start->opcode_modifier.size32
4298 ^ (flag_code == CODE_16BIT)))
4299 {
4300 as_bad (_("redundant %s prefix"),
4301 current_templates->start->name);
4302 return NULL;
4303 }
4304 if (current_templates->start->opcode_length == 0)
4305 {
4306 /* Handle pseudo prefixes. */
4307 switch (current_templates->start->base_opcode)
4308 {
4309 case 0x0:
4310 /* {disp8} */
4311 i.disp_encoding = disp_encoding_8bit;
4312 break;
4313 case 0x1:
4314 /* {disp32} */
4315 i.disp_encoding = disp_encoding_32bit;
4316 break;
4317 case 0x2:
4318 /* {load} */
4319 i.dir_encoding = dir_encoding_load;
4320 break;
4321 case 0x3:
4322 /* {store} */
4323 i.dir_encoding = dir_encoding_store;
4324 break;
4325 case 0x4:
4326 /* {vex2} */
4327 i.vec_encoding = vex_encoding_vex2;
4328 break;
4329 case 0x5:
4330 /* {vex3} */
4331 i.vec_encoding = vex_encoding_vex3;
4332 break;
4333 case 0x6:
4334 /* {evex} */
4335 i.vec_encoding = vex_encoding_evex;
4336 break;
4337 case 0x7:
4338 /* {rex} */
4339 i.rex_encoding = TRUE;
4340 break;
4341 case 0x8:
4342 /* {nooptimize} */
4343 i.no_optimize = TRUE;
4344 break;
4345 default:
4346 abort ();
4347 }
4348 }
4349 else
4350 {
4351 /* Add prefix, checking for repeated prefixes. */
4352 switch (add_prefix (current_templates->start->base_opcode))
4353 {
4354 case PREFIX_EXIST:
4355 return NULL;
4356 case PREFIX_DS:
4357 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4358 i.notrack_prefix = current_templates->start->name;
4359 break;
4360 case PREFIX_REP:
4361 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4362 i.hle_prefix = current_templates->start->name;
4363 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4364 i.bnd_prefix = current_templates->start->name;
4365 else
4366 i.rep_prefix = current_templates->start->name;
4367 break;
4368 default:
4369 break;
4370 }
4371 }
4372 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4373 token_start = ++l;
4374 }
4375 else
4376 break;
4377 }
4378
4379 if (!current_templates)
4380 {
4381 /* Check if we should swap operand or force 32bit displacement in
4382 encoding. */
4383 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4384 i.dir_encoding = dir_encoding_store;
4385 else if (mnem_p - 3 == dot_p
4386 && dot_p[1] == 'd'
4387 && dot_p[2] == '8')
4388 i.disp_encoding = disp_encoding_8bit;
4389 else if (mnem_p - 4 == dot_p
4390 && dot_p[1] == 'd'
4391 && dot_p[2] == '3'
4392 && dot_p[3] == '2')
4393 i.disp_encoding = disp_encoding_32bit;
4394 else
4395 goto check_suffix;
4396 mnem_p = dot_p;
4397 *dot_p = '\0';
4398 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4399 }
4400
4401 if (!current_templates)
4402 {
4403 check_suffix:
4404 /* See if we can get a match by trimming off a suffix. */
4405 switch (mnem_p[-1])
4406 {
4407 case WORD_MNEM_SUFFIX:
4408 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4409 i.suffix = SHORT_MNEM_SUFFIX;
4410 else
4411 /* Fall through. */
4412 case BYTE_MNEM_SUFFIX:
4413 case QWORD_MNEM_SUFFIX:
4414 i.suffix = mnem_p[-1];
4415 mnem_p[-1] = '\0';
4416 current_templates = (const templates *) hash_find (op_hash,
4417 mnemonic);
4418 break;
4419 case SHORT_MNEM_SUFFIX:
4420 case LONG_MNEM_SUFFIX:
4421 if (!intel_syntax)
4422 {
4423 i.suffix = mnem_p[-1];
4424 mnem_p[-1] = '\0';
4425 current_templates = (const templates *) hash_find (op_hash,
4426 mnemonic);
4427 }
4428 break;
4429
4430 /* Intel Syntax. */
4431 case 'd':
4432 if (intel_syntax)
4433 {
4434 if (intel_float_operand (mnemonic) == 1)
4435 i.suffix = SHORT_MNEM_SUFFIX;
4436 else
4437 i.suffix = LONG_MNEM_SUFFIX;
4438 mnem_p[-1] = '\0';
4439 current_templates = (const templates *) hash_find (op_hash,
4440 mnemonic);
4441 }
4442 break;
4443 }
4444 if (!current_templates)
4445 {
4446 as_bad (_("no such instruction: `%s'"), token_start);
4447 return NULL;
4448 }
4449 }
4450
4451 if (current_templates->start->opcode_modifier.jump
4452 || current_templates->start->opcode_modifier.jumpbyte)
4453 {
4454 /* Check for a branch hint. We allow ",pt" and ",pn" for
4455 predict taken and predict not taken respectively.
4456 I'm not sure that branch hints actually do anything on loop
4457 and jcxz insns (JumpByte) for current Pentium4 chips. They
4458 may work in the future and it doesn't hurt to accept them
4459 now. */
4460 if (l[0] == ',' && l[1] == 'p')
4461 {
4462 if (l[2] == 't')
4463 {
4464 if (!add_prefix (DS_PREFIX_OPCODE))
4465 return NULL;
4466 l += 3;
4467 }
4468 else if (l[2] == 'n')
4469 {
4470 if (!add_prefix (CS_PREFIX_OPCODE))
4471 return NULL;
4472 l += 3;
4473 }
4474 }
4475 }
4476 /* Any other comma loses. */
4477 if (*l == ',')
4478 {
4479 as_bad (_("invalid character %s in mnemonic"),
4480 output_invalid (*l));
4481 return NULL;
4482 }
4483
4484 /* Check if instruction is supported on specified architecture. */
4485 supported = 0;
4486 for (t = current_templates->start; t < current_templates->end; ++t)
4487 {
4488 supported |= cpu_flags_match (t);
4489 if (supported == CPU_FLAGS_PERFECT_MATCH)
4490 {
4491 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4492 as_warn (_("use .code16 to ensure correct addressing mode"));
4493
4494 return l;
4495 }
4496 }
4497
4498 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4499 as_bad (flag_code == CODE_64BIT
4500 ? _("`%s' is not supported in 64-bit mode")
4501 : _("`%s' is only supported in 64-bit mode"),
4502 current_templates->start->name);
4503 else
4504 as_bad (_("`%s' is not supported on `%s%s'"),
4505 current_templates->start->name,
4506 cpu_arch_name ? cpu_arch_name : default_arch,
4507 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4508
4509 return NULL;
4510 }
4511
4512 static char *
4513 parse_operands (char *l, const char *mnemonic)
4514 {
4515 char *token_start;
4516
4517 /* 1 if operand is pending after ','. */
4518 unsigned int expecting_operand = 0;
4519
4520 /* Non-zero if operand parens not balanced. */
4521 unsigned int paren_not_balanced;
4522
4523 while (*l != END_OF_INSN)
4524 {
4525 /* Skip optional white space before operand. */
4526 if (is_space_char (*l))
4527 ++l;
4528 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4529 {
4530 as_bad (_("invalid character %s before operand %d"),
4531 output_invalid (*l),
4532 i.operands + 1);
4533 return NULL;
4534 }
4535 token_start = l; /* After white space. */
4536 paren_not_balanced = 0;
4537 while (paren_not_balanced || *l != ',')
4538 {
4539 if (*l == END_OF_INSN)
4540 {
4541 if (paren_not_balanced)
4542 {
4543 if (!intel_syntax)
4544 as_bad (_("unbalanced parenthesis in operand %d."),
4545 i.operands + 1);
4546 else
4547 as_bad (_("unbalanced brackets in operand %d."),
4548 i.operands + 1);
4549 return NULL;
4550 }
4551 else
4552 break; /* we are done */
4553 }
4554 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4555 {
4556 as_bad (_("invalid character %s in operand %d"),
4557 output_invalid (*l),
4558 i.operands + 1);
4559 return NULL;
4560 }
4561 if (!intel_syntax)
4562 {
4563 if (*l == '(')
4564 ++paren_not_balanced;
4565 if (*l == ')')
4566 --paren_not_balanced;
4567 }
4568 else
4569 {
4570 if (*l == '[')
4571 ++paren_not_balanced;
4572 if (*l == ']')
4573 --paren_not_balanced;
4574 }
4575 l++;
4576 }
4577 if (l != token_start)
4578 { /* Yes, we've read in another operand. */
4579 unsigned int operand_ok;
4580 this_operand = i.operands++;
4581 if (i.operands > MAX_OPERANDS)
4582 {
4583 as_bad (_("spurious operands; (%d operands/instruction max)"),
4584 MAX_OPERANDS);
4585 return NULL;
4586 }
4587 i.types[this_operand].bitfield.unspecified = 1;
4588 /* Now parse operand adding info to 'i' as we go along. */
4589 END_STRING_AND_SAVE (l);
4590
4591 if (intel_syntax)
4592 operand_ok =
4593 i386_intel_operand (token_start,
4594 intel_float_operand (mnemonic));
4595 else
4596 operand_ok = i386_att_operand (token_start);
4597
4598 RESTORE_END_STRING (l);
4599 if (!operand_ok)
4600 return NULL;
4601 }
4602 else
4603 {
4604 if (expecting_operand)
4605 {
4606 expecting_operand_after_comma:
4607 as_bad (_("expecting operand after ','; got nothing"));
4608 return NULL;
4609 }
4610 if (*l == ',')
4611 {
4612 as_bad (_("expecting operand before ','; got nothing"));
4613 return NULL;
4614 }
4615 }
4616
4617 /* Now *l must be either ',' or END_OF_INSN. */
4618 if (*l == ',')
4619 {
4620 if (*++l == END_OF_INSN)
4621 {
4622 /* Just skip it, if it's \n complain. */
4623 goto expecting_operand_after_comma;
4624 }
4625 expecting_operand = 1;
4626 }
4627 }
4628 return l;
4629 }
4630
4631 static void
4632 swap_2_operands (int xchg1, int xchg2)
4633 {
4634 union i386_op temp_op;
4635 i386_operand_type temp_type;
4636 enum bfd_reloc_code_real temp_reloc;
4637
4638 temp_type = i.types[xchg2];
4639 i.types[xchg2] = i.types[xchg1];
4640 i.types[xchg1] = temp_type;
4641 temp_op = i.op[xchg2];
4642 i.op[xchg2] = i.op[xchg1];
4643 i.op[xchg1] = temp_op;
4644 temp_reloc = i.reloc[xchg2];
4645 i.reloc[xchg2] = i.reloc[xchg1];
4646 i.reloc[xchg1] = temp_reloc;
4647
4648 if (i.mask)
4649 {
4650 if (i.mask->operand == xchg1)
4651 i.mask->operand = xchg2;
4652 else if (i.mask->operand == xchg2)
4653 i.mask->operand = xchg1;
4654 }
4655 if (i.broadcast)
4656 {
4657 if (i.broadcast->operand == xchg1)
4658 i.broadcast->operand = xchg2;
4659 else if (i.broadcast->operand == xchg2)
4660 i.broadcast->operand = xchg1;
4661 }
4662 if (i.rounding)
4663 {
4664 if (i.rounding->operand == xchg1)
4665 i.rounding->operand = xchg2;
4666 else if (i.rounding->operand == xchg2)
4667 i.rounding->operand = xchg1;
4668 }
4669 }
4670
4671 static void
4672 swap_operands (void)
4673 {
4674 switch (i.operands)
4675 {
4676 case 5:
4677 case 4:
4678 swap_2_operands (1, i.operands - 2);
4679 /* Fall through. */
4680 case 3:
4681 case 2:
4682 swap_2_operands (0, i.operands - 1);
4683 break;
4684 default:
4685 abort ();
4686 }
4687
4688 if (i.mem_operands == 2)
4689 {
4690 const seg_entry *temp_seg;
4691 temp_seg = i.seg[0];
4692 i.seg[0] = i.seg[1];
4693 i.seg[1] = temp_seg;
4694 }
4695 }
4696
4697 /* Try to ensure constant immediates are represented in the smallest
4698 opcode possible. */
4699 static void
4700 optimize_imm (void)
4701 {
4702 char guess_suffix = 0;
4703 int op;
4704
4705 if (i.suffix)
4706 guess_suffix = i.suffix;
4707 else if (i.reg_operands)
4708 {
4709 /* Figure out a suffix from the last register operand specified.
4710 We can't do this properly yet, ie. excluding InOutPortReg,
4711 but the following works for instructions with immediates.
4712 In any case, we can't set i.suffix yet. */
4713 for (op = i.operands; --op >= 0;)
4714 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4715 {
4716 guess_suffix = BYTE_MNEM_SUFFIX;
4717 break;
4718 }
4719 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4720 {
4721 guess_suffix = WORD_MNEM_SUFFIX;
4722 break;
4723 }
4724 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4725 {
4726 guess_suffix = LONG_MNEM_SUFFIX;
4727 break;
4728 }
4729 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4730 {
4731 guess_suffix = QWORD_MNEM_SUFFIX;
4732 break;
4733 }
4734 }
4735 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4736 guess_suffix = WORD_MNEM_SUFFIX;
4737
4738 for (op = i.operands; --op >= 0;)
4739 if (operand_type_check (i.types[op], imm))
4740 {
4741 switch (i.op[op].imms->X_op)
4742 {
4743 case O_constant:
4744 /* If a suffix is given, this operand may be shortened. */
4745 switch (guess_suffix)
4746 {
4747 case LONG_MNEM_SUFFIX:
4748 i.types[op].bitfield.imm32 = 1;
4749 i.types[op].bitfield.imm64 = 1;
4750 break;
4751 case WORD_MNEM_SUFFIX:
4752 i.types[op].bitfield.imm16 = 1;
4753 i.types[op].bitfield.imm32 = 1;
4754 i.types[op].bitfield.imm32s = 1;
4755 i.types[op].bitfield.imm64 = 1;
4756 break;
4757 case BYTE_MNEM_SUFFIX:
4758 i.types[op].bitfield.imm8 = 1;
4759 i.types[op].bitfield.imm8s = 1;
4760 i.types[op].bitfield.imm16 = 1;
4761 i.types[op].bitfield.imm32 = 1;
4762 i.types[op].bitfield.imm32s = 1;
4763 i.types[op].bitfield.imm64 = 1;
4764 break;
4765 }
4766
4767 /* If this operand is at most 16 bits, convert it
4768 to a signed 16 bit number before trying to see
4769 whether it will fit in an even smaller size.
4770 This allows a 16-bit operand such as $0xffe0 to
4771 be recognised as within Imm8S range. */
4772 if ((i.types[op].bitfield.imm16)
4773 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4774 {
4775 i.op[op].imms->X_add_number =
4776 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4777 }
4778 #ifdef BFD64
4779 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4780 if ((i.types[op].bitfield.imm32)
4781 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4782 == 0))
4783 {
4784 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4785 ^ ((offsetT) 1 << 31))
4786 - ((offsetT) 1 << 31));
4787 }
4788 #endif
4789 i.types[op]
4790 = operand_type_or (i.types[op],
4791 smallest_imm_type (i.op[op].imms->X_add_number));
4792
4793 /* We must avoid matching of Imm32 templates when 64bit
4794 only immediate is available. */
4795 if (guess_suffix == QWORD_MNEM_SUFFIX)
4796 i.types[op].bitfield.imm32 = 0;
4797 break;
4798
4799 case O_absent:
4800 case O_register:
4801 abort ();
4802
4803 /* Symbols and expressions. */
4804 default:
4805 /* Convert symbolic operand to proper sizes for matching, but don't
4806 prevent matching a set of insns that only supports sizes other
4807 than those matching the insn suffix. */
4808 {
4809 i386_operand_type mask, allowed;
4810 const insn_template *t;
4811
4812 operand_type_set (&mask, 0);
4813 operand_type_set (&allowed, 0);
4814
4815 for (t = current_templates->start;
4816 t < current_templates->end;
4817 ++t)
4818 allowed = operand_type_or (allowed,
4819 t->operand_types[op]);
4820 switch (guess_suffix)
4821 {
4822 case QWORD_MNEM_SUFFIX:
4823 mask.bitfield.imm64 = 1;
4824 mask.bitfield.imm32s = 1;
4825 break;
4826 case LONG_MNEM_SUFFIX:
4827 mask.bitfield.imm32 = 1;
4828 break;
4829 case WORD_MNEM_SUFFIX:
4830 mask.bitfield.imm16 = 1;
4831 break;
4832 case BYTE_MNEM_SUFFIX:
4833 mask.bitfield.imm8 = 1;
4834 break;
4835 default:
4836 break;
4837 }
4838 allowed = operand_type_and (mask, allowed);
4839 if (!operand_type_all_zero (&allowed))
4840 i.types[op] = operand_type_and (i.types[op], mask);
4841 }
4842 break;
4843 }
4844 }
4845 }
4846
4847 /* Try to use the smallest displacement type too. */
4848 static void
4849 optimize_disp (void)
4850 {
4851 int op;
4852
4853 for (op = i.operands; --op >= 0;)
4854 if (operand_type_check (i.types[op], disp))
4855 {
4856 if (i.op[op].disps->X_op == O_constant)
4857 {
4858 offsetT op_disp = i.op[op].disps->X_add_number;
4859
4860 if (i.types[op].bitfield.disp16
4861 && (op_disp & ~(offsetT) 0xffff) == 0)
4862 {
4863 /* If this operand is at most 16 bits, convert
4864 to a signed 16 bit number and don't use 64bit
4865 displacement. */
4866 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4867 i.types[op].bitfield.disp64 = 0;
4868 }
4869 #ifdef BFD64
4870 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4871 if (i.types[op].bitfield.disp32
4872 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4873 {
4874 /* If this operand is at most 32 bits, convert
4875 to a signed 32 bit number and don't use 64bit
4876 displacement. */
4877 op_disp &= (((offsetT) 2 << 31) - 1);
4878 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4879 i.types[op].bitfield.disp64 = 0;
4880 }
4881 #endif
4882 if (!op_disp && i.types[op].bitfield.baseindex)
4883 {
4884 i.types[op].bitfield.disp8 = 0;
4885 i.types[op].bitfield.disp16 = 0;
4886 i.types[op].bitfield.disp32 = 0;
4887 i.types[op].bitfield.disp32s = 0;
4888 i.types[op].bitfield.disp64 = 0;
4889 i.op[op].disps = 0;
4890 i.disp_operands--;
4891 }
4892 else if (flag_code == CODE_64BIT)
4893 {
4894 if (fits_in_signed_long (op_disp))
4895 {
4896 i.types[op].bitfield.disp64 = 0;
4897 i.types[op].bitfield.disp32s = 1;
4898 }
4899 if (i.prefix[ADDR_PREFIX]
4900 && fits_in_unsigned_long (op_disp))
4901 i.types[op].bitfield.disp32 = 1;
4902 }
4903 if ((i.types[op].bitfield.disp32
4904 || i.types[op].bitfield.disp32s
4905 || i.types[op].bitfield.disp16)
4906 && fits_in_disp8 (op_disp))
4907 i.types[op].bitfield.disp8 = 1;
4908 }
4909 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4910 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4911 {
4912 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4913 i.op[op].disps, 0, i.reloc[op]);
4914 i.types[op].bitfield.disp8 = 0;
4915 i.types[op].bitfield.disp16 = 0;
4916 i.types[op].bitfield.disp32 = 0;
4917 i.types[op].bitfield.disp32s = 0;
4918 i.types[op].bitfield.disp64 = 0;
4919 }
4920 else
4921 /* We only support 64bit displacement on constants. */
4922 i.types[op].bitfield.disp64 = 0;
4923 }
4924 }
4925
4926 /* Check if operands are valid for the instruction. */
4927
4928 static int
4929 check_VecOperands (const insn_template *t)
4930 {
4931 unsigned int op;
4932
4933 /* Without VSIB byte, we can't have a vector register for index. */
4934 if (!t->opcode_modifier.vecsib
4935 && i.index_reg
4936 && (i.index_reg->reg_type.bitfield.xmmword
4937 || i.index_reg->reg_type.bitfield.ymmword
4938 || i.index_reg->reg_type.bitfield.zmmword))
4939 {
4940 i.error = unsupported_vector_index_register;
4941 return 1;
4942 }
4943
4944 /* Check if default mask is allowed. */
4945 if (t->opcode_modifier.nodefmask
4946 && (!i.mask || i.mask->mask->reg_num == 0))
4947 {
4948 i.error = no_default_mask;
4949 return 1;
4950 }
4951
4952 /* For VSIB byte, we need a vector register for index, and all vector
4953 registers must be distinct. */
4954 if (t->opcode_modifier.vecsib)
4955 {
4956 if (!i.index_reg
4957 || !((t->opcode_modifier.vecsib == VecSIB128
4958 && i.index_reg->reg_type.bitfield.xmmword)
4959 || (t->opcode_modifier.vecsib == VecSIB256
4960 && i.index_reg->reg_type.bitfield.ymmword)
4961 || (t->opcode_modifier.vecsib == VecSIB512
4962 && i.index_reg->reg_type.bitfield.zmmword)))
4963 {
4964 i.error = invalid_vsib_address;
4965 return 1;
4966 }
4967
4968 gas_assert (i.reg_operands == 2 || i.mask);
4969 if (i.reg_operands == 2 && !i.mask)
4970 {
4971 gas_assert (i.types[0].bitfield.regsimd);
4972 gas_assert (i.types[0].bitfield.xmmword
4973 || i.types[0].bitfield.ymmword);
4974 gas_assert (i.types[2].bitfield.regsimd);
4975 gas_assert (i.types[2].bitfield.xmmword
4976 || i.types[2].bitfield.ymmword);
4977 if (operand_check == check_none)
4978 return 0;
4979 if (register_number (i.op[0].regs)
4980 != register_number (i.index_reg)
4981 && register_number (i.op[2].regs)
4982 != register_number (i.index_reg)
4983 && register_number (i.op[0].regs)
4984 != register_number (i.op[2].regs))
4985 return 0;
4986 if (operand_check == check_error)
4987 {
4988 i.error = invalid_vector_register_set;
4989 return 1;
4990 }
4991 as_warn (_("mask, index, and destination registers should be distinct"));
4992 }
4993 else if (i.reg_operands == 1 && i.mask)
4994 {
4995 if (i.types[1].bitfield.regsimd
4996 && (i.types[1].bitfield.xmmword
4997 || i.types[1].bitfield.ymmword
4998 || i.types[1].bitfield.zmmword)
4999 && (register_number (i.op[1].regs)
5000 == register_number (i.index_reg)))
5001 {
5002 if (operand_check == check_error)
5003 {
5004 i.error = invalid_vector_register_set;
5005 return 1;
5006 }
5007 if (operand_check != check_none)
5008 as_warn (_("index and destination registers should be distinct"));
5009 }
5010 }
5011 }
5012
5013 /* Check if broadcast is supported by the instruction and is applied
5014 to the memory operand. */
5015 if (i.broadcast)
5016 {
5017 int broadcasted_opnd_size;
5018
5019 /* Check if specified broadcast is supported in this instruction,
5020 and it's applied to memory operand of DWORD or QWORD type,
5021 depending on VecESize. */
5022 if (i.broadcast->type != t->opcode_modifier.broadcast
5023 || !i.types[i.broadcast->operand].bitfield.mem
5024 || (t->opcode_modifier.vecesize == 0
5025 && !i.types[i.broadcast->operand].bitfield.dword
5026 && !i.types[i.broadcast->operand].bitfield.unspecified)
5027 || (t->opcode_modifier.vecesize == 1
5028 && !i.types[i.broadcast->operand].bitfield.qword
5029 && !i.types[i.broadcast->operand].bitfield.unspecified))
5030 goto bad_broadcast;
5031
5032 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
5033 if (i.broadcast->type == BROADCAST_1TO16)
5034 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
5035 else if (i.broadcast->type == BROADCAST_1TO8)
5036 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
5037 else if (i.broadcast->type == BROADCAST_1TO4)
5038 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
5039 else if (i.broadcast->type == BROADCAST_1TO2)
5040 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
5041 else
5042 goto bad_broadcast;
5043
5044 if ((broadcasted_opnd_size == 256
5045 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
5046 || (broadcasted_opnd_size == 512
5047 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
5048 {
5049 bad_broadcast:
5050 i.error = unsupported_broadcast;
5051 return 1;
5052 }
5053 }
5054 /* If broadcast is supported in this instruction, we need to check if
5055 operand of one-element size isn't specified without broadcast. */
5056 else if (t->opcode_modifier.broadcast && i.mem_operands)
5057 {
5058 /* Find memory operand. */
5059 for (op = 0; op < i.operands; op++)
5060 if (operand_type_check (i.types[op], anymem))
5061 break;
5062 gas_assert (op < i.operands);
5063 /* Check size of the memory operand. */
5064 if ((t->opcode_modifier.vecesize == 0
5065 && i.types[op].bitfield.dword)
5066 || (t->opcode_modifier.vecesize == 1
5067 && i.types[op].bitfield.qword))
5068 {
5069 i.error = broadcast_needed;
5070 return 1;
5071 }
5072 }
5073
5074 /* Check if requested masking is supported. */
5075 if (i.mask
5076 && (!t->opcode_modifier.masking
5077 || (i.mask->zeroing
5078 && t->opcode_modifier.masking == MERGING_MASKING)))
5079 {
5080 i.error = unsupported_masking;
5081 return 1;
5082 }
5083
5084 /* Check if masking is applied to dest operand. */
5085 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5086 {
5087 i.error = mask_not_on_destination;
5088 return 1;
5089 }
5090
5091 /* Check RC/SAE. */
5092 if (i.rounding)
5093 {
5094 if ((i.rounding->type != saeonly
5095 && !t->opcode_modifier.staticrounding)
5096 || (i.rounding->type == saeonly
5097 && (t->opcode_modifier.staticrounding
5098 || !t->opcode_modifier.sae)))
5099 {
5100 i.error = unsupported_rc_sae;
5101 return 1;
5102 }
5103 /* If the instruction has several immediate operands and one of
5104 them is rounding, the rounding operand should be the last
5105 immediate operand. */
5106 if (i.imm_operands > 1
5107 && i.rounding->operand != (int) (i.imm_operands - 1))
5108 {
5109 i.error = rc_sae_operand_not_last_imm;
5110 return 1;
5111 }
5112 }
5113
5114 /* Check vector Disp8 operand. */
5115 if (t->opcode_modifier.disp8memshift
5116 && i.disp_encoding != disp_encoding_32bit)
5117 {
5118 if (i.broadcast)
5119 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
5120 else
5121 i.memshift = t->opcode_modifier.disp8memshift;
5122
5123 for (op = 0; op < i.operands; op++)
5124 if (operand_type_check (i.types[op], disp)
5125 && i.op[op].disps->X_op == O_constant)
5126 {
5127 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5128 {
5129 i.types[op].bitfield.disp8 = 1;
5130 return 0;
5131 }
5132 i.types[op].bitfield.disp8 = 0;
5133 }
5134 }
5135
5136 i.memshift = 0;
5137
5138 return 0;
5139 }
5140
5141 /* Check if operands are valid for the instruction. Update VEX
5142 operand types. */
5143
5144 static int
5145 VEX_check_operands (const insn_template *t)
5146 {
5147 if (i.vec_encoding == vex_encoding_evex)
5148 {
5149 /* This instruction must be encoded with EVEX prefix. */
5150 if (!t->opcode_modifier.evex)
5151 {
5152 i.error = unsupported;
5153 return 1;
5154 }
5155 return 0;
5156 }
5157
5158 if (!t->opcode_modifier.vex)
5159 {
5160 /* This instruction template doesn't have VEX prefix. */
5161 if (i.vec_encoding != vex_encoding_default)
5162 {
5163 i.error = unsupported;
5164 return 1;
5165 }
5166 return 0;
5167 }
5168
5169 /* Only check VEX_Imm4, which must be the first operand. */
5170 if (t->operand_types[0].bitfield.vec_imm4)
5171 {
5172 if (i.op[0].imms->X_op != O_constant
5173 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5174 {
5175 i.error = bad_imm4;
5176 return 1;
5177 }
5178
5179 /* Turn off Imm8 so that update_imm won't complain. */
5180 i.types[0] = vec_imm4;
5181 }
5182
5183 return 0;
5184 }
5185
5186 static const insn_template *
5187 match_template (char mnem_suffix)
5188 {
5189 /* Points to template once we've found it. */
5190 const insn_template *t;
5191 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5192 i386_operand_type overlap4;
5193 unsigned int found_reverse_match;
5194 i386_opcode_modifier suffix_check, mnemsuf_check;
5195 i386_operand_type operand_types [MAX_OPERANDS];
5196 int addr_prefix_disp;
5197 unsigned int j;
5198 unsigned int found_cpu_match;
5199 unsigned int check_register;
5200 enum i386_error specific_error = 0;
5201
5202 #if MAX_OPERANDS != 5
5203 # error "MAX_OPERANDS must be 5."
5204 #endif
5205
5206 found_reverse_match = 0;
5207 addr_prefix_disp = -1;
5208
5209 memset (&suffix_check, 0, sizeof (suffix_check));
5210 if (i.suffix == BYTE_MNEM_SUFFIX)
5211 suffix_check.no_bsuf = 1;
5212 else if (i.suffix == WORD_MNEM_SUFFIX)
5213 suffix_check.no_wsuf = 1;
5214 else if (i.suffix == SHORT_MNEM_SUFFIX)
5215 suffix_check.no_ssuf = 1;
5216 else if (i.suffix == LONG_MNEM_SUFFIX)
5217 suffix_check.no_lsuf = 1;
5218 else if (i.suffix == QWORD_MNEM_SUFFIX)
5219 suffix_check.no_qsuf = 1;
5220 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5221 suffix_check.no_ldsuf = 1;
5222
5223 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5224 if (intel_syntax)
5225 {
5226 switch (mnem_suffix)
5227 {
5228 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5229 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5230 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5231 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5232 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5233 }
5234 }
5235
5236 /* Must have right number of operands. */
5237 i.error = number_of_operands_mismatch;
5238
5239 for (t = current_templates->start; t < current_templates->end; t++)
5240 {
5241 addr_prefix_disp = -1;
5242
5243 if (i.operands != t->operands)
5244 continue;
5245
5246 /* Check processor support. */
5247 i.error = unsupported;
5248 found_cpu_match = (cpu_flags_match (t)
5249 == CPU_FLAGS_PERFECT_MATCH);
5250 if (!found_cpu_match)
5251 continue;
5252
5253 /* Check old gcc support. */
5254 i.error = old_gcc_only;
5255 if (!old_gcc && t->opcode_modifier.oldgcc)
5256 continue;
5257
5258 /* Check AT&T mnemonic. */
5259 i.error = unsupported_with_intel_mnemonic;
5260 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5261 continue;
5262
5263 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5264 i.error = unsupported_syntax;
5265 if ((intel_syntax && t->opcode_modifier.attsyntax)
5266 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5267 || (intel64 && t->opcode_modifier.amd64)
5268 || (!intel64 && t->opcode_modifier.intel64))
5269 continue;
5270
5271 /* Check the suffix, except for some instructions in intel mode. */
5272 i.error = invalid_instruction_suffix;
5273 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5274 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5275 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5276 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5277 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5278 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5279 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5280 continue;
5281 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5282 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5283 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5284 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5285 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5286 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5287 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5288 continue;
5289
5290 if (!operand_size_match (t))
5291 continue;
5292
5293 for (j = 0; j < MAX_OPERANDS; j++)
5294 operand_types[j] = t->operand_types[j];
5295
5296 /* In general, don't allow 64-bit operands in 32-bit mode. */
5297 if (i.suffix == QWORD_MNEM_SUFFIX
5298 && flag_code != CODE_64BIT
5299 && (intel_syntax
5300 ? (!t->opcode_modifier.ignoresize
5301 && !intel_float_operand (t->name))
5302 : intel_float_operand (t->name) != 2)
5303 && ((!operand_types[0].bitfield.regmmx
5304 && !operand_types[0].bitfield.regsimd)
5305 || (!operand_types[t->operands > 1].bitfield.regmmx
5306 && !operand_types[t->operands > 1].bitfield.regsimd))
5307 && (t->base_opcode != 0x0fc7
5308 || t->extension_opcode != 1 /* cmpxchg8b */))
5309 continue;
5310
5311 /* In general, don't allow 32-bit operands on pre-386. */
5312 else if (i.suffix == LONG_MNEM_SUFFIX
5313 && !cpu_arch_flags.bitfield.cpui386
5314 && (intel_syntax
5315 ? (!t->opcode_modifier.ignoresize
5316 && !intel_float_operand (t->name))
5317 : intel_float_operand (t->name) != 2)
5318 && ((!operand_types[0].bitfield.regmmx
5319 && !operand_types[0].bitfield.regsimd)
5320 || (!operand_types[t->operands > 1].bitfield.regmmx
5321 && !operand_types[t->operands > 1].bitfield.regsimd)))
5322 continue;
5323
5324 /* Do not verify operands when there are none. */
5325 else
5326 {
5327 if (!t->operands)
5328 /* We've found a match; break out of loop. */
5329 break;
5330 }
5331
5332 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5333 into Disp32/Disp16/Disp32 operand. */
5334 if (i.prefix[ADDR_PREFIX] != 0)
5335 {
5336 /* There should be only one Disp operand. */
5337 switch (flag_code)
5338 {
5339 case CODE_16BIT:
5340 for (j = 0; j < MAX_OPERANDS; j++)
5341 {
5342 if (operand_types[j].bitfield.disp16)
5343 {
5344 addr_prefix_disp = j;
5345 operand_types[j].bitfield.disp32 = 1;
5346 operand_types[j].bitfield.disp16 = 0;
5347 break;
5348 }
5349 }
5350 break;
5351 case CODE_32BIT:
5352 for (j = 0; j < MAX_OPERANDS; j++)
5353 {
5354 if (operand_types[j].bitfield.disp32)
5355 {
5356 addr_prefix_disp = j;
5357 operand_types[j].bitfield.disp32 = 0;
5358 operand_types[j].bitfield.disp16 = 1;
5359 break;
5360 }
5361 }
5362 break;
5363 case CODE_64BIT:
5364 for (j = 0; j < MAX_OPERANDS; j++)
5365 {
5366 if (operand_types[j].bitfield.disp64)
5367 {
5368 addr_prefix_disp = j;
5369 operand_types[j].bitfield.disp64 = 0;
5370 operand_types[j].bitfield.disp32 = 1;
5371 break;
5372 }
5373 }
5374 break;
5375 }
5376 }
5377
5378 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5379 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5380 continue;
5381
5382 /* We check register size if needed. */
5383 check_register = t->opcode_modifier.checkregsize;
5384 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5385 switch (t->operands)
5386 {
5387 case 1:
5388 if (!operand_type_match (overlap0, i.types[0]))
5389 continue;
5390 break;
5391 case 2:
5392 /* xchg %eax, %eax is a special case. It is an alias for nop
5393 only in 32bit mode and we can use opcode 0x90. In 64bit
5394 mode, we can't use 0x90 for xchg %eax, %eax since it should
5395 zero-extend %eax to %rax. */
5396 if (flag_code == CODE_64BIT
5397 && t->base_opcode == 0x90
5398 && operand_type_equal (&i.types [0], &acc32)
5399 && operand_type_equal (&i.types [1], &acc32))
5400 continue;
5401 /* If we want store form, we reverse direction of operands. */
5402 if (i.dir_encoding == dir_encoding_store
5403 && t->opcode_modifier.d)
5404 goto check_reverse;
5405 /* Fall through. */
5406
5407 case 3:
5408 /* If we want store form, we skip the current load. */
5409 if (i.dir_encoding == dir_encoding_store
5410 && i.mem_operands == 0
5411 && t->opcode_modifier.load)
5412 continue;
5413 /* Fall through. */
5414 case 4:
5415 case 5:
5416 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5417 if (!operand_type_match (overlap0, i.types[0])
5418 || !operand_type_match (overlap1, i.types[1])
5419 || (check_register
5420 && !operand_type_register_match (i.types[0],
5421 operand_types[0],
5422 i.types[1],
5423 operand_types[1])))
5424 {
5425 /* Check if other direction is valid ... */
5426 if (!t->opcode_modifier.d)
5427 continue;
5428
5429 check_reverse:
5430 /* Try reversing direction of operands. */
5431 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5432 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5433 if (!operand_type_match (overlap0, i.types[0])
5434 || !operand_type_match (overlap1, i.types[1])
5435 || (check_register
5436 && !operand_type_register_match (i.types[0],
5437 operand_types[1],
5438 i.types[1],
5439 operand_types[0])))
5440 {
5441 /* Does not match either direction. */
5442 continue;
5443 }
5444 /* found_reverse_match holds which of D or FloatR
5445 we've found. */
5446 if (!t->opcode_modifier.d)
5447 found_reverse_match = 0;
5448 else if (operand_types[0].bitfield.tbyte)
5449 found_reverse_match = Opcode_FloatD;
5450 else
5451 found_reverse_match = Opcode_D;
5452 if (t->opcode_modifier.floatr)
5453 found_reverse_match |= Opcode_FloatR;
5454 }
5455 else
5456 {
5457 /* Found a forward 2 operand match here. */
5458 switch (t->operands)
5459 {
5460 case 5:
5461 overlap4 = operand_type_and (i.types[4],
5462 operand_types[4]);
5463 /* Fall through. */
5464 case 4:
5465 overlap3 = operand_type_and (i.types[3],
5466 operand_types[3]);
5467 /* Fall through. */
5468 case 3:
5469 overlap2 = operand_type_and (i.types[2],
5470 operand_types[2]);
5471 break;
5472 }
5473
5474 switch (t->operands)
5475 {
5476 case 5:
5477 if (!operand_type_match (overlap4, i.types[4])
5478 || !operand_type_register_match (i.types[3],
5479 operand_types[3],
5480 i.types[4],
5481 operand_types[4]))
5482 continue;
5483 /* Fall through. */
5484 case 4:
5485 if (!operand_type_match (overlap3, i.types[3])
5486 || (check_register
5487 && !operand_type_register_match (i.types[2],
5488 operand_types[2],
5489 i.types[3],
5490 operand_types[3])))
5491 continue;
5492 /* Fall through. */
5493 case 3:
5494 /* Here we make use of the fact that there are no
5495 reverse match 3 operand instructions, and all 3
5496 operand instructions only need to be checked for
5497 register consistency between operands 2 and 3. */
5498 if (!operand_type_match (overlap2, i.types[2])
5499 || (check_register
5500 && !operand_type_register_match (i.types[1],
5501 operand_types[1],
5502 i.types[2],
5503 operand_types[2])))
5504 continue;
5505 break;
5506 }
5507 }
5508 /* Found either forward/reverse 2, 3 or 4 operand match here:
5509 slip through to break. */
5510 }
5511 if (!found_cpu_match)
5512 {
5513 found_reverse_match = 0;
5514 continue;
5515 }
5516
5517 /* Check if vector and VEX operands are valid. */
5518 if (check_VecOperands (t) || VEX_check_operands (t))
5519 {
5520 specific_error = i.error;
5521 continue;
5522 }
5523
5524 /* We've found a match; break out of loop. */
5525 break;
5526 }
5527
5528 if (t == current_templates->end)
5529 {
5530 /* We found no match. */
5531 const char *err_msg;
5532 switch (specific_error ? specific_error : i.error)
5533 {
5534 default:
5535 abort ();
5536 case operand_size_mismatch:
5537 err_msg = _("operand size mismatch");
5538 break;
5539 case operand_type_mismatch:
5540 err_msg = _("operand type mismatch");
5541 break;
5542 case register_type_mismatch:
5543 err_msg = _("register type mismatch");
5544 break;
5545 case number_of_operands_mismatch:
5546 err_msg = _("number of operands mismatch");
5547 break;
5548 case invalid_instruction_suffix:
5549 err_msg = _("invalid instruction suffix");
5550 break;
5551 case bad_imm4:
5552 err_msg = _("constant doesn't fit in 4 bits");
5553 break;
5554 case old_gcc_only:
5555 err_msg = _("only supported with old gcc");
5556 break;
5557 case unsupported_with_intel_mnemonic:
5558 err_msg = _("unsupported with Intel mnemonic");
5559 break;
5560 case unsupported_syntax:
5561 err_msg = _("unsupported syntax");
5562 break;
5563 case unsupported:
5564 as_bad (_("unsupported instruction `%s'"),
5565 current_templates->start->name);
5566 return NULL;
5567 case invalid_vsib_address:
5568 err_msg = _("invalid VSIB address");
5569 break;
5570 case invalid_vector_register_set:
5571 err_msg = _("mask, index, and destination registers must be distinct");
5572 break;
5573 case unsupported_vector_index_register:
5574 err_msg = _("unsupported vector index register");
5575 break;
5576 case unsupported_broadcast:
5577 err_msg = _("unsupported broadcast");
5578 break;
5579 case broadcast_not_on_src_operand:
5580 err_msg = _("broadcast not on source memory operand");
5581 break;
5582 case broadcast_needed:
5583 err_msg = _("broadcast is needed for operand of such type");
5584 break;
5585 case unsupported_masking:
5586 err_msg = _("unsupported masking");
5587 break;
5588 case mask_not_on_destination:
5589 err_msg = _("mask not on destination operand");
5590 break;
5591 case no_default_mask:
5592 err_msg = _("default mask isn't allowed");
5593 break;
5594 case unsupported_rc_sae:
5595 err_msg = _("unsupported static rounding/sae");
5596 break;
5597 case rc_sae_operand_not_last_imm:
5598 if (intel_syntax)
5599 err_msg = _("RC/SAE operand must precede immediate operands");
5600 else
5601 err_msg = _("RC/SAE operand must follow immediate operands");
5602 break;
5603 case invalid_register_operand:
5604 err_msg = _("invalid register operand");
5605 break;
5606 }
5607 as_bad (_("%s for `%s'"), err_msg,
5608 current_templates->start->name);
5609 return NULL;
5610 }
5611
5612 if (!quiet_warnings)
5613 {
5614 if (!intel_syntax
5615 && (i.types[0].bitfield.jumpabsolute
5616 != operand_types[0].bitfield.jumpabsolute))
5617 {
5618 as_warn (_("indirect %s without `*'"), t->name);
5619 }
5620
5621 if (t->opcode_modifier.isprefix
5622 && t->opcode_modifier.ignoresize)
5623 {
5624 /* Warn them that a data or address size prefix doesn't
5625 affect assembly of the next line of code. */
5626 as_warn (_("stand-alone `%s' prefix"), t->name);
5627 }
5628 }
5629
5630 /* Copy the template we found. */
5631 i.tm = *t;
5632
5633 if (addr_prefix_disp != -1)
5634 i.tm.operand_types[addr_prefix_disp]
5635 = operand_types[addr_prefix_disp];
5636
5637 if (found_reverse_match)
5638 {
5639 /* If we found a reverse match we must alter the opcode
5640 direction bit. found_reverse_match holds bits to change
5641 (different for int & float insns). */
5642
5643 i.tm.base_opcode ^= found_reverse_match;
5644
5645 i.tm.operand_types[0] = operand_types[1];
5646 i.tm.operand_types[1] = operand_types[0];
5647 }
5648
5649 return t;
5650 }
5651
5652 static int
5653 check_string (void)
5654 {
5655 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5656 if (i.tm.operand_types[mem_op].bitfield.esseg)
5657 {
5658 if (i.seg[0] != NULL && i.seg[0] != &es)
5659 {
5660 as_bad (_("`%s' operand %d must use `%ses' segment"),
5661 i.tm.name,
5662 mem_op + 1,
5663 register_prefix);
5664 return 0;
5665 }
5666 /* There's only ever one segment override allowed per instruction.
5667 This instruction possibly has a legal segment override on the
5668 second operand, so copy the segment to where non-string
5669 instructions store it, allowing common code. */
5670 i.seg[0] = i.seg[1];
5671 }
5672 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5673 {
5674 if (i.seg[1] != NULL && i.seg[1] != &es)
5675 {
5676 as_bad (_("`%s' operand %d must use `%ses' segment"),
5677 i.tm.name,
5678 mem_op + 2,
5679 register_prefix);
5680 return 0;
5681 }
5682 }
5683 return 1;
5684 }
5685
5686 static int
5687 process_suffix (void)
5688 {
5689 /* If matched instruction specifies an explicit instruction mnemonic
5690 suffix, use it. */
5691 if (i.tm.opcode_modifier.size16)
5692 i.suffix = WORD_MNEM_SUFFIX;
5693 else if (i.tm.opcode_modifier.size32)
5694 i.suffix = LONG_MNEM_SUFFIX;
5695 else if (i.tm.opcode_modifier.size64)
5696 i.suffix = QWORD_MNEM_SUFFIX;
5697 else if (i.reg_operands)
5698 {
5699 /* If there's no instruction mnemonic suffix we try to invent one
5700 based on register operands. */
5701 if (!i.suffix)
5702 {
5703 /* We take i.suffix from the last register operand specified,
5704 Destination register type is more significant than source
5705 register type. crc32 in SSE4.2 prefers source register
5706 type. */
5707 if (i.tm.base_opcode == 0xf20f38f1)
5708 {
5709 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
5710 i.suffix = WORD_MNEM_SUFFIX;
5711 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
5712 i.suffix = LONG_MNEM_SUFFIX;
5713 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
5714 i.suffix = QWORD_MNEM_SUFFIX;
5715 }
5716 else if (i.tm.base_opcode == 0xf20f38f0)
5717 {
5718 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
5719 i.suffix = BYTE_MNEM_SUFFIX;
5720 }
5721
5722 if (!i.suffix)
5723 {
5724 int op;
5725
5726 if (i.tm.base_opcode == 0xf20f38f1
5727 || i.tm.base_opcode == 0xf20f38f0)
5728 {
5729 /* We have to know the operand size for crc32. */
5730 as_bad (_("ambiguous memory operand size for `%s`"),
5731 i.tm.name);
5732 return 0;
5733 }
5734
5735 for (op = i.operands; --op >= 0;)
5736 if (!i.tm.operand_types[op].bitfield.inoutportreg
5737 && !i.tm.operand_types[op].bitfield.shiftcount)
5738 {
5739 if (!i.types[op].bitfield.reg)
5740 continue;
5741 if (i.types[op].bitfield.byte)
5742 i.suffix = BYTE_MNEM_SUFFIX;
5743 else if (i.types[op].bitfield.word)
5744 i.suffix = WORD_MNEM_SUFFIX;
5745 else if (i.types[op].bitfield.dword)
5746 i.suffix = LONG_MNEM_SUFFIX;
5747 else if (i.types[op].bitfield.qword)
5748 i.suffix = QWORD_MNEM_SUFFIX;
5749 else
5750 continue;
5751 break;
5752 }
5753 }
5754 }
5755 else if (i.suffix == BYTE_MNEM_SUFFIX)
5756 {
5757 if (intel_syntax
5758 && i.tm.opcode_modifier.ignoresize
5759 && i.tm.opcode_modifier.no_bsuf)
5760 i.suffix = 0;
5761 else if (!check_byte_reg ())
5762 return 0;
5763 }
5764 else if (i.suffix == LONG_MNEM_SUFFIX)
5765 {
5766 if (intel_syntax
5767 && i.tm.opcode_modifier.ignoresize
5768 && i.tm.opcode_modifier.no_lsuf)
5769 i.suffix = 0;
5770 else if (!check_long_reg ())
5771 return 0;
5772 }
5773 else if (i.suffix == QWORD_MNEM_SUFFIX)
5774 {
5775 if (intel_syntax
5776 && i.tm.opcode_modifier.ignoresize
5777 && i.tm.opcode_modifier.no_qsuf)
5778 i.suffix = 0;
5779 else if (!check_qword_reg ())
5780 return 0;
5781 }
5782 else if (i.suffix == WORD_MNEM_SUFFIX)
5783 {
5784 if (intel_syntax
5785 && i.tm.opcode_modifier.ignoresize
5786 && i.tm.opcode_modifier.no_wsuf)
5787 i.suffix = 0;
5788 else if (!check_word_reg ())
5789 return 0;
5790 }
5791 else if (i.suffix == XMMWORD_MNEM_SUFFIX
5792 || i.suffix == YMMWORD_MNEM_SUFFIX
5793 || i.suffix == ZMMWORD_MNEM_SUFFIX)
5794 {
5795 /* Skip if the instruction has x/y/z suffix. match_template
5796 should check if it is a valid suffix. */
5797 }
5798 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5799 /* Do nothing if the instruction is going to ignore the prefix. */
5800 ;
5801 else
5802 abort ();
5803 }
5804 else if (i.tm.opcode_modifier.defaultsize
5805 && !i.suffix
5806 /* exclude fldenv/frstor/fsave/fstenv */
5807 && i.tm.opcode_modifier.no_ssuf)
5808 {
5809 i.suffix = stackop_size;
5810 }
5811 else if (intel_syntax
5812 && !i.suffix
5813 && (i.tm.operand_types[0].bitfield.jumpabsolute
5814 || i.tm.opcode_modifier.jumpbyte
5815 || i.tm.opcode_modifier.jumpintersegment
5816 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5817 && i.tm.extension_opcode <= 3)))
5818 {
5819 switch (flag_code)
5820 {
5821 case CODE_64BIT:
5822 if (!i.tm.opcode_modifier.no_qsuf)
5823 {
5824 i.suffix = QWORD_MNEM_SUFFIX;
5825 break;
5826 }
5827 /* Fall through. */
5828 case CODE_32BIT:
5829 if (!i.tm.opcode_modifier.no_lsuf)
5830 i.suffix = LONG_MNEM_SUFFIX;
5831 break;
5832 case CODE_16BIT:
5833 if (!i.tm.opcode_modifier.no_wsuf)
5834 i.suffix = WORD_MNEM_SUFFIX;
5835 break;
5836 }
5837 }
5838
5839 if (!i.suffix)
5840 {
5841 if (!intel_syntax)
5842 {
5843 if (i.tm.opcode_modifier.w)
5844 {
5845 as_bad (_("no instruction mnemonic suffix given and "
5846 "no register operands; can't size instruction"));
5847 return 0;
5848 }
5849 }
5850 else
5851 {
5852 unsigned int suffixes;
5853
5854 suffixes = !i.tm.opcode_modifier.no_bsuf;
5855 if (!i.tm.opcode_modifier.no_wsuf)
5856 suffixes |= 1 << 1;
5857 if (!i.tm.opcode_modifier.no_lsuf)
5858 suffixes |= 1 << 2;
5859 if (!i.tm.opcode_modifier.no_ldsuf)
5860 suffixes |= 1 << 3;
5861 if (!i.tm.opcode_modifier.no_ssuf)
5862 suffixes |= 1 << 4;
5863 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
5864 suffixes |= 1 << 5;
5865
5866 /* There are more than suffix matches. */
5867 if (i.tm.opcode_modifier.w
5868 || ((suffixes & (suffixes - 1))
5869 && !i.tm.opcode_modifier.defaultsize
5870 && !i.tm.opcode_modifier.ignoresize))
5871 {
5872 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5873 return 0;
5874 }
5875 }
5876 }
5877
5878 /* Change the opcode based on the operand size given by i.suffix;
5879 We don't need to change things for byte insns. */
5880
5881 if (i.suffix
5882 && i.suffix != BYTE_MNEM_SUFFIX
5883 && i.suffix != XMMWORD_MNEM_SUFFIX
5884 && i.suffix != YMMWORD_MNEM_SUFFIX
5885 && i.suffix != ZMMWORD_MNEM_SUFFIX)
5886 {
5887 /* It's not a byte, select word/dword operation. */
5888 if (i.tm.opcode_modifier.w)
5889 {
5890 if (i.tm.opcode_modifier.shortform)
5891 i.tm.base_opcode |= 8;
5892 else
5893 i.tm.base_opcode |= 1;
5894 }
5895
5896 /* Now select between word & dword operations via the operand
5897 size prefix, except for instructions that will ignore this
5898 prefix anyway. */
5899 if (i.tm.opcode_modifier.addrprefixop0)
5900 {
5901 /* The address size override prefix changes the size of the
5902 first operand. */
5903 if ((flag_code == CODE_32BIT
5904 && i.op->regs[0].reg_type.bitfield.word)
5905 || (flag_code != CODE_32BIT
5906 && i.op->regs[0].reg_type.bitfield.dword))
5907 if (!add_prefix (ADDR_PREFIX_OPCODE))
5908 return 0;
5909 }
5910 else if (i.suffix != QWORD_MNEM_SUFFIX
5911 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5912 && !i.tm.opcode_modifier.ignoresize
5913 && !i.tm.opcode_modifier.floatmf
5914 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5915 || (flag_code == CODE_64BIT
5916 && i.tm.opcode_modifier.jumpbyte)))
5917 {
5918 unsigned int prefix = DATA_PREFIX_OPCODE;
5919
5920 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5921 prefix = ADDR_PREFIX_OPCODE;
5922
5923 if (!add_prefix (prefix))
5924 return 0;
5925 }
5926
5927 /* Set mode64 for an operand. */
5928 if (i.suffix == QWORD_MNEM_SUFFIX
5929 && flag_code == CODE_64BIT
5930 && !i.tm.opcode_modifier.norex64)
5931 {
5932 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5933 need rex64. cmpxchg8b is also a special case. */
5934 if (! (i.operands == 2
5935 && i.tm.base_opcode == 0x90
5936 && i.tm.extension_opcode == None
5937 && operand_type_equal (&i.types [0], &acc64)
5938 && operand_type_equal (&i.types [1], &acc64))
5939 && ! (i.operands == 1
5940 && i.tm.base_opcode == 0xfc7
5941 && i.tm.extension_opcode == 1
5942 && !operand_type_check (i.types [0], reg)
5943 && operand_type_check (i.types [0], anymem)))
5944 i.rex |= REX_W;
5945 }
5946
5947 /* Size floating point instruction. */
5948 if (i.suffix == LONG_MNEM_SUFFIX)
5949 if (i.tm.opcode_modifier.floatmf)
5950 i.tm.base_opcode ^= 4;
5951 }
5952
5953 return 1;
5954 }
5955
5956 static int
5957 check_byte_reg (void)
5958 {
5959 int op;
5960
5961 for (op = i.operands; --op >= 0;)
5962 {
5963 /* Skip non-register operands. */
5964 if (!i.types[op].bitfield.reg)
5965 continue;
5966
5967 /* If this is an eight bit register, it's OK. If it's the 16 or
5968 32 bit version of an eight bit register, we will just use the
5969 low portion, and that's OK too. */
5970 if (i.types[op].bitfield.byte)
5971 continue;
5972
5973 /* I/O port address operands are OK too. */
5974 if (i.tm.operand_types[op].bitfield.inoutportreg)
5975 continue;
5976
5977 /* crc32 doesn't generate this warning. */
5978 if (i.tm.base_opcode == 0xf20f38f0)
5979 continue;
5980
5981 if ((i.types[op].bitfield.word
5982 || i.types[op].bitfield.dword
5983 || i.types[op].bitfield.qword)
5984 && i.op[op].regs->reg_num < 4
5985 /* Prohibit these changes in 64bit mode, since the lowering
5986 would be more complicated. */
5987 && flag_code != CODE_64BIT)
5988 {
5989 #if REGISTER_WARNINGS
5990 if (!quiet_warnings)
5991 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5992 register_prefix,
5993 (i.op[op].regs + (i.types[op].bitfield.word
5994 ? REGNAM_AL - REGNAM_AX
5995 : REGNAM_AL - REGNAM_EAX))->reg_name,
5996 register_prefix,
5997 i.op[op].regs->reg_name,
5998 i.suffix);
5999 #endif
6000 continue;
6001 }
6002 /* Any other register is bad. */
6003 if (i.types[op].bitfield.reg
6004 || i.types[op].bitfield.regmmx
6005 || i.types[op].bitfield.regsimd
6006 || i.types[op].bitfield.sreg2
6007 || i.types[op].bitfield.sreg3
6008 || i.types[op].bitfield.control
6009 || i.types[op].bitfield.debug
6010 || i.types[op].bitfield.test)
6011 {
6012 as_bad (_("`%s%s' not allowed with `%s%c'"),
6013 register_prefix,
6014 i.op[op].regs->reg_name,
6015 i.tm.name,
6016 i.suffix);
6017 return 0;
6018 }
6019 }
6020 return 1;
6021 }
6022
6023 static int
6024 check_long_reg (void)
6025 {
6026 int op;
6027
6028 for (op = i.operands; --op >= 0;)
6029 /* Skip non-register operands. */
6030 if (!i.types[op].bitfield.reg)
6031 continue;
6032 /* Reject eight bit registers, except where the template requires
6033 them. (eg. movzb) */
6034 else if (i.types[op].bitfield.byte
6035 && (i.tm.operand_types[op].bitfield.reg
6036 || i.tm.operand_types[op].bitfield.acc)
6037 && (i.tm.operand_types[op].bitfield.word
6038 || i.tm.operand_types[op].bitfield.dword))
6039 {
6040 as_bad (_("`%s%s' not allowed with `%s%c'"),
6041 register_prefix,
6042 i.op[op].regs->reg_name,
6043 i.tm.name,
6044 i.suffix);
6045 return 0;
6046 }
6047 /* Warn if the e prefix on a general reg is missing. */
6048 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6049 && i.types[op].bitfield.word
6050 && (i.tm.operand_types[op].bitfield.reg
6051 || i.tm.operand_types[op].bitfield.acc)
6052 && i.tm.operand_types[op].bitfield.dword)
6053 {
6054 /* Prohibit these changes in the 64bit mode, since the
6055 lowering is more complicated. */
6056 if (flag_code == CODE_64BIT)
6057 {
6058 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6059 register_prefix, i.op[op].regs->reg_name,
6060 i.suffix);
6061 return 0;
6062 }
6063 #if REGISTER_WARNINGS
6064 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6065 register_prefix,
6066 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6067 register_prefix, i.op[op].regs->reg_name, i.suffix);
6068 #endif
6069 }
6070 /* Warn if the r prefix on a general reg is present. */
6071 else if (i.types[op].bitfield.qword
6072 && (i.tm.operand_types[op].bitfield.reg
6073 || i.tm.operand_types[op].bitfield.acc)
6074 && i.tm.operand_types[op].bitfield.dword)
6075 {
6076 if (intel_syntax
6077 && i.tm.opcode_modifier.toqword
6078 && !i.types[0].bitfield.regsimd)
6079 {
6080 /* Convert to QWORD. We want REX byte. */
6081 i.suffix = QWORD_MNEM_SUFFIX;
6082 }
6083 else
6084 {
6085 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6086 register_prefix, i.op[op].regs->reg_name,
6087 i.suffix);
6088 return 0;
6089 }
6090 }
6091 return 1;
6092 }
6093
6094 static int
6095 check_qword_reg (void)
6096 {
6097 int op;
6098
6099 for (op = i.operands; --op >= 0; )
6100 /* Skip non-register operands. */
6101 if (!i.types[op].bitfield.reg)
6102 continue;
6103 /* Reject eight bit registers, except where the template requires
6104 them. (eg. movzb) */
6105 else if (i.types[op].bitfield.byte
6106 && (i.tm.operand_types[op].bitfield.reg
6107 || i.tm.operand_types[op].bitfield.acc)
6108 && (i.tm.operand_types[op].bitfield.word
6109 || i.tm.operand_types[op].bitfield.dword))
6110 {
6111 as_bad (_("`%s%s' not allowed with `%s%c'"),
6112 register_prefix,
6113 i.op[op].regs->reg_name,
6114 i.tm.name,
6115 i.suffix);
6116 return 0;
6117 }
6118 /* Warn if the r prefix on a general reg is missing. */
6119 else if ((i.types[op].bitfield.word
6120 || i.types[op].bitfield.dword)
6121 && (i.tm.operand_types[op].bitfield.reg
6122 || i.tm.operand_types[op].bitfield.acc)
6123 && i.tm.operand_types[op].bitfield.qword)
6124 {
6125 /* Prohibit these changes in the 64bit mode, since the
6126 lowering is more complicated. */
6127 if (intel_syntax
6128 && i.tm.opcode_modifier.todword
6129 && !i.types[0].bitfield.regsimd)
6130 {
6131 /* Convert to DWORD. We don't want REX byte. */
6132 i.suffix = LONG_MNEM_SUFFIX;
6133 }
6134 else
6135 {
6136 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6137 register_prefix, i.op[op].regs->reg_name,
6138 i.suffix);
6139 return 0;
6140 }
6141 }
6142 return 1;
6143 }
6144
6145 static int
6146 check_word_reg (void)
6147 {
6148 int op;
6149 for (op = i.operands; --op >= 0;)
6150 /* Skip non-register operands. */
6151 if (!i.types[op].bitfield.reg)
6152 continue;
6153 /* Reject eight bit registers, except where the template requires
6154 them. (eg. movzb) */
6155 else if (i.types[op].bitfield.byte
6156 && (i.tm.operand_types[op].bitfield.reg
6157 || i.tm.operand_types[op].bitfield.acc)
6158 && (i.tm.operand_types[op].bitfield.word
6159 || i.tm.operand_types[op].bitfield.dword))
6160 {
6161 as_bad (_("`%s%s' not allowed with `%s%c'"),
6162 register_prefix,
6163 i.op[op].regs->reg_name,
6164 i.tm.name,
6165 i.suffix);
6166 return 0;
6167 }
6168 /* Warn if the e or r prefix on a general reg is present. */
6169 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6170 && (i.types[op].bitfield.dword
6171 || i.types[op].bitfield.qword)
6172 && (i.tm.operand_types[op].bitfield.reg
6173 || i.tm.operand_types[op].bitfield.acc)
6174 && i.tm.operand_types[op].bitfield.word)
6175 {
6176 /* Prohibit these changes in the 64bit mode, since the
6177 lowering is more complicated. */
6178 if (flag_code == CODE_64BIT)
6179 {
6180 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6181 register_prefix, i.op[op].regs->reg_name,
6182 i.suffix);
6183 return 0;
6184 }
6185 #if REGISTER_WARNINGS
6186 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6187 register_prefix,
6188 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6189 register_prefix, i.op[op].regs->reg_name, i.suffix);
6190 #endif
6191 }
6192 return 1;
6193 }
6194
6195 static int
6196 update_imm (unsigned int j)
6197 {
6198 i386_operand_type overlap = i.types[j];
6199 if ((overlap.bitfield.imm8
6200 || overlap.bitfield.imm8s
6201 || overlap.bitfield.imm16
6202 || overlap.bitfield.imm32
6203 || overlap.bitfield.imm32s
6204 || overlap.bitfield.imm64)
6205 && !operand_type_equal (&overlap, &imm8)
6206 && !operand_type_equal (&overlap, &imm8s)
6207 && !operand_type_equal (&overlap, &imm16)
6208 && !operand_type_equal (&overlap, &imm32)
6209 && !operand_type_equal (&overlap, &imm32s)
6210 && !operand_type_equal (&overlap, &imm64))
6211 {
6212 if (i.suffix)
6213 {
6214 i386_operand_type temp;
6215
6216 operand_type_set (&temp, 0);
6217 if (i.suffix == BYTE_MNEM_SUFFIX)
6218 {
6219 temp.bitfield.imm8 = overlap.bitfield.imm8;
6220 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6221 }
6222 else if (i.suffix == WORD_MNEM_SUFFIX)
6223 temp.bitfield.imm16 = overlap.bitfield.imm16;
6224 else if (i.suffix == QWORD_MNEM_SUFFIX)
6225 {
6226 temp.bitfield.imm64 = overlap.bitfield.imm64;
6227 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6228 }
6229 else
6230 temp.bitfield.imm32 = overlap.bitfield.imm32;
6231 overlap = temp;
6232 }
6233 else if (operand_type_equal (&overlap, &imm16_32_32s)
6234 || operand_type_equal (&overlap, &imm16_32)
6235 || operand_type_equal (&overlap, &imm16_32s))
6236 {
6237 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6238 overlap = imm16;
6239 else
6240 overlap = imm32s;
6241 }
6242 if (!operand_type_equal (&overlap, &imm8)
6243 && !operand_type_equal (&overlap, &imm8s)
6244 && !operand_type_equal (&overlap, &imm16)
6245 && !operand_type_equal (&overlap, &imm32)
6246 && !operand_type_equal (&overlap, &imm32s)
6247 && !operand_type_equal (&overlap, &imm64))
6248 {
6249 as_bad (_("no instruction mnemonic suffix given; "
6250 "can't determine immediate size"));
6251 return 0;
6252 }
6253 }
6254 i.types[j] = overlap;
6255
6256 return 1;
6257 }
6258
6259 static int
6260 finalize_imm (void)
6261 {
6262 unsigned int j, n;
6263
6264 /* Update the first 2 immediate operands. */
6265 n = i.operands > 2 ? 2 : i.operands;
6266 if (n)
6267 {
6268 for (j = 0; j < n; j++)
6269 if (update_imm (j) == 0)
6270 return 0;
6271
6272 /* The 3rd operand can't be immediate operand. */
6273 gas_assert (operand_type_check (i.types[2], imm) == 0);
6274 }
6275
6276 return 1;
6277 }
6278
6279 static int
6280 process_operands (void)
6281 {
6282 /* Default segment register this instruction will use for memory
6283 accesses. 0 means unknown. This is only for optimizing out
6284 unnecessary segment overrides. */
6285 const seg_entry *default_seg = 0;
6286
6287 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6288 {
6289 unsigned int dupl = i.operands;
6290 unsigned int dest = dupl - 1;
6291 unsigned int j;
6292
6293 /* The destination must be an xmm register. */
6294 gas_assert (i.reg_operands
6295 && MAX_OPERANDS > dupl
6296 && operand_type_equal (&i.types[dest], &regxmm));
6297
6298 if (i.tm.operand_types[0].bitfield.acc
6299 && i.tm.operand_types[0].bitfield.xmmword)
6300 {
6301 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6302 {
6303 /* Keep xmm0 for instructions with VEX prefix and 3
6304 sources. */
6305 i.tm.operand_types[0].bitfield.acc = 0;
6306 i.tm.operand_types[0].bitfield.regsimd = 1;
6307 goto duplicate;
6308 }
6309 else
6310 {
6311 /* We remove the first xmm0 and keep the number of
6312 operands unchanged, which in fact duplicates the
6313 destination. */
6314 for (j = 1; j < i.operands; j++)
6315 {
6316 i.op[j - 1] = i.op[j];
6317 i.types[j - 1] = i.types[j];
6318 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6319 }
6320 }
6321 }
6322 else if (i.tm.opcode_modifier.implicit1stxmm0)
6323 {
6324 gas_assert ((MAX_OPERANDS - 1) > dupl
6325 && (i.tm.opcode_modifier.vexsources
6326 == VEX3SOURCES));
6327
6328 /* Add the implicit xmm0 for instructions with VEX prefix
6329 and 3 sources. */
6330 for (j = i.operands; j > 0; j--)
6331 {
6332 i.op[j] = i.op[j - 1];
6333 i.types[j] = i.types[j - 1];
6334 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6335 }
6336 i.op[0].regs
6337 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6338 i.types[0] = regxmm;
6339 i.tm.operand_types[0] = regxmm;
6340
6341 i.operands += 2;
6342 i.reg_operands += 2;
6343 i.tm.operands += 2;
6344
6345 dupl++;
6346 dest++;
6347 i.op[dupl] = i.op[dest];
6348 i.types[dupl] = i.types[dest];
6349 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6350 }
6351 else
6352 {
6353 duplicate:
6354 i.operands++;
6355 i.reg_operands++;
6356 i.tm.operands++;
6357
6358 i.op[dupl] = i.op[dest];
6359 i.types[dupl] = i.types[dest];
6360 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6361 }
6362
6363 if (i.tm.opcode_modifier.immext)
6364 process_immext ();
6365 }
6366 else if (i.tm.operand_types[0].bitfield.acc
6367 && i.tm.operand_types[0].bitfield.xmmword)
6368 {
6369 unsigned int j;
6370
6371 for (j = 1; j < i.operands; j++)
6372 {
6373 i.op[j - 1] = i.op[j];
6374 i.types[j - 1] = i.types[j];
6375
6376 /* We need to adjust fields in i.tm since they are used by
6377 build_modrm_byte. */
6378 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6379 }
6380
6381 i.operands--;
6382 i.reg_operands--;
6383 i.tm.operands--;
6384 }
6385 else if (i.tm.opcode_modifier.implicitquadgroup)
6386 {
6387 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6388
6389 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6390 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6391 regnum = register_number (i.op[1].regs);
6392 first_reg_in_group = regnum & ~3;
6393 last_reg_in_group = first_reg_in_group + 3;
6394 if (regnum != first_reg_in_group)
6395 as_warn (_("source register `%s%s' implicitly denotes"
6396 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6397 register_prefix, i.op[1].regs->reg_name,
6398 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6399 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6400 i.tm.name);
6401 }
6402 else if (i.tm.opcode_modifier.regkludge)
6403 {
6404 /* The imul $imm, %reg instruction is converted into
6405 imul $imm, %reg, %reg, and the clr %reg instruction
6406 is converted into xor %reg, %reg. */
6407
6408 unsigned int first_reg_op;
6409
6410 if (operand_type_check (i.types[0], reg))
6411 first_reg_op = 0;
6412 else
6413 first_reg_op = 1;
6414 /* Pretend we saw the extra register operand. */
6415 gas_assert (i.reg_operands == 1
6416 && i.op[first_reg_op + 1].regs == 0);
6417 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6418 i.types[first_reg_op + 1] = i.types[first_reg_op];
6419 i.operands++;
6420 i.reg_operands++;
6421 }
6422
6423 if (i.tm.opcode_modifier.shortform)
6424 {
6425 if (i.types[0].bitfield.sreg2
6426 || i.types[0].bitfield.sreg3)
6427 {
6428 if (i.tm.base_opcode == POP_SEG_SHORT
6429 && i.op[0].regs->reg_num == 1)
6430 {
6431 as_bad (_("you can't `pop %scs'"), register_prefix);
6432 return 0;
6433 }
6434 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6435 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6436 i.rex |= REX_B;
6437 }
6438 else
6439 {
6440 /* The register or float register operand is in operand
6441 0 or 1. */
6442 unsigned int op;
6443
6444 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6445 || operand_type_check (i.types[0], reg))
6446 op = 0;
6447 else
6448 op = 1;
6449 /* Register goes in low 3 bits of opcode. */
6450 i.tm.base_opcode |= i.op[op].regs->reg_num;
6451 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6452 i.rex |= REX_B;
6453 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6454 {
6455 /* Warn about some common errors, but press on regardless.
6456 The first case can be generated by gcc (<= 2.8.1). */
6457 if (i.operands == 2)
6458 {
6459 /* Reversed arguments on faddp, fsubp, etc. */
6460 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6461 register_prefix, i.op[!intel_syntax].regs->reg_name,
6462 register_prefix, i.op[intel_syntax].regs->reg_name);
6463 }
6464 else
6465 {
6466 /* Extraneous `l' suffix on fp insn. */
6467 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6468 register_prefix, i.op[0].regs->reg_name);
6469 }
6470 }
6471 }
6472 }
6473 else if (i.tm.opcode_modifier.modrm)
6474 {
6475 /* The opcode is completed (modulo i.tm.extension_opcode which
6476 must be put into the modrm byte). Now, we make the modrm and
6477 index base bytes based on all the info we've collected. */
6478
6479 default_seg = build_modrm_byte ();
6480 }
6481 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6482 {
6483 default_seg = &ds;
6484 }
6485 else if (i.tm.opcode_modifier.isstring)
6486 {
6487 /* For the string instructions that allow a segment override
6488 on one of their operands, the default segment is ds. */
6489 default_seg = &ds;
6490 }
6491
6492 if (i.tm.base_opcode == 0x8d /* lea */
6493 && i.seg[0]
6494 && !quiet_warnings)
6495 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6496
6497 /* If a segment was explicitly specified, and the specified segment
6498 is not the default, use an opcode prefix to select it. If we
6499 never figured out what the default segment is, then default_seg
6500 will be zero at this point, and the specified segment prefix will
6501 always be used. */
6502 if ((i.seg[0]) && (i.seg[0] != default_seg))
6503 {
6504 if (!add_prefix (i.seg[0]->seg_prefix))
6505 return 0;
6506 }
6507 return 1;
6508 }
6509
6510 static const seg_entry *
6511 build_modrm_byte (void)
6512 {
6513 const seg_entry *default_seg = 0;
6514 unsigned int source, dest;
6515 int vex_3_sources;
6516
6517 /* The first operand of instructions with VEX prefix and 3 sources
6518 must be VEX_Imm4. */
6519 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6520 if (vex_3_sources)
6521 {
6522 unsigned int nds, reg_slot;
6523 expressionS *exp;
6524
6525 if (i.tm.opcode_modifier.veximmext
6526 && i.tm.opcode_modifier.immext)
6527 {
6528 dest = i.operands - 2;
6529 gas_assert (dest == 3);
6530 }
6531 else
6532 dest = i.operands - 1;
6533 nds = dest - 1;
6534
6535 /* There are 2 kinds of instructions:
6536 1. 5 operands: 4 register operands or 3 register operands
6537 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6538 VexW0 or VexW1. The destination must be either XMM, YMM or
6539 ZMM register.
6540 2. 4 operands: 4 register operands or 3 register operands
6541 plus 1 memory operand, VexXDS, and VexImmExt */
6542 gas_assert ((i.reg_operands == 4
6543 || (i.reg_operands == 3 && i.mem_operands == 1))
6544 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6545 && (i.tm.opcode_modifier.veximmext
6546 || (i.imm_operands == 1
6547 && i.types[0].bitfield.vec_imm4
6548 && (i.tm.opcode_modifier.vexw == VEXW0
6549 || i.tm.opcode_modifier.vexw == VEXW1)
6550 && i.tm.operand_types[dest].bitfield.regsimd)));
6551
6552 if (i.imm_operands == 0)
6553 {
6554 /* When there is no immediate operand, generate an 8bit
6555 immediate operand to encode the first operand. */
6556 exp = &im_expressions[i.imm_operands++];
6557 i.op[i.operands].imms = exp;
6558 i.types[i.operands] = imm8;
6559 i.operands++;
6560 /* If VexW1 is set, the first operand is the source and
6561 the second operand is encoded in the immediate operand. */
6562 if (i.tm.opcode_modifier.vexw == VEXW1)
6563 {
6564 source = 0;
6565 reg_slot = 1;
6566 }
6567 else
6568 {
6569 source = 1;
6570 reg_slot = 0;
6571 }
6572
6573 /* FMA swaps REG and NDS. */
6574 if (i.tm.cpu_flags.bitfield.cpufma)
6575 {
6576 unsigned int tmp;
6577 tmp = reg_slot;
6578 reg_slot = nds;
6579 nds = tmp;
6580 }
6581
6582 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6583 exp->X_op = O_constant;
6584 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6585 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6586 }
6587 else
6588 {
6589 unsigned int imm_slot;
6590
6591 if (i.tm.opcode_modifier.vexw == VEXW0)
6592 {
6593 /* If VexW0 is set, the third operand is the source and
6594 the second operand is encoded in the immediate
6595 operand. */
6596 source = 2;
6597 reg_slot = 1;
6598 }
6599 else
6600 {
6601 /* VexW1 is set, the second operand is the source and
6602 the third operand is encoded in the immediate
6603 operand. */
6604 source = 1;
6605 reg_slot = 2;
6606 }
6607
6608 if (i.tm.opcode_modifier.immext)
6609 {
6610 /* When ImmExt is set, the immediate byte is the last
6611 operand. */
6612 imm_slot = i.operands - 1;
6613 source--;
6614 reg_slot--;
6615 }
6616 else
6617 {
6618 imm_slot = 0;
6619
6620 /* Turn on Imm8 so that output_imm will generate it. */
6621 i.types[imm_slot].bitfield.imm8 = 1;
6622 }
6623
6624 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6625 i.op[imm_slot].imms->X_add_number
6626 |= register_number (i.op[reg_slot].regs) << 4;
6627 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6628 }
6629
6630 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
6631 i.vex.register_specifier = i.op[nds].regs;
6632 }
6633 else
6634 source = dest = 0;
6635
6636 /* i.reg_operands MUST be the number of real register operands;
6637 implicit registers do not count. If there are 3 register
6638 operands, it must be a instruction with VexNDS. For a
6639 instruction with VexNDD, the destination register is encoded
6640 in VEX prefix. If there are 4 register operands, it must be
6641 a instruction with VEX prefix and 3 sources. */
6642 if (i.mem_operands == 0
6643 && ((i.reg_operands == 2
6644 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6645 || (i.reg_operands == 3
6646 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6647 || (i.reg_operands == 4 && vex_3_sources)))
6648 {
6649 switch (i.operands)
6650 {
6651 case 2:
6652 source = 0;
6653 break;
6654 case 3:
6655 /* When there are 3 operands, one of them may be immediate,
6656 which may be the first or the last operand. Otherwise,
6657 the first operand must be shift count register (cl) or it
6658 is an instruction with VexNDS. */
6659 gas_assert (i.imm_operands == 1
6660 || (i.imm_operands == 0
6661 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6662 || i.types[0].bitfield.shiftcount)));
6663 if (operand_type_check (i.types[0], imm)
6664 || i.types[0].bitfield.shiftcount)
6665 source = 1;
6666 else
6667 source = 0;
6668 break;
6669 case 4:
6670 /* When there are 4 operands, the first two must be 8bit
6671 immediate operands. The source operand will be the 3rd
6672 one.
6673
6674 For instructions with VexNDS, if the first operand
6675 an imm8, the source operand is the 2nd one. If the last
6676 operand is imm8, the source operand is the first one. */
6677 gas_assert ((i.imm_operands == 2
6678 && i.types[0].bitfield.imm8
6679 && i.types[1].bitfield.imm8)
6680 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6681 && i.imm_operands == 1
6682 && (i.types[0].bitfield.imm8
6683 || i.types[i.operands - 1].bitfield.imm8
6684 || i.rounding)));
6685 if (i.imm_operands == 2)
6686 source = 2;
6687 else
6688 {
6689 if (i.types[0].bitfield.imm8)
6690 source = 1;
6691 else
6692 source = 0;
6693 }
6694 break;
6695 case 5:
6696 if (i.tm.opcode_modifier.evex)
6697 {
6698 /* For EVEX instructions, when there are 5 operands, the
6699 first one must be immediate operand. If the second one
6700 is immediate operand, the source operand is the 3th
6701 one. If the last one is immediate operand, the source
6702 operand is the 2nd one. */
6703 gas_assert (i.imm_operands == 2
6704 && i.tm.opcode_modifier.sae
6705 && operand_type_check (i.types[0], imm));
6706 if (operand_type_check (i.types[1], imm))
6707 source = 2;
6708 else if (operand_type_check (i.types[4], imm))
6709 source = 1;
6710 else
6711 abort ();
6712 }
6713 break;
6714 default:
6715 abort ();
6716 }
6717
6718 if (!vex_3_sources)
6719 {
6720 dest = source + 1;
6721
6722 /* RC/SAE operand could be between DEST and SRC. That happens
6723 when one operand is GPR and the other one is XMM/YMM/ZMM
6724 register. */
6725 if (i.rounding && i.rounding->operand == (int) dest)
6726 dest++;
6727
6728 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6729 {
6730 /* For instructions with VexNDS, the register-only source
6731 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
6732 register. It is encoded in VEX prefix. We need to
6733 clear RegMem bit before calling operand_type_equal. */
6734
6735 i386_operand_type op;
6736 unsigned int vvvv;
6737
6738 /* Check register-only source operand when two source
6739 operands are swapped. */
6740 if (!i.tm.operand_types[source].bitfield.baseindex
6741 && i.tm.operand_types[dest].bitfield.baseindex)
6742 {
6743 vvvv = source;
6744 source = dest;
6745 }
6746 else
6747 vvvv = dest;
6748
6749 op = i.tm.operand_types[vvvv];
6750 op.bitfield.regmem = 0;
6751 if ((dest + 1) >= i.operands
6752 || ((!op.bitfield.reg
6753 || (!op.bitfield.dword && !op.bitfield.qword))
6754 && !op.bitfield.regsimd
6755 && !operand_type_equal (&op, &regmask)))
6756 abort ();
6757 i.vex.register_specifier = i.op[vvvv].regs;
6758 dest++;
6759 }
6760 }
6761
6762 i.rm.mode = 3;
6763 /* One of the register operands will be encoded in the i.tm.reg
6764 field, the other in the combined i.tm.mode and i.tm.regmem
6765 fields. If no form of this instruction supports a memory
6766 destination operand, then we assume the source operand may
6767 sometimes be a memory operand and so we need to store the
6768 destination in the i.rm.reg field. */
6769 if (!i.tm.operand_types[dest].bitfield.regmem
6770 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6771 {
6772 i.rm.reg = i.op[dest].regs->reg_num;
6773 i.rm.regmem = i.op[source].regs->reg_num;
6774 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6775 i.rex |= REX_R;
6776 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6777 i.vrex |= REX_R;
6778 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6779 i.rex |= REX_B;
6780 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6781 i.vrex |= REX_B;
6782 }
6783 else
6784 {
6785 i.rm.reg = i.op[source].regs->reg_num;
6786 i.rm.regmem = i.op[dest].regs->reg_num;
6787 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6788 i.rex |= REX_B;
6789 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6790 i.vrex |= REX_B;
6791 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6792 i.rex |= REX_R;
6793 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6794 i.vrex |= REX_R;
6795 }
6796 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6797 {
6798 if (!i.types[0].bitfield.control
6799 && !i.types[1].bitfield.control)
6800 abort ();
6801 i.rex &= ~(REX_R | REX_B);
6802 add_prefix (LOCK_PREFIX_OPCODE);
6803 }
6804 }
6805 else
6806 { /* If it's not 2 reg operands... */
6807 unsigned int mem;
6808
6809 if (i.mem_operands)
6810 {
6811 unsigned int fake_zero_displacement = 0;
6812 unsigned int op;
6813
6814 for (op = 0; op < i.operands; op++)
6815 if (operand_type_check (i.types[op], anymem))
6816 break;
6817 gas_assert (op < i.operands);
6818
6819 if (i.tm.opcode_modifier.vecsib)
6820 {
6821 if (i.index_reg->reg_num == RegEiz
6822 || i.index_reg->reg_num == RegRiz)
6823 abort ();
6824
6825 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6826 if (!i.base_reg)
6827 {
6828 i.sib.base = NO_BASE_REGISTER;
6829 i.sib.scale = i.log2_scale_factor;
6830 i.types[op].bitfield.disp8 = 0;
6831 i.types[op].bitfield.disp16 = 0;
6832 i.types[op].bitfield.disp64 = 0;
6833 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6834 {
6835 /* Must be 32 bit */
6836 i.types[op].bitfield.disp32 = 1;
6837 i.types[op].bitfield.disp32s = 0;
6838 }
6839 else
6840 {
6841 i.types[op].bitfield.disp32 = 0;
6842 i.types[op].bitfield.disp32s = 1;
6843 }
6844 }
6845 i.sib.index = i.index_reg->reg_num;
6846 if ((i.index_reg->reg_flags & RegRex) != 0)
6847 i.rex |= REX_X;
6848 if ((i.index_reg->reg_flags & RegVRex) != 0)
6849 i.vrex |= REX_X;
6850 }
6851
6852 default_seg = &ds;
6853
6854 if (i.base_reg == 0)
6855 {
6856 i.rm.mode = 0;
6857 if (!i.disp_operands)
6858 fake_zero_displacement = 1;
6859 if (i.index_reg == 0)
6860 {
6861 i386_operand_type newdisp;
6862
6863 gas_assert (!i.tm.opcode_modifier.vecsib);
6864 /* Operand is just <disp> */
6865 if (flag_code == CODE_64BIT)
6866 {
6867 /* 64bit mode overwrites the 32bit absolute
6868 addressing by RIP relative addressing and
6869 absolute addressing is encoded by one of the
6870 redundant SIB forms. */
6871 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6872 i.sib.base = NO_BASE_REGISTER;
6873 i.sib.index = NO_INDEX_REGISTER;
6874 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
6875 }
6876 else if ((flag_code == CODE_16BIT)
6877 ^ (i.prefix[ADDR_PREFIX] != 0))
6878 {
6879 i.rm.regmem = NO_BASE_REGISTER_16;
6880 newdisp = disp16;
6881 }
6882 else
6883 {
6884 i.rm.regmem = NO_BASE_REGISTER;
6885 newdisp = disp32;
6886 }
6887 i.types[op] = operand_type_and_not (i.types[op], anydisp);
6888 i.types[op] = operand_type_or (i.types[op], newdisp);
6889 }
6890 else if (!i.tm.opcode_modifier.vecsib)
6891 {
6892 /* !i.base_reg && i.index_reg */
6893 if (i.index_reg->reg_num == RegEiz
6894 || i.index_reg->reg_num == RegRiz)
6895 i.sib.index = NO_INDEX_REGISTER;
6896 else
6897 i.sib.index = i.index_reg->reg_num;
6898 i.sib.base = NO_BASE_REGISTER;
6899 i.sib.scale = i.log2_scale_factor;
6900 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6901 i.types[op].bitfield.disp8 = 0;
6902 i.types[op].bitfield.disp16 = 0;
6903 i.types[op].bitfield.disp64 = 0;
6904 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6905 {
6906 /* Must be 32 bit */
6907 i.types[op].bitfield.disp32 = 1;
6908 i.types[op].bitfield.disp32s = 0;
6909 }
6910 else
6911 {
6912 i.types[op].bitfield.disp32 = 0;
6913 i.types[op].bitfield.disp32s = 1;
6914 }
6915 if ((i.index_reg->reg_flags & RegRex) != 0)
6916 i.rex |= REX_X;
6917 }
6918 }
6919 /* RIP addressing for 64bit mode. */
6920 else if (i.base_reg->reg_num == RegRip ||
6921 i.base_reg->reg_num == RegEip)
6922 {
6923 gas_assert (!i.tm.opcode_modifier.vecsib);
6924 i.rm.regmem = NO_BASE_REGISTER;
6925 i.types[op].bitfield.disp8 = 0;
6926 i.types[op].bitfield.disp16 = 0;
6927 i.types[op].bitfield.disp32 = 0;
6928 i.types[op].bitfield.disp32s = 1;
6929 i.types[op].bitfield.disp64 = 0;
6930 i.flags[op] |= Operand_PCrel;
6931 if (! i.disp_operands)
6932 fake_zero_displacement = 1;
6933 }
6934 else if (i.base_reg->reg_type.bitfield.word)
6935 {
6936 gas_assert (!i.tm.opcode_modifier.vecsib);
6937 switch (i.base_reg->reg_num)
6938 {
6939 case 3: /* (%bx) */
6940 if (i.index_reg == 0)
6941 i.rm.regmem = 7;
6942 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6943 i.rm.regmem = i.index_reg->reg_num - 6;
6944 break;
6945 case 5: /* (%bp) */
6946 default_seg = &ss;
6947 if (i.index_reg == 0)
6948 {
6949 i.rm.regmem = 6;
6950 if (operand_type_check (i.types[op], disp) == 0)
6951 {
6952 /* fake (%bp) into 0(%bp) */
6953 i.types[op].bitfield.disp8 = 1;
6954 fake_zero_displacement = 1;
6955 }
6956 }
6957 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6958 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6959 break;
6960 default: /* (%si) -> 4 or (%di) -> 5 */
6961 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6962 }
6963 i.rm.mode = mode_from_disp_size (i.types[op]);
6964 }
6965 else /* i.base_reg and 32/64 bit mode */
6966 {
6967 if (flag_code == CODE_64BIT
6968 && operand_type_check (i.types[op], disp))
6969 {
6970 i.types[op].bitfield.disp16 = 0;
6971 i.types[op].bitfield.disp64 = 0;
6972 if (i.prefix[ADDR_PREFIX] == 0)
6973 {
6974 i.types[op].bitfield.disp32 = 0;
6975 i.types[op].bitfield.disp32s = 1;
6976 }
6977 else
6978 {
6979 i.types[op].bitfield.disp32 = 1;
6980 i.types[op].bitfield.disp32s = 0;
6981 }
6982 }
6983
6984 if (!i.tm.opcode_modifier.vecsib)
6985 i.rm.regmem = i.base_reg->reg_num;
6986 if ((i.base_reg->reg_flags & RegRex) != 0)
6987 i.rex |= REX_B;
6988 i.sib.base = i.base_reg->reg_num;
6989 /* x86-64 ignores REX prefix bit here to avoid decoder
6990 complications. */
6991 if (!(i.base_reg->reg_flags & RegRex)
6992 && (i.base_reg->reg_num == EBP_REG_NUM
6993 || i.base_reg->reg_num == ESP_REG_NUM))
6994 default_seg = &ss;
6995 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6996 {
6997 fake_zero_displacement = 1;
6998 i.types[op].bitfield.disp8 = 1;
6999 }
7000 i.sib.scale = i.log2_scale_factor;
7001 if (i.index_reg == 0)
7002 {
7003 gas_assert (!i.tm.opcode_modifier.vecsib);
7004 /* <disp>(%esp) becomes two byte modrm with no index
7005 register. We've already stored the code for esp
7006 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7007 Any base register besides %esp will not use the
7008 extra modrm byte. */
7009 i.sib.index = NO_INDEX_REGISTER;
7010 }
7011 else if (!i.tm.opcode_modifier.vecsib)
7012 {
7013 if (i.index_reg->reg_num == RegEiz
7014 || i.index_reg->reg_num == RegRiz)
7015 i.sib.index = NO_INDEX_REGISTER;
7016 else
7017 i.sib.index = i.index_reg->reg_num;
7018 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7019 if ((i.index_reg->reg_flags & RegRex) != 0)
7020 i.rex |= REX_X;
7021 }
7022
7023 if (i.disp_operands
7024 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7025 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7026 i.rm.mode = 0;
7027 else
7028 {
7029 if (!fake_zero_displacement
7030 && !i.disp_operands
7031 && i.disp_encoding)
7032 {
7033 fake_zero_displacement = 1;
7034 if (i.disp_encoding == disp_encoding_8bit)
7035 i.types[op].bitfield.disp8 = 1;
7036 else
7037 i.types[op].bitfield.disp32 = 1;
7038 }
7039 i.rm.mode = mode_from_disp_size (i.types[op]);
7040 }
7041 }
7042
7043 if (fake_zero_displacement)
7044 {
7045 /* Fakes a zero displacement assuming that i.types[op]
7046 holds the correct displacement size. */
7047 expressionS *exp;
7048
7049 gas_assert (i.op[op].disps == 0);
7050 exp = &disp_expressions[i.disp_operands++];
7051 i.op[op].disps = exp;
7052 exp->X_op = O_constant;
7053 exp->X_add_number = 0;
7054 exp->X_add_symbol = (symbolS *) 0;
7055 exp->X_op_symbol = (symbolS *) 0;
7056 }
7057
7058 mem = op;
7059 }
7060 else
7061 mem = ~0;
7062
7063 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7064 {
7065 if (operand_type_check (i.types[0], imm))
7066 i.vex.register_specifier = NULL;
7067 else
7068 {
7069 /* VEX.vvvv encodes one of the sources when the first
7070 operand is not an immediate. */
7071 if (i.tm.opcode_modifier.vexw == VEXW0)
7072 i.vex.register_specifier = i.op[0].regs;
7073 else
7074 i.vex.register_specifier = i.op[1].regs;
7075 }
7076
7077 /* Destination is a XMM register encoded in the ModRM.reg
7078 and VEX.R bit. */
7079 i.rm.reg = i.op[2].regs->reg_num;
7080 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7081 i.rex |= REX_R;
7082
7083 /* ModRM.rm and VEX.B encodes the other source. */
7084 if (!i.mem_operands)
7085 {
7086 i.rm.mode = 3;
7087
7088 if (i.tm.opcode_modifier.vexw == VEXW0)
7089 i.rm.regmem = i.op[1].regs->reg_num;
7090 else
7091 i.rm.regmem = i.op[0].regs->reg_num;
7092
7093 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7094 i.rex |= REX_B;
7095 }
7096 }
7097 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7098 {
7099 i.vex.register_specifier = i.op[2].regs;
7100 if (!i.mem_operands)
7101 {
7102 i.rm.mode = 3;
7103 i.rm.regmem = i.op[1].regs->reg_num;
7104 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7105 i.rex |= REX_B;
7106 }
7107 }
7108 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7109 (if any) based on i.tm.extension_opcode. Again, we must be
7110 careful to make sure that segment/control/debug/test/MMX
7111 registers are coded into the i.rm.reg field. */
7112 else if (i.reg_operands)
7113 {
7114 unsigned int op;
7115 unsigned int vex_reg = ~0;
7116
7117 for (op = 0; op < i.operands; op++)
7118 if (i.types[op].bitfield.reg
7119 || i.types[op].bitfield.regmmx
7120 || i.types[op].bitfield.regsimd
7121 || i.types[op].bitfield.regbnd
7122 || i.types[op].bitfield.regmask
7123 || i.types[op].bitfield.sreg2
7124 || i.types[op].bitfield.sreg3
7125 || i.types[op].bitfield.control
7126 || i.types[op].bitfield.debug
7127 || i.types[op].bitfield.test)
7128 break;
7129
7130 if (vex_3_sources)
7131 op = dest;
7132 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7133 {
7134 /* For instructions with VexNDS, the register-only
7135 source operand is encoded in VEX prefix. */
7136 gas_assert (mem != (unsigned int) ~0);
7137
7138 if (op > mem)
7139 {
7140 vex_reg = op++;
7141 gas_assert (op < i.operands);
7142 }
7143 else
7144 {
7145 /* Check register-only source operand when two source
7146 operands are swapped. */
7147 if (!i.tm.operand_types[op].bitfield.baseindex
7148 && i.tm.operand_types[op + 1].bitfield.baseindex)
7149 {
7150 vex_reg = op;
7151 op += 2;
7152 gas_assert (mem == (vex_reg + 1)
7153 && op < i.operands);
7154 }
7155 else
7156 {
7157 vex_reg = op + 1;
7158 gas_assert (vex_reg < i.operands);
7159 }
7160 }
7161 }
7162 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7163 {
7164 /* For instructions with VexNDD, the register destination
7165 is encoded in VEX prefix. */
7166 if (i.mem_operands == 0)
7167 {
7168 /* There is no memory operand. */
7169 gas_assert ((op + 2) == i.operands);
7170 vex_reg = op + 1;
7171 }
7172 else
7173 {
7174 /* There are only 2 operands. */
7175 gas_assert (op < 2 && i.operands == 2);
7176 vex_reg = 1;
7177 }
7178 }
7179 else
7180 gas_assert (op < i.operands);
7181
7182 if (vex_reg != (unsigned int) ~0)
7183 {
7184 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7185
7186 if ((!type->bitfield.reg
7187 || (!type->bitfield.dword && !type->bitfield.qword))
7188 && !type->bitfield.regsimd
7189 && !operand_type_equal (type, &regmask))
7190 abort ();
7191
7192 i.vex.register_specifier = i.op[vex_reg].regs;
7193 }
7194
7195 /* Don't set OP operand twice. */
7196 if (vex_reg != op)
7197 {
7198 /* If there is an extension opcode to put here, the
7199 register number must be put into the regmem field. */
7200 if (i.tm.extension_opcode != None)
7201 {
7202 i.rm.regmem = i.op[op].regs->reg_num;
7203 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7204 i.rex |= REX_B;
7205 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7206 i.vrex |= REX_B;
7207 }
7208 else
7209 {
7210 i.rm.reg = i.op[op].regs->reg_num;
7211 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7212 i.rex |= REX_R;
7213 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7214 i.vrex |= REX_R;
7215 }
7216 }
7217
7218 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7219 must set it to 3 to indicate this is a register operand
7220 in the regmem field. */
7221 if (!i.mem_operands)
7222 i.rm.mode = 3;
7223 }
7224
7225 /* Fill in i.rm.reg field with extension opcode (if any). */
7226 if (i.tm.extension_opcode != None)
7227 i.rm.reg = i.tm.extension_opcode;
7228 }
7229 return default_seg;
7230 }
7231
7232 static void
7233 output_branch (void)
7234 {
7235 char *p;
7236 int size;
7237 int code16;
7238 int prefix;
7239 relax_substateT subtype;
7240 symbolS *sym;
7241 offsetT off;
7242
7243 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7244 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7245
7246 prefix = 0;
7247 if (i.prefix[DATA_PREFIX] != 0)
7248 {
7249 prefix = 1;
7250 i.prefixes -= 1;
7251 code16 ^= CODE16;
7252 }
7253 /* Pentium4 branch hints. */
7254 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7255 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7256 {
7257 prefix++;
7258 i.prefixes--;
7259 }
7260 if (i.prefix[REX_PREFIX] != 0)
7261 {
7262 prefix++;
7263 i.prefixes--;
7264 }
7265
7266 /* BND prefixed jump. */
7267 if (i.prefix[BND_PREFIX] != 0)
7268 {
7269 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7270 i.prefixes -= 1;
7271 }
7272
7273 if (i.prefixes != 0 && !intel_syntax)
7274 as_warn (_("skipping prefixes on this instruction"));
7275
7276 /* It's always a symbol; End frag & setup for relax.
7277 Make sure there is enough room in this frag for the largest
7278 instruction we may generate in md_convert_frag. This is 2
7279 bytes for the opcode and room for the prefix and largest
7280 displacement. */
7281 frag_grow (prefix + 2 + 4);
7282 /* Prefix and 1 opcode byte go in fr_fix. */
7283 p = frag_more (prefix + 1);
7284 if (i.prefix[DATA_PREFIX] != 0)
7285 *p++ = DATA_PREFIX_OPCODE;
7286 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7287 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7288 *p++ = i.prefix[SEG_PREFIX];
7289 if (i.prefix[REX_PREFIX] != 0)
7290 *p++ = i.prefix[REX_PREFIX];
7291 *p = i.tm.base_opcode;
7292
7293 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7294 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7295 else if (cpu_arch_flags.bitfield.cpui386)
7296 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7297 else
7298 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7299 subtype |= code16;
7300
7301 sym = i.op[0].disps->X_add_symbol;
7302 off = i.op[0].disps->X_add_number;
7303
7304 if (i.op[0].disps->X_op != O_constant
7305 && i.op[0].disps->X_op != O_symbol)
7306 {
7307 /* Handle complex expressions. */
7308 sym = make_expr_symbol (i.op[0].disps);
7309 off = 0;
7310 }
7311
7312 /* 1 possible extra opcode + 4 byte displacement go in var part.
7313 Pass reloc in fr_var. */
7314 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7315 }
7316
7317 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7318 /* Return TRUE iff PLT32 relocation should be used for branching to
7319 symbol S. */
7320
7321 static bfd_boolean
7322 need_plt32_p (symbolS *s)
7323 {
7324 /* PLT32 relocation is ELF only. */
7325 if (!IS_ELF)
7326 return FALSE;
7327
7328 /* Since there is no need to prepare for PLT branch on x86-64, we
7329 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7330 be used as a marker for 32-bit PC-relative branches. */
7331 if (!object_64bit)
7332 return FALSE;
7333
7334 /* Weak or undefined symbol need PLT32 relocation. */
7335 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7336 return TRUE;
7337
7338 /* Non-global symbol doesn't need PLT32 relocation. */
7339 if (! S_IS_EXTERNAL (s))
7340 return FALSE;
7341
7342 /* Other global symbols need PLT32 relocation. NB: Symbol with
7343 non-default visibilities are treated as normal global symbol
7344 so that PLT32 relocation can be used as a marker for 32-bit
7345 PC-relative branches. It is useful for linker relaxation. */
7346 return TRUE;
7347 }
7348 #endif
7349
7350 static void
7351 output_jump (void)
7352 {
7353 char *p;
7354 int size;
7355 fixS *fixP;
7356 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7357
7358 if (i.tm.opcode_modifier.jumpbyte)
7359 {
7360 /* This is a loop or jecxz type instruction. */
7361 size = 1;
7362 if (i.prefix[ADDR_PREFIX] != 0)
7363 {
7364 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7365 i.prefixes -= 1;
7366 }
7367 /* Pentium4 branch hints. */
7368 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7369 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7370 {
7371 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7372 i.prefixes--;
7373 }
7374 }
7375 else
7376 {
7377 int code16;
7378
7379 code16 = 0;
7380 if (flag_code == CODE_16BIT)
7381 code16 = CODE16;
7382
7383 if (i.prefix[DATA_PREFIX] != 0)
7384 {
7385 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7386 i.prefixes -= 1;
7387 code16 ^= CODE16;
7388 }
7389
7390 size = 4;
7391 if (code16)
7392 size = 2;
7393 }
7394
7395 if (i.prefix[REX_PREFIX] != 0)
7396 {
7397 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7398 i.prefixes -= 1;
7399 }
7400
7401 /* BND prefixed jump. */
7402 if (i.prefix[BND_PREFIX] != 0)
7403 {
7404 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7405 i.prefixes -= 1;
7406 }
7407
7408 if (i.prefixes != 0 && !intel_syntax)
7409 as_warn (_("skipping prefixes on this instruction"));
7410
7411 p = frag_more (i.tm.opcode_length + size);
7412 switch (i.tm.opcode_length)
7413 {
7414 case 2:
7415 *p++ = i.tm.base_opcode >> 8;
7416 /* Fall through. */
7417 case 1:
7418 *p++ = i.tm.base_opcode;
7419 break;
7420 default:
7421 abort ();
7422 }
7423
7424 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7425 if (size == 4
7426 && jump_reloc == NO_RELOC
7427 && need_plt32_p (i.op[0].disps->X_add_symbol))
7428 jump_reloc = BFD_RELOC_X86_64_PLT32;
7429 #endif
7430
7431 jump_reloc = reloc (size, 1, 1, jump_reloc);
7432
7433 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7434 i.op[0].disps, 1, jump_reloc);
7435
7436 /* All jumps handled here are signed, but don't use a signed limit
7437 check for 32 and 16 bit jumps as we want to allow wrap around at
7438 4G and 64k respectively. */
7439 if (size == 1)
7440 fixP->fx_signed = 1;
7441 }
7442
7443 static void
7444 output_interseg_jump (void)
7445 {
7446 char *p;
7447 int size;
7448 int prefix;
7449 int code16;
7450
7451 code16 = 0;
7452 if (flag_code == CODE_16BIT)
7453 code16 = CODE16;
7454
7455 prefix = 0;
7456 if (i.prefix[DATA_PREFIX] != 0)
7457 {
7458 prefix = 1;
7459 i.prefixes -= 1;
7460 code16 ^= CODE16;
7461 }
7462 if (i.prefix[REX_PREFIX] != 0)
7463 {
7464 prefix++;
7465 i.prefixes -= 1;
7466 }
7467
7468 size = 4;
7469 if (code16)
7470 size = 2;
7471
7472 if (i.prefixes != 0 && !intel_syntax)
7473 as_warn (_("skipping prefixes on this instruction"));
7474
7475 /* 1 opcode; 2 segment; offset */
7476 p = frag_more (prefix + 1 + 2 + size);
7477
7478 if (i.prefix[DATA_PREFIX] != 0)
7479 *p++ = DATA_PREFIX_OPCODE;
7480
7481 if (i.prefix[REX_PREFIX] != 0)
7482 *p++ = i.prefix[REX_PREFIX];
7483
7484 *p++ = i.tm.base_opcode;
7485 if (i.op[1].imms->X_op == O_constant)
7486 {
7487 offsetT n = i.op[1].imms->X_add_number;
7488
7489 if (size == 2
7490 && !fits_in_unsigned_word (n)
7491 && !fits_in_signed_word (n))
7492 {
7493 as_bad (_("16-bit jump out of range"));
7494 return;
7495 }
7496 md_number_to_chars (p, n, size);
7497 }
7498 else
7499 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7500 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7501 if (i.op[0].imms->X_op != O_constant)
7502 as_bad (_("can't handle non absolute segment in `%s'"),
7503 i.tm.name);
7504 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7505 }
7506
7507 static void
7508 output_insn (void)
7509 {
7510 fragS *insn_start_frag;
7511 offsetT insn_start_off;
7512
7513 /* Tie dwarf2 debug info to the address at the start of the insn.
7514 We can't do this after the insn has been output as the current
7515 frag may have been closed off. eg. by frag_var. */
7516 dwarf2_emit_insn (0);
7517
7518 insn_start_frag = frag_now;
7519 insn_start_off = frag_now_fix ();
7520
7521 /* Output jumps. */
7522 if (i.tm.opcode_modifier.jump)
7523 output_branch ();
7524 else if (i.tm.opcode_modifier.jumpbyte
7525 || i.tm.opcode_modifier.jumpdword)
7526 output_jump ();
7527 else if (i.tm.opcode_modifier.jumpintersegment)
7528 output_interseg_jump ();
7529 else
7530 {
7531 /* Output normal instructions here. */
7532 char *p;
7533 unsigned char *q;
7534 unsigned int j;
7535 unsigned int prefix;
7536
7537 if (avoid_fence
7538 && i.tm.base_opcode == 0xfae
7539 && i.operands == 1
7540 && i.imm_operands == 1
7541 && (i.op[0].imms->X_add_number == 0xe8
7542 || i.op[0].imms->X_add_number == 0xf0
7543 || i.op[0].imms->X_add_number == 0xf8))
7544 {
7545 /* Encode lfence, mfence, and sfence as
7546 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7547 offsetT val = 0x240483f0ULL;
7548 p = frag_more (5);
7549 md_number_to_chars (p, val, 5);
7550 return;
7551 }
7552
7553 /* Some processors fail on LOCK prefix. This options makes
7554 assembler ignore LOCK prefix and serves as a workaround. */
7555 if (omit_lock_prefix)
7556 {
7557 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7558 return;
7559 i.prefix[LOCK_PREFIX] = 0;
7560 }
7561
7562 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7563 don't need the explicit prefix. */
7564 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7565 {
7566 switch (i.tm.opcode_length)
7567 {
7568 case 3:
7569 if (i.tm.base_opcode & 0xff000000)
7570 {
7571 prefix = (i.tm.base_opcode >> 24) & 0xff;
7572 goto check_prefix;
7573 }
7574 break;
7575 case 2:
7576 if ((i.tm.base_opcode & 0xff0000) != 0)
7577 {
7578 prefix = (i.tm.base_opcode >> 16) & 0xff;
7579 if (i.tm.cpu_flags.bitfield.cpupadlock)
7580 {
7581 check_prefix:
7582 if (prefix != REPE_PREFIX_OPCODE
7583 || (i.prefix[REP_PREFIX]
7584 != REPE_PREFIX_OPCODE))
7585 add_prefix (prefix);
7586 }
7587 else
7588 add_prefix (prefix);
7589 }
7590 break;
7591 case 1:
7592 break;
7593 case 0:
7594 /* Check for pseudo prefixes. */
7595 as_bad_where (insn_start_frag->fr_file,
7596 insn_start_frag->fr_line,
7597 _("pseudo prefix without instruction"));
7598 return;
7599 default:
7600 abort ();
7601 }
7602
7603 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7604 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7605 R_X86_64_GOTTPOFF relocation so that linker can safely
7606 perform IE->LE optimization. */
7607 if (x86_elf_abi == X86_64_X32_ABI
7608 && i.operands == 2
7609 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7610 && i.prefix[REX_PREFIX] == 0)
7611 add_prefix (REX_OPCODE);
7612 #endif
7613
7614 /* The prefix bytes. */
7615 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7616 if (*q)
7617 FRAG_APPEND_1_CHAR (*q);
7618 }
7619 else
7620 {
7621 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7622 if (*q)
7623 switch (j)
7624 {
7625 case REX_PREFIX:
7626 /* REX byte is encoded in VEX prefix. */
7627 break;
7628 case SEG_PREFIX:
7629 case ADDR_PREFIX:
7630 FRAG_APPEND_1_CHAR (*q);
7631 break;
7632 default:
7633 /* There should be no other prefixes for instructions
7634 with VEX prefix. */
7635 abort ();
7636 }
7637
7638 /* For EVEX instructions i.vrex should become 0 after
7639 build_evex_prefix. For VEX instructions upper 16 registers
7640 aren't available, so VREX should be 0. */
7641 if (i.vrex)
7642 abort ();
7643 /* Now the VEX prefix. */
7644 p = frag_more (i.vex.length);
7645 for (j = 0; j < i.vex.length; j++)
7646 p[j] = i.vex.bytes[j];
7647 }
7648
7649 /* Now the opcode; be careful about word order here! */
7650 if (i.tm.opcode_length == 1)
7651 {
7652 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7653 }
7654 else
7655 {
7656 switch (i.tm.opcode_length)
7657 {
7658 case 4:
7659 p = frag_more (4);
7660 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7661 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7662 break;
7663 case 3:
7664 p = frag_more (3);
7665 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7666 break;
7667 case 2:
7668 p = frag_more (2);
7669 break;
7670 default:
7671 abort ();
7672 break;
7673 }
7674
7675 /* Put out high byte first: can't use md_number_to_chars! */
7676 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7677 *p = i.tm.base_opcode & 0xff;
7678 }
7679
7680 /* Now the modrm byte and sib byte (if present). */
7681 if (i.tm.opcode_modifier.modrm)
7682 {
7683 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7684 | i.rm.reg << 3
7685 | i.rm.mode << 6));
7686 /* If i.rm.regmem == ESP (4)
7687 && i.rm.mode != (Register mode)
7688 && not 16 bit
7689 ==> need second modrm byte. */
7690 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7691 && i.rm.mode != 3
7692 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
7693 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7694 | i.sib.index << 3
7695 | i.sib.scale << 6));
7696 }
7697
7698 if (i.disp_operands)
7699 output_disp (insn_start_frag, insn_start_off);
7700
7701 if (i.imm_operands)
7702 output_imm (insn_start_frag, insn_start_off);
7703 }
7704
7705 #ifdef DEBUG386
7706 if (flag_debug)
7707 {
7708 pi ("" /*line*/, &i);
7709 }
7710 #endif /* DEBUG386 */
7711 }
7712
7713 /* Return the size of the displacement operand N. */
7714
7715 static int
7716 disp_size (unsigned int n)
7717 {
7718 int size = 4;
7719
7720 if (i.types[n].bitfield.disp64)
7721 size = 8;
7722 else if (i.types[n].bitfield.disp8)
7723 size = 1;
7724 else if (i.types[n].bitfield.disp16)
7725 size = 2;
7726 return size;
7727 }
7728
7729 /* Return the size of the immediate operand N. */
7730
7731 static int
7732 imm_size (unsigned int n)
7733 {
7734 int size = 4;
7735 if (i.types[n].bitfield.imm64)
7736 size = 8;
7737 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7738 size = 1;
7739 else if (i.types[n].bitfield.imm16)
7740 size = 2;
7741 return size;
7742 }
7743
7744 static void
7745 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7746 {
7747 char *p;
7748 unsigned int n;
7749
7750 for (n = 0; n < i.operands; n++)
7751 {
7752 if (operand_type_check (i.types[n], disp))
7753 {
7754 if (i.op[n].disps->X_op == O_constant)
7755 {
7756 int size = disp_size (n);
7757 offsetT val = i.op[n].disps->X_add_number;
7758
7759 val = offset_in_range (val >> i.memshift, size);
7760 p = frag_more (size);
7761 md_number_to_chars (p, val, size);
7762 }
7763 else
7764 {
7765 enum bfd_reloc_code_real reloc_type;
7766 int size = disp_size (n);
7767 int sign = i.types[n].bitfield.disp32s;
7768 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7769 fixS *fixP;
7770
7771 /* We can't have 8 bit displacement here. */
7772 gas_assert (!i.types[n].bitfield.disp8);
7773
7774 /* The PC relative address is computed relative
7775 to the instruction boundary, so in case immediate
7776 fields follows, we need to adjust the value. */
7777 if (pcrel && i.imm_operands)
7778 {
7779 unsigned int n1;
7780 int sz = 0;
7781
7782 for (n1 = 0; n1 < i.operands; n1++)
7783 if (operand_type_check (i.types[n1], imm))
7784 {
7785 /* Only one immediate is allowed for PC
7786 relative address. */
7787 gas_assert (sz == 0);
7788 sz = imm_size (n1);
7789 i.op[n].disps->X_add_number -= sz;
7790 }
7791 /* We should find the immediate. */
7792 gas_assert (sz != 0);
7793 }
7794
7795 p = frag_more (size);
7796 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7797 if (GOT_symbol
7798 && GOT_symbol == i.op[n].disps->X_add_symbol
7799 && (((reloc_type == BFD_RELOC_32
7800 || reloc_type == BFD_RELOC_X86_64_32S
7801 || (reloc_type == BFD_RELOC_64
7802 && object_64bit))
7803 && (i.op[n].disps->X_op == O_symbol
7804 || (i.op[n].disps->X_op == O_add
7805 && ((symbol_get_value_expression
7806 (i.op[n].disps->X_op_symbol)->X_op)
7807 == O_subtract))))
7808 || reloc_type == BFD_RELOC_32_PCREL))
7809 {
7810 offsetT add;
7811
7812 if (insn_start_frag == frag_now)
7813 add = (p - frag_now->fr_literal) - insn_start_off;
7814 else
7815 {
7816 fragS *fr;
7817
7818 add = insn_start_frag->fr_fix - insn_start_off;
7819 for (fr = insn_start_frag->fr_next;
7820 fr && fr != frag_now; fr = fr->fr_next)
7821 add += fr->fr_fix;
7822 add += p - frag_now->fr_literal;
7823 }
7824
7825 if (!object_64bit)
7826 {
7827 reloc_type = BFD_RELOC_386_GOTPC;
7828 i.op[n].imms->X_add_number += add;
7829 }
7830 else if (reloc_type == BFD_RELOC_64)
7831 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7832 else
7833 /* Don't do the adjustment for x86-64, as there
7834 the pcrel addressing is relative to the _next_
7835 insn, and that is taken care of in other code. */
7836 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7837 }
7838 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7839 size, i.op[n].disps, pcrel,
7840 reloc_type);
7841 /* Check for "call/jmp *mem", "mov mem, %reg",
7842 "test %reg, mem" and "binop mem, %reg" where binop
7843 is one of adc, add, and, cmp, or, sbb, sub, xor
7844 instructions. Always generate R_386_GOT32X for
7845 "sym*GOT" operand in 32-bit mode. */
7846 if ((generate_relax_relocations
7847 || (!object_64bit
7848 && i.rm.mode == 0
7849 && i.rm.regmem == 5))
7850 && (i.rm.mode == 2
7851 || (i.rm.mode == 0 && i.rm.regmem == 5))
7852 && ((i.operands == 1
7853 && i.tm.base_opcode == 0xff
7854 && (i.rm.reg == 2 || i.rm.reg == 4))
7855 || (i.operands == 2
7856 && (i.tm.base_opcode == 0x8b
7857 || i.tm.base_opcode == 0x85
7858 || (i.tm.base_opcode & 0xc7) == 0x03))))
7859 {
7860 if (object_64bit)
7861 {
7862 fixP->fx_tcbit = i.rex != 0;
7863 if (i.base_reg
7864 && (i.base_reg->reg_num == RegRip
7865 || i.base_reg->reg_num == RegEip))
7866 fixP->fx_tcbit2 = 1;
7867 }
7868 else
7869 fixP->fx_tcbit2 = 1;
7870 }
7871 }
7872 }
7873 }
7874 }
7875
7876 static void
7877 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7878 {
7879 char *p;
7880 unsigned int n;
7881
7882 for (n = 0; n < i.operands; n++)
7883 {
7884 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7885 if (i.rounding && (int) n == i.rounding->operand)
7886 continue;
7887
7888 if (operand_type_check (i.types[n], imm))
7889 {
7890 if (i.op[n].imms->X_op == O_constant)
7891 {
7892 int size = imm_size (n);
7893 offsetT val;
7894
7895 val = offset_in_range (i.op[n].imms->X_add_number,
7896 size);
7897 p = frag_more (size);
7898 md_number_to_chars (p, val, size);
7899 }
7900 else
7901 {
7902 /* Not absolute_section.
7903 Need a 32-bit fixup (don't support 8bit
7904 non-absolute imms). Try to support other
7905 sizes ... */
7906 enum bfd_reloc_code_real reloc_type;
7907 int size = imm_size (n);
7908 int sign;
7909
7910 if (i.types[n].bitfield.imm32s
7911 && (i.suffix == QWORD_MNEM_SUFFIX
7912 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7913 sign = 1;
7914 else
7915 sign = 0;
7916
7917 p = frag_more (size);
7918 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7919
7920 /* This is tough to explain. We end up with this one if we
7921 * have operands that look like
7922 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7923 * obtain the absolute address of the GOT, and it is strongly
7924 * preferable from a performance point of view to avoid using
7925 * a runtime relocation for this. The actual sequence of
7926 * instructions often look something like:
7927 *
7928 * call .L66
7929 * .L66:
7930 * popl %ebx
7931 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7932 *
7933 * The call and pop essentially return the absolute address
7934 * of the label .L66 and store it in %ebx. The linker itself
7935 * will ultimately change the first operand of the addl so
7936 * that %ebx points to the GOT, but to keep things simple, the
7937 * .o file must have this operand set so that it generates not
7938 * the absolute address of .L66, but the absolute address of
7939 * itself. This allows the linker itself simply treat a GOTPC
7940 * relocation as asking for a pcrel offset to the GOT to be
7941 * added in, and the addend of the relocation is stored in the
7942 * operand field for the instruction itself.
7943 *
7944 * Our job here is to fix the operand so that it would add
7945 * the correct offset so that %ebx would point to itself. The
7946 * thing that is tricky is that .-.L66 will point to the
7947 * beginning of the instruction, so we need to further modify
7948 * the operand so that it will point to itself. There are
7949 * other cases where you have something like:
7950 *
7951 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7952 *
7953 * and here no correction would be required. Internally in
7954 * the assembler we treat operands of this form as not being
7955 * pcrel since the '.' is explicitly mentioned, and I wonder
7956 * whether it would simplify matters to do it this way. Who
7957 * knows. In earlier versions of the PIC patches, the
7958 * pcrel_adjust field was used to store the correction, but
7959 * since the expression is not pcrel, I felt it would be
7960 * confusing to do it this way. */
7961
7962 if ((reloc_type == BFD_RELOC_32
7963 || reloc_type == BFD_RELOC_X86_64_32S
7964 || reloc_type == BFD_RELOC_64)
7965 && GOT_symbol
7966 && GOT_symbol == i.op[n].imms->X_add_symbol
7967 && (i.op[n].imms->X_op == O_symbol
7968 || (i.op[n].imms->X_op == O_add
7969 && ((symbol_get_value_expression
7970 (i.op[n].imms->X_op_symbol)->X_op)
7971 == O_subtract))))
7972 {
7973 offsetT add;
7974
7975 if (insn_start_frag == frag_now)
7976 add = (p - frag_now->fr_literal) - insn_start_off;
7977 else
7978 {
7979 fragS *fr;
7980
7981 add = insn_start_frag->fr_fix - insn_start_off;
7982 for (fr = insn_start_frag->fr_next;
7983 fr && fr != frag_now; fr = fr->fr_next)
7984 add += fr->fr_fix;
7985 add += p - frag_now->fr_literal;
7986 }
7987
7988 if (!object_64bit)
7989 reloc_type = BFD_RELOC_386_GOTPC;
7990 else if (size == 4)
7991 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7992 else if (size == 8)
7993 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7994 i.op[n].imms->X_add_number += add;
7995 }
7996 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7997 i.op[n].imms, 0, reloc_type);
7998 }
7999 }
8000 }
8001 }
8002 \f
8003 /* x86_cons_fix_new is called via the expression parsing code when a
8004 reloc is needed. We use this hook to get the correct .got reloc. */
8005 static int cons_sign = -1;
8006
8007 void
8008 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8009 expressionS *exp, bfd_reloc_code_real_type r)
8010 {
8011 r = reloc (len, 0, cons_sign, r);
8012
8013 #ifdef TE_PE
8014 if (exp->X_op == O_secrel)
8015 {
8016 exp->X_op = O_symbol;
8017 r = BFD_RELOC_32_SECREL;
8018 }
8019 #endif
8020
8021 fix_new_exp (frag, off, len, exp, 0, r);
8022 }
8023
8024 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8025 purpose of the `.dc.a' internal pseudo-op. */
8026
8027 int
8028 x86_address_bytes (void)
8029 {
8030 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8031 return 4;
8032 return stdoutput->arch_info->bits_per_address / 8;
8033 }
8034
8035 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8036 || defined (LEX_AT)
8037 # define lex_got(reloc, adjust, types) NULL
8038 #else
8039 /* Parse operands of the form
8040 <symbol>@GOTOFF+<nnn>
8041 and similar .plt or .got references.
8042
8043 If we find one, set up the correct relocation in RELOC and copy the
8044 input string, minus the `@GOTOFF' into a malloc'd buffer for
8045 parsing by the calling routine. Return this buffer, and if ADJUST
8046 is non-null set it to the length of the string we removed from the
8047 input line. Otherwise return NULL. */
8048 static char *
8049 lex_got (enum bfd_reloc_code_real *rel,
8050 int *adjust,
8051 i386_operand_type *types)
8052 {
8053 /* Some of the relocations depend on the size of what field is to
8054 be relocated. But in our callers i386_immediate and i386_displacement
8055 we don't yet know the operand size (this will be set by insn
8056 matching). Hence we record the word32 relocation here,
8057 and adjust the reloc according to the real size in reloc(). */
8058 static const struct {
8059 const char *str;
8060 int len;
8061 const enum bfd_reloc_code_real rel[2];
8062 const i386_operand_type types64;
8063 } gotrel[] = {
8064 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8065 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8066 BFD_RELOC_SIZE32 },
8067 OPERAND_TYPE_IMM32_64 },
8068 #endif
8069 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8070 BFD_RELOC_X86_64_PLTOFF64 },
8071 OPERAND_TYPE_IMM64 },
8072 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8073 BFD_RELOC_X86_64_PLT32 },
8074 OPERAND_TYPE_IMM32_32S_DISP32 },
8075 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8076 BFD_RELOC_X86_64_GOTPLT64 },
8077 OPERAND_TYPE_IMM64_DISP64 },
8078 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8079 BFD_RELOC_X86_64_GOTOFF64 },
8080 OPERAND_TYPE_IMM64_DISP64 },
8081 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8082 BFD_RELOC_X86_64_GOTPCREL },
8083 OPERAND_TYPE_IMM32_32S_DISP32 },
8084 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8085 BFD_RELOC_X86_64_TLSGD },
8086 OPERAND_TYPE_IMM32_32S_DISP32 },
8087 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8088 _dummy_first_bfd_reloc_code_real },
8089 OPERAND_TYPE_NONE },
8090 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8091 BFD_RELOC_X86_64_TLSLD },
8092 OPERAND_TYPE_IMM32_32S_DISP32 },
8093 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8094 BFD_RELOC_X86_64_GOTTPOFF },
8095 OPERAND_TYPE_IMM32_32S_DISP32 },
8096 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8097 BFD_RELOC_X86_64_TPOFF32 },
8098 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8099 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8100 _dummy_first_bfd_reloc_code_real },
8101 OPERAND_TYPE_NONE },
8102 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8103 BFD_RELOC_X86_64_DTPOFF32 },
8104 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8105 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8106 _dummy_first_bfd_reloc_code_real },
8107 OPERAND_TYPE_NONE },
8108 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8109 _dummy_first_bfd_reloc_code_real },
8110 OPERAND_TYPE_NONE },
8111 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8112 BFD_RELOC_X86_64_GOT32 },
8113 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8114 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8115 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8116 OPERAND_TYPE_IMM32_32S_DISP32 },
8117 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8118 BFD_RELOC_X86_64_TLSDESC_CALL },
8119 OPERAND_TYPE_IMM32_32S_DISP32 },
8120 };
8121 char *cp;
8122 unsigned int j;
8123
8124 #if defined (OBJ_MAYBE_ELF)
8125 if (!IS_ELF)
8126 return NULL;
8127 #endif
8128
8129 for (cp = input_line_pointer; *cp != '@'; cp++)
8130 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8131 return NULL;
8132
8133 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8134 {
8135 int len = gotrel[j].len;
8136 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8137 {
8138 if (gotrel[j].rel[object_64bit] != 0)
8139 {
8140 int first, second;
8141 char *tmpbuf, *past_reloc;
8142
8143 *rel = gotrel[j].rel[object_64bit];
8144
8145 if (types)
8146 {
8147 if (flag_code != CODE_64BIT)
8148 {
8149 types->bitfield.imm32 = 1;
8150 types->bitfield.disp32 = 1;
8151 }
8152 else
8153 *types = gotrel[j].types64;
8154 }
8155
8156 if (j != 0 && GOT_symbol == NULL)
8157 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8158
8159 /* The length of the first part of our input line. */
8160 first = cp - input_line_pointer;
8161
8162 /* The second part goes from after the reloc token until
8163 (and including) an end_of_line char or comma. */
8164 past_reloc = cp + 1 + len;
8165 cp = past_reloc;
8166 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8167 ++cp;
8168 second = cp + 1 - past_reloc;
8169
8170 /* Allocate and copy string. The trailing NUL shouldn't
8171 be necessary, but be safe. */
8172 tmpbuf = XNEWVEC (char, first + second + 2);
8173 memcpy (tmpbuf, input_line_pointer, first);
8174 if (second != 0 && *past_reloc != ' ')
8175 /* Replace the relocation token with ' ', so that
8176 errors like foo@GOTOFF1 will be detected. */
8177 tmpbuf[first++] = ' ';
8178 else
8179 /* Increment length by 1 if the relocation token is
8180 removed. */
8181 len++;
8182 if (adjust)
8183 *adjust = len;
8184 memcpy (tmpbuf + first, past_reloc, second);
8185 tmpbuf[first + second] = '\0';
8186 return tmpbuf;
8187 }
8188
8189 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8190 gotrel[j].str, 1 << (5 + object_64bit));
8191 return NULL;
8192 }
8193 }
8194
8195 /* Might be a symbol version string. Don't as_bad here. */
8196 return NULL;
8197 }
8198 #endif
8199
8200 #ifdef TE_PE
8201 #ifdef lex_got
8202 #undef lex_got
8203 #endif
8204 /* Parse operands of the form
8205 <symbol>@SECREL32+<nnn>
8206
8207 If we find one, set up the correct relocation in RELOC and copy the
8208 input string, minus the `@SECREL32' into a malloc'd buffer for
8209 parsing by the calling routine. Return this buffer, and if ADJUST
8210 is non-null set it to the length of the string we removed from the
8211 input line. Otherwise return NULL.
8212
8213 This function is copied from the ELF version above adjusted for PE targets. */
8214
8215 static char *
8216 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8217 int *adjust ATTRIBUTE_UNUSED,
8218 i386_operand_type *types)
8219 {
8220 static const struct
8221 {
8222 const char *str;
8223 int len;
8224 const enum bfd_reloc_code_real rel[2];
8225 const i386_operand_type types64;
8226 }
8227 gotrel[] =
8228 {
8229 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8230 BFD_RELOC_32_SECREL },
8231 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8232 };
8233
8234 char *cp;
8235 unsigned j;
8236
8237 for (cp = input_line_pointer; *cp != '@'; cp++)
8238 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8239 return NULL;
8240
8241 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8242 {
8243 int len = gotrel[j].len;
8244
8245 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8246 {
8247 if (gotrel[j].rel[object_64bit] != 0)
8248 {
8249 int first, second;
8250 char *tmpbuf, *past_reloc;
8251
8252 *rel = gotrel[j].rel[object_64bit];
8253 if (adjust)
8254 *adjust = len;
8255
8256 if (types)
8257 {
8258 if (flag_code != CODE_64BIT)
8259 {
8260 types->bitfield.imm32 = 1;
8261 types->bitfield.disp32 = 1;
8262 }
8263 else
8264 *types = gotrel[j].types64;
8265 }
8266
8267 /* The length of the first part of our input line. */
8268 first = cp - input_line_pointer;
8269
8270 /* The second part goes from after the reloc token until
8271 (and including) an end_of_line char or comma. */
8272 past_reloc = cp + 1 + len;
8273 cp = past_reloc;
8274 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8275 ++cp;
8276 second = cp + 1 - past_reloc;
8277
8278 /* Allocate and copy string. The trailing NUL shouldn't
8279 be necessary, but be safe. */
8280 tmpbuf = XNEWVEC (char, first + second + 2);
8281 memcpy (tmpbuf, input_line_pointer, first);
8282 if (second != 0 && *past_reloc != ' ')
8283 /* Replace the relocation token with ' ', so that
8284 errors like foo@SECLREL321 will be detected. */
8285 tmpbuf[first++] = ' ';
8286 memcpy (tmpbuf + first, past_reloc, second);
8287 tmpbuf[first + second] = '\0';
8288 return tmpbuf;
8289 }
8290
8291 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8292 gotrel[j].str, 1 << (5 + object_64bit));
8293 return NULL;
8294 }
8295 }
8296
8297 /* Might be a symbol version string. Don't as_bad here. */
8298 return NULL;
8299 }
8300
8301 #endif /* TE_PE */
8302
8303 bfd_reloc_code_real_type
8304 x86_cons (expressionS *exp, int size)
8305 {
8306 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8307
8308 intel_syntax = -intel_syntax;
8309
8310 exp->X_md = 0;
8311 if (size == 4 || (object_64bit && size == 8))
8312 {
8313 /* Handle @GOTOFF and the like in an expression. */
8314 char *save;
8315 char *gotfree_input_line;
8316 int adjust = 0;
8317
8318 save = input_line_pointer;
8319 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8320 if (gotfree_input_line)
8321 input_line_pointer = gotfree_input_line;
8322
8323 expression (exp);
8324
8325 if (gotfree_input_line)
8326 {
8327 /* expression () has merrily parsed up to the end of line,
8328 or a comma - in the wrong buffer. Transfer how far
8329 input_line_pointer has moved to the right buffer. */
8330 input_line_pointer = (save
8331 + (input_line_pointer - gotfree_input_line)
8332 + adjust);
8333 free (gotfree_input_line);
8334 if (exp->X_op == O_constant
8335 || exp->X_op == O_absent
8336 || exp->X_op == O_illegal
8337 || exp->X_op == O_register
8338 || exp->X_op == O_big)
8339 {
8340 char c = *input_line_pointer;
8341 *input_line_pointer = 0;
8342 as_bad (_("missing or invalid expression `%s'"), save);
8343 *input_line_pointer = c;
8344 }
8345 }
8346 }
8347 else
8348 expression (exp);
8349
8350 intel_syntax = -intel_syntax;
8351
8352 if (intel_syntax)
8353 i386_intel_simplify (exp);
8354
8355 return got_reloc;
8356 }
8357
8358 static void
8359 signed_cons (int size)
8360 {
8361 if (flag_code == CODE_64BIT)
8362 cons_sign = 1;
8363 cons (size);
8364 cons_sign = -1;
8365 }
8366
8367 #ifdef TE_PE
8368 static void
8369 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8370 {
8371 expressionS exp;
8372
8373 do
8374 {
8375 expression (&exp);
8376 if (exp.X_op == O_symbol)
8377 exp.X_op = O_secrel;
8378
8379 emit_expr (&exp, 4);
8380 }
8381 while (*input_line_pointer++ == ',');
8382
8383 input_line_pointer--;
8384 demand_empty_rest_of_line ();
8385 }
8386 #endif
8387
8388 /* Handle Vector operations. */
8389
8390 static char *
8391 check_VecOperations (char *op_string, char *op_end)
8392 {
8393 const reg_entry *mask;
8394 const char *saved;
8395 char *end_op;
8396
8397 while (*op_string
8398 && (op_end == NULL || op_string < op_end))
8399 {
8400 saved = op_string;
8401 if (*op_string == '{')
8402 {
8403 op_string++;
8404
8405 /* Check broadcasts. */
8406 if (strncmp (op_string, "1to", 3) == 0)
8407 {
8408 int bcst_type;
8409
8410 if (i.broadcast)
8411 goto duplicated_vec_op;
8412
8413 op_string += 3;
8414 if (*op_string == '8')
8415 bcst_type = BROADCAST_1TO8;
8416 else if (*op_string == '4')
8417 bcst_type = BROADCAST_1TO4;
8418 else if (*op_string == '2')
8419 bcst_type = BROADCAST_1TO2;
8420 else if (*op_string == '1'
8421 && *(op_string+1) == '6')
8422 {
8423 bcst_type = BROADCAST_1TO16;
8424 op_string++;
8425 }
8426 else
8427 {
8428 as_bad (_("Unsupported broadcast: `%s'"), saved);
8429 return NULL;
8430 }
8431 op_string++;
8432
8433 broadcast_op.type = bcst_type;
8434 broadcast_op.operand = this_operand;
8435 i.broadcast = &broadcast_op;
8436 }
8437 /* Check masking operation. */
8438 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8439 {
8440 /* k0 can't be used for write mask. */
8441 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
8442 {
8443 as_bad (_("`%s%s' can't be used for write mask"),
8444 register_prefix, mask->reg_name);
8445 return NULL;
8446 }
8447
8448 if (!i.mask)
8449 {
8450 mask_op.mask = mask;
8451 mask_op.zeroing = 0;
8452 mask_op.operand = this_operand;
8453 i.mask = &mask_op;
8454 }
8455 else
8456 {
8457 if (i.mask->mask)
8458 goto duplicated_vec_op;
8459
8460 i.mask->mask = mask;
8461
8462 /* Only "{z}" is allowed here. No need to check
8463 zeroing mask explicitly. */
8464 if (i.mask->operand != this_operand)
8465 {
8466 as_bad (_("invalid write mask `%s'"), saved);
8467 return NULL;
8468 }
8469 }
8470
8471 op_string = end_op;
8472 }
8473 /* Check zeroing-flag for masking operation. */
8474 else if (*op_string == 'z')
8475 {
8476 if (!i.mask)
8477 {
8478 mask_op.mask = NULL;
8479 mask_op.zeroing = 1;
8480 mask_op.operand = this_operand;
8481 i.mask = &mask_op;
8482 }
8483 else
8484 {
8485 if (i.mask->zeroing)
8486 {
8487 duplicated_vec_op:
8488 as_bad (_("duplicated `%s'"), saved);
8489 return NULL;
8490 }
8491
8492 i.mask->zeroing = 1;
8493
8494 /* Only "{%k}" is allowed here. No need to check mask
8495 register explicitly. */
8496 if (i.mask->operand != this_operand)
8497 {
8498 as_bad (_("invalid zeroing-masking `%s'"),
8499 saved);
8500 return NULL;
8501 }
8502 }
8503
8504 op_string++;
8505 }
8506 else
8507 goto unknown_vec_op;
8508
8509 if (*op_string != '}')
8510 {
8511 as_bad (_("missing `}' in `%s'"), saved);
8512 return NULL;
8513 }
8514 op_string++;
8515 continue;
8516 }
8517 unknown_vec_op:
8518 /* We don't know this one. */
8519 as_bad (_("unknown vector operation: `%s'"), saved);
8520 return NULL;
8521 }
8522
8523 if (i.mask && i.mask->zeroing && !i.mask->mask)
8524 {
8525 as_bad (_("zeroing-masking only allowed with write mask"));
8526 return NULL;
8527 }
8528
8529 return op_string;
8530 }
8531
8532 static int
8533 i386_immediate (char *imm_start)
8534 {
8535 char *save_input_line_pointer;
8536 char *gotfree_input_line;
8537 segT exp_seg = 0;
8538 expressionS *exp;
8539 i386_operand_type types;
8540
8541 operand_type_set (&types, ~0);
8542
8543 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8544 {
8545 as_bad (_("at most %d immediate operands are allowed"),
8546 MAX_IMMEDIATE_OPERANDS);
8547 return 0;
8548 }
8549
8550 exp = &im_expressions[i.imm_operands++];
8551 i.op[this_operand].imms = exp;
8552
8553 if (is_space_char (*imm_start))
8554 ++imm_start;
8555
8556 save_input_line_pointer = input_line_pointer;
8557 input_line_pointer = imm_start;
8558
8559 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8560 if (gotfree_input_line)
8561 input_line_pointer = gotfree_input_line;
8562
8563 exp_seg = expression (exp);
8564
8565 SKIP_WHITESPACE ();
8566
8567 /* Handle vector operations. */
8568 if (*input_line_pointer == '{')
8569 {
8570 input_line_pointer = check_VecOperations (input_line_pointer,
8571 NULL);
8572 if (input_line_pointer == NULL)
8573 return 0;
8574 }
8575
8576 if (*input_line_pointer)
8577 as_bad (_("junk `%s' after expression"), input_line_pointer);
8578
8579 input_line_pointer = save_input_line_pointer;
8580 if (gotfree_input_line)
8581 {
8582 free (gotfree_input_line);
8583
8584 if (exp->X_op == O_constant || exp->X_op == O_register)
8585 exp->X_op = O_illegal;
8586 }
8587
8588 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8589 }
8590
8591 static int
8592 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8593 i386_operand_type types, const char *imm_start)
8594 {
8595 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8596 {
8597 if (imm_start)
8598 as_bad (_("missing or invalid immediate expression `%s'"),
8599 imm_start);
8600 return 0;
8601 }
8602 else if (exp->X_op == O_constant)
8603 {
8604 /* Size it properly later. */
8605 i.types[this_operand].bitfield.imm64 = 1;
8606 /* If not 64bit, sign extend val. */
8607 if (flag_code != CODE_64BIT
8608 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8609 exp->X_add_number
8610 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8611 }
8612 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8613 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8614 && exp_seg != absolute_section
8615 && exp_seg != text_section
8616 && exp_seg != data_section
8617 && exp_seg != bss_section
8618 && exp_seg != undefined_section
8619 && !bfd_is_com_section (exp_seg))
8620 {
8621 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8622 return 0;
8623 }
8624 #endif
8625 else if (!intel_syntax && exp_seg == reg_section)
8626 {
8627 if (imm_start)
8628 as_bad (_("illegal immediate register operand %s"), imm_start);
8629 return 0;
8630 }
8631 else
8632 {
8633 /* This is an address. The size of the address will be
8634 determined later, depending on destination register,
8635 suffix, or the default for the section. */
8636 i.types[this_operand].bitfield.imm8 = 1;
8637 i.types[this_operand].bitfield.imm16 = 1;
8638 i.types[this_operand].bitfield.imm32 = 1;
8639 i.types[this_operand].bitfield.imm32s = 1;
8640 i.types[this_operand].bitfield.imm64 = 1;
8641 i.types[this_operand] = operand_type_and (i.types[this_operand],
8642 types);
8643 }
8644
8645 return 1;
8646 }
8647
8648 static char *
8649 i386_scale (char *scale)
8650 {
8651 offsetT val;
8652 char *save = input_line_pointer;
8653
8654 input_line_pointer = scale;
8655 val = get_absolute_expression ();
8656
8657 switch (val)
8658 {
8659 case 1:
8660 i.log2_scale_factor = 0;
8661 break;
8662 case 2:
8663 i.log2_scale_factor = 1;
8664 break;
8665 case 4:
8666 i.log2_scale_factor = 2;
8667 break;
8668 case 8:
8669 i.log2_scale_factor = 3;
8670 break;
8671 default:
8672 {
8673 char sep = *input_line_pointer;
8674
8675 *input_line_pointer = '\0';
8676 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8677 scale);
8678 *input_line_pointer = sep;
8679 input_line_pointer = save;
8680 return NULL;
8681 }
8682 }
8683 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8684 {
8685 as_warn (_("scale factor of %d without an index register"),
8686 1 << i.log2_scale_factor);
8687 i.log2_scale_factor = 0;
8688 }
8689 scale = input_line_pointer;
8690 input_line_pointer = save;
8691 return scale;
8692 }
8693
8694 static int
8695 i386_displacement (char *disp_start, char *disp_end)
8696 {
8697 expressionS *exp;
8698 segT exp_seg = 0;
8699 char *save_input_line_pointer;
8700 char *gotfree_input_line;
8701 int override;
8702 i386_operand_type bigdisp, types = anydisp;
8703 int ret;
8704
8705 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8706 {
8707 as_bad (_("at most %d displacement operands are allowed"),
8708 MAX_MEMORY_OPERANDS);
8709 return 0;
8710 }
8711
8712 operand_type_set (&bigdisp, 0);
8713 if ((i.types[this_operand].bitfield.jumpabsolute)
8714 || (!current_templates->start->opcode_modifier.jump
8715 && !current_templates->start->opcode_modifier.jumpdword))
8716 {
8717 bigdisp.bitfield.disp32 = 1;
8718 override = (i.prefix[ADDR_PREFIX] != 0);
8719 if (flag_code == CODE_64BIT)
8720 {
8721 if (!override)
8722 {
8723 bigdisp.bitfield.disp32s = 1;
8724 bigdisp.bitfield.disp64 = 1;
8725 }
8726 }
8727 else if ((flag_code == CODE_16BIT) ^ override)
8728 {
8729 bigdisp.bitfield.disp32 = 0;
8730 bigdisp.bitfield.disp16 = 1;
8731 }
8732 }
8733 else
8734 {
8735 /* For PC-relative branches, the width of the displacement
8736 is dependent upon data size, not address size. */
8737 override = (i.prefix[DATA_PREFIX] != 0);
8738 if (flag_code == CODE_64BIT)
8739 {
8740 if (override || i.suffix == WORD_MNEM_SUFFIX)
8741 bigdisp.bitfield.disp16 = 1;
8742 else
8743 {
8744 bigdisp.bitfield.disp32 = 1;
8745 bigdisp.bitfield.disp32s = 1;
8746 }
8747 }
8748 else
8749 {
8750 if (!override)
8751 override = (i.suffix == (flag_code != CODE_16BIT
8752 ? WORD_MNEM_SUFFIX
8753 : LONG_MNEM_SUFFIX));
8754 bigdisp.bitfield.disp32 = 1;
8755 if ((flag_code == CODE_16BIT) ^ override)
8756 {
8757 bigdisp.bitfield.disp32 = 0;
8758 bigdisp.bitfield.disp16 = 1;
8759 }
8760 }
8761 }
8762 i.types[this_operand] = operand_type_or (i.types[this_operand],
8763 bigdisp);
8764
8765 exp = &disp_expressions[i.disp_operands];
8766 i.op[this_operand].disps = exp;
8767 i.disp_operands++;
8768 save_input_line_pointer = input_line_pointer;
8769 input_line_pointer = disp_start;
8770 END_STRING_AND_SAVE (disp_end);
8771
8772 #ifndef GCC_ASM_O_HACK
8773 #define GCC_ASM_O_HACK 0
8774 #endif
8775 #if GCC_ASM_O_HACK
8776 END_STRING_AND_SAVE (disp_end + 1);
8777 if (i.types[this_operand].bitfield.baseIndex
8778 && displacement_string_end[-1] == '+')
8779 {
8780 /* This hack is to avoid a warning when using the "o"
8781 constraint within gcc asm statements.
8782 For instance:
8783
8784 #define _set_tssldt_desc(n,addr,limit,type) \
8785 __asm__ __volatile__ ( \
8786 "movw %w2,%0\n\t" \
8787 "movw %w1,2+%0\n\t" \
8788 "rorl $16,%1\n\t" \
8789 "movb %b1,4+%0\n\t" \
8790 "movb %4,5+%0\n\t" \
8791 "movb $0,6+%0\n\t" \
8792 "movb %h1,7+%0\n\t" \
8793 "rorl $16,%1" \
8794 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8795
8796 This works great except that the output assembler ends
8797 up looking a bit weird if it turns out that there is
8798 no offset. You end up producing code that looks like:
8799
8800 #APP
8801 movw $235,(%eax)
8802 movw %dx,2+(%eax)
8803 rorl $16,%edx
8804 movb %dl,4+(%eax)
8805 movb $137,5+(%eax)
8806 movb $0,6+(%eax)
8807 movb %dh,7+(%eax)
8808 rorl $16,%edx
8809 #NO_APP
8810
8811 So here we provide the missing zero. */
8812
8813 *displacement_string_end = '0';
8814 }
8815 #endif
8816 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8817 if (gotfree_input_line)
8818 input_line_pointer = gotfree_input_line;
8819
8820 exp_seg = expression (exp);
8821
8822 SKIP_WHITESPACE ();
8823 if (*input_line_pointer)
8824 as_bad (_("junk `%s' after expression"), input_line_pointer);
8825 #if GCC_ASM_O_HACK
8826 RESTORE_END_STRING (disp_end + 1);
8827 #endif
8828 input_line_pointer = save_input_line_pointer;
8829 if (gotfree_input_line)
8830 {
8831 free (gotfree_input_line);
8832
8833 if (exp->X_op == O_constant || exp->X_op == O_register)
8834 exp->X_op = O_illegal;
8835 }
8836
8837 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8838
8839 RESTORE_END_STRING (disp_end);
8840
8841 return ret;
8842 }
8843
8844 static int
8845 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8846 i386_operand_type types, const char *disp_start)
8847 {
8848 i386_operand_type bigdisp;
8849 int ret = 1;
8850
8851 /* We do this to make sure that the section symbol is in
8852 the symbol table. We will ultimately change the relocation
8853 to be relative to the beginning of the section. */
8854 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8855 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8856 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8857 {
8858 if (exp->X_op != O_symbol)
8859 goto inv_disp;
8860
8861 if (S_IS_LOCAL (exp->X_add_symbol)
8862 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8863 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8864 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8865 exp->X_op = O_subtract;
8866 exp->X_op_symbol = GOT_symbol;
8867 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8868 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8869 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8870 i.reloc[this_operand] = BFD_RELOC_64;
8871 else
8872 i.reloc[this_operand] = BFD_RELOC_32;
8873 }
8874
8875 else if (exp->X_op == O_absent
8876 || exp->X_op == O_illegal
8877 || exp->X_op == O_big)
8878 {
8879 inv_disp:
8880 as_bad (_("missing or invalid displacement expression `%s'"),
8881 disp_start);
8882 ret = 0;
8883 }
8884
8885 else if (flag_code == CODE_64BIT
8886 && !i.prefix[ADDR_PREFIX]
8887 && exp->X_op == O_constant)
8888 {
8889 /* Since displacement is signed extended to 64bit, don't allow
8890 disp32 and turn off disp32s if they are out of range. */
8891 i.types[this_operand].bitfield.disp32 = 0;
8892 if (!fits_in_signed_long (exp->X_add_number))
8893 {
8894 i.types[this_operand].bitfield.disp32s = 0;
8895 if (i.types[this_operand].bitfield.baseindex)
8896 {
8897 as_bad (_("0x%lx out range of signed 32bit displacement"),
8898 (long) exp->X_add_number);
8899 ret = 0;
8900 }
8901 }
8902 }
8903
8904 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8905 else if (exp->X_op != O_constant
8906 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8907 && exp_seg != absolute_section
8908 && exp_seg != text_section
8909 && exp_seg != data_section
8910 && exp_seg != bss_section
8911 && exp_seg != undefined_section
8912 && !bfd_is_com_section (exp_seg))
8913 {
8914 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8915 ret = 0;
8916 }
8917 #endif
8918
8919 /* Check if this is a displacement only operand. */
8920 bigdisp = i.types[this_operand];
8921 bigdisp.bitfield.disp8 = 0;
8922 bigdisp.bitfield.disp16 = 0;
8923 bigdisp.bitfield.disp32 = 0;
8924 bigdisp.bitfield.disp32s = 0;
8925 bigdisp.bitfield.disp64 = 0;
8926 if (operand_type_all_zero (&bigdisp))
8927 i.types[this_operand] = operand_type_and (i.types[this_operand],
8928 types);
8929
8930 return ret;
8931 }
8932
8933 /* Return the active addressing mode, taking address override and
8934 registers forming the address into consideration. Update the
8935 address override prefix if necessary. */
8936
8937 static enum flag_code
8938 i386_addressing_mode (void)
8939 {
8940 enum flag_code addr_mode;
8941
8942 if (i.prefix[ADDR_PREFIX])
8943 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8944 else
8945 {
8946 addr_mode = flag_code;
8947
8948 #if INFER_ADDR_PREFIX
8949 if (i.mem_operands == 0)
8950 {
8951 /* Infer address prefix from the first memory operand. */
8952 const reg_entry *addr_reg = i.base_reg;
8953
8954 if (addr_reg == NULL)
8955 addr_reg = i.index_reg;
8956
8957 if (addr_reg)
8958 {
8959 if (addr_reg->reg_num == RegEip
8960 || addr_reg->reg_num == RegEiz
8961 || addr_reg->reg_type.bitfield.dword)
8962 addr_mode = CODE_32BIT;
8963 else if (flag_code != CODE_64BIT
8964 && addr_reg->reg_type.bitfield.word)
8965 addr_mode = CODE_16BIT;
8966
8967 if (addr_mode != flag_code)
8968 {
8969 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8970 i.prefixes += 1;
8971 /* Change the size of any displacement too. At most one
8972 of Disp16 or Disp32 is set.
8973 FIXME. There doesn't seem to be any real need for
8974 separate Disp16 and Disp32 flags. The same goes for
8975 Imm16 and Imm32. Removing them would probably clean
8976 up the code quite a lot. */
8977 if (flag_code != CODE_64BIT
8978 && (i.types[this_operand].bitfield.disp16
8979 || i.types[this_operand].bitfield.disp32))
8980 i.types[this_operand]
8981 = operand_type_xor (i.types[this_operand], disp16_32);
8982 }
8983 }
8984 }
8985 #endif
8986 }
8987
8988 return addr_mode;
8989 }
8990
8991 /* Make sure the memory operand we've been dealt is valid.
8992 Return 1 on success, 0 on a failure. */
8993
8994 static int
8995 i386_index_check (const char *operand_string)
8996 {
8997 const char *kind = "base/index";
8998 enum flag_code addr_mode = i386_addressing_mode ();
8999
9000 if (current_templates->start->opcode_modifier.isstring
9001 && !current_templates->start->opcode_modifier.immext
9002 && (current_templates->end[-1].opcode_modifier.isstring
9003 || i.mem_operands))
9004 {
9005 /* Memory operands of string insns are special in that they only allow
9006 a single register (rDI, rSI, or rBX) as their memory address. */
9007 const reg_entry *expected_reg;
9008 static const char *di_si[][2] =
9009 {
9010 { "esi", "edi" },
9011 { "si", "di" },
9012 { "rsi", "rdi" }
9013 };
9014 static const char *bx[] = { "ebx", "bx", "rbx" };
9015
9016 kind = "string address";
9017
9018 if (current_templates->start->opcode_modifier.repprefixok)
9019 {
9020 i386_operand_type type = current_templates->end[-1].operand_types[0];
9021
9022 if (!type.bitfield.baseindex
9023 || ((!i.mem_operands != !intel_syntax)
9024 && current_templates->end[-1].operand_types[1]
9025 .bitfield.baseindex))
9026 type = current_templates->end[-1].operand_types[1];
9027 expected_reg = hash_find (reg_hash,
9028 di_si[addr_mode][type.bitfield.esseg]);
9029
9030 }
9031 else
9032 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9033
9034 if (i.base_reg != expected_reg
9035 || i.index_reg
9036 || operand_type_check (i.types[this_operand], disp))
9037 {
9038 /* The second memory operand must have the same size as
9039 the first one. */
9040 if (i.mem_operands
9041 && i.base_reg
9042 && !((addr_mode == CODE_64BIT
9043 && i.base_reg->reg_type.bitfield.qword)
9044 || (addr_mode == CODE_32BIT
9045 ? i.base_reg->reg_type.bitfield.dword
9046 : i.base_reg->reg_type.bitfield.word)))
9047 goto bad_address;
9048
9049 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9050 operand_string,
9051 intel_syntax ? '[' : '(',
9052 register_prefix,
9053 expected_reg->reg_name,
9054 intel_syntax ? ']' : ')');
9055 return 1;
9056 }
9057 else
9058 return 1;
9059
9060 bad_address:
9061 as_bad (_("`%s' is not a valid %s expression"),
9062 operand_string, kind);
9063 return 0;
9064 }
9065 else
9066 {
9067 if (addr_mode != CODE_16BIT)
9068 {
9069 /* 32-bit/64-bit checks. */
9070 if ((i.base_reg
9071 && (addr_mode == CODE_64BIT
9072 ? !i.base_reg->reg_type.bitfield.qword
9073 : !i.base_reg->reg_type.bitfield.dword)
9074 && (i.index_reg
9075 || (i.base_reg->reg_num
9076 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
9077 || (i.index_reg
9078 && !i.index_reg->reg_type.bitfield.xmmword
9079 && !i.index_reg->reg_type.bitfield.ymmword
9080 && !i.index_reg->reg_type.bitfield.zmmword
9081 && ((addr_mode == CODE_64BIT
9082 ? !(i.index_reg->reg_type.bitfield.qword
9083 || i.index_reg->reg_num == RegRiz)
9084 : !(i.index_reg->reg_type.bitfield.dword
9085 || i.index_reg->reg_num == RegEiz))
9086 || !i.index_reg->reg_type.bitfield.baseindex)))
9087 goto bad_address;
9088
9089 /* bndmk, bndldx, and bndstx have special restrictions. */
9090 if (current_templates->start->base_opcode == 0xf30f1b
9091 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9092 {
9093 /* They cannot use RIP-relative addressing. */
9094 if (i.base_reg && i.base_reg->reg_num == RegRip)
9095 {
9096 as_bad (_("`%s' cannot be used here"), operand_string);
9097 return 0;
9098 }
9099
9100 /* bndldx and bndstx ignore their scale factor. */
9101 if (current_templates->start->base_opcode != 0xf30f1b
9102 && i.log2_scale_factor)
9103 as_warn (_("register scaling is being ignored here"));
9104 }
9105 }
9106 else
9107 {
9108 /* 16-bit checks. */
9109 if ((i.base_reg
9110 && (!i.base_reg->reg_type.bitfield.word
9111 || !i.base_reg->reg_type.bitfield.baseindex))
9112 || (i.index_reg
9113 && (!i.index_reg->reg_type.bitfield.word
9114 || !i.index_reg->reg_type.bitfield.baseindex
9115 || !(i.base_reg
9116 && i.base_reg->reg_num < 6
9117 && i.index_reg->reg_num >= 6
9118 && i.log2_scale_factor == 0))))
9119 goto bad_address;
9120 }
9121 }
9122 return 1;
9123 }
9124
9125 /* Handle vector immediates. */
9126
9127 static int
9128 RC_SAE_immediate (const char *imm_start)
9129 {
9130 unsigned int match_found, j;
9131 const char *pstr = imm_start;
9132 expressionS *exp;
9133
9134 if (*pstr != '{')
9135 return 0;
9136
9137 pstr++;
9138 match_found = 0;
9139 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9140 {
9141 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9142 {
9143 if (!i.rounding)
9144 {
9145 rc_op.type = RC_NamesTable[j].type;
9146 rc_op.operand = this_operand;
9147 i.rounding = &rc_op;
9148 }
9149 else
9150 {
9151 as_bad (_("duplicated `%s'"), imm_start);
9152 return 0;
9153 }
9154 pstr += RC_NamesTable[j].len;
9155 match_found = 1;
9156 break;
9157 }
9158 }
9159 if (!match_found)
9160 return 0;
9161
9162 if (*pstr++ != '}')
9163 {
9164 as_bad (_("Missing '}': '%s'"), imm_start);
9165 return 0;
9166 }
9167 /* RC/SAE immediate string should contain nothing more. */;
9168 if (*pstr != 0)
9169 {
9170 as_bad (_("Junk after '}': '%s'"), imm_start);
9171 return 0;
9172 }
9173
9174 exp = &im_expressions[i.imm_operands++];
9175 i.op[this_operand].imms = exp;
9176
9177 exp->X_op = O_constant;
9178 exp->X_add_number = 0;
9179 exp->X_add_symbol = (symbolS *) 0;
9180 exp->X_op_symbol = (symbolS *) 0;
9181
9182 i.types[this_operand].bitfield.imm8 = 1;
9183 return 1;
9184 }
9185
9186 /* Only string instructions can have a second memory operand, so
9187 reduce current_templates to just those if it contains any. */
9188 static int
9189 maybe_adjust_templates (void)
9190 {
9191 const insn_template *t;
9192
9193 gas_assert (i.mem_operands == 1);
9194
9195 for (t = current_templates->start; t < current_templates->end; ++t)
9196 if (t->opcode_modifier.isstring)
9197 break;
9198
9199 if (t < current_templates->end)
9200 {
9201 static templates aux_templates;
9202 bfd_boolean recheck;
9203
9204 aux_templates.start = t;
9205 for (; t < current_templates->end; ++t)
9206 if (!t->opcode_modifier.isstring)
9207 break;
9208 aux_templates.end = t;
9209
9210 /* Determine whether to re-check the first memory operand. */
9211 recheck = (aux_templates.start != current_templates->start
9212 || t != current_templates->end);
9213
9214 current_templates = &aux_templates;
9215
9216 if (recheck)
9217 {
9218 i.mem_operands = 0;
9219 if (i.memop1_string != NULL
9220 && i386_index_check (i.memop1_string) == 0)
9221 return 0;
9222 i.mem_operands = 1;
9223 }
9224 }
9225
9226 return 1;
9227 }
9228
9229 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9230 on error. */
9231
9232 static int
9233 i386_att_operand (char *operand_string)
9234 {
9235 const reg_entry *r;
9236 char *end_op;
9237 char *op_string = operand_string;
9238
9239 if (is_space_char (*op_string))
9240 ++op_string;
9241
9242 /* We check for an absolute prefix (differentiating,
9243 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9244 if (*op_string == ABSOLUTE_PREFIX)
9245 {
9246 ++op_string;
9247 if (is_space_char (*op_string))
9248 ++op_string;
9249 i.types[this_operand].bitfield.jumpabsolute = 1;
9250 }
9251
9252 /* Check if operand is a register. */
9253 if ((r = parse_register (op_string, &end_op)) != NULL)
9254 {
9255 i386_operand_type temp;
9256
9257 /* Check for a segment override by searching for ':' after a
9258 segment register. */
9259 op_string = end_op;
9260 if (is_space_char (*op_string))
9261 ++op_string;
9262 if (*op_string == ':'
9263 && (r->reg_type.bitfield.sreg2
9264 || r->reg_type.bitfield.sreg3))
9265 {
9266 switch (r->reg_num)
9267 {
9268 case 0:
9269 i.seg[i.mem_operands] = &es;
9270 break;
9271 case 1:
9272 i.seg[i.mem_operands] = &cs;
9273 break;
9274 case 2:
9275 i.seg[i.mem_operands] = &ss;
9276 break;
9277 case 3:
9278 i.seg[i.mem_operands] = &ds;
9279 break;
9280 case 4:
9281 i.seg[i.mem_operands] = &fs;
9282 break;
9283 case 5:
9284 i.seg[i.mem_operands] = &gs;
9285 break;
9286 }
9287
9288 /* Skip the ':' and whitespace. */
9289 ++op_string;
9290 if (is_space_char (*op_string))
9291 ++op_string;
9292
9293 if (!is_digit_char (*op_string)
9294 && !is_identifier_char (*op_string)
9295 && *op_string != '('
9296 && *op_string != ABSOLUTE_PREFIX)
9297 {
9298 as_bad (_("bad memory operand `%s'"), op_string);
9299 return 0;
9300 }
9301 /* Handle case of %es:*foo. */
9302 if (*op_string == ABSOLUTE_PREFIX)
9303 {
9304 ++op_string;
9305 if (is_space_char (*op_string))
9306 ++op_string;
9307 i.types[this_operand].bitfield.jumpabsolute = 1;
9308 }
9309 goto do_memory_reference;
9310 }
9311
9312 /* Handle vector operations. */
9313 if (*op_string == '{')
9314 {
9315 op_string = check_VecOperations (op_string, NULL);
9316 if (op_string == NULL)
9317 return 0;
9318 }
9319
9320 if (*op_string)
9321 {
9322 as_bad (_("junk `%s' after register"), op_string);
9323 return 0;
9324 }
9325 temp = r->reg_type;
9326 temp.bitfield.baseindex = 0;
9327 i.types[this_operand] = operand_type_or (i.types[this_operand],
9328 temp);
9329 i.types[this_operand].bitfield.unspecified = 0;
9330 i.op[this_operand].regs = r;
9331 i.reg_operands++;
9332 }
9333 else if (*op_string == REGISTER_PREFIX)
9334 {
9335 as_bad (_("bad register name `%s'"), op_string);
9336 return 0;
9337 }
9338 else if (*op_string == IMMEDIATE_PREFIX)
9339 {
9340 ++op_string;
9341 if (i.types[this_operand].bitfield.jumpabsolute)
9342 {
9343 as_bad (_("immediate operand illegal with absolute jump"));
9344 return 0;
9345 }
9346 if (!i386_immediate (op_string))
9347 return 0;
9348 }
9349 else if (RC_SAE_immediate (operand_string))
9350 {
9351 /* If it is a RC or SAE immediate, do nothing. */
9352 ;
9353 }
9354 else if (is_digit_char (*op_string)
9355 || is_identifier_char (*op_string)
9356 || *op_string == '"'
9357 || *op_string == '(')
9358 {
9359 /* This is a memory reference of some sort. */
9360 char *base_string;
9361
9362 /* Start and end of displacement string expression (if found). */
9363 char *displacement_string_start;
9364 char *displacement_string_end;
9365 char *vop_start;
9366
9367 do_memory_reference:
9368 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9369 return 0;
9370 if ((i.mem_operands == 1
9371 && !current_templates->start->opcode_modifier.isstring)
9372 || i.mem_operands == 2)
9373 {
9374 as_bad (_("too many memory references for `%s'"),
9375 current_templates->start->name);
9376 return 0;
9377 }
9378
9379 /* Check for base index form. We detect the base index form by
9380 looking for an ')' at the end of the operand, searching
9381 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9382 after the '('. */
9383 base_string = op_string + strlen (op_string);
9384
9385 /* Handle vector operations. */
9386 vop_start = strchr (op_string, '{');
9387 if (vop_start && vop_start < base_string)
9388 {
9389 if (check_VecOperations (vop_start, base_string) == NULL)
9390 return 0;
9391 base_string = vop_start;
9392 }
9393
9394 --base_string;
9395 if (is_space_char (*base_string))
9396 --base_string;
9397
9398 /* If we only have a displacement, set-up for it to be parsed later. */
9399 displacement_string_start = op_string;
9400 displacement_string_end = base_string + 1;
9401
9402 if (*base_string == ')')
9403 {
9404 char *temp_string;
9405 unsigned int parens_balanced = 1;
9406 /* We've already checked that the number of left & right ()'s are
9407 equal, so this loop will not be infinite. */
9408 do
9409 {
9410 base_string--;
9411 if (*base_string == ')')
9412 parens_balanced++;
9413 if (*base_string == '(')
9414 parens_balanced--;
9415 }
9416 while (parens_balanced);
9417
9418 temp_string = base_string;
9419
9420 /* Skip past '(' and whitespace. */
9421 ++base_string;
9422 if (is_space_char (*base_string))
9423 ++base_string;
9424
9425 if (*base_string == ','
9426 || ((i.base_reg = parse_register (base_string, &end_op))
9427 != NULL))
9428 {
9429 displacement_string_end = temp_string;
9430
9431 i.types[this_operand].bitfield.baseindex = 1;
9432
9433 if (i.base_reg)
9434 {
9435 base_string = end_op;
9436 if (is_space_char (*base_string))
9437 ++base_string;
9438 }
9439
9440 /* There may be an index reg or scale factor here. */
9441 if (*base_string == ',')
9442 {
9443 ++base_string;
9444 if (is_space_char (*base_string))
9445 ++base_string;
9446
9447 if ((i.index_reg = parse_register (base_string, &end_op))
9448 != NULL)
9449 {
9450 base_string = end_op;
9451 if (is_space_char (*base_string))
9452 ++base_string;
9453 if (*base_string == ',')
9454 {
9455 ++base_string;
9456 if (is_space_char (*base_string))
9457 ++base_string;
9458 }
9459 else if (*base_string != ')')
9460 {
9461 as_bad (_("expecting `,' or `)' "
9462 "after index register in `%s'"),
9463 operand_string);
9464 return 0;
9465 }
9466 }
9467 else if (*base_string == REGISTER_PREFIX)
9468 {
9469 end_op = strchr (base_string, ',');
9470 if (end_op)
9471 *end_op = '\0';
9472 as_bad (_("bad register name `%s'"), base_string);
9473 return 0;
9474 }
9475
9476 /* Check for scale factor. */
9477 if (*base_string != ')')
9478 {
9479 char *end_scale = i386_scale (base_string);
9480
9481 if (!end_scale)
9482 return 0;
9483
9484 base_string = end_scale;
9485 if (is_space_char (*base_string))
9486 ++base_string;
9487 if (*base_string != ')')
9488 {
9489 as_bad (_("expecting `)' "
9490 "after scale factor in `%s'"),
9491 operand_string);
9492 return 0;
9493 }
9494 }
9495 else if (!i.index_reg)
9496 {
9497 as_bad (_("expecting index register or scale factor "
9498 "after `,'; got '%c'"),
9499 *base_string);
9500 return 0;
9501 }
9502 }
9503 else if (*base_string != ')')
9504 {
9505 as_bad (_("expecting `,' or `)' "
9506 "after base register in `%s'"),
9507 operand_string);
9508 return 0;
9509 }
9510 }
9511 else if (*base_string == REGISTER_PREFIX)
9512 {
9513 end_op = strchr (base_string, ',');
9514 if (end_op)
9515 *end_op = '\0';
9516 as_bad (_("bad register name `%s'"), base_string);
9517 return 0;
9518 }
9519 }
9520
9521 /* If there's an expression beginning the operand, parse it,
9522 assuming displacement_string_start and
9523 displacement_string_end are meaningful. */
9524 if (displacement_string_start != displacement_string_end)
9525 {
9526 if (!i386_displacement (displacement_string_start,
9527 displacement_string_end))
9528 return 0;
9529 }
9530
9531 /* Special case for (%dx) while doing input/output op. */
9532 if (i.base_reg
9533 && operand_type_equal (&i.base_reg->reg_type,
9534 &reg16_inoutportreg)
9535 && i.index_reg == 0
9536 && i.log2_scale_factor == 0
9537 && i.seg[i.mem_operands] == 0
9538 && !operand_type_check (i.types[this_operand], disp))
9539 {
9540 i.types[this_operand] = inoutportreg;
9541 return 1;
9542 }
9543
9544 if (i386_index_check (operand_string) == 0)
9545 return 0;
9546 i.types[this_operand].bitfield.mem = 1;
9547 if (i.mem_operands == 0)
9548 i.memop1_string = xstrdup (operand_string);
9549 i.mem_operands++;
9550 }
9551 else
9552 {
9553 /* It's not a memory operand; argh! */
9554 as_bad (_("invalid char %s beginning operand %d `%s'"),
9555 output_invalid (*op_string),
9556 this_operand + 1,
9557 op_string);
9558 return 0;
9559 }
9560 return 1; /* Normal return. */
9561 }
9562 \f
9563 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9564 that an rs_machine_dependent frag may reach. */
9565
9566 unsigned int
9567 i386_frag_max_var (fragS *frag)
9568 {
9569 /* The only relaxable frags are for jumps.
9570 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9571 gas_assert (frag->fr_type == rs_machine_dependent);
9572 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9573 }
9574
9575 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9576 static int
9577 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9578 {
9579 /* STT_GNU_IFUNC symbol must go through PLT. */
9580 if ((symbol_get_bfdsym (fr_symbol)->flags
9581 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9582 return 0;
9583
9584 if (!S_IS_EXTERNAL (fr_symbol))
9585 /* Symbol may be weak or local. */
9586 return !S_IS_WEAK (fr_symbol);
9587
9588 /* Global symbols with non-default visibility can't be preempted. */
9589 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9590 return 1;
9591
9592 if (fr_var != NO_RELOC)
9593 switch ((enum bfd_reloc_code_real) fr_var)
9594 {
9595 case BFD_RELOC_386_PLT32:
9596 case BFD_RELOC_X86_64_PLT32:
9597 /* Symbol with PLT relocation may be preempted. */
9598 return 0;
9599 default:
9600 abort ();
9601 }
9602
9603 /* Global symbols with default visibility in a shared library may be
9604 preempted by another definition. */
9605 return !shared;
9606 }
9607 #endif
9608
9609 /* md_estimate_size_before_relax()
9610
9611 Called just before relax() for rs_machine_dependent frags. The x86
9612 assembler uses these frags to handle variable size jump
9613 instructions.
9614
9615 Any symbol that is now undefined will not become defined.
9616 Return the correct fr_subtype in the frag.
9617 Return the initial "guess for variable size of frag" to caller.
9618 The guess is actually the growth beyond the fixed part. Whatever
9619 we do to grow the fixed or variable part contributes to our
9620 returned value. */
9621
9622 int
9623 md_estimate_size_before_relax (fragS *fragP, segT segment)
9624 {
9625 /* We've already got fragP->fr_subtype right; all we have to do is
9626 check for un-relaxable symbols. On an ELF system, we can't relax
9627 an externally visible symbol, because it may be overridden by a
9628 shared library. */
9629 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9630 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9631 || (IS_ELF
9632 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9633 fragP->fr_var))
9634 #endif
9635 #if defined (OBJ_COFF) && defined (TE_PE)
9636 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9637 && S_IS_WEAK (fragP->fr_symbol))
9638 #endif
9639 )
9640 {
9641 /* Symbol is undefined in this segment, or we need to keep a
9642 reloc so that weak symbols can be overridden. */
9643 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9644 enum bfd_reloc_code_real reloc_type;
9645 unsigned char *opcode;
9646 int old_fr_fix;
9647
9648 if (fragP->fr_var != NO_RELOC)
9649 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9650 else if (size == 2)
9651 reloc_type = BFD_RELOC_16_PCREL;
9652 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9653 else if (need_plt32_p (fragP->fr_symbol))
9654 reloc_type = BFD_RELOC_X86_64_PLT32;
9655 #endif
9656 else
9657 reloc_type = BFD_RELOC_32_PCREL;
9658
9659 old_fr_fix = fragP->fr_fix;
9660 opcode = (unsigned char *) fragP->fr_opcode;
9661
9662 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9663 {
9664 case UNCOND_JUMP:
9665 /* Make jmp (0xeb) a (d)word displacement jump. */
9666 opcode[0] = 0xe9;
9667 fragP->fr_fix += size;
9668 fix_new (fragP, old_fr_fix, size,
9669 fragP->fr_symbol,
9670 fragP->fr_offset, 1,
9671 reloc_type);
9672 break;
9673
9674 case COND_JUMP86:
9675 if (size == 2
9676 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9677 {
9678 /* Negate the condition, and branch past an
9679 unconditional jump. */
9680 opcode[0] ^= 1;
9681 opcode[1] = 3;
9682 /* Insert an unconditional jump. */
9683 opcode[2] = 0xe9;
9684 /* We added two extra opcode bytes, and have a two byte
9685 offset. */
9686 fragP->fr_fix += 2 + 2;
9687 fix_new (fragP, old_fr_fix + 2, 2,
9688 fragP->fr_symbol,
9689 fragP->fr_offset, 1,
9690 reloc_type);
9691 break;
9692 }
9693 /* Fall through. */
9694
9695 case COND_JUMP:
9696 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9697 {
9698 fixS *fixP;
9699
9700 fragP->fr_fix += 1;
9701 fixP = fix_new (fragP, old_fr_fix, 1,
9702 fragP->fr_symbol,
9703 fragP->fr_offset, 1,
9704 BFD_RELOC_8_PCREL);
9705 fixP->fx_signed = 1;
9706 break;
9707 }
9708
9709 /* This changes the byte-displacement jump 0x7N
9710 to the (d)word-displacement jump 0x0f,0x8N. */
9711 opcode[1] = opcode[0] + 0x10;
9712 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9713 /* We've added an opcode byte. */
9714 fragP->fr_fix += 1 + size;
9715 fix_new (fragP, old_fr_fix + 1, size,
9716 fragP->fr_symbol,
9717 fragP->fr_offset, 1,
9718 reloc_type);
9719 break;
9720
9721 default:
9722 BAD_CASE (fragP->fr_subtype);
9723 break;
9724 }
9725 frag_wane (fragP);
9726 return fragP->fr_fix - old_fr_fix;
9727 }
9728
9729 /* Guess size depending on current relax state. Initially the relax
9730 state will correspond to a short jump and we return 1, because
9731 the variable part of the frag (the branch offset) is one byte
9732 long. However, we can relax a section more than once and in that
9733 case we must either set fr_subtype back to the unrelaxed state,
9734 or return the value for the appropriate branch. */
9735 return md_relax_table[fragP->fr_subtype].rlx_length;
9736 }
9737
9738 /* Called after relax() is finished.
9739
9740 In: Address of frag.
9741 fr_type == rs_machine_dependent.
9742 fr_subtype is what the address relaxed to.
9743
9744 Out: Any fixSs and constants are set up.
9745 Caller will turn frag into a ".space 0". */
9746
9747 void
9748 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9749 fragS *fragP)
9750 {
9751 unsigned char *opcode;
9752 unsigned char *where_to_put_displacement = NULL;
9753 offsetT target_address;
9754 offsetT opcode_address;
9755 unsigned int extension = 0;
9756 offsetT displacement_from_opcode_start;
9757
9758 opcode = (unsigned char *) fragP->fr_opcode;
9759
9760 /* Address we want to reach in file space. */
9761 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9762
9763 /* Address opcode resides at in file space. */
9764 opcode_address = fragP->fr_address + fragP->fr_fix;
9765
9766 /* Displacement from opcode start to fill into instruction. */
9767 displacement_from_opcode_start = target_address - opcode_address;
9768
9769 if ((fragP->fr_subtype & BIG) == 0)
9770 {
9771 /* Don't have to change opcode. */
9772 extension = 1; /* 1 opcode + 1 displacement */
9773 where_to_put_displacement = &opcode[1];
9774 }
9775 else
9776 {
9777 if (no_cond_jump_promotion
9778 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9779 as_warn_where (fragP->fr_file, fragP->fr_line,
9780 _("long jump required"));
9781
9782 switch (fragP->fr_subtype)
9783 {
9784 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9785 extension = 4; /* 1 opcode + 4 displacement */
9786 opcode[0] = 0xe9;
9787 where_to_put_displacement = &opcode[1];
9788 break;
9789
9790 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9791 extension = 2; /* 1 opcode + 2 displacement */
9792 opcode[0] = 0xe9;
9793 where_to_put_displacement = &opcode[1];
9794 break;
9795
9796 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9797 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9798 extension = 5; /* 2 opcode + 4 displacement */
9799 opcode[1] = opcode[0] + 0x10;
9800 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9801 where_to_put_displacement = &opcode[2];
9802 break;
9803
9804 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9805 extension = 3; /* 2 opcode + 2 displacement */
9806 opcode[1] = opcode[0] + 0x10;
9807 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9808 where_to_put_displacement = &opcode[2];
9809 break;
9810
9811 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9812 extension = 4;
9813 opcode[0] ^= 1;
9814 opcode[1] = 3;
9815 opcode[2] = 0xe9;
9816 where_to_put_displacement = &opcode[3];
9817 break;
9818
9819 default:
9820 BAD_CASE (fragP->fr_subtype);
9821 break;
9822 }
9823 }
9824
9825 /* If size if less then four we are sure that the operand fits,
9826 but if it's 4, then it could be that the displacement is larger
9827 then -/+ 2GB. */
9828 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9829 && object_64bit
9830 && ((addressT) (displacement_from_opcode_start - extension
9831 + ((addressT) 1 << 31))
9832 > (((addressT) 2 << 31) - 1)))
9833 {
9834 as_bad_where (fragP->fr_file, fragP->fr_line,
9835 _("jump target out of range"));
9836 /* Make us emit 0. */
9837 displacement_from_opcode_start = extension;
9838 }
9839 /* Now put displacement after opcode. */
9840 md_number_to_chars ((char *) where_to_put_displacement,
9841 (valueT) (displacement_from_opcode_start - extension),
9842 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9843 fragP->fr_fix += extension;
9844 }
9845 \f
9846 /* Apply a fixup (fixP) to segment data, once it has been determined
9847 by our caller that we have all the info we need to fix it up.
9848
9849 Parameter valP is the pointer to the value of the bits.
9850
9851 On the 386, immediates, displacements, and data pointers are all in
9852 the same (little-endian) format, so we don't need to care about which
9853 we are handling. */
9854
9855 void
9856 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9857 {
9858 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9859 valueT value = *valP;
9860
9861 #if !defined (TE_Mach)
9862 if (fixP->fx_pcrel)
9863 {
9864 switch (fixP->fx_r_type)
9865 {
9866 default:
9867 break;
9868
9869 case BFD_RELOC_64:
9870 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9871 break;
9872 case BFD_RELOC_32:
9873 case BFD_RELOC_X86_64_32S:
9874 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9875 break;
9876 case BFD_RELOC_16:
9877 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9878 break;
9879 case BFD_RELOC_8:
9880 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9881 break;
9882 }
9883 }
9884
9885 if (fixP->fx_addsy != NULL
9886 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9887 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9888 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9889 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9890 && !use_rela_relocations)
9891 {
9892 /* This is a hack. There should be a better way to handle this.
9893 This covers for the fact that bfd_install_relocation will
9894 subtract the current location (for partial_inplace, PC relative
9895 relocations); see more below. */
9896 #ifndef OBJ_AOUT
9897 if (IS_ELF
9898 #ifdef TE_PE
9899 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9900 #endif
9901 )
9902 value += fixP->fx_where + fixP->fx_frag->fr_address;
9903 #endif
9904 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9905 if (IS_ELF)
9906 {
9907 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9908
9909 if ((sym_seg == seg
9910 || (symbol_section_p (fixP->fx_addsy)
9911 && sym_seg != absolute_section))
9912 && !generic_force_reloc (fixP))
9913 {
9914 /* Yes, we add the values in twice. This is because
9915 bfd_install_relocation subtracts them out again. I think
9916 bfd_install_relocation is broken, but I don't dare change
9917 it. FIXME. */
9918 value += fixP->fx_where + fixP->fx_frag->fr_address;
9919 }
9920 }
9921 #endif
9922 #if defined (OBJ_COFF) && defined (TE_PE)
9923 /* For some reason, the PE format does not store a
9924 section address offset for a PC relative symbol. */
9925 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9926 || S_IS_WEAK (fixP->fx_addsy))
9927 value += md_pcrel_from (fixP);
9928 #endif
9929 }
9930 #if defined (OBJ_COFF) && defined (TE_PE)
9931 if (fixP->fx_addsy != NULL
9932 && S_IS_WEAK (fixP->fx_addsy)
9933 /* PR 16858: Do not modify weak function references. */
9934 && ! fixP->fx_pcrel)
9935 {
9936 #if !defined (TE_PEP)
9937 /* For x86 PE weak function symbols are neither PC-relative
9938 nor do they set S_IS_FUNCTION. So the only reliable way
9939 to detect them is to check the flags of their containing
9940 section. */
9941 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9942 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9943 ;
9944 else
9945 #endif
9946 value -= S_GET_VALUE (fixP->fx_addsy);
9947 }
9948 #endif
9949
9950 /* Fix a few things - the dynamic linker expects certain values here,
9951 and we must not disappoint it. */
9952 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9953 if (IS_ELF && fixP->fx_addsy)
9954 switch (fixP->fx_r_type)
9955 {
9956 case BFD_RELOC_386_PLT32:
9957 case BFD_RELOC_X86_64_PLT32:
9958 /* Make the jump instruction point to the address of the operand. At
9959 runtime we merely add the offset to the actual PLT entry. */
9960 value = -4;
9961 break;
9962
9963 case BFD_RELOC_386_TLS_GD:
9964 case BFD_RELOC_386_TLS_LDM:
9965 case BFD_RELOC_386_TLS_IE_32:
9966 case BFD_RELOC_386_TLS_IE:
9967 case BFD_RELOC_386_TLS_GOTIE:
9968 case BFD_RELOC_386_TLS_GOTDESC:
9969 case BFD_RELOC_X86_64_TLSGD:
9970 case BFD_RELOC_X86_64_TLSLD:
9971 case BFD_RELOC_X86_64_GOTTPOFF:
9972 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9973 value = 0; /* Fully resolved at runtime. No addend. */
9974 /* Fallthrough */
9975 case BFD_RELOC_386_TLS_LE:
9976 case BFD_RELOC_386_TLS_LDO_32:
9977 case BFD_RELOC_386_TLS_LE_32:
9978 case BFD_RELOC_X86_64_DTPOFF32:
9979 case BFD_RELOC_X86_64_DTPOFF64:
9980 case BFD_RELOC_X86_64_TPOFF32:
9981 case BFD_RELOC_X86_64_TPOFF64:
9982 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9983 break;
9984
9985 case BFD_RELOC_386_TLS_DESC_CALL:
9986 case BFD_RELOC_X86_64_TLSDESC_CALL:
9987 value = 0; /* Fully resolved at runtime. No addend. */
9988 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9989 fixP->fx_done = 0;
9990 return;
9991
9992 case BFD_RELOC_VTABLE_INHERIT:
9993 case BFD_RELOC_VTABLE_ENTRY:
9994 fixP->fx_done = 0;
9995 return;
9996
9997 default:
9998 break;
9999 }
10000 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10001 *valP = value;
10002 #endif /* !defined (TE_Mach) */
10003
10004 /* Are we finished with this relocation now? */
10005 if (fixP->fx_addsy == NULL)
10006 fixP->fx_done = 1;
10007 #if defined (OBJ_COFF) && defined (TE_PE)
10008 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10009 {
10010 fixP->fx_done = 0;
10011 /* Remember value for tc_gen_reloc. */
10012 fixP->fx_addnumber = value;
10013 /* Clear out the frag for now. */
10014 value = 0;
10015 }
10016 #endif
10017 else if (use_rela_relocations)
10018 {
10019 fixP->fx_no_overflow = 1;
10020 /* Remember value for tc_gen_reloc. */
10021 fixP->fx_addnumber = value;
10022 value = 0;
10023 }
10024
10025 md_number_to_chars (p, value, fixP->fx_size);
10026 }
10027 \f
10028 const char *
10029 md_atof (int type, char *litP, int *sizeP)
10030 {
10031 /* This outputs the LITTLENUMs in REVERSE order;
10032 in accord with the bigendian 386. */
10033 return ieee_md_atof (type, litP, sizeP, FALSE);
10034 }
10035 \f
10036 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10037
10038 static char *
10039 output_invalid (int c)
10040 {
10041 if (ISPRINT (c))
10042 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10043 "'%c'", c);
10044 else
10045 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10046 "(0x%x)", (unsigned char) c);
10047 return output_invalid_buf;
10048 }
10049
10050 /* REG_STRING starts *before* REGISTER_PREFIX. */
10051
10052 static const reg_entry *
10053 parse_real_register (char *reg_string, char **end_op)
10054 {
10055 char *s = reg_string;
10056 char *p;
10057 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10058 const reg_entry *r;
10059
10060 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10061 if (*s == REGISTER_PREFIX)
10062 ++s;
10063
10064 if (is_space_char (*s))
10065 ++s;
10066
10067 p = reg_name_given;
10068 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10069 {
10070 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10071 return (const reg_entry *) NULL;
10072 s++;
10073 }
10074
10075 /* For naked regs, make sure that we are not dealing with an identifier.
10076 This prevents confusing an identifier like `eax_var' with register
10077 `eax'. */
10078 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10079 return (const reg_entry *) NULL;
10080
10081 *end_op = s;
10082
10083 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10084
10085 /* Handle floating point regs, allowing spaces in the (i) part. */
10086 if (r == i386_regtab /* %st is first entry of table */)
10087 {
10088 if (is_space_char (*s))
10089 ++s;
10090 if (*s == '(')
10091 {
10092 ++s;
10093 if (is_space_char (*s))
10094 ++s;
10095 if (*s >= '0' && *s <= '7')
10096 {
10097 int fpr = *s - '0';
10098 ++s;
10099 if (is_space_char (*s))
10100 ++s;
10101 if (*s == ')')
10102 {
10103 *end_op = s + 1;
10104 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10105 know (r);
10106 return r + fpr;
10107 }
10108 }
10109 /* We have "%st(" then garbage. */
10110 return (const reg_entry *) NULL;
10111 }
10112 }
10113
10114 if (r == NULL || allow_pseudo_reg)
10115 return r;
10116
10117 if (operand_type_all_zero (&r->reg_type))
10118 return (const reg_entry *) NULL;
10119
10120 if ((r->reg_type.bitfield.dword
10121 || r->reg_type.bitfield.sreg3
10122 || r->reg_type.bitfield.control
10123 || r->reg_type.bitfield.debug
10124 || r->reg_type.bitfield.test)
10125 && !cpu_arch_flags.bitfield.cpui386)
10126 return (const reg_entry *) NULL;
10127
10128 if (r->reg_type.bitfield.tbyte
10129 && !cpu_arch_flags.bitfield.cpu8087
10130 && !cpu_arch_flags.bitfield.cpu287
10131 && !cpu_arch_flags.bitfield.cpu387)
10132 return (const reg_entry *) NULL;
10133
10134 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
10135 return (const reg_entry *) NULL;
10136
10137 if (r->reg_type.bitfield.xmmword && !cpu_arch_flags.bitfield.cpuregxmm)
10138 return (const reg_entry *) NULL;
10139
10140 if (r->reg_type.bitfield.ymmword && !cpu_arch_flags.bitfield.cpuregymm)
10141 return (const reg_entry *) NULL;
10142
10143 if (r->reg_type.bitfield.zmmword && !cpu_arch_flags.bitfield.cpuregzmm)
10144 return (const reg_entry *) NULL;
10145
10146 if (r->reg_type.bitfield.regmask
10147 && !cpu_arch_flags.bitfield.cpuregmask)
10148 return (const reg_entry *) NULL;
10149
10150 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10151 if (!allow_index_reg
10152 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
10153 return (const reg_entry *) NULL;
10154
10155 /* Upper 16 vector register is only available with VREX in 64bit
10156 mode. */
10157 if ((r->reg_flags & RegVRex))
10158 {
10159 if (i.vec_encoding == vex_encoding_default)
10160 i.vec_encoding = vex_encoding_evex;
10161
10162 if (!cpu_arch_flags.bitfield.cpuvrex
10163 || i.vec_encoding != vex_encoding_evex
10164 || flag_code != CODE_64BIT)
10165 return (const reg_entry *) NULL;
10166 }
10167
10168 if (((r->reg_flags & (RegRex64 | RegRex))
10169 || r->reg_type.bitfield.qword)
10170 && (!cpu_arch_flags.bitfield.cpulm
10171 || !operand_type_equal (&r->reg_type, &control))
10172 && flag_code != CODE_64BIT)
10173 return (const reg_entry *) NULL;
10174
10175 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10176 return (const reg_entry *) NULL;
10177
10178 return r;
10179 }
10180
10181 /* REG_STRING starts *before* REGISTER_PREFIX. */
10182
10183 static const reg_entry *
10184 parse_register (char *reg_string, char **end_op)
10185 {
10186 const reg_entry *r;
10187
10188 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10189 r = parse_real_register (reg_string, end_op);
10190 else
10191 r = NULL;
10192 if (!r)
10193 {
10194 char *save = input_line_pointer;
10195 char c;
10196 symbolS *symbolP;
10197
10198 input_line_pointer = reg_string;
10199 c = get_symbol_name (&reg_string);
10200 symbolP = symbol_find (reg_string);
10201 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10202 {
10203 const expressionS *e = symbol_get_value_expression (symbolP);
10204
10205 know (e->X_op == O_register);
10206 know (e->X_add_number >= 0
10207 && (valueT) e->X_add_number < i386_regtab_size);
10208 r = i386_regtab + e->X_add_number;
10209 if ((r->reg_flags & RegVRex))
10210 i.vec_encoding = vex_encoding_evex;
10211 *end_op = input_line_pointer;
10212 }
10213 *input_line_pointer = c;
10214 input_line_pointer = save;
10215 }
10216 return r;
10217 }
10218
10219 int
10220 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10221 {
10222 const reg_entry *r;
10223 char *end = input_line_pointer;
10224
10225 *end = *nextcharP;
10226 r = parse_register (name, &input_line_pointer);
10227 if (r && end <= input_line_pointer)
10228 {
10229 *nextcharP = *input_line_pointer;
10230 *input_line_pointer = 0;
10231 e->X_op = O_register;
10232 e->X_add_number = r - i386_regtab;
10233 return 1;
10234 }
10235 input_line_pointer = end;
10236 *end = 0;
10237 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10238 }
10239
10240 void
10241 md_operand (expressionS *e)
10242 {
10243 char *end;
10244 const reg_entry *r;
10245
10246 switch (*input_line_pointer)
10247 {
10248 case REGISTER_PREFIX:
10249 r = parse_real_register (input_line_pointer, &end);
10250 if (r)
10251 {
10252 e->X_op = O_register;
10253 e->X_add_number = r - i386_regtab;
10254 input_line_pointer = end;
10255 }
10256 break;
10257
10258 case '[':
10259 gas_assert (intel_syntax);
10260 end = input_line_pointer++;
10261 expression (e);
10262 if (*input_line_pointer == ']')
10263 {
10264 ++input_line_pointer;
10265 e->X_op_symbol = make_expr_symbol (e);
10266 e->X_add_symbol = NULL;
10267 e->X_add_number = 0;
10268 e->X_op = O_index;
10269 }
10270 else
10271 {
10272 e->X_op = O_absent;
10273 input_line_pointer = end;
10274 }
10275 break;
10276 }
10277 }
10278
10279 \f
10280 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10281 const char *md_shortopts = "kVQ:sqnO::";
10282 #else
10283 const char *md_shortopts = "qnO::";
10284 #endif
10285
10286 #define OPTION_32 (OPTION_MD_BASE + 0)
10287 #define OPTION_64 (OPTION_MD_BASE + 1)
10288 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
10289 #define OPTION_MARCH (OPTION_MD_BASE + 3)
10290 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
10291 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10292 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10293 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10294 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10295 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
10296 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
10297 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
10298 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10299 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10300 #define OPTION_X32 (OPTION_MD_BASE + 14)
10301 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
10302 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10303 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
10304 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
10305 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
10306 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
10307 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
10308 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10309 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
10310 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
10311 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 25)
10312
10313 struct option md_longopts[] =
10314 {
10315 {"32", no_argument, NULL, OPTION_32},
10316 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10317 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10318 {"64", no_argument, NULL, OPTION_64},
10319 #endif
10320 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10321 {"x32", no_argument, NULL, OPTION_X32},
10322 {"mshared", no_argument, NULL, OPTION_MSHARED},
10323 #endif
10324 {"divide", no_argument, NULL, OPTION_DIVIDE},
10325 {"march", required_argument, NULL, OPTION_MARCH},
10326 {"mtune", required_argument, NULL, OPTION_MTUNE},
10327 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10328 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10329 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10330 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10331 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
10332 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
10333 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
10334 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
10335 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
10336 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
10337 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10338 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10339 # if defined (TE_PE) || defined (TE_PEP)
10340 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10341 #endif
10342 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10343 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10344 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10345 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10346 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10347 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10348 {NULL, no_argument, NULL, 0}
10349 };
10350 size_t md_longopts_size = sizeof (md_longopts);
10351
10352 int
10353 md_parse_option (int c, const char *arg)
10354 {
10355 unsigned int j;
10356 char *arch, *next, *saved;
10357
10358 switch (c)
10359 {
10360 case 'n':
10361 optimize_align_code = 0;
10362 break;
10363
10364 case 'q':
10365 quiet_warnings = 1;
10366 break;
10367
10368 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10369 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10370 should be emitted or not. FIXME: Not implemented. */
10371 case 'Q':
10372 break;
10373
10374 /* -V: SVR4 argument to print version ID. */
10375 case 'V':
10376 print_version_id ();
10377 break;
10378
10379 /* -k: Ignore for FreeBSD compatibility. */
10380 case 'k':
10381 break;
10382
10383 case 's':
10384 /* -s: On i386 Solaris, this tells the native assembler to use
10385 .stab instead of .stab.excl. We always use .stab anyhow. */
10386 break;
10387
10388 case OPTION_MSHARED:
10389 shared = 1;
10390 break;
10391 #endif
10392 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10393 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10394 case OPTION_64:
10395 {
10396 const char **list, **l;
10397
10398 list = bfd_target_list ();
10399 for (l = list; *l != NULL; l++)
10400 if (CONST_STRNEQ (*l, "elf64-x86-64")
10401 || strcmp (*l, "coff-x86-64") == 0
10402 || strcmp (*l, "pe-x86-64") == 0
10403 || strcmp (*l, "pei-x86-64") == 0
10404 || strcmp (*l, "mach-o-x86-64") == 0)
10405 {
10406 default_arch = "x86_64";
10407 break;
10408 }
10409 if (*l == NULL)
10410 as_fatal (_("no compiled in support for x86_64"));
10411 free (list);
10412 }
10413 break;
10414 #endif
10415
10416 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10417 case OPTION_X32:
10418 if (IS_ELF)
10419 {
10420 const char **list, **l;
10421
10422 list = bfd_target_list ();
10423 for (l = list; *l != NULL; l++)
10424 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10425 {
10426 default_arch = "x86_64:32";
10427 break;
10428 }
10429 if (*l == NULL)
10430 as_fatal (_("no compiled in support for 32bit x86_64"));
10431 free (list);
10432 }
10433 else
10434 as_fatal (_("32bit x86_64 is only supported for ELF"));
10435 break;
10436 #endif
10437
10438 case OPTION_32:
10439 default_arch = "i386";
10440 break;
10441
10442 case OPTION_DIVIDE:
10443 #ifdef SVR4_COMMENT_CHARS
10444 {
10445 char *n, *t;
10446 const char *s;
10447
10448 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
10449 t = n;
10450 for (s = i386_comment_chars; *s != '\0'; s++)
10451 if (*s != '/')
10452 *t++ = *s;
10453 *t = '\0';
10454 i386_comment_chars = n;
10455 }
10456 #endif
10457 break;
10458
10459 case OPTION_MARCH:
10460 saved = xstrdup (arg);
10461 arch = saved;
10462 /* Allow -march=+nosse. */
10463 if (*arch == '+')
10464 arch++;
10465 do
10466 {
10467 if (*arch == '.')
10468 as_fatal (_("invalid -march= option: `%s'"), arg);
10469 next = strchr (arch, '+');
10470 if (next)
10471 *next++ = '\0';
10472 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10473 {
10474 if (strcmp (arch, cpu_arch [j].name) == 0)
10475 {
10476 /* Processor. */
10477 if (! cpu_arch[j].flags.bitfield.cpui386)
10478 continue;
10479
10480 cpu_arch_name = cpu_arch[j].name;
10481 cpu_sub_arch_name = NULL;
10482 cpu_arch_flags = cpu_arch[j].flags;
10483 cpu_arch_isa = cpu_arch[j].type;
10484 cpu_arch_isa_flags = cpu_arch[j].flags;
10485 if (!cpu_arch_tune_set)
10486 {
10487 cpu_arch_tune = cpu_arch_isa;
10488 cpu_arch_tune_flags = cpu_arch_isa_flags;
10489 }
10490 break;
10491 }
10492 else if (*cpu_arch [j].name == '.'
10493 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10494 {
10495 /* ISA extension. */
10496 i386_cpu_flags flags;
10497
10498 flags = cpu_flags_or (cpu_arch_flags,
10499 cpu_arch[j].flags);
10500
10501 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10502 {
10503 if (cpu_sub_arch_name)
10504 {
10505 char *name = cpu_sub_arch_name;
10506 cpu_sub_arch_name = concat (name,
10507 cpu_arch[j].name,
10508 (const char *) NULL);
10509 free (name);
10510 }
10511 else
10512 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10513 cpu_arch_flags = flags;
10514 cpu_arch_isa_flags = flags;
10515 }
10516 break;
10517 }
10518 }
10519
10520 if (j >= ARRAY_SIZE (cpu_arch))
10521 {
10522 /* Disable an ISA extension. */
10523 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10524 if (strcmp (arch, cpu_noarch [j].name) == 0)
10525 {
10526 i386_cpu_flags flags;
10527
10528 flags = cpu_flags_and_not (cpu_arch_flags,
10529 cpu_noarch[j].flags);
10530 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10531 {
10532 if (cpu_sub_arch_name)
10533 {
10534 char *name = cpu_sub_arch_name;
10535 cpu_sub_arch_name = concat (arch,
10536 (const char *) NULL);
10537 free (name);
10538 }
10539 else
10540 cpu_sub_arch_name = xstrdup (arch);
10541 cpu_arch_flags = flags;
10542 cpu_arch_isa_flags = flags;
10543 }
10544 break;
10545 }
10546
10547 if (j >= ARRAY_SIZE (cpu_noarch))
10548 j = ARRAY_SIZE (cpu_arch);
10549 }
10550
10551 if (j >= ARRAY_SIZE (cpu_arch))
10552 as_fatal (_("invalid -march= option: `%s'"), arg);
10553
10554 arch = next;
10555 }
10556 while (next != NULL);
10557 free (saved);
10558 break;
10559
10560 case OPTION_MTUNE:
10561 if (*arg == '.')
10562 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10563 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10564 {
10565 if (strcmp (arg, cpu_arch [j].name) == 0)
10566 {
10567 cpu_arch_tune_set = 1;
10568 cpu_arch_tune = cpu_arch [j].type;
10569 cpu_arch_tune_flags = cpu_arch[j].flags;
10570 break;
10571 }
10572 }
10573 if (j >= ARRAY_SIZE (cpu_arch))
10574 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10575 break;
10576
10577 case OPTION_MMNEMONIC:
10578 if (strcasecmp (arg, "att") == 0)
10579 intel_mnemonic = 0;
10580 else if (strcasecmp (arg, "intel") == 0)
10581 intel_mnemonic = 1;
10582 else
10583 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10584 break;
10585
10586 case OPTION_MSYNTAX:
10587 if (strcasecmp (arg, "att") == 0)
10588 intel_syntax = 0;
10589 else if (strcasecmp (arg, "intel") == 0)
10590 intel_syntax = 1;
10591 else
10592 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10593 break;
10594
10595 case OPTION_MINDEX_REG:
10596 allow_index_reg = 1;
10597 break;
10598
10599 case OPTION_MNAKED_REG:
10600 allow_naked_reg = 1;
10601 break;
10602
10603 case OPTION_MOLD_GCC:
10604 old_gcc = 1;
10605 break;
10606
10607 case OPTION_MSSE2AVX:
10608 sse2avx = 1;
10609 break;
10610
10611 case OPTION_MSSE_CHECK:
10612 if (strcasecmp (arg, "error") == 0)
10613 sse_check = check_error;
10614 else if (strcasecmp (arg, "warning") == 0)
10615 sse_check = check_warning;
10616 else if (strcasecmp (arg, "none") == 0)
10617 sse_check = check_none;
10618 else
10619 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10620 break;
10621
10622 case OPTION_MOPERAND_CHECK:
10623 if (strcasecmp (arg, "error") == 0)
10624 operand_check = check_error;
10625 else if (strcasecmp (arg, "warning") == 0)
10626 operand_check = check_warning;
10627 else if (strcasecmp (arg, "none") == 0)
10628 operand_check = check_none;
10629 else
10630 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10631 break;
10632
10633 case OPTION_MAVXSCALAR:
10634 if (strcasecmp (arg, "128") == 0)
10635 avxscalar = vex128;
10636 else if (strcasecmp (arg, "256") == 0)
10637 avxscalar = vex256;
10638 else
10639 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10640 break;
10641
10642 case OPTION_MADD_BND_PREFIX:
10643 add_bnd_prefix = 1;
10644 break;
10645
10646 case OPTION_MEVEXLIG:
10647 if (strcmp (arg, "128") == 0)
10648 evexlig = evexl128;
10649 else if (strcmp (arg, "256") == 0)
10650 evexlig = evexl256;
10651 else if (strcmp (arg, "512") == 0)
10652 evexlig = evexl512;
10653 else
10654 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10655 break;
10656
10657 case OPTION_MEVEXRCIG:
10658 if (strcmp (arg, "rne") == 0)
10659 evexrcig = rne;
10660 else if (strcmp (arg, "rd") == 0)
10661 evexrcig = rd;
10662 else if (strcmp (arg, "ru") == 0)
10663 evexrcig = ru;
10664 else if (strcmp (arg, "rz") == 0)
10665 evexrcig = rz;
10666 else
10667 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10668 break;
10669
10670 case OPTION_MEVEXWIG:
10671 if (strcmp (arg, "0") == 0)
10672 evexwig = evexw0;
10673 else if (strcmp (arg, "1") == 0)
10674 evexwig = evexw1;
10675 else
10676 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10677 break;
10678
10679 # if defined (TE_PE) || defined (TE_PEP)
10680 case OPTION_MBIG_OBJ:
10681 use_big_obj = 1;
10682 break;
10683 #endif
10684
10685 case OPTION_MOMIT_LOCK_PREFIX:
10686 if (strcasecmp (arg, "yes") == 0)
10687 omit_lock_prefix = 1;
10688 else if (strcasecmp (arg, "no") == 0)
10689 omit_lock_prefix = 0;
10690 else
10691 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10692 break;
10693
10694 case OPTION_MFENCE_AS_LOCK_ADD:
10695 if (strcasecmp (arg, "yes") == 0)
10696 avoid_fence = 1;
10697 else if (strcasecmp (arg, "no") == 0)
10698 avoid_fence = 0;
10699 else
10700 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10701 break;
10702
10703 case OPTION_MRELAX_RELOCATIONS:
10704 if (strcasecmp (arg, "yes") == 0)
10705 generate_relax_relocations = 1;
10706 else if (strcasecmp (arg, "no") == 0)
10707 generate_relax_relocations = 0;
10708 else
10709 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10710 break;
10711
10712 case OPTION_MAMD64:
10713 intel64 = 0;
10714 break;
10715
10716 case OPTION_MINTEL64:
10717 intel64 = 1;
10718 break;
10719
10720 case 'O':
10721 if (arg == NULL)
10722 {
10723 optimize = 1;
10724 /* Turn off -Os. */
10725 optimize_for_space = 0;
10726 }
10727 else if (*arg == 's')
10728 {
10729 optimize_for_space = 1;
10730 /* Turn on all encoding optimizations. */
10731 optimize = -1;
10732 }
10733 else
10734 {
10735 optimize = atoi (arg);
10736 /* Turn off -Os. */
10737 optimize_for_space = 0;
10738 }
10739 break;
10740
10741 default:
10742 return 0;
10743 }
10744 return 1;
10745 }
10746
10747 #define MESSAGE_TEMPLATE \
10748 " "
10749
10750 static char *
10751 output_message (FILE *stream, char *p, char *message, char *start,
10752 int *left_p, const char *name, int len)
10753 {
10754 int size = sizeof (MESSAGE_TEMPLATE);
10755 int left = *left_p;
10756
10757 /* Reserve 2 spaces for ", " or ",\0" */
10758 left -= len + 2;
10759
10760 /* Check if there is any room. */
10761 if (left >= 0)
10762 {
10763 if (p != start)
10764 {
10765 *p++ = ',';
10766 *p++ = ' ';
10767 }
10768 p = mempcpy (p, name, len);
10769 }
10770 else
10771 {
10772 /* Output the current message now and start a new one. */
10773 *p++ = ',';
10774 *p = '\0';
10775 fprintf (stream, "%s\n", message);
10776 p = start;
10777 left = size - (start - message) - len - 2;
10778
10779 gas_assert (left >= 0);
10780
10781 p = mempcpy (p, name, len);
10782 }
10783
10784 *left_p = left;
10785 return p;
10786 }
10787
10788 static void
10789 show_arch (FILE *stream, int ext, int check)
10790 {
10791 static char message[] = MESSAGE_TEMPLATE;
10792 char *start = message + 27;
10793 char *p;
10794 int size = sizeof (MESSAGE_TEMPLATE);
10795 int left;
10796 const char *name;
10797 int len;
10798 unsigned int j;
10799
10800 p = start;
10801 left = size - (start - message);
10802 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10803 {
10804 /* Should it be skipped? */
10805 if (cpu_arch [j].skip)
10806 continue;
10807
10808 name = cpu_arch [j].name;
10809 len = cpu_arch [j].len;
10810 if (*name == '.')
10811 {
10812 /* It is an extension. Skip if we aren't asked to show it. */
10813 if (ext)
10814 {
10815 name++;
10816 len--;
10817 }
10818 else
10819 continue;
10820 }
10821 else if (ext)
10822 {
10823 /* It is an processor. Skip if we show only extension. */
10824 continue;
10825 }
10826 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10827 {
10828 /* It is an impossible processor - skip. */
10829 continue;
10830 }
10831
10832 p = output_message (stream, p, message, start, &left, name, len);
10833 }
10834
10835 /* Display disabled extensions. */
10836 if (ext)
10837 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10838 {
10839 name = cpu_noarch [j].name;
10840 len = cpu_noarch [j].len;
10841 p = output_message (stream, p, message, start, &left, name,
10842 len);
10843 }
10844
10845 *p = '\0';
10846 fprintf (stream, "%s\n", message);
10847 }
10848
10849 void
10850 md_show_usage (FILE *stream)
10851 {
10852 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10853 fprintf (stream, _("\
10854 -Q ignored\n\
10855 -V print assembler version number\n\
10856 -k ignored\n"));
10857 #endif
10858 fprintf (stream, _("\
10859 -n Do not optimize code alignment\n\
10860 -q quieten some warnings\n"));
10861 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10862 fprintf (stream, _("\
10863 -s ignored\n"));
10864 #endif
10865 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10866 || defined (TE_PE) || defined (TE_PEP))
10867 fprintf (stream, _("\
10868 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10869 #endif
10870 #ifdef SVR4_COMMENT_CHARS
10871 fprintf (stream, _("\
10872 --divide do not treat `/' as a comment character\n"));
10873 #else
10874 fprintf (stream, _("\
10875 --divide ignored\n"));
10876 #endif
10877 fprintf (stream, _("\
10878 -march=CPU[,+EXTENSION...]\n\
10879 generate code for CPU and EXTENSION, CPU is one of:\n"));
10880 show_arch (stream, 0, 1);
10881 fprintf (stream, _("\
10882 EXTENSION is combination of:\n"));
10883 show_arch (stream, 1, 0);
10884 fprintf (stream, _("\
10885 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10886 show_arch (stream, 0, 0);
10887 fprintf (stream, _("\
10888 -msse2avx encode SSE instructions with VEX prefix\n"));
10889 fprintf (stream, _("\
10890 -msse-check=[none|error|warning]\n\
10891 check SSE instructions\n"));
10892 fprintf (stream, _("\
10893 -moperand-check=[none|error|warning]\n\
10894 check operand combinations for validity\n"));
10895 fprintf (stream, _("\
10896 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10897 length\n"));
10898 fprintf (stream, _("\
10899 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10900 length\n"));
10901 fprintf (stream, _("\
10902 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10903 for EVEX.W bit ignored instructions\n"));
10904 fprintf (stream, _("\
10905 -mevexrcig=[rne|rd|ru|rz]\n\
10906 encode EVEX instructions with specific EVEX.RC value\n\
10907 for SAE-only ignored instructions\n"));
10908 fprintf (stream, _("\
10909 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10910 fprintf (stream, _("\
10911 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10912 fprintf (stream, _("\
10913 -mindex-reg support pseudo index registers\n"));
10914 fprintf (stream, _("\
10915 -mnaked-reg don't require `%%' prefix for registers\n"));
10916 fprintf (stream, _("\
10917 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
10918 fprintf (stream, _("\
10919 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10920 fprintf (stream, _("\
10921 -mshared disable branch optimization for shared code\n"));
10922 # if defined (TE_PE) || defined (TE_PEP)
10923 fprintf (stream, _("\
10924 -mbig-obj generate big object files\n"));
10925 #endif
10926 fprintf (stream, _("\
10927 -momit-lock-prefix=[no|yes]\n\
10928 strip all lock prefixes\n"));
10929 fprintf (stream, _("\
10930 -mfence-as-lock-add=[no|yes]\n\
10931 encode lfence, mfence and sfence as\n\
10932 lock addl $0x0, (%%{re}sp)\n"));
10933 fprintf (stream, _("\
10934 -mrelax-relocations=[no|yes]\n\
10935 generate relax relocations\n"));
10936 fprintf (stream, _("\
10937 -mamd64 accept only AMD64 ISA\n"));
10938 fprintf (stream, _("\
10939 -mintel64 accept only Intel64 ISA\n"));
10940 }
10941
10942 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10943 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10944 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10945
10946 /* Pick the target format to use. */
10947
10948 const char *
10949 i386_target_format (void)
10950 {
10951 if (!strncmp (default_arch, "x86_64", 6))
10952 {
10953 update_code_flag (CODE_64BIT, 1);
10954 if (default_arch[6] == '\0')
10955 x86_elf_abi = X86_64_ABI;
10956 else
10957 x86_elf_abi = X86_64_X32_ABI;
10958 }
10959 else if (!strcmp (default_arch, "i386"))
10960 update_code_flag (CODE_32BIT, 1);
10961 else if (!strcmp (default_arch, "iamcu"))
10962 {
10963 update_code_flag (CODE_32BIT, 1);
10964 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10965 {
10966 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10967 cpu_arch_name = "iamcu";
10968 cpu_sub_arch_name = NULL;
10969 cpu_arch_flags = iamcu_flags;
10970 cpu_arch_isa = PROCESSOR_IAMCU;
10971 cpu_arch_isa_flags = iamcu_flags;
10972 if (!cpu_arch_tune_set)
10973 {
10974 cpu_arch_tune = cpu_arch_isa;
10975 cpu_arch_tune_flags = cpu_arch_isa_flags;
10976 }
10977 }
10978 else if (cpu_arch_isa != PROCESSOR_IAMCU)
10979 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10980 cpu_arch_name);
10981 }
10982 else
10983 as_fatal (_("unknown architecture"));
10984
10985 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10986 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10987 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10988 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10989
10990 switch (OUTPUT_FLAVOR)
10991 {
10992 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
10993 case bfd_target_aout_flavour:
10994 return AOUT_TARGET_FORMAT;
10995 #endif
10996 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10997 # if defined (TE_PE) || defined (TE_PEP)
10998 case bfd_target_coff_flavour:
10999 if (flag_code == CODE_64BIT)
11000 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11001 else
11002 return "pe-i386";
11003 # elif defined (TE_GO32)
11004 case bfd_target_coff_flavour:
11005 return "coff-go32";
11006 # else
11007 case bfd_target_coff_flavour:
11008 return "coff-i386";
11009 # endif
11010 #endif
11011 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11012 case bfd_target_elf_flavour:
11013 {
11014 const char *format;
11015
11016 switch (x86_elf_abi)
11017 {
11018 default:
11019 format = ELF_TARGET_FORMAT;
11020 break;
11021 case X86_64_ABI:
11022 use_rela_relocations = 1;
11023 object_64bit = 1;
11024 format = ELF_TARGET_FORMAT64;
11025 break;
11026 case X86_64_X32_ABI:
11027 use_rela_relocations = 1;
11028 object_64bit = 1;
11029 disallow_64bit_reloc = 1;
11030 format = ELF_TARGET_FORMAT32;
11031 break;
11032 }
11033 if (cpu_arch_isa == PROCESSOR_L1OM)
11034 {
11035 if (x86_elf_abi != X86_64_ABI)
11036 as_fatal (_("Intel L1OM is 64bit only"));
11037 return ELF_TARGET_L1OM_FORMAT;
11038 }
11039 else if (cpu_arch_isa == PROCESSOR_K1OM)
11040 {
11041 if (x86_elf_abi != X86_64_ABI)
11042 as_fatal (_("Intel K1OM is 64bit only"));
11043 return ELF_TARGET_K1OM_FORMAT;
11044 }
11045 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11046 {
11047 if (x86_elf_abi != I386_ABI)
11048 as_fatal (_("Intel MCU is 32bit only"));
11049 return ELF_TARGET_IAMCU_FORMAT;
11050 }
11051 else
11052 return format;
11053 }
11054 #endif
11055 #if defined (OBJ_MACH_O)
11056 case bfd_target_mach_o_flavour:
11057 if (flag_code == CODE_64BIT)
11058 {
11059 use_rela_relocations = 1;
11060 object_64bit = 1;
11061 return "mach-o-x86-64";
11062 }
11063 else
11064 return "mach-o-i386";
11065 #endif
11066 default:
11067 abort ();
11068 return NULL;
11069 }
11070 }
11071
11072 #endif /* OBJ_MAYBE_ more than one */
11073 \f
11074 symbolS *
11075 md_undefined_symbol (char *name)
11076 {
11077 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11078 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11079 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11080 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11081 {
11082 if (!GOT_symbol)
11083 {
11084 if (symbol_find (name))
11085 as_bad (_("GOT already in symbol table"));
11086 GOT_symbol = symbol_new (name, undefined_section,
11087 (valueT) 0, &zero_address_frag);
11088 };
11089 return GOT_symbol;
11090 }
11091 return 0;
11092 }
11093
11094 /* Round up a section size to the appropriate boundary. */
11095
11096 valueT
11097 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11098 {
11099 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11100 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11101 {
11102 /* For a.out, force the section size to be aligned. If we don't do
11103 this, BFD will align it for us, but it will not write out the
11104 final bytes of the section. This may be a bug in BFD, but it is
11105 easier to fix it here since that is how the other a.out targets
11106 work. */
11107 int align;
11108
11109 align = bfd_get_section_alignment (stdoutput, segment);
11110 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11111 }
11112 #endif
11113
11114 return size;
11115 }
11116
11117 /* On the i386, PC-relative offsets are relative to the start of the
11118 next instruction. That is, the address of the offset, plus its
11119 size, since the offset is always the last part of the insn. */
11120
11121 long
11122 md_pcrel_from (fixS *fixP)
11123 {
11124 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11125 }
11126
11127 #ifndef I386COFF
11128
11129 static void
11130 s_bss (int ignore ATTRIBUTE_UNUSED)
11131 {
11132 int temp;
11133
11134 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11135 if (IS_ELF)
11136 obj_elf_section_change_hook ();
11137 #endif
11138 temp = get_absolute_expression ();
11139 subseg_set (bss_section, (subsegT) temp);
11140 demand_empty_rest_of_line ();
11141 }
11142
11143 #endif
11144
11145 void
11146 i386_validate_fix (fixS *fixp)
11147 {
11148 if (fixp->fx_subsy)
11149 {
11150 if (fixp->fx_subsy == GOT_symbol)
11151 {
11152 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11153 {
11154 if (!object_64bit)
11155 abort ();
11156 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11157 if (fixp->fx_tcbit2)
11158 fixp->fx_r_type = (fixp->fx_tcbit
11159 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11160 : BFD_RELOC_X86_64_GOTPCRELX);
11161 else
11162 #endif
11163 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11164 }
11165 else
11166 {
11167 if (!object_64bit)
11168 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11169 else
11170 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11171 }
11172 fixp->fx_subsy = 0;
11173 }
11174 }
11175 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11176 else if (!object_64bit)
11177 {
11178 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11179 && fixp->fx_tcbit2)
11180 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11181 }
11182 #endif
11183 }
11184
11185 arelent *
11186 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11187 {
11188 arelent *rel;
11189 bfd_reloc_code_real_type code;
11190
11191 switch (fixp->fx_r_type)
11192 {
11193 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11194 case BFD_RELOC_SIZE32:
11195 case BFD_RELOC_SIZE64:
11196 if (S_IS_DEFINED (fixp->fx_addsy)
11197 && !S_IS_EXTERNAL (fixp->fx_addsy))
11198 {
11199 /* Resolve size relocation against local symbol to size of
11200 the symbol plus addend. */
11201 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11202 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11203 && !fits_in_unsigned_long (value))
11204 as_bad_where (fixp->fx_file, fixp->fx_line,
11205 _("symbol size computation overflow"));
11206 fixp->fx_addsy = NULL;
11207 fixp->fx_subsy = NULL;
11208 md_apply_fix (fixp, (valueT *) &value, NULL);
11209 return NULL;
11210 }
11211 #endif
11212 /* Fall through. */
11213
11214 case BFD_RELOC_X86_64_PLT32:
11215 case BFD_RELOC_X86_64_GOT32:
11216 case BFD_RELOC_X86_64_GOTPCREL:
11217 case BFD_RELOC_X86_64_GOTPCRELX:
11218 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11219 case BFD_RELOC_386_PLT32:
11220 case BFD_RELOC_386_GOT32:
11221 case BFD_RELOC_386_GOT32X:
11222 case BFD_RELOC_386_GOTOFF:
11223 case BFD_RELOC_386_GOTPC:
11224 case BFD_RELOC_386_TLS_GD:
11225 case BFD_RELOC_386_TLS_LDM:
11226 case BFD_RELOC_386_TLS_LDO_32:
11227 case BFD_RELOC_386_TLS_IE_32:
11228 case BFD_RELOC_386_TLS_IE:
11229 case BFD_RELOC_386_TLS_GOTIE:
11230 case BFD_RELOC_386_TLS_LE_32:
11231 case BFD_RELOC_386_TLS_LE:
11232 case BFD_RELOC_386_TLS_GOTDESC:
11233 case BFD_RELOC_386_TLS_DESC_CALL:
11234 case BFD_RELOC_X86_64_TLSGD:
11235 case BFD_RELOC_X86_64_TLSLD:
11236 case BFD_RELOC_X86_64_DTPOFF32:
11237 case BFD_RELOC_X86_64_DTPOFF64:
11238 case BFD_RELOC_X86_64_GOTTPOFF:
11239 case BFD_RELOC_X86_64_TPOFF32:
11240 case BFD_RELOC_X86_64_TPOFF64:
11241 case BFD_RELOC_X86_64_GOTOFF64:
11242 case BFD_RELOC_X86_64_GOTPC32:
11243 case BFD_RELOC_X86_64_GOT64:
11244 case BFD_RELOC_X86_64_GOTPCREL64:
11245 case BFD_RELOC_X86_64_GOTPC64:
11246 case BFD_RELOC_X86_64_GOTPLT64:
11247 case BFD_RELOC_X86_64_PLTOFF64:
11248 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11249 case BFD_RELOC_X86_64_TLSDESC_CALL:
11250 case BFD_RELOC_RVA:
11251 case BFD_RELOC_VTABLE_ENTRY:
11252 case BFD_RELOC_VTABLE_INHERIT:
11253 #ifdef TE_PE
11254 case BFD_RELOC_32_SECREL:
11255 #endif
11256 code = fixp->fx_r_type;
11257 break;
11258 case BFD_RELOC_X86_64_32S:
11259 if (!fixp->fx_pcrel)
11260 {
11261 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11262 code = fixp->fx_r_type;
11263 break;
11264 }
11265 /* Fall through. */
11266 default:
11267 if (fixp->fx_pcrel)
11268 {
11269 switch (fixp->fx_size)
11270 {
11271 default:
11272 as_bad_where (fixp->fx_file, fixp->fx_line,
11273 _("can not do %d byte pc-relative relocation"),
11274 fixp->fx_size);
11275 code = BFD_RELOC_32_PCREL;
11276 break;
11277 case 1: code = BFD_RELOC_8_PCREL; break;
11278 case 2: code = BFD_RELOC_16_PCREL; break;
11279 case 4: code = BFD_RELOC_32_PCREL; break;
11280 #ifdef BFD64
11281 case 8: code = BFD_RELOC_64_PCREL; break;
11282 #endif
11283 }
11284 }
11285 else
11286 {
11287 switch (fixp->fx_size)
11288 {
11289 default:
11290 as_bad_where (fixp->fx_file, fixp->fx_line,
11291 _("can not do %d byte relocation"),
11292 fixp->fx_size);
11293 code = BFD_RELOC_32;
11294 break;
11295 case 1: code = BFD_RELOC_8; break;
11296 case 2: code = BFD_RELOC_16; break;
11297 case 4: code = BFD_RELOC_32; break;
11298 #ifdef BFD64
11299 case 8: code = BFD_RELOC_64; break;
11300 #endif
11301 }
11302 }
11303 break;
11304 }
11305
11306 if ((code == BFD_RELOC_32
11307 || code == BFD_RELOC_32_PCREL
11308 || code == BFD_RELOC_X86_64_32S)
11309 && GOT_symbol
11310 && fixp->fx_addsy == GOT_symbol)
11311 {
11312 if (!object_64bit)
11313 code = BFD_RELOC_386_GOTPC;
11314 else
11315 code = BFD_RELOC_X86_64_GOTPC32;
11316 }
11317 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11318 && GOT_symbol
11319 && fixp->fx_addsy == GOT_symbol)
11320 {
11321 code = BFD_RELOC_X86_64_GOTPC64;
11322 }
11323
11324 rel = XNEW (arelent);
11325 rel->sym_ptr_ptr = XNEW (asymbol *);
11326 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11327
11328 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
11329
11330 if (!use_rela_relocations)
11331 {
11332 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11333 vtable entry to be used in the relocation's section offset. */
11334 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11335 rel->address = fixp->fx_offset;
11336 #if defined (OBJ_COFF) && defined (TE_PE)
11337 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11338 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11339 else
11340 #endif
11341 rel->addend = 0;
11342 }
11343 /* Use the rela in 64bit mode. */
11344 else
11345 {
11346 if (disallow_64bit_reloc)
11347 switch (code)
11348 {
11349 case BFD_RELOC_X86_64_DTPOFF64:
11350 case BFD_RELOC_X86_64_TPOFF64:
11351 case BFD_RELOC_64_PCREL:
11352 case BFD_RELOC_X86_64_GOTOFF64:
11353 case BFD_RELOC_X86_64_GOT64:
11354 case BFD_RELOC_X86_64_GOTPCREL64:
11355 case BFD_RELOC_X86_64_GOTPC64:
11356 case BFD_RELOC_X86_64_GOTPLT64:
11357 case BFD_RELOC_X86_64_PLTOFF64:
11358 as_bad_where (fixp->fx_file, fixp->fx_line,
11359 _("cannot represent relocation type %s in x32 mode"),
11360 bfd_get_reloc_code_name (code));
11361 break;
11362 default:
11363 break;
11364 }
11365
11366 if (!fixp->fx_pcrel)
11367 rel->addend = fixp->fx_offset;
11368 else
11369 switch (code)
11370 {
11371 case BFD_RELOC_X86_64_PLT32:
11372 case BFD_RELOC_X86_64_GOT32:
11373 case BFD_RELOC_X86_64_GOTPCREL:
11374 case BFD_RELOC_X86_64_GOTPCRELX:
11375 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11376 case BFD_RELOC_X86_64_TLSGD:
11377 case BFD_RELOC_X86_64_TLSLD:
11378 case BFD_RELOC_X86_64_GOTTPOFF:
11379 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11380 case BFD_RELOC_X86_64_TLSDESC_CALL:
11381 rel->addend = fixp->fx_offset - fixp->fx_size;
11382 break;
11383 default:
11384 rel->addend = (section->vma
11385 - fixp->fx_size
11386 + fixp->fx_addnumber
11387 + md_pcrel_from (fixp));
11388 break;
11389 }
11390 }
11391
11392 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11393 if (rel->howto == NULL)
11394 {
11395 as_bad_where (fixp->fx_file, fixp->fx_line,
11396 _("cannot represent relocation type %s"),
11397 bfd_get_reloc_code_name (code));
11398 /* Set howto to a garbage value so that we can keep going. */
11399 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
11400 gas_assert (rel->howto != NULL);
11401 }
11402
11403 return rel;
11404 }
11405
11406 #include "tc-i386-intel.c"
11407
11408 void
11409 tc_x86_parse_to_dw2regnum (expressionS *exp)
11410 {
11411 int saved_naked_reg;
11412 char saved_register_dot;
11413
11414 saved_naked_reg = allow_naked_reg;
11415 allow_naked_reg = 1;
11416 saved_register_dot = register_chars['.'];
11417 register_chars['.'] = '.';
11418 allow_pseudo_reg = 1;
11419 expression_and_evaluate (exp);
11420 allow_pseudo_reg = 0;
11421 register_chars['.'] = saved_register_dot;
11422 allow_naked_reg = saved_naked_reg;
11423
11424 if (exp->X_op == O_register && exp->X_add_number >= 0)
11425 {
11426 if ((addressT) exp->X_add_number < i386_regtab_size)
11427 {
11428 exp->X_op = O_constant;
11429 exp->X_add_number = i386_regtab[exp->X_add_number]
11430 .dw2_regnum[flag_code >> 1];
11431 }
11432 else
11433 exp->X_op = O_illegal;
11434 }
11435 }
11436
11437 void
11438 tc_x86_frame_initial_instructions (void)
11439 {
11440 static unsigned int sp_regno[2];
11441
11442 if (!sp_regno[flag_code >> 1])
11443 {
11444 char *saved_input = input_line_pointer;
11445 char sp[][4] = {"esp", "rsp"};
11446 expressionS exp;
11447
11448 input_line_pointer = sp[flag_code >> 1];
11449 tc_x86_parse_to_dw2regnum (&exp);
11450 gas_assert (exp.X_op == O_constant);
11451 sp_regno[flag_code >> 1] = exp.X_add_number;
11452 input_line_pointer = saved_input;
11453 }
11454
11455 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11456 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
11457 }
11458
11459 int
11460 x86_dwarf2_addr_size (void)
11461 {
11462 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11463 if (x86_elf_abi == X86_64_X32_ABI)
11464 return 4;
11465 #endif
11466 return bfd_arch_bits_per_address (stdoutput) / 8;
11467 }
11468
11469 int
11470 i386_elf_section_type (const char *str, size_t len)
11471 {
11472 if (flag_code == CODE_64BIT
11473 && len == sizeof ("unwind") - 1
11474 && strncmp (str, "unwind", 6) == 0)
11475 return SHT_X86_64_UNWIND;
11476
11477 return -1;
11478 }
11479
11480 #ifdef TE_SOLARIS
11481 void
11482 i386_solaris_fix_up_eh_frame (segT sec)
11483 {
11484 if (flag_code == CODE_64BIT)
11485 elf_section_type (sec) = SHT_X86_64_UNWIND;
11486 }
11487 #endif
11488
11489 #ifdef TE_PE
11490 void
11491 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11492 {
11493 expressionS exp;
11494
11495 exp.X_op = O_secrel;
11496 exp.X_add_symbol = symbol;
11497 exp.X_add_number = 0;
11498 emit_expr (&exp, size);
11499 }
11500 #endif
11501
11502 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11503 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11504
11505 bfd_vma
11506 x86_64_section_letter (int letter, const char **ptr_msg)
11507 {
11508 if (flag_code == CODE_64BIT)
11509 {
11510 if (letter == 'l')
11511 return SHF_X86_64_LARGE;
11512
11513 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11514 }
11515 else
11516 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11517 return -1;
11518 }
11519
11520 bfd_vma
11521 x86_64_section_word (char *str, size_t len)
11522 {
11523 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11524 return SHF_X86_64_LARGE;
11525
11526 return -1;
11527 }
11528
11529 static void
11530 handle_large_common (int small ATTRIBUTE_UNUSED)
11531 {
11532 if (flag_code != CODE_64BIT)
11533 {
11534 s_comm_internal (0, elf_common_parse);
11535 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11536 }
11537 else
11538 {
11539 static segT lbss_section;
11540 asection *saved_com_section_ptr = elf_com_section_ptr;
11541 asection *saved_bss_section = bss_section;
11542
11543 if (lbss_section == NULL)
11544 {
11545 flagword applicable;
11546 segT seg = now_seg;
11547 subsegT subseg = now_subseg;
11548
11549 /* The .lbss section is for local .largecomm symbols. */
11550 lbss_section = subseg_new (".lbss", 0);
11551 applicable = bfd_applicable_section_flags (stdoutput);
11552 bfd_set_section_flags (stdoutput, lbss_section,
11553 applicable & SEC_ALLOC);
11554 seg_info (lbss_section)->bss = 1;
11555
11556 subseg_set (seg, subseg);
11557 }
11558
11559 elf_com_section_ptr = &_bfd_elf_large_com_section;
11560 bss_section = lbss_section;
11561
11562 s_comm_internal (0, elf_common_parse);
11563
11564 elf_com_section_ptr = saved_com_section_ptr;
11565 bss_section = saved_bss_section;
11566 }
11567 }
11568 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */