Fix dwarf2_emit_insn calls when frag_var breaks things.
[binutils-gdb.git] / gas / config / tc-i386.c
1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 Bugs & suggestions are completely welcome. This is free software.
27 Please help us make it better. */
28
29 #include <ctype.h>
30
31 #include "as.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "opcode/i386.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef SCALE1_WHEN_NO_INDEX
45 /* Specifying a scale factor besides 1 when there is no index is
46 futile. eg. `mov (%ebx,2),%al' does exactly the same as
47 `mov (%ebx),%al'. To slavishly follow what the programmer
48 specified, set SCALE1_WHEN_NO_INDEX to 0. */
49 #define SCALE1_WHEN_NO_INDEX 1
50 #endif
51
52 #define true 1
53 #define false 0
54
55 static unsigned int mode_from_disp_size PARAMS ((unsigned int));
56 static int fits_in_signed_byte PARAMS ((offsetT));
57 static int fits_in_unsigned_byte PARAMS ((offsetT));
58 static int fits_in_unsigned_word PARAMS ((offsetT));
59 static int fits_in_signed_word PARAMS ((offsetT));
60 static int fits_in_unsigned_long PARAMS ((offsetT));
61 static int fits_in_signed_long PARAMS ((offsetT));
62 static int smallest_imm_type PARAMS ((offsetT));
63 static offsetT offset_in_range PARAMS ((offsetT, int));
64 static int add_prefix PARAMS ((unsigned int));
65 static void set_code_flag PARAMS ((int));
66 static void set_16bit_gcc_code_flag PARAMS ((int));
67 static void set_intel_syntax PARAMS ((int));
68 static void set_cpu_arch PARAMS ((int));
69
70 #ifdef BFD_ASSEMBLER
71 static bfd_reloc_code_real_type reloc
72 PARAMS ((int, int, int, bfd_reloc_code_real_type));
73 #define RELOC_ENUM enum bfd_reloc_code_real
74 #else
75 #define RELOC_ENUM int
76 #endif
77
78 #ifndef DEFAULT_ARCH
79 #define DEFAULT_ARCH "i386"
80 #endif
81 static char *default_arch = DEFAULT_ARCH;
82
83 /* 'md_assemble ()' gathers together information and puts it into a
84 i386_insn. */
85
86 union i386_op
87 {
88 expressionS *disps;
89 expressionS *imms;
90 const reg_entry *regs;
91 };
92
93 struct _i386_insn
94 {
95 /* TM holds the template for the insn were currently assembling. */
96 template tm;
97
98 /* SUFFIX holds the instruction mnemonic suffix if given.
99 (e.g. 'l' for 'movl') */
100 char suffix;
101
102 /* OPERANDS gives the number of given operands. */
103 unsigned int operands;
104
105 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
106 of given register, displacement, memory operands and immediate
107 operands. */
108 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
109
110 /* TYPES [i] is the type (see above #defines) which tells us how to
111 use OP[i] for the corresponding operand. */
112 unsigned int types[MAX_OPERANDS];
113
114 /* Displacement expression, immediate expression, or register for each
115 operand. */
116 union i386_op op[MAX_OPERANDS];
117
118 /* Flags for operands. */
119 unsigned int flags[MAX_OPERANDS];
120 #define Operand_PCrel 1
121
122 /* Relocation type for operand */
123 RELOC_ENUM reloc[MAX_OPERANDS];
124
125 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
126 the base index byte below. */
127 const reg_entry *base_reg;
128 const reg_entry *index_reg;
129 unsigned int log2_scale_factor;
130
131 /* SEG gives the seg_entries of this insn. They are zero unless
132 explicit segment overrides are given. */
133 const seg_entry *seg[2];
134
135 /* PREFIX holds all the given prefix opcodes (usually null).
136 PREFIXES is the number of prefix opcodes. */
137 unsigned int prefixes;
138 unsigned char prefix[MAX_PREFIXES];
139
140 /* RM and SIB are the modrm byte and the sib byte where the
141 addressing modes of this insn are encoded. */
142
143 modrm_byte rm;
144 rex_byte rex;
145 sib_byte sib;
146 };
147
148 typedef struct _i386_insn i386_insn;
149
150 /* List of chars besides those in app.c:symbol_chars that can start an
151 operand. Used to prevent the scrubber eating vital white-space. */
152 #ifdef LEX_AT
153 const char extra_symbol_chars[] = "*%-(@";
154 #else
155 const char extra_symbol_chars[] = "*%-(";
156 #endif
157
158 /* This array holds the chars that always start a comment. If the
159 pre-processor is disabled, these aren't very useful. */
160 #if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD))
161 /* Putting '/' here makes it impossible to use the divide operator.
162 However, we need it for compatibility with SVR4 systems. */
163 const char comment_chars[] = "#/";
164 #define PREFIX_SEPARATOR '\\'
165 #else
166 const char comment_chars[] = "#";
167 #define PREFIX_SEPARATOR '/'
168 #endif
169
170 /* This array holds the chars that only start a comment at the beginning of
171 a line. If the line seems to have the form '# 123 filename'
172 .line and .file directives will appear in the pre-processed output.
173 Note that input_file.c hand checks for '#' at the beginning of the
174 first line of the input file. This is because the compiler outputs
175 #NO_APP at the beginning of its output.
176 Also note that comments started like this one will always work if
177 '/' isn't otherwise defined. */
178 #if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD))
179 const char line_comment_chars[] = "";
180 #else
181 const char line_comment_chars[] = "/";
182 #endif
183
184 const char line_separator_chars[] = ";";
185
186 /* Chars that can be used to separate mant from exp in floating point
187 nums. */
188 const char EXP_CHARS[] = "eE";
189
190 /* Chars that mean this number is a floating point constant
191 As in 0f12.456
192 or 0d1.2345e12. */
193 const char FLT_CHARS[] = "fFdDxX";
194
195 /* Tables for lexical analysis. */
196 static char mnemonic_chars[256];
197 static char register_chars[256];
198 static char operand_chars[256];
199 static char identifier_chars[256];
200 static char digit_chars[256];
201
202 /* Lexical macros. */
203 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
204 #define is_operand_char(x) (operand_chars[(unsigned char) x])
205 #define is_register_char(x) (register_chars[(unsigned char) x])
206 #define is_space_char(x) ((x) == ' ')
207 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
208 #define is_digit_char(x) (digit_chars[(unsigned char) x])
209
210 /* All non-digit non-letter charcters that may occur in an operand. */
211 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
212
213 /* md_assemble() always leaves the strings it's passed unaltered. To
214 effect this we maintain a stack of saved characters that we've smashed
215 with '\0's (indicating end of strings for various sub-fields of the
216 assembler instruction). */
217 static char save_stack[32];
218 static char *save_stack_p;
219 #define END_STRING_AND_SAVE(s) \
220 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
221 #define RESTORE_END_STRING(s) \
222 do { *(s) = *--save_stack_p; } while (0)
223
224 /* The instruction we're assembling. */
225 static i386_insn i;
226
227 /* Possible templates for current insn. */
228 static const templates *current_templates;
229
230 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
231 static expressionS disp_expressions[2], im_expressions[2];
232
233 /* Current operand we are working on. */
234 static int this_operand;
235
236 /* We support four different modes. FLAG_CODE variable is used to distinguish
237 these. */
238
239 enum flag_code {
240 CODE_32BIT,
241 CODE_16BIT,
242 CODE_64BIT };
243 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
244
245 static enum flag_code flag_code;
246 static int use_rela_relocations = 0;
247
248 /* The names used to print error messages. */
249 static const char *flag_code_names[] =
250 {
251 "32",
252 "16",
253 "64"
254 };
255
256 /* 1 for intel syntax,
257 0 if att syntax. */
258 static int intel_syntax = 0;
259
260 /* 1 if register prefix % not required. */
261 static int allow_naked_reg = 0;
262
263 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
264 leave, push, and pop instructions so that gcc has the same stack
265 frame as in 32 bit mode. */
266 static char stackop_size = '\0';
267
268 /* Non-zero to quieten some warnings. */
269 static int quiet_warnings = 0;
270
271 /* CPU name. */
272 static const char *cpu_arch_name = NULL;
273
274 /* CPU feature flags. */
275 static unsigned int cpu_arch_flags = CpuUnknownFlags|CpuNo64;
276
277 /* If set, conditional jumps are not automatically promoted to handle
278 larger than a byte offset. */
279 static unsigned int no_cond_jump_promotion = 0;
280
281 /* Interface to relax_segment.
282 There are 3 major relax states for 386 jump insns because the
283 different types of jumps add different sizes to frags when we're
284 figuring out what sort of jump to choose to reach a given label. */
285
286 /* Types. */
287 #define UNCOND_JUMP 0
288 #define COND_JUMP 1
289 #define COND_JUMP86 2
290
291 /* Sizes. */
292 #define CODE16 1
293 #define SMALL 0
294 #define SMALL16 (SMALL|CODE16)
295 #define BIG 2
296 #define BIG16 (BIG|CODE16)
297
298 #ifndef INLINE
299 #ifdef __GNUC__
300 #define INLINE __inline__
301 #else
302 #define INLINE
303 #endif
304 #endif
305
306 #define ENCODE_RELAX_STATE(type, size) \
307 ((relax_substateT) (((type) << 2) | (size)))
308 #define TYPE_FROM_RELAX_STATE(s) \
309 ((s) >> 2)
310 #define DISP_SIZE_FROM_RELAX_STATE(s) \
311 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
312
313 /* This table is used by relax_frag to promote short jumps to long
314 ones where necessary. SMALL (short) jumps may be promoted to BIG
315 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
316 don't allow a short jump in a 32 bit code segment to be promoted to
317 a 16 bit offset jump because it's slower (requires data size
318 prefix), and doesn't work, unless the destination is in the bottom
319 64k of the code segment (The top 16 bits of eip are zeroed). */
320
321 const relax_typeS md_relax_table[] =
322 {
323 /* The fields are:
324 1) most positive reach of this state,
325 2) most negative reach of this state,
326 3) how many bytes this mode will have in the variable part of the frag
327 4) which index into the table to try if we can't fit into this one. */
328
329 /* UNCOND_JUMP states. */
330 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
331 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
332 /* dword jmp adds 4 bytes to frag:
333 0 extra opcode bytes, 4 displacement bytes. */
334 {0, 0, 4, 0},
335 /* word jmp adds 2 byte2 to frag:
336 0 extra opcode bytes, 2 displacement bytes. */
337 {0, 0, 2, 0},
338
339 /* COND_JUMP states. */
340 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
341 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
342 /* dword conditionals adds 5 bytes to frag:
343 1 extra opcode byte, 4 displacement bytes. */
344 {0, 0, 5, 0},
345 /* word conditionals add 3 bytes to frag:
346 1 extra opcode byte, 2 displacement bytes. */
347 {0, 0, 3, 0},
348
349 /* COND_JUMP86 states. */
350 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
351 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
352 /* dword conditionals adds 5 bytes to frag:
353 1 extra opcode byte, 4 displacement bytes. */
354 {0, 0, 5, 0},
355 /* word conditionals add 4 bytes to frag:
356 1 displacement byte and a 3 byte long branch insn. */
357 {0, 0, 4, 0}
358 };
359
360 static const arch_entry cpu_arch[] = {
361 {"i8086", Cpu086 },
362 {"i186", Cpu086|Cpu186 },
363 {"i286", Cpu086|Cpu186|Cpu286 },
364 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
365 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
366 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
367 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
368 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
369 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
370 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
371 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
372 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
373 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
374 {NULL, 0 }
375 };
376
377 void
378 i386_align_code (fragP, count)
379 fragS *fragP;
380 int count;
381 {
382 /* Various efficient no-op patterns for aligning code labels.
383 Note: Don't try to assemble the instructions in the comments.
384 0L and 0w are not legal. */
385 static const char f32_1[] =
386 {0x90}; /* nop */
387 static const char f32_2[] =
388 {0x89,0xf6}; /* movl %esi,%esi */
389 static const char f32_3[] =
390 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
391 static const char f32_4[] =
392 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
393 static const char f32_5[] =
394 {0x90, /* nop */
395 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
396 static const char f32_6[] =
397 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
398 static const char f32_7[] =
399 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
400 static const char f32_8[] =
401 {0x90, /* nop */
402 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
403 static const char f32_9[] =
404 {0x89,0xf6, /* movl %esi,%esi */
405 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
406 static const char f32_10[] =
407 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
408 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
409 static const char f32_11[] =
410 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
411 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
412 static const char f32_12[] =
413 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
414 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
415 static const char f32_13[] =
416 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
417 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
418 static const char f32_14[] =
419 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
420 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
421 static const char f32_15[] =
422 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
423 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
424 static const char f16_3[] =
425 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
426 static const char f16_4[] =
427 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
428 static const char f16_5[] =
429 {0x90, /* nop */
430 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
431 static const char f16_6[] =
432 {0x89,0xf6, /* mov %si,%si */
433 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
434 static const char f16_7[] =
435 {0x8d,0x74,0x00, /* lea 0(%si),%si */
436 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
437 static const char f16_8[] =
438 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
439 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
440 static const char *const f32_patt[] = {
441 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
442 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
443 };
444 static const char *const f16_patt[] = {
445 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
446 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
447 };
448
449 /* ??? We can't use these fillers for x86_64, since they often kills the
450 upper halves. Solve later. */
451 if (flag_code == CODE_64BIT)
452 count = 1;
453
454 if (count > 0 && count <= 15)
455 {
456 if (flag_code == CODE_16BIT)
457 {
458 memcpy (fragP->fr_literal + fragP->fr_fix,
459 f16_patt[count - 1], count);
460 if (count > 8)
461 /* Adjust jump offset. */
462 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
463 }
464 else
465 memcpy (fragP->fr_literal + fragP->fr_fix,
466 f32_patt[count - 1], count);
467 fragP->fr_var = count;
468 }
469 }
470
471 static char *output_invalid PARAMS ((int c));
472 static int i386_operand PARAMS ((char *operand_string));
473 static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
474 static const reg_entry *parse_register PARAMS ((char *reg_string,
475 char **end_op));
476
477 #ifndef I386COFF
478 static void s_bss PARAMS ((int));
479 #endif
480
481 symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
482
483 static INLINE unsigned int
484 mode_from_disp_size (t)
485 unsigned int t;
486 {
487 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
488 }
489
490 static INLINE int
491 fits_in_signed_byte (num)
492 offsetT num;
493 {
494 return (num >= -128) && (num <= 127);
495 }
496
497 static INLINE int
498 fits_in_unsigned_byte (num)
499 offsetT num;
500 {
501 return (num & 0xff) == num;
502 }
503
504 static INLINE int
505 fits_in_unsigned_word (num)
506 offsetT num;
507 {
508 return (num & 0xffff) == num;
509 }
510
511 static INLINE int
512 fits_in_signed_word (num)
513 offsetT num;
514 {
515 return (-32768 <= num) && (num <= 32767);
516 }
517 static INLINE int
518 fits_in_signed_long (num)
519 offsetT num ATTRIBUTE_UNUSED;
520 {
521 #ifndef BFD64
522 return 1;
523 #else
524 return (!(((offsetT) -1 << 31) & num)
525 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
526 #endif
527 } /* fits_in_signed_long() */
528 static INLINE int
529 fits_in_unsigned_long (num)
530 offsetT num ATTRIBUTE_UNUSED;
531 {
532 #ifndef BFD64
533 return 1;
534 #else
535 return (num & (((offsetT) 2 << 31) - 1)) == num;
536 #endif
537 } /* fits_in_unsigned_long() */
538
539 static int
540 smallest_imm_type (num)
541 offsetT num;
542 {
543 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64)
544 && !(cpu_arch_flags & (CpuUnknown)))
545 {
546 /* This code is disabled on the 486 because all the Imm1 forms
547 in the opcode table are slower on the i486. They're the
548 versions with the implicitly specified single-position
549 displacement, which has another syntax if you really want to
550 use that form. */
551 if (num == 1)
552 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
553 }
554 return (fits_in_signed_byte (num)
555 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
556 : fits_in_unsigned_byte (num)
557 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
558 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
559 ? (Imm16 | Imm32 | Imm32S | Imm64)
560 : fits_in_signed_long (num)
561 ? (Imm32 | Imm32S | Imm64)
562 : fits_in_unsigned_long (num)
563 ? (Imm32 | Imm64)
564 : Imm64);
565 }
566
567 static offsetT
568 offset_in_range (val, size)
569 offsetT val;
570 int size;
571 {
572 addressT mask;
573
574 switch (size)
575 {
576 case 1: mask = ((addressT) 1 << 8) - 1; break;
577 case 2: mask = ((addressT) 1 << 16) - 1; break;
578 case 4: mask = ((addressT) 2 << 31) - 1; break;
579 #ifdef BFD64
580 case 8: mask = ((addressT) 2 << 63) - 1; break;
581 #endif
582 default: abort ();
583 }
584
585 /* If BFD64, sign extend val. */
586 if (!use_rela_relocations)
587 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
588 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
589
590 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
591 {
592 char buf1[40], buf2[40];
593
594 sprint_value (buf1, val);
595 sprint_value (buf2, val & mask);
596 as_warn (_("%s shortened to %s"), buf1, buf2);
597 }
598 return val & mask;
599 }
600
601 /* Returns 0 if attempting to add a prefix where one from the same
602 class already exists, 1 if non rep/repne added, 2 if rep/repne
603 added. */
604 static int
605 add_prefix (prefix)
606 unsigned int prefix;
607 {
608 int ret = 1;
609 int q;
610
611 if (prefix >= 0x40 && prefix < 0x50 && flag_code == CODE_64BIT)
612 q = REX_PREFIX;
613 else
614 switch (prefix)
615 {
616 default:
617 abort ();
618
619 case CS_PREFIX_OPCODE:
620 case DS_PREFIX_OPCODE:
621 case ES_PREFIX_OPCODE:
622 case FS_PREFIX_OPCODE:
623 case GS_PREFIX_OPCODE:
624 case SS_PREFIX_OPCODE:
625 q = SEG_PREFIX;
626 break;
627
628 case REPNE_PREFIX_OPCODE:
629 case REPE_PREFIX_OPCODE:
630 ret = 2;
631 /* fall thru */
632 case LOCK_PREFIX_OPCODE:
633 q = LOCKREP_PREFIX;
634 break;
635
636 case FWAIT_OPCODE:
637 q = WAIT_PREFIX;
638 break;
639
640 case ADDR_PREFIX_OPCODE:
641 q = ADDR_PREFIX;
642 break;
643
644 case DATA_PREFIX_OPCODE:
645 q = DATA_PREFIX;
646 break;
647 }
648
649 if (i.prefix[q])
650 {
651 as_bad (_("same type of prefix used twice"));
652 return 0;
653 }
654
655 i.prefixes += 1;
656 i.prefix[q] = prefix;
657 return ret;
658 }
659
660 static void
661 set_code_flag (value)
662 int value;
663 {
664 flag_code = value;
665 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
666 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
667 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
668 {
669 as_bad (_("64bit mode not supported on this CPU."));
670 }
671 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
672 {
673 as_bad (_("32bit mode not supported on this CPU."));
674 }
675 stackop_size = '\0';
676 }
677
678 static void
679 set_16bit_gcc_code_flag (new_code_flag)
680 int new_code_flag;
681 {
682 flag_code = new_code_flag;
683 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
684 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
685 stackop_size = 'l';
686 }
687
688 static void
689 set_intel_syntax (syntax_flag)
690 int syntax_flag;
691 {
692 /* Find out if register prefixing is specified. */
693 int ask_naked_reg = 0;
694
695 SKIP_WHITESPACE ();
696 if (! is_end_of_line[(unsigned char) *input_line_pointer])
697 {
698 char *string = input_line_pointer;
699 int e = get_symbol_end ();
700
701 if (strcmp (string, "prefix") == 0)
702 ask_naked_reg = 1;
703 else if (strcmp (string, "noprefix") == 0)
704 ask_naked_reg = -1;
705 else
706 as_bad (_("bad argument to syntax directive."));
707 *input_line_pointer = e;
708 }
709 demand_empty_rest_of_line ();
710
711 intel_syntax = syntax_flag;
712
713 if (ask_naked_reg == 0)
714 {
715 #ifdef BFD_ASSEMBLER
716 allow_naked_reg = (intel_syntax
717 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
718 #else
719 /* Conservative default. */
720 allow_naked_reg = 0;
721 #endif
722 }
723 else
724 allow_naked_reg = (ask_naked_reg < 0);
725 }
726
727 static void
728 set_cpu_arch (dummy)
729 int dummy ATTRIBUTE_UNUSED;
730 {
731 SKIP_WHITESPACE ();
732
733 if (! is_end_of_line[(unsigned char) *input_line_pointer])
734 {
735 char *string = input_line_pointer;
736 int e = get_symbol_end ();
737 int i;
738
739 for (i = 0; cpu_arch[i].name; i++)
740 {
741 if (strcmp (string, cpu_arch[i].name) == 0)
742 {
743 cpu_arch_name = cpu_arch[i].name;
744 cpu_arch_flags = (cpu_arch[i].flags
745 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
746 break;
747 }
748 }
749 if (!cpu_arch[i].name)
750 as_bad (_("no such architecture: `%s'"), string);
751
752 *input_line_pointer = e;
753 }
754 else
755 as_bad (_("missing cpu architecture"));
756
757 no_cond_jump_promotion = 0;
758 if (*input_line_pointer == ','
759 && ! is_end_of_line[(unsigned char) input_line_pointer[1]])
760 {
761 char *string = ++input_line_pointer;
762 int e = get_symbol_end ();
763
764 if (strcmp (string, "nojumps") == 0)
765 no_cond_jump_promotion = 1;
766 else if (strcmp (string, "jumps") == 0)
767 ;
768 else
769 as_bad (_("no such architecture modifier: `%s'"), string);
770
771 *input_line_pointer = e;
772 }
773
774 demand_empty_rest_of_line ();
775 }
776
777 const pseudo_typeS md_pseudo_table[] =
778 {
779 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
780 {"align", s_align_bytes, 0},
781 #else
782 {"align", s_align_ptwo, 0},
783 #endif
784 {"arch", set_cpu_arch, 0},
785 #ifndef I386COFF
786 {"bss", s_bss, 0},
787 #endif
788 {"ffloat", float_cons, 'f'},
789 {"dfloat", float_cons, 'd'},
790 {"tfloat", float_cons, 'x'},
791 {"value", cons, 2},
792 {"noopt", s_ignore, 0},
793 {"optim", s_ignore, 0},
794 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
795 {"code16", set_code_flag, CODE_16BIT},
796 {"code32", set_code_flag, CODE_32BIT},
797 {"code64", set_code_flag, CODE_64BIT},
798 {"intel_syntax", set_intel_syntax, 1},
799 {"att_syntax", set_intel_syntax, 0},
800 {"file", dwarf2_directive_file, 0},
801 {"loc", dwarf2_directive_loc, 0},
802 {0, 0, 0}
803 };
804
805 /* For interface with expression (). */
806 extern char *input_line_pointer;
807
808 /* Hash table for instruction mnemonic lookup. */
809 static struct hash_control *op_hash;
810
811 /* Hash table for register lookup. */
812 static struct hash_control *reg_hash;
813 \f
814 #ifdef BFD_ASSEMBLER
815 unsigned long
816 i386_mach ()
817 {
818 if (!strcmp (default_arch, "x86_64"))
819 return bfd_mach_x86_64;
820 else if (!strcmp (default_arch, "i386"))
821 return bfd_mach_i386_i386;
822 else
823 as_fatal (_("Unknown architecture"));
824 }
825 #endif
826 \f
827 void
828 md_begin ()
829 {
830 const char *hash_err;
831
832 /* Initialize op_hash hash table. */
833 op_hash = hash_new ();
834
835 {
836 register const template *optab;
837 register templates *core_optab;
838
839 /* Setup for loop. */
840 optab = i386_optab;
841 core_optab = (templates *) xmalloc (sizeof (templates));
842 core_optab->start = optab;
843
844 while (1)
845 {
846 ++optab;
847 if (optab->name == NULL
848 || strcmp (optab->name, (optab - 1)->name) != 0)
849 {
850 /* different name --> ship out current template list;
851 add to hash table; & begin anew. */
852 core_optab->end = optab;
853 hash_err = hash_insert (op_hash,
854 (optab - 1)->name,
855 (PTR) core_optab);
856 if (hash_err)
857 {
858 as_fatal (_("Internal Error: Can't hash %s: %s"),
859 (optab - 1)->name,
860 hash_err);
861 }
862 if (optab->name == NULL)
863 break;
864 core_optab = (templates *) xmalloc (sizeof (templates));
865 core_optab->start = optab;
866 }
867 }
868 }
869
870 /* Initialize reg_hash hash table. */
871 reg_hash = hash_new ();
872 {
873 register const reg_entry *regtab;
874
875 for (regtab = i386_regtab;
876 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
877 regtab++)
878 {
879 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
880 if (hash_err)
881 as_fatal (_("Internal Error: Can't hash %s: %s"),
882 regtab->reg_name,
883 hash_err);
884 }
885 }
886
887 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
888 {
889 register int c;
890 register char *p;
891
892 for (c = 0; c < 256; c++)
893 {
894 if (isdigit (c))
895 {
896 digit_chars[c] = c;
897 mnemonic_chars[c] = c;
898 register_chars[c] = c;
899 operand_chars[c] = c;
900 }
901 else if (islower (c))
902 {
903 mnemonic_chars[c] = c;
904 register_chars[c] = c;
905 operand_chars[c] = c;
906 }
907 else if (isupper (c))
908 {
909 mnemonic_chars[c] = tolower (c);
910 register_chars[c] = mnemonic_chars[c];
911 operand_chars[c] = c;
912 }
913
914 if (isalpha (c) || isdigit (c))
915 identifier_chars[c] = c;
916 else if (c >= 128)
917 {
918 identifier_chars[c] = c;
919 operand_chars[c] = c;
920 }
921 }
922
923 #ifdef LEX_AT
924 identifier_chars['@'] = '@';
925 #endif
926 digit_chars['-'] = '-';
927 identifier_chars['_'] = '_';
928 identifier_chars['.'] = '.';
929
930 for (p = operand_special_chars; *p != '\0'; p++)
931 operand_chars[(unsigned char) *p] = *p;
932 }
933
934 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
935 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
936 {
937 record_alignment (text_section, 2);
938 record_alignment (data_section, 2);
939 record_alignment (bss_section, 2);
940 }
941 #endif
942 }
943
944 void
945 i386_print_statistics (file)
946 FILE *file;
947 {
948 hash_print_statistics (file, "i386 opcode", op_hash);
949 hash_print_statistics (file, "i386 register", reg_hash);
950 }
951 \f
952 #ifdef DEBUG386
953
954 /* Debugging routines for md_assemble. */
955 static void pi PARAMS ((char *, i386_insn *));
956 static void pte PARAMS ((template *));
957 static void pt PARAMS ((unsigned int));
958 static void pe PARAMS ((expressionS *));
959 static void ps PARAMS ((symbolS *));
960
961 static void
962 pi (line, x)
963 char *line;
964 i386_insn *x;
965 {
966 unsigned int i;
967
968 fprintf (stdout, "%s: template ", line);
969 pte (&x->tm);
970 fprintf (stdout, " address: base %s index %s scale %x\n",
971 x->base_reg ? x->base_reg->reg_name : "none",
972 x->index_reg ? x->index_reg->reg_name : "none",
973 x->log2_scale_factor);
974 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
975 x->rm.mode, x->rm.reg, x->rm.regmem);
976 fprintf (stdout, " sib: base %x index %x scale %x\n",
977 x->sib.base, x->sib.index, x->sib.scale);
978 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
979 x->rex.mode64, x->rex.extX, x->rex.extY, x->rex.extZ);
980 for (i = 0; i < x->operands; i++)
981 {
982 fprintf (stdout, " #%d: ", i + 1);
983 pt (x->types[i]);
984 fprintf (stdout, "\n");
985 if (x->types[i]
986 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
987 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
988 if (x->types[i] & Imm)
989 pe (x->op[i].imms);
990 if (x->types[i] & Disp)
991 pe (x->op[i].disps);
992 }
993 }
994
995 static void
996 pte (t)
997 template *t;
998 {
999 unsigned int i;
1000 fprintf (stdout, " %d operands ", t->operands);
1001 fprintf (stdout, "opcode %x ", t->base_opcode);
1002 if (t->extension_opcode != None)
1003 fprintf (stdout, "ext %x ", t->extension_opcode);
1004 if (t->opcode_modifier & D)
1005 fprintf (stdout, "D");
1006 if (t->opcode_modifier & W)
1007 fprintf (stdout, "W");
1008 fprintf (stdout, "\n");
1009 for (i = 0; i < t->operands; i++)
1010 {
1011 fprintf (stdout, " #%d type ", i + 1);
1012 pt (t->operand_types[i]);
1013 fprintf (stdout, "\n");
1014 }
1015 }
1016
1017 static void
1018 pe (e)
1019 expressionS *e;
1020 {
1021 fprintf (stdout, " operation %d\n", e->X_op);
1022 fprintf (stdout, " add_number %ld (%lx)\n",
1023 (long) e->X_add_number, (long) e->X_add_number);
1024 if (e->X_add_symbol)
1025 {
1026 fprintf (stdout, " add_symbol ");
1027 ps (e->X_add_symbol);
1028 fprintf (stdout, "\n");
1029 }
1030 if (e->X_op_symbol)
1031 {
1032 fprintf (stdout, " op_symbol ");
1033 ps (e->X_op_symbol);
1034 fprintf (stdout, "\n");
1035 }
1036 }
1037
1038 static void
1039 ps (s)
1040 symbolS *s;
1041 {
1042 fprintf (stdout, "%s type %s%s",
1043 S_GET_NAME (s),
1044 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1045 segment_name (S_GET_SEGMENT (s)));
1046 }
1047
1048 struct type_name
1049 {
1050 unsigned int mask;
1051 char *tname;
1052 }
1053
1054 type_names[] =
1055 {
1056 { Reg8, "r8" },
1057 { Reg16, "r16" },
1058 { Reg32, "r32" },
1059 { Reg64, "r64" },
1060 { Imm8, "i8" },
1061 { Imm8S, "i8s" },
1062 { Imm16, "i16" },
1063 { Imm32, "i32" },
1064 { Imm32S, "i32s" },
1065 { Imm64, "i64" },
1066 { Imm1, "i1" },
1067 { BaseIndex, "BaseIndex" },
1068 { Disp8, "d8" },
1069 { Disp16, "d16" },
1070 { Disp32, "d32" },
1071 { Disp32S, "d32s" },
1072 { Disp64, "d64" },
1073 { InOutPortReg, "InOutPortReg" },
1074 { ShiftCount, "ShiftCount" },
1075 { Control, "control reg" },
1076 { Test, "test reg" },
1077 { Debug, "debug reg" },
1078 { FloatReg, "FReg" },
1079 { FloatAcc, "FAcc" },
1080 { SReg2, "SReg2" },
1081 { SReg3, "SReg3" },
1082 { Acc, "Acc" },
1083 { JumpAbsolute, "Jump Absolute" },
1084 { RegMMX, "rMMX" },
1085 { RegXMM, "rXMM" },
1086 { EsSeg, "es" },
1087 { 0, "" }
1088 };
1089
1090 static void
1091 pt (t)
1092 unsigned int t;
1093 {
1094 register struct type_name *ty;
1095
1096 for (ty = type_names; ty->mask; ty++)
1097 if (t & ty->mask)
1098 fprintf (stdout, "%s, ", ty->tname);
1099 fflush (stdout);
1100 }
1101
1102 #endif /* DEBUG386 */
1103 \f
1104 int
1105 tc_i386_force_relocation (fixp)
1106 struct fix *fixp;
1107 {
1108 #ifdef BFD_ASSEMBLER
1109 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1110 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1111 return 1;
1112 return 0;
1113 #else
1114 /* For COFF. */
1115 return fixp->fx_r_type == 7;
1116 #endif
1117 }
1118
1119 #ifdef BFD_ASSEMBLER
1120
1121 static bfd_reloc_code_real_type
1122 reloc (size, pcrel, sign, other)
1123 int size;
1124 int pcrel;
1125 int sign;
1126 bfd_reloc_code_real_type other;
1127 {
1128 if (other != NO_RELOC)
1129 return other;
1130
1131 if (pcrel)
1132 {
1133 if (!sign)
1134 as_bad (_("There are no unsigned pc-relative relocations"));
1135 switch (size)
1136 {
1137 case 1: return BFD_RELOC_8_PCREL;
1138 case 2: return BFD_RELOC_16_PCREL;
1139 case 4: return BFD_RELOC_32_PCREL;
1140 }
1141 as_bad (_("can not do %d byte pc-relative relocation"), size);
1142 }
1143 else
1144 {
1145 if (sign)
1146 switch (size)
1147 {
1148 case 4: return BFD_RELOC_X86_64_32S;
1149 }
1150 else
1151 switch (size)
1152 {
1153 case 1: return BFD_RELOC_8;
1154 case 2: return BFD_RELOC_16;
1155 case 4: return BFD_RELOC_32;
1156 case 8: return BFD_RELOC_64;
1157 }
1158 as_bad (_("can not do %s %d byte relocation"),
1159 sign ? "signed" : "unsigned", size);
1160 }
1161
1162 abort ();
1163 return BFD_RELOC_NONE;
1164 }
1165
1166 /* Here we decide which fixups can be adjusted to make them relative to
1167 the beginning of the section instead of the symbol. Basically we need
1168 to make sure that the dynamic relocations are done correctly, so in
1169 some cases we force the original symbol to be used. */
1170
1171 int
1172 tc_i386_fix_adjustable (fixP)
1173 fixS *fixP;
1174 {
1175 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1176 /* Prevent all adjustments to global symbols, or else dynamic
1177 linking will not work correctly. */
1178 if (S_IS_EXTERNAL (fixP->fx_addsy)
1179 || S_IS_WEAK (fixP->fx_addsy))
1180 return 0;
1181 #endif
1182 /* adjust_reloc_syms doesn't know about the GOT. */
1183 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1184 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1185 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1186 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1187 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1188 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1189 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1190 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1191 return 0;
1192 return 1;
1193 }
1194 #else
1195 #define reloc(SIZE,PCREL,SIGN,OTHER) 0
1196 #define BFD_RELOC_16 0
1197 #define BFD_RELOC_32 0
1198 #define BFD_RELOC_16_PCREL 0
1199 #define BFD_RELOC_32_PCREL 0
1200 #define BFD_RELOC_386_PLT32 0
1201 #define BFD_RELOC_386_GOT32 0
1202 #define BFD_RELOC_386_GOTOFF 0
1203 #define BFD_RELOC_X86_64_PLT32 0
1204 #define BFD_RELOC_X86_64_GOT32 0
1205 #define BFD_RELOC_X86_64_GOTPCREL 0
1206 #endif
1207
1208 static int intel_float_operand PARAMS ((char *mnemonic));
1209
1210 static int
1211 intel_float_operand (mnemonic)
1212 char *mnemonic;
1213 {
1214 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
1215 return 2;
1216
1217 if (mnemonic[0] == 'f')
1218 return 1;
1219
1220 return 0;
1221 }
1222
1223 /* This is the guts of the machine-dependent assembler. LINE points to a
1224 machine dependent instruction. This function is supposed to emit
1225 the frags/bytes it assembles to. */
1226
1227 void
1228 md_assemble (line)
1229 char *line;
1230 {
1231 /* Points to template once we've found it. */
1232 const template *t;
1233
1234 int j;
1235
1236 char mnemonic[MAX_MNEM_SIZE];
1237
1238 /* Initialize globals. */
1239 memset (&i, '\0', sizeof (i));
1240 for (j = 0; j < MAX_OPERANDS; j++)
1241 i.reloc[j] = NO_RELOC;
1242 memset (disp_expressions, '\0', sizeof (disp_expressions));
1243 memset (im_expressions, '\0', sizeof (im_expressions));
1244 save_stack_p = save_stack;
1245
1246 /* First parse an instruction mnemonic & call i386_operand for the operands.
1247 We assume that the scrubber has arranged it so that line[0] is the valid
1248 start of a (possibly prefixed) mnemonic. */
1249 {
1250 char *l = line;
1251 char *token_start = l;
1252 char *mnem_p;
1253
1254 /* Non-zero if we found a prefix only acceptable with string insns. */
1255 const char *expecting_string_instruction = NULL;
1256
1257 while (1)
1258 {
1259 mnem_p = mnemonic;
1260 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1261 {
1262 mnem_p++;
1263 if (mnem_p >= mnemonic + sizeof (mnemonic))
1264 {
1265 as_bad (_("no such instruction: `%s'"), token_start);
1266 return;
1267 }
1268 l++;
1269 }
1270 if (!is_space_char (*l)
1271 && *l != END_OF_INSN
1272 && *l != PREFIX_SEPARATOR)
1273 {
1274 as_bad (_("invalid character %s in mnemonic"),
1275 output_invalid (*l));
1276 return;
1277 }
1278 if (token_start == l)
1279 {
1280 if (*l == PREFIX_SEPARATOR)
1281 as_bad (_("expecting prefix; got nothing"));
1282 else
1283 as_bad (_("expecting mnemonic; got nothing"));
1284 return;
1285 }
1286
1287 /* Look up instruction (or prefix) via hash table. */
1288 current_templates = hash_find (op_hash, mnemonic);
1289
1290 if (*l != END_OF_INSN
1291 && (! is_space_char (*l) || l[1] != END_OF_INSN)
1292 && current_templates
1293 && (current_templates->start->opcode_modifier & IsPrefix))
1294 {
1295 /* If we are in 16-bit mode, do not allow addr16 or data16.
1296 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1297 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1298 && (((current_templates->start->opcode_modifier & Size32) != 0)
1299 ^ (flag_code == CODE_16BIT)))
1300 {
1301 as_bad (_("redundant %s prefix"),
1302 current_templates->start->name);
1303 return;
1304 }
1305 /* Add prefix, checking for repeated prefixes. */
1306 switch (add_prefix (current_templates->start->base_opcode))
1307 {
1308 case 0:
1309 return;
1310 case 2:
1311 expecting_string_instruction = current_templates->start->name;
1312 break;
1313 }
1314 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1315 token_start = ++l;
1316 }
1317 else
1318 break;
1319 }
1320
1321 if (!current_templates)
1322 {
1323 /* See if we can get a match by trimming off a suffix. */
1324 switch (mnem_p[-1])
1325 {
1326 case WORD_MNEM_SUFFIX:
1327 case BYTE_MNEM_SUFFIX:
1328 case QWORD_MNEM_SUFFIX:
1329 i.suffix = mnem_p[-1];
1330 mnem_p[-1] = '\0';
1331 current_templates = hash_find (op_hash, mnemonic);
1332 break;
1333 case SHORT_MNEM_SUFFIX:
1334 case LONG_MNEM_SUFFIX:
1335 if (!intel_syntax)
1336 {
1337 i.suffix = mnem_p[-1];
1338 mnem_p[-1] = '\0';
1339 current_templates = hash_find (op_hash, mnemonic);
1340 }
1341 break;
1342
1343 /* Intel Syntax. */
1344 case 'd':
1345 if (intel_syntax)
1346 {
1347 if (intel_float_operand (mnemonic))
1348 i.suffix = SHORT_MNEM_SUFFIX;
1349 else
1350 i.suffix = LONG_MNEM_SUFFIX;
1351 mnem_p[-1] = '\0';
1352 current_templates = hash_find (op_hash, mnemonic);
1353 }
1354 break;
1355 }
1356 if (!current_templates)
1357 {
1358 as_bad (_("no such instruction: `%s'"), token_start);
1359 return;
1360 }
1361 }
1362
1363 /* Check if instruction is supported on specified architecture. */
1364 if (cpu_arch_flags != 0)
1365 {
1366 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1367 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
1368 {
1369 as_warn (_("`%s' is not supported on `%s'"),
1370 current_templates->start->name, cpu_arch_name);
1371 }
1372 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1373 {
1374 as_warn (_("use .code16 to ensure correct addressing mode"));
1375 }
1376 }
1377
1378 /* Check for rep/repne without a string instruction. */
1379 if (expecting_string_instruction
1380 && !(current_templates->start->opcode_modifier & IsString))
1381 {
1382 as_bad (_("expecting string instruction after `%s'"),
1383 expecting_string_instruction);
1384 return;
1385 }
1386
1387 /* There may be operands to parse. */
1388 if (*l != END_OF_INSN)
1389 {
1390 /* 1 if operand is pending after ','. */
1391 unsigned int expecting_operand = 0;
1392
1393 /* Non-zero if operand parens not balanced. */
1394 unsigned int paren_not_balanced;
1395
1396 do
1397 {
1398 /* Skip optional white space before operand. */
1399 if (is_space_char (*l))
1400 ++l;
1401 if (!is_operand_char (*l) && *l != END_OF_INSN)
1402 {
1403 as_bad (_("invalid character %s before operand %d"),
1404 output_invalid (*l),
1405 i.operands + 1);
1406 return;
1407 }
1408 token_start = l; /* after white space */
1409 paren_not_balanced = 0;
1410 while (paren_not_balanced || *l != ',')
1411 {
1412 if (*l == END_OF_INSN)
1413 {
1414 if (paren_not_balanced)
1415 {
1416 if (!intel_syntax)
1417 as_bad (_("unbalanced parenthesis in operand %d."),
1418 i.operands + 1);
1419 else
1420 as_bad (_("unbalanced brackets in operand %d."),
1421 i.operands + 1);
1422 return;
1423 }
1424 else
1425 break; /* we are done */
1426 }
1427 else if (!is_operand_char (*l) && !is_space_char (*l))
1428 {
1429 as_bad (_("invalid character %s in operand %d"),
1430 output_invalid (*l),
1431 i.operands + 1);
1432 return;
1433 }
1434 if (!intel_syntax)
1435 {
1436 if (*l == '(')
1437 ++paren_not_balanced;
1438 if (*l == ')')
1439 --paren_not_balanced;
1440 }
1441 else
1442 {
1443 if (*l == '[')
1444 ++paren_not_balanced;
1445 if (*l == ']')
1446 --paren_not_balanced;
1447 }
1448 l++;
1449 }
1450 if (l != token_start)
1451 { /* Yes, we've read in another operand. */
1452 unsigned int operand_ok;
1453 this_operand = i.operands++;
1454 if (i.operands > MAX_OPERANDS)
1455 {
1456 as_bad (_("spurious operands; (%d operands/instruction max)"),
1457 MAX_OPERANDS);
1458 return;
1459 }
1460 /* Now parse operand adding info to 'i' as we go along. */
1461 END_STRING_AND_SAVE (l);
1462
1463 if (intel_syntax)
1464 operand_ok =
1465 i386_intel_operand (token_start,
1466 intel_float_operand (mnemonic));
1467 else
1468 operand_ok = i386_operand (token_start);
1469
1470 RESTORE_END_STRING (l);
1471 if (!operand_ok)
1472 return;
1473 }
1474 else
1475 {
1476 if (expecting_operand)
1477 {
1478 expecting_operand_after_comma:
1479 as_bad (_("expecting operand after ','; got nothing"));
1480 return;
1481 }
1482 if (*l == ',')
1483 {
1484 as_bad (_("expecting operand before ','; got nothing"));
1485 return;
1486 }
1487 }
1488
1489 /* Now *l must be either ',' or END_OF_INSN. */
1490 if (*l == ',')
1491 {
1492 if (*++l == END_OF_INSN)
1493 {
1494 /* Just skip it, if it's \n complain. */
1495 goto expecting_operand_after_comma;
1496 }
1497 expecting_operand = 1;
1498 }
1499 }
1500 while (*l != END_OF_INSN);
1501 }
1502 }
1503
1504 /* Now we've parsed the mnemonic into a set of templates, and have the
1505 operands at hand.
1506
1507 Next, we find a template that matches the given insn,
1508 making sure the overlap of the given operands types is consistent
1509 with the template operand types. */
1510
1511 #define MATCH(overlap, given, template) \
1512 ((overlap & ~JumpAbsolute) \
1513 && ((given) & (BaseIndex|JumpAbsolute)) == ((overlap) & (BaseIndex|JumpAbsolute)))
1514
1515 /* If given types r0 and r1 are registers they must be of the same type
1516 unless the expected operand type register overlap is null.
1517 Note that Acc in a template matches every size of reg. */
1518 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1519 ( ((g0) & Reg) == 0 || ((g1) & Reg) == 0 || \
1520 ((g0) & Reg) == ((g1) & Reg) || \
1521 ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
1522
1523 {
1524 register unsigned int overlap0, overlap1;
1525 unsigned int overlap2;
1526 unsigned int found_reverse_match;
1527 int suffix_check;
1528
1529 /* All intel opcodes have reversed operands except for "bound" and
1530 "enter". We also don't reverse intersegment "jmp" and "call"
1531 instructions with 2 immediate operands so that the immediate segment
1532 precedes the offset, as it does when in AT&T mode. "enter" and the
1533 intersegment "jmp" and "call" instructions are the only ones that
1534 have two immediate operands. */
1535 if (intel_syntax && i.operands > 1
1536 && (strcmp (mnemonic, "bound") != 0)
1537 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1538 {
1539 union i386_op temp_op;
1540 unsigned int temp_type;
1541 RELOC_ENUM temp_reloc;
1542 int xchg1 = 0;
1543 int xchg2 = 0;
1544
1545 if (i.operands == 2)
1546 {
1547 xchg1 = 0;
1548 xchg2 = 1;
1549 }
1550 else if (i.operands == 3)
1551 {
1552 xchg1 = 0;
1553 xchg2 = 2;
1554 }
1555 temp_type = i.types[xchg2];
1556 i.types[xchg2] = i.types[xchg1];
1557 i.types[xchg1] = temp_type;
1558 temp_op = i.op[xchg2];
1559 i.op[xchg2] = i.op[xchg1];
1560 i.op[xchg1] = temp_op;
1561 temp_reloc = i.reloc[xchg2];
1562 i.reloc[xchg2] = i.reloc[xchg1];
1563 i.reloc[xchg1] = temp_reloc;
1564
1565 if (i.mem_operands == 2)
1566 {
1567 const seg_entry *temp_seg;
1568 temp_seg = i.seg[0];
1569 i.seg[0] = i.seg[1];
1570 i.seg[1] = temp_seg;
1571 }
1572 }
1573
1574 if (i.imm_operands)
1575 {
1576 /* Try to ensure constant immediates are represented in the smallest
1577 opcode possible. */
1578 char guess_suffix = 0;
1579 int op;
1580
1581 if (i.suffix)
1582 guess_suffix = i.suffix;
1583 else if (i.reg_operands)
1584 {
1585 /* Figure out a suffix from the last register operand specified.
1586 We can't do this properly yet, ie. excluding InOutPortReg,
1587 but the following works for instructions with immediates.
1588 In any case, we can't set i.suffix yet. */
1589 for (op = i.operands; --op >= 0;)
1590 if (i.types[op] & Reg)
1591 {
1592 if (i.types[op] & Reg8)
1593 guess_suffix = BYTE_MNEM_SUFFIX;
1594 else if (i.types[op] & Reg16)
1595 guess_suffix = WORD_MNEM_SUFFIX;
1596 else if (i.types[op] & Reg32)
1597 guess_suffix = LONG_MNEM_SUFFIX;
1598 else if (i.types[op] & Reg64)
1599 guess_suffix = QWORD_MNEM_SUFFIX;
1600 break;
1601 }
1602 }
1603 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1604 guess_suffix = WORD_MNEM_SUFFIX;
1605
1606 for (op = i.operands; --op >= 0;)
1607 if (i.types[op] & Imm)
1608 {
1609 switch (i.op[op].imms->X_op)
1610 {
1611 case O_constant:
1612 /* If a suffix is given, this operand may be shortened. */
1613 switch (guess_suffix)
1614 {
1615 case LONG_MNEM_SUFFIX:
1616 i.types[op] |= Imm32 | Imm64;
1617 break;
1618 case WORD_MNEM_SUFFIX:
1619 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1620 break;
1621 case BYTE_MNEM_SUFFIX:
1622 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1623 break;
1624 }
1625
1626 /* If this operand is at most 16 bits, convert it
1627 to a signed 16 bit number before trying to see
1628 whether it will fit in an even smaller size.
1629 This allows a 16-bit operand such as $0xffe0 to
1630 be recognised as within Imm8S range. */
1631 if ((i.types[op] & Imm16)
1632 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
1633 {
1634 i.op[op].imms->X_add_number =
1635 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1636 }
1637 if ((i.types[op] & Imm32)
1638 && (i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1)) == 0)
1639 {
1640 i.op[op].imms->X_add_number =
1641 (i.op[op].imms->X_add_number ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1642 }
1643 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
1644 /* We must avoid matching of Imm32 templates when 64bit only immediate is available. */
1645 if (guess_suffix == QWORD_MNEM_SUFFIX)
1646 i.types[op] &= ~Imm32;
1647 break;
1648 case O_absent:
1649 case O_register:
1650 abort ();
1651 /* Symbols and expressions. */
1652 default:
1653 /* Convert symbolic operand to proper sizes for matching. */
1654 switch (guess_suffix)
1655 {
1656 case QWORD_MNEM_SUFFIX:
1657 i.types[op] = Imm64 | Imm32S;
1658 break;
1659 case LONG_MNEM_SUFFIX:
1660 i.types[op] = Imm32 | Imm64;
1661 break;
1662 case WORD_MNEM_SUFFIX:
1663 i.types[op] = Imm16 | Imm32 | Imm64;
1664 break;
1665 break;
1666 case BYTE_MNEM_SUFFIX:
1667 i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
1668 break;
1669 break;
1670 }
1671 break;
1672 }
1673 }
1674 }
1675
1676 if (i.disp_operands)
1677 {
1678 /* Try to use the smallest displacement type too. */
1679 int op;
1680
1681 for (op = i.operands; --op >= 0;)
1682 if ((i.types[op] & Disp)
1683 && i.op[op].disps->X_op == O_constant)
1684 {
1685 offsetT disp = i.op[op].disps->X_add_number;
1686
1687 if (i.types[op] & Disp16)
1688 {
1689 /* We know this operand is at most 16 bits, so
1690 convert to a signed 16 bit number before trying
1691 to see whether it will fit in an even smaller
1692 size. */
1693
1694 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
1695 }
1696 else if (i.types[op] & Disp32)
1697 {
1698 /* We know this operand is at most 32 bits, so convert to a
1699 signed 32 bit number before trying to see whether it will
1700 fit in an even smaller size. */
1701 disp &= (((offsetT) 2 << 31) - 1);
1702 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1703 }
1704 if (flag_code == CODE_64BIT)
1705 {
1706 if (fits_in_signed_long (disp))
1707 i.types[op] |= Disp32S;
1708 if (fits_in_unsigned_long (disp))
1709 i.types[op] |= Disp32;
1710 }
1711 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
1712 && fits_in_signed_byte (disp))
1713 i.types[op] |= Disp8;
1714 }
1715 }
1716
1717 overlap0 = 0;
1718 overlap1 = 0;
1719 overlap2 = 0;
1720 found_reverse_match = 0;
1721 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
1722 ? No_bSuf
1723 : (i.suffix == WORD_MNEM_SUFFIX
1724 ? No_wSuf
1725 : (i.suffix == SHORT_MNEM_SUFFIX
1726 ? No_sSuf
1727 : (i.suffix == LONG_MNEM_SUFFIX
1728 ? No_lSuf
1729 : (i.suffix == QWORD_MNEM_SUFFIX
1730 ? No_qSuf
1731 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX ? No_xSuf : 0))))));
1732
1733 for (t = current_templates->start;
1734 t < current_templates->end;
1735 t++)
1736 {
1737 /* Must have right number of operands. */
1738 if (i.operands != t->operands)
1739 continue;
1740
1741 /* Check the suffix, except for some instructions in intel mode. */
1742 if ((t->opcode_modifier & suffix_check)
1743 && !(intel_syntax
1744 && (t->opcode_modifier & IgnoreSize))
1745 && !(intel_syntax
1746 && t->base_opcode == 0xd9
1747 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
1748 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
1749 continue;
1750
1751 /* Do not verify operands when there are none. */
1752 else if (!t->operands)
1753 {
1754 if (t->cpu_flags & ~cpu_arch_flags)
1755 continue;
1756 /* We've found a match; break out of loop. */
1757 break;
1758 }
1759
1760 overlap0 = i.types[0] & t->operand_types[0];
1761 switch (t->operands)
1762 {
1763 case 1:
1764 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
1765 continue;
1766 break;
1767 case 2:
1768 case 3:
1769 overlap1 = i.types[1] & t->operand_types[1];
1770 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
1771 || !MATCH (overlap1, i.types[1], t->operand_types[1])
1772 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1773 t->operand_types[0],
1774 overlap1, i.types[1],
1775 t->operand_types[1]))
1776 {
1777 /* Check if other direction is valid ... */
1778 if ((t->opcode_modifier & (D|FloatD)) == 0)
1779 continue;
1780
1781 /* Try reversing direction of operands. */
1782 overlap0 = i.types[0] & t->operand_types[1];
1783 overlap1 = i.types[1] & t->operand_types[0];
1784 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
1785 || !MATCH (overlap1, i.types[1], t->operand_types[0])
1786 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1787 t->operand_types[1],
1788 overlap1, i.types[1],
1789 t->operand_types[0]))
1790 {
1791 /* Does not match either direction. */
1792 continue;
1793 }
1794 /* found_reverse_match holds which of D or FloatDR
1795 we've found. */
1796 found_reverse_match = t->opcode_modifier & (D|FloatDR);
1797 }
1798 /* Found a forward 2 operand match here. */
1799 else if (t->operands == 3)
1800 {
1801 /* Here we make use of the fact that there are no
1802 reverse match 3 operand instructions, and all 3
1803 operand instructions only need to be checked for
1804 register consistency between operands 2 and 3. */
1805 overlap2 = i.types[2] & t->operand_types[2];
1806 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
1807 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
1808 t->operand_types[1],
1809 overlap2, i.types[2],
1810 t->operand_types[2]))
1811
1812 continue;
1813 }
1814 /* Found either forward/reverse 2 or 3 operand match here:
1815 slip through to break. */
1816 }
1817 if (t->cpu_flags & ~cpu_arch_flags)
1818 {
1819 found_reverse_match = 0;
1820 continue;
1821 }
1822 /* We've found a match; break out of loop. */
1823 break;
1824 }
1825 if (t == current_templates->end)
1826 {
1827 /* We found no match. */
1828 as_bad (_("suffix or operands invalid for `%s'"),
1829 current_templates->start->name);
1830 return;
1831 }
1832
1833 if (!quiet_warnings)
1834 {
1835 if (!intel_syntax
1836 && ((i.types[0] & JumpAbsolute)
1837 != (t->operand_types[0] & JumpAbsolute)))
1838 {
1839 as_warn (_("indirect %s without `*'"), t->name);
1840 }
1841
1842 if ((t->opcode_modifier & (IsPrefix|IgnoreSize))
1843 == (IsPrefix|IgnoreSize))
1844 {
1845 /* Warn them that a data or address size prefix doesn't
1846 affect assembly of the next line of code. */
1847 as_warn (_("stand-alone `%s' prefix"), t->name);
1848 }
1849 }
1850
1851 /* Copy the template we found. */
1852 i.tm = *t;
1853 if (found_reverse_match)
1854 {
1855 /* If we found a reverse match we must alter the opcode
1856 direction bit. found_reverse_match holds bits to change
1857 (different for int & float insns). */
1858
1859 i.tm.base_opcode ^= found_reverse_match;
1860
1861 i.tm.operand_types[0] = t->operand_types[1];
1862 i.tm.operand_types[1] = t->operand_types[0];
1863 }
1864
1865 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1866 if (SYSV386_COMPAT
1867 && intel_syntax
1868 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1869 i.tm.base_opcode ^= FloatR;
1870
1871 if (i.tm.opcode_modifier & FWait)
1872 if (! add_prefix (FWAIT_OPCODE))
1873 return;
1874
1875 /* Check string instruction segment overrides. */
1876 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1877 {
1878 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
1879 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
1880 {
1881 if (i.seg[0] != NULL && i.seg[0] != &es)
1882 {
1883 as_bad (_("`%s' operand %d must use `%%es' segment"),
1884 i.tm.name,
1885 mem_op + 1);
1886 return;
1887 }
1888 /* There's only ever one segment override allowed per instruction.
1889 This instruction possibly has a legal segment override on the
1890 second operand, so copy the segment to where non-string
1891 instructions store it, allowing common code. */
1892 i.seg[0] = i.seg[1];
1893 }
1894 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
1895 {
1896 if (i.seg[1] != NULL && i.seg[1] != &es)
1897 {
1898 as_bad (_("`%s' operand %d must use `%%es' segment"),
1899 i.tm.name,
1900 mem_op + 2);
1901 return;
1902 }
1903 }
1904 }
1905
1906 if (i.reg_operands && flag_code < CODE_64BIT)
1907 {
1908 int op;
1909 for (op = i.operands; --op >= 0;)
1910 if ((i.types[op] & Reg)
1911 && (i.op[op].regs->reg_flags & (RegRex64|RegRex)))
1912 {
1913 as_bad (_("Extended register `%%%s' available only in 64bit mode."),
1914 i.op[op].regs->reg_name);
1915 return;
1916 }
1917 }
1918
1919 /* If matched instruction specifies an explicit instruction mnemonic
1920 suffix, use it. */
1921 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
1922 {
1923 if (i.tm.opcode_modifier & Size16)
1924 i.suffix = WORD_MNEM_SUFFIX;
1925 else if (i.tm.opcode_modifier & Size64)
1926 i.suffix = QWORD_MNEM_SUFFIX;
1927 else
1928 i.suffix = LONG_MNEM_SUFFIX;
1929 }
1930 else if (i.reg_operands)
1931 {
1932 /* If there's no instruction mnemonic suffix we try to invent one
1933 based on register operands. */
1934 if (!i.suffix)
1935 {
1936 /* We take i.suffix from the last register operand specified,
1937 Destination register type is more significant than source
1938 register type. */
1939 int op;
1940 for (op = i.operands; --op >= 0;)
1941 if ((i.types[op] & Reg)
1942 && !(i.tm.operand_types[op] & InOutPortReg))
1943 {
1944 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
1945 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
1946 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
1947 LONG_MNEM_SUFFIX);
1948 break;
1949 }
1950 }
1951 else if (i.suffix == BYTE_MNEM_SUFFIX)
1952 {
1953 int op;
1954 for (op = i.operands; --op >= 0;)
1955 {
1956 /* If this is an eight bit register, it's OK. If it's
1957 the 16 or 32 bit version of an eight bit register,
1958 we will just use the low portion, and that's OK too. */
1959 if (i.types[op] & Reg8)
1960 continue;
1961
1962 /* movzx and movsx should not generate this warning. */
1963 if (intel_syntax
1964 && (i.tm.base_opcode == 0xfb7
1965 || i.tm.base_opcode == 0xfb6
1966 || i.tm.base_opcode == 0x63
1967 || i.tm.base_opcode == 0xfbe
1968 || i.tm.base_opcode == 0xfbf))
1969 continue;
1970
1971 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
1972 #if 0
1973 /* Check that the template allows eight bit regs
1974 This kills insns such as `orb $1,%edx', which
1975 maybe should be allowed. */
1976 && (i.tm.operand_types[op] & (Reg8|InOutPortReg))
1977 #endif
1978 )
1979 {
1980 /* Prohibit these changes in the 64bit mode, since
1981 the lowering is more complicated. */
1982 if (flag_code == CODE_64BIT
1983 && (i.tm.operand_types[op] & InOutPortReg) == 0)
1984 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
1985 i.op[op].regs->reg_name,
1986 i.suffix);
1987 #if REGISTER_WARNINGS
1988 if (!quiet_warnings
1989 && (i.tm.operand_types[op] & InOutPortReg) == 0)
1990 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
1991 (i.op[op].regs
1992 + (i.types[op] & Reg16
1993 ? REGNAM_AL - REGNAM_AX
1994 : REGNAM_AL - REGNAM_EAX))->reg_name,
1995 i.op[op].regs->reg_name,
1996 i.suffix);
1997 #endif
1998 continue;
1999 }
2000 /* Any other register is bad. */
2001 if (i.types[op] & (Reg | RegMMX | RegXMM
2002 | SReg2 | SReg3
2003 | Control | Debug | Test
2004 | FloatReg | FloatAcc))
2005 {
2006 as_bad (_("`%%%s' not allowed with `%s%c'"),
2007 i.op[op].regs->reg_name,
2008 i.tm.name,
2009 i.suffix);
2010 return;
2011 }
2012 }
2013 }
2014 else if (i.suffix == LONG_MNEM_SUFFIX)
2015 {
2016 int op;
2017
2018 for (op = i.operands; --op >= 0;)
2019 /* Reject eight bit registers, except where the template
2020 requires them. (eg. movzb) */
2021 if ((i.types[op] & Reg8) != 0
2022 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2023 {
2024 as_bad (_("`%%%s' not allowed with `%s%c'"),
2025 i.op[op].regs->reg_name,
2026 i.tm.name,
2027 i.suffix);
2028 return;
2029 }
2030 /* Warn if the e prefix on a general reg is missing. */
2031 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2032 && (i.types[op] & Reg16) != 0
2033 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2034 {
2035 /* Prohibit these changes in the 64bit mode, since
2036 the lowering is more complicated. */
2037 if (flag_code == CODE_64BIT)
2038 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2039 i.op[op].regs->reg_name,
2040 i.suffix);
2041 #if REGISTER_WARNINGS
2042 else
2043 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2044 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2045 i.op[op].regs->reg_name,
2046 i.suffix);
2047 #endif
2048 }
2049 /* Warn if the r prefix on a general reg is missing. */
2050 else if ((i.types[op] & Reg64) != 0
2051 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2052 {
2053 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2054 i.op[op].regs->reg_name,
2055 i.suffix);
2056 }
2057 }
2058 else if (i.suffix == QWORD_MNEM_SUFFIX)
2059 {
2060 int op;
2061
2062 for (op = i.operands; --op >= 0; )
2063 /* Reject eight bit registers, except where the template
2064 requires them. (eg. movzb) */
2065 if ((i.types[op] & Reg8) != 0
2066 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2067 {
2068 as_bad (_("`%%%s' not allowed with `%s%c'"),
2069 i.op[op].regs->reg_name,
2070 i.tm.name,
2071 i.suffix);
2072 return;
2073 }
2074 /* Warn if the e prefix on a general reg is missing. */
2075 else if (((i.types[op] & Reg16) != 0
2076 || (i.types[op] & Reg32) != 0)
2077 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2078 {
2079 /* Prohibit these changes in the 64bit mode, since
2080 the lowering is more complicated. */
2081 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2082 i.op[op].regs->reg_name,
2083 i.suffix);
2084 }
2085 }
2086 else if (i.suffix == WORD_MNEM_SUFFIX)
2087 {
2088 int op;
2089 for (op = i.operands; --op >= 0;)
2090 /* Reject eight bit registers, except where the template
2091 requires them. (eg. movzb) */
2092 if ((i.types[op] & Reg8) != 0
2093 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2094 {
2095 as_bad (_("`%%%s' not allowed with `%s%c'"),
2096 i.op[op].regs->reg_name,
2097 i.tm.name,
2098 i.suffix);
2099 return;
2100 }
2101 /* Warn if the e prefix on a general reg is present. */
2102 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2103 && (i.types[op] & Reg32) != 0
2104 && (i.tm.operand_types[op] & (Reg16|Acc)) != 0)
2105 {
2106 /* Prohibit these changes in the 64bit mode, since
2107 the lowering is more complicated. */
2108 if (flag_code == CODE_64BIT)
2109 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2110 i.op[op].regs->reg_name,
2111 i.suffix);
2112 else
2113 #if REGISTER_WARNINGS
2114 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2115 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2116 i.op[op].regs->reg_name,
2117 i.suffix);
2118 #endif
2119 }
2120 }
2121 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2122 /* Do nothing if the instruction is going to ignore the prefix. */
2123 ;
2124 else
2125 abort ();
2126 }
2127 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
2128 {
2129 i.suffix = stackop_size;
2130 }
2131 /* Make still unresolved immediate matches conform to size of immediate
2132 given in i.suffix. Note: overlap2 cannot be an immediate! */
2133 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
2134 && overlap0 != Imm8 && overlap0 != Imm8S
2135 && overlap0 != Imm16 && overlap0 != Imm32S
2136 && overlap0 != Imm32 && overlap0 != Imm64)
2137 {
2138 if (i.suffix)
2139 {
2140 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
2141 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
2142 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
2143 }
2144 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2145 || overlap0 == (Imm16 | Imm32)
2146 || overlap0 == (Imm16 | Imm32S))
2147 {
2148 overlap0 =
2149 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
2150 }
2151 if (overlap0 != Imm8 && overlap0 != Imm8S
2152 && overlap0 != Imm16 && overlap0 != Imm32S
2153 && overlap0 != Imm32 && overlap0 != Imm64)
2154 {
2155 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2156 return;
2157 }
2158 }
2159 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
2160 && overlap1 != Imm8 && overlap1 != Imm8S
2161 && overlap1 != Imm16 && overlap1 != Imm32S
2162 && overlap1 != Imm32 && overlap1 != Imm64)
2163 {
2164 if (i.suffix)
2165 {
2166 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
2167 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
2168 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
2169 }
2170 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2171 || overlap1 == (Imm16 | Imm32)
2172 || overlap1 == (Imm16 | Imm32S))
2173 {
2174 overlap1 =
2175 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
2176 }
2177 if (overlap1 != Imm8 && overlap1 != Imm8S
2178 && overlap1 != Imm16 && overlap1 != Imm32S
2179 && overlap1 != Imm32 && overlap1 != Imm64)
2180 {
2181 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2182 return;
2183 }
2184 }
2185 assert ((overlap2 & Imm) == 0);
2186
2187 i.types[0] = overlap0;
2188 if (overlap0 & ImplicitRegister)
2189 i.reg_operands--;
2190 if (overlap0 & Imm1)
2191 i.imm_operands = 0; /* kludge for shift insns. */
2192
2193 i.types[1] = overlap1;
2194 if (overlap1 & ImplicitRegister)
2195 i.reg_operands--;
2196
2197 i.types[2] = overlap2;
2198 if (overlap2 & ImplicitRegister)
2199 i.reg_operands--;
2200
2201 /* Finalize opcode. First, we change the opcode based on the operand
2202 size given by i.suffix: We need not change things for byte insns. */
2203
2204 if (!i.suffix && (i.tm.opcode_modifier & W))
2205 {
2206 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2207 return;
2208 }
2209
2210 /* For movzx and movsx, need to check the register type. */
2211 if (intel_syntax
2212 && (i.tm.base_opcode == 0xfb6 || i.tm.base_opcode == 0xfbe))
2213 if (i.suffix && i.suffix == BYTE_MNEM_SUFFIX)
2214 {
2215 unsigned int prefix = DATA_PREFIX_OPCODE;
2216
2217 if ((i.op[1].regs->reg_type & Reg16) != 0)
2218 if (!add_prefix (prefix))
2219 return;
2220 }
2221
2222 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2223 {
2224 /* It's not a byte, select word/dword operation. */
2225 if (i.tm.opcode_modifier & W)
2226 {
2227 if (i.tm.opcode_modifier & ShortForm)
2228 i.tm.base_opcode |= 8;
2229 else
2230 i.tm.base_opcode |= 1;
2231 }
2232 /* Now select between word & dword operations via the operand
2233 size prefix, except for instructions that will ignore this
2234 prefix anyway. */
2235 if (i.suffix != QWORD_MNEM_SUFFIX
2236 && (i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2237 && !(i.tm.opcode_modifier & IgnoreSize))
2238 {
2239 unsigned int prefix = DATA_PREFIX_OPCODE;
2240 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2241 prefix = ADDR_PREFIX_OPCODE;
2242
2243 if (! add_prefix (prefix))
2244 return;
2245 }
2246
2247 /* Set mode64 for an operand. */
2248 if (i.suffix == QWORD_MNEM_SUFFIX
2249 && !(i.tm.opcode_modifier & NoRex64))
2250 {
2251 i.rex.mode64 = 1;
2252 if (flag_code < CODE_64BIT)
2253 {
2254 as_bad (_("64bit operations available only in 64bit modes."));
2255 return;
2256 }
2257 }
2258
2259 /* Size floating point instruction. */
2260 if (i.suffix == LONG_MNEM_SUFFIX)
2261 {
2262 if (i.tm.opcode_modifier & FloatMF)
2263 i.tm.base_opcode ^= 4;
2264 }
2265 }
2266
2267 if (i.tm.opcode_modifier & ImmExt)
2268 {
2269 /* These AMD 3DNow! and Intel Katmai New Instructions have an
2270 opcode suffix which is coded in the same place as an 8-bit
2271 immediate field would be. Here we fake an 8-bit immediate
2272 operand from the opcode suffix stored in tm.extension_opcode. */
2273
2274 expressionS *exp;
2275
2276 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
2277
2278 exp = &im_expressions[i.imm_operands++];
2279 i.op[i.operands].imms = exp;
2280 i.types[i.operands++] = Imm8;
2281 exp->X_op = O_constant;
2282 exp->X_add_number = i.tm.extension_opcode;
2283 i.tm.extension_opcode = None;
2284 }
2285
2286 /* For insns with operands there are more diddles to do to the opcode. */
2287 if (i.operands)
2288 {
2289 /* Default segment register this instruction will use
2290 for memory accesses. 0 means unknown.
2291 This is only for optimizing out unnecessary segment overrides. */
2292 const seg_entry *default_seg = 0;
2293
2294 /* The imul $imm, %reg instruction is converted into
2295 imul $imm, %reg, %reg, and the clr %reg instruction
2296 is converted into xor %reg, %reg. */
2297 if (i.tm.opcode_modifier & regKludge)
2298 {
2299 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2300 /* Pretend we saw the extra register operand. */
2301 assert (i.op[first_reg_op + 1].regs == 0);
2302 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2303 i.types[first_reg_op + 1] = i.types[first_reg_op];
2304 i.reg_operands = 2;
2305 }
2306
2307 if (i.tm.opcode_modifier & ShortForm)
2308 {
2309 /* The register or float register operand is in operand 0 or 1. */
2310 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2311 /* Register goes in low 3 bits of opcode. */
2312 i.tm.base_opcode |= i.op[op].regs->reg_num;
2313 if (i.op[op].regs->reg_flags & RegRex)
2314 i.rex.extZ = 1;
2315 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2316 {
2317 /* Warn about some common errors, but press on regardless.
2318 The first case can be generated by gcc (<= 2.8.1). */
2319 if (i.operands == 2)
2320 {
2321 /* Reversed arguments on faddp, fsubp, etc. */
2322 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2323 i.op[1].regs->reg_name,
2324 i.op[0].regs->reg_name);
2325 }
2326 else
2327 {
2328 /* Extraneous `l' suffix on fp insn. */
2329 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2330 i.op[0].regs->reg_name);
2331 }
2332 }
2333 }
2334 else if (i.tm.opcode_modifier & Modrm)
2335 {
2336 /* The opcode is completed (modulo i.tm.extension_opcode which
2337 must be put into the modrm byte).
2338 Now, we make the modrm & index base bytes based on all the
2339 info we've collected. */
2340
2341 /* i.reg_operands MUST be the number of real register operands;
2342 implicit registers do not count. */
2343 if (i.reg_operands == 2)
2344 {
2345 unsigned int source, dest;
2346 source = ((i.types[0]
2347 & (Reg | RegMMX | RegXMM
2348 | SReg2 | SReg3
2349 | Control | Debug | Test))
2350 ? 0 : 1);
2351 dest = source + 1;
2352
2353 i.rm.mode = 3;
2354 /* One of the register operands will be encoded in the
2355 i.tm.reg field, the other in the combined i.tm.mode
2356 and i.tm.regmem fields. If no form of this
2357 instruction supports a memory destination operand,
2358 then we assume the source operand may sometimes be
2359 a memory operand and so we need to store the
2360 destination in the i.rm.reg field. */
2361 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2362 {
2363 i.rm.reg = i.op[dest].regs->reg_num;
2364 i.rm.regmem = i.op[source].regs->reg_num;
2365 if (i.op[dest].regs->reg_flags & RegRex)
2366 i.rex.extX = 1;
2367 if (i.op[source].regs->reg_flags & RegRex)
2368 i.rex.extZ = 1;
2369 }
2370 else
2371 {
2372 i.rm.reg = i.op[source].regs->reg_num;
2373 i.rm.regmem = i.op[dest].regs->reg_num;
2374 if (i.op[dest].regs->reg_flags & RegRex)
2375 i.rex.extZ = 1;
2376 if (i.op[source].regs->reg_flags & RegRex)
2377 i.rex.extX = 1;
2378 }
2379 }
2380 else
2381 { /* If it's not 2 reg operands... */
2382 if (i.mem_operands)
2383 {
2384 unsigned int fake_zero_displacement = 0;
2385 unsigned int op = ((i.types[0] & AnyMem)
2386 ? 0
2387 : (i.types[1] & AnyMem) ? 1 : 2);
2388
2389 default_seg = &ds;
2390
2391 if (! i.base_reg)
2392 {
2393 i.rm.mode = 0;
2394 if (! i.disp_operands)
2395 fake_zero_displacement = 1;
2396 if (! i.index_reg)
2397 {
2398 /* Operand is just <disp> */
2399 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
2400 {
2401 i.rm.regmem = NO_BASE_REGISTER_16;
2402 i.types[op] &= ~Disp;
2403 i.types[op] |= Disp16;
2404 }
2405 else if (flag_code != CODE_64BIT)
2406 {
2407 i.rm.regmem = NO_BASE_REGISTER;
2408 i.types[op] &= ~Disp;
2409 i.types[op] |= Disp32;
2410 }
2411 else
2412 {
2413 /* 64bit mode overwrites the 32bit
2414 absolute addressing by RIP relative
2415 addressing and absolute addressing
2416 is encoded by one of the redundant
2417 SIB forms. */
2418
2419 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2420 i.sib.base = NO_BASE_REGISTER;
2421 i.sib.index = NO_INDEX_REGISTER;
2422 i.types[op] &= ~Disp;
2423 i.types[op] |= Disp32S;
2424 }
2425 }
2426 else /* ! i.base_reg && i.index_reg */
2427 {
2428 i.sib.index = i.index_reg->reg_num;
2429 i.sib.base = NO_BASE_REGISTER;
2430 i.sib.scale = i.log2_scale_factor;
2431 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2432 i.types[op] &= ~Disp;
2433 if (flag_code != CODE_64BIT)
2434 i.types[op] |= Disp32; /* Must be 32 bit */
2435 else
2436 i.types[op] |= Disp32S;
2437 if (i.index_reg->reg_flags & RegRex)
2438 i.rex.extY = 1;
2439 }
2440 }
2441 /* RIP addressing for 64bit mode. */
2442 else if (i.base_reg->reg_type == BaseIndex)
2443 {
2444 i.rm.regmem = NO_BASE_REGISTER;
2445 i.types[op] &= ~Disp;
2446 i.types[op] |= Disp32S;
2447 i.flags[op] = Operand_PCrel;
2448 }
2449 else if (i.base_reg->reg_type & Reg16)
2450 {
2451 switch (i.base_reg->reg_num)
2452 {
2453 case 3: /* (%bx) */
2454 if (! i.index_reg)
2455 i.rm.regmem = 7;
2456 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2457 i.rm.regmem = i.index_reg->reg_num - 6;
2458 break;
2459 case 5: /* (%bp) */
2460 default_seg = &ss;
2461 if (! i.index_reg)
2462 {
2463 i.rm.regmem = 6;
2464 if ((i.types[op] & Disp) == 0)
2465 {
2466 /* fake (%bp) into 0(%bp) */
2467 i.types[op] |= Disp8;
2468 fake_zero_displacement = 1;
2469 }
2470 }
2471 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2472 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2473 break;
2474 default: /* (%si) -> 4 or (%di) -> 5 */
2475 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2476 }
2477 i.rm.mode = mode_from_disp_size (i.types[op]);
2478 }
2479 else /* i.base_reg and 32/64 bit mode */
2480 {
2481 if (flag_code == CODE_64BIT
2482 && (i.types[op] & Disp))
2483 {
2484 if (i.types[op] & Disp8)
2485 i.types[op] = Disp8 | Disp32S;
2486 else
2487 i.types[op] = Disp32S;
2488 }
2489 i.rm.regmem = i.base_reg->reg_num;
2490 if (i.base_reg->reg_flags & RegRex)
2491 i.rex.extZ = 1;
2492 i.sib.base = i.base_reg->reg_num;
2493 /* x86-64 ignores REX prefix bit here to avoid
2494 decoder complications. */
2495 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2496 {
2497 default_seg = &ss;
2498 if (i.disp_operands == 0)
2499 {
2500 fake_zero_displacement = 1;
2501 i.types[op] |= Disp8;
2502 }
2503 }
2504 else if (i.base_reg->reg_num == ESP_REG_NUM)
2505 {
2506 default_seg = &ss;
2507 }
2508 i.sib.scale = i.log2_scale_factor;
2509 if (! i.index_reg)
2510 {
2511 /* <disp>(%esp) becomes two byte modrm
2512 with no index register. We've already
2513 stored the code for esp in i.rm.regmem
2514 ie. ESCAPE_TO_TWO_BYTE_ADDRESSING. Any
2515 base register besides %esp will not use
2516 the extra modrm byte. */
2517 i.sib.index = NO_INDEX_REGISTER;
2518 #if ! SCALE1_WHEN_NO_INDEX
2519 /* Another case where we force the second
2520 modrm byte. */
2521 if (i.log2_scale_factor)
2522 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2523 #endif
2524 }
2525 else
2526 {
2527 i.sib.index = i.index_reg->reg_num;
2528 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2529 if (i.index_reg->reg_flags & RegRex)
2530 i.rex.extY = 1;
2531 }
2532 i.rm.mode = mode_from_disp_size (i.types[op]);
2533 }
2534
2535 if (fake_zero_displacement)
2536 {
2537 /* Fakes a zero displacement assuming that i.types[op]
2538 holds the correct displacement size. */
2539 expressionS *exp;
2540
2541 assert (i.op[op].disps == 0);
2542 exp = &disp_expressions[i.disp_operands++];
2543 i.op[op].disps = exp;
2544 exp->X_op = O_constant;
2545 exp->X_add_number = 0;
2546 exp->X_add_symbol = (symbolS *) 0;
2547 exp->X_op_symbol = (symbolS *) 0;
2548 }
2549 }
2550
2551 /* Fill in i.rm.reg or i.rm.regmem field with register
2552 operand (if any) based on i.tm.extension_opcode.
2553 Again, we must be careful to make sure that
2554 segment/control/debug/test/MMX registers are coded
2555 into the i.rm.reg field. */
2556 if (i.reg_operands)
2557 {
2558 unsigned int op =
2559 ((i.types[0]
2560 & (Reg | RegMMX | RegXMM
2561 | SReg2 | SReg3
2562 | Control | Debug | Test))
2563 ? 0
2564 : ((i.types[1]
2565 & (Reg | RegMMX | RegXMM
2566 | SReg2 | SReg3
2567 | Control | Debug | Test))
2568 ? 1
2569 : 2));
2570 /* If there is an extension opcode to put here, the
2571 register number must be put into the regmem field. */
2572 if (i.tm.extension_opcode != None)
2573 {
2574 i.rm.regmem = i.op[op].regs->reg_num;
2575 if (i.op[op].regs->reg_flags & RegRex)
2576 i.rex.extZ = 1;
2577 }
2578 else
2579 {
2580 i.rm.reg = i.op[op].regs->reg_num;
2581 if (i.op[op].regs->reg_flags & RegRex)
2582 i.rex.extX = 1;
2583 }
2584
2585 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2
2586 we must set it to 3 to indicate this is a register
2587 operand in the regmem field. */
2588 if (!i.mem_operands)
2589 i.rm.mode = 3;
2590 }
2591
2592 /* Fill in i.rm.reg field with extension opcode (if any). */
2593 if (i.tm.extension_opcode != None)
2594 i.rm.reg = i.tm.extension_opcode;
2595 }
2596 }
2597 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2598 {
2599 if (i.tm.base_opcode == POP_SEG_SHORT
2600 && i.op[0].regs->reg_num == 1)
2601 {
2602 as_bad (_("you can't `pop %%cs'"));
2603 return;
2604 }
2605 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2606 if (i.op[0].regs->reg_flags & RegRex)
2607 i.rex.extZ = 1;
2608 }
2609 else if ((i.tm.base_opcode & ~(D|W)) == MOV_AX_DISP32)
2610 {
2611 default_seg = &ds;
2612 }
2613 else if ((i.tm.opcode_modifier & IsString) != 0)
2614 {
2615 /* For the string instructions that allow a segment override
2616 on one of their operands, the default segment is ds. */
2617 default_seg = &ds;
2618 }
2619
2620 /* If a segment was explicitly specified,
2621 and the specified segment is not the default,
2622 use an opcode prefix to select it.
2623 If we never figured out what the default segment is,
2624 then default_seg will be zero at this point,
2625 and the specified segment prefix will always be used. */
2626 if ((i.seg[0]) && (i.seg[0] != default_seg))
2627 {
2628 if (! add_prefix (i.seg[0]->seg_prefix))
2629 return;
2630 }
2631 }
2632 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2633 {
2634 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2635 as_warn (_("translating to `%sp'"), i.tm.name);
2636 }
2637 }
2638
2639 /* Handle conversion of 'int $3' --> special int3 insn. */
2640 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
2641 {
2642 i.tm.base_opcode = INT3_OPCODE;
2643 i.imm_operands = 0;
2644 }
2645
2646 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
2647 && i.op[0].disps->X_op == O_constant)
2648 {
2649 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2650 the absolute address given by the constant. Since ix86 jumps and
2651 calls are pc relative, we need to generate a reloc. */
2652 i.op[0].disps->X_add_symbol = &abs_symbol;
2653 i.op[0].disps->X_op = O_symbol;
2654 }
2655
2656 if (i.tm.opcode_modifier & Rex64)
2657 i.rex.mode64 = 1;
2658
2659 /* For 8bit registers we would need an empty rex prefix.
2660 Also in the case instruction is already having prefix,
2661 we need to convert old registers to new ones. */
2662
2663 if (((i.types[0] & Reg8) && (i.op[0].regs->reg_flags & RegRex64))
2664 || ((i.types[1] & Reg8) && (i.op[1].regs->reg_flags & RegRex64))
2665 || ((i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2666 && ((i.types[0] & Reg8) || (i.types[1] & Reg8))))
2667 {
2668 int x;
2669 i.rex.empty = 1;
2670 for (x = 0; x < 2; x++)
2671 {
2672 /* Look for 8bit operand that does use old registers. */
2673 if (i.types[x] & Reg8
2674 && !(i.op[x].regs->reg_flags & RegRex64))
2675 {
2676 /* In case it is "hi" register, give up. */
2677 if (i.op[x].regs->reg_num > 3)
2678 as_bad (_("Can't encode registers '%%%s' in the instruction requiring REX prefix.\n"),
2679 i.op[x].regs->reg_name);
2680
2681 /* Otherwise it is equivalent to the extended register.
2682 Since the encoding don't change this is merely cosmetical
2683 cleanup for debug output. */
2684
2685 i.op[x].regs = i.op[x].regs + 8;
2686 }
2687 }
2688 }
2689
2690 if (i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2691 add_prefix (0x40
2692 | (i.rex.mode64 ? 8 : 0)
2693 | (i.rex.extX ? 4 : 0)
2694 | (i.rex.extY ? 2 : 0)
2695 | (i.rex.extZ ? 1 : 0));
2696
2697 /* We are ready to output the insn. */
2698 {
2699 register char *p;
2700
2701 /* Tie dwarf2 debug info to the address at the start of the insn.
2702 We can't do this after the insn has been output as the current
2703 frag may have been closed off. eg. by frag_var. */
2704 dwarf2_emit_insn (0);
2705
2706 /* Output jumps. */
2707 if (i.tm.opcode_modifier & Jump)
2708 {
2709 int code16;
2710 int prefix;
2711
2712 code16 = 0;
2713 if (flag_code == CODE_16BIT)
2714 code16 = CODE16;
2715
2716 prefix = 0;
2717 if (i.prefix[DATA_PREFIX])
2718 {
2719 prefix = 1;
2720 i.prefixes -= 1;
2721 code16 ^= CODE16;
2722 }
2723 if (i.prefix[REX_PREFIX])
2724 {
2725 prefix++;
2726 i.prefixes--;
2727 }
2728
2729 if (i.prefixes != 0 && !intel_syntax)
2730 as_warn (_("skipping prefixes on this instruction"));
2731
2732 /* It's always a symbol; End frag & setup for relax.
2733 Make sure there is enough room in this frag for the largest
2734 instruction we may generate in md_convert_frag. This is 2
2735 bytes for the opcode and room for the prefix and largest
2736 displacement. */
2737 frag_grow (prefix + 2 + 4);
2738 /* Prefix and 1 opcode byte go in fr_fix. */
2739 p = frag_more (prefix + 1);
2740 if (i.prefix[DATA_PREFIX])
2741 *p++ = DATA_PREFIX_OPCODE;
2742 if (i.prefix[REX_PREFIX])
2743 *p++ = i.prefix[REX_PREFIX];
2744 *p = i.tm.base_opcode;
2745 /* 1 possible extra opcode + displacement go in var part.
2746 Pass reloc in fr_var. */
2747 frag_var (rs_machine_dependent,
2748 1 + 4,
2749 i.reloc[0],
2750 ((unsigned char) *p == JUMP_PC_RELATIVE
2751 ? ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL) | code16
2752 : ((cpu_arch_flags & Cpu386) != 0
2753 ? ENCODE_RELAX_STATE (COND_JUMP, SMALL) | code16
2754 : ENCODE_RELAX_STATE (COND_JUMP86, SMALL) | code16)),
2755 i.op[0].disps->X_add_symbol,
2756 i.op[0].disps->X_add_number,
2757 p);
2758 }
2759 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
2760 {
2761 int size;
2762
2763 if (i.tm.opcode_modifier & JumpByte)
2764 {
2765 /* This is a loop or jecxz type instruction. */
2766 size = 1;
2767 if (i.prefix[ADDR_PREFIX])
2768 {
2769 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
2770 i.prefixes -= 1;
2771 }
2772 }
2773 else
2774 {
2775 int code16;
2776
2777 code16 = 0;
2778 if (flag_code == CODE_16BIT)
2779 code16 = CODE16;
2780
2781 if (i.prefix[DATA_PREFIX])
2782 {
2783 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
2784 i.prefixes -= 1;
2785 code16 ^= CODE16;
2786 }
2787
2788 size = 4;
2789 if (code16)
2790 size = 2;
2791 }
2792
2793 if (i.prefix[REX_PREFIX])
2794 {
2795 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
2796 i.prefixes -= 1;
2797 }
2798
2799 if (i.prefixes != 0 && !intel_syntax)
2800 as_warn (_("skipping prefixes on this instruction"));
2801
2802 if (fits_in_unsigned_byte (i.tm.base_opcode))
2803 {
2804 p = frag_more (1 + size);
2805 }
2806 else
2807 {
2808 /* Opcode can be at most two bytes. */
2809 p = frag_more (2 + size);
2810 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2811 }
2812 *p++ = i.tm.base_opcode & 0xff;
2813
2814 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2815 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
2816 }
2817 else if (i.tm.opcode_modifier & JumpInterSegment)
2818 {
2819 int size;
2820 int prefix;
2821 int code16;
2822
2823 code16 = 0;
2824 if (flag_code == CODE_16BIT)
2825 code16 = CODE16;
2826
2827 prefix = 0;
2828 if (i.prefix[DATA_PREFIX])
2829 {
2830 prefix = 1;
2831 i.prefixes -= 1;
2832 code16 ^= CODE16;
2833 }
2834 if (i.prefix[REX_PREFIX])
2835 {
2836 prefix++;
2837 i.prefixes -= 1;
2838 }
2839
2840 size = 4;
2841 if (code16)
2842 size = 2;
2843
2844 if (i.prefixes != 0 && !intel_syntax)
2845 as_warn (_("skipping prefixes on this instruction"));
2846
2847 /* 1 opcode; 2 segment; offset */
2848 p = frag_more (prefix + 1 + 2 + size);
2849
2850 if (i.prefix[DATA_PREFIX])
2851 *p++ = DATA_PREFIX_OPCODE;
2852
2853 if (i.prefix[REX_PREFIX])
2854 *p++ = i.prefix[REX_PREFIX];
2855
2856 *p++ = i.tm.base_opcode;
2857 if (i.op[1].imms->X_op == O_constant)
2858 {
2859 offsetT n = i.op[1].imms->X_add_number;
2860
2861 if (size == 2
2862 && !fits_in_unsigned_word (n)
2863 && !fits_in_signed_word (n))
2864 {
2865 as_bad (_("16-bit jump out of range"));
2866 return;
2867 }
2868 md_number_to_chars (p, n, size);
2869 }
2870 else
2871 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2872 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
2873 if (i.op[0].imms->X_op != O_constant)
2874 as_bad (_("can't handle non absolute segment in `%s'"),
2875 i.tm.name);
2876 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
2877 }
2878 else
2879 {
2880 /* Output normal instructions here. */
2881 unsigned char *q;
2882
2883 /* All opcodes on i386 have eighter 1 or 2 bytes. We may use third
2884 byte for the SSE instructions to specify prefix they require. */
2885 if (i.tm.base_opcode & 0xff0000)
2886 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
2887
2888 /* The prefix bytes. */
2889 for (q = i.prefix;
2890 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
2891 q++)
2892 {
2893 if (*q)
2894 {
2895 p = frag_more (1);
2896 md_number_to_chars (p, (valueT) *q, 1);
2897 }
2898 }
2899
2900 /* Now the opcode; be careful about word order here! */
2901 if (fits_in_unsigned_byte (i.tm.base_opcode))
2902 {
2903 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
2904 }
2905 else
2906 {
2907 p = frag_more (2);
2908 /* Put out high byte first: can't use md_number_to_chars! */
2909 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2910 *p = i.tm.base_opcode & 0xff;
2911 }
2912
2913 /* Now the modrm byte and sib byte (if present). */
2914 if (i.tm.opcode_modifier & Modrm)
2915 {
2916 p = frag_more (1);
2917 md_number_to_chars (p,
2918 (valueT) (i.rm.regmem << 0
2919 | i.rm.reg << 3
2920 | i.rm.mode << 6),
2921 1);
2922 /* If i.rm.regmem == ESP (4)
2923 && i.rm.mode != (Register mode)
2924 && not 16 bit
2925 ==> need second modrm byte. */
2926 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
2927 && i.rm.mode != 3
2928 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
2929 {
2930 p = frag_more (1);
2931 md_number_to_chars (p,
2932 (valueT) (i.sib.base << 0
2933 | i.sib.index << 3
2934 | i.sib.scale << 6),
2935 1);
2936 }
2937 }
2938
2939 if (i.disp_operands)
2940 {
2941 register unsigned int n;
2942
2943 for (n = 0; n < i.operands; n++)
2944 {
2945 if (i.types[n] & Disp)
2946 {
2947 if (i.op[n].disps->X_op == O_constant)
2948 {
2949 int size;
2950 offsetT val;
2951
2952 size = 4;
2953 if (i.types[n] & (Disp8 | Disp16 | Disp64))
2954 {
2955 size = 2;
2956 if (i.types[n] & Disp8)
2957 size = 1;
2958 if (i.types[n] & Disp64)
2959 size = 8;
2960 }
2961 val = offset_in_range (i.op[n].disps->X_add_number,
2962 size);
2963 p = frag_more (size);
2964 md_number_to_chars (p, val, size);
2965 }
2966 else
2967 {
2968 int size = 4;
2969 int sign = 0;
2970 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
2971
2972 /* The PC relative address is computed relative
2973 to the instruction boundary, so in case immediate
2974 fields follows, we need to adjust the value. */
2975 if (pcrel && i.imm_operands)
2976 {
2977 int imm_size = 4;
2978 register unsigned int n1;
2979
2980 for (n1 = 0; n1 < i.operands; n1++)
2981 if (i.types[n1] & Imm)
2982 {
2983 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
2984 {
2985 imm_size = 2;
2986 if (i.types[n1] & (Imm8 | Imm8S))
2987 imm_size = 1;
2988 if (i.types[n1] & Imm64)
2989 imm_size = 8;
2990 }
2991 break;
2992 }
2993 /* We should find the immediate. */
2994 if (n1 == i.operands)
2995 abort ();
2996 i.op[n].disps->X_add_number -= imm_size;
2997 }
2998
2999 if (i.types[n] & Disp32S)
3000 sign = 1;
3001
3002 if (i.types[n] & (Disp16 | Disp64))
3003 {
3004 size = 2;
3005 if (i.types[n] & Disp64)
3006 size = 8;
3007 }
3008
3009 p = frag_more (size);
3010 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3011 i.op[n].disps, pcrel,
3012 reloc (size, pcrel, sign, i.reloc[n]));
3013 }
3014 }
3015 }
3016 }
3017
3018 /* Output immediate. */
3019 if (i.imm_operands)
3020 {
3021 register unsigned int n;
3022
3023 for (n = 0; n < i.operands; n++)
3024 {
3025 if (i.types[n] & Imm)
3026 {
3027 if (i.op[n].imms->X_op == O_constant)
3028 {
3029 int size;
3030 offsetT val;
3031
3032 size = 4;
3033 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3034 {
3035 size = 2;
3036 if (i.types[n] & (Imm8 | Imm8S))
3037 size = 1;
3038 else if (i.types[n] & Imm64)
3039 size = 8;
3040 }
3041 val = offset_in_range (i.op[n].imms->X_add_number,
3042 size);
3043 p = frag_more (size);
3044 md_number_to_chars (p, val, size);
3045 }
3046 else
3047 {
3048 /* Not absolute_section.
3049 Need a 32-bit fixup (don't support 8bit
3050 non-absolute imms). Try to support other
3051 sizes ... */
3052 RELOC_ENUM reloc_type;
3053 int size = 4;
3054 int sign = 0;
3055
3056 if ((i.types[n] & (Imm32S))
3057 && i.suffix == QWORD_MNEM_SUFFIX)
3058 sign = 1;
3059 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3060 {
3061 size = 2;
3062 if (i.types[n] & (Imm8 | Imm8S))
3063 size = 1;
3064 if (i.types[n] & Imm64)
3065 size = 8;
3066 }
3067
3068 p = frag_more (size);
3069 reloc_type = reloc (size, 0, sign, i.reloc[n]);
3070 #ifdef BFD_ASSEMBLER
3071 if (reloc_type == BFD_RELOC_32
3072 && GOT_symbol
3073 && GOT_symbol == i.op[n].imms->X_add_symbol
3074 && (i.op[n].imms->X_op == O_symbol
3075 || (i.op[n].imms->X_op == O_add
3076 && ((symbol_get_value_expression
3077 (i.op[n].imms->X_op_symbol)->X_op)
3078 == O_subtract))))
3079 {
3080 /* We don't support dynamic linking on x86-64 yet. */
3081 if (flag_code == CODE_64BIT)
3082 abort ();
3083 reloc_type = BFD_RELOC_386_GOTPC;
3084 i.op[n].imms->X_add_number += 3;
3085 }
3086 #endif
3087 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3088 i.op[n].imms, 0, reloc_type);
3089 }
3090 }
3091 }
3092 }
3093 }
3094
3095 #ifdef DEBUG386
3096 if (flag_debug)
3097 {
3098 pi (line, &i);
3099 }
3100 #endif /* DEBUG386 */
3101 }
3102 }
3103 \f
3104 #ifndef LEX_AT
3105 static char *lex_got PARAMS ((RELOC_ENUM *, int *));
3106
3107 /* Parse operands of the form
3108 <symbol>@GOTOFF+<nnn>
3109 and similar .plt or .got references.
3110
3111 If we find one, set up the correct relocation in RELOC and copy the
3112 input string, minus the `@GOTOFF' into a malloc'd buffer for
3113 parsing by the calling routine. Return this buffer, and if ADJUST
3114 is non-null set it to the length of the string we removed from the
3115 input line. Otherwise return NULL. */
3116 static char *
3117 lex_got (reloc, adjust)
3118 RELOC_ENUM *reloc;
3119 int *adjust;
3120 {
3121 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3122 static const struct {
3123 const char *str;
3124 const RELOC_ENUM rel[NUM_FLAG_CODE];
3125 } gotrel[] = {
3126 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3127 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3128 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
3129 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
3130 };
3131 char *cp;
3132 unsigned int j;
3133
3134 for (cp = input_line_pointer; *cp != '@'; cp++)
3135 if (is_end_of_line[(unsigned char) *cp])
3136 return NULL;
3137
3138 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3139 {
3140 int len;
3141
3142 len = strlen (gotrel[j].str);
3143 if (strncmp (cp + 1, gotrel[j].str, len) == 0)
3144 {
3145 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3146 {
3147 int first;
3148 char *tmpbuf;
3149
3150 *reloc = gotrel[j].rel[(unsigned int) flag_code];
3151
3152 if (GOT_symbol == NULL)
3153 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3154
3155 /* Replace the relocation token with ' ', so that
3156 errors like foo@GOTOFF1 will be detected. */
3157 first = cp - input_line_pointer;
3158 tmpbuf = xmalloc (strlen (input_line_pointer));
3159 memcpy (tmpbuf, input_line_pointer, first);
3160 tmpbuf[first] = ' ';
3161 strcpy (tmpbuf + first + 1, cp + 1 + len);
3162 if (adjust)
3163 *adjust = len;
3164 return tmpbuf;
3165 }
3166
3167 as_bad (_("@%s reloc is not supported in %s bit mode"),
3168 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3169 return NULL;
3170 }
3171 }
3172
3173 /* Might be a symbol version string. Don't as_bad here. */
3174 return NULL;
3175 }
3176
3177 /* x86_cons_fix_new is called via the expression parsing code when a
3178 reloc is needed. We use this hook to get the correct .got reloc. */
3179 static RELOC_ENUM got_reloc = NO_RELOC;
3180
3181 void
3182 x86_cons_fix_new (frag, off, len, exp)
3183 fragS *frag;
3184 unsigned int off;
3185 unsigned int len;
3186 expressionS *exp;
3187 {
3188 RELOC_ENUM r = reloc (len, 0, 0, got_reloc);
3189 got_reloc = NO_RELOC;
3190 fix_new_exp (frag, off, len, exp, 0, r);
3191 }
3192
3193 void
3194 x86_cons (exp, size)
3195 expressionS *exp;
3196 int size;
3197 {
3198 if (size == 4)
3199 {
3200 /* Handle @GOTOFF and the like in an expression. */
3201 char *save;
3202 char *gotfree_input_line;
3203 int adjust;
3204
3205 save = input_line_pointer;
3206 gotfree_input_line = lex_got (&got_reloc, &adjust);
3207 if (gotfree_input_line)
3208 input_line_pointer = gotfree_input_line;
3209
3210 expression (exp);
3211
3212 if (gotfree_input_line)
3213 {
3214 /* expression () has merrily parsed up to the end of line,
3215 or a comma - in the wrong buffer. Transfer how far
3216 input_line_pointer has moved to the right buffer. */
3217 input_line_pointer = (save
3218 + (input_line_pointer - gotfree_input_line)
3219 + adjust);
3220 free (gotfree_input_line);
3221 }
3222 }
3223 else
3224 expression (exp);
3225 }
3226 #endif
3227
3228 static int i386_immediate PARAMS ((char *));
3229
3230 static int
3231 i386_immediate (imm_start)
3232 char *imm_start;
3233 {
3234 char *save_input_line_pointer;
3235 #ifndef LEX_AT
3236 char *gotfree_input_line;
3237 #endif
3238 segT exp_seg = 0;
3239 expressionS *exp;
3240
3241 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3242 {
3243 as_bad (_("only 1 or 2 immediate operands are allowed"));
3244 return 0;
3245 }
3246
3247 exp = &im_expressions[i.imm_operands++];
3248 i.op[this_operand].imms = exp;
3249
3250 if (is_space_char (*imm_start))
3251 ++imm_start;
3252
3253 save_input_line_pointer = input_line_pointer;
3254 input_line_pointer = imm_start;
3255
3256 #ifndef LEX_AT
3257 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3258 if (gotfree_input_line)
3259 input_line_pointer = gotfree_input_line;
3260 #endif
3261
3262 exp_seg = expression (exp);
3263
3264 SKIP_WHITESPACE ();
3265 if (*input_line_pointer)
3266 as_bad (_("junk `%s' after expression"), input_line_pointer);
3267
3268 input_line_pointer = save_input_line_pointer;
3269 #ifndef LEX_AT
3270 if (gotfree_input_line)
3271 free (gotfree_input_line);
3272 #endif
3273
3274 if (exp->X_op == O_absent || exp->X_op == O_big)
3275 {
3276 /* Missing or bad expr becomes absolute 0. */
3277 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
3278 imm_start);
3279 exp->X_op = O_constant;
3280 exp->X_add_number = 0;
3281 exp->X_add_symbol = (symbolS *) 0;
3282 exp->X_op_symbol = (symbolS *) 0;
3283 }
3284 else if (exp->X_op == O_constant)
3285 {
3286 /* Size it properly later. */
3287 i.types[this_operand] |= Imm64;
3288 /* If BFD64, sign extend val. */
3289 if (!use_rela_relocations)
3290 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3291 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
3292 }
3293 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3294 else if (1
3295 #ifdef BFD_ASSEMBLER
3296 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3297 #endif
3298 && exp_seg != text_section
3299 && exp_seg != data_section
3300 && exp_seg != bss_section
3301 && exp_seg != undefined_section
3302 #ifdef BFD_ASSEMBLER
3303 && !bfd_is_com_section (exp_seg)
3304 #endif
3305 )
3306 {
3307 #ifdef BFD_ASSEMBLER
3308 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3309 #else
3310 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3311 #endif
3312 return 0;
3313 }
3314 #endif
3315 else
3316 {
3317 /* This is an address. The size of the address will be
3318 determined later, depending on destination register,
3319 suffix, or the default for the section. */
3320 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
3321 }
3322
3323 return 1;
3324 }
3325
3326 static char *i386_scale PARAMS ((char *));
3327
3328 static char *
3329 i386_scale (scale)
3330 char *scale;
3331 {
3332 offsetT val;
3333 char *save = input_line_pointer;
3334
3335 input_line_pointer = scale;
3336 val = get_absolute_expression ();
3337
3338 switch (val)
3339 {
3340 case 0:
3341 case 1:
3342 i.log2_scale_factor = 0;
3343 break;
3344 case 2:
3345 i.log2_scale_factor = 1;
3346 break;
3347 case 4:
3348 i.log2_scale_factor = 2;
3349 break;
3350 case 8:
3351 i.log2_scale_factor = 3;
3352 break;
3353 default:
3354 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
3355 scale);
3356 input_line_pointer = save;
3357 return NULL;
3358 }
3359 if (i.log2_scale_factor != 0 && ! i.index_reg)
3360 {
3361 as_warn (_("scale factor of %d without an index register"),
3362 1 << i.log2_scale_factor);
3363 #if SCALE1_WHEN_NO_INDEX
3364 i.log2_scale_factor = 0;
3365 #endif
3366 }
3367 scale = input_line_pointer;
3368 input_line_pointer = save;
3369 return scale;
3370 }
3371
3372 static int i386_displacement PARAMS ((char *, char *));
3373
3374 static int
3375 i386_displacement (disp_start, disp_end)
3376 char *disp_start;
3377 char *disp_end;
3378 {
3379 register expressionS *exp;
3380 segT exp_seg = 0;
3381 char *save_input_line_pointer;
3382 #ifndef LEX_AT
3383 char *gotfree_input_line;
3384 #endif
3385 int bigdisp = Disp32;
3386
3387 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3388 bigdisp = Disp16;
3389 if (flag_code == CODE_64BIT)
3390 bigdisp = Disp64;
3391 i.types[this_operand] |= bigdisp;
3392
3393 exp = &disp_expressions[i.disp_operands];
3394 i.op[this_operand].disps = exp;
3395 i.disp_operands++;
3396 save_input_line_pointer = input_line_pointer;
3397 input_line_pointer = disp_start;
3398 END_STRING_AND_SAVE (disp_end);
3399
3400 #ifndef GCC_ASM_O_HACK
3401 #define GCC_ASM_O_HACK 0
3402 #endif
3403 #if GCC_ASM_O_HACK
3404 END_STRING_AND_SAVE (disp_end + 1);
3405 if ((i.types[this_operand] & BaseIndex) != 0
3406 && displacement_string_end[-1] == '+')
3407 {
3408 /* This hack is to avoid a warning when using the "o"
3409 constraint within gcc asm statements.
3410 For instance:
3411
3412 #define _set_tssldt_desc(n,addr,limit,type) \
3413 __asm__ __volatile__ ( \
3414 "movw %w2,%0\n\t" \
3415 "movw %w1,2+%0\n\t" \
3416 "rorl $16,%1\n\t" \
3417 "movb %b1,4+%0\n\t" \
3418 "movb %4,5+%0\n\t" \
3419 "movb $0,6+%0\n\t" \
3420 "movb %h1,7+%0\n\t" \
3421 "rorl $16,%1" \
3422 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3423
3424 This works great except that the output assembler ends
3425 up looking a bit weird if it turns out that there is
3426 no offset. You end up producing code that looks like:
3427
3428 #APP
3429 movw $235,(%eax)
3430 movw %dx,2+(%eax)
3431 rorl $16,%edx
3432 movb %dl,4+(%eax)
3433 movb $137,5+(%eax)
3434 movb $0,6+(%eax)
3435 movb %dh,7+(%eax)
3436 rorl $16,%edx
3437 #NO_APP
3438
3439 So here we provide the missing zero. */
3440
3441 *displacement_string_end = '0';
3442 }
3443 #endif
3444 #ifndef LEX_AT
3445 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3446 if (gotfree_input_line)
3447 input_line_pointer = gotfree_input_line;
3448 #endif
3449
3450 exp_seg = expression (exp);
3451
3452 SKIP_WHITESPACE ();
3453 if (*input_line_pointer)
3454 as_bad (_("junk `%s' after expression"), input_line_pointer);
3455 #if GCC_ASM_O_HACK
3456 RESTORE_END_STRING (disp_end + 1);
3457 #endif
3458 RESTORE_END_STRING (disp_end);
3459 input_line_pointer = save_input_line_pointer;
3460 #ifndef LEX_AT
3461 if (gotfree_input_line)
3462 free (gotfree_input_line);
3463 #endif
3464
3465 #ifdef BFD_ASSEMBLER
3466 /* We do this to make sure that the section symbol is in
3467 the symbol table. We will ultimately change the relocation
3468 to be relative to the beginning of the section. */
3469 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
3470 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3471 {
3472 if (exp->X_op != O_symbol)
3473 {
3474 as_bad (_("bad expression used with @%s"),
3475 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
3476 ? "GOTPCREL"
3477 : "GOTOFF"));
3478 return 0;
3479 }
3480
3481 if (S_IS_LOCAL (exp->X_add_symbol)
3482 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
3483 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
3484 exp->X_op = O_subtract;
3485 exp->X_op_symbol = GOT_symbol;
3486 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3487 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
3488 else
3489 i.reloc[this_operand] = BFD_RELOC_32;
3490 }
3491 #endif
3492
3493 if (exp->X_op == O_absent || exp->X_op == O_big)
3494 {
3495 /* Missing or bad expr becomes absolute 0. */
3496 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
3497 disp_start);
3498 exp->X_op = O_constant;
3499 exp->X_add_number = 0;
3500 exp->X_add_symbol = (symbolS *) 0;
3501 exp->X_op_symbol = (symbolS *) 0;
3502 }
3503
3504 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3505 if (exp->X_op != O_constant
3506 #ifdef BFD_ASSEMBLER
3507 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3508 #endif
3509 && exp_seg != text_section
3510 && exp_seg != data_section
3511 && exp_seg != bss_section
3512 && exp_seg != undefined_section)
3513 {
3514 #ifdef BFD_ASSEMBLER
3515 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3516 #else
3517 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3518 #endif
3519 return 0;
3520 }
3521 #endif
3522 else if (flag_code == CODE_64BIT)
3523 i.types[this_operand] |= Disp32S | Disp32;
3524 return 1;
3525 }
3526
3527 static int i386_index_check PARAMS ((const char *));
3528
3529 /* Make sure the memory operand we've been dealt is valid.
3530 Return 1 on success, 0 on a failure. */
3531
3532 static int
3533 i386_index_check (operand_string)
3534 const char *operand_string;
3535 {
3536 int ok;
3537 #if INFER_ADDR_PREFIX
3538 int fudged = 0;
3539
3540 tryprefix:
3541 #endif
3542 ok = 1;
3543 if (flag_code == CODE_64BIT)
3544 {
3545 /* 64bit checks. */
3546 if ((i.base_reg
3547 && ((i.base_reg->reg_type & Reg64) == 0)
3548 && (i.base_reg->reg_type != BaseIndex
3549 || i.index_reg))
3550 || (i.index_reg
3551 && ((i.index_reg->reg_type & (Reg64|BaseIndex))
3552 != (Reg64|BaseIndex))))
3553 ok = 0;
3554 }
3555 else
3556 {
3557 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3558 {
3559 /* 16bit checks. */
3560 if ((i.base_reg
3561 && ((i.base_reg->reg_type & (Reg16|BaseIndex|RegRex))
3562 != (Reg16|BaseIndex)))
3563 || (i.index_reg
3564 && (((i.index_reg->reg_type & (Reg16|BaseIndex))
3565 != (Reg16|BaseIndex))
3566 || ! (i.base_reg
3567 && i.base_reg->reg_num < 6
3568 && i.index_reg->reg_num >= 6
3569 && i.log2_scale_factor == 0))))
3570 ok = 0;
3571 }
3572 else
3573 {
3574 /* 32bit checks. */
3575 if ((i.base_reg
3576 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
3577 || (i.index_reg
3578 && ((i.index_reg->reg_type & (Reg32|BaseIndex|RegRex))
3579 != (Reg32|BaseIndex))))
3580 ok = 0;
3581 }
3582 }
3583 if (!ok)
3584 {
3585 #if INFER_ADDR_PREFIX
3586 if (flag_code != CODE_64BIT
3587 && i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
3588 {
3589 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
3590 i.prefixes += 1;
3591 /* Change the size of any displacement too. At most one of
3592 Disp16 or Disp32 is set.
3593 FIXME. There doesn't seem to be any real need for separate
3594 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
3595 Removing them would probably clean up the code quite a lot. */
3596 if (i.types[this_operand] & (Disp16|Disp32))
3597 i.types[this_operand] ^= (Disp16|Disp32);
3598 fudged = 1;
3599 goto tryprefix;
3600 }
3601 if (fudged)
3602 as_bad (_("`%s' is not a valid base/index expression"),
3603 operand_string);
3604 else
3605 #endif
3606 as_bad (_("`%s' is not a valid %s bit base/index expression"),
3607 operand_string,
3608 flag_code_names[flag_code]);
3609 return 0;
3610 }
3611 return 1;
3612 }
3613
3614 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
3615 on error. */
3616
3617 static int
3618 i386_operand (operand_string)
3619 char *operand_string;
3620 {
3621 const reg_entry *r;
3622 char *end_op;
3623 char *op_string = operand_string;
3624
3625 if (is_space_char (*op_string))
3626 ++op_string;
3627
3628 /* We check for an absolute prefix (differentiating,
3629 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
3630 if (*op_string == ABSOLUTE_PREFIX)
3631 {
3632 ++op_string;
3633 if (is_space_char (*op_string))
3634 ++op_string;
3635 i.types[this_operand] |= JumpAbsolute;
3636 }
3637
3638 /* Check if operand is a register. */
3639 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
3640 && (r = parse_register (op_string, &end_op)) != NULL)
3641 {
3642 /* Check for a segment override by searching for ':' after a
3643 segment register. */
3644 op_string = end_op;
3645 if (is_space_char (*op_string))
3646 ++op_string;
3647 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
3648 {
3649 switch (r->reg_num)
3650 {
3651 case 0:
3652 i.seg[i.mem_operands] = &es;
3653 break;
3654 case 1:
3655 i.seg[i.mem_operands] = &cs;
3656 break;
3657 case 2:
3658 i.seg[i.mem_operands] = &ss;
3659 break;
3660 case 3:
3661 i.seg[i.mem_operands] = &ds;
3662 break;
3663 case 4:
3664 i.seg[i.mem_operands] = &fs;
3665 break;
3666 case 5:
3667 i.seg[i.mem_operands] = &gs;
3668 break;
3669 }
3670
3671 /* Skip the ':' and whitespace. */
3672 ++op_string;
3673 if (is_space_char (*op_string))
3674 ++op_string;
3675
3676 if (!is_digit_char (*op_string)
3677 && !is_identifier_char (*op_string)
3678 && *op_string != '('
3679 && *op_string != ABSOLUTE_PREFIX)
3680 {
3681 as_bad (_("bad memory operand `%s'"), op_string);
3682 return 0;
3683 }
3684 /* Handle case of %es:*foo. */
3685 if (*op_string == ABSOLUTE_PREFIX)
3686 {
3687 ++op_string;
3688 if (is_space_char (*op_string))
3689 ++op_string;
3690 i.types[this_operand] |= JumpAbsolute;
3691 }
3692 goto do_memory_reference;
3693 }
3694 if (*op_string)
3695 {
3696 as_bad (_("junk `%s' after register"), op_string);
3697 return 0;
3698 }
3699 i.types[this_operand] |= r->reg_type & ~BaseIndex;
3700 i.op[this_operand].regs = r;
3701 i.reg_operands++;
3702 }
3703 else if (*op_string == REGISTER_PREFIX)
3704 {
3705 as_bad (_("bad register name `%s'"), op_string);
3706 return 0;
3707 }
3708 else if (*op_string == IMMEDIATE_PREFIX)
3709 {
3710 ++op_string;
3711 if (i.types[this_operand] & JumpAbsolute)
3712 {
3713 as_bad (_("immediate operand illegal with absolute jump"));
3714 return 0;
3715 }
3716 if (!i386_immediate (op_string))
3717 return 0;
3718 }
3719 else if (is_digit_char (*op_string)
3720 || is_identifier_char (*op_string)
3721 || *op_string == '(')
3722 {
3723 /* This is a memory reference of some sort. */
3724 char *base_string;
3725
3726 /* Start and end of displacement string expression (if found). */
3727 char *displacement_string_start;
3728 char *displacement_string_end;
3729
3730 do_memory_reference:
3731 if ((i.mem_operands == 1
3732 && (current_templates->start->opcode_modifier & IsString) == 0)
3733 || i.mem_operands == 2)
3734 {
3735 as_bad (_("too many memory references for `%s'"),
3736 current_templates->start->name);
3737 return 0;
3738 }
3739
3740 /* Check for base index form. We detect the base index form by
3741 looking for an ')' at the end of the operand, searching
3742 for the '(' matching it, and finding a REGISTER_PREFIX or ','
3743 after the '('. */
3744 base_string = op_string + strlen (op_string);
3745
3746 --base_string;
3747 if (is_space_char (*base_string))
3748 --base_string;
3749
3750 /* If we only have a displacement, set-up for it to be parsed later. */
3751 displacement_string_start = op_string;
3752 displacement_string_end = base_string + 1;
3753
3754 if (*base_string == ')')
3755 {
3756 char *temp_string;
3757 unsigned int parens_balanced = 1;
3758 /* We've already checked that the number of left & right ()'s are
3759 equal, so this loop will not be infinite. */
3760 do
3761 {
3762 base_string--;
3763 if (*base_string == ')')
3764 parens_balanced++;
3765 if (*base_string == '(')
3766 parens_balanced--;
3767 }
3768 while (parens_balanced);
3769
3770 temp_string = base_string;
3771
3772 /* Skip past '(' and whitespace. */
3773 ++base_string;
3774 if (is_space_char (*base_string))
3775 ++base_string;
3776
3777 if (*base_string == ','
3778 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3779 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
3780 {
3781 displacement_string_end = temp_string;
3782
3783 i.types[this_operand] |= BaseIndex;
3784
3785 if (i.base_reg)
3786 {
3787 base_string = end_op;
3788 if (is_space_char (*base_string))
3789 ++base_string;
3790 }
3791
3792 /* There may be an index reg or scale factor here. */
3793 if (*base_string == ',')
3794 {
3795 ++base_string;
3796 if (is_space_char (*base_string))
3797 ++base_string;
3798
3799 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3800 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
3801 {
3802 base_string = end_op;
3803 if (is_space_char (*base_string))
3804 ++base_string;
3805 if (*base_string == ',')
3806 {
3807 ++base_string;
3808 if (is_space_char (*base_string))
3809 ++base_string;
3810 }
3811 else if (*base_string != ')')
3812 {
3813 as_bad (_("expecting `,' or `)' after index register in `%s'"),
3814 operand_string);
3815 return 0;
3816 }
3817 }
3818 else if (*base_string == REGISTER_PREFIX)
3819 {
3820 as_bad (_("bad register name `%s'"), base_string);
3821 return 0;
3822 }
3823
3824 /* Check for scale factor. */
3825 if (*base_string != ')')
3826 {
3827 char *end_scale = i386_scale (base_string);
3828
3829 if (!end_scale)
3830 return 0;
3831
3832 base_string = end_scale;
3833 if (is_space_char (*base_string))
3834 ++base_string;
3835 if (*base_string != ')')
3836 {
3837 as_bad (_("expecting `)' after scale factor in `%s'"),
3838 operand_string);
3839 return 0;
3840 }
3841 }
3842 else if (!i.index_reg)
3843 {
3844 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
3845 *base_string);
3846 return 0;
3847 }
3848 }
3849 else if (*base_string != ')')
3850 {
3851 as_bad (_("expecting `,' or `)' after base register in `%s'"),
3852 operand_string);
3853 return 0;
3854 }
3855 }
3856 else if (*base_string == REGISTER_PREFIX)
3857 {
3858 as_bad (_("bad register name `%s'"), base_string);
3859 return 0;
3860 }
3861 }
3862
3863 /* If there's an expression beginning the operand, parse it,
3864 assuming displacement_string_start and
3865 displacement_string_end are meaningful. */
3866 if (displacement_string_start != displacement_string_end)
3867 {
3868 if (!i386_displacement (displacement_string_start,
3869 displacement_string_end))
3870 return 0;
3871 }
3872
3873 /* Special case for (%dx) while doing input/output op. */
3874 if (i.base_reg
3875 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
3876 && i.index_reg == 0
3877 && i.log2_scale_factor == 0
3878 && i.seg[i.mem_operands] == 0
3879 && (i.types[this_operand] & Disp) == 0)
3880 {
3881 i.types[this_operand] = InOutPortReg;
3882 return 1;
3883 }
3884
3885 if (i386_index_check (operand_string) == 0)
3886 return 0;
3887 i.mem_operands++;
3888 }
3889 else
3890 {
3891 /* It's not a memory operand; argh! */
3892 as_bad (_("invalid char %s beginning operand %d `%s'"),
3893 output_invalid (*op_string),
3894 this_operand + 1,
3895 op_string);
3896 return 0;
3897 }
3898 return 1; /* Normal return. */
3899 }
3900 \f
3901 /* md_estimate_size_before_relax()
3902
3903 Called just before relax() for rs_machine_dependent frags. The x86
3904 assembler uses these frags to handle variable size jump
3905 instructions.
3906
3907 Any symbol that is now undefined will not become defined.
3908 Return the correct fr_subtype in the frag.
3909 Return the initial "guess for variable size of frag" to caller.
3910 The guess is actually the growth beyond the fixed part. Whatever
3911 we do to grow the fixed or variable part contributes to our
3912 returned value. */
3913
3914 int
3915 md_estimate_size_before_relax (fragP, segment)
3916 register fragS *fragP;
3917 register segT segment;
3918 {
3919 /* We've already got fragP->fr_subtype right; all we have to do is
3920 check for un-relaxable symbols. On an ELF system, we can't relax
3921 an externally visible symbol, because it may be overridden by a
3922 shared library. */
3923 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
3924 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3925 || S_IS_EXTERNAL (fragP->fr_symbol)
3926 || S_IS_WEAK (fragP->fr_symbol)
3927 #endif
3928 )
3929 {
3930 /* Symbol is undefined in this segment, or we need to keep a
3931 reloc so that weak symbols can be overridden. */
3932 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
3933 RELOC_ENUM reloc_type;
3934 unsigned char *opcode;
3935 int old_fr_fix;
3936
3937 if (fragP->fr_var != NO_RELOC)
3938 reloc_type = fragP->fr_var;
3939 else if (size == 2)
3940 reloc_type = BFD_RELOC_16_PCREL;
3941 else
3942 reloc_type = BFD_RELOC_32_PCREL;
3943
3944 old_fr_fix = fragP->fr_fix;
3945 opcode = (unsigned char *) fragP->fr_opcode;
3946
3947 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
3948 {
3949 case UNCOND_JUMP:
3950 /* Make jmp (0xeb) a (d)word displacement jump. */
3951 opcode[0] = 0xe9;
3952 fragP->fr_fix += size;
3953 fix_new (fragP, old_fr_fix, size,
3954 fragP->fr_symbol,
3955 fragP->fr_offset, 1,
3956 reloc_type);
3957 break;
3958
3959 case COND_JUMP86:
3960 if (no_cond_jump_promotion)
3961 goto relax_guess;
3962
3963 if (size == 2)
3964 {
3965 /* Negate the condition, and branch past an
3966 unconditional jump. */
3967 opcode[0] ^= 1;
3968 opcode[1] = 3;
3969 /* Insert an unconditional jump. */
3970 opcode[2] = 0xe9;
3971 /* We added two extra opcode bytes, and have a two byte
3972 offset. */
3973 fragP->fr_fix += 2 + 2;
3974 fix_new (fragP, old_fr_fix + 2, 2,
3975 fragP->fr_symbol,
3976 fragP->fr_offset, 1,
3977 reloc_type);
3978 break;
3979 }
3980 /* Fall through. */
3981
3982 case COND_JUMP:
3983 if (no_cond_jump_promotion)
3984 goto relax_guess;
3985
3986 /* This changes the byte-displacement jump 0x7N
3987 to the (d)word-displacement jump 0x0f,0x8N. */
3988 opcode[1] = opcode[0] + 0x10;
3989 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
3990 /* We've added an opcode byte. */
3991 fragP->fr_fix += 1 + size;
3992 fix_new (fragP, old_fr_fix + 1, size,
3993 fragP->fr_symbol,
3994 fragP->fr_offset, 1,
3995 reloc_type);
3996 break;
3997
3998 default:
3999 BAD_CASE (fragP->fr_subtype);
4000 break;
4001 }
4002 frag_wane (fragP);
4003 return fragP->fr_fix - old_fr_fix;
4004 }
4005
4006 relax_guess:
4007 /* Guess size depending on current relax state. Initially the relax
4008 state will correspond to a short jump and we return 1, because
4009 the variable part of the frag (the branch offset) is one byte
4010 long. However, we can relax a section more than once and in that
4011 case we must either set fr_subtype back to the unrelaxed state,
4012 or return the value for the appropriate branch. */
4013 return md_relax_table[fragP->fr_subtype].rlx_length;
4014 }
4015
4016 /* Called after relax() is finished.
4017
4018 In: Address of frag.
4019 fr_type == rs_machine_dependent.
4020 fr_subtype is what the address relaxed to.
4021
4022 Out: Any fixSs and constants are set up.
4023 Caller will turn frag into a ".space 0". */
4024
4025 #ifndef BFD_ASSEMBLER
4026 void
4027 md_convert_frag (headers, sec, fragP)
4028 object_headers *headers ATTRIBUTE_UNUSED;
4029 segT sec ATTRIBUTE_UNUSED;
4030 register fragS *fragP;
4031 #else
4032 void
4033 md_convert_frag (abfd, sec, fragP)
4034 bfd *abfd ATTRIBUTE_UNUSED;
4035 segT sec ATTRIBUTE_UNUSED;
4036 register fragS *fragP;
4037 #endif
4038 {
4039 register unsigned char *opcode;
4040 unsigned char *where_to_put_displacement = NULL;
4041 offsetT target_address;
4042 offsetT opcode_address;
4043 unsigned int extension = 0;
4044 offsetT displacement_from_opcode_start;
4045
4046 opcode = (unsigned char *) fragP->fr_opcode;
4047
4048 /* Address we want to reach in file space. */
4049 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
4050 #ifdef BFD_ASSEMBLER
4051 /* Not needed otherwise? */
4052 target_address += symbol_get_frag (fragP->fr_symbol)->fr_address;
4053 #endif
4054
4055 /* Address opcode resides at in file space. */
4056 opcode_address = fragP->fr_address + fragP->fr_fix;
4057
4058 /* Displacement from opcode start to fill into instruction. */
4059 displacement_from_opcode_start = target_address - opcode_address;
4060
4061 if ((fragP->fr_subtype & BIG) == 0)
4062 {
4063 /* Don't have to change opcode. */
4064 extension = 1; /* 1 opcode + 1 displacement */
4065 where_to_put_displacement = &opcode[1];
4066 }
4067 else
4068 {
4069 if (no_cond_jump_promotion
4070 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4071 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
4072
4073 switch (fragP->fr_subtype)
4074 {
4075 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4076 extension = 4; /* 1 opcode + 4 displacement */
4077 opcode[0] = 0xe9;
4078 where_to_put_displacement = &opcode[1];
4079 break;
4080
4081 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4082 extension = 2; /* 1 opcode + 2 displacement */
4083 opcode[0] = 0xe9;
4084 where_to_put_displacement = &opcode[1];
4085 break;
4086
4087 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4088 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4089 extension = 5; /* 2 opcode + 4 displacement */
4090 opcode[1] = opcode[0] + 0x10;
4091 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4092 where_to_put_displacement = &opcode[2];
4093 break;
4094
4095 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4096 extension = 3; /* 2 opcode + 2 displacement */
4097 opcode[1] = opcode[0] + 0x10;
4098 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4099 where_to_put_displacement = &opcode[2];
4100 break;
4101
4102 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4103 extension = 4;
4104 opcode[0] ^= 1;
4105 opcode[1] = 3;
4106 opcode[2] = 0xe9;
4107 where_to_put_displacement = &opcode[3];
4108 break;
4109
4110 default:
4111 BAD_CASE (fragP->fr_subtype);
4112 break;
4113 }
4114 }
4115
4116 /* Now put displacement after opcode. */
4117 md_number_to_chars ((char *) where_to_put_displacement,
4118 (valueT) (displacement_from_opcode_start - extension),
4119 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
4120 fragP->fr_fix += extension;
4121 }
4122 \f
4123 /* Size of byte displacement jmp. */
4124 int md_short_jump_size = 2;
4125
4126 /* Size of dword displacement jmp. */
4127 int md_long_jump_size = 5;
4128
4129 /* Size of relocation record. */
4130 const int md_reloc_size = 8;
4131
4132 void
4133 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4134 char *ptr;
4135 addressT from_addr, to_addr;
4136 fragS *frag ATTRIBUTE_UNUSED;
4137 symbolS *to_symbol ATTRIBUTE_UNUSED;
4138 {
4139 offsetT offset;
4140
4141 offset = to_addr - (from_addr + 2);
4142 /* Opcode for byte-disp jump. */
4143 md_number_to_chars (ptr, (valueT) 0xeb, 1);
4144 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4145 }
4146
4147 void
4148 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4149 char *ptr;
4150 addressT from_addr, to_addr;
4151 fragS *frag ATTRIBUTE_UNUSED;
4152 symbolS *to_symbol ATTRIBUTE_UNUSED;
4153 {
4154 offsetT offset;
4155
4156 offset = to_addr - (from_addr + 5);
4157 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4158 md_number_to_chars (ptr + 1, (valueT) offset, 4);
4159 }
4160 \f
4161 /* Apply a fixup (fixS) to segment data, once it has been determined
4162 by our caller that we have all the info we need to fix it up.
4163
4164 On the 386, immediates, displacements, and data pointers are all in
4165 the same (little-endian) format, so we don't need to care about which
4166 we are handling. */
4167
4168 int
4169 md_apply_fix3 (fixP, valp, seg)
4170 /* The fix we're to put in. */
4171 fixS *fixP;
4172
4173 /* Pointer to the value of the bits. */
4174 valueT *valp;
4175
4176 /* Segment fix is from. */
4177 segT seg ATTRIBUTE_UNUSED;
4178 {
4179 register char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4180 valueT value = *valp;
4181
4182 #if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
4183 if (fixP->fx_pcrel)
4184 {
4185 switch (fixP->fx_r_type)
4186 {
4187 default:
4188 break;
4189
4190 case BFD_RELOC_32:
4191 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4192 break;
4193 case BFD_RELOC_16:
4194 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4195 break;
4196 case BFD_RELOC_8:
4197 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4198 break;
4199 }
4200 }
4201
4202 /* This is a hack. There should be a better way to handle this.
4203 This covers for the fact that bfd_install_relocation will
4204 subtract the current location (for partial_inplace, PC relative
4205 relocations); see more below. */
4206 if ((fixP->fx_r_type == BFD_RELOC_32_PCREL
4207 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4208 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4209 && fixP->fx_addsy && !use_rela_relocations)
4210 {
4211 #ifndef OBJ_AOUT
4212 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4213 #ifdef TE_PE
4214 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4215 #endif
4216 )
4217 value += fixP->fx_where + fixP->fx_frag->fr_address;
4218 #endif
4219 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4220 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
4221 {
4222 segT fseg = S_GET_SEGMENT (fixP->fx_addsy);
4223
4224 if ((fseg == seg
4225 || (symbol_section_p (fixP->fx_addsy)
4226 && fseg != absolute_section))
4227 && ! S_IS_EXTERNAL (fixP->fx_addsy)
4228 && ! S_IS_WEAK (fixP->fx_addsy)
4229 && S_IS_DEFINED (fixP->fx_addsy)
4230 && ! S_IS_COMMON (fixP->fx_addsy))
4231 {
4232 /* Yes, we add the values in twice. This is because
4233 bfd_perform_relocation subtracts them out again. I think
4234 bfd_perform_relocation is broken, but I don't dare change
4235 it. FIXME. */
4236 value += fixP->fx_where + fixP->fx_frag->fr_address;
4237 }
4238 }
4239 #endif
4240 #if defined (OBJ_COFF) && defined (TE_PE)
4241 /* For some reason, the PE format does not store a section
4242 address offset for a PC relative symbol. */
4243 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4244 value += md_pcrel_from (fixP);
4245 #endif
4246 }
4247
4248 /* Fix a few things - the dynamic linker expects certain values here,
4249 and we must not dissappoint it. */
4250 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4251 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4252 && fixP->fx_addsy)
4253 switch (fixP->fx_r_type)
4254 {
4255 case BFD_RELOC_386_PLT32:
4256 case BFD_RELOC_X86_64_PLT32:
4257 /* Make the jump instruction point to the address of the operand. At
4258 runtime we merely add the offset to the actual PLT entry. */
4259 value = -4;
4260 break;
4261 case BFD_RELOC_386_GOTPC:
4262
4263 /* This is tough to explain. We end up with this one if we have
4264 * operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal
4265 * here is to obtain the absolute address of the GOT, and it is strongly
4266 * preferable from a performance point of view to avoid using a runtime
4267 * relocation for this. The actual sequence of instructions often look
4268 * something like:
4269 *
4270 * call .L66
4271 * .L66:
4272 * popl %ebx
4273 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
4274 *
4275 * The call and pop essentially return the absolute address of
4276 * the label .L66 and store it in %ebx. The linker itself will
4277 * ultimately change the first operand of the addl so that %ebx points to
4278 * the GOT, but to keep things simple, the .o file must have this operand
4279 * set so that it generates not the absolute address of .L66, but the
4280 * absolute address of itself. This allows the linker itself simply
4281 * treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
4282 * added in, and the addend of the relocation is stored in the operand
4283 * field for the instruction itself.
4284 *
4285 * Our job here is to fix the operand so that it would add the correct
4286 * offset so that %ebx would point to itself. The thing that is tricky is
4287 * that .-.L66 will point to the beginning of the instruction, so we need
4288 * to further modify the operand so that it will point to itself.
4289 * There are other cases where you have something like:
4290 *
4291 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
4292 *
4293 * and here no correction would be required. Internally in the assembler
4294 * we treat operands of this form as not being pcrel since the '.' is
4295 * explicitly mentioned, and I wonder whether it would simplify matters
4296 * to do it this way. Who knows. In earlier versions of the PIC patches,
4297 * the pcrel_adjust field was used to store the correction, but since the
4298 * expression is not pcrel, I felt it would be confusing to do it this
4299 * way. */
4300
4301 value -= 1;
4302 break;
4303 case BFD_RELOC_386_GOT32:
4304 case BFD_RELOC_X86_64_GOT32:
4305 value = 0; /* Fully resolved at runtime. No addend. */
4306 break;
4307 case BFD_RELOC_386_GOTOFF:
4308 case BFD_RELOC_X86_64_GOTPCREL:
4309 break;
4310
4311 case BFD_RELOC_VTABLE_INHERIT:
4312 case BFD_RELOC_VTABLE_ENTRY:
4313 fixP->fx_done = 0;
4314 return 1;
4315
4316 default:
4317 break;
4318 }
4319 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
4320 *valp = value;
4321 #endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
4322
4323 #ifndef BFD_ASSEMBLER
4324 md_number_to_chars (p, value, fixP->fx_size);
4325 #else
4326 /* Are we finished with this relocation now? */
4327 if (fixP->fx_addsy == 0 && fixP->fx_pcrel == 0)
4328 fixP->fx_done = 1;
4329 else if (use_rela_relocations)
4330 {
4331 fixP->fx_no_overflow = 1;
4332 value = 0;
4333 }
4334 md_number_to_chars (p, value, fixP->fx_size);
4335 #endif
4336
4337 return 1;
4338 }
4339 \f
4340 #define MAX_LITTLENUMS 6
4341
4342 /* Turn the string pointed to by litP into a floating point constant
4343 of type TYPE, and emit the appropriate bytes. The number of
4344 LITTLENUMS emitted is stored in *SIZEP. An error message is
4345 returned, or NULL on OK. */
4346
4347 char *
4348 md_atof (type, litP, sizeP)
4349 int type;
4350 char *litP;
4351 int *sizeP;
4352 {
4353 int prec;
4354 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4355 LITTLENUM_TYPE *wordP;
4356 char *t;
4357
4358 switch (type)
4359 {
4360 case 'f':
4361 case 'F':
4362 prec = 2;
4363 break;
4364
4365 case 'd':
4366 case 'D':
4367 prec = 4;
4368 break;
4369
4370 case 'x':
4371 case 'X':
4372 prec = 5;
4373 break;
4374
4375 default:
4376 *sizeP = 0;
4377 return _("Bad call to md_atof ()");
4378 }
4379 t = atof_ieee (input_line_pointer, type, words);
4380 if (t)
4381 input_line_pointer = t;
4382
4383 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4384 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4385 the bigendian 386. */
4386 for (wordP = words + prec - 1; prec--;)
4387 {
4388 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4389 litP += sizeof (LITTLENUM_TYPE);
4390 }
4391 return 0;
4392 }
4393 \f
4394 char output_invalid_buf[8];
4395
4396 static char *
4397 output_invalid (c)
4398 int c;
4399 {
4400 if (isprint (c))
4401 sprintf (output_invalid_buf, "'%c'", c);
4402 else
4403 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4404 return output_invalid_buf;
4405 }
4406
4407 /* REG_STRING starts *before* REGISTER_PREFIX. */
4408
4409 static const reg_entry *
4410 parse_register (reg_string, end_op)
4411 char *reg_string;
4412 char **end_op;
4413 {
4414 char *s = reg_string;
4415 char *p;
4416 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4417 const reg_entry *r;
4418
4419 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4420 if (*s == REGISTER_PREFIX)
4421 ++s;
4422
4423 if (is_space_char (*s))
4424 ++s;
4425
4426 p = reg_name_given;
4427 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
4428 {
4429 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
4430 return (const reg_entry *) NULL;
4431 s++;
4432 }
4433
4434 /* For naked regs, make sure that we are not dealing with an identifier.
4435 This prevents confusing an identifier like `eax_var' with register
4436 `eax'. */
4437 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4438 return (const reg_entry *) NULL;
4439
4440 *end_op = s;
4441
4442 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4443
4444 /* Handle floating point regs, allowing spaces in the (i) part. */
4445 if (r == i386_regtab /* %st is first entry of table */)
4446 {
4447 if (is_space_char (*s))
4448 ++s;
4449 if (*s == '(')
4450 {
4451 ++s;
4452 if (is_space_char (*s))
4453 ++s;
4454 if (*s >= '0' && *s <= '7')
4455 {
4456 r = &i386_float_regtab[*s - '0'];
4457 ++s;
4458 if (is_space_char (*s))
4459 ++s;
4460 if (*s == ')')
4461 {
4462 *end_op = s + 1;
4463 return r;
4464 }
4465 }
4466 /* We have "%st(" then garbage. */
4467 return (const reg_entry *) NULL;
4468 }
4469 }
4470
4471 return r;
4472 }
4473 \f
4474 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4475 const char *md_shortopts = "kVQ:sq";
4476 #else
4477 const char *md_shortopts = "q";
4478 #endif
4479
4480 struct option md_longopts[] = {
4481 #define OPTION_32 (OPTION_MD_BASE + 0)
4482 {"32", no_argument, NULL, OPTION_32},
4483 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4484 #define OPTION_64 (OPTION_MD_BASE + 1)
4485 {"64", no_argument, NULL, OPTION_64},
4486 #endif
4487 {NULL, no_argument, NULL, 0}
4488 };
4489 size_t md_longopts_size = sizeof (md_longopts);
4490
4491 int
4492 md_parse_option (c, arg)
4493 int c;
4494 char *arg ATTRIBUTE_UNUSED;
4495 {
4496 switch (c)
4497 {
4498 case 'q':
4499 quiet_warnings = 1;
4500 break;
4501
4502 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4503 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4504 should be emitted or not. FIXME: Not implemented. */
4505 case 'Q':
4506 break;
4507
4508 /* -V: SVR4 argument to print version ID. */
4509 case 'V':
4510 print_version_id ();
4511 break;
4512
4513 /* -k: Ignore for FreeBSD compatibility. */
4514 case 'k':
4515 break;
4516
4517 case 's':
4518 /* -s: On i386 Solaris, this tells the native assembler to use
4519 .stab instead of .stab.excl. We always use .stab anyhow. */
4520 break;
4521
4522 case OPTION_64:
4523 {
4524 const char **list, **l;
4525
4526 list = bfd_target_list ();
4527 for (l = list; *l != NULL; l++)
4528 if (strcmp (*l, "elf64-x86-64") == 0)
4529 {
4530 default_arch = "x86_64";
4531 break;
4532 }
4533 if (*l == NULL)
4534 as_fatal (_("No compiled in support for x86_64"));
4535 free (list);
4536 }
4537 break;
4538 #endif
4539
4540 case OPTION_32:
4541 default_arch = "i386";
4542 break;
4543
4544 default:
4545 return 0;
4546 }
4547 return 1;
4548 }
4549
4550 void
4551 md_show_usage (stream)
4552 FILE *stream;
4553 {
4554 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4555 fprintf (stream, _("\
4556 -Q ignored\n\
4557 -V print assembler version number\n\
4558 -k ignored\n\
4559 -q quieten some warnings\n\
4560 -s ignored\n"));
4561 #else
4562 fprintf (stream, _("\
4563 -q quieten some warnings\n"));
4564 #endif
4565 }
4566
4567 #ifdef BFD_ASSEMBLER
4568 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
4569 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
4570
4571 /* Pick the target format to use. */
4572
4573 const char *
4574 i386_target_format ()
4575 {
4576 if (!strcmp (default_arch, "x86_64"))
4577 set_code_flag (CODE_64BIT);
4578 else if (!strcmp (default_arch, "i386"))
4579 set_code_flag (CODE_32BIT);
4580 else
4581 as_fatal (_("Unknown architecture"));
4582 switch (OUTPUT_FLAVOR)
4583 {
4584 #ifdef OBJ_MAYBE_AOUT
4585 case bfd_target_aout_flavour:
4586 return AOUT_TARGET_FORMAT;
4587 #endif
4588 #ifdef OBJ_MAYBE_COFF
4589 case bfd_target_coff_flavour:
4590 return "coff-i386";
4591 #endif
4592 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
4593 case bfd_target_elf_flavour:
4594 {
4595 if (flag_code == CODE_64BIT)
4596 use_rela_relocations = 1;
4597 return flag_code == CODE_64BIT ? "elf64-x86-64" : "elf32-i386";
4598 }
4599 #endif
4600 default:
4601 abort ();
4602 return NULL;
4603 }
4604 }
4605
4606 #endif /* OBJ_MAYBE_ more than one */
4607 #endif /* BFD_ASSEMBLER */
4608 \f
4609 symbolS *
4610 md_undefined_symbol (name)
4611 char *name;
4612 {
4613 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
4614 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
4615 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
4616 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
4617 {
4618 if (!GOT_symbol)
4619 {
4620 if (symbol_find (name))
4621 as_bad (_("GOT already in symbol table"));
4622 GOT_symbol = symbol_new (name, undefined_section,
4623 (valueT) 0, &zero_address_frag);
4624 };
4625 return GOT_symbol;
4626 }
4627 return 0;
4628 }
4629
4630 /* Round up a section size to the appropriate boundary. */
4631
4632 valueT
4633 md_section_align (segment, size)
4634 segT segment ATTRIBUTE_UNUSED;
4635 valueT size;
4636 {
4637 #ifdef BFD_ASSEMBLER
4638 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4639 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
4640 {
4641 /* For a.out, force the section size to be aligned. If we don't do
4642 this, BFD will align it for us, but it will not write out the
4643 final bytes of the section. This may be a bug in BFD, but it is
4644 easier to fix it here since that is how the other a.out targets
4645 work. */
4646 int align;
4647
4648 align = bfd_get_section_alignment (stdoutput, segment);
4649 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
4650 }
4651 #endif
4652 #endif
4653
4654 return size;
4655 }
4656
4657 /* On the i386, PC-relative offsets are relative to the start of the
4658 next instruction. That is, the address of the offset, plus its
4659 size, since the offset is always the last part of the insn. */
4660
4661 long
4662 md_pcrel_from (fixP)
4663 fixS *fixP;
4664 {
4665 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
4666 }
4667
4668 #ifndef I386COFF
4669
4670 static void
4671 s_bss (ignore)
4672 int ignore ATTRIBUTE_UNUSED;
4673 {
4674 register int temp;
4675
4676 temp = get_absolute_expression ();
4677 subseg_set (bss_section, (subsegT) temp);
4678 demand_empty_rest_of_line ();
4679 }
4680
4681 #endif
4682
4683 #ifdef BFD_ASSEMBLER
4684
4685 void
4686 i386_validate_fix (fixp)
4687 fixS *fixp;
4688 {
4689 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
4690 {
4691 /* GOTOFF relocation are nonsense in 64bit mode. */
4692 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
4693 {
4694 if (flag_code != CODE_64BIT)
4695 abort ();
4696 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
4697 }
4698 else
4699 {
4700 if (flag_code == CODE_64BIT)
4701 abort ();
4702 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
4703 }
4704 fixp->fx_subsy = 0;
4705 }
4706 }
4707
4708 arelent *
4709 tc_gen_reloc (section, fixp)
4710 asection *section ATTRIBUTE_UNUSED;
4711 fixS *fixp;
4712 {
4713 arelent *rel;
4714 bfd_reloc_code_real_type code;
4715
4716 switch (fixp->fx_r_type)
4717 {
4718 case BFD_RELOC_X86_64_PLT32:
4719 case BFD_RELOC_X86_64_GOT32:
4720 case BFD_RELOC_X86_64_GOTPCREL:
4721 case BFD_RELOC_386_PLT32:
4722 case BFD_RELOC_386_GOT32:
4723 case BFD_RELOC_386_GOTOFF:
4724 case BFD_RELOC_386_GOTPC:
4725 case BFD_RELOC_X86_64_32S:
4726 case BFD_RELOC_RVA:
4727 case BFD_RELOC_VTABLE_ENTRY:
4728 case BFD_RELOC_VTABLE_INHERIT:
4729 code = fixp->fx_r_type;
4730 break;
4731 default:
4732 if (fixp->fx_pcrel)
4733 {
4734 switch (fixp->fx_size)
4735 {
4736 default:
4737 as_bad (_("can not do %d byte pc-relative relocation"),
4738 fixp->fx_size);
4739 code = BFD_RELOC_32_PCREL;
4740 break;
4741 case 1: code = BFD_RELOC_8_PCREL; break;
4742 case 2: code = BFD_RELOC_16_PCREL; break;
4743 case 4: code = BFD_RELOC_32_PCREL; break;
4744 }
4745 }
4746 else
4747 {
4748 switch (fixp->fx_size)
4749 {
4750 default:
4751 as_bad (_("can not do %d byte relocation"), fixp->fx_size);
4752 code = BFD_RELOC_32;
4753 break;
4754 case 1: code = BFD_RELOC_8; break;
4755 case 2: code = BFD_RELOC_16; break;
4756 case 4: code = BFD_RELOC_32; break;
4757 case 8: code = BFD_RELOC_64; break;
4758 }
4759 }
4760 break;
4761 }
4762
4763 if (code == BFD_RELOC_32
4764 && GOT_symbol
4765 && fixp->fx_addsy == GOT_symbol)
4766 {
4767 /* We don't support GOTPC on 64bit targets. */
4768 if (flag_code == CODE_64BIT)
4769 abort ();
4770 code = BFD_RELOC_386_GOTPC;
4771 }
4772
4773 rel = (arelent *) xmalloc (sizeof (arelent));
4774 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
4775 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
4776
4777 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
4778 if (!use_rela_relocations)
4779 {
4780 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
4781 vtable entry to be used in the relocation's section offset. */
4782 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
4783 rel->address = fixp->fx_offset;
4784
4785 if (fixp->fx_pcrel)
4786 rel->addend = fixp->fx_addnumber;
4787 else
4788 rel->addend = 0;
4789 }
4790 /* Use the rela in 64bit mode. */
4791 else
4792 {
4793 rel->addend = fixp->fx_offset;
4794 if (fixp->fx_pcrel)
4795 rel->addend -= fixp->fx_size;
4796 }
4797
4798 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
4799 if (rel->howto == NULL)
4800 {
4801 as_bad_where (fixp->fx_file, fixp->fx_line,
4802 _("cannot represent relocation type %s"),
4803 bfd_get_reloc_code_name (code));
4804 /* Set howto to a garbage value so that we can keep going. */
4805 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
4806 assert (rel->howto != NULL);
4807 }
4808
4809 return rel;
4810 }
4811
4812 #else /* ! BFD_ASSEMBLER */
4813
4814 #if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
4815 void
4816 tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
4817 char *where;
4818 fixS *fixP;
4819 relax_addressT segment_address_in_file;
4820 {
4821 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
4822 Out: GNU LD relocation length code: 0, 1, or 2. */
4823
4824 static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
4825 long r_symbolnum;
4826
4827 know (fixP->fx_addsy != NULL);
4828
4829 md_number_to_chars (where,
4830 (valueT) (fixP->fx_frag->fr_address
4831 + fixP->fx_where - segment_address_in_file),
4832 4);
4833
4834 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
4835 ? S_GET_TYPE (fixP->fx_addsy)
4836 : fixP->fx_addsy->sy_number);
4837
4838 where[6] = (r_symbolnum >> 16) & 0x0ff;
4839 where[5] = (r_symbolnum >> 8) & 0x0ff;
4840 where[4] = r_symbolnum & 0x0ff;
4841 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
4842 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
4843 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
4844 }
4845
4846 #endif /* OBJ_AOUT or OBJ_BOUT. */
4847
4848 #if defined (I386COFF)
4849
4850 short
4851 tc_coff_fix2rtype (fixP)
4852 fixS *fixP;
4853 {
4854 if (fixP->fx_r_type == R_IMAGEBASE)
4855 return R_IMAGEBASE;
4856
4857 return (fixP->fx_pcrel ?
4858 (fixP->fx_size == 1 ? R_PCRBYTE :
4859 fixP->fx_size == 2 ? R_PCRWORD :
4860 R_PCRLONG) :
4861 (fixP->fx_size == 1 ? R_RELBYTE :
4862 fixP->fx_size == 2 ? R_RELWORD :
4863 R_DIR32));
4864 }
4865
4866 int
4867 tc_coff_sizemachdep (frag)
4868 fragS *frag;
4869 {
4870 if (frag->fr_next)
4871 return (frag->fr_next->fr_address - frag->fr_address);
4872 else
4873 return 0;
4874 }
4875
4876 #endif /* I386COFF */
4877
4878 #endif /* ! BFD_ASSEMBLER */
4879 \f
4880 /* Parse operands using Intel syntax. This implements a recursive descent
4881 parser based on the BNF grammar published in Appendix B of the MASM 6.1
4882 Programmer's Guide.
4883
4884 FIXME: We do not recognize the full operand grammar defined in the MASM
4885 documentation. In particular, all the structure/union and
4886 high-level macro operands are missing.
4887
4888 Uppercase words are terminals, lower case words are non-terminals.
4889 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
4890 bars '|' denote choices. Most grammar productions are implemented in
4891 functions called 'intel_<production>'.
4892
4893 Initial production is 'expr'.
4894
4895 addOp + | -
4896
4897 alpha [a-zA-Z]
4898
4899 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
4900
4901 constant digits [[ radixOverride ]]
4902
4903 dataType BYTE | WORD | DWORD | QWORD | XWORD
4904
4905 digits decdigit
4906 | digits decdigit
4907 | digits hexdigit
4908
4909 decdigit [0-9]
4910
4911 e05 e05 addOp e06
4912 | e06
4913
4914 e06 e06 mulOp e09
4915 | e09
4916
4917 e09 OFFSET e10
4918 | e09 PTR e10
4919 | e09 : e10
4920 | e10
4921
4922 e10 e10 [ expr ]
4923 | e11
4924
4925 e11 ( expr )
4926 | [ expr ]
4927 | constant
4928 | dataType
4929 | id
4930 | $
4931 | register
4932
4933 => expr SHORT e05
4934 | e05
4935
4936 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
4937 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
4938
4939 hexdigit a | b | c | d | e | f
4940 | A | B | C | D | E | F
4941
4942 id alpha
4943 | id alpha
4944 | id decdigit
4945
4946 mulOp * | / | MOD
4947
4948 quote " | '
4949
4950 register specialRegister
4951 | gpRegister
4952 | byteRegister
4953
4954 segmentRegister CS | DS | ES | FS | GS | SS
4955
4956 specialRegister CR0 | CR2 | CR3
4957 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
4958 | TR3 | TR4 | TR5 | TR6 | TR7
4959
4960 We simplify the grammar in obvious places (e.g., register parsing is
4961 done by calling parse_register) and eliminate immediate left recursion
4962 to implement a recursive-descent parser.
4963
4964 expr SHORT e05
4965 | e05
4966
4967 e05 e06 e05'
4968
4969 e05' addOp e06 e05'
4970 | Empty
4971
4972 e06 e09 e06'
4973
4974 e06' mulOp e09 e06'
4975 | Empty
4976
4977 e09 OFFSET e10 e09'
4978 | e10 e09'
4979
4980 e09' PTR e10 e09'
4981 | : e10 e09'
4982 | Empty
4983
4984 e10 e11 e10'
4985
4986 e10' [ expr ] e10'
4987 | Empty
4988
4989 e11 ( expr )
4990 | [ expr ]
4991 | BYTE
4992 | WORD
4993 | DWORD
4994 | QWORD
4995 | XWORD
4996 | .
4997 | $
4998 | register
4999 | id
5000 | constant */
5001
5002 /* Parsing structure for the intel syntax parser. Used to implement the
5003 semantic actions for the operand grammar. */
5004 struct intel_parser_s
5005 {
5006 char *op_string; /* The string being parsed. */
5007 int got_a_float; /* Whether the operand is a float. */
5008 int op_modifier; /* Operand modifier. */
5009 int is_mem; /* 1 if operand is memory reference. */
5010 const reg_entry *reg; /* Last register reference found. */
5011 char *disp; /* Displacement string being built. */
5012 };
5013
5014 static struct intel_parser_s intel_parser;
5015
5016 /* Token structure for parsing intel syntax. */
5017 struct intel_token
5018 {
5019 int code; /* Token code. */
5020 const reg_entry *reg; /* Register entry for register tokens. */
5021 char *str; /* String representation. */
5022 };
5023
5024 static struct intel_token cur_token, prev_token;
5025
5026 /* Token codes for the intel parser. Since T_SHORT is already used
5027 by COFF, undefine it first to prevent a warning. */
5028 #define T_NIL -1
5029 #define T_CONST 1
5030 #define T_REG 2
5031 #define T_BYTE 3
5032 #define T_WORD 4
5033 #define T_DWORD 5
5034 #define T_QWORD 6
5035 #define T_XWORD 7
5036 #undef T_SHORT
5037 #define T_SHORT 8
5038 #define T_OFFSET 9
5039 #define T_PTR 10
5040 #define T_ID 11
5041
5042 /* Prototypes for intel parser functions. */
5043 static int intel_match_token PARAMS ((int code));
5044 static void intel_get_token PARAMS ((void));
5045 static void intel_putback_token PARAMS ((void));
5046 static int intel_expr PARAMS ((void));
5047 static int intel_e05 PARAMS ((void));
5048 static int intel_e05_1 PARAMS ((void));
5049 static int intel_e06 PARAMS ((void));
5050 static int intel_e06_1 PARAMS ((void));
5051 static int intel_e09 PARAMS ((void));
5052 static int intel_e09_1 PARAMS ((void));
5053 static int intel_e10 PARAMS ((void));
5054 static int intel_e10_1 PARAMS ((void));
5055 static int intel_e11 PARAMS ((void));
5056
5057 static int
5058 i386_intel_operand (operand_string, got_a_float)
5059 char *operand_string;
5060 int got_a_float;
5061 {
5062 int ret;
5063 char *p;
5064
5065 /* Initialize token holders. */
5066 cur_token.code = prev_token.code = T_NIL;
5067 cur_token.reg = prev_token.reg = NULL;
5068 cur_token.str = prev_token.str = NULL;
5069
5070 /* Initialize parser structure. */
5071 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
5072 if (p == NULL)
5073 abort ();
5074 strcpy (intel_parser.op_string, operand_string);
5075 intel_parser.got_a_float = got_a_float;
5076 intel_parser.op_modifier = -1;
5077 intel_parser.is_mem = 0;
5078 intel_parser.reg = NULL;
5079 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
5080 if (intel_parser.disp == NULL)
5081 abort ();
5082 intel_parser.disp[0] = '\0';
5083
5084 /* Read the first token and start the parser. */
5085 intel_get_token ();
5086 ret = intel_expr ();
5087
5088 if (ret)
5089 {
5090 /* If we found a memory reference, hand it over to i386_displacement
5091 to fill in the rest of the operand fields. */
5092 if (intel_parser.is_mem)
5093 {
5094 if ((i.mem_operands == 1
5095 && (current_templates->start->opcode_modifier & IsString) == 0)
5096 || i.mem_operands == 2)
5097 {
5098 as_bad (_("too many memory references for '%s'"),
5099 current_templates->start->name);
5100 ret = 0;
5101 }
5102 else
5103 {
5104 char *s = intel_parser.disp;
5105 i.mem_operands++;
5106
5107 /* Add the displacement expression. */
5108 if (*s != '\0')
5109 ret = i386_displacement (s, s + strlen (s))
5110 && i386_index_check (s);
5111 }
5112 }
5113
5114 /* Constant and OFFSET expressions are handled by i386_immediate. */
5115 else if (intel_parser.op_modifier == OFFSET_FLAT
5116 || intel_parser.reg == NULL)
5117 ret = i386_immediate (intel_parser.disp);
5118 }
5119
5120 free (p);
5121 free (intel_parser.disp);
5122
5123 return ret;
5124 }
5125
5126 /* expr SHORT e05
5127 | e05 */
5128 static int
5129 intel_expr ()
5130 {
5131 /* expr SHORT e05 */
5132 if (cur_token.code == T_SHORT)
5133 {
5134 intel_parser.op_modifier = SHORT;
5135 intel_match_token (T_SHORT);
5136
5137 return (intel_e05 ());
5138 }
5139
5140 /* expr e05 */
5141 else
5142 return intel_e05 ();
5143 }
5144
5145 /* e05 e06 e05'
5146
5147 e05' addOp e06 e05'
5148 | Empty */
5149 static int
5150 intel_e05 ()
5151 {
5152 return (intel_e06 () && intel_e05_1 ());
5153 }
5154
5155 static int
5156 intel_e05_1 ()
5157 {
5158 /* e05' addOp e06 e05' */
5159 if (cur_token.code == '+' || cur_token.code == '-')
5160 {
5161 strcat (intel_parser.disp, cur_token.str);
5162 intel_match_token (cur_token.code);
5163
5164 return (intel_e06 () && intel_e05_1 ());
5165 }
5166
5167 /* e05' Empty */
5168 else
5169 return 1;
5170 }
5171
5172 /* e06 e09 e06'
5173
5174 e06' mulOp e09 e06'
5175 | Empty */
5176 static int
5177 intel_e06 ()
5178 {
5179 return (intel_e09 () && intel_e06_1 ());
5180 }
5181
5182 static int
5183 intel_e06_1 ()
5184 {
5185 /* e06' mulOp e09 e06' */
5186 if (cur_token.code == '*' || cur_token.code == '/')
5187 {
5188 strcat (intel_parser.disp, cur_token.str);
5189 intel_match_token (cur_token.code);
5190
5191 return (intel_e09 () && intel_e06_1 ());
5192 }
5193
5194 /* e06' Empty */
5195 else
5196 return 1;
5197 }
5198
5199 /* e09 OFFSET e10 e09'
5200 | e10 e09'
5201
5202 e09' PTR e10 e09'
5203 | : e10 e09'
5204 | Empty */
5205 static int
5206 intel_e09 ()
5207 {
5208 /* e09 OFFSET e10 e09' */
5209 if (cur_token.code == T_OFFSET)
5210 {
5211 intel_parser.is_mem = 0;
5212 intel_parser.op_modifier = OFFSET_FLAT;
5213 intel_match_token (T_OFFSET);
5214
5215 return (intel_e10 () && intel_e09_1 ());
5216 }
5217
5218 /* e09 e10 e09' */
5219 else
5220 return (intel_e10 () && intel_e09_1 ());
5221 }
5222
5223 static int
5224 intel_e09_1 ()
5225 {
5226 /* e09' PTR e10 e09' */
5227 if (cur_token.code == T_PTR)
5228 {
5229 if (prev_token.code == T_BYTE)
5230 i.suffix = BYTE_MNEM_SUFFIX;
5231
5232 else if (prev_token.code == T_WORD)
5233 {
5234 if (intel_parser.got_a_float == 2) /* "fi..." */
5235 i.suffix = SHORT_MNEM_SUFFIX;
5236 else
5237 i.suffix = WORD_MNEM_SUFFIX;
5238 }
5239
5240 else if (prev_token.code == T_DWORD)
5241 {
5242 if (intel_parser.got_a_float == 1) /* "f..." */
5243 i.suffix = SHORT_MNEM_SUFFIX;
5244 else
5245 i.suffix = LONG_MNEM_SUFFIX;
5246 }
5247
5248 else if (prev_token.code == T_QWORD)
5249 {
5250 if (intel_parser.got_a_float == 1) /* "f..." */
5251 i.suffix = LONG_MNEM_SUFFIX;
5252 else
5253 i.suffix = QWORD_MNEM_SUFFIX;
5254 }
5255
5256 else if (prev_token.code == T_XWORD)
5257 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
5258
5259 else
5260 {
5261 as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
5262 return 0;
5263 }
5264
5265 intel_match_token (T_PTR);
5266
5267 return (intel_e10 () && intel_e09_1 ());
5268 }
5269
5270 /* e09 : e10 e09' */
5271 else if (cur_token.code == ':')
5272 {
5273 /* Mark as a memory operand only if it's not already known to be an
5274 offset expression. */
5275 if (intel_parser.op_modifier != OFFSET_FLAT)
5276 intel_parser.is_mem = 1;
5277
5278 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5279 }
5280
5281 /* e09' Empty */
5282 else
5283 return 1;
5284 }
5285
5286 /* e10 e11 e10'
5287
5288 e10' [ expr ] e10'
5289 | Empty */
5290 static int
5291 intel_e10 ()
5292 {
5293 return (intel_e11 () && intel_e10_1 ());
5294 }
5295
5296 static int
5297 intel_e10_1 ()
5298 {
5299 /* e10' [ expr ] e10' */
5300 if (cur_token.code == '[')
5301 {
5302 intel_match_token ('[');
5303
5304 /* Mark as a memory operand only if it's not already known to be an
5305 offset expression. If it's an offset expression, we need to keep
5306 the brace in. */
5307 if (intel_parser.op_modifier != OFFSET_FLAT)
5308 intel_parser.is_mem = 1;
5309 else
5310 strcat (intel_parser.disp, "[");
5311
5312 /* Add a '+' to the displacement string if necessary. */
5313 if (*intel_parser.disp != '\0'
5314 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5315 strcat (intel_parser.disp, "+");
5316
5317 if (intel_expr () && intel_match_token (']'))
5318 {
5319 /* Preserve brackets when the operand is an offset expression. */
5320 if (intel_parser.op_modifier == OFFSET_FLAT)
5321 strcat (intel_parser.disp, "]");
5322
5323 return intel_e10_1 ();
5324 }
5325 else
5326 return 0;
5327 }
5328
5329 /* e10' Empty */
5330 else
5331 return 1;
5332 }
5333
5334 /* e11 ( expr )
5335 | [ expr ]
5336 | BYTE
5337 | WORD
5338 | DWORD
5339 | QWORD
5340 | XWORD
5341 | $
5342 | .
5343 | register
5344 | id
5345 | constant */
5346 static int
5347 intel_e11 ()
5348 {
5349 /* e11 ( expr ) */
5350 if (cur_token.code == '(')
5351 {
5352 intel_match_token ('(');
5353 strcat (intel_parser.disp, "(");
5354
5355 if (intel_expr () && intel_match_token (')'))
5356 {
5357 strcat (intel_parser.disp, ")");
5358 return 1;
5359 }
5360 else
5361 return 0;
5362 }
5363
5364 /* e11 [ expr ] */
5365 else if (cur_token.code == '[')
5366 {
5367 intel_match_token ('[');
5368
5369 /* Mark as a memory operand only if it's not already known to be an
5370 offset expression. If it's an offset expression, we need to keep
5371 the brace in. */
5372 if (intel_parser.op_modifier != OFFSET_FLAT)
5373 intel_parser.is_mem = 1;
5374 else
5375 strcat (intel_parser.disp, "[");
5376
5377 /* Operands for jump/call inside brackets denote absolute addresses. */
5378 if (current_templates->start->opcode_modifier & Jump
5379 || current_templates->start->opcode_modifier & JumpDword
5380 || current_templates->start->opcode_modifier & JumpByte
5381 || current_templates->start->opcode_modifier & JumpInterSegment)
5382 i.types[this_operand] |= JumpAbsolute;
5383
5384 /* Add a '+' to the displacement string if necessary. */
5385 if (*intel_parser.disp != '\0'
5386 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5387 strcat (intel_parser.disp, "+");
5388
5389 if (intel_expr () && intel_match_token (']'))
5390 {
5391 /* Preserve brackets when the operand is an offset expression. */
5392 if (intel_parser.op_modifier == OFFSET_FLAT)
5393 strcat (intel_parser.disp, "]");
5394
5395 return 1;
5396 }
5397 else
5398 return 0;
5399 }
5400
5401 /* e11 BYTE
5402 | WORD
5403 | DWORD
5404 | QWORD
5405 | XWORD */
5406 else if (cur_token.code == T_BYTE
5407 || cur_token.code == T_WORD
5408 || cur_token.code == T_DWORD
5409 || cur_token.code == T_QWORD
5410 || cur_token.code == T_XWORD)
5411 {
5412 intel_match_token (cur_token.code);
5413
5414 return 1;
5415 }
5416
5417 /* e11 $
5418 | . */
5419 else if (cur_token.code == '$' || cur_token.code == '.')
5420 {
5421 strcat (intel_parser.disp, cur_token.str);
5422 intel_match_token (cur_token.code);
5423
5424 /* Mark as a memory operand only if it's not already known to be an
5425 offset expression. */
5426 if (intel_parser.op_modifier != OFFSET_FLAT)
5427 intel_parser.is_mem = 1;
5428
5429 return 1;
5430 }
5431
5432 /* e11 register */
5433 else if (cur_token.code == T_REG)
5434 {
5435 const reg_entry *reg = intel_parser.reg = cur_token.reg;
5436
5437 intel_match_token (T_REG);
5438
5439 /* Check for segment change. */
5440 if (cur_token.code == ':')
5441 {
5442 if (reg->reg_type & (SReg2 | SReg3))
5443 {
5444 switch (reg->reg_num)
5445 {
5446 case 0:
5447 i.seg[i.mem_operands] = &es;
5448 break;
5449 case 1:
5450 i.seg[i.mem_operands] = &cs;
5451 break;
5452 case 2:
5453 i.seg[i.mem_operands] = &ss;
5454 break;
5455 case 3:
5456 i.seg[i.mem_operands] = &ds;
5457 break;
5458 case 4:
5459 i.seg[i.mem_operands] = &fs;
5460 break;
5461 case 5:
5462 i.seg[i.mem_operands] = &gs;
5463 break;
5464 }
5465 }
5466 else
5467 {
5468 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
5469 return 0;
5470 }
5471 }
5472
5473 /* Not a segment register. Check for register scaling. */
5474 else if (cur_token.code == '*')
5475 {
5476 if (!intel_parser.is_mem)
5477 {
5478 as_bad (_("Register scaling only allowed in memory operands."));
5479 return 0;
5480 }
5481
5482 /* What follows must be a valid scale. */
5483 if (intel_match_token ('*')
5484 && strchr ("01248", *cur_token.str))
5485 {
5486 i.index_reg = reg;
5487 i.types[this_operand] |= BaseIndex;
5488
5489 /* Set the scale after setting the register (otherwise,
5490 i386_scale will complain) */
5491 i386_scale (cur_token.str);
5492 intel_match_token (T_CONST);
5493 }
5494 else
5495 {
5496 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5497 cur_token.str);
5498 return 0;
5499 }
5500 }
5501
5502 /* No scaling. If this is a memory operand, the register is either a
5503 base register (first occurrence) or an index register (second
5504 occurrence). */
5505 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
5506 {
5507 if (i.base_reg && i.index_reg)
5508 {
5509 as_bad (_("Too many register references in memory operand.\n"));
5510 return 0;
5511 }
5512
5513 if (i.base_reg == NULL)
5514 i.base_reg = reg;
5515 else
5516 i.index_reg = reg;
5517
5518 i.types[this_operand] |= BaseIndex;
5519 }
5520
5521 /* Offset modifier. Add the register to the displacement string to be
5522 parsed as an immediate expression after we're done. */
5523 else if (intel_parser.op_modifier == OFFSET_FLAT)
5524 strcat (intel_parser.disp, reg->reg_name);
5525
5526 /* It's neither base nor index nor offset. */
5527 else
5528 {
5529 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
5530 i.op[this_operand].regs = reg;
5531 i.reg_operands++;
5532 }
5533
5534 /* Since registers are not part of the displacement string (except
5535 when we're parsing offset operands), we may need to remove any
5536 preceding '+' from the displacement string. */
5537 if (*intel_parser.disp != '\0'
5538 && intel_parser.op_modifier != OFFSET_FLAT)
5539 {
5540 char *s = intel_parser.disp;
5541 s += strlen (s) - 1;
5542 if (*s == '+')
5543 *s = '\0';
5544 }
5545
5546 return 1;
5547 }
5548
5549 /* e11 id */
5550 else if (cur_token.code == T_ID)
5551 {
5552 /* Add the identifier to the displacement string. */
5553 strcat (intel_parser.disp, cur_token.str);
5554 intel_match_token (T_ID);
5555
5556 /* The identifier represents a memory reference only if it's not
5557 preceded by an offset modifier. */
5558 if (intel_parser.op_modifier != OFFSET_FLAT)
5559 intel_parser.is_mem = 1;
5560
5561 return 1;
5562 }
5563
5564 /* e11 constant */
5565 else if (cur_token.code == T_CONST
5566 || cur_token.code == '-'
5567 || cur_token.code == '+')
5568 {
5569 char *save_str;
5570
5571 /* Allow constants that start with `+' or `-'. */
5572 if (cur_token.code == '-' || cur_token.code == '+')
5573 {
5574 strcat (intel_parser.disp, cur_token.str);
5575 intel_match_token (cur_token.code);
5576 if (cur_token.code != T_CONST)
5577 {
5578 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
5579 cur_token.str);
5580 return 0;
5581 }
5582 }
5583
5584 save_str = (char *) malloc (strlen (cur_token.str) + 1);
5585 if (save_str == NULL)
5586 abort ();
5587 strcpy (save_str, cur_token.str);
5588
5589 /* Get the next token to check for register scaling. */
5590 intel_match_token (cur_token.code);
5591
5592 /* Check if this constant is a scaling factor for an index register. */
5593 if (cur_token.code == '*')
5594 {
5595 if (intel_match_token ('*') && cur_token.code == T_REG)
5596 {
5597 if (!intel_parser.is_mem)
5598 {
5599 as_bad (_("Register scaling only allowed in memory operands."));
5600 return 0;
5601 }
5602
5603 /* The constant is followed by `* reg', so it must be
5604 a valid scale. */
5605 if (strchr ("01248", *save_str))
5606 {
5607 i.index_reg = cur_token.reg;
5608 i.types[this_operand] |= BaseIndex;
5609
5610 /* Set the scale after setting the register (otherwise,
5611 i386_scale will complain) */
5612 i386_scale (save_str);
5613 intel_match_token (T_REG);
5614
5615 /* Since registers are not part of the displacement
5616 string, we may need to remove any preceding '+' from
5617 the displacement string. */
5618 if (*intel_parser.disp != '\0')
5619 {
5620 char *s = intel_parser.disp;
5621 s += strlen (s) - 1;
5622 if (*s == '+')
5623 *s = '\0';
5624 }
5625
5626 free (save_str);
5627
5628 return 1;
5629 }
5630 else
5631 return 0;
5632 }
5633
5634 /* The constant was not used for register scaling. Since we have
5635 already consumed the token following `*' we now need to put it
5636 back in the stream. */
5637 else
5638 intel_putback_token ();
5639 }
5640
5641 /* Add the constant to the displacement string. */
5642 strcat (intel_parser.disp, save_str);
5643 free (save_str);
5644
5645 return 1;
5646 }
5647
5648 as_bad (_("Unrecognized token '%s'"), cur_token.str);
5649 return 0;
5650 }
5651
5652 /* Match the given token against cur_token. If they match, read the next
5653 token from the operand string. */
5654 static int
5655 intel_match_token (code)
5656 int code;
5657 {
5658 if (cur_token.code == code)
5659 {
5660 intel_get_token ();
5661 return 1;
5662 }
5663 else
5664 {
5665 as_bad (_("Unexpected token `%s'\n"), cur_token.str);
5666 return 0;
5667 }
5668 }
5669
5670 /* Read a new token from intel_parser.op_string and store it in cur_token. */
5671 static void
5672 intel_get_token ()
5673 {
5674 char *end_op;
5675 const reg_entry *reg;
5676 struct intel_token new_token;
5677
5678 new_token.code = T_NIL;
5679 new_token.reg = NULL;
5680 new_token.str = NULL;
5681
5682 /* Free the memory allocated to the previous token and move
5683 cur_token to prev_token. */
5684 if (prev_token.str)
5685 free (prev_token.str);
5686
5687 prev_token = cur_token;
5688
5689 /* Skip whitespace. */
5690 while (is_space_char (*intel_parser.op_string))
5691 intel_parser.op_string++;
5692
5693 /* Return an empty token if we find nothing else on the line. */
5694 if (*intel_parser.op_string == '\0')
5695 {
5696 cur_token = new_token;
5697 return;
5698 }
5699
5700 /* The new token cannot be larger than the remainder of the operand
5701 string. */
5702 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
5703 if (new_token.str == NULL)
5704 abort ();
5705 new_token.str[0] = '\0';
5706
5707 if (strchr ("0123456789", *intel_parser.op_string))
5708 {
5709 char *p = new_token.str;
5710 char *q = intel_parser.op_string;
5711 new_token.code = T_CONST;
5712
5713 /* Allow any kind of identifier char to encompass floating point and
5714 hexadecimal numbers. */
5715 while (is_identifier_char (*q))
5716 *p++ = *q++;
5717 *p = '\0';
5718
5719 /* Recognize special symbol names [0-9][bf]. */
5720 if (strlen (intel_parser.op_string) == 2
5721 && (intel_parser.op_string[1] == 'b'
5722 || intel_parser.op_string[1] == 'f'))
5723 new_token.code = T_ID;
5724 }
5725
5726 else if (strchr ("+-/*:[]()", *intel_parser.op_string))
5727 {
5728 new_token.code = *intel_parser.op_string;
5729 new_token.str[0] = *intel_parser.op_string;
5730 new_token.str[1] = '\0';
5731 }
5732
5733 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
5734 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
5735 {
5736 new_token.code = T_REG;
5737 new_token.reg = reg;
5738
5739 if (*intel_parser.op_string == REGISTER_PREFIX)
5740 {
5741 new_token.str[0] = REGISTER_PREFIX;
5742 new_token.str[1] = '\0';
5743 }
5744
5745 strcat (new_token.str, reg->reg_name);
5746 }
5747
5748 else if (is_identifier_char (*intel_parser.op_string))
5749 {
5750 char *p = new_token.str;
5751 char *q = intel_parser.op_string;
5752
5753 /* A '.' or '$' followed by an identifier char is an identifier.
5754 Otherwise, it's operator '.' followed by an expression. */
5755 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
5756 {
5757 new_token.code = *q;
5758 new_token.str[0] = *q;
5759 new_token.str[1] = '\0';
5760 }
5761 else
5762 {
5763 while (is_identifier_char (*q) || *q == '@')
5764 *p++ = *q++;
5765 *p = '\0';
5766
5767 if (strcasecmp (new_token.str, "BYTE") == 0)
5768 new_token.code = T_BYTE;
5769
5770 else if (strcasecmp (new_token.str, "WORD") == 0)
5771 new_token.code = T_WORD;
5772
5773 else if (strcasecmp (new_token.str, "DWORD") == 0)
5774 new_token.code = T_DWORD;
5775
5776 else if (strcasecmp (new_token.str, "QWORD") == 0)
5777 new_token.code = T_QWORD;
5778
5779 else if (strcasecmp (new_token.str, "XWORD") == 0)
5780 new_token.code = T_XWORD;
5781
5782 else if (strcasecmp (new_token.str, "PTR") == 0)
5783 new_token.code = T_PTR;
5784
5785 else if (strcasecmp (new_token.str, "SHORT") == 0)
5786 new_token.code = T_SHORT;
5787
5788 else if (strcasecmp (new_token.str, "OFFSET") == 0)
5789 {
5790 new_token.code = T_OFFSET;
5791
5792 /* ??? This is not mentioned in the MASM grammar but gcc
5793 makes use of it with -mintel-syntax. OFFSET may be
5794 followed by FLAT: */
5795 if (strncasecmp (q, " FLAT:", 6) == 0)
5796 strcat (new_token.str, " FLAT:");
5797 }
5798
5799 /* ??? This is not mentioned in the MASM grammar. */
5800 else if (strcasecmp (new_token.str, "FLAT") == 0)
5801 new_token.code = T_OFFSET;
5802
5803 else
5804 new_token.code = T_ID;
5805 }
5806 }
5807
5808 else
5809 as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
5810
5811 intel_parser.op_string += strlen (new_token.str);
5812 cur_token = new_token;
5813 }
5814
5815 /* Put cur_token back into the token stream and make cur_token point to
5816 prev_token. */
5817 static void
5818 intel_putback_token ()
5819 {
5820 intel_parser.op_string -= strlen (cur_token.str);
5821 free (cur_token.str);
5822 cur_token = prev_token;
5823
5824 /* Forget prev_token. */
5825 prev_token.code = T_NIL;
5826 prev_token.reg = NULL;
5827 prev_token.str = NULL;
5828 }