Correct CpuMax in i386-opc.h
[binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2016 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 #define XMMWORD_MNEM_SUFFIX 'x'
85 #define YMMWORD_MNEM_SUFFIX 'y'
86 #define ZMMWORD_MNEM_SUFFIX 'z'
87 /* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91 #define END_OF_INSN '\0'
92
93 /*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100 typedef struct
101 {
102 const insn_template *start;
103 const insn_template *end;
104 }
105 templates;
106
107 /* 386 operand encoding bytes: see 386 book for details of this. */
108 typedef struct
109 {
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113 }
114 modrm_byte;
115
116 /* x86-64 extension prefix. */
117 typedef int rex_byte;
118
119 /* 386 opcode byte to code indirect addressing. */
120 typedef struct
121 {
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125 }
126 sib_byte;
127
128 /* x86 arch names, types and features */
129 typedef struct
130 {
131 const char *name; /* arch name */
132 unsigned int len; /* arch string length */
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
135 unsigned int skip; /* show_arch should skip this. */
136 }
137 arch_entry;
138
139 /* Used to turn off indicated flags. */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 i386_cpu_flags flags; /* cpu feature flags */
145 }
146 noarch_entry;
147
148 static void update_code_flag (int, int);
149 static void set_code_flag (int);
150 static void set_16bit_gcc_code_flag (int);
151 static void set_intel_syntax (int);
152 static void set_intel_mnemonic (int);
153 static void set_allow_index_reg (int);
154 static void set_check (int);
155 static void set_cpu_arch (int);
156 #ifdef TE_PE
157 static void pe_directive_secrel (int);
158 #endif
159 static void signed_cons (int);
160 static char *output_invalid (int c);
161 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
162 const char *);
163 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
164 const char *);
165 static int i386_att_operand (char *);
166 static int i386_intel_operand (char *, int);
167 static int i386_intel_simplify (expressionS *);
168 static int i386_intel_parse_name (const char *, expressionS *);
169 static const reg_entry *parse_register (char *, char **);
170 static char *parse_insn (char *, char *);
171 static char *parse_operands (char *, const char *);
172 static void swap_operands (void);
173 static void swap_2_operands (int, int);
174 static void optimize_imm (void);
175 static void optimize_disp (void);
176 static const insn_template *match_template (void);
177 static int check_string (void);
178 static int process_suffix (void);
179 static int check_byte_reg (void);
180 static int check_long_reg (void);
181 static int check_qword_reg (void);
182 static int check_word_reg (void);
183 static int finalize_imm (void);
184 static int process_operands (void);
185 static const seg_entry *build_modrm_byte (void);
186 static void output_insn (void);
187 static void output_imm (fragS *, offsetT);
188 static void output_disp (fragS *, offsetT);
189 #ifndef I386COFF
190 static void s_bss (int);
191 #endif
192 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
193 static void handle_large_common (int small ATTRIBUTE_UNUSED);
194 #endif
195
196 static const char *default_arch = DEFAULT_ARCH;
197
198 /* This struct describes rounding control and SAE in the instruction. */
199 struct RC_Operation
200 {
201 enum rc_type
202 {
203 rne = 0,
204 rd,
205 ru,
206 rz,
207 saeonly
208 } type;
209 int operand;
210 };
211
212 static struct RC_Operation rc_op;
213
214 /* The struct describes masking, applied to OPERAND in the instruction.
215 MASK is a pointer to the corresponding mask register. ZEROING tells
216 whether merging or zeroing mask is used. */
217 struct Mask_Operation
218 {
219 const reg_entry *mask;
220 unsigned int zeroing;
221 /* The operand where this operation is associated. */
222 int operand;
223 };
224
225 static struct Mask_Operation mask_op;
226
227 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
228 broadcast factor. */
229 struct Broadcast_Operation
230 {
231 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
232 int type;
233
234 /* Index of broadcasted operand. */
235 int operand;
236 };
237
238 static struct Broadcast_Operation broadcast_op;
239
240 /* VEX prefix. */
241 typedef struct
242 {
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248 } vex_prefix;
249
250 /* 'md_assemble ()' gathers together information and puts it into a
251 i386_insn. */
252
253 union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
260 enum i386_error
261 {
262 operand_size_mismatch,
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
268 old_gcc_only,
269 unsupported_with_intel_mnemonic,
270 unsupported_syntax,
271 unsupported,
272 invalid_vsib_address,
273 invalid_vector_register_set,
274 unsupported_vector_index_register,
275 unsupported_broadcast,
276 broadcast_not_on_src_operand,
277 broadcast_needed,
278 unsupported_masking,
279 mask_not_on_destination,
280 no_default_mask,
281 unsupported_rc_sae,
282 rc_sae_operand_not_last_imm,
283 invalid_register_operand,
284 try_vector_disp8
285 };
286
287 struct _i386_insn
288 {
289 /* TM holds the template for the insn were currently assembling. */
290 insn_template tm;
291
292 /* SUFFIX holds the instruction size suffix for byte, word, dword
293 or qword, if given. */
294 char suffix;
295
296 /* OPERANDS gives the number of given operands. */
297 unsigned int operands;
298
299 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
300 of given register, displacement, memory operands and immediate
301 operands. */
302 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
303
304 /* TYPES [i] is the type (see above #defines) which tells us how to
305 use OP[i] for the corresponding operand. */
306 i386_operand_type types[MAX_OPERANDS];
307
308 /* Displacement expression, immediate expression, or register for each
309 operand. */
310 union i386_op op[MAX_OPERANDS];
311
312 /* Flags for operands. */
313 unsigned int flags[MAX_OPERANDS];
314 #define Operand_PCrel 1
315
316 /* Relocation type for operand */
317 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
318
319 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
320 the base index byte below. */
321 const reg_entry *base_reg;
322 const reg_entry *index_reg;
323 unsigned int log2_scale_factor;
324
325 /* SEG gives the seg_entries of this insn. They are zero unless
326 explicit segment overrides are given. */
327 const seg_entry *seg[2];
328
329 /* PREFIX holds all the given prefix opcodes (usually null).
330 PREFIXES is the number of prefix opcodes. */
331 unsigned int prefixes;
332 unsigned char prefix[MAX_PREFIXES];
333
334 /* RM and SIB are the modrm byte and the sib byte where the
335 addressing modes of this insn are encoded. */
336 modrm_byte rm;
337 rex_byte rex;
338 rex_byte vrex;
339 sib_byte sib;
340 vex_prefix vex;
341
342 /* Masking attributes. */
343 struct Mask_Operation *mask;
344
345 /* Rounding control and SAE attributes. */
346 struct RC_Operation *rounding;
347
348 /* Broadcasting attributes. */
349 struct Broadcast_Operation *broadcast;
350
351 /* Compressed disp8*N attribute. */
352 unsigned int memshift;
353
354 /* Swap operand in encoding. */
355 unsigned int swap_operand;
356
357 /* Prefer 8bit or 32bit displacement in encoding. */
358 enum
359 {
360 disp_encoding_default = 0,
361 disp_encoding_8bit,
362 disp_encoding_32bit
363 } disp_encoding;
364
365 /* REP prefix. */
366 const char *rep_prefix;
367
368 /* HLE prefix. */
369 const char *hle_prefix;
370
371 /* Have BND prefix. */
372 const char *bnd_prefix;
373
374 /* Need VREX to support upper 16 registers. */
375 int need_vrex;
376
377 /* Error message. */
378 enum i386_error error;
379 };
380
381 typedef struct _i386_insn i386_insn;
382
383 /* Link RC type with corresponding string, that'll be looked for in
384 asm. */
385 struct RC_name
386 {
387 enum rc_type type;
388 const char *name;
389 unsigned int len;
390 };
391
392 static const struct RC_name RC_NamesTable[] =
393 {
394 { rne, STRING_COMMA_LEN ("rn-sae") },
395 { rd, STRING_COMMA_LEN ("rd-sae") },
396 { ru, STRING_COMMA_LEN ("ru-sae") },
397 { rz, STRING_COMMA_LEN ("rz-sae") },
398 { saeonly, STRING_COMMA_LEN ("sae") },
399 };
400
401 /* List of chars besides those in app.c:symbol_chars that can start an
402 operand. Used to prevent the scrubber eating vital white-space. */
403 const char extra_symbol_chars[] = "*%-([{"
404 #ifdef LEX_AT
405 "@"
406 #endif
407 #ifdef LEX_QM
408 "?"
409 #endif
410 ;
411
412 #if (defined (TE_I386AIX) \
413 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
414 && !defined (TE_GNU) \
415 && !defined (TE_LINUX) \
416 && !defined (TE_NACL) \
417 && !defined (TE_NETWARE) \
418 && !defined (TE_FreeBSD) \
419 && !defined (TE_DragonFly) \
420 && !defined (TE_NetBSD)))
421 /* This array holds the chars that always start a comment. If the
422 pre-processor is disabled, these aren't very useful. The option
423 --divide will remove '/' from this list. */
424 const char *i386_comment_chars = "#/";
425 #define SVR4_COMMENT_CHARS 1
426 #define PREFIX_SEPARATOR '\\'
427
428 #else
429 const char *i386_comment_chars = "#";
430 #define PREFIX_SEPARATOR '/'
431 #endif
432
433 /* This array holds the chars that only start a comment at the beginning of
434 a line. If the line seems to have the form '# 123 filename'
435 .line and .file directives will appear in the pre-processed output.
436 Note that input_file.c hand checks for '#' at the beginning of the
437 first line of the input file. This is because the compiler outputs
438 #NO_APP at the beginning of its output.
439 Also note that comments started like this one will always work if
440 '/' isn't otherwise defined. */
441 const char line_comment_chars[] = "#/";
442
443 const char line_separator_chars[] = ";";
444
445 /* Chars that can be used to separate mant from exp in floating point
446 nums. */
447 const char EXP_CHARS[] = "eE";
448
449 /* Chars that mean this number is a floating point constant
450 As in 0f12.456
451 or 0d1.2345e12. */
452 const char FLT_CHARS[] = "fFdDxX";
453
454 /* Tables for lexical analysis. */
455 static char mnemonic_chars[256];
456 static char register_chars[256];
457 static char operand_chars[256];
458 static char identifier_chars[256];
459 static char digit_chars[256];
460
461 /* Lexical macros. */
462 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
463 #define is_operand_char(x) (operand_chars[(unsigned char) x])
464 #define is_register_char(x) (register_chars[(unsigned char) x])
465 #define is_space_char(x) ((x) == ' ')
466 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
467 #define is_digit_char(x) (digit_chars[(unsigned char) x])
468
469 /* All non-digit non-letter characters that may occur in an operand. */
470 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
471
472 /* md_assemble() always leaves the strings it's passed unaltered. To
473 effect this we maintain a stack of saved characters that we've smashed
474 with '\0's (indicating end of strings for various sub-fields of the
475 assembler instruction). */
476 static char save_stack[32];
477 static char *save_stack_p;
478 #define END_STRING_AND_SAVE(s) \
479 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
480 #define RESTORE_END_STRING(s) \
481 do { *(s) = *--save_stack_p; } while (0)
482
483 /* The instruction we're assembling. */
484 static i386_insn i;
485
486 /* Possible templates for current insn. */
487 static const templates *current_templates;
488
489 /* Per instruction expressionS buffers: max displacements & immediates. */
490 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
491 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
492
493 /* Current operand we are working on. */
494 static int this_operand = -1;
495
496 /* We support four different modes. FLAG_CODE variable is used to distinguish
497 these. */
498
499 enum flag_code {
500 CODE_32BIT,
501 CODE_16BIT,
502 CODE_64BIT };
503
504 static enum flag_code flag_code;
505 static unsigned int object_64bit;
506 static unsigned int disallow_64bit_reloc;
507 static int use_rela_relocations = 0;
508
509 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
510 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
511 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
512
513 /* The ELF ABI to use. */
514 enum x86_elf_abi
515 {
516 I386_ABI,
517 X86_64_ABI,
518 X86_64_X32_ABI
519 };
520
521 static enum x86_elf_abi x86_elf_abi = I386_ABI;
522 #endif
523
524 #if defined (TE_PE) || defined (TE_PEP)
525 /* Use big object file format. */
526 static int use_big_obj = 0;
527 #endif
528
529 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
530 /* 1 if generating code for a shared library. */
531 static int shared = 0;
532 #endif
533
534 /* 1 for intel syntax,
535 0 if att syntax. */
536 static int intel_syntax = 0;
537
538 /* 1 for Intel64 ISA,
539 0 if AMD64 ISA. */
540 static int intel64;
541
542 /* 1 for intel mnemonic,
543 0 if att mnemonic. */
544 static int intel_mnemonic = !SYSV386_COMPAT;
545
546 /* 1 if support old (<= 2.8.1) versions of gcc. */
547 static int old_gcc = OLDGCC_COMPAT;
548
549 /* 1 if pseudo registers are permitted. */
550 static int allow_pseudo_reg = 0;
551
552 /* 1 if register prefix % not required. */
553 static int allow_naked_reg = 0;
554
555 /* 1 if the assembler should add BND prefix for all control-tranferring
556 instructions supporting it, even if this prefix wasn't specified
557 explicitly. */
558 static int add_bnd_prefix = 0;
559
560 /* 1 if pseudo index register, eiz/riz, is allowed . */
561 static int allow_index_reg = 0;
562
563 /* 1 if the assembler should ignore LOCK prefix, even if it was
564 specified explicitly. */
565 static int omit_lock_prefix = 0;
566
567 /* 1 if the assembler should encode lfence, mfence, and sfence as
568 "lock addl $0, (%{re}sp)". */
569 static int avoid_fence = 0;
570
571 /* 1 if the assembler should generate relax relocations. */
572
573 static int generate_relax_relocations
574 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
575
576 static enum check_kind
577 {
578 check_none = 0,
579 check_warning,
580 check_error
581 }
582 sse_check, operand_check = check_warning;
583
584 /* Register prefix used for error message. */
585 static const char *register_prefix = "%";
586
587 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
588 leave, push, and pop instructions so that gcc has the same stack
589 frame as in 32 bit mode. */
590 static char stackop_size = '\0';
591
592 /* Non-zero to optimize code alignment. */
593 int optimize_align_code = 1;
594
595 /* Non-zero to quieten some warnings. */
596 static int quiet_warnings = 0;
597
598 /* CPU name. */
599 static const char *cpu_arch_name = NULL;
600 static char *cpu_sub_arch_name = NULL;
601
602 /* CPU feature flags. */
603 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
604
605 /* If we have selected a cpu we are generating instructions for. */
606 static int cpu_arch_tune_set = 0;
607
608 /* Cpu we are generating instructions for. */
609 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
610
611 /* CPU feature flags of cpu we are generating instructions for. */
612 static i386_cpu_flags cpu_arch_tune_flags;
613
614 /* CPU instruction set architecture used. */
615 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
616
617 /* CPU feature flags of instruction set architecture used. */
618 i386_cpu_flags cpu_arch_isa_flags;
619
620 /* If set, conditional jumps are not automatically promoted to handle
621 larger than a byte offset. */
622 static unsigned int no_cond_jump_promotion = 0;
623
624 /* Encode SSE instructions with VEX prefix. */
625 static unsigned int sse2avx;
626
627 /* Encode scalar AVX instructions with specific vector length. */
628 static enum
629 {
630 vex128 = 0,
631 vex256
632 } avxscalar;
633
634 /* Encode scalar EVEX LIG instructions with specific vector length. */
635 static enum
636 {
637 evexl128 = 0,
638 evexl256,
639 evexl512
640 } evexlig;
641
642 /* Encode EVEX WIG instructions with specific evex.w. */
643 static enum
644 {
645 evexw0 = 0,
646 evexw1
647 } evexwig;
648
649 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
650 static enum rc_type evexrcig = rne;
651
652 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
653 static symbolS *GOT_symbol;
654
655 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
656 unsigned int x86_dwarf2_return_column;
657
658 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
659 int x86_cie_data_alignment;
660
661 /* Interface to relax_segment.
662 There are 3 major relax states for 386 jump insns because the
663 different types of jumps add different sizes to frags when we're
664 figuring out what sort of jump to choose to reach a given label. */
665
666 /* Types. */
667 #define UNCOND_JUMP 0
668 #define COND_JUMP 1
669 #define COND_JUMP86 2
670
671 /* Sizes. */
672 #define CODE16 1
673 #define SMALL 0
674 #define SMALL16 (SMALL | CODE16)
675 #define BIG 2
676 #define BIG16 (BIG | CODE16)
677
678 #ifndef INLINE
679 #ifdef __GNUC__
680 #define INLINE __inline__
681 #else
682 #define INLINE
683 #endif
684 #endif
685
686 #define ENCODE_RELAX_STATE(type, size) \
687 ((relax_substateT) (((type) << 2) | (size)))
688 #define TYPE_FROM_RELAX_STATE(s) \
689 ((s) >> 2)
690 #define DISP_SIZE_FROM_RELAX_STATE(s) \
691 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
692
693 /* This table is used by relax_frag to promote short jumps to long
694 ones where necessary. SMALL (short) jumps may be promoted to BIG
695 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
696 don't allow a short jump in a 32 bit code segment to be promoted to
697 a 16 bit offset jump because it's slower (requires data size
698 prefix), and doesn't work, unless the destination is in the bottom
699 64k of the code segment (The top 16 bits of eip are zeroed). */
700
701 const relax_typeS md_relax_table[] =
702 {
703 /* The fields are:
704 1) most positive reach of this state,
705 2) most negative reach of this state,
706 3) how many bytes this mode will have in the variable part of the frag
707 4) which index into the table to try if we can't fit into this one. */
708
709 /* UNCOND_JUMP states. */
710 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
711 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
712 /* dword jmp adds 4 bytes to frag:
713 0 extra opcode bytes, 4 displacement bytes. */
714 {0, 0, 4, 0},
715 /* word jmp adds 2 byte2 to frag:
716 0 extra opcode bytes, 2 displacement bytes. */
717 {0, 0, 2, 0},
718
719 /* COND_JUMP states. */
720 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
721 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
722 /* dword conditionals adds 5 bytes to frag:
723 1 extra opcode byte, 4 displacement bytes. */
724 {0, 0, 5, 0},
725 /* word conditionals add 3 bytes to frag:
726 1 extra opcode byte, 2 displacement bytes. */
727 {0, 0, 3, 0},
728
729 /* COND_JUMP86 states. */
730 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
731 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
732 /* dword conditionals adds 5 bytes to frag:
733 1 extra opcode byte, 4 displacement bytes. */
734 {0, 0, 5, 0},
735 /* word conditionals add 4 bytes to frag:
736 1 displacement byte and a 3 byte long branch insn. */
737 {0, 0, 4, 0}
738 };
739
740 static const arch_entry cpu_arch[] =
741 {
742 /* Do not replace the first two entries - i386_target_format()
743 relies on them being there in this order. */
744 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
745 CPU_GENERIC32_FLAGS, 0 },
746 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
747 CPU_GENERIC64_FLAGS, 0 },
748 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
749 CPU_NONE_FLAGS, 0 },
750 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
751 CPU_I186_FLAGS, 0 },
752 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
753 CPU_I286_FLAGS, 0 },
754 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
755 CPU_I386_FLAGS, 0 },
756 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
757 CPU_I486_FLAGS, 0 },
758 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
759 CPU_I586_FLAGS, 0 },
760 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
761 CPU_I686_FLAGS, 0 },
762 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
763 CPU_I586_FLAGS, 0 },
764 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
765 CPU_PENTIUMPRO_FLAGS, 0 },
766 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
767 CPU_P2_FLAGS, 0 },
768 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
769 CPU_P3_FLAGS, 0 },
770 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
771 CPU_P4_FLAGS, 0 },
772 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
773 CPU_CORE_FLAGS, 0 },
774 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
775 CPU_NOCONA_FLAGS, 0 },
776 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
777 CPU_CORE_FLAGS, 1 },
778 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
779 CPU_CORE_FLAGS, 0 },
780 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
781 CPU_CORE2_FLAGS, 1 },
782 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
783 CPU_CORE2_FLAGS, 0 },
784 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
785 CPU_COREI7_FLAGS, 0 },
786 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
787 CPU_L1OM_FLAGS, 0 },
788 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
789 CPU_K1OM_FLAGS, 0 },
790 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
791 CPU_IAMCU_FLAGS, 0 },
792 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
793 CPU_K6_FLAGS, 0 },
794 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
795 CPU_K6_2_FLAGS, 0 },
796 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
797 CPU_ATHLON_FLAGS, 0 },
798 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
799 CPU_K8_FLAGS, 1 },
800 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
801 CPU_K8_FLAGS, 0 },
802 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
803 CPU_K8_FLAGS, 0 },
804 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
805 CPU_AMDFAM10_FLAGS, 0 },
806 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
807 CPU_BDVER1_FLAGS, 0 },
808 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
809 CPU_BDVER2_FLAGS, 0 },
810 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
811 CPU_BDVER3_FLAGS, 0 },
812 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
813 CPU_BDVER4_FLAGS, 0 },
814 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
815 CPU_ZNVER1_FLAGS, 0 },
816 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
817 CPU_BTVER1_FLAGS, 0 },
818 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
819 CPU_BTVER2_FLAGS, 0 },
820 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
821 CPU_8087_FLAGS, 0 },
822 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
823 CPU_287_FLAGS, 0 },
824 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
825 CPU_387_FLAGS, 0 },
826 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
827 CPU_MMX_FLAGS, 0 },
828 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
829 CPU_SSE_FLAGS, 0 },
830 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
831 CPU_SSE2_FLAGS, 0 },
832 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
833 CPU_SSE3_FLAGS, 0 },
834 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
835 CPU_SSSE3_FLAGS, 0 },
836 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
837 CPU_SSE4_1_FLAGS, 0 },
838 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
839 CPU_SSE4_2_FLAGS, 0 },
840 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
841 CPU_SSE4_2_FLAGS, 0 },
842 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
843 CPU_AVX_FLAGS, 0 },
844 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
845 CPU_AVX2_FLAGS, 0 },
846 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
847 CPU_AVX512F_FLAGS, 0 },
848 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
849 CPU_AVX512CD_FLAGS, 0 },
850 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
851 CPU_AVX512ER_FLAGS, 0 },
852 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
853 CPU_AVX512PF_FLAGS, 0 },
854 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
855 CPU_AVX512DQ_FLAGS, 0 },
856 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
857 CPU_AVX512BW_FLAGS, 0 },
858 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
859 CPU_AVX512VL_FLAGS, 0 },
860 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
861 CPU_VMX_FLAGS, 0 },
862 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
863 CPU_VMFUNC_FLAGS, 0 },
864 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
865 CPU_SMX_FLAGS, 0 },
866 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
867 CPU_XSAVE_FLAGS, 0 },
868 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
869 CPU_XSAVEOPT_FLAGS, 0 },
870 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
871 CPU_XSAVEC_FLAGS, 0 },
872 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
873 CPU_XSAVES_FLAGS, 0 },
874 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
875 CPU_AES_FLAGS, 0 },
876 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
877 CPU_PCLMUL_FLAGS, 0 },
878 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
879 CPU_PCLMUL_FLAGS, 1 },
880 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
881 CPU_FSGSBASE_FLAGS, 0 },
882 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
883 CPU_RDRND_FLAGS, 0 },
884 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
885 CPU_F16C_FLAGS, 0 },
886 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
887 CPU_BMI2_FLAGS, 0 },
888 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
889 CPU_FMA_FLAGS, 0 },
890 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
891 CPU_FMA4_FLAGS, 0 },
892 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
893 CPU_XOP_FLAGS, 0 },
894 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
895 CPU_LWP_FLAGS, 0 },
896 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
897 CPU_MOVBE_FLAGS, 0 },
898 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
899 CPU_CX16_FLAGS, 0 },
900 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
901 CPU_EPT_FLAGS, 0 },
902 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
903 CPU_LZCNT_FLAGS, 0 },
904 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
905 CPU_HLE_FLAGS, 0 },
906 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
907 CPU_RTM_FLAGS, 0 },
908 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
909 CPU_INVPCID_FLAGS, 0 },
910 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
911 CPU_CLFLUSH_FLAGS, 0 },
912 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
913 CPU_NOP_FLAGS, 0 },
914 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
915 CPU_SYSCALL_FLAGS, 0 },
916 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
917 CPU_RDTSCP_FLAGS, 0 },
918 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
919 CPU_3DNOW_FLAGS, 0 },
920 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
921 CPU_3DNOWA_FLAGS, 0 },
922 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
923 CPU_PADLOCK_FLAGS, 0 },
924 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
925 CPU_SVME_FLAGS, 1 },
926 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
927 CPU_SVME_FLAGS, 0 },
928 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
929 CPU_SSE4A_FLAGS, 0 },
930 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
931 CPU_ABM_FLAGS, 0 },
932 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
933 CPU_BMI_FLAGS, 0 },
934 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
935 CPU_TBM_FLAGS, 0 },
936 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
937 CPU_ADX_FLAGS, 0 },
938 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
939 CPU_RDSEED_FLAGS, 0 },
940 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
941 CPU_PRFCHW_FLAGS, 0 },
942 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
943 CPU_SMAP_FLAGS, 0 },
944 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
945 CPU_MPX_FLAGS, 0 },
946 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
947 CPU_SHA_FLAGS, 0 },
948 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
949 CPU_CLFLUSHOPT_FLAGS, 0 },
950 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
951 CPU_PREFETCHWT1_FLAGS, 0 },
952 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
953 CPU_SE1_FLAGS, 0 },
954 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
955 CPU_CLWB_FLAGS, 0 },
956 { STRING_COMMA_LEN (".pcommit"), PROCESSOR_UNKNOWN,
957 CPU_PCOMMIT_FLAGS, 0 },
958 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
959 CPU_AVX512IFMA_FLAGS, 0 },
960 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
961 CPU_AVX512VBMI_FLAGS, 0 },
962 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
963 CPU_CLZERO_FLAGS, 0 },
964 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
965 CPU_MWAITX_FLAGS, 0 },
966 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
967 CPU_OSPKE_FLAGS, 0 },
968 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
969 CPU_RDPID_FLAGS, 0 },
970 };
971
972 static const noarch_entry cpu_noarch[] =
973 {
974 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
975 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
976 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
977 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
978 };
979
980 #ifdef I386COFF
981 /* Like s_lcomm_internal in gas/read.c but the alignment string
982 is allowed to be optional. */
983
984 static symbolS *
985 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
986 {
987 addressT align = 0;
988
989 SKIP_WHITESPACE ();
990
991 if (needs_align
992 && *input_line_pointer == ',')
993 {
994 align = parse_align (needs_align - 1);
995
996 if (align == (addressT) -1)
997 return NULL;
998 }
999 else
1000 {
1001 if (size >= 8)
1002 align = 3;
1003 else if (size >= 4)
1004 align = 2;
1005 else if (size >= 2)
1006 align = 1;
1007 else
1008 align = 0;
1009 }
1010
1011 bss_alloc (symbolP, size, align);
1012 return symbolP;
1013 }
1014
1015 static void
1016 pe_lcomm (int needs_align)
1017 {
1018 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1019 }
1020 #endif
1021
1022 const pseudo_typeS md_pseudo_table[] =
1023 {
1024 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1025 {"align", s_align_bytes, 0},
1026 #else
1027 {"align", s_align_ptwo, 0},
1028 #endif
1029 {"arch", set_cpu_arch, 0},
1030 #ifndef I386COFF
1031 {"bss", s_bss, 0},
1032 #else
1033 {"lcomm", pe_lcomm, 1},
1034 #endif
1035 {"ffloat", float_cons, 'f'},
1036 {"dfloat", float_cons, 'd'},
1037 {"tfloat", float_cons, 'x'},
1038 {"value", cons, 2},
1039 {"slong", signed_cons, 4},
1040 {"noopt", s_ignore, 0},
1041 {"optim", s_ignore, 0},
1042 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1043 {"code16", set_code_flag, CODE_16BIT},
1044 {"code32", set_code_flag, CODE_32BIT},
1045 {"code64", set_code_flag, CODE_64BIT},
1046 {"intel_syntax", set_intel_syntax, 1},
1047 {"att_syntax", set_intel_syntax, 0},
1048 {"intel_mnemonic", set_intel_mnemonic, 1},
1049 {"att_mnemonic", set_intel_mnemonic, 0},
1050 {"allow_index_reg", set_allow_index_reg, 1},
1051 {"disallow_index_reg", set_allow_index_reg, 0},
1052 {"sse_check", set_check, 0},
1053 {"operand_check", set_check, 1},
1054 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1055 {"largecomm", handle_large_common, 0},
1056 #else
1057 {"file", (void (*) (int)) dwarf2_directive_file, 0},
1058 {"loc", dwarf2_directive_loc, 0},
1059 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1060 #endif
1061 #ifdef TE_PE
1062 {"secrel32", pe_directive_secrel, 0},
1063 #endif
1064 {0, 0, 0}
1065 };
1066
1067 /* For interface with expression (). */
1068 extern char *input_line_pointer;
1069
1070 /* Hash table for instruction mnemonic lookup. */
1071 static struct hash_control *op_hash;
1072
1073 /* Hash table for register lookup. */
1074 static struct hash_control *reg_hash;
1075 \f
1076 void
1077 i386_align_code (fragS *fragP, int count)
1078 {
1079 /* Various efficient no-op patterns for aligning code labels.
1080 Note: Don't try to assemble the instructions in the comments.
1081 0L and 0w are not legal. */
1082 static const unsigned char f32_1[] =
1083 {0x90}; /* nop */
1084 static const unsigned char f32_2[] =
1085 {0x66,0x90}; /* xchg %ax,%ax */
1086 static const unsigned char f32_3[] =
1087 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1088 static const unsigned char f32_4[] =
1089 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1090 static const unsigned char f32_5[] =
1091 {0x90, /* nop */
1092 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1093 static const unsigned char f32_6[] =
1094 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1095 static const unsigned char f32_7[] =
1096 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1097 static const unsigned char f32_8[] =
1098 {0x90, /* nop */
1099 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1100 static const unsigned char f32_9[] =
1101 {0x89,0xf6, /* movl %esi,%esi */
1102 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1103 static const unsigned char f32_10[] =
1104 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1105 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1106 static const unsigned char f32_11[] =
1107 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1108 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1109 static const unsigned char f32_12[] =
1110 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1111 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1112 static const unsigned char f32_13[] =
1113 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1114 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1115 static const unsigned char f32_14[] =
1116 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1117 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1118 static const unsigned char f16_3[] =
1119 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1120 static const unsigned char f16_4[] =
1121 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1122 static const unsigned char f16_5[] =
1123 {0x90, /* nop */
1124 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1125 static const unsigned char f16_6[] =
1126 {0x89,0xf6, /* mov %si,%si */
1127 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1128 static const unsigned char f16_7[] =
1129 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1130 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1131 static const unsigned char f16_8[] =
1132 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1133 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1134 static const unsigned char jump_31[] =
1135 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1136 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1137 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1138 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1139 static const unsigned char *const f32_patt[] = {
1140 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1141 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1142 };
1143 static const unsigned char *const f16_patt[] = {
1144 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1145 };
1146 /* nopl (%[re]ax) */
1147 static const unsigned char alt_3[] =
1148 {0x0f,0x1f,0x00};
1149 /* nopl 0(%[re]ax) */
1150 static const unsigned char alt_4[] =
1151 {0x0f,0x1f,0x40,0x00};
1152 /* nopl 0(%[re]ax,%[re]ax,1) */
1153 static const unsigned char alt_5[] =
1154 {0x0f,0x1f,0x44,0x00,0x00};
1155 /* nopw 0(%[re]ax,%[re]ax,1) */
1156 static const unsigned char alt_6[] =
1157 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1158 /* nopl 0L(%[re]ax) */
1159 static const unsigned char alt_7[] =
1160 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1161 /* nopl 0L(%[re]ax,%[re]ax,1) */
1162 static const unsigned char alt_8[] =
1163 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1164 /* nopw 0L(%[re]ax,%[re]ax,1) */
1165 static const unsigned char alt_9[] =
1166 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1167 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1168 static const unsigned char alt_10[] =
1169 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1170 static const unsigned char *const alt_patt[] = {
1171 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1172 alt_9, alt_10
1173 };
1174
1175 /* Only align for at least a positive non-zero boundary. */
1176 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1177 return;
1178
1179 /* We need to decide which NOP sequence to use for 32bit and
1180 64bit. When -mtune= is used:
1181
1182 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1183 PROCESSOR_GENERIC32, f32_patt will be used.
1184 2. For the rest, alt_patt will be used.
1185
1186 When -mtune= isn't used, alt_patt will be used if
1187 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1188 be used.
1189
1190 When -march= or .arch is used, we can't use anything beyond
1191 cpu_arch_isa_flags. */
1192
1193 if (flag_code == CODE_16BIT)
1194 {
1195 if (count > 8)
1196 {
1197 memcpy (fragP->fr_literal + fragP->fr_fix,
1198 jump_31, count);
1199 /* Adjust jump offset. */
1200 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1201 }
1202 else
1203 memcpy (fragP->fr_literal + fragP->fr_fix,
1204 f16_patt[count - 1], count);
1205 }
1206 else
1207 {
1208 const unsigned char *const *patt = NULL;
1209
1210 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1211 {
1212 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1213 switch (cpu_arch_tune)
1214 {
1215 case PROCESSOR_UNKNOWN:
1216 /* We use cpu_arch_isa_flags to check if we SHOULD
1217 optimize with nops. */
1218 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1219 patt = alt_patt;
1220 else
1221 patt = f32_patt;
1222 break;
1223 case PROCESSOR_PENTIUM4:
1224 case PROCESSOR_NOCONA:
1225 case PROCESSOR_CORE:
1226 case PROCESSOR_CORE2:
1227 case PROCESSOR_COREI7:
1228 case PROCESSOR_L1OM:
1229 case PROCESSOR_K1OM:
1230 case PROCESSOR_GENERIC64:
1231 case PROCESSOR_K6:
1232 case PROCESSOR_ATHLON:
1233 case PROCESSOR_K8:
1234 case PROCESSOR_AMDFAM10:
1235 case PROCESSOR_BD:
1236 case PROCESSOR_ZNVER:
1237 case PROCESSOR_BT:
1238 patt = alt_patt;
1239 break;
1240 case PROCESSOR_I386:
1241 case PROCESSOR_I486:
1242 case PROCESSOR_PENTIUM:
1243 case PROCESSOR_PENTIUMPRO:
1244 case PROCESSOR_IAMCU:
1245 case PROCESSOR_GENERIC32:
1246 patt = f32_patt;
1247 break;
1248 }
1249 }
1250 else
1251 {
1252 switch (fragP->tc_frag_data.tune)
1253 {
1254 case PROCESSOR_UNKNOWN:
1255 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1256 PROCESSOR_UNKNOWN. */
1257 abort ();
1258 break;
1259
1260 case PROCESSOR_I386:
1261 case PROCESSOR_I486:
1262 case PROCESSOR_PENTIUM:
1263 case PROCESSOR_IAMCU:
1264 case PROCESSOR_K6:
1265 case PROCESSOR_ATHLON:
1266 case PROCESSOR_K8:
1267 case PROCESSOR_AMDFAM10:
1268 case PROCESSOR_BD:
1269 case PROCESSOR_ZNVER:
1270 case PROCESSOR_BT:
1271 case PROCESSOR_GENERIC32:
1272 /* We use cpu_arch_isa_flags to check if we CAN optimize
1273 with nops. */
1274 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1275 patt = alt_patt;
1276 else
1277 patt = f32_patt;
1278 break;
1279 case PROCESSOR_PENTIUMPRO:
1280 case PROCESSOR_PENTIUM4:
1281 case PROCESSOR_NOCONA:
1282 case PROCESSOR_CORE:
1283 case PROCESSOR_CORE2:
1284 case PROCESSOR_COREI7:
1285 case PROCESSOR_L1OM:
1286 case PROCESSOR_K1OM:
1287 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1288 patt = alt_patt;
1289 else
1290 patt = f32_patt;
1291 break;
1292 case PROCESSOR_GENERIC64:
1293 patt = alt_patt;
1294 break;
1295 }
1296 }
1297
1298 if (patt == f32_patt)
1299 {
1300 /* If the padding is less than 15 bytes, we use the normal
1301 ones. Otherwise, we use a jump instruction and adjust
1302 its offset. */
1303 int limit;
1304
1305 /* For 64bit, the limit is 3 bytes. */
1306 if (flag_code == CODE_64BIT
1307 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1308 limit = 3;
1309 else
1310 limit = 15;
1311 if (count < limit)
1312 memcpy (fragP->fr_literal + fragP->fr_fix,
1313 patt[count - 1], count);
1314 else
1315 {
1316 memcpy (fragP->fr_literal + fragP->fr_fix,
1317 jump_31, count);
1318 /* Adjust jump offset. */
1319 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1320 }
1321 }
1322 else
1323 {
1324 /* Maximum length of an instruction is 10 byte. If the
1325 padding is greater than 10 bytes and we don't use jump,
1326 we have to break it into smaller pieces. */
1327 int padding = count;
1328 while (padding > 10)
1329 {
1330 padding -= 10;
1331 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1332 patt [9], 10);
1333 }
1334
1335 if (padding)
1336 memcpy (fragP->fr_literal + fragP->fr_fix,
1337 patt [padding - 1], padding);
1338 }
1339 }
1340 fragP->fr_var = count;
1341 }
1342
1343 static INLINE int
1344 operand_type_all_zero (const union i386_operand_type *x)
1345 {
1346 switch (ARRAY_SIZE(x->array))
1347 {
1348 case 3:
1349 if (x->array[2])
1350 return 0;
1351 case 2:
1352 if (x->array[1])
1353 return 0;
1354 case 1:
1355 return !x->array[0];
1356 default:
1357 abort ();
1358 }
1359 }
1360
1361 static INLINE void
1362 operand_type_set (union i386_operand_type *x, unsigned int v)
1363 {
1364 switch (ARRAY_SIZE(x->array))
1365 {
1366 case 3:
1367 x->array[2] = v;
1368 case 2:
1369 x->array[1] = v;
1370 case 1:
1371 x->array[0] = v;
1372 break;
1373 default:
1374 abort ();
1375 }
1376 }
1377
1378 static INLINE int
1379 operand_type_equal (const union i386_operand_type *x,
1380 const union i386_operand_type *y)
1381 {
1382 switch (ARRAY_SIZE(x->array))
1383 {
1384 case 3:
1385 if (x->array[2] != y->array[2])
1386 return 0;
1387 case 2:
1388 if (x->array[1] != y->array[1])
1389 return 0;
1390 case 1:
1391 return x->array[0] == y->array[0];
1392 break;
1393 default:
1394 abort ();
1395 }
1396 }
1397
1398 static INLINE int
1399 cpu_flags_all_zero (const union i386_cpu_flags *x)
1400 {
1401 switch (ARRAY_SIZE(x->array))
1402 {
1403 case 3:
1404 if (x->array[2])
1405 return 0;
1406 case 2:
1407 if (x->array[1])
1408 return 0;
1409 case 1:
1410 return !x->array[0];
1411 default:
1412 abort ();
1413 }
1414 }
1415
1416 static INLINE int
1417 cpu_flags_equal (const union i386_cpu_flags *x,
1418 const union i386_cpu_flags *y)
1419 {
1420 switch (ARRAY_SIZE(x->array))
1421 {
1422 case 3:
1423 if (x->array[2] != y->array[2])
1424 return 0;
1425 case 2:
1426 if (x->array[1] != y->array[1])
1427 return 0;
1428 case 1:
1429 return x->array[0] == y->array[0];
1430 break;
1431 default:
1432 abort ();
1433 }
1434 }
1435
1436 static INLINE int
1437 cpu_flags_check_cpu64 (i386_cpu_flags f)
1438 {
1439 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1440 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1441 }
1442
1443 static INLINE i386_cpu_flags
1444 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1445 {
1446 switch (ARRAY_SIZE (x.array))
1447 {
1448 case 3:
1449 x.array [2] &= y.array [2];
1450 case 2:
1451 x.array [1] &= y.array [1];
1452 case 1:
1453 x.array [0] &= y.array [0];
1454 break;
1455 default:
1456 abort ();
1457 }
1458 return x;
1459 }
1460
1461 static INLINE i386_cpu_flags
1462 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1463 {
1464 switch (ARRAY_SIZE (x.array))
1465 {
1466 case 3:
1467 x.array [2] |= y.array [2];
1468 case 2:
1469 x.array [1] |= y.array [1];
1470 case 1:
1471 x.array [0] |= y.array [0];
1472 break;
1473 default:
1474 abort ();
1475 }
1476 return x;
1477 }
1478
1479 static INLINE i386_cpu_flags
1480 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1481 {
1482 switch (ARRAY_SIZE (x.array))
1483 {
1484 case 3:
1485 x.array [2] &= ~y.array [2];
1486 case 2:
1487 x.array [1] &= ~y.array [1];
1488 case 1:
1489 x.array [0] &= ~y.array [0];
1490 break;
1491 default:
1492 abort ();
1493 }
1494 return x;
1495 }
1496
1497 static int
1498 valid_iamcu_cpu_flags (const i386_cpu_flags *flags)
1499 {
1500 if (cpu_arch_isa == PROCESSOR_IAMCU)
1501 {
1502 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_COMPAT_FLAGS;
1503 i386_cpu_flags compat_flags;
1504 compat_flags = cpu_flags_and_not (*flags, iamcu_flags);
1505 return cpu_flags_all_zero (&compat_flags);
1506 }
1507 else
1508 return 1;
1509 }
1510
1511 #define CPU_FLAGS_ARCH_MATCH 0x1
1512 #define CPU_FLAGS_64BIT_MATCH 0x2
1513 #define CPU_FLAGS_AES_MATCH 0x4
1514 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1515 #define CPU_FLAGS_AVX_MATCH 0x10
1516
1517 #define CPU_FLAGS_32BIT_MATCH \
1518 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1519 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1520 #define CPU_FLAGS_PERFECT_MATCH \
1521 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1522
1523 /* Return CPU flags match bits. */
1524
1525 static int
1526 cpu_flags_match (const insn_template *t)
1527 {
1528 i386_cpu_flags x = t->cpu_flags;
1529 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1530
1531 x.bitfield.cpu64 = 0;
1532 x.bitfield.cpuno64 = 0;
1533
1534 if (cpu_flags_all_zero (&x))
1535 {
1536 /* This instruction is available on all archs. */
1537 match |= CPU_FLAGS_32BIT_MATCH;
1538 }
1539 else
1540 {
1541 /* This instruction is available only on some archs. */
1542 i386_cpu_flags cpu = cpu_arch_flags;
1543
1544 /* Set cpuamd64 and cpuintel64 here since they may be changed by
1545 set_cpu_arch. */
1546 cpu_arch_flags.bitfield.cpuamd64 = !intel64;
1547 cpu_arch_flags.bitfield.cpuintel64 = intel64;
1548
1549 cpu = cpu_flags_and (x, cpu);
1550 if (!cpu_flags_all_zero (&cpu))
1551 {
1552 if (x.bitfield.cpuavx)
1553 {
1554 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1555 if (cpu.bitfield.cpuavx)
1556 {
1557 /* Check SSE2AVX. */
1558 if (!t->opcode_modifier.sse2avx|| sse2avx)
1559 {
1560 match |= (CPU_FLAGS_ARCH_MATCH
1561 | CPU_FLAGS_AVX_MATCH);
1562 /* Check AES. */
1563 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1564 match |= CPU_FLAGS_AES_MATCH;
1565 /* Check PCLMUL. */
1566 if (!x.bitfield.cpupclmul
1567 || cpu.bitfield.cpupclmul)
1568 match |= CPU_FLAGS_PCLMUL_MATCH;
1569 }
1570 }
1571 else
1572 match |= CPU_FLAGS_ARCH_MATCH;
1573 }
1574 else if (x.bitfield.cpuavx512vl)
1575 {
1576 /* Match AVX512VL. */
1577 if (cpu.bitfield.cpuavx512vl)
1578 {
1579 /* Need another match. */
1580 cpu.bitfield.cpuavx512vl = 0;
1581 if (!cpu_flags_all_zero (&cpu))
1582 match |= CPU_FLAGS_32BIT_MATCH;
1583 else
1584 match |= CPU_FLAGS_ARCH_MATCH;
1585 }
1586 else
1587 match |= CPU_FLAGS_ARCH_MATCH;
1588 }
1589 else
1590 match |= CPU_FLAGS_32BIT_MATCH;
1591 }
1592 }
1593 return match;
1594 }
1595
1596 static INLINE i386_operand_type
1597 operand_type_and (i386_operand_type x, i386_operand_type y)
1598 {
1599 switch (ARRAY_SIZE (x.array))
1600 {
1601 case 3:
1602 x.array [2] &= y.array [2];
1603 case 2:
1604 x.array [1] &= y.array [1];
1605 case 1:
1606 x.array [0] &= y.array [0];
1607 break;
1608 default:
1609 abort ();
1610 }
1611 return x;
1612 }
1613
1614 static INLINE i386_operand_type
1615 operand_type_or (i386_operand_type x, i386_operand_type y)
1616 {
1617 switch (ARRAY_SIZE (x.array))
1618 {
1619 case 3:
1620 x.array [2] |= y.array [2];
1621 case 2:
1622 x.array [1] |= y.array [1];
1623 case 1:
1624 x.array [0] |= y.array [0];
1625 break;
1626 default:
1627 abort ();
1628 }
1629 return x;
1630 }
1631
1632 static INLINE i386_operand_type
1633 operand_type_xor (i386_operand_type x, i386_operand_type y)
1634 {
1635 switch (ARRAY_SIZE (x.array))
1636 {
1637 case 3:
1638 x.array [2] ^= y.array [2];
1639 case 2:
1640 x.array [1] ^= y.array [1];
1641 case 1:
1642 x.array [0] ^= y.array [0];
1643 break;
1644 default:
1645 abort ();
1646 }
1647 return x;
1648 }
1649
1650 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1651 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1652 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1653 static const i386_operand_type inoutportreg
1654 = OPERAND_TYPE_INOUTPORTREG;
1655 static const i386_operand_type reg16_inoutportreg
1656 = OPERAND_TYPE_REG16_INOUTPORTREG;
1657 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1658 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1659 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1660 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1661 static const i386_operand_type anydisp
1662 = OPERAND_TYPE_ANYDISP;
1663 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1664 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1665 static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1666 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1667 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1668 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1669 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1670 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1671 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1672 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1673 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1674 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1675 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1676 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1677
1678 enum operand_type
1679 {
1680 reg,
1681 imm,
1682 disp,
1683 anymem
1684 };
1685
1686 static INLINE int
1687 operand_type_check (i386_operand_type t, enum operand_type c)
1688 {
1689 switch (c)
1690 {
1691 case reg:
1692 return (t.bitfield.reg8
1693 || t.bitfield.reg16
1694 || t.bitfield.reg32
1695 || t.bitfield.reg64);
1696
1697 case imm:
1698 return (t.bitfield.imm8
1699 || t.bitfield.imm8s
1700 || t.bitfield.imm16
1701 || t.bitfield.imm32
1702 || t.bitfield.imm32s
1703 || t.bitfield.imm64);
1704
1705 case disp:
1706 return (t.bitfield.disp8
1707 || t.bitfield.disp16
1708 || t.bitfield.disp32
1709 || t.bitfield.disp32s
1710 || t.bitfield.disp64);
1711
1712 case anymem:
1713 return (t.bitfield.disp8
1714 || t.bitfield.disp16
1715 || t.bitfield.disp32
1716 || t.bitfield.disp32s
1717 || t.bitfield.disp64
1718 || t.bitfield.baseindex);
1719
1720 default:
1721 abort ();
1722 }
1723
1724 return 0;
1725 }
1726
1727 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1728 operand J for instruction template T. */
1729
1730 static INLINE int
1731 match_reg_size (const insn_template *t, unsigned int j)
1732 {
1733 return !((i.types[j].bitfield.byte
1734 && !t->operand_types[j].bitfield.byte)
1735 || (i.types[j].bitfield.word
1736 && !t->operand_types[j].bitfield.word)
1737 || (i.types[j].bitfield.dword
1738 && !t->operand_types[j].bitfield.dword)
1739 || (i.types[j].bitfield.qword
1740 && !t->operand_types[j].bitfield.qword));
1741 }
1742
1743 /* Return 1 if there is no conflict in any size on operand J for
1744 instruction template T. */
1745
1746 static INLINE int
1747 match_mem_size (const insn_template *t, unsigned int j)
1748 {
1749 return (match_reg_size (t, j)
1750 && !((i.types[j].bitfield.unspecified
1751 && !i.broadcast
1752 && !t->operand_types[j].bitfield.unspecified)
1753 || (i.types[j].bitfield.fword
1754 && !t->operand_types[j].bitfield.fword)
1755 || (i.types[j].bitfield.tbyte
1756 && !t->operand_types[j].bitfield.tbyte)
1757 || (i.types[j].bitfield.xmmword
1758 && !t->operand_types[j].bitfield.xmmword)
1759 || (i.types[j].bitfield.ymmword
1760 && !t->operand_types[j].bitfield.ymmword)
1761 || (i.types[j].bitfield.zmmword
1762 && !t->operand_types[j].bitfield.zmmword)));
1763 }
1764
1765 /* Return 1 if there is no size conflict on any operands for
1766 instruction template T. */
1767
1768 static INLINE int
1769 operand_size_match (const insn_template *t)
1770 {
1771 unsigned int j;
1772 int match = 1;
1773
1774 /* Don't check jump instructions. */
1775 if (t->opcode_modifier.jump
1776 || t->opcode_modifier.jumpbyte
1777 || t->opcode_modifier.jumpdword
1778 || t->opcode_modifier.jumpintersegment)
1779 return match;
1780
1781 /* Check memory and accumulator operand size. */
1782 for (j = 0; j < i.operands; j++)
1783 {
1784 if (t->operand_types[j].bitfield.anysize)
1785 continue;
1786
1787 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1788 {
1789 match = 0;
1790 break;
1791 }
1792
1793 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1794 {
1795 match = 0;
1796 break;
1797 }
1798 }
1799
1800 if (match)
1801 return match;
1802 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1803 {
1804 mismatch:
1805 i.error = operand_size_mismatch;
1806 return 0;
1807 }
1808
1809 /* Check reverse. */
1810 gas_assert (i.operands == 2);
1811
1812 match = 1;
1813 for (j = 0; j < 2; j++)
1814 {
1815 if (t->operand_types[j].bitfield.acc
1816 && !match_reg_size (t, j ? 0 : 1))
1817 goto mismatch;
1818
1819 if (i.types[j].bitfield.mem
1820 && !match_mem_size (t, j ? 0 : 1))
1821 goto mismatch;
1822 }
1823
1824 return match;
1825 }
1826
1827 static INLINE int
1828 operand_type_match (i386_operand_type overlap,
1829 i386_operand_type given)
1830 {
1831 i386_operand_type temp = overlap;
1832
1833 temp.bitfield.jumpabsolute = 0;
1834 temp.bitfield.unspecified = 0;
1835 temp.bitfield.byte = 0;
1836 temp.bitfield.word = 0;
1837 temp.bitfield.dword = 0;
1838 temp.bitfield.fword = 0;
1839 temp.bitfield.qword = 0;
1840 temp.bitfield.tbyte = 0;
1841 temp.bitfield.xmmword = 0;
1842 temp.bitfield.ymmword = 0;
1843 temp.bitfield.zmmword = 0;
1844 if (operand_type_all_zero (&temp))
1845 goto mismatch;
1846
1847 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1848 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1849 return 1;
1850
1851 mismatch:
1852 i.error = operand_type_mismatch;
1853 return 0;
1854 }
1855
1856 /* If given types g0 and g1 are registers they must be of the same type
1857 unless the expected operand type register overlap is null.
1858 Note that Acc in a template matches every size of reg. */
1859
1860 static INLINE int
1861 operand_type_register_match (i386_operand_type m0,
1862 i386_operand_type g0,
1863 i386_operand_type t0,
1864 i386_operand_type m1,
1865 i386_operand_type g1,
1866 i386_operand_type t1)
1867 {
1868 if (!operand_type_check (g0, reg))
1869 return 1;
1870
1871 if (!operand_type_check (g1, reg))
1872 return 1;
1873
1874 if (g0.bitfield.reg8 == g1.bitfield.reg8
1875 && g0.bitfield.reg16 == g1.bitfield.reg16
1876 && g0.bitfield.reg32 == g1.bitfield.reg32
1877 && g0.bitfield.reg64 == g1.bitfield.reg64)
1878 return 1;
1879
1880 if (m0.bitfield.acc)
1881 {
1882 t0.bitfield.reg8 = 1;
1883 t0.bitfield.reg16 = 1;
1884 t0.bitfield.reg32 = 1;
1885 t0.bitfield.reg64 = 1;
1886 }
1887
1888 if (m1.bitfield.acc)
1889 {
1890 t1.bitfield.reg8 = 1;
1891 t1.bitfield.reg16 = 1;
1892 t1.bitfield.reg32 = 1;
1893 t1.bitfield.reg64 = 1;
1894 }
1895
1896 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1897 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1898 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1899 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1900 return 1;
1901
1902 i.error = register_type_mismatch;
1903
1904 return 0;
1905 }
1906
1907 static INLINE unsigned int
1908 register_number (const reg_entry *r)
1909 {
1910 unsigned int nr = r->reg_num;
1911
1912 if (r->reg_flags & RegRex)
1913 nr += 8;
1914
1915 if (r->reg_flags & RegVRex)
1916 nr += 16;
1917
1918 return nr;
1919 }
1920
1921 static INLINE unsigned int
1922 mode_from_disp_size (i386_operand_type t)
1923 {
1924 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
1925 return 1;
1926 else if (t.bitfield.disp16
1927 || t.bitfield.disp32
1928 || t.bitfield.disp32s)
1929 return 2;
1930 else
1931 return 0;
1932 }
1933
1934 static INLINE int
1935 fits_in_signed_byte (addressT num)
1936 {
1937 return num + 0x80 <= 0xff;
1938 }
1939
1940 static INLINE int
1941 fits_in_unsigned_byte (addressT num)
1942 {
1943 return num <= 0xff;
1944 }
1945
1946 static INLINE int
1947 fits_in_unsigned_word (addressT num)
1948 {
1949 return num <= 0xffff;
1950 }
1951
1952 static INLINE int
1953 fits_in_signed_word (addressT num)
1954 {
1955 return num + 0x8000 <= 0xffff;
1956 }
1957
1958 static INLINE int
1959 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
1960 {
1961 #ifndef BFD64
1962 return 1;
1963 #else
1964 return num + 0x80000000 <= 0xffffffff;
1965 #endif
1966 } /* fits_in_signed_long() */
1967
1968 static INLINE int
1969 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
1970 {
1971 #ifndef BFD64
1972 return 1;
1973 #else
1974 return num <= 0xffffffff;
1975 #endif
1976 } /* fits_in_unsigned_long() */
1977
1978 static INLINE int
1979 fits_in_vec_disp8 (offsetT num)
1980 {
1981 int shift = i.memshift;
1982 unsigned int mask;
1983
1984 if (shift == -1)
1985 abort ();
1986
1987 mask = (1 << shift) - 1;
1988
1989 /* Return 0 if NUM isn't properly aligned. */
1990 if ((num & mask))
1991 return 0;
1992
1993 /* Check if NUM will fit in 8bit after shift. */
1994 return fits_in_signed_byte (num >> shift);
1995 }
1996
1997 static INLINE int
1998 fits_in_imm4 (offsetT num)
1999 {
2000 return (num & 0xf) == num;
2001 }
2002
2003 static i386_operand_type
2004 smallest_imm_type (offsetT num)
2005 {
2006 i386_operand_type t;
2007
2008 operand_type_set (&t, 0);
2009 t.bitfield.imm64 = 1;
2010
2011 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2012 {
2013 /* This code is disabled on the 486 because all the Imm1 forms
2014 in the opcode table are slower on the i486. They're the
2015 versions with the implicitly specified single-position
2016 displacement, which has another syntax if you really want to
2017 use that form. */
2018 t.bitfield.imm1 = 1;
2019 t.bitfield.imm8 = 1;
2020 t.bitfield.imm8s = 1;
2021 t.bitfield.imm16 = 1;
2022 t.bitfield.imm32 = 1;
2023 t.bitfield.imm32s = 1;
2024 }
2025 else if (fits_in_signed_byte (num))
2026 {
2027 t.bitfield.imm8 = 1;
2028 t.bitfield.imm8s = 1;
2029 t.bitfield.imm16 = 1;
2030 t.bitfield.imm32 = 1;
2031 t.bitfield.imm32s = 1;
2032 }
2033 else if (fits_in_unsigned_byte (num))
2034 {
2035 t.bitfield.imm8 = 1;
2036 t.bitfield.imm16 = 1;
2037 t.bitfield.imm32 = 1;
2038 t.bitfield.imm32s = 1;
2039 }
2040 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2041 {
2042 t.bitfield.imm16 = 1;
2043 t.bitfield.imm32 = 1;
2044 t.bitfield.imm32s = 1;
2045 }
2046 else if (fits_in_signed_long (num))
2047 {
2048 t.bitfield.imm32 = 1;
2049 t.bitfield.imm32s = 1;
2050 }
2051 else if (fits_in_unsigned_long (num))
2052 t.bitfield.imm32 = 1;
2053
2054 return t;
2055 }
2056
2057 static offsetT
2058 offset_in_range (offsetT val, int size)
2059 {
2060 addressT mask;
2061
2062 switch (size)
2063 {
2064 case 1: mask = ((addressT) 1 << 8) - 1; break;
2065 case 2: mask = ((addressT) 1 << 16) - 1; break;
2066 case 4: mask = ((addressT) 2 << 31) - 1; break;
2067 #ifdef BFD64
2068 case 8: mask = ((addressT) 2 << 63) - 1; break;
2069 #endif
2070 default: abort ();
2071 }
2072
2073 #ifdef BFD64
2074 /* If BFD64, sign extend val for 32bit address mode. */
2075 if (flag_code != CODE_64BIT
2076 || i.prefix[ADDR_PREFIX])
2077 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2078 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2079 #endif
2080
2081 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2082 {
2083 char buf1[40], buf2[40];
2084
2085 sprint_value (buf1, val);
2086 sprint_value (buf2, val & mask);
2087 as_warn (_("%s shortened to %s"), buf1, buf2);
2088 }
2089 return val & mask;
2090 }
2091
2092 enum PREFIX_GROUP
2093 {
2094 PREFIX_EXIST = 0,
2095 PREFIX_LOCK,
2096 PREFIX_REP,
2097 PREFIX_OTHER
2098 };
2099
2100 /* Returns
2101 a. PREFIX_EXIST if attempting to add a prefix where one from the
2102 same class already exists.
2103 b. PREFIX_LOCK if lock prefix is added.
2104 c. PREFIX_REP if rep/repne prefix is added.
2105 d. PREFIX_OTHER if other prefix is added.
2106 */
2107
2108 static enum PREFIX_GROUP
2109 add_prefix (unsigned int prefix)
2110 {
2111 enum PREFIX_GROUP ret = PREFIX_OTHER;
2112 unsigned int q;
2113
2114 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2115 && flag_code == CODE_64BIT)
2116 {
2117 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2118 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2119 && (prefix & (REX_R | REX_X | REX_B))))
2120 ret = PREFIX_EXIST;
2121 q = REX_PREFIX;
2122 }
2123 else
2124 {
2125 switch (prefix)
2126 {
2127 default:
2128 abort ();
2129
2130 case CS_PREFIX_OPCODE:
2131 case DS_PREFIX_OPCODE:
2132 case ES_PREFIX_OPCODE:
2133 case FS_PREFIX_OPCODE:
2134 case GS_PREFIX_OPCODE:
2135 case SS_PREFIX_OPCODE:
2136 q = SEG_PREFIX;
2137 break;
2138
2139 case REPNE_PREFIX_OPCODE:
2140 case REPE_PREFIX_OPCODE:
2141 q = REP_PREFIX;
2142 ret = PREFIX_REP;
2143 break;
2144
2145 case LOCK_PREFIX_OPCODE:
2146 q = LOCK_PREFIX;
2147 ret = PREFIX_LOCK;
2148 break;
2149
2150 case FWAIT_OPCODE:
2151 q = WAIT_PREFIX;
2152 break;
2153
2154 case ADDR_PREFIX_OPCODE:
2155 q = ADDR_PREFIX;
2156 break;
2157
2158 case DATA_PREFIX_OPCODE:
2159 q = DATA_PREFIX;
2160 break;
2161 }
2162 if (i.prefix[q] != 0)
2163 ret = PREFIX_EXIST;
2164 }
2165
2166 if (ret)
2167 {
2168 if (!i.prefix[q])
2169 ++i.prefixes;
2170 i.prefix[q] |= prefix;
2171 }
2172 else
2173 as_bad (_("same type of prefix used twice"));
2174
2175 return ret;
2176 }
2177
2178 static void
2179 update_code_flag (int value, int check)
2180 {
2181 PRINTF_LIKE ((*as_error));
2182
2183 flag_code = (enum flag_code) value;
2184 if (flag_code == CODE_64BIT)
2185 {
2186 cpu_arch_flags.bitfield.cpu64 = 1;
2187 cpu_arch_flags.bitfield.cpuno64 = 0;
2188 }
2189 else
2190 {
2191 cpu_arch_flags.bitfield.cpu64 = 0;
2192 cpu_arch_flags.bitfield.cpuno64 = 1;
2193 }
2194 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2195 {
2196 if (check)
2197 as_error = as_fatal;
2198 else
2199 as_error = as_bad;
2200 (*as_error) (_("64bit mode not supported on `%s'."),
2201 cpu_arch_name ? cpu_arch_name : default_arch);
2202 }
2203 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2204 {
2205 if (check)
2206 as_error = as_fatal;
2207 else
2208 as_error = as_bad;
2209 (*as_error) (_("32bit mode not supported on `%s'."),
2210 cpu_arch_name ? cpu_arch_name : default_arch);
2211 }
2212 stackop_size = '\0';
2213 }
2214
2215 static void
2216 set_code_flag (int value)
2217 {
2218 update_code_flag (value, 0);
2219 }
2220
2221 static void
2222 set_16bit_gcc_code_flag (int new_code_flag)
2223 {
2224 flag_code = (enum flag_code) new_code_flag;
2225 if (flag_code != CODE_16BIT)
2226 abort ();
2227 cpu_arch_flags.bitfield.cpu64 = 0;
2228 cpu_arch_flags.bitfield.cpuno64 = 1;
2229 stackop_size = LONG_MNEM_SUFFIX;
2230 }
2231
2232 static void
2233 set_intel_syntax (int syntax_flag)
2234 {
2235 /* Find out if register prefixing is specified. */
2236 int ask_naked_reg = 0;
2237
2238 SKIP_WHITESPACE ();
2239 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2240 {
2241 char *string;
2242 int e = get_symbol_name (&string);
2243
2244 if (strcmp (string, "prefix") == 0)
2245 ask_naked_reg = 1;
2246 else if (strcmp (string, "noprefix") == 0)
2247 ask_naked_reg = -1;
2248 else
2249 as_bad (_("bad argument to syntax directive."));
2250 (void) restore_line_pointer (e);
2251 }
2252 demand_empty_rest_of_line ();
2253
2254 intel_syntax = syntax_flag;
2255
2256 if (ask_naked_reg == 0)
2257 allow_naked_reg = (intel_syntax
2258 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2259 else
2260 allow_naked_reg = (ask_naked_reg < 0);
2261
2262 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2263
2264 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2265 identifier_chars['$'] = intel_syntax ? '$' : 0;
2266 register_prefix = allow_naked_reg ? "" : "%";
2267 }
2268
2269 static void
2270 set_intel_mnemonic (int mnemonic_flag)
2271 {
2272 intel_mnemonic = mnemonic_flag;
2273 }
2274
2275 static void
2276 set_allow_index_reg (int flag)
2277 {
2278 allow_index_reg = flag;
2279 }
2280
2281 static void
2282 set_check (int what)
2283 {
2284 enum check_kind *kind;
2285 const char *str;
2286
2287 if (what)
2288 {
2289 kind = &operand_check;
2290 str = "operand";
2291 }
2292 else
2293 {
2294 kind = &sse_check;
2295 str = "sse";
2296 }
2297
2298 SKIP_WHITESPACE ();
2299
2300 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2301 {
2302 char *string;
2303 int e = get_symbol_name (&string);
2304
2305 if (strcmp (string, "none") == 0)
2306 *kind = check_none;
2307 else if (strcmp (string, "warning") == 0)
2308 *kind = check_warning;
2309 else if (strcmp (string, "error") == 0)
2310 *kind = check_error;
2311 else
2312 as_bad (_("bad argument to %s_check directive."), str);
2313 (void) restore_line_pointer (e);
2314 }
2315 else
2316 as_bad (_("missing argument for %s_check directive"), str);
2317
2318 demand_empty_rest_of_line ();
2319 }
2320
2321 static void
2322 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2323 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2324 {
2325 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2326 static const char *arch;
2327
2328 /* Intel LIOM is only supported on ELF. */
2329 if (!IS_ELF)
2330 return;
2331
2332 if (!arch)
2333 {
2334 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2335 use default_arch. */
2336 arch = cpu_arch_name;
2337 if (!arch)
2338 arch = default_arch;
2339 }
2340
2341 /* If we are targeting Intel MCU, we must enable it. */
2342 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2343 || new_flag.bitfield.cpuiamcu)
2344 return;
2345
2346 /* If we are targeting Intel L1OM, we must enable it. */
2347 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2348 || new_flag.bitfield.cpul1om)
2349 return;
2350
2351 /* If we are targeting Intel K1OM, we must enable it. */
2352 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2353 || new_flag.bitfield.cpuk1om)
2354 return;
2355
2356 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2357 #endif
2358 }
2359
2360 static void
2361 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2362 {
2363 SKIP_WHITESPACE ();
2364
2365 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2366 {
2367 char *string;
2368 int e = get_symbol_name (&string);
2369 unsigned int j;
2370 i386_cpu_flags flags;
2371
2372 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2373 {
2374 if (strcmp (string, cpu_arch[j].name) == 0)
2375 {
2376 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2377
2378 if (*string != '.')
2379 {
2380 cpu_arch_name = cpu_arch[j].name;
2381 cpu_sub_arch_name = NULL;
2382 cpu_arch_flags = cpu_arch[j].flags;
2383 if (flag_code == CODE_64BIT)
2384 {
2385 cpu_arch_flags.bitfield.cpu64 = 1;
2386 cpu_arch_flags.bitfield.cpuno64 = 0;
2387 }
2388 else
2389 {
2390 cpu_arch_flags.bitfield.cpu64 = 0;
2391 cpu_arch_flags.bitfield.cpuno64 = 1;
2392 }
2393 cpu_arch_isa = cpu_arch[j].type;
2394 cpu_arch_isa_flags = cpu_arch[j].flags;
2395 if (!cpu_arch_tune_set)
2396 {
2397 cpu_arch_tune = cpu_arch_isa;
2398 cpu_arch_tune_flags = cpu_arch_isa_flags;
2399 }
2400 break;
2401 }
2402
2403 flags = cpu_flags_or (cpu_arch_flags,
2404 cpu_arch[j].flags);
2405
2406 if (!valid_iamcu_cpu_flags (&flags))
2407 as_fatal (_("`%s' isn't valid for Intel MCU"),
2408 cpu_arch[j].name);
2409 else if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2410 {
2411 if (cpu_sub_arch_name)
2412 {
2413 char *name = cpu_sub_arch_name;
2414 cpu_sub_arch_name = concat (name,
2415 cpu_arch[j].name,
2416 (const char *) NULL);
2417 free (name);
2418 }
2419 else
2420 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2421 cpu_arch_flags = flags;
2422 cpu_arch_isa_flags = flags;
2423 }
2424 (void) restore_line_pointer (e);
2425 demand_empty_rest_of_line ();
2426 return;
2427 }
2428 }
2429
2430 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2431 {
2432 /* Disable an ISA entension. */
2433 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2434 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2435 {
2436 flags = cpu_flags_and_not (cpu_arch_flags,
2437 cpu_noarch[j].flags);
2438 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2439 {
2440 if (cpu_sub_arch_name)
2441 {
2442 char *name = cpu_sub_arch_name;
2443 cpu_sub_arch_name = concat (name, string,
2444 (const char *) NULL);
2445 free (name);
2446 }
2447 else
2448 cpu_sub_arch_name = xstrdup (string);
2449 cpu_arch_flags = flags;
2450 cpu_arch_isa_flags = flags;
2451 }
2452 (void) restore_line_pointer (e);
2453 demand_empty_rest_of_line ();
2454 return;
2455 }
2456
2457 j = ARRAY_SIZE (cpu_arch);
2458 }
2459
2460 if (j >= ARRAY_SIZE (cpu_arch))
2461 as_bad (_("no such architecture: `%s'"), string);
2462
2463 *input_line_pointer = e;
2464 }
2465 else
2466 as_bad (_("missing cpu architecture"));
2467
2468 no_cond_jump_promotion = 0;
2469 if (*input_line_pointer == ','
2470 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2471 {
2472 char *string;
2473 char e;
2474
2475 ++input_line_pointer;
2476 e = get_symbol_name (&string);
2477
2478 if (strcmp (string, "nojumps") == 0)
2479 no_cond_jump_promotion = 1;
2480 else if (strcmp (string, "jumps") == 0)
2481 ;
2482 else
2483 as_bad (_("no such architecture modifier: `%s'"), string);
2484
2485 (void) restore_line_pointer (e);
2486 }
2487
2488 demand_empty_rest_of_line ();
2489 }
2490
2491 enum bfd_architecture
2492 i386_arch (void)
2493 {
2494 if (cpu_arch_isa == PROCESSOR_L1OM)
2495 {
2496 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2497 || flag_code != CODE_64BIT)
2498 as_fatal (_("Intel L1OM is 64bit ELF only"));
2499 return bfd_arch_l1om;
2500 }
2501 else if (cpu_arch_isa == PROCESSOR_K1OM)
2502 {
2503 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2504 || flag_code != CODE_64BIT)
2505 as_fatal (_("Intel K1OM is 64bit ELF only"));
2506 return bfd_arch_k1om;
2507 }
2508 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2509 {
2510 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2511 || flag_code == CODE_64BIT)
2512 as_fatal (_("Intel MCU is 32bit ELF only"));
2513 return bfd_arch_iamcu;
2514 }
2515 else
2516 return bfd_arch_i386;
2517 }
2518
2519 unsigned long
2520 i386_mach (void)
2521 {
2522 if (!strncmp (default_arch, "x86_64", 6))
2523 {
2524 if (cpu_arch_isa == PROCESSOR_L1OM)
2525 {
2526 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2527 || default_arch[6] != '\0')
2528 as_fatal (_("Intel L1OM is 64bit ELF only"));
2529 return bfd_mach_l1om;
2530 }
2531 else if (cpu_arch_isa == PROCESSOR_K1OM)
2532 {
2533 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2534 || default_arch[6] != '\0')
2535 as_fatal (_("Intel K1OM is 64bit ELF only"));
2536 return bfd_mach_k1om;
2537 }
2538 else if (default_arch[6] == '\0')
2539 return bfd_mach_x86_64;
2540 else
2541 return bfd_mach_x64_32;
2542 }
2543 else if (!strcmp (default_arch, "i386")
2544 || !strcmp (default_arch, "iamcu"))
2545 {
2546 if (cpu_arch_isa == PROCESSOR_IAMCU)
2547 {
2548 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2549 as_fatal (_("Intel MCU is 32bit ELF only"));
2550 return bfd_mach_i386_iamcu;
2551 }
2552 else
2553 return bfd_mach_i386_i386;
2554 }
2555 else
2556 as_fatal (_("unknown architecture"));
2557 }
2558 \f
2559 void
2560 md_begin (void)
2561 {
2562 const char *hash_err;
2563
2564 /* Initialize op_hash hash table. */
2565 op_hash = hash_new ();
2566
2567 {
2568 const insn_template *optab;
2569 templates *core_optab;
2570
2571 /* Setup for loop. */
2572 optab = i386_optab;
2573 core_optab = XNEW (templates);
2574 core_optab->start = optab;
2575
2576 while (1)
2577 {
2578 ++optab;
2579 if (optab->name == NULL
2580 || strcmp (optab->name, (optab - 1)->name) != 0)
2581 {
2582 /* different name --> ship out current template list;
2583 add to hash table; & begin anew. */
2584 core_optab->end = optab;
2585 hash_err = hash_insert (op_hash,
2586 (optab - 1)->name,
2587 (void *) core_optab);
2588 if (hash_err)
2589 {
2590 as_fatal (_("can't hash %s: %s"),
2591 (optab - 1)->name,
2592 hash_err);
2593 }
2594 if (optab->name == NULL)
2595 break;
2596 core_optab = XNEW (templates);
2597 core_optab->start = optab;
2598 }
2599 }
2600 }
2601
2602 /* Initialize reg_hash hash table. */
2603 reg_hash = hash_new ();
2604 {
2605 const reg_entry *regtab;
2606 unsigned int regtab_size = i386_regtab_size;
2607
2608 for (regtab = i386_regtab; regtab_size--; regtab++)
2609 {
2610 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2611 if (hash_err)
2612 as_fatal (_("can't hash %s: %s"),
2613 regtab->reg_name,
2614 hash_err);
2615 }
2616 }
2617
2618 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2619 {
2620 int c;
2621 char *p;
2622
2623 for (c = 0; c < 256; c++)
2624 {
2625 if (ISDIGIT (c))
2626 {
2627 digit_chars[c] = c;
2628 mnemonic_chars[c] = c;
2629 register_chars[c] = c;
2630 operand_chars[c] = c;
2631 }
2632 else if (ISLOWER (c))
2633 {
2634 mnemonic_chars[c] = c;
2635 register_chars[c] = c;
2636 operand_chars[c] = c;
2637 }
2638 else if (ISUPPER (c))
2639 {
2640 mnemonic_chars[c] = TOLOWER (c);
2641 register_chars[c] = mnemonic_chars[c];
2642 operand_chars[c] = c;
2643 }
2644 else if (c == '{' || c == '}')
2645 operand_chars[c] = c;
2646
2647 if (ISALPHA (c) || ISDIGIT (c))
2648 identifier_chars[c] = c;
2649 else if (c >= 128)
2650 {
2651 identifier_chars[c] = c;
2652 operand_chars[c] = c;
2653 }
2654 }
2655
2656 #ifdef LEX_AT
2657 identifier_chars['@'] = '@';
2658 #endif
2659 #ifdef LEX_QM
2660 identifier_chars['?'] = '?';
2661 operand_chars['?'] = '?';
2662 #endif
2663 digit_chars['-'] = '-';
2664 mnemonic_chars['_'] = '_';
2665 mnemonic_chars['-'] = '-';
2666 mnemonic_chars['.'] = '.';
2667 identifier_chars['_'] = '_';
2668 identifier_chars['.'] = '.';
2669
2670 for (p = operand_special_chars; *p != '\0'; p++)
2671 operand_chars[(unsigned char) *p] = *p;
2672 }
2673
2674 if (flag_code == CODE_64BIT)
2675 {
2676 #if defined (OBJ_COFF) && defined (TE_PE)
2677 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2678 ? 32 : 16);
2679 #else
2680 x86_dwarf2_return_column = 16;
2681 #endif
2682 x86_cie_data_alignment = -8;
2683 }
2684 else
2685 {
2686 x86_dwarf2_return_column = 8;
2687 x86_cie_data_alignment = -4;
2688 }
2689 }
2690
2691 void
2692 i386_print_statistics (FILE *file)
2693 {
2694 hash_print_statistics (file, "i386 opcode", op_hash);
2695 hash_print_statistics (file, "i386 register", reg_hash);
2696 }
2697 \f
2698 #ifdef DEBUG386
2699
2700 /* Debugging routines for md_assemble. */
2701 static void pte (insn_template *);
2702 static void pt (i386_operand_type);
2703 static void pe (expressionS *);
2704 static void ps (symbolS *);
2705
2706 static void
2707 pi (char *line, i386_insn *x)
2708 {
2709 unsigned int j;
2710
2711 fprintf (stdout, "%s: template ", line);
2712 pte (&x->tm);
2713 fprintf (stdout, " address: base %s index %s scale %x\n",
2714 x->base_reg ? x->base_reg->reg_name : "none",
2715 x->index_reg ? x->index_reg->reg_name : "none",
2716 x->log2_scale_factor);
2717 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2718 x->rm.mode, x->rm.reg, x->rm.regmem);
2719 fprintf (stdout, " sib: base %x index %x scale %x\n",
2720 x->sib.base, x->sib.index, x->sib.scale);
2721 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2722 (x->rex & REX_W) != 0,
2723 (x->rex & REX_R) != 0,
2724 (x->rex & REX_X) != 0,
2725 (x->rex & REX_B) != 0);
2726 for (j = 0; j < x->operands; j++)
2727 {
2728 fprintf (stdout, " #%d: ", j + 1);
2729 pt (x->types[j]);
2730 fprintf (stdout, "\n");
2731 if (x->types[j].bitfield.reg8
2732 || x->types[j].bitfield.reg16
2733 || x->types[j].bitfield.reg32
2734 || x->types[j].bitfield.reg64
2735 || x->types[j].bitfield.regmmx
2736 || x->types[j].bitfield.regxmm
2737 || x->types[j].bitfield.regymm
2738 || x->types[j].bitfield.regzmm
2739 || x->types[j].bitfield.sreg2
2740 || x->types[j].bitfield.sreg3
2741 || x->types[j].bitfield.control
2742 || x->types[j].bitfield.debug
2743 || x->types[j].bitfield.test)
2744 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2745 if (operand_type_check (x->types[j], imm))
2746 pe (x->op[j].imms);
2747 if (operand_type_check (x->types[j], disp))
2748 pe (x->op[j].disps);
2749 }
2750 }
2751
2752 static void
2753 pte (insn_template *t)
2754 {
2755 unsigned int j;
2756 fprintf (stdout, " %d operands ", t->operands);
2757 fprintf (stdout, "opcode %x ", t->base_opcode);
2758 if (t->extension_opcode != None)
2759 fprintf (stdout, "ext %x ", t->extension_opcode);
2760 if (t->opcode_modifier.d)
2761 fprintf (stdout, "D");
2762 if (t->opcode_modifier.w)
2763 fprintf (stdout, "W");
2764 fprintf (stdout, "\n");
2765 for (j = 0; j < t->operands; j++)
2766 {
2767 fprintf (stdout, " #%d type ", j + 1);
2768 pt (t->operand_types[j]);
2769 fprintf (stdout, "\n");
2770 }
2771 }
2772
2773 static void
2774 pe (expressionS *e)
2775 {
2776 fprintf (stdout, " operation %d\n", e->X_op);
2777 fprintf (stdout, " add_number %ld (%lx)\n",
2778 (long) e->X_add_number, (long) e->X_add_number);
2779 if (e->X_add_symbol)
2780 {
2781 fprintf (stdout, " add_symbol ");
2782 ps (e->X_add_symbol);
2783 fprintf (stdout, "\n");
2784 }
2785 if (e->X_op_symbol)
2786 {
2787 fprintf (stdout, " op_symbol ");
2788 ps (e->X_op_symbol);
2789 fprintf (stdout, "\n");
2790 }
2791 }
2792
2793 static void
2794 ps (symbolS *s)
2795 {
2796 fprintf (stdout, "%s type %s%s",
2797 S_GET_NAME (s),
2798 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2799 segment_name (S_GET_SEGMENT (s)));
2800 }
2801
2802 static struct type_name
2803 {
2804 i386_operand_type mask;
2805 const char *name;
2806 }
2807 const type_names[] =
2808 {
2809 { OPERAND_TYPE_REG8, "r8" },
2810 { OPERAND_TYPE_REG16, "r16" },
2811 { OPERAND_TYPE_REG32, "r32" },
2812 { OPERAND_TYPE_REG64, "r64" },
2813 { OPERAND_TYPE_IMM8, "i8" },
2814 { OPERAND_TYPE_IMM8, "i8s" },
2815 { OPERAND_TYPE_IMM16, "i16" },
2816 { OPERAND_TYPE_IMM32, "i32" },
2817 { OPERAND_TYPE_IMM32S, "i32s" },
2818 { OPERAND_TYPE_IMM64, "i64" },
2819 { OPERAND_TYPE_IMM1, "i1" },
2820 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2821 { OPERAND_TYPE_DISP8, "d8" },
2822 { OPERAND_TYPE_DISP16, "d16" },
2823 { OPERAND_TYPE_DISP32, "d32" },
2824 { OPERAND_TYPE_DISP32S, "d32s" },
2825 { OPERAND_TYPE_DISP64, "d64" },
2826 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
2827 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2828 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2829 { OPERAND_TYPE_CONTROL, "control reg" },
2830 { OPERAND_TYPE_TEST, "test reg" },
2831 { OPERAND_TYPE_DEBUG, "debug reg" },
2832 { OPERAND_TYPE_FLOATREG, "FReg" },
2833 { OPERAND_TYPE_FLOATACC, "FAcc" },
2834 { OPERAND_TYPE_SREG2, "SReg2" },
2835 { OPERAND_TYPE_SREG3, "SReg3" },
2836 { OPERAND_TYPE_ACC, "Acc" },
2837 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2838 { OPERAND_TYPE_REGMMX, "rMMX" },
2839 { OPERAND_TYPE_REGXMM, "rXMM" },
2840 { OPERAND_TYPE_REGYMM, "rYMM" },
2841 { OPERAND_TYPE_REGZMM, "rZMM" },
2842 { OPERAND_TYPE_REGMASK, "Mask reg" },
2843 { OPERAND_TYPE_ESSEG, "es" },
2844 };
2845
2846 static void
2847 pt (i386_operand_type t)
2848 {
2849 unsigned int j;
2850 i386_operand_type a;
2851
2852 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2853 {
2854 a = operand_type_and (t, type_names[j].mask);
2855 if (!operand_type_all_zero (&a))
2856 fprintf (stdout, "%s, ", type_names[j].name);
2857 }
2858 fflush (stdout);
2859 }
2860
2861 #endif /* DEBUG386 */
2862 \f
2863 static bfd_reloc_code_real_type
2864 reloc (unsigned int size,
2865 int pcrel,
2866 int sign,
2867 bfd_reloc_code_real_type other)
2868 {
2869 if (other != NO_RELOC)
2870 {
2871 reloc_howto_type *rel;
2872
2873 if (size == 8)
2874 switch (other)
2875 {
2876 case BFD_RELOC_X86_64_GOT32:
2877 return BFD_RELOC_X86_64_GOT64;
2878 break;
2879 case BFD_RELOC_X86_64_GOTPLT64:
2880 return BFD_RELOC_X86_64_GOTPLT64;
2881 break;
2882 case BFD_RELOC_X86_64_PLTOFF64:
2883 return BFD_RELOC_X86_64_PLTOFF64;
2884 break;
2885 case BFD_RELOC_X86_64_GOTPC32:
2886 other = BFD_RELOC_X86_64_GOTPC64;
2887 break;
2888 case BFD_RELOC_X86_64_GOTPCREL:
2889 other = BFD_RELOC_X86_64_GOTPCREL64;
2890 break;
2891 case BFD_RELOC_X86_64_TPOFF32:
2892 other = BFD_RELOC_X86_64_TPOFF64;
2893 break;
2894 case BFD_RELOC_X86_64_DTPOFF32:
2895 other = BFD_RELOC_X86_64_DTPOFF64;
2896 break;
2897 default:
2898 break;
2899 }
2900
2901 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2902 if (other == BFD_RELOC_SIZE32)
2903 {
2904 if (size == 8)
2905 other = BFD_RELOC_SIZE64;
2906 if (pcrel)
2907 {
2908 as_bad (_("there are no pc-relative size relocations"));
2909 return NO_RELOC;
2910 }
2911 }
2912 #endif
2913
2914 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2915 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
2916 sign = -1;
2917
2918 rel = bfd_reloc_type_lookup (stdoutput, other);
2919 if (!rel)
2920 as_bad (_("unknown relocation (%u)"), other);
2921 else if (size != bfd_get_reloc_size (rel))
2922 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2923 bfd_get_reloc_size (rel),
2924 size);
2925 else if (pcrel && !rel->pc_relative)
2926 as_bad (_("non-pc-relative relocation for pc-relative field"));
2927 else if ((rel->complain_on_overflow == complain_overflow_signed
2928 && !sign)
2929 || (rel->complain_on_overflow == complain_overflow_unsigned
2930 && sign > 0))
2931 as_bad (_("relocated field and relocation type differ in signedness"));
2932 else
2933 return other;
2934 return NO_RELOC;
2935 }
2936
2937 if (pcrel)
2938 {
2939 if (!sign)
2940 as_bad (_("there are no unsigned pc-relative relocations"));
2941 switch (size)
2942 {
2943 case 1: return BFD_RELOC_8_PCREL;
2944 case 2: return BFD_RELOC_16_PCREL;
2945 case 4: return BFD_RELOC_32_PCREL;
2946 case 8: return BFD_RELOC_64_PCREL;
2947 }
2948 as_bad (_("cannot do %u byte pc-relative relocation"), size);
2949 }
2950 else
2951 {
2952 if (sign > 0)
2953 switch (size)
2954 {
2955 case 4: return BFD_RELOC_X86_64_32S;
2956 }
2957 else
2958 switch (size)
2959 {
2960 case 1: return BFD_RELOC_8;
2961 case 2: return BFD_RELOC_16;
2962 case 4: return BFD_RELOC_32;
2963 case 8: return BFD_RELOC_64;
2964 }
2965 as_bad (_("cannot do %s %u byte relocation"),
2966 sign > 0 ? "signed" : "unsigned", size);
2967 }
2968
2969 return NO_RELOC;
2970 }
2971
2972 /* Here we decide which fixups can be adjusted to make them relative to
2973 the beginning of the section instead of the symbol. Basically we need
2974 to make sure that the dynamic relocations are done correctly, so in
2975 some cases we force the original symbol to be used. */
2976
2977 int
2978 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2979 {
2980 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2981 if (!IS_ELF)
2982 return 1;
2983
2984 /* Don't adjust pc-relative references to merge sections in 64-bit
2985 mode. */
2986 if (use_rela_relocations
2987 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2988 && fixP->fx_pcrel)
2989 return 0;
2990
2991 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2992 and changed later by validate_fix. */
2993 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2994 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2995 return 0;
2996
2997 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
2998 for size relocations. */
2999 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3000 || fixP->fx_r_type == BFD_RELOC_SIZE64
3001 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3002 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3003 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3004 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3005 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3006 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3007 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3008 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3009 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3010 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3011 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3012 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3013 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3014 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3015 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3016 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3017 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3018 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3019 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3020 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3021 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3022 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3023 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3024 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3025 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3026 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3027 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3028 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3029 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3030 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3031 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3032 return 0;
3033 #endif
3034 return 1;
3035 }
3036
3037 static int
3038 intel_float_operand (const char *mnemonic)
3039 {
3040 /* Note that the value returned is meaningful only for opcodes with (memory)
3041 operands, hence the code here is free to improperly handle opcodes that
3042 have no operands (for better performance and smaller code). */
3043
3044 if (mnemonic[0] != 'f')
3045 return 0; /* non-math */
3046
3047 switch (mnemonic[1])
3048 {
3049 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3050 the fs segment override prefix not currently handled because no
3051 call path can make opcodes without operands get here */
3052 case 'i':
3053 return 2 /* integer op */;
3054 case 'l':
3055 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3056 return 3; /* fldcw/fldenv */
3057 break;
3058 case 'n':
3059 if (mnemonic[2] != 'o' /* fnop */)
3060 return 3; /* non-waiting control op */
3061 break;
3062 case 'r':
3063 if (mnemonic[2] == 's')
3064 return 3; /* frstor/frstpm */
3065 break;
3066 case 's':
3067 if (mnemonic[2] == 'a')
3068 return 3; /* fsave */
3069 if (mnemonic[2] == 't')
3070 {
3071 switch (mnemonic[3])
3072 {
3073 case 'c': /* fstcw */
3074 case 'd': /* fstdw */
3075 case 'e': /* fstenv */
3076 case 's': /* fsts[gw] */
3077 return 3;
3078 }
3079 }
3080 break;
3081 case 'x':
3082 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3083 return 0; /* fxsave/fxrstor are not really math ops */
3084 break;
3085 }
3086
3087 return 1;
3088 }
3089
3090 /* Build the VEX prefix. */
3091
3092 static void
3093 build_vex_prefix (const insn_template *t)
3094 {
3095 unsigned int register_specifier;
3096 unsigned int implied_prefix;
3097 unsigned int vector_length;
3098
3099 /* Check register specifier. */
3100 if (i.vex.register_specifier)
3101 {
3102 register_specifier =
3103 ~register_number (i.vex.register_specifier) & 0xf;
3104 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3105 }
3106 else
3107 register_specifier = 0xf;
3108
3109 /* Use 2-byte VEX prefix by swappping destination and source
3110 operand. */
3111 if (!i.swap_operand
3112 && i.operands == i.reg_operands
3113 && i.tm.opcode_modifier.vexopcode == VEX0F
3114 && i.tm.opcode_modifier.s
3115 && i.rex == REX_B)
3116 {
3117 unsigned int xchg = i.operands - 1;
3118 union i386_op temp_op;
3119 i386_operand_type temp_type;
3120
3121 temp_type = i.types[xchg];
3122 i.types[xchg] = i.types[0];
3123 i.types[0] = temp_type;
3124 temp_op = i.op[xchg];
3125 i.op[xchg] = i.op[0];
3126 i.op[0] = temp_op;
3127
3128 gas_assert (i.rm.mode == 3);
3129
3130 i.rex = REX_R;
3131 xchg = i.rm.regmem;
3132 i.rm.regmem = i.rm.reg;
3133 i.rm.reg = xchg;
3134
3135 /* Use the next insn. */
3136 i.tm = t[1];
3137 }
3138
3139 if (i.tm.opcode_modifier.vex == VEXScalar)
3140 vector_length = avxscalar;
3141 else
3142 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
3143
3144 switch ((i.tm.base_opcode >> 8) & 0xff)
3145 {
3146 case 0:
3147 implied_prefix = 0;
3148 break;
3149 case DATA_PREFIX_OPCODE:
3150 implied_prefix = 1;
3151 break;
3152 case REPE_PREFIX_OPCODE:
3153 implied_prefix = 2;
3154 break;
3155 case REPNE_PREFIX_OPCODE:
3156 implied_prefix = 3;
3157 break;
3158 default:
3159 abort ();
3160 }
3161
3162 /* Use 2-byte VEX prefix if possible. */
3163 if (i.tm.opcode_modifier.vexopcode == VEX0F
3164 && i.tm.opcode_modifier.vexw != VEXW1
3165 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3166 {
3167 /* 2-byte VEX prefix. */
3168 unsigned int r;
3169
3170 i.vex.length = 2;
3171 i.vex.bytes[0] = 0xc5;
3172
3173 /* Check the REX.R bit. */
3174 r = (i.rex & REX_R) ? 0 : 1;
3175 i.vex.bytes[1] = (r << 7
3176 | register_specifier << 3
3177 | vector_length << 2
3178 | implied_prefix);
3179 }
3180 else
3181 {
3182 /* 3-byte VEX prefix. */
3183 unsigned int m, w;
3184
3185 i.vex.length = 3;
3186
3187 switch (i.tm.opcode_modifier.vexopcode)
3188 {
3189 case VEX0F:
3190 m = 0x1;
3191 i.vex.bytes[0] = 0xc4;
3192 break;
3193 case VEX0F38:
3194 m = 0x2;
3195 i.vex.bytes[0] = 0xc4;
3196 break;
3197 case VEX0F3A:
3198 m = 0x3;
3199 i.vex.bytes[0] = 0xc4;
3200 break;
3201 case XOP08:
3202 m = 0x8;
3203 i.vex.bytes[0] = 0x8f;
3204 break;
3205 case XOP09:
3206 m = 0x9;
3207 i.vex.bytes[0] = 0x8f;
3208 break;
3209 case XOP0A:
3210 m = 0xa;
3211 i.vex.bytes[0] = 0x8f;
3212 break;
3213 default:
3214 abort ();
3215 }
3216
3217 /* The high 3 bits of the second VEX byte are 1's compliment
3218 of RXB bits from REX. */
3219 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3220
3221 /* Check the REX.W bit. */
3222 w = (i.rex & REX_W) ? 1 : 0;
3223 if (i.tm.opcode_modifier.vexw == VEXW1)
3224 w = 1;
3225
3226 i.vex.bytes[2] = (w << 7
3227 | register_specifier << 3
3228 | vector_length << 2
3229 | implied_prefix);
3230 }
3231 }
3232
3233 /* Build the EVEX prefix. */
3234
3235 static void
3236 build_evex_prefix (void)
3237 {
3238 unsigned int register_specifier;
3239 unsigned int implied_prefix;
3240 unsigned int m, w;
3241 rex_byte vrex_used = 0;
3242
3243 /* Check register specifier. */
3244 if (i.vex.register_specifier)
3245 {
3246 gas_assert ((i.vrex & REX_X) == 0);
3247
3248 register_specifier = i.vex.register_specifier->reg_num;
3249 if ((i.vex.register_specifier->reg_flags & RegRex))
3250 register_specifier += 8;
3251 /* The upper 16 registers are encoded in the fourth byte of the
3252 EVEX prefix. */
3253 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3254 i.vex.bytes[3] = 0x8;
3255 register_specifier = ~register_specifier & 0xf;
3256 }
3257 else
3258 {
3259 register_specifier = 0xf;
3260
3261 /* Encode upper 16 vector index register in the fourth byte of
3262 the EVEX prefix. */
3263 if (!(i.vrex & REX_X))
3264 i.vex.bytes[3] = 0x8;
3265 else
3266 vrex_used |= REX_X;
3267 }
3268
3269 switch ((i.tm.base_opcode >> 8) & 0xff)
3270 {
3271 case 0:
3272 implied_prefix = 0;
3273 break;
3274 case DATA_PREFIX_OPCODE:
3275 implied_prefix = 1;
3276 break;
3277 case REPE_PREFIX_OPCODE:
3278 implied_prefix = 2;
3279 break;
3280 case REPNE_PREFIX_OPCODE:
3281 implied_prefix = 3;
3282 break;
3283 default:
3284 abort ();
3285 }
3286
3287 /* 4 byte EVEX prefix. */
3288 i.vex.length = 4;
3289 i.vex.bytes[0] = 0x62;
3290
3291 /* mmmm bits. */
3292 switch (i.tm.opcode_modifier.vexopcode)
3293 {
3294 case VEX0F:
3295 m = 1;
3296 break;
3297 case VEX0F38:
3298 m = 2;
3299 break;
3300 case VEX0F3A:
3301 m = 3;
3302 break;
3303 default:
3304 abort ();
3305 break;
3306 }
3307
3308 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3309 bits from REX. */
3310 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3311
3312 /* The fifth bit of the second EVEX byte is 1's compliment of the
3313 REX_R bit in VREX. */
3314 if (!(i.vrex & REX_R))
3315 i.vex.bytes[1] |= 0x10;
3316 else
3317 vrex_used |= REX_R;
3318
3319 if ((i.reg_operands + i.imm_operands) == i.operands)
3320 {
3321 /* When all operands are registers, the REX_X bit in REX is not
3322 used. We reuse it to encode the upper 16 registers, which is
3323 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3324 as 1's compliment. */
3325 if ((i.vrex & REX_B))
3326 {
3327 vrex_used |= REX_B;
3328 i.vex.bytes[1] &= ~0x40;
3329 }
3330 }
3331
3332 /* EVEX instructions shouldn't need the REX prefix. */
3333 i.vrex &= ~vrex_used;
3334 gas_assert (i.vrex == 0);
3335
3336 /* Check the REX.W bit. */
3337 w = (i.rex & REX_W) ? 1 : 0;
3338 if (i.tm.opcode_modifier.vexw)
3339 {
3340 if (i.tm.opcode_modifier.vexw == VEXW1)
3341 w = 1;
3342 }
3343 /* If w is not set it means we are dealing with WIG instruction. */
3344 else if (!w)
3345 {
3346 if (evexwig == evexw1)
3347 w = 1;
3348 }
3349
3350 /* Encode the U bit. */
3351 implied_prefix |= 0x4;
3352
3353 /* The third byte of the EVEX prefix. */
3354 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3355
3356 /* The fourth byte of the EVEX prefix. */
3357 /* The zeroing-masking bit. */
3358 if (i.mask && i.mask->zeroing)
3359 i.vex.bytes[3] |= 0x80;
3360
3361 /* Don't always set the broadcast bit if there is no RC. */
3362 if (!i.rounding)
3363 {
3364 /* Encode the vector length. */
3365 unsigned int vec_length;
3366
3367 switch (i.tm.opcode_modifier.evex)
3368 {
3369 case EVEXLIG: /* LL' is ignored */
3370 vec_length = evexlig << 5;
3371 break;
3372 case EVEX128:
3373 vec_length = 0 << 5;
3374 break;
3375 case EVEX256:
3376 vec_length = 1 << 5;
3377 break;
3378 case EVEX512:
3379 vec_length = 2 << 5;
3380 break;
3381 default:
3382 abort ();
3383 break;
3384 }
3385 i.vex.bytes[3] |= vec_length;
3386 /* Encode the broadcast bit. */
3387 if (i.broadcast)
3388 i.vex.bytes[3] |= 0x10;
3389 }
3390 else
3391 {
3392 if (i.rounding->type != saeonly)
3393 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3394 else
3395 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3396 }
3397
3398 if (i.mask && i.mask->mask)
3399 i.vex.bytes[3] |= i.mask->mask->reg_num;
3400 }
3401
3402 static void
3403 process_immext (void)
3404 {
3405 expressionS *exp;
3406
3407 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3408 && i.operands > 0)
3409 {
3410 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3411 with an opcode suffix which is coded in the same place as an
3412 8-bit immediate field would be.
3413 Here we check those operands and remove them afterwards. */
3414 unsigned int x;
3415
3416 for (x = 0; x < i.operands; x++)
3417 if (register_number (i.op[x].regs) != x)
3418 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3419 register_prefix, i.op[x].regs->reg_name, x + 1,
3420 i.tm.name);
3421
3422 i.operands = 0;
3423 }
3424
3425 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3426 {
3427 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3428 suffix which is coded in the same place as an 8-bit immediate
3429 field would be.
3430 Here we check those operands and remove them afterwards. */
3431 unsigned int x;
3432
3433 if (i.operands != 3)
3434 abort();
3435
3436 for (x = 0; x < 2; x++)
3437 if (register_number (i.op[x].regs) != x)
3438 goto bad_register_operand;
3439
3440 /* Check for third operand for mwaitx/monitorx insn. */
3441 if (register_number (i.op[x].regs)
3442 != (x + (i.tm.extension_opcode == 0xfb)))
3443 {
3444 bad_register_operand:
3445 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3446 register_prefix, i.op[x].regs->reg_name, x+1,
3447 i.tm.name);
3448 }
3449
3450 i.operands = 0;
3451 }
3452
3453 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3454 which is coded in the same place as an 8-bit immediate field
3455 would be. Here we fake an 8-bit immediate operand from the
3456 opcode suffix stored in tm.extension_opcode.
3457
3458 AVX instructions also use this encoding, for some of
3459 3 argument instructions. */
3460
3461 gas_assert (i.imm_operands <= 1
3462 && (i.operands <= 2
3463 || ((i.tm.opcode_modifier.vex
3464 || i.tm.opcode_modifier.evex)
3465 && i.operands <= 4)));
3466
3467 exp = &im_expressions[i.imm_operands++];
3468 i.op[i.operands].imms = exp;
3469 i.types[i.operands] = imm8;
3470 i.operands++;
3471 exp->X_op = O_constant;
3472 exp->X_add_number = i.tm.extension_opcode;
3473 i.tm.extension_opcode = None;
3474 }
3475
3476
3477 static int
3478 check_hle (void)
3479 {
3480 switch (i.tm.opcode_modifier.hleprefixok)
3481 {
3482 default:
3483 abort ();
3484 case HLEPrefixNone:
3485 as_bad (_("invalid instruction `%s' after `%s'"),
3486 i.tm.name, i.hle_prefix);
3487 return 0;
3488 case HLEPrefixLock:
3489 if (i.prefix[LOCK_PREFIX])
3490 return 1;
3491 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3492 return 0;
3493 case HLEPrefixAny:
3494 return 1;
3495 case HLEPrefixRelease:
3496 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3497 {
3498 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3499 i.tm.name);
3500 return 0;
3501 }
3502 if (i.mem_operands == 0
3503 || !operand_type_check (i.types[i.operands - 1], anymem))
3504 {
3505 as_bad (_("memory destination needed for instruction `%s'"
3506 " after `xrelease'"), i.tm.name);
3507 return 0;
3508 }
3509 return 1;
3510 }
3511 }
3512
3513 /* This is the guts of the machine-dependent assembler. LINE points to a
3514 machine dependent instruction. This function is supposed to emit
3515 the frags/bytes it assembles to. */
3516
3517 void
3518 md_assemble (char *line)
3519 {
3520 unsigned int j;
3521 char mnemonic[MAX_MNEM_SIZE];
3522 const insn_template *t;
3523
3524 /* Initialize globals. */
3525 memset (&i, '\0', sizeof (i));
3526 for (j = 0; j < MAX_OPERANDS; j++)
3527 i.reloc[j] = NO_RELOC;
3528 memset (disp_expressions, '\0', sizeof (disp_expressions));
3529 memset (im_expressions, '\0', sizeof (im_expressions));
3530 save_stack_p = save_stack;
3531
3532 /* First parse an instruction mnemonic & call i386_operand for the operands.
3533 We assume that the scrubber has arranged it so that line[0] is the valid
3534 start of a (possibly prefixed) mnemonic. */
3535
3536 line = parse_insn (line, mnemonic);
3537 if (line == NULL)
3538 return;
3539
3540 line = parse_operands (line, mnemonic);
3541 this_operand = -1;
3542 if (line == NULL)
3543 return;
3544
3545 /* Now we've parsed the mnemonic into a set of templates, and have the
3546 operands at hand. */
3547
3548 /* All intel opcodes have reversed operands except for "bound" and
3549 "enter". We also don't reverse intersegment "jmp" and "call"
3550 instructions with 2 immediate operands so that the immediate segment
3551 precedes the offset, as it does when in AT&T mode. */
3552 if (intel_syntax
3553 && i.operands > 1
3554 && (strcmp (mnemonic, "bound") != 0)
3555 && (strcmp (mnemonic, "invlpga") != 0)
3556 && !(operand_type_check (i.types[0], imm)
3557 && operand_type_check (i.types[1], imm)))
3558 swap_operands ();
3559
3560 /* The order of the immediates should be reversed
3561 for 2 immediates extrq and insertq instructions */
3562 if (i.imm_operands == 2
3563 && (strcmp (mnemonic, "extrq") == 0
3564 || strcmp (mnemonic, "insertq") == 0))
3565 swap_2_operands (0, 1);
3566
3567 if (i.imm_operands)
3568 optimize_imm ();
3569
3570 /* Don't optimize displacement for movabs since it only takes 64bit
3571 displacement. */
3572 if (i.disp_operands
3573 && i.disp_encoding != disp_encoding_32bit
3574 && (flag_code != CODE_64BIT
3575 || strcmp (mnemonic, "movabs") != 0))
3576 optimize_disp ();
3577
3578 /* Next, we find a template that matches the given insn,
3579 making sure the overlap of the given operands types is consistent
3580 with the template operand types. */
3581
3582 if (!(t = match_template ()))
3583 return;
3584
3585 if (sse_check != check_none
3586 && !i.tm.opcode_modifier.noavx
3587 && (i.tm.cpu_flags.bitfield.cpusse
3588 || i.tm.cpu_flags.bitfield.cpusse2
3589 || i.tm.cpu_flags.bitfield.cpusse3
3590 || i.tm.cpu_flags.bitfield.cpussse3
3591 || i.tm.cpu_flags.bitfield.cpusse4_1
3592 || i.tm.cpu_flags.bitfield.cpusse4_2))
3593 {
3594 (sse_check == check_warning
3595 ? as_warn
3596 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3597 }
3598
3599 /* Zap movzx and movsx suffix. The suffix has been set from
3600 "word ptr" or "byte ptr" on the source operand in Intel syntax
3601 or extracted from mnemonic in AT&T syntax. But we'll use
3602 the destination register to choose the suffix for encoding. */
3603 if ((i.tm.base_opcode & ~9) == 0x0fb6)
3604 {
3605 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3606 there is no suffix, the default will be byte extension. */
3607 if (i.reg_operands != 2
3608 && !i.suffix
3609 && intel_syntax)
3610 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3611
3612 i.suffix = 0;
3613 }
3614
3615 if (i.tm.opcode_modifier.fwait)
3616 if (!add_prefix (FWAIT_OPCODE))
3617 return;
3618
3619 /* Check if REP prefix is OK. */
3620 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3621 {
3622 as_bad (_("invalid instruction `%s' after `%s'"),
3623 i.tm.name, i.rep_prefix);
3624 return;
3625 }
3626
3627 /* Check for lock without a lockable instruction. Destination operand
3628 must be memory unless it is xchg (0x86). */
3629 if (i.prefix[LOCK_PREFIX]
3630 && (!i.tm.opcode_modifier.islockable
3631 || i.mem_operands == 0
3632 || (i.tm.base_opcode != 0x86
3633 && !operand_type_check (i.types[i.operands - 1], anymem))))
3634 {
3635 as_bad (_("expecting lockable instruction after `lock'"));
3636 return;
3637 }
3638
3639 /* Check if HLE prefix is OK. */
3640 if (i.hle_prefix && !check_hle ())
3641 return;
3642
3643 /* Check BND prefix. */
3644 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3645 as_bad (_("expecting valid branch instruction after `bnd'"));
3646
3647 if (i.tm.cpu_flags.bitfield.cpumpx
3648 && flag_code == CODE_64BIT
3649 && i.prefix[ADDR_PREFIX])
3650 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3651
3652 /* Insert BND prefix. */
3653 if (add_bnd_prefix
3654 && i.tm.opcode_modifier.bndprefixok
3655 && !i.prefix[BND_PREFIX])
3656 add_prefix (BND_PREFIX_OPCODE);
3657
3658 /* Check string instruction segment overrides. */
3659 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3660 {
3661 if (!check_string ())
3662 return;
3663 i.disp_operands = 0;
3664 }
3665
3666 if (!process_suffix ())
3667 return;
3668
3669 /* Update operand types. */
3670 for (j = 0; j < i.operands; j++)
3671 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3672
3673 /* Make still unresolved immediate matches conform to size of immediate
3674 given in i.suffix. */
3675 if (!finalize_imm ())
3676 return;
3677
3678 if (i.types[0].bitfield.imm1)
3679 i.imm_operands = 0; /* kludge for shift insns. */
3680
3681 /* We only need to check those implicit registers for instructions
3682 with 3 operands or less. */
3683 if (i.operands <= 3)
3684 for (j = 0; j < i.operands; j++)
3685 if (i.types[j].bitfield.inoutportreg
3686 || i.types[j].bitfield.shiftcount
3687 || i.types[j].bitfield.acc
3688 || i.types[j].bitfield.floatacc)
3689 i.reg_operands--;
3690
3691 /* ImmExt should be processed after SSE2AVX. */
3692 if (!i.tm.opcode_modifier.sse2avx
3693 && i.tm.opcode_modifier.immext)
3694 process_immext ();
3695
3696 /* For insns with operands there are more diddles to do to the opcode. */
3697 if (i.operands)
3698 {
3699 if (!process_operands ())
3700 return;
3701 }
3702 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3703 {
3704 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3705 as_warn (_("translating to `%sp'"), i.tm.name);
3706 }
3707
3708 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3709 {
3710 if (flag_code == CODE_16BIT)
3711 {
3712 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3713 i.tm.name);
3714 return;
3715 }
3716
3717 if (i.tm.opcode_modifier.vex)
3718 build_vex_prefix (t);
3719 else
3720 build_evex_prefix ();
3721 }
3722
3723 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3724 instructions may define INT_OPCODE as well, so avoid this corner
3725 case for those instructions that use MODRM. */
3726 if (i.tm.base_opcode == INT_OPCODE
3727 && !i.tm.opcode_modifier.modrm
3728 && i.op[0].imms->X_add_number == 3)
3729 {
3730 i.tm.base_opcode = INT3_OPCODE;
3731 i.imm_operands = 0;
3732 }
3733
3734 if ((i.tm.opcode_modifier.jump
3735 || i.tm.opcode_modifier.jumpbyte
3736 || i.tm.opcode_modifier.jumpdword)
3737 && i.op[0].disps->X_op == O_constant)
3738 {
3739 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3740 the absolute address given by the constant. Since ix86 jumps and
3741 calls are pc relative, we need to generate a reloc. */
3742 i.op[0].disps->X_add_symbol = &abs_symbol;
3743 i.op[0].disps->X_op = O_symbol;
3744 }
3745
3746 if (i.tm.opcode_modifier.rex64)
3747 i.rex |= REX_W;
3748
3749 /* For 8 bit registers we need an empty rex prefix. Also if the
3750 instruction already has a prefix, we need to convert old
3751 registers to new ones. */
3752
3753 if ((i.types[0].bitfield.reg8
3754 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3755 || (i.types[1].bitfield.reg8
3756 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3757 || ((i.types[0].bitfield.reg8
3758 || i.types[1].bitfield.reg8)
3759 && i.rex != 0))
3760 {
3761 int x;
3762
3763 i.rex |= REX_OPCODE;
3764 for (x = 0; x < 2; x++)
3765 {
3766 /* Look for 8 bit operand that uses old registers. */
3767 if (i.types[x].bitfield.reg8
3768 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3769 {
3770 /* In case it is "hi" register, give up. */
3771 if (i.op[x].regs->reg_num > 3)
3772 as_bad (_("can't encode register '%s%s' in an "
3773 "instruction requiring REX prefix."),
3774 register_prefix, i.op[x].regs->reg_name);
3775
3776 /* Otherwise it is equivalent to the extended register.
3777 Since the encoding doesn't change this is merely
3778 cosmetic cleanup for debug output. */
3779
3780 i.op[x].regs = i.op[x].regs + 8;
3781 }
3782 }
3783 }
3784
3785 if (i.rex != 0)
3786 add_prefix (REX_OPCODE | i.rex);
3787
3788 /* We are ready to output the insn. */
3789 output_insn ();
3790 }
3791
3792 static char *
3793 parse_insn (char *line, char *mnemonic)
3794 {
3795 char *l = line;
3796 char *token_start = l;
3797 char *mnem_p;
3798 int supported;
3799 const insn_template *t;
3800 char *dot_p = NULL;
3801
3802 while (1)
3803 {
3804 mnem_p = mnemonic;
3805 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3806 {
3807 if (*mnem_p == '.')
3808 dot_p = mnem_p;
3809 mnem_p++;
3810 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3811 {
3812 as_bad (_("no such instruction: `%s'"), token_start);
3813 return NULL;
3814 }
3815 l++;
3816 }
3817 if (!is_space_char (*l)
3818 && *l != END_OF_INSN
3819 && (intel_syntax
3820 || (*l != PREFIX_SEPARATOR
3821 && *l != ',')))
3822 {
3823 as_bad (_("invalid character %s in mnemonic"),
3824 output_invalid (*l));
3825 return NULL;
3826 }
3827 if (token_start == l)
3828 {
3829 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3830 as_bad (_("expecting prefix; got nothing"));
3831 else
3832 as_bad (_("expecting mnemonic; got nothing"));
3833 return NULL;
3834 }
3835
3836 /* Look up instruction (or prefix) via hash table. */
3837 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3838
3839 if (*l != END_OF_INSN
3840 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3841 && current_templates
3842 && current_templates->start->opcode_modifier.isprefix)
3843 {
3844 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3845 {
3846 as_bad ((flag_code != CODE_64BIT
3847 ? _("`%s' is only supported in 64-bit mode")
3848 : _("`%s' is not supported in 64-bit mode")),
3849 current_templates->start->name);
3850 return NULL;
3851 }
3852 /* If we are in 16-bit mode, do not allow addr16 or data16.
3853 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3854 if ((current_templates->start->opcode_modifier.size16
3855 || current_templates->start->opcode_modifier.size32)
3856 && flag_code != CODE_64BIT
3857 && (current_templates->start->opcode_modifier.size32
3858 ^ (flag_code == CODE_16BIT)))
3859 {
3860 as_bad (_("redundant %s prefix"),
3861 current_templates->start->name);
3862 return NULL;
3863 }
3864 /* Add prefix, checking for repeated prefixes. */
3865 switch (add_prefix (current_templates->start->base_opcode))
3866 {
3867 case PREFIX_EXIST:
3868 return NULL;
3869 case PREFIX_REP:
3870 if (current_templates->start->cpu_flags.bitfield.cpuhle)
3871 i.hle_prefix = current_templates->start->name;
3872 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
3873 i.bnd_prefix = current_templates->start->name;
3874 else
3875 i.rep_prefix = current_templates->start->name;
3876 break;
3877 default:
3878 break;
3879 }
3880 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3881 token_start = ++l;
3882 }
3883 else
3884 break;
3885 }
3886
3887 if (!current_templates)
3888 {
3889 /* Check if we should swap operand or force 32bit displacement in
3890 encoding. */
3891 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3892 i.swap_operand = 1;
3893 else if (mnem_p - 3 == dot_p
3894 && dot_p[1] == 'd'
3895 && dot_p[2] == '8')
3896 i.disp_encoding = disp_encoding_8bit;
3897 else if (mnem_p - 4 == dot_p
3898 && dot_p[1] == 'd'
3899 && dot_p[2] == '3'
3900 && dot_p[3] == '2')
3901 i.disp_encoding = disp_encoding_32bit;
3902 else
3903 goto check_suffix;
3904 mnem_p = dot_p;
3905 *dot_p = '\0';
3906 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3907 }
3908
3909 if (!current_templates)
3910 {
3911 check_suffix:
3912 /* See if we can get a match by trimming off a suffix. */
3913 switch (mnem_p[-1])
3914 {
3915 case WORD_MNEM_SUFFIX:
3916 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3917 i.suffix = SHORT_MNEM_SUFFIX;
3918 else
3919 case BYTE_MNEM_SUFFIX:
3920 case QWORD_MNEM_SUFFIX:
3921 i.suffix = mnem_p[-1];
3922 mnem_p[-1] = '\0';
3923 current_templates = (const templates *) hash_find (op_hash,
3924 mnemonic);
3925 break;
3926 case SHORT_MNEM_SUFFIX:
3927 case LONG_MNEM_SUFFIX:
3928 if (!intel_syntax)
3929 {
3930 i.suffix = mnem_p[-1];
3931 mnem_p[-1] = '\0';
3932 current_templates = (const templates *) hash_find (op_hash,
3933 mnemonic);
3934 }
3935 break;
3936
3937 /* Intel Syntax. */
3938 case 'd':
3939 if (intel_syntax)
3940 {
3941 if (intel_float_operand (mnemonic) == 1)
3942 i.suffix = SHORT_MNEM_SUFFIX;
3943 else
3944 i.suffix = LONG_MNEM_SUFFIX;
3945 mnem_p[-1] = '\0';
3946 current_templates = (const templates *) hash_find (op_hash,
3947 mnemonic);
3948 }
3949 break;
3950 }
3951 if (!current_templates)
3952 {
3953 as_bad (_("no such instruction: `%s'"), token_start);
3954 return NULL;
3955 }
3956 }
3957
3958 if (current_templates->start->opcode_modifier.jump
3959 || current_templates->start->opcode_modifier.jumpbyte)
3960 {
3961 /* Check for a branch hint. We allow ",pt" and ",pn" for
3962 predict taken and predict not taken respectively.
3963 I'm not sure that branch hints actually do anything on loop
3964 and jcxz insns (JumpByte) for current Pentium4 chips. They
3965 may work in the future and it doesn't hurt to accept them
3966 now. */
3967 if (l[0] == ',' && l[1] == 'p')
3968 {
3969 if (l[2] == 't')
3970 {
3971 if (!add_prefix (DS_PREFIX_OPCODE))
3972 return NULL;
3973 l += 3;
3974 }
3975 else if (l[2] == 'n')
3976 {
3977 if (!add_prefix (CS_PREFIX_OPCODE))
3978 return NULL;
3979 l += 3;
3980 }
3981 }
3982 }
3983 /* Any other comma loses. */
3984 if (*l == ',')
3985 {
3986 as_bad (_("invalid character %s in mnemonic"),
3987 output_invalid (*l));
3988 return NULL;
3989 }
3990
3991 /* Check if instruction is supported on specified architecture. */
3992 supported = 0;
3993 for (t = current_templates->start; t < current_templates->end; ++t)
3994 {
3995 supported |= cpu_flags_match (t);
3996 if (supported == CPU_FLAGS_PERFECT_MATCH)
3997 goto skip;
3998 }
3999
4000 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4001 {
4002 as_bad (flag_code == CODE_64BIT
4003 ? _("`%s' is not supported in 64-bit mode")
4004 : _("`%s' is only supported in 64-bit mode"),
4005 current_templates->start->name);
4006 return NULL;
4007 }
4008 if (supported != CPU_FLAGS_PERFECT_MATCH)
4009 {
4010 as_bad (_("`%s' is not supported on `%s%s'"),
4011 current_templates->start->name,
4012 cpu_arch_name ? cpu_arch_name : default_arch,
4013 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4014 return NULL;
4015 }
4016
4017 skip:
4018 if (!cpu_arch_flags.bitfield.cpui386
4019 && (flag_code != CODE_16BIT))
4020 {
4021 as_warn (_("use .code16 to ensure correct addressing mode"));
4022 }
4023
4024 return l;
4025 }
4026
4027 static char *
4028 parse_operands (char *l, const char *mnemonic)
4029 {
4030 char *token_start;
4031
4032 /* 1 if operand is pending after ','. */
4033 unsigned int expecting_operand = 0;
4034
4035 /* Non-zero if operand parens not balanced. */
4036 unsigned int paren_not_balanced;
4037
4038 while (*l != END_OF_INSN)
4039 {
4040 /* Skip optional white space before operand. */
4041 if (is_space_char (*l))
4042 ++l;
4043 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4044 {
4045 as_bad (_("invalid character %s before operand %d"),
4046 output_invalid (*l),
4047 i.operands + 1);
4048 return NULL;
4049 }
4050 token_start = l; /* After white space. */
4051 paren_not_balanced = 0;
4052 while (paren_not_balanced || *l != ',')
4053 {
4054 if (*l == END_OF_INSN)
4055 {
4056 if (paren_not_balanced)
4057 {
4058 if (!intel_syntax)
4059 as_bad (_("unbalanced parenthesis in operand %d."),
4060 i.operands + 1);
4061 else
4062 as_bad (_("unbalanced brackets in operand %d."),
4063 i.operands + 1);
4064 return NULL;
4065 }
4066 else
4067 break; /* we are done */
4068 }
4069 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4070 {
4071 as_bad (_("invalid character %s in operand %d"),
4072 output_invalid (*l),
4073 i.operands + 1);
4074 return NULL;
4075 }
4076 if (!intel_syntax)
4077 {
4078 if (*l == '(')
4079 ++paren_not_balanced;
4080 if (*l == ')')
4081 --paren_not_balanced;
4082 }
4083 else
4084 {
4085 if (*l == '[')
4086 ++paren_not_balanced;
4087 if (*l == ']')
4088 --paren_not_balanced;
4089 }
4090 l++;
4091 }
4092 if (l != token_start)
4093 { /* Yes, we've read in another operand. */
4094 unsigned int operand_ok;
4095 this_operand = i.operands++;
4096 i.types[this_operand].bitfield.unspecified = 1;
4097 if (i.operands > MAX_OPERANDS)
4098 {
4099 as_bad (_("spurious operands; (%d operands/instruction max)"),
4100 MAX_OPERANDS);
4101 return NULL;
4102 }
4103 /* Now parse operand adding info to 'i' as we go along. */
4104 END_STRING_AND_SAVE (l);
4105
4106 if (intel_syntax)
4107 operand_ok =
4108 i386_intel_operand (token_start,
4109 intel_float_operand (mnemonic));
4110 else
4111 operand_ok = i386_att_operand (token_start);
4112
4113 RESTORE_END_STRING (l);
4114 if (!operand_ok)
4115 return NULL;
4116 }
4117 else
4118 {
4119 if (expecting_operand)
4120 {
4121 expecting_operand_after_comma:
4122 as_bad (_("expecting operand after ','; got nothing"));
4123 return NULL;
4124 }
4125 if (*l == ',')
4126 {
4127 as_bad (_("expecting operand before ','; got nothing"));
4128 return NULL;
4129 }
4130 }
4131
4132 /* Now *l must be either ',' or END_OF_INSN. */
4133 if (*l == ',')
4134 {
4135 if (*++l == END_OF_INSN)
4136 {
4137 /* Just skip it, if it's \n complain. */
4138 goto expecting_operand_after_comma;
4139 }
4140 expecting_operand = 1;
4141 }
4142 }
4143 return l;
4144 }
4145
4146 static void
4147 swap_2_operands (int xchg1, int xchg2)
4148 {
4149 union i386_op temp_op;
4150 i386_operand_type temp_type;
4151 enum bfd_reloc_code_real temp_reloc;
4152
4153 temp_type = i.types[xchg2];
4154 i.types[xchg2] = i.types[xchg1];
4155 i.types[xchg1] = temp_type;
4156 temp_op = i.op[xchg2];
4157 i.op[xchg2] = i.op[xchg1];
4158 i.op[xchg1] = temp_op;
4159 temp_reloc = i.reloc[xchg2];
4160 i.reloc[xchg2] = i.reloc[xchg1];
4161 i.reloc[xchg1] = temp_reloc;
4162
4163 if (i.mask)
4164 {
4165 if (i.mask->operand == xchg1)
4166 i.mask->operand = xchg2;
4167 else if (i.mask->operand == xchg2)
4168 i.mask->operand = xchg1;
4169 }
4170 if (i.broadcast)
4171 {
4172 if (i.broadcast->operand == xchg1)
4173 i.broadcast->operand = xchg2;
4174 else if (i.broadcast->operand == xchg2)
4175 i.broadcast->operand = xchg1;
4176 }
4177 if (i.rounding)
4178 {
4179 if (i.rounding->operand == xchg1)
4180 i.rounding->operand = xchg2;
4181 else if (i.rounding->operand == xchg2)
4182 i.rounding->operand = xchg1;
4183 }
4184 }
4185
4186 static void
4187 swap_operands (void)
4188 {
4189 switch (i.operands)
4190 {
4191 case 5:
4192 case 4:
4193 swap_2_operands (1, i.operands - 2);
4194 case 3:
4195 case 2:
4196 swap_2_operands (0, i.operands - 1);
4197 break;
4198 default:
4199 abort ();
4200 }
4201
4202 if (i.mem_operands == 2)
4203 {
4204 const seg_entry *temp_seg;
4205 temp_seg = i.seg[0];
4206 i.seg[0] = i.seg[1];
4207 i.seg[1] = temp_seg;
4208 }
4209 }
4210
4211 /* Try to ensure constant immediates are represented in the smallest
4212 opcode possible. */
4213 static void
4214 optimize_imm (void)
4215 {
4216 char guess_suffix = 0;
4217 int op;
4218
4219 if (i.suffix)
4220 guess_suffix = i.suffix;
4221 else if (i.reg_operands)
4222 {
4223 /* Figure out a suffix from the last register operand specified.
4224 We can't do this properly yet, ie. excluding InOutPortReg,
4225 but the following works for instructions with immediates.
4226 In any case, we can't set i.suffix yet. */
4227 for (op = i.operands; --op >= 0;)
4228 if (i.types[op].bitfield.reg8)
4229 {
4230 guess_suffix = BYTE_MNEM_SUFFIX;
4231 break;
4232 }
4233 else if (i.types[op].bitfield.reg16)
4234 {
4235 guess_suffix = WORD_MNEM_SUFFIX;
4236 break;
4237 }
4238 else if (i.types[op].bitfield.reg32)
4239 {
4240 guess_suffix = LONG_MNEM_SUFFIX;
4241 break;
4242 }
4243 else if (i.types[op].bitfield.reg64)
4244 {
4245 guess_suffix = QWORD_MNEM_SUFFIX;
4246 break;
4247 }
4248 }
4249 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4250 guess_suffix = WORD_MNEM_SUFFIX;
4251
4252 for (op = i.operands; --op >= 0;)
4253 if (operand_type_check (i.types[op], imm))
4254 {
4255 switch (i.op[op].imms->X_op)
4256 {
4257 case O_constant:
4258 /* If a suffix is given, this operand may be shortened. */
4259 switch (guess_suffix)
4260 {
4261 case LONG_MNEM_SUFFIX:
4262 i.types[op].bitfield.imm32 = 1;
4263 i.types[op].bitfield.imm64 = 1;
4264 break;
4265 case WORD_MNEM_SUFFIX:
4266 i.types[op].bitfield.imm16 = 1;
4267 i.types[op].bitfield.imm32 = 1;
4268 i.types[op].bitfield.imm32s = 1;
4269 i.types[op].bitfield.imm64 = 1;
4270 break;
4271 case BYTE_MNEM_SUFFIX:
4272 i.types[op].bitfield.imm8 = 1;
4273 i.types[op].bitfield.imm8s = 1;
4274 i.types[op].bitfield.imm16 = 1;
4275 i.types[op].bitfield.imm32 = 1;
4276 i.types[op].bitfield.imm32s = 1;
4277 i.types[op].bitfield.imm64 = 1;
4278 break;
4279 }
4280
4281 /* If this operand is at most 16 bits, convert it
4282 to a signed 16 bit number before trying to see
4283 whether it will fit in an even smaller size.
4284 This allows a 16-bit operand such as $0xffe0 to
4285 be recognised as within Imm8S range. */
4286 if ((i.types[op].bitfield.imm16)
4287 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4288 {
4289 i.op[op].imms->X_add_number =
4290 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4291 }
4292 #ifdef BFD64
4293 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4294 if ((i.types[op].bitfield.imm32)
4295 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4296 == 0))
4297 {
4298 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4299 ^ ((offsetT) 1 << 31))
4300 - ((offsetT) 1 << 31));
4301 }
4302 #endif
4303 i.types[op]
4304 = operand_type_or (i.types[op],
4305 smallest_imm_type (i.op[op].imms->X_add_number));
4306
4307 /* We must avoid matching of Imm32 templates when 64bit
4308 only immediate is available. */
4309 if (guess_suffix == QWORD_MNEM_SUFFIX)
4310 i.types[op].bitfield.imm32 = 0;
4311 break;
4312
4313 case O_absent:
4314 case O_register:
4315 abort ();
4316
4317 /* Symbols and expressions. */
4318 default:
4319 /* Convert symbolic operand to proper sizes for matching, but don't
4320 prevent matching a set of insns that only supports sizes other
4321 than those matching the insn suffix. */
4322 {
4323 i386_operand_type mask, allowed;
4324 const insn_template *t;
4325
4326 operand_type_set (&mask, 0);
4327 operand_type_set (&allowed, 0);
4328
4329 for (t = current_templates->start;
4330 t < current_templates->end;
4331 ++t)
4332 allowed = operand_type_or (allowed,
4333 t->operand_types[op]);
4334 switch (guess_suffix)
4335 {
4336 case QWORD_MNEM_SUFFIX:
4337 mask.bitfield.imm64 = 1;
4338 mask.bitfield.imm32s = 1;
4339 break;
4340 case LONG_MNEM_SUFFIX:
4341 mask.bitfield.imm32 = 1;
4342 break;
4343 case WORD_MNEM_SUFFIX:
4344 mask.bitfield.imm16 = 1;
4345 break;
4346 case BYTE_MNEM_SUFFIX:
4347 mask.bitfield.imm8 = 1;
4348 break;
4349 default:
4350 break;
4351 }
4352 allowed = operand_type_and (mask, allowed);
4353 if (!operand_type_all_zero (&allowed))
4354 i.types[op] = operand_type_and (i.types[op], mask);
4355 }
4356 break;
4357 }
4358 }
4359 }
4360
4361 /* Try to use the smallest displacement type too. */
4362 static void
4363 optimize_disp (void)
4364 {
4365 int op;
4366
4367 for (op = i.operands; --op >= 0;)
4368 if (operand_type_check (i.types[op], disp))
4369 {
4370 if (i.op[op].disps->X_op == O_constant)
4371 {
4372 offsetT op_disp = i.op[op].disps->X_add_number;
4373
4374 if (i.types[op].bitfield.disp16
4375 && (op_disp & ~(offsetT) 0xffff) == 0)
4376 {
4377 /* If this operand is at most 16 bits, convert
4378 to a signed 16 bit number and don't use 64bit
4379 displacement. */
4380 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4381 i.types[op].bitfield.disp64 = 0;
4382 }
4383 #ifdef BFD64
4384 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4385 if (i.types[op].bitfield.disp32
4386 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4387 {
4388 /* If this operand is at most 32 bits, convert
4389 to a signed 32 bit number and don't use 64bit
4390 displacement. */
4391 op_disp &= (((offsetT) 2 << 31) - 1);
4392 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4393 i.types[op].bitfield.disp64 = 0;
4394 }
4395 #endif
4396 if (!op_disp && i.types[op].bitfield.baseindex)
4397 {
4398 i.types[op].bitfield.disp8 = 0;
4399 i.types[op].bitfield.disp16 = 0;
4400 i.types[op].bitfield.disp32 = 0;
4401 i.types[op].bitfield.disp32s = 0;
4402 i.types[op].bitfield.disp64 = 0;
4403 i.op[op].disps = 0;
4404 i.disp_operands--;
4405 }
4406 else if (flag_code == CODE_64BIT)
4407 {
4408 if (fits_in_signed_long (op_disp))
4409 {
4410 i.types[op].bitfield.disp64 = 0;
4411 i.types[op].bitfield.disp32s = 1;
4412 }
4413 if (i.prefix[ADDR_PREFIX]
4414 && fits_in_unsigned_long (op_disp))
4415 i.types[op].bitfield.disp32 = 1;
4416 }
4417 if ((i.types[op].bitfield.disp32
4418 || i.types[op].bitfield.disp32s
4419 || i.types[op].bitfield.disp16)
4420 && fits_in_signed_byte (op_disp))
4421 i.types[op].bitfield.disp8 = 1;
4422 }
4423 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4424 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4425 {
4426 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4427 i.op[op].disps, 0, i.reloc[op]);
4428 i.types[op].bitfield.disp8 = 0;
4429 i.types[op].bitfield.disp16 = 0;
4430 i.types[op].bitfield.disp32 = 0;
4431 i.types[op].bitfield.disp32s = 0;
4432 i.types[op].bitfield.disp64 = 0;
4433 }
4434 else
4435 /* We only support 64bit displacement on constants. */
4436 i.types[op].bitfield.disp64 = 0;
4437 }
4438 }
4439
4440 /* Check if operands are valid for the instruction. */
4441
4442 static int
4443 check_VecOperands (const insn_template *t)
4444 {
4445 unsigned int op;
4446
4447 /* Without VSIB byte, we can't have a vector register for index. */
4448 if (!t->opcode_modifier.vecsib
4449 && i.index_reg
4450 && (i.index_reg->reg_type.bitfield.regxmm
4451 || i.index_reg->reg_type.bitfield.regymm
4452 || i.index_reg->reg_type.bitfield.regzmm))
4453 {
4454 i.error = unsupported_vector_index_register;
4455 return 1;
4456 }
4457
4458 /* Check if default mask is allowed. */
4459 if (t->opcode_modifier.nodefmask
4460 && (!i.mask || i.mask->mask->reg_num == 0))
4461 {
4462 i.error = no_default_mask;
4463 return 1;
4464 }
4465
4466 /* For VSIB byte, we need a vector register for index, and all vector
4467 registers must be distinct. */
4468 if (t->opcode_modifier.vecsib)
4469 {
4470 if (!i.index_reg
4471 || !((t->opcode_modifier.vecsib == VecSIB128
4472 && i.index_reg->reg_type.bitfield.regxmm)
4473 || (t->opcode_modifier.vecsib == VecSIB256
4474 && i.index_reg->reg_type.bitfield.regymm)
4475 || (t->opcode_modifier.vecsib == VecSIB512
4476 && i.index_reg->reg_type.bitfield.regzmm)))
4477 {
4478 i.error = invalid_vsib_address;
4479 return 1;
4480 }
4481
4482 gas_assert (i.reg_operands == 2 || i.mask);
4483 if (i.reg_operands == 2 && !i.mask)
4484 {
4485 gas_assert (i.types[0].bitfield.regxmm
4486 || i.types[0].bitfield.regymm);
4487 gas_assert (i.types[2].bitfield.regxmm
4488 || i.types[2].bitfield.regymm);
4489 if (operand_check == check_none)
4490 return 0;
4491 if (register_number (i.op[0].regs)
4492 != register_number (i.index_reg)
4493 && register_number (i.op[2].regs)
4494 != register_number (i.index_reg)
4495 && register_number (i.op[0].regs)
4496 != register_number (i.op[2].regs))
4497 return 0;
4498 if (operand_check == check_error)
4499 {
4500 i.error = invalid_vector_register_set;
4501 return 1;
4502 }
4503 as_warn (_("mask, index, and destination registers should be distinct"));
4504 }
4505 else if (i.reg_operands == 1 && i.mask)
4506 {
4507 if ((i.types[1].bitfield.regymm
4508 || i.types[1].bitfield.regzmm)
4509 && (register_number (i.op[1].regs)
4510 == register_number (i.index_reg)))
4511 {
4512 if (operand_check == check_error)
4513 {
4514 i.error = invalid_vector_register_set;
4515 return 1;
4516 }
4517 if (operand_check != check_none)
4518 as_warn (_("index and destination registers should be distinct"));
4519 }
4520 }
4521 }
4522
4523 /* Check if broadcast is supported by the instruction and is applied
4524 to the memory operand. */
4525 if (i.broadcast)
4526 {
4527 int broadcasted_opnd_size;
4528
4529 /* Check if specified broadcast is supported in this instruction,
4530 and it's applied to memory operand of DWORD or QWORD type,
4531 depending on VecESize. */
4532 if (i.broadcast->type != t->opcode_modifier.broadcast
4533 || !i.types[i.broadcast->operand].bitfield.mem
4534 || (t->opcode_modifier.vecesize == 0
4535 && !i.types[i.broadcast->operand].bitfield.dword
4536 && !i.types[i.broadcast->operand].bitfield.unspecified)
4537 || (t->opcode_modifier.vecesize == 1
4538 && !i.types[i.broadcast->operand].bitfield.qword
4539 && !i.types[i.broadcast->operand].bitfield.unspecified))
4540 goto bad_broadcast;
4541
4542 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4543 if (i.broadcast->type == BROADCAST_1TO16)
4544 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4545 else if (i.broadcast->type == BROADCAST_1TO8)
4546 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
4547 else if (i.broadcast->type == BROADCAST_1TO4)
4548 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4549 else if (i.broadcast->type == BROADCAST_1TO2)
4550 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
4551 else
4552 goto bad_broadcast;
4553
4554 if ((broadcasted_opnd_size == 256
4555 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4556 || (broadcasted_opnd_size == 512
4557 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4558 {
4559 bad_broadcast:
4560 i.error = unsupported_broadcast;
4561 return 1;
4562 }
4563 }
4564 /* If broadcast is supported in this instruction, we need to check if
4565 operand of one-element size isn't specified without broadcast. */
4566 else if (t->opcode_modifier.broadcast && i.mem_operands)
4567 {
4568 /* Find memory operand. */
4569 for (op = 0; op < i.operands; op++)
4570 if (operand_type_check (i.types[op], anymem))
4571 break;
4572 gas_assert (op < i.operands);
4573 /* Check size of the memory operand. */
4574 if ((t->opcode_modifier.vecesize == 0
4575 && i.types[op].bitfield.dword)
4576 || (t->opcode_modifier.vecesize == 1
4577 && i.types[op].bitfield.qword))
4578 {
4579 i.error = broadcast_needed;
4580 return 1;
4581 }
4582 }
4583
4584 /* Check if requested masking is supported. */
4585 if (i.mask
4586 && (!t->opcode_modifier.masking
4587 || (i.mask->zeroing
4588 && t->opcode_modifier.masking == MERGING_MASKING)))
4589 {
4590 i.error = unsupported_masking;
4591 return 1;
4592 }
4593
4594 /* Check if masking is applied to dest operand. */
4595 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4596 {
4597 i.error = mask_not_on_destination;
4598 return 1;
4599 }
4600
4601 /* Check RC/SAE. */
4602 if (i.rounding)
4603 {
4604 if ((i.rounding->type != saeonly
4605 && !t->opcode_modifier.staticrounding)
4606 || (i.rounding->type == saeonly
4607 && (t->opcode_modifier.staticrounding
4608 || !t->opcode_modifier.sae)))
4609 {
4610 i.error = unsupported_rc_sae;
4611 return 1;
4612 }
4613 /* If the instruction has several immediate operands and one of
4614 them is rounding, the rounding operand should be the last
4615 immediate operand. */
4616 if (i.imm_operands > 1
4617 && i.rounding->operand != (int) (i.imm_operands - 1))
4618 {
4619 i.error = rc_sae_operand_not_last_imm;
4620 return 1;
4621 }
4622 }
4623
4624 /* Check vector Disp8 operand. */
4625 if (t->opcode_modifier.disp8memshift)
4626 {
4627 if (i.broadcast)
4628 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4629 else
4630 i.memshift = t->opcode_modifier.disp8memshift;
4631
4632 for (op = 0; op < i.operands; op++)
4633 if (operand_type_check (i.types[op], disp)
4634 && i.op[op].disps->X_op == O_constant)
4635 {
4636 offsetT value = i.op[op].disps->X_add_number;
4637 int vec_disp8_ok
4638 = (i.disp_encoding != disp_encoding_32bit
4639 && fits_in_vec_disp8 (value));
4640 if (t->operand_types [op].bitfield.vec_disp8)
4641 {
4642 if (vec_disp8_ok)
4643 i.types[op].bitfield.vec_disp8 = 1;
4644 else
4645 {
4646 /* Vector insn can only have Vec_Disp8/Disp32 in
4647 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4648 mode. */
4649 i.types[op].bitfield.disp8 = 0;
4650 if (flag_code != CODE_16BIT)
4651 i.types[op].bitfield.disp16 = 0;
4652 }
4653 }
4654 else if (flag_code != CODE_16BIT)
4655 {
4656 /* One form of this instruction supports vector Disp8.
4657 Try vector Disp8 if we need to use Disp32. */
4658 if (vec_disp8_ok && !fits_in_signed_byte (value))
4659 {
4660 i.error = try_vector_disp8;
4661 return 1;
4662 }
4663 }
4664 }
4665 }
4666 else
4667 i.memshift = -1;
4668
4669 return 0;
4670 }
4671
4672 /* Check if operands are valid for the instruction. Update VEX
4673 operand types. */
4674
4675 static int
4676 VEX_check_operands (const insn_template *t)
4677 {
4678 /* VREX is only valid with EVEX prefix. */
4679 if (i.need_vrex && !t->opcode_modifier.evex)
4680 {
4681 i.error = invalid_register_operand;
4682 return 1;
4683 }
4684
4685 if (!t->opcode_modifier.vex)
4686 return 0;
4687
4688 /* Only check VEX_Imm4, which must be the first operand. */
4689 if (t->operand_types[0].bitfield.vec_imm4)
4690 {
4691 if (i.op[0].imms->X_op != O_constant
4692 || !fits_in_imm4 (i.op[0].imms->X_add_number))
4693 {
4694 i.error = bad_imm4;
4695 return 1;
4696 }
4697
4698 /* Turn off Imm8 so that update_imm won't complain. */
4699 i.types[0] = vec_imm4;
4700 }
4701
4702 return 0;
4703 }
4704
4705 static const insn_template *
4706 match_template (void)
4707 {
4708 /* Points to template once we've found it. */
4709 const insn_template *t;
4710 i386_operand_type overlap0, overlap1, overlap2, overlap3;
4711 i386_operand_type overlap4;
4712 unsigned int found_reverse_match;
4713 i386_opcode_modifier suffix_check;
4714 i386_operand_type operand_types [MAX_OPERANDS];
4715 int addr_prefix_disp;
4716 unsigned int j;
4717 unsigned int found_cpu_match;
4718 unsigned int check_register;
4719 enum i386_error specific_error = 0;
4720
4721 #if MAX_OPERANDS != 5
4722 # error "MAX_OPERANDS must be 5."
4723 #endif
4724
4725 found_reverse_match = 0;
4726 addr_prefix_disp = -1;
4727
4728 memset (&suffix_check, 0, sizeof (suffix_check));
4729 if (i.suffix == BYTE_MNEM_SUFFIX)
4730 suffix_check.no_bsuf = 1;
4731 else if (i.suffix == WORD_MNEM_SUFFIX)
4732 suffix_check.no_wsuf = 1;
4733 else if (i.suffix == SHORT_MNEM_SUFFIX)
4734 suffix_check.no_ssuf = 1;
4735 else if (i.suffix == LONG_MNEM_SUFFIX)
4736 suffix_check.no_lsuf = 1;
4737 else if (i.suffix == QWORD_MNEM_SUFFIX)
4738 suffix_check.no_qsuf = 1;
4739 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
4740 suffix_check.no_ldsuf = 1;
4741
4742 /* Must have right number of operands. */
4743 i.error = number_of_operands_mismatch;
4744
4745 for (t = current_templates->start; t < current_templates->end; t++)
4746 {
4747 addr_prefix_disp = -1;
4748
4749 if (i.operands != t->operands)
4750 continue;
4751
4752 /* Check processor support. */
4753 i.error = unsupported;
4754 found_cpu_match = (cpu_flags_match (t)
4755 == CPU_FLAGS_PERFECT_MATCH);
4756 if (!found_cpu_match)
4757 continue;
4758
4759 /* Check old gcc support. */
4760 i.error = old_gcc_only;
4761 if (!old_gcc && t->opcode_modifier.oldgcc)
4762 continue;
4763
4764 /* Check AT&T mnemonic. */
4765 i.error = unsupported_with_intel_mnemonic;
4766 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
4767 continue;
4768
4769 /* Check AT&T/Intel syntax. */
4770 i.error = unsupported_syntax;
4771 if ((intel_syntax && t->opcode_modifier.attsyntax)
4772 || (!intel_syntax && t->opcode_modifier.intelsyntax))
4773 continue;
4774
4775 /* Check the suffix, except for some instructions in intel mode. */
4776 i.error = invalid_instruction_suffix;
4777 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4778 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4779 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4780 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4781 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4782 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4783 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
4784 continue;
4785
4786 if (!operand_size_match (t))
4787 continue;
4788
4789 for (j = 0; j < MAX_OPERANDS; j++)
4790 operand_types[j] = t->operand_types[j];
4791
4792 /* In general, don't allow 64-bit operands in 32-bit mode. */
4793 if (i.suffix == QWORD_MNEM_SUFFIX
4794 && flag_code != CODE_64BIT
4795 && (intel_syntax
4796 ? (!t->opcode_modifier.ignoresize
4797 && !intel_float_operand (t->name))
4798 : intel_float_operand (t->name) != 2)
4799 && ((!operand_types[0].bitfield.regmmx
4800 && !operand_types[0].bitfield.regxmm
4801 && !operand_types[0].bitfield.regymm
4802 && !operand_types[0].bitfield.regzmm)
4803 || (!operand_types[t->operands > 1].bitfield.regmmx
4804 && operand_types[t->operands > 1].bitfield.regxmm
4805 && operand_types[t->operands > 1].bitfield.regymm
4806 && operand_types[t->operands > 1].bitfield.regzmm))
4807 && (t->base_opcode != 0x0fc7
4808 || t->extension_opcode != 1 /* cmpxchg8b */))
4809 continue;
4810
4811 /* In general, don't allow 32-bit operands on pre-386. */
4812 else if (i.suffix == LONG_MNEM_SUFFIX
4813 && !cpu_arch_flags.bitfield.cpui386
4814 && (intel_syntax
4815 ? (!t->opcode_modifier.ignoresize
4816 && !intel_float_operand (t->name))
4817 : intel_float_operand (t->name) != 2)
4818 && ((!operand_types[0].bitfield.regmmx
4819 && !operand_types[0].bitfield.regxmm)
4820 || (!operand_types[t->operands > 1].bitfield.regmmx
4821 && operand_types[t->operands > 1].bitfield.regxmm)))
4822 continue;
4823
4824 /* Do not verify operands when there are none. */
4825 else
4826 {
4827 if (!t->operands)
4828 /* We've found a match; break out of loop. */
4829 break;
4830 }
4831
4832 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4833 into Disp32/Disp16/Disp32 operand. */
4834 if (i.prefix[ADDR_PREFIX] != 0)
4835 {
4836 /* There should be only one Disp operand. */
4837 switch (flag_code)
4838 {
4839 case CODE_16BIT:
4840 for (j = 0; j < MAX_OPERANDS; j++)
4841 {
4842 if (operand_types[j].bitfield.disp16)
4843 {
4844 addr_prefix_disp = j;
4845 operand_types[j].bitfield.disp32 = 1;
4846 operand_types[j].bitfield.disp16 = 0;
4847 break;
4848 }
4849 }
4850 break;
4851 case CODE_32BIT:
4852 for (j = 0; j < MAX_OPERANDS; j++)
4853 {
4854 if (operand_types[j].bitfield.disp32)
4855 {
4856 addr_prefix_disp = j;
4857 operand_types[j].bitfield.disp32 = 0;
4858 operand_types[j].bitfield.disp16 = 1;
4859 break;
4860 }
4861 }
4862 break;
4863 case CODE_64BIT:
4864 for (j = 0; j < MAX_OPERANDS; j++)
4865 {
4866 if (operand_types[j].bitfield.disp64)
4867 {
4868 addr_prefix_disp = j;
4869 operand_types[j].bitfield.disp64 = 0;
4870 operand_types[j].bitfield.disp32 = 1;
4871 break;
4872 }
4873 }
4874 break;
4875 }
4876 }
4877
4878 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
4879 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
4880 continue;
4881
4882 /* We check register size if needed. */
4883 check_register = t->opcode_modifier.checkregsize;
4884 overlap0 = operand_type_and (i.types[0], operand_types[0]);
4885 switch (t->operands)
4886 {
4887 case 1:
4888 if (!operand_type_match (overlap0, i.types[0]))
4889 continue;
4890 break;
4891 case 2:
4892 /* xchg %eax, %eax is a special case. It is an aliase for nop
4893 only in 32bit mode and we can use opcode 0x90. In 64bit
4894 mode, we can't use 0x90 for xchg %eax, %eax since it should
4895 zero-extend %eax to %rax. */
4896 if (flag_code == CODE_64BIT
4897 && t->base_opcode == 0x90
4898 && operand_type_equal (&i.types [0], &acc32)
4899 && operand_type_equal (&i.types [1], &acc32))
4900 continue;
4901 if (i.swap_operand)
4902 {
4903 /* If we swap operand in encoding, we either match
4904 the next one or reverse direction of operands. */
4905 if (t->opcode_modifier.s)
4906 continue;
4907 else if (t->opcode_modifier.d)
4908 goto check_reverse;
4909 }
4910
4911 case 3:
4912 /* If we swap operand in encoding, we match the next one. */
4913 if (i.swap_operand && t->opcode_modifier.s)
4914 continue;
4915 case 4:
4916 case 5:
4917 overlap1 = operand_type_and (i.types[1], operand_types[1]);
4918 if (!operand_type_match (overlap0, i.types[0])
4919 || !operand_type_match (overlap1, i.types[1])
4920 || (check_register
4921 && !operand_type_register_match (overlap0, i.types[0],
4922 operand_types[0],
4923 overlap1, i.types[1],
4924 operand_types[1])))
4925 {
4926 /* Check if other direction is valid ... */
4927 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
4928 continue;
4929
4930 check_reverse:
4931 /* Try reversing direction of operands. */
4932 overlap0 = operand_type_and (i.types[0], operand_types[1]);
4933 overlap1 = operand_type_and (i.types[1], operand_types[0]);
4934 if (!operand_type_match (overlap0, i.types[0])
4935 || !operand_type_match (overlap1, i.types[1])
4936 || (check_register
4937 && !operand_type_register_match (overlap0,
4938 i.types[0],
4939 operand_types[1],
4940 overlap1,
4941 i.types[1],
4942 operand_types[0])))
4943 {
4944 /* Does not match either direction. */
4945 continue;
4946 }
4947 /* found_reverse_match holds which of D or FloatDR
4948 we've found. */
4949 if (t->opcode_modifier.d)
4950 found_reverse_match = Opcode_D;
4951 else if (t->opcode_modifier.floatd)
4952 found_reverse_match = Opcode_FloatD;
4953 else
4954 found_reverse_match = 0;
4955 if (t->opcode_modifier.floatr)
4956 found_reverse_match |= Opcode_FloatR;
4957 }
4958 else
4959 {
4960 /* Found a forward 2 operand match here. */
4961 switch (t->operands)
4962 {
4963 case 5:
4964 overlap4 = operand_type_and (i.types[4],
4965 operand_types[4]);
4966 case 4:
4967 overlap3 = operand_type_and (i.types[3],
4968 operand_types[3]);
4969 case 3:
4970 overlap2 = operand_type_and (i.types[2],
4971 operand_types[2]);
4972 break;
4973 }
4974
4975 switch (t->operands)
4976 {
4977 case 5:
4978 if (!operand_type_match (overlap4, i.types[4])
4979 || !operand_type_register_match (overlap3,
4980 i.types[3],
4981 operand_types[3],
4982 overlap4,
4983 i.types[4],
4984 operand_types[4]))
4985 continue;
4986 case 4:
4987 if (!operand_type_match (overlap3, i.types[3])
4988 || (check_register
4989 && !operand_type_register_match (overlap2,
4990 i.types[2],
4991 operand_types[2],
4992 overlap3,
4993 i.types[3],
4994 operand_types[3])))
4995 continue;
4996 case 3:
4997 /* Here we make use of the fact that there are no
4998 reverse match 3 operand instructions, and all 3
4999 operand instructions only need to be checked for
5000 register consistency between operands 2 and 3. */
5001 if (!operand_type_match (overlap2, i.types[2])
5002 || (check_register
5003 && !operand_type_register_match (overlap1,
5004 i.types[1],
5005 operand_types[1],
5006 overlap2,
5007 i.types[2],
5008 operand_types[2])))
5009 continue;
5010 break;
5011 }
5012 }
5013 /* Found either forward/reverse 2, 3 or 4 operand match here:
5014 slip through to break. */
5015 }
5016 if (!found_cpu_match)
5017 {
5018 found_reverse_match = 0;
5019 continue;
5020 }
5021
5022 /* Check if vector and VEX operands are valid. */
5023 if (check_VecOperands (t) || VEX_check_operands (t))
5024 {
5025 specific_error = i.error;
5026 continue;
5027 }
5028
5029 /* We've found a match; break out of loop. */
5030 break;
5031 }
5032
5033 if (t == current_templates->end)
5034 {
5035 /* We found no match. */
5036 const char *err_msg;
5037 switch (specific_error ? specific_error : i.error)
5038 {
5039 default:
5040 abort ();
5041 case operand_size_mismatch:
5042 err_msg = _("operand size mismatch");
5043 break;
5044 case operand_type_mismatch:
5045 err_msg = _("operand type mismatch");
5046 break;
5047 case register_type_mismatch:
5048 err_msg = _("register type mismatch");
5049 break;
5050 case number_of_operands_mismatch:
5051 err_msg = _("number of operands mismatch");
5052 break;
5053 case invalid_instruction_suffix:
5054 err_msg = _("invalid instruction suffix");
5055 break;
5056 case bad_imm4:
5057 err_msg = _("constant doesn't fit in 4 bits");
5058 break;
5059 case old_gcc_only:
5060 err_msg = _("only supported with old gcc");
5061 break;
5062 case unsupported_with_intel_mnemonic:
5063 err_msg = _("unsupported with Intel mnemonic");
5064 break;
5065 case unsupported_syntax:
5066 err_msg = _("unsupported syntax");
5067 break;
5068 case unsupported:
5069 as_bad (_("unsupported instruction `%s'"),
5070 current_templates->start->name);
5071 return NULL;
5072 case invalid_vsib_address:
5073 err_msg = _("invalid VSIB address");
5074 break;
5075 case invalid_vector_register_set:
5076 err_msg = _("mask, index, and destination registers must be distinct");
5077 break;
5078 case unsupported_vector_index_register:
5079 err_msg = _("unsupported vector index register");
5080 break;
5081 case unsupported_broadcast:
5082 err_msg = _("unsupported broadcast");
5083 break;
5084 case broadcast_not_on_src_operand:
5085 err_msg = _("broadcast not on source memory operand");
5086 break;
5087 case broadcast_needed:
5088 err_msg = _("broadcast is needed for operand of such type");
5089 break;
5090 case unsupported_masking:
5091 err_msg = _("unsupported masking");
5092 break;
5093 case mask_not_on_destination:
5094 err_msg = _("mask not on destination operand");
5095 break;
5096 case no_default_mask:
5097 err_msg = _("default mask isn't allowed");
5098 break;
5099 case unsupported_rc_sae:
5100 err_msg = _("unsupported static rounding/sae");
5101 break;
5102 case rc_sae_operand_not_last_imm:
5103 if (intel_syntax)
5104 err_msg = _("RC/SAE operand must precede immediate operands");
5105 else
5106 err_msg = _("RC/SAE operand must follow immediate operands");
5107 break;
5108 case invalid_register_operand:
5109 err_msg = _("invalid register operand");
5110 break;
5111 }
5112 as_bad (_("%s for `%s'"), err_msg,
5113 current_templates->start->name);
5114 return NULL;
5115 }
5116
5117 if (!quiet_warnings)
5118 {
5119 if (!intel_syntax
5120 && (i.types[0].bitfield.jumpabsolute
5121 != operand_types[0].bitfield.jumpabsolute))
5122 {
5123 as_warn (_("indirect %s without `*'"), t->name);
5124 }
5125
5126 if (t->opcode_modifier.isprefix
5127 && t->opcode_modifier.ignoresize)
5128 {
5129 /* Warn them that a data or address size prefix doesn't
5130 affect assembly of the next line of code. */
5131 as_warn (_("stand-alone `%s' prefix"), t->name);
5132 }
5133 }
5134
5135 /* Copy the template we found. */
5136 i.tm = *t;
5137
5138 if (addr_prefix_disp != -1)
5139 i.tm.operand_types[addr_prefix_disp]
5140 = operand_types[addr_prefix_disp];
5141
5142 if (found_reverse_match)
5143 {
5144 /* If we found a reverse match we must alter the opcode
5145 direction bit. found_reverse_match holds bits to change
5146 (different for int & float insns). */
5147
5148 i.tm.base_opcode ^= found_reverse_match;
5149
5150 i.tm.operand_types[0] = operand_types[1];
5151 i.tm.operand_types[1] = operand_types[0];
5152 }
5153
5154 return t;
5155 }
5156
5157 static int
5158 check_string (void)
5159 {
5160 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5161 if (i.tm.operand_types[mem_op].bitfield.esseg)
5162 {
5163 if (i.seg[0] != NULL && i.seg[0] != &es)
5164 {
5165 as_bad (_("`%s' operand %d must use `%ses' segment"),
5166 i.tm.name,
5167 mem_op + 1,
5168 register_prefix);
5169 return 0;
5170 }
5171 /* There's only ever one segment override allowed per instruction.
5172 This instruction possibly has a legal segment override on the
5173 second operand, so copy the segment to where non-string
5174 instructions store it, allowing common code. */
5175 i.seg[0] = i.seg[1];
5176 }
5177 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5178 {
5179 if (i.seg[1] != NULL && i.seg[1] != &es)
5180 {
5181 as_bad (_("`%s' operand %d must use `%ses' segment"),
5182 i.tm.name,
5183 mem_op + 2,
5184 register_prefix);
5185 return 0;
5186 }
5187 }
5188 return 1;
5189 }
5190
5191 static int
5192 process_suffix (void)
5193 {
5194 /* If matched instruction specifies an explicit instruction mnemonic
5195 suffix, use it. */
5196 if (i.tm.opcode_modifier.size16)
5197 i.suffix = WORD_MNEM_SUFFIX;
5198 else if (i.tm.opcode_modifier.size32)
5199 i.suffix = LONG_MNEM_SUFFIX;
5200 else if (i.tm.opcode_modifier.size64)
5201 i.suffix = QWORD_MNEM_SUFFIX;
5202 else if (i.reg_operands)
5203 {
5204 /* If there's no instruction mnemonic suffix we try to invent one
5205 based on register operands. */
5206 if (!i.suffix)
5207 {
5208 /* We take i.suffix from the last register operand specified,
5209 Destination register type is more significant than source
5210 register type. crc32 in SSE4.2 prefers source register
5211 type. */
5212 if (i.tm.base_opcode == 0xf20f38f1)
5213 {
5214 if (i.types[0].bitfield.reg16)
5215 i.suffix = WORD_MNEM_SUFFIX;
5216 else if (i.types[0].bitfield.reg32)
5217 i.suffix = LONG_MNEM_SUFFIX;
5218 else if (i.types[0].bitfield.reg64)
5219 i.suffix = QWORD_MNEM_SUFFIX;
5220 }
5221 else if (i.tm.base_opcode == 0xf20f38f0)
5222 {
5223 if (i.types[0].bitfield.reg8)
5224 i.suffix = BYTE_MNEM_SUFFIX;
5225 }
5226
5227 if (!i.suffix)
5228 {
5229 int op;
5230
5231 if (i.tm.base_opcode == 0xf20f38f1
5232 || i.tm.base_opcode == 0xf20f38f0)
5233 {
5234 /* We have to know the operand size for crc32. */
5235 as_bad (_("ambiguous memory operand size for `%s`"),
5236 i.tm.name);
5237 return 0;
5238 }
5239
5240 for (op = i.operands; --op >= 0;)
5241 if (!i.tm.operand_types[op].bitfield.inoutportreg)
5242 {
5243 if (i.types[op].bitfield.reg8)
5244 {
5245 i.suffix = BYTE_MNEM_SUFFIX;
5246 break;
5247 }
5248 else if (i.types[op].bitfield.reg16)
5249 {
5250 i.suffix = WORD_MNEM_SUFFIX;
5251 break;
5252 }
5253 else if (i.types[op].bitfield.reg32)
5254 {
5255 i.suffix = LONG_MNEM_SUFFIX;
5256 break;
5257 }
5258 else if (i.types[op].bitfield.reg64)
5259 {
5260 i.suffix = QWORD_MNEM_SUFFIX;
5261 break;
5262 }
5263 }
5264 }
5265 }
5266 else if (i.suffix == BYTE_MNEM_SUFFIX)
5267 {
5268 if (intel_syntax
5269 && i.tm.opcode_modifier.ignoresize
5270 && i.tm.opcode_modifier.no_bsuf)
5271 i.suffix = 0;
5272 else if (!check_byte_reg ())
5273 return 0;
5274 }
5275 else if (i.suffix == LONG_MNEM_SUFFIX)
5276 {
5277 if (intel_syntax
5278 && i.tm.opcode_modifier.ignoresize
5279 && i.tm.opcode_modifier.no_lsuf)
5280 i.suffix = 0;
5281 else if (!check_long_reg ())
5282 return 0;
5283 }
5284 else if (i.suffix == QWORD_MNEM_SUFFIX)
5285 {
5286 if (intel_syntax
5287 && i.tm.opcode_modifier.ignoresize
5288 && i.tm.opcode_modifier.no_qsuf)
5289 i.suffix = 0;
5290 else if (!check_qword_reg ())
5291 return 0;
5292 }
5293 else if (i.suffix == WORD_MNEM_SUFFIX)
5294 {
5295 if (intel_syntax
5296 && i.tm.opcode_modifier.ignoresize
5297 && i.tm.opcode_modifier.no_wsuf)
5298 i.suffix = 0;
5299 else if (!check_word_reg ())
5300 return 0;
5301 }
5302 else if (i.suffix == XMMWORD_MNEM_SUFFIX
5303 || i.suffix == YMMWORD_MNEM_SUFFIX
5304 || i.suffix == ZMMWORD_MNEM_SUFFIX)
5305 {
5306 /* Skip if the instruction has x/y/z suffix. match_template
5307 should check if it is a valid suffix. */
5308 }
5309 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5310 /* Do nothing if the instruction is going to ignore the prefix. */
5311 ;
5312 else
5313 abort ();
5314 }
5315 else if (i.tm.opcode_modifier.defaultsize
5316 && !i.suffix
5317 /* exclude fldenv/frstor/fsave/fstenv */
5318 && i.tm.opcode_modifier.no_ssuf)
5319 {
5320 i.suffix = stackop_size;
5321 }
5322 else if (intel_syntax
5323 && !i.suffix
5324 && (i.tm.operand_types[0].bitfield.jumpabsolute
5325 || i.tm.opcode_modifier.jumpbyte
5326 || i.tm.opcode_modifier.jumpintersegment
5327 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5328 && i.tm.extension_opcode <= 3)))
5329 {
5330 switch (flag_code)
5331 {
5332 case CODE_64BIT:
5333 if (!i.tm.opcode_modifier.no_qsuf)
5334 {
5335 i.suffix = QWORD_MNEM_SUFFIX;
5336 break;
5337 }
5338 case CODE_32BIT:
5339 if (!i.tm.opcode_modifier.no_lsuf)
5340 i.suffix = LONG_MNEM_SUFFIX;
5341 break;
5342 case CODE_16BIT:
5343 if (!i.tm.opcode_modifier.no_wsuf)
5344 i.suffix = WORD_MNEM_SUFFIX;
5345 break;
5346 }
5347 }
5348
5349 if (!i.suffix)
5350 {
5351 if (!intel_syntax)
5352 {
5353 if (i.tm.opcode_modifier.w)
5354 {
5355 as_bad (_("no instruction mnemonic suffix given and "
5356 "no register operands; can't size instruction"));
5357 return 0;
5358 }
5359 }
5360 else
5361 {
5362 unsigned int suffixes;
5363
5364 suffixes = !i.tm.opcode_modifier.no_bsuf;
5365 if (!i.tm.opcode_modifier.no_wsuf)
5366 suffixes |= 1 << 1;
5367 if (!i.tm.opcode_modifier.no_lsuf)
5368 suffixes |= 1 << 2;
5369 if (!i.tm.opcode_modifier.no_ldsuf)
5370 suffixes |= 1 << 3;
5371 if (!i.tm.opcode_modifier.no_ssuf)
5372 suffixes |= 1 << 4;
5373 if (!i.tm.opcode_modifier.no_qsuf)
5374 suffixes |= 1 << 5;
5375
5376 /* There are more than suffix matches. */
5377 if (i.tm.opcode_modifier.w
5378 || ((suffixes & (suffixes - 1))
5379 && !i.tm.opcode_modifier.defaultsize
5380 && !i.tm.opcode_modifier.ignoresize))
5381 {
5382 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5383 return 0;
5384 }
5385 }
5386 }
5387
5388 /* Change the opcode based on the operand size given by i.suffix;
5389 We don't need to change things for byte insns. */
5390
5391 if (i.suffix
5392 && i.suffix != BYTE_MNEM_SUFFIX
5393 && i.suffix != XMMWORD_MNEM_SUFFIX
5394 && i.suffix != YMMWORD_MNEM_SUFFIX
5395 && i.suffix != ZMMWORD_MNEM_SUFFIX)
5396 {
5397 /* It's not a byte, select word/dword operation. */
5398 if (i.tm.opcode_modifier.w)
5399 {
5400 if (i.tm.opcode_modifier.shortform)
5401 i.tm.base_opcode |= 8;
5402 else
5403 i.tm.base_opcode |= 1;
5404 }
5405
5406 /* Now select between word & dword operations via the operand
5407 size prefix, except for instructions that will ignore this
5408 prefix anyway. */
5409 if (i.tm.opcode_modifier.addrprefixop0)
5410 {
5411 /* The address size override prefix changes the size of the
5412 first operand. */
5413 if ((flag_code == CODE_32BIT
5414 && i.op->regs[0].reg_type.bitfield.reg16)
5415 || (flag_code != CODE_32BIT
5416 && i.op->regs[0].reg_type.bitfield.reg32))
5417 if (!add_prefix (ADDR_PREFIX_OPCODE))
5418 return 0;
5419 }
5420 else if (i.suffix != QWORD_MNEM_SUFFIX
5421 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5422 && !i.tm.opcode_modifier.ignoresize
5423 && !i.tm.opcode_modifier.floatmf
5424 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5425 || (flag_code == CODE_64BIT
5426 && i.tm.opcode_modifier.jumpbyte)))
5427 {
5428 unsigned int prefix = DATA_PREFIX_OPCODE;
5429
5430 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5431 prefix = ADDR_PREFIX_OPCODE;
5432
5433 if (!add_prefix (prefix))
5434 return 0;
5435 }
5436
5437 /* Set mode64 for an operand. */
5438 if (i.suffix == QWORD_MNEM_SUFFIX
5439 && flag_code == CODE_64BIT
5440 && !i.tm.opcode_modifier.norex64)
5441 {
5442 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5443 need rex64. cmpxchg8b is also a special case. */
5444 if (! (i.operands == 2
5445 && i.tm.base_opcode == 0x90
5446 && i.tm.extension_opcode == None
5447 && operand_type_equal (&i.types [0], &acc64)
5448 && operand_type_equal (&i.types [1], &acc64))
5449 && ! (i.operands == 1
5450 && i.tm.base_opcode == 0xfc7
5451 && i.tm.extension_opcode == 1
5452 && !operand_type_check (i.types [0], reg)
5453 && operand_type_check (i.types [0], anymem)))
5454 i.rex |= REX_W;
5455 }
5456
5457 /* Size floating point instruction. */
5458 if (i.suffix == LONG_MNEM_SUFFIX)
5459 if (i.tm.opcode_modifier.floatmf)
5460 i.tm.base_opcode ^= 4;
5461 }
5462
5463 return 1;
5464 }
5465
5466 static int
5467 check_byte_reg (void)
5468 {
5469 int op;
5470
5471 for (op = i.operands; --op >= 0;)
5472 {
5473 /* If this is an eight bit register, it's OK. If it's the 16 or
5474 32 bit version of an eight bit register, we will just use the
5475 low portion, and that's OK too. */
5476 if (i.types[op].bitfield.reg8)
5477 continue;
5478
5479 /* I/O port address operands are OK too. */
5480 if (i.tm.operand_types[op].bitfield.inoutportreg)
5481 continue;
5482
5483 /* crc32 doesn't generate this warning. */
5484 if (i.tm.base_opcode == 0xf20f38f0)
5485 continue;
5486
5487 if ((i.types[op].bitfield.reg16
5488 || i.types[op].bitfield.reg32
5489 || i.types[op].bitfield.reg64)
5490 && i.op[op].regs->reg_num < 4
5491 /* Prohibit these changes in 64bit mode, since the lowering
5492 would be more complicated. */
5493 && flag_code != CODE_64BIT)
5494 {
5495 #if REGISTER_WARNINGS
5496 if (!quiet_warnings)
5497 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5498 register_prefix,
5499 (i.op[op].regs + (i.types[op].bitfield.reg16
5500 ? REGNAM_AL - REGNAM_AX
5501 : REGNAM_AL - REGNAM_EAX))->reg_name,
5502 register_prefix,
5503 i.op[op].regs->reg_name,
5504 i.suffix);
5505 #endif
5506 continue;
5507 }
5508 /* Any other register is bad. */
5509 if (i.types[op].bitfield.reg16
5510 || i.types[op].bitfield.reg32
5511 || i.types[op].bitfield.reg64
5512 || i.types[op].bitfield.regmmx
5513 || i.types[op].bitfield.regxmm
5514 || i.types[op].bitfield.regymm
5515 || i.types[op].bitfield.regzmm
5516 || i.types[op].bitfield.sreg2
5517 || i.types[op].bitfield.sreg3
5518 || i.types[op].bitfield.control
5519 || i.types[op].bitfield.debug
5520 || i.types[op].bitfield.test
5521 || i.types[op].bitfield.floatreg
5522 || i.types[op].bitfield.floatacc)
5523 {
5524 as_bad (_("`%s%s' not allowed with `%s%c'"),
5525 register_prefix,
5526 i.op[op].regs->reg_name,
5527 i.tm.name,
5528 i.suffix);
5529 return 0;
5530 }
5531 }
5532 return 1;
5533 }
5534
5535 static int
5536 check_long_reg (void)
5537 {
5538 int op;
5539
5540 for (op = i.operands; --op >= 0;)
5541 /* Reject eight bit registers, except where the template requires
5542 them. (eg. movzb) */
5543 if (i.types[op].bitfield.reg8
5544 && (i.tm.operand_types[op].bitfield.reg16
5545 || i.tm.operand_types[op].bitfield.reg32
5546 || i.tm.operand_types[op].bitfield.acc))
5547 {
5548 as_bad (_("`%s%s' not allowed with `%s%c'"),
5549 register_prefix,
5550 i.op[op].regs->reg_name,
5551 i.tm.name,
5552 i.suffix);
5553 return 0;
5554 }
5555 /* Warn if the e prefix on a general reg is missing. */
5556 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5557 && i.types[op].bitfield.reg16
5558 && (i.tm.operand_types[op].bitfield.reg32
5559 || i.tm.operand_types[op].bitfield.acc))
5560 {
5561 /* Prohibit these changes in the 64bit mode, since the
5562 lowering is more complicated. */
5563 if (flag_code == CODE_64BIT)
5564 {
5565 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5566 register_prefix, i.op[op].regs->reg_name,
5567 i.suffix);
5568 return 0;
5569 }
5570 #if REGISTER_WARNINGS
5571 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5572 register_prefix,
5573 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5574 register_prefix, i.op[op].regs->reg_name, i.suffix);
5575 #endif
5576 }
5577 /* Warn if the r prefix on a general reg is present. */
5578 else if (i.types[op].bitfield.reg64
5579 && (i.tm.operand_types[op].bitfield.reg32
5580 || i.tm.operand_types[op].bitfield.acc))
5581 {
5582 if (intel_syntax
5583 && i.tm.opcode_modifier.toqword
5584 && !i.types[0].bitfield.regxmm)
5585 {
5586 /* Convert to QWORD. We want REX byte. */
5587 i.suffix = QWORD_MNEM_SUFFIX;
5588 }
5589 else
5590 {
5591 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5592 register_prefix, i.op[op].regs->reg_name,
5593 i.suffix);
5594 return 0;
5595 }
5596 }
5597 return 1;
5598 }
5599
5600 static int
5601 check_qword_reg (void)
5602 {
5603 int op;
5604
5605 for (op = i.operands; --op >= 0; )
5606 /* Reject eight bit registers, except where the template requires
5607 them. (eg. movzb) */
5608 if (i.types[op].bitfield.reg8
5609 && (i.tm.operand_types[op].bitfield.reg16
5610 || i.tm.operand_types[op].bitfield.reg32
5611 || i.tm.operand_types[op].bitfield.acc))
5612 {
5613 as_bad (_("`%s%s' not allowed with `%s%c'"),
5614 register_prefix,
5615 i.op[op].regs->reg_name,
5616 i.tm.name,
5617 i.suffix);
5618 return 0;
5619 }
5620 /* Warn if the r prefix on a general reg is missing. */
5621 else if ((i.types[op].bitfield.reg16
5622 || i.types[op].bitfield.reg32)
5623 && (i.tm.operand_types[op].bitfield.reg32
5624 || i.tm.operand_types[op].bitfield.acc))
5625 {
5626 /* Prohibit these changes in the 64bit mode, since the
5627 lowering is more complicated. */
5628 if (intel_syntax
5629 && i.tm.opcode_modifier.todword
5630 && !i.types[0].bitfield.regxmm)
5631 {
5632 /* Convert to DWORD. We don't want REX byte. */
5633 i.suffix = LONG_MNEM_SUFFIX;
5634 }
5635 else
5636 {
5637 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5638 register_prefix, i.op[op].regs->reg_name,
5639 i.suffix);
5640 return 0;
5641 }
5642 }
5643 return 1;
5644 }
5645
5646 static int
5647 check_word_reg (void)
5648 {
5649 int op;
5650 for (op = i.operands; --op >= 0;)
5651 /* Reject eight bit registers, except where the template requires
5652 them. (eg. movzb) */
5653 if (i.types[op].bitfield.reg8
5654 && (i.tm.operand_types[op].bitfield.reg16
5655 || i.tm.operand_types[op].bitfield.reg32
5656 || i.tm.operand_types[op].bitfield.acc))
5657 {
5658 as_bad (_("`%s%s' not allowed with `%s%c'"),
5659 register_prefix,
5660 i.op[op].regs->reg_name,
5661 i.tm.name,
5662 i.suffix);
5663 return 0;
5664 }
5665 /* Warn if the e or r prefix on a general reg is present. */
5666 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5667 && (i.types[op].bitfield.reg32
5668 || i.types[op].bitfield.reg64)
5669 && (i.tm.operand_types[op].bitfield.reg16
5670 || i.tm.operand_types[op].bitfield.acc))
5671 {
5672 /* Prohibit these changes in the 64bit mode, since the
5673 lowering is more complicated. */
5674 if (flag_code == CODE_64BIT)
5675 {
5676 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5677 register_prefix, i.op[op].regs->reg_name,
5678 i.suffix);
5679 return 0;
5680 }
5681 #if REGISTER_WARNINGS
5682 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5683 register_prefix,
5684 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5685 register_prefix, i.op[op].regs->reg_name, i.suffix);
5686 #endif
5687 }
5688 return 1;
5689 }
5690
5691 static int
5692 update_imm (unsigned int j)
5693 {
5694 i386_operand_type overlap = i.types[j];
5695 if ((overlap.bitfield.imm8
5696 || overlap.bitfield.imm8s
5697 || overlap.bitfield.imm16
5698 || overlap.bitfield.imm32
5699 || overlap.bitfield.imm32s
5700 || overlap.bitfield.imm64)
5701 && !operand_type_equal (&overlap, &imm8)
5702 && !operand_type_equal (&overlap, &imm8s)
5703 && !operand_type_equal (&overlap, &imm16)
5704 && !operand_type_equal (&overlap, &imm32)
5705 && !operand_type_equal (&overlap, &imm32s)
5706 && !operand_type_equal (&overlap, &imm64))
5707 {
5708 if (i.suffix)
5709 {
5710 i386_operand_type temp;
5711
5712 operand_type_set (&temp, 0);
5713 if (i.suffix == BYTE_MNEM_SUFFIX)
5714 {
5715 temp.bitfield.imm8 = overlap.bitfield.imm8;
5716 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5717 }
5718 else if (i.suffix == WORD_MNEM_SUFFIX)
5719 temp.bitfield.imm16 = overlap.bitfield.imm16;
5720 else if (i.suffix == QWORD_MNEM_SUFFIX)
5721 {
5722 temp.bitfield.imm64 = overlap.bitfield.imm64;
5723 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5724 }
5725 else
5726 temp.bitfield.imm32 = overlap.bitfield.imm32;
5727 overlap = temp;
5728 }
5729 else if (operand_type_equal (&overlap, &imm16_32_32s)
5730 || operand_type_equal (&overlap, &imm16_32)
5731 || operand_type_equal (&overlap, &imm16_32s))
5732 {
5733 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5734 overlap = imm16;
5735 else
5736 overlap = imm32s;
5737 }
5738 if (!operand_type_equal (&overlap, &imm8)
5739 && !operand_type_equal (&overlap, &imm8s)
5740 && !operand_type_equal (&overlap, &imm16)
5741 && !operand_type_equal (&overlap, &imm32)
5742 && !operand_type_equal (&overlap, &imm32s)
5743 && !operand_type_equal (&overlap, &imm64))
5744 {
5745 as_bad (_("no instruction mnemonic suffix given; "
5746 "can't determine immediate size"));
5747 return 0;
5748 }
5749 }
5750 i.types[j] = overlap;
5751
5752 return 1;
5753 }
5754
5755 static int
5756 finalize_imm (void)
5757 {
5758 unsigned int j, n;
5759
5760 /* Update the first 2 immediate operands. */
5761 n = i.operands > 2 ? 2 : i.operands;
5762 if (n)
5763 {
5764 for (j = 0; j < n; j++)
5765 if (update_imm (j) == 0)
5766 return 0;
5767
5768 /* The 3rd operand can't be immediate operand. */
5769 gas_assert (operand_type_check (i.types[2], imm) == 0);
5770 }
5771
5772 return 1;
5773 }
5774
5775 static int
5776 bad_implicit_operand (int xmm)
5777 {
5778 const char *ireg = xmm ? "xmm0" : "ymm0";
5779
5780 if (intel_syntax)
5781 as_bad (_("the last operand of `%s' must be `%s%s'"),
5782 i.tm.name, register_prefix, ireg);
5783 else
5784 as_bad (_("the first operand of `%s' must be `%s%s'"),
5785 i.tm.name, register_prefix, ireg);
5786 return 0;
5787 }
5788
5789 static int
5790 process_operands (void)
5791 {
5792 /* Default segment register this instruction will use for memory
5793 accesses. 0 means unknown. This is only for optimizing out
5794 unnecessary segment overrides. */
5795 const seg_entry *default_seg = 0;
5796
5797 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
5798 {
5799 unsigned int dupl = i.operands;
5800 unsigned int dest = dupl - 1;
5801 unsigned int j;
5802
5803 /* The destination must be an xmm register. */
5804 gas_assert (i.reg_operands
5805 && MAX_OPERANDS > dupl
5806 && operand_type_equal (&i.types[dest], &regxmm));
5807
5808 if (i.tm.opcode_modifier.firstxmm0)
5809 {
5810 /* The first operand is implicit and must be xmm0. */
5811 gas_assert (operand_type_equal (&i.types[0], &regxmm));
5812 if (register_number (i.op[0].regs) != 0)
5813 return bad_implicit_operand (1);
5814
5815 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
5816 {
5817 /* Keep xmm0 for instructions with VEX prefix and 3
5818 sources. */
5819 goto duplicate;
5820 }
5821 else
5822 {
5823 /* We remove the first xmm0 and keep the number of
5824 operands unchanged, which in fact duplicates the
5825 destination. */
5826 for (j = 1; j < i.operands; j++)
5827 {
5828 i.op[j - 1] = i.op[j];
5829 i.types[j - 1] = i.types[j];
5830 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
5831 }
5832 }
5833 }
5834 else if (i.tm.opcode_modifier.implicit1stxmm0)
5835 {
5836 gas_assert ((MAX_OPERANDS - 1) > dupl
5837 && (i.tm.opcode_modifier.vexsources
5838 == VEX3SOURCES));
5839
5840 /* Add the implicit xmm0 for instructions with VEX prefix
5841 and 3 sources. */
5842 for (j = i.operands; j > 0; j--)
5843 {
5844 i.op[j] = i.op[j - 1];
5845 i.types[j] = i.types[j - 1];
5846 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
5847 }
5848 i.op[0].regs
5849 = (const reg_entry *) hash_find (reg_hash, "xmm0");
5850 i.types[0] = regxmm;
5851 i.tm.operand_types[0] = regxmm;
5852
5853 i.operands += 2;
5854 i.reg_operands += 2;
5855 i.tm.operands += 2;
5856
5857 dupl++;
5858 dest++;
5859 i.op[dupl] = i.op[dest];
5860 i.types[dupl] = i.types[dest];
5861 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5862 }
5863 else
5864 {
5865 duplicate:
5866 i.operands++;
5867 i.reg_operands++;
5868 i.tm.operands++;
5869
5870 i.op[dupl] = i.op[dest];
5871 i.types[dupl] = i.types[dest];
5872 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5873 }
5874
5875 if (i.tm.opcode_modifier.immext)
5876 process_immext ();
5877 }
5878 else if (i.tm.opcode_modifier.firstxmm0)
5879 {
5880 unsigned int j;
5881
5882 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
5883 gas_assert (i.reg_operands
5884 && (operand_type_equal (&i.types[0], &regxmm)
5885 || operand_type_equal (&i.types[0], &regymm)
5886 || operand_type_equal (&i.types[0], &regzmm)));
5887 if (register_number (i.op[0].regs) != 0)
5888 return bad_implicit_operand (i.types[0].bitfield.regxmm);
5889
5890 for (j = 1; j < i.operands; j++)
5891 {
5892 i.op[j - 1] = i.op[j];
5893 i.types[j - 1] = i.types[j];
5894
5895 /* We need to adjust fields in i.tm since they are used by
5896 build_modrm_byte. */
5897 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
5898 }
5899
5900 i.operands--;
5901 i.reg_operands--;
5902 i.tm.operands--;
5903 }
5904 else if (i.tm.opcode_modifier.regkludge)
5905 {
5906 /* The imul $imm, %reg instruction is converted into
5907 imul $imm, %reg, %reg, and the clr %reg instruction
5908 is converted into xor %reg, %reg. */
5909
5910 unsigned int first_reg_op;
5911
5912 if (operand_type_check (i.types[0], reg))
5913 first_reg_op = 0;
5914 else
5915 first_reg_op = 1;
5916 /* Pretend we saw the extra register operand. */
5917 gas_assert (i.reg_operands == 1
5918 && i.op[first_reg_op + 1].regs == 0);
5919 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
5920 i.types[first_reg_op + 1] = i.types[first_reg_op];
5921 i.operands++;
5922 i.reg_operands++;
5923 }
5924
5925 if (i.tm.opcode_modifier.shortform)
5926 {
5927 if (i.types[0].bitfield.sreg2
5928 || i.types[0].bitfield.sreg3)
5929 {
5930 if (i.tm.base_opcode == POP_SEG_SHORT
5931 && i.op[0].regs->reg_num == 1)
5932 {
5933 as_bad (_("you can't `pop %scs'"), register_prefix);
5934 return 0;
5935 }
5936 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
5937 if ((i.op[0].regs->reg_flags & RegRex) != 0)
5938 i.rex |= REX_B;
5939 }
5940 else
5941 {
5942 /* The register or float register operand is in operand
5943 0 or 1. */
5944 unsigned int op;
5945
5946 if (i.types[0].bitfield.floatreg
5947 || operand_type_check (i.types[0], reg))
5948 op = 0;
5949 else
5950 op = 1;
5951 /* Register goes in low 3 bits of opcode. */
5952 i.tm.base_opcode |= i.op[op].regs->reg_num;
5953 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5954 i.rex |= REX_B;
5955 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
5956 {
5957 /* Warn about some common errors, but press on regardless.
5958 The first case can be generated by gcc (<= 2.8.1). */
5959 if (i.operands == 2)
5960 {
5961 /* Reversed arguments on faddp, fsubp, etc. */
5962 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
5963 register_prefix, i.op[!intel_syntax].regs->reg_name,
5964 register_prefix, i.op[intel_syntax].regs->reg_name);
5965 }
5966 else
5967 {
5968 /* Extraneous `l' suffix on fp insn. */
5969 as_warn (_("translating to `%s %s%s'"), i.tm.name,
5970 register_prefix, i.op[0].regs->reg_name);
5971 }
5972 }
5973 }
5974 }
5975 else if (i.tm.opcode_modifier.modrm)
5976 {
5977 /* The opcode is completed (modulo i.tm.extension_opcode which
5978 must be put into the modrm byte). Now, we make the modrm and
5979 index base bytes based on all the info we've collected. */
5980
5981 default_seg = build_modrm_byte ();
5982 }
5983 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
5984 {
5985 default_seg = &ds;
5986 }
5987 else if (i.tm.opcode_modifier.isstring)
5988 {
5989 /* For the string instructions that allow a segment override
5990 on one of their operands, the default segment is ds. */
5991 default_seg = &ds;
5992 }
5993
5994 if (i.tm.base_opcode == 0x8d /* lea */
5995 && i.seg[0]
5996 && !quiet_warnings)
5997 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
5998
5999 /* If a segment was explicitly specified, and the specified segment
6000 is not the default, use an opcode prefix to select it. If we
6001 never figured out what the default segment is, then default_seg
6002 will be zero at this point, and the specified segment prefix will
6003 always be used. */
6004 if ((i.seg[0]) && (i.seg[0] != default_seg))
6005 {
6006 if (!add_prefix (i.seg[0]->seg_prefix))
6007 return 0;
6008 }
6009 return 1;
6010 }
6011
6012 static const seg_entry *
6013 build_modrm_byte (void)
6014 {
6015 const seg_entry *default_seg = 0;
6016 unsigned int source, dest;
6017 int vex_3_sources;
6018
6019 /* The first operand of instructions with VEX prefix and 3 sources
6020 must be VEX_Imm4. */
6021 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6022 if (vex_3_sources)
6023 {
6024 unsigned int nds, reg_slot;
6025 expressionS *exp;
6026
6027 if (i.tm.opcode_modifier.veximmext
6028 && i.tm.opcode_modifier.immext)
6029 {
6030 dest = i.operands - 2;
6031 gas_assert (dest == 3);
6032 }
6033 else
6034 dest = i.operands - 1;
6035 nds = dest - 1;
6036
6037 /* There are 2 kinds of instructions:
6038 1. 5 operands: 4 register operands or 3 register operands
6039 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6040 VexW0 or VexW1. The destination must be either XMM, YMM or
6041 ZMM register.
6042 2. 4 operands: 4 register operands or 3 register operands
6043 plus 1 memory operand, VexXDS, and VexImmExt */
6044 gas_assert ((i.reg_operands == 4
6045 || (i.reg_operands == 3 && i.mem_operands == 1))
6046 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6047 && (i.tm.opcode_modifier.veximmext
6048 || (i.imm_operands == 1
6049 && i.types[0].bitfield.vec_imm4
6050 && (i.tm.opcode_modifier.vexw == VEXW0
6051 || i.tm.opcode_modifier.vexw == VEXW1)
6052 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
6053 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
6054 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
6055
6056 if (i.imm_operands == 0)
6057 {
6058 /* When there is no immediate operand, generate an 8bit
6059 immediate operand to encode the first operand. */
6060 exp = &im_expressions[i.imm_operands++];
6061 i.op[i.operands].imms = exp;
6062 i.types[i.operands] = imm8;
6063 i.operands++;
6064 /* If VexW1 is set, the first operand is the source and
6065 the second operand is encoded in the immediate operand. */
6066 if (i.tm.opcode_modifier.vexw == VEXW1)
6067 {
6068 source = 0;
6069 reg_slot = 1;
6070 }
6071 else
6072 {
6073 source = 1;
6074 reg_slot = 0;
6075 }
6076
6077 /* FMA swaps REG and NDS. */
6078 if (i.tm.cpu_flags.bitfield.cpufma)
6079 {
6080 unsigned int tmp;
6081 tmp = reg_slot;
6082 reg_slot = nds;
6083 nds = tmp;
6084 }
6085
6086 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6087 &regxmm)
6088 || operand_type_equal (&i.tm.operand_types[reg_slot],
6089 &regymm)
6090 || operand_type_equal (&i.tm.operand_types[reg_slot],
6091 &regzmm));
6092 exp->X_op = O_constant;
6093 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6094 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6095 }
6096 else
6097 {
6098 unsigned int imm_slot;
6099
6100 if (i.tm.opcode_modifier.vexw == VEXW0)
6101 {
6102 /* If VexW0 is set, the third operand is the source and
6103 the second operand is encoded in the immediate
6104 operand. */
6105 source = 2;
6106 reg_slot = 1;
6107 }
6108 else
6109 {
6110 /* VexW1 is set, the second operand is the source and
6111 the third operand is encoded in the immediate
6112 operand. */
6113 source = 1;
6114 reg_slot = 2;
6115 }
6116
6117 if (i.tm.opcode_modifier.immext)
6118 {
6119 /* When ImmExt is set, the immdiate byte is the last
6120 operand. */
6121 imm_slot = i.operands - 1;
6122 source--;
6123 reg_slot--;
6124 }
6125 else
6126 {
6127 imm_slot = 0;
6128
6129 /* Turn on Imm8 so that output_imm will generate it. */
6130 i.types[imm_slot].bitfield.imm8 = 1;
6131 }
6132
6133 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6134 &regxmm)
6135 || operand_type_equal (&i.tm.operand_types[reg_slot],
6136 &regymm)
6137 || operand_type_equal (&i.tm.operand_types[reg_slot],
6138 &regzmm));
6139 i.op[imm_slot].imms->X_add_number
6140 |= register_number (i.op[reg_slot].regs) << 4;
6141 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6142 }
6143
6144 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6145 || operand_type_equal (&i.tm.operand_types[nds],
6146 &regymm)
6147 || operand_type_equal (&i.tm.operand_types[nds],
6148 &regzmm));
6149 i.vex.register_specifier = i.op[nds].regs;
6150 }
6151 else
6152 source = dest = 0;
6153
6154 /* i.reg_operands MUST be the number of real register operands;
6155 implicit registers do not count. If there are 3 register
6156 operands, it must be a instruction with VexNDS. For a
6157 instruction with VexNDD, the destination register is encoded
6158 in VEX prefix. If there are 4 register operands, it must be
6159 a instruction with VEX prefix and 3 sources. */
6160 if (i.mem_operands == 0
6161 && ((i.reg_operands == 2
6162 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6163 || (i.reg_operands == 3
6164 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6165 || (i.reg_operands == 4 && vex_3_sources)))
6166 {
6167 switch (i.operands)
6168 {
6169 case 2:
6170 source = 0;
6171 break;
6172 case 3:
6173 /* When there are 3 operands, one of them may be immediate,
6174 which may be the first or the last operand. Otherwise,
6175 the first operand must be shift count register (cl) or it
6176 is an instruction with VexNDS. */
6177 gas_assert (i.imm_operands == 1
6178 || (i.imm_operands == 0
6179 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6180 || i.types[0].bitfield.shiftcount)));
6181 if (operand_type_check (i.types[0], imm)
6182 || i.types[0].bitfield.shiftcount)
6183 source = 1;
6184 else
6185 source = 0;
6186 break;
6187 case 4:
6188 /* When there are 4 operands, the first two must be 8bit
6189 immediate operands. The source operand will be the 3rd
6190 one.
6191
6192 For instructions with VexNDS, if the first operand
6193 an imm8, the source operand is the 2nd one. If the last
6194 operand is imm8, the source operand is the first one. */
6195 gas_assert ((i.imm_operands == 2
6196 && i.types[0].bitfield.imm8
6197 && i.types[1].bitfield.imm8)
6198 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6199 && i.imm_operands == 1
6200 && (i.types[0].bitfield.imm8
6201 || i.types[i.operands - 1].bitfield.imm8
6202 || i.rounding)));
6203 if (i.imm_operands == 2)
6204 source = 2;
6205 else
6206 {
6207 if (i.types[0].bitfield.imm8)
6208 source = 1;
6209 else
6210 source = 0;
6211 }
6212 break;
6213 case 5:
6214 if (i.tm.opcode_modifier.evex)
6215 {
6216 /* For EVEX instructions, when there are 5 operands, the
6217 first one must be immediate operand. If the second one
6218 is immediate operand, the source operand is the 3th
6219 one. If the last one is immediate operand, the source
6220 operand is the 2nd one. */
6221 gas_assert (i.imm_operands == 2
6222 && i.tm.opcode_modifier.sae
6223 && operand_type_check (i.types[0], imm));
6224 if (operand_type_check (i.types[1], imm))
6225 source = 2;
6226 else if (operand_type_check (i.types[4], imm))
6227 source = 1;
6228 else
6229 abort ();
6230 }
6231 break;
6232 default:
6233 abort ();
6234 }
6235
6236 if (!vex_3_sources)
6237 {
6238 dest = source + 1;
6239
6240 /* RC/SAE operand could be between DEST and SRC. That happens
6241 when one operand is GPR and the other one is XMM/YMM/ZMM
6242 register. */
6243 if (i.rounding && i.rounding->operand == (int) dest)
6244 dest++;
6245
6246 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6247 {
6248 /* For instructions with VexNDS, the register-only source
6249 operand must be 32/64bit integer, XMM, YMM or ZMM
6250 register. It is encoded in VEX prefix. We need to
6251 clear RegMem bit before calling operand_type_equal. */
6252
6253 i386_operand_type op;
6254 unsigned int vvvv;
6255
6256 /* Check register-only source operand when two source
6257 operands are swapped. */
6258 if (!i.tm.operand_types[source].bitfield.baseindex
6259 && i.tm.operand_types[dest].bitfield.baseindex)
6260 {
6261 vvvv = source;
6262 source = dest;
6263 }
6264 else
6265 vvvv = dest;
6266
6267 op = i.tm.operand_types[vvvv];
6268 op.bitfield.regmem = 0;
6269 if ((dest + 1) >= i.operands
6270 || (!op.bitfield.reg32
6271 && op.bitfield.reg64
6272 && !operand_type_equal (&op, &regxmm)
6273 && !operand_type_equal (&op, &regymm)
6274 && !operand_type_equal (&op, &regzmm)
6275 && !operand_type_equal (&op, &regmask)))
6276 abort ();
6277 i.vex.register_specifier = i.op[vvvv].regs;
6278 dest++;
6279 }
6280 }
6281
6282 i.rm.mode = 3;
6283 /* One of the register operands will be encoded in the i.tm.reg
6284 field, the other in the combined i.tm.mode and i.tm.regmem
6285 fields. If no form of this instruction supports a memory
6286 destination operand, then we assume the source operand may
6287 sometimes be a memory operand and so we need to store the
6288 destination in the i.rm.reg field. */
6289 if (!i.tm.operand_types[dest].bitfield.regmem
6290 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6291 {
6292 i.rm.reg = i.op[dest].regs->reg_num;
6293 i.rm.regmem = i.op[source].regs->reg_num;
6294 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6295 i.rex |= REX_R;
6296 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6297 i.vrex |= REX_R;
6298 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6299 i.rex |= REX_B;
6300 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6301 i.vrex |= REX_B;
6302 }
6303 else
6304 {
6305 i.rm.reg = i.op[source].regs->reg_num;
6306 i.rm.regmem = i.op[dest].regs->reg_num;
6307 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6308 i.rex |= REX_B;
6309 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6310 i.vrex |= REX_B;
6311 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6312 i.rex |= REX_R;
6313 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6314 i.vrex |= REX_R;
6315 }
6316 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6317 {
6318 if (!i.types[0].bitfield.control
6319 && !i.types[1].bitfield.control)
6320 abort ();
6321 i.rex &= ~(REX_R | REX_B);
6322 add_prefix (LOCK_PREFIX_OPCODE);
6323 }
6324 }
6325 else
6326 { /* If it's not 2 reg operands... */
6327 unsigned int mem;
6328
6329 if (i.mem_operands)
6330 {
6331 unsigned int fake_zero_displacement = 0;
6332 unsigned int op;
6333
6334 for (op = 0; op < i.operands; op++)
6335 if (operand_type_check (i.types[op], anymem))
6336 break;
6337 gas_assert (op < i.operands);
6338
6339 if (i.tm.opcode_modifier.vecsib)
6340 {
6341 if (i.index_reg->reg_num == RegEiz
6342 || i.index_reg->reg_num == RegRiz)
6343 abort ();
6344
6345 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6346 if (!i.base_reg)
6347 {
6348 i.sib.base = NO_BASE_REGISTER;
6349 i.sib.scale = i.log2_scale_factor;
6350 /* No Vec_Disp8 if there is no base. */
6351 i.types[op].bitfield.vec_disp8 = 0;
6352 i.types[op].bitfield.disp8 = 0;
6353 i.types[op].bitfield.disp16 = 0;
6354 i.types[op].bitfield.disp64 = 0;
6355 if (flag_code != CODE_64BIT)
6356 {
6357 /* Must be 32 bit */
6358 i.types[op].bitfield.disp32 = 1;
6359 i.types[op].bitfield.disp32s = 0;
6360 }
6361 else
6362 {
6363 i.types[op].bitfield.disp32 = 0;
6364 i.types[op].bitfield.disp32s = 1;
6365 }
6366 }
6367 i.sib.index = i.index_reg->reg_num;
6368 if ((i.index_reg->reg_flags & RegRex) != 0)
6369 i.rex |= REX_X;
6370 if ((i.index_reg->reg_flags & RegVRex) != 0)
6371 i.vrex |= REX_X;
6372 }
6373
6374 default_seg = &ds;
6375
6376 if (i.base_reg == 0)
6377 {
6378 i.rm.mode = 0;
6379 if (!i.disp_operands)
6380 {
6381 fake_zero_displacement = 1;
6382 /* Instructions with VSIB byte need 32bit displacement
6383 if there is no base register. */
6384 if (i.tm.opcode_modifier.vecsib)
6385 i.types[op].bitfield.disp32 = 1;
6386 }
6387 if (i.index_reg == 0)
6388 {
6389 gas_assert (!i.tm.opcode_modifier.vecsib);
6390 /* Operand is just <disp> */
6391 if (flag_code == CODE_64BIT)
6392 {
6393 /* 64bit mode overwrites the 32bit absolute
6394 addressing by RIP relative addressing and
6395 absolute addressing is encoded by one of the
6396 redundant SIB forms. */
6397 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6398 i.sib.base = NO_BASE_REGISTER;
6399 i.sib.index = NO_INDEX_REGISTER;
6400 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
6401 ? disp32s : disp32);
6402 }
6403 else if ((flag_code == CODE_16BIT)
6404 ^ (i.prefix[ADDR_PREFIX] != 0))
6405 {
6406 i.rm.regmem = NO_BASE_REGISTER_16;
6407 i.types[op] = disp16;
6408 }
6409 else
6410 {
6411 i.rm.regmem = NO_BASE_REGISTER;
6412 i.types[op] = disp32;
6413 }
6414 }
6415 else if (!i.tm.opcode_modifier.vecsib)
6416 {
6417 /* !i.base_reg && i.index_reg */
6418 if (i.index_reg->reg_num == RegEiz
6419 || i.index_reg->reg_num == RegRiz)
6420 i.sib.index = NO_INDEX_REGISTER;
6421 else
6422 i.sib.index = i.index_reg->reg_num;
6423 i.sib.base = NO_BASE_REGISTER;
6424 i.sib.scale = i.log2_scale_factor;
6425 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6426 /* No Vec_Disp8 if there is no base. */
6427 i.types[op].bitfield.vec_disp8 = 0;
6428 i.types[op].bitfield.disp8 = 0;
6429 i.types[op].bitfield.disp16 = 0;
6430 i.types[op].bitfield.disp64 = 0;
6431 if (flag_code != CODE_64BIT)
6432 {
6433 /* Must be 32 bit */
6434 i.types[op].bitfield.disp32 = 1;
6435 i.types[op].bitfield.disp32s = 0;
6436 }
6437 else
6438 {
6439 i.types[op].bitfield.disp32 = 0;
6440 i.types[op].bitfield.disp32s = 1;
6441 }
6442 if ((i.index_reg->reg_flags & RegRex) != 0)
6443 i.rex |= REX_X;
6444 }
6445 }
6446 /* RIP addressing for 64bit mode. */
6447 else if (i.base_reg->reg_num == RegRip ||
6448 i.base_reg->reg_num == RegEip)
6449 {
6450 gas_assert (!i.tm.opcode_modifier.vecsib);
6451 i.rm.regmem = NO_BASE_REGISTER;
6452 i.types[op].bitfield.disp8 = 0;
6453 i.types[op].bitfield.disp16 = 0;
6454 i.types[op].bitfield.disp32 = 0;
6455 i.types[op].bitfield.disp32s = 1;
6456 i.types[op].bitfield.disp64 = 0;
6457 i.types[op].bitfield.vec_disp8 = 0;
6458 i.flags[op] |= Operand_PCrel;
6459 if (! i.disp_operands)
6460 fake_zero_displacement = 1;
6461 }
6462 else if (i.base_reg->reg_type.bitfield.reg16)
6463 {
6464 gas_assert (!i.tm.opcode_modifier.vecsib);
6465 switch (i.base_reg->reg_num)
6466 {
6467 case 3: /* (%bx) */
6468 if (i.index_reg == 0)
6469 i.rm.regmem = 7;
6470 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6471 i.rm.regmem = i.index_reg->reg_num - 6;
6472 break;
6473 case 5: /* (%bp) */
6474 default_seg = &ss;
6475 if (i.index_reg == 0)
6476 {
6477 i.rm.regmem = 6;
6478 if (operand_type_check (i.types[op], disp) == 0)
6479 {
6480 /* fake (%bp) into 0(%bp) */
6481 if (i.tm.operand_types[op].bitfield.vec_disp8)
6482 i.types[op].bitfield.vec_disp8 = 1;
6483 else
6484 i.types[op].bitfield.disp8 = 1;
6485 fake_zero_displacement = 1;
6486 }
6487 }
6488 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6489 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6490 break;
6491 default: /* (%si) -> 4 or (%di) -> 5 */
6492 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6493 }
6494 i.rm.mode = mode_from_disp_size (i.types[op]);
6495 }
6496 else /* i.base_reg and 32/64 bit mode */
6497 {
6498 if (flag_code == CODE_64BIT
6499 && operand_type_check (i.types[op], disp))
6500 {
6501 i386_operand_type temp;
6502 operand_type_set (&temp, 0);
6503 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6504 temp.bitfield.vec_disp8
6505 = i.types[op].bitfield.vec_disp8;
6506 i.types[op] = temp;
6507 if (i.prefix[ADDR_PREFIX] == 0)
6508 i.types[op].bitfield.disp32s = 1;
6509 else
6510 i.types[op].bitfield.disp32 = 1;
6511 }
6512
6513 if (!i.tm.opcode_modifier.vecsib)
6514 i.rm.regmem = i.base_reg->reg_num;
6515 if ((i.base_reg->reg_flags & RegRex) != 0)
6516 i.rex |= REX_B;
6517 i.sib.base = i.base_reg->reg_num;
6518 /* x86-64 ignores REX prefix bit here to avoid decoder
6519 complications. */
6520 if (!(i.base_reg->reg_flags & RegRex)
6521 && (i.base_reg->reg_num == EBP_REG_NUM
6522 || i.base_reg->reg_num == ESP_REG_NUM))
6523 default_seg = &ss;
6524 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6525 {
6526 fake_zero_displacement = 1;
6527 if (i.tm.operand_types [op].bitfield.vec_disp8)
6528 i.types[op].bitfield.vec_disp8 = 1;
6529 else
6530 i.types[op].bitfield.disp8 = 1;
6531 }
6532 i.sib.scale = i.log2_scale_factor;
6533 if (i.index_reg == 0)
6534 {
6535 gas_assert (!i.tm.opcode_modifier.vecsib);
6536 /* <disp>(%esp) becomes two byte modrm with no index
6537 register. We've already stored the code for esp
6538 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6539 Any base register besides %esp will not use the
6540 extra modrm byte. */
6541 i.sib.index = NO_INDEX_REGISTER;
6542 }
6543 else if (!i.tm.opcode_modifier.vecsib)
6544 {
6545 if (i.index_reg->reg_num == RegEiz
6546 || i.index_reg->reg_num == RegRiz)
6547 i.sib.index = NO_INDEX_REGISTER;
6548 else
6549 i.sib.index = i.index_reg->reg_num;
6550 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6551 if ((i.index_reg->reg_flags & RegRex) != 0)
6552 i.rex |= REX_X;
6553 }
6554
6555 if (i.disp_operands
6556 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6557 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6558 i.rm.mode = 0;
6559 else
6560 {
6561 if (!fake_zero_displacement
6562 && !i.disp_operands
6563 && i.disp_encoding)
6564 {
6565 fake_zero_displacement = 1;
6566 if (i.disp_encoding == disp_encoding_8bit)
6567 i.types[op].bitfield.disp8 = 1;
6568 else
6569 i.types[op].bitfield.disp32 = 1;
6570 }
6571 i.rm.mode = mode_from_disp_size (i.types[op]);
6572 }
6573 }
6574
6575 if (fake_zero_displacement)
6576 {
6577 /* Fakes a zero displacement assuming that i.types[op]
6578 holds the correct displacement size. */
6579 expressionS *exp;
6580
6581 gas_assert (i.op[op].disps == 0);
6582 exp = &disp_expressions[i.disp_operands++];
6583 i.op[op].disps = exp;
6584 exp->X_op = O_constant;
6585 exp->X_add_number = 0;
6586 exp->X_add_symbol = (symbolS *) 0;
6587 exp->X_op_symbol = (symbolS *) 0;
6588 }
6589
6590 mem = op;
6591 }
6592 else
6593 mem = ~0;
6594
6595 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
6596 {
6597 if (operand_type_check (i.types[0], imm))
6598 i.vex.register_specifier = NULL;
6599 else
6600 {
6601 /* VEX.vvvv encodes one of the sources when the first
6602 operand is not an immediate. */
6603 if (i.tm.opcode_modifier.vexw == VEXW0)
6604 i.vex.register_specifier = i.op[0].regs;
6605 else
6606 i.vex.register_specifier = i.op[1].regs;
6607 }
6608
6609 /* Destination is a XMM register encoded in the ModRM.reg
6610 and VEX.R bit. */
6611 i.rm.reg = i.op[2].regs->reg_num;
6612 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6613 i.rex |= REX_R;
6614
6615 /* ModRM.rm and VEX.B encodes the other source. */
6616 if (!i.mem_operands)
6617 {
6618 i.rm.mode = 3;
6619
6620 if (i.tm.opcode_modifier.vexw == VEXW0)
6621 i.rm.regmem = i.op[1].regs->reg_num;
6622 else
6623 i.rm.regmem = i.op[0].regs->reg_num;
6624
6625 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6626 i.rex |= REX_B;
6627 }
6628 }
6629 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
6630 {
6631 i.vex.register_specifier = i.op[2].regs;
6632 if (!i.mem_operands)
6633 {
6634 i.rm.mode = 3;
6635 i.rm.regmem = i.op[1].regs->reg_num;
6636 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6637 i.rex |= REX_B;
6638 }
6639 }
6640 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6641 (if any) based on i.tm.extension_opcode. Again, we must be
6642 careful to make sure that segment/control/debug/test/MMX
6643 registers are coded into the i.rm.reg field. */
6644 else if (i.reg_operands)
6645 {
6646 unsigned int op;
6647 unsigned int vex_reg = ~0;
6648
6649 for (op = 0; op < i.operands; op++)
6650 if (i.types[op].bitfield.reg8
6651 || i.types[op].bitfield.reg16
6652 || i.types[op].bitfield.reg32
6653 || i.types[op].bitfield.reg64
6654 || i.types[op].bitfield.regmmx
6655 || i.types[op].bitfield.regxmm
6656 || i.types[op].bitfield.regymm
6657 || i.types[op].bitfield.regbnd
6658 || i.types[op].bitfield.regzmm
6659 || i.types[op].bitfield.regmask
6660 || i.types[op].bitfield.sreg2
6661 || i.types[op].bitfield.sreg3
6662 || i.types[op].bitfield.control
6663 || i.types[op].bitfield.debug
6664 || i.types[op].bitfield.test)
6665 break;
6666
6667 if (vex_3_sources)
6668 op = dest;
6669 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6670 {
6671 /* For instructions with VexNDS, the register-only
6672 source operand is encoded in VEX prefix. */
6673 gas_assert (mem != (unsigned int) ~0);
6674
6675 if (op > mem)
6676 {
6677 vex_reg = op++;
6678 gas_assert (op < i.operands);
6679 }
6680 else
6681 {
6682 /* Check register-only source operand when two source
6683 operands are swapped. */
6684 if (!i.tm.operand_types[op].bitfield.baseindex
6685 && i.tm.operand_types[op + 1].bitfield.baseindex)
6686 {
6687 vex_reg = op;
6688 op += 2;
6689 gas_assert (mem == (vex_reg + 1)
6690 && op < i.operands);
6691 }
6692 else
6693 {
6694 vex_reg = op + 1;
6695 gas_assert (vex_reg < i.operands);
6696 }
6697 }
6698 }
6699 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
6700 {
6701 /* For instructions with VexNDD, the register destination
6702 is encoded in VEX prefix. */
6703 if (i.mem_operands == 0)
6704 {
6705 /* There is no memory operand. */
6706 gas_assert ((op + 2) == i.operands);
6707 vex_reg = op + 1;
6708 }
6709 else
6710 {
6711 /* There are only 2 operands. */
6712 gas_assert (op < 2 && i.operands == 2);
6713 vex_reg = 1;
6714 }
6715 }
6716 else
6717 gas_assert (op < i.operands);
6718
6719 if (vex_reg != (unsigned int) ~0)
6720 {
6721 i386_operand_type *type = &i.tm.operand_types[vex_reg];
6722
6723 if (type->bitfield.reg32 != 1
6724 && type->bitfield.reg64 != 1
6725 && !operand_type_equal (type, &regxmm)
6726 && !operand_type_equal (type, &regymm)
6727 && !operand_type_equal (type, &regzmm)
6728 && !operand_type_equal (type, &regmask))
6729 abort ();
6730
6731 i.vex.register_specifier = i.op[vex_reg].regs;
6732 }
6733
6734 /* Don't set OP operand twice. */
6735 if (vex_reg != op)
6736 {
6737 /* If there is an extension opcode to put here, the
6738 register number must be put into the regmem field. */
6739 if (i.tm.extension_opcode != None)
6740 {
6741 i.rm.regmem = i.op[op].regs->reg_num;
6742 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6743 i.rex |= REX_B;
6744 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6745 i.vrex |= REX_B;
6746 }
6747 else
6748 {
6749 i.rm.reg = i.op[op].regs->reg_num;
6750 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6751 i.rex |= REX_R;
6752 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6753 i.vrex |= REX_R;
6754 }
6755 }
6756
6757 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6758 must set it to 3 to indicate this is a register operand
6759 in the regmem field. */
6760 if (!i.mem_operands)
6761 i.rm.mode = 3;
6762 }
6763
6764 /* Fill in i.rm.reg field with extension opcode (if any). */
6765 if (i.tm.extension_opcode != None)
6766 i.rm.reg = i.tm.extension_opcode;
6767 }
6768 return default_seg;
6769 }
6770
6771 static void
6772 output_branch (void)
6773 {
6774 char *p;
6775 int size;
6776 int code16;
6777 int prefix;
6778 relax_substateT subtype;
6779 symbolS *sym;
6780 offsetT off;
6781
6782 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
6783 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
6784
6785 prefix = 0;
6786 if (i.prefix[DATA_PREFIX] != 0)
6787 {
6788 prefix = 1;
6789 i.prefixes -= 1;
6790 code16 ^= CODE16;
6791 }
6792 /* Pentium4 branch hints. */
6793 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6794 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6795 {
6796 prefix++;
6797 i.prefixes--;
6798 }
6799 if (i.prefix[REX_PREFIX] != 0)
6800 {
6801 prefix++;
6802 i.prefixes--;
6803 }
6804
6805 /* BND prefixed jump. */
6806 if (i.prefix[BND_PREFIX] != 0)
6807 {
6808 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6809 i.prefixes -= 1;
6810 }
6811
6812 if (i.prefixes != 0 && !intel_syntax)
6813 as_warn (_("skipping prefixes on this instruction"));
6814
6815 /* It's always a symbol; End frag & setup for relax.
6816 Make sure there is enough room in this frag for the largest
6817 instruction we may generate in md_convert_frag. This is 2
6818 bytes for the opcode and room for the prefix and largest
6819 displacement. */
6820 frag_grow (prefix + 2 + 4);
6821 /* Prefix and 1 opcode byte go in fr_fix. */
6822 p = frag_more (prefix + 1);
6823 if (i.prefix[DATA_PREFIX] != 0)
6824 *p++ = DATA_PREFIX_OPCODE;
6825 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6826 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6827 *p++ = i.prefix[SEG_PREFIX];
6828 if (i.prefix[REX_PREFIX] != 0)
6829 *p++ = i.prefix[REX_PREFIX];
6830 *p = i.tm.base_opcode;
6831
6832 if ((unsigned char) *p == JUMP_PC_RELATIVE)
6833 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
6834 else if (cpu_arch_flags.bitfield.cpui386)
6835 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
6836 else
6837 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
6838 subtype |= code16;
6839
6840 sym = i.op[0].disps->X_add_symbol;
6841 off = i.op[0].disps->X_add_number;
6842
6843 if (i.op[0].disps->X_op != O_constant
6844 && i.op[0].disps->X_op != O_symbol)
6845 {
6846 /* Handle complex expressions. */
6847 sym = make_expr_symbol (i.op[0].disps);
6848 off = 0;
6849 }
6850
6851 /* 1 possible extra opcode + 4 byte displacement go in var part.
6852 Pass reloc in fr_var. */
6853 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
6854 }
6855
6856 static void
6857 output_jump (void)
6858 {
6859 char *p;
6860 int size;
6861 fixS *fixP;
6862
6863 if (i.tm.opcode_modifier.jumpbyte)
6864 {
6865 /* This is a loop or jecxz type instruction. */
6866 size = 1;
6867 if (i.prefix[ADDR_PREFIX] != 0)
6868 {
6869 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
6870 i.prefixes -= 1;
6871 }
6872 /* Pentium4 branch hints. */
6873 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6874 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6875 {
6876 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
6877 i.prefixes--;
6878 }
6879 }
6880 else
6881 {
6882 int code16;
6883
6884 code16 = 0;
6885 if (flag_code == CODE_16BIT)
6886 code16 = CODE16;
6887
6888 if (i.prefix[DATA_PREFIX] != 0)
6889 {
6890 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
6891 i.prefixes -= 1;
6892 code16 ^= CODE16;
6893 }
6894
6895 size = 4;
6896 if (code16)
6897 size = 2;
6898 }
6899
6900 if (i.prefix[REX_PREFIX] != 0)
6901 {
6902 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
6903 i.prefixes -= 1;
6904 }
6905
6906 /* BND prefixed jump. */
6907 if (i.prefix[BND_PREFIX] != 0)
6908 {
6909 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6910 i.prefixes -= 1;
6911 }
6912
6913 if (i.prefixes != 0 && !intel_syntax)
6914 as_warn (_("skipping prefixes on this instruction"));
6915
6916 p = frag_more (i.tm.opcode_length + size);
6917 switch (i.tm.opcode_length)
6918 {
6919 case 2:
6920 *p++ = i.tm.base_opcode >> 8;
6921 case 1:
6922 *p++ = i.tm.base_opcode;
6923 break;
6924 default:
6925 abort ();
6926 }
6927
6928 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6929 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
6930
6931 /* All jumps handled here are signed, but don't use a signed limit
6932 check for 32 and 16 bit jumps as we want to allow wrap around at
6933 4G and 64k respectively. */
6934 if (size == 1)
6935 fixP->fx_signed = 1;
6936 }
6937
6938 static void
6939 output_interseg_jump (void)
6940 {
6941 char *p;
6942 int size;
6943 int prefix;
6944 int code16;
6945
6946 code16 = 0;
6947 if (flag_code == CODE_16BIT)
6948 code16 = CODE16;
6949
6950 prefix = 0;
6951 if (i.prefix[DATA_PREFIX] != 0)
6952 {
6953 prefix = 1;
6954 i.prefixes -= 1;
6955 code16 ^= CODE16;
6956 }
6957 if (i.prefix[REX_PREFIX] != 0)
6958 {
6959 prefix++;
6960 i.prefixes -= 1;
6961 }
6962
6963 size = 4;
6964 if (code16)
6965 size = 2;
6966
6967 if (i.prefixes != 0 && !intel_syntax)
6968 as_warn (_("skipping prefixes on this instruction"));
6969
6970 /* 1 opcode; 2 segment; offset */
6971 p = frag_more (prefix + 1 + 2 + size);
6972
6973 if (i.prefix[DATA_PREFIX] != 0)
6974 *p++ = DATA_PREFIX_OPCODE;
6975
6976 if (i.prefix[REX_PREFIX] != 0)
6977 *p++ = i.prefix[REX_PREFIX];
6978
6979 *p++ = i.tm.base_opcode;
6980 if (i.op[1].imms->X_op == O_constant)
6981 {
6982 offsetT n = i.op[1].imms->X_add_number;
6983
6984 if (size == 2
6985 && !fits_in_unsigned_word (n)
6986 && !fits_in_signed_word (n))
6987 {
6988 as_bad (_("16-bit jump out of range"));
6989 return;
6990 }
6991 md_number_to_chars (p, n, size);
6992 }
6993 else
6994 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6995 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
6996 if (i.op[0].imms->X_op != O_constant)
6997 as_bad (_("can't handle non absolute segment in `%s'"),
6998 i.tm.name);
6999 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7000 }
7001
7002 static void
7003 output_insn (void)
7004 {
7005 fragS *insn_start_frag;
7006 offsetT insn_start_off;
7007
7008 /* Tie dwarf2 debug info to the address at the start of the insn.
7009 We can't do this after the insn has been output as the current
7010 frag may have been closed off. eg. by frag_var. */
7011 dwarf2_emit_insn (0);
7012
7013 insn_start_frag = frag_now;
7014 insn_start_off = frag_now_fix ();
7015
7016 /* Output jumps. */
7017 if (i.tm.opcode_modifier.jump)
7018 output_branch ();
7019 else if (i.tm.opcode_modifier.jumpbyte
7020 || i.tm.opcode_modifier.jumpdword)
7021 output_jump ();
7022 else if (i.tm.opcode_modifier.jumpintersegment)
7023 output_interseg_jump ();
7024 else
7025 {
7026 /* Output normal instructions here. */
7027 char *p;
7028 unsigned char *q;
7029 unsigned int j;
7030 unsigned int prefix;
7031
7032 if (avoid_fence
7033 && i.tm.base_opcode == 0xfae
7034 && i.operands == 1
7035 && i.imm_operands == 1
7036 && (i.op[0].imms->X_add_number == 0xe8
7037 || i.op[0].imms->X_add_number == 0xf0
7038 || i.op[0].imms->X_add_number == 0xf8))
7039 {
7040 /* Encode lfence, mfence, and sfence as
7041 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7042 offsetT val = 0x240483f0ULL;
7043 p = frag_more (5);
7044 md_number_to_chars (p, val, 5);
7045 return;
7046 }
7047
7048 /* Some processors fail on LOCK prefix. This options makes
7049 assembler ignore LOCK prefix and serves as a workaround. */
7050 if (omit_lock_prefix)
7051 {
7052 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7053 return;
7054 i.prefix[LOCK_PREFIX] = 0;
7055 }
7056
7057 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7058 don't need the explicit prefix. */
7059 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7060 {
7061 switch (i.tm.opcode_length)
7062 {
7063 case 3:
7064 if (i.tm.base_opcode & 0xff000000)
7065 {
7066 prefix = (i.tm.base_opcode >> 24) & 0xff;
7067 goto check_prefix;
7068 }
7069 break;
7070 case 2:
7071 if ((i.tm.base_opcode & 0xff0000) != 0)
7072 {
7073 prefix = (i.tm.base_opcode >> 16) & 0xff;
7074 if (i.tm.cpu_flags.bitfield.cpupadlock)
7075 {
7076 check_prefix:
7077 if (prefix != REPE_PREFIX_OPCODE
7078 || (i.prefix[REP_PREFIX]
7079 != REPE_PREFIX_OPCODE))
7080 add_prefix (prefix);
7081 }
7082 else
7083 add_prefix (prefix);
7084 }
7085 break;
7086 case 1:
7087 break;
7088 default:
7089 abort ();
7090 }
7091
7092 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7093 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7094 R_X86_64_GOTTPOFF relocation so that linker can safely
7095 perform IE->LE optimization. */
7096 if (x86_elf_abi == X86_64_X32_ABI
7097 && i.operands == 2
7098 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7099 && i.prefix[REX_PREFIX] == 0)
7100 add_prefix (REX_OPCODE);
7101 #endif
7102
7103 /* The prefix bytes. */
7104 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7105 if (*q)
7106 FRAG_APPEND_1_CHAR (*q);
7107 }
7108 else
7109 {
7110 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7111 if (*q)
7112 switch (j)
7113 {
7114 case REX_PREFIX:
7115 /* REX byte is encoded in VEX prefix. */
7116 break;
7117 case SEG_PREFIX:
7118 case ADDR_PREFIX:
7119 FRAG_APPEND_1_CHAR (*q);
7120 break;
7121 default:
7122 /* There should be no other prefixes for instructions
7123 with VEX prefix. */
7124 abort ();
7125 }
7126
7127 /* For EVEX instructions i.vrex should become 0 after
7128 build_evex_prefix. For VEX instructions upper 16 registers
7129 aren't available, so VREX should be 0. */
7130 if (i.vrex)
7131 abort ();
7132 /* Now the VEX prefix. */
7133 p = frag_more (i.vex.length);
7134 for (j = 0; j < i.vex.length; j++)
7135 p[j] = i.vex.bytes[j];
7136 }
7137
7138 /* Now the opcode; be careful about word order here! */
7139 if (i.tm.opcode_length == 1)
7140 {
7141 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7142 }
7143 else
7144 {
7145 switch (i.tm.opcode_length)
7146 {
7147 case 4:
7148 p = frag_more (4);
7149 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7150 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7151 break;
7152 case 3:
7153 p = frag_more (3);
7154 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7155 break;
7156 case 2:
7157 p = frag_more (2);
7158 break;
7159 default:
7160 abort ();
7161 break;
7162 }
7163
7164 /* Put out high byte first: can't use md_number_to_chars! */
7165 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7166 *p = i.tm.base_opcode & 0xff;
7167 }
7168
7169 /* Now the modrm byte and sib byte (if present). */
7170 if (i.tm.opcode_modifier.modrm)
7171 {
7172 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7173 | i.rm.reg << 3
7174 | i.rm.mode << 6));
7175 /* If i.rm.regmem == ESP (4)
7176 && i.rm.mode != (Register mode)
7177 && not 16 bit
7178 ==> need second modrm byte. */
7179 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7180 && i.rm.mode != 3
7181 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
7182 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7183 | i.sib.index << 3
7184 | i.sib.scale << 6));
7185 }
7186
7187 if (i.disp_operands)
7188 output_disp (insn_start_frag, insn_start_off);
7189
7190 if (i.imm_operands)
7191 output_imm (insn_start_frag, insn_start_off);
7192 }
7193
7194 #ifdef DEBUG386
7195 if (flag_debug)
7196 {
7197 pi ("" /*line*/, &i);
7198 }
7199 #endif /* DEBUG386 */
7200 }
7201
7202 /* Return the size of the displacement operand N. */
7203
7204 static int
7205 disp_size (unsigned int n)
7206 {
7207 int size = 4;
7208
7209 /* Vec_Disp8 has to be 8bit. */
7210 if (i.types[n].bitfield.vec_disp8)
7211 size = 1;
7212 else if (i.types[n].bitfield.disp64)
7213 size = 8;
7214 else if (i.types[n].bitfield.disp8)
7215 size = 1;
7216 else if (i.types[n].bitfield.disp16)
7217 size = 2;
7218 return size;
7219 }
7220
7221 /* Return the size of the immediate operand N. */
7222
7223 static int
7224 imm_size (unsigned int n)
7225 {
7226 int size = 4;
7227 if (i.types[n].bitfield.imm64)
7228 size = 8;
7229 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7230 size = 1;
7231 else if (i.types[n].bitfield.imm16)
7232 size = 2;
7233 return size;
7234 }
7235
7236 static void
7237 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7238 {
7239 char *p;
7240 unsigned int n;
7241
7242 for (n = 0; n < i.operands; n++)
7243 {
7244 if (i.types[n].bitfield.vec_disp8
7245 || operand_type_check (i.types[n], disp))
7246 {
7247 if (i.op[n].disps->X_op == O_constant)
7248 {
7249 int size = disp_size (n);
7250 offsetT val = i.op[n].disps->X_add_number;
7251
7252 if (i.types[n].bitfield.vec_disp8)
7253 val >>= i.memshift;
7254 val = offset_in_range (val, size);
7255 p = frag_more (size);
7256 md_number_to_chars (p, val, size);
7257 }
7258 else
7259 {
7260 enum bfd_reloc_code_real reloc_type;
7261 int size = disp_size (n);
7262 int sign = i.types[n].bitfield.disp32s;
7263 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7264 fixS *fixP;
7265
7266 /* We can't have 8 bit displacement here. */
7267 gas_assert (!i.types[n].bitfield.disp8);
7268
7269 /* The PC relative address is computed relative
7270 to the instruction boundary, so in case immediate
7271 fields follows, we need to adjust the value. */
7272 if (pcrel && i.imm_operands)
7273 {
7274 unsigned int n1;
7275 int sz = 0;
7276
7277 for (n1 = 0; n1 < i.operands; n1++)
7278 if (operand_type_check (i.types[n1], imm))
7279 {
7280 /* Only one immediate is allowed for PC
7281 relative address. */
7282 gas_assert (sz == 0);
7283 sz = imm_size (n1);
7284 i.op[n].disps->X_add_number -= sz;
7285 }
7286 /* We should find the immediate. */
7287 gas_assert (sz != 0);
7288 }
7289
7290 p = frag_more (size);
7291 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7292 if (GOT_symbol
7293 && GOT_symbol == i.op[n].disps->X_add_symbol
7294 && (((reloc_type == BFD_RELOC_32
7295 || reloc_type == BFD_RELOC_X86_64_32S
7296 || (reloc_type == BFD_RELOC_64
7297 && object_64bit))
7298 && (i.op[n].disps->X_op == O_symbol
7299 || (i.op[n].disps->X_op == O_add
7300 && ((symbol_get_value_expression
7301 (i.op[n].disps->X_op_symbol)->X_op)
7302 == O_subtract))))
7303 || reloc_type == BFD_RELOC_32_PCREL))
7304 {
7305 offsetT add;
7306
7307 if (insn_start_frag == frag_now)
7308 add = (p - frag_now->fr_literal) - insn_start_off;
7309 else
7310 {
7311 fragS *fr;
7312
7313 add = insn_start_frag->fr_fix - insn_start_off;
7314 for (fr = insn_start_frag->fr_next;
7315 fr && fr != frag_now; fr = fr->fr_next)
7316 add += fr->fr_fix;
7317 add += p - frag_now->fr_literal;
7318 }
7319
7320 if (!object_64bit)
7321 {
7322 reloc_type = BFD_RELOC_386_GOTPC;
7323 i.op[n].imms->X_add_number += add;
7324 }
7325 else if (reloc_type == BFD_RELOC_64)
7326 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7327 else
7328 /* Don't do the adjustment for x86-64, as there
7329 the pcrel addressing is relative to the _next_
7330 insn, and that is taken care of in other code. */
7331 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7332 }
7333 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7334 size, i.op[n].disps, pcrel,
7335 reloc_type);
7336 /* Check for "call/jmp *mem", "mov mem, %reg",
7337 "test %reg, mem" and "binop mem, %reg" where binop
7338 is one of adc, add, and, cmp, or, sbb, sub, xor
7339 instructions. Always generate R_386_GOT32X for
7340 "sym*GOT" operand in 32-bit mode. */
7341 if ((generate_relax_relocations
7342 || (!object_64bit
7343 && i.rm.mode == 0
7344 && i.rm.regmem == 5))
7345 && (i.rm.mode == 2
7346 || (i.rm.mode == 0 && i.rm.regmem == 5))
7347 && ((i.operands == 1
7348 && i.tm.base_opcode == 0xff
7349 && (i.rm.reg == 2 || i.rm.reg == 4))
7350 || (i.operands == 2
7351 && (i.tm.base_opcode == 0x8b
7352 || i.tm.base_opcode == 0x85
7353 || (i.tm.base_opcode & 0xc7) == 0x03))))
7354 {
7355 if (object_64bit)
7356 {
7357 fixP->fx_tcbit = i.rex != 0;
7358 if (i.base_reg
7359 && (i.base_reg->reg_num == RegRip
7360 || i.base_reg->reg_num == RegEip))
7361 fixP->fx_tcbit2 = 1;
7362 }
7363 else
7364 fixP->fx_tcbit2 = 1;
7365 }
7366 }
7367 }
7368 }
7369 }
7370
7371 static void
7372 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7373 {
7374 char *p;
7375 unsigned int n;
7376
7377 for (n = 0; n < i.operands; n++)
7378 {
7379 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7380 if (i.rounding && (int) n == i.rounding->operand)
7381 continue;
7382
7383 if (operand_type_check (i.types[n], imm))
7384 {
7385 if (i.op[n].imms->X_op == O_constant)
7386 {
7387 int size = imm_size (n);
7388 offsetT val;
7389
7390 val = offset_in_range (i.op[n].imms->X_add_number,
7391 size);
7392 p = frag_more (size);
7393 md_number_to_chars (p, val, size);
7394 }
7395 else
7396 {
7397 /* Not absolute_section.
7398 Need a 32-bit fixup (don't support 8bit
7399 non-absolute imms). Try to support other
7400 sizes ... */
7401 enum bfd_reloc_code_real reloc_type;
7402 int size = imm_size (n);
7403 int sign;
7404
7405 if (i.types[n].bitfield.imm32s
7406 && (i.suffix == QWORD_MNEM_SUFFIX
7407 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7408 sign = 1;
7409 else
7410 sign = 0;
7411
7412 p = frag_more (size);
7413 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7414
7415 /* This is tough to explain. We end up with this one if we
7416 * have operands that look like
7417 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7418 * obtain the absolute address of the GOT, and it is strongly
7419 * preferable from a performance point of view to avoid using
7420 * a runtime relocation for this. The actual sequence of
7421 * instructions often look something like:
7422 *
7423 * call .L66
7424 * .L66:
7425 * popl %ebx
7426 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7427 *
7428 * The call and pop essentially return the absolute address
7429 * of the label .L66 and store it in %ebx. The linker itself
7430 * will ultimately change the first operand of the addl so
7431 * that %ebx points to the GOT, but to keep things simple, the
7432 * .o file must have this operand set so that it generates not
7433 * the absolute address of .L66, but the absolute address of
7434 * itself. This allows the linker itself simply treat a GOTPC
7435 * relocation as asking for a pcrel offset to the GOT to be
7436 * added in, and the addend of the relocation is stored in the
7437 * operand field for the instruction itself.
7438 *
7439 * Our job here is to fix the operand so that it would add
7440 * the correct offset so that %ebx would point to itself. The
7441 * thing that is tricky is that .-.L66 will point to the
7442 * beginning of the instruction, so we need to further modify
7443 * the operand so that it will point to itself. There are
7444 * other cases where you have something like:
7445 *
7446 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7447 *
7448 * and here no correction would be required. Internally in
7449 * the assembler we treat operands of this form as not being
7450 * pcrel since the '.' is explicitly mentioned, and I wonder
7451 * whether it would simplify matters to do it this way. Who
7452 * knows. In earlier versions of the PIC patches, the
7453 * pcrel_adjust field was used to store the correction, but
7454 * since the expression is not pcrel, I felt it would be
7455 * confusing to do it this way. */
7456
7457 if ((reloc_type == BFD_RELOC_32
7458 || reloc_type == BFD_RELOC_X86_64_32S
7459 || reloc_type == BFD_RELOC_64)
7460 && GOT_symbol
7461 && GOT_symbol == i.op[n].imms->X_add_symbol
7462 && (i.op[n].imms->X_op == O_symbol
7463 || (i.op[n].imms->X_op == O_add
7464 && ((symbol_get_value_expression
7465 (i.op[n].imms->X_op_symbol)->X_op)
7466 == O_subtract))))
7467 {
7468 offsetT add;
7469
7470 if (insn_start_frag == frag_now)
7471 add = (p - frag_now->fr_literal) - insn_start_off;
7472 else
7473 {
7474 fragS *fr;
7475
7476 add = insn_start_frag->fr_fix - insn_start_off;
7477 for (fr = insn_start_frag->fr_next;
7478 fr && fr != frag_now; fr = fr->fr_next)
7479 add += fr->fr_fix;
7480 add += p - frag_now->fr_literal;
7481 }
7482
7483 if (!object_64bit)
7484 reloc_type = BFD_RELOC_386_GOTPC;
7485 else if (size == 4)
7486 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7487 else if (size == 8)
7488 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7489 i.op[n].imms->X_add_number += add;
7490 }
7491 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7492 i.op[n].imms, 0, reloc_type);
7493 }
7494 }
7495 }
7496 }
7497 \f
7498 /* x86_cons_fix_new is called via the expression parsing code when a
7499 reloc is needed. We use this hook to get the correct .got reloc. */
7500 static int cons_sign = -1;
7501
7502 void
7503 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7504 expressionS *exp, bfd_reloc_code_real_type r)
7505 {
7506 r = reloc (len, 0, cons_sign, r);
7507
7508 #ifdef TE_PE
7509 if (exp->X_op == O_secrel)
7510 {
7511 exp->X_op = O_symbol;
7512 r = BFD_RELOC_32_SECREL;
7513 }
7514 #endif
7515
7516 fix_new_exp (frag, off, len, exp, 0, r);
7517 }
7518
7519 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7520 purpose of the `.dc.a' internal pseudo-op. */
7521
7522 int
7523 x86_address_bytes (void)
7524 {
7525 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7526 return 4;
7527 return stdoutput->arch_info->bits_per_address / 8;
7528 }
7529
7530 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7531 || defined (LEX_AT)
7532 # define lex_got(reloc, adjust, types) NULL
7533 #else
7534 /* Parse operands of the form
7535 <symbol>@GOTOFF+<nnn>
7536 and similar .plt or .got references.
7537
7538 If we find one, set up the correct relocation in RELOC and copy the
7539 input string, minus the `@GOTOFF' into a malloc'd buffer for
7540 parsing by the calling routine. Return this buffer, and if ADJUST
7541 is non-null set it to the length of the string we removed from the
7542 input line. Otherwise return NULL. */
7543 static char *
7544 lex_got (enum bfd_reloc_code_real *rel,
7545 int *adjust,
7546 i386_operand_type *types)
7547 {
7548 /* Some of the relocations depend on the size of what field is to
7549 be relocated. But in our callers i386_immediate and i386_displacement
7550 we don't yet know the operand size (this will be set by insn
7551 matching). Hence we record the word32 relocation here,
7552 and adjust the reloc according to the real size in reloc(). */
7553 static const struct {
7554 const char *str;
7555 int len;
7556 const enum bfd_reloc_code_real rel[2];
7557 const i386_operand_type types64;
7558 } gotrel[] = {
7559 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7560 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7561 BFD_RELOC_SIZE32 },
7562 OPERAND_TYPE_IMM32_64 },
7563 #endif
7564 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7565 BFD_RELOC_X86_64_PLTOFF64 },
7566 OPERAND_TYPE_IMM64 },
7567 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7568 BFD_RELOC_X86_64_PLT32 },
7569 OPERAND_TYPE_IMM32_32S_DISP32 },
7570 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7571 BFD_RELOC_X86_64_GOTPLT64 },
7572 OPERAND_TYPE_IMM64_DISP64 },
7573 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7574 BFD_RELOC_X86_64_GOTOFF64 },
7575 OPERAND_TYPE_IMM64_DISP64 },
7576 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7577 BFD_RELOC_X86_64_GOTPCREL },
7578 OPERAND_TYPE_IMM32_32S_DISP32 },
7579 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7580 BFD_RELOC_X86_64_TLSGD },
7581 OPERAND_TYPE_IMM32_32S_DISP32 },
7582 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7583 _dummy_first_bfd_reloc_code_real },
7584 OPERAND_TYPE_NONE },
7585 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7586 BFD_RELOC_X86_64_TLSLD },
7587 OPERAND_TYPE_IMM32_32S_DISP32 },
7588 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7589 BFD_RELOC_X86_64_GOTTPOFF },
7590 OPERAND_TYPE_IMM32_32S_DISP32 },
7591 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7592 BFD_RELOC_X86_64_TPOFF32 },
7593 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7594 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7595 _dummy_first_bfd_reloc_code_real },
7596 OPERAND_TYPE_NONE },
7597 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7598 BFD_RELOC_X86_64_DTPOFF32 },
7599 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7600 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7601 _dummy_first_bfd_reloc_code_real },
7602 OPERAND_TYPE_NONE },
7603 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7604 _dummy_first_bfd_reloc_code_real },
7605 OPERAND_TYPE_NONE },
7606 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7607 BFD_RELOC_X86_64_GOT32 },
7608 OPERAND_TYPE_IMM32_32S_64_DISP32 },
7609 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7610 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
7611 OPERAND_TYPE_IMM32_32S_DISP32 },
7612 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7613 BFD_RELOC_X86_64_TLSDESC_CALL },
7614 OPERAND_TYPE_IMM32_32S_DISP32 },
7615 };
7616 char *cp;
7617 unsigned int j;
7618
7619 #if defined (OBJ_MAYBE_ELF)
7620 if (!IS_ELF)
7621 return NULL;
7622 #endif
7623
7624 for (cp = input_line_pointer; *cp != '@'; cp++)
7625 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7626 return NULL;
7627
7628 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7629 {
7630 int len = gotrel[j].len;
7631 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7632 {
7633 if (gotrel[j].rel[object_64bit] != 0)
7634 {
7635 int first, second;
7636 char *tmpbuf, *past_reloc;
7637
7638 *rel = gotrel[j].rel[object_64bit];
7639
7640 if (types)
7641 {
7642 if (flag_code != CODE_64BIT)
7643 {
7644 types->bitfield.imm32 = 1;
7645 types->bitfield.disp32 = 1;
7646 }
7647 else
7648 *types = gotrel[j].types64;
7649 }
7650
7651 if (j != 0 && GOT_symbol == NULL)
7652 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7653
7654 /* The length of the first part of our input line. */
7655 first = cp - input_line_pointer;
7656
7657 /* The second part goes from after the reloc token until
7658 (and including) an end_of_line char or comma. */
7659 past_reloc = cp + 1 + len;
7660 cp = past_reloc;
7661 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7662 ++cp;
7663 second = cp + 1 - past_reloc;
7664
7665 /* Allocate and copy string. The trailing NUL shouldn't
7666 be necessary, but be safe. */
7667 tmpbuf = XNEWVEC (char, first + second + 2);
7668 memcpy (tmpbuf, input_line_pointer, first);
7669 if (second != 0 && *past_reloc != ' ')
7670 /* Replace the relocation token with ' ', so that
7671 errors like foo@GOTOFF1 will be detected. */
7672 tmpbuf[first++] = ' ';
7673 else
7674 /* Increment length by 1 if the relocation token is
7675 removed. */
7676 len++;
7677 if (adjust)
7678 *adjust = len;
7679 memcpy (tmpbuf + first, past_reloc, second);
7680 tmpbuf[first + second] = '\0';
7681 return tmpbuf;
7682 }
7683
7684 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7685 gotrel[j].str, 1 << (5 + object_64bit));
7686 return NULL;
7687 }
7688 }
7689
7690 /* Might be a symbol version string. Don't as_bad here. */
7691 return NULL;
7692 }
7693 #endif
7694
7695 #ifdef TE_PE
7696 #ifdef lex_got
7697 #undef lex_got
7698 #endif
7699 /* Parse operands of the form
7700 <symbol>@SECREL32+<nnn>
7701
7702 If we find one, set up the correct relocation in RELOC and copy the
7703 input string, minus the `@SECREL32' into a malloc'd buffer for
7704 parsing by the calling routine. Return this buffer, and if ADJUST
7705 is non-null set it to the length of the string we removed from the
7706 input line. Otherwise return NULL.
7707
7708 This function is copied from the ELF version above adjusted for PE targets. */
7709
7710 static char *
7711 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7712 int *adjust ATTRIBUTE_UNUSED,
7713 i386_operand_type *types)
7714 {
7715 static const struct
7716 {
7717 const char *str;
7718 int len;
7719 const enum bfd_reloc_code_real rel[2];
7720 const i386_operand_type types64;
7721 }
7722 gotrel[] =
7723 {
7724 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7725 BFD_RELOC_32_SECREL },
7726 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7727 };
7728
7729 char *cp;
7730 unsigned j;
7731
7732 for (cp = input_line_pointer; *cp != '@'; cp++)
7733 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7734 return NULL;
7735
7736 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7737 {
7738 int len = gotrel[j].len;
7739
7740 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7741 {
7742 if (gotrel[j].rel[object_64bit] != 0)
7743 {
7744 int first, second;
7745 char *tmpbuf, *past_reloc;
7746
7747 *rel = gotrel[j].rel[object_64bit];
7748 if (adjust)
7749 *adjust = len;
7750
7751 if (types)
7752 {
7753 if (flag_code != CODE_64BIT)
7754 {
7755 types->bitfield.imm32 = 1;
7756 types->bitfield.disp32 = 1;
7757 }
7758 else
7759 *types = gotrel[j].types64;
7760 }
7761
7762 /* The length of the first part of our input line. */
7763 first = cp - input_line_pointer;
7764
7765 /* The second part goes from after the reloc token until
7766 (and including) an end_of_line char or comma. */
7767 past_reloc = cp + 1 + len;
7768 cp = past_reloc;
7769 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7770 ++cp;
7771 second = cp + 1 - past_reloc;
7772
7773 /* Allocate and copy string. The trailing NUL shouldn't
7774 be necessary, but be safe. */
7775 tmpbuf = XNEWVEC (char, first + second + 2);
7776 memcpy (tmpbuf, input_line_pointer, first);
7777 if (second != 0 && *past_reloc != ' ')
7778 /* Replace the relocation token with ' ', so that
7779 errors like foo@SECLREL321 will be detected. */
7780 tmpbuf[first++] = ' ';
7781 memcpy (tmpbuf + first, past_reloc, second);
7782 tmpbuf[first + second] = '\0';
7783 return tmpbuf;
7784 }
7785
7786 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7787 gotrel[j].str, 1 << (5 + object_64bit));
7788 return NULL;
7789 }
7790 }
7791
7792 /* Might be a symbol version string. Don't as_bad here. */
7793 return NULL;
7794 }
7795
7796 #endif /* TE_PE */
7797
7798 bfd_reloc_code_real_type
7799 x86_cons (expressionS *exp, int size)
7800 {
7801 bfd_reloc_code_real_type got_reloc = NO_RELOC;
7802
7803 intel_syntax = -intel_syntax;
7804
7805 exp->X_md = 0;
7806 if (size == 4 || (object_64bit && size == 8))
7807 {
7808 /* Handle @GOTOFF and the like in an expression. */
7809 char *save;
7810 char *gotfree_input_line;
7811 int adjust = 0;
7812
7813 save = input_line_pointer;
7814 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
7815 if (gotfree_input_line)
7816 input_line_pointer = gotfree_input_line;
7817
7818 expression (exp);
7819
7820 if (gotfree_input_line)
7821 {
7822 /* expression () has merrily parsed up to the end of line,
7823 or a comma - in the wrong buffer. Transfer how far
7824 input_line_pointer has moved to the right buffer. */
7825 input_line_pointer = (save
7826 + (input_line_pointer - gotfree_input_line)
7827 + adjust);
7828 free (gotfree_input_line);
7829 if (exp->X_op == O_constant
7830 || exp->X_op == O_absent
7831 || exp->X_op == O_illegal
7832 || exp->X_op == O_register
7833 || exp->X_op == O_big)
7834 {
7835 char c = *input_line_pointer;
7836 *input_line_pointer = 0;
7837 as_bad (_("missing or invalid expression `%s'"), save);
7838 *input_line_pointer = c;
7839 }
7840 }
7841 }
7842 else
7843 expression (exp);
7844
7845 intel_syntax = -intel_syntax;
7846
7847 if (intel_syntax)
7848 i386_intel_simplify (exp);
7849
7850 return got_reloc;
7851 }
7852
7853 static void
7854 signed_cons (int size)
7855 {
7856 if (flag_code == CODE_64BIT)
7857 cons_sign = 1;
7858 cons (size);
7859 cons_sign = -1;
7860 }
7861
7862 #ifdef TE_PE
7863 static void
7864 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
7865 {
7866 expressionS exp;
7867
7868 do
7869 {
7870 expression (&exp);
7871 if (exp.X_op == O_symbol)
7872 exp.X_op = O_secrel;
7873
7874 emit_expr (&exp, 4);
7875 }
7876 while (*input_line_pointer++ == ',');
7877
7878 input_line_pointer--;
7879 demand_empty_rest_of_line ();
7880 }
7881 #endif
7882
7883 /* Handle Vector operations. */
7884
7885 static char *
7886 check_VecOperations (char *op_string, char *op_end)
7887 {
7888 const reg_entry *mask;
7889 const char *saved;
7890 char *end_op;
7891
7892 while (*op_string
7893 && (op_end == NULL || op_string < op_end))
7894 {
7895 saved = op_string;
7896 if (*op_string == '{')
7897 {
7898 op_string++;
7899
7900 /* Check broadcasts. */
7901 if (strncmp (op_string, "1to", 3) == 0)
7902 {
7903 int bcst_type;
7904
7905 if (i.broadcast)
7906 goto duplicated_vec_op;
7907
7908 op_string += 3;
7909 if (*op_string == '8')
7910 bcst_type = BROADCAST_1TO8;
7911 else if (*op_string == '4')
7912 bcst_type = BROADCAST_1TO4;
7913 else if (*op_string == '2')
7914 bcst_type = BROADCAST_1TO2;
7915 else if (*op_string == '1'
7916 && *(op_string+1) == '6')
7917 {
7918 bcst_type = BROADCAST_1TO16;
7919 op_string++;
7920 }
7921 else
7922 {
7923 as_bad (_("Unsupported broadcast: `%s'"), saved);
7924 return NULL;
7925 }
7926 op_string++;
7927
7928 broadcast_op.type = bcst_type;
7929 broadcast_op.operand = this_operand;
7930 i.broadcast = &broadcast_op;
7931 }
7932 /* Check masking operation. */
7933 else if ((mask = parse_register (op_string, &end_op)) != NULL)
7934 {
7935 /* k0 can't be used for write mask. */
7936 if (mask->reg_num == 0)
7937 {
7938 as_bad (_("`%s' can't be used for write mask"),
7939 op_string);
7940 return NULL;
7941 }
7942
7943 if (!i.mask)
7944 {
7945 mask_op.mask = mask;
7946 mask_op.zeroing = 0;
7947 mask_op.operand = this_operand;
7948 i.mask = &mask_op;
7949 }
7950 else
7951 {
7952 if (i.mask->mask)
7953 goto duplicated_vec_op;
7954
7955 i.mask->mask = mask;
7956
7957 /* Only "{z}" is allowed here. No need to check
7958 zeroing mask explicitly. */
7959 if (i.mask->operand != this_operand)
7960 {
7961 as_bad (_("invalid write mask `%s'"), saved);
7962 return NULL;
7963 }
7964 }
7965
7966 op_string = end_op;
7967 }
7968 /* Check zeroing-flag for masking operation. */
7969 else if (*op_string == 'z')
7970 {
7971 if (!i.mask)
7972 {
7973 mask_op.mask = NULL;
7974 mask_op.zeroing = 1;
7975 mask_op.operand = this_operand;
7976 i.mask = &mask_op;
7977 }
7978 else
7979 {
7980 if (i.mask->zeroing)
7981 {
7982 duplicated_vec_op:
7983 as_bad (_("duplicated `%s'"), saved);
7984 return NULL;
7985 }
7986
7987 i.mask->zeroing = 1;
7988
7989 /* Only "{%k}" is allowed here. No need to check mask
7990 register explicitly. */
7991 if (i.mask->operand != this_operand)
7992 {
7993 as_bad (_("invalid zeroing-masking `%s'"),
7994 saved);
7995 return NULL;
7996 }
7997 }
7998
7999 op_string++;
8000 }
8001 else
8002 goto unknown_vec_op;
8003
8004 if (*op_string != '}')
8005 {
8006 as_bad (_("missing `}' in `%s'"), saved);
8007 return NULL;
8008 }
8009 op_string++;
8010 continue;
8011 }
8012 unknown_vec_op:
8013 /* We don't know this one. */
8014 as_bad (_("unknown vector operation: `%s'"), saved);
8015 return NULL;
8016 }
8017
8018 return op_string;
8019 }
8020
8021 static int
8022 i386_immediate (char *imm_start)
8023 {
8024 char *save_input_line_pointer;
8025 char *gotfree_input_line;
8026 segT exp_seg = 0;
8027 expressionS *exp;
8028 i386_operand_type types;
8029
8030 operand_type_set (&types, ~0);
8031
8032 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8033 {
8034 as_bad (_("at most %d immediate operands are allowed"),
8035 MAX_IMMEDIATE_OPERANDS);
8036 return 0;
8037 }
8038
8039 exp = &im_expressions[i.imm_operands++];
8040 i.op[this_operand].imms = exp;
8041
8042 if (is_space_char (*imm_start))
8043 ++imm_start;
8044
8045 save_input_line_pointer = input_line_pointer;
8046 input_line_pointer = imm_start;
8047
8048 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8049 if (gotfree_input_line)
8050 input_line_pointer = gotfree_input_line;
8051
8052 exp_seg = expression (exp);
8053
8054 SKIP_WHITESPACE ();
8055
8056 /* Handle vector operations. */
8057 if (*input_line_pointer == '{')
8058 {
8059 input_line_pointer = check_VecOperations (input_line_pointer,
8060 NULL);
8061 if (input_line_pointer == NULL)
8062 return 0;
8063 }
8064
8065 if (*input_line_pointer)
8066 as_bad (_("junk `%s' after expression"), input_line_pointer);
8067
8068 input_line_pointer = save_input_line_pointer;
8069 if (gotfree_input_line)
8070 {
8071 free (gotfree_input_line);
8072
8073 if (exp->X_op == O_constant || exp->X_op == O_register)
8074 exp->X_op = O_illegal;
8075 }
8076
8077 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8078 }
8079
8080 static int
8081 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8082 i386_operand_type types, const char *imm_start)
8083 {
8084 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8085 {
8086 if (imm_start)
8087 as_bad (_("missing or invalid immediate expression `%s'"),
8088 imm_start);
8089 return 0;
8090 }
8091 else if (exp->X_op == O_constant)
8092 {
8093 /* Size it properly later. */
8094 i.types[this_operand].bitfield.imm64 = 1;
8095 /* If not 64bit, sign extend val. */
8096 if (flag_code != CODE_64BIT
8097 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8098 exp->X_add_number
8099 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8100 }
8101 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8102 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8103 && exp_seg != absolute_section
8104 && exp_seg != text_section
8105 && exp_seg != data_section
8106 && exp_seg != bss_section
8107 && exp_seg != undefined_section
8108 && !bfd_is_com_section (exp_seg))
8109 {
8110 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8111 return 0;
8112 }
8113 #endif
8114 else if (!intel_syntax && exp_seg == reg_section)
8115 {
8116 if (imm_start)
8117 as_bad (_("illegal immediate register operand %s"), imm_start);
8118 return 0;
8119 }
8120 else
8121 {
8122 /* This is an address. The size of the address will be
8123 determined later, depending on destination register,
8124 suffix, or the default for the section. */
8125 i.types[this_operand].bitfield.imm8 = 1;
8126 i.types[this_operand].bitfield.imm16 = 1;
8127 i.types[this_operand].bitfield.imm32 = 1;
8128 i.types[this_operand].bitfield.imm32s = 1;
8129 i.types[this_operand].bitfield.imm64 = 1;
8130 i.types[this_operand] = operand_type_and (i.types[this_operand],
8131 types);
8132 }
8133
8134 return 1;
8135 }
8136
8137 static char *
8138 i386_scale (char *scale)
8139 {
8140 offsetT val;
8141 char *save = input_line_pointer;
8142
8143 input_line_pointer = scale;
8144 val = get_absolute_expression ();
8145
8146 switch (val)
8147 {
8148 case 1:
8149 i.log2_scale_factor = 0;
8150 break;
8151 case 2:
8152 i.log2_scale_factor = 1;
8153 break;
8154 case 4:
8155 i.log2_scale_factor = 2;
8156 break;
8157 case 8:
8158 i.log2_scale_factor = 3;
8159 break;
8160 default:
8161 {
8162 char sep = *input_line_pointer;
8163
8164 *input_line_pointer = '\0';
8165 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8166 scale);
8167 *input_line_pointer = sep;
8168 input_line_pointer = save;
8169 return NULL;
8170 }
8171 }
8172 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8173 {
8174 as_warn (_("scale factor of %d without an index register"),
8175 1 << i.log2_scale_factor);
8176 i.log2_scale_factor = 0;
8177 }
8178 scale = input_line_pointer;
8179 input_line_pointer = save;
8180 return scale;
8181 }
8182
8183 static int
8184 i386_displacement (char *disp_start, char *disp_end)
8185 {
8186 expressionS *exp;
8187 segT exp_seg = 0;
8188 char *save_input_line_pointer;
8189 char *gotfree_input_line;
8190 int override;
8191 i386_operand_type bigdisp, types = anydisp;
8192 int ret;
8193
8194 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8195 {
8196 as_bad (_("at most %d displacement operands are allowed"),
8197 MAX_MEMORY_OPERANDS);
8198 return 0;
8199 }
8200
8201 operand_type_set (&bigdisp, 0);
8202 if ((i.types[this_operand].bitfield.jumpabsolute)
8203 || (!current_templates->start->opcode_modifier.jump
8204 && !current_templates->start->opcode_modifier.jumpdword))
8205 {
8206 bigdisp.bitfield.disp32 = 1;
8207 override = (i.prefix[ADDR_PREFIX] != 0);
8208 if (flag_code == CODE_64BIT)
8209 {
8210 if (!override)
8211 {
8212 bigdisp.bitfield.disp32s = 1;
8213 bigdisp.bitfield.disp64 = 1;
8214 }
8215 }
8216 else if ((flag_code == CODE_16BIT) ^ override)
8217 {
8218 bigdisp.bitfield.disp32 = 0;
8219 bigdisp.bitfield.disp16 = 1;
8220 }
8221 }
8222 else
8223 {
8224 /* For PC-relative branches, the width of the displacement
8225 is dependent upon data size, not address size. */
8226 override = (i.prefix[DATA_PREFIX] != 0);
8227 if (flag_code == CODE_64BIT)
8228 {
8229 if (override || i.suffix == WORD_MNEM_SUFFIX)
8230 bigdisp.bitfield.disp16 = 1;
8231 else
8232 {
8233 bigdisp.bitfield.disp32 = 1;
8234 bigdisp.bitfield.disp32s = 1;
8235 }
8236 }
8237 else
8238 {
8239 if (!override)
8240 override = (i.suffix == (flag_code != CODE_16BIT
8241 ? WORD_MNEM_SUFFIX
8242 : LONG_MNEM_SUFFIX));
8243 bigdisp.bitfield.disp32 = 1;
8244 if ((flag_code == CODE_16BIT) ^ override)
8245 {
8246 bigdisp.bitfield.disp32 = 0;
8247 bigdisp.bitfield.disp16 = 1;
8248 }
8249 }
8250 }
8251 i.types[this_operand] = operand_type_or (i.types[this_operand],
8252 bigdisp);
8253
8254 exp = &disp_expressions[i.disp_operands];
8255 i.op[this_operand].disps = exp;
8256 i.disp_operands++;
8257 save_input_line_pointer = input_line_pointer;
8258 input_line_pointer = disp_start;
8259 END_STRING_AND_SAVE (disp_end);
8260
8261 #ifndef GCC_ASM_O_HACK
8262 #define GCC_ASM_O_HACK 0
8263 #endif
8264 #if GCC_ASM_O_HACK
8265 END_STRING_AND_SAVE (disp_end + 1);
8266 if (i.types[this_operand].bitfield.baseIndex
8267 && displacement_string_end[-1] == '+')
8268 {
8269 /* This hack is to avoid a warning when using the "o"
8270 constraint within gcc asm statements.
8271 For instance:
8272
8273 #define _set_tssldt_desc(n,addr,limit,type) \
8274 __asm__ __volatile__ ( \
8275 "movw %w2,%0\n\t" \
8276 "movw %w1,2+%0\n\t" \
8277 "rorl $16,%1\n\t" \
8278 "movb %b1,4+%0\n\t" \
8279 "movb %4,5+%0\n\t" \
8280 "movb $0,6+%0\n\t" \
8281 "movb %h1,7+%0\n\t" \
8282 "rorl $16,%1" \
8283 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8284
8285 This works great except that the output assembler ends
8286 up looking a bit weird if it turns out that there is
8287 no offset. You end up producing code that looks like:
8288
8289 #APP
8290 movw $235,(%eax)
8291 movw %dx,2+(%eax)
8292 rorl $16,%edx
8293 movb %dl,4+(%eax)
8294 movb $137,5+(%eax)
8295 movb $0,6+(%eax)
8296 movb %dh,7+(%eax)
8297 rorl $16,%edx
8298 #NO_APP
8299
8300 So here we provide the missing zero. */
8301
8302 *displacement_string_end = '0';
8303 }
8304 #endif
8305 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8306 if (gotfree_input_line)
8307 input_line_pointer = gotfree_input_line;
8308
8309 exp_seg = expression (exp);
8310
8311 SKIP_WHITESPACE ();
8312 if (*input_line_pointer)
8313 as_bad (_("junk `%s' after expression"), input_line_pointer);
8314 #if GCC_ASM_O_HACK
8315 RESTORE_END_STRING (disp_end + 1);
8316 #endif
8317 input_line_pointer = save_input_line_pointer;
8318 if (gotfree_input_line)
8319 {
8320 free (gotfree_input_line);
8321
8322 if (exp->X_op == O_constant || exp->X_op == O_register)
8323 exp->X_op = O_illegal;
8324 }
8325
8326 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8327
8328 RESTORE_END_STRING (disp_end);
8329
8330 return ret;
8331 }
8332
8333 static int
8334 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8335 i386_operand_type types, const char *disp_start)
8336 {
8337 i386_operand_type bigdisp;
8338 int ret = 1;
8339
8340 /* We do this to make sure that the section symbol is in
8341 the symbol table. We will ultimately change the relocation
8342 to be relative to the beginning of the section. */
8343 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8344 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8345 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8346 {
8347 if (exp->X_op != O_symbol)
8348 goto inv_disp;
8349
8350 if (S_IS_LOCAL (exp->X_add_symbol)
8351 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8352 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8353 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8354 exp->X_op = O_subtract;
8355 exp->X_op_symbol = GOT_symbol;
8356 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8357 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8358 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8359 i.reloc[this_operand] = BFD_RELOC_64;
8360 else
8361 i.reloc[this_operand] = BFD_RELOC_32;
8362 }
8363
8364 else if (exp->X_op == O_absent
8365 || exp->X_op == O_illegal
8366 || exp->X_op == O_big)
8367 {
8368 inv_disp:
8369 as_bad (_("missing or invalid displacement expression `%s'"),
8370 disp_start);
8371 ret = 0;
8372 }
8373
8374 else if (flag_code == CODE_64BIT
8375 && !i.prefix[ADDR_PREFIX]
8376 && exp->X_op == O_constant)
8377 {
8378 /* Since displacement is signed extended to 64bit, don't allow
8379 disp32 and turn off disp32s if they are out of range. */
8380 i.types[this_operand].bitfield.disp32 = 0;
8381 if (!fits_in_signed_long (exp->X_add_number))
8382 {
8383 i.types[this_operand].bitfield.disp32s = 0;
8384 if (i.types[this_operand].bitfield.baseindex)
8385 {
8386 as_bad (_("0x%lx out range of signed 32bit displacement"),
8387 (long) exp->X_add_number);
8388 ret = 0;
8389 }
8390 }
8391 }
8392
8393 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8394 else if (exp->X_op != O_constant
8395 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8396 && exp_seg != absolute_section
8397 && exp_seg != text_section
8398 && exp_seg != data_section
8399 && exp_seg != bss_section
8400 && exp_seg != undefined_section
8401 && !bfd_is_com_section (exp_seg))
8402 {
8403 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8404 ret = 0;
8405 }
8406 #endif
8407
8408 /* Check if this is a displacement only operand. */
8409 bigdisp = i.types[this_operand];
8410 bigdisp.bitfield.disp8 = 0;
8411 bigdisp.bitfield.disp16 = 0;
8412 bigdisp.bitfield.disp32 = 0;
8413 bigdisp.bitfield.disp32s = 0;
8414 bigdisp.bitfield.disp64 = 0;
8415 if (operand_type_all_zero (&bigdisp))
8416 i.types[this_operand] = operand_type_and (i.types[this_operand],
8417 types);
8418
8419 return ret;
8420 }
8421
8422 /* Make sure the memory operand we've been dealt is valid.
8423 Return 1 on success, 0 on a failure. */
8424
8425 static int
8426 i386_index_check (const char *operand_string)
8427 {
8428 const char *kind = "base/index";
8429 enum flag_code addr_mode;
8430
8431 if (i.prefix[ADDR_PREFIX])
8432 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8433 else
8434 {
8435 addr_mode = flag_code;
8436
8437 #if INFER_ADDR_PREFIX
8438 if (i.mem_operands == 0)
8439 {
8440 /* Infer address prefix from the first memory operand. */
8441 const reg_entry *addr_reg = i.base_reg;
8442
8443 if (addr_reg == NULL)
8444 addr_reg = i.index_reg;
8445
8446 if (addr_reg)
8447 {
8448 if (addr_reg->reg_num == RegEip
8449 || addr_reg->reg_num == RegEiz
8450 || addr_reg->reg_type.bitfield.reg32)
8451 addr_mode = CODE_32BIT;
8452 else if (flag_code != CODE_64BIT
8453 && addr_reg->reg_type.bitfield.reg16)
8454 addr_mode = CODE_16BIT;
8455
8456 if (addr_mode != flag_code)
8457 {
8458 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8459 i.prefixes += 1;
8460 /* Change the size of any displacement too. At most one
8461 of Disp16 or Disp32 is set.
8462 FIXME. There doesn't seem to be any real need for
8463 separate Disp16 and Disp32 flags. The same goes for
8464 Imm16 and Imm32. Removing them would probably clean
8465 up the code quite a lot. */
8466 if (flag_code != CODE_64BIT
8467 && (i.types[this_operand].bitfield.disp16
8468 || i.types[this_operand].bitfield.disp32))
8469 i.types[this_operand]
8470 = operand_type_xor (i.types[this_operand], disp16_32);
8471 }
8472 }
8473 }
8474 #endif
8475 }
8476
8477 if (current_templates->start->opcode_modifier.isstring
8478 && !current_templates->start->opcode_modifier.immext
8479 && (current_templates->end[-1].opcode_modifier.isstring
8480 || i.mem_operands))
8481 {
8482 /* Memory operands of string insns are special in that they only allow
8483 a single register (rDI, rSI, or rBX) as their memory address. */
8484 const reg_entry *expected_reg;
8485 static const char *di_si[][2] =
8486 {
8487 { "esi", "edi" },
8488 { "si", "di" },
8489 { "rsi", "rdi" }
8490 };
8491 static const char *bx[] = { "ebx", "bx", "rbx" };
8492
8493 kind = "string address";
8494
8495 if (current_templates->start->opcode_modifier.w)
8496 {
8497 i386_operand_type type = current_templates->end[-1].operand_types[0];
8498
8499 if (!type.bitfield.baseindex
8500 || ((!i.mem_operands != !intel_syntax)
8501 && current_templates->end[-1].operand_types[1]
8502 .bitfield.baseindex))
8503 type = current_templates->end[-1].operand_types[1];
8504 expected_reg = hash_find (reg_hash,
8505 di_si[addr_mode][type.bitfield.esseg]);
8506
8507 }
8508 else
8509 expected_reg = hash_find (reg_hash, bx[addr_mode]);
8510
8511 if (i.base_reg != expected_reg
8512 || i.index_reg
8513 || operand_type_check (i.types[this_operand], disp))
8514 {
8515 /* The second memory operand must have the same size as
8516 the first one. */
8517 if (i.mem_operands
8518 && i.base_reg
8519 && !((addr_mode == CODE_64BIT
8520 && i.base_reg->reg_type.bitfield.reg64)
8521 || (addr_mode == CODE_32BIT
8522 ? i.base_reg->reg_type.bitfield.reg32
8523 : i.base_reg->reg_type.bitfield.reg16)))
8524 goto bad_address;
8525
8526 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8527 operand_string,
8528 intel_syntax ? '[' : '(',
8529 register_prefix,
8530 expected_reg->reg_name,
8531 intel_syntax ? ']' : ')');
8532 return 1;
8533 }
8534 else
8535 return 1;
8536
8537 bad_address:
8538 as_bad (_("`%s' is not a valid %s expression"),
8539 operand_string, kind);
8540 return 0;
8541 }
8542 else
8543 {
8544 if (addr_mode != CODE_16BIT)
8545 {
8546 /* 32-bit/64-bit checks. */
8547 if ((i.base_reg
8548 && (addr_mode == CODE_64BIT
8549 ? !i.base_reg->reg_type.bitfield.reg64
8550 : !i.base_reg->reg_type.bitfield.reg32)
8551 && (i.index_reg
8552 || (i.base_reg->reg_num
8553 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8554 || (i.index_reg
8555 && !i.index_reg->reg_type.bitfield.regxmm
8556 && !i.index_reg->reg_type.bitfield.regymm
8557 && !i.index_reg->reg_type.bitfield.regzmm
8558 && ((addr_mode == CODE_64BIT
8559 ? !(i.index_reg->reg_type.bitfield.reg64
8560 || i.index_reg->reg_num == RegRiz)
8561 : !(i.index_reg->reg_type.bitfield.reg32
8562 || i.index_reg->reg_num == RegEiz))
8563 || !i.index_reg->reg_type.bitfield.baseindex)))
8564 goto bad_address;
8565 }
8566 else
8567 {
8568 /* 16-bit checks. */
8569 if ((i.base_reg
8570 && (!i.base_reg->reg_type.bitfield.reg16
8571 || !i.base_reg->reg_type.bitfield.baseindex))
8572 || (i.index_reg
8573 && (!i.index_reg->reg_type.bitfield.reg16
8574 || !i.index_reg->reg_type.bitfield.baseindex
8575 || !(i.base_reg
8576 && i.base_reg->reg_num < 6
8577 && i.index_reg->reg_num >= 6
8578 && i.log2_scale_factor == 0))))
8579 goto bad_address;
8580 }
8581 }
8582 return 1;
8583 }
8584
8585 /* Handle vector immediates. */
8586
8587 static int
8588 RC_SAE_immediate (const char *imm_start)
8589 {
8590 unsigned int match_found, j;
8591 const char *pstr = imm_start;
8592 expressionS *exp;
8593
8594 if (*pstr != '{')
8595 return 0;
8596
8597 pstr++;
8598 match_found = 0;
8599 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8600 {
8601 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8602 {
8603 if (!i.rounding)
8604 {
8605 rc_op.type = RC_NamesTable[j].type;
8606 rc_op.operand = this_operand;
8607 i.rounding = &rc_op;
8608 }
8609 else
8610 {
8611 as_bad (_("duplicated `%s'"), imm_start);
8612 return 0;
8613 }
8614 pstr += RC_NamesTable[j].len;
8615 match_found = 1;
8616 break;
8617 }
8618 }
8619 if (!match_found)
8620 return 0;
8621
8622 if (*pstr++ != '}')
8623 {
8624 as_bad (_("Missing '}': '%s'"), imm_start);
8625 return 0;
8626 }
8627 /* RC/SAE immediate string should contain nothing more. */;
8628 if (*pstr != 0)
8629 {
8630 as_bad (_("Junk after '}': '%s'"), imm_start);
8631 return 0;
8632 }
8633
8634 exp = &im_expressions[i.imm_operands++];
8635 i.op[this_operand].imms = exp;
8636
8637 exp->X_op = O_constant;
8638 exp->X_add_number = 0;
8639 exp->X_add_symbol = (symbolS *) 0;
8640 exp->X_op_symbol = (symbolS *) 0;
8641
8642 i.types[this_operand].bitfield.imm8 = 1;
8643 return 1;
8644 }
8645
8646 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
8647 on error. */
8648
8649 static int
8650 i386_att_operand (char *operand_string)
8651 {
8652 const reg_entry *r;
8653 char *end_op;
8654 char *op_string = operand_string;
8655
8656 if (is_space_char (*op_string))
8657 ++op_string;
8658
8659 /* We check for an absolute prefix (differentiating,
8660 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
8661 if (*op_string == ABSOLUTE_PREFIX)
8662 {
8663 ++op_string;
8664 if (is_space_char (*op_string))
8665 ++op_string;
8666 i.types[this_operand].bitfield.jumpabsolute = 1;
8667 }
8668
8669 /* Check if operand is a register. */
8670 if ((r = parse_register (op_string, &end_op)) != NULL)
8671 {
8672 i386_operand_type temp;
8673
8674 /* Check for a segment override by searching for ':' after a
8675 segment register. */
8676 op_string = end_op;
8677 if (is_space_char (*op_string))
8678 ++op_string;
8679 if (*op_string == ':'
8680 && (r->reg_type.bitfield.sreg2
8681 || r->reg_type.bitfield.sreg3))
8682 {
8683 switch (r->reg_num)
8684 {
8685 case 0:
8686 i.seg[i.mem_operands] = &es;
8687 break;
8688 case 1:
8689 i.seg[i.mem_operands] = &cs;
8690 break;
8691 case 2:
8692 i.seg[i.mem_operands] = &ss;
8693 break;
8694 case 3:
8695 i.seg[i.mem_operands] = &ds;
8696 break;
8697 case 4:
8698 i.seg[i.mem_operands] = &fs;
8699 break;
8700 case 5:
8701 i.seg[i.mem_operands] = &gs;
8702 break;
8703 }
8704
8705 /* Skip the ':' and whitespace. */
8706 ++op_string;
8707 if (is_space_char (*op_string))
8708 ++op_string;
8709
8710 if (!is_digit_char (*op_string)
8711 && !is_identifier_char (*op_string)
8712 && *op_string != '('
8713 && *op_string != ABSOLUTE_PREFIX)
8714 {
8715 as_bad (_("bad memory operand `%s'"), op_string);
8716 return 0;
8717 }
8718 /* Handle case of %es:*foo. */
8719 if (*op_string == ABSOLUTE_PREFIX)
8720 {
8721 ++op_string;
8722 if (is_space_char (*op_string))
8723 ++op_string;
8724 i.types[this_operand].bitfield.jumpabsolute = 1;
8725 }
8726 goto do_memory_reference;
8727 }
8728
8729 /* Handle vector operations. */
8730 if (*op_string == '{')
8731 {
8732 op_string = check_VecOperations (op_string, NULL);
8733 if (op_string == NULL)
8734 return 0;
8735 }
8736
8737 if (*op_string)
8738 {
8739 as_bad (_("junk `%s' after register"), op_string);
8740 return 0;
8741 }
8742 temp = r->reg_type;
8743 temp.bitfield.baseindex = 0;
8744 i.types[this_operand] = operand_type_or (i.types[this_operand],
8745 temp);
8746 i.types[this_operand].bitfield.unspecified = 0;
8747 i.op[this_operand].regs = r;
8748 i.reg_operands++;
8749 }
8750 else if (*op_string == REGISTER_PREFIX)
8751 {
8752 as_bad (_("bad register name `%s'"), op_string);
8753 return 0;
8754 }
8755 else if (*op_string == IMMEDIATE_PREFIX)
8756 {
8757 ++op_string;
8758 if (i.types[this_operand].bitfield.jumpabsolute)
8759 {
8760 as_bad (_("immediate operand illegal with absolute jump"));
8761 return 0;
8762 }
8763 if (!i386_immediate (op_string))
8764 return 0;
8765 }
8766 else if (RC_SAE_immediate (operand_string))
8767 {
8768 /* If it is a RC or SAE immediate, do nothing. */
8769 ;
8770 }
8771 else if (is_digit_char (*op_string)
8772 || is_identifier_char (*op_string)
8773 || *op_string == '"'
8774 || *op_string == '(')
8775 {
8776 /* This is a memory reference of some sort. */
8777 char *base_string;
8778
8779 /* Start and end of displacement string expression (if found). */
8780 char *displacement_string_start;
8781 char *displacement_string_end;
8782 char *vop_start;
8783
8784 do_memory_reference:
8785 if ((i.mem_operands == 1
8786 && !current_templates->start->opcode_modifier.isstring)
8787 || i.mem_operands == 2)
8788 {
8789 as_bad (_("too many memory references for `%s'"),
8790 current_templates->start->name);
8791 return 0;
8792 }
8793
8794 /* Check for base index form. We detect the base index form by
8795 looking for an ')' at the end of the operand, searching
8796 for the '(' matching it, and finding a REGISTER_PREFIX or ','
8797 after the '('. */
8798 base_string = op_string + strlen (op_string);
8799
8800 /* Handle vector operations. */
8801 vop_start = strchr (op_string, '{');
8802 if (vop_start && vop_start < base_string)
8803 {
8804 if (check_VecOperations (vop_start, base_string) == NULL)
8805 return 0;
8806 base_string = vop_start;
8807 }
8808
8809 --base_string;
8810 if (is_space_char (*base_string))
8811 --base_string;
8812
8813 /* If we only have a displacement, set-up for it to be parsed later. */
8814 displacement_string_start = op_string;
8815 displacement_string_end = base_string + 1;
8816
8817 if (*base_string == ')')
8818 {
8819 char *temp_string;
8820 unsigned int parens_balanced = 1;
8821 /* We've already checked that the number of left & right ()'s are
8822 equal, so this loop will not be infinite. */
8823 do
8824 {
8825 base_string--;
8826 if (*base_string == ')')
8827 parens_balanced++;
8828 if (*base_string == '(')
8829 parens_balanced--;
8830 }
8831 while (parens_balanced);
8832
8833 temp_string = base_string;
8834
8835 /* Skip past '(' and whitespace. */
8836 ++base_string;
8837 if (is_space_char (*base_string))
8838 ++base_string;
8839
8840 if (*base_string == ','
8841 || ((i.base_reg = parse_register (base_string, &end_op))
8842 != NULL))
8843 {
8844 displacement_string_end = temp_string;
8845
8846 i.types[this_operand].bitfield.baseindex = 1;
8847
8848 if (i.base_reg)
8849 {
8850 base_string = end_op;
8851 if (is_space_char (*base_string))
8852 ++base_string;
8853 }
8854
8855 /* There may be an index reg or scale factor here. */
8856 if (*base_string == ',')
8857 {
8858 ++base_string;
8859 if (is_space_char (*base_string))
8860 ++base_string;
8861
8862 if ((i.index_reg = parse_register (base_string, &end_op))
8863 != NULL)
8864 {
8865 base_string = end_op;
8866 if (is_space_char (*base_string))
8867 ++base_string;
8868 if (*base_string == ',')
8869 {
8870 ++base_string;
8871 if (is_space_char (*base_string))
8872 ++base_string;
8873 }
8874 else if (*base_string != ')')
8875 {
8876 as_bad (_("expecting `,' or `)' "
8877 "after index register in `%s'"),
8878 operand_string);
8879 return 0;
8880 }
8881 }
8882 else if (*base_string == REGISTER_PREFIX)
8883 {
8884 end_op = strchr (base_string, ',');
8885 if (end_op)
8886 *end_op = '\0';
8887 as_bad (_("bad register name `%s'"), base_string);
8888 return 0;
8889 }
8890
8891 /* Check for scale factor. */
8892 if (*base_string != ')')
8893 {
8894 char *end_scale = i386_scale (base_string);
8895
8896 if (!end_scale)
8897 return 0;
8898
8899 base_string = end_scale;
8900 if (is_space_char (*base_string))
8901 ++base_string;
8902 if (*base_string != ')')
8903 {
8904 as_bad (_("expecting `)' "
8905 "after scale factor in `%s'"),
8906 operand_string);
8907 return 0;
8908 }
8909 }
8910 else if (!i.index_reg)
8911 {
8912 as_bad (_("expecting index register or scale factor "
8913 "after `,'; got '%c'"),
8914 *base_string);
8915 return 0;
8916 }
8917 }
8918 else if (*base_string != ')')
8919 {
8920 as_bad (_("expecting `,' or `)' "
8921 "after base register in `%s'"),
8922 operand_string);
8923 return 0;
8924 }
8925 }
8926 else if (*base_string == REGISTER_PREFIX)
8927 {
8928 end_op = strchr (base_string, ',');
8929 if (end_op)
8930 *end_op = '\0';
8931 as_bad (_("bad register name `%s'"), base_string);
8932 return 0;
8933 }
8934 }
8935
8936 /* If there's an expression beginning the operand, parse it,
8937 assuming displacement_string_start and
8938 displacement_string_end are meaningful. */
8939 if (displacement_string_start != displacement_string_end)
8940 {
8941 if (!i386_displacement (displacement_string_start,
8942 displacement_string_end))
8943 return 0;
8944 }
8945
8946 /* Special case for (%dx) while doing input/output op. */
8947 if (i.base_reg
8948 && operand_type_equal (&i.base_reg->reg_type,
8949 &reg16_inoutportreg)
8950 && i.index_reg == 0
8951 && i.log2_scale_factor == 0
8952 && i.seg[i.mem_operands] == 0
8953 && !operand_type_check (i.types[this_operand], disp))
8954 {
8955 i.types[this_operand] = inoutportreg;
8956 return 1;
8957 }
8958
8959 if (i386_index_check (operand_string) == 0)
8960 return 0;
8961 i.types[this_operand].bitfield.mem = 1;
8962 i.mem_operands++;
8963 }
8964 else
8965 {
8966 /* It's not a memory operand; argh! */
8967 as_bad (_("invalid char %s beginning operand %d `%s'"),
8968 output_invalid (*op_string),
8969 this_operand + 1,
8970 op_string);
8971 return 0;
8972 }
8973 return 1; /* Normal return. */
8974 }
8975 \f
8976 /* Calculate the maximum variable size (i.e., excluding fr_fix)
8977 that an rs_machine_dependent frag may reach. */
8978
8979 unsigned int
8980 i386_frag_max_var (fragS *frag)
8981 {
8982 /* The only relaxable frags are for jumps.
8983 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
8984 gas_assert (frag->fr_type == rs_machine_dependent);
8985 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
8986 }
8987
8988 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8989 static int
8990 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
8991 {
8992 /* STT_GNU_IFUNC symbol must go through PLT. */
8993 if ((symbol_get_bfdsym (fr_symbol)->flags
8994 & BSF_GNU_INDIRECT_FUNCTION) != 0)
8995 return 0;
8996
8997 if (!S_IS_EXTERNAL (fr_symbol))
8998 /* Symbol may be weak or local. */
8999 return !S_IS_WEAK (fr_symbol);
9000
9001 /* Global symbols with non-default visibility can't be preempted. */
9002 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9003 return 1;
9004
9005 if (fr_var != NO_RELOC)
9006 switch ((enum bfd_reloc_code_real) fr_var)
9007 {
9008 case BFD_RELOC_386_PLT32:
9009 case BFD_RELOC_X86_64_PLT32:
9010 /* Symbol with PLT relocatin may be preempted. */
9011 return 0;
9012 default:
9013 abort ();
9014 }
9015
9016 /* Global symbols with default visibility in a shared library may be
9017 preempted by another definition. */
9018 return !shared;
9019 }
9020 #endif
9021
9022 /* md_estimate_size_before_relax()
9023
9024 Called just before relax() for rs_machine_dependent frags. The x86
9025 assembler uses these frags to handle variable size jump
9026 instructions.
9027
9028 Any symbol that is now undefined will not become defined.
9029 Return the correct fr_subtype in the frag.
9030 Return the initial "guess for variable size of frag" to caller.
9031 The guess is actually the growth beyond the fixed part. Whatever
9032 we do to grow the fixed or variable part contributes to our
9033 returned value. */
9034
9035 int
9036 md_estimate_size_before_relax (fragS *fragP, segT segment)
9037 {
9038 /* We've already got fragP->fr_subtype right; all we have to do is
9039 check for un-relaxable symbols. On an ELF system, we can't relax
9040 an externally visible symbol, because it may be overridden by a
9041 shared library. */
9042 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9043 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9044 || (IS_ELF
9045 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9046 fragP->fr_var))
9047 #endif
9048 #if defined (OBJ_COFF) && defined (TE_PE)
9049 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9050 && S_IS_WEAK (fragP->fr_symbol))
9051 #endif
9052 )
9053 {
9054 /* Symbol is undefined in this segment, or we need to keep a
9055 reloc so that weak symbols can be overridden. */
9056 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9057 enum bfd_reloc_code_real reloc_type;
9058 unsigned char *opcode;
9059 int old_fr_fix;
9060
9061 if (fragP->fr_var != NO_RELOC)
9062 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9063 else if (size == 2)
9064 reloc_type = BFD_RELOC_16_PCREL;
9065 else
9066 reloc_type = BFD_RELOC_32_PCREL;
9067
9068 old_fr_fix = fragP->fr_fix;
9069 opcode = (unsigned char *) fragP->fr_opcode;
9070
9071 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9072 {
9073 case UNCOND_JUMP:
9074 /* Make jmp (0xeb) a (d)word displacement jump. */
9075 opcode[0] = 0xe9;
9076 fragP->fr_fix += size;
9077 fix_new (fragP, old_fr_fix, size,
9078 fragP->fr_symbol,
9079 fragP->fr_offset, 1,
9080 reloc_type);
9081 break;
9082
9083 case COND_JUMP86:
9084 if (size == 2
9085 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9086 {
9087 /* Negate the condition, and branch past an
9088 unconditional jump. */
9089 opcode[0] ^= 1;
9090 opcode[1] = 3;
9091 /* Insert an unconditional jump. */
9092 opcode[2] = 0xe9;
9093 /* We added two extra opcode bytes, and have a two byte
9094 offset. */
9095 fragP->fr_fix += 2 + 2;
9096 fix_new (fragP, old_fr_fix + 2, 2,
9097 fragP->fr_symbol,
9098 fragP->fr_offset, 1,
9099 reloc_type);
9100 break;
9101 }
9102 /* Fall through. */
9103
9104 case COND_JUMP:
9105 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9106 {
9107 fixS *fixP;
9108
9109 fragP->fr_fix += 1;
9110 fixP = fix_new (fragP, old_fr_fix, 1,
9111 fragP->fr_symbol,
9112 fragP->fr_offset, 1,
9113 BFD_RELOC_8_PCREL);
9114 fixP->fx_signed = 1;
9115 break;
9116 }
9117
9118 /* This changes the byte-displacement jump 0x7N
9119 to the (d)word-displacement jump 0x0f,0x8N. */
9120 opcode[1] = opcode[0] + 0x10;
9121 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9122 /* We've added an opcode byte. */
9123 fragP->fr_fix += 1 + size;
9124 fix_new (fragP, old_fr_fix + 1, size,
9125 fragP->fr_symbol,
9126 fragP->fr_offset, 1,
9127 reloc_type);
9128 break;
9129
9130 default:
9131 BAD_CASE (fragP->fr_subtype);
9132 break;
9133 }
9134 frag_wane (fragP);
9135 return fragP->fr_fix - old_fr_fix;
9136 }
9137
9138 /* Guess size depending on current relax state. Initially the relax
9139 state will correspond to a short jump and we return 1, because
9140 the variable part of the frag (the branch offset) is one byte
9141 long. However, we can relax a section more than once and in that
9142 case we must either set fr_subtype back to the unrelaxed state,
9143 or return the value for the appropriate branch. */
9144 return md_relax_table[fragP->fr_subtype].rlx_length;
9145 }
9146
9147 /* Called after relax() is finished.
9148
9149 In: Address of frag.
9150 fr_type == rs_machine_dependent.
9151 fr_subtype is what the address relaxed to.
9152
9153 Out: Any fixSs and constants are set up.
9154 Caller will turn frag into a ".space 0". */
9155
9156 void
9157 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9158 fragS *fragP)
9159 {
9160 unsigned char *opcode;
9161 unsigned char *where_to_put_displacement = NULL;
9162 offsetT target_address;
9163 offsetT opcode_address;
9164 unsigned int extension = 0;
9165 offsetT displacement_from_opcode_start;
9166
9167 opcode = (unsigned char *) fragP->fr_opcode;
9168
9169 /* Address we want to reach in file space. */
9170 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9171
9172 /* Address opcode resides at in file space. */
9173 opcode_address = fragP->fr_address + fragP->fr_fix;
9174
9175 /* Displacement from opcode start to fill into instruction. */
9176 displacement_from_opcode_start = target_address - opcode_address;
9177
9178 if ((fragP->fr_subtype & BIG) == 0)
9179 {
9180 /* Don't have to change opcode. */
9181 extension = 1; /* 1 opcode + 1 displacement */
9182 where_to_put_displacement = &opcode[1];
9183 }
9184 else
9185 {
9186 if (no_cond_jump_promotion
9187 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9188 as_warn_where (fragP->fr_file, fragP->fr_line,
9189 _("long jump required"));
9190
9191 switch (fragP->fr_subtype)
9192 {
9193 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9194 extension = 4; /* 1 opcode + 4 displacement */
9195 opcode[0] = 0xe9;
9196 where_to_put_displacement = &opcode[1];
9197 break;
9198
9199 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9200 extension = 2; /* 1 opcode + 2 displacement */
9201 opcode[0] = 0xe9;
9202 where_to_put_displacement = &opcode[1];
9203 break;
9204
9205 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9206 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9207 extension = 5; /* 2 opcode + 4 displacement */
9208 opcode[1] = opcode[0] + 0x10;
9209 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9210 where_to_put_displacement = &opcode[2];
9211 break;
9212
9213 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9214 extension = 3; /* 2 opcode + 2 displacement */
9215 opcode[1] = opcode[0] + 0x10;
9216 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9217 where_to_put_displacement = &opcode[2];
9218 break;
9219
9220 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9221 extension = 4;
9222 opcode[0] ^= 1;
9223 opcode[1] = 3;
9224 opcode[2] = 0xe9;
9225 where_to_put_displacement = &opcode[3];
9226 break;
9227
9228 default:
9229 BAD_CASE (fragP->fr_subtype);
9230 break;
9231 }
9232 }
9233
9234 /* If size if less then four we are sure that the operand fits,
9235 but if it's 4, then it could be that the displacement is larger
9236 then -/+ 2GB. */
9237 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9238 && object_64bit
9239 && ((addressT) (displacement_from_opcode_start - extension
9240 + ((addressT) 1 << 31))
9241 > (((addressT) 2 << 31) - 1)))
9242 {
9243 as_bad_where (fragP->fr_file, fragP->fr_line,
9244 _("jump target out of range"));
9245 /* Make us emit 0. */
9246 displacement_from_opcode_start = extension;
9247 }
9248 /* Now put displacement after opcode. */
9249 md_number_to_chars ((char *) where_to_put_displacement,
9250 (valueT) (displacement_from_opcode_start - extension),
9251 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9252 fragP->fr_fix += extension;
9253 }
9254 \f
9255 /* Apply a fixup (fixP) to segment data, once it has been determined
9256 by our caller that we have all the info we need to fix it up.
9257
9258 Parameter valP is the pointer to the value of the bits.
9259
9260 On the 386, immediates, displacements, and data pointers are all in
9261 the same (little-endian) format, so we don't need to care about which
9262 we are handling. */
9263
9264 void
9265 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9266 {
9267 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9268 valueT value = *valP;
9269
9270 #if !defined (TE_Mach)
9271 if (fixP->fx_pcrel)
9272 {
9273 switch (fixP->fx_r_type)
9274 {
9275 default:
9276 break;
9277
9278 case BFD_RELOC_64:
9279 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9280 break;
9281 case BFD_RELOC_32:
9282 case BFD_RELOC_X86_64_32S:
9283 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9284 break;
9285 case BFD_RELOC_16:
9286 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9287 break;
9288 case BFD_RELOC_8:
9289 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9290 break;
9291 }
9292 }
9293
9294 if (fixP->fx_addsy != NULL
9295 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9296 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9297 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9298 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9299 && !use_rela_relocations)
9300 {
9301 /* This is a hack. There should be a better way to handle this.
9302 This covers for the fact that bfd_install_relocation will
9303 subtract the current location (for partial_inplace, PC relative
9304 relocations); see more below. */
9305 #ifndef OBJ_AOUT
9306 if (IS_ELF
9307 #ifdef TE_PE
9308 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9309 #endif
9310 )
9311 value += fixP->fx_where + fixP->fx_frag->fr_address;
9312 #endif
9313 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9314 if (IS_ELF)
9315 {
9316 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9317
9318 if ((sym_seg == seg
9319 || (symbol_section_p (fixP->fx_addsy)
9320 && sym_seg != absolute_section))
9321 && !generic_force_reloc (fixP))
9322 {
9323 /* Yes, we add the values in twice. This is because
9324 bfd_install_relocation subtracts them out again. I think
9325 bfd_install_relocation is broken, but I don't dare change
9326 it. FIXME. */
9327 value += fixP->fx_where + fixP->fx_frag->fr_address;
9328 }
9329 }
9330 #endif
9331 #if defined (OBJ_COFF) && defined (TE_PE)
9332 /* For some reason, the PE format does not store a
9333 section address offset for a PC relative symbol. */
9334 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9335 || S_IS_WEAK (fixP->fx_addsy))
9336 value += md_pcrel_from (fixP);
9337 #endif
9338 }
9339 #if defined (OBJ_COFF) && defined (TE_PE)
9340 if (fixP->fx_addsy != NULL
9341 && S_IS_WEAK (fixP->fx_addsy)
9342 /* PR 16858: Do not modify weak function references. */
9343 && ! fixP->fx_pcrel)
9344 {
9345 #if !defined (TE_PEP)
9346 /* For x86 PE weak function symbols are neither PC-relative
9347 nor do they set S_IS_FUNCTION. So the only reliable way
9348 to detect them is to check the flags of their containing
9349 section. */
9350 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9351 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9352 ;
9353 else
9354 #endif
9355 value -= S_GET_VALUE (fixP->fx_addsy);
9356 }
9357 #endif
9358
9359 /* Fix a few things - the dynamic linker expects certain values here,
9360 and we must not disappoint it. */
9361 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9362 if (IS_ELF && fixP->fx_addsy)
9363 switch (fixP->fx_r_type)
9364 {
9365 case BFD_RELOC_386_PLT32:
9366 case BFD_RELOC_X86_64_PLT32:
9367 /* Make the jump instruction point to the address of the operand. At
9368 runtime we merely add the offset to the actual PLT entry. */
9369 value = -4;
9370 break;
9371
9372 case BFD_RELOC_386_TLS_GD:
9373 case BFD_RELOC_386_TLS_LDM:
9374 case BFD_RELOC_386_TLS_IE_32:
9375 case BFD_RELOC_386_TLS_IE:
9376 case BFD_RELOC_386_TLS_GOTIE:
9377 case BFD_RELOC_386_TLS_GOTDESC:
9378 case BFD_RELOC_X86_64_TLSGD:
9379 case BFD_RELOC_X86_64_TLSLD:
9380 case BFD_RELOC_X86_64_GOTTPOFF:
9381 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9382 value = 0; /* Fully resolved at runtime. No addend. */
9383 /* Fallthrough */
9384 case BFD_RELOC_386_TLS_LE:
9385 case BFD_RELOC_386_TLS_LDO_32:
9386 case BFD_RELOC_386_TLS_LE_32:
9387 case BFD_RELOC_X86_64_DTPOFF32:
9388 case BFD_RELOC_X86_64_DTPOFF64:
9389 case BFD_RELOC_X86_64_TPOFF32:
9390 case BFD_RELOC_X86_64_TPOFF64:
9391 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9392 break;
9393
9394 case BFD_RELOC_386_TLS_DESC_CALL:
9395 case BFD_RELOC_X86_64_TLSDESC_CALL:
9396 value = 0; /* Fully resolved at runtime. No addend. */
9397 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9398 fixP->fx_done = 0;
9399 return;
9400
9401 case BFD_RELOC_VTABLE_INHERIT:
9402 case BFD_RELOC_VTABLE_ENTRY:
9403 fixP->fx_done = 0;
9404 return;
9405
9406 default:
9407 break;
9408 }
9409 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
9410 *valP = value;
9411 #endif /* !defined (TE_Mach) */
9412
9413 /* Are we finished with this relocation now? */
9414 if (fixP->fx_addsy == NULL)
9415 fixP->fx_done = 1;
9416 #if defined (OBJ_COFF) && defined (TE_PE)
9417 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9418 {
9419 fixP->fx_done = 0;
9420 /* Remember value for tc_gen_reloc. */
9421 fixP->fx_addnumber = value;
9422 /* Clear out the frag for now. */
9423 value = 0;
9424 }
9425 #endif
9426 else if (use_rela_relocations)
9427 {
9428 fixP->fx_no_overflow = 1;
9429 /* Remember value for tc_gen_reloc. */
9430 fixP->fx_addnumber = value;
9431 value = 0;
9432 }
9433
9434 md_number_to_chars (p, value, fixP->fx_size);
9435 }
9436 \f
9437 const char *
9438 md_atof (int type, char *litP, int *sizeP)
9439 {
9440 /* This outputs the LITTLENUMs in REVERSE order;
9441 in accord with the bigendian 386. */
9442 return ieee_md_atof (type, litP, sizeP, FALSE);
9443 }
9444 \f
9445 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
9446
9447 static char *
9448 output_invalid (int c)
9449 {
9450 if (ISPRINT (c))
9451 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9452 "'%c'", c);
9453 else
9454 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9455 "(0x%x)", (unsigned char) c);
9456 return output_invalid_buf;
9457 }
9458
9459 /* REG_STRING starts *before* REGISTER_PREFIX. */
9460
9461 static const reg_entry *
9462 parse_real_register (char *reg_string, char **end_op)
9463 {
9464 char *s = reg_string;
9465 char *p;
9466 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9467 const reg_entry *r;
9468
9469 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9470 if (*s == REGISTER_PREFIX)
9471 ++s;
9472
9473 if (is_space_char (*s))
9474 ++s;
9475
9476 p = reg_name_given;
9477 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
9478 {
9479 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
9480 return (const reg_entry *) NULL;
9481 s++;
9482 }
9483
9484 /* For naked regs, make sure that we are not dealing with an identifier.
9485 This prevents confusing an identifier like `eax_var' with register
9486 `eax'. */
9487 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9488 return (const reg_entry *) NULL;
9489
9490 *end_op = s;
9491
9492 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9493
9494 /* Handle floating point regs, allowing spaces in the (i) part. */
9495 if (r == i386_regtab /* %st is first entry of table */)
9496 {
9497 if (is_space_char (*s))
9498 ++s;
9499 if (*s == '(')
9500 {
9501 ++s;
9502 if (is_space_char (*s))
9503 ++s;
9504 if (*s >= '0' && *s <= '7')
9505 {
9506 int fpr = *s - '0';
9507 ++s;
9508 if (is_space_char (*s))
9509 ++s;
9510 if (*s == ')')
9511 {
9512 *end_op = s + 1;
9513 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
9514 know (r);
9515 return r + fpr;
9516 }
9517 }
9518 /* We have "%st(" then garbage. */
9519 return (const reg_entry *) NULL;
9520 }
9521 }
9522
9523 if (r == NULL || allow_pseudo_reg)
9524 return r;
9525
9526 if (operand_type_all_zero (&r->reg_type))
9527 return (const reg_entry *) NULL;
9528
9529 if ((r->reg_type.bitfield.reg32
9530 || r->reg_type.bitfield.sreg3
9531 || r->reg_type.bitfield.control
9532 || r->reg_type.bitfield.debug
9533 || r->reg_type.bitfield.test)
9534 && !cpu_arch_flags.bitfield.cpui386)
9535 return (const reg_entry *) NULL;
9536
9537 if (r->reg_type.bitfield.floatreg
9538 && !cpu_arch_flags.bitfield.cpu8087
9539 && !cpu_arch_flags.bitfield.cpu287
9540 && !cpu_arch_flags.bitfield.cpu387)
9541 return (const reg_entry *) NULL;
9542
9543 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
9544 return (const reg_entry *) NULL;
9545
9546 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
9547 return (const reg_entry *) NULL;
9548
9549 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
9550 return (const reg_entry *) NULL;
9551
9552 if ((r->reg_type.bitfield.regzmm || r->reg_type.bitfield.regmask)
9553 && !cpu_arch_flags.bitfield.cpuavx512f)
9554 return (const reg_entry *) NULL;
9555
9556 /* Don't allow fake index register unless allow_index_reg isn't 0. */
9557 if (!allow_index_reg
9558 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9559 return (const reg_entry *) NULL;
9560
9561 /* Upper 16 vector register is only available with VREX in 64bit
9562 mode. */
9563 if ((r->reg_flags & RegVRex))
9564 {
9565 if (!cpu_arch_flags.bitfield.cpuvrex
9566 || flag_code != CODE_64BIT)
9567 return (const reg_entry *) NULL;
9568
9569 i.need_vrex = 1;
9570 }
9571
9572 if (((r->reg_flags & (RegRex64 | RegRex))
9573 || r->reg_type.bitfield.reg64)
9574 && (!cpu_arch_flags.bitfield.cpulm
9575 || !operand_type_equal (&r->reg_type, &control))
9576 && flag_code != CODE_64BIT)
9577 return (const reg_entry *) NULL;
9578
9579 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9580 return (const reg_entry *) NULL;
9581
9582 return r;
9583 }
9584
9585 /* REG_STRING starts *before* REGISTER_PREFIX. */
9586
9587 static const reg_entry *
9588 parse_register (char *reg_string, char **end_op)
9589 {
9590 const reg_entry *r;
9591
9592 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9593 r = parse_real_register (reg_string, end_op);
9594 else
9595 r = NULL;
9596 if (!r)
9597 {
9598 char *save = input_line_pointer;
9599 char c;
9600 symbolS *symbolP;
9601
9602 input_line_pointer = reg_string;
9603 c = get_symbol_name (&reg_string);
9604 symbolP = symbol_find (reg_string);
9605 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9606 {
9607 const expressionS *e = symbol_get_value_expression (symbolP);
9608
9609 know (e->X_op == O_register);
9610 know (e->X_add_number >= 0
9611 && (valueT) e->X_add_number < i386_regtab_size);
9612 r = i386_regtab + e->X_add_number;
9613 if ((r->reg_flags & RegVRex))
9614 i.need_vrex = 1;
9615 *end_op = input_line_pointer;
9616 }
9617 *input_line_pointer = c;
9618 input_line_pointer = save;
9619 }
9620 return r;
9621 }
9622
9623 int
9624 i386_parse_name (char *name, expressionS *e, char *nextcharP)
9625 {
9626 const reg_entry *r;
9627 char *end = input_line_pointer;
9628
9629 *end = *nextcharP;
9630 r = parse_register (name, &input_line_pointer);
9631 if (r && end <= input_line_pointer)
9632 {
9633 *nextcharP = *input_line_pointer;
9634 *input_line_pointer = 0;
9635 e->X_op = O_register;
9636 e->X_add_number = r - i386_regtab;
9637 return 1;
9638 }
9639 input_line_pointer = end;
9640 *end = 0;
9641 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
9642 }
9643
9644 void
9645 md_operand (expressionS *e)
9646 {
9647 char *end;
9648 const reg_entry *r;
9649
9650 switch (*input_line_pointer)
9651 {
9652 case REGISTER_PREFIX:
9653 r = parse_real_register (input_line_pointer, &end);
9654 if (r)
9655 {
9656 e->X_op = O_register;
9657 e->X_add_number = r - i386_regtab;
9658 input_line_pointer = end;
9659 }
9660 break;
9661
9662 case '[':
9663 gas_assert (intel_syntax);
9664 end = input_line_pointer++;
9665 expression (e);
9666 if (*input_line_pointer == ']')
9667 {
9668 ++input_line_pointer;
9669 e->X_op_symbol = make_expr_symbol (e);
9670 e->X_add_symbol = NULL;
9671 e->X_add_number = 0;
9672 e->X_op = O_index;
9673 }
9674 else
9675 {
9676 e->X_op = O_absent;
9677 input_line_pointer = end;
9678 }
9679 break;
9680 }
9681 }
9682
9683 \f
9684 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9685 const char *md_shortopts = "kVQ:sqn";
9686 #else
9687 const char *md_shortopts = "qn";
9688 #endif
9689
9690 #define OPTION_32 (OPTION_MD_BASE + 0)
9691 #define OPTION_64 (OPTION_MD_BASE + 1)
9692 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9693 #define OPTION_MARCH (OPTION_MD_BASE + 3)
9694 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
9695 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9696 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9697 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9698 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9699 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
9700 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
9701 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
9702 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9703 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9704 #define OPTION_X32 (OPTION_MD_BASE + 14)
9705 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
9706 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9707 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
9708 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
9709 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
9710 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
9711 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
9712 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
9713 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
9714 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
9715 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 25)
9716
9717 struct option md_longopts[] =
9718 {
9719 {"32", no_argument, NULL, OPTION_32},
9720 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9721 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9722 {"64", no_argument, NULL, OPTION_64},
9723 #endif
9724 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9725 {"x32", no_argument, NULL, OPTION_X32},
9726 {"mshared", no_argument, NULL, OPTION_MSHARED},
9727 #endif
9728 {"divide", no_argument, NULL, OPTION_DIVIDE},
9729 {"march", required_argument, NULL, OPTION_MARCH},
9730 {"mtune", required_argument, NULL, OPTION_MTUNE},
9731 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
9732 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
9733 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
9734 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
9735 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
9736 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
9737 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
9738 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
9739 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
9740 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
9741 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
9742 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
9743 # if defined (TE_PE) || defined (TE_PEP)
9744 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
9745 #endif
9746 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
9747 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
9748 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
9749 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
9750 {"mamd64", no_argument, NULL, OPTION_MAMD64},
9751 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
9752 {NULL, no_argument, NULL, 0}
9753 };
9754 size_t md_longopts_size = sizeof (md_longopts);
9755
9756 int
9757 md_parse_option (int c, const char *arg)
9758 {
9759 unsigned int j;
9760 char *arch, *next, *saved;
9761
9762 switch (c)
9763 {
9764 case 'n':
9765 optimize_align_code = 0;
9766 break;
9767
9768 case 'q':
9769 quiet_warnings = 1;
9770 break;
9771
9772 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9773 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
9774 should be emitted or not. FIXME: Not implemented. */
9775 case 'Q':
9776 break;
9777
9778 /* -V: SVR4 argument to print version ID. */
9779 case 'V':
9780 print_version_id ();
9781 break;
9782
9783 /* -k: Ignore for FreeBSD compatibility. */
9784 case 'k':
9785 break;
9786
9787 case 's':
9788 /* -s: On i386 Solaris, this tells the native assembler to use
9789 .stab instead of .stab.excl. We always use .stab anyhow. */
9790 break;
9791
9792 case OPTION_MSHARED:
9793 shared = 1;
9794 break;
9795 #endif
9796 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9797 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9798 case OPTION_64:
9799 {
9800 const char **list, **l;
9801
9802 list = bfd_target_list ();
9803 for (l = list; *l != NULL; l++)
9804 if (CONST_STRNEQ (*l, "elf64-x86-64")
9805 || strcmp (*l, "coff-x86-64") == 0
9806 || strcmp (*l, "pe-x86-64") == 0
9807 || strcmp (*l, "pei-x86-64") == 0
9808 || strcmp (*l, "mach-o-x86-64") == 0)
9809 {
9810 default_arch = "x86_64";
9811 break;
9812 }
9813 if (*l == NULL)
9814 as_fatal (_("no compiled in support for x86_64"));
9815 free (list);
9816 }
9817 break;
9818 #endif
9819
9820 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9821 case OPTION_X32:
9822 if (IS_ELF)
9823 {
9824 const char **list, **l;
9825
9826 list = bfd_target_list ();
9827 for (l = list; *l != NULL; l++)
9828 if (CONST_STRNEQ (*l, "elf32-x86-64"))
9829 {
9830 default_arch = "x86_64:32";
9831 break;
9832 }
9833 if (*l == NULL)
9834 as_fatal (_("no compiled in support for 32bit x86_64"));
9835 free (list);
9836 }
9837 else
9838 as_fatal (_("32bit x86_64 is only supported for ELF"));
9839 break;
9840 #endif
9841
9842 case OPTION_32:
9843 default_arch = "i386";
9844 break;
9845
9846 case OPTION_DIVIDE:
9847 #ifdef SVR4_COMMENT_CHARS
9848 {
9849 char *n, *t;
9850 const char *s;
9851
9852 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
9853 t = n;
9854 for (s = i386_comment_chars; *s != '\0'; s++)
9855 if (*s != '/')
9856 *t++ = *s;
9857 *t = '\0';
9858 i386_comment_chars = n;
9859 }
9860 #endif
9861 break;
9862
9863 case OPTION_MARCH:
9864 saved = xstrdup (arg);
9865 arch = saved;
9866 /* Allow -march=+nosse. */
9867 if (*arch == '+')
9868 arch++;
9869 do
9870 {
9871 if (*arch == '.')
9872 as_fatal (_("invalid -march= option: `%s'"), arg);
9873 next = strchr (arch, '+');
9874 if (next)
9875 *next++ = '\0';
9876 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9877 {
9878 if (strcmp (arch, cpu_arch [j].name) == 0)
9879 {
9880 /* Processor. */
9881 if (! cpu_arch[j].flags.bitfield.cpui386)
9882 continue;
9883
9884 cpu_arch_name = cpu_arch[j].name;
9885 cpu_sub_arch_name = NULL;
9886 cpu_arch_flags = cpu_arch[j].flags;
9887 cpu_arch_isa = cpu_arch[j].type;
9888 cpu_arch_isa_flags = cpu_arch[j].flags;
9889 if (!cpu_arch_tune_set)
9890 {
9891 cpu_arch_tune = cpu_arch_isa;
9892 cpu_arch_tune_flags = cpu_arch_isa_flags;
9893 }
9894 break;
9895 }
9896 else if (*cpu_arch [j].name == '.'
9897 && strcmp (arch, cpu_arch [j].name + 1) == 0)
9898 {
9899 /* ISA entension. */
9900 i386_cpu_flags flags;
9901
9902 flags = cpu_flags_or (cpu_arch_flags,
9903 cpu_arch[j].flags);
9904
9905 if (!valid_iamcu_cpu_flags (&flags))
9906 as_fatal (_("`%s' isn't valid for Intel MCU"), arch);
9907 else if (!cpu_flags_equal (&flags, &cpu_arch_flags))
9908 {
9909 if (cpu_sub_arch_name)
9910 {
9911 char *name = cpu_sub_arch_name;
9912 cpu_sub_arch_name = concat (name,
9913 cpu_arch[j].name,
9914 (const char *) NULL);
9915 free (name);
9916 }
9917 else
9918 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
9919 cpu_arch_flags = flags;
9920 cpu_arch_isa_flags = flags;
9921 }
9922 break;
9923 }
9924 }
9925
9926 if (j >= ARRAY_SIZE (cpu_arch))
9927 {
9928 /* Disable an ISA entension. */
9929 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
9930 if (strcmp (arch, cpu_noarch [j].name) == 0)
9931 {
9932 i386_cpu_flags flags;
9933
9934 flags = cpu_flags_and_not (cpu_arch_flags,
9935 cpu_noarch[j].flags);
9936 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
9937 {
9938 if (cpu_sub_arch_name)
9939 {
9940 char *name = cpu_sub_arch_name;
9941 cpu_sub_arch_name = concat (arch,
9942 (const char *) NULL);
9943 free (name);
9944 }
9945 else
9946 cpu_sub_arch_name = xstrdup (arch);
9947 cpu_arch_flags = flags;
9948 cpu_arch_isa_flags = flags;
9949 }
9950 break;
9951 }
9952
9953 if (j >= ARRAY_SIZE (cpu_noarch))
9954 j = ARRAY_SIZE (cpu_arch);
9955 }
9956
9957 if (j >= ARRAY_SIZE (cpu_arch))
9958 as_fatal (_("invalid -march= option: `%s'"), arg);
9959
9960 arch = next;
9961 }
9962 while (next != NULL);
9963 free (saved);
9964 break;
9965
9966 case OPTION_MTUNE:
9967 if (*arg == '.')
9968 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9969 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9970 {
9971 if (strcmp (arg, cpu_arch [j].name) == 0)
9972 {
9973 cpu_arch_tune_set = 1;
9974 cpu_arch_tune = cpu_arch [j].type;
9975 cpu_arch_tune_flags = cpu_arch[j].flags;
9976 break;
9977 }
9978 }
9979 if (j >= ARRAY_SIZE (cpu_arch))
9980 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9981 break;
9982
9983 case OPTION_MMNEMONIC:
9984 if (strcasecmp (arg, "att") == 0)
9985 intel_mnemonic = 0;
9986 else if (strcasecmp (arg, "intel") == 0)
9987 intel_mnemonic = 1;
9988 else
9989 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
9990 break;
9991
9992 case OPTION_MSYNTAX:
9993 if (strcasecmp (arg, "att") == 0)
9994 intel_syntax = 0;
9995 else if (strcasecmp (arg, "intel") == 0)
9996 intel_syntax = 1;
9997 else
9998 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
9999 break;
10000
10001 case OPTION_MINDEX_REG:
10002 allow_index_reg = 1;
10003 break;
10004
10005 case OPTION_MNAKED_REG:
10006 allow_naked_reg = 1;
10007 break;
10008
10009 case OPTION_MOLD_GCC:
10010 old_gcc = 1;
10011 break;
10012
10013 case OPTION_MSSE2AVX:
10014 sse2avx = 1;
10015 break;
10016
10017 case OPTION_MSSE_CHECK:
10018 if (strcasecmp (arg, "error") == 0)
10019 sse_check = check_error;
10020 else if (strcasecmp (arg, "warning") == 0)
10021 sse_check = check_warning;
10022 else if (strcasecmp (arg, "none") == 0)
10023 sse_check = check_none;
10024 else
10025 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10026 break;
10027
10028 case OPTION_MOPERAND_CHECK:
10029 if (strcasecmp (arg, "error") == 0)
10030 operand_check = check_error;
10031 else if (strcasecmp (arg, "warning") == 0)
10032 operand_check = check_warning;
10033 else if (strcasecmp (arg, "none") == 0)
10034 operand_check = check_none;
10035 else
10036 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10037 break;
10038
10039 case OPTION_MAVXSCALAR:
10040 if (strcasecmp (arg, "128") == 0)
10041 avxscalar = vex128;
10042 else if (strcasecmp (arg, "256") == 0)
10043 avxscalar = vex256;
10044 else
10045 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10046 break;
10047
10048 case OPTION_MADD_BND_PREFIX:
10049 add_bnd_prefix = 1;
10050 break;
10051
10052 case OPTION_MEVEXLIG:
10053 if (strcmp (arg, "128") == 0)
10054 evexlig = evexl128;
10055 else if (strcmp (arg, "256") == 0)
10056 evexlig = evexl256;
10057 else if (strcmp (arg, "512") == 0)
10058 evexlig = evexl512;
10059 else
10060 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10061 break;
10062
10063 case OPTION_MEVEXRCIG:
10064 if (strcmp (arg, "rne") == 0)
10065 evexrcig = rne;
10066 else if (strcmp (arg, "rd") == 0)
10067 evexrcig = rd;
10068 else if (strcmp (arg, "ru") == 0)
10069 evexrcig = ru;
10070 else if (strcmp (arg, "rz") == 0)
10071 evexrcig = rz;
10072 else
10073 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10074 break;
10075
10076 case OPTION_MEVEXWIG:
10077 if (strcmp (arg, "0") == 0)
10078 evexwig = evexw0;
10079 else if (strcmp (arg, "1") == 0)
10080 evexwig = evexw1;
10081 else
10082 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10083 break;
10084
10085 # if defined (TE_PE) || defined (TE_PEP)
10086 case OPTION_MBIG_OBJ:
10087 use_big_obj = 1;
10088 break;
10089 #endif
10090
10091 case OPTION_MOMIT_LOCK_PREFIX:
10092 if (strcasecmp (arg, "yes") == 0)
10093 omit_lock_prefix = 1;
10094 else if (strcasecmp (arg, "no") == 0)
10095 omit_lock_prefix = 0;
10096 else
10097 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10098 break;
10099
10100 case OPTION_MFENCE_AS_LOCK_ADD:
10101 if (strcasecmp (arg, "yes") == 0)
10102 avoid_fence = 1;
10103 else if (strcasecmp (arg, "no") == 0)
10104 avoid_fence = 0;
10105 else
10106 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10107 break;
10108
10109 case OPTION_MRELAX_RELOCATIONS:
10110 if (strcasecmp (arg, "yes") == 0)
10111 generate_relax_relocations = 1;
10112 else if (strcasecmp (arg, "no") == 0)
10113 generate_relax_relocations = 0;
10114 else
10115 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10116 break;
10117
10118 case OPTION_MAMD64:
10119 intel64 = 0;
10120 break;
10121
10122 case OPTION_MINTEL64:
10123 intel64 = 1;
10124 break;
10125
10126 default:
10127 return 0;
10128 }
10129 return 1;
10130 }
10131
10132 #define MESSAGE_TEMPLATE \
10133 " "
10134
10135 static char *
10136 output_message (FILE *stream, char *p, char *message, char *start,
10137 int *left_p, const char *name, int len)
10138 {
10139 int size = sizeof (MESSAGE_TEMPLATE);
10140 int left = *left_p;
10141
10142 /* Reserve 2 spaces for ", " or ",\0" */
10143 left -= len + 2;
10144
10145 /* Check if there is any room. */
10146 if (left >= 0)
10147 {
10148 if (p != start)
10149 {
10150 *p++ = ',';
10151 *p++ = ' ';
10152 }
10153 p = mempcpy (p, name, len);
10154 }
10155 else
10156 {
10157 /* Output the current message now and start a new one. */
10158 *p++ = ',';
10159 *p = '\0';
10160 fprintf (stream, "%s\n", message);
10161 p = start;
10162 left = size - (start - message) - len - 2;
10163
10164 gas_assert (left >= 0);
10165
10166 p = mempcpy (p, name, len);
10167 }
10168
10169 *left_p = left;
10170 return p;
10171 }
10172
10173 static void
10174 show_arch (FILE *stream, int ext, int check)
10175 {
10176 static char message[] = MESSAGE_TEMPLATE;
10177 char *start = message + 27;
10178 char *p;
10179 int size = sizeof (MESSAGE_TEMPLATE);
10180 int left;
10181 const char *name;
10182 int len;
10183 unsigned int j;
10184
10185 p = start;
10186 left = size - (start - message);
10187 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10188 {
10189 /* Should it be skipped? */
10190 if (cpu_arch [j].skip)
10191 continue;
10192
10193 name = cpu_arch [j].name;
10194 len = cpu_arch [j].len;
10195 if (*name == '.')
10196 {
10197 /* It is an extension. Skip if we aren't asked to show it. */
10198 if (ext)
10199 {
10200 name++;
10201 len--;
10202 }
10203 else
10204 continue;
10205 }
10206 else if (ext)
10207 {
10208 /* It is an processor. Skip if we show only extension. */
10209 continue;
10210 }
10211 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10212 {
10213 /* It is an impossible processor - skip. */
10214 continue;
10215 }
10216
10217 p = output_message (stream, p, message, start, &left, name, len);
10218 }
10219
10220 /* Display disabled extensions. */
10221 if (ext)
10222 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10223 {
10224 name = cpu_noarch [j].name;
10225 len = cpu_noarch [j].len;
10226 p = output_message (stream, p, message, start, &left, name,
10227 len);
10228 }
10229
10230 *p = '\0';
10231 fprintf (stream, "%s\n", message);
10232 }
10233
10234 void
10235 md_show_usage (FILE *stream)
10236 {
10237 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10238 fprintf (stream, _("\
10239 -Q ignored\n\
10240 -V print assembler version number\n\
10241 -k ignored\n"));
10242 #endif
10243 fprintf (stream, _("\
10244 -n Do not optimize code alignment\n\
10245 -q quieten some warnings\n"));
10246 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10247 fprintf (stream, _("\
10248 -s ignored\n"));
10249 #endif
10250 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10251 || defined (TE_PE) || defined (TE_PEP))
10252 fprintf (stream, _("\
10253 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10254 #endif
10255 #ifdef SVR4_COMMENT_CHARS
10256 fprintf (stream, _("\
10257 --divide do not treat `/' as a comment character\n"));
10258 #else
10259 fprintf (stream, _("\
10260 --divide ignored\n"));
10261 #endif
10262 fprintf (stream, _("\
10263 -march=CPU[,+EXTENSION...]\n\
10264 generate code for CPU and EXTENSION, CPU is one of:\n"));
10265 show_arch (stream, 0, 1);
10266 fprintf (stream, _("\
10267 EXTENSION is combination of:\n"));
10268 show_arch (stream, 1, 0);
10269 fprintf (stream, _("\
10270 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10271 show_arch (stream, 0, 0);
10272 fprintf (stream, _("\
10273 -msse2avx encode SSE instructions with VEX prefix\n"));
10274 fprintf (stream, _("\
10275 -msse-check=[none|error|warning]\n\
10276 check SSE instructions\n"));
10277 fprintf (stream, _("\
10278 -moperand-check=[none|error|warning]\n\
10279 check operand combinations for validity\n"));
10280 fprintf (stream, _("\
10281 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10282 length\n"));
10283 fprintf (stream, _("\
10284 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10285 length\n"));
10286 fprintf (stream, _("\
10287 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10288 for EVEX.W bit ignored instructions\n"));
10289 fprintf (stream, _("\
10290 -mevexrcig=[rne|rd|ru|rz]\n\
10291 encode EVEX instructions with specific EVEX.RC value\n\
10292 for SAE-only ignored instructions\n"));
10293 fprintf (stream, _("\
10294 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10295 fprintf (stream, _("\
10296 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10297 fprintf (stream, _("\
10298 -mindex-reg support pseudo index registers\n"));
10299 fprintf (stream, _("\
10300 -mnaked-reg don't require `%%' prefix for registers\n"));
10301 fprintf (stream, _("\
10302 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
10303 fprintf (stream, _("\
10304 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10305 fprintf (stream, _("\
10306 -mshared disable branch optimization for shared code\n"));
10307 # if defined (TE_PE) || defined (TE_PEP)
10308 fprintf (stream, _("\
10309 -mbig-obj generate big object files\n"));
10310 #endif
10311 fprintf (stream, _("\
10312 -momit-lock-prefix=[no|yes]\n\
10313 strip all lock prefixes\n"));
10314 fprintf (stream, _("\
10315 -mfence-as-lock-add=[no|yes]\n\
10316 encode lfence, mfence and sfence as\n\
10317 lock addl $0x0, (%%{re}sp)\n"));
10318 fprintf (stream, _("\
10319 -mrelax-relocations=[no|yes]\n\
10320 generate relax relocations\n"));
10321 fprintf (stream, _("\
10322 -mamd64 accept only AMD64 ISA\n"));
10323 fprintf (stream, _("\
10324 -mintel64 accept only Intel64 ISA\n"));
10325 }
10326
10327 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10328 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10329 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10330
10331 /* Pick the target format to use. */
10332
10333 const char *
10334 i386_target_format (void)
10335 {
10336 if (!strncmp (default_arch, "x86_64", 6))
10337 {
10338 update_code_flag (CODE_64BIT, 1);
10339 if (default_arch[6] == '\0')
10340 x86_elf_abi = X86_64_ABI;
10341 else
10342 x86_elf_abi = X86_64_X32_ABI;
10343 }
10344 else if (!strcmp (default_arch, "i386"))
10345 update_code_flag (CODE_32BIT, 1);
10346 else if (!strcmp (default_arch, "iamcu"))
10347 {
10348 update_code_flag (CODE_32BIT, 1);
10349 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10350 {
10351 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10352 cpu_arch_name = "iamcu";
10353 cpu_sub_arch_name = NULL;
10354 cpu_arch_flags = iamcu_flags;
10355 cpu_arch_isa = PROCESSOR_IAMCU;
10356 cpu_arch_isa_flags = iamcu_flags;
10357 if (!cpu_arch_tune_set)
10358 {
10359 cpu_arch_tune = cpu_arch_isa;
10360 cpu_arch_tune_flags = cpu_arch_isa_flags;
10361 }
10362 }
10363 else
10364 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10365 cpu_arch_name);
10366 }
10367 else
10368 as_fatal (_("unknown architecture"));
10369
10370 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10371 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10372 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10373 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10374
10375 switch (OUTPUT_FLAVOR)
10376 {
10377 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
10378 case bfd_target_aout_flavour:
10379 return AOUT_TARGET_FORMAT;
10380 #endif
10381 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10382 # if defined (TE_PE) || defined (TE_PEP)
10383 case bfd_target_coff_flavour:
10384 if (flag_code == CODE_64BIT)
10385 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10386 else
10387 return "pe-i386";
10388 # elif defined (TE_GO32)
10389 case bfd_target_coff_flavour:
10390 return "coff-go32";
10391 # else
10392 case bfd_target_coff_flavour:
10393 return "coff-i386";
10394 # endif
10395 #endif
10396 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10397 case bfd_target_elf_flavour:
10398 {
10399 const char *format;
10400
10401 switch (x86_elf_abi)
10402 {
10403 default:
10404 format = ELF_TARGET_FORMAT;
10405 break;
10406 case X86_64_ABI:
10407 use_rela_relocations = 1;
10408 object_64bit = 1;
10409 format = ELF_TARGET_FORMAT64;
10410 break;
10411 case X86_64_X32_ABI:
10412 use_rela_relocations = 1;
10413 object_64bit = 1;
10414 disallow_64bit_reloc = 1;
10415 format = ELF_TARGET_FORMAT32;
10416 break;
10417 }
10418 if (cpu_arch_isa == PROCESSOR_L1OM)
10419 {
10420 if (x86_elf_abi != X86_64_ABI)
10421 as_fatal (_("Intel L1OM is 64bit only"));
10422 return ELF_TARGET_L1OM_FORMAT;
10423 }
10424 else if (cpu_arch_isa == PROCESSOR_K1OM)
10425 {
10426 if (x86_elf_abi != X86_64_ABI)
10427 as_fatal (_("Intel K1OM is 64bit only"));
10428 return ELF_TARGET_K1OM_FORMAT;
10429 }
10430 else if (cpu_arch_isa == PROCESSOR_IAMCU)
10431 {
10432 if (x86_elf_abi != I386_ABI)
10433 as_fatal (_("Intel MCU is 32bit only"));
10434 return ELF_TARGET_IAMCU_FORMAT;
10435 }
10436 else
10437 return format;
10438 }
10439 #endif
10440 #if defined (OBJ_MACH_O)
10441 case bfd_target_mach_o_flavour:
10442 if (flag_code == CODE_64BIT)
10443 {
10444 use_rela_relocations = 1;
10445 object_64bit = 1;
10446 return "mach-o-x86-64";
10447 }
10448 else
10449 return "mach-o-i386";
10450 #endif
10451 default:
10452 abort ();
10453 return NULL;
10454 }
10455 }
10456
10457 #endif /* OBJ_MAYBE_ more than one */
10458 \f
10459 symbolS *
10460 md_undefined_symbol (char *name)
10461 {
10462 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10463 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10464 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10465 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
10466 {
10467 if (!GOT_symbol)
10468 {
10469 if (symbol_find (name))
10470 as_bad (_("GOT already in symbol table"));
10471 GOT_symbol = symbol_new (name, undefined_section,
10472 (valueT) 0, &zero_address_frag);
10473 };
10474 return GOT_symbol;
10475 }
10476 return 0;
10477 }
10478
10479 /* Round up a section size to the appropriate boundary. */
10480
10481 valueT
10482 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
10483 {
10484 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10485 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10486 {
10487 /* For a.out, force the section size to be aligned. If we don't do
10488 this, BFD will align it for us, but it will not write out the
10489 final bytes of the section. This may be a bug in BFD, but it is
10490 easier to fix it here since that is how the other a.out targets
10491 work. */
10492 int align;
10493
10494 align = bfd_get_section_alignment (stdoutput, segment);
10495 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
10496 }
10497 #endif
10498
10499 return size;
10500 }
10501
10502 /* On the i386, PC-relative offsets are relative to the start of the
10503 next instruction. That is, the address of the offset, plus its
10504 size, since the offset is always the last part of the insn. */
10505
10506 long
10507 md_pcrel_from (fixS *fixP)
10508 {
10509 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10510 }
10511
10512 #ifndef I386COFF
10513
10514 static void
10515 s_bss (int ignore ATTRIBUTE_UNUSED)
10516 {
10517 int temp;
10518
10519 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10520 if (IS_ELF)
10521 obj_elf_section_change_hook ();
10522 #endif
10523 temp = get_absolute_expression ();
10524 subseg_set (bss_section, (subsegT) temp);
10525 demand_empty_rest_of_line ();
10526 }
10527
10528 #endif
10529
10530 void
10531 i386_validate_fix (fixS *fixp)
10532 {
10533 if (fixp->fx_subsy)
10534 {
10535 if (fixp->fx_subsy == GOT_symbol)
10536 {
10537 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10538 {
10539 if (!object_64bit)
10540 abort ();
10541 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10542 if (fixp->fx_tcbit2)
10543 fixp->fx_r_type = (fixp->fx_tcbit
10544 ? BFD_RELOC_X86_64_REX_GOTPCRELX
10545 : BFD_RELOC_X86_64_GOTPCRELX);
10546 else
10547 #endif
10548 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10549 }
10550 else
10551 {
10552 if (!object_64bit)
10553 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10554 else
10555 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10556 }
10557 fixp->fx_subsy = 0;
10558 }
10559 }
10560 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10561 else if (!object_64bit)
10562 {
10563 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
10564 && fixp->fx_tcbit2)
10565 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
10566 }
10567 #endif
10568 }
10569
10570 arelent *
10571 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
10572 {
10573 arelent *rel;
10574 bfd_reloc_code_real_type code;
10575
10576 switch (fixp->fx_r_type)
10577 {
10578 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10579 case BFD_RELOC_SIZE32:
10580 case BFD_RELOC_SIZE64:
10581 if (S_IS_DEFINED (fixp->fx_addsy)
10582 && !S_IS_EXTERNAL (fixp->fx_addsy))
10583 {
10584 /* Resolve size relocation against local symbol to size of
10585 the symbol plus addend. */
10586 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10587 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10588 && !fits_in_unsigned_long (value))
10589 as_bad_where (fixp->fx_file, fixp->fx_line,
10590 _("symbol size computation overflow"));
10591 fixp->fx_addsy = NULL;
10592 fixp->fx_subsy = NULL;
10593 md_apply_fix (fixp, (valueT *) &value, NULL);
10594 return NULL;
10595 }
10596 #endif
10597
10598 case BFD_RELOC_X86_64_PLT32:
10599 case BFD_RELOC_X86_64_GOT32:
10600 case BFD_RELOC_X86_64_GOTPCREL:
10601 case BFD_RELOC_X86_64_GOTPCRELX:
10602 case BFD_RELOC_X86_64_REX_GOTPCRELX:
10603 case BFD_RELOC_386_PLT32:
10604 case BFD_RELOC_386_GOT32:
10605 case BFD_RELOC_386_GOT32X:
10606 case BFD_RELOC_386_GOTOFF:
10607 case BFD_RELOC_386_GOTPC:
10608 case BFD_RELOC_386_TLS_GD:
10609 case BFD_RELOC_386_TLS_LDM:
10610 case BFD_RELOC_386_TLS_LDO_32:
10611 case BFD_RELOC_386_TLS_IE_32:
10612 case BFD_RELOC_386_TLS_IE:
10613 case BFD_RELOC_386_TLS_GOTIE:
10614 case BFD_RELOC_386_TLS_LE_32:
10615 case BFD_RELOC_386_TLS_LE:
10616 case BFD_RELOC_386_TLS_GOTDESC:
10617 case BFD_RELOC_386_TLS_DESC_CALL:
10618 case BFD_RELOC_X86_64_TLSGD:
10619 case BFD_RELOC_X86_64_TLSLD:
10620 case BFD_RELOC_X86_64_DTPOFF32:
10621 case BFD_RELOC_X86_64_DTPOFF64:
10622 case BFD_RELOC_X86_64_GOTTPOFF:
10623 case BFD_RELOC_X86_64_TPOFF32:
10624 case BFD_RELOC_X86_64_TPOFF64:
10625 case BFD_RELOC_X86_64_GOTOFF64:
10626 case BFD_RELOC_X86_64_GOTPC32:
10627 case BFD_RELOC_X86_64_GOT64:
10628 case BFD_RELOC_X86_64_GOTPCREL64:
10629 case BFD_RELOC_X86_64_GOTPC64:
10630 case BFD_RELOC_X86_64_GOTPLT64:
10631 case BFD_RELOC_X86_64_PLTOFF64:
10632 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10633 case BFD_RELOC_X86_64_TLSDESC_CALL:
10634 case BFD_RELOC_RVA:
10635 case BFD_RELOC_VTABLE_ENTRY:
10636 case BFD_RELOC_VTABLE_INHERIT:
10637 #ifdef TE_PE
10638 case BFD_RELOC_32_SECREL:
10639 #endif
10640 code = fixp->fx_r_type;
10641 break;
10642 case BFD_RELOC_X86_64_32S:
10643 if (!fixp->fx_pcrel)
10644 {
10645 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10646 code = fixp->fx_r_type;
10647 break;
10648 }
10649 default:
10650 if (fixp->fx_pcrel)
10651 {
10652 switch (fixp->fx_size)
10653 {
10654 default:
10655 as_bad_where (fixp->fx_file, fixp->fx_line,
10656 _("can not do %d byte pc-relative relocation"),
10657 fixp->fx_size);
10658 code = BFD_RELOC_32_PCREL;
10659 break;
10660 case 1: code = BFD_RELOC_8_PCREL; break;
10661 case 2: code = BFD_RELOC_16_PCREL; break;
10662 case 4: code = BFD_RELOC_32_PCREL; break;
10663 #ifdef BFD64
10664 case 8: code = BFD_RELOC_64_PCREL; break;
10665 #endif
10666 }
10667 }
10668 else
10669 {
10670 switch (fixp->fx_size)
10671 {
10672 default:
10673 as_bad_where (fixp->fx_file, fixp->fx_line,
10674 _("can not do %d byte relocation"),
10675 fixp->fx_size);
10676 code = BFD_RELOC_32;
10677 break;
10678 case 1: code = BFD_RELOC_8; break;
10679 case 2: code = BFD_RELOC_16; break;
10680 case 4: code = BFD_RELOC_32; break;
10681 #ifdef BFD64
10682 case 8: code = BFD_RELOC_64; break;
10683 #endif
10684 }
10685 }
10686 break;
10687 }
10688
10689 if ((code == BFD_RELOC_32
10690 || code == BFD_RELOC_32_PCREL
10691 || code == BFD_RELOC_X86_64_32S)
10692 && GOT_symbol
10693 && fixp->fx_addsy == GOT_symbol)
10694 {
10695 if (!object_64bit)
10696 code = BFD_RELOC_386_GOTPC;
10697 else
10698 code = BFD_RELOC_X86_64_GOTPC32;
10699 }
10700 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10701 && GOT_symbol
10702 && fixp->fx_addsy == GOT_symbol)
10703 {
10704 code = BFD_RELOC_X86_64_GOTPC64;
10705 }
10706
10707 rel = XNEW (arelent);
10708 rel->sym_ptr_ptr = XNEW (asymbol *);
10709 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10710
10711 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
10712
10713 if (!use_rela_relocations)
10714 {
10715 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10716 vtable entry to be used in the relocation's section offset. */
10717 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10718 rel->address = fixp->fx_offset;
10719 #if defined (OBJ_COFF) && defined (TE_PE)
10720 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10721 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10722 else
10723 #endif
10724 rel->addend = 0;
10725 }
10726 /* Use the rela in 64bit mode. */
10727 else
10728 {
10729 if (disallow_64bit_reloc)
10730 switch (code)
10731 {
10732 case BFD_RELOC_X86_64_DTPOFF64:
10733 case BFD_RELOC_X86_64_TPOFF64:
10734 case BFD_RELOC_64_PCREL:
10735 case BFD_RELOC_X86_64_GOTOFF64:
10736 case BFD_RELOC_X86_64_GOT64:
10737 case BFD_RELOC_X86_64_GOTPCREL64:
10738 case BFD_RELOC_X86_64_GOTPC64:
10739 case BFD_RELOC_X86_64_GOTPLT64:
10740 case BFD_RELOC_X86_64_PLTOFF64:
10741 as_bad_where (fixp->fx_file, fixp->fx_line,
10742 _("cannot represent relocation type %s in x32 mode"),
10743 bfd_get_reloc_code_name (code));
10744 break;
10745 default:
10746 break;
10747 }
10748
10749 if (!fixp->fx_pcrel)
10750 rel->addend = fixp->fx_offset;
10751 else
10752 switch (code)
10753 {
10754 case BFD_RELOC_X86_64_PLT32:
10755 case BFD_RELOC_X86_64_GOT32:
10756 case BFD_RELOC_X86_64_GOTPCREL:
10757 case BFD_RELOC_X86_64_GOTPCRELX:
10758 case BFD_RELOC_X86_64_REX_GOTPCRELX:
10759 case BFD_RELOC_X86_64_TLSGD:
10760 case BFD_RELOC_X86_64_TLSLD:
10761 case BFD_RELOC_X86_64_GOTTPOFF:
10762 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10763 case BFD_RELOC_X86_64_TLSDESC_CALL:
10764 rel->addend = fixp->fx_offset - fixp->fx_size;
10765 break;
10766 default:
10767 rel->addend = (section->vma
10768 - fixp->fx_size
10769 + fixp->fx_addnumber
10770 + md_pcrel_from (fixp));
10771 break;
10772 }
10773 }
10774
10775 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
10776 if (rel->howto == NULL)
10777 {
10778 as_bad_where (fixp->fx_file, fixp->fx_line,
10779 _("cannot represent relocation type %s"),
10780 bfd_get_reloc_code_name (code));
10781 /* Set howto to a garbage value so that we can keep going. */
10782 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
10783 gas_assert (rel->howto != NULL);
10784 }
10785
10786 return rel;
10787 }
10788
10789 #include "tc-i386-intel.c"
10790
10791 void
10792 tc_x86_parse_to_dw2regnum (expressionS *exp)
10793 {
10794 int saved_naked_reg;
10795 char saved_register_dot;
10796
10797 saved_naked_reg = allow_naked_reg;
10798 allow_naked_reg = 1;
10799 saved_register_dot = register_chars['.'];
10800 register_chars['.'] = '.';
10801 allow_pseudo_reg = 1;
10802 expression_and_evaluate (exp);
10803 allow_pseudo_reg = 0;
10804 register_chars['.'] = saved_register_dot;
10805 allow_naked_reg = saved_naked_reg;
10806
10807 if (exp->X_op == O_register && exp->X_add_number >= 0)
10808 {
10809 if ((addressT) exp->X_add_number < i386_regtab_size)
10810 {
10811 exp->X_op = O_constant;
10812 exp->X_add_number = i386_regtab[exp->X_add_number]
10813 .dw2_regnum[flag_code >> 1];
10814 }
10815 else
10816 exp->X_op = O_illegal;
10817 }
10818 }
10819
10820 void
10821 tc_x86_frame_initial_instructions (void)
10822 {
10823 static unsigned int sp_regno[2];
10824
10825 if (!sp_regno[flag_code >> 1])
10826 {
10827 char *saved_input = input_line_pointer;
10828 char sp[][4] = {"esp", "rsp"};
10829 expressionS exp;
10830
10831 input_line_pointer = sp[flag_code >> 1];
10832 tc_x86_parse_to_dw2regnum (&exp);
10833 gas_assert (exp.X_op == O_constant);
10834 sp_regno[flag_code >> 1] = exp.X_add_number;
10835 input_line_pointer = saved_input;
10836 }
10837
10838 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
10839 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
10840 }
10841
10842 int
10843 x86_dwarf2_addr_size (void)
10844 {
10845 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10846 if (x86_elf_abi == X86_64_X32_ABI)
10847 return 4;
10848 #endif
10849 return bfd_arch_bits_per_address (stdoutput) / 8;
10850 }
10851
10852 int
10853 i386_elf_section_type (const char *str, size_t len)
10854 {
10855 if (flag_code == CODE_64BIT
10856 && len == sizeof ("unwind") - 1
10857 && strncmp (str, "unwind", 6) == 0)
10858 return SHT_X86_64_UNWIND;
10859
10860 return -1;
10861 }
10862
10863 #ifdef TE_SOLARIS
10864 void
10865 i386_solaris_fix_up_eh_frame (segT sec)
10866 {
10867 if (flag_code == CODE_64BIT)
10868 elf_section_type (sec) = SHT_X86_64_UNWIND;
10869 }
10870 #endif
10871
10872 #ifdef TE_PE
10873 void
10874 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10875 {
10876 expressionS exp;
10877
10878 exp.X_op = O_secrel;
10879 exp.X_add_symbol = symbol;
10880 exp.X_add_number = 0;
10881 emit_expr (&exp, size);
10882 }
10883 #endif
10884
10885 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10886 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
10887
10888 bfd_vma
10889 x86_64_section_letter (int letter, const char **ptr_msg)
10890 {
10891 if (flag_code == CODE_64BIT)
10892 {
10893 if (letter == 'l')
10894 return SHF_X86_64_LARGE;
10895
10896 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
10897 }
10898 else
10899 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
10900 return -1;
10901 }
10902
10903 bfd_vma
10904 x86_64_section_word (char *str, size_t len)
10905 {
10906 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
10907 return SHF_X86_64_LARGE;
10908
10909 return -1;
10910 }
10911
10912 static void
10913 handle_large_common (int small ATTRIBUTE_UNUSED)
10914 {
10915 if (flag_code != CODE_64BIT)
10916 {
10917 s_comm_internal (0, elf_common_parse);
10918 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
10919 }
10920 else
10921 {
10922 static segT lbss_section;
10923 asection *saved_com_section_ptr = elf_com_section_ptr;
10924 asection *saved_bss_section = bss_section;
10925
10926 if (lbss_section == NULL)
10927 {
10928 flagword applicable;
10929 segT seg = now_seg;
10930 subsegT subseg = now_subseg;
10931
10932 /* The .lbss section is for local .largecomm symbols. */
10933 lbss_section = subseg_new (".lbss", 0);
10934 applicable = bfd_applicable_section_flags (stdoutput);
10935 bfd_set_section_flags (stdoutput, lbss_section,
10936 applicable & SEC_ALLOC);
10937 seg_info (lbss_section)->bss = 1;
10938
10939 subseg_set (seg, subseg);
10940 }
10941
10942 elf_com_section_ptr = &_bfd_elf_large_com_section;
10943 bss_section = lbss_section;
10944
10945 s_comm_internal (0, elf_common_parse);
10946
10947 elf_com_section_ptr = saved_com_section_ptr;
10948 bss_section = saved_bss_section;
10949 }
10950 }
10951 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */