1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 Free Software Foundation, Inc.
6 This file is part of GAS, the GNU Assembler.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 Bugs & suggestions are completely welcome. This is free software.
27 Please help us make it better. */
33 #include "dwarf2dbg.h"
34 #include "opcode/i386.h"
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
44 #ifndef SCALE1_WHEN_NO_INDEX
45 /* Specifying a scale factor besides 1 when there is no index is
46 futile. eg. `mov (%ebx,2),%al' does exactly the same as
47 `mov (%ebx),%al'. To slavishly follow what the programmer
48 specified, set SCALE1_WHEN_NO_INDEX to 0. */
49 #define SCALE1_WHEN_NO_INDEX 1
55 static unsigned int mode_from_disp_size
PARAMS ((unsigned int));
56 static int fits_in_signed_byte
PARAMS ((offsetT
));
57 static int fits_in_unsigned_byte
PARAMS ((offsetT
));
58 static int fits_in_unsigned_word
PARAMS ((offsetT
));
59 static int fits_in_signed_word
PARAMS ((offsetT
));
60 static int fits_in_unsigned_long
PARAMS ((offsetT
));
61 static int fits_in_signed_long
PARAMS ((offsetT
));
62 static int smallest_imm_type
PARAMS ((offsetT
));
63 static offsetT offset_in_range
PARAMS ((offsetT
, int));
64 static int add_prefix
PARAMS ((unsigned int));
65 static void set_code_flag
PARAMS ((int));
66 static void set_16bit_gcc_code_flag
PARAMS ((int));
67 static void set_intel_syntax
PARAMS ((int));
68 static void set_cpu_arch
PARAMS ((int));
71 static bfd_reloc_code_real_type reloc
72 PARAMS ((int, int, int, bfd_reloc_code_real_type
));
73 #define RELOC_ENUM enum bfd_reloc_code_real
75 #define RELOC_ENUM int
79 #define DEFAULT_ARCH "i386"
81 static char *default_arch
= DEFAULT_ARCH
;
83 /* 'md_assemble ()' gathers together information and puts it into a
90 const reg_entry
*regs
;
95 /* TM holds the template for the insn were currently assembling. */
98 /* SUFFIX holds the instruction mnemonic suffix if given.
99 (e.g. 'l' for 'movl') */
102 /* OPERANDS gives the number of given operands. */
103 unsigned int operands
;
105 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
106 of given register, displacement, memory operands and immediate
108 unsigned int reg_operands
, disp_operands
, mem_operands
, imm_operands
;
110 /* TYPES [i] is the type (see above #defines) which tells us how to
111 use OP[i] for the corresponding operand. */
112 unsigned int types
[MAX_OPERANDS
];
114 /* Displacement expression, immediate expression, or register for each
116 union i386_op op
[MAX_OPERANDS
];
118 /* Flags for operands. */
119 unsigned int flags
[MAX_OPERANDS
];
120 #define Operand_PCrel 1
122 /* Relocation type for operand */
123 RELOC_ENUM reloc
[MAX_OPERANDS
];
125 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
126 the base index byte below. */
127 const reg_entry
*base_reg
;
128 const reg_entry
*index_reg
;
129 unsigned int log2_scale_factor
;
131 /* SEG gives the seg_entries of this insn. They are zero unless
132 explicit segment overrides are given. */
133 const seg_entry
*seg
[2];
135 /* PREFIX holds all the given prefix opcodes (usually null).
136 PREFIXES is the number of prefix opcodes. */
137 unsigned int prefixes
;
138 unsigned char prefix
[MAX_PREFIXES
];
140 /* RM and SIB are the modrm byte and the sib byte where the
141 addressing modes of this insn are encoded. */
148 typedef struct _i386_insn i386_insn
;
150 /* List of chars besides those in app.c:symbol_chars that can start an
151 operand. Used to prevent the scrubber eating vital white-space. */
153 const char extra_symbol_chars
[] = "*%-(@";
155 const char extra_symbol_chars
[] = "*%-(";
158 /* This array holds the chars that always start a comment. If the
159 pre-processor is disabled, these aren't very useful. */
160 #if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD))
161 /* Putting '/' here makes it impossible to use the divide operator.
162 However, we need it for compatibility with SVR4 systems. */
163 const char comment_chars
[] = "#/";
164 #define PREFIX_SEPARATOR '\\'
166 const char comment_chars
[] = "#";
167 #define PREFIX_SEPARATOR '/'
170 /* This array holds the chars that only start a comment at the beginning of
171 a line. If the line seems to have the form '# 123 filename'
172 .line and .file directives will appear in the pre-processed output.
173 Note that input_file.c hand checks for '#' at the beginning of the
174 first line of the input file. This is because the compiler outputs
175 #NO_APP at the beginning of its output.
176 Also note that comments started like this one will always work if
177 '/' isn't otherwise defined. */
178 #if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD))
179 const char line_comment_chars
[] = "";
181 const char line_comment_chars
[] = "/";
184 const char line_separator_chars
[] = ";";
186 /* Chars that can be used to separate mant from exp in floating point
188 const char EXP_CHARS
[] = "eE";
190 /* Chars that mean this number is a floating point constant
193 const char FLT_CHARS
[] = "fFdDxX";
195 /* Tables for lexical analysis. */
196 static char mnemonic_chars
[256];
197 static char register_chars
[256];
198 static char operand_chars
[256];
199 static char identifier_chars
[256];
200 static char digit_chars
[256];
202 /* Lexical macros. */
203 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
204 #define is_operand_char(x) (operand_chars[(unsigned char) x])
205 #define is_register_char(x) (register_chars[(unsigned char) x])
206 #define is_space_char(x) ((x) == ' ')
207 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
208 #define is_digit_char(x) (digit_chars[(unsigned char) x])
210 /* All non-digit non-letter charcters that may occur in an operand. */
211 static char operand_special_chars
[] = "%$-+(,)*._~/<>|&^!:[@]";
213 /* md_assemble() always leaves the strings it's passed unaltered. To
214 effect this we maintain a stack of saved characters that we've smashed
215 with '\0's (indicating end of strings for various sub-fields of the
216 assembler instruction). */
217 static char save_stack
[32];
218 static char *save_stack_p
;
219 #define END_STRING_AND_SAVE(s) \
220 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
221 #define RESTORE_END_STRING(s) \
222 do { *(s) = *--save_stack_p; } while (0)
224 /* The instruction we're assembling. */
227 /* Possible templates for current insn. */
228 static const templates
*current_templates
;
230 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
231 static expressionS disp_expressions
[2], im_expressions
[2];
233 /* Current operand we are working on. */
234 static int this_operand
;
236 /* We support four different modes. FLAG_CODE variable is used to distinguish
243 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
245 static enum flag_code flag_code
;
246 static int use_rela_relocations
= 0;
248 /* The names used to print error messages. */
249 static const char *flag_code_names
[] =
256 /* 1 for intel syntax,
258 static int intel_syntax
= 0;
260 /* 1 if register prefix % not required. */
261 static int allow_naked_reg
= 0;
263 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
264 leave, push, and pop instructions so that gcc has the same stack
265 frame as in 32 bit mode. */
266 static char stackop_size
= '\0';
268 /* Non-zero to quieten some warnings. */
269 static int quiet_warnings
= 0;
272 static const char *cpu_arch_name
= NULL
;
274 /* CPU feature flags. */
275 static unsigned int cpu_arch_flags
= CpuUnknownFlags
|CpuNo64
;
277 /* If set, conditional jumps are not automatically promoted to handle
278 larger than a byte offset. */
279 static unsigned int no_cond_jump_promotion
= 0;
281 /* Interface to relax_segment.
282 There are 3 major relax states for 386 jump insns because the
283 different types of jumps add different sizes to frags when we're
284 figuring out what sort of jump to choose to reach a given label. */
287 #define UNCOND_JUMP 1
289 #define COND_JUMP86 3
294 #define SMALL16 (SMALL|CODE16)
296 #define BIG16 (BIG|CODE16)
300 #define INLINE __inline__
306 #define ENCODE_RELAX_STATE(type, size) \
307 ((relax_substateT) (((type) << 2) | (size)))
308 #define TYPE_FROM_RELAX_STATE(s) \
310 #define DISP_SIZE_FROM_RELAX_STATE(s) \
311 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
313 /* This table is used by relax_frag to promote short jumps to long
314 ones where necessary. SMALL (short) jumps may be promoted to BIG
315 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
316 don't allow a short jump in a 32 bit code segment to be promoted to
317 a 16 bit offset jump because it's slower (requires data size
318 prefix), and doesn't work, unless the destination is in the bottom
319 64k of the code segment (The top 16 bits of eip are zeroed). */
321 const relax_typeS md_relax_table
[] =
324 1) most positive reach of this state,
325 2) most negative reach of this state,
326 3) how many bytes this mode will add to the size of the current frag
327 4) which index into the table to try if we can't fit into this one. */
333 /* UNCOND_JUMP states. */
334 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP
, BIG
)},
335 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP
, BIG16
)},
336 /* dword jmp adds 3 bytes to frag:
337 0 extra opcode bytes, 3 extra displacement bytes. */
339 /* word jmp adds 1 byte to frag:
340 0 extra opcode bytes, 1 extra displacement byte. */
343 /* COND_JUMP states. */
344 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP
, BIG
)},
345 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP
, BIG16
)},
346 /* dword conditionals adds 4 bytes to frag:
347 1 extra opcode byte, 3 extra displacement bytes. */
349 /* word conditionals add 2 bytes to frag:
350 1 extra opcode byte, 1 extra displacement byte. */
353 /* COND_JUMP86 states. */
354 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP86
, BIG
)},
355 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP86
, BIG16
)},
356 /* dword conditionals adds 4 bytes to frag:
357 1 extra opcode byte, 3 extra displacement bytes. */
359 /* word conditionals add 3 bytes to frag:
360 1 extra opcode byte, 2 extra displacement bytes. */
364 static const arch_entry cpu_arch
[] = {
366 {"i186", Cpu086
|Cpu186
},
367 {"i286", Cpu086
|Cpu186
|Cpu286
},
368 {"i386", Cpu086
|Cpu186
|Cpu286
|Cpu386
},
369 {"i486", Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
},
370 {"i586", Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
|CpuMMX
},
371 {"i686", Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
|Cpu686
|CpuMMX
|CpuSSE
},
372 {"pentium", Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
|CpuMMX
},
373 {"pentiumpro",Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
|Cpu686
|CpuMMX
|CpuSSE
},
374 {"pentium4", Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
|Cpu686
|CpuP4
|CpuMMX
|CpuSSE
|CpuSSE2
},
375 {"k6", Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
|CpuK6
|CpuMMX
|Cpu3dnow
},
376 {"athlon", Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
|Cpu686
|CpuK6
|CpuAthlon
|CpuMMX
|Cpu3dnow
},
377 {"sledgehammer",Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
|Cpu686
|CpuK6
|CpuAthlon
|CpuSledgehammer
|CpuMMX
|Cpu3dnow
|CpuSSE
|CpuSSE2
},
382 i386_align_code (fragP
, count
)
386 /* Various efficient no-op patterns for aligning code labels.
387 Note: Don't try to assemble the instructions in the comments.
388 0L and 0w are not legal. */
389 static const char f32_1
[] =
391 static const char f32_2
[] =
392 {0x89,0xf6}; /* movl %esi,%esi */
393 static const char f32_3
[] =
394 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
395 static const char f32_4
[] =
396 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
397 static const char f32_5
[] =
399 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
400 static const char f32_6
[] =
401 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
402 static const char f32_7
[] =
403 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
404 static const char f32_8
[] =
406 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
407 static const char f32_9
[] =
408 {0x89,0xf6, /* movl %esi,%esi */
409 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
410 static const char f32_10
[] =
411 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
412 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
413 static const char f32_11
[] =
414 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
415 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
416 static const char f32_12
[] =
417 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
418 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
419 static const char f32_13
[] =
420 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
421 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
422 static const char f32_14
[] =
423 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
424 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
425 static const char f32_15
[] =
426 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
427 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
428 static const char f16_3
[] =
429 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
430 static const char f16_4
[] =
431 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
432 static const char f16_5
[] =
434 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
435 static const char f16_6
[] =
436 {0x89,0xf6, /* mov %si,%si */
437 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
438 static const char f16_7
[] =
439 {0x8d,0x74,0x00, /* lea 0(%si),%si */
440 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
441 static const char f16_8
[] =
442 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
443 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
444 static const char *const f32_patt
[] = {
445 f32_1
, f32_2
, f32_3
, f32_4
, f32_5
, f32_6
, f32_7
, f32_8
,
446 f32_9
, f32_10
, f32_11
, f32_12
, f32_13
, f32_14
, f32_15
448 static const char *const f16_patt
[] = {
449 f32_1
, f32_2
, f16_3
, f16_4
, f16_5
, f16_6
, f16_7
, f16_8
,
450 f32_15
, f32_15
, f32_15
, f32_15
, f32_15
, f32_15
, f32_15
453 /* ??? We can't use these fillers for x86_64, since they often kills the
454 upper halves. Solve later. */
455 if (flag_code
== CODE_64BIT
)
458 if (count
> 0 && count
<= 15)
460 if (flag_code
== CODE_16BIT
)
462 memcpy (fragP
->fr_literal
+ fragP
->fr_fix
,
463 f16_patt
[count
- 1], count
);
465 /* Adjust jump offset. */
466 fragP
->fr_literal
[fragP
->fr_fix
+ 1] = count
- 2;
469 memcpy (fragP
->fr_literal
+ fragP
->fr_fix
,
470 f32_patt
[count
- 1], count
);
471 fragP
->fr_var
= count
;
475 static char *output_invalid
PARAMS ((int c
));
476 static int i386_operand
PARAMS ((char *operand_string
));
477 static int i386_intel_operand
PARAMS ((char *operand_string
, int got_a_float
));
478 static const reg_entry
*parse_register
PARAMS ((char *reg_string
,
482 static void s_bss
PARAMS ((int));
485 symbolS
*GOT_symbol
; /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
487 static INLINE
unsigned int
488 mode_from_disp_size (t
)
491 return (t
& Disp8
) ? 1 : (t
& (Disp16
| Disp32
| Disp32S
)) ? 2 : 0;
495 fits_in_signed_byte (num
)
498 return (num
>= -128) && (num
<= 127);
502 fits_in_unsigned_byte (num
)
505 return (num
& 0xff) == num
;
509 fits_in_unsigned_word (num
)
512 return (num
& 0xffff) == num
;
516 fits_in_signed_word (num
)
519 return (-32768 <= num
) && (num
<= 32767);
522 fits_in_signed_long (num
)
523 offsetT num ATTRIBUTE_UNUSED
;
528 return (!(((offsetT
) -1 << 31) & num
)
529 || (((offsetT
) -1 << 31) & num
) == ((offsetT
) -1 << 31));
531 } /* fits_in_signed_long() */
533 fits_in_unsigned_long (num
)
534 offsetT num ATTRIBUTE_UNUSED
;
539 return (num
& (((offsetT
) 2 << 31) - 1)) == num
;
541 } /* fits_in_unsigned_long() */
544 smallest_imm_type (num
)
547 if (cpu_arch_flags
!= (Cpu086
| Cpu186
| Cpu286
| Cpu386
| Cpu486
| CpuNo64
)
548 && !(cpu_arch_flags
& (CpuUnknown
)))
550 /* This code is disabled on the 486 because all the Imm1 forms
551 in the opcode table are slower on the i486. They're the
552 versions with the implicitly specified single-position
553 displacement, which has another syntax if you really want to
556 return Imm1
| Imm8
| Imm8S
| Imm16
| Imm32
| Imm32S
| Imm64
;
558 return (fits_in_signed_byte (num
)
559 ? (Imm8S
| Imm8
| Imm16
| Imm32
| Imm32S
| Imm64
)
560 : fits_in_unsigned_byte (num
)
561 ? (Imm8
| Imm16
| Imm32
| Imm32S
| Imm64
)
562 : (fits_in_signed_word (num
) || fits_in_unsigned_word (num
))
563 ? (Imm16
| Imm32
| Imm32S
| Imm64
)
564 : fits_in_signed_long (num
)
565 ? (Imm32
| Imm32S
| Imm64
)
566 : fits_in_unsigned_long (num
)
572 offset_in_range (val
, size
)
580 case 1: mask
= ((addressT
) 1 << 8) - 1; break;
581 case 2: mask
= ((addressT
) 1 << 16) - 1; break;
582 case 4: mask
= ((addressT
) 2 << 31) - 1; break;
584 case 8: mask
= ((addressT
) 2 << 63) - 1; break;
589 /* If BFD64, sign extend val. */
590 if (!use_rela_relocations
)
591 if ((val
& ~(((addressT
) 2 << 31) - 1)) == 0)
592 val
= (val
^ ((addressT
) 1 << 31)) - ((addressT
) 1 << 31);
594 if ((val
& ~mask
) != 0 && (val
& ~mask
) != ~mask
)
596 char buf1
[40], buf2
[40];
598 sprint_value (buf1
, val
);
599 sprint_value (buf2
, val
& mask
);
600 as_warn (_("%s shortened to %s"), buf1
, buf2
);
605 /* Returns 0 if attempting to add a prefix where one from the same
606 class already exists, 1 if non rep/repne added, 2 if rep/repne
615 if (prefix
>= 0x40 && prefix
< 0x50 && flag_code
== CODE_64BIT
)
623 case CS_PREFIX_OPCODE
:
624 case DS_PREFIX_OPCODE
:
625 case ES_PREFIX_OPCODE
:
626 case FS_PREFIX_OPCODE
:
627 case GS_PREFIX_OPCODE
:
628 case SS_PREFIX_OPCODE
:
632 case REPNE_PREFIX_OPCODE
:
633 case REPE_PREFIX_OPCODE
:
636 case LOCK_PREFIX_OPCODE
:
644 case ADDR_PREFIX_OPCODE
:
648 case DATA_PREFIX_OPCODE
:
655 as_bad (_("same type of prefix used twice"));
660 i
.prefix
[q
] = prefix
;
665 set_code_flag (value
)
669 cpu_arch_flags
&= ~(Cpu64
| CpuNo64
);
670 cpu_arch_flags
|= (flag_code
== CODE_64BIT
? Cpu64
: CpuNo64
);
671 if (value
== CODE_64BIT
&& !(cpu_arch_flags
& CpuSledgehammer
))
673 as_bad (_("64bit mode not supported on this CPU."));
675 if (value
== CODE_32BIT
&& !(cpu_arch_flags
& Cpu386
))
677 as_bad (_("32bit mode not supported on this CPU."));
683 set_16bit_gcc_code_flag (new_code_flag
)
686 flag_code
= new_code_flag
;
687 cpu_arch_flags
&= ~(Cpu64
| CpuNo64
);
688 cpu_arch_flags
|= (flag_code
== CODE_64BIT
? Cpu64
: CpuNo64
);
693 set_intel_syntax (syntax_flag
)
696 /* Find out if register prefixing is specified. */
697 int ask_naked_reg
= 0;
700 if (! is_end_of_line
[(unsigned char) *input_line_pointer
])
702 char *string
= input_line_pointer
;
703 int e
= get_symbol_end ();
705 if (strcmp (string
, "prefix") == 0)
707 else if (strcmp (string
, "noprefix") == 0)
710 as_bad (_("bad argument to syntax directive."));
711 *input_line_pointer
= e
;
713 demand_empty_rest_of_line ();
715 intel_syntax
= syntax_flag
;
717 if (ask_naked_reg
== 0)
720 allow_naked_reg
= (intel_syntax
721 && (bfd_get_symbol_leading_char (stdoutput
) != '\0'));
723 /* Conservative default. */
728 allow_naked_reg
= (ask_naked_reg
< 0);
733 int dummy ATTRIBUTE_UNUSED
;
737 if (! is_end_of_line
[(unsigned char) *input_line_pointer
])
739 char *string
= input_line_pointer
;
740 int e
= get_symbol_end ();
743 for (i
= 0; cpu_arch
[i
].name
; i
++)
745 if (strcmp (string
, cpu_arch
[i
].name
) == 0)
747 cpu_arch_name
= cpu_arch
[i
].name
;
748 cpu_arch_flags
= (cpu_arch
[i
].flags
749 | (flag_code
== CODE_64BIT
? Cpu64
: CpuNo64
));
753 if (!cpu_arch
[i
].name
)
754 as_bad (_("no such architecture: `%s'"), string
);
756 *input_line_pointer
= e
;
759 as_bad (_("missing cpu architecture"));
761 no_cond_jump_promotion
= 0;
762 if (*input_line_pointer
== ','
763 && ! is_end_of_line
[(unsigned char) input_line_pointer
[1]])
765 char *string
= ++input_line_pointer
;
766 int e
= get_symbol_end ();
768 if (strcmp (string
, "nojumps") == 0)
769 no_cond_jump_promotion
= 1;
770 else if (strcmp (string
, "jumps") == 0)
773 as_bad (_("no such architecture modifier: `%s'"), string
);
775 *input_line_pointer
= e
;
778 demand_empty_rest_of_line ();
781 const pseudo_typeS md_pseudo_table
[] =
783 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
784 {"align", s_align_bytes
, 0},
786 {"align", s_align_ptwo
, 0},
788 {"arch", set_cpu_arch
, 0},
792 {"ffloat", float_cons
, 'f'},
793 {"dfloat", float_cons
, 'd'},
794 {"tfloat", float_cons
, 'x'},
796 {"noopt", s_ignore
, 0},
797 {"optim", s_ignore
, 0},
798 {"code16gcc", set_16bit_gcc_code_flag
, CODE_16BIT
},
799 {"code16", set_code_flag
, CODE_16BIT
},
800 {"code32", set_code_flag
, CODE_32BIT
},
801 {"code64", set_code_flag
, CODE_64BIT
},
802 {"intel_syntax", set_intel_syntax
, 1},
803 {"att_syntax", set_intel_syntax
, 0},
804 {"file", dwarf2_directive_file
, 0},
805 {"loc", dwarf2_directive_loc
, 0},
809 /* For interface with expression (). */
810 extern char *input_line_pointer
;
812 /* Hash table for instruction mnemonic lookup. */
813 static struct hash_control
*op_hash
;
815 /* Hash table for register lookup. */
816 static struct hash_control
*reg_hash
;
822 if (!strcmp (default_arch
, "x86_64"))
823 return bfd_mach_x86_64
;
824 else if (!strcmp (default_arch
, "i386"))
825 return bfd_mach_i386_i386
;
827 as_fatal (_("Unknown architecture"));
834 const char *hash_err
;
836 /* Initialize op_hash hash table. */
837 op_hash
= hash_new ();
840 register const template *optab
;
841 register templates
*core_optab
;
843 /* Setup for loop. */
845 core_optab
= (templates
*) xmalloc (sizeof (templates
));
846 core_optab
->start
= optab
;
851 if (optab
->name
== NULL
852 || strcmp (optab
->name
, (optab
- 1)->name
) != 0)
854 /* different name --> ship out current template list;
855 add to hash table; & begin anew. */
856 core_optab
->end
= optab
;
857 hash_err
= hash_insert (op_hash
,
862 as_fatal (_("Internal Error: Can't hash %s: %s"),
866 if (optab
->name
== NULL
)
868 core_optab
= (templates
*) xmalloc (sizeof (templates
));
869 core_optab
->start
= optab
;
874 /* Initialize reg_hash hash table. */
875 reg_hash
= hash_new ();
877 register const reg_entry
*regtab
;
879 for (regtab
= i386_regtab
;
880 regtab
< i386_regtab
+ sizeof (i386_regtab
) / sizeof (i386_regtab
[0]);
883 hash_err
= hash_insert (reg_hash
, regtab
->reg_name
, (PTR
) regtab
);
885 as_fatal (_("Internal Error: Can't hash %s: %s"),
891 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
896 for (c
= 0; c
< 256; c
++)
901 mnemonic_chars
[c
] = c
;
902 register_chars
[c
] = c
;
903 operand_chars
[c
] = c
;
905 else if (islower (c
))
907 mnemonic_chars
[c
] = c
;
908 register_chars
[c
] = c
;
909 operand_chars
[c
] = c
;
911 else if (isupper (c
))
913 mnemonic_chars
[c
] = tolower (c
);
914 register_chars
[c
] = mnemonic_chars
[c
];
915 operand_chars
[c
] = c
;
918 if (isalpha (c
) || isdigit (c
))
919 identifier_chars
[c
] = c
;
922 identifier_chars
[c
] = c
;
923 operand_chars
[c
] = c
;
928 identifier_chars
['@'] = '@';
930 digit_chars
['-'] = '-';
931 identifier_chars
['_'] = '_';
932 identifier_chars
['.'] = '.';
934 for (p
= operand_special_chars
; *p
!= '\0'; p
++)
935 operand_chars
[(unsigned char) *p
] = *p
;
938 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
939 if (OUTPUT_FLAVOR
== bfd_target_elf_flavour
)
941 record_alignment (text_section
, 2);
942 record_alignment (data_section
, 2);
943 record_alignment (bss_section
, 2);
949 i386_print_statistics (file
)
952 hash_print_statistics (file
, "i386 opcode", op_hash
);
953 hash_print_statistics (file
, "i386 register", reg_hash
);
958 /* Debugging routines for md_assemble. */
959 static void pi
PARAMS ((char *, i386_insn
*));
960 static void pte
PARAMS ((template *));
961 static void pt
PARAMS ((unsigned int));
962 static void pe
PARAMS ((expressionS
*));
963 static void ps
PARAMS ((symbolS
*));
972 fprintf (stdout
, "%s: template ", line
);
974 fprintf (stdout
, " address: base %s index %s scale %x\n",
975 x
->base_reg
? x
->base_reg
->reg_name
: "none",
976 x
->index_reg
? x
->index_reg
->reg_name
: "none",
977 x
->log2_scale_factor
);
978 fprintf (stdout
, " modrm: mode %x reg %x reg/mem %x\n",
979 x
->rm
.mode
, x
->rm
.reg
, x
->rm
.regmem
);
980 fprintf (stdout
, " sib: base %x index %x scale %x\n",
981 x
->sib
.base
, x
->sib
.index
, x
->sib
.scale
);
982 fprintf (stdout
, " rex: 64bit %x extX %x extY %x extZ %x\n",
983 x
->rex
.mode64
, x
->rex
.extX
, x
->rex
.extY
, x
->rex
.extZ
);
984 for (i
= 0; i
< x
->operands
; i
++)
986 fprintf (stdout
, " #%d: ", i
+ 1);
988 fprintf (stdout
, "\n");
990 & (Reg
| SReg2
| SReg3
| Control
| Debug
| Test
| RegMMX
| RegXMM
))
991 fprintf (stdout
, "%s\n", x
->op
[i
].regs
->reg_name
);
992 if (x
->types
[i
] & Imm
)
994 if (x
->types
[i
] & Disp
)
1004 fprintf (stdout
, " %d operands ", t
->operands
);
1005 fprintf (stdout
, "opcode %x ", t
->base_opcode
);
1006 if (t
->extension_opcode
!= None
)
1007 fprintf (stdout
, "ext %x ", t
->extension_opcode
);
1008 if (t
->opcode_modifier
& D
)
1009 fprintf (stdout
, "D");
1010 if (t
->opcode_modifier
& W
)
1011 fprintf (stdout
, "W");
1012 fprintf (stdout
, "\n");
1013 for (i
= 0; i
< t
->operands
; i
++)
1015 fprintf (stdout
, " #%d type ", i
+ 1);
1016 pt (t
->operand_types
[i
]);
1017 fprintf (stdout
, "\n");
1025 fprintf (stdout
, " operation %d\n", e
->X_op
);
1026 fprintf (stdout
, " add_number %ld (%lx)\n",
1027 (long) e
->X_add_number
, (long) e
->X_add_number
);
1028 if (e
->X_add_symbol
)
1030 fprintf (stdout
, " add_symbol ");
1031 ps (e
->X_add_symbol
);
1032 fprintf (stdout
, "\n");
1036 fprintf (stdout
, " op_symbol ");
1037 ps (e
->X_op_symbol
);
1038 fprintf (stdout
, "\n");
1046 fprintf (stdout
, "%s type %s%s",
1048 S_IS_EXTERNAL (s
) ? "EXTERNAL " : "",
1049 segment_name (S_GET_SEGMENT (s
)));
1071 { BaseIndex
, "BaseIndex" },
1075 { Disp32S
, "d32s" },
1077 { InOutPortReg
, "InOutPortReg" },
1078 { ShiftCount
, "ShiftCount" },
1079 { Control
, "control reg" },
1080 { Test
, "test reg" },
1081 { Debug
, "debug reg" },
1082 { FloatReg
, "FReg" },
1083 { FloatAcc
, "FAcc" },
1087 { JumpAbsolute
, "Jump Absolute" },
1098 register struct type_name
*ty
;
1100 for (ty
= type_names
; ty
->mask
; ty
++)
1102 fprintf (stdout
, "%s, ", ty
->tname
);
1106 #endif /* DEBUG386 */
1109 tc_i386_force_relocation (fixp
)
1112 #ifdef BFD_ASSEMBLER
1113 if (fixp
->fx_r_type
== BFD_RELOC_VTABLE_INHERIT
1114 || fixp
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
1119 return fixp
->fx_r_type
== 7;
1123 #ifdef BFD_ASSEMBLER
1125 static bfd_reloc_code_real_type
1126 reloc (size
, pcrel
, sign
, other
)
1130 bfd_reloc_code_real_type other
;
1132 if (other
!= NO_RELOC
)
1138 as_bad (_("There are no unsigned pc-relative relocations"));
1141 case 1: return BFD_RELOC_8_PCREL
;
1142 case 2: return BFD_RELOC_16_PCREL
;
1143 case 4: return BFD_RELOC_32_PCREL
;
1145 as_bad (_("can not do %d byte pc-relative relocation"), size
);
1152 case 4: return BFD_RELOC_X86_64_32S
;
1157 case 1: return BFD_RELOC_8
;
1158 case 2: return BFD_RELOC_16
;
1159 case 4: return BFD_RELOC_32
;
1160 case 8: return BFD_RELOC_64
;
1162 as_bad (_("can not do %s %d byte relocation"),
1163 sign
? "signed" : "unsigned", size
);
1167 return BFD_RELOC_NONE
;
1170 /* Here we decide which fixups can be adjusted to make them relative to
1171 the beginning of the section instead of the symbol. Basically we need
1172 to make sure that the dynamic relocations are done correctly, so in
1173 some cases we force the original symbol to be used. */
1176 tc_i386_fix_adjustable (fixP
)
1179 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1180 /* Prevent all adjustments to global symbols, or else dynamic
1181 linking will not work correctly. */
1182 if (S_IS_EXTERNAL (fixP
->fx_addsy
)
1183 || S_IS_WEAK (fixP
->fx_addsy
))
1186 /* adjust_reloc_syms doesn't know about the GOT. */
1187 if (fixP
->fx_r_type
== BFD_RELOC_386_GOTOFF
1188 || fixP
->fx_r_type
== BFD_RELOC_386_PLT32
1189 || fixP
->fx_r_type
== BFD_RELOC_386_GOT32
1190 || fixP
->fx_r_type
== BFD_RELOC_X86_64_PLT32
1191 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOT32
1192 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOTPCREL
1193 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_INHERIT
1194 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
1199 #define reloc(SIZE,PCREL,SIGN,OTHER) 0
1200 #define BFD_RELOC_16 0
1201 #define BFD_RELOC_32 0
1202 #define BFD_RELOC_16_PCREL 0
1203 #define BFD_RELOC_32_PCREL 0
1204 #define BFD_RELOC_386_PLT32 0
1205 #define BFD_RELOC_386_GOT32 0
1206 #define BFD_RELOC_386_GOTOFF 0
1207 #define BFD_RELOC_X86_64_PLT32 0
1208 #define BFD_RELOC_X86_64_GOT32 0
1209 #define BFD_RELOC_X86_64_GOTPCREL 0
1212 static int intel_float_operand
PARAMS ((char *mnemonic
));
1215 intel_float_operand (mnemonic
)
1218 if (mnemonic
[0] == 'f' && mnemonic
[1] == 'i')
1221 if (mnemonic
[0] == 'f')
1227 /* This is the guts of the machine-dependent assembler. LINE points to a
1228 machine dependent instruction. This function is supposed to emit
1229 the frags/bytes it assembles to. */
1235 /* Points to template once we've found it. */
1238 /* Count the size of the instruction generated. Does not include
1239 variable part of jump insns before relax. */
1244 char mnemonic
[MAX_MNEM_SIZE
];
1246 /* Initialize globals. */
1247 memset (&i
, '\0', sizeof (i
));
1248 for (j
= 0; j
< MAX_OPERANDS
; j
++)
1249 i
.reloc
[j
] = NO_RELOC
;
1250 memset (disp_expressions
, '\0', sizeof (disp_expressions
));
1251 memset (im_expressions
, '\0', sizeof (im_expressions
));
1252 save_stack_p
= save_stack
;
1254 /* First parse an instruction mnemonic & call i386_operand for the operands.
1255 We assume that the scrubber has arranged it so that line[0] is the valid
1256 start of a (possibly prefixed) mnemonic. */
1259 char *token_start
= l
;
1262 /* Non-zero if we found a prefix only acceptable with string insns. */
1263 const char *expecting_string_instruction
= NULL
;
1268 while ((*mnem_p
= mnemonic_chars
[(unsigned char) *l
]) != 0)
1271 if (mnem_p
>= mnemonic
+ sizeof (mnemonic
))
1273 as_bad (_("no such instruction: `%s'"), token_start
);
1278 if (!is_space_char (*l
)
1279 && *l
!= END_OF_INSN
1280 && *l
!= PREFIX_SEPARATOR
)
1282 as_bad (_("invalid character %s in mnemonic"),
1283 output_invalid (*l
));
1286 if (token_start
== l
)
1288 if (*l
== PREFIX_SEPARATOR
)
1289 as_bad (_("expecting prefix; got nothing"));
1291 as_bad (_("expecting mnemonic; got nothing"));
1295 /* Look up instruction (or prefix) via hash table. */
1296 current_templates
= hash_find (op_hash
, mnemonic
);
1298 if (*l
!= END_OF_INSN
1299 && (! is_space_char (*l
) || l
[1] != END_OF_INSN
)
1300 && current_templates
1301 && (current_templates
->start
->opcode_modifier
& IsPrefix
))
1303 /* If we are in 16-bit mode, do not allow addr16 or data16.
1304 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1305 if ((current_templates
->start
->opcode_modifier
& (Size16
| Size32
))
1306 && (((current_templates
->start
->opcode_modifier
& Size32
) != 0)
1307 ^ (flag_code
== CODE_16BIT
)))
1309 as_bad (_("redundant %s prefix"),
1310 current_templates
->start
->name
);
1313 /* Add prefix, checking for repeated prefixes. */
1314 switch (add_prefix (current_templates
->start
->base_opcode
))
1319 expecting_string_instruction
= current_templates
->start
->name
;
1322 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1329 if (!current_templates
)
1331 /* See if we can get a match by trimming off a suffix. */
1334 case WORD_MNEM_SUFFIX
:
1335 case BYTE_MNEM_SUFFIX
:
1336 case QWORD_MNEM_SUFFIX
:
1337 i
.suffix
= mnem_p
[-1];
1339 current_templates
= hash_find (op_hash
, mnemonic
);
1341 case SHORT_MNEM_SUFFIX
:
1342 case LONG_MNEM_SUFFIX
:
1345 i
.suffix
= mnem_p
[-1];
1347 current_templates
= hash_find (op_hash
, mnemonic
);
1355 if (intel_float_operand (mnemonic
))
1356 i
.suffix
= SHORT_MNEM_SUFFIX
;
1358 i
.suffix
= LONG_MNEM_SUFFIX
;
1360 current_templates
= hash_find (op_hash
, mnemonic
);
1364 if (!current_templates
)
1366 as_bad (_("no such instruction: `%s'"), token_start
);
1371 /* Check if instruction is supported on specified architecture. */
1372 if (cpu_arch_flags
!= 0)
1374 if ((current_templates
->start
->cpu_flags
& ~(Cpu64
| CpuNo64
))
1375 & ~(cpu_arch_flags
& ~(Cpu64
| CpuNo64
)))
1377 as_warn (_("`%s' is not supported on `%s'"),
1378 current_templates
->start
->name
, cpu_arch_name
);
1380 else if ((Cpu386
& ~cpu_arch_flags
) && (flag_code
!= CODE_16BIT
))
1382 as_warn (_("use .code16 to ensure correct addressing mode"));
1386 /* Check for rep/repne without a string instruction. */
1387 if (expecting_string_instruction
1388 && !(current_templates
->start
->opcode_modifier
& IsString
))
1390 as_bad (_("expecting string instruction after `%s'"),
1391 expecting_string_instruction
);
1395 /* There may be operands to parse. */
1396 if (*l
!= END_OF_INSN
)
1398 /* 1 if operand is pending after ','. */
1399 unsigned int expecting_operand
= 0;
1401 /* Non-zero if operand parens not balanced. */
1402 unsigned int paren_not_balanced
;
1406 /* Skip optional white space before operand. */
1407 if (is_space_char (*l
))
1409 if (!is_operand_char (*l
) && *l
!= END_OF_INSN
)
1411 as_bad (_("invalid character %s before operand %d"),
1412 output_invalid (*l
),
1416 token_start
= l
; /* after white space */
1417 paren_not_balanced
= 0;
1418 while (paren_not_balanced
|| *l
!= ',')
1420 if (*l
== END_OF_INSN
)
1422 if (paren_not_balanced
)
1425 as_bad (_("unbalanced parenthesis in operand %d."),
1428 as_bad (_("unbalanced brackets in operand %d."),
1433 break; /* we are done */
1435 else if (!is_operand_char (*l
) && !is_space_char (*l
))
1437 as_bad (_("invalid character %s in operand %d"),
1438 output_invalid (*l
),
1445 ++paren_not_balanced
;
1447 --paren_not_balanced
;
1452 ++paren_not_balanced
;
1454 --paren_not_balanced
;
1458 if (l
!= token_start
)
1459 { /* Yes, we've read in another operand. */
1460 unsigned int operand_ok
;
1461 this_operand
= i
.operands
++;
1462 if (i
.operands
> MAX_OPERANDS
)
1464 as_bad (_("spurious operands; (%d operands/instruction max)"),
1468 /* Now parse operand adding info to 'i' as we go along. */
1469 END_STRING_AND_SAVE (l
);
1473 i386_intel_operand (token_start
,
1474 intel_float_operand (mnemonic
));
1476 operand_ok
= i386_operand (token_start
);
1478 RESTORE_END_STRING (l
);
1484 if (expecting_operand
)
1486 expecting_operand_after_comma
:
1487 as_bad (_("expecting operand after ','; got nothing"));
1492 as_bad (_("expecting operand before ','; got nothing"));
1497 /* Now *l must be either ',' or END_OF_INSN. */
1500 if (*++l
== END_OF_INSN
)
1502 /* Just skip it, if it's \n complain. */
1503 goto expecting_operand_after_comma
;
1505 expecting_operand
= 1;
1508 while (*l
!= END_OF_INSN
);
1512 /* Now we've parsed the mnemonic into a set of templates, and have the
1515 Next, we find a template that matches the given insn,
1516 making sure the overlap of the given operands types is consistent
1517 with the template operand types. */
1519 #define MATCH(overlap, given, template) \
1520 ((overlap & ~JumpAbsolute) \
1521 && ((given) & (BaseIndex|JumpAbsolute)) == ((overlap) & (BaseIndex|JumpAbsolute)))
1523 /* If given types r0 and r1 are registers they must be of the same type
1524 unless the expected operand type register overlap is null.
1525 Note that Acc in a template matches every size of reg. */
1526 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1527 ( ((g0) & Reg) == 0 || ((g1) & Reg) == 0 || \
1528 ((g0) & Reg) == ((g1) & Reg) || \
1529 ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
1532 register unsigned int overlap0
, overlap1
;
1533 unsigned int overlap2
;
1534 unsigned int found_reverse_match
;
1537 /* All intel opcodes have reversed operands except for "bound" and
1538 "enter". We also don't reverse intersegment "jmp" and "call"
1539 instructions with 2 immediate operands so that the immediate segment
1540 precedes the offset, as it does when in AT&T mode. "enter" and the
1541 intersegment "jmp" and "call" instructions are the only ones that
1542 have two immediate operands. */
1543 if (intel_syntax
&& i
.operands
> 1
1544 && (strcmp (mnemonic
, "bound") != 0)
1545 && !((i
.types
[0] & Imm
) && (i
.types
[1] & Imm
)))
1547 union i386_op temp_op
;
1548 unsigned int temp_type
;
1549 RELOC_ENUM temp_reloc
;
1553 if (i
.operands
== 2)
1558 else if (i
.operands
== 3)
1563 temp_type
= i
.types
[xchg2
];
1564 i
.types
[xchg2
] = i
.types
[xchg1
];
1565 i
.types
[xchg1
] = temp_type
;
1566 temp_op
= i
.op
[xchg2
];
1567 i
.op
[xchg2
] = i
.op
[xchg1
];
1568 i
.op
[xchg1
] = temp_op
;
1569 temp_reloc
= i
.reloc
[xchg2
];
1570 i
.reloc
[xchg2
] = i
.reloc
[xchg1
];
1571 i
.reloc
[xchg1
] = temp_reloc
;
1573 if (i
.mem_operands
== 2)
1575 const seg_entry
*temp_seg
;
1576 temp_seg
= i
.seg
[0];
1577 i
.seg
[0] = i
.seg
[1];
1578 i
.seg
[1] = temp_seg
;
1584 /* Try to ensure constant immediates are represented in the smallest
1586 char guess_suffix
= 0;
1590 guess_suffix
= i
.suffix
;
1591 else if (i
.reg_operands
)
1593 /* Figure out a suffix from the last register operand specified.
1594 We can't do this properly yet, ie. excluding InOutPortReg,
1595 but the following works for instructions with immediates.
1596 In any case, we can't set i.suffix yet. */
1597 for (op
= i
.operands
; --op
>= 0;)
1598 if (i
.types
[op
] & Reg
)
1600 if (i
.types
[op
] & Reg8
)
1601 guess_suffix
= BYTE_MNEM_SUFFIX
;
1602 else if (i
.types
[op
] & Reg16
)
1603 guess_suffix
= WORD_MNEM_SUFFIX
;
1604 else if (i
.types
[op
] & Reg32
)
1605 guess_suffix
= LONG_MNEM_SUFFIX
;
1606 else if (i
.types
[op
] & Reg64
)
1607 guess_suffix
= QWORD_MNEM_SUFFIX
;
1611 else if ((flag_code
== CODE_16BIT
) ^ (i
.prefix
[DATA_PREFIX
] != 0))
1612 guess_suffix
= WORD_MNEM_SUFFIX
;
1614 for (op
= i
.operands
; --op
>= 0;)
1615 if (i
.types
[op
] & Imm
)
1617 switch (i
.op
[op
].imms
->X_op
)
1620 /* If a suffix is given, this operand may be shortened. */
1621 switch (guess_suffix
)
1623 case LONG_MNEM_SUFFIX
:
1624 i
.types
[op
] |= Imm32
| Imm64
;
1626 case WORD_MNEM_SUFFIX
:
1627 i
.types
[op
] |= Imm16
| Imm32S
| Imm32
| Imm64
;
1629 case BYTE_MNEM_SUFFIX
:
1630 i
.types
[op
] |= Imm16
| Imm8
| Imm8S
| Imm32S
| Imm32
| Imm64
;
1634 /* If this operand is at most 16 bits, convert it
1635 to a signed 16 bit number before trying to see
1636 whether it will fit in an even smaller size.
1637 This allows a 16-bit operand such as $0xffe0 to
1638 be recognised as within Imm8S range. */
1639 if ((i
.types
[op
] & Imm16
)
1640 && (i
.op
[op
].imms
->X_add_number
& ~(offsetT
) 0xffff) == 0)
1642 i
.op
[op
].imms
->X_add_number
=
1643 (((i
.op
[op
].imms
->X_add_number
& 0xffff) ^ 0x8000) - 0x8000);
1645 if ((i
.types
[op
] & Imm32
)
1646 && (i
.op
[op
].imms
->X_add_number
& ~(((offsetT
) 2 << 31) - 1)) == 0)
1648 i
.op
[op
].imms
->X_add_number
=
1649 (i
.op
[op
].imms
->X_add_number
^ ((offsetT
) 1 << 31)) - ((addressT
) 1 << 31);
1651 i
.types
[op
] |= smallest_imm_type (i
.op
[op
].imms
->X_add_number
);
1652 /* We must avoid matching of Imm32 templates when 64bit only immediate is available. */
1653 if (guess_suffix
== QWORD_MNEM_SUFFIX
)
1654 i
.types
[op
] &= ~Imm32
;
1659 /* Symbols and expressions. */
1661 /* Convert symbolic operand to proper sizes for matching. */
1662 switch (guess_suffix
)
1664 case QWORD_MNEM_SUFFIX
:
1665 i
.types
[op
] = Imm64
| Imm32S
;
1667 case LONG_MNEM_SUFFIX
:
1668 i
.types
[op
] = Imm32
| Imm64
;
1670 case WORD_MNEM_SUFFIX
:
1671 i
.types
[op
] = Imm16
| Imm32
| Imm64
;
1674 case BYTE_MNEM_SUFFIX
:
1675 i
.types
[op
] = Imm8
| Imm8S
| Imm16
| Imm32S
| Imm32
;
1684 if (i
.disp_operands
)
1686 /* Try to use the smallest displacement type too. */
1689 for (op
= i
.operands
; --op
>= 0;)
1690 if ((i
.types
[op
] & Disp
)
1691 && i
.op
[op
].disps
->X_op
== O_constant
)
1693 offsetT disp
= i
.op
[op
].disps
->X_add_number
;
1695 if (i
.types
[op
] & Disp16
)
1697 /* We know this operand is at most 16 bits, so
1698 convert to a signed 16 bit number before trying
1699 to see whether it will fit in an even smaller
1702 disp
= (((disp
& 0xffff) ^ 0x8000) - 0x8000);
1704 else if (i
.types
[op
] & Disp32
)
1706 /* We know this operand is at most 32 bits, so convert to a
1707 signed 32 bit number before trying to see whether it will
1708 fit in an even smaller size. */
1709 disp
&= (((offsetT
) 2 << 31) - 1);
1710 disp
= (disp
^ ((offsetT
) 1 << 31)) - ((addressT
) 1 << 31);
1712 if (flag_code
== CODE_64BIT
)
1714 if (fits_in_signed_long (disp
))
1715 i
.types
[op
] |= Disp32S
;
1716 if (fits_in_unsigned_long (disp
))
1717 i
.types
[op
] |= Disp32
;
1719 if ((i
.types
[op
] & (Disp32
| Disp32S
| Disp16
))
1720 && fits_in_signed_byte (disp
))
1721 i
.types
[op
] |= Disp8
;
1728 found_reverse_match
= 0;
1729 suffix_check
= (i
.suffix
== BYTE_MNEM_SUFFIX
1731 : (i
.suffix
== WORD_MNEM_SUFFIX
1733 : (i
.suffix
== SHORT_MNEM_SUFFIX
1735 : (i
.suffix
== LONG_MNEM_SUFFIX
1737 : (i
.suffix
== QWORD_MNEM_SUFFIX
1739 : (i
.suffix
== LONG_DOUBLE_MNEM_SUFFIX
? No_xSuf
: 0))))));
1741 for (t
= current_templates
->start
;
1742 t
< current_templates
->end
;
1745 /* Must have right number of operands. */
1746 if (i
.operands
!= t
->operands
)
1749 /* Check the suffix, except for some instructions in intel mode. */
1750 if ((t
->opcode_modifier
& suffix_check
)
1752 && (t
->opcode_modifier
& IgnoreSize
))
1754 && t
->base_opcode
== 0xd9
1755 && (t
->extension_opcode
== 5 /* 0xd9,5 "fldcw" */
1756 || t
->extension_opcode
== 7))) /* 0xd9,7 "f{n}stcw" */
1759 /* Do not verify operands when there are none. */
1760 else if (!t
->operands
)
1762 if (t
->cpu_flags
& ~cpu_arch_flags
)
1764 /* We've found a match; break out of loop. */
1768 overlap0
= i
.types
[0] & t
->operand_types
[0];
1769 switch (t
->operands
)
1772 if (!MATCH (overlap0
, i
.types
[0], t
->operand_types
[0]))
1777 overlap1
= i
.types
[1] & t
->operand_types
[1];
1778 if (!MATCH (overlap0
, i
.types
[0], t
->operand_types
[0])
1779 || !MATCH (overlap1
, i
.types
[1], t
->operand_types
[1])
1780 || !CONSISTENT_REGISTER_MATCH (overlap0
, i
.types
[0],
1781 t
->operand_types
[0],
1782 overlap1
, i
.types
[1],
1783 t
->operand_types
[1]))
1785 /* Check if other direction is valid ... */
1786 if ((t
->opcode_modifier
& (D
|FloatD
)) == 0)
1789 /* Try reversing direction of operands. */
1790 overlap0
= i
.types
[0] & t
->operand_types
[1];
1791 overlap1
= i
.types
[1] & t
->operand_types
[0];
1792 if (!MATCH (overlap0
, i
.types
[0], t
->operand_types
[1])
1793 || !MATCH (overlap1
, i
.types
[1], t
->operand_types
[0])
1794 || !CONSISTENT_REGISTER_MATCH (overlap0
, i
.types
[0],
1795 t
->operand_types
[1],
1796 overlap1
, i
.types
[1],
1797 t
->operand_types
[0]))
1799 /* Does not match either direction. */
1802 /* found_reverse_match holds which of D or FloatDR
1804 found_reverse_match
= t
->opcode_modifier
& (D
|FloatDR
);
1806 /* Found a forward 2 operand match here. */
1807 else if (t
->operands
== 3)
1809 /* Here we make use of the fact that there are no
1810 reverse match 3 operand instructions, and all 3
1811 operand instructions only need to be checked for
1812 register consistency between operands 2 and 3. */
1813 overlap2
= i
.types
[2] & t
->operand_types
[2];
1814 if (!MATCH (overlap2
, i
.types
[2], t
->operand_types
[2])
1815 || !CONSISTENT_REGISTER_MATCH (overlap1
, i
.types
[1],
1816 t
->operand_types
[1],
1817 overlap2
, i
.types
[2],
1818 t
->operand_types
[2]))
1822 /* Found either forward/reverse 2 or 3 operand match here:
1823 slip through to break. */
1825 if (t
->cpu_flags
& ~cpu_arch_flags
)
1827 found_reverse_match
= 0;
1830 /* We've found a match; break out of loop. */
1833 if (t
== current_templates
->end
)
1835 /* We found no match. */
1836 as_bad (_("suffix or operands invalid for `%s'"),
1837 current_templates
->start
->name
);
1841 if (!quiet_warnings
)
1844 && ((i
.types
[0] & JumpAbsolute
)
1845 != (t
->operand_types
[0] & JumpAbsolute
)))
1847 as_warn (_("indirect %s without `*'"), t
->name
);
1850 if ((t
->opcode_modifier
& (IsPrefix
|IgnoreSize
))
1851 == (IsPrefix
|IgnoreSize
))
1853 /* Warn them that a data or address size prefix doesn't
1854 affect assembly of the next line of code. */
1855 as_warn (_("stand-alone `%s' prefix"), t
->name
);
1859 /* Copy the template we found. */
1861 if (found_reverse_match
)
1863 /* If we found a reverse match we must alter the opcode
1864 direction bit. found_reverse_match holds bits to change
1865 (different for int & float insns). */
1867 i
.tm
.base_opcode
^= found_reverse_match
;
1869 i
.tm
.operand_types
[0] = t
->operand_types
[1];
1870 i
.tm
.operand_types
[1] = t
->operand_types
[0];
1873 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1876 && (i
.tm
.base_opcode
& 0xfffffde0) == 0xdce0)
1877 i
.tm
.base_opcode
^= FloatR
;
1879 if (i
.tm
.opcode_modifier
& FWait
)
1880 if (! add_prefix (FWAIT_OPCODE
))
1883 /* Check string instruction segment overrides. */
1884 if ((i
.tm
.opcode_modifier
& IsString
) != 0 && i
.mem_operands
!= 0)
1886 int mem_op
= (i
.types
[0] & AnyMem
) ? 0 : 1;
1887 if ((i
.tm
.operand_types
[mem_op
] & EsSeg
) != 0)
1889 if (i
.seg
[0] != NULL
&& i
.seg
[0] != &es
)
1891 as_bad (_("`%s' operand %d must use `%%es' segment"),
1896 /* There's only ever one segment override allowed per instruction.
1897 This instruction possibly has a legal segment override on the
1898 second operand, so copy the segment to where non-string
1899 instructions store it, allowing common code. */
1900 i
.seg
[0] = i
.seg
[1];
1902 else if ((i
.tm
.operand_types
[mem_op
+ 1] & EsSeg
) != 0)
1904 if (i
.seg
[1] != NULL
&& i
.seg
[1] != &es
)
1906 as_bad (_("`%s' operand %d must use `%%es' segment"),
1914 if (i
.reg_operands
&& flag_code
< CODE_64BIT
)
1917 for (op
= i
.operands
; --op
>= 0;)
1918 if ((i
.types
[op
] & Reg
)
1919 && (i
.op
[op
].regs
->reg_flags
& (RegRex64
|RegRex
)))
1921 as_bad (_("Extended register `%%%s' available only in 64bit mode."),
1922 i
.op
[op
].regs
->reg_name
);
1927 /* If matched instruction specifies an explicit instruction mnemonic
1929 if (i
.tm
.opcode_modifier
& (Size16
| Size32
| Size64
))
1931 if (i
.tm
.opcode_modifier
& Size16
)
1932 i
.suffix
= WORD_MNEM_SUFFIX
;
1933 else if (i
.tm
.opcode_modifier
& Size64
)
1934 i
.suffix
= QWORD_MNEM_SUFFIX
;
1936 i
.suffix
= LONG_MNEM_SUFFIX
;
1938 else if (i
.reg_operands
)
1940 /* If there's no instruction mnemonic suffix we try to invent one
1941 based on register operands. */
1944 /* We take i.suffix from the last register operand specified,
1945 Destination register type is more significant than source
1948 for (op
= i
.operands
; --op
>= 0;)
1949 if ((i
.types
[op
] & Reg
)
1950 && !(i
.tm
.operand_types
[op
] & InOutPortReg
))
1952 i
.suffix
= ((i
.types
[op
] & Reg8
) ? BYTE_MNEM_SUFFIX
:
1953 (i
.types
[op
] & Reg16
) ? WORD_MNEM_SUFFIX
:
1954 (i
.types
[op
] & Reg64
) ? QWORD_MNEM_SUFFIX
:
1959 else if (i
.suffix
== BYTE_MNEM_SUFFIX
)
1962 for (op
= i
.operands
; --op
>= 0;)
1964 /* If this is an eight bit register, it's OK. If it's
1965 the 16 or 32 bit version of an eight bit register,
1966 we will just use the low portion, and that's OK too. */
1967 if (i
.types
[op
] & Reg8
)
1970 /* movzx and movsx should not generate this warning. */
1972 && (i
.tm
.base_opcode
== 0xfb7
1973 || i
.tm
.base_opcode
== 0xfb6
1974 || i
.tm
.base_opcode
== 0x63
1975 || i
.tm
.base_opcode
== 0xfbe
1976 || i
.tm
.base_opcode
== 0xfbf))
1979 if ((i
.types
[op
] & WordReg
) && i
.op
[op
].regs
->reg_num
< 4
1981 /* Check that the template allows eight bit regs
1982 This kills insns such as `orb $1,%edx', which
1983 maybe should be allowed. */
1984 && (i
.tm
.operand_types
[op
] & (Reg8
|InOutPortReg
))
1988 /* Prohibit these changes in the 64bit mode, since
1989 the lowering is more complicated. */
1990 if (flag_code
== CODE_64BIT
1991 && (i
.tm
.operand_types
[op
] & InOutPortReg
) == 0)
1992 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
1993 i
.op
[op
].regs
->reg_name
,
1995 #if REGISTER_WARNINGS
1997 && (i
.tm
.operand_types
[op
] & InOutPortReg
) == 0)
1998 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
1999 (i
.op
[op
].regs
- (i
.types
[op
] & Reg16
? 8 : 16))->reg_name
,
2000 i
.op
[op
].regs
->reg_name
,
2005 /* Any other register is bad. */
2006 if (i
.types
[op
] & (Reg
| RegMMX
| RegXMM
2008 | Control
| Debug
| Test
2009 | FloatReg
| FloatAcc
))
2011 as_bad (_("`%%%s' not allowed with `%s%c'"),
2012 i
.op
[op
].regs
->reg_name
,
2019 else if (i
.suffix
== LONG_MNEM_SUFFIX
)
2023 for (op
= i
.operands
; --op
>= 0;)
2024 /* Reject eight bit registers, except where the template
2025 requires them. (eg. movzb) */
2026 if ((i
.types
[op
] & Reg8
) != 0
2027 && (i
.tm
.operand_types
[op
] & (Reg16
| Reg32
| Acc
)) != 0)
2029 as_bad (_("`%%%s' not allowed with `%s%c'"),
2030 i
.op
[op
].regs
->reg_name
,
2035 /* Warn if the e prefix on a general reg is missing. */
2036 else if ((!quiet_warnings
|| flag_code
== CODE_64BIT
)
2037 && (i
.types
[op
] & Reg16
) != 0
2038 && (i
.tm
.operand_types
[op
] & (Reg32
|Acc
)) != 0)
2040 /* Prohibit these changes in the 64bit mode, since
2041 the lowering is more complicated. */
2042 if (flag_code
== CODE_64BIT
)
2043 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2044 i
.op
[op
].regs
->reg_name
,
2046 #if REGISTER_WARNINGS
2048 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2049 (i
.op
[op
].regs
+ 8)->reg_name
,
2050 i
.op
[op
].regs
->reg_name
,
2054 /* Warn if the r prefix on a general reg is missing. */
2055 else if ((i
.types
[op
] & Reg64
) != 0
2056 && (i
.tm
.operand_types
[op
] & (Reg32
|Acc
)) != 0)
2058 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2059 i
.op
[op
].regs
->reg_name
,
2063 else if (i
.suffix
== QWORD_MNEM_SUFFIX
)
2067 for (op
= i
.operands
; --op
>= 0; )
2068 /* Reject eight bit registers, except where the template
2069 requires them. (eg. movzb) */
2070 if ((i
.types
[op
] & Reg8
) != 0
2071 && (i
.tm
.operand_types
[op
] & (Reg16
|Reg32
|Acc
)) != 0)
2073 as_bad (_("`%%%s' not allowed with `%s%c'"),
2074 i
.op
[op
].regs
->reg_name
,
2079 /* Warn if the e prefix on a general reg is missing. */
2080 else if (((i
.types
[op
] & Reg16
) != 0
2081 || (i
.types
[op
] & Reg32
) != 0)
2082 && (i
.tm
.operand_types
[op
] & (Reg32
|Acc
)) != 0)
2084 /* Prohibit these changes in the 64bit mode, since
2085 the lowering is more complicated. */
2086 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2087 i
.op
[op
].regs
->reg_name
,
2091 else if (i
.suffix
== WORD_MNEM_SUFFIX
)
2094 for (op
= i
.operands
; --op
>= 0;)
2095 /* Reject eight bit registers, except where the template
2096 requires them. (eg. movzb) */
2097 if ((i
.types
[op
] & Reg8
) != 0
2098 && (i
.tm
.operand_types
[op
] & (Reg16
|Reg32
|Acc
)) != 0)
2100 as_bad (_("`%%%s' not allowed with `%s%c'"),
2101 i
.op
[op
].regs
->reg_name
,
2106 /* Warn if the e prefix on a general reg is present. */
2107 else if ((!quiet_warnings
|| flag_code
== CODE_64BIT
)
2108 && (i
.types
[op
] & Reg32
) != 0
2109 && (i
.tm
.operand_types
[op
] & (Reg16
|Acc
)) != 0)
2111 /* Prohibit these changes in the 64bit mode, since
2112 the lowering is more complicated. */
2113 if (flag_code
== CODE_64BIT
)
2114 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2115 i
.op
[op
].regs
->reg_name
,
2118 #if REGISTER_WARNINGS
2119 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2120 (i
.op
[op
].regs
- 8)->reg_name
,
2121 i
.op
[op
].regs
->reg_name
,
2126 else if (intel_syntax
&& (i
.tm
.opcode_modifier
& IgnoreSize
))
2127 /* Do nothing if the instruction is going to ignore the prefix. */
2132 else if ((i
.tm
.opcode_modifier
& DefaultSize
) && !i
.suffix
)
2134 i
.suffix
= stackop_size
;
2136 /* Make still unresolved immediate matches conform to size of immediate
2137 given in i.suffix. Note: overlap2 cannot be an immediate! */
2138 if ((overlap0
& (Imm8
| Imm8S
| Imm16
| Imm32
| Imm32S
))
2139 && overlap0
!= Imm8
&& overlap0
!= Imm8S
2140 && overlap0
!= Imm16
&& overlap0
!= Imm32S
2141 && overlap0
!= Imm32
&& overlap0
!= Imm64
)
2145 overlap0
&= (i
.suffix
== BYTE_MNEM_SUFFIX
? (Imm8
| Imm8S
) :
2146 (i
.suffix
== WORD_MNEM_SUFFIX
? Imm16
:
2147 (i
.suffix
== QWORD_MNEM_SUFFIX
? Imm64
| Imm32S
: Imm32
)));
2149 else if (overlap0
== (Imm16
| Imm32S
| Imm32
)
2150 || overlap0
== (Imm16
| Imm32
)
2151 || overlap0
== (Imm16
| Imm32S
))
2154 ((flag_code
== CODE_16BIT
) ^ (i
.prefix
[DATA_PREFIX
] != 0)) ? Imm16
: Imm32S
;
2156 if (overlap0
!= Imm8
&& overlap0
!= Imm8S
2157 && overlap0
!= Imm16
&& overlap0
!= Imm32S
2158 && overlap0
!= Imm32
&& overlap0
!= Imm64
)
2160 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2164 if ((overlap1
& (Imm8
| Imm8S
| Imm16
| Imm32S
| Imm32
))
2165 && overlap1
!= Imm8
&& overlap1
!= Imm8S
2166 && overlap1
!= Imm16
&& overlap1
!= Imm32S
2167 && overlap1
!= Imm32
&& overlap1
!= Imm64
)
2171 overlap1
&= (i
.suffix
== BYTE_MNEM_SUFFIX
? (Imm8
| Imm8S
) :
2172 (i
.suffix
== WORD_MNEM_SUFFIX
? Imm16
:
2173 (i
.suffix
== QWORD_MNEM_SUFFIX
? Imm64
| Imm32S
: Imm32
)));
2175 else if (overlap1
== (Imm16
| Imm32
| Imm32S
)
2176 || overlap1
== (Imm16
| Imm32
)
2177 || overlap1
== (Imm16
| Imm32S
))
2180 ((flag_code
== CODE_16BIT
) ^ (i
.prefix
[DATA_PREFIX
] != 0)) ? Imm16
: Imm32S
;
2182 if (overlap1
!= Imm8
&& overlap1
!= Imm8S
2183 && overlap1
!= Imm16
&& overlap1
!= Imm32S
2184 && overlap1
!= Imm32
&& overlap1
!= Imm64
)
2186 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1
, i
.suffix
);
2190 assert ((overlap2
& Imm
) == 0);
2192 i
.types
[0] = overlap0
;
2193 if (overlap0
& ImplicitRegister
)
2195 if (overlap0
& Imm1
)
2196 i
.imm_operands
= 0; /* kludge for shift insns. */
2198 i
.types
[1] = overlap1
;
2199 if (overlap1
& ImplicitRegister
)
2202 i
.types
[2] = overlap2
;
2203 if (overlap2
& ImplicitRegister
)
2206 /* Finalize opcode. First, we change the opcode based on the operand
2207 size given by i.suffix: We need not change things for byte insns. */
2209 if (!i
.suffix
&& (i
.tm
.opcode_modifier
& W
))
2211 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2215 /* For movzx and movsx, need to check the register type. */
2217 && (i
.tm
.base_opcode
== 0xfb6 || i
.tm
.base_opcode
== 0xfbe))
2218 if (i
.suffix
&& i
.suffix
== BYTE_MNEM_SUFFIX
)
2220 unsigned int prefix
= DATA_PREFIX_OPCODE
;
2222 if ((i
.op
[1].regs
->reg_type
& Reg16
) != 0)
2223 if (!add_prefix (prefix
))
2227 if (i
.suffix
&& i
.suffix
!= BYTE_MNEM_SUFFIX
)
2229 /* It's not a byte, select word/dword operation. */
2230 if (i
.tm
.opcode_modifier
& W
)
2232 if (i
.tm
.opcode_modifier
& ShortForm
)
2233 i
.tm
.base_opcode
|= 8;
2235 i
.tm
.base_opcode
|= 1;
2237 /* Now select between word & dword operations via the operand
2238 size prefix, except for instructions that will ignore this
2240 if (i
.suffix
!= QWORD_MNEM_SUFFIX
2241 && (i
.suffix
== LONG_MNEM_SUFFIX
) == (flag_code
== CODE_16BIT
)
2242 && !(i
.tm
.opcode_modifier
& IgnoreSize
))
2244 unsigned int prefix
= DATA_PREFIX_OPCODE
;
2245 if (i
.tm
.opcode_modifier
& JumpByte
) /* jcxz, loop */
2246 prefix
= ADDR_PREFIX_OPCODE
;
2248 if (! add_prefix (prefix
))
2252 /* Set mode64 for an operand. */
2253 if (i
.suffix
== QWORD_MNEM_SUFFIX
2254 && !(i
.tm
.opcode_modifier
& NoRex64
))
2257 if (flag_code
< CODE_64BIT
)
2259 as_bad (_("64bit operations available only in 64bit modes."));
2264 /* Size floating point instruction. */
2265 if (i
.suffix
== LONG_MNEM_SUFFIX
)
2267 if (i
.tm
.opcode_modifier
& FloatMF
)
2268 i
.tm
.base_opcode
^= 4;
2272 if (i
.tm
.opcode_modifier
& ImmExt
)
2274 /* These AMD 3DNow! and Intel Katmai New Instructions have an
2275 opcode suffix which is coded in the same place as an 8-bit
2276 immediate field would be. Here we fake an 8-bit immediate
2277 operand from the opcode suffix stored in tm.extension_opcode. */
2281 assert (i
.imm_operands
== 0 && i
.operands
<= 2 && 2 < MAX_OPERANDS
);
2283 exp
= &im_expressions
[i
.imm_operands
++];
2284 i
.op
[i
.operands
].imms
= exp
;
2285 i
.types
[i
.operands
++] = Imm8
;
2286 exp
->X_op
= O_constant
;
2287 exp
->X_add_number
= i
.tm
.extension_opcode
;
2288 i
.tm
.extension_opcode
= None
;
2291 /* For insns with operands there are more diddles to do to the opcode. */
2294 /* Default segment register this instruction will use
2295 for memory accesses. 0 means unknown.
2296 This is only for optimizing out unnecessary segment overrides. */
2297 const seg_entry
*default_seg
= 0;
2299 /* The imul $imm, %reg instruction is converted into
2300 imul $imm, %reg, %reg, and the clr %reg instruction
2301 is converted into xor %reg, %reg. */
2302 if (i
.tm
.opcode_modifier
& regKludge
)
2304 unsigned int first_reg_op
= (i
.types
[0] & Reg
) ? 0 : 1;
2305 /* Pretend we saw the extra register operand. */
2306 assert (i
.op
[first_reg_op
+ 1].regs
== 0);
2307 i
.op
[first_reg_op
+ 1].regs
= i
.op
[first_reg_op
].regs
;
2308 i
.types
[first_reg_op
+ 1] = i
.types
[first_reg_op
];
2312 if (i
.tm
.opcode_modifier
& ShortForm
)
2314 /* The register or float register operand is in operand 0 or 1. */
2315 unsigned int op
= (i
.types
[0] & (Reg
| FloatReg
)) ? 0 : 1;
2316 /* Register goes in low 3 bits of opcode. */
2317 i
.tm
.base_opcode
|= i
.op
[op
].regs
->reg_num
;
2318 if (i
.op
[op
].regs
->reg_flags
& RegRex
)
2320 if (!quiet_warnings
&& (i
.tm
.opcode_modifier
& Ugh
) != 0)
2322 /* Warn about some common errors, but press on regardless.
2323 The first case can be generated by gcc (<= 2.8.1). */
2324 if (i
.operands
== 2)
2326 /* Reversed arguments on faddp, fsubp, etc. */
2327 as_warn (_("translating to `%s %%%s,%%%s'"), i
.tm
.name
,
2328 i
.op
[1].regs
->reg_name
,
2329 i
.op
[0].regs
->reg_name
);
2333 /* Extraneous `l' suffix on fp insn. */
2334 as_warn (_("translating to `%s %%%s'"), i
.tm
.name
,
2335 i
.op
[0].regs
->reg_name
);
2339 else if (i
.tm
.opcode_modifier
& Modrm
)
2341 /* The opcode is completed (modulo i.tm.extension_opcode which
2342 must be put into the modrm byte).
2343 Now, we make the modrm & index base bytes based on all the
2344 info we've collected. */
2346 /* i.reg_operands MUST be the number of real register operands;
2347 implicit registers do not count. */
2348 if (i
.reg_operands
== 2)
2350 unsigned int source
, dest
;
2351 source
= ((i
.types
[0]
2352 & (Reg
| RegMMX
| RegXMM
2354 | Control
| Debug
| Test
))
2359 /* One of the register operands will be encoded in the
2360 i.tm.reg field, the other in the combined i.tm.mode
2361 and i.tm.regmem fields. If no form of this
2362 instruction supports a memory destination operand,
2363 then we assume the source operand may sometimes be
2364 a memory operand and so we need to store the
2365 destination in the i.rm.reg field. */
2366 if ((i
.tm
.operand_types
[dest
] & AnyMem
) == 0)
2368 i
.rm
.reg
= i
.op
[dest
].regs
->reg_num
;
2369 i
.rm
.regmem
= i
.op
[source
].regs
->reg_num
;
2370 if (i
.op
[dest
].regs
->reg_flags
& RegRex
)
2372 if (i
.op
[source
].regs
->reg_flags
& RegRex
)
2377 i
.rm
.reg
= i
.op
[source
].regs
->reg_num
;
2378 i
.rm
.regmem
= i
.op
[dest
].regs
->reg_num
;
2379 if (i
.op
[dest
].regs
->reg_flags
& RegRex
)
2381 if (i
.op
[source
].regs
->reg_flags
& RegRex
)
2386 { /* If it's not 2 reg operands... */
2389 unsigned int fake_zero_displacement
= 0;
2390 unsigned int op
= ((i
.types
[0] & AnyMem
)
2392 : (i
.types
[1] & AnyMem
) ? 1 : 2);
2399 if (! i
.disp_operands
)
2400 fake_zero_displacement
= 1;
2403 /* Operand is just <disp> */
2404 if ((flag_code
== CODE_16BIT
) ^ (i
.prefix
[ADDR_PREFIX
] != 0))
2406 i
.rm
.regmem
= NO_BASE_REGISTER_16
;
2407 i
.types
[op
] &= ~Disp
;
2408 i
.types
[op
] |= Disp16
;
2410 else if (flag_code
!= CODE_64BIT
)
2412 i
.rm
.regmem
= NO_BASE_REGISTER
;
2413 i
.types
[op
] &= ~Disp
;
2414 i
.types
[op
] |= Disp32
;
2418 /* 64bit mode overwrites the 32bit
2419 absolute addressing by RIP relative
2420 addressing and absolute addressing
2421 is encoded by one of the redundant
2424 i
.rm
.regmem
= ESCAPE_TO_TWO_BYTE_ADDRESSING
;
2425 i
.sib
.base
= NO_BASE_REGISTER
;
2426 i
.sib
.index
= NO_INDEX_REGISTER
;
2427 i
.types
[op
] &= ~Disp
;
2428 i
.types
[op
] |= Disp32S
;
2431 else /* ! i.base_reg && i.index_reg */
2433 i
.sib
.index
= i
.index_reg
->reg_num
;
2434 i
.sib
.base
= NO_BASE_REGISTER
;
2435 i
.sib
.scale
= i
.log2_scale_factor
;
2436 i
.rm
.regmem
= ESCAPE_TO_TWO_BYTE_ADDRESSING
;
2437 i
.types
[op
] &= ~Disp
;
2438 if (flag_code
!= CODE_64BIT
)
2439 i
.types
[op
] |= Disp32
; /* Must be 32 bit */
2441 i
.types
[op
] |= Disp32S
;
2442 if (i
.index_reg
->reg_flags
& RegRex
)
2446 /* RIP addressing for 64bit mode. */
2447 else if (i
.base_reg
->reg_type
== BaseIndex
)
2449 i
.rm
.regmem
= NO_BASE_REGISTER
;
2450 i
.types
[op
] &= ~Disp
;
2451 i
.types
[op
] |= Disp32S
;
2452 i
.flags
[op
] = Operand_PCrel
;
2454 else if (i
.base_reg
->reg_type
& Reg16
)
2456 switch (i
.base_reg
->reg_num
)
2461 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2462 i
.rm
.regmem
= i
.index_reg
->reg_num
- 6;
2469 if ((i
.types
[op
] & Disp
) == 0)
2471 /* fake (%bp) into 0(%bp) */
2472 i
.types
[op
] |= Disp8
;
2473 fake_zero_displacement
= 1;
2476 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2477 i
.rm
.regmem
= i
.index_reg
->reg_num
- 6 + 2;
2479 default: /* (%si) -> 4 or (%di) -> 5 */
2480 i
.rm
.regmem
= i
.base_reg
->reg_num
- 6 + 4;
2482 i
.rm
.mode
= mode_from_disp_size (i
.types
[op
]);
2484 else /* i.base_reg and 32/64 bit mode */
2486 if (flag_code
== CODE_64BIT
2487 && (i
.types
[op
] & Disp
))
2489 if (i
.types
[op
] & Disp8
)
2490 i
.types
[op
] = Disp8
| Disp32S
;
2492 i
.types
[op
] = Disp32S
;
2494 i
.rm
.regmem
= i
.base_reg
->reg_num
;
2495 if (i
.base_reg
->reg_flags
& RegRex
)
2497 i
.sib
.base
= i
.base_reg
->reg_num
;
2498 /* x86-64 ignores REX prefix bit here to avoid
2499 decoder complications. */
2500 if ((i
.base_reg
->reg_num
& 7) == EBP_REG_NUM
)
2503 if (i
.disp_operands
== 0)
2505 fake_zero_displacement
= 1;
2506 i
.types
[op
] |= Disp8
;
2509 else if (i
.base_reg
->reg_num
== ESP_REG_NUM
)
2513 i
.sib
.scale
= i
.log2_scale_factor
;
2516 /* <disp>(%esp) becomes two byte modrm
2517 with no index register. We've already
2518 stored the code for esp in i.rm.regmem
2519 ie. ESCAPE_TO_TWO_BYTE_ADDRESSING. Any
2520 base register besides %esp will not use
2521 the extra modrm byte. */
2522 i
.sib
.index
= NO_INDEX_REGISTER
;
2523 #if ! SCALE1_WHEN_NO_INDEX
2524 /* Another case where we force the second
2526 if (i
.log2_scale_factor
)
2527 i
.rm
.regmem
= ESCAPE_TO_TWO_BYTE_ADDRESSING
;
2532 i
.sib
.index
= i
.index_reg
->reg_num
;
2533 i
.rm
.regmem
= ESCAPE_TO_TWO_BYTE_ADDRESSING
;
2534 if (i
.index_reg
->reg_flags
& RegRex
)
2537 i
.rm
.mode
= mode_from_disp_size (i
.types
[op
]);
2540 if (fake_zero_displacement
)
2542 /* Fakes a zero displacement assuming that i.types[op]
2543 holds the correct displacement size. */
2546 assert (i
.op
[op
].disps
== 0);
2547 exp
= &disp_expressions
[i
.disp_operands
++];
2548 i
.op
[op
].disps
= exp
;
2549 exp
->X_op
= O_constant
;
2550 exp
->X_add_number
= 0;
2551 exp
->X_add_symbol
= (symbolS
*) 0;
2552 exp
->X_op_symbol
= (symbolS
*) 0;
2556 /* Fill in i.rm.reg or i.rm.regmem field with register
2557 operand (if any) based on i.tm.extension_opcode.
2558 Again, we must be careful to make sure that
2559 segment/control/debug/test/MMX registers are coded
2560 into the i.rm.reg field. */
2565 & (Reg
| RegMMX
| RegXMM
2567 | Control
| Debug
| Test
))
2570 & (Reg
| RegMMX
| RegXMM
2572 | Control
| Debug
| Test
))
2575 /* If there is an extension opcode to put here, the
2576 register number must be put into the regmem field. */
2577 if (i
.tm
.extension_opcode
!= None
)
2579 i
.rm
.regmem
= i
.op
[op
].regs
->reg_num
;
2580 if (i
.op
[op
].regs
->reg_flags
& RegRex
)
2585 i
.rm
.reg
= i
.op
[op
].regs
->reg_num
;
2586 if (i
.op
[op
].regs
->reg_flags
& RegRex
)
2590 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2
2591 we must set it to 3 to indicate this is a register
2592 operand in the regmem field. */
2593 if (!i
.mem_operands
)
2597 /* Fill in i.rm.reg field with extension opcode (if any). */
2598 if (i
.tm
.extension_opcode
!= None
)
2599 i
.rm
.reg
= i
.tm
.extension_opcode
;
2602 else if (i
.tm
.opcode_modifier
& (Seg2ShortForm
| Seg3ShortForm
))
2604 if (i
.tm
.base_opcode
== POP_SEG_SHORT
2605 && i
.op
[0].regs
->reg_num
== 1)
2607 as_bad (_("you can't `pop %%cs'"));
2610 i
.tm
.base_opcode
|= (i
.op
[0].regs
->reg_num
<< 3);
2611 if (i
.op
[0].regs
->reg_flags
& RegRex
)
2614 else if ((i
.tm
.base_opcode
& ~(D
|W
)) == MOV_AX_DISP32
)
2618 else if ((i
.tm
.opcode_modifier
& IsString
) != 0)
2620 /* For the string instructions that allow a segment override
2621 on one of their operands, the default segment is ds. */
2625 /* If a segment was explicitly specified,
2626 and the specified segment is not the default,
2627 use an opcode prefix to select it.
2628 If we never figured out what the default segment is,
2629 then default_seg will be zero at this point,
2630 and the specified segment prefix will always be used. */
2631 if ((i
.seg
[0]) && (i
.seg
[0] != default_seg
))
2633 if (! add_prefix (i
.seg
[0]->seg_prefix
))
2637 else if (!quiet_warnings
&& (i
.tm
.opcode_modifier
& Ugh
) != 0)
2639 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2640 as_warn (_("translating to `%sp'"), i
.tm
.name
);
2644 /* Handle conversion of 'int $3' --> special int3 insn. */
2645 if (i
.tm
.base_opcode
== INT_OPCODE
&& i
.op
[0].imms
->X_add_number
== 3)
2647 i
.tm
.base_opcode
= INT3_OPCODE
;
2651 if ((i
.tm
.opcode_modifier
& (Jump
| JumpByte
| JumpDword
))
2652 && i
.op
[0].disps
->X_op
== O_constant
)
2654 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2655 the absolute address given by the constant. Since ix86 jumps and
2656 calls are pc relative, we need to generate a reloc. */
2657 i
.op
[0].disps
->X_add_symbol
= &abs_symbol
;
2658 i
.op
[0].disps
->X_op
= O_symbol
;
2661 if (i
.tm
.opcode_modifier
& Rex64
)
2664 /* For 8bit registers we would need an empty rex prefix.
2665 Also in the case instruction is already having prefix,
2666 we need to convert old registers to new ones. */
2668 if (((i
.types
[0] & Reg8
) && (i
.op
[0].regs
->reg_flags
& RegRex64
))
2669 || ((i
.types
[1] & Reg8
) && (i
.op
[1].regs
->reg_flags
& RegRex64
))
2670 || ((i
.rex
.mode64
|| i
.rex
.extX
|| i
.rex
.extY
|| i
.rex
.extZ
|| i
.rex
.empty
)
2671 && ((i
.types
[0] & Reg8
) || (i
.types
[1] & Reg8
))))
2675 for (x
= 0; x
< 2; x
++)
2677 /* Look for 8bit operand that does use old registers. */
2678 if (i
.types
[x
] & Reg8
2679 && !(i
.op
[x
].regs
->reg_flags
& RegRex64
))
2681 /* In case it is "hi" register, give up. */
2682 if (i
.op
[x
].regs
->reg_num
> 3)
2683 as_bad (_("Can't encode registers '%%%s' in the instruction requiring REX prefix.\n"),
2684 i
.op
[x
].regs
->reg_name
);
2686 /* Otherwise it is equivalent to the extended register.
2687 Since the encoding don't change this is merely cosmetical
2688 cleanup for debug output. */
2690 i
.op
[x
].regs
= i
.op
[x
].regs
+ 8;
2695 if (i
.rex
.mode64
|| i
.rex
.extX
|| i
.rex
.extY
|| i
.rex
.extZ
|| i
.rex
.empty
)
2697 | (i
.rex
.mode64
? 8 : 0)
2698 | (i
.rex
.extX
? 4 : 0)
2699 | (i
.rex
.extY
? 2 : 0)
2700 | (i
.rex
.extZ
? 1 : 0));
2702 /* We are ready to output the insn. */
2707 if (i
.tm
.opcode_modifier
& Jump
)
2713 if (flag_code
== CODE_16BIT
)
2717 if (i
.prefix
[DATA_PREFIX
])
2723 if (i
.prefix
[REX_PREFIX
])
2729 if (i
.prefixes
!= 0 && !intel_syntax
)
2730 as_warn (_("skipping prefixes on this instruction"));
2732 /* It's always a symbol; End frag & setup for relax.
2733 Make sure there is enough room in this frag for the largest
2734 instruction we may generate in md_convert_frag. This is 2
2735 bytes for the opcode and room for the prefix and largest
2737 frag_grow (prefix
+ 2 + 4);
2738 insn_size
+= prefix
+ 1;
2739 /* Prefix and 1 opcode byte go in fr_fix. */
2740 p
= frag_more (prefix
+ 1);
2741 if (i
.prefix
[DATA_PREFIX
])
2742 *p
++ = DATA_PREFIX_OPCODE
;
2743 if (i
.prefix
[REX_PREFIX
])
2744 *p
++ = i
.prefix
[REX_PREFIX
];
2745 *p
= i
.tm
.base_opcode
;
2746 /* 1 possible extra opcode + displacement go in var part.
2747 Pass reloc in fr_var. */
2748 frag_var (rs_machine_dependent
,
2751 ((unsigned char) *p
== JUMP_PC_RELATIVE
2752 ? ENCODE_RELAX_STATE (UNCOND_JUMP
, SMALL
) | code16
2753 : ((cpu_arch_flags
& Cpu386
) != 0
2754 ? ENCODE_RELAX_STATE (COND_JUMP
, SMALL
) | code16
2755 : ENCODE_RELAX_STATE (COND_JUMP86
, SMALL
) | code16
)),
2756 i
.op
[0].disps
->X_add_symbol
,
2757 i
.op
[0].disps
->X_add_number
,
2760 else if (i
.tm
.opcode_modifier
& (JumpByte
| JumpDword
))
2764 if (i
.tm
.opcode_modifier
& JumpByte
)
2766 /* This is a loop or jecxz type instruction. */
2768 if (i
.prefix
[ADDR_PREFIX
])
2771 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE
);
2780 if (flag_code
== CODE_16BIT
)
2783 if (i
.prefix
[DATA_PREFIX
])
2786 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE
);
2796 if (i
.prefix
[REX_PREFIX
])
2798 FRAG_APPEND_1_CHAR (i
.prefix
[REX_PREFIX
]);
2803 if (i
.prefixes
!= 0 && !intel_syntax
)
2804 as_warn (_("skipping prefixes on this instruction"));
2806 if (fits_in_unsigned_byte (i
.tm
.base_opcode
))
2808 insn_size
+= 1 + size
;
2809 p
= frag_more (1 + size
);
2813 /* Opcode can be at most two bytes. */
2814 insn_size
+= 2 + size
;
2815 p
= frag_more (2 + size
);
2816 *p
++ = (i
.tm
.base_opcode
>> 8) & 0xff;
2818 *p
++ = i
.tm
.base_opcode
& 0xff;
2820 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, size
,
2821 i
.op
[0].disps
, 1, reloc (size
, 1, 1, i
.reloc
[0]));
2823 else if (i
.tm
.opcode_modifier
& JumpInterSegment
)
2830 if (flag_code
== CODE_16BIT
)
2834 if (i
.prefix
[DATA_PREFIX
])
2840 if (i
.prefix
[REX_PREFIX
])
2850 if (i
.prefixes
!= 0 && !intel_syntax
)
2851 as_warn (_("skipping prefixes on this instruction"));
2853 /* 1 opcode; 2 segment; offset */
2854 insn_size
+= prefix
+ 1 + 2 + size
;
2855 p
= frag_more (prefix
+ 1 + 2 + size
);
2857 if (i
.prefix
[DATA_PREFIX
])
2858 *p
++ = DATA_PREFIX_OPCODE
;
2860 if (i
.prefix
[REX_PREFIX
])
2861 *p
++ = i
.prefix
[REX_PREFIX
];
2863 *p
++ = i
.tm
.base_opcode
;
2864 if (i
.op
[1].imms
->X_op
== O_constant
)
2866 offsetT n
= i
.op
[1].imms
->X_add_number
;
2869 && !fits_in_unsigned_word (n
)
2870 && !fits_in_signed_word (n
))
2872 as_bad (_("16-bit jump out of range"));
2875 md_number_to_chars (p
, n
, size
);
2878 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, size
,
2879 i
.op
[1].imms
, 0, reloc (size
, 0, 0, i
.reloc
[1]));
2880 if (i
.op
[0].imms
->X_op
!= O_constant
)
2881 as_bad (_("can't handle non absolute segment in `%s'"),
2883 md_number_to_chars (p
+ size
, (valueT
) i
.op
[0].imms
->X_add_number
, 2);
2887 /* Output normal instructions here. */
2890 /* All opcodes on i386 have eighter 1 or 2 bytes. We may use third
2891 byte for the SSE instructions to specify prefix they require. */
2892 if (i
.tm
.base_opcode
& 0xff0000)
2893 add_prefix ((i
.tm
.base_opcode
>> 16) & 0xff);
2895 /* The prefix bytes. */
2897 q
< i
.prefix
+ sizeof (i
.prefix
) / sizeof (i
.prefix
[0]);
2904 md_number_to_chars (p
, (valueT
) *q
, 1);
2908 /* Now the opcode; be careful about word order here! */
2909 if (fits_in_unsigned_byte (i
.tm
.base_opcode
))
2912 FRAG_APPEND_1_CHAR (i
.tm
.base_opcode
);
2918 /* Put out high byte first: can't use md_number_to_chars! */
2919 *p
++ = (i
.tm
.base_opcode
>> 8) & 0xff;
2920 *p
= i
.tm
.base_opcode
& 0xff;
2923 /* Now the modrm byte and sib byte (if present). */
2924 if (i
.tm
.opcode_modifier
& Modrm
)
2928 md_number_to_chars (p
,
2929 (valueT
) (i
.rm
.regmem
<< 0
2933 /* If i.rm.regmem == ESP (4)
2934 && i.rm.mode != (Register mode)
2936 ==> need second modrm byte. */
2937 if (i
.rm
.regmem
== ESCAPE_TO_TWO_BYTE_ADDRESSING
2939 && !(i
.base_reg
&& (i
.base_reg
->reg_type
& Reg16
) != 0))
2943 md_number_to_chars (p
,
2944 (valueT
) (i
.sib
.base
<< 0
2946 | i
.sib
.scale
<< 6),
2951 if (i
.disp_operands
)
2953 register unsigned int n
;
2955 for (n
= 0; n
< i
.operands
; n
++)
2957 if (i
.types
[n
] & Disp
)
2959 if (i
.op
[n
].disps
->X_op
== O_constant
)
2965 if (i
.types
[n
] & (Disp8
| Disp16
| Disp64
))
2968 if (i
.types
[n
] & Disp8
)
2970 if (i
.types
[n
] & Disp64
)
2973 val
= offset_in_range (i
.op
[n
].disps
->X_add_number
,
2976 p
= frag_more (size
);
2977 md_number_to_chars (p
, val
, size
);
2983 int pcrel
= (i
.flags
[n
] & Operand_PCrel
) != 0;
2985 /* The PC relative address is computed relative
2986 to the instruction boundary, so in case immediate
2987 fields follows, we need to adjust the value. */
2988 if (pcrel
&& i
.imm_operands
)
2991 register unsigned int n1
;
2993 for (n1
= 0; n1
< i
.operands
; n1
++)
2994 if (i
.types
[n1
] & Imm
)
2996 if (i
.types
[n1
] & (Imm8
| Imm8S
| Imm16
| Imm64
))
2999 if (i
.types
[n1
] & (Imm8
| Imm8S
))
3001 if (i
.types
[n1
] & Imm64
)
3006 /* We should find the immediate. */
3007 if (n1
== i
.operands
)
3009 i
.op
[n
].disps
->X_add_number
-= imm_size
;
3012 if (i
.types
[n
] & Disp32S
)
3015 if (i
.types
[n
] & (Disp16
| Disp64
))
3018 if (i
.types
[n
] & Disp64
)
3023 p
= frag_more (size
);
3024 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, size
,
3025 i
.op
[n
].disps
, pcrel
,
3026 reloc (size
, pcrel
, sign
, i
.reloc
[n
]));
3032 /* Output immediate. */
3035 register unsigned int n
;
3037 for (n
= 0; n
< i
.operands
; n
++)
3039 if (i
.types
[n
] & Imm
)
3041 if (i
.op
[n
].imms
->X_op
== O_constant
)
3047 if (i
.types
[n
] & (Imm8
| Imm8S
| Imm16
| Imm64
))
3050 if (i
.types
[n
] & (Imm8
| Imm8S
))
3052 else if (i
.types
[n
] & Imm64
)
3055 val
= offset_in_range (i
.op
[n
].imms
->X_add_number
,
3058 p
= frag_more (size
);
3059 md_number_to_chars (p
, val
, size
);
3063 /* Not absolute_section.
3064 Need a 32-bit fixup (don't support 8bit
3065 non-absolute imms). Try to support other
3067 RELOC_ENUM reloc_type
;
3071 if ((i
.types
[n
] & (Imm32S
))
3072 && i
.suffix
== QWORD_MNEM_SUFFIX
)
3074 if (i
.types
[n
] & (Imm8
| Imm8S
| Imm16
| Imm64
))
3077 if (i
.types
[n
] & (Imm8
| Imm8S
))
3079 if (i
.types
[n
] & Imm64
)
3084 p
= frag_more (size
);
3085 reloc_type
= reloc (size
, 0, sign
, i
.reloc
[n
]);
3086 #ifdef BFD_ASSEMBLER
3087 if (reloc_type
== BFD_RELOC_32
3089 && GOT_symbol
== i
.op
[n
].imms
->X_add_symbol
3090 && (i
.op
[n
].imms
->X_op
== O_symbol
3091 || (i
.op
[n
].imms
->X_op
== O_add
3092 && ((symbol_get_value_expression
3093 (i
.op
[n
].imms
->X_op_symbol
)->X_op
)
3096 /* We don't support dynamic linking on x86-64 yet. */
3097 if (flag_code
== CODE_64BIT
)
3099 reloc_type
= BFD_RELOC_386_GOTPC
;
3100 i
.op
[n
].imms
->X_add_number
+= 3;
3103 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, size
,
3104 i
.op
[n
].imms
, 0, reloc_type
);
3111 dwarf2_emit_insn (insn_size
);
3118 #endif /* DEBUG386 */
3123 static char *lex_got
PARAMS ((RELOC_ENUM
*, int *));
3125 /* Parse operands of the form
3126 <symbol>@GOTOFF+<nnn>
3127 and similar .plt or .got references.
3129 If we find one, set up the correct relocation in RELOC and copy the
3130 input string, minus the `@GOTOFF' into a malloc'd buffer for
3131 parsing by the calling routine. Return this buffer, and if ADJUST
3132 is non-null set it to the length of the string we removed from the
3133 input line. Otherwise return NULL. */
3135 lex_got (reloc
, adjust
)
3139 static const char * const mode_name
[NUM_FLAG_CODE
] = { "32", "16", "64" };
3140 static const struct {
3142 const RELOC_ENUM rel
[NUM_FLAG_CODE
];
3144 { "PLT", { BFD_RELOC_386_PLT32
, 0, BFD_RELOC_X86_64_PLT32
} },
3145 { "GOTOFF", { BFD_RELOC_386_GOTOFF
, 0, 0 } },
3146 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL
} },
3147 { "GOT", { BFD_RELOC_386_GOT32
, 0, BFD_RELOC_X86_64_GOT32
} }
3152 for (cp
= input_line_pointer
; *cp
!= '@'; cp
++)
3153 if (is_end_of_line
[(unsigned char) *cp
])
3156 for (j
= 0; j
< sizeof (gotrel
) / sizeof (gotrel
[0]); j
++)
3160 len
= strlen (gotrel
[j
].str
);
3161 if (strncmp (cp
+ 1, gotrel
[j
].str
, len
) == 0)
3163 if (gotrel
[j
].rel
[(unsigned int) flag_code
] != 0)
3168 *reloc
= gotrel
[j
].rel
[(unsigned int) flag_code
];
3170 if (GOT_symbol
== NULL
)
3171 GOT_symbol
= symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME
);
3173 /* Replace the relocation token with ' ', so that
3174 errors like foo@GOTOFF1 will be detected. */
3175 first
= cp
- input_line_pointer
;
3176 tmpbuf
= xmalloc (strlen (input_line_pointer
));
3177 memcpy (tmpbuf
, input_line_pointer
, first
);
3178 tmpbuf
[first
] = ' ';
3179 strcpy (tmpbuf
+ first
+ 1, cp
+ 1 + len
);
3185 as_bad (_("@%s reloc is not supported in %s bit mode"),
3186 gotrel
[j
].str
, mode_name
[(unsigned int) flag_code
]);
3191 /* Might be a symbol version string. Don't as_bad here. */
3195 /* x86_cons_fix_new is called via the expression parsing code when a
3196 reloc is needed. We use this hook to get the correct .got reloc. */
3197 static RELOC_ENUM got_reloc
= NO_RELOC
;
3200 x86_cons_fix_new (frag
, off
, len
, exp
)
3206 RELOC_ENUM r
= reloc (len
, 0, 0, got_reloc
);
3207 got_reloc
= NO_RELOC
;
3208 fix_new_exp (frag
, off
, len
, exp
, 0, r
);
3212 x86_cons (exp
, size
)
3218 /* Handle @GOTOFF and the like in an expression. */
3220 char *gotfree_input_line
;
3223 save
= input_line_pointer
;
3224 gotfree_input_line
= lex_got (&got_reloc
, &adjust
);
3225 if (gotfree_input_line
)
3226 input_line_pointer
= gotfree_input_line
;
3230 if (gotfree_input_line
)
3232 /* expression () has merrily parsed up to the end of line,
3233 or a comma - in the wrong buffer. Transfer how far
3234 input_line_pointer has moved to the right buffer. */
3235 input_line_pointer
= (save
3236 + (input_line_pointer
- gotfree_input_line
)
3238 free (gotfree_input_line
);
3246 static int i386_immediate
PARAMS ((char *));
3249 i386_immediate (imm_start
)
3252 char *save_input_line_pointer
;
3254 char *gotfree_input_line
;
3259 if (i
.imm_operands
== MAX_IMMEDIATE_OPERANDS
)
3261 as_bad (_("only 1 or 2 immediate operands are allowed"));
3265 exp
= &im_expressions
[i
.imm_operands
++];
3266 i
.op
[this_operand
].imms
= exp
;
3268 if (is_space_char (*imm_start
))
3271 save_input_line_pointer
= input_line_pointer
;
3272 input_line_pointer
= imm_start
;
3275 gotfree_input_line
= lex_got (&i
.reloc
[this_operand
], NULL
);
3276 if (gotfree_input_line
)
3277 input_line_pointer
= gotfree_input_line
;
3280 exp_seg
= expression (exp
);
3283 if (*input_line_pointer
)
3284 as_bad (_("junk `%s' after expression"), input_line_pointer
);
3286 input_line_pointer
= save_input_line_pointer
;
3288 if (gotfree_input_line
)
3289 free (gotfree_input_line
);
3292 if (exp
->X_op
== O_absent
|| exp
->X_op
== O_big
)
3294 /* Missing or bad expr becomes absolute 0. */
3295 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
3297 exp
->X_op
= O_constant
;
3298 exp
->X_add_number
= 0;
3299 exp
->X_add_symbol
= (symbolS
*) 0;
3300 exp
->X_op_symbol
= (symbolS
*) 0;
3302 else if (exp
->X_op
== O_constant
)
3304 /* Size it properly later. */
3305 i
.types
[this_operand
] |= Imm64
;
3306 /* If BFD64, sign extend val. */
3307 if (!use_rela_relocations
)
3308 if ((exp
->X_add_number
& ~(((addressT
) 2 << 31) - 1)) == 0)
3309 exp
->X_add_number
= (exp
->X_add_number
^ ((addressT
) 1 << 31)) - ((addressT
) 1 << 31);
3311 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3313 #ifdef BFD_ASSEMBLER
3314 && OUTPUT_FLAVOR
== bfd_target_aout_flavour
3316 && exp_seg
!= text_section
3317 && exp_seg
!= data_section
3318 && exp_seg
!= bss_section
3319 && exp_seg
!= undefined_section
3320 #ifdef BFD_ASSEMBLER
3321 && !bfd_is_com_section (exp_seg
)
3325 #ifdef BFD_ASSEMBLER
3326 as_bad (_("unimplemented segment %s in operand"), exp_seg
->name
);
3328 as_bad (_("unimplemented segment type %d in operand"), exp_seg
);
3335 /* This is an address. The size of the address will be
3336 determined later, depending on destination register,
3337 suffix, or the default for the section. */
3338 i
.types
[this_operand
] |= Imm8
| Imm16
| Imm32
| Imm32S
| Imm64
;
3344 static int i386_scale
PARAMS ((char *));
3350 if (!isdigit (*scale
))
3357 i
.log2_scale_factor
= 0;
3360 i
.log2_scale_factor
= 1;
3363 i
.log2_scale_factor
= 2;
3366 i
.log2_scale_factor
= 3;
3370 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
3374 if (i
.log2_scale_factor
!= 0 && ! i
.index_reg
)
3376 as_warn (_("scale factor of %d without an index register"),
3377 1 << i
.log2_scale_factor
);
3378 #if SCALE1_WHEN_NO_INDEX
3379 i
.log2_scale_factor
= 0;
3385 static int i386_displacement
PARAMS ((char *, char *));
3388 i386_displacement (disp_start
, disp_end
)
3392 register expressionS
*exp
;
3394 char *save_input_line_pointer
;
3396 char *gotfree_input_line
;
3398 int bigdisp
= Disp32
;
3400 if ((flag_code
== CODE_16BIT
) ^ (i
.prefix
[ADDR_PREFIX
] != 0))
3402 if (flag_code
== CODE_64BIT
)
3404 i
.types
[this_operand
] |= bigdisp
;
3406 exp
= &disp_expressions
[i
.disp_operands
];
3407 i
.op
[this_operand
].disps
= exp
;
3409 save_input_line_pointer
= input_line_pointer
;
3410 input_line_pointer
= disp_start
;
3411 END_STRING_AND_SAVE (disp_end
);
3413 #ifndef GCC_ASM_O_HACK
3414 #define GCC_ASM_O_HACK 0
3417 END_STRING_AND_SAVE (disp_end
+ 1);
3418 if ((i
.types
[this_operand
] & BaseIndex
) != 0
3419 && displacement_string_end
[-1] == '+')
3421 /* This hack is to avoid a warning when using the "o"
3422 constraint within gcc asm statements.
3425 #define _set_tssldt_desc(n,addr,limit,type) \
3426 __asm__ __volatile__ ( \
3428 "movw %w1,2+%0\n\t" \
3430 "movb %b1,4+%0\n\t" \
3431 "movb %4,5+%0\n\t" \
3432 "movb $0,6+%0\n\t" \
3433 "movb %h1,7+%0\n\t" \
3435 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3437 This works great except that the output assembler ends
3438 up looking a bit weird if it turns out that there is
3439 no offset. You end up producing code that looks like:
3452 So here we provide the missing zero. */
3454 *displacement_string_end
= '0';
3458 gotfree_input_line
= lex_got (&i
.reloc
[this_operand
], NULL
);
3459 if (gotfree_input_line
)
3460 input_line_pointer
= gotfree_input_line
;
3463 exp_seg
= expression (exp
);
3465 #ifdef BFD_ASSEMBLER
3466 /* We do this to make sure that the section symbol is in
3467 the symbol table. We will ultimately change the relocation
3468 to be relative to the beginning of the section. */
3469 if (i
.reloc
[this_operand
] == BFD_RELOC_386_GOTOFF
3470 || i
.reloc
[this_operand
] == BFD_RELOC_X86_64_GOTPCREL
)
3472 if (S_IS_LOCAL (exp
->X_add_symbol
)
3473 && S_GET_SEGMENT (exp
->X_add_symbol
) != undefined_section
)
3474 section_symbol (S_GET_SEGMENT (exp
->X_add_symbol
));
3475 assert (exp
->X_op
== O_symbol
);
3476 exp
->X_op
= O_subtract
;
3477 exp
->X_op_symbol
= GOT_symbol
;
3478 if (i
.reloc
[this_operand
] == BFD_RELOC_X86_64_GOTPCREL
)
3479 i
.reloc
[this_operand
] = BFD_RELOC_32_PCREL
;
3481 i
.reloc
[this_operand
] = BFD_RELOC_32
;
3486 if (*input_line_pointer
)
3487 as_bad (_("junk `%s' after expression"), input_line_pointer
);
3489 RESTORE_END_STRING (disp_end
+ 1);
3491 RESTORE_END_STRING (disp_end
);
3492 input_line_pointer
= save_input_line_pointer
;
3494 if (gotfree_input_line
)
3495 free (gotfree_input_line
);
3498 if (exp
->X_op
== O_absent
|| exp
->X_op
== O_big
)
3500 /* Missing or bad expr becomes absolute 0. */
3501 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
3503 exp
->X_op
= O_constant
;
3504 exp
->X_add_number
= 0;
3505 exp
->X_add_symbol
= (symbolS
*) 0;
3506 exp
->X_op_symbol
= (symbolS
*) 0;
3509 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3510 if (exp
->X_op
!= O_constant
3511 #ifdef BFD_ASSEMBLER
3512 && OUTPUT_FLAVOR
== bfd_target_aout_flavour
3514 && exp_seg
!= text_section
3515 && exp_seg
!= data_section
3516 && exp_seg
!= bss_section
3517 && exp_seg
!= undefined_section
)
3519 #ifdef BFD_ASSEMBLER
3520 as_bad (_("unimplemented segment %s in operand"), exp_seg
->name
);
3522 as_bad (_("unimplemented segment type %d in operand"), exp_seg
);
3527 else if (flag_code
== CODE_64BIT
)
3528 i
.types
[this_operand
] |= Disp32S
| Disp32
;
3532 static int i386_index_check
PARAMS ((const char *));
3534 /* Make sure the memory operand we've been dealt is valid.
3535 Return 1 on success, 0 on a failure. */
3538 i386_index_check (operand_string
)
3539 const char *operand_string
;
3542 #if INFER_ADDR_PREFIX
3548 if (flag_code
== CODE_64BIT
)
3552 && ((i
.base_reg
->reg_type
& Reg64
) == 0)
3553 && (i
.base_reg
->reg_type
!= BaseIndex
3556 && ((i
.index_reg
->reg_type
& (Reg64
|BaseIndex
))
3557 != (Reg64
|BaseIndex
))))
3562 if ((flag_code
== CODE_16BIT
) ^ (i
.prefix
[ADDR_PREFIX
] != 0))
3566 && ((i
.base_reg
->reg_type
& (Reg16
|BaseIndex
|RegRex
))
3567 != (Reg16
|BaseIndex
)))
3569 && (((i
.index_reg
->reg_type
& (Reg16
|BaseIndex
))
3570 != (Reg16
|BaseIndex
))
3572 && i
.base_reg
->reg_num
< 6
3573 && i
.index_reg
->reg_num
>= 6
3574 && i
.log2_scale_factor
== 0))))
3581 && (i
.base_reg
->reg_type
& (Reg32
| RegRex
)) != Reg32
)
3583 && ((i
.index_reg
->reg_type
& (Reg32
|BaseIndex
|RegRex
))
3584 != (Reg32
|BaseIndex
))))
3590 #if INFER_ADDR_PREFIX
3591 if (flag_code
!= CODE_64BIT
3592 && i
.prefix
[ADDR_PREFIX
] == 0 && stackop_size
!= '\0')
3594 i
.prefix
[ADDR_PREFIX
] = ADDR_PREFIX_OPCODE
;
3596 /* Change the size of any displacement too. At most one of
3597 Disp16 or Disp32 is set.
3598 FIXME. There doesn't seem to be any real need for separate
3599 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
3600 Removing them would probably clean up the code quite a lot. */
3601 if (i
.types
[this_operand
] & (Disp16
|Disp32
))
3602 i
.types
[this_operand
] ^= (Disp16
|Disp32
);
3607 as_bad (_("`%s' is not a valid base/index expression"),
3611 as_bad (_("`%s' is not a valid %s bit base/index expression"),
3613 flag_code_names
[flag_code
]);
3619 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
3623 i386_operand (operand_string
)
3624 char *operand_string
;
3628 char *op_string
= operand_string
;
3630 if (is_space_char (*op_string
))
3633 /* We check for an absolute prefix (differentiating,
3634 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
3635 if (*op_string
== ABSOLUTE_PREFIX
)
3638 if (is_space_char (*op_string
))
3640 i
.types
[this_operand
] |= JumpAbsolute
;
3643 /* Check if operand is a register. */
3644 if ((*op_string
== REGISTER_PREFIX
|| allow_naked_reg
)
3645 && (r
= parse_register (op_string
, &end_op
)) != NULL
)
3647 /* Check for a segment override by searching for ':' after a
3648 segment register. */
3650 if (is_space_char (*op_string
))
3652 if (*op_string
== ':' && (r
->reg_type
& (SReg2
| SReg3
)))
3657 i
.seg
[i
.mem_operands
] = &es
;
3660 i
.seg
[i
.mem_operands
] = &cs
;
3663 i
.seg
[i
.mem_operands
] = &ss
;
3666 i
.seg
[i
.mem_operands
] = &ds
;
3669 i
.seg
[i
.mem_operands
] = &fs
;
3672 i
.seg
[i
.mem_operands
] = &gs
;
3676 /* Skip the ':' and whitespace. */
3678 if (is_space_char (*op_string
))
3681 if (!is_digit_char (*op_string
)
3682 && !is_identifier_char (*op_string
)
3683 && *op_string
!= '('
3684 && *op_string
!= ABSOLUTE_PREFIX
)
3686 as_bad (_("bad memory operand `%s'"), op_string
);
3689 /* Handle case of %es:*foo. */
3690 if (*op_string
== ABSOLUTE_PREFIX
)
3693 if (is_space_char (*op_string
))
3695 i
.types
[this_operand
] |= JumpAbsolute
;
3697 goto do_memory_reference
;
3701 as_bad (_("junk `%s' after register"), op_string
);
3704 i
.types
[this_operand
] |= r
->reg_type
& ~BaseIndex
;
3705 i
.op
[this_operand
].regs
= r
;
3708 else if (*op_string
== REGISTER_PREFIX
)
3710 as_bad (_("bad register name `%s'"), op_string
);
3713 else if (*op_string
== IMMEDIATE_PREFIX
)
3716 if (i
.types
[this_operand
] & JumpAbsolute
)
3718 as_bad (_("immediate operand illegal with absolute jump"));
3721 if (!i386_immediate (op_string
))
3724 else if (is_digit_char (*op_string
)
3725 || is_identifier_char (*op_string
)
3726 || *op_string
== '(')
3728 /* This is a memory reference of some sort. */
3731 /* Start and end of displacement string expression (if found). */
3732 char *displacement_string_start
;
3733 char *displacement_string_end
;
3735 do_memory_reference
:
3736 if ((i
.mem_operands
== 1
3737 && (current_templates
->start
->opcode_modifier
& IsString
) == 0)
3738 || i
.mem_operands
== 2)
3740 as_bad (_("too many memory references for `%s'"),
3741 current_templates
->start
->name
);
3745 /* Check for base index form. We detect the base index form by
3746 looking for an ')' at the end of the operand, searching
3747 for the '(' matching it, and finding a REGISTER_PREFIX or ','
3749 base_string
= op_string
+ strlen (op_string
);
3752 if (is_space_char (*base_string
))
3755 /* If we only have a displacement, set-up for it to be parsed later. */
3756 displacement_string_start
= op_string
;
3757 displacement_string_end
= base_string
+ 1;
3759 if (*base_string
== ')')
3762 unsigned int parens_balanced
= 1;
3763 /* We've already checked that the number of left & right ()'s are
3764 equal, so this loop will not be infinite. */
3768 if (*base_string
== ')')
3770 if (*base_string
== '(')
3773 while (parens_balanced
);
3775 temp_string
= base_string
;
3777 /* Skip past '(' and whitespace. */
3779 if (is_space_char (*base_string
))
3782 if (*base_string
== ','
3783 || ((*base_string
== REGISTER_PREFIX
|| allow_naked_reg
)
3784 && (i
.base_reg
= parse_register (base_string
, &end_op
)) != NULL
))
3786 displacement_string_end
= temp_string
;
3788 i
.types
[this_operand
] |= BaseIndex
;
3792 base_string
= end_op
;
3793 if (is_space_char (*base_string
))
3797 /* There may be an index reg or scale factor here. */
3798 if (*base_string
== ',')
3801 if (is_space_char (*base_string
))
3804 if ((*base_string
== REGISTER_PREFIX
|| allow_naked_reg
)
3805 && (i
.index_reg
= parse_register (base_string
, &end_op
)) != NULL
)
3807 base_string
= end_op
;
3808 if (is_space_char (*base_string
))
3810 if (*base_string
== ',')
3813 if (is_space_char (*base_string
))
3816 else if (*base_string
!= ')')
3818 as_bad (_("expecting `,' or `)' after index register in `%s'"),
3823 else if (*base_string
== REGISTER_PREFIX
)
3825 as_bad (_("bad register name `%s'"), base_string
);
3829 /* Check for scale factor. */
3830 if (isdigit ((unsigned char) *base_string
))
3832 if (!i386_scale (base_string
))
3836 if (is_space_char (*base_string
))
3838 if (*base_string
!= ')')
3840 as_bad (_("expecting `)' after scale factor in `%s'"),
3845 else if (!i
.index_reg
)
3847 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
3852 else if (*base_string
!= ')')
3854 as_bad (_("expecting `,' or `)' after base register in `%s'"),
3859 else if (*base_string
== REGISTER_PREFIX
)
3861 as_bad (_("bad register name `%s'"), base_string
);
3866 /* If there's an expression beginning the operand, parse it,
3867 assuming displacement_string_start and
3868 displacement_string_end are meaningful. */
3869 if (displacement_string_start
!= displacement_string_end
)
3871 if (!i386_displacement (displacement_string_start
,
3872 displacement_string_end
))
3876 /* Special case for (%dx) while doing input/output op. */
3878 && i
.base_reg
->reg_type
== (Reg16
| InOutPortReg
)
3880 && i
.log2_scale_factor
== 0
3881 && i
.seg
[i
.mem_operands
] == 0
3882 && (i
.types
[this_operand
] & Disp
) == 0)
3884 i
.types
[this_operand
] = InOutPortReg
;
3888 if (i386_index_check (operand_string
) == 0)
3894 /* It's not a memory operand; argh! */
3895 as_bad (_("invalid char %s beginning operand %d `%s'"),
3896 output_invalid (*op_string
),
3901 return 1; /* Normal return. */
3904 /* md_estimate_size_before_relax()
3906 Called just before relax() for rs_machine_dependent frags. The x86
3907 assembler uses these frags to handle variable size jump
3910 Any symbol that is now undefined will not become defined.
3911 Return the correct fr_subtype in the frag.
3912 Return the initial "guess for variable size of frag" to caller.
3913 The guess is actually the growth beyond the fixed part. Whatever
3914 we do to grow the fixed or variable part contributes to our
3918 md_estimate_size_before_relax (fragP
, segment
)
3919 register fragS
*fragP
;
3920 register segT segment
;
3922 /* We've already got fragP->fr_subtype right; all we have to do is
3923 check for un-relaxable symbols. On an ELF system, we can't relax
3924 an externally visible symbol, because it may be overridden by a
3926 if (S_GET_SEGMENT (fragP
->fr_symbol
) != segment
3927 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3928 || S_IS_EXTERNAL (fragP
->fr_symbol
)
3929 || S_IS_WEAK (fragP
->fr_symbol
)
3933 /* Symbol is undefined in this segment, or we need to keep a
3934 reloc so that weak symbols can be overridden. */
3935 int size
= (fragP
->fr_subtype
& CODE16
) ? 2 : 4;
3936 RELOC_ENUM reloc_type
;
3937 unsigned char *opcode
;
3940 if (fragP
->fr_var
!= NO_RELOC
)
3941 reloc_type
= fragP
->fr_var
;
3943 reloc_type
= BFD_RELOC_16_PCREL
;
3945 reloc_type
= BFD_RELOC_32_PCREL
;
3947 old_fr_fix
= fragP
->fr_fix
;
3948 opcode
= (unsigned char *) fragP
->fr_opcode
;
3950 switch (TYPE_FROM_RELAX_STATE (fragP
->fr_subtype
))
3953 /* Make jmp (0xeb) a (d)word displacement jump. */
3955 fragP
->fr_fix
+= size
;
3956 fix_new (fragP
, old_fr_fix
, size
,
3958 fragP
->fr_offset
, 1,
3963 if (no_cond_jump_promotion
)
3967 /* Negate the condition, and branch past an
3968 unconditional jump. */
3971 /* Insert an unconditional jump. */
3973 /* We added two extra opcode bytes, and have a two byte
3975 fragP
->fr_fix
+= 2 + 2;
3976 fix_new (fragP
, old_fr_fix
+ 2, 2,
3978 fragP
->fr_offset
, 1,
3985 if (no_cond_jump_promotion
)
3987 /* This changes the byte-displacement jump 0x7N
3988 to the (d)word-displacement jump 0x0f,0x8N. */
3989 opcode
[1] = opcode
[0] + 0x10;
3990 opcode
[0] = TWO_BYTE_OPCODE_ESCAPE
;
3991 /* We've added an opcode byte. */
3992 fragP
->fr_fix
+= 1 + size
;
3993 fix_new (fragP
, old_fr_fix
+ 1, size
,
3995 fragP
->fr_offset
, 1,
4000 BAD_CASE (fragP
->fr_subtype
);
4004 return fragP
->fr_fix
- old_fr_fix
;
4006 /* Guess a short jump. */
4010 /* Called after relax() is finished.
4012 In: Address of frag.
4013 fr_type == rs_machine_dependent.
4014 fr_subtype is what the address relaxed to.
4016 Out: Any fixSs and constants are set up.
4017 Caller will turn frag into a ".space 0". */
4019 #ifndef BFD_ASSEMBLER
4021 md_convert_frag (headers
, sec
, fragP
)
4022 object_headers
*headers ATTRIBUTE_UNUSED
;
4023 segT sec ATTRIBUTE_UNUSED
;
4024 register fragS
*fragP
;
4027 md_convert_frag (abfd
, sec
, fragP
)
4028 bfd
*abfd ATTRIBUTE_UNUSED
;
4029 segT sec ATTRIBUTE_UNUSED
;
4030 register fragS
*fragP
;
4033 register unsigned char *opcode
;
4034 unsigned char *where_to_put_displacement
= NULL
;
4035 offsetT target_address
;
4036 offsetT opcode_address
;
4037 unsigned int extension
= 0;
4038 offsetT displacement_from_opcode_start
;
4040 opcode
= (unsigned char *) fragP
->fr_opcode
;
4042 /* Address we want to reach in file space. */
4043 target_address
= S_GET_VALUE (fragP
->fr_symbol
) + fragP
->fr_offset
;
4044 #ifdef BFD_ASSEMBLER
4045 /* Not needed otherwise? */
4046 target_address
+= symbol_get_frag (fragP
->fr_symbol
)->fr_address
;
4049 /* Address opcode resides at in file space. */
4050 opcode_address
= fragP
->fr_address
+ fragP
->fr_fix
;
4052 /* Displacement from opcode start to fill into instruction. */
4053 displacement_from_opcode_start
= target_address
- opcode_address
;
4055 if ((fragP
->fr_subtype
& BIG
) == 0)
4057 /* Don't have to change opcode. */
4058 extension
= 1; /* 1 opcode + 1 displacement */
4059 where_to_put_displacement
= &opcode
[1];
4063 if (no_cond_jump_promotion
4064 && TYPE_FROM_RELAX_STATE (fragP
->fr_subtype
) != UNCOND_JUMP
)
4065 as_warn_where (fragP
->fr_file
, fragP
->fr_line
, _("long jump required"));
4067 switch (fragP
->fr_subtype
)
4069 case ENCODE_RELAX_STATE (UNCOND_JUMP
, BIG
):
4070 extension
= 4; /* 1 opcode + 4 displacement */
4072 where_to_put_displacement
= &opcode
[1];
4075 case ENCODE_RELAX_STATE (UNCOND_JUMP
, BIG16
):
4076 extension
= 2; /* 1 opcode + 2 displacement */
4078 where_to_put_displacement
= &opcode
[1];
4081 case ENCODE_RELAX_STATE (COND_JUMP
, BIG
):
4082 case ENCODE_RELAX_STATE (COND_JUMP86
, BIG
):
4083 extension
= 5; /* 2 opcode + 4 displacement */
4084 opcode
[1] = opcode
[0] + 0x10;
4085 opcode
[0] = TWO_BYTE_OPCODE_ESCAPE
;
4086 where_to_put_displacement
= &opcode
[2];
4089 case ENCODE_RELAX_STATE (COND_JUMP
, BIG16
):
4090 extension
= 3; /* 2 opcode + 2 displacement */
4091 opcode
[1] = opcode
[0] + 0x10;
4092 opcode
[0] = TWO_BYTE_OPCODE_ESCAPE
;
4093 where_to_put_displacement
= &opcode
[2];
4096 case ENCODE_RELAX_STATE (COND_JUMP86
, BIG16
):
4101 where_to_put_displacement
= &opcode
[3];
4105 BAD_CASE (fragP
->fr_subtype
);
4110 /* Now put displacement after opcode. */
4111 md_number_to_chars ((char *) where_to_put_displacement
,
4112 (valueT
) (displacement_from_opcode_start
- extension
),
4113 DISP_SIZE_FROM_RELAX_STATE (fragP
->fr_subtype
));
4114 fragP
->fr_fix
+= extension
;
4117 /* Size of byte displacement jmp. */
4118 int md_short_jump_size
= 2;
4120 /* Size of dword displacement jmp. */
4121 int md_long_jump_size
= 5;
4123 /* Size of relocation record. */
4124 const int md_reloc_size
= 8;
4127 md_create_short_jump (ptr
, from_addr
, to_addr
, frag
, to_symbol
)
4129 addressT from_addr
, to_addr
;
4130 fragS
*frag ATTRIBUTE_UNUSED
;
4131 symbolS
*to_symbol ATTRIBUTE_UNUSED
;
4135 offset
= to_addr
- (from_addr
+ 2);
4136 /* Opcode for byte-disp jump. */
4137 md_number_to_chars (ptr
, (valueT
) 0xeb, 1);
4138 md_number_to_chars (ptr
+ 1, (valueT
) offset
, 1);
4142 md_create_long_jump (ptr
, from_addr
, to_addr
, frag
, to_symbol
)
4144 addressT from_addr
, to_addr
;
4145 fragS
*frag ATTRIBUTE_UNUSED
;
4146 symbolS
*to_symbol ATTRIBUTE_UNUSED
;
4150 offset
= to_addr
- (from_addr
+ 5);
4151 md_number_to_chars (ptr
, (valueT
) 0xe9, 1);
4152 md_number_to_chars (ptr
+ 1, (valueT
) offset
, 4);
4155 /* Apply a fixup (fixS) to segment data, once it has been determined
4156 by our caller that we have all the info we need to fix it up.
4158 On the 386, immediates, displacements, and data pointers are all in
4159 the same (little-endian) format, so we don't need to care about which
4163 md_apply_fix3 (fixP
, valp
, seg
)
4164 /* The fix we're to put in. */
4167 /* Pointer to the value of the bits. */
4170 /* Segment fix is from. */
4171 segT seg ATTRIBUTE_UNUSED
;
4173 register char *p
= fixP
->fx_where
+ fixP
->fx_frag
->fr_literal
;
4174 valueT value
= *valp
;
4176 #if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
4179 switch (fixP
->fx_r_type
)
4185 fixP
->fx_r_type
= BFD_RELOC_32_PCREL
;
4188 fixP
->fx_r_type
= BFD_RELOC_16_PCREL
;
4191 fixP
->fx_r_type
= BFD_RELOC_8_PCREL
;
4196 /* This is a hack. There should be a better way to handle this.
4197 This covers for the fact that bfd_install_relocation will
4198 subtract the current location (for partial_inplace, PC relative
4199 relocations); see more below. */
4200 if ((fixP
->fx_r_type
== BFD_RELOC_32_PCREL
4201 || fixP
->fx_r_type
== BFD_RELOC_16_PCREL
4202 || fixP
->fx_r_type
== BFD_RELOC_8_PCREL
)
4203 && fixP
->fx_addsy
&& !use_rela_relocations
)
4206 if (OUTPUT_FLAVOR
== bfd_target_elf_flavour
4208 || OUTPUT_FLAVOR
== bfd_target_coff_flavour
4211 value
+= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
4213 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4214 if (OUTPUT_FLAVOR
== bfd_target_elf_flavour
)
4216 segT fseg
= S_GET_SEGMENT (fixP
->fx_addsy
);
4219 || (symbol_section_p (fixP
->fx_addsy
)
4220 && fseg
!= absolute_section
))
4221 && ! S_IS_EXTERNAL (fixP
->fx_addsy
)
4222 && ! S_IS_WEAK (fixP
->fx_addsy
)
4223 && S_IS_DEFINED (fixP
->fx_addsy
)
4224 && ! S_IS_COMMON (fixP
->fx_addsy
))
4226 /* Yes, we add the values in twice. This is because
4227 bfd_perform_relocation subtracts them out again. I think
4228 bfd_perform_relocation is broken, but I don't dare change
4230 value
+= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
4234 #if defined (OBJ_COFF) && defined (TE_PE)
4235 /* For some reason, the PE format does not store a section
4236 address offset for a PC relative symbol. */
4237 if (S_GET_SEGMENT (fixP
->fx_addsy
) != seg
)
4238 value
+= md_pcrel_from (fixP
);
4242 /* Fix a few things - the dynamic linker expects certain values here,
4243 and we must not dissappoint it. */
4244 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4245 if (OUTPUT_FLAVOR
== bfd_target_elf_flavour
4247 switch (fixP
->fx_r_type
)
4249 case BFD_RELOC_386_PLT32
:
4250 case BFD_RELOC_X86_64_PLT32
:
4251 /* Make the jump instruction point to the address of the operand. At
4252 runtime we merely add the offset to the actual PLT entry. */
4255 case BFD_RELOC_386_GOTPC
:
4257 /* This is tough to explain. We end up with this one if we have
4258 * operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal
4259 * here is to obtain the absolute address of the GOT, and it is strongly
4260 * preferable from a performance point of view to avoid using a runtime
4261 * relocation for this. The actual sequence of instructions often look
4267 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
4269 * The call and pop essentially return the absolute address of
4270 * the label .L66 and store it in %ebx. The linker itself will
4271 * ultimately change the first operand of the addl so that %ebx points to
4272 * the GOT, but to keep things simple, the .o file must have this operand
4273 * set so that it generates not the absolute address of .L66, but the
4274 * absolute address of itself. This allows the linker itself simply
4275 * treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
4276 * added in, and the addend of the relocation is stored in the operand
4277 * field for the instruction itself.
4279 * Our job here is to fix the operand so that it would add the correct
4280 * offset so that %ebx would point to itself. The thing that is tricky is
4281 * that .-.L66 will point to the beginning of the instruction, so we need
4282 * to further modify the operand so that it will point to itself.
4283 * There are other cases where you have something like:
4285 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
4287 * and here no correction would be required. Internally in the assembler
4288 * we treat operands of this form as not being pcrel since the '.' is
4289 * explicitly mentioned, and I wonder whether it would simplify matters
4290 * to do it this way. Who knows. In earlier versions of the PIC patches,
4291 * the pcrel_adjust field was used to store the correction, but since the
4292 * expression is not pcrel, I felt it would be confusing to do it this
4297 case BFD_RELOC_386_GOT32
:
4298 case BFD_RELOC_X86_64_GOT32
:
4299 value
= 0; /* Fully resolved at runtime. No addend. */
4301 case BFD_RELOC_386_GOTOFF
:
4302 case BFD_RELOC_X86_64_GOTPCREL
:
4305 case BFD_RELOC_VTABLE_INHERIT
:
4306 case BFD_RELOC_VTABLE_ENTRY
:
4313 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
4315 #endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
4317 #ifndef BFD_ASSEMBLER
4318 md_number_to_chars (p
, value
, fixP
->fx_size
);
4320 /* Are we finished with this relocation now? */
4321 if (fixP
->fx_addsy
== 0 && fixP
->fx_pcrel
== 0)
4323 else if (use_rela_relocations
)
4325 fixP
->fx_no_overflow
= 1;
4328 md_number_to_chars (p
, value
, fixP
->fx_size
);
4334 #define MAX_LITTLENUMS 6
4336 /* Turn the string pointed to by litP into a floating point constant
4337 of type TYPE, and emit the appropriate bytes. The number of
4338 LITTLENUMS emitted is stored in *SIZEP. An error message is
4339 returned, or NULL on OK. */
4342 md_atof (type
, litP
, sizeP
)
4348 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
4349 LITTLENUM_TYPE
*wordP
;
4371 return _("Bad call to md_atof ()");
4373 t
= atof_ieee (input_line_pointer
, type
, words
);
4375 input_line_pointer
= t
;
4377 *sizeP
= prec
* sizeof (LITTLENUM_TYPE
);
4378 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4379 the bigendian 386. */
4380 for (wordP
= words
+ prec
- 1; prec
--;)
4382 md_number_to_chars (litP
, (valueT
) (*wordP
--), sizeof (LITTLENUM_TYPE
));
4383 litP
+= sizeof (LITTLENUM_TYPE
);
4388 char output_invalid_buf
[8];
4395 sprintf (output_invalid_buf
, "'%c'", c
);
4397 sprintf (output_invalid_buf
, "(0x%x)", (unsigned) c
);
4398 return output_invalid_buf
;
4401 /* REG_STRING starts *before* REGISTER_PREFIX. */
4403 static const reg_entry
*
4404 parse_register (reg_string
, end_op
)
4408 char *s
= reg_string
;
4410 char reg_name_given
[MAX_REG_NAME_SIZE
+ 1];
4413 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4414 if (*s
== REGISTER_PREFIX
)
4417 if (is_space_char (*s
))
4421 while ((*p
++ = register_chars
[(unsigned char) *s
]) != '\0')
4423 if (p
>= reg_name_given
+ MAX_REG_NAME_SIZE
)
4424 return (const reg_entry
*) NULL
;
4428 /* For naked regs, make sure that we are not dealing with an identifier.
4429 This prevents confusing an identifier like `eax_var' with register
4431 if (allow_naked_reg
&& identifier_chars
[(unsigned char) *s
])
4432 return (const reg_entry
*) NULL
;
4436 r
= (const reg_entry
*) hash_find (reg_hash
, reg_name_given
);
4438 /* Handle floating point regs, allowing spaces in the (i) part. */
4439 if (r
== i386_regtab
/* %st is first entry of table */)
4441 if (is_space_char (*s
))
4446 if (is_space_char (*s
))
4448 if (*s
>= '0' && *s
<= '7')
4450 r
= &i386_float_regtab
[*s
- '0'];
4452 if (is_space_char (*s
))
4460 /* We have "%st(" then garbage. */
4461 return (const reg_entry
*) NULL
;
4468 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4469 const char *md_shortopts
= "kVQ:sq";
4471 const char *md_shortopts
= "q";
4474 struct option md_longopts
[] = {
4475 #define OPTION_32 (OPTION_MD_BASE + 0)
4476 {"32", no_argument
, NULL
, OPTION_32
},
4477 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4478 #define OPTION_64 (OPTION_MD_BASE + 1)
4479 {"64", no_argument
, NULL
, OPTION_64
},
4481 {NULL
, no_argument
, NULL
, 0}
4483 size_t md_longopts_size
= sizeof (md_longopts
);
4486 md_parse_option (c
, arg
)
4488 char *arg ATTRIBUTE_UNUSED
;
4496 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4497 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4498 should be emitted or not. FIXME: Not implemented. */
4502 /* -V: SVR4 argument to print version ID. */
4504 print_version_id ();
4507 /* -k: Ignore for FreeBSD compatibility. */
4512 /* -s: On i386 Solaris, this tells the native assembler to use
4513 .stab instead of .stab.excl. We always use .stab anyhow. */
4518 const char **list
, **l
;
4520 list
= bfd_target_list ();
4521 for (l
= list
; *l
!= NULL
; l
++)
4522 if (strcmp (*l
, "elf64-x86-64") == 0)
4524 default_arch
= "x86_64";
4528 as_fatal (_("No compiled in support for x86_64"));
4535 default_arch
= "i386";
4545 md_show_usage (stream
)
4548 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4549 fprintf (stream
, _("\
4551 -V print assembler version number\n\
4553 -q quieten some warnings\n\
4556 fprintf (stream
, _("\
4557 -q quieten some warnings\n"));
4561 #ifdef BFD_ASSEMBLER
4562 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
4563 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
4565 /* Pick the target format to use. */
4568 i386_target_format ()
4570 if (!strcmp (default_arch
, "x86_64"))
4571 set_code_flag (CODE_64BIT
);
4572 else if (!strcmp (default_arch
, "i386"))
4573 set_code_flag (CODE_32BIT
);
4575 as_fatal (_("Unknown architecture"));
4576 switch (OUTPUT_FLAVOR
)
4578 #ifdef OBJ_MAYBE_AOUT
4579 case bfd_target_aout_flavour
:
4580 return AOUT_TARGET_FORMAT
;
4582 #ifdef OBJ_MAYBE_COFF
4583 case bfd_target_coff_flavour
:
4586 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
4587 case bfd_target_elf_flavour
:
4589 if (flag_code
== CODE_64BIT
)
4590 use_rela_relocations
= 1;
4591 return flag_code
== CODE_64BIT
? "elf64-x86-64" : "elf32-i386";
4600 #endif /* OBJ_MAYBE_ more than one */
4601 #endif /* BFD_ASSEMBLER */
4604 md_undefined_symbol (name
)
4607 if (name
[0] == GLOBAL_OFFSET_TABLE_NAME
[0]
4608 && name
[1] == GLOBAL_OFFSET_TABLE_NAME
[1]
4609 && name
[2] == GLOBAL_OFFSET_TABLE_NAME
[2]
4610 && strcmp (name
, GLOBAL_OFFSET_TABLE_NAME
) == 0)
4614 if (symbol_find (name
))
4615 as_bad (_("GOT already in symbol table"));
4616 GOT_symbol
= symbol_new (name
, undefined_section
,
4617 (valueT
) 0, &zero_address_frag
);
4624 /* Round up a section size to the appropriate boundary. */
4627 md_section_align (segment
, size
)
4628 segT segment ATTRIBUTE_UNUSED
;
4631 #ifdef BFD_ASSEMBLER
4632 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4633 if (OUTPUT_FLAVOR
== bfd_target_aout_flavour
)
4635 /* For a.out, force the section size to be aligned. If we don't do
4636 this, BFD will align it for us, but it will not write out the
4637 final bytes of the section. This may be a bug in BFD, but it is
4638 easier to fix it here since that is how the other a.out targets
4642 align
= bfd_get_section_alignment (stdoutput
, segment
);
4643 size
= ((size
+ (1 << align
) - 1) & ((valueT
) -1 << align
));
4651 /* On the i386, PC-relative offsets are relative to the start of the
4652 next instruction. That is, the address of the offset, plus its
4653 size, since the offset is always the last part of the insn. */
4656 md_pcrel_from (fixP
)
4659 return fixP
->fx_size
+ fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
4666 int ignore ATTRIBUTE_UNUSED
;
4670 temp
= get_absolute_expression ();
4671 subseg_set (bss_section
, (subsegT
) temp
);
4672 demand_empty_rest_of_line ();
4677 #ifdef BFD_ASSEMBLER
4680 i386_validate_fix (fixp
)
4683 if (fixp
->fx_subsy
&& fixp
->fx_subsy
== GOT_symbol
)
4685 /* GOTOFF relocation are nonsense in 64bit mode. */
4686 if (fixp
->fx_r_type
== BFD_RELOC_32_PCREL
)
4688 if (flag_code
!= CODE_64BIT
)
4690 fixp
->fx_r_type
= BFD_RELOC_X86_64_GOTPCREL
;
4694 if (flag_code
== CODE_64BIT
)
4696 fixp
->fx_r_type
= BFD_RELOC_386_GOTOFF
;
4703 tc_gen_reloc (section
, fixp
)
4704 asection
*section ATTRIBUTE_UNUSED
;
4708 bfd_reloc_code_real_type code
;
4710 switch (fixp
->fx_r_type
)
4712 case BFD_RELOC_X86_64_PLT32
:
4713 case BFD_RELOC_X86_64_GOT32
:
4714 case BFD_RELOC_X86_64_GOTPCREL
:
4715 case BFD_RELOC_386_PLT32
:
4716 case BFD_RELOC_386_GOT32
:
4717 case BFD_RELOC_386_GOTOFF
:
4718 case BFD_RELOC_386_GOTPC
:
4719 case BFD_RELOC_X86_64_32S
:
4721 case BFD_RELOC_VTABLE_ENTRY
:
4722 case BFD_RELOC_VTABLE_INHERIT
:
4723 code
= fixp
->fx_r_type
;
4728 switch (fixp
->fx_size
)
4731 as_bad (_("can not do %d byte pc-relative relocation"),
4733 code
= BFD_RELOC_32_PCREL
;
4735 case 1: code
= BFD_RELOC_8_PCREL
; break;
4736 case 2: code
= BFD_RELOC_16_PCREL
; break;
4737 case 4: code
= BFD_RELOC_32_PCREL
; break;
4742 switch (fixp
->fx_size
)
4745 as_bad (_("can not do %d byte relocation"), fixp
->fx_size
);
4746 code
= BFD_RELOC_32
;
4748 case 1: code
= BFD_RELOC_8
; break;
4749 case 2: code
= BFD_RELOC_16
; break;
4750 case 4: code
= BFD_RELOC_32
; break;
4751 case 8: code
= BFD_RELOC_64
; break;
4757 if (code
== BFD_RELOC_32
4759 && fixp
->fx_addsy
== GOT_symbol
)
4761 /* We don't support GOTPC on 64bit targets. */
4762 if (flag_code
== CODE_64BIT
)
4764 code
= BFD_RELOC_386_GOTPC
;
4767 rel
= (arelent
*) xmalloc (sizeof (arelent
));
4768 rel
->sym_ptr_ptr
= (asymbol
**) xmalloc (sizeof (asymbol
*));
4769 *rel
->sym_ptr_ptr
= symbol_get_bfdsym (fixp
->fx_addsy
);
4771 rel
->address
= fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
4772 if (!use_rela_relocations
)
4774 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
4775 vtable entry to be used in the relocation's section offset. */
4776 if (fixp
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
4777 rel
->address
= fixp
->fx_offset
;
4780 rel
->addend
= fixp
->fx_addnumber
;
4784 /* Use the rela in 64bit mode. */
4787 rel
->addend
= fixp
->fx_offset
;
4789 rel
->addend
-= fixp
->fx_size
;
4792 rel
->howto
= bfd_reloc_type_lookup (stdoutput
, code
);
4793 if (rel
->howto
== NULL
)
4795 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
4796 _("cannot represent relocation type %s"),
4797 bfd_get_reloc_code_name (code
));
4798 /* Set howto to a garbage value so that we can keep going. */
4799 rel
->howto
= bfd_reloc_type_lookup (stdoutput
, BFD_RELOC_32
);
4800 assert (rel
->howto
!= NULL
);
4806 #else /* ! BFD_ASSEMBLER */
4808 #if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
4810 tc_aout_fix_to_chars (where
, fixP
, segment_address_in_file
)
4813 relax_addressT segment_address_in_file
;
4815 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
4816 Out: GNU LD relocation length code: 0, 1, or 2. */
4818 static const unsigned char nbytes_r_length
[] = { 42, 0, 1, 42, 2 };
4821 know (fixP
->fx_addsy
!= NULL
);
4823 md_number_to_chars (where
,
4824 (valueT
) (fixP
->fx_frag
->fr_address
4825 + fixP
->fx_where
- segment_address_in_file
),
4828 r_symbolnum
= (S_IS_DEFINED (fixP
->fx_addsy
)
4829 ? S_GET_TYPE (fixP
->fx_addsy
)
4830 : fixP
->fx_addsy
->sy_number
);
4832 where
[6] = (r_symbolnum
>> 16) & 0x0ff;
4833 where
[5] = (r_symbolnum
>> 8) & 0x0ff;
4834 where
[4] = r_symbolnum
& 0x0ff;
4835 where
[7] = ((((!S_IS_DEFINED (fixP
->fx_addsy
)) << 3) & 0x08)
4836 | ((nbytes_r_length
[fixP
->fx_size
] << 1) & 0x06)
4837 | (((fixP
->fx_pcrel
<< 0) & 0x01) & 0x0f));
4840 #endif /* OBJ_AOUT or OBJ_BOUT. */
4842 #if defined (I386COFF)
4845 tc_coff_fix2rtype (fixP
)
4848 if (fixP
->fx_r_type
== R_IMAGEBASE
)
4851 return (fixP
->fx_pcrel
?
4852 (fixP
->fx_size
== 1 ? R_PCRBYTE
:
4853 fixP
->fx_size
== 2 ? R_PCRWORD
:
4855 (fixP
->fx_size
== 1 ? R_RELBYTE
:
4856 fixP
->fx_size
== 2 ? R_RELWORD
:
4861 tc_coff_sizemachdep (frag
)
4865 return (frag
->fr_next
->fr_address
- frag
->fr_address
);
4870 #endif /* I386COFF */
4872 #endif /* ! BFD_ASSEMBLER */
4874 /* Parse operands using Intel syntax. This implements a recursive descent
4875 parser based on the BNF grammar published in Appendix B of the MASM 6.1
4878 FIXME: We do not recognize the full operand grammar defined in the MASM
4879 documentation. In particular, all the structure/union and
4880 high-level macro operands are missing.
4882 Uppercase words are terminals, lower case words are non-terminals.
4883 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
4884 bars '|' denote choices. Most grammar productions are implemented in
4885 functions called 'intel_<production>'.
4887 Initial production is 'expr'.
4893 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
4895 constant digits [[ radixOverride ]]
4897 dataType BYTE | WORD | DWORD | QWORD | XWORD
4930 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
4931 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
4933 hexdigit a | b | c | d | e | f
4934 | A | B | C | D | E | F
4944 register specialRegister
4948 segmentRegister CS | DS | ES | FS | GS | SS
4950 specialRegister CR0 | CR2 | CR3
4951 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
4952 | TR3 | TR4 | TR5 | TR6 | TR7
4954 We simplify the grammar in obvious places (e.g., register parsing is
4955 done by calling parse_register) and eliminate immediate left recursion
4956 to implement a recursive-descent parser.
4996 /* Parsing structure for the intel syntax parser. Used to implement the
4997 semantic actions for the operand grammar. */
4998 struct intel_parser_s
5000 char *op_string
; /* The string being parsed. */
5001 int got_a_float
; /* Whether the operand is a float. */
5002 int op_modifier
; /* Operand modifier. */
5003 int is_mem
; /* 1 if operand is memory reference. */
5004 const reg_entry
*reg
; /* Last register reference found. */
5005 char *disp
; /* Displacement string being built. */
5008 static struct intel_parser_s intel_parser
;
5010 /* Token structure for parsing intel syntax. */
5013 int code
; /* Token code. */
5014 const reg_entry
*reg
; /* Register entry for register tokens. */
5015 char *str
; /* String representation. */
5018 static struct intel_token cur_token
, prev_token
;
5020 /* Token codes for the intel parser. Since T_SHORT is already used
5021 by COFF, undefine it first to prevent a warning. */
5036 /* Prototypes for intel parser functions. */
5037 static int intel_match_token
PARAMS ((int code
));
5038 static void intel_get_token
PARAMS ((void));
5039 static void intel_putback_token
PARAMS ((void));
5040 static int intel_expr
PARAMS ((void));
5041 static int intel_e05
PARAMS ((void));
5042 static int intel_e05_1
PARAMS ((void));
5043 static int intel_e06
PARAMS ((void));
5044 static int intel_e06_1
PARAMS ((void));
5045 static int intel_e09
PARAMS ((void));
5046 static int intel_e09_1
PARAMS ((void));
5047 static int intel_e10
PARAMS ((void));
5048 static int intel_e10_1
PARAMS ((void));
5049 static int intel_e11
PARAMS ((void));
5052 i386_intel_operand (operand_string
, got_a_float
)
5053 char *operand_string
;
5059 /* Initialize token holders. */
5060 cur_token
.code
= prev_token
.code
= T_NIL
;
5061 cur_token
.reg
= prev_token
.reg
= NULL
;
5062 cur_token
.str
= prev_token
.str
= NULL
;
5064 /* Initialize parser structure. */
5065 p
= intel_parser
.op_string
= (char *) malloc (strlen (operand_string
) + 1);
5068 strcpy (intel_parser
.op_string
, operand_string
);
5069 intel_parser
.got_a_float
= got_a_float
;
5070 intel_parser
.op_modifier
= -1;
5071 intel_parser
.is_mem
= 0;
5072 intel_parser
.reg
= NULL
;
5073 intel_parser
.disp
= (char *) malloc (strlen (operand_string
) + 1);
5074 if (intel_parser
.disp
== NULL
)
5076 intel_parser
.disp
[0] = '\0';
5078 /* Read the first token and start the parser. */
5080 ret
= intel_expr ();
5084 /* If we found a memory reference, hand it over to i386_displacement
5085 to fill in the rest of the operand fields. */
5086 if (intel_parser
.is_mem
)
5088 if ((i
.mem_operands
== 1
5089 && (current_templates
->start
->opcode_modifier
& IsString
) == 0)
5090 || i
.mem_operands
== 2)
5092 as_bad (_("too many memory references for '%s'"),
5093 current_templates
->start
->name
);
5098 char *s
= intel_parser
.disp
;
5101 /* Add the displacement expression. */
5103 ret
= i386_displacement (s
, s
+ strlen (s
))
5104 && i386_index_check (s
);
5108 /* Constant and OFFSET expressions are handled by i386_immediate. */
5109 else if (intel_parser
.op_modifier
== OFFSET_FLAT
5110 || intel_parser
.reg
== NULL
)
5111 ret
= i386_immediate (intel_parser
.disp
);
5115 free (intel_parser
.disp
);
5125 /* expr SHORT e05 */
5126 if (cur_token
.code
== T_SHORT
)
5128 intel_parser
.op_modifier
= SHORT
;
5129 intel_match_token (T_SHORT
);
5131 return (intel_e05 ());
5136 return intel_e05 ();
5146 return (intel_e06 () && intel_e05_1 ());
5152 /* e05' addOp e06 e05' */
5153 if (cur_token
.code
== '+' || cur_token
.code
== '-')
5155 strcat (intel_parser
.disp
, cur_token
.str
);
5156 intel_match_token (cur_token
.code
);
5158 return (intel_e06 () && intel_e05_1 ());
5173 return (intel_e09 () && intel_e06_1 ());
5179 /* e06' mulOp e09 e06' */
5180 if (cur_token
.code
== '*' || cur_token
.code
== '/')
5182 strcat (intel_parser
.disp
, cur_token
.str
);
5183 intel_match_token (cur_token
.code
);
5185 return (intel_e09 () && intel_e06_1 ());
5193 /* e09 OFFSET e10 e09'
5202 /* e09 OFFSET e10 e09' */
5203 if (cur_token
.code
== T_OFFSET
)
5205 intel_parser
.is_mem
= 0;
5206 intel_parser
.op_modifier
= OFFSET_FLAT
;
5207 intel_match_token (T_OFFSET
);
5209 return (intel_e10 () && intel_e09_1 ());
5214 return (intel_e10 () && intel_e09_1 ());
5220 /* e09' PTR e10 e09' */
5221 if (cur_token
.code
== T_PTR
)
5223 if (prev_token
.code
== T_BYTE
)
5224 i
.suffix
= BYTE_MNEM_SUFFIX
;
5226 else if (prev_token
.code
== T_WORD
)
5228 if (intel_parser
.got_a_float
== 2) /* "fi..." */
5229 i
.suffix
= SHORT_MNEM_SUFFIX
;
5231 i
.suffix
= WORD_MNEM_SUFFIX
;
5234 else if (prev_token
.code
== T_DWORD
)
5236 if (intel_parser
.got_a_float
== 1) /* "f..." */
5237 i
.suffix
= SHORT_MNEM_SUFFIX
;
5239 i
.suffix
= LONG_MNEM_SUFFIX
;
5242 else if (prev_token
.code
== T_QWORD
)
5244 if (intel_parser
.got_a_float
== 1) /* "f..." */
5245 i
.suffix
= LONG_MNEM_SUFFIX
;
5247 i
.suffix
= QWORD_MNEM_SUFFIX
;
5250 else if (prev_token
.code
== T_XWORD
)
5251 i
.suffix
= LONG_DOUBLE_MNEM_SUFFIX
;
5255 as_bad (_("Unknown operand modifier `%s'\n"), prev_token
.str
);
5259 intel_match_token (T_PTR
);
5261 return (intel_e10 () && intel_e09_1 ());
5264 /* e09 : e10 e09' */
5265 else if (cur_token
.code
== ':')
5267 /* Mark as a memory operand only if it's not already known to be an
5268 offset expression. */
5269 if (intel_parser
.op_modifier
!= OFFSET_FLAT
)
5270 intel_parser
.is_mem
= 1;
5272 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5287 return (intel_e11 () && intel_e10_1 ());
5293 /* e10' [ expr ] e10' */
5294 if (cur_token
.code
== '[')
5296 intel_match_token ('[');
5298 /* Mark as a memory operand only if it's not already known to be an
5299 offset expression. If it's an offset expression, we need to keep
5301 if (intel_parser
.op_modifier
!= OFFSET_FLAT
)
5302 intel_parser
.is_mem
= 1;
5304 strcat (intel_parser
.disp
, "[");
5306 /* Add a '+' to the displacement string if necessary. */
5307 if (*intel_parser
.disp
!= '\0'
5308 && *(intel_parser
.disp
+ strlen (intel_parser
.disp
) - 1) != '+')
5309 strcat (intel_parser
.disp
, "+");
5311 if (intel_expr () && intel_match_token (']'))
5313 /* Preserve brackets when the operand is an offset expression. */
5314 if (intel_parser
.op_modifier
== OFFSET_FLAT
)
5315 strcat (intel_parser
.disp
, "]");
5317 return intel_e10_1 ();
5344 if (cur_token
.code
== '(')
5346 intel_match_token ('(');
5347 strcat (intel_parser
.disp
, "(");
5349 if (intel_expr () && intel_match_token (')'))
5351 strcat (intel_parser
.disp
, ")");
5359 else if (cur_token
.code
== '[')
5361 intel_match_token ('[');
5363 /* Mark as a memory operand only if it's not already known to be an
5364 offset expression. If it's an offset expression, we need to keep
5366 if (intel_parser
.op_modifier
!= OFFSET_FLAT
)
5367 intel_parser
.is_mem
= 1;
5369 strcat (intel_parser
.disp
, "[");
5371 /* Operands for jump/call inside brackets denote absolute addresses. */
5372 if (current_templates
->start
->opcode_modifier
& Jump
5373 || current_templates
->start
->opcode_modifier
& JumpDword
5374 || current_templates
->start
->opcode_modifier
& JumpByte
5375 || current_templates
->start
->opcode_modifier
& JumpInterSegment
)
5376 i
.types
[this_operand
] |= JumpAbsolute
;
5378 /* Add a '+' to the displacement string if necessary. */
5379 if (*intel_parser
.disp
!= '\0'
5380 && *(intel_parser
.disp
+ strlen (intel_parser
.disp
) - 1) != '+')
5381 strcat (intel_parser
.disp
, "+");
5383 if (intel_expr () && intel_match_token (']'))
5385 /* Preserve brackets when the operand is an offset expression. */
5386 if (intel_parser
.op_modifier
== OFFSET_FLAT
)
5387 strcat (intel_parser
.disp
, "]");
5400 else if (cur_token
.code
== T_BYTE
5401 || cur_token
.code
== T_WORD
5402 || cur_token
.code
== T_DWORD
5403 || cur_token
.code
== T_QWORD
5404 || cur_token
.code
== T_XWORD
)
5406 intel_match_token (cur_token
.code
);
5413 else if (cur_token
.code
== '$' || cur_token
.code
== '.')
5415 strcat (intel_parser
.disp
, cur_token
.str
);
5416 intel_match_token (cur_token
.code
);
5418 /* Mark as a memory operand only if it's not already known to be an
5419 offset expression. */
5420 if (intel_parser
.op_modifier
!= OFFSET_FLAT
)
5421 intel_parser
.is_mem
= 1;
5427 else if (cur_token
.code
== T_REG
)
5429 const reg_entry
*reg
= intel_parser
.reg
= cur_token
.reg
;
5431 intel_match_token (T_REG
);
5433 /* Check for segment change. */
5434 if (cur_token
.code
== ':')
5436 if (reg
->reg_type
& (SReg2
| SReg3
))
5438 switch (reg
->reg_num
)
5441 i
.seg
[i
.mem_operands
] = &es
;
5444 i
.seg
[i
.mem_operands
] = &cs
;
5447 i
.seg
[i
.mem_operands
] = &ss
;
5450 i
.seg
[i
.mem_operands
] = &ds
;
5453 i
.seg
[i
.mem_operands
] = &fs
;
5456 i
.seg
[i
.mem_operands
] = &gs
;
5462 as_bad (_("`%s' is not a valid segment register"), reg
->reg_name
);
5467 /* Not a segment register. Check for register scaling. */
5468 else if (cur_token
.code
== '*')
5470 if (!intel_parser
.is_mem
)
5472 as_bad (_("Register scaling only allowed in memory operands."));
5476 /* What follows must be a valid scale. */
5477 if (intel_match_token ('*')
5478 && strchr ("01248", *cur_token
.str
))
5481 i
.types
[this_operand
] |= BaseIndex
;
5483 /* Set the scale after setting the register (otherwise,
5484 i386_scale will complain) */
5485 i386_scale (cur_token
.str
);
5486 intel_match_token (T_CONST
);
5490 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5496 /* No scaling. If this is a memory operand, the register is either a
5497 base register (first occurrence) or an index register (second
5499 else if (intel_parser
.is_mem
&& !(reg
->reg_type
& (SReg2
| SReg3
)))
5501 if (i
.base_reg
&& i
.index_reg
)
5503 as_bad (_("Too many register references in memory operand.\n"));
5507 if (i
.base_reg
== NULL
)
5512 i
.types
[this_operand
] |= BaseIndex
;
5515 /* Offset modifier. Add the register to the displacement string to be
5516 parsed as an immediate expression after we're done. */
5517 else if (intel_parser
.op_modifier
== OFFSET_FLAT
)
5518 strcat (intel_parser
.disp
, reg
->reg_name
);
5520 /* It's neither base nor index nor offset. */
5523 i
.types
[this_operand
] |= reg
->reg_type
& ~BaseIndex
;
5524 i
.op
[this_operand
].regs
= reg
;
5528 /* Since registers are not part of the displacement string (except
5529 when we're parsing offset operands), we may need to remove any
5530 preceding '+' from the displacement string. */
5531 if (*intel_parser
.disp
!= '\0'
5532 && intel_parser
.op_modifier
!= OFFSET_FLAT
)
5534 char *s
= intel_parser
.disp
;
5535 s
+= strlen (s
) - 1;
5544 else if (cur_token
.code
== T_ID
)
5546 /* Add the identifier to the displacement string. */
5547 strcat (intel_parser
.disp
, cur_token
.str
);
5548 intel_match_token (T_ID
);
5550 /* The identifier represents a memory reference only if it's not
5551 preceded by an offset modifier. */
5552 if (intel_parser
.op_modifier
!= OFFSET_FLAT
)
5553 intel_parser
.is_mem
= 1;
5559 else if (cur_token
.code
== T_CONST
5560 || cur_token
.code
== '-'
5561 || cur_token
.code
== '+')
5565 /* Allow constants that start with `+' or `-'. */
5566 if (cur_token
.code
== '-' || cur_token
.code
== '+')
5568 strcat (intel_parser
.disp
, cur_token
.str
);
5569 intel_match_token (cur_token
.code
);
5570 if (cur_token
.code
!= T_CONST
)
5572 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
5578 save_str
= (char *) malloc (strlen (cur_token
.str
) + 1);
5579 if (save_str
== NULL
)
5581 strcpy (save_str
, cur_token
.str
);
5583 /* Get the next token to check for register scaling. */
5584 intel_match_token (cur_token
.code
);
5586 /* Check if this constant is a scaling factor for an index register. */
5587 if (cur_token
.code
== '*')
5589 if (intel_match_token ('*') && cur_token
.code
== T_REG
)
5591 if (!intel_parser
.is_mem
)
5593 as_bad (_("Register scaling only allowed in memory operands."));
5597 /* The constant is followed by `* reg', so it must be
5599 if (strchr ("01248", *save_str
))
5601 i
.index_reg
= cur_token
.reg
;
5602 i
.types
[this_operand
] |= BaseIndex
;
5604 /* Set the scale after setting the register (otherwise,
5605 i386_scale will complain) */
5606 i386_scale (save_str
);
5607 intel_match_token (T_REG
);
5609 /* Since registers are not part of the displacement
5610 string, we may need to remove any preceding '+' from
5611 the displacement string. */
5612 if (*intel_parser
.disp
!= '\0')
5614 char *s
= intel_parser
.disp
;
5615 s
+= strlen (s
) - 1;
5628 /* The constant was not used for register scaling. Since we have
5629 already consumed the token following `*' we now need to put it
5630 back in the stream. */
5632 intel_putback_token ();
5635 /* Add the constant to the displacement string. */
5636 strcat (intel_parser
.disp
, save_str
);
5642 as_bad (_("Unrecognized token '%s'"), cur_token
.str
);
5646 /* Match the given token against cur_token. If they match, read the next
5647 token from the operand string. */
5649 intel_match_token (code
)
5652 if (cur_token
.code
== code
)
5659 as_bad (_("Unexpected token `%s'\n"), cur_token
.str
);
5664 /* Read a new token from intel_parser.op_string and store it in cur_token. */
5669 const reg_entry
*reg
;
5670 struct intel_token new_token
;
5672 new_token
.code
= T_NIL
;
5673 new_token
.reg
= NULL
;
5674 new_token
.str
= NULL
;
5676 /* Free the memory allocated to the previous token and move
5677 cur_token to prev_token. */
5679 free (prev_token
.str
);
5681 prev_token
= cur_token
;
5683 /* Skip whitespace. */
5684 while (is_space_char (*intel_parser
.op_string
))
5685 intel_parser
.op_string
++;
5687 /* Return an empty token if we find nothing else on the line. */
5688 if (*intel_parser
.op_string
== '\0')
5690 cur_token
= new_token
;
5694 /* The new token cannot be larger than the remainder of the operand
5696 new_token
.str
= (char *) malloc (strlen (intel_parser
.op_string
) + 1);
5697 if (new_token
.str
== NULL
)
5699 new_token
.str
[0] = '\0';
5701 if (strchr ("0123456789", *intel_parser
.op_string
))
5703 char *p
= new_token
.str
;
5704 char *q
= intel_parser
.op_string
;
5705 new_token
.code
= T_CONST
;
5707 /* Allow any kind of identifier char to encompass floating point and
5708 hexadecimal numbers. */
5709 while (is_identifier_char (*q
))
5713 /* Recognize special symbol names [0-9][bf]. */
5714 if (strlen (intel_parser
.op_string
) == 2
5715 && (intel_parser
.op_string
[1] == 'b'
5716 || intel_parser
.op_string
[1] == 'f'))
5717 new_token
.code
= T_ID
;
5720 else if (strchr ("+-/*:[]()", *intel_parser
.op_string
))
5722 new_token
.code
= *intel_parser
.op_string
;
5723 new_token
.str
[0] = *intel_parser
.op_string
;
5724 new_token
.str
[1] = '\0';
5727 else if ((*intel_parser
.op_string
== REGISTER_PREFIX
|| allow_naked_reg
)
5728 && ((reg
= parse_register (intel_parser
.op_string
, &end_op
)) != NULL
))
5730 new_token
.code
= T_REG
;
5731 new_token
.reg
= reg
;
5733 if (*intel_parser
.op_string
== REGISTER_PREFIX
)
5735 new_token
.str
[0] = REGISTER_PREFIX
;
5736 new_token
.str
[1] = '\0';
5739 strcat (new_token
.str
, reg
->reg_name
);
5742 else if (is_identifier_char (*intel_parser
.op_string
))
5744 char *p
= new_token
.str
;
5745 char *q
= intel_parser
.op_string
;
5747 /* A '.' or '$' followed by an identifier char is an identifier.
5748 Otherwise, it's operator '.' followed by an expression. */
5749 if ((*q
== '.' || *q
== '$') && !is_identifier_char (*(q
+ 1)))
5751 new_token
.code
= *q
;
5752 new_token
.str
[0] = *q
;
5753 new_token
.str
[1] = '\0';
5757 while (is_identifier_char (*q
) || *q
== '@')
5761 if (strcasecmp (new_token
.str
, "BYTE") == 0)
5762 new_token
.code
= T_BYTE
;
5764 else if (strcasecmp (new_token
.str
, "WORD") == 0)
5765 new_token
.code
= T_WORD
;
5767 else if (strcasecmp (new_token
.str
, "DWORD") == 0)
5768 new_token
.code
= T_DWORD
;
5770 else if (strcasecmp (new_token
.str
, "QWORD") == 0)
5771 new_token
.code
= T_QWORD
;
5773 else if (strcasecmp (new_token
.str
, "XWORD") == 0)
5774 new_token
.code
= T_XWORD
;
5776 else if (strcasecmp (new_token
.str
, "PTR") == 0)
5777 new_token
.code
= T_PTR
;
5779 else if (strcasecmp (new_token
.str
, "SHORT") == 0)
5780 new_token
.code
= T_SHORT
;
5782 else if (strcasecmp (new_token
.str
, "OFFSET") == 0)
5784 new_token
.code
= T_OFFSET
;
5786 /* ??? This is not mentioned in the MASM grammar but gcc
5787 makes use of it with -mintel-syntax. OFFSET may be
5788 followed by FLAT: */
5789 if (strncasecmp (q
, " FLAT:", 6) == 0)
5790 strcat (new_token
.str
, " FLAT:");
5793 /* ??? This is not mentioned in the MASM grammar. */
5794 else if (strcasecmp (new_token
.str
, "FLAT") == 0)
5795 new_token
.code
= T_OFFSET
;
5798 new_token
.code
= T_ID
;
5803 as_bad (_("Unrecognized token `%s'\n"), intel_parser
.op_string
);
5805 intel_parser
.op_string
+= strlen (new_token
.str
);
5806 cur_token
= new_token
;
5809 /* Put cur_token back into the token stream and make cur_token point to
5812 intel_putback_token ()
5814 intel_parser
.op_string
-= strlen (cur_token
.str
);
5815 free (cur_token
.str
);
5816 cur_token
= prev_token
;
5818 /* Forget prev_token. */
5819 prev_token
.code
= T_NIL
;
5820 prev_token
.reg
= NULL
;
5821 prev_token
.str
= NULL
;